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RESUMO

Nesta tese propomos um algoritmo de regiao de confianga sem derivadas para problemas de
maximizag¢ao de probabilidade. Assumimos que a funcao de probabilidade é continuamente
diferenciavel com gradiente Lipschitz continuo, mas nenhuma derivada esta disponivel. O
algoritmo explora a estrutura particular da fun¢ao objetivo de probabilidade por meio de
modelos baseados em copulas. Sob hipoteses razodveis, a convergéncia global do algoritmo
¢é analisada. Provamos que todos os pontos de acumulacao da sequéncia gerada pelo al-
goritmo sao estacionarios. A proposta é validada através de experimentos numéricos na

resolugao de problemas académicos e industriais.

Keywords: Programacao nao linear, Problema de maximizacao de probabilidade, Pro-

gramagao estocastica, Otimizagao sem derivadas.



ABSTRACT

In this thesis, we propose a derivative-free trust-region algorithm for probability maximiza-
tion problems. We assume that the probability function is continuously differentiable with
Lipschitz continuous gradient, but no derivatives are available. The algorithm explores the
particular structure of the probability objective function through models based on copulee.
Under reasonable assumptions, the global convergence of the algorithm is analyzed. In
fact, we prove that all accumulation points of the sequence generated by the algorithm
are stationary. The proposed approach is validated by encouraging numerical results on

academic and industrial problems.

Keywords: Nonlinear programming, Probability maximization problems, Stochastic pro-

gramming, Derivative-free optimization.
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Chapter 1

Introduction

Many real-life situations can be modeled as optimization problems, in which practition-
ers and researchers wish to minimize or maximize a real function over a set of constraints.
Depending on whether data is known or random, the underlying optimization problem can
be classified as deterministic or stochastic. In the latter case, very often, one needs to cope

with a random inequality system of the form

£ < g(x), (1.1)

where ¢ is a m-dimensional random vector defined on the probability space (Z, X', P) with
continuous probability measure P, g : O — R™ is a function of class C! with Lipschitz
continuous gradient defined in an open set O C R".

Throughout this work, we assume that the continuous probability distribution of & is
known and independent of the decision vector z. Furthermore, we assume that z belongs
to a nonempty compact convex set (typically a polyhedron) X C R™ such that X C O.
This thesis is dedicated to the stochastic programming problem of finding a point z in X
satisfying the random inequality system (1.1) with the highest possible probability. More
specifically, we are interested in Probability Mazimization Problems (PMPs) of the form

max ¢(z), with ¢(z) :=P[¢ < g(2)]. (1.2)

11



12 Introduction

Many applications from finance and engineering can be formulated as PMPs. For instance,
in capacity expansion planning problems under uncertainty, one wishes to expand produc-
tion capacity with limited resources and capital. Given a budget, one seeks to make a
decision on expansion so that physical and monetary constraints are satisfied. The latter
constraints can be abstractly represented by the set X. Among the infinite number of
possible expansion plans in X, the decision maker searches for a plan of action satisfying
a random demand £ as much as possible, i.e., a decision that maximizes the probability

function .

Another application of interest is the management of hydro-thermal power systems,
where one seeks to produce enough electricity, at the minimal costs, by combining hydro
and thermal power generations. Since water has multiple usages, reservoir levels should
remain within predefined bounds (for irrigation or tourism reasons). The random nature
of the water inflows makes this task difficult. Typically, this assignment is made via
optimization models with probability constraints [105], but a PMP approach is perfectly
suitable: the system manager searches for a power generation plan, no more expensive
than a predefined cost, that maximizes the probability of keeping the reservoirs’ volumes

within bounds.

As the latter example indicates, PMPs are closely related to optimization problems with
probability constraints, also known as Chance-Constrained Problems (CCPs). As explained
in [32, 74|, for a given real-valued cost function f, a convex set X and a confidence level

p € (0,1), the classical CCP
minimize  f(z)
subject to  (z) > p (1.3)
ze X,
can be reformulated as (1.2) by defining X := {z € X : f(z) < T}, where T € Ris a
predefined cost target. Note that it is possible to choose p and T such as CCP and PMP
share a solution. We refer the interested reader to excellent textbooks [77] and [83] for

an overview of the theory and methods for CCPs, and to the following works [47, 76, 98,
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104] on methodologies and applications of optimization problems involving a probability
function. Some of these references deal with probability functions even more general than
the one of (1.2): sometimes the mapping ¢ also depends on the random vector. The
separable setting in (1.1), i.e., when ¢g does not depend on &, is not the most general one
but is present in many applications. See for instance [103, 104, 105] for applications in

energy management, [48| for a problem in finance and [58| for transportation problems.

Since probability maximization problems are special cases of nonlinear optimization,
properties of the probability function ¢ such as continuity, generalized concavity and dif-
ferentiability can be useful to choose an algorithm for solving the problem. Such properties
have been extensively studied [32, 49, 77, 95| in the last years. In particular, the recent
paper [92] offers an overview of the state-of-art of probability functions with perspective in

variational analysis, highlighting theoretical and algorithmic aspects of these properties.

In this work, we do not assume that ¢ satisfies any generalized concavity property, and
therefore by “solving" problem (1.2) we mean computing a stationary point. However, we
assume a bit more than differentiability: the function ¢ : O — [0,1] in (1.2) is continu-
ously differentiable with Lipschitz continuous gradient on X, i.e., there exists a (possibly

unknown) finite constant s, > 0 such that, for all z,y € X,

IVe(x) = Vo)l < rglle —yll. (1.4)

Under the assumption that g is of class C* with Lipschitz continuous gradient on O, and
X C O is a compact set, the condition (1.4) is satisfied by many important probability
distributions such as the multivariate Gaussian with positive definite covariance matrix |77,
p. 204| or with singular covariance matrix under some nondegeneracy condition [49, Thm.
4.1], and other distributions satisfying some growth conditions [102, Thm. 3| (see § 4 in the
latter paper for an analysis on the log-normal and Student distributions). Furthermore,
all probability distributions of class C* on X satisfy (1.4) (this is a mere consequence of

|64, Lem. 1.2.2] together with the assumptions on g and X).

Despite the recent advances in theory and numerical methods for this class of problems,
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dealing with multivariate probability functions remains a challenging task, except for some
special cases. The main difficulties arise from the fact that typically there is no analytical
expression for these functions. Furthermore, numerical evaluation of probability functions
and their gradients with reasonable accuracy is too time-consuming even when the random
vector is composed of, say, a few dozen components. We recall that computing p(z) for
a given xr amounts at evaluating numerically a multidimensional integral, a task that can
be accomplished in reasonable CPU times only if precision is not a concern. All one can
hope for are efficient tools for numerically approximate ¢(z). Besides that, computing
only functional values of ¢ is not enough to employ some optimization algorithms, it is

also necessary to have access to the gradients of ¢, which becomes even more involving:

e Approximating Vy(z) by finite-difference formulee is not advisable because it involves
several evaluations of ¢ around x and requires careful selection of finite-difference
parameters. As just mentioned, evaluating ¢ is time consuming depending on the

random vector’s dimension;

e Algebraic formulae for the gradient of ¢ are not always available. When accessible,
they may not be computationally implementable or practical due to their high com-
plexity. As summarized in [92, §, 2.2, numerical implementations necessary to obtain
partial derivatives of probability functions, as well as verifying that all required as-
sumptions are satisfied, are not generally accessible (see |77, § 6.6.4], [90, Thm. 2.1|
and [100]). Furthermore, it appears that compactness of the support set = is often

assumed, which turns out to be a restriction in some applications.

e Even when an algebraic formula for V¢ is available and implementable (e.g., when
¢ € R™ follows a Gaussian distribution), computing Ve(x) for a given = is ap-
proximately m times more expensive as evaluating ¢(z). This is due to the fact that
gradient formulee for certain probability distributions require computing m numerical

integrations of dimension m — 1; see for instance |93, Thm. 2.7.3].

Due to the aforementioned difficulties, optimization methods that do not make use of
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derivatives appear as a favorable approach for PMPs. Derivative-free optimization (DFO)
algorithms are good choices when the gradient of the objective function is not available,
or is too difficult to be evaluated. Although this is the case for problem (1.2), we are not
aware of any DFO approach specialized for PMPs. This thesis fills this gap by proposing
a DFO trust-region method suitable for problems of the form (1.2). We refer the reader
to the textbooks [1, 19], methodological papers [9, 46, 110|, recent review [54| and tutorial
[45] for an overview on DFO methods.

According to [1, 45|, DFO algorithms can be split into two broad categories: direct-
search and model-based methods. In [114], it is also considered the class of implicit filtering
methods [6, 39|, that approximate the derivative of the objective function by simplex
gradients, a generalization of finite-difference gradient. In order to decrease the objective
function, direct-search methods choose points in specific directions with a predefined step
size from the incumbent solution, which is updated whenever an improvement condition
is achieved, otherwise a new search step size is considered. There are many direct-search
methods in the literature, as Hooke and Jeeves’ pattern search [50], Generalized Pattern
Search (GPS) [52, 56, 57, 86|, Nelder-Mead simplex method [62|, Mesh Adaptive Direct
Search (MADS) |2, 26], Generating Set Search (GSS) [51]. Although, direct-search methods
are popular since they are easy to implement and reliable in practice [114], commonly, they
require a large amount of function evaluations and do not fully explore the information
available of the objective function, making some of them very slow.

On the other hand, model-based methods explore the underlying properties of the ob-
jective function rather than its values by themselves. In this class of methods, the function
values are used to construct models which should approximate the objective function in
a neighbourhood, called trust region, of the current point. Furthermore, to be useful,
optimizing the model within this neighborhood has to be significantly easier than solving
the original problem. In DFO methods, the models are constructed without any first-order
information, by means of polynomial interpolation or regression [19] or by any other approx-
imation technique [108]. The most common models considered are linear and quadratic.

Linear models require, for instance, (n + 1) interpolation points but they disregard any
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curvature information on the function. On the other hand, quadratic models require, in
general, (n + 1)(n + 2)/2 interpolation points, which can be computationally expensive
depending on the problem’s dimension. In the papers [71] and [72]|, Powell constructs
quadratic models using fewer points and shows empirically that it is possible to have ef-
ficient practical algorithms with (2n + 1) sample points. In [82], the authors address the
importance of geometric conditions of the interpolation points to obtain global convergence
of the algorithm. On the other hand, [34] claims to be possible to obtain a competitive
algorithm even when omitting the geometry phase. There are many references in the liter-
ature that study DFO trust-region model-based algorithms. For unconstrained problems
we can cite [17, 18, 19, 20, 34]. In particular, [12, 13| deal with partially separable objective
functions, when the Hessian is sparse; [42| investigates the worst case function evaluations
complexity for trust-region algorithms with linear interpolation models; [110, 111] rely on
radial basis function interpolation models with a linear polynomial tail; [36] proposes a
globally convergent algorithm, using the ideas from [70|, that avoids unnecessary reduc-
tions of the trust-region radius. For box constrained problems, [71] considers linear and
quadratic interpolation models and [43] uses recursive model-based active-set trust-region
methods. In this context, [80] presents a review of derivative-free algorithms followed by
a numerical comparison of 22 implementations using a test set of 502 problems, including
convex, nonconvex, smooth and nonsmooth bounded problems. The references |60, 73| pro-
pose an algorithm for solving linear constrained problems, [15] presents a general approach
for convex constrained problems, [85] considers problems in a convex, closed and bounded
subset of a real Hilbert space. For solving general constrained optimization problems, [68]
proposes a trust-region interpolation based-model algorithm with linear approximations to
the constraint functions and [35| presents an algorithm that mixes an inexact restoration
framework with filter techniques, where the optimality step is computed by trust-region
algorithms.

Our approach belongs to the category of model-based methods. As the objective func-
tion in (1.2) is a probability, it has a particular structure: it is a componentwise non-

decreasing function whose image is the closed unit interval. These properties should be
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exploited by modelling the probability function by functions that share the same structure
and are easier to evaluate, which motivated us to employ models based on copule. A
copula is a multivariate probability distribution for which the marginal-probability distri-
bution of each variable is uniform [29, 63]. The key result that connects copule to the
probability function ¢ is the Sklar’s theorem, which states that there exists a copula such
that the probability function can be written as the composition of this copula with the uni-
variate marginal distributions of the probability function. By this result, the multivariate
probability function can be splitted into two independent parts: one describing the uni-
variate marginal behaviour and the other, the dependence structures among the random
variables [84]. As the marginal distributions are given or easy to estimate, our main task
is to investigate these dependence structures through copulee.

Modelling high-dimensional distribution functions is a challenging issue in many appli-
cations because it is not trivial to capture the dependence among the random variables.
In optimization problems involving a probability function, copulee were used in [25] as an
alternative to the hard-to-evaluate function ¢, and in [97]| to model distributionally robust
optimization problems. The direction we pursue in this work differs from [25]: instead
of replacing ¢ by a single copula, which is a problem-dependent approach and involves a
non-trivial statistical work of estimation, we consider a set/dictionary of copule to define
a model that fits ¢. Essentially, the proposed derivative-free trust-region method updates,
at each iteration, a copula-based model by solving a least-square quadratic program. This
iterative process of updating the model makes it capture by itself the dependence struc-
tures between the marginal distributions of the probability function, assigning weights
to the copulee in the dictionary and then building the model that best represents these
dependencies.

Our DFO method for PMPs builds upon [15], but differs from the latter in the definition
of the model and iterates. While [15] computes iterates as stationary points of quadratic
constrained programs, our approach defines iterates as (approximate) stationary points of
nonlinear optimization problems, i.e., the maximization of the copula-based model over a

trust-region intersecting X . This shortcoming is compensated by the fact that our approach
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uses an easy-to-evaluate model that approximates well the objective over the trust-region
and, thus, relatively few (expensive) function evaluations are expected to be performed.
This is indeed evidenced by the numerical experiments reported in Chapter 4, where the
numerical performance of the new approach is compared to other DFO algorithms on
several instances of academic and real-life probability maximization problems. In addition,
based on a variant of our approach, we present preliminary numerical experiments of a
heuristic for solving MINLP - Mixed Integer NonLinear Programming problems. In these
experiments, the results are compared to the ones obtained by two other MINLP specialized

solvers.

Contributions
The main contributions of this thesis are listed below. They have appeared in the article

[10], recently published in the European Journal of Operational Research.

e The proposal of a DFO trust-region algorithm with copula-based models for solving

Probability Maximization Problems.

e The presentation of a global convergence analysis of the proposed algorithm assuming

reasonably mild hypotheses, most of which found in the DFO literature.

e Proposal of different strategies for constructing the copula-based models which led

us to develop two implementable versions of the proposed algorithm.

e The presentation of extensive numerical experiments comparing the performance of
our proposal with several DFO algorithms for solving academic and industrial prob-

abilistic maximization problems.

Organization
The remainder of this work is organized as follows. In Chapter 2 we recall some basic
concepts and main properties of probability theory and copulee. Chapter 3 presents our

derivative-free trust-region algorithm with models based on copule and analyzes its global
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convergence. In Chapter 4, numerical experiments are reported. Chapter 5 concludes the

manuscript with final remarks and comments on future steps.
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Introduction



Chapter 2

Probability distribution functions

This chapter recalls some definitions, results, and properties of probability functions
and copulae. We restrict our presentation to the relevant topics for the following chapters,
and omit mathematical proofs for brevity. The interested reader is referred to the following
articles |33, 77, 78, 81, 91, 92, 93, 99| and textbooks |3, 29, 30| for further discussions and

mathematical proofs.

2.1 Basic concepts

In this section we present some notations and basic definitions of probability space
and distribution functions, which are necessary to introduce copulee. First we focus in the

one-dimensional space and then we generalize some results to finite higher dimensions.

Definition 2.1. Given the set ), a o-algebra F of € is a nonempty collection of subsets

of Q that satisfy:
(i) O and Q belong to F;
(ii) if A€ F, then A° € F;
(i11) if A; € F, i €N, is a countable sequence of sets, then U A e F.
ieN

21



22 Probability distribution functions

Some examples of o-algebras are the following [3]:

(a) Let © be any set and F be the family of all subsets of €2;
(b) Let @ = Nand let F = {0, {1,3,5,...}, {2,4,6,...}, Q};
(¢) Let F be the family consisting of only two subsets of €2, namely () and €.

(d) Let Q© = R. The Borel algebra is the o-algebra B(R) generated by all open intervals
Ja,b] in R. Observe that it is also the o-algebra generated by all closed intervals [a, 0]
in R, by item (i7) of Definition 2.1. Any set in B(R) is called a Borel set.

The pair (€2, F) consisting of a set {2 and a c-algebra F of 2 is called a measurable

space, i.e., it is a space on which we can define a measure.

Definition 2.2. A measure is an extended real-valued function p defined on a o-algebra

F of Q, that s, a function p: F — R such that
(1) (A) > (@) =0 for all A € F;

(ii) if A; € F is a countable sequence of disjoint sets, then
p(UiA) = p(Ay).

The condition (7i) in Definition 2.2 is called countable additivity. If p(2) =1 we call u
a probability measure and we denote it by P, which is defined as P : F — [0, 1]. Now we

can define a probability space.

Definition 2.3. Let F be a o-algebra of 2 and P be a probability measure on F, then the
triple (Q, F,IP) is called a probability space.

The elements of a probability space (€2, F,P) have the following meaning: € is a set of
“outcomes”, F is a set of “events” and P : F — [0, 1] is a function that assigns probability

to events.
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Example 2.4. Consider an experiment that a fair coin is flipped once, then the possible
outcome 1is either heads {H} or tails {T'}, i.e., Q = {H,T} is our sample space. The
o-algebra contains 21 = 2% = 4 elements/events, i.e., F = {0,{H},{T},{H.T}}. It
15 known that there is a fifty percent chance of tossing heads or tails, so the probability

measure of the events are P[] =0, P[{H}] = 0.5, P[{T}] =0.5 and P[{H,T}] = 0.

An important concept in the probability theory that is necessary to define distribution

functions is the random variable.

Definition 2.5. A real valued function & defined on ) is said to be a random variable if

for every Borel set B C R we have § '(B) = {w € Q: €(w) € B} € F.

Definition 2.6. Consider the random variables &1, . .., &, defined on the same probability
space (Q, F,P). An m-dimensional random vector & = {&1,...,&n} is a measurable map-

ping from € into R™. In this case, the word “measurable” means that the counterimage
¢Y(B) i ={weN:&w) e B}
of every Borel set B in B(R™) belongs to F.

It can be proved that a random vector can be represented in the form £ = (&1, ..., &),
where &1, ..., &, are one-dimensional random variables.

Given & a random variable on the probability space (€2, F,P), a probability measure P
may be defined on the measurable space (R, B (]R)) by

P¢[B] :=P[¢'(B)], VBeBR).

The probability measure Pg is called the law, distribution of €, the image probability of
P under & or the cumulative distribution function of €. A similar construction applies to a

random vector &, the only difference, in the vector case, being that the image probability

is defined on (R™, B(R™)).
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Definition 2.7. [29, Def. 1.2.9] The distribution function F¢ of a random vector £ =
(&1,...,&n) on the probability space (Q, F,P) is defined by, for all x = (x1,...,x,) € R™,

F£<[L'1,...,£Cm) Z:]P)[é-l §m1,...,§m§mm].

In the literature it is common to use the function F¢ or the notation £ ~ I to say that the
functions F¢ or I represent the distribution function of the random vector §. The next
theorem shows that a distribution function can be characterized in terms of its analytical

properties. In the sequence, I denotes the unit interval, i.e., I := [0, 1].
Theorem 2.8. /29, Thm. 1.2.13] Let F' : R™ — 1. The following statements are equivalent:

e there exists a random vector & on a probability space (2, F,P) such that F is the

distribution function of &;
e [ satisfies the following properties:

(a) Foreveryj e {l,...,m} and for all zy,...,x;_1,%j41,...,ZTm in R, the function

ti—>F(il?l,...,I'j_l,t,l'j+1,...,l'm)

18 right-continuous;
(b) F is m-increasing;
(c) F(x)— 0, if at least one of the arqguments of x tends to —oo;

(d) lim F(zy,...,zy) = 1.

min{x1,....xm }——+00

From item (b) of Theorem 2.8 we have the following result: if F' is a distribution

function, then for every j € {1,...,m} and for all zy,...,z,, in R, the functions

tER'—}F(l‘l,...,$j_1,t,$j+1,...,xm)

are increasing.
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A definition that will be important throughout this text is the marginal distribution of

a given distribution function F'.

Definition 2.9. [29, Def. 1.2.15] Let F be a m-dimensional distribution function of the
random vector & and ¥ = (ji,...,7a) a subvector of (1,...,m), 1 <d <m —1. We call
Y—marginal of F the distribution function F? : R® — I defined by setting m—d arguments

of F' equal to +o00, namely, for all uy,...,uqg in I,
F(uy, ... ug) = Fvi,...,0n),
where v; = u; if j € {j1,...,ja}, and one lets v; tend to +oo otherwise.

As is known, the marginal FV of the random vector ¢ ~ F is the joint distribution
function of (§;,,...,&;,). A particular case of interest is when d = 1, where the j-th 1-
marginal of F, the distribution of &, is the 1-dimensional distribution function F¢, : R — I
of {; and can be represented by

Fe,(z;) = lim Fe(zq,...,2m)

(15— 1,54 150, Tm )= (+00,...,+00)

Fe(+00,...,400,2;,+00,...,+00).

If the random variables &y, . .., &, are independent and if F, denotes the distribution
function of §;, 7 = 1,...,m, then the distribution function of the random vector { =

(&1,...,&n) can be written as the product of the marginals
Fe(1, ... am) = [ [ Fe, ().
j=1

A random vector £ = (&1, ...,&y) is said to be absolutely continuous if there exists a

positive and integrable function f; : R™ — R, called density function, such that

fe dAy, =1,
Rm™
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where )\, is the m-dimensional Lebesgue measure. Now, we formalize the definition of the

distribution function F¢ when the random vector § is absolutely continuous.

Definition 2.10. Let £ = (&1,. .., &n) be a random vector and Fy its distribution function.

If there exists a function fe : R™ — Ry such that, for all (xq,...,2z,) € R™,

Fg(fl)l,...,l'm):/ / f§<t17~~7tm) dtldtm,

then fe is called density of the random vector § or joint density of the random variables

&1y &m and, in this case, we say that (&1, ...,&n) is absolutely continuous.

Now we give some examples of densities and their respective distributions functions
(when a closed-form expression exists) in one-dimensional case. We illustrate the graphs
of both functions in Figures 2.1, 2.2 and 2.3 for the uniform, exponential and normal

distributions, respectively.

Example 2.11 (Uniform distribution on I). Let f(x) = 1, for x € [0,1], and 0, otherwise,

be the density function. The distribution function F is:

0, if ©<0
Flz)=q =, if 0<z<1
1, if > 1.

We use the notation F ~ U([0,1]) to say that F follows a uniform distribution on [0, 1].

Example 2.12 (Exponential distribution with rate \). Let f(x) = \e ™, for x > 0, and

0, otherwise, be the density function. The distribution function F' is:

0, if <0

F(z,\) =
1—e ™ 4f 2>0.

We use the notation F' ~ exp(\) to say that F follows an exponential distribution with

parameter \.
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Figure 2.1: Uniform density (left) and distribution (right) functions on L.
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Figure 2.2: Exponential density (left) and distribution (right) functions with different
parameters .
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e 202
?, for x € R, be the

To

Example 2.13 (Standard normal distribution). Let f(z) =

density function.

In this case, there is no analytic function for the distribution function F(x). We use the
notation F' ~ N(u,0?) to say that F follows a normal distribution with mean or expectation

w and standard deviation o (or variance ?).
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Figure 2.3: Normal density (left) and distribution (right) functions with different parame-
ters p and o2

2.2 Continuity and differentiability of distribution func-

tions

In this section we discuss and present classical results about some analytical properties
of probability functions, such as continuity and differentiability. There are many references
in the literature related to these subjects and some of them are [33, 77, 78, 81, 91, 92, 93,
99, 102].

2.2.1 Continuity

When analysing properties of a (probability) function, a first question that may arise is
under which conditions it is continuous. In other words, the continuity of the distribution
function of the random vector £. First of all, we define continuity properties of set-valued

mappings.

Definition 2.14. [81, Def. 5.4] Let M : R™ = R™ be a set-valued mapping. The mapping

M s said to be outer semicontinuous at r € R™ if

limsup M (z) € M (z),

T—T
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or equivalently limsup, .. M(x) = M(Z), which means that any (possible) cluster point z
of {zn}n>0 must belong to M (z), where z, € M(x,) and x,, — T. The mapping M is said
to be inner semicontinuous at & € R" if

M (z) C liminf M(z),

T—T

or equivalently when M is closed-valued, liminf, ,; M (z) = M(z). M is called continuous

at T if both conditions hold, i.e., if M(x) — M(Zx), as © — Z.

The interested reader can find more content about the equivalences of Definition 2.14,
continuity and semicontinuity properties of set-valued mappings in the book [81].
To relate set-valued mappings to the probability function, we consider the equivalent

formulation of the probability function by letting M : R” = R™ and

p(x) :=P[§ € M(x)]. (2.1)

Now we present a continuity result in two forms, one related to set-valued mappings and
the other makes explicit reference to a function g : R” x R™ — R¥ defining the set-valued

mapping M (z).

Proposition 2.15. /92, Prop. 2.1] Assume that the set-valued application M : R™ = R™
1s both outer and inner semicontinuous and convex-valued. If moreover for an arbitrary
reR"

P[¢ €bd M(z)] =0

where bd M denotes the boundary of set M in R™, then ¢, given in (2.1), is continuous
at any v € R". If the set-valued application M is only outer semicontinuous, then the

probability function  is upper semicontinuous.
We say that M is convez-valued if M(x) is a convex set for each z € R™.

Proposition 2.16. [92, Prop. 2.2] Let g : R® x R™ + R¥ be a continuous mapping and
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assume that the following regularity condition holds for allz €e R", 7 =1,... k :

]P)[gj((l],f) = O} =0,

then the probability function ¢ = P[g(x,&) < 0] is continuous at any © € R™. If the

mapping g is lower semicontinuous, then ¢ is upper semicontinuous.

Note that these results hold for a probability function even more general than the one
we are considering, where g depends only on the decision variable x. The condition of M
being convex-valued and the regularity assumptions in Proposition 2.15, and in 2.16, for
the function g, are not so restrictive.

An example illustrating the technical necessity of the given regularity condition is pre-
sented in [92, Example 2.1|, where a simple reformulation fixed the discontinuity of the
probability function and let it infinitely differentiable. Also, [92| summarizes how to ensure

the regularity condition, by assuming both:
e ¢ has a density with respect to Lebesgue measure;

o {z € R™: g(x,z) = 0} is a Lebesgue null set. This last condition is, for instance,
satisfied if
bd {z € R": g(z,2) <0} ={z € R : g(z, z) = 0}. (2.2)

The regularity conditions on M and g in Propositions 2.15 and 2.16, respectively, are
linked by these assumptions. Another way to ensure (2.2) is by considering that g is convex

in the second argument (which is valid in our case) and admits a Slater point.

2.2.2 Differentiability

The differentiability property of the probability function is more restrictive than conti-
nuity, in which additional assumptions are needed. Even a simple example [99, Proposition
2.2], where ¢ = P[g(z,£) < 0] with nice input data (¢ following a regular Gaussian dis-

tribution, the function ¢ is smooth and convex in the second argument and the inequality
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defined by g satisfies the Slater condition) fails to be differentiable without the compact-
ness of the set M(x) :={z € R™ : g(x,z) < 0}. Another example of a similar situation is
given in (92, Example 2.3|.

As discussed in [92], the differentiability of ¢ is investigated in two paths. The first
one makes fairly few assumptions on the distribution of &£, but more restrictive ones on
everything else, given rise to relative general results. The second path focuses in particular
distribution functions where suitable additional assumptions can be assumed. We first

present a well-known result directed to the first path of investigation [89, 90].

Theorem 2.17. [92, Theorem 2.1] Let g : R* x R™ — R* be a continuously differentiable
function and let 0 : R* xR™ — R be a continuously differentiable density. Pick an arbitrary

1 <1< k. Assume moreover that

1) The set M(z) = {z € R™: g(x,z) <0} is bounded in a neighbourhood U of some

point .

2) At = all constraints g¢;(z,z) < 0, i = 1,...,k are active, ie., M(z)N
{zeR™: gi(%,2) =0} #0.

3) One can find a continuous matriz function H; : R™ x R™ — R™ "™ satisfying
Hy(x,2)V.g' (2, 2) + Vog'(z,2) = 0
where ¢'(x,2) = (gl(x, 2), .., gz, z)) € R
4) The matriz function H, has a continuous partial derivative with respect to z.
5) The gradient V ,g;(z,z) # 0 on O; M (z) :== M(z) N {z € R™: g;(z,2) = 0}.

6) Foreach z € M(x), the vectors V ,g,(z, 2),1 € I(z,2) :={j : 9;(, z) = 0} are linearly

mdependent.
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Then probability function p(x) = fM(x) O(z,2)d\(z) = P[§ € M(x)] is differentiable at T

and

V.o(Z) = /M(_) V.0(z,z) + div, (9(@, 2)H(z, z))d)\(z)

S : (2.3)
B Z /6-M() % [vw9i<‘fa Z) + Hl(:f, Z)Vzgi<j7 Z)] ds,

where X\ is the Lebesque measure on R™.

The very technical proof of Theorem 2.17 is presented in [89]. A clearer idea of how
to prove formula (2.3) is shown in the appendix of [90]. The compactness of the set M (x)
and the LICQ conditions can be replaced by an integrability and a pairwise independence
request [92], respectively.

In the previous theorem one can choose the constant 1 <[ < k in such a way that is
more convenient for the application and two especial cases can also be explored, i.e., when
[ =0or!=k. In the first case the matrix H; is absent and (2.3) is reduced to the integral

over the volume, and when [ = k the formula is the integral over the surface.

Theorem 2.18. [92, Theorem 2.2] Under the notation and conditions as in Theorem 2.17,
let 1 =0. Then, we have:

Vao(z) = /M RZCEEY

i=1

0(z,2)
—————V,9;(z, 2)dS.

If | = k we have:

V.o(x) = Vol(z, 2) + div, (0(z, 2)Hy, (2, 2))dA(2).
In [88, 89, 91| some examples are presented demonstrating possible applications of the
formulas from Theorems 2.17 and 2.18. These previous results are part of the first path
and represent a state of the art if we do not assume any specific form of the random vector

&, but their generality have a cost due to the difficulty in computing the matrix H; or the
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term div, (0(z, z) Hy(z, 2)).

In relation to the second path, we consider some special distributions of the random
vector &, which allow us to obtain explicit results. First of all, when the probability function
has the separable setting, as in (1.2), we can provide the following general result ensuring
that each component of the partial derivative of F; consists on computing a numerical

integration of dimension m — 1.

Theorem 2.19. [77] Let £ € R™ be a random vector with density fe : R™ — R. Fiz any
zZ € R™ and consider F¢(z) =P < z]. If

) Z1 Zi—1  [Zit1 Zm
gO(Z)(t) ::/ / / / fé (ul,...,ui,l,t,ui+1,...,um)du1...duiflduiﬂ...dum
—00 —00 J—c0 —00

is continuous for all i =1,...,m, then F¢(z) is partially differentiable at Z and

OF,

822'

(2) = 9" (z).

From Theorem 2.19 we can obtain the following differentiability result for the Gaussian

distribution [47, 49, 77, 78|.

Lemma 2.20. /93, Lem. 2.7.5] Let & be an m-dimensional Gaussian random vector with
mean p € R™ and positive definite variance-covariance matriz 3. Then the distribution
function Fe(z) = P[{ < z] is continuously differentiable and in any fized = € R™ the

following holds:

OF
aZZ‘

(Z) = fgl (Zl> Fg(zz) (21, P T Y/ T ,Zm> s 1= 1, oM. (24)

Here € () is a Gaussian random variable with mean j € R™' and (m — 1) x (m — 1)
positive definite covariance matriz . Let D! denote the m-th order identity matriz from

which the ith row has been deleted. Then

i=D% (n+ S5t (2 — ) S5) and S = Di (S =S s,5) (D)
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where ¥, is the i-th column of ¥ and X;; is the ith element of the main diagonal of X.

Note that Lemma 2.20 requires a positive definite covariance matrix ¥, i.e., the Gaussian
random vector & must be non-degenerate. This hypothesis restricts many applications,
because in some of them occur a multiplication of a non-degenerate Gaussian random
variable with a matrix that has more lines than columns, causing the degeneracy. The

next two results are important generalizations of Lemma 2.20.

Lemma 2.21. /93, Lem. 2.7.6] Let A be a k x m matriz. Consider a linear inequality

system Ax < z and define
Z(A,z)={IC{l,... .k} : Fr e R" ajx =z,i € [,a]x < z,i ¢ I}

Assume that z € R™ is such that Ax < z is non-degenerate (i.e., rank {a;},., = |I| VI €
Z(A,z)). Let & be an m-dimensional Gaussian random vector with mean pu and positive
definite variance-covariance matriz . Then the probability function p(z) = P[AE < z] is

differentiable at z and

P _ 0 § ) ¢TA)
0z; i () P[ADLOED < 200 — ADwD]  if {5} € T(4, 2)

Here €9 is a centered m — 1 dimensional Gaussian random variable with independent

components, AY) is obtained from A by deleting row 7,29 is defined similarly. Moreover,

LY) is the Choleski matriz of S := ¥ — —4—%a;a] ¥ (i.e., SU = LU) (L(j))T), wh) =
j g

.
Zi—a; p . . . . . .
p+ =r=3a; and f; the one-dimensional Gaussian density with mean w'a; and variance
j =aj

a] Ya;. Finally the inequality system A LUy < 200 — Ay is non-degenerate.

An interesting observation about Theorem 2.21 is that if the original inequality system
Ax < z happens to be non-degenerate, and consequently the reduced one also is, then the
reduced inequality system fulfills the assumptions of the same lemma, which allows one
to obtain derivative formulas of any order recursively. In other words, considering that z

satisfies the non degeneracy assumption, the probability function is of class C* [49]. A
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similar idea, weakening the positive definiteness of the covariance matrix, can be applied

to singular Gaussian distributions at any points z satisfying the non degeneracy condition.

Theorem 2.22. [49, Theorem 4.1] Let & ~ N (p, X) with some (possibly singular) covari-
ance matriz ¥ = (0y;) of order (m,m). Denote by ¥ = AAT any factorization of the
positive semidefinite matrix X. Let z be such that the inequality system Ax < z — p is
non-degenerate. Then, for j =1,...,m one has the formula

OF,
8_:;(2) = Je (%) - Ff(z]‘) (21,5 2j-1, 215 -5 Zm) -
J

Here, fe, denotes the one-dimensional Gaussian density of the component &;, £ (z;) is an
(m — 1)-dimensional (possibly singular) Gaussian random vector distributed according to
{N(z]) ~ N (ji, f)), i results from the vector p + U;jl (zj — py) 05 by deleting component j,
and Y results from the matriz 2 —a]»_jlajajr by deleting row j and column j, where o; refers

to column j of X.

A remarkable case with a special structure of (1.2) commonly arises in energy man-
agement problems, which is one of the examples considered in the numerical experiments
in Chapter 4. Such structure is composed of a bilateral inequality within the probability

function and is given by
o) =P[Ax +a <& < Bx+ b, (2.5)

where £ € R™ is a random vector and the vectors a,b € R™ and matrices A, B € R™*™ are

deterministic. The inequality system can be reformulated to a unilateral one as follows:

I B b
¢ < et | (2.6)
-1 —A —a

where I € R™*™ is the identity matrix. The disadvantage of this reformulation is that the
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new random vector

_ I -
£ = y ¢eR (2.7)

is degenerate and Lemma 2.20 can not be applied. However, Theorem 2.21 fits in this case
and provides a differentiability formula for the distribution of €. The price for doubling
the dimension of the random vector is paid by evaluating the probability in dimension 2m,
which is much more expensive. The following result from [106] has the advantage of not

working with probability in such dimension.

Theorem 2.23. [106, Thm. 1] Assume that & ~ N(u,X) with some positive definite

covariance matrix 3. Then, fori=1,...,m,

0 .
avaf(Cu b) = ffz‘ (bl> Fg(bi)(a@ b)

0 -
Ba, Fe(a,b) = —fe, (a;) Fg(,,)(a,b).

Here, fe, is as in Lemma 2.20, &(b:),€(a;), are m — 1-dimensional random wvectors
distributed according to € (b;),€ (a;) ~ N(j, S) such that fi results from the wvector
p+ o5t (b — i) oy (in case of b;) or from the vector u+ oy (a; — ;) oy (in case of a;) by
deleting component i and S s defined as in Lemma 2.20. Moreover @ and b result from a

and b by deleting the respective component i.

A formula for the derivative of the probability function in (2.5) is obtained by combining
the previous Lemma with the Corollary 2.24 that follows.

Corollary 2.24. [93, Cor. 3.2.83] Let ¢ : R™ — [0,1] be defined as p(x) :=
P[Az +a < & < Bx 4 b], where £ € R™ is a Gaussian random variable with mean p € R™
and positive definite variance-covariance matriz . Moreover, let a,b, A, B be as in (2.5)

Then the mapping @ s twice differentiable and we have:

Vo =V.Fe(a,b) A+ VyFe(a,b)" B
Vip = ATV, Fe(a,b)A + ATV Fe(a,b) B + BV, Fe(a,b)A + BV, Fe(a,b) B
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where F¢ is defined as in Lemma 2.23.

Two other special cases allowing the computation of gradients are the multivariate
Gamma |77, 75| and Dirichlet [41, 77, 113]| distributions, given by Theorem 2.25 and
Theorem 2.26, respectively.

Theorem 2.25. [93, Thm. 2.7.7] A multivariate Gamma distribution ( € R™ is defined
as ¢ = An, where n € R*"~! contains independent standard Gamma (with parameters ;)
distributed components and A is a m x 2™ — 1 matriz with non-zero columns, A;; € {0,1}
fori=1,....m, j=1,...,2™ — 1. Define, for eachi=1,....,m, I; C{1,...,2" — 1} as
I ={j:Ay;=1}. Then &' € R™ ', where

Zje[kﬂli 1y

5 =
2jer,

Ck=1,...,i—1,i+1,....m,

1s an m — 1 dimensional Dirichlet Distribution with parameters

Or= > U, k=1 i-Li+l...,m

jelnl;

@m+1 = Z 193';

JEUrxi R\ I;

foreachi=1,...,m. Now F(z) :=P[( < 2| is partially differentiable and

aF& . zﬁfgii]'e*zi
=P [0 SO ) R A
7 (2) (204 + e < 21, Yk # 4] 50
where vy, = Zjelmﬂ n;, k=1,...,i—1,i+1,...,m, is an m —1 dimensional multivariate

gamma distribution independent of 6°, I is the complement of I; and I is the usual gamma-

function.

Theorem 2.26. [93, Thm. 2.7.8] Let £ € R™ have a multivariate Dirichlet distribution,

i.e., have the density:

m Ym4+1—1
F(ﬁ1++’l9m+1) 91—1 9, —1

Zlyev-yZm) = 21 "'me 1-— Zi )
f( 1 ) F(ﬁl)F(ﬁmH) 1 ; J
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on the unit simplex z € A, = {z € R™ | 21+ -+ 2z, =1land z, > 0,i =1,...,m} in

dimension m (zero elsewhere). If

i 21 Zi—1 Zi+1 Zm R™1
Yy = e , e S
1—27; 1—252' ]_—Zi 1—Zi

satisfies y +y@ > 1 or y® + 4@ £y > 1 (but y + 4@ < 1) for the order-statistics
Y, then F(z) := P[¢ < 2] is partially differentiable at z and

OF; (014 ... +Pme1) 91

(2) =P & < i, Wk # ] (] ) T 05

0z I (19z> I <Zj;£i 19]’)
where é has an m — 1 dimensional Dirichlet distribution with parameters v4,...,7;_1
Dictyeoo s Umat-

A promising family that deserves our attention are the elliptically symmetric distribu-
tions, where some examples are the multivariate Gaussian, Student, logistic or exponential
power random vectors [53]. We refer the book [33| and [11, 53, 66, 100, 101] for the

interested reader in the subject.

Definition 2.27. [9/, Def. 1] We say that the random vector £ € R™ is elliptically
symmetrically distributed with mean p, covariance matrix ¥ and generator 6 : R, — R,

notation & ~ E(p, X, 0) if and only if its density fe : R" — R is given by:
fe(2) = 0((z = WS (2 = ) ) Vet S (2.8)

Two examples of generators associated to the respective distribution function are given

in the following.

Example 2.28. [102] The Gaussian and Student random vectors are elliptical with the

respective generators:
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In Definition 2.27, we emphasize that our attention is restricted to random vectors
disposing of a density, which is appropriate for our configuration, but not necessarily of
full generality. The characteristic function provides an alternative way for describing a
random vector, determining the behavior and properties of its probability distribution.
For £ ~ &E(u, %, 0), the characteristic function is defined by the first equality of (2.9) and

it can also be represented by the second equality of (2.9)

@e(t) = E (exp (z’tTg)) = exp (z’tTu) P (tTEt) (2.9)

for a scalar mapping v, called characteristic generator, which is defined as

3

™

r(

P(v) = /OOOE [exp (2\/57"{1)] 2 rm1e (7"2) dr,

|3

)

where ¢ € R™ has uniform distribution on the Euclidean sphere S™ ! = {z ¢ R™ : ||z|* =
1} and (; denotes its first component. The expression (2.9) follows directly from the defini-
tion of a characteristic function considering a change of variables and, as a consequence of
[33, Theorem 2.1], L=!(§ — ) follows a spherical distribution, where L denotes the matrix
arising from the Choleski decomposition of ¥ = LLT. From [33, Corollary to Theorem
2.2|, L7Y(& — p) admits the representation

L&~ p) = RC, (2.10)

where R is a one-dimensional random variable with support on R, (corresponds to the
smallest closed subset of R, such that its probability distribution, according to R, is 1),
independent of . Now, from (2.10) it follows that £ admits the representation

¢ =p+RLC. (2.11)

Without loss of generality, we will assume that ;1 = 0 and ¥ is a correlation matrix.

Indeed, define the random variable f := D({—p), where D is an mxm diagonal matrix with
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elements D;; = E;.l/ ®. We may have that £ ~ & (0, R,0), where R is the correlation matrix
associated with . By defining the mapping g : R" x R™ — R as §(z, z) := g(z, D™ 2+ p),
where ¢ has the same properties of g, the following identity holds

plz) = P[3w,€) <0] =P[5z, D( — ) < 0]

P
Plg(x, D7'D(§ — p) + p) < 0] =P[g(,&) < 0].
The advantage of representation (2.11) (with g = 0) is that for a given Lebesgue

measurable set M C R™ its probability may be represented as
Pl¢ e M] = / pr({r > 0:rLvn M # 0})dpuc, (2.12)
veSm—1

where pig and pie are the measures associated with R and ¢, respectively. The set M can
be assumed as the set-valued application M (x) of Proposition 2.15 or the inequality system

g, as in Proposition 2.16.

Assuming the maximum function g™ : R" x R™ — R over its components as

g"(x,z) = max g;(x,2),
i=1,...k

which preserves the convexity in the second argument (but not differentiability), the general

probability function ¢ = P[g(z,£) < 0] can be written, by (2.12), as

o = [ 0@l <duc= [ e (213
pegm—1 vES
where
e(z,v) = ur({r > 0: ¢"™(z,7Lv) < 0}), Vo € R" Vv € S™ 1. (2.14)

In the following we will consider points x for which ¢™(x,z) < 0, that means 0 is a

Slater point of the inequality system g(z, z) < 0 in z. This assumption with the convexity
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of g™ imply that for each z € R™ and each v € S™!, (2.14) can be simplified as

e(r,v) = pr([0,77]),

where 7 = oo in the case that ¢™(x,rLv) < 0 for all » > 0 or r* is the unique solution of
g™ (z,rLv) = 0 in r > 0. Since these two cases are essential when dealing with possibly
unbounded sets, we define the following set-valued mappings F}, I;, F, I : R® = S™ !, for
7=1,...,k:

F(z):={veS™"|3r>0:g"(x,rLv) =0}

I(z) ={veS™"|Vr>0:g¢"(z,rLv) <0}

F.

i) :={veS™"|3Ir>0:g(z,rLv) =0}

)
) :
(z) :
Li(z) :={veS™ " |Vr>0:gj(z,rLv) <0}.

We now address some elementary properties and then the differentiability results of ¢
by following the ideas presented in [93, 99|, for the Gaussian case, and [94, Sections 2.4

and 3] for general distributions, which references to [99, 100].
Lemma 2.29. [100, Lem 2.1] Let x € R" be such that g™(x,0) < 0. Then,
1. Fi(z)UIj(x) = F(z)UI(z) =S™"" forallj=1,... k.
2. Forje{l,...,k} and v € Fj(x) let r > 0 be such that g;(x,rLv) = 0. Then,

(Vegy(z,rLv), Lv) 2 —M

3. Fz) = Ui Fj(x), I(x) = 0, Ij(x).
4. e(x,v)=1ifve l(x) and e(z,v) < 1 ifv € F(x).

Lemma 2.30. [99, Lem. 3.2] Let j = 1,....k be arbitrary and let (x,v) be such that
gj(2,0) < 0 and v € Fj(x). Then, there exist neighbourhoods U; of x and V; of v as well

as a continuously differentiable function pj?’v :U; x V; — Ry with the following properties:
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1. For all (',v',r") € U; x Vj x Ry the equivalence g; (x',7'Lv") = 0 < 1" = pi" (2/,0')

holds true.
2. For all (2/,v") € U; x V; one has the gradient formula

1
a <Vzgj (1”, p;" (2, 0) Lv’) ,Lv’>

prjr"v (gj/’ ’U,) — Vmg] ($/’ p;?,v ($/’ ’U/> L’Ul) )
Lemma 2.31. [100, Lem 3.1] Let x € R"™ be such that g™(x,0) < 0 and let v € F(x).
Then, introducing the index set Jz° = {j € {1,...,k} | v € Fj(x)}, the functions p}"* from
Lemma 2.30 are well-defined for j € Jz° on the neighbourhood UxV of (x,v), where, with
U;,V; from Lemma 2.30,

U .= mjerUju ‘72: ﬂjeJF‘/j.

Moreover, there exist neighbourhoods U C U of x and V. C V of v with the following

properties:
1. For all («',v',7") € U x V x Ry the equivalence g™ (z',r'Lv") = 0 < r' = p™¥ (2/,0')
holds true, where p™° : U x V — Ry is defined as

p" (2, 0') == min p" (2, 0) V(') €U x V.

jeJg’
2. For all (x',v") € U x V', the partial Clarke-sub-differential of p™* (w.r.t. x) is given
by
p™ (o' ') = conv {V,pi" (/) 1 j € T (a',0)) } .
where conv(A) stands for the convexr hull of a set A and J*V(2',0") =
(e T2 |03 @) = o7 ()}
A difficulty that we must pay attention is when the set M (x) is unbounded at a target

point Z. Such condition may lead a non-Lipschitzian behaviour of ¢ [92, Example 2.3|. To

handle unboundedness we can assume additional conditions to control the growth of Vg
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for large values of z. Now we define the 6r-growth condition that makes a relation with

the underlying random vector £ through its radial component R.
Definition 2.32. /92, Def. 2.1] Let 0 : Ry — R, be an increasing mapping such that

for any & > 0 the following condition holds:

lim fr(r)rog(ér) =0,

7—00

where fr s the density of R. Let h : R" x R™ — R be a differentiable function. We say
that h satisfies the Or-growth condition at T if for some 61,C > 0 and neighbourhood U of
x it holds that

IVah(z, 2)|| < 016 (|z]]),
for allz € U and z such that ||z]| > C
Now we are able to provide a differentiability result for the probability function ¢:
Theorem 2.33. [9/, Thm. 1] Assume that:
- The mapping g is continuously differentiable and convex in the second argument

- The random wvector £ is elliptically symmetrically distributed with positive definite

covariance-like matriz > and continuous generator.
Let the following conditions be satisfied at some fived T € R™ :
1. There ezists € > 0, such that g;(z,0) < —¢, forj=1,....k
2. g; satisfies the Og-growth condition at T (Definition 2.82) for all j =1,... k.

Then, ¢ given by x — p(z) = Plg(z,&) < 0] is locally Lipschitz continuous on a neigh-
bourhood U of T and it holds that

c fR(p(xvv)) ] . 5
Ip(x) C / )conv {_Wzgj (xjp(x’v)Lv%Lwagy (z, p(z,v) L) | j € J(l’,v)} dp(v)

veDom(p(z,.)

(2.15)
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for all x € U. Here, for any v € Dom (p(az, )),

j(x,v) - {j e{l,...,k}| gj(x,p(z,v)Lv) = 0}

refers to the active index set.

The integral in (2.15) is to be understood as the set of integrals over all measurable
selections of the set valued integrand [94]. As we can see, Theorem 2.33 only achieve
a statement on the locally Lipschitzian nature of the probability function and an outer
estimate of the subdiffrential, but still provides a good path to establish the continuous
differentiability of ¢. To achieve such condition we will need a constraint qualification for

g. For any x € R" and z € R™, we denote by

I(x,z):={je{1,...,k} | gj(z,2) =0}

the active index set of g at (x,z). We say that the inequality system g¢(z,z) < 0 satisfies
the Rank-2-Constraint Qualification (R2CQ) at x € R™ if

rank {V.g;(z,2), V,gi(x,2)} =2 Vi,j € I(x,2),i#j, VzeR™:g(x,2z) <0. (2.16)

Under this constraint qualification condition we can finally provide the differentiability

of .

Corollary 2.34. [94, Cor. 1] In addition to the assumptions of Theorem 2.3, suppose that
(2.16) is satisfied at T. Then,  is Fréchet differentiable at T and the gradient formula

_ f'R (p(jv U)) _ _
vew -- Pl V0500 (7. (2. v) L) e v)
[T st o), Ty )
veDom(p(Z,.)),#J (T,0)=1
(2.17)
holds true. Here j(v) is the unique index j € {1,...,k} satisfying g;(z, p(z,v)Lv) = 0. If
(2.16) is satisfied locally around T, then, ¢ is continuously differentiable on an appropriate

neighbourhood of T.
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Considering a spherical-radial decomposition of the non-degenerate Gaussian random
vector &, [102, Thm. 3| proves that p(z) = P[g(x, &) < 0] is twice continuously differen-
tiable on a neighbourhood U of = (see [102, Sec. 4] for examples of chi-squared, lognormal
and Student random vectors). The function g is assumed to be twice continuously differen-
tiable, convex with respect to the second argument and it satisfies the first and second order
exponential growth conditions [102, Assumption 1] on the Hessian VZ?g(x) at . Combining
this result and the compactness of the feasible set X C R"™ (see Chapter 1), we have that

V2p(x) is bounded by the following standard result on analysis.

Theorem 2.35. Let K be a nonempty subset of R™, where n > 1. If K is compact, then

every continuous real-valued function defined on K is bounded.
Consequently, the next result ensures that V(x) is Lipschitz continuous in X.

Lemma 2.36. [64, Lem. 1.2.2] The function ¢ : X C R" — R is twice continuously
differentiable in X and satisfies |Vo(x) — Vo(y)|| < L||lz —y||, for a constant L > 0, if
and only if

V2o(2)|| < L, VxeR™ (2.18)

In other words, we have that every probability function that is of class C? with bounded

Hessian (2.18) has Lipschitz continuous gradient.

2.3 Copula

We now focus on the particular case of distribution functions called copulee, whose
domain is the m-dimensional unit box I"™ := [0, 1]™. Multivariate distribution functions
contain two types of information: the description of the marginal behaviour and the de-
pendence structure. The last one is where copulee take part, they allow us to represent the
dependencies between multivariate distributions just on the basis of its one-dimensional
marginals. In other words, we can construct any multivariate distribution function by

separately specifying the marginal distributions and the copula.
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In this section we will present some definitions, properties, examples, the classical
Sklar’s theorem, which states the existence of a copula associated to the distribution func-

tion, and a classification of copule in families, according to some characteristics.

2.3.1 Definition and properties

Definition 2.37. [29, Def. 1.3.1] For every m > 2, an m-dimensional copula (an m-
copula) is an m-dimensional distribution function concentrated on 1™ whose univariate

marginals are uniformly distributed on 1. The set of m-copule is denoted by C,,.

An immediate consequence from Theorem 2.8 is: to each copula C' there exists a ran-
dom vector U = (Uy,...,U,,) on a probability space (£2, F,P) such that C' is the joint
distribution function of U. Such a probabilistic characterization allows the introduction of
the following three fundamental examples of copulee, where we illustrate their graph and

the t-level set (defined below) in the Figures 2.4, 2.5 and 2.6.

Definition 2.38. /29, Def. 1.8.2] Let C' € C,, and let t € 1. The t-level set is the set of
all points u € I™ such that C'(u) = t. It is defined by L, = {u € I : C(u) = t}.

Notice that, for every ¢t € I, all the points of type (¢,1,...,1),(1,¢,1,...,1),...,

(1,1,...,1,¢) belong to L% because the uniform distributions of the marginals.

Example 2.39. [29, e.g. 1.3.3] (The copula M,,) Let U be a random variable defined on
the probability space (S0, F,P). Suppose that U is uniformly distributed on 1. Consider the

random vector U = (U,...,U). Then, for every u € I',

PIU<u]=P[U<min{u;....,uy,}| =min{uy,..., uy}.

Thus the distribution function given, for every uw € I, by

M (ugy ooy ty) = min{ug, ..., Uy, }
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18 a copula, which will be called the comonotonicity copula. The graph and the t-level set

are represented in Figure 2.4 for m = 2.
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Figure 2.4: 3-d graph (left) and the ¢-level set (right) of the comonotonicity copula for
m = 2.

Example 2.40. /29, e.g. 1.3.4] (The copula 11,,) Let Uy, ..., U,, be independent random
variables defined on the probability space (2, F,P). Suppose that each U; is uniformly
distributed on 1. Consider the random vector U = (Uy,...,Uy). Then, for every u € I™,

m

PU<u =P[U <w Pl < up) = [[ .

j=1

Thus the distribution function given, for every u € 1™, by

15 a copula, which will be called independence copula. The graph and the t-level set are

represented in Figure 2.5 for m = 2.

Example 2.41. /29, e.g. 1.3.5] (The copula Wy) Let U be a random variable defined on
the probability space (Q, F,IP). Suppose that U is uniformly distributed on 1. Consider the
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Figure 2.5: 3-d graph (left) and the t-level set (right) of the independence copula for m = 2.

random vector U = (U,1 — U). Then, for every u € I?,
PU<u]=P[U <wuy,1 —U < ug] = max{0,uy + us — 1}.
Thus the distribution function given, for every u € 12, by
Wa(uq, ug) := max{0,uy + us — 1}
15 a copula, which will be called the countermonotonicity copula. The graph and the t-level

set are represented in Figure 2.6 for m = 2.

Now we introduce the standard partial order among real-valued functions in the space
of copulee, which gives us a result that provides upper and lower bounds in C,, with respect

to the given order.

Definition 2.42. /29, Def. 1.7.1] Let C,C" € C,,. C is less than C" in the pointwise order,
and one writes C < C', if, and only if, C(u) < C'(u) for every u € 1™,
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Figure 2.6: 3-d graph (left) and the t¢-level set (right) of the countermonotonicity copula
for m = 2.

To the next result, consider the function W,, : I — I defined by
Wi (u) := max < 0, Zuj —(m—1)
j=1

Theorem 2.43. /29, Thm. 1.7.3] For every m-copula C and for every point u =
(Ui, ..., uy) €1I™, one has

Win() < Cu) < M (), (2.19)

where M, is defined in Example 2.39.

Proof. Let the copula C' be the distribution function of a random vector U that is defined
on the probability space (€2, F,[P). We will prove each side of the inequality (2.19).

o C(u) < Mpy,(u)

For every index j € {1,...,m} and for every u € I, one has

m

({Uk < e} C{U; <y}

k=1
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which implies that

C(u) =P

je{1,...m}

ﬁ {Up < uk}] < min P[U; < uy] = My, (u).

o Clu) > Wi(u)

Analogously, one has

1 1

C(u) =P [ﬁ {U; < uj}] =1-P [6 {U; > uj}]

M

I
—

Zl—ZP[Uj>Uj]:1—

Jj=1 J

(1—wuy) = Z’LLj —(m—1).
j=1
Since C' takes positive values, it follows that C'(u) > W, (u).

]

The functions W,, and M, are called the lower and upper Hoeffding-Fréchet bounds,
respectively. A family of copula that includes W,,, 11, and M,,, is said to be comprehensive.
Besides the probabilistic interpretation of copulee, they can be characterized in terms

of the analytical properties of the distribution functions, as a consequence of Theorem 2.8.

Theorem 2.44. [29, Thm. 1.4.1] A function C : [0,1]™ — [0,1] is called a copula if the

following conditions hold:
(a) Cluy, ..., uy) =0 1if u; =0 for at least one index j € {1,...,m};

(b) When all the arguments of C' are equal to 1, except possibly for the j-th one, then

C(,...,Lu;,1,...,1) = uy;

(¢) C is quasi-monotone on [0, 1]™.
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Properties (a) and (b) together are called the boundary conditions of a m-copula. Property
(¢) means that the C-volume of any box in [0, 1]™ is nonnegative (a property satisfied by
probability functions) and it is also found in the literature as m-increasing (see Theorem
2.8 (b)). This can be interpreted in such a way that the copula C' is increasing in each
variable, i.e., for every j € {1,...,m} and for all wy,...,uj_1,uj1,..., Uy, in I, t —
Cluy, ..., uj—1,u;(t), wjt1, ..., Upy) is increasing.

From the above definitions and results, a basic way to prove that a function C' : I"™ — 1
is a copula is to verify its definition, i.e., finding a suitable probabilistic model whose
distribution function is concentrated on I"™ and has uniform marginals. A second way
consists in proving that the three properties of Theorem 2.44 are satisfied. However, this
latter strategy is usually complex to demonstrate in high dimensions. In order to simplify
the calculations of the m-increasing property, we define the F-volume of a function F,

which will be useful to prove the next results.

Definition 2.45. [29, Def. 1.2.10] Let A be a rectangle in R™, where R stands for the
extended real line [—oo, +00]. For a function F' : A — R, the F-volume Vi of (a,b] C A is
defined by
Ve(@) = Y sign()F(v),
vever((a))

where

sign(v) = 1, ifvj; = a; for an even number of indices,
—1, ifv; = a; for an odd number of indices,

and ver((a,b]) = {a1,b1} x -+ X {a,, by} is the set of the vertices of (a,b).

Definition 2.46. /29, Def. 1.2.11] Let A be a rectangle in R?. A function H : R? — R is

m-increasing if the H-volume Vi of every rectangle (a,b] is positive, i.e., VH((a, b]) > 0.

By definition 2.46, the function W,, is not a copula for m > 3. In [63, Exc. 2.36]
is possible see that for the rectangle determined by the m-dimensional vectors 1/2 =

[1/2,...,1/2] and 1 = [1,...,1], the volume Vi, ([1/2,1]) = 1 — (m/2) is negative if
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m > 3, and then Theorem 2.44 (¢) does not hold. On the other hand, for each v € I™
there exists C,, € C,,, which depends on u, such that C,(u) = W,,(u) [29, Thm. 4.1.7].

Example 2.47. If the domain of F is R?, then F is also said to be supermodular. In such

a case, Vi ((a,b]), where a = {a1,as} and b = {by, by}, is written explicitly as

Vi((a,b]) = Z sign(v)F(v)
vever((ab))
= sign((a1,az2))F (a1, as) + sign((ay, be))F(ay, by)+
+sign((by, as))F (b1, as) + sign((by, b)) F (b1, by)
= Fl(ay,a9) — F(ay,by) + F(by,as) — F(by,by).

In the following, if £ is a random vector with distribution function F', then VF([CL, b]) =
P[¢ € [a,b]]. Obviously, if F is continuous, Vp((a,b]) = P[¢ € [a,b]] for all a,b € R™ with
a < b. Next lemma provides some properties of the F-volume Vi of a function F, which

will be important to prove the convexity of the set of copulee C,,.

Lemma 2.48. [29, Lem. 1.4.4] Let F,G : ™ — 1 be two functions. Let (a,b] be a m-box
in 1. Then:

(a) Virsc((a,b]) = Vir((a,0]) + Vi ((a,0])
(b) Var((a,b]) = aVr((a,b]) for every a > 0;

(c) if (a,b] = UjesB;, where J has finite cardinality and all B;’s are left open m-boxes

whose interiors are disjoint, then

Vi ((a,b]) =) Vi(By).

JjeET

Theorem 2.49. [29, Thm. 1.4.5] The set C,, is a convex set, i.e., for all a € I and Cy
and Cy in Cp,, C = aCy+ (1 — a)Cy is in Cp,.
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Proof. Let Cy,Cy € Cpy, v € T and let C' = aCy + (1 — «)Cy be a convex combination of
Cy and (. Its easily proved that the univariate marginals of C' are uniformly distributed

on I. Moreover, for every rectangle (a,b] C R™, using Lemma 2.48 yields

Ve((a,0) = Vacora-aer ((a,b])
= Vac, ((av b]) + ‘/7(1*04)01 ((CL, b])
Ve, ((a,b]) + (1 — @) Ve, ((a, b)),

which is the desired assertion. ]

Example 2.50. [29, e.qg. 1.4.6] Consider the case m = 2 and let o and ( be in I with
a+ B < 1. Then, in view of the convezity of Cz, Ca 5 : I? = 1 defined by

C,f:';(ul, Us) := aMs(ur, us) + (1 — o — B)y(uy, ug) + SWa(uy, us)

is a copula. As the parameters o and [ vary in I subject to the restriction o + 3 < 1, the
copula varies in a family of copule known as the Fréchet copulce.

The next result gives us a Lipschitz condition of a m-copula.

Theorem 2.51. [29, Thm. 1.5.1] A m-copula C satisfies the following condition, for all

u,v € I:

Cu, . t) = Clon, o) <Y Juy — g (2.20)
j=1

Proof. Let C be the distribution function of a random vector ¢ defined (2, F,P) and let

P, ..., F, be its univariate marginals. Then, for every j € {1,...,m}, for t; <t and for
-1
every (T1,...,%j-1,Lj41,...,T,m) € R™
/
C(flﬁl, e 7xj—17tj7$j+17 Ce ,IIIm) - C(LCl, Ce ,I‘j_l,tj,flfj+1, Ce ,LUm)

:P[f1§$177§]§t;7,§m§$m] _]P[é-léml,,{]gtj,,gmgxm}
Z]P’[&le,...,t<§jgt;,...,gmgxm} = F(t") — Fy(t)
=t —t
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Note that the last equality holds because the univariate marginals Fi, ..., F,, of C follow

a uniform distribution. By the triangular inequality, we have that

C(w) = C)| < |C(u) — Clon, .., )|
+ |C(U1,’LL2, s 7um) - C(U1>U27u37 . 7um)’
+ |C(v1,v9,us .oy Up) — Cv1, 09,03, Ug, -« oy Uy |
+ o C(vr,y e U1, Uy) — C(0)]

D IEi () = Fi(v)] = D uj — vy,

: =

j=1

IN

]

It is possible to show that there is no better possible constant of the Lipschitz condition

in (2.20) than 1. In other words, does not exist a constant o < 1 such that
m
Cu, . tim) = Clon, . om)| <Y fuj— vl =a | u—v].
j=1

We refer to the inequality (2.20) as the Lipschitz condition with constant 1, or simply
the 1-Lipschitz condition. One can also say that every copula C € C,, is 1-Lipschitz
continuous with respect to the ¢1(m)-norm. In particular, every m-copula C' is uniformly
continuous on I". Now, analogously to Definition 2.10, we introduce a stronger version of

continuity in C,,.

Definition 2.52. [29, Def. 1.5.4]A copula C € C,, is absolutely continuous if it can be

expressed in the form
Clu) = / o(t) dt
[0,u]

for a suitable integrable function ¢ : 1™ — R,.

As we have seen before, the function c is called the density of C. An obvious example
is the copula II,,, which is absolutely continuous with density ¢ = 1. Since a copula has

uniform marginals, the density of an absolutely continuous copula can be characterized by
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means of the following property: for every t € I and for every j € {1,...,m},

1 1 t 1 1
0 0 0 0 0
~—

j-th integral

Among all the definitions and properties over copule that we have seen, they also
have a special meaning when dealing with joint distribution functions, which is the key
point to work with copulee. Every multivariate distribution function of a random vector
¢ contains two types of information: the description of the marginal behaviour, which
means the probabilistic knowledge of the single components of the random vector, and the
dependence structure.

Considering that we know the behaviour of the single components of a random vector
¢ in terms of their univariate distribution functions, by means of the the next result a

suitable multivariate model can be constructed.

Theorem 2.53. /29, Thm. 2.1.1] Let Fy, ..., F,, be univariate distribution functions and
let C be any m-copula. Then the function F' : R™ — I defined, for every point x =
(x1,...,xm) ER™, by

F(zy,...,2p) = C(Fi(z1),..., En(zn)), (2.22)

is an m-dimensional distribution function with margins given by Fy, ..., F,,.

This result suggests us an approach to build a multivariate distribution. Defining
the marginal distributions, where we can give attention to univariate distributions with
different natures, a copula may be chosen in such a way that the marginals are linked to a
common model. Since some families of multivariate distribution require that the marginals
are in the same family, this recipe seems quite promising.

Now, for our purposes, we present the result of utmost importance, which is the Sklar’s
theorem. This theorem allows us to connect the probability law of any multivariate random

vector to its marginal distributions through a copula.
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Theorem 2.54. [29, Thm. 2.2.1](Sklar’s theorem) Let & € R™ be a random vector defined
in the probability space (2, F,P),

F(y) :P{glgylaagmgym]

be the joint distribution function of §& and Fj(y;) = P& <wy;], 7 = 1,...,m, be its

marginals. Then, there exists a copula Ce such that, for every pointy = (yi1,...,ym) € R™,

F(y) = Ce(Fy(y1), - - Fu(ym))- (2.23)

If the marginals I, ..., F,, are continuous, then the copula C¢ is uniquely defined.

In essence, Sklar’s theorem states that a multivariate distribution function may be
expressed as a composition of a copula and its univariate marginals. The existence of a
unique copula of a m-dimensional distribution function whose marginals Fi, ..., F,, are

continuous is ensured in the following Lemma.

Lemma 2.55. [29, Lem. 2.2.3] Under the assumptions of Theorem 2.54, if F, ..., F,, are
continuous, then there exists a unique copula C' associated with & that is the distribution
function of the random vector (Fy o &y, ..., Fy, 0&y,). It is determined, for every u € 1",

via the formula
C(w) = F (F7V (), B () (2.24)
where, for j € {1,...,m}, Fj(fl) is the quasi-inverse of Fj.

Considering some particular properties of the copulae, we will classify them into families.

2.3.2 Families of copula

The objective of this section is to present some of the several families of copulee that
have appeared in the literature with interesting theoretical properties and applications.
We begin introducing the Archimedean family, which is used in the numerical experiments

in Chapter 4, and then follows the Fréchet, EFGM and Elliptical families of copulee.
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Archimedean copulae

Archimedean copulee are parametrized via a one-dimensional function, which is defined

below.

Definition 2.56. Given a real parameter 6, a function vy : [0,1] — [0,00) is said to
be a (copula) generator if it is convez, continuous, strictly decreasing on [0,to], where

to = inf{t > 0 : Yy(t) = 0}, and (1) = 0.

The inverse of the generator 1y is written as ¢, ', and its pseudo-inverse wé_l] is defined
by
) Wy () if 0 <t < y(0)

0 if 1p(0) <t < +oo0.

The following definition introduces m-dimensional Archimedean copule for m > 2.

Definition 2.57. A copula C' is called Archimedean if it has the representation

Cluy, ... tp) =5 <¢9(u1) +o wa(um)), (2.25)

where 1y : [0, 1] — [0,00) is a generator function.

Remark 2.58. In the literature we can find another equivalent definition for the generator
and the Archimedean copula. For example, in [29], wgﬁl] and 1y are replaced by pg and

goéfl) , respectively.

With reference to the generator, the copula (2.25) is denoted by Cy,. When ) is strictly
decreasing in the whole interval [0, 1], its pseudo-inverse YU equals its inverse, Y-l =

¢!, and the copula C, is said to be strict.

Example 2.59. The copula 11y is Archimedean: take 1(t) = —logt; since Pn(l) P(t) = o0,
—
P(t) >0 for every t € [0,1) and ¥(1) = 0, v is strict; then (t)™' = e~ and

Pt (w(u) + w(v)) = exp ( — (—logu — log v)) = uv = I (u,v).
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We saw that an Archimedean copula depends on a generator. An important task is
which properties that a generator has to enjoy in order that the function C defined by
(2.25) is a m-copula. This question will be addressed and answered in Theorem 2.62 below

via the following preliminary definition.

Definition 2.60. /29, Def. 6.5.5] A function f : (a,b) — R is called m-monotone in (a,b),

where —o0 < a < b < 400 and m > 2 if
e it is differentiable up to order m — 2;

o for every x € (a,b), its derivatives satisfy
(=1 P (x) >0

fork=0,...,m—2;
o (—1)m=2fm=2 ys decreasing and conver in (a,b).

Moreover, if f has derivatives of every order in (a,b) and if
(=) f P (@) > 0,

for every x € (a,b) and for every k € Z.,f is said to be completely monotone.

Definition 2.61. /29, Def. 6.5.6] Let I C R be an interval. A function f: I — R is said
to be m-monotone (respectively, completely monotone) on I, with m € N, if it is continuous
on I and if its restriction to the interior I° of I is m-monotone (respectively, completely

monotone).

Theorem 2.62. [29, Thm. 6.5.7] Let ¢ : [0, +00] — I be a generator. Then the following

statements are equivalent:
(a) 1 is m-monotone on [0,400);

(b) the function Cy : I™ — 1 defined by (2.25) is a m-copula.
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Now we list some families of Archimedean copulee, showing their expression and its

Archimedean generator [29, e.g. 6.5.16 - 6.5.19] .

i. Gumbel-Hougaard copulce:

ii.

The Archimedean generator, and its inverse, of this family are given by

Yo(t) = (—1log(t))” and 4\ (1) = exp(—t'/%), 6 € [1,00). (2.26)

The standard expression for members of this family of m-copulee is

. 1/0
C&H(u) =exp | — (Z(—log(ui))6> : (2.27)

i=1

where 8 > 1. For # = 1 one obtains the independence copula as a special case, and

the limit of CFH for § — +oo is the comonotonicity copula M,,. Each member of

this class is absolutely continuous.

The expression (2.27) is obtained by applying the generator (2.26) in (2.25):

C§™(w) = v (Vo) + ...+ voun))
— v ((~log(u))’ + ... + (~ log(un))")
— exp ( — ((—log(u))? + ... + (— log(um))9)1/6>.

Mardia- Takashi-Clayton copulee:

The Archimedean generator, and its inverse, of this family is given by

Yolt) = 570~ 1) and 9 (1) = (max{1 +61,01) 7, 6 € [~1,00)\ {0}

The standard expression for members of this family of m-copulee is

~1/6
CMTC(u) = max (Zu ) ,0 3,
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where 0 > —1/(m — 1), @ # 0. The limiting case § — 0 corresponds to the indepen-

dence copula.

Frank copule:

The Archimedean generator, and its inverse, of this family is given by

-6t

bolt) = —log (

e—0 —

1) and %]71)(25) = %log (1—(1—ee"), 0 € R\{0}.

The standard expression for members of this Frank family of m-copule is

- 1 ™ (e7fu -1
CFrank(y) = —Elog (1 + H(e_le(_ Ty >> ;

where 6 > 0. The limiting case § = 0 corresponds to II,,. For m = 2, the parameter

0 can be extended also to the case 6 < 0.

Ali-Mikhail-Haq copulcee:

The Archimedean generator, and its inverse, of this family is given by

wo(t) = log (11%9 +9) and ¥ () = ;:99, 0e[-1,1).

The standard expression for members of the Ali-Mikhail-Haq (AMH) family of 2-

copulee is
uw

T1-0(1—u)(1—v)
where 6 € [—1,1]. For # = 0 one has Cy = Il,.

CéAMH(ua U) -

. Joe’s copulee:

The Archimedean generator, and its inverse, of this family is given by

Go(t) = —log (1= (1—1)?) and o5 V() =1-(1—e Y 6>1.



2.3 Copulae 61

The standard expression for members of the Joe’s family of m-copulee is

Cy°°(u) —1—< ﬁ(l—l—uze>>l/9>

=1

where 6 > 1.

Fréchet copul=e

This family of copulee came from studies about the upper and lower bounds in the class
of distribution functions with fixed margins, as given in (2.19). Then, a convex combination
of these functions in the Fréchet class creates a parametric family. This two-parameter

family may be represented in the form
Cgﬁ(ul,ug) = aMsy(uy, u) + (1 — a — B)a(ug, us) + fWa(uq, us),

where o and 3 are in I with oo + 3 < 1.

Since the Fréchet lower bound is not a copula for m > 3, as we have already men-
tioned, this family cannot be fully extended to the higher dimensional case. A possible
m-dimensional extension of its subclass describing positive dependence is given by, for

every « € [,

CFre(u) := aM,,(u) + (1 — a)IL,,(u). (2.28)

EFGM copule

A bivatirate Eyraud-Farlie-Gumbel-Morgenstern (EFGM) copula has the following ex-

pression,

CEFGM (41 u9) = uqun(1 4 (1 — uy) (1 — uy)),

with a € [—1,1]. Now, consider the higher dimensional extension to m > 3. Let Z be the

class of all subsets of {1,...,m} having at least 2 elements, so that Z contains 2" —m — 1
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elements. To each S € 7, we associate a real number ag, with the convention that, when

S ={i1,...,ix}, s = a4, ;.. An EFGM m-copula can be defined in the following form:
CEFGM (y) = Hu(l +3 as [ —uj)), (2.29)
i=1 Sez  jes

for suitable values of the ag’s.

Elliptical copulae

This section is also based on the references |11, 66, 101]. The elliptical copule are ob-

tained by applying the inverse transformation (2.24) to multivariate elliptical distributions.

Definition 2.63. [29, Def. 6.7.1] An elliptical copula is any copula that can be obtained

from an elliptical distribution using the inversion method of equation (2.24).

Example 2.64. [29, e.g. 6.7.2] The Gaussian copula is the copula of an elliptical random

variable & that follows a Gaussian distribution, i.e.,
§=AZ,

where A€ R™F % := AAT € R™™ is the covariance matriz, rank(X) = k < m and Z is
an m-dimensional random vector whose independent components have univariate standard
Gaussian law. We write § ~ Ny, (u, X).

The bivariate Gaussian copula is given by

27 (w) 27(v) 1 s% — 2pst + 2
CS%u,v :/ ds/ ——————ex (—+> dt,
P (u, v) . . 2 /1 — 2 b 2(1—p?

where p is in (—1,1), and ®~1 denotes the inverse of the standard Gaussian distribution

N(0,1).

Example 2.65. [29, e.g. 6.7.3] The Student’s t-copula is the copula of an elliptical random
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vector & that follows a multivariate Student’s t-distribution, i.e.,
£ u+2VAVWZ,

where Z ~ Ny, (0, I,) is a Gaussian distribution, ¥ := L2512 js positive definite. More-
over, W and Z are independent, and W follows an inverse Gamma distribution with pa-
rameters (v/2,v/2).

The bivariate Student’s t-copula is given by
Cow(uv) =ty (8, (), £, (v) ,

where p is in (—1,1), and v > 1, while t,, is the bivariate Student t-distribution with
zero mean, the correlation matriz having off-diagonal element p, and v degrees of freedom,
while t;* denotes the inverse of the standard t-distribution. The Student t-copula becomes

a Gaussian copula in the limit v — oo.
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Chapter 3

Trust-region algorithm with

copula-based models

In this chapter, which is the core of our publication [10], we present a derivative-free
trust-region algorithm to solve probability maximization problem (1.2). Our method builds
upon [15], but differs from the latter in the definition of the model and the iterates. While
[15] computes iterates as stationary points of quadratic constrained programs, our approach
defines iterates as approximate stationary points of nonlinear optimization problems arising
from approximating the difficult probability function with a simple copula-based model.
The definition of the model, the algorithm, the global convergence analysis and auxiliary

results ensuring some conditions and assumptions are presented in the sequence.

3.1 Copula-based model

This section discusses the construction of the copula-based model. It is separated in
two parts, in the first one we apply the Sklar’s theorem to the probability function ¢ in
(1.2), ensuring the existence of a copula that coincides with ¢ when it is composed with the
function g and the univariate marginals of . In the second one we define the model, which

is given by a linear combination of copulae such that the coefficients of such combination

65
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are a solution of a simple least-squares quadratic problem.

3.1.1 Application of Sklar’s theorem

In the context of the optimization problem (1.2), Theorem 2.54 asserts that there exists
a copula Cg¢ : [0,1]™ — [0, 1] such that the objective function ¢(z) = P[§ < g(x)] can be
represented as the composition of the mapping ¢g : O — R™, the marginals F; : R — [0, 1],

j=1,...,m, and the copula Ck:

p(z) = Ce(Pla < qi(@)],--,Pem < gm(2)])

(3.1)
= C¢ <F1 (91(2)),.... Fn (gm(x)))

Observe that this theorem is not constructive, it “only” ensures the existence of a copula
associated with the cumulative distribution function F. In most of the practical cases, a
copula providing the equality (2.23) is unknown. Estimating a suitable one is a non-trivial
task that has been receiving much attention in the last few years [29, 63]. Instead of finding
a single C' € C,, fitting ¢, we consider a dictionary D, with r € N copula of class C! and
Lipschitz continuous gradient to locally approximate :
C; is a copula of class C! with
D.:=<:Cyi=1,....r C Cpy- (3.2)
Lipschitz continuous gradient
The composition, similar to (3.1), of a copula C; € D,, the marginals F;, j = 1,...,m,

and the mapping ¢, will be denoted by CF', i.e.,

7

CF(2) == C, (F1 (91(x)), ..., Fm (gm(x))>. (3.3)

The central idea in this work is to iteratively find a vector A¥ € R” such that the model
S, AFCT approximates ¢ locally. The term “locally” is related to a (trust) region around

a specific point, which we detail in the next section.
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3.1.2 The model

Let D, be a dictionary defined as in (3.2) and {2°,..., 2%} C X be the set of points
issued by the algorithm up to iteration k. The best candidate to solve (1.2) among these

. Furthermore, at iteration k, we define Gy (not

points is denoted by stability center x
necessarily in X) a set with finitely many points at which the function ¢ has been evaluated.

Our approach defines a copula-based model M* : © — R of ¢ as
M (z) = ZAfCiF(:E), (3.4a)
i=1

where CF is the composition given in (3.3) for each C; € D, and the coefficients \¥,

1=1,...,r, solve the quadratic programming problem

minimize Z (Z )\ZCZF(CEj) - @($j>>

I eGy, 1=1
r

3.4b
subject to Z MO (8%) = (@) )

i=1

A e A

In this notation, A is either a large enough box in R” or the simplex A =
{AeR" : Y7, A\ =1}. In both cases the model M*, given in (3.4), reflects the varia-
tional properties of the involved functions. For instance, M¥ is continuously differentiable
with Lipschitz continuous gradient on X provided the marginal functions F} share the
same property on g;(X), 7 =1,...,m.

More details on the possible choices for the set Gy will be given later on in Subsection
3.2.3. For now, we care to mention that GG} plays an important role in the convergence
analysis of our method. Customarily, G}, is constructed around ¥ to ensure that the model
MPF approximates ¢ well enough (in terms of hypothesis A3 below) in a neighborhood of
the stability center. This is a standard requirement in DFO methods, and here we use
a known procedure to construct/update Gy: in our numerical experiments, we employ

Algorithm 4.2 from [111]. As it will be detailed in Subsection 3.2.3, such procedure yields
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G with n + 1 well-chosen points, and ensures that the optimal value of (3.4b) is zero
provided A is a large enough box in R" and the copula dictionary is sufficiently rich, i.e.,
the model MF interpolates ¢ at the points in Gj. We also investigate a more economical
rule (in terms of function evaluation) that proves efficient in practice: at every iteration k,
we choose a small set G, containing {z°, ..., 2%} and let A be the simplex in R”. In this
case, the model in (3.4) is a convex combination of copulee and thus a copula itself. We will
see in Subsection 3.2.3 that convergence analysis requires more stringent assumptions on
the dictionary D,. Observe that if (3.4b) is infeasible, then the dictionary D, is poor: the
correlations of the joint probability function can not be represented by the copulee in D,.
It is then necessary to enlarge the dictionary, either by including new families of copulae or
by considering different parameters for C; in D,, when C; is an Archimedean copula, for

example.

3.1.3 The algorithm

Our approach considers a zero-order oracle to compute ¢ at a given point, where no first-
order information (gradient) is required. The next iterate z**! is defined as an approximate

stationary point of the trust-region subproblem
max MF(z) st. ||z — 2%, < Ay, (3.5)
reX

where Ay > 0 is the radius defining the trust region B(z", Ay) := {z € R" : ||z — 2"||, <
A}, and || - ||, is a given norm!. The more points of G}, are in X N B(2* A}), the more
MP¥ can be trusted in this region. Since MF¥ is of class C!, small radii yield regions where
the model approximates well the objective function ¢. Without additional assumptions,
(3.5) is a nonconvex optimization problem. Hence, solving it globally with optimality

guarantees is a difficult task. For our purpose, similar to [85], it is enough to compute z**!

"'We used the /o.-norm in our implementations.
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as an approximate stationary point satisfying the efficiency condition

2
ME(@FTY) — MF(3F) > ¢y min {%, Ak, 1} : (3.6)

where ¢; > 0 and S > 1 are constants independent of k, and 7, is the stationarity measure

given by

Proj, <xk + VM’“(:%’“)) gt

‘ . (3.7)

Wk:‘

In this notation, || - || denotes the ¢3-norm and Projy stands for the orthogonal projection
onto X, which exists and is unique because X is a nonempty compact convex set. We

recall that x* € X is stationary for the original problem (1.2) if

HPron(I* + Ve (z*)) —2*|| =0,

which suggests us to use m;, as a stopping test for the method: under appropriate assump-
tions (see A1-A3 in Section 3.2), Vo (2%) — VMF(2*) = O(Ay) and, thus, 7, is indeed a

stationary measure provided that Aj is small enough.

The efficiency condition (3.6) is inspired by the classical Cauchy step condition in |65,
Lem. 4.5| on trust-region algorithms for solving unconstrained problems, and in [19, Thm.
10.1] for the derivative-free case. Similar conditions also appear in different contexts in
[16], in the design of filter methods for nonlinear programming in [40, 67|, and for bound-
constrained nonlinear optimization without derivatives in [87]. Condition (3.6) is attainable
and less demanding than finding an exact stationary point for (3.5). In the Appendix, we

detail how to adapt the algorithm proposed in [85] for computing z*+1 satisfying (3.6).

Observe that when Ay, . > 0, condition (3.6) implies MF*(2%1) — MF¥(2%) > 0 and

the ratio v, between the actual and predicted increase

p(xt) — (@)

Tk = ME (L) = ME(3F)

(3.8)

is well defined. As MF¥(2%) = ¢(2*) by the construction of the model in (3.4), if v, > 0
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then 25+1 is a better candidate than Z* to solve (1.2). This suggests a strategy for updating

the stability center, as detailed in Algorithm 1.

Algorithm 1. Derivative-free trust-region algorithm with copula-based models

Input : 2° € X, a dictionary D, of copula as in (3.2) and parameters:
0<a,0<n<m <N, 0<7 <1<, 0<tol <Ay < Apax

. Set 20 = 30 Gy = {2}
2. for k=0,1,2,... do

=

3. if (3.4b) is feasible then
4. Solve problem (3.4b), let A¥ be one of its solutions and set
MM () =37, NCf (@)

5. else

6. ‘ Stop: the copulae in the dictionary D, can not approximate well ¢

7. end if

8. Compute 7, as in (3.7)

9. if 7, < tol and A, < tol then

10. | Stop: return &* and ¢(2*)

11. end if

12. if A, < am, then

13. Find an approximate solution z**! of (3.5) satisfying (3.6) and set v;, by (3.8)
14. if v, > 1 then

15. ‘ @k-H — xk—H

16. else

17. |kt =gk

18. end if

19. if v, > n; then

20. if v, > and ||2*! — 2%||, = A, then

21. ‘ Agyr1 = min{ Ak, Apax

22. else
23. ‘ Ak—‘rl = Ak

24. end if
25. else

26. ‘ Ak+1 = TlAk

27. end if

28. else

29. ‘ App1 = 1Ay, 251 = 2% and 28! = 3k
30. end if
31. Choose finitely many points to create a set Y; . C B(2F, Agyq)
32. Set G11 C G U Yey U {21} according to a given rule

33.

end for
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Note that Algorithm 1 stops unsuccessfully when the copule in the dictionary D, can
not approximate the objective function, i.e., when the constraints of the problem (3.4b)
are not satisfied. In this case, the quality of the dictionary needs to be improved. This
can be done by enlarging D, either by considering different parameters for the considered
copulae, or by adding new ones.

If Ay, < am, then the algorithm follows the general lines of classical trust-region
methods that involve the following parameters: 7 to update the stability center and the
pair 71, 12 to update (increase or decrease) the trust-region by factors 7, and 7y, respectively.
The choice of these parameters is largely discussed in the literature [16], and their values
are commonly set around 0, 0.2, 0.6, 0.5 and 2, respectively. These are the values we
used in our numerical experiments. When Ay > amy, the trust-region radius is decreased
and the stability center is kept as is. Regardless whether this inequality is verified, the
algorithm updates the set of points G, and thus the model, to ensure that a small value
of 7, reflects on approximate stationarity of ¥ to the original problem. We will discuss in
Section 3.2.3 strategies for choosing points on line 31 and a rule for updating Gy, so that a
key hypothesis (see Assumption A3 below) for the convergence analysis of Algorithm 1 is
satisfied.

3.2 Convergence analysis

We now rely on [15] to analyze Algorithm 1. Throughout this section we assume that
tol = 0, the algorithm generates infinite sequences {z*} C X, {\¥} C A, and the following
hypotheses hold:

A1l. The objective function ¢ is differentiable on O and its gradient V¢ is Lipschitz

continuous with constant x, > 0 on X C O.

A2. The marginals Fj, constraint functions g;, 7 = 1,...,m, and copulee C; € D,, i =

1,...,r, are of class C! with Lipschitz continuous gradient on X.
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A3. There exists a constant ¢; > 0 such that, for all ¥ € N and = € B(2*, A),

[p(x) = MH(@)] < 24

As commented in Chapter 1 and stated in Section 2.2.2, Assumptions A1 and A2 hold

by many probability distributions for PMPs, such as multivariate Gaussian distribution
(Lemmas 2.20 and 2.21 and Theorems 2.22 and 2.23), distributions satisfying some growth
conditions ([102, Thm. 3|), general distributions with fairly few assumptions (Theorem
2.17) and also all distributions and copula of class C? on X, together with the assumptions
on g and X (Theorem 2.35 and Lemma 2.36). In particular, the families of Archimedean
copulee described in Section 2.3.2 are of class C? on a subset of X whose image is not so
close to zero. It is interesting to note that Algorithm 1 works naturally in this subset
since it maximizes the model M* and, consequently, the copulee in the dictionary. More
specifically, another way to ensure that Archimedean copulae satisfy A2 consists in using
a modeling trick as follows.
Remark. Recall that any joint probability distribution satisfies P[¢ < g(x)] < P& <
gi(z)] = Fi(gi(x)), for all i = 1,...,;m and all x € O. Let & € X be an arbitrary feasible
point producing a strictly positive probability, i.e. P[¢ < ¢(Z)] > ¢ > 0. Hence, for
i=1,...,m, we have that Fi(g;(Z)) > ¢, which gives ¢;(#) > F; !(¢), the e-quantile of the
uni-dimensional (marginal) distribution F;. As any solution z of the PMP must satisfies
g:(%) > FY(e), replacing the feasible set X by X := {z € X : g;(x) > F; *(e),i=1...,n}
in the PMP does not change its solutions but ensures that 0 ¢ C'(X) for all Archimedean
copula C'. As a result, over this new feasible (sub)set, Archimedean copulae are of class C*
having Lipschitz continuous gradients.

Assumption A3 is usual in DFO [19, 110] and states that the model has to properly
represent ¢ near the current stability center. Note that if the ezact copula C¢ (associated
with the probability function ¢) in Theorem 2.54 is included in the dictionary D, (or at
least it belongs to the space spanned by the copule in the dictionary) then A3 holds for all
x € O due to the identity (3.1). We will come back to the subject of satisfying Assumption
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A3 in Section 3.2.3.

Our assumption on the feasible set X ensures that {z*} is a bounded sequence. This is
also the case for the sequence {\*} C A of model’s coefficients because A in (3.4) is either a
box or the simplex in R”. Boundedness of {\*} ensures that the model issued by (3.4) has
Lipschitz continuous gradient with a constant independent of the iteration k£ (c.f. Lemma

3.1). In what follows, we present some consequences of these assumptions.

3.2.1 Assumptions A1-A3: what do they yield?

As a consequence of Assumption A2, we show that the copula-based model has Lipschitz

(uniformly) continuous gradient on X.

Lemma 3.1. Suppose that Assumption A2 holds. Then, there exists a Lipschitz constant
ka > 0, independent of k, such that, for all x,y € X and k € N,

VM (2) = VME ()] < kalle =yl (3.9)

Proof. By the model’s definition in (3.4) and the triangle inequality, we have, for all z,y €
X and k € N,

s

|V MF () = VME()|| < D 1A

i=1

[VCE @) = VC )] < m 3 [VEF @) - Vel )],

where k) is a constant bounding {|\*|}. By Assumption A2, the gradient of the function
Ccr,

[V MF(z) = VM (y)|| < sa X k8 ||z — yl|, and the proof follows by setting rp =
R 22:1 ’sz- ]

F

¢ = 1,...,r, is Lipschitz continuous with constant, say, ~;

> 0. Consequently,

The next lemma establishes an error bound on the model’s gradient at the stability center.

Lemma 3.2. Suppose that Assumptions Al to A3 hold. Then, there exist constants cs, cq >
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0 such that, for all k € N,
V() — VMF (@) < min{esAy, ca}. (3.10)

Proof. Let k € N. If ||Vp(2*) — VMF(2F)|| = 0, then the result holds trivially. Otherwise,
consider an arbitrary direction d € R" with ||d||, < Ay, i.e., 2*+d € B(2*, A;). Note that

(Ve (") — VMH(E¥))d = —p(i* + d) + (i) + Vp(i*)Td + ME(E* + d) — (i*)
— VMR8 d + p(2* + d) — MF (@Y + d).

From the triangle inequality and the fact that ¢(2%) = M*(2*), we have

(Vi) - VMH(4)Td] < o +d) - (i) — V(") 7d) + |p(i* + d)

— MF(EF d)| + |IME@EF 4 d) — MF@EY) - VMEEM ).

Recall that k, and s denote the Lipschitz constants of Vi and VMP¥, respectively, over
the set X (see (1.4) and (3.9)). Let & > max{k,, kap} be given. Then, [64, Lem. 1.2.3]
yields

[0l +d) — i) — Vip(#*)Td] < 2]

and

M@+ d) = ME(@") = VME(E)Td) < 5 IIdH2~

Furthermore, Assumption A3 gives |p(2F + d) — M* (2% 4 d)| < coA2 because ||d||, < Ay.

Thus, we have shown that
1
[(Tip(d) = VMH () | < Hudu? + AL+ SRl < BAY

with & = bR+cy and b > 0 a constant satisfying |- || < v/||- ||o. The existence of constants
a,b > 0 satisfying /a| - [|o < ||- || < V|| - || is ensured by the equivalence of norms in R™.

So far, d was considered an arbitrary direction satisfying ||d||, < Aj. Now, we take the
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(Vep(i*) — VM (%))
[Vip(£F) = VME(EF) |,

particular direction d = Ay (note that ||d||s = Ag). Then,

V(@) — VME(EH) ||
IV (%) — VMF(ER)|,

=>

> Vady || V(*) — VMH (")

I

(Vi) —TM*(34)"d] = A

issuing

Vady, |[Ve(a*) — VME(EN|| < &A;.

By considering line 21 of Algorithm 1, taking ¢z = ¢/+/a and ¢; = 3. We conclude
the proof. [

3.2.2 Global convergence of the algorithm

Some of the results below are similar to the ones presented in [15|, differing, essen-
tially, by the quadratic terms in the efficiency condition (3.6) and by the context of the

maximization problem.

Lemma 3.3. Suppose that there exists k € N such that A, > amy, for all iteration k > k.

Then the sequences {Ay} and {m} converge to zero.

Proof. From line 29 of Algorithm 1, the radius is reduced by the factor 7, € (0,1) in each

. 1
iteration k£ > k, then lim_,o 7 < — limg_,oo Ar = 0, completing the proof. ]
«

The hypothesis of last lemma implies that from the iteration k, the stability center does
not change, i.e., 2¥ = i’;, for all k > k. Otherwise, if this hypothesis does not hold, there
exist infinitely many iterations such that A, < am, and then the ratio v, given by (3.8) is
well defined. The global convergence of the algorithm is ensured in both cases. To show
that, let us define the set S of successful iterations and S as the subset of S in which the

trust-region radius does not decrease. More precisely,

S={keN|Ay<am and v, >n} and S={keN| A, <am and v >n}.
(3.11)
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Asn; > 1, S C S. The next lemma asserts that if the trust-region radius is small enough,
then the algorithm will perform a successful iteration in which the trust-region radius will

not decrease, in the sense that k € S.

Lemma 3.4. Suppose that Assumptions A1 to A3 hold. Consider the constants ¢y, B given
in (3.6), co defined in Assumption A3 and m, given in Algorithm 1.
Set ¢ = cy/cy and let IC be given by

2 1 — 2
IC:{kEN | Akgmin{%,omk,w,l}}. (3.12)

c

Then it holds that K C S.

Proof. Consider k € K. By the definitions of 7, and the model M*, Assumption A3 and
the fact that ¥ € B(2%, Ay,

v — 1] =

go(:z;k+1) - go(i’k) - (/\/lk(xk'H) B Mk(fck)) ' _ '()O(I.k-i-l) B Mk(xk+1)
ME () = MF(3F) ME(FHT) = ME(3F)

< CQA%

= TMA) — MG

As k € K, Ay < am, and, consequently, m > 0. It follows from (3.6) that

2 2

2 2 :
clﬂzmin{%’“,Ak,l} ﬁ,zmin{%,Ak,l}

It follows from (3.12) that Ay = min{%i,Ak,l} and A, < % = C%’“ <1-—n.

Therefore, |y, — 1| < 1 — 1y, which implies v, > 11 > 7 and consequently & € S. This

concludes the proof. O

Lemma 3.2 says that the smaller the radius Ay, the better the model approximates
the objective function . Based on that, it is reasonable to expect that the sequence of

trust-region radii converges to zero. This is ensured by the following lemma.
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Lemma 3.5. Suppose that Assumption A2 holds. Then the sequence {A} converges to

ZETO0.

Proof. Assume, first, that the set S defined in (3.11) is finite. Then, there exists ky € N
such that for all & > kg, 7 < m or Ay > amp. By lines 26 and 29 of Algorithm 1,
Agr1 = 1Ay, for all & > kg, with 0 < 73 < 1. Thus, {Ax} converges to zero. We assume

henceforth S is infinite. For any k € S, using (3.6) we have

>
o
~—
v

p(aF) — (@ m (MFEPH) — ME(E))

LI
Z T C17T, 1IN F’Ak’l .

By the definition of S, A, < amy, and vy, > 1, > 1. From line 15 of Algorithm 1, we have

that 25! = 2**1 and hence

) ) A2 A2
p(@H) — p(3*) > Ulcl_kmm{ﬁ L A, 1 } '

Since {p(#*)} is a monotone nondecreasing sequence and bounded from above (p(z) €
[0, 1], for all z € X), the left-hand side of the above expression converges to zero, therefore:

lim A, = 0. (3.13)

keS

Consider the set U = {k € N | k ¢ S}. If U is finite, then by (3.13) we have that
klim Ar = 0. Now suppose that U/ is infinite. Consider k € U and denote /;, the latest
—00

index in S before k. Then ¢, is well-defined for all large k and A < 7oAy, , which implies

that
Im A, <7 hm Ay =Ty hm Ay, .
kel 0,8
By (3.13) it follows that kmz} Ay = 0 which completes the proof. O
€

The next lemma shows that the stationarity measure 7 in (3.7) has a subsequence that

converges to zero.
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Lemma 3.6. Suppose that Assumptions A1 to A3 hold. Then hgn inf m, = 0.
—00

Proof. The proof is by contradiction. Suppose that there exist a constant ¢ > 0 and an

integer ko such that m, > e for all k > ko. Take A = min {%, ae, (1721)52, 1} where ¢ is
defined in Lemma 3.4, 1; and a > 0 are given in Algorithm 1. Consider k > ko. If A, < A,
then k € K, where the latter is defined in (3.12). By Lemma 3.4, k € S and thus, by line
21 or 23 of the Algorithm 1, Agyq > Ag. It follows that the trust-region radius can only
decrease if A > A, and in this case, A1 = 1A > nA. Therefore, one can see that

for all & > ko, Ay > min {Tlﬁ, Ako}, which contradicts Lemma 3.5 and concludes the

proof. O]

Assuming a sufficient increase on the objective function, by setting n > 0 in the algo-
rithm, the next lemma ensures that not only there exists a subsequence of m; converging

to zero, but also the whole sequence converges.
Lemma 3.7. Suppose that Assumptions A1 to A3 hold, and n > 0. Then klim . = 0.
— 00

Proof. Suppose by contradiction that for some ¢ > 0 the set N' = {k € N | m, > ¢} is
infinite. By Lemma 3.5, the sequence {Ax} converges to zero. Then, there exists ky € N

such that for all k > kg,
2 1— 2
Ay Smin{%,ae,ﬂ,l} (3.14)
c

where the constant c is given in Lemma 3.4 and « and 7, are defined in Algorithm 1. It

follows from definition of N’ that, for all £ € N’ with k& > ko,

2

1— 2
Akgmin{%,omk,w,l}. (3.15)
C

Lemma 3.4 then ensures that k € S C S, for k > kg, k € N'. Given k € N with k& > ky,
consider ¢, the first index such that ¢, > k and 7, < e/2. The existence of ¢ is ensured

by Lemma 3.6. So, 7, — 7, > ¢/2. Using the definition of 7y, the triangle inequality and
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the contraction property of projections, we have that

5 < |Projx (2% + VMF(EF)) — k|| — ||Projx (&% + VM (24%)) -
< |Projy (&% + VMF(&F)) — #F —Projy (2% + VMU (3%)) + 24|
< 2|2k — 2% || + || VMK @k)_VMzk(@zk)H

IN

&%

2 ||2F — &% + [|[VMPF(EF) — Vo (2F) + Vp(i%) —V(i%) + V(i)
2 ||2F — &% + [|[VMF(EF) — Vo (aF) || + ||[Ve(aF) — V(@) || + || V(@) — VM (3%)]|.

79

— VM (%) ]|

So, using Lemma 3.2 twice and Assumption A1, the previous inequality can be written as

S <@g [ =8 e (Art Ag).

(3.16)

Consider J, ={i € S | k < i < {;}. Note that, by (3.15), k € S, so J, # ). By (3.11), for
all i € Ji, 271 = 21 as a result of line 15 of Algorithm 1. Using this and the facts that

i € S and condition (3.6) holds, we conclude that

S
—~
T
_
SN—

©
—
=>
N
vV

n (M@ — M (2))
> ey min {%2, A, 1} .

By the definition of £, we have that m; > ¢/2 for all i € J;. Asi >k, by (3.14), A; < &2/

and A; < 1. Therefore,

A er omr A et w?
i G Sl
2 28 B 4 4 B

It follows that p(2F!) — p(27) > ﬂ%%i and hence

16

A; < 3
ncie

(@) — ().

On the other hand,

P < [ - < YA

i€ Jy, i€Jy

(3.17)
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which combined with (3.17) provides ||#% — &% || < n6116€2 (¢(2%) — (&%) . By the fact that
the sequence {¢(2%)} is bounded and it is monotone nondecreasing, (%) — (%) — 0.
Therefore the subsequence {[|2% — 2% |} reny converges to zero, which together with Lemma

3.5, contradicts (3.16) and completes the proof. ]

The previous lemmas allow us to prove the following global convergence result: the
sequence generated by Algorithm 1 has a stationary accumulation point and, in particular,

when 1 > 0, any accumulation point of the sequence is stationary.

Theorem 3.8. Suppose that Assumptions Al to A3 hold. Then

liminf |[Proj (2" + Vi (2")) — 2*[| = 0.
In addition, if n > 0, then
lim ||Projy (&" + Ve (2")) — &*|| = 0.

k— o0
Proof. Consider k € N arbitrary. By the triangle inequality, it follows that

|Projy (2% + V(&%) — &*|| < |[Projy (8" + V(2%)) — Projy (2" + VM*(&¥)) ||
(3.18)

+ [[Projy (2% + VMF(&F)) — 2

Applying the contraction property of projections and Lemma 3.2 to the first term
on the right-hand side, we have ||Projy (2% + V(i) — Projy (2F + VM (@H)) || <
V(&%) — VMF(iF)|| < e3Ag. From this and the definition of 7, it follows from (3.18)
that |[Projy (&% + V(2¥)) — ¥ || < e3Ay+m. If the hypothesis of Lemma 3.3 holds, then
the results follow from that lemma. Otherwise, applying Lemmas 3.5 and 3.6 we prove the

first statement and the result for n > 0 follows from Lemmas 3.5 and 3.7. ]

We care to mention that in the above analysis, the rule for choosing the set G, 1 on line

32 of Algorithm 1 plays no role. The reason is that Assumption A3 yields the necessary
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mathematical results for ensuring convergence. This fact rises the question: how can we

update sets G411 and Y., to ensure A37

3.2.3 Ensuring Assumption A3

In order to ensure Assumption A3, related to the quality of the model, we can focus on
the dictionary or on the construction of the interpolation set Y;.; on line 31 of Algorithm

1, as discussed below.

A rich dictionary of copulae

Linear and quadratic models constructed by interpolation or regression, under some
conditions, satisfy Assumption A3 as proved in [19]. In our case, the models are based
on copulze and thus A3 is expected to hold whenever {2°, ..., 2%} C G} and the exact
copula C¢ associated with the probability function ¢ of Theorem 2.54 belongs to the space

spanned by the copulea in the dictionary, i.e., when

CEECDT:{Z/\iCi: )\EA}

i=1

The intuition behind this claim follows from the fact that, under theses hypotheses, the
optimal value of (3.4b) is zero, i.e., the model interpolates the points in Gj. Moreover,
as G, grows and the trust-regions shrinks, (3.4) yields a model that fits C¢ (recall that in
our setting C¢ is unique due to Theorem 2.54). The choice A = {)\ eR, YT A= 1}
seems appropriate because in this case M¥ is a copula for all k = 0,1,... Note that
requesting that C¢ € Cp, is a stringent assumption as C¢ is usually unknown. However,
from a practical point of view, such an assumption is sounder than the more frequent
practice of replacing the probability function by an estimated copula. A way to try to
satisfy Assumption A3 consists in considering a large and diversified dictionary, ideally
including families of comprehensive copule (see the formal definition in Section 2), or at

least containing copulee yielding lower and upper bounds for the underlying probability
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function.

Interpolation points

Instead of focusing on the dictionary of copulee, we may concentrate on a rule for
selecting the set of points Yy i on line 31 of Algorithm 1 and let Gii1 O Yii1 so that
Assumption A3 is satisfied. This is the common practice in the DFO community |1, 19,
45, 111|. The next theorem states that whenever a general model (not necessarily quadratic
or copula-based one) satisfies certain interpolation conditions, then error bounds on the
model and its gradient are available. In particular, this ensures that Assumption A3 can

be fulfilled.

Theorem 3.9. [111, Thm. 2.3] Suppose that ¢ and M are continuously differentiable in
B(z,A) and that V¢ and VM are Lipschitz continuous in this B(z,A). Consider a set
of n+ 1 points & + y; such that y1 = 0, ||y;|| < A, fori=2,....n+1, and |[Y || < AXY
for some constant Ay < oo, where Y is the square matriz Y = [ Yo Ynal } If, for
allt=1,...,n+1,

M(& +y;) = o(& + yi),

then there exist constants vy and vy, such that, for any x € B(z,A),
lp(z) — M(z)| < vA% and  |V(z) — VM(z)]| < ,A.

Theorem 3.9 (whose proof can be found in [112, Thm. 4.1]) ensures Assumption A3
and a stronger result than Lemma 3.2, guaranteeing (3.10) in the whole trust region, not
only in the stability center . These results imply that the model M is fully linear in
the neighborhood B(z,A) containing n + 1 interpolation points, according to [19, Def.
6.1] (see also [45, Rem. 1] for an equivalent definition). Although the theorem holds for
general interpolation models, it requires some geometric conditions on the interpolation
set. The assumption of norm boundedness of the matrix Y ! is equivalent to say that

the set {y2,...,yns1} is sufficiently linear independent. In [110], the authors propose a
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QR-like variant algorithm that constructs points satisfying the hypotheses of Theorem 3.9,
as proved in [110, Lem. 2.4] (see also [112, Algorithm 4.1]). We can thus formalize the
convergence of our approach by dropping Assumption A3 but strengthening the rule for

defining the set Yy 1.

Theorem 3.10. Consider problem (1.2) and suppose that assumptions A1 and A2 hold.
Furthermore, assume that Algorithm 4.2 from [111] is used to create the set Y1 on line
31 of Algorithm 1. If G411 D Yii1 and the model MF interpolates ¢ at points in 'Y, for all

iterations k = 0,1,..., then the convergence results of Theorem 3.8 hold.

Proof. Algorithm 4.2 from [111]| ensures that the points composing Y1 on line 31 of
Algorithm 1 satisfy, under the stated interpolation condition, the assumptions of Theorem
3.9. Therefore, if Yy is contained in Gy defining the model in (3.4), then Assumption
A3 holds and Theorem 3.8 applies. [

The price to pay for having the strong results from Theorem 3.9 is the increase of the
computational burden: the probability function ¢ needs to be evaluated at each one of
the (n 4+ 1) points in Yjiq, i.e., (n + 1) integrals of dimension n need to be computed.
However, not all the (n+ 1) function evaluations need to be performed at every iteration of
Algorithm 1: we may reuse/recycle some points in Y3, N B(2%t1, Ay 1) to define Y, ;. Such
a strategy may render (employing Algorithm 4.2 from [111] for defining Yj,) attractive
even for easier probability maximization problems whose probability distributions yield
a formulee for computing gradients: evaluating the gradient of ¢ when the latter follows
a log-normal or Gaussian distribution requires solving m integrals of dimension (m — 1).
Hence, for those special probability distributions, the choice between our DFO algorithm
and a derivative-based method will depend on the dimension n of decision variables and
dimension m of the random vector. We highlight that for general probability distributions,
a gradient formula may not be computationally implementable or practical due to its high

complexity.
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3.3 Efficiency condition for the subproblem’s stationary
point

In Section 3.2 we saw that the efficiency condition (3.6) that an approximate solution
of the subproblem (3.5) should satisfy is an important tool to prove the global convergence
of Algorithm 1. In this section we present an adaptation for maximization problems of
the algorithm proposed in [85] that ensures the efficiency condition. From now on, (-,-)
denotes the inner product in R™ and || - || the associated norm.

The algorithm below considers an inexact line search along the arc d : Ry — R”
defined by

d(t) :==Projy (2F + tV M (3F)) — 2% (3.19)

Note that the stationarity measure of the subproblem, defined in (3.7), can be written as

T, = [|dx(1)]]-

Algorithm 2. Computation of the new iterate
Input : 3" € X, A >0,0< 1 <pe<1,0< 3 <1,0<wv3 <1y <us,
O<vy<land vy >0

1. Find ¢! such that M*(2F + di (7)) — MF(@F) > py (VME(EF), dy, (17}) ), with
Hdk (t,?) H < 1A, and t? > Vgtf or t’,? > min {%, 1/4} , where th (if
required) is some strictly positive number that satisfies
ME(EF + dp (7)) — MF(E%) < pp (VME(ER), die (7))

2. Choose s, such that M*(&% + s;) — M*(&%) > pg (MF (2% + di (1)) — M¥(2Y)),
||Sk” < I/5Ak, and T, + s, € X

Output: 2" = 2, + s,

Step 1 of Algorithm 2 is an inexact line search along the arc (3.19). By setting ¢ = t2,
one obtains a variant of the Goldstein line search conditions [65]. Since us € (0, 1], Step 2
requires that the model’s increase issued by sy is at least a fraction of the increasing given
by di(ti})-

Following the ideas of [85], we present the results ensuring that the approximate local

solution &% + s, computed in Step 2 of Algorithm 2 satisfies the efficiency condition (3.6).
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The first lemma shows that the conditions stated in the algorithm are compatible.

Lemma 3.11. /85, Lem. 5] Consider the input parameters of Algorithm 2. Then, there

exists a step s* satisfying the conditions of Steps 1 and 2.

To the next results, define the curvature of the model M¥* at the point 2* € X along the

step s € R" as

WH(s) = 2 (MEEF 4 s) — ME(E) — (VMEEH), s)) (3.20)

[s]]?
Assumption A2 and the compactness of X imply the following bounds.

Lemma 3.12. /85, Lem. 6] Suppose that Assumptions Al and A2 hold. Consider the
model M* and the stability center 2% € X at the iteration k and k the constant defined
in (3.9). For all s € R", satisfying 2% + s € X, there exists a finite constant c¢s > 0,

independent of k, such that,
i) [V MF@EM| < es and i) W (s)| < K (3.21)
Proof. By the triangle inequality and Lemma 3.2, there exists a constant ¢, > 0 such that
VM) < VM) — V(@) | + IV | < 1+ supge V(@)

As ¢ € C' and X is compact, we can define c5 = ¢4 + sup || V(2¥)||, which proves (3.21)
reX

2
i). By (3.20), [64, Lem. 1.2.3] and Lemma 3.1, we have |w*(s)| = H HQ\/\/NC(:&’*c +5) —
S

MFE(ER) = (VM (iF), s)| < ki, proving (3.21) ii). O

We now state the result ensuring the efficiency condition (3.6) at iteration k.

Theorem 3.13. Consider an iteration k of Algorithm 1. Suppose that i* is not a sta-

tionary point of the subproblem (3.5). Then, there exists a constant ¢; > 0, independent

of k, such that the point 1, computed by Algorithm 2, satisfies the efficiency condition
2

M@+ — MF(i*) > eyr2 min {% Ay, 1} .
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Proof. Consider wy, = w” (dk(t,]f)) if t7 is defined, and wy, = 0 otherwise. From [85, Thm.7],

2
we have that wp < 0 and MF* (%) — MF (%) > ¢y 72 min { 0 i

,Ak}. Note that 1 —w;, <

1+ kg from (3.21) ii). We complete the proof by denoting § = 1 4 k¢ and noting that

2 2 2
min{ I ,Ak} > min{ﬂ,Ak} > min{ﬂ,Ak,l}.
1 — wy 5 B



Chapter 4

Numerical experiments

In this chapter, we present numerical experiments for comparing the performance of
Algorithm 1, deployed in two variants according to the rules discussed in Subsection 3.2.3,

with other methods in the literature for solving two classes of problems.

First, we consider a class of continuous problems with three families of probability
maximization problems, totalizing 90 instances. We assume that the random vector &
follows two different multivariate elliptical distributions: the Gaussian and Student’s t-
distributions. The dimension of the decision variable varies from 3 to 566 and the dimension
of random vector from 2 to 324. The variants of Algorithm 1 are benchmarked against

several DFO solvers available in the literature.

Next, we assess the numerical performance of Algorithm 1 for solving a family of prob-
ability maximization problems with mixed-integer variables with dimension 36, being 12
integer variables. The dimension of the random vector is 12 and it follows a Gaussian
distribution. In this case, our variants are compared with two derivative-based algorithms

specialized in this class of problems.

All tests were performed on a Desktop Intel Core i7-7700K, CPU 4.20 GHz, 16GB RAM
dual channel (3200 MHz), Windows 10 Pro 64 bits with codes in Matlab version R2018a.

87
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4.1 Nonlinear continuous problems

In this section, we present numerical experiments for solving 90 instances from three
families of probability maximization problems with the random vector ¢ following two
multivariate elliptical distributions: the Gaussian and the Student’s t-distributions. First

we describe the solvers, next the test problems and then the numerical results are discussed.

4.1.1 Solvers

Our two variants of Algorithm 1 are denoted by TRCI and TRC. They differ essentially
by the choices of the set Gy, in the problem (3.4b), the rule for updating the interpolation
set Y41 on line 31, and by the set A at which the coefficients of the model M* are defined.

e For TRCI, we set A = {A € R" : ||| < 10°} and Gy = Vi, & = 1,2..., to
define the model (3.4). The set Yj41 on line 31 is constructed by the Matlab routine
AffPoints' from [110], with default parameters. This routine constructs Y, ; with
(n 4+ 1) linearly independent points in all iterations of Algorithm 1 as required by
Theorem 3.9. As mentioned in Section 3.2.3, such strategy is expensive because ¢

needs to be evaluated many (but not more than n + 1) times per iteration.

e TRC sets the model M* as a convex combination of copulze by taking A as the simplex
in R", Gpy1 = G U Yy U{2"1} and the following simple rule for constructing
Yii1 on line 31: Yy = 0 if Ay < am, and Yy = {2% + pe;} otherwise, where
p=min{107° Ay}, €; is the i’*-canonical direction and i € {1,...,n} is randomly
chosen, but avoiding the same one in two consecutive iterations. In this manner,
only a single evaluation of ¢ is needed per iteration: either at the next iterate z*+!

if Ay < am, or at % + pe; otherwise. Convergence is guaranteed provided the

conditions in Subsection 3.2.3 are fulfilled, yielding thus A3.

In both versions of Algorithm 1, the dictionary D, is composed by 28 copulee from five

Archimedean families, as presented in Table 4.1. We tested two solvers for computing an

! Available at https://www.mcs.anl.gov/ . wild /orbit/
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Family 0
Ali-Mikhail-Haq -1, -0.2, 0, 0.5, 0.7, 0.99
Clayton -1,-0.2,0.2,1,3,5,7
Frank -5,-1,1,5,8
Gumbel-Hougaard 1,2,3,7
Joe 1,1.5,2.5,3,4,5

Table 4.1: Copulee and their parameter 6 of the dictionary D,.

approximate stationary point for subproblem (3.5), namely FilterSD?, which is a Fortran
77 code interfaced by the Matlab OPTI Toolbox [21|, and our implementation of the
Frank-Wolfe algorithm [38] with Armijo line search and its parameters set as suggested
in [115]. Depending on the family of test problems, one solver performed better than
the other: subproblems were solved by Frank-Wolfe algorithm when ¢ follows a Gaussian
distribution, and by FilterSD when ¢ follows a Student’s t-distribution.

Both implementations of Algorithm 1 consider the same values for the trust-region
parameters: n = 0, ny = 0.2, 9o = 0.6, 7, = 0.5, 7» = 2, chosen from values suggested
by [14, 108, 110] after some tuning. The other parameters were set as a = 108, A4, =
min{max{0.2]|2°| s, 1},20n} and Ag = 0.1A,,4.-

In order to validate our approaches, we compare their performance with six other

derivative-free solvers:

e TRL: Derivative-free Trust-Region algorithm? [108] with Linear model and the same

parameters of TRC.

e TRQ: Derivative-free Trust-Region algorithm [108] with Quadratic model and the same

parameters of TRC.

e COBYLA: Constrained Optimization By Linear Approximation algorithm [68], avail-
able in the Matlab OPTI Toolbox [21].

2 Available at https://projects.coin-or.org/filterSD/
3We are grateful to Dr. Adriano Verdério, from UTFPR Brazil, for providing us the codes of TRL and
TRQ.
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e LINCOA: LINearly Constrained Optimization Algorithm [69] available for Matlab in
the PDFQ package [79].

e NOMAD: Nonlinear Optimization with Mesh Adaptive Direct Search algorithm (MADS)
[26], for inequality constrained problems, available in the Matlab OPTI Toolbox [21]

with version 3.6.2.

e PSwarm*: Global optimization algorithm [107] for bound and linear inequality con-

strained problems, which combines pattern search and Particle Swarm strategies.

Algorithms TRL, TRQ and LINCOA are derivative-free algorithms that differ from our
approaches by the construction of the model and the trust-region subproblem, since TRL
considers linear polynomial interpolation and TRQ and LINCOA consider quadratic poly-
nomial interpolation. Omne of the most relevant difference between the solvers TRQ and
LINCOA is the number of points used in the interpolation set to construct the model. While
TRQ considers (n + 1)(n + 2)/2 interpolation points, LINCOA considers a number between
n+2 and (n+ 1)(n + 2)/2. Another difference is that the trust-region subproblem of
LINCOA is solved by the truncated conjugate gradient method, while Gurobi® is used for
TRQ. We applied TRL and TRQ with the same trust-region parameters of our approaches
because they presented better performance when compared with the default ones. The
initial trust-region radius of LINCOA was set the same as TRCI. All linear and quadratic
subproblems present in the TRCI, TRC, TRL and TRQ were solved by Gurobi.

In all solvers, the probability function ¢ was evaluated by the Matlab routines available
in the Truncated Normal and Student’s t-distribution Toolbox® and based on [8]: mvngmc
and mvtgme, for the Gaussian and Student’s t-distribution, respectively. These routines
compute an estimator of the probability via Quasi Monte-Carlo simulation. In our tests,
we set the number of simulations equal to 10 000.

The solvers TRCI and TRC stop when A, < tol, with tol = 107% and one of the

#Available at http://www.norg.uminho.pt/aivaz/pswarm/
SVersion 9.0.1, www.gurobi . com.

6 Available at https://www.mathworks.com/matlabcentral/fileexchange/53796-truncated-normal-and-student-s-t-distribution-toolbox
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following conditions hold:
e <tol or Ap<am and |p(z") —p(z"7!)| < tol in 5 consecutive iterations.

The other solvers were applied with default stopping criteria, except by the tolerance in
the criterion A, < tol, considered by TRL and TRQ, which was the same as in TRCI and
TRC. Furthermore, a CPU time limit of one hour was given to all solvers, and the maximum

number of objective function evaluations was set to 100(n + 1).

4.1.2 Test problems and numerical experiments

We consider 90 instances in three different sets of probability maximization problems,
originally formulated as CCPs (1.3), where f is a linear function, X is a polytope, ¢
is given by (1.2) with ¢ a linear mapping. Two different distributions for the random
vector ¢ are examined: a Gaussian one with given positive definite covariance matrix
Covg, and a Student’s t-distribution with v = 4 degrees of freedom and covariance matrix
Covp = £5Covg = 2Covg. As in [74], we reformulated the problems as PMPs by defining
X :={z € X : flzx) < T}, where T = 7f(2°), with 7 a given target and 2° € X an
initial point. We consider six uniformly spaced values for the parameter 7 as described in
Table 4.2. These values start at 1, corresponding to the lowest probability, and go to 7
related to an optimal probability value close to 1, obtained by solving (1.2) with a Gaussian
distribution. The value T can be greater or smaller than 1, depending on the problem. The

initial point 2° was set as a solution of the simpler individual chance-constrained problem

minimize  f(x)
subject to  P[¢ < gi(z)] >0.95, i=1,....m (4.1)
reX.

With the help of p-quantiles, the individual probability constraints can be written as linear

ones: P~Yp| < gi(x), i = 1,...,m. Thus, (4.1) becomes a linear problem because g, f,
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and the constraints that define X are linear functions. We highlight the small change in
notation that significantly impacts the problem’s nature: the difficult joint-probability is
denoted by ]P)[fi <gi(x),1=1,... ,m}, whereas the much simpler individual probabilities
are IP[@- < gi(aj)], i=1,...,m.

The 90 instances of test problems are summarized in Table 4.2. The first and second
columns indicate the type and name of the problems; the third and fourth give the dimen-
sions of the decision and random variables, respectively; the fifth column shows the type
of the probability distribution of ¢; the sixth provides the average (over 1000 points) of
CPU time ¢ (in seconds) required to evaluate the probability function ¢, i.e., the oracle
CPU time; the seventh discriminates the values of the parameter 7 used to define X above;
the eighth summarizes the number of problem instances; and the last column indicates the
DFO solvers under comparison for every set of problems. As NOMAD and PSwarm handle
only inequality constrained problems, they have not been considered for solving the second
set of problems that involve equality constraints. Furthermore, TRC was the only DFO

algorithm capable to solve the third set of problems within the time limit of one hour.

Type Problem n | m |Distribution| ¢ T # inst. | DFO solvers
. Gaussian [0.082 TRC, TRCI
U Cash matching| 3 | 15 Student 10,096 0.900 0.920 0.940 0.960 0.980 1.000| 12 TRL, TRQ
ineq ’ 8 | 4 Gaussian [0.024 COBYLA
. Student  [0.030 LINCOA
constraints Transport 2| s Caussian 10,047 1.000 1.040 1.080 1.120 1.160 1.200| 24 NOMAD
Student [0.054 PSwarm
Academic: Gaussian [0.001 ?r?]: ?T?QI
ineq. and eq. PlanToy 8| 2 1.000 1.014 1.028 1.042 1.056 1.070| 36 COB,YLA
constraints Student [0.018 LINCOA
Industrial: 566| 96 0.400
ineq. and eq. Reservoir  [566(192| Gaussian [1.190{0.995 0.996 0.997 0.998 0.999 1.000| 18 TRC
constraints 566|324 4.722

Table 4.2: Information about the test problems. Notation ¢ stands for the estimated CPU
time in seconds required to evaluate the objective function (oracle call).
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Academic problems with inequality constraints

We consider two families of academic problems, each one defined with Gaussian and

Student’s t-distribution.

Cash Matching problem. This is a PMP variant of the well known chance-constrained
problem presented in [48]. The goal is to make a portfolio, with a certain amount of cash,
of n types of bonds on behalf of a pension fund that maximizes the probability of covering
certain payments over the coming m time periods while satisfying that the sum of the bond
yields, at the end of the period, reaches a minimal target. The decision vector x € R"
(n = 3) corresponds to the amount of each type of bond to be bought and the random
vector £ € R™ (m = 15) represents the payments of the time periods. The problem’s data
can be found in [48].

Probabilistic Transportation problem. Thisis a PMP version of the stochastic trans-
portation problem from [59]. The goal is to maximize the probability of satisfying a random
demand of products shipped from a set S of suppliers to a set C' of customers, while en-
suring the supply capacity is respected and the shipment costs are not higher than a given
budget (target). The decision variable x € R" (n = |C||S|, where |Z| is the cardinality
of the set Z), is the amount of products shipped from the suppliers to the customers and
the random vector & € R™ represents the demands. We considered two different pairs of
values for the number of suppliers |S| and customers |C|, i.e., (|C[,|S]) € {(4,2),(10,6)}.

Data were randomly generated according to [59].

Table 4.3 reports the results obtained by all eight derivative-free algorithms considered
for solving the 36 instances of these two problems. The three first columns refer to the
problem data, and the others refer to the computed functional value, number of function
evaluations, and CPU time in seconds for each solver. Using the criterion proposed in [9],

as the image of ¢ lies in [0, 1], we say that an algorithm solves a problem if it finds a point
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T € X such that
|90max - 90<j')|
Hlax{la (7)), |30maX|}

= |pmax — (7)] <1077, (4.2)

where @p. is the largest function value computed by the solvers under comparison. The
symbol T next to the function value in the table indicates that the algorithm did not solve
the problem according to this criterion.

We also present data and performance profiles [27, 61| for the number of function
evaluations #F and for CPU time (in seconds). As suggested in [4|, we say that two
algorithms tie in respect to CPU time, if the difference of time spent by them is less than
5% of the time spent by the fastest algorithm to solve a given problem. Figures 4.1 and
4.2 show the profiles with respect to the number of function evaluations and CPU time,
respectively. Figures 4.1a and 4.2a present performance profiles with a zoomed view, while
Figures 4.1b and 4.2b show data profiles.

Figure 4.1 shows that the most robust and efficient algorithm in terms of function
evaluations is TRC, solving 100% of the problems with the minimal amount of oracle calls:
every instance was solved by TRC with at most 144 function evaluations. Algorithms TRCI
and LINCOA also solved all problems, but using 16.6 and 42 times the number of function
evaluations required by TRC, respectively, and no more than 613 and 1927 evaluations per
problem instance. On the other hand, TRL, TRQ, COBYLA, NOMAD and PSwarm solved 16.7%,
33.3%, 77.8%, 63.9% and 61.1% of the problems, respectively. From Figure 4.1b we see
that when the solvers perform at most 500 objective function evaluations, TRC, TRCI, TRL,
TRQ, COBYLA, LINCOA, NOMAD and PSwarm solved 100%, 77.8%, 16.7%, 33.0%, 36.1%, 66,7%,
33.3% and 27.8% of the problems, respectively.

Concerning CPU time, Figure 4.2a indicates that TRC remains the most robust and
efficient algorithm, solving 69.4% of all instances with the lowest CPU time. Solvers COBYLA
and LINCOA solved 13.9% and 25% of the problems with the lowest time, respectively. From
Figure 4.2b we see that when it is allowed to spend at most 100 seconds, TRC and TRCI
solve all problems, while TRL, TRQ, COBYLA, LINCOA, NOMAD and PSwarm solve 16.7%, 33.3%,
55.6%, 97.2%, 47.2% and 27.8%, respectively.
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Figure 4.1: Performance profile with a zoomed view (a) and data profile (b) with respect
to the number of function evaluations of all eight DFO algorithms for solving the set of
academic problems with inequality constraints.
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Figure 4.2: Performance profile with a zoomed view (a) and data profile (b) with respect
to CPU time of all eight DFO algorithms for solving the set of academic problems with
inequality constraints.

Academic problems with inequality and equality constraints

PlanToy. This is a family of problems that consists of a two-month planning period of
two fictitious oil refineries as described in [22, Sec.6.2.1]. The goal is to find a plan for pro-
cessing, storing and importing two types of oil to maximize the probability of meeting the
random demand & of fuels. More specifically, the objective is to maximize the probability

of satisfying the random second-month demand while fulfilling deterministic constraints
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such as storage capacity, first-month demand, and monetary budget. In this example, the
decision variable z € R™ (n = 8) represents the operation planning of the refineries and
the random vector £ € R™ (m = 2) corresponds to second-month demand of fuels. The
vector & = (&1, &) has mean E[¢] = (193, 178) and, in the Gaussian setting, the covariance
matrix is given by

Cove = O vt ) L coven ) € (48,048}, (43)

Cov (51,52) 10.24
As mentioned above, in the Student t-distribution setting, the convariance matrix is 2C'ovg.
Table 4.4 reports on the results of six (out of eight) derivative-free algorithms for solving
the 36 instances of PlanToy. Solvers NOMAD and PSwarm were removed from the comparison
because they are not applicable to problems with equality constraints according to the user

guides.
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Figure 4.3a shows that the most robust and efficient algorithm in terms of function
evaluation is TRC, solving 97.2% of the problems with the minimal amount of oracle calls,
while TRL is the most efficient algorithm only in 2.8% of the problems. The algorithms TRC,
TRCI, TRL and LINCOA solved all problems while TRQ and COBYLA solved 38.9% and 94.4%,
using at most 2.4, 5.0, 36.0, 5.7, 38.9 and 24.2 times the number of function evaluations
required by the best algorithm, respectively. From Figure 4.3b we see that when the
solvers perform at most 200 objective function evaluations, TRC, TRCI and LINCOA solved

all problems, while TRL, TRQ and COBYLA solved 97.2%, 36.1% and 55.6%, respectively.

|
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(a) Performance profile (b) Data profile

Figure 4.3: Performance profile with a zoomed view (a) and data profile (b) with respect
to the number of function evaluations of the six DFO algorithms for solving the set of

academic problems with inequality and equality constraints.

Figure 4.4a indicates that TRL was the most efficient solver, solving 44.4% of the in-
stances with the best CPU time, while LINCOA, TRC and TRCI solved 38.9%, 27.8% and
2.8%, respectively. From Figure 4.4b we see that when it is allowed to spend at most 6
seconds, TRC, TRCI, TRL and LINCOA solve all problems, while TRQ and COBYLA, solve 16.7%,
88.9%, respectively.

In this set of problems, TRL was the most efficient solver in terms of CPU time, but not
in terms of the number of function evaluations. Since the PlanToy family has a random
vector of dimension 2, the cost for evaluating the probability function, in relation to CPU
time, is not as impactful as solving the trust-region subproblem: recall that TRL solves a

linear program per iteration using Gurobi, while TRC and TRCI solve a nonlinear program.
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Figure 4.4: Performance profile with a zoomed view (a) and data profile (b) with respect
to CPU time of the six DFO algorithms for solving the set of academic problems with
inequality and equality constraints.

When the dimension of the random vector is higher, evaluating ¢ becomes the solvers’

bottleneck, as evidenced in the next results (see also the sixth column in Table 4.2).

Industrial problems

Cascaded-Reservoir Management problems. This is a family of energy planning
problems with a real-life configuration of a French hydro valley, described in |95, 105]. The
objective is to maximize the probability that reservoirs’ volumes remain within bounds and
the profit yielded by power generation decisions reaches a minimal target. The decision
variable x € R"™ (n = 566) represents the operation planning of power units while the
vector € corresponds to random water inflows. Since the original data contains a bilateral
inequality under the probability function, i.e., P[4z < ¢ < Bux|, Sklar’s theorem is not
directly applicable. For purposes of Algorithm 1, we adopt the reformulation given by
(2.6) and (2.7), fitting thus the structure in (1.2) by considering a random vector £ € R™
with twice as many random data, i.e, & = [~£,€]. Three instances for this vector were
considered with dimension m € {96, 192,324}, according to the three Maz-P models from
[105].

We consider 18 instances of the cascaded-reservoir management problem. With excep-

tion of TRC, all others derivative-free algorithms failed to solve these instances within the
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time limit of one hour (in practice, variants of these problems should be solved at every
thirty minutes to rend on-time power generation dispatches). We point out that the di-
mension n = 566 of the decision variable is remarkable for DFO algorithms. For instance,
this dimension rendered TRQ impracticable because 161028 = (566 + 1)(566 + 2)/2 func-
tion evaluations would be necessary only at the first iteration to construct the underlying
quadratic model, resulting in approximated 18 hours of CPU time when the dimension of
the random vector is m = 96. Each function evaluation takes approximately 0.4 seconds,
as displayed in Table 4.2. The situation is even more complicated when m = 324: eval-
uating the function at a single point x takes around 4.7 seconds. Although this difficulty
and the large dimension of the decision vector, our variant TRC of Algorithm 1 was able
to solve each one of the 18 instances in at most 13.3 minutes, as indicated in Table 4.5.
This is thanks to the fact that TRC requires only a function evaluation per iteration. The
variant TRCI that needs at most n extra points to build the model, would spend, for the
cases m = 96, m = 192, and m = 324, up to 3.7, 11.2, and 44.5 minutes, respectively, per
iteration only to evaluate the objective function at these points.

In order to provide another solver to benchmark TRC, we exploited the fact that there
is an implementable formula for computing the gradients of ¢ when £ follows a Gaussian
distribution and, moreover, —log(y) is convex. As a result, we can reformulate (1.2) as a
typical nonlinear, differentiable, and convex optimization problem. We tested several NLP
(derivative-based) solvers available in the literature, and report results only for the most
successful one in our experiments: the Level Bundle method, denoted by LB, with default
stopping criteria and parameters as described in [55] (see also [96] for experiments on the
same class of problems). Table 4.5 presents the results of TRC and LB on the considered
18 instances of the problem. The two first columns report on the problem’s data. The
other columns provide information on the computed function value, number of function
and gradient evaluations, iterations and CPU time. As we can see from the table, solver
LB stopped by reaching the time limit of one hour in the instances with m = 192 and
m = 324. This highlights how expensive it is to compute derivatives of the probability

function with high-dimensional random vectors: roughly, a first-order oracle is m times
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more time-consuming than the zero-order oracle.

Numerical experiments

Table 4.5: Industrial problems: computed function value, number of function and gradient

evaluations, and CPU time (sec) spent by TRC and LB.

Problem data ) #F #G CPU time
T m TRC LB TRC LB | TRC LB | TRC LB

0.995 96 0.996  0.996 ol 47| 0 47 ] 356 11634
0.996 96 0.992  0.992 51 54| 0 54| 33.0 1362.0
0.997 96 0.985  0.985 48 34| 0 34| 31.3 8614
0.998 96 0.972  0.972 46 36| 0 36| 284 911.6
0.999 96 0.949  0.950 48 34| 0 34| 346 8609
1.000 96 0.912  0.913 43 23| 0 23| 29.2 5564
0.995 192 | 0.968 0.927f | 61 21| 0 21 |281.8 3758.2
0.996 192 |0.952 09201 | 54 21| O 21 |229.5 3735.6
0.997 192 ]0.930 0.932 50 21 | 0 21 ]228.8 3733.1
0.998 192 | 0.900 0.900 46 21| 0 21| 172.1 3708.6
0.999 192 | 0.858f 0.869 | 47 21| 0 21 |161.8 3729.5
1.000 192 | 0.8041 0.818 44 21| 0 21 | 158.8 3758.6
0.995 324 |0.873 0.738t| 60 5 0 5 | 798.1 4250.9
0.996 324 | 0.851 0.7391 | 53 5 0 o | 639.2 4258.3
0.997 324 | 0.823 0.725t | 63 5 0 5 | 705.4 4231.0
0.998 324 | 0.787 0.7241 | 48 5 0 5 | 519.0 4074.9
0.999 324 | 0.746 0.727 | 43 5 0 5 | 417.9 4206.3
1.000 324 | 0.706 0.6841 | 48 5 0 D | 568.3 4276.8

4.2 Mixed-Integer Nonlinear Programming problems

The promising numerical results of our approaches TRCI and TRC to the nonlinear

continuous problems piqued our curiosity to investigate their numerical performance to

Mixed-Integer Nonlinear Programming Programming (MINLP) problems. Analogously to

the discussion of Chapter 1, for a given convex set X C R™ and a set containing only

integer variables Y C Z™, both compact sets, the general probability maximization MINLP

problem can be represented as

maximize

subject to

P < g(z,y)]
(r,y) € X XY,

(4.4)
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where g : R™ x R™ = R™ and X x Y = {(z,y) € X x Y | f(z,y) < T}, for a given
real-valued function f : R™ x R™ +— R and a cost target T" > 0. Over the last years,
optimization algorithms have received attention to deal with this class of problems |5, 7, 23,
31, 109], and some of the most famous are branch-and-bound [44] and outer-approzimation
28, 37].

As presented in the next subsections, they are benchmarked against two derivative-
based algorithms for solving 6 instances from a family of Power System Management
problem. We just care to mention that the convergence analysis presented in Section
3.2 does not hold in this case because it depends on, essentially, the continuity of the
stationarity measure 7, defined in (3.7). The reason for that comes from the discontinuity

of the orthogonal projection operator due to the presence of integer variables in the domain.

4.2.1 Solvers

In order to analyse the performance of the variants TRCI and TRC from Algorithm 1,

we compare them with two other algorithms specialized to solve MINLP problems.

e TRCI and TRC: Variants of Algorithm 1 with the same input parameters, dictionary

D, and rules to update the interpolation set Y, 1, as described in Section 4.1.1.

e BONMIN: Basic Open-source Nonlinear Mixed INteger programming algorithm” avail-
able in the Matlab OPTI Toolbox [21], with Outer Approximation set as the internal

solver.

e ELBM: Extended Level-Bundle Method® from [24]. Similarly to LB, the objective

function ¢ is replaced by the convex function — log(y).

In both versions of Algorithm 1 we employed BONMIN to compute an approximate sta-

tionary point for the trust-region subproblem

Thttps://projects.coin-or.org/Bonmin
8We are grateful to Dr. Adriano R. Delfino, from UTFPR Brazil, for providing us the codes of the
algorithm.



104 Numerical experiments

max  M"z,y) st ||(zy) = @90 < A (4.5)
(z,y)EX XY

where (2*, §*) is the stability center at k-th iteration. Since in the test problems the discrete
variables do not appear in the random inequality system & < g(x), the random vector &
follows a continuous multivariate Gaussian distribution. Consequently, the models M¥*,
the probability function ¢ and its gradient Vi depend only on the continuous variable x,
which means that ¢ and Vi can be evaluated by the same routine (mvngmc) and number
of simulations (10000), as considered in the previous sections. In our tests, we fixed the
maximum CPU time of 3600 seconds and increased the tolerance tol = 10=* for the

stopping criteria of TRCI and TRC, while the other algorithms were set to default.

4.2.2 Test problem and numerical results

We consider 6 instances in a set of probability maximization problems, originally formu-
lated as a maximization version of a MINLP CCP (see [24, Eq. 5.7]), where f : R™ — R
is a linear function and ¢ is defined as in (1.2), with g : R"™ — R™ a linear mapping.
Following the ideas of the nonlinear continuous problems in Section 4.1, for a given initial
point (2°,4°) € X x Y and a parameter 7, we define the cost target by 7' = 7f(2°) and
reformulate the problems as probability maximization MINLP problems, as (4.4). Also, six
uniformly spaced values of the parameter 7 were set with the same condition as before and
the initial point (z%,1°) is a solution of the simpler individual chance-constrained problem
with mixed-integer variables

maximize  f(x)
.y
subject to  P[& < gi(x)] >0.95, i=1,...,m (4.6)
(r,y) € X x Y.

The information about the 6 instances of test problems are summarized in Table 4.6,

similar to Table 4.2, but now the dimensions of the continuous and discrete parts (n,

and n,) of the decision variable (z,y) are splitted and the last column shows all solvers
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considered.
Type Problem Ng|ny|m| Dist. t T # inst.| Solvers
TRCI, TRC
MINLP |Power Sys. Manag.|24|12|12|Gaussian|0.063|0.980 0.984 0.988 0.992 0.996 1.000| 6 BONMIN
ELBM

Table 4.6: Information about the test problems. Notation ¢ stands for the estimated CPU
time in seconds required to evaluate the objective function (oracle call).

Mixed-integer nonlinear programming problem

We consider one family of MINLP problems, where the random vector £ follows a

multivariate Gaussian distribution.

Power system management problem. This is an energy management problem from
[24, Sec. 5.2|°, which consists on a short time planning period of two hydro power plants
with reservoirs and a wind farm. The objective is to maximize the probability that the
demands are satisfied while the profit by selling the leftover energy to the market reaches a
minimal target, after attending the local community demand, the volumes of the reservoirs
remain within bounds and at the end of the planning period the reservoirs levels must be
greater or equal to a given level. In this example, we set a planning period of 12 hours.
The decision variable z € R™ (n, = 24) corresponds to the energy produced by the hydro
power plants, y € {0,1}" (n, = 12) models the turbines as “on/off” and the random vector
¢ € R™ (m = 12) corresponds to the energy generated by the wind farm.

Since we are benchmarking derivative-free and derivative-based solvers, we do not
present data and performance profiles, only the results obtained by the algorithms by solv-
ing the MINLP instances, similar to the industrial problems. We keep using the criterion
(4.2) to say when an algorithm solved a problem.

Table 4.7 reports the problem’s data, the number of function and gradient evaluations

and CPU time of the considered algorithms.

9We are grateful to Dr. Adriano R. Delfino, from UTFPR Brazil, for providing us the data of the
problem.
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From the numerical results we can observe that our approaches TRCI and TRC performed
as good as the derivative-based algorithms specialized in solving MINLP problems: BONMIN
and ELBM. There are some points that deserve attention: TRC used the least quantity of
function evaluations, while TRCI used approximately 10 times, highlighting how expensive
it is to update the interpolation set Yj.1; even spending almost three times the number of
function evaluations and computing the gradient of the objective function, ELBM did not
spend twice the time of TRC to solve all instances, which means that solving the trust-region
subproblem (4.5) was the most time consuming of our approach.

Summarizing the numerical results of this section, our approaches performed well, even
though there is no guarantee of their convergence analysis for this class of problems. Also,
we reinforce that BONMIN and ELBM are derivative-based algorithms, which can not be

applied to probability distributions where the derivatives are not available.



108 Numerical experiments



Chapter 5

Conclusion

In this thesis, we proposed a derivative-free trust-region algorithm for probability max-
imization problems. The special structure of probability functions (whose derivatives are
not available or are too expensive to be assessed) is exploited by easy-to-evaluate models
that are linear combinations of copulee with Lipschitz continuous gradients from a dictio-
nary. Neither generalized concavity assumptions nor statistical work of copula estimation
is necessary. Our algorithm updates the copula-based model at every iteration by solving
a convex quadratic programming problem, which ensures that the model interpolates the
probability function at least at the stability center. During the iterative process, the mod-
els capture the dependence structures between the marginal distributions of the probability

function by assigning weights to the copule in the dictionary.

In each iteration of the algorithm, the subproblem consisting of minimizing the model
in the trust region can be solved approximately: all is needed is a feasible point satisfying
the efficiency condition (3.6). Under this assumption and mild hypotheses, the global
convergence of the algorithm is presented ensuring that any accumulation point of the

sequence generated by the algorithm is stationary.

Given the flexibility in constructing the models, two variants of the algorithm are
proposed, namely TRCI and TRC. The first one is based on standard assumptions from the

DFO literature and evaluates the probability function in at most (n 4 1) new points per

109
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iteration, satisfying some geometric conditions. On the other hand, TRC requires only one
function evaluation per iteration, ensures that the model is always a copula, but makes use
of more stringent assumptions on the dictionary of copualee (c.f. Section 3.2.3).

We assessed the numerical performance of these two variants on several instances of
PMPs for solving four types of problems, being three with continuous and one with mixed-
integer variables. For the continuous case, in which the global convergence is ensured,
numerical comparisons with several state-of-art DFO solvers highlight the good perfor-
mance of our approaches on the considered families of problems. The TRC was the only
DFO method capable to deal with the large-scale industrial problems. Its economic rule to
update the model allowed it to solve these problems in less than twenty four minutes, while
well-known derivative-based methods either failed or took over one hour of processing. The
good results motivated us to extend the numerical experiments to MINLP problems, where
our approaches also performed well in comparison with two derivative-based algorithms.
All the PMPs considered for benchmarking our proposal are log-concave, meaning that
log(¢(+)) is a concave function. Although the log-transformation was not employed in our
approach, but only in the derivative-based ones, our algorithm could compute (approxi-
mate) global solutions to all instances of the continuous and mixed-integer problems.

Concerning real-life applications of PMPs, our proposal enables practitioners to

e model uncertainties with more pertinent probability distributions, discarding the
need for restricting their choices to a select group of distributions whose derivative

formulee are available and implementable;

e dismiss the non-trivial task of copula estimation (for the applications in which re-

placing the probability function with a copula is an option).

The advantages of the proposal, specified above, indicate that our DFO algorithm with
copula-based models is a promising tool for dealing with probability maximization prob-
lems. This is evidenced in the numerical results when we compare our approach with other
derivative-free trust-region algorithms with linear and quadratic models. Nonetheless, our

proposal also has shortcomings that should be addressed in future research. For instance,
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given a probability function ¢, it is unclear to us how to certify that the dictionary of
copulee is diversified enough to ensure Assumption A3 for the TRC variant of Algorithm
1. In other words, we are not aware of how to ensure that the exact copula related to
the distribution ¢ (according to Sklar’s theorem) is included in the space spanned by the
dictionary of copulae. This is a theoretical subject of practical interest because it dismisses
the need for having (n + 1) interpolation points to build the model. A related question
arises when the Algorithm 1 terminates for failure on line 6, which means that the dictio-
nary is not rich enough to build a good model for ¢ and must be improved. A possible
research direction consists of investigating how to learn from the model and function to
select appropriate copulee parameters to improve the dictionary. Another subject for future
research is related to the global convergence analysis of the algorithm for solving MINLP
problems, encouraged by the good numerical results. Since the stationarity measure is not
continuous in this case, one possibility consists in fixing the discrete variables and then

analyzing the behaviour of the continuous ones in an outer-approximation approach.
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