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RESUMO

Neste trabalho nos concentramos em aproximações de soluções de ondas viajantes para

um modelo não linear bidirecional reduzido do tipo Boussinesq envolvendo um operador não-

local. Três abordagens para calcular ondas viajantes são propostas e comparadas. Para isso, um

esquema eficiente e estável para o sistema não linear, baseado em uma análise de estabilidade

de von Neumann para o problema linearizado, é utilizado para capturar a evolução de soluções

aproximadas de ondas viajantes. Além disso, uma equação unidirecional é deduzida a partir do

modelo bidirecional e é provada a existência de ondas viajantes periódicas para esta equação.

Por fim, um esquema para a versão de fundo rugoso do sistema não linear é apresentado e

validado. Os resultados obtidos por este esquema são comparados com os obtidos para fundo

plano.

Palavras-chave: Método espectral. Modelos dispersivos. Análise de estabilidade. Ondas via-

jantes.



ABSTRACT

In this work we focus on approximations of travelling wave solutions for a reduced bidirec-

tional nonlinear model of Boussinesq type involving a nonlocal operator. Three approaches to

calculate travelling waves are proposed and compared. For this an efficient and stable scheme

for the nonlinear system, based on a von Neumann stability analysis for the linearized problem,

is used to capture the evolution of approximate travelling wave solutions. Also, an unidirec-

tional equation is deduced from the bidirectional model and we proved that this equation admits

a periodic travelling wave solution. Lastly, a scheme for the corrugated bottom version of the

nonlinear system is proposed and validated. The results obtained by this scheme are compared

with the ones from the flat bottom.

Key words: Spectral method. Dispersive models. Stability analysis. Travelling waves
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Chapter 1

Introduction

Internal ocean waves are gravity waves that appear in stratified fluids. Stratification is a

consequence of variations in density due mainly to differences in temperature and salinity. In-

ternal ocean waves are relevant for marine and submarine human activity. For example, the

dead water phenomenon experienced by vessels when they travel through a relative thin layer

of fresh water that does not mix with a denser layer below affects nautical operations, as orig-

inally reported by Nansen in [21]. Internal waves are essential in ocean dynamics because of

the amount of mass and energy transported by them, ultimately producing wave breaking and

mixing and the distribution of nutrients among other kind of matter. Internal waves can also

occur in the atmosphere, lakes and reservoirs. For a broad discussion about internal waves, not

limited to their presence in oceans, see [28].

Abrupt variations in density justify the use of a layered model, the simplest of which is

considered here and consists of a two-layer fluid configuration limited by a rigid lid at the

top and a flat bottom. Each layer contains an inviscid, incompressible, irrotational fluid of

constant density. The two fluids are immiscible and of different densities, the denser one is

located below. An internal wave propagates at the interface between layers and the whole

system evolves according to the Euler equations together with appropriate boundary conditions

as detailed in [9, 25]. This simplified model retains the main features that enable the study

of travelling wave solutions which reproduce the behaviour of well-identified disturbances that

move with effectively constant speed for long periods of time as described in [13, 2].

The system considered in the present work was obtained by Ruiz de Zarate in [25] using

asymptotic analysis of the Euler equations and it is a generalization of the system presented by

Choi and Camassa in [9]. The asymptotic analysis consists of reducing a general model into

one that is simpler and easier to deal with, both from a theoretical and computational point of

view, but which maintains the behavior and properties of the phenomenon to be studied. We

remark that the models obtained by this process are approximations of the original model that

can be improved depending on the order of expansion and how it is done.

The model proposed by Choi and Camassa uses an expansion of order 1 with the dispersive

parameter β, which is the squared ratio between the fluid layer thickness and the typical wave-

length. Ruiz de Zarate considered an expansion of order 3�2 and obtained a model that repro-

duces better the dispersive effects of the problem than the previous one. Along with dispersion,

another important mechanism present in this system is nonlinearity. Considering the weakly

nonlinear regime, the effects of nonlinearity are quantified by the nonlinearity parameter α,
which is the ratio between the wave amplitude and the fluid layer thickness and accompanies

the nonlinear terms of the system. Let’s assume here that α and β are positive, small and have

the same order of magnitude.

There are published results about the weakly nonlinear system considered here and its lin-

earized version. The existence of a solution for both systems as a Cauchy problem in Sobolev
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spaces has already been proven by Brodzinski in [7]. Considering the characteristics of the

linearized system, very efficient numerical methods to calculate approximate solutions of both

systems were presented by the author in [16] using as basis the method proposed by Alfaro Vigo

and collaborators in [1] for the linearized version of the system of Choi and Camassa. However,

there are important topics about the problem to be studied.

The existence of travelling waves is of utmost importance in wave models. In this work

three efficient methods to calculate approximate travelling waves for the weakly nonlinear sys-

tem are proposed, tested and compared. These are improvements of a first attempt at the method

presented by the author in [16] but whose results were not satisfactory. Furthermore, the exis-

tence of periodic travelling waves is proven for a unidirectional equation that is obtained from

the weakly nonlinear system.

The model presented by Ruiz de Zarate in [25] also consider a more general case where

there is an irregular topography on the bottom that can be described by an arbitrary curve. The

inclusion of the irregular topography bottom in the model makes it considerably more difficult to

deal with, both analytically and numerically. Fortunately, it is possible to adapt the numerical

method for the flat-bottom systems to the non-flat bottom systems since a single coefficient

contains the topography information and the domain is uniform and one-dimensional.

This work is organized as follows. In Chapter 2 a bibliographic review about the models

considered in this work and related wave models is presented. In Chapter 3 the main results

to be used in this work are presented. In Chapter 4 discretizations for both linear and non-

linear systems are described including three possibilities for spatial derivatives and the von

Neumann analysis for each method is performed in Section 4.1. We remark that these results

were obtained by the author in [16]. In addition we present here a comparison between stability

conditions of different numerical methods for systems (2.6) and (2.7). In Section 4.2 the stabil-

ity conditions obtained in the previous chapter are exemplified in numerical tests and extended

for the nonlinear case. Also, a convergence analysis for both methods is made in Section 4.3.

The study and the deduction of the unidirectional equation from the weakly nonlinear system is

presented in Chapter 5 where the existence of periodic travelling waves for the model is proven

in Section 5.1. In Chapter 6 numerical methods to obtain approximated travelling wave solu-

tions for the weakly nonlinear system are presented and the results are validated. In Chapter 7

the numerical methods for the non-flat models are proposed. Also, the influence of the bottom

in the solutions obtained and in the stability conditions are illustrated in experiments.
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Chapter 2

State of the art for asymptotic reduced
models

Asymptotic analysis of the Euler equations is a successful method for the study of internal

ocean waves. Several internal wave models described in the literature are derived by this pro-

cess, for example, the Intermediate Long Wave (ILW) equation in the intermediate depth regime

and the Benjamin-Ono (BO) equation in the deep water regime [15, 4].

For the case of intermediate depth for the lower layer and shallow upper layer, a strongly

nonlinear model for internal waves was obtained by Choi and Camassa in [9]. The model de-

scribes the evolution of the interface η�x, t� between the fluids and the upper layer averaged

horizontal velocity u�x, t�, where x and t represent the spatial and temporal variables, respec-

tively. The coordinate system is set at the undisturbed interface between layers and subscripts x
and t stand for partial derivatives. The thickness h1 � 0 of the upper layer is much smaller than

the characteristic wavelength L � 0 at the interface. The thickness h2 � 0 of the lower layer

is comparable with L. The densities of the upper and lower fluids are denoted by ρ1 and ρ2,

respectively. For a stable stratification, let ρ2 � ρ1 � 0. Figure 2.1 illustrates this configuration.

Considering g as the gravitational acceleration, the dimensional form of the system proposed in

[9], written in the variables and notation adopted here is��
�
ηt � ��h1 � η�u�x ,

ut � uux � g

�
1�

ρ2
ρ1

�
ηx �

ρ2
ρ1

Th2 ��h1 � η�u�xt .
(2.1)

The nonlocal operator Th2 is known as Hilbert transform on the strip and acts on boundary

data of Neumann problems involving the Laplace equation for the velocity potential of the

bottom layer by mapping normal derivatives onto tangential derivatives along the boundary.

For numerical purposes we focus on the case where solutions are periodic functions in space

with period 2l. In this case the nonlocal operator Th2 is defined by the symbol

�Th2�f ��k� � i coth�h2πk	l� �f�k�, k 
 Z
�,

where i denotes the imaginary unit. For more details about the operator Th2 see [25] or [1].

In the same configuration, Ruiz de Zarate proposed in [25] a generalization of the model
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Figure 2.1: Two fluids configuration.

presented by Choi and Camassa. In the dimensional variables this system reads,

������������
�����������

ηt � ��h1 � η�u�x,

ut � uux � g
�
1� ρ2

ρ1

�
ηx � ρ2

ρ1
Th2 ��h1 � η�u�xt�

� 1
3�h1�η�

��h1 � η�3 �uxt � uuxx � uxux��x � ρ2
ρ1
Th2

�
ηTh2

��h1 � η�u�
x

�
xt
�

�ρ2
ρ1

�
η
	�h1 � η�u


xt
� 1

2L

	�h1 � η�u
2
x

�
x
� 1

2
ρ2
ρ1

�
Th2

�	�h1 � η�u

x

�2�
x
.

(2.2)

Note that dimensional forms of both systems are consistent in the sense that the common

terms agree. This system was derived considering nondimensional variables using a higher

order asymptotic expansion with the nondimensional dispersion parameter β � �h1�L�2 which

is small. In nondimensional variables system (2.2) reads:

������������
�����������

ηt � ��1� η�u�x,

ut � u ux �
�
1� ρ2

ρ1

�
ηx �

	
β ρ2

ρ1
Tδ ��1� η�u�xt�

� β
3�1�η�

��1� η�3 �uxt � u uxx � ux ux��x � β ρ2
ρ1
Tδ

�
η Tδ

��1� η�u�
x

�
xt
�

�β ρ2
ρ1

�
η
	�1� η�u


xt
� 1

2

	�1� η�u
2
x

�
x
� β

2
ρ2
ρ1

�
Tδ

�	�1� η�u

x

�2�
x
,

(2.3)

where δ � h2�L.

The second equation in system (2.3) is an approximation of order β3�2 while the first equa-

tion is exact, this means that it is a direct consequence of the Euler equations and no approxima-

tion from the asymptotic expansion was made [25, 26]. Thus, system (2.3) is a generalization

of the model derived in [9] using a higher order asymptotic expansion that includes terms of

order β which are not present in the model considered in [9].

Moreover, we can compare the dispersion relations obtained from the linearized versions of
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these models. According to [26], the dispersion relation of system (2.2) is

ω2
h �

g�ρ2 � ρ1�k2

ρ1
h1
� 1

3
h1ρ1k2 � ρ2k coth�kh2�

,

while the dispersion relation of system (2.1) is given by

ω2
l �

g�ρ2 � ρ1�k2

ρ1
h1
� ρ2k coth�kh2� ,

also, the full dispersion relation that comes from the linearized Euler equations, in dimensional

form, is given by

ω2
f �

g�ρ2 � ρ1�k2

ρ1k coth�kh1� � ρ2k coth�kh2� .

Noting that

ρ1
h1

ρ1k coth�kh1� � ρ1
h1

�
1� �h1ρ1�2

3
�O

��h1ρ1�4
��

,

we can see that ωh is a better approximation to ωf than ωl. That is, system (2.2) approximates

better the dispersive effect of the problem than system (2.1).

Considering a weakly nonlinear wave propagation regime, the nonlinearity parameter α,

which is the ratio between the typical absolute wave amplitude value and the thickness h1, is

introduced in system (2.3) by scaling η � αη�, u � αu� where it is imposed that α � O�β�.
Thus, omitting the asterisks we obtain the system

����������������
���������������

ηt � ��1� αη�u�x ,
ut � αuux �

�
1� ρ2

ρ1

�
ηx �

	
β
ρ2
ρ1

Tδ ��1� αη�u�xt�

� β

3�1� αη�
��1� αη�3 �uxt � αuuxx � αuxux�

�
x
�

� βα
ρ2
ρ1

�
η
��1� αη�u�

xt
� 1

2

��1� αη�u�2
x

�
x

�

� βα
ρ2
ρ1

Tδ



η Tδ


�1� αη�u�
x

�
xt
� βα

2

ρ2
ρ1

�
Tδ


��1� αη�u�
x

�2
x
.

(2.4)

As a result, gathering the terms with order O�α�β�, O�αβ� and O�β3�2� in system (2.4),

the following weakly nonlinear system with normalized shallow water velocity is obtained

��
�
ηt �


�1� αη�u�
x
� 0,

ut � αuux � ηx �
	
β
ρ2
ρ1

Tδ �u�xt �
β

3
uxxt �O

�
α
	
β, αβ, β3�2


.

(2.5)

Due to the rescaling the amplitude of η and u can be as far as 1	α. Besides, its linearized version

around the zero equilibrium is

��
�
ηt � ux,

ut � ρ2
ρ1

	
β Tδ�u�xt � β

3
uxxt � ηx.

(2.6)

A study about the existence and uniqueness of solution for both systems in periodic Sobolev
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spaces was presented by Brodzinski in [7].

In order to implement the method of lines for the system (2.6), the author considered in [16]

a fourth order finite difference scheme for spatial derivatives while a spectral approach for the

dispersive terms was considered in the semi-discretization and the classical fourth order Runge-

Kutta (RK4) scheme is used for time advancing. This combination proved to be the best since

along the imaginary axis (where the eigenvalues of the spatial discretization operators lie) the

RK4 method has the largest stability interval if compared with the fifth order, four steps Adams-

Moulton scheme and the fourth order, three steps Adams-Moulton scheme; see, for instance,

[3].

Also, compared with other schemes for spatial derivatives in semi-discretization, namely

spectral differentiation and piecewise B-splines, the fourth order finite difference scheme presents

less restrictive stability conditions and a lower computational cost. The stability conditions were

validated in numerical tests and extended to the scheme for the nonlinear system (2.5) which

includes the discretization of the nonlinear terms α�ηu�x and αuux as presented in [16].

The numerical method presented above for the linear system (2.6) is based in the one pro-

posed by Alfaro Vigo and collaborators in [1] for the system

��
�
ηt � ux,

ut � ρ2
ρ1

�
β Tδ�u�xt � ηx,

(2.7)

which is the linearization around the zero equilibrium of the nondimensional form of system

(2.1) and differs from system (2.6) in the term involving uxxt. The results of the von Neumann

analysis for both systems are analogous; however, the stability conditions obtained in [16] are

less restrictive than those presented in [1]. The improvement of the stability conditions is due

to the term involving uxxt which is also responsible for the better approximation of the Euler

dispersion relation. Thus, the higher order linearized system has better physical and numerical

properties.

The model presented by Ruiz de Zarate in [25] also consider a more general case of the

intermediate wave system (2.5), where there is an irregular topography on the bottom that can

be described by an arbitrary curve. The non-flat version of system (2.5) is given by the system

������
�����

ηt � 1

M�ξ�
��1� αη�u�

ξ
,

ut � α

M�ξ�u uξ � 1

M�ξ�ηξ �
ρ2
ρ1

�
β

M�ξ�T
�
u
�
ξt
� β

3M�ξ�
�

uξt

M�ξ�
	

ξ

,

(2.8)

where ξ is the horizontal curvilinear coordinate that accompanies the terrain that appears when

performing a conformal transformation from the bottom layer to a flat strip �x, z� 	 �ξ, ζ�.
The variable coefficient M�ξ� contains the irregular topography information and consists of the

non-null element of the Jacobian matrix of the conformal mapping evaluated in the interface:

M�ξ� � zζ�ξ, 0�. In the case of a flat bottom M�ξ� � 1 and we return to system (2.5). Details

can be found in [25].

The inclusion of the irregular topography bottom in the model makes it considerably more

difficult to deal with, both analytically and numerically. However, we take advantage that a

single coefficient contains the topography information and the domain is uniform and one-

dimensional to propose in this work a numerical method for system (2.8) based on the one for

the nonlinear system (2.5). The effects of the topography in the solutions and in the stability

conditions are illustrated and compared with the solutions for the flat bottom cases.

An important research topic in the study of water waves is the existence of travelling waves.
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These solutions do not change their shapes and propagate at constant speed by maintaining a

balance between the nonlinear and the dispersive effects of the model. It is also important to

know if the travelling wave solutions are stable to small perturbations, otherwise any physical

or numerical disturbance will eventually destroy them [11].

Different techniques can be employed to prove the existence of travelling waves depending

on the model and if the solution is periodic or non-periodic. For example, the exact expression

of non-periodic travelling wave solutions of KdV and ILW equations can be found explicity, see

[15] and Appendix A. Also, periodic travelling waves for these models are obtained in [22] by

making a periodization of the non-periodic travelling waves. In other cases an exact expression

is not available and different approaches can be adopted.

In [24], Pipicano and Grajales proved the existence of periodic travelling solutions for an

internal wave model similar to system (2.5) using a fixed point method. The system in [24]

consider an infinite depth for the lower fluid and can be written as����
���
ηt �

��1� αη�u�
x
� ε2

6
ηxxt,

ut � αuux �
�
1� ρ2

ρ1

�
ηx � ε

ρ2
ρ1

H �u�xt �
ε2

6
uxxt,

where the nonlocal operator H is the Hilbert transform with symbol 	H�f ��k� � i sign�k�f̂�k�.
The existence of the term with ηxxt in the first equation is crucial for the technique employed

in [24] to be successful. Therefore, this technique could not be used for system (2.5) and the

theoretical proof of the existence of travelling waves for this model is still an open problem.

Since we have no theoretical results about existence of these kind of solutions for system (2.5),

in the present work we continue to investigate the existence of travelling waves from a numerical

point of view.

A first numerical approach to generate approximated travelling waves was proposed by the

author in [16]. Although the obtained profiles do not change very much in a given time interval,

the results are far from good. Three new methods to obtain travelling waves for the nonlinear

system (2.5) are proposed and compared improving the approach presented in [16].

Furthermore, in order to better understand the behaviour of system (2.5), we reduce it to an

unidirectional equation for η in an analogous way to what was done to get the KdV equation

from the Boussinesq system in [29]. The resulting is a regularized finite depth version of the

Benjamin equation which is given by

ηt � ηx � 3α

2
ηηx �

�
β

2

ρ2
ρ1

Tδ�ηxt� � β

6
ηxxt � 0. (2.9)

The Benjamin equation was derived by Benjamin in [5] and has the form

ηt � ηx � 2ηηx � aH�ηxx� � bηxxx � 0.

Equation (2.9) is the regularized finite depth version of the Benjamin equation in the sense that

one of the x-derivatives in the dispersive terms is replaced by a t-derivative and the nonlocal

operator H is the limit of Tδ when δ 	 �
, that is, when the depth grows to infinity. The

existence of periodic travelling waves for the Benjamin equation was proven by Benjamin in

[6] using a fixed point technique similar to that one used in [24].
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Chapter 3

Theoretical Background

In this chapter we will present some definitions and results relevant to the development of

the work. The proofs can be found in the cited references.

3.1 Fourier transforms and Sobolev spaces
In the following we will present some definitions and results about Fourier transforms and

Sobolev spaces following Iorio in [14] and [1, 27].

Definition 1. Let l � 0 be a constant. A function f : R � C is called l-periodic if f�x � l� �
f�x�, �x � R.

In many cases it is convenient to write a periodic function as a sum of complex exponentials,

that is, to write it as a Fourier series in the form

f�x� �
��

k���

ck exp�ikπx	l�, (3.1)

where the coefficients ck are given by

ck �
1

2l

� l

�l

f�x� exp�
ikπx	l�dx. (3.2)

It is common to use the notation ck �
�

f�k� for the Fourier Series coefficients. Among the

many properties of the Fourier Series, we present here only those that we will use in this work:

�

�af��k� � a
�

f�k�, a � R,

�

�f � g��k� �
�

f�k� �
�
g�k�,

�

�f ���k� � �ikπ	l�
�

f�k�.

Definition 2. We define L2
per��
l, l�� � L2

per as the space of all 2l-periodic measurable functions
f : R � R such that

f �

�� l

�l

�f�x��2dx

�1�2

� �.
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Definition 3. We define l2�Z� as the space of all complex valued sequences υ � �υk�k�Z which
satisfy

�υ�2 �

��
k�Z

�υk�
2

�1�2

� 	.

In view of the linearity properties of the Fourier coefficients, it is possible to define a linear

operator between the spaces L2
per and l2�Z�.

Definition 4. The Periodic Fourier Transform is the linear operator

� : L2
per 
 l2�Z�

f �
 �
�

f�k��k�Z

such that
�

f�k� �
1

2l

� l

�l

f�x� exp��ikπxl�dx.

In fact, the Periodic Fourier Transform is a linear bijection between L2
per and l2�Z�, thus we

can define its inverse as below

Definition 5. The Inverse Periodic Fourier Transform is a linear operator

� : l2�Z� 
 L2
per

�αk�k�Z �
 f

such that

f�x� �
��

k���

αk exp�ikπxl�.

It is not difficult to verify that �
�

f�� � f and αk corresponds to
�

f�k�.
Now we can define the periodic Sobolev spaces.

Definition 6. The Sobolev space Hs
per���l, l�� � Hs

per, s � 0 is the space of all f � L2
per such

that

��f ��s �

��
k�Z

�
1� �k�2

�s
� �f�k��2�1�2

� �	.

Firstly, note that L2
per � H0

per. In addition, Sobolev spaces have very useful properties, some

of them, which will be used in this work, are listed below.

Theorem 3.1. Let s, r � R, s � r. Then Hs
per �
 Hr

per, that is, Hs
per is continuously and densely

embedded in Hr
per, since the following inequality is valid:

��f ��r � ��f ��s, �f � Hs
per.

Theorem 3.2. Let f, g � Hs
per be two functions and s � 1

2
. Then, fg � Hs

per and there exists a
constant C � 0 depending only on s such that

�fg�s � C�f�s�g�s.

Theorem 3.3. Let s � 0. If f � Hs
per then

��xf�s�1 � �f�s.
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Theorem 3.4. Let s � 1
2
. Then Hs

per is continuously and densely embedded in the space of
continuous functions.

We reinforce that the proofs of the results presented above can be found in [14].

3.1.1 Discrete Fourier Transform
Let us present the discrete version of the periodic Fourier transform to be used in numerical

methods. Basically, it consists in an approximation of the integral involved in the definition of

the Fourier coefficients by the repeated trapezoidal rule. Taking into consideration the periodic-

ity, instead of the interval ��l, l�, let us consider the interval �0, 2l�. Thus, setting a uniform grid

on the interval �0, 2l�, that is, xj � jΔx, j � 1, . . . , N where N � N is even and Δx � 2l�N ,

we define the discrete Fourier Transform as bellow:

Definition 7. Let f : R � C, be a 2l-periodic function and fj � f	xj
, j � 1, 2, . . . , N . The
discrete Fourier transform is given by

f̂k � f̂	k
 �
1

N

N�
j�1

fj exp	�ikπxj�l
, k � �
N

2
� 1, . . . ,

N

2
.

Also, its inverse transform is given by

fj �
1

2l

N�2�
k��N�2�1

f̂kw
jk
N , j � 1, 2, . . . , N,

where
wN � exp	i2π�N
.

We can write the discrete Fourier Transform in a matrix version through the Fourier matrix

F given by

Fm,j � exp	�2πi	m�N�2
j�N
, 1 � m, j � N.

Denoting f � �f1, . . . , fN �
T and f̂ � �f̂�N�2�1, . . . , f̂N�2�

T we have

f̂ � ΔxFf e f �
1

2l
F

T
f̂ .

We can use the discrete Fourier Transform and its inverse to, for example, compute ap-

proximate derivatives. To approximate the first derivative of a periodic function f we define a

diagonal matrix D � diag	ikπ�l
, k � �N�2 � 1, . . . , N�2 and compute g � 1
N
F

T
DFf .

Thus we have that g approximates f � in the uniform grid defined previously.

An interesting property to note is that the Fourier matrix diagonalizes circulating Toeplitz

matrices.

Definition 8. Let c1, c2, . . . , cN , be given real values, a circulating Toeplitz matrix C is defined
as

Ci,j �

�
c1�j�i, i  j,
cN�1�j�i, i � j.

(3.3)

If C is a circulating Toeplitz matrix, then there exists a diagonal matrix D such that C �
1
N
F

T
DF . This fact is proven in [27]. The following theorem gives a simple formula for calcu-

lating the eigenvalues of a circulating Toeplitz matrix.
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Theorem 3.5. The eigenvalues of a circulating Toeplitz matrix C defined by values c1, c2, . . . , cN
are given by

λk�C� �
N�

m�1

cm exp�i�m� 1�θk�, where θk � 2πk

N
.

3.2 Flat bottom models’ properties
As mentioned earlier, the existence of solution for the flat bottom models (2.6) and (2.5) in

Sobolev spaces is proven by Brodzinski in [7]. The main results are the following:

Theorem 3.6. Let η0 � Hs
per and u0 � Hs�1

per be real functions and s � 0. Then the initial value
problem for the flat bottom linear system (2.6) admits a unique global solution �η�t�, u�t�� �
Hs

per �Hs�1
per such that η0 � η�0� and u0 � u�0�.

Theorem 3.7. Let η0 � Hs�1
per and u0 � Hs�1

per be real functions and s � 3
2
. Then here exists

T � 0 such that the initial value problem for the flat bottom nonlinear system (2.5) admits
a unique local solution �η�t�, u�t�� � Hs

per � Hs�1
per for t � �0, T 	, such that η0 � η�0� and

u0 � u�0�.
In addition, we can obtain the conservation of mass law for system (2.5) as follows: inte-

grating the first equation of (2.5) on x we obtain

0 �
� l

�l

ηt �
��1� αη�u�

x
dx � d

dt

� l

�l

ηdx,

since u is periodic on the x-variable. Therefore, there exists an arbitrary constant d such that� l

�l

η�x, t�dx � d, (3.4)

which is valid for any value of t in a time interval where the solution is defined. As η comes

from a perturbation of the interface at rest and the coordinate system is set at the undisturbed

interface we set d � 0. Note that the conservation law (3.4) is also valid for system (2.6).

As found in [25, 7] the phase velocity ω
k � v�k� of system (2.6) is given by

v�k� �
�
1� ρ2

ρ1

�
β

δ
φ�kδ� � k2β

3

��1�2

,

where φ is the symbol in the frequency domain for the composition of one spatial derivative

with the operator Tδ, that is

φ�k� �
�

1, k � 0,
k coth k, k  0.

(3.5)

Thus, the system in the frequency domain can be written as� 	ηt�k�	ut�k�


� A�k�

� 	η�k�	u�k�


, k � Z,

where

A�k� �
�

0 ik
ikv2�k� 0



.

The matrix A�k� has pure imaginary eigenvalues λ�k� � �ikv�k�. The numerical method

presented by the author in [16] is defined to preserve this property of the spectrum.
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3.3 Conformal mapping
Here we will summarize some results about complex functions and conformal mapping

following Nachbin and Ruiz de Zarate in [20] and Brown and Churchill [8].

Definition 9. Let G � C be an open set. Then a complex valued function f : G � C is called
analytic if it is continuously differentiable in G.

Definition 10. A path in a set G � C is a continuous function γ : �a, b� � G for some interval
�a, b� � R. If γ��t� exists for each t � �a, b� and γ� : �a, b� � C is continuous then γ is a
differentiable path.

It is easy to verify that an analytic function preserves differentiable paths. In fact, if γ is a

differentiable path in G and f : G � C is analytic, then σ � f 	 γ is also a differentiable path.

If γ : �a, b� � G is a differentiable path and for some t0 � �a, b�, γ��t0� 
 0, then γ has a

tangent line at the point z0 � γ�t0�. This line goes through the point z0 in the direction of the

vector γ��t0�. Because of that we can define the angle between two differentiable paths.

Definition 11. If γ1 and γ2 are two differentiable paths with γ1�t1� � γ2�t2� � z0, γ�1�t1� 
 0
and γ�2�t2� 
 0 then define the angle between the paths arg γ�2�t2� � arg γ�1�t1�.

Theorem 3.8. If f : G � C is analytic then f preserves angles at each point z � G where
f ��z� 
 0.

Definition 12. A conformal map is a function f : G � C which has the angle preserving
property and also exists the limit

lim
z�a

�f�z� � f�a��

�z � a�
.

If f is analytic and f ��z� 
 0 for any z then f is a conformal mapping. The converse of this

statement is also true as presented in [20]. In fact, some authors define a conformal mapping as

an analytic function whose derivative never equals zero.

A classical example of conformal map is the Möbius transformation.

Example 1. A mapping of the form

S�z� �
az  b

cz  d
,

is called a linear fractional transformation. If ad � bc 
 0 then S�z� is called a Möbius
transformation.

Another important property of the conformal mapping is that it transforms the Laplacian of

a certain function into another multiplied by a factor, that is, considering a conformal mapping

f as a change of variables f�z� � f�x, y� � �ξ, ζ� a Laplacian in �x, y� becomes a Laplacian

in �ξ, ζ� as follows:

�2φ

�x2

�2φ

�x2
� �f ��z��2

�
�2ψ

�ξ2

�2ψ

�ζ2

�
.

Therefore, the conformal mapping between the regular strip and the irregular strip of the

lower layer of our configuration preserves the Laplace equation for the velocity potential in the

new variables.

To ensure the existence of a conformal mapping between the regular and the irregular strips

we use the Riemann mapping theorem and the Schwarz-Christoffel transformation.
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Theorem 3.9 (Riemann mapping theorem). Let G be a non-empty simply connected open subset
of C, G � C, then there exists a holomorphic bijective mapping f from G onto the open unit
disk whose inverse is also analytic.

Applying de Chain rule in the relation f�1�f�z�� � z we can see that f ��z� � 0 �z � G,
thus f is a conformal mapping.

Theorem 3.10 (Schwarz-Christoffel transformation). Let P be the interior of a polygon Γ hav-
ing vertices w1, . . . , wn and interior angles α1π, . . . , αnπ in counterclockwise order. Let f be
any conformal mapping from the upper half-plane of C to P with f��� � wn. Then

f�z� � A� C

� z n�1�
k�1

�ζ 	 zk�
αk�1 dζ,

for some complex constants A and C, where wk � f�zk� for k � 1, . . . , n	 1.

Therefore, using the results described here and mapping compositions, we can guarantee the

existence of a conformal mapping that transforms an irregular strip into a flat one, as required.
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Chapter 4

Numerical methods for flat bottom models

For the discretization of the linearized system (2.6), in order to find numerical approximate

solutions, we proceed in a similar way as in [1]. Let us define the auxiliary function

ψ � u�
ρ2
ρ1

�
β Tδ�u�x �

β

3
uxx, (4.1)

and rewrite system (2.6) as �
ηt � ux,

ψt � ηx.

Since u and η are 2l-periodic with respect to the variable x, we define a uniform grid on

the interval �0, 2l�, that is, xj � jΔx, j � 1, . . . , N where N � N is even and Δx � 2l�N ,

the last element xN is also identified with x � 0. Define u�t� � �u1, . . . , uN �
T and η�t� �

�η1, . . . , ηN �
T where uj 	 u�xj, t� and ηj 	 η�xj, t�, j � 1, . . . , N . The spatial discretization

results in a system of Ordinary Differential Equations in the matrix form below�
ηt � Cu,

Put � Cη.
(4.2)

Matrix C comes from the discretization of the first order x-derivative and matrix P is ob-

tained using the Discrete Fourier Transform (DFT) in order to get ψ � Pu with ψ�t� �
�ψ1, . . . , ψN �

T , where ψj approximates the expression (4.1) evaluated at �xj, t�.
The DFT of a vector w � �w1, 
 
 
 , wN �

T � R
N is denoted by the vector �w �

� �w�N�2�1, . . . , �wN�2�
T � C

N , which is defined by the relation

�wk �
1

N

N�
j�1

wj exp��ikπxj�l�, k � �
N

2
� 1, . . . ,

N

2
. (4.3)

Its inverse is given by

wj �
1

2l

N�2�
k��N�2�1

�wk exp�i2π�N�jk, j � 1, 2, . . . , N. (4.4)

Defining the Fourier matrix F componentwise by Fm,j � exp��2πi�m � N�2�j�N�, 1 �
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m, j � N, the relations (4.3) and (4.4) can be written in the vector form��
�
�w � ΔxFw,

w � 1

2l
F

T �w.

Now, using that the composition of one spatial derivative with the operator Tδ has the symbol

defined by equation (3.5) and some properties of the Fourier series, we can calculate �ψ�k� as

�ψ�k� � �u�k� � ρ2
ρ1

�
β ��Tδ�u�x��k� � β

3
�uxx�k�

� �u�k� � ρ2
ρ1

	
β

δ
φ�kπδ
l��u�k� � �kπ
l�2 β

3
�u�k�

� v�kπ
l��2�u�k�.
Defining �P � diag

�
λ�N�2�1� �P �, . . . , λN�2� �P �� as the diagonal matrix whose entries are given

by

λk� �P � � v�kπ
l��2, k � �N
2� 1, . . . , N
2,
and considering the approximation �ψ�k� � v�kπ
l��2�u�k�, we get �ψ � �P �u, thus

ψ � 1

2l
F T �ψ � 1

2l
F T �P �u � 1

2l
F T �PΔxFu � 1

N
F T �PFu � Pu. (4.5)

We remark that the matrix �1
	N�F is orthogonal and diagonalizes the matrix P , that is

P � 1	
N
F T �P 1	

N
F.

For the first order x-derivative, as in [1], we choose numerical schemes such that ux�xj� �
�Cu�j where C is a real, skew-symmetric and Toeplitz circulant matrix. These assumptions

are made in order to preserve the property of the spectrum described earlier and the periodicity

of the spatial domain. Also, we can obtain a fair comparison between the methods for the

linearized systems (2.6) and (2.7).

A Toeplitz circulant matrix C is defined by the elements c1, . . . , cN of its first row by

Ci,j �
	

c1�j�i, i � j,
cN�1�j�i, i  j.

It is shown in [1] that the skew-symmetric Toeplitz circulant matrix C is diagonalized by

the matrix �1
	N�F and its eigenvalues are given by

λk�C� � i

Δx
γ�θk�,

where,

γ�θ� � 2Δx

N�2�1

m�1

c1�m sin �mθ� and θk � 2πk

N
.

Therefore, from the diagonal matrix �C � diag
�
λ�N�2�1�C�, . . . , λN�2�C�

�
we recover

C � 1	
N
F T �C 1	

N
F.
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Three possibilities for the matrix C are studied that correspond to each of the following

discretizations for the first order spatial derivative: five-point fourth order finite difference,

piecewise linear B-splines and the spectral scheme. As shown in [1], their respective functions

γ are given by

γFD�θ� �
4

3
sin θ �

1

6
sin 2θ,

γBS�θ� �
3

2

�
sin�θ�

1� cos�θ��2

�
,

γSP �θ� �

�
θ, θ � ��π, π�
0, θ � �π.

For the time integration let us rewrite system (4.2) as

�
ηt

ut

�
� D

�
η
u

�
, D �

�
0 C

P�1C 0

�
. (4.6)

Denoting the eigenvalues of P and D by λk�P � and λk�D�, respectively, it is not difficult to

prove that λk�D� � �λk�C��
�
λk�P � since matrices C and P are diagonalized by the same

matrix. Note the similarity between the eigenvalues of the matrices A�k� and D in the sense

that 1�
�
λk�P � � v�kπ�l� and λk�C� approximates ikπ�l. In fact, for the spectral scheme we

have λSP
k �C� � ikπ�l and for finite difference and B-splines figure 4.1 illustrates that γFD and

γBS approximate well γFD around zero, thus, λFD
k �C� and λBS

k �C� are good approximations of

ikπ�l for small values of wavenumber k.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

θ

γ

Figure 4.1: Graphics of γSP �	 	 	 �, γBS �� 	 �� and γFD �—�.

Since λk�D� is purely imaginary, the classic fourth order Runge-Kutta method is appropriate

for this problem. Applying the RK4 method in system (4.6) we get

�
ηn�1

un�1

�
�

�
I �ΔtD �

Δt2

2
D2 �

Δt3

3!
D3 �

Δt4

4!
D4

��
ηn

un

�
, (4.7)

where ηn and un are the approximations for η�tn� and u�tn�, respectively.

Once the discretization of the linear system is complete, let us obtain the discretization of

the nonlinear system. For that, let us rewrite system (2.5) as

�
ηt � E1�η, u�,
ψt � E2�η, u�,

where E1�η, u� � ux � αηux � αuηx and E2�η, u� � ηx � αuux.
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Considering the spatial mesh defined before, the x-derivatives in E1 and E2 are approxi-

mated using one of the numerical schemes described previously, that is, five-point finite dif-

ference, piecewise linear B-splines and the spectral scheme. The variable ψ is calculated by

equation (4.5) as in the linear case. The time integration is done with the fourth-order Runge-

Kutta method. Note that in the problem that motivated this study α is of the same order of β,

but setting α � 0 we obtain scheme (4.7).

4.1 Von Neumann analysis
In order to prove that the numerical scheme (4.7) is stable, let us define the following norm

��w��2N,s � 2π

N�2�
k��N�2�1

�
1� �kπ�l�2�s � �wk�2, s � 0,

where w � R
N and �w is its DFT. Our aim is to prove that there exists a positive constant Cs

which does not depend on n and Δt such that��	ηn,un
T ��
N,s,s�1

� Cs

��	η0,u0
T ��
N,s,s�1

, �nΔt � T, (4.8)

where ��	w1,w2
T
��2
N,s,s�1

� ��w1��2N,s � ��w2��2N,s�1,

and both vectors w1 and w2 belong to R
N .

Substituting matrix D in scheme (4.7) by its blocks described in (4.6) and using that �1�N�F
diagonalizes matrices C, P and P�1, we proceed as in [1] to transform scheme (4.7) to the

Fourier space obtaining����
��	
�ηn�1 �



I � Δt2

2
�P�1 �C2 � Δt4

4!
�P�2 �C4

� �ηn �

�
Δt �C �

Δt3

3!
�P�1 �C3

� �un,

�un�1 �

�
Δt �P�1 �C �

Δt3

3!
�P�2 �C3

� �ηn �

�
I �

Δt2

2
�P�1 �C2 �

Δt4

4!
�P�2 �C4

� �un,

that can be written for each wavenumber k in the form��ηn�1k�un�1
k

�
�

�
c�θk, σ,Δx� iv�1

�
θk
Δx

�
s�θk, σ,Δx�

iv
�

θk
Δx

�
s�θk, σ,Δx� c�θk, σ,Δx�

� ��ηnk�un
k

�
� Gk

��ηnk�un
k

�
, (4.9)

for �N�2� 1 � k � N�2, where σ � Δt�Δx is the Courant number and

c�θ, σ,Δx� � 1�
1

2
σ2v2

�
θ
Δx

�
γ2�θ� �

1

4!
σ4v4

�
θ
Δx

�
γ4�θ�,

s�θ, σ,Δx� � σv
�

θ
Δx

�
γ�θ� �

1

3!
σ3v3

�
θ
Δx

�
γ3�θ�.

It is easy to verify that we can write Gk � V �kπ�l� G̃k V �kπ�l�
�1, where

V �κ� �

�
1 0
0 v�κ�

�
, G̃k �

�
c�θk, σ,Δx� is�θk, σ,Δx�
is�θk, σ,Δx� c�θk, σ,Δx�

�
,

and that the eigenvalues of Gk and G̃k are given by g�k � g��θk, σ,Δx�, where

g��θ, σ,Δx� � c�θ, σ,Δx� � i s�θ, σ,Δx�.
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Before enunciating the proposition which gives a sufficient condition for stability we need

the following lemma which is proven in [7].

Lemma 4.1. There exist positive constants c1 and c2 such that � y � R

c1 � 1

v�y�2�1� y2� � c2. (4.10)

Proposition 4.2. Let β � 0 and s � 0. The numerical scheme (4.7) is stable, that is, inequality
(4.8) holds, if g��θ, σ,Δx� satisfy

	g��θ, σ,Δx�	 � 1, � θ � �
π, π�. (4.11)

Proof:

Let �ηn,un�T be the solution given by the method (4.7). For s � 0 we have

�ηn,un�T 2N,s,s�1 � ηn2N,s � un2N,s�1

� 1

2l

N�2�
k��N�2�1

�
1� �kπ�l�2�s �	�ηnk 	2 � �

1� �kπ�l�2� 	�un
k 	2

�

� 1

2l

N�2�
k��N�2�1

�
1� �kπ�l�2�s ��B�kπ�l���ηnk , �un

k �T
��2
2
,

where  � 2 denotes the usual Euclidean norm and

B�κ� �
�
1 0
0

�
1� κ2

	
.

Thus, it is enough to prove that there exists a positive constant Cs such that��B�kπ�l���ηnk , �un
k �T

��2
2
� C2

s

��B�kπ�l���η0k, �u0
k�T

��2
2
.

Using equality (4.9) recursively we get ��ηnk , �un
k �T � Gn

k ��η0k, �u0
k�T , then��B�kπ�l���ηnk , �un

k �T
��2
2

� ��B�kπ�l��Gk�nB�1�kπ�l�B�kπ�l���η0k, �u0
k�T

��2
2

� ��B�kπ�l��Gk�nB�1�kπ�l���2
2

��B�kπ�l���η0k, �u0
k�T

��2
2
.

Thereby, using that Gk � V �kπ�l� G̃k V �kπ�l��1 we get

��B�kπ�l��Gk�nB�1�kπ�l���2
2
�

���B�kπ�l�V �kπ�l�G̃n
k �B�kπ�l�V �kπ�l���1

���2
2

� B�kπ�l�V �kπ�l�22 G̃k2n2
���B�kπ�l�V �kπ�l���1

��2
2
.

Since matrix G̃k has eigenvalues g��θk, σ,Δx�, by the hypothesis (4.11) we obtain

G̃k2n2 � sup
�θ��π


	g��θ, σ,Δx�	2n� � 1.
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On the other hand,

�B�kπ�l�V �kπ�l��22� �B�kπ�l�V �kπ�l���1 �22 �
max

�
v�kπ�l�2�1� �kπ�l�2�, 1

v�kπ�l�2�1� �kπ�l�2�
�
.

By inequality (4.10) we get

1

v�kπ�l�2�1� �kπ�l�2� � c2, and v�kπ�l�2�1� �kπ�l�2� � 1�c1.

Then,

�B�kπ�l�V �kπ�l��22
���B�kπ�l�V �kπ�l���1

��2
2
� max �1�c1, c2	 � C2

s .

Therefore, ��B �kπ�l� 
�ηnk , �un
k �T
��2
2
� C2

s

��B �kπ�l� 
�η0k, �u0
k�T
��2
2
,

which leads us to conclude that��
ηn,un�T ��
N,s,s�1

� Cs

��
η0,u0�T ��
N,s,s�1

.

�

Condition (4.11) guarantees stability but it is not practical for numerical implementations.

As shown in [1], we can write the squared amplification factor as

�g�k �2 � 1� p
�
σv
�

θk
Δx

�
γ�θk�

�
,

where p�y� � y6�y2  8��576. Note that p�y� � 0 if �y� � 2
�
2, then the scheme is stable if

max
�θ��π

σ
��v � θ

Δx

�
γ�θ��� � 2

�
2. (4.12)

In view of the previous computations, theorem 4.3 provides three practical conditions to

guarantee stability.

Theorem 4.3. The numerical scheme (4.7) is stable if at least one of the following inequalities
holds:

σ � Δt

Δx
� γ1

�
1� ρ2

ρ1

�
β

δ
, γ1 � 2

�
2

	
sup
�θ��π

�γ�θ��

�1

, (4.13)

μ � Δt�
Δx

� γ2

��
β

�
1� ρ2

ρ1


, γ2 � 2

�
2

	
sup
�θ��π

�
�γ�θ����θ�

�
�1

, (4.14)

Δt � γ3

�
β

3
, γ3 � 2

�
2

	
sup
�θ��π

� �γ�θ��
�θ�

�
�1

. (4.15)

Proof:
As previously stated, we just need to prove that each condition leads to inequality (4.12). For

this we will use the following inequalities

φ�y� � 1, �y � R, (4.16)
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φ�y� � �y�, �y � R, (4.17)

proven in [7] and also

1� β

3
y2 �

�
β�y�, �y � R, for β � 0, (4.18)

which is proven in [16]. The first condition is established using inequality (4.16) to obtain

v�κ� 	 1�
1� ρ2

ρ1

�
β
δ
φ�κδ� � κ2 β

3


 1�
1� ρ2

ρ1

�
β
δ

.

Therefore,

��v � θ
Δx

�
γ�θ��� 
 sup

�θ��π

v
�

θ
Δx

�
sup
�θ��π

�γ�θ�� 

�
1� ρ2

ρ1

�
β

δ

��1�2
sup
�θ��π

�γ�θ��. (4.19)

Multiplying inequality (4.19) by σ, applying condition (4.13) and making some simplifications

we guarantee inequality (4.12).

For the second condition we use inequalities (4.17) and (4.18) to get

v�κ� 	 1�
1� ρ2

ρ1

�
β
δ
φ�κδ� � κ2 β

3


 1�
ρ2
ρ1

�
β
δ
�κδ� � �

β�κ�
,

thus

��v � θ
Δx

�
γ�θ��� 
 sup

�θ��π

�	

 �γ�θ���

ρ2
ρ1

�
β
δ
�θδ�Δx� � �

β�θ�Δx�

��


	

�
��
���� Δx
�
β
�
1� ρ2

ρ1

�
�
�� sup

�θ��π

�
�γ�θ����θ�

�
.

Multiplying inequality (4.14) by
��v � θ

Δx

�
γ�θ��� ��Δx and applying the inequality above we

obtain condition (4.12).

For the last condition we use that φ�y� � 0, �y � R, then

��v � θ
Δx

�
γ�θ��� 
 sup

�θ��π

�	

 �γ�θ���

β
3
�θ�Δx�2

��
 	

�
�Δx�

β
3

�
� sup

�θ��π

� �γ�θ��
�θ�

�
.

Using this inequality and condition (4.15) similarly to what was done previously we obtain

inequality (4.12).

Therefore, if one of the conditions (4.13), (4.14) or (4.15) holds, the method is stable.

�

The values of γ1, γ2 and γ3 depend on the spatial discretization used to obtain matrix C.

Table 4.1 shows approximations for these values for each of the discretizations presented earlier

in this chapter. The finite difference scheme provides larger values of γ1, γ2 and γ3 when

compared to piecewise linear B-splines and the spectral scheme, thus its stability conditions are

less restrictive than those provided by the other schemes.
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Finite Difference B-Splines Spectral Differentiation

γ1 2.061 1.633 0.900
γ2 2.651 2.300 1.595
γ3 2.828 2.828 2.828

Table 4.1: Values of γi for each method.

In general, we want the largest possible value of Δt in order to reduce the computational

cost while maintaining stability and a good approximation. Denoting by Δtσ, Δtμ and Δtc
the largest values of Δt for a given Δx obtained respectively by conditions (4.13), (4.14) and

(4.15), figure 4.2 illustrates the criteria for choosing the most appropriate stability condition for

the finite difference spatial discretization. Defining

χ1 �
�
γ3
γ2

�2
ρ1β�3�

β�ρ1 � ρ2� and χ2 �
�
γ2
γ1

�2 �
β�ρ1 � ρ2�

ρ1 �
�
βρ2�δ ,

and considering
�
β�δ � h1�h2 � 1 and γ2

2�γ1 � γ3�
�
3, it is proven in [16] that χ1 � χ2.

Therefore, if Δx � χ1 condition (4.15) provides the largest values of Δt, if Δx 	 �χ1, χ2�
condition (4.14) is the most appropriate and if Δx 
 χ2 we use condition (4.13). Since we aim

at good precision at a reasonable computational cost, in most of the cases condition (4.14) is

used.
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Figure 4.2: Δtσ �—�, Δtμ ���� and Δtc �� � �� as functions of Δx for β � 0.0001, h2�h1 �
35.05 and ρ1�ρ2 � 0.5.

Now we can compare the method (4.7) for our dispersive system and the scheme presented

in [1] for system (2.7), which has the following stability conditions:

σ � Δt

Δx
 γ1

�
1� ρ2

ρ1

�
β

δ
, γ1 � 2

�
2
�
sup�θ��π�γ�θ��

��1
,

μ � Δt�
Δx

 γ2

��
β

�
ρ2
ρ1

�
, γ2 � 2

�
2

�
sup�θ��π

�
�γ�θ����θ�

	
�1

.

Due to the term �β�3�uxxt that leads to the term �β�3�k2 in v�k�, the condition for Δt��Δx
is less restrictive for system (2.6) than for system (2.7). Moreover, we can obtain a stability con-

dition independent of Δx for the scheme (4.7) which is not possible for the case of system (2.7)

where there is no quadratic term like �β�3�k2 in v�k� and any inequality must rely on the linear

growth of φ. The condition for the Courant number Δt�Δx is the same in both cases.
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4.2 Numerical stability tests
In this section we will perform a sequence of numerical experiments in order to validate the

methods and the stability conditions. The implementations were done in Octave. For the spatial

derivative we choose the finite difference approximation because it has a low computational cost

compared to the other schemes (piecewise linear B-splines and spectral scheme) and provides

the largest values of γ1, γ2 and γ3, as shown in table 4.1.

The conservation law (3.4), which is valid for all systems considered here, is approximated

by the trapezoidal rule defining the function

I�ti� � Δx
N�
j�1

ηij,

in order to verify how well the numerical solutions satisfy it. Since d � 0 in relation (3.4), the

initial condition must satisfy I�0� � 0, so we choose as initial configuration the profile

η0�x� � η�x� � a,

where η�x� � 0.1 exp��2�x� l�2� and a is calculated by the trapezoidal rule

a � 1

N

N�
j�1

ηj, (4.20)

as an approximation of the value of

1

2l

� l

�l

ηdx.

We set u0 so that η only propagates to the right in the linear system, that is, �u0�k� �
v�kπ�l��η0�k�. For the nonlinear system u0 is set in the same way. For the numerical exper-

iments we set ρ1 � 1, ρ2 � 2, h1 � 0.1 and h2 � 3.505 as in [9]. The values of β, α, l, N and

Δt are defined in each test. The other values are calculated by the relations L � h1�
�
β and

δ � h2�L.
Figure 4.3 presents the graphics of the numerical solution of system (2.6) at different instants

for β � 0.0001 and l � 10π with Δx � 0.03068 and Δt � 0.08043 which satisfy the stability

condition (4.14). We can see the dispersion acting on η and u because of the wave trains

that form as time advances. In fact, as the phase velocity v�k� decreases to zero when �k� �
	
 the high wavenumber components of the solution propagate more slowly and form the

aforementioned wave trains.

Figure 4.4 shows how the amplification factor �g�k � grows as Δt increases while Δx is kept

constant. If Δx � 0.03068 and Δt � 0.08043, conditions (4.14) and (4.11) are satisfied. If

Δt � 0.08847, none of the conditions required for stability in theorem 4.3 is satisfied, but

condition (4.11) still holds as the dashed line in figure 4.4 shows. For Δt � 0.09460, condition

(4.11) is not satisfied because �g��π�2, σ,Δx�� � 1.0029. In the last case, since no stability

condition holds, high wavenumber components permeate the numerical solution as shown in

figure 4.5 for t � 1800Δt. Note that this phenomenon is different from dispersion in which the

components propagate with different speeds. In this case, besides the dispersion effect of the

system (2.6), the amplitude of high wavenumber components increases anomalously and the

numerical solution is compromised. This example illustrates the relevance of a proper stability
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Figure 4.3: Approximate solutions for the linear system (2.6) at times t � 0 �—�, t � 1100Δt
�� � �� and t � 2200Δt �� � � � with l � 10π, β � 0.0001, N � 211, Δx � 0.03068, Δt �
0.08043.
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Figure 4.4: �g��θ, σ,Δx�� for Δx � 0.03068, Δt � 0.08043 �—�, Δt � 0.08847 ���� and

Δt � 0.09460 �� � �� with β � 0.0001.

0 10 20 30 40 50 60

-0.05

0

0.05

0.1

x

η

(a) η

0 10 20 30 40 50 60

-0.1

-0.05

0

0.05

x

u

(b) u

Figure 4.5: Approximate solutions for the linear system (2.6) at times t � 0 �—�, t � 900Δt
�� � �� and t � 1800Δt �� � � � with l � 10π, β � 0.0001, N � 211, Δx � 0.03068, Δt �
0.09460.

analysis even when the stability conditions are less restrictive.

Figure 4.6 presents the graphics of the numerical solution of system (2.6) for l � 10π,

β � 0.001 using Δx � 0.00383 and Δt � 0.05163 which satisfy the stability condition (4.15).

We see that increasing the parameter β the phase velocity v�k� decreases to zero faster, thus a

wider wave train is formed.

Figure 4.7 shows how the amplification factor grows as Δt increases while Δx is kept

constant. If Δx � 0.00383 and Δt � 0.05163 we have a stable solution as shown in figure 4.6.
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Figure 4.6: Approximate solutions for the linear system (2.6) at times t � 0 �—�, t � 1800Δt
�� � �� and t � 3600Δt �� � � � with l � 10π, β � 0.001, N � 214, Δx � 0.00383, Δt �
0.05163.

If Δt � 0.06196, none of the stability conditions in theorem 4.3 is satisfied, but condition (4.11)

still holds as the dashed line in figure 4.7 illustrates. For Δt � 0.07026, condition (4.11) is not

satisfied since we have �g��1.12, σ,Δx�� � 1.0062 and the solution obtained is unstable as

shown in figure 4.8.
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Figure 4.7: �g��θ, σ,Δx�� for Δt � 0.05163 �—�, Δt � 0.06196 ���� and Δt � 0.07027
�� � �� with Δx � 0.00383 and β � 0.001.

0 10 20 30 40 50 60

-0.05

0

0.05

0.1

x

η

(a) η

0 10 20 30 40 50 60

-0.1

-0.05

0

0.05

x

u

(b) u

Figure 4.8: Approximate solutions for the linear system (2.6) at times t � 0 �—�, t � 1350Δt
�� � �� and t � 2700Δt �� � � � with l � 10π, β � 0.001, N � 214, Δx � 0.00383, Δt �
0.07026.

The stability performance exhibited illustrates the fact that theorem 4.3 provides sufficient,
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not necessary restrictions for stability. Rather than the best possible condition, theorem 4.3

provides sufficient stability conditions which are useful for implementation codes.

Figure 4.9 shows the graphic of the mean I for the computed solutions presented in fig-

ures 4.3 and 4.6, respectively. We can see that the numerical solutions of the linear system

preserve very well the conservation law (3.4) since the absolute value of I is bounded by 10�14

in both cases.
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(a) Δx � 0.03068, Δt � 0.08043

0 50 100 150 200
10

-19

10
-18

10
-17

10
-16

10
-15

10
-14

10
-13

t

I

(b) Δx � 0.00383, Δt � 0.05163

Figure 4.9: Mean I for the results presented in figures 4.3 and 4.6.

Now let us show that the stability conditions in theorem 4.3 are valid to the scheme for the

nonlinear system (2.5). Note that condition (4.11) only makes sense in the linear case where

there exists an amplification factor. Figure 4.10 shows the graphics of the numerical solutions

for system (2.5) for l � 10π, β � α � 0.0001 where Δx � 0.03068 and Δt � 0.08043 satisfy

condition (4.14), also figure 4.11 presents the graphics of the numerical solutions for l � 10π,

β � α � 0.001 with Δx � 0.00383 and Δt � 0.05163 satisfying the stability condition (4.15).

We see that the conditions in theorem 4.3 still hold for these nonlinear cases. Figures 4.12 and

4.13 show that if Δt is increased so that no stability condition in theorem 4.3 is satisfied the

numerical solution is unstable as in the linear case. Also, we can see that the numerical solutions

of the nonlinear system preserve very well the conservation law (3.4) as shown in figure 4.14

for the computed solutions presented in figures 4.10 and 4.11, respectively.
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Figure 4.10: Approximate solutions for the nonlinear system (2.5) at times t � 0 �—�, t �
1100Δt ����� and t � 2200Δt �� � � � with l � 10π, β � α � 0.0001, N � 211, Δx � 0.03068,

Δt � 0.08043.
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Figure 4.11: Approximate solutions for the nonlinear system (2.5) at times t � 0 �—�, t �
1800Δt �� � �� and t � 3600Δt �� � � � with l � 10π, β � α � 0.001, N � 214, Δx � 0.00383,

Δt � 0.05163.
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Figure 4.12: Approximate solutions for the nonlinear system (2.5) at times t � 0 �—�, t �
900Δt �� � �� and t � 1800Δt �� � � � with l � 10π, β � α � 0.0001, N � 211, Δx � 0.03068,

Δt � 0.09460.

Solutions for the nonlinear system (2.5) have a similar appearance to solutions for the linear

system (2.6) with the same set of common parameters and starting from the same initial con-

ditions. In order to compare them we compute the Euclidean norm of the vector that results

from their difference at several instants. Table 4.2 shows that the Euclidean norm of the differ-

ence grows as time advances and it is larger for the larger value of the nonlinear parameter. In

particular, the values at the intersection of the rows identified by β � 0.0001 and the columns

identified by η�x� � exp��2x2� correspond to the two experiments that generate figures 4.3

and 4.10. Analogously, the values at the intersection of the rows identified by β � 0.001 and

the columns identified by η�x� � exp��2x2� correspond to the two experiments that gener-

ate figures 4.6 and 4.11. Besides, table 4.2 shows that if η�x� changes from 0.1 exp��2x2�
to exp��2x2� and therefore the initial values for η and u change by the same factor (keeping

all the parameters equal), the Euclidean norm of the corresponding difference is multiplied ap-

proximately by one hundred, confirming that the nonlinear effects are present and are more

noticeable for higher amplitude profiles.
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Figure 4.13: Approximate solutions for the nonlinear system (2.5) at times t � 0 �—�, t �
1350Δt �� � �� and t � 2700Δt �� � � � with l � 10π, β � α � 0.001, N � 214, Δx � 0.00383,

Δt � 0.07026.
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(a) Δx � 0.03068, Δt � 0.08043
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Figure 4.14: Mean I for the results presented in figures 4.10 and 4.11.

η�x� � 0.1 exp��2x2� η�x� � exp��2x2�
β time norm �η� norm �u� norm �η� norm �u�

0.0001

100Δt � 8.043 0.0000495 0.0000475 0.0049454 0.0047532
500Δt � 40.213 0.0002119 0.0002041 0.0211847 0.0204099
1100Δt � 88.468 0.0003597 0.0003474 0.0359573 0.0347279
2200Δt � 176.937 0.0005106 0.0004941 0.0510226 0.0493752

0.001

150Δt � 7.745 0.0011563 0.0010590 0.1156249 0.1059029
700Δt � 36.142 0.0025461 0.0023993 0.2542572 0.2395679
1800Δt � 92.938 0.0031029 0.0029502 0.3092888 0.2940249
3600Δt � 185.875 0.0033832 0.0032392 0.3365037 0.3221350

Table 4.2: Euclidean norm of the difference between the solutions of the linear system (2.6) and

the nonlinear system (2.5).

4.3 Numerical convergence study
Now let us study the convergence of the method on the temporal and spatial variables.

Since the exact solution is not available for the nonlinear system, in order to compare with

the numerical approximations, we substitute it by an accurate numerical solution �η,u� that is

calculated with small values of Δx � Δx� and Δt � Δt�. For a given time T � 0 we define
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the time error by

Et�η,Δt,Δt�,Δx�, T � � �ηn � ηm�2, nΔt � mΔt� � T.

We can estimate the temporal convergence rate p making successive refinements dividing Δt
by 2 while keeping Δx � Δx� and computing

p �
log�Et�η,Δt�2,Δt�,Δx�, T ��Et�η,Δt,Δt�,Δx�, T ��

log�1�2�
.

The error and rate for u are defined analogously.

Since the classical Runge-Kutta method has fourth order of convergence, it is expected for

the rate p to be close to 4. This is confirmed for the linear and nonlinear cases for different

values of β and α as shown in tables 4.3-4.6.

η u
Δt error rate error rate

0.286039 0.054823619180 0.049861071184
0.143020 0.007747620293 2.82297 0.006884781170 2.85643
0.071510 0.000527767899 3.87578 0.000467186526 3.88134
0.035755 0.000033095045 3.99522 0.000029291581 3.99544
0.017877 0.000002061352 4.00495 0.000001824437 4.00496
0.008939 0.000000121261 4.08740 0.000000107324 4.08740

Table 4.3: Convergence study on the temporal variable t for the linear system (2.6) with β �
0.001, l � 10π, Δx � 0.122718, Δt� � 0.004469 and T � 99.827624.

η u
Δt error rate error rate

0.160852 0.015553630790 0.014882034096
0.080426 0.001239195834 3.64978 0.001182218375 3.65400
0.040213 0.000078402189 3.98237 0.000074783623 3.98263
0.020106 0.000004901891 3.99948 0.000004675617 3.99949
0.010053 0.000000305267 4.00519 0.000000291176 4.00520
0.005027 0.000000017957 4.08744 0.000000017128 4.08744

Table 4.4: Convergence study on the temporal variable t for the linear system (2.6) with β �
0.0001, l � 10π, Δx � 0.122718, Δt� � 0.002513 and T � 99.888826.

For spatial convergence we define the error Ex�η,Δx,Δx�,Δt�, T � analogously to Et, but

we consider only the points where all numerical solutions are calculated and the same value of

Δt � Δt� in each solution. We perform successive refinements of the spatial mesh dividing

Δx by 2 and estimating the spatial convergence rate by

p �
log�Ex�η,Δx�2,Δx�,Δt�, T ��Ex�η,Δx,Δx�,Δt�, T ��

log�1�2�
.

As in the temporal convergence study, a fourth order convergence rate is expected in the

spatial variable since the finite difference formula has order 4 and the Fourier approximation has
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η u
Δt error rate error rate

0.286039 0.054926091446 0.049952905618
0.143020 0.007771557556 2.82122 0.006905599111 2.85473
0.071510 0.000529584107 3.87527 0.000468751769 3.88087
0.035755 0.000033209536 3.99519 0.000029390166 3.99542
0.017877 0.000002068486 4.00495 0.000001830579 4.00496
0.008939 0.000000121681 4.08740 0.000000107686 4.08740

Table 4.5: Convergence study on the temporal variable t for the nonlinear system (2.5) with

β � α � 0.001, l � 10π, Δx � 0.122718, Δt� � 0.004469 and T � 99.827624.

η u
Δt error rate error rate

0.160852 0.015568274218 0.014895959522
0.080426 0.001240645307 3.64945 0.001183590855 3.65368
0.040213 0.000078495424 3.98234 0.000074871868 3.98260
0.020106 0.000004907726 3.99948 0.000004681140 3.99949
0.010053 0.000000305630 4.00519 0.000000291520 4.00520
0.005027 0.000000017979 4.08744 0.000000017148 4.08744

Table 4.6: Convergence study on the temporal variable t for the nonlinear system (2.5) with

β � α � 0.0001, l � 10π, Δx � 0.122718, Δt� � 0.002513 and T � 99.888826.

spectral convergence. Again, the estimated convergence rate is confirmed in the experiments

for the linear and nonlinear cases considering different values of β and α as shown in tables 4.7-

4.10.

η u
Δx error rate error rate

0.122718 0.026010268439 0.023104571640
0.061359 0.001918149846 3.76129 0.001688775393 3.77413
0.030680 0.000120901867 3.98781 0.000106417207 3.98817
0.015340 0.000007568352 3.99771 0.000006661369 3.99777
0.007670 0.000000471502 4.00464 0.000000414994 4.00466
0.003835 0.000000027739 4.08730 0.000000024414 4.08730

Table 4.7: Convergence study on spatial variable x for the linear system (2.6) with β � 0.001,

l � 10π, Δx� � 0.001917, Δt � 0.035755 and T � 99.970644.
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η u
Δx error rate error rate

0.122718 0.027538640823 0.026333212505
0.061359 0.002079925294 3.72685 0.001982864179 3.73123
0.030680 0.000131165768 3.98707 0.000125033612 3.98720
0.015340 0.000008211104 3.99767 0.000007827135 3.99769
0.007670 0.000000511549 4.00463 0.000000487626 4.00464
0.003835 0.000000030095 4.08730 0.000000028687 4.08730

Table 4.8: Convergence study on spatial variable x for the linear system (2.6) with β � 0.0001,

Δx� � 0.001917, Δt � 0.020106 and T � 99.989358.

η u
Δx error rate error rate

0.122718 0.026091160182 0.023175239719
0.061359 0.001926156970 3.75976 0.001695616565 3.77270
0.030680 0.000121412422 3.98774 0.000106852992 3.98811
0.015340 0.000007600350 3.99771 0.000006688679 3.99776
0.007670 0.000000473496 4.00464 0.000000416696 4.00465
0.003835 0.000000027856 4.08730 0.000000024514 4.08730

Table 4.9: Convergence study on spatial variable x for the nonlinear system (2.5) with β � α �
0.001, l � 10π, Δx� � 0.001917, Δt � 0.035755 and T � 99.970644.

η u
Δx error rate error rate

0.122718 0.027568752268 0.026361860047
0.061359 0.002083124595 3.72621 0.001985887091 3.73060
0.030680 0.000131371169 3.98703 0.000125227617 3.98716
0.015340 0.000008223982 3.99767 0.000007839299 3.99768
0.007670 0.000000512351 4.00463 0.000000488384 4.00464
0.003835 0.000000030142 4.08730 0.000000028732 4.08730

Table 4.10: Convergence study on spatial variable x for the nonlinear system (2.5) with α �
β � 0.0001, l � 10π, Δx� � 0.001917, Δt � 0.020106 and T � 99.989358.
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Chapter 5

Unidirectional equation

In this chapter we will prove the existence of travelling wave solution for the unidirectional

equation (2.9) using a fixed point method. Firstly, let us present the derivation of the regularized

equation from system (2.5) using asymptotic expansion.

Considering α � β � 0 in system (2.5) we get�
ηt � ux � 0,

ut � ηx � 0.
(5.1)

Note that from system (5.1) we can obtain the wave equation for η and u with speed c2 � 1,

that is, �
ηtt � ηxx � 0,

utt � uxx � 0.
(5.2)

Looking for travelling solutions for system (5.1) of the form η�x, t� � f�x� ct�, u�x, t� �
g�x� ct� we get, after substitution of these expressions, the following system:�

� cf � � g� � 0,

� cg� � f � � 0.
(5.3)

From (5.3) we can conclude that c � �1 which is consistent with the wave equations in sys-

tem (5.2). Since we want a wave propagating to the right we choose c � 1. So, returning to

system (5.3), we obtain that g� � �f � and consequently u � �η� a, where a is constant. Then

ηt � ux � �ηx and ut � ηx � �ux, that is,�
ηt � ηx � 0,

ut � ux � 0.
(5.4)

Thus, in view of u � �η � a, let us consider

u � �η � αP � βQ�
�
βR �O�α

�
β, β3�2�, (5.5)

where P , Q and R are functions to be determined. Differentiating (5.5) with respect to t and x
we have

ut � �ηt � αPt � βQt �
�
βRt �O�α

�
β, β3�2�, (5.6)

ux � �ηx � αPx � βQx �
�
βRx �O�α

�
β, β3�2�. (5.7)

The equations in (5.4) suggest to replace the t derivatives of η and u in (5.6) by minus the x
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derivative, which results in

�ux � ηx � αPt � βQt �
�
βRt �O�α

�
β, β3�2�. (5.8)

Adding expressions (5.7) and (5.8) we have

0 � α�Pt � Px� � β�Qt �Qx� �
�
β�Rt � Rx� �O�α

�
β, β3�2�. (5.9)

In order to satisfy equation (5.9) we obtain the following equations

���
��
Pt � Px � 0,

Qt �Qx � 0,

Rt � Rx � 0.

(5.10)

Substituting expression (5.5) in the first equation of system (2.5) and making some simpli-

fications we obtain

ηt � ηx � α�Px � �η2�x� � βQx �
�
βRx �O�α

�
β, β3�2� � 0. (5.11)

Analogously, substituting expression (5.5) in the second equation of system (2.5) we get

�ηt�ηx�α�Pt�ηηx��β

�
Qt � 1

3
ηxxt

�
�
�
β

�
Rt � ρ2

ρ1
Tδ�ηxt�

�
� O�α

�
β, β3�2�. (5.12)

Now, equating terms with α, β and
�
β in equations (5.11) and (5.12) we have

������
�����

Px � �η2�x � Pt � ηηx,

Qx � Qt � 1

3
ηxxt,

Rx � Rt � ρ2
ρ1

Tδ�ηxt�.

From the equations in (5.10) we obtain

�������
������

Px � ��η2�x
4

,

Qx � 1

6
ηxxt,

Rx � ρ2
2ρ1

Tδ�ηxt�.

(5.13)

Substituting the equations in (5.13) in equation (5.11) we have

ηt � ηx � α

�
�1

2
ηηx � �η2�x

�
� β

1

6
ηxxt �

�
β
ρ2
2ρ1

Tδ�ηxt� �O�α
�
β, β3�2� � 0,

which leads us to the regularized finite depth Benjamin equation

ηt � ηx � 3α

2
ηηx �

�
β

2

ρ2
ρ1

Tδ�ηxt� � β

6
ηxxt � 0.

Rewriting equation (2.9) in the general form

ηt � ηx � c1ηηx � c2Tδ�ηxt� � c3ηxxt � 0, (5.14)
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we can calculate the phase velocity of its linear version

ηt � ηx � c2Tδ�ηxt� � c3ηxxt � 0. (5.15)

Substituting η�x, t� � exp�i�kx� ωt�� in equation (5.15) we obtain

�
�iω � ik � iω

c2
δ
φ�δk� � iωc3k

2
�
exp�i�kx� ωt�� � 0,

thus the phase velocity is given by

ω�k�

k
�

1

1� c2
δ
φ�δk� � c3k2

.

Figure 5.1 shows the graphics of the phase velocities of system (2.5) and equation (2.9). The

phase velocity of both models are very similar for small values of k, but the difference increases

for larger values of k. In addition, the equation has a slower phase velocity than the system,

which tends to generate a larger wave train.
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Figure 5.1: Graphics of the phase velocity of system (2.5) �—� and equation (2.9) �� � ��.

5.1 Travelling waves of the regularized equation
In this section we will study the existence of periodic travelling wave solutions for equation

(5.14). We will use the fixed point method used to prove the existence of travelling wave

solutions for the Benjamin equation in [6] adapting some results and notations from [24].

A classical solution for the equation must be at least three times differentiable, but initially

we will consider weak solutions. In this case we will change the problem to another formulation

where the solution can be a function in the L2
per space. At the end we will prove that the obtained

solution has enough regularity to be a classical solution of the equation.

Making the change of variables η� � � c1
2
η in equation (5.14) and dropping the asterisks we

obtain

ηt � ηx � 2ηηx � c2Tδ�ηxt� � c3ηxxt � 0.

Supposing that this equation admits a travelling wave solution η�x, t� � ϕ�x� ct� let us substi-

tute this expression in it. Integrating the resulting equation once and considering the integration

constant to be equal to zero we have

�cϕ� ϕ� ϕ2 � c2cTδ�ϕ
�� � c3cϕ

� � 0.
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Making another change of variables ϕ � cϕ� and dropping the asterisks we get

Bϕ� c2Tδ�ϕ
�� � c3ϕ

� � ϕ2, (5.16)

where B � c�1
c
. In the following computations it will be necessary that B � 0, thus we suppose

that c � 1. Note that equation (5.16) has two trivial solutions ϕ � 0 and ϕ � B although we

want to prove that it admits a non-trivial solution.

Let us suppose that the travelling wave ϕ is 2l-periodic and even, so its Fourier series can

be written as

ϕ�x� �
�
k�Z

ak cos�kπx	l�, (5.17)

where

ak �
1

l

� l

0

ϕ�x� cos�kπx	l�dx � a�k.

Since the Fourier coefficients of ϕ2 are given by the convolution �a 
 a�k �
�

m�Z
ak�mam

see, for example, [6], substituting expression (5.17) in equation (5.16) we can see that coeffi-

cients ak satisfy

ak �
1

wk

�a 
 a�k, k � Z, (5.18)

where wk � B � c2
δ
φ�δkπ	l� � c3�kπ	l�

2. Note that the sequences corresponding to ϕ � 0
and ϕ � B are solutions of equation (5.18). However, we want a solution that is a non-trivial

sequence which will correspond to a non-trivial solution of equation (5.16).

We can write (5.18) in an operator form a � Aa where �Aa�k � w�1
k �a 
 a�k. The operator

A : l2�Z�  l2�Z� is well defined because by Holder’s inequality, ��a
a�k� � �a�22 for all k � Z

and w�1 � �w�1
k �k�Z � l2�Z�. Thus, if we find a real sequence a which is a non-trivial fixed

point of A we will obtain a weak solution ϕ � L2
per of equation (5.16).

Now let us state the main results of the fixed point index method to be used.

Definition 13. A subset K in a Banach space is a cone if the following three statements are
valid:

• 0 � K.

• if x � K then λx � K for all λ � 0.

• if �x and x belongs to K then x � 0.

Let K be a closed convex cone in a Banach space and A : K  K a continuous and compact

operator. If Ω � K is open in the relative topology of K and there are no fixed points of A on

�Ω then we denote by i�A,K,Ω� the fixed point index of A in Ω. The definition of the integer

number i�A,K,Ω� is quite technical but can be found in detail in [23]. For our purposes, it is

enough to sumarize here that the index i has the following properties:

• Let Ω � K be an open subset in the relative topology of K. If Ax � x0, �x � Ω � K for

some x0 � Ω then i�A,K,Ω� � 1;

• Let Ω1,Ω2 � K be two open and disjoint subsets in the relative topology of K. If Ω1�Ω2

is an empty set then

i�A,K,Ω1 � Ω2� � i�A,K,Ω1� � i�A,K,Ω2�;
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• Let Ω � K be an open subset in the relative topology of K. If i�A,K,Ω� � 0 then A has

a fixed point in Ω.

For 0 � r � R let us define Kr � �x � K; 	x	 � r
, �Kr � �x � K; 	x	 � r
 and

KR
r � �x � K; r � 	x	 � R
. The following lemma is adapted from [24].

Lemma 5.1. Let K be a convex cone in a Banach space and A : K � K a continuous and
compact operator. Then the three following statements are valid:

1. Let r  0 be a constant. If x� tAx � 0, �x � �Kr and t � �0, 1� then i�A,K,Kr� � 1;

2. Let r  0 be a constant. If there exists ζ � K with ζ � 0 such that x � Ax � sζ ,
�x � �Kr and s � 0 then i�A,K,Kr� � 0;

3. Let Ω � K be an open subset in the relative topology of K such that A has no fixed points
in �Ω. If there exists ζ � K with ζ � 0 such that x � Ax � sζ , �x � �Ω and s � 0 then
i�A,K,Ω� � 0.

Let us define an appropriate cone for the domain of A in order to ensure that the operator

satisfies the hypothesis of lemma 5.1. Denoting λ � 	w�1	2 we define the cone K as

K � �a � l2�Z�; 	a	2 � λw0a0 and ak � a
�k � 0 �k � Z
.

Note that K admits non-trivial sequences since λw0  1 and it is a convex subset by the tri-

angular inequality. For a � K we have that b � Aa � l2�Z� moreover, bk � b
�k � 0 since

wk � w
�k � 0. On the other hand, we obtain that bk �

1
wk
	a	22 and in particular b0 �

1
w0
	a	22,

therefore we have 	b	2 � λ	a	22 � λw0b0, that is b � K and A maps K into itself.

Lemma 5.2. The operator A : K � K is continuous and compact.

Proof. To prove the continuity of A let a, b � K. Thus we obtain

��a � a�k � �b � b�k� � �
�
m�Z

ak�mak � bk�mbk�

� �
�
m�Z

ak�m�ak � bk� � bk�bk�m � am�k��

� �
�
m�Z

ak�m�ak � bk�� � �
�
m�Z

bk�bk�m � am�k��.

By Holder’s inequality we have

�
�
m�Z

ak�m�ak � bk�� � 	a	2	a� b	2 and �
�
m�Z

bk�bk�m � am�k�� � 	b	2	a� b	2.

Therefore, ��a � a�k � �b � b�k� � �	a	2 � 	b	2�	a� b	2. Thus we get

	Aa�Ab	2 �

��
k�Z

w�2
k ��a � a�k � �b � b�k�2 � λ�	a	2 � 	b	2�	a� b	2.

Therefore, A is continuous.

For the compactness let us consider the family of operators AN which are defined by

�ANa�k �

�
�Aa�k for �k� � N,
0 for �k�  N.
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Observe that �ANa � Aa�22 �
�

�k��N w�2
k �a�22. In bounded sets, since

�
�k��N w�2

k � 0 as

N � �, A is the uniform limit of finite rank operators and therefore is compact.

Lemma 5.3. let r be a positive constant. If r � 1�λ, then i�A,K,Kr	 
 1.

Proof. Consider a � �Kr and take the component k 
 0 of a�tAa. Using that a0 
 �a�2��λw0	
we get

a0 �
t

w0

�a�22 

1

w0

�
1

λ
� t�a�2

�
�a�2,

since �a�2 �
1
λ

and t � 0, 1� we obtain �a� tAa	0 � 0. Therefore a� tAa � 0 �a � �Kr and

t � 0, 1�. By item 1 of lemma 5.1 i�A,K,Kr	 
 1.

Lemma 5.4. Let R be a positive constant. If R � w0 then i�A,K,KR	 
 0.

Proof. Let ζ � K such that ζ0 � 0. Consider a � �KR and take the component k 
 0 of a�Aa,
since �a�2 � w0,

a0 �
1

w0

�a�22 � �a�2 �
1

w0

�a�22 � 0,

then �a�Aa	0 � sζ0 �s � 0 and by item 2 of lemma 5.1 we conclude that i�A,K,KR	 
 0.

With the last lemmas we can conclude that i�A,K,KR
r 	 
 �1. Unfortunately, since r �

w0 � R the sequence corresponding to ϕ � B belongs to KR
r and we have no guarantee that

there is a non-trivial fixed point of A in KR
r . Thus, we must isolate this sequence in a small

neighborhood and use item 3 of lemma 5.1 to guarantee that there exists a non-trivial fixed

point of A in KR
r . Defining the sequence d as d0 
 w0 and dk 
 0 for k � 0 we denote the

neighborhood of d by Vε�d	 
 �a � K; �d� a�2 � ε�.

Lemma 5.5. If 2w0 � w1 and ε � 0 is chosen sufficiently small then i�A,K, Vε�d		 
 0.

Proof. Note that b � �Vε�d	 is of the form b 
 d� h where �h�2 
 ε � 0, thus

�b � b	k 
 2w0hk � �h � h	k,

then

�b�Ab	k 
 dk �

�
1�

2w0

wk

�
hk �

1

wk

�h � h	k.

By the definition of b we have that hk � 0 for k � 0, thus

��h � h	1 � 2�h0�h1 � 2εh1.

Therefore,

�b�Ab	1 


�
1�

2w0

w1

�
h1 �

1

w1

�h � h	1 �

�
1�

2w0

w1

�
2ε

w1

�
h1.

Note that if l is chosen large enough then 2w0 � w1 is valid. So, if ε � 0 is sufficiently small

then �b � Ab	1 � 0. Thus, choosing ζ � K so that ζ1 � 0 we have b � Ab � sζ , �b � �Vε�d	
and s � 0. Therefore i�A,K, Vε�d		 
 0.
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Theorem 5.6. If 2w0 � w1, then operator A has a non-trivial fixed point in KR
r for 0 � r �

w0 � R.

Proof. From lemmas 5.3 and 5.4 we have that i�A,K,KR
r � � �1. If 2w0 � w1 and ε � 0

is chosen small enough we obtain i�A,K, Vε�d�� � 0 by lemma 5.5. Moreover, if ε is so that

Vε�d� � KR
r then we have that i�A,K,KR

r �Vε�d�� � �1. Therefore, operator A has a non-trivial

fixed point in KR
r �Vε�d�.

The non-trivial fixed point a of operator A corresponds to a function ϕ 	 L2
per, however

we want ϕ to be a smooth function. So let us enunciate the theorem which will guarantee the

existence of a C� travelling solution.

Theorem 5.7. If the half period l is chosen large enough then there exists a non-trivial 2l-
periodic C� function ϕ which is a solution of equation (5.16).

Proof. Due to the considerations made previously, we just need to prove that the function ϕ
corresponding to the non-trivial fixed point a of A belongs to Hs

per�
�l, l�� for all s � 0. Since

a is a fixed point of A it satisfies wkak  �a�22, then

�

k�Z

�ak� 
�

k�Z

�a�22
wk

� �a�22
�

k�Z

1

wk

� �.

So we have

�

k�Z

wk�ak�
2 
�

k�Z

�ak��a�
2
2  �a�22

�

k�Z

�ak� � �.

Observe that wk grows like 1 � �k�2, thus
�

k�Z�1 � �k�2��ak�
2 � �, that is, ϕ 	 H1

per�
�l, l��.
Thus, by Theorem 3.2 we conclude that ϕ2 	 H1

per�
�l, l�� and

�

k�Z

�1� �k�2���a � a�k�
2 �
�

k�Z

�1� �k�2�w2
k�ak�

2 � �.

Therefore,
�

k�Z�1��k�
2�3�ak�

2 � �, that is ϕ 	 H3
per�
�l, l��. Repeating this process we obtain

that ϕ 	 Hs
per�
�l, l�� for all s � 0 so ϕ is a C� function and a solution of equation (5.16).

Therefore, returning to the original variables we have that equation (5.14) admits a periodic

and C� travelling wave solution. We remark that, with some adaptions, these computations

can be applied to prove the existence of travelling waves for the regularized Benjamin equation

using the operator H instead of Tδ.
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Chapter 6

Travelling waves for the flat bottom
nonlinear system

In this chapter we will study the existence of travelling wave solutions for the nonlinear sys-

tem (2.5). In the last chapter we proved the existence of travelling waves for the unidirectional

equation (5.14), unfortunately it was not yet possible to show the existence of this type of solu-

tion for the nonlinear system. The technique employed by Pipicano and Grajales in [24] could

not be used because the system considered by them has dispersive terms in both equations, un-

like the system considered here. This dispersive term absent in the first equation proved to be

crucial to employ the aforementioned technique in our system.

Since, from a theoretical point of view, we do not have results about travelling waves for the

nonlinear system (2.5), we are going to adopt a numerical approach to this problem. We will

present three methods to compute travelling waves for this nonlinear system and compare the

results obtained by these methods.

A first numerical approach to generate approximated travelling waves was proposed by the

author in [16] and was based on the one presented by Santos in [10] for the system

��
�
ηt �

�
�1� αη�u

�
x
� 0,

ut � αuux � ηx �
�
β
ρ2
ρ1

Tδ �u�xt ,
(6.1)

which was based on the strategy implemented in [25].

The approach proposed in [16] is the following: supposing that system (2.5) admits a trav-

elling wave solution, we define the variable y � x� ct and the functions η̃�y� � η�x� ct, 0� �
η�x, t� and ũ�y� � u�x� ct, 0� � u�x, t�. Using the chain rule we obtain the system

��
�

� cη̃y � ũy � α�η̃ũ�y � 0,

� cũy � αũũy � η̃y � c
�
β
ρ2
ρ1

Tδ

�
ũyy

�
� c

β

3
ũyyy � 0.

Integrating both equations on y and considering the integration constant to be equal to zero we

have

��
�

� cη̃ � �1� αη̃�ũ � 0,

� cũ�
α

2
ũ2 � η̃ � c

�
β
ρ2
ρ1

Tδ

�
ũy

�
� c

β

3
ũyy � 0.

(6.2)

Now we isolate ũ in the first equation of system (6.2) and use a second order approximation to

get
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ũ � � cη̃

1� αη̃
� �cη̃ � cαη̃2 �O�α2�. (6.3)

Substituting this expression in the second equation of system (6.2) and discarding the terms of

order O�α�β, αβ, α2� we have,

α
3

2
η̃2 �

�
1� 1

c2

�
η̃ �

�
β
ρ2
ρ1

Tδ

�
η̃y
�� β

3
η̃yy � 0. (6.4)

Considering a discretization analogous to the one made in Chapter 4 the following system of

equations is obtained

α
3

2

�
��

η̃21
...

η̃2N

	

��

��
1� 1

c2


I �

�
β
ρ2
ρ1

T � β

3
S

���
η̃1
...

η̃N

	

� � 0, (6.5)

where

T � 1

N
F T T̂F, T̂ � diag

�
�1

δ
φ�kπδ�l�



and

S � 1

N
F T ŜF, Ŝ � diag

���kπ�l�2� .
This system is solved numerically by Newton’s method. The resulting profiles have very

small amplitude and changes in a given time interval. In fact the method seems to converge to

the null vector which is a trivial solution of system (6.5), also the initial conditions were not

adequately adjusted for the method.

One of the problems with the method used in [16] is that velocity c is a fixed parameter and

we do not know what its value should be. For example, for the unidirectional equation and the

system considered in [24], the speed of the travelling waves must be greater than 1, which may

indicate that the same must be true for system (2.5), but the numerical results of this chapter

indicates the opposite.

As an enhancement to this approach, let us consider c as an unknown variable and complete

the system (6.5) with the conservation law (3.4) approximated by the trapezoidal rule (4.20).

That is,

1

N

N�
j�1

η̃j � d. (6.6)

To maintain consistency with the physical settings of the problem, the constant d must be equal

to zero, however in this case the null vector is again a solution of the problem. Thus, setting

nonzero values of d we avoid the possibility of a null solution and can generate different solu-

tions depending on this parameter. In the numerical tests of this chapter we will consider two

options for the constant d. In the first option we set d � 0 and make the adjustment in the

initial guess for the Newton’s method as in Section 4.2. In the other option we do not make the

adjustment in the initial guess, set d as the mean of the profile computed by the trapezoidal rule.

Therefore, the first method to generate travelling waves for the nonlinear system (2.5) con-

sists in solve the system of equations composed of (6.5) and (6.6) by Newton’s method. With

the resulting η̃ and c we obtain ũ using the approximation given by expression (6.3).

Another problem in the original approach is the large number of approximations made, since

ũ appears many times in the second equation of system (6.2), that may compromise the results.
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This fact motivates us to propose a new method where no approximations are made. In this case

we will obtain an equation on ũ isolating η̃ on the first equation of (6.2) to obtain

η̃ �
ũ

αũ� c
, (6.7)

and substituting this expression on the second equation of (6.2) to obtain

�cũ�
α

2
ũ2 �

ũ

αũ� c
� c
�
β
ρ2
ρ1

Tδ

�
ũy

�
� c

β

3
ũyy � 0. (6.8)

Using the same discretization as before we get the following system

α

2

�
�� ũ2

1
...

ũ2
N

�
�	�

�
�� ũ1��αũ1 � c�

...

ũN��αũN � c�

�
�	� c



�I �

�
β
ρ2
ρ1

T �
β

3
S

���� ũ1
...

ũN

�
�	 � 0. (6.9)

Again c is considered as an unknown and the system is completed with the numerical version

of the conservation law (3.4), that due to equality (6.7) becomes

1

N

N�
j�1

ũj

αũj � c
� d. (6.10)

As in the previous case, the system is solved by Newton’s method and η̃ is calculated by ex-

pression (6.7).

Although the second method has no approximations, it is necessary to calculate η̃ separately

after applying Newton’s method. In view of this, in the third method option we consider η̃ and

ũ together to discretize the complete system (6.2) which becomes���������
���������

c

�
�� η̃1

...

η̃N

�
�	�

�
�� �1� αη̃1�ũ1

...

�1� αη̃N�ũN

�
�	 � 0,

α

2

�
�� ũ2

1
...

ũ2
N

�
�	�

�
�� η̃1

...

η̃N

�
�	� c



�I �

�
β
ρ2
ρ1

T �
β

3
S

���� ũ1
...

ũN

�
�	 � 0.

(6.11)

As in the previous cases we will consider c as an unknown variable and complete the system

with the conservation law (3.4) approximated by the trapezoidal rule (6.6).

In summary, the three approaches presented in this section are the following: the first ap-

proach was given by system (6.5) and equation (6.6), for the second approach we considered

system (6.9) and equation (6.10). The third approach was defined by system (6.11) and equation

(6.6).

In order to have a quantitative comparison of the methods, we defined the following pro-

cedure to compare the results obtained by them. The wave velocity obtained from Newton’s

method in each test is denoted by cmet and the numerical wave speed cn is computed as follows.

For each time tj � jΔt, j � 1, 2, . . . , J , J big enough, we find the grid point xlj that minimizes

ηjl and make a linear regression on the points ��tj, xlj�� to estimate cn. Using Fourier properties

and the DFT, we define η� as the approximation of η�x � cnt, 0� by �η�k � exp��ikπcnt�l��η0k.

We define the absolute error eabs and the relative error erel at a chosen tn � nΔt , respectively,
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by

eabs � �η� � ηn�2, and erel � �η� � ηn�2
�η��2 .

We will set the parameters as in Section 4.2, ρ1 � 1, ρ2 � 2, h1 � 0.1, h2 � 3.505 and

Δx � 0.03068. The values of β, α, l and Δt are specified in each test. The other values are

calculated by the relations L � h1�
�
β and δ � h2�L.

6.1 Initial guesses for the methods
Since Newton’s method has local convergence we must choose good initial guesses. For

that we will consider the BBM and rILW equations, that can be obtained from the unidirectional

equation (5.14), whose travelling waves have known expressions. So, discarding the term with

ηxxt in equation (5.14), we obtain the regularized Intermediate Long Wave (rILW) equation

ηt � ηx � c1ηηx � c2Tδ�ηxt� � 0,

and discarding the term with the operator Tδ we get the Benjamin-Bona-Mahony (BBM) equa-

tion

ηt � ηx � c1ηηx � c3ηxxt � 0. (6.12)

We can see in [25] that a travelling wave solution family for the rILW equation is

η	y
 � a cos2	θ

cos2	θ
 � sinh2	y�λ
 , y � x� ct, (6.13)

with

a � 4cc2θ tan θ

δc1
, c � 1

1� 2c2
δ
θ cot	2θ
 , λ � δ

θ
, 0 � θ � π�2.

Also, it is proven in Appendix A that for c � 1 the travelling wave solution of the BBM equation

(6.12) is

η	y
 � �3	c� 1

c1

sech2

��
c� 1y

2
�
cc2

�
. (6.14)

Since we are considering solutions which are periodic on the x variable, periodic travel-

ling wave solutions of the BBM and the rILW equations should be more appropriate as initial

guesses. Natali proved in [22] that a periodic travelling wave solution for the KdV equation can

be obtained by a periodization of the solitary travelling wave solution, for a period L � 0. This

fact motivates us to consider as initial guesses periodizations of the waves (6.14) and (6.13) by

ηp	x
 �
10�

j��10

η	x� j2l
.

Before using the BBM and rILW wave profiles as initial guesses for the methods for ob-

taining travelling waves, let’s test them as initial conditions in the numerical method for the

nonlinear system and see how they advance in time. Figures 6.1–6.4 present the graphics of the

evolution ηn for the travelling wave initial condition η0 of each equation and the corresponding

approximate translation η�. For BBM profiles the dispersion appears with loss of amplitude

which is more pronounced as β and c increases, however, the wave train is much smaller com-

pared to the results obtained for the Gaussian profile in the Section 4.2. On the other hand, the
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rILW profiles preserve well their shapes and the graphics of ηn and η� coincide. This fact is

confirmed by the small errors presented in tables 6.1–6.4, that is, the rILW profile works fine

as travelling wave for the nonlinear system (2.5). In view of that, for the next experiments we

will use only the rILW profiles as initial condition. Also, note that the numerical wave velocity

cn is smaller than 1 in all cases, contrary to the theoretical estimate based on similar models

presented at the beginning of the chapter.
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Figure 6.1: Graphics of η� �� � �� and ηn �—� for each initial guess with l � 10π, α � β �
0.0001, Δx � 0.03068, Δt � 0.08043 at time t � 62.81254 � 781Δt.

Profiles eabs erel cn c
rILW θ � π�30 0.0116351 0.0001295 0.97289 0.97266
rILW θ � π�40 0.0221550 0.0003925 0.97273 0.97248
BBM c � 1� α 3.6931012 0.3162016 0.96554 1.00010

BBM c � 1� α�2 1.1554772 0.1677999 0.96778 1.00005

Table 6.1: Errors at time t � 62.81254 � 781Δt and wave velocities of η for each initial guess

with l � 10π, α � β � 0.0001, Δx � 0.03068, Δt � 0.08043.
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Figure 6.2: Graphics of η� �� � �� and ηn �—� for each initial guess with l � 20π, α � β �
0.0001, Δx � 0.03068, Δt � 0.08043 at time t � 125.62508 � 1562Δt.

Profiles eabs erel cn c
rILW θ � π�30 0.0224622 0.0002389 0.97295 0.97266
rILW θ � π�40 0.0171695 0.0002855 0.97279 0.97248
BBM c � 1� α 5.0787804 0.4304986 0.96738 1.00010

BBM c � 1� α�2 1.8279094 0.2616618 0.96861 1.00005

Table 6.2: Errors at time t � 125.62508 � 1562Δt and wave velocities of η for each initial

guess with l � 20π, α � β � 0.0001, Δx � 0.03068, Δt � 0.08043.

Profiles eabs erel cn c
rILW θ � π�30 0.0037089 0.0003018 0.97259 0.97266
rILW θ � π�40 0.0016790 0.0002551 0.97252 0.97248
BBM c � 1� α 8.3822192 0.7175269 0.94978 1.00100

BBM c � 1� α�2 3.6962996 0.5367247 0.95249 1.00050

Table 6.3: Errors at time t � 62.78557 � 439Δt and wave velocities of η for each initial guess

with l � 10π, α � β � 0.001, Δx � 0.03068, Δt � 0.14302.

Profiles eabs erel cn c
rILW θ � π�30 0.0020079 0.0001332 0.97281 0.97266
rILW θ � π�40 0.0008429 0.0000915 0.97269 0.97248
BBM c � 1� α 9.6674115 0.8192695 0.95829 1.00100

BBM c � 1� α�2 4.5562339 0.6521451 0.95902 1.00050

Table 6.4: Errors at time t � 125.57114 � 878Δt and wave velocities of η for each initial guess

with l � 20π, α � β � 0.001, Δx � 0.03068, Δt � 0.14302.
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Figure 6.3: Graphics of η� �� � �� and ηn �—� for each initial guess with l � 10π, α � β �
0.001, Δx � 0.03068, Δt � 0.14302 at time t � 62.78557 � 439Δt.
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Figure 6.4: Graphics of η� �� � �� and ηn �—� for each initial guess with l � 20π, α � β �
0.001, Δx � 0.03068, Δt � 0.14302 at time t � 125.57114 � 878Δt.

From the results obtained in these experiments, the question that arises is: why did the rILW

profile work so well as a travelling wave for the nonlinear system and the BBM profile did not?

55



This question can be answered by the phase velocity of these models. Figure 6.5 shows the

phase velocities of the rILW and the BBM equations and the nonlinear system (2.5), we can see

that the phase velocity of the rILW equation is much closer to the phase velocity of system (2.5)

than that from the BBM equation.
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Figure 6.5: Graphics of the dispersion relations of system (2.5) �—�, rILW equation �� � � � and

BBM equation �� � ��.

6.2 Numerical tests for travelling waves
Based on the results obtained by the first method, illustrated in Figures 6.6–6.9, we can see

that choosing the constant d has great influence on results. With d � 0 the initial guesses remain

practically unchanged and the errors continue in the same order as in the corresponding tests of

the previous section. Therefore, we did not have significant gains in this case.

For d � 0 we have very different and interesting results. Wave profiles change considerably

in shape and amplitude. For example, in the case α � 0.0001 and l � 10π, the number

of oscillations in the period 2l increases as shown in Figure 6.6. We also highlight the case

α � 0.0001, l � 20π and θ � π�40 where Newton’s method did not converge. Despite being

quite different from the initial guesses, the wave profiles obtained with d � 0 have similar

performance to those with d � 0, with the exception of the case in which Newton’s method did

not converge. In other words, we got new travelling wave profiles with good performance.
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Figure 6.6: Graphics of η� �� � �� and ηn �—� for the first method and each initial guess with

l � 10π, α � β � 0.0001, Δx � 0.03068, Δt � 0.08043 at time t � 62.81254 � 781Δt.

Profiles eabs erel cn c
θ � π�30, d � 0 0.0260958 0.0002719 0.97303 0.97299
θ � π�40, d � 0 0.0044712 0.0000718 0.97285 0.97284
θ � π�30, d � 0 0.0089071 0.0008124 0.97248 0.97246
θ � π�40, d � 0 0.0000311 0.0001065 0.97254 0.97254

Table 6.5: Errors at time t � 62.81254 � 781Δt and wave velocities of η for the first method

and each initial guess with l � 10π, α � β � 0.0001, Δx � 0.03068, Δt � 0.08043.

Profiles eabs erel cn c
θ � π�30, d � 0 0.0569211 0.0005931 0.97303 0.97299
θ � π�40, d � 0 0.0142263 0.0002284 0.97286 0.97284
θ � π�30, d � 0 0.0082445 0.0011949 0.97270 0.97263
θ � π�40, d � 0 2080.5004823 1.1509963 0.98937 0.97241

Table 6.6: Errors at time t � 125.62508 � 1562Δt and wave velocities of η for the first method

and each initial guess with l � 20π, α � β � 0.0001, Δx � 0.03068, Δt � 0.08043.
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Figure 6.7: Graphics of η� �� � �� and ηn �—� for the first method and each initial guess with

l � 20π, α � β � 0.0001, Δx � 0.03068, Δt � 0.08043 at time t � 125.62508 � 1562Δt.
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Figure 6.8: Graphics of η� �� � �� and ηn �—� for the first method and each initial guess with

l � 10π, α � β � 0.001, Δx � 0.03068, Δt � 0.14302 at time t � 62.78557 � 439Δt.
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Profiles eabs erel cn c
θ � π�30, d � 0 0.0009426 0.0000553 0.97302 0.97299
θ � π�40, d � 0 0.0001909 0.0000174 0.97285 0.97283
θ � π�30, d � 0 0.0000006 0.0000124 0.97252 0.97253
θ � π�40, d � 0 0.0000004 0.0000077 0.97253 0.97253

Table 6.7: Errors at time t � 62.78557 � 439Δt and wave velocities of η for the first method

and each initial guess with l � 10π, α � β � 0.001, Δx � 0.03068, Δt � 0.14302.
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Figure 6.9: Graphics of η� �� � �� and ηn �—� for the first method and each initial guess with

l � 20π, α � β � 0.001, Δx � 0.03068, Δt � 0.14302 at time t � 125.57114 � 878Δt.

Profiles eabs erel cn c
θ � π�30, d � 0 0.0026962 0.0001580 0.97303 0.97299
θ � π�40, d � 0 0.0009046 0.0000817 0.97286 0.97284
θ � π�30, d � 0 0.0000030 0.0000300 0.97253 0.97253
θ � π�40, d � 0 0.0000081 0.0001299 0.97252 0.97253

Table 6.8: Errors at time t � 125.57114 � 878Δt and wave velocities of η for the first method

and each initial guess with l � 20π, α � β � 0.001, Δx � 0.03068, Δt � 0.14302.
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Let us now present the results for the second method. In the case d � 0 the graphs do not

show changes as in the first method, however, when we analyze the errors in tables 6.9–6.12

we see that these are greater than the previous ones. When d � 0 the profiles obtained are

quite different from the initial guesses and those found by the first method, but in this case the

amplitude increases and the errors are also greater.

The fact that the errors were larger for the second method was unexpected since we do not

use any approximation for the deduction of equation (6.8), unlike the first method. Despite

providing new wave profiles, the second method was not useful to generate travelling waves for

the nonlinear system since the performance of the initial guesses is already better.
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Figure 6.10: Graphics of η� �� � �� and ηn �—� for the second method and each initial guess

with l � 10π, α � β � 0.0001, Δx � 0.03068, Δt � 0.08043 at time t � 62.81254 � 781Δt.

Profiles eabs erel cn c
θ � π�30, d � 0 0.1032543 0.0010547 0.97298 0.97632
θ � π�40, d � 0 0.0462858 0.0007281 0.97276 0.97618
θ � π�30, d � 0 146.5366087 0.1161537 0.97327 0.97135
θ � π�40, d � 0 9.3485096 0.0280177 0.97360 0.97214

Table 6.9: Errors at time t � 62.81254 � 781Δt and wave velocities of η for the second method

and each initial guess with l � 10π, α � β � 0.0001, Δx � 0.03068, Δt � 0.08043.
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Figure 6.11: Graphics of η� �� � �� and ηn �—� for the second method and each initial guess

with l � 20π, α � β � 0.0001, Δx � 0.03068, Δt � 0.08043 at time t � 125.62508 �
1562Δt.

Profiles eabs erel cn c
θ � π�30, d � 0 0.2003666 0.0020467 0.97301 0.97632
θ � π�40, d � 0 0.1080727 0.0017001 0.97283 0.97618
θ � π�30, d � 0 74.6840505 0.1672032 0.97287 0.97267
θ � π�40, d � 0 10.6721663 0.0294054 0.97290 0.97268

Table 6.10: Errors at time t � 125.62508 � 1562Δt and wave velocities of η for the second

method and each initial guess with l � 20π, α � β � 0.0001, Δx � 0.03068, Δt � 0.08043.

Profiles eabs erel cn c
θ � π�30, d � 0 0.0267387 0.0015362 0.97264 0.97632
θ � π�40, d � 0 0.0209795 0.0018516 0.97228 0.97620
θ � π�30, d � 0 2.3019028 0.0346729 0.97432 0.97429
θ � π�40, d � 0 0.0851274 0.0046011 0.97278 0.97278

Table 6.11: Errors at time t � 62.78557 � 439Δt and wave velocities of η for the second

method and each initial guess with l � 10π, α � β � 0.001, Δx � 0.03068, Δt � 0.14302.
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Figure 6.12: Graphics of η� �� � �� and ηn �—� for the second method and each initial guess

with l � 10π, α � β � 0.001, Δx � 0.03068, Δt � 0.14302 at time t � 62.78557 � 439Δt.
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Figure 6.13: Graphics of η� �� � �� and ηn �—� for the second method and each initial guess

with l � 20π, α � β � 0.001, Δx � 0.03068, Δt � 0.14302 at time t � 125.57114 � 878Δt.
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Profiles eabs erel cn c
θ � π�30, d � 0 0.0113657 0.0006529 0.97291 0.97632
θ � π�40, d � 0 0.0104325 0.0009229 0.97266 0.97618
θ � π�30, d � 0 0.9085554 0.0345465 0.97080 0.97109
θ � π�40, d � 0 0.6042668 0.0159830 0.97203 0.97291

Table 6.12: Errors at time t � 125.57114 � 878Δt and wave velocities of η for the second

method and each initial guess with l � 20π, α � β � 0.001, Δx � 0.03068, Δt � 0.14302.

Unlike the previous methods, the third method presents better results than the initial guesses

for d � 0 and the profiles did not change. Again, in the case d � 0, we have wave profiles

with different shapes than the initial guesses, but the errors are in general smaller than the other

methods. We highlight the cases in figures 6.14 (θ � π�40), 6.16 and 6.17 in which the wave

shape is quite similar to those obtained by the first method, but with different amplitudes. We

also highlight the case α � 0.0001, l � 10π and θ � π�30 where Newton’s method did not

converge and the generated wave disperses as time advances. Therefore, this is the best method

to generate travelling waves among those presented here.
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Figure 6.14: Graphics of η� �� � �� and ηn �—� for the third method and each initial guess

with l � 10π, α � β � 0.0001, Δx � 0.03068, Δt � 0.08043 at time t � 62.81254 � 781Δt.
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Profiles eabs erel cn c
θ � π�30, d � 0 0.0216556 0.0002215 0.97301 0.97302
θ � π�40, d � 0 0.0033497 0.0000528 0.97285 0.97285
θ � π�30, d � 0 1005.6112811 0.7945183 0.98733 0.97211
θ � π�40, d � 0 0.0000548 0.0001285 0.97254 0.97254

Table 6.13: Errors at time t � 62.81254 � 781Δt and wave velocities of η for the third method

and each initial guess with l � 10π, α � β � 0.0001, Δx � 0.03068, Δt � 0.08043.
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Figure 6.15: Graphics of η� ����� and ηn �—� for the third method and each initial guess with

l � 20π, α � β � 0.0001, Δx � 0.03068, Δt � 0.08043 at time t � 125.62508 � 1562Δt.

Profiles eabs erel cn c
θ � π�30, d � 0 0.0112237 0.0001148 0.97302 0.97302
θ � π�40, d � 0 0.0042837 0.0000675 0.97285 0.97285
θ � π�30, d � 0 0.0316172 0.0016720 0.97258 0.97260
θ � π�40, d � 0 0.4807426 0.0088976 0.97252 0.97253

Table 6.14: Errors at time t � 125.62508 � 1562Δt and wave velocities of η for the third

method and each initial guess with l � 20π, α � β � 0.0001, Δx � 0.03068, Δt � 0.08043.

Profiles eabs erel cn c
θ � π�30, d � 0 0.0010299 0.0000593 0.97301 0.97302
θ � π�40, d � 0 0.0004463 0.0000398 0.97284 0.97285
θ � π�30, d � 0 0.0000014 0.0000140 0.97253 0.97253
θ � π�40, d � 0 0.0000019 0.0000179 0.97252 0.97252

Table 6.15: Errors at time t � 62.78557 � 439Δt and wave velocities of η for the third method

and each initial guess with l � 10π, α � β � 0.001, Δx � 0.03068, Δt � 0.14302.
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Figure 6.16: Graphics of η� �� � �� and ηn �—� for the third method and each initial guess

with l � 10π, α � β � 0.001, Δx � 0.03068, Δt � 0.14302 at time t � 62.78557 � 439Δt.
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Figure 6.17: Graphics of η� �� � �� and ηn �—� for the third method and each initial guess

with l � 20π, α � β � 0.001, Δx � 0.03068, Δt � 0.14302 at time t � 125.57114 � 878Δt.

The travelling wave solutions of the rILW equation perform satisfactorily as travelling waves

for the nonlinear system (2.5), this can be explained by the similarity of the phase velocities
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Profiles eabs erel cn c
θ � π�30, d � 0 0.0013371 0.0000769 0.97301 0.97302
θ � π�40, d � 0 0.0000405 0.0000036 0.97285 0.97285
θ � π�30, d � 0 0.0000169 0.0000910 0.97253 0.97253
θ � π�40, d � 0 0.0000035 0.0000298 0.97252 0.97253

Table 6.16: Errors at time t � 125.57114 � 878Δt and wave velocities of η for the third method

and each initial guess with l � 20π, α � β � 0.001, Δx � 0.03068, Δt � 0.14302.

of both models. The third method provides the better results to obtain travelling waves for

system (2.5), especially when d � 0. Therefore, the simplifications made in order to have a

system with fewer equations and variables and consequently faster and easier to solve, did not

prove to be advantageous, since in the first method the errors continued to be of the same order

and in the second they were greater.

A result that is consistent for all methods and almost all initial guesses is the wave velocity.

Except from the bad cases we always have cmet � cn and this approximation is better in the third

method where we find a five-digit precision agreement is some experiments. In all cases we get

cn � 0.97 which indicates that the velocity c of the travelling wave solution for system (2.5)

is smaller than 1, contrary to the initial hypothesis based on travelling wave results for other

similar models. Also the velocity changes a little depending on the profile and the parameters.

In the results of the three methods we see that the parameter d is very important for the shape

of the obtained waves. If for d � 0, calculated by (6.6), the initial conditions remain practically

unchanged, for d � 0 we obtain several different shapes of travelling waves. In addition to the

results presented here, extra experiments for higher α and β values can be found in Appendix

B. Therefore, based on all the experiments presented in this chapter, the nonlinear system (2.5)

probably admit many different forms of travelling waves solutions and the theoretical existence

of this kind of solution will be studied in future works.

66



Chapter 7

Numerical methods for non-flat bottom
models

Since the numerical results of the methods for the flat bottom models proved to be very

robust we can take advantage of them and propose numerical methods for the non-flat bottom

models. Let us proceed as in the flat bottom case and begin the discretization considering the

linearized version of system (2.8) that is given by

������
�����

ηt �
1

M�ξ�uξ,

ut � ρ2
ρ1

�
β

M�ξ�T
�
u
�
ξt
� β

3M�ξ�
�

uξt

M�ξ�
�

ξ

� 1

M�ξ�ηξ.
(7.1)

Our aim is to put system (7.1) in the form

�����
����

ηt � 1

M�ξ�uξ,

ψt � 1

M�ξ�ηξ,
(7.2)

where ψ does not have t-derivatives of u. To do this we use the quotient rule to obtain

�
uξt

M�ξ�
�

ξ

� uξξt

M�ξ� �
M ��ξ�
M2�ξ�uξt,

thus we get system (7.1) in the form of system (7.2) defining

ψ � u� ρ2
ρ1

�
β

M�ξ�T
�
u
�
ξ
� β

3M2�ξ�uξξ � βM ��ξ�
3M3�ξ�uξ.

Since u and η are 2l-periodic with respect to the variable ξ, we define a uniform grid on the

interval �0, 2l�, that is, ξj � jΔξ, j � 1, . . . , N where N 	 N is even and Δξ � 2l
N , the last

element ξN is also identified with ξ � 0. We define the approximations u and η analogously to

the flat bottom case.

Denoting M � diag�M�ξi��, i � 1, 2, . . . , N , we obtain easily the discretization of the

right hand side terms of system (7.1) which are M�1Cu and M�1Cη, where C is defined in

Chapter 4 using the finite difference scheme since it proved to be the best option in the flat

bottom case. For the left hand side of the second equation we cannot proceed directly with the

spectral approach as in the flat bottom case, and we must do the discretization term by term.

For the discretization of T
�
u
�
ξ

and uξξ we use matrices T � 1
N
F T T̂F and S � 1

N
F T ŜF
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defined in Chapter 6. The discretization of M ��ξ� and uξ is made using matrix C but we will

consider two options for it: the spectral scheme which can be more appropriate for the dispersive

terms and finite difference which presents better stability conditions. Thus, denoting Q �
diag�Cm� where m is a vector whose entries are mi � M�ξi�, i � 1, . . . , N , we obtain the

following discretization of ψ

ψ �
�
I � ρ2

ρ1

�
βM�1T � β

3
M�2S � β

3
M�3QC

�
u � Pu.

The spatial discretization results in a system of Ordinary Differential Equations in the matrix

form below and the time advancing is performed with the RK4 method.�
ηt � M�1Cu,

Put � M�1Cη.

Once the discretization of the linear system is complete, let us obtain the discretization of

the nonlinear system. For that, let us rewrite system (2.8) as�
ηt � E1�η, u�,
ψt � E2�η, u�,

where

E1�η, u� � 1

M�ξ��uξ � αηuξ � αuηξ�,

E2�η, u� � 1

M�ξ��ηξ � αuuξ�.

The discretization of E1 and E2 is done similarly to the one done in the flat bottom case,

only multiplying by matrix M�1.

Now we must take care of the stability conditions. The coefficient M may affect negatively

the stability conditions obtained for the flat bottom linear model making them more restrictive.

Although a von Neumann analysis can be done using the method of frozen coefficients, due

to the expression of Matrix P this work is considerably difficult and will not be done at this

moment.

In view of this we establish a numerical procedure to obtain an appropriate Δt. Since it is

not expected that the amplitude of η increases, we set a Δt� which satisfies a stability condition

in theorem 4.3 and run the method until a fixed time T or until the criteria �ηn�� � 2�η0��
is achieved. Then we set a smaller Δt and restart the method from t � 0. This procedure is

repeated until the criteria �ηn�� � 2�η0�� is not achieved twice in a row.

For the experiments we set l � 8π, N � 210 ρ1 � 1, ρ2 � 2, h1 � 0.1 and h2 � 3.505. The

values of β, α and the initial Δt, which is given by the condition (4.14), are defined in each test.

The other values are calculated by the relations L � h1�
	
β and δ � h2�L. As initial condition

we will use two options: the Gaussian profile η�x� � 0.1 exp��2�x � l�2�2� where u0 is set

as �u0�k� � v�kπ�l��η0�k� and the travelling wave obtained in the previous chapter by the third

method with d 
 0. Thereby we can compare the behavior of a regular wave and a travelling

wave in a non-flat bottom configuration.

For a non-flat topography, even a very simple one, the computation of the coefficient M�ξ�
demands a considerably high computational cost. Because of this, in the following experiments

we proceed as in [25] and assume that M�ξ� � 1� n�ξ�, where n�ξ� describes periodic fluctu-

ations. As we see in [17, 18, 19], this choice is not far from the real coefficient that comes from

mapping a periodic piecewise linear topography.
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Let us begin with the periodic slowly-varying coefficient M given by

M�ξ� �

�
1� 0.5 sin�5ξ� if ξ � �6π, 12π�,

1 otherwise.
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Figure 7.1: Periodic slowly-varying coefficient M .

We can see that the initial choice of Δt � 0.10173, which is stable for the flat bottom

models, does not work well and provides an unstable solution as figure 7.2 illustrates. The

results of the numerical procedure to obtain a stable Δt for the non-flat bottom linear model with

β � 0.0001 are presented in tables 7.1 and 7.2 for spectral diferentiation and finite difference,

respectively. Using Δt � 0.08139 we obtain a stable solution for both cases including the

nonlinear methods as presented in figures 7.3 and 7.4.

Figure 7.5 shows the influence of the coefficient M in the model comparing the solutions of

flat and non-flat nonlinear methods for the same initial condition and parameters. Besides the

wave train that is characteristic of the problem, another kind of waves appear in the solution of

the non-flat bottom method that are a result of the Bragg’s phenomenon. The period of these

waves is expected to be twice the period of the non-constant part of M that is 1.2566, [12].

Since the estimated period of the waves from Bragg’s phenomenon is 2.5525 the experiments

are consistent with the expected results.
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Figure 7.2: Solutions η for the non-flat linear method with l � 8π, β � 0.0001, Δξ � 0.04909,

Δt � 0.10173 and slowly-varying coefficient.
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Δt t �ηn��
Δt � 0.10173 t � 37Δt � 3.76406 0.23787

0.95Δt � 0.09664 t � 60Δt � 5.79869 0.51034
0.9Δt � 0.09156 t � 171Δt � 15.65647 0.27645
0.85Δt � 0.08647 t � 1156Δt � 99.96134 0.07387
0.8Δt � 0.08139 t � 1228Δt � 99.94099 0.07408

Table 7.1: Stability analysis for non-flat linear method with slowly-varying coefficient, spectral

scheme, β � 0.0001 and �η0�� � 0.09751.

Δt t �ηn��
Δt � 0.10173 t � 45Δt � 4.57792 0.72449

0.95Δt � 0.09664 t � 69Δt � 6.66850 0.20363
0.9Δt � 0.09156 t � 202Δt � 18.49478 0.28927
0.85Δt � 0.08647 t � 1156Δt � 99.96134 0.07387
0.8Δt � 0.08139 t � 1228Δt � 99.94099 0.07408

Table 7.2: Stability analysis for non-flat linear method with slowly-varying coefficient, finite

difference, β � 0.0001 and �η0�� � 0.09751.
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Figure 7.3: Solutions η for the non-flat linear method at t � 0 �� � � � and t � 900Δt �—� with

l � 8π, β � 0.0001, Δξ � 0.04909, Δt � 0.081385 and slowly-varying coefficient.
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Figure 7.4: Solutions η for the non-flat nonlinear method at t � 0 �� � � � and t � 900Δt �—�
with l � 8π, α � β � 0.0001, Δξ � 0.04909, Δt � 0.081385 and slowly-varying coefficient.

The solutions obtained for the non-flat nonlinear system using the travelling wave solution

are illustrated in figure 7.6. We cannot see the existence of Bragg’s phenomenon in this case

as when we use the gaussian profile. Despite some oscillations in the wave their shape is well

preserved considering the bottom. In order to understand these results let us analyze the Fourier
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Figure 7.5: Solutions η at t � 900Δt for flat nonlinear method �� � � � and non-flat nonlinear

method �—� with l � 8π, α � β � 0.0001, Δξ � 0.04909, Δt � 0.081385 and slowly-varying

coefficient.

modes of the solutions. Starting with the gaussian profile we can see that the coefficient M
affects the solutions mostly in the modes between �100 and 100 approximately (figures 7.7

and 7.8) and the nonzero Fourier modes of M are concentrated in the same region (figure 7.9).

Thus the effects of M is on the same range of modes but the result is different since the Fourier

modes of both solutions are considerable different.
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Figure 7.6: Solutions η for the non-flat nonlinear method at t � 0 �� � � � and t � 900Δt �—�
with l � 8π, α � β � 0.0001, Δξ � 0.04909, Δt � 0.08139 and slowly-varying coefficient.
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Figure 7.7: Fourier modes �η̂n� of solutions η for the non-flat nonlinear method at t � 900Δt
with l � 8π, α � β � 0.0001, Δξ � 0.04909, Δt � 0.081385 and slowly-varying coefficient.
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Figure 7.8: Fourier modes �η̂n� of solutions η for the non-flat nonlinear method with l � 8π,

α � β � 0.0001, Δξ � 0.04909, Δt � 0.081385 and slowly-varying coefficient.
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Figure 7.9: Fourier modes of periodic slowly-varying coefficient M .
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Tables 7.3 and 7.4 present the numerical procedure to obtain a stable Δt for the non-flat

bottom linear model for spectral diferentiation and finite difference, respectively. As in the

case with β � 0.0001, the initial choice of Δt � 0.18091 which is stable for the flat bottom

models provides an unstable solution. A stable solution is obtained using Δt � 0.12663 for

both cases including the nonlinear methods as presented in figures 7.10 and 7.11. The Bragg’s

phenomenon is also present in these experiments as shown in figure 7.12 and the estimated

period of the waves is 2.5525 as in the previous tests.

Δt t �ηn��
Δt � 0.18091 t � 19Δt � 3.43723 0.87871

0.95Δt � 0.17186 t � 23Δt � 3.95282 0.41103
0.9Δt � 0.16282 t � 31Δt � 5.04730 0.58025
0.85Δt � 0.15377 t � 49Δt � 7.53478 0.23604
0.8Δt � 0.14473 t � 188Δt � 27.20841 0.19799
0.75Δt � 0.13568 t � 737Δt � 99.99633 0.04025
0.7Δt � 0.12663 t � 789Δt � 99.91492 0.04044

Table 7.3: Stability analysis for non-flat linear method with slowly-varying coefficient, spectral

scheme, β � 0.001 and �η0�� � 0.09751.

Δt t �ηn��
Δt � 0.18091 t � 19Δt � 3.43723 0.80933

0.95Δt � 0.17186 t � 23Δt � 3.95282 0.40835
0.9Δt � 0.16282 t � 31Δt � 5.04730 0.47720
0.85Δt � 0.15377 t � 49Δt � 7.53478 0.22905
0.8Δt � 0.14473 t � 196Δt � 28.36621 0.22426
0.75Δt � 0.13568 t � 737Δt � 99.99633 0.04025
0.7Δt � 0.12663 t � 789Δt � 99.91492 0.04044

Table 7.4: Stability analysis for non-flat linear method with slowly-varying coefficient, finite

difference β � 0.001 and �η0�� � 0.09751.
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Figure 7.10: Solutions η for the non-flat linear method at t � 0 �� � � � and t � 600Δt �—� with

l � 8π, β � 0.001, Δξ � 0.04909, Δt � 0.12663 and slowly-varying coefficient.
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Figure 7.11: Solutions η for the non-flat nonlinear method at t � 0 �� � � � and t � 600Δt �—�
with l � 8π, α � β � 0.001, Δξ � 0.04909, Δt � 0.12663 and slowly-varying coefficient.
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Figure 7.12: Solutions η at t � 600Δt for flat nonlinear method �� � � � and non-flat nonlinear

method �—� with l � 8π, α � β � 0.001, Δξ � 0.04909, Δt � 0.12663 and slowly-varying

coefficient.

Figure 7.13 shows that the travelling wave has a similar behavior to the case with α � β �
0.0001 and we cannot see the Bragg’s phenomenon. Also, when we analyze the Fourier modes

of the solutions we see that the effects of the coefficient M are very similar to the previous ones.
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Figure 7.13: Solutions η for the non-flat nonlinear method at t � 0 �� � � � and t � 600Δt �—�
with l � 8π, α � β � 0.001, Δξ � 0.04909, Δt � 0.12663 and slowly-varying coefficient.
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Figure 7.14: Fourier modes �η̂n� of solutions η for the non-flat nonlinear method at t � 600Δt
with l � 8π, α � β � 0.001, Δξ � 0.04909, Δt � 0.12663 and slowly-varying coefficient.
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Figure 7.15: Fourier modes �η̂n� of solutions η for the non-flat nonlinear method at t � 600Δt
with l � 8π, α � β � 0.001, Δξ � 0.04909, Δt � 0.12663 and slowly-varying coefficient.

Now we will consider the periodic rapidly-varying coefficient M given by

M�ξ� �

�
1� 0.5 sin�15ξ� if ξ � �6π, 12π�

1 otherwise.
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Figure 7.16: Periodic rapidly-varying coefficient M .

In this case of rapidly-varying coefficient, for α � β � 0.0001 the stability condition (4.14)

presents a stable Δt as tables 7.5 and 7.6 and figures 7.17 and 7.18 show. Differently from the

case of slowly-varying coefficient there are no waves from the Bragg’s phenomenon. In fact, the

effect of the coefficient consist in a slightly lower speed propagation as illustrates figure 7.23.

The travelling wave is also well preserved in this case as presented in figure 7.21.

Δt t �ηn��
Δt � 0.10173 t � 982Δt � 99.90030 0.07482

0.95Δt � 0.09664 t � 1034Δt � 99.93082 0.07483
0.9Δt � 0.09156 t � 1092Δt � 99.98169 0.07483

Table 7.5: Stability analysis for non-flat nonlinear method with rapidly-varying coefficient,

spectral scheme, β � 0.0001 and �η0�� � 0.09751.

Δt t �ηn��
Δt � 0.10173 t � 982Δt � 99.90030 0.07482

0.95Δt � 0.09664 t � 1034Δt � 99.93082 0.07483
0.9Δt � 0.09156 t � 1092Δt � 99.98169 0.07483

Table 7.6: Stability analysis for non-flat nonlinear method with rapidly-varying coefficient,

finite difference scheme, β � 0.0001 and �η0�� � 0.09751.
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Figure 7.17: Solutions η for the non-flat nonlinear method at t � 0 �� � � � and t � 800Δt �—�
with l � 8π, α � β � 0.0001, Δx � 0.04909, Δt � 0.10173 and rapidly-varying coefficient.
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Figure 7.18: Solutions η at t � 800Δt for flat nonlinear method �� � � � and non-flat nonlinear

method �—� with l � 8π, α � β � 0.0001, Δξ � 0.04909, Δt � 0.10173 and rapidly-varying

coefficient.

Figure 7.19 shows the Fourier modes of the solutions for the gaussian profile. We can see

that the effects of M are smaller and distributed in a bigger range which is comparable with the

modes of the coefficient presented in figure 7.20. Although small, the effects of the coefficient

M in the solution are apparent in figure 7.22. In both cases an instability appears for large

values of �k�, but it is controlled and does not pollute the solutions obtained.
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Figure 7.19: Fourier modes �η̂n� of solutions η for the non-flat nonlinear method at t � 800Δt
with l � 8π, α � β � 0.0001, Δx � 0.04909, Δt � 0.10173 and rapidly-varying coefficient.
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Figure 7.20: Fourier mode of periodic rapidly-varying coefficient M .
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Figure 7.21: Solutions η for the non-flat nonlinear method at t � 0 �� � � � and t � 800Δt �—�
with l � 8π, α � β � 0.0001, Δξ � 0.04909, Δt � 0.10173 and rapidly-varying coefficient.
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Figure 7.22: Solutions η for the non-flat nonlinear method at t � 800Δt with l � 8π, α � β �
0.0001, Δx � 0.04909, Δt � 0.10173 and rapidly-varying coefficient.

In the case of α � β � 0.001 we do not have a stable Δt from the stability condition

(4.14) as tables 7.5 and 7.6 present. Using Δt � 0.14473 the solutions obtained are stable
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in both cases for the nonlinear methods as presented in figures 7.17 and 7.18. As in the tests

with α � β � 0.0001 and rapidly-varying coefficient there are no waves from the Bragg’s

phenomenon, just a slightly lower speed propagation as before that is shown in figure 7.23.

Again, the shape of the travelling wave is well preserved as illustrated in figure 7.26.

Δt t �ηn��
Δt � 0.18091 t � 28Δt � 5.06540 0.21780

0.95Δt � 0.17186 t � 45Δt � 7.73377 0.21425
0.9Δt � 0.16282 t � 173Δt � 28.16722 0.19672
0.85Δt � 0.15377 t � 650Δt � 99.95110 0.04277
0.8Δt � 0.14473 t � 690Δt � 99.86065 0.04283

Table 7.7: Stability analysis for non-flat nonlinear method with rapidly-varying coefficient,

spectral scheme, β � 0.001 and �η0�� � 0.09751.

Δt t �ηn��
Δt � 0.18091 t � 30Δt � 5.42721 0.38065

0.95Δt � 0.17186 t � 49Δt � 8.42122 0.29919
0.9Δt � 0.16282 t � 208Δt � 33.86579 0.23822
0.85Δt � 0.15377 t � 650Δt � 99.95110 0.04275
0.8Δt � 0.14473 t � 690Δt � 99.86065 0.04282

Table 7.8: Stability analysis for non-flat nonlinear method with rapidly-varying coefficient,

finite difference scheme, β � 0.001 and �η0�� � 0.09751.

0 10 20 30 40 50

-0.05

0

0.05

0.1

ξ

η

(a) Spectral scheme

0 10 20 30 40 50

-0.05

0

0.05

0.1

ξ

η

(b) Finite difference

Figure 7.23: Solutions η for the non-flat nonlinear method at t � 0 �� � � � and t � 600Δt �—�
with l � 8π, α � β � 0.001, Δξ � 0.04909, Δt � 0.14473 and rapidly-varying coefficient.

Figures 7.25 and 7.27 show the Fourier modes of the solutions with a gaussian initial profile

and an approximate travelling wave from the flat case, respectively, for α � β � 0.001. Again

we can see that the effects of M are smaller and distributed in a bigger range as for α � β �
0.0001. An analogous instability appeared for large values of �k�, which is controlled and does

not pollute the solutions obtained.
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Figure 7.24: Solutions η at t � 600Δt for flat nonlinear method �� � � � and non-flat nonlinear

method �—� with l � 8π, α � β � 0.001, Δξ � 0.04909, Δt � 0.14473 and rapidly-varying

coefficient.
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Figure 7.25: Fourier modes �η̂n� of solutions η for the non-flat nonlinear method at t � 600Δt
with l � 8π, α � β � 0.001, Δξ � 0.04909, Δt � 0.14473 and rapidly-varying coefficient.
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Figure 7.26: Solutions η for the non-flat nonlinear method at t � 0 �� � � � and t � 600Δt �—�
with l � 8π, α � β � 0.001, Δξ � 0.04909, Δt � 0.14473 and rapidly-varying coefficient.
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Figure 7.27: Fourier modes �η̂n� of solutions η for the non-flat nonlinear method at t � 600Δt
with l � 8π, α � β � 0.001, Δξ � 0.04909, Δt � 0.14473 and rapidly-varying coefficient.

The numerical methods proposed for the non-flat bottom models perform well and are im-

portant to understand the effects of the coefficient M in the solutions. When the slowly-varying

coefficient is used we see the effects of Bragg’s phenomenon which are strong in the gaussian

profile and weak in the travelling wave. On the other hand, as expected, when the rapidly-

varying coefficient is used the effects are small and the shape of the solution differs little from

the flat bottom case. Also, there is no significant difference in terms of stability and computa-

tional cost between the spectral scheme and the finite difference in the discretization of the first

order derivatives in ψ.
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Chapter 8

Conclusions

Some works about the internal wave models deduced by Ruiz de Zarate in [25] have been

published recently. The existence of solutions in Sobolev spaces for flat bottom models was

proved by Brodzinski in [7]. Also, a very efficient numerical scheme for these same models

was presented by the author in [16]. In this work, new results for these models were presented.

The methods for the flat bottom models served as the base for the schemes for the non-flat

bottom models (7.1) and (2.8). Instead of a theoretical stability analysis for the non-flat bottom

the stability conditions for the flat bottom methods were used as starting points for a numerical

procedure to get a good choice of Δt in terms of stability for each experiment. The effects of

the coefficient M in the solutions were studied in some cases where the Bragg’s phenomenon

appears when considering a slowly-varying coefficient M and a small loss of velocity was noted

when considering a rapidly-varying coefficient M .

Works on the fixed-point index theory were studied with the aim of proving the existence

of traveling waves for the nonlinear system (2.5). Unfortunately, due to some characteristics of

the system, the method cannot be successfully applied. However, it was possible to prove the

existence of travelling wave solutions for the regularized finite depth Benjamin equation (2.9)

obtained by asymptotic analysis from system (2.5). In future works the existence of non periodic

travelling waves for this equation can be proven and also numerical methods to compute them

can be proposed.

The approach proposed by the author in [16] to obtain travelling waves for the nonlinear

system (2.5) was improved and now we have an efficient method to compute travelling waves.

Furthermore, in the search for a good initial guess for the aforementioned method, it was found

that the travelling wave solutions of the rILW equation perform satisfactorily as travelling waves

for the nonlinear system (2.5). The good numerical results obtained here are a motivation to

continue the study of theoretical existence of travelling waves for the nonlinear system (2.5) in

future works.
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Appendix A

Travelling wave solutions for BBM
equation

Let us deduce the travelling wave solutions for the BBM equation (6.12) and the KdV equa-

tion. Defining a1 � 3α�2 and a2 � β�6 and making the change of variables η� � �a1η,

x� � �
a2x and t� � �

a2t we get the equations

ηt � ηx � ηηx � ηxxt � 0 (A.1)

and

ηt � ηx � ηηx � ηxxx � 0 (A.2)

where asterisks are ignored.

For simplicity let us begin by equation (A.2). Supposing that there exists a travelling wave

solution η�x, t� � f�x� ct� � f�z� for equation (A.2) we obtain

�1� c�f � � ff � � f� � 0.

Defining c̃ � c� 1 in order to simplify the computations we get

�c̃f � � ff � � f� � 0.

Let us suppose that f, f �, f� � 0 when z � 	
, thus, integrating we have

�c̃f � f 2

2
� f � � 0.

Multiplying this by f � and integrating over again we have

�c̃f
2

2
� f 3

6
� �f ��2

2
� 0

that can be simplified as

3�f ��2 � �3c̃� f�f 2.

Considering 3c̃� f � 0 we obtain

�
3�f �� �

�
3c̃� f �f �.

Defining the auxiliary function g � �
3c̃� f we get
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�2�3gg�

g�3c̃� g2� � 1.

Thus, making some algebraic calculations we have

�2�3c̃gg�

g�3c̃� g2� �
g��

3c̃� g
� g��

3c̃� g
�
�
c̃.

Integrating this expression we obtain

� log�
�
3c̃� g� � log�

�
3c̃� g� � �

�
c̃z � d,

and consequently

log

��
3c̃� g�
3c̃� g

�
� �

�
c̃z � d,

which lead us to conclude that

g � �
�
3c̃ tanh

��
c̃z � d

2

�
.

So, we have that

f � 3c̃ sech2

��
c̃z � d

2

�
.

That is, the travelling wave solution of equation (A.2) is

f�z� � 3�c� 1� sech2

��
c� 1

2
z

�
,

and therefore, the travelling wave solution of the KdV equation is

η�y� � �3�c� 1�
a1

sech2

��
c� 1y

2
�
a2

�
.

Analogously, supposing that there exists a travelling wave solution η�x, t� � f�x � ct� �
f�z� for the equation (A.1) we have

�c̃f � � ff � � cf� � 0,

which lead us to

�
3c�f �� �

�
3c̃� f �f �.

So, we conclude that the travelling wave solution of the equation (A.1) is

f�z� � 3�c� 1� sech2

��
c� 1

2
�
c

z

�
.

Therefore, the travelling wave solution of the BBM equation (6.12) is

η�y� � �3�c� 1�
a1

sech2

��
c� 1y

2
�
ca2

�
.
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Appendix B

Extra travelling wave experiments

Here we present some extra experiments for the three methods to obtain travelling waves

using higher values of α and β. The results presented here are consistent with the ones in

chapter 6, also, we remark that the second method did not converge for d � 0, α � β � 0.01
and l � 20π.
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Figure B.1: Graphics of η� �� � �� and ηn �—� for the first method and each initial guess with

l � 10π, α � β � 0.005, Δx � 0.03068, Δt � 0.21386 at time t � 62.66217 � 293Δt.

88



Profiles eabs erel cn c
θ � π�10, d � 0 0.0420997 0.0015622 0.97637 0.97598
θ � π�20, d � 0 0.0013104 0.0001421 0.97352 0.97342
θ � π�10, d � 0 0.0000037 0.0001632 0.97207 0.97209
θ � π�20, d � 0 0.0000032 0.0001626 0.97207 0.97210

Table B.1: Errors at time t � 62.66217 � 293Δt and wave velocities of η for the first method

and each initial guess with l � 10π, α � β � 0.005, Δx � 0.03068, Δt � 0.21386.
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Figure B.2: Graphics of η� �� � �� and ηn �—� for the first method and each initial guess with

l � 20π, α � β � 0.005, Δx � 0.03068, Δt � 0.21386 at time t � 125.53821 � 587Δt.

Profiles eabs erel cn c
θ � π�10, d � 0 0.0794506 0.0029482 0.97636 0.97598
θ � π�20, d � 0 0.0028267 0.0003007 0.97354 0.97345
θ � π�10, d � 0 0.0000017 0.0000609 0.97251 0.97250
θ � π�20, d � 0 0.0000020 0.0000623 0.97251 0.97250

Table B.2: Errors at time t � 125.53821 � 587Δt and wave velocities of η for the first method

and each initial guess with l � 20π, α � β � 0.005, Δx � 0.03068, Δt � 0.21386.

Profiles eabs erel cn c
θ � π�5, d � 0 0.5650807 0.0117298 0.98917 0.98782
θ � π�10, d � 0 0.0226095 0.0014128 0.97643 0.97597
θ � π�5, d � 0 0.0000289 0.0006195 0.97165 0.97156
θ � π�10, d � 0 0.0000040 0.0003549 0.97161 0.97156

Table B.3: Errors at time t � 62.81918 � 247Δt and wave velocities of η for the first method

and each initial guess with l � 10π, α � β � 0.01, Δx � 0.03068, Δt � 0.25433.
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Figure B.3: Graphics of η� �� � �� and ηn �—� for the first method and each initial guess with

l � 10π, α � β � 0.01, Δx � 0.03068, Δt � 0.25433 at time t � 62.81918 � 247Δt.
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Figure B.4: Graphics of η� �� � �� and ηn �—� for the first method and each initial guess with

l � 20π, α � β � 0.01, Δx � 0.03068, Δt � 0.25433 at time t � 125.63836 � 494Δt.
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Profiles eabs erel cn c
θ � π�5, d � 0 0.7096486 0.0147307 0.98874 0.98782
θ � π�10, d � 0 0.0354102 0.0022098 0.97637 0.97598
θ � π�5, d � 0 0.0000091 0.0001598 0.97239 0.97236
θ � π�10, d � 0 0.0000029 0.0000947 0.97238 0.97236

Table B.4: Errors at time t � 125.63836 � 494Δt and wave velocities of η for the first method

and each initial guess with l � 20π, α � β � 0.01, Δx � 0.03068, Δt � 0.25433.
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Figure B.5: Graphics of η� �� � �� and ηn �—� for the second method and each initial guess

with l � 10π, α � β � 0.005, Δx � 0.03068, Δt � 0.21386 at time t � 62.66217 � 293Δt.

Profiles eabs erel cn c
θ � π�10, d � 0 0.0681512 0.0024964 0.97579 0.97887
θ � π�20, d � 0 0.0059534 0.0006203 0.97325 0.97684
θ � π�10, d � 0 20.3818830 0.1759205 0.95910 0.95864
θ � π�20, d � 0 72.3643709 0.4545441 0.98475 0.95899

Table B.5: Errors at time t � 62.66217 � 293Δt and wave velocities of η for the second

method and each initial guess with l � 10π, α � β � 0.005, Δx � 0.03068, Δt � 0.21386.

Profiles eabs erel cn c
θ � π�10, d � 0 0.1012769 0.0037095 0.97590 0.97887
θ � π�20, d � 0 0.0089135 0.0009305 0.97330 0.97672
θ � π�10, d � 0 4.2724029 0.1953820 0.96770 0.98605
θ � π�20, d � 0 4.4712940 0.0689461 0.96982 0.96735

Table B.6: Errors at time t � 125.53821 � 587Δt and wave velocities of η for the second

method and each initial guess with l � 20π, α � β � 0.005, Δx � 0.03068, Δt � 0.21386.
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Figure B.6: Graphics of η� �� � �� and ηn �—� for the second method and each initial guess

with l � 20π, α � β � 0.005, Δx � 0.03068, Δt � 0.21386 at time t � 125.53821 � 587Δt.
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Figure B.7: Graphics of η� �� � �� and ηn �—� for the second method and each initial guess

with l � 10π, α � β � 0.01, Δx � 0.03068, Δt � 0.25433 at time t � 62.81918 � 247Δt.
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Profiles eabs erel cn c
θ � π�5, d � 0 1.8958617 0.0383338 0.98543 0.98788
θ � π�10, d � 0 0.0421220 0.0026089 0.97559 0.97888
θ � π�5, d � 0 5.2525438 0.2259850 0.94659 1.09918
θ � π�10, d � 0 0.0769420 0.2084727 0.92843 1.36596

Table B.7: Errors at time t � 62.81918 � 247Δt and wave velocities of η for the second

method and each initial guess with l � 10π, α � β � 0.01, Δx � 0.03068, Δt � 0.25433.
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Figure B.8: Graphics of η� �� � �� and ηn �—� for the second method and each initial guess

with l � 20π, α � β � 0.01, Δx � 0.03068, Δt � 0.25433 at time t � 125.63836 � 494Δt.

Profiles eabs erel cn c
θ � π�5, d � 0 2.2611471 0.0457198 0.98682 0.98788
θ � π�10, d � 0 0.0455760 0.0028075 0.97587 0.97887

Table B.8: Errors at time t � 125.63836 � 494Δt and wave velocities of η for the second

method and each initial guess with l � 20π, α � β � 0.01, Δx � 0.03068, Δt � 0.25433.
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Figure B.9: Graphics of η� �� ��� and ηn �—� for the third method and each initial guess with

l � 10π, α � β � 0.005, Δx � 0.03068, Δt � 0.21386 at time t � 62.66217 � 293Δt.

Profiles eabs erel cn c
θ � π�10, d � 0 0.0033280 0.0001212 0.97622 0.97621
θ � π�20, d � 0 0.0015829 0.0001678 0.97343 0.97348
θ � π�10, d � 0 0.0000075 0.0001657 0.97207 0.97210
θ � π�20, d � 0 0.0000032 0.0001633 0.97207 0.97210

Table B.9: Errors at time t � 62.66217 � 293Δt and wave velocities of η for the third method

and each initial guess with l � 10π, α � β � 0.005, Δx � 0.03068, Δt � 0.21386.

Profiles eabs erel cn c
θ � π�10, d � 0 0.0001858 0.0000068 0.97621 0.97621
θ � π�20, d � 0 0.0004649 0.0000485 0.97350 0.97351
θ � π�10, d � 0 0.0000037 0.0000654 0.97251 0.97250
θ � π�20, d � 0 0.0000043 0.0000675 0.97251 0.97250

Table B.10: Errors at time t � 125.53821 � 587Δt and wave velocities of η for the third

method and each initial guess with l � 20π, α � β � 0.005, Δx � 0.03068, Δt � 0.21386.
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Figure B.10: Graphics of η� �� � �� and ηn �—� for the third method and each initial guess

with l � 20π, α � β � 0.005, Δx � 0.03068, Δt � 0.21386 at time t � 125.53821 � 587Δt.
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Figure B.11: Graphics of η� �� � �� and ηn �—� for the third method and each initial guess

with l � 10π, α � β � 0.01, Δx � 0.03068, Δt � 0.25433 at time t � 62.81918 � 247Δt.
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Profiles eabs erel cn c
θ � π�5, d � 0 0.0095141 0.0001940 0.98843 0.98842
θ � π�10, d � 0 0.0014617 0.0000896 0.97622 0.97620
θ � π�5, d � 0 0.0000290 0.0006188 0.97165 0.97156
θ � π�10, d � 0 0.0000081 0.0003554 0.97161 0.97156

Table B.11: Errors at time t � 62.81918 � 247Δt and wave velocities of η for the third method

and each initial guess with l � 10π, α � β � 0.01, Δx � 0.03068, Δt � 0.25433.
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Figure B.12: Graphics of η� �� � �� and ηn �—� for the third method and each initial guess

with l � 20π, α � β � 0.01, Δx � 0.03068, Δt � 0.25433 at time t � 125.63836 � 494Δt.

Profiles eabs erel cn c
θ � π�5, d � 0 0.0118725 0.0002421 0.98843 0.98842
θ � π�10, d � 0 0.0026844 0.0001644 0.97622 0.97621
θ � π�5, d � 0 0.0000090 0.0001594 0.97239 0.97236
θ � π�10, d � 0 0.0000097 0.0001608 0.97239 0.97237

Table B.12: Errors at time t � 125.63836 � 494Δt and wave velocities of η for the third

method and each initial guess with l � 20π, α � β � 0.01, Δx � 0.03068, Δt � 0.25433.
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Appendix C

Scripts

Below we present the codes used to compute approximate solutions for the linear and non-

linear systems studied in this work, as well as the codes used to compute the travelling waves.

We remark that the codes for the bidirectional models were based on those presented in [25]

and the codes to compute the travelling waves were inspired in the one presented in [10]. All of

them were implemented in the Octave language.

MainCode

%% Parameters
l = 20*pi; % period/2
N = 2^12;
%beta = 0.01; alpha =0.01; ab=’01’;
%beta = 0.005; alpha =0.005; ab=’005’;
%beta = 0.001; alpha =0.001; ab=’001’;
beta = 0.0001; alpha =0.0001; ab=’0001’;

deltaxi = 2 * l / N
x = (deltaxi:deltaxi:2*l);
ro1 =1; ro2 =2;
h1=0.1; h2=35.05*h1;% See Choi & Camassa, J. Fl Mech, 1999
L = h1/sqrt(beta); delta=h2/L;
parameters=[l,N,beta,alpha,ro1,ro2,h1,h2,L,delta];

%deltat = 2.061*sqrt(1+(ro2*sqrt(beta))/(ro1*delta))*deltaxi % condition 1
deltat = 2.651*sqrt(sqrt(beta)*(1+ro2/ro1)*deltaxi) % condition 2
%deltat = 2.828*sqrt(beta/3) % condition 3
Tfinal = 2*l;
Tsteps = fix(Tfinal/(deltat));

%MODEL = ’flat_linear’; md=’FL’;
MODEL = ’flat_weakly_nonlinear’; md=’FN’;
%MODEL = ’corrugated_linear’; md=’CL’;
%MODEL = ’corrugated_weakly_nonlinear’; md=’CN’;
Fund=’S’; DerDisp=’FD’;

%WAVE=’Gaus’;
%WAVE=’pBBM’;
WAVE=’prILW’;
ct=pi/30;

%OPT=’OP0’; %in case of one_direction
%OPT=’OP1’; %first option eta
OPT=’OP3’; %option u not approx
%OPT=’OP5’; %complete system

%PROPAGATION = ’two_directions’;
%PROPAGATION = ’one_direction’;
PROPAGATION = ’traveling’;

MEAN=1;

[M,matrix] = Topography(parameters,x,deltaxi,MODEL,Fund,DerDisp);
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[init_eta,init_u,c] = InitialCondition(parameters,x,ct,WAVE,MEAN,PROPAGATION,OPT);
[Eta,U] = TimeAdvancing(parameters,deltaxi,deltat,Tsteps,init_eta,init_u,matrix,M,MODEL);

InitialData

function [init_eta,init_u,c] = InitialCondition(parameters,x,ct,WAVE,MEAN,PROPAGATION,OPT)
%% parameters
l=parameters(1); N=parameters(2);
beta=parameters(3); alpha=parameters(4);
ro1=parameters(5); ro2=parameters(6);
h1=parameters(7); h2=parameters(8);
L=parameters(9); delta=parameters(10);

%% initial eta guess
c=1;
switch WAVE
case {’Gaus’}
eta0 = 0.1*exp(-2*(x-l*ones(1,N)/2).^2);

case {’prILW’}
theta=ct;
lambda=delta/theta; c1=-1.5*alpha; c2=ro2*sqrt(beta)/(ro1*2);
c=1/(1+((2*c2)/delta)*theta*cot(2*theta));
aa =4*c*c2*theta*tan(theta)/(delta*c1);
eta0 = zeros(1,N);
for j=-10:1:10
eta0=eta0+aa*(cos(theta)^2)./((cos(theta)^2)*ones(1,N)+sinh((x-l+2*l*j)/lambda).^2);
end

case {’pBBM’}
c=ct;
a2= -3*alpha/2; a3=beta/6; c0=c-1; % c=sqrt(beta);
eta0=zeros(1,N);
for j=-10:1:10
eta0=eta0+(3*c0*(sech(sqrt(c0)*(x-l+2*l*j)/(2*sqrt(c)*sqrt(a3)))).^2)/a2;
end
end

%% eta mean
if MEAN==1
v=ones(1,N);
media=sum(eta0)/N;
eta0=eta0-media*v;
end

switch PROPAGATION
case ’one_direction’
init_eta=eta0;
etaeta = fft(eta0);
aux = pi*[1:N/2 -N/2 + 1:-1]/l;
omega = sqrt(1./(ones(1,N-1)+sqrt(beta)*ro2*aux.*coth(delta*aux)/ro1+beta*aux.*aux/3));
omega = [ 1 , omega];
uu = -omega.* etaeta;
init_u = real(ifft(uu));

case ’two_directions’
init_eta=eta0;
init_u = zeros(1,N);

case ’traveling’
switch OPT
case ’OP1’
[init_eta, c]=NewtonEta1(l,N,alpha,beta,ro1,ro2,delta,eta0,c,MEAN);
init_u=-c*init_eta./(ones(1,N)-alpha*init_eta);

case ’OP3’
u0=-c*eta0./(ones(1,N)-alpha*eta0);
[init_u,c]=NewtonU2(l,N,alpha,beta,ro1,ro2,delta,u0,c,MEAN);
init_eta=init_u./(alpha*init_u -c*ones(1,N));

case ’OP5’
u0=-c*eta0./(ones(1,N)-alpha*eta0);
[init_eta,init_u,c]=NewtonS(l,N,alpha,beta,ro1,ro2,delta,eta0,u0,c,MEAN);
%init_eta=[init_eta(N/4 +1:N) init_eta(1:N/4)];

99



%init_u=[init_u(N/4 +1:N) init_u(1:N/4)];
end
end
end

defineV

function V = defineV(eta,u,MODEL,parameters,matrix)
%% parameters
l=parameters(1); N=parameters(2);
beta=parameters(3); alpha=parameters(4);
ro1=parameters(5); ro2=parameters(6);
h1=parameters(7); h2=parameters(8);
L=parameters(9); delta=parameters(10);

uu = fft(u);
aux = [1:N/2 -N/2 + 1:-1];
aux = pi*aux/l; % 2l period
kernel = (ones(1,N-1) + sqrt(beta)*ro2*aux.*coth(h2*aux/L)/ro1 + beta*aux.*aux/3);
kernel = [1 + sqrt(beta)*L*ro2/(ro1*h2), kernel];

switch lower(MODEL)
case ’flat_linear’
V = real(ifft(kernel.*uu));
case ’flat_weakly_nonlinear’
V = real(ifft(kernel.*uu));
case ’corrugated_linear’
V = matrix*(u’);
V = V’;
case ’corrugated_weakly_nonlinear’
V = matrix*(u’);
V = V’;
end

computeu

function u = computeu(eta,V,MODEL,parameters,matrix)
%% parameters
l=parameters(1); N=parameters(2);
beta=parameters(3); alpha=parameters(4);
ro1=parameters(5); ro2=parameters(6);
h1=parameters(7); h2=parameters(8);
L=parameters(9); delta=parameters(10);

VV = fft(V);
aux = [1:N/2 -N/2 + 1:-1];
aux = pi*aux/l;
kernel = (ones(1,N-1) + sqrt(beta)*ro2*aux.*coth(h2*aux/L)/ro1 + beta*aux.*aux/3);
kernel = [1 + sqrt(beta)*L*ro2/(ro1*h2), kernel];

switch MODEL
case ’flat_linear’
u = real(ifft(VV./kernel));
case ’flat_weakly_nonlinear’
u = real(ifft(VV./kernel));
case ’corrugated_linear’
u = matrix\(V).’;
u = u.’;
case ’corrugated_weakly_nonlinear’
u = matrix\(V).’;
u = u.’;
end

RK4step

function [eta_next,V_next] = RK4step(eta,u,V,deltaxi,deltat,MODEL,parameters,matrix,M)

switch MODEL
case ’flat_linear’
[K1,KK1] = computeE(eta,u,deltaxi,MODEL,parameters,M);

Phi_KK1 = computeu(eta,KK1,MODEL,parameters,matrix);
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[K2,KK2]=computeE(eta+deltat*K1/2,u+deltat*Phi_KK1/2,deltaxi,MODEL,parameters,M);

Phi_KK2 = computeu(eta,KK2,MODEL,parameters,matrix);
[K3,KK3]=computeE(eta+deltat*K2/2,u+deltat*Phi_KK2/2,deltaxi,MODEL,parameters,M);

Phi_KK3 = computeu(eta,KK3,MODEL,parameters,matrix);
[K4,KK4]=computeE(eta+deltat*K3,u+deltat*Phi_KK3,deltaxi,MODEL,parameters,M);

case ’flat_weakly_nonlinear’
[K1,KK1] = computeE(eta,u,deltaxi,MODEL,parameters,M);

Phi_KK1 = computeu(eta,KK1,MODEL,parameters,matrix);
[K2,KK2]=computeE(eta+deltat*K1/2,u+deltat*Phi_KK1/2,deltaxi,MODEL,parameters,M);

Phi_KK2 = computeu(eta,KK2,MODEL,parameters,matrix);
[K3,KK3]=computeE(eta+deltat*K2/2,u+deltat*Phi_KK2/2,deltaxi,MODEL,parameters,M);

Phi_KK3 = computeu(eta,KK3,MODEL,parameters,matrix);
[K4,KK4]=computeE(eta+deltat*K3,u+deltat*Phi_KK3,deltaxi,MODEL,parameters,M);

case ’corrugated_linear’
[K1,KK1] = computeE(eta,u,deltaxi,MODEL,parameters,M);

u_KK1 = computeu(eta + deltat*K1/2,V + deltat*KK1/2,MODEL,parameters,matrix);
[K2,KK2]=computeE(eta+deltat*K1/2,u_KK1,deltaxi,MODEL,parameters,M);

u_KK2 = computeu(eta + deltat*K2/2,V + deltat*KK2/2,MODEL,parameters,matrix);
[K3,KK3]=computeE(eta + deltat*K2/2,u_KK2,deltaxi,MODEL,parameters,M);

u_KK3 = computeu(eta + deltat*K3,V + deltat*KK3,MODEL,parameters,matrix);
[K4,KK4] = computeE(eta + deltat*K3,u_KK3,deltaxi,MODEL,parameters,M);

case ’corrugated_weakly_nonlinear’
[K1,KK1] = computeE(eta,u,deltaxi,MODEL,parameters,M);

u_KK1 = computeu(eta + deltat*K1/2,V + deltat*KK1/2,MODEL,parameters,matrix);
[K2,KK2] = computeE(eta + deltat*K1/2,u_KK1,deltaxi,MODEL,parameters,M);

u_KK2 = computeu(eta + deltat*K2/2,V + deltat*KK2/2,MODEL,parameters,matrix);
[K3,KK3] = computeE(eta + deltat*K2/2,u_KK2,deltaxi,MODEL,parameters,M);

u_KK3 = computeu(eta + deltat*K3,V + deltat*KK3,MODEL,parameters,matrix);
[K4,KK4] = computeE(eta + deltat*K3,u_KK3,deltaxi,MODEL,parameters,M);
end

eta_next = eta + deltat*(K1+2*K2+2*K3+K4)/6;
V_next = V+ deltat*(KK1+2*KK2+2*KK3+KK4)/6;

computeE

function [E,F] = computeE(eta,u,deltaxi,MODEL,parameters,M)
%% parameters
l=parameters(1); N=parameters(2);
beta=parameters(3); alpha=parameters(4);

%finite difference differentiation
u_xi=(8*([u(2:N) u(1)]-[u(N) u(1:N-1)])+[u(N-1:N) u(1:N-2)]-[u(3:N) u(1:2)])/(12*deltaxi);
eta_xi=(8*([eta(2:N) eta(1)]-[eta(N) eta(1:N-1)])+[eta(N-1:N) eta(1:N-2)]- ...
[eta(3:N) eta(1:2)])/(12*deltaxi);

switch MODEL

case ’flat_linear’
E = u_xi ;
F = eta_xi ;
case ’flat_weakly_nonlinear’
E = (ones(1,N) - alpha*eta).*u_xi - alpha* u .* eta_xi ;
F = eta_xi - alpha* u.*u_xi ;
case ’corrugated_linear’
E = u_xi./M ;
F = eta_xi./M ; %there is another way to compute it.
case ’corrugated_weakly_nonlinear’
E = ((ones(1,N) - alpha*eta).*u_xi - alpha* u .* eta_xi)./M ;
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F = (eta_xi - alpha* u.*u_xi)./M ;
end

Topography

function [M,matrix] = Topography(parameters,x,deltaxi,MODEL,Fund,DerDisp)
l=parameters(1); N=parameters(2);
beta=parameters(3); alpha=parameters(4);
ro1=parameters(5); ro2=parameters(6);
h1=parameters(7); h2=parameters(8);
L=parameters(9); delta=parameters(10);

switch MODEL
case {’corrugated_linear’,’corrugated_weakly_nonlinear’}
switch Fund
case ’S’
x_part = (3*l/4:deltaxi:7*l/4);
M = 1+ 0.5*sin(5*x_part);
M = [ones(1,3*N/8 - 1) M ones(1,N/8) ];
case ’R’
x_part = (3*l/4:deltaxi:7*l/4);
M = 1+ 0.5*sin(15*x_part);
M = [ones(1,3*N/8 - 1) M ones(1,N/8) ];
end

%% definition of matrices
w = exp(2*pi*i/N);
for j = 1:N
for k = 1:N
F(j,k) = w^((j-1)*(k-1));
end
end
auxp = pi*[1:N/2 -N/2 + 1:-1]/l;
td = [-1/delta -auxp.*coth(auxp.*delta)].’;
diagonaltd = diag(td);
TD = real(F*diagonaltd*conj(F)/N);

d2=[0 -auxp.^2];
diagonald2=diag(d2);
D2=real(F*diagonald2*conj(F)/N);

switch DerDisp
case ’SP’
d=[0 i*auxp];
diagonald=diag(d);
C=real(F*diagonald*conj(F)/N);
case ’FD’
C=zeros(N,N);
a=zeros(1,N);
a(2)=2/(3*deltaxi); a(3)=-1/(12*deltaxi); a(N-1)=1/(12*deltaxi); a(N)=-2/(3*deltaxi);
C(1,:)=a;
for j=2:N
C(j,:)=[C(j-1,N) C(j-1,1:N-1)];
end
end

Mm = diag(1./M);
CM=diag(C*M’);
matrix=(eye(N) - sqrt(beta)*ro2*Mm*TD/ro1 -beta*Mm^2*D2/3+beta*Mm^3*CM*C/3);

otherwise
M=ones(1,N);
matrix=eye(N);
end
end

TimeAdvancing

function [Eta,U]=TimeAdvancing(parameters,deltaxi,deltat,Tsteps,init_eta,init_u,matrix,M,MODEL)
l=parameters(1); N=parameters(2);
beta=parameters(3); alpha=parameters(4);
ro1=parameters(5); ro2=parameters(6);
h1=parameters(7); h2=parameters(8);
L=parameters(9); delta=parameters(10);
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Eta=zeros(Tsteps+1,N);
U=zeros(Tsteps+1,N);
Eta(1,:) = init_eta;
U(1,:) = init_u;
V=defineV(init_eta,init_u,MODEL,parameters,matrix);

n2=norm(init_eta,2);
ninf=norm(init_eta,inf);
Final_step=Tsteps;
Tfinal=Tsteps*deltat;
for i=1:Tsteps
[eta_next,V_next] = RK4step(Eta(i,:),U(i,:),V,deltaxi,deltat,MODEL,parameters,matrix,M);
u_next = computeu(eta_next,V_next,MODEL,parameters,matrix);
n_2=norm(eta_next,2);
n_inf=norm(eta_next,inf);
Eta(i+1,:) = eta_next;
U(i+1,:) = u_next;
if n_inf>2*ninf
Final_step=i;
Tfinal=deltat*Final_step;
break
end
V = V_next;
end

if Final_step<Tsteps
Eta([Final_step+2:Tsteps+1],:)=[];
U([Final_step+2:Tsteps+1],:)=[];
end
end

NewtonEta

function [Eta,c] = NewtonEta(l,N,alpha,beta,rho1,rho2,delta,Eta,c,MEAN)

w = exp(2*pi*i/N);
F=zeros(N,N);
for j = 1:N
for k = 1:N
F(j,k) = w^((j-1)*(k-1));
end
end
auxp = pi*[1:N/2 -N/2 + 1:-1]/l;
td = [-1/delta -auxp.*coth(auxp.*delta)]’;
diagonaltd = diag(td);
ThD = real(F*diagonaltd*conj(F)/N);

diagDD=[0 -auxp.^2]’;
diagonalDD=diag(diagDD);
DD=real(F*diagonalDD*conj(F)/N);

J=zeros(N+1);
v=ones(1,N);
Eta=Eta’;
var=[Eta;c];
int=0;
if MEAN==0
int=v*Eta/N;
end
fun(1:N,1)=1.5*alpha*Eta.*Eta+(1-(1/c^2))*Eta-sqrt(beta)*rho2/rho1*ThD*Eta-(beta/3)*DD*Eta;
fun(N+1,1)=v*Eta/N-int;
contador = 0;
norma = 10;
while norma > 10^(-10) && contador < 10
J(1:N,1:N)=diag(3*alpha.*Eta)+(1-(1/c^2))*eye(N)-sqrt(beta)*rho2/rho1*ThD-(beta/3)*DD;
J(N+1,1:N)=v/N;
J(1:N,N+1)=(2/c^3)*Eta;

y=linsolve(J,fun);
var=var-y;
Eta=var(1:N);
c=var(N+1);
fun(1:N,1)=1.5*alpha*Eta.*Eta+(1-(1/c^2))*Eta-sqrt(beta)*rho2/rho1*ThD*Eta-(beta/3)*DD*Eta;
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fun(N+1,1)=v*Eta/N-int;
norma=norm(fun,2)/(N+1);

contador = contador + 1;
end
if contador==10
fprintf(’maximum number of iterations reached. Error = %.10f \n’,norma)
end

Eta=Eta’;
end

NewtonU

function [U,c] = NewtonU(l,N,alpha,beta,rho1,rho2,delta,U,c,MEAN)

w = exp(2*pi*i/N);
F=zeros(N,N);
for j = 1:N
for k = 1:N
F(j,k) = w^((j-1)*(k-1));
end
end
auxp = pi*[1:N/2 -N/2 + 1:-1]/l;
td = [-1/delta -auxp.*coth(auxp.*delta)]’;
diagonaltd = diag(td);
ThD = real(F*diagonaltd*conj(F)/N);

diagDD=[0 -auxp.^2]’;
diagonalDD=diag(diagDD);
DD=real(F*diagonalDD*conj(F)/N);

J=zeros(N+1);
v=ones(1,N);
U=U’;
var=[U;c];
int=0;
if MEAN==0
int=v*(U./(alpha*U -c*v’))/N;
end

fun(1:N,1) = -c*U +0.5*alpha*U.*U -U./(alpha*U -c*v’) + ...
(c*sqrt(beta))*(rho2/rho1)*ThD*U+(c*beta/3)*DD*U;
fun(N+1,1)=v*(U./(alpha*U -c*v’))/N-int;
contador = 0;
norma = 10;
while norma > 10^(-10) && contador < 10

J(1:N,1:N) = diag(alpha*U) +c*diag(1./((alpha*U -c*v’).^2)) -c*eye(N) + ...
(c*sqrt(beta))*(rho2/rho1)*ThD+(c*beta/3)*DD;
J(N+1,1:N)=-c./((alpha*U -c*v’).^2)/N;
J(1:N,N+1)=(-U./((alpha*U -c*v’).^2) -U + (sqrt(beta))*(rho2/rho1)*ThD*U+(beta/3)*DD*U)’;
J(N+1,N+1)=v*(U./((alpha*U -c*v’).^2))/N;

y=linsolve(J,fun);
var=var-y;

U=var(1:N);
c=var(N+1);

fun_F(1:N,1) = -c*U +0.5*alpha*U.*U -U./(alpha*U -c*v’) +...
(c*sqrt(beta))*(rho2/rho1)*ThD*U+(c*beta/3)*DD*U;
fun_F(N+1,1)=v*(U./(alpha*U -c*v’))/N-int;
norma=norm(fun,2)/(N+1);

contador = contador + 1;
end
if contador==10
fprintf(’maximum number of iterations reached. Error = %.10f \n’,norma)
end
U=U’;
end

NewtonS
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function [Eta,U,c] = NewtonS (l,N,alpha,beta,rho1,rho2,delta,Eta,U,c,MEAN)

w = exp(2*pi*i/N);
F=zeros(N,N);
for j = 1:N
for k = 1:N
F(j,k) = w^((j-1)*(k-1));
end
end
auxp = pi*[1:N/2 -N/2 + 1:-1]/l;
td = [-1/delta -auxp.*coth(auxp.*delta)]’;
diagonaltd = diag(td);
ThD = real(F*diagonaltd*conj(F)/N);

diagDD=[0 -auxp.^2]’;
diagonalDD=diag(diagDD);
DD=real(F*diagonalDD*conj(F)/N);

J=zeros(2*N+1);
fun=zeros(2*N+1,1);
v=ones(1,N);
Eta=Eta’;
U=U’;
var=[Eta;U;c];
int=0;
if MEAN==0
int=v*Eta/N;
end

a=sqrt(beta)*rho2/rho1;
b=(beta/3);
fun(1:N,1)=c*Eta+(v’-alpha*Eta).*U;
fun(N+1:2*N,1)=c*U-alpha*(U.^2)/2 +Eta -c*a*ThD*U-c*b*DD*U;
fun(2*N+1,1)=v*Eta/N-int;
contador = 0;
norma = 10;

while norma > 10^(-10) && contador < 10
J(1:N,1:N)=c*eye(N)-alpha*diag(U);
J(1:N,N+1:2*N)=diag(v’-alpha*Eta);
J(1:N,2*N+1)=Eta;

J(N+1:2*N,1:N)=eye(N);
J(N+1:2*N,N+1:2*N)=c*eye(N)-alpha*diag(U) -c*a*ThD-c*b*DD;
J(N+1:2*N,2*N+1)=U-a*ThD*U -b*DD*U;

J(2*N+1,1:N)=v/N;

y=linsolve(J,fun);
var=var-y;
Eta=var(1:N);
U=var(N+1:2*N);
c=var(2*N+1);
fun(1:N,1)=c*Eta+(v’-alpha*Eta).*U;
fun(N+1:2*N,1)=c*U-alpha*(U.^2)/2 +Eta -c*a*ThD*U-c*b*DD*U;
fun(2*N+1,1)=v*Eta/N-int;
norma=norm(fun,2)/(2*N+1);

contador = contador + 1;
end
if contador==10
fprintf(’maximum number of iterations reached. Error = %.10f \n’,norma)
end
Eta=Eta’;
U=U’;
end
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