
UNIVERSIDADE FEDERAL DO PARANÁ

RAFAEL GOMES DE CASTRO

EXPLORING TRAFFIC MATRIX PATTERNS TO CLASSIFY SCALE-FREE NETWORK

APPLICATIONS

CURITIBA PR

2021

RAFAEL GOMES DE CASTRO

EXPLORING TRAFFIC MATRIX PATTERNS TO CLASSIFY SCALE-FREE NETWORK

APPLICATIONS

Dissertação apresentada como requisito parcial à obtenção

do grau de Mestre em Informática no Programa de Pós-

Graduação em Informática, Setor de Ciências Exatas, da

Universidade Federal do Paraná.

Área de concentração: Ciência da Computação.

Orientador: Luis C. E. Bona.

Coorientador: Celio Trois.

CURITIBA PR

2021

A todos que tornaram essa trajetória
possível.

AGRADECIMENTOS

Dedico essa tese em memória ao meu avô Otávio José Gomes, que veio a falecer dias

após a minha defesa. Agradeço todo o seu esforço por me ensinar a importância do estudo,

pois eu não teria chegado à titulação de mestre sem os seus ensinamentos, bem como aos seus

ensinamentos sobre a importância da família. Sua humildade e lições serão legados que me

acompanharão até o último dos meus dias. Serei eternamente grato por ter compartilhado ao seu

lado quase 28 anos da minha existência.

Agradeço também à minha mãe Maria Alice Gomes de Castro e à minha avó Bernardina

Furtado Gomes, que, juntamente com o meu avô, enfrentaram a árdua tarefa de educar uma

criança, e se mantiveram ao lado dela em todos os momentos. Estou encerrando mais um ciclo

da minha vida onde a participação dessas duas mulheres foi indispensável. Devo tudo a elas.

Um saudoso muito obrigado aos meus amigos Jean Carlo Kurpel Diogo e Fabrício José

de Oliveira Ceschin, que me ajudaram com o estudo dos algoritmos utilizados na minha tese; e

aos meus amigos Danielle de Fátima Ivanchechen Diego Hirt Santos Rodrigues e Vinícius Fülber

Garcia, cuja caminhada durante a graduação e mestrado tornou-se mais fácil com a parceria

deles. Agradeço também aos meus colegas Egon Hilgenstieler, Juliana Matsumoto, Luiz Bettoni,

Débora Sandi e Eliane Cajola, que trouxeram palavras de apoio em momentos difíceis, me

ajudaram a formular planos para superá-los, e a ensaiar a apresentação para defesa. E a todos

os meus amigos que formei durante a minha trajetória acadêmica, a gratidão à vocês será para

sempre.

RESUMO

A evolução da computação e das redes de computadores permitiu a interconexão de vários

computadores, agregando seus poderes de processamento para formar arquiteturas de computação

de alto desempenho (HPC). As aplicações executadas nesses ambientes computacionais processam

e comunicam grandes quantidades de informações, levando várias horas ou até dias para concluir

suas execuções. Portanto, entender suas demandas de computação e comunicação é essencial

para fins de gerenciamento. Embora a maioria das aplicações HPC sejam implementadas

com algoritmos conhecidos que tendem a seguir um determinado padrão em computação e

comunicação, os métodos clássicos de análise de tráfego não são precisos para classificá-los.

Nesse sentido, argumentamos que observar e entender os padrões visuais nas matrizes de

tráfego (TMs) dessas aplicações pode fornecer um método de classificação preciso. Neste

trabalho, propomos o SCTReco (Scale Free Traffic matrices Recognition), um framework que

mantém um banco de dados com caraterísticas visuais extraídos dessas TMs e aplica técnicas

de aprendizado de máquina e aprendizado profundo para classificar as aplicações HPC que

estão consumindo a rede, independentemente do número de nós computacionais que a executam.

O modo de classificaçao do SCTReco usa algoritmos de pré-processamento, extratores de

características e classificadores de Aprendizado de Máquina (ML). Equipamos o framework

com os conhecidos classificadores Random Forest (RF) e Support Vector Machine (SVM);

como extrator de características são usados o Padrão Binário Local Uniforme (ULBP), Padrão

Binário Local Robusto (RLBP), Matriz de Coocorrência em Nível de Cinza (GLCM) e Análise

de Componente Principal (PCA); e pré-processando as TMs com interpolação do vizinho mais

próximo, desfoque gaussiano, recorte e dilatação. Com essa abordagem, SCTReco pôde ser

treinado com TMs de 128 nós e reconheceu três aplicativos HPC reais executados em 256 nós de

computação com 99,76% de precisão e 85,23% reconhecendo TMs de 512 nós de computação.

Palavras-chave: Redes Definidas por Software, Padrões de Comunicação, Aplicações HPC

ABSTRACT

The evolution of computing and computer networking allowed multiple computers to

be interconnected, aggregating their processing powers to form High-Performance Computing

(HPC) architectures. Applications running in these computational environments process and

communicate huge amounts of information, taking several hours or even days to complete

their executions. So, understanding their computation and communication demands is essential

for management purposes. Although most HPC applications are implemented with known

algorithms that tend to follow a certain pattern in computing and communication, classical traffic

analysis methods are not accurate to classify them. In this context, we argue that observing

and understanding the visual patterns in the traffic matrices (TMs) of these applications can

provide an accurate classification method. In this work, we propose SCTReco (Scale Free Traffic

matrices Recognition), a framework that maintains a database with visual characteristics extracted

from these TMs and applies machine learning techniques to classify the HPC applications that

are consuming the network, regardless of the number of computational nodes that execute it.

SCTReco’s classification mode uses preprocessing algorithms, feature extractors, and Machine

Learning (ML) classifiers. We equipped the framework with the well-known classifiers Random

Forest (RF) and Support Vector Machine (SVM); using as feature extractor the Uniform Local

Binary Pattern (ULBP), Robust Local Binary Pattern (RLBP), Gray-Level Co-occurrence Matrix

(GLCM), and Principal Component Analysis (PCA); and preprocessing the TMs with nearest

neighbor interpolation, Gaussian blur, crop and dilation. With this approach, SCTReco could

be trained with TMs of 128 nodes and recognized three real HPC applications executed in 256

computing nodes with 99.76% of accuracy, and 85.23% recognizing TMs of 512 computing

nodes.

Keywords: Software Defined Network, Communication Patterns, HPC Applications

LISTA DE FIGURAS

2.1 Spatial behavior through traffic matrices . 16

2.2 3-D temporal behavior representation . 16

2.3 Communication behavior varying the amount of computing nodes 17

2.4 SDN architecture . 18

3.1 Diagram of LBP operator coding process . 24

3.2 RLBP and LBP applied to a texture image . 25

3.3 Calculation example of GLCM . 27

3.4 Maximal margin and hyperplane in SVM . 32

3.5 Selecting and grouping the TM patterns. 32

3.6 TReco’s flowchart for classifying the applications. 33

4.1 SCTReco’s flowchart for classifying the HPC applications. 34

4.2 Evaluations’ flowchart . 36

4.3 SCTReco’s preprocessing step using interpolation. 37

4.4 Classification results using 128x128 TMs for training and rescaling the TMs to

50x50. 1) The left barchart shows the accuracy values classifying 256x256 TMs.

2) The right barchart shows the accuracy values classifying 512x512 TMs. 38

4.5 SCTReco’s preprocessing step using Gaussian blur. 39

4.6 Classification results using blur preprocessing and 128x128 TMs for training. 1)
The left barchart shows the accuracy values classifying 256x256 TMs; and 2) the

right barchart shows the accuracy values classifying 512x512 TMs.. 40

4.7 SCTReco’s preprocessing step using crop. 41

4.8 Classification results using 128x128 TMs for training and cropping the 128x128

middle values of test TMs. 1) The left barchart shows the accuracy values

classifying 256x256 TMs; and 2) the right barchart shows the accuracy values

classifying 512x512 TMs. 41

4.9 SCTReco’s preprocessing step using dilation, inversion and resize. 42

4.10 Classification results using 128x128 TMs for training, dilating the test TMs

and rescaling them to 100x100. 1) The left barchart shows the accuracy values

classifying 256x256 TMs; and 2) the right barchart shows the RF metric values

classifying 512x512 TMs. 43

4.11 Classification results using 128x128 TMs for training, dilating the test TMs

and rescaling them to 100x100. 1) The left barchart shows the accuracy values

classifying 256x256 TMs; and 2) the right barchart shows the RF metric values

classifying 512x512 TMs. 44

LISTA DE TABELAS

4.1 Results of interpolation method rescaling the TMs for 50x50, 100x100, 128x128,

and 256x256 scale. 38

4.2 Results of blur method using kernel sizes 1x1, 3x3, 5x5, and 10x10. 39

4.3 Results of dilation method using kernel sizes 1x1, 3x3, 5x5, and 10x10. 42

LISTA DE ACRÔNIMOS

API Application Program Interface

CNN Convolutional Neural Network

DPI Deep Packet Inspection

FTP File Transfer Protocol

GPU Graphics Processing Unit

HPC High-Performance Computing

IDS Intrusion Detection System

IP Internet Protocol

LBP Local Binary Pattern

ML Machine Learning

MPI Message Passing Interface

NPB NAS Parallel Benchmarks

PPGINF Programa de Pós-Graduação em Informática

QoS Quality of Service

RF Random Forest

RFB Radial Basis Function

RLBP Robust LBP

SDN Software-Defined Networking

SVM Support Vector Machines

TIM Topology Information Module

TM Traffic Matrix

UFPR Universidade Federal do Paraná

ULBP Uniform LBP

VM Virtual Machine

SUMÁRIO

1 INTRODUCTION . 11
2 COMMUNICATION PATTERNS IN HIGH PERFORMANCE COMPU-

TING AND SOFTWARE DEFINED NETWORKS. 13
2.1 HIGH PERFORMANCE COMPUTING . 13

2.2 COMMUNICATION PATTERNS IN HPC . 14

2.3 SOFTWARE DEFINED NETWORKS. 17

2.3.1 HPC with SDN . 19

2.4 CHAPTER REMARKS. 20

3 APPLICATION CLASSIFICATION PROCESSING. 21
3.1 PREPROCESSING ALGORITHMS . 21

3.1.1 Blur . 21

3.1.2 Interpolation. 22

3.1.3 Dilation . 22

3.2 FEATURE EXTRACTORS . 23

3.2.1 Local Binary Pattern . 24

3.2.2 Gray Level Co-occurrence Matrix . 26

3.2.3 Principal Component Analysis . 28

3.3 MACHINE LEARNING . 29

3.3.1 Random Forest . 30

3.3.2 Support Vector Machine . 30

3.4 TRECO . 31

4 SCTRECO . 34
4.1 DATASET ACQUISITION AND EXPERIMENTS DEFINITION 34

4.2 INTERPOLATION . 37

4.3 GAUSSIAN BLUR . 38

4.4 CROP . 40

4.5 DILATION . 41

4.6 COMPARISON WITH TRECO . 43

5 CONCLUSIONS . 45
REFERÊNCIAS . 46

11

1 INTRODUCTION

High-Performance Computing (HPC) has become one of the most important methods to

do scientific research. In the current society, HPC has an important influence on National strategy.

At present, HPC has been used in the fields of aerospace, automotive, nuclear simulation, weather

forecast, and so on. People can do many experiments that normal computers are not capable of

by HPC, so that huge real experiments fees can be saved and there will be no bad influence on

the environment (Bo et al., 2012).

However, resource management is a hard problem, due to the scale of modern data

centers, the heterogeneity of resource types and their interdependencies, the variability and

unpredictability of the load, and the range of objectives of the different actors (Jennings e Stadler,

2015). Furthermore, the ideal solution has to combine performance, cost, and resilience too.

Considering these requirements, Software Defined Network (SDN) has several features that make

it attractive for HPC (Lee et al., 2016).

SDN separates the control’s logic from the data forwarding devices. In traditional

networks, the network administrators have the difficult task to reconfigure each network device

individually any time a new configuration is needed. Without this vertical integration, networks

built over the SDN paradigm can be configured on the fly, bringing to the network the dynamism

necessary to HPC applications (Nunes et al., 2014).

Identifying and categorizing network traffic flows are fundamental to a variety of

networking applications including management, Quality of Service (QoS), and security. In

addition, such flow-level classification needs to be effective and efficient. The methodologies of

flow-level classification range from protocol port identification, deep packet inspection, and, more

recently, Machine Learning (ML) approaches. ML-based methods have undergone extensive

investigation, in particular, due to the competitive detection accuracy (He et al., 2016).

ML-based algorithms simply require obtaining a set of flow features, obtained from

a switch when the traffic passes through (He et al., 2016). Using large data set and calculate

features, ML-based algorithms can construct robust classification models. Moreover, the

statistical properties-based features of the network traffic are also becoming important for

ML-based classifications such as source address and destination address (Spatscheck et al., 2014).

The majority of HPC applications are implemented using well-known patterns. These

patterns are known in the literature as dwarfs (Asanovic et al., 2006). In each dwarf, there is

an essentially similar amount of information transmitting among a set of computational nodes.

Although HPC applications tend to follow a “well-behaved” communication pattern, the classical

methods of traffic analysis, such as port-based, Deep Packet Inspection (DPI), or even using ML

with a multiple and diverse vector of features (Eerman et al., 2006; Fahad et al., 2014b; Soysal e

Schmidt, 2010b; Zhang et al., 2012) are not accurate for classifying them.

In the literature, very few work explored the communication patterns of HPC applications,

extracting and inspecting their Traffic Matrices (TMs) as a way to capture their communication

patterns. In (Trois, 2017), the authors introduced a novel method that renders different

visual textures for each applications’ communication patterns, named TReco (Traffic matrix

Recognition)1. It relies on two well-known textural representations, Uniform Local Binary

Pattern (ULBP) (Ojala et al., 2002) and Robust Local Binary Pattern (RLBP) (Zhao et al., 2013a)

for extracting the feature vectors of the TMs. Despite the classification accuracy has been over

1TReco is open-source, publicly available at: www.inf.ufpr.br/ctrois/treco/

12

99%, there was a limitation for keeping this high accuracy, requiring that the TMs for training

must be the same size as for testing.

In realistic scenarios, clusters are often partially allocated to applications, i.e. the

application can typically run at different scales varying drastically the number of communicating

nodes, depending on the size of the problem or resource availability. So, now we propose a

framework for classifying HPC applications based on TReco that is TM textural centric.

SCTReco (Scale Free Traffic matrices Recognition) is grounded in (Trois, 2017).

Traffic matrices indicates what is used as knowledge base for applications recognition. Scale-free

indicates that the framework is able to recognize applications without concern of them scales. In

our tests, we explored the traffic matrices with different scales to classify the network applications.

Since TReco already combines feature extractors and classifiers able to recognize TMs

with the same scale, SCTReco focus mainly on making the TMs as similar as possible before

feature extraction and classification. To do so, we separately evaluated different preprocessing

strategies: interpolation, blur, crop, and dilation, aiming to identify the one that causes the highest

recognition rate in a dimenison-free scenario.

Beyond the TReco’s feature extractors ULBP and RLBP, we explored the feature

extractors Gray Level Co-occurrence Matrix (GLCM), and Principal Component Analysis (PCA).

SCTReco maintains the TReco’s classifiers Random Forest (RF) and Support Vector Machine

(SVM). In our evaluations, we noticed that SCTReco recognized with 85.23% of accuracy the

TMs with scale 4x bigger than that used in training step. This recognition rate was achieved

training SCTReco with 128x128 TMs and testing 512x512 TMs. Using RLBP and SVM,

SCTReco reached an accuracy value of 99.76% recognizing three applications running in HPC

infrastructures. This accuracy value was reached using 128x128 TMs for training and 256x256

TMs for testing.

The organization of the rest of this paper is presented below. Chapter 2 explains HPC and

SDN, describing the main advantages of the usage of this network paradigm as infrastructure to

build an HPC when compared with traditional networks. Chapter 3 focus on the communication

patterns, explaining the computational dwarfs described in (Asanovic et al., 2006) and also

shows the classification strategies used in our work. Chapter 4 explains our proposed framework

SCTReco to deal with the limitation of TReco, and contains the results obtained by SCTReco.

Finally, Chapter 5 concludes our work.

13

2 COMMUNICATION PATTERNS IN HIGH PERFORMANCE COMPUTING AND
SOFTWARE DEFINED NETWORKS

In High-Performance Computing (HPC) applications, the interconnection bandwidth

among computing nodes is essential. Software Defined Network (SDN) allows the identification

and programmatically treatment of each network flow, using a predefined set of rules, without

the intervention of the network operator, that is activated by the flow of specific traffic. Coupling

this paradigm with High Performance Computing (HPC) allows a tighter integration of network

resource and computational power, bringing to HPC the ideal combination of performance, cost,
scalability, and resilience (Lee et al., 2018; Lee et al., 2016).

This chapter contains five sections. In Section 2.1, we describe the main issues found

in traditional HPC clusters and common strategies found in the literature to solve them. In

Section 2.3, we explain the concepts of SDN, including its architecture, protocols, and operation

mode. The benefits of SDN to HPC clusters are explained in Section 2.3.1. The Section 2.2

describes the communications patterns found in HPC applications. Finally, the Section 2.4

concludes the chapter.

2.1 HIGH PERFORMANCE COMPUTING

In the last few decades, scientists use HPC applications to create and predict complex

phenoms, for example, weather forecasting, prediction of natural disasters, bacterial profiling,

animal genotyping, and so forth (Gupta e Milojicic, 2011). Due to the considerable time

that HPC applications take for finishing their executions, many researchers are studying and

presenting proposals for accelerating them. The application’s performance may be affected by

several aspects, creating multiple study opportunities and making this area widely researched.

There are works modifying scheduler for optimizing the job placement (Renner et al., 2015;

Al-Fares et al., 2010; Lee et al., 2014), using FPGA (Dimond et al., 2011; Vassiliev, 2017)

or GPU (Erlacher et al., 2017; Tangherloni et al., 2017), proposing improved programming

languages and frameworks (Nugteren, 2017; Kuster, 2017), employing cache (Yu et al., 2017;

Gémieux et al., 2017), taking advantage of cloud resources (Righi et al., 2016; Galante et al.,

2016), and so forth.

Another aspect used for improving the HPC applications is the fact that the wide majority

is implemented using well-known numerical methods (Asanovic et al., 2006). A computational

dwarf can be defined as “a pattern of communication and computation common across a set of

applications”. These communication and computation patterns are also intensely researched and

have been used for optimizing the communication on networks-on-chip (Werner et al., 2017),

GPU (Wang et al., 2016), multiprocessor architectures (Prabhakar et al., 2017), and ameliorating

the performance of applications (Rubin et al., 2014). Section 2.2 provides more details about the

communication patterns found in HPC applications.

The network system is also widely studied for improving the performance of these

applications. The main reason is that the network performance did not evolve at the same

rate that other HPC resources, becoming a bottleneck. For example, comparing the network

transmission rate with the individual node computational power, in last decade, the computational

power grew 36 times more than the network bandwidth (Jain, 2016). So, understanding the

communication demands of HPC applications and classifying them is a challenge in networking

research (Srivastava et al., 2016) because it can be instrumental in several management activities,

14

such as monitoring (Chowdhury et al., 2014; Van Adrichem et al., 2014; Yu et al., 2014),

expansion planning (Simmons, 2014), traffic engineering (Trestian et al., 2013; Wang et al., 2008;

Akyildiz et al., 2014), detection of anomalies (Giotis et al., 2014), and energy saving (Yao et al.,

2016).

Trying to improve current HPC routing solutions, avoiding congestion in the network,

Samuel et al. (2017) introduced a scalable routing paradigm for HPC networks that decouples

intra- and inter-application flow contention named Routing Key. Routing Key contains two

main algorithms: Application Routing Keys (ARK) and Network Key Routing (NKR). The

ARK algorithm proactively allows each self-aware application to route its flows according to

a predetermined routing key. In NRK algorithm, a centralized scheduler chooses between

several routing keys for the communication phases of each application, and therefore reduces

inter-application contention while maintaining intra-application contention-free routing and

avoiding scalability issues.

Each application is then associated with this set of different routing keys. Using both

ARK and NRK, Samuel et al. improved the communication runtime by up to 2.7x, but their work

considers only HPC performance issues. To bring more performance, dynamism, and ease of

configuration to HPC clusters, the idea of HPC infrastructures constructed over programmable

networks (SDN) has been proposed.

Optimizing the communication of HPC applications is also challenging due to the

limited control over the system environment. Unlike the computation resources that are typically

known a priori and are fully under the control of an executing application, the availability of

network resources may neither be predictable nor be completely under the control of an executing

application (Jain, 2016). The common assumption is that HPC applications run on a fixed number

of processes, where the network is considered a static resource, working as a connectivity service

that cannot be controlled or modified (Righi et al., 2016).

Moreover, the current network stack provides a best-effort service model for hosts

communication, which is not enough to satisfy the on-demand data access required by these

applications (Sakr et al., 2011). For combating these problems, SDN emerged as an architecture

decoupling the network control and forwarding functions, enabling the network to become

directly programmable, and the underlying infrastructure being abstracted for applications and

services (ONF, 2013). One benefit offered by SDN is that the network can be modified according

to the user requirements, inclusive for suiting transient demands, allowing runtime adjustments

for improving the performance of specific applications.

In SDN, forwarding hardware is decoupled from control decisions, with this logically

centralized as a software-based controller. There is a need for SDN-based HPC solution for

enhanced throughput and better utilization of bandwidth for meeting the need of today’s Scientific

and Business computation needs (Krishna et al., 2017). Section 2.3 provides more details about

the main concepts, protocols, operation mode, and benefits of SDN. In the next section, we

introduce the communications patterns found in HPC applications.

2.2 COMMUNICATION PATTERNS IN HPC

As HPC applications operate with large volumes of data that flows across the computation

nodes, any minimal improvement in the communication performance can result in a much better

performance at the execution time. Understanding the application pattern is a great step to achieve

better knowledge about the optimal network configuration and thus reach better performance

when running this application.

15

In 2003, Vetter and Mueller develop a study about the communications patterns present

in several scientific applications that were extracted from benchmarks for large cluster architecture

(Vetter e Mueller, 2002). Through Message Passing Interface (MPI), they analyzed inherent

characteristics present in each application: point-to-point and collective communication, revealing

several similarities between them. In point-to-point communication, they measured the number

of messages, type, payload size, and destination. For collective communication, they determined

the type, frequency, and payload size.

Colella made contributions beyond traffic pattern identification using some packet header.

Colella identified seven patterns in important numerical methods for science and engineering,

naming them as seven dwarfs (a Snow White and the Seven Dwarfs satire). He formally called

them Dense Linear Algebra, Sparse Linear Algebra, Fast Fourier Transform, Structured Grids,

Unstructured Grids, Particles, and Monte Carlo. These methods constitute classes defined

by similarity in computation and data movement (Colella, 2004). Asanovic et al. updated

Colella’s list with six more methods and renamed three already known methods. Fast Fourier

Transform was renamed to Spectral Methods, Particles was renamed to N-Body Methods and

Monte Carlo came to be called MapReduce. The new dwarfs are Combinational Logic, Graph

Transversal, Dynamic Programming, Backtrack & Branch+Bound. The importance of Colella’s

and Asanovic’s works lies in the fact that distributed parallel programs fall into at least one of

these 13 dwarf classes of communication patterns. In addition, if the variance of the expressed

patterns is bounded, identification of the dwarf class should be possible solely from observed

communications. An interesting approach to be considered when analyzing the communication

patterns is the measurement of the traffic matrix (TM). A TM represents the amount of data traffic

between origin and destination in the network. TMs can be useful in many network engineering

applications, such as network survivability analysis, traffic engineering, and capacity planning.

With the use of TMs, spatial and temporal behavior can be analyzed.

Spatial behavior can be formalized as a traffic matrix MB, where each position MB[i][j]
holds the number of bytes transmitted from node i to node j during a specific period of time. The

matrix was normalized to its maximum value for graphical visualization purposes. For graphical

visualization the images are representing in grayscale: black cells are the communicating pair of

nodes and white cells indicate that no communication happened. Figure 2.1 gives the spatial

behavior of selected applications, showing the total amount of data exchanged throughout their

execution time. These applications are a set of benchmarks developed by NASA Advanced

Supercomputing Division, called NAS Parallel Benchmarks (NPB). From these benchmarks,

those that most exchanged information among computation nodes are bt, cg, ft, and lu. It

is possible to see that these applications feature different spatial communication behavior. ft
exchanges almost the same amount of data across all nodes, transmitting a maximum of 185.7

MB by a pair of nodes. cg is the program that most exchanged data, considering the pair of nodes

(597.1 MB), however, as we can see in this spatial behavior matrix, only a few pairs of nodes

communicated. At least, the total amount of data transmitted from all computation nodes are

also displayed (Trois et al., 2016).

Temporal behavior includes the notion of time to MB. Formalizing, MT [t](MB[i][j])
describes that each instance of t holds a spatial behavior matrix (MB[i][j])t ′′, filled with the

amount of data transmitted during the interval [t” - t’], where t’ is the instance of time just

before t”. Figure 2.2 shows a graphical representation of MT for ft. At the moment t(1), it is

initializing, and there is an intensive communication among the master node i8 with all other

nodes. In t(2), the node i1 starts data transmission to i2 and, in the following moments, to i3, i4,

i5, successively (Trois, 2017).

16

Figura 2.1: Spatial behavior through traffic matrices

Figura 2.2: 3-D temporal behavior representation

Another interesting aspect that TMs can graphically show us is the pattern presented

in the application communications. Regardless of the number of the computation nodes or the

input data, it is possible to visually identify the communication patterns on their TMs. Figure

2.3 shows the TMs generated when executing lu application in HPCs with different number of

computing nodes (8, 16 and 25 nodes).

To automatically set the network with the best configuration for the running HPC

application, the first challenge is to detect which application is in execution. Existing proposals

for detecting the communications can be inserted in one of the three groups, where no one of

these three groups can be considered a perfect solution. The first approach uses a port-based

classification process, a strategy known to be inaccurate and leading many applications to adopt

dynamic port numbering to overcome the performance limitations of networks. The second

approach uses deep packet inspection (DPI). This strategy examines the payloads of the packets

for classifying traffic, demanding high computational power, and is impossible to be done without

specific knowledge about the application protocols. Furthermore, there are applications that use

cryptographic methods to ensure that only the destination node will be able to read the message,

making DPI impossible. The last approach uses ML algorithms for traffic classification. In this

method, intrinsic and statistical flow are exploited as representations for feeding ML classifiers.

Packet size average and variance, the total number of packets bytes, flow duration, server, and

client port numbers are examples of packet information used on works involving ML in traffic

classification. Most of these works reach high accuracy.

Several works were published aiming to classify applications according to dwarfs

computing methods. Rodinia (Che et al., 2009) is an open-source benchmark suite that

17

Figura 2.3: Communication behavior varying the amount of computing nodes

implements a wide range of applications with different computation and communication patterns.

The implemented applications can be mapped to a subset of the 13 Dwarfs. Rodinia uses OpenMP

and CUDA in order to compare multicore CPUs vs. manycore GPUs. Similar to Rondinia,

Springer (2011) proposed the use of Dwarfs focused on GPU implementations. They discuss

three benchmark suites that implement a subset of the 13 Dwarfs on the GPU, list typical problems

related to efficient GPU implementations, and discuss the specific problems and performance

with respect to some GPU Dwarfs.

OpenDwarfs is a high-performance benchmark computing suite for heterogeneous

architectures (Feng et al., 2012). This suite offers benchmarks that are classified by thirteen dwarf

categories, with implementation in OpenCL, a vendor-agnostic and open-standard computing

language for parallel computing. OpenDwarfs has an advantage over Rodinia, being this the

most mature suite, but that covers all possible dwarfs. In the next section, we present the main

concepts, protocols, operation mode, and benefits of SDN.

2.3 SOFTWARE DEFINED NETWORKS

Traditional networks are vertically integrated, with the control plane (that decides how

to handle network traffic) and data plane (that forwards traffic according to decisions made by the

control plane) bundled together inside each network device (Kreutz et al., 2015). This vertical

integration imposes the difficult task for network administrators to reconfigure each network

device individually any time a new configuration is needed. As typical networks have numerous

switches, routers, and other forwarding devices, network management and performance tuning

are challenging and thus error-prone (Nunes et al., 2014).

Breaking the vertical integration by separating control’s logic from the underlying

routers and switches that forward the traffic, SDN (Software-Defined Networking) brings to the

18

network a centralized logical control that simplifies the reconfiguration of the network. With

the separation of control and data planes, network switches become simple forwarding devices

(Nunes et al., 2014). With a centralized control plane in a single device, the controller has a view

of the entire network which enables a better balancing of arriving flows, allows the computation

nodes being relocated according to their communications patterns and also allows the switches’

flow tables to be rearranged for optimizing the forwarding (Kreutz et al., 2015).

As shown in Figure 2.4, SDN architecture is composed of a control plane/controller and

a data plane. The controller provides an abstract view of the entire network infrastructure. The

most common controller used in SDN is the NOX controller. The data plane contains all the

forwarding devices. The correct communications between the network controller(s) and data

devices require protocols interpreted by them. SDN protocols are classified into "regions". If a

network has more than one controller (multi-controller-based architecture), East-West protocols

guarantee communication between the various controllers. Northbound application programming

interfaces (APIs) represent the software interface between the software modules of the controller

platform and the SDN applications running atop the network platform. Named as Southbound

protocols, OpenFlow is the most popular SDN protocol that provides the information exchange

between the controller(s) and the data devices.

Figura 2.4: SDN architecture

An OpenFlow switch is composed of flow and group tables. Each flow table contains one

or more flow entries, specific to a particular flow and is used to perform lookup and forwarding.

The OpenFlow controller is able to manage these flow entries throw messages exchange between

the switch and the controller. With a single look-up on the flow table, the switch can perform

the desired forwarding for each incoming packet. The flow entries are sequentially numbered

on the flow table, starting by 0. For every incoming packet, the switch runs over each flow

entry presented on the flow table, and, founding one rule that matches with the packet, the

corresponding forwarding is executed. An important point is that flow entries may also contain a

group. A group table consisting of group entries offers additional methods of forwarding (i.e.

19

broadcast, multicast, and link aggregation). A group entry is made by a group identifier, a group

type, counters, and a list of action buckets (each action contains a set of actions to be executed

and associated parameters).

OpenFlow also provides a basic set of management tools, useful to control features such

as topology changes and packet filtering. This protocol basically consists of many OpenFlow-

enabled switches and one or more OpenFlow controllers. An OpenFlow switch contains one or

more flow tables and a group table and performs packet lookups and forwarding. The OpenFlow

controller is responsible for the distribution of appropriate instructions to the data devices, in

order to maintain all the network protocols and policies.

2.3.1 HPC with SDN

SDN functionality provides ample opportunities both at the application level and the

system level to optimize for HPC workloads by providing custom adaption for the traffic patterns.

With SDN, the HPC systems can reach an ideal combination of performance, cost, scalability,

and resilience (Lee et al., 2016).

• Performance: SDN allows for dynamic reconfiguration of the network to provide

per-flow resource management and routing, which is significantly more flexible than the

deterministic routing scheme that is widely employed in the current HPC clusters. The

ability to manage traffic at the flow level potentially enables network resources to be

utilized much more effectively.

• Cost: SDN is designed for Internet and data center applications with large numbers of

computing nodes. The economics of scale dictates that SDN technology will be more

cost-effective as the technology matures.

• Scalability: The network operations in an SDN are simpler than those in networks with

advanced adaptive routing schemes such as the global adaptive routing in the Cray

Cascade system. Hence, SDN is more scalable than interconnects with advanced adaptive

routing schemes and may strike the ideal balance between the network complexity and

capability for future HPC systems.

• Resilience: The flexible system reconfiguration in a SDN facilitates resilience manage-

ment at the network level, which has become increasingly important as the system size

increases.

The Message Passing Interface (MPI) library is a de facto standard for developing HPC

application (Achour e Nasri, 2012). Takahashi et al. (2015) implemented some SDN enhanced

MPI primitives; they developed an MPI Bcast (broadcast) for eliminating duplicate packets in the

network and an MPI Allreduce that makes a communication plan to forward the reduction through

distinct paths. Date et al. (2015) discussed the integration of SDN with HPC infrastructure,

extending Takahashi et al. (2015) work by incorporating a network-aware HPC job placement.

They also proposed using SDN for modifying the forwarding on network failures.

Polezhaev et al. (2014) proposed two modifications on BackFill job placement algorithm

(Feitelson e Weil, 1998) for making it network-aware. They also used SDN for modifying the

network to improve inter-job communication. Similarly, Jamalian e Rajaei (2015) proposed A

SDN Empowered Task Scheduling System (ASETS) that allows to schedule data-intensive HPC

tasks in a Cloud environment. They used the “bandwidth awareness” capability of SDN to better

use the bandwidths when assigning tasks to virtual machines.

20

Alsmadi et al. (2016) proposed SDN-HPC, a model that allows executing multiple HPC

jobs simultaneously by creating multiple network slices. Their approach observes the hosts that

are exchanging high volumes of traffic and avoids placing new HPC jobs on these hosts. Finally,

Wu et al. (2016) implemented a network congestion detector based on the traffic monitoring

mechanism using SDN. They also designed a traffic flow scheduler that is capable of dynamically

redistributing the network traffics for fat-trees rerouting congested paths to the congestion-free

ones.

With these advantages, HPC systems and applications can take advantage of SDN

features to maximize their effectiveness. Instead, using SDN, the network can be configured on

the fly to operate with the best performance for the running application (Kreutz et al., 2015),

without the intervention of the network operator, avoiding human errors in the reconfiguration.

So, in our work, we focus on identify which HPC application is running on SDN infrastructure.

One strategy to identify the running application in an HPC cluster is observing its communication

pattern.

2.4 CHAPTER REMARKS

In this chapter, we introduced the concepts and main issues found in traditional HPC

clusters. We also saw some efforts for characterizing the communication patterns through some

information such as message type, destination, frequency distributions, and size. We presented

the concept of dwarfs for classifying the communication patterns expressed by HPC applications.

We related their communication requirements, mapping the application areas and exposing the

importance of dwarfs in several computational areas.

We investigated how the communication patterns can be expressed through traffic

matrices, considering their spatial and temporal behaviors. We concluded that these applications

tend to transmit the same amount of data across the same computing nodes and we call this

as a “well-behaved” communication pattern. Computational approaches for classifying the

communications were also described in this chapter.

Lastly, we described the SDN topology and the advantages compared with traditional

networks. Following, we saw how SDN can optimize HPC workloads. Despite the diversity of

published works using SDN for optimizing applications, to the best of our knowledge, Trois

(2017) was the first one to exploit the well-behaved communication patterns expressed by the HPC

applications for reprogramming the network, aiming to accelerate the applications. In the next

chapter, we present this first attempt of HPC applications optimization using the communication

patterns, and the algorithms used in our work to improve it.

21

3 APPLICATION CLASSIFICATION PROCESSING

As HPC applications present well-known communication patterns and the SDN offers

flexibility for modifying the network dynamically, we can develop a high-level abstraction using

the communication patterns for programming the network, aiming to speed up HPC applications.

Trois et al. started the development of this high-level abstraction, developing a TM-based

framework, named TReco, that uses ML approaches to identify the running HPC application

(Trois et al., 2018).

Although the innovative approach, TReco only can recognize applications when the

TMs used in the training phase are the same as that used in the test phase. Considering that HPC

clusters can have n number of computing nodes, TReco needs to be upgraded to make it viable.

Now, we are proposing SCTRx, a framework able to classify TMs even when trained with TMs

of another scale.

The general idea behind this work is handle the TMs as images and classify them

using image classification strategies. So, we used ML approach to recognize TMs, applying

preprocessing algorithms and feature extraction to improve the recognition rate.

This chapter describes the preprocessing, feature extraction and recognition algorithms

used in our work. Section 3.1 describes the preprocessing algorithms; Section 3.2 present the

feature extractors; Section 3.3 shows the ML algorithms; and finally Section 3.4 present the

framework that precedes our approach on TMs recognition.

3.1 PREPROCESSING ALGORITHMS

The purpose of image preprocessing is to eliminate irrelevant information in the image,

restore useful real information, enhance the detectability of the relevant information, and simplify

the data to the maximum, thereby improving the reliability of image feature extraction and

recognition (Zhang et al., 2020). One common method is weighted average grayscale, which

consists of transforming a RGB image into a one-channel image using the following function to

do it:

Gray(i, j) = 0.299 ∗ R(i, j) + 0.578 ∗ G(i, j) + 0.114 ∗ B(i, j), (3.1)

where R(i,j), G(i,j) and B(i,j) are the value of red channel, green channel and blue channel,

respectively, in the pixel (i,j) of the image.

Beyond weighted average grayscale, our work is applied to other preprocessing algo-

rithms, presented in this chapter. First, we will explain the blur algorithm, next we will explain

the interpolation, and finally, we will show the dilation algorithm.

3.1.1 Blur

A blurred image can be expressed as a matrix B, where

B = K × S + N (3.2)

K, S and N are matrices respectively representing the blur kernel, the latent sharp image, and

additional noise. The × denotes convolution (Koh et al., 2021).

22

In Vasiljevic et al. (2017), the authors studied the effects of using blurry images as

input to algorithms for recognition. They found that there was a fair bit of generalization across

certain blur types, but there was a limited generalization from radially symmetric defocus blur to

oriented one-scalabe motion kernel. While precise knowledge of the blur in an image is helpful,

recognition with unknown blur can be made almost as robust by using models trained with a

diverse set of kernels. With different types of blur on training images, the models can computing

blur-invariant features in their hidden layers.

3.1.2 Interpolation

Image interpolation is a term often used with different terminologies in literature, like

image scaling, image resampling and image resize (Parsania e Virparia, 2016). Interpolation

techniques determine the values of a function at positions lying between its samples. One

common interpolation technique is called nearest neighbor, and its the simplest interpolation. In

this method, each interpolated output pixel is assigned the value of the nearest sample point in

the input image. The interpolation kernel for nearest neighbor

h(x) =

{
0, |x| > 0

1, |x| < 0
(3.3)

The frequency of the nearest neighbor kernel is

H(ω) = sinc(ω/2) (3.4)

In Sarwinda et al. (2021), the authors used ResNet-18 and ResNet-50 architecture to

classify colorectal cancer images into benign and malignant. The authors resized the fundus

image into a 224 x 224 grid. The weights of ResNet were initialized using Stochastics Gradient

Descent’s with standard momentum parameters. ResNet-50 was better than ResNet-18 and

reached accuracy between 73%-88%, sensitivity value between 64%-96%.

3.1.3 Dilation

Dilation is one of the operators in the area of mathematical morphology. The effect of

this operator on binary or grayscale images is enlarging the boundaries of foreground pixels

using a structuring element. Mathematically, the dilation of A by B, denoted as A ⊕ B, is defined

in terms of set operation:

A ⊕ B = {z |(B̂)z ∩ A � ∅}, (3.5)

where ∅ is the empty set and B is the structuring element, B̂) is the reflection of set B,

and (B)z is the translation of B by point z = (z1, z2) (Wang e Chung, 2018).

In Wang e Chung (2018), the authors proposed a neural network framework able to

detect gliomas in Magnetic Resonance (MR) brain images. Gliomas are primary brain tumors

frequently found in adults, and the accurate identification of the affected regions is crucial in

clinical diagnosis, treatment planning, and post-operation evaluation. Between the obstacles to

accurate identification of gliomas, there is the variance of tumor size, shape, and location.

This approach used U-Net, a neural network that takes the full image context into

account, and applied dilation to the ground truth of training samples. The dilation allowed the

framework to learn the complex details of tumor structure in a coarse-to-fine approach. The

U-Net architecture includes 3 convolutional layers of size 3x3, each of them followed by ReLU

23

activation function and batch normalization. Max-pooling layers and up-sampling of size 2x2

are adopted in the U-Net architecture too.

The authors observed that the dilation (1) expanded the tiny regions and connects the

close but separated pieces, helping the network to focus on higher level features; (2) prevented

overfitting because of the dynamic changes during the training; (3) the coarse-to-fine interface

boosted the learning speed as well as the training efficiency. This approach showed improvement

especially on rather small regions like tumor core and enhancing tumor and low computational

cost for new test images.

The method was evaluated on the BRATS2015 dataset using the HG training set, which

contains MR images from 220 patients. The HG images were randomly split into 132 images for

training, 44 for validation, and 44 for testing. The dilation ratio used in the tests was α = 0.6.

The neural network model was implemented in Keras and Tensorflow backend and trained for 60

epochs using Adam optimizer, with a learning rate 8 × 10−5. The model beat the state-of-the-art

in Dice Coefficient, reaching an average detection accuracy of 78.38%.

In Ning et al. (2018), the authors proposed a Convolution Neural Network (CNN)

containing a hierarchical dilation block for semantic image segmentation. Dilated convolution is

a normal convolution that applies convolution filters with a whole, being an effective strategy

to enlarge the size of receptive fields of the CNN and, consequently, making the CNN achieve

better performances. Traditional mechanisms to apply dilated convolution are effective but with

limitations, such as they are unable to capture the scale variations for objects in images.

Concerning to deal with this limitation in a effective way, the authors proposed a block,

named HDblock, that contains multilevel parallel dilated convolutions and each convolution

includes 3x3 convolution kernels with various dilation factors. One of the advantages of this

method is the enlargement of the receptive field with less gains in the depth of deep neural

networks. The proposed CNN was able to achieve real-time performance on images with full HD

resolution.

The proposed model was constructed based on a lightweight architecture called darknet.

The last three layers of the darknet were removed and the HDblock was appended. The authors

employed Adam’s optimization algorithm to train the network with 150 epochs, a learning rate

set to 0.001, weight decay of 0.0002, and different batch size for each dataset: 4, 8, 12, and

16 for Kitti, CamVid, Helen, and Cityscapes, respectively. No data augmentation strategy was

employed. The mean accuracy for each dataset was 71.5%, 71.0%, 87.2%, and 71.5% for Kitti,

CamVid, Helen, and Cityscapes, respectively, and the running speed was 2x faster than ENet, the

fastest neural network architecture designed for semantic segmentation until then.

In this chapter, we presented the main preprocessing algorithms used in our work. In

the next chapter, we will present the image feature extractor methods applied in our work.

3.2 FEATURE EXTRACTORS

Feature extraction involves simplifying the number of resources required to describe

a large set of data accurately. When performing analysis of complex data, one of the major

problems stems from the number of variables involved. The need for computational power and

amount of memory generally increases when the analysis is made with more variables and, indeed,

may result in a classification algorithm with over fits of the training sample and generalizes

poorly to new samples.

Feature extraction is a method of constructing combinations of the variables to deal with

these problems and describes the data with sufficient accuracy. In this chapter, we explain the

feature extractors used in our work. We start explaining the LBP (Local Binary Pattern) and its

24

two variants: ULBP (Uniform Local Binary Pattern) and RLBP (Robust Local Binary Pattern).

The next explained feature extractor is GLCM (Gray Level Co-occurrence Matrix).

3.2.1 Local Binary Pattern

Local Binary Pattern (LBP) algorithm is a kind of local texture feature extraction method.

It creates binary coding according to the grey value difference between the center pixel and

neighborhood pixels in the sampling area and is widely used in image texture feature analysis.

The original LBP operator is defined in a rectangular neighborhood with a size of 3×3, and the

arbitrary color images should be converted into grey images with a grayscale value of [0,255]

(Xu et al., 2012).

Pixels of the rectangular area are used as sampling points, denoted grey value of the

center pixel as f0, and grey-scale value of 8 pixels around it as f1, f2, ..., f8. When fi ≥ f0 the

corresponding position is encoded as 1, and when fi < f0 the corresponding position is encoded

as 0. After all pixels within the area are coded, the encoding value of 8 pixels around the center

pixel will be composed of a binary number in a clockwise direction. The LBP coding can be

used as features to reflect the texture information in images (Guo e Zhang, 2010). Figure 3.1

shows a schematic diagram of LBP algorithm.

Pixel
value

LBP
Coding

Values

Sampling

Figura 3.1: Diagram of LBP operator coding process

LBP has small computational complexity and shows great advantage when applied to

texture retrieval in some cases.

Despite LBP reached impressive classification results working on a representative

texture database, there are some issues uncovered by the algorithm. For example, LBP is noise

sensitive and often characterizes different structural patterns with the same binary code, reducing

the discriminability (Zhao et al., 2013b). Aiming to solve these flaws, new LBP-based feature

extractors has been developed, between then Uniform Local Binary Pattern (ULBP) and Robust

Local Binary Pattern (RLBP).

A Uniform Local Binary Pattern (ULBP) is based on the original LBP and can

describe uniform patterns. Is one of the basic LBP extensions. An LBP is uniform when contains

at most two 0-1 or 1-0 transition when viewed it as a circular bit string (Ojala et al., 2002).

For example, the patterns 00000000 (0 transition), 11111110 (1 transition) and 11100111 (2

transitions) are uniform, whereas 00110010 (4 transitions), 10110110 (5 transitions) are not.

Robust Local Binary Pattern (RLBP) is an LBP-based feature descriptor that locates

the possible bit in the LBP pattern changed by the noise and then revises the changed bit of the

LBP pattern (Chen et al., 2013). Given an image I, let its histogram of LBP(8,1) be H, which has

25

256 bins before mapping it to a uniform pattern. For each bin Hi of H(i = 0, ...255), we search

all of its neighboring three-bit substrings, and map its y3 or y6 to y′
3

or y′6, respectively.

The mapping function can be denoted as follows:

RHs = Ψ(Hi) (3.6)

where RH is the resulted histogram of RLBP, composed of uniform patterns, and RHs is the

s-bin, s ∈ {1, ...58}. Let |RHs | be the occurrence frequency of RHs. The occurrence frequency

of RHs is then changed to |RHs | + |Hi | after this mapping.

The mapping function Ψ(Hi) is not a one-to-one mapping. Especially, one bin Hi
would map to more than one bin (e.g., the LBP string 11010011 can be mapped to 11110011 or

11000011). Let Ti denote that the number of bins that Hi maps to those bins in RH by Eq. 3.6.

Thus, Eq. 3.6 is revised as follows:

{RHst |t = 1, ...,Ti} = Ψ(Hi), (3.7)

and the new occurrence frequency of RHst is computed as:

|RHst | = |RHst | +
1

Ti
|Hi |, t = 1, ...,Ti (3.8)

Figure 3.2 shows the comparison between LBP and RLBP extractors when applied to

a texture image. The noise treatment changes the pixel with a value of 124 to 139. With this

change, the final binary string contains fewer bitwise when compared with LBP binary string.

Pixel
value

Noise
Treatment

LBP
Coding

RLBP
Coding

Values

t

Sampling

Figura 3.2: RLBP and LBP applied to a texture image

In Rasras et al. (2021), the authors created an LBP-based approach to obtain a signature

to retrieve digital signals, such as digital color images and digital wave signals, commonly used

in computer applications including computer security. Applying LBP as a feature extractor of the

input digital data, the generated histogram can be used as an input data set to generate the digital

file features, increasing the voice recognition ratio.

In Huang et al. (2020), the authors were concerned in improving Hyperspectral Image

(HSI) classification, an important task in, for example, geological exploration, crop detection, and

national defense. During the hyperspectral analysis, the Hughes phenomenon and the variability

and the complexity of spectral features create a challenge in HSI classification. For the sake of

explanation, the Hughes phenomenon occurs when the number of operational bands increases,

causing an undesirable behavior on the classification accuracy: at a first moment the accuracy

increases, following by a decrease.

26

To deal with this challenging scenario, the key to a successful HSI classification is the

feature extractor process (Huang et al., 2020). Using LBP to directly extract texture features of

HSI, the edge extraction capabilities of LBP help to improve the classification accuracy.

In Badaghei et al. (2021), the authors applied three feature extractions over traffic images

aiming to recognize bickers without a helmet. One of them was ULBP, once a biker head image

can be represented as a combination of micro-patterns by an LBP histogram. They divided

the image into neighboring cells and calculated the LBP histogram in each cell, concatenating

them all in a single histogram at the end. Using this feature extraction process, the classification

accuracy was 98.03%.

In Srivastava et al. (2020), the authors proposed a Local Binary Pattern (LBP) based

novel image hashing technique. After the preprocessing image step, the authors used ULBP to

extract the features of the analyzed image. To do so, the image is divided into a cell size of 64x64

and the size of neighborhood pixels is 8.

3.2.2 Gray Level Co-occurrence Matrix

Known as one of the popular estimating methods to reveal the image properties (Liu

et al., 2021), Gray Level Co-occurrence Matrix (GLCM) is a matrix where the number of rows and

columns is equal to the number of gray levels, G, in the image. The matrix element P(i, j |Δx,Δy)
is the relative frequency with which two pixels, separated by a pixel distance (Δx,Δy), occurs

within a given neighborhood, one with intensity i and the other with intensity j. The matrix

element P(i, j |d, θ) contains the second-order statistical probability values for changes between

gay levels i and j at a particular angle (θ).
Using a large number of intensity levels G implies storing a lot of temporary data, i.e.

a G x G matrix for each combination of (Δx,Δy) or (d, θ). Due to their large scalability, the

GLCM’s are sensitive to the size of the texture samples on which they are estimated. Thus, the

number of gray levels is often reduced. Equation 3.9 contains the math formula of GLCM, and

the Figure 3.3 illustrates a calculation example of GLCM over a given image.

P(i, j |d, θ) =
{
(x, y)| f (x, y) = i, f (x + Δx, y + Δy = j);

x, y = 0, 1, 2, ..., N − 1

}
(3.9)

In Aouat et al. (2021), the authors developed an approach for texture segmentation based

on GLCM. After applied geometric transformations on the image (change of scale and rotation),

the next step of the proposed model is the application of GLCM. Covering the texture image with

an analysis window containing a size T and offset d, the goal is to calculate the GLCM of each

analysis window and calculate the Haralick features, assigning them to the central pixel of the

analysis window.

The Haralick features used in their approach were energy, homogeneity, correlation,

and contrast, and the size T was empirically obtained, testing the following scales: 5x5, 9x9,

15x15, and 20x20. With bigger window sizes, the textures were not well recognized because one

window contained more than one texture. The size T was set to 15x15, once this window size

gave better and homogeneous results. The offset d also was empirically obtained, testing values

between 1 and 5. The more the offset was increased, the more the quality image loss, affecting

the segmentation accuracy. The offset 1, 2, and 3 gave good results, so d was set to 3 to reduce

the computation time.

After that, the authors used a gradient for edge detection from the four extracted images

(one for each Haralick feature.) Following, two images were calculated (vertical and horizontal

direction) and generated the mean of these two images, combining them in one output image. A

27

Figura 3.3: Calculation example of GLCM

threshold was applied on this output image, turning all the pixels with a value greater than S into

255, or 0 otherwise. The S value was empirically set to 50.

To improve the segmentation method, smoothing filters were applied to remove noise,

and the hysteresis thresholding to keep the strongest edges of the image and keep their continuity.

A morphological closing process was applied to keep the edges close, derived from dilation

and erosion. To solve the discontinuity problem between the edge pixels, the authors joined the

nearest points according to a distance d using a circle analysis form with radius r. Finally, to

improve the edge image and remove the false detected regions, the authors proposed a growing

region method to localize textures, using a circle with radius R to delineate areas of the image.

The proposed approach obtained 0.97 and 0.92 of overlap ratio average for the Brodatz dataset

and the database presented by Oulu University, respectively.

In Hamouchene et al. (2014) was proposed a decomposing architecture for the texture

matching task. The decomposing architecture, as generally used in the literature, consists of

fractionating the image into fixed-size blocks, like 16x16 or 32x32. The authors, otherwise,

created an approach that used dynamic decomposition size combined, between other, with

GLCM.

The GLCM method was used to extract the features from the decomposed regions.

The proposed approach used the circular geometric shape to define the decomposing blocks

once it resulted in a better segmentation compared with square shapes. The authors generated

test images, named by the authors as query images, using the Brodatz texture images dataset,

randomly selecting textures on this dataset. The query texture images were well recognized and

good segmentation results were obtained with the proposed approach.

28

3.2.3 Principal Component Analysis

Principal Component Analysis (PCA) is an unsupervised statistical technique introduced

by F.R.S. (1901) as a tool for simplifying the scalability of the data while maintaining its variance.

At the same time, PCA can extract relevant patterns in the data while retaining interpretability and

minimizing information loss (Tibrewala et al., 2020). PCA extracts the fundamental properties

of a linear system by the single value decomposition method. This technique has been applied to

discard noise data in digital signal processing, image recognition, and classification problems

(Ng, 2017).

The covariance matrix is first created using the training images. Next, the eigenvectors

and corresponding eigenvalues are computed. Finally, the test images are identified by projecting

these into the subspace and comparing them with the trained images in the subspace domain.

The PCA algorithm follows the steps:

• Let an input image X(x, y) be a two scale m x n array of intensity values. The average

image of the training set is defined by

x̄ =
1

L

L∑
i=1

xi . (3.10)

• Calculate the Covariance matrix to represent the scatter degree of all feature vectors

related to the average vector. The Covariance matrix C is defined by

Cxx =
1

L

L∑
i=1

(xi − x̄)(xi − x̄)T . (3.11)

• The Eigenvectors and corresponding Eigenvalues are computed by

CV = λV, (3.12)

where V is the set of Eigenvectors associated with its Eigenvalue λ.

• Sort the Eigenvector according to their corresponding Eigenvalues from high to low.

In Kamencay et al. (2016), the authors developed a system to recognize animal images.

Three feature extractors were tested, one of them being the PCA. When the recognition system

used PCA, the covariance matrix is first created using the training images. Next, the eigenvectors

and corresponding eigenvalues are computed. Finally, the test images are identified by projecting

these into the subspace and comparing them with the trained images in the subspace domain.

To validate the methodology, the authors used a created animal dataset containing

images of 5 different classes of different animals: bear, hog, deer, fox, and wolf. Each class

had 60 different images, totaling 300 images, each of them with size of 130x130 pixels. The

authors executed experiments varying the proportion of images used as training images and

testing images. The PCA recognition rate increased when the number of training images was

increased too, reaching 82% of accuracy when 98% of the dataset was used for training.

In the next section, we describe the types of ML algorithms, explain how the ML

classifiers used in SCTRx works and explain the steps to apply ML algorithms in computer

networking.

29

3.3 MACHINE LEARNING

Computer networking often deals with complex problems that demand efficient solutions.

So bring ML algorithms to the network domain is a promising idea to achieve higher performance

in network execution. Between the main network problems where ML for networking are suitable

and efficient, we can found the performance prediction. Network scheduling and parameter

adaption can also be performed by ML throw decision-making algorithms (Wang et al., 2018).

ML can be successfully applied to four broad categories of problems: clustering, rule
extraction, classification and regression (Boutaba et al., 2018). The main goal of a clustering

problem is to group similar data while increasing the gap between the groups. Rule extraction

problems concerns identifying statistical relationships in data. Regression problems aim to map

a set of new input data to a set of continuous-valued output. Classification problems have the

same concern of mapping a set of new input data but to a set of discrete output.

In ML and pattern recognition applications, the processing of high scale data requires

large computation time and capacity storage. Though, it leads to poor performances when the

scalability to sample size ratio is high. To improve performances, the sample scalability is

reduced thanks to feature extraction schemes. Feature extraction transforms the original input into

a new low scalabe space by combining the initial features, while feature selection retains the most

relevant ones to build a low scalabe feature space. ML algorithms belong to one of the following

learning paradigms, each of them composed by a distinct feature extraction scheme: supervised
learning, unsupervised learning, semi-supervised learning and reinforcement learning (Wang

et al., 2018; Boutaba et al., 2018; Kalakech et al., 2011).

Supervised learning uses labeled data for knowledge construction, being useful to clas-

sification and regression problems. Using labeled information to train the algorithms, supervised

learning methods generally achieve better results than unsupervised learning (Sheikhpour et al.,

2017). However, acquiring such labeled information is hard to obtain (there are a lot of unlabeled

data in the real world, but it is necessary for expertise people to label them) and is an expensive

process because a lot of labeled data is necessary.

In Liu et al. (2007), the authors used an unsupervised K-means clustering algorithm to

classify the network traffic. K-means algorithm uses statistical information as an input vector

to construct the classification models, starting with a training set and an assigned number of

clusters. A metric, i.e. distance, is considered to evaluate the similarity between the training

examples. Liu et al. chose the Euclidean distance as a similarity measurement. The authors used

different datasets (all of them composed of TCP-based applications). The classes considered in

the experiment are WWW, MAIL, P2P, FTP-CONTROL, FTP-PASV, ATTACK, DATABASE,

FTP-DATA, SERVICES, INTERACTIVE, MULTIMEDIA, and GAMES. The overall accuracy

reached 80% and before a log transformation, 90% or more.

Roughan et al. worked with traffic classification too but using a supervised strategy

(Roughan et al., 2004). It is one of the first works involving traffic classification that used the ML

approach. They employed k-Nearest Neighbors (k-NN) and Linear Discriminant Analysis (LDA)

to recognize different classes of packets based on QoS requirements. The classes addressed in

the experiment are Telnet, FTP-data, Kazaa, RealMedia, Streaming, DNS, and HTTPS. The error

rate was 5.1 and 9.4% using the classifiers k-NN and LDA, respectively.

Eerman et al. propose a semi-supervised TCP traffic classification technique (Erman

et al., 2007). Their approach designed classifiers trained with few labeled data and many

unlabeled flows. The dataset used in this work consists of empirical Internet traffic traces that

span 6 months. With this approach, a variety of applications including Web, P2P file sharing,

email, and FTP could be correctly classified with accuracy over 98%.

30

3.3.1 Random Forest

The Random Forest algorithm is an ensemble classifier dated from 2001 when Leo

Breiman formalized it In Breiman (2001). Being a successful algorithm as a general-purpose

classification and regression method and with few parameters to tune, Random Forest reached

popularity in a short time. In problems where the number of variables is much larger than the

number of observations, Random Forest has shown excellent performance. Chemoinformatic,

ecology, 3D object recognition and bioinformatics are examples of areas that Random Forest was

successfully applied (Scornet, 2017).

Random Forest is a supervised learning procedure that operates according to the "divide

and conquer"principle. In the first step, the algorithm generates a random vector sampled

independently of the input vector. For each fraction, a randomized tree predictor is grown using

one of the random vectors as a base. So, each tree casts a unit vote for the most popular class to

classify an input vector. In the end, Random Forest aggregates these predictors together, using

the average to generate the final result.

To generate every single tree, Random Forest algorithm works as follows: if the number

of records in the training set is N, then N records are sampled at random but with replacement,

from the original data, this is a bootstrap sample. This sample will be used to train the growing

tree. Being M the number of input variables, a number m « M (in literature, m is often referenced

as ntry or k) is selected such that each node, m variables are selected at random out of M and the

best split of these m attributes will be used to split the node. The value m will be held constant

during the forest growing. The trees will be generated as large as possible, with no pruning. The

number of trees is another pre-defined variable, generally named as Ntree. The last parameter

used by Random Forest is nodesize, which controls the depth of the tree (i.e. number of instances

in the leaf node) and is usually set to one (Kulkarni e Sinha, 2013).

Farnaaz et al. built an Intrusion Detection System (IDS) using Random Forest. The

main goal of IDS is to find intrusions and classify the type of attack on computational systems.

They used the NSL-KDD dataset (a dataset consisting of legit and malicious network packets

with 42 attributes, where the last attribute is the class label) in ARFF format to validate the

proposed approach. Setting Ntree = 100, Random Forest reached 99.67% of accuracy detecting

DoS, Probe, R2L and U2R attacks (Farnaaz e Jabbar, 2016).

Yu et al. developed a Random Forest approach for predicting air quality (RAQ) in

urban sensing systems. The data used for their experiments is a public dataset generated from

Shenyang’s urban sensing systems, with a one-month range of collection (4 May 2015 to 5 June

2015). With Ntree = 400 and ntry = 4, the overall precision of Random Forest for Air Quality

Index (AQI) prediction is 81% (Yu et al., 2016).

Osin et al. proposed a solution to the problem of predicting the quality of a computer

network using Random Forest. The dataset used in their experiments was captured in November

2014 from network traffic of two company servers: a web application server and a content server.

Random Forest result indicated the prediction of a decrease in the quality of the IP network:

0 indicates that the network operates normally and 1 indicates loss of packets and a repeated

request for the same connection. Random Forest reached 70% of accuracy in detection network

troubles (Osin e Sheluhin, 2019).

3.3.2 Support Vector Machine

Introduced in 1995, when Vladmir Vapnik and Corinna Cortes published the paper

(Cortes e Vapnik, 1995), Support Vector Machine (SVM) is one of the state-of-the-art ML

techniques. SVM algorithm exhibited great prediction accuracy and prominent modeling

31

capability in a wide range of real classification and pattern recognition (Faris et al., 2017), such

as document classification (D’Orazio et al., 2014), image classification, outlier detection and

sleep monitoring system (Alickovic e Subasi, 2018).

SVM is a supervised ML algorithm that can be applied to linearly and non-linearly

separable patterns. The main idea behind SVM is the construction of an optimal hyperplane,

which can be used for classification, for linearly separable patterns. For non-linear separable

problems, the given pattern by transforming it into a new space usually a higher scale space so that

in higher scale space, the pattern becomes linearly separable. This transformation can be achieved

by using various nonlinear mapping such as polynomial, sigmoidal, and Gaussian (Pradhan,

2012), (Kecman e Wang, 2005). SVMs do not have predefined parameters and their number

depends on the training data used (Kecman e Wang, 2005). Both in linear and nonlinear patterns,

SVM aims to find the maximal margin of separation between the classes. For demonstration, in

Figure 3.4 there is a representation of the hyperplane and the maximal margin for a classification

problem involving two classes.

Ye et al. used SVM to detect DDoS attacks in SDN. In their experiments, OpenFlow

switches and a Floodlight controller were used to create an SDN topology in a simulated

environment (made with Mininet). In their simulation, legit packets traffic over the topology

concurrently with DDoS packets. Both types of traffic used TCP, UDP, and ICMP packets. With

SVM, they reached an average detection of 95.64% and 1.26% of average false alarm rate (Ye

et al., 2018).

In Yang (2018), Yang proposed a novel anomaly network traffic detection algorithm

under the cloud computing environment based on an SVM classifier. To develop this approach,

he considered six features: number of sources IP address; the number of source port number;

the number of destination IP address; the number of destination port number; the number of

packet type; and number of network packets. Combining SVM with hybrid information entropy,

the approach named Ent-SVM reached high accuracy using both KDDcup99 and NSL-KDD

datasets.

Zhang et al. analyzed the phenomenon of network under Low-rate denial-of-service

(LDoS) attack, a new kind of network attack with a low average with low average attack traffic

and high concealment, and proposed a new SVM-based framework. Using Principal Component

Analysis (PCA) to extract the main features, the SVM classifier was trained with the principal

components of the original flow data. The authors conducted multiple experiments on NS2,

simulating a topology with three routers, and reaching an average accuracy of 96.68%. In a

test-bed environment, with two routers, one server, and four hosts (one of them being an attacker),

the average correct detection rate was 95.37% (Zhang et al., 2019).

In this section we showed the preprocessing algorithms, feature extractors, and ML

approaches used to implement our proposal. In the next chapter, we explain our proposed

framework (SCTRx) to deal with the limitation of TReco, the evaluations made with SCTRx, a

discussion about the results and future works.

3.4 TRECO

The Traffic Matrix Recognition (TReco) framework was designed to identify which

HPC application is using the network and to reprogram the switches for optimizing the network

according to the application’s communication pattern.

TReco has two operation modes, the first is used for “learning” the communication

patterns and the second is the “running” mode. The first stage of a pattern recognition system

32

Figura 3.4: Maximal margin and hyperplane in SVM

is data acquisition. The input depends on collecting the applications’ TMs. If the TM are

collected every time t, the application execution can be seen as a set of multiple TM M[i][j](t).
TReco supports two methods for collecting the TM, by (a) installing traffic measurement

rules in each SDN-enabled switch, and at every time t, the switches’ flow tables were dumped to

files, and then, these files were parsed for generating the TM. (b) Reading dump files from the

disk. An important remark is that the manner TM are collected is orthogonal to TReco, which

means that it might be obtained using different techniques (Gong et al., 2015; Trois et al., 2016).

Next, two processes occur in parallel, (i) all acquired TM are displayed to the user that

identifies the communication patterns, grouping the TM in those patterns, as shown in Figure 3.5.

(ii) For preprocessing the TM, TReco used the unscramble method (Trois et al., 2018), which

generates the textures for each communication pattern, then, two visual descriptors, ULBP (Ojala

et al., 2002) and RLBP (Zhao et al., 2013a) were applied for extracting the feature vectors used

as input for the ML classifiers.

Figura 3.5: Selecting and grouping the TM patterns.

TReco uses the Unscrambling Function as preprocessing algorithm. Unscrambling

Function reorders the TM lines and columns, rendering a different texture for each communication

pattern. The basic premise of this function is, for each line, to “bring” the most communicating

pair of nodes close to the matrix main diagonal. As our assumption is to classify the applications

based on already known TM, so we use the supervised classifiers SVM and RF.

33

Learning new communication patterns requires a minimum number of TM which may

vary with the patterns already learned. So, to be sure that the amount of TM acquired is sufficient,

and that TReco will be able to classify the new pattern in the running mode, an accuracy

performance verification can be executed. In this stage, the new communication patterns are used,

along with the previously learned patterns, for feeding the classifier, returning the prediction

accuracy. If the user considers the results adequate, the classifier training files are updated with

the newly learned patterns.

The second operating mode of TReco is the running mode; in this case, the system

continuously acquires the TM on the fly, applies preprocessing function, extracts the feature

vectors, and classifies the communication pattern (Figure 3.6).

ULBP and RLBP

Unscramble
Acquire flow
tables' dump

Compute TMs
from flow

tables' dump

Preprocessing
TMs

Feature
extractionClassification

DATA ACQUISITION

Classification
Result

Figura 3.6: TReco’s flowchart for classifying the applications.

For an in-depth understanding of how communication patterns could be represented by

TM, in the work Trois (2017); Trois et al. (2018) the authors investigated a set of HPC applications

(MapReduce and scientific applications) and some benchmarks developed by NASA Advanced

Supercomputing Division, called NPB1 (Bailey et al., 1991), analyzing their TMs and execution

phases. However, this work did not consider that the applications could be executed on different

scales, meaning that the size of the TMs used for training was the same as the test ones.

We tackle a future direction reported in Trois (2017), wish required the ML classifier to

be trained with TMs of different scales for each class. Therefore, our work studies methods for

classifying the applications with a variable number of nodes, which is fundamental for its use in

real scenarios.

1The NAS Parallel Benchmarks are set of applications designed to help evaluate the performance of parallel

supercomputers, consisting of five kernels and three pseudo-applications. Available at: https://www.nas.
nasa.gov/publications/npb.html

34

4 SCTRECO

SCTReco 1 is an evolution of the TReco framework. SCTReco’ operation, showed

in Figure 4.1 contains similarities with TReco, but focus to deal with different TMs scales.

SCTReco’s data acquisition occurs like in TReco. After that, SCTReco can be divided in three

steps: preprocessing the TMs; feature extraction; and classification.

To deal with TMs of multiple scales, SCTReco explores more preprocessing algorithms

than TReco, but maintains the same feature extractors (ULBP and RLBP) and ML algorithms

(SVM and RF) used in TReco. We tried two additional feature extractors: GLCM and PCA. As

described in the Section 3.2, these two feature extractors achieve good recognition rates when

applied to texture classification problems.

ULBP and RLBP

Acquire flow
tables' dump

Compute TMs
from flow

tables' dump

Preprocessing
TMs

Feature
extractionClassification

DATA ACQUISITION

Classification
Result GLCM

PCA

Interpolation
Crop
Blur
Dilation

Figura 4.1: SCTReco’s flowchart for classifying the HPC applications.

It is important to say that our framework works in HPCs where each processes are

executed in individual nodes. As the basis of our solution is the capture and analysis of the

packages trafficked between the SDN switches, our framework would’t be able to recognize the

applications if there are processes running on the same node.

Despite the addition of the two feature extractors, we concentrated efforts on trying

to find a preprocessing strategy that would allow the recognition of matrices in a scale-free

scenario. Since TReco already combines feature extractors and classifiers that have good TMs

recognition rates, we chose to try to make the TMs as similar as possible before feature extraction

and classification.

This chapter contains six sections. In Section 4.1, we explain how the dataset was

obtained and how we made our evaluations. In Section 4.2, we describe how SCTReco works

using interpolation as preprocessing algorithm, showing the evaluations when the TMs are

interpolated. Section 4.3 shows how SCTReco blurs the TMs and contains the evaluation

of this method. In Section 4.4, we evaluate how SCTReco works cropping the test TMs.

Section 4.5 describes the dilation process used as preprocessing algorithm and evaluate this.

Finally, Section 4.6 compares SCTReco and TReco results and shows the improvements.

4.1 DATASET ACQUISITION AND EXPERIMENTS DEFINITION

To evaluate our framework, we used a dataset obtained by ourselves. We selected

the TMs of three of the most network-intensive scientific applications implemented with the

OpenLB library Heuveline e Latt (2007): a) Multicomponent (multc) demonstrates the instability

1SCTReco is available at: https://github.com/rafaelGomesCastro/trex

35

generated by a heavy fluid penetrating a light one; b) Cylinder (cyl2d) simulates flow passing

through a circular cylinder; and c) Bifurcation (bifu) reproduces human lungs bifurcations. We

performing tests with a different number of processes (128, 256, and 512), running them for a

period of 30 minutes, collecting their TMs every second.

The collect process resulted in a dataset with three classes, each of them with TMs with

scales 128x128, 256x256 and 512x512. Finishing the dataset collection, we manually select the

most significant TMs, which means the TMs with more communications. At the end, the dataset

contains 1026 TMs of bifu application (392 of them with scale 128x128; 322 with 256x256;

and 312 with 512x512); 1009 TMs of cyl2d application (263 with 128x128; 468 with 256x256;

and 278 with 512x512); and 3043 TMs of multc application (1431 with 128x128 and 1612

with 256x256). Aiming to train our framework with a balanced dataset, in each evaluation we

randomly selected 263 TMs for each class and used accuracy as metric.

As shown in Figure 4.2, we evaluated each of the preprocessing algorithm individually.

Only the dilation depends on the result of the interpolation, since, after executing the dilation, we

resize the matrices to the scale that resulted in greater accuracy. Our evaluations started using

128x128 TMs to train the classifiers, while 256x256 TMs was used to test them. The goal of this

first evaluation was identify the best configuration parameters for each preprocessing algorithm.

For the interpolation algorithm, we made evaluations changing the rescaling scale; for

blur and dilation algorithms, we changed the kernel size. The idea behind using cropped is to use

an algorithm that does not cause distortions in the resulting TMs. So, the crop algorithm didn’t

need parameter evaluations, once in all the evaluations we cropped a slice of the test TMs that

contains the same scale of training TMs.

36

Interpolation

Blur

Crop

Dilation

Train: 128x128
Test: 256x256

Rescaling to
50x50

Comparison with
TReco

Train: 128x128
Test: 512x512

Interpolation

Blur

Crop

DilationInterpolation

Rescaling to
100x100

Rescaling to
128x128

Rescaling to
256x256

Select the rescaling
dimension that

brought the best
accuracy

Use the best configuration
in other experiments

Set kernel size to
1x1

Set kernel size to
3x3

Set kernel size to
5x5

Set kernel size to
10x10

Select the rescaling
dimension that

brought the best
accuracy

Use the best configuration
in other experiments

Set kernel size to
1x1

Set kernel size to
3x3

Set kernel size to
5x5

Set kernel size to
10x10

Select the dilation
dimension that

brought the best
accuracy

Use the best configuration
in other experiments

Rescale to the
dimension that

brought the best
accuracy in the

interpolation
experiment

Select the
preprocessing
strategy that

brought the best
accuracy

Check if crop works in our
simplest scenario

Evaluate the selected
preprocessing algorithms
in our simplest scenario...

... and then use the best
configurations of them in
a more complex scenario

Figura 4.2: Evaluations’ flowchart

After that, we evaluated SCTReco using 128x128 TMs to train the classifiers and

512x512 TMs to test them. Each preprocessing algorithm was set with the configuration

parameters obtained in the previous evaluation. The purpose of this evaluation is analyse if our

framework works fine in a scenario where the difference between the training and test TMs scales

is bigger.

We finish our evaluations selecting the best SCTReco’results and comparing them with

TReco’s results. We ran TReco in the same environments, and added the feature extractors

Eerman, Fahad and Soysal. In all of our evaluations, after grid search with cross-validation

process, we set the SVM parameters gamma to 8.0 and c to 8192.0, and kernel was defined as

RFB. For RF, we defined the 100 number of trees equal to 100 and Gini criterion to measure the

quality of the splits.

37

4.2 INTERPOLATION

As TReco works well recognizing same scale TMs, our first preprocessing approach to

brings more similarity between the training and test TMs was rescaling them to the same scale,

as showed in Figure 4.2. We chose the nearest neighbor interpolation method to do the rescaling,

described in Section 3.1, once this method is simple and cheap computationally when compared

with other classical interpolation methods.

Figura 4.3: SCTReco’s preprocessing step using interpolation.

Our preliminary evaluation of this preprocessing method, aiming to search the ideal

resize scale, considered the classification accuracy value and a real dataset containing three

classes of TMs (bifu, multc, and cyl2d) with scales 128x128, used to train the SVM and RF

classifiers, and 256x256, used to test. We rescaled the TMs for four scales: 50x50; 100x100;

128x128; and 256x256, and used ULBP, RLBP, PCA, and GLCM as feature extractors. The

results, displayed in Table 4.1, containing the average results of ten executions, shows that

rescaling the TMs to 100x100 reached the best accuracy value: 55.85%.

38

Rescaling Classifier ULBP (%) RLBP (%) PCA (%) GLCM (%)

50x50
SVM 33.59 33.75 33.80 12.55

RF 44.53 44.65 25.56 5.16

100x100
SVM 33.63 33.97 33.88 12.04

RF 55.85 44.70 24.38 3.38

128x128
SVM 33.72 34.02 33.88 9.13

RF 50.18 43.93 29.18 9.63

256x256
SVM 33.76 34.05 33.92 1.65

RF 33.88 33.67 21.93 12.59

Tabela 4.1: Results of interpolation method rescaling the TMs for 50x50, 100x100, 128x128, and 256x256 scale.

Next, we evaluated the interpolation method using a real dataset containing two classes

of TMs (bifu and cyl2d) with scales 128x128, used to train the SVM and RF classifiers, and

512x512, used to test. We rescaled the TMs for scale 100x100, and used ULBP, RLBP, PCA, and

GLCM as feature extractors. The results, showed in Figure 4.4, containing the average results of

ten executions, show that PCA combined with SVM reached the best accuracy value: 50.44%.

Compared with the previous evaluation, we can see that, except for ULBP and RF, the accuracy

value increased. This behaviour occurred because the first evaluation contained three classes,

while the second evaluation contained only two.

Figura 4.4: Classification results using 128x128 TMs for training and rescaling the TMs to 50x50. 1) The left

barchart shows the accuracy values classifying 256x256 TMs. 2) The right barchart shows the accuracy values

classifying 512x512 TMs.

4.3 GAUSSIAN BLUR

Our next approach used the Gaussian blur, described in Section 3.1, as preprocessing

algorithm. We applied Gaussian blur to the TMs because this algorithm removes "outlier"pixels

39

that may be noise in the image, while leaving the majority of the image intact. As showed in

Figure 4.5, we blurred the training and test TMs with the idea of disguising the differences and

highlighting the similarities.

Figura 4.5: SCTReco’s preprocessing step using Gaussian blur.

In the blur evaluation, we considered the classification accuracy value and a real dataset

containing three classes of TMs (bifu, multc, and cyl2d) with scales 128x128, used to train the

SVM and RF classifiers, and 256x256, used to test. The kernel size evaluated was: 1x1, 3x3, 5x5,

and 10x10; using ULBP, RLBP, PCA, and GLCM as feature extractors. As showed in Table 4.2,

the best accuracy value, 78.88% was reached using blur with kernel size 3x3, SVM classifier and

RLBP feature extractor.

Kernel size Classifier ULBP (%) RLBP (%) PCA (%) GLCM (%)

1x1
SVM 33.95 33.77 2.48 33.59

RF 47.13 39.00 21.09 33.33

3x3
SVM 65.61 39.67 2.83 44.70

RF 51.54 33.88 14.58 42.97

5x5
SVM 65.91 78.88 1.52 33.50

RF 54.84 65.44 6.21 33.33

10x10
SVM 33.92 33.55 2.28 33.46

RF 38.74 39.29 18.25 33.33

Tabela 4.2: Results of blur method using kernel sizes 1x1, 3x3, 5x5, and 10x10.

Next, we evaluated the blur using a real dataset containing two classes of TMs (bifu

and cyl2d) with scales 128x128, used to train the SVM and RF classifiers, and 512x512, used to

test. We applied blur with kernel size 3x3, and used ULBP, RLBP, PCA, and GLCM as feature

extractors. The results, showed in Figure 4.6, containing the average results of ten executions,

show that PCA and RF reached the highest accuracy value, 55.99%, but the other combinations

reached close accuracy values. Using SVM as classifier, ULBP, RLBP, PCA, and GLCM reached

40

50.00%; using SVM as classifier, ULBP reached 50.17%; RLBP, 50.23%; PCA, 55.99%, and

GLCM, 50.00%.

Figura 4.6: Classification results using blur preprocessing and 128x128 TMs for training. 1) The left barchart

shows the accuracy values classifying 256x256 TMs; and 2) the right barchart shows the accuracy values classifying

512x512 TMs.

4.4 CROP

The next preprocessing algorithm evaluated was crop. As showed in Figure 4.7, we

cropped just the test TMs, making them as the same scale as the training TMs. We applied

crop aiming to evaluate a preprocessing algorithm that scale down the test TMs without cause

distortions in the resulted TM. We noticed that the patterns present in the TMs that make up our

dataset tend to be at the center of the TMs, so we chose to crop the center of the test TMs aiming

to take the most relevant part of them. In this evaluation, the training TMs proceed unchanged

for the feature extraction step.

To evaluate the crop algorithm, we considered the classification accuracy value and a

real dataset containing three classes of TMs (bifu, multc, and cyl2d) with scales 128x128, used

to train the SVM and RF classifiers, and 256x256, used to test. The cropped area of the test TMs

was the 128x128 middle pixels.

We made a second evaluation using the same crop algorithm, feature extractors and

classifiers but using a different dataset. This dataset contains two classes of TMs (bifu and cyl2d)

with scales 128x128, used to train the classifiers, and 512x512, used in test phase. As showed in

Figure 4.8, using SVM to classify the 256x256 TMs reached 66.71% of accuracy with ULBP

and RLBP, 55.64% with PCA and 13.45% with GLCM. Using RF, 61.01%, 50.26%, 75.42%,

and 10.30% with ULBP, RLBP, PCA, and GLCM, respectively.

Classifying 512x512 TMs, SVM reached an accuracy value of 50.34% with ULBP as

feature extractor, 50.00% with RLBP, 95.69% with PCA, and 16.35% with GLCM. RF reached

50.61% with ULBP, 50.25% with RLBP, 78.04% with PCA, and 12.07% with GLCM.

41

Figura 4.7: SCTReco’s preprocessing step using crop.

Figura 4.8: Classification results using 128x128 TMs for training and cropping the 128x128 middle values of test

TMs. 1) The left barchart shows the accuracy values classifying 256x256 TMs; and 2) the right barchart shows the

accuracy values classifying 512x512 TMs.

4.5 DILATION

Once the visual patterns present in the TMs are formed for few lines of pixels, important

pixels to recognize patterns could be lost in the rescaling process. As described in Section 3.1,

42

dilation enhance the features of an image. So, as showed in Figure 4.9, we dilated the TMs before

rescaling aiming to maintain the structure of pixels that forms the patterns after the preprocessing

stage.

Depending on the communication pattern of the HPC application, the TM that represents

it will be formed mostly by white pixels, while TMs from other HPC applications will contain

more black pixels. To standardize the coloration, we chose to invert the colors of matrices formed

mostly by white pixels. So that, regardless of the matrix class, the pattern it contains will be

formed by white pixels. Next, we apply image dilation, followed by interpolation.

Figura 4.9: SCTReco’s preprocessing step using dilation, inversion and resize.

Our first evaluation with dilation investigated four kernel sizes: 1x1, 3x3, 5x5, and

10x10; considered the classification accuracy value; and a real dataset containing three classes of

TMs (bifu, multc, and cyl2d) with scales 128x128, used to train the SVM and RF classifiers, and

256x256, used to test. After the dilation process, the TMs was rescaled to 100x100, once this

scale resulted in the best accuracy when we evaluated the interpolation algorithm. The results,

exhibited in Table 4.3, contain the average results of ten executions and show that the kernel size

1x1 reached the highest accuracy value: 99.76%.

Kernel size Classifier ULBP (%) RLBP (%) PCA (%) GLCM (%)

1x1
SVM 99.76 66.67 65.82 39.59

RF 33.66 56.73 46.88 19.58

3x3
SVM 66.67 66.67 30.97 15.51

RF 31.94 44.57 28.60 35.27

5x5
SVM 66.67 66.75 66.50 33.80

RF 55.56 55.64 77.36 21.42

10x10
SVM 57.46 66.50 61.26 33.33

RF 53.87 33.33 36.80 33.33

Tabela 4.3: Results of dilation method using kernel sizes 1x1, 3x3, 5x5, and 10x10.

Finally, we evaluated the dilation followed by rescaling to 100x100 using a real dataset

containing two classes of TMs (bifu and cyl2d) with scales 128x128, used to train the SVM

43

and RF classifiers, and 512x512, used to test. We applied dilation with kernel size 1x1, and

used ULBP, RLBP, PCA, and GLCM as feature extractors. The results, showed in Figure 4.10,

containing the average results of ten executions, show that using SVM reached 85.23% of

accuracy with ULBP as feature extractor; 50.21% with RLBP; 50.61% with PCA; and 53.31%

with GLCM. Using RF, the accuracy value was 73.77% with ULBP; 66.50% with RLBP; 47.76%

with PCA; and 22.20% with GLCM.

Figura 4.10: Classification results using 128x128 TMs for training, dilating the test TMs and rescaling them to

100x100. 1) The left barchart shows the accuracy values classifying 256x256 TMs; and 2) the right barchart shows

the RF metric values classifying 512x512 TMs.

As we work with the visual textures expressed by the applications’ TMs, we equipped

SCTReco with the feature extractors GLCM and PCA. As described in Chapter 3, these two

feature extractors works well with texture images. In aditional, we maintened the TReco’s feature

extractors: ULBP and RLBP as well as the TReco’s classifiers: SVM and RF, once they work

well with TMs. In the next section, we explain the evaluations made and show the results.

4.6 COMPARISON WITH TRECO

We evaluate TReco in the same environments used to evaluate SCTReco. The goal of

this execution is compare the results between TReco and SCTReco and see the improvements.

As mentioned in Section 3.4, TReco uses ULBP and RLBP as feature extractors; and RF and

SVM as classifiers. Indeed, we compare the results with the feature extractors Eerman, Fahad,

and Soysal.

The results, showed in Figure 4.11, containing the average results of ten executions,

show that Fahad combined with RF reached 91.53% and 84.12% of accuracy classifying 256x256

TMs and 512x512 TMs, respectively. Using SVM to classify 256x256 TMs, ULBP, RLBP,

Eerman and Soysal reached an accuracy value of 33.74%, 34.04%, 69.40%, 76.51%, and 66.96%,

respectively. Using RF, the feature extractors ULBP, RLBP, Eerman, and Soysal reached 46.93%,

44

33.75%, 83.04%, 91.53%, and 65.36%, respectively. Classifying 512x512 TMs, SVM with

ULBP, RLBP, Eerman, Fahad and Soysal reached 50.00%, 50.00%, 79.07%, 74.14%, and 77.00%,

respectively. Using RF, the accuracy values was 50.06%, 50.06%, 87.62%, and 85.06% with

ULBP, RLBP, Eerman and Soysal, respectively.

Figura 4.11: Classification results using 128x128 TMs for training, dilating the test TMs and rescaling them to

100x100. 1) The left barchart shows the accuracy values classifying 256x256 TMs; and 2) the right barchart shows

the RF metric values classifying 512x512 TMs.

Analysing the results, we can see that SCTReco brings improvements over TReco.

While TReco reached 46.93% of accuracy classifying 256x256 TMs, SCTReco reached 99.76%.

In the same way, recognizing 512x512 TMs, TReco reached 50.06% of accuracy while SCTReco

reached 85.23%. We can conclude that use dilation and interpolation as preprocessing algorithm

increase the similarities between the TMs of different scales.

We can also observe that the use of the SVM and RF classifiers combined with the

Eerman, Fahad and Soysal feature extractors achieved accuracy higher than that achieved by the

TREco. So, we conclude that Eerman, Fahad and Soysal deal better with classifying TMs of

different scales without the need for preprocessing algorithms when compared to ULBP and

RLBP. But with the use of dilation and interpolation, ULBP combined with SVM achieved

superior accuracy.

45

5 CONCLUSIONS

This work attempts to investigate how traffic matrix-based application classification

methods behave in a scale-free environment. As traffic matrix-based applications have a pattern in

their communications, ML techniques can be used to recognize them. We developed a framework

named SCTRx, that combines the feature extractors RLBP, ULBP, GLCM, and PCA with SVM

and RF. We used real TMs obtained from scientific applications to evaluate them, using the

accuracy score as metrics. Indeed, SCTRx is equipped with a preprocessing method composed

of dilation, interpolation, blur and crop.

We executed experiments to evaluate the combinations between preprocessing algorithms,

feature extractors, and classifiers. The first experiment used 128x128 TMs to train the classifiers

and TMs with 256x256 scale to test them. SCTRx reached 99.76% of accuracy using dilation and

interpolation as preprocessing algorithm, ULBP as feature extractor, and SVM as the classifier.

With the same TMs in the training step, SCTRx reached 85.23% of accuracy recognizing TMs

with 512x512 scale, using the same preprocessing algorithm, feature extractor and classifier used

in the previous evaluation.

SCTRx brings improvements over TReco, the previous framework for TMs recognition.

TReco, using 128x128 TMs for training the classifiers, reached 46.93% of accuracy classifying

256x256 TMs, and 50.06% classifying 512x512 TMs. In comparison with the feature extractors

Eerman, Fahad and Soysal, SCTRx got better results too, once the best accuracy result recognizing

256x256 TMs was reached by Fahad combined with RF classifier: 91.53%; and the best accuracy

result recognizing 512x512 TMs was reached by Eerman combined with RF classifier: 87.62%.

So, we can conclude that ULBP and SVM are a prominent combination for recognizing

TMs in a real-world scale-free environment, and preprocessing the TMs with dilation followed

by interpolation increases the recognition capability. As future work, we plan to execute SCTRx

using RGB TMs. Each type of network package can be represented as one RGB code. So, the

color of each position of the TMs will be the result of all the packages exchanged among the

nodes. The colors may be a feature that helps to distinguish the classes and increase the accuracy

value with bigger TMs.

46

REFERÊNCIAS

Achour, S. e Nasri, W. (2012). A performance prediction approach for mpi routines on multi-

clusters. Em 2012 20th Euromicro International Conference on Parallel, Distributed and
Network-based Processing, páginas 125–129. IEEE.

Akyildiz, I. F., Lee, A., Wang, P., Luo, M. e Chou, W. (2014). A roadmap for traffic engineering

in SDN-OpenFlow networks. Computer Networks, 71:1–30.

Al-Fares, M., Radhakrishnan, S., Raghavan, B., Huang, N. e Vahdat, A. (2010). Hedera: Dynamic

flow scheduling for data center networks. Em NSDI, volume 10, páginas 19–19.

Alickovic, E. e Subasi, A. (2018). Ensemble svm method for automatic sleep stage classification.

IEEE Transactions on Instrumentation and Measurement, páginas 1258–1265.

Alsmadi, I., Khamaiseh, S. e Xu, D. (2016). Network parallelization in hpc clusters. Em

Computational Science and Computational Intelligence (CSCI), 2016 International Conference
on, páginas 584–589. IEEE.

Aouat, S., Ait-hammi, I. e Hamouchene, I. (2021). A new approach for texture segmentation

based on the gray level co-occurrence matrix. Multimedia Tools and Applications.

Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis, J. J., Husbands, P., Keutzer, K., Patterson, D. A.,

Plishker, W. L., Shalf, J., Williams, S. W. et al. (2006). The landscape of parallel computing

research: A view from berkeley. Relatório técnico, Technical Report UCB/EECS-2006-183,

EECS Department, University of California, Berkeley.

Badaghei, R., Hassanpour, H. e Askari, T. (2021). Detection of bikers without helmet using

image texture and shape analysis. International Journal of Engineering.

Bailey, D. H., Barszcz, E., Barton, J. T., Browning, D. S., Carter, R. L., Dagum, L., Fatoohi,

R. A., Frederickson, P. O., Lasinski, T. A., Schreiber, R. S. et al. (1991). The nas parallel

benchmarks. The International Journal of Supercomputing Applications, páginas 63–73.

Benson, T., Akella, A. e Maltz, D. A. (2010). Network traffic characteristics of data centers in

the wild. Em Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement,
páginas 267–280. ACM.

Bo, L., Zhenliu, Z. e Xiangfeng, W. (2012). A survey of hpc development. Em 2012 International
Conference on Computer Science and Electronics Engineering, páginas 103–106. IEEE.

Boutaba, R., Salahuddin, M. A., Limam, N., Ayoubi, S., Shahriar, N., Estrada-Solano, F. e

Caicedo, O. M. (2018). A comprehensive survey on machine learning for networking: evolution,

applications and research opportunities. Journal of Internet Services and Applications,
página 16.

Breiman, L. (2001). Random forests. Machine learning, páginas 5–32.

Cavalin, P. e Oliveira, L. (2017). A review of texture classification methods and databases.

2017 30th SIBGRAPI Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T),
páginas 1–8.

47

Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., Lee, S.-H. e Skadron, K. (2009).

Rodinia: A benchmark suite for heterogeneous computing. Em Workload Characterization,
2009. IISWC 2009. IEEE International Symposium on, páginas 44–54. IEEE.

Chen, J., Kellokumpu, V., Zhao, G. e Pietikainen, M. (2013). Rlbp: Robust local binary pattern.

Chowdhury, S. R., Bari, M. F., Ahmed, R. e Boutaba, R. (2014). Payless: A low cost network

monitoring framework for software defined networks. Em Network Operations and Management
Symposium (NOMS), 2014 IEEE, páginas 1–9. IEEE.

Colella, P. (2004). Defining software requirements for scientific computing.

Cortes, C. e Vapnik, V. (1995). Support-vector networks. Mach. Learn., páginas 273–297.

Date, S., Abe, H., Khureltulga, D., Takahashi, K., Kido, Y., Watashiba, Y., Pongsakorn, U.,

Ichikawa, K., Yamanaka, H., Kawai, E. et al. (2015). An empirical study of sdn-accelerated hpc

infrastructure for scientific research. Em 2015 International Conference on Cloud Computing
Research and Innovation (ICCCRI), páginas 89–96. IEEE.

Dimond, R., Racaniere, S. e Pell, O. (2011). Accelerating large-scale hpc applications using

fpgas. Em Computer Arithmetic (ARITH), 2011 20th IEEE Symposium on, páginas 191–192.

IEEE.

D’Orazio, V., Landis, S. T., Palmer, G. e Schrodt, P. (2014). Separating the wheat from the chaff:

Applications of automated document classification using support vector machines. Political
Analysis, página 224–242.

Eerman, J., Mahanti, A. e Arlitt, M. (2006). Internet traffic identification using machine learning

techniques. Em Proc. of the 49th IEEE Global Telecomm. Conf.(GLOBECOM), páginas 1–6.

IEEE.

Erlacher, C., Jankowski, P., Blaschke, T., Paulus, G. e Anders, K.-H. (2017). A gpu-based

parallelization approach to conduct spatially-explicit uncertainty and sensitivity analysis in the

application domain of landscape assessment. GI_Forum 2017,, 1:44–58.

Erman, J., Arlitt, M. e Mahanti, A. (2006). Traffic classification using clustering algorithms. Em

Proceedings of the 2006 SIGCOMM Workshop on Mining Network Data, páginas 281–286.

ACM.

Erman, J., Mahanti, A., Arlitt, M., Cohen, I. e Williamson, C. (2007). Offline/realtime traffic

classification using semi-supervised learning. Performance Evaluation, páginas 1194–1213.

Fahad, A., Tari, Z., Khalil, I., Almalawi, A. e Zomaya, A. (2014a). An optimal and stable feature

selection approach for traffic classification based on multi-criterion fusion. Future Generation
Computer Systems, página 156–169.

Fahad, A., Tari, Z., Khalil, I., Almalawi, A. e Zomaya, A. Y. (2014b). An optimal and stable

feature selection approach for traffic classification based on multi-criterion fusion. Future
Generation Computer Systems, páginas 156–169.

Faris, H., Hassonah, M., Al-Zoubi, A., Mirjalili, S. e Aljarah, I. (2017). A multi-verse optimizer

approach for feature selection and optimizing svm parameters based on a robust system

architecture. Neural Computing and Applications, páginas 1–15.

48

Farnaaz, N. e Jabbar, M. (2016). Random forest modeling for network intrusion detection system.

Procedia Computer Science, páginas 213 – 217.

Feitelson, D. G. e Weil, A. M. (1998). Utilization and predictability in scheduling the ibm sp2

with backfilling. Em Parallel Processing Symposium, 1998. IPPS/SPDP 1998. Proceedings of
the First Merged International... and Symposium on Parallel and Distributed Processing 1998,

páginas 542–546. IEEE.

Feng, W.-c., Lin, H., Scogland, T. e Zhang, J. (2012). Opencl and the 13 dwarfs: a work in

progress. Em Proceedings of the 3rd ACM/SPEC International Conference on Performance
Engineering, páginas 291–294. ACM.

F.R.S., K. P. (1901). Liii. on lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science.

Galante, G., De Bona, L. C. E., Mury, A. R., Schulze, B. e da Rosa Righi, R. (2016). An analysis

of public clouds elasticity in the execution of scientific applications: a survey. Journal of Grid
Computing, 14(2):193–216.

Gao, L., Chen, P. e Yu, S. (2016). Demonstration of convolution kernel operation on resistive

cross-point array. IEEE Electron Device Letters, páginas 870–873.

Gémieux, M., Savaria, Y., David, J.-P. e Zhu, G. (2017). A cache-coherent heterogeneous

architecture for low latency real time applications. Em Real-Time Distributed Computing
(ISORC), 2017 IEEE 20th International Symposium on, páginas 176–184. IEEE.

Giotis, K., Androulidakis, G. e Maglaris, V. (2014). Leveraging SDN for efficient anomaly

detection and mitigation on legacy networks. Em Proceedings of the third European Workshop
on Software Defined Networks (EWSDN), páginas 85–90. IEEE.

Gong, Y., Wang, X., Malboubi, M., Wang, S., Xu, S. e Chuah, C.-N. (2015). Towards accurate

online traffic matrix estimation in software-defined networks. Em Proceedings of the 1st ACM
SIGCOMM Symposium on Software Defined Networking Research, página 26. ACM.

Guo, Z. e Zhang, L. (2010). A completed modeling of local binary pattern operator for texture

classification. IEEE transactions on image processing : a publication of the IEEE Signal
Processing Society.

Gupta, A. e Milojicic, D. (2011). Evaluation of hpc applications on cloud. Em Open Cirrus
Summit (OCS), 2011 Sixth, páginas 22–26. IEEE.

Hamouchene, I., Aouat, S. e Lacheheb, H. (2014). Texture segmentation and matching using lbp

operator and glcm matrix. Studies in Computational Intelligence.

He, L., Xu, C. e Luo, Y. (2016). vtc: Machine learning based traffic classification as a virtual

network function. Em Proceedings of the 2016 ACM International Workshop on Security in
Software Defined Networks & Network Function Virtualization, páginas 53–56. ACM.

Heuveline, V. e Latt, J. (2007). The openlb project: an open source and object oriented

implementation of lattice boltzmann methods. International Journal of Modern Physics C,

18(04):627–634.

49

Huang, W., Huang, Y., Wang, H., Liu, Y. e Shim, H. J. (2020). Local binary patterns and

superpixel-based multiple kernels for hyperspectral image classification. IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing.

Jain, N. (2016). Optimization of communication intensive applications on HPC networks. Tese

de doutorado, University of Illinois at Urbana-Champaign.

Jamalian, S. e Rajaei, H. (2015). Data-intensive hpc tasks scheduling with sdn to enable

hpc-as-a-service. Em Cloud Computing (CLOUD), 2015 IEEE 8th International Conference
on, páginas 596–603. IEEE.

Jennings, B. e Stadler, R. (2015). Resource management in clouds: Survey and research

challenges. Journal of Network and Systems Management, páginas 567–619.

Kalakech, M., Biela, P., Macaire, L. e Hamad, D. (2011). Constraint scores for semi-supervised

feature selection: A comparative study. Pattern Recognition Letters, páginas 656 – 665.

Kamencay, P., Trnovszky, T., Benco, M., Hudec, R., Sykora, P. e Satnik, A. (2016). Accurate

wild animal recognition using pca, lda and lbph. Em 2016 ELEKTRO.

Kecman, V. e Wang, L. (2005). Support Vector Machines – An Introduction, páginas 1–47.

Springer Berlin Heidelberg.

Koh, J., Lee, J. e Yoon, S. (2021). Single-image deblurring with neural networks: A comparative

survey. Computer Vision and Image Understanding.

Kreutz, D., Ramos, F. M. V., Veríssimo, P. E., Rothenberg, C. E., Azodolmolky, S. e Uhlig, S.

(2015). Software-defined networking: A comprehensive survey. Proceedings of the IEEE,

páginas 14–76.

Krishna, S. V., Shrivastava, A. e Wagh, S. J. (2017). Sdn in high performance computing for

scientific and business environment (sbe). Em 2017 International Conference on Computational
Intelligence in Data Science(ICCIDS), páginas 1–8. IEEE.

Kulkarni, V. e Sinha, P. (2013). Random forest classifiers: A survey and future research directions.

International Journal of Advanced Computing, páginas 1144–1153.

Kuster, L. (2017). dCUDA: GPU Cluster Programming using IB Verbs. Tese de doutorado,

Department of Computer Science, ETH Zurich.

Lee, J., Tong, Z., Achalkar, K., Yuan, X. e Lang, M. (2016). Enhancing infiniband with

openflow-style sdn capability. Em Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, páginas 36:1–36:12. IEEE Press.

Lee, J., Turner, Y., Lee, M., Popa, L., Banerjee, S., Kang, J.-M. e Sharma, P. (2014). Application-

driven bandwidth guarantees in datacenters. Em ACM SIGCOMM Computer Communication
Review, volume 44, páginas 467–478. ACM.

Lee, J. R., Canon, R. S., Declerck, T., Draney, B., Paul, D. e Skinner, D. (2018). Enhancing

supercomputing with software defined networking. Em 2018 International Conference on
Information Networking (ICOIN), páginas 571–576. IEEE.

50

Liu, Y., Li, Q., Du, B. e Farzaneh, M. (2021). Feature extraction and classification of surface

discharges on an ice-covered insulator string during ac flashover using gray-level co-occurrence

matrix. Scientific Reports.

Liu, Y., Li, W. e Li, Y. (2007). Network traffic classification using k-means clustering. Em

Second International Multi-Symposiums on Computer and Computational Sciences (IMSCCS
2007), páginas 360–365. IEEE.

Ng, S. (2017). Principal component analysis to reduce dimension on digital image. Procedia
Computer Science.

Ning, Q., Zhu, J. e Chen, C. (2018). Very fast semantic image segmentation using hierarchical

dilation and feature refining. Cognitive Computation.

Nugteren, C. (2017). Clblast: A tuned opencl blas library. arXiv preprint arXiv:1705.05249.

Nunes, B. A. A., Mendonca, M., Nguyen, X., Obraczka, K. e Turletti, T. (2014). A survey of

software-defined networking: Past, present, and future of programmable networks. IEEE
Communications Surveys Tutorials, páginas 1617–1634.

Ojala, T., Pietikainen, M. e Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant

texture classification with local binary patterns. IEEE Transactions on pattern analysis and
machine intelligence, páginas 971–987.

Ojala, T., Pietikäinen, M. e Harwood, D. (1996). A comparative study of texture measures with

classification based on featured distributions.

ONF, O. (2013). Sdn architecture overview. https://www.opennetworking.org/
images/stories/downloads/sdn-resources/technical-reports/SDN-
architecture-overview-1.0.pdf. Accessed 12 mar. 2017.

Osin, A. V. e Sheluhin, O. I. (2019). Network quality operation prediction based on machine

learning algorithms. Em 2019 Systems of Signals Generating and Processing in the Field of
on Board Communications, páginas 1–4.

Parsania, P. e Virparia, D. (2016). A comparative analysis of image interpolation algorithms.

IJARCCE.

Perez, L. e Wang, J. (2017). The effectiveness of data augmentation in image classification using

deep learning. CoRR.

Polezhaev, P., Shukhman, A. e Ushakov, Y. (2014). Network resource control system for hpc

based on sdn. Em International Conference on Next Generation Wired/Wireless Networking,

páginas 219–230. Springer.

Prabhakar, R., Zhang, Y., Koeplinger, D., Feldman, M., Zhao, T., Hadjis, S., Pedram, A., Kozyra-

kis, C. e Olukotun, K. (2017). Plasticine: A reconfigurable architecture for parallel paterns. Em

Proceedings of the 44th Annual International Symposium on Computer Architecture, páginas

389–402. ACM.

Pradhan, A. (2012). Support vector machine-a survey. IJETAE, 2.

51

Rasras, R. J., Zahran, B., Sara, M. R. e AlQadi, Z. (2021). Developing digital signal clustering

method using local binary pattern histogram. International Journal of Electrical and Computer
Engineering.

Renner, T., Thamsen, L. e Kao, O. (2015). Network-aware resource management for scalable

data analytics frameworks. Em Big Data (Big Data), 2015 IEEE International Conference on,

páginas 2793–2800. IEEE.

Righi, R., Rodrigues, V., Costa, C., Galante, G., de Bona, L. C. E. e Ferreto, T. (2016).

Autoelastic: Automatic resource elasticity for high performance applications in the cloud.

IEEE Transactions on Cloud Computing, 4(1):6–19.

Rokach, L. (2010). Ensemble-based classifiers. Artificial Intelligence Review, páginas 1–39.

Roughan, M., Sen, S., Spatscheck, O. e Duffield, N. (2004). Class-of-service mapping for qos: A

statistical signature-based approach to ip traffic classification. Em Proceedings of the 4th ACM
SIGCOMM Conference on Internet Measurement, páginas 135–148. ACM.

Rubin, E., Levy, E., Barak, A. e Ben-Nun, T. (2014). Maps: Optimizing massively parallel

applications using device-level memory abstraction. páginas 1–22.

Sakr, S., Liu, A., Batista, D. M. e Alomari, M. (2011). A survey of large scale data management

approaches in cloud environments. Communications Surveys & Tutorials, IEEE, 13(3):311–

336.

Samuel, A., Zahavi, E. e Keslassy, I. (2017). Routing keys. Em 2017 IEEE 25th Annual
Symposium on High-Performance Interconnects (HOTI), páginas 9–16. IEEE Computer

Society.

Sarwinda, D., Paradisa, R. H., Bustamam, A. e Anggia, P. (2021). Deep learning in image

classification using residual network (resnet) variants for detection of colorectal cancer.

Procedia Computer Science.

Scornet, E. (2017). Tuning parameters in random forests. ESAIM: Procs, páginas 144–162.

Sheikhpour, R., Sarram, M. A., Gharaghani, S. e Chahooki, M. A. Z. (2017). A survey on

semi-supervised feature selection methods. Pattern Recogn., páginas 141–158.

Simmons, J. M. (2014). Optical network design and planning. Springer.

Soysal, M. e Schmidt, E. (2010a). Machine learning algorithms for accurate flow-based network

traffic classification: Evaluation and comparison. Perform. Eval., páginas 451–467.

Soysal, M. e Schmidt, E. G. (2010b). Machine learning algorithms for accurate flow-based

network traffic classification: Evaluation and comparison. Performance Evaluation, páginas

451–467.

Spatscheck, O., Levchenko, K., Kreibich, C. e Savage, S. (2014). Machine learning based traffic

classification using low level features and statistical analysis.

Springer, P. (2011). Berkeley’s dwarfs on cuda. RWTH Aachen University, Tech. Rep.

52

Srivastava, G., Singh, M., Kumar, P. e Singh, J. (2016). Internet traffic classification: A survey.

Em Recent Advances in Mathematics, Statistics and Computer Science, páginas 611–620.

World Scientific.

Srivastava, M., Siddiqui, J. e Ali, M. (2020). Image copy detection based on local binary pattern

and svm classifier. Cybernetics and Information Technologies.

Takahashi, K., Khureltulga, D., Munkhdorj, B., Kido, Y., Date, S., Yamanaka, H., Kawai, E.

e Shimojo, S. (2015). Concept and design of sdn-enhanced mpi framework. Em Software
Defined Networks (EWSDN), 2015 Fourth European Workshop on, páginas 109–110. IEEE.

Tangherloni, A., Nobile, M. S., Besozzi, D., Mauri, G. e Cazzaniga, P. (2017). Lassie: simulating

large-scale models of biochemical systems on gpus. BMC bioinformatics, 18(1):246.

Tibrewala, R., Pedoia, V., Bucknor, M. e Majumdar, S. (2020). Principal component analysis of

simultaneous pet-mri reveals patterns of bone–cartilage interactions in osteoarthritis. Journal
of Magnetic Resonance Imaging.

Trestian, R., Muntean, G. M. e Katrinis, K. (2013). Micetrap: Scalable traffic engineering of

datacenter mice flows using openflow. Em 2013 IFIP/IEEE International Symposium on
Integrated Network Management (IM 2013), páginas 904–907.

Trois, C. (2017). Communication patterns abstractions for programming SDN to optimize
high-performance computing applications. Tese de doutorado, Federal University of Paraná,

Curitiba, Brazil.

Trois, C., Bona, L. C., Oliveira, L. S., Martinello, M., Harewood-Gill, D., Del Fabro, M. D.,

Nejabati, R., Simeonidou, D., Lima, J. C. e Stein, B. (2018). Exploring textures in traffic

matrices to classify data center communications. Em 2018 IEEE 32nd International Conference
on Advanced Information Networking and Applications (AINA), páginas 1123–1130. IEEE.

Trois, C., de Bona, L. C. E., Fabro, M. D. D., Martinello, M., Bidkar, S., Nejabati, R. e

Simeonidou, D. (2017). Softening up the network for scientific applications. Em Parallel,
Distributed and Network-Based Processing (PDP), 25th Euromicro Inte. Conference on,

páginas 410–418. IEEE.

Trois, C., de Bona, L. C. E., Fabro, M. D. D. D. e Martinello, M. (2016). Carving Software-

Defined Networks for Scientific Applications with SpateN. Em 41st Conference on Local
Computer Networks (LCN), páginas 606–610. IEEE.

Van Adrichem, N. L., Doerr, C., Kuipers, F. et al. (2014). Opennetmon: Network monitoring in

openflow software-defined networks. Em Network Operations and Management Symposium
(NOMS), 2014 IEEE, páginas 1–8. IEEE.

Vasiljevic, I., Chakrabarti, A. e Shakhnarovich, G. (2017). Examining the impact of blur on

recognition by convolutional networks.

Vassiliev, A. V. (2017). Scalable opencl fpga computing evolution. Em Proceedings of the 5th
International Workshop on OpenCL, página 22. ACM.

Vetter, J. S. e Mueller, F. (2002). Communication characteristics of large-scale scientific

applications for contemporary cluster architectures. Em Proceedings 16th International
Parallel and Distributed Processing Symposium, páginas 10 pp–. IEEE.

53

Wang, J., Rubin, N., Sidelnik, A. e Yalamanchili, S. (2016). Laperm: Locality aware scheduler

for dynamic parallelism on gpus. Em Proceedings of the 43rd International Symposium on
Computer Architecture, páginas 583–595. IEEE Press.

Wang, M., Cui, Y., Wang, X., Xiao, S. e Jiang, J. (2018). Machine learning for networking:

Workflow, advances and opportunities. IEEE Network, páginas 92–99.

Wang, N., Ho, K., Pavlou, G. e Howarth, M. (2008). An overview of routing optimization for

internet traffic engineering. Communications Surveys & Tutorials, IEEE, 10(1):36–56.

Wang, P. e Chung, A. C. S. (2018). Focal dice loss and image dilation for brain tumor segmentation.

Springer International Publishing.

Werner, S., Navaridas, J. e Luján, M. (2017). Designing low-power, low-latency networks-on-

chip by optimally combining electrical and optical links. Em High Performance Computer
Architecture (HPCA), 2017 IEEE International Symposium on, páginas 265–276. IEEE.

Wu, Z., Lu, K., Wang, X. e Chi, W. (2016). Alleviating network congestion for hpc clusters with

fat-tree interconnection leveraging software-defined networking. Em Systems and Informatics
(ICSAI), 2016 3rd International Conference on, páginas 808–813. IEEE.

Xu, J., Wu, Q., Zhang, J. e Tang, Z. (2012). Object detection based on co-occurrence gmulbp

features. IEEE Computer Society.

Yang, C. (2018). Anomaly network traffic detection algorithm based on information entropy

measurement under the cloud computing environment. Cluster Computing.

Yao, H., Li, H., Liu, C., Xiong, M., Zeng, D. e Li, G. (2016). Joint optimization of vm placement

and rule placement towards energy efficient software-defined data centers. Em Computer and
Information Technology (CIT), 2016 IEEE International Conference on, páginas 204–209.

IEEE.

Ye, J., Cheng, X., Zhu, J., Feng, L. e Song, L. (2018). A ddos attack detection method based on

svm in software defined network. Security and Communication Networks, páginas 1–8.

Yu, J., Liu, G., Dong, W. e Li, X. (2017). Using locality-enhanced distributed memory

cache to accelerate applications on high performance computers. Em Big Data Security on
Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart
Computing,(HPSC) and IEEE International Conference on Intelligent Data and Security (IDS),
2017 IEEE 3rd International Conference on, páginas 160–166. IEEE.

Yu, R., Yang, Y., Yang, L., Han, G. e Move, O. A. (2016). Raq–a random forest approach for

predicting air quality in urban sensing systems. Em Sensors.

Yu, Y., Qian, C. e Li, X. (2014). Distributed and collaborative traffic monitoring in software

defined networks. Em Proceedings of the third workshop on Hot topics in software defined
networking, páginas 85–90. ACM.

Zhang, D., Tang, D., Tang, L., Dai, R., Chen, J. e Zhu, N. (2019). Pca-svm-based approach

of detecting low-rate dos attack. Em 2019 IEEE 21st International Conference on High
Performance Computing and Communications; IEEE 17th International Conference on Smart
City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS),
páginas 1163–1170.

54

Zhang, H., Lu, G., Qassrawi, M. T., Zhang, Y. e Yu, X. (2012). Feature selection for optimizing

traffic classification. Computer Communications, páginas 1457–1471.

Zhang, S., Wu, Y. e Chang, J. (2020). Survey of image recognition algorithms. Em 2020 IEEE
4th Information Technology, Networking, Electronic and Automation Control Conference
(ITNEC).

Zhang, Y. e Ge, Z. (2005). Finding critical traffic matrices. Em Dependable Systems and
Networks, 2005. DSN 2005. Proceedings. International Conference on, páginas 188–197.

IEEE.

Zhao, Y., Jia, W., Hu, R.-X. e Min, H. (2013a). Completed robust local binary pattern for texture

classification. Neurocomputing, páginas 68–76.

Zhao, Y., Jia, W., Hu, R.-X. e Min, H. (2013b). Completed robust local binary pattern for texture

classification. Neurocomputing.

