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RESUMO

Nesta tese propomos um algoritmo de região de confiança sem derivadas para problemas de

maximização de probabilidade. Assumimos que a função de probabilidade é continuamente

diferenciável com gradiente Lipschitz contínuo, mas nenhuma derivada está disponível. O

algoritmo explora a estrutura particular da função objetivo de probabilidade por meio de

modelos baseados em cópulas. Sob hipóteses razoáveis, a convergência global do algoritmo

é analisada. Provamos que todos os pontos de acumulação da sequência gerada pelo al-

goritmo são estacionários. A proposta é validada através de experimentos numéricos na

resolução de problemas acadêmicos e industriais.

Keywords: Programação não linear, Problema de maximização de probabilidade, Pro-

gramação estocástica, Otimização sem derivadas.



ABSTRACT

In this thesis, we propose a derivative-free trust-region algorithm for probability maximiza-

tion problems. We assume that the probability function is continuously differentiable with

Lipschitz continuous gradient, but no derivatives are available. The algorithm explores the

particular structure of the probability objective function through models based on copulæ.

Under reasonable assumptions, the global convergence of the algorithm is analyzed. In

fact, we prove that all accumulation points of the sequence generated by the algorithm

are stationary. The proposed approach is validated by encouraging numerical results on

academic and industrial problems.

Keywords: Nonlinear programming, Probability maximization problems, Stochastic pro-

gramming, Derivative-free optimization.
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Chapter 1

Introduction

Many real-life situations can be modeled as optimization problems, in which practition-

ers and researchers wish to minimize or maximize a real function over a set of constraints.

Depending on whether data is known or random, the underlying optimization problem can

be classified as deterministic or stochastic. In the latter case, very often, one needs to cope

with a random inequality system of the form

ξ ≤ g(x), (1.1)

where ξ is a m-dimensional random vector defined on the probability space (Ξ,X ,P) with

continuous probability measure P, g : O → R
m is a function of class C1 with Lipschitz

continuous gradient defined in an open set O ⊂ R
n.

Throughout this work, we assume that the continuous probability distribution of ξ is

known and independent of the decision vector x. Furthermore, we assume that x belongs

to a nonempty compact convex set (typically a polyhedron) X ⊂ R
n such that X ⊂ O.

This thesis is dedicated to the stochastic programming problem of finding a point x in X

satisfying the random inequality system (1.1) with the highest possible probability. More

specifically, we are interested in Probability Maximization Problems (PMPs) of the form

max
x∈X

ϕ(x), with ϕ(x) := P [ξ ≤ g(x)] . (1.2)

11



12 Introduction

Many applications from finance and engineering can be formulated as PMPs. For instance,

in capacity expansion planning problems under uncertainty, one wishes to expand produc-

tion capacity with limited resources and capital. Given a budget, one seeks to make a

decision on expansion so that physical and monetary constraints are satisfied. The latter

constraints can be abstractly represented by the set X. Among the infinite number of

possible expansion plans in X, the decision maker searches for a plan of action satisfying

a random demand ξ as much as possible, i.e., a decision that maximizes the probability

function ϕ.

Another application of interest is the management of hydro-thermal power systems,

where one seeks to produce enough electricity, at the minimal costs, by combining hydro

and thermal power generations. Since water has multiple usages, reservoir levels should

remain within predefined bounds (for irrigation or tourism reasons). The random nature

of the water inflows makes this task difficult. Typically, this assignment is made via

optimization models with probability constraints [105], but a PMP approach is perfectly

suitable: the system manager searches for a power generation plan, no more expensive

than a predefined cost, that maximizes the probability of keeping the reservoirs’ volumes

within bounds.

As the latter example indicates, PMPs are closely related to optimization problems with

probability constraints, also known as Chance-Constrained Problems (CCPs). As explained

in [32, 74], for a given real-valued cost function f , a convex set X̃ and a confidence level

p ∈ (0, 1), the classical CCP

minimize f(x)

subject to ϕ(x) ≥ p

x ∈ X̃,

(1.3)

can be reformulated as (1.2) by defining X := {x ∈ X̃ : f(x) ≤ T}, where T ∈ R is a

predefined cost target. Note that it is possible to choose p and T such as CCP and PMP

share a solution. We refer the interested reader to excellent textbooks [77] and [83] for

an overview of the theory and methods for CCPs, and to the following works [47, 76, 98,



13

104] on methodologies and applications of optimization problems involving a probability

function. Some of these references deal with probability functions even more general than

the one of (1.2): sometimes the mapping g also depends on the random vector. The

separable setting in (1.1), i.e., when g does not depend on ξ, is not the most general one

but is present in many applications. See for instance [103, 104, 105] for applications in

energy management, [48] for a problem in finance and [58] for transportation problems.

Since probability maximization problems are special cases of nonlinear optimization,

properties of the probability function ϕ such as continuity, generalized concavity and dif-

ferentiability can be useful to choose an algorithm for solving the problem. Such properties

have been extensively studied [32, 49, 77, 95] in the last years. In particular, the recent

paper [92] offers an overview of the state-of-art of probability functions with perspective in

variational analysis, highlighting theoretical and algorithmic aspects of these properties.

In this work, we do not assume that ϕ satisfies any generalized concavity property, and

therefore by “solving" problem (1.2) we mean computing a stationary point. However, we

assume a bit more than differentiability: the function ϕ : O → [0, 1] in (1.2) is continu-

ously differentiable with Lipschitz continuous gradient on X, i.e., there exists a (possibly

unknown) finite constant κϕ > 0 such that, for all x, y ∈ X,

‖∇ϕ(x)−∇ϕ(y)‖ ≤ κϕ‖x− y‖. (1.4)

Under the assumption that g is of class C1 with Lipschitz continuous gradient on O, and

X ⊂ O is a compact set, the condition (1.4) is satisfied by many important probability

distributions such as the multivariate Gaussian with positive definite covariance matrix [77,

p. 204] or with singular covariance matrix under some nondegeneracy condition [49, Thm.

4.1], and other distributions satisfying some growth conditions [102, Thm. 3] (see § 4 in the

latter paper for an analysis on the log-normal and Student distributions). Furthermore,

all probability distributions of class C2 on X satisfy (1.4) (this is a mere consequence of

[64, Lem. 1.2.2] together with the assumptions on g and X).

Despite the recent advances in theory and numerical methods for this class of problems,
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dealing with multivariate probability functions remains a challenging task, except for some

special cases. The main difficulties arise from the fact that typically there is no analytical

expression for these functions. Furthermore, numerical evaluation of probability functions

and their gradients with reasonable accuracy is too time-consuming even when the random

vector is composed of, say, a few dozen components. We recall that computing ϕ(x) for

a given x amounts at evaluating numerically a multidimensional integral, a task that can

be accomplished in reasonable CPU times only if precision is not a concern. All one can

hope for are efficient tools for numerically approximate ϕ(x). Besides that, computing

only functional values of ϕ is not enough to employ some optimization algorithms, it is

also necessary to have access to the gradients of ϕ, which becomes even more involving:

• Approximating ∇ϕ(x) by finite-difference formulæ is not advisable because it involves

several evaluations of ϕ around x and requires careful selection of finite-difference

parameters. As just mentioned, evaluating ϕ is time consuming depending on the

random vector’s dimension;

• Algebraic formulae for the gradient of ϕ are not always available. When accessible,

they may not be computationally implementable or practical due to their high com-

plexity. As summarized in [92, §, 2.2], numerical implementations necessary to obtain

partial derivatives of probability functions, as well as verifying that all required as-

sumptions are satisfied, are not generally accessible (see [77, § 6.6.4], [90, Thm. 2.1]

and [100]). Furthermore, it appears that compactness of the support set Ξ is often

assumed, which turns out to be a restriction in some applications.

• Even when an algebraic formula for ∇ϕ is available and implementable (e.g., when

ξ ∈ R
m follows a Gaussian distribution), computing ∇ϕ(x) for a given x is ap-

proximately m times more expensive as evaluating ϕ(x). This is due to the fact that

gradient formulæ for certain probability distributions require computing m numerical

integrations of dimension m− 1; see for instance [93, Thm. 2.7.3].

Due to the aforementioned difficulties, optimization methods that do not make use of
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derivatives appear as a favorable approach for PMPs. Derivative-free optimization (DFO)

algorithms are good choices when the gradient of the objective function is not available,

or is too difficult to be evaluated. Although this is the case for problem (1.2), we are not

aware of any DFO approach specialized for PMPs. This thesis fills this gap by proposing

a DFO trust-region method suitable for problems of the form (1.2). We refer the reader

to the textbooks [1, 19], methodological papers [9, 46, 110], recent review [54] and tutorial

[45] for an overview on DFO methods.

According to [1, 45], DFO algorithms can be split into two broad categories: direct-

search and model-based methods. In [114], it is also considered the class of implicit filtering

methods [6, 39], that approximate the derivative of the objective function by simplex

gradients, a generalization of finite-difference gradient. In order to decrease the objective

function, direct-search methods choose points in specific directions with a predefined step

size from the incumbent solution, which is updated whenever an improvement condition

is achieved, otherwise a new search step size is considered. There are many direct-search

methods in the literature, as Hooke and Jeeves’ pattern search [50], Generalized Pattern

Search (GPS) [52, 56, 57, 86], Nelder-Mead simplex method [62], Mesh Adaptive Direct

Search (MADS) [2, 26], Generating Set Search (GSS) [51]. Although, direct-search methods

are popular since they are easy to implement and reliable in practice [114], commonly, they

require a large amount of function evaluations and do not fully explore the information

available of the objective function, making some of them very slow.

On the other hand, model-based methods explore the underlying properties of the ob-

jective function rather than its values by themselves. In this class of methods, the function

values are used to construct models which should approximate the objective function in

a neighbourhood, called trust region, of the current point. Furthermore, to be useful,

optimizing the model within this neighborhood has to be significantly easier than solving

the original problem. In DFO methods, the models are constructed without any first-order

information, by means of polynomial interpolation or regression [19] or by any other approx-

imation technique [108]. The most common models considered are linear and quadratic.

Linear models require, for instance, (n + 1) interpolation points but they disregard any
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curvature information on the function. On the other hand, quadratic models require, in

general, (n + 1)(n + 2)/2 interpolation points, which can be computationally expensive

depending on the problem’s dimension. In the papers [71] and [72], Powell constructs

quadratic models using fewer points and shows empirically that it is possible to have ef-

ficient practical algorithms with (2n + 1) sample points. In [82], the authors address the

importance of geometric conditions of the interpolation points to obtain global convergence

of the algorithm. On the other hand, [34] claims to be possible to obtain a competitive

algorithm even when omitting the geometry phase. There are many references in the liter-

ature that study DFO trust-region model-based algorithms. For unconstrained problems

we can cite [17, 18, 19, 20, 34]. In particular, [12, 13] deal with partially separable objective

functions, when the Hessian is sparse; [42] investigates the worst case function evaluations

complexity for trust-region algorithms with linear interpolation models; [110, 111] rely on

radial basis function interpolation models with a linear polynomial tail; [36] proposes a

globally convergent algorithm, using the ideas from [70], that avoids unnecessary reduc-

tions of the trust-region radius. For box constrained problems, [71] considers linear and

quadratic interpolation models and [43] uses recursive model-based active-set trust-region

methods. In this context, [80] presents a review of derivative-free algorithms followed by

a numerical comparison of 22 implementations using a test set of 502 problems, including

convex, nonconvex, smooth and nonsmooth bounded problems. The references [60, 73] pro-

pose an algorithm for solving linear constrained problems, [15] presents a general approach

for convex constrained problems, [85] considers problems in a convex, closed and bounded

subset of a real Hilbert space. For solving general constrained optimization problems, [68]

proposes a trust-region interpolation based-model algorithm with linear approximations to

the constraint functions and [35] presents an algorithm that mixes an inexact restoration

framework with filter techniques, where the optimality step is computed by trust-region

algorithms.

Our approach belongs to the category of model-based methods. As the objective func-

tion in (1.2) is a probability, it has a particular structure: it is a componentwise non-

decreasing function whose image is the closed unit interval. These properties should be
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exploited by modelling the probability function by functions that share the same structure

and are easier to evaluate, which motivated us to employ models based on copulæ. A

copula is a multivariate probability distribution for which the marginal-probability distri-

bution of each variable is uniform [29, 63]. The key result that connects copulæ to the

probability function ϕ is the Sklar’s theorem, which states that there exists a copula such

that the probability function can be written as the composition of this copula with the uni-

variate marginal distributions of the probability function. By this result, the multivariate

probability function can be splitted into two independent parts: one describing the uni-

variate marginal behaviour and the other, the dependence structures among the random

variables [84]. As the marginal distributions are given or easy to estimate, our main task

is to investigate these dependence structures through copulæ.

Modelling high-dimensional distribution functions is a challenging issue in many appli-

cations because it is not trivial to capture the dependence among the random variables.

In optimization problems involving a probability function, copulæ were used in [25] as an

alternative to the hard-to-evaluate function ϕ, and in [97] to model distributionally robust

optimization problems. The direction we pursue in this work differs from [25]: instead

of replacing ϕ by a single copula, which is a problem-dependent approach and involves a

non-trivial statistical work of estimation, we consider a set/dictionary of copulæ to define

a model that fits ϕ. Essentially, the proposed derivative-free trust-region method updates,

at each iteration, a copula-based model by solving a least-square quadratic program. This

iterative process of updating the model makes it capture by itself the dependence struc-

tures between the marginal distributions of the probability function, assigning weights

to the copulæ in the dictionary and then building the model that best represents these

dependencies.

Our DFO method for PMPs builds upon [15], but differs from the latter in the definition

of the model and iterates. While [15] computes iterates as stationary points of quadratic

constrained programs, our approach defines iterates as (approximate) stationary points of

nonlinear optimization problems, i.e., the maximization of the copula-based model over a

trust-region intersecting X. This shortcoming is compensated by the fact that our approach



18 Introduction

uses an easy-to-evaluate model that approximates well the objective over the trust-region

and, thus, relatively few (expensive) function evaluations are expected to be performed.

This is indeed evidenced by the numerical experiments reported in Chapter 4, where the

numerical performance of the new approach is compared to other DFO algorithms on

several instances of academic and real-life probability maximization problems. In addition,

based on a variant of our approach, we present preliminary numerical experiments of a

heuristic for solving MINLP - Mixed Integer NonLinear Programming problems. In these

experiments, the results are compared to the ones obtained by two other MINLP specialized

solvers.

Contributions

The main contributions of this thesis are listed below. They have appeared in the article

[10], recently published in the European Journal of Operational Research.

• The proposal of a DFO trust-region algorithm with copula-based models for solving

Probability Maximization Problems.

• The presentation of a global convergence analysis of the proposed algorithm assuming

reasonably mild hypotheses, most of which found in the DFO literature.

• Proposal of different strategies for constructing the copula-based models which led

us to develop two implementable versions of the proposed algorithm.

• The presentation of extensive numerical experiments comparing the performance of

our proposal with several DFO algorithms for solving academic and industrial prob-

abilistic maximization problems.

Organization

The remainder of this work is organized as follows. In Chapter 2 we recall some basic

concepts and main properties of probability theory and copulæ. Chapter 3 presents our

derivative-free trust-region algorithm with models based on copulæ and analyzes its global
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convergence. In Chapter 4, numerical experiments are reported. Chapter 5 concludes the

manuscript with final remarks and comments on future steps.
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Chapter 2

Probability distribution functions

This chapter recalls some definitions, results, and properties of probability functions

and copulæ. We restrict our presentation to the relevant topics for the following chapters,

and omit mathematical proofs for brevity. The interested reader is referred to the following

articles [33, 77, 78, 81, 91, 92, 93, 99] and textbooks [3, 29, 30] for further discussions and

mathematical proofs.

2.1 Basic concepts

In this section we present some notations and basic definitions of probability space

and distribution functions, which are necessary to introduce copulæ. First we focus in the

one-dimensional space and then we generalize some results to finite higher dimensions.

Definition 2.1. Given the set Ω, a σ-algebra F of Ω is a nonempty collection of subsets

of Ω that satisfy:

(i) ∅ and Ω belong to F ;

(ii) if A ∈ F , then Ac ∈ F ;

(iii) if Ai ∈ F , i ∈ N, is a countable sequence of sets, then
⋃
i∈N

Ai ∈ F .

21
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Some examples of σ-algebras are the following [3]:

(a) Let Ω be any set and F be the family of all subsets of Ω;

(b) Let Ω = N and let F =
{∅, {1, 3, 5, . . .}, {2, 4, 6, . . .}, Ω

}
;

(c) Let F be the family consisting of only two subsets of Ω, namely ∅ and Ω.

(d) Let Ω = R. The Borel algebra is the σ-algebra B(R) generated by all open intervals

]a, b[ in R. Observe that it is also the σ-algebra generated by all closed intervals [a, b]

in R, by item (ii) of Definition 2.1. Any set in B(R) is called a Borel set.

The pair (Ω,F) consisting of a set Ω and a σ-algebra F of Ω is called a measurable

space, i.e., it is a space on which we can define a measure.

Definition 2.2. A measure is an extended real-valued function μ defined on a σ-algebra

F of Ω, that is, a function μ : F → R such that

(i) μ(A) ≥ μ(∅) = 0 for all A ∈ F ;

(ii) if Ai ∈ F is a countable sequence of disjoint sets, then

μ(∪iAi) =
∑
i

μ(Ai).

The condition (ii) in Definition 2.2 is called countable additivity. If μ(Ω) = 1 we call μ

a probability measure and we denote it by P, which is defined as P : F → [0, 1]. Now we

can define a probability space.

Definition 2.3. Let F be a σ-algebra of Ω and P be a probability measure on F , then the

triple (Ω,F ,P) is called a probability space.

The elements of a probability space (Ω,F ,P) have the following meaning: Ω is a set of

“outcomes”, F is a set of “events” and P : F → [0, 1] is a function that assigns probability

to events.
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Example 2.4. Consider an experiment that a fair coin is flipped once, then the possible

outcome is either heads {H} or tails {T}, i.e., Ω = {H, T} is our sample space. The

σ-algebra contains 2|Ω| = 22 = 4 elements/events, i.e., F =
{∅, {H}, {T}, {H,T}}. It

is known that there is a fifty percent chance of tossing heads or tails, so the probability

measure of the events are P [∅] = 0, P [{H}] = 0.5, P [{T}] = 0.5 and P [{H, T}] = 0.

An important concept in the probability theory that is necessary to define distribution

functions is the random variable.

Definition 2.5. A real valued function ξ defined on Ω is said to be a random variable if

for every Borel set B ⊂ R we have ξ−1(B) = {ω ∈ Ω : ξ(ω) ∈ B} ∈ F .

Definition 2.6. Consider the random variables ξ1, . . . , ξm defined on the same probability

space (Ω,F ,P). An m-dimensional random vector ξ = {ξ1, . . . , ξm} is a measurable map-

ping from Ω into R
m. In this case, the word “measurable” means that the counterimage

ξ−1(B) := {ω ∈ Ω : ξ(ω) ∈ B}

of every Borel set B in B(Rm) belongs to F .

It can be proved that a random vector can be represented in the form ξ = (ξ1, . . . , ξm),

where ξ1, . . . , ξm are one-dimensional random variables.

Given ξ a random variable on the probability space (Ω,F ,P), a probability measure Pξ

may be defined on the measurable space
(
R,B(R)) by

Pξ[B] := P
[
ξ−1(B)

]
, ∀B ∈ B(R).

The probability measure Pξ is called the law, distribution of ξ, the image probability of

P under ξ or the cumulative distribution function of ξ. A similar construction applies to a

random vector ξ, the only difference, in the vector case, being that the image probability

is defined on
(
R

m,B(Rm)
)
.
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Definition 2.7. [29, Def. 1.2.9] The distribution function Fξ of a random vector ξ =

(ξ1, . . . , ξm) on the probability space (Ω,F ,P) is defined by, for all x = (x1, . . . , xm) ∈ R
m,

Fξ(x1, . . . , xm) := P [ξ1 ≤ x1, . . . , ξm ≤ xm] .

In the literature it is common to use the function Fξ or the notation ξ ∼ F to say that the

functions Fξ or F represent the distribution function of the random vector ξ. The next

theorem shows that a distribution function can be characterized in terms of its analytical

properties. In the sequence, I denotes the unit interval, i.e., I := [0, 1].

Theorem 2.8. [29, Thm. 1.2.13] Let F : Rm → I. The following statements are equivalent:

• there exists a random vector ξ on a probability space (Ω,F ,P) such that F is the

distribution function of ξ;

• F satisfies the following properties:

(a) For every j ∈ {1, . . . ,m} and for all x1, . . . , xj−1, xj+1, . . . , xm in R, the function

t → F (x1, . . . , xj−1, t, xj+1, . . . , xm)

is right-continuous;

(b) F is m-increasing;

(c) F (x) → 0, if at least one of the arguments of x tends to −∞;

(d) lim
min{x1,...,xm}→+∞

F (x1, . . . , xm) = 1.

From item (b) of Theorem 2.8 we have the following result: if F is a distribution

function, then for every j ∈ {1, . . . ,m} and for all x1, . . . , xm in R, the functions

t ∈ R → F (x1, . . . , xj−1, t, xj+1, . . . , xm)

are increasing.
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A definition that will be important throughout this text is the marginal distribution of

a given distribution function F .

Definition 2.9. [29, Def. 1.2.15] Let F be a m-dimensional distribution function of the

random vector ξ and ϑ = (j1, . . . , jd) a subvector of (1, . . . ,m), 1 ≤ d ≤ m − 1. We call

ϑ−marginal of F the distribution function F ϑ : Rd → I defined by setting m−d arguments

of F equal to +∞, namely, for all u1, . . . , ud in I,

F ϑ(u1, . . . , ud) = F (v1, . . . , vm),

where vj = uj if j ∈ {j1, . . . , jd}, and one lets vj tend to +∞ otherwise.

As is known, the marginal F ϑ of the random vector ξ ∼ F is the joint distribution

function of (ξj1 , . . . , ξjd). A particular case of interest is when d = 1, where the j-th 1-

marginal of Fξ, the distribution of ξ, is the 1-dimensional distribution function Fξj : R → I

of ξj and can be represented by

Fξj(xj) = lim
(x1,...,xj−1,xj+1,...,xm)→(+∞,...,+∞)

Fξ(x1, . . . , xm)

= Fξ(+∞, . . . ,+∞, xj,+∞, . . . ,+∞).

If the random variables ξ1, . . . , ξm are independent and if Fξj denotes the distribution

function of ξj, j = 1, . . . ,m, then the distribution function of the random vector ξ =

(ξ1, . . . , ξm) can be written as the product of the marginals

Fξ(x1, . . . , xm) =
m∏
j=1

Fξj(xj).

A random vector ξ = (ξ1, . . . , ξm) is said to be absolutely continuous if there exists a

positive and integrable function fξ : R
m → R+, called density function, such that

∫
Rm

fξ dλm = 1,
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where λm is the m-dimensional Lebesgue measure. Now, we formalize the definition of the

distribution function Fξ when the random vector ξ is absolutely continuous.

Definition 2.10. Let ξ = (ξ1, . . . , ξm) be a random vector and Fξ its distribution function.

If there exists a function fξ : R
m → R+ such that, for all (x1, . . . , xm) ∈ R

m,

Fξ(x1, . . . , xm) =

∫ xm

−∞
. . .

∫ x1

−∞
fξ(t1, . . . , tm) dt1 . . . dtm,

then fξ is called density of the random vector ξ or joint density of the random variables

ξ1, . . . , ξm and, in this case, we say that (ξ1, . . . , ξm) is absolutely continuous.

Now we give some examples of densities and their respective distributions functions

(when a closed-form expression exists) in one-dimensional case. We illustrate the graphs

of both functions in Figures 2.1, 2.2 and 2.3 for the uniform, exponential and normal

distributions, respectively.

Example 2.11 (Uniform distribution on I). Let f(x) = 1, for x ∈ [0, 1], and 0, otherwise,

be the density function. The distribution function F is:

F (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if x < 0

x, if 0 ≤ x ≤ 1

1, if x > 1.

We use the notation F ∼ U
(
[0, 1]

)
to say that F follows a uniform distribution on [0, 1].

Example 2.12 (Exponential distribution with rate λ). Let f(x) = λe−λx, for x ≥ 0, and

0, otherwise, be the density function. The distribution function F is:

F (x, λ) =

⎧⎨
⎩ 0, if x ≤ 0

1− e−λx, if x ≥ 0.

We use the notation F ∼ exp(λ) to say that F follows an exponential distribution with

parameter λ.
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Figure 2.1: Uniform density (left) and distribution (right) functions on I.

Figure 2.2: Exponential density (left) and distribution (right) functions with different
parameters λ.

Example 2.13 (Standard normal distribution). Let f(x) =
e−

(x−μ)2

2σ2

√
2πσ2

, for x ∈ R, be the

density function.

In this case, there is no analytic function for the distribution function F (x). We use the

notation F ∼ N(μ, σ2) to say that F follows a normal distribution with mean or expectation

μ and standard deviation σ (or variance σ2).
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Figure 2.3: Normal density (left) and distribution (right) functions with different parame-
ters μ and σ2.

2.2 Continuity and differentiability of distribution func-

tions

In this section we discuss and present classical results about some analytical properties

of probability functions, such as continuity and differentiability. There are many references

in the literature related to these subjects and some of them are [33, 77, 78, 81, 91, 92, 93,

99, 102].

2.2.1 Continuity

When analysing properties of a (probability) function, a first question that may arise is

under which conditions it is continuous. In other words, the continuity of the distribution

function of the random vector ξ. First of all, we define continuity properties of set-valued

mappings.

Definition 2.14. [81, Def. 5.4] Let M : Rn ⇒ R
m be a set-valued mapping. The mapping

M is said to be outer semicontinuous at x̄ ∈ R
n if

lim sup
x→x̄

M(x) ⊆ M(x̄),
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or equivalently lim supx→x̄ M(x) = M(x̄), which means that any (possible) cluster point z

of {zn}n≥0 must belong to M(x̄), where zn ∈ M(xn) and xn → x̄. The mapping M is said

to be inner semicontinuous at x̄ ∈ R
n if

M(x̄) ⊆ lim inf
x→x̄

M(x),

or equivalently when M is closed-valued, lim infx→x̄ M(x) = M(x̄). M is called continuous

at x̄ if both conditions hold, i.e., if M(x) → M(x̄), as x → x̄.

The interested reader can find more content about the equivalences of Definition 2.14,

continuity and semicontinuity properties of set-valued mappings in the book [81].

To relate set-valued mappings to the probability function, we consider the equivalent

formulation of the probability function by letting M : Rn ⇒ R
m and

ϕ(x) := P [ξ ∈ M(x)] . (2.1)

Now we present a continuity result in two forms, one related to set-valued mappings and

the other makes explicit reference to a function g : Rn × R
m → R

k defining the set-valued

mapping M(x).

Proposition 2.15. [92, Prop. 2.1] Assume that the set-valued application M : Rn ⇒ R
m

is both outer and inner semicontinuous and convex-valued. If moreover for an arbitrary

x ∈ R
n

P [ξ ∈ bd M(x)] = 0

where bd M denotes the boundary of set M in R
m, then ϕ, given in (2.1), is continuous

at any x ∈ R
n. If the set-valued application M is only outer semicontinuous, then the

probability function ϕ is upper semicontinuous.

We say that M is convex-valued if M(x) is a convex set for each x ∈ R
n.

Proposition 2.16. [92, Prop. 2.2] Let g : Rn × R
m → R

k be a continuous mapping and
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assume that the following regularity condition holds for all x ∈ R
n, j = 1, . . . , k :

P [gj(x, ξ) = 0] = 0,

then the probability function ϕ = P [g(x, ξ) ≤ 0] is continuous at any x ∈ R
n. If the

mapping g is lower semicontinuous, then ϕ is upper semicontinuous.

Note that these results hold for a probability function even more general than the one

we are considering, where g depends only on the decision variable x. The condition of M

being convex-valued and the regularity assumptions in Proposition 2.15, and in 2.16, for

the function g, are not so restrictive.

An example illustrating the technical necessity of the given regularity condition is pre-

sented in [92, Example 2.1], where a simple reformulation fixed the discontinuity of the

probability function and let it infinitely differentiable. Also, [92] summarizes how to ensure

the regularity condition, by assuming both:

• ξ has a density with respect to Lebesgue measure;

• {z ∈ R
m : g(x, z) = 0} is a Lebesgue null set. This last condition is, for instance,

satisfied if

bd {z ∈ R
m : g(x, z) ≤ 0} = {z ∈ R

m : g(x, z) = 0}. (2.2)

The regularity conditions on M and g in Propositions 2.15 and 2.16, respectively, are

linked by these assumptions. Another way to ensure (2.2) is by considering that g is convex

in the second argument (which is valid in our case) and admits a Slater point.

2.2.2 Differentiability

The differentiability property of the probability function is more restrictive than conti-

nuity, in which additional assumptions are needed. Even a simple example [99, Proposition

2.2], where ϕ = P [g(x, ξ) ≤ 0] with nice input data (ξ following a regular Gaussian dis-

tribution, the function g is smooth and convex in the second argument and the inequality
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defined by g satisfies the Slater condition) fails to be differentiable without the compact-

ness of the set M(x) := {z ∈ R
m : g(x, z) ≤ 0}. Another example of a similar situation is

given in [92, Example 2.3].

As discussed in [92], the differentiability of ϕ is investigated in two paths. The first

one makes fairly few assumptions on the distribution of ξ, but more restrictive ones on

everything else, given rise to relative general results. The second path focuses in particular

distribution functions where suitable additional assumptions can be assumed. We first

present a well-known result directed to the first path of investigation [89, 90].

Theorem 2.17. [92, Theorem 2.1] Let g : Rn ×R
m → R

k be a continuously differentiable

function and let θ : Rn×R
m → R be a continuously differentiable density. Pick an arbitrary

1 ≤ l < k. Assume moreover that

1) The set M(x) = {z ∈ R
m : g(x, z) ≤ 0} is bounded in a neighbourhood U of some

point x̄.

2) At x̄ all constraints gi(x̄, z) ≤ 0, i = 1, . . . , k are active, i.e., M(x̄)∩
{z ∈ R

m : gi(x̄, z) = 0} �= ∅.

3) One can find a continuous matrix function Hl : R
n × R

m → R
n×m satisfying

Hl(x, z)∇zg
l(x, z) +∇xg

l(x, z) = 0

where gl(x, z) =
(
g1(x, z), . . . , gl(x, z)

) ∈ R
l.

4) The matrix function Hl has a continuous partial derivative with respect to z.

5) The gradient ∇zgi(x, z) �= 0 on ∂iM(x̄) := M(x̄) ∩ {z ∈ R
m : gi(x̄, z) = 0}.

6) For each z ∈ M(x̄), the vectors ∇zgi(x̄, z), i ∈ I(x̄, z) := {j : gj(x̄, z) = 0} are linearly

independent.
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Then probability function ϕ(x) :=
∫
M(x)

θ(x, z)dλ(z) = P [ξ ∈ M(x)] is differentiable at x̄

and

∇xϕ(x̄) =

∫
M(x̄)

∇xθ(x̄, z) + divz
(
θ(x̄, z)Hl(x̄, z)

)
dλ(z)

−
k∑

i=l+1

∫
∂iM(x̄)

θ(x̄, z)

‖∇zgi(x̄, z)‖ [∇xgi(x̄, z) +Hl(x̄, z)∇zgi(x̄, z)] dS,

(2.3)

where λ is the Lebesgue measure on R
m.

The very technical proof of Theorem 2.17 is presented in [89]. A clearer idea of how

to prove formula (2.3) is shown in the appendix of [90]. The compactness of the set M(x)

and the LICQ conditions can be replaced by an integrability and a pairwise independence

request [92], respectively.

In the previous theorem one can choose the constant 1 ≤ l < k in such a way that is

more convenient for the application and two especial cases can also be explored, i.e., when

l = 0 or l = k. In the first case the matrix Hl is absent and (2.3) is reduced to the integral

over the volume, and when l = k the formula is the integral over the surface.

Theorem 2.18. [92, Theorem 2.2] Under the notation and conditions as in Theorem 2.17,

let l = 0. Then, we have:

∇xϕ(x) =

∫
M(x)

∇xθ(x, z)−
k∑

i=1

∫
∂iM(x)

θ(x, z)

‖∇zgi(x, z)‖∇xgi(x, z)dS.

If l = k we have:

∇xϕ(x) =

∫
M(x)

∇xθ(x, z) + divz
(
θ(x, z)Hk(x, z)

)
dλ(z).

In [88, 89, 91] some examples are presented demonstrating possible applications of the

formulas from Theorems 2.17 and 2.18. These previous results are part of the first path

and represent a state of the art if we do not assume any specific form of the random vector

ξ, but their generality have a cost due to the difficulty in computing the matrix Hl or the
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term divz
(
θ(x, z)Hl(x, z)

)
.

In relation to the second path, we consider some special distributions of the random

vector ξ, which allow us to obtain explicit results. First of all, when the probability function

has the separable setting, as in (1.2), we can provide the following general result ensuring

that each component of the partial derivative of Fξ consists on computing a numerical

integration of dimension m− 1.

Theorem 2.19. [77] Let ξ ∈ R
m be a random vector with density fξ : R

m → R. Fix any

z̄ ∈ R
m and consider Fξ(z) := P [ξ ≤ z] . If

ϕ(i)(t) :=

∫ z̄1

−∞
. . .

∫ z̄i−1

−∞

∫ z̄i+1

−∞
. . .

∫ z̄m

−∞
fξ (u1, . . . , ui−1, t, ui+1, . . . , um) du1 . . . dui−1dui+1 . . . dum

is continuous for all i = 1, . . . ,m, then Fξ(z) is partially differentiable at z̄ and

∂Fξ

∂zi
(z̄) = ϕ(i) (z̄i) .

From Theorem 2.19 we can obtain the following differentiability result for the Gaussian

distribution [47, 49, 77, 78].

Lemma 2.20. [93, Lem. 2.7.5] Let ξ be an m-dimensional Gaussian random vector with

mean μ ∈ R
m and positive definite variance-covariance matrix Σ. Then the distribution

function Fξ(z) := P [ξ ≤ z] is continuously differentiable and in any fixed z ∈ R
m the

following holds:

∂Fξ

∂zi
(z) = fξi (zi)Fξ̃(zi)

(z1, . . . , zi−1, zi+1, . . . , zm) , i = 1, . . . ,m. (2.4)

Here ξ̃ (zi) is a Gaussian random variable with mean μ̂ ∈ R
m−1 and (m − 1) × (m − 1)

positive definite covariance matrix Σ̂. Let Di
m denote the m-th order identity matrix from

which the ith row has been deleted. Then

μ̂ = Di
m

(
μ+ Σ−1

ii (zi − μi) Σi

)
and Σ̂ = Di

m

(
Σ− Σ−1

ii ΣiΣ
�
i

) (
Di

m

)�
,
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where Σi is the i-th column of Σ and Σii is the ith element of the main diagonal of Σ.

Note that Lemma 2.20 requires a positive definite covariance matrix Σ, i.e., the Gaussian

random vector ξ must be non-degenerate. This hypothesis restricts many applications,

because in some of them occur a multiplication of a non-degenerate Gaussian random

variable with a matrix that has more lines than columns, causing the degeneracy. The

next two results are important generalizations of Lemma 2.20.

Lemma 2.21. [93, Lem. 2.7.6] Let A be a k × m matrix. Consider a linear inequality

system Ax ≤ z and define

I(A, z) = {I ⊆ {1, . . . , k} : ∃x ∈ R
m, a�i x = zi, i ∈ I, a�i x < zi, i /∈ I

}

Assume that z ∈ R
m is such that Ax ≤ z is non-degenerate (i.e., rank {ai}i∈I = |I| ∀I ∈

I(A, z)). Let ξ be an m-dimensional Gaussian random vector with mean μ and positive

definite variance-covariance matrix Σ. Then the probability function ϕ(z) = P [Aξ ≤ z] is

differentiable at z and

∂ϕ

∂zj
(z) =

⎧⎨
⎩ 0 if {j} /∈ I(A, z)

fj (zj)P
[
A(j)L(j)ξ(j) ≤ z(j) − A(j)w(j)

]
if {j} ∈ I(A, z)

.

Here ξ(j) is a centered m − 1 dimensional Gaussian random variable with independent

components, A(j) is obtained from A by deleting row j, z(j) is defined similarly. Moreover,

L(j) is the Choleski matrix of S(j) := Σ − 1
a�j Σaj

Σaja
�
j Σ (i.e., S(j) = L(j)

(
L(j)
)�), w(j) =

μ+
zj−a�j μ

a�j Σaj
Σaj and fj the one-dimensional Gaussian density with mean μ�aj and variance

a�j Σaj. Finally the inequality system A(j)L(j)y ≤ z(j) − A(j)w(j) is non-degenerate.

An interesting observation about Theorem 2.21 is that if the original inequality system

Ax ≤ z happens to be non-degenerate, and consequently the reduced one also is, then the

reduced inequality system fulfills the assumptions of the same lemma, which allows one

to obtain derivative formulas of any order recursively. In other words, considering that z

satisfies the non degeneracy assumption, the probability function is of class C∞ [49]. A
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similar idea, weakening the positive definiteness of the covariance matrix, can be applied

to singular Gaussian distributions at any points z satisfying the non degeneracy condition.

Theorem 2.22. [49, Theorem 4.1] Let ξ ∼ N (μ,Σ) with some (possibly singular) covari-

ance matrix Σ = (σij) of order (m,m). Denote by Σ = AAT any factorization of the

positive semidefinite matrix Σ. Let z be such that the inequality system Ax ≤ z − μ is

non-degenerate. Then, for j = 1, . . . ,m one has the formula

∂Fξ

∂zj
(z) = fξj (zj) · Fξ̃(zj)

(z1, . . . , zj−1, zj+1, . . . , zm) .

Here, fξj denotes the one-dimensional Gaussian density of the component ξj, ξ̃ (zj) is an

(m − 1)-dimensional (possibly singular) Gaussian random vector distributed according to

ξ̃ (zj) ∼ N (μ̂, Σ̂), μ̂ results from the vector μ + σ−1
jj (zj − μj) σj by deleting component j,

and Σ̂ results from the matrix Σ−σ−1
jj σjσ

T
j by deleting row j and column j, where σj refers

to column j of Σ.

A remarkable case with a special structure of (1.2) commonly arises in energy man-

agement problems, which is one of the examples considered in the numerical experiments

in Chapter 4. Such structure is composed of a bilateral inequality within the probability

function and is given by

ϕ(x) := P [Ax+ a ≤ ξ ≤ Bx+ b] , (2.5)

where ξ ∈ R
m is a random vector and the vectors a, b ∈ R

m and matrices A,B ∈ R
m×n are

deterministic. The inequality system can be reformulated to a unilateral one as follows:

⎛
⎝ I

−I

⎞
⎠ ξ ≤

⎛
⎝ B

−A

⎞
⎠x+

⎛
⎝ b

−a

⎞
⎠ , (2.6)

where I ∈ R
m×m is the identity matrix. The disadvantage of this reformulation is that the
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new random vector

ξ̄ :=

⎛
⎝ I

−I

⎞
⎠ ξ ∈ R

2m (2.7)

is degenerate and Lemma 2.20 can not be applied. However, Theorem 2.21 fits in this case

and provides a differentiability formula for the distribution of ξ̄. The price for doubling

the dimension of the random vector is paid by evaluating the probability in dimension 2m,

which is much more expensive. The following result from [106] has the advantage of not

working with probability in such dimension.

Theorem 2.23. [106, Thm. 1] Assume that ξ ∼ N (μ,Σ) with some positive definite

covariance matrix Σ. Then, for i = 1, . . . ,m,

∂

∂bi
Fξ(a, b) = fξi (bi)Fξ̃(bi)

(ã, b̃)

∂

∂ai
Fξ(a, b) = −fξi (ai)Fξ̃(ai)

(ã, b̃).

Here, fξi is as in Lemma 2.20, ξ̃ (bi) , ξ̃ (ai), are m − 1-dimensional random vectors

distributed according to ξ̃ (bi) , ξ̃ (ai) ∼ N (μ̂, Σ̂) such that μ̂ results from the vector

μ+ σ−1
ii (bi − μi) σi (in case of bi) or from the vector μ+ σ−1

ii (ai − μi) σi (in case of ai) by

deleting component i and Σ̂ is defined as in Lemma 2.20. Moreover ã and b̃ result from a

and b by deleting the respective component i.

A formula for the derivative of the probability function in (2.5) is obtained by combining

the previous Lemma with the Corollary 2.24 that follows.

Corollary 2.24. [93, Cor. 3.2.3] Let ϕ : R
n → [0, 1] be defined as ϕ(x) :=

P [Ax+ a ≤ ξ ≤ Bx+ b], where ξ ∈ R
m is a Gaussian random variable with mean μ ∈ R

m

and positive definite variance-covariance matrix Σ. Moreover, let a, b, A,B be as in (2.5)

Then the mapping ϕ is twice differentiable and we have:

∇ϕ = ∇aFξ(a, b)
�A+∇bFξ(a, b)

�B

∇2ϕ = A�∇2
aaFξ(a, b)A+ A�∇2

abFξ(a, b)B +B�∇2
baFξ(a, b)A+B�∇2

bbFξ(a, b)B
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where Fξ is defined as in Lemma 2.23.

Two other special cases allowing the computation of gradients are the multivariate

Gamma [77, 75] and Dirichlet [41, 77, 113] distributions, given by Theorem 2.25 and

Theorem 2.26, respectively.

Theorem 2.25. [93, Thm. 2.7.7] A multivariate Gamma distribution ζ ∈ R
m is defined

as ζ = Aη, where η ∈ R
2m−1 contains independent standard Gamma (with parameters ϑj)

distributed components and A is a m× 2m − 1 matrix with non-zero columns, Aij ∈ {0, 1}
for i = 1, . . . ,m, j = 1, . . . , 2m − 1. Define, for each i = 1, . . . ,m, Ii ⊆ {1, . . . , 2m − 1} as

Ii = {j : Aij = 1} . Then δi ∈ R
m−1, where

δik =

∑
j∈Ik∩Ii ηj∑
j∈Ii ηj

, k = 1, . . . , i− 1, i+ 1, . . . ,m,

is an m− 1 dimensional Dirichlet Distribution with parameters

Θk =
∑

j∈Ik∩Ii
ϑj, k = 1, . . . , i− 1, i+ 1, . . . ,m

Θm+1 =
∑

j∈∪k �=iIk\Ii
ϑj,

for each i = 1, . . . ,m. Now F (z) := P [ζ ≤ z] is partially differentiable and

∂Fξ

∂zi
(z) = P

[
ziδ

i
k + γk ≤ zk ∀k �= i

] zϑi−1
i e−zi

Γ (ϑi)

where γk =
∑

j∈Ik∩Īi ηj, k = 1, . . . , i−1, i+1, . . . ,m, is an m−1 dimensional multivariate

gamma distribution independent of δi, Īi is the complement of Ii and Γ is the usual gamma-

function.

Theorem 2.26. [93, Thm. 2.7.8] Let ξ ∈ R
m have a multivariate Dirichlet distribution,

i.e., have the density:

f (z1, . . . , zm) =
Γ (ϑ1 + . . .+ ϑm+1)

Γ (ϑ1) · · ·Γ (ϑm+1)
zϑ1−1
1 · · · zϑm−1

m

(
1−

m∑
j=1

zj

)ϑm+1−1

,
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on the unit simplex z ∈ Δm = {z ∈ R
m | z1 + · · · + zm = 1 and zi ≥ 0, i = 1, . . . ,m} in

dimension m (zero elsewhere). If

yi =

(
z1

1− zi
, . . . ,

zi−1

1− zi
,
zi+1

1− zi
, . . . ,

zm
1− zi

)
∈ R

m−1

satisfies y(1) + y(2) > 1 or y(1) + y(2) + y(3) > 1 (but y(1) + y(2) ≤ 1
)

for the order-statistics

y(.), then F (z) := P [ξ ≤ z] is partially differentiable at z and

∂Fξ

∂zi
(z) = P

[
ξ̃ik ≤ yik, ∀k �= i

] Γ (ϑ1 + . . .+ ϑm+1)

Γ (ϑi) Γ
(∑

j 	=i ϑj

) zϑi−1
i (1− zi)

∑
j �=i ϑj−1

where ξ̃i has an m − 1 dimensional Dirichlet distribution with parameters ϑ1, . . . , ϑi−1

ϑi+1, . . . , ϑm+1.

A promising family that deserves our attention are the elliptically symmetric distribu-

tions, where some examples are the multivariate Gaussian, Student, logistic or exponential

power random vectors [53]. We refer the book [33] and [11, 53, 66, 100, 101] for the

interested reader in the subject.

Definition 2.27. [94, Def. 1] We say that the random vector ξ ∈ R
m is elliptically

symmetrically distributed with mean μ, covariance matrix Σ and generator θ : R+ → R+,

notation ξ ∼ E(μ,Σ, θ) if and only if its density fξ : R
n → R+is given by:

fξ(z) = θ
(
(z − μ)TΣ−1(z − μ)

)
/
√
detΣ (2.8)

Two examples of generators associated to the respective distribution function are given

in the following.

Example 2.28. [102] The Gaussian and Student random vectors are elliptical with the

respective generators:

θGauss (t) = exp(−t/2)/(2π)m/2,

θStudent (t) =
Γ
(
m+ν
2

)
Γ
(
ν
2

) (πν)−m/2

(
1 +

t

ν

)−m+ν
2

.
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In Definition 2.27, we emphasize that our attention is restricted to random vectors

disposing of a density, which is appropriate for our configuration, but not necessarily of

full generality. The characteristic function provides an alternative way for describing a

random vector, determining the behavior and properties of its probability distribution.

For ξ ∼ E(μ,Σ, θ), the characteristic function is defined by the first equality of (2.9) and

it can also be represented by the second equality of (2.9)

ϕξ(t) = E
(
exp

(
it�ξ

))
= exp

(
it�μ

)
ψ
(
t�Σt

)
(2.9)

for a scalar mapping ψ, called characteristic generator, which is defined as

ψ(v) =

∫ ∞

0

E
[
exp

(
i
√
vrζ1

)]
2

π
m
2

Γ
(
m
2

)rm−1θ
(
r2
)
dr,

where ζ ∈ R
m has uniform distribution on the Euclidean sphere S

m−1 = {z ∈ R
m : ‖z‖2 =

1} and ζ1 denotes its first component. The expression (2.9) follows directly from the defini-

tion of a characteristic function considering a change of variables and, as a consequence of

[33, Theorem 2.1], L−1(ξ− μ) follows a spherical distribution, where L denotes the matrix

arising from the Choleski decomposition of Σ = LLT . From [33, Corollary to Theorem

2.2], L−1(ξ − μ) admits the representation

L−1(ξ − μ) = Rζ, (2.10)

where R is a one-dimensional random variable with support on R+ (corresponds to the

smallest closed subset of R+ such that its probability distribution, according to R, is 1),

independent of ζ. Now, from (2.10) it follows that ξ admits the representation

ξ = μ+RLζ. (2.11)

Without loss of generality, we will assume that μ = 0 and Σ is a correlation matrix.

Indeed, define the random variable ξ̂ := D(ξ−μ), where D is an m×m diagonal matrix with
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elements Dii = Σ
−1/2
ii . We may have that ξ̂ ∼ E(0, R, θ), where R is the correlation matrix

associated with Σ. By defining the mapping ĝ : Rn×R
m → R as ĝ(x, z) := g(x,D−1z+μ),

where ĝ has the same properties of g, the following identity holds

ϕ(x) = P

[
ĝ(x, ξ̂) ≤ 0

]
= P

[
ĝ
(
x,D(ξ − μ)

) ≤ 0
]

= P [g(x,D−1D(ξ − μ) + μ) ≤ 0] = P [g(x, ξ) ≤ 0] .

The advantage of representation (2.11) (with μ = 0) is that for a given Lebesgue

measurable set M ⊆ R
m its probability may be represented as

P [ξ ∈ M ] =

∫
v∈Sm−1

μR({r ≥ 0 : rLv ∩M �= ∅})dμζ , (2.12)

where μR and μζ are the measures associated with R and ζ, respectively. The set M can

be assumed as the set-valued application M(x) of Proposition 2.15 or the inequality system

g, as in Proposition 2.16.

Assuming the maximum function gm : Rn × R
m → R over its components as

gm(x, z) = max
j=1,...,k

gj(x, z),

which preserves the convexity in the second argument (but not differentiability), the general

probability function ϕ = P [g(x, ξ) ≤ 0] can be written, by (2.12), as

ϕ(x) =

∫
v∈Sm−1

μR({r ≥ 0 : gm(x, rLv) ≤ 0})dμζ =

∫
v∈Sm−1

e(x, v)dμζ , (2.13)

where

e(x, v) = μR({r ≥ 0 : gm(x, rLv) ≤ 0}), ∀x ∈ R
n, ∀v ∈ S

m−1. (2.14)

In the following we will consider points x for which gm(x, z) < 0, that means 0 is a

Slater point of the inequality system g(x, z) ≤ 0 in z. This assumption with the convexity
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of gm imply that for each x ∈ R
n and each v ∈ S

m−1, (2.14) can be simplified as

e(x, v) = μR([0, r∗]),

where r∗ = ∞ in the case that gm(x, rLv) < 0 for all r > 0 or r∗ is the unique solution of

gm(x, rLv) = 0 in r > 0. Since these two cases are essential when dealing with possibly

unbounded sets, we define the following set-valued mappings Fj, Ij, F, I : Rn ⇒ S
m−1, for

j = 1, . . . , k :

F (x) :=
{
v ∈ S

m−1 | ∃r > 0 : gm(x, rLv) = 0
}

I(x) :=
{
v ∈ S

m−1 | ∀r > 0 : gm(x, rLv) < 0
}

Fj(x) :=
{
v ∈ S

m−1 | ∃r > 0 : gj(x, rLv) = 0
}

Ij(x) :=
{
v ∈ S

m−1 | ∀r > 0 : gj(x, rLv) < 0
}
.

We now address some elementary properties and then the differentiability results of ϕ

by following the ideas presented in [93, 99], for the Gaussian case, and [94, Sections 2.4

and 3] for general distributions, which references to [99, 100].

Lemma 2.29. [100, Lem 2.1] Let x ∈ R
n be such that gm(x, 0) < 0. Then,

1. Fj(x) ∪ Ij(x) = F (x) ∪ I(x) = S
m−1 for all j = 1, . . . , k.

2. For j ∈ {1, . . . , k} and v ∈ Fj(x) let r > 0 be such that gj(x, rLv) = 0. Then,

〈∇zgj(x, rLv), Lv〉 ≥ −gj(x, 0)

r
.

3. F (x) = ∪k
j=1Fj(x), I(x) = ∩k

j=1Ij(x).

4. e(x, v) = 1 if v ∈ I(x) and e(x, v) < 1 if v ∈ F (x).

Lemma 2.30. [99, Lem. 3.2] Let j = 1, . . . , k be arbitrary and let (x, v) be such that

gj(x, 0) < 0 and v ∈ Fj(x). Then, there exist neighbourhoods Uj of x and Vj of v as well

as a continuously differentiable function ρx,vj : Uj × Vj → R+ with the following properties:
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1. For all (x′, v′, r′) ∈ Uj × Vj ×R+ the equivalence gj (x
′, r′Lv′) = 0 ⇔ r′ = ρx,vj (x′, v′)

holds true.

2. For all (x′, v′) ∈ Uj × Vj one has the gradient formula

∇xρ
x,v
j (x′, v′) = − 1〈∇zgj

(
x′, ρx,vj (x′, v′)Lv′

)
, Lv′

〉∇xgj
(
x′, ρx,vj (x′, v′)Lv′

)
.

Lemma 2.31. [100, Lem 3.1] Let x ∈ R
n be such that gm(x, 0) < 0 and let v ∈ F (x).

Then, introducing the index set Jx,v
F := {j ∈ {1, . . . , k} | v ∈ Fj(x)}, the functions ρx,vj from

Lemma 2.30 are well-defined for j ∈ Jx,v
F on the neighbourhood Ũ× Ṽ of (x, v), where, with

Uj, Vj from Lemma 2.30,

Ũ := ∩j∈JFUj, Ṽ := ∩j∈JFVj.

Moreover, there exist neighbourhoods U ⊆ Ũ of x and V ⊆ Ṽ of v with the following

properties:

1. For all (x′, v′, r′) ∈ U × V × R+ the equivalence gm (x′, r′Lv′) = 0 ⇔ r′ = ρx,v (x′, v′)

holds true, where ρx,v : Ũ × Ṽ → R+ is defined as

ρx,v (x′, v′) := min
j∈Jx,v

F

ρx,vj (x′, v′) ∀ (x′, v′) ∈ Ũ × Ṽ .

2. For all (x′, v′) ∈ U × V , the partial Clarke-sub-differential of ρx,v (w.r.t. x) is given

by

∂c
xρ

x,v (x′, v′) = conv
{∇xρ

x,v
j (x′, v′) : j ∈ J x,v (x′, v′)

}
.

where conv(A) stands for the convex hull of a set A and J x,v (x′, v′) :={
j ∈ Jx,v

F | ρx,vj (x′, v′) = ρx,v (x′, v′)
}
.

A difficulty that we must pay attention is when the set M(x) is unbounded at a target

point x̄. Such condition may lead a non-Lipschitzian behaviour of ϕ [92, Example 2.3]. To

handle unboundedness we can assume additional conditions to control the growth of ∇xg
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for large values of z. Now we define the θR-growth condition that makes a relation with

the underlying random vector ξ through its radial component R.

Definition 2.32. [92, Def. 2.1] Let θR : R+ → R+ be an increasing mapping such that

for any δ > 0 the following condition holds:

lim
r→∞

fR(r)rθR(δr) = 0,

where fR is the density of R. Let h : Rn × R
m → R be a differentiable function. We say

that h satisfies the θR-growth condition at x̄ if for some δ1, C > 0 and neighbourhood U of

x̄ it holds that

‖∇xh(x, z)‖ ≤ δ1θR(‖z‖),

for all x ∈ U and z such that ‖z‖ ≥ C

Now we are able to provide a differentiability result for the probability function ϕ:

Theorem 2.33. [94, Thm. 1] Assume that:

- The mapping g is continuously differentiable and convex in the second argument

- The random vector ξ is elliptically symmetrically distributed with positive definite

covariance-like matrix Σ and continuous generator.

Let the following conditions be satisfied at some fixed x̄ ∈ R
n :

1. There exists ε > 0, such that gj(x̄, 0) < −ε, for j = 1, . . . , k

2. gj satisfies the θR-growth condition at x̄ (Definition 2.32) for all j = 1, . . . , k.

Then, ϕ given by x → ϕ(x) := P [g(x, ξ) ≤ 0] is locally Lipschitz continuous on a neigh-

bourhood U of x̄ and it holds that

∂cϕ(x) ⊆
∫

v∈Dom(ρ(x,.))

conv

{
− fR

(
ρ(x, v)

)〈∇zgj
(
x, ρ(x, v)Lv

)
, Lv

〉∇xgj
(
x, ρ(x, v)Lv

) | j ∈ Ĵ (x, v)

}
dμζ(v)

(2.15)
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for all x ∈ U . Here, for any v ∈ Dom
(
ρ(x, .)

)
,

Ĵ (x, v) :=
{
j ∈ {1, . . . , k} | gj

(
x, ρ(x, v)Lv

)
= 0
}

refers to the active index set.

The integral in (2.15) is to be understood as the set of integrals over all measurable

selections of the set valued integrand [94]. As we can see, Theorem 2.33 only achieve

a statement on the locally Lipschitzian nature of the probability function and an outer

estimate of the subdiffrential, but still provides a good path to establish the continuous

differentiability of ϕ. To achieve such condition we will need a constraint qualification for

g. For any x ∈ R
n and z ∈ R

m, we denote by

I(x, z) := {j ∈ {1, . . . , k} | gj(x, z) = 0}

the active index set of g at (x, z). We say that the inequality system g(x, z) ≤ 0 satisfies

the Rank-2-Constraint Qualification (R2CQ) at x ∈ R
n if

rank {∇zgj(x, z),∇zgi(x, z)} = 2 ∀i, j ∈ I(x, z), i �= j, ∀z ∈ R
m : g(x, z) ≤ 0. (2.16)

Under this constraint qualification condition we can finally provide the differentiability

of ϕ.

Corollary 2.34. [94, Cor. 1] In addition to the assumptions of Theorem 2.3, suppose that

(2.16) is satisfied at x̄. Then, ϕ is Fréchet differentiable at x̄ and the gradient formula

∇ϕ(x̄) = −
∫

v∈D om(ρ(x̄,.)),#Ĵ (x̄,v)=1

fR
(
ρ(x̄, v)

)〈∇zgj(v)
(
x̄, ρ(x̄, v)Lv

)
, Lv

〉∇xgj(v)
(
x̄, ρ(x̄, v)Lv

)
dμζ(v)

(2.17)

holds true. Here j(v) is the unique index j ∈ {1, . . . , k} satisfying gj
(
x̄, ρ(x̄, v)Lv

)
= 0. If

(2.16) is satisfied locally around x̄, then, ϕ is continuously differentiable on an appropriate

neighbourhood of x̄.
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Considering a spherical-radial decomposition of the non-degenerate Gaussian random

vector ξ, [102, Thm. 3] proves that ϕ(x) = P [g(x, ξ) ≤ 0] is twice continuously differen-

tiable on a neighbourhood U of x̄ (see [102, Sec. 4] for examples of chi-squared, lognormal

and Student random vectors). The function g is assumed to be twice continuously differen-

tiable, convex with respect to the second argument and it satisfies the first and second order

exponential growth conditions [102, Assumption 1] on the Hessian ∇2g(x) at x̄. Combining

this result and the compactness of the feasible set X ⊂ R
n (see Chapter 1), we have that

∇2ϕ(x) is bounded by the following standard result on analysis.

Theorem 2.35. Let K be a nonempty subset of Rn, where n ≥ 1. If K is compact, then

every continuous real-valued function defined on K is bounded.

Consequently, the next result ensures that ∇ϕ(x) is Lipschitz continuous in X.

Lemma 2.36. [64, Lem. 1.2.2] The function ϕ : X ⊂ R
n → R is twice continuously

differentiable in X and satisfies ‖∇ϕ(x) − ∇ϕ(y)‖ ≤ L‖x − y‖, for a constant L > 0, if

and only if

‖∇2ϕ(x)‖ ≤ L, ∀x ∈ R
n. (2.18)

In other words, we have that every probability function that is of class C2 with bounded

Hessian (2.18) has Lipschitz continuous gradient.

2.3 Copulæ

We now focus on the particular case of distribution functions called copulæ, whose

domain is the m-dimensional unit box I
m := [0, 1]m. Multivariate distribution functions

contain two types of information: the description of the marginal behaviour and the de-

pendence structure. The last one is where copulæ take part, they allow us to represent the

dependencies between multivariate distributions just on the basis of its one-dimensional

marginals. In other words, we can construct any multivariate distribution function by

separately specifying the marginal distributions and the copula.
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In this section we will present some definitions, properties, examples, the classical

Sklar’s theorem, which states the existence of a copula associated to the distribution func-

tion, and a classification of copulæ in families, according to some characteristics.

2.3.1 Definition and properties

Definition 2.37. [29, Def. 1.3.1] For every m ≥ 2, an m-dimensional copula (an m-

copula) is an m-dimensional distribution function concentrated on I
m whose univariate

marginals are uniformly distributed on I. The set of m-copulæ is denoted by Cm.

An immediate consequence from Theorem 2.8 is: to each copula C there exists a ran-

dom vector U = (U1, . . . , Um) on a probability space (Ω,F ,P) such that C is the joint

distribution function of U. Such a probabilistic characterization allows the introduction of

the following three fundamental examples of copulæ, where we illustrate their graph and

the t-level set (defined below) in the Figures 2.4, 2.5 and 2.6.

Definition 2.38. [29, Def. 1.8.2] Let C ∈ Cm and let t ∈ I. The t-level set is the set of

all points u ∈ I
m such that C(u) = t. It is defined by Lt

C = {u ∈ I
m : C(u) = t}.

Notice that, for every t ∈ I, all the points of type (t, 1, . . . , 1), (1, t, 1, . . . , 1), . . . ,

(1, 1, . . . , 1, t) belong to Lt
C because the uniform distributions of the marginals.

Example 2.39. [29, e.g. 1.3.3] (The copula Mm) Let U be a random variable defined on

the probability space (Ω,F ,P). Suppose that U is uniformly distributed on I. Consider the

random vector U = (U, . . . , U). Then, for every u ∈ I
m,

P [U ≤ u] = P [U ≤ min{u1. . . . , um}] = min{u1, . . . , um}.

Thus the distribution function given, for every u ∈ I
m, by

Mm(u1, . . . , um) := min{u1, . . . , um}
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is a copula, which will be called the comonotonicity copula. The graph and the t-level set

are represented in Figure 2.4 for m = 2.

Figure 2.4: 3-d graph (left) and the t-level set (right) of the comonotonicity copula for
m = 2.

Example 2.40. [29, e.g. 1.3.4] (The copula Πm) Let U1, . . . , Um be independent random

variables defined on the probability space (Ω,F ,P). Suppose that each Ui is uniformly

distributed on I. Consider the random vector U = (U1, . . . , Um). Then, for every u ∈ I
m,

P [U ≤ u] = P [U1 ≤ u1] · · ·P [Um ≤ um] =
m∏
j=1

uj.

Thus the distribution function given, for every u ∈ I
m, by

Πm(u1, . . . , um) :=
m∏
j=1

uj

is a copula, which will be called independence copula. The graph and the t-level set are

represented in Figure 2.5 for m = 2.

Example 2.41. [29, e.g. 1.3.5] (The copula W2) Let U be a random variable defined on

the probability space (Ω,F ,P). Suppose that U is uniformly distributed on I. Consider the
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Figure 2.5: 3-d graph (left) and the t-level set (right) of the independence copula for m = 2.

random vector U = (U, 1− U). Then, for every u ∈ I
2,

P [U ≤ u] = P [U ≤ u1, 1− U ≤ u2] = max{0, u1 + u2 − 1}.

Thus the distribution function given, for every u ∈ I
2, by

W2(u1, u2) := max{0, u1 + u2 − 1}

is a copula, which will be called the countermonotonicity copula. The graph and the t-level

set are represented in Figure 2.6 for m = 2.

Now we introduce the standard partial order among real-valued functions in the space

of copulæ, which gives us a result that provides upper and lower bounds in Cm with respect

to the given order.

Definition 2.42. [29, Def. 1.7.1] Let C,C ′ ∈ Cm. C is less than C ′ in the pointwise order,

and one writes C ≤ C ′, if, and only if, C(u) ≤ C ′(u) for every u ∈ I
m.
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Figure 2.6: 3-d graph (left) and the t-level set (right) of the countermonotonicity copula
for m = 2.

To the next result, consider the function Wm : Im → I defined by

Wm(u) := max

{
0,

m∑
j=1

uj − (m− 1)

}
.

Theorem 2.43. [29, Thm. 1.7.3] For every m-copula C and for every point u =

(u1, . . . , um) ∈ I
m, one has

Wm(u) ≤ C(u) ≤ Mm(u), (2.19)

where Mm is defined in Example 2.39.

Proof. Let the copula C be the distribution function of a random vector U that is defined

on the probability space (Ω,F ,P). We will prove each side of the inequality (2.19).

• C(u) ≤ Mm(u)

For every index j ∈ {1, . . . ,m} and for every u ∈ I
m, one has

m⋂
k=1

{Uk ≤ uk} ⊆ {Uj ≤ uj}
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which implies that

C(u) = P

[
m⋂
k=1

{Uk ≤ uk}
]
≤ min

j∈{1,...,m}
P [Uj ≤ uj] = Mm(u).

• C(u) ≥ Wm(u)

Analogously, one has

C(u) = P

[
m⋂
j=1

{Uj ≤ uj}
]
= 1− P

[
m⋃
j=1

{Uj > uj}
]

≥ 1−
m∑
j=1

P [Uj > uj] = 1−
m∑
j=1

(1− uj) =
m∑
j=1

uj − (m− 1).

Since C takes positive values, it follows that C(u) ≥ Wm(u).

The functions Wm and Mm are called the lower and upper Hoeffding-Fréchet bounds,

respectively. A family of copulæ that includes Wm, Πm and Mm is said to be comprehensive.

Besides the probabilistic interpretation of copulæ, they can be characterized in terms

of the analytical properties of the distribution functions, as a consequence of Theorem 2.8.

Theorem 2.44. [29, Thm. 1.4.1] A function C : [0, 1]m → [0, 1] is called a copula if the

following conditions hold:

(a) C(u1, . . . , um) = 0 if uj = 0 for at least one index j ∈ {1, . . . ,m};

(b) When all the arguments of C are equal to 1, except possibly for the j-th one, then

C(1, . . . , 1, uj, 1, . . . , 1) = uj;

(c) C is quasi-monotone on [0, 1]m.
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Properties (a) and (b) together are called the boundary conditions of a m-copula. Property

(c) means that the C-volume of any box in [0, 1]m is nonnegative (a property satisfied by

probability functions) and it is also found in the literature as m-increasing (see Theorem

2.8 (b)). This can be interpreted in such a way that the copula C is increasing in each

variable, i.e., for every j ∈ {1, . . . ,m} and for all u1, . . . , uj−1, uj+1, . . . , um in I, t →
C(u1, . . . , uj−1, uj(t), uj+1, . . . , um) is increasing.

From the above definitions and results, a basic way to prove that a function C : Im → I

is a copula is to verify its definition, i.e., finding a suitable probabilistic model whose

distribution function is concentrated on I
m and has uniform marginals. A second way

consists in proving that the three properties of Theorem 2.44 are satisfied. However, this

latter strategy is usually complex to demonstrate in high dimensions. In order to simplify

the calculations of the m-increasing property, we define the F -volume of a function F ,

which will be useful to prove the next results.

Definition 2.45. [29, Def. 1.2.10] Let A be a rectangle in R̄
m, where R̄ stands for the

extended real line [−∞,+∞]. For a function F : A → R, the F -volume VF of (a, b] ⊆ A is

defined by

VF

(
(a, b]

)
:=

∑
v∈ver

(
(a,b]
) sign(v)F (v),

where

sign(v) =

⎧⎨
⎩ 1, if vj = aj for an even number of indices,

−1, if vj = aj for an odd number of indices,

and ver
(
(a, b]

)
= {a1, b1} × · · · × {am, bm} is the set of the vertices of (a, b].

Definition 2.46. [29, Def. 1.2.11] Let A be a rectangle in R̄
d. A function H : R̄d → R is

m-increasing if the H-volume VH of every rectangle (a, b] is positive, i.e., VH

(
(a, b]

) ≥ 0.

By definition 2.46, the function Wm is not a copula for m ≥ 3. In [63, Exc. 2.36]

is possible see that for the rectangle determined by the m-dimensional vectors 1/2 =

[1/2, . . . , 1/2] and 1 = [1, . . . , 1], the volume VWm

(
[1/2,1]

)
= 1 − (m/2) is negative if
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m ≥ 3, and then Theorem 2.44 (c) does not hold. On the other hand, for each u ∈ I
m

there exists Cu ∈ Cm, which depends on u, such that Cu(u) = Wm(u) [29, Thm. 4.1.7].

Example 2.47. If the domain of F is R
2, then F is also said to be supermodular. In such

a case, VF

(
(a, b]

)
, where a = {a1, a2} and b = {b1, b2}, is written explicitly as

VF

(
(a, b]

)
=

∑
v∈ver

(
(a,b]
) sign(v)F (v)

= sign((a1, a2))F (a1, a2) + sign((a1, b2))F (a1, b2)+

+sign((b1, a2))F (b1, a2) + sign((b1, b2))F (b1, b2)

= F (a1, a2)− F (a1, b2) + F (b1, a2)− F (b1, b2).

In the following, if ξ is a random vector with distribution function F , then VF

(
[a, b]

)
=

P
[
ξ ∈ [a, b]

]
. Obviously, if F is continuous, VF

(
(a, b]

)
= P

[
ξ ∈ [a, b]

]
for all a, b ∈ R

m with

a ≤ b. Next lemma provides some properties of the F -volume VF of a function F , which

will be important to prove the convexity of the set of copulæ Cm.

Lemma 2.48. [29, Lem. 1.4.4] Let F,G : Im → I be two functions. Let (a, b] be a m-box

in I
m. Then:

(a) VF+G

(
(a, b]

)
= VF

(
(a, b]

)
+ VG

(
(a, b]

)
;

(b) VαF

(
(a, b]

)
= αVF

(
(a, b]

)
for every α > 0;

(c) if (a, b] = ∪j∈JBj, where J has finite cardinality and all Bj’s are left open m-boxes

whose interiors are disjoint, then

VF

(
(a, b]

)
=
∑
j∈J

VF (Bj).

Theorem 2.49. [29, Thm. 1.4.5] The set Cm is a convex set, i.e., for all α ∈ I and C0

and C1 in Cm, C = αC0 + (1− α)C1 is in Cm.
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Proof. Let C0, C1 ∈ Cm, α ∈ I and let C = αC0 + (1 − α)C1 be a convex combination of

C0 and C1. Its easily proved that the univariate marginals of C are uniformly distributed

on I. Moreover, for every rectangle (a, b] ⊆ R
m, using Lemma 2.48 yields

VC

(
(a, b]

)
= VαC0+(1−α)C1

(
(a, b]

)
= VαC0

(
(a, b]

)
+ V(1−α)C1

(
(a, b]

)
= αVC0

(
(a, b]

)
+ (1− α)VC1

(
(a, b]

)
,

which is the desired assertion.

Example 2.50. [29, e.g. 1.4.6] Consider the case m = 2 and let α and β be in I with

α + β ≤ 1. Then, in view of the convexity of C2, Cα,β : I2 → I defined by

CFre
α,β (u1, u2) := αM2(u1, u2) + (1− α− β)Π2(u1, u2) + βW2(u1, u2)

is a copula. As the parameters α and β vary in I subject to the restriction α + β ≤ 1, the

copula varies in a family of copulæ known as the Fréchet copulæ.

The next result gives us a Lipschitz condition of a m-copula.

Theorem 2.51. [29, Thm. 1.5.1] A m-copula C satisfies the following condition, for all

u, v ∈ I
m:

|C(u1, . . . , um)− C(v1, . . . , vm)| ≤
m∑
j=1

|uj − vj|. (2.20)

Proof. Let C be the distribution function of a random vector ξ defined (Ω,F ,P) and let

F1, . . . , Fm be its univariate marginals. Then, for every j ∈ {1, . . . ,m}, for tj < t′j and for

every (x1, . . . , xj−1, xj+1, . . . , xm) ∈ R
m−1,

C(x1, . . . , xj−1, t
′
j, xj+1, . . . , xm)− C(x1, . . . , xj−1, tj, xj+1, . . . , xm)

= P
[
ξ1 ≤ x1, . . . , ξj ≤ t′j, . . . , ξm ≤ xm

]− P [ξ1 ≤ x1, . . . , ξj ≤ tj, . . . , ξm ≤ xm]

= P
[
ξ1 ≤ x1, . . . , t < ξj ≤ t′j, . . . , ξm ≤ xm

]
= Fj(t

′)− Fj(t)

= t′ − t.
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Note that the last equality holds because the univariate marginals F1, . . . , Fm of C follow

a uniform distribution. By the triangular inequality, we have that

|C(u)− C(v)| ≤ |C(u)− C(v1, u2, . . . , um)|
+ |C(v1, u2, . . . , um)− C(v1, v2, u3, . . . , um)|
+ |C(v1, v2, u3 . . . , um)− C(v1, v2, v3, u4, . . . , um)|
+ · · ·+ |C(v1, . . . , vm−1, um)− C(v)|

≤
m∑
j=1

|Fj(uj)− Fj(vj)| =
m∑
j=1

|uj − vj|.

It is possible to show that there is no better possible constant of the Lipschitz condition

in (2.20) than 1. In other words, does not exist a constant α < 1 such that

|C(u1, . . . , um)− C(v1, . . . , vm)| ≤ α

m∑
j=1

|uj − vj| = α ‖ u− v ‖1 .

We refer to the inequality (2.20) as the Lipschitz condition with constant 1, or simply

the 1-Lipschitz condition. One can also say that every copula C ∈ Cm is 1-Lipschitz

continuous with respect to the �1(m)-norm. In particular, every m-copula C is uniformly

continuous on I
m. Now, analogously to Definition 2.10, we introduce a stronger version of

continuity in Cm.

Definition 2.52. [29, Def. 1.5.4]A copula C ∈ Cm is absolutely continuous if it can be

expressed in the form

C(u) =

∫
[0,u]

c(t) dt

for a suitable integrable function c : Im → R+.

As we have seen before, the function c is called the density of C. An obvious example

is the copula Πm, which is absolutely continuous with density c = 1. Since a copula has

uniform marginals, the density of an absolutely continuous copula can be characterized by
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means of the following property: for every t ∈ I and for every j ∈ {1, . . . ,m},
∫ 1

0

. . .

∫ 1

0

∫ t

0︸︷︷︸
j-th integral

∫ 1

0

. . .

∫ 1

0

c(u) dum . . . duj+1 duj duj−1 . . . du1 = t. (2.21)

Among all the definitions and properties over copulæ that we have seen, they also

have a special meaning when dealing with joint distribution functions, which is the key

point to work with copulæ. Every multivariate distribution function of a random vector

ξ contains two types of information: the description of the marginal behaviour, which

means the probabilistic knowledge of the single components of the random vector, and the

dependence structure.

Considering that we know the behaviour of the single components of a random vector

ξ in terms of their univariate distribution functions, by means of the the next result a

suitable multivariate model can be constructed.

Theorem 2.53. [29, Thm. 2.1.1] Let F1, . . . , Fm be univariate distribution functions and

let C be any m-copula. Then the function F : R
m → I defined, for every point x =

(x1, . . . , xm) ∈ R
m, by

F (x1, . . . , xm) = C
(
F1(x1), . . . , Fm(xm)

)
, (2.22)

is an m-dimensional distribution function with margins given by F1, . . . , Fm.

This result suggests us an approach to build a multivariate distribution. Defining

the marginal distributions, where we can give attention to univariate distributions with

different natures, a copula may be chosen in such a way that the marginals are linked to a

common model. Since some families of multivariate distribution require that the marginals

are in the same family, this recipe seems quite promising.

Now, for our purposes, we present the result of utmost importance, which is the Sklar’s

theorem. This theorem allows us to connect the probability law of any multivariate random

vector to its marginal distributions through a copula.
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Theorem 2.54. [29, Thm. 2.2.1](Sklar’s theorem) Let ξ ∈ R
m be a random vector defined

in the probability space (Ω,F ,P),

F (y) := P [ξ1 ≤ y1, . . . , ξm ≤ ym]

be the joint distribution function of ξ and Fj(yj) = P [ξj ≤ yj], j = 1, . . . ,m, be its

marginals. Then, there exists a copula Cξ such that, for every point y = (y1, . . . , ym) ∈ R
m,

F (y) = Cξ

(
F1(y1), . . . , Fm(ym)

)
. (2.23)

If the marginals F1, . . . , Fm are continuous, then the copula Cξ is uniquely defined.

In essence, Sklar’s theorem states that a multivariate distribution function may be

expressed as a composition of a copula and its univariate marginals. The existence of a

unique copula of a m-dimensional distribution function whose marginals F1, . . . , Fm are

continuous is ensured in the following Lemma.

Lemma 2.55. [29, Lem. 2.2.3] Under the assumptions of Theorem 2.54, if F1, . . . , Fm are

continuous, then there exists a unique copula C associated with ξ that is the distribution

function of the random vector (F1 ◦ ξ1, . . . , Fm ◦ ξm). It is determined, for every u ∈ I
m,

via the formula

C(u) = F
(
F

(−1)
1 (u1) , . . . , F

(−1)
m (um)

)
, (2.24)

where, for j ∈ {1, . . . ,m}, F (−1)
j is the quasi-inverse of Fj.

Considering some particular properties of the copulæ, we will classify them into families.

2.3.2 Families of copulæ

The objective of this section is to present some of the several families of copulæ that

have appeared in the literature with interesting theoretical properties and applications.

We begin introducing the Archimedean family, which is used in the numerical experiments

in Chapter 4, and then follows the Fréchet, EFGM and Elliptical families of copulæ.
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Archimedean copulæ

Archimedean copulæ are parametrized via a one-dimensional function, which is defined

below.

Definition 2.56. Given a real parameter θ, a function ψθ : [0, 1] → [0,∞) is said to

be a (copula) generator if it is convex, continuous, strictly decreasing on [0, t0], where

t0 = inf{t > 0 : ψθ(t) = 0}, and ψθ(1) = 0.

The inverse of the generator ψθ is written as ψ−1
θ , and its pseudo-inverse ψ

[−1]
θ is defined

by

ψ
[−1]
θ (t) :=

⎧⎨
⎩ ψ−1

θ (t) if 0 ≤ t ≤ ψθ(0)

0 if ψθ(0) ≤ t ≤ +∞.

The following definition introduces m-dimensional Archimedean copulæ for m ≥ 2.

Definition 2.57. A copula C is called Archimedean if it has the representation

C(u1, . . . , um) = ψ
[−1]
θ

(
ψθ(u1) + . . .+ ψθ(um)

)
, (2.25)

where ψθ : [0, 1] → [0,∞) is a generator function.

Remark 2.58. In the literature we can find another equivalent definition for the generator

and the Archimedean copula. For example, in [29], ψ
[−1]
θ and ψθ are replaced by ϕθ and

ϕ
(−1)
θ , respectively.

With reference to the generator, the copula (2.25) is denoted by Cψ. When ψ is strictly

decreasing in the whole interval [0, 1], its pseudo-inverse ψ[−1] equals its inverse, ψ[−1] =

ψ−1, and the copula Cψ is said to be strict.

Example 2.59. The copula Π2 is Archimedean: take ψ(t) = − log t; since lim
t→0

ψ(t) = +∞,

ψ(t) > 0 for every t ∈ [0, 1) and ψ(1) = 0, ψ is strict; then ψ(t)−1 = e−t and

ψ−1
(
ψ(u) + ψ(v)

)
= exp

(− (− log u− log v)
)
= uv = Π2(u, v).
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We saw that an Archimedean copula depends on a generator. An important task is

which properties that a generator has to enjoy in order that the function Cψ defined by

(2.25) is a m-copula. This question will be addressed and answered in Theorem 2.62 below

via the following preliminary definition.

Definition 2.60. [29, Def. 6.5.5] A function f : (a, b) → R is called m-monotone in (a, b),

where −∞ ≤ a < b ≤ +∞ and m ≥ 2 if

• it is differentiable up to order m− 2;

• for every x ∈ (a, b), its derivatives satisfy

(−1)kf (k)(x) ≥ 0

for k = 0, . . . ,m− 2;

• (−1)m−2fm−2 is decreasing and convex in (a, b).

Moreover, if f has derivatives of every order in (a, b) and if

(−1)kf (k)(x) ≥ 0,

for every x ∈ (a, b) and for every k ∈ Z+,f is said to be completely monotone.

Definition 2.61. [29, Def. 6.5.6] Let I ⊆ R be an interval. A function f : I → R is said

to be m-monotone (respectively, completely monotone) on I, with m ∈ N, if it is continuous

on I and if its restriction to the interior I◦ of I is m-monotone (respectively, completely

monotone).

Theorem 2.62. [29, Thm. 6.5.7] Let ψ : [0,+∞] → I be a generator. Then the following

statements are equivalent:

(a) ψ is m-monotone on [0,+∞);

(b) the function Cψ : Im → I defined by (2.25) is a m-copula.
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Now we list some families of Archimedean copulæ, showing their expression and its

Archimedean generator [29, e.g. 6.5.16 - 6.5.19] .

i. Gumbel-Hougaard copulæ:

The Archimedean generator, and its inverse, of this family are given by

ψθ(t) =
(− log(t)

)θ and ψ
(−1)
θ (t) = exp(−t1/θ), θ ∈ [1,∞). (2.26)

The standard expression for members of this family of m-copulæ is

CGH
θ (u) = exp

⎛
⎝−

(
m∑
i=1

(− log(ui))
θ

)1/θ
⎞
⎠ , (2.27)

where θ ≥ 1. For θ = 1 one obtains the independence copula as a special case, and

the limit of CGH
θ for θ → +∞ is the comonotonicity copula Mm. Each member of

this class is absolutely continuous.

The expression (2.27) is obtained by applying the generator (2.26) in (2.25):

CGH
θ (u) = ψ

(−1)
θ

(
ψθ(u1) + . . .+ ψθ(um)

)
= ψθ

(
(− log(u1))

θ + . . .+ (− log(um))
θ
)

= exp
(
− ((− log(u1))

θ + . . .+ (− log(um))
θ
)1/θ)

.

ii. Mardia-Takashi-Clayton copulæ:

The Archimedean generator, and its inverse, of this family is given by

ψθ(t) =
1

θ
(t−θ − 1) and ψ

(−1)
θ (t) = (max{1 + θt, 0})−1/θ, θ ∈ [−1,∞)\{0}.

The standard expression for members of this family of m-copulæ is

CMTC
θ (u) = max

⎧⎨
⎩
(

m∑
i=1

u−θ
i − (m− 1)

)−1/θ

, 0

⎫⎬
⎭ ,
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where θ ≥ −1/(m− 1), θ �= 0. The limiting case θ → 0 corresponds to the indepen-

dence copula.

iii. Frank copulæ:

The Archimedean generator, and its inverse, of this family is given by

ψθ(t) = − log

(
e−θt − 1

e−θ − 1

)
and ψ

(−1)
θ (t) =

1

θ
log
(
1− (1− e−θ)e−t

)
, θ ∈ R\{0}.

The standard expression for members of this Frank family of m-copulæ is

CFrank
θ (u) = −1

θ
log

(
1 +

∏m
i=1(e

−θui − 1)

(e−θ − 1)m−1

)
,

where θ > 0. The limiting case θ = 0 corresponds to Πm. For m = 2, the parameter

θ can be extended also to the case θ < 0.

iv. Ali-Mikhail-Haq copulæ:

The Archimedean generator, and its inverse, of this family is given by

ψθ(t) = log

(
1− θ

t
+ θ

)
and ψ

(−1)
θ (t) =

1− θ

et − θ
, θ ∈ [−1, 1).

The standard expression for members of the Ali-Mikhail-Haq (AMH) family of 2-

copulæ is

CAMH
θ (u, v) = − uv

1− θ(1− u)(1− v)
,

where θ ∈ [−1, 1]. For θ = 0 one has C0 = Π2.

v. Joe’s copulæ:

The Archimedean generator, and its inverse, of this family is given by

ψθ(t) = − log
(
1− (1− t)θ

)
and ψ

(−1)
θ (t) = 1− (1− e−t)1/θ, θ ≥ 1.
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The standard expression for members of the Joe’s family of m-copulæ is

CJoe
θ (u) = 1−

(
1−

m∏
i=1

(
1− (1− ui)

θ
))1/θ

,

where θ ≥ 1.

Fréchet copulæ

This family of copulæ came from studies about the upper and lower bounds in the class

of distribution functions with fixed margins, as given in (2.19). Then, a convex combination

of these functions in the Fréchet class creates a parametric family. This two-parameter

family may be represented in the form

CFre
α,β (u1, u2) := αM2(u1, u2) + (1− α− β)Π2(u1, u2) + βW2(u1, u2),

where α and β are in I with α + β ≤ 1.

Since the Fréchet lower bound is not a copula for m ≥ 3, as we have already men-

tioned, this family cannot be fully extended to the higher dimensional case. A possible

m-dimensional extension of its subclass describing positive dependence is given by, for

every α ∈ I,

CFre
α (u) := αMm(u) + (1− α)Πm(u). (2.28)

EFGM copulæ

A bivatirate Eyraud-Farlie-Gumbel-Morgenstern (EFGM) copula has the following ex-

pression,

CEFGM
α (u1, u2) := u1u2(1 + α(1− u1)(1− u2)),

with α ∈ [−1, 1]. Now, consider the higher dimensional extension to m ≥ 3. Let I be the

class of all subsets of {1, . . . ,m} having at least 2 elements, so that I contains 2m −m− 1
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elements. To each S ∈ I, we associate a real number αS, with the convention that, when

S = {i1, . . . , ik}, αS = αi1,...,ik . An EFGM m-copula can be defined in the following form:

CEFGM
α (u) =

m∏
i=1

ui

(
1 +

∑
S∈I

αS

∏
j∈S

(1− uj)
)
, (2.29)

for suitable values of the αS’s.

Elliptical copulæ

This section is also based on the references [11, 66, 101]. The elliptical copulæ are ob-

tained by applying the inverse transformation (2.24) to multivariate elliptical distributions.

Definition 2.63. [29, Def. 6.7.1] An elliptical copula is any copula that can be obtained

from an elliptical distribution using the inversion method of equation (2.24).

Example 2.64. [29, e.g. 6.7.2] The Gaussian copula is the copula of an elliptical random

variable ξ that follows a Gaussian distribution, i.e.,

ξ
m
= AZ,

where A∈ R
m×k, Σ := AAT ∈ R

m×m is the covariance matrix, rank(Σ) = k � m and Z is

an m-dimensional random vector whose independent components have univariate standard

Gaussian law. We write ξ ∼ Nm(μ,Σ).

The bivariate Gaussian copula is given by

CGa
ρ (u, v) =

∫ Φ−1(u)

−∞
ds

∫ Φ−1(v)

−∞

1

2π
√
1− ρ2

exp

(
−s2 − 2ρst+ t2

2 (1− ρ2)

)
dt,

where ρ is in (−1, 1), and Φ−1 denotes the inverse of the standard Gaussian distribution

N(0, 1).

Example 2.65. [29, e.g. 6.7.3] The Student’s t-copula is the copula of an elliptical random
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vector ξ that follows a multivariate Student’s t-distribution, i.e.,

ξ
m
= μ+ Σ1/2

√
WZ,

where Z ∼ Nm(0, Im) is a Gaussian distribution, Σ := Σ1/2Σ1/2 is positive definite. More-

over, W and Z are independent, and W follows an inverse Gamma distribution with pa-

rameters (ν/2, ν/2).

The bivariate Student’s t-copula is given by

Ct
ρ,ν(u, v) = tρ,ν

(
t−1
ν (u), t−1

ν (v)
)
,

where ρ is in (−1, 1), and v > 1, while tρ,ν is the bivariate Student t-distribution with

zero mean, the correlation matrix having off-diagonal element ρ, and ν degrees of freedom,

while t−1
ν denotes the inverse of the standard t-distribution. The Student t-copula becomes

a Gaussian copula in the limit ν → ∞.
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Chapter 3

Trust-region algorithm with

copula-based models

In this chapter, which is the core of our publication [10], we present a derivative-free

trust-region algorithm to solve probability maximization problem (1.2). Our method builds

upon [15], but differs from the latter in the definition of the model and the iterates. While

[15] computes iterates as stationary points of quadratic constrained programs, our approach

defines iterates as approximate stationary points of nonlinear optimization problems arising

from approximating the difficult probability function with a simple copula-based model.

The definition of the model, the algorithm, the global convergence analysis and auxiliary

results ensuring some conditions and assumptions are presented in the sequence.

3.1 Copula-based model

This section discusses the construction of the copula-based model. It is separated in

two parts, in the first one we apply the Sklar’s theorem to the probability function ϕ in

(1.2), ensuring the existence of a copula that coincides with ϕ when it is composed with the

function g and the univariate marginals of ϕ. In the second one we define the model, which

is given by a linear combination of copulæ such that the coefficients of such combination

65
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are a solution of a simple least-squares quadratic problem.

3.1.1 Application of Sklar’s theorem

In the context of the optimization problem (1.2), Theorem 2.54 asserts that there exists

a copula Cξ : [0, 1]m → [0, 1] such that the objective function ϕ(x) = P [ξ ≤ g(x)] can be

represented as the composition of the mapping g : O → R
m, the marginals Fj : R → [0, 1],

j = 1, . . . ,m, and the copula Cξ:

ϕ(x) = Cξ

(
P [ξ1 ≤ g1(x)] , . . . ,P [ξm ≤ gm(x)]

)
= Cξ

(
F1

(
g1(x)

)
, . . . , Fm

(
gm(x)

))
.

(3.1)

Observe that this theorem is not constructive, it “only” ensures the existence of a copula

associated with the cumulative distribution function F . In most of the practical cases, a

copula providing the equality (2.23) is unknown. Estimating a suitable one is a non-trivial

task that has been receiving much attention in the last few years [29, 63]. Instead of finding

a single C ∈ Cm fitting ϕ, we consider a dictionary Dr with r ∈ N copulæ of class C1 and

Lipschitz continuous gradient to locally approximate ϕ:

Dr :=

⎧⎨
⎩Ci, i = 1, . . . , r

∣∣∣∣∣∣
Ci is a copula of class C1 with

Lipschitz continuous gradient

⎫⎬
⎭ ⊂ Cm. (3.2)

The composition, similar to (3.1), of a copula Ci ∈ Dr, the marginals Fj, j = 1, . . . ,m,

and the mapping g, will be denoted by CF
i , i.e.,

CF
i (x) := Ci

(
F1

(
g1(x)

)
, . . . , Fm

(
gm(x)

))
. (3.3)

The central idea in this work is to iteratively find a vector λk ∈ R
r such that the model∑r

i=1 λ
k
iC

F
i approximates ϕ locally. The term “locally” is related to a (trust) region around

a specific point, which we detail in the next section.
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3.1.2 The model

Let Dr be a dictionary defined as in (3.2) and {x0, . . . , xk} ⊂ X be the set of points

issued by the algorithm up to iteration k. The best candidate to solve (1.2) among these

points is denoted by stability center x̂k. Furthermore, at iteration k, we define Gk (not

necessarily in X) a set with finitely many points at which the function ϕ has been evaluated.

Our approach defines a copula-based model Mk : O → R of ϕ as

Mk(x) :=
r∑

i=1

λk
iC

F
i (x), (3.4a)

where CF
i is the composition given in (3.3) for each Ci ∈ Dr and the coefficients λk

i ,

i = 1, . . . , r, solve the quadratic programming problem

minimize
∑

xj∈Gk

(
r∑

i=1

λiC
F
i (x

j)− ϕ(xj)

)2

subject to
r∑

i=1

λiC
F
i (x̂

k) = ϕ(x̂k)

λ ∈ Λ.

(3.4b)

In this notation, Λ is either a large enough box in R
r or the simplex Λ ={

λ ∈ R
r
+ :

∑r
i=1 λi = 1

}
. In both cases the model Mk, given in (3.4), reflects the varia-

tional properties of the involved functions. For instance, Mk is continuously differentiable

with Lipschitz continuous gradient on X provided the marginal functions Fj share the

same property on gj(X), j = 1, . . . ,m.

More details on the possible choices for the set Gk will be given later on in Subsection

3.2.3. For now, we care to mention that Gk plays an important role in the convergence

analysis of our method. Customarily, Gk is constructed around x̂k to ensure that the model

Mk approximates ϕ well enough (in terms of hypothesis A3 below) in a neighborhood of

the stability center. This is a standard requirement in DFO methods, and here we use

a known procedure to construct/update Gk: in our numerical experiments, we employ

Algorithm 4.2 from [111]. As it will be detailed in Subsection 3.2.3, such procedure yields
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Gk with n + 1 well-chosen points, and ensures that the optimal value of (3.4b) is zero

provided Λ is a large enough box in R
r and the copula dictionary is sufficiently rich, i.e.,

the model Mk interpolates ϕ at the points in Gk. We also investigate a more economical

rule (in terms of function evaluation) that proves efficient in practice: at every iteration k,

we choose a small set Gk containing {x0, . . . , xk} and let Λ be the simplex in R
r. In this

case, the model in (3.4) is a convex combination of copulæ and thus a copula itself. We will

see in Subsection 3.2.3 that convergence analysis requires more stringent assumptions on

the dictionary Dr. Observe that if (3.4b) is infeasible, then the dictionary Dr is poor: the

correlations of the joint probability function can not be represented by the copulæ in Dr.

It is then necessary to enlarge the dictionary, either by including new families of copulæ or

by considering different parameters for Ci in Dr, when Ci is an Archimedean copula, for

example.

3.1.3 The algorithm

Our approach considers a zero-order oracle to compute ϕ at a given point, where no first-

order information (gradient) is required. The next iterate xk+1 is defined as an approximate

stationary point of the trust-region subproblem

max
x∈X

Mk(x) s.t. ‖x− x̂k‖ ≤ Δk, (3.5)

where Δk > 0 is the radius defining the trust region B(x̂k,Δk) := {x ∈ R
n : ‖x − x̂k‖ ≤

Δk}, and ‖ · ‖ is a given norm1. The more points of Gk are in X ∩ B(x̂k,Δk), the more

Mk can be trusted in this region. Since Mk is of class C1, small radii yield regions where

the model approximates well the objective function ϕ. Without additional assumptions,

(3.5) is a nonconvex optimization problem. Hence, solving it globally with optimality

guarantees is a difficult task. For our purpose, similar to [85], it is enough to compute xk+1

1We used the �∞-norm in our implementations.
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as an approximate stationary point satisfying the efficiency condition

Mk(xk+1)−Mk(x̂k) ≥ c1π
2
k min

{
π2
k

β
,Δk, 1

}
, (3.6)

where c1 > 0 and β ≥ 1 are constants independent of k, and πk is the stationarity measure

given by

πk =
∥∥∥ProjX(x̂k +∇Mk(x̂k)

)
− x̂k

∥∥∥ . (3.7)

In this notation, ‖ · ‖ denotes the �2-norm and ProjX stands for the orthogonal projection

onto X, which exists and is unique because X is a nonempty compact convex set. We

recall that x∗ ∈ X is stationary for the original problem (1.2) if

∥∥ProjX(x∗ +∇ϕ (x∗)
)− x∗∥∥ = 0,

which suggests us to use πk as a stopping test for the method: under appropriate assump-

tions (see A1-A3 in Section 3.2), ∇ϕ(x̂k) − ∇Mk(x̂k) = O(Δk) and, thus, πk is indeed a

stationary measure provided that Δk is small enough.

The efficiency condition (3.6) is inspired by the classical Cauchy step condition in [65,

Lem. 4.5] on trust-region algorithms for solving unconstrained problems, and in [19, Thm.

10.1] for the derivative-free case. Similar conditions also appear in different contexts in

[16], in the design of filter methods for nonlinear programming in [40, 67], and for bound-

constrained nonlinear optimization without derivatives in [87]. Condition (3.6) is attainable

and less demanding than finding an exact stationary point for (3.5). In the Appendix, we

detail how to adapt the algorithm proposed in [85] for computing xk+1 satisfying (3.6).

Observe that when Δk, πk > 0, condition (3.6) implies Mk(xk+1) − Mk(x̂k) > 0 and

the ratio γk between the actual and predicted increase

γk =
ϕ(xk+1)− ϕ(x̂k)

Mk(xk+1)−Mk(x̂k)
(3.8)

is well defined. As Mk(x̂k) = ϕ(x̂k) by the construction of the model in (3.4), if γk > 0
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then xk+1 is a better candidate than x̂k to solve (1.2). This suggests a strategy for updating

the stability center, as detailed in Algorithm 1.

Algorithm 1. Derivative-free trust-region algorithm with copula-based models
Input : x̂0 ∈ X, a dictionary Dr of copulæ as in (3.2) and parameters:

0 < α, 0 � η < η1 � η2, 0 < τ1 < 1 � τ2, 0 ≤ tol < Δ0 < Δmax

1. Set x0 = x̂0, G0 = {x0}
2. for k = 0, 1, 2, . . . do

3. if (3.4b) is feasible then
4. Solve problem (3.4b), let λk be one of its solutions and set

Mk(x) =
∑r

i=1 λ
k
iC

F
i (x)

5. else
6. Stop: the copulæ in the dictionary Dr can not approximate well ϕ
7. end if
8. Compute πk as in (3.7)
9. if πk ≤ tol and Δk ≤ tol then

10. Stop: return x̂k and ϕ(x̂k)
11. end if
12. if Δk ≤ απk then
13. Find an approximate solution xk+1 of (3.5) satisfying (3.6) and set γk by (3.8)
14. if γk > η then
15. x̂k+1 = xk+1

16. else
17. x̂k+1 = x̂k

18. end if
19. if γk > η1 then
20. if γk > η2 and ‖xk+1 − x̂k‖ = Δk then
21. Δk+1 = min{τ2Δk,Δmax}
22. else
23. Δk+1 = Δk

24. end if
25. else
26. Δk+1 = τ1Δk

27. end if
28. else
29. Δk+1 = τ1Δk, x̂k+1 = x̂k and xk+1 = x̂k

30. end if
31. Choose finitely many points to create a set Yk+1 ⊂ B(x̂k+1,Δk+1)
32. Set Gk+1 ⊂ Gk ∪ Yk+1 ∪ {xk+1} according to a given rule
33. end for
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Note that Algorithm 1 stops unsuccessfully when the copulæ in the dictionary Dr can

not approximate the objective function, i.e., when the constraints of the problem (3.4b)

are not satisfied. In this case, the quality of the dictionary needs to be improved. This

can be done by enlarging Dr either by considering different parameters for the considered

copulæ, or by adding new ones.

If Δk ≤ απk, then the algorithm follows the general lines of classical trust-region

methods that involve the following parameters: η to update the stability center and the

pair η1, η2 to update (increase or decrease) the trust-region by factors τ1 and τ2, respectively.

The choice of these parameters is largely discussed in the literature [16], and their values

are commonly set around 0, 0.2, 0.6, 0.5 and 2, respectively. These are the values we

used in our numerical experiments. When Δk > απk, the trust-region radius is decreased

and the stability center is kept as is. Regardless whether this inequality is verified, the

algorithm updates the set of points Gk, and thus the model, to ensure that a small value

of πk reflects on approximate stationarity of x̂k to the original problem. We will discuss in

Section 3.2.3 strategies for choosing points on line 31 and a rule for updating Gk so that a

key hypothesis (see Assumption A3 below) for the convergence analysis of Algorithm 1 is

satisfied.

3.2 Convergence analysis

We now rely on [15] to analyze Algorithm 1. Throughout this section we assume that

tol = 0, the algorithm generates infinite sequences {xk} ⊂ X, {λk} ⊂ Λ, and the following

hypotheses hold:

A1. The objective function ϕ is differentiable on O and its gradient ∇ϕ is Lipschitz

continuous with constant κϕ > 0 on X ⊂ O.

A2. The marginals Fj, constraint functions gj, j = 1, . . . ,m, and copulæ Ci ∈ Dr, i =

1, . . . , r, are of class C1 with Lipschitz continuous gradient on X.
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A3. There exists a constant c2 > 0 such that, for all k ∈ N and x ∈ B(x̂k,Δk),

|ϕ(x)−Mk(x)| ≤ c2Δ
2
k.

As commented in Chapter 1 and stated in Section 2.2.2, Assumptions A1 and A2 hold

by many probability distributions for PMPs, such as multivariate Gaussian distribution

(Lemmas 2.20 and 2.21 and Theorems 2.22 and 2.23), distributions satisfying some growth

conditions ([102, Thm. 3]), general distributions with fairly few assumptions (Theorem

2.17) and also all distributions and copulæ of class C2 on X, together with the assumptions

on g and X (Theorem 2.35 and Lemma 2.36). In particular, the families of Archimedean

copulæ described in Section 2.3.2 are of class C2 on a subset of X whose image is not so

close to zero. It is interesting to note that Algorithm 1 works naturally in this subset

since it maximizes the model Mk and, consequently, the copulæ in the dictionary. More

specifically, another way to ensure that Archimedean copulae satisfy A2 consists in using

a modeling trick as follows.

Remark. Recall that any joint probability distribution satisfies P[ξ ≤ g(x)] ≤ P[ξi ≤
gi(x)] = Fi(gi(x)), for all i = 1, . . . ,m and all x ∈ O. Let x̃ ∈ X be an arbitrary feasible

point producing a strictly positive probability, i.e. P[ξ ≤ g(x̃)] ≥ ε > 0. Hence, for

i = 1, . . . ,m, we have that Fi(gi(x̃)) ≥ ε, which gives gi(x̃) ≥ F−1
i (ε), the ε-quantile of the

uni-dimensional (marginal) distribution Fi. As any solution x̄ of the PMP must satisfies

gi(x̄) ≥ F−1
i (ε), replacing the feasible set X by X̃ := {x ∈ X : gi(x) ≥ F−1

i (ε), i = 1 . . . , n}
in the PMP does not change its solutions but ensures that 0 �∈ C(X̃) for all Archimedean

copula C. As a result, over this new feasible (sub)set, Archimedean copulae are of class C1

having Lipschitz continuous gradients.

Assumption A3 is usual in DFO [19, 110] and states that the model has to properly

represent ϕ near the current stability center. Note that if the exact copula Cξ (associated

with the probability function ϕ) in Theorem 2.54 is included in the dictionary Dr (or at

least it belongs to the space spanned by the copulæ in the dictionary) then A3 holds for all

x ∈ O due to the identity (3.1). We will come back to the subject of satisfying Assumption
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A3 in Section 3.2.3.

Our assumption on the feasible set X ensures that {xk} is a bounded sequence. This is

also the case for the sequence {λk} ⊂ Λ of model’s coefficients because Λ in (3.4) is either a

box or the simplex in R
r. Boundedness of {λk} ensures that the model issued by (3.4) has

Lipschitz continuous gradient with a constant independent of the iteration k (c.f. Lemma

3.1). In what follows, we present some consequences of these assumptions.

3.2.1 Assumptions A1-A3: what do they yield?

As a consequence of Assumption A2, we show that the copula-based model has Lipschitz

(uniformly) continuous gradient on X.

Lemma 3.1. Suppose that Assumption A2 holds. Then, there exists a Lipschitz constant

κM > 0, independent of k, such that, for all x, y ∈ X and k ∈ N,

‖∇Mk(x)−∇Mk(y)‖ ≤ κM‖x− y‖. (3.9)

Proof. By the model’s definition in (3.4) and the triangle inequality, we have, for all x, y ∈
X and k ∈ N,

∥∥∇Mk(x)−∇Mk(y)
∥∥ ≤

r∑
i=1

|λk
i |
∥∥∇CF

i (x)−∇CF
i (y)

∥∥ ≤ κλ

r∑
i=1

∥∥∇CF
i (x)−∇CF

i (y)
∥∥ ,

where κλ is a constant bounding {|λk|}. By Assumption A2, the gradient of the function

CF
i , i = 1, . . . , r, is Lipschitz continuous with constant, say, κF

i > 0. Consequently,∥∥∇Mk(x)−∇Mk(y)
∥∥ ≤ κλ

∑r
i=1 κ

F
i ‖x− y‖ , and the proof follows by setting κM =

κλ

∑r
i=1 κ

F
i .

The next lemma establishes an error bound on the model’s gradient at the stability center.

Lemma 3.2. Suppose that Assumptions A1 to A3 hold. Then, there exist constants c3, c4 >
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0 such that, for all k ∈ N,

‖∇ϕ(x̂k)−∇Mk(x̂k)‖ ≤ min{c3Δk, c4}. (3.10)

Proof. Let k ∈ N. If ‖∇ϕ(x̂k)−∇Mk(x̂k)‖ = 0, then the result holds trivially. Otherwise,

consider an arbitrary direction d ∈ R
n with ‖d‖ ≤ Δk, i.e., x̂k + d ∈ B(x̂k,Δk). Note that

(∇ϕ(x̂k)−∇Mk(x̂k)
)T

d = −ϕ(x̂k + d) + ϕ(x̂k) +∇ϕ(x̂k)Td+Mk(x̂k + d)− ϕ(x̂k)

−∇Mk(x̂k)Td+ ϕ(x̂k + d)−Mk(x̂k + d).

From the triangle inequality and the fact that ϕ(x̂k) = Mk(x̂k), we have

∣∣∣(∇ϕ(x̂k)−∇Mk(x̂k)
)T

d
∣∣∣ ≤ |ϕ(x̂k + d)− ϕ(x̂k)−∇ϕ(x̂k)Td|+ |ϕ(x̂k + d)

−Mk(x̂k + d)|+ |Mk(x̂k + d)−Mk(x̂k)−∇Mk(x̂k)Td|.

Recall that κϕ and κM denote the Lipschitz constants of ∇ϕ and ∇Mk, respectively, over

the set X (see (1.4) and (3.9)). Let κ̄ ≥ max{κϕ, κM} be given. Then, [64, Lem. 1.2.3]

yields

|ϕ(x̂k + d)− ϕ(x̂k)−∇ϕ(x̂k)Td| ≤ κ̄

2
‖d‖2

and

|Mk(x̂k + d)−Mk(x̂k)−∇Mk(x̂k)Td| ≤ κ̄

2
‖d‖2.

Furthermore, Assumption A3 gives |ϕ(x̂k + d)−Mk(x̂k + d)| ≤ c2Δ
2
k because ‖d‖ ≤ Δk.

Thus, we have shown that

∣∣∣(∇ϕ(x̂k)−∇Mk(x̂k)
)T

d
∣∣∣ ≤ 1

2
κ̄‖d‖2 + c2Δ

2
k +

1

2
κ̄‖d‖2 ≤ c̃2Δ

2
k,

with c̃2 = bκ̄+c2 and b > 0 a constant satisfying ‖·‖ ≤ √
b‖·‖. The existence of constants

a, b > 0 satisfying
√
a‖ · ‖ ≤ ‖ · ‖ ≤ √

b‖ · ‖ is ensured by the equivalence of norms in R
n.

So far, d was considered an arbitrary direction satisfying ‖d‖ ≤ Δk. Now, we take the
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particular direction d̃ = Δk

(∇ϕ(x̂k)−∇Mk(x̂k)
)

‖∇ϕ(x̂k)−∇Mk(x̂k)‖ (note that ‖d̃‖ = Δk). Then,

∣∣(∇ϕ(x̂k) −∇Mk(x̂k)
)T

d̃
∣∣∣ = Δk

∥∥∇ϕ(x̂k)−∇Mk(x̂k)
∥∥2

‖∇ϕ(x̂k)−∇Mk(x̂k)‖
≥ √

aΔk

∥∥∇ϕ(x̂k)−∇Mk(x̂k)
∥∥ ,

issuing
√
aΔk

∥∥∇ϕ(x̂k)−∇Mk(x̂k)
∥∥ ≤ c̃2Δ

2
k.

By considering line 21 of Algorithm 1, taking c3 = c̃2/
√
a and c4 = c3Δmax we conclude

the proof.

3.2.2 Global convergence of the algorithm

Some of the results below are similar to the ones presented in [15], differing, essen-

tially, by the quadratic terms in the efficiency condition (3.6) and by the context of the

maximization problem.

Lemma 3.3. Suppose that there exists k̄ ∈ N such that Δk > απk, for all iteration k ≥ k̄.

Then the sequences {Δk} and {πk} converge to zero.

Proof. From line 29 of Algorithm 1, the radius is reduced by the factor τ1 ∈ (0, 1) in each

iteration k ≥ k̄, then limk→∞ πk ≤ 1

α
limk→∞ Δk = 0, completing the proof.

The hypothesis of last lemma implies that from the iteration k̄, the stability center does

not change, i.e., x̂k = x̂k̄, for all k ≥ k̄. Otherwise, if this hypothesis does not hold, there

exist infinitely many iterations such that Δk ≤ απk and then the ratio γk given by (3.8) is

well defined. The global convergence of the algorithm is ensured in both cases. To show

that, let us define the set S of successful iterations and S̄ as the subset of S in which the

trust-region radius does not decrease. More precisely,

S = {k ∈ N | Δk ≤ απk and γk > η} and S̄ = {k ∈ N | Δk ≤ απk and γk > η1}.
(3.11)
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As η1 > η, S̄ ⊂ S. The next lemma asserts that if the trust-region radius is small enough,

then the algorithm will perform a successful iteration in which the trust-region radius will

not decrease, in the sense that k ∈ S̄.

Lemma 3.4. Suppose that Assumptions A1 to A3 hold. Consider the constants c1, β given

in (3.6), c2 defined in Assumption A3 and η1 given in Algorithm 1.

Set c = c2/c1 and let K be given by

K =

{
k ∈ N | Δk ≤ min

{
π2
k

β
, απk,

(1− η1) π
2
k

c
, 1

}}
. (3.12)

Then it holds that K ⊆ S̄.

Proof. Consider k ∈ K. By the definitions of γk and the model Mk, Assumption A3 and

the fact that xk+1 ∈ B(x̂k,Δk),

|γk − 1| =
∣∣∣∣∣ϕ(x

k+1)− ϕ(x̂k)− (Mk(xk+1)−Mk(x̂k)
)

Mk(xk+1)−Mk(x̂k)

∣∣∣∣∣ =
∣∣∣∣ϕ(xk+1)−Mk(xk+1)

Mk(xk+1)−Mk(x̂k)

∣∣∣∣
≤ c2Δ

2
k

|Mk(xk+1)−Mk(x̂k)| .

As k ∈ K, Δk ≤ απk and, consequently, πk > 0. It follows from (3.6) that

|γk − 1| ≤ c2Δ
2
k

c1π2
k min

{
π2
k

β
,Δk, 1

} =
cΔ2

k

π2
k min

{
π2
k

β
,Δk, 1

} .

It follows from (3.12) that Δk = min
{

π2
k

β
,Δk, 1

}
and Δk ≤ (1−η1)π2

k

c
⇒ cΔk

π2
k

≤ 1 − η1.

Therefore, |γk − 1| ≤ 1 − η1, which implies γk ≥ η1 > η and consequently k ∈ S̄. This

concludes the proof.

Lemma 3.2 says that the smaller the radius Δk, the better the model approximates

the objective function ϕ. Based on that, it is reasonable to expect that the sequence of

trust-region radii converges to zero. This is ensured by the following lemma.
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Lemma 3.5. Suppose that Assumption A2 holds. Then the sequence {Δk} converges to

zero.

Proof. Assume, first, that the set S̄ defined in (3.11) is finite. Then, there exists k0 ∈ N

such that for all k ≥ k0, γk ≤ η1 or Δk > απk. By lines 26 and 29 of Algorithm 1,

Δk+1 = τ1Δk, for all k ≥ k0, with 0 < τ1 < 1. Thus, {Δk} converges to zero. We assume

henceforth S̄ is infinite. For any k ∈ S̄, using (3.6) we have

ϕ(xk+1)− ϕ(x̂k) ≥ η1
(Mk(xk+1)−Mk(x̂k)

)
≥ η1c1π

2
k min

{
π2
k

β
,Δk, 1

}
.

By the definition of S̄, Δk ≤ απk and γk > η1 > η. From line 15 of Algorithm 1, we have

that x̂k+1 = xk+1, and hence

ϕ(x̂k+1)− ϕ(x̂k) ≥ η1c1
Δ2

k

α2
min

{
Δ2

k

βα2
,Δk, 1

}
.

Since {ϕ(x̂k)} is a monotone nondecreasing sequence and bounded from above (ϕ(x) ∈
[0, 1], for all x ∈ X), the left-hand side of the above expression converges to zero, therefore:

lim
k∈S̄

Δk = 0. (3.13)

Consider the set U = {k ∈ N | k /∈ S̄}. If U is finite, then by (3.13) we have that

lim
k→∞

Δk = 0. Now suppose that U is infinite. Consider k ∈ U and denote �k the latest

index in S̄ before k. Then �k is well-defined for all large k and Δk ≤ τ2Δ�k , which implies

that

lim
k∈U

Δk ≤ τ2 lim
k∈U

Δ�k = τ2 lim
�k∈S̄

Δ�k .

By (3.13) it follows that lim
k∈U

Δk = 0 which completes the proof.

The next lemma shows that the stationarity measure πk in (3.7) has a subsequence that

converges to zero.
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Lemma 3.6. Suppose that Assumptions A1 to A3 hold. Then lim inf
k→∞

πk = 0.

Proof. The proof is by contradiction. Suppose that there exist a constant ε > 0 and an

integer k0 such that πk ≥ ε for all k ≥ k0. Take Δ̃ = min
{

ε2

β
, αε, (1−η1)ε2

c
, 1
}

where c is

defined in Lemma 3.4, η1 and α > 0 are given in Algorithm 1. Consider k ≥ k0. If Δk ≤ Δ̃,

then k ∈ K, where the latter is defined in (3.12). By Lemma 3.4, k ∈ S̄ and thus, by line

21 or 23 of the Algorithm 1, Δk+1 ≥ Δk. It follows that the trust-region radius can only

decrease if Δk > Δ̃, and in this case, Δk+1 = τ1Δk > τ1Δ̃. Therefore, one can see that

for all k ≥ k0, Δk ≥ min
{
τ1Δ̃,Δk0

}
, which contradicts Lemma 3.5 and concludes the

proof.

Assuming a sufficient increase on the objective function, by setting η > 0 in the algo-

rithm, the next lemma ensures that not only there exists a subsequence of πk converging

to zero, but also the whole sequence converges.

Lemma 3.7. Suppose that Assumptions A1 to A3 hold, and η > 0. Then lim
k→∞

πk = 0.

Proof. Suppose by contradiction that for some ε > 0 the set N
′ = {k ∈ N | πk ≥ ε} is

infinite. By Lemma 3.5, the sequence {Δk} converges to zero. Then, there exists k0 ∈ N

such that for all k ≥ k0,

Δk ≤ min

{
ε2

β
, αε,

(1− η1) ε
2

c
, 1

}
(3.14)

where the constant c is given in Lemma 3.4 and α and η1 are defined in Algorithm 1. It

follows from definition of N′ that, for all k ∈ N
′ with k ≥ k0,

Δk ≤ min

{
π2
k

β
, απk,

(1− η1) π
2
k

c
, 1

}
. (3.15)

Lemma 3.4 then ensures that k ∈ S̄ ⊆ S, for k ≥ k0, k ∈ N
′. Given k ∈ N

′ with k ≥ k0,

consider �k the first index such that �k > k and π�k ≤ ε/2. The existence of �k is ensured

by Lemma 3.6. So, πk − π�k ≥ ε/2. Using the definition of πk, the triangle inequality and
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the contraction property of projections, we have that

ε
2 ≤ ∥∥ProjX (x̂k +∇Mk(x̂k)

)− x̂k
∥∥− ∥∥ProjX (x̂�k +∇M�k(x̂�k)

)− x̂�k
∥∥

≤ ∥∥ProjX (x̂k +∇Mk(x̂k)
)− x̂k −ProjX

(
x̂�k +∇M�k(x̂�k)

)
+ x̂�k

∥∥
≤ 2

∥∥x̂k − x̂�k
∥∥+ ∥∥∇Mk(x̂k)−∇M�k(x̂�k)

∥∥
= 2

∥∥x̂k − x̂�k
∥∥+ ∥∥∇Mk(x̂k)−∇ϕ(x̂k) +∇ϕ(x̂k) −∇ϕ(x̂�k) +∇ϕ(x̂�k)−∇M�k(x̂�k)

∥∥
≤ 2

∥∥x̂k − x̂�k
∥∥+ ∥∥∇Mk(x̂k)−∇ϕ(x̂k)

∥∥+ ∥∥∇ϕ(x̂k)−∇ϕ(x̂�k)
∥∥+ ∥∥∇ϕ(x̂�k)−∇M�k(x̂�k)

∥∥ .
So, using Lemma 3.2 twice and Assumption A1, the previous inequality can be written as

ε

2
≤ (2 + κϕ)

∥∥x̂k − x̂�k
∥∥+ c3 (Δk +Δ�k) . (3.16)

Consider Jk = {i ∈ S | k ≤ i < �k}. Note that, by (3.15), k ∈ S, so Jk �= ∅. By (3.11), for

all i ∈ Jk, x̂i+1 = xi+1 as a result of line 15 of Algorithm 1. Using this and the facts that

i ∈ S and condition (3.6) holds, we conclude that

ϕ(x̂i+1)− ϕ(x̂i) ≥ η (Mi(x̂i+1)−Mi (x̂i))

≥ ηc1π
2
i min

{
π2
i

β
,Δi, 1

}
.

By the definition of �k, we have that πi > ε/2 for all i ∈ Jk. As i ≥ k, by (3.14), Δi ≤ ε2/β

and Δi ≤ 1. Therefore,

Δi

2
≤ ε2

2β
<

2π2
i

β
⇒ Δi

4
≤ ε2

4β
<

π2
i

β
.

It follows that ϕ(x̂i+1)− ϕ(x̂i) > ηc1ε2Δi

16
and hence

Δi <
16

ηc1ε2
(
ϕ(x̂i+1)− ϕ(x̂i)

)
. (3.17)

On the other hand, ∥∥x̂k − x̂�k
∥∥ ≤

∑
i∈Jk

∥∥x̂i − x̂i+1
∥∥ ≤

∑
i∈Jk

Δi,



80 Trust-region algorithm with copula-based models

which combined with (3.17) provides
∥∥x̂k − x̂�k

∥∥ < 16
ηc1ε2

(
ϕ(x̂�k)− ϕ(x̂k)

)
. By the fact that

the sequence {ϕ(x̂k)} is bounded and it is monotone nondecreasing, ϕ(x̂�k) − ϕ(x̂k) → 0.

Therefore the subsequence
{‖x̂k − x̂�k‖}

k∈N′ converges to zero, which together with Lemma

3.5, contradicts (3.16) and completes the proof.

The previous lemmas allow us to prove the following global convergence result: the

sequence generated by Algorithm 1 has a stationary accumulation point and, in particular,

when η > 0, any accumulation point of the sequence is stationary.

Theorem 3.8. Suppose that Assumptions A1 to A3 hold. Then

lim inf
k→∞

∥∥ProjX (x̂k +∇ϕ
(
x̂k
))− x̂k

∥∥ = 0.

In addition, if η > 0, then

lim
k→∞

∥∥ProjX (x̂k +∇ϕ
(
x̂k
))− x̂k

∥∥ = 0.

Proof. Consider k ∈ N arbitrary. By the triangle inequality, it follows that

∥∥ProjX(x̂k +∇ϕ(x̂k)
)− x̂k

∥∥ ≤ ∥∥ProjX (x̂k +∇ϕ(x̂k)
)− ProjX

(
x̂k +∇Mk(x̂k)

) ∥∥
(3.18)

+
∥∥ProjX (x̂k +∇Mk(x̂k)

)− x̂k
∥∥ .

Applying the contraction property of projections and Lemma 3.2 to the first term

on the right-hand side, we have
∥∥ProjX (x̂k +∇ϕ(x̂k)

) − ProjX
(
x̂k +∇Mk(x̂k)

) ∥∥ ≤∥∥∇ϕ(x̂k)−∇Mk(x̂k)
∥∥ ≤ c3Δk. From this and the definition of πk, it follows from (3.18)

that
∥∥ProjX (x̂k +∇ϕ(x̂k)

)− x̂k
∥∥ ≤ c3Δk+πk. If the hypothesis of Lemma 3.3 holds, then

the results follow from that lemma. Otherwise, applying Lemmas 3.5 and 3.6 we prove the

first statement and the result for η > 0 follows from Lemmas 3.5 and 3.7.

We care to mention that in the above analysis, the rule for choosing the set Gk+1 on line

32 of Algorithm 1 plays no role. The reason is that Assumption A3 yields the necessary
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mathematical results for ensuring convergence. This fact rises the question: how can we

update sets Gk+1 and Yk+1 to ensure A3?

3.2.3 Ensuring Assumption A3

In order to ensure Assumption A3, related to the quality of the model, we can focus on

the dictionary or on the construction of the interpolation set Yk+1 on line 31 of Algorithm

1, as discussed below.

A rich dictionary of copulæ

Linear and quadratic models constructed by interpolation or regression, under some

conditions, satisfy Assumption A3 as proved in [19]. In our case, the models are based

on copulæ and thus A3 is expected to hold whenever {x0, . . . , xk} ⊂ Gk and the exact

copula Cξ associated with the probability function ϕ of Theorem 2.54 belongs to the space

spanned by the copulæ in the dictionary, i.e., when

Cξ ∈ CDr =

{
r∑

i=1

λiCi : λ ∈ Λ

}
.

The intuition behind this claim follows from the fact that, under theses hypotheses, the

optimal value of (3.4b) is zero, i.e., the model interpolates the points in Gk. Moreover,

as Gk grows and the trust-regions shrinks, (3.4) yields a model that fits Cξ (recall that in

our setting Cξ is unique due to Theorem 2.54). The choice Λ =
{
λ ∈ R

r
+ :

∑r
i=1 λi = 1

}
seems appropriate because in this case Mk is a copula for all k = 0, 1, . . . Note that

requesting that Cξ ∈ CDr is a stringent assumption as Cξ is usually unknown. However,

from a practical point of view, such an assumption is sounder than the more frequent

practice of replacing the probability function by an estimated copula. A way to try to

satisfy Assumption A3 consists in considering a large and diversified dictionary, ideally

including families of comprehensive copulæ (see the formal definition in Section 2), or at

least containing copulæ yielding lower and upper bounds for the underlying probability
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function.

Interpolation points

Instead of focusing on the dictionary of copulæ, we may concentrate on a rule for

selecting the set of points Yk+1 on line 31 of Algorithm 1 and let Gk+1 ⊃ Yk+1 so that

Assumption A3 is satisfied. This is the common practice in the DFO community [1, 19,

45, 111]. The next theorem states that whenever a general model (not necessarily quadratic

or copula-based one) satisfies certain interpolation conditions, then error bounds on the

model and its gradient are available. In particular, this ensures that Assumption A3 can

be fulfilled.

Theorem 3.9. [111, Thm. 2.3] Suppose that ϕ and M are continuously differentiable in

B(x̂,Δ) and that ∇ϕ and ∇M are Lipschitz continuous in this B(x̂,Δ). Consider a set

of n + 1 points x̂ + yi such that y1 = 0, ‖yi‖ ≤ Δ, for i = 2, . . . , n + 1, and ‖Y −1‖ ≤ ΛY

Δ

for some constant ΛY < ∞, where Y is the square matrix Y =
[
y2 · · · yn+1

]
. If, for

all i = 1, . . . , n+ 1,

M(x̂+ yi) = ϕ(x̂+ yi),

then there exist constants γf and γg such that, for any x ∈ B(x̂,Δ),

|ϕ(x)−M(x)| ≤ γfΔ
2 and ‖∇ϕ(x)−∇M(x)‖ ≤ γgΔ.

Theorem 3.9 (whose proof can be found in [112, Thm. 4.1]) ensures Assumption A3

and a stronger result than Lemma 3.2, guaranteeing (3.10) in the whole trust region, not

only in the stability center x̂. These results imply that the model M is fully linear in

the neighborhood B(x̂,Δ) containing n + 1 interpolation points, according to [19, Def.

6.1] (see also [45, Rem. 1] for an equivalent definition). Although the theorem holds for

general interpolation models, it requires some geometric conditions on the interpolation

set. The assumption of norm boundedness of the matrix Y −1 is equivalent to say that

the set {y2, . . . , yn+1} is sufficiently linear independent. In [110], the authors propose a
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QR-like variant algorithm that constructs points satisfying the hypotheses of Theorem 3.9,

as proved in [110, Lem. 2.4] (see also [112, Algorithm 4.1]). We can thus formalize the

convergence of our approach by dropping Assumption A3 but strengthening the rule for

defining the set Yk+1.

Theorem 3.10. Consider problem (1.2) and suppose that assumptions A1 and A2 hold.

Furthermore, assume that Algorithm 4.2 from [111] is used to create the set Yk+1 on line

31 of Algorithm 1. If Gk+1 ⊃ Yk+1 and the model Mk interpolates ϕ at points in Yk for all

iterations k = 0, 1, . . ., then the convergence results of Theorem 3.8 hold.

Proof. Algorithm 4.2 from [111] ensures that the points composing Yk+1 on line 31 of

Algorithm 1 satisfy, under the stated interpolation condition, the assumptions of Theorem

3.9. Therefore, if Yk+1 is contained in Gk+1 defining the model in (3.4), then Assumption

A3 holds and Theorem 3.8 applies.

The price to pay for having the strong results from Theorem 3.9 is the increase of the

computational burden: the probability function ϕ needs to be evaluated at each one of

the (n + 1) points in Yk+1, i.e., (n + 1) integrals of dimension n need to be computed.

However, not all the (n+1) function evaluations need to be performed at every iteration of

Algorithm 1: we may reuse/recycle some points in Yk∩B(x̂k+1,Δk+1) to define Yk+1. Such

a strategy may render (employing Algorithm 4.2 from [111] for defining Yk+1) attractive

even for easier probability maximization problems whose probability distributions yield

a formulæ for computing gradients: evaluating the gradient of ϕ when the latter follows

a log-normal or Gaussian distribution requires solving m integrals of dimension (m − 1).

Hence, for those special probability distributions, the choice between our DFO algorithm

and a derivative-based method will depend on the dimension n of decision variables and

dimension m of the random vector. We highlight that for general probability distributions,

a gradient formula may not be computationally implementable or practical due to its high

complexity.
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3.3 Efficiency condition for the subproblem’s stationary

point

In Section 3.2 we saw that the efficiency condition (3.6) that an approximate solution

of the subproblem (3.5) should satisfy is an important tool to prove the global convergence

of Algorithm 1. In this section we present an adaptation for maximization problems of

the algorithm proposed in [85] that ensures the efficiency condition. From now on, 〈·, ·〉
denotes the inner product in R

n and ‖ · ‖ the associated norm.

The algorithm below considers an inexact line search along the arc dk : R+ → R
n

defined by

dk(t) := ProjX
(
x̂k + t∇Mk(x̂k)

)− x̂k. (3.19)

Note that the stationarity measure of the subproblem, defined in (3.7), can be written as

πk = ‖dk(1)‖.

Algorithm 2. Computation of the new iterate
Input : x̂k ∈ X, Δk > 0, 0 < μ1 < μ2 < 1, 0 < μ3 ≤ 1, 0 < ν3 < ν1 ≤ ν5,

0 < ν2 ≤ 1 and ν4 > 0

1. Find tAk such that Mk
(
x̂k + dk(t

A
k )
)−Mk(x̂k) ≥ μ1

〈∇Mk(x̂k), dk
(
tAk
)〉

, with∥∥dk (tAk )∥∥ ≤ ν1Δk and tAk ≥ ν2t
B
k or tAk ≥ min

{
ν3Δk

‖∇Mk(x̂k)‖ , ν4
}
, where tBk (if

required) is some strictly positive number that satisfies
Mk

(
x̂k + dk(t

B
k )
)−Mk(x̂k) ≤ μ2

〈∇Mk(x̂k), dk
(
tBk
)〉

.

2. Choose sk such that Mk(x̂k + sk)−Mk(x̂k) ≥ μ3

(Mk
(
x̂k + dk(t

A
k )
)−Mk(x̂k)

)
,

‖sk‖ ≤ ν5Δk, and x̂k + sk ∈ X

Output: xk+1 = x̂k + sk

Step 1 of Algorithm 2 is an inexact line search along the arc (3.19). By setting tAk = tBk ,

one obtains a variant of the Goldstein line search conditions [65]. Since μ3 ∈ (0, 1], Step 2

requires that the model’s increase issued by sk is at least a fraction of the increasing given

by dk(t
A
k ).

Following the ideas of [85], we present the results ensuring that the approximate local

solution x̂k + sk computed in Step 2 of Algorithm 2 satisfies the efficiency condition (3.6).
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The first lemma shows that the conditions stated in the algorithm are compatible.

Lemma 3.11. [85, Lem. 5] Consider the input parameters of Algorithm 2. Then, there

exists a step sk satisfying the conditions of Steps 1 and 2.

To the next results, define the curvature of the model Mk at the point x̂k ∈ X along the

step s ∈ R
n as

ωk(s) :=
2

‖s‖2
(Mk(x̂k + s)−Mk(x̂k)− 〈∇Mk(x̂k), s〉) . (3.20)

Assumption A2 and the compactness of X imply the following bounds.

Lemma 3.12. [85, Lem. 6] Suppose that Assumptions A1 and A2 hold. Consider the

model Mk and the stability center x̂k ∈ X at the iteration k and κM the constant defined

in (3.9). For all s ∈ R
n, satisfying x̂k + s ∈ X, there exists a finite constant c5 > 0,

independent of k, such that,

i) ‖∇Mk(x̂k)‖ ≤ c5 and ii) |ωk(s)| ≤ κM. (3.21)

Proof. By the triangle inequality and Lemma 3.2, there exists a constant c4 > 0 such that

‖∇Mk(x̂k)‖ ≤ ‖∇Mk(x̂k)−∇ϕ(x̂k)‖+ ‖∇ϕ(x̂k)‖ ≤ c4 + supx∈X ‖∇ϕ(x̂k)‖.

As ϕ ∈ C1 and X is compact, we can define c5 = c4 + sup
x∈X

‖∇ϕ(x̂k)‖, which proves (3.21)

i). By (3.20), [64, Lem. 1.2.3] and Lemma 3.1, we have |ωk(s)| = 2

‖s‖2
∣∣Mk(x̂k + s) −

Mk(x̂k)− 〈∇Mk(x̂k), s〉∣∣ ≤ κM, proving (3.21) ii).

We now state the result ensuring the efficiency condition (3.6) at iteration k.

Theorem 3.13. Consider an iteration k of Algorithm 1. Suppose that x̂k is not a sta-

tionary point of the subproblem (3.5). Then, there exists a constant c1 > 0, independent

of k, such that the point xk+1, computed by Algorithm 2, satisfies the efficiency condition

Mk(xk+1)−Mk(x̂k) ≥ c1π
2
k min

{
π2
k

β
,Δk, 1

}
.
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Proof. Consider ωk = ωk
(
dk(t

B
k )
)

if tBk is defined, and ωk = 0 otherwise. From [85, Thm.7],

we have that ωk ≤ 0 and Mk(xk+1)−Mk(x̂k) ≥ c1π
2
k min

{ π2
k

1− ωk

,Δk

}
. Note that 1−ωk ≤

1 + κM from (3.21) ii). We complete the proof by denoting β = 1 + κM and noting that

min
{ π2

k

1− ωk

,Δk

}
≥ min

{π2
k

β
,Δk

}
≥ min

{π2
k

β
,Δk, 1

}
.



Chapter 4

Numerical experiments

In this chapter, we present numerical experiments for comparing the performance of

Algorithm 1, deployed in two variants according to the rules discussed in Subsection 3.2.3,

with other methods in the literature for solving two classes of problems.

First, we consider a class of continuous problems with three families of probability

maximization problems, totalizing 90 instances. We assume that the random vector ξ

follows two different multivariate elliptical distributions: the Gaussian and Student’s t-

distributions. The dimension of the decision variable varies from 3 to 566 and the dimension

of random vector from 2 to 324. The variants of Algorithm 1 are benchmarked against

several DFO solvers available in the literature.

Next, we assess the numerical performance of Algorithm 1 for solving a family of prob-

ability maximization problems with mixed-integer variables with dimension 36, being 12

integer variables. The dimension of the random vector is 12 and it follows a Gaussian

distribution. In this case, our variants are compared with two derivative-based algorithms

specialized in this class of problems.

All tests were performed on a Desktop Intel Core i7-7700K, CPU 4.20 GHz, 16GB RAM

dual channel (3200 MHz), Windows 10 Pro 64 bits with codes in Matlab version R2018a.

87
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4.1 Nonlinear continuous problems

In this section, we present numerical experiments for solving 90 instances from three

families of probability maximization problems with the random vector ξ following two

multivariate elliptical distributions: the Gaussian and the Student’s t-distributions. First

we describe the solvers, next the test problems and then the numerical results are discussed.

4.1.1 Solvers

Our two variants of Algorithm 1 are denoted by TRCI and TRC. They differ essentially

by the choices of the set Gk in the problem (3.4b), the rule for updating the interpolation

set Yk+1 on line 31, and by the set Λ at which the coefficients of the model Mk are defined.

• For TRCI, we set Λ = {λ ∈ R
r : ‖λ‖∞ ≤ 106} and Gk = Yk, k = 1, 2 . . . , to

define the model (3.4). The set Yk+1 on line 31 is constructed by the Matlab routine

AffPoints1 from [110], with default parameters. This routine constructs Yk+1 with

(n + 1) linearly independent points in all iterations of Algorithm 1 as required by

Theorem 3.9. As mentioned in Section 3.2.3, such strategy is expensive because ϕ

needs to be evaluated many (but not more than n+ 1) times per iteration.

• TRC sets the model Mk as a convex combination of copulæ by taking Λ as the simplex

in R
r, Gk+1 = Gk ∪ Yk+1 ∪ {xk+1}, and the following simple rule for constructing

Yk+1 on line 31: Yk+1 = ∅ if Δk ≤ απk, and Yk+1 = {x̂k + ρei} otherwise, where

ρ = min{10−5,Δk+1}, ei is the ith-canonical direction and i ∈ {1, . . . , n} is randomly

chosen, but avoiding the same one in two consecutive iterations. In this manner,

only a single evaluation of ϕ is needed per iteration: either at the next iterate xk+1

if Δk ≤ απk, or at x̂k + ρei otherwise. Convergence is guaranteed provided the

conditions in Subsection 3.2.3 are fulfilled, yielding thus A3.

In both versions of Algorithm 1, the dictionary Dr is composed by 28 copulæ from five

Archimedean families, as presented in Table 4.1. We tested two solvers for computing an
1Available at https://www.mcs.anl.gov/�wild/orbit/
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Family θ
Ali-Mikhail-Haq -1, -0.2, 0, 0.5, 0.7, 0.99

Clayton -1, -0.2, 0.2, 1, 3, 5, 7
Frank -5, -1, 1, 5, 8

Gumbel-Hougaard 1, 2, 3, 7
Joe 1, 1.5, 2.5, 3, 4, 5

Table 4.1: Copulæ and their parameter θ of the dictionary Dr.

approximate stationary point for subproblem (3.5), namely FilterSD2, which is a Fortran

77 code interfaced by the Matlab OPTI Toolbox [21], and our implementation of the

Frank-Wolfe algorithm [38] with Armijo line search and its parameters set as suggested

in [115]. Depending on the family of test problems, one solver performed better than

the other: subproblems were solved by Frank-Wolfe algorithm when ξ follows a Gaussian

distribution, and by FilterSD when ξ follows a Student’s t-distribution.

Both implementations of Algorithm 1 consider the same values for the trust-region

parameters: η = 0, η1 = 0.2, η2 = 0.6, τ1 = 0.5, τ2 = 2, chosen from values suggested

by [14, 108, 110] after some tuning. The other parameters were set as α = 108, Δmax =

min{max{0.2‖x0‖∞, 1}, 20n} and Δ0 = 0.1Δmax.

In order to validate our approaches, we compare their performance with six other

derivative-free solvers:

• TRL: Derivative-free Trust-Region algorithm3 [108] with Linear model and the same

parameters of TRC.

• TRQ: Derivative-free Trust-Region algorithm [108] with Quadratic model and the same

parameters of TRC.

• COBYLA: Constrained Optimization By Linear Approximation algorithm [68], avail-

able in the Matlab OPTI Toolbox [21].

2Available at https://projects.coin-or.org/filterSD/
3We are grateful to Dr. Adriano Verdério, from UTFPR Brazil, for providing us the codes of TRL and

TRQ.
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• LINCOA: LINearly Constrained Optimization Algorithm [69] available for Matlab in

the PDFO package [79].

• NOMAD: Nonlinear Optimization with Mesh Adaptive Direct Search algorithm (MADS)

[26], for inequality constrained problems, available in the Matlab OPTI Toolbox [21]

with version 3.6.2.

• PSwarm4: Global optimization algorithm [107] for bound and linear inequality con-

strained problems, which combines pattern search and Particle Swarm strategies.

Algorithms TRL, TRQ and LINCOA are derivative-free algorithms that differ from our

approaches by the construction of the model and the trust-region subproblem, since TRL

considers linear polynomial interpolation and TRQ and LINCOA consider quadratic poly-

nomial interpolation. One of the most relevant difference between the solvers TRQ and

LINCOA is the number of points used in the interpolation set to construct the model. While

TRQ considers (n + 1)(n + 2)/2 interpolation points, LINCOA considers a number between

n + 2 and (n + 1)(n + 2)/2. Another difference is that the trust-region subproblem of

LINCOA is solved by the truncated conjugate gradient method, while Gurobi5 is used for

TRQ. We applied TRL and TRQ with the same trust-region parameters of our approaches

because they presented better performance when compared with the default ones. The

initial trust-region radius of LINCOA was set the same as TRCI. All linear and quadratic

subproblems present in the TRCI, TRC, TRL and TRQ were solved by Gurobi.

In all solvers, the probability function ϕ was evaluated by the Matlab routines available

in the Truncated Normal and Student’s t-distribution Toolbox 6 and based on [8]: mvnqmc

and mvtqmc, for the Gaussian and Student’s t-distribution, respectively. These routines

compute an estimator of the probability via Quasi Monte-Carlo simulation. In our tests,

we set the number of simulations equal to 10 000.

The solvers TRCI and TRC stop when Δk ≤ tol, with tol = 10−6, and one of the

4Available at http://www.norg.uminho.pt/aivaz/pswarm/
5Version 9.0.1, www.gurobi.com.
6Available at https://www.mathworks.com/matlabcentral/fileexchange/53796-truncated-normal-and-student-s-t-distribution-toolbox
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following conditions hold:

πk ≤ tol or Δk ≤ απk and |ϕ(xk)− ϕ(xk−1)| ≤ tol in 5 consecutive iterations.

The other solvers were applied with default stopping criteria, except by the tolerance in

the criterion Δk ≤ tol, considered by TRL and TRQ, which was the same as in TRCI and

TRC. Furthermore, a CPU time limit of one hour was given to all solvers, and the maximum

number of objective function evaluations was set to 100(n+ 1).

4.1.2 Test problems and numerical experiments

We consider 90 instances in three different sets of probability maximization problems,

originally formulated as CCPs (1.3), where f is a linear function, X̃ is a polytope, ϕ

is given by (1.2) with g a linear mapping. Two different distributions for the random

vector ξ are examined: a Gaussian one with given positive definite covariance matrix

CovG, and a Student’s t-distribution with ν = 4 degrees of freedom and covariance matrix

CovT = ν
ν−2

CovG = 2CovG. As in [74], we reformulated the problems as PMPs by defining

X := {x ∈ X̃ : f(x) ≤ T}, where T = τf(x0), with τ a given target and x0 ∈ X̃ an

initial point. We consider six uniformly spaced values for the parameter τ as described in

Table 4.2. These values start at 1, corresponding to the lowest probability, and go to τ̄

related to an optimal probability value close to 1, obtained by solving (1.2) with a Gaussian

distribution. The value τ̄ can be greater or smaller than 1, depending on the problem. The

initial point x0 was set as a solution of the simpler individual chance-constrained problem

minimize f(x)

subject to P
[
ξi ≤ gi(x)

] ≥ 0.95, i = 1, . . . ,m

x ∈ X̃.

(4.1)

With the help of p-quantiles, the individual probability constraints can be written as linear

ones: P
−1[p] ≤ gi(x), i = 1, . . . ,m. Thus, (4.1) becomes a linear problem because g, f ,
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and the constraints that define X̃ are linear functions. We highlight the small change in

notation that significantly impacts the problem’s nature: the difficult joint-probability is

denoted by P
[
ξi ≤ gi(x), i = 1, . . . ,m

]
, whereas the much simpler individual probabilities

are P
[
ξi ≤ gi(x)

]
, i = 1, . . . ,m.

The 90 instances of test problems are summarized in Table 4.2. The first and second

columns indicate the type and name of the problems; the third and fourth give the dimen-

sions of the decision and random variables, respectively; the fifth column shows the type

of the probability distribution of ξ; the sixth provides the average (over 1000 points) of

CPU time t̄ (in seconds) required to evaluate the probability function ϕ, i.e., the oracle

CPU time; the seventh discriminates the values of the parameter τ used to define X above;

the eighth summarizes the number of problem instances; and the last column indicates the

DFO solvers under comparison for every set of problems. As NOMAD and PSwarm handle

only inequality constrained problems, they have not been considered for solving the second

set of problems that involve equality constraints. Furthermore, TRC was the only DFO

algorithm capable to solve the third set of problems within the time limit of one hour.

Type Problem n m Distribution t̄ τ # inst. DFO solvers

Academic:
ineq.

constraints

Cash matching 3 15 Gaussian 0.082 0.900 0.920 0.940 0.960 0.980 1.000 12 TRC, TRCI
TRL, TRQ
COBYLA
LINCOA
NOMAD
PSwarm

Student 0.096

Transport
8 4 Gaussian 0.024

1.000 1.040 1.080 1.120 1.160 1.200 24Student 0.030

32 8 Gaussian 0.047
Student 0.054

Academic:
ineq. and eq.
constraints

PlanToy 8 2
Gaussian 0.001

1.000 1.014 1.028 1.042 1.056 1.070 36

TRC, TRCI
TRL, TRQ
COBYLA
LINCOA

Student 0.018

Industrial:
ineq. and eq.
constraints

Reservoir
566 96

Gaussian
0.400

0.995 0.996 0.997 0.998 0.999 1.000 18 TRC566 192 1.190
566 324 4.722

Table 4.2: Information about the test problems. Notation t̄ stands for the estimated CPU
time in seconds required to evaluate the objective function (oracle call).
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Academic problems with inequality constraints

We consider two families of academic problems, each one defined with Gaussian and

Student’s t-distribution.

Cash Matching problem. This is a PMP variant of the well known chance-constrained

problem presented in [48]. The goal is to make a portfolio, with a certain amount of cash,

of n types of bonds on behalf of a pension fund that maximizes the probability of covering

certain payments over the coming m time periods while satisfying that the sum of the bond

yields, at the end of the period, reaches a minimal target. The decision vector x ∈ R
n

(n = 3) corresponds to the amount of each type of bond to be bought and the random

vector ξ ∈ R
m (m = 15) represents the payments of the time periods. The problem’s data

can be found in [48].

Probabilistic Transportation problem. This is a PMP version of the stochastic trans-

portation problem from [59]. The goal is to maximize the probability of satisfying a random

demand of products shipped from a set S of suppliers to a set C of customers, while en-

suring the supply capacity is respected and the shipment costs are not higher than a given

budget (target). The decision variable x ∈ R
n (n = |C| |S|, where |Z| is the cardinality

of the set Z), is the amount of products shipped from the suppliers to the customers and

the random vector ξ ∈ R
m represents the demands. We considered two different pairs of

values for the number of suppliers |S| and customers |C|, i.e., (|C|, |S|) ∈ {(4, 2), (10, 6)}.
Data were randomly generated according to [59].

Table 4.3 reports the results obtained by all eight derivative-free algorithms considered

for solving the 36 instances of these two problems. The three first columns refer to the

problem data, and the others refer to the computed functional value, number of function

evaluations, and CPU time in seconds for each solver. Using the criterion proposed in [9],

as the image of ϕ lies in [0, 1], we say that an algorithm solves a problem if it finds a point
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x̄ ∈ X such that
|ϕmax − ϕ(x̄)|

max{1, |ϕ(x̄)|, |ϕmax|} = |ϕmax − ϕ(x̄)| ≤ 10−2, (4.2)

where ϕmax is the largest function value computed by the solvers under comparison. The

symbol † next to the function value in the table indicates that the algorithm did not solve

the problem according to this criterion.

We also present data and performance profiles [27, 61] for the number of function

evaluations #F and for CPU time (in seconds). As suggested in [4], we say that two

algorithms tie in respect to CPU time, if the difference of time spent by them is less than

5% of the time spent by the fastest algorithm to solve a given problem. Figures 4.1 and

4.2 show the profiles with respect to the number of function evaluations and CPU time,

respectively. Figures 4.1a and 4.2a present performance profiles with a zoomed view, while

Figures 4.1b and 4.2b show data profiles.

Figure 4.1 shows that the most robust and efficient algorithm in terms of function

evaluations is TRC, solving 100% of the problems with the minimal amount of oracle calls:

every instance was solved by TRC with at most 144 function evaluations. Algorithms TRCI

and LINCOA also solved all problems, but using 16.6 and 42 times the number of function

evaluations required by TRC, respectively, and no more than 613 and 1927 evaluations per

problem instance. On the other hand, TRL, TRQ, COBYLA, NOMAD and PSwarm solved 16.7%,

33.3%, 77.8%, 63.9% and 61.1% of the problems, respectively. From Figure 4.1b we see

that when the solvers perform at most 500 objective function evaluations, TRC, TRCI, TRL,

TRQ, COBYLA, LINCOA, NOMAD and PSwarm solved 100%, 77.8%, 16.7%, 33.0%, 36.1%, 66,7%,

33.3% and 27.8% of the problems, respectively.

Concerning CPU time, Figure 4.2a indicates that TRC remains the most robust and

efficient algorithm, solving 69.4% of all instances with the lowest CPU time. Solvers COBYLA

and LINCOA solved 13.9% and 25% of the problems with the lowest time, respectively. From

Figure 4.2b we see that when it is allowed to spend at most 100 seconds, TRC and TRCI

solve all problems, while TRL, TRQ, COBYLA, LINCOA, NOMAD and PSwarm solve 16.7%, 33.3%,

55.6%, 97.2%, 47.2% and 27.8%, respectively.
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(a) Performance profile (b) Data profile

Figure 4.1: Performance profile with a zoomed view (a) and data profile (b) with respect
to the number of function evaluations of all eight DFO algorithms for solving the set of
academic problems with inequality constraints.

(a) Performance profile (b) Data profile

Figure 4.2: Performance profile with a zoomed view (a) and data profile (b) with respect
to CPU time of all eight DFO algorithms for solving the set of academic problems with
inequality constraints.

Academic problems with inequality and equality constraints

PlanToy. This is a family of problems that consists of a two-month planning period of

two fictitious oil refineries as described in [22, Sec.6.2.1]. The goal is to find a plan for pro-

cessing, storing and importing two types of oil to maximize the probability of meeting the

random demand ξ of fuels. More specifically, the objective is to maximize the probability

of satisfying the random second-month demand while fulfilling deterministic constraints
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such as storage capacity, first-month demand, and monetary budget. In this example, the

decision variable x ∈ R
n (n = 8) represents the operation planning of the refineries and

the random vector ξ ∈ R
m (m = 2) corresponds to second-month demand of fuels. The

vector ξ = (ξ1, ξ2) has mean E[ξ] = (193, 178) and, in the Gaussian setting, the covariance

matrix is given by

CovG =

⎛
⎝ 9 Cov (ξ1, ξ2)

Cov (ξ1, ξ2) 10.24

⎞
⎠ , with Cov(ξ1, ξ2) ∈ {−4.8, 0, 4.8}. (4.3)

As mentioned above, in the Student t-distribution setting, the convariance matrix is 2CovG.

Table 4.4 reports on the results of six (out of eight) derivative-free algorithms for solving

the 36 instances of PlanToy. Solvers NOMAD and PSwarm were removed from the comparison

because they are not applicable to problems with equality constraints according to the user

guides.
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Figure 4.3a shows that the most robust and efficient algorithm in terms of function

evaluation is TRC, solving 97.2% of the problems with the minimal amount of oracle calls,

while TRL is the most efficient algorithm only in 2.8% of the problems. The algorithms TRC,

TRCI, TRL and LINCOA solved all problems while TRQ and COBYLA solved 38.9% and 94.4%,

using at most 2.4, 5.0, 36.0, 5.7, 38.9 and 24.2 times the number of function evaluations

required by the best algorithm, respectively. From Figure 4.3b we see that when the

solvers perform at most 200 objective function evaluations, TRC, TRCI and LINCOA solved

all problems, while TRL, TRQ and COBYLA solved 97.2%, 36.1% and 55.6%, respectively.

(a) Performance profile (b) Data profile

Figure 4.3: Performance profile with a zoomed view (a) and data profile (b) with respect
to the number of function evaluations of the six DFO algorithms for solving the set of
academic problems with inequality and equality constraints.

Figure 4.4a indicates that TRL was the most efficient solver, solving 44.4% of the in-

stances with the best CPU time, while LINCOA, TRC and TRCI solved 38.9%, 27.8% and

2.8%, respectively. From Figure 4.4b we see that when it is allowed to spend at most 6

seconds, TRC, TRCI, TRL and LINCOA solve all problems, while TRQ and COBYLA, solve 16.7%,

88.9%, respectively.

In this set of problems, TRL was the most efficient solver in terms of CPU time, but not

in terms of the number of function evaluations. Since the PlanToy family has a random

vector of dimension 2, the cost for evaluating the probability function, in relation to CPU

time, is not as impactful as solving the trust-region subproblem: recall that TRL solves a

linear program per iteration using Gurobi, while TRC and TRCI solve a nonlinear program.
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(a) Performance profile (b) Data profile

Figure 4.4: Performance profile with a zoomed view (a) and data profile (b) with respect
to CPU time of the six DFO algorithms for solving the set of academic problems with
inequality and equality constraints.

When the dimension of the random vector is higher, evaluating ϕ becomes the solvers’

bottleneck, as evidenced in the next results (see also the sixth column in Table 4.2).

Industrial problems

Cascaded-Reservoir Management problems. This is a family of energy planning

problems with a real-life configuration of a French hydro valley, described in [95, 105]. The

objective is to maximize the probability that reservoirs’ volumes remain within bounds and

the profit yielded by power generation decisions reaches a minimal target. The decision

variable x ∈ R
n (n = 566) represents the operation planning of power units while the

vector ξ̄ corresponds to random water inflows. Since the original data contains a bilateral

inequality under the probability function, i.e., P[Ax ≤ ξ̄ ≤ Bx], Sklar’s theorem is not

directly applicable. For purposes of Algorithm 1, we adopt the reformulation given by

(2.6) and (2.7), fitting thus the structure in (1.2) by considering a random vector ξ ∈ R
m

with twice as many random data, i.e, ξ = [−ξ̄, ξ̄]. Three instances for this vector were

considered with dimension m ∈ {96, 192, 324}, according to the three Max-P models from

[105].

We consider 18 instances of the cascaded-reservoir management problem. With excep-

tion of TRC, all others derivative-free algorithms failed to solve these instances within the
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time limit of one hour (in practice, variants of these problems should be solved at every

thirty minutes to rend on-time power generation dispatches). We point out that the di-

mension n = 566 of the decision variable is remarkable for DFO algorithms. For instance,

this dimension rendered TRQ impracticable because 161028 = (566 + 1)(566 + 2)/2 func-

tion evaluations would be necessary only at the first iteration to construct the underlying

quadratic model, resulting in approximated 18 hours of CPU time when the dimension of

the random vector is m = 96. Each function evaluation takes approximately 0.4 seconds,

as displayed in Table 4.2. The situation is even more complicated when m = 324: eval-

uating the function at a single point x takes around 4.7 seconds. Although this difficulty

and the large dimension of the decision vector, our variant TRC of Algorithm 1 was able

to solve each one of the 18 instances in at most 13.3 minutes, as indicated in Table 4.5.

This is thanks to the fact that TRC requires only a function evaluation per iteration. The

variant TRCI that needs at most n extra points to build the model, would spend, for the

cases m = 96, m = 192, and m = 324, up to 3.7, 11.2, and 44.5 minutes, respectively, per

iteration only to evaluate the objective function at these points.

In order to provide another solver to benchmark TRC, we exploited the fact that there

is an implementable formula for computing the gradients of ϕ when ξ follows a Gaussian

distribution and, moreover, − log(ϕ) is convex. As a result, we can reformulate (1.2) as a

typical nonlinear, differentiable, and convex optimization problem. We tested several NLP

(derivative-based) solvers available in the literature, and report results only for the most

successful one in our experiments: the Level Bundle method, denoted by LB, with default

stopping criteria and parameters as described in [55] (see also [96] for experiments on the

same class of problems). Table 4.5 presents the results of TRC and LB on the considered

18 instances of the problem. The two first columns report on the problem’s data. The

other columns provide information on the computed function value, number of function

and gradient evaluations, iterations and CPU time. As we can see from the table, solver

LB stopped by reaching the time limit of one hour in the instances with m = 192 and

m = 324. This highlights how expensive it is to compute derivatives of the probability

function with high-dimensional random vectors: roughly, a first-order oracle is m times
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more time-consuming than the zero-order oracle.

Table 4.5: Industrial problems: computed function value, number of function and gradient
evaluations, and CPU time (sec) spent by TRC and LB.

Problem data ϕ(x̂k) #F #G CPU time
τ m TRC LB TRC LB TRC LB TRC LB

0.995 96 0.996 0.996 51 47 0 47 35.6 1163.4
0.996 96 0.992 0.992 51 54 0 54 33.0 1362.0
0.997 96 0.985 0.985 48 34 0 34 31.3 861.4
0.998 96 0.972 0.972 46 36 0 36 28.4 911.6
0.999 96 0.949 0.950 48 34 0 34 34.6 860.9
1.000 96 0.912 0.913 43 23 0 23 29.2 556.4
0.995 192 0.968 0.927† 61 21 0 21 281.8 3758.2
0.996 192 0.952 0.920† 54 21 0 21 229.5 3735.6
0.997 192 0.930 0.932 50 21 0 21 228.8 3733.1
0.998 192 0.900 0.900 46 21 0 21 172.1 3708.6
0.999 192 0.858† 0.869 47 21 0 21 161.8 3729.5
1.000 192 0.804† 0.818 44 21 0 21 158.8 3758.6
0.995 324 0.873 0.738† 60 5 0 5 798.1 4250.9
0.996 324 0.851 0.739† 53 5 0 5 639.2 4258.3
0.997 324 0.823 0.725† 63 5 0 5 705.4 4231.0
0.998 324 0.787 0.724† 48 5 0 5 519.0 4074.9
0.999 324 0.746 0.727† 43 5 0 5 417.9 4206.3
1.000 324 0.706 0.684† 48 5 0 5 568.3 4276.8

4.2 Mixed-Integer Nonlinear Programming problems

The promising numerical results of our approaches TRCI and TRC to the nonlinear

continuous problems piqued our curiosity to investigate their numerical performance to

Mixed-Integer Nonlinear Programming Programming (MINLP) problems. Analogously to

the discussion of Chapter 1, for a given convex set X̃ ⊂ Rnx and a set containing only

integer variables Ỹ ⊂ Z
ny , both compact sets, the general probability maximization MINLP

problem can be represented as

maximize P [ξ ≤ g(x, y)]

subject to (x, y) ∈ X × Y,
(4.4)
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where g : Rnx × R
ny → R

m and X × Y = {(x, y) ∈ X̃ × Ỹ | f(x, y) ≤ T}, for a given

real-valued function f : Rnx × R
ny → R and a cost target T > 0. Over the last years,

optimization algorithms have received attention to deal with this class of problems [5, 7, 23,

31, 109], and some of the most famous are branch-and-bound [44] and outer-approximation

[28, 37].

As presented in the next subsections, they are benchmarked against two derivative-

based algorithms for solving 6 instances from a family of Power System Management

problem. We just care to mention that the convergence analysis presented in Section

3.2 does not hold in this case because it depends on, essentially, the continuity of the

stationarity measure π, defined in (3.7). The reason for that comes from the discontinuity

of the orthogonal projection operator due to the presence of integer variables in the domain.

4.2.1 Solvers

In order to analyse the performance of the variants TRCI and TRC from Algorithm 1,

we compare them with two other algorithms specialized to solve MINLP problems.

• TRCI and TRC: Variants of Algorithm 1 with the same input parameters, dictionary

Dr and rules to update the interpolation set Yk+1, as described in Section 4.1.1.

• BONMIN: Basic Open-source Nonlinear Mixed INteger programming algorithm7 avail-

able in the Matlab OPTI Toolbox [21], with Outer Approximation set as the internal

solver.

• ELBM: Extended Level-Bundle Method8 from [24]. Similarly to LB, the objective

function ϕ is replaced by the convex function − log(ϕ).

In both versions of Algorithm 1 we employed BONMIN to compute an approximate sta-

tionary point for the trust-region subproblem
7https://projects.coin-or.org/Bonmin
8We are grateful to Dr. Adriano R. Delfino, from UTFPR Brazil, for providing us the codes of the

algorithm.
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max
(x,y)∈X×Y

Mk(x, y) s.t. ‖(x, y)− (x̂k, ŷk)‖ ≤ Δk. (4.5)

where (x̂k, ŷk) is the stability center at k-th iteration. Since in the test problems the discrete

variables do not appear in the random inequality system ξ ≤ g(x), the random vector ξ

follows a continuous multivariate Gaussian distribution. Consequently, the models Mk,

the probability function ϕ and its gradient ∇ϕ depend only on the continuous variable x,

which means that ϕ and ∇ϕ can be evaluated by the same routine (mvnqmc) and number

of simulations (10 000), as considered in the previous sections. In our tests, we fixed the

maximum CPU time of 3600 seconds and increased the tolerance tol = 10−4 for the

stopping criteria of TRCI and TRC, while the other algorithms were set to default.

4.2.2 Test problem and numerical results

We consider 6 instances in a set of probability maximization problems, originally formu-

lated as a maximization version of a MINLP CCP (see [24, Eq. 5.7]), where f : Rnx → R

is a linear function and ϕ is defined as in (1.2), with g : Rnx → R
m a linear mapping.

Following the ideas of the nonlinear continuous problems in Section 4.1, for a given initial

point (x0, y0) ∈ X̃ × Ỹ and a parameter τ , we define the cost target by T = τf(x0) and

reformulate the problems as probability maximization MINLP problems, as (4.4). Also, six

uniformly spaced values of the parameter τ were set with the same condition as before and

the initial point (x0, y0) is a solution of the simpler individual chance-constrained problem

with mixed-integer variables

maximize
x,y

f(x)

subject to P
[
ξi ≤ gi(x)

] ≥ 0.95, i = 1, . . . ,m

(x, y) ∈ X̃ × Ỹ .

(4.6)

The information about the 6 instances of test problems are summarized in Table 4.6,

similar to Table 4.2, but now the dimensions of the continuous and discrete parts (nx

and ny) of the decision variable (x, y) are splitted and the last column shows all solvers
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considered.

Type Problem nx ny m Dist. t̄ τ # inst. Solvers

MINLP Power Sys. Manag. 24 12 12 Gaussian 0.063 0.980 0.984 0.988 0.992 0.996 1.000 6
TRCI, TRC
BONMIN
ELBM

Table 4.6: Information about the test problems. Notation t̄ stands for the estimated CPU
time in seconds required to evaluate the objective function (oracle call).

Mixed-integer nonlinear programming problem

We consider one family of MINLP problems, where the random vector ξ follows a

multivariate Gaussian distribution.

Power system management problem. This is an energy management problem from

[24, Sec. 5.2]9, which consists on a short time planning period of two hydro power plants

with reservoirs and a wind farm. The objective is to maximize the probability that the

demands are satisfied while the profit by selling the leftover energy to the market reaches a

minimal target, after attending the local community demand, the volumes of the reservoirs

remain within bounds and at the end of the planning period the reservoirs levels must be

greater or equal to a given level. In this example, we set a planning period of 12 hours.

The decision variable x ∈ R
nx (nx = 24) corresponds to the energy produced by the hydro

power plants, y ∈ {0, 1}ny (ny = 12) models the turbines as “on/off” and the random vector

ξ ∈ R
m (m = 12) corresponds to the energy generated by the wind farm.

Since we are benchmarking derivative-free and derivative-based solvers, we do not

present data and performance profiles, only the results obtained by the algorithms by solv-

ing the MINLP instances, similar to the industrial problems. We keep using the criterion

(4.2) to say when an algorithm solved a problem.

Table 4.7 reports the problem’s data, the number of function and gradient evaluations

and CPU time of the considered algorithms.
9We are grateful to Dr. Adriano R. Delfino, from UTFPR Brazil, for providing us the data of the

problem.
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From the numerical results we can observe that our approaches TRCI and TRC performed

as good as the derivative-based algorithms specialized in solving MINLP problems: BONMIN

and ELBM. There are some points that deserve attention: TRC used the least quantity of

function evaluations, while TRCI used approximately 10 times, highlighting how expensive

it is to update the interpolation set Yk+1; even spending almost three times the number of

function evaluations and computing the gradient of the objective function, ELBM did not

spend twice the time of TRC to solve all instances, which means that solving the trust-region

subproblem (4.5) was the most time consuming of our approach.

Summarizing the numerical results of this section, our approaches performed well, even

though there is no guarantee of their convergence analysis for this class of problems. Also,

we reinforce that BONMIN and ELBM are derivative-based algorithms, which can not be

applied to probability distributions where the derivatives are not available.
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Chapter 5

Conclusion

In this thesis, we proposed a derivative-free trust-region algorithm for probability max-

imization problems. The special structure of probability functions (whose derivatives are

not available or are too expensive to be assessed) is exploited by easy-to-evaluate models

that are linear combinations of copulæ with Lipschitz continuous gradients from a dictio-

nary. Neither generalized concavity assumptions nor statistical work of copula estimation

is necessary. Our algorithm updates the copula-based model at every iteration by solving

a convex quadratic programming problem, which ensures that the model interpolates the

probability function at least at the stability center. During the iterative process, the mod-

els capture the dependence structures between the marginal distributions of the probability

function by assigning weights to the copulæ in the dictionary.

In each iteration of the algorithm, the subproblem consisting of minimizing the model

in the trust region can be solved approximately: all is needed is a feasible point satisfying

the efficiency condition (3.6). Under this assumption and mild hypotheses, the global

convergence of the algorithm is presented ensuring that any accumulation point of the

sequence generated by the algorithm is stationary.

Given the flexibility in constructing the models, two variants of the algorithm are

proposed, namely TRCI and TRC. The first one is based on standard assumptions from the

DFO literature and evaluates the probability function in at most (n + 1) new points per

109
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iteration, satisfying some geometric conditions. On the other hand, TRC requires only one

function evaluation per iteration, ensures that the model is always a copula, but makes use

of more stringent assumptions on the dictionary of copualæ (c.f. Section 3.2.3).

We assessed the numerical performance of these two variants on several instances of

PMPs for solving four types of problems, being three with continuous and one with mixed-

integer variables. For the continuous case, in which the global convergence is ensured,

numerical comparisons with several state-of-art DFO solvers highlight the good perfor-

mance of our approaches on the considered families of problems. The TRC was the only

DFO method capable to deal with the large-scale industrial problems. Its economic rule to

update the model allowed it to solve these problems in less than twenty four minutes, while

well-known derivative-based methods either failed or took over one hour of processing. The

good results motivated us to extend the numerical experiments to MINLP problems, where

our approaches also performed well in comparison with two derivative-based algorithms.

All the PMPs considered for benchmarking our proposal are log-concave, meaning that

log(ϕ(·)) is a concave function. Although the log-transformation was not employed in our

approach, but only in the derivative-based ones, our algorithm could compute (approxi-

mate) global solutions to all instances of the continuous and mixed-integer problems.

Concerning real-life applications of PMPs, our proposal enables practitioners to

• model uncertainties with more pertinent probability distributions, discarding the

need for restricting their choices to a select group of distributions whose derivative

formulæ are available and implementable;

• dismiss the non-trivial task of copula estimation (for the applications in which re-

placing the probability function with a copula is an option).

The advantages of the proposal, specified above, indicate that our DFO algorithm with

copula-based models is a promising tool for dealing with probability maximization prob-

lems. This is evidenced in the numerical results when we compare our approach with other

derivative-free trust-region algorithms with linear and quadratic models. Nonetheless, our

proposal also has shortcomings that should be addressed in future research. For instance,
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given a probability function ϕ, it is unclear to us how to certify that the dictionary of

copulæ is diversified enough to ensure Assumption A3 for the TRC variant of Algorithm

1. In other words, we are not aware of how to ensure that the exact copula related to

the distribution ϕ (according to Sklar’s theorem) is included in the space spanned by the

dictionary of copulæ. This is a theoretical subject of practical interest because it dismisses

the need for having (n + 1) interpolation points to build the model. A related question

arises when the Algorithm 1 terminates for failure on line 6, which means that the dictio-

nary is not rich enough to build a good model for ϕ and must be improved. A possible

research direction consists of investigating how to learn from the model and function to

select appropriate copulæ parameters to improve the dictionary. Another subject for future

research is related to the global convergence analysis of the algorithm for solving MINLP

problems, encouraged by the good numerical results. Since the stationarity measure is not

continuous in this case, one possibility consists in fixing the discrete variables and then

analyzing the behaviour of the continuous ones in an outer-approximation approach.
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