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RESUMO

Estudamos o Problema de Cauchy para uma classe de operadores de 3—evolugao
com termos de ordem inferior dependendo tanto da varidvel temporal quanto da
espacial e assumindo valores complexos. Consideramos o problema nos am-
bientes funcionais Gevrey e Gevrey com decaimento exponencial no infinito
(classes de fungdes Gelfand-Shilov), obtendo resultados de existéncia e boa
colocag¢do. Também estudamos a parte Friedrichs de operadores pseudodiferen-
cias com simbolos pertencentes as classes SG, obtendo uma expansao assintdtica
e regularidade precisa para o mesmo. Por fim, provamos um resultado sobre in-

variancia espectral para operadores nas classes SG.

Palavras-chaves: Equacdes de p-evolucdo. Funcdes Gevrey. Fungdes Gelfand-
Shilov. Operadores pseudodiferenciais de ordem infinita. Desigualdade sharp

Garding



ABSTRACT

We study the Cauchy Problem for a class of 3—evolution operators with
complex-valued lower order terms depending both on the time and space vari-
ables. The problem is treated in the functional settings of the Gevrey and Gevrey
with exponential decay at infinity (Gelfand-Shilov) functions. We achieve ex-
istence and well-posedness results. We also study the Friedrichs part for pseu-
dodifferential operators with symbols belonging to the SG classes, obtaining a
precise asymptotic expansion and regularity for the same. Finally, we prove a

result of spectral invariance for operators in the SG classes.

Keywords: p—evolution equations. Gevrey spaces. Gelfand-Shilov spaces.

Infinite order pseudodifferential operators. Sharp Garding inequality.



Contents

Introduction

1 Preliminaries

1.1
1.2
1.3
1.4

Basic Notations and Formulas . . . . . ... .. ... ... ... .......
Standard Factorial Inequalities . . . . . .. .. .. ... ... .........
Some Functional Spaces and Fourier Transform . . . . . .. .. ... ... ..

Gevrey and Gelfand-Shilov Type Spaces . . . . . . . . ... ... ... ....

2 Global Pseudodifferential Operators

2.1
2.2

23
2.4
2.5

2.6

S™(R?") and SG™(R*")—Pseudodifferential Operators . . . . . ... ... ..
Sr,s(R*") and S}, (R*")—Pseudodifferential Operators . . . .. .......
2.2.1 Continuity on X/(R™) . . . . ...
222 AsymptoticSums . . . . ... Lol
2.2.3 Regularity of the Kernel . . . . ... ... ... ... .. .......
2.2.4 Global Gevrey Amplitude Classes . . . . . .. ... ... .......
2.2.5 Adjoint, Transpose and Composition Formulas . . . . . . ... .. ..
2.2.6 Gevrey Sobolev Spaces . . . . . . . ...
SGT (R*), SGT,(R*") and SG7, (R*")—Pseudodifferential Operators . .
Sharp Garding and Fefferman-Phong Inequalities . . . . ... ... ... ...
Sharp Gédrding in SG and SG,, Settings . . . . ... ... ... ...
25.1 SG, s Pseudodifferential Operators . . . . .. ... ... .......
2.5.2 Oscillatory Integrals and Operators with Double Symbols . . . . . ..
2.5.3 TheFriedrichsPart . . . . ... ... ... ... ...

Spectral Invariance for SGJ7, (R*")—Pseudodifferential Operators . . . . . . .

O o0 3

10



3 Cauchy Problem for 3—Evolution Operators With Data in Gevrey Type Spaces 71

3.1 Introduction and MainResult . . . . . . ... ... ... ... .. 0oL 71
3.2 Strategy of the Proof . . . . . . .. ... .. L L 73
3.3 Definition and Properties of A\o(z,&) and Ay (z,&) . . . . . . .. ... 75
3.4 Invertibility of AP A(z,€) = Ay + A (2,6) o oo 79
3.5 Conjugationof ©P . . . . . . ... 84

3.5.1 Proofof Theorem3.2 . . . . . . ... ... ... ... . ... .... 85

3,52 Conjugation of iPby e . . . . . ... 95

3.5.3  Conjugation of ¢*(iP){e*} ! by ) 98
3.6 Estimates from Below for the Real Parts . . . . . . ... ... ......... 100
3.7 Proofof Theorem3.1 . . . . .. . .. .. ... .. .. .. 103

4 Cauchy Problem for 3—Evolution Operators With Data in Gelfand-Shilov Type

Spaces 105
4.1 Introductionand MainResult . . . . . .. ... ... Lo L oL, 105
4.2 Strategy of the Proof . . . . . . ... ... .. 107
4.3 Definition and Properties of A\o(z,&) and Ay (z,&) . . . . . . . ... ... ... 108
4.4 Tnvertibility of eX(x, D), A(z,6) = Mo+ A)(2,6) o oo i 113
4.5 Conjugationof tP . . . . . . ... 113
45.1 Conjugationof iPbyed . . . .. ... 117

452  Conjugation of X (iP){eA} by FOE™" o 119

453  Conjugation of ¢H0@h " RGPHM e OOy pupyd 121

4.6 Estimates from Below forthe Real Parts . . . . . .. ... ... ... ..... 123
47 Proofof Theorem4.1 . . . . . . . .. .. .. .. 125
S Further Research 128

References 132



Introduction

A linear partial differential operator of evolution type is given by

P(t,x, Dy, Dy) = D"+ Y a;(t,z, Dy) D",
j=1
where m > 1 is a positive integer, ¢ > 0 is the time variable, € R" is the space variable and

each a;(t, z, D) is a differential operator

aj(t,z,D,) = Z aj,(t,x)DY,

v

where v runs through a finite set. The equation
P(t,x, Dy, Do)ult, x) = f(t,x)

is said to be a linear differential equation of the evolution type. Famous examples of evolution

equations are given by:

* Wave equation:

OPu(t, x) — Ayu(t, ) = 0;

* Heat equation:

Owu(t,x) — Agu(t,x) = 0;

* Schrodinger equation:

iOwu(t, ) — Ayu(t,z) = 0.
The Cauchy problem associated with P(t, z, Dy, D, ) is expressed by

P(t,x, Dy, D)u(t, x) = f(t,x),

Dfu(O,x) = gj(x),
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where the Cauchy data f(¢,z) and g;(z), j = 0,...,m — 1, are given. A survey which contains
a good historical background and presents important results concerning evolution equations can
be found in [37] by S. Mizohata.

Now we describe the evolution problem we are interested in. Consider

P(t,z, Dy, D)u(t,x) = f(t,z), (t,z) € [0,T] x R,

(1)
u(0,2) = g(z), z € R,
where P(t,z, Dy, D,) is a linear differential operator of the form
p—1
P(t,, D, Dy) = Dy + ap() D% + ) a;(t, ) DI, 2

<.
Il
o

where p € N;p > 1, a, € C([0,T];R), a,(t) never vanishes, a; € C([0,7]; B*(R,)) and
B> (R) stands for the class of the smooth complex-valued functions defined in R with uniformly
bounded derivatives. An operator of the form (2) is known as p—evolution operator in the
literature. Note that in the case p = 1 we have a strictly hyperbolic operator, for p = 2 we have
Schrodinger type operator and for p = 3 the principal part is the same as in the Korteweg-De
Vries operator.

Let us recall the definitions of Sobolev and Gevrey Sobolev spaces before moving on

to the results. Let s € R, p > 0 and # > 1. The Sobolev space H*(R") is defined by
H*(R™) = {u € &' (R") : (D,)*u € L*(R™)},

and

[ SIS

where (D, )* is the pseudodifferential operator given by the symbol (£)* := (1 + |£[?)
"(IR™) stands for the space of tempered distributions. The Gevrey Sobolev space H,,(R") is

given in turn by

=

so(RY) = {u € ' (R") : (Dy)*e’P=)

p;0

u€ L*(R")},

=

where e"wl')% is the pseudodifferential operator given by the symbol e?)? .

The Cauchy problem (1) is said to be well-posed in H*(IR) when for any Cauchy data
f e C(0,7); H*(R)) and g € H*(R), there exists a unique solution © € C([0,7]; H*(R)).
When for any data f € C([0,7]; H*(R)) and g € H*(R), there exists a unique solution u €
C([0,T); H*~°(R)), for some § > 0, satisfying (1), the Cauchy problem is said to be well-posed
in H*°(R) := NgH*(R). Note that we have a 6 > 0 loss of derivatives in this case. Concerning

the Gevrey context, if for any data f € C([0,T]; H;4(R)) and g € H;,(R) (for some p > 0)
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there exists a unique solution u € C([0,T]; H}, 4(R)) with 0 < p" < p, then we say that the
Cauchy problem (1) is well-posed in Hg°(R) := U s H} 4(R).

Well-posedness for the Cauchy problem (1) has been widely investigated. Regarding
necessary conditions for H>°(IR) well-posedness, some decay condition on the imaginary part of
the subleader coefficient is required, see [28] by W. Ichinose for p = 2 and [4] by A. Ascanelli,
C. Boiti and L. Zanghirati for general p > 3. In [19], the author M. Dreher obtained necessary
conditions for well-posedness of Schrodinger equations (p = 2) in Gevrey type spaces.

Now we turn our attention to sufficient conditions. We begin with the Schrodinger

case, that is p = 2. Let us consider ay(t) constant, x € R" and
Imay(t,z) = O(|x|77), 0 >0, as |z| — oo,

uniformly with respect to ¢. In this situation, K. Kajitani and A. Baba proved in [33] that we

have
- H*(R™) well-posedness if 0 > 1;
- H*°(R™) well-posedness if 0 = 1;

- Hg°(R™) well-posedness if o < 1 and the coefficients are Gevrey regular with index

So>1aﬂd80§9<ﬁ.

In [14] M. Cicognani and M. Reissig extended this result to degenerate Schrodinger equations,
that is, when the coefficient as(t) possibly vanishes. For p > 2, there are few results limited
to the H*°(R) setting. Namely, for p = 3, in [13] M. Cicognani and F. Colombini obtained

H*>(R) well-posedness under the following conditions:

[NIES

[Imay(t,z)| < C{x)™',  |Reay(t,z)| + [Imai(t,z)] < Clx)" 2,

for every t € [0,7] and # € R, where (z) := /1 + |z|2. For general p > 3, H(R) well-
posedness is achieved by A. Ascanelli, C. Boiti and L. Zanghirati in [3] under suitable assump-
tions. We do not know any result concerning sufficient conditions for well-posedness in Gevrey
type spaces for p > 3.

The Cauchy problem for p-evolution equations with p > 3 has a significant importance
in mathematics, especially in view of their connections with semilinear models appearing in
fluid dynamics. For instance, linearizations of models like Korteweg-De Vries equation and its

generalizations turn out to be 3-evolution linear equations. Since we are interested in extending
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our study to semilinear p-evolution equations, the first step is to establish the linear theory. In
Chapter 3 we prove a well-posedness result in 73°(R) for the Cauchy problem (1) with p = 3
(see Theorem 4.1), and the same phenomenon of loss of regularity appearing in [14, 33] is
observed.

The Chapter 4 of the thesis analyzes the effect of the behavior of the data for |z| — +00
on the regularity of the solution. In fact, despite the precise assumptions required on the decay at
infinity of the coefficients, the aforementioned results do not give information on the behavior
at the infinity |x| — +oo for the solution. This motivates the study of the Cauchy problem
(1) in a weighted functional framework and the analysis of the effect of decaying data on the
regularity of the solution.

Let us introduce the weighted functional spaces we just mentioned above. Consider
m = (my,ms) € R%, p = (p1,p2) € R? and 5,60 > 1. The weighted Sobolev space H™(R") is
defined by

H™R") = {u € ' (R") : ()™ (D,)™u € L*(R")},

while the Gelfand-Shilov Sobolev space H",

o o(R™) is given by

=

1
H™ ,R™) = {u € 7' R") : (x)"2(D,)"2er2(* op1(D=)

p;s,0 u € LQ(Rn>}

These Sobolev spaces measure simultaneously regularity and behavior at infinity.

Imposing the following condition on the coefficients
00a;(t,2) < Cple) 717, j=0,....p—1. 3)

A. Ascanelli and M. Cappiello proved in [5] that for any Cauchy data f € C([0,T]; H™(R))
and g € H™(R) (m = (my, my)), there exists a unique solution u € C([0, T]; H™1-m2=%)(R)),
for some § > 0, satisfying (1). In this case, with respect to the initial data, the solution presents
a different behavior at infinity but it has the same regularity. In particular, well-posedness in the
Schwartz space . (R) is achieved. We remark that the condition (3) is needed in order to work
with SG pseudodifferential operators.

Concerning the Schrodinger case, that is p = 2, in Gelfand-Shilov setting, A. Ascanelli
and M. Cappiello obtained an existence result in [6]. More precisely, let ¢ € (0, 1) such that

50 < ﬁ and assume that the coefficients satisfy

\ﬁffmal(t,xﬂ < C’WHB!SO(J})*”
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and

|00 Re ay (t, )| + 18] ao(t, )| < CPH g1 (z) =171,

Moreover, let m € R?, p; € R, p, > 0 and 5,0 > 1 such that 6 > 50, 59 < 5 < ﬁ Then for
any data f € C([0,7]; H. ,(R)) and g € H"

0;8,0 p;s,0

u e C([0,T]; HEZh_ 5);579(]1%)) for every 6 > 0. In this case, the solution has the same Gevrey

(R), the Cauchy problem (1) admits a solution

regularity with respect to the initial data, but may present an exponential growth at the infinity.
We also note that this is the first time that an algebrically growth in the coefficients is allowed in
this type of problem. In Chapter 4 we analyze the same problem in the case p = 3, cf. Theorem
4.1.

The main objective of this thesis is to study the Cauchy problem (1) in the Gevrey and
Gelfand-Shilov frameworks where the degree of evolution is p = 3. The principal results that
we have achieved are Theorem 3.1 and Theorem 4.1. The first concerns the Gevrey case and
the second the Gelfand-Shilov setting.

Now we briefly describe the contents presented in this work. In Chapters 1 and 2 we
collect the main notations and mathematical tools for the development of the later chapters. Our

main contributions here are:

- Subsection 2.2, where we develop a calculus for a class of pseudodifferential operators

with symbols of infinite order satisfying Gevrey estimates;

- Section 2.5 where we study the Friedrichs part of pseudodifferential operators with sym-
bols in the SG and SG, , classes, obtaining a precise asymptotic expansion and regularity

for the same (see Theorems 2.17 and 2.19);

- Section 2.6, where we prove a result concerning the spectral invariance for SG operators

satisfying Gevrey estimates.

Chapters 3 and 4 are entirely devoted to prove the main results of this work, namely
Theorems 3.1 and 4.1. The principal sources of inspiration here are: [3, 5, 6, 13, 14, 33]. We
would also like to point out that the efforts put into these chapters gave rise to the following two
works [31] and [30].

Finally, in the last short Chapter 5 we outline some new plans for the future, based on
the work presented in the thesis. The main purposes are the extension of the results obtained

for the case p = 3 to p—evolution equations of arbitrary order in the linear case, the study of
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necessary conditions for well-posedness in Gevrey type spaces for p > 3 and lastly to consider

semilinear p-evolution equations also in the Gevrey setting.



Chapter 1

Preliminaries

1.1 Basic Notations and Formulas

We start with the multi-index notation. We use Nj to represent the set of all multi-
indices, where Ny = {0,1,2,...}. For a, € Nj and x € R" we will use the following

notations:

la| = |ag| 4+ - -+ + |, | (multi-index length);

f<a <= [i<a;,j=1,...,n

cal=o!... a0
e if < a,

B)  Bla—p)V
o % =t ... i

partial derivatives are denoted by 9 = 921 ... 92", where 9, = 5>
Tj

o a1 o s
Dy = Dyt ... Dy», where D, = —id,,.

If & x € R”, we set
n n
foo=8x=Y &u; |aP=> 27, (x) =1+
=0 =0
Observe that (x) is a smooth function and its asymptotic behavior is equivalent to 1 + |z|, more

precisely

(r) <1+ 7| < V2(z), z€R™
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In general one can prove that, for any m € R,
|07 (z)™| < OB )™,

for some constant C' > 0 independent of 3. We also recall the Peetre’s inequality: for any s € R

there is ¢, > 0 such that

(z+&)* <colx)HE)®, z,EeR™

We denote by C'°(R") the set of all infinitely differentiable functions f : R" — C.
For any f € C*°(R"™) we have Taylor’s formula: given N € N,
flz+&) = Zga 2°f) )+NZ / ON LY f)(x + 0E)dh, x,& € R™
lo| <N |a\:N
There are two derivative formulas largely used throughout this work. The first one is
the Leibniz rule:

Da(fg) _ Z al!az Dalf 02g — Z (Z)DﬁfDaﬁg_

a1tas=«a B<a

The second one is the Faa di Bruno formula: if f : R — Cand g : R — R, then

|al

) al .
%R(fog)@) =D —r— > i anll% 9@
=1 o pmiza S
lav|>1

1.2 Standard Factorial Inequalities

Here we collect some well known formulas for factorials and binomial coefficients
that we will use extensively in this work. These formulas are useful in the study of Gevrey
and Gelfand-Shilov functions. We begin with the generalized Newton formula: if N € N and

ai, . ..a, are real numbers, then

n

|
(ay +...+a,)" = Z ﬁnaf"]

|a|=N =1
a€eNg
Particularly, when a; = ... = a,, = 1 it follows
N!
N __ E
n — —
| |’
|a%:N,a1....an.

which implies

la|! <nl*lal, o e NP
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If n = 2, we obtain

N! ‘
AR L (4 k) < 20%F 511
j+k=N‘7' ’

hence, for «, 5 € N7,

|
| < 2letflalBl  alfl < ! L= glel,
(a+ ) < 2lalpl,  alpl < (a+B), +Z P
a1tas=«

A second block of inequalities follows from the Taylor expansion of the exponential

function

The above formula implies

tV < Nlet, N eNy,t>0.
In particular, for £ = N we obtain
NN <NV N eN,,

whereas obviously,

NI <NV N eN,.

We finish observing the cardinality of the two subsequent sets of multi-indices

o€ Ny < Jol <my = T
- (m+n—1)!
#{OKGNO . |OZ| :m}:m

1.3 Some Functional Spaces and Fourier Transform

As usual L?(IR™) stands for the Hilbert space of all measurable functions f : R" — C

such that
112, = / (@) Pde < oo.

The L*(R™) inner product is given by

(f,g)r2 ::/f(x)Mda:, f,g € L*(R™).

The Schwartz space .’ (R™) is defined as the space of all smooth functions f : R" — C
such that

SURP 12202 f(z)| < 00, «,B €N
zeR™
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The space .’(R™) possesses a Fréchet topology once equipped with the usual seminorms,

namely,

1/ler = max sup [2°0]f(z)l, £€No, f €S (R).

|la+BI<E zern

The elements of its topological dual .’ (IR") are called tempered distributions.

The Fourier transform is defined by

~

F©) = J(6) = / e f(r)de, € € R,

and its inverse is given by

FUN@ = [eer@a ver

where d§ = (27) "d¢ and f belongs to . (R™). It is well known that F defines an isomorphism
on .(R™) which extends to an isomorphism on .#”/(R") and L*(R™). We also point out the

subsequent well known formulas

/ f(z dx— / F(& df (Parseval formula),

1 fll2 = 27) 2| F(f)ll2  (Plancherel formula).

1.4 Gevrey and Gelfand-Shilov Type Spaces

In this Section, we introduce the functional spaces in which many of our results will
be achieved. We begin defining the uniform Gevrey classes. A detailed exposition concerning
Gevrey spaces can be found in [43].

For s > 1and A > 0 we denote by G°(R"; A) the Banach space of all smooth functions
f such that
Gs(Rn;A) i= SUP 102 f(2)|A71P15178 < +o0.

z€R™
aeNp

1.f1

We then set the Gevrey space G*(R™) as the inductive limite of the Banach spaces G*(R™; A),

that is

= |J ¢*(r™; 4)

A>0
Now we define the so-called Gelfand-Shilov spaces. These spaces were firstly intro-

duced by I.M. Gelfand and G.E. Shilov, see [22]. Here we only give the basic definitions and
properties. For more details we adress the reader to [12, 22, 42, 45] and Chapter 6 of [39].
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For 5,0 > 1 and A, B > 0 we say that a smooth function f belongs to Sf}’g(R”) if
there is C' > 0 such that
2702 f(x)] < CARIBIPlatf g1e,

for every o, 5 € Nj and z € R". The norm

I fllos,a8 = sup [2702f(x)| A7 B Flal=0817 f e STL(RM),
CMTBEEN’S'

turns S %4 (R") into a Banach space. We define

SIRY = | Sp@®Y), EURY =[] So5RY),

A,B>0 A,B>0

and equip them with their limit type topologies coming from the Banach spaces Sz’g(R”).

Remark 1.1. When 0 = s we simply write Sy, ¥y instead of S§, 5.

||

Remark 1.2. If + s < 1 the spaces S°(R") are trivial. On the other hand the function e~ 2
belongs to S 1 (R™). Concerning the projective classes we have ¥.%(R™) # {0} if. and only if,
0+s>2L1and (0,s) # (3, 1)

272

Remark 1.3. We may also define, for C, e > 0, the Banach space S‘f’f (R™) given by the smooth

functions [ such that there is Cy > 0 satisfying

171155 =

fx)] < oo,
T ERM
aeNg

and we have (with equivalent topologies)

80 Rn U S@C Rn 20 Rn ﬂ SGC ]Rn

C,e>0 Ce>0
It is easy to see that the following inclusions are continuous (for every € > 0)
Si(R") € S/(R™) € NE(R™).

We shall denote by (S?)(R"™), (£9)'(R") the respective dual spaces. Concerning the action of

the Fourier transform, we have the subsequent isomorphisms
F YR — Z5(R™Y),  F:SYR™) — S5(RM),

F (B (R") = (55)(R™),  F (8 (R") — (85)'(R™).
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Chapter 2

Global Pseudodifferential Operators

Let p(z, D) = 3|, /< @a(x)D" be a linear partial differential operator with coeffi-
cients a, € B>*(R"), where

B*(R") = {f € C®(R") : sup |0°f(x)| < 00, V3 € NI}

reR”™

By standard properties of the Fourier transform, the action of p(z, D) in Schwartz spaces can

be written as
pl, Dyu(x) = / CEp(r, E)T(E)AE, T € R ue SR, @.1)

where p(z, {) stands for the symbol of p(z, D), namely p(z,{) = >_,, <, aa(2)E* for every
z,& € R"™. Notice that p(z, £) satisfies an estimate of the following form: for every «, 5 € Nj}

there exists C, 3 > 0 such that
9£07p(x,€)] < Cap(€)™ 1, @, £ €R™. 22)

The right hand side of (2.1) indeed makes sense for every smooth function p(x,¢)
satisfying an estimate of the type (2.2), where m € R. We call symbols such functions whereas
the operators defined by (2.1) are known as pseudodifferential operators. When the symbol
is polynomially bounded, we say that the symbol has finite order. In the situation where it
satisfies an exponential estimate, we say that the symbol has infinite order. Observe that if
we are dealing with operators of infinite order, to obtain a convergent integral in (2.1) some
stronger decay condition for @ is required (for instance, we can take u belonging to a suitable

Gelfand-Shilov class).
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We also consider operators given by symbols which are polynomially bounded with

respect to x and ¢ simultaneously. More precisely, symbols satisfying (my, ms € R)
080 p(2, )] < Caplg)™ N z)™ P, 2,6 €R™ (2.3)

Pseudodifferential operators given by these symbols are known as pseudodifferential operators
of SG type (cf. [44]).

Pseudodifferential operators are a fundamental mathematical tool for the development
of this thesis. In this chapter we collect the basic properties in the finite order frame, see Section
2.1, and we develop some new results concerning pseudodifferential operators of inifinite order
with symbols satisfying Gevrey estimates, see Sections 2.2 and 2.3. Some references for this
part are: [1, 8,9, 11, 10, 27, 35, 39, 43, 46, 47].

In Section 2.4 we recall two results which are very important for the subsequent chap-
ters, namely the sharp Gdrding and the Fefferman-Phong inequalities.

The classical strategy to prove the sharp Garding inequality is the following: if the
symbol p(z, ) of a given operator p(z, D) is such that Rep(z,&) > 0, then it is possible to
decompose p(x, D) as a sum of a positive definite part and a smaller order remainder term. In
the approach proposed in [35], this positive part pp is called Friedrichs part. Using the ideas
present there, in Section 2.5 we define a SG version of pr and obtain a precise estimate for the
remainder term p — pp, see Theorems 2.17 and 2.19.

To finish, Section 2.6 is devoted to the study of the so-called spectral invariance prob-

lem for SG operators given by Gevrey regular symbols.

Remark 2.1. The term global in the title of the Chapter is due to the fact that we are dealing

with symbols satisfying uniform estimates on the entire R*".

2.1 S™(R?") and SG™(R**)—Pseudodifferential Operators

The goal of this Section is to give a brief introduction to pseudodifferential operators
with symbols in S™(R?*") and SG™(R*"). The statements and proofs concerning the standard
Hormander classes S™ can be found in [35] and [46]. For the SG frame we adress the reader
to [8, 16, 39, 40].

We start considering the standard Hormander classes S™(R*").
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Definition 2.1. Ler m € R. We say that p € S™(R?*") when p € C*(R*") and for every

a, € Nj there exists Cy, 3 > 0 such that
0£07p(2, )] < Cap(€)™ ™,z ¢ €R™
We recall that S™(R?") is a Fréchet space endowed with the seminorms, for £ € Ny,

plsme = max sup [9f0p(x, 1), pe SR,
la+B|<l 5 ccRn

Pseudodifferential operators with symbols in S™(R?") are continuous from .#(R") to
< (R™) and they extend to continuous maps from .’(R"™) to .”/(R™). Moreover, denoting by
H*(R™), with s € R, the Sobolev space

H*(R™) = {u € .7'(R") : {D)*u € L*(R™)},
where (D)* is the operator given by the symbol (¢)* € S*(IR?"), then an operator with symbol in
S™(R?") extends to a bounded map from H*(R™) to H*~™(R") for every s € R. Furthermore,
the norm of p(z, D) as an operator from H*(R"™) to H* " (R™) is bounded in terms of a finite
number of seminorms of p in S™(R?*").
The next results concern composition, adjoint and transpose for operators with sym-

bols in S™(R?") classes. In order to state these results we need the definition of asymptotic
expansion in S™(R*").

Definition 2.2. Let {m;};en, be a sequence of real numbers such that m; — —oo and m; >
m;i1, for every j € Ny. Consider moreover p € S™(R*") and p; € S™i(R*), for every
j € No. We say that p is asymptotic to y_ ; p; in S™(R*"), and denote p ~ 3~ p; in S™(R*"),

when

p—Y pj€Sm™,

j<N
for every N € N.

Theorem 2.1. Let p € S™(R?") and q¢ € S™ (R*"). There exists ¢ € S™™ (R®") such that
c(z, D) = p(z, D) o q(x, D) and

(,€) ~ 3~ 08, DRl €) in S (B,

Theorem 2.2. Let p € S™(R?*"). Let moreover p*(x, D) and 'p(z, D) be the L?—adjoint and
transpose of p(x, D) respectively. There exist symbols a,b € S™(R*") such that a(z, D) =
p*(z, D), b(x, D) = *p(x, D) and

el
w6 ~ S T FEDE ), b &)~ 3D LD (e, in 7R

« «
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Now we turn our attention to SG symbol classes.

Definition 2.3. Let m = (mq,my) € R%. We say that p € SG™(R?*) when p belongs to

C>=(R*") and for every «, 8 € N there exists C,, 5 > 0 such that
0807 p(w, )| < Caple)™ Nz, 2,6 €R™.
We recall that SG™(R?") is a Fréchet space endowed with the seminorms, for ¢ € N,

plsgme = max sup [9¢0]p(x,&)[(€) TN @) p € SG(R).
|a+B|<E ¢ ccrRn

Pseudodifferential operators with symbols in SG™(R?") are continuous from .&(R")
to .(R™) and extend to continuous maps fom .#”(R") to .#”’(R™). Moreover, denoting by

HGus2)(R™), with s = (s1, 55) € R?, the weighted Sobolev space
H(R™) = {u € L' (R") : (x)%2(D,)*'u € L*(R")},

we know that an operator with symbol in SG™(R*") extends to a bounded map from H*(R")
to H*~™(R"™), for every s € R

Before stating the results about composition, adjoint and transpose for operators with
symbols in SG™(R?") classes, we need the concept of smoothing operator in the SG classes.
We say that r(x, D) is a SG smoothing operator whenever its symbol r(x,§) € SG™ for every
m € R?. Equivalently, r(z, D) is smoothing if r(z, D) : .'(R") — .#(R") continuously.
Observe that M,,cp2 SG™(R*") = .7 (R*").

Definition 2.4. Consider {m;};jcn, C R?% m; = (my;, ma;), a sequence such that m; ; — —oo
and m; ; > m; j+1, for every i = 1,2 and j € Ny. Consider moreover p € SG™(R*") and
p; € SG™i(R*™), for every j € No. We say that p is asymptotic to >.;ipjin SG™(R?"), and
denote p ~ 3~ p; in SG™(R*"), when
p—> pj €SG,
j<N

for every N € N.

Theorem 2.3. Let p € SG™(R*™) and q € SG™ (R*"). There exist c € SG™ ™ (R?") and a
smoothing operator r(x, D) such that p(x, D) o q(z, D) = ¢(x, D) 4+ r(x, D) and

(e,€) ~ 37 ~0Ep(w ©)Dia(a,) in SGT (B,

«
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Theorem 2.4. Let p € SG™(R?*™). Let moreover p*(x, D) and 'p(x, D) be the L*>—adjoint
and transpose of p(x, D) respectively. There exist a,b € SG™(R*") and r1(x, D), rs(x, D)
smoothing operators such that p*(z, D) = a(x, D) + r1(x, D), 'p(x, D) = b(z, D) + r3(x, D)

and

e
o)~ S T T DD, b€ ~ 3D L (D), —€) in SCM(E)

2.2 (R*") and S}’ (R*")—Pseudodifferential Operators

/LI/@

In this section we develop a global calculus for pseudodifferential operators of infinite
and finite order (with respect to &) given by symbols satisfying Gevrey estimates. The local case
can be found in [25] (finite order) and in [47] (infinite order). Our proofs are strongly inspired
by the Appendix A of [6] and by [9, 47].

We begin defining the symbol classes.

Definition 2.5. Let A > 0, m € R and pu,v > 1. We denote by S}T,,(RQ”; A) the Banach space

of all functions a € C°°(R*") satisfying the following condition:

lalla == sup AlHPlal=rglm (&)l g0l a(z, €)| < +oo.
g

We set
Sm R2n . U Sm RQn A
A>0
endowed with the inductive limit topology of the Banach spaces S/’ZV(RQ”; A).

Definition 2.6. Let 1, v,0 > 1 and A,c > 0. We denote by (R*"; A, ¢) the Banach space

2,01/;9
of all functions a € C*®(R?") satisfying the following condition:

1
lallac = sup A+ larngr (gl |geala(, &) < +oo.

a,BGNG
z,£ER™
We set
2ny . 2n.
,uI/G]Rn U uu@RnﬂA7c)
A,c>0
endowed with the inductive limit topology of the Banach spaces Sy, o(R?™: A c).

Remark 2.2. In the situation of i = v we simply write S|'(R*") and S;5,(R*") instead of
S (R?™) and S75,.5(R*™).

B30
Remark 2.3. We have the obvious inclusion S|, (R*") C S5<,.,(R*") for every m € R and

6> 1.
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2.2.1 Continuity on X/(R")

We now prove that pseudodifferential operators of the form (2.1) act continuously on
Gelfand-Shilov spaces. Before going to the continuity result, we need the two following tech-

nical lemmas.

Lemma 2.1. Let s > 1, ( > 0 and define

j!25

mcle) =3 S e
=0

Then for every € > 0 there is a constant C := C, . > 0 such that
11 1,1
0716(2375)(28 (z)s S my c(ﬂf) S 06(23+5)( 25 (x)s 7 r € R".
Proof. See Proposition 2.4 of [29]. ]

Lemma 2.2. Let s > 1 and ¢ > 0. Then

1 ns\ slel
|z[lelemelel® < <—) al*, zeR" aeNj.
£
1 —
Proof. Set f(t) = t*le=='* It is not difficult to see that = (21)* maximizes the function

3

f(t). Hence, for every t € R,

]

Proposition 2.1. Let 1, v, 5,0 > 1 such that s > pand 0 > v. Let moreover p € SE?V;Q(RM).
Then, the operator p(x, D) is continuous from Y°(R"™) to X?(R™) and it extends to a linear

continuous operator from (X%) (R") to (X9)(R").

Proof. Let ' C X?(R") be a bounded set. Then F(F) C ¥5(R™) is a bounded set, more

precisely, for every C, 7 > 0 there exists / > 0 (independent of f) satisfying
~ 1
08 f(€)] < HC*ale ™M 2 e R" o € N,

forevery f € F.
Recalling that

1 Sl . .
S S A = o
=0

M () ‘ 412
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we have, for § € N7,

0;p(x, D) = >

/ ¢ (i6)% 0% p(z, €) F(€)E

Ry FEn
= —1 J et (;£\P1 §P2 D
mS,C( 5 +6 5 I'BQ /Z ]125 (Z§> a:]c p(m,ﬁ) (g)dg
= ! i — B1 92 7
B ms,g‘( 8 +5 5 1|ﬁ2 / Z |23 Af (25) 6 (‘/E 5) (5)]d£
Now we will estimate [(1 — A¢)/[(i€)" 972p(x, €) F(O)]| =: t. First observe that, denoting
J = (jlw--ajn),

Since s > p and € > v, we have

']' (QJ)' /8 1—A1 2 2 3
< Y > o e et el o)

1J!
Jot+J= JJO A1+ +A3=2J

Z ]' Z (2J)! ! |€ﬁl >\1|C\>\z+ﬁz+1l)\ 11 By |V<§>—I/\2\ecp|£|%

Nl W
Jo+J= 9‘7 17! At Aot As=2J Mgl (B1 — M)t

X HOP \ gl TIel?

2 (2J)! bl
< (C,H)C™B,1" Y ]ul > AI!AQ!Agl(ﬁl—lAl)!

Jjo+J=j A1+A2+A3=2J

« |§B1—>\1 |6(Cp—§ \§|9 C|>\2+>\3|/\2!5/\3!S€—§|§|9 )
By Lemma 2.2, for any A; > 0 we can choose 7(0,n) = r > 2¢, such that

| | ~
(5 ﬂ ) |§'51 /\1|6(Cp \§| (ﬁﬁ—)Ale —A1] (51 o )\1)!0 S HA\I,B1|/61!9A|1>\1\)\1!5'
1= 1

Therefore, by standard factorial inequalities, for every C, D > 0 there exists H,, cp = H

such that
1 .
P < HOVIB B\ e 2 j12 D7 2 ¢ € R, j € N, f € F.

By the above inequality and Lemma 2.1, we can take € > 0 satisfying € < 2s and for every

¢ > 0 we may choose D > 0 such that (D < 1 in order to get
|afp(x7Dac)<f)({L‘)| < HC’ e-(?s—s)(%@;)g

S EROY

B1+B2=p
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Therefore, for any C; > 0 and r; > 0 we can find a constant /1, ¢, ,, := H; > 0 such that
1
07p(z, D)(f)(x)| < HiCTBYe e, 2 e R,

for every f € F. In other words, we proved that p(F') is a bounded subset of ¥/ (R™).

In order to define the extension to the dual space we observe that, for any u,v €
Y (R™), we may write

[ vl Dtz = [ a0 s
where () is defined by
Q)(©) = [ bl €ola)da
Now we shall prove that Q maps X?(R") to X5(R") continuously. Once more we consider
F C ¥Y(R™) bounded, that is, for every C, ¢ > 0 we find Ho. := H > 0 satisfying
02 f(z)| < HCWPIge=c=l* 2 e R", e NI, f € F.

For f € F we have

! .
ranE = Y afﬁ@! [ e tinmorse s
a1tas=a
1
@, o et @Zw AUtz OF @l

a]tog=x v
=9j,a1,09 (2,€)

Since s > p and # > v, in analogous manner as before, we obtain that for every C, D there

exists A > 0 satisfying
A 11
|Gy (2, E)| < ROy 12 1* DI 1200 lE17 o =elels

Hence, by Lemma 2.1 and standard factorial inequalities,

I~ 1 « s s ¢ % . ‘751%
NI s ¥ Sncraarest [Ycopesta

al1tas=a 7=0

OZ' o s s (e —(20— 1 1 ©° . —51‘%
<Coe Y, a1!a2!h0| Ly a5 eler—(20-0)DIE] P /ZO(CD)JQ ot
]:

a1tas=«

Choosing wisely the constants, we conclude that ()(F") is a bounded subset of ¥§(IR"). Finally,
since the Fourier transform defines an isomorphism from ¥5(IR") to X?(R") we can define the

continuous extension

p(z, D)u(v) = w(F(Qu)), v e X{(R"),ue (57)(R").
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Remark 2.4. Using the same argument as in the proof above, it is not difficult to prove that
operators with finite order symbols in ST, (R*n) are continuous from S¢(R™) into S?(R") if
s > pand 0 > v and it extends continuously to the dual space (S?)'(R"), cf. also Theorem A.4
in [10].

2.2.2 Asymptotic Sums

In order to develop a symbolic calculus for the classes of pseudodifferential operators

we are dealing with, we will need the following concept of asymptotic sums.

Definition 2.7. (i) We say that the formal sum Z;C:’o a; belongs to F'S}°

> 0(R*™) when a; €

C>(R?") and there are constants H,C' c, B > 0 such that
|8§“8§aj(x, g)l < HC‘Q+B|+2jOé!“ﬂ!Vj!“+V_1<£>_|a‘_jec|§‘%’
forevery o, 3 € Nj, x € R", j € Ny and (§) > B(j) :== Bj*+ L.

(ii) We say that the formal sum 322 a; belongs to F'S)",(R*") when a; € C*(R*") and

there are constants H,C, B > 0 such that
0802 a;(x,&)| < HCIHAIT 2 m g1 jiptv=t(gym=lal=
forevery a, 3 € N, x € R, j € Ny and (€) > B(j) := Bj* L

Remark 2.5. We may consider S, ,(R*") as a subset of FS75, ,(R*") in the following sense,

Jora € 55, 4(R*") we set ag := aand aj := 0 (j > 1), thena = . a; € FS, o(R*). On

w0 w,v;0
the other hand if 3, b; € FSS, 4(R*"), then by € S5,

Hv30

for FST,(R*") and S, (R*").

(R*"). Analogous considerations hold

Remark 2.6. For every m € R and 6 > 1 we have 'S} (R*") C FS55, ,(R*").

Remark 2.7. Let a,b € S*° ,(R*"). Define, for j > 0,

w,v;0
— <_1)|a‘aaDa _ 1 9%aD®
o % W o T oo
lal=j |al=j
Then ) cj, > d; € FSX, 4(R*™). Analogous considerations for S, (R*").

Definition 2.8. Let ). a;,> . b; € FS,

o0 (R*™). We write >_;a; ~ ;b if there are con-

stants H,C ¢, B > 0 satisfying

0000 Y {a; — by} (. 6)| < HOWHIH2N o g Nt (g)lel=Nelelh

J<N
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foreverya, 3 € N}, x € R", N € Nand (£) > B(N) := BN**"~1. Analogous definition for
FST,(R?™).

Proposition 2.2. Let ) a; € F
F

o(R*). There is a €
(R*"). Analogous result for F S}, (R*").

0,0(R?™) such that a ~ 3~ a; in

uu@

Proof. Let (&) € C*°(R") satisfying ¢/(£) = 0 for (¢) < 2,9 (§) = 1 for ({) > 3 and
029(€)] < Clal, € e R a e N

For a large constant R > 1 to be chosen, we define 15(£) = 1 and

¥;(€) =¢<%>, ji>1,

where R(j) := Rj**~! for every j € N. Now let us remark that
* () >3R(j) = (R(j)7) >3 = ¢ =1i<;
* () <R(j) = (R()') <2 = ¢ =0,i>.
By hypothesis there are constants H, C, ¢, B > 0 such that
|8§‘85aj| < Hcla+6|+ja!u5!v]~!u+u—1<€>—|al—j66\§|%7

forevery o, f € NI, v € R", j € Ny and (¢) > Bj**~1. For R > B we set
g):Z@Z}j(g)CL]‘(ZE,f), m7£€Rn'
=0

We will prove thata € S5,

(R*")and a ~ 37, a; in FSS

w,v;0

(R?"). We have

otan <> Y ,a,aalwx )log=0%a,(x, )

71=0 a1 +tas=«

ol 1 . 1
\a1|+1 Nz | +Bl+7 o, 11 g1V s V=1 e\ —i—laa] ,cl€]?
2330 S rCl HCIow81i g g1 juets=1 gy =—aaleleld

J=0 a1taz=a

On the support of J¢*¢;(§) holds (§) > R(j)(> B(j)) and (§) < 3R(j) (whenever a; # 0).

Hence

<§>—j < R—jj—j(uﬂ/—l), R(j)—locll < 3\<>él\<€>—|041|7

and therefore, for R > C?,

- 1 2 /02’
o 9p < OlatBIHL 11 g1 g\ —lel jelél? =
0p05a(a. )] < CI 7 g1 () e ]§O:(R)
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forevery o, 5 € N}, z, £ € R™.
Now observe that for NV > 1 and () > 3R(N) we have

a(,&) = aj(z,) =Y (1= ;(&)aj(x, &)+ Y v(§aj(x,€)

j<N j<N >N

J/

-~

=0

=Y vin(©an(,©)

720

Proceeding in an analogous way as before, we get (possibly enlarging R)

0208(a — 3 ay)(2,)| < ClotArN sl Nt )~ N-leleeel,

J<N
forevery o, 5 € Nij, x € R", N > 1 and () > 3R(N). O

We need the following technical lemma.

Lemma 2.3. Let M, B,r > 0 and p > 1. Define

MrNN!r
h(A) = inf ——0  A>0.

0<N<BA? )\%
Then there are C, T > 0 such that h(\) < C'e_T)‘%,for every A > 0.
Proof. See Lemma 3.2.4 of [43]. ]
The next result tells us how to define the regularizing operators for our classes.

Proposition 2.3. Let a,b € S, ,(R*) and Y, a; € FS, o(R™). Ifa ~ Y a; ~ bin

w0 N2

FS,o(R*") and > ji+ v — 1, then there are constanst H,C, ¢ > 0 such that

0807 (a = b)(x,6)| < HOP*Plalplre=l" o ¢ € R" 0, 8 € Ny,
wherer > p+v — 1.
Proof. By hypothesis we can find constants C', ¢, B > 0 such that
1
102607 (0 — b (z, £)] < Clo+FHEN+1q i gw k=1 ) ~lol =N elel?
forevery o, 8 € NI, x € R", N > 0 and (£) > B(N) := BN**"~!, Hence

1 2N AT|puAv—1
0002 (a — b)(w,€)] < Ol ap g ol g T

oene@-rgymr (Y
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By Lemma 2.3 we find 7 > 0 and a new constant C' > 0 such that
10202 (a — b)(z, )] < OB g1 (g) 1ol el 7@ 77T
Since 6 > p + v — 1 we may conclude
yagaf(a —b)(z,8)| < C~'|a+ﬁ|+la!,u5!l/<€>f\a|67%(§>ﬁ.
]

Analogously we can obtain a similar result for the classes with finite order and in this

case we do not need any hypothesis over 6.

Proposition 2.4. Let a,b € S|, (R*") and Y~ a; € FS,(R*™). Ifa ~ Y a; ~ bin

FS],(R?") then there are constants H,C, ¢ > 0 such that
10208 (a — b)(2,€)| < HC*Hlawgre ' 4 ¢ e R" a, 8 € N,
wherer > pu+v — 1.

Definition 2.9. Given 7 > 1, we denote by K; the space of all symbols q € S, ,(R*") such

w30

that for every r > 7 there exist C, ¢ > 0 such that
1
0800q(x,&)| < Ol pIre= k" - 3 ¢ € R o, B € N,

We say that Q = q(x, D) is 7 —regularizing whenever its symbol q(z, &) belongs to Kj.

2.2.3 Regularity of the Kernel

In this subsection we study the regularity and decay properties of the kernel of our
operators. Let p € S7,,(R*"). The Schwartz kernel of p(x, D) can be represented (formally)
by

Ky(wg) = [ e pa, )t vy B

To be more rigorous, the Schwartz kernel of p(z, D) is defined as the unique K, € (3%’ (R?f,y))

satisfying the following property
[ vl Dyu@yeta)ds = Kyfow ), v e SR,

where v ® u(x,y) := v(z)u(y). Before proceeding with the next result we will need the

following lemma.



Global Pseudodifterential Operators 24

Lemma 2.4. Let n > 1. For every R > (0 there exists a partition of the unity {{n(&)}3_0

satisfying
* supp(¥o) C {§ € R": (§) < 3R},
o supp(¥n) C {€: 2N* < (€) < 3(N + 1)!}, for every N > 1;
* there exists A > 0 such that

08N (€)] < A ol {Rmax{1, N*}}7* ¢ e R, a € Nj.

Proof. Let ¢ € C*°(R™) such that (&) = 1 for (§) < 2,9(§) = 0 for () > 3 and
08 (&)] < 1l o e N, € € R™.

Defining

w©=v(5). o= (grrm) - () Ve

we obtain the desired sequence {{n }¥_- O

Proposition 2.5. Let p € S, ,(R*") where v > 1 and § > yi > 1. Let moreover k € (0, 1).

Then there exist C, ¢ > 0 such that
\858;Kp(3:,y)| < CIBI+I7I+1mnlax{u,v},y!ue—c\x—yl%
for every B,y € Ni and for every x,y € R" such that |x — y| > k.

Proof. We may decompose K, in the following way

Kyfay) = [ 5 pla, ) = Z/’mm Pl )

N=0X

= KN(fB Y)
where {1y }3_, is a partition of the unity as in Lemma 2.4. Let x, y such that |z — y| > k and

take h € {1,...,n} satisfying |z, — yn| > % For every 3,7 € Nj and N € Ny we write

J i€(z—y) B1 o
O BJ%: 5@'52 / P(=1€)7 (1) 0,2 p(x, ) (§)dE
— N &z—y) pNr(_; ;\B1 9B2
ﬂg ﬂwz (=)™ [ S DY (i€ 66" 02l i (€))
B (xh —yp) N
Z 61'62 mmc(l‘ —_ y)

B1+B2=
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74 - C 1 2
< [ eSS (1 A DR (i) 9 el i(6)) .
7= it ()
Now notice that
J! _@nt N! At Npe
hinvpa (@Ol < > == Y Yo e loe e ety
o+ J|=j olJ! A+ Ao+ Ag=27 Mol N+ Mooy VLHV2ING!
% ‘8528>\2+N2€h (x’£)||ag\3+N3€th(£)|

< >

Jo+|J|=3

1
% |€|\B1+v— 1_N13h‘CILB2+>\2|+N2+1/B2!V<)\2 _|_N2€h)!u<§>—l)\z\—N2€Cplf\9

3 (2J) 3 N! (B1+7)
jo' J! )\1‘)\2')\3' Nit NﬂNQ'Ng' (ﬁl -+ Y — )\1 — Nleh)!

A1+A2+A3=2J 1+N2+N3=N

% A|)\3\+N3<)\3 + N3€h)!uR*P\s\*NsN*M(\)\sFNs).

Since, for N > 1, 2RN* < (¢) < 3R(N + 1)* holds true on the support of ¢, we obtain
4! (2J)! N! Brr i AN
h: < L _\TE —2 1Y+ [+ Ny
|hjn gy (2, €)] Z ol Z A o] Z NARARA
Jo+|J|=j A1+A2+Az3=2J Ni+Na+N3=N
% )\1|N1|{3R(N + 1)#}\51+’Y|{2RNM}*|>\1|*N1 CI|),32+)\2|+N2+1ﬁ2!Vﬂ2!u2|)\2\+N2 PWIGNAL

% {QRNM}—M2|—N2€Cp{3R(N+1)“}%A|>\3|+N32|/\3H‘NB)\3[MN3!M{RNH}—|>\3‘_N3
N
1
<GP B Bl O 120 (%) eer(BRINH1) 0.

where C; = Cy(R, A, p), Cy = Cy(A,p) and Cy = C5(A,p) is independent of R. Due the

hypothesis 6 > p, there is C), g > 0 such that

1
ecp{?)R(NJrl)“}G < Cp’ReN+1 N e NOa

)

hence

. C N
v (2, €)] < CP T B Byl O 120 (EB) ,

where C; = C(p, A, R) and C3 = C5(A, p) is independent of R. From the previous estimates
we deduce
0500 Ky (1, y)| < CIPHIF gmaxtnvdy eyl N (¢ 0y ) / % (”02)
>0 suppy N

Choosing ¢ > 0 such that (C5 < 1 and R > 0 large enough we complete the proof. ]

Analogously we can obtain a version of the above propostion in the frame of finite

order. We point out that none hypothesis over ¢ are required in this context.
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Proposition 2.6. Let p € S]!,(R*") where i, v > 1. Let moreover k € (0, 1). Then there exist

C, c > 0 such that
1
|8583Kp(x,y)| < CI6|+IWI+1ﬂgmax{#,v}ywe*dw*yl“
forevery B,y € Ny and for every x,y € R" such that |x — y| > k.

Let us remark that from K,(z,y) we can (formally) recover the symbol p(z, {) using

the next formula

p(z,&) = /eif(xy)f(p(w,y)dy, z,6 €R™

Proposition 2.7. Let p € S, ,(R*") and assume

w,v;6
1
|050) Ky ()| < O gLl emclemul
forevery x,y € R" and o, B € Nj. Then p(x, &) satisfies (for new constants C,c > 0)

1
0290p(x,&)| < ClotFAFlaIrpIre=cll" = 3 ¢ € R" o, B € N},

Proof. For o, f € N we may write

| )
)= 3 i [P it~ )0 K )y

B B! 1
B Z B! 5! my, c(f)

% /ezf(xy)@é-)&zg_] 1 — ) {( ( ))aafj?Kp(l',y)}/dy

h aﬁg('ry)

Now notice that

J! (2J)! a
hram@l < > =1 EjMMW@ww%Wmmm
Jo+|J| ]]0 )\1“ 1:A2:

ol 1 1
[

< : — )M e s lEylE B A+ g gy 1k S lE—yl R
Z joll Z )\1|)\2 (@ — ) |(33 y) IC Palt Asle

Jo+1J|=j A1tAz=

< C{D‘*ﬁ'“aw/@we-%\w—ylﬁcg jI

On the other hand we have

(€)™
myc (&)

Choosing ¢ > 0 small enough we conclude the proof. O]

1
< Cf€|h51|+1ﬂl!p,€fc<|§|l‘ )
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2.2.4 Global Gevrey Amplitude Classes

In order to study the product, adjoint and transpose for our classes of pseudodifferential
operators, it is useful to enlarge them by considering a more general notion of symbols, namely

the amplitudes.

Definition 2.10. We say that a smooth function a(x,y, &) belongs to the class o 9(R3n) if

there exist constants H,C, ¢ > 0 satisfying
00000 a(x,y,&)| < HCI P glral (&) ~lelekl” - v ¢ e R" 0, B € NG, (2.4)
1
Analogously we define the finite order version S,T,/(R?’”) by replacing e“€1” with (€)™ in (2.4).

For a given amplitude a(z, y, ) we associate it to the operator A = a(x,y, D) defined

by
@:ﬂ#mww@mm@afm (2.5)
where f € $9(R") for > v and s > u. We observe that the integral in (2.5) is not absolutely

convergent in general. The precise meaning of the right hand side in (2.5) is given by the

following oscillatory integral

§—0

—hm//lxy>5§<xy®ﬂw@&,
where X € Xiin(s,03(R") and x(0) =

Proposition 2.8. Let A be the operator defined in (2.5). If p < s and v < 0, then A maps
YI(R™) to X0(R™) continuously.

Proof. Let F be a bounded subset of %:¢(IR"™). Then for every C,r > 0 we find Ho, = H > 0
satisfying
1
0% f(2)| < HCPIge el 2 c R* 3N, f € F.

Observe that, for any ~, 8 € N,
27OPA(f)(x) = lim Z

6—0

Bi+B2=P
{DZe e (i) 0 a(w, y, &) f(y)dyd
B1+62 ﬁﬁl'ﬂ'/
: !
S

A 1Yol g
Br+B2=p i tradra ey 1234

T [ e im0 ate. ) Sl (6dude
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" / / eig(x—w(_y)wiwl—w\(61 b’ .l £ DEORa(x, y, €) f (y) DY x (86)dyds

= lim hl i1 vzl//
6—=0 Z 51'52 Z 71"72 ’73'74 meo(€

B1 +5 =p Y1H+y2+Y3+74=

Ejjme G D X@ﬁ)ﬂ-—AyV{FﬂDmfﬁﬁfaﬂﬁﬁh@f@Dldwﬁ-

7>0 g

Since s > p and 6 > v, proceeding as in the proof of Proposition 2.1, we obtain the following

estimate: for every h, C' > 0 there exist H, o = H > 0,¢, > 0 and 7¢ = 7 > 0 such that
1| < HCﬂ2+71+73ﬂ2!9’yl!573!5hjj!2966a|£‘% e—f"lylé )
On the other hand, using Lemma 2.1, we get that for every C' > 0 there exist Ho = H > 0 and

(c = ¢ > 0 such that

B!
(B1 = 72)!

uniformly with respect to 0 € (0, 1). Thus, standard factorial inequalities imply

561 72D (55)’ < Hcﬂ1+72+74,y2!8741851!9(;%4%@%’

|27 OJA(f) ()| HCVP 1310y Y “(h¢ ).

Jj=0
Taking h < ¢! we obtain that A(F) is a bounded subset of ¥/ (R").
Moreover, if we ignore 27 and d” in the above computation, using the Lebesgue Dom-

inated Convergence Theorem we get the following expression for A(f)(z):

// o y)m9< Z]me Ay){a(z,y,8) f(y) ydyds.

]>0

In particular, A(f)(x) does not depend on the choice of . O

Remark 2.8. Let a € (R3") and for each j € Ny set

u v;0
pi(r.&) = Y (@ Dga)(r0,8), &R
lal=j

Then ), p; € 'Sy,

w,v;0

(R?n),

Given a € S7,.5(R*), the Schwartz kernel of the corresponding A = a(z,y, D) is

formally given by
Ka(o.) = [ €€ Dalay. )de

Repeating the arguments in the proof of Proposition 2.5, we obtain the following results.
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Proposition 2.9. Let a € S5, ,(R*) where v > 1 and § > pi > 1. Let moreover k € (0,1).

Then there exist C, ¢ > 0 such that
1
|050;Ka(x, y)| < QPN gmaxdpvh y max{uv} o —cla—y|#

forevery B,y € Ny and for every x,y € R" such that |x — y| > k.

Proposition 2.10. Let a € S}, (R*") where ji,v > 1. Let moreover k € (0, 1). Then there exist

C, c > 0 such that

|8£6;Ka(x,y)| < CIBHM+15!max{u7v}7!max{uvv}6—c|:c—y|%

forevery B,y € Ny and for every x,y € R" such that |x — y| > k.
Remark 2.9. Let a € S, ,(R*") and assume

w0

070) Ko, y)| < CVFmit ppuaxtisdqpmextpt e el (2.6)
foreveryxz,y € R" and B, € N{j. By the proof of Proposition 2.7, we conclude that the symbol
r(z, &) = /e‘ig(w‘y’Ka(x, y)dy, & €R",

is in Kumax{u,}. Now let us remark that a(x,y, D) = r(x, D). Indeed, for v € Y0, with 6 > v

and s > y1, we have
r(z, D)u(z) = / e (x, €)u(€)ds
_ / it / eV I, (2, y)dy A(€)dE
_ / Ko(z,) / (€ dedy
:/Ka(:v,y)U(y)dy
= a(z,y, D)u(z).

Summing up, if the kernel of a(x,y, D) satisfies (2.6), then we may find a symbol r € Kax{u,}
such that a(x,y, D) = r(x, D).

The next result concerns the relation between operators given by amplitudes and oper-

ators given by symbols.
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Theorem 2.5. Let a € /‘fy;o(R?’") where j1,v > 1 and 0 > p+ v — 1. There exist symbols

p €Sy, o(R") andr € K\y,—1 such that a(z,y, D) = p(x, D) + r(x, D) and

1
p(2,€) ~ 3 (0 Dja) (@, 2, €) in FST, 4(R™).

«

Proof. We start considering x(z,y) € C*(R*") satisfying

L, if|z —y| > 5 Bl Ly 2w
x(z,y) = : 10,0y x(x,y)| < OB

N[

=

We may decompose a(z,y, §) as the following sum of elements of S;jf’y;@(]R?’”):

a(z,y,&) = x(z,y)a(z,y, &) + (1 — x(z,y))a(z,y,§).

Furthermore, since 6 > 1+ v — 1 > p, it follows from Proposition 2.9 and Remark 2.9 that ya

defines a max{y, v} —regularizing operator. Therefore, we may assume a supported in the set

{(z,9.8) |z —y| <27", £ e R},

after a possibly perturbation by a max{, v} —regularizing operator.

For each j € Ny, set

1
pi@.§) =Y (0 Dja)(w,z,€), = EER".

|al=j

Let us consider ¢(&) € C(R™) such that ¢(¢) = 0 for (¢) < 2, ¢(€) = 1 for (¢) > 3 and
086(&)] < CJ ol €€ R, 0 € N

Setting ¢y = 1 and, for a large constant R > 0,

_ &
Rju+u—1

¢j(§)=¢< > EeR"j =1,

from Proposition 2.2 (for R > 0 large enough) we have
p(a,&) = 6;()pi(w,€) € S50 (R™), p(x,8) ~ D pi(w,&) in FSX,,(R™).
=0 =0

Since we can write

a(xz,y,D) = p(x, D) + a(z,y, D) — p(z, D),

to conclude the proof, it only remains to prove that the kernel K (z,y) of a(z,y, D) — p(x, D)

satisfies the following estimate

1
0200 K ()| < O (Blytype Tt gmeleyl 7T 2.7)
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Observing that

k k
Z SN — ON1) ZPJ Z ONPN — Drt1 Z PN, Z ON — On41)a = Goa — Pryaa,
N=0 N=0

J<N

we obtain the following identity
CL(ZL’, Y, 5) - p(fE, f) = (]' - ¢0(€))6L({L‘7 Y, 5)

(o8 — dni1)(6) ( (,9,8) — Zmﬂ%)

2
N=0 J<N
= Z(¢N—¢N+1)(f < a(z,y,§) — Zp] x f)
N=0 J<N
Consequently
K(I7y) - K()(C(],y) + Z KN(J:?y)a
N=1
where

Kn(z,y) = /eig("”y)(qbzv — on1)(8) ( a(z,y,&) = > pilx,& )

J<N

Taylor’s formula gives, for N > 1,

a8 = 32 o= )G 2,6) + By (e, 0.8),
lajl<N

where
_ (y —x)” ' o o AN
Ryii(z,y,8) = (N +1) Z ol / (Oya)(z, z +t(y — x),§)(1 — )" dt.
lal=N ' 0

Using the definition of p; and integration by parts, we obtain that (N > 1)

Kylo) = [0 3 S 0 oy — o) (€08 D) 0., )¢

1<|a|<N 'a1+a2 o
Oll>

X Z %/agmy) Z I (dn — on11)(§)

lo|=N+1 ' artaz=a
1
< [ (= 0@ Dya) oy + ty — o). e dg
0
- WN(J;, y) + WN(xv y)

Since we will prove absolute convergence for the series and integrals we are dealing with, we

can re-arrange the terms of the sum under the integral sign. Notice also that

> by — dnv-1)(&) = b (&)

N>a
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and, for an absolute convergent series,

i DooNa= DD et D D eNat D D CNat-.

N=11<|a|<N N>1 |a|=1 N>2 |a|=2 N>3|a|=3
=>.2.D Ca
i=1 N>j |a|=j
Then we conclude that
K(z,y) = Ko(z,y) + Y Liw,y)+ Y Wa(z,y),
=1 N=1

where

1 Oé! 1€ (x— a a2 Mo
Ij(x,y) = |Z o~ P / eV 6,(8) (087 Dya) (w, x, ).
a:j a1 tag=a
a1>1

Finally, to finish the proof it is sufficient to prove that Ky, > | ;1jand > n W satisfy an
estimate of the type (2.7). Since the computations are quite similar, we only verify the estimate
for ) . I;. For 8,7 € Ng,

1 al B!
BT, = -
31,3y]]($,y) N Z a! Z a1!a2! Z ﬁl‘@?'

lol=j  e1taz=a B1+B2=8
a1>0

« / ¢S (€)1 (€)1 O 6;(€)072 (9 Dya) (x, , €) dE.

N J/
-

=thjy,a,8(2,8)

We recall that on the support of ¢; we have the inequalities Rj* ™! < (¢) < 3Rj#*"~!. Hence

s, y)] < JEITBICI oy e (Rjotv 1) el ot ol g gy vt ) el okl

. R 1 ptr—1
< Ol agagltaly Byl jUrtv=DIemlCl (Rjrtv—1)=deea3R75 0

Now notice that j7 /11 < CI7+Ail~151 and, using the hypothesis 6 > 1+ v — 1,

ptr—1

1.9 .
66a(3R)9] < Ca,R e, j>1.

Hence

J
SRNES] _ 1 (Cas\" it
rias(@,y)] < Cloat g aylial” Byl ylitv=1 g vt (—E, ) il

where C, 4 is independent of R > 0. Therefore, choosing R large, we obtain

< C\B+v\+1(5!7!>u+u—l.

0007 " Iz, y)
j=0
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To finish, since we are assuming |z — y| < 27! on the support of a(z, y, ), we may write

o0 . %
858; Z [j(iL‘7y) < C’WJr’Y\Jrl(5!7!)u+uflef|x,y|, T ‘

Jj=0

2.2.5 Adjoint, Transpose and Composition Formulas

In this section we shall prove that the classes of pseudodifferential operators that we are
dealing with are closed under composition, taking adjoints and transposes modulo regularizing

operators. We start with the adjoint and transpose formulas.

Theorem 2.6. Let p € S, ,(R*") with ji,v > 1 and § > p+ v — 1. Let moreover p*(x, D)
and 'p(x, D) the L? adjoint and the transpose of p(xz, D) respectively. Then there exist symbols

QjESOO

(R and 1y € Ky, j = 1,2, such that

el —
p'(@.D) = i@ D) + n(x. D). ai(w.€) ~ 3" G DEp(r€) in P (B

and
D, D) = 42, D) + 1ol D), (. 6) ~ D0 (0 DI, ~6) im FS5,0(R7)

«

Proof. We define ai(y,&) = p(y,€) € S;5,4(R™) and as(y, &) = p(y, —§) € S

H,v30

(R3).
Therefore p*(z, D) = ay(y, D), 'p(x, D) = as(y, D). Applying Theorem 2.5 for a; and ay, we

conclude the proof. ]
Before going to the composition formula, we need the following lemma.

Lemma 2.5. Let ji,v > 1 and 0 > ji+ v — 1. Let moreover v € K,y and p € S5, o(R*").

Then 'r(x, D), r*(z, D) and p(x, D) o r(x, D) are given by symbols in K, .

Proof. We know that 'r(x, D) = a1 (y, D), where a1 (y, ) = r(y, —). By Proposition 2.10 and

the exponential decay of r, we easily conclude that
1
020) Ko, (,y)] < CIFFIH (Bl yprtvtgmeleul =T (2.8)

Hence Remark 2.9 gives that a, (y, D) is given by a pu + v — 1—regularizing operator. In analo-

gous way we prove the result for the adjoint.
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Now let us observe that *(*r) = r and r = ¢, with ¢ € K,,;,—1. We also notice that

'(z, Dyu(x) = / ot / i 0g(y, —E)uly)dy c.

hence
p(e. D) o r(x, D) = / e (i, €)qly, —E)uly)dyd.

In other words, the composition por is an operator with amplitude b(z, y, &) = p(z, £)q(y, —&).
It is not difficult to conclude that K (z,y) satisfies an estimate of the type (2.8). Once more

making use of Remark 2.9, we get that p o r is a regularizing operator. [l

Theorem 2.7. Let ji,v > 1 and 0 > j+ v — 1. Let moreover p,q € ;f,j;e(]Rzn). Then there

exist symbols s € S5%,.o(R*") and r € K\, -1 such that

(e, D)ou(z, D) = (&, D)+r(x, D), s(, D) ~ 3 =~ 08p(, ) Dia(a,€) in FS5,0(B)

Proof. First we observe that ‘q(x, D) = qi(z, D) + r1(z, D), where ¢, € S75,.,(R*), r1(z,§)

belongs to K, 1 and
Q&) ~> é@g‘D?q(m, —¢) in FS2,4(R™). (2.9)
Now we write
p(x, D)o q(z, D) =p(x,D)o ‘q(x, D)+ p(x, D) o 'ri(z, D).

We have that po ‘q; is given by the amplitude a(x,y, &) := p(z, £)q1(y, —€) and po 'ry is given
by a regularizing operator. Applying Theorem 2.5 to a(z, y, &) and using (2.9), we conclude the

proof. []

Remark 2.10. We point out that we can obtain analogous results concerning the product, trans-
pose and adjoints of pseudodifferential operators with symbols in S/TV(R"). Moreover, in the

frame of finite order we do not need any hypothesis over 0.

2.2.6 Gevrey Sobolev Spaces

We finish with a brief discussion about Gevrey Sobolev spaces. The main result of

Chapter 3 will be achieved in these spaces.



Global Pseudodifterential Operators 35

Definition 2.11. Let m, p € R and 6 > 1. We define the Gevrey Sobolev space Hy(R") by

=

H75(R™) = {u € Z'(R") : (D)"e"P)"u € L*(R™)},

1
4

1
where ¢*\P)" stands for the pseudodifferential operator with symbol e*€)" € S5 (R™).

Gevrey Sobolev spaces are Hilbert spaces with the following inner product

=

(u,v)gm = (DY"eP Py (DY D) 1o uv € H7(R™).

p;0

Remark 2.11. Plancherel formula gives us that Hﬁ’e(Rn) C HJ5(R"™) whenever m' > m and

p > p. Being more precise, we have

1 gy < Wl S € Hy'o(R").

P

We recall that H>*(R") ¢ B>(R"), where

H*R") = (| H*(R), B*[R")={f€B*R"): \théo 9 f(z) =0,Va e NI'}.
seER

For any p > 0,0 > 1 and m € R we have H)(R") C H*(R). The next result shows us that
HJ%(R") is a subset of G’ (R™) for every m € R, provided that p > 0.

Proposition 2.11. Let m € R, 0 > 1,p > 0 and f € H]}y(R"). Then there exist Cy > 0 and

Cy > 0 such that

o\ 1o
e <6 (L) ol R0 e

Proof. We can write

52 f(x) = / e gn Flg)ag = / eimga () merl@ (¢ymer®? Fle)ae.
Hence
|05 f ()] < [1€°(6) e [ 2| Fl e, -
Now the result follows from Lemma 2.2. ]

The next result concerns the action of pseudodifferential operators of finite order in

Gevrey Sobolev spaces.

Theorem 2.8. Letp € SZ?;(RQ"). Let moreover > 1+ v — 1 and m,p € R. Then

p(z, D) HJH(R") — H;’?H_m, (R™), continuously.
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Proof. Since 6 > p+ v — 1, from the composition formula we have
e”<D>% op(z,D)oe” pD)T a(x, D)+ r(x, D),
where a € S5, 4(R"), r € Ky, -1 and
a(z,&) ~ Zaiag‘ep@él)zp(x £)e P SH Zaa z, &) in FS5,0(R™™).

Now we shall prove that )  a, is of finite order. For this let us study more carefully the above
asymptotic expansion. By Faa di Bruno formula, for |a| > 1,

|al

1 Oé! ! o 1
alaa(z,§) :Dgp(%f)ZE > mnpag”@e'
/=1 ’ aj+...tap=a T u=1

Therefore, for any ~, 8 € N,

070 la(w )] < D 10707 p(, )|

Yi+y2=Yy m 'ry :
o Oé! o ¢ o 1
" v 7
: Z 'a1+;ae an!"'aél af Upa& <5>
|l
< C|7+ﬂ+a|+17!p5!ya!1+u m’ —|v|—|af Z g, '

Now consider, for R > 0 large, 1;(¢) the sequence defined in the proof of Proposition
2.2 and set
Z¢J Qf 5 € uu@(Rzn)

where b; = >, |_; ao. Wehave b~ > b;in FIS7, > o(R?"). Now will prove that b belongs
to S, (R?™). We write
b(,€) = p(w,€) + 3 _15(€)bi(w,€)

j>1
We infer that ) .., ¥;b; € S s )(RQ”) Indeed, for any «, 5 € N}

0200 (b, <> > ,a,wal%( o205, (x, €)|

7>1 721 atas=«

=3 ¥ ,a,ya“ Vi1 (ONI0g207bj41 (2, )|

720 a1 tas=«

1
< C|a1|
Z Z a1'a2' R ] + 1)|Oél|

720 a1 tas=«a
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j+1 e
x CloatBIFIHL g1 (j 4 1)1 (g)m' ~lezl == 12 i
— C‘all
j;ou% « 041‘042| R ] + )‘all
]+1 1

x CloatBltitto g (j 4 1) (g)m' =09 lwlz

On the support of 97,1 we have (§) > R(j + 1) and (§) < 3R(j + 1) (whenever a; # 0).
Hence R(j + 1)l < 3leal(¢)~leal and, since § > p+ v — 1,

(7T <{RG+ 1y

_ R—j-ﬁ-z_Tl(j + 1>—j(u+l’—1)(j + 1)‘”571(4—1)

< RO (j 4 141yt

< RI0=6)(j 4+ 1)1= v =Deitl(p — 1)1,

Therefore

J
I&] |o+B+1] vieym' —(1-3H)—|a C2
19202 3" 0 ()b, €)] < CI P a1 gy = (A-3)- 'Z( g>) .

>1 §>0 R

m/ —(1—1 /
Enlarging R if necessary, we conclude 3° -, 4;b; € Sy, " 9)(R2”). Hence, b € S}, (R*") as
we intended to prove.

Finally, since we may write

=

6p<D>§ Op(l’, D) 0o e_p<D> = p(aj’,D) —i—pg(% D) + Tl(xa D)7

where py(z,€) € S, m (1) (R*") and r1(z, &) € K,,4,—1, We have

=

1 1 1
lp(, DYt || e = "2 p(, DYt || g =|| P plar, D)2 (2P0 w) || yonsms
pi0

-
-

=|| (p +po + 1) (2, D)) || o < C || 2w || grm= C || |11y, -
[]

Theorem 2.9. Let pi,v > 1 and 0 > p+ v — 1. Let moreover r € K,,_1. Then for every
m € Randp € R

r(z, ) — ﬂ gy continuously.
pER
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1 . 1
Proof. Let p € R. Since § > p + v — 1 we have that e”P)? o r(z, D) o e P)? defines a

(1 + v — 1)—regularizing operator. Hence

-
D=

- 1
H T(.I?, D)u | (€p<D>6U/> ‘H'm

iy, =1l #?? o r(z, D) 0 )

1
<C e ullgm=C | u |y, -

23 SGT (R¥), S

KUK

og(R?") and SG' (R*")—Pseudodifferential

Operators

In this section, we recall some facts and results about SG pseudodifferential operators
with symbols satisfying Gevrey estimates. We address the reader to [10] for the finite order case

and to [6] for the infinte order framework. Now we give the definition of the symbol classes.
Definition 2.12. Let 7 € R, k,0,u,v > 1 and A, c > 0.

(i) We denote by SGT%, (R*™; A, c) the Banach space of all functions p € C°°(R*") satisfy-

}LVH

ing the following condition:

1
Ipllae = sup A~lHlarmr g (&)~ Hel () Ple=edel™ 19200 p(x, €)] < +o0.
B9

We set
SGT° RQn U SGT® R2n A C)

uun /“/n
A,c>0

endowed with the inductive limit topology of the Banach spaces SG7°° _(R?"; A, c).

WViK

(ii) We denote by SG7 (R*"; A, c) the Banach space of all functions p € C*°(R*") satisfy-

W ViK

ing the following condition:

1
Ipllae = sup A7lHlal=rg1mv (g)lel(z) =T HBle=kl |92 90 p(x, )| < +o00.
e

We set

SGoT RQn U SGT ]R2n A C)

,uun uun
A,c>0

endowed with the inductive limit topology of the Banach spaces SG°T (R?"; A, c).

W,V5K
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Definition 2.13. Let y,v > 1, m = (my,my) € R* and A > 0. We denote by SG,(R*"; A)
the Banach space of all functions p € C*°(R*") satisfying the following condition:
Iplla = sup ATlHPlat=r g1 (g)=mtlel () =t P92 ol p(x, €)| < +oc.
a,BEND
z,E€Rn
We set
sGp, (R = | ) SGp, (R A)

A,c>0

endowed with the inductive limit topology of the Banach spaces SG|;, (R?7; A).

Remark 2.12. When ;1 = v we simply write SG)'(R*"), SG1:22(R*"), SG 757 (R*") instead of
SGT(R*), SGToe (R*™), SGTo(R*™).

Ho3 pop0

As usual, given a symbol p(x, ) we shall denote by p(x, D) the pseudodifferential

operator defined as

o Djuta) = [ p(w, OO, v e R
where u belongs to some suitable function space. We have the following continuity results.

Proposition 2.12. Let7 € R, s > > 1, v > landp € SG;?,OS(RQ") Then for every 6 > v

and s >y the operator p(x, D) is continuous on XY (R™) and it extends to a continuous map on

(39)'(R™).

Proposition 2.13. Let 7 € R, 0 >v > 1, u> landp € SGZOVTQ(RQ”) Then for every s > L

and 0 > v, the operator p(x, D) is continuous on X% (R") and it extends to a continuous map

on (¥7)'(R™).

The proof of Propositions 2.12 and 2.13 can be derived following the argument in the
proof of [6, Proposition 2.3].
Now we define the notion of asymptotic expansion and state some fundamental results,

whose proofs can be found in the Appendix A of [6]. For t1,%5 > 0 set
Quiy = {(2,€) € R™: () < t; and (§) < Lo}
and Q5 ;, = R*™\ Qy, +,- When t; = t, = t we simply write (; and Q5.

Definition 2.14. We say that:
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(i) > a; € FSGT2, ifaj € C™(R*") and there exist C, c, B > 0 satisfying

>0 .
|8§‘35aj(x,§)| < Olal+\B|+2j+1a!u5!Vj!#+V—1<§>T—|al—j<x>—\ﬁl—j66|ﬂfl%

fora,B €Ng, j > 0and (z,§) € Qy;), where B(j) = Bjrtv-1,

iy

(i) > ;500 € FSG T, ifa; € C>°(R?") and there exist C, ¢, B > 0 satisfying

|8g‘a£aj($’ §)| < C‘a|+‘ﬁ‘+2j+1a!u5!yj!;H-V—l<£>—|o¢\—jec|f\? <x>7——|m_j
fora, B € Ng, j > 0and (,§) € Q%)

(iit) Y- a; € FSGY, if a; € C(R*") and there exist C, ¢, B > 0 satisfying

J=0

|0?0£aj(ar, £)| < C|a|+‘6|+2j+1a!u6!uj!;H-V—l<€>m1—|a|—j <$>m2—|6|—j
fora, B € Ng, j > 0and (z,£) € Q.

Definition 2.15. Given > a;, > b; in FSGS, we say that Y a; ~ > b; in FSGT%, if

Wik sV
j=0 j=0 j=0 Jj=0

there exist C,c, B > (0 satisfying

agaf Z(aj —bj)(z,9)| < C\a|+lﬂ\+2N+1a!MB!VN!/H-V—l<€>T—|a\—N<x>—|ﬁ\—Nec|m|%

j<N
fora,B € Nj, N > 1 and (z,§) € Qf ). Analogous definition for the classes FSG
FSGm,,

Remark 2.13. If > a; € FSG[SS,, then ag € SGT%,.. Given a € SGT%, and setting by = a,

ViR IRZTS IRz
i>0
_ . _ . . T,00 T,00
bj =0,j > 1, we have a = ) b;. Hence we can consider SG|;%, as a subset of FSGT,.
J=20

Proposition 2.14. Given ) a; € FSGTS, , there exists a € SGJ%, such that a ~ ) a; in

, IRz IRz A
j=0 720

FSGT,.. Analogous results hold for the classes SG ., and FSG},,.

HyVsk”

Proposition 2.15. Let a,b € SG}%, and 3, o a; € FSG5, suchthata ~ 3, a; ~ bin

V5K VK
FSGT® . Ifk > u+v — 1, then a — b € S;(R*") for every 6 > .+ v — 1. Analogous result

[Nz

for the classes F'SG ., and FSGY,,.

Concerning the symbolic calculus and the continuous mapping properties on the Gelfand-

Shilov Sobolev spaces we have the following results, whose proofs can be found again in [6].

Theorem 2.10. Let p € SG7 (R™M), ¢ € SG7;2°(R?™) with k > pu+ v — 1. Then the L?

VK VK

adjoint p* and the composition p o q have the following structure:
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- p*(z, D) = a(x, D) + r(x, D) where r € 81,1 (R*"), a € SG%%, (R*"), and
o]

a(x,&) ~ Z %%‘Dgp(x,f) in FSGT>° (R*™).

W V5K
a

- p(z, D)ogq(x, D) = b(z, D)+ s(x, D), where s € S,,1,,_1(R?™), b € SGT+7>°(R*") and

V5K

1
5,6~ a@g‘p(x,f)Dﬁq(ﬂf,f) in FSGTET>(R™").

Analogous results hold for the class SG)7y(R*").

We finish this section with a brief discussion concerning the Gelfand-Shilov Sobolev

spaces. For details we refer once more [6].

Definition 2.16. Let m = (my,ms),p = (p1,p2) € R* and s,0 > 1. We define the Gelfand-

Shilov Sobolev space H? ,(R™) by

p;8,0

S

HT o(R") = {u € ' (R") : ()™ (D)™ er?)° er1{D)

u € L*(R™)},

1
where (D)™ and eP"'P)? are the the pseudodifferential operators with symbols (€)™ and
1
er@)? ¢ ST 9(R2"), respectively. These spaces are Hilbert spaces with the following inner

product

SSE
<
—~
8
~
3
N}
—~
S
3
D
s
N
D
)
=
5
[SSE
<
S~
~
N

1
(u,0)y, , = (@) (D)m et en®)

foreveryu,v € H'

(R™).

Remark 2.14. We have H™

0;8,0

(R") C H7

o S/ P (R™) continuously, whenever that s < s', 6 < ¢,

mj >mjand p; > pl, j = 1,2.

Remark 2.15. The Gelfand-Shilov spaces can be expressed in terms of the Gelfand-Shilov

Sobolev spaces H',

80 Rn - U pse n 29 Rn o ﬂ p50

p1,p2>0 p1,p2>0

(R™) in the following way

for every m € R2.

We have the following continuity result on Gelfand-Shilov Sobolev spaces, see [6]

Theorem A.18 for the proof.

Theorem 2.11. Letp € SGIZ; (R?™) for some m’ € R?. Then for everym, p € R* and s, 0 such

(R™) into H™ 7™ (R™) continuously.

that min{s, 0} > u+v—1the operator p(x, D) maps H'" o

p;s,0
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2.4 Sharp Garding and Fefferman-Phong Inequalities

This section is devoted to recall the so-called Fefferman-Phong and sharp Garding
inequalities. Let p(x, &) be a symbol of order m belonging to the standard Hérmander classes.

Then the two following theorems hold.

Theorem 2.12 (Sharp Garding Inequality). If Re p(x,&) > 0, then there exists a real constant
C' such that
Re (p(z, D)u,u)p2wn) > —Clluf|mos,  ue S(R").

Proof. See Theorem 4.4 of [35]. ]

Theorem 2.13 (Fefferman-Phong Inequality). If p(x,&) > 0, then there exists a real constant
C' such that
Re (p(z, D)u,u)p2wn) 2 —Clluf|mz,  ue S(R").

Proof. See [20]. [l

Remark 2.16. We remark that the Fefferman-Phong inequality holds only for scalar symbols
(cf. [41]) whereas the sharp Garding holds more generally for matrix valued symbols (cf. [35]).

2.5 Sharp Garding in SG and SG,, , Settings

The sharp Garding inequality for a pseudodifferential operator has been first proved by
Hormander [26] and by Lax and Nirenberg [36] for symbols in the standard Hérmander classes
S™(R?™). Later on several different proofs and extensions of this result have been provided by
many authors cf. [21, 27, 35, 38]. In particular, the inequality has been extended to symbols
defined in terms of a general metric, cf. [27, Theorem 18.6.7] and to matrix valued pseudo-
differential operators, cf. [27, Lemma 18.6.13] and [35, Theorem 4.4 page 134].

In all the proofs of the sharp Gérding inequality the operator p(z, D) is decomposed
as the sum of a positive definite part and a remainder term. In the approach proposed in [35],
this positive definite part pp is called Friedrichs part.

Although the results in [27] are extremely general and sharp, in some applications
more detailed information on the remainder term is needed. In particular, it is important to state
not only the order but also the asymptotic expansion of p — pp. This is needed in particular

in the study of the p-evolution equations. The classical approach to study the Cauchy Problem
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for these equations is based on a reduction to an auxiliary problem via a suitable change of
variable and on a repeated application of sharp Garding inequality which needs at every step to
understand the precise form of all the remainder terms, cf. [3]. When the coefficients a; (¢, z)
are uniformly bounded with respect to z, this is possible using Theorem 4.2 in [35], where the
asymptotic expansion of pr — p is given in the frame of classical Hormander classes.

The initial value problem for p—evolution equations can be also studied in a weighted
functional setting admitting polynomially bounded coefficients (cf. [5]), which cannot be
treated in the theory of standard Hormander classes but are included in the SG framework.
For this purpose we need a variant of [35, Theorem 4.2] for SG operators with a precise infor-
mation on the asymptotic expansion of p — pp.

Another challenging issue is to study p—evolution equations on Gelfand-Shilov spaces.
A first step in this direction has been done in the cases p = 2, that is for Schrodinger-type
equations, see [6], and p = 3, see Chapter 4 of this thesis. In both these cases, it is sufficient to
apply the sharp Garding inequality only once. To treat p-evolution equations for p > 3, however,
we need to apply the iterative procedure described above. In addition, a precise estimate of the
Gevrey regularity of the terms in the asymptotic expansion of p — pg is also needed.

In this section we, hopefully, provide appropriate tools for both the aforementioned
issues. This will be achieved by defining in a suitable way the Friedrichs part of our operators
and by studying in detail its asymptotic expansion and its regularity. With this purpose we
will prove two separate results for the SG and SG,, symbol classes. To finish, it is worth to

mention that the results obtained in this Section led to the following work [32].

25.1 SG,; Pseudodifferential Operators

In this section we recall some basic facts about SG, s pseudodifferential operators
which will be used in the sequel. Although for our applications we are interested to prove the
main results for the SG' and SG, ., classes, in order to prove them we need to consider more

general symbols which are defined as follows.

Definition 2.17. Given m = (my,ms) € R? p = (p1, p2) € (0,1]%,8 = (d1,02) € [0,1)?, with
0j < pj,j = 1,2, we denote by SG's the space of all functions p(z,§) € C>°(R?") such that

Lo 10200 p(x, &)|(€)mHerlel=0ilBligymmatpalfi=oalal o og, (2.10)
z,£)ER2n



Global Pseudodifterential Operators 44

We recall that SG7'; is a Fréchet space endowed with the seminorms

plei= sup_|0¢O7p(a, I(€) el 58 )t
z, 2n
o<t

for ¢ € Ny. A specific calculus for this class can be found in [8]. Pseudodifferential operators
with symbols in SG7; are linear and continuous from .’(R") to .%/(R") and extend to linear
and continuous maps from ./(R™) to ./(R"™). Moreover, we know that an operator with
symbol in SG7's extends to a linear and continuous map from H*(R") to H*~™(IR") for every

s € R2.

Definition 2.18. Let, for j € Ny, p; € SGggl’j’m2’j), where my j, Mo j are non increasing
sequences and my j — —00, My j — —00, when j — co. We say that p € C*°(R*") has the

asymptotic expansion

ple.&) ~ 3 py(,€)

Jj€Ng
if for any N € N we have
N-1
p(z, &) — ij(x, £) € SG%l’N’mQ‘N).
=0

Given p; € SG%“ "23) a5 in the previous definition, we can find p € S G%l’o’mzm

such that p ~ > p;. Furthermore, if there is ¢ such that ¢ ~ " p;, then
p—q€SG 1= NpereSGs = S (R*™),

cf. [8, Theorem 2]. The class SG}s is closed under adjoints. Namely, given p € SG}; and
denoting by P* be the L? adjoint of p(x, D), we can write P* = p*(x, D) + R', where p* is a

symbol in SG7; admitting the asymptotic expansion

pi(x,&) ~ Y alT' o DIp(, €)

aeNy
and R’ : S'(R") — (R"). The class SG3% = Uy,er2SG)'s possesses algebra properties
with respect to composition. Namely, given p € SG7'; and ¢ € SG%, then there exists a
symbol s € SG%“”/ such that p(z, D)q(z, D) = s(z, D) + R where R is a smoothing operator
S (R") — #(R™). Moreover,
s(@.6) ~ Y al7'9gp(x,§)Diq(x,€),

aeNg
cf. [8, Theorem 3].

We now consider Gevrey regular symbols.
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Definition 2.19. Fixed C > 0 we denote by SG™"
p(x, &) such that

o8 (1) (]R2”; C') the space of all smooth functions

plo = sup Clel=Blg1rg—v
a,BeNg

X sup <£>*TH1+P1\‘1|*51|5|<x>*m2+,02|/3\*52\a||a?a§p(x7é‘)’ < 400.
z,EER™

We set SGT's., ) (R2”) = U0 SG)s.(unn (R*; C).

Equipping SG7's. (. ) (R?"; C') with the norm | - | we obtain a Banach space and we can endow

SG™

o8 () (R*") with the topology of inductive limit of Banach spaces. A complete calculus for

operators with symbols in this class can be found in [10]. Here we recall only the main results.

Since SG™ )y C SG™

pse the previous mapping properties on the Schwartz and weighted

JXHTRS

Sobolev spaces hold true for operators with symbols in SG™ By the way the, natural

p:0;(psv)
functional setting for these operators is given by the Gelfand-Shilov spaces of type S. For every
p' > pi/(1=02),v" > v/(1—01), an operator with symbol in SG7';. ,  is linear and continuous
from SZ: (R™) to itself and extends to a linear continuous map from the dual space (SZ,')’ (R™)
into itself, see [10, Theorem A.4].

The notion of asymptotic expansion for symbols in SG7's. (uv) Can be defined in terms
of formal sums, cf. [10]. Here, to obtain our results we need to use a refined notion. All the
next results can be obtained in the same way as in [10] without changing the arguments in the

proofs.

For t1,15 > 0 set
Qi = {(2,6) € R*™ : (2) < t; and (£) < t5}
and Q5 ;, = R*"\ Qy, +,- When t; = t, = t we simply write ; and Q5.

Definition 2.20. Let 5; = (k;,{;) be a sequence such that kg = {y = 0, k;,{; are strictly
increasing, kjxn > k; + kn, {jzn > {; + U, for j, N € Ny, and k; > A3, {; > Nqj for
j > 1, for some Ay, Ay > 0. We say that ) p; € FzSG™ if pj € C*(R?*") and there are

P05 (p,v)
7>0
C,c, B > 0 satisfying

|agafpj(x,§)| < C\a|+lﬂ\+2j+1a!u5!l/j!u+v—1<§>m1—p1|al+51\ﬂ\—k‘j <x>m2—pzlﬂ\+52|a|—€j

fora,p € Ng, j > 0and (x,£) € Q) p, ;) Where Bi(j) = (Bj“*”fl)/‘%', i=1,2
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Definition 2.21. Given }_ p;, > q; € F;SG}},, we say that ) _ p; ~ ) q; in F; SGls ) If
Jj=0 Jj=0 5>0 >0
there are C, c, B > (0 satisfying

ag 85 Z < C|a|+|5|+2N+1a|uﬁ|VNw+v 1<§>m1—p1la\+6llﬁl—kw <x>m2—p2|ﬁ\+62\a|—fzv
J<N

fora,p e Ny, N > 1land (x,§) € Q%Q(N),Bl(N)'

Remark 2.17. If k; = (p1 — 61)j,¢; = (p2 — 02)j and N; = p; — 0;,% = 1,2, we simply write
FSG™

0,05 (,v)
(0,0), we use the notation FSG, .

and we recover the usual definitions presented in [10]. If moreover p = (1,1),§ =

Remark 2.18. If > p,; € F; SG then Po € SG ) Givenp € SG™

7>0
po=pnDp; =0,7>1 wehavep = Z p;. Hence we can consider SG

>0 o
F.SG™

o8 (1) and setting

yasa subset of
505 (k)"

Proposition 2.16. Given ) p; € F; oSG s () there exists p € SGT's. . such that p ~ YD
J=0 j>0
in Fz5G7s

()

 such that p ~ 0 in F; SGY)  Then p € S,(R*) for

Proposition 2.17. Letp € S G 83 ()

p6 uu
r>max{+(u+v—1),u+v— 1}, where A = min{A, Ay}

Proposition 2.18. Letp € SG7's , , and let P~ be the L? adjoint of p(x, D). Then there exists

P05 (p,v
a symbol p* € SG%,(N ») such that P* = p*(x, D) + R, where R is a S,-regularizing operator

p+rv—1

TP Moreover

forany r >

Z Z oo Dep(x p(z,€) in FSGs. )

320 |a|=j

m+m’
G o)

Proposition 2.19. Letp € SG7; )4 € SG™ . Then, there exists a symbol s € S

p5 (p,v)
such that p(x, D)q(z, D) = s(x, D) + R’ where R’ is a S,-regularizing operator for any

p+rv—1

> ——
r > {01 —01.00=037] Moreover

&~ Y T ogp(x, §)Diq(x, &) in FSGTIM

720 |al=j
2.5.2 Oscillatory Integrals and Operators with Double Symbols

In order to define the Friedrichs part of an operator it is necessary to extend the notion
of pseudodifferential operator as in [35] by considering more general symbols called double

symbols. We start considering some amplitude classes.
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Definition 2.22 (Amplitudes). For m € R* and 6 € [0,1)? we define A (R*") as the space of

all smooth functions a(n,y) such that
1070 a(n,y)| < Cap{my™ P {y)meolel gy € R,
For ¢ € Ny and a € AJ'(R*"), the seminorms

ale = s sup {105%a(n, )] Gn) #9190,

turn AJ*(R?") into a Fréchet space.

Remark 2.19. In [35, Chapter 1, Section 6], the special case A((so J(R™), wherem € R, 7> 0

and § € [0,1), is treated.

Definition 2.23 (Oscillatory Integral). For a € Af', we define
Os — [e"™a(n, y)] = Os — / / e”"™a(n, y)dydn

= lim // e "x.(n,y)a(n,y)dydn,
e—0

where x-(n,y) = x(en, ey) and x is a Schwartz function on R*" such that x(0,0) = 1.

Theorem 2.14. Let a € A7(R*). If ¢, ¢’ € Ny satisfy

—20(1=61) +mq < —n, =20(1—2082) +my < —n,
then |{y) =2 (D,)* {(n)=2(D,)*a(n, y)}| belongs to L*(R?*") and we have

Os = [ ™alun. )] = [ [ ™) (D)) () (D, aln. )y
Furthermore, there exists Cyp > 0 independent of a € AJ', (R*") such that
|05 — [e™™a(n, y)l| < Ceelalaere). 2.11)
Proof. Integration by parts gives
Os — [e""™a] = hm // = (V20D () 72D, (ax.) Ydydn,

where x.(1,y) = x(en, ey). Since

/ (' ' 14
20 _ 2L 20 _ 2L
(D)™ = Z g/lL/lDﬂ Dy = Z gO!L!Dy ’

o= 0T Lo+|L|=¢
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where L' = (¢},...,0/)and L = (¢1,...,4,), we have

DL DY el = G D)D) ()}

e+ =0 0

- Y Y g e

L arlas!
GrL|= O agtag=2r T VT2

B Al (2L")! o 90
- Z AV Z g lory) D <77>

£’+|L’|—€’ 0" ay+ap=2L

x Z ,L, s (xea)

Lo+|L|=¢

i CI I 0
= > A > arlagl = > ol L]
o+ |=t "0 aptas=2L/ Lo+|L|=¢

|
Q- al nHb ah N
X E E /'O/'ﬁ'ﬂ'D 1D XED 2D2

o) +obh=as f1+P2=

Hence we obtain the following estimates, for ¢ in [0, 1],

R N R [ SR G

/ levs!
L aqlo!
7 +|L/|—E’ 0 artag=2L/ L2

x O Moyl T D0 D

Lo+|L| e ! 'a I +ab=az f1+f2= “or @

L)!
'042' 51'/82

% 5\a1+,31|c|0¢1|+|,31|+1 / Wﬁl'l/’ahaﬁ—ﬁg\ <77>m1+61\ﬁ2\ <y>m2+52\a’2|

>m—2€(1—61) < >m2+2€’52

< Cyrlalaeren(n y

9

and

(W) UDy)* L) ~*(Dy)* (xea)}] <

< Cyplalaqere (n)™ 2700 (yyma=20(1=02),

Finally, by Lemma 6.3 at page 47 of [35] and Lebesgue dominated convergence theorem we

obtain

Os — fe™a) = [ [ gy 2 (D, (1) > (D, adydn,

105 — [e=™a]| < Coplalaese / / (280 (yma =20 (=020 gy 1)

]

Following the ideas in the proofs of Theorems 6.7 and 6.8 of [35, Chapter 1, Section

6] one can obtain the following result.
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Proposition 2.20. Let a € AT(R*™), o, 8 € Ny and 1y, yo € R™. Then
(i) Os —[e7"y*a] = Os — [(=D,)*e""a] = Os — [e"" Dgal;
(ii) Os — [e7"™nPa] = Os — [(—=Dy) e""™a] = Os — [e"™ Dl al;

(iii) Os —le~"™a(n,y)] = Os — [e7mE=0)a(n — o,y — yo)].
Now we define the double symbol classes.

Definition 2.24. Let m = (my,ma),m’ = (m},my) € R* and p = (p1,p2), 6 = (d1,02)
such that 0 < §; < p; < 1,j = 1,2. We denote by S GZ?(’;m/ (R*™) the space of all functions
p € C®(R*™) such that for any o, o, 3, B' € N there is C’g:bﬁ/ > 0 for which

P55 (2, € 2/, €)] SCE 7 (g mrel(gymimmlellg ¢yoe!

w <I>m2—p2\6l<x/>m’2—mlﬂ’\<x; $/>52|a+a’|

(2.12)

for every x, 2’ £,& € R™, where pgg,’ = agﬁg,lDfo,/p and (z;2') = \/1+ |22+ |22 for

every z,z € R".

Denoting by | p|g”;7/5 g the supremum over z,§, o', §" € R™ of

P55 (. &, o €)ool Tl g )~

« <x>fmz+pzlﬁl<x/>fm’2+pzlﬁ’l<x; x/>762|a+a’|7

the space SGZ?(’;m, is a Fréchet space whose topology is defined by the family of seminorms

/ !
"™ == sup  [p[as
|o+B+a/ 87| <t

Definition 2.25. Let m = (my, my),m’ = (m,m}) € R% p = (pl,pg), 0 = (01, 02) such that

0<90;, <p; <1,7=1,2 andlet pi,v > 1. We denote by SG""; (R*"™) the space of all

P56 (u V)
functions p € C*°(R*™) such that for some C' > 0:

5 (2, &, 27, €)] < ClotTHe Tl a1/ (BB (g)m—erlel(ymmelell(g; ¢y RIA+T (213

'l

« <x>m2—92|/3\<x’>m'2—p2|5'|<x;x/>52\a+a '

For C' > 0 the space S G?S?Z; ») (R*"; C') of all smooth functions p(x, &, 2/, ') such that

(2.13) holds for a fixed C' > 0, is a Banach space with norm

ple™ = sup Gl (ala/l) (BB pl T
o, 8,8 €N
After that we define SGpm(;"(LM » = U SGTT MV) (R*";C) as an inductive limit of Banach

Cc>0
spaces.
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Definition 2.26. Forp € S GZ?(’sm/ we define
Pl Da!, Duula) = [ 5, € ! €l d '
= [ e o, o € a ',
foreveryu € ./ (R"™).

Lemma 2.6. Let p € SGmm (]R‘m) For any multi-indices o, o, 3, 3’ set ¢ = pgg,l and for
0 € [—1,1] define

qo(x,§) = Os — // e Wq(z, &+ 0n,x +y,&)dydn, x,&€R™

Then {qp } o<1 is bounded in SG;7(0762)(R2”), where T = (11, T2), T1 = My +m} — p1
Ty = Mo +mb — pa| B+ B'| + do|a + &'|. Furthermore, for any { € Ny there are V' :== V'({) € Ny
and Cy ¢ > 0 independent of 0 such that

/
lgol7 < Coplply™

Proof. First notice that q(x, & + 0n,x +y,&) € A ?§2m2+52‘a+a D(Ri’fy), therefore qy(z, &) is

well defined for any fixed &, z, 0. Given v, u € N{ we may write, omitting (x,& + 0n, x + y, &)

in the notation,

| |
oo e v (a+u a+u ,u)

w<p
v <y

To prove that {qg}9<1 is bounded in SG;’(O’ 52) (R?") it is sufficient to show that

lgo(,€)| < Cilp[p™ (€)™ ()™ (2.15)

for some C; > 0 and ¢; € Ny depending on «, 3, <, 5. Indeed, if (2.15) holds, then we can

estimate the derivatives of gy as follows:

100 qo(a, )| = \Os - [[emaatatee+ona o, §)dydn‘

5 ()

<5 () ()t 02

u’<u

Os —// e ) (2, €+ O+, f)dydn‘

mi+my —pi|oatp +o +p—p ma+mb—p2| B+ +8'+y—'|+02|atp +o +p—p!
x (€) 1—p1l () 2=P2| +62 |
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< Clp|™ (g)mitmi—prlacta’ il pymatmb—pa|f+5" 41+ dlata 4
- 1

where C' and ¢; depend of o, o, 3, 3, ~y, u and does not depend of 6.
Now we will show that (2.15) holds true. Observe that

e = (14 ()2 n*) (1 — ()*24,) e,
therefore
QQ(x7 é') - OS - // e_iynre('ra 57 1, ?J)dydn;
where
ro(z,&m,y) = (14 ()*2n*) (1 — ()™= A,) q(, & + On, z + 3, €).

If we take ¢ satisfying 2¢ > |m;| + n, then ry is integrable with respect to 7. Now set a
cutoff function y(y) such that x(y) = 1 for |y| < 47!(z) and x(y) = 0 for |y| > 27" (x). Then

we can write
<%—//KWMW&WMW®=A+Q+Q,

where

h_/‘/ e ro(x, &, y)x (y)dydn,
nJ y|<a-(z)o2

52/1/ e Yrg(x, &, y)x(y)dydn,
n Ja(z)a<ly|<2-1(a)
= OS - [efiynre(x’é-; U;y)(l _ X(y>)]

Let us obtain a useful inequality when |y| < 27!(z). Since

|x+ty|
arn) -l < [ 1tes i< [ ar <

then, for |y| < 271(x), we have

L) <o) < Sk (ma o) < (@) +le byl < ().

Now we shall proceed to estimate [, [, Is. We begin with I;. With aid of Petree’s

inequality and using the fact that p, > J, we obtain, for |y| < 4~1(x)° and |0] < 1,

) i o
ro(e, Emy)| < (L4 @22~ S mm%'“l Piean]
Lo+|LI=¢

<1+ (x>252|n|2)‘€<x)252w| Z l 'L' ‘p|\a+a +B+8|+2L
€0+|L| l
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x (€ + 9n>m1—pllal <£>m’1—plla’\ <$>m2—p2|5\ (x + y>m’2—pz\6’+2L| (z; 2 + y>62\a+o/|

< CHP™ (€™ @)™ (14 () )~ ) el

where k = |a+ 5 + o + ('] + 2¢. Therefore, for 2¢ > |my| + p1|a| + n,

/n/||<41< y efiynm(iU,f;Way)X(y)dyd??
< C’k|p|;€nvm/<€>ﬁ<$>72 /(1+< >262|n| ) < >|m1|+pl|a|d77/

ly|<+4

|| =

< CHRP ) )™ [ ) e e [ gy

(x)°2
ly|<=—=

n

< CHlpl™ (€)™ ()™ / ()2 Hmalertedan TT / ,, (@) 2" dy;

j=1 \yj|§%
<k / (ny"dnlpl™ (€)™ (z) .

To estimate /5 and /3 it is useful to study |Af71 T9|. We have
Afl < (2Q)' 8Q1 1 209 2\ —/ . 1_ 252A ZaQQ
Aol Z > 01101 27 (L @) - [ = (@)™ Ay ) 9,74
Q= zl Q1+Q2:2Q P

2Q)!
< Z Z CS % 'C|Q1|+E+1<x>62|Q1|Q1!(1 + <x>262|77’2)727\Q1||9||Q2\
Q= fl Q1+Q2=2Q L2
x| (1= ()28, p(G 57"

Noticing that

|(1 _ < >2(52A )Z (a+Q2,a )| < Z £<I>252‘L‘|p(a+Q2’a,)|

Psp) 0! L) (B.8'+2L)
Lo+|L|=¢
0 - o o N
< Z m<$>262\L\|p’k7 <€+977> 1—p1] +Q2\<§> I —p1la]
Lo+|L|=¢

% <x>m2*92\ﬁ|<x + y>m’2*P2|5'+2L\ (z:2 + y>62|a+a’+Q2|’
where k = |a 4+ o’ + B+ '] + 2(f1 + £), we obtain

20)!
Aflr < (—C|Q1|+€+1 25210110
' 6%1 QH.%;QQ Q1!Q! (z) 1

(0t e S
Lo+|L|=¢

% <£>m/1*,01\0/| <x>m2*/)2\5|<$ + y)m/2*.02|/3'+21/\ <.1'; T+ y>52|a+0¢'+Q2|.

14 ! e — o loe
T @ (g 4 oyl
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Now we proceed with the estimate for I,. If |y| < 27! (z) we get
|Af]7’9| < Ok+1|p|]~€m’m <€>T1 <x>m+262€<1 + <x>262|n|2)—€<7]>|m1H—mla\7
therefore, using integration by parts and assuming 2¢ > |mq| + p1|a| + 2n,

1] < Rl gy [
4

< ly| > dy.

)
§|y\§7

For |y| > 47(z)% we may write

_ - )%
UREE (RS

Jj=1

and then

n . 5o
/ ; [yl dy < 22‘H/(|yj| P02y, < a0
2 << ey 4

After that
| Lo < CFFHp| ™ (€)™ ().

Finally, we take care of I3. If |y| > 47! (z) we have (z+y) < 5|y|and (z; z+y) < 9]y|.

Hence, for |y| > 47!(z), we may write

‘Afﬁ”ﬂ < C’;+1|p\gl’ml<§>ﬁ <n>\m1|+m\a|<x>mzfp2\ﬁl’y|Imé|+52|a+a/|+252(5+51)

and therefore, choosing ¢, ¢; € Ny satisfying 2¢ > |mq| + p1|la| + 2n and 2¢,(1 — §3) >
|mby| + 02| + | + 2620 + 2n,

k41, m,m’ T ma—p2|B|—dan [m1|+p1|al—2¢
L el AL
" / [l Beloto 4282020 (1=82) g
ly|>4=1(z)
Setting r = 201 (1 — d2) — |m}| — da|a + | — 262¢, we obtain
k+1 m,m’ T ma—pa|B| —2n n(l1—d2)—r
] < GBI ()7 (e [ (o) (a0,
Choosing ¢; such that r > —mg + po|f’| — da]ar + &' + n(1 — d2), we get
] < G (€7 ()™ [ )
= k
Gathering all the previous computations and choosing ¢, ¢; € Nj satisfying

20 = [my| + pr|af + 2n,
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201 (1 — 02) > 2|my| + po| '] + dala + | 4+ 2020 + 2n,

we have
las(, )| < CHp[™ (€)™ (x)™,

where k = | + 8 4 o/ + /| + 2(¢ + ¢1). This concludes the proof. O

Remark 2.20. Let a € C*°(R") such that |0Pa(x)| < Cg(x)™2, for 3 € NI. For each fixed ,

(0 |m2|) (RQn)

we can look at a(x + -) as an amplitude in .A Moreover (cf. Section 6, Chapter 1

of [35])
Os —[e"™a(x +y)] = Os — [e_i”(y_x)a(y)] = a(x).

Theorem 2.15. Let p(x, &, 2/, &) € SGm(gLé and set

pr(r,§) = Os — // e Wz, &+ n,x+y, E)dydn, x,£ € R

Then py, € SG;?(JBZ};), p(x, Dy, 2’ Dy) = pr(x, D,) and

ZZ' p)(x. &z,

J€Ng |al=j

Furthermore, given { € Ny there is o := {y(¢) € Ng such that
pLl7 ™ < Crglpli™.

Proof. First we notice that repeating the ideas in the proof of [35, Lemma 2.3, page 65] we can
conclude that p;, = p as operators.
Applying Lemma 2.6 for « = o/ = 8/ = = 0, we obtain that p;, € SG O”gQ)

Now by Taylor formula we may write

Pttty =3 DO 6ty Ot

|a| <N

L RPE 6 do
0
Integration by parts and Remark 2.20 give

Os — [e_inyna@?p)(% éa T +y, 5)] =0s — [e—inyD;(agap) (l’, 57 T+, f)]
= (g Dap) (2, &, €)
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and
) 1
Os—[e= / (1= 6) " (O2p) (. € + O,z 4y, )6 =
1
Os — [ / (1= )N (01 D0p) (. & + B, x4y, )6,
0

Hence

P, €)= 3 (0D, & .6) + (e, ©),

|| <N
and Lemma 2.6 implies 7y € SGmETZZ) N(p=(02)) O
In order to obtain the same kind of result for the classes SGm 8152) () WE need an
analogous of Lemma 2.6 with a precise estimate of the Gevrey regularity.
Lemma 2.7. Letp € S G;”(g}z )(R4”; A) for some A > 0. For any multi-indices o, o, 3, '

set q = pgg,, and, for 0 € [—1, 1] consider qy as in Lemma 2.6. Then
10207 q0(x, )| < [pl™ (CA") (el (BB 1) ()PPt bl gynmiel — (2.16)

where k = |a+ 0+ o + =(1+ 52p1+52)p+ply U=

as in Lemma 2.6 and C',r are positive constants depending only on p, (5, m,m’, i, v and n.

Proof. Following the ideas presented in the proof of Lemma 2.6 and using standard factorial

inequalities we obtain

lao(2, €)] < [p[2™ (CAFL2 0,2 (o) H (BB (€)™ ()™,

where C' > 0 depends only of i, v, n, mq, k = la+ B+’ + 5| +2(0+¢,) and ¢, {1 are positive
integers satisfying 2¢ > |my| + p1|a| + 2n, and
2f1(1 — 52) Z 2|m'2| + p2|ﬂl| + 52|(1/ + O/| + 252f + 2n.
In particular if we choose
||

= |+ 1
14 {2+2 \J+n+,

1 5
0 = L_ (|m2|+(52€—|— 2|5’|+§|a+a'|)J+n+1,

where |- | stands for the floor function, then we obtain
m,m’ ™\ | o+ [i - v ol\w v T T
g9 . )] < |pl3™ (CAT) 2T a5 g g7 (B161) (€)™ ()™

From the last estimate and (2.14) we get (2.16). O
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As a consequence of Lemma 2.7 we have the following result.

Theorem 2.16. Letp € SG (R*™). Then py, belongs to SG' (" and

052) (psv) 052) (f,7)

z,6) ~ ij(:z:,f) in FSGmT)"gZ ()

jENR
where

=Y a3 Dgp)(w, & 7, €)
|al=j
and [i and U are as in Lemma 2.7.
Theorem 2.16 states that p; has a lower Gevrey regularity than p since i > p and
v > v. However we observe that if p € SGT(%Q) (uwy then D oy pj € FSGmETZQ) () SO
On

by Proposition 2.16 there exists ¢ € SGm m () such that ¢ ~ > p; in FSG 0 52 V()"

the other hand we have p;, ~ » p; in FSG’”E@Q V(i) Hence p;, — ¢ ~ O in FSG’” 0722 ) (i7)

which implies that p;, = ¢+ r, where  belongs to the Gelfand-Shilov space S 51 (R*"). This
means that we can write py, as the sum of a symbol with the same orders and regularity as p plus

a remainder term which has a lower Gevrey regularity but with orders small as we want.

2.5.3 The Friedrichs Part

Fix ¢ € C§°(R™;R) supported on @) = {0 € R" : |o| < 1}, such that g is even,
[ q(0)%do = 1and |02q(0)| < CI"™als, where 1 < s < min{p, v}.

Lemma 2.8. For 7,7 € (0,1) set ' : R® — R given by

F(2,&¢) = q({z)7 (€)= O = ()7, (2.17)

for x,&,C € R™. Then, for any o, 3 € NI, we have

QEF(.60) = @FEF D S Yam (Odssm (@)

M<<|z\ lo]<[8]
x((2)7(€) (¢ = ) q) ()7 (€) T (¢ — €)),
where Yo, and ¢gs.-, satisfy the following estimates:

|8g¢a%/1 (£)| < Cau<§>—\a|+(1—7)lv—v1|—lul7 (2.18)

0% Pp50m (2)] < Clg, () 1PIH =, (2.19)

forevery v € Nj.
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The lemma can be proved by induction on |« + | following the same argument as
in the proof of [35, Lemma 4.1 page 129]. Observing that |y — 71| < |y| < |a| we have
Yooy (€)Dp5y () € SGETIALIBI+TIaD (R27)  Finally we remark that for a = 3 = 0 we have

Varyys = Poyy = 1.

Definition 2.27. Let p € SG™. Let moreover F(x,&, () be defined by (2.17) with T = 7' = %
We set the Friedrichs part of p by

pel6. &) = [ P& O QP .06, o6, R
The following properties can be easily achieved (cf. Theorem 4.3 of [35]).

Proposition 2.21. Let p € SG™ and let pp be its Friedrichs part. For u,v € % (R"), the

following conditions hold:
(i) If p(x,§) is real, then (pru,v) 2 = (u, pro)r2;
(ii) If p(x,&) > 0, then (pru,u)p2 > 0;
(iii) If p(x, &) is purely imaginary, then (ppu,v)r2 = —{u, prpv)r2;
(iv) If Rep(z,&) > 0, then Re (ppu,u)2 > 0.

Theorem 2.17. Let p € SG™(R?") and let pr be its Friedrichs part. Then pry € SG™(R*")
and pr.;, — p € SG™~LD(R?™). Moreover

pru(T,€) = p(2,8) ~ D> qop® )+ Y dapl@,f),

18]=1 lo-+8]>2

where, for |G| =1,

qQo,5(x, &) = Z D p(x,€) Z Z Yoy (§) D157 ()

B1+B2+PBs=p IvI<18] 16]<|B1]
<3 dnsmla) [ @) ()0 0) (o)
16"|<|B2|

With g, 0,5y € SGTIITIPN(R), ¢5,500 € SGOI2D(R?™) and, for o + 3] > 2:

1

53;7%‘04
y o )

B1+B2+P3=p a-ﬁl-/BQ-BS-

XYY U (Omon (@) Y bl
hrI<Il [8]1<|51] [6<B2|
T
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x /Q oI (144) (0)(8 g)(0) dor - 92 DEp(z, €)

With U, Gy € SCHATAFIID R, 65,5000 € SO (RE),

We need the following technical lemma whose proof follows by a simple compactness

argument.

Lemma 2.9. For T € (0, 1) there is C > 0 such that

C7HE) < (E+¢(OT) < C(8),
forevery & € R" and (] < 1.

Proof of Theorem 2.17. From Leibniz formula and Cauchy-Schwartz inequality we get

o elpete s s S i | [leceli i oac|

B1+By+85=

{ [ ot oo p s',o\?dcr

Bi’ﬂ"ﬂ

Now by a change of variables we obtain

n n n ,'
|3§3§/ ,pF(f x| < ()2 ()1 Z é 515!
B+ 4=
| [ neeaine

[/ 05/ 04 F) €, /) HEY b + €)@, ) M€ b €|

(0 + o) do]

=

Applying Lemma 2.8 we obtain

A

L 8

0208 dLpr(&. . N < Y FATATA
Bi+85+85=5"

N[

Z Z WM% 5771(x/)071+6(87+5q)(0)‘2 do

W|<\a\ 61<151]

N

ip(x, (&) ()20 + &) do

/ Z Wﬂév“ﬂ 5771(x/)‘7v1+5(67+5‘])(0)2

M<I0¢

|5\§\62\
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We now observe that by Lemma 2.9
Opipla!, (a')THE) 2o +€)| < Oy (€)™ 'y 1L
Since Yaqy, G315y, € SG'5H-181+15) and Varym Ppyoymn € SaS-1851+'%Y) we obtain

Ioet Lol g =19 g Y| Late
|8aa§' ax’pF(&anM Soaa’6’<§> 2 <£> 2 <£L’> 61+ J; ,

(0,0),(m1,m2)
(1/2,1),(0,1/2)"

prs(m,€) ~ S %(aﬁDﬁpm@,x,@ = palw,€),
154 ) B8

thatis pr € SG Then, by Theorem 2.15 pp,r, € SG{] )5 1) 0.1/2) and

N
which implies that pr;, — > pg € SG(1 /221 1(0)1 /2) for every N € N. To improve this result

|Bl<N
let us study more carefully the above asymptotic expansion. Note that

e = Y g [ #DI@E 0D ODEF (.6 O

B1+B2+PB3 ﬁ
= Z 61‘52'/83' Z Z wﬂ'}"‘/l ¢/816'Y'Yl ) Z wﬂgﬁ/OO('x)
B1+B2+PB3= |“/\<\B\ 8]<|51] 167]<|B2|
<y

x / (D) (&, (€)% () o + £)0™ 4 (97494) (0)(8 g) (o) do.
Q

By Taylor formula we can write

1 1 % T _% |a| a
D2yl (@) do v = 3 W DT g e )
la|l<N '

2

o8 Y R G g e a4 a9

ja]=N 0
Then we get

~ )\al
Dol &) = Z Z 04'51'52'5

B1+B2+B3=p |a|<N 3

X Z Z V91 (§) D169 (T) Z Ppa600()

[vI<181|8]<|B1] [671<|B2]
71y
% / 0_a+’Yl+5+5’8’y+5q<0_)a§’q(0) do - a?Dfdp($’ 5) + T,B,N(:Ea 5)
Q

where

1

N ((&)3(x)~5)N
= Y Y o W

B1+B2+B3=8 |a|=N
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< 3N Usn(O0pi5m (@) D bnsonle

I~I1<181 |8]<| 81| [6"1<|B2]
1<y

. / IR ()0 () / (L= 0108 D) (2, 006 ()b +€) oo
Q 0
(2.20)

Using Lemma 2.9 we get that rg x belongs to SGm—3 (VHB)m2=5(81+N) | whereas

1

5(%7%\04
3 ((§)2(z)"2)

qaﬁ(xvf): ERERER,
B1+Ba2+B3=P ! 81! 52! 33!
X Z Z ¢5771(§)¢B16771 Z ¢526’00
IvI<IBl |6]<|B1] 6/|<|B2]
n<~y

< [ g g g(0)0 o(0) do - 5 Db, 6)
Q
belongs to SG(ml_%(‘a|+|ﬂ‘)am2_%(‘ﬁ|+|a‘)). Hence
" o € SGmTEED),
lo+Bl=j
Then we can find a symbol ¢(z, £) such that
£E)~ D Y daplr6).
J€Ng |a+8|=j
Since, for every NV € N,

m—g5 (N+[BLN+IB]) rmy2n
anﬁxf GSG(%S ©.1) (R?"),

lo| <N
we obtain that pr;, — ¢t € . (R*"), and therefore
prL(z,§) ~ Z Z Go5(T, &)
j€No |a+8|=j
To finish the proof, let us analyze more carefully the functions ¢, s when |a + 3] < 1.

First we notice that if o« = § = 0 we have qo (2, ) = p(z,§). If |a| =1and § =0,

la la|

quol, €) = LT / 0%q(0)2do = 0,

al
because 0%¢*(0) is an odd function. In the case || = 0 and |3] = 1 we have

QO,,B(JBS) = Z Df‘*p(@", 6) Z Z ¢ﬁ'Y'Yl (£)¢ﬁ15771 (x)

B1+P2+B3=p IvI<I8] 16]<|B1]
1<l
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% 3 bpenla) / I (70 4)(0)(07 ) Q).

|6"|<1B2]

If |v1| < |7| in the above formula, we have 7; = 0 and |y| = 1 and, since ¢ is even,

/ ¢ (@) (OO () =0, j=1,....n.

Therefore

QO,B(mvf) = Z D£3p(l’,f) Z Z wﬁ'y'y(f)¢ﬁ15'w(x)

B1+P2+P3=04 [vI<18] 16]<81]
< S Gnmle) / ¢ (@7H0) ()8 g)(C)dC,
|67]<|B2]

and by Lemma 2.8 gy 5 € SG™ (Y (R?"). Hence

pru(r,€) = p(x,€) ~ Y dop(®. )+ D dasl(w,§)

|B1=1 lo+B]>2
and in particular that pr.;, — p € SG™~(LD(R?), O
Proposition 2.21 and Theorem 2.17 imply the well known sharp Garding inequality.
Theorem 2.18. Let p € SG™(R?"). If Rep(x,&) > 0, then

Re (p('ru D)U7U)L2 > _CHU’HZ%( u e ‘y(Rn%

m—(1,1))

for some positive constant C.

Proof. Setting ¢ = p — pr, € SG™~ (1 (R?") and recalling that pr and py;, define the same

operator, we may write, by (iv) of Proposition 2.21:
Re (p(z, D)u,u)r2 = Re (q(x, D)u,u)r2 + Re (ppu,u)r2 > Re (q(z, D)u,u)pz.
Now observe that for any s = (s1, 55) € R?

[(q(z, D)u, u) 2] = [((2)*(Da)* g, D)u, (2)7% (D)~ ) 12]

< llg(z, D)ul

ullg— < Cllul

Hs Hs+m7(1,1)||u||H75.

Choosing s = [(1,1) — m] we conclude that

Re (p(x, D)u,u)z2: > —Cllull’

HEm—(1)°
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In order to study the Friedrichs part of symbols satisfying Gevrey estimates, we will
need the following version of the Faa di Bruno formula. Given smooth functions g : R" — RP,
g=1(91,---,9p),f :RP - Randy € Nj — {0} we have

14

=3 i@ e I L; — g } ey

j=11i=1
where the sum is taken over all ¢ € N, all sets {J1, ..., d,} of ¢ distinct elements of Nj — {0}
and all (ki,...,k;) € (N§ —{0}), such that

y4
Y= Z | K5[0
s=1

It is possible to show that there is a constant C' > 0 such that

Bt )]
Z( lkl!...kg! - <Oy eN— {0},

and |k + ... + k|l < ..., kg are as in(2.21). For a proof of

these assertions we refer to Proposition 4.3 (pg 9), Corollary 4.5 (pg 11) and Lemma 4.8 (pg
12) of [7].
Letp € SGZZ . We already know that pr € SG

,(m1,mz2)

) (0.3)
a precise information about the Gevrey regularity of pp. By Faa di Bruno formula,

. Now we want to obtain

k!

PO - ) =2 Y

Ok, ke
4 k] n . ks
< (@) (16) H ¢ - £U I [t -en
= Do (B Hheq) ((€) 72 ()3 (¢ — €)
Z,k;..,ke fal g% 51'52

¢ n kj;
<o [ J'H[ %—@-)}]
_ B!
- Y Y X mem

[,kl ..... k@ o 514’5 /8 4 k/ ~~~~~ ké/

(
I [ & Ha) (e —m] B

j'=1i=1

X Z H 099 (x

01+---+Uz=ﬂ2 =1
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hence
0202q((€) "2 (2)2 (¢ — €)) =
‘ e,klz,.;,kg ﬁ1§5B1'/82
‘ / 1 1
< D ;wﬂ—lkg,v@(k” RO ) (€) 72 ()2 (C =€)
O R K,

D=

I [ ©)3 @) ] " [l bt - 0]

7'=14=1
B! f 31kl 5
—_— Uj k % 09 —¢
8 Z_ ol .. op! H@m H szl{a &) — 05i0; ()
o1+4...+0¢=0F2 j=1

Noticing that ()2 (€)~2|¢ — £| < 1 on the support of ¢, we have

\al

102024((€) 2 ()3 (¢ — €))] < ClsH (1Bl (z) 5 ~1Pl(g) -

We now apply the above inequality to estimate the derivatives of F'. We have

alB!

0Z1'51 'OZ2'52

0200F (2,6,01 < >
a]tag=a

B1+B1=p
«a s —n_lol Ia
< Ol alpl)*(€) a2 ()it AL

Finally we proceed with the estimates for pr. Denoting
Que ={CeR™: (2)2()2[¢ =& <1}, 2, R,

we obtain

1
2

A ,
0%0% o , £ ¢ -_— OLONF (&, ¢ 2ch]
x[/Q

1

07 (2", Q)0 O F (! &C)WC]

zl5£/
p! ol 1)
< Z /81‘62'/63'0(|]O;+a+61+62|+2(O[!O[/!/81!6§!>S<§> 2<§/> :
B1+B2+PB2=p

x (z)zlote’l= 1+ [ / (€)% (2')2 dc] [ /Q <§’>—3<x’>’5|6£ép<x’,o|2d<]

ol g

)3 _ Bl B2 101 3181) ¢ (€)

- 183,13, —9S
B1+B2+PB2=p Bl '52'53.

letell ;44| : Bho(z (23 EVS ¢+ €2 :
< (2) [/qddc} [/ O p(a’, ') e ¢ 1 €)] dc] |

I¢I<1

63

0P (€) 710 (2) §10220q((6) 2 ()2 (¢ — ©)

(2.22)
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Using Lemma 2.9 and recalling that s < min{u, v},

’
lo [

020 0 pr| < Clote I (@l 1y g1 (yma P sl ) =5 (erym =,

which means pp € 5G4 m2) ) any,

(3:1),(0,3):(n,
Now we discuss the asymptotic expansion of pr, when p € S G& V) In the following

we will use the notation of the proof of Theorem 2.17. We have
pr(w,§) ~ Zpﬁ 2,€) in FSG{ 1) 0.1y

and by Lemma 2.7 and Taylor formula we may write

N

35 (g)me—lo -5

ag PFL . Z p,B T § O|9+0|+2N+18!ﬁ0_!17N!,&+17—1<§>m1———
161<N
(2.23)

forevery 0,0 € NJ, z,£ € R" and N € N, where ji = %u + %y and = v + 2. We also have,
forevery f € Njand N € N,
=) Gap(@, ) = ran(x,8).
ol <N
where 75 x 18 given as in (2.20).
Performing the change of variables o = (¢ — &)(x)2(£)~2, we obtain
)N

7’5,1\/(1’75): Z Z ! W

B1+B2+B3= |a|= N

X Y (©dgam () D Gl

[v1<18116]<|B1] [6"|<]B2|
1<y

(SIS

l\)\»—t
~—

x /Q (¢ — ) () HE) Hym o +agv04((¢ — €)() HE) )0 a((C — E)(a) (€)™

| / (1 6)V =1 DEp)(x, 0 + (1 — 0)€) db(x) (€) 3 dc.

By Lemma 2.8 we get

1

T D DA il [ @0 P 000

Br-tBrtBs=B o= B11B2155!
1
< [ =07 @ D) ¢ + (1 - 0)¢) doc
0

Now, there exists K > 0 such that

K& <00+ (1-0)¢) S K(€), 0] <1, € Qug,z.E ER™.
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Then using (2.22), since s < min{y, v}, we obtain
|07 g (0, €)] < ORI Ly g1 gt et

(g5 et (8 o
Qu.e

=Jio1<1do
< CY|7+§|+2(N+|B|)+1,.}/!,uéluﬁ!erufl]\[!Mfl<£>mlf|’y|fN_"Tlﬁ| <x>m27|6\7N"'Tw7
(2.24)

forevery 7,0 € N{, z,£ € R” and N € N. Now by (2.23) and (2.24), we get

prL(z,§) ~ Z Z Go5(7, ) 1nFSG(21)(0 )"

JE€Ng |a+B|=j

To improve the above asymptotic expansion, note that for j > 2

] v, v— mo— _J mq— _J
000, Z o p(1,€)| < CPHF2FL 1Y juuty =1 gyma=lol=5 (ymi=hl=5
la+Bl=j

and

0705 D dapla, )] < CIUFAT gl juirkv =t gyma =t gyma—hal =,
la+8]=1

for every v,0 € N, z, £ € R", hence

Z Z Gap(7,§) € F(kMﬂSG?(Z,v)’

J€No |a+8]=5

where ko = lo = 0, k1 = €, = 1, k; = {; = §. Then there exists ¢ € SG{] (R?") such that

(1)
,6) ~ ) das(@,€) in F,e)SC,).
a?ﬂ
Repeating the argument at the end of Subection 2.5.2 we can write ppr(x,&) = q(z,€) +
r(z, ), where r belongs to the Gelfand-Shilov space Sj+5—1(R**). Summing up we obtain the

following result.

Theorem 2.19. Letp € SGm and pr be its Friedrichs part. Then we can write pr, = q+ 7,

withr € S;15-1(R*") and

Q(xa 5) ~ p(I, 6) + Z %ﬁ(%f) + Z qaﬁ(ajvf) in F(kj7éj)SG?L,V)
|Bl=1 lot8|>2
where kg = by = 0, ky = {; = 1, k;j = {; = L. Moreover, the symbols qo 3 € SG {, 1)(R2”)
\O<+ﬁ|
and g, 3 € SG (1) (1’1)(R2”) are the same as in Theorem 2.17.

(ws)
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2.6 Spectral Invariance for SG’, (R*")—Pseudodifferential Op-
erators

Let p € SGY0(R?*"), then we know that p(x, D) extends to a bounded operator on
L*(R™). Suppose that p(x, D) : L*(R™) — L*(R") is bijective. The question is to determine
whether or not the inverse {p(x, D)} ! is also an SG operator of order (0,0). This is known as
the spectral invariance problem and it has an affirmative answer, see [17].

Now assume that p is also Gevrey regular, that is p € SG?;’?, (R*"), and p(z, D) :

L*(R™) — L*(R™) is bijective. By the initial discussion we know that p~! is an SG% pseu-
dodifferential operator, but what can we say about its Gevrey regularity? Following the ideas
presented in [17], we will prove that the symbol of p~! satisfies Gevrey estimates, whenever so
does the symbol p(z, ).

We start recalling the definition of Fredholm operators.

Definition 2.28. Let X,Y be Banach spaces and T' : X — Y be a bounded linear operator.

We say that T’ is Fredholm whenever the following conditions are satisfied
(i) the range R(T) of T is a closed subspace of Y';
(ii) the kernel N(T) of T is finite dimensional;
(iii) the kernel N(T™*) of the adjoint T* is finite dimensional.
The index of a Fredholm operator T is defined by i(T) = dimN(T') — dimN (T™*).
Theorems 2.20, 2.21, 2.22 here below can be found in Chapters 20 and 21 of [46].

Theorem 2.20. [Atkinson] Let X,Y separable Hilbert spaces. Then a bounded operator A :
X — Y is Fredholm if and only if there exist B : Y — X bounded, K; : X — Y and

Ky 1Y — X compact operators such that
BA =1y — K, AB =1y — K.

Theorem 2.21. Let X,Y, Z be separable Hilbert spaces and let A : X — Y, B:Y — Z be

Fredholm operators. Then
(i) BoA: X — Zis Fredholm and i(BA) = i(B) + i(A);

(i) Y = N(A) @ R(A).
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Remark 2.21. Let X be a Hilbert space and K : X — X a compact operator. Then I — K is
Fredholm and i(I — K) = 0.

Theorem 2.22. Let p € SG™™2(R*") such that p(x, D) : HSTmus2tm2(Rr) — fmamz (R7)

is Fredholm for some sy, sy € R. Then p is SG-elliptic, that is there exist C', R > 0 such that

p(z, §)| = CE)™ (x)™  for (z,§) € Qf,
where Q% = {(z,£) € R* : (£) > R or (x) > R}.

Theorem 2.23. Let p € SGJ,™2(R*™) be SG-elliptic. Then there is ¢ € SG,7 " (R*")

such that
p(x,D)oq(z,D) =I+r(x, D),  q(x,D)op(r,D)=1+ryz,D),
where 11,79 € 81 (R?™).
Proof. See Theorem 6.3.16 of [39]. ]
In order to prove the main result of this section, we need the following technical lemma.

Lemma 2.10. Let A : L*(R") — L*(R") be bounded operator such that A and A* map L*(R")
into 3.,.(R™) continuously. Then the Schwartz kernel of A belongs to 3, (R*").

Proof. Since 3, (R") C L?(R") is a nuclear Fréchet space, (cf. [18]), by Propositions 2.1.7
and 2.1.8 of [24], we have that A is defined by a kernel H(x,y) and we have the following

representations

H(x,y) = > a;fi(@)gi(y) = Y a;f3(2)3;(),

J€No J€No
where a;,d; € C. y(2),g;(5) € Z,(R"), f;(2), 35(y) € LAR"), Y, lay| < o0, ¥, || < o,
f;(x), g;(y) converge to zero in ¥,.(R™) and f;(x), §;(y) converge to zero in L?(R™).
We now use the following characterization: H(z,y) € %,(R?") if and only if

s nPH(E,n)
Clal+1BlgIr GIr
L2

x®y’H(x,y)

C|a|+\6|a!r6!r Lo < o0

<oo and  sup
a,BeENy

sup
a,BeNy

for every C' > 0, and prove that both the latter conditions hold. Note that

el = [[|2

a; fi(@)y’g;(y)| dzdy

J€Np
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1
// Za fi(z a;y 9 () d:vdy
JENp
/Z a2 f;(a de/z a2y g;(y) | dy
j€Np j€Ng
= > agllfillze D lasllly? ;1 z-
jENy j€Ng
Since g; converges to zero in ¥, (R"), we have
B B
B, , — Y gj(y) C«|,8\B‘r < Clﬁ‘ﬁlr su ) gj(y)
- p )
sl = |5 | sup |40
for every C > 0, and therefore
2 0
B A ¥y 9;\y 18| g1
Iy H o) 22 < (Z |a]|) sup |12 sup 'Cw | e
J€No
Hence
H(x,y) (y)"H(z,y)
) Yy ) Y
sup ||T=mo—|| < oo <= sup ||[T=ro—| < oo,
661\% ‘ Cleiplr ‘LQ Nego CNNI" ’ 2

for every C' > 0. Using the representation 3" @, f;(2)§; (i), analogously we obtain

()" H(z,y)
CNNI

v H(z,y)

Sl Clolar

aeNg

<00 <=~ sup
L2 NeNg

< 00,
L2

for every C' > 0.
Now note that, for every N € Ny, z,y € R",

()Y = (@2 + P> < (@) + @)Y <2V (@)Y + ()™).
Therefore, for every C' > 0,
(x, )" H(z,y) ‘ ()" H(z,y) H (y)" H (x,y)
CVNI || = | e | T erNe |
where C; = (271C)". Hence, for every C' > 0,
NH
o |Gt <

Since the Fourier transform defines an isomorphism on L?(R?*") and on X, (R*"),

have

Hen) =Y o550 = 3 a:f,()5,0),

Jj€No J€No

68

we
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where a;,; € C, f;(€),35(n) € Z,(R"), f5(€),7;(n) € L*(R"), 32, lay| < o0, 32, || < o0,
fj (€),9j(n) converge to zero in X, (R") and fj(g)jj (n) converge to zero in L*(R™). In an

analogous manner as before we get, for every C' > 0,

(€, mNH(En)

CNNI" <00

sup
NeNy

L2

Hence H(x,y) € X, (R*™). O

Theorem 2.24. Let p € SGVY(R*") such that p(x, D) : L*(R") — L*(R") is bijective. Then
{p(z,D)}~': L2(R") — L2(R") is a pseudodifferential operator given by a symbol p = q + k
where q € SG)) (R*") and k € ¥, (R>") for every r > i+ v — 1.

Proof. Since p(x, D) : L?(R") — L?*(R™) is bijective, then p(x, D) is Fredholm and
i(p(z, D)) = dimN (p(z, D)) — dimN (p'(x, D)) = 0.

Therefore by Theorem 2.22 p(z, §) is SG-elliptic and by Theorem 2.23 there is ¢ € SG},(R*")

such that
q(x,D)op(x,D)=1+r(x,D), p(z,D)oq(x,D) =1+ s(z,D),

for some r, s € S,4,—1(R?*"). In particular r(z; D), s(z, D) are compact operators on L*(R™).

By Theorem 2.20 ¢(z, D) is a Fredholm operator and we have
i(q(z, D)) = i(q(x, D)) +i(p(x, D)) = i(q(z, D) o p(x, D)) = i(I + r(z, D)) = 0.

Note that N(g(z, D)) and N(¢'(x, D)) are subspaces of S,1,_1(R"). Indeed, take
f € N(q)and g € N(¢'), then

0=p(z,D)oq(z,D)f = (I + s(z,D))f = f=—s(x,D)f,

0 :pt(x7 D) © qt(xv D)g = (Q(x7D) op(,r,D))tg = (I—l—T(Z‘,D))tg = 9= —Tt(I,D)g.

Since L*(R™) is a separable Hilbert space and N (q(x, D)) is closed, we have the fol-

lowing decompositions
L*=N(g)®N(q)",  L*=N(¢")® Rr2(q),

where R;:2(q) denotes the range of ¢(z, D) as an operator on L*(R™).
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Consider the projection 7 : L? — N(q) of L? onto N(gq) with null space N(¢)*, an
linear isomorphism F : N(q) — N(q') and i : N(q') — L? the inclusion. Set Q@ =i o F o 7.
Then @ : L? — L? is bounded and its image is contained in N (¢") C S,4,—1. It is not difficult
to see that Q* = i o F™* o my(,t), Where i is the inclusion of N(q) into L? and 7y, is the
orthogonal projection of L? onto N(g). Since S,.+,—1 C 3, then by Lemma 2.10, ) is given
by a kernel in Y.,

We will now show that ¢ + () is a bijective parametrix of p. Indeed, let u = u; + uy
in N(q) ® N(¢") such that (¢ + Q)u = 0. Then 0 = qugs + (i o F)u; € Rr2(q) ® N(q").
Hence qus = 0 and 7 o F'u; = 0 which implies that « = 0. In order to prove that () is surjective,
consider f = fi+ fo € Rr2(q) ®N(q"). There exist u; € L? and uy € N(q) such that qu; = f;
and Fuy = fo. Now write u; = v + v9 € N(q) ® N(q)*. Then q(u;) = q(v2) and therefore
(¢ + Q)(vg +u2) = fi1 + fo = f. Finally notice that

p(x,D)o(q(x,D)+Q)=1I+s+p(x,D)oQ =1+ 5'(x,D),

(q(z, D)+ Q)op(x,D)=1+r+Qop(x,D)=1+1r"(x,D),

where ', s’ € 3, (R*").
Now set § = ¢ + Q. Therefore Gop = I + 1’ : L?> — L? is bijective. Define
k=—(+7r)"tor' Then (I +1')(I+k)=1TIand k= —r"—r'k. Observe that

kt — —{T’}t o kt{r’}t — —{T’}t + {T”}t{([ _i_r/)fl}t{r/}t'

Hence k, k' map L? into 3, and by Lemma 2.10 we have that & is given by a kernel in ¥, (R?").

To finish the proof, it is enough to notice that

plogt=(Gop) ' =U+r)"'=I+k = p'=(+k)oq
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Chapter 3

Cauchy Problem for 3—Evolution
Operators With Data in Gevrey Type

Spaces

3.1 Introduction and Main Result

Let us consider for (¢, x) € [0,T] x R the following class of 3— evolution pseudodif-

ferential operators
P(t,x, Dy, D) = Dy + as(t, D) + as(t, z, D) + a1 (t, z, D) + ao(t, z, D), (3.1)

where a3(t, £) has order 3, a3(t, €) is real-valued and (¢, x, D) has order j (with respect to &),
J = 0,1,2. We are interested in the Cauchy Problem associated with the operator P with data

in suitable Gevrey classes. The main result of this chapter reads as follows.

Theorem 3.1. Let so > 1 and o € (3,1) such that sy < ﬁ Let P(t,x, Dy, D,) be an

operator like in (3.1) satisfying the following assumptions:
(i) as(t,&) € C([0,T], S3(R?)) and there exist Cy,, Ry, > 0 such that

0caz(t,€)| > Coy€®,  t €[0,T), [€] > Ryy;

(ii) as(t,z,&) € C([0,T); S3, (R?)) and there is C,, > 0 such that

1,50

080 az(t, 2, €)| < CoF Tl alBro(€)*™(x) ™", t€[0,T], 2,6 €R, o, f € Ny
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(iii) ay(t,z,€) € C([0,T); S, (R)) and there exists C,, > 0 such that

[Tmay(t,2,€)| < Coy (E)(x) 72, t€[0,T], 2,6 €R;

(iv) ao(t,z,€) € C([0,T], Y, (R?)).

1,80

Let 0 > 1 such that sy < 6 < 2(1—1_0) and let f € C([0,T]; Hy(R)) and g € H}y(IR), where

m,p € Rand p > 0. Then the Cauchy problem

P(t,z, Dy, D)u(t,z) = f(t,x), (t,z) €[0,T] xR, 32)

uw(0,z) = g(z), = €R,

admits a unique solution u € C ([0, T]; H}y(R)) for some p < p; moreover the solution satisfies

)

the following energy estimate

¢
(Ol < € (o, + [ 170z 7). (3
forallt € [0,T] and for some C > 0.

Remark 3.1. Theorem 3.1 implies that the Cauchy Problem (3.2) is well-posed in the class

He(R) = | Hj(R).

p>0

Note that H°(R) € GY(R) (cf. Proposition 2.11).

Remark 3.2. We notice that the solution u exhibits a loss of regularity with respect to the initial
data in the sense that it belongs to HZ, for some p < p. Moreover, the decay rate o of the
coefficients imposes restrictions on the values of 0 for which the Cauchy problem (3.2) is well-
posed. Such phenomena are typical of this type of problems and they appear also in the papers
[14, 33].

Remark 3.3. Let us make some comments on the decay assumptions (iii) and (iv) in Theorem
3.1. In the Schrédinger case (p = 2), we know from [33] that the decay condition (x)~° on
the imaginary part of the subleader coefficient, o € (0,1), leads to Gevrey well-posedness
for sg < 0 < 1/(1 — o). Here we prove that, for the 3—evolution case, the decay condition
as(t,x) ~ (x)~7, o € (1/2,1), together with a weaker decay assumption on the (lower order)
term Ima, (t, x) ~ (x)~7/2 is sufficient to get Gevrey well-posedness for 0 € [so, {2(1 — o)} 71).

Comparing these results, we point out that here we need to assume that also Reay ~ (x)~7 in
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order to control the term appearing in (3.25). It is not clear at this moment if this assumption
is only technical or it is a necessary condition to obtain our result. Another natural question
arising is the following: what happens for o € (0,1/2]? At the moment we cannot prove Gevrey

well-posedness for small o, nor provide a counterexample.

Remark 3.4. In this remark, we describe a model class of linear differential operators that fits

in the hypothesis of Theorem 3.1.

Let so > 1and o € (%, 1) such that so < ﬁ Now consider the operator
P(t,x, Dy, D,) = Dy + as(t) D3 + as(t, z) D2 + a1 (t, z) D}, + ao(t, x), (3.4)
where the coefficients satisfy
(i) as(t) is a continuous real-valued function which never vanishes;

(ii) as(t,x) € C([0,T]; G*(R)) and there exists C,, > 0 such that

|07 az(t, 2)| < CLF B (2) ™7

(iii) a1(t,z) € C([0,T]; G*(R?)) and there exists C,, such that

(SIS

[Imay(t, x)| < Ca, ()2

(iv) ao(t,z) € C([0, T]; G**(R)).

Then P is under the hypothesis of Theorem 3.1.

3.2 Strategy of the Proof

To prove Theorem 3.1 we need to perform a suitable change of variable. In fact, if we
set

2
iP =0, +ias(t, D) + Y _ia;(t,x, D) = 0, + ias(t, D) + A(t,z, D),

=0
since a3(t, &) is real-valued, we have
SOl = 2Re @), u(t)s

= 2Re (iPu(t), u(t)) 2 — 2Re (ias(t, D)u(t), u(t)) 2 — 2Re (Au(t), u(t)) 2

< [[Pu)l|Z2 + lu@®)lIZe — (A + Au(t), u(t)) e
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However, A + A* is an operator of order 2, so we cannot derive an energy inequality in >
from the estimate above. The idea is then to conjugate the operator ¢ P by a suitable invertible

pseudodifferential operator ¢ (¢, z, D) with a symbol of the form e**#¢) in order to obtain
(iP)y = e o (iP) o {*} ™' = 0, +ias(t, D) + {Aon +A1p + Aé,A +roa}(t,x, D),

where A; x has symbol a;(t,z,&) of order j but with Rea;, > 0, for j = %, 1,2, and
roa(t,x, D) has symbol 7 (¢, x, D) of order zero. In this way, applying Fefferman-Phong
inequality to Aj s (see [20] ) and sharp Gérding inequality to A; , and A 1A (see Theorem

1.7.15 of [39]), we obtain the estimate from below
Re ({Azn + Aia + As pJo(t), v(t)) 12 = —cllo(t)]172,
and therefore for the solution v of the Cauchy problem associated to the operator Py we get
d 2 . 2 2
21022 < CEP) vz + [l(B)I72).

Gronwall inequality then gives the desired energy estimate for the conjugated operator (i P)x.
By standard arguments in the energy method, we then obtain that the Cauchy problem associated
with Py is well-posed in any Sobolev space H™(RR).

Finally, we turn back to our original Cauchy problem (3.2). The problem (3.2) is in
fact equivalent to

Pu(t, Dy, Do)o(t, 2) = (b2, D) f(tw), () € [0,T] x R, s

v(0,7) = (0,7, D,)g(z), x€R,
in the sense that if u solves (3.2) then v = e™u solves (3.5), and if v solves (3.5) then u =
{e*}~1v solves (3.2). In this step, the continuous mapping properties of e* and {e"}~* will
play an important role.

The operator e* will be a pseudodifferential operator (of infinite order) with symbol

679 and the function A(t, z, &) will be of the form
At 2,€) = k(6)(€)h + Aa(,8) + Mi(z, ) = k()(€)] + Mz, €), t€[0,T], 2, €R,

where A = X\ + A € S27(R2), k € C'([0,T);R) is a positive non-increasing function to
be chosen later on and (§)), := /h? + &2 with h > 1 a large parameter. The replacement of

(¢) with (£), is useful in several parts of the proof (for instance, to obtain the invertibility of
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the operator e*(¢, z, D)) and does not change the symbol classes (cf. Remark 3.5). Now we
briefly explain the main role of each part of the change of variables. The transformation with
Ao will change the terms of order 2 into the sum of a positive operator of the same order plus a
remainder of order 1; the transformation with \; will not change the terms of order 2, but it will
turn the terms of order 1 into the sum of a positive operator plus a remainder of order less than
1/6. Finally, the transformation with k& will correct this remainder term. We also observe that
since 2(1 — o) < 1/6 the leading part is k(t)(f)é, hence the inverse of (¢, z, D) possesses
regularizing properties with respect to the spaces H)7;, because k(t) has positive sign.

The precise definitions of A, and A\; will be given in Section 3.3. Since A admits an
algebraic growth in the ¢ variable, then e(“:*¢) presents an exponential growth. This is one of

the reasons for which we need pseudodifferential operators of infinite order.

Remark 3.5. It is not difficult to conclude that
O (e)m| < Clelale)y T € e R a e N,

where C,,, is a positive constant independent of h.
Now let us consider the class of symbols S,Z’fW(RQ”) obtained replacing the weight (§)

by (§)n, that is, p € S}, , if there exists C' > 0 such that
0200p(x,©)] < Pl p (0, f € Ny, & € R

Since h > 1, we have
(&) < (&) < h(), EeR™

Hence we may conclude that S|, (R*") = S}

i (R?™) with equivalent topologies. Analogous

considerations for all the other classes of symbols treated in Chapter 2.

We also remark that (£) and (&)}, are asymptotically equivalent in the sense

m @— lim @:1.

T T e )

Hence, for any € > 0, there exists Ry, . > 0 such that

(En < (L+e)§), 6] = Rne.

3.3 Definition and Properties of \;(x, &) and A\ (z, &)

For M,, M, > 0 to be chosen, we define

ot =M () [0 () a9 R, 66
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nie = (F) @it [t () a woer, 6
h
where
07 g S ]-7 17 S l?
w(é) = ) s 4 =2
—sgn(agag(t,f)), |£| > Ra37 07 |y| Z 1a

02w (&) < Cottalr, [0y (y)] < Cg“ﬁ!”, for some 1 > 1 which we can take arbitrarly close
to 1. Note that (y) < (£)2 on the support of 1({y)(¢),?) and v/2h < (€), < (R,,)h on the
support of w’(h~1€). Note also that thanks to the assumption (7) in Theorem 3.1, the function
w 1s well defined.

We have the following result for A\y(z, £).
Lemma 3.1. Let \y(x, &) be defined in (3.6). Then
(i) 108 ho(, €)] < C (€)™, fora = 0;
(ii) |08 Xa(,€)] < O alm (), *(x)' =7, for o > 0;
(iii) [0809a(x, &) < O alnBI(€) (@)=Y, fora > 0,8 > 1,
where C' > 0 is independent of h > 1. In particular, Ms(z, &) € S~ (R2) N SGH'(R?).

Proof. We denote by y¢(z) the characteristic function of the set {x € R : (z) < (£)7}. Now

note that

] min{|z|,(£)7}
Dol €)| < M, / ()~ xe(y)dy = / (y)~dy,
0 0

hence

M2 . -0 -0
Ao, ) < 7 min{(€);"7, )~}

o () [ s ()

@ ( ) \ e | e )

> T ey

|
Y1ty =2 n ’YJ v=1

For o« > 1 we have

ol

\8?)\2(:[,5)] < M, Z

a1tas=o

|
.
SIS

- 061!062!

al1tas=a

() @)‘
g <<£>i
;!

Oél!CkQ!

>/ o

a2

3

=1
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a!
<M ) Ol anl(€)° (R, )
061!042!
al1tas=a

. a
x O laglt () /0 Xe(y){y) " dy

||
< MO al(e); / Yely){y)~dy

My

<
—1l1—0

CEER% al”(€), “ min{(§) 2(1—0) () 170}.

For o > 0 and 5 > 1 we have

0£0I N (2, ) < My Y al (5 —1)!

we ()] 102 (01

e (ieg)

ol BBy
a)tag=a
P1+B2=p~1
al (6—1)! _ .
< M. i Ca1+1 K R, aq a1cvﬁl | o—pB1
— 2 algza 052! /81'/82| w Oél < 3> <£>h /81 <I>
B1+B2=p—-1
axtBa |q)(7) (ﬂ)‘ j
(GH as! B! A " -2
SPVESI) PRI SCIPARN S —_ L . Rt
e 7! i ry=ag /71./\1. . ’}/j.)\j. it

A1+ A =6

! —1)!
M 3 T O R 5 O )

a1+a2:a

B1+p2=p—1
x O agl gyl () 7€),

< MyCytli alt(8 — 1)) =0~ ),

For A\ (z, &) we have:
Lemma 3.2. Let \i(z, &) be defined in (3.7). Then
(i) 108\ (2, )| < O al(€), 7% for a > 0;
(ii) |0g (2, )| < CFFlal(€), '~ (x)' 2, for a > 0;
(iii) |9 M (z,€)] < C3Flal(€)(x)' 7, for a > 0;
(iv) [0 (w, €)| < O ol gI(e) () =20, fora > 0,8 > 1;
(v) 08091 (2, )| < O alnpi(€) (@)=Y, fora > 0,8 > 1,

where C' > 0 is independent of h > 1. Particularly )\, € S})~°(R*) N .SG' 7 (R?).
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Proof. The demonstration of this result is quite similar to the proof of Lemma 3.1. For this

reason, we will omit it. ]

Since we need to consider the symbols e*2(®¢) and A, (x, £), the two next results will

play an important role.
Proposition 3.1. Let s > 1. Then:
(i) MNxz,€) € SE (R?) implies %) € S (R?);
(i) A(z,€) € S (R2) implies X6 € SGO(R2);
(iii) A(z,€) € SG; (R2) implies X9 € SG0(R?).

Proof. Considering that the proofs of (i), (ii) and (i7) are very similar, we only focus in (7).

For |o + | > 1, Faa di Bruno formula gives

(By2) A(x,€) i PRCAI) alB! J 5
Oy MNP = E E — | | 02Ol Nz, €).
(,€) 1l 153,41 141 § "x ’
= VE a1+ o= 041.61. RN Oéj.ﬁj. 1
B1+..+8;=0

Thus, from standard factorial inequalities we get

o 98 A(@.€) la+B]+1 —le| JA(x,6) YA
0goler=9) < C alt Bl (g) Tl A=) Y = T

Jj=1

Hence,

0208 NB| < GlatBI+1 g1 g () —lal elal

1
Proposition 3.2. Let p,m € R and let s, ;n > 1 with s > 2 — 1. Let A € S; (R?). Then:

(i) if K > s, then the operator e™P) is continuous from H",(R) into H' 5. (R) for every

6 > 0;

(ii) if k = s, then the operator e*") is continuous from H'',(R) into H 5. (R) for every

0> C(A) = sup{A(z,€) /()" : (,6) e R?}.
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Proof. Consider ¢(¢) € G*(R) a cut-off function such that, for a large positive constant K,
o(&) = 1for [€] < K/2,¢(€) =0for || > K and 0 < ¢(§) < 1 forevery £ € R. We split the

symbol e*#¢) ag

AP = (€)M 4 (1 = ¢(€))eX ™) = an(@, ) + az(x, €). (3-8)

Since ¢ has compact support, we have in particular a,(z,§) € Sg. On the other hand, given
any § > 0 and choosing K large enough, since k£ > s we may write |\(x, £)[(£)~'/* < § on the

support of ay(z, £). Hence we obtain

ax(z, &) = 9" (1 — g(¢))eMeO -0

with (1—¢(€))e*@8 =5 of order 0 because A(x, £)—8(£)Y/* < 0 on the support of (1—¢()).
Thus, (4.8) becomes

A8 = (z,€) + 2© v as(z,§),

with a; and as of order 0. Since by Theorem 2.8 the operators a(x, D) and ay(z, D) map
continuously H 7 into itself, then we obtain (7). The proof of (ii) follows a similar argument.

[]

3.4 Invertibility of e*“P)  A(x, &) = (Mo + A1) (z, &)
In this section we construct the inverse of the operator e (x D) where

]\(:L'7£):)‘2(x75)+)‘1(x7€)7 {L‘,§€Rn7

and we prove that the inverse acts continuously on Gevrey Sobolev spaces. By Lemmas 3.1

and 3.2 we have A(z, £) € SG2*" " (R2) N 5207 (R?). Therefore ¢A@€) ¢ SGZ’AOL (R*H) N
1

Se (R2), see Proposition 3.1. To construct the inverse of ¢*(z, D) we need to use the 2
2(1—0)

adjoint of e~ (x D) (cf. [6, 33, 34]), defined as the operator given by the amplitude e —A.Q),

that is,
{e_[\(x, D)} u(x) = // ei(x_y)ge_’i(y’g)u(y) dyd¢, xe€R. (3.9)

Assuming ;o > 1 suchthat 1/(1 —o) > 2u— 1, by results from calculus, we may write

{e Mz, D)} = ai(z, D) + r(z, D),
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18“Da A in FSGO®

a al w;l/(1—o)

where a; ~ (R?), 1 € Sp,-1(R?), and

€A<x>D)O{€7[\($7D) t = €A0a1<x7 D)—i_eAOrl(x?D) = CZQ(l',D)—F?“Q(.I', D)+6A0rl<x>D)a

where

s NZ‘—/}'aa Aol Dt = fwm( Je ) in FSGUY | (R?)

and 5 € Sy,—1(R?). Therefore
ez, D) o {e Mz, D)}* = a(x, D) + r(x, D),

where a ~ Y7 49 (e Apre=AYyin FSGY

o 'Y' 1/(1

Now let us study more carefully the asymptotic expansion

»(R?) and r € Sy,—1(R?).

1 B
%ag(eADge M = ZTH
720 v>0
Note that

Awd) Ao _ N~ (L) Y s

x — N (x _ 4
¢ DIG _Z ]' Z 71[ ’Y' HDz A($a )7

j=1 YAy =y 77 =1

hence, for o, 5 > 0,

5! (a+y)! B

! !
yitepy=y 11 V3" oy Fag=aty Bi+--+B=8

5
O Opr10] < fylz]l

X H |0ge A, €))|

/=1
1 ! (o +)! B!
25 2 .. 2 2 arl...a;l Byl .. B!

!
gk artetaj=aty St =0

J
% H Cge+6z+7e+1a€!u(ﬁg + W)!u<€>}:ae <x>1_g_ﬁf_w
/=1

1-
Ca+5+2'y+1a|,u5',u 20— 1 ( Wb
e §
=1

We shall consider the following sets

Qi aon = {(2,6) € R® 2 (z) <ty and (£), < to}

and Qf, ,,., = R? — Qy, 4p;n. When ty =ty = t we simply write Q. and Q..



Cauchy Problem for 3—Evolutions Operators With Data in Gevrey Type Spaces 81

Let ¢)(x,£) € C*°(R?) such that ¢ = 0 on Qy, ¥ = 1 0n Q5,,, 0 < ¥ < 1 and
Of0% (. &) < CF al B,

forevery x,£ € R and o, 8 € Ny. Now set ¢y = 1 and, for j > 1,

T £
Yi(z,8) == <—7—) )
8= RG) RG)
where R(j) = Rj** ! and R > 0 is a large constant. Let us recall that

§

* (2,6) € Qipyy) = <%W> €Q5 = vilx,6) =1, fori < j;

T § L
* (z,§) € Qry) = (—,—) €Qy = Yi(z,£) =0, fori > j.
( ) R(j) RO) R(]) 2 ( )
Defining b(z,§) = .o ¥j(, §)r1;(x, §), following the same ideas in the proof of
Proposition 2.14, we have that b(z, &) € S GO °°1 (R?) and
b(x,&) ~ Y 1 (e, €) in FSGS;_OL (R?).
320 R
We will show that b(z, £) € SG),°(R*"). Indeed, first we write
b(x, ) = 1+ Y (@, )rij(,€) =1+ > i (,§rjn(x,).
Jj=1 J=0

On the support of 9§ 71111 we have
() <3R(j+1) and ({)r <3R(j+1),

whenever o + 31 > 1. Hence

|a§aaﬁz¢3+lrl J+1| < Z Z

]>0 _]>O aytag= a
51+52

: 1 ar1+B1+1
113 11
< Z Z alua2|5115213( 1) a1+51)Cw ail"fy!

]>0 aytag= a
B1+P2=

a1 5B1 a2 05
'a2'51'52 |8 0" (e, §)||8 9,°11,441(7, §)|

x CaztP2GH D+ o B 1R (5 4 1)120- 1<€>}:a27(j+1)<x>*ﬁ1*(j+1) Z

ol s 1 1+p1+1
a 113, 1
<>, 2. arlas! BB R(j + 1)(a1+/31)0 ot il

]>O aytag= a
B1+B2=

J+l (1—0o)(t—1)—j
| , IR . () ’
> Ca2+,32+2(]+1)+1a2!”ﬁzw(] + 1)!2M 1<5>ha2 (]+1)<.Z'> o=h Z T
(=1 '
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S . b i () (=)D

< o QB (€ @) DD CH G+ ) Y
>0 (=0

‘We also have that

(r) = R(j+1) or (Hn=>R(j+1)

holds true on the support of " 071 4p;1. If (€), > R(j + 1), then
(€)' <RIG+) D < RAG+1) @D,

On the other hand, since we are assuming x> 1 such that 2p — 1 < £, if (z) < R(j + 1) we

obtain
<x>(1—0)(f—1)—j < R(l—U)(f—l)—j{(j + 1)2u—1}(1—0)(€—1)—j

S R—a’j(j + 1)[—1—]‘(2“—1)

=R+ 1)+ e,

Enlarging R > 0 if necessary, we can infer that 3., r1 ; € SG 77 (R?).
In analogous way it is possible to prove that 3 .-, 71 ; € SG;’“’_U’“(RQ). Hence, we
may conclude

b(f,f) — Zrl,j(x,f) € SG;k,—ak(Rz)’ keN,
<k
thatis, b ~ 71 ; in SG)°(R?).
Since a ~ .7y, in FSGYSS J(R?), b ~ 377 in FSGZ’EC}O

wl/(1—o

a—b e Sy,-1(R?). Hence we may write

_(R?) we have

Mo {e MV =1+, D) +7(x,D) =1 +r(x, D),

where 7 € SGVI(R?), 7 ~ 37 o 14 (2,8) in SGVT(R?) and 7 € Sy, 1(R?). In particu-

larr € S GQ_:’,EU(Rz), therefore we have

0200 (2,6)| < Cop)" )
< Cosh™ME) ).

This implies that the (0,0)—seminorms of r(z,¢) are bounded by h~!. Choosing h large
enough, we obtain that I + r(z, D) is invertible on L?(R) and its inverse (I + r(x, D))~}
is given by the Neumann series 3 (—r(z, D))’. The composition {e 2o >, (=r(z, D))

is then a right inverse on L2 for ¢*(z, D).
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By Theorem 2.24 we have
(I +r(x,D))" =q(z, D)+ k(z, D),

where ¢ € SG37_|(R?), k € %5(R?) for every 6 > 2(2i1 — 1) — 1 = 4y — 3. Choosing 1 > 1
close enough to 1, we have that d can be chosen arbitrarily close to 1. Hence, by Theorem 2.8,

for every fixed # > 1, we can find ;2 > 1 such that
(I+r(z, D))" HyYy— HJYy

is continuous for every m/, p’ € R. Analogously one can show the existence of a left inverse of

e with the same properties. Summing up, we have obtained the following result.

Lemma 3.3. Let 0 > 1 and take j > 1 such that § > 4 — 3. There is hg > 1 such that for

every h > hy, the operator ™ (z, D) is invertible on L*(R) and its inverse is given by
{eMa, D)} = {e AP o (I (e, D) = (NP 0 Y (—r(a, DY,
=0
where r € SG3, 7 (R?) and r ~ > ﬁag(eAD;fe_A) in SG3,77° (R?). Moreover, the sym-
bol of (I + r(x, D))~! belongs to SG((;O’O) for every § > 4p — 3 and it maps continuously H,T;la
into itself for any p',m’' € R.

1

We conclude this section writing {e]\(a:, D)}~ in a more precise way. From the

asymptotic expansion of the symbol r(z, ) we have

{eMa. D)} = {e™ M@, D)} o (I = #(x, D) + (r(x, D)) + gs(, D)),
where ¢_3 denotes an operator with symbol in S Ggg’_?’a(R2) for every 6 > 4,1 — 3. Now note
that
r— i0:0,A + %ag(agﬁ 0 AP) g =g tqatas
and
(r(z,D))* = (¢-1+q-2+q-3)(x, D)o (g1 +qo+q3)(z,D)

= ¢-1(z, D) oq1(x, D) + q-3(x, D)

= op {—[85835[\]2 + q_g}
for a new element ¢_3 in the same space. We finally obtain:

(M = {e Mo [1 +op <—z’agamﬁ — %ag(agﬂ — [0.A]%) — [0:0.A) + q_g)} . (3.10)

where g_3 € S Ggs’_?’”(]R?). Since we deal with operators of order not exceeding 3, in the next

sections we are going to use frequently formula (3.10) for the inverse of ei\(x, D).
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3.5 Conjugation of : P

In this section we will perform the conjugation of i P by the operator e* (¢, z, D), where

Alt,2,€) = k(#) (€ + A, ) = k(€D + Mo, &) + M (, €)

and k € C'([0,T]; R) is a non-increasing function (to be chosen later on) such that k(7") > 0.

Since the inverse of " is given by

{eMa, D)} 0y (~r(z, D))

>0
we shall need to work with products of the type

Mz, D) o p(x, D) o {e Mz, D)},

where p(x, D) is given by a symbol of finite order. The next result shows us how to compute

these types of conjugations.
Theorem 3.2. Let p be a symbol satisfying

0p0p(,€)| < Ca Al Plalk g,
and let A\ satisfying

028, 6)] < poAllal(©); 7, a e,
and

0202 A(w, )] < poAllal 81 (€)1, o e Ny, 8 > 0. (3.11)
en there exist 0 > 0 and hg = hy > 1 such that if pg < "k an > hy, then

Then there exist § > 0 and hy = ho(A) > 1 such that i SA~% and h > hy, th

1
e(x, Dple, DY{e (@, D)} =op | D, —r50e{0[e" "I Dop(e, ) Die "))

|a+B|<N
+TN<x7D) _'_roo(an)a

where

02 (0, )] < Cppan(CrA) ™2Vl BN () (TR

T

_1
|8§‘8§T00(5E75)| < Oy n k(O A)HBH2N |k g1k N 12h—1 —ee Ak (€))F

Remark 3.6. Theorem 3.2 is totally inspired by Section 6 of the first part of [34]. Our approach
follows the same ideas developed there, but with some small modifications in the results and

proofs. Namely, we work on a Taylor expansion that was not performed in [34].
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3.5.1 Proof of Theorem 3.2

This section contains the proof of Theorem 3.2. Let us introduce the main ingredients
of the proof. First of all, we need to extend Gevrey regular symbols to the complex domain.
Given a symbol p € S™(R?"; A) and a cutoff function y € C°(R) such that
L, |t <1,

X ()] < CTHIF () =
0, |t|>2,

1 1
where 1 < k' < k. For z,£ € R" and |y| < By (§)f g n| < Bi(§)F (where B; > 0) we define

an almost analytic extension of p(z, £) by

-1 -1

O ©F T, (312

: . 1 NG/ 1

plotiy,E+in) = Y ==0200p(w,&)(iy)’ (i) x(bs (€)1
5,vENp s

where the sequence {b;};en, is given by by = 1 and b; = Bj!% with B = DAB;and Dis a

large positive constant. Formula (3.12) is the Taylor series of p(x + iy, £ +in) centered at (x, £)

multiplied by some cutoff functions. These cutoff functions will ensure the convergence of the

series. Namely, we have the following result which is proved in [34, Proposition 5.2].

1 1
Proposition 3.3. Let z,&,y,n € R™ such that |y| < By(§)f " and in| < Bi(§)[. Let moreover
p(z+iy, E+in) the almost analytic extension defined by (3.12). Then there are positive constants

Ca, Cy, i such that

0200 (x + iy, € + in)| < Ca(CpA)HPTrtA a1k g1k prk ik (gymlotel (3.13)

n-rTy

1
k
h

_ 1
[9;08000°0 p(x + iy, € +in)| < Ca(CrA)HBFPHNQUEGIEpIENIE ()l Plemen B FT O
(3.14)
where 9; stands for 271(8,, +i0,,) or 271 (9, +10,,), j = 1,2,...,n.

For the proofs of the next results we recall that
Os — // e Ve a(y)dydn = Os — // e "Wa(y + x)dydn = a(xr), x€R", (3.15)

where a € B>*(R"), see the example in the end of Section 6, Chapter 1 of [35]. Theorem 3.2 is

a direct consequence of the two following propositions.
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Proposition 3.4. Under the same assumptions of Theorem 3.2, there exists 6 > 0 such that if

po < 5A_%, then
e*(x, D) o p(x, D) = op(e*“sn(x,€)) + qv(x, D) + roo(x, D),

where
1 —A(z a Az, «
sN<x,£>=|ZNae w9 {0g MO} Dp(a, €), (3.16)
o<

- o _ m—(1—HN—|a
10202 qu (2, €)] < Cipy 5 (CiA) BTN 1k g1k N2kt gy = (1INl

=

_1
]agafroo(x, €)| < Cpoai(CrpA)OtBIF2N 1 giie N2h—1o=er AR (E))

Proof. Arguing as in the proof of [34, Theorem 6.9], we can write the symbol s(z,&) of

ez, D) o p(z, D) as the following oscillatory integral

s(z,&) = Os — / / e M MTE (3 4y, &) dydn.

Applying Taylor’s formula and using (3.15) we obtain

(0.6 = 3 SEOIDI, )+ (r.g).

lo| <N

where
1
ry(z, &) = — Os — / / WD (x4 1, &) / (1—0)NtogeM st dgdydn.
o | N 0
Therefore
ez, D) o p(w, D) = op(e" s (,€)) +ru(z, D),
where sy is given by (3.16). Take now x(t) € C°(R) such that

4 L L |t <
0 x(t)| < CITIM (1<K <k), x(t)= :
0, [t]>

N

N

and set x(&,7) = x((n)(€);"), &, n € R". Note that

NN GV

1<5>h < (E+0n), <

. (©n

for every £, n € supp x(&,n) and || < 1. We can split the operator ry(z, D) as

. / i€r tAEE) g _ / / —iny / N1 A E40m)=A (2.0

\IN
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x w*(A;x, &+ 0n)d0 { Dyp}(x + y, §)dydn u(§)dé

- / AR, () €)A(E)IE + / " (2, )6,

where for o, § € Nj we set w§(A; 2, &) = e =092 D eMw8),

—iny N LoA(@&+0n)—A(z.8),
xf—lg%z // / “(A;x, &+ 0n)do

I\N

x {Dgp}(z +y,§)x (& m)x:(y, n)dydn,

P (2, €) = ~ limy L / / —iny / 0)V Loz M@ E0n g

I\N

x {Dgp}(x +y,§) (1 — x) (& n)x:(y,n)dydn,

and x-(y,n) = x(ey)x(en), x € Tp (R"), x(0) = 1.

Now we work on 7 (x, £). Notice first that
Az, & +0n) — Az, §) =n- 9/01 Vel(w, & + 00n)dd =1 - Ag(x,€,1,9),
then we obtain
ryv(z,€) = lim Z 1 01(1 — )Nt // e~ MHhe@En ) (A; 1 € + On)
x{ADgp} (@ +y, )X (& n)xe(y, n)dydnds.
Observe that
020000 A, 6,1, )| < CrpoA(CA)+latiq btk (g~

for every £,n € supp x(&,n) and || < 1. For z,§ € R™ and |y| < C’k(SA%(@E_l, consider

now the almost analytic extension

1

plr + 1y, &) = 25, °p(z, &) (iy) (b\5|<§>ill_g)a

where b; = B j' 7 “and D is a large constant. Choosing D = A~'D with D

large enough, in view of (3.14), we obtain

08000, p(x + iy, €)] < Cas(CLd) PP alNaH @) et F O 37)
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where 9; stands for 271(9,, + 0,,). In this way we may write 'y (z, £) as

ryv(x, &) = lim / (1-6 N_l/ / e (A; z, € + 0n)
=0 Z nJy(@,Em,0)

I\N

X ADp}(x + 2 — ile(x, €1, 0), E)X(E, n)xe (2 — ihe(x, &, m, 0),m)dz dn db,
where
v(w,€,m,0) = {y +ile(z,€,1,0): y € R"}.
Stokes formula implies

— Nfl —INY 4% (A -
(T, €) ll_rg%z / //R(Qn)e w(A\;x, & + 0n)

I\N

x {Dgp}(x +y —ile(z,§,1,0), ) (& mxe(y — ihe(x,&,m, 0),m)dy dn do

+ lim / (1-— / // e (A x, €+ On

||N 1 oj=1

x 0:,{(Dgp) (@ + 2 — ihe(2,§,1,0),§)xe (2 — ihe(w,€,m,0),m) }x(&, m)dZ; A dz dn db
=1 n(2, &) + 1y n(2, ),
where
[(z,&,n,0) = {y +ithAe(x,&,n,0): y € R", t € [0,1]}.
To finish the proof, it only remains to estimate 7 y(,§), 15 5 (7, ) and r(z, €). We

begin with 7} y(, §): setting

e o(2, & y,m) = w (A2, §+0N){ Dyph(z+y—ile(x,§,m,0),§)X(§, n)xe(y—ile(z, &, 0), 1),

we have, for any /1, (s € Ny,

8/ Nfl —1
3587’1Nx£—21_>n(1)z / //e un

IIN

X (y) "2 (Dy)** {(n)72(D,) " 007 aco(x, &y, 1) ydydln do.
Standard computations give

(D)2 {(n) (D) 0" 0% acp(, &y, ) H < Cpo,ap(CrA) T TH2ITOFL) /1 grik

X (alty gl (g 110 gy

forevery z,y € R™, £, n € supp x(&,n) and 0, ¢ € (0, 1). Therefore

o’ +8 _ m—|a/|-N(1—
|a5 36 rlN(x,§)| SCpO,A,k(CkA)| +ﬁ\+2NO/!k6/!kN!2k 1<§>h lo/|-N(1-%)
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< (A el [ [ )2 )y

Hence, choosing 2/; and 2/, larger than n, we get

N Y _ m—|o/|-N(1—%
|a? ag 7’/1,]\[(3375” < Cpo,A,k,n(CkA)‘a +8 |+2No/!kﬁ/!kN!2k 1<§>h |o[=N( k)'

Now we consider 74 y(z,§). Taking coordinates (y,t) in I'(z,,n,0), we get z =
y +itA¢ and dz; A d. = 2iA¢;dtdy, hence we may write (omitting the argument (,&,7,0) in
A¢)
A=t S L Lo [ end [ [ emeitouaa o)
’ =0 ol R3 j=170 JRy

jal=N 70

X 0. {{Dgp}(x +y +i(t — 1)A¢, )xe(y + it — 1)Ag, n)}2iA¢, dydt dn df

L[ [ N-1_—tA —iyn JtA(z,E+
=i E _E — - (2.,8) iyn tA(@,E4+0m) e (A -
lmé P /0 / (1-0) e //zne e w*(A;x, &+ 6n)

0

x X(&,1)2iA,0., {{Dp}(x +y +i(t — 1)Ae, )xe(y + it — 1)A¢, n) ydydn dtdf.
Setting

bjco(, &y, n, t) = eITDIANGO ML o (N & 4 )X (€, m)

X 2iMe, 0. {{Dsp}(x +y +i(t — 1)Ae, x=(y +i(t — 1)A¢, )},

we have for any /1, {5 € Ny,

' 1 — [t ! ,
aY6] A(x,6),./ 1 N-—1 —1
0g" 0% { e >r27N(g;,5)}_géZ 52/0 /0 (1—10) //e y

jol=N " j=1

(y) 2 (D) > { () (D) * 0 07 bj c o, & y, m, 1) Ylydln ditd.
Since b; . y contains 521. we obtain the following estimate

(D)2 { () ~2(Dy)* 0" 0 bj c0(, &y, 8)H < Chg a g (Crp A HH T2l OTE) o1 g1k

T
1

1 _1
X {al P em O (gean Hont -2,
forevery z,y € R", z,£ € suppx(&,n),t,0,e € (0,1)and j = 1,...,n. Hence

0807 {0y (@, )} < Cppa o (CipA) IO QN G112

f / / (y) 2 (n) = dydn.

B

X {1051} 250l (£yme—ern AR (),
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Recalling that py < SA~* and choosing ¢4, ¢ larger than n/2,

T =

|ag/afl{6A(x,§)ré7N(x7 O} < CpmA’k’n’m(OkA)|a/+ﬂ/|+2Na/!k6/!kN!2k—1€(56—%)A*%<g> '

To finish we estimate 7y (z, ¢). We recall that () > 47'(¢);, on the support of the

function (1 — x)(§,n). Integrating by parts we get

T S L (T

la|=N

x (D) <<?7>% (D,)* lageA(”’“Q”){Dﬁp}(x +1,6) (1 —X)(&n)xe(y, 77)] )

(. J

~~

::CE,G,ZI,ZQ (x7§7y777)

x df dydn.

Noticing that

[a B+ A(z
028 Ay Alz£L0n) eM@.E+6n) Blaly!
o2alae | < —

]:1 (617a17’yl)++(ﬁ]7aj77]):(a7577)

j
x [THoerofny(a, & + 6
=1

|04+,3+'y| ] J

6) k

< (CLA)F e {al grytyheAeerom § W
j=1 :

1
< (C’kA>w+Oz+’y\{a!/g!,y!}kelo()({-}ﬁn)}f

=

)

)

1
< (CA) e+ {a!ﬁ!fy!}keQ’)O((@fIf +(n)
we easily get

807 e .1, €9, M| < Cap(CpA) PRI G1 {al 151}

1
« <5>Zme2po(<s>;:+<n>%)<n>—2e1

Y

hence

1

|8?/85ITN<;; g)‘ < Cy k(C’kA)\a/+5/\+2No/!kﬁ/!kN!2k71<£>2n€2p0<5>5
< [[(uayese gy

Taking (5 larger than n/2 and noticing that the above inequality holds for every ¢; we obtain

R‘\»—t

dydn.

4

080 rv(2,€)| < Clan(CrA) TP TN QIEGIEN PR () 200
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« /e_ZCkAimﬁez”O(Wl“d‘n.

Since (n) > 471(¢);, on the support of (1 — x)(&,n) and we are assuming p < SA™F, we
conclude that

1
|a?/agl7‘;;[(aj’7 §)| < CAJC’H(CkA)|a’+ﬂ'\+2Nal!k/3/!k:N!2k—l<£>ZL€(25—47%C;€)A7%<§>}’f

" / c@-ena bt g,

Therefore, possibly shrinking 6 > 0, we get

=

~ 1
1080 174 (1, €)] < Coomm (CA) N 11k gk 2184 O

L
Proposition 3.5. Under the assumptions of Theorem 3.2, there exist § > 0 and ho(A) > 1 such
that if h > hg and po < §A™* we may write the product op(pe™) o {e=*(x, D)}* as follows
Op(p€A> © {6—1\(1,’ D)}* = SN’('I7 D) + QN’(x7 D) + Too(xa D)7

where

1
sni(,€) = Y aag{em@p(x,g)Dge—W@}, (3.18)

|| <N!

|8?8£QN/ ($’ £)| S C«poijk(CkA)\oa+ﬁ|+2Na!k6!kN/!2k—1<§>hm*(1*%)N/f\a|’ (319)

_1
|3?357"oo(96, £)| < CpmA’k(CkA)|a+,3|+2NOé!kﬁ!kN/!QkflefckA k(&)

k[

(3.20)
Proof. We have

(Y ule) = [ [ eseer )iy
— /eifl’/e_igye_A(y’g)u(y)dyd‘f,

which implies

op(pet) o {e M uta) = [ [ DA NI )u(y)dyie

In this way the symbol o (z, &) of the composition op(pe’) o {e=*1}* is given by

o(x,§) =0s — // e—inyel\(w,&n)—A($+y7€+n)p(x’5 + n)dydn.
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By Taylor’s formula and (3.15) we obtain

x Os — // e—iynagt{el\(w,§+0n)p(x7§+ Qn)D;‘e_A(”y’f*@")}dydn do
= sni(2,€) + e (,6).
By Leibniz formula we have

«l
92 eA(@E+0m) z, On) D% e MA@ty E+om)y
£ { p(z, &+ 60n) DS } a1+a§2+a3a0‘1!0‘2!0‘3!

x 82616/\(:0,6-&-977)3?2])(%5 + 4977)8?3 Dge—/\(ﬂ-y,&iﬁﬁ)

= AN (0 + 3, + b,

where

L) = Y (A, )0 p(r, )l (~ Ay, €)
« 7y7 D i @1!0&2!@3! ) Uy & p ) « 7y7 .

Performing the change of variables y — y — x and ) — 6~ *{n — £} we now obtain

1
ry(z,§) = N’ Z i/() (1 -t

la[=N’

S / / e I CTR AN f ()0 dydly do.
Writing

Aly,m) — Az,n) = (v — 1) / VoA( + sy — ), m)ds,

J/

=Nz (%yﬂl)

we get

1 [t , , ¢ e
, — 1 ! = _ p\N'-1 i(y—2)g —i(¥55)(n—i0Az (z,y,m))
CCCRTRDY 5 o [ [
X fal@,y,m)Xe(y, )0 "dn dy db.
Lety(xz,y) ={Ce€C":Ine R",{ =n—1i0A,(z,y,n)} and

[(x,y) ={¢:In e R", 3t €[0,1], =n —ithA,(z,y,n)}.
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It follows from [34, Lemma 5.4] (page 23) that there exists hg(A) > 1 such that if h > ho(A),

then we can find a smooth function =(z, y, () (with z and y as parameters) satisfying
¢ =ZE(z,y:¢) —i0A(z,y, Z(z,:()), V¢ € (z,y),
E(z,y;n+i0A(z,y,m) =n, Vn € R"

and the following estimates

1000002, O Z(2, 1, Q)] < Cpo a(CAD T LB (Re C)F T B.21)

1
k
h

06, 020008 O 2.3, O < Cpo a(CAD NP BINGIPH (Re ()1 N emend R iReO,
(3.22)

Hence we may write

. 1 ! ’_ i(y—z) &
TN/(JI7§):£1_I>I$N Z a/o (1—-0)~ 1/e(y )%

la[=N"

X/(f“e“MMMMMWEWMOMMEWMOW”@@%
T,y

:iHs(may:O

where J(x,y,() = Det 8“ (:U y,()}. Stokes formula implies

e—0

ry(z,§) = lim N Z / N,_l/ei(y_x)g/ e " TIH, (2, y, )0 "dn dy do

laf= N
1 / . 3
lim N’ - 1-—4 Nl/ (y—x) 5
= |a§v, Oé!/o =0 o
X Z / / 5T He(w, y, )07 d; A dC dy db.
j=1 I'(z, y)

Take x(t) € C2°(R) such that

; - / ]" |t| — Y
DIx(B)] < CTHGM (1< K < k), x(t) = i
0, [t|> 2,

and set x(&,7) = x((n)(€),), &, n € R™. Then

r(,€) =l N 37 l/ oy [[ a4+ OnxE miandy a9

e—0
|or|= v

+lim N’ Z / g)N'—1 // e WMH (z,x +y, &+ 0n)(1 — x) (&, n)dndy do

I\N’



Cauchy Problem for 3—Evolutions Operators With Data in Gevrey Type Spaces 94

. / . N’—l i(y—z)s
+lim N Z / (1 / 6

ja=n"
XZ//M) 1D He(,y, )07 "dC A d( dy df

= TI,N’(J;’ f) =+ T27N/(I,§) + T3’N'(ZE,€)~

Now we estimate the three symbols above. Since the following computations are quite similar
to the ones made in Proposition 3.4, we only explain the main ideas.

We start with 1 n/(z, £). We observe that since we are assuming (3.11), we have

10¢°05 070, fu@,  + 3, &+ 0n)| < Ca py (CpA) @O HrEAR I

« {a/!ﬁ/!pu\!}k&!%fl <§>mf|a\(17%)f|a’+p|’
for every (£, 1) € supp{x(&,n)}, and henceforth (in view of (3.21))

0807 0y Holw,x + . & + 0n)| < Cloa py (Cio) 7 F0HA20

x {a/!ﬂllp!/\!}ka!2k—l<€>m—|a\(1—%)—|a'+p|7

so, integrating by parts, we can obtain estimate (3.19) for r y/(z, €).

To deal with 7 y(x, £), notice that thanks to (3.11) we obtain
108" 0 0000 fo(, @ + y, &+ 0n)| < Coap (CRA) 1 HHTPRATZAL N BN 1P (E + Om)™
and therefore
0502 000) HL(, 2+ 5, € +-6m)| < Ciap (CA) T H0 200 {a 51X P4 )

Integrating by parts as in the proof of Proposition 3.4 and using that 4(n) > (£), on the support
of (1 — x)(&,n), we can obtain an exponential decay like in (3.20) also for ro n/(, ).

Finally, we explain how to treat r3 n/(z, £). Consider coordinates

o(x,y;t,n) =1 — it (z,y,n)(= (),

for every t € (0,1) and € R", in I'(z, y), then d(; A dC = J;(x,y,t,n)dtdn, where

(t,n) (0 + 00 (@, y,m),m —iw/\x(ﬂf,y,n))}-

Iy, tn) = Det{ o

Hence

ro.n' (2, §) —th’ Z Z/ —1/ i(y— I)e/ / ) (n—it0Az (,y,m))

|a|=N" ']1



Cauchy Problem for 3—Evolutions Operators With Data in Gevrey Type Spaces 95

x Ji(z,y,t,n)0¢, He(z, y,n — itOA, (z,y,n))0~"dtdn dy db

_ 1 ! N’ 1 —iyn ,—tyAg (z,y+,£4+0n)
i 5 45 [0 [ oo

|a|=N"’ ']1

x Jj(x, y+x,t,£+9n)6g (r,y+ 2,64 0n—tyOA,(z,y + x,& + On))dndy dt db.

Now we split ro y/(, ) as

1
ron(z,§) —}:ILI(])N/ Z Z/ )N'—l/ // WMt EHIM =Mty et0m)y (¢ )
0

|| =N '31

x Ji(z,y +x,t,E+ 000, He(w,y + x,& + 0 — ithA, (2, y + x, & + 0n))dndy dt d6

+ hr% N’ Z Z/ N’—l/ // e—iynet(A(;t,E—l-Qn)—A(ac—i—y,{-‘r@n))(1 . X) (g) n)
e—
= 0

x Ji(x,y+ 2,6, &+ 0n)0c, He (2, y + x,& + 0y — itOA, (z, y + x,& + On))dndy dt d6

= TIQ,N’('Ta §) + 7“2,N/(37> £).

Using that (¢ + 0n),, is comparable with (£);, on the support of x(&,7n), the exponential decay
coming from 5<j H. and the hypothesis py < §A~*%, we obtain an estimate like in (3.20) for
r/27 ~v- Integrating by parts and taking into account the fact that 4(n) > (£); on the support of
(1 — x)(&,7n), we obtain that also r; v satisfies the estimate (3.20). O

Remark 3.7. Shrinking & > 0 if necessary, we may conclude that
Too(, D) o {e™*(z, D)}* = Fos(z, D),

where 7o, (z, D) is still a regularizing operator, that is, it satisfies an estimate like in (3.20).

3.5.2 Conjugation of : P by et

Before making the conjugation, let us make some remarks. By Lemmas 3.1 and 3.2
we get

C|~Oé+ﬁ|+1oé!p,6!p,<£>}2l(1_0)_04

0207A(x,€)| < ’
Ot g gy e if B> 0,

where Cj is a constant depending only on Ms, M, Cy,, Cy, 1, 0. Moreover, since we are as-

suming 2(1 — o) < 3 we also get

|8?8£/~\<x7 §)| < O]L\(X-Fﬂ‘-i-la!p,ﬁ!u<§>}21(1—a)—a
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— Ol ap g )

< Cyhd 20Ol g e 1,

therefore

po(A) 1= ho~21=Cy

can be assumed as small as we want, provided that b > ho(M,, M;, Cj, 0, 0). Hence we may
use Theorem 3.2 to compute ¢ (z, D) o (iP) o {¢™(z, D)} 1.
First we note that e*(z, D) 0 9, o {e*(z, D)}~ = 8, because A(z, &) = Ao(z, &) +

A1(z, &) is independent of .

* Conjugation of ia3(t, D): Since az does no depend on x we may use Proposition 3.5 to

compute (omitting (¢, x, D) in the notation)
~ - _ 1 _ _
et oiagz o {e M} =ias + Oe{iasDy(—A)} + §8§{ia3[ch(—A) + (DA} 4 g3 + 7o

Since z—derivatives kill the £ —growth given by the integrals of A, we can conclude that

qs has order zero. Composing with the Neumman series we get from (3.10)

eMiaz){e®} ! = op (z’ag — 0c(az0, ) + %ag las(0?A — (9,A)%)] + ¢3 + roo>
o op (1 — i0:0, A — %ag(agﬁ — [0,A]%) — [0:0,A)% + q_g)
= iy — Oc(as0uR) + L a2 — (0R)} + a3, — 0022
+ 10¢ (a30,N) 90, A — %ag{ag(agﬁ + [0:A)?) 4 2[00, A1} + 7o + 7
= iaz — Oaz0, A + %ag{ag [02A — (0,A)?]} — i0¢a30:0>A

+ i0¢ (30, 1) 00, A — Sag{OR(D2A + [0.A]%) + 2(0e0,A)%) + 70 + 7,

where 7 € C([0, T]; S9(R?)) and r is a new regularizing term. Writing A = Ay + \; and

observing that D, \; has order —1 we get

eMiaz){er} ! = iag — Deazdds — DeazOuhy + %ag{ag(apz — {0,002} — i0caz0:0% N,

+ iag(agax)\g)agaz/\g — %ag{f)g(@i)\g + [835/\2]2) + 2[8§8$A2}2} + 719+ T,
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for a new zero order term r(. Setting
it ,€) = SR as(020 — {0 M)} — easdeds
+ 0c(a30,\2) 0c0p Ay — %a;},{@g(@g)\g + [0:A2]?) + 2[0:0: M)}
we may write
e[\(iag){e;\}’1 = iaz — OgazOpNg — OeazOu\y + idy + 1o + 1,

where d; is a real-valued symbol of order 1 which does not depend on \;. Moreover, we

have the following estimate
0207 da (1, 2, &) < CL77 alBl(g)
where (), is a constant independent of ).

« Conjugation of ias(t,z, D): for N € N such that 2 — N(1 — ) < 0, Theorem 3.2 gives

- - 1 - -
e oianlt,z, D)o {7} = iay(t,z, D) +op ( Y. pleietn: <m2)D?€A}>
1<a+B<N a.ﬁ.

. s
g

=:(ia2) N

+ 7o(t,z, D) + 7(t, z, D),

where 7 has order zero and 7 is a f—regularizing term. By the hypothesis on a,, we

obtain

0807 (jag)n (1, ,€)| < CoTT g (g)>Brtize(z) =,
Composing with the Neumann series and using the fact that 0, \; has order —1 we get
et o iay o {e]\}_1 = (tag + (iaz) N + 7o + R) o (I —i0e0: A2 + q—2)
= ’iag + (iCLQ)N “+ a9 o 8583,;)\2 - i(iag)N @) 8§a$)\2 + To +r

= iCLQ + (iag)N — i(ia2>Na§ax/\2 —|—a2858x/\2 + To + T,

::(;;2)[\

where r( has order zero, r is a f—regularizing term and (a2)j satisfies
|8§‘8§ (iag)A(t, z,8)| < C«;—t—f+1a!uﬂ!so <§>2—[20—1]—a (z)7°,

in particular

|(ia2) 5 (t, 2, €)| < Cpy 1(6)7 27 N(a) . (3.23)
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¢ Conjugation of iay (¢, x, D):

et o (iay)(t, x, D) o {e} 1 = (iay + (ia1); +r1)(t,x,D)Z(—7’)j

§>0

=1ay(t,z, D) + (iay)(t,x, D) + ro(t,x, D) + r(t,z, D),
where 7y has order zero, r is a #—regularizing operator and

(ia)s ~ Y '—B,aa{aﬁ MDP(ia ) Dee M} in 210, (3.24)
la+8]>1

« Conjugation of iag(t, z, D): €™ o (iag)(t, z, D)o {ed} ' = ro(t, z, D)+ r(t, z, D), where

ro has order zero and r is a #—regularizing term.

Gathering all the previous computations we may write (omitting (¢, x, D) in the nota-
tion)
€A<Z.P){6[\}_1 = 8t + iag - 85a38x)\2 - 8§a36x)\1 + Zdl
+ iGQ + (Z'CLQ)]\ -+ a28§3x)\2 + ial + (ial);\ -+ To —+ T,

where di € S}, dy is real-valued, d; does not depend of Ay, (iap)j satisfies (3.23), (ia1);

satisfies (3.24), 1o € C([0,TY; S§,,(R?)) and r is a f—regularizing operator.

SN

3.5.3 Conjugation of ¢*(iP){c} ! by H!)(P)

Let us recall that the function k(¢) satisfies k € C'([0, T];R), &'(t) < 0 and k(t) > 0

for every ¢t € [0, 7). We shall use the following lemma (which is a special case of Theorem 3.2).

Lemma 3.4. Let a € C([0,T1], S]y(R*; A)), where 1 < ju < 0. There exists § > 0 such that if
k(t) < 0A™0 then

1 1
FODN o a(t,z,D) o e RO — a(t,z,D) 4+ b(t,z, D) + r(t, z, D),

PSSP

» . % m—(1—1
whereb ~ 3., %826’“('5)@ Dig e *0E1 jn S0 t 9)(R2) andry(t,x, D) is a 0—regularizing

operator.

RSN
[S))
o

~

—
~

S—

9

~

S o=

1
« Conjugation of d;: e*O{D) §, e=kH(D)

* Conjugation of ias(t, D): since a3 does not depend of x, we simply have

S

k(D ) oiag(t, D) o e *O Pl — jaq(t, D).
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* Conjugation of op{iay — Jzaz0, A2}

1
[
h

1
Gk(t)<D>g © (ia2 - 8§a3a$/\2)(t7 z, D) © e_k(t)<D> = ia?(t7 Z, D)

— op(0eaz0y\2) + (boy + 10 +7)(t, 2, D)

1
where r( has order zero, r is a f—regularizing term and by x (¢, z, &) € C([0,T]; S,IL:OQ (R?)),

|b27k(t7x7€)| < maX{Lk(t)}CS,)\z <§>:L+% <ZL’>_J, z,§ € R™ (3.25)
* Conjugation of (ias);(t,z, D):
= {(iCL?)k,]\ + 7o+ ’I“}(t, €, D)v

where 7o has order zero, 7 is a §—regularizing term and (ias),, 5 € C([0,T7; Sﬁfs?a_”),

|8§85(ia2)k,;\(t,x,§)| < (max{k(t), 1}Ca271§)°‘+5+1a!“5!50<§)2_[2"_”_0‘<x>_”.
In particular

|(iaz), & (t 2, €)| < max{k(t),1}C,, ;(6)7 27 Nz) ™. (3.26)

* Conjugation of op{ia; — Jgaz0,\1 + idy + a20¢0,\2}: we have (omitting (¢, z, D) in the
notation)
1 1
FODN o (ja) — Deazduhy + idy + asdedy)s) 0 e HOPN
= iay; — OgazOx A\ + idy + a20:0, M0 + by + 10 + 17,

where r( has order zero, r is a —regularizing term and b (¢, z,&) € C([0,T7; S5, ),

byt 2, 6)| < K()C:(E), z€R, R (3.27)

* Conjugation of (iay)z(t,z, D):
= {lia) 5 +ro+ 7}tz D),

where 7 has order zero, 7 is a f—regularizing term and (ia, ), 5 € C([0,77; SN,

|(ia1), 5 (8 2,6)] < OO, z,€ R (3.28)



Cauchy Problem for 3—Evolutions Operators With Data in Gevrey Type Spaces 100

Finally, gathering all the previous computations we obtain the following expression for
the conjugated opeartor
et o (iP) o {er}y ! = 0, +ias(t, D)
+ op(iay — OcagOpAa + bay + (iag)kﬂ)
+ op(iay — OcazgOp A1 + idy + a20:0,\2)
+ op(—K/(E){€)f + bup + (ia1), ) + (ro + 1) (t, 2, D)

where by, satisfies (3.25), (iag),, ; satisfies (3.26), by . satisfies (3.27), (ia1),, ; satisfies (3.28),

ro has order zero and r is a §—regularizing term.

3.6 Estimates from Below for the Real Parts

In this Section, we will derive some estimates from below for the real parts of the
lower order terms of (i P), and we use them to achieve a well-posedness result for the Cauchy

problem (3.5). We start noticing that for |£| > hR,, we have

~ogasd = ocasiita o ()

GE
= ocanl M) 7 ok tae)” |1 = (5 )|
—Oeasduh = Deas| M (€7 ()5 (%)
— ekoa M) o) F — Pkoal M9y o) F |1 0 (%)} .
‘We also observe that
—|6gas | Maz) 7 [1 —y (ﬁ)] > 270, My (€207,
okl )7 a) 1= 0 ﬁ)} > _27C, My (),

because () > 1(€)7 on the supportof (1 — ) ((x){€);).

In this way we may write (|| > Ry, h)
et o (iP) o {er}y ! = 0, +ias(t, D) + ay(t, x, D) + ay(t, x, D) + ag(t, z, D) + ro(t, z, D),
where 7 1s an operator of order 0 and

Reas = —Imas + |65a3|M2<$>_U + Re b27k + Re (iaz)k,]\,



Cauchy Problem for 3—Evolutions Operators With Data in Gevrey Type Spaces 101

Imay = Reay + Imbyy, + Im (az), i,
Redy = —Imay + |0cas| Mi(€), ()% + Re az0:0, s,

Reag = —k'(t)(€); + Rebyy + Re (iay), 5

~ okeal o) |1 (1% ) | = oaltiter 07 1 - (1 )|

Now we decompose 7/m as into its Hermitian and anti-Hermitian part:

iImdy + (iImés)*  ilmés — (iTmdy)*
2 N 2

ilmay = = Hima, + Aimas;

we have that 2Re (A a,u, u) = 0, while Hp,, 5, has symbol

Z o 'agD Iy (t, z,€) = Z—aaDaRea2+Z aE DY {Imbyy + Im (az), 5} -

a>1 a>1 a>1

(. J

=:c (tﬂ?@) ::e(t7x7§)

The hypothesis on a, implies
le(t, 2, §)| < Ce(€) ()7,
with C.. depending only on Reas, whereas from (3.25), (3.26) and using that 2(1 — o) < %

obtain
le(t,2,€)] < C., 4(6)7 ()7,

with C,, ; depending on k(t) and A.
We are ready to obtain the desired estimates from below. Using the above decomposi-

tion we get

A o) (’ZP) e} {GA}il = 8t + ’iCLg(t, D) + Re dg(t, xZ, D) + A[m52<t,£€, D)

+ (a1 +c+e)(t,x, D) + ag(t,z, D) + ro(t, z, D).

Note that (£)Z < 2£2 provided that |¢| > R,,h. Estimating the terms of order 2 we get

Con ()2 — Cunll) ) (3.29)

—max{l,k(t)}c*M(g);*% — max{1, k(t)}C; (€)% 201 1y =0

Re &2 =

. < 02 — O, — max{1, k()Y h~078) — max{1, /{?(t>}02\h_(20_1)) (©)i(a) e,

For the terms of order 1 we obtain

C,

;3 (Enfz)”

(SIS

Re (i +c+e)> — Car(E)n (@) ™% = Caypy (E)n{) ™ (3.30)
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— ()™ = Cp (O ()7

Ca3 —(1—= g
Z (Ml 9 - Ca1 - CaQ,)\z - Cc - Ce,k,]\h " 0)) <€>h<x> 2.

Finally, for the terms of order % we have

102

Redy > —K(1)(€)] — k(#)CR(E)] — CR(€)2 = 270, My(€)21™2) — 27C,, My (€)1

Y

ol

> — (K (t) + C1k(t) + Cy)(€)

where Cy = Cyh~16-21=9) and C}, € depend on A but not on h. Setting

1 —e Ot
k(t) = e”“1E(0) — — O 1€ [0, 77,
1

we obtain £'(t) < 0 and k'(t) + C1k(t) + C2 = 0. Note that for any choice of £(0) > 0, we can

choose h large enough in order to obtain £(¢) > 0 on [0, 7).

From the previous estimates from below we obtain the following proposition.

Proposition 3.6. For any sufficiently small choice of k(0) > 0 there exist My, My > 0 and a

large parameter hy = ho(k(0), My, My, T,0,0) > 0 such that for every h > hq the Cauchy

problem (3.5) is well-posed in Sobolev spaces H™(R). More precisely, for any g € H™(R) and
f e C([0,T); H™(R)), there is a unique solution v € C([0,T]; H™(R))NC' ([0, T]; H™3(R))

such that the following energy estimate holds

||v(t>|!%1m50(||§||%m+ / ||f<7>||%fmd7), re 0.1

Proof. Let k(0) > 0. Take M > 0 such that

Cog
2

M, — Oy, >0,

and after that set M, > 0 in such way that

Casy

M12

— Cyy — Cayry — Co > 0.

Finally, making the parameter h, large enough, we obtain k£(7") > 0 and

C,
2

M=% — €y, — max{1, k(t)}Co,h~ %) — max{1, k(1)}C3h~ 27D > 0,

Cay

M12

— Cay = Cagpy — Ce— C,, 1h7079) > 0.

(3.31)

(3.32)

(3.33)

(3.34)
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With these choices Re ay(t, x,€), Re (aq + ¢ + €)(t, x,€), Re ag(t, x, &) are non negative for

large |£]. Applying the Fefferman-Phong inequality to Rea, we have
Re(Reay(t,z, D)v,v)2 > —C|jv|7:, v e .Z(R).
By the sharp Garding inequality we also obtain that
Re{(@y 4+ c+e)(t,z, D)v,v) 2 > —C|v|3:, v € .Z(R)

and

Re{ag(t,z, D)v,v)2 > —C||v||32, v € L (R).

As a consequence we get the energy estimate
d .
Zlo@®lze < C(v@)l7: + 1EP)av(@)lIZ2),

which gives us the well-posedness on H™(IR) for the Cauchy problem (3.5). O

3.7 Proof of Theorem 3.1

Finally we are ready to prove Theorem 3.1. With this purpose, take initial data satisfy-
ing f € C([0,T], H},(R)),g € H],(R), for some m € R and p > 0. Now choose k(0) < p

and M5, M large enough so that Proposition 3.6 holds true. We have

eMt,x, D) f € C[0,T); H oy150R),  €0,2,D)g € H 10y 15).0(R)
for every § > 0. Since k(0) < p and k(t) is non-increasing, we may conclude ¢*f €
C([0,T]; H™(R)), e*g € H™(R). Proposition 3.6 gives hy > 0 large such that for h > hy
the Cauchy Problem associated with P, is well-posed in Sobolev spaces. Namely, there exists
aunique v € C([0,T]; H™) satisfying
Pyu(t,x) = eMt,z, D) f(t,x), (t,x)€[0,T] xR,
v(0,t) = (0,2, D)g(z), z € R,
and t
Ol < (Il + [ 1@ mar), tebTl 639)
Setting u = {e"} v we obtain a solution for our original problem, that is
Pu(t,x) = f(t,z), (t,z)€]0,T] xR,

u(0,z) = g(z), z e R.
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Now let us study which space the solution u(¢, ) belongs to. We have

- A 1
w={eh} o = {e iy Y () e O,
J

——

order zero

where v € H™. Noticing that £(7") > 0 and k is non-increasing, we achieve

1

1 3 o
e~ ROD) 4y — o =K(TUD)] (K(T)=k®)(D)] c HI?ZT);G(R)'

order zero
Hence {e*}~'v € H]}; s, for every & > 0. Moreover, from (3.35) we obtain that u satisfies

the following energy estimate

lu@W =IOy Ol < Crllo(®)

K(T)—5;0 k(T)—5;0

< € (IOl + [ 1Sy
< cu (ol + [ 170)

i%dr) , tel0,T).

Summing up, given f € C([0,T], H],(R)),g € H}4(R) for some m € R and p > 0,
we find a solution u € C([0,T; H}}'4(R)) (" < p) for the Cauchy problem associated with the
operator P and initial data f, g.

Now it only remains to prove the uniqueness of the solution. To this aim, assume

uy, up € C([0,T7; H}4(R)) such that

For a new choice of k£(0) < p’ and applying once more Proposition 3.6, we may find new

parameters My, M7 > 0 and hy > 0 such that the Cauch Problem associated with
PA/ = €A/ oPo {eAl}il

is well-posed in H™, where A'(t, x, £) represents the symbol corresponding to the transforma-
tion associated with the new parameters k(0), My, My, hy. Since eNfeMyg, eA/uj € H™ and
uj, J = 1,2, satisfy

PyetNu; = eMN'f

eMu;(0) = ey,

A

we must have e’ u; = e uy and therefore u; = us. This concludes the proof. ]
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Chapter 4

Cauchy Problem for 3—Evolution
Operators With Data in Gelfand-Shilov
Type Spaces

4.1 Introduction and Main Result

Let us consider for (t, ) € [0,7] x R the 3—evolution operator
P(t,z, Dy, D) = Dy + as(t, D) + as(t,x, D) + a1(t,x, D) + ao(t, x, D). 4.1)

As in the previous chapter, we assume that as(t,£) has order 3, as(t,¢) is a real-valued and
a;(t,z, &) has order j (with respect to £), 7 = 0, 1,2. We are interested in the Cauchy Problem
associated with the operator P with data in some suitable Gelfand-Shilov class. The main result

of this chapter reads as follows.

Theorem 4.1. Consider sy > 1 and o € (0,1) such that sy < . Let P(t,x, Dy, D,) be an

operator like in (4.1) satisfying the following assumptions:

(i) az(t,&) € C([0,T],S;(R?)), as(t,§) is real-valued and there exist C,,, R,, > 0 such
that
Ocas(t,€)| > Co €7, ¢ € [0,T1,[€] > Ray;

(ii) Reay(t,z,€) € C([0,T],SGTY (R?)), Imay(t,x, &) € C([0,T], SGT_.7 (R?));

1,s0 1,s0

(iii) Reay(t,z,&) € C([0,T), SGYE(R?)), Imay(t,z,€) € C([0,T], SGY3 (R?));

1,s0
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(iv) ao(t,z, &) € C([0,T], SGYL~7(R?)).

1,s0

Let 5,0 > 1 such that sy < s < ﬁ and 0 > sy and let f € C([0,T]; H, 4,(R)) and
g € HJ 4(R), where m, p € R2 with py > 0. Then the Cauchy problem

P(t,z, Dy, Dy)u(t,z) = f(t,x), (t,z) €[0,T] xR,

4.2)

u(0,z) = g(z), z€R,
admits a solution u € C([0,T7; H(Tzl by ,(R)) for every 6 > 0; moreover the solution satisfies
the following energy estimate

t
ool <€ (lollg, + [ 150 7). @43)
(p1,—0):s,0 P3S; 0 P35S,

forallt € [0,T] and for some C' > 0.

Remark 4.1. Observe that the solution obtained in Theorem 4.1 has the same Gevrey regularity
as the initial data but may lose the decay exhibited at t = 0 and admit an exponential growth
for |x| — oo when t > 0. Moreover, the loss py + Sfor an arbitrary 6 > 0 in the behavior
at infinity is independent of 6, s and p,. We also observe that the result holds for every 6 > s
without any upper bound on the regularity index 0, that is, there is no relation between the rate
of decay of the data and the Gevrey regularity of the solution. Both these phenomena had been

already observed in the case p = 2, see [6].

Remark 4.2. Let us describe a model class of linear differential operators that fits Theorem 4. 1.
For this purpose, we need to define a class of functions, namely, the uniform Gevrey functions
which are polynomially bounded. Being more precise, let m € R, so > 1 and A > 0. We set
the Banach space G*"™ (R, A) of all smooth functions f(x) such that

sup |02 f(z)|AIPIgI=%0 ()~ HAl < o0,

aeNp,zeR
After that, we take the inductive limit of the Banach spaces G**"™ (R, A), more precisely
GOMR) = | J GO (R, A).
A>0

Now consider the linear partial differential operator
P(t, xZ, Dt, Dx) = Dt + a3(t>D2 + (Zz(t, x)Di + al(t, I)D}c + CL()(t, .73), (44)

where the coefficients satisfy
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(i) as(t) is a continuous real-valued function which never vanishes;
(ii) Reay € C([0,T], G**°(R)), Imay € C([0,T], G**77(R));
(i) Reay € C([0,T],G*'~7(R)), Imay € C([0,T],G*"2(R));
(iv) ag € C([0,T], G**'77(R)).

Then P is under the hypothesis of Theorem 3.1. Notice that the coefficients a;(t,x) are contin-
uous with respect to t and Gevrey regular of index s with respect to x. Moreover, Im as(t, x)
and I'm a;(t,x) behave like {x)~7 and (x)~% respectively, meanwhile Re ay(t,x) is uniformly

l—0o

bounded and Re a,(t, x), ay(t,x) may admit a polynomial growth (x)
Example 4.1. Fort € [0,T] and x € R consider the following initial value problem

Dyu + D3u + ay(t, 2)D*u + ay(t, 2) Dou + ag(t, x)u = 0,
4.5)

w(0,z) = e @7
where
as(t,x) = it — 1)(1 — o)ala) ",
ar(t7) = 2t~ 1)(1 = 0)[{x) " = (o + D)o,
ag(t,x) = i(x)' "7 +i(t — 1)(1 — 0?)[Bx(x) 7% — (0 + 3)a’ (x)~7°].
Notice that the coefficients a; are analytic and satisfy the decay conditions of Theorem 4.1.

Moreover the initial datum belongs to ./ (R) since o € (0,1). It is easy to verify that the

problem (4.5) admits the solution
ult,z) = IO ¢ O([0, T, #(R)),

if T > 1. Analogously, uw ¢ C([0,T], H*(R)). More precisely, we notice that the solution has
the same regularity as the initial data but it grows exponentially for |x| — oo whent > 1.
This example shows us that the solution may present an exponential growth (for large

values of t) even if the initial data decays exponentially, at least in the critical case sy = %

—0

4.2 Strategy of the Proof

Here we briefly outline the strategy of the proof of Theorem 4.1. The idea is quite

similar to that one applied in Theorem 3.1. The main difference is that now the change of
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variables will concentrate the loss of “regularity” in the Sobolev indices which measure the
behavior at infinity.

Once more we have

2
iP =0, +ias(t, D) + Y _ia;(t,x, D) = & +ias(t, D) + A(t, z, D)
=0

and noticing that a3(t, £) is real we obtain

%HU(t)Hiz < [[Pu)llZz + lu@®)lIze — (A + A)u(t), u(t)) 2.

Since (A + A)*(t) € SG*'~7(R*") we cannot derive an energy inequality in a straightforward
way. Again, the idea is to conjugate the operator ¢ P by a suitable pseudodifferential operator

eM(t, z, D) in order to get
(iP)y := eMiP){e*} ™t = 0, +ias(t, D) + {aga + a1.a + agp +10a}(t, 7, D),

where ayy € SG*O(R?), a1, € SGY19(R?), a,n € SG*°(R?) and 7y € SG*°(R?), but
with Rea;y > 0, for j = o,1,2. In this way, with the aid of Fefferman-Phong and sharp
Garding inequalities, we obtain that the Cauchy problem associated with P, is well-posed in
the weighted Sobolev spaces H™(R), m € R

The operator e will be a pseudodifferential operator with symbol 2% and the

function A(¢, x, &) will be of the form
A(t,z,6) = k(t)(x), " + Na(@,€) + Mi(2,€), t€[0,T], 2, €R,

where h > 1 is a large parameter, A\, A, € SG'~7(R?) and k(t) is a C*([0, T]; R) non in-
creasing function to be chosen later on. The transformation with A\, will change the terms of
&—order 2 into the sum of a positive operator plus a remainder of { —order 1; the transformation
with A; will not change the terms of order 2, but it will turn the terms of order 1 into the sum
of a positive operator plus a remainder of {—order 0 and z—order less than 1 — o. Finally, the

transformation with k(¢) will correct these remainder terms.

4.3 Definition and Properties of \;(x, &) and A\ (z, &)
Let M5 and M; be positive constants to be chosen later on. We define

ale) =M () [“oan w6 er @6)
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M (,€) = Myw (é) SR RO (@);’) b, (5,6 €R:,  @47)

where
0, €1 <1, 1L |yl <3,
_Sgn(85a3(t7§)>a |€| > Rasv 07 |y| > 17

|0“w(&)] < Cottalt, |0y (y)| < CgHB!“ for some ;1 > 1 which we can take arbitrarly close

to 1.
Lemma 4.1. Let \y(x, ) as in (4.6). Then
(i) [Na(2,€)] < {22 (x)' =7
(ii) |92 Xa(, )| < MoCPB2)7F, for B > 1;
(iii) 0§07 Aa(2, €)] < MaCHoH i Blx, . (€)(6), (@) 77, fora > 1,8 >0,

where Ep g, = {{ € R: h < & < R,;h} and the constant C > 0 is independent of h. In
particular \y(x,§) € SG' 7 (R?).

()

w(§)]10274 )1 < b0 5 = ttay =
|8§°‘)\2(x,5)] S Mghia

(@)
@ (& o
o ()| [
M,

< Eozau+l <Ra3>aa!MXEh,Ra3 (5) <£>}:a<x>1_0'

(5

< MO (Ryy)*CP al (8 = Dl (E)(E)° ()77,

Proof. First note that

[Aa(z,8)] = M

|| (z) M.
/ (y) 7dy < Mz/ y Ty =5 2 (z)'e.
0 0 -0

For f > 1

102 No (2, €)| < My

Fora > 1

Finally, for o, 8 > 1

|08 00 \a(2,€)| < Moh™® oM x)™
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For the function \;(z, £) we can prove the following estimates.
Lemma 4.2. Let \(x,&) as in (4.7). Then for all o, 5 > 0
(i) 0202 N (,€)] < MyCorBL(lBI)M(€), 10 () =57,
(ii) 0808 N (w, €)] < MyCoHF+ (al B (€) ()= 7,

where the constant C > 0 is independent of h. In particular A\ (z, &) € SGO'~7(R?).

Proof. Denote by x¢(z) the characteristic function of the set {z € R: ()7 < (£)7}. For

a = [ =0 we have

(@) 2 .
9l fu (§) @ [t < 2@,

*(3)

and

‘)‘1(3776” < M1

!
O¢M (@, ) <My Y e

For o« > 1, with the aid of Faa di Bruno formula, we have
(05} !0521043!
altaztaz=«a

(9
[oree(ip)s

a' « « —x (0% —l—«
SMy YD e O (RS anl (€)1 O anl ()

altaztaz=«a
() [ -
4 ( G

></O<x><y>3><s(y)z j! >‘ 3 O‘_ff!f[age<5>hz<y>ady

952 (€), "

X

W=

| N
j=1 A =as Y150 e,
ol
+1 — 1=
<M} alaglag G Jlas) P anl(€), ™ O anl(€),

ajtagtaz=a

(@) w TR
_g g — 3- _
X / W) Exe(y) Y it Y =] ) dy
0 ]:1 ’Yl++”/]:a3 ’71- N '-Y]. —1

< MCETL oy @ (0 (W) 2,

and

al
O <M ———h™ 92 (&),
‘ 3 1(1’,5)‘ = 1a1+azz+a$a aylaslas! 3 <£>h

A?mﬁﬁw(%g)@‘

(9

X
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Oé' a1+1 « - %) -
SM DT O (R ) el (€)% Ol
altaztaz=«a
@ e e o ()
o RCTITE ) gty L S |
0 j=1 J: 71+---+’Yj=0137 7] =1
O./! -« et -«
<My Y e O Ry ) (6) O ) (€)

aqlaslas!
ajtaztaz=«a 12

<x> as ) « | J
e o 3! _
X / W) xew) Y it Y =TI l€), " dy

< MG oy OV HE) R () 7

For > 1 we have

B2 |apld) %
M9 S IO ) S TR I G (@h)\

|
Brt+p2= ﬁl B2 J=1
—296
% Z 5! 5 | H '
S14-+6;=02 7=
<M -1 T (5 ) Oﬁ1+1 w —*—61 OJ+1 \p—1
< Mi(€)y, xe( )51+522: 5115, P Z J:
6 dp+1
x Z o4 HC G
S14+8;=P2 (=1

< M CGHH(B = 1)), xela) () 770

< Mleﬁ“(ﬁ— 1)!“<x> —o—

Finally, for o, 8 > 1 we have

|
. _* e
080, A1 (, §)| < My Z a1!a2!a3!h 1
a1taztaz=a

oo (i)

ol
< Mixe(z) > ———h™™

&1!0[2!@3!

(&)t Y —(5_1!)!

B1+B2=B-1

x 09 (x)$

(6D} — (6 - 1)' 1 _a
35 <£>h1 Z /81'62' 85 <x> 2

(a1) §
o (5)
B1+B2=B—1

ajtastaz=«a
az+fB2
DEEED D Haw IR
) '51 5'

<<m§;>
j : ()
Y1t Y=o 015 =P2

o! _ -
SMixe() Y O R ) )7 O k()
ajtaztaz=«a 1E2-Es
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az+32

Z (/8 )Cﬂl—i-lﬁ < > %1—%)—61 Z C,L]/'}—i_lj!u_l

|
B1+P2= 61 far j_l

ag! +1 27 So1 o—6
x> > EATAD §|HOW O )T

|
Y1t tyj=as 61+-+6;=P2 m

o

< Mixe(n)Of o (8 = DIGE), ) 57

< MIO?JTRI%}O‘WW — D&, * () 7P

We end this section with the following continuity result.

Proposition 4.1. Let p,m € R? and s,r,0, > 1 with min{s,0} > 2u — 1. Let moreover
Az, €) € SGo ™ (R2M). Then:

Az,D)

(i) if kK > s, then the operator e is continuous from H™"

ps@(Rn) into H —deg; 59( n) fOl’

every § > 0, where e; = (0, 1);
(ii) if k = s, then the operator e®P)

every § > C(\) := sup{\(xz, &) /(x)V/* : (z,€) € R},

is continuous from H™

ps@(Rn) into Hp deg; 50( n>f0r

Proof. Consider ¢(x) € G*(R™) a cut-off function such that, for a large positive constant K,
¢(z) = 1for |z| < K/2, ¢(x) = 0 for |x| > K and 0 < ¢(x) < 1 for every x € R™. We split
the symbol e*@€) as

A = p(2)erE) 4 (1 — ¢(2))er®) = ay(x, &) + ay(x, €). (4.8)

Since ¢ has compact support and A has order zero with respect to &, we have a;(z,§) € S G%O.
On the other hand, given any ¢ > 0 and choosing K large enough, since x > s we may write

Mz, €)|(x)~Y/* < & on the support of ay(z, ). Hence we obtain

1/s

az(2,€) = " (1 — o)) X970
with (1 — ¢(x))er=O=5@"* of order (0,0) because A(z, £) — d(z)/* < 0 on the support of
(1 — ¢(x)). Thus, (4.8) becomes

AT = ay (2, 6) + @y, ),

a; and ay of order (0,0). Since by Theorem 2.11 the operators a;(x, D) and ay(z, D) map
continuously H}, , into itself, then we obtain (z). The proof of (11) follows a similar argument

and can be found in [6, Theorem 2.4]. O
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4.4 Invertibility of e[\(x, D), A(z,€) = (Mg + \p)(w, €)

Since 2@ € § GZ’.OL (R?), using the calculus in the SGE’.OO1 (R?) setting and as-

‘l1—0o 'l1—0o

suming p > 1 arbitrarily close to 1, we can use what we have already done in Section 3.4 of

Chapter 3. Being more precise, we have the following result.

Lemma 4.3. For h > 0 large enough, the operator ¢*(x, D) is invertible on L*(R) and its
inverse is given by

{eMa, D)} = {e NP o (1 4 (2, D)™ = {e @D} 0 N (< (x, D)),

J=0

where r € SGQ_HI’__IU(RZ) andr ~ 3 - ﬁﬁg(eADge*A) in SG;;’__IU(RQ). Moreover, the sym-
bol of (I + r(x, D))~ belongs to SG((;O’O) (R?) for every 6 > 4y — 3 and it maps continuously
H;C‘;IS(R) into itself for any p', m’ € R and s > 1 (provided that jn > 1 is such that s > 8y — 7).

Furthermore, we can write the inverse in the following way
_ . 1 - - -
{eA}*l = {e*A}* o {[ +op (—i@g@xA — 582(6&]\ — [0,A)?) — [0:0.A) + Q3):| , (4.9)

where q_s € SG5> 7 (R?).

4.5 Conjugation of : P

1
In this section, we will perform the conjugation of i P by the operator e ()7 o eA(t:2.D)

oe
and its inverse, where A(t,z, &) = k(t)(z).= + A(x,€) and k € C*([0, T]; R) is a non increas-
ing function such that £(7") > 0.

More precisely, we will compute

S
S

e (D) o kDI o 6A($, D)o (iP)o {6]\(:17, D)} o eTHOELT o g=(P) )

where p; € R and P(t,z, Dy, D,) is given by 4.1. As we discussed before, the role of this
conjugation is to make positive the lower order terms of the conjugated operator.

Since the adjoint {e‘i‘}* appears in the inverse {e]\}_l, we need the following lemma.

Lemma 4.4. Let A € SGY 7 (R?) and a € SGY',™ (R?), with pu > 1 such that 1/(1 — o) >

1,80

i+ so — L and sqg > p. Then, for any M € N,

eA(x,D) oa(x,D) o {e_[\(x, D)} =a(z, D)
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+0p( > 'ﬂ,af {9lerDaDge A}+qM> +r(z, D),

1<a+pB<M

where qyy € SGTMma=Mo(R2) gpd r € S, 4,-1(R?).

14550

Proof. Since A € SG%'~(R?) and a € SGT'L.™*(R?), we have e a e SGE’ZO. . (R?).

1,50 0T

Therefore, by results from calculus, we obtain
{e_A(m, D)}y =ay(x,D)+ri(x,D) and e]‘(x, D)oa(z,D) = as(x, D) + ro(x, D),

where a; € SG?Z?‘#(R?) ay € SGT L (R?), 11,73 € Spre—1 (R?) and

S0y T4 S0,1—5

a1~z agDa in FSGY> | (R?),

0515

SRl

1 A . m1,00
a~y Eaﬁ&pga in FSGT>, (R?).
B

Hence

e]\(:zz, D)oa(z,D)o{e ™z, D)}* = ay(x,D)oa(x,D)+ ay(x,D)or(x,D)

_|_
<

Z(xa Oal(ZL‘,D)+T2(ZL‘,D)OT1(ZL‘,D)

(z, D)
D)

s(z, D) + r3(x, D) + as(z, D) o ry(z, D)
D)

I
S

+ 7“2(-1', Oal(zaD)+T2($7D)OT1($7D)>

with ay(z, D)oay(x, D) = as(x, D)+r3(x, D), where az € SGm“’O1 (R?), 73 € S)p59-1(R?)

N

and
as ~ Z 04‘6' '(97{85 ADBCL}E)5 Da+7e
70,8
8 A B a —AY : m1,00
Z '5' 9¢{o;e* DyaDge™ "} in FSGWmﬁ
Thus

e]\(:r, D)oa(z,D)o{e ™z, D)}* = as(z, D) + r(z, D),

for some 7 € S, 5,-1(R?).

Now let us study the asymptotic expansion of a3. For o, 5 € Ny we have

0t dade™ aﬁzh, > AT WH&%\
1 h

Bi4+Pr=
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P .
XZ. ) ﬁgaﬁ‘(—/\)

o1+ Fap=a

Therefore, by Faa di Bruno formula, for v, € Ny, we have

ytansraB Rad aa —Ry _ (v +a) 6! 1 i+,
0t 0007 e ol adre ™} > > el S O

Y1+v2+y3=v+a §1+d2+03=0

B h
2 2 B' oA
o (S 3 gl

17 Bt +8,=8

k
|
Y3 20 a: « A
x (95 % ( Z S TLIe T H@J(—A))
k=1 al+Fap=a /=1

= Z Z (7 + a) o! 871 aﬁﬂh
71"72'73' 01102103!

Y1 +’Y2 +v3=7+a §1+02+I3=

8 ! 5!
XZ 2 BBl > 2. Wﬁwwfm!

i
=]~

Q

| =

" Bt 8= he 01+ +0p=72 o1+ +0p =02
O0+B8e oo A
xHq 7' A
(=1
a! 73' 53'
x Z > aT e 2 X
! ar! ..oyl O1!... .0k ol oy!
al+-Fap=a 1 k 01+ +0="3 o1+ +0L=03 1 k 1 k

x[la?@wwq—ﬁx
(=1
hence

115

. - |
oreaiofeDlapze ) < Y LED % T N R

Il val 81105104!
it tgmta (1127737 01:02:03:
01+062+63=09

% <€>m1—71 <x>m2—,3—51

B ! 5!
XZ. 2 Ll > 2 Wﬁwmﬁ

.O'h!

Bi+-+Br= he 014 +0p=72 o1+ +0p =02
h
0 1 —0,— —o—
% HCAZ+IBZ+UZ+ (934-5@)!”041”(@ 0, 64<x>1 o—oy
(=1
N IO ID Ve
! ar!. .. ay! O1!...0 oyl . o]
ar+-fap=a L R 014t =3 o1+ o =03 L ol k

LT 420830+ )y o=
(=1

< C;+5+2(a+f3)+17!u5!50<a + B)ltso <€>m1—v—(a+ﬂ) <3;>M2—5—(a+5)

Jh(1=0) B (z)h(1=0)

XE: 2

h=1




Cauchy Problem for 3—Evolutions Operators With Data in Gelfand-Shilov Type Spaces 116

< C«?+5+2(a+ﬂ)+17!u5!so(a + B)ltso <€>m1—v—(a+5) <x>mz—5—(a+5)

atp k(1—o)
w 9atB Z MT
k=1 ’

Writing
1 . i o _Q
>y —alﬁlag {(90ADiaDse ™y =Y,
320 atp=j 3>0
the above estimate implies
. . . J <x>k(1_g)
|8?8£7’j(1‘,€)| < Ca+’8+2j+1awﬂlso(j)!’H_SO_l<f>m1_o‘_] <x>m2—/8—j Z I :
k=1 ’

forevery ) > 0, a, 5 € Nyand z, ¢ € R.
Let ¢(x,€) € C°°(R?) such that ) = 0on Q2,9 = 1on Q5, 0 < ¢ < 1 and

0207 (x, )] < CoFHalrpr,

forevery x,£ € Rand «, 8 € Ny. Now set ¢)g = 1 and, for j > 1,
r &
¢'$7§ 3:¢<—.7—.)7
i#:8) R(j)" R(j)

where R(j) = Rj**#~1, for a large constant R > 0.
Setting b(, &) = Y- ¥j(w, §)rj(x, &) we have b € SG}71:>°(R?) and

1,50
b(x,&) ~ > ri(x,€) in FSGIL=(R?).
Jj=0

Now we will prove that b € SG™1™2(IR?). Indeed, first we note

80

b(ZL‘, 5) = a(x, 5) + Z ¢j+1 (ZE, f)rj-l—l(x’ g)

j=0

For any «, € Ny we get

[0 Oé! B' [0} 1 Q2 2
020> {jrimt (@ O <> Y arlagl 2!\35 07 1 (2, 0201544 (2, €)|

|
>0 J>0 oy +ag=a plp
B1+P2=p
al 5! 1
< e S O g 1B I R(j 4 1)
; al%;a arlag! Bi!5s! v
B1+B2=p

w (o2 tB+2(+1)+ g IH By 1%0 <§>m1—042—] <x>m2—52—J Z o
k=1 ’

On the support of 6?1851@/)j+1 we have

() <BR(j+1) and (€) <3R(j+1)
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whenever that ai; + 31 # 0. Hence

0807 D {yaaryand(x, €] < OO appio(g)met(g)ma=F=e (g)o=t

7=>0
J k(1—0)
. so— s o €T
a3y O
j>0 k=1
We also have
() > R(j+1) and (£) > R(j+1)

on the support of 8?1851%“. If (§) > R(j + 1) we get
<£>*j <R (j + 1)!*j(#+80*1) < R*jj!*(#ﬁ%*l)'
On the other hande, since 1 + 5o — 1 < =, if () > R(j + 1) then

<$>(k—1)(1—o)—j < R(k—l)(l—o)—j{<j + 1)u+80—1}(k—1)(1—o)—j
< Rfaj(j + 1)(k71)7j(,u+sofl)

< RVt (| —1)!(5 + 1)1~ Fso=h),

Hence, enlarging 2 > 0 if necessary, we infer that )~ ., ¢;r; € SGJ'i-1™27(R?). Analo-

550

gously one can get

> (O, &) € SRR, k€N,

>k
Therefore
b(a,&) =Y ri(x,&) € SG Pk ke,
i<k
which finalizes the proof. O]

4.5.1 Conjugation of : P by et

We notice again that e*d,{e*}~! = 8, since A(z,€) = Xo(,€) + Ai(x, €) does not

depend on t.
* Conjugation of ia3(t, D): Since a3 does not depend of x, applying Lemma 4.4, we have

eMx, D)(ias)(t, D){e *(x, D)} = ias(t, D) + s(t,x, D) + r3(t, x, D),
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S~ s %Gg‘{eﬁiagDie—A} in SG%77(R?) and r3 € C([0,T], Sur5,-1(R?)). Hence,
using (4.9), we can write (omitting (¢, xz, D) in the notation )
J@%HJYJ:(MY%M%QM+%£MA%A—QMDW+@9+@)
| - - -
o [I — 100, A — 5652(8§A — [0.A]?) — [0:0.A) + Q—s}
:um—Q@@MU+%%@ﬂ%ﬂ—{@ﬁyﬂ+aﬁﬁﬂf%Q%Q%A
—H@@ﬁﬂﬁﬁﬂ—%%ﬁ@%ﬂ+@ﬂ%+ﬂ@@ﬁﬂ+m+?
:my—@%@ﬁ+%%&m%A—QyM%p4Q%@%A
+wy%@mQ@A—%%ﬁa@A+EMWy+m@@Mﬂ+nﬁw
= iag — 8§a38$)\2 — 85a38x)\1 + %852{@3(89%)\2 — {833)\2}2)} - i85a3858§A2
%ﬁ@@ﬁ»ﬁ@@h—%%ﬁm%&+ﬁkwﬁ+ﬂQ@&Pkﬂh+ﬁ
where aéo) e C([0,T];5G)°), ro € C([0,T]; SGY°(R?)) and, since we may assume
20— 1< 1% + So — ]_, T e C([O, T];S;H—SO—I(RQ))-
* Conjugation of ias(t, x, D): by Lemma 4.4 and (4.9) we get (again omitting (¢, z, D))
e]\(x, D)(mg){e[\(x, D)}t = (iag — 0e{az0, A} + 0:AD,ay + aéo) + 7"2)
| ~ ~ _
o [I — 100, A — 5852((95/\ — [0:A]?) = [0¢0.A] + Q3]
= iay — Oc{ag0, A} + 0:AD ag + agde 0, A + 1o + 7

= iay — O¢ag0p N + 0:ADyay + 1o + 7

= iag — 8€a28z)\2 + 85)\2@,;@2 + To + 77,

where o) € C([0, T]; SGO0

550

7€ C([0,T]; Ssrs0-1(R?)).

), ro € C([0,T7; SGg;SO (R?)) and

¢ Conjugation of iay (¢, x, D):

eA(x, D)(iaq(t, x, D)){e[\(x, D)}~ = op(ia; + ago) +7r)o0 Z(—r)j

>0

=iay(t,x, D) + 7o(t,x, D) + 7(t, z, D),

where a§°) € C([0,T); SG%1~29(R?)), 7y € C([0,T7; SGS;;)‘Q”(R?)) and

5,50

S C([O’ T]7 85+so—1<R2))'
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* Conjugation of ia(t, x, D):

eA(x, D)(iag(t, x, D)){e]\(x, D)}~ = op(iag + a(() )+ o) Z( r)’

7>0

= jag(t, x, D) + 7o(t, x, D) 4+ 7 (t, z, D),

where a)”) € C(]0, T); SG L), 7o € C([0,T); SG5 %7 (R?)) and
fl S C([O7T];85+80—1(R2))'

Summing up we obtain

M, D)(iP){eMx, D)} = 8, +ias(t, D) + ias(t, z, D) — op(DeasdyAs) (4.10)
+ia1(t, xZ, D) — op(85a38z)\1 + 85a28x)\2 — 85)\2895612 — Zbl)

+iag(t,z, D) + ro(t,x, D) + 7(t,x, D),

where
by € C([0,T]; SG 27 (R?)), bi(t,z,€) € R, by does not depend on Ay, 4.11)
and
re € O([0,T]; SGy,, " (R)), 7 € C((0,T): Ss150-1(R)). (4.12)

4.5.2 Conjugation of ¢ (zP){eA} L py ekF@Of@)i ™

Let us recall that we are assuming that k € C*([0, T];R), k'(¢) < 0 and k(t) > 0 for

every t € [0, T]. Following the same ideas of Lemma 4.4 one can prove the following result.

Lemma 4.5. Let a € C([0,T]; SGI}1"2(R?)), where 1 < i < so and j1+ s — 1 < 1. Then

ek O@) 7 a(t,z, D) e~k O@)7 = a(t,z, D)+ b(t,z, D) + 7(t,x, D),

where b ~ 3. j,ek ()¢ aja Die k0@ ip SGim-bm=o(R?) and
re C([O’ T]v Su+80—1(R2))'

Now we perform the conjugation by e*()@)i”” of the operator e (i P){e*}~! in (4.10) with the

aid of Lemma 4.5.

« Conjugation of 8;: eFO@"" 9, e=*OEL"" — g, — K/ () ()}~
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* Conjugation of ias(t, D):

o

OO jay(t, D) e MW = ay(t, D) + op(—k(t)deasda (z)} )

o Gtaslk(020)} 000, (0} 7))

+a(t, z, D) + r3(t, z, D),

where ago) € C([0,T]; SG%.37(R?)) and r3 € C([0,T]; Si459-1(R?)).

50

* Conjugation of op(ias — Ozaz0,\2):

0@ op(iay — O30, \2) e FO@NT = jay(t, x, D) + op(—0ca30,2)
+0p(—k(t)Deaz0s (@), — ik(t)Oe{Oeasdu Ao} O (x),~7)

+a(t,x, D) + ry(t,z, D),

where o) € C([0,T); SG%-2°(R?)) and r5 € C([0, T); 501 (R2)).

550
* Conjugation of i(a; + ao)(t,z, D): We have

l1—0o
h

ek(t)<m>’ll_ai(a1 —+ ao)(t, xZ, D)G_k(t)<z> = (ial + iao + (ll,() -+ Tl)(t, Z, D),

where

1—0o

Q1o ~~ Z €k(t)<$>h F&gl(al + Cl())(t, X, g)Die—k(t)@Cbll_a in SG0,1—2U(R2)

H,50
Jj=1
and r; € C([0,T); Si50-1(R?)). It is not difficult to verify that the following estimate
holds
laro(t, z,€)| < max{1, k(t)}COr(z), 2, (4.13)
where C depends on a; and does not depend on k().

* Conjugation of op(—0ga30, A\ — Oca20; A2 + Og A20ya0 + iby): taking into account (7) of

Lemma 4.2 we obtain

1—0o
h

ek(t)@)lli_aop(—aga?)@m)\l - 850,28;5/\2 + 85)\2&5@ + ibl)e_k(t)<$>

= +0p(—8§a38x)\1 — 85a28m)\2 + (95>\2(9za2 + Zbl) -+ (T’Q + f) (t, xZ, D),

where ro € C([0, T]; SGY (R?)) and 7 € C([0, T]; Syy50-1(R?)).
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« Conjugation of ro(t, z, D): e*O@i " r (t, 2, D) e * 0@ = r_\(t,x, D) + 7 (t, z, D),
where 7 € C([0,T]; Ss15—1(R?)), 7,1 belongs to C([0, T]; SGy =7 (R?)) and the fol-

4,80

lowing estimate holds
roa(t, 2, 8)| < Cpale)y ™, (4.14)
where C 5 does not depend of k(t).

Gathering all the previous computations we may write

PO TN PY M) e 7 =0, +ias(t,D) (4.15)
+ op(—0az0, Ay + iag — k(t)0cazd, ()7 )

(=

(

+ Op 8§a36w)\1 + ial — 8§a2&5/\2 + 85)\2833&2 — k(t)&gagaz <JZ>}1Z_U)

+ op(iby + icy +iag — k' (t)(@)i77 + aro + 701) + (1o + 7)(t, x, D),
where b; satisfies (4.11),

c € C([0,T7; SG}A Z7(R?), ai(t,z,€) €R, ¢i does not depend on A (4.16)
(but ¢; depends of g, k(t)), a1 as in (4.13), r,; as in (4.14), and for some operators

ro € C((0,T]; SG5, (R?)), 7 € C([0,T}; Ss1sp-1(R?)).

—k(t)(a)}, 7

S

4.53 Conjugation of ¢ 7 AGP){e"} e by e (D)

Since we are considering 6 > sy and p > 1 arbitrarily close to 1, we may assume
that all the previous smoothing remainder terms have symbols in ¥3(R?). In this subsection we

shall use the following lemma.

Lemma 4.6. Leta € SG7™?, where 1 < 1 < so and j1 + so — 1 < 0. Then

S
S

DY 4z, D) e~ P)? = 4(z, D) + b(x, D) + r(z, D),

mi—(1—

where b~ 37, Loler & Diae P97 in SG s, 9)ma "(R?) andr € Spitso-1(R?).

1 —o —o .
Let us now conjugate by e”1(?)7 the operator e*O)@) 7 A (i P){er 1 HO@) 7 in

(4.15). First of all we observe that since ag does not depend of x, we simply have

=
=

PP Gag(t, D) e PP’ = jag(t, D).
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 Conjugation of op (—8£a38m)\2 +iay — k(t)agagﬁz@)}ll_”):

=
=

€p1<D> Op(-@gdg@x)q + iag — k’(t)agagax<l'>}1l_0) 6_p1<D>

= op(—('?gag(?z)\g + iag — k(t)aga;;@m <I>}1;J> -+ (a’27ﬂl + 7:) (t, xZ, D),

where ay,, € C([0,T7, SGLTHR2)), 7 e O([0,T), Sp(R2)) and the following esti-

mate holds

10802 as,p, (t, 2,€)| < max{1, k(t)}pr| Ot 2 alt g1 (&) o= (z) . (4.17)

In particular

a2, (t,,€)| < max{ 1, k()}pa|Cauir (€1, ).
* Conjugation of
op(—0¢az0p A1 + P01 — Oga20, Ay + OeAa0yag — k(t)é?gag@x(xﬁl_” +iby +icy) :
the conjugation of this term is given by

op(—agagé?x)\ptial — 85(12&,3)\2 + 35)\2896@ — k(t)agagax <$>}L_U + Zb1 + iCl)

+ayp (t,z, D)+ 7(t,x, D),
where 7 € C([0,T7], Xp(R?)) and a, ,, satisfies the following estimate
e s 1_o —o—
(0807 ar p (t, 2, €)| < max{1, k(£)}|pa| CF 7 B (€0~ (a) 7. (4.18)

Particularly

a1, (£, €)] < max{L, k()} o1 C (€] ().

» Conjugation of op(iag — k'(t){(x); 7 + a1 + 71):

S
=

ePr (D) op(iag—K'(t) <$)}L_" +aio+ ra,l)e_p1<D>

= op(iag — k' (t){(x), " + aro + ro1) + 1o(t, z, D) + 7(t, 2, D),
where 9 € C([0,T7; SGg?;g)(RQ)) and 7 € C([0, T); 2p(R?)).

Gathering all the previous computations we may write

1

o % 1 I
ePLD)? k(B)(a), eA(z'P){em(DWek(t)m}lb M =0, +das(t, D)

+ op (—8§a38x)\2 + iag — k?(t)agagax <ZL’>}1L_U + a2.p) — 0§a38x)\1)
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+ op (ial — 65a28m)\2 + 85/\281012 — k)(t)agagam <I>}1l_g + Zb1 + iCl —+ al,pl)
+op(iag — K (t)(x), ™ + a0 + 141) + ro(t, x, D) + 7(t, z, D), (4.19)

where ay ,, as in (4.17), by as in (4.11), ¢; as in (4.16), a1 ,, as in (4.18), a1 as in (4.13), 751

as in (4.14), and for some operators

ro € C([0,T]; SG"O(R?)), 7€ C(]0,T]; Lo(R?)).

4,50

4.6 Estimates from Below for the Real Parts

In this section we will choose M,, M; and k(t) in order to apply Fefferman-Phong and
sharp Garding inequalities to get the desired energy estimate for the conjugated problem. By

the computations of the previous section we have

=

D1 HOUIET A, D) (iP) (e P HODET M, D)}

2
= 0, +ias(t, D) + Y _a;(t,x, D)+ ro(t,x, D) + 7(t,z, D),
j=0

where as, a, represent the part with {—order 2, 1 respectively and a, represents the part with
&¢—order 0, but with a positive order (less than or equal to 1 — ) with respect to x. Now note

that

Re ay = —0ca30, Ao — Imay — k(t)0caz0, <$>,11_U + Reas,,,,

Imay = Reas + Imas,,,

Reay = —0:a30,\1 — Imay — O Re a0, A9 + 0:\20, Re ay
—k(t)0cRe ay0,(x); " + Reay,,,

R@ gLO = —_[TTLCL() — k/(t) <I’>}1l_g —+ Re aLO —+ Re 7”0’1,

Since the Fefferman-Phong inequality holds true only for scalar symbols, we need to decompose

I'm as into its Hermitian and anti-Hermitian part:

iImas + (ilmas)* N ilmag — (1Imas)*

—t 4t
2 9 Lt

ZImELQ =

where 2Re(to(t, x, D)u,u) = 0 and t,(t,x,&) = — E %8§‘Dglm&2(t,x,£). Observe that,
a!
a>1

using (4.17),

[t1(t, 2, )] < Co(€)(2) ™" + max{1, k(t)}p1|Ch, (€) 7 () 07
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< {Cuy + 177 max{1, k(0)}pa|Co, HEn (@)% (4.20)
In this way we may write
6p1<D>% ek(t)<x>flfae]\(x, D)(z’P){epﬂD)% ek(t)@)};oeﬁ(x, D)}t 4.21)
= 0, + ia3(t, D) + (Reag + ty + t1 + a1 + ao)(t,z, D) + ro(t, x, D),

where 7 has symbol of order (0, 0).

Now we are ready to choose My, M; and k(t). The function k(t) will be of the form
k(t) = K(T —t),t € [0,T], for a positive constant K to be chosen. In the following compu-
tations we shall consider |¢| > hR,,. Observe that 2|¢[* > (£)? whenever |{| > h > 1. For

Re ay we have:
Redy = My|Ocaz|(x) ™" — Imay — k(t)0caz0,(x); " + Reas,,
> MaCloy€]*(w) ™7 — Cay (€))7
— CuH(0)(1 — 0) ()3 x);” — max{1,k(0)}Ch, (€))7

s 0~ Cuh(0)(1— 0) — max{ 1 K(O)}Ch, {61 €3 )

Cos 0 — Cuh(0)(1 — 0) — max{1, b(0)}Chy p, IO~ €12 )

Cos
2

> (M,

> (M,

= (M2 Ca2 - éasKT(l - U) - maX{1> KT}C}\mplhi(lié))<€>i<x>ia

For Re a,, we have:

~ _ _ o x)?
Rea, = M1|8§a3]<§>h1($) 2) (2552) — Imay — OcRe az0,\a + Oc N20, Re as
h

— k(t)0c Re a20, (:E>,11_” + Reay p,

> MyCo |E2(6)5 ()5 (@ ) O lE)nla)

— CR(O)(1 — o) {€)n{x)” — max{1, k(0)}Cy, (€0} (x);”

NI

- éa27>\2 <€>h<x>_a

> 0,2 ()0 (el ) = Con €l = Cunpli)
— CHO)(1 = o) €hnloly *(a)F — max{1, K0)}C5,,, (6 (€)%
- (Ml %3 - Oal - C~’a2,)\2 - CKT<1 - 0'><l’>;%)<§>h<l'>_%

(1K), (6P ula) - 305200 (1-0 (U1).

Since (£);,(z)"% < /2 on the support of 1 — ) (ig;), we may conclude
h
C

Re dl 2 (Ml 2a3 - Ca1 - éaz,)@ - OKT(l - J)h_%><§>h<x>_%
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1 o Ca
— max{1, KT}C; , b= "o/ () (x) "% — My 5 V2.
Taking (4.20) into account we obtain

Re (dl +t1) Z (Ml

S Gy oy Cugry — OKT(L— )5 () 5
Clg

— max{L, KT}(Cy,,, + [p1|Cr )™ 0(€)nla) % — My
For Re aq, we have:

Reag = —Imag — k/(t)(:x}}f" + Reay o+ Rery,
— —Imag + (—K(8) — max{1, k(O0)}Cr{a)i? — Cos ()7 ) (@)™
> (=Cay + K —max{1, KT}Crh™7 — Cp ;b 7)(x), 7.

Finally, let us proceed with the choices of M;, M> and K. First we choose K larger

than max{C,,, 1/7T}, then we set M, large in order to obtain Mg% —Coy—Co,KT(1—0) >0

053 —Cyy, — Cyy — C’@,,\Q > 0 (choosing My, M; we

and after that we take M such that M,

determine A). Enlarging the parameter / we may assume

L1 G )
KTCp, ™00 < 2(My=3* = Coy = Coy KT(1 = ),
_g ,(1,l) 1 CCL3 o
CKT(l - U)h 2+ KT(CJ\,pl + ‘pl‘c)\z)h < Z(Ml 9 - Caz - Cal - Ca2,>\2)7
K—C,

KTCrh™ + Cpgh™ < =

With these choices we obtain that Re ay > 0, Re (a1 +t1) + M, Cag

22y/2 > 0and Redg > 0. Let

us also remark that the choices of My, M; and k(t) do not depend of p; and 6.

4.7 Proof of Theorem 4.1

Let us denote
Py = epl(DﬁeA(t, x,D)iP {ep1<D>%eA(t, x, D)} 1.
By (4.21), with the choices of M, My, k(t) in the previous section, we get
iPy = 0; +iaz(t, D) + (Reay + to)(t,x, D) + (a1 + t1)(t, , D) + ao(t,z, D) + 7o(t, z, D),

with
C

2“3 V2 >0, Redg > 0. (4.22)

R@CNLQ Z 0, Re (C~L1 +t1) + M1
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Fefferman-Phong inequality applied to Re a, and sharp Garding inequality applied to

053 V2 and a, give

ay +ty + M,y

Re(Re as(t, v, D)v,v) > —c||v]|22,

Clas
Re{(as -+ )67, D)oo} = = (4 M2V ) ol

Re<d0<t7 xz, D)Uv U) > _CHUH%?

for some constant c. Now applying Gronwall inequality we come to the following energy esti-
mate .

@1 <€ (oI + [ NPl ) 1 < 0,71
for every v(t,z) € C'([0,T];.#(R)). This estimate provides well-posedness of the Cauchy
problem associated with Py in H™(R) for every m = (my, m,) € R2. Being more precise, for
any f € C([0,T]; H™(R)) and § € H™(R), there exists a unique v € C([0,T]; H™(R)) such
that Pyv = f, v(0) = g and

t ~
l(®)lFm < C (Hélﬁm +/O Hf(T)H?{de) , t€[0,T]. (4.23)

Let us now turn back to our original Cauchy problem. Taking f € C([0, T, H}, 4(R))

and g € H} ,

with sg > 2 — 1 and My, Ms, k(0) such that (4.22) holds. Then by Proposition 4.1 we get

(R) for some m, p € R? with p; > 0 and 5,60 > 1 such that § > s, we define A

1
fora =P eMt 0, D) f € C((0,T], Hg 5, (R))

and

=

(D) eA(O,x,D)gEHm 5. o(R)

— pP1
Gpr.A == € (0,p2—0);s,0

for every 0 > 0, because 1/(1 — o) > s. Since ¢ can be taken arbitrarily small, we have that

foin € C([0,T], H™) and g,, » € H™. Hence the Cauchy problem

PA/U - fpl:A
U(O) = Yp1,A
admits a unique solution v € C([0, T], H™)NC*([0, T|, H™ ~3m2~1+1/9)) satisfying the energy

At D)) ~Le=p1 (D)%), e get that u solves our original

estimate (4.23). Taking now u = (e
Cauchy problem. Moreover, since v € C([0,7]; H™) we obtain u € C([0, 71, H(’Zl by ,(R))

for every 6 > 0 and from (4.23) we get

t
fmscomwmm+éwmxﬂmwﬁ

lulley o < Clvl
1 38,

b))
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t
< (ol + [ 150l 7).
s, 0 is,
This concludes the proof. O]

Remark 4.3. Since in general H} _ 5) ;5,9<R) is a larger space than H™(R), from our method,
we cannot conclude that the solution is unique in C([0, T]; Hp) 5. o(R)). On the other hand,

it is unique in the following subspace J of C([0,T]; H{j ;.. 4(R))

,—

=

J={ueC(0,T]; ' (R)) : u= {et,z,D)} Le PPy, for some v € C([0,T]; H™(R))}.

Indeed, if u; € J, j = 1,2, are solutions for
PU,j = f
U (0) =9,
then the functions u; also satisfy

PAUJ',Pl,A = fph/\

uj,plyf\(o) = Gp1.A>

S

where u; ,, A = ePP)? Mt x, D)u;. Using that uj € J, we have v; € C([0,T]; H™) such that

1
uj = {eA(ta €z, D)}7167PI<D>0U]', ] - ]., 2. Hence
Prvj = foa
Uj = Gp1 A

By the H™(R) well-posedness of the Cauchy problem associated with Py we get v = Vs

Therefore uy; = us.
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Chapter 5

Further Research

Before introducing possible new directions of research, let us summarize the two main

results of the present thesis. In the last two Chapters, we studied the Cauchy problem

Pu(t,z) = f(t,z), tel0,T], z€R,
u(0,2) =g(z), =€R,

with P being a 3—evolution operator of the following shape
P(ta Z, Dt7 Dm) = Dt + a3(t>Di + a?(tv .CL')Di + (Z1<t, :C)Dx + aO(t7 .CE),

where the coefficients are always continuous with respect to time and s, > 1 Gevrey regular
with respect to the space variable. We also assume that a3(t) is real-valued and never vanishes,
meanwhile we allow the lower order terms a;(¢,z), j = 0, 1,2, to be complex-valued. Under
suitable decay conditions on the lower order terms, we were able to obtain existence and well-
posedness results. Namely, we ask that a, behaves like (z)~7 and a, behaves like (x)~2, for

some o € (0,1). We have achieved the following:

«ifo e (3, 1)and50< then for any f € C([0,T]; H}Yy) and g € Hy, with p > 0

( o)’
and sp < 6 < ( 77- there exists a unique solution u € C([0,T); H}), for some p' < p.

In particular, we have Hg° well-posedness;

then for any f € C([0,T]; H™ ™ Yand g € H™ ™)  with p; € R,

o
if So < (p1,p2);8,0 (p1,p2);8,0°

1
1-0’
p2 > 0,50 < s < 1= and § > s, there exists a solution u € C([0,7; H((;nl m)z) ), for

every 0 > (. Here the solution has the same Gevrey regularity with respect to the initial

data, but with a possible different behavior at infinity.
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Now we point out three further research directions, which we believe to be interesting
problems.

Generalization of the Space Dimension and of the Degree of Evolution

Concerning the Cauchy problem for p—evolution equations with general p > 3 we
have the two following works [3] and [5]. The first one is set in the standard Hormander classes
and H>°(R) well-posedness is achieved, whereas the second is set in the SG context and is
obtained .7 (R) well-posedness. As we saw in the two previous Chapters, to treat the case
p = 3 it suffices to apply the sharp Garding inequality only once, meanwhile for p > 3 we need
to apply it several times (cf. [3, 5]).

The Cauchy problem for p—evolution operators with general p > 3 in the Gevrey and
Gelfand-Shilov functional settings is still an open problem. We hope that the ideas developed
in Section 2.5, Chapter 2, will be useful in the treatment of this question.

Another issue is to consider our main theorems (Theorems 3.1 and 4.1) in higher di-
mensions for the spatial variable. At this moment, results of this type exist only for the case
p = 2, see [6, 14, 33]. We believe that what we have proved for R' should work in a similar
way for the R™. The main difficulty is the choice of the functions \; and A\, defining the change
of variable, which, in higher space dimension, must be chosen in order to satisfy certain partial
differential inequalities. These may be nontrivial and some technical effort should be required.
Necessary Conditions

Let us consider the Cauchy problem associated with the following model Schrodinger

type operator

P =D;— 0> +i{x)""D,,

where z € R! and o € (0, 1). In this case we have well-posedness in Gevrey spaces with index
1 <6< ﬁ (see [33]). On the other hand, Theorem 2 of [19] implies ill-posedness when
0 > ﬁ Finally, when 6 = ﬁ one can prove local in time well-posedness. Hence we obtain
a nice relation between the decay rate of the coefficients o and the Gevrey index ¢ for which we

find well-posedness.

Now if we consider the 3—evolution operator
P =D, + D3 +i(x)"°D? +i(x)"2D,,

where 2 € Rand o € (£, 1), from our Theorem 3.1 we obtain well-posedness in Gevrey spaces

withindex 1 < 0 < ﬁ for the Cauchy problem associated with P. But what happens in the
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cases 0 > ﬁ or) <o < %? This is another interesting question which we should consider
in the future. Maybe a first step in this direction is trying apply similar techniques presented
in the works [4, 19, 28] to 3—evolution equations, in order to obtain necessary conditions for
well-posedness in Gevrey type spaces.

Semilinear p—evolution Equations

Last but not least, we would like to study the Cauchy problem

P, D)u(t,z) = f(t,x), te€][0,T],z R,
u(0,z) = g(z), = €R,

for the semilinear p—evolution (p = 2, 3) operator

p—1
P,(D) = Dy + a,(t) D2 + > a;(t, , u(t, x)) D’

j=0
in the Gevrey functional setting. We believe that the standard hypotheses should be a,(t) real-
valued, continuous and never vanishes and a; (¢, z, u(t, z)) € C([0,T]; G**(R x R?)) (here we
are identifying C with R?) with suitable decay and bound conditions on the variables = and
w = u(t, ), respectively.

We note that the H>°(R) case (for general p) was considered by A. Ascanelli and C.
Boiti in [2]. There the authors proved H>°(R) local in time well-posedness. The strategy of
the proof is first to consider the linearized problem obtained by fixing the variable u, that is, by

considering the Cauchy problem for the linear operator

—

p—

P = D+ a,(t)D? + Y a,(t,z)D.,

<.
Il
o

where a(t, z) := a;(t, z,u(t, z)) for a fixed u. The second step is to obtain L? energy estimates
for the Cauchy problem associated with P, with a precise dependence of the constants on the
variable u. To finish, an argument based on the powerful Nash-Moser inversion theorem is
applied.

The Nash-Moser theorem (cf. [23]) is a generalization of the standard inversion func-
tion theorem in Banach spaces to the so-called Fréchet tame spaces. Roughly speaking, a tame

Fréchet space is a Fréchet space that is isomorphic (in a suitable sense) to a sequence space like

2(B) = {{fitrero C B: Y " fillz < o0, ¥n € N},

keNy

where B is a given Banach space.
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We recall that ’Hfjg (R) is not a tame Fréchet space, in fact, it is not even Fréchet. But it

should be possible to prove that the space

350

H3(R) := (] Hp, (R)

p>0

is a tame Fréchet space (see the proof that H*°(R) is tame in [15]). Therefore, a first natural
step to consider the semilinear problem in the Gevrey setting, is to try obtain HJ°(R) well-
posedness results. We believe that it is possible if in addition, we assume that the coefficients
are projective Gevrey regular, that is a; (¢, z) € C([0,T]; v (R)) where

YO(R) := (] G*(R; A).
A>0
After this first step, the ideas developed in [2] should be tested in the (projective) Gevrey frame-

work.
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