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RESUMO

O uso de aprendizagem profunda (AP) esta crescendo rapidamente, ja que o poder computacional
atual fornece otimizacdo e inferéncia rapidas. Além disso, varios métodos exclusivos de AP
estdo evoluindo, permitindo resultados superiores em visdo computacional, reconhecimento de
voz ¢ andlise de texto. Os métodos AP extraem caracteristica automaticamente para melhor
representacdo de um problema especifico, removendo o arduo trabalho do desenvolvimento
de descritores de caracteristicas dos métodos convencionais. Mesmo que esse processo seja
automatizado, a criag@o inteligente de redes neurais é necessaria para o aprendizado adequado da
representaco, o que requer conhecimento em AP. O campo de busca de arquiteturas neurais (BAN)
foca no desenvolvimento de abordagens inteligentes que projetam redes robustas automaticamente
para reduzir o conhecimento exigido para o desenvolvimento de redes eficientes. BAN pode
fornecer maneiras de descobrir diferentes representacdes de rede, melhorando o estado da arte
em diferentes aplicagdes. Embora BAN seja relativamente nova, vdrias abordagens foram
desenvolvidas para descobrir modelos robustos. Métodos eficientes baseados em evolucdo sdao
amplamente populares em BAN, mas seu alto consumo de placa gréfica (de alguns dias a meses)
desencoraja o uso pratico. No presente trabalho, propomos duas abordagens BAN baseadas
na evolugdo eficiente com baixo custo de processamento, exigindo apenas algumas horas de
processamento na placa grafica (menos de doze em uma RTX 2080T1) para descobrir modelos
competitivos. Nossas abordagens extraem conceitos da programacio de expressdo génica para
representar ¢ gerar redes baseadas em células robustas combinadas com rapido treinamento
de candidatos, compartilhamento de peso e combinagdes dindmicas. Além disso, os métodos
propostos sdo empregados em um espaco de busca mais amplo, com mais células representando
uma rede unica. Nossa hipétese central é que BAN baseado na evolug¢do pode ser usado em uma
busca com baixo custo (combinada com uma estratégia robusta e busca eficiente) em diversas
tarefas de visdo computacional sem perder competitividade. Nossos métodos sio avaliados
em diferentes problemas para validar nossa hipotese: classificacdo de imagens e segmentagdo
semantica de imagens médicas. Para tanto, as bases de dados CIFAR sdo estudadas para a
tarefa de classificacio e o desafio CHAOS para a tarefa de segmentacdo. As menores taxas de
erro encontradas nas bases CIFAR-10 e CIFAR-100 foram 2,17% + 0,10 e 15,47% + 0,51,
respectivamente. Quanto as tarefas do desafio CHAOS, os valores de Dice ficaram entre 90% e
96%. Os resultados obtidos com nossas propostas em ambas as tarefas mostraram a descoberta
de redes robustas para ambas as tarefas com baixo custo na fase de busca, sendo competitivas em
relacdo ao estado da arte em ambos os desafios.

Palavras-chave: aprendizagem de maquina automatizado, busca de arquiteturas neurais, aprendi-
zagem profunda, classificacido de imagens, segmentagcdo semantica



ABSTRACT

Deep learning (DL) usage is growing fast since current computational power provides fast
optimization and inference. Furthermore, several unique DL methods are evolving, enabling
superior computer vision, speech recognition, and text analysis results. DL methods automatically
extract features to represent a specific problem better, removing the hardworking of feature
engineering from conventional methods. Even if this process is automated, intelligent network
design is necessary for proper representation learning, which requires expertise in DL. The neural
architecture search (NAS) field focuses on developing intelligent approaches that automatically
design robust networks to reduce the expertise required for developing efficient networks. NAS
may provide ways to discover different network representations, improving the state-of-the-art in
different applications. Although NAS is relatively new, several approaches were developed for
discovering robust models. Efficient evolutionary-based methods are widely popular in NAS, but
their high GPU consumption (from a few days to months) discourages practical use. In the present
work, we propose two efficient evolutionary-based NAS approaches with low-GPU cost, requiring
only a few GPU hours (less than twelve in an RTX 2080T1) to discover competitive models.
Our approaches extract concepts from gene expression programming to represent and generate
robust cell-based networks combined with fast candidate training, weight sharing, and dynamic
combinations. Furthermore, the proposed methods are employed in a broader search space, with
more cells representing a unique network. Our central hypothesis is that evolutionary-based NAS
can be used in a low-cost GPU search (combined with a robust strategy and efficient search) in
diverse computer vision tasks without losing competitiveness. Our methods are evaluated in
different problems to validate our hypothesis: image classification and medical image semantic
segmentation. For this purpose, the CIFAR datasets are studied for the classification task and
the CHAOS challenge for the segmentation task. The lowest error rates found in CIFAR-10 and
CIFAR-100 datasets were 2.17% £ 0.10 and 15.47% + 0.51, respectively. As for the CHAOS
challenge tasks, the dice scores were between 90% and 96%. The obtained results from our
proposal in both tasks shown the discovery of robust networks for both tasks with little GPU cost
in the search phase, being competitive to state-of-the-art approaches in both challenges.

Keywords: automated machine learning, neural architecture search, deep learning, image
classification, semantic segmentation
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1 INTRODUCTION

Employment of new technologies to solve social problems or to automate processes is growing
considerably in recent years with new techniques, ideas, and processing power. Processes like
Spam detection, individual identification, and product recommendation are present in online
services and even personal smartphones. Many approaches used in these services are categorized
in the Machine Learning (ML) field, and even in the class of Deep Learning (DL) techniques
(LeCun et al., 2015).

In Machine Learning, a sub-field of Computer Science, we develop algorithms that
learn from various samples to solve a particular problem. Compact representations are extracted
to represent these samples better since these samples may contain too much data to label from
the raw data. This small representation is generally called a feature vector. A feature vector can
be generated with a hand-crafted technique applied to a raw input (e.g., image, music, text). This
feature vector 1s generally inputted to another technique (e.g., classifier) for identifying/classifying
the input (Bishop, 2006). This hand-crafted engineering may impose limitations in representing
a particular problem. It is crucial to carefully develop a set of techniques that correctly represents
the problem in question, increasing the necessity of expert intervention and time-consuming
study (LeCun et al., 2015; Bengio et al., 2021).

The representation learning field enters the context with algorithms that automatically
extract possible good representations directly from raw input. Thus, it reduces the requirement to
study and craft robust feature descriptors. Deep learning techniques, which are representation
learning methods with multiple levels of representation, are being heavily used in recent years.
DL has been increasingly applied to different problems concerning image recognition, biometry,
machine translation, and signal classification (LeCun et al., 2015; Bengio et al., 2021).,Usage
of convolutional neural networks (CNN), for example, covers diverse problems like license
plate recognition (Laroca et al., 2021b), medical image segmentation (Alves et al., 2018), face
recognition (Silva et al., 2018; Salomon et al., 2020), meter reading (Laroca et al., 2021a), iris
recognition (Zanlorensi et al., 2018; Lucio et al., 2019), periocular recognition (Zanlorensi et al.,
2020b,a,c, 2021), video surveillance (Luz et al., 2018) and autonomous navigation (Ruiz and
Todt, 2021). Although conventional ML can be used to solve problems like these (e.g., (Cordeiro
et al., 2018)) or even others like data augmentation (e.g., (Ruiz et al., 2019, 2020)), DL has been
effectively used to solve several problems.

With the popularity and reducing costs of Graphical Processing Units (GPU), several
DL techniques could be developed and improved to solve these problems. Its high success
can be mainly stated because of the automated feature engineering approach, exchanging the
responsibility of crafting relevant features from human-expert to the machine. The popularity of
deep learning and easy employment boosted more studies about components and normalizations.
Also, improvements in the network structure itself, for not only a better understanding of models
but also to increase performance (e.g., in terms of speed and accuracy) (LeCun et al., 2015;
Goodfellow et al., 2016).

Designing artificial neural networks requires domain expertise since different operations
combinations and hyper-parameters highly change the outcome. Attaining a suitable configuration
demands many trials until a good combination is found. It was necessary to craft techniques
to extract features from raw data in conventional machine learning. In DL, it is necessary to
craft the network to discover features based on some data. Although the network automatically
extracts features, knowledge of how to design the network is required. Because its structure
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defines how well it can represent some problems. To increase the high level of this problem
solution, Neural Architecture Search (NAS) aims to generate a problem-specific model without
tuning the network. NAS, a subfield of AutoML (Automated Machine Learning), automatically
generates a robust network, which needs a deep learning expert for a good outcome. Also, it
enables the discovery of new effective patterns in the network structure by searching in a diverse
space with less bias than a human expert (Hutter et al., 2018).

There are many different NAS approaches and how they produce new models to be
evaluated. One of them is the Neural Architecture Search (same name as the subfield) developed
by Zoph and Le (2016). A recurrent neural network (RNN) controller samples an architecture
and trains a child network. Then, the network accuracy is passed to the controller to improve
it, generating better architectures through time (illustrated in Figure 1.1). The main objective
of a NAS approach is to travel through a determined search space to find suitable models for a
specific dataset without human intervention in the architecture design.

Sample architecture A
with probability p

[ v

Trains a child network
The controller (RNN) with architecture
A to get accuracy R

{ J

Compute gradient of p and
scale it by R to update
the controller

Figure 1.1: Overview of the NAS approach proposed by Zoph and Le (2016).

Although NAS is a recent field, with only the last five years with relevant and diverse
researches, works increased rapidly. AutoML.org has a list! containing diverse research papers
related to NAS. At the beginning of 2019, there were around one hundred papers. In mid-2021,
more than one thousand papers are referenced there.

The primary purpose of our work is to develop a NAS approach that produces specific
data models quickly and low-costly. It is mainly based on Gene Expression Programming (GEP)
for search space representation and candidate model generation. In the following sections, we
briefly describe the problem to be addressed and our proposal, with challenges, motivations, and
contributions to the area of architecture search.

1.1 MOTIVATION

NAS may increase performance in a vast ecosystem of problems focused on adapting networks
based on a specific problem. Also, it may propose a friendly way to non-experts for deep network
modeling. So, the proposed work is being developed based on the following motivations:

* Facilitate the development of customized networks for specific tasks — whether being
fully automated or for generation of possible candidate models which experts would
further improve;

* Discoveries of new representations which may improve not only results in specific
problems but may aid further research in how different operations may be combined. We

Thttps://www.mldaad.org/automl/literature-on—-neural—-architecture-search/
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focus on representation discovery in cell-based networks. A cell is a small representation
that combines a few operations (like concatenations, additions, and convolutions). Then,
this cell representation is replicated many times, generally stacked sequentially, to form
a network;

* Fast and efficient search methods that would only require more accessible computational
resources. Like providing competitive models using less than one day of GPU time.

1.2 PROBLEM DEFINITION

In the case of neural architecture search, three main dimensions need to be defined to categorize a
NAS approach: search space, search strategy, and performance estimation strategy (Hutter et al.,
2018). These dimensions define: (1) which possible models will be represented; (2) how these
models will be discovered; and (3) how we can define the quality of a model. These dimensions
are discussed below:

» Search space: Defines which models will be represented and can be discovered
through NAS search (examples can be seen in Figure 1.2). A vast search space may
introduce a diverse ecosystem of models, which would not limit it to specific and
sub-good representations. However, it may also introduce too many noisy architectures,
exhausting computational resources, and not discovering a good representation in time.
So, it is crucial to reduce the search space to a minimal space without compromising
the ability to find innovative and good models. Depending on how this reduction is
implemented, it may include only models based on hand-crafted architectures and
remove innovative ideas (heavy inclusion of human bias). This dimension focus on
search space representations which can maximize good and innovative models and
minimize noisy ones.

Search strategy: Defines how an algorithm should travel through the search space.
Therefore, it is highly influenced by how this search space is constructed. The strategy
defined needs to discover suitable architectures fast (i.e., exploit the current landscape
being searched). Together, without being stuck in a local good (i.e., explore new lands
to find innovative networks). A premature convergence highly causes the latter. If the
algorithm is too greedy to find suitable architectures that focus only on a small space,
removing different but possibly better architectures. A strategy focused on exploration
may discover models with different structures between them. However, its quality would
be lower since its focus on minor improvements would be smaller. This dimension
focus on search strategies which provide a good trade-off between exploration and
exploitation.

Performance estimation strategy: Defines how an algorithm should evaluate the
models discovered. The primary approach is to train a model for E epochs and validate
unseen data. This approach would limit the number of architectures to be evaluated
in limited time and resource, as the value of E or the number of samples increase.
The problem in reducing these numbers is to increase the discrepancy between the
current model and the same trained until convergence. Other approaches like network
morphisms and one-shot architecture search reduce training time and approximate
fitness of current models to their fully-trained counterparts. This dimension focus on
performance estimation strategies that aid in model quality prediction with also
consuming as little computational resource as possible.
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Figure 1.2: Examples of different architecture spaces. In the left, we can see a more sequential network (VGG-like),
which each L; is a layer of some type (convolution, pooling, etc) with different parameters. In the right, a space with
branches and skip-connections (Inception-like). From (Hutter et al., 2018).

A NAS approach needs to address these three dimensions to produce networks with
relevant improvements, considering the resources needed to be used. The challenges in developing
it, mainly focusing on our work’s direction, are described next.

1.3 CHALLENGES

Optimization of networks is not something new. Evolutionary algorithms tried to develop efficient
but straightforward and shallow networks. Nevertheless, the NAS field — search and optimization
of deep learning architectures, is recent. Over the five years, diverse research was employed
to find customized and efficient models. However, this field is at an initial stage. Thus, many
problems are yet to be solved. This recent trend, combined with the complexity in finding novelty
and efficient deep neural networks, is a characteristic of NAS research. In our work, the following
challenges are found and need to be addressed:

* Developing a robust yet efficient architecture search, which provides competitive models
without exhaustive computational resource consumption;

* Designing a wide but effective search space containing novelty network representations.
Not only different than manually designed networks but also effectively represents the
samples (e.g., images, texts, audio) evaluated;

* Proposing and evaluating an efficient methodology for architecture search in terms of
accuracy and speed, with limited resources (in processing and time);

 Evaluating the representation of the best candidates, as to understand which blocks and
patterns contributed for them to be chosen;

* Developing a NAS approach that can be generalized to different network types (e.g.,
convnets, recurrent nets, auto-encoders) and problems (e.g., image classification,
segmentation, time series prediction) with little modification.
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1.4 HYPOTHESIS

Our central hypothesis is that evolutionary-based NAS can be used in a low-cost GPU search
(combined with a robust strategy and efficient search) to be employed in diverse computer
vision tasks without losing its competitiveness. With this hypothesis in mind, we developed
custom NAS approaches to be able to answer some of the following questions:

* Can we reduce the search phase to less than a GPU day of evolutionary approaches
without hindering the search of good models?

* Is it possible to increase the cell-based search space to employ different structures for
each model stage without accuracy loss?

* Is it possible to remove the requirement of fixing a good number of blocks for the
network cells?

» Can we migrate to other domains, like image segmentation with a difterent search space,
and provide competitive networks for a specific problem?

With the hypothesis confirmed, further research in evolutionary-based NAS approaches
can be focused on with low-cost search in mind. Also, new patterns and a broader search space
can be evaluated without consuming excessive computational resources.

1.5 OBJECTIVES

This work aims to develop a NAS methodology based on GEP — its representation adapted to deep
networks and its selection and reproduction systems. The following features are also proposed in
our approach (with their respective objectives):

* Development and comparison of two evolutionary-based approaches: one with sequential
training and another with dynamic training. These approaches focus on the fast search
phase using weight sharing/inheritance and few training iterations per candidate;

» Application of GEP features to generate the search space — like using Automatically
Defined Functions (ADFs) as blocks of a cell;

* Not only are these blocks” structures shared between candidate models but their weights
are also stored and inherited by newer candidates for fast convergence and fewer GPU
processing times. Weight sharing and inheritance (focused in similar combinations) aid
in achieving faster convergence;

* Generalization for other kinds of deep networks problems besides classification with
convnets, in this case, medical semantic segmentation with cross-modality — computer
tomography (CT) and magnetic resonance imaging (MRI).

1.6 CONTRIBUTION

Based on the motivation behind the NAS study, the objectives established, and the work developed,
the following contributions were made:

* To the best of our knowledge, the proposed thesis was the first GEP-based NAS, where
a work-in-progress was published in (Alves and Oliveira, 2020);
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* Two different evolutionary-based NAS approaches (static and dynamic strategies) for
efficient and fast architecture search, using only 0.5 GPU day in the search phase with a
single NVIDIA RTX 2080Ti;

 Evaluation of a dynamic evolutionary-based NAS approach in contrast with the sequential
nature of a common evolutionary-based NAS;

* A more complex cell-based representation that does not require configuring a fixed
number of blocks. Our approaches can find efficient models only by configuring an
interval of the possible number of blocks;

* Easily adapted approaches to new problems without much modification and search cost.
Furthermore, it provides competitive networks without transfer learning and can employ
its usage for further improvements;

* An easy and low-cost way to generate custom models for specific tasks and datasets.
These methods can aid users to achieve satisfactory results in unfamiliar problems or
help inexperienced users to employ custom models to solve tasks of interest. Also,
reduce the time to finetune models outsourcing this task to an automated search.

* And, finally, approaches ready to be applied in image classification tasks and medical
Image segmentation with cross-modality.

1.7 DOCUMENT ORGANIZATION

In the first part of our thesis, we present the theoretical basis to understand our approach and
related works focused on CNN and NAS approaches. Chapter 2 presents concepts regarding
deep learning, convnets’ structure, and optimization, and metrics to evaluate these models. In
Chapter 3, we present the concepts to understand the gene expression programming, used as the
basis of our search strategies to understand our thesis.

In Chapter 4, descriptions about related works regarding NAS, their results and
contributions are found. A better understanding of the NAS field and dimensions to which a
particular approach may be categorized is also given. The datasets evaluated in our thesis and
studied in these related works are also described. An overall discussion is present, showing some
directions to be attended.

In the second part, the proposed thesis with its experiments is discussed. In Chapter 5
we construct the basis of our approach, showing how candidate models are generated, different
policies to attend some particularities in generating deep convolutional networks, and many
strategies to aid in the architecture search. As for Chapter 6, we present our proposed thesis for
neural architecture search, employing two evolutionary-based NAS approaches.

Chapter 7 contains information about the experiments to be employed, the ablation
study and other results, then the overall discussion and comparison with other works in Chapter
8. Fally, Chapter 9 presents the final considerations of our thesis.
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2 DEEP LEARNING

This chapter aims to briefly describe concepts from deep learning (mainly related to convolutional
networks).

The central idea in deep learning is to learn the representation of some problem through
analyzing a representative amount of data. Patterns representing local or global features are
discovered using the backpropagation algorithm, changing the network structure and hyper-
parameters for a better representation. Improvements in difterent areas like image and speech
recognition, computer vision, and bioinformatics are found, setting the state-of-the-art in different
problems (LeCun et al., 2015; Goodfellow et al., 2016; Bengio et al., 2021).

2.1 CONVOLUTIONAL NEURAL NETWORKS

Like conventional networks, a convolutional neural network (CNN or convnets) consists of
input, output, and hidden layers. An image is used as the CNN’s input. Several operations are
applied to this image in the hidden layers. The probabilities of this image being from specific
classes are returned as the network output after being optimized using the backpropagation
algorithm (Rumelhart et al., 1988). In these hidden layers, there is the convolution operator
(cross-correlation, mathematically). The purpose of this operator is to extract information from
the neighborhood of pixels in the image using small rectangles — called kernels. With this,
information from an image can be represented more efficiently, as crucial information 1s extracted
with a large number of calculations (like fully connected layers, which employ cross-correlation
in the entire image at once) (Goodfellow et al., 2016).

Another commonly used operator is the pooling (maximum or average). Using a kernel
generally of size (2x2) extracts the maximum or average value from a neighborhood. It is
highly used combined with the stride attribute, which sets how many pixels a kernel will jump
horizontally or vertically in the window-sliding to obtain information from the entire image. With
a stride value equal to 2, the network can reduce the image size by half. This striding decreases
the computational power necessary for feature extraction in more prominent neighborhoods
(instead of increasing kernel size). Stride can also be used in convolution operations, which will
not only learn to extract useful information but also represent the feature map with smaller sizes
(compression) (Goodfellow et al., 2016).

Increasing the depth of a network inserts a problem called vanishing gradient. The
resulting calculation may include values close to or equal to zero depending on convolutions
applied to the image. These values incur irrelevant information to be propagated to the output.
One idea to address this problem is the residual information ((Srivastava et al., 2015; He et al.,
2016)). The standard approach is to sum a convolutional block’s output with its input. This
approach reduces the possibility of vanishing gradients and uses information generated in previous
layers on the latter. Given a previous layer’s output /;_1 and a set of operations F, the next layer’s
output A; is calculated as:

hi = F(hi1) + hi_1. (2.1)
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2.2 OPERATIONS IN CONVNETS

In this section, we aim to describe in more detail the difterent operations used in the state-of-the-art
approaches involving ConvNets, but mainly focused on the operations used in this work.

2.2.1 Normal Convolution

Also only called convolution, this operation is the basic one in this type of network (also, the
basis for identifying convolutional networks). Although commonly called convolution, it is
a cross-correlation. Thus, the weight flipping from the true-convolution does not apply here
(Zhang et al., 2020).

Input and a kernel (i.e., the weights of a convolution operation) are combined to generate
the output. Figure 2.1 illustrates a convolution in a two-dimensional input. A kernel is applied
as a window sliding in the entire input. Each input position is multiplied by the corresponding
position at the kernel (see the blue area). Then, the results are summed and inserted into a
corresponding position in the output. After, the kernel slides a s value, which is called stride
(generally, s = 1).

Input Kernel Output
0|1]2

19|25
31415

37143
6|78

Figure 2.1: Simple example of a convolution applied to an input. From (Zhang et al., 2020).

The output is generated according to the input and kernel, even its size. In the previous
example, an input of 3 X 3 and a kernel of 2 X 2 generated an output of 2 X 2. The output size can
be controlled according to the sizes of input and kernels, but also with other hyper-parameters.

Generally, the most common hyper-parameters used for this purpose are the padding
and stride. The padding can increase the input size, generally with zeros, to increase the output
size. For example, we can use the padding of p = 1 in the previous input to generate an output of
size 4 X 4. Figure 2.2 illustrates this process.
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Figure 2.2: A convolution with padding. From (Zhang et al., 2020).

In this case, we can use padding to increase the output size. However, there are some
cases in which we may desire to reduce the output size. Changing the stride value may help us
achieve that. The default value for stride is s = for every dimension in the input. For example, a
2D input has s = 1 for its width and height. So, the windows slide one position (s = 1) for the
following calculation (horizontally or vertically). One of the most common approaches for using
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convolution with striding is to set the value s = 1 to reduce the output size to half of the input
size (Zhang et al., 2020).

Another example is illustrated in Figure 2.3. Here, a stride of 2 for the width and 3 for
the height are used. So, four calculations are applied to the input. First, the calculation is applied
to the upper left of the input. Second, a sliding of two positions is applied to the right, and the
kernel convolutes the input (blue region). Third, the kernel returns to the left-most of the input,
but three positions are sliding to the bottom. Then the bottom-left region is convoluted (also in
blue). The final operation is applied after sliding to the right (with the bottom left as the point of
origin).

Input Kernel Output
If"'f"'f"'("'f"'l
10£030¢0%0!
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s g 2|3 6|8
7067|810
e e
403070700,

Figure 2.3: A convolution with stride s = (2, 3). From (Zhang et al., 2020).

This step occurs when a kernel is applied to a single-channel input. However, deep
convolutional models have multiple channels. So, how is convolution applied in multiple channel
inputs? Figure 2.4 illustrates that.

Input Kernel Input Kernel Output
11213
1(2
415|686
3 ] 3|4
0|12 71819 56 | 72
* |0]1 +
3[4|5 104 (120
2|3 012
6|17)|8 0|1
3(4(5
2 (3
6 (7|8

Figure 2.4: Example of the normal convolution applied to multiple channels. From (Zhang et al., 2020).

In the case of normal convolutions, each channel of output may have multiple kernels.
In the illustration, we have a single-channel output and an input with two channels. Each channel
of the input has a different kernel associated with it and one channel of the output. After applying
the kernels in the channels, the resulted calculation are summed to generate the output feature
map.

The layer represented in Figure 2.4 has eight parameters (two kernels with four parameters
each). In the case of normal convolutions, we can calculate the number of parameters of a layer
with the following formula:

(2.2)

Ly =ic % kp* ky *oc,

with i, being the input channel size, (ky, k) the kernel size and o, the output channel size
expected. If the output channel size o, is increased to 16, this layer would have 128 parameters
(2%2%2x%16=128).
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Usage of padding and stride contributes to preserving the feature map size or reduces it
to divisible sizes. Usage of stride combined with successive convolutions increases the receptive
field size, contributing to the extraction of more global features as we go through the depth of a
model.

2.2.2 Pointwise Convolution

Previously, a normal convolution was described. The 1 X 1 convolution, commonly called
pointwise convolution, is equal to a normal convolution but with a kernel size of 1 X 1. The
main idea here is not to extract the correlation between local pixels but the correlation between
channels. This correlation can be seen in Figure 2.5. It was first seen in the Network In Network
approach (Lin et al., 2013), being widely used for dimensionality changing and extracting channel
relationships.

Input Kemel Output

i
7

Figure 2.5: A pointwise convolution. From (Zhang et al., 2020).

Generally, a pointwise convolution will have padding equal to zero and stride s = 1,
generating an output with a size equal to the input. Since this convolution has a kernel of 1 X 1,
the number of parameters is significantly reduced without compromising the correlation between
multiple channels. For example, with input with 64 channels and output of 128 channels, we
have a weight size of 8192 parameters using the pointwise convolution. Using a 3 X 3 kernel, we
would use more than 70 thousand parameters.

2.2.3 Depthwise Convolution

Quite the reverse of the pointwise convolution, the depthwise convolution focus on the local
correlation of individual channels (Chollet, 2017). Inspired by the grouped convolutions (seen in
(Xie et al., 2017)), the channels of input are split, and then a kernel (one for each channel) is
applied to its respective channel. Then, the outputs are stacked together again. An illustration
can be seen in Figure 2.6.

Input Kernel Output

Figure 2.6: A depthwise convolution.

2.2.4 Depthwise Separable Convolution

Aregular convolution applies cross-correlation spatial and channel-wise simultaneously. However,
the number of parameters used is drastically increased as the number of channels and kernel size
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increase. A large number of parameters not only increases computational resource usage but
also causes overfitting. Thus, some authors choose alternative solutions to reduce parameter
counting with minimal impact on the model prediction. The depthwise separable convolution was
proposed to apply spatial and channel-wise cross-correlation with parameter reduction. These
two steps were split into the two convolutions previously described — pointwise and depthwise
convolutions, applying them sequentially (Chollet, 2017).

Although convolutions” order can be switched, the idea is to apply both convolutions
sequentially to determine the correlation between channels and in-channel local pixels. To access
the parameter reduction, we can pick up an example layer with a kernel size of 3 X 3, input channel
size of 64, and output channel size of 128. Using Equation 2.2, almost 74 thousand parameters are
necessary for this single operation. If a depthwise separable convolution replaces this operation,
we can have a different number of parameters according to the order of convolutions.

First, we need to describe the formula to calculate the parameters of the depthwise
convolution, which is seen as follows:

18 = he x ky * Ky, (2.3)

which A, is the number of channels the hidden layers will serve as the input. Since only
spatial-wise cross-correlation is applied, the number of channels remains the same as the input.
Now, we can calculate the number of parameters for the two cases — first, the case when the
pointwise convolution comes first.

Here, we first use this operation for channel-wise correlation and, generally, to increase
channel size. Equation 2.2 is used to calculate the number of parameters of the pointwise
convolution, which is 8192 (64 = 128 = 8192). Then we apply Equation 2.3 to calculate the
parameter size of the depthwise convolution, which is 1152 (128 * 3 =« 3 = 1152). In the first
case, this entire operation uses 9344 parameters (a little more than 12% of the respective normal
convolution).

For the second case, we first calculate the number of parameters of the depthwise
convolution, then for the pointwise one. For the first operation, we need 576 parameters
(64 % 3 %« 3 = 576). Then, for the second operation, we need 8192 (64 = 128 = 8§192). In this case,
8768 parameters are used (less than 12%).

Inboth cases, parameter reduction is remarkably efficient. With this reduction, increasing
the number of channels or model depth 1s common for better prediction. This type of combination
is widely used in state-of-the-art approaches, like in (Howard et al., 2019; Tan and Le, 2021).

2.2.5 Dilated Convolution

Also called atrous convolution, the dilated convolution is a type of convolution that inserts holes
between a kernel’s positions and applies this kernel to the image. Figure 2.7 illustrates a 3 X 3
kernel ith dilations equal to one (default kernel), two and three. As we can see, increasing the
dilation rate increases the receptive field without applying the stride. With according paddings,
we can preserve the size of the convoluted input. In segmentation tasks, where the precision of
the resolution must be preserved, dilated convolutions can be eftective (Yu and Koltun, 2015).

2.2.6 Transposed Convolution

In the previous convolution operations, we saw different features to preserve or reduce the feature
map size. However, in some cases, it is necessary to upsample the feature map. For example,
in segmentation tasks, models apply successive convolutions (or even pooling) with striding to
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Figure 2.7: Convolutional kernels with different dilation sizes (1, 2 and 3, respectively). From (Perone et al., 2018).

extract more global features with a large receptive field. The last feature map, which is used as a
heat map containing the class probabilities of each pixel, has a low spatial resolution. This heat
map must have a similar or even equal size to the input for precise segmentation. One approach is
to apply only dilated convolutions, but it may have excessive memory consumption (Ronneberger
et al., 2015; Zhang et al., 2020).

Another approach is to apply transposed convolutions to the low-spatial feature maps.
One famous segmentation model family that uses this approach is the U-Net family (Ronneberger
et al., 2015). This network is a convolutional encoder-decoder model. The encoder increases the
receptive field and decreasing the feature map size. In the decoder part, transposed convolutions
increase the feature map size to the original input size.

Figure 2.8 illustrates the transposed convolution with a 2 X 2 kernel. For each position
of the input, the kernel is applied. After, the resulted matrices are summed to generate the output.

Input Kernel

01 Transposed 01

213 Conv 2|3
Output
0|0 01 0(0]|1
=|10]0 + 2|13|+]0]2 & 0(3]|=|0|4]|6
4|6 6|9 4 112 9

Figure 2.8: Example of a transposed convolution. From (Zhang et al., 2020).

In Figure 2.9 the same transposed convolution is applied, but with a stride = 2. In this
case, no overlapping occurs in the resulted matrices.

2.2.7 Pooling

Differently of the convolution, the pooling operator does not have a kernel. Thus no weight
optimization is made. Like the convolutions, a window size must be configured. This window
slid in the entire input, applying some specific operation. There are two familiar used pooling
operators: average and maximum poolings (Zhang et al., 2020).

In Figure 2.10, we can see 2 X 2 max-pooling applied to the input. In this case, the
maximum value of a window of 2 X 2 is chosen (i.e., the maximum value between four values).
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Figure 2.9: Example of a transposed convolution with stride = 2. From (Zhang et al., 2020).
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Figure 2.10: Example of a max pooling. From (Zhang et al., 2020).

2.2.7.1 Global Average Pooling

The Global Average Pooling (GAP) is the same operation as the average pooling but applied
only once in an entire channel. This operation was designed to reduce and even replace fully
connected layers in convnets. GAPs reduce resource computation since there are no parameters
to compute or optimize. It also works well combined with convolutions. For each channel, the
operation is applied, generating a vector with its size equal to the number of channels (Lin et al.,
2013).

2.2.8 Non-linearity with the Activation function

Activation functions are widely used in neural networks, mainly for the addition of non-linearity
in these networks. Stacking hidden layers become futile without activations since it would
transform a neural network into a linear regression model. Usage of activations enables the
increase in the complexity and efficiency of these networks (Goodfellow et al., 2016; Zhang et al.,
2020).

2.2.81 RelU

The Rectified Linear Unit (ReLLU) is one of the most popular and simple activation functions.
Equation 2.4 shows the formula for this activation. The ReLU activation only outputs values

greater or equal to zero. If an inputted value is negative, ReLU outputs a zero (Glorot et al.,
2011).

ReLU(x) = max(x,0) (2.4)

Figure 2.11 shows a plot of ReLLU’s output between an interval. Its derivatives work
well enough for faster optimization and reduce the vanish gradient problem (Zhang et al., 2020).
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Figure 2.11: Output of the ReLU activation. From (Zhang et al., 2020).

2.2.9 Batch Normalization

One of the most impressive improvements in deep learning is Batch Normalization (BN). Training
of neural networks drastically decreases with its usage since it focuses on reducing internal
covariate shift (i.e., changing the data distribution). Also, BN helps in the gradient flow by
reducing gradient dependency on the parameter scale. Usage of BN minimizes the usage of
dropout for regularization of the weights (Ioffe and Szegedy, 2015).

2.3 EVALUATING A MODEL

Evaluation of a model is necessary to reduce the generalization error (evaluating a validation
set) and to reduce training error (evaluating a training set). A metric must be carefully chosen
depending on the task in hand (Zhang et al., 2020). Therefore, we describe in this section some
evaluation metrics necessary for better optimization of the generated models. Nevertheless, first,
we must define the following metrics:

* True Positive (TP): Sample from the positive class is correctly classified as such;
* True Negative (TN): Sample from the negative class is correctly classified as negative;
* False Positive (FP): Sample from the negative class is classified as positive;

 False Negative (FN): Sample from the positive class is classified as negative.

2.3.1 Accuracy

Accuracy 1s commonly used to evaluate image classification in balanced datasets. Using the
metrics defined above, we can calculate the accuracy of a method with the following formula
(Mower, 2005):

TP+TN
A = 2
ce TP+TN+FP+FN @)

2.3.2 Dice similarity score

The Dice similarity score (DSC) was independently proposed in (Sorensen, 1948) and (Dice,
1945), which is also called F1-score and widely used in ML. It calculates the similarity of two
samples (e.g., predictions and correct labels). Also, very used do assess the quality of an image
segmentation without taking into account the background. DSC is calculated as follows:

2TP
DSC = 2.
=L 2TP+FP+FN 2.0)
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2.3.3 Loss function

The loss function dictates how to evaluate the training error of a model. This function evaluates
how well the probabilities generated (generally returned by a softmax function) reflect a training
sample. Depending on how we define a loss function, we can optimize a model differently. For
example, a loss function can reduce the precision and recall of a training set and disregard the
correct classification of negative samples (Zhang et al., 2020).

In this work, mainly two loss functions are used (which are also popular in their fields):
cross-entropy and soft-Dice loss functions. Before entering in more details, we must define some
things: I is the sample to be evaluated. Can be images from a dataset (for image classification)
or pixels/voxels from an image; y; is the actual probability of the ith sample to be from his class;
$; is the predicted probability of the ith sample to be from this class; ¥ and ¥ are the set of actual
probabilities and set of predictions, respectively (Bertels et al., 2019).

2.3.3.1 Cross-entropy loss function

The cross-entropy loss function is one of the most popular loss functions for convnets optimization.
It 1s widely used for model optimization in classification problems. This function aims to minimize
the negative log-likelihood. The cross-entropy loss function is calculated as follows (Bertels
et al., 2019):

I-1

CE(Y,Y) == ) [yilog§i+ (1 - y)log(1 = $)] 2.7
i=0

2.3.3.2 Soft-Dice loss function

Based on the Dice Similarity Coeflicient, the soft-Dice function calculates the loss based on the
Dice score but using the probabilities. Thus, we can optimize a model based on how well it is
making its prediction of the regions of interest (ROI), excluding the correct prediction of the
negative class (generally the background for image segmentation) of the loss calculation. The
soft-Dice loss function is calculated with the following equation (Bertels et al., 2019):

230 Divi
—1 A -1
,'I:() yi+ Zfzo Yi

SD(Y,Y)=1- (2.8)

2.4 OPTIMIZING A DEEP MODEL

After structuring a neural network, we must training it with several samples for the model to be
robust to new data. There are a few hyper-parameters that need to be configured for efficient
model optimization. In this section, the approaches used to optimize the automatically generated
models are discussed.

2.4.1 Optimizers

One of the most important parts of deep learning training is to configure an optimizer. The loss
function is the objective function of an optimizer. These optimizers aim to reduce the loss of the
training dataset (Zhang et al., 2020).
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2.4.1.1 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is an iterative optimizer which uses minibatches to calculate
an expectation of the gradient. SGD is used instead of computing the Gradient Descent of the
entire data in one way. It is not only faster and computationally viable, but SGD also have much
better convergence. To optimize a weight w with SGD, the following equation is applied,

wt — W1 —Vf(we), 2.9)

where 7 is the learning rate (controls the step in which the weights change) and the V f(w) is the
gradient of the loss function f(w¢_1) at time ¢ (Zhang et al., 2020).

2.4.1.2 Adam and AdamW

Adam (Kingma and Ba, 2014) and AdamW (Loshchilov and Hutter, 2018) are adaptive learning
rate optimizers suitable for optimization in problems with noisy and sparse gradients. Compared
with SGD, they achieve convergence much faster and are especially appropriate when hyper-
parameter tuning is not viable. Adam optimizer calculates the weight update by the following
equation:

A

my

Wi ¢ Wi_1 — (2.10)
' ‘ n\/ﬁ_t +e
with the following parameters aiding the calculation of the weight update:
my
= —— 2.11
my 1 _ﬁtl > ( )
o Vi
= 2.12
Vi 1 _ﬁz, ( )
my = Bim_1 + (1= B1)gs, (2.13)
— 2
ve = Pavier + (1= Ba)gr, (2.14)
8 = Vo fi(bi1) (2.15)

with 77 as the learning rate, € as a small constant (typically le-8) to prevent division by zero, and
B1 =.9 and B> = .999 as the forgetting parameters. AdamW is a modification of the original
Adam but decouples the weight decay from the gradient update. This modification helps the
generalization power of the model.

2.4.2 Learning Rate Scheduler

Learning rate contributes considerably to optimizing a model, and a suboptimum value may hinder
this optimization. For example, high values may result in divergence and weight exploding, but
low values may result in high training time and stuck in local minima. Learning rate schedulers
enter the scenario to automatically change the learning rate according to the time (Zhang et al.,
2020). In this work, mainly two similar learning rate schedulers are used: cosine annealing and
cosine one-cycle.
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2.4.2.1 Cosine Annealing

The cosine annealing scheduler aims to persist in the first epochs with a high learning rate 79
(defined manually) and decreases continuously to refine the model with lower learning rates
(Loshchilov and Hutter, 2016; Zhang et al., 2020). The learning rate decreases until 7 (which is
commonly used as 7 = 0). The following equation demonstrates the calculation of the learning
rate at step ¢ (from zero to T):

T =1 + w (1 + cos(rt/T)) (2.16)

Figure 2.12 illustrates how the learning rate decreases over time.
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Figure 2.12: Plot of the cosine annealing scheduler with initial learning rate of 0.3 and steps 7 = 20. From (Zhang
et al., 2020).

2.4.2.2 Cosine One-Cycle

Like the cosine annealing, the cosine one-cycle learning rate scheduler generates the learning
rate based on the cosine. However, cosine annealing begins with a low learning rate (typically,
no = n/25) and increases along the time until the scheduler reaches the configured learning rate
1. Then, it begins to decrease like cosine annealing. This scheduler begins with a low learning
rate to aid in weight stabilization. Also, the momentum changes inversely to the learning rate
(Smith, 2018). Figure 2.13 illustrates an example of the cosine one-cycle learning rate.
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Figure 2.13: Example of learning rate and momentum values calculated by the Cosine One-Cycle Scheduler for
hundred of epochs. From https://fastail.fast.ai/callbacks.one_cycle.html.

2.5 DATA AUGMENTATION

One of the most common problems in ML and DL is over-fitting, which 1s when a model 1s
highly biased to the training data. The model fits these samples in such a way that reduces its
generalization significantly. Thus, the prediction of other samples becomes poor. Generally, low
variability in the training set causes over-fitting. To increase sample variability and to reduce
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over-fitting, a common approach is to apply data augmentation (Goodfellow et al., 2016; Zhang
et al., 2020).

Data augmentation aims to generate similar training samples but random changes that
may present robust variations to the model. For example, flipping and translation may introduce
objects of interest in different positions. Random changes to the brightness, contrast, and
saturation may increase the model’s robustness to these variations. The main idea is to provide
augmentation that contributes to model invariant to these changes (Goodfellow et al., 2016).

One of the most used data augmentation strategies is the AutoAugment (Cubuk et al.,
2018). A set of policies was found in popular datasets (e.g., CIFAR, ImageNet, SVHN) that
reduced overall test error in these datasets. Online data augmentation is employed when using
AutoAugment. Online data augmentation is when, at each training batch, random augmentations
are applied to the batch. This approach increases data variability, which also reduces the
probability of a model memorizing the same data.

One of the augmentations employed in Auto Augment is AutoContrast. This augmen-
tation maximizes the contrast by stretching the histogram, changing the darkest pixel to black
and the lightest pixel to white. Then, other pixel values are modified accordingly (Cubuk et al.,
2018). Random horizontal flipping and random cropping (a specific region of the image) are
standard data augmentation methods applied to image classification, being popularized in (He
et al., 2016). Combined with AutoAugment, Cutout (DeVries and Taylor, 2017) is another robust
data augmentation technique. Cutout randomly applies a black square in a random position of
the input. This approach forces the model to learn features of a class from different places of an
image.

Not only does image classification benefit from data augmentation. For example, medical
image segmentation greatly benefits from different augmentations techniques since low sample
data is available. Different affine, elastic, and pixel-wise augmentation methods can be applied
at training time to increase generalization (Nalepa et al., 2019). Some of these augmentations
are elastic deformation (Simard et al., 2003), curvature flow (Malladi and Sethian, 1996), shear,
translation and rotation.

2.6 CONCLUSION

In this chapter, we briefly explained diverse concepts related to deep learning. The structure
of a convolutional network, different operations, its optimization, and model evaluation were
discussed. In the next chapter, some concepts of evolutionary computation are described.



3 EVOLUTIONARY COMPUTATION

This chapter briefly describes concepts from evolutionary computation (mainly related to gene
expression programming) used to understand the proposed approach.

Evolutionary computation is a sub-area of computer science in which its algorithms and
concepts are based on the biological process of evolution — mainly Darwinian one. Processes
from nature are interpreted and convert to ideas that may simulate or be roughly inspired by these
processes (Eiben et al., 2003).

As we can see in nature, the power of evolution is incredibly evident in how species
adapted and survived in many hazardous environments. The core of evolution is the process of
trial and error: a vast amount of combinations are tested to solve a specific problem. Different
from a random search, in evolution, the many combinations pass on their genetic to further
generations, which may guide to a more intelligent search than only combining random data.
Also, the presence of mutation incurs an exploration of different landscapes not traveled by prior
generations.

In an environment with limited resources, a group of individuals — called population —
strive to survive and reproduce with other individuals and pass on their genetic material to the
next generations. An evolutionary algorithm (EA) is a computational technique constructed on
this philosophy.

The individual can refer to the candidate solution (phenotype), i.e., the solution to solve
a specific problem, or to the EA representation (genotype), also called a chromosome. This
chromosome can be a string or even a tree-like structure. It represents a candidate solution and
can be defined as the coordinates of this solution in a space problem. Then, some EA aims to
travel through this space to find excellent coordinates for a specific problem.

The population is a set of these coordinates but also a set of candidate solutions. It is
necessary to find out the best and relevant individuals to improve candidate solutions. A fitness
score is calculated for every individual to evaluate the population. Then, a reproduction step is
employed to generate the next generation of individuals. This step focuses on obtaining patterns
of the best individuals (but also of less fit ones), mutating, and combining (reproduction step)
them to generate new individuals (children) who may present better fitness scores.

After children’s evaluation, a survivor selection mechanism reduces the population to
the initial size. An iteration of this process is called generation. This evolutionary process is
executed until some generations are completed, or another rule happens (e.g., an individual with
an excellent fitness score). The overall process of evolution is illustrated in Figure 3.1.

Parent selection
Initialisation Parents

Recombination

: Population
L

Mutation

Termination Offspring
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Figure 3.1: General process of an evolutionary algorithm. From (Eiben et al., 2003).
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The most popular EAs are the genetic algorithm (GA), genetic programming (GP),
evolutionary strategies (ES), evolutionary programming (EP), differential evolution (DE), and
particle swarm optimization (PSO). Aside from these algorithms, there is a vast ecosystem
of evolutionary-based techniques. One of them, similar to GAs and GPs, 1s gene expression
programming — which will be described in the next section.

3.1 GENE EXPRESSION PROGRAMMING

Gene Expression Programming (GEP) 1s an evolutionary algorithm with linear (genotype) and
ramified (phenotype) representations (Ferreira, 2001). It combines the simplicity of genetic
algorithms for reproduction and the generation of complex models from genetic programming.
In GEP, an initial set of individuals (i.e., population) is generated. Each individual consists of a
string-like genotype with a fixed size, a representation of the real model. It is similar to DNA,
containing elements that change the model based on their sequence and position. GEP translated
this genotype to a tree-like representation, which is the real model of the individual (phenotype).

3.1.1 The genotype and phenotype representations

The genotype is divided into two sequences: head and tail. The head sequence contains functions
and terminals. As for the tail, only terminals are found. However, what is the difference between
them? As the name suggests, functions are elements that have an input (or many inputs). An
operation is applied to it, producing some output (although the output may have different sizes or
dimensions than the inputs, it 1s considered a unique output). Terminals are data to be used as
iputs for functions (terminals do not have iputs), so no operation is applied when a terminal is
found.

Lengths of head and tail are calculated based on a chosen value for the head and the size
of head and arity (maximum number of inputs between used functions) for the tail. Being / the
size of the head and a the arity, the length of the tail is calculated as follows:

t=h(a—1)+1. (3.1)

For example, imagine that we are working with the function set composed of {+, -, *,
/, squared root (as Q)} and terminal set {a, b, c}. In this case, the arity is equal to 2 (a = 2).
Choosing a value of & equal to 8, we have the size of the tail as t = 9. An example individual can
be seen below (tail in bold):

+a — «Qbc/abbcabcab

With this genotype representation separated in head and tail, the expression tree (ET) —
the phenotype — can be generated, using the first element of the head as the tree’s root. Then, the
tree 1s assembled with the following elements of the head (and then the tail) until all functions
have input. There are two approaches to set the order of assembly:

» Width-first: As elements are put in the ET, it grows depth-wise. The order, in this case,
1s width-first — inputs of functions in the current depth are first filled before going to the
next depth level. Generally, ETs, in this case, are wider if there is a high quantity of
functions in the head.

» Depth-first: Different from the width-first, the idea is to focus on filling functions and
their functions depth-wise, always trying to fill the newer functions inserted into the ET.
In this case, ETs with many functions in the head will have a more deep structure.
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3.1.1.1 Directed Acyclic Graph in GEP

The default phenotype of GEP is a tree with many levels. A tree phenotype may limit the possible
configurations since a node in lower levels can not be used as an input of upper-level nodes. To
insert node re-usability, Quan and Yang (2007) changes the GEP phenotype to support Directed
Acyclic Graphs (DAG). This new genotype has two chromosome types: main and topological.
The first contains the elements of an individual. Then, the topological has I sequences, where I is
the number of possible inputs of any element in the individual. The topological sequences contain
the index of the inputs of each element. As we can see in Figure 3.2 (with / = 2), an element
may contain only indexes less than the element index. This pattern removes the possibility of
phenotypes with cycles.

9876543210
main chromosome: +- *a /bb*ab
topological chromosome: 8 455332000
6743221100
+
- a
/ *
b /
b %
b a

Figure 3.2: Example of the new genotype representation proposed in (Quan and Yang, 2007).

3.1.2 Genes with Automatically Defined Functions

In GEP, genes are considered parts of an entire chromosome. Generally, an individual is composed
of many genes, with each gene being a sub-ET. Then, these sub-ETs are combined with some
operator (addition, for example). There is also a more advanced approach that treats genes as
elements — an Automatically Defined Function (ADF) (Ferreira, 2006a), being first introduced by
Koza (1992), in Genetic Programming, for code reuse.

In its simplest form, a program/individual is composed of only one gene. This gene is a
sequence of head and tail, which is translated to an expression tree. The genes” sequences are
sequentially included in the chromosome sequence, where reproduction operators are applied.
Individuals can also be multi-genetic, generating many ETs later combined with a function
(addition, for example).

There is the ADF approach, which is composed of functions and terminals, similar to
conventional genes. The main difference is the inclusion of a homeotic gene. This particular
gene represents the main program of the GEP individual and its relations with the other genes
(i.e., ADFs). In its default norm, terminals are removed and replaced with ADFs treated as the
homeotic gene’s terminals. The chromosome, ETs from each ADF, and the main program ET are
illustrated in Figure 3.3.

Another ADF representation is the C-ADF proposed by Zhong et al. (2016) in their
SL-GEP (Self-Learning GEP) approach. It is similar to the default ADF, except in which
elements are replaced in the homeotic gene. In this case, terminals are considered as variables
and constants, like in conventional genes. As for the function set, not only functions but ADFs
are included. So, ADFs are now treated as functions, not terminals. This strategy enhanced the
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Figure 3.3: ADF examples. From (Ferreira, 2006a).

ability to combine different genes, as one gene can be the input (in default ADF, genes can be
only combined by functions).

3.2 EVOLVING POPULATION WITH REPRODUCTION

First-generation individuals may have different genotypes, phenotypes, and fitness scores.
Although good individuals may be found in this generation, evolving is necessary to explore
many spaces and exploit good patterns. This evolutionary process is called, like in the biological
life, reproduction (Eiben et al., 2003).

The basic idea is to insert variation in the current generation to generate new individuals
for the next. This variation can change one element from the individual (mutation), many
elements (transposition), or even change them between individuals (recombination). Variation is
mainly employed in the best individuals, with tournament selection and round-robin techniques,
encouraging exploration of new horizons without losing the earning already gained. More
detailed descriptions are present in the following subsections for each type of variation used in
this work.

3.2.1 Imserting abnormalities with mutation

One of the most simple and powerful operators in evolutionary computation is mutation. The
basic idea is to change elements of an individual randomly to add variability. Based on the
biological mutation, its purpose is to insert abnormalities into the population to explore different
patterns, which may direct to better models. Random change of elements from a genotype
encourages exploration of new spaces and can also change the phenotype considerably. Generally,
mutations are unbiased, with uniform probabilities of selecting a random element (Eiben et al.,
2003).

Mutation in GEP occurs similarly to other EC approaches, being applied to any
chromosome position with any element, provided the latter is from the respective pool (function
and terminals for the head and terminal only for the tail). Drastically changes in the expression
tree structure can be seen with mutations in the head part (Ferreira, 2006b). For example, if a
function of arity = 2 is mutated to a terminal, the branch is cut oftf. The inverse is also possible
by growing the expression tree with an arity bigger than the current one or replacing terminal
elements.
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3.2.2 Inherit information from both parents with the recombination operator

Another interesting variational operator 1s the recombination operator. Unlike the previous ones,
the crossover operator uses genetic information from two parents (or more, in some approaches),
swapping a subsequence from one parent to another in the same position. This exchange is also
based on the biological environment, in which two parents exchange information to generate a
fitter individual. The intent in evolutionary computation is to combine parts of suitable individuals
to check if this new combination produces better results (Eiben et al., 2003). There are many
types of recombinations in GEP terms (not exclusively), but, in this work, only two are used:
one-point and two-point.

In the first case, a random position between elements is chosen. For individual A, the
subsequence to the left of this position is copied to a new child C to the same position, and the
subsequence to the right is copied to a new child D (also to the same position). The exact process
is employed for individual B except that the left subsequence is copied to child D and the right
subsequence to child C.

The second type, two-point recombination, has a similar process. For it, not only one
but two positions between elements are randomly chosen. Considering these positions as X and
Y, respectively, the elements of an individual between these positions X and Y are copied to a
new child combined with the subsequences to the left of X and the right of Y from another parent.

3.3 PICKING THE BEST INDIVIDUALS FOR REPRODUCTION: PARENT SELEC-
TION

After population evaluation, a reproduction step is executed to generate offspring from the
population, which individuals will act as parents influence the quality and variability of the
children. Policies that improve overall fitness without losing the innovation of new individuals are
necessary to guide the search to better spaces. One that focuses too much on quality may guide
and stuck the search to a local optimum. In cases that focus too much on innovations (variability),
the search may be similar to a random search, i.e., information from previous generations would
be useless.

3.3.1 Tournament Selection

The Tournament Selection (TS) picks an individual based on his fitness. As the name says, a
tournament is realized to select the fittest individual. From a population with N individuals, k
(< N) are chosen randomly, and the individual with better fitness is selected. The main idea 1s
to select the best individuals and let less fit (and maybe innovated) individuals reproduce. One
thing to note is that the k£ — 1 individuals are never selected to reproduce.

3.4 SURVIVOR SELECTION MECHANISM

After evaluating the population, which compromises evaluating the current generation, parent
selection to generate children, and evaluation of the latter, it is necessary to select the individuals
to pass to the next generation. The main motivations are to stabilize the population size and
forward only relevant individuals. If no individual is removed, population size may grow, so it is
not feasible for evaluation, showing the necessity to remove some individuals.

As for what individuals to be removed, it enters in the relevance for further reproduction.
The fittest individuals and individuals that, although have worse fitness, may present innovated
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patterns that will contribute considerably to improve children from further generations. Some
approaches commonly used are described below:

3.4.1 Age-Based Replacement

Age-based replacement focus on preserving young individuals even if their fitness is lower than
the old ones. Different rules may be applied to remove the oldest individual or ones that have
achieved a certain number of generations at each generation. This approach opens space for
newer individuals to be evaluated and improved.

Removal of the oldest individual guarantees that at least one child will pass to the next
generation. Also, focus on evaluating recent individuals, always setting a limited number of
generations to evaluate each individual. A more aggressive approach is to set the lifetime limit of
individuals manually. In this case, it is guaranteed that no individual will be evaluated at certain
times.

When individuals have weights to be optimized, too old ones may have much higher
fitness than the overall population, and fitness in followed generations may not change considerably.
It is ideal for removing these individuals when they reach a state with little or no improvement to
address this pattern.

3.4.2 Fitness-Based Replacement

The remove-worst policy aims to remove N individuals with worst fitness since they produce
minor relevance to solve a specific problem (also in being a parent for further generations).
Generally, the N value is not so high compared with the current number of individuals in the
population, since otherwise would remove variability between individuals (few parents with
similar structures may produce similar children, focusing on a small local search).

In elitism, the fittest individual survives to the next generation, always providing good
material for further reproduction. Even if produced children would obtain lower fitness, there is
always change in further generations to produce better individuals than this one.

3.5 CONCLUSION

In this chapter, concepts regarding GEP were discussed. The genotype/phenotype representation,
replacement, and reproduction are some of the topics explained. Different adaptations to these
methods are made and discussed in our methodology.
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4 RELATED WORKS

This chapter presents the diverse architecture search works developed (from 2016 onwards and
mostly accepted in renowned conferences and journals), mainly for convnet generation. The
CIFAR datasets are our focus since they are evaluated in our proposed thesis. Then, we present
an overall discussion about NAS proposals, analyzing their pros, cons, and what can be treated in
the future. Finally, conventional and NAS-based approaches for medical semantic segmentation
were studied, evaluating their results on the CHAOS challenge. Thus, we introduce this chapter
describing the CIFAR datasets and the CHAOS challenge.
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