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RESUMO

Estudamos o Problema de Cauchy para uma classe de operadores de 3−evolução

com termos de ordem inferior dependendo tanto da variável temporal quanto da

espacial e assumindo valores complexos. Consideramos o problema nos am-

bientes funcionais Gevrey e Gevrey com decaimento exponencial no infinito

(classes de funções Gelfand-Shilov), obtendo resultados de existência e boa

colocação. Também estudamos a parte Friedrichs de operadores pseudodiferen-

cias com sı́mbolos pertencentes as classes SG, obtendo uma expansão assintótica

e regularidade precisa para o mesmo. Por fim, provamos um resultado sobre in-

variância espectral para operadores nas classes SG.

Palavras-chaves: Equações de p-evolução. Funções Gevrey. Funções Gelfand-

Shilov. Operadores pseudodiferenciais de ordem infinita. Desigualdade sharp

Gårding



ABSTRACT

We study the Cauchy Problem for a class of 3−evolution operators with

complex-valued lower order terms depending both on the time and space vari-

ables. The problem is treated in the functional settings of the Gevrey and Gevrey

with exponential decay at infinity (Gelfand-Shilov) functions. We achieve ex-

istence and well-posedness results. We also study the Friedrichs part for pseu-

dodifferential operators with symbols belonging to the SG classes, obtaining a

precise asymptotic expansion and regularity for the same. Finally, we prove a

result of spectral invariance for operators in the SG classes.

Keywords: p−evolution equations. Gevrey spaces. Gelfand-Shilov spaces.

Infinite order pseudodifferential operators. Sharp Gårding inequality.
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Introduction

A linear partial differential operator of evolution type is given by

P (t, x,Dt, Dx) = Dm
t +

m∑
j=1

aj(t, x,Dx)D
m−j
t ,

where m ≥ 1 is a positive integer, t ≥ 0 is the time variable, x ∈ R
n is the space variable and

each aj(t, x,D) is a differential operator

aj(t, x,Dx) =
∑
ν

aj,ν(t, x)D
ν
x,

where ν runs through a finite set. The equation

P (t, x,Dt, Dx)u(t, x) = f(t, x)

is said to be a linear differential equation of the evolution type. Famous examples of evolution

equations are given by:

• Wave equation:

∂2t u(t, x)−Δxu(t, x) = 0;

• Heat equation:

∂tu(t, x)−Δxu(t, x) = 0;

• Schrödinger equation:

i∂tu(t, x)−Δxu(t, x) = 0.

The Cauchy problem associated with P (t, x,Dt, Dx) is expressed by⎧⎪⎨⎪⎩
P (t, x,Dt, Dx)u(t, x) = f(t, x),

Dj
tu(0, x) = gj(x),
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where the Cauchy data f(t, x) and gj(x), j = 0, . . . ,m− 1, are given. A survey which contains

a good historical background and presents important results concerning evolution equations can

be found in [37] by S. Mizohata.

Now we describe the evolution problem we are interested in. Consider⎧⎪⎨⎪⎩
P (t, x,Dt, Dx)u(t, x) = f(t, x), (t, x) ∈ [0, T ]× R,

u(0, x) = g(x), x ∈ R,

(1)

where P (t, x,Dt, Dx) is a linear differential operator of the form

P (t, x,Dt, Dx) = Dt + ap(t)D
p
x +

p−1∑
j=0

aj(t, x)D
j
x, (2)

where p ∈ N, p ≥ 1, ap ∈ C([0, T ];R), ap(t) never vanishes, aj ∈ C([0, T ];B∞(Rx)) and

B∞(R) stands for the class of the smooth complex-valued functions defined in R with uniformly

bounded derivatives. An operator of the form (2) is known as p−evolution operator in the

literature. Note that in the case p = 1 we have a strictly hyperbolic operator, for p = 2 we have

Schrödinger type operator and for p = 3 the principal part is the same as in the Korteweg-De

Vries operator.

Let us recall the definitions of Sobolev and Gevrey Sobolev spaces before moving on

to the results. Let s ∈ R, ρ > 0 and θ ≥ 1. The Sobolev space Hs(Rn) is defined by

Hs(Rn) = {u ∈ S ′(Rn) : 〈Dx〉su ∈ L2(Rn)},

where 〈Dx〉s is the pseudodifferential operator given by the symbol 〈ξ〉s := (1 + |ξ|2) s
2 and

S ′(Rn) stands for the space of tempered distributions. The Gevrey Sobolev space Hs
ρ;θ(R

n) is

given in turn by

Hs
ρ;θ(R

n) = {u ∈ S ′(Rn) : 〈Dx〉seρ〈Dx〉
1
θ u ∈ L2(Rn)},

where eρ〈Dx〉
1
θ is the pseudodifferential operator given by the symbol eρ〈ξ〉

1
θ .

The Cauchy problem (1) is said to be well-posed in Hs(R) when for any Cauchy data

f ∈ C([0, T ];Hs(R)) and g ∈ Hs(R), there exists a unique solution u ∈ C([0, T ];Hs(R)).

When for any data f ∈ C([0, T ];Hs(R)) and g ∈ Hs(R), there exists a unique solution u ∈
C([0, T ];Hs−δ(R)), for some δ > 0, satisfying (1), the Cauchy problem is said to be well-posed

in H∞(R) := ∩sH
s(R). Note that we have a δ > 0 loss of derivatives in this case. Concerning

the Gevrey context, if for any data f ∈ C([0, T ];Hs
ρ;θ(R)) and g ∈ Hs

ρ;θ(R) (for some ρ > 0)
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there exists a unique solution u ∈ C([0, T ];Hs
ρ′;θ(R)) with 0 < ρ′ < ρ, then we say that the

Cauchy problem (1) is well-posed in H∞
θ (R) := ∪ρ>0H

s
ρ;θ(R).

Well-posedness for the Cauchy problem (1) has been widely investigated. Regarding

necessary conditions forH∞(R) well-posedness, some decay condition on the imaginary part of

the subleader coefficient is required, see [28] by W. Ichinose for p = 2 and [4] by A. Ascanelli,

C. Boiti and L. Zanghirati for general p ≥ 3. In [19], the author M. Dreher obtained necessary

conditions for well-posedness of Schrödinger equations (p = 2) in Gevrey type spaces.

Now we turn our attention to sufficient conditions. We begin with the Schrödinger

case, that is p = 2. Let us consider a2(t) constant, x ∈ R
n and

Ima1(t, x) = O(|x|−σ), σ > 0, as |x| → ∞,

uniformly with respect to t. In this situation, K. Kajitani and A. Baba proved in [33] that we

have

- Hs(Rn) well-posedness if σ > 1;

- H∞(Rn) well-posedness if σ = 1;

- H∞
θ (Rn) well-posedness if σ < 1 and the coefficients are Gevrey regular with index

s0 > 1 and s0 ≤ θ < 1
1−σ

.

In [14] M. Cicognani and M. Reissig extended this result to degenerate Schrödinger equations,

that is, when the coefficient a2(t) possibly vanishes. For p > 2, there are few results limited

to the H∞(R) setting. Namely, for p = 3, in [13] M. Cicognani and F. Colombini obtained

H∞(R) well-posedness under the following conditions:

|Ima2(t, x)| ≤ C〈x〉−1, |Re a2(t, x)|+ |Ima1(t, x)| ≤ C〈x〉− 1
2 ,

for every t ∈ [0, T ] and x ∈ R, where 〈x〉 :=
√
1 + |x|2. For general p ≥ 3, H∞(R) well-

posedness is achieved by A. Ascanelli, C. Boiti and L. Zanghirati in [3] under suitable assump-

tions. We do not know any result concerning sufficient conditions for well-posedness in Gevrey

type spaces for p ≥ 3.

The Cauchy problem for p-evolution equations with p ≥ 3 has a significant importance

in mathematics, especially in view of their connections with semilinear models appearing in

fluid dynamics. For instance, linearizations of models like Korteweg-De Vries equation and its

generalizations turn out to be 3-evolution linear equations. Since we are interested in extending
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our study to semilinear p-evolution equations, the first step is to establish the linear theory. In

Chapter 3 we prove a well-posedness result in H∞
θ (R) for the Cauchy problem (1) with p = 3

(see Theorem 4.1), and the same phenomenon of loss of regularity appearing in [14, 33] is

observed.

The Chapter 4 of the thesis analyzes the effect of the behavior of the data for |x| → +∞
on the regularity of the solution. In fact, despite the precise assumptions required on the decay at

infinity of the coefficients, the aforementioned results do not give information on the behavior

at the infinity |x| → +∞ for the solution. This motivates the study of the Cauchy problem

(1) in a weighted functional framework and the analysis of the effect of decaying data on the

regularity of the solution.

Let us introduce the weighted functional spaces we just mentioned above. Consider

m = (m1,m2) ∈ R
2, ρ = (ρ1, ρ2) ∈ R

2 and s, θ > 1. The weighted Sobolev space Hm(Rn) is

defined by

Hm(Rn) = {u ∈ S ′(Rn) : 〈x〉m1〈Dx〉m2u ∈ L2(Rn)},

while the Gelfand-Shilov Sobolev space Hm
ρ;s,θ(R

n) is given by

Hm
ρ;s,θ(R

n) = {u ∈ S ′(Rn) : 〈x〉m2〈Dx〉m2eρ2〈x〉
1
s eρ1〈Dx〉

1
θ u ∈ L2(Rn)}.

These Sobolev spaces measure simultaneously regularity and behavior at infinity.

Imposing the following condition on the coefficients

|∂βxaj(t, x)| ≤ Cβ〈x〉−
j

p−1
−β, j = 0, . . . , p− 1, (3)

A. Ascanelli and M. Cappiello proved in [5] that for any Cauchy data f ∈ C([0, T ];Hm(R))

and g ∈ Hm(R) (m = (m1,m2)), there exists a unique solution u ∈ C([0, T ];H(m1,m2−δ)(R)),

for some δ > 0, satisfying (1). In this case, with respect to the initial data, the solution presents

a different behavior at infinity but it has the same regularity. In particular, well-posedness in the

Schwartz space S (R) is achieved. We remark that the condition (3) is needed in order to work

with SG pseudodifferential operators.

Concerning the Schrödinger case, that is p = 2, in Gelfand-Shilov setting, A. Ascanelli

and M. Cappiello obtained an existence result in [6]. More precisely, let σ ∈ (0, 1) such that

s0 <
1

1−σ
and assume that the coefficients satisfy

|∂βxIma1(t, x)| ≤ C |β|+1β!s0〈x〉−σ
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and

|∂βxRe a1(t, x)|+ |∂βxa0(t, x)| ≤ C |β|+1β!s0〈x〉1−σ−|β|.

Moreover, let m ∈ R
2, ρ1 ∈ R, ρ2 > 0 and s, θ > 1 such that θ > s0, s0 ≤ s < 1

1−σ
. Then for

any data f ∈ C([0, T ];Hm
ρ;s,θ(R)) and g ∈ Hm

ρ;s,θ(R), the Cauchy problem (1) admits a solution

u ∈ C([0, T ];Hm
(ρ1,−δ);s,θ(R)) for every δ > 0. In this case, the solution has the same Gevrey

regularity with respect to the initial data, but may present an exponential growth at the infinity.

We also note that this is the first time that an algebrically growth in the coefficients is allowed in

this type of problem. In Chapter 4 we analyze the same problem in the case p = 3, cf. Theorem

4.1.

The main objective of this thesis is to study the Cauchy problem (1) in the Gevrey and

Gelfand-Shilov frameworks where the degree of evolution is p = 3. The principal results that

we have achieved are Theorem 3.1 and Theorem 4.1. The first concerns the Gevrey case and

the second the Gelfand-Shilov setting.

Now we briefly describe the contents presented in this work. In Chapters 1 and 2 we

collect the main notations and mathematical tools for the development of the later chapters. Our

main contributions here are:

- Subsection 2.2, where we develop a calculus for a class of pseudodifferential operators

with symbols of infinite order satisfying Gevrey estimates;

- Section 2.5 where we study the Friedrichs part of pseudodifferential operators with sym-

bols in the SG and SGμ,ν classes, obtaining a precise asymptotic expansion and regularity

for the same (see Theorems 2.17 and 2.19);

- Section 2.6, where we prove a result concerning the spectral invariance for SG operators

satisfying Gevrey estimates.

Chapters 3 and 4 are entirely devoted to prove the main results of this work, namely

Theorems 3.1 and 4.1. The principal sources of inspiration here are: [3, 5, 6, 13, 14, 33]. We

would also like to point out that the efforts put into these chapters gave rise to the following two

works [31] and [30].

Finally, in the last short Chapter 5 we outline some new plans for the future, based on

the work presented in the thesis. The main purposes are the extension of the results obtained

for the case p = 3 to p−evolution equations of arbitrary order in the linear case, the study of
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necessary conditions for well-posedness in Gevrey type spaces for p ≥ 3 and lastly to consider

semilinear p-evolution equations also in the Gevrey setting.
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Chapter 1

Preliminaries

1.1 Basic Notations and Formulas

We start with the multi-index notation. We use N
n
0 to represent the set of all multi-

indices, where N0 = {0, 1, 2, . . .}. For α, β ∈ N
n
0 and x ∈ R

n we will use the following

notations:

• |α| = |α1|+ · · ·+ |αn| (multi-index length);

• β ≤ α ⇐⇒ βj ≤ αj, j = 1, . . . , n;

• α! = α1! . . . αn!;

• if β ≤ α, (
α

β

)
=

α!

β!(α− β)!
;

• xα = xα1
1 . . . xαn

n ;

• partial derivatives are denoted by ∂αx = ∂α1
x1
. . . ∂αn

xn
, where ∂xj

= ∂
∂xj

;

• Dα
x = Dα1

x1
. . . Dαn

xn
, where Dxj

= −i∂xj
.

If ξ, x ∈ R
n, we set

ξx := ξ · x =
n∑

j=0

ξjxj, |x|2 =
n∑

j=0

x2j , 〈x〉 =
√

1 + |x|2.

Observe that 〈x〉 is a smooth function and its asymptotic behavior is equivalent to 1+ |x|, more

precisely

〈x〉 ≤ 1 + |x| ≤
√
2〈x〉, x ∈ R

n.



Preliminaries 8

In general one can prove that, for any m ∈ R,

|∂βx 〈x〉m| ≤ C |β|β!〈x〉m−|β|,

for some constant C > 0 independent of β. We also recall the Peetre’s inequality: for any s ∈ R

there is cs > 0 such that

〈x+ ξ〉s ≤ cs〈x〉|s|〈ξ〉s, x, ξ ∈ R
n.

We denote by C∞(Rn) the set of all infinitely differentiable functions f : Rn → C.

For any f ∈ C∞(Rn) we have Taylor’s formula: given N ∈ N,

f(x+ ξ) =
∑
|α|<N

ξα

α!
(∂αf)(x) +N

∑
|α|=N

ξα

α!

∫ 1

0

(1− θ)N−1(∂αf)(x+ θξ)dθ, x, ξ ∈ R
n.

There are two derivative formulas largely used throughout this work. The first one is

the Leibniz rule:

Dα(fg) =
∑

α1+α2=α

α!

α1!α2!
Dα1fDα2g =

∑
β≤α

(
α

β

)
DβfDα−βg.

The second one is the Faà di Bruno formula: if f : R → C and g : Rn → R, then

∂αx (f ◦ g)(x) =
|α|∑
j=1

f (j)(g(x))

j!

∑
α1+...+αj=α

|αν |≥1

α!

α1! . . . αj!

j∏
ν=1

∂α
ν

x g(x).

1.2 Standard Factorial Inequalities

Here we collect some well known formulas for factorials and binomial coefficients

that we will use extensively in this work. These formulas are useful in the study of Gevrey

and Gelfand-Shilov functions. We begin with the generalized Newton formula: if N ∈ N and

a1, . . . an are real numbers, then

(a1 + . . .+ an)
N =

∑
|α|=N

α∈Nn
0

N !

α1! . . . αn!

n∏
i=1

aαi
i .

Particularly, when a1 = . . . = an = 1 it follows

nN =
∑
|α|=N

N !

α1! . . . αn!
,

which implies

|α|! ≤ n|α|α!, α ∈ N
n
0 .
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If n = 2, we obtain

2N =
∑

j+k=N

N !

j!k!
, (j + k)! ≤ 2j+kj!k!,

hence, for α, β ∈ N
n
0 ,

(α + β)! ≤ 2|α+β|α!β!, α!β! ≤ (α + β)!,
∑

α1+α2=α

α!

α1!α2!
= 2|α|.

A second block of inequalities follows from the Taylor expansion of the exponential

function

et =
∑
N≥0

tN

N !
, t ≥ 0.

The above formula implies

tN ≤ N !et, N ∈ N0, t ≥ 0.

In particular, for t = N we obtain

NN ≤ N !eN , N ∈ N0,

whereas obviously,

N ! ≤ NN , N ∈ N0.

We finish observing the cardinality of the two subsequent sets of multi-indices

#{α ∈ Nn
0 : |α| ≤ m} =

(m+ n)!

m!n!
,

#{α ∈ N
n
0 : |α| = m} =

(m+ n− 1)!

m!(n− 1)!
.

1.3 Some Functional Spaces and Fourier Transform

As usual L2(Rn) stands for the Hilbert space of all measurable functions f : Rn → C

such that

‖f‖2L2 :=

∫
|f(x)|2dx ≤ ∞.

The L2(Rn) inner product is given by

〈f, g〉L2 :=

∫
f(x)g(x)dx, f, g ∈ L2(Rn).

The Schwartz space S (Rn) is defined as the space of all smooth functions f : Rn → C

such that

sup
x∈Rn

|xα∂βxf(x)| ≤ ∞, α, β ∈ N
n
0 .
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The space S (Rn) possesses a Fréchet topology once equipped with the usual seminorms,

namely,

‖f‖
,S := max
|α+β|≤


sup
x∈Rn

|xα∂βxf(x)|, � ∈ N0, f ∈ S (Rn).

The elements of its topological dual S ′(Rn) are called tempered distributions.

The Fourier transform is defined by

F(f)(ξ) := f̂(ξ) =

∫
e−iξxf(x)dx, ξ ∈ R

n,

and its inverse is given by

F−1(f)(x) :=

∫
eiξxf(ξ)d−ξ, x ∈ R

n,

where d−ξ = (2π)−ndξ and f belongs to S (Rn). It is well known that F defines an isomorphism

on S (Rn) which extends to an isomorphism on S ′(Rn) and L2(Rn). We also point out the

subsequent well known formulas∫
f(x)g(x)dx =

∫
F(ξ)F(g)(ξ)d−ξ (Parseval formula),

‖f‖L2 = (2π)−
n
2 ‖F(f)‖L2 (Plancherel formula).

1.4 Gevrey and Gelfand-Shilov Type Spaces

In this Section, we introduce the functional spaces in which many of our results will

be achieved. We begin defining the uniform Gevrey classes. A detailed exposition concerning

Gevrey spaces can be found in [43].

For s > 1 andA > 0 we denote byGs(Rn;A) the Banach space of all smooth functions

f such that

‖f‖Gs(Rn;A) := sup
x∈Rn

α∈N0

|∂βxf(x)|A−|β|β!−s < +∞.

We then set the Gevrey space Gs(Rn) as the inductive limite of the Banach spaces Gs(Rn;A),

that is

Gs(Rn) =
⋃
A>0

Gs(Rn;A).

Now we define the so-called Gelfand-Shilov spaces. These spaces were firstly intro-

duced by I.M. Gelfand and G.E. Shilov, see [22]. Here we only give the basic definitions and

properties. For more details we adress the reader to [12, 22, 42, 45] and Chapter 6 of [39].
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For s, θ ≥ 1 and A,B > 0 we say that a smooth function f belongs to Sθ,A
s,B (R

n) if

there is C > 0 such that

|xβ∂αx f(x)| ≤ CA|α|B|β|α!θβ!s,

for every α, β ∈ N
n
0 and x ∈ R

n. The norm

‖f‖θ,s,A,B = sup
x∈Rn

α,β∈Nn
0

|xβ∂αx f(x)|A−|α|B−|β|α!−θβ!−s, f ∈ Sθ,A
s,B (R

n),

turns Sθ,A
s,B (R

n) into a Banach space. We define

Sθ
s (R

n) =
⋃

A,B>0

Sθ,A
s,B (R

n), Σθ
s(R

n) =
⋂

A,B>0

Sθ,A
s,B (R

n),

and equip them with their limit type topologies coming from the Banach spaces Sθ,A
s,B (R

n).

Remark 1.1. When θ = s we simply write Sθ, Σθ instead of Sθ
θ ,Σ

θ
θ.

Remark 1.2. If θ + s < 1 the spaces Sθ
s (R

n) are trivial. On the other hand the function e−
|x|2
2

belongs to S 1
2
(Rn). Concerning the projective classes we have Σθ

s(R
n) �= {0} if, and only if,

θ + s ≥ 1
2

and (θ, s) �= (1
2
, 1
2
).

Remark 1.3. We may also define, for C, ε > 0, the Banach space Sθ,C
s,ε (R

n) given by the smooth

functions f such that there is C1 > 0 satisfying

‖f‖ε,Cs,θ := sup
x∈Rn

α∈Nn
0

C−|α|α!−θeε|x|
1
s |∂αx f(x)| <∞,

and we have (with equivalent topologies)

Sθ
s (R

n) =
⋃

C,ε>0

Sθ,C
s,ε (R

n), Σθ
s(R

n) =
⋂

C,ε>0

Sθ,C
s,ε (R

n).

It is easy to see that the following inclusions are continuous (for every ε > 0)

Σθ
s(R

n) ⊂ Sθ
s (R

n) ⊂ Σθ+ε
s+ε(R

n).

We shall denote by (Sθ
s )

′(Rn), (Σθ
s)

′(Rn) the respective dual spaces. Concerning the action of

the Fourier transform, we have the subsequent isomorphisms

F : Σθ
s(R

n) → Σs
θ(R

n), F : Sθ
s (R

n) → Ss
θ (R

n),

F : (Σθ
s)

′(Rn) → (Σs
θ)

′(Rn), F : (Sθ
s )

′(Rn) → (Ss
θ )

′(Rn).
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Chapter 2

Global Pseudodifferential Operators

Let p(x,D) =
∑

|α|≤m aα(x)D
α be a linear partial differential operator with coeffi-

cients aα ∈ B∞(Rn), where

B∞(Rn) = {f ∈ C∞(Rn) : sup
x∈Rn

|∂βf(x)| <∞, ∀ β ∈ N
n
0}.

By standard properties of the Fourier transform, the action of p(x,D) in Schwartz spaces can

be written as

p(x,D)u(x) =

∫
eiξxp(x, ξ)û(ξ)d−ξ, x ∈ R

n, u ∈ S (Rn), (2.1)

where p(x, ξ) stands for the symbol of p(x,D), namely p(x, ξ) =
∑

|α|≤m aα(x)ξ
α for every

x, ξ ∈ R
n. Notice that p(x, ξ) satisfies an estimate of the following form: for every α, β ∈ N

n
0

there exists Cα,β > 0 such that

|∂αξ ∂βxp(x, ξ)| ≤ Cα,β〈ξ〉m−|α|, x, ξ ∈ R
n. (2.2)

The right hand side of (2.1) indeed makes sense for every smooth function p(x, ξ)

satisfying an estimate of the type (2.2), where m ∈ R. We call symbols such functions whereas

the operators defined by (2.1) are known as pseudodifferential operators. When the symbol

is polynomially bounded, we say that the symbol has finite order. In the situation where it

satisfies an exponential estimate, we say that the symbol has infinite order. Observe that if

we are dealing with operators of infinite order, to obtain a convergent integral in (2.1) some

stronger decay condition for û is required (for instance, we can take u belonging to a suitable

Gelfand-Shilov class).
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We also consider operators given by symbols which are polynomially bounded with

respect to x and ξ simultaneously. More precisely, symbols satisfying (m1,m2 ∈ R)

|∂αξ ∂βxp(x, ξ)| ≤ Cα,β〈ξ〉m1−|α|〈x〉m2−|β|, x, ξ ∈ R
n. (2.3)

Pseudodifferential operators given by these symbols are known as pseudodifferential operators

of SG type (cf. [44]).

Pseudodifferential operators are a fundamental mathematical tool for the development

of this thesis. In this chapter we collect the basic properties in the finite order frame, see Section

2.1, and we develop some new results concerning pseudodifferential operators of inifinite order

with symbols satisfying Gevrey estimates, see Sections 2.2 and 2.3. Some references for this

part are: [1, 8, 9, 11, 10, 27, 35, 39, 43, 46, 47].

In Section 2.4 we recall two results which are very important for the subsequent chap-

ters, namely the sharp Gårding and the Fefferman-Phong inequalities.

The classical strategy to prove the sharp Gårding inequality is the following: if the

symbol p(x, ξ) of a given operator p(x,D) is such that Re p(x, ξ) ≥ 0, then it is possible to

decompose p(x,D) as a sum of a positive definite part and a smaller order remainder term. In

the approach proposed in [35], this positive part pF is called Friedrichs part. Using the ideas

present there, in Section 2.5 we define a SG version of pF and obtain a precise estimate for the

remainder term p− pF , see Theorems 2.17 and 2.19.

To finish, Section 2.6 is devoted to the study of the so-called spectral invariance prob-

lem for SG operators given by Gevrey regular symbols.

Remark 2.1. The term global in the title of the Chapter is due to the fact that we are dealing

with symbols satisfying uniform estimates on the entire R
2n.

2.1 Sm(R2n) and SGm(R2n)−Pseudodifferential Operators

The goal of this Section is to give a brief introduction to pseudodifferential operators

with symbols in Sm(R2n) and SGm(R2n). The statements and proofs concerning the standard

Hörmander classes Sm can be found in [35] and [46]. For the SG frame we adress the reader

to [8, 16, 39, 40].

We start considering the standard Hörmander classes Sm(R2n).
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Definition 2.1. Let m ∈ R. We say that p ∈ Sm(R2n) when p ∈ C∞(R2n) and for every

α, β ∈ N
n
0 there exists Cα,β > 0 such that

|∂αξ ∂βxp(x, ξ)| ≤ Cα,β〈ξ〉m−|α|, x, ξ ∈ R
n.

We recall that Sm(R2n) is a Fréchet space endowed with the seminorms, for � ∈ N0,

|p|Sm,
 := max
|α+β|≤


sup
x,ξ∈Rn

|∂αξ ∂βxp(x, ξ)|〈ξ〉−m+|α|, p ∈ Sm(R2n).

Pseudodifferential operators with symbols in Sm(R2n) are continuous from S (Rn) to

S (Rn) and they extend to continuous maps from S ′(Rn) to S ′(Rn). Moreover, denoting by

Hs(Rn), with s ∈ R, the Sobolev space

Hs(Rn) = {u ∈ S ′(Rn) : 〈D〉su ∈ L2(Rn)},

where 〈D〉s is the operator given by the symbol 〈ξ〉s ∈ Ss(R2n), then an operator with symbol in

Sm(R2n) extends to a bounded map from Hs(Rn) to Hs−m(Rn) for every s ∈ R. Furthermore,

the norm of p(x,D) as an operator from Hs(Rn) to Hs−m(Rn) is bounded in terms of a finite

number of seminorms of p in Sm(R2n).

The next results concern composition, adjoint and transpose for operators with sym-

bols in Sm(R2n) classes. In order to state these results we need the definition of asymptotic

expansion in Sm(R2n).

Definition 2.2. Let {mj}j∈N0 be a sequence of real numbers such that mj → −∞ and mj ≥
mj+1, for every j ∈ N0. Consider moreover p ∈ Sm(R2n) and pj ∈ Smj(R2n), for every

j ∈ N0. We say that p is asymptotic to
∑

j pj in Sm(R2n), and denote p ∼ ∑j pj in Sm(R2n),

when

p−
∑
j<N

pj ∈ SmN ,

for every N ∈ N.

Theorem 2.1. Let p ∈ Sm(R2n) and q ∈ Sm′
(R2n). There exists c ∈ Sm+m′

(R2n) such that

c(x,D) = p(x,D) ◦ q(x,D) and

c(x, ξ) ∼
∑
α

1

α!
∂αξ p(x, ξ)D

α
xq(x, ξ) in Sm+m′

(R2n).

Theorem 2.2. Let p ∈ Sm(R2n). Let moreover p∗(x,D) and tp(x,D) be the L2−adjoint and

transpose of p(x,D) respectively. There exist symbols a, b ∈ Sm(R2n) such that a(x,D) =

p∗(x,D), b(x,D) = tp(x,D) and

a(x, ξ) ∼
∑
α

(−1)|α|

α!
∂αξD

α
xp(x, ξ), b(x, ξ) ∼

∑
α

1

α!
(∂αξD

α
xp)(x,−ξ) in Sm(R2n).
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Now we turn our attention to SG symbol classes.

Definition 2.3. Let m = (m1,m2) ∈ R
2. We say that p ∈ SGm(R2n) when p belongs to

C∞(R2n) and for every α, β ∈ N
n
0 there exists Cα,β > 0 such that

|∂αξ ∂βxp(x, ξ)| ≤ Cα,β〈ξ〉m1−|α|〈x〉m2−|β|, x, ξ ∈ R
n.

We recall that SGm(R2n) is a Fréchet space endowed with the seminorms, for � ∈ N0,

|p|SGm,
 := max
|α+β|≤


sup
x,ξ∈Rn

|∂αξ ∂βxp(x, ξ)|〈ξ〉−m1+|α|〈x〉−m2+|β|, p ∈ SGm(R2n).

Pseudodifferential operators with symbols in SGm(R2n) are continuous from S (Rn)

to S (Rn) and extend to continuous maps fom S ′(Rn) to S ′(Rn). Moreover, denoting by

H(s1,s2)(Rn), with s = (s1, s2) ∈ R
2, the weighted Sobolev space

Hs(Rn) = {u ∈ S ′(Rn) : 〈x〉s2〈Dx〉s1u ∈ L2(Rn)},

we know that an operator with symbol in SGm(R2n) extends to a bounded map from Hs(Rn)

to Hs−m(Rn), for every s ∈ R
2.

Before stating the results about composition, adjoint and transpose for operators with

symbols in SGm(R2n) classes, we need the concept of smoothing operator in the SG classes.

We say that r(x,D) is a SG smoothing operator whenever its symbol r(x, ξ) ∈ SGm for every

m ∈ R
2. Equivalently, r(x,D) is smoothing if r(x,D) : S ′(Rn) → S (Rn) continuously.

Observe that ∩m∈R2SGm(R2n) = S (R2n).

Definition 2.4. Consider {mj}j∈N0 ⊂ R
2,mj = (m1,j,m2,j), a sequence such thatmi,j → −∞

and mi,j ≥ mi,j+1, for every i = 1, 2 and j ∈ N0. Consider moreover p ∈ SGm(R2n) and

pj ∈ SGmj(R2n), for every j ∈ N0. We say that p is asymptotic to
∑

j pj in SGm(R2n), and

denote p ∼∑j pj in SGm(R2n), when

p−
∑
j<N

pj ∈ SGmN ,

for every N ∈ N.

Theorem 2.3. Let p ∈ SGm(R2n) and q ∈ SGm′
(R2n). There exist c ∈ SGm+m′

(R2n) and a

smoothing operator r(x,D) such that p(x,D) ◦ q(x,D) = c(x,D) + r(x,D) and

c(x, ξ) ∼
∑
α

1

α!
∂αξ p(x, ξ)D

α
xq(x, ξ) in SGm+m′

(R2n).
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Theorem 2.4. Let p ∈ SGm(R2n). Let moreover p∗(x,D) and tp(x,D) be the L2−adjoint

and transpose of p(x,D) respectively. There exist a, b ∈ SGm(R2n) and r1(x,D), r2(x,D)

smoothing operators such that p∗(x,D) = a(x,D) + r1(x,D), tp(x,D) = b(x,D) + r2(x,D)

and

a(x, ξ) ∼
∑
α

(−1)|α|

α!
∂αξD

α
xp(x, ξ), b(x, ξ) ∼

∑
α

1

α!
(∂αξD

α
xp)(x,−ξ) in SGm(R2n).

2.2 S∞
μ,ν;θ(R

2n) and Smμ,ν(R2n)−Pseudodifferential Operators

In this section we develop a global calculus for pseudodifferential operators of infinite

and finite order (with respect to ξ) given by symbols satisfying Gevrey estimates. The local case

can be found in [25] (finite order) and in [47] (infinite order). Our proofs are strongly inspired

by the Appendix A of [6] and by [9, 47].

We begin defining the symbol classes.

Definition 2.5. Let A > 0, m ∈ R and μ, ν > 1. We denote by Sm
μ,ν(R

2n;A) the Banach space

of all functions a ∈ C∞(R2n) satisfying the following condition:

‖a‖A := sup
α,β∈Nn0
x,ξ∈Rn

A−|α+β|α!−μβ!−ν〈ξ〉−m+|α||∂αξ ∂βxa(x, ξ)| ≤ +∞.

We set

Sm
μ,ν(R

2n) :=
⋃
A>0

Sm
μ,ν(R

2n;A)

endowed with the inductive limit topology of the Banach spaces Sm
μ,ν(R

2n;A).

Definition 2.6. Let μ, ν, θ > 1 and A, c > 0. We denote by S∞
μ,ν;θ(R

2n;A, c) the Banach space

of all functions a ∈ C∞(R2n) satisfying the following condition:

‖a‖A,c := sup
α,β∈Nn0
x,ξ∈Rn

A−|α+β|α!−μβ!−ν〈ξ〉|α|e−c|ξ| 1θ |∂αξ ∂βxa(x, ξ)| ≤ +∞.

We set

S∞
μ,ν;θ(R

2n) :=
⋃

A,c>0

Sm
μ,ν;θ(R

2n;A, c)

endowed with the inductive limit topology of the Banach spaces S∞
μ,ν;θ(R

2n;A, c).

Remark 2.2. In the situation of μ = ν we simply write Sm
μ (R2n) and S∞

μ;θ(R
2n) instead of

Sm
μ,μ(R

2n) and S∞
μ,μ;θ(R

2n).

Remark 2.3. We have the obvious inclusion Sm
μ,ν(R

2n) ⊂ S∞
μ,ν;θ(R

2n) for every m ∈ R and

θ > 1.
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2.2.1 Continuity on Σθ
s(R

n)

We now prove that pseudodifferential operators of the form (2.1) act continuously on

Gelfand-Shilov spaces. Before going to the continuity result, we need the two following tech-

nical lemmas.

Lemma 2.1. Let s > 1, ζ > 0 and define

ms,ζ(x) =
∞∑
j=0

ζj〈x〉2j
j!2s

, x ∈ R
n.

Then for every ε > 0 there is a constant C := Cs,ε > 0 such that

C−1e(2s−ε)ζ
1
2s 〈x〉 1s ≤ ms,ζ(x) ≤ Ce(2s+ε)ζ

1
2s 〈x〉 1s , x ∈ R

n.

Proof. See Proposition 2.4 of [29].

Lemma 2.2. Let s ≥ 1 and ε > 0. Then

|x||α|e−ε|x| 1s ≤
(ns
ε

)s|α|
α!s, x ∈ R

n, α ∈ N
n
0 .

Proof. Set f(t) = t|α|e−εt
1
s . It is not difficult to see that t = ( s|α|

ε
)s maximizes the function

f(t). Hence, for every t ∈ R,

t|α|e−εt
1
s = f(t) ≤ f(t) =

(
s|α|
ε

)s|α|
e−s|α|

=
(s
ε

)s|α|( |α||α|
e|α|

)s

≤
(ns
ε

)s|α|
α!s.

Proposition 2.1. Let μ, ν, s, θ > 1 such that s > μ and θ > ν. Let moreover p ∈ S∞
μ,ν;θ(R

2n).

Then, the operator p(x,D) is continuous from Σθ
s(R

n) to Σθ
s(R

n) and it extends to a linear

continuous operator from (Σθ
s)

′(Rn) to (Σθ
s)

′(Rn).

Proof. Let F ⊂ Σθ
s(R

n) be a bounded set. Then F(F ) ⊂ Σs
θ(R

n) is a bounded set, more

precisely, for every C, r > 0 there exists H > 0 (independent of f ) satisfying

|∂αξ f̂(ξ)| ≤ HCαα!se−r|ξ| 1θ , x ∈ R
n, α ∈ N

n
0 ,

for every f ∈ F .

Recalling that

1

ms,ζ(x)

∞∑
j=0

ζj

j!2s
(1−Δξ)

jeiξx = eiξx,
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we have, for β ∈ N
n
0 ,

∂βxp(x,D)(f)(x) =
∑

β1+β2=β

β!

β1!β2!

∫
eiξx(iξ)β1∂β2

x p(x, ξ)f̂(ξ)d
−ξ

=
1

ms,ζ(x)

∑
β1+β2=β

β!

β1!β2!

∫ ∞∑
j=0

ζj

j!2s
(1−Δξ)

jeiξx(iξ)β1∂β2
x p(x, ξ)f̂(ξ)d

−ξ

=
1

ms,ζ(x)

∑
β1+β2=β

β!

β1!β2!

∫
eiξx

∞∑
j=0

ζj

j!2s
(1−Δξ)

j[(iξ)β1∂β2
x p(x, ξ)f̂(ξ)]d

−ξ.

Now we will estimate |(1 − Δξ)
j[(iξ)β1∂β2

x p(x, ξ)f̂(ξ)]| =: †. First observe that, denoting

J = (j1, . . . , jn),

(1−Δξ)
j =

∑
j0+J=j

j!

j0!J !
(−1)|J |∂2Jξ .

Since s > μ and θ > ν, we have

† ≤
∑

j0+J=j

j!

j0!J !

∑
λ1+λ2+λ3=2J

(2J)!

λ1!λ2!λ3!

β1!

(β1 − λ1)!
|ξβ1−λ1 ||∂λ2

ξ ∂
β2
x p(x, ξ)||∂λ3

ξ f̂(ξ)|

≤
∑

j0+J=j

j!

j0!J !

∑
λ1+λ2+λ3=2J

(2J)!

λ1!λ2!λ3!

β1!

(β1 − λ1)!
|ξβ1−λ1 |C |λ2+β2+1|

p λ2!
μβ2!

ν〈ξ〉−|λ2|ecp|ξ|
1
θ

×HC |λ3|λ3!se−r|ξ| 1θ

≤ (C̃pH)C |β2|β2!θ
∑

j0+J=j

j!

j0!J !

∑
λ1+λ2+λ3=2J

(2J)!

λ1!λ2!λ3!

β1!

(β1 − λ1)!

× |ξβ1−λ1 |e(cp− r
2
)|ξ| 1θC |λ2+λ3|λ2!sλ3!se−

r
2
|ξ| 1θ .

By Lemma 2.2, for any A1 > 0 we can choose r(θ, n) = r > 2cp such that

β1!

(β1 − λ1)!
|ξβ1−λ1 |e(cp− r

2
)|ξ| 1θ ≤ β1!

(β1 − λ1)!
A

|β1−λ1|
1 (β1 − λ1)!

θ ≤ H̃A
|β1|
1 β1!

θA
|λ1|
1 λ1!

s.

Therefore, by standard factorial inequalities, for every C,D > 0 there exists Hp,r,C,D := H

such that

† ≤ HC |β|β1!θβ2!θe−
r
2
|ξ| 1θ j!2sDj, x, ξ ∈ R

n, j ∈ N0, f ∈ F.

By the above inequality and Lemma 2.1, we can take ε > 0 satisfying ε < 2s and for every

ζ > 0 we may choose D > 0 such that ζD < 1 in order to get

|∂βxp(x,Dx)(f)(x)| ≤ HCs,εe
−(2s−ε)ζ

1
2s 〈x〉 1s

×
∑

β1+β2=β

β!

β1!β2!
C |β|β!θ1β2!

ν

∫
e−

r
2
|ξ| 1θ d−ξ

∑
j

(ζD)j.
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Therefore, for any C1 > 0 and r1 > 0 we can find a constant H1,C1,r1 := H1 > 0 such that

|∂βxp(x,D)(f)(x)| ≤ H1C
β
1 β!

θe−r1|x| 1s , x ∈ R
n,

for every f ∈ F . In other words, we proved that p(F ) is a bounded subset of Σθ
s(R

n).

In order to define the extension to the dual space we observe that, for any u, v ∈
Σθ

s(R
n), we may write ∫

p(x,D)u(x)v(x)dx =

∫
û(ξ)Q(v)(ξ)dξ,

where Q is defined by

Q(v)(ξ) =

∫
eiξxp(x, ξ)v(x)d−x.

Now we shall prove that Q maps Σθ
s(R

n) to Σs
θ(R

n) continuously. Once more we consider

F ⊂ Σθ
s(R

n) bounded, that is, for every C, c > 0 we find HC,c := H > 0 satisfying

|∂βxf(x)| ≤ HC |β|β!θe−c|x| 1s , x ∈ R
n, β ∈ N

n
0 , f ∈ F.

For f ∈ F we have

∂αξ Q(f)(ξ) =
∑

α1+α2=α

α!

α1!α2!

∫
eiξx(ix)α1∂α2

ξ p(x, ξ)f(x)d−x

=
1

mθ,ζ(ξ)

∑
α1+α2=α

α!

α1!α2!

∫
eiξx

∞∑
j=0

ζj

j!2θ
(1−Δx)

j[(ix)α1∂α2
ξ p(x, ξ)f(x)]︸ ︷︷ ︸

:=gj,α1,α2
(x,ξ)

d−x.

Since s > μ and θ > ν, in analogous manner as before, we obtain that for every C,D there

exists h > 0 satisfying

|gj,α1,α2(x, ξ)| ≤ hC |α|α1!
sα2!

sDjj!2θecp|ξ|
1
θ e−c̃|x| 1s .

Hence, by Lemma 2.1 and standard factorial inequalities,

|∂αξ Q(f)(x)| ≤
1

mθ,ζ(ξ)

∑
α1+α2=α

α!

α1!α2!
hC |α|α1!

sα2!
secp|ξ|

1
θ

∫ ∞∑
j=0

(ζD)je−c̃|x| 1s d−x

≤ Cθ,ε

∑
α1+α2=α

α!

α1!α2!
hC |α|α1!

sα2!
se(cp−(2θ−ε)ζ

1
2θ )|ξ| 1θ

∫ ∞∑
j=0

(ζD)je−c̃|x| 1s d−x.

Choosing wisely the constants, we conclude that Q(F ) is a bounded subset of Σs
θ(R

n). Finally,

since the Fourier transform defines an isomorphism from Σs
θ(R

n) to Σθ
s(R

n) we can define the

continuous extension

p(x,D)u(v) = u(F(Qv)), v ∈ Σθ
s(R

n), u ∈ (Σθ
s)

′(Rn).
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Remark 2.4. Using the same argument as in the proof above, it is not difficult to prove that

operators with finite order symbols in Sm
μ,ν(R

2n) are continuous from Sθ
s (R

n) into Sθ
s (R

n) if

s ≥ μ and θ ≥ ν and it extends continuously to the dual space (Sθ
s )

′(Rn), cf. also Theorem A.4

in [10].

2.2.2 Asymptotic Sums

In order to develop a symbolic calculus for the classes of pseudodifferential operators

we are dealing with, we will need the following concept of asymptotic sums.

Definition 2.7. (i) We say that the formal sum
∑∞

j=0 aj belongs to FS∞
μ,ν;θ(R

2n) when aj ∈
C∞(R2n) and there are constants H,C, c, B > 0 such that

|∂αξ ∂βxaj(x, ξ)| ≤ HC |α+β|+2jα!μβ!νj!μ+ν−1〈ξ〉−|α|−jec|ξ|
1
θ ,

for every α, β ∈ N
n
0 , x ∈ R

n, j ∈ N0 and 〈ξ〉 ≥ B(j) := Bjμ+ν−1.

(ii) We say that the formal sum
∑∞

j=0 aj belongs to FSm
μ,ν(R

2n) when aj ∈ C∞(R2n) and

there are constants H,C,B > 0 such that

|∂αξ ∂βxaj(x, ξ)| ≤ HC |α+β|+2jα!μβ!νj!μ+ν−1〈ξ〉m−|α|−j,

for every α, β ∈ N
n
0 , x ∈ R

n, j ∈ N0 and 〈ξ〉 ≥ B(j) := Bjμ+ν−1.

Remark 2.5. We may consider S∞
μ,ν;θ(R

2n) as a subset of FS∞
μ,ν;θ(R

2n) in the following sense,

for a ∈ S∞
μ,ν;θ(R

2n) we set a0 := a and aj := 0 (j ≥ 1), then a =
∑

j aj ∈ FS∞
μ,ν;θ(R

2n). On

the other hand if
∑

j bj ∈ FS∞
μ,ν;θ(R

2n), then b0 ∈ S∞
μ,ν;θ(R

2n). Analogous considerations hold

for FSm
μ,ν(R

2n) and Sm
μ,ν(R

2n).

Remark 2.6. For every m ∈ R and θ > 1 we have FSm
μ,ν(R

2n) ⊂ FS∞
μ,ν;θ(R

2n).

Remark 2.7. Let a, b ∈ S∞
μ,ν;θ(R

2n). Define, for j ≥ 0,

cj =
∑
|α|=j

(−1)|α|

α!
∂αξD

α
xa, dj =

∑
|α|=j

1

α!
∂αξ aD

α
x b.

Then
∑

j cj,
∑

j dj ∈ FS∞
μ,ν;θ(R

2n). Analogous considerations for Sm
μ,ν(R

2n).

Definition 2.8. Let
∑

j aj,
∑

j bj ∈ FS∞
μ,ν;θ(R

2n). We write
∑

j aj ∼ ∑j bj if there are con-

stants H,C, c, B > 0 satisfying∣∣∣∣∣∂αξ ∂βx ∑
j<N

{aj − bj}(x, ξ)
∣∣∣∣∣ ≤ HC |α+β|+2Nα!μβ!νN !μ+ν−1〈ξ〉−|α|−Nec|ξ|

1
θ ,
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for every α, β ∈ Nn
0 , x ∈ R

n, N ∈ N and 〈ξ〉 ≥ B(N) := BNμ+ν−1. Analogous definition for

FSm
μ,ν(R

2n).

Proposition 2.2. Let
∑

j aj ∈ FS∞
μ,ν;θ(R

2n). There is a ∈ S∞
μ,ν;θ(R

2n) such that a ∼ ∑j aj in

FS∞
μ,ν;θ(R

2n). Analogous result for FSm
μ,ν(R

2n).

Proof. Let ψ(ξ) ∈ C∞(Rn) satisfying ψ(ξ) = 0 for 〈ξ〉 ≤ 2, ψ(ξ) = 1 for 〈ξ〉 ≥ 3 and

|∂αξ ψ(ξ)| ≤ C
|α|+1
ψ α!μ, ξ ∈ R

n, α ∈ N
n
0 .

For a large constant R > 1 to be chosen, we define ψ0(ξ) = 1 and

ψj(ξ) = ψ

(
ξ

R(j)

)
, j ≥ 1,

where R(j) := Rjμ+ν−1 for every j ∈ N. Now let us remark that

• 〈ξ〉 > 3R(j) =⇒ 〈R(j)−1ξ〉 > 3 =⇒ ψi = 1, i ≤ j ;

• 〈ξ〉 ≤ R(j) =⇒ 〈R(j)−1ξ〉 ≤ 2 =⇒ ψi = 0, i ≥ j.

By hypothesis there are constants H,C, c, B > 0 such that

|∂αξ ∂βxaj| ≤ HC |α+β|+jα!μβ!νj!μ+ν−1〈ξ〉−|α|−jec|ξ|
1
θ ,

for every α, β ∈ N
n
0 , x ∈ R

n, j ∈ N0 and 〈ξ〉 ≥ Bjμ+ν−1. For R > B we set

a(x, ξ) =
∞∑
j=0

ψj(ξ)aj(x, ξ), x, ξ ∈ R
n.

We will prove that a ∈ S∞
μ,ν;θ(R

2n) and a ∼∑j aj in FS∞
μ,ν;θ(R

2n). We have

|∂αξ ∂βxa(x, ξ)| ≤
∞∑
j=0

∑
α1+α2=α

α!

α1!α2!
|∂α1

ξ ψj(ξ)||∂α2
ξ ∂βxaj(x, ξ)|

≤
∞∑
j=0

∑
α1+α2=α

α!

α1!α2!

1

R(j)|α1|C
|α1|+1
ψ α1!

μHC |α2+β|+jα2!
μβ!νj!μ+ν−1〈ξ〉−j−|α2|ec|ξ|

1
θ .

On the support of ∂α1
ξ ψj(ξ) holds 〈ξ〉 ≥ R(j)(> B(j)) and 〈ξ〉 ≤ 3R(j) (whenever α1 �= 0).

Hence

〈ξ〉−j ≤ R−jj−j(μ+ν−1), R(j)−|α1| ≤ 3|α1|〈ξ〉−|α1|,

and therefore, for R > C2,

|∂αξ ∂βxa(x, ξ)| ≤ C̃ |α+β|+1α!μβ!ν〈ξ〉−|α|ec|ξ|
1
θ

∞∑
j=0

(
C2

R

)j
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for every α, β ∈ N
n
0 , x, ξ ∈ R

n.

Now observe that for N ≥ 1 and 〈ξ〉 ≥ 3R(N) we have

a(x, ξ)−
∑
j<N

aj(x, ξ) =
∑
j<N

(1− ψj(ξ))aj(x, ξ)︸ ︷︷ ︸
=0

+
∑
j≥N

ψj(ξ)aj(x, ξ)

=
∑
j≥0

ψj+N(ξ)aj+N(x, ξ).

Proceeding in an analogous way as before, we get (possibly enlarging R)∣∣∣∣∣∂αξ ∂βx (a−∑
j<N

aj)(x, ξ)

∣∣∣∣∣ ≤ C |α+β+2N+1|α!μβ!νN !μ+ν−1〈ξ〉−N−|α|ec|ξ|
1
θ ,

for every α, β ∈ N
n
0 , x ∈ R

n, N ≥ 1 and 〈ξ〉 ≥ 3R(N).

We need the following technical lemma.

Lemma 2.3. Let M,B, r > 0 and ρ ≥ 1. Define

h(λ) = inf
0≤N≤Bλ

1
ρ

M rNN !r

λ
rN
ρ

, λ > 0.

Then there are C, τ > 0 such that h(λ) ≤ Ce−τλ
1
ρ , for every λ > 0.

Proof. See Lemma 3.2.4 of [43].

The next result tells us how to define the regularizing operators for our classes.

Proposition 2.3. Let a, b ∈ S∞
μ,ν;θ(R

2n) and
∑

j aj ∈ FS∞
μ,ν;θ(R

2n). If a ∼ ∑
j aj ∼ b in

FS∞
μ,ν;θ(R

2n) and θ > μ+ ν − 1, then there are constanst H,C, c > 0 such that

|∂αξ ∂βx (a− b)(x, ξ)| ≤ HC |α+β|α!μβ!νe−c|ξ| 1r , x, ξ ∈ R
n, α, β ∈ N

n
0 ,

where r ≥ μ+ ν − 1.

Proof. By hypothesis we can find constants C, c, B > 0 such that

|∂αξ ∂βx (a− b)(x, ξ)| ≤ C |α+β|+2N+1α!μβ!νN !μ+ν−1〈ξ〉−|α|−Nec|ξ|
1
θ

for every α, β ∈ N
n
0 , x ∈ R

n, N ≥ 0 and 〈ξ〉 ≥ B(N) := BNμ+ν−1. Hence

|∂αξ ∂βx (a− b)(x, ξ)| ≤ C |α+β|+1α!μβ!ν〈ξ〉−|α|ec|ξ|
1
θ inf
0≤N≤(B−1〈ξ〉)

1
μ+ν−1

C2NN !μ+ν−1

〈ξ〉N .
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By Lemma 2.3 we find τ > 0 and a new constant C > 0 such that

|∂αξ ∂βx (a− b)(x, ξ)| ≤ C |α+β|+1α!μβ!ν〈ξ〉−|α|ec|ξ|
1
θ e−τ〈ξ〉

1
μ+ν−1

.

Since θ > μ+ ν − 1 we may conclude

|∂αξ ∂βx (a− b)(x, ξ)| ≤ C̃ |α+β|+1α!μβ!ν〈ξ〉−|α|e−
τ
2
〈ξ〉

1
μ+ν−1

.

Analogously we can obtain a similar result for the classes with finite order and in this

case we do not need any hypothesis over θ.

Proposition 2.4. Let a, b ∈ Sm
μ,ν(R

2n) and
∑

j aj ∈ FSm
μ,ν(R

2n). If a ∼ ∑
j aj ∼ b in

FSm
μ,ν(R

2n) then there are constants H,C, c > 0 such that

|∂αξ ∂βx (a− b)(x, ξ)| ≤ HC |α+β|α!μβ!νe−r|ξ| 1r , x, ξ ∈ R
n, α, β ∈ N

n
0 ,

where r ≥ μ+ ν − 1.

Definition 2.9. Given r̃ > 1, we denote by Kr̃ the space of all symbols q ∈ S∞
μ,ν;θ(R

2n) such

that for every r ≥ r̃ there exist C, c > 0 such that

|∂αξ ∂βxq(x, ξ)| ≤ C |α+β|+1α!rβ!re−c|ξ| 1r , x, ξ ∈ R
n, α, β ∈ N

n
0 .

We say that Q = q(x,D) is r̃−regularizing whenever its symbol q(x, ξ) belongs to Kr̃.

2.2.3 Regularity of the Kernel

In this subsection we study the regularity and decay properties of the kernel of our

operators. Let p ∈ S∞
μ,ν;θ(R

2n). The Schwartz kernel of p(x,D) can be represented (formally)

by

Kp(x, y) =

∫
eiξ(x−y)p(x, ξ)d−ξ, x, y ∈ R

n.

To be more rigorous, the Schwartz kernel of p(x,D) is defined as the uniqueKp ∈ (Σθ
s)

′(R2n
(x,y))

satisfying the following property∫
p(x,D)u(x)v(x)dx = Kp(v ⊗ u), u, v ∈ Σθ

s(R
n),

where v ⊗ u(x, y) := v(x)u(y). Before proceeding with the next result we will need the

following lemma.



Global Pseudodifferential Operators 24

Lemma 2.4. Let μ > 1. For every R > 0 there exists a partition of the unity {ψN(ξ)}∞N=0

satisfying

• supp(ψ0) ⊂ {ξ ∈ R
n : 〈ξ〉 ≤ 3R};

• supp(ψN) ⊂ {ξ : 2Nμ ≤ 〈ξ〉 ≤ 3(N + 1)μ}, for every N ≥ 1;

• there exists A > 0 such that

|∂αξ ψN(ξ)| ≤ A|α|+1α!μ{Rmax{1, Nμ}}−|α|, ξ ∈ R
n, α ∈ N

n
0 .

Proof. Let ψ ∈ C∞(Rn) such that ψ(ξ) = 1 for 〈ξ〉 ≤ 2, ψ(ξ) = 0 for 〈ξ〉 ≥ 3 and

|∂αξ ψ(ξ)| ≤ C |α|+1α!μ, α ∈ N
n
0 , ξ ∈ R

n.

Defining

ψ0(ξ) = ψ

(
ξ

R

)
, ψN(ξ) = ψ

(
ξ

R(N + 1)μ

)
− ψ

(
ξ

RNμ

)
, N ∈ N,

we obtain the desired sequence {ψN}∞N=0.

Proposition 2.5. Let p ∈ S∞
μ,ν;θ(R

2n) where ν > 1 and θ > μ > 1. Let moreover k ∈ (0, 1).

Then there exist C, c > 0 such that

|∂βx∂γyKp(x, y)| ≤ C |β|+|γ|+1β!max{μ,ν}γ!μe−c|x−y|
1
μ

for every β, γ ∈ N
n
0 and for every x, y ∈ R

n such that |x− y| ≥ k.

Proof. We may decompose Kp in the following way

Kp(x, y) =

∫
eiξ(x−y)p(x, ξ)d−ξ =

∞∑
N=0

∫
eiξ(x−y)ψN(ξ)p(x, ξ)d

−ξ︸ ︷︷ ︸
=:KN (x,y)

,

where {ψN}∞N=0 is a partition of the unity as in Lemma 2.4. Let x, y such that |x− y| > k and

take h ∈ {1, . . . , n} satisfying |xh − yh| ≥ k
n

. For every β, γ ∈ N
n
0 and N ∈ N0 we write

∂βx∂
γ
yKN(x, y) =

∑
β1+β2=β

β!

β1!β2!

∫
eiξ(x−y)(−iξ)γ(iξ)β1∂β2

x p(x, ξ)ψN(ξ)d
−ξ

=
∑

β1+β2=β

β!

β1!β2!
(−1)N(xh − yh)

−N

∫
eiξ(x−y)DN

ξh
{(−iξ)γ(iξ)β1∂β2

x p(x, ξ)ψN(ξ)}d−ξ

=
∑

β1+β2=β

β!

β1!β2!
(−1)N

(xh − yh)
−N

mμ,ζ(x− y)
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×
∫
eiξ(x−y)

∞∑
j=0

ζj

j!2μ
(1−Δξ)

jDN
ξh
{(−iξ)γ(iξ)β1∂β2

x p(x, ξ)ψN(ξ)}︸ ︷︷ ︸
=:hj,N,β,γ(x,ξ)

d−ξ.

Now notice that

|hj,N,β,γ(x, ξ)| ≤
∑

j0+|J |=j

j!

j0!J !

∑
λ1+λ2+λ3=2J

(2J)!

λ1!λ2!λ3!

∑
N1+N2+N3=N

N !

N1!N2!N3!
|∂λ1+N1eh

ξ ξγ+β1 |

× |∂β2
x ∂

λ2+N2eh
ξ p(x, ξ)||∂λ3+N3eh

ξ ψN(ξ)|

≤
∑

j0+|J |=j

j!

j0!J !

∑
λ1+λ2+λ3=2J

(2J)!

λ1!λ2!λ3!

∑
N1+N2+N3=N

N !

N1!N2!N3!

(β1 + γ)!

(β1 + γ − λ1 −N1eh)!

× |ξ||β1+γ−λ1−N1eh|C |β2+λ2|+N2+1
p β2!

ν(λ2 +N2eh)!
μ〈ξ〉−|λ2|−N2ecp|ξ|

1
θ

× A|λ3|+N3(λ3 +N3eh)!
μR−|λ3|−N3N−μ(|λ3|−N3).

Since, for N ≥ 1, 2RNμ ≤ 〈ξ〉 ≤ 3R(N + 1)μ holds true on the support of ψN , we obtain

|hj,N,β,γ(x, ξ)| ≤
∑

j0+|J |=j

j!

j0!J !

∑
λ1+λ2+λ3=2J

(2J)!

λ1!λ2!λ3!

∑
N1+N2+N3=N

N !

N1!N2!N3!
2|β1+γ+λ1|+N1

× λ1!N1!{3R(N + 1)μ}|β1+γ|{2RNμ}−|λ1|−N1C |β2+λ2|+N2+1
p β2!

νβ2!
ν2|λ2|+N2λ2!

μN2!
μ

× {2RNμ}−|λ2|−N2ecp{3R(N+1)μ} 1
θA|λ3|+N32|λ3|+N3λ3!

μN3!
μ{RNμ}−|λ3|−N3

≤ C̃
|β+γ|+1
1 β1!

μβ2!
νγ!μCj

2j!
2μ

(
C̃3

R

)N

ecp{3R(N+1)μ} 1
θ ,

where C1 = C1(R,A, p), C2 = C2(A, p) and C̃3 = C̃3(A, p) is independent of R. Due the

hypothesis θ > μ, there is Cp,R > 0 such that

ecp{3R(N+1)μ} 1
θ ≤ Cp,Re

N+1, N ∈ N0,

hence

|hj,N,β,γ(x, ξ)| ≤ C
|β+γ|+1
1 β1!

μβ2!
νγ!μCj

2j!
2μ

(
C3

R

)N

,

where C1 = C1(p, A,R) and C3 = C3(A, p) is independent of R. From the previous estimates

we deduce

|∂βx∂γyKN(x, y)| ≤ C |β+γ|+1β!max{μ,ν}γ!μe−c|x−y|
1
μ
∑
j≥0

(ζC2)
j

∫
suppψN

d−ξ
(
nC2

kR

)N

.

Choosing ζ > 0 such that ζC2 < 1 and R > 0 large enough we complete the proof.

Analogously we can obtain a version of the above propostion in the frame of finite

order. We point out that none hypothesis over θ are required in this context.
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Proposition 2.6. Let p ∈ Sm
μ,ν(R

2n) where μ, ν > 1. Let moreover k ∈ (0, 1). Then there exist

C, c > 0 such that

|∂βx∂γyKp(x, y)| ≤ C |β|+|γ|+1β!max{μ,ν}γ!μe−c|x−y|
1
μ

for every β, γ ∈ N
n
0 and for every x, y ∈ R

n such that |x− y| ≥ k.

Let us remark that from Kp(x, y) we can (formally) recover the symbol p(x, ξ) using

the next formula

p(x, ξ) =

∫
e−iξ(x−y)Kp(x, y)dy, x, ξ ∈ R

n.

Proposition 2.7. Let p ∈ S∞
μ,ν;θ(R

2n) and assume

|∂βx∂γyKp(x, y)| ≤ C |β+γ|+1β!μγ!μe−c|x−y|
1
μ

for every x, y ∈ R
n and α, β ∈ N

n
0 . Then p(x, ξ) satisfies (for new constants C, c > 0)

|∂αξ ∂βxp(x, ξ)| ≤ C |α+β|+1α!μβ!μe−c|ξ|
1
μ
, x, ξ ∈ R

n, α, β ∈ N
n
0 .

Proof. For α, β ∈ N
n
0 we may write

∂αξ ∂
β
xp(x, ξ) =

∑
β1+β2=β

β!

β1!β2!

∫
e−iξ(x−y)(−iξ)β1(−i(x− y))α∂β2

x Kp(x, y)dy

=
∑

β1+β2=β

β!

β1!β2!

1

mμ,ζ(ξ)

×
∫
e−iξ(x−y)(iξ)β1

∞∑
j=0

ζj

j!2μ
(1−Δy)

j{(−i(x− y))α∂β2
x Kp(x, y)}︸ ︷︷ ︸

=:hj,α,β2
(x,y)

dy.

Now notice that

|hj,α,β2(x, y)| ≤
∑

j0+|J |=j

j!

j0!J !

∑
λ1+λ2=2J

(2J)!

λ1!λ2!
|∂λ1

y (x− y)α||∂β2
x ∂

λ2
y Kp(x, y)|

≤
∑

j0+|J |=j

j!

j0!J !

∑
λ1+λ2=2J

(2J)!

λ1!λ2!

α!

(α− λ1)!
|(x− y)α−λ1 |e− c

2
|x−y|

1
μ
C |β2+λ2|+1β2!

μλ2!
μe−

c
2
|x−y|

1
μ

≤ C
|α+β|+1
1 α!μβ!μe−

c
2
|x−y|

1
μ
Cj

2j!
2μ.

On the other hand we have ∣∣∣∣ (iξ)β1

mμ,ζ(ξ)

∣∣∣∣ ≤ C
|β1|+1
ζ β1!

μe−cζ |ξ|
1
μ
.

Choosing ζ > 0 small enough we conclude the proof.
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2.2.4 Global Gevrey Amplitude Classes

In order to study the product, adjoint and transpose for our classes of pseudodifferential

operators, it is useful to enlarge them by considering a more general notion of symbols, namely

the amplitudes.

Definition 2.10. We say that a smooth function a(x, y, ξ) belongs to the class S∞
μ,ν;θ(R

3n) if

there exist constants H,C, c > 0 satisfying

|∂αξ ∂βx∂γya(x, y, ξ)| ≤ HC |α+β+γ|α!μβ!νγ!ν〈ξ〉−|α|ec|ξ|
1
θ , x, ξ ∈ R

n, α, β ∈ N
n
0 . (2.4)

Analogously we define the finite order version Sm
μ,ν(R

3n) by replacing ec|ξ|
1
θ with 〈ξ〉m in (2.4).

For a given amplitude a(x, y, ξ) we associate it to the operator A = a(x, y,D) defined

by

A(f)(x) =

∫∫
eiξ(x−y)a(x, y, ξ)f(y)dyd−ξ, x ∈ R

n, (2.5)

where f ∈ Σθ
s(R

n) for θ > ν and s > μ. We observe that the integral in (2.5) is not absolutely

convergent in general. The precise meaning of the right hand side in (2.5) is given by the

following oscillatory integral

A(f)(x) = lim
δ→0

∫∫
eiξ(x−y)χ(δξ)a(x, y, ξ)f(y)dyd−ξ,

where χ ∈ Σmin{s,θ}(Rn) and χ(0) = 1.

Proposition 2.8. Let A be the operator defined in (2.5). If μ < s and ν < θ, then A maps

Σθ
s(R

n) to Σθ
s(R

n) continuously.

Proof. Let F be a bounded subset of Σθ
s(R

n). Then for every C, r > 0 we find HC,r = H > 0

satisfying

|∂βxf(x)| ≤ HC |β|β!θe−r|x| 1s , x ∈ R
n, β ∈ N

n
0 , f ∈ F.

Observe that, for any γ, β ∈ N
n
0 ,

xγ∂βxA(f)(x) = lim
δ→0

∑
β1+β2=β

β!

β1!β2!

∫∫
xγeiξ(x−y)(ix)β1∂β2

x a(x, y, ξ)f(y)χ(δξ)dyd
−ξ

=
∑

β1+β2=β

β!

β1!β2!

∫∫
{Dγ

ξ e
iξx}e−iξy(iξ)β1∂β2

x a(x, y, ξ)f(y)dyd
−ξ

= lim
δ→0

∑
β1+β2=β

β!

β1!β2!
(−1)|γ|

∑
γ1+γ2+γ3+γ4=γ

γ!

γ1!γ2!γ3!γ4!
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×
∫∫

eiξ(x−y)(−y)γ1i|β1−γ2| β1!

(β1 − γ2)!
ξβ1−γ2Dγ3

ξ ∂
β2
x a(x, y, ξ)f(y)D

γ4
ξ χ(δξ)dyd

−ξ

= lim
δ→0

∑
β1+β2=β

β!

β1!β2!
(−1)|γ|

∑
γ1+γ2+γ3+γ4=γ

γ!

γ1!γ2!γ3!γ4!
i|β1−γ2|

∫∫
eiξ(x−y)

mζ,θ(ξ)

×
∑
j≥0

ζj

j!2θ
β1!

(β1 − γ2)!
ξβ1−γ2Dγ4

ξ χ(δξ) (1−Δy)
j{(−y)γ1Dγ3

ξ ∂
β2
x a(x, y, ξ)f(y)}︸ ︷︷ ︸

=:†

dyd−ξ.

Since s > μ and θ > ν, proceeding as in the proof of Proposition 2.1, we obtain the following

estimate: for every h, C > 0 there exist Hh,C = H > 0, ca > 0 and r̃C = r̃ > 0 such that

|†| ≤ HCβ2+γ1+γ3β2!
θγ1!

sγ3!
shjj!2θeca|ξ|

1
θ e−r̃|y| 1s .

On the other hand, using Lemma 2.1, we get that for every C > 0 there exist HC = H > 0 and

ζC = ζ > 0 such that∣∣∣∣ β1!

(β1 − γ2)!
ξβ1−γ2Dγ4

ξ χ(δξ)

∣∣∣∣ ≤ HCβ1+γ2+γ4γ2!
sγ4!

sβ1!
θe−

2θ−ε
2

ζ
1
2θ 〈ξ〉 1θ ,

uniformly with respect to δ ∈ (0, 1). Thus, standard factorial inequalities imply

|xγ∂βxA(f)(x)|H̃C |β+γ|β!θγ!s
∑
j≥0

(hζ)j.

Taking h < ζ−1 we obtain that A(F ) is a bounded subset of Σθ
s(R

n).

Moreover, if we ignore xγ and ∂βx in the above computation, using the Lebesgue Dom-

inated Convergence Theorem we get the following expression for A(f)(x):

A(f)(x) =

∫∫
eiξ(x−y) 1

mθ,ζ(ξ)

∑
j≥0

ζj

j!2θ
(1−Δy){a(x, y, ξ)f(y)}dyd−ξ.

In particular, A(f)(x) does not depend on the choice of χ.

Remark 2.8. Let a ∈ S∞
μ,ν;θ(R

3n) and for each j ∈ N0 set

pj(x, ξ) =
∑
|α|=j

1

α!
(∂αξD

α
y a)(x, x, ξ), x, ξ ∈ R

n.

Then
∑

j pj ∈ FS∞
μ,ν;θ(R

2n).

Given a ∈ S∞
μ,ν;θ(R

3n), the Schwartz kernel of the corresponding A = a(x, y,D) is

formally given by

Ka(x, y) =

∫
eiξ(x−y)a(x, y, ξ)d−ξ.

Repeating the arguments in the proof of Proposition 2.5, we obtain the following results.
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Proposition 2.9. Let a ∈ S∞
μ,ν;θ(R

3n) where ν > 1 and θ > μ > 1. Let moreover k ∈ (0, 1).

Then there exist C, c > 0 such that

|∂βx∂γyKa(x, y)| ≤ C |β|+|γ|+1β!max{μ,ν}γ!max{μ,ν}e−c|x−y|
1
μ

for every β, γ ∈ N
n
0 and for every x, y ∈ R

n such that |x− y| ≥ k.

Proposition 2.10. Let a ∈ Sm
μ,ν(R

3n) where μ, ν > 1. Let moreover k ∈ (0, 1). Then there exist

C, c > 0 such that

|∂βx∂γyKa(x, y)| ≤ C |β|+|γ|+1β!max{μ,ν}γ!max{μ,ν}e−c|x−y|
1
μ

for every β, γ ∈ N
n
0 and for every x, y ∈ R

n such that |x− y| ≥ k.

Remark 2.9. Let a ∈ S∞
μ,ν;θ(R

3n) and assume

|∂βx∂γyKa(x, y)| ≤ C |β+γ1|+1β!max{μ,ν}γ!max{μ,ν}e−c|x−y|
1
μ

(2.6)

for every x, y ∈ R
n and β, γ ∈ N

n
0 . By the proof of Proposition 2.7, we conclude that the symbol

r(x, ξ) =

∫
e−iξ(x−y)Ka(x, y)dy, x, ξ ∈ R

n,

is in Kmax{μ,ν}. Now let us remark that a(x, y,D) = r(x,D). Indeed, for u ∈ Σθ
s, with θ > ν

and s > μ, we have

r(x,D)u(x) =

∫
eiξxr(x, ξ)û(ξ)d−ξ

=

∫
eiξx
∫
e−iξ(x−y)Ka(x, y)dy û(ξ)d

−ξ

=

∫
Ka(x, y)

∫
eiξyû(ξ)d−ξdy

=

∫
Ka(x, y)u(y)dy

= a(x, y,D)u(x).

Summing up, if the kernel of a(x, y,D) satisfies (2.6), then we may find a symbol r ∈ Kmax{μ,ν}

such that a(x, y,D) = r(x,D).

The next result concerns the relation between operators given by amplitudes and oper-

ators given by symbols.
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Theorem 2.5. Let a ∈ S∞
μ,ν;θ(R

3n) where μ, ν > 1 and θ > μ + ν − 1. There exist symbols

p ∈ S∞
μ,ν;θ(R

n) and r ∈ Kμ+ν−1 such that a(x, y,D) = p(x,D) + r(x,D) and

p(x, ξ) ∼
∑
α

1

α!
(∂αξD

α
y a)(x, x, ξ) in FS∞

μ,ν;θ(R
2n).

Proof. We start considering χ(x, y) ∈ C∞(R2n) satisfying

χ(x, y) =

⎧⎪⎨⎪⎩
1, if |x− y| ≥ 1

2

0, if |x− y| ≤ 1
4

, |∂βx∂γyχ(x, y)| ≤ C |β+γ|+1
χ γ!νβ!ν .

We may decompose a(x, y, ξ) as the following sum of elements of S∞
μ,ν;θ(R

3n):

a(x, y, ξ) = χ(x, y)a(x, y, ξ) + (1− χ(x, y))a(x, y, ξ).

Furthermore, since θ > μ+ ν − 1 > μ, it follows from Proposition 2.9 and Remark 2.9 that χa

defines a max{μ, ν}−regularizing operator. Therefore, we may assume a supported in the set

{(x, y, ξ) : |x− y| ≤ 2−1, ξ ∈ R
n},

after a possibly perturbation by a max{μ, ν}−regularizing operator.

For each j ∈ N0, set

pj(x, ξ) =
∑
|α|=j

1

α!
(∂αξD

α
y a)(x, x, ξ), x, ξ ∈ R

n.

Let us consider φ(ξ) ∈ C∞(Rn) such that φ(ξ) = 0 for 〈ξ〉 ≤ 2, φ(ξ) = 1 for 〈ξ〉 ≥ 3 and

|∂αξ φ(ξ)| ≤ C
|α|+1
φ α!μ, ξ ∈ R

n, α ∈ N
n
0 .

Setting φ0 ≡ 1 and, for a large constant R > 0,

φj(ξ) = φ

(
ξ

Rjμ+ν−1

)
, ξ ∈ R

n, j ≥ 1,

from Proposition 2.2 (for R > 0 large enough) we have

p(x, ξ) =
∞∑
j=0

φj(ξ)pj(x, ξ) ∈ S∞
μ,ν;θ(R

2n), p(x, ξ) ∼
∞∑
j=0

pj(x, ξ) in FS∞
μ,ν;θ(R

2n).

Since we can write

a(x, y,D) = p(x,D) + a(x, y,D)− p(x,D),

to conclude the proof, it only remains to prove that the kernel K(x, y) of a(x, y,D) − p(x,D)

satisfies the following estimate

|∂βx∂γyK(x, y)| ≤ C |β+γ|+1(β!γ!)μ+ν−1e−c|x−y|
1

μ+ν−1
. (2.7)
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Observing that

k∑
N=0

(φN − φN+1)
∑
j≤N

pj =
k∑

N=0

φNpN − φk+1

k∑
N=0

pN ,
k∑

N=0

(φN − φN+1)a = φ0a− φk+1a,

we obtain the following identity

a(x, y, ξ)− p(x, ξ) = (1− φ0(ξ))a(x, y, ξ)

+
∞∑

N=0

(φN − φN+1)(ξ)

(
a(x, y, ξ)−

∑
j≤N

pj(x, ξ)

)

=
∞∑

N=0

(φN − φN+1)(ξ)

(
a(x, y, ξ)−

∑
j≤N

pj(x, ξ)

)
.

Consequently

K(x, y) = K0(x, y) +
∞∑

N=1

KN(x, y),

where

KN(x, y) =

∫
eiξ(x−y)(φN − φN+1)(ξ)

(
a(x, y, ξ)−

∑
j≤N

pj(x, ξ)

)
d−ξ.

Taylor’s formula gives, for N ≥ 1,

a(x, y, ξ) =
∑
|α|≤N

1

α!
(y − x)α(∂αy a)(x, x, ξ) +RN+1(x, y, ξ),

where

RN+1(x, y, ξ) = (N + 1)
∑
|α|=N

(y − x)α

α!

∫ 1

0

(∂αy a)(x, x+ t(y − x), ξ)(1− t)Ndt.

Using the definition of pj and integration by parts, we obtain that (N ≥ 1)

KN(x, y) =

∫
ei(x−y)ξ

∑
1≤|α|≤N

1

α!

∑
α1+α2=α

α1≥1

α!

α1!α2!
∂α1
ξ (φN − φN+1)(ξ)(∂

α2
ξ Dα

y a)(x, x, ξ)d
−ξ

+
∑

|α|=N+1

N + 1

α!

∫
eiξ(x−y)

∑
α1+α2=α

∂α1
ξ (φN − φN+1)(ξ)

×
∫ 1

0

(1− t)N(∂α2
ξ Dα

y a)(x, y + t(y − x), ξ)dt d−ξ

= W̃N(x, y) +WN(x, y).

Since we will prove absolute convergence for the series and integrals we are dealing with, we

can re-arrange the terms of the sum under the integral sign. Notice also that∑
N≥|α|

∂βξ (φN − φN−1)(ξ) = ∂βξ φ|α|(ξ)
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and, for an absolute convergent series,

∞∑
N=1

∑
1≤|α|≤N

cN,α =
∑
N≥1

∑
|α|=1

cN,α +
∑
N≥2

∑
|α|=2

cN,α +
∑
N≥3

∑
|α|=3

cN,α + . . .

=
∞∑
j=1

∑
N≥j

∑
|α|=j

cj,α.

Then we conclude that

K(x, y) = K0(x, y) +
∞∑
j=1

Ij(x, y) +
∞∑

N=1

WN(x, y),

where

Ij(x, y) =
∑
|α|=j

1

α!

∑
α1+α2=α

α1≥1

α!

α1!α2!

∫
eiξ(x−y)∂α1

ξ φj(ξ)(∂
α2
ξ Dα

y a)(x, x, ξ)d
−ξ.

Finally, to finish the proof it is sufficient to prove thatK0,
∑

j Ij and
∑

N WN satisfy an

estimate of the type (2.7). Since the computations are quite similar, we only verify the estimate

for
∑

j Ij . For β, γ ∈ N
n
0 ,

∂βx∂
γ
y Ij(x, y) =

∑
|α|=j

1

α!

∑
α1+α2=α

α1≥0

α!

α1!α2!

∑
β1+β2=β

β!

β1!β2!

×
∫
eiξ(x−y) (−iξ)γ(iξ)β1∂α1

ξ φj(ξ)∂
β2
x (∂α2

ξ Dα
y a)(x, x, ξ)︸ ︷︷ ︸

=:hj,γ,α,β(x,ξ)

d−ξ.

We recall that on the support of φj we have the inequalitiesRjμ+ν−1 ≤ 〈ξ〉 ≤ 3Rjμ+ν−1. Hence

|hj,γ,α,β(x, y)| ≤ |ξ||γ+β1|C |α1|+1
φ α1!

μ(Rjμ+ν−1)−|α1|C |α+β2|+1
a α2!

μβ2!
να!ν〈ξ〉−|α2|eca|ξ|

1
θ

≤ C
|β+γ|+1
R,φ,a α1!

μα2!
μα!νβ2!

νj(μ+ν−1)|γ+β1|Cj
a,φ(Rj

μ+ν−1)−jeca(3R)
1
θ j

μ+ν−1
θ .

Now notice that j|γ+β1| ≤ C |γ+β1|γ!β! and, using the hypothesis θ > μ+ ν − 1,

eca(3R)
1
θ
j
μ+ν−1

θ ≤ Ca,R e
j, j ≥ 1.

Hence

|hj,γ,α,β(x, y)| ≤ C
|β+γ|+1
R,φ,a α1!

μα2!
μα!νβ2!

νγ!μ+ν−1β1!
μ+ν−1

(
Ca,φ

R

)j

j−j(μ+ν−1),

where Ca,φ is independent of R > 0. Therefore, choosing R large, we obtain∣∣∣∣∣∂βx∂γy
∞∑
j=0

Ij(x, y)

∣∣∣∣∣ ≤ C |β+γ|+1(β!γ!)μ+ν−1.
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To finish, since we are assuming |x− y| ≤ 2−1 on the support of a(x, y, ξ), we may write∣∣∣∣∣∂βx∂γy
∞∑
j=0

Ij(x, y)

∣∣∣∣∣ ≤ C̃ |β+γ|+1(β!γ!)μ+ν−1e−|x−y|
1

μ+ν−1
.

2.2.5 Adjoint, Transpose and Composition Formulas

In this section we shall prove that the classes of pseudodifferential operators that we are

dealing with are closed under composition, taking adjoints and transposes modulo regularizing

operators. We start with the adjoint and transpose formulas.

Theorem 2.6. Let p ∈ S∞
μ,ν;θ(R

2n) with μ, ν > 1 and θ > μ + ν − 1. Let moreover p∗(x,D)

and tp(x,D) the L2 adjoint and the transpose of p(x,D) respectively. Then there exist symbols

qj ∈ S∞
μ,ν;θ(R

2n) and rj ∈ Kμ+ν−1, j = 1, 2, such that

p∗(x,D) = q1(x,D) + r1(x,D), q1(x, ξ) ∼
∑
α

(−1)|α|

α!
∂αξD

α
xp(x, ξ) in FS∞

μ,ν;θ(R
2n)

and

tp(x,D) = q2(x,D) + r2(x,D), q2(x, ξ) ∼
∑
α

1

α!
(∂αξD

α
xp)(x,−ξ) in FS∞

μ,ν;θ(R
2n).

Proof. We define a1(y, ξ) = p(y, ξ) ∈ S∞
μ,ν;θ(R

3n) and a2(y, ξ) = p(y,−ξ) ∈ S∞
μ,ν;θ(R

3n).

Therefore p∗(x,D) = a1(y,D), tp(x,D) = a2(y,D). Applying Theorem 2.5 for a1 and a2, we

conclude the proof.

Before going to the composition formula, we need the following lemma.

Lemma 2.5. Let μ, ν > 1 and θ > μ + ν − 1. Let moreover r ∈ Kμ+ν−1 and p ∈ S∞
μ,ν;θ(R

2n).

Then tr(x,D), r∗(x,D) and p(x,D) ◦ r(x,D) are given by symbols in Kμ+ν−1.

Proof. We know that tr(x,D) = a1(y,D), where a1(y, ξ) = r(y,−ξ). By Proposition 2.10 and

the exponential decay of r, we easily conclude that

|∂βx∂γyKa1(x, y)| ≤ C |β+γ|+1(β!γ!)μ+ν−1e−c|x−y|
1

μ+ν−1
. (2.8)

Hence Remark 2.9 gives that a1(y,D) is given by a μ+ ν − 1−regularizing operator. In analo-

gous way we prove the result for the adjoint.
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Now let us observe that t(tr) = r and tr = q, with q ∈ Kμ+ν−1. We also notice that

tq(x,D)u(x) =

∫
eiξx
∫
e−iξyq(y,−ξ)u(y)dy d−ξ,

hence

p(x,D) ◦ r(x,D) =

∫
eiξ(x−y)p(x, ξ)q(y,−ξ)u(y)dyd−ξ.

In other words, the composition p◦r is an operator with amplitude b(x, y, ξ) = p(x, ξ)q(y,−ξ).
It is not difficult to conclude that Kb(x, y) satisfies an estimate of the type (2.8). Once more

making use of Remark 2.9, we get that p ◦ r is a regularizing operator.

Theorem 2.7. Let μ, ν > 1 and θ > μ + ν − 1. Let moreover p, q ∈ S∞
μ,ν;θ(R

2n). Then there

exist symbols s ∈ S∞
μ,ν;θ(R

2n) and r ∈ Kμ+ν−1 such that

p(x,D)◦q(x,D) = s(x,D)+r(x,D), s(x,D) ∼
∑
α

1

α!
∂αξ p(x, ξ)D

α
xq(x, ξ) in FS∞

μ,ν;θ(R
2n).

Proof. First we observe that tq(x,D) = q1(x,D) + r1(x,D), where q1 ∈ S∞
μ,ν;θ(R

2n), r1(x, ξ)

belongs to Kμ+ν−1 and

q1(x, ξ) ∼
∑
α

1

α!
∂αξD

α
xq(x,−ξ) in FS∞

μ,ν;θ(R
2n). (2.9)

Now we write

p(x,D) ◦ q(x,D) = p(x,D) ◦ tq1(x,D) + p(x,D) ◦ tr1(x,D).

We have that p◦ tq1 is given by the amplitude a(x, y, ξ) := p(x, ξ)q1(y,−ξ) and p◦ tr1 is given

by a regularizing operator. Applying Theorem 2.5 to a(x, y, ξ) and using (2.9), we conclude the

proof.

Remark 2.10. We point out that we can obtain analogous results concerning the product, trans-

pose and adjoints of pseudodifferential operators with symbols in Sm
μ,ν(R

n). Moreover, in the

frame of finite order we do not need any hypothesis over θ.

2.2.6 Gevrey Sobolev Spaces

We finish with a brief discussion about Gevrey Sobolev spaces. The main result of

Chapter 3 will be achieved in these spaces.
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Definition 2.11. Let m, ρ ∈ R and θ > 1. We define the Gevrey Sobolev space Hm
ρ;θ(R

n) by

Hm
ρ;θ(R

n) = {u ∈ S ′(Rn) : 〈D〉meρ〈D〉 1θ u ∈ L2(Rn)},

where eρ〈D〉 1θ stands for the pseudodifferential operator with symbol eρ〈ξ〉
1
θ ∈ S∞

1,1;θ(R
2n).

Gevrey Sobolev spaces are Hilbert spaces with the following inner product

〈u, v〉Hm
ρ;θ

= 〈〈D〉meρ〈D〉 1θ u, 〈D〉meρ〈D〉 1θ v〉L2 , u, v ∈ Hm
ρ;θ(R

n).

Remark 2.11. Plancherel formula gives us that Hm′
ρ′;θ(R

n) ⊆ Hm
ρ;θ(R

n) whenever m′ ≥ m and

ρ′ ≥ ρ. Being more precise, we have

‖f‖Hm
ρ;θ

≤ ‖f‖Hm′
ρ′;θ
, f ∈ Hm′

ρ′;θ(R
n).

We recall that H∞(Rn) ⊂ Ḃ∞(Rn), where

H∞(Rn) =
⋂
s∈R

Hs(R), Ḃ∞(Rn) = {f ∈ B∞(Rn) : lim
|x|→∞

∂αx f(x) = 0, ∀α ∈ N
n
0}.

For any ρ > 0, θ > 1 and m ∈ R we have Hm
ρ;θ(R

n) ⊂ H∞(R). The next result shows us that

Hm
ρ;θ(R

n) is a subset of Gθ(Rn) for every m ∈ R, provided that ρ > 0.

Proposition 2.11. Let m ∈ R, θ > 1, ρ > 0 and f ∈ Hm
ρ;θ(R

n). Then there exist C1 > 0 and

Cθ > 0 such that

|∂αx f(x)| ≤ C1

(
Cθ

ρ

)|α|
α!θ‖f‖Hm

ρ;θ
, x ∈ R

n, α ∈ N
n
0 .

Proof. We can write

∂αx f(x) =

∫
eiξxξαf̂(ξ)d−ξ =

∫
eiξxξα〈ξ〉−me−ρ〈ξ〉 1θ 〈ξ〉meρ〈ξ〉

1
θ f̂(ξ)d−ξ.

Hence

|∂αx f(x)| ≤ ‖ξα〈ξ〉−me−ρ〈ξ〉 1θ ‖L2‖f‖Hm
ρ;θ
.

Now the result follows from Lemma 2.2.

The next result concerns the action of pseudodifferential operators of finite order in

Gevrey Sobolev spaces.

Theorem 2.8. Let p ∈ Sm′
μ,ν(R

2n). Let moreover θ > μ+ ν − 1 and m, ρ ∈ R. Then

p(x,D) : Hm
ρ;θ(R

n) → Hm−m′
ρ;θ (Rn), continuously.
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Proof. Since θ > μ+ ν − 1, from the composition formula we have

eρ〈D〉 1θ ◦ p(x,D) ◦ e−ρ〈D〉 1θ = a(x,D) + r(x,D),

where a ∈ S∞
μ,ν;θ(R

n), r ∈ Kμ+ν−1 and

a(x, ξ) ∼
∑
α

1

α!
∂αξ e

ρ〈ξ〉 1θDα
xp(x, ξ)e

−ρ〈ξ〉 1θ =
∑
α

aα(x, ξ) in FS∞
μ,ν;θ(R

2n).

Now we shall prove that
∑

α aα is of finite order. For this let us study more carefully the above

asymptotic expansion. By Faà di Bruno formula, for |α| ≥ 1,

α!aα(x, ξ) = Dα
xp(x, ξ)

|α|∑

=1

1

�!

∑
α1+...+α�=α
αν≥1,ν=1,...,�

α!

α1! . . . α
!


∏
ν=1

ρ∂αν
ξ 〈ξ〉 1

θ .

Therefore, for any γ, β ∈ N
n
0 ,

|∂γξ ∂βxα!aα(x, ξ)| ≤
∑

γ1+γ2=γ

γ!

γ1!γ2!
|∂γ1ξ ∂β+α

x p(x, ξ)|

×
|α|∑

=1

1

�!

∑
α1+...+α�=α

α!

α1! . . . α
!

∣∣∣∣∣∂γ2ξ

∏

ν=1

ρ∂αν
ξ 〈ξ〉 1

θ

∣∣∣∣∣
≤ C |γ+β+α|+1γ!μβ!να!1+ν〈ξ〉m′−|γ|−|α|

|α|∑

=1

〈ξ〉 �
θ

�!
.

Now consider, for R > 0 large, ψj(ξ) the sequence defined in the proof of Proposition

2.2 and set

b(x, ξ) =
∞∑
j=0

ψj(ξ)bj(x, ξ) ∈ S∞
μ,ν;θ(R

2n),

where bj =
∑

|α|=j aα. We have b ∼ ∑j≥0 bj in FS∞
μ,ν;θ(R

2n). Now will prove that b belongs

to Sm′
μ,ν(R

2n). We write

b(x, ξ) = p(x, ξ) +
∑
j≥1

ψj(ξ)bj(x, ξ).

We infer that
∑

j≥1 ψjbj ∈ S
m′−(1− 1

θ
)

μ,ν (R2n). Indeed, for any α, β ∈ N
n
0

|∂αξ ∂βx
∑
j≥1

ψj(ξ)bj(x, ξ)| ≤
∑
j≥1

∑
α1+α2=α

α!

α1!α2!
|∂α1

ξ ψj(ξ)||∂α2
ξ ∂βx bj(x, ξ)|

=
∑
j≥0

∑
α1+α2=α

α!

α1!α2!
|∂α1

ξ ψj+1(ξ)||∂α2
ξ ∂βx bj+1(x, ξ)|

≤
∑
j≥0

∑
α1+α2=α

α!

α1!α2!

1

R(j + 1)|α1|C
|α1|
ψ α1!

μ
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× C |α2+β|+j+1α2!
μβ!ν(j + 1)!ν〈ξ〉m′−|α2|−j−1

j+1∑

=1

〈ξ〉 �
θ

�!

=
∑
j≥0

∑
α1+α2=α

α!

α1!α2!

1

R(j + 1)|α1|C
|α1|
ψ α1!

μ

× C |α2+β|+j+1α2!
μβ!ν(j + 1)!ν〈ξ〉m′−(1− 1

θ
)−|α2|

j+1∑

=1

〈ξ〉−j+ �−1
θ

�!
.

On the support of ∂α1
ξ ψj+1 we have 〈ξ〉 ≥ R(j + 1) and 〈ξ〉 ≤ 3R(j + 1) (whenever α1 �= 0).

Hence R(j + 1)−|α1| ≤ 3|α1|〈ξ〉−|α1| and, since θ > μ+ ν − 1,

〈ξ〉−j+ �−1
θ ≤ {R(j + 1)μ+ν−1}−j+ �−1

θ

= R−j+ �−1
θ (j + 1)−j(μ+ν−1)(j + 1)

μ+ν−1
θ

(
−1)

≤ R−j(1− 1
θ
)(j + 1)!−(μ+ν−1)(j + 1)
−1

≤ R−j(1− 1
θ
)(j + 1)!−(μ+ν−1)ej+1(�− 1)!.

Therefore

|∂αξ ∂βx
∑
j≥1

ψj(ξ)bj(x, ξ)| ≤ C
|α+β+1|
1 α!μβ!ν〈ξ〉m′−(1− 1

θ
)−|α|∑

j≥0

(
C2

R(1− 1
θ
)

)j

.

Enlarging R if necessary, we conclude
∑

j≥1 ψjbj ∈ S
m′−(1− 1

θ
)

μ,ν (R2n). Hence, b ∈ Sm′
μ,ν(R

2n) as

we intended to prove.

Finally, since we may write

eρ〈D〉 1θ ◦ p(x,D) ◦ e−ρ〈D〉 1θ = p(x,D) + pθ(x,D) + r1(x,D),

where pθ(x, ξ) ∈ S
m′−(1−θ)
μ,ν (R2n) and r1(x, ξ) ∈ Kμ+ν−1, we have

‖p(x,D)u ‖
Hm−m′

ρ;θ
=‖ eρ〈D〉 1θ p(x,D)u ‖Hm−m′=‖ eρ〈D〉 1θ p(x,D)e−ρ〈D〉 1θ (eρ〈D〉 1θ u) ‖Hm−m′

=‖ (p+ pθ + r1)(x,D)(eρ〈D〉 1θ u) ‖Hm−m′≤ C ‖ eρ〈D〉 1θ u ‖Hm= C ‖ u ‖Hm
ρ;θ
.

Theorem 2.9. Let μ, ν > 1 and θ > μ + ν − 1. Let moreover r ∈ Kμ+ν−1. Then for every

m ∈ R and ρ̃ ∈ R

r(x,D) : Hm
ρ̃;θ →

⋂
ρ∈R

Hm
ρ;θ, continuously.
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Proof. Let ρ ∈ R. Since θ > μ + ν − 1 we have that eρ〈D〉 1θ ◦ r(x,D) ◦ e−ρ̃〈D〉 1θ defines a

(μ+ ν − 1)−regularizing operator. Hence

‖ r(x,D)u ‖Hm
ρ;θ

=‖ eρ〈D〉 1θ ◦ r(x,D) ◦ e−ρ̃〈D〉 1θ (eρ̃〈D〉 1θ u) ‖Hm

≤ C ‖ eρ̃〈D〉 1θ u ‖Hm= C ‖ u ‖Hm
ρ̃;θ
.

2.3 SGτ,∞
μ,ν;κ(R

2n), SG∞,τ
μ,ν;θ(R

2n) and SGm
μ,ν(R

2n)−Pseudodifferential

Operators

In this section, we recall some facts and results about SG pseudodifferential operators

with symbols satisfying Gevrey estimates. We address the reader to [10] for the finite order case

and to [6] for the infinte order framework. Now we give the definition of the symbol classes.

Definition 2.12. Let τ ∈ R, κ, θ, μ, ν > 1 and A, c > 0.

(i) We denote by SGτ,∞
μ,ν;κ(R

2n;A, c) the Banach space of all functions p ∈ C∞(R2n) satisfy-

ing the following condition:

‖p‖A,c := sup
α,β∈Nn0
x,ξ∈Rn

A−|α+β|α!−μβ!−ν〈ξ〉−τ+|α|〈x〉|β|e−c|x| 1κ |∂αξ ∂βxp(x, ξ)| < +∞.

We set

SGτ,∞
μ,ν;κ(R

2n) =
⋃

A,c>0

SGτ,∞
μ,ν;κ(R

2n;A, c)

endowed with the inductive limit topology of the Banach spaces SGτ,∞
μ,ν;κ(R

2n;A, c).

(ii) We denote by SG∞,τ
μ,ν;κ(R

2n;A, c) the Banach space of all functions p ∈ C∞(R2n) satisfy-

ing the following condition:

‖p‖A,c := sup
α,β∈Nn0
x,ξ∈Rn

A−|α+β|α!−μβ!−ν〈ξ〉|α|〈x〉−τ+|β|e−c|ξ| 1κ |∂αξ ∂βxp(x, ξ)| < +∞.

We set

SG∞,τ
μ,ν;κ(R

2n) =
⋃

A,c>0

SG∞,τ
μ,ν;κ(R

2n;A, c)

endowed with the inductive limit topology of the Banach spaces SG∞,τ
μ,ν;κ(R

2n;A, c).
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Definition 2.13. Let μ, ν ≥ 1, m = (m1,m2) ∈ R
2 and A > 0. We denote by SGm

μ,ν(R
2n;A)

the Banach space of all functions p ∈ C∞(R2n) satisfying the following condition:

‖p‖A := sup
α,β∈Nn0
x,ξ∈Rn

A−|α+β|α!−μβ!−ν〈ξ〉−m1+|α|〈x〉−m2+|β||∂αξ ∂βxp(x, ξ)| < +∞.

We set

SGm
μ,ν(R

2n) =
⋃

A,c>0

SGm
μ,ν(R

2n;A)

endowed with the inductive limit topology of the Banach spaces SGm
μ,ν(R

2n;A).

Remark 2.12. When μ = ν we simply write SGm
μ (R

2n), SGτ,∞
μ;κ (R

2n), SG∞,τ
μ;θ (R2n) instead of

SGm
μ,μ(R

2n), SGτ,∞
μ,μ;κ(R

2n), SG∞,τ
μ,μ;θ(R

2n).

As usual, given a symbol p(x, ξ) we shall denote by p(x,D) the pseudodifferential

operator defined as

p(x,D)u(x) =

∫
eixξp(x, ξ)û(ξ)d−ξ, x ∈ R

n,

where u belongs to some suitable function space. We have the following continuity results.

Proposition 2.12. Let τ ∈ R, s > μ > 1, ν > 1 and p ∈ SGτ,∞
μ,ν;s(R

2n). Then for every θ > ν

and s > μ the operator p(x,D) is continuous on Σθ
s(R

n) and it extends to a continuous map on

(Σθ
s)

′(Rn).

Proposition 2.13. Let τ ∈ R, θ > ν > 1, μ > 1 and p ∈ SG∞,τ
μ,ν;θ(R

2n). Then for every s > μ

and θ > ν, the operator p(x,D) is continuous on Σθ
s(R

n) and it extends to a continuous map

on (Σθ
s)

′(Rn).

The proof of Propositions 2.12 and 2.13 can be derived following the argument in the

proof of [6, Proposition 2.3].

Now we define the notion of asymptotic expansion and state some fundamental results,

whose proofs can be found in the Appendix A of [6]. For t1, t2 ≥ 0 set

Qt1,t2 = {(x, ξ) ∈ R
2n : 〈x〉 < t1 and 〈ξ〉 < t2}

and Qe
t1,t2

= R
2n \Qt1,t2 . When t1 = t2 = t we simply write Qt and Qe

t .

Definition 2.14. We say that:
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(i)
∑
j≥0

aj ∈ FSGτ,∞
μ,ν;κ if aj ∈ C∞(R2n) and there exist C, c, B > 0 satisfying

|∂αξ ∂βxaj(x, ξ)| ≤ C |α|+|β|+2j+1α!μβ!νj!μ+ν−1〈ξ〉τ−|α|−j〈x〉−|β|−jec|x|
1
κ

for α, β ∈ N
n
0 , j ≥ 0 and (x, ξ) ∈ Qe

B(j), where B(j) := Bjμ+ν−1.

(ii)
∑

j≥0 aj ∈ FSG∞,τ
μ,ν;θ if aj ∈ C∞(R2n) and there exist C, c, B > 0 satisfying

|∂αξ ∂βxaj(x, ξ)| ≤ C |α|+|β|+2j+1α!μβ!νj!μ+ν−1〈ξ〉−|α|−jec|ξ|
1
θ 〈x〉τ−|β|−j

for α, β ∈ N
n
0 , j ≥ 0 and (x, ξ) ∈ Qe

B(j).

(iii)
∑
j≥0

aj ∈ FSGm
μ,ν if aj ∈ C∞(R2n) and there exist C, c, B > 0 satisfying

|∂αξ ∂βxaj(x, ξ)| ≤ C |α|+|β|+2j+1α!μβ!νj!μ+ν−1〈ξ〉m1−|α|−j〈x〉m2−|β|−j

for α, β ∈ N
n
0 , j ≥ 0 and (x, ξ) ∈ Qe

B(j).

Definition 2.15. Given
∑
j≥0

aj ,
∑
j≥0

bj in FSGτ,∞
μ,ν;κ we say that

∑
j≥0

aj ∼ ∑
j≥0

bj in FSGτ,∞
μ,ν;κ if

there exist C, c, B > 0 satisfying∣∣∣∣∣∂αξ ∂βx ∑
j<N

(aj − bj)(x, ξ)

∣∣∣∣∣ ≤ C |α|+|β|+2N+1α!μβ!νN !μ+ν−1〈ξ〉τ−|α|−N〈x〉−|β|−Nec|x|
1
κ

for α, β ∈ N
n
0 , N ≥ 1 and (x, ξ) ∈ Qe

B(N). Analogous definition for the classes FSG∞,τ
μ,ν;θ,

FSGm
μ,ν .

Remark 2.13. If
∑
j≥0

aj ∈ FSGτ,∞
μ,ν;κ, then a0 ∈ SGτ,∞

μ,ν;κ. Given a ∈ SGτ,∞
μ,ν;κ and setting b0 = a,

bj = 0, j ≥ 1, we have a =
∑
j≥0

bj . Hence we can consider SGτ,∞
μ,ν;κ as a subset of FSGτ,∞

μ,ν;κ.

Proposition 2.14. Given
∑
j≥0

aj ∈ FSGτ,∞
μ,ν;κ, there exists a ∈ SGτ,∞

μ,ν;κ such that a ∼ ∑
j≥0

aj in

FSGτ,∞
μ,ν;κ. Analogous results hold for the classes SG∞,τ

μ,ν;θ and FSGm
μ,ν .

Proposition 2.15. Let a, b ∈ SGτ,∞
μ,ν;κ and

∑
j≥0 aj ∈ FSGτ,∞

μ,ν;κ such that a ∼ ∑j≥0 aj ∼ b in

FSGτ,∞
μ,ν;κ. If κ > μ + ν − 1, then a− b ∈ Sδ(R

2n) for every δ ≥ μ + ν − 1. Analogous result

for the classes FSG∞,τ
μ,ν;θ and FSGm

μ,ν .

Concerning the symbolic calculus and the continuous mapping properties on the Gelfand-

Shilov Sobolev spaces we have the following results, whose proofs can be found again in [6].

Theorem 2.10. Let p ∈ SGτ,∞
μ,ν;κ(R

2n), q ∈ SGτ ′,∞
μ,ν;κ(R

2n) with κ > μ + ν − 1. Then the L2

adjoint p∗ and the composition p ◦ q have the following structure:
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- p∗(x,D) = a(x,D) + r(x,D) where r ∈ Sμ+ν−1(R
2n), a ∈ SGτ,∞

μ,ν;κ(R
2n), and

a(x, ξ) ∼
∑
α

(−1)|α|

α!
∂αξD

α
xp(x, ξ) in FSGτ,∞

μ,ν;κ(R
2n).

- p(x,D)◦ q(x,D) = b(x,D)+ s(x,D), where s ∈ Sμ+ν−1(R
2n), b ∈ SGτ+τ ′,∞

μ,ν;κ (R2n) and

b(x, ξ) ∼
∑
α

1

α!
∂αξ p(x, ξ)D

α
xq(x, ξ) in FSGτ+τ ′,∞

μ,ν;κ (R2n).

Analogous results hold for the class SG∞,τ
μ,ν;θ(R

2n).

We finish this section with a brief discussion concerning the Gelfand-Shilov Sobolev

spaces. For details we refer once more [6].

Definition 2.16. Let m = (m1,m2), ρ = (ρ1, ρ2) ∈ R
2 and s, θ > 1. We define the Gelfand-

Shilov Sobolev space Hm
ρ;s,θ(R

n) by

Hm
ρ;s,θ(R

n) = {u ∈ S ′(Rn) : 〈x〉m2〈D〉m1eρ2〈x〉
1
s eρ1〈D〉 1θ u ∈ L2(Rn)},

where 〈D〉m1 and eρ1〈D〉 1θ are the the pseudodifferential operators with symbols 〈ξ〉m1 and

eρ〈ξ〉
1
θ ∈ S∞

1,1;θ(R
2n), respectively. These spaces are Hilbert spaces with the following inner

product

〈u, v〉Hm
ρ;s,θ

= 〈〈x〉m2〈D〉m1eρ2〈x〉
1
s eρ1〈D〉 1θ u, 〈x〉m2〈D〉m1eρ2〈x〉

1
s eρ1〈D〉 1θ v〉L2 ,

for every u, v ∈ Hm
ρ;s,θ(R

n).

Remark 2.14. We have Hm
ρ;s,θ(R

n) ⊆ Hm′
ρ′;s′,θ′(R

n) continuously, whenever that s ≤ s′, θ ≤ θ′,

mj ≥ m′
j and ρj ≥ ρ′j , j = 1, 2.

Remark 2.15. The Gelfand-Shilov spaces can be expressed in terms of the Gelfand-Shilov

Sobolev spaces Hm
ρ;s,θ(R

n) in the following way

Sθ
s (R

n) =
⋃

ρ1,ρ2>0

Hm
ρ;s,θ(R

n), Σθ
s(R

n) =
⋂

ρ1,ρ2>0

Hm
ρ;s,θ(R

n),

for every m ∈ R
2.

We have the following continuity result on Gelfand-Shilov Sobolev spaces, see [6]

Theorem A.18 for the proof.

Theorem 2.11. Let p ∈ SGm′
μ,ν(R

2n) for some m′ ∈ R
2. Then for every m, ρ ∈ R

2 and s, θ such

that min{s, θ} > μ+ν−1 the operator p(x,D) mapsHm
ρ;s,θ(R

n) intoHm−m′
ρ;s,θ (Rn) continuously.
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2.4 Sharp Gårding and Fefferman-Phong Inequalities

This section is devoted to recall the so-called Fefferman-Phong and sharp Gårding

inequalities. Let p(x, ξ) be a symbol of order m belonging to the standard Hörmander classes.

Then the two following theorems hold.

Theorem 2.12 (Sharp Gårding Inequality). If Re p(x, ξ) ≥ 0, then there exists a real constant

C such that

Re 〈p(x,D)u, u〉L2(Rn) ≥ −C‖u‖m−1
2
, u ∈ S (Rn).

Proof. See Theorem 4.4 of [35].

Theorem 2.13 (Fefferman-Phong Inequality). If p(x, ξ) ≥ 0, then there exists a real constant

C such that

Re 〈p(x,D)u, u〉L2(Rn) ≥ −C‖u‖m−2
2
, u ∈ S (Rn).

Proof. See [20].

Remark 2.16. We remark that the Fefferman-Phong inequality holds only for scalar symbols

(cf. [41]) whereas the sharp Gårding holds more generally for matrix valued symbols (cf. [35]).

2.5 Sharp Gårding in SG and SGμ,ν Settings

The sharp Gårding inequality for a pseudodifferential operator has been first proved by

Hörmander [26] and by Lax and Nirenberg [36] for symbols in the standard Hörmander classes

Sm(R2n). Later on several different proofs and extensions of this result have been provided by

many authors cf. [21, 27, 35, 38]. In particular, the inequality has been extended to symbols

defined in terms of a general metric, cf. [27, Theorem 18.6.7] and to matrix valued pseudo-

differential operators, cf. [27, Lemma 18.6.13] and [35, Theorem 4.4 page 134].

In all the proofs of the sharp Gårding inequality the operator p(x,D) is decomposed

as the sum of a positive definite part and a remainder term. In the approach proposed in [35],

this positive definite part pF is called Friedrichs part.

Although the results in [27] are extremely general and sharp, in some applications

more detailed information on the remainder term is needed. In particular, it is important to state

not only the order but also the asymptotic expansion of p − pF . This is needed in particular

in the study of the p-evolution equations. The classical approach to study the Cauchy Problem
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for these equations is based on a reduction to an auxiliary problem via a suitable change of

variable and on a repeated application of sharp Gårding inequality which needs at every step to

understand the precise form of all the remainder terms, cf. [3]. When the coefficients aj(t, x)

are uniformly bounded with respect to x, this is possible using Theorem 4.2 in [35], where the

asymptotic expansion of pF − p is given in the frame of classical Hörmander classes.

The initial value problem for p−evolution equations can be also studied in a weighted

functional setting admitting polynomially bounded coefficients (cf. [5]), which cannot be

treated in the theory of standard Hörmander classes but are included in the SG framework.

For this purpose we need a variant of [35, Theorem 4.2] for SG operators with a precise infor-

mation on the asymptotic expansion of p− pF .

Another challenging issue is to study p−evolution equations on Gelfand-Shilov spaces.

A first step in this direction has been done in the cases p = 2, that is for Schrödinger-type

equations, see [6], and p = 3, see Chapter 4 of this thesis. In both these cases, it is sufficient to

apply the sharp Gårding inequality only once. To treat p-evolution equations for p > 3, however,

we need to apply the iterative procedure described above. In addition, a precise estimate of the

Gevrey regularity of the terms in the asymptotic expansion of p− pF is also needed.

In this section we, hopefully, provide appropriate tools for both the aforementioned

issues. This will be achieved by defining in a suitable way the Friedrichs part of our operators

and by studying in detail its asymptotic expansion and its regularity. With this purpose we

will prove two separate results for the SG and SGμ,ν symbol classes. To finish, it is worth to

mention that the results obtained in this Section led to the following work [32].

2.5.1 SGρ,δ Pseudodifferential Operators

In this section we recall some basic facts about SGρ,δ pseudodifferential operators

which will be used in the sequel. Although for our applications we are interested to prove the

main results for the SG and SGμ,ν classes, in order to prove them we need to consider more

general symbols which are defined as follows.

Definition 2.17. Given m = (m1,m2) ∈ R
2, ρ = (ρ1, ρ2) ∈ (0, 1]2, δ = (δ1, δ2) ∈ [0, 1)2, with

δj < ρj, j = 1, 2, we denote by SGm
ρ,δ the space of all functions p(x, ξ) ∈ C∞(R2n) such that

sup
(x,ξ)∈R2n

|∂αξ ∂βxp(x, ξ)|〈ξ〉−m1+ρ1|α|−δ1|β|〈x〉−m2+ρ2|β|−δ2|α| <∞. (2.10)
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We recall that SGm
ρ,δ is a Fréchet space endowed with the seminorms

|p|
 := sup
(x,ξ)∈R2n

|α+β|≤


|∂αξ ∂βxp(x, ξ)|〈ξ〉−m1+ρ1|α|−δ1|β|〈x〉−m2+ρ2|β|−δ2|α|,

for � ∈ N0. A specific calculus for this class can be found in [8]. Pseudodifferential operators

with symbols in SGm
ρ,δ are linear and continuous from S (Rn) to S (Rn) and extend to linear

and continuous maps from S ′(Rn) to S ′(Rn). Moreover, we know that an operator with

symbol in SGm
ρ,δ extends to a linear and continuous map from Hs(Rn) to Hs−m(Rn) for every

s ∈ R
2.

Definition 2.18. Let, for j ∈ N0, pj ∈ SG
(m1,j ,m2,j)
ρ,δ , where m1,j , m2,j are non increasing

sequences and m1,j → −∞, m2,j → −∞, when j → ∞. We say that p ∈ C∞(R2n) has the

asymptotic expansion

p(x, ξ) ∼
∑
j∈N0

pj(x, ξ)

if for any N ∈ N we have

p(x, ξ)−
N−1∑
j=0

pj(x, ξ) ∈ SG
(m1,N ,m2,N )
ρ,δ .

Given pj ∈ SG
(m1,j ,m2,j)
ρ,δ as in the previous definition, we can find p ∈ SG

(m1,0,m2,0)
ρ,δ

such that p ∼∑ pj . Furthermore, if there is q such that q ∼∑ pj , then

p− q ∈ SG−∞ := ∩m∈R2SGm
ρ,δ = S (R2n),

cf. [8, Theorem 2]. The class SGm
ρ,δ is closed under adjoints. Namely, given p ∈ SGm

ρ,δ and

denoting by P ∗ be the L2 adjoint of p(x,D), we can write P ∗ = p∗(x,D) + R′, where p∗ is a

symbol in SGm
ρ,δ admitting the asymptotic expansion

p∗(x, ξ) ∼
∑
α∈Nn

0

α!−1∂αξD
α
xp(x, ξ)

and R′ : S ′(Rn) → S (Rn). The class SG∞
ρ,δ := ∪m∈R2SGm

ρ,δ possesses algebra properties

with respect to composition. Namely, given p ∈ SGm
ρ,δ and q ∈ SGm′

ρ,δ, then there exists a

symbol s ∈ SGm+m′
ρ,δ such that p(x,D)q(x,D) = s(x,D)+R where R is a smoothing operator

S ′(Rn) → S (Rn). Moreover,

s(x, ξ) ∼
∑
α∈Nn

0

α!−1∂αξ p(x, ξ)D
α
xq(x, ξ),

cf. [8, Theorem 3].

We now consider Gevrey regular symbols.
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Definition 2.19. FixedC > 0 we denote by SGm
ρ,δ;(μ,ν)(R

2n;C) the space of all smooth functions

p(x, ξ) such that

|p|C := sup
α,β∈Nn

0

C−|α|−|β|α!−μβ!−ν

× sup
x,ξ∈Rn

〈ξ〉−m1+ρ1|α|−δ1|β|〈x〉−m2+ρ2|β|−δ2|α||∂αξ ∂βxp(x, ξ)| < +∞.

We set SGm
ρ,δ;(μ,ν)(R

2n) =
⋃

C>0 SG
m
ρ,δ;(μ,ν)(R

2n;C).

Equipping SGm
ρ,δ;(μ,ν)(R

2n;C) with the norm | · |C we obtain a Banach space and we can endow

SGm
ρ,δ;(μ,ν)(R

2n) with the topology of inductive limit of Banach spaces. A complete calculus for

operators with symbols in this class can be found in [10]. Here we recall only the main results.

Since SGm
ρ,δ;(μ,ν) ⊂ SGm

ρ,δ, the previous mapping properties on the Schwartz and weighted

Sobolev spaces hold true for operators with symbols in SGm
ρ,δ;(μ,ν). By the way the, natural

functional setting for these operators is given by the Gelfand-Shilov spaces of type S . For every

μ′ ≥ μ/(1−δ2), ν ′ ≥ ν/(1−δ1), an operator with symbol in SGm
ρ,δ;(μ,ν) is linear and continuous

from Sν′
μ′ (Rn) to itself and extends to a linear continuous map from the dual space (Sν′

μ′ )′(Rn)

into itself, see [10, Theorem A.4].

The notion of asymptotic expansion for symbols in SGm
ρ,δ;(μ,ν) can be defined in terms

of formal sums, cf. [10]. Here, to obtain our results we need to use a refined notion. All the

next results can be obtained in the same way as in [10] without changing the arguments in the

proofs.

For t1, t2 ≥ 0 set

Qt1,t2 = {(x, ξ) ∈ R
2n : 〈x〉 < t1 and 〈ξ〉 < t2}

and Qe
t1,t2

= R
2n \Qt1,t2 . When t1 = t2 = t we simply write Qt and Qe

t .

Definition 2.20. Let σ̄j = (kj, �j) be a sequence such that k0 = �0 = 0, kj, �j are strictly

increasing, kj+N ≥ kj + kN , �j+N ≥ �j + �N , for j,N ∈ N0, and kj ≥ Λ1j, �j ≥ Λ2j for

j ≥ 1, for some Λ1,Λ2 > 0. We say that
∑
j≥0

pj ∈ Fσ̄SG
m
ρ,δ;(μ,ν) if pj ∈ C∞(R2n) and there are

C, c, B > 0 satisfying

|∂αξ ∂βxpj(x, ξ)| ≤ C |α|+|β|+2j+1α!μβ!νj!μ+ν−1〈ξ〉m1−ρ1|α|+δ1|β|−kj〈x〉m2−ρ2|β|+δ2|α|−
j

for α, β ∈ N
n
0 , j ≥ 0 and (x, ξ) ∈ Qe

B2(j),B1(j)
, where Bi(j) = (Bjμ+ν−1)

1
Λi , i = 1, 2.



Global Pseudodifferential Operators 46

Definition 2.21. Given
∑
j≥0

pj,
∑
j≥0

qj ∈ Fσ̄SG
m
μ,ν , we say that

∑
j≥0

pj ∼
∑
j≥0

qj in Fσ̄SG
m
ρ,δ;(μ,ν) if

there are C, c, B > 0 satisfying∣∣∣∣∣∂αξ ∂βx ∑
j<N

(pj − qj)(x, ξ)

∣∣∣∣∣ ≤ C |α|+|β|+2N+1α!μβ!νN !μ+ν−1〈ξ〉m1−ρ1|α|+δ1|β|−kN 〈x〉m2−ρ2|β|+δ2|α|−
N

for α, β ∈ N
n
0 , N ≥ 1 and (x, ξ) ∈ Qe

B2(N),B1(N).

Remark 2.17. If kj = (ρ1 − δ1)j, �j = (ρ2 − δ2)j and Λi = ρi − δi, i = 1, 2, we simply write

FSGm
ρ,δ;(μ,ν) and we recover the usual definitions presented in [10]. If moreover ρ = (1, 1), δ =

(0, 0), we use the notation FSGm
(μ,ν).

Remark 2.18. If
∑
j≥0

pj ∈ Fσ̄SG
m
ρ,δ;(μ,ν), then p0 ∈ SGm

ρ,δ;(μ,ν). Given p ∈ SGm
ρ,δ;(μ,ν) and setting

p0 = p, pj = 0, j ≥ 1, we have p =
∑
j≥0

pj . Hence we can consider SGm
ρ,δ;(μ,ν) as a subset of

Fσ̄SG
m
ρ,δ;(μ,ν).

Proposition 2.16. Given
∑
j≥0

pj ∈ Fσ̄SG
m
ρ,δ;(μ,ν), there exists p ∈ SGm

ρ,δ;(μ,ν) such that p ∼ ∑
j≥0

pj

in Fσ̄SG
m
ρ,δ;(μ,ν).

Proposition 2.17. Let p ∈ SG
(0,0)
ρ,δ;(μ,ν) such that p ∼ 0 in Fσ̄SG

(0,0)
ρ,δ;(μ,ν). Then p ∈ Sr(R

2n) for

r ≥ max{ 1
Λ̃
(μ+ ν − 1), μ+ ν − 1}, where Λ̃ = min{Λ1,Λ2}.

Proposition 2.18. Let p ∈ SGm
ρ,δ;(μ,ν) and let P ∗ be the L2 adjoint of p(x,D). Then there exists

a symbol p∗ ∈ SGm
ρ,δ;(μ,ν) such that P ∗ = p∗(x,D) + R, where R is a Sr-regularizing operator

for any r ≥ μ+ν−1
min{�1−δ1,�2−δ2} . Moreover

p∗(x, ξ) ∼
∑
j≥0

∑
|α|=j

α!−1∂αξD
α
xp(x, ξ) in FSGm

ρ,δ;(μ,ν).

Proposition 2.19. Let p ∈ SGm
ρ,δ;(μ,ν), q ∈ SGm′

ρ,δ;(μ,ν). Then, there exists a symbol s ∈ SGm+m′
ρ,δ;(μ,ν)

such that p(x,D)q(x,D) = s(x,D) + R′ where R′ is a Sr-regularizing operator for any

r ≥ μ+ν−1
min{�1−δ1,�2−δ2} . Moreover

s(x, ξ) ∼
∑
j≥0

∑
|α|=j

α!−1∂αξ p(x, ξ)D
α
xq(x, ξ) in FSGm+m′

ρ,δ;(μ,ν).

2.5.2 Oscillatory Integrals and Operators with Double Symbols

In order to define the Friedrichs part of an operator it is necessary to extend the notion

of pseudodifferential operator as in [35] by considering more general symbols called double

symbols. We start considering some amplitude classes.
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Definition 2.22 (Amplitudes). For m ∈ R
2 and δ ∈ [0, 1)2 we define Am

δ (R
2n) as the space of

all smooth functions a(η, y) such that

|∂αη ∂βy a(η, y)| ≤ Cα,β〈η〉m1+δ1|β|〈y〉m2+δ2|α|, η, y ∈ R
n.

For � ∈ N0 and a ∈ Am
δ (R

2n), the seminorms

|a|
 = max
|α+β|≤


sup
η,y∈Rn

{|∂αη ∂βy a(η, y)|〈η〉−(m1+δ1|β|)〈y〉−(m2+δ2|α|)},

turn Am
δ (R

2n) into a Fréchet space.

Remark 2.19. In [35, Chapter 1, Section 6], the special case A(m,τ)
(δ,0) (R

n), where m ∈ R, τ > 0

and δ ∈ [0, 1), is treated.

Definition 2.23 (Oscillatory Integral). For a ∈ Am
δ,τ we define

Os− [e−iηya(η, y)] = Os−
∫∫

e−iηya(η, y)dyd−η

:= lim
ε→0

∫∫
e−iηyχε(η, y)a(η, y)dyd

−η,

where χε(η, y) = χ(εη, εy) and χ is a Schwartz function on R
2n such that χ(0, 0) = 1.

Theorem 2.14. Let a ∈ Am
δ (R

2n). If �, �′ ∈ N0 satisfy

−2�(1− δ1) +m1 < −n, −2�′(1− δ2) +m2 < −n,

then |〈y〉−2
′〈Dη〉2
′{〈η〉−2
〈Dy〉2
a(η, y)}| belongs to L1(R2n) and we have

Os− [e−iηya(η, y)] =

∫∫
e−iηy〈y〉−2
′〈Dη〉2
′{〈η〉−2
〈Dy〉2
a(η, y)}dyd−η.

Furthermore, there exists C
,
′ > 0 independent of a ∈ Am
δ,τ (R

2n) such that

|Os− [e−iηya(η, y)]| ≤ C
,
′ |a|2(
+
′). (2.11)

Proof. Integration by parts gives

Os− [e−iηya] = lim
ε→0

∫∫
e−iηy〈y〉−2
′〈Dη〉2
′{〈η〉−2
〈Dy〉2
(aχε)}dyd−η,

where χε(η, y) = χ(εη, εy). Since

〈Dη〉2
′ =
∑


′0+|L′|=
′

�′!
�′0!L′!

D2L′
η , 〈Dy〉2
 =

∑

0+|L|=


�!

�0!L!
D2L

y ,
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where L′ = (�′1, . . . , �
′
n) and L = (�1, . . . , �n), we have

〈Dη〉2
′{〈η〉−2
〈Dy〉2
(χεa)} =
∑


′0+|L′|=
′

�′!
�′0!L′!

D2L′
η {〈η〉−2
〈Dy〉2
(χεa)}

=
∑


′0+|L′|=
′

�′!
�′0!L′!

∑
α1+α2=2L′

(2L′)!
α1!α2!

Dα1
η 〈η〉−2
 ·Dα2

η 〈Dy〉2
(χεa)

=
∑


′0+|L′|=
′

�′!
�′0!L′!

∑
α1+α2=2L′

(2L′)!
α1!α2!

Dα1
η 〈η〉−2


×
∑


0+|L|=


�!

�0!L!
Dα2

η D
2L
y (χεa)

=
∑


′0+|L′|=
′

�′!
�′0!L′!

∑
α1+α2=2L′

(2L′)!
α1!α2!

Dα1
η 〈η〉−2


∑

0+|L|=


�!

�0!L!

×
∑

α′
1+α′

2=α2

∑
β1+β2=2L

α2!

α′
1!α

′
2!

(2L)!

β1!β2!
Dα′

1
η D

β1
y χεD

α′
2

η D
β2
y a.

Hence we obtain the following estimates, for ε in [0, 1],

|〈Dη〉2
′{〈η〉−2
〈Dy〉2
(χεa)}| ≤
∑


′0+|L′|=
′

�′!
�′0!L′!

∑
α1+α2=2L′

(2L′)!
α1!α2!

× C
|α1|+1
0 α1!〈η〉−2
−|α1|

∑

0+|L|=


�!

�0!L!

∑
α′
1+α′

2=α2

∑
β1+β2=2L

α2!

α′
1!α

′
2!

(2L)!

β1!β2!

× ε|α
′
1+β1|C |α′

1|+|β1|+1
χ α′

1!
μβ1!

ν |a||α′
2+β2|〈η〉m1+δ1|β2|〈y〉m2+δ2|α′

2|

≤ C
,
′ |a|2(
+
′)〈η〉m−2
(1−δ1)〈y〉m2+2
′δ2 ,

and

〈y〉−2
′ |〈Dη〉2
′{〈η〉−2
〈Dy〉2
(χεa)}| ≤
≤ C
,
′ |a|2(
+
′)〈η〉m1−2
(1−δ1)〈y〉m2−2
′(1−δ2).

Finally, by Lemma 6.3 at page 47 of [35] and Lebesgue dominated convergence theorem we

obtain

Os− [e−iηya] =

∫∫
e−iηy〈y〉−2
′〈Dη〉2
′{〈η〉−2
〈Dy〉2
a}dyd−η,

|Os− [e−iηya]| ≤ C
,
′ |a|2(
+
′)

∫∫
〈η〉m1−2
(1−δ1)〈y〉m2−2
′(1−δ2)dyd−η.

Following the ideas in the proofs of Theorems 6.7 and 6.8 of [35, Chapter 1, Section

6] one can obtain the following result.
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Proposition 2.20. Let a ∈ Am
δ (R

2n), α, β ∈ N0 and η0, y0 ∈ R
n. Then

(i) Os− [e−iηyyαa] = Os− [(−Dη)
αe−iηya] = Os− [e−iηyDα

η a];

(ii) Os− [e−iηyηβa] = Os− [(−Dy)
βe−iηya] = Os− [e−iηyDβ

ya];

(iii) Os− [e−iηya(η, y)] = Os− [e−i(η−η0)(y−y0)a(η − η0, y − y0)].

Now we define the double symbol classes.

Definition 2.24. Let m = (m1,m2),m
′ = (m′

1,m
′
2) ∈ R

2 and ρ = (ρ1, ρ2), δ = (δ1, δ2)

such that 0 ≤ δj < ρj ≤ 1, j = 1, 2. We denote by SGm,m′
ρ,δ (R4n) the space of all functions

p ∈ C∞(R4n) such that for any α, α′, β, β′ ∈ N
n
0 there is Cα′,β′

α,β > 0 for which

|pα,α′
β,β′ (x, ξ, x

′, ξ′)| ≤Cα′,β′
α,β 〈ξ〉m1−ρ1|α|〈ξ′〉m′

1−ρ1|α′|〈ξ; ξ′〉δ1|β+β′|

× 〈x〉m2−ρ2|β|〈x′〉m′
2−ρ2|β′|〈x; x′〉δ2|α+α′|

(2.12)

for every x, x′, ξ, ξ′ ∈ R
n, where pα,α

′
β,β′ = ∂αξ ∂

α′
ξ′ D

β
xD

β′
x′p and 〈z; z′〉 =

√
1 + |z|2 + |z′|2 for

every z, z′ ∈ R
n.

Denoting by |p|m,m′
α,α′,β,β′ the supremum over x, ξ, x′, ξ′ ∈ R

n of

|pα,α′
β,β′ (x, ξ, x

′, ξ′)|〈ξ〉−m1+ρ1|α|〈ξ′〉−m′
1+ρ1|α′|〈ξ; ξ′〉−δ1|β+β′|

× 〈x〉−m2+ρ2|β|〈x′〉−m′
2+ρ2|β′|〈x; x′〉−δ2|α+α′|,

the space SGm,m′
ρ,δ is a Fréchet space whose topology is defined by the family of seminorms

|p|m,m′

 := sup

|α+β+α′+β′|≤


|p|m,m′
α,α′,β,β′ .

Definition 2.25. Let m = (m1,m2),m
′ = (m′

1,m
′
2) ∈ R

2, ρ = (ρ1, ρ2), δ = (δ1, δ2) such that

0 ≤ δj < ρj ≤ 1, j = 1, 2, and let μ, ν ≥ 1. We denote by SGm,m′
ρ,δ;(μ,ν)(R

4n) the space of all

functions p ∈ C∞(R4n) such that for some C > 0:

|pα,α′
β,β′ (x, ξ, x

′, ξ′)| ≤ C |α+β+α′+β′|(α!α′!)μ(β!β′!)ν〈ξ〉m1−ρ1|α|〈ξ′〉m′
1−ρ1|α′|〈ξ; ξ′〉δ1|β+β′| (2.13)

× 〈x〉m2−ρ2|β|〈x′〉m′
2−ρ2|β′|〈x; x′〉δ2|α+α′|.

For C > 0 the space SGm,m′
ρ,δ;(μ,ν)(R

4n;C) of all smooth functions p(x, ξ, x′, ξ′) such that

(2.13) holds for a fixed C > 0, is a Banach space with norm

|p|m,m′
C := sup

α,α′,β,β′∈Nn
0

C−|α+α′+β+β′|(α!α′!)−μ(β!β′!)−ν |p|m,m′
α,α′,β,β′ .

After that we define SGm,m′
ρ,δ;(μ,ν) =

⋃
C>0

SGm,m′
ρ,δ;(μ,ν)(R

4n;C) as an inductive limit of Banach

spaces.
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Definition 2.26. For p ∈ SGm,m′
ρ,δ we define

p(x,Dx, x
′, Dx′)u(x) :=

∫
eiξ(x−x′)eiξ

′(x′−x′′)p(x, ξ, x′, ξ′)u(x′′)dx′′d−ξ′dx′d−ξ

=

∫
eiξ(x−x′)eiξ

′x′
p(x, ξ, x′, ξ′)û(ξ′)d−ξ′dx′d−ξ,

for every u ∈ S (Rn).

Lemma 2.6. Let p ∈ SGm,m′
ρ,(0,δ2)

(R4n). For any multi-indices α, α′, β, β′ set q = pα,α
′

β,β′ and for

θ ∈ [−1, 1] define

qθ(x, ξ) = Os−
∫∫

e−iηyq(x, ξ + θη, x+ y, ξ)dyd−η, x, ξ ∈ R
n.

Then {qθ}|θ|≤1 is bounded in SGτ
ρ,(0,δ2)

(R2n), where τ = (τ1, τ2), τ1 = m1 +m′
1 − ρ1|α + α′|,

τ2 = m2+m
′
2−ρ2|β+β′|+ δ2|α+α′|. Furthermore, for any � ∈ N0 there are �′ := �′(�) ∈ N0

and C
,
′ > 0 independent of θ such that

|qθ|τ
 ≤ C
,
′ |p|m,m′

′ .

Proof. First notice that q(x, ξ + θη, x + y, ξ) ∈ A(m1,m′
2+δ2|α+α′|)

(0,δ2)
(R2n

η,y), therefore qθ(x, ξ) is

well defined for any fixed ξ, x, θ. Given γ, μ ∈ N
n
0 we may write, omitting (x, ξ + θη, x+ y, ξ)

in the notation,

∂γx∂
μ
ξ q =

∑
μ′≤μ

γ′≤γ

μ!

μ′!(μ− μ′)!
γ!

γ′!(γ − γ′)!
p
(α+μ′,α′+μ−μ′)
(β+γ′,β′+γ−γ′) . (2.14)

To prove that {qθ}|θ|≤1 is bounded in SGτ
ρ,(0,δ2)

(R2n) it is sufficient to show that

|qθ(x, ξ)| ≤ C1|p|m,m′

1

〈ξ〉τ1〈x〉τ2 (2.15)

for some C1 > 0 and �1 ∈ N0 depending on α, β, α′, β′. Indeed, if (2.15) holds, then we can

estimate the derivatives of qθ as follows:

|∂γx∂μξ qθ(x, ξ)| =
∣∣∣∣Os− ∫∫ e−iyη∂γx∂

μ
ξ q(x, ξ + θη, x+ y, ξ)dyd−η

∣∣∣∣
≤
∑
γ′≤γ

μ′≤μ

(
μ

μ′

)(
γ

γ′

)∣∣∣∣Os−∫∫ e−iyηp
(α+μ′,α′+μ−μ′)
(β+γ′,β′+γ−γ′) (x, ξ + θη, x+ y, ξ)dyd−η

∣∣∣∣
≤
∑
γ′≤γ

μ′≤μ

(
μ

μ′

)(
γ

γ′

)
C1(α, α

′, β, β′, γ, μ)|p|m,m′

1

× 〈ξ〉m1+m′
1−ρ1|α+μ′+α′+μ−μ′|〈x〉m2+m′

2−ρ2|β+γ′+β′+γ−γ′|+δ2|α+μ′+α′+μ−μ′|
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≤ C|p|m,m′

1

〈ξ〉m1+m′
1−ρ1|α+α′+μ|〈x〉m2+m′

2−ρ2|β+β′+γ|+δ2|α+α′+μ|

where C and �1 depend of α, α′, β, β′, γ, μ and does not depend of θ.

Now we will show that (2.15) holds true. Observe that

e−iηy = (1 + 〈x〉2δ2 |η|2)−
(1− 〈x〉2δ2Δy)

e−iηy,

therefore

qθ(x, ξ) = Os−
∫∫

e−iyηrθ(x, ξ; η, y)dyd
−η,

where

rθ(x, ξ; η, y) = (1 + 〈x〉2δ2 |η|2)−
(1− 〈x〉2δ2Δy)

q(x, ξ + θη, x+ y, ξ).

If we take � satisfying 2� > |m1|+n, then rθ is integrable with respect to η. Now set a

cutoff function χ(y) such that χ(y) = 1 for |y| ≤ 4−1〈x〉 and χ(y) = 0 for |y| ≥ 2−1〈x〉. Then

we can write

Os−
∫∫

e−iyηrθ(x, ξ; η, y)dyd
−η = I1 + I2 + I3,

where

I1 =

∫
Rn
η

∫
|y|≤4−1〈x〉δ2

e−iyηrθ(x, ξ; η, y)χ(y)dyd
−η,

I2 =

∫
Rn
η

∫
4−1〈x〉δ2≤|y|≤2−1〈x〉

e−iyηrθ(x, ξ; η, y)χ(y)dyd
−η,

I3 = Os− [e−iyηrθ(x, ξ; η, y)(1− χ(y))].

Let us obtain a useful inequality when |y| ≤ 2−1〈x〉. Since

|〈x+ y〉 − 〈x〉| ≤
∫ 1

0

| d
dt
〈x+ ty〉|dt ≤

∫ 1

0

|y| |x+ ty|
〈x+ ty〉dt ≤ |y|,

then, for |y| ≤ 2−1〈x〉, we have

1

2
〈x〉 ≤ 〈x+ y〉 ≤ 3

2
〈x〉, 〈x; x+ y〉 ≤ 〈x〉+ |x+ y| ≤ 5

2
〈x〉.

Now we shall proceed to estimate I1, I2, I3. We begin with I1. With aid of Petree’s

inequality and using the fact that ρ2 > δ2 we obtain, for |y| ≤ 4−1〈x〉δ2 and |θ| ≤ 1,

|rθ(x, ξ; η, y)| ≤ (1 + 〈x〉2δ2 |η|2)−

∑


0+|L|=


�!

�0!L!
〈x〉2δ2|L||p(α,α′)

(β,β′+2L)|

≤ (1 + 〈x〉2δ2 |η|2)−
〈x〉2δ2|L|
∑


0+|L|=


�!

�0!L!
|p|m,m′

|α+α′+β+β′|+2
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× 〈ξ + θη〉m1−ρ1|α|〈ξ〉m′
1−ρ1|α′|〈x〉m2−ρ2|β|〈x+ y〉m′

2−ρ2|β′+2L|〈x; x+ y〉δ2|α+α′|

≤ Ck|p|m,m′
k 〈ξ〉τ1〈x〉τ2(1 + 〈x〉2δ2 |η|2)−
〈η〉|m1|+ρ1|α|,

where k = |α + β + α′ + β′|+ 2�. Therefore, for 2� > |m1|+ ρ1|α|+ n,

|I1| =
∣∣∣∣∣
∫
Rn
η

∫
|y|≤4−1〈x〉δ2

e−iyηrθ(x, ξ; η, y)χ(y)dyd
−η

∣∣∣∣∣
≤ Ck|p|m,m′

k 〈ξ〉τ1〈x〉τ2
∫

(1 + 〈x〉2δ2 |η|2)−
〈η〉|m1|+ρ1|α|d−η
∫
|y|≤ 〈x〉δ2

4

dy

≤ Ck|p|m,m′
k 〈ξ〉τ1〈x〉τ2

∫
〈η〉−2
〈〈x〉−δ2η〉|m1|+ρ1|α|d−η

∫
|y|≤ 〈x〉δ2

4

〈x〉−δ2ndy

≤ Ck|p|m,m′
k 〈ξ〉τ1〈x〉τ2

∫
〈η〉−2
+|m1|+ρ1|α|d−η

n∏
j=1

∫
|yj |≤ 〈x〉δ2

4

〈x〉−δ2ndyj

≤ Ck

∫
〈η〉−nd−η|p|m,m′

k 〈ξ〉τ1〈x〉τ2 .

To estimate I2 and I3 it is useful to study |Δ
1
η rθ|. We have

|Δ
1
η rθ| ≤

∑
|Q|=
1

�1!

Q!

∑
Q1+Q2=2Q

(2Q)!

Q1!Q2!
|∂Q1

η (1 + 〈x〉2δ2 |η|2)−
| · |(1− 〈x〉2δ2Δy)

∂Q2

η q|

≤
∑

|Q|=
1

�1!

Q!

∑
Q1+Q2=2Q

(2Q)!

Q1!Q2!
C |Q1|+
+1〈x〉δ2|Q1|Q1!(1 + 〈x〉2δ2 |η|2)−
−|Q1||θ||Q2|

× |(1− 〈x〉2δ2Δy)

p

(α+Q2,α′)
(β,β′) |.

Noticing that

|(1− 〈x〉2δ2Δy)

p

(α+Q2,α′)
(β,β′) | ≤

∑

0+|L|=


�!

�0!L!
〈x〉2δ2|L||p(α+Q2,α′)

(β,β′+2L) |

≤
∑


0+|L|=


�!

�0!L!
〈x〉2δ2|L||p|m,m′

k̃
〈ξ + θη〉m1−ρ1|α+Q2|〈ξ〉m′

1−ρ1|α′|

× 〈x〉m2−ρ2|β|〈x+ y〉m′
2−ρ2|β′+2L|〈x; x+ y〉δ2|α+α′+Q2|,

where k̃ = |α + α′ + β + β′|+ 2(�1 + �), we obtain

|Δ
1
η rθ| ≤

∑
|Q|=
1

�1!

Q!

∑
Q1+Q2=2Q

(2Q)!

Q1!Q2!
C |Q1|+
+1〈x〉δ2|Q1|Q1!

× (1 + 〈x〉2δ2 |η|2)−
−|Q1|
∑


0+|L|=


�!

�0!L!
〈x〉2δ2|L||p|m,m′

k̃
〈ξ + θη〉m1−ρ1|α+Q2|

× 〈ξ〉m′
1−ρ1|α′|〈x〉m2−ρ2|β|〈x+ y〉m′

2−ρ2|β′+2L|〈x; x+ y〉δ2|α+α′+Q2|.
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Now we proceed with the estimate for I2. If |y| ≤ 2−1〈x〉 we get

|Δ

ηrθ| ≤ C k̃+1|p|m,m′

k̃
〈ξ〉τ1〈x〉τ2+2δ2
(1 + 〈x〉2δ2 |η|2)−
〈η〉|m1|+ρ1|α|,

therefore, using integration by parts and assuming 2� > |m1|+ ρ1|α|+ 2n,

|I2| ≤ C k̃+1|p|m,m′

k̃
〈ξ〉τ1〈x〉τ2+δ2(2
−n)

∫
〈x〉δ2

4
≤|y|≤ 〈x〉

2

|y|−2
dy.

For |y| ≥ 4−1〈x〉δ2 we may write

|y|−2
 ≤ 22

n∏

j=1

(|yj|+ 〈x〉δ2
4

)−
2�
n ,

and then ∫
〈x〉δ2

4
≤|y|≤ 〈x〉

2

|y|−2
dy ≤ 22

n∏

j=1

∫
(|yj|+ 〈x〉δ2

4
)−

2�
n dyj ≤ C
〈x〉δ2(n−2
).

After that

|I2| ≤ C̃ k̃+1|p|m,m′

k̃
〈ξ〉τ1〈x〉τ2 .

Finally, we take care of I3. If |y| ≥ 4−1〈x〉 we have 〈x+y〉 ≤ 5|y| and 〈x; x+y〉 ≤ 9|y|.
Hence, for |y| ≥ 4−1〈x〉, we may write

|Δ
1
η rθ| ≤ C k̃+1|p|m,m′

k̃
〈ξ〉τ1〈η〉|m1|+ρ1|α|〈x〉m2−ρ2|β||y||m′

2|+δ2|α+α′|+2δ2(
+
1)

and therefore, choosing �, �1 ∈ N0 satisfying 2� > |m1| + ρ1|α| + 2n and 2�1(1 − δ2) ≥
|m′

2|+ δ2|α + α′|+ 2δ2�+ 2n,

|I3| ≤ C k̃+1|p|m,m′

k̃
〈ξ〉τ1〈x〉m2−ρ2|β|−δ2n

∫
〈η〉|m1|+ρ1|α|−2
d−η

×
∫
|y|≥4−1〈x〉

|y||m′
2|+δ2|α+α′|+2δ2
−2
1(1−δ2)dy.

Setting r = 2�1(1− δ2)− |m′
2| − δ2|α + α′| − 2δ2�, we obtain

|I3| ≤ C k̃+1|p|m,m′

k̃
〈ξ〉τ1〈x〉m2−ρ2|β|

∫
〈η〉−2nd−η〈x〉n(1−δ2)−r.

Choosing �1 such that r > −m2 + ρ2|β′| − δ2|α + α′|+ n(1− δ2), we get

|I3| ≤ C k̃+1|p|m,m′

k̃
〈ξ〉τ1〈x〉τ2

∫
〈η〉−2nd−η.

Gathering all the previous computations and choosing �, �1 ∈ N0 satisfying

2� ≥ |m1|+ ρ1|α|+ 2n,
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2�1(1− δ2) ≥ 2|m′
2|+ ρ2|β′|+ δ2|α + α′|+ 2δ2�+ 2n,

we have

|qθ(x, ξ)| ≤ C k̃|p|m,m′

k̃
〈ξ〉τ1〈x〉τ2 ,

where k̃ = |α + β + α′ + β′|+ 2(�+ �1). This concludes the proof.

Remark 2.20. Let a ∈ C∞(Rn) such that |∂βxa(x)| ≤ Cβ〈x〉m2 , for β ∈ N
n
0 . For each fixed x,

we can look at a(x + ·) as an amplitude in A(0,|m2|)
(0,0) (R2n). Moreover (cf. Section 6, Chapter 1

of [35])

Os− [e−iηya(x+ y)] = Os− [e−iη(y−x)a(y)] = a(x).

Theorem 2.15. Let p(x, ξ, x′, ξ′) ∈ SGm,m′
ρ,(0,δ2)

and set

pL(x, ξ) = Os−
∫∫

e−iηyp(x, ξ + η, x+ y, ξ)dyd−η, x, ξ ∈ R
n.

Then pL ∈ SGm+m′
ρ,(0,δ2)

, p(x,Dx, x
′, Dx′) = pL(x,Dx) and

pL(x, ξ) ∼
∑
j∈N0

∑
|α|=j

1

α!
(∂αξD

α
x′p)(x, ξ, x, ξ)

Furthermore, given � ∈ N0 there is �0 := �0(�) ∈ N0 such that

|pL|m+m′

 ≤ C
,
0 |p|(m,m′)


0
.

Proof. First we notice that repeating the ideas in the proof of [35, Lemma 2.3, page 65] we can

conclude that pL = p as operators.

Applying Lemma 2.6 for α = α′ = β′ = β = 0, we obtain that pL ∈ SGm+m′
ρ,(0,δ2)

.

Now by Taylor formula we may write

p(x, ξ + η, x+ y, ξ) =
∑
|α|<N

ηα

α!
(∂αξ p)(x, ξ, x+ y, ξ)+

+N
∑
|γ|=N

ηγ

γ!

∫ 1

0

(1− θ)N−1(∂γξ p)(x, ξ + θη, x+ y, ξ)dθ.

Integration by parts and Remark 2.20 give

Os− [e−iηyηα(∂αξ p)(x, ξ, x+ y, ξ)] = Os− [e−iηyDα
y (∂

α
ξ p)(x, ξ, x+ y, ξ)]

= (∂αξD
α
x′p)(x, ξ, x, ξ)
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and

Os−[e−iηyηγ
∫ 1

0

(1− θ)N−1(∂γξ p)(x, ξ + θη, x+ y, ξ)dθ] =

Os− [e−iηy

∫ 1

0

(1− θ)N−1(∂γξD
γ
x′p)(x, ξ + θη, x+ y, ξ)dθ].

Hence

pL(x, ξ) =
∑
|α|<N

1

α!
(∂αξD

α
x′p)(x, ξ, x, ξ) + rN(x, ξ),

and Lemma 2.6 implies rN ∈ SG
m+m′−N(ρ−(0,δ2))
ρ,(0,δ2)

.

In order to obtain the same kind of result for the classes SGm,m′
ρ,(0,δ2);(μ,ν)

, we need an

analogous of Lemma 2.6 with a precise estimate of the Gevrey regularity.

Lemma 2.7. Let p ∈ SGm,m′
ρ,(0,δ2);(μ,ν)

(R4n;A) for some A > 0. For any multi-indices α, α′, β, β′

set q = pα,α
′

β,β′ and, for θ ∈ [−1, 1] consider qθ as in Lemma 2.6. Then

|∂σξ ∂γxqθ(x, ξ)| ≤ |p|m,m′
A (CAr)k(α!α′!σ!)μ̃(β!β′!γ!)ν̃〈x〉τ2−ρ2|γ|+δ2|σ|〈ξ〉τ1−ρ1|σ| (2.16)

where k = |α+ β + α′ + β′ + σ + γ|, μ̃ = (1 + δ2ρ1+δ2
1−δ2

)μ+ ρ1ν, ν̃ = ρ2
1−δ2

μ+ ν, τ1 and τ2 are

as in Lemma 2.6 and C, r are positive constants depending only on ρ, δ,m,m′, μ, ν and n.

Proof. Following the ideas presented in the proof of Lemma 2.6 and using standard factorial

inequalities we obtain

|qθ(x, ξ)| ≤ |p|m,m′
A (CA)k̃�!2ν�1!

2μ(α!α′!)μ(β!β′!)ν〈ξ〉τ1〈x〉τ2 ,

where C > 0 depends only of μ, ν, n,m1, k̃ = |α+β+α′+β′|+2(�+�1) and �, �1 are positive

integers satisfying 2� ≥ |m1|+ ρ1|α|+ 2n, and

2�1(1− δ2) ≥ 2|m′
2|+ ρ2|β′|+ δ2|α + α′|+ 2δ2�+ 2n.

In particular if we choose

� =

⌊ |m1|
2

+
ρ1
2
|α|
⌋
+ n+ 1,

�1 =

⌊
1

1− δ2

(
|m′

2|+ δ2�+
ρ2
2
|β′|+ δ2

2
|α + α′|

)⌋
+ n+ 1,

where �·� stands for the floor function, then we obtain

|qθ(x, ξ)| ≤ |p|m,m′
A (CAr)|α+β+α′+β′| α!μ̃α′!μ(1+

δ2
1−δ2

)
β!νβ′!ν̃(β!β′!)ν〈ξ〉τ1〈x〉τ2 .

From the last estimate and (2.14) we get (2.16).
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As a consequence of Lemma 2.7 we have the following result.

Theorem 2.16. Let p ∈ SGm,m′
ρ,(0,δ2);(μ,ν)

(R4n). Then pL belongs to SGm+m′
ρ,(0,δ2);(μ̃,ν̃)

and

pL(x, ξ) ∼
∑
j∈Nn

0

pj(x, ξ) in FSGm+m′
ρ,(0,δ2);(μ̃,ν̃)

,

where

pj(x, ξ) =
∑
|α|=j

α!−1(∂αξD
α
x′p)(x, ξ, x, ξ)

and μ̃ and ν̃ are as in Lemma 2.7.

Theorem 2.16 states that pL has a lower Gevrey regularity than p since μ̃ > μ and

ν̃ > ν. However we observe that if p ∈ SGm,m′
ρ,(0,δ2);(μ,ν)

, then
∑

j∈N0
pj ∈ FSGm+m′

ρ,(0,δ2);(μ,ν)
. So

by Proposition 2.16 there exists q ∈ SGm+m′
ρ,(0,δ2);(μ,ν)

such that q ∼ ∑ pj in FSGm+m′
ρ,(0,δ2);(μ,ν)

. On

the other hand we have pL ∼ ∑ pj in FSGm+m′
ρ,(0,δ2);(μ̃,ν̃)

. Hence pL − q ∼ 0 in FSGm+m′
ρ,(0,δ2);(μ̃,ν̃)

which implies that pL = q+ r, where r belongs to the Gelfand-Shilov space Sμ̃+ν̃−1(R
2n). This

means that we can write pL as the sum of a symbol with the same orders and regularity as p plus

a remainder term which has a lower Gevrey regularity but with orders small as we want.

2.5.3 The Friedrichs Part

Fix q ∈ C∞
0 (Rn;R) supported on Q = {σ ∈ R

n : |σ| ≤ 1}, such that q is even,∫
q(σ)2dσ = 1 and |∂ασ q(σ)| ≤ C

|α|+1
q α!s, where 1 < s ≤ min{μ, ν}.

Lemma 2.8. For τ, τ ′ ∈ (0, 1) set F : R3n → R given by

F (x, ξ, ζ) = q(〈x〉τ ′〈ξ〉−τ (ζ − ξ))〈ξ〉− τn
2 〈x〉 τ ′n

2 , (2.17)

for x, ξ, ζ ∈ R
n. Then, for any α, β ∈ N

n
0 , we have

∂αξ ∂
β
xF (x, ξ, ζ) = 〈x〉 τ ′n

2 〈ξ〉− τn
2

∑
|γ|≤|α|
γ1≤γ

∑
|δ|≤|β|

ψαγγ1(ξ)φβδγγ1(x)

×(〈x〉τ ′〈ξ〉−τ (ζ − ξ))γ1+δ(∂γ+δq)(〈x〉τ ′〈ξ〉−τ (ζ − ξ)),

where ψαγγ1 and φβδγγ1 satisfy the following estimates:

|∂μξ ψαγγ1(ξ)| ≤ Cαμ〈ξ〉−|α|+(1−τ)|γ−γ1|−|μ|, (2.18)

|∂νxφβδγγ1(x)| ≤ Cβν〈x〉−|β|+τ ′|γ−γ1|−|ν|, (2.19)

for every μ, ν ∈ N
n
0 .
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The lemma can be proved by induction on |α + β| following the same argument as

in the proof of [35, Lemma 4.1 page 129]. Observing that |γ − γ1| ≤ |γ| ≤ |α| we have

ψαγγ1(ξ)φβδγγ1(x) ∈ SG(−τ |α|,−|β|+τ ′|α|)(R2n). Finally we remark that for α = β = 0 we have

ψαγγ1 ≡ φβδγγ1 ≡ 1.

Definition 2.27. Let p ∈ SGm. Let moreover F (x, ξ, ζ) be defined by (2.17) with τ = τ ′ = 1
2
.

We set the Friedrichs part of p by

pF (ξ, x
′, ξ′) =

∫
F (x′, ξ, ζ)p(x′, ζ)F (x′, ξ′, ζ) dζ, x′, ξ, ξ′ ∈ R

n.

The following properties can be easily achieved (cf. Theorem 4.3 of [35]).

Proposition 2.21. Let p ∈ SGm and let pF be its Friedrichs part. For u, v ∈ S (Rn), the

following conditions hold:

(i) If p(x, ξ) is real, then 〈pFu, v〉L2 = 〈u, pFv〉L2 ;

(ii) If p(x, ξ) ≥ 0, then 〈pFu, u〉L2 ≥ 0;

(iii) If p(x, ξ) is purely imaginary, then 〈pFu, v〉L2 = −〈u, pFv〉L2 ;

(iv) If Re p(x, ξ) ≥ 0, then Re 〈pFu, u〉L2 ≥ 0.

Theorem 2.17. Let p ∈ SGm(R2n) and let pF be its Friedrichs part. Then pF,L ∈ SGm(R2n)

and pF,L − p ∈ SGm−(1,1)(R2n). Moreover

pF,L(x, ξ)− p(x, ξ) ∼
∑
|β|=1

q0,β(x, ξ) +
∑

|α+β|≥2

qα,β(x, ξ),

where, for |β| = 1,

q0,β(x, ξ) =
∑

β1+β2+β3=β

Dβ3
x p(x, ξ)

∑
|γ|≤|β|

∑
|δ|≤|β1|

ψβγγ(ξ)φβ1δγγ(x)

×
∑

|δ′|≤|β2|
φβ2δ′00(x)

∫
σγ+δ+δ′(∂γ+δq)(σ)(∂δ

′
q)(σ)dσ,

with ψβγγφβ1δγγ ∈ SG(−|β|,−|β1|)(R2n), φβ2δ′00 ∈ SG(0,−|β2|)(R2n) and, for |α + β| ≥ 2:

qα,β(x, ξ) =
∑

β1+β2+β3=β

(〈ξ〉 1
2 〈x〉− 1

2 )|α|

α!β1!β2!β3!

×
∑

|γ|≤|β|
γ1≤γ

∑
|δ|≤|β1|

ψβγγ1(ξ)φβ1δγγ1(x)
∑

|δ′|≤|β2|
φβ2δ′00(x)
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×
∫
Q

σα+γ1+δ1+δ′1(∂γ+δq)(σ)(∂δ
′
q)(σ) dσ · ∂αξDβ3

x p(x, ξ)

with ψβγγ1φβ1δγγ1 ∈ SG(− 1
2
|β|,−|β1|+ 1

2
|β|)(R2n), φβ2δ′00 ∈ SG(0,−|β2|)(R2n).

We need the following technical lemma whose proof follows by a simple compactness

argument.

Lemma 2.9. For τ ∈ (0, 1) there is C > 0 such that

C−1〈ξ〉 ≤ 〈ξ + ζ〈ξ〉τ 〉 ≤ C〈ξ〉,

for every ξ ∈ R
n and |ζ| ≤ 1.

Proof of Theorem 2.17. From Leibniz formula and Cauchy-Schwartz inequality we get

|∂αξ ∂α
′

ξ′ ∂
β′
x′ pF (ξ, x

′, ξ′)| ≤
∑

β′
1+β′

2+β′
3=β′

β′!
β′
1!β

′
2!β

′
3!

[∫
|∂αξ ∂β

′
1

x′ F (x
′, ξ, ζ)|2 dζ

] 1
2

×
[∫

|∂β′
2

x′ p(x
′, ζ)∂α

′
ξ′ ∂

β′
3

x′ F (x
′, ξ′, ζ)|2 dζ

] 1
2

.

Now by a change of variables we obtain

|∂αξ ∂α
′

ξ′ ∂
β′
x′ pF (ξ, x

′, ξ′)| ≤ 〈ξ〉n
4 〈x′〉−n

2 〈ξ′〉n
4

∑
β′
1+β′

2+β′
3=β′

β′!
β′
1!β

′
2!β

′
3!

×
[∫

Q

|(∂αξ ∂β
′
1

x′ F )(x
′, ξ, 〈x′〉− 1

2 〈ξ〉 1
2σ + ξ)|2 dσ

] 1
2

×
[∫

Q

|(∂α′
ξ′ ∂

β′
2

x′ F )(x
′, ξ′, 〈x′〉− 1

2 〈ξ′〉 1
2σ + ξ′)(∂β

′
3

x′ p)(x
′, 〈x′〉− 1

2 〈ξ′〉 1
2σ + ξ′)|2dσ

] 1
2

.

Applying Lemma 2.8 we obtain

|∂αξ ∂α
′

ξ′ ∂
β′
x′ pF (ξ, x

′, ξ′)| ≤
∑

β′
1+β′

2+β′
3=β′

β′!
β′
1!β

′
2!β

′
3!

×

⎛⎜⎝∫ ∑
|γ|≤|α|
γ1≤γ

∑
|δ|≤|β′

1|

∣∣ψαγγ1(ξ)φβ′
1δγγ1

(x′)σγ1+δ(∂γ+δq)(σ)
∣∣2 dσ

⎞⎟⎠
1
2

×

⎛⎜⎜⎜⎜⎝
∫ ∑

|γ|≤|α′|
γ1≤γ

|δ|≤|β′
2|

∣∣ψα′γγ1(ξ
′)φβ′

2δγγ1
(x′)σγ1+δ(∂γ+δq)(σ)

∣∣2 ∣∣∣∂β′
3

x′ p(x
′, 〈x′〉− 1

2 〈ξ′〉 1
2σ + ξ′)

∣∣∣2 dσ
⎞⎟⎟⎟⎟⎠

1
2

.
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We now observe that by Lemma 2.9∣∣∣∂β′
3

x′ p(x
′, 〈x′〉− 1

2 〈ξ′〉 1
2σ + ξ′)

∣∣∣ ≤ Cβ′
3
〈ξ′〉m1〈x′〉m2−|β′

3|.

Since ψαγγ1φβ′
1δγγ1

∈ SG(− |α|
2
,−|β′

1|+ |α|
2
) and ψα′γγ1φβ′

2δγγ1
∈ SG(− |α′|

2
,−|β′

2|+ |α′|
2

) we obtain

|∂αξ ∂α
′

ξ′ ∂
β′
x′ pF (ξ, x

′, ξ′)| ≤ Cαα′β′〈ξ〉− |α|
2 〈ξ′〉m1− |α′|

2 〈x′〉m2−|β′|+ |α+α′|
2 ,

that is pF ∈ SG
(0,0),(m1,m2)
(1/2,1),(0,1/2). Then, by Theorem 2.15 pF,L ∈ SGm

(1/2,1),(0,1/2) and

pF,L(x, ξ) ∼
∑
β

1

β!
(∂βξD

β
x′pF )(ξ, x, ξ) =

∑
β

p̃β(x, ξ),

which implies that pF,L − ∑
|β|<N

p̃β ∈ SG
m−N

2
(1,1)

(1/2,1),(0,1/2) for every N ∈ N. To improve this result

let us study more carefully the above asymptotic expansion. Note that

p̃β(x, ξ) =
∑

β1+β2+β3=β

1

β1!β2!β3!

∫
∂βξD

β1
x F (x, ξ, ζ)D

β3
x p(x, ζ)D

β2
x F (x, ξ, ζ)dζ

=
∑

β1+β2+β3=β

1

β1!β2!β3!

∑
|γ|≤|β|
γ1≤γ

∑
|δ|≤|β1|

ψβγγ1(ξ)φβ1δγγ1(x)
∑

|δ′|≤|β2|
ψβ2δ′00(x)

×
∫
Q

(Dβ3
x p)(x, 〈ξ〉

1
2 〈x〉− 1

2σ + ξ)σγ1+δ+δ′(∂γ+δq)(σ)(∂δ
′
q)(σ)dσ.

By Taylor formula we can write

Dβ3
x p(x, 〈ξ〉

1
2 〈x〉− 1

2σ + ξ) =
∑
|α|<N

(〈ξ〉 1
2 〈x〉− 1

2 )|α|σα

α!
∂αξD

β3
x p(x, ξ)

+N
∑
|α|=N

〈ξ〉N
2 〈x〉−N

2 σα

α!

∫ 1

0

(1− θ)N−1(∂αξD
β3
x p)(x, θ〈ξ〉

1
2 〈x〉− 1

2σ + ξ)dθ.

Then we get

p̃β(x, ξ) =
∑

β1+β2+β3=β

∑
|α|<N

(〈ξ〉 1
2 〈x〉− 1

2 )|α|

α!β1!β2!β3!

×
∑

|γ|≤|β|
γ1≤γ

∑
|δ|≤|β1|

ψβγγ1(ξ)φβ1δγγ1(x)
∑

|δ′|≤|β2|
φβ2δ′00(x)

×
∫
Q

σα+γ1+δ+δ′∂γ+δq(σ)∂δ
′
q(σ) dσ · ∂αξDβ3

x p(x, ξ) + rβ,N(x, ξ)

where

rβ,N(x, ξ) =
∑

β1+β2+β3=β

∑
|α|=N

N

α!
· (〈ξ〉

1
2 〈x〉− 1

2 )N

β1!β2!β3!
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×
∑

|γ|≤|β|
γ1≤γ

∑
|δ|≤|β1|

ψβγγ1(ξ)φβ1δγγ1(x)
∑

|δ′|≤|β2|
φβ2δ′00(x)

×
∫
Q

σγ1+δ+δ′+α∂γ+δq(σ)∂δ
′
q(σ)

∫ 1

0

(1− θ)N−1(∂αξD
β3
x p)(x, θ〈ξ〉

1
2 〈x〉− 1

2σ + ξ) dθdσ.

(2.20)

Using Lemma 2.9 we get that rβ,N belongs to SG(m1− 1
2
(N+|β|),m2− 1

2
(|β|+N)), whereas

qα,β(x, ξ) =
∑

β1+β2+β3=β

(〈ξ〉 1
2 〈x〉− 1

2 )|α|

α!β1!β2!β3!

×
∑

|γ|≤|β|
γ1≤γ

∑
|δ|≤|β1|

ψβγγ1(ξ)φβ1δγγ1(x)
∑

|δ′|≤|β2|
φβ2δ′00(x)

×
∫
Q

σα+γ1+δ1+δ′1∂γ+δq(σ)∂δ
′
q(σ) dσ · ∂αξDβ3

x p(x, ξ)

belongs to SG(m1− 1
2
(|α|+|β|),m2− 1

2
(|β|+|α|)). Hence∑
|α+β|=j

qα,β ∈ SGm− 1
2
(j,j).

Then we can find a symbol t(x, ξ) such that

t(x, ξ) ∼
∑
j∈N0

∑
|α+β|=j

qα,β(x, ξ).

Since, for every N ∈ N,

p̃β(x, ξ)−
∑
|α|<N

qα,β(x, ξ) ∈ SG
m− 1

2
(N+|β|,N+|β|)

( 1
2
,1),(0, 1

2
)

(R2n),

we obtain that pF,L − t ∈ S (R2n), and therefore

pF,L(x, ξ) ∼
∑
j∈N0

∑
|α+β|=j

qα,β(x, ξ).

To finish the proof, let us analyze more carefully the functions qα,β when |α+ β| ≤ 1.

First we notice that if α = β = 0 we have q0,0(x, ξ) = p(x, ξ). If |α| = 1 and β = 0,

qα,0(x, ξ) =
〈ξ〉 |α|

2 〈x〉− |α|
2

α!

∫
σαq(σ)2dσ = 0,

because σαq2(σ) is an odd function. In the case |α| = 0 and |β| = 1 we have

q0,β(x, ξ) =
∑

β1+β2+β3=β

Dβ3
x p(x, ξ)

∑
|γ|≤|β|
|γ1|≤|γ|

∑
|δ|≤|β1|

ψβγγ1(ξ)φβ1δγγ1(x)
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×
∑

|δ′|≤|β2|
φβ2δ′00(x)

∫
ζγ1+δ+δ′(∂γ+δq)(ζ)(∂δ

′
q)(ζ)dζ.

If |γ1| < |γ| in the above formula, we have γ1 = 0 and |γ| = 1 and, since q is even,∫
ζδ+δ′(∂ej+δq)(ζ)(∂δ

′
q)(ζ)dζ = 0, j = 1, . . . , n.

Therefore

q0,β(x, ξ) =
∑

β1+β2+β3=β

Dβ3
x p(x, ξ)

∑
|γ|≤|β|

∑
|δ|≤|β1|

ψβγγ(ξ)φβ1δγγ(x)

×
∑

|δ′|≤|β2|
φβ2δ′00(x)

∫
ζγ+δ+δ′(∂γ+δq)(ζ)(∂δ

′
q)(ζ)dζ,

and by Lemma 2.8 q0,β ∈ SGm−(1,1)(R2n). Hence

pF,L(x, ξ)− p(x, ξ) ∼
∑
|β|=1

q0,β(x, ξ) +
∑

|α+β|≥2

qα,β(x, ξ)

and in particular that pF,L − p ∈ SGm−(1,1)(R2n).

Proposition 2.21 and Theorem 2.17 imply the well known sharp Gårding inequality.

Theorem 2.18. Let p ∈ SGm(R2n). If Re p(x, ξ) ≥ 0, then

Re (p(x,D)u, u)L2 ≥ −C‖u‖2
H

1
2 (m−(1,1))

u ∈ S (Rn),

for some positive constant C.

Proof. Setting q = p − pF,L ∈ SGm−(1,1)(R2n) and recalling that pF and pF,L define the same

operator, we may write, by (iv) of Proposition 2.21:

Re (p(x,D)u, u)L2 = Re (q(x,D)u, u)L2 +Re (pFu, u)L2 ≥ Re (q(x,D)u, u)L2 .

Now observe that for any s = (s1, s2) ∈ R
2

|(q(x,D)u, u)L2 | = |(〈x〉s2〈Dx〉s1q(x,D)u, 〈x〉−s2〈Dx〉−s1u)L2 |
≤ ‖q(x,D)u‖Hs‖u‖H−s ≤ C‖u‖Hs+m−(1,1)‖u‖H−s .

Choosing s = 1
2
[(1, 1)−m] we conclude that

Re (p(x,D)u, u)L2 ≥ −C‖u‖2
H

1
2 (m−(1,1))

.
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In order to study the Friedrichs part of symbols satisfying Gevrey estimates, we will

need the following version of the Faà di Bruno formula. Given smooth functions g : Rn → R
p,

g = (g1, . . . , gp),f : Rp → R and γ ∈ N
n
0 − {0} we have

∂γ(f ◦ g)(x) =
∑ γ!

k1! . . . k
!
(∂k1+···+knf)(g(x))


∏
j=1

p∏
i=1

[
1

δj!
∂δjgi(x)

]kji
, (2.21)

where the sum is taken over all � ∈ N, all sets {δ1, . . . , δ
} of � distinct elements of Nn
0 − {0}

and all (k1, . . . , k
) ∈ (Np
0 − {0})
, such that

γ =

∑

s=1

|ks|δs.

It is possible to show that there is a constant C > 0 such that∑ (k1 + . . .+ k
)!

k1! . . . k
!
≤ C |γ|+1, γ ∈ N− {0},

and |k1 + . . . + k
|! ≤ |γ|!, where the summation and k1, . . . , k
 are as in(2.21). For a proof of

these assertions we refer to Proposition 4.3 (pg 9), Corollary 4.5 (pg 11) and Lemma 4.8 (pg

12) of [7].

Let p ∈ SGm
(μ,ν). We already know that pF ∈ SG

(0,0),(m1,m2)

( 1
2
,1),(0, 1

2
)

. Now we want to obtain

a precise information about the Gevrey regularity of pF . By Faà di Bruno formula,

∂βx∂
α
ξ q(〈ξ〉−

1
2 〈x〉 1

2 (ζ − ξ)) = ∂βx
∑


,k1,...,k�

α!

k1! . . . k
!

× (∂k1+...+k�q)(〈ξ〉− 1
2 〈x〉 1

2 (ζ − ξ))

∏

j=1

〈x〉
|kj |
2

n∏
i=1

[
1

δj!
∂
δj
ξ {〈ξ〉− 1

2 (ζi − ξi)}
]kji

=
∑


,k1,...,k�

α!

k1! . . . k
!

∑
β1+β2=β

β!

β1!β2!
∂β1
x (∂k1+...+k�q)(〈ξ〉− 1

2 〈x〉 1
2 (ζ − ξ))

× ∂β2
x


∏
j=1

〈x〉
|kj |
2

n∏
i=1

[
1

δj!
∂
δj
ξ {〈ξ〉− 1

2 (ζi − ξi)}
]kji

=
∑


,k1,...,k�

α!

k1! . . . k
!

∑
β1+β2=β

β!

β1!β2!

∑

′,k′1,...,k

′
�′

β1!

k′1! . . . k
′

′ !

× (∂(k1+...+k�)+(k′1+...+k′
�′ )q)(〈ξ〉− 1

2 〈x〉 1
2 (ζ − ξ))

×

′∏

j′=1

n∏
i′=1

[
1

δ′j′ !
∂
δ′j
x 〈ξ〉− 1

2 〈x〉 1
2 (ζi′ − ξi′)

]k′
j′i′

×
∑

σ1+...+σ�=β2

β2!

σ1! . . . σ
!


∏
j=1

∂σj
x 〈x〉

|kj |
2

n∏
i=1

[
1

δj!
∂
δj
ξ {〈ξ〉− 1

2 (ζi − ξi)}
]kji

,
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hence

∂βx∂
α
ξ q(〈ξ〉−

1
2 〈x〉 1

2 (ζ − ξ)) =
∑


,k1,...,k�

α!

k1! . . . k
!

∑
β1+β2=β

β!

β1!β2!

×
∑


′,k′1,...,k
′
�′

β1!

k′1! . . . k
′

′ !
(∂(k1+...+k�)+(k′1+...+k′

�′ )q)(〈ξ〉− 1
2 〈x〉 1

2 (ζ − ξ))

×

′∏

j′=1

n∏
i′=1

[
1

δ′j′ !
∂
δ′
j′

x 〈x〉 1
2 〈x〉− 1

2

]k′
j′i′ [

〈ξ〉− 1
2 〈x〉 1

2 (ζi′ − ξi′)
]k′

j′i′

×
∑

σ1+...+σ�=β2

β2!

σ1! . . . σ
!


∏
j=1

∂σj
x 〈x〉 1

2
|kj |

n∏
i=1

[
1

δj!
{∂δjξ 〈ξ〉− 1

2 (ζi − ξi)− δji∂
δj−ei
ξ 〈ξ〉− 1

2}
]kji

.

Noticing that 〈x〉 1
2 〈ξ〉− 1

2 |ζ − ξ| ≤ 1 on the support of q, we have

|∂βx∂αξ q(〈ξ〉−
1
2 〈x〉 1

2 (ζ − ξ))| ≤ C̃ |α+β|+1
q,s (α!β!)s〈x〉 |α|

2
−|β|〈ξ〉− |α|

2 .

We now apply the above inequality to estimate the derivatives of F . We have

|∂αξ ∂βxF (x, ξ, ζ)| ≤
∑

α1+α2=α

β1+β1=β

α!β!

α1!β1!α2!β2!
∂α1
ξ 〈ξ〉−n

4 ∂β1
x 〈x〉n

4 |∂α2
ξ ∂β2

x q(〈ξ〉−
1
2 〈x〉 1

2 (ζ − ξ))|

≤ C |α+β|+1
q,s (α!β!)s〈ξ〉−n

4
− |α|

2 〈x〉n
4
+

|α|
2
−|β|. (2.22)

Finally we proceed with the estimates for pF . Denoting

Qx,ξ = {ζ ∈ R
n : 〈x〉 1

2 〈ξ〉− 1
2 |ζ − ξ| < 1}, x, ξ ∈ R

n,

we obtain

|∂αξ ∂α
′

ξ′ ∂
β′
x′ pF (ξ, x

′, ξ′)| ≤
∑

β1+β2+β2=β

β!

β1!β2!β3!

[∫
Qx,ξ

|∂αξ ∂β
′
1

x F (ξ, x
′, ζ)|2dζ

] 1
2

×
[∫

Qx′,ξ′
|∂β′

3
x p(x

′, ζ)∂α
′

ξ ∂
β′
2

x F (x
′, ξ′, ζ)|2dζ

] 1
2

≤
∑

β1+β2+β2=β

β!

β1!β2!β3!
C |α+α′+β′

1+β′
2|+2

q,s (α!α′!β′
1!β

′
2!)

s〈ξ〉− |α|
2 〈ξ′〉− |α′|

2

× 〈x〉 1
2
|α+α′|−|β′

1+β′
2|
[∫

Qx′,ξ

〈ξ〉−n
2 〈x′〉n

2 dζ

] 1
2

·
[∫

Qx′,ξ′
〈ξ′〉−n

2 〈x′〉n
2 |∂β′

3
x p(x

′, ζ)|2dζ
] 1

2

≤
∑

β1+β2+β2=β

β!

β1!β2!β3!
C |α+α′+β′

1+β′
2|+2

q,s (α!α′!β′
1!β

′
2!)

s〈ξ〉− |α|
2 〈ξ′〉− |α′|

2

× 〈x〉 |α+α′|
2

−|β′
1+β′

2|
[∫

|ζ|<1

dζ

] 1
2
[∫

|ζ|<1

|∂β′
3

x p(x
′, 〈x′〉− 1

2 〈ξ〉 1
2 ζ + ξ′)|2dζ

] 1
2

.
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Using Lemma 2.9 and recalling that s ≤ min{μ, ν},

|∂αξ ∂α
′

ξ′ ∂
β′
x′ pF | ≤ C |α+α′+β′|+1(α!α′!)μβ′!ν〈x〉m2−|β′|+ 1

2
|α+α′|〈ξ〉− |α|

2 〈ξ′〉m1− |α′|
2 ,

which means pF ∈ SG
(0,0),(m1,m2)

( 1
2
,1),(0, 1

2
);(μ,ν)

(R4n).

Now we discuss the asymptotic expansion of pF , when p ∈ SGm
(μ,ν). In the following

we will use the notation of the proof of Theorem 2.17. We have

pF,L(x, ξ) ∼
∑
β

p̃β(x, ξ) in FSGm
( 1
2
,1),(0, 1

2
);(μ̃,ν̃)

,

and by Lemma 2.7 and Taylor formula we may write∣∣∣∣∣∣∂θξ∂σx (pF,L −
∑
|β|<N

p̃β)(x, ξ)

∣∣∣∣∣∣ ≤ C |θ+σ|+2N+1θ!μ̃σ!ν̃N !μ̃+ν̃−1〈ξ〉m1− |θ|
2
−N

2 〈x〉m2−|σ|+ |θ|
2
−N

2

(2.23)

for every θ, σ ∈ N
n
0 , x, ξ ∈ R

n and N ∈ N, where μ̃ = 3
2
μ+ 1

2
ν and ν̃ = ν +2μ. We also have,

for every β ∈ N
n
0 and N ∈ N,

p̃β(x, ξ)−
∑
|α|<N

qα,β(x, ξ) = rβ,N(x, ξ).

where rβ,N is given as in (2.20).

Performing the change of variables σ = (ζ − ξ)〈x〉 1
2 〈ξ〉− 1

2 , we obtain

rβ,N(x, ξ) =
∑

β1+β2+β3=β

∑
|α|=N

N

α!
· (〈ξ〉

1
2 〈x〉− 1

2 )N

β1!β2!β3!

×
∑

|γ|≤|β|
γ1≤γ

∑
|δ|≤|β1|

ψβγγ1(ξ)φβ1δγγ1(x)
∑

|δ′|≤|β2|
φβ2δ′00(x)

×
∫
Qx,ξ

((ζ − ξ)〈x〉 1
2 〈ξ〉− 1

2 )γ1+δ+δ′+α∂γ+δq((ζ − ξ)〈x〉 1
2 〈ξ〉− 1

2 )∂δ
′
q((ζ − ξ)〈x〉 1

2 〈ξ〉− 1
2 )

·
∫ 1

0

(1− θ)N−1(∂αξD
β3
x p)(x, θζ + (1− θ)ξ) dθ〈x〉n

2 〈ξ〉−n
2 dζ.

By Lemma 2.8 we get

rβ,N(x, ξ) =
∑

β1+β2+β3=β

∑
|α|=N

N

α!
· (〈ξ〉

1
2 〈x〉− 1

2 )N

β1!β2!β3!

∫
Qx,ξ

(∂βξ ∂
β1
x F )(x, ξ, ζ)(∂

β2
x F )(x, ξ, ζ)

×
∫ 1

0

(1− θ)N−1(∂αξD
β3
x p)(x, θζ + (1− θ)ξ) dθdζ.

Now, there exists K > 0 such that

K−1〈ξ〉 ≤ 〈θζ + (1− θ)ξ〉 ≤ K〈ξ〉, |θ| < 1, ζ ∈ Qx,ξ, x, ξ ∈ R
n.
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Then using (2.22), since s < min{μ, ν}, we obtain

|∂γξ ∂δxrβ,N(x, ξ)| ≤ C |γ+δ|+2(N+|β|)+1γ!μδ!νβ!s+ν−1N !μ−1

× 〈ξ〉m1−|γ|−N+|β|
2 〈x〉m2−|δ|−N+|β|

2

∫
Qx,ξ

〈ξ〉−n
2 〈x〉n

2 dσ︸ ︷︷ ︸
=
∫
|σ|≤1 dσ

≤ C |γ+δ|+2(N+|β|)+1γ!μδ!νβ!s+ν−1N !μ−1〈ξ〉m1−|γ|−N+|β|
2 〈x〉m2−|δ|−N+|β|

2 ,

(2.24)

for every γ, δ ∈ N
n
0 , x, ξ ∈ R

n and N ∈ N. Now by (2.23) and (2.24), we get

pF,L(x, ξ) ∼
∑
j∈N0

∑
|α+β|=j

qα,β(x, ξ) in FSGm
( 1
2
,1),(0, 1

2
);(μ̃,ν̃)

.

To improve the above asymptotic expansion, note that for j ≥ 2

|∂γξ ∂δx
∑

|α+β|=j

qα,β(x, ξ)| ≤ C |γ+δ|+2j+1γ!μδ!νj!μ+ν−1〈x〉m2−|δ|− j
2 〈ξ〉m1−|γ|− j

2 ,

and

|∂γξ ∂δx
∑

|α+β|=1

qα,β(x, ξ)| ≤ C |θ+σ|+2j+1γ!μδ!νj!μ+ν−1〈x〉m2−|δ|−1〈ξ〉m1−|γ|−1,

for every γ, δ ∈ N
n
0 , x, ξ ∈ R

n, hence∑
j∈N0

∑
|α+β|=j

qα,β(x, ξ) ∈ F(kj ,
j)SG
m
(μ,ν),

where k0 = �0 = 0, k1 = �1 = 1, kj = �j =
j
2
. Then there exists q ∈ SGm

(μ,ν)(R
2n) such that

q(x, ξ) ∼
∑
α,β

qα,β(x, ξ) in F(kj ,
j)SG
m
(μ,ν).

Repeating the argument at the end of Subection 2.5.2 we can write pF,L(x, ξ) = q(x, ξ) +

r(x, ξ), where r belongs to the Gelfand-Shilov space Sμ̃+ν̃−1(R
2n). Summing up we obtain the

following result.

Theorem 2.19. Let p ∈ SGm
(μ,ν) and pF be its Friedrichs part. Then we can write pF,L = q+ r,

with r ∈ Sμ̃+ν̃−1(R
2n) and

q(x, ξ) ∼ p(x, ξ) +
∑
|β|=1

q0,β(x, ξ) +
∑

|α+β|≥2

qα,β(x, ξ) in F(kj ,
j)SG
m
(μ,ν)

where k0 = �0 = 0, k1 = �1 = 1, kj = �j =
j
2
. Moreover, the symbols q0,β ∈ SG

m−(1,1)
(μ,ν) (R2n)

and qα,β ∈ SG
m− |α+β|

2
(1,1)

(μ,ν) (R2n) are the same as in Theorem 2.17.
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2.6 Spectral Invariance for SGm
μ,ν(R

2n)−Pseudodifferential Op-

erators

Let p ∈ SG0,0(R2n), then we know that p(x,D) extends to a bounded operator on

L2(Rn). Suppose that p(x,D) : L2(Rn) → L2(Rn) is bijective. The question is to determine

whether or not the inverse {p(x,D)}−1 is also an SG operator of order (0, 0). This is known as

the spectral invariance problem and it has an affirmative answer, see [17].

Now assume that p is also Gevrey regular, that is p ∈ SG0,0
μ,ν(R

2n), and p(x,D) :

L2(Rn) → L2(Rn) is bijective. By the initial discussion we know that p−1 is an SG0,0 pseu-

dodifferential operator, but what can we say about its Gevrey regularity? Following the ideas

presented in [17], we will prove that the symbol of p−1 satisfies Gevrey estimates, whenever so

does the symbol p(x, ξ).

We start recalling the definition of Fredholm operators.

Definition 2.28. Let X, Y be Banach spaces and T : X → Y be a bounded linear operator.

We say that T is Fredholm whenever the following conditions are satisfied

(i) the range R(T ) of T is a closed subspace of Y ;

(ii) the kernel N(T ) of T is finite dimensional;

(iii) the kernel N(T ∗) of the adjoint T ∗ is finite dimensional.

The index of a Fredholm operator T is defined by i(T ) = dimN(T )− dimN(T ∗).

Theorems 2.20, 2.21, 2.22 here below can be found in Chapters 20 and 21 of [46].

Theorem 2.20. [Atkinson] Let X, Y separable Hilbert spaces. Then a bounded operator A :

X → Y is Fredholm if and only if there exist B : Y → X bounded, K1 : X → Y and

K2 : Y → X compact operators such that

BA = IX −K1, AB = IY −K2.

Theorem 2.21. Let X, Y, Z be separable Hilbert spaces and let A : X → Y , B : Y → Z be

Fredholm operators. Then

(i) B ◦ A : X → Z is Fredholm and i(BA) = i(B) + i(A);

(ii) Y = N(At)⊕R(A).
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Remark 2.21. Let X be a Hilbert space and K : X → X a compact operator. Then I −K is

Fredholm and i(I −K) = 0.

Theorem 2.22. Let p ∈ SGm1,m2(R2n) such that p(x,D) : Hs1+m1,s2+m2(Rn) → Hm1,m2(Rn)

is Fredholm for some s1, s2 ∈ R. Then p is SG-elliptic, that is there exist C,R > 0 such that

|p(x, ξ)| ≥ C〈ξ〉m1〈x〉m2 for (x, ξ) ∈ Qe
R,

where Qe
R = {(x, ξ) ∈ R

2n : 〈ξ〉 ≥ R or 〈x〉 ≥ R}.

Theorem 2.23. Let p ∈ SGm1,m2
μ,ν (R2n) be SG-elliptic. Then there is q ∈ SG−m1,−m2

μ,ν (R2n)

such that

p(x,D) ◦ q(x,D) = I + r1(x,D), q(x,D) ◦ p(x,D) = I + r2(x,D),

where r1, r2 ∈ Sμ+ν−1(R
2n).

Proof. See Theorem 6.3.16 of [39].

In order to prove the main result of this section, we need the following technical lemma.

Lemma 2.10. LetA : L2(Rn) → L2(Rn) be bounded operator such thatA andA∗ map L2(Rn)

into Σr(R
n) continuously. Then the Schwartz kernel of A belongs to Σr(R

2n).

Proof. Since Σr(R
n) ⊂ L2(Rn) is a nuclear Fréchet space, (cf. [18]), by Propositions 2.1.7

and 2.1.8 of [24], we have that A is defined by a kernel H(x, y) and we have the following

representations

H(x, y) =
∑
j∈N0

ajfj(x)gj(y) =
∑
j∈N0

ãj f̃j(x)g̃j(y),

where aj, ãj ∈ C, f̃j(x), gj(y) ∈ Σr(R
n), fj(x), g̃j(y) ∈ L2(Rn),

∑
j |aj| < ∞,

∑
j |ãj| < ∞,

f̃j(x), gj(y) converge to zero in Σr(R
n) and fj(x), g̃j(y) converge to zero in L2(Rn).

We now use the following characterization: H(x, y) ∈ Σr(R
2n) if and only if

sup
α,β∈Nn

0

∥∥∥∥ xαyβH(x, y)

C |α|+|β|α!rβ!r

∥∥∥∥
L2

<∞ and sup
α,β∈Nn

0

∥∥∥∥∥ ξαηβĤ(ξ, η)

C |α|+|β|α!rβ!r

∥∥∥∥∥
L2

<∞

for every C > 0, and prove that both the latter conditions hold. Note that

‖yβH(x, y)‖2L2 =

∫∫ ∣∣∣∣∣∑
j∈N0

ajfj(x)y
βgj(y)

∣∣∣∣∣
2

dx dy
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=

∫∫ ∣∣∣∣∣∑
j∈N0

a
1
2
j fj(x)a

1
2
j y

βgj(y)

∣∣∣∣∣
2

dx dy

≤
∫ ∑

j∈N0

|a
1
2
j fj(x)|2dx

∫ ∑
j∈N0

|a
1
2
j y

βgj(y)|2dy

=
∑
j∈N0

|aj|‖fj‖2L2

∑
j∈N0

|aj|‖yβgj‖2L2 .

Since gj converges to zero in Σr(R
n), we have

‖yβgj(y)‖L2 =

∥∥∥∥yβgj(y)C |β|β!r

∥∥∥∥
L2

C |β|β!r ≤ C |β|β!r sup
j∈N0

∥∥∥∥yβgj(y)C |β|β!r

∥∥∥∥
L2

,

for every C > 0, and therefore

‖yβH(x, y)‖L2 ≤
(∑

j∈N0

|aj|
)2

sup
j∈N0

‖fj‖L2 sup
j∈N0

∥∥∥∥yβgj(y)C |β|β!r

∥∥∥∥
L2

C |β|β!r.

Hence

sup
β∈Nn

0

∥∥∥∥yβH(x, y)

C |β|β!r

∥∥∥∥
L2

<∞ ⇐⇒ sup
N∈N0

∥∥∥∥〈y〉NH(x, y)

CNN !r

∥∥∥∥
L2

<∞,

for every C > 0. Using the representation
∑
ãj f̃j(x)g̃j(y), analogously we obtain

sup
α∈Nn

0

∥∥∥∥xαH(x, y)

C |α|α!r

∥∥∥∥
L2

<∞ ⇐⇒ sup
N∈N0

∥∥∥∥〈x〉NH(x, y)

CNN !r

∥∥∥∥
L2

<∞,

for every C > 0.

Now note that, for every N ∈ N0, x, y ∈ R
n,

〈(x, y)〉N = (〈x〉2 + |y|2)N
2 ≤ (〈x〉+ 〈y〉)N ≤ 2N−1(〈x〉N + 〈y〉N).

Therefore, for every C > 0,∥∥∥∥〈x, y〉NH(x, y)

CNN !r

∥∥∥∥
L2

≤
∥∥∥∥〈x〉NH(x, y)

CN
1 N !r

∥∥∥∥
L2

+

∥∥∥∥〈y〉NH(x, y)

CN
1 N !r

∥∥∥∥
L2

,

where C1 = (2−1C)N . Hence, for every C > 0,

sup
N∈N0

∥∥∥∥〈x, y〉NH(x, y)

CNN !r

∥∥∥∥
L2

<∞.

Since the Fourier transform defines an isomorphism on L2(R2n) and on Σr(R
2n), we

have

Ĥ(ξ, η) =
∑
j∈N0

aj f̂j(ξ)ĝj(η) =
∑
j∈N0

ãj
̂̃f j(ξ)̂̃gj(η),
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where aj, ãj ∈ C,
̂̃f j(ξ), ĝj(η) ∈ Σr(R

n), f̂j(ξ), ̂̃gj(η) ∈ L2(Rn),
∑

j |aj| < ∞,
∑

j |ãj| < ∞,̂̃f j(ξ), ĝj(η) converge to zero in Σr(R
n) and f̂j(ξ), ̂̃gj(η) converge to zero in L2(Rn). In an

analogous manner as before we get, for every C > 0,

sup
N∈N0

∥∥∥∥∥〈ξ, η〉NĤ(ξ, η)

CNN !r

∥∥∥∥∥
L2

<∞.

Hence H(x, y) ∈ Σr(R
2n).

Theorem 2.24. Let p ∈ SG0,0
μ,ν(R

2n) such that p(x,D) : L2(Rn) → L2(Rn) is bijective. Then

{p(x,D)}−1 : L2(Rn) → L2(Rn) is a pseudodifferential operator given by a symbol p̃ = q + k̃

where q ∈ SG0,0
μ,ν(R

2n) and k̃ ∈ Σr(R
2n) for every r > μ+ ν − 1.

Proof. Since p(x,D) : L2(Rn) → L2(Rn) is bijective, then p(x,D) is Fredholm and

i(p(x,D)) = dimN(p(x,D))− dimN(pt(x,D)) = 0.

Therefore by Theorem 2.22 p(x, ξ) is SG-elliptic and by Theorem 2.23 there is q ∈ SG0,0
μ,ν(R

2n)

such that

q(x,D) ◦ p(x,D) = I + r(x,D), p(x,D) ◦ q(x,D) = I + s(x,D),

for some r, s ∈ Sμ+ν−1(R
2n). In particular r(x;D), s(x,D) are compact operators on L2(Rn).

By Theorem 2.20 q(x,D) is a Fredholm operator and we have

i(q(x,D)) = i(q(x,D)) + i(p(x,D)) = i(q(x,D) ◦ p(x,D)) = i(I + r(x,D)) = 0.

Note that N(q(x,D)) and N(qt(x,D)) are subspaces of Sμ+ν−1(R
n). Indeed, take

f ∈ N(q) and g ∈ N(qt), then

0 = p(x,D) ◦ q(x,D)f = (I + s(x,D))f =⇒ f = −s(x,D)f,

0 = pt(x,D) ◦ qt(x,D)g = (q(x,D) ◦ p(x,D))tg = (I + r(x,D))tg =⇒ g = −rt(x,D)g.

Since L2(Rn) is a separable Hilbert space and N(q(x,D)) is closed, we have the fol-

lowing decompositions

L2 = N(q)⊕N(q)⊥, L2 = N(qt)⊕RL2(q),

where RL2(q) denotes the range of q(x,D) as an operator on L2(Rn).
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Consider the projection π : L2 → N(q) of L2 onto N(q) with null space N(q)⊥, an

linear isomorphism F : N(q) → N(qt) and i : N(qt) → L2 the inclusion. Set Q = i ◦ F ◦ π.

Then Q : L2 → L2 is bounded and its image is contained in N(qt) ⊂ Sμ+ν−1. It is not difficult

to see that Q∗ = ĩ ◦ F ∗ ◦ πN(qt), where ĩ is the inclusion of N(q) into L2 and πN(qt) is the

orthogonal projection of L2 onto N(q). Since Sμ+ν−1 ⊂ Σr, then by Lemma 2.10, Q is given

by a kernel in Σr.

We will now show that q + Q is a bijective parametrix of p. Indeed, let u = u1 + u2

in N(q) ⊕ N(qt) such that (q + Q)u = 0. Then 0 = qu2 + (i ◦ F )u1 ∈ RL2(q) ⊕ N(qt).

Hence qu2 = 0 and i ◦Fu1 = 0 which implies that u = 0. In order to prove that Q is surjective,

consider f = f1+f2 ∈ RL2(q)⊕N(qt). There exist u1 ∈ L2 and u2 ∈ N(q) such that qu1 = f1

and Fu2 = f2. Now write u1 = v1 + v2 ∈ N(q) ⊕ N(q)⊥. Then q(u1) = q(v2) and therefore

(q +Q)(v2 + u2) = f1 + f2 = f . Finally notice that

p(x,D) ◦ (q(x,D) +Q) = I + s+ p(x,D) ◦Q = I + s′(x,D),

(q(x,D) +Q) ◦ p(x,D) = I + r +Q ◦ p(x,D) = I + r′(x,D),

where r′, s′ ∈ Σr(R
2n).

Now set q̃ = q + Q. Therefore q̃ ◦ p = I + r′ : L2 → L2 is bijective. Define

k = −(I + r′)−1 ◦ r′. Then (I + r′)(I + k) = I and k = −r′ − r′k. Observe that

kt = −{r′}t − kt{r′}t = −{r′}t + {r′}t{(I + r′)−1}t{r′}t.

Hence k, kt map L2 into Σr and by Lemma 2.10 we have that k is given by a kernel in Σr(R
2n).

To finish the proof, it is enough to notice that

p−1 ◦ q̃−1 = (q̃ ◦ p)−1 = (I + r′)−1 = I + k =⇒ p−1 = (I + k) ◦ q̃.
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Chapter 3

Cauchy Problem for 3−Evolution

Operators With Data in Gevrey Type

Spaces

3.1 Introduction and Main Result

Let us consider for (t, x) ∈ [0, T ] × R the following class of 3− evolution pseudodif-

ferential operators

P (t, x,Dt, Dx) = Dt + a3(t,Dx) + a2(t, x,Dx) + a1(t, x,Dx) + a0(t, x,Dx), (3.1)

where a3(t, ξ) has order 3, a3(t, ξ) is real-valued and aj(t, x,D) has order j (with respect to ξ),

j = 0, 1, 2. We are interested in the Cauchy Problem associated with the operator P with data

in suitable Gevrey classes. The main result of this chapter reads as follows.

Theorem 3.1. Let s0 > 1 and σ ∈ (1
2
, 1) such that s0 < 1

2(1−σ)
. Let P (t, x,Dt, Dx) be an

operator like in (3.1) satisfying the following assumptions:

(i) a3(t, ξ) ∈ C([0, T ], S3
1(R

2)) and there exist Ca3 , Ra3 > 0 such that

|∂ξa3(t, ξ)| ≥ Ca3ξ
2, t ∈ [0, T ], |ξ| ≥ Ra3 ;

(ii) a2(t, x, ξ) ∈ C([0, T ];S2
1,s0

(R2)) and there is Ca2 > 0 such that

|∂αξ ∂βxa2(t, x, ξ)| ≤ Cα+β+1
a2

α!β!s0〈ξ〉2−α〈x〉−σ, t ∈ [0, T ], x, ξ ∈ R, α, β ∈ N0;
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(iii) a1(t, x, ξ) ∈ C([0, T ];S1
1,s0

(R)) and there exists Ca1 > 0 such that

|Ima1(t, x, ξ)| ≤ Ca1〈ξ〉〈x〉−
σ
2 , t ∈ [0, T ], x, ξ ∈ R;

(iv) a0(t, x, ξ) ∈ C([0, T ], S0
1,s0

(R2)).

Let θ > 1 such that s0 ≤ θ < 1
2(1−σ)

and let f ∈ C([0, T ];Hm
ρ;θ(R)) and g ∈ Hm

ρ;θ(R), where

m, ρ ∈ R and ρ > 0. Then the Cauchy problem⎧⎪⎨⎪⎩
P (t, x,Dt, Dx)u(t, x) = f(t, x), (t, x) ∈ [0, T ]× R,

u(0, x) = g(x), x ∈ R,

(3.2)

admits a unique solution u ∈ C([0, T ];Hm
ρ̃;θ(R)) for some ρ̃ < ρ; moreover the solution satisfies

the following energy estimate

‖u(t)‖2Hm
ρ̃;θ

≤ C

(
‖g‖2Hm

ρ;θ
+

∫ t

0

‖f(τ)‖2Hm
ρ;θ
dτ

)
, (3.3)

for all t ∈ [0, T ] and for some C > 0.

Remark 3.1. Theorem 3.1 implies that the Cauchy Problem (3.2) is well-posed in the class

H∞
θ (R) =

⋃
ρ>0

Hm
ρ;s(R).

Note that H∞
θ (R) ⊂ Gθ(R) (cf. Proposition 2.11).

Remark 3.2. We notice that the solution u exhibits a loss of regularity with respect to the initial

data in the sense that it belongs to Hm
ρ̃;θ for some ρ̃ < ρ. Moreover, the decay rate σ of the

coefficients imposes restrictions on the values of θ for which the Cauchy problem (3.2) is well-

posed. Such phenomena are typical of this type of problems and they appear also in the papers

[14, 33] .

Remark 3.3. Let us make some comments on the decay assumptions (iii) and (iv) in Theorem

3.1. In the Schrödinger case (p = 2), we know from [33] that the decay condition 〈x〉−σ on

the imaginary part of the subleader coefficient, σ ∈ (0, 1), leads to Gevrey well-posedness

for s0 ≤ θ < 1/(1 − σ). Here we prove that, for the 3−evolution case, the decay condition

a2(t, x) ∼ 〈x〉−σ, σ ∈ (1/2, 1), together with a weaker decay assumption on the (lower order)

term Ima1(t, x) ∼ 〈x〉−σ/2 is sufficient to get Gevrey well-posedness for θ ∈ [s0, {2(1−σ)}−1).

Comparing these results, we point out that here we need to assume that also Rea2 ∼ 〈x〉−σ in
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order to control the term appearing in (3.25). It is not clear at this moment if this assumption

is only technical or it is a necessary condition to obtain our result. Another natural question

arising is the following: what happens for σ ∈ (0, 1/2]? At the moment we cannot prove Gevrey

well-posedness for small σ, nor provide a counterexample.

Remark 3.4. In this remark, we describe a model class of linear differential operators that fits

in the hypothesis of Theorem 3.1.

Let s0 > 1 and σ ∈ (1
2
, 1) such that s0 < 1

2(1−σ)
. Now consider the operator

P (t, x,Dt, Dx) = Dt + a3(t)D
3
x + a2(t, x)D

2
x + a1(t, x)D

1
x + a0(t, x), (3.4)

where the coefficients satisfy

(i) a3(t) is a continuous real-valued function which never vanishes;

(ii) a2(t, x) ∈ C([0, T ];Gs0(R)) and there exists Ca2 > 0 such that

|∂βxa2(t, x)| ≤ Cβ+1
a2

β!s0〈x〉−σ;

(iii) a1(t, x) ∈ C([0, T ];Gs0(R2)) and there exists Ca1 such that

|Ima1(t, x)| ≤ Ca1〈x〉−
σ
2 ;

(iv) a0(t, x) ∈ C([0, T ];Gs0(R)).

Then P is under the hypothesis of Theorem 3.1.

3.2 Strategy of the Proof

To prove Theorem 3.1 we need to perform a suitable change of variable. In fact, if we

set

iP = ∂t + ia3(t,D) +
2∑

j=0

iaj(t, x,D) = ∂t + ia3(t,D) + A(t, x,D),

since a3(t, ξ) is real-valued, we have

d

dt
‖u(t)‖2L2 = 2Re 〈∂tu(t), u(t)〉L2

= 2Re 〈iPu(t), u(t)〉L2 − 2Re 〈ia3(t,D)u(t), u(t)〉L2 − 2Re 〈Au(t), u(t)〉L2

≤ ‖Pu(t)‖2L2 + ‖u(t)‖2L2 − 〈(A+ A∗)u(t), u(t)〉L2 .
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However, A + A∗ is an operator of order 2, so we cannot derive an energy inequality in L2

from the estimate above. The idea is then to conjugate the operator iP by a suitable invertible

pseudodifferential operator eΛ(t, x,D) with a symbol of the form eΛ(t,x,ξ) in order to obtain

(iP )Λ := eΛ ◦ (iP ) ◦ {eΛ}−1 = ∂t + ia3(t,D) + {A2,Λ + A1,Λ + A 1
θ
,Λ + r0,Λ}(t, x,D),

where Aj,Λ has symbol aj,Λ(t, x, ξ) of order j but with Re aj,Λ ≥ 0, for j = 1
θ
, 1, 2, and

r0,Λ(t, x,D) has symbol r0,Λ(t, x,D) of order zero. In this way, applying Fefferman-Phong

inequality to A2,Λ (see [20] ) and sharp Gårding inequality to A1,Λ and A 1
θ
,Λ (see Theorem

1.7.15 of [39]), we obtain the estimate from below

Re 〈{A2,Λ + A1,Λ + A 1
θ
,Λ}v(t), v(t)〉L2 ≥ −c‖v(t)‖2L2 ,

and therefore for the solution v of the Cauchy problem associated to the operator PΛ we get

d

dt
‖v(t)‖2L2 ≤ C(‖(iP )Λv(t)‖2L2 + ‖v(t)‖2L2).

Gronwall inequality then gives the desired energy estimate for the conjugated operator (iP )Λ.

By standard arguments in the energy method, we then obtain that the Cauchy problem associated

with PΛ is well-posed in any Sobolev space Hm(R).

Finally, we turn back to our original Cauchy problem (3.2). The problem (3.2) is in

fact equivalent to⎧⎪⎨⎪⎩
PΛ(t,Dt, x,Dx)v(t, x) = eΛ(t, x,Dx)f(t, x), (t, x) ∈ [0, T ]× R,

v(0, x) = eΛ(0, x,Dx)g(x), x ∈ R,

(3.5)

in the sense that if u solves (3.2) then v = eΛu solves (3.5), and if v solves (3.5) then u =

{eΛ}−1v solves (3.2). In this step, the continuous mapping properties of eΛ and {eΛ}−1 will

play an important role.

The operator eΛ will be a pseudodifferential operator (of infinite order) with symbol

eΛ(t,x,ξ), and the function Λ(t, x, ξ) will be of the form

Λ(t, x, ξ) = k(t)〈ξ〉
1
θ
h + λ2(x, ξ) + λ1(x, ξ) = k(t)〈ξ〉

1
θ
h + Λ̃(x, ξ), t ∈ [0, T ], x, ξ ∈ R,

where Λ̃ = λ2 + λ1 ∈ S
2(1−σ)
μ (R2), k ∈ C1([0, T ];R) is a positive non-increasing function to

be chosen later on and 〈ξ〉h :=
√
h2 + ξ2 with h ≥ 1 a large parameter. The replacement of

〈ξ〉 with 〈ξ〉h is useful in several parts of the proof (for instance, to obtain the invertibility of
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the operator eΛ(t, x,D)) and does not change the symbol classes (cf. Remark 3.5). Now we

briefly explain the main role of each part of the change of variables. The transformation with

λ2 will change the terms of order 2 into the sum of a positive operator of the same order plus a

remainder of order 1; the transformation with λ1 will not change the terms of order 2, but it will

turn the terms of order 1 into the sum of a positive operator plus a remainder of order less than

1/θ. Finally, the transformation with k will correct this remainder term. We also observe that

since 2(1 − σ) < 1/θ the leading part is k(t)〈ξ〉
1
θ
h , hence the inverse of eΛ(t, x,D) possesses

regularizing properties with respect to the spaces Hm
ρ;θ, because k(t) has positive sign.

The precise definitions of λ2 and λ1 will be given in Section 3.3. Since Λ admits an

algebraic growth in the ξ variable, then eΛ(t,x,ξ) presents an exponential growth. This is one of

the reasons for which we need pseudodifferential operators of infinite order.

Remark 3.5. It is not difficult to conclude that

|∂αξ 〈ξ〉m1
h | ≤ C |α|

m1
α!〈ξ〉m1−|α|

h , ξ ∈ R
n, α ∈ N

n
0 ,

where Cm1 is a positive constant independent of h.

Now let us consider the class of symbols Sm
h,μ,ν(R

2n) obtained replacing the weight 〈ξ〉
by 〈ξ〉h, that is, p ∈ Sm

h,μ,ν if there exists C > 0 such that

|∂αξ ∂βxp(x, ξ)| ≤ C |α+β|+1α!μβ!ν〈ξ〉m−|α|
h , α, β ∈ N

n
0 , x, ξ ∈ R

n.

Since h ≥ 1, we have

〈ξ〉 ≤ 〈ξ〉h ≤ h〈ξ〉, ξ ∈ R
n.

Hence we may conclude that Sm
μ,ν(R

2n) = Sm
h,μ,ν(R

2n) with equivalent topologies. Analogous

considerations for all the other classes of symbols treated in Chapter 2.

We also remark that 〈ξ〉 and 〈ξ〉h are asymptotically equivalent in the sense

lim
|ξ|→∞

〈ξ〉
〈ξ〉h = lim

|ξ|→∞
〈ξ〉h
〈ξ〉 = 1.

Hence, for any ε > 0, there exists Rh,ε > 0 such that

〈ξ〉h ≤ (1 + ε)〈ξ〉, |ξ| ≥ Rh,ε.

3.3 Definition and Properties of λ2(x, ξ) and λ1(x, ξ)

For M2,M1 > 0 to be chosen, we define

λ2(x, ξ) =M2w

(
ξ

h

)∫ x

0

〈y〉−σψ

( 〈y〉
〈ξ〉2h

)
dy, (x, ξ) ∈ R

2, (3.6)
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λ1(x, ξ) =M1w

(
ξ

h

)
〈ξ〉−1

h

∫ x

0

〈y〉−σ
2ψ

( 〈y〉
〈ξ〉2h

)
dy, (x, ξ) ∈ R

2, (3.7)

where

w(ξ) =

⎧⎪⎨⎪⎩
0, |ξ| ≤ 1,

−sgn(∂ξa3(t, ξ)), |ξ| > Ra3 ,

ψ(y) =

⎧⎪⎨⎪⎩
1, |y| ≤ 1

2
,

0, |y| ≥ 1,

|∂αξ w(ξ)| ≤ Cα+1
w α!μ, |∂βyψ(y)| ≤ Cβ+1

ψ β!μ, for some μ > 1 which we can take arbitrarly close

to 1. Note that 〈y〉 ≤ 〈ξ〉2h on the support of ψ(〈y〉〈ξ〉−2
h ) and

√
2h ≤ 〈ξ〉h ≤ 〈Ra3〉h on the

support of w′(h−1ξ). Note also that thanks to the assumption (i) in Theorem 3.1, the function

w is well defined.

We have the following result for λ2(x, ξ).

Lemma 3.1. Let λ2(x, ξ) be defined in (3.6). Then

(i) |∂αξ λ2(x, ξ)| ≤ Cα+1
λ2

α!μ〈ξ〉2(1−σ)−α
h , for α ≥ 0;

(ii) |∂αξ λ2(x, ξ)| ≤ Cα+1
λ2

α!μ〈ξ〉−α
h 〈x〉1−σ, for α ≥ 0;

(iii) |∂αξ ∂βxλ2(x, ξ)| ≤ Cα+β+1
λ2

α!μβ!μ〈ξ〉−α
h 〈x〉−σ−(β−1), for α ≥ 0, β ≥ 1,

where C > 0 is independent of h > 1. In particular, λ2(x, ξ) ∈ S
2(1−σ)
μ (R2) ∩ SG0,1−σ

μ (R2).

Proof. We denote by χξ(x) the characteristic function of the set {x ∈ R : 〈x〉 ≤ 〈ξ〉2h}. Now

note that

|λ2(x, ξ)| ≤M2

∫ |x|

0

〈y〉−σχξ(y)dy =

∫ min{|x|,〈ξ〉2h}

0

〈y〉−σdy,

hence

|λ2(x, ξ)| ≤ M2

1− σ
min{〈ξ〉2(1−σ)

h , 〈x〉1−σ}.

For α ≥ 1 we have

|∂αξ λ2(x, ξ)| ≤M2

∑
α1+α2=α

α!

α1!α2!

∣∣∣∣w(α1)

(
ξ

h

)∣∣∣∣h−α1

∣∣∣∣∫ x

0

χξ(y)〈y〉−σ∂α2
ξ ψ

( 〈y〉
〈ξ〉2h

)∣∣∣∣
≤M2

∑
α1+α2=α

α!

α1!α2!

∣∣∣∣w(α1)

(
ξ

h

)∣∣∣∣h−α1

∫ |x|

0

χξ(y)〈y〉−σ

×
α2∑
j=1

∣∣∣ψ(j)
(

〈y〉
〈ξ〉2h

)∣∣∣
j!

∑
γ1+...+γj=α2

α2!

γ1! . . . γj!

j∏
ν=1

〈y〉|∂γνξ 〈ξ〉−2
h |dy
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≤M2

∑
α1+α2=α

α!

α1!α2!
Cα1+1

w α1!
μ〈ξ〉−α1

h 〈Ra3〉α1

× C̃α2+1
ψ α2!

μ〈ξ〉−α2
h

∫ |x|

0

χξ(y)〈y〉−σdy

≤M2C
α+1
w,ψ,Ra3

α!μ〈ξ〉−α
h

∫ |x|

0

χξ(y)〈y〉−σdy

≤ M2

1− σ
Cα+1

w,ψ,Ra3
α!μ〈ξ〉−α

h min{〈ξ〉2(1−σ)
h , 〈x〉1−σ}.

For α ≥ 0 and β ≥ 1 we have

|∂αξ ∂βxλ2(x, ξ)| ≤M2

∑
α1+α2=α

β1+β2=β−1

α!

α2!

(β − 1)!

β1!β2!

∣∣∣∣w(α1)

(
ξ

h

)∣∣∣∣ |∂β1
x 〈x〉−σ|

∣∣∣∣∂α2
ξ ∂β2

x ψ

( 〈x〉
〈ξ〉2h

)∣∣∣∣
≤M2

∑
α1+α2=α

β1+β2=β−1

α!

α2!

(β − 1)!

β1!β2!
Cα1+1

w α1!
μ〈Ra3〉α1〈ξ〉−α1

h Cβ1β1!〈x〉−σ−β1

× χξ(x)

α2+β2∑
j=1

∣∣∣ψ(j)
(

〈x〉
〈ξ〉2h

)∣∣∣
j!

∑
γ1+...+γj=α2

λ1+...+λj=β2

α2!β2!

γ1!λ1! . . . γj!λj!

j∏
ν=1

|∂λν
x 〈x〉||∂γνξ 〈ξ〉−2

h |

≤M2

∑
α1+α2=α

β1+β2=β−1

α!

α2!

(β − 1)!

β1!β2!
Cα1+1

w α1!
μ〈Ra3〉α1〈ξ〉−α1

h Cβ1β1!〈x〉−σ−β1

× C̃α2+β2+1
ψ α2!

μβ2!
μ〈x〉−β2〈ξ〉−α2

h

≤M2C
α+β+1
ψ,w,Ra3

α!μ(β − 1)!μ〈x〉−σ−(β−1)〈ξ〉−α
h .

For λ1(x, ξ) we have:

Lemma 3.2. Let λ1(x, ξ) be defined in (3.7). Then

(i) |∂αξ λ1(x, ξ)| ≤ Cα+1
λ1

α!μ〈ξ〉1−σ−α
h , for α ≥ 0;

(ii) |∂αξ λ1(x, ξ)| ≤ Cα+1
λ1

α!μ〈ξ〉−1−α
h 〈x〉1−σ

2 , for α ≥ 0;

(iii) |∂αξ λ1(x, ξ)| ≤ Cα+1
λ1

α!μ〈ξ〉−α
h 〈x〉1−σ, for α ≥ 0;

(iv) |∂αξ ∂βxλ1(x, ξ)| ≤ Cα+β+1
λ1

α!μβ!μ〈ξ〉−1−α
h 〈x〉−σ

2
−(β−1), for α ≥ 0, β ≥ 1;

(v) |∂αξ ∂βxλ1(x, ξ)| ≤ Cα+β+1
λ1

α!μβ!μ〈ξ〉−α
h 〈x〉−σ−(β−1), for α ≥ 0, β ≥ 1,

where C > 0 is independent of h ≥ 1. Particularly λ1 ∈ S1−σ
μ (R2) ∩ SG0,1−σ

μ (R2).
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Proof. The demonstration of this result is quite similar to the proof of Lemma 3.1. For this

reason, we will omit it.

Since we need to consider the symbols eλ2(x,ξ) and λ1(x, ξ), the two next results will

play an important role.

Proposition 3.1. Let s ≥ 1. Then:

(i) λ(x, ξ) ∈ S
1
s
μ (R2) implies eλ(x,ξ) ∈ S∞

μ;s(R
2);

(ii) λ(x, ξ) ∈ SG
0, 1

s
μ (R2) implies eλ(x,ξ) ∈ SG0,∞

μ;s (R
2);

(iii) λ(x, ξ) ∈ SG
1
s
,0

μ (R2) implies eλ(x,ξ) ∈ SG∞,0
μ;s (R

2).

Proof. Considering that the proofs of (i), (ii) and (ii) are very similar, we only focus in (i).

For |α + β| ≥ 1, Faà di Bruno formula gives

∂
(β,α)
(x,ξ) e

λ(x,ξ) =

|α+β|∑
j=1

eλ(x,ξ)

j!

∑
α1+...+αj=α

β1+...+βj=β

α!β!

α1!β1! . . . αj!βj!

j∏
ν=1

∂αν
ξ ∂βν

x λ(x, ξ).

Thus, from standard factorial inequalities we get

|∂αξ ∂βxeλ(x,ξ)| ≤ C |α+β|+1α!μβ!μ〈ξ〉−|α|eλ(x,ξ)
|α+β|∑
j=1

〈ξ〉 j
s

j!
.

Hence,

|∂αξ ∂βxeλ(x,ξ)| ≤ C̃ |α+β|+1α!μβ!μ〈ξ〉−|α|ec|x|
1
s .

Proposition 3.2. Let ρ,m ∈ R and let s, μ > 1 with s > 2μ− 1. Let λ ∈ S
1
κ
μ (R2). Then:

(i) if κ > s, then the operator eλ(x,D) is continuous from Hm
ρ;s(R) into Hm

ρ−δ;s(R) for every

δ > 0;

(ii) if κ = s, then the operator eλ(x,D) is continuous from Hm
ρ;s(R) into Hm

ρ−δ;s(R) for every

δ > C(λ) := sup{λ(x, ξ)/〈ξ〉1/s : (x, ξ) ∈ R
2}.
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Proof. Consider φ(ξ) ∈ Gμ(R) a cut-off function such that, for a large positive constant K,

φ(ξ) = 1 for |ξ| < K/2, φ(ξ) = 0 for |ξ| > K and 0 ≤ φ(ξ) ≤ 1 for every ξ ∈ R. We split the

symbol eλ(x,ξ) as

eλ(x,ξ) = φ(ξ)eλ(x,ξ) + (1− φ(ξ))eλ(x,ξ) = a1(x, ξ) + a2(x, ξ). (3.8)

Since φ has compact support, we have in particular a1(x, ξ) ∈ S0
μ. On the other hand, given

any δ > 0 and choosing K large enough, since κ > s we may write |λ(x, ξ)|〈ξ〉−1/s < δ on the

support of a2(x, ξ). Hence we obtain

a2(x, ξ) = eδ〈ξ〉
1/s

(1− φ(ξ))eλ(x,ξ)−δ〈ξ〉1/s

with (1−φ(ξ))eλ(x,ξ)−δ〈ξ〉1/s of order 0 because λ(x, ξ)−δ〈ξ〉1/s < 0 on the support of (1−φ(ξ)).
Thus, (4.8) becomes

eλ(x,ξ) = a1(x, ξ) + eδ〈ξ〉
1/s

ã2(x, ξ),

with a1 and ã2 of order 0. Since by Theorem 2.8 the operators a1(x,D) and ã2(x,D) map

continuously Hm
ρ;s into itself, then we obtain (i). The proof of (ii) follows a similar argument.

3.4 Invertibility of eΛ̃(x,D), Λ̃(x, ξ) = (λ2 + λ1)(x, ξ)

In this section we construct the inverse of the operator eΛ̃(x,D) where

Λ̃(x, ξ) = λ2(x, ξ) + λ1(x, ξ), x, ξ ∈ R
n,

and we prove that the inverse acts continuously on Gevrey Sobolev spaces. By Lemmas 3.1

and 3.2 we have Λ̃(x, ξ) ∈ SG
0,2(1−σ)
μ (R2) ∩ S2(1−σ)

μ (R2). Therefore eΛ̃(x,ξ) ∈ SG0,∞
μ; 1

1−σ

(R2) ∩
S∞
μ; 1

2(1−σ)

(R2), see Proposition 3.1. To construct the inverse of eΛ̃(x,D) we need to use the L2

adjoint of e−Λ̃(x,D) (cf. [6, 33, 34]), defined as the operator given by the amplitude e−Λ̃(y,ξ),

that is,

{e−Λ̃(x,D)}∗u(x) =
∫∫

ei(x−y)ξe−Λ̃(y,ξ)u(y) dyd−ξ, x ∈ R. (3.9)

Assuming μ > 1 such that 1/(1−σ) > 2μ−1, by results from calculus, we may write

{e−Λ̃(x,D)}∗ = a1(x,D) + r1(x,D),
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where a1 ∼
∑

α
1
α!
∂αξD

α
xe

−Λ̃ in FSG0,∞
μ;1/(1−σ)(R

2), r1 ∈ S2μ−1(R
2), and

eΛ̃(x,D)◦{e−Λ̃(x,D)}∗ = eΛ̃◦a1(x,D)+eΛ̃◦r1(x,D) = a2(x,D)+r2(x,D)+eΛ̃◦r1(x,D),

where

a2 ∼
∑
α,β

1

α!β!
∂αξ e

Λ̃∂βξD
α+β
x e−Λ̃ =

∑
γ

1

γ!
∂γξ (e

Λ̃Dγ
xe

−Λ̃) in FSG0,∞
μ;1/(1−σ)(R

2)

and r2 ∈ S2μ−1(R
2). Therefore

eΛ̃(x,D) ◦ {e−Λ̃(x,D)}∗ = a(x,D) + r(x,D),

where a ∼∑γ
1
γ!
∂γξ (e

Λ̃Dγ
xe

−Λ̃) in FSG0,∞
μ;1/(1−σ)(R

2) and r ∈ S2μ−1(R
2).

Now let us study more carefully the asymptotic expansion∑
γ≥0

1

γ!
∂γξ (e

Λ̃Dγ
xe

−Λ̃) =
∑
γ≥0

r1,γ.

Note that

eΛ̃(x,ξ)Dγ
xe

−Λ̃(x,ξ) =

γ∑
j=1

(−1)γ

j!

∑
γ1+···+γj=γ

γ!

γ1! . . . γj!

j∏

=1

Dγ�
x Λ̃(x, ξ),

hence, for α, β ≥ 0,

|∂αξ ∂βxr1,γ| ≤
1

γ!

γ∑
j=1

1

j!

∑
γ1+···+γj=γ

γ!

γ1! . . . γj!

∑
α1+···+αj=α+γ

∑
β1+···+βj=β

(α + γ)!

α1! . . . αj!

β!

β1! . . . βj!

×
j∏


=1

|∂α�
ξ ∂

β�+γ�
x Λ̃(x, ξ)|

≤ 1

γ!

γ∑
j=1

1

j!

∑
γ1+···+γj=γ

γ!

γ1! . . . γj!

∑
α1+···+αj=α+γ

∑
β1+···+βj=β

(α + γ)!

α1! . . . αj!

β!

β1! . . . βj!

×
j∏


=1

Cα�+β�+γ�+1

Λ̃
α
!

μ(β
 + γ
)!
μ〈ξ〉−α�

h 〈x〉1−σ−β�−γ�

≤ Cα+β+2γ+1α!μβ!μγ!2μ−1〈ξ〉−α−γ
h

γ∑
j=1

〈x〉(1−σ)j−β−γ

j!
.

We shall consider the following sets

Qt1,t2;h = {(x, ξ) ∈ R
2 : 〈x〉 < t1 and 〈ξ〉h < t2}

and Qe
t1,t2;h

= R
2 −Qt1,t2;h. When t1 = t2 = t we simply write Qt;h and Qe

t;h.
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Let ψ(x, ξ) ∈ C∞(R2) such that ψ ≡ 0 on Q2;h, ψ ≡ 1 on Qe
3;h, 0 ≤ ψ ≤ 1 and

|∂αξ ∂βxψ(x, ξ)| ≤ Cα+β+1
ψ α!μβ!μ,

for every x, ξ ∈ R and α, β ∈ N0. Now set ψ0 ≡ 1 and, for j ≥ 1,

ψj(x, ξ) := ψ

(
x

R(j)
,

ξ

R(j)

)
,

where R(j) = Rj2μ−1 and R > 0 is a large constant. Let us recall that

• (x, ξ) ∈ Qe
3R(j) =⇒

(
x

R(j)
,

ξ

R(j)

)
∈ Qe

3 =⇒ ψi(x, ξ) = 1, for i ≤ j;

• (x, ξ) ∈ QR(j) =⇒
(

x

R(j)
,

ξ

R(j)

)
∈ Q2 =⇒ ψi(x, ξ) = 0, for i ≥ j.

Defining b(x, ξ) =
∑

j≥0 ψj(x, ξ)r1,j(x, ξ), following the same ideas in the proof of

Proposition 2.14, we have that b(x, ξ) ∈ SG0,∞
μ; 1

1−σ

(R2) and

b(x, ξ) ∼
∑
j≥0

r1,j(x, ξ) in FSG0,∞
μ; 1

1−σ

(R2).

We will show that b(x, ξ) ∈ SG0,0
μ (R2n). Indeed, first we write

b(x, ξ) = 1 +
∑
j≥1

ψj(x, ξ)r1,j(x, ξ) = 1 +
∑
j≥0

ψj+1(x, ξ)r1,j+1(x, ξ).

On the support of ∂α1
ξ ∂β1

x ψj+1 we have

〈x〉 ≤ 3R(j + 1) and 〈ξ〉h ≤ 3R(j + 1),

whenever α1 + β1 ≥ 1. Hence

|∂αξ ∂βx
∑
j≥0

ψj+1r1,j+1| ≤
∑
j≥0

∑
α1+α2=α

β1+β2=β

α!

α1!α2!

β!

β1!β2!
|∂α1

ξ ∂β1
x ψj+1(x, ξ)||∂α2

ξ ∂β2
x r1,j+1(x, ξ)|

≤
∑
j≥0

∑
α1+α2=α

β1+β2=β

α!

α1!α2!

β!

β1!β2!

1

R(j + 1)(α1+β1)
Cα1+β1+1

ψ α1!
μβ1!

μ

× Cα2+β2+2(j+1)+1α2!
μβ2!

μ(j + 1)!2μ−1〈ξ〉−α2−(j+1)
h 〈x〉−β1−(j+1)

j+1∑

=1

〈x〉(1−σ)


�!

≤
∑
j≥0

∑
α1+α2=α

β1+β2=β

α!

α1!α2!

β!

β1!β2!

1

R(j + 1)(α1+β1)
Cα1+β1+1

ψ α1!
μβ1!

μ

× Cα2+β2+2(j+1)+1α2!
μβ2!

μ(j + 1)!2μ−1〈ξ〉−α2−(j+1)
h 〈x〉−σ−β1

j+1∑

=1

〈x〉(1−σ)(
−1)−j

�!
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≤ C̃α+β+1(α!β!)μ〈ξ〉−1−α
h 〈x〉−σ−β

∑
j≥0

C2j(j + 1)!2μ−1〈ξ〉−j
h

j+1∑

=0

〈x〉(1−σ)(
−1)−j

�!
.

We also have that

〈x〉 ≥ R(j + 1) or 〈ξ〉h ≥ R(j + 1)

holds true on the support of ∂α1
ξ ∂β1

x ψj+1. If 〈ξ〉h ≥ R(j + 1), then

〈ξ〉−j
h ≤ R−j(j + 1)−j(2μ−1) ≤ R−j(j + 1)!−(2μ−1).

On the other hand, since we are assuming μ > 1 such that 2μ− 1 < 1
1−σ

, if 〈x〉 ≤ R(j + 1) we

obtain

〈x〉(1−σ)(
−1)−j ≤ R(1−σ)(
−1)−j{(j + 1)2μ−1}(1−σ)(
−1)−j

≤ R−σj(j + 1)
−1−j(2μ−1)

= R−σj(j + 1)
−1(j + 1)!−(2μ−1).

Enlarging R > 0 if necessary, we can infer that
∑

j≥1 r1,j ∈ SG−1,−σ
μ (R2).

In analogous way it is possible to prove that
∑

j≥k r1,j ∈ SG−k,−σk
μ (R2). Hence, we

may conclude

b(x, ξ)−
∑
j<k

r1,j(x, ξ) ∈ SG−k,−σk
μ (R2), k ∈ N,

that is, b ∼∑j r1,j in SG0,0
μ (R2).

Since a ∼ ∑
r1,j in FSG0,∞

μ;1/(1−σ)(R
2), b ∼ ∑

r1,j in FSG0,∞
μ;1/(1−σ)(R

2) we have

a− b ∈ S2μ−1(R
2). Hence we may write

eΛ̃ ◦ {e−Λ̃}∗ = I + r̃(x,D) + r̄(x,D) = I + r(x,D),

where r̃ ∈ SG−1,−σ
μ (R2), r̃ ∼∑γ≥1 r1,γ(x, ξ) in SG−1,−σ

μ (R2) and r̄ ∈ S2μ−1(R
2). In particu-

lar r ∈ SG−1,−σ
2μ−1 (R2), therefore we have

|∂αξ ∂βxr(x, ξ)| ≤ Cα,β〈ξ〉−1−α
h 〈x〉−σ−β

≤ Cα,βh
−1〈ξ〉−α

h 〈x〉−σ−β.

This implies that the (0, 0)−seminorms of r(x, ξ) are bounded by h−1. Choosing h large

enough, we obtain that I + r(x,D) is invertible on L2(R) and its inverse (I + r(x,D))−1

is given by the Neumann series
∑

j≥0(−r(x,D))j . The composition {e−Λ̃}∗ ◦∑j(−r(x,D))j

is then a right inverse on L2 for eΛ̃(x,D).
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By Theorem 2.24 we have

(I + r(x,D))−1 = q(x,D) + k(x,D),

where q ∈ SG0,0
2μ−1(R

2), k ∈ Σδ(R
2) for every δ > 2(2μ − 1) − 1 = 4μ − 3. Choosing μ > 1

close enough to 1, we have that δ can be chosen arbitrarily close to 1. Hence, by Theorem 2.8,

for every fixed θ > 1, we can find μ > 1 such that

(I + r(x,D))−1 : Hm′
ρ′;θ → Hm′

ρ′;θ

is continuous for every m′, ρ′ ∈ R. Analogously one can show the existence of a left inverse of

eΛ with the same properties. Summing up, we have obtained the following result.

Lemma 3.3. Let θ > 1 and take μ > 1 such that θ > 4μ − 3. There is h0 ≥ 1 such that for

every h ≥ h0, the operator eΛ̃(x,D) is invertible on L2(R) and its inverse is given by

{eΛ̃(x,D)}−1 = {e−Λ̃(x,D)}∗ ◦ (I + r(x,D))−1 = {e−Λ̃(x,D)}∗ ◦
∑
j≥0

(−r(x,D))j,

where r ∈ SG−1,−σ
2μ−1 (R2) and r ∼ ∑γ≥1

1
γ!
∂γξ (e

Λ̃Dγ
xe

−Λ̃) in SG−1,−σ
2μ−1 (R2). Moreover, the sym-

bol of (I + r(x,D))−1 belongs to SG(0,0)
δ for every δ > 4μ− 3 and it maps continuously Hm′

ρ′;θ

into itself for any ρ′,m′ ∈ R.

We conclude this section writing {eΛ̃(x,D)}−1 in a more precise way. From the

asymptotic expansion of the symbol r(x, ξ) we have

{eΛ̃(x,D)}−1 = {e−Λ̃(x,D)}∗ ◦ (I − r(x,D) + (r(x,D))2 + q−3(x,D)),

where q−3 denotes an operator with symbol in SG−3,−3σ
δ (R2) for every δ > 4μ − 3. Now note

that

r = i∂ξ∂xΛ̃ +
1

2
∂2ξ (∂

2
xΛ̃− [∂xΛ̃]

2) + q−3 = q−1 + q−2 + q−3

and

(r(x,D))2 = (q−1 + q−2 + q−3)(x,D) ◦ (q−1 + q−2 + q−3)(x,D)

= q−1(x,D) ◦ q−1(x,D) + q−3(x,D)

= op
{
−[∂ξ∂xΛ̃]

2 + q−3

}
for a new element q−3 in the same space. We finally obtain:

{eΛ̃}−1 = {e−Λ̃}∗ ◦
[
I + op

(
−i∂ξ∂xΛ̃− 1

2
∂2ξ (∂

2
xΛ̃− [∂xΛ̃]

2)− [∂ξ∂xΛ̃]
2 + q−3

)]
, (3.10)

where q−3 ∈ SG−3,−3σ
δ (R2). Since we deal with operators of order not exceeding 3, in the next

sections we are going to use frequently formula (3.10) for the inverse of eΛ̃(x,D).
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3.5 Conjugation of iP

In this section we will perform the conjugation of iP by the operator eΛ(t, x,D), where

Λ(t, x, ξ) = k(t)〈ξ〉
1
s
h + Λ̃(x, ξ) = k(t)〈ξ〉

1
s
h + λ2(x, ξ) + λ1(x, ξ)

and k ∈ C1([0, T ];R) is a non-increasing function (to be chosen later on) such that k(T ) > 0.

Since the inverse of eΛ̃ is given by

{e−Λ̃(x,D)}∗ ◦
∑
j≥0

(−r(x,D))j

we shall need to work with products of the type

eΛ̃(x,D) ◦ p(x,D) ◦ {e−Λ̃(x,D)}∗,

where p(x,D) is given by a symbol of finite order. The next result shows us how to compute

these types of conjugations.

Theorem 3.2. Let p be a symbol satisfying

|∂αξ ∂βxp(x, ξ)| ≤ CAA
|α+β|α!kβ!k〈ξ〉m−|α|

h ,

and let Λ satisfying

|∂αξ Λ(x, ξ)| ≤ ρ0A
|α|α!k〈ξ〉

1
k
−|α|

h , α ∈ N0,

and

|∂αξ ∂βxΛ(x, ξ)| ≤ ρ0A
|α|α!kβ!k〈ξ〉−|α|

h , α ∈ N0, β > 0. (3.11)

Then there exist δ > 0 and h0 = h0(A) ≥ 1 such that if ρ0 ≤ δA− 1
k and h ≥ h0, then

eΛ(x,D)p(x,D){e−Λ(x,D)}∗ = op

⎛⎝ ∑
|α+β|<N

1

α!β!
∂αξ {∂βξ eΛ(x,ξ)Dβ

xp(x, ξ)D
α
xe

−Λ(x,ξ)}
⎞⎠

+ rN(x,D) + r∞(x,D),

where

|∂αξ ∂βxrN(x, ξ)| ≤ Cρ0,A,k(CkA)
|α+β|+2Nα!kβ!kN !2k−1〈ξ〉m−(1− 1

k
)N−|α|

h ,

|∂αξ ∂βxr∞(x, ξ)| ≤ Cρ0,A,k(CkA)
|α+β|+2Nα!kβ!kN !2k−1e−ckA

− 1
k 〈ξ〉

1
k
h .

Remark 3.6. Theorem 3.2 is totally inspired by Section 6 of the first part of [34]. Our approach

follows the same ideas developed there, but with some small modifications in the results and

proofs. Namely, we work on a Taylor expansion that was not performed in [34].
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3.5.1 Proof of Theorem 3.2

This section contains the proof of Theorem 3.2. Let us introduce the main ingredients

of the proof. First of all, we need to extend Gevrey regular symbols to the complex domain.

Given a symbol p ∈ Sm
κ (R2n;A) and a cutoff function χ ∈ C∞

c (R) such that

|∂jtχ(t)| ≤ Cj+1j!k
′
, χ(t) =

⎧⎪⎨⎪⎩
1, |t| ≤ 1,

0, |t| ≥ 2,

where 1 < k′ < k. For x, ξ ∈ R
n and |y| ≤ B1〈ξ〉

1
k
−1

h , |η| ≤ B1〈ξ〉
1
k
h (where B1 > 0) we define

an almost analytic extension of p(x, ξ) by

p(x+ iy, ξ + iη) =
∑

δ,γ∈Nn
0

1

δ!γ!
∂γξ ∂

δ
xp(x, ξ)(iy)

δ(iη)γχ(b|δ|〈ξ〉
1
k
−1

h )χ(b|γ|〈ξ〉
1
k
−1

h ), (3.12)

where the sequence {bj}j∈N0 is given by b0 = 1 and bj = Bj!
k−1
j with B = DAB1 and D is a

large positive constant. Formula (3.12) is the Taylor series of p(x+ iy, ξ+ iη) centered at (x, ξ)

multiplied by some cutoff functions. These cutoff functions will ensure the convergence of the

series. Namely, we have the following result which is proved in [34, Proposition 5.2].

Proposition 3.3. Let x, ξ, y, η ∈ R
n such that |y| ≤ B1〈ξ〉

1
k
−1

h and |η| ≤ B1〈ξ〉
1
k
h . Let moreover

p(x+iy, ξ+iη) the almost analytic extension defined by (3.12). Then there are positive constants

CA, Ck, ck such that

|∂αξ ∂ρη∂βx∂λy p(x+ iy, ξ + iη)| ≤ CA(CkA)
|α+β+ρ+λ|α!kβ!kρ!kλ!k〈ξ〉m−|α+ρ|

h , (3.13)

|∂j∂αξ ∂ρη∂βx∂λy p(x+ iy, ξ + iη)| ≤ CA(CkA)
|α+β+ρ+λ|α!kβ!kρ!kλ!k〈ξ〉m−|α+ρ|

h e−ckB
− 1

k−1 〈ξ〉
1
k
h ,

(3.14)

where ∂j stands for 2−1(∂xj
+ i∂yj) or 2−1(∂ξj + i∂ηj), j = 1, 2, . . . , n.

For the proofs of the next results we recall that

Os−
∫∫

e−iyηeixηa(y)dyd−η = Os−
∫∫

e−iηya(y + x)dyd−η = a(x), x ∈ R
n, (3.15)

where a ∈ B∞(Rn), see the example in the end of Section 6, Chapter 1 of [35]. Theorem 3.2 is

a direct consequence of the two following propositions.
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Proposition 3.4. Under the same assumptions of Theorem 3.2, there exists δ > 0 such that if

ρ0 ≤ δA− 1
k , then

eΛ(x,D) ◦ p(x,D) = op(eΛ(x,ξ)sN(x, ξ)) + qN(x,D) + r∞(x,D),

where

sN(x, ξ) =
∑
|α|<N

1

α!
e−Λ(x,ξ){∂αξ eΛ(x,ξ)}Dα

xp(x, ξ), (3.16)

|∂αξ ∂βxqN(x, ξ)| ≤ Cρ0,A,k(CkA)
|α+β|+2Nα!kβ!kN !2k−1〈ξ〉m−(1− 1

k
)N−|α|

h ,

|∂αξ ∂βxr∞(x, ξ)| ≤ Cρ0,A,k(CkA)
|α+β|+2Nα!kβ!kN !2k−1e−ckA

− 1
k 〈ξ〉

1
k
h .

Proof. Arguing as in the proof of [34, Theorem 6.9], we can write the symbol s(x, ξ) of

eΛ(x,D) ◦ p(x,D) as the following oscillatory integral

s(x, ξ) = Os−
∫∫

e−iηyeΛ(x,ξ+η)p(x+ y, ξ)dyd−η.

Applying Taylor’s formula and using (3.15) we obtain

s(x, ξ) =
∑
|α|<N

1

α!
∂αξ e

Λ(x,ξ)Dα
xp(x, ξ) + rN(x, ξ),

where

rN(x, ξ) =
∑
|α|=N

1

α!
Os−

∫∫
e−iyηDα

xp(x+ y, ξ)

∫ 1

0

(1− θ)N−1∂αξ e
Λ(x,ξ+θη)dθdyd−η.

Therefore

eΛ(x,D) ◦ p(x,D) = op(eΛ(x,ξ)sN(x, ξ)) + rN(x,D),

where sN is given by (3.16). Take now χ(t) ∈ C∞
c (R) such that

|∂jtχ(t)| ≤ Cj+1j!k
′
(1 < k′ < k), χ(t) =

⎧⎪⎨⎪⎩
1, |t| ≤ 1

4

0, |t| ≥ 1
2

,

and set χ(ξ, η) = χ(〈η〉〈ξ〉−1
h ), ξ, η ∈ R

n. Note that

1

2
〈ξ〉h ≤ 〈ξ + θη〉h ≤ 3

2
〈ξ〉h

for every ξ, η ∈ suppχ(ξ, η) and |θ| ≤ 1. We can split the operator rN(x,D) as

rN(x,D)u(x) =
∑
|α|=N

1

α!

∫
eiξx+Λ(x,ξ)Os−

∫∫
e−iηy

∫ 1

0

(1− θ)N−1eΛ(x,ξ+θη)−Λ(x,ξ)
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× wα(Λ; x, ξ + θη)dθ {Dα
xp}(x+ y, ξ)dyd−η û(ξ)d−ξ

=

∫
eiξx+Λ(x,ξ)r′N(x, ξ)û(ξ)d

−ξ +
∫
eixξr

′′
N(x, ξ)û(ξ)d

−ξ,

where for α, β ∈ N
n
0 we set wα

β (Λ; x, ξ) = e−Λ(x,ξ)∂αξD
β
xe

Λ(x,ξ),

r′N(x, ξ) = lim
ε→0

∑
|α|=N

1

α!

∫∫
e−iηy

∫ 1

0

(1− θ)N−1eΛ(x,ξ+θη)−Λ(x,ξ)wα(Λ; x, ξ + θη)dθ

× {Dα
xp}(x+ y, ξ)χ(ξ, η)χε(y, η)dyd

−η,

r
′′
N(x, ξ) = lim

ε→0

∑
|α|=N

1

α!

∫∫
e−iηy

∫ 1

0

(1− θ)N−1∂αξ e
Λ(x,ξ+θη)dθ

× {Dα
xp}(x+ y, ξ)(1− χ)(ξ, η)χε(y, η)dyd

−η,

and χε(y, η) = χ(εy)χ(εη), χ ∈ Σk′(R
n), χ(0) = 1.

Now we work on r′N(x, ξ). Notice first that

Λ(x, ξ + θη)− Λ(x, ξ) = η · θ
∫ 1

0

∇ξΛ(x, ξ + θ̃θη)dθ̃ = η · Λξ(x, ξ, η, θ),

then we obtain

r′N(x, ξ) = lim
ε→0

∑
|α|=N

1

α!

∫ 1

0

(1− θ)N−1

∫∫
e−iη(y+iΛξ(x,ξ,η,θ))wα(Λ; x, ξ + θη)

× {Dα
xp}(x+ y, ξ)χ(ξ, η)χε(y, η)dyd

−ηdθ.

Observe that

|∂αξ ∂γη∂βxΛξ(x, ξ, η, θ)| ≤ Ckρ0A(CkA)
|α+γ+β|α!kγ!kβ!k〈ξ〉

1
k
−1−|α+γ|

h ,

for every ξ, η ∈ suppχ(ξ, η) and |θ| ≤ 1. For x, ξ ∈ R
n and |y| ≤ CkδA

k−1
k 〈ξ〉

1
k
−1

h , consider

now the almost analytic extension

p(x+ iy, ξ) =
∑
δ

1

δ!
∂δxp(x, ξ)(iy)

δχ(b|δ|〈ξ〉1−
1
k

h ),

where bj = Bj!
k−1
j , B = DA

2k−1
k and D is a large constant. Choosing D = A−1D̃ with D̃

large enough, in view of (3.14), we obtain

|∂αξ ∂βx∂λy ∂jp(x+ iy, ξ)| ≤ CA,k(CkA)
|α+β+λ|{α!λ!β!}k〈ξ〉m−|α|

h e−ckA
− 1

k 〈ξ〉
1
k
h , (3.17)
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where ∂j stands for 2−1(∂xj
+ i∂yj). In this way we may write r′N(x, ξ) as

r′N(x, ξ) = lim
ε→0

∑
|α|=N

1

α!

∫ 1

0

(1− θ)N−1

∫
Rn
η

∫
γ(x,ξ,η,θ)

e−iηzwα(Λ; x, ξ + θη)

× {Dα
xp}(x+ z − iΛξ(x, ξ, η, θ), ξ)χ(ξ, η)χε(z − iΛξ(x, ξ, η, θ), η)dz d

−η dθ,

where

γ(x, ξ, η, θ) = {y + iΛξ(x, ξ, η, θ) : y ∈ R
n}.

Stokes formula implies

r′N(x, ξ) = lim
ε→0

∑
|α|=N

1

α!

∫ 1

0

(1− θ)N−1

∫∫
R2n
(y,η)

e−iηywα(Λ; x, ξ + θη)

× {Dα
xp}(x+ y − iΛξ(x, ξ, η, θ), ξ)χ(ξ, η)χε(y − iΛξ(x, ξ, η, θ), η)dy d

−η dθ

+ lim
ε→0

∑
|α|=N

1

α!

∫ 1

0

(1− θ)N−1

∫
Rn
η

n∑
j=1

∫∫
Γ(x,ξ,η,θ)

e−iηzwα(Λ; x, ξ + θη)

× ∂zj{(Dα
xp)(x+ z − iΛξ(x, ξ, η, θ), ξ)χε(z − iΛξ(x, ξ, η, θ), η)}χ(ξ, η)dzj ∧ dz d−η dθ

= r′1,N(x, ξ) + r′2,N(x, ξ),

where

Γ(x, ξ, η, θ) = {y + itΛξ(x, ξ, η, θ) : y ∈ R
n, t ∈ [0, 1]}.

To finish the proof, it only remains to estimate r′1,N(x, ξ), r
′
2,N(x, ξ) and r

′′
N(x, ξ). We

begin with r′1,N(x, ξ): setting

aε,θ(x, ξ; y, η) = wα(Λ; x, ξ+θη){Dα
xp}(x+y−iΛξ(x, ξ, η, θ), ξ)χ(ξ, η)χε(y−iΛξ(x, ξ, η, θ), η),

we have, for any �1, �2 ∈ N0,

∂α
′

ξ ∂
β′
x r

′
1,N(x, ξ) = lim

ε→0

∑
|α|=N

1

α!

∫ 1

0

(1− θ)N−1

∫∫
e−iyη

× 〈y〉−2
2〈Dη〉2
2{〈η〉−2
1〈Dy〉2
1∂α′
ξ ∂

β′
x aε,θ(x, ξ; y, η)}dyd−η dθ.

Standard computations give

|〈Dη〉2
2{〈η〉−2
1〈Dy〉2
1∂α′
ξ ∂

β′
x aε,θ(x, ξ; y, η)}| ≤ Cρ0,A,k(CkA)

|α′+β′|+2(|α|+
1+
2)α′!kβ′!k

× (α!�1!�2!)
2k〈ξ〉m−|α′|−|α|(1− 1

k
)

h 〈η〉−2
1 ,

for every x, y ∈ R
n, ξ, η ∈ suppχ(ξ, η) and θ, ε ∈ (0, 1). Therefore

|∂α′
ξ ∂

β′
x r

′
1,N(x, ξ)| ≤ Cρ0,A,k(CkA)

|α′+β′|+2Nα′!kβ′!kN !2k−1〈ξ〉m−|α′|−N(1− 1
k
)

h
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× (CkA)
+2(
1+
2)(�1!�2!)

2k

∫∫
〈y〉−2
2〈η〉−2
1dyd−η.

Hence, choosing 2�1 and 2�2 larger than n, we get

|∂α′
ξ ∂

β′
x r

′
1,N(x, ξ)| ≤ Cρ0,A,k,n(CkA)

|α′+β′|+2Nα′!kβ′!kN !2k−1〈ξ〉m−|α′|−N(1− 1
k
)

h .

Now we consider r′2,N(x, ξ). Taking coordinates (y, t) in Γ(x, ξ, η, θ), we get z =

y + itΛξ and dz̄j ∧ dz = 2iΛξjdtdy, hence we may write (omitting the argument (x, ξ, η, θ) in

Λξ)

r′2,N = lim
ε→0

∑
|α|=N

1

α!

∫ 1

0

(1− θ)N−1

∫
Rn
η

χ(ξ, η)
n∑

j=1

∫ 1

0

∫
Rn
y

e−iη(y+itΛξ)wα(Λ; x, ξ + θη)

× ∂zj{{Dα
xp}(x+ y + i(t− 1)Λξ, ξ)χε(y + i(t− 1)Λξ, η)}2iΛξjdydt d

−η dθ

= lim
ε→0

∑
|α|=N

1

α!

n∑
j=1

∫ 1

0

∫ 1

0

(1− θ)N−1e−tΛ(x,ξ)

∫∫
R2n

e−iyηetΛ(x,ξ+θη)wα(Λ; x, ξ + θη)

× χ(ξ, η)2iΛξj∂zj{{Dα
xp}(x+ y + i(t− 1)Λξ, ξ)χε(y + i(t− 1)Λξ, η)}dyd−η dtdθ.

Setting

bj,ε,θ(x, ξ; y, η, t) = e(1−t)Λ(x,ξ)etΛ(x,ξ+θη)wα(Λ; x, ξ + θη)χ(ξ, η)

× 2iΛξj∂zj{{Dα
xp}(x+ y + i(t− 1)Λξ, ξ)χε(y + i(t− 1)Λξ, η)},

we have for any �1, �2 ∈ N0,

∂α
′

ξ ∂
β′
x {eΛ(x,ξ)r′2,N(x, ξ)} = lim

ε→0

∑
|α|=N

1

α!

n∑
j=1

∫ 1

0

∫ 1

0

(1− θ)N−1

∫∫
e−iyη

〈y〉−2
2〈Dη〉2
2{〈η〉−2
1〈Dy〉2
1∂α′
ξ ∂

β′
x bj,ε,θ(x, ξ; y, η, t)}dyd−η dtdθ.

Since bj,ε,θ contains ∂zj we obtain the following estimate

|〈Dη〉2
2{〈η〉−2
1〈Dy〉2
1∂α′
ξ ∂

β′
x bj,ε,θ(x, ξ; y, η, t)}| ≤ Cρ0,A,k(CkA)

|α′+β′|+2(|α|+
1+
2)α′!kβ′!k

× {α!�1!�2!}2ke5ρ0〈ξ〉
1
k
h 〈ξ〉mh e−ckA

− 1
k 〈ξ〉−

1
k

h 〈η〉−2
1 ,

for every x, y ∈ R
n, x, ξ ∈ suppχ(ξ, η), t, θ, ε ∈ (0, 1) and j = 1, . . . , n. Hence

|∂α′
ξ ∂

β′
x {eΛ(x,ξ)r′2,N(x, ξ)}| ≤ Cρ0,A,k,n(CkA)

|α′+β′|+2(N+
1+
2)α′!kβ′!kN !2k−1

× {�1!�2!}2ke5ρ0〈ξ〉
1
k
h 〈ξ〉mh e−ckA

− 1
k 〈ξ〉−

1
k

h

∫∫
〈y〉−2
2〈η〉−2
1dyd−η.
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Recalling that ρ0 ≤ δA− 1
k and choosing �1, �2 larger than n/2,

|∂α′
ξ ∂

β′
x {eΛ(x,ξ)r′2,N(x, ξ)}| ≤ Cρ0,A,k,n,m(CkA)

|α′+β′|+2Nα′!kβ′!kN !2k−1e(5δ−
ck
2
)A− 1

k 〈ξ〉
1
k
h .

To finish we estimate r
′′
N(x, ξ). We recall that 〈η〉 ≥ 4−1〈ξ〉h on the support of the

function (1− χ)(ξ, η). Integrating by parts we get

r
′′
N(x, ξ) = lim

ε→0

∑
|α|=N

1

α!

∫∫
e−iηy

∫ 1

0

(1− θ)N−1〈y〉−2
2

× 〈Dη〉2
2
(
〈η〉−2
1〈Dy〉2
1

[
∂αξ e

Λ(x,ξ+θη){Dα
xp}(x+ y, ξ)(1− χ)(ξ, η)χε(y, η)

])
︸ ︷︷ ︸

=:cε,θ,�1,�2 (x,ξ;y,η)

× dθ dyd−η.

Noticing that

|∂αξ ∂βx∂γη eΛ(x,ξ+θη)| ≤
|α+β+γ|∑

j=1

eΛ(x,ξ+θη)

j!

∑
(β1,α1,γ1)+···+(βj ,αj ,γj)=(α,β,γ)

β!α!γ!

β1!α1!γ1! . . . βj!αj!γj!

×
j∏


=1

{∂α�+γ�
ξ ∂β�

x Λ}(x, ξ + θη)

≤ (CkA)
|β+α+γ|{α!β!γ!}keΛ(x,ξ+θη)

|α+β+γ|∑
j=1

ρj0〈ξ + θη〉
j
k
h

j!

≤ (CkA)
|β+α+γ|{α!β!γ!}ke2ρ0〈ξ+θη〉

1
k
h

≤ (CkA)
|β+α+γ|{α!β!γ!}ke2ρ0(〈ξ〉

1
k
h +〈η〉 1k ),

we easily get

|∂α′
ξ ∂

β′
x cε,θ,
1,
2(x, ξ; y, η)| ≤ CA,k(CkA)

|α′+β′|+2(|α|+
1+
2)α′!kβ′!k{α!�1!�2!}2k

× 〈ξ〉mh e2ρ0(〈ξ〉
1
k
h +〈η〉 1k )〈η〉−2
1 ,

hence

|∂α′
ξ ∂

β′
x r

′′
N(x, ξ)| ≤ CA,k(CkA)

|α′+β′|+2Nα′!kβ′!kN !2k−1〈ξ〉mh e2ρ0〈ξ〉
1
k
h

×
∫∫

(CkA)
2(
1+
2)〈y〉−2
2〈η〉−2
1e2ρ0〈η〉

1
k dyd−η.

Taking �2 larger than n/2 and noticing that the above inequality holds for every �1 we obtain

|∂α′
ξ ∂

β′
x r

′′
N(x, ξ)| ≤ CA,k,n(CkA)

|α′+β′|+2Nα′!kβ′!kN !2k−1〈ξ〉mh e2ρ0〈ξ〉
1
k
h



Cauchy Problem for 3−Evolutions Operators With Data in Gevrey Type Spaces 91

×
∫
e−2ckA

− 1
k 〈η〉 1k e2ρ0〈η〉

1
k d−η.

Since 〈η〉 ≥ 4−1〈ξ〉h on the support of (1 − χ)(ξ, η) and we are assuming ρ ≤ δA− 1
k , we

conclude that

|∂α′
ξ ∂

β′
x r

′′
N(x, ξ)| ≤ CA,k,n(CkA)

|α′+β′|+2Nα′!kβ′!kN !2k−1〈ξ〉mh e(2δ−4−
1
k ck)A

− 1
k 〈ξ〉

1
k
h

×
∫
e(2δ−ck)A

− 1
k 〈η〉 1k d−η.

Therefore, possibly shrinking δ > 0, we get

|∂α′
ξ ∂

β′
x r

′′
N(x, ξ)| ≤ CA,k,n,m(CkA)

|α′+β′|+2Nα′!kβ′!kN !2k−1e−δ̃A− 1
k 〈ξ〉

1
k
h .

Proposition 3.5. Under the assumptions of Theorem 3.2, there exist δ > 0 and h0(A) ≥ 1 such

that if h ≥ h0 and ρ0 ≤ δA− 1
k we may write the product op(peΛ) ◦ {e−Λ(x,D)}∗ as follows

op(peΛ) ◦ {e−Λ(x,D)}∗ = sN ′(x,D) + qN ′(x,D) + r∞(x,D),

where

sN ′(x, ξ) =
∑

|α|<N ′

1

α!
∂αξ {eΛ(x,ξ)p(x, ξ)Dα

xe
−Λ(x,ξ)}, (3.18)

|∂αξ ∂βxqN ′(x, ξ)| ≤ Cρ0,A,k(CkA)
|α+β|+2Nα!kβ!kN ′!2k−1〈ξ〉m−(1− 1

k
)N ′−|α|

h , (3.19)

|∂αξ ∂βxr∞(x, ξ)| ≤ Cρ0,A,k(CkA)
|α+β|+2Nα!kβ!kN ′!2k−1e−ckA

− 1
k 〈ξ〉

1
k
h . (3.20)

Proof. We have

{e−Λ}∗u(x) =
∫∫

eiξ(x−y)e−Λ(y,ξ)u(y)dyd−ξ

=

∫
eiξx
∫
e−iξye−Λ(y,ξ)u(y)dy d−ξ,

which implies

op(peΛ) ◦ {e−Λ}∗u(x) =
∫∫

eiξ(x−y)eΛ(x,ξ)−Λ(y,ξ)p(x, ξ)u(y)dyd−ξ.

In this way the symbol σ(x, ξ) of the composition op(peΛ) ◦ {e−Λ}∗ is given by

σ(x, ξ) = Os−
∫∫

e−iηyeΛ(x,ξ+η)−Λ(x+y,ξ+η)p(x, ξ + η)dyd−η.
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By Taylor’s formula and (3.15) we obtain

σ(x, ξ) =
∑

|α′|<N ′

1

α!
∂αξ {eΛ(x,ξ)p(x, ξ)Dα

xe
−Λ(x,ξ)}

+N ′ ∑
|α|=N ′

1

α!

∫ 1

0

(1− θ)N
′−1

×Os−
∫∫

e−iyη∂αξ {eΛ(x,ξ+θη)p(x, ξ + θη)Dα
xe

−Λ(x+y,ξ+θη)}dyd−η dθ

= sN ′(x, ξ) + rN ′(x, ξ).

By Leibniz formula we have

∂αξ {eΛ(x,ξ+θη)p(x, ξ + θη)Dα
xe

−Λ(x+y,ξ+θη)} =
∑

α1+α2+α3=α

α!

α1!α2!α3!

× ∂α1
ξ eΛ(x,ξ+θη)∂α2

ξ p(x, ξ + θη)∂α3
ξ Dα

xe
−Λ(x+y,ξ+θη)

= eΛ(x,ξ+θη)−Λ(x+y,ξ+θη)fα(x, y + x, ξ + θη),

where

fα(x, y, ξ) :=
∑

α1+α2+α3=α

α!

α1!α2!α3!
wα1(Λ; x, ξ)∂α2

ξ p(x, ξ)wα3
α (−Λ; y, ξ).

Performing the change of variables y �→ y − x and η �→ θ−1{η − ξ} we now obtain

rN ′(x, ξ) = N ′ ∑
|α|=N ′

1

α!

∫ 1

0

(1− θ)N
′−1

×Os−
∫∫

e−i(y−x)( η−ξ
θ

)eΛ(x,η)−Λ(y,η)fα(x, y, η)θ
−ndyd−η dθ.

Writing

Λ(y, η)− Λ(x, η) = (y − x) ·
∫ 1

0

∇xΛ(x+ s(y − x), η)ds︸ ︷︷ ︸
=:Λx(x,y,η)

,

we get

rN ′(x, ξ) = lim
ε→0

N ′ ∑
|α|=N ′

1

α!

∫ 1

0

(1− θ)N
′−1

∫
ei(y−x) ξ

θ

∫
e−i( y−x

θ
)(η−iθΛx(x,y,η))

× fα(x, y, η)χε(y, η)θ
−nd−η dy dθ.

Let γ(x, y) = {ζ ∈ C
n : ∃ η ∈ R

n, ζ = η − iθΛx(x, y, η)} and

Γ(x, y) = {ζ : ∃ η ∈ R
n, ∃t ∈ [0, 1], ζ = η − itθΛx(x, y, η)}.
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It follows from [34, Lemma 5.4] (page 23) that there exists h0(A) ≥ 1 such that if h ≥ h0(A),

then we can find a smooth function Ξ(x, y, ζ) (with x and y as parameters) satisfying⎧⎪⎨⎪⎩
ζ = Ξ(x, y; ζ)− iθΛx(x, y, Ξ(x, y; ζ)), ∀ζ ∈ Γ(x, y),

Ξ(x, y; η + iθΛx(x, y, η)) = η, ∀η ∈ R
n

and the following estimates

|∂βx∂δy∂αRe ζ∂
λ
ImζΞ(x, y, ; ζ)| ≤ Cρ0,A(CA

2)|α+λ+β+δ|{α!β!λ!δ!}k〈Re ζ〉
1
k
−|α+λ|

h , (3.21)

|∂ζj∂βx∂δy∂αRe ζ∂
λ
ImζΞ(x, y, ; ζ)| ≤ Cρ0,A(CA

2)|α+λ+β+δ|{α!β!λ!δ!}k〈Re ζ〉
1
k
−|α+λ|

h e−ckA
− 1

k 〈Re ζ〉
1
k
h .

(3.22)

Hence we may write

rN ′(x, ξ) = lim
ε→0

N ′ ∑
|α|=N ′

1

α!

∫ 1

0

(1− θ)N
′−1

∫
ei(y−x) ξ

θ

×
∫
γ(x,y)

e−i( y−x
θ

)ζ J(x, y; ζ)fα(x, y, Ξ(x, y; ζ))χε(y, Ξ(x, y; ζ))︸ ︷︷ ︸
=:Hε(x,y,ζ)

θ−nd−ζ dy dθ,

where J(x, y, ζ) = Det{∂Ξ
∂ζ
(x, y, ζ)}. Stokes formula implies

rN ′(x, ξ) = lim
ε→0

N ′ ∑
|α|=N ′

1

α!

∫ 1

0

(1− θ)N
′−1

∫
ei(y−x) ξ

θ

∫
Rn
η

e−i( y−x
θ

)ηHε(x, y, η)θ
−nd−η dy dθ

+ lim
ε→0

N ′ ∑
|α|=N ′

1

α!

∫ 1

0

(1− θ)N
′−1

∫
ei(y−x) ξ

θ

×
n∑

j=1

∫∫
Γ(x,y)

e−i( y−x
θ

)ζ∂ζjHε(x, y, ζ)θ
−ndζ̄j ∧ d−ζ dy dθ.

Take χ(t) ∈ C∞
c (R) such that

|∂jtχ(t)| ≤ Cj+1j!k
′
(1 < k′ < k), χ(t) =

⎧⎪⎨⎪⎩
1, |t| ≤ 1

4
,

0, |t| ≥ 1
2
,

and set χ(ξ, η) = χ(〈η〉〈ξ〉−1
h ), ξ, η ∈ R

n. Then

rN ′(x, ξ) = lim
ε→0

N ′ ∑
|α|=N ′

1

α!

∫ 1

0

(1− θ)N
′−1

∫∫
e−iyηHε(x, x+ y, ξ + θη)χ(ξ, η)d−η dy dθ

+ lim
ε→0

N ′ ∑
|α|=N ′

1

α!

∫ 1

0

(1− θ)N
′−1

∫∫
e−iyηHε(x, x+ y, ξ + θη)(1− χ)(ξ, η)d−η dy dθ
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+ lim
ε→0

N ′ ∑
|α|=N ′

1

α!

∫ 1

0

(1− θ)N
′−1

∫
ei(y−x) ξ

θ

×
n∑

j=1

∫∫
Γ(x,y)

e−i( y−x
θ

)ζ∂ζjHε(x, y, ζ)θ
−ndζ̄j ∧ d−ζ dy dθ

= r1,N ′(x, ξ) + r2,N ′(x, ξ) + r3,N ′(x, ξ).

Now we estimate the three symbols above. Since the following computations are quite similar

to the ones made in Proposition 3.4, we only explain the main ideas.

We start with r1,N ′(x, ξ). We observe that since we are assuming (3.11), we have

|∂α′
ξ ∂

β′
x ∂

ρ
η∂

λ
y fα(x, x+ y, ξ + θη)| ≤ Ck,A,ρ0(CkA)

|α′+β′+ρ+λ|+2|α|

× {α′!β′!ρ!λ!}kα!2k−1〈ξ〉m−|α|(1− 1
k
)−|α′+ρ|,

for every (ξ, η) ∈ supp{χ(ξ, η)}, and henceforth (in view of (3.21))

|∂α′
ξ ∂

β′
x ∂

ρ
η∂

λ
yHε(x, x+ y, ξ + θη)| ≤ Ck,A,ρ0(CkA)

|α′+β′+ρ+λ|+2|α|

× {α′!β′!ρ!λ!}kα!2k−1〈ξ〉m−|α|(1− 1
k
)−|α′+ρ|,

so, integrating by parts, we can obtain estimate (3.19) for r1,N ′(x, ξ).

To deal with r2,N ′(x, ξ), notice that thanks to (3.11) we obtain

|∂α′
ξ ∂

β′
x ∂

ρ
η∂

λ
y fα(x, x+ y, ξ + θη)| ≤ Ck,A,ρ0(CkA)

|α′+β′+ρ+λ|+2|α|{α′!β′!ρ!λ!}kα!2k−1〈ξ + θη〉m

and therefore

|∂α′
ξ ∂

β′
x ∂

ρ
η∂

λ
yHε(x, x+y, ξ+ θη)| ≤ Ck,A,ρ0(CkA)

|α′+β′+ρ+λ|+2|α|{α′!β′!ρ!λ!}kα!2k−1〈ξ+ θη〉m.

Integrating by parts as in the proof of Proposition 3.4 and using that 4〈η〉 ≥ 〈ξ〉h on the support

of (1− χ)(ξ, η), we can obtain an exponential decay like in (3.20) also for r2,N ′(x, ξ).

Finally, we explain how to treat r3,N ′(x, ξ). Consider coordinates

ϕ(x, y; t, η) = η − itθΛx(x, y, η)(= ζ),

for every t ∈ (0, 1) and η ∈ R
n, in Γ(x, y), then dζ̄j ∧ d−ζ = Jj(x, y, t, η)dtd

−η, where

Jj(x, y, t, η) = Det

{
∂

∂(t, η)
(ηj + itθΛxj

(x, y, η), η − itθΛx(x, y, η))

}
.

Hence

r2,N ′(x, ξ) = lim
ε→0

N ′ ∑
|α|=N ′

1

α!

n∑
j=1

∫ 1

0

(1− θ)N
′−1

∫
ei(y−x) ξ

θ

∫ 1

0

∫
Rn
η

e−i( y−x
θ

)(η−itθΛx(x,y,η))
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× Jj(x, y, t, η)∂ζjHε(x, y, η − itθΛx(x, y, η))θ
−ndtd−η dy dθ

= lim
ε→0

N ′ ∑
|α|=N ′

1

α!

n∑
j=1

∫ 1

0

(1− θ)N
′−1

∫ 1

0

∫∫
e−iyηe−tyΛx(x,y+x,ξ+θη)

× Jj(x, y + x, t, ξ + θη)∂ζjHε(x, y + x, ξ + θη − tyθΛx(x, y + x, ξ + θη))d−ηdy dt dθ.

Now we split r2,N ′(x, ξ) as

r2,N ′(x, ξ) = lim
ε→0

N ′ ∑
|α|=N ′

1

α!

n∑
j=1

∫ 1

0

(1− θ)N
′−1

∫ 1

0

∫∫
e−iyηet(Λ(x,ξ+θη)−Λ(x+y,ξ+θη))χ(ξ, η)

× Jj(x, y + x, t, ξ + θη)∂ζjHε(x, y + x, ξ + θη − itθΛx(x, y + x, ξ + θη))d−ηdy dt dθ

+ lim
ε→0

N ′ ∑
|α|=N ′

1

α!

n∑
j=1

∫ 1

0

(1− θ)N
′−1

∫ 1

0

∫∫
e−iyηet(Λ(x,ξ+θη)−Λ(x+y,ξ+θη))(1− χ)(ξ, η)

× Jj(x, y + x, t, ξ + θη)∂ζjHε(x, y + x, ξ + θη − itθΛx(x, y + x, ξ + θη))d−ηdy dt dθ

= r′2,N ′(x, ξ) + r
′′
2,N ′(x, ξ).

Using that 〈ξ + θη〉h is comparable with 〈ξ〉h on the support of χ(ξ, η), the exponential decay

coming from ∂ζjHε and the hypothesis ρ0 ≤ δA− 1
k , we obtain an estimate like in (3.20) for

r
′
2,N ′ . Integrating by parts and taking into account the fact that 4〈η〉 ≥ 〈ξ〉h on the support of

(1− χ)(ξ, η), we obtain that also r
′′
2,N ′ satisfies the estimate (3.20).

Remark 3.7. Shrinking δ > 0 if necessary, we may conclude that

r∞(x,D) ◦ {e−Λ(x,D)}∗ = r̃∞(x,D),

where r̃∞(x,D) is still a regularizing operator, that is, it satisfies an estimate like in (3.20).

3.5.2 Conjugation of iP by eΛ̃

Before making the conjugation, let us make some remarks. By Lemmas 3.1 and 3.2

we get

|∂αξ ∂βx Λ̃(x, ξ)| ≤

⎧⎪⎨⎪⎩
C

|α+β|+1

Λ̃
α!μβ!μ〈ξ〉2(1−σ)−α

h ,

C
|α+β|+1

Λ̃
α!μβ!μ〈ξ〉−α

h , if β > 0,

where CΛ̃ is a constant depending only on M2,M1, Cw, Cψ, μ, σ. Moreover, since we are as-

suming 2(1− σ) < 1
θ

we also get

|∂αξ ∂βx Λ̃(x, ξ)| ≤ C
|α+β|+1

Λ̃
α!μβ!μ〈ξ〉2(1−σ)−α

h
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= C
|α+β|+1

Λ̃
α!μβ!μ〈ξ〉

1
θ
−α

h 〈ξ〉2(1−σ)− 1
θ

h

≤ CΛ̃h
1
θ
−2(1−σ)C

|α+β|
Λ̃

α!μβ!μ〈ξ〉
1
θ
−α

h ,

therefore

ρ0(Λ̃) := h
1
θ
−2(1−σ)CΛ̃

can be assumed as small as we want, provided that h > h0(M2,M1, CΛ̃, θ, σ). Hence we may

use Theorem 3.2 to compute eΛ̃(x,D) ◦ (iP ) ◦ {eΛ̃(x,D)}−1.

First we note that eΛ̃(x,D) ◦ ∂t ◦ {eΛ̃(x,D)}−1 = ∂t, because Λ̃(x, ξ) = λ2(x, ξ) +

λ1(x, ξ) is independent of t.

• Conjugation of ia3(t,D): Since a3 does no depend on x we may use Proposition 3.5 to

compute (omitting (t, x,D) in the notation)

eΛ̃ ◦ ia3 ◦ {e−Λ̃}∗ = ia3 + ∂ξ{ia3Dx(−Λ̃)}+ 1

2
∂2ξ{ia3[D2

x(−Λ̃) + (DxΛ̃)
2]}+ q3 + r∞.

Since x−derivatives kill the ξ−growth given by the integrals of Λ̃, we can conclude that

q3 has order zero. Composing with the Neumman series we get from (3.10)

eΛ̃(ia3){eΛ̃}−1 = op

(
ia3 − ∂ξ(a3∂xΛ̃) +

i

2
∂2ξ [a3(∂

2
xΛ̃− (∂xΛ̃)

2)] + q3 + r∞

)
◦ op

(
1− i∂ξ∂xΛ̃− 1

2
∂2ξ (∂

2
xΛ̃− [∂xΛ̃]

2)− [∂ξ∂xΛ̃]
2 + q−3

)
= ia3 − ∂ξ(a3∂xΛ̃) +

i

2
∂2ξ{a3(∂2xΛ̃− {∂xΛ̃}2)}+ a3∂ξ∂xΛ̃− i∂ξa3∂ξ∂

2
xΛ̃

+ i∂ξ(a3∂xΛ̃)∂ξ∂xΛ̃− i

2
a3{∂2ξ (∂2xΛ̃ + [∂xΛ̃]

2) + 2[∂ξ∂xΛ̃]
2}+ r0 + r

= ia3 − ∂ξa3∂xΛ̃ +
i

2
∂2ξ{a3[∂2xΛ̃− (∂xΛ̃)

2]} − i∂ξa3∂ξ∂
2
xΛ̃

+ i∂ξ(a3∂xΛ̃)∂ξ∂xΛ̃− i

2
a3{∂2ξ (∂2xΛ̃ + [∂xΛ̃]

2) + 2(∂ξ∂xΛ̃)
2}+ r0 + r,

where r0 ∈ C([0, T ];S0
δ (R

2)) and r is a new regularizing term. Writing Λ̃ = λ2 + λ1 and

observing that Dxλ1 has order −1 we get

eΛ̃(ia3){eΛ̃}−1 = ia3 − ∂ξa3∂xλ2 − ∂ξa3∂xλ1 +
i

2
∂2ξ{a3(∂2xλ2 − {∂xλ2}2)} − i∂ξa3∂ξ∂

2
xλ2

+ i∂ξ(a3∂xλ2)∂ξ∂xλ2 − i

2
a3{∂2ξ (∂2xλ2 + [∂xλ2]

2) + 2[∂ξ∂xλ2]
2}+ r0 + r,
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for a new zero order term r0. Setting

d1(t, x, ξ) =
1

2
∂2ξ{a3(∂2xλ2 − {∂xλ2}2)} − ∂ξa3∂ξ∂

2
xλ2

+ ∂ξ(a3∂xλ2)∂ξ∂xλ2 − 1

2
a3{∂2ξ (∂2xλ2 + [∂xλ2]

2) + 2[∂ξ∂xλ2]
2}

we may write

eΛ̃(ia3){eΛ̃}−1 = ia3 − ∂ξa3∂xλ2 − ∂ξa3∂xλ1 + id1 + r0 + r,

where d1 is a real-valued symbol of order 1 which does not depend on λ1. Moreover, we

have the following estimate

|∂αξ ∂βxd1(t, x, ξ)| ≤ Cα+β+1
λ2

α!μβ!μ〈ξ〉1−α;

where Cλ2 is a constant independent of λ1.

• Conjugation of ia2(t, x,D): for N ∈ N such that 2−N(1− 1
θ
) ≤ 0, Theorem 3.2 gives

eΛ̃ ◦ ia2(t, x,D) ◦ {e−Λ̃}∗ = ia2(t, x,D) + op

( ∑
1≤α+β<N

1

α!β!
∂αξ {∂βξ eΛ̃Dβ

x(ia2)D
α
xe

−Λ̃}
)

︸ ︷︷ ︸
=:(ia2)N

+ r̃0(t, x,D) + r̃(t, x,D),

where r̃0 has order zero and r̃ is a θ−regularizing term. By the hypothesis on a2, we

obtain

|∂αξ ∂βx (ia2)N(t, x, ξ)| ≤ Cα+β+1

a2,Λ̃
α!μβ!s0〈ξ〉2−[2σ−1]−α〈x〉−σ.

Composing with the Neumann series and using the fact that ∂xλ1 has order −1 we get

eΛ̃ ◦ ia2 ◦ {eΛ̃}−1 = (ia2 + (ia2)N + r̃0 + R̃) ◦ (I − i∂ξ∂xλ2 + q−2)

= ia2 + (ia2)N + a2 ◦ ∂ξ∂xλ2 − i(ia2)N ◦ ∂ξ∂xλ2 + r0 + r

= ia2 + (ia2)N − i(ia2)N∂ξ∂xλ2︸ ︷︷ ︸
=:(ia2)Λ̃

+a2∂ξ∂xλ2 + r0 + r,

where r0 has order zero, r is a θ−regularizing term and (a2)Λ̃ satisfies

|∂αξ ∂βx (ia2)Λ̃(t, x, ξ)| ≤ Cα+β+1

a2,Λ̃
α!μβ!s0〈ξ〉2−[2σ−1]−α〈x〉−σ,

in particular

|(ia2)Λ̃(t, x, ξ)| ≤ Ca2,Λ̃
〈ξ〉2−[2σ−1]

h 〈x〉−σ. (3.23)
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• Conjugation of ia1(t, x,D):

eΛ̃ ◦ (ia1)(t, x,D) ◦ {eΛ̃}−1 = (ia1 + (ia1)Λ̃ + r1)(t, x,D)
∑
j≥0

(−r)j

= ia1(t, x,D) + (ia1)Λ̃(t, x,D) + r0(t, x,D) + r(t, x,D),

where r0 has order zero, r is a θ−regularizing operator and

(ia1)Λ̃ ∼
∑

|α+β|≥1

1

α!β!
∂αξ {∂βξ eΛ̃Dβ

x(ia1)D
α
xe

−Λ̃} in S2(1−σ)
μ,s0

. (3.24)

• Conjugation of ia0(t, x,D): eΛ̃ ◦(ia0)(t, x,D)◦{eΛ̃}−1 = r0(t, x,D)+r(t, x,D), where

r0 has order zero and r is a θ−regularizing term.

Gathering all the previous computations we may write (omitting (t, x,D) in the nota-

tion)

eΛ̃(iP ){eΛ̃}−1 = ∂t + ia3 − ∂ξa3∂xλ2 − ∂ξa3∂xλ1 + id1

+ ia2 + (ia2)Λ̃ + a2∂ξ∂xλ2 + ia1 + (ia1)Λ̃ + r0 + r,

where d1 ∈ S1
1,s0

, d1 is real-valued, d1 does not depend of λ1, (ia2)Λ̃ satisfies (3.23), (ia1)Λ̃

satisfies (3.24), r0 ∈ C([0, T ];S0
δ,s0

(R2)) and r is a θ−regularizing operator.

3.5.3 Conjugation of eΛ̃(iP ){eΛ̃}−1 by ek(t)〈D〉
1
θ
h

Let us recall that the function k(t) satisfies k ∈ C1([0, T ];R), k′(t) ≤ 0 and k(t) > 0

for every t ∈ [0, T ]. We shall use the following lemma (which is a special case of Theorem 3.2).

Lemma 3.4. Let a ∈ C([0, T ], Sm
μ,θ(R

2;A)), where 1 < μ ≤ θ. There exists δ > 0 such that if

k(t) ≤ δA− 1
θ then

ek(t)〈D〉
1
θ
h ◦ a(t, x,D) ◦ e−k(t)〈D〉

1
θ
h = a(t, x,D) + b(t, x,D) + r∞(t, x,D),

where b ∼∑j≥1
1
j!
∂jξe

k(t)〈ξ〉
1
θ
h Dj

xa e
−k(t)〈ξ〉

1
θ
h in S

m−(1− 1
θ
)

μ,θ (R2) and r∞(t, x,D) is a θ−regularizing

operator.

• Conjugation of ∂t: e
k(t)〈D〉

1
θ
h ∂t e

−k(t)〈D〉
1
θ
h = ∂t − k′(t)〈D〉

1
θ
h .

• Conjugation of ia3(t,D): since a3 does not depend of x, we simply have

ek(t)〈D〉
1
θ
h ◦ ia3(t,D) ◦ e−k(t)〈D〉

1
θ
h = ia3(t,D).
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• Conjugation of op{ia2 − ∂ξa3∂xλ2}:

ek(t)〈D〉
1
θ
h ◦ (ia2 − ∂ξa3∂xλ2)(t, x,D) ◦ e−k(t)〈D〉

1
θ
h = ia2(t, x,D)

− op(∂ξa3∂xλ2) + (b2,k + r0 + r)(t, x,D)

where r0 has order zero, r is a θ−regularizing term and b2,k(t, x, ξ) ∈ C([0, T ];S
1+ 1

θ
μ,s0 (R

2)),

|b2,k(t, x, ξ)| ≤ max{1, k(t)}Cs,λ2〈ξ〉1+
1
θ

h 〈x〉−σ, x, ξ ∈ R
n. (3.25)

• Conjugation of (ia2)Λ̃(t, x,D):

ek(t)〈D〉
1
θ
h ◦ (ia2)Λ̃(t, x,D) ◦ e−k(t)〈D〉

1
θ
h = {(ia2)k,Λ̃ + r0 + r}(t, x,D),

where r0 has order zero, r is a θ−regularizing term and (ia2)k,Λ̃ ∈ C([0, T ];S
2−[2σ−1]
μ,s0 ),

|∂αξ ∂βx (ia2)k,Λ̃(t, x, ξ)| ≤ (max{k(t), 1}Ca2,Λ̃
)α+β+1α!μβ!s0〈ξ〉2−[2σ−1]−α〈x〉−σ.

In particular

|(ia2)k,Λ̃(t, x, ξ)| ≤ max{k(t), 1}Ca2,Λ̃
〈ξ〉2−[2σ−1]

h 〈x〉−σ. (3.26)

• Conjugation of op{ia1 − ∂ξa3∂xλ1 + id1 + a2∂ξ∂xλ2}: we have (omitting (t, x,D) in the

notation)

ek(t)〈D〉
1
θ
h ◦ (ia1 − ∂ξa3∂xλ1 + id1 + a2∂ξ∂xλ2) ◦ e−k(t)〈D〉

1
θ
h

= ia1 − ∂ξa3∂xλ1 + id1 + a2∂ξ∂xλ2 + b1,k + r0 + r,

where r0 has order zero, r is a θ−regularizing term and b1,k(t, x, ξ) ∈ C([0, T ];S
1
θ
μ,s0),

|b1,k(t, x, ξ)| ≤ k(t)CΛ̃〈ξ〉
1
θ
h , x ∈ R, ξ ∈ R. (3.27)

• Conjugation of (ia1)Λ̃(t, x,D):

ek(t)〈D〉
1
θ
h ◦ (ia1)Λ̃(t, x,D) ◦ e−k(t)〈D〉

1
θ
h = {(ia1)k,Λ̃ + r0 + r}(t, x,D),

where r0 has order zero, r is a θ−regularizing term and (ia1)k,Λ̃ ∈ C([0, T ];S
2(1−σ)
μ,s0 ),

|(ia1)k,Λ̃(t, x, ξ)| ≤ CΛ̃〈ξ〉2(1−σ)
h , x, ξ ∈ R. (3.28)
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Finally, gathering all the previous computations we obtain the following expression for

the conjugated opeartor

eΛ ◦ (iP ) ◦ {eΛ}−1 = ∂t + ia3(t,D)

+ op(ia2 − ∂ξa3∂xλ2 + b2,k + (ia2)k,Λ̃)

+ op(ia1 − ∂ξa3∂xλ1 + id1 + a2∂ξ∂xλ2)

+ op(−k′(t)〈ξ〉
1
θ
h + b1,k + (ia1)k,Λ̃) + (r0 + r)(t, x,D)

where b2,k satisfies (3.25), (ia2)k,Λ̃ satisfies (3.26), b1,k satisfies (3.27), (ia1)k,Λ̃ satisfies (3.28),

r0 has order zero and r is a θ−regularizing term.

3.6 Estimates from Below for the Real Parts

In this Section, we will derive some estimates from below for the real parts of the

lower order terms of (iP )Λ and we use them to achieve a well-posedness result for the Cauchy

problem (3.5). We start noticing that for |ξ| > hRa3 we have

−∂ξa3∂xλ2 = |∂ξa3|M2〈x〉−σψ

( 〈x〉
〈ξ〉2h

)
= |∂ξa3|M2〈x〉−σ − |∂ξa3|M2〈x〉−σ

[
1− ψ

( 〈x〉
〈ξ〉2h

)]
,

−∂ξa3∂xλ1 = |∂ξa3|M1〈ξ〉−1
h 〈x〉−σ

2ψ

( 〈x〉
〈ξ〉2h

)
= |∂ξa3|M1〈ξ〉−1

h 〈x〉−σ
2 − |∂ξa3|M1〈ξ〉−1

h 〈x〉−σ
2

[
1− ψ

( 〈x〉
〈ξ〉2h

)]
.

We also observe that

−|∂ξa3|M2〈x〉−σ

[
1− ψ

( 〈x〉
〈ξ〉2h

)]
≥ −2σCa3M2〈ξ〉2(1−σ)

h ,

−|∂ξa3|M1〈ξ〉−1
h 〈x〉−σ

2

[
1− ψ

( 〈x〉
〈ξ〉2h

)]
≥ −2σCa3M1〈ξ〉1−σ

h ,

because 〈x〉 ≥ 1
2
〈ξ〉2h on the support of (1− ψ)(〈x〉〈ξ〉−2

h ).

In this way we may write (|ξ| > Ra3h)

eΛ ◦ (iP ) ◦ {eΛ}−1 = ∂t + ia3(t,D) + ã2(t, x,D) + ã1(t, x,D) + ãθ(t, x,D) + r0(t, x,D),

where r0 is an operator of order 0 and

Re ã2 = −Ima2 + |∂ξa3|M2〈x〉−σ +Re b2,k +Re (ia2)k,Λ̃,
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Im ã2 = Re a2 + Im b2,k + Im (a2)k,Λ̃,

Re ã1 = −Ima1 + |∂ξa3|M1〈ξ〉−1
h 〈x〉−σ

2 +Re a2∂ξ∂xλ2,

Re ãθ = −k′(t)〈ξ〉
1
θ
h +Re b1,k +Re (ia1)k,Λ̃

− |∂ξa3|M2〈x〉−σ

[
1− ψ

( 〈x〉
〈ξ〉2h

)]
− |∂ξa3|M1〈ξ〉−1

h 〈x〉−σ
2

[
1− ψ

( 〈x〉
〈ξ〉2h

)]
.

Now we decompose iIm ã2 into its Hermitian and anti-Hermitian part:

iImã2 =
iImã2 + (iImã2)

∗

2
+
iImã2 − (iImã2)

∗

2
= HIm ã2 + AIm ã2 ;

we have that 2Re 〈AIm ã2u, u〉 = 0, while HIm ã2 has symbol

∑
α≥1

i

2α!
∂αξD

α
x Imã2(t, x, ξ) =

∑
α≥1

i

2α!
∂αξD

α
xRe a2︸ ︷︷ ︸

=:c(t,x,ξ)

+
∑
α≥1

i

2α!
∂αξD

α
x{Im b2,k + Im (a2)k,Λ̃}︸ ︷︷ ︸

=:e(t,x,ξ)

.

The hypothesis on a2 implies

|c(t, x, ξ)| ≤ Cc〈ξ〉〈x〉−σ,

with Cc depending only on Rea2, whereas from (3.25), (3.26) and using that 2(1 − σ) ≤ 1
θ

we

obtain

|e(t, x, ξ)| ≤ Ce,k,Λ̃〈ξ〉
1
θ 〈x〉−σ,

with Ce,k.Λ̃ depending on k(t) and Λ̃.

We are ready to obtain the desired estimates from below. Using the above decomposi-

tion we get

eΛ ◦ (iP ) ◦ {eΛ}−1 = ∂t + ia3(t,D) +Re ã2(t, x,D) + AIm ã2(t, x,D)

+ (ã1 + c+ e)(t, x,D) + ãθ(t, x,D) + r0(t, x,D).

Note that 〈ξ〉2h ≤ 2ξ2 provided that |ξ| > Ra3h. Estimating the terms of order 2 we get

Re ã2 ≥M2
Ca3

2
〈ξ〉2h〈x〉−σ − Ca2〈ξ〉2h〈x〉−σ〈x〉−σ (3.29)

−max{1, k(t)}Cλ2〈ξ〉1+
1
θ

h −max{1, k(t)}CΛ̃〈ξ〉2−[2σ−1]
h 〈x〉−σ

≥
(
M2

Ca3

2
− Ca2 −max{1, k(t)}Cλ2h

−(1− 1
θ
) −max{1, k(t)}CΛ̃h

−(2σ−1)

)
〈ξ〉2h〈x〉−σ,

For the terms of order 1 we obtain

Re (ã1 + c+ e) ≥M1
Ca3

2
〈ξ〉h〈x〉−σ

2 − Ca1〈ξ〉h〈x〉−
σ
2 − Ca2,λ2〈ξ〉h〈x〉−2σ (3.30)
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− Cc〈ξ〉h〈x〉−σ − Ce,k,Λ̃〈ξ〉
1
θ
h 〈x〉−σ

≥
(
M1

Ca3

2
− Ca1 − Ca2,λ2 − Cc − Ce,k,Λ̃h

−(1− 1
θ
)

)
〈ξ〉h〈x〉−σ

2 .

Finally, for the terms of order 1
θ

we have

Re ãθ ≥ −k′(t)〈ξ〉
1
θ
h − k(t)CΛ̃〈ξ〉

1
θ
h − CΛ̃〈ξ〉2(1−σ)

h − 2σCa3M2〈ξ〉2(1−σ)
h − 2σCa3M1〈ξ〉1−σ

h

≥ −(k′(t) + C1k(t) + C2)〈ξ〉
1
θ
h ,

where C2 = C̃2h
−[ 1

θ
−2(1−σ)] and C1, C̃2 depend on Λ̃ but not on h. Setting

k(t) = e−C1tk(0)− 1− e−C1t

C1

C2, t ∈ [0, T ],

we obtain k′(t) ≤ 0 and k′(t) +C1k(t) +C2 = 0. Note that for any choice of k(0) > 0, we can

choose h large enough in order to obtain k(t) > 0 on [0, T ].

From the previous estimates from below we obtain the following proposition.

Proposition 3.6. For any sufficiently small choice of k(0) > 0 there exist M2,M1 > 0 and a

large parameter h0 = h0(k(0),M2,M1, T, θ, σ) > 0 such that for every h ≥ h0 the Cauchy

problem (3.5) is well-posed in Sobolev spaces Hm(R). More precisely, for any g̃ ∈ Hm(R) and

f̃ ∈ C([0, T ];Hm(R)), there is a unique solution v ∈ C([0, T ];Hm(R))∩C1([0, T ];Hm−3(R))

such that the following energy estimate holds

‖v(t)‖2Hm ≤ C

(
‖g̃‖2Hm +

∫ t

0

‖f̃(τ)‖2Hmdτ

)
, t ∈ [0, T ].

Proof. Let k(0) > 0. Take M2 > 0 such that

M2
Ca3

2
− Ca2 > 0, (3.31)

and after that set M1 > 0 in such way that

M1
Ca3

2
− Ca1 − Ca2,λ2 − Cc > 0. (3.32)

Finally, making the parameter h0 large enough, we obtain k(T ) > 0 and

M2
Ca3

2
− Ca2 −max{1, k(t)}Cλ2h

−(1− 1
θ
) −max{1, k(t)}CΛ̃h

−(2σ−1) ≥ 0, (3.33)

M1
Ca3

2
− Ca1 − Ca2,λ2 − Cc − Ce,k,Λ̃h

−(1− 1
θ
) > 0. (3.34)
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With these choices Re ã2(t, x, ξ), Re (ã1 + c + e)(t, x, ξ), Re ãθ(t, x, ξ) are non negative for

large |ξ|. Applying the Fefferman-Phong inequality to Reã2 we have

Re〈Re ã2(t, x,D)v, v〉L2 ≥ −C‖v‖2L2 , v ∈ S (R).

By the sharp Gårding inequality we also obtain that

Re〈(ã1 + c+ e)(t, x,D)v, v〉L2 ≥ −C‖v‖2L2 , v ∈ S (R)

and

Re〈ãθ(t, x,D)v, v〉L2 ≥ −C‖v‖2L2 , v ∈ S (R).

As a consequence we get the energy estimate

d

dt
‖v(t)‖2L2 ≤ C ′(‖v(t)‖2L2 + ‖(iP )Λv(t)‖2L2),

which gives us the well-posedness on Hm(R) for the Cauchy problem (3.5).

3.7 Proof of Theorem 3.1

Finally we are ready to prove Theorem 3.1. With this purpose, take initial data satisfy-

ing f ∈ C([0, T ], Hm
ρ;θ(R)), g ∈ Hm

ρ;θ(R), for some m ∈ R and ρ > 0. Now choose k(0) < ρ

and M2,M1 large enough so that Proposition 3.6 holds true. We have

eΛ(t, x,D)f ∈ C([0, T ];Hm
ρ−(k(0)+δ);θ(R)), eΛ(0, x,D)g ∈ Hm

ρ−(k(0)+δ);θ(R)

for every δ > 0. Since k(0) < ρ and k(t) is non-increasing, we may conclude eΛf ∈
C([0, T ];Hm(R)), eΛg ∈ Hm(R). Proposition 3.6 gives h0 > 0 large such that for h ≥ h0

the Cauchy Problem associated with PΛ is well-posed in Sobolev spaces. Namely, there exists

a unique v ∈ C([0, T ];Hm) satisfying⎧⎪⎨⎪⎩
PΛv(t, x) = eΛ(t, x,D)f(t, x), (t, x) ∈ [0, T ]× R,

v(0, t) = eΛ(0, x,D)g(x), x ∈ R
n,

and

‖v(t)‖2Hm ≤ C

(
‖eΛg‖2Hm +

∫ t

0

‖eΛf(τ)‖2Hmdτ

)
, t ∈ [0, T ]. (3.35)

Setting u = {eΛ}−1v we obtain a solution for our original problem, that is⎧⎪⎨⎪⎩
Pu(t, x) = f(t, x), (t, x) ∈ [0, T ]× R,

u(0, x) = g(x), x ∈ R.
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Now let us study which space the solution u(t, x) belongs to. We have

u = {eΛ}−1v = {e−Λ̃}∗
∑
j

(−r)j︸ ︷︷ ︸
order zero

e−k(t)〈D〉
1
θ
h v,

where v ∈ Hm. Noticing that k(T ) > 0 and k is non-increasing, we achieve

e−k(t)〈D〉
1
θ
h v = e−k(T )〈D〉

1
θ
h e(k(T )−k(t))〈D〉

1
θ
h︸ ︷︷ ︸

order zero

v ∈ Hm
k(T );θ(R).

Hence {eΛ}−1v ∈ Hm
k(T )−δ;θ for every δ > 0. Moreover, from (3.35) we obtain that u satisfies

the following energy estimate

‖u(t)‖2Hm
k(T )−δ;θ

= ‖{eΛ(t)}−1v(t)‖2Hm
k(T )−δ;θ

≤ C1‖v(t)‖2Hm

≤ C2

(
‖eΛ(0)g‖2Hm +

∫ t

0

‖eΛ(τ)f(τ)‖2Hmdτ

)
≤ C3

(
‖g‖2Hm

ρ;θ
+

∫ t

0

‖f(τ)‖2Hm
ρ;θ
dτ

)
, t ∈ [0, T ].

Summing up, given f ∈ C([0, T ], Hm
ρ;θ(R)), g ∈ Hm

ρ;θ(R) for some m ∈ R and ρ > 0,

we find a solution u ∈ C([0, T ];Hm
ρ′;θ(R)) (ρ′ < ρ) for the Cauchy problem associated with the

operator P and initial data f, g.

Now it only remains to prove the uniqueness of the solution. To this aim, assume

u1, u2 ∈ C([0, T ];Hm
ρ′;θ(R)) such that ⎧⎪⎨⎪⎩

Puj = f,

uj(0) = g.

For a new choice of k(0) < ρ′ and applying once more Proposition 3.6, we may find new

parameters M2,M1 > 0 and h0 > 0 such that the Cauch Problem associated with

PΛ′ = eΛ
′ ◦ P ◦ {eΛ′}−1

is well-posed in Hm, where Λ′(t, x, ξ) represents the symbol corresponding to the transforma-

tion associated with the new parameters k(0),M2,M1, h0. Since eΛ
′
f, eΛ

′
g, eΛ

′
uj ∈ Hm and

uj , j = 1, 2, satisfy ⎧⎪⎨⎪⎩
PΛ′eΛ

′
uj = eΛ

′
f

eΛ
′
uj(0) = eΛ

′
g,

we must have eΛ
′
u1 = eΛ

′
u2 and therefore u1 = u2. This concludes the proof.
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Chapter 4

Cauchy Problem for 3−Evolution

Operators With Data in Gelfand-Shilov

Type Spaces

4.1 Introduction and Main Result

Let us consider for (t, x) ∈ [0, T ]× R the 3−evolution operator

P (t, x,Dt, Dx) = Dt + a3(t,Dx) + a2(t, x,Dx) + a1(t, x,Dx) + a0(t, x,Dx). (4.1)

As in the previous chapter, we assume that a3(t, ξ) has order 3, a3(t, ξ) is a real-valued and

aj(t, x, ξ) has order j (with respect to ξ), j = 0, 1, 2. We are interested in the Cauchy Problem

associated with the operator P with data in some suitable Gelfand-Shilov class. The main result

of this chapter reads as follows.

Theorem 4.1. Consider s0 > 1 and σ ∈ (0, 1) such that s0 < 1
1−σ

. Let P (t, x,Dt, Dx) be an

operator like in (4.1) satisfying the following assumptions:

(i) a3(t, ξ) ∈ C([0, T ], S3
1(R

2)), a3(t, ξ) is real-valued and there exist Ca3 , Ra3 > 0 such

that

|∂ξa3(t, ξ)| ≥ Ca3 |ξ|2, t ∈ [0, T ], |ξ| > Ra3 ;

(ii) Re a2(t, x, ξ) ∈ C([0, T ], SG2,0
1,s0

(R2)), Im a2(t, x, ξ) ∈ C([0, T ], SG2,−σ
1,s0

(R2));

(iii) Re a1(t, x, ξ) ∈ C([0, T ], SG1,1−σ
1,s0

(R2)), Im a1(t, x, ξ) ∈ C([0, T ], SG1,−σ
2 (R2));
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(iv) a0(t, x, ξ) ∈ C([0, T ], SG0,1−σ
1,s0

(R2)).

Let s, θ > 1 such that s0 ≤ s < 1
1−σ

and θ > s0 and let f ∈ C([0, T ];Hm
ρ;s,θ(R)) and

g ∈ Hm
ρ;s,θ(R), where m, ρ ∈ R

2 with ρ2 > 0. Then the Cauchy problem⎧⎪⎨⎪⎩
P (t, x,Dt, Dx)u(t, x) = f(t, x), (t, x) ∈ [0, T ]× R,

u(0, x) = g(x), x ∈ R,

(4.2)

admits a solution u ∈ C([0, T ];Hm
(ρ1,−δ̃);s,θ

(R)) for every δ̃ > 0; moreover the solution satisfies

the following energy estimate

‖u(t)‖2Hm
(ρ1,−δ̃);s,θ

≤ C

(
‖g‖2Hm

ρ;s,θ
+

∫ t

0

‖f(τ)‖2Hm
ρ;s,θ

dτ

)
, (4.3)

for all t ∈ [0, T ] and for some C > 0.

Remark 4.1. Observe that the solution obtained in Theorem 4.1 has the same Gevrey regularity

as the initial data but may lose the decay exhibited at t = 0 and admit an exponential growth

for |x| → ∞ when t > 0. Moreover, the loss ρ2 + δ̃ for an arbitrary δ̃ > 0 in the behavior

at infinity is independent of θ, s and ρ1. We also observe that the result holds for every θ > s0

without any upper bound on the regularity index θ, that is, there is no relation between the rate

of decay of the data and the Gevrey regularity of the solution. Both these phenomena had been

already observed in the case p = 2, see [6].

Remark 4.2. Let us describe a model class of linear differential operators that fits Theorem 4.1.

For this purpose, we need to define a class of functions, namely, the uniform Gevrey functions

which are polynomially bounded. Being more precise, let m ∈ R, s0 > 1 and A > 0. We set

the Banach space Gs0,m(R, A) of all smooth functions f(x) such that

sup
α∈N0,x∈R

|∂βxf(x)|A−|β|β!−s0〈x〉−m+|β| <∞.

After that, we take the inductive limit of the Banach spaces Gs0,m(R, A), more precisely

Gs0,m(R) =
⋃
A>0

Gs0,m(R, A).

Now consider the linear partial differential operator

P (t, x,Dt, Dx) = Dt + a3(t)D
3
x + a2(t, x)D

2
x + a1(t, x)D

1
x + a0(t, x), (4.4)

where the coefficients satisfy
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(i) a3(t) is a continuous real-valued function which never vanishes;

(ii) Re a2 ∈ C([0, T ], Gs0,0(R)), Im a2 ∈ C([0, T ], Gs0,−σ(R));

(iii) Re a1 ∈ C([0, T ], Gs0,1−σ(R)), Im a1 ∈ C([0, T ], Gs0,−σ
2 (R));

(iv) a0 ∈ C([0, T ], Gs0,1−σ(R)).

Then P is under the hypothesis of Theorem 3.1. Notice that the coefficients aj(t, x) are contin-

uous with respect to t and Gevrey regular of index s0 with respect to x. Moreover, Ima2(t, x)

and Ima1(t, x) behave like 〈x〉−σ and 〈x〉−σ
2 respectively, meanwhile Re a2(t, x) is uniformly

bounded and Re a1(t, x), a0(t, x) may admit a polynomial growth 〈x〉1−σ.

Example 4.1. For t ∈ [0, T ] and x ∈ R consider the following initial value problem⎧⎪⎨⎪⎩
Dtu+D3

xu+ a2(t, x)D
2
xu+ a1(t, x)Dxu+ a0(t, x)u = 0,

u(0, x) = e−〈x〉1−σ
,

(4.5)

where

a2(t, x) = i(t− 1)(1− σ)x〈x〉−σ−1,

a1(t, x) = 2(t− 1)(1− σ)[〈x〉−σ−1 − (σ + 1)x2〈x〉−σ−3],

a0(t, x) = i〈x〉1−σ + i(t− 1)(1− σ2)[3x〈x〉−σ−3 − (σ + 3)x3〈x〉−σ−5].

Notice that the coefficients aj are analytic and satisfy the decay conditions of Theorem 4.1.

Moreover the initial datum belongs to S (R) since σ ∈ (0, 1). It is easy to verify that the

problem (4.5) admits the solution

u(t, x) = e(t−1)〈x〉1−σ

/∈ C([0, T ],S (R)),

if T ≥ 1. Analogously, u /∈ C([0, T ], H∞(R)). More precisely, we notice that the solution has

the same regularity as the initial data but it grows exponentially for |x| → ∞ when t ≥ 1.

This example shows us that the solution may present an exponential growth (for large

values of t) even if the initial data decays exponentially, at least in the critical case s0 = 1
1−σ

.

4.2 Strategy of the Proof

Here we briefly outline the strategy of the proof of Theorem 4.1. The idea is quite

similar to that one applied in Theorem 3.1. The main difference is that now the change of
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variables will concentrate the loss of ”regularity” in the Sobolev indices which measure the

behavior at infinity.

Once more we have

iP = ∂t + ia3(t,D) +
2∑

i=0

iai(t, x,D) = ∂t + ia3(t,D) + A(t, x,D)

and noticing that a3(t, ξ) is real we obtain

d

dt
‖u(t)‖2L2 ≤ ‖Pu(t)‖2L2 + ‖u(t)‖2L2 − 〈(A+ A∗)u(t), u(t)〉L2 .

Since (A+ A)∗(t) ∈ SG2,1−σ(R2n) we cannot derive an energy inequality in a straightforward

way. Again, the idea is to conjugate the operator iP by a suitable pseudodifferential operator

eΛ(t, x,D) in order to get

(iP )Λ := eΛ(iP ){eΛ}−1 = ∂t + ia3(t,D) + {a2,Λ + a1,Λ + aσ,Λ + r0,Λ}(t, x,D),

where a2,Λ ∈ SG2,0(R2), a1,Λ ∈ SG1,1−σ(R2), aσ,Λ ∈ SG0,σ(R2) and r0 ∈ SG0,0(R2), but

with Re aj,Λ ≥ 0, for j = σ, 1, 2. In this way, with the aid of Fefferman-Phong and sharp

Gårding inequalities, we obtain that the Cauchy problem associated with PΛ is well-posed in

the weighted Sobolev spaces Hm(R), m ∈ R
2.

The operator eΛ will be a pseudodifferential operator with symbol eΛ(t,x,ξ), and the

function Λ(t, x, ξ) will be of the form

Λ(t, x, ξ) = k(t)〈x〉1−σ
h + λ2(x, ξ) + λ1(x, ξ), t ∈ [0, T ], x, ξ ∈ R,

where h > 1 is a large parameter, λ1, λ2 ∈ SG0,1−σ
μ (R2) and k(t) is a C1([0, T ];R) non in-

creasing function to be chosen later on. The transformation with λ2 will change the terms of

ξ−order 2 into the sum of a positive operator plus a remainder of ξ−order 1; the transformation

with λ1 will not change the terms of order 2, but it will turn the terms of order 1 into the sum

of a positive operator plus a remainder of ξ−order 0 and x−order less than 1 − σ. Finally, the

transformation with k(t) will correct these remainder terms.

4.3 Definition and Properties of λ2(x, ξ) and λ1(x, ξ)

Let M2 and M1 be positive constants to be chosen later on. We define

λ2(x, ξ) =M2w

(
ξ

h

)∫ x

0

〈y〉−σdy, (x, ξ) ∈ R
2, (4.6)
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λ1(x, ξ) =M1w

(
ξ

h

)
〈ξ〉−1

h

∫ x

0

〈y〉−σ
2ψ

(〈y〉σ
〈ξ〉2h

)
dy, (x, ξ) ∈ R

2, (4.7)

where

w(ξ) =

⎧⎪⎨⎪⎩
0, |ξ| ≤ 1,

−sgn(∂ξa3(t, ξ)), |ξ| > Ra3 ,

ψ(y) =

⎧⎪⎨⎪⎩
1, |y| ≤ 1

2
,

0, |y| ≥ 1,

|∂αw(ξ)| ≤ Cα+1
w α!μ, |∂βψ(y)| ≤ Cβ+1

ψ β!μ for some μ > 1 which we can take arbitrarly close

to 1.

Lemma 4.1. Let λ2(x, ξ) as in (4.6). Then

(i) |λ2(x, ξ)| ≤ M2

1−σ
〈x〉1−σ;

(ii) |∂βxλ2(x, ξ)| ≤M2C
ββ!〈x〉1−σ−β , for β ≥ 1;

(iii) |∂αξ ∂βxλ2(x, ξ)| ≤M2C
α+β+1α!μβ!χEh,Ra3

(ξ)〈ξ〉−α
h 〈x〉1−σ−β , for α ≥ 1, β ≥ 0,

where Eh,Ra3
= {ξ ∈ R : h ≤ ξ ≤ Ra3h} and the constant C > 0 is independent of h. In

particular λ2(x, ξ) ∈ SG0,1−σ
μ (R2).

Proof. First note that

|λ2(x, ξ)| =M2

∣∣∣∣w( ξh
)∣∣∣∣ ∫ |x|

0

〈y〉−σdy ≤M2

∫ 〈x〉

0

y−σdy =
M2

1− σ
〈x〉1−σ.

For β ≥ 1

|∂βxλ2(x, ξ)| ≤M2

∣∣∣∣w( ξh
)∣∣∣∣ |∂β−1

x 〈x〉−σ| ≤M2C
β−1(β − 1)!〈x〉1−σ−β.

For α ≥ 1

|∂αξ λ2(x, ξ)| ≤M2h
−α

∣∣∣∣w(α)

(
ξ

h

)∣∣∣∣ ∫ 〈x〉

0

y−σdy

≤ M2

1− σ
Cα+1

w 〈Ra3〉αα!μχEh,Ra3
(ξ)〈ξ〉−α

h 〈x〉1−σ.

Finally, for α, β ≥ 1

|∂αξ ∂βxλ2(x, ξ)| ≤M2h
−α

∣∣∣∣w(α)

(
ξ

h

)∣∣∣∣ ∂β−1
x 〈x〉−σ

≤M2C
α+1
w 〈Ra3〉αCβ−1α!μ(β − 1)!χEh,Ra3

(ξ)〈ξ〉−α
h 〈x〉1−σ−β.
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For the function λ1(x, ξ) we can prove the following estimates.

Lemma 4.2. Let λ1(x, ξ) as in (4.7). Then for all α, β ≥ 0

(i) |∂αξ ∂βxλ1(x, ξ)| ≤M1C
α+β+1(α!β!)μ〈ξ〉−1−α

h 〈x〉1−σ
2
−β;

(ii) |∂αξ ∂βxλ1(x, ξ)| ≤M1C
α+β+1(α!β!)μ〈ξ〉−α

h 〈x〉1−σ−β,

where the constant C > 0 is independent of h. In particular λ1(x, ξ) ∈ SG0,1−σ
μ (R2).

Proof. Denote by χξ(x) the characteristic function of the set {x ∈ R : 〈x〉σ ≤ 〈ξ〉2h}. For

α = β = 0 we have

|λ1(x, ξ)| ≤M1

∣∣∣∣w( ξh
)∣∣∣∣ 〈ξ〉−1

h

∫ 〈x〉

0

y−
σ
2 dy ≤ 2

2− σ
M1〈ξ〉−1

h 〈x〉1−σ
2 ,

and

|λ1(x, ξ)| ≤M1

∣∣∣∣w( ξh
)∣∣∣∣ ∫ 〈x〉

0

〈ξ〉−1
h 〈y〉−σ

2χξ(y)dy ≤ M1

1− σ
〈x〉1−σ.

For α ≥ 1, with the aid of Faà di Bruno formula, we have

|∂αξ λ1(x, ξ)| ≤M1

∑
α1+α2+α3=α

α!

α1!α2!α3!
h−α1

∣∣∣∣w(α1)

(
ξ

h

)∣∣∣∣ ∂α2
ξ 〈ξ〉−1

h

×
∣∣∣∣∫ x

0

〈y〉−σ
2 ∂α3

ξ ψ

(〈y〉σ
〈ξ〉2h

)
dy

∣∣∣∣
≤M1

∑
α1+α2+α3=α

α!

α1!α2!α3!
Cα1+1

w 〈Ra3〉α3α1!
μ〈ξ〉−α1

h Cα2α2!〈ξ〉−1−α2
h

×
∫ 〈x〉

0

〈y〉−σ
2χξ(y)

α3∑
j=1

∣∣∣∣ψ(j)

(
〈y〉1− 1

s

〈ξ〉2h

)∣∣∣∣
j!

∑
γ1+···+γj=α3

α3!

γ1! . . . γj!

j∏

=1

∂γ�ξ 〈ξ〉−2
h 〈y〉σdy

≤M1

∑
α1+α2+α3=α

α!

α1!α2!α3!
Cα1+1

w 〈Ra3〉α3α1!
μ〈ξ〉−α1

h Cα2α2!〈ξ〉−1−α2
h

×
∫ 〈x〉

0

〈y〉−σ
2χξ(y)

α3∑
j=1

Cj+1
ψ j!μ−1

∑
γ1+···+γj=α3

α3!

γ1! . . . γj!

j∏

=1

Cγ�+1γ
!〈ξ〉−γ�
h dy

≤M1C
α+1
{w,ψ,σ,Ra3}α!

μ〈ξ〉−1−α
h 〈y〉1−σ

2 ,

and

|∂αξ λ1(x, ξ)| ≤M1

∑
α1+α2+α3=α

α!

α1!α2!α3!
h−α1

∣∣∣∣w(α1)

(
ξ

h

)∣∣∣∣ ∂α2
ξ 〈ξ〉−1

h

×
∣∣∣∣∫ x

0

〈y〉−σ
2 ∂α3

ξ ψ

(〈y〉σ
〈ξ〉2h

)
dy

∣∣∣∣
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≤M1

∑
α1+α2+α3=α

α!

α1!α2!α3!
Cα1+1

w 〈Ra3〉α3α1!
μ〈ξ〉−α1

h Cα2α2!〈ξ〉−α2
h

×
∫ 〈x〉

0

〈ξ〉−1
h 〈y〉−σ

2χξ(y)

α3∑
j=1

∣∣∣ψ(j)
(

〈y〉σ
〈ξ〉2h

)∣∣∣
j!

∑
γ1+···+γj=α3

α3!

γ1! . . . γj!

j∏

=1

∂γ�ξ 〈ξ〉−2
h 〈y〉σdy

≤M1

∑
α1+α2+α3=α

α!

α1!α2!α3!
Cα1+1

w 〈Ra3〉α3α1!
μ〈ξ〉−α1

h Cα2α2!〈ξ〉−α2
h

×
∫ 〈x〉

0

〈y〉−σχξ(y)

α3∑
j=1

Cj+1
ψ j!μ−1

∑
γ1+···+γj=α3

α3!

γ1! . . . γj!

j∏

=1

Cγ�+1γ
!〈ξ〉−γ�
h dy

≤M1C
α+1
{w,ψ,σ,Ra3}α!

μ〈ξ〉−α
h 〈y〉1−σ.

For β ≥ 1 we have

|∂βxλ1(x, ξ)| ≤M1〈ξ〉−1
h χξ(x)

∑
β1+β2=β−1

(β − 1)!

β1!β2!
∂β1
x 〈x〉−σ

2

β2∑
j=1

∣∣∣ψ(j)
(

〈y〉σ
〈ξ〉2h

)∣∣∣
j!

×
∑

δ1+···+δj=β2

β2!

δ1! . . . δj!

j∏

=1

〈ξ〉−2
h ∂δ�x 〈x〉σ

≤M1〈ξ〉−1
h χξ(x)

∑
β1+β2=β−1

(β − 1)!

β1!β2!
Cβ1+1β1!

μ〈x〉−σ
2
−β1

β2∑
j=1

Cj+1
ψ j!μ−1

×
∑

δ1+···+δj=β2

β2!

δ1! . . . δj!

j∏

=1

Cδ�+1δ
!〈x〉−δ�

≤M1C
α+β+1
ψ (β − 1)!μ〈ξ〉−1

h χξ(x)〈x〉1−σ−β

≤M1C
α+β+1
ψ (β − 1)!μ〈x〉1−σ−β

Finally, for α, β ≥ 1 we have

|∂αξ ∂βxλ1(x, ξ)| ≤M1

∑
α1+α2+α3=α

α!

α1!α2!α3!
h−α1

∣∣∣∣w(α1)

(
ξ

h

)∣∣∣∣ ∂α2
ξ 〈ξ〉−1

h

∑
β1+β2=β−1

(β − 1)!

β1!β2!

× ∂β1
x 〈x〉σ

2

∣∣∣∣∂α3
ξ ∂β2

x ψ

(〈x〉σ
〈ξ〉2h

)∣∣∣∣
≤M1χξ(x)

∑
α1+α2+α3=α

α!

α1!α2!α3!
h−α1

∣∣∣∣w(α1)

(
ξ

h

)∣∣∣∣ ∂α2
ξ 〈ξ〉−1

h

∑
β1+β2=β−1

(β − 1)!

β1!β2!
∂β1
x 〈x〉−σ

2

×
α3+β2∑
j=1

∣∣∣ψ(j)
(

〈x〉σ
〈ξ〉2h

)∣∣∣
j!

∑
γ1+···+γj=α3

∑
δ1+···+δj=β2

α3!

γ1! . . . γj!

β2!

δ1! . . . δj!

j∏

=1

∂γ�ξ 〈ξ〉−2
h ∂δ
x 〈x〉σ

≤M1χξ(x)
∑

α1+α2+α3=α

α!

α1!α2!α3!
Cα1+1

w α1!
μ〈Ra3〉α1〈ξ〉−α1

h Cα2+1α2!〈ξ〉−1−α2
h
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×
∑

β1+β2=β−1

(β − 1)!

β1!β2!
Cβ1+1β1!〈x〉− 1

2
(1− 1

s
)−β1

α3+β2∑
j=1

Cj+1
ψ j!μ−1

×
∑

γ1+···+γj=α3

∑
δ1+···+δj=β2

α3!

γ1! . . . γj!

β2!

δ1! . . . δj!

j∏

=1

Cγ�+1γ
!〈ξ〉−2−γ�
h Cδ�+1δ
!〈x〉σ−δ�

≤M1χξ(x)C
α+β+1
{w,ψ,Ra3}α!

μ(β − 1)!μ〈ξ〉−1−α
h 〈x〉1−σ

2
−β

≤M1C
α+β+1
{w,ψ,Ra3}α!

μ(β − 1)!μ〈ξ〉−α
h 〈x〉1−σ−β.

We end this section with the following continuity result.

Proposition 4.1. Let ρ,m ∈ R
2 and s, κ, θ, μ > 1 with min{s, θ} > 2μ − 1. Let moreover

λ(x, ξ) ∈ SG
0, 1

κ
μ (R2n). Then:

(i) if κ > s, then the operator eλ(x,D) is continuous from Hm
ρ;s,θ(R

n) into Hm
ρ−δe2;s,θ

(Rn) for

every δ > 0, where e2 = (0, 1);

(ii) if κ = s, then the operator eλ(x,D) is continuous from Hm
ρ;s,θ(R

n) into Hm
ρ−δe2;s,θ

(Rn) for

every δ > C(λ) := sup{λ(x, ξ)/〈x〉1/s : (x, ξ) ∈ R
2n}.

Proof. Consider φ(x) ∈ Gμ(Rn) a cut-off function such that, for a large positive constant K,

φ(x) = 1 for |x| < K/2, φ(x) = 0 for |x| > K and 0 ≤ φ(x) ≤ 1 for every x ∈ R
n. We split

the symbol eλ(x,ξ) as

eλ(x,ξ) = φ(x)eλ(x,ξ) + (1− φ(x))eλ(x,ξ) = a1(x, ξ) + a2(x, ξ). (4.8)

Since φ has compact support and λ has order zero with respect to ξ, we have a1(x, ξ) ∈ SG0,0
μ .

On the other hand, given any δ > 0 and choosing K large enough, since κ > s we may write

|λ(x, ξ)|〈x〉−1/s < δ on the support of a2(x, ξ). Hence we obtain

a2(x, ξ) = eδ〈x〉
1/s

(1− φ(x))eλ(x,ξ)−δ〈x〉1/s

with (1 − φ(x))eλ(x,ξ)−δ〈x〉1/s of order (0, 0) because λ(x, ξ) − δ〈x〉1/s < 0 on the support of

(1− φ(x)). Thus, (4.8) becomes

eλ(x,ξ) = a1(x, ξ) + eδ〈x〉
1/s

ã2(x, ξ),

a1 and ã2 of order (0, 0). Since by Theorem 2.11 the operators a1(x,D) and ã2(x,D) map

continuously Hm
ρ;s,θ into itself, then we obtain (i). The proof of (ii) follows a similar argument

and can be found in [6, Theorem 2.4].
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4.4 Invertibility of eΛ̃(x,D), Λ̃(x, ξ) = (λ2 + λ1)(x, ξ)

Since eΛ̃(x,ξ) ∈ SG0,∞
μ; 1

1−σ

(R2), using the calculus in the SG0,∞
μ; 1

1−σ

(R2) setting and as-

suming μ > 1 arbitrarily close to 1, we can use what we have already done in Section 3.4 of

Chapter 3. Being more precise, we have the following result.

Lemma 4.3. For h > 0 large enough, the operator eΛ̃(x,D) is invertible on L2(R) and its

inverse is given by

{eΛ̃(x,D)}−1 = {e−Λ̃(x,D)}∗ ◦ (I + r(x,D))−1 = {e−Λ̃(x,D)}∗ ◦
∑
j≥0

(−r(x,D))j,

where r ∈ SG−1,−σ
2μ−1 (R2) and r ∼ ∑γ≥1

1
γ!
∂γξ (e

Λ̃Dγ
xe

−Λ̃) in SG−1,−σ
2μ−1 (R2). Moreover, the sym-

bol of (I + r(x,D))−1 belongs to SG(0,0)
δ (R2) for every δ > 4μ − 3 and it maps continuously

Hm′
ρ′;s(R) into itself for any ρ′,m′ ∈ R and s > 1 (provided that μ > 1 is such that s > 8μ− 7).

Furthermore, we can write the inverse in the following way

{eΛ̃}−1 = {e−Λ̃}∗ ◦
[
I + op

(
−i∂ξ∂xΛ̃− 1

2
∂2ξ (∂

2
xΛ̃− [∂xΛ̃]

2)− [∂ξ∂xΛ̃]
2 + q−3

)]
, (4.9)

where q−3 ∈ SG−3,−3σ
δ (R2).

4.5 Conjugation of iP

In this section, we will perform the conjugation of iP by the operator eρ1〈D〉 1θ ◦eΛ(t,x,D)

and its inverse, where Λ(t, x, ξ) = k(t)〈x〉1−σ
h + Λ̃(x, ξ) and k ∈ C1([0, T ];R) is a non increas-

ing function such that k(T ) ≥ 0.

More precisely, we will compute

eρ1〈D〉 1θ ◦ ek(t)〈x〉1−σ
h ◦ eΛ̃(x,D) ◦ (iP ) ◦ {eΛ̃(x,D)}−1 ◦ e−k(t)〈x〉1−σ

h ◦ e−ρ1〈D〉 1θ ,

where ρ1 ∈ R and P (t, x,Dt, Dx) is given by 4.1. As we discussed before, the role of this

conjugation is to make positive the lower order terms of the conjugated operator.

Since the adjoint {e−Λ̃}∗ appears in the inverse {eΛ̃}−1, we need the following lemma.

Lemma 4.4. Let Λ̃ ∈ SG0,1−σ
μ (R2) and a ∈ SGm1,m2

1,s0
(R2), with μ > 1 such that 1/(1 − σ) >

μ+ s0 − 1 and s0 > μ. Then, for any M ∈ N,

eΛ̃(x,D) ◦ a(x,D) ◦ {e−Λ̃(x,D)}∗ = a(x,D)
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+ op

( ∑
1≤α+β<M

1

α!β!
∂αξ {∂βξ eΛ̃Dβ

xaD
α
xe

−Λ̃}+ qM

)
+ r(x,D),

where qM ∈ SGm1−M,m2−Mσ
μ,s0

(R2) and r ∈ Sμ+s0−1(R
2).

Proof. Since Λ̃ ∈ SG0,1−σ
μ (R2) and a ∈ SGm1,m2

1,s0
(R2), we have e±Λ̃, a ∈ SG0,∞

μ,s0;
1

1−σ

(R2).

Therefore, by results from calculus, we obtain

{e−Λ̃(x,D)}∗ = a1(x,D) + r1(x,D) and eΛ̃(x,D) ◦ a(x,D) = a2(x,D) + r2(x,D),

where a1 ∈ SG0,∞
μ,s0;

1
1−σ

(R2), a2 ∈ SGm1,∞
μ,s0;

1
1−σ

(R2), r1, r2 ∈ Sμ+s0−1(R
2) and

a1 ∼
∑
α

1

α!
∂αξD

α
xe

−Λ̃ in FSG0,∞
μ,s0;

1
1−σ

(R2),

a2 ∼
∑
β

1

β!
∂βξ e

Λ̃Dβ
xa in FSGm1,∞

μ,s0;
1

1−σ

(R2).

Hence

eΛ̃(x,D) ◦ a(x,D) ◦ {e−Λ̃(x,D)}∗ = a2(x,D) ◦ a1(x,D) + a2(x,D) ◦ r1(x,D)

+ r2(x,D) ◦ a1(x,D) + r2(x,D) ◦ r1(x,D)

= a3(x,D) + r3(x,D) + a2(x,D) ◦ r1(x,D)

+ r2(x,D) ◦ a1(x,D) + r2(x,D) ◦ r1(x,D),

with a2(x,D)◦a1(x,D) = a3(x,D)+r3(x,D), where a3 ∈ SGm1,∞
μ,s0;

1
1−σ

(R2), r3 ∈ Sμ+s0−1(R
2)

and

a3 ∼
∑
γ,α,β

1

α!β!γ!
∂γξ {∂βξ eΛ̃Dβ

xa}∂αξDα+γ
x e−Λ̃

=
∑
α,β

1

α!β!
∂αξ {∂βξ eΛ̃Dβ

xaD
α
xe

−Λ̃} in FSGm1,∞
μ,s0;

1
1−σ

.

Thus

eΛ̃(x,D) ◦ a(x,D) ◦ {e−Λ̃(x,D)}∗ = a3(x,D) + r(x,D),

for some r ∈ Sμ+s0−1(R
2).

Now let us study the asymptotic expansion of a3. For α, β ∈ N0 we have

∂βξ e
Λ̃∂βxa∂

α
x e

−Λ̃ = ∂βxa

β∑
h=1

1

h!

∑
β1+···+βh=β

β!

β1! . . . βh!

h∏

=1

∂β�

ξ Λ̃
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×
α∑

k=1

1

k!

∑
α1+···+αk=α

α!

α1! . . . αk!

k∏

=1

∂α�
x (−Λ̃).

Therefore, by Faà di Bruno formula, for γ, δ ∈ N0, we have

∂γ+α
ξ ∂δx{∂βξ eΛ̃∂βxa∂αx e−Λ̃} =

∑
γ1+γ2+γ3=γ+α

∑
δ1+δ2+δ3=δ

(γ + α)!

γ1!γ2!γ3!

δ!

δ1!δ2!δ3!
∂γ1ξ ∂

β+δ1
x a

× ∂γ2ξ ∂
δ2
x

(
β∑

h=1

1

h!

∑
β1+···+βh=β

β!

β1! . . . βh!

h∏

=1

∂β�

ξ Λ̃

)

× ∂γ3ξ ∂
δ3
x

(
α∑

k=1

1

k!

∑
α1+···+αk=α

α!

α1! . . . αk!

k∏

=1

∂α�
x (−Λ̃)

)

=
∑

γ1+γ2+γ3=γ+α

∑
δ1+δ2+δ3=δ

(γ + α)!

γ1!γ2!γ3!

δ!

δ1!δ2!δ3!
∂γ1ξ ∂

β+δ1
x a

×
β∑

h=1

1

h!

∑
β1+···+βh=β

β!

β1! . . . βh!

∑
θ1+···+θh=γ2

∑
σ1+···+σh=δ2

γ2!

θ1! . . . θh!

δ2!

σ1! . . . σh!

×
h∏


=1

∂θ�+β�

ξ ∂σ�
x Λ̃

×
α∑

k=1

1

k!

∑
α1+···+αk=α

α!

α1! . . . αk!

∑
θ1+···+θk=γ3

∑
σ1+···+σk=δ3

γ3!

θ1! . . . θk!

δ3!

σ1! . . . σk!

×
k∏


=1

∂θ�ξ ∂
α�+σ�
x (−Λ̃),

hence

|∂γ+α
ξ ∂δx(∂

β
ξ e

Λ̃Dβ
xaD

α
xe

−Λ̃)| ≤
∑

γ1+γ2+γ3=γ+α

δ1+δ2+δ3=δ

(γ + α)!

γ1!γ2!γ3!

δ!

δ1!δ2!δ3!
Cγ1+β+δ1+1

a γ1!
μ(β + γ1)!

s0

× 〈ξ〉m1−γ1〈x〉m2−β−δ1

×
β∑

h=1

1

h!

∑
β1+···+βh=β

β!

β1! . . . βh!

∑
θ1+···+θh=γ2

∑
σ1+···+σh=δ2

γ2!

θ1! . . . θh!

δ2!

σ1! . . . σh!

×
h∏


=1

Cθ�+β�+σ�+1

Λ̃
(θ
 + β
)!

μσ
!
μ〈ξ〉−θ�−β�〈x〉1−σ−σ�

×
α∑

k=1

1

k!

∑
α1+···+αk=α

α!

α1! . . . αk!

∑
θ1+···+θk=γ3

∑
σ1+···+σk=δ3

γ3!

θ1! . . . θk!

δ3!

σ1! . . . σk!

×
k∏


=1

Cθ�+β�+σ�+1

Λ̃
(θ
)!

μ(α
 + σ
)!
μ〈ξ〉−θ�〈x〉1−σ−α�−σ�

≤ C
γ+δ+2(α+β)+1
1 γ!μδ!s0(α + β)!μ+s0〈ξ〉m1−γ−(α+β)〈x〉m2−δ−(α+β)

×
α∑

k=1

〈x〉k(1−σ)

k!

β∑
h=1

〈x〉h(1−σ)

h!
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≤ C
γ+δ+2(α+β)+1
1 γ!μδ!s0(α + β)!μ+s0〈ξ〉m1−γ−(α+β)〈x〉m2−δ−(α+β)

× 2α+β

α+β∑
k=1

〈x〉k(1−σ)

k!
.

Writing ∑
j≥0

∑
α+β=j

1

α!β!
∂αξ {∂βξ eΛ̃Dβ

xaD
α
xe

−Λ̃} =
∑
j≥0

rj,

the above estimate implies

|∂αξ ∂βxrj(x, ξ)| ≤ Cα+β+2j+1α!μβ!s0(j)!μ+s0−1〈ξ〉m1−α−j〈x〉m2−β−j

j∑
k=1

〈x〉k(1−σ)

k!
,

for every j ≥ 0, α, β ∈ N0 and x, ξ ∈ R.

Let ψ(x, ξ) ∈ C∞(R2) such that ψ ≡ 0 on Q2, ψ ≡ 1 on Qe
3, 0 ≤ ψ ≤ 1 and

|∂αξ ∂βxψ(x, ξ)| ≤ Cα+β+1α!μβ!s0 ,

for every x, ξ ∈ R and α, β ∈ N0. Now set ψ0 ≡ 1 and, for j ≥ 1,

ψj(x, ξ) := ψ

(
x

R(j)
,

ξ

R(j)

)
,

where R(j) = Rjs0+μ−1, for a large constant R > 0.

Setting b(x, ξ) =
∑

j≥0 ψj(x, ξ)rj(x, ξ) we have b ∈ SGm1,∞
μ,s0

(R2) and

b(x, ξ) ∼
∑
j≥0

rj(x, ξ) in FSGm1,∞
μ,s0

(R2).

Now we will prove that b ∈ SGm1,m2
μ,s0

(R2). Indeed, first we note

b(x, ξ) = a(x, ξ) +
∑
j≥0

ψj+1(x, ξ)rj+1(x, ξ).

For any α, β ∈ N0 we get

|∂αξ ∂βx
∑
j≥0

{ψj+1rj+1}(x, ξ)| ≤
∑
j≥0

∑
α1+α2=α

β1+β2=β

α!

α1!α2!

β!

β1!β2!
|∂α1

ξ ∂β1
x ψj+1(x, ξ)||∂α2

ξ ∂β2
x rj+1(x, ξ)|

≤
∑
j≥0

∑
α1+α2=α

β1+β2=β

α!

α1!α2!

β!

β1!β2!
Cα1+β1+1

ψ α1!
μβ1!

s0R(j + 1)−α1−β1

× Cα2+β2+2(j+1)+1α2!
μβ2!

s0〈ξ〉m1−α2−j〈x〉m2−β2−j

j∑
k=1

〈x〉k(1−σ)

k!
.

On the support of ∂α1
ξ ∂β1

x ψj+1 we have

〈x〉 ≤ 3R(j + 1) and 〈ξ〉 ≤ 3R(j + 1)
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whenever that α1 + β1 �= 0. Hence

|∂αξ ∂βx
∑
j≥0

{ψj+1rj+1}(x, ξ)| ≤ C̃α+β+1α!μβ!s0〈ξ〉m1−α−1〈x〉m2−β−σ〈x〉σ−1

×
∑
j≥0

C2j
1 j!

μ+s0−1〈ξ〉−j〈x〉−j

j∑
k=1

〈x〉k(1−σ)

k!
.

We also have

〈x〉 ≥ R(j + 1) and 〈ξ〉 ≥ R(j + 1)

on the support of ∂α1
ξ ∂β1

x ψj+1. If 〈ξ〉 ≥ R(j + 1) we get

〈ξ〉−j ≤ R−j(j + 1)!−j(μ+s0−1) ≤ R−jj!−(μ+s0−1).

On the other hande, since μ+ s0 − 1 < 1
1−σ

, if 〈x〉 ≥ R(j + 1) then

〈x〉(k−1)(1−σ)−j ≤ R(k−1)(1−σ)−j{(j + 1)μ+s0−1}(k−1)(1−σ)−j

≤ R−σj(j + 1)(k−1)−j(μ+s0−1)

≤ R−σjej+1(k − 1)!(j + 1)!−(μ+s0−1).

Hence, enlarging R > 0 if necessary, we infer that
∑

j≥1 ψjrj ∈ SGm1−1,m2−σ
μ,s0

(R2). Analo-

gously one can get

∑
j≥k

ψj(x, ξ)rj(x, ξ) ∈ SGm1−k,m2−σk
μ,s0

(R2), k ∈ N0.

Therefore

b(x, ξ)−
∑
j<k

rj(x, ξ) ∈ SGm1−k,m2−σk
μ,s0

, k ∈ N,

which finalizes the proof.

4.5.1 Conjugation of iP by eΛ̃

We notice again that eΛ̃∂t{eΛ̃}−1 = ∂t since Λ̃(x, ξ) = λ2(x, ξ) + λ1(x, ξ) does not

depend on t.

• Conjugation of ia3(t,D): Since a3 does not depend of x, applying Lemma 4.4, we have

eΛ̃(x,D)(ia3)(t,D){e−Λ̃(x,D)}∗ = ia3(t,D) + s(t, x,D) + r3(t, x,D),
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s ∼ ∑j≥1
1
j!
∂jξ{eΛ̃ia3Dj

xe
−Λ̃} in SG2,−σ

μ (R2) and r3 ∈ C([0, T ],Sμ+s0−1(R
2)). Hence,

using (4.9), we can write (omitting (t, x,D) in the notation )

eΛ̃(ia3){eΛ̃}−1 =

(
ia3 − ∂ξ(a3∂xΛ̃) +

i

2
∂2ξ [a3(∂

2
xΛ̃− (∂xΛ̃)

2)] + a
(0)
3 + r3

)
◦
[
I − i∂ξ∂xΛ̃− 1

2
∂2ξ (∂

2
xΛ̃− [∂xΛ̃]

2)− [∂ξ∂xΛ̃]
2 + q−3

]
= ia3 − ∂ξ(a3∂xΛ̃) +

i

2
∂2ξ{a3(∂2xΛ̃− {∂xΛ̃}2)}+ a3∂ξ∂xΛ̃− i∂ξa3∂ξ∂

2
xΛ̃

+ i∂ξ(a3∂xΛ̃)∂ξ∂xΛ̃− i

2
a3{∂2ξ (∂2xΛ̃ + [∂xΛ̃]

2) + 2[∂ξ∂xΛ̃]
2}+ r0 + r̄

= ia3 − ∂ξa3∂xΛ̃ +
i

2
∂2ξ{a3[∂2xΛ̃− (∂xΛ̃)

2]} − i∂ξa3∂ξ∂
2
xΛ̃

+ i∂ξ(a3∂xΛ̃)∂ξ∂xΛ̃− i

2
a3{∂2ξ (∂2xΛ̃ + [∂xΛ̃]

2) + 2(∂ξ∂xΛ̃)
2}+ r0 + r̄

= ia3 − ∂ξa3∂xλ2 − ∂ξa3∂xλ1 +
i

2
∂2ξ{a3(∂2xλ2 − {∂xλ2}2)} − i∂ξa3∂ξ∂

2
xλ2

+ i∂ξ(a3∂xλ2)∂ξ∂xλ2 − i

2
a3{∂2ξ (∂2xλ2 + [∂xλ2]

2) + 2[∂ξ∂xλ2]
2}+ r0 + r̄,

where a
(0)
3 ∈ C([0, T ];SG0,0

μ ), r0 ∈ C([0, T ];SG0,0
δ (R2)) and, since we may assume

2δ − 1 < μ+ s0 − 1, r̄ ∈ C([0, T ];Sμ+s0−1(R
2)).

• Conjugation of ia2(t, x,D): by Lemma 4.4 and (4.9) we get (again omitting (t, x,D))

eΛ̃(x,D)(ia2){eΛ̃(x,D)}−1 =
(
ia2 − ∂ξ{a2∂xΛ̃}+ ∂ξΛ̃∂xa2 + a

(0)
2 + r2

)
◦
[
I − i∂ξ∂xΛ̃− 1

2
∂2ξ (∂

2
xΛ̃− [∂xΛ̃]

2)− [∂ξ∂xΛ̃]
2 + q−3

]
= ia2 − ∂ξ{a2∂xΛ̃}+ ∂ξΛ̃∂xa2 + a2∂ξ∂xΛ̃ + r0 + r̄

= ia2 − ∂ξa2∂xΛ̃ + ∂ξΛ̃∂xa2 + r0 + r̄

= ia2 − ∂ξa2∂xλ2 + ∂ξλ2∂xa2 + r0 + r̄,

where a
(0)
2 ∈ C([0, T ];SG0,0

μ,s0
), r0 ∈ C([0, T ];SG0,0

δ,s0
(R2)) and

r̄ ∈ C([0, T ];Sδ+s0−1(R
2)).

• Conjugation of ia1(t, x,D):

eΛ̃(x,D)(ia1(t, x,D)){eΛ̃(x,D)}−1 = op(ia1 + a
(0)
1 + r1) ◦

∑
j≥0

(−r)j

= ia1(t, x,D) + r̃0(t, x,D) + r̃(t, x,D),

where a
(0)
1 ∈ C([0, T ];SG0,1−2σ

μ,s0
(R2)), r̃0 ∈ C([0, T ];SG0,1−2σ

δ,s0
(R2)) and

r̃ ∈ C([0, T ];Sδ+s0−1(R
2)).
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• Conjugation of ia0(t, x,D):

eΛ̃(x,D)(ia0(t, x,D)){eΛ̃(x,D)}−1 = op(ia0 + a
(0)
0 + r0)

∑
j≥0

(−r)j

= ia0(t, x,D) + ˜̃r0(t, x,D) + r̃1(t, x,D),

where a
(0)
0 ∈ C([0, T ];SG−1,1−2σ

μ,s0
), ˜̃r0 ∈ C([0, T ];SG−1,1−2σ

δ (R2)) and

r̃1 ∈ C([0, T ];Sδ+s0−1(R
2)).

Summing up we obtain

eΛ̃(x,D)(iP ){eΛ̃(x,D)}−1 = ∂t + ia3(t,D) + ia2(t, x,D)− op(∂ξa3∂xλ2) (4.10)

+ia1(t, x,D)− op(∂ξa3∂xλ1 + ∂ξa2∂xλ2 − ∂ξλ2∂xa2 − ib1)

+ia0(t, x,D) + rσ(t, x,D) + r̄(t, x,D),

where

b1 ∈ C([0, T ];SG1,−2σ
μ,s0

(R2)), b1(t, x, ξ) ∈ R, b1 does not depend on λ1, (4.11)

and

rσ ∈ C([0, T ];SG0,1−2σ
δ,s0

(R2)), r̄ ∈ C([0, T ];Sδ+s0−1(R
2)). (4.12)

4.5.2 Conjugation of eΛ̃(iP ){eΛ̃}−1 by ek(t)〈x〉
1−σ
h

Let us recall that we are assuming that k ∈ C1([0, T ];R), k′(t) ≤ 0 and k(t) ≥ 0 for

every t ∈ [0, T ]. Following the same ideas of Lemma 4.4 one can prove the following result.

Lemma 4.5. Let a ∈ C([0, T ];SGm1,m2
μ,s0

(R2)), where 1 < μ < s0 and μ+ s0 − 1 < 1
1−σ

. Then

ek(t)〈x〉
1−σ
h a(t, x,D) e−k(t)〈x〉1−σ

h = a(t, x,D) + b(t, x,D) + r̄(t, x,D),

where b ∼∑j≥1
1
j!
ek(t)〈x〉

1−σ
h ∂jξaD

j
xe

−k(t)〈x〉1−σ
h in SGm1−1,m2−σ

μ,s0
(R2) and

r̄ ∈ C([0, T ],Sμ+s0−1(R
2)).

Now we perform the conjugation by ek(t)〈x〉
1−σ
h of the operator eΛ̃(iP ){eΛ̃}−1 in (4.10) with the

aid of Lemma 4.5.

• Conjugation of ∂t: e
k(t)〈x〉1−σ

h ∂t e
−k(t)〈x〉1−σ

h = ∂t − k′(t)〈x〉1−σ
h .
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• Conjugation of ia3(t,D):

ek(t)〈x〉
1−σ
h ia3(t,D) e−k(t)〈x〉1−σ

h = ia3(t,D) + op(−k(t)∂ξa3∂x〈x〉1−σ
h )

+ op

(
i

2
∂2ξa3{k(t)∂2x〈x〉1−σ

h − k2(t)[∂x〈x〉1−σ
h ]2}

)
+ a

(0)
3 (t, x,D) + r3(t, x,D),

where a
(0)
3 ∈ C([0, T ];SG0,−3σ

μ,s0
(R2)) and r3 ∈ C([0, T ];Sμ+s0−1(R

2)).

• Conjugation of op(ia2 − ∂ξa3∂xλ2):

ek(t)〈x〉
1−σ
h op(ia2 − ∂ξa3∂xλ2) e

−k(t)〈x〉1−σ
h = ia2(t, x,D) + op(−∂ξa3∂xλ2)

+ op(−k(t)∂ξa2∂x〈x〉1−σ
h − ik(t)∂ξ{∂ξa3∂xλ2}∂x〈x〉1−σ

h )

+ a
(0)
2 (t, x,D) + r2(t, x,D),

where a
(0)
2 ∈ C([0, T ];SG0,−2σ

μ,s0
(R2)) and r2 ∈ C([0, T ];Sμ+s0−1(R

2)).

• Conjugation of i(a1 + a0)(t, x,D): We have

ek(t)〈x〉
1−σ
h i(a1 + a0)(t, x,D)e−k(t)〈x〉1−σ

h = (ia1 + ia0 + a1,0 + r1)(t, x,D),

where

a1,0 ∼
∑
j≥1

ek(t)〈x〉
1−σ
h

1

j!
∂jξ i(a1 + a0)(t, x, ξ)D

j
xe

−k(t)〈x〉1−σ
h in SG0,1−2σ

μ,s0
(R2)

and r1 ∈ C([0, T ];Sμ+s0−1(R
2)). It is not difficult to verify that the following estimate

holds

|a1,0(t, x, ξ)| ≤ max{1, k(t)}CT 〈x〉1−2σ
h , (4.13)

where CT depends on a1 and does not depend on k(t).

• Conjugation of op(−∂ξa3∂xλ1 − ∂ξa2∂xλ2 + ∂ξλ2∂xa2 + ib1): taking into account (i) of

Lemma 4.2 we obtain

ek(t)〈x〉
1−σ
h op(−∂ξa3∂xλ1 − ∂ξa2∂xλ2 + ∂ξλ2∂xa2 + ib1)e

−k(t)〈x〉1−σ
h

= +op(−∂ξa3∂xλ1 − ∂ξa2∂xλ2 + ∂ξλ2∂xa2 + ib1) + (r0 + r̄)(t, x,D),

where r0 ∈ C([0, T ];SG0,0
μ,s0

(R2)) and r̄ ∈ C([0, T ];Sμ+s0−1(R
2)).
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• Conjugation of rσ(t, x,D): ek(t)〈x〉
1−σ
h rσ(t, x,D) e−k(t)〈x〉1−σ

h = rσ,1(t, x,D) + r̄(t, x,D),

where r̄ ∈ C([0, T ];Sδ+s0−1(R
2)), rσ,1 belongs to C([0, T ];SG0,1−2σ

δ,s0
(R2)) and the fol-

lowing estimate holds

|rσ,1(t, x, ξ)| ≤ CT,Λ̃〈x〉1−2σ
h , (4.14)

where CT,Λ̃ does not depend of k(t).

Gathering all the previous computations we may write

ek(t)〈x〉
1−σ
h eΛ(iP ){eΛ}−1e−k(t)〈x〉1−σ

h = ∂t + ia3(t,D) (4.15)

+ op(−∂ξa3∂xλ2 + ia2 − k(t)∂ξa3∂x〈x〉1−σ
h )

+ op(−∂ξa3∂xλ1 + ia1 − ∂ξa2∂xλ2 + ∂ξλ2∂xa2 − k(t)∂ξa2∂x〈x〉1−σ
h )

+ op(ib1 + ic1 + ia0 − k′(t)〈x〉1−σ
h + a1,0 + rσ,1) + (r0 + r̄)(t, x,D),

where b1 satisfies (4.11),

c1 ∈ C([0, T ];SG1,−2σ
μ,s0

(R2)), c1(t, x, ξ) ∈ R, c1 does not depend on λ1 (4.16)

(but c1 depends of λ2, k(t)), a1,0 as in (4.13), rσ,1 as in (4.14), and for some operators

r0 ∈ C([0, T ];SG0,0
δ,s0

(R2)), r̄ ∈ C([0, T ];Sδ+s0−1(R
2)).

4.5.3 Conjugation of ek(t)〈x〉
1−σ
h eΛ̃(iP ){eΛ̃}−1e−k(t)〈x〉1−σ

h by eρ1〈D〉 1θ

Since we are considering θ > s0 and μ > 1 arbitrarily close to 1, we may assume

that all the previous smoothing remainder terms have symbols in Σθ(R
2). In this subsection we

shall use the following lemma.

Lemma 4.6. Let a ∈ SGm1,m2
μ,s0

, where 1 < μ < s0 and μ+ s0 − 1 < θ. Then

eρ1〈D〉 1θ a(x,D) e−ρ1〈D〉 1θ = a(x,D) + b(x,D) + r(x,D),

where b ∼∑j≥1
1
j!
∂jξe

ρ1〈ξ〉
1
θ Dj

xa e
−ρ1〈ξ〉

1
θ in SG

m1−(1− 1
θ
),m2−1

μ,s0 (R2) and r ∈ Sμ+s0−1(R
2).

Let us now conjugate by eρ1〈D〉 1θ the operator ek(t)〈x〉
1−σ
h eΛ(iP ){eΛ}−1e−k(t)〈x〉1−σ

h in

(4.15). First of all we observe that since a3 does not depend of x, we simply have

eρ1〈D〉 1θ ia3(t,D) e−ρ1〈D〉 1θ = ia3(t,D).
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• Conjugation of op
(−∂ξa3∂xλ2 + ia2 − k(t)∂ξa3∂x〈x〉1−σ

h

)
:

eρ1〈D〉 1θ op(−∂ξa3∂xλ2 + ia2 − k(t)∂ξa3∂x〈x〉1−σ
h ) e−ρ1〈D〉 1θ

= op(−∂ξa3∂xλ2 + ia2 − k(t)∂ξa3∂x〈x〉1−σ
h ) + (a2,ρ1 + r̄)(t, x,D),

where a2,ρ1 ∈ C([0, T ], SG
1+ 1

θ
,−1

μ,s0 (R2)), r̄ ∈ C([0, T ],Σθ(R
2)) and the following esti-

mate holds

|∂αξ ∂βxa2,ρ1(t, x, ξ)| ≤ max{1, k(t)}|ρ1|Cα+β+1
λ2,T

α!μβ!s0〈ξ〉1+ 1
θ
−α〈x〉−σ−β. (4.17)

In particular

|a2,ρ1(t, x, ξ)| ≤ max{1, k(t)}|ρ1|Cλ2,T 〈ξ〉1+
1
θ

h 〈x〉−σ.

• Conjugation of

op(−∂ξa3∂xλ1 + ia1 − ∂ξa2∂xλ2 + ∂ξλ2∂xa2 − k(t)∂ξa2∂x〈x〉1−σ
h + ib1 + ic1) :

the conjugation of this term is given by

op(−∂ξa3∂xλ1+ia1 − ∂ξa2∂xλ2 + ∂ξλ2∂xa2 − k(t)∂ξa2∂x〈x〉1−σ
h + ib1 + ic1)

+ a1,ρ1(t, x,D) + r̄(t, x,D),

where r̄ ∈ C([0, T ],Σθ(R
2)) and a1,ρ1 satisfies the following estimate

|∂αξ ∂βxa1,ρ1(t, x, ξ)| ≤ max{1, k(t)}|ρ1|Cα+β+1

Λ̃,T
α!μβ!s0〈ξ〉 1

θ
−α〈x〉−σ−β. (4.18)

Particularly

|a1,ρ1(t, x, ξ)| ≤ max{1, k(t)}|ρ1|CΛ̃,T 〈ξ〉
1
θ
h 〈x〉−σ.

• Conjugation of op(ia0 − k′(t)〈x〉1−σ
h + a1,0 + rσ,1):

eρ1〈D〉 1θ op(ia0−k′(t)〈x〉1−σ
h + a1,0 + rσ,1)e

−ρ1〈D〉 1θ

= op(ia0 − k′(t)〈x〉1−σ
h + a1,0 + rσ,1) + r0(t, x,D) + r̄(t, x,D),

where r0 ∈ C([0, T ];SG
(0,0)
δ,s0

(R2)) and r̄ ∈ C([0, T ]; Σθ(R
2)).

Gathering all the previous computations we may write

eρ1〈D〉 1θ ek(t)〈x〉
1−σ
h eΛ̃(iP ){eρ1〈D〉 1θ ek(t)〈x〉

1−σ
h eΛ̃}−1 = ∂t + ia3(t,D)

+ op
(−∂ξa3∂xλ2 + ia2 − k(t)∂ξa3∂x〈x〉1−σ

h + a2,ρ1 − ∂ξa3∂xλ1
)
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+ op
(
ia1 − ∂ξa2∂xλ2 + ∂ξλ2∂xa2 − k(t)∂ξa2∂x〈x〉1−σ

h + ib1 + ic1 + a1,ρ1
)

+ op(ia0 − k′(t)〈x〉1−σ
h + a1,0 + rσ,1) + r0(t, x,D) + r̄(t, x,D), (4.19)

where a2,ρ1 as in (4.17), b1 as in (4.11), c1 as in (4.16), a1,ρ1 as in (4.18), a1,0 as in (4.13), rσ,1

as in (4.14), and for some operators

r0 ∈ C([0, T ];SG
(0,0)
δ,s0

(R2)), r̄ ∈ C([0, T ]; Σθ(R
2)).

4.6 Estimates from Below for the Real Parts

In this section we will choose M2,M1 and k(t) in order to apply Fefferman-Phong and

sharp Gårding inequalities to get the desired energy estimate for the conjugated problem. By

the computations of the previous section we have

eρ1〈D〉 1θ ek(t)〈x〉
1−σ
h eΛ̃(x,D)(iP ){eρ1〈D〉 1θ ek(t)〈x〉

1−σ
h eΛ̃(x,D)}−1

= ∂t + ia3(t,D) +
2∑

j=0

ãj(t, x,D) + r0(t, x,D) + r̄(t, x,D),

where ã2, ã1 represent the part with ξ−order 2, 1 respectively and ã0 represents the part with

ξ−order 0, but with a positive order (less than or equal to 1 − σ) with respect to x. Now note

that

Re ã2 = −∂ξa3∂xλ2 − Ima2 − k(t)∂ξa3∂x〈x〉1−σ
h +Re a2,ρ1 ,

Im ã2 = Re a2 + Ima2,ρ1 ,

Re ã1 = −∂ξa3∂xλ1 − Ima1 − ∂ξRe a2∂xλ2 + ∂ξλ2∂xRe a2

−k(t)∂ξRe a2∂x〈x〉1−σ
h +Re a1,ρ1 ,

Re ã0 = −Ima0 − k′(t)〈x〉1−σ
h +Re a1,0 +Re rσ,1.

Since the Fefferman-Phong inequality holds true only for scalar symbols, we need to decompose

Im ã2 into its Hermitian and anti-Hermitian part:

iImã2 =
iImã2 + (iImã2)

∗

2
+
iImã2 − (iImã2)

∗

2
= t1 + t2,

where 2Re〈t2(t, x,D)u, u〉 = 0 and t1(t, x, ξ) = −
∑
α≥1

i

2α!
∂αξD

α
xImã2(t, x, ξ). Observe that,

using (4.17),

|t1(t, x, ξ)| ≤ Ca2〈ξ〉〈x〉−1 +max{1, k(t)}|ρ1|Cλ2〈ξ〉
1
θ 〈x〉−σ−1
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≤ {Ca2 + h−(1− 1
θ
) max{1, k(0)}|ρ1|Cλ2}〈ξ〉h〈x〉−

σ
2 . (4.20)

In this way we may write

eρ1〈D〉 1θ ek(t)〈x〉
1−σ
h eΛ̃(x,D)(iP ){eρ1〈D〉 1θ ek(t)〈x〉

1−σ
h eΛ̃(x,D)}−1 (4.21)

= ∂t + ia3(t,D) + (Re ã2 + t2 + t1 + ã1 + ã0)(t, x,D) + r̃0(t, x,D),

where r̃0 has symbol of order (0, 0).

Now we are ready to choose M2,M1 and k(t). The function k(t) will be of the form

k(t) = K(T − t), t ∈ [0, T ], for a positive constant K to be chosen. In the following compu-

tations we shall consider |ξ| > hRa3 . Observe that 2|ξ|2 ≥ 〈ξ〉2h whenever |ξ| ≥ h > 1. For

Re ã2 we have:

Re ã2 =M2|∂ξa3|〈x〉−σ − Ima2 − k(t)∂ξa3∂x〈x〉1−σ
h +Re a2,ρ1

≥M2Ca3 |ξ|2〈x〉−σ − Ca2〈ξ〉2h〈x〉−σ

− C̃a3k(0)(1− σ)〈ξ〉2h〈x〉−σ
h −max{1, k(0)}Cλ2,ρ1〈ξ〉1+

1
θ

h 〈x〉−σ

≥ (M2
Ca3

2
− Ca2 − C̃a3k(0)(1− σ)−max{1, k(0)}Cλ2,ρ1〈ξ〉−(1− 1

θ
)

h )〈ξ〉2h〈x〉−σ

≥ (M2
Ca3

2
− Ca2 − C̃a3k(0)(1− σ)−max{1, k(0)}Cλ2,ρ1h

−(1− 1
θ
))〈ξ〉2h〈x〉−σ

= (M2
Ca3

2
− Ca2 − C̃a3KT (1− σ)−max{1, KT}Cλ2,ρ1h

−(1− 1
θ
))〈ξ〉2h〈x〉−σ

For Re ã1, we have:

Re ã1 =M1|∂ξa3|〈ξ〉−1
h 〈x〉−σ

2ψ

(〈x〉σ
〈ξ〉2h

)
− Ima1 − ∂ξRe a2∂xλ2 + ∂ξλ2∂xRe a2

− k(t)∂ξRe a2∂x〈x〉1−σ
h +Re a1,ρ1

≥M1Ca3 |ξ|2〈ξ〉−1
h 〈x〉−σ

2ψ

(〈x〉σ
〈ξ〉2h

)
− Ca1〈ξ〉h〈x〉−

σ
2 − C̃a2,λ2〈ξ〉h〈x〉−σ

− Ck(0)(1− σ)〈ξ〉h〈x〉−σ
h −max{1, k(0)}CΛ̃,ρ1

〈ξ〉
1
θ
h 〈x〉−σ

h

≥M1
Ca3

2
〈ξ〉h〈x〉−σ

2ψ

(〈x〉σ
〈ξ〉2h

)
− Ca1〈ξ〉h〈x〉−

σ
2 − C̃a2,λ2〈ξ〉h〈x〉−

σ
2

− Ck(0)(1− σ)〈ξ〉h〈x〉−
σ
2

h 〈x〉−σ
2 −max{1, k(0)}CΛ̃,ρ1

〈ξ〉−(1− 1
θ
)

h 〈ξ〉h〈x〉−σ
2

= (M1
Ca3

2
− Ca1 − C̃a2,λ2 − CKT (1− σ)〈x〉−

σ
2

h )〈ξ〉h〈x〉−σ
2

−max{1, KT}CΛ̃,ρ1
〈ξ〉−(1− 1

θ
)

h 〈ξ〉h〈x〉−σ
2 −M1

Ca3

2
〈ξ〉h〈x〉−σ

2

(
1− ψ

(〈x〉σ
〈ξ〉2h

))
.

Since 〈ξ〉h〈x〉−σ
2 ≤ √

2 on the support of 1− ψ
(

〈x〉σ
〈ξ〉2h

)
, we may conclude

Re ã1 ≥ (M1
Ca3

2
− Ca1 − C̃a2,λ2 − CKT (1− σ)h−

σ
2 )〈ξ〉h〈x〉−σ

2
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−max{1, KT}CΛ̃,ρ1
h−(1− 1

θ
)〈ξ〉h〈x〉−σ

2 −M1
Ca3

2

√
2.

Taking (4.20) into account we obtain

Re (ã1 + t1) ≥ (M1
Ca3

2
− Ca2 − Ca1 − C̃a2,λ2 − CKT (1− σ)h−

σ
2 )〈ξ〉h〈x〉−σ

2

−max{1, KT}(CΛ̃,ρ1
+ |ρ1|Cλ2)h

−(1− 1
θ
)〈ξ〉h〈x〉−σ

2 −M1
Ca3

2

√
2.

For Re ã0, we have:

Re ã0 = −Ima0 − k′(t)〈x〉1−σ
h +Re a1,0 +Re rσ,1

= −Ima0 + (−k′(t)−max{1, k(0)}CT 〈x〉−σ
h − CT,Λ̃〈x〉−σ

h )〈x〉1−σ
h

≥ (−Ca0 +K −max{1, KT}CTh
−σ − CT,Λ̃h

−σ)〈x〉1−σ
h .

Finally, let us proceed with the choices of M1,M2 and K. First we choose K larger

than max{Ca0 , 1/T}, then we setM2 large in order to obtainM2
Ca3

2
−Ca2−C̃a3KT (1−σ) > 0

and after that we take M1 such that M1
Ca3

2
− Ca2 − Ca1 − C̃a2,λ2 > 0 (choosing M2, M1 we

determine Λ̃). Enlarging the parameter h we may assume

KTCλ2,ρ1h
−(1− 1

θ
) <

1

4
(M2

Ca3

2
− Ca2 − C̃a3KT (1− σ)),

CKT (1− σ)h−
σ
2 +KT (CΛ̃,ρ1

+ |ρ1|Cλ2)h
−(1− 1

θ
) <

1

4
(M1

Ca3

2
− Ca2 − Ca1 − C̃a2,λ2),

KTCTh
−σ + CT,Λ̃h

−σ <
K − Ca0

4
.

With these choices we obtain that Re ã2 ≥ 0, Re (ã1+ t1)+M1
Ca3

2

√
2 ≥ 0 and Re ã0 ≥ 0. Let

us also remark that the choices of M2,M1 and k(t) do not depend of ρ1 and θ.

4.7 Proof of Theorem 4.1

Let us denote

P̃Λ := eρ1〈D〉 1θ eΛ(t, x,D) iP {eρ1〈D〉 1θ eΛ(t, x,D)}−1.

By (4.21), with the choices of M2,M1, k(t) in the previous section, we get

iP̃Λ = ∂t + ia3(t,D) + (Re ã2 + t2)(t, x,D) + (ã1 + t1)(t, x,D) + ã0(t, x,D) + r̃0(t, x,D),

with

Re ã2 ≥ 0, Re (ã1 + t1) +M1
Ca3

2

√
2 ≥ 0, Re ã0 ≥ 0. (4.22)
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Fefferman-Phong inequality applied to Re ã2 and sharp Gårding inequality applied to

ã1 + t1 +M1
Ca3

2

√
2 and ã0 give

Re〈Re ã2(t, x,D)v, v〉 ≥ −c‖v‖2L2 ,

Re〈(ã1 + t1)(t, x,D)v, v〉 ≥ −
(
c+M1

Ca3

2

√
2

)
‖v‖2L2 ,

Re〈ã0(t, x,D)v, v〉 ≥ −c‖v‖2L2

for some constant c. Now applying Gronwall inequality we come to the following energy esti-

mate

‖v(t)‖2L2 ≤ C

(
‖v(0)‖2L2 +

∫ t

0

‖(iP̃Λv(τ)‖2L2dτ

)
, t ∈ [0, T ],

for every v(t, x) ∈ C1([0, T ];S (R)). This estimate provides well-posedness of the Cauchy

problem associated with P̃Λ in Hm(R) for every m = (m1,m2) ∈ R
2. Being more precise, for

any f̃ ∈ C([0, T ];Hm(R)) and g̃ ∈ Hm(R), there exists a unique v ∈ C([0, T ];Hm(R)) such

that P̃Λv = f̃ , v(0) = g̃ and

‖v(t)‖2Hm ≤ C

(
‖g̃‖2Hm +

∫ t

0

‖f̃(τ)‖2Hmdτ

)
, t ∈ [0, T ]. (4.23)

Let us now turn back to our original Cauchy problem. Taking f ∈ C([0, T ], Hm
ρ;s,θ(R))

and g ∈ Hm
ρ;s,θ(R) for some m, ρ ∈ R

2 with ρ2 > 0 and s, θ > 1 such that θ > s0, we define Λ

with s0 > 2μ− 1 and M1,M2, k(0) such that (4.22) holds. Then by Proposition 4.1 we get

fρ1,Λ := eρ1〈D〉 1θ eΛ(t, x,D)f ∈ C([0, T ], Hm
(0,ρ2−δ̄);s,θ(R))

and

gρ1,Λ := eρ1〈D〉 1θ eΛ(0, x,D)g ∈ Hm
(0,ρ2−δ̄);s,θ(R)

for every δ̄ > 0, because 1/(1 − σ) > s. Since δ̄ can be taken arbitrarily small, we have that

fρ1,Λ ∈ C([0, T ], Hm) and gρ1,Λ ∈ Hm. Hence the Cauchy problem⎧⎪⎨⎪⎩
P̃Λv = fρ1,Λ

v(0) = gρ1,Λ

admits a unique solution v ∈ C([0, T ], Hm)∩C1([0, T ], Hm1−3,m2−1+1/σ)) satisfying the energy

estimate (4.23). Taking now u = (eΛ(t,x,D))−1e−ρ1〈D〉1/θv, we get that u solves our original

Cauchy problem. Moreover, since v ∈ C([0, T ];Hm) we obtain u ∈ C([0, T ], Hm
(ρ1,−δ̃);s,θ

(R))

for every δ̃ > 0 and from (4.23) we get

‖u‖Hm
(ρ1,−δ̃);s,θ

≤ C‖v‖Hm ≤ C

(
‖gρ1,Λ‖2Hm +

∫ t

0

‖fρ1,Λ(τ)‖2Hmdτ

)
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≤ C

(
‖g‖2Hm

ρ;s,θ
+

∫ t

0

‖f(τ)‖2Hm
ρ;s,θ

dτ

)
.

This concludes the proof.

Remark 4.3. Since in general Hm
(ρ1,−δ);s,θ(R) is a larger space than Hm(R), from our method,

we cannot conclude that the solution is unique in C([0, T ];Hm
(ρ1,−δ);s,θ(R)). On the other hand,

it is unique in the following subspace J of C([0, T ];Hm
(ρ1,−δ);s,θ(R))

J = {u ∈ C([0, T ];S ′(R)) : u = {eΛ(t, x,D)}−1e−ρ1〈D〉 1θ v, for some v ∈ C([0, T ];Hm(R))}.

Indeed, if uj ∈ J , j = 1, 2, are solutions for⎧⎪⎨⎪⎩
Puj = f

uj(0) = g,

then the functions uj also satisfy ⎧⎪⎨⎪⎩
P̃Λuj,ρ1,Λ = fρ1,Λ

uj,ρ1,Λ(0) = gρ1,Λ,

where uj,ρ1,Λ = eρ1〈D〉 1θ eΛ(t, x,D)uj . Using that uj ∈ J , we have vj ∈ C([0, T ];Hm) such that

uj = {eΛ(t, x,D)}−1e−ρ1〈D〉 1θ vj , j = 1, 2. Hence⎧⎪⎨⎪⎩
P̃Λvj = fρ1,Λ

vj = gρ1,Λ.

By the Hm(R) well-posedness of the Cauchy problem associated with P̃Λ we get v1 = v2.

Therefore u1 = u2.
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Chapter 5

Further Research

Before introducing possible new directions of research, let us summarize the two main

results of the present thesis. In the last two Chapters, we studied the Cauchy problem⎧⎪⎨⎪⎩
Pu(t, x) = f(t, x), t ∈ [0, T ], x ∈ R,

u(0, x) = g(x), x ∈ R,

with P being a 3−evolution operator of the following shape

P (t, x,Dt, Dx) = Dt + a3(t)D
3
x + a2(t, x)D

2
x + a1(t, x)Dx + a0(t, x),

where the coefficients are always continuous with respect to time and s0 > 1 Gevrey regular

with respect to the space variable. We also assume that a3(t) is real-valued and never vanishes,

meanwhile we allow the lower order terms aj(t, x), j = 0, 1, 2 , to be complex-valued. Under

suitable decay conditions on the lower order terms, we were able to obtain existence and well-

posedness results. Namely, we ask that a2 behaves like 〈x〉−σ and a1 behaves like 〈x〉−σ
2 , for

some σ ∈ (0, 1). We have achieved the following:

• if σ ∈ (1
2
, 1) and s0 <

1
2(1−σ)

, then for any f ∈ C([0, T ];Hm
ρ;θ) and g ∈ Hm

ρ;θ, with ρ > 0

and s0 ≤ θ < 1
2(1−σ)

, there exists a unique solution u ∈ C([0, T ];Hm
ρ′;θ), for some ρ′ < ρ.

In particular, we have H∞
θ well-posedness;

• if s0 <
1

1−σ
, then for any f ∈ C([0, T ];H

(m1,m2)
(ρ1,ρ2);s,θ

) and g ∈ H
(m1,m2)
(ρ1,ρ2);s,θ

, with ρ1 ∈ R,

ρ2 > 0, s0 ≤ s < 1
1−σ

and θ > s0, there exists a solution u ∈ C([0, T ];H
(m1,m2)
(ρ1,−δ);s,θ), for

every δ > 0. Here the solution has the same Gevrey regularity with respect to the initial

data, but with a possible different behavior at infinity.
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Now we point out three further research directions, which we believe to be interesting

problems.

Generalization of the Space Dimension and of the Degree of Evolution

Concerning the Cauchy problem for p−evolution equations with general p ≥ 3 we

have the two following works [3] and [5]. The first one is set in the standard Hörmander classes

and H∞(R) well-posedness is achieved, whereas the second is set in the SG context and is

obtained S (R) well-posedness. As we saw in the two previous Chapters, to treat the case

p = 3 it suffices to apply the sharp Gårding inequality only once, meanwhile for p > 3 we need

to apply it several times (cf. [3, 5]).

The Cauchy problem for p−evolution operators with general p ≥ 3 in the Gevrey and

Gelfand-Shilov functional settings is still an open problem. We hope that the ideas developed

in Section 2.5, Chapter 2, will be useful in the treatment of this question.

Another issue is to consider our main theorems (Theorems 3.1 and 4.1) in higher di-

mensions for the spatial variable. At this moment, results of this type exist only for the case

p = 2, see [6, 14, 33]. We believe that what we have proved for R1 should work in a similar

way for the Rn. The main difficulty is the choice of the functions λ1 and λ2 defining the change

of variable, which, in higher space dimension, must be chosen in order to satisfy certain partial

differential inequalities. These may be nontrivial and some technical effort should be required.

Necessary Conditions

Let us consider the Cauchy problem associated with the following model Schrödinger

type operator

P = Dt − ∂2x + i〈x〉−σDx,

where x ∈ R
1 and σ ∈ (0, 1). In this case we have well-posedness in Gevrey spaces with index

1 < θ < 1
1−σ

(see [33]). On the other hand, Theorem 2 of [19] implies ill-posedness when

θ > 1
1−σ

. Finally, when θ = 1
1−σ

one can prove local in time well-posedness. Hence we obtain

a nice relation between the decay rate of the coefficients σ and the Gevrey index θ for which we

find well-posedness.

Now if we consider the 3−evolution operator

P = Dt +D3
x + i〈x〉−σD2

x + i〈x〉−σ
2Dx,

where x ∈ R and σ ∈ (1
2
, 1), from our Theorem 3.1 we obtain well-posedness in Gevrey spaces

with index 1 < θ < 1
2(1−σ)

for the Cauchy problem associated with P . But what happens in the
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cases θ > 1
2(1−σ)

or 0 < σ ≤ 1
2
? This is another interesting question which we should consider

in the future. Maybe a first step in this direction is trying apply similar techniques presented

in the works [4, 19, 28] to 3−evolution equations, in order to obtain necessary conditions for

well-posedness in Gevrey type spaces.

Semilinear p−evolution Equations

Last but not least, we would like to study the Cauchy problem⎧⎪⎨⎪⎩
Pu(D)u(t, x) = f(t, x), t ∈ [0, T ], x ∈ R,

u(0, x) = g(x), x ∈ R,

for the semilinear p−evolution (p = 2, 3) operator

Pu(D) = Dt + ap(t)D
p
x +

p−1∑
j=0

aj(t, x, u(t, x))D
j
x

in the Gevrey functional setting. We believe that the standard hypotheses should be ap(t) real-

valued, continuous and never vanishes and aj(t, x, u(t, x)) ∈ C([0, T ];Gs0(R× R
2)) (here we

are identifying C with R
2) with suitable decay and bound conditions on the variables x and

w = u(t, x), respectively.

We note that the H∞(R) case (for general p) was considered by A. Ascanelli and C.

Boiti in [2]. There the authors proved H∞(R) local in time well-posedness. The strategy of

the proof is first to consider the linearized problem obtained by fixing the variable u, that is, by

considering the Cauchy problem for the linear operator

P̃ = Dt + ap(t)D
p
x +

p−1∑
j=0

ãj(t, x)D
j
x,

where ã(t, x) := aj(t, x, u(t, x)) for a fixed u. The second step is to obtain L2 energy estimates

for the Cauchy problem associated with P̃ , with a precise dependence of the constants on the

variable u. To finish, an argument based on the powerful Nash-Moser inversion theorem is

applied.

The Nash-Moser theorem (cf. [23]) is a generalization of the standard inversion func-

tion theorem in Banach spaces to the so-called Fréchet tame spaces. Roughly speaking, a tame

Fréchet space is a Fréchet space that is isomorphic (in a suitable sense) to a sequence space like

Σ(B) := {{fk}k∈N0 ⊂ B :
∑
k∈N0

enk‖fk‖B <∞, ∀n ∈ N0},

where B is a given Banach space.
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We recall that H∞
s0
(R) is not a tame Fréchet space, in fact, it is not even Fréchet. But it

should be possible to prove that the space

H∞
s0
(R) :=

⋂
ρ>0

H0
ρ;s0

(R)

is a tame Fréchet space (see the proof that H∞(R) is tame in [15]). Therefore, a first natural

step to consider the semilinear problem in the Gevrey setting, is to try obtain H∞
s0
(R) well-

posedness results. We believe that it is possible if in addition, we assume that the coefficients

are projective Gevrey regular, that is aj(t, x) ∈ C([0, T ]; γs0(R)) where

γs0(R) :=
⋂
A>0

Gs0(R;A).

After this first step, the ideas developed in [2] should be tested in the (projective) Gevrey frame-

work.
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