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Toda mata tem caipora para a mata vigiar
Veio caipora de fora para a mata definhar
E trouxe dragão de ferro, pra comer muita madeira
E trouxe em estilo gigante, pra acabar com a capoeira

Fizeram logo o projeto sem ninguém testemunhar
Pra o dragão cortar madeira e toda mata derrubar
Se a floresta meu amigo, tivesse pé pra andar
Eu garanto, meu amigo, que o perigo não tinha ficado lá

O que se corta em segundos gasta tempo pra vingar
E o fruto que dá no cacho pra gente se alimentar?
Depois tem o passarinho, tem o ninho, tem o ar
Igarapé, rio abaixo, tem riacho e esse rio que é um mar

Mas o dragão continua na floresta a devorar
E quem habita essa mata, pra onde vai se mudar?
Corre índio, seringueiro, preguiça, tamanduá
Tartaruga, pé ligeiro, corre, corre tribo dos Kamaiurá

No lugar que havia mata, hoje há perseguição
Grileiro mata posseiro só pra lhe roubar seu chão
Castanheiro, seringueiro já viraram até peão
Afora os que já morreram como ave de arribação
Zé de Nana tá de prova, naquele lugar tem cova
Gente enterrada no chão

Pois mataram o índio que matou grileiro que matou posseiro
Disse um castanheiro para um seringueiro que um estrangeiro
Roubou seu lugar

(Vital Farias, 1984)
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RESUMO

Esta dissertação de mestrado está dividida em dois ensaios sobre as relações econômicas da

agricultura e do meio ambiente. Ambos os ensaios tratam de terras agrícolas no Brasil, porém cada

um com foco em regiões. O bioma do Cerrado onde as terras agrícolas podem ser expandidas, e o

estado do Paraná onde os assentamentos agrícolas praticamente esgotaram as terras virgens, com

exceção das reservas ambientais e áreas de alta latitude. O primeiro ensaio avalia, a partir de um

conjunto de dados em painel bienal para o período de 2002-2018, a relação entre o desmatamento

municipal no Cerrado e as políticas de dissuasão realizadas pelo IBAMA. Os mecanismos de

dissuasão utilizados foram concebidos com base na teoria da escolha criminal, e visavam abarcar

três dimensões distintas: severidade, certeza e celeridade da punição. Devido a endogeneidade

inerente ao modelo, variáveis instrumentais (IV) e técnicas de regressão em dois estágios são

implementadas no contexto de uma análise de dados em painel com e sem consideração explícita

do espaço, uma vez que o desmatamento geralmente apresenta dependência espacial. Em

particular para os modelos de painéis espaciais, o método generalizado de momentos (GMM) é

empregado. As especificações do modelo incluem relações não lineares, termos de lag espacial

(SAR) e erro espacial (SEM). Entre nossos principais resultados, encontramos evidências de

que a severidade da punição (intensidade da multa), a celeridade (espera do julgamento) e a

certeza (julgamento da multa) desempenham um papel essencial na contenção do processo de

desmatamento. No segundo ensaio os impactos das mudanças climáticas sobre os preços das

terras agrícolas no Paraná são investigados usando especificações econométricas hedônicas

baseadas em um modelo Ricardiano. Para tanto, utiliza-se um banco de dados bastante detalhado

com medidas diárias de temperatura para a construção de um preciso indicador agronômico que

mede absorção térmica de uma cultura, também conhecido como graus-dias de crescimento

(GDD). O modelo estimado, juntamente com as projeções climáticas do IPCC, foi posteriormente

empregado para projetar os impactos futuros das mudanças climáticas na agricultura do Paraná.

Os resultados indicaram que o Paraná se beneficiará das mudanças climáticas com valorização

de seus preços de terras agrícolas em todos os cenários projetados.

Palavras-chave: Desmatamento. Preços Fundiários. Modelos econométricos espaciais.



ABSTRACT

This MS thesis is divided into two essays on the economic relationships of agriculture and

environment. Both essays concern agricultural land in Brazil, but focus on different regions. The

Cerrado biome where farmland can still be expanded, and Paraná state where virgin lands are

piratically exhausted by farm settlement, with exception of reservations and high latitude areas.

The first essay assesses, through the use of a biennial panel data set for the period of 2002-2018,

the relationship between municipal deforestation in the Cerrado and deterrence policies carried

out by IBAMA. The deterrence mechanisms are designed based on the theory of criminal choice,

and encompass three different dimensions: severity, certainty and celerity of punishment.Due

to their inherent endogeneity, instrumental variables (IV) and two-stage regression techniques

are implemented in the context of a panel data analysis with and without explicit consideration

of space as deforestation usually has spatial dependence. The model specifications included

non-linear relationships, spatial lag (SAR) and spatial error (SEM) terms. Among our main

results, we found evidence that punishment severity (fine intensity), celerity (trial wait), and

certainty (judged fines) play an essential role in curbing the deforestation process. In the second

essay we investigated the impacts of climate change on farmland prices in Paraná using an

hedonic econometric specification based on a Ricardian model. For such, a very detailed database

with daily measures of temperature is used to the construction of an precise agronomic indicator

of thermal intake of a crop, also known as growing-degree days (GDD). The estimated model,

along with climate projections of IPCC, was subsequently employed to project the future impacts

of climate change on Paraná’s agriculture. Results indicated that Paraná will benefit from

climate change with appreciation of its farmland prices in all projected scenarios.

Keywords: Deforestation. Rural Land Prices. Spatial econometric models.
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1 PRIMEIRO ENSAIO:
ASSESSING THE EFFECTS OF DETERRENCE MECHANISMS ON DEFORESTA-
TION IN BRAZILIAN SAVANNA

ABSTRACT

The aim of this essay is to assess the effect of deterrence mechanisms on environmental crimes

in the Brazilian Savanna (Cerrado). We used spatial and non-spatial panel econometric models

with a sample of 948 municipalities in the period 2002-2018. Deterrence is composed by three

variables (severity, celerity and certainty of punishment) which represents a major contribution

to the literature as they were never jointly used in an econometric context. When endogeneity

is properly taken into account, deforestation becomes responsive to both rises on fine intensity

(severity) and to improvements in the bureaucratic process (certainty and celerity), being the

latter a strong contributor to slowing deforestation rates. Such findings reinforce the importance

of applying an efficient legal process concerning prevention and punishment deforestation.

Keywords: Deforestation, Deterrence, Cerrado, Spatial Econometrics, Brazil

RESUMO

O objetivo deste ensaio é avaliar o efeito de mecanismos de dissuasão sobre crimes ambientais

no Cerrado brasileiro (Cerrado). Utilizam-se modelos econométricos de painel espacial e não

espacial com uma amostra de 948 municípios no período 2002-2018. A dissuasão é composta

por três variáveis (severidade, celeridade e certeza da punição) o que representa uma grande

contribuição para a literatura, pois nunca foram utilizadas conjuntamente em um contexto

econométrico. Quando a endogeneidade é devidamente considerada, o desmatamento torna-se

responsivo tanto a aumentos na intensidade de multa (severidade) quanto a melhorias no processo

burocrático (certeza e celeridade), sendo este último um forte contribuinte para a desaceleração

das taxas de desmatamento. Estes achados reforçam a importância da aplicação de um processo

legal eficiente na prevenção e punição do desmatamento.

Palavras-chave: Desmatamento, Dissuasão, Cerrado, Econometria Espacial, Brasil
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1.1 INTRODUCTION

Forest clearance for agricultural expansion is considered to be the main culprit of

deforestation in Brazil (Diniz et al., 2009; Rivero et al., 2009; Hargrave and Kis-Katos, 2013;

Assunção et al., 2015). This type of deforestation can be modeled through Becker (1968)’s

theory, in which all rational agents pursue their own best interests (e.g., farmers expanding their

property) and their behavior can be shaped by law, surveillance and punishment institutions

(environmental code, agencies, and police). As explained by Polinsky and Shavell (2007), within

law economics, rules are established in accordance with deterrence mechanisms, which are

composed of punishment per se (fines or detention), the probability of punishment – derived

from the public effort of surveillance – and the celerity of punishment, which results from the

speed of the legal process and bureaucracy. When it comes to Brazil’s scenario more specifically,

environmental law is usually enforced by a single public entity, namely the Brazilian Institute of

Environment and Renewable Natural Resources (IBAMA).

The literature suggests that the driving forces of deforestation are associated with a great

number of factors: from macroeconomic effects – e.g., population pressure, economic growth,

infrastructure network – (Andersen, 1996; Pfaff, 1999) to market-factors – as it is the case of

commodity quantity/prices and currency devaluation (Diniz et al., 2009; Rivero et al., 2009) –,

public policies – with their environmental reservations, rural credit and amnesties (Fearnside,

2005; Prates, 2008); and socioeconomic variables – education levels, income disparity and

labor market are some examples (Pichón, 1997; Godoy et al., 1998; Angelsen, 1999; Godoy and

Contreras, 2001; Pendleton and Howe, 2002; Zwane, 2007).

Recently, a handful of studies has shifted their focus from drivers of deforestation to

measuring and understanding the efforts to curb deforestation. A pioneering article concerning

IBAMA’s activity is Hargrave and Kis-Katos (2013), which measures the relationship between

environmental fine intensity and deforestation in the Amazon rainforest. Over the same period,

De Souza et al. (2013) analyzes the impacts of rural technology, land concentration and IBAMA

embargoes on deforestation, and achieves mixed results regarding IBAMA deterrence capacity.

Also, the author emphasizes how fines and embargoes are crime-sensitive and therefore are

concentrated on high deforestation areas. Börner et al. (2014) develop a spatial enforcement

model by using a combination of the principal-agent relationship and the theory of criminal

behavior in order to simulate the cost-effectiveness of command and control policies within the

Brazilian Amazon’s limits.

Another work worth mentioning is Assunção et al. (2015) which find out that the policy

changes taken place in IBAMA in 2004 and 2008 contributed to slowdown deforestation rates in

the Amazon. In Schmitt (2015)’s doctoral thesis, the author designs a model to assess the general

deterrence value of IBAMA fines by making use of data on enforcement probability. In a technical

report, Assunção et al. (2017) propose a novel instrumental variable –clouds in the satellite

images used by IBAMA in surveillance (DETER)– to estimate the existing causality between fines

and deforestation. A tragedy of commons situation, modeled through game-theory principles, is

presented by de Araújo et al. (2021). Moreover, they discuss not only the importance of modeling

deforestation based on the dissuasion theory in Brazil but also the main difficulties faced by

environmental policing authorities on stopping deforestation. The slow process regarding the

application of IBAMA’s embargoes receives special attention by the authors once it represents an

obstacle to the celerity of punishment.

The everlasting challenge to researchers that try to infer causality between deterrence

factors and crime – regardless of which sort of criminal activity is under analysis (Cameron, 1988;

Levitt, 2002; Draca et al., 2011) – concerns the endogeneity between crime and policing, and
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how one affects the other: the kind of relation from which it is hard to imply causality from. This

issue is pervasive to all type of crime including deforestation. Hargrave and Kis-Katos (2013) and

Assunção et al. (2017), for instance, advocate for the use of crime-oriented instruments to estimate

the relationship shared by IBAMA’s fines and deforestation. Both studies, however, are limited to

only one dimension of deterrence, severity, and neglect other aspects of law enforcement, such

as certainty and celerity. de Araújo et al. (2021) argues that focusing on severity and embargo

quantity only is not enough to comprehend the full spectrum of IBAMA’s activity, and point out

that the slow nature of the processing phase – as defendants wait for trial – along with the inability

of IBAMA to properly enforce fine payment are the main limits of environmental surveillance in

Brazil and must be accounted for in a model interested in describing IBAMA’s work. Similar

environmental-policing hurdles have also been claimed to take place in other countries, as Lynch

et al. (2016)’s study the US.

This essay adds two other dimensions to represent deterrence, certainty and celerity of

punishment, in accordance with Schmitt (2015)’s proposals, as well as its instrument counterparts

based on Hargrave and Kis-Katos (2013) instrument for fines. It also approaches the underexplored

data on deforestation of the Brazilian Savanna, locally known as the Cerrado. The Cerrado is the

second largest biome in Brazil, covering up nearly 24% of the national territory. Likewise in

the Amazon region, settlement was sparse until the mid-twentieth century. A scenario which

begins to change in the 1960s and 70s with the implementation of new farming techniques and

plant selection advancements for soybean production – promoted by the Brazilian Agricultural

Research Corporation (EMBRAPA). Such improvements allowed for soybean cultivation in the

tropical climate of Cerrado. From the 1980s onwards an extensive land-use/land-cover-change

process occurs in the area, which culminates with Brazil becoming the world largest soybean

producer (Conab, 2020). Due to this expansion some studies even predict the extinction of this

biome by 2030, e.g., (Machado et al., 2004).

Given the extent of the deforestation in the Cerrado and the potentially large impacts on

the ecosystem, there is a surprisingly low number of studies focusing on this area, a fact that

contrasts to the striking number of investigations regarding the Amazonian biome. Part of this

may be a result of the lack of international scrutiny towards the Cerrado, in opposition to the

attention drawn to the Amazon rainforest. The low national and international media coverage for

the biome and the common understanding of Cerrados as being a dry and lifeless biome seem to

contribute to this poor visibility.

Our results present evidence that punishment severity (fine intensity), celerity (trial

wait), and certainty (judged fines) play an essential role in curbing the deforestation process.

Furthermore, parameter values for deterrence variables agree with de Araújo et al. (2021)

in claiming that the slow bureaucracy of the legal process is the main culprit for IBAMA’s

enforcement inefficiency, as estimated elasticities suggest that improvements on the celerity of

deterrence and certainty of trial present higher effect in hindering deforestation than the severity

of fines.

In the following section we explore more deeply this investigation’s area of study by

presenting the Cerrado, discussing the theoretical foundation of our model, and describing the

main variables of interest. In section 3 we explain our empirical approach, we show the selected

control variables and describe our sample selection process. Also, endogeneity problems and

instruments to solve them are specified. In section 4 we discuss results and tests. Finally, we

conclude in section 5.
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1.2 THE STUDY AREA

The Cerrado is a tropical savanna almost entirely located within Brazil’s borders, being

the second largest biome of the country. It is considered to be one of the most diverse ecosystems

of the planet, with high levels of endemism – that is, the number of species unique to a biome –

in both fauna and flora (Machado et al., 2008). This biological richness is followed by a rich

economy: 24% of Brazilian GDP comes from municipalities from this region, which encompasses

38% of Brazilian agricultural production in 2018 (IBGE, 2021). The resulting agricultural

expansion has exerted a heavy toll to the savanna’s forests though, as the Cerrado has lost 50% of

its original coverage by 2019 (INPE, 2020). This urges for a better understanding of deforestation

in the area as well as the need of finding the best strategies to restrain its progress.

Information about Cerrado’s native vegetation suppression is provided by Brazil’s

National Institute of Space Research (INPE) as shapefiles. This dataset used to be published

biennially from 2002 to 2012, but it turned to be released yearly from 2013 onward. Given

this fact, we have chosen to aggregate the yearly portion of the data into biennial values by

municipality, as it is usually the most disaggregated level of Brazilian datasets. Adding to it,

the data is not organized in accordance with the Gregorian year: instead its measures are made

on August 1st every two years (once a year since 2013). Those two timespan problems call for

adjustments to our explanatory variables, i.e., any yearly data must be converted to what we

call the INPE’s year1. As it is possible to see in figure 1.3(a)2, INPE’s data show a downward

trend in deforestation of the biome since 2004, with a brief spike in 2014. Additionally, figures

1.1(a) and 1.1(b) present the level of municipal deforestation in the first and last biennial for the

municipalities under approach in this work: they indicate a shift of deforestation to the northern

region of Cerrado3.
As to the information on environmental policing, IBAMA is the institution responsible

for. Since a specific date for each embargo is informed, no adaptation of INPE’s year is needed.

The first explanatory variable is fine intensity, which is used as a proxy for severity of punishment.

It is computed identically to Hargrave and Kis-Katos (2013) – where data of issued fines per

municipality per period is divided by municipal deforestation over the same period, and then

they are converted to logarithm. From figure 1.3(b), it is possible to observe an increase in fine

intensity, beginning in 2004 and stabilizing in 2008. Such periods coincide with the changes in

IBAMA’s structure, more deeply studied in Assunção et al. (2015). Figures 1.2(a) and 1.2(d)

indicate the local trend of fine intensity. Also, there is a slight shift to north accompanying the

deforestation trend.

The celerity proxy is composed of the number of judged cases – up to a certain period

– divided by the sum of days from the moment the fine is issued to the trial day of all judged

cases – until the same period —, then converted into logarithms4. To better visualize why this

imply celerity, observe that the fraction’s inverse will be the mean number of days from IBAMA’s

embargo to trial, i.e., the expected delay for conviction. Therefore, our proxy measures the

celerity of the legal process from embargo to trial. Low levels of celerity – despite high certainty

1INPE’s year is achieved by aggregating variables proportionally after values are deflated. In order to construct

the 2004 data point for rural credit, for instance, we use 5/12 of the deflated value and quantity for the year 2002,

the complete value and quantity of 2003, and 7/12 of the year 2004 – only then values are calculated. For those

variables were averages are used, e.g. cattle heads, the proportions used are 5/24, 1/2 and 7/24 respectively.

2All figures, graph, tables, and maps are obtained after a sample selection process depicted in section 1.3.1.

3This particular region is known as Matopiba, its name derives from the initials of the four states that composes

it: Maranhão, Tocantins, Piauí, Bahia.

4Note that some municipalities in early periods had not had any fines judged – for those, the minimum value in

the biennium is set.
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(a) (b)

Figure 1.1: Maps of Cerrado deforestation by municipality in hectares (first and last biennia)

Source: Own Calculations based on data from INPE

of conviction and severity of punishment – will signal to the agents late punishment application,

what may lead to the prescription of the case and encourage further criminal behavior. In figure

1.3(c) there is a clear reduction of celerity along the studied period, with the 2018 average wait

period being over twice as long as the 2002 average – 536 day versus 233 days. Maps 1.2(b) and

1.2(e) display the local values. From them, it is clear to notice the legal celerity presents a general

downward trend, what indicates a loss of bureaucratic efficiency of IBAMA in all municipalities.

At last, the certainty of conviction proxy is achieved by taking the number of judged

IBAMA’s embargoes – until a given period – and dividing it by the total number of issued

IBAMA’s embargoes – under the same period –, then multiply the result by 100. To sum up, it is

the percentage of the judged fines against the total number of issued fines within a certain period

for a municipality. Assuming a constant chance of being caught – in case the proportion of solved

embargoes is high –, these agents may be dissuaded to commit future environmental crimes

since the chances of effective punishment after the embargoes are higher. The time trend of

this variable is depicted in figure 1.3(d), where a clear growth is shown, indicating that IBAMA

is processing trials faster than imposing new embargoes. Figures 1.2(c) and 1.2(f) depict the

municipal distribution of certainty in 2002 and 2018 biennia, which shows a general improvement

in the indicator.

Both the certainty and celerity variables take form of stock variables – in contrast to

severity which represents a flow. This understanding has its grounds on the delay of environmental-

related trials in Brazil, which can last years. The use of judged fines influx, therefore, would

remove most cases from our dataset. It is important to notice that celerity and certainty proxies

do not indicate conviction, just in case a trial is ordered – independently of the final decision.

This may not represent a serious problem given that 90% of embargoes result in conviction, as it

is pointed out by Schmitt (2015).
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(a) (b) (c)

(d) (e) (f)

Figure 1.2: Maps of local distribution of deterrence variables (first and last biennium)

Source: Own Calculations based on data from IBAMA

Another key aspect of our data is that the embargoes and fines gathered here are not

only composed of crimes against flora, but also against fauna. We apply this procedure to avoid

missing data points given there are municipalities without registered flora crimes in some years.

We presume this will not be problematic situation since IBAMA’s surveillance capability and

bureaucratic speed are shared across fauna and flora monitoring. As criminals observe actions

against other environmental crimes to assess how likely they are of being punished, i.e., there is a

spillover of deterrence from IBAMA’s actions against fauna offenders to flora offenders, and vice
versa.

1.3 EMPIRICAL STRATEGY

For economic studies concerning deforestation, panel analyses have been the key method

for econometric inference, both for country and municipal level. As to the latter, Pfaff et al. (2007)

and Hargrave and Kis-Katos (2013) represent important works that identify spatial correlations

– dealt with spatial econometrics. The odds of spatial spillovers regarding the ‘migration’ of

criminals in different periods of time are also predicted in the rational choice theory (Cameron,

1988).
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(a) Biennial Deforestation (b) Mean of the proxy for severity

(c) Mean of the proxy for celerity (d) Mean of the proxy for certainty

Figure 1.3: Deforestation in Brazilian Savanna & Severity, Celerity, and Certainty of Punishment by IBAMA.

Source: Own calculations based on data from INPE and IBAMA

Rational choice theory also agrees with the use of the three dimensions of deterrence, as

the probability of punishment is observed by criminals when deciding whether or not to commit

the transgressions (Polinsky and Shavell, 2007). More specifically for deforestation, de Araújo

et al. (2021) claim that deforestation models should incorporate all dimensions of deterrence in

order to understand the full effects of the environmental police towards curbing deforestation,

as well as their shortcomings. To comply with this critique, we devised an econometric model

which encompasses the three dimensions of deterrence theory (severity, celerity and certainty)

along with several other factors, represented by the set 𝑋 , used as control variables in equation

(1.1).

𝐷𝐸𝐹 = 𝑓 (𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦, 𝑐𝑒𝑙𝑒𝑟𝑖𝑡𝑦, 𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦, 𝑋) (1.1)

As a means to estimate (1.1), we conceived a model selection strategy that intends to,

first, find the best functional form using traditional panel modeling, then use Wald tests for nested

selection, and finally identify whether fixed or random effects are more appropriate in conformity

to a Hausman test. Subsequently, we used the selected function, instruments and controls in the

spatial panel estimation. In the process of choosing the functional form for (1.1), quadratic and

cubic terms were included to address any nonlinear effects. We picked the functional form with

the best fit to compose the final model5. For spatial models we presented the three main types:

5Estimates without the final set of nonlinear variables, or with specific combination, are available by request.
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spatial error, spatial lag and mixed, given that spatial GMM models lack a direct form to test the

best specification.

The model to be estimated here, defined in equation (1.1), followed the assumptions

on crime rational choice, where the deforestation level is a function of deterrence and other

control variables, such as agricultural production, rural credit availability, GDP, and climate.

Our empirical model, presented on equation (1.2), is built around the three proxy variables for

severity, certainty and celerity already discussed.

ln𝐷𝐸𝐹𝑖𝑡 = 𝛼𝑖 + 𝛼𝑡 + 𝛽𝑆 ln 𝑆𝑒𝑣𝑖𝑡 + 𝛽𝐶𝑙 ln𝐶𝑒𝑙𝑖𝑡 + 𝛽𝐶𝑟𝐶𝑒𝑟𝑖𝑡 + 𝑋𝑖𝑡 𝛽 + 𝜀𝑖𝑡 (1.2)

Where, 𝑆𝑒𝑣𝑖𝑡 represents the intensity of environmental fines in each municipality for

each period; 𝐶𝑒𝑙𝑖𝑡 is the speed of the legal process, measured by the average number of IBAMA’s

trials per day in a municipality; 𝐶𝑒𝑟𝑖𝑡 depicts the percentage of fines that were judged in a

municipality for a biennium; 𝑋𝑖𝑡 is a matrix of control variables; 𝛼𝑖 and 𝛼𝑡 are municipal and

biennium fixed effects respectively; 𝜀𝑖𝑡 is assumed to be an i.i.d. error term; 𝛽 is a vector of linear

coefficients for each control variable.

1.3.1 Controls

Variables that compose 𝑋𝑖𝑡 were selected according to the deforestation literature of

Amazon. To what comes to the control for agricultural expansion and intensification, we followed

Diniz et al. (2009) and Rivero et al. (2009) in using quantities. From the Municipal Agricultural

Production database (PAM) – managed by Brazilian Institute of Geography and Statistics (IBGE)

–, we extracted data on the total area employed into annual crop production for each municipality

in a giver year, then transformed them into two-year means on each INPE’s year and converted

them into logarithm form. In order to hold control over livestock’s demand for land, we used

the logarithm of the total number of cattle heads on a given municipality in a given year, as

such information is available in the IBGE’s Municipal Livestock Production (PPM). The same

treatment applied to annual crop land is employed.

Government policies, such as rural credit, can also influence forest retraction. If

unchecked credit and subsides rise difficulties once they provide the means for funding property

expansion on one hand, on the other, programs planned more thoroughly may offer the opportunity

for restraining deforestation. Fearnside (2005) and Prates (2008) argue that monetary incentives

such as price supports, credit concessions, and frequent debt amnesties are government supported

policies that cover deforestation costs. Rural credit, concerning both agriculture and livestock,

was obtained from the Central Bank of Brazil database, regarding each municipality by year.

To assess credit density per municipality, the total value of rural credit is divided by the initial

non-forested Cerrado area for each municipality, in accordance with Hargrave and Kis-Katos

(2013). In addition, general growth and demand are controlled by municipal GDP per capita –

obtained from IBGE and transformed into the INPE’s year framework. All monetary values –

prior to calculating prices if possible – were deflated to 2000 BRL levels using IPCA indexer;

monthly data were reduced according to January 2000 levels.

Geoclimatic variables may also play a crucial role in deforestation. With regard to

Amazon, it is believed that high levels of precipitation increase the risk of crop loss, what

decreases the profitability of plantations (Hargrave and Kis-Katos, 2013). For Cerrado the

mechanisms works differently, as discussed by Pivello (2011), the Cerrado is a fire prone biome

that can withstand natural fires that arise during the dry season. Most wildfires in this area

are a result of slash-and-burn practices to clear native vegetation and establish new pastures

or crops. Since drier months favor fire-related conditions, human-induced initiatives become
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more frequent. (Pivello, 2011) corroborates this point by showing that drier-years have more

wildfire occurrences in both the Amazon and the Cerrado. Therefore, we expect higher levels of

deforestation in dryer years.

Precipitation levels were borrowed from Camarillo-Naranjo et al. (2019), which were

available in a monthly basis from 1900 to 2019. We first create a variable that counts dry- (or

wet-) months based on historical data. Those months considered wet were at least two standard

deviations to the right and the dry ones were at least two standard deviations to the left of the

historical mean for that month. Thus, two variables come to light: the number of relative dry

months over a certain period on one hand; and one under the same restrictions for the relative

wet months on the other. For clarification, equation (1.3) bellow describes how these variables

were built, where 𝑃𝑖𝑚𝑡 is the precipitation level of municipality 𝑖 in month 𝑚 in the year 𝑡, 𝑍 is a

standardized variable, 𝐷 and 𝑊 are dummies for extreme dry or wet months.

𝑍𝑃𝑖𝑚𝑡 =
𝑃𝑖𝑚𝑡 − 𝑃𝑖𝑚

𝑠𝑃𝑖𝑚

𝐷𝑖𝑚𝑡 =

{
1, if 𝑍𝑝 < −2.

0, otherwise.
similarly, 𝑊𝑖𝑚𝑡 =

{
1, if 𝑍𝑝 > 2.

0, otherwise.

𝐷𝑟𝑦𝑀𝑜𝑛𝑡ℎ𝑠𝑖𝑡 =
∑
𝑚

𝐷𝑖𝑚𝑡 , 𝑊𝑒𝑡𝑀𝑜𝑛𝑡ℎ𝑠𝑖𝑡 =
∑
𝑚

𝑊𝑖𝑚𝑡 (1.3)

1.3.2 Sample Selection

Due to some characteristics of the database, few adjustments in the sample needed to

be made. Firstly, the sample contains only municipalities with at least 75% of its area within

Cerrado’s borders. This is done to remove municipalities that are not representative of the

Cerrado, but contains small parts of Cerrado in it. Also, the sample is reduced to municipalities

which in July 2000 had at least 10% of its area covered with primary Cerrado forest. This

approach removes outliers that, despite being highly deforested, do not present deforestation

since their forests are already exhausted. Those selection processes reduce our sample from 1388

to 953 municipalities. Finally, 4 municipalities that were created after the year 2000, as well as

Brasília, needed to be neglected to balance the panel. Descriptive statistics of this sample are

presented on table 1.1.

Some of these cutoff points are arbitrary and a sensitivity analysis with alternative cutoff

points were performed in section 1.4.3, particularly, by changing the threshold of Cerrado’s area

from 75% to 50%, and removing the threshold of initial forest coverage.

1.3.3 Endogeneity and Instruments

The effect we are interested in – how law enforcement affects crime (specifically illegal

deforestation) – suffers from known endogeneity (Cameron, 1988; Levitt, 2002; Draca et al., 2011;

Hargrave and Kis-Katos, 2013; Assunção et al., 2017). The presence of IBAMA agents affects

the decision about whether people commit environmental crimes or not, in the same way IBAMA

focuses its activity on areas where environmental crimes are occurring more frequently, or in

larger scale. The first of our variables of interest – severity – measures an equilibrium situation

where fines and infractions are simultaneous. A different relationship occurred with celerity and

certainty variables because a high number of fines is emitted due to high deforestation. As a

result, the high number of fines will ‘clog’ the bureaucratic and legal departments of IBAMA,

culminating in longer periods for setting a trial (lower celerity). Similarly, if IBAMA emits
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Table 1.1: Descriptive Statistics of Restricted Sample (>75% Cerrado and >10% Forest)

Variable Scale Mean SD. Min. Max.

ln Deforestation ln (ha + 1) 6.488 2.170 0.000 11.757

ln Fine Intencity (Sev) ln 1 + (Fines in BRL) 2.193 2.371 0.000 16.419

(Defor. in ha + 1)

ln Celerity ln Num. of Judged Fines∗ −6.384 0.928 −8.508 −2.639

(Total Days to Trial∗)

Perc. Judged (Cer) 100 × Num. of Judged Fines∗ 26.719 16.763 0.000 100.000

Num. Fines∗

ln Cattle Heads ln heads 10.383 1.246 4.965 14.103

ln Annual Crop Area ln (ha + 1) 8.358 1.839 0.000 13.957

ln Credit Density ln 1 + (Cred. in BRL) 5.919 1.426 0.000 10.359

(Ini. Land in ha)

Dry Months in Period Num.of Months∗∗ 0.144 0.488 0 8

Wet Months in Period Num.of Months∗∗ 1.037 1.092 0 6

ln GDP per capita ln GDP/pc 8.520 0.751 6.485 11.637

ln State Severity ln (Fines in BRL) 4.734 1.396 0.810 9.427

(Defor. in ha)

ln State Celerity ln (Num. of Judged Fines∗) −6.207 0.392 −7.001 −5.011

(Total Days to Trial∗)

State Certanty 100 × Num. of Judged Fines∗ 25.241 6.224 10.644 42.407

Num. Fines∗

Statistics refer to N = 8,532 observations for 948 municipalities spamming 18 years in a two by two basis. All prices and

economic values are expressed in constant 2000 Brazil Reais (BRL). *These variables represent accumulated values up

to a certain year. **The specific way in which these variables are calculated is depicted in equation (1.3). Source: Own

calculations.

embargoes faster than processes them, the proportion of convicted judged cases decreases (lower

certainty). A forward-looking criminal will internalize that their present profit may be higher than

the present value of future fines. Therefore, severity, celerity and certainty are all endogenous

and call for special treatment to avoid inconsistency in our econometric estimators.

We addressed the resulting endogeneity by using an instrumental variables procedure

(IV) together with two stage least square (TSLS). This method consisted in estimating the

problematic variables – severity, celerity, and certainty – by making use of instruments correlated

with these predictors but not with the original dependent variable. For such, we selected the

intensity of IBAMA’s fines in any given biennium within the state of the municipality – excluding

the municipality itself – as an instrument for the intensity of environmental fines in a municipality

(severity), in accordance with Hargrave and Kis-Katos (2013). These authors defend that this

instrument mirrors adequately the activities of IBAMA over time and captures IBAMA’s units

administrative boundaries, coordinated at the state level. Such conclusion goes along with
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Schmitt (2015), which states that once environmental legislation is decentralized in Brazil, each

state of the Union is free to create and amend environmental laws as long as they do not contradict

national rules6.

From this evidence, we assumed that the same type of instrument may be suitable for

the other two endogenous variables: celerity and certainty. Meaning that, we instrument the

celerity of the legal process for each municipality by the state-average celerity of the legal process

(excluding the given municipality). Analogously, certainty of judgement is instrumented by the

proportion of judged embargoes to the total number of embargoes of the state, excluding the

given municipality7. Moreover, these instruments (and the severity one) were not affected by

deforestation of a given municipality since embargoes coming from a given municipality will not

add to the bureaucratic backlog of the whole state nor will exert an effect on the severity of fines

in the rest of the state.

1.3.4 Spatial Panel Regression

The econometric model proposed in equation (1.2) can be estimated by usual panel

data techniques, fixed effects or random effects, as it is demonstrated in other studies of crime

deterrence (Levitt, 2002; Draca et al., 2011) and deforestation (Pfaff et al., 2007; Arima et al.,

2007; Assunção et al., 2015, 2017). However, it is well understood within rational choice theory

(Cameron, 1988; Anselin et al., 2000; Andresen, 2006a,b) and in econometric deforestation works

(Robalino and Pfaff, 2012; Hargrave and Kis-Katos, 2013) that there are geographical spillovers

of crime/deforestation, and spatially organized variables affecting it that may be omitted in our

model.

To deal with such issues, the use of spatial models addressing the possible spatial

correlation, such as a spatial autoregressive (SAR) and spatial error (SEM) models, is advisable.

The SAR model assumes that there is spatial autocorrelation of the dependent variable, whereas

the SEM model assumes that there is a spatial relationship in the residuals, probably because

some omitted variables are of spatial nature. The panel versions of such models are specified in

Elhorst (2003, 2008) and a generalization of the composite model (SARAR) is provided by Millo

and Piras (2012). We then re-estimated the model of equation (1.2) and included both spatial

error correction (SEM) and spatial lag element (SAR), which follows the form:

ln𝐷𝐸𝐹𝑖𝑡 = 𝜆𝑊𝑁 ln𝐷𝐸𝐹𝑖𝑡 + 𝑋′
𝑖𝑡 𝛽 + 𝛼𝑖 + 𝛼𝑡 + 𝑢𝑖𝑡 (1.4)

where 𝑊𝑁 is a 𝑁 × 𝑁 spatial weighting matrix8, 𝜆 is the spatial spillover parameter from the

SAR specification. The disturbance vector is the sum of two terms:

𝑢𝑖𝑡 = 𝜌(𝐼𝑇 ⊗𝑊𝑁 )𝑢𝑖𝑡 + 𝜀𝑖𝑡 (1.5)

6Currently, the national legislation allows states to authorize the exploitation of forests, both in public and private

domains. When it comes to environmental crimes, the complementary law nº 140 of 2011 states that, apart from

some powers that are exclusive to the Federal Government, the competence for emitting environmental infraction

notices and instituting administrative actions for the investigation of environmental infractions belongs to the body

that holds the competence of licensing or the authorization of the enterprise or activity, object of the infringement

(Brasil, 2011). It means that, in this case, IBAMA follows state rules and answers to each state’s environmental

agency.

7The severity instrument is composed of other municipalities of the same state that are in the Cerrado biome.

This limitation emerges from the lack of organized data on deforestation beyond the Amazon or the Cerrado areas

during the period. In the case of certainty and celerity, the terms used in composing the instruments were statewide,

that is, not just limited to those municipalities in the Cerrado.

8A symmetric k-nearest neighbors (KNN) matrix of degree 5 in our case.
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with 𝜌 as the spatial error parameter from the SEM specification and 𝜀 being i.i.d errors. In order

to control for endogeneity, we employed the Generalized Method of Moments (GMM) estimator

for spatial models – as proposed by (Kapoor et al., 2007; Baltagi and Liu, 2011) –, where 𝜌 and

𝜎2
𝜀 were calculated by GM9 and the model coefficients were computed by applying a Feasible

Generalized Least Squares (FGLS) estimator. The latter allows for a two stage estimation through

the use of the instrumental variables of SAR, SEM, and SARAR models. Estimating spatial

panels thought GM came at some costs. First, there are no tests to identify which of the spatial

models are best suited for estimation (SEM, SAR or SARAR); second, spatial GM models are

unable to estimate Durbin specification, i.e., with spatially lagged exogenous variables, which

would capture spatial effects of exogenous variable directly.

Fortunately, the estimation of spatial impacts becomes possible with spatial GM, as we

can decompose exogenous variables effects through it. The usual interpretation of the parameter

estimates under the ‘marginal effects’ label is only possible for spatial error models; as for the

other two specifications, the calculation of direct, indirect, and total impact is essential. This

differentiation emerges because any increase in a variable 𝑥 𝑗𝑡 of a municipality 𝑗 will create a

𝛽 impact on 𝐷𝐸𝐹𝑗 . Given the spillover effect, however, neighbor municipalities will suffer an

impact equal to 𝛽 · 𝜆. This spillover will also affect neighbors-of-neighbors by 𝛽 · 𝜆2 and so

on, even returning to the original source. To obtain the complete impact of each variable we

performed an estimation according to the routine proposed in Piras (2014), using the statistical

program R (R Core Team, 2020) – an explanation of this process is available in Appendix A. To

our understanding, studies based on spatial panel data before 2014 rarely present such impacts,

and even recent works may lack these results for the reason that a simple function is not present

in the main package of spatial panel statistics in R, "splm" (Millo and Piras, 2012).

1.4 RESULTS AND DISCUSSION

1.4.1 Non-spatial Panel Model

In view of selecting a more efficient model specification, we ran some tests assessing

which regression technique is better suits our data set. This can be seen in table 1.2. We began

the analysis by comparing a pooled model with a fixed effect model through a F-test, which

confirms the use of a fixed effects specification (FE). The next test employed was a Hausman test,

responsible for verifying if a FE model and a random effects model (RE) are both consistent in

the null hypothesis, or if FE is consistent by itself. If both models are similar, RE must be chosen

since it provides better efficiency. Here, the results conferred FE as the best model.

Breusch-Pagan and Breusch-Godfrey tests verify heteroscedastic and serially correlated

errors respectively. Our results indicated that both problems were observed. Therefore,

heteroscedasticity-and autocorrelation-consistent (HAC) standard errors needed to be estimated.

For this purpose, we decided to incorporate Arellano et al. (1987)’s sandwich estimators in the

covariance matrix. The last test concerned the usefulness of the TSLS estimator over the OLS.

The analysis of the results attested to the validity of using TSLS estimator for panel along – with

the selected instruments – once it is consistent compared to the usual OLS estimation. Weak

instruments were tested with an F-test, which suggests that all three instruments were strong

predictors10.

In table 1.3 the results for the four models were shown. Model (1) was polled least

squares; model (2) was individual fixed effects; time dummies were added in model (3); and

9This is valid for fixed effects models; for random effects, another variance component is calculated.

10An J-test is not available since our model was exactly identified.



24

Table 1.2: Tests for Panel Models

Test Comparison Statistic Verdict

F test Pooled vs. F = 112.03 Fixed Effects

Fixed Effects p-value < 0.001

Hausman Test Fixed Effects vs. 𝜒2 = 390.99 Fixed Effects

Random Effects p-value < 0.001

Breusch-Pagan Homocedastic vs. BP = Heteroskedastic Errors

Heteroscedastic p-value < 0.001

Breusch-Godfrey Serial Correlation 𝜒2 = 3868.1 Serial Correlation

in idiosyncratic errors p-value < 0.001

Wu-Hausman Test TSLS vs. 𝜒2 = 75.576 TSLS

Least Squares p-value < 0.001

Source: Own calculations

(4) represented the second stage of a two staged regression with instrumentalized deterrence

variables.

Fine intensity showed a significant hindering impact on deforestation, which agreed

with what was reported in both Hargrave and Kis-Katos (2013)’s and Assunção et al. (2017)’s

works. The TSLS model demonstrated to have a better performance than the least squares, and

presented a greater effect of fines on the struggle against deforestation. The interpretation of

this coefficient was of an elasticity, a 1% increase in fine intensity implied a 0.23% reduction in

deforestation.

In respect to celerity, we observed non-significant effects in models (1) and (3), and a

positive relationship in model (2) – contrary to what was expected. When however, we corrected

for endogeneity with IV, we found ,instead, a very expressive negative relationship between

celerity and deforestation, what reinforcing our hypothesis on endogeneity. The final relationship,

in model (4), between celerity and deforestation was an elasticity as well, and therefore the model

implied that a 1% rise in the celerity of the legal process would reduce deforestation by 1.85% –

the biggest impact of any deterrence variable.

The coefficients for certainty showed significant and negative effects in all models

but (3). This variable cannot be interpreted as an elasticity, instead, it must be understood as

log-linear variable, meaning that, for model (4), a one percentage point growth in the percentage

of the judged cases translated to a 5.5% reduction in deforestation. If we used the mean value of

Perc. Judged from table 1.1 (26.7%), a one percent point rise is equal to a 3.74% change, which

in terms of elasticity on the mean implies a 1% rise in the judged cases lessen deforestation by

1.47%.

All of the three results previously explored – when combined – provided robust evidence

to infer that bureaucratic process, after fine issuing, is the key aspect to be improved by IBAMA.

This goes along with de Araújo et al. (2021)’s critique, which lies on the inability of IBAMA to

process all their cases in a short time, hindering its potential in preventing illegal deforestation.

Our agricultural goods controls (cattle heads and farmland) provided evidence for

the agricultural expansion vs the deforestation of the Cerrado correlation. This follows the
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Table 1.3: Panel Regression Results for Cerrado Deforestation

ln Deforestation

(1) Polled (2) FE (3) FE/TE (4) IV FE/TE

ln Fine Intensity −0.033∗∗∗ −0.077∗∗∗ −0.067∗∗∗ −0.230∗∗∗

(0.008) (0.008) (0.007) (0.078)

ln Celerity −0.008 0.126∗∗∗ −0.038 −1.846∗∗∗

(0.021) (0.029) (0.024) (0.426)

Perc. Judged −0.003∗∗ −0.014∗∗∗ −0.001 −0.055∗∗

(0.001) (0.002) (0.001) (0.028)

ln Cattle Heads 0.939∗∗∗ 0.688∗∗∗ 0.372∗∗∗ 0.121

(0.016) (0.095) (0.083) (0.196)

ln Farmland 0.273∗∗∗ 0.164∗∗∗ 0.108∗∗∗ 0.188∗∗∗

(0.012) (0.029) (0.024) (0.052)

ln Credit Density −0.142∗∗∗ −0.387∗∗∗ 0.151∗∗∗ 0.211∗∗∗

(0.015) (0.025) (0.035) (0.067)

Dry Months −0.172∗∗∗ 0.018 0.146∗∗∗ 0.131∗∗∗

(0.038) (0.024) (0.023) (0.042)

Wet Months −0.066∗∗∗ −0.023∗∗ −0.015 0.013

(0.016) (0.011) (0.011) (0.019)

ln GDPpc 36.406∗∗∗ 38.135∗∗∗ 33.308∗∗∗ 67.198∗∗∗

(4.431) (5.841) (4.414) (15.113)

ln GDPpc2 −4.764∗∗∗ −4.286∗∗∗ −3.468∗∗∗ −7.141∗∗∗

(0.504) (0.677) (0.507) (1.684)

ln GDPpc3 0.198∗∗∗ 0.157∗∗∗ 0.120∗∗∗ 0.251∗∗∗

(0.019) (0.026) (0.019) (0.062)

Constant −91.474∗∗∗ ___ ___ ___

(12.917)

Individual FE No Yes Yes Yes

Time Dummies No No Yes Yes

Instruments No No No Yes

Observations 8,532 8,532 8,532 8,532

R2 0.427 0.290 0.465 ___

Adjusted R2 0.427 0.201 0.397

F Statistic 577.882∗∗∗ 282.411∗∗∗ 346.768∗∗∗ 𝜒2: 2154.99∗∗∗

Notes: Significance levels ∗ p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. R2 and Adjusted R2 reported are for fixed

effect models with demeaned values of individual and dummies for time. Models have Arellano

et al. (1987) robust standard errors. Source: Own calculations.
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empirical (Diniz et al., 2009; Rivero et al., 2009) and theoretical Allen and Barnes (1985);

Ehrhardt-Martinez (1998); Angelsen (1999); Barbier (2004) literature consensus.

As for credit density, we could see that the models with only time fixed effects – (1) and

(2) – indicated a negatively inclined curve, which, in ordinary/general contexts, would imply

that rural credit curbed deforestation. This intuition must be rejected, however, once an analysis

without taking the time dummies into consideration would lead to misconceptions due to the

trend nature of both rural credit (increasing along time) and deforestation (decreasing along the

same period). According to models (3) and (4) – where time dummies were introduced –, there

was a positive inclined curve revealing a boost effect, which corroborates with Fearnside (2005)

and Prates (2008). As claimed by these authors, unsupervised rural credit is an incentive for

deforestation.

Climatic control variables suggested that drier than expected months have a significant

impact on deforestation, endorsing the hypothesis of landowners taking advantage from the dry

months to clean the land proposed by Pivello (2011). Finally, as GDP per capita was usually

endogenous during the deforestation process, we cannot provide comments on its causal effects

on deforestation.

1.4.2 Spatial Panel Model

Table 1.4 presented the preliminary regression results for the three spatial panel models.

While (5) model is of SAR specification, (6) is SEM, and (7) is a mixed model (SARAR). All

models considered fixed effects, time dummies and instrumented IBAMA variables.

The spatial error component, 𝜌, allowed for more efficient results in our models since it

removed from the error component spatially correlated residuals, which emerged from omitted

relevant variables with a spatial distribution. In the GMM specification, though, there were no

standard errors for 𝜌, preventing us from testing for the significance of it – particularly, to check

if the SARAR model’s 𝜌 was statistically greater than −1, which is an important premise in

models with a spatial error component. The spatial lag coefficient of deforestation, 𝜆, presented

values around 0.85 in both models estimated with the spatial lag term which agrees with other

studies, that point out deforestation has a spillover effect among municipalities (Robalino and

Pfaff, 2012; Hargrave and Kis-Katos, 2013). In our analysis, the effect was that a one percent rise

in deforestation concerning a given municipality would result in a 0.85% rise in deforestation on

neighboring municipalities.

As discussed in the section 1.3.4, the calculation of direct, indirect and total impacts

was essential to visualize the marginal effects of both SAR and SARAR models, and to promote

a better understanding of the importance of 𝜆. The effects just mentioned above are available in

table 1.5. In order to have a clearer view, only significant variables – of p-value < 0.10 – have

their impacts shown11. The direct effects columns showed the marginal impact – in a given

municipality – of a one unit rise of a variable in that same place after the feedback loop was

calculated. Indirect effect portrayed the marginal change of deforestation in a given municipality

when all other municipalities had a unit rise in the variable under discussion here. Finally, total

effect was a junction of both and represented the marginal effect on the deforestation of all

municipalities when a variable increased by one. It was interesting to note that the total effects

displayed in table 1.5 are similar to the results of the non-spatial models, in table 1.4. It is then

useful to perceive table 1.5 as a decomposition of local vs. global effects of the results presented

by the panel models.

11Other impacts are available upon request.
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Table 1.4: Spatial GMM Regression Results for Cerrado Deforesta-

tion

ln Deforestation

(5) SAR (6) SEM (7) SARAR

Spatial lag (𝜆) 0.8471∗∗∗ ___ 0.8587∗∗∗

(0.0383) (0.0243)

ln Fine Intensity −0.0074 −0.2384∗∗∗ −0.0096

( 0.0307) (0.0824) (0.0148)

ln Celerity −0.1539∗∗ −2.0293∗∗∗ −0.1076∗∗∗

(0.0840) (0.2592) (0.0060)

Perc. Judged −0.0033 −0.0603∗∗∗ −0.0009

(0.0051) (0.0156) (0.0027)

ln Cattle Heads 0.1224∗∗ 0.1443 0.0761∗

(0.0542) (0.1049) (0.0430)

ln Farmland 0.0732∗∗∗ 0.1714∗∗∗ 0.0693∗∗∗

(0.0177) (0.0353) (0.0145)

ln Credit Density 0.0822∗∗∗ 0.2103∗∗∗ 0.0719

(0.0176) (0.0348) (0.0139)

Dry Months 0.0410∗ 0.0884∗∗ 0.0574∗∗∗

(0.0229) (0.0442) (0.0168)

Wet Months 0.0148 0.0186 0.0037

(0.0092) (0.0183) (0.0059)

ln GDPpc 7.8002∗∗ 67.054∗∗∗ 7.0904∗∗∗

(3.8662) (8.3516) (2.7469)

ln GDPpc2 −0.7751∗ −7.1864∗∗∗ -0.6943∗∗

(0.4380) (0.9435) (0.3118)

ln GDPpc3 0.0255 0.2543∗∗∗ 0.0223∗

(0.0164) (0.0352) (0.0117)

Spatial error (𝜌) — 0.1899 −0.9990

Time Dummies Yes Yes Yes

Instruments Yes Yes Yes

Observations 8,541 8,541 8,541

Notes: Significance levels ∗ p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Source:

Own calculations.

The SEM specification provided significant results for all the three variables of interest

here, showing greater effects of punishment variables on deforestation than the non-spatial

models, with elasticities of: -0.23% for severity; -2.03% for celerity; and (on average) -1.68% for

certainty.

In SAR and SARAR models, only celerity had significant impacts. Table 1.5 describes,

for SARAR, that an increase of 1% in the celerity of the legal process in one municipality would

slow deforestation by 0.14% (local effect), while rises in all other municipalities (global effect)

would decrease deforestation by 0.61%. The sum of both effects was the total effect of a general

rise in celerity. While for the SAR model these effects are -0.20% and -0.80%. Such results

further endorses the importance of a swift bureaucracy in controlling deforestation.
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Table 1.5: Marginal Impacts of Variables for SAR and SARAR Models

ln Deforestation

SAR SARAR

Direct Indirect Total Direct Indirect Total

ln Celerity −0.2028∗ −0.7973∗ −1.0001∗ −0.1442∗∗∗ −0.6098∗∗∗ −0.7541∗∗∗

(0.1088) (0.4916) (0.5894) (0.0547) (0.2520) (0.3024)

ln Cattle Heads 0.1612∗∗ 0.6340∗ 0.7953∗∗ 0.1020∗ 0.4314∗ 0.5335∗

(0.0714) (0.3633) (0.4256) (0.0571) (0.2528) (0.3075)

ln Farmland 0.0964∗∗∗ 0.3791∗∗ 0.4755∗∗∗ 0.0929∗∗∗ 0.3930∗∗∗ 0.4859∗∗∗

(0.0237) (0.1605) (0.17864) (0.0192) (0.1070) (0.1225)

ln Credit Density 0.1083∗∗∗ 0.4260∗∗∗ 0.5343∗∗∗ 0.0964∗∗∗ 0.4077∗∗∗ 0.5041∗∗∗

(0.0231) (0.1626) (0.1789) (0.0178) (0.0988) (0.1123)

Dry Months 0.0540∗ 0.2124 0.2664∗ 0.0770∗∗∗ 0.3255∗∗∗ 0.4025∗∗∗

(0.0300) (0.1376) (0.1649) (0.0216) (0.0964) (0.1151)

ln GDPpc 10.276∗∗ 40.3969∗ 50.6732∗∗ 9.4998∗∗∗ 40.162∗∗∗ 49.662∗∗∗

(4.9535) (21.100) (25.4629) (3.5325) (14.095) (17.345)

ln GDPpc2 −1.0211∗ −4.0142∗ −5.0354∗ −0.9302∗∗ −3.9330∗∗ −4.8633∗∗

(0.5651) (2.3941) (2.9048) (0.4045) (1.64311) (2.0232)

ln GDPpc3 ___ ___ ___ 0.0299∗ 0.1264∗ 0.1563∗∗

(0.0153) (0.0635) (0.0782)

Notes: Significance levels ∗ p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Source: Own calculations

1.4.3 Sensitivity Analysis

As noted in section 1.3.2, the threshold values for the sample selection process, yet

sensible, are somewhat arbitrary. In order to check for possible sample selection bias, the

requirements were relaxed, that is, instead of including only municipalities characterized by

having (i) their territory composed of 75% of the Cerrado (originally) and (ii) at least 10% of

their forests untouched, we included in our model any municipality holding more than 50% of

the Cerrado’s biome, despite of initial deforestation levels.

Table 1.6 presents all four relaxed models – one TSLS and three spatial GMM, akin

to models (4), (5), (6) and (7) showed before, respectively. The parameters estimates did not

deviate significantly from what was shown in the restricted sample, and indicated that there

was no sample selection bias created by our selection process. Estimates from the unrestricted

models seemed to be of a lower magnitude than in our main sample, what suggests that our

sample selection process was indeed appropriate since its intent was to remove municipalities

that neither were part of the biome or had already depleted their forests. As such data would

lower the effects of exogenous variables due to the low report of the Cerrado’s deforestation, in

spite of their reality being of high deforestation.

1.5 FINAL REMARKS

Based on the panel data of 948 municipalities organized biennially from 2002 to 2018,

this study provided empirical evidence on the curb of deforestation in the Brazilian Savanna. It

investigated how environmental policing affect outlaw agents’ decisions to deforest this biome

during the period. This work made some contributions to the empirical literature of deforestation
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Table 1.6: Sensitivity Analysis for Deforestation Models

ln Deforestation

(4’) IV FE/TE (5’) SAR (6’) SEM (7’) SARAR

Spatial lag (𝜆) ___ 0.767∗∗∗ ___ 0.852∗∗∗

(0.039) (0.027)

ln Fine Intensity −0.187∗∗∗ −0.022 −0.187∗∗∗ −0.020

(0.049) (0.027) (0.060) (0.014)

ln Celerity −1.514∗∗∗ −0.187∗∗ −1.620∗∗∗ −0.131∗∗∗

(0.169) (0.081) (0.205) (0.046)

Perc. Judged −0.047∗∗∗ −0.001 −0.048∗∗∗ −0.003

(0.010) (0.005) (0.012) (0.003)

ln Cattle Heads 0.048 0.095∗ 0.084 0.007

(0.083) (0.050) (0.084) (0.040)

ln Farmland 0.146∗∗∗ 0.073∗∗∗ 0.125∗∗∗ 0.065∗∗∗

(0.029) (0.017) (0.028) (0.015)

ln Credit Density 0.193∗∗∗ 0.082∗∗∗ 0.176∗∗∗ 0.060∗∗∗

(0.028) (0.017) (0.029) (0.014)

Dry Months 0.149∗∗∗ 0.075∗∗∗ 0.108∗∗∗ 0.070∗∗∗

(0.034) (0.021) (0.035) (0.018)

Wet Months 0.004 −0.001 −0.015 0.001

(0.014) (0.008) (0.011) (0.006)

ln GDPpc 60.283∗∗∗ 16.758∗∗∗ 57.092∗∗∗ 10.445∗∗∗

(5.852) (3.744) (6.224) (2.983)

ln GDPpc2 −6.422∗∗∗ −1.769∗∗∗ −6.101∗∗∗ −1.075∗∗∗

(0.667) (0.424) (0.705) (0.338)

ln GDPpc3 0.225∗∗∗ 0.061∗∗∗ 0.215∗∗∗ 0.036∗∗∗

(0.025) (0.015) (0.026) (0.012)

Spatial error (𝜌) — — 0.2049 −0.879

Individual FE Yes Yes Yes Yes

Time Dummies Yes Yes Yes Yes

Instruments Yes Yes Yes Yes

Observations 9,891 9,891 9,891 9,891

𝜒2 3226.19∗∗∗ — — —

Notes: Significance levels ∗ p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Source: Own calculations.

in Brazil. First, it introduced two new variables to measure the activity of IBAMA, as well as

their instruments, second, in terms of data, it used the underexplored database on deforestation of

the Cerrado rather than the Amazonian rainforest, which has already been exhaustively discussed.

Information concerning the latter was not neglected, though. By considering it, we were able to

show robust evidence that some of the factors that have influenced the deforestation of the Amazon

have also interfered in the investigation of other biomes, thus becoming of crucial importance

its recognition. Such procedure reinforces the need to study of such variables for future studies

and policies, irrespective of location. The control variables used here were municipal rural

credit, local commodity quantities, GDP, and month of unusual precipitation. The last of which
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conceived in a unique way so that the effects of climate on deforestation could be captured more

effectively.

This study focused in understanding the impacts of environmental surveillance on

Brazilian deforestation and, for such intent, it employed three variables concerned with the

punishment of illegal activity. Similarly to what was shown regarding the Amazon, it found

evidence that fine intensity – as a proxy for severity of punishment – discourages deforestation in

the Cerrado. The novel variables – celerity of the legal process and certainty of legal persecution

– showed greater impacts on curbing the deforestation process than severity of fines. This result

agrees with the understanding that the main problem about controlling environmental crimes

does not lie on the ability to detect and fine agents, but on the slow bureaucracy imposed by

the legal process and the easiness in which criminals can postpone their punishment. Results

pointed out (i) that environmental policing can be effective against deforestation in this region,

(ii) that IBAMA operations should be encouraged rather than dismantled in the country, and (iii)

that policymakers should direct their efforts to improve the speed of the legal process instead of

simply proposing harsher punishments.

Nevertheless, policy seems to be heading to the opposite direction. As the average time

for final decision of embargoes – inverse of celerity – is increasing since 2002 in the region. This

shows a shrinkage in IBAMA capacity in punishing deforestation in the last decade. Which can

be explained by the lower budgets for environmental protection in past years, or by the political

appropriation of these intuitions by the agricultural sector in latter governments. However, the

political causes are not the main focus of this study, a more in depth discussion of the causes may

be addressed in future research.

Additional results indicate that agricultural incentives – represented by rural credit

availability – are positively correlated with deforestation, what goes along with previous works on

the Amazon. These authors claim rural credit to be a funding source for deforestation. We also

observed evidence that the dry climate of the Cerrado would be another transmission channel

affecting the deforestation process. The spatial nature of deforestation is verified and confirms

that a spillover effect is present in the region.

All these findings can guide several policy improvements. First, deforestation is

responsive to rural credit and subsidies, and therefore policymakers should either restrict the

supply of such benefits in areas with high deforestation or implement new incentives for the

conservation of the biome. The fact that larger dry seasons may favor deforestation as well as

the predictions of the Intergovernmental Panel on Climate Change (IPCC) for the next years

claiming greater incidence of droughts in the region raises the need of intensifying environmental

surveillance and punishments throughout those periods, and of enhancing environmental command

and control policies.

Other improvements would, yet, be welcomed to our study. More variables concerning

IBAMA’s activity, such as, funding, surveillance capability and personnel size, could improve

our findings and provide more evidence towards IBAMA’s efficiency in combating environmental

crimes. Making use of yearly time periods could allow for market level variables (e.g., commodity

prices and fuel cost) to be introduced in our model once such variables do not offer enough

variance when aggregated into bienniums to show significant results. Some results obtained from

our control variables are difficult to be interpreted confidently: introducing instruments for rural

credit and new controls for climate may contribute to new and better conclusions. Finally, testing

our model in the Amazonian data or even aggregating the Amazon’s and the Cerrado’s data may

provided further evidence to the arguments defended in this article.
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2 SEGUNDO ENSAIO:
CLIMATE VARIABILITY AND AGRICULTURAL LAND PRICES: AN ANALYSIS
FOR THE PARANÁ STATE, BRAZIL

ABSTRACT

This essay aims to analyze the effect of climate change on farmland prices in Paraná with the

use of a Ricardian model. A very detailed database with daily measures of temperature is used

to the construction of an precise agronomic indicator of thermal intake of a crop, also known

as growing-degree days (GDD). By using an hedonic empirical specification this work finds a

positive impact of GDD on farmland value. The estimated model, along with climate projections

of IPCC, was subsequently employed to project the future impacts of climate change on Paraná’s

agriculture. Results indicated that Paraná will benefit from climate change with appreciation of

its farmland prices in all projected scenarios.

Keywords: Climate Change, Agriculture, Spatial Econometrics, Brazil, Land Prices

RESUMO

Este ensaio procura analisar o efeito das mudanças climáticas sobre os preços das terras agrícolas

no Paraná são investigados com o uso de um modelo Ricardiano. Para tanto, utiliza-se um banco

de dados bastante detalhado com medidas diárias de temperatura para a construção de um preciso

indicador agronômico que mede absorção térmica de uma cultura, também conhecido como

graus-dias de crescimento (GDD). Usando uma especificação empírica hedônica, este trabalho

encontra uma relação positiva entre GDD no valor das terras agrícolas. O modelo estimado,

juntamente com as projeções climáticas do IPCC, foi posteriormente empregado para projetar os

impactos futuros das mudanças climáticas na agricultura do Paraná. Os resultados indicaram

que o Paraná se beneficiará das mudanças climáticas com valorização de seus preços de terras

agrícolas em todos os cenários projetados.

Palavras-chave: Mudanças Climaticas, Agricultura, Econometria Espacial, Brasil, Preço da Terra
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2.1 INTRODUCTION

In its most recent report, the Intergovernmental Panel on Climate Change (IPCC)

provided alarming evidence on the advancing climatic crisis, as well as predictions concerning

the future changes in climatic variables for fifty-eight sections of the planet –forty-six being land

regions. Of those Brazil is part of four: Northeast S. America, North S. America, S. America

Monsoon, and Southeast S. America, with the latter being of greatest interest for this essay.

According to IPCC sixth assessment report (AR6), South-east S. America region will very likely

experience rises in temperature at greater rates than the global average. Also, the frequency of

extreme precipitation is predicted to increase in the region. These environmental changes can

provide advantages or harm for some sectors of the economy, particularly in agriculture.

In order to understand such effects of climate on agriculture we follow the well established

literature which uses Ricardian analysis (Mendelsohn et al., 1994; Schlenker et al., 2005, 2006;

Mendelsohn and Reinsborough, 2007; Mendelsohn et al., 2010; Massetti and Mendelsohn, 2011;

Massetti et al., 2013). This approach consists in measuring the impacts of climate in farmland1

value using hedonic models, rather than production functions (Dell et al., 2012; Auffhammer

et al., 2012; Castro et al., 2020) or profit functions (Deschênes and Greenstone, 2007). The

hedonic model is chosen given its advantages over the aforementioned methods, since studies

focusing agricultural output instead of on farmland prices have the risk of overestimating the

impact of climate, as they do not allow farmers to change their production strategies, e.g., crop

switching (Kurukulasuriya et al., 2007; Seo and Mendelsohn, 2008). Although studies that focus

on profits do not face the same problem, as profits already capture the changes in crop mixes,

they face problems with data availability as profits are usually not available.

Being one of the largest agricultural producers in the world, Brazil is the object of many

economic studies about farmland value (Rezende, 2003; Plata, 2006; Gasques et al., 2008; Ferro

and Castro, 2013; Malassise et al., 2015; Caetano Bacha et al., 2016; Volsi et al., 2017; Flexor and

Leite, 2017; Telles et al., 2018; Porsse et al., 2020) which link farmland prices to different factors

such productivity, rural credit, tillage, deforestation, land distribution inequality, commodity

prices, and other market conditions. The relationship of farmland value and climate, and what it

means for the country when facing the effects of climate change, is also well studied (Sanghi

et al., 1997; Evenson and Alves, 1998; Massetti et al., 2013; Da Cunha et al., 2015; Castro et al.,

2020; DePaula, 2020). In order to expand this literature, this essay introduces a climatic variable

that is underexplored by the economic literature –with exception of Schlenker et al. (2006)–

which captures the effects of temperature on crop growth, known as growing degree days (GDD).

This agronomic indicator measures the thermal intake of a plant given the temperature during its

growing season using daily data.

As we are interested in estimating a Ricardian model measuring the impacts of climate

on agriculture, some data concerns must be addressed. First, farmland value data must be

available for the object of study. Second, daily climatic data must be obtained for the calculation

of the GDD. For such reasons we have selected the Brazilian state of Paraná, for which there is

one unique database available on mean farmland sale prices publicly published, also climate data

on a daily resolution. Paraná is located at the south of Brazil, in the division between tropical

and subtropical regions. Historically, the economic base of this state was developed with strong

linkage with the agricultural activity. The first agricultural cycle of the state begins in the early

XIX century with large scale mate herb production aimed for exports. By the late XIX century

coffee became the main agricultural product of Brazil, including Paraná which eventually turned

1The term “farmland” is used as a synonym for the term “agricultural land”, meaning “land including arable

land, land under permanent crops, and land under permanent meadows and pastures”
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into the main coffee producer in the country, reaching 58% of Brazil’s production by the 1960’s.

Currently, Paraná is the country’s second largest producer both of soybeans (15% of national

production) and maize (15%), and the first of wheat (49%) (IBGE, 2020). This makes Paraná
one of the most important states in Brazilian agriculture.

Farmland has interesting particularities when compared to other common economic

goods. It is a heterogeneous and durable good that cannot be produced, but only transformed

by agents, e.g. changing soil composition and/or inclination. Another specificity is that land is

immobile, i.e., land acquired in a specific location can only be used in that particular location

which implies that it is a spatial good. Therefore, hedonic studies of farmland may need to

employ spatial econometric models to deal with the spatial heterogeneity and spatial dependence

in the data, as is considered by Patton and McErlean (2003), Schlenker et al. (2006), Huang et al.

(2006), Dillard et al. (2013), Huttel and Wildermann (2014) and Lehn and Bahrs (2018).

In summary, this essay aims to estimate a Ricardian model for the state of Paraná
using spatial econometrics and climatic variables supported by agronomic literature which better

capture the relationship between climate and plant growth. After that, the estimated coefficients

are combined with IPCC projections to simulate the effects of climate change on Paraná’s

farmland value.

The following section presents the Ricardian model used in this study. Section 3

describes how the main variables and controls are computed, also the advantages in using the

GDD variable are discussed. In section 4 the econometric models employed in the estimations

are layout. Section 5 presents estimation results for the Ricardian models. In section 6 the

impacts simulations are presented. And section 7 concludes.

2.2 RICARDIAN MODEL

Ricardian analysis emerges from the notion that a farm’s value is the result of the

discounted value of all future profits, or rents that can be acquired for it, assuming that the

farmer is always maximizing profit with its usage of land. In this sense, the Ricardian approach

can be viewed as a hedonic model of farmland prices with climate being one of the qualitative

variables associated with a plot’s value, despite what is the current use of the specific tract of land

(Mendelsohn et al., 1994; Schlenker et al., 2006; Mendelsohn et al., 2010; Massetti et al., 2013).

Similar to what is proposed in Massetti et al. (2013) we can define farmland value as

the net present value of all future farm profits, shown in equation (2.1):

𝑉 =
∫ ∞

0

[𝑃 ×𝑄(𝐼, 𝐶, 𝑍, 𝑋) − 𝑅 × 𝐼]𝑒−𝛿𝑡𝑑𝑡 (2.1)

where 𝑉 denotes land value; 𝑃 and 𝑅 are output and input prices; 𝑄 is output; 𝐼 are all necessary

inputs; 𝐶 are climatic variables; 𝑍 are time unvarying characteristics; 𝑋 are time varying

exogenous factors (e.g., demographic, economic, geographic); and 𝛿 is the discount rate.

Assuming that a farmer always optimize 𝐼 for any values of 𝑃,𝐶,𝑍 ,𝑋 , and 𝛿, equation

(2.1) reduces to the general form of the Ricardian model (2.2):

𝑉 = 𝑓 (𝑋,𝐶, 𝑍) (2.2)

where 𝑃, 𝑅 and 𝛿 are aggregated into the 𝑋 variable set. Note that equation (2.2) denotes a

similar relationship of product value and implicit qualities as the hedonic prices model proposed

in Rosen (1974), where the value of a good is defined by a function of its characteristics.
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2.3 DATA

In this section we present the dependent variables, municipal average farmland prices,

separated into four different qualities of soil for the year 2017. The conceptual definition and

calculation procedure related to climatic variables GDD and mean precipitation are also discussed.

Remaining control variables are presented in the end of this section.

Farmland value data, provided by Paraná’s Department of Rural Economics (DERAL),

is composed of mean sales prices per hectare of farmland in any given municipality. The data is

further subdivided into seven classes according to land quality. Land classes range from I to

VIII where the smaller roman algorithm indicate that the land can be used for more intensive

production, therefore, class I is the best kind of available farmland and class VIII the worst.

In figure 2.1 we present the average value for the four first classes (class-I through

class-IV), which are usually employed in crop planting, therefore, of greater interest for this

essay. It is easy to see that there is a belt from north to west where prices are significantly higher,

this coincides with the soybean productive region of the state. Another noticeable aspect on the

map is the price concentration around Curitiba, where prices fall into the same level as those for

farmland on the "soy belt". According to von Thünen model of agricultural land use, rural land

prices approach urban land prices at the limit between both areas.

(a) (b)

(c) (d)

Figure 2.1: Mean farmland prices per hectare of for 2017 in the state of Paraná, land classes I to IV

Source: Own Calculations based on data from DERAL



35

Generally, Ricardian models of climate change like Sanghi et al. (1997); Evenson and

Alves (1998); Massetti et al. (2013); DePaula (2020) use monthly mean estimates of temperature

and precipitation for climatic variables. For this essay we employ high frequency climate data

for the state by using daily measures of temperature. We produce an agronomic variable which

describe the real, non-linear, relationship between plant growth and climate, GDD (Ritchie and

Nesmith, 1991; McMaster and Wilhelm, 1997; Snyder et al., 1999).

This is a traditional agronomic measure of heat accumulation based on the notion that

plant growth is associated with the accumulated temperature in its growing season (Ritchie and

Nesmith, 1991; McMaster and Wilhelm, 1997). Moreover, a plant will start to grow after the

air temperature reaches a certain base temperature, 𝑇𝑏𝑎𝑠𝑒, specific to each crop species. Then

for every additional degree of heat the plant’s growth will be faster until an optimum level, 𝑇𝑜𝑝𝑡 ,
where growth is maximum. Every degree after this level will diminish plant growth until it

reaches zero at 𝑇𝑢𝑝, as shown in figure 2.2. This measures the daily thermal intake (TI) of a

plant, i.e., how much energy the plant received in that day. Aggregating this value in a season

we find the GDD. This captures a non-linear effect of temperature in plant growth, which is

more representative than using monthly mean temperatures. The GDD also accounts for plant

growth stopping above certain extreme level of heat, as we remove from the GDD calculation

any day where the maximum is above a threshold (𝑇𝑚𝑎𝑥 > 𝑇𝑢𝑝). The daily temperature, 𝑇 − 𝑑,

used for TI calculations is the average of the minimum, 𝑇𝑚𝑖𝑛, and maximum temperatures, 𝑇𝑚𝑎𝑥 ,
as it understood that daily extremes are a better approximation of the range temperature which

the plant has experienced along the day (Snyder et al., 1999). Therefore, we use equation (2.4)

bellow to calculate GDD values for a specific season from day 1 to day 𝐷:

𝑇𝑑𝑇𝑏𝑎𝑠𝑒 𝑇𝑜𝑝𝑡 𝑇𝑢𝑝

𝑇 𝐼𝑑

Figure 2.2: Thermal intake relationship with temperature

Source: Own drawing.

𝑇 𝐼𝑑 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑇𝑑 − 𝑇𝑏𝑎𝑠𝑒, 𝑇𝐵𝑎𝑠𝑒 ≤ 𝑇𝑑 ≤ 𝑇𝑜𝑝𝑡
𝑇𝑢𝑝−𝑇𝑑
𝑇𝑢𝑝−𝑇𝑜𝑝𝑡

(𝑇𝑜𝑝𝑡 − 𝑇𝑏𝑎𝑠𝑒), 𝑇𝑜𝑝𝑡 < 𝑇𝑑 ∧ 𝑇𝑚𝑎𝑥 ≤ 𝑇𝑢𝑝

0, otherwise.

(2.3)

𝐺𝐷𝐷1,𝐷 =
𝐷∑
𝑑=1

𝑇 𝐼𝑑 (2.4)
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Notice that GDD will always be beneficiary to a plant, i.e., a higher thermal intake will

always increase the plant growth rate. However, GDD is not a linear function of temperature,

capturing the negative effects of temperatures above certain levels.

The climatic data set, used in the calculation of GDD and mean precipitation, provided

by SIMEPAR (Paraná’s Technology and Environmental Monitoring System) is composed of

18 years (from 2000 to 2017) of daily measures of precipitation, maximum, and minimum

temperatures from 21 ground stations scattered across Paraná, which leaves 378 municipalities

without climatic data. This problem is solved bellow.

To synthesize the data for the other municipalities –those without weather stations– we

use the distances between stationed and non-stationed municipalities and the inverse distance

weighting (IDW) method (Shepard, 1968). From SIMEPAR data set we have a matrix of each

climatic variable 𝐶 with 6,569 rows (for days) and 21 columns (for stations). We then create

a matrix of inverted square distances of every non-stationed municipality to every stationed

municipality called 𝐷378; 21 where every entry is equal to 1/(𝐷𝑖𝑠𝑡𝑖, 𝑗 )
𝜙 of municipality centroid

(row) 𝑖 to the station (column) 𝑗 . This matrix 𝐷 is then treated by normalizing each row dividing

every entry by the sum of all entries in the row
∑21

𝑗=1 1/(𝐷𝑖𝑠𝑡𝑖, 𝑗 )
𝜙 obtaining a normalized inverted

square distance matrix matrix 𝑁𝐷378,21.

Following this process, the matrix multiplication according to equation (2.5) bellow

will provide a synthetic base of daily temperatures and precipitation for every non-stationed

municipality, �̂�, which is then combined with the original base 𝐶 to obtain a block matrix �̂� for

each climatic variable. The term 𝜙 defines the sensibility of climate to distance, by changing

the value of 𝜙 we can adjust the proportional impact of far away stations to a non-stationed

municipality, i.e., a higher power produces estimates closer to the nearest station, when the power

approaches 1 the effect becomes linear. As the power becomes closer to 0 the weights of each

station are the same, regardless the distance. For this model we use 𝜙 = 2, as temperature and

precipitation follows Tobler’s first law of geography, that is, "Everything is related to everything

else, but near things are more related than distant things".

𝑁𝐷 =


�������
1

𝐷𝑖𝑠𝑡2
(1,1)

÷
∑21

𝑗=1

(
1

𝐷𝑖𝑠𝑡2
(1, 𝑗)

)
. . . 1

𝐷𝑖𝑠𝑡2
(1,21)

÷
∑21

𝑗=1

(
1

𝐷𝑖𝑠𝑡2
(1, 𝑗)

)
...

. . .
...

1
𝐷𝑖𝑠𝑡2

(378,1)

÷
∑21

𝑗=1

(
1

𝐷𝑖𝑠𝑡2
(378, 𝑗)

)
. . . 1

𝐷𝑖𝑠𝑡2
(378,21)

÷
∑21

𝑗=1

(
1

𝐷𝑖𝑠𝑡2
(378, 𝑗)

)
��������

�̂� = 𝐶 × 𝑁𝐷� (2.5)

�̂� =
[
𝐶 | �̂�

]
For the sake of visualization, we present in figure 2.3 the Paraná’s GDD distribution

using thresholds for soybeans, as defined by de Souza et al. (2013), where 𝑇𝑏𝑎𝑠𝑒 = 10◦, 𝑇𝑜𝑝𝑡 = 30◦,

𝑇𝑢𝑝 = 40◦ for the months between September and December –in accordance to National Supply

Company (CONAB) planting season for soybeans in Paraná, this is the final format of the GDD

variable used in this study. It is easy to observe that the northwest region of Paraná has higher

GDD per season than the rest of the state, with the “soy belt" shown in figure 2.1 existing in this

higher temperature region. The average soy-season GDD for Paraná between 2000 and 2017 was

of 1465 degree-days per season. In what concerns precipitation, we employ SIMEPAR database

to calculate the eighteen years seasonal averages of precipitation for every municipality in mm of

rain.



37

Figure 2.3: Average Paraná’s GDD from September to December 2000-2017

Source: Own Calculation based on data from SIMEPAR

2.3.1 Controls

Other factors are connected with farmland value, as the literature in Ricardian models

shows (Schlenker et al., 2006; Mendelsohn et al., 2010; Sklenicka et al., 2013; DePaula, 2020).

To control for these factors we selected seventeen variables from three different dimensions that

may affect land value: physical, economic, and geographic factors.

Physical factors refer to the qualitative aspects of the farmland of each municipality.

These are somewhat treated by the different classes of land as defined by DERAL’s database.

Together with running different models for different land-type prices, we use data from Paraná’s

Water and Land Institute (IAT) to get the proportion of each class of land in a municipality

(clayey, medium-clayey, clayey-medium, medium, silty, medium-sandy, and sandy). Based on

those we construct two variables: percentage of the best soil type (clayey); and percentage of

the worst soil type (sandy). From the National Water Agency (ANA) we collect data on soil’s

Available Water Capacity (AWC), from which we calculate the area-weighted average for each

municipality. We also use municipal latitude, as lower latitudes have higher solar incidence.

Economic/demographic factors, such as a municipal GDP and population density

is believed to exert significant effects on farmland value (Sklenicka et al., 2013; DePaula,

2020). Rural credit may also be as it allows for investments on more productive practices and

cost reductions. These were obtained in IPARDES (Paraná Institute of Economic and Social

Development). To address the competition for land of rural and urban regions, we calculate the

proportion of urban coverage in every municipality using IBAMA’s data on urban sprawl divided

by municipal area.

Geographic factors encompass distances of big consumer markets, e.g., large cities and

trading ports, as these are the markets where rural commodities mostly go. It is also understood

that good transport infrastructure is advantageous in time-shortening those distances (Sklenicka

et al., 2013; Hüttel et al., 2016; DePaula, 2020). Therefore, both set of variables –distance and

road infrastructure– must be incorporated into the model. For distances this is done via GIS

calculations using linear distances from a municipality centroid to key municipalities (Curitiba,

São Paulo, Paranaguá port, Santos port, São Francisco port). For road network size we use the

public available GEOFABRIK’s openstreetmaps data extracts for Brazilian roads for 01/01/2018



38

in order to calculate road density (km roads/ km2 county area), railroad density, and highway

density.

Additionally, irrigation showed to be important in a number of studies (Sklenicka et al.,

2013; DePaula, 2020). Differently to past census, the 2017 version of the agricultural census

has irrigation broken into several classes, some with more technologically advanced, e.g., center

pivot or drip irrigation, or only simple systems, e.g., furrow, flood, or level-basin irrigation.

However, due to IBGE policy for individual privacy, a large proportion of municipalities have

area covered specific irrigation techniques censored. Therefore, we use total irrigated area of

each municipality. In order to capture more advanced irrigation method we use EMBRAPA’s

2019 cartographic data on pivot irrigation to calculate the total area covered by this technique2.

2.4 EMPIRICAL STRATEGY

The relationship between climatic variables and farmland prices for each of the four

farmland classes will be firstly estimated through OLS using the following model:

ln 𝐹𝑉𝑖𝑐 = 𝛽0 + 𝛽𝑔𝑑𝑑𝐺𝐷𝐷𝑖 + 𝛽𝑝𝑃𝑟𝑒𝑐𝑖 + 𝛽𝑝2𝑃𝑟𝑒𝑐
2
𝑖 + 𝛾1𝑃𝐶1𝑖 + · · · + 𝛾𝑛𝑃𝐶 𝑗𝑖 + 𝜀𝑖. (2.6)

where 𝐹𝑉𝑖𝑐 is the municipal mean farmland value for each class for 2017 in BRL; 𝐺𝐷𝐷𝑖 is

is an index of accumulated thermal time in thousands of degree Celsius in the season; 𝑃𝑟𝑒𝑐𝑖
is the mean seasonal precipitation for each municipality; 𝑃𝐶 𝑗𝑖 represent principal component

indexes used for dealing with the fact that there is a large number of highly correlated control

variables; 𝛽 and 𝛾 are parameters and represent the willingness to pay of farmers to the marginal

increase of that characteristic in the farmland; 𝜀𝑖 is assumed to be i.i.d. errors. A squared term

for precipitation is added as rain is beneficiary to plant growth until a certain level, after which it

becomes detrimental. This quadratic relationship is already captured by the equation (2.4) for

GDD in the range where the is no harm3.

2.4.1 Principal Components

As it is pointed out in Hermann and Haddad (2005), hedonic models with a large number

of control variables may be affected by multicollinearity. This will not produce biased results,

but may enlarge the standard errors, leading to type II errors when observing the significance of

our estimates. In order to avoid such problem we reduce the number of variables using principal

components (PC). The seventeen selected controls where reduced into orthogonal components

which best represent the variance of all controls. Then only the principal components with

standard deviation higher than unit were introduced into our model. The vectors are computed

separately for each of the four farmland classes prices, which can generate different number of

significant components (five PCs for classes I, III, and IV; six PCs for class II). In appendix B,

the composition of every significant principal component for all four classes is presented.

2.4.2 Spatial Regression and Impacts

Farmland prices can be subject to spatial dependence, as land prices of a farm are

similar to their neighbours given unobserved spatial relationships (omitted variables) or due to

2Although irrigation information being considered important for Ricardian studies, it may be less so in this study

as Paraná has high levels of precipitation during the year, with irrigation being only supplemental to precipitation.

3To be able to have more comparable results to Schlenker et al. (2006), all models are also estimated using the

quadratic form of GDD.
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neighborhood effects (Patton and McErlean, 2003; Schlenker et al., 2006; Huang et al., 2006;

Dillard et al., 2013; Huttel and Wildermann, 2014; Lehn and Bahrs, 2018).

To address this issue we employ the spatial econometrics in the form of the spatial

autoregressive (SAR) and spatial error (SEM) models. The SAR model assumes that there

is spatial autocorrelation of the dependent variable, while the SEM model assumes that there

is a spatial relationship in the residuals, which emerges from spatially distributed omitted

variables. We then re-estimated the model of equation 2.6 and including separately the spatial

error correction (SEM) and spatial lag element (SAR), which follows the generic form form:

ln 𝐹𝑉𝑖𝑐 = 𝛽0 + 𝜆𝑊𝑐 ln 𝐹𝑉𝑖𝑐 + 𝛽𝑔𝑑𝑑𝐺𝐷𝐷𝑖 + 𝛽𝑝𝑃𝑟𝑒𝑐𝑖 + 𝛽𝑝2𝑃𝑟𝑒𝑐
2
𝑖 +

∑
𝛾𝑃𝐶 + 𝑢𝑖𝑡 (2.7)

𝑢𝑖𝑡 = 𝜌𝑊𝑐𝑢𝑖𝑡 + 𝜀𝑖𝑡 (2.8)

where𝑊𝑐 is a queen style neighborhood matrix for each class 𝑐, 𝜆 is the spatial spillover parameter

from the SAR specification ranging from 0 to 1. While 𝜌 is the spatial error parameter from the

SEM specification ranging from -1 to 1 and 𝜀 being i.i.d errors. In SEM model we assume that 𝜆
is zero, while in SAR model we assume 𝜌 is zero. OLS is a particular case where both 𝜆 and 𝜌
are null.

We apply Moran-I test on the OLS residuals of each land-class model to check for spatial

autocorrelation. As seen in table 2.1, the test rejects the null hypothesis of spatial independence

in all classes, meaning that there is spatial correlation. Also, we use Lagrange-multiplier tests

to verify which type of spatial model is better suited for our data. Although both the error and

lag models present significant results in their respective LM tests, the robust form of LM tests

suggest that lag model proves to be adequate. Therefore, we only estimate SAR models.

Table 2.1: Spatial tests

Model Moran-I LMerr LMlag RLMerr RLMlag

Class-I 0.379∗∗∗ 13.95∗∗∗ 22.50∗∗∗ 2.64 11.19∗∗∗

Class-II 0.746∗∗∗ 209.59∗∗∗ 274.54∗∗∗ 0.14 65.09∗∗∗

Class-III 0.709∗∗∗ 167.34∗∗∗ 248.18∗∗∗ 0.76 81.60∗∗∗

Class-IV 0.704∗∗∗ 190.75∗∗∗ 257.54∗∗∗ 0.11 66.91∗∗∗

Notes: Values in parenthesis are p-values. Significance levels ∗ p<0.1; ∗∗p<0.05;
∗∗∗p<0.01. Source: Own calculations.

In order to obtain marginal effects for SAR models, we need to calculate the spatial

impacts. The usual interpretation of the parameter estimates as marginal effects is not possible

for spatial autoregressive models, as any growth in 𝐺𝐷𝐷𝑖 will impact 𝐹𝑉𝑖 locally first, and then

spillovers to neighbouring municipalities through 𝜆, with positive effects on 𝐹𝑉𝑗≠𝑖 and on their

neighbours, including the first municipality. Therefore, there are three different impacts of an

independent variable on the dependent variable: the direct effect, akin to the marginal effect of

usual OLS models; the indirect effect, portraying the marginal change in a municipality land

price given changes in the GDD of all other municipalities (global effect); and the sum of both,

which is the total effect. The mechanisms of how to calculate these impacts are shown in Kim

et al. (2003).
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2.5 EMPIRICAL ESTIMATION

Prior to presenting the results we run Breusch-Pagan tests on all OLS models to verify

for heteroscedastic errors, with results indicating that all models suffer from it. Therefore,

heteroscedasticity-consistent standard errors need to be estimated, for such we chose to use the

HC3 estimator, as recommended by MacKinnon and White (1985) and Cribari-Neto (2004).

Results of the first four empirical models are presented in table 2.2. Models (1) through

(4) have only linear GDD and are ordered from class I to class IV, while (5) through (8) have

quadratic GDD added to it and are ordered in the same way. In the linear models, parameter

estimates for GDD are significant in all but the first class of farmland, ranging from 0.440 to

0.561. Considering the log-linear specification and the fact that the GDD variable measures

thousands of degree-days, this means that farmers are willing to pay 4.4% to 5.6% more for

farmland with additional 100 GDD for these classes of land. In terms of elasticity, using the

average seasonal GDD of 1465, we have that for each 1% increase in GDD a farmland experiences

an 0.64% increase in its price.

Such result follows what is expected, since GDD is by definition good for farming,

and the way which temperature affects our models is by increasing or diminishing GDD. The

quadratic models present significant results only for the first and last farmland class. The other

estimates for GDD, despite not being statistically significant, follow closely what is found in

Schlenker et al. (2006) which estimated coefficients of around 1.6 for linear and −0.3 for squared

GDD. This similarity indicates that the models may be well specified, but the sample is too small

to find significant results. It is important to notice that the coefficients of model (5) are extremely

large, this may be due to the fact that the sample for this class is much smaller compared to the

samples off the other land classes.

Estimates for the precipitation parameters predict an U-shape relationship between rain

and farmland value, unlike the results found by Schlenker et al. (2005). Nevertheless, they are in

accordance to other findings such as those in Mendelsohn et al. (2010); Massetti et al. (2013);

Zhang et al. (2017). In the particular case of this study, all municipalities in the sample face very

high levels of precipitation during the four months in the season, which tend to distort models

results.

The spatial models regression results are shown in table 2.3. These are ordered in the

same manner as in the non-spatial models. The spatial lag component in all classes is significant,

indicating a neighborhood effect where landowners observe their surroundings to price their

farmland. Again, coefficients for precipitations take an counter intuitive sign, indicating slightly

negative added value of additional rain within all the range of precipitation in our data.

In the linear models the GDD coefficients turned statistically insignificant in all but one

model, Class-II, after controlling for spatial dependence of farmland value. It is likely that the

spatial nature of the GDD variable has contributed to this result. That is, after controlling for

unobserved spatial dependence the estimations did not reveal statistically significant correlation

between GDD and farmland value. This, however, is not an evidence that GDD is irrelevant for

land value; it only emphasizes the spatial nature of our variables. More so, the fact that GDD

provided significant coefficients in one model confirms the importance of the variable even when

spatial autocorrelation is removed. As in the OLS estimation, the coefficients associated with the

GDD quadratic specification for the class I are significant, but values remain large.
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2.6 CLIMATE CHANGE IMPACTS

In the following calculations we use our estimates, along with predictions from regional

climate models, to evaluate the impacts of climate change on farmland price in the Paraná’s

state. The climate projections are obtained from the median value of 18 models that compose the

Coordinated Regional Downscaling Experiment for South America (CORDEX South America),

which were used for regional prediction and analysis in the sixth IPCC Assessment Report,

as well as, made available in IPCC WGI Interactive Atlas. Specifically, predicted changes in

mean minimum and maximum daily temperatures in the interval of September to December

are available for three standard greenhouse gas (GHG) concentration scenarios identified in the

IPCC AR6: RCP 2.6, RCP 4.5, and RCP 8.5, each denoting a climate projection with higher

concentration of GHG, respectively.

CORDEX data comes in the form of grid cells with a 0.44 degree size (mapped squares

of around 50 km side). GIS tools are then used to calculate the weighted mean value of each

variable for each municipality with weather stations. The temperature values are added to our

original climate data (2000-2017) and used together with equations (2.5) and (2.4) to calculate

the predicted seasonal degree days for two times spans, mid century –2040-2060– and end of

the century –2081–2100. In this essay we only provide analysis for RCP 8.5, as it is the most

extreme case, nevertheless, results from other RCP’s will not diverge.

Figure 2.4(a) shows the modeled seasonal GDD for Paraná by the end of the century,

while figure 2.4(b) shows the projected net effect on farmland value due to the new temperature

levels for the class-II spatial model. This projection is done by only observing the marginal effect

of GDD assuming all other factors are constant. The first figure, 2.4(a), shows that even in the

worst case scenario of IPCC predictions the state’s GDD will not diminish in any municipality.

Figure 2.4(b) presents the projected effect of the GDD increase across the state in the farmland

value, depicting a scenario were farmland gains value across the whole state, with greater effect

in the central region. This indicates a favorable position of Paraná given current global warming

predictions. However, Paraná –together with the south region of Brazil– may be the exception

rather than the rule when it comes to global warming impacts on Brazilian agriculture, as their are

located in a higher (south) latitude than the rest of the country and experience a colder climate.

(a) Projected GDD (b) Projected Farmland Value Change in Spatial Class-II model

Figure 2.4: Projected Paraná’s GDD and farmland Value 2081-2100 in Paraná’s (RCP 8.5)

Source: Own Calculations.
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In table 2.4 the projected increase in farmland value is presented for all models, OLS

and spatial, with significant GDD for two time spans, medium and long term.

Table 2.4: Decomposition of relative changes in Farmland value due to change in GDD (RCP8.5)

2041-2060 (%) Average 2081-2100 (%) Average

Model Mean Min. Max. 𝜎 Mean Min. Max. 𝜎

Class-I* 659.27 411.15 761.86 51.16 1111.98 486.29 1262.96 124.35

Class-II 15.78 9.48 18.53 1.33 28.93 11.34 33.80 3.79

Class-III 12.38 7.44 14.53 1.04 22.69 8.89 26.52 2.97

Class-IV 14.12 8.49 16.58 1.19 25.91 10.15 30.27 3.39

Spatial Class-I*

Direct 571.65 356.43 660.66 44.38 964.65 421.60 1095.82 107.99

Indirect 595.63 371.39 688.38 46.25 1005.12 439.29 1141.79 112.52

Total 1167.27 727.82 1349.03 90.64 1969.75 860.88 2237.58 220.50

Spatial Class-II

Direct 6.43 3.86 7.54 0.54 11.78 4.62 13.77 1.54

Indirect 16.36 9.83 19.20 1.38 29.98 11.75 35.03 3.93

Total 22.79 13.69 26.75 1.92 41.76 16.38 48.01 5.47

Notes: *Projection of model with squared GDD. Source Own calculations.

Our results agree with Massetti et al. (2013) which suggests that Paraná agriculture will

be a winner in the studied scenarios. But are not in line with Schlenker et al. (2006)’s findings

for regions that have analogous Köppen climate classifications to Paraná –southern USA. This

discrepancy can be attributed to some differences in the construction of the GDD variable and

data availability. They use a strictly linear GDD with lower threshold of 8◦ and upper of 32◦

Celsius, and an extreme-growing-degree days4 (EDD) variable for days with maximum above

34◦. These thresholds are not representative of Paraná and are more suitable to portray wheat’s

thermal needs than soybeans’, the predominant crop in Paraná. Therefore, or our GDD variable

we followed de Souza et al. (2013) thresholds for Brazilian variants of soybeans.

2.7 FINAL REMARKS

This study estimated a hedonic land price model using high frequency data on temperature

and precipitation to assess the impacts of climate on farmland value in the state of Paraná. Based

on the econometric results and recent climatic predictions provided by the Coordinated Regional

Downscaling Experiment (CORDEX) and the Intergovernmental Panel on Climate Change

(IPCC), evidence of farmland appreciation was found for the state, indicating that agriculture

in the region will experience benefits from climate change. Our findings agree with Massetti

et al. (2013), which observed Brazilian data at the micro-regional level and found that increase in

temperature in Paraná –and the other southern states– will result in farmland prices rising.

This essay also provided insight on the methods and problems in understanding the

effects of climate change on the agricultural economy in Brazil –particularly in Paraná. It as

4EDD measures a crop heat accumulation for temperatures above a high threshold that may damage the plant’s

growth. It was not incorporated into our models since Paraná’s climate is too mild, with days above 40◦ Celsius

(EDD threshold for soybeans according to de Souza et al. (2013)) being very rare in the studied season. As they

become more common, a likely IPCC scenario, EDD should be incorporated into our analysis.
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shown that using a measure of thermal intake, GDD, that better5 represents climate’s impacts on

agriculture is possible and provides good results.

Future research efforts should concentrate on the expansion of the sample to accommodate

a more diverse set of regions where high temperature days are common. Extreme weather events

could then be better controlled through, for example, an EDD variable, which can improve our

estimates. Also, a more climate diverse sample, possible with a grater region of study, will likely

provide better estimates for GDD and precipitation in particular, as the current sample does not

have enough variance.

5Compared to monthly mean temperature.
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APPENDIX A – CALCULATING SPATIAL GMM IMPACTS IN R

This appendix shows a non-reviewed algorithm on how to calculate spatial impacts, and

error estimates for them, using already established functions from two packages in R, spatialreg
version 1.1-8 and splm version 1.5-2. The algorithm shown here is an improvisation as the usual

function for impact calculatio of spatial models is not available for GM models, with or without

endogenous variables, therefore results should be taken carefully.

A.1 IMPACTS FOR SPATIAL GM MODELS

Impact calculation of Maximal Likelihood (ML) of static panels are obtained from the

following R function, impacts.splm

function (obj, listw = NULL, time = NULL, ..., tr = NULL, R = 200,
type = "mult", empirical = FALSE, Q = NULL)

{
if (is.null(listw) && is.null(tr))

stop("either listw or tr should be provided")
if (!is.null(listw)) {

if (listw$style != "W")
stop("Only row-standardised weights supported")

if (is.null(time) && is.null(tr))
stop("time periods should be provided")

}
if (is.null(tr)) {

sparse.W <- listw2dgCMatrix(listw)
s.lws <- kronecker(Diagonal(time), sparse.W)
tr <- trW(s.lws, type = type)

}
if (is.na(match(obj$type, c("fixed effects lag",

"fixed effects sarar",
"random effects ML",
"fixed effects GM",
"lag GM", "fixed effects GM"))))

stop("object type not recognized")
if (obj$type == "fixed effects lag") {

class(obj) <- "Gmsar"
obj$type <- "SARAR"
obj$data <- as.vector(obj$model)
obj$s2 <- obj$sigma2
obj$secstep_var <- obj$vcov
imp <- impacts(obj, tr = tr, R = R, ...)

}
if (obj$type == "fixed effects sarar") {

class(obj) <- "Gmsar"
obj$type <- "SARAR"
rho <- obj$coefficients[2]
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obj$coefficients <- obj$coefficients[-2]
obj$data <- as.vector(obj$model)
obj$s2 <- obj$sigma2
obj$secstep_var <- obj$vcov[-2, -2]
imp <- impacts(obj, tr = tr, R = R, ...)

}
if (obj$type == "fixed effects error")

stop("Impacts Estimates are not available for Error Model")
if (obj$type == "random effects ML") {

if (!is.null(obj$arcoef)) {
class(obj) <- "Gmsar"
obj$type <- "SARAR"
obj$coefficients <- c(obj$arcoef, obj$coefficients)
obj$data <- as.vector(obj$model)
obj$s2 <- obj$sigma2
obj$secstep_var <- matrix(0, nrow(obj$vcov) + 1,

nrow(obj$vcov) + 1)
obj$secstep_var[1, 1] <- obj$vcov.arcoef
obj$secstep_var[(2:(nrow(obj$vcov) + 1)),

(2:(nrow(obj$vcov) + 1))] <- obj$vcov
imp <- impacts(obj, tr = tr, R = R, ...)

}
else stop("Impacts Estimates are not available for Error Model")

}
if (obj$type == "fixed effects GM") {

if (is.null(obj$endog)) {
obj$secstep_var <- vcov(obj)
class(obj) <- "Gmsar"
obj$type <- "SARAR"
obj$data <- as.vector(obj$model)
obj$s2 <- obj$sigma2
imp <- impacts(obj, tr = tr, R = R, ...)

}
else stop("No impacts estimates when endogenous

variables are present in the system")
}
if (obj$type == "lag GM") {

if (is.null(obj$endog)) {
class(obj) <- "Gmsar"
obj$type <- "SARAR"
obj$secstep_var <- obj$var
obj$data <- as.vector(obj$model)
obj$s2 <- obj$sigma2
imp <- impacts(obj, tr = tr, R = R, ...)

}
else stop("No impacts estimates when endogenous

variables are present in the system")
}
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if (obj$type == "random effects GM") {
if (is.null(obj$endog)) {

class(obj) <- "Gmsar"
obj$type <- "SARAR"
obj$secstep_var <- obj$vcov
obj$data <- as.vector(obj$model)
obj$s2 <- obj$sigma2
imp <- impacts(obj, tr = tr, R = R, ...)

}
else stop("No impacts estimates when endogenous

variables are present in the system")
}
return(imp)

}

As it is pointed by the beginning section of the formula, there are sections of this

function dedicated to deal with GM models, however the obj$type of a GMM object –as

outputted by a spdm function is never one of the options listed:

if (is.na(match(obj$type, c("fixed effects lag",
"fixed effects sarar",
"random effects ML",
"fixed effects GM",
"lag GM", "fixed effects GM"))))

instead the object types are as follows: Spatial w2sls model for GMM lag-

within models; Spatial fixed effects SARAR model (GM estimation) for

GM SARAR-within models; Spatial ec2sls model for lag-random models; Spatial
random effects SARAR model (GM estimation) for GM SARAR-random mo-

dels; Spatial ec2sls model for lag-random models. Assuming that this is just a mistake

on how the objects are typified across two different packages we can force impacts.splm to

accept spgm objects by changing their types accordingly, in a similar manner to:

spatialGM_within <- spgm(y ~ x1 + x2, data = df,
listw = listw.wts, spatial.error= F,
lag = T, model = "within")

spatialGM_within$type <- "fixed effects GM"

This will allow the function to complete; however, if we look inside "fixed effects

GM"fork in the function we have argument allocations occurring, $sigma2 and $model.

These are not present within spgm models, unlike splm.

if (obj$type == "fixed effects GM") {
if (is.null(obj$endog)) {

obj$secstep_var <- vcov(obj)
class(obj) <- "Gmsar"
obj$type <- "SARAR"
obj$data <- as.vector(obj$model)
obj$s2 <- obj$sigma2
imp <- impacts(obj, tr = tr, R = R, ...)

}
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Yet, upon some testing and looking on the behaviour of impacts root function, we

have not found differences in impacts calculations, nor estimated errors for different values of

those arguments. It seems that only four arguments are utilized in impacts.splm function,

the estimated coefficients of each model, the variance covariance matrix of each model, the

spatial weights, and the number of periods in the panel. Knowing this we can finally calculate

impacts, and error estimates of our spatial GM models 1 as:

spatialGM_within <- spgm(y ~ x1 + x2, data = df,
listw = listw.wts, spatial.error= F,
lag = T, model = "within")

spatialGM_within$type <- "fixed effects GM"
imp1 <- spatialreg::impacts(spatialGM_within,

listw = listw.wts, time = 9, R = 200)
summary(imp1, zstats=TRUE, short=TRUE)

A.2 IMPACTS FOR SPATIAL GM WITH ENDOGENOUS VARIABLES MODELS

The code of function places stops when obj$endog is not null, meaning, the

algorithm is hard locked into not calculating impacts for spatial two staged GM models. This

might be based on econometric theory, or just that developers here not sure if results would be

correct. However if the user desires to calculate impacts it is possible by employing the solution

as follows.

First lets have a look at "Spatial w2sls model with additional endogenous variables"as

the obj$type calls a spatial lag-GM models with endogenous variables. Its function should be

similar to:

GM_endog_lag <- spgm(y ~ x1, data = df,
lag = T, spatial.error = F,
endog = ~ x2, instruments = ~z,
listw = listw.wts)

here the spatial model 𝑌𝑖𝑡 = 𝛼𝑖 + 𝜆𝑊𝑌𝑖𝑡𝛽1𝑥1𝑖𝑡 + 𝛽2𝑥2𝑖𝑡 + 𝜀𝑖𝑡 is estimated, with fist stage equal

𝑥2 = 𝜃𝑖 + 𝛾𝑧𝑧𝑖𝑡 + 𝛾𝑥𝑥1𝑖𝑡 + 𝑣𝑖𝑡 . The object generated by this function will have it’s coefficient

and covariance arguments organized in matrices by the order 𝑥2, 𝜆, 𝑥1; however if we look

at a simple spatial-GM model this organization will follow the 𝜆, 𝑥1, 𝑥2 order. Therefore we

identified the three changes that need to be made so our endogenous model can be accepted

into impacts.splm function: change model $type, remove argument $endog; reorganize

coefficient and covariance matrices.

GM_endog_lag <- spgm(y ~ x1, data = df,
lag = T, spatial.error = F,
endog = ~ x2, instruments = ~z,
listw = listw.wts)

GM_endog_lag$type <- "fixed effects GM"
GM_endog_lag$endog <- NULL
GM_endog_lag$coefficients<-GM_endog_lag$coefficients[c(2,3,1)]
GM_endog_lag$vcov <- GM_endog_lag$vcov[c(2,3,1),c(2,3,1)]

1Assuming that our panel as 9 periods, and using the standard 200 repetitions on the bootstrap calculations of

our errors.
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imp2 <- spatialreg::impacts(GM_endog_lag , listw = listw.wts,
time = 9, R = 200)

summary(imp2, zstats=TRUE, short=TRUE)

It is important to notice that the order (2,3,1) is particular to this model, one need to

look at their particular object first in order to know what specific order to set their coefficients

and vcov matrices.
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APPENDIX B – PRINCIPAL COMPONENTS ANALISYS

This appendix present the loading of each significant principal component relative to

each variable used in their composition. Four tables are presented, one for each farmland class.

Tabela B.1: Farmland class-I Principal components composition

PC1 PC2 PC3 PC4 PC5

Latitude 0.314 0.020 −0.308 −0.004 −0.006

Pivot area (ha) −0.014 −0.066 0.324 −0.263 −0.566

Irrigated area (ha) 0.030 0.017 0.322 −0.225 −0.517

Population density −0.101 0.558 −0.048 −0.040 −0.048

Railroad density −0.171 0.225 −0.071 0.160 −0.046

Street density −0.132 0.510 0.036 0.137 −0.037

Highway density 0.221 0.050 −0.034 0.102 −0.321

Distance to São Paulo 0.393 0.073 −0.060 0.060 0.016

Distance to Curitiba 0.390 0.097 0.067 0.071 −0.026

Distance to Paranaguá 0.394 0.093 0.047 0.072 −0.011

Distance to Santos 0.394 0.075 −0.046 0.063 0.015

Distance to São Francisco 0.381 0.105 0.119 0.083 −0.025

ln Available Water Capacity −0.024 −0.105 −0.585 −0.069 −0.332

Clay (%) −0.044 −0.004 −0.558 −0.130 −0.271

ln GDP 0.135 0.040 0.007 −0.589 0.305

Urban Area (ha) −0.085 0.546 −0.041 −0.048 −0.041

ln Credit Density 0.069 0.141 −0.064 −0.655 0.152

% Explained Variance 36.17 16.14 12.36 9.08 6.41
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Tabela B.2: Farmland class-II Principal components composition

PC1 PC2 PC3 PC4 PC5 PC6

Latitude 0.103 −0.354 0.362 0.179 −0.183 0.018

Pivot area (ha) −0.027 0.036 −0.102 −0.409 −0.066 −0.766

Irrigated area (ha) −0.041 0.127 −0.124 −0.077 −0.457 −0.282

Population density 0.194 0.372 0.391 −0.006 −0.012 −0.087

Railroad density 0.202 0.098 −0.004 −0.247 0.358 0.237

Street density 0.147 0.421 0.337 0.063 0.028 −0.016

Highway density −0.037 0.120 −0.083 −0.406 0.501 0.064

Distance to São Paulo −0.374 −0.061 0.284 0.099 −0.037 0.007

Distance to Curitiba −0.417 0.094 0.090 −0.017 0.105 −0.023

Distance to Paranaguá −0.418 0.080 0.117 −0.013 0.090 −0.016

Distance to Santos −0.389 −0.035 0.256 0.079 −0.013 0.004

Distance to São Francisco −0.408 0.144 0.047 −0.054 0.134 −0.022

ln Available Water Capacity 0.170 −0.420 0.287 −0.043 0.184 −0.168

Clay (%) 0.072 −0.367 0.340 −0.115 0.247 −0.233

ln GDP −0.003 −0.001 0.163 −0.478 −0.458 0.356

Urban Area (ha) 0.198 0.372 0.389 0.006 −0.019 −0.092

ln Credit Density −0.075 −0.168 0.156 −0.549 −0.169 0.217

% Explained Variance 31.37 16.18 14.01 7.84 6.82 5.93

Tabela B.3: Farmland class-III and class-IV Principal components composition

PC1 PC2 PC3 PC4 PC5

Latitude 0.106 −0.223 −0.456 −0.242 −0.059

Pivot area (ha) −0.034 0.005 0.072 0.407 −0.303

Irrigated area (ha) −0.067 0.116 0.140 −0.016 −0.522

Population density 0.161 0.484 −0.261 −0.005 0.015

Railroad density 0.190 0.114 0.042 0.337 0.306

Street density 0.105 0.515 −0.182 −0.056 0.065

Highway density 0.045 0.056 0.243 0.360 0.517

Distance to São Paulo −0.381 0.011 −0.256 −0.111 0.054

Distance to Curitiba −0.418 0.087 −0.026 0.037 0.134

Distance to Paranaguá −0.419 0.083 −0.059 0.032 0.127

Distance to Santos −0.395 0.025 −0.223 −0.084 0.068

Distance to São Francisco −0.409 0.120 0.029 0.079 0.147

ln Available Water Capacity 0.212 −0.294 −0.314 0.083 0.249

Clay (%) 0.071 −0.237 −0.456 0.100 0.093

ln GDP −0.043 0.048 −0.198 0.461 −0.341

Urban Area (ha) 0.165 0.484 −0.260 −0.019 0

ln Credit Density −0.099 −0.114 −0.267 0.520 −0.127

% Explained Variance 31.67 16.00 14.30 7.63 6.84


