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RESUMO

Embolia pulmonar está entre as principais causas de morte no mundo todo, de acordo com o

Datasus 22% dos pacientes hospitalizados por embolia pulmonar acabam falecendo, trata-se de

um trombo alojado em alguma região da vascularização arterial pulmonar. Para estabelecer o

tratamento adequado e reduzir a mortalidade associada é necessário um diagnóstico rápido por

parte da equipe médica, atualmente a forma de diagnóstico mais utilizado é a analise de imagens

de tomografia computadorizada, devido a vários fatores como a sua velocidade de aquisição, alta

disponibilidade dos equipamentos que fazem a sua captura e uma alta acurácia no diagnóstico.

Um exame de tomografia computadorizada é composto de centenas de imagens que requerem a

atenção do radiologista, pelo número alto de dados produzidos a análise de tais exames pode

ser cansativa e levar a erros de diagnóstico devido a fadiga, ainda hoje a embolia pulmonar

está entre as doenças onde se há mais erros diagnósticos. Nos últimos anos alguns sistemas

computacionais de auxílio ao diagnóstico foram desenvolvidos para auxiliar radiologistas na

detecção de trombos, tais sistemas têm se tornado de grande ajuda para um diagnóstico mais

eficaz. Deep learning tem sido um dos tópicos mais comentados na área da visão computacional

ultimamente, especialmente na área do processamento de imagens médicas, mais especificamente

em aplicações de detecção e reconhecimento de imagens. Isso também se aplica no auxílio ao

diagnóstico de embolia pulmonar, alguns trabalhos têm atingido resultados do estado da arte

utilizando modelos complexos de redes neurais, que são capazes de identificar trombos dentro

das imagens geradas pela tomografia, removendo outros ruídos que podem ser vistos como um

falso positivo. O objetivo deste trabalho é desenvolver uma aplicação de deep learning capaz
de encontrar tromboembolismos pulmonares em imagens de tomografias computadorizadas, a

robustez do modelo permitirá que detecte trombos em exames de diferente origens. Se bem

sucedido, o algoritmo produzido neste trabalho será capaz de auxiliar radiologistas em um

diagnóstico rápido com uma alta probabilidade de acerto. Alguns testes preliminares já mostram

que modelos de deep learning são capazes de discriminar embolias pulmonares, em uma base de

dados pública contendo imagens de tomografia computadorizada de pulmão a rede foi capaz de

encontrar vários trombos. Com um total de 35 exames, 28 foram usados para treinar o modelo e

validar seus resultados, ajustando seus hiperparâmetros de acordo com os resultados, as outras

7 imagens foram utilizadas como teste, avaliado como o sistema se comporta quando recebe

dados reais, atingindo um Dice score de 0.81 e uma acurácia de 84%, apesar de já apresentar
bons resultados a modelo ainda possui espaço para melhores, pois ainda há diversos métodos de

otimização que costumam melhorar os resultados das arquiteturas.

Palavras-chave: Processamento de Imagens Médicas. Deep Learning. Machine Learning.



ABSTRACT

Pulmonary embolism is one of the leading causes of death all over the world, according to

Datasus the mortality rate of patients hospitalized due to pulmonary embolism is 22%. To

break the clot and save the patient a fast diagnosis is required, that is the reason why computer

tomography is used as a means to detect embolisms. A computed tomography exam is composed

of hundreds of images that require an analysis from a radiologist, due to the high number of

images this process can be tiresome and can lead to errors due to fatigue, pulmonary embolism

remains one of the frequent misdiagnosis due to this fact. Over the years some computed aided

systems had been developed aiming to help radiologists to see some missed clot, those systems

had proven to be of great aid to an even faster diagnosis. Deep learning models have been

increased significantly in many computer vision problems, especially in medical imaging, in

image detection and recognition. This is also true in the classification of pulmonary embolisms,

some works achieve a state of the art results by applying complex neural network models that can

identify a clot from a whole tomography exam and remove any potential false positive found.

The purpose of this work is to develop a deep learning application that is capable of discriminate

pulmonary embolisms from a whole computed tomography volume, due to the use of deep

learning a robust model can be developed that can generalize the process of embolism detection

in different sources of data. If successful, this work will be able to aid radiologists in a fast

diagnosis of pulmonary embolisms with a high discrimination probability. Some preliminary

tests show that a deep learning architecture can discriminate pulmonary embolisms, a public

dataset was used for validation of this architecture and can find several clots. With a total of

35 exams, 28 were used for training the model and validating its results, tweaking the models’

hyperparameters with the results, the last 7 exams were used for testing the model, simulating how

it should behave in a receiving unknown data, it achieves a Dice score of 0.81 and an accuracy of

84%, even if it got a relatively good result, it got plenty of room for improvement still, since

many known improvement methods can still be applied in the architecture.

Keywords: Medical Image Processing. Deep Learning. Machine Learning.
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1 INTRODUCTION

Pulmonary embolism (PE) is a clinical condition where the patient has a thrombus (clot move

from elsewhere in the body) in pulmonary vessels, this thrombus can harshly reduce or even

interrupt the blood flow of the artery which can be fatal if left untreated (Carson et al., 1992). It’s

highly present, having an estimate of over 300,000 deaths per year in the US (?). The mortality
rate (30%) can be reduced to, as low as 2% with an early diagnosis, showing that a fast and

accurate diagnosis is critical to saving those lives ((Jha et al., 2013; Sadigh et al., 2011)).

The modality of choice for diagnosis of the PE is computed tomography (CT) exam,

due to its fast acquisition and reliability using angiography (CTA) (Goldhaber and Bounameaux,

2012) and (Kligerman et al., 2018). The exam produces a 3-dimensional view of the pulmonary

trunk, containing hundreds of images (slices) that have to be carefully analyzed by a radiologist,

making the process highly time-consuming, besides that the interpretation of CTA exams requires

a high degree of training due to the high amount of noise or other artifacts that can be confused

for a PE. Unlike other pulmonary diseases that are observed with CT, such as lung nodules or

emphysema, PEs are irregularly shaped and can appear in different regions of the lung (Rajan

et al., 2020). All those factors corroborate with a high chance of diagnostic error, there is a

difference of 13% of right diagnosis rate between radiologists that work overnight and in the

daytime (Huang et al., 2020).

To try to mitigate those problems, and with the high occurrence of PE, a computed

aided diagnosis (CAD) program is highly valuable; we propose an automated method capable of

PE detection in CTA exams.

1.1 MOTIVATION

With the type of data produced from CTA exams, the fact that the diagnosis of PE is given

mainly with the image observation, and the high number of recent deep learning methods using

medical imaging, data-driven computed aided diagnosis of PE methods is desirable to assist the

radiologist on its diagnosis, existing algorithms had already proved successful in improving the

radiologist diagnosis rate (Tajbakhsh et al., 2019).

Those CAD for PE detection follow the steps: 1) Pulmonary vessel extraction from the

CTA scan, 2) Generation a set of PE candidates, 3) Features extraction from the PE candidates

and 4) Remove false PE from those candidates (Tajbakhsh et al., 2015), this last step is often

achieved by supervised learning methods.

Early PE detection CADs tried to remove false positives (FPs) using hand-crafted

features, as in (Masutani et al., 2002) and (Bouma et al., 2009), but they result in a high false

positive rating. Authors in (Liang and Bi, 2007) introduced the tobogganing algorithm for the

segmentation of the pulmonary vessel reducing the amount of FPs. (Ozkan et al., 2017) uses

more information to get the features and uses a rule-based classifier to reduce FPs.

In more recent works, the use of convolutional neural networks for the FP reducing

(Tajbakhsh et al., 2015) or in both the classification and finding PE candidates (Yang et al., 2019)

have been tried, both with reducing the amount of FP.

Such methods depend on a good and discriminative dataset, but so far only one dataset

is public available (Masoudi et al., 2018) with a good amount of documentation about it, however,

this dataset is composed of 35 exams, of which 2 of them do not have any PE.
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1.2 OBJECTIVES

This work creates a deep learning-based method capable of segmentation of PE candidates from

the whole CTA exam, basing it on techniques that worked well over the years, and develop a new

dataset with the annotation of PEs from radiologists from the Hospital de Clínicas (HC). The
specific objectives are:

• To develop a segmentation method, based on Ronneberger’s U-net (Ronneberger et al.,

2015) aiming to localize the PE from the whole exam

• Develop a second neural network capable of classifying PE candidates from the first

network into PE or non-PE

• To create a new public dataset with semantic annotation of PEs in CTA exams

• Evaluate the proposed method in with a new dataset, which will be openly available.

This work achieved a solid model for the extraction of a PE candidate in a CT exam and

classifying this candidate into either a true positive PE or a false positive PE. The segmentation

step of the model achieved a Dice Score of 0.81 and a Sensitivity of 0.89, and the classification

step using the Random Forest classifier achieved an accuracy of 84%.

1.3 DOCUMENT STRUCTURE

This document is currently composed of four chapters, the first and current chapter aims to

introduce the problem and what is the proposed objectives of this work. In chapter 2, it’s

introduced the fundamentals to understand the concepts applied in this work and related ones.

A review of the current state of the art and the timeline of PE detection CADs is

presented in chapter 3. Chapter 4 then describes this works proposal, some early results obtained

and the proposed schedule.
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2 FUNDAMENTAL BACKGROUND

This chapter aims to explain some concepts and know subjects from different areas, such as

computer science, mathematics, physics, and even medicine. The concepts here represented

serve as a basis for understanding the methodology applied in this work (chapter 4) and other

similar (chapter 3).

2.1 VENOUS THROMBOEMBOLISM

Venous thromboembolism is a syndrome that includes both deep vein thrombosis (DVT) and

pulmonary embolism (PE). DVT occurs when a clot is formed, most commonly in the legs,

thigh, or pelvis. A PE occurs when a detached clot travels through the bloodstream to the lungs,

blocking an artery (NHLBI, 2011). Pulmonary embolism can be fatal in some severe cases due

to a sudden cardiac death (Goldhaber and Bounameaux, 2012).

PE is the third most common cause of death due to sudden cardiac death, standing

behind only ischemic heart disease and ischemic stroke, although it is more common (Raskob

et al., 2014). PE has a frequency of 3.5 per 1000 population in high-income countries and 1.1

per 1000 population in both low- and middle-income countries (Jha et al., 2013). In the United

States and Canada around 12,000 deaths were recorded in 2017, and an average of around 39,000

pulmonary embolism related deaths in Europe during 2013 and 2015 (Barco et al., 2020b) and

(Barco et al., 2020a). In Brazil, autopsy data shows that PE prevalence is similar as in the United

States (Terra-Filho and Menna-Barreto, 2010)

Due to a nonspecific set of symptoms the diagnosis can often be inaccurate, due to the

fact that most of the symptoms are also common in other lung-related diseases (Dalen et al.,

2002). The misdiagnosis however can be fatal, with a mortality rate lower than 10% between

patients that were correctly diagnosed (Dalen et al., 2002).

Diagnosis of PE use mainly non-invasive diagnostic techniques (Figure 2.1). A patient

with suspected PE goes through a clinical evaluation aiming to produce a clinical probability,

which is decided empirically or with the help of a scoring system (Goldhaber and Bounameaux,

2012). The two main scoring systems used in this cases are the Wells score and the revised

Geneva score, the Wells score can be used for DVT diagnosis also, patients are then classified as

low, intermediate, or high risk based on their score (Goldhaber and Bounameaux, 2012). Low

and intermediate risk patients go through the D-dimer test, which verifies the presence of the

protein found in clots, patients which tested positive in the D-dimer and with and high risk score

has to go through an angiotomography of the pulmonary trunk (Goldhaber and Bounameaux,

2012).

2.2 COMPUTED TOMOGRAPHY

Computed tomography has been over the years the main method for early diagnosis of several

diseases (Buzug, 2011). Different from traditional x-ray images, CT exams produce a sectional

view of the patient. This view comes from a reconstructed x-ray bean shaped like a cone or a

fan, that spins and moves continually over a specific body part, an image reconstruction method

is applied on the cast projections (or shadows), applying different techniques from physics,

mathematics, and computer science, a 2D reconstruction of those shadows is obtained (Buzug,

2011).
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Figure 2.1: Diagnostic pipeline for deep vein thrombosis or pulmonary embolism, being compression ultrasonogra-
phy (CUS) for deep vein thrombosis suspects and multi detection computed tomography angiography (MDTCA) for

pulmonary embolism suspects .Source: (Goldhaber and Bounameaux, 2012)

A full CT exam is composed of hundreds of slices, each slice being one of the 2D

reconstruction images. Views from different anatomical planes of the exam can be reconstructed,

the coronal plane (divides the body into front and back), sagittal plane (divides the body into left

and right), and axial or transverse plane (divides the upper and lower parts of the body).

The final CT image representation is a three-dimensional array, where each voxel (spatial

pixel) is calculated with the attenuation value (𝜇) from the tissues in which the x-ray has been

through (Figure 2.2), this approach has been developed by Hounsfield, that gives the name of

the scale Hounsfield Units, each voxel gets its corresponding HU value from the given equation

(2.1), where the attenuation values 𝜇𝑤𝑎𝑡𝑒𝑟 is the assigned HU value for water and 𝐾 is a constant

scaling factor, usually equals to 1000 (Seeram, 2018).

𝐻𝑈 =
𝜇 − 𝜇𝑤𝑎𝑡𝑒𝑟
𝜇𝑤𝑎𝑡𝑒𝑟

𝐾 (2.1)

The scale maps different attenuation values into grayscale values, the minimum value of

-1000 HU representing air, 0 HU is assigned for water, values bigger from the 0 and 1000 HU

range are for different body tissues, and from above 1000 HU are for bones. There is no upper

limit in the HU scale, but it ends at around 3000 HU (Seeram, 2018).

The final CT values are then converted, using digital image processing algorithms, to a

grayscale image (figure 2.3, with lower attenuation values being black, higher values white and

the values in between with shades of gray. Since bones attenuates more radiation, in the image

representation it has as white color, while the air attenuates very little to the radiation, it has a

black color (Seeram, 2018).

Since the human eye can distinguish around 30 shades of gray (Kreit et al., 2013), the

HU values are normalized in different scales, usually of 256 or 512. In some applications, it

is also possible to extract different intervals from the HU values, since some tissues can have

similar HU values this partitioning can enhance the contrast of similar tissues (Buzug, 2011).

Those intervals are defined by the window width and window level, the window width represents

the lower and upper bound of the interval, and window level is the center of the range. Once

defined both width and level, the image will represent in a gray-scale the values in between the

lower and upper bound, enhancing the contrast of different tissues depending on the selected

window (Seeram, 2018).
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Figure 2.2: Representation of a single x-ray passing through a patient, obtaining the attenuation value (𝜇) from the

voxels of the volume. Source: (Seeram, 2018)

Figure 2.3: The numerical CT Image (left), representing the raw numerical values calculated from the attenuation

and the normalized with 𝜇𝑤𝑎𝑡𝑒𝑟 value and its grayscale representation (right). Source: (Seeram, 2018)
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2.2.1 Computed tomography angiography

Computed tomography angiography (CTA) is a technique used paired with CT imaging, aiding

radiologists to better see clots or other artifacts inside the blood vessels with a CT image with

enhanced contrast (Figure 2.4). It consists of injecting a contrast in the patient veins before the

tomography, producing a CTA image with higher contrast in some vessels. It’s used in CTs of

the pulmonary trunk as a form o diagnosis for PE (Masoudi et al., 2018).

Figure 2.4: a) PE in a CT image. (b) Same PE using with a CTA exam.Source: (Chien et al., 2019)

The CT image is taken after a certain time after the radiocontrast injection, this contrast

is radiosensitive, causing it to light up the area inside the blood vessel. To scan the correct area

at the correct time, the scanner either automatically detects the amount of contrast present or a

previous bolus injection is made, measuring the speed which it takes to reach the selected area,

and then the rest of the contrast is applied (Kumamaru et al., 2010). For pulmonary CTAs it’s

necessary a fast acquisition since the patient needs to hold his breath during the exam, avoiding

artifacts and noise from the movement (Kumamaru et al., 2010).

2.3 IMAGE PROCESSING

Image processing is a field of computer science where different algorithms and mathematical

functions from linear algebra and calculus are applied to improve image quality for the human

eye or another algorithm. The definition of an image according to (Gonzales and Richard, 2018)

is a two dimensional function 𝑓 (𝑥, 𝑦) from a plane on which 𝑥 and 𝑦 points are found, and each
𝑓 (𝑥, 𝑦) value being its value from a discrete scale. For grayscale images only one plane of 𝑥
and 𝑦 is represented (one channel), while color images come from a combination of values from

different planes, some examples are the RGB format, were each value from each plane represents

the intensity of a color, the first plane is the red color, while the other two are the green and blue.

All those intensity channels values vary from 0 to 255 of its 𝑓 (𝑥, 𝑦), also known as pixel.

2.3.1 Normalization

2.3.1.1 Min-max Normalization

In order to normalize a signal array to pixel values (i.e. 0 to 255), a linear function can be applied

to each of those values, mapping then to a pixel value. One algorithm that executes this task is

implemented in the library SimpleITK, from (Yaniv et al., 2018).
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The linear function is given by the following equation:

𝑜𝑢𝑡𝑝𝑢𝑡𝑃𝑖𝑥𝑒𝑙 = (𝑖𝑛𝑝𝑢𝑡𝑃𝑖𝑥𝑒𝑙 − 𝑖𝑛𝑝𝑢𝑡𝑀𝑖𝑛).
(𝑜𝑢𝑡𝑝𝑢𝑡𝑀𝑎𝑥 − 𝑜𝑢𝑡𝑝𝑢𝑡𝑀𝑖𝑛)

(𝑖𝑛𝑝𝑢𝑡𝑀𝑎𝑥 − 𝑖𝑛𝑝𝑢𝑡𝑀𝑖𝑛)
+ 𝑜𝑢𝑡𝑝𝑢𝑡𝑀𝑖𝑛 (2.2)

Where inputPixel is the raw value to be scaled, inputMin and outputMin are the minimal
and maximal raw value of the input signal, outputMin and outputMax are the biggest and smallest
value for the desired output (e.g. min value of 0 and max value of 255 to scale the signal in

pixels).

2.3.1.2 Standardization

Another common strategy to change the original signal value is to apply a standardization, also

know as Z-score normalization. It aims to rescale the input data to a 0 mean distribution, with

the values between -1 and 1. It’s defined by the following equation:

𝑥′ =
𝑥 − 𝜇

𝜎
(2.3)

Where x is the old value, 𝜇 is the mean, and 𝜎 is the standard deviation from all the

data and 𝑥′ is the new value of 𝑥.
It is commonly used in deep and machine learning algorithms (Grus, 2019) and it can

help the convergence speed of some algorithms.

2.3.2 Segmentation

Segmentation in image processing is basically the partition of an image into pieces that satisfy a

given condition, each pixel in the output partitioned image share a common feature. Segmentation

algorithms can be divided into two main categories, with discontinuous or similar values as

input 2.5. In the first category, it’s assumed that the boundaries are heterogeneous between each

other and the background, an example of this type of segmentation is edge-based. While the

second category separates the image following predefined criteria, being a mask (a copy of the

image, but it has value 1 for regions to be separated and 0 everywhere else) or a rule, being called

region-based segmentation (Gonzales and Richard, 2018).

2.3.3 Convolution

Convolution can be simply defined by the combination of two mathematical functions in order

to produce a new third one, the result function represents the modification of the first function

over the second. In image processing, convolution aims to change a pixel value to a new one

based on its neighbors and a kernel. Kernels are matrices with dimension equal or lower than

the original image, each element of the kernel dictates its function, being for noise correction,

sharping, border detection, or other specific functions (Gonzales and Richard, 2018).

The kernel aligns its central value with a pixel of the original image, then it starts sliding

over the image, executing mathematical operations between the kernel’s values aligned with the

image, assigning a new value to pixel aligned with the center of the kernel (figure 2.6)
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Figure 2.5: The original image in the top left, on the top middle a boundary based on discontinuity, in the top right
the result of a segmentation between the last two images. At bottom left an image with a texture, at bottom middle

portion the result of a discontinuity segmentation and at the bottom right portion the result of a segmentation based

on the region properties. Source: (Gonzales and Richard, 2018)

Figure 2.6: Example of a kernel (in the left) combining its values with a input image (blue), resulting in a new
value for the center aligned pixel (red) Source: (Karpathy, 2018)

2.4 MACHINE LEARNING

Machine learning is a branch from the classic artificial intelligence, algorithms from this branch

can learn from data and create inferences based on what it learned. Such algorithms are

becoming increasingly present in our day-to-day lives, are widely used in e-commerce and

product recommendation applications, computer vision, linguistics, economics, and other fields.

The output of such algorithms can be presented as a function 𝑦(𝑥), where the algorithm receiving

the input 𝑥 generates a prediction 𝑦(𝑥), the function 𝑦 is modified during the training process,
where the algorithm observes the known dataset, the machine learning aims to be able to produce

the correct 𝑦(𝑥) for a 𝑥 not viewed during the training step (Bishop, 2006).
Conventional machine learning methods can be limited, the algorithms cannot extract

meaningful features from the data, being dependent on other pre-processing methods and feature

extraction algorithms (LeCun et al., 2015). The feature extraction process is usually aided by

human knowledge, with sometimes the need for a specialist in the original data (e.g. radiologists

in medical imaging) that helps to create meaningful and discriminative representations of the

dataset.
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There are three big branches of machine learning, the first being supervised learning, in

which each instance of the original dataset has a label representing the class to which this instance

belongs. An example is digits classification, in which each handwritten digit is assigned to a

discrete label 𝑦, the aim of the machine learning algorithm, in this case, producing a prediction

of an unseen instance of the handwritten dataset and assigned the correct value of 𝑦, being
considered a classification problem, while in cases where the prediction is a continuous value, its

called a regression problem (Bishop, 2006).

In unsupervised learning the original dataset does not have a label for each instance,

in such cases machine learning algorithms must group the data into similar clusters, finding

similarities in the original data. Such applications can be helpful in scenarios where no much is

known in the original dataset. The last category of machine learning algorithms is reinforcement

learning, which aims to find the best action for a current environment, the selection of actions

are based on score attributed to each possibility, so based on positives and negatives scores the

algorithm adjusts its actions (Géron, 2019).

Supervised learning algorithms need a huge amount of data to be able to give good

results, otherwise, it may know only a small number of features that can differentiate the data,

this is known as overfitting, in this case, the algorithm knows only a small portion of the real data,

and cannot generalize its classification to other samples of the data (Géron, 2019). To mitigate

this problem techniques such as data augmentation were develop, in which simple operations
like rotation, translation, and noise addition in the original set can help create artificial instances

of the data that can improve the generalization of the algorithm.

2.4.1 K-Nearest Neighbors

The K-Nearest Neighbors (KNN) algorithm it’s one of the simplest to understand machine

learning algorithms, it is an instance learning algorithm, meaning that when evaluates a new

unseen data, it compares to the rest of the know training set.

Figure 2.7: Example of the KNN algorithm, in which two features (feature 1 and feature 2) are used to discriminate

triangles and squares, 3 nearest training instances from X are found through euclidean distance, in this case X is

considered a triangle. Source: (Géron, 2019)

The algorithm calculates the distance (usually the Euclidean) between the new instance

of unseen data to the 𝑘 nearest neighbors or the 𝑘 instances of data on which the distance is
the lowest (figure 2.7), then it simply counts the nearest neighbors and assigns the label of the

majority to the new instance (Géron, 2019).
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2.4.2 Support Vector Machines

Support vector machine (SVM) is one of the most popular algorithms in the field, it’s a model

based algorithm, meaning that it learns a model capable to differentiate the data, creating a

decision frontier.

Figure 2.8: Example of the SVM algorithm with a polynomial kernel, Source: (Géron, 2019)

The classifier aims to create a margin that separates different classes based on its features,

it attempts to create a wide decision frontier which is the furthest away from instances of data

near to the other class. The original SVM algorithm applies a linear separation of the data, but in

some cases, the data cannot be separated by a line, for these cases, other implementations of the

SVM sees the data into a hyperplane, through the so-called kernel trick, which then the SVM can

create a curve that separates the data (2.8), the polynomial and Gaussian are the most commonly

used kernels (Géron, 2019).

2.4.3 Principal Component Analysis

The Principal Component Analysis (PCA) algorithm aims to reduce the dimensionality of a

dataset. It works by identifying a hyperplane on which the data can be projected, by using the

eigenvectors and eigenvalues it can find an axis which on which the original data has the highest

variation (i.e. the data is more separated). It also finds the line that is orthogonal to the found

axis, by projecting the data in the plane in which these lines are found we can see a projection of

the data (Géron, 2019).

This algorithm is widely used in machine learning algorithms, it can help to reduce

the number of features that represent a dataset or even helps to visualize the data. Increasing

the features of a machine learning pipeline also increases exponentially the complexity of the

model, each new feature adds a new dimension, needing more training examples that can fill

every possibility of features, this is known as the curse of dimensionality (Géron, 2019), and that

is why algorithms like PCA can be helpful in the training of machine learning.

2.4.4 Hold-out and cross-validation

In machine learning different methods of separation of data can be utilized, the optimal choice

can depend of the amount of available data and its complexity.

One of the simpler methods is the Hold-out separation, in which the dataset is split into
two parts, a training set and a test set, the training is commonly separate into a validation set.
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The validation set in this case is used for observing how the model behaves when applied to

unseen data, so the algorithm parameters can be adjusting according to its results. While the test

set should be only used for the final evaluation of the model, representing how it should behave

unknown data (Géron, 2019).

2.4.5 Cross-validation

Another evaluation method commonly used in machine learning is the cross-validation, it also

splits the dataset into training and testing set, but the training set is randomly split into K

predefined folds, then it trains the model using K-1 folds and uses the remaining one for validation,

the repeats the training using a different fold for validation, resulting in K evaluation scores

(Géron, 2019).

2.4.6 Neural networks and Deep Learning

Neural networks and deep learning have gained much coverage in the last few years, models

know as Deep learning have been achieving the state of the art results in many pattern recognition

and natural language (LeCun et al., 2015). Different from traditional machine learning, a deep

learning architecture is built with the junction of many different layers of modules, most of these

modules are for direct learning while others help the learning process.

To better understand the most works cited in chapter 3, a brief introduction to some

concepts that serve as building blocks for deep learning network will be presented.

2.4.6.1 Fully Connected Network (FCN)

Also known as Multi Layer Perceptron (MLP), consists of multiple interconnected perceptrons.

The perceptron is a linear classifier, in other words, it can create a line that best separates the

data. It operates simply: given an input array 𝑥 and a weight 𝑤 and a bias 𝑏, a prediction �̂� are
created by the equation 2.2.

�̂� = 𝑤𝑇𝑥 + 𝑏 (2.4)

This prediction is compared to the real 𝑦 value, and given the error, the weights and
bias are updated. This process repeats until the prediction �̂� is equal to 𝑦. For the fact that the
perceptron creates a line, it cannot solve problems which require a non-linear separation (e.g.

XOR problem) (Maier et al., 2019).

To solve problems that require a non-linear boundary, a combination of several percep-

trons, each receiving a part of the input data to create a so-called hidden unit, a combination of
hidden units followed by non-linear functions (figure 2.9) can distinguish more complex data,
due to the introduction and can create curves as separation (Bishop, 2006).

A MLP with at least two hidden layers is capable to approximate any function inside a
continuous function space (Cybenko, 1989), the more complex the problem the bigger number of

layers are usually required.

2.4.6.2 Convolutional Neural Network (CNN)

Even though MLP can achieve good results, they are not recommended in applications with a

huge amount of input data, since each instance of the input would need a weight, increasing the

memory necessary to represent all the weights necessary. In the case of convolutional neural
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Figure 2.9: Multi Layer Perceptron with two hidden layers. Circles in the red layer (left) are the input 𝑥, circles in
blue (middle) represent perceptrons and the last layer in green represents the prediction output �̂� Source: (Karpathy,
2018)

networks, the individual weights of the MLP are substituted to convolution kernels (figure 2.10)

(LeCun et al., 2015).

The idea of CNNs derived from classic algorithms for image classification, a defined

kernel that can extract features is applied to an image. The CNN can learn the kernel that extracts

the feature that best describes the input data (LeCun et al., 2015).

Figure 2.10: Convolutional Neural Network, in the left a input image with a single layer, after the application of
two convolution kernels (blue) and generation a output in the right. Source: (Karpathy, 2018)

2.4.6.3 Pooling

The Pooling technique aims to reduce the size of an input data, attempting to summarize similar

features into a single one. Works similarly to a CNN but with simpler operations. Used plenty in

CNNs and other variations always to reduce the scale of the input (Maier et al., 2019).

Instead of kernels, a single function is applied into a sliding window over the input

image and producing a single output, functions usually applied in the pooling operation are the

max (MaxPooling) or the average (AveragePooling). An example of the MaxPooling operation

can be seen in figure 2.11 (Maier et al., 2019).
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Figure 2.11: MaxPooling filter operation with a 2×2 size and stride 2. Source: (Karpathy, 2018).

2.4.6.4 Activation functions

As stated before, after each weighted operation in a Deep learning mode, there is a layer which

applies a non-linear function to the input, the so-called activation layers. Each activation layer

has its uses and can be used on different occasions.

2.4.6.5 Sigmoid

One of the early functions used to introduce non-linearity to neural networks, fits the input data

into a curve with values between 0 and 1, defined by the equation:

𝑓 (𝑥) =
1

1 + 𝑒−𝑥
(2.5)

2.4.6.6 ReLU

Abbreviation of Rectified linear unit, widely used in CNNs and MLP, its simply defined by the

equation:

𝑓 (𝑥) = 𝑚𝑎𝑥(0, 𝑥) (2.6)

It commonly produces better results when compared with other activation functions, this

can be true since the ReLU solves the vanishing gradient problem for deeper networks (LeCun

et al., 2015). The vanishing gradient happens when several applications of activation functions,

that reduce the maximum value of the data to 1 (i.e. sigmoid), are applied in sequence reducing

the values exponentially (Maier et al., 2019).

2.4.6.7 Leaky ReLU

Even though the ReLU solves the vanishing gradient problem, it brings another problem called

the dying ReLU. Since the weights are randomized in the first stage of training, too many negative

values can be attributed to the input data, making the output of the ReLU function mostly zeros

and the network can no longer learn from them.

To mitigate this problem, the Leaky ReLU was develop, it works similarly as the original

Relu, but instead of giving 0 to negative values, it applies a small inclination in the line (figure

2.12), its defined by the following equation:

𝑓 (𝑥) = 1(𝑥 < 0) (𝛼𝑥) + 1(𝑥 >= 0) (𝑥) (2.7)
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Were alpha is a constant which defines the angle of the line for the negative values, due

to the fact it solves the dying ReLU problem it has been widely used in several deep learning

works (Maier et al., 2019).

Figure 2.12: Comparison between ReLU (left) and Leaky ReLU (right). Source: (Sharma, 2017)

2.4.6.8 Loss Functions

Loss functions (also known as cost functions) are statistical functions that measure the distance

between the prediction output of a CNN (�̂�) to its original value (𝑦), the focus during training is to
minimize this distance. One of the most used loss functions in Deep learning is the cross entropy,

which consists of a variation of the log-likelihood function. Its described by the following

equation:

𝐻 (𝑝, 𝑞) = −
∑
𝑥

𝑝(𝑥) 𝑙𝑜𝑔 𝑞(𝑥) (2.8)

On which two probabilistic distributions 𝑝 and 𝑞 are compared and give a value, the
more alike the distributions are the close 𝐻 (𝑝, 𝑞) will be to zero (Géron, 2019).

A loss usually used for segmentation tasks is the Intersection over the Union (IoU), it

aims to calculate the distance of the current segmentation to the real one, it tries to maximize the

value of the intersection of the predicted mask and the real one, if the value is 1.0 it means that

both segmentations are the same.

Other commonly used loss function for segmentation tasks is the Dice Loss, the loss

can be described as:

𝐷𝑖𝑐𝑒 = 1 − 2
|𝑋 ∩ 𝑌 |

|𝑋 | + |𝑌 |
(2.9)

Where X is the prediction and Y is the real value, this loss can be helpful in unbalanced

datasets since it only updates when a positive sample of X is found.

2.4.6.9 Optimizers

Optimizers are functions that update the weights from a neural network based on the gradient of

its loss function. Since the final goal of a deep learning model is to minimize the loss function,

optimizers based on gradient descend methods give good results, the first derivative of a function
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tells on which direction its converging, we can reduce the value of 𝑓 (𝑥) by moving 𝑥 in the
opposite direction of the derivative signal (Goodfellow et al., 2016). One classic algorithm that

performs this task is the Stochastic gradient descent (SGD), where the gradient is weighted by a

learning rate factor, which dictated the convergence speed of the model, a learning rate too high

can provoke leaps that miss a minimal of the function, while a low learning rate can take too long

to reach that point (Géron, 2019).

One of the know problems from optimizers is when a local minimum is reached,

where
𝜕𝑦
𝜕𝑥 reaches zero, the network stops learning at this points since the gradient points to no

direction. To avoid reaching local minimums techniques such as momentum is applied, on which

a calculation based on the last few gradients and the current one is made, helping find which

direction the gradient was headed (Goodfellow et al., 2016)

One of the most used optimizers currently is the Adaptive Moments (Adam), which has

an adaptive learning rate for different hyperparameters of the most common optimizers, even

though the learning rate that multiplies the amount of influence from the gradient still needs to be

found by trial and error. Adam is one of the easiest to use and gives good results when compared

with other optimizers (Goodfellow et al., 2016) and (Géron, 2019).

2.4.6.10 Backpropagation

With the introduction of even deeper models, a found issue was on how to attribute credits since

intermediary perceptrons do not have a value from which a loss can be calculated. To solve this

problem, the backpropagation algorithm solves the problem to attribute credits using the gradient

of the last layer, which propagates back to all the hidden layers (Rumelhart et al., 1986).
The algorithm is based on the chain rule, the gradient values are applied recursively

through each perceptron of the network, computing the gradient with respect to the weights and

propagation backward the gradient with respect to the input of the current perceptron, i.e. each

neuron receives a backward pass 𝜕𝐿
𝜕𝑦 from the neuron in its front, and propagates backward the

new gradient ( 𝜕𝐿𝜕𝑦
𝜕𝑦
𝜕𝑥 ), better explained in figure 2.13 (Maier et al., 2019). With the propagated

gradients, the optimizers can update the current weights of a neuron.

Figure 2.13: Example of a forward pass (left) and backward pass (right) of a neuron, which gets as input the values
𝑥 and 𝑦 and compute the output 𝑧 in the forward pass. In the backward pass it propagates back the gradient with
respect to the input 𝑥 ( 𝜕𝐿𝜕𝑧

𝜕𝑧
𝜕𝑥 ) and the input 𝑦 (

𝜕𝐿
𝜕𝑧

𝜕𝑧
𝜕𝑦 ) Source: (Agarwal, 2017)

2.4.6.11 Batch Normalization

Batch normalization is a technique that increases the convergence rate of a neural network,

ensuring that the input of the linear operations of the network is always with a zero mean. The use

of batches for training in neural networks aims to optimize the training time, instead of training
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one instance of the database at a time, the network is inputted with a batch of elements, usually

values in a base 2 value (i.e. 32, 64, 128). The technique was proposed to address the vanishing

or exploding gradient problem (Géron, 2019).

Proposed by (Ioffe and Szegedy, 2015), it normalize the data using the mean and

standard deviation of the batch, where it calculates the new value of 𝑥𝑖 from a batch B = {𝑥1...𝑚}

following the equations:

𝜇B =
1

𝑚

𝑚∑
𝑖=1

𝑥𝑖 (2.10)

𝜎2
B =

1

𝑚

𝑚∑
𝑖=1

(𝑥𝑖 − 𝜎)2 (2.11)

𝑥𝑖 =
𝑥𝑖 − 𝜇B√
𝜎2
B
+ 𝜖

(2.12)

𝑦𝑖 = 𝛾𝑥𝑖 + 𝛽 (2.13)

Which 𝜖 is a constant, 𝛾 and 𝛽 are learnable variables, if the batch normalization harms
the convergence of the network, the 𝛾 and 𝛽 values will change corresponding to the received
gradients.

2.4.6.12 Dropout

Neural networks tend to suffer from overfitting quite often since it can learn a good decision

frontier over the training data with ease, over the years different techniques were developed

aiming to mitigate overfitting. One of the most effective techniques is the dropout, which simples

shuts down random neurons from the network at a given probability (figure 2.14), by doing that

the networks purposefully does not learn some aspects of the training data, resulting in a more

generic model (Géron, 2019).

Figure 2.14: Ordinary fully connected network (a) and the same network after applying a dropout (b). Fonte:

(Srivastava et al., 2014)



29

2.4.7 Famous Deep learning architectures

Over the last years, some new deep learning architectures have been release, these advanced

neural networks became notable for their wide applications, which also had an impact on medical

imaging (Maier et al., 2019).

2.4.7.1 U-net

Proposed in (Ronneberger et al., 2015) this network aims to learn how to apply an image-to-image

transform, one of its most common uses is to create segmentation masks. Based on a bottleneck

structure, it consists of an encoder part, on which the network learns features to classify the input

image, followed by a decoder part, which up-convolution layers increase the dimension of the

activations from the encoder part back to the original image size (figure 2.15). The network also

applies skip connections, which concatenates the outputs of some layers of the encoder part to the

decoder part, with the so-called skip connections, aiming to increase the amount of information

that the up-convolution layers use to upscale the activations.

Figure 2.15: Graphical representation of the U-net, the encoder part (left) works as a typical CNN, while the

decoder (right) upscales the activations, the gray arrows represent the skip connections. Source: (Ronneberger et al.,

2015)

2.4.7.2 Faster R-CNN

Another quite famous segmentation network is the Faster R-CNN, which is an optimization of

the R-CNN. This architecture works as an object detector, it extracts different size windows from

the input image and classifies then, the original R-CNN paper (Girshick et al., 2014) finds these

regions using a CNN and then classifies they using a SVM

The faster R-CNN (Ren et al., 2015) eliminates the selective searching part of the

R-CNN algorithm, which was used in the feature map from the output of the CNN. It uses instead

another network to predict the selected regions, which has its dimensions reshaped with a region

of interest pooling layer, classifying the image within the found region and predict the values

within the bounding boxes (figure 2.16).
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Figure 2.16: The Faster R-CNN applies a convolution layer, the feature map produce goes to another network that

gets the regions of interest and classify it. Fonte: (Ren et al., 2015)

2.4.7.3 Resnet

The ResNet architecture was designed to aid the training of deeper networks, even with the

mitigation methods described before, networks deeper than 30 layers can still suffer from unstable

gradients, harming the learning process of the firsts layers. The ResNet (He et al., 2016) presents

the residual blocks, the layers in a ResNet can be represented in the form of 𝑓 (𝑥) = 𝑥 + 𝑓 ′(𝑥),
adding the input of an earlier layer to the output of the last layer, this operation is called a shortcut
connection 2.17. This connection adds a parallel branch to the network, letting its gradient flow
backward and getting to the early ends of the architecture (Maier et al., 2019).

Figure 2.17: Representation of a shortcut connection from a ResNet, where {(𝑥) is the network itself and 𝑥 its input.
Fonte: (He et al., 2016)

A variation of ResNet is the dense networks or DenseNets. Built with dense blocks

that different from the ResNets, it concatenates the previous inputs to its feature map instead of

adding it (Huang et al., 2017).

2.4.7.4 Recurrent Neural Networks

The RNN aim to process sequences of data with dependencies (Mandic and Chambers, 2001),

commonly used to process texts and videos. Such networks are modeled recursively, each RNN
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cell has two inputs, one from its input data 𝑥 and one from the last cell, which processed the last

instance of the sequenced data (e.g. frames in a video), each cell then carries a memory from the

last cells forward.

One of its famous variations is the LSTM, in it, a forget gate is implemented in each cell
since longer sequences might have information at the beginning that is only relevant for instances

in the end, the middle portion might not carry the memory from these early cells through the

forget gate function (Hochreiter and Schmidhuber, 1997).

2.5 CONCLUSION

This chapter presented most of the technologies, techniques, and methods that CAD works related

to pulmonary CTA images. Most of the background presented is related to machine and deep

learning, since much of the papers related to computer vision, being of medical or regular images,

tend to use such algorithms.
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3 RELATED WORKS

This chapter reviews the literature related to the use of CAD for classification and segmentation

of pulmonary embolisms, for the most part, the data used in those techniques were from CTA

exams, but in some cases, CT exams were used.

While the focus of the research was not to find papers that used machine and/or deep

learning techniques, most of them, end up using these approaches. Some older were also reviewed

to find what worked best in each different technique that was used over time, while the focus was

papers at least 5 years old, some early methods can give some good insights over the problem.

One of the earliest methods of PE classification by (Masutani et al., 2002) uses

handcrafted features for both the segmentation of PE candidates and FP removal from those

selected candidates. To reduce the search space of the algorithm, the pulmonary vessel was

segmented from the whole exam, after the segmentation, a feature analysis for possible PEs was

performed. Those candidates were grouped based on their position and raw voxel value using a

connected component analysis algorithm with 26-neighbor connectivity, PEs were determined

based on features collected inside of those groups. The selected characteristics were the volume,

effective length, mean local contrast, the location of the candidates, and lung coverage. Based on

these features, it was considered as a PE group on which the volume was bigger than 10 mm3,

effective length bigger than 10 mm, mean local contrast between 60 HU and 300 HU and voxel

groups with more than 0.75 lung coverage. The database used for the tests was composed of

30 clinical cases (20 positives and 10 healthy), using a 16 mm3 error threshold, the sensitivity

was 100% with 7.7 FP/p (mean FP found in each patient), with 64 mm3 thresholds it achieved

85% sensitivity with 2.6 FP/p and with a 95 mm3 threshold and 1.9 FP/p, the sensitivity was not

reported for this case. It was found that most of the false positives (92%) were due to soft tissues,

such as lymphoid tissue, surrounding the vessel.

The following work by (Liang and Bi, 2007) also tries to segment the pulmonary vessels

from the rest of the CTPA to find the PEs, it uses the tobogganing segmentation algorithm to

separate the pulmonary vessels from the exam and highlight possible embolisms. The authors

used a new implementation of the algorithm, called concentration oriented tobogganing, which

looks at each scan row by row to find voxels with a HU value from between -50 HU and 100 HU.

Once it finds a voxel, the algorithm “slides” to neighbors voxels and creates a toboggan cluster, it

repeats this step to the external boundary voxels of the cluster in the attempt to find other clusters.

The dataset used for evaluating the algorithm was composed of 177 exams with 872 PEs, that

were divided into train and test sets, with 45 and 132 cases respectively. All the exams were

processed with concentration oriented tobogganing, generating 8806 PE candidates with a huge

false positive rating, giving an average of 47.5 FP/p in the training set and 40.3 FP/p in the test set.

To reduce the number of false positives a multiple instance classification was developed, based on

the SVM classifier, on which after at least one PE were classified correctly, a mathematical model

was utilized for minimizing the classification errors of the clusters related to the correct one. As

the input of this model 116 features were extracted from each candidate based on voxel intensity,

3D shape, and information of neighborhood of the cluster. With the false positive reduction step,

false positive ratio was reduced to 4 FP/p in the test set and obtaining an 80% accuracy of the

PEs. This work introduced tobogganing as a method of separate the PE from the pulmonary

vessel, which was used in future works such as (Tajbakhsh et al., 2015), and it was also one of

the first to introduce some early machine learning techniques to reduce the false positive rating.
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The work by (Bouma et al., 2009) also follows the same steps as the previous works,

a segmentation of the pulmonary vessel, a PE candidate selection, and FP removal, it also

applied some well know machine learning algorithms to solve the task. The segmentation of the

pulmonary vessels was achieved simply by applying a threshold to the exam, after that, a tracking

algorithm was applied, which is described to be able to find possible gaps in the segmented

vessel, the tracking algorithm has as input three different segmentations, one of the whole vessel

tree, one of the unconnected vessels and the last is the whole search area inside and between the

lungs. After the segmentation, for the PE candidate detection step, the authors used intensity

based features of the voxels, the voxel raw value, the eigenvalues of the Hessian matrix which

were inputted to a black Top-hat transform, with a 4mm dilatation and 2 mm erosion to create

a binary mask for the PE candidates. Those candidate voxels were then grouped, from each

candidate group a set of features were extracted for classification between positives and false

positives. The three features based on the voxel intensity used for identifying candidates, the

isophote curvature (with 𝜎 = 0.9 mm), its circularity, the tubularity of peripheral vessels, the
distance to parenchyma, distance to the mediastinum, the connectivity of a vessel to major vessels,

and its size were all used in the FP removal step. From all those features, a subset of the best

features was picked using the technique of 𝑙-forward and 𝑟-backward with the tree classifier from
PRTools, which showed that the stringness (which measures the tubularity near PE candidates)

and the distance to parenchyma were the pair of features that best represented the PEs. Many

classifiers were also tested using PRTools, for each classifier it was performed a feature selection,

the most optimal classifier found was the decision tree. The dataset used for training consisted of

38 positive examples, and 19 for testing, getting a 58%, 63%, and 73% at 4, 4.9, and 15 FP/p

respectively.

In (Dehmeshki et al., 2010) work, the same steps as all the previous works were followed:

pulmonary artery segmentation, PE candidates selection, and FP removal, this work focus mainly

to remove FP due to a poor segmentation of the pulmonary vessel. The first step was the artery

segmentation, which separated voxels from the lung tissue to voxels of heart tissue using the

threshold technique. A feature map is created using the eigenvalues from the Hessian matrix

to remove the connectivity, then it was used a region growing algorithm, with its root to the

pulmonary trunk, to increase the difference between the intensity of the heart and pulmonary

artery borders. For the embolism detection, five different methods were used, the first three were

based on the voxel value, one being based on the voxel raw value, once PEs inside the pulmonary

vessel are darker than the background, the second uses the eigenvalues from the Hessian matrix,

the third uses black top-hat operator, the other two were based on the shape, the eccentricity of

the arterial cross-section and the isophote curvature components. To reduce FP, voxels on the

wall of the pulmonary vessel were discarded based on the radius of the artery, soft tissue FP

were removed by segmenting the airway system, being that it is commonly found in between the

pulmonary vessel and the bronchial wall, and grouped voxels that were too small were considered

noise. Using a dataset of 55 CTA exams, with 20 exams used as the training set and 35 for testing,

the system achieved a sensitivity of 76%, 94%, and 98% at 2.3, 4.1, and 12.6 FP/p respectively.

The work proposed by (Özkan et al., 2014) aims to further optimize the pulmonary vessel

segmentation to reduce the FP ratio, it follows the same steps as other works, pulmonary vessel

segmentation, PE candidate selection, and FP removal. The pulmonary vessel segmentation

was made in three steps, firstly the segmentation of left and right pulmonary trunks, then lobar

and segmental vessel segmentation, followed by subsegmental vessel segmentation, the lungs,

and the mediastinum were separated from the CT for the vessel segmentation step. After all the

segmentation steps, a threshold of 1 HU < voxel < 150 HU was applied at the pulmonary vessel

and the resulted components were added as PE candidates. For FP removal, very small particles
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were considered as noise and removed using a 3×3 median filter, if a candidate was located in

only a slice it was considered as a FP and thin line shaped candidates were also considered FP.

The dataset used was composed of 33 patients with a total of 445 PEs, which was not separated

in train or validation, different results were from different volume thresholds, at 6.4 mm3 the

sensitivity was 95% with a 14.4 FP/p, with 16 mm3 the sensitivity was 61% with a 12.4 FP/p and

with 80 mm3 61% of sensitivity at 8.2 FP/p obtained.

Published in the following year, the work by (Tajbakhsh et al., 2015) was one of the

first papers that used convolutional neural networks (CNN) to attempt to solve the task, the

paper also introduced a new representation of the selected PE, summarizing the 3D image

around an embolus to a 2D image (figure 3.1), making it more compact and easier to apply data

augmentation methods. The overall steps are the same as of previous works, the segmentation of

the lungs, followed by a selection of PE candidates using the tobogganing algorithm, then the

transformation to the proposed image representation is applied to convert the 3D representation

of the PE candidate to a 2D image that is fed as input to a CNN, classifying the images into PE or

non-PE. To achieve the 2D representation of the image, or as the author calls a vessel-aligned

multi-planar image representation, it is estimated the orientation of the vessel on which the PE

is contained. To achieved this representation, it was applied a principal component analysis

(PCA) in the connected components that were considered a PE candidate (HU ≥ 100), with the

eigenvectors 𝑣1, 𝑣2, 𝑣3 from the PCA, the interpolation of the volumes along {𝑣1, 𝑣2} or {𝑣1, 𝑣3}
gives a longitudinal view of the PE and the interpolation of the volume along {𝑣2, 𝑣3} gives in a
cross-sectional view of the PE, each of those views was used as a channel of the final image, that

served as input for the CNN (i.e. a 32 × 32 × 3).

Figure 3.1: Comparison between the traditional 3D view of PEs (axial, coronal and sagittal), and the proposed 2D

representation achieved using PCA. Source: (Tajbakhsh et al., 2015)

The CNN architecture was simple and straight forwarded, and not much was discussed

in the paper, besides the fact that other more complex CNN models were tested but with no

significant difference in the results obtained. As of the experiments, the algorithm was tested in

two datasets, a private one containing 121 CTPA exams with 326 emboli, and the dataset from

the PE challenge (González et al., 2020) with 20 CTPA exams and 133 emboli. For training,

the databases were split into 3 even folds for cross validation, it was also applied a rotation,

translation, and scaling data augmentation of the 2D representation of the PE candidates. It

achieved an 83.4% sensitivity with a 2.0 FP/p with the private database and 34.6% at 2 FP/p with

the challenge database at a 0 mm error threshold.

Another approach to the problem that uses machine learning can be found in (Ozkan

et al., 2017), following their work from 2014 using the same database, containing 33 CTPA exams

and 450 PEs, and the same steps (lung and lung vessel segmentation, PE candidate extraction
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and PE detection) but introducing machine learning algorithms to optimize some steps. Firstly

the left and right lungs were segmented applying the Otsu threshold method, the space between

the segmentation was considered the mediastinum, then with a help of a tracking algorithm (not

specified by the authors) and using adaptive threshold the segmental (that reaches the lungs) and

subsegmental (does not reach the lungs) vessels were segmented and added to the left and right

lung segmentation. That resulted in an uneven segmentation, due to the path of the vessels, the

uneven areas of the lungs were found using the first derivative of the 𝑥 value of the borders, then
the area between the two found peaks in the signal were connected using a tracking algorithm,

closing the lungs (figure 3.2).

Figure 3.2: The steps of the pulmonary lungs and vessels segmentations. In (a) the original image, (b) threshold
with Otsu, (c) segmented lungs without vessels, (d) uneven segmented vessels and lungs, (e) connected segmented

lung with vessels and (f) application of the segmental vessels. Source: (Ozkan et al., 2017)

In the PE candidate detection step the authors used a 3D CCL algorithm on a 3D

representation of the vessels (called vessel tree), after that it was also used a 3×3 median filter

to remove small noise. In the next step, 14 features based on volume, size, and ratios were

chosen, then a feature selection method based on the t-score was applied, the authors chose 8
features that had a t-score greater than a threshold, the features were: the maximum value of the

candidate length in the 3 dimensions, the largest area in transverse cross section, the volume of

each candidate, the diagonals the ratios of voxels and volume in the possible largest area. Three

classification algorithms were used, the SVM, MLP, and KNN, the MLP had 2 hidden layers,

with 14 and 7 neurons, SCG was used for adjusting the weights with a learning rate of 0.02 and

momentum of 0.2. In the KNN, the K value of 30 was chosen by trial and error, and the SVM

was used with a Gaussian kernel (RBF). For testing, the data were separated with 10-fold cross

validation, using all the extracted features gave a higher accuracy but it had a worse sensitivity

and FP/s in general, the results obtained with the selected features using MLP were 98.3% and a

10.2 FP/s, with KNN the sensitivity was 57.3% with 5.9 FP/s and the SVM got 73% sensitivity

with 8.2 FP/s. The work had the higher sensitivity at the time, but it did not have the lower false

positive rating, this is said to be due to the lower number of PEs in the data, a patient given as an

example has 3 PEs but got 15 FP.
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After two years, the problem was approached by (Yang et al., 2019), which also followed

the same three steps as the others, but it was the first to use deep learning methods in the PE

candidate selection, utilizing a model based on Ronneberger’s U-net for segmentation. The

output of the first network served as input to a second CNN, that aims to reduce false positives by

classifying candidates as PE or not. The first network uses 3D convolution layers followed by

max-pooling and four residual blocks for its encoder part, and the decoder has two deconvolutional

layers, followed by one residual block and two convolutional layers, skip connections are also

applied from the last two layers of the encoder part to the first two layers of the decoder part, in

the second skip connection it is also concatenated a 3 channel array containing the coordinates

of each voxel of the location map inputted in the residual block, forming a 131 channel feature

map. To detect the PE candidate after the network output and inspired by the Faster R-CNN,

three pre-defined anchor cubes for each voxel were created, each cube has a scale of 10mm,

30mm, or 60mm, which are represented in an array of five values, with its location (Δx, Δy,
Δz), size and probability to have a PE inside the cube, explaining the output of the network

(3∗5@24×24×24) seen in the upper half of figure 3.3. For training, the input data were split in

96×96×96 overlapping cubes to fit in memory, during testing the cubes were of 208×208×208.

Figure 3.3: Graphic representation of the two-stage network, in the upper-half the PE candidate network and in the

lower-half the FP removal network, Source: (Yang et al., 2019)

To avoid overfitting and due to the curse of dimensionality a 2.5D representation was

applied, similar to the proposed in (Tajbakhsh et al., 2015), firstly the cube was binarized with a

threshold of 70 HU (chosen empirically), then a PCA was applied to get the three eigenvalues

that were used in a so-called vessel-alignment transformation, which results in a vessel-aligned.

Three different views (coronal, sagittal, and transverse) were extracted from the resulted cube,

which was concatenated in a 3 channel image to serve as input for the 2D neural network, based

on the ResNet-18 (bottom half of figure 3.3). Due to a high imbalance between false positives

generated in the first step, a data augmentation technique was used to increase the size of the

real PE base, using scaling, random translation, and rotation. The data used for evaluating the

network came from two sources, the dataset from an online PE detection challenge (González

et al., 2020) which has 40 exams (20 for training and 20 for testing), and a local database called

PE129 that have 99 exams combined with 30 exams from another public dataset (Masoudi et al.,

2018). In the CAD-PE challenge dataset, the system got the same value of sensitivity, 75.4%, and
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2 FP per scan at 0mm, 2mm, and 5mm localization error, surpassing the winner of the challenge

which the data were taken. In the private data sensitivities of 76.3%, 78.9%, and 84.2% at 2 FP

per scan at 0mm, 2mm, and 5mm localization error respectively.

In the work by (Liu et al., 2020), the authors utilized a single network (also based on the

U-net) for the PE segmentation only, testing different probabilities thresholds for the output of

the network, the paper also calculated the clot burden of each PE found, all the cases used in the

dataset were of patients with acute PE. A total of 590 exams were used, being 460 positive and

130 negatives, 80% of this dataset (368 positives and 104 negative cases) was used for training

and 20% for validation (92 positives and 26 negative samples). For preprocessing the data, a

min-max normalization was applied, the images were processed using a window approach, but

no clipping was applied, the input of the model were 512×512 images. Not much detail over the

network itself was shared, but it seemed to be an implementation of the U-net pretty much like

the original one, the sigmoid was used for the output activation function, and different probability

thresholds were used to identify a pixel as being part of a PE, the tested thresholds were 0.1,

0.3, 0.6, 0.7 and 0.99, a clot burden calculation was applied together with the segmentation of a

PE, using equation (3.1), where Ω is PE regions, 𝑝𝑖 its the pixel 𝑖 of the PEs, 𝑤𝑖 represents the

width and ℎ𝑖 the height of the 𝑝𝑖 and 𝑇𝑖 the thickness of the slice where 𝑝𝑖 is located. For testing,
another dataset was used, containing 288 exams collected in the local hospital (186 positive and

102 negative cases). The results in the test set got no significant statistical difference, getting in

the most cases 93.50% sensitivity, 76.50% specificity, and 0.925 AUC, no false positive per scan

was informed.

𝑉 =
∑
pi∈Ω

𝑤𝑖ℎ𝑖𝑇𝑖 (3.1)

The paper by (Rajan et al., 2020) also does a two-stage neural network, but it uses a

2D CNN instead of 3D. It does also follow the same pipeline as the previous works, for the PE

candidate generation step a 2D U-net was used and for the FP reduction step a ConvLSTM (figure

3.4). The dataset used in the experiments came from more than 100 medical imaging centers,

it contains 1,874 exams with PE and 718 without. With the huge amount of collected data, a

different approach to annotation was applied, over 17 radiologists marked the emboli on roughly

every slice in a 10mm range, resulting in multiple slices that contained PE without annotation,

this method is called “sparse annotation" by the authors. About 172 exams were discarded due to

poor quality.

Different from other works with similar approaches, in (Rajan et al., 2020) a 2D CNN

based U-net was used, for the input of the network a “slab" of 4 neighbors above and below

the current slice (i.e. 9 channel image) was used, the network then outputs a single channel

matrix containing the probability of each pixel in the middle of the slab of having a PE, the Dice

coefficient was used as a metric. The second neural network had an approach of multiple instance

learning (MIL) to the problem to add local context to the learning process, a Conv-LSTM network

was used, that takes into consideration for learning the output of its neighbor’s inputs, the features

learned by the Conv-LSTM were then used by a multiple instance learning modules, the featuring

aggregation methods used for the MIL tested were max, mean and learnable self-attention

functions. Multiple tests were performed in the validation set to find the best hyperparameters of

the second network, the best results were achieved with the Conv-LSTM instead of a normal

CNN, the Max pooling as the aggregation method and Focal loss instead of binary cross entropy,

the network scored an AUC of 0.94 in the validation set and 0.84 in the test set.
In (Huang et al., 2020), the authors used a 3D CNN with pre-trained weights. Unlike

the previous work that used 3D neural networks (Yang et al., 2019), the whole CT scan was used
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Figure 3.4: Image representation of the network used in the Pi-PE paper, where the raw CT input (X) with its mask

(M) are used as input of the generator network (G) that produces a prediction mask (M̂), that is multiplied with

the raw CTA input to produce a masked CT (X̂) used in the second network for FP removal (D) that produces the

prediction (ŷ) saying whether the prediction mask was positive or false. Source: (Rajan et al., 2020)

instead of dividing it into smaller cubes, this change is said by the authors to be significant to

the training. This approach also differs from other works by using a single big network, instead

of the two-stage, this is connected to the fact that it classifies the CT in a window level as PE

positive or negative, instead of classifying PE candidates. The data used consisted of 1797 CT

studies (both PE negative and positive) from Stanford Medical Center, which was split into

1461 exams for training, 167 for validation, and 169 for testing. Another dataset was acquired

with an additional 200 CT exams from the Intermountain healthcare system. The network itself

was composed of multiple custom layers (figure 3.5), the so-called PENet unit (3D convolution

followed by group normalization and Leaky ReLU) and Squeeze-and-Excitation (SE) blocks

(Average pooling followed by two fully connected layers, with Leaky ReLU and Sigmoid as

activation functions respectively), a PENet bottleneck consists of three PENet units followed by a

SE block, a skip connection was applied from the input of the first PEN unit to the SE block

output, and a PENet encoder is composed of multiple PENet bottleneck concatenated, the ideal

depth of the network was found using cross validation on the training set.

The pre-trainedweights used came from theKinects-600 dataset, the group normalization

was used instead of batch normalization to save memory, so the resizing of the training images

from 512×512 to 224×224, a data augmentation of random crops of the width and height with

192×192, rotation and shifting of the slices (jitter). As for the input of the network, a sliding

window method was used of 24 slices at a time, which was also found by using the validation

set. The weights were updated using the SGD algorithm with a momentum of 0.9 and learning

rate of 0.1, a window was considered positive if at least 4 slices had a PE, being the number of

the smallest PE found in the dataset. The network achieved an AUROC of 0.84 from the test

set of the Stanford dataset and 0.85 for the whole Intermountain dataset, the results were only
compared to other networks famous networks, the ResNet-50, ResNetXt-101, and DenseNet-121,

and it outperformed all.

In the same year, the work by (Cano-Espinosa et al., 2020) also uses a single network

approach, seeing it as a segmentation rather than a classification problem. The dataset used came

from the CAD-PE challenge (González et al., 2020), with a total of 80 scans, 60 being used for

training and 20 for testing. Three different networks were proposed for the segmentation task, the

first network was also based on a 2D U-net structure, with 4 convolution layers and deconvolution

layers, followed by a fully connected layer with a sigmoid as the last activation function, each

slice was inputted individually in this network. The second one, similar to the one proposed by
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Figure 3.5: Representation of the PENet, with the PENet units, Squeeze-and-Excitation blocks, PENet bottlenecks
and encoders. Source: (Huang et al., 2020)

(Rajan et al., 2020), uses a slab of 5 slices as input for a 2D U-net network, this architecture is

called 2.5D by the authors. The third one, called 3D network, used the same structure as the

2.5D one, but each inputted slice had the three different planes inputted, sagittal, coronal, and

transverse, the exams were sampled to be the same size (512×512×512) for this network, for the

prediction of candidates, the three views were merged using the biggest value of each pixel.

During training, 5 of the 60 scans were used for validation, the HU window chosen was

between -200 and 500 and then normalized in the range of 0 and 1, each one of the three models

was trained for 200 epochs. The network predictions were binarized with a threshold of 0.5, then
a closing operation was performed with a kernel size of 5×3×3 to eliminate small noises, lastly, a

connected component analysis algorithm was used to connect individual PE candidates. Those

candidates were then extracted and, using an inner distance transform, the authors were able to

find the pixels that were the furthest away from the perimeter, the coordinates closest to those

pixels were associated with a score of its probability of being an embolus. The results obtained

in the test set were separated in error thresholds, the 2D, 2.5D, and 3D networks got, respectively,

at 0mm threshold sensitivities of 0.49, 0.48 and 0.55 and FP/s of 1.5, 0.65, and 1.00, at 2mm the

networks got 0.56, 0.54 and 0.61 of sensitivity and FP/s of 1.45, 0.55 and 1.00 respectively, and

lastly at 5 mm error threshold the sensitivities were of 0.59, 0.63 and 0.68 and the FP/s were of

1.35, 0.50 and 0.95. Besides the fact of achieving a low FP/s, the sensitivity of the models was

rather low, besides that all the models presented surpassed all the other participants in the old

CAD-PE challenge.
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In the work by (Long et al., 2021), in it the authors proposed a deep learning model

based on the instance segmentation neural network R-CNN (Girshick et al., 2014). The proposed

network, named P Mask-RCNN, aims to improve small object detection by enlarging the feature

maps and anchor selection from the Region Proposal Network (RPN) module of the Mask

R-CNN. Firstly the authors constructed a probability model in order to extract the probability

of PE ROIs appearing in each voxel of the image, using a Gaussian mixture model (GMM) to

model the probability distribution. Then, based on values of the mixture coefficient, coordinates

from the Gaussian distribution were selected to extract anchors for the Mask-RCNN model 3.6.

The combination of the upsampled feature maps and anchors selected by GMM are combined

and fed to a fast R-CNN model. The data used to test the model came from FUMPE dataset

(Masoudi et al., 2018), containing 35 patients, which 29 were used for training, 2 for validation

and 4 for testing, rotation and flipping data augmentation methods were applied in order to

prevent overfitting. The model obtained a average precision (AP), AP50, AP75 and Dice Score

of 41.87%, 81.55%, 41.43% and 0.75, respectively. It had the best results when compared with
other state-of-the-art models, such as “vanilla” Mask R-CNN and FCIS.

Figure 3.6: (a) PE ROIs from the whole scan. (b) GMM model built from the PE ROIs. (c) Applicaiton of the

GMM model to obtain a candidate region. (d) Extraction of the anchors from the feature map. Source: (Long et al.,

2021)
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Table 3.1: Table summarizing reviewed papers.

Name Author/Year Dataset Description Results

Computerized detec-

tion of pulmonary

embolism in spiral CT

angiography based

on volumetric image

analysis (Masutani

et al., 2002)

Masutani et al.

/ 2002

30 exams, 20

positive and

10 negative

Segmentation of the pulmonary

vessel, CCL based on HU to find

PE candidates, basic threshold-

ing of features to exclude FP (vol-

ume, length, mean local contrast,

position and lung coverage)

100% sensitivity

and 7.7 FP/p at

16mm3 error tol-

erance, 85% sensi-

tivity and 2.6 FP/p

at 64mm3 error

tolerance

Computer aided de-

tection of pulmonary

embolism with tobog-

ganing and multiple

instance classification

in CT pulmonary an-

giography (Liang and

Bi, 2007)

Liang and Bi /

2007

177 exams, 45

for training

and 177 for

testing

Segmentation of pulmonary ves-

sel and PE candidate found using

an altered version of the tobog-

ganing algorithm, clusters found

by the algorithm were classi-

fied using a mathematical model

based on the SVM, 116 features

were used based on voxel inten-

sity, 3D shape, and information

from neighbor clusters

80% accuracy and

4 FP/p

Automatic detection

of pulmonary em-

bolism in CTA im-

ages (Bouma et al.,

2009)

Bouma et al. /

2009

57 exams, 38

for training

and 19 for

testing

Lung and vessel segmentation

thresholding HU values, tracking

algorithm to find gaps in the seg-

mentation. Voxels intensity and

values of the Hessian Matrix are

used for creating the segmenta-

tion mask from on the gaps found

by tracking. Features for FP re-

moval were selected using the l-

forward and r-backward methods.

The best results were achieved

with the decision tree classifier

and distance to parenchyma and

stringness as features

Sensitivities of

58%, 63% and

73% at 4, 4.9 and

15 FP/p

Fully Automatic

Segmentation and

Detection of Pul-

monary Artery and

Embolism in CTA

images (Dehmeshki

et al., 2010)

Dehmeshki et

al. / 2010)

55 exams, 20

for training

and 35 for

testing

Vessel Segmentation using HU

threshold, eigenvalues from Hes-

sian to increase borders intensity.

FP removal based on voxel raw

value, eigenvalues from Hessian,

using black top-hat operator, ac-

centricity of the arterial cross-

section and isophote curvature

components

Sensitivities of

76%, 94% and

98% at 2.3, 4.1

and 12.6 FP/p

A novel method for

pulmonary embolism

detection in CTA im-

ages (Özkan et al.,

2014)

Özkan et al. /

2014

33 exams Segmentation of the left and right

trunks, then lobar and segmental

vessel segmentation followed by

mediastinum separation from the

lungs, threshold technique for PE.

FP removal using median filter,

number of slices in the compo-

nent,

At 6.4mm3, sen-

sitivity of 95%

and 14.4 FP/p, at

16mn3 61% and

12.4 FP/p and at

80mm3 61% and

8.2 FP/p
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Table 3.1: continuation from previous page

Name Author/Year Dataset Description Results

Computer-aided

pulmonary embolism

detection using a

novel vessel-aligned

multi-planar image

representation and

convolutional neural

networks (Tajbakhsh

et al., 2015)

Tajbakhsh et

al. / 2015

Two datasets,

a private one

with 121 ex-

ams and a pub-

lic one with 20

exams

Tobogganing algorithm used to

find PE candidates, change of

representation of each candidate

to a 2-channel using eigenvectors

which served as input to an FP

removal CNN

At the private

database an 83.4%

sensitivity with

2.0 FP/p, with the

public database

a sensitivity of

34.6% at 2 FP/p

at a 0 mm error

threshold

Automatic Detec-

tion of Pulmonary

Embolism in CTA Im-

ages Using Machine

Learning (Ozkan

et al., 2017)

Ozkan et al. /

2017

33 exams Otsu thresholding and a tracking

algorithm to reduce search area

and find PE candidates, SVM,

MLP, and KNN were used to

classify candidates, 10-fold cross

validation for training

The MLP, KNN

and SVM got re-

spectively 98.3%,

57.3% and 73%

sensitivities and

10.2, 5.7 and 8.2

FP/p

A Two-Stage Convo-

lutional Neural Net-

work for Pulmonary

Embolism Detection

From CTPA Images

(Yang et al., 2019)

Yang et al. /

2019

Two datasets,

a public with

20 exams

and a sec-

ond dataset

combining 99

private exams

with 30 from

another public

dataset

3D CNN network based on the

U-net and uses residual blocks,

produces a set of blocks for each

voxel containing its probability

of having a PE, those blocks were

converted to a vessel-aligned rep-

resentation and 3 views (sagit-

tal, coronal, and axial) were ex-

tracted to serve as input to a

Resnet-18 for FP removal

In the public

dataset 75.4%

sensitivity and

2 FP/p at 0mm,

2mm and 5mm

error threshold,

in the private set

sensitivities were

of 76.3%, 78.9%

and 84.2% all

with 2 FP/p at

0mm, 2mm and

5mm error

Evaluation of acute

pulmonary embolism

and clot burden on

CTPA with deep

learning (Liu et al.,

2020)

Liu et al. /

2020

590 exams,

460 positives,

and 130 neg-

atives, 80%

were used for

training

2D U-net that segmented clots

from the CT only, different errors

thresholds were tested and a clot

burden value were attributed to

each PE found

No statistical dif-

ference between

thresholds, with

93.50% sensitiv-

ity, 76.50% speci-

ficity, and 0.925%

AUC, no FP were

informed

Pi-PE: A Pipeline

for Pulmonary Em-

bolism Detection us-

ing Sparsely Anno-

tated 3D CT Images

(Rajan et al., 2020)

Rajan et al. /

2020

2592 exams,

1874 positives

exams and 718

negative

Two step deep learning approach,

first segmentation network based

on U-net with 2D convolutions

with different channels being the

4 neighbor slices from above and

below the target slice (i.e. 9

channel image) with dice loss.

The second network was a Conv-

LSTM as a feature extractor that

was applied to a MIL algorithm.

It got the best results with a max

pooling aggregation method and

Focal loss

AUC of 0.94 in

validation set and

0.84 in test set
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Table 3.1: continuation from previous page

Name Author/Year Dataset Description Results

PENet—a scalable

deep-learning model

for automated diag-

nosis of pulmonary

embolism using vol-

umetric CT imaging

(Huang et al., 2020)

Huang et al. /

2020

1797 exams,

1461 used in

training, 167

for validation

and 169 for

testing and a

second test

dataset with

200 exams

3D convolutional network with

squeeze-and-excitation blocks,

with skip connections from the

input of the 3D convolution and

the output of the SE blocks. Dif-

ferent network depthswere tested.

It used pre-trained weights from

the Kinects-600 dataset and data

augmentation.

AUROC 0.84 in

the test set and

0.85 in the second

test set

Computer Aided De-

tection of Pulmonary

Embolism Using

Multi-Slice Multi-

Axial Segmentation

(Cano-Espinosa et al.,

2020)

Cano-

Espinosa

et al. / 2020

80 exams, 60

for training

and 20 for

testing

Three different networks were

tested, a 2D U-net with a depth

of 4. A 2D U-net with neighbor

slices as input (similar to Rajan

et al. work). The third was a 3D

U-net with three different views

(sagittal, coronal, and transverse).

The best results were achieved

with the 3D network.

Sensitivities of

55%, 61% and

68% with FP/p of

1, 1 and 0.95 at

0, 2 and 5 mm

error threshold

respectively

Probability-based

Mask R-CNN for

pulmonary embolism

detection (Long et al.,

2021)

Long et al. /

2021

35 exams

from FUMPE

dataset

Model based on Mask R-CNN,

using upsampling of feature

maps in combination with an an-

chor extraction technique using

Gaussian Mixture Models and a

Fast R-CNN for prediction, the

model optimizes small object de-

tection.

average precision

(AP), AP50,

AP75 of 41.87%,
81.55%, 41.43%,
respectively and a

Dice Score 0.75
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4 PROPOSAL

The objective of this work is to develop a method capable of classifying correctly and show PE from a CTA image

scan. The proposed method aims to further optimize the current networks from the state of the art. It follows the

same main steps: pulmonary segmentation and false positives (FP) reduction. Besides that, this work also developed

a brand new dataset alongside the radiology team of the Hospital das Clínicas (HC) from the UFPR.

The pipeline for detection of EPs (Figure 4.1) follows two main parts: in the first part, a U-net model will

be trained to be able to select PE candidates, segmenting them from the whole exam volume. For the input of this

network a neighborhood of five slices served as input, each slice representing a different channel in a image. This

approach was inspired mainly by (Cano-Espinosa et al., 2020) work, which achieved the better results using a 3D

representation of the input, and in the work by (Rajan et al., 2020), which uses so-called “slabs” of regions in the

volume. Since a EP occupies more than one slice, the spatial information helps the training process of the network.

For the second part a machine learning pipeline was developed for extracting the features and classify

candidates of EP. Right after the segmentation each EP candidate was separated, then a feature array was extracted

with data about the candidate volume and it’s spatial location. Then those feature arrays were trained with different

machine learning algorithms classifying the candidates into PE and non-PE, effectively reducing false positives.

Figure 4.1: Step-by-step representation of the proposed method, in blue the steps of preprocessing and slice

extraction for the input of the network, in red the representation of the U-net network adapted from (Ronneberger

et al., 2015), in green the steps extraction of PE candidate, feature extraction and classification. Source: The author.

4.1 DATA

The data used for training and evaluation of the built model come from three different datasets (FUMPE, CAD-PE

and HC), which all are composed of CTA images with semantic labeling of the PE. Table 4.1 summarize all three

datasets, showing PE counts at intervals based on their sizes in mm3.

4.1.1 First dataset: “FUMPE”

The first dataset available comes from (Masoudi et al., 2018), which is composed of 35 CTA, with two exams not

having any PE. The segmentation masks were produced by a radiologist with 5 years of experience in the field and
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Table 4.1: Count of PEs of each database within ranges of volumes in mm3

Intervals (mm3) FUMPE CAD-PE HC

0, 1 ≤ n < 0, 5 0 74 35

0, 5 ≤ n < 1 1 117 23

1 ≤ n < 2 0 93 26

2 ≤ n < 9 3 96 69

9 ≤ n < 38 8 68 51

38 ≤ n < 168 13 157 71

168 ≤ n < 740 31 155 74

740 ≤ n < 3270 32 80 25

3270 ≤ n < 14420 19 54 29

14420 ≤ n ≤ 63650 11 27 5

reviewed by another with 18 years of experience. The dataset has a total of 8792 slices, and 3438 PE regions of

interest, with the height and width of the voxels ranging between 0.52 and 0.78 mm. Most PEs (67%) are found in

peripheral arteries. In addition to the markings, the authors also provided metadata, such as the proportion of the

size of the right ventricle and left ventricle of the heart, whether there was reflux in the inferior vena cava, whether
the interventricular septum is straight, the pulmonary artery diameter and the value of Qanadli score, which is
calculated based on the position of the thrombus within the lung. The dataset is also used in combination with a

private one in the work by (Yang et al., 2019).

4.1.2 Challenge dataset: “CAD-PE”

The second database, called “CAD-PE” (González et al., 2020), is composed of 91 CT angiography exams and a

total of 24624 slices with voxels sizes ranging between 0.52 and 0.92 mm. The first 40 exams were segmented by a
board of radiologists with more than 10 years of experience while the other 51 exams were segmented by a board

member. The marking was done with the aid of a semi-automated method, in which the markings performed by the

radiologists were of the area of interest (i.e. a rectangle in the region of the PE), and with this area of interest a

semi-supervised method was used for to generate the semantic segmentation masks, each segmentation performed

was then averaged to produce the final mask. Many papers from the chapter 3 utilize data from the CAD-PE

challenge, which is available on their website but it no longer has the segmentation masks available for downloading,

but with a new recent wave of papers for PE detection, the dataset was republished with new labeled data.

4.1.3 Our dataset: “HC”

The dataset called “HC” was develop alongside the algorithm of this work. It has 40 exams, 20 produced by the GE

Revolution 512 tomographer and another 20 by the Toshiba Aquilion 64. The dataset has 14463 slices, with sizes

of the voxels range from 0.57 and 1.0 mm. All exams were evaluated by a thoracic radiologist with 32 years of
experience regarding the presence of PE and its location. After this review, the masks were created by a physician in

the third year of the radiology residency. No semi-automated method was used to create the segmentation masks.

The project regarding the dataset creation was accepted by the ethics committee from HC and it’s properly

registered in the Plataforma Brasil. All of the exams selected were diagnosed with PE in the HC hospital from the

time period of 05/11/2018 to 05/02/2019, the exams were captured with a Toshiba Aquilion 64 topographer, PE

diagnosed exams were also collected form the DAPI clinic by a GE Revolution topographer in the time period of

09/11/2018 to 20/11/2019. From the final 40 labeled exams, 20 will come from each tomographer. The development

of the dataset has been approved by the ethical committee from HC with the CAAE: 07724919.0.0000.0096.

The annotation of the dataset was made using the ITK-SNAP software, producing binary mask with same

dimension as the CTA exam (Figure 4.2).

Additional metadata was also created for the dataset, for all CTA scans evaluated the largest artery

involved, inferior vena cava reflux, interventricular septum flattening or paradoxical bowing, pulmonary artery trunk

diameter, transverse diameters of the right ventricle (RV) and left ventricle (LV), measured between the endocardial

surfaces in the largest place perpendicular to the longitudinal axis, and RV/LV relationship were listed (Tables

4.2 and 4.3). Those informations can serve as indirect signs of the presence of PE, they can be observed in CTA

scans as pulmonary artery dilatation, right ventricle enlargement (increasing the relation of right and left ventricles
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Figure 4.2: Pixel level annotation. In column (a) CTA image of PE in different anatomical locations. In column

(b) pixel level annotation showing in white all pixels of the PE of the corresponding CTA image in column (a). In

column (c) superposition of the corresponding image of columns (a) and (b), with the thrombus in red.

diameters), inferior vena cava contrast reflux and abnormal position of the interventricular septum, that can be

flattened or even paradoxical bowed towards the left ventricle (Figure

Figure 4.3: CTA features related to right heart strain and pulmonary artery hypertension. In (a) an example without

IVC reflux. In (b) with IV reflux. In (c) showing normal position of interventricular septum. In (d) showing flattened

interventricular septum. In (e) showing paradoxical interventricular septal bowing

4.2 PROPOSED METHOD

The technique proposed in this work is composed of two main steps: the location and segmentation of PEs candidate

and the reduction of false positives of these candidate groups (Figure 4.1).



47

Table 4.2: Data from exams obtained with GE Revolution 512. PAD: pulmonary artery diameter. RV: right ventricle

diameter. LV: left ventricle diameter. RV/LV: relation of right and left ventricles diameters. IVC Reflux: inferior

vena cava reflux of contrast media. IV Septum: interventricular septum position.

Case Genger Age PAD(mm) RV(mm) LV(mm) RV/LV IVC Reflux IV Septum The largest affected vessel

1 M 59 27 52 57 0,91 Absent Normal Main Artery (unilateral)

2 F 72 32 60 40 1,5 Absent Flattening Main Artery (unilateral)

3 M 71 36 38 32* 1,19 Present Normal* Lobar

4 M 62 28 33 34 0.97 Absent Flattening Trunk bifurcation

5 M 73 30 32 42* 0,76 Absent Normal Segmental

6 M 82 40 47 30 1,57 Present Flattening Trunk bifurcation

7 F 21 32 39 47 0,83 Absent Normal Segmental

8 F 82 29 32 42 0,76 Absent Normal Segmental

9 M 50 28 22 40 0,55 Present Normal Lobar

10 F 57 26 55 38 1,45 Absent Paradoxical bowing Sub-segmental

11 M 31 27 25 51 0,49 Absent Normal Segmental

12 F 36 22 30 35 0,86 Absent Normal Lobar

13 F 86 26 35 36 0,97 Present Normal Sub-segmental

14 F 57 38 50 48 1,04 Present Flattening Main Artery (unilateral)

15 F 32 27 44 42 1,05 Absent Flattening Segmental

16 M 38 30 46 50 0,92 Absent Normal Lobar

17 F 81 31 50 50 1,00 Present Normal Lobar

18 M 54 28 44 50 0,88 Absent Normal Lobar

19 M 41 29 40 49 0,82 Absent Normal Trunk bifurcation

20 M 54 29 38 64 0,59 Present Normal Segmental

Table 4.3: Data from exams obtained with Toshiba Aquilion 64. PAD: pulmonary artery diameter. RV: right

ventricle diameter. LV: left ventricle diameter. RV/LV: relation of right and left ventricles diameters. IVC Reflux:

inferior vena cava reflux of contrast media. IV Septum: interventricular septum position.

Case Genger Age PAD(mm) RV(mm) LV(mm) RV/LV IVC Reflux IV Septum The largest affected vessel

1 F 63 24 43 57 0,75 Present Normal Lobar

2 F 11 20 37 40 0,92 Absent Flattening Trunk bifurcation

3 F 77 29 45 35 1,29 Absent Flattening Main pulmonary artery

4 F 38 34 52 29 1,79 Present Paradoxical bowing Main pulmonary artery

5 F 68 29 41 43 0,95 Absent Flattening Trunk bifurcation

6 F 54 28 39 54 0,72 Present Flattening Main pulmonary artery

7 F 58 35 33 35 0,94 Present Normal Lobar

8 F 64 31 37 48 0,77 Absent Flattening Segmental

9 M 29 28 23 31 0,74 Absent Flattening Segmental

10 M 68 26 52 35 1,49 Present Paradoxical bowing Main pulmonary artery

11 F 81 27 29 42 0,69 Present Normal Lobar

12 F 84 31 52 41 1,27 Present Normal Trunk bifurcation

13 F 41 24 32 38 0,84 Absent Normal Segmental

14 F 48 34 43 51 0,84 Present Normal Segmental

15 F 45 20 40 45 0,89 Absent Normal Main pulmonar artery

16 F 75 31 33 46 0,72 Present Normal Sub-segmental

17 F 59 31 42 36 1,17 Present Flattening Trunk bifurcation

18 F 42 24 42 45 0,93 Absent Normal Segmental

19 F 26 25 35 50 0,7 Absent Normal Lobar

20 F 50 25 34 52 0,66 Absent Normal Main pulmonar artery

4.2.1 Preprocessing

To assist the training of the proposed method, the same preprocessing methods were applied in the three datasets.

First, the slice width size was changed to 1 mm for all patients in order to standardize the entries. Then, the grayscale

values of the images were normalized using the Hounsfield (UH) Units scale windowing, with the window size of

350 HU and the center of the window of 150 HU, transforming the values between [200, 500], then the values were
normalized between 0 and 1 in order to improve the learning and convergence rate of the network. For each image, a

central window in the size 364 × 364 was also cut, in order to remove regions around the rib cage from the images.

A data augmentation step was performed on the training base, with the objective of increasing the amount

of images for a better network training, a horizontal and vertical flips with a probability of 50% and a Gaussian

noise with 20% probability were applied for each image.
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To feed the input to the U-net network, the total image volume was split into 5-slice overlapping windows,

with each slice being a channel of the image. The central channel (i.e. channel 3) was the aim for the network

segmentation.

4.2.2 U-net Model

As stated before, a U-net model was used for the preliminary results obtained. Besides being based on Ronnenberg’s

original U-net it does not follow the same amount of layers and hyperparameters. The model is divided into two

parts, a encoder and a decoder. The encoder part is built using basic blocks, each basic block is composed of two

convolutions, each followed by a batch normalization and a ReLU activation, the whole encoder is composed of five

basic blocks, with a number of channels of each convolution of 64, 64, 128, 256, and 512. Then five decoder blocks

are applied, each decoder block is composed of two deconvolution layers, each followed by ReLU only, the amount

of channels of the convolutions are the same as in the encoder part, but decreasing. The input of each decoder block

is the output of the last block concatenated with the output of the corresponding encoder block (i.e. the one with

the same amount of channels). At the end of the last decoder block, a last 2D convolution is applied with a single

channel as output and the Sigmoid function is applied, this is the final output of the network, having the same shape

as the input image segmentation mask.

Different from the original U-net network, the proposed network receives as input an image of size

364 × 364 × 5 and generates an output 364 × 364. The five input channels are the five neighboring slices in the CT

volume, therefore the 2D convolutions are using dimensional data as the channels.

For the training step of the model, the optimizer of choice was Adam with an initial learning rate of 1e-4,

which was reduced by 1e-2 every time the loss reached a plateau. The loss function used was Dice and the IoU with

a threshold of 0.5 of the output values. The size of batches per iteration of training chosen was 16 images, and each
image having 5 channels of neighboring slices.

4.2.3 Candidates Extraction

To find the PEs candidate , the output values of the network were rounded to 0 (values <0.5) and 1 (values ≥0.5),
then a connected components algorithm (CCL) was applied, each component found by the CCL was considered a PE

candidate. For an initial reduction of false positives, a closing operation was performed with a kernel of 5 × 3 × 3,

aiming to remove small particles and noise, candidates found in only one slice of the exam were also removed.

Each candidate from the output of the network was intersected with the ground truth mask, if there was

any intersection (candidate mask

×

ground truth ≠ 0) the candidate was considered a true positive, components without any intersection were considered

as false positives.

4.2.4 Feature Extraction

After the candidates’ extraction step, the feature extraction of each candidate is carried out. The extraction was made

to each candidate produced on the 3D CCL algorithm.

First, for each candidate, the 3D coordinates of the center of the mass (CM) were defined and selected as

features. Then, the HU scale value and the output from the U-net network of these central coordinates were selected

as features, both raw values. Finally, the total volume in mm3 of each candidate was calculated, along with the larger

distance along the three axis (x,y,z), which was obtained by setting the value of the median x, y and z and finding the

maximum distances in the other axis. In the end, nine features (CM coordinates (x,y,z), CM HU value, CM output

U-net value, volume, larger distance in axis x, y, z) were used in the classification step which were normalized using

a standard scaler, leaving the values between 0 and 1. The selected features were chosen based on other works from

that used machine learning for PE classification, such as (Cano-Espinosa et al., 2020), (Özkan et al., 2014), (Bouma

et al., 2009), and (Liang and Bi, 2007)

4.2.5 Classification

To make the classification between PE and non-PE candidates, a combination of classifiers was trained and tested.

In all tests regarding the FP classification step, the same hold-out division of the data-sets was used (train, validation,

and test).

The classifiers KNN, SVM (with linear and Gaussian), Random Forest, Naive Bayes and a Multi Layer

Perceptron; With some early testing using the train and validation set, some algorithms that performed poorly were
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discarded, keeping only the KNN, SVM with Gaussian kernel and Random Forest. The next step was to find the

optimal parameters and hyper-parameters for each classifier. For the KNN classifier a range of neighbors were tested

using the first 100 odd numbers beginning from 3. For the SVM classifier a grid search was performed, varying the

C (0.001, 0.01, 0.1, 1, 10) and gamma value (0.001, 0.01, 0.1, 1), for the Random Forest, another grid search was

done, using the range of parameters for the maximum depth (200 to 2000 increasing 200 each step) and number

of estimators (100 to 500 increasing 40 each step). For both grid searches, the optimal parameters were found by

means with 5 fold cross validation. All training of the classification step was done with a combination of all three

data-sets after being segmented by the U-net network.

4.2.6 Metrics

For the evaluation of the segmentation step of the model (U-net), the Dice score, the IoU and the Sensitivity were

measured. The Dice score tells the correctness of the segmentation mask when compared to the original mask, it

was also used as the loss function for the network instead of the IoU since the Dice Coefficient is differentiable. The

IoU was measured to clearly see the detection quality of the network, and the Sensitivity was measured in order to

better compare the results with other SOTA works, the Sensitivity is a common metric in such works with a low

amount of training data available.
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5 RESULTS

All results were achieved using the same base pipeline, with a U-net model for segmentation, and a machine learning

algorithm for classification. But two different test approaches were made, one in which the amount of data was fixed

and the hyperparameters of the model was adapted for the dataset, and a second approach with a fixed model but

varying the data distribution.

5.1 SEGMENTATION EVALUATION

5.1.1 Model-centric approach

The U-net segmentation network and all the training process was developed with PyTorch library ((Paszke et al.,

2019)). Each one of the three datasets were tested separately using a hold-out division of 70% for training, 10% for

validation and 20% for testing. Each model trained for 100 epochs, the epoch that achieved the highest IoU score in

the validation set was saved for testing.

For training the optimizer used was Adam with an initial learning rate of 1𝑒4, which was reduced by
1𝑒 − 2 every time the loss reached plateau. The chosen loss for training was the Dice, but the IoU was also observed

with a threshold of 0.5 of the output values. The size of batches per iteration of training chosen was 16 images, each
image having 5 channels of neighboring slices.

A high number of other hyperparameters were also tested in each dataset, the HU window scale, the

optmizer, the initial learning rate and a method (or absence) for reducing the learning rate while training, the amount

of batches for training, the preprocessing steps (normalization and scaling). But only the parameters cited gave a

proper result.

In the ((Masoudi et al., 2018)) dataset, the network got a 0.68 mean IoU, 0.72 Dice score and Sensitivity
of 0.82 in the test set. The changes in the loss can be seen in Figure 5.1. It’s observable that the validation loss
quickly decreases as values below the training loss, this can be due to the amount of data used since the plot shows

the mean loss during an epoch and there are more patients in the training set than in the validation set. While in the

test set of the ((González et al., 2020)) achieved a mean IoU of 0.79, 0.81 mean Dice score and 0.89 Sensitivity, the
training and validation losses can be observed in the Figure 5.1, showing that with more data the curves behave more

conventionally. In the HC dataset, a mean IoU of 0.75, Dice of 0.78 and Sensitivity 0.78 were achieved (Table 5.1).

Table 5.1: Segmentation results the model-centric approach separately.

Dataset Dice IoU Sensitivity

FUMPE 0.72 0.68 0.82

CAD-PE 0.81 0.79 0.89

HC 0.78 0.75 0.78

5.1.2 Data-centric approach

Another experimental approach was using different combinations of the selected datasets for training and testing the

U-net. The network used was the same from the model-centric tests, varying just some hyperparameters that were

found to be better for training with a higher amount of data.

Two different combinations of the datasets were tested, one with a combination of the CAD dataset and

the FUMPE dataset for training and validation while testing in the HC dataset, and another training with the CAD

and HC dataset and testing in the FUMPE dataset.

For training the model, the SGD optimizer found better results, with a initial learning rate of 1𝑒4 and no
reduction during training. The size of the batch was also changed from the model-centric approach to 16, and a

different HU window scale was used, while the model-centric approach used a WC of 150 and WL of 350, the tests

with the data-centric approach found a better result with a WC of 150 and a WL of 700.
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Figure 5.1: Top left: Dice loss over the epochs during the U-net training step for the (Masoudi et al., 2018) dataset.

Top right: Dice loss over the epochs during the U-net training step for the (González et al., 2020). Bottom: Dice
loss during training of U-net model in the HC dataset

The results achieved with each combination can be seen in Table 5.2. With no difference in the sensitivity

value of each test, but a slight better result was found with a combination of the CAD and FUMPE dataset and

testing in the HC dataset.

Table 5.2: Results with training the model with the two whole datasets and testing in the.

Dataset Dice IoU Sensitivity

CAD+FUMPE (test HC) 0.78 0.76 0.86

CAD+HC (test FUMPE) 0.74 0.70 0.86

5.1.3 Model comparison

The results achieved in both approach’s can be compared to some results of works found. The first comparison

was with the paper by (Long et al., 2021), in which the authors found PEs by using a model based om the Mask

R-CNN, the metrics used to evaluate the model was the Average precision with different IoU thresholds, this work

was chosen for comparison because it used a single dataset for training and evaluation, the FUMPE dataset. The

results can be seen in table 5.3.

The second work which the results were compared is from (Cano-Espinosa et al., 2020), which used only

the CAD dataset. The authors also used a U-net based model for segmentation, reporting the sensibility achieved.

The results can be seen in table 5.4.
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It’s observable that the model had a worse result when comparing APs to the work from (Long et al.,

2021) and, it achieved a better sensibility when compared to (Cano-Espinosa et al., 2020). The amount of data used

in each experiment could explain the results.The FUMPE data-set has a PE distribution less uniform than CAD-PE.

This difference could explain the better results achieved using the CAD-PE data-set.

Table 5.3: Segmentation of proposed U-net vs P Mask RCNN.

Dataset AP50 AP75 AP

P MASK RCNN 81.55 41.87 41.43

PROPOSED 0.1875 0.06 0.06

Table 5.4: Segmentation of proposed U-net vs P Mask RCNN.

Work Sensibility

Cano Espinosa et al. 0.68

PROPOSED 0.82

5.2 FALSE POSITIVE REDUCTION EVALUATION

Each candidate from the output of the network was intersected with the ground truth mask. If there was an

intersection (candidate mask × ground truth ≠ 0) the candidate was considered a true positive. The components

without any were marked as false positives. These components were fed to the false positive reduction phase,

applying all stages of pre-processing and feature extraction before the classification training. The classification

obtained an accuracy of 83% in the CAD-PE data-set, 74% in FUMPE, and 79% HC 5.5. The same training,

validation, and testing distribution of each data-set were used for the false positive reduction step.

Table 5.5: Accuracy from classification algorithms using each dataset.

RandomForest SVM Naïve Bayes KNN MLP

FUMPE 0.77 0.71 0.63 0.73 0.72

CAD 0.84 0.82 0.74 0.81 0.81

HC 0.73 0.55 0.40 0.59 0.47

An analysis was made by the size of the components, comparing them with the ground truth (Figure 5.2).

It was observed that the network has difficulties to find small components, with high false positive rates. It is also

observed that in some cases the number of predicted true positives of a size interval is greater than the amount of

real components, this is due to the fact that the method considers the components as true positives if there is any

intersection of the candidate with any real component, so there are cases where the PEs were found but were not

marked completely, generating a prediction of lower volume. The proposed method also seemed to be unable to

detect smaller PEs, even in datasets with an higher representation of them (CAD-PE and Private), the model was

not capable of detect most of smaller PEs. It was also observed that the Private dataset seemed to better fit in the

segmentation step

The dataset used presented itself as another factor that directly interferes in the amount of false positives

found, it affects also in which volume ranges these false positives are found. It is believed that this behavior is due to

the amount of existing elements in each size range. The Figure 5.3 shows the effectiveness of the model in reducing

the false positive components in all the three datasets, especially the components of smaller volume, but it makes

some mistakes while classifying larger components, classifying true components as false positives among the higher

volumes.
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Figure 5.2: Graphs showing the square root count (y-axis) of the volumes (x-axis) of the components (PEs) found
in the test set of the three datasets, in blue the true PEs (i.e. marked by the radiologist), in dark red the PEs true

positives (TP) segmented by the U-net network and in yellow the false positive PEs (FP) produced by the network.
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Figure 5.3: Graphs showing the square root count (y-axis) of the volumes (x-axis) of the components (PEs) found
in the test set of the three datasets after applying the false positive classification method, in blue the true PEs (i.e.

marked by the radiologist), in dark red the PEs true positives (TP) segmented by the U-net network and in yellow the

false positive PEs (FP) produced by the network.
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6 CONCLUSION

In this work, a method based on other state-of-the-art PE detection, although being able to find PE candidates

and correctly classify them as false positives and true positives, it still has some limitations. The amount of false

negatives, or PE that the U-net segmentation network was unable to find, especially in smaller PEs, shows that the

network is not optimized to differentiate small noise or other artifacts from the thrombus. Besides that the number

of false positives produced is still significant, even before the false reduction step.

The size and number of thrombi in the database directly influence the model’s capacity. It is believed that

it is possible to improve the results of the first step of the method with the U-net network using more tests of different

hyper-parameters. The network proved to be able to distinguish PEs within the exams even though it produced some

false positives, the model also proved to have difficulties in detecting smaller and more peripheral thrombi.

Even though some segmentation (Figure 6.1 (a)) achieved good results, the model still needs further

optimizations and some hyperparameters can still be tweaked. The network seems to be capable to distinguish

correctly PE from inside the exams, but it can produce some false negatives (Figure 6.1 (b), (c) and (d)), seeming

unable to clots too small or with an odd shape. Some false positives were also observed in the test set (Figure 6.1 (e)

and (f)), but some techniques like the 3D representation ((Tajbakhsh et al., 2015)) of the input or a HU window

normalization can help to mitigate this problem ((Liu et al., 2020)), these false positives show the need of a second

specialized FP removal network in this task.

The results between different datasets were also not that different from each other, the better overall results

in the CAD dataset shows that the model performance scales with the amount of data provided for training, which

was also confirmed in the experiments with a combination of datasets. It was also observed that some minor tweaks

in the network were necessary when training with a low amount of data, especially in the Fumpe dataset, which the

optimizer which gave the best results was the Adam, while the SGD did not mark any voxels as true positive, since

there is a high amount of true negatives in each mask, a training with a “slower” optimizer such as the SGD can

never reach a good result and be stuck in a local minimum. While training the network with a bigger amount of data

has a similar problem but using the Adam optimizer, the loss drops drastically in the first few epochs but it does not

reach a good result. The model also showed to be easily trained with different datasets and combinations,proving

that it can give good results in real world applications.

6.1 FUTURE WORKS AND PUBLICATION

In order to improve the accuracy of the model in finding small components, other hyper-parameters of the network

related to convolution and channel reduction can be explored, for example squeeze-and-excitation blocks as in

the work of ((Huang et al., 2020)), performing model training with different combinations of databases can also

increase the rate of found components. Models with 3D convolution operations also show an increase in the network

segmentation rate as in ((Cano-Espinosa et al., 2020)) and ((Yang et al., 2019)). Other targeting networks can also

serve as an alternative, such as Mask R-CNN. In the ((Long et al., 2021)) work the author uses a variation of the

R-CNN Mask, called P Mask R-CNN, which is optimized to find small objects.

Regarding the number of false positives, approaches such as ((Tajbakhsh et al., 2015)) can increase the

success rate of this step. In it, the author produced a single projection of the TEP, called 2.5D, using eigenvalues

and eigenvectors, an image was generated with two channels, one longitudinal and the other transversal, of each

thrombus, also explained in ((Tajbakhsh et al., 2019)) . With this representation, it is possible to classify thrombi

with other image classification networks, facilitating training with the possibility of using pre-trained weights, e.g.

networks such as InceptionNet ((Szegedy et al., 2017)), ResNext ((Xie et al., 2016)), EfficientNet ((Tan and Le,

2019)) and AmoebaNet ((Real et al., 2019)), all with a hit rate above 90% in the Imagenet database ((Deng et al.,

2009)).

Regarding the publications related to the work on this thesis, two articles were accepted, one in the

XXI Brazilian Symposium on Computing Applied to Health which took place virtually in july 2021, the title of

the publication was “Detecção de Tromboembolia Pulmonar utilizando Redes Neurais Convolucionais e Extração

de Características". Another work was also accepted but not yet published in the international journal Computer

Methods in Biomechanics and Biomedical Engineering: Imaging Visualization, with the title of “A Two Step Deep

Learning Workflow for Pumonary Embolism Segmentation and Classification”.
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Figure 6.1: Ground truth and prediction results samples from the test set of (Masoudi et al., 2018), in (a) an example

of a correctly labeled image, in (b) and (c) two examples where the network did not find PE when there are in the

ground truth, in (d) only parts of the image were correctly segmented and in (e) and (f) two examples of a false

positive label produced by the network.
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