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RESUMO 

 

O mercado legal de cannabis internacional está enfrentando novos desafios em relação 
à inovação na produção de drogas à base de canabinoides. A produção tradicional de 
canabinoides envolve o cultivo de Cannabis sativa L. ao ar livre ou estufas com condições de 
crescimento controladas, seguidas por etapas de isolamento e purificação. Este processo é 
limitado pelos ciclos de crescimento da planta, onde o teor de canabinoides pode variar 
profundamente a cada colheita. Como alternativa, a produção de canabinoides por fermentação é 
uma nova abordagem que vem ganhando a atenção da indústria por não envolver o cultivo de 
plantas. A partir de leveduras e bactérias recombinantes, pesquisadores estão reproduzindo as 
vias biossintética para gerar canabinoides, como (-)-∆9-tetrahidrocanabinol (∆9-THC), canabidiol 
(CBD) e (-)-∆9-tetrahidrocanabivarin (∆9-THCV). Essa abordagem evita pesticidas e o uso de 
recursos naturais, como água, terra e energia, é reduzido. Em comparação ao cultivo de cannabis, 
a fermentação é um processo muito mais rápido, embora tenha limitações relativas à ampla gama 
fitoquímica de moléculas naturalmente presentes na cannabis. Até o momento, não há um 
processo consolidado para a produção de canabinoides por via fermentativa, sendo um conceito 
emergente e promissor para países onde o cultivo de Cannabis sativa L. é ilegal. Esta pesquisa 
discute as técnicas e microrganismos já estabelecidos e associados à produção microbiana de 
canabinoides, explorando vantagens e limitações sobre vias metabólicas, toxicidade e 
recuperação de canabinoides ao longo da produção heteróloga. Potenciais aplicações 
terapêuticas de canabinoides e metodologia in silico para otimização de vias metabólicas também 
são exploradas. Além disso, esta pesquisa propõe uma análise conceitual para ilustrar a 
recuperação e purificação de canabinoides através do processo de fermentação, e uma análise 
de patentes é apresentada a fim de fornecer o estado da arte da transferência de conhecimento 
da esfera científica à aplicação industrial. 

 
Palavras-chave: Biossíntese de canabinoides; Cannabis sativa; Canabidiol; Fermentação; 

Expressão heteróloga; Engenharia metabólica; Tetrahidrocanabinol; 
Tetrahidrocanabivarin. 

 

 



ABSTRACT 

 

The legal cannabis market worldwide is facing new challenges regarding innovation in the 
production of cannabinoid-based drugs. The usual cannabinoid production involves growing 
Cannabis sativa L. outdoor or in dedicated indoor growing facilities, followed by isolation and 
purification steps. This process is limited by the growth cycles of the plant, where the cannabinoid 
content can deeply vary from each harvest. A game change approach that does not involve growing 
a single plant has gained the attention of the industry: cannabinoids fermentation. From 
recombinant yeasts and bacteria, researchers are being able to reproduce the biosynthetic pathway 
to generate cannabinoids, such as (-)-∆9-tetrahydrocannabinol (∆9-THC), cannabidiol (CBD), and 
(-)-∆9-tetrahydrocannabivarin (∆9-THCV). This approach avoids pesticides, and natural resources 
such as water, land, and energy are reduced. Compared to growing cannabis, fermentation is a 
much faster process, although its limitation regarding the phytochemical broad range of molecules 
naturally present in cannabis. So far, there is not a consolidated process for this brand-new 
approach, being an emerging and promising concept for countries in which cultivation of Cannabis 
sativa L. is illegal. This survey discusses the techniques and microorganisms already established 
to accomplish the task and those yet in seeing for the future, exploring upsides and limitations 
about metabolic pathways, toxicity, and downstream recovery of cannabinoids throughout 
heterologous production. Therapeutic potential applications of cannabinoids and in silico 
methodology toward optimization of metabolic pathways are also explored. Moreover, a conceptual 
downstream analysis is proposed to illustrate the recovery and purification of cannabinoids through 
the fermentation process, and a patent landscape is presented to provide the state-of-the-art of the 
transfer of knowledge from the scientific sphere to the industrial application. 

 
Keywords: Cannabinoids biosynthesis; Cannabis sativa; Cannabidiol; Fermentation; Heterologous 

expression; Metabolic engineering; Tetrahydrocannabinol; Tetrahydrocannabivarin. 
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1 INTRODUCTION 
 

The global cannabis and cannabinoids market has undergone a great increase in recent 

years with legalization for medical and recreational purposes in different U.S. states and countries. 

In 1996, California (CA) was the first U.S. state to legalize medical cannabis use (1). Five years 

later, Canada was the first country in the modern era to legalize medical cannabis nationwide, 

establishing public policies that became a reference in this subject (2). The recreational use of 

cannabis was not accepted in the USA until 2012 when Washington (WA) (3) and Colorado (CO) 

(4) passed a ballot initiative for this purpose. In a global scenario, Uruguay was the first country to 

legalize the recreational use of cannabis nationwide in 2013 (5), followed by Canada in 2018 (6). 

Although the global cannabidiol (CBD) market has been valued at US$ 2.8 billion in 2020 

and has a compound annual growth rate (CAGR) of 21.2% projected to 2028 (7), its 

commercialization is still restrictive. Furthermore, the usual cannabinoid production is attached with 

the agricultural process of growing Cannabis sativa L., either in outdoor fields or in dedicated indoor 

growing facilities. The flowers are harvested and the active compounds are isolated through 

chemical (e.g., extraction with ethanol, ethyl acetate, butane, and CO2) or physical (such as heated 

press) processes to take cannabinoids out of the vegetal biomass (8). 

The agriculture-based process requires a significant amount of energy, especially light, 

and chemical fertilizers. As with any agricultural commodity, it is limited by the slow growth cycles 

of the plant, where the cannabinoid content can vary from one cycle to another, and are susceptible 

to pests, weather, and environmental specificities (9). As matter of fact, environmental conditions 

play an important role in mineral nutrient availability, affecting secondary metabolites’ final 

concentration in plants. The work of Shiponi and Bernstein, 2021, evaluated the hypothesis that 

phosphorous (P) uptake, distribution, and availability in the plant affects cannabinoids’ biosynthesis. 

By analyzing two genotypes of medical “drug-type” cannabis grown under five P concentrations (5, 

15, 30, 60, and 90 mg/L), it was noted that the values lower than 15 mg/L were insufficient to 

support optimal plant function, with reduced physiological responses, whereas values between 30 

and 90 mg/L were within the optimal range for plant development, increasing total cannabinoids 

content per plant. With that, the regime of mineral nutrients must be adjusted to account for 

production goals and the genetic specificities of the strain. Moreover, the indoor production of 

cannabis is responsible for greenhouse gas (GHG) emissions that range between 2 and 5 tons of 

CO2-equivalent per kg of dried flower – attributed to electricity and natural gas consumption from 

indoor environmental controls, high-intensity grow lights, and supply of CO2 to accelerate plant 

growth (11). 

With the advance of metabolic engineering and synthetic biology, the tailor-made design 

of cell factories became a reality, providing a remarkable opportunity for the biosynthesis of 

cannabinoids and analogs, especially for those found in small quantities in cannabis. As matter of 

fact, the expression of tetrahydrocannabinol synthase (THCAS) was already achieved using P. 
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pastoris as host (12). With cannabigerolic acid (CBGA) being added into the media, ∆9-

tetrahydrocannabinolic acid (∆9-THCA) was synthesized. Luo et al., 2019, were able to produce 

several cannabinoids and analogs from the genetic recombination of Saccharomyces cerevisiae 

(13), generating an yeast that can synthesize cannabinoids from galactose. With specific genetic 

modifications, cannabinoids that were previously generated in small quantities can now be scaled 

up. Furthermore, there is no need for pesticides and the natural resources required (land, water, 

and energy) are reduced as well CO2 footprint. 

However, a drawback of fermentation is its limitation to achieve the phytochemical broad 

range of molecules naturally present in Cannabis sativa L., turning full-spectrum extracts (i.e., those 

with phytocannabinoids and secondary metabolites) unfeasible to be obtained other than by the 

plant. The term entourage effect (14) is often used to refer to potential synergies between chemical 

compounds present in cannabis, such as cannabinoids-cannabinoids interactions (15–17) and the 

presence of other secondary metabolites such as terpenes/terpenoids (18). The list of 

terpenes/terpenoids found in cannabis is vast due to differences between strains, chemotypes, and 

environmental conditions, but in general, the most common terpenes/terpenoids found are β-

myrcene, limonene, linalool, β-caryophyllene, α-pinene, β-ocimene, terpinolene and geraniol (18). 

They are mainly responsible for the odor and taste present in cannabis flowers and are used world 

widely in perfume fragrances and cleaning products. Besides these organoleptic characteristics, 

terpenes/terpenoids have been studied for their therapeutic potential, with works analyzing 

analgesic (19–21), anti-inflammatory (22–26), gastroprotective (27–29), anxiolytic/anti-depressant 

(30–35), apoptotic/antimetastatic (36,37) antinociceptive (38–40), neuroprotective (41–44), 

sedative/motor relaxant (45–47), and antifungal (48,49) properties. This broad range of metabolites 

in different concentrations provides unique therapeutic applications for full spectrum extracts. 

 

1.1 OBJECTIVES 
 

1.1.1 General objectives 
 

This survey discusses the techniques and microorganisms already established during 

cannabinoids’ heterologous expression in microorganisms, and those yet in seeing for the future, 

exploring upsides and limitations about metabolic pathways, toxicity, and downstream recovery of 

cannabinoids throughout heterologous production. 

 

1.1.2 Specific objectives 
 

 Compile and systemize the therapeutic potential applications of cannabinoids; 

 Present a patent landscape to provide the state-of-the-art of the transfer of 

knowledge from the scientific sphere to the industrial application; 
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 Provide a conceptual downstream analysis to illustrate the recovery and purification 

of cannabinoids through the fermentation process; 

 Analyze which variables mostly impair the process scale up through in silico 

methodology, assessing metabolic bottlenecks during cannabinoids heterologous 

expression in microorganisms;  

 

2 LITERATURE REVIEW 
 

2.1 THERAPEUTIC POTENTIAL OF CANNABINOIDS 
 

Cannabinoids are active lipophilic compounds that interact with specific protein receptors 

in the human body, constituting a system of physiological regulations – the endocannabinoid 

system. Two receptors for this system are well known: CB1, located in the central nervous system 

(CNS) and peripheral nervous system (PNS), with high density in the basal ganglia, cerebellum, 

hippocampus and, cortex; and CB2, restricted to immune tissues and immune cells. Some 

cannabinoids are produced endogenously in various vertebrates and are known as 

endocannabinoids, such as anandamide (AEA) and 2-arachidonylglycerol (2-AG) (50). Other 

cannabinoids are produced only by plants of the genus Cannabis (mainly by sativa and indica 

species), including (-)-∆9-tetrahydrocannabinol (∆9-THC) and cannabidiol (CBD), and are known as 

phytocannabinoids (18). Over 500 chemical compounds were identified in C. sativa L., including 

102 phytocannabinoids, being ∆9-THC, CBD, cannabigerol (CBG), and cannabichromene (CBC) 

their main representatives (51). In the plant, they are usually found in their carboxylated state, 

including tetrahydrocannabinolic acid (∆9-THCA) and cannabidiolic acid (CBDA). Although 

cannabinol (CBN) is one of the major cannabinoids found in cannabis, it is not directly produced by 

the plant, being a product of ∆9-THC oxidation (52). Phytocannabinoids are separated into families 

based on their structures such as cannabigerol (CBG)-family, cannabichromene (CBC)-family, 

cannabidiol (CBD)-family, tetrahydrocannabinol (THC)-family, cannabinol (CBN)-family (53) 

(FIGURE 1). They are all composed of a phenolic (resorcinol) moiety and a monoterpene moiety, 

later described in this survey.  

The effects of cannabinoids were studied only from the 20th century, where several 

analyses resulted in the development of dronabinol (Marinol®; Unimed Pharmaceuticals, Inc, 

Marietta, GA, USA). This drug is based on ∆9-THC, which in 1964 – and after decades of attempts 

to isolate and determine its chemical structure – was identified as the main psychoactive 

component of cannabis. Together with Cesamet® (Valeant Pharmaceuticals North America, Aliso 

Viejo, CA, USA), they were the first cannabinoid-based drugs to be prescribed in the United States, 

presenting antiemetic and appetite-stimulating action for patients with cancer and AIDS (50). 

Several studies are being carried out for possible pharmacological applications involving 

cannabinoids, especially with CBD due to the absence of psychoactive effects. Conditions such as 
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Alzheimer's disease, anxiety, cancer, chronicle pain, depression, epilepsy, inflammatory diseases, 

multiple sclerosis, and Parkinson's disease are being investigated with promising results (54). 

 

FIGURE 1 – Structures of endocannabinoids and major phytocannabinoids present in C. sativa L. 

THC: tetrahydrocannabinol, CBN: cannabinol, CBD: cannabidiol, CBC: cannabichromene, CBG: 

cannabigerol. 

 

REFERENCE: Adapted from (53). 

 

A few phytocannabinoids present psychoactive effects, which are responsible for the high 

sensation that cannabis users experience. For instance, ∆9-THC has psychoactive properties, while 

CBD does not show any (50). CB1 receptor agonist is a primary condition for psychoactive molecule 

action, which is mainly conducted by its retrograde inhibition on both excitatory and inhibitory 

terminals of presynaptic neurons. Once activated, CB1 suppresses the release of neurotransmitters 

by inhibiting voltage-gated Ca+2 channels to reduce ion influx and by inhibiting adenylyl cyclase to 

stop the signaling pathway (55,56). This cascade of physiological responses in the CNS are 

responsible for boosting appetite and modulating mood (57). Consequently, substances that can 

antagonize CB1 receptors are being used to treat metabolic syndrome and obesity (58). ∆9-THC is 

an agonist of the CB1 and CB2 receptors (Ki,CB1 = 35.64 ± 12.4 nM, Ki,CB2 = 8.45 ± 6.0 nM), while 

CBD shows much lower receptor affinity (Ki,CB1 = 1458.5 ± 158.5 nM, Ki,CB2 = 372.37 ± 57.5 nM) 

(55), justifying ∆9-THC psychoactive effects. It was also found that CBD is an inverse agonist at the 

human CB2 receptor, which can contribute for its anti-inflammatory effects (54). The psychoactive 

group of phytocannabinoids is illustrated in FIGURE 2, and is mainly composed by the THC-family, 
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including ∆9-THC, ∆8-THC, (-)-∆9-tetrahydrocannabivarin (∆9-THCV) (59) in high doses (i.e., > 10 

mg/kg in mice (60)), and also CBN (55). Since different molecules bind with different affinities to 

receptors, the psychoactive effect can be mild or pronounced, ultimately being an 

affinity/concentration related mechanism. Thus, there is still much to be understood about other 

phytocannabinoids and their possible interactions and synergies. 

 

FIGURE 2 - Main phytocannabinoids found in Cannabis sativa L. classified into psychoactive and non-

psychoactive. ∆9-THC: ∆9-tetrahydrocannabinol, ∆8-THC: ∆8-tetrahydrocannabinol, CBN: cannabinol, 

∆9-THCV: ∆9-tetrahydrocannabivarin, ∆9-THCA: ∆9-tetrahydrocannabinolic acid, CBC: 

cannabichromene, CBG: cannabigerol, CBD: cannabidiol. 

 

REFERENCE: Adapted from (50,58,61,62). 

 

In TABLE 1 are presented updated references about the therapeutic potential of 

cannabinoids and its applications. The data was collected through research on PubMed and 

Scopus, and is composed by in vitro/in vivo studies, reviews, and book chapters of the referenced 

subject. Nevertheless, this data collection is intended to be used only as a research tool, and not 

as self-treatment guide for any condition without a physician supervision.  
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TABLE 1 - Therapeutic potential application for the previously showed phytocannabinoids. CBD: 

cannabidiol, ∆9-THC: ∆9-tetrahydrocannabinol, CBG: cannabigerol, ∆9-THCV: ∆9-tetrahydrocannabivarin, 

CBC: cannabichromene, CBN: cannabinol. Positions marked with a “-” had inconclusive or no data at 

the moment this survey was carried out. 

Therapeutic potential CBD ∆9-THC CBG ∆9-THCV CBC CBN 

Analgesic (65–68) (69,70) (71) (72) (73,74) (68,75) 

Anorectic - - - (76,77) - - 

Anti-cancer (78,79) (78,80) (73,81,82) - (73,83) (84,85) 

Anti-depressant (86–89) (89) (71,83) - (89) - 

Anti-inflammatory (90,91) (92,93) (73,94) (72) (95–97) (98) 

Anti-ischemic (99) (100) - - - - 

Antibacterial (101–103) (101,103) (103,104) (103) (73,95,103,104) (103) 

Antiemetic (105) (105,106) (107) (108) - - 

Antiepileptic (109,110) (111) - (112) - - 

Antifungal - - (104) - (73,95,104) - 

Antipsoriatic (113,114) - (115) - - (115) 

Antipsychotic (88,116,117) - - (118) - - 

Antispasmodic (67,119,120) (119,120) - - - - 

Anxiolytic (87,88,121) (122,123) - (124) - - 

Appetite stimulant - (125,126) (73) - - (127) 

Bone healing/formation (128–131) (131) (130,131) (131) - (131) 

Immune modulator (132,133) (134,135) - - - (136,137) 

Neuroprotective (121,138–140) (139,141) (140,142) (141,143) (144) (145) 

 

Finally, posology and drug delivery are factors to be analyzed for the patient security and 

well-being. The cannabinoids/terpenoids mixture are usually inhaled by smoking/vaporization or 

taken orally via tinctures or oils. Also, oromucosal, topical-transdermal and rectal routes are minor 

used but possible (63). Since pharmacokinetics vary as a function of its route of administration, the 

effects can be modulated through the chosen posology. Inhaled ∆9-THC maximum plasma 

concentration was detected within minutes, and psychotropic effects were pronounced after 15-30 

minutes, ceasing after 2-3 hours. Oral ingestion psychotropic effects had a delay of 30-90 minutes, 

achieving maximum effect after 2-3 hours and lasting for about 4-12 hours (64). The better 

understanding of these factors is crucial for the correct dosage, avoiding adverse effects. 
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2.2 BIOSYNTHESIS OF PHYTOCANNABINOIDS 
 

Phytocannabinoids are synthesized and stored within glandular trichomes that are 

present on cannabis flowers with some extension to other structures, such as leaves and stems, 

but almost absent in seeds and roots (62). To produce these compounds in a heterologous host, 

the genes, metabolic pathways, bottlenecks, and specificities involved during phytocannabinoids 

biosynthesis in Cannabis sativa L. must be comprehended and availed, in order to be further 

optimized according to the host’s characteristics and limitations. 

The biosynthesis of cannabinoids begins with metabolic pathways to produce geranyl 

pyrophosphate (GPP) and olivetolic acid (OA) as shown in FIGURE 3 (61). Geranyl pyrophosphate 

(GPP) is mainly biosynthesized via the 2C-methyl-D-erythritol-4-phosphate (MEP) pathway, also 

known as non-mevalonate or 1-deoxy-D-xylulose-5-phosphate (DOXP) pathway, and in a small 

extension through mevalonate (MVA) pathway (61,146). The final products, isopentenyl 

pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), are catalyzed to GPP by the 

action of geranyl pyrophosphate synthase (GPPS), providing the monoterpene moiety of 

phytocannabinoids (147). In parallel, the polyketide pathway towards OA starts with hexanoic acid 

produced either by an early termination of fatty acid biosynthesis or by the breakdown of C18 

unsaturated fatty acids via the lipoxygenase pathway (148). The hexanoic acid is converted to 

hexanoyl-CoA by the action of an acyl-activating enzyme type 1 (AAE1) found in Cannabis sativa 

(CsAAE). Then, a type III tetraketide synthase (CsTKS), also known as olivetol synthase (OLS), 

promotes the aldol condensation of hexanoyl-CoA with three molecules of malonyl-CoA, producing 

olivetol, followed by the C2-C7 aldol cyclization to OA carried by a polyketide cyclase (CsOAC) 

(149). With an olivetolic acid pool, the phenolic (resorcinol) moiety is available to be further 

converted into cannabinoids. More details regarding MEP/DOXP pathway, MVA pathway, fatty acid 

biosynthesis, and lipoxygenase pathway are summarized in several reviews (150–153) with higher 

plants metabolism focus. 

With the availability of the precursors, an aromatic prenyltransferase named 

geranylpyrophosphate:olivetolate geranyltransferase (GOT) is responsible to convert GPP and OA 

into cannabigerolic acid (CBGA) (13), the central precursor for phytocannabinoids biosynthesis. 

This enzyme was detected in 1998 and is assumed to be an integral membrane protein, although 

some activity was found in soluble fractions (154,155). 

With an appropriated CBGA pool, enzymes such as THCA synthase, CBDA synthase, and 

CBCA synthase promote an oxidative cyclization of the monoterpene moiety of the substrate, 

generating ∆9-THCA, CBDA, and CBCA, respectively. In the plant, the phytocannabinoids are 

stored as carboxylic acid; they can be decarboxylated to their corresponding neutral form through 

drying, heating, or combustion (156). 
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FIGURE 3 - Phytocannabinoids biosynthesis in Cannabis sativa L. The monoterpene moiety is 

provided majoritarian through the MEP/DOXP pathway, and in small extension through the MVA 

pathway, in which geranyl pyrophosphate (GPP) is synthesized. Parallel to that, fatty acids metabolism 

uses hexanoic acid as a substrate to fulfill the phenolic (resorcinol) moiety of cannabinoids, generating 

olivetolic acid (OA). Through the action of cannabigerolic acid synthase (CBGAS), GPP and OA are 

converted into cannabigerolic acid (CBGA), the central precursor for many other cannabinoids, such 

as ∆9-tetrahydrocannabinolic acid (∆9-THCA), cannabidiolic acid (CBDA) and cannabichromenic acid 

(CBCA). 

 

REFERENCES: Adapted from (13,61,62,156). 
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Phytocannabinoids such as CBGA, ∆9-THCA, CBDA, and CBCA are known as C5 

phytocannabinoids since they have an n-pentyl side chain in the phenolic moiety. However, there 

are also C3 phytocannabinoids, or propyl cannabinoids, derived not from olivetolic acid (OA) but 

from divarinic acid (DA) as illustrated in FIGURE 4. The prenylation of DA with GPP results in 

cannabigerovarinic acid (CBGVA), the central precursor for C3 phytocannabinoids biosynthesis. 

The cannabinoid synthase enzymes are not alkyl length selective and can convert CBGVA into the 

propyl homologous of THCA, CBDA, and CBCA, known as tetrahydrocannabivarinic acid (∆9-

THCVA), cannabidivarinic acid (CBDVA), and cannabichromevarinic acid (CBCVA), respectively 

(157). Since these compounds are not commonly produced by cannabis strains due to dissimilar 

enzyme specificities at the level of CBGA or CBGA-analogs formation (158), the analysis and 

studies of its therapeutic value are impaired. Nevertheless, the agricultural-based method has the 

genetic restrictions imposed by the plant, with selective breeding as the main resource to achieve 

better yields of a specific compound, despite its limited randomness expressed in the next offspring. 

With that, chemotype inheritance and genetic engineering are the objects of study to manipulate 

secondary metabolites’ final concentration and can be conferred in recent works (157,159). 

 

FIGURE 4 - Propyl phytocannabinoids (C3) biosynthesis in Cannabis sativa L. Monoterpene moiety is 

provided majoritarian through the MEP/DOXP pathway, and in small extension through the MVA 

pathway, in which geranyl pyrophosphate (GPP) is synthesized. The fatty acids metabolism uses 

butanoic acid as a substrate to fulfill the phenolic (resorcinol) moiety of cannabinoids, generating 

divarinic acid (DA). Through the action of cannabigerolic acid synthase (CBGAS), GPP and DA are 

converted into cannabigerovarinic acid (CBGVA), the central precursor for many other C3 

cannabinoids, such as ∆9-tetrahydrocannabivarinic acid (∆9-THCVA), cannabidivarinic acid (CBDA) 

and cannabichromevarinic acid (CBCVA). 
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REFERENCES: Adapted from (13,61,62,156). 

 

2.3 METABOLIC ENGINEERING TOWARDS PHYTOCANNABINOIDS 
BIOSYNTHESIS IN MICROORGANISMS 

 

2.3.1 Design of a suitable host 
 

A better approach to target the production of non-common cannabinoids can be achieved 

through the aid of metabolic engineering and synthetic biology. Usually, a safe and well-described 

cell is chosen as a “cell factory”, a chassis for the production of the desired chemical compound. 

The chosen cell can express the pathways needed to achieve the product, but, typically, the flux 
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toward the product is naturally low. Using classic strain improvement or directed genetic 

modifications (i.e., metabolic engineering), it is possible to increase the flux toward the product. If 

the cell does not naturally produce the compound of interest, the insertion of a synthetic pathway 

is necessary. Normally, the product will be generated in small amounts, but the pathway can be 

optimized to ensure a high flux toward the target, using concepts from both metabolic engineering 

and synthetic biology. Finally, a complete synthetic cell can be constructed in a manner that its 

pathways are tailored for the desired product, achieving great yields and low concentration of by-

products (160). 

Since fermentation of cannabinoids is a relatively new approach, there is no consensus 

on the best microorganism yet. The first step is to determine which microorganisms can be tailored 

for heterologous biosynthesis of these compounds. A review published by Carvalho et al., 2017, 

covers some of the main host characteristics, such as genetic tools available for the microorganism, 

plant protein expression capacity, possibility of posttranslational modifications, and specific 

biosynthetic pathways. The microorganisms analyzed in this survey were Escherichia coli, 

Saccharomyces cerevisiae, Komagataella phaffii (Pichia pastoris), and Kluyveromyces marxianus, 

with qualitative indicators regarding hosts characteristics aforementioned. It was noticed that E. coli 

has significant genetic tools reported, and an arsenal of strains, promoters, and vectors, but its 

limited posttranslational modifications make it unlikeable to be a suitable host. All the other 

microorganisms are yeasts, with S. cerevisiae and K. phaffii (P. pastoris) being the most widely 

reported in the literature. The yeast K. marxianus has been reported to present an efficient hexanoic 

acid pathway (162), which could solve the low-availability pool of this metabolite during 

heterologous biosynthesis of cannabinoids. 

 

2.3.2 Culture medium, production system, and broth composition 
 

The production of phytocannabinoids by heterologous expression in yeasts has been 

accomplished through fed-batch liquid cultures (12,13). This production system is indicated for 

fermentations in which substances are periodically added to the medium to fulfill the chemical 

demand of the target microorganism. The interval between applications avoids excess toxic 

substances in the medium, preventing possible detours during biosynthesis or even cell death. As 

shown by Coral et al., 2008, the medium composition plays an important role to determine the 

optimal point between biomass and product concentration. 

Luo et al., 2019, worked with recombinant S. cerevisiae in liquid culture medium. Strains 

were pre-grown in yeast peptone dextrose extract (YPD) medium overnight and then back-diluted 

to OD600 = 0.2 into yeast peptone galactose extract (YPG), a non-selective culture medium for 

Candida, Pichia, Saccharomyces and Zygosaccharomyces containing 20 g/L of peptone, 10 g/L of 

yeast extract and 20 g/L of galactose. The medium was supplemented with 1 mM olivetolic acid or 

corresponding fatty acid (such as hexanoic, pentanoic, and butanoic acid). Strains were incubated 
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for 24 h, 48 h, or 96 h in 24-deep-well plates (800 r.p.m.) at 30 °C while supplementing with 2% 

(w/v) galactose every 24 h. 

Zirpel et al., 2015, worked with recombinant E. coli, P. pastoris, and S. cerevisiae. 

Recombinant E. coli cells were grown in 1 L flasks, containing 100 mL LB-medium (50 μg 

kanamycin mL-1, 33 μg chloramphenicol mL-1, 100 μg spectinomycin mL-1) at 37 °C and 200 rpm 

to an OD600 of 0.6. THCAS expression was started by the addition of 1 mM IPTG and cells grown 

for 16 h at 20 °C. Recombinant S. cerevisiae cells were grown in minimal medium without leucine 

at 30 °C and 200 rpm for 24 h. Cells were used to inoculate 100 mL of 2  YPAD medium at an 

OD600 of 0.5 and incubated with 0.5 % (w/v) galactose at 20 °C and 200 rpm for 144 h. Recombinant 

P. pastoris cells were grown in BMGY at 30 °C and 200 rpm for 24 h. Afterward, cells were harvested 

by centrifugation at 5000 g for 5 min and resuspended in modified BMMY (mBMMY) (164) to an 

OD600 of 20. Pichia cells were cultivated at 15 °C and 200 rpm until no increase in THCAS activity 

could be observed and supplemented with 0.5 % (v/v) methanol every 24 h for protein expression. 

 

2.3.3 From sugar to cannabinoids 
 

The main intermediates and genes during phytocannabinoids biosynthesis in S. 

cerevisiae were reported by Luo et al., 2019, and are illustrated in FIGURE 5. The chosen substrate 

for the microorganism was galactose. The GPP was produced with the introduction of the EfmvaE 

and EfmvaS genes of Enterococcus faecalis (an acetyl-CoA acetyltransferase/HMG-CoA reductase 

and an hydroxymethylglutaryl-CoA synthase (165)), and by overexpressing the genes of the 

mevalonate pathway (ERG12, ERG8, ERG19, and IDI1) (166) and a mutated ERG20F96W/N127W 

gene (erg20 ) that preferentially produces GPP over FPP (167). Hexanoyl-CoA was produced 

heterologously using genes from Ralstonia eutropha (RebktB, a β-keto thiolase from Ralstonia 

eutropha H16 that catalyzes condensation reactions between acetyl-CoA with acyl-CoA molecules 

(168)), Cupriavidus necator (CnpaaH1, an NADH-dependent 3-hydroxyacyl-CoA dehydrogenase 

(169)), Clostridium acetobutylicum (Cacrt, a crotonase that catalyzes the dehydration of 3-

hydroxybutyryl-CoA to crotonyl-CoA in the n-butanol biosynthetic pathway (170)) and Treponema 

denticola (Tdter, a trans-enoyl-CoA reductase (171)), or feeding hexanoic acid as a substrate for 

AAE (encoded by CsAAE1 from Cannabis). Expression of the genes encoding CsTKS and CsOAC 

produced olivetolic acid, which was prenylated by CsPT4-T, a geranylpyrophosphate:olivetolate 

geranyltransferase activity. The resulting CBGA was transformed into 9-THCA and CBDA using 

THCAS and CBDAS. After exposure to heat, 9-THCA and CBDA were decarboxylated to 9-THC 

and CBD, respectively. As both 9-THC and CBD come from CBGA, the insertion of gene copies 

that encode THCAS or CBDAS will determine which final product is going to be synthesized. The 

final concentration obtained of 9-THCA and CBDA was 8.0 mg/L and 4.3 μg/L, respectively. In 

addition to cannabinoids derived from olivetolic acid, Luo et al., 2019 also produced propyl 

cannabinoids (from divarinic acid). The hexanoic acid was replaced by butanoic acid, providing an 
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appropriate butanoyl-CoA pool for the synthesis of C3 cannabinoids. Thus, 9-THCVA and CBDVA 

were produced with concentrations of 4.8 mg/L and 6.0 μg/L, respectively (13). 

 

FIGURE 5 - Illustration of main intermediates and genes during phytocannabinoids biosynthesis in S. 

cerevisiae according to the work of Luo et al., 2019. Geranyl pyrophosphate (GPP) was produced with 

the introduction of the EfmvaE and EfmvaS genes of Enterococcus faecalis, and by overexpressing 

the genes of the mevalonate pathway (ERG12, ERG8, ERG19, and IDI1) and a mutated 

ERG20F96W/N127W gene (erg20 ). Hexanoyl-CoA was heterologously produced using genes from 

Ralstonia eutropha (RebktB), Cupriavidus necator (CnpaaH1), Clostridium acetobutylicum (Cacrt), and 

Treponema denticola (Tdter), or feeding hexanoic acid as a substrate for AAE (encoded by CsAAE1 

from Cannabis sativa). Expression of the genes encoding CsTKS and CsOAC produced olivetolic acid 

(OA), which was prenylated by CsPT4-T. The resulting CBGA was transformed into ∆9-THCA and 

CBDA using THCAS and CBDAS. After exposure to heat, ∆9-THCA and CBDA were decarboxylated to 

∆9-THC and CBD, respectively. 

 

REFERENCE: Adapted from (13). 

 

A list of the enzymes involved during heterologous biosynthesis of phytocannabinoids by 

S. cerevisiae with their respective accession numbers on GenBank is available in TABLE 2. 
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TABLE 2 - List of enzymes and corresponding GenBank accession numbers involved in heterologous 

expression of phytocannabinoids in S. cerevisiae. aPatent number, bApplication number. 

Enzyme Abbreviation Accession no. EC no. References 

Acyl activating enzyme 1 AAE AFD33345.1 6.2.1.1 (172) 

Olivetol synthase (tetraketide 

synthase 3) 
OLS (TKS) AB164375 2.3.1.206 (173) 

Olivetolic cyclase OAC AFN42527.1 4.4.1.26 (149) 

Geranylpyrophosphate:olivetolate 

geranyltransferase  
GOT (CsPT4-T) US10975379B2a 2.5.1.102 (13) 

Tetrahydrocannabinolic acid synthase THCAS AB057805 1.21.3.7 (174) 

Cannabidiolic acid synthase CBDAS AB292682 1.21.3.8 (175) 

Cannabichromenic acid synthase CBCAS WO2015196275A1b 1.3.3- (176,177) 

 

Zirpel et al., 2015, tested the production of ∆9-THCA by heterologous hosts such as E. coli, 

S. cerevisiae, and K. phaffii (12), in which S. cerevisiae and K. phaffii showed THCA synthase 

activity after addition of 1 mM CBGA, leading to a ∆9-THCA production of 0.36 g/L in K. phaffii. No 

functional expression of THCA synthase could be found in E. coli, which was concluded by the 

authors that functional expression of THCAS might require eukaryotic chaperones able to facilitate 

covalent binding of FAD to the THCAS or glycosylation of the protein. 

Renew Biopharma chose the green alga Chlamydomonas reinhardtii as a host, stating 

that it is capable of compartmentalizing the biosynthesis of cannabinoids in its chloroplasts, which 

protects the rest of the cellular structures (9). This approach resulted in a more expensive 

downstream since microalgae are known to have a complex cellular wall. For instance, 

Chlamydomonas reinhardtii has a multilayered extracellular matrix, which requires physical and 

chemical agents in order to rupture it and access the cannabinoids (178). 

 

2.3.4 Metabolic engineering in silico 
 

Despite the remarkable work accomplished by Luo et al., 2019, the titers of ∆9-THCA (8.0 

mg/L) and CBDA (4.4 μg/L) obtained were low, making the process economically unfeasible to be 

scaled up into industrial levels. Improvement and redesign of metabolic pathways towards the 

product is the main strategy to enhance higher concentrations of cannabinoids. In fact, metabolic 

bottlenecks for the biosynthesis of ∆9-THCA have been recently analyzed in silico and reported 

(155) for an engineered S. cerevisiae strain. The kinetics of reactions toward cannabinoids were 

modeled using MATLAB® with the SimBiology extension (179), in which ∆9-THCA was produced 

from glucose instead of galactose – a much-appreciated upgrade since galactose is up to 100-fold 

more expensive than glucose. Nevertheless, a high glucose concentration at the beginning leads 
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to respiratory inhibition known as the Crabtree effect (180), in which ethanol is produced and the 

growth rates are slowed. 

The first challenge lies in acetyl-CoA, the committed precursor for mevalonate and 

olivetolic acid pathways, responsible for the GPP and OA pool, respectively. Thomas et al., 2020, 

suggested the replacement of acetaldehyde dehydrogenase (ADH) as well as acetyl-CoA 

synthetase with aldehyde dehydrogenase acylating (ADA) from Dickeya zeae, an optimization that 

grants higher specific activity, demands less energy, and prevents acetate formation. Moreover, the 

ethanol generated by aerobic cultivation on glucose can be converted back into acetaldehyde with 

the addition of ADH2 under specific promoter control. In parallel, non-essential pathways can be 

muted to enhance the carbon flux towards cannabinoids. The peroxisomal citrate synthase and 

cytosolic malate synthase consume cytosolic acetyl-CoA, being the genes CIT2 and MLS1 

excellent targets to be muted to improve acetyl-CoA pool. 

The hexanoic acid production is another metabolic bottleneck referring to the limited pool 

of acetyl-CoA and down related to OA. The low specificity of OAC turns only 5% of all the hexanoic 

acid into OA and the remaining 95% into olivetol. The feeding of hexanoic acid is advantageous 

but limited to up to 1 mM due to cell toxicity and slower growth rates. OA feeding is also not 

recommended due to its high cost, low absorbance by the yeast, and chemical instability. Moreover, 

the CBGA production is a limiting step toward the optimization of the process as shown by Thomas 

et al., 2020, in a sensitivity analysis. The membrane-bound enzyme CBGAS from Cannabis sativa 

L. was replaced by the soluble prenyltransferase NphB present in Streptomyces spp., especially 

due to a CBGA-specific variant recently reported (181). 

In conclusion, the low availability of acetyl-CoA and hexanoic acid with the low specificity 

of OAC are the main limiting factors for higher yields. Nevertheless, the ∆9-THCA titer predicted in 

silico after 40 h of fermentation was 299.8 mg/L, a 37-fold increase compared to Luo et al., 2019. 

Although this value is small close to ∆9-THCA and CBDA present in plants (5-20% in dry weight of 

extract), it is a great opportunity for the biosynthesis of non-common cannabinoids such as ∆9-

THCVA and CBDVA (< 1% in dry weight). 

 

2.4 PATENT PROSPECTION 
 

A survey on the free access Patent Inspiration database was conducted using the term 

(cannabi*) as a keyword for search on Title or Abstract, while the terms microorganism AND yeast 

AND production have been searched on Abstract and Description. The initial results revealed a 

total of 58 documents filled over the past 20 years proposing the protection of new technologies 

associated with the biotechnological production of cannabinoids or their derivates. However, after 

a thorough analysis, only 16 patens actually protected processes and methods related to the 

prospected theme (TABLE 3). 
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The analysis of the International Patent Classification (IPC) revealed that the introduction 

of foreign genes synthesizing transferases (C12N9/10) or lyases (C12N9/88) in vectors or 

expression systems specially adapted for E. coli (C12N15/70) are the main areas investigated (data 

not shown). Although not being able to perform post-translational modification as yeasts and higher 

eukaryotic cells, the superior growth rate, low nutritional requirement, higher yield, and the 

extensive genetic information of E. coli turns into a preferable host for tailoring new metabolic 

pathways for the industrial production of cannabinoids (161,182,183). 

The technology of the cannabinoids biosynthesis was first protected by the University of 

Saskatchewan in association with the Natural Resources Council of Canada, where homologous, 

isolated, and/or purified sequences of Cannabis sativa alkanoyl-CoA synthetases, type III 

polyketide synthase, polyketide cyclase, aromatic prenyltransferase, and a cannabinoid-forming 

oxidocylase were used as target genes for the cannabinoid production in E. coli and 

Saccharomyces cerevisiae systems (US9546362B2). According to the granted patent, carboxylic 

acids (C5-C20) and coenzyme-A are required as substrates, which directly impacts the cost of the 

final product. Similar plasmid vector configurations were later proposed with the addition of 

inducible galactose operons (US10392635B2), substitution of alkanoyl-CoA synthetases for prenol 

or isoprenol kinases (US10837031B2), or proposition of new host cells, such as Lactobacillus 

paracasei subsp. paracasei (EP3067058A1). 

A recently granted patent by the American company Syntiva Therapeutics Inc. 

(US10801049B2) discloses the incorporation of phosphoglucose isomerase (pgi), glucose 6-

phosphate dehydrogenase (zwf), and citrate synthase (gItA) genes in yeasts, which allows the 

heterologous production of hexanoate synthesis during the stationary phase using simple sugars. 

In addition, the overexpression of the long-chain fatty acid-CoA (fadD) ligase gene, responsible for 

the conversion of hexanoate into hexanoyl-CoA, also resulted in the silencing of the fadE gene 

associated with the degradation of this precursor. Such genetic modifications achieved costs 

inferior to US$ 1.000 per kilogram of purified cannabinoid and significantly increased the yield of 

the process (184). This disruptive technology led to a significant leap in the number of filed patents, 

from 4 documents between 2014-2019 to 11 only in the last year (TABLE 3). The incremental 

changes proposed by these recent patents include the modification of the peroxisomal β-oxidation 

in yeasts to allow the use of fatty acids and affordable sources of vegetable and animal fat 

(US2020224231A1) and the inclusion of different pathways that allows the conversion of glucose 

into cannabinoids via acetoacetyl-CoA, malonyl-CoA, or mevalonate (US2020071732A1; 

US2020165641A1). 

The survey revealed that only three countries detain the technology for the heterologous 

production of cannabinoids, being the United States the major contributor with 12 filled documents, 

followed by Canada and Italy with three and one documents, respectively. The presence of Canada 

in this selective group is supported by the Cannabis Act (185), a jurisdictional regulation that 

establishes production guidelines, licenses, and requirements for cannabis-derived products, 
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providing regulatory approval for both plant cultivation and the heterologous expression. USA and 

Italy, on the other hand, only have parameters defined by law regarding the cultivation and usage 

of the source material (i.e., cannabis plants with ∆9-THC content of 0.3% or 0.2-0.6%, respectively), 

leaving the microbial production under an unregulated ground (186,187). However, the allowance 

of cannabinoids prescription from a licensed healthcare provider (188,189) and the approval of the 

first CBD-containing drug (Epidiolex®) by the FDA in 2018 for treating severe seizures in patients 

above one year old (190) creates a prone environment for the development of biosynthetic 

cannabinoid industry in these countries. This statement is supported by the nature of the applicants 

in the prospected patents, which are majorly represented by private companies. 

 

3 PROCESS DESIGN 
 

3.1 PROCESS FLOWCHART 
 

A process flowchart was proposed to illustrate the downstream procedures involved 

during cannabinoids purification via heterologous expression in S. cerevisiae (FIGURE 6). It is 

considered that the engineered yeast produces ∆9-THCA. As aforementioned, the downstream unit 

operations’ choices rely on microorganism specificities, and although this is a simplified model, it 

accounts for the main steps and operations towards the purification of cannabinoids on an industrial 

scale. With the development of pilot-scale experiments, kinetical and transport parameters can be 

better estimated for decision-making. 
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FIGURE 6 - Process flowchart listing the downstream operations required to purify ∆9-THCA from 

fermented broth and achieve high-quality ∆9-THC. FT: fermentation tank; DS: disc-stack centrifuge; ST: 

settling tank; BM: ball/beads mill; LS: liquid-liquid separator; MF: microfiltration unit; EV: falling film 

evaporator; DO: decarboxylation oven; GS: gas-liquid separator. 

 

REFERENCE: The author (2022). 

 

3.2 PROCESS DESCRIPTION 
 

The separation procedures chosen were based on the works of Luo et al., 2019 and Zirpel 

et al., 2015, whereas the scaling up of the process were based on the works of Magalhães et al., 

2017, and Poulos and Farnia, 2015, although some changes have been proposed to scale up the 

process. A staggered set of fermentation tanks (FT-101/102/…) is considered. After the 

fermentation time, the fermentation broth is sent to a disk-stack centrifuge (DS-101), responsible 

for the removal of culture medium and substrate not consumed during fermentation. Centrifugation 

is a suitable option due to S. cerevisiae high density (1.1 g/cm3) and sedimentation radius (2.5 μm) 

(178). Another option for this step is microfiltration, although the high-volume flow would require 

several membrane units to supply it. The cells can be dried in a low-temperature oven to remove 

the remaining water. 

The cells are then sent to a settling tank (ST-101) in which ethyl acetate is used with a 2:1 

ratio to resuspend the cells and subsequently promote liquid-liquid extraction. Ethyl acetate was 

chosen as the solvent due to its high capability to solubilize cannabinoids (193), but also because 

it is only partially soluble with water (8.3 g/L at 20 °C), which allows the use of liquid-liquid 

separators during the downstream. As previously mentioned, ethanol is also suitable for 
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cannabinoids extraction, but its high-water solubility impairs the subsequent steps. Moreover, ethyl 

acetate is FDA approved for use in food as a flavor/fragrance enhancer and solvent (193). 

The suspension is sent to a ball/bead mill (BM-01) to promote cell lysis. Since S. 

cerevisiae is disproved of a complex polysaccharide cell wall, the physical disruption should be 

enough, although chemical methods (e.g., detergents, enzymes, chelating agents, and/or solvents) 

can complement this process. Alternatively, high-pressure homogenizers can be used. In this stage, 

the cells are broken and the cannabinoids are dispersed in the medium. It is a relatively quick 

process on a laboratory scale (30 s-1 over 3 min) (13). The biphasic mixture passes through a liquid-

liquid separator (LS-101), wherein the upper (organic) phase contains cannabinoids, ethyl acetate, 

and the lower phase is composed of water, ethyl acetate, and nutrients/culture medium. The lower 

phase is sent to the solvent recovery area. 

The organic phase is forwarded to a microfiltration unit (MF-101) to remove cellular debris. 

For this operation, the filter membrane needs to have a pore size between 0.2 to 0.45 μm. (13) 

used polyvinylidene difluoride (PVDF) membranes during its polishing steps prior to HPLC analysis. 

The filtrate is then sent to a set of multiple effects falling film evaporators (EV-01/02) to 

remove part of the solvent and prepare the product for the decarboxylation step. Vacuum is used 

to boil the mixture in low temperatures, avoiding ∆9-THCA oxidation into CBNA and other secondary 

reactions (194). It is known that CBNA/CBN is formed during the long-time storage of cannabis 

(195), although its rate is reduced in the absence of oxygen and light (52). The vapor from the first 

effect is used as a heat duty stream to the second effect. Due to the high boiling points of 

cannabinoids, losses involved during evaporation are minimal. The vapor and condensate from the 

second effect are sent to a condenser (CD-101). 

The concentrate is forwarded to a settling tank (ST-102) avoiding process discontinuity by 

upstream delays. The last step is to remove the residual solvent in the product and promote the 

decarboxylation of ∆9-THCA into ∆9-THC. For this step, a decarboxylation vacuum oven (DO-101) 

is proposed, in which the mixture is dispersed into trays with temperature close to 120 °C for up to 

one hour (196). As shown by Wang et al., 2016, it is possible to obtain pure ∆9-THC from ∆9-THCA 

by heating the extract to 110 °C for 40 min, under vacuum and absence of light. Even though no 

significant amount of CBN was detected, a relative loss in total molar concentration of 7.94% was 

noted, indicating that part of the reactant or product is being consumed by a secondary mechanism 

(e.g., a side reaction with an unstable intermediate and/or product). 

After the decarboxylation step, the ∆9-THC extract is almost completely pure. The final 

product consists of ∆9-THC with residual ethyl acetate. As decarboxylation involves the loss of a 

carboxyl group, the molar mass of ∆9-THCA goes from 358.48 g/mol to 314.47 g/mol, causing a 

reduction in the mass of the final product by 12.3%. 

As a complementary procedure, the concentrate can be sent to a fine separation involving 

chromatography, such as high-performance liquid chromatography (HPLC), counter-current 

chromatography (CCC), and centrifugal partition chromatography (CPC). These techniques show 
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high separation capacity and the possibility of scaling. CPC was chosen because of its advantages 

over CCC, such as a higher flow for the same volume. On a laboratory scale, 250 mL centrifugal 

partition chromatography has an ideal flow rate of 5-15 mL/min, while 250 mL counter flow 

chromatography has an ideal flow rate of 1 to 3 mL/min. On an industrial scale, 25 L counter-current 

chromatography has an ideal flow rate of 100 to 300 mL/min, whereas 25 L centrifugal partition 

chromatography has an ideal flow rate of 1000 to 3000 mL/min. This ensures greater productivity 

(due to higher flow and faster separation time), allowing the process to be scalable to up to tons 

per month (197). RotaChrom® developed an industrial scale CPC, the iCPC, which can deliver a 

flow rate of up to 2.5 L/min, achieving 50-500 kg of purified product per month (198). The final 

product is resuspended in anhydrous ethanol or formulated in capsules/pills as desired. 

 

4 SENSITIVITY ANALYSIS WITH SIMBIOLOGY® 
 

4.1 MODELING CONDITIONS AND CHARACTERIZATION 
 

An in silico platform for ∆9-THCA biosynthesis through heterologous expression in S. 

cerevisiae is proposed based on Thomas et al., 2020, work’s. The simulations were carried out for 

40 h since a comparable in vivo culture will reach the stationary phase after most of the available 

carbon sources are depleted. Also, several process parameters of an in vivo cultivation (biomass 

turnover, generation cycle, feeding of glucose, pO2, pH, etc.) cannot be accounted by this given 

model. 

During in silico design, the heterologous pathway is constructed as an unbranched linear 

metabolic pathway in S. cerevisiae. From the generation of simple building blocks like acetyl-CoA 

towards ∆9-THCA synthesis, the pathway is implemented concerning natural precursors. 

Throughout, energy and cofactor supply, as well as their respective usages, are tracked, starting 

with glycolysis over the citric acid cycle up to the cannabinoid pathway. Glucose uptake and 

metabolization via glycolysis are assumed to be the central pathway for the delivery of acetyl-CoA 

as a C2 building block for the mevalonate and fatty acid biosynthesis. Without consideration of 

compartmentalization in S. cerevisiae, direct cytosolic biotransformation of acetyl-CoA to olivetolic 

acid is assumed. 

The extended kinetic model was constructed based on available kinetic parameters found 

in common enzyme reaction kinetics databases such as BRENDA (199) and SABIO-RK (200). All 

data were transferred to a model raised in MATLAB® version R2021b with the SimBiology extension 

(179). Where kinetic data was unavailable or scarce for S. cerevisiae, enzyme data of closely 

related species were considered and evaluated first before adding the parameters to the model. 

For most reactions, simple Michaelis-Menten kinetics (Equation ( 1 )) was used and only 

implemented complex multi-substrate enzyme kinetics like ordered bi-bi kinetics (Equation ( 2 )), 

where one substrate could not be regarded as in excess compared with the other. 
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dCi
dt =

Vm S
Km + [S] ( 1 ) 

 

dCi
dt  =

Vm
KsAKmB

A B +
KmA

A +
KmB
[B] + 1

 ( 2 ) 

 

In which dCi is the concentration of the product “i”, Vm is the maximum rate (mol.L-1.s-1), Km is the 

Michaelis constant (mol.L-1), [S], [A], and [B] are the concentrations of substrates (mol.L-1), and KsA 

is the dissociation constant for substrate A. 

∆9-THCA production was modeled starting from a simple glucose feed, passing glycolysis 

and the citric acid cycle to simulate energy supply. Product formation would then occur after 

simplified olivetolic acid, and mevalonate pathways provided olivetolic acid and geranyl 

pyrophosphate, respectively. Compartmentalization was mostly ignored for the sake of simplicity. 

Thus, it firstly results in a yeast cell compartment, containing all pathway reactions towards ∆9-

THCA, and secondly a medium compartment, where nutrients, like glucose and hexanoic acid, are 

located (FIGURE 7). 

 

FIGURE 7 - Model adopted during simulations in SimBiology toolbox representing the 

tetrahydrocannabinolic acid (∆9-THCA) biosynthesis pathway in a heterologous host. Each 

compartment is delimited by its blue rounded rectangle. Species are represented by blue oval 

rectangles, whereas yellow circles represent reactions. Some species (e.g. glucose) are not shown in 

the model due to specific inputs in other sections. 

 

REFERENCE: The author (2022). 
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With ∆9-THCA as the apparent product output for the analysis, three key intermediates 

from mevalonate and olivetolic acid pathways were selected as inputs for a sensitivity analysis. 

The rate of formation of each compound was doubled in each scenario in order to reveal the 

dependence of these variables during cannabinoids biosynthesis in S. cerevisiae. In this regard, 

the established model may serve as a basis for the decision and a helpful guide to rational pathway 

optimizations. 

 

4.2 SIMULATION WITH ORIGINAL PARAMETERS 
 

The simulated intracellular concentrations of cannabinoid pathway intermediates and 

products over a simulation time of 40 h is showed in FIGURE 8. The obtained values are compared 

with Thomas et al., 2020, previous work results’ in TABLE 4. 

 

FIGURE 8 - Simulated intracellular concentrations of cannabinoid pathway intermediates and product 

over a simulation time of 40 h using SimBiology toolbox in MATLAB®. 

 

REFERENCE: The author (2022). 

 

TABLE 4 - Simulated intracellular concentrations of cannabinoid pathway intermediates and product 

over a simulation time of 40 h compared with the work of Thomas et al., 2020. 

Substance 
Thomas et al., 2020 

(mM) 
This work 

(mM) 
Abs. difference 

Rel. difference 
(%) 

THCA 0,827 0,780 0,046 –5,67 

GPP 0,661 0,714 0,052 7,95 

OA 0,075 0,081 0,006 8,42 

CBGA 0,065 0,073 0,008 12,80 

REFERENCE: The author (2022). 
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The difference between results are addressed especially for the parameters feeding steps 

during kinetic modeling of the system, accumulated errors during simplifications, and specificities 

of the chosen microorganism metabolism such as glucose uptake and metabolization via glycolysis.  

The simulation revealed that olivetolic acid (OA) and cannabigerolic acid (CBGA) reach 

an intracellular non-toxic steady state. Geranyl pyrophosphate (GPP) and tetrahydrocannabinolic 

acid (THCA) are accumulated during simulation. These results indicate that both OA and CBGA 

are the bottleneck of THCA biosynthesis, whereas GPP is underused since it is accumulated over 

time. 

 

4.3 SENSITIVITY ANALYSIS 
 

4.3.1 Increase in GPP rate of formation 
 

The simulated intracellular concentrations of cannabinoid pathway intermediates and 

product with increased geranyl pyrophosphate (GPP) rate of formation (2x) over a simulation time 

of 40 h is showed in FIGURE 9, and the obtained values are contrasted with the original rate results 

in TABLE 5. 

 

FIGURE 9 - Simulated intracellular concentrations of cannabinoid pathway intermediates and product 

with increased geranyl pyrophosphate (GPP) rate of formation (2x) over a simulation time of 40 h. 

 

REFERENCE: The author (2022). 
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TABLE 5 - Simulated intracellular concentrations of cannabinoid pathway intermediates and product 

with increased geranyl pyrophosphate (GPP) rate of formation (2x) over a simulation time of 40 h. 

Substance 
Original rate 

(mM) 
Increased GPP rate 

(mM) 
Abs. difference Rel. difference 

THCA 0,782 0,827 0,045 5,76% 

GPP 0,716 1,352 0,636 88,96% 

OA 0,082 0,088 0,006 7,59% 

CBGA 0,074 0,080 0,006 8,65% 

REFERENCE: The author (2022). 

 

The hypothesis that GPP is underused during the process is confirmed, since no relevant 

increase in THCA is noticed and, as expected, GPP is accumulated over time. This indicates that 

the GPP formation is too fast and not all GPP can be converted to CBGA, which can be explained 

either by too low OA supply or non-sufficient upstream conversion to THCA. 

 

4.3.2 Increase in OA rate of formation 
 

The simulated intracellular concentrations of cannabinoid pathway intermediates and 

product with increased olivetolic acid (OA) rate of formation (2x) over a simulation time of 40 h is 

showed in FIGURE 10, and the obtained values are contrasted with the original rate results in 

TABLE 6. 

 

FIGURE 10 - Simulated intracellular concentrations of cannabinoid pathway intermediates and product 

with increased olivetolic acid (OA) rate of formation (2x) over a simulation time of 40 h. 

 

REFERENCE: The author (2022). 
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TABLE 6 - Simulated intracellular concentrations of cannabinoid pathway intermediates and product 

with increased olivetolic acid (OA) rate of formation (2x) over a simulation time of 40 h. 

Substance 
Original rate 

(mM) 
Increased OA rate 

(mM) 
Abs. difference Rel. difference 

THCA 0,782 1,288 0,505 64,66% 

GPP 0,716 0,560 0,155 –21,73% 

OA 0,082 0,156 0,074 90,69% 

CBGA 0,074 0,129 0,055 75,06% 

REFERENCE: The author (2022). 

The increase in OA rate of formation showed a positive change in THCA final 

concentration. Again, olivetolic acid (OA) and cannabigerolic acid (CBGA) reach an intracellular 

non-toxic steady state, with higher final concentration than the original rate case. Also, the decrease 

in GPP final concentration agrees with the extra CBGA being synthesized thanks to the greater OA 

availability. 

 

4.3.3 Increase in CBGA rate of formation 
 

The simulated intracellular concentrations of cannabinoid pathway intermediates and 

product with increased cannabigerolic acid (CBGA) rate of formation (2x) over a simulation time of 

40 h is showed in FIGURE 11 and the obtained values are contrasted with the original rate results 

in TABLE 7. 

 

FIGURE 11 - Simulated intracellular concentrations of cannabinoid pathway intermediates and product 

with increased cannabigerolic acid (CBGA) rate of formation (2x) over a simulation time of 40 h. 

 

REFERENCE: The author (2022). 
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TABLE 7 - Simulated intracellular concentrations of cannabinoid pathway intermediates and product 

with increased cannabigerolic acid (CBGA) rate of formation (2x) over a simulation time of 40 h. 

Substance 
Original rate 

(mM) 
Increased CBGA rate 

(mM) 
Abs. difference Rel. difference 

THCA 0,782 0,900 0,1180 15,09% 

GPP 0,716 0,645 0,0701 –9,79% 

OA 0,082 0,070 0,0115 –14,08% 

CBGA 0,074 0,065 0,0087 –11,79% 

REFERENCE: The author (2022). 

The increase in CBGA rate of formation showed a slightly positive change in THCA final 

concentration. The relative difference between CBGA and OA final concentration is smaller in the 

increased rate scenario than in the original, since CBGA increased rate has accelerated OA 

consumption. Although CBGA is being synthesized faster, the low availability of OA delimits its final 

output. 

 

 

4.4 OVERALL RESULTS 
 

The overall results indicate that OA increased rate was the most impactful parameter 

during THCA biosynthesis sensitivity analysis, as shown in FIGURE 12.  

 

FIGURE 12 - Normalized increase in THCA concentration during sensitivity analysis. The values were 

normalized in respect with the highest value (OA). 

 

REFERENCE: The author (2022). 
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The low-availability of OA limits CBGA production, reducing the rate of formation of THCA. 

Thus, metabolic engineering should be addressed to OAC and OLS enzymes, but also hexanoic 

acid and hexanoyl-CoA uptake during previous steps. 

The toxicity limitation of hexanoic acid (1 mM in S. cerevisiae) suggests the use of OA as 

a medium additive. Unfortunately, from its chemical and physical properties, OA is not well 

absorbed by yeast. It shows low chemical stability with high tendency to decarboxylation, and costs 

for synthesis are significantly higher than for hexanoic acid. 

Finally, the low usage of GPP during all simulations scenarios grants permission for the 

continuous development of the OA pathway until it evens with GPP production. 

 

5 CONCLUSIONS, FURTHER ANALYSES AND IMPROVEMENTS 
 

The production of cannabinoids through heterologous expression in S. cerevisiae is 

feasible, although its low yields and metabolic bottlenecks adds complexity to scale up the process. 

Although fermentation can supply several cannabinoids, full-spectrum extracts (i.e., those with 

phytocannabinoids and secondary metabolites) are unlikely to be achieved, especially due to 

metabolic network complexity and microorganism expression limitations. In the future, it is 

important to analyze the limiting factors of cannabinoid production in the recombinant 

microorganism, and even reassess whether S. cerevisiae is the best candidate for this task. 

To optimize the fermentative production of cannabinoids in recombinant microorganisms, 

different parameters need to be considered at genetic, metabolic, and technological levels. The 

first one refers to the expression of genes and pathways for the conversion of glucose into 

cannabinoids. The metabolic level is responsible for the better understanding of pathway 

interactions, allowing the characterization of metabolic bottlenecks to be further engineered and 

optimized. As noticed, the low acetyl-CoA and hexanoic acid availability for subsequent pathways 

are the main bottlenecks for the biosynthesis of ∆9-THCA in S. cerevisiae. The technological level 

refers to the downstream procedures needed to achieve high-purity cannabinoids on an industrial 

scale, avoiding unnecessary losses and providing a final product with accessible cost.  

Nevertheless, cannabinoids fermentation is an exciting and brand-new niche arriving that 

can substantially change the availability of those compounds, providing a high-quality drug at a 

reasonable price, especially for non-common cannabinoids, such as C3 cannabinoids, novel 

cannabinoids, and analogs. 
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