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RESUMO

Os impactos inevitáveis das mudanças climáticas sobre os recursos hídricos já são

visíveis. As principais consequências são o aumento da ocorrência e magnitude de eventos

hidrológicos extremos, como cheias e secas, que requerem medidas robustas de adaptação frente às

alterações climáticas. A abordagem comum para avaliar os impactos das mudanças climáticas nos

recursos hídricos é realizar projeções hidrológicas com base em cenários futuros de modelagem

climática. No entanto, existem várias fontes de incerteza nesta metodologia, relacionadas a

cenários de emissão, modelos climáticos, correção de viés e modelagem hidrológica. Abordar a

incerteza dos impactos das mudanças climáticas na vazão é importante em primeiro lugar para

produzir projeções robustas de impactos futuros e, subsequentemente, para apoiar o planejamento

de recursos hídricos e a tomada de decisões. Nesta tese, algumas das questões científicas

investigadas estão relacionadas a métodos específicos usados na estrutura de análise do impacto

das mudanças climáticas na vazão, como o valor agregado da correção de viés na redução de

vieses de modelos climáticos, o uso de um método baseado em dados como modelo hidrológico,

quantificação da incerteza na vazão projetada e, por fim, como combinar projeções em conjunto.

A correção de viés mostrou-se essencial em estudos de mudanças climáticas, sendo a melhor

técnica o Mapeamento Empírico de Quantis utilizando fator de correção mensal. O uso de um

modelo baseado em dados para previsão de vazão foi menos robusto do que um modelo do

tipo balde sob condições de mudança, e deve ser evitado. Os dados de entrada de precipitação

usados na modelagem hidrológica impactaram significativamente nas projeções e não devem ser

negligenciados na amostragem de incerteza. A variabilidade das projeções do modelo climático

foi o contribuinte de incerteza mais significativo na projeção das mudanças na vazão média,

seguida pelos dados de entrada de precipitação usados na calibração do modelo hidrológico. A

correção de viés e os cenários de emissão contribuíram relativamente pouco para as incertezas

totais, enquanto as diferentes parametrizações do modelo hidrológico não contribuíram para

a incerteza. Por fim, a busca por um modelo perfeito deve ser substituída por abordagens de

modelagem sob-medida (com base na variável de interesse) para minimizar o erro em projeções

sob grandes incertezas.

Palavras-chave: Modelo climático. Correção de viés. Modelagem hidrológica. Recursos

hídricos. Modelo sob-medida.



ABSTRACT

The unavoidable impacts of climate change on water resources are already visible. The

main consequences are the increased occurrence and magnitude of extreme hydrological events,

such as floods and droughts, which require robust adaptation measures in the face of climate

change. The common approach to assessing the impacts of climate change on water resources is

to carry out hydrological projections based on future climate modelling scenarios. However, there

are several sources of uncertainty in this methodology, related to emission scenarios, climate

models, bias correction, and hydrological modelling. Addressing the uncertainty of climate

change impacts on river discharge is important in the first place to produce robust projections

of future impacts and subsequently to support water resources planning and decision-making.

In this thesis, some of the scientific questions investigated are related to specific methods used

in the climate change impact on river discharge framework, such as the added value of bias

correction in reducing climate model biases, the use of data-driven methods as hydrological

models, quantification of the uncertainty on river discharge and, finally, how to analyse and

combine ensemble projections. The bias correction was shown to be essential in climate change

studies, the best technique being the Empirical Quantile Mapping using monthly correction factor.

The use of data-driven models for river discharge prediction was less robust than a bucket-type

model under changing conditions, and should be avoided. The precipitation input data used in

the hydrological modelling significantly impacted in the projections, and should not be neglected

in uncertainty sampling. The variability of climate model projections was the most significant

uncertainty contributor in the projection of changes in the mean river discharge, followed by

the precipitation input data used in the hydrological model calibration. Bias correction and

emission scenarios contributed relatively little to the total uncertainties, while the different

parameterizations of the hydrological model did not contribute to the uncertainty. The search

for a perfect model should be replaced by tailor-made (based on interest variable) modeling

approaches to minimize the error in projections under large uncertainties.

Keywords: Climate model. Bias correction. Hydrological modelling. Water resources.

Purpose-tailored model.
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1 INTRODUCTION

The evaluation of the climate change impacts on water resources is essential to the

adaptation planning facing climate change. Studies investigating the impact of climate change on

the hydrological response have grown substantially in the last two decades worldwide. Globally,

climate change is projected to reduce terrestrial water storage in many regions, especially those in

the Southern Hemisphere. An increase is projected in eastern Africa, south Asia and northern high

latitudes, especially northern Asia (POKHREL et al., 2021). In South America, major decreases

are projected in the annual mean discharge, except for Uruguay Basin where a positive trend is

expected (BRÊDA et al., 2020). Rainfall-runoff models combined with emission scenarios from

global or regional climate models are widely used to assess the future climate change impacts

on the catchment scale. There is a scientific consensus that there are large uncertainties in this

modelling framework, mainly composed by emission scenarios, climate modelling, downscaling,

bias correction techniques, and impact modelling (BORGES DE AMORIM; CHAFFE, 2019a).

In Brazil, the uncertainty analysis of the climate change impact on water resources

is not a common approach. Lots of scientific progress on stressing the importance of the

uncertainty sampling, as well as the establishment of initiatives that synchronize efforts among

research institutions is needed to sustain better decision making and planning on water resources.

Additionally, more practical information on how to deal with these large uncertainties and how to

provide reliable estimates to the end-users is still an open scientific question.

1.1 CLIMATE MODELS AND DOWNSCALING

Global Climate Models (GCM) are used to project how anthropogenic emissions

influence the planet’s climate. These models are the most advanced tool available to simulate

the response of the global climate system to the increase in greenhouse gases (GHG) in the

atmosphere. GCMs are based on the physical principles of the atmosphere, the oceans and

the surface of the planet through established physical laws, such as conservation of mass,

energy, and momentum, along with a wealth of observations (STANISLAWSKA; KRAWIEC;

KUNDZEWICZ, 2012).

The ability of the models to adequately predict characteristics of the current climate,

such as air temperature distributions, atmospheric conditions, precipitation, radiation, wind,

temperature and ocean currents, ice cover and main aspects of many of the climate variability

patterns can demonstrate the reliability of the long-term projections (RANDALL et al., 2007).

In general, the GCMs are limited in projection capacity to large spatial scales, due to

computational constraints, lack of understanding about the phenomenon and the unavailability of

detailed observations of some physical processes. This can make it difficult the understanding of

important phenomena that occur on smaller scales than the grid resolution of the model. Thus,

to carry out projections at the regional level (at the basin scale, for example), it is necessary to

use regionalization methods, transforming GCMs into Regional Climate Models (RCM). The
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regionalization techniques can be divided into two groups of methods: dynamic regionalization

and statistic regionalization (HEWITSON; CRANE, 1996).

Dynamic regionalization methods use numerical models as the GCM, but with higher

resolution. The most widespread method is the limited area model, formed by equations that

describe the atmospheric dynamics of the region to obtain regionalized forecasts (WILBY;

WIGLEY, 1997). Statistic regionalization methods use statistical parameters to find relationships

between observed regional-scale data and the data generated by GCM on a global scale. These

methods are simpler and do not require as much computing capacity as dynamic models

(KULIGOWSKI; BARROS, 1998).

Although the scientific and computational advances that has provided major understand-

ing of the climate system and allows the projection of scenarios of climate change, there are

still large uncertainty inherent to these projections (NAKICENOVIC et al., 2000), mainly in the

regional scale, some variables being more reliable (e.g. temperature) than others (SANTOS et

al., 2015).

The main uncertainties in climate modelling are due to the architecture of the numerical

model, the spatial discretization of the models and systematic errors caused by the imperfect

conceptualization of climate phenomena and processes. Other uncertainty factors are the natural

stochasticity and non-linearity of the climate system process, and ignorance of the complete initial

condition of the climate system (OLIVEIRA; PEDROLLO; CASTRO, 2015; TEUTSCHBEIN;

SEIBERT, 2012).

The use of several climate models with different numerical modelling and conceptu-

alizations in impact studies can help addressing epistemic uncertainties, and the use of GCMs

simulations set with several initial conditions can help to deal with the natural variability and

aleatory uncertainty. The Intergovernmental Panel on Climate Change (IPCC) considers the

results from climate models participating in the Coupled Model Intercomparison Project (CMIP)

of the World Climate Research Programme, in which the models are combined to form an

ensemble average, giving all models equal weight. Overall, the simple average of the models’

output is a better estimate of the real world than any single model (REIFEN; TOUMI, 2009).

1.2 EMISSION SCENARIOS

The GCMs project long-term climate scenarios to provide a basis for how the climate

might be in the future (CHOU et al., 2014b). These models are forced by a set of boundary

conditions determined by emission scenarios (SAMPAIO; DIAS, 2014). The Fifth Assessment

Report on Climate Change (STOCKER, 2013) presented four different scenarios to represent

the climatic consequences until the end of the twenty-first century, known as Representative

Concentration Pathway (RCP), related to the equivalent concentrations of Carbon Dioxide (CO2)

in the atmosphere. The term ’pathway’ emphasizes that not only long-term CO2 concentration

levels are considered, but also the path taken over time to achieve this result, and the term

’representative’ means that each RCP provides only one of the many possible scenarios that would

lead to specific radiative forcing characteristics (MOSS et al., 2010). The description of the RCP

scenarios and the projections until the end of the century are shown in Table 1.1 and Figure 1.1,

respectively.

The latest emission scenarios developed and presented in the Sixth Assessment Report

on Climate Change (MASSON-DELMOTTE et al., 2021) are called SSP (Shared Socioeconomic

Pathways), and expand the RCP scenarios, continuing with energy increase in W/m2. They span a

larger range of outcomes compared to RCPs, due to higher warming (by close to 1.5°C) reached
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Table 1.1: Description of RCP scenarios.

Scenario Radiative forcing Concentration (ppm) Pathway Model

RCP 8.5 > 8.5𝑊𝑚−2 in 2100
>1,370 CO2 equiv. in

2100
Increase MESSAGE

RCP 6.0
∼ 6𝑊𝑚−2 (with sta-

bilization after 2100)

∼ 850 CO2 equiv. (with

stabilization after 2100)

Estabilization

without overcom-

ing

AIM

RCP 4.5

∼ 4.5𝑊𝑚−2 (with

stabilization after

2100)

∼ 650 CO2 equiv. (with

stabilization after 2100)

Estabilization

without overcom-

ing

GCAM

RCP 2.6

Peak of ∼ 3𝑊𝑚−2 be-

fore 2100 and poste-

rior decline

Peak of∼ 490 CO2 equiv.

before 2100 and poste-

rior decline

Peak and decline IMAGE

Source: Moss et al. (2010).

Figure 1.1: Global Carbon Dioxide emissions (GtC - Gigatonnes of Carbon per year) (a) under 4 scenarios with

different population and economic growth and climate policies and (b) atmospheric concentration of carbon dioxide

(parts per million) under 4 scenarios.

Source: Vuuren et al. (2011).

at the upper end of the 5%–95% envelope of the highest scenario (SSP5-8.5) (TEBALDI et al.,

2021).

However, the future emission scenarios are an uncertain factor depending on different

hypotheses of socioeconomic growth, demographic change and technological and environmental

changes for the planet. They are also subject to uncertainties due to unknown aerosols, volcanic

and solar activities, direct effects of increasing atmospheric CO2 concentration on plants and the

effect of behavior of plants in the future climate (MARENGO, 2007).
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1.3 BIAS CORRECTION TECHNIQUES

Climate models are subject to a variety of biases that can lead to unreliable projections

(SANSOM et al., 2016). As we discussed earlier (Subsection 1.1), the reasons for such biases

include systematic model errors caused by imperfect conceptualization, numerical modelling and

discretization and spatial averaging within grid cells. Therefore, the climate model simulations

usually need to be post-processed to produce reliable estimates (TEUTSCHBEIN; SEIBERT,

2012). The post-processing technique is also called ’bias correction’, which usually is based

on statistical transformations that adjust the distribution of modelled data such that it closely

resembles the observed climatology.

The climate models provide simulations in a historical period that can be used to estimate

the differences between simulated and observed values and then compute correction factors to be

applied in future series. Bias correction methods have become a standard approach when applying

climate model outputs for climate change impact studies at the local and watershed scales (CHEN

et al., 2021). Gutiérrez et al. (2019) conducted a very comprehensive study by comparing several

bias correction methods for precipitation over Europe, and found that most of the methods were

able to reduce the biases of climate model simulations, while none was universally superior to all

others. However, several questions are still open regarding appropriateness of bias correction

application in hydrological impact studies. The need of the bias correction of climate model

outputs is sometimes questioned, since it can affect the consistency between the output variables of

the climate model, such as temperature and precipitation (inter-variable dependence) (MUERTH

et al., 2013; CHEN et al., 2021), and affect the signal of climate change for the future (EHRET et

al., 2012). Additionally, Chen et al. (2013) showed that the performance of hydrological models

using raw and corrected climatic variables was dependent on the choice of the bias correction

method and location of the catchment, nevertheless the evaluation of different methods before the

use in climate change impact studies is rarely taken into consideration (BORGES DE AMORIM;

CHAFFE, 2019b). The investigation of the impact of the bias reduction besides the mean and

variance (for example in higher statistical moments), in specific purpose variables, as well as the

choice of the predictors (whether seasonal or yearly approaches should be preferred) are less

investigated.

There are several bias correction techniques, ranging from simple scaling methods to

rather sophisticated approaches. Among them, we describe the Linear Scaling and Empirical

Quantile Mapping in the following subsections 1.3.1 and 1.3.2, respectively.

1.3.1 Linear Scaling

The Linear Scaling (LS) is a simple method to correct variables based on the observed

long-term monthly mean (LENDERINK; BUISHAND; DEURSEN, 2007). Precipitation is

corrected multiplying the simulated value by a factor based on the ratio of observed long-term

monthly mean and simulated long-term monthly mean in the historical period (Equation 1.1).

Air temperature is corrected by adding to the simulated value a term based on the difference of

observed and simulated long-term monthly mean (Equation 1.2) The additive version is preferably

applicable to unbounded variables (e.g. temperature) and the multiplicative to variables with a

lower bound (e.g. precipitation, because it also preserves the frequency).

𝑃𝑐𝑜𝑟𝑟𝑠𝑖𝑚 (𝑡) = 𝑃𝑠𝑖𝑚 (𝑡).

[
𝜇𝑚 (𝑃𝑜𝑏𝑠 (𝑡))

𝜇𝑚 (𝑃𝑠𝑖𝑚 (𝑡))

]
(1.1)
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𝑇𝑐𝑜𝑟𝑟𝑠𝑖𝑚 (𝑡) = 𝑇𝑠𝑖𝑚 (𝑡) + 𝜇𝑚 (𝑇𝑜𝑏𝑠 (𝑡)) − 𝜇𝑚 (𝑇𝑠𝑖𝑚 (𝑡)) (1.2)

Where:

𝑃𝑐𝑜𝑟𝑟𝑠𝑖𝑚 (𝑡): Corrected precipitation for time 𝑡
𝑃𝑠𝑖𝑚 (𝑡): Simulated precipitation for time 𝑡
𝜇𝑚 (𝑃𝑜𝑏𝑠 (𝑡)): Observed long-term monthly mean precipitation

𝜇𝑚 (𝑃𝑠𝑖𝑚 (𝑡)): Simulated long-term monthly mean precipitation

𝑇𝑐𝑜𝑟𝑟𝑠𝑖𝑚 (𝑡): Corrected air temperature for time 𝑡
𝑇𝑠𝑖𝑚 (𝑡): Simulated air temperature for time 𝑡
𝜇𝑚 (𝑇𝑜𝑏𝑠 (𝑡)): Observed long-term monthly mean air temperature

𝜇𝑚 (𝑇𝑠𝑖𝑚 (𝑡)): Simulated long-term monthly mean air temperature

1.3.2 Empirical Quantile Mapping

The Empirical Quantile Mapping (EQM) calibrates the simulated Cumulative Distribu-

tion Function (CDF) by adding to the observed quantiles both the mean delta change and the

individual delta changes in the corresponding quantiles (AMENGUAL et al., 2012). This method

is applicable to any kind of variable.

The procedure consists of calculating the changes, quantile by quantile, in the CDFs of

daily climate model outputs between a historical period and successive future periods (time-slices

with the same length of historical). These changes are rescaled on the basis of the observed CDF

for the same historical period, and then added, quantile by quantile, to these observations to

obtain new calibrated future CDFs that convey the climate change signal, through the following

Equations 1.3 - 1.6.

𝑝𝑖 = 𝑜𝑖 + Δ̄ + Δ′
𝑖 (1.3)

Where:

𝑝𝑖: 𝑖
𝑡ℎ ranked value projected corrected

𝑜𝑖: 𝑖
𝑡ℎ ranked value observed in historical period

Δ̄: Mean delta change

Δ′
𝑖: Individual delta change

The delta change, the mean delta change and the individual delta change are obtained by

the Equations 1.4, 1.5 and 1.6, respectively.

Δ𝑖 = 𝑠 𝑓 𝑖 − 𝑠𝑐𝑖 (1.4)

Δ̄ =

∑𝑁
𝑖=1 Δ𝑖
𝑁

=

∑𝑁
𝑖=1(𝑠 𝑓 𝑖 − 𝑠𝑐𝑖)

𝑁
= 𝑠 𝑓 − 𝑠𝑐 (1.5)

Δ′
𝑖 = Δ𝑖 − Δ̄ (1.6)

Where:

𝑠 𝑓 𝑖: Raw future simulated

𝑠𝑐𝑖: Raw historical simulated

Δ𝑖: 𝑖𝑡ℎ ranked delta change
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𝑁: Number of data points

1.4 HYDROLOGICAL MODELLING

Hydrological modelling is an analysis tool to represent the real-world hydrological

system, the behavior of a hydrological process or set of processes, at a given time or time span

(MOREIRA, 2005). Hydrological models are used to project the climate change impacts on

water resources at basin level from climatic scenarios provided by GCMs and/or RCMs (AMIN

et al., 2017; CHILKOTI; BOLISETTI; BALACHANDAR, 2017; ZHANG; XU; FU, 2014). One

of the responses of hydrological modelling based on climate change scenarios is the estimation

of the future frequency of events important for water resources management, such as low flows

that could affect energy production or irrigation systems, as well as floods that can damage

infrastructure and impact social communities. The general procedure for simulating the impacts

of climate change on hydrological behavior is described below (MUJUMDAR; KUMAR, 2012):

• To determine parameters of a hydrological model for the basin using as input observed

climate and flow variables, process called model calibration

• To evaluate the performance of the hydrological model parameters over a portion of

historical records which have not been used for the calibration, also called validation

• To project, by GCMs and/or RCMs, future climate variables for the study area

• To simulate the hydrological processes of the basin under the projected climatic

conditions

• To compare the simulations of the climatic projections in a reference period to the future

period

The uncertainties in the hydrological modelling include errors in model structure,

problems in the calibration process and parameterization, and errors in the data used for the

calibration (MOGES et al., 2020). In changing conditions, such as in climate change studies,

there are also uncertainties regarding the instability of parameters, which may occur due to

possible changes in physical characteristics and capture of the dominant processes. The modellers

have the crucial task of the choice selection of models, input data, and parameterization methods

that may have a significant impact on the magnitude and distribution of the output uncertainty

(MOCKLER et al., 2016).

1.4.1 Bucket-type hydrological model

A bucket-type hydrological model consists of several interconnected reservoirs which

represents the physical elements in a catchment. The reservoirs or ’buckets’ are recharged by

rainfall, infiltration and percolation and are emptied by evaporation, runoff, drainage etc. Semi

empirical equations are used in this method and the model parameters are estimated not only

from field data but also through calibration.

The HBV (Hydrologiska Byrans Vattenavdelning) model is an example of semi dis-

tributed bucket-type model (LINDSTRÖM et al., 1997). The HBV model is considered a

semi-distributed model since it allows for the catchment to be sub-compartmentalized into
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different elevation zones, derived from a digital elevation model. The general water balance is

presented in Equation 1.7.

𝑃 − 𝐸 −𝑄 =
𝑑

𝑑𝑡
(𝑆𝑃 + 𝑆𝑀 +𝑈𝑍 + 𝐿𝑍 + 𝑙𝑎𝑘𝑒𝑠) (1.7)

Where 𝑃 is Precipitation, 𝐸 is Evaporation, 𝑄 is Runoff, 𝑆𝑃 is Snow pack, 𝑆𝑀 is Soil moisture,

𝑈𝑍 is Upper ground water zone, 𝐿𝑍 is Lower ground water zone and 𝑙𝑎𝑘𝑒𝑠 represent Volume of

lake.

The HBV model simulates catchment discharge, usually on a daily time step, based on

time series of precipitation and air temperature as well as estimates of monthly long-term potential

evaporation rates. The HBV consists of four routines, the snow routine, the soil routine, the

groundwater routine, and the routing routine. In the snow routine, snow accumulation and snow

melt are computed by a degree-day method. In the soil routine, groundwater recharge and actual

evaporation are simulated as functions of actual water storage. In the response (or groundwater)

routine, runoff is computed as a function of water storage. Finally, in the routing routine a

triangular weighting function is used to simulate the routing of the runoff to the catchment outlet

(SEIBERT; VIS, 2012).

1.4.2 The use of data-driven methods in the hydrological modelling

Data-driven methods are a sub-field of artificial intelligence that is concerned with

the design and development of algorithms that allow computers (machines) to improve their

performance over time, based on data (MITCHELL et al., 1997). Data-driven models have

proven to outperform many hydrological models (e.g., conceptual or physical models) (XU et al.,

2020; KRATZERT et al., 2019; NETO et al., 2019; HU et al., 2018; LEE; JUNG; LEE, 2018;

DIBIKE; SOLOMATINE, 2001; DAWSON; WILBY, 2001), and the methods are reliable in

out-of sample generalization (SHEN, 2018). However little work has been carried out to test the

capabilities of data-driven methods to make reasonable predictions under changing conditions or

climate change studies. A significant limitation of data-driven models is that they do not benefit

from our understanding of physical phenomena and instead rely on the data provided during

optimization. Shortridge, Guikema e Zaitchik (2016) argued that data-driven models could

only generate reliable predictions for conditions comparable to those experienced historically.

Otherwise, the models are likely to introduce considerable uncertainty into their projections.

Nevertheless, the long short-term memory (LSTM), a particular type of recurrent neural

network (RNN) (HOCHREITER; SCHMIDHUBER, 1997), has been shown to be promising in

capturing the hydrological behaviour from the learning process (XU et al., 2020). Lees et al.

(2021) showed that LSTM simulates discharge with consistently high model performance in a

large range of catchments in Great Britain, including catchments typically considered difficult

to model with four lumped conceptual models. Kratzert et al. (2019) applied the LSTM model

over 531 basins over the USA and found a high correlation between the values of the internal

cells of an LSTM network and natural processes. In light of the discussion above, testing the

robustness of LSTM networks under changing conditions could be interesting to potentially

bring hydrological models with different structures in the climate change impact assessment

framework.
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1.5 UNCERTAINTIES OF THE CLIMATE CHANGE IMPACTS

ON PROJECTED DISCHARGE

Several authors have studied the relative importance of the uncertainty sources in climate

change impacts on discharge. However the conclusions are still controversial and dependent

on variable of interest, time and spatial scale, study region, and uncertainty sampling method.

Despite some authors concluded that the global climate model is the most contributor to the

total uncertainty (WILBY; HARRIS, 2006; PRUDHOMME; DAVIES, 2009; KAY et al., 2009;

ARNELL, 2011; VETTER et al., 2017; KRYSANOVA et al., 2017), the hydrological modelling

structure and parameter uncertainty cannot be neglected (BASTOLA; MURPHY; SWEENEY,

2011; BOSSHARD et al., 2013; ZHANG; XU; FU, 2014; GODERNIAUX et al., 2015; DAMS et

al., 2015; EISNER et al., 2017; SAMANIEGO et al., 2017; TROIN et al., 2018; ANARAKI et al.,

2021). Additionally, the importance of the data input to hydrological models on the uncertainty

of model simulations (MERESA et al., 2021; POKORNY et al., 2021) is rarely investigated in

climate change impact assessments (TAREK; BRISSETTE; ARSENAULT, 2021). Regarding

hydrological modelling, the hydrological model selection (structure) is a major contributor to the

overall uncertainty (MOCKLER et al., 2016), however the use and robustness of data-driven

methods in climate change assessments should be further investigated.

The uncertainty analysis of the future climate change impacts on the hydrological

response are highly important for both hydrological modellers and end-users (water managers,

policy-makers). For modellers, uncertainty understanding can lead to better design of the climate

change assessment framework, and uncertainty sampling, and for end-users, the quantification

of uncertainty is important for guiding the decision-making, either for users wishing to employ

robust decision making frameworks or users who are trying to optimize decisions. Especially in

Brazil, a major issue in the climate change assessments rely on the methodology, as the use of

multi-model ensemble, as well as the evaluation of climate models and the bias correction leave

room for improvement (BORGES DE AMORIM; CHAFFE, 2019b; BORGES DE AMORIM;

CHAFFE, 2019a; BORGES DE AMORIM; SOUZA; CHAFFE, 2020). Moreover, the practical

aspects on how to best combine the ensemble simulations in order to provide realistic projections

of climate change on the water resources is an open scientific question.
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2 SCOPE OF THE THESIS

The understanding of the climate change impacts and uncertainties on water resources

is essential for the development of robust adaptation plans and strategies, reducing the risks

associated with decisions on water resources. The hypothesis of this work is that uncertainties

can significantly influence the magnitude of the climate change impacts projected on discharge.

Some of the scientific questions we delved into were:

1. What is the value of the bias correction technique in the climate change assessments

framework?

2. Is a data-driven model robust enough for the simulation of future discharge under

changing conditions (climate change)?

3. What are the contribution of different sources of uncertainty to the total uncertainty in

projected river discharge?

4. Finally, how to deal with large ensembles of simulations in climate change assessments?

In this thesis, we worked in four scientific manuscripts. The paper I was a literature

review published as conference proceedings in Portuguese (attached as appendix A). In paper

II, we tested the reliability of the Eta Regional Climate Model (RCM) projections in Brazil, the

need and performance of several bias correction methods, and the uncertainties in the projected

precipitation considering four global climate models downscaled by one RCM, two emission

scenarios, and four bias correction techniques. In paper III, we studied the use of a data-driven

method as a hydrological model for the application in climate change assessments. Finally, we

analysed the propagated uncertainties from emission scenario, climate model, bias correction, and

hydrological model input and parameterization to the total uncertainty in projected discharges in

Paper IV. As a result, in Chapter 3, we present the main findings of this thesis including answers

to the scientific questions, and best practices for modellers and water resources managers.
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3 MAIN FINDINGS AND RECOMMEN-
DATIONS FOR MODELLERS AND
WATER RESOURCES MANAGERS

1. Bias correction techniques were important to project the impacts of changes in air

temperature and precipitation on discharge; Overall, all bias correction methods reduced

the error of the climate models, however they had different impacts depending on the

purpose-variable. The Empirical Quantile Mapping method should be preferred rather

than simple scaling methods Paper II and Paper IV

2. Bucket-type hydrological models are more robust under changing conditions than

data-driven models. Before the application of a data-driven models in climate change

assessments, robustness tests need to be done to assure the model can generalize for

conditions different from the one the parameters were calibrated. Paper III

3. The variability of GCMs-RCM projections was the most significant uncertainty contrib-

utor in the projection of changes in the mean discharge, followed by the precipitation

input data used in the hydrological model calibration. Bias correction and emission

scenarios contributed relatively little to the total uncertainties, while the hydrological

model parameters did not contribute to the uncertainty.

The precipitation input data used to feed hydrological models is an important factor

in the hydrological modelling performance and should not be neglected in uncertainty
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sampling; the use of good quality model-based precipitation data is comparable to

ground-level observational data, and could be potentially useful in data-scarce regions.

Paper IV

4. Despite the use of ensemble simulations being very computationally expensive, it is

crucial to consider the main features that cause considerable uncertainties to minimize

considerable risk in water resources management. Seeking the perfect model (or the

right model for the right reasons) should be replaced by purpose-tailored modelling

approaches to minimize the error in the projections.

For example, the use of optimized ensemble weights focused on purpose variable

(e.g. mean river discharge, maximum discharge or minimum discharge) instead of a

single weighting system is a promising approach under deep uncertainty. Paper IV
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4 THE IMPACT OF BIAS CORRECT-
ING THE ETA REGIONAL CLI-
MATE MODEL AND UNCERTAIN-
TIES IN PROJECTED PRECIPITA-
TION OVER NORTH, MIDDLE AND
SOUTH BRAZIL - PAPER II

The aim of this paper is answering three main questions: How well the Eta RCM

simulate precipitation over three regions in Brazil? What is the impact of bias correction on the

reduction of model’s biases? (and what is the difference between these methods)? What is the

contribution of climate models, bias correction and emission scenarios to the total uncertainty of

projected precipitation?



 

The impact of bias correcting the Eta regional climate model and uncertainties in projected 

precipitation over North, Middle and South Brazil 

Carolina Natel de Mouraa, Jan Seibertb, Daniel Henrique Marco Detzela 
aDepartment of Hydraulics and Sanitation, Federal University of Parana, Brazil 
bDepartment of Geography, University of Zurich, Switzerland 

Abstract 

Climate change impact assessments performed in Brazil overall lack uncertainty sampling, and climate 

model performance evaluation, which can lead to unrealistic rainfall projections and, consequently, bad 

water resources planning and adaptation facing climate change. In this work, we aim to investigate the 

effect of the bias correction of the last version of the Eta RCM (Regional Climate Model), and the 

uncertainties in future projected changes by four global climate models downscaled by the Eta RCM 

(GCM-RCM), four bias correction (BC) techniques and two emission scenarios (ES) using as study case 

twenty-six rainfall gauge stations located in North, Middle and South Brazil. The performance of raw 

simulations of the Eta RCM varied spatially over Brazil, being the Amazon the region with the highest 

biases. The Empirical Quantile Mapping method presented a great impact in the bias reduction, especially 

when evaluated for multi-day and seasonal precipitation, and it is recommended in impact studies. Great 

uncertainty levels are attributed to the BC (similar magnitude as GCM-RCM), which indicated that the 

method should not be neglected in the uncertainty sampling. Projected precipitation changes indicated a 

decrease in the daily precipitation and extreme precipitation in the Amazon and North and increase in 

the daily precipitation in Southern Brazil. The precipitation in winter is expected to increase, and under 

the RCP 8.5 scenario, homogeneously drier conditions were projected for all regions under analysis. 

 

Keywords: climate change assessment, uncertainty analysis, robustness, RCP4.5, RCP8.5 

1 Introduction 

Climate change is likely to impact precipitation patterns, such as quantity, intensity, frequency 

and type (Trenberth, 2011), affecting the water availability for food production, power generation and 

water supply, and increasing the risk of hydrological extremes, such as floods and droughts. The 

knowledge about the spatial variability and magnitude of changes in rainfall is essential to improve 

decision-making and increase the adaptability of vulnerable communities under climate change.  

Global Climate Models (GCMs) are the main tool to simulate future changes in precipitation due 

to for example external forcing such as the increase of the greenhouse gases in the atmosphere (Taylor, 
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Stouffer and Meehl, 2011). Due to the coarse resolution of GCMs (grid sizes in the order of 100 km-200 

km), a downscaling technique is usually applied to regionalize the simulations to a higher resolution (grid 

sizes in the order of 20 km), transferring the large-scale information from GCMs to a regional or local 

scale, resulting in a Regional Climate Model (RCM). However, even after regionalization, RCMs have 

great biases, which may be corrected using a post-processing technique (or bias correction) (Addor and 

Seibert, 2014).  

Bias correction methods have become a standard approach when applying climate model outputs 

for climate change impact studies at the local and watershed scales (Chen et al., 2021). Gutierrez et al., 

2019 conducted a very comprehensive study by comparing several bias correction methods for 

precipitation over Europe, and found that most of the methods were able to reduce the biases of climate 

model simulations, while none was universally superior to all others. However, several questions are still 

open regarding appropriateness of bias correction application in hydrological impact studies. The need 

of the bias correction of climate model outputs is sometimes questioned, since it can affect the 

consistency between the output variables of the climate model, such as temperature and precipitation 

(inter-variable dependence) (Muerth et al., 2013, Chen et al., 2021), and affect the signal of climate 

change for the future (Ehret et al., 2012). Additionally, Chen et al., 2013 showed that the performance of 

hydrological models using raw and corrected climatic variables was dependent on the choice of the bias 

correction method and location of the catchment. The investigation of the impact of the bias reduction 

on specific purpose variables, as well as the choice of the predictor (whether seasonal or yearly 

approaches should be preferred) are also less investigated. 

In Brazil, climate change projections largely agree on a precipitation decrease in much of Amazon 

and Northeast Brazil in the future (Brêda et al., 2020), and increased precipitation in southern Brazil 

around La Plata basin (Magrin et al., 2014, Malhi et al., 2009; Chou et al., 2014a, 2014b; Ambrizzi et 

al., 2019). However, climate change assessments conducted in Brazil overall lack addressing the 

uncertainties inherent to the modelling chain, the use of several GCMs and/or RCMs (multi-model 

ensemble) is not a common practice, as well as the evaluation of climate models and the effect of bias 

correction (Borges de Amorim and Chaffe, 2019a, Borges de Amorim and Chaffe, 2019b). 

The National Institute for Space Research (INPE) developed four sets of downscaled products 

based on the Eta RCM for Brazil, parts of South America and adjacent oceans, forced with both RCP 4.5 

and RCP 8.5 scenarios of the 5th Assessment Report (AR5) from the IPCC (IPCC, 2013) taken from 

global simulations and projections from four GCMs, namely HadGEM2-ES,  MIROC5, CANESM2 and 
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BESM, respectively (Chou et al., 2014a). These downscaling simulations are the main projections 

currently being used in the country for national plans of adaptation to climate changes (Brasil, 2016). 

The use of Eta model for climate change assessment in South America has shown to be satisfactory for 

representing monthly precipitation totals and indicate that seasonal variability is reasonably reproduced 

(Chou et al., 2005), although some areas exhibit systematic biases and overestimates rainfall, especially 

near mountain regions such as southeastern Brazil (Chou et al., 2012).  

Almagro et al. (2020) evaluated the performance of the last version of the Eta RCM nested to two 

GCM, the British HadGEM2-ES and the Japanese MIROC5, concluding that for most of the Brazilian 

biomes, the regionalization of the GCMs improved the representation of precipitation, except for the 

Amazon where the use of the HadGEM2-ES GCM is preferred in relation to the downscaled version, 

however large biases are still present even after the regionalization. Although large numbers of bias 

correction methods have been developed, limited comprehensive information is yet available in Brazil 

for the informed application of the different bias correction approaches for climate change impact and 

adaptation studies. 

In this paper we extended the evaluation of the realiability of the last version of the Eta RCM 

using the downscaled outputs from the British HadGEM2-ES and the Japanese MIROC5 to the Canadian 

CANESM2 and the Braziliam BESM models, using ground-level gauge stations in North, Middle and 

South Brazil. Our study investigated the effect of the bias correction in the improvement of the model 

simulations of precipitation, taking into account the predictor used in the method (whether yearly or 

monthly correction factors), the purpose variable (daily minimum, daily maximum and daily mean, 

monthly and seasonal precipitation), and the time horizon (near and far future). We quantified the 

individual contribution of three sources of uncertainty in the total uncertainty in projected precipitation, 

climate model, bias correction and emission scenario.  

We argue that understanding the limitations/strengths of the projected simulations, as well as the 

uncertainty of each element of the modelling chain in the final projection of the variable of interest is 

essential to firstly bring awareness of the importance of addressing uncertainties in climate change 

studies and secondly providing guidelines to modellers and end-users. Consequently, resulting in better 

climate change communication and decision-making and adaptation to climate change. 

2 Study area and data 

 Brazil covers a large area (8,515,767.049 km2) and has a high rainfall spatial variability, mainly 

linked to a particular mode of the large-scale variation called the Southern Oscillation (SO). In the 
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northwest, the Amazon basin is characterized by large amounts of rainfall. Together with the Southern 

Brazil, these regions are the wettest in the country, being the Southern characterized by highly spatially 

variable rainfall. In Northeast Brazil, the rainfall amount is low with an extensive semiarid area in the 

interior (Rao and Hada, 1990). Summer is the most common season of high precipitation days in the 

majority of Brazil, with two main exceptions, part of the coast of Northern Brazil (fall) and Southern 

Brazil (spring) (Chagas et al., 2020).  

 We used both ground-level precipitation gauges and projected data by the Eta RCM to study the 

uncertainties in the projected precipitation over Brazil. The observed precipitation was obtained from the 

National Institute of Meteorology (INMET; http://www.inmet.gov.br/portal/). From the ‘conventional’ 

stations (i.e., not automated) available by the INMET (238 in total), we first selected those with data 

between the period 1961 to 2005. Then, we filtered the gauge stations with less than about 10% of missing 

data (i.e., less than 2000 missing values), totalizing 26 gauge stations across North, Middle and South 

Brazil (Figure 1). The main characteristics of the rainfall gauge stations, including gauge id, name, 

location, altitude and long - term annual precipitation are presented in Table S1 in Appendix B. Missing 

values were excluded from the analysis, and because of that, each station has a different dataset length, 

but with at least 90% of data in the period).  

 The climate projections were obtained from an upgraded version of the Eta RCM (Mesinger et 

al., 2012), generated by the INPE (National Institute of Space Research). This version of the Eta model 

was configured in the resolution of 20 km, covering South America, Central America, and Caribbean 

(Chou et al., 2014a, Chou et al., 2014b). The dynamical downscaling was run using the Eta model on 

four different Global Climate Models (GCMs), the HadGEM2-ES (Collins et al., 2011), the MIROC5 

(Watanabe et al., 2011), the CanESM2 (Chylek et al., 2011) and the BESM (Nobre et al., 2013), described 

in Table 1. The Eta RCM downscaling procedure is described in more detail in Chou et al. (2014a, 

2014b). 

 The projections were available in two periods: Historical (1961 – 2005) and Future (2006 – 2099). 

From 2006 the simulations run using the Representation Concentration Pathway  (RCP) 4.5 and 8.5 

(Chou et al., 2014a). The RCP 4.5 refers to a scenario reaching about 650 ppm of CO2 equivalent at the 

end of the century while in the RCP8.5, the equivalent CO2 exceeds 1000 ppm.  
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Figure 1. Location of the precipitation gauge stations in Brazil. 

Table 1. Global climate model description. 

GCM Full name of GCM Institution 

HadGEM2-ES 

Hadley Centre Global 

Environmental Model 

version 2 – Earth System 

Hadley Centre 

MIROC5 

Model for Interdisciplinary 

Research on Climate version 

5 

Atmosphere and Ocean Research Institute, 

University of Tokyo, National Institute for 

Environmental Studies and Japan Agency for 

Marine-Earth Science and Technology. 

CanESM2 
Canadian Earth System 

Model version 2 

Canadian Centre for Climate Modelling and 

Analysis (CCCMA) 

BESM - OA 

2.5.1 

Brazilian Earth System 

Model National Institute of Space Research (INPE) 

The Eta regional climate model simulations were obtained  from <https://projeta.cptec.inpe.br>. Data downloaded on May 1, 2020. 
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3 Methods 

3.1 Bias correction 

 We applied the Linear Scaling (Lenderink, Buishand and Deursen, 2007) and the Empirical 

Quantile Mapping (Amengual et al., 2012) under two correction versions: (a) calculating the correction 

factors on a yearly basis (a single factor for the entire series), and (b) on a monthly basis (one factor per 

month). We used measured at gauge stations and simulated data in a historical period at the same location 

for the estimation of the correction factors.  

 First, we split the historical period (1961 – 2005) data into calibration (80%) and validation period 

(20%). The calibration period refered to that used for the estimation of the correction factors and the 

validation period for the evaluation of the bias correction performance. The split was chronological (i.e. 

without random shuffle), in this way, we also evaluated the ability of the method to be applied in different 

climate conditions, especially if there was a non-stationarity in the historical period. Once estimated the 

correction factors based on the differences between observed and simulated data in the calibration period, 

the correction factors were applied both in the validation period (for the bias correction evaluation) as 

well as in the future series.  

 

3.1.1. Linear Scaling 

 The Linear Scaling is a simple method to correct variables based on long-term mean observed 

(Lenderink, Buishand and Deursen, 2007). Precipitation is corrected by the multiplication of the 

simulated value by a factor based on the ratio of long-term mean observed and simulated by the model 

(Equation 1).  

 
(1) 

  

 Where  is the simulated precipitation [mm] corrected for time ,  is the simulated 

precipitation for time  [mm],  is the observed long-term mean precipitation in the historical 

period [mm] and  is the simulated long-term mean precipitation in the historical period [mm].  
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3.1.2 Empirical Quantile Mapping 

 The Empirical Quantile Mapping (EQM) corrects the simulated Cumulative Distribution 

Function (CDF) by adding to the observed quantiles both the mean delta change and the individual delta 

changes in the corresponding quantiles (Amengual et al., 2012).  

 The method consists of calculating the changes, quantile by quantile, in the CDFs of daily climate 

model outputs between historical and successive future periods (time-slices with the same length of 

historical). These changes are rescaled based on the observed CDF for the same historical period and 

then added, quantile by quantile, to these observations to obtain new calibrated future CDFs that convey 

the climate change signal (Equation 2).  

 

 (2) 

 

 Where  is the ith ranked value of the simulated precipitation corrected,  is the ith ranked value 

of the observed precipitation in historical period,  is the mean delta change and  is the individual 

delta change. The delta change, the mean delta change, and the individual delta change are obtained by 

Equations 3, 4 and 5, respectively. 

 

 

(3) 

 

 

(4) 

 

 

(5) 

 Where  is the simulated precipitation for the future [mm],  is the simulated precipitation for 

the historical period [mm],  is the ith ranked delta change [mm] and  is the number of observations 

 The ‘drizzle effect’, which is the common overestimation of wet days by the RCMs (Maraun et 

al., 2010) was corrected based on a wet-threshold of 1.5 mm.day-1, i.e. the minimum amount of 

precipitation considered as real precipitation, otherwise, we considered precipitation equals zero.  
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3.1.3 Statistical evaluation of the  model biases and bias correction performance 
 Biases in climate model simulations are commonly detected by the comparison with observations. 

Jung (2005) pointed the mean as one of the simplest and most widely used diagnostics to detect climate 

model biases. Here, the performance of the uncorrected models’ simulation and bias correction were 

evaluated through the Absolute value of the Mean Error ( ) and the Absolute value of the Relative 

Mean Error ( ), given by Equation 6 and Equation 7, respectively.   

 

 (6) 

 

 
(7) 

 Where, is the estimated mean systematic error over the time period,  is the estimated 

relative mean error over the time period,  is the mean of the simulated precipitation, and  is the 

mean of the observed precipitation. It’s important to point that even if we estimate a   of zero (i.e., 

detecting no systematic error), this may be due to error cancelation while calculating the average and 

even so simulations and observations might be characterized by different variability or distributions 

(Teutschbein and Seibert, 2013). 

It is important to mention that, while mean precipitation is corrected by bias correction by 

definition, simulations can still be poor for specific precipitation indices like low or high precipitation 

(Addor and Seibert, 2014). Here, we analyzed several precipitation indices beyond the daily precipitation, 

in order to evaluate the performance of bias correction in multiday rainfall events, including the low 

precipitation, defined as the minimum 30-day precipitation amount and the high precipitation, defined as 

the maximum 4-day precipitation amount. Besides, monthly precipitation, as well as seasonal amounts, 

were computed (DJF – December, January, February, MAM – March, April, May, JJA – June, July, 

August, and SON – September, October, November) and analyzed.  

3.2 The climate change signal 

 We analyzed the future changes of precipitation in two periods, the near future (2041 – 2070) and 

far future (2071 – 2099). The climatological reference normal or baseline (1961 – 1990) was used for 

computing the changes in the amount of precipitation. This period was chosen because it is a benchmark 

for climate change assessments (WMO, 2017).  The climate  change signal or the changes in future 
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precipitation were estimated by the absolute change in millimeters ( Equation 8) and the relative change 

in percentage (Equation 9). 

 

 -  

 

(8) 

100 
(9) 

  

 Where  is the absolute precipitation change for the future (e.g.: near or far) [mm],  is the 

relative precipitation change for the future (e.g.: near or far) [%],  is the average long-term 

projected precipitation in a certain future under a chosen scenario [mm] and  is the 

average long-term observed precipitation in the reference period (1961 – 1990) [mm].  

 The multi-model ensemble is a well-know approach in climate change assessments in order to 

address the uncertainties related to models, based on the assertion that no model performs better than 

another (Borges de Amorim and Chaffe, 2019a). In this study, we chose the ensemble median to estimate 

the changes in the precipitation, once the median is better suited to describe the average outcome of the 

ensemble simulations than the mean since outliers do not influence this value. 

 The robustness of the changes was assessed by the degree of agreement method (Solomon et al., 

2007) and signal-to-noise ratio ( NR) (Addor et al., 2014). For the agreement method, it was considered 

that the direction of a change is 'likely' when 66% or more of all individual model simulations agree in 

the direction (Mastrandrea et al., 2010). The signal-to-noise ratio was used to measure the significance 

of the changes when compared with the natural variability of the precipitation. 

 We adapted the method applied by Addor et al. (2014) for calculating the NR . The noise ( ) or 

natural variability was estimated by the bootstrapping of the observed precipitation series in the baseline 

period (1961 – 1990) in 100 subsamples of the same length (30 years) with replacement. Afterwards, we 

randomly selected 500 pairs from the time series and we estimated the changes between these pairs (i.e. 

[ , if absolute change, , if relative change). The standard deviation among these 500 

relative changes was then used as an estimate of , considered as the typical change between two time 

series in absence of climate change, i.e., as a result of climate natural variability over decadal time scales. 

The SNR was computed then by the ratio between the precipitation change ( ) and the noise , in which 
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a SNR higher than 1 means robust changes for the future, i.e. the signal is identified as significant change 

and emerges of the natural variability.  

3.3 Uncertainty analysis 

 The variance of the change in precipitation was used as an estimate of the uncertainty. We used 

the Analysis of Variance (ANOVA) to quantify the contribution of different sources of uncertainty to the 

final uncertainty. For each one of the chain combinations and future period, we estimated the climate 

change signal (see Equation 8). The climate change signal was submitted to a log transformation to meet 

the assumptions of the parametric ANOVA.  

 The contribution of the different sources of uncertainty to the total uncertainty was quantified by 

the following model adapted from Addor et al. (2014) (Equation 10). 

 

 (10) 

 The climate change signal ( ) was divided into the mean change  modulated by the main 

effects of three factors, the climate model ( ,  = Eta-HadGEM2-ES, Eta-MIROC5, Eta-

CanESM2 and Eta-BESM), the bias correction method (  = Linear Scaling (yearly correction factor), 

Linear Scaling (monthly correction factor), Empirical Quantile Mapping (yearly correction factor) and 

Empirical Quantile Mapping (monthly correction factor), and the emission scenario (  = RCP 4.5 

and RCP 8.5), as well as the sum of the significant interactions between these factors (  ) and the 

residual error ( ).  

 Interaction effects represent the combined effects of factors on the dependent measure. When an 

interaction effect is present, the impact of one factor depends on the level of the other factor. Part of the 

power of ANOVA is the ability to estimate and test interaction effects. As higher-order interactions are 

hard to physically justify (Addor et al., 2014), we assumed only first-order interactions, i.e., interactions 

between two factors.  

The significance of the main effects and first-order interactions of the ANOVA model was 

evaluated by the F-test, at the significance level of 0.05. A p-value smaller or equal the significance level 

(α = 0.05) indicated that the factor and/or interaction uncertainty contribution was significant for the 

projected precipitation and should be included in the final ANOVA model. 
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 The sum of squares of each element (main effects, interactions, and error term) was divided by 

the total sum of squares to compute the fraction of variance explained by this element (Von Storch and 

Zwiers, 2009, Bosshard et al., 2013).  

3.4 Experimental design 

 We combined four GCM-RCM, four bias-corrected simulations and two emission scenarios, in a 

factorial way, leading to a total of 32 combinations applied in both the baseline (1961 - 1990) and in the 

two future periods (2041–2070 and 2070–2099) as depicted in Figure 2.  

 
Figure 2. Flowchart of the experimental design. The boxes represent the model chain elements. For each element, 

several methods were used which are listed under or above the boxes and described in the main text.  

4 Results 

 In this section, we address the biases in the RCM outputs and the effect of bias correction methods 

on the simulated precipitation, the uncertainty contribution of each factor (climate models, bias correction 

and emission scenarios) in the total uncertainty and the projections of robust changes in precipitation for 

Brazil.  

4.1 Raw climate model simulations and bias correction  

 There is spatial variability of the uncorrected climate models' biases magnitude across Brazil. The 

highest raw (uncorrected) simulation biases in millimeters are in the Amazon region, and North Brazil, 

as well as in one individual gauge station in Southern Brazil (Figure 3a). Coincidentally, these regions 

are the most humid between the analysed gauge stations. In relative terms (%), the highest biases are 

located in the Amazon and North region (Figure 3b).  

 All RCMs have similar performance in average. The climate models' biases range from 0.03 mm 

to 4.64 mm per day, being in average around 1.33 mm in daily simulations. For the daily and monthly 

36



 

amounts of precipitation, the Eta-HadGEM2-ES model is slightly better than the other models, but for a 

better understanding of the biases characteristics, see the boxplots for all the precipitation indices in 

Figure S1 of the Appendix B.  

 The effect of the bias correction on the reduction of bias in simulated precipitation is presented 

in Table 2. All bias correction methods improved the raw GCM-RCM simulations. However, the 

matching between observed and simulated precipitation after the bias correction did not differ 

significantly between the bias correction methods for the daily and monthly series. Nevertheless, the 

methods did differ for particularly precipitation indices (low, high and seasonal), being the monthly 

correction factor version of the LS and EQM better than using a single yearly correction factor. Not 

surprisingly, there is loss in the BC performance when applying the correction factors estimated in the 

calibration period on an independent dataset (validation). 

a b 

Figure 3. Raw simulations biases from the Eta Regional Climate Model over Brazil. The biases are the average of four 

RCM-GCMs. (a) Absolute value of the Mean Error (Ame); (b) Absolute value of the Relative Mean Error (Arme).
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Table 2. Average of the Absolute value of the Mean Error (Ame) for the Calibration and Validation period based on 26 

precipitation gauge stations before (Raw) and after the bias correction by Linear Scaling (LS) and Empirical Quantile 

Mapping (EQM) using (yearly (_y) and monthly (_m) factors) . 

Absolute value of the Mean Error [mm] 

 
Raw LS_y LS_m EQM_y EQM_m 

Calibration 

Daily [mm.day-1] 1.38 0.00 0.00 0.42 0.54 

High [mm.4day-1] 48.76 41.78 39.86 24.49 14.58 

Low [mm.30day-1] 11.59 10.89 8.52 11.45 5.08 

Monthly[mm.month-1] 41.22 0.00 0.00 1.54 1.09 

DJF [mm.season-1] 152.58 107.27 3.74 93.05 6.91 

MAM [mm.season-1] 175.71 93.20 2.08 96.74 4.58 

JJA [mm.season-1] 132.56 103.09 2.01 91.60 3.84 

SON [mm.season-1] 139.39 104.54 2.58 94.27 5.99 

Validation 

Daily [mm.day-1] 1.36 0.55 0.60 0.63 0.87 

High [mm.4day-1] 42.92 32.78 38.80 22.79 20.34 

Low [mm.30day-1] 11.26 10.23 9.45 10.91 7.23 

Monthly [mm.month-1] 40.36 16.33 17.19 16.78 17.87 

DJF [mm.season-1] 156.18 124.37 68.72 113.20 72.51 

MAM [mm.season-1] 198.31 121.79 63.93 122.97 71.43 

JJA [mm.season-1] 140.88 123.28 46.78 109.27 52.34 

SON [mm.season-1] 149.74 128.28 56.00 118.59 60.66 

 

 We show the comparison between observed and simulated long-term monthly precipitation and 

Cumulative Distribution Function in Figure 4a and Figure 4b, respectively for the validation in a gauge 

station in the Amazon region (see Figure S2 in Appendix B for other regions).  
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a 

 
b 

Figure 4. Long-term monthly precipitation (a) and Cumulative Distribution Function (b) in validation (1997 – 2005) 

of observed (obs), raw and bias-corrected by Linear Scaling (LS) and Empirical Quantile Mapping (EQM) (using 

yearly:_y and monthly: _m correction factors) ensemble median of all the Eta Regional Climate Models (Eta-

HadGEM2-ES, Eta-MIROC5, Eta-CanESM2 and Eta-BESM), as well as individual raw climate model simulations in 

light-grey lines. 

4.2 Uncertainty analysis 

4.2.1 Daily, high and low precipitation 

 The main factors (GCM-RCM, BC and ES) and the interactions between these factors (GCM-

RCM:ES, GCM-RCM:BC and ES:BC) significance to the total uncertainty are summarised in Figure 

S3a, Figure S3b and Figure S3c in Appendix B for the daily, high and low precipitation indices, 

respectively.  

 The major contribution to the total uncertainty in the daily, high and low precipitation indices 

correspond to the bias correction, climate model and the interaction between climate model and bias 

correction, while there is a small contribution due to the emission scenario and interaction between 

climate model and emission scenario (Table 3). 
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Table 3. Average variance fraction of the significant main factors and first order interactions in the near and far future 

per precipitation indice (daily, high and low precipitation). The highest values for uncertainty contributions are in 

bold. 

Future period Description 
Average variance fraction (%) 

Daily High Low 

Near 

Climate model 43.58 21.15 18.1 

Bias correction 40.66 52.64 34.23 

Emission Scenario 0.6   

Climate model : Emission Scenario 1.14   

Climate model : Bias Correction  12.92 23.3 31.34 

Residual 1.1 2.91 19.55 

Far 

Climate model 34.84 19.96 17.78 

Bias correction 38.93 47.87 29.6 

Emission Scenario 3.07 2.22 6.52 

Climate model : Emission Scenario 4.66   

Climate model : Bias Correction  14.62 24.59 26.43 

Residual 3.87 5.36 22.76 

 

4.2.2 Seasonal precipitation 

 According to the F-test (Figure S4), only the main factors climate model, bias correction and 

interaction between climate model and bias correction were significant in the ANOVA. The variance 

fractions are presented in Table 4. In general, the bias correction is the main contributor to the total 

uncertainty of the seasonal precipitations for both near and far future, followed by the interaction between 

climate model and bias correction.  
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Table 4. Average variance fraction (η) of the significant main factors and first order interactions in the near (2041 – 

2070) and far (2070 – 2099)  future per season. The highest values for uncertainty contributions are in bold. 

Future period Description 
Average variance fraction (%) 

DJF JJA MAM SON 

Near 

Climate model 22.67 9.71 24.66 8.48 

Bias correction 41.14 46.27 45.61 47.08 

Climate model : Bias Correction  32.31 37.89 27.19 42.26 

Residual 3.88 6.14 2.54 2.18 

Far 

Climate model 18.07 8.95 21 7 

Bias correction 38.4 41.59 45.7 45.02 

Climate model : Bias Correction  34.39 42.27 26.24 41.05 

Residual 9.14 7.2 7.06 6.93 

 

4.3 Precipitation changes for the future 

The robust ensemble median changes are presented in maps showing both the absolute changes 

on precipitation in millimetres (mm) as well as the relative change in percentage (%). The precipitation 

changes are composed by the median of all RCMs under analysis after evaluating the robustness by two 

methods, the degree of agreement method (representing the consistency of the projections), and the SNR 

(representing the significance of the change compared to the natural variability). In the maps, the size of 

the bubbles represents the relative change and the colours the absolute changes in millimetres. 

 

4.3.1 Daily, high and low precipitation 

 The absolute magnitude of the changes for the future is especially higher in the wettest gauge 

stations under analysis (annual precipitation amounts higher than 1500 mm), as well as the projections 

are more spread (represented by the width of the boxplot).  In relative terms, the changes are 

homogeneous between the regions. The RCP 8.5 scenarios tend to project stronger drier conditions in 

general, as well as the far future period projections (Figure S5 – absolute changes and Figure S6 – relative 

changes).  

 The precipitation changes corrected by BC methods are correlated to the raw precipitation 

changes, which suggests that the change signal could be correct even if the magnitude of the changes are 

not. The Figure 5 shows that in general the changes projected by the raw simulations are stronger (both 
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in terms of increase and decrease in precipitation) than those estimated after bias correction and 

robustness analysis.  

Figure 5. Scatter plot of the bias corrected future changes versus the raw future changes for the daily (first column), 

high (second column) and low (third column) precipitation indices for the near (first row) and far (second row) future. 

The grey dots represent the spread of model’s simulation, while the black dots represent the robust ensemble median. 

 The precipitation change is presented in Figure 6a, Figure 7 6b and Figure 6c for the daily, high 

and low precipitation indices, respectively. Drier conditions are expected for the daily precipitation for 

North and Central region of Brazil and wetter conditions for Southern Brazil. For the high precipitation 

indice, the projections indicated a decrease in precipitation. For most of the country, there are non-robust 

changes for the low precipitation indice, except for an increase in a  few stations in North and South 

Brazil and decrease in the Amazon region.  

 The near future projections under the RCP 8.5 scenario are similar to the far future scenario under 

the RCP 4.5 scenario, which lead us to conclude that, earlier or sooner these changes are expected to 

happen anyways based on the amount of carbon dioxide expected to accumulate in the atmosphere. In 

the far future and RCP 8.5 scenario, the changes are especially stronger, representing the maximum 

quantity of carbon dioxide in the atmosphere under these scenarios. For this extreme scenario, an 

homogeneous decrease in precipitation is projected for the daily, high and low precipitations over the 

North, Middle and South Brazil. 
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a 

 
b 

 
c 

Figure 6. Ensemble median change (mm) in daily (a), high (b) and low (c) precipitation for the near and far future in 

reference to the baseline (1961 - 1990). The size of the bubbles represents the relative change while the colors represent 

the absolute change. 

 There is a positive correlation between the changes for the near and far future (Figure 7a), as well 

as a positive correlation between the RCP4.5 and RCP8.5 scenarios (Figure 7b).  The changes are slightly 

stronger for the far future, both when the precipitation increases or decreases. Overall, the RCP 8.5 
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resulted in more significative decreases. The signal of the change usually varies depending on the gauge 

station (increase or decrease). However, for the high precipitation, there is a declining trend for all the 

analysed gauge stations.  

a 

b 

Figure 7. Correlation between near and far future (a) and RCP 4.5 and RCP 8.5 scenarios (b) for the daily, high and 

low precipitation. 

4.3.2 Seasonal precipitation 

 Stronger absolute changes are expected to the wettest regions in Brazil, and more accentuated in 

the far future (Figure S7), independently of the season. In contrast, the relative changes are mostly 

homogeneous over the regions (Figure S8). 

 The climate models projected mainly decreases in the seasonal precipitations for North and 

Center region of Brazil and increase for Southern, excepting for the winter (JJA), where most of the 

regions are expected to have increases in precipitation (Figure 8). 
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Figure 8. Ensemble median change (mm.season-1) in seasonal precipitation for the near and far future in reference to 

the baseline (1961 - 1990). 

 Similar to the daily, high and low precipitation indices, there is a positive correlation between the 

changes for the near and far future, as well as between the emission scenarios. Usually, the RCP 8.5 

presents more significative changes of decreasing. The changes are slightly stronger for the far future, 
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both when the precipitation increases or decreases, but especially for the decreasing projections. The 

signal of the change usually varies depending on the gauge station (increase or decrease), however, for 

the gauge stations with precipitation above 1500 mm, the range of the changes is higher. 

5 Discussion  

5.1 How the bias correction affects the reduction of GCM-RCM biases? 

 There were great biases in the precipitation projected by the Eta RCMs. After the bias correction, 

there was a bias reduction in the precipitation indices ranging from -58% (monthly precipitation) to -

16% (low precipitation indice). These results emphasise the importance of the implementation of bias 

correction before applying the simulations of the Eta RCM in Brazil in impact studies (Almagro et al., 

2020). There were no significant differences in performance between the methods applied (yearly or 

monthly correction factor and LS or EQM) for the daily and monthly series, same concluded by Oliveira, 

Pedrollo and Castro (2015) and Gutiérrez et al. (2019). However the monthly correction factor clearly 

performed better particularly for seasonal and multiday precipitation indices, as well as for the Amazon 

region and North Brazil. These results indicate that the choice of the BC method should take into account 

the purpose variable, and the methods should be evaluated before the careless application in climate 

change impact frameworks.  

5.3 What is the contribution of climate models, bias correction and emission scenarios to the total 

uncertainty of projected precipitation? 

 Surprisingly, the variance fraction shows that overall the major contribution to the uncertainty in 

the projected change in precipitation corresponds to the bias correction, which is an element usually 

applied in the correction of climate simulations, however neglected in terms of uncertainty sampling 

(Borges de Amorim and Chaffe, 2019b). The BC participation in uncertainty is followed by the climate 

model and the interaction between climate model and bias correction, and finally, in a very small 

proportion, the scenario and interaction between climate model and scenario.  

 Despite the similar performance of the different BC methods in daily and monthly series, our 

work indicated that the BC is an important factor depending on the purpose variable, confirming Iizumi 

et al. (2017), whom also concluded that the participation of bias correction in the total uncertainty is 

important in the climate change studies of extremes, however not important in the mean climate. The 

uncertainty analysis indicated that the bias correction should be included in the uncertainty sampling of 
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climate change impact frameworks potentially leading to very different simulations of the impact of the 

climate change on the precipitation.  

5.4 What are the precipitation changes projected over Brazil? 

 There is high dispersion among the individual model projections for the precipitation change, 

including incongruence in the signal of the change, in which some models project a negative change 

while other a positive. This indicates that the choice of the model directly affects the future projection, 

potentially affecting all the forward climate change cascade of analysis, including the results of impact 

models. Given that, we highly suggest the use of multimodel ensembles as a way to reduce the 

uncertainties in future projections, and the implementation of consistency methods rather than only 

looking at the median of the multi-model ensemble. 

 The ensemble spread summarises the information about the uncertainties related to the model 

errors. In this study, we used the ensemble median as a way of contemplating the uncertainty and we 

performed two robustness tests to evaluate the consistency and significance of the change projections. 

Most of the changes were considered significant when compared to the natural variability, except for the 

low precipitation indice, and in general the RCM simulations agreed on the signal of the change. 

 When the climate change signal of the raw simulations was compared to the bias-corrected 

simulations, we observed an agreement in the signal of the change (increase or decrease). However, the 

raw simulations projects stronger changes and since they failed in accuracy in historical period, we would 

say that they also fail in future magnitude projections. 

 In general terms, it is projected a reduction in daily precipitation indices in the Amazon region, 

North and Center region, and an increase in Southern Brazil. Only in the winter season, it is projected a 

homogeneous increase in precipitation indices over Brazil. For most of the country, there are non-robust 

changes for the low precipitation indice, except for increase in two individual gauge stations, one in 

North and one in South Brazil, and decrease in the Amazon region. The major decreases were observed 

under the RCP 8.5 scenario and far future. The results corroborate to the findings of other studies using 

different GCM-RCMs projections over Brazil, drier conditions are expected to occur in Brazil in the 

future. 

6 Conclusions 

 Overall, the RCMs simulations agreed in the signal of the change for North, Middle and South 

Brazil but fail in accuracy. Thus, bias correction of the raw simulations was demonstrated to be essential 
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in climate change assessments, reducing significantly the models’ biases. Our work points to the 

importance of evaluating bias correction methods in different precipitation indices, since the performance 

results differ depending on the purpose variable. The EQM is preferred for multi-day precipitation and 

seasonal precipitation analysis. In terms of uncertainties, the bias correction methods and climate models 

are the factors that more aggregate uncertainty in the projected precipitations, and the bias correction 

uncertainty should not be neglected in impact studies. 

 The future projections of precipitation indicated overall a precipitation decrease for most of the 

regions under analysis except for an increase in Southern Brazil, confirming the results of other studies 

in the country. There is a homogeneous increase trend of precipitation in the winter in all regions under 

analysis. 
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5 EVALUATING THE LONG SHORT-
TERM MEMORY (LSTM) NETWORK
FOR DISCHARGE PREDICTION UN-
DER CHANGING CLIMATE CONDI-
TIONS - PAPER III

In this paper, we test the predictive ability of the long short - term memory (LSTM)

network for discharge prediction under changing climate conditions. To do that, we benchmark

the data-driven model over a bucket-type hydrological model; we compare the model performance

under changing conditions against a constant condition and we test the impact of the time series

size used in calibration on the model performance and robustness.
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ABSTRACT 

Better understanding the predictive capabilities of hydrological models under contrasting climate 

conditions will enable more robust decision-making. Here we tested the ability of the long short-term 

memory (LSTM) for daily discharge prediction under changing conditions using six snow-influenced 

catchments in Switzerland. We benchmarked the LSTM using the HBV bucket-type model with two 

parameterizations. We compared the model performance under changing conditions against constant 

conditions and tested the impact of the time series size used in calibration on the model performance. 

When calibrated, LSTM resulted in a much better fit than HBV. However, in validation, the performance 

of the LSTM dropped considerably, and the fit was as good or poorer than the HBV performance in 

validation. Using longer time series in calibration improved the robustness of the LSTM, whereas HBV 

needed fewer data to ensure a robust parameterisation. When using the maximum number of years in 

calibration, LSTM was considered robust to simulate discharges in a drier period than the one used in 

calibration. Overall, HBV was found to be less sensitive for applications under contrasted climates than 

the data-driven model. However, other LSTM modelling setups might be able to improve the 

transferability between different conditions. 

Key-words: climate transposability, data-driven model, differential split-sample test, model 

calibration, model robustness 

INTRODUCTION  

The use of hydrological models in conditions that differ from those during model calibration is a 

challenging problem in hydrology, and critical for application in impact studies (Blöschl et al., 2019). 

Models calibrated in certain conditions have been shown to be not always suitable for different conditions 

or transferable in time (Pan et al., 2019, Ouermi et al., 2019, Her et al., 2019, Dakhlaoui et al., 2017, 

Grusson et al., 2017, Broderick et al., 2016, Thirel, Andréassian & Perrin, 2015, Coron et al., 2012, 

Bastola, Murphy & Sweeney, 2011). The lack of a robust analysis of model performance under changing 

conditions may lead to poor water resources management. 
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In the context of catchment hydrology, a changing condition refers to any significant modification 

in land cover, climate, or water management infrastructure, potentially affecting the transformation of 

rainfall into runoff (Thirel et al., 2015). A general approach for developing hydrological models suitable 

for use in transient conditions is to use the Differential Split Sample Test (DSST). The model should be 

calibrated and validated over contrasting periods in such a method, for instance, calibrated over a wet 

period and validated during a dry period (Klemes, 1986, Coron et al., 2012). The modeller should seek a 

good transferability of the calibrated parameters to a different dataset in validation, rather than only a 

good fit during calibration, which is often translated as model robustness. Robustness is a model’s degree 

of insensitivity to climatic and environmental conditions (Seiller et al., 2012).   

Model generalization for contrasting climates has been extensively explored in the literature using 

the DSST (Seibert, 2003, Wilby, 2005, Vaze et al., 2010, Merz et al., 2011, Coron et al., 2012, Li et al., 

2012, Seiller et al., 2012, Brigode et al., 2013, Kling et al., 2015, Li et al. 2015, Seiller et al. 2015, Thirel 

et al. 2015a, Broderick et al., 2016, Fowler et al., 2016, and Vormoor et al., 2018). The results have 

shown that model parameters are sensitive to the climatic conditions of the calibration period (Pan et al., 

2019), that the transfer of model parameters in time may introduce a significant level of simulation errors 

(Zhu et al., 2016), and that calibration over a wetter (drier) climate than the validation climate leads to 

an overestimation (underestimation) of the mean simulated runoff (Coron et al., 2012). Changes in mean 

rainfall were more likely than changes in mean potential evapotranspiration or air temperature to impact 

performance during validation (Coron et al., 2012). Furthermore, Broderick et al. (2016) pointed out that 

the model transferability in contrasted climates may vary depending on the testing scenario, catchment 

and evaluation criteria. Here we argue that testing new models and new calibration protocols can help 

with our understanding of the modelling capabilities under changing conditions.  

Although data-driven techniques have proven to outperform many traditional approaches based 

on conceptual or physical models for constant conditions (Xu et al., 2020, Kratzert et al., 2019a, Rafaeli 

Neto et al., 2019, Hu et al., 2018, Lee et al., 2018, Dibike & Solomatine, 2001, Dawson & Wilby, 1998), 

and the models are reliable in out-of sample generalization (Shen, 2018), little work has been carried out 

to test the capabilities of data-driven methods to make reasonable predictions under changing 

conditions.A significant limitation of data-driven models may be that they do not benefit from our 

understanding of physical phenomena and instead rely on the data provided during optimization. 

Shortridge et al. (2016) argued that data-driven models could only generate reliable predictions for 
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conditions comparable to those experienced historically. Otherwise, the models are likely to introduce 

considerable uncertainty into their projections.  

The long short-term memory (LSTM), a particular type of recurrent neural network (RNN), has 

been shown to be promising in capturing the hydrological behaviour from the learning process (Xu et al., 

2020). Lees et al., (2021), showed that LSTM simulates discharge with consistently high model 

performance in a large range of catchments in Great Britain, including catchments typically considered 

difficult to model with four lumped conceptual models. Kratzert et al., 2019b applied the LSTM model 

over 531 basins over the USA and found a high correlation between the values of the internal cells of an 

LSTM network and natural processes.  

Recently, O et al. (2020) evaluated state-of-the-art models to changing conditions, calibrating a 

LSTM network and two process-based models in 161 catchments distributed across Europe. In their 

modelling setup, the LSTM model and the process-based models had different calibration approaches. 

The LSTM was calibrated over all catchments at once using two approaches: calibrating on an extreme 

reference period (365 days), and calibrating with one randomly selected year from each catchment rather 

than the respective extreme reference year. In contrast, the process-based models were calibrated in 

individual catchments and only using the extreme reference period. The models were then used to 

simulate in the remaining years characterized by a transient condition. The models showed overall 

performance loss, which generally increased the more conditions deviated from the reference climate, 

and overall, relatively high robustness was demonstrated by the physically-based model.  

In light of the discussion above, in this paper we tested new calibration protocols and extended 

the scope of the model evaluation, with focus on the LSTM model. This is done by: a) benchmarking the 

LSTM using the same modelling setup for both data-driven and a process-based model (which includes 

calibrating one model to each catchment instead of calibrating the LSTM over all catchments), b) testing 

if increasing the number of years in model calibration would lead to better model performance and 

robustness, in contrast to only one year used in the previous study), and finally c) calibrating the models 

in constant conditions as comparison. We then evaluated the robustness of the LSTM for contrasted 

conditions compared to both its application in constant conditions as well as compared  to the robustness 

obtained by the process-based model. 

STUDY AREA AND DATA 

 For our study, we used six snow-influenced catchments located in Switzerland, ranging from ~ 

60 km² to 400 km², with a mean altitude between ~ 500 to 1200 m.a.s.l. The location and description of 
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the catchments (location, area, altitude, daily mean temperature, annual precipitation, mean daily 

discharge and snow fraction) are presented in Figure 1 and Table 1. Our catchments choice aimed to 

select catchments mainly located in the Swiss plateau, within a climate homogeneous area, and 

considered nearly natural (i.e., there is negligible impact on runoff from human activity) (Orth et al., 

2015). 

 The data needed to model the daily discharge were air temperature (°C) and precipitation (mm d-

1), and the estimates of long-term monthly potential evapotranspiration (mm month-1). Precipitation and 

air temperature data were obtained from the gridded meteorological forcing data at the spatial resolution 

of 2 km by 2 km from the Swiss Federal Office of Meteorology and Climatology (MeteoSwiss). We 

obtained daily discharge measurements from the Swiss Federal Office for the Environment (FOEN).  

 
Figure 1. Location of the study catchments 
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Table 1. Properties of the study catchments 

Catchment 
Mean 

altitude (m) 

Area 

(km2) 

Daily mean 

temperature (°C) 

Total Precipitation 

(mm year-1) 

Mean 

discharge 

(mm d-1) 

Snow 

fraction(i) (%) 

Broye 710 392 8.6 1190 1.6 5 

Emme 1189 124 5.6 1692 3.0 19 

Ergolz 590 261 8.6 1091 1.2 6 

Langeten 766 60 7.5 1305 1.8 10 

Murg 650 79 8.0 1313 2.0 7 

Sense 1068 352 6.3 1445 2.1 13 
(i) Snow Fraction (%): fraction of precipitation falling with temperature below 0°C.  

 

METHODS 

LSTM 

 The LSTM is a particular type of RNN used to process long time-sequences of data (Hochreiter 

& Schmidhuber, 1997) in which the output of each time step is fed as input to the next time step. The 

control of the information flow is managed in units called gates and memory cells. The cell remembers 

values over arbitrary time intervals, and three gates regulate the flow of information into and out of the 

cell: the forget gate, the input gate and the output gate. At every time-step , each of the three gates is 

presented with the input  (i.e., explanatory variables) as well as the output ] of the memory 

cells at the previous time-step .  

 The first gate is the forget gate, which controls what information is removed from the cell state 

vector (Equation 1). The hidden state  is initialized in the first time step by a vector of zeros. In the next 

step, a potential update vector for the cell state is computed from the current input  and the last hidden 

state  by Equation 2. Additionally, the second gate is computed, the input gate (Equation 3), 

defining which (and to what degree) information of  is used to update the cell state in the current time 

step. With the results of the forget gate and input gate, the cell state  is updated by Equation 4.  Like 

the hidden state vector, the cell state is initialized by a vector of zeros in the first time step. The last gate 

is the output gate, which controls the information of the cell state  that flows into the new hidden 

state . The output gate is calculated by Equation 5. Finally, the hidden state is calculated using 

the current cell state and the output gate value (Equation 6). The model output is a linear combination of 

hidden states at the last time step (Kratzert et al., 2018). 
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) (1) 

 (2) 

) (3) 

  (4)  

) (5) 

) (6) 

 

 Where ,  and  are the forget, input and output gates represented by vectors with values 

in the range (0, 1),  is a vector with values in the range (−1, 1), is the input vector (forcings and 

static attributes),  (·) is the hyperbolic tangent,  (·) represents the logistic sigmoid function, 

denotes element-wise multiplication, and s, s and s are sets of learnable parameters., i.e., two 

adjustable weight matrices and a bias vector.  

 In this work, we used a network consisting of a single LSTM layer with one hidden unit and a 

dense layer that connects the output of the LSTM at the last time step to a single output neuron with 

linear activation. The LSTM model was implemented using the Keras package in Python, the Adam 

activation function and the mean squared error as loss function. To predict the discharge of a single time 

step (day), we provided as input the last consecutive time steps of independent meteorological variables 

(daily precipitation [mm.d-1] and air temperature [°C]). We obtained the best hyperparameters of the 

LSTM model through a trial-and-error tuning approach. We varied the values of the following 

hyperparameters: length of the input sequence (time-steps), number of neurons in the hidden layer and 

number of epochs. Our analysis resulted in the selection of 50 neurons, 50 epochs and 365 days as time 

steps. 

HBV model 

 We benchmarked the performance of the LSTM model against the bucket-type HBV-Light 

version model (Seibert &Vis, 2012). The HBV model consists of four routines including the snow 

routine, the soil routine, the groundwater routine, and the routing routine. This model usually simulates 

daily discharge based on daily precipitation, daily air temperature, and estimates of long-term monthly 

potential evapotranspiration rates. The HBV was used as both a lower and upper benchmark with two 

different parameterization methods (Seibert et al., 2018). As a lower benchmark, we used the ensemble 

mean of simulations with 1,000 randomly selected parameter sets, referred to hereafter as ‘uncalibrated 

HBV’. For the upper benchmark, we calibrated the HBV model using an automatic genetic algorithm 
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and the Nash-Sutcliff efficiency (NSE) as objective function, referred to hereafter as ‘calibrated HBV’. 

In both cases, we specified feasible parameter ranges based on previous model applications.  

Calibration procedure 

 The LSTM and HBV were calibrated individually for each one of the catchments resulting in six 

LSTM models and six HBV models. We calibrated and validated the models according to the Differential 

Split Sample Test (DSST) proposed by Klemes (1986) for changing conditions. According to Klemes 

(1986), if the model is intended to simulate streamflow in a wet climate scenario, then it should be 

calibrated on a dry period of the historical record and validated on a wet period and vice-versa. 

Additionally, we calibrated and validated a model under constant conditions. 

Selection of the calibration and validation periods  

 The period between 1961 and 2018 was used to select the constant and changing conditions 

periods. We mimicked the changing conditions by selecting two continuous periods in the time series 

with different hydrological conditions in the historical record. The dry and wet periods were chosen as 

the annual discharge below and above the long-term average discharge, respectively. The discharge 

changes between the periods were on average 50%. This is similar to the future hydrological changes 

expected for Switzerland of an increase in mean and maximum floods of 5 – 24% in the near future and 

of 25 – 49% in the far future, with exception to the Southern alpine catchments, where the mean annual 

floods may decrease in the far future (Köplin et al. (2014). For the constant conditions, we selected 

continuous periods containing both dry and wet years. 

We also selected calibration periods with different time series sizes, ranging from two to six years 

(2, 3, 4 and 6 years) for each catchment and condition (constant and changing), to test the influence of 

the amount of data used in the calibration on the model performance. We limited this analysis to six years 

due to data availability. We needed continuous periods with only low or high discharge, which were 

limited on average to six years across all the catchments. 

Evaluation metrics and robustness 

 We evaluated model performance using Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 

1970), Kling-Kupta Efficiency (KGE) (Gupta et al., 2009), Non-Parametric Efficiency (NPE) (Pool et 

al., 2018) and Mean Absolute Relative Error (MARE) (Staudinger et al., 2011).  The metrics range from 

-  to 1, where 1 indicates perfect agreement between simulations and observations, and values lower 

than zero indicates very poor performance. These metrics were chosen to evaluate different hydrograph 

phases, the NSE focus on peaks and discharge dynamic, the KGE focus on the mean, variability, and 
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dynamic, the NPE is the non-parametric version of KGE, and finally, the MARE focus on low to medium 

flows. The robustness was calculated as the difference between the efficiency in calibration and 

validation (Hallouin et al., 2020). The independent two-sample t-test was used to evaluate whether the 

LSTM mean robustness was equal to the robustness obtained with the HBV model, and to compare the 

mean robustness of the LSTM under changing and constant conditions, at the significance level (α) of 

0.05. 

RESULTS 

Model performance 

 In calibration mode, the LSTM performed better than the HBV model for all criteria as expected, 

since it is more flexible (it has more degress of freedom) than the conceptual model. However, the 

performance of the LSTM decreased more than the calibrated HBV when switching to the validation 

periods (Figure 2). The uncalibrated HBV model performed less well, but the performance was still better 

than what one might expect from a model run with random parameters and/or no local information. 

Therefore, we considered that a model performance of about 0.5 for NSE basically indicates that a model 

has no skill. By definition its performance did not systematically differ between calibration and validation 

periods for the uncalibrated model. For KGE the patterns were roughly similar, whereas for NPE and 

MARE, which are more different from the NSE used for calibration, the calibrated models (LSTM and 

HBV) were less superior compared to the uncalibrated HBV model, especially when using fewer years 

during calibration. 
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Figure 2. Dot plots of model performance in calibration (cal) and validation (val) periods for the six catchments under 

study. Each grid is one metric, and within each grid, each subgrid is one condition, from left to the right: Constant 

conditions, Dry -> Wet (calibration in a dry period and validation in a wet one), and Wet -> Dry (calibration in a wet 

period and validation in a dry one). The y-axis was limited to the interval between 0 and 1. 

The effect of the time series size used in calibration on the performance of the models is 

represented in the x-axis of Figure 2. There was a positive correlation between the time series length and 

model performances, which was more pronounced for the LSTM model. When evaluating the model’s 

performance against metrics not used for the optimization of the model (i.e. KGE, NPE and MARE), the 

increase in the time series length used in calibration is essential to obtain LSTM performances 

comparable to the HBV model during validation for contrasted conditions. Simulations for changing 

conditions performed less well than those for constant conditions in validation. However, the differences 

were less pronounced using the maximum number of years in calibration (i.e., six years). 

 The hydrographs and scatter plots of observed and estimated discharge using the best 

configuration, i.e., using six years in calibration, for one of the study catchments are presented in Figure 

3 and Figure 4, respectively. The hydrograph shows the underestimation of the peaks, especially those 

in spring (when the snow accumulated during the winter starts to melt) by all models. However, most 
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low and mid-flows were predicted well. This is clearly shown in the scatter plots of the observed and 

simulated flows in Figure 4. The scatter plots also indicate that the predictions deviate more from the 

observed values in the uncalibrated HBV model. There is an underestimation of the peaks when applying 

the model in conditions wetter than those it was calibrated in, and the LSTM model simulations are 

slightly less spread than those of the calibrated HBV model. 
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Figure 3.  Observed and simulated hydrographs. 
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Figure 4.  Scatter plot of the observed and the simulated discharge. 

Model robustness 

 The model robustness was evaluated as the difference in performance between calibration and 

validation periods (Table 2). The LSTM was considered robust enough for generalization in changing 

conditions when the LSTM mean robustness did not significantly differ from both the mean robustness 

of the bucket-type model and of the constant period for most of the metrics. 

 The calibrated HBV was always more robust than the LSTM model for both constant and non-

constant conditions. The LSTM was robust enough for changing conditions only when the model was 

applied in a drier period than that used in calibration and using the maximum number of years during 

calibration (six years). While a good indication of robustness was already observed with a shorter time 

series used in the calibration for the HBV, a longer dataset length was needed for the LSTM. 
Table 2. Average robustness of the LSTM (left number) and the calibrated HBV model (right number) defined by the 

subtraction between the efficiency in calibration and validation. Bold values are showed when the LSTM did not differ 

significantly from the calibrated HBV. Underlined values are showed when the LSTM under a changing condition did 

not differ significantly from the constant condition (α = 0.05). 
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 NSE KGE NPE MARE 

Constant 

2 0.28|0.04 0.16|0.03 0.14|0.01 0.27|0.06 

3 0.16|0.00 0.17|0.00 0.07|-0.01 0.1|-0.02 

4 0.12|0.02 0.09|0.04 0.07|0.03 0.08|0.04 

6 0.14|0.10 0.10|0.04 0.08|0.07 0.12|0.07 

Dry     Wet 
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2 0.28|0.13 0.17|0.04 0.14|0.04 0.18|0.00 

3 0.24|0.13 0.21|0.08 0.13|0.05 0.06|-0.06 

4 0.26|0.09 0.18|0.02 0.11|-0.01 0.06|-0.18 

6 0.19|0.15 0.14|0.04 0.05|0.00 0.07|-0.04 

 Wet     Dry 

2 0.31|0.24 0.28|0.20 0.23|0.03 0.54|0.14 

3 0.31|0.09 0.21|0.07 0.21|0.05 0.34|0.18 

4 0.32|0.18 0.22|0.14 0.17|0.07 0.41|0.20 

6 0.13|0.04 0.12|0.07 0.11|0.06 0.16|0.10 

DISCUSSION 

The LSTM had poorer performance under changing conditions. Others have found similar results 

when applying process-based models under changing conditions (Refsgaard and Knudsen, 1996, Xu, 

1999, Seibert, 2003, Wilby, 2005, Chiew et al., 2009, Vaze et al., 2010, Bastola et al., 2011).  

Overall, when calibrated, LSTM resulted in a much better fit than HBV. However, the 

performance drop when going into validation mode is also much larger for LSTM (less robust). For the 

validation period, LSTM was at best as good as HBV (especially for other criteria than used in calibration 

and for changing conditions). 

The LSTM was shown to be more dependent on dataset length to perform as well as the bucket-

type model. The improvement in model performance/robustness with the increase of the time series size 

used in calibration was also observed by Ayzel & Heistermann (2021) and Gauch et al. (2019) while 

testing the performance of LSTM networks for streamflow prediction in constant conditions. Here, this 

positive correlation was more pronounced for the constant conditions than in changing conditions. The 

lesser contribution of the time series size in model performance under changing conditions may be 

explained by the limitation of the data provided for the calibration (only dry or wet periods used in 

calibration), that is, less information about the hydrological processes was provided to the model. The 

physical constraints of the HBV model made the need for longer data series in calibration less important, 

indicating the suitability of this model for predictions when data is limited. The same was observed by 

Ayzel & Heistermann (2021) while comparing a LSTM network to the GR4H conceptual model. 

The robustness analysis showed that LSTM is robust enough for climate transposability to a drier 

period. The generalization from a dry period to a wetter period is less satisfactory, mainly because in this 

case, the model needs to extrapolate to a discharge range not used in calibration, as also reported by Pan 

et al. (2019) and Wilby (2005) employing traditional hydrological models.  

67



 

It is important to highlight that in this model setup the LSTM was trained on individual 

catchments and its calibration over a large number of catchments and with a larger data series can yield 

better results and should be explored further. However, comparing models with different structures is not 

an easy task, especially when trying to keep a fair comparison between the models. More sophisticated 

hyperparameter tuning techniques may also improve the LSTM model’s simulations, as well as coupling 

the model with process-based models. 

CONCLUSION 

 In this work, we tested the predictive ability of the LSTM for daily discharge prediction in snow-

influenced catchments under changing conditions. When calibrated, LSTM resulted in a much better fit 

than HBV, however, in validation mode, LSTM often performed worse than HBV (especially for other 

criteria than used in calibration and for changing conditions). The performance drop when going into 

validation mode was larger for LSTM, indicating less robustness, and the data-driven model was shown 

to be more dependent on dataset length used in calibration to deliver robustness comparable to a bucket-

type model.  

Despite this, the results indicate that using longer data series in calibration can benefit the use of 

LSTM in contrasting conditions. We recommend that other LSTM modelling setups should be studied 

further to improve the model performance in such conditions. 
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6 UNCERTAINTIES OF THE CLIMATE
CHANGE IMPACTS ON THE PRO-
JECTED STREAMFLOW - PAPER IV

In this paper, we aim to investigate the individual impact of several sources of uncertainty

to the total uncertainty in the projected discharge, and how to combine the results of the ensemble

members. The uncertainty sources include two emission scenarios (ES), four global climate

models downscaled by one Regional Climate Model (GCM-RCM), two bias correction techniques

(BC), and one hydrological model with ten different parameter sets (HMP) and four precipitation

data input used in calibration (HMI).
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Abstract 
The hydrological projections provided by the outputs of the integration of climate models and 
hydrological models include multi-source uncertainties, which may affect adaptation plans facing 
climate change. In this paper, we investigated the overall uncertainty in the hydrological impact 
modelling chain as well as strategies for the ensemble estimate of the changes in the projected 
discharge of ten catchments in South Brazil. We considered two emission scenarios (ES), four Global 
Climate Models downscaled by one Regional Climate Model (GCM-RCM), two bias correction (BC) 
methods, four input data used in the hydrological model calibration (HMI), and ten sets of calibrated 
hydrological parameters (HMP). The hydrological model was calibrated and validated with good 
performance indices in the ‘present-day’ (1990 - 2009) for daily discharge series. The variability of 
GCM-RCM projections was the most significant uncertainty contributor in the projection of changes 
in the mean discharge, accounting for 46% and 33% in near and far future, respectively, followed by 
the input data used in the hydrological model calibration (average of 38% and 32% in near and far 
future, respectively). Bias correction and emission scenarios contributed relatively little to the total 
uncertainties, while the hydrological model parameters did not contribute to the uncertainty. The use 
of a fitness-for-purpose (FFP) weighted ensemble average was shown to minimize the error in the 
annual maximum discharge, mean daily discharge, and maximum cumulative deficit in 80%, 50% 
and 50% of the catchments in relation to both the traditional ensemble mean (equal weights) and 
ensemble median. The FFP weighting strategy seems to be promising in climate change impact 
assessments on discharge when usually deep uncertainty is a challenge. It delivers tailor-made 
projections on specific purpose variables considering all the input sources with no increase in 
computational cost. Therefore, the method can be easily included in uncertainty analysis routines. 

Key-words: climate change, fitness-for-purpose model, ensemble strategy, model adequacy 

Introduction 
A new report, by the Intergovernmental Panel on Climate Change (IPCC) points to a rise in 

global surface temperature of around 1.5°C as early as 2030, one decade sooner than expected. These 

changes in the near and distant future, will cause unavoidable increases in the frequency and intensity 

of hot extremes, marine heatwaves, and heavy precipitation, agricultural and ecological droughts in 

some regions, and proportion of intense tropical cyclones, as well as reductions in Arctic Sea ice, 

snow cover and permafrost (IPCC, 2021). Studies investigating the impact of climate change on the 

hydrological response have grown substantially in the last two decades worldwide. Globally, climate 

change is projected to reduce terrestrial water storage in many regions, especially those in the 

Southern Hemisphere. Increase in the water availability is projected in eastern Africa, south Asia and 

northern high latitudes, especially northern Asia (Pokhrel et al., 2021). In South America, major 
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decreases are projected in the annual mean discharge, except for the Uruguay basin where a positive 

trend is expected (Brêda et al., 2020).  

In Brazil, local-scale studies investigating the climate change impacts on water resources are 

rather inconclusive mainly due to the quality and consistency of the results. According to Borges de 

Amorim and Chaffe (2019) criteria on evaluating climate change studies, the quality of the study 

considers uncertainty sampling, and the consistency is the agreement on the change signal among 

several models of diverse structures. In South Brazil, region that encompasses three main basins: 

Uruguay, South Atlantic and Parana, were found 23 studies on the YARA web-based tool (Borges de 

Amorim, Silva de Souza & Chaffe, 2020, Borges de Amorim & Chaffe, 2019) investigating the 

impacts of the climate change on the discharge (mainly located in Parana basin), however the lack of 

a multi-model ensemble analysis makes it difficult to draw some consistent conclusions about the 

climate change impacts. In Uruguay basin, changes in minimum and mean discharge were 

inconclusive (Rosenzweig et al. 2004, Fill et al. 2013, Adam & Collischonn, 2013, Oliveira et al. 

2015, Ribeiro Neto et al., 2016, Queiroz et al. 2016, Zaninelli et al. 2018), while  an increase in 

maximum discharge is projected with low quality and consistency (Rosenzweig et al. 2004, Oliveira 

et al. 2015, Ribeiro Neto et al. 2016). In the South Atlantic basin, changes in the minimum discharge 

are inconclusive (Ribeiro Neto et al., 2016), and increases are projected in mean (Queiroz et al., 2016, 

Ribeiro Neto et al., 2016, Tejadas et al., 2016, Zaninelli et al, 2018) and maximum discharge (Ribeiro 

Neto et al., 2016), however with low consistency and quality. In the Parana region, decreases are 

projected in minimum (low to medium quality), mean (inconclusive) and maximum discharge (low 

quality and consistency). 

Rainfall-runoff models combined with emission scenarios from global and regional climate 

models are widely used to assess the future climate change impacts on the catchment scale. 

Nevertheless, there are large uncertainties in the modelling framework. Modelling is an attempt to 

represent reality with the aim of understanding a system for supporting decision-making processes. 

The more complex a geographical system is, the more difficult it is to model. Errors and uncertainties 

are inherent issues that must be faced in order to assess quality or efficacy of the conclusions (Mark 

et al., 2015). The current approach used to project the climate change impacts on discharge contain 

uncertainties mainly related to climate model, downscaling method, bias correction technique, 

emission scenario, and hydrological modelling. Several authors have studied the relative importance 

of each source to the total uncertainty. However, the results are still controversial. Despite some 

authors concluded that the global climate model is the most contributor to the total uncertainty 

(Wilby, 2006, Prudhomme et al., 2009a, Prudhomme et al., 2009b, Kay et al., 2009,  Arnell et al., 

2011, Vetter et al., 2017, Krysanova et al., 2017), the hydrological modelling structure and parameter 
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uncertainty cannot be neglected (Bastola 2011, Bosshard et al., 2013, Zhang et al., 2014, Goderniaux 

et al., 2015, Dams et al., 2015, Eisner et al., 2017, Samaniego et al., 2017, Troin et al., 2018, Anaraki 

et al., 2021, Ju et al., 2021). In addition, despite of the importance of the data input to hydrological 

modelling on the uncertainty of model simulations (Meresa et al., 2021, Pokorny et al., 2021), to the 

best of our knowledge, the study of the data input in the total uncertainty is rare in climate change 

impact assessments, with exception for the recent work of Tarek, Brissette and Arsenault (2021).  

One of the ways of addressing some of these uncertainties is through ensemble modelling. An 

ensemble involves the use of multiple diverse models to predict an outcome, with the objective of 

reducing the errors resulting from only one deterministic model. Ensemble modelling has often been 

used in the climate and atmospheric sciences, where operational ensembles have been in use for well 

over a decade. The simple averaging of the ensemble (equal weights) tends to outperform individual 

models, and the use of the ensemble median can handle outliers (Georgakakos et al., 2004, Her et al., 

2019). Likewise, weighted ensemble strategies, in which different weights are assigned to individual 

model ensemble members based on model’s accuracy is shown to be a good predictive choice (Chen 

et al., 2017). However, the weighting system of these approaches usually relies on the reliability of 

the climate model in predicting climatic variables, rather than focusing on the purpose variable, such 

as discharge (Weiland et al., 2012). Dong et al (2021) used a flow-based ensemble strategy to assign 

probabilistic weights to individual GCMs based on the likelihood of each model to be a correct 

representation of the hydrological system, given the daily flow time-series, however it still lacks 

including other uncertainty sources in the weighting system.  

In numerical weather and hydrological forecasts applications, the use of probabilistic 

ensemble is well established and thoroughly evaluated (Stephens, Edwards & Demeritt, 2012, Fan et 

al., 2015). However, in climate change impact assessments, an open scientific question is how to 

better combine the ensemble simulations of several models in order to deliver better simulations to 

be used by decision makers.  In addition, the reliability of the optimized weights in delivering good 

simulations for different aspects of the hydrological response is rarely tested. In this study we analysed 

the uncertainties in the climate change projections on discharge considering two emission scenarios, 

four Global Climate Models downscaled by one Regional Climate Model (GCMs-RCM), two bias 

correction methods, ten hydrological parameter sets and four input data sources in the calibration of 

the hydrological model. We aimed to investigate the uncertainties inherent to the assessment of the 

climate change impact on the hydrological response, opportunities, and limitations. The results 

presented here confirm some well-known findings in the literature, as well as provide new insights 

that can be useful for modellers, and water resources managers aiming to apply climate change 

assessments with focus on discharge. 
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Study area and Data 
The study area consisted of ten catchments in South Brazil (Figure 1). The South region is 

economically very important, as it has the second highest per capita income in the country, high 

human development indices, and it is responsible for 17% of the national Gross Domestic Product 

(GDP) (IBGE, 2018). This region is composed of three important hydrographic regions, the Parana 

(PRN), South Atlantic (SOA) and Uruguay (URU) basins. The PRN region has the greatest economic 

development of Brazil and is strongly dependent on energy supply from hydropower plants. The SOA 

is noteworthy for its significant population contingent, for economic development and for its 

importance for tourism, and the URU has great importance for the country due to its agroindustry and 

hydropower potential. 

The study cases were randomly selected using the catchments available in the CAMELS-BR 

dataset (Chagas et al., 2020). The area of the study regions ranged from 376 km2 to 123’233 km2, and 

the altitude ranged between 232 m and 802 m (Table S1 in Appendix C). 

The climate is predominantly temperate, with the lowest winter temperatures in the country, 

the average annual precipitation varies from 1’250 to 2’000 mm and it is well distributed throughout 

the year. 

 
Figure 1. Study catchments. 

Data 

Present time 

Meteorological daily time series data were needed to calibrate the hydrological model. These 

included precipitation from MSWEP v2.2 (resolution of 0.1°, Beck et al., 2019), Hidroweb (Brazilian 

National Water Agency), CFSv2 (resolution of 0.2°, Saha et al., 2011) and ECMWF (resolution of 
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0.1°, Muñoz Sabater, 2019); potential evapotranspiration from GLEAM v3.3a (resolution of 0.25°, 

Miralles et al., 2011; Martens et al., 2017); and average temperature from CPC (resolution of 0.5°, 

NOAA, 2019). MSWEP v2.2, CPC, GLEAM v3.3a and discharge data were obtained directly from 

the CAMELS-BR dataset (Chagas et al., 2020). CFSv2 and ECMWF data were retrieved from Google 

Earth Engine. The temperature and precipitation over the catchment were estimated by the average 

grid value, except for the Hidroweb point data, where the Thiessen method was used. 

 

Future periods 

The future scenarios of climate change were obtained from four global climate models 

downscaled by the Eta regional climate model of the National Institute for Space Research (INPE). 

The description of the GCMs is presented in Table 1. The climate models were forced by two emission 

scenarios, the Representative Concentration Pathway RCP 4.5 and RCP 8.5. 
Table 1. Global climate model description. 

GCM Full name of GCM Institution 

HadGEM2-ES 

Hadley Centre Global 
Environmental Model 
version 2 – Earth 
System 

Hadley Centre 

MIROC5 

Model for 
Interdisciplinary 
Research on Climate 
version 5 

Atmosphere and Ocean Research Institute, 
University of Tokyo, National Institute for 
Environmental Studies and Japan Agency 
for Marine-Earth Science and Technology. 

CanESM2 
Canadian Earth 
System Model version 
2 

Canadian Centre for Climate Modelling 
and Analysis (CCCMA) 

BESM - OA 
2.5.1 

Brazilian Earth System 
Model 

National Institute of Space Research 
(INPE) 

The Eta regional climate model simulations were obtained from <https://projeta.cptec.inpe.br>. Data downloaded in 
July 2020. 

Methods 
Bias Correction 

The climate simulations provided by the GCMs-RCM models were post-processed using two 

bias correction methods to adjust the simulated data to the observed climatology. In this work, we 

applied the Linear Scaling (Lenderink, Buishand and Deursen, 2007) and the Empirical Quantile 

Mapping (Amengual et al., 2012), using a monthly correction factor. 
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Hydrological modelling 
 The bucket-type HBV-Light version model (Seibert and Vis, 2012), referred to hereafter as 

HBV was used in the hydrological modelling. The HBV model is considered a semi-distributed model 

since it allows for the catchment to be sub-compartmentalized into different elevation zones, derived 

from a digital elevation model. As input, HBV requires temperature, precipitation, and long-term 

potential evapotranspiration rates.  

The HBV model was used in this study under two different types, (i) Standard, consisting of 

four routines, the snow routine (neglected in this study as the catchments under analysis do not have 

significant snow), the soil routine, the groundwater routine, and the routing routine, and (ii) 

Simplified Soil Routine, where instead of the usual three soil routine parameters (FC, LP and BETA), 

it had a single soil parameter (Recharge Fraction), which is a value between 0 and 1, and specifies 

the fraction of water entering the soil that is going to recharge.  We ran the HBV model for both 

routines in each one of the ten catchments and selected the best individual routine. 

 

Calibration and validation of HBV 
The modelling period was the years between 1990 and 2009, available in the CAMELS-BR 

dataset, in which there is the largest number of discharge gauge stations with available data in Brazil. 

The model was calibrated in 1990 – 2004, with one year of warming-up, and validated in 2005 – 

2009.   

The Non-Parametric Efficiency (NPE) (Pool et al., 2018) was used as the objective function to 

calibrate HBV. The HBV was run with 10 different parameter sets to address the uncertainties in 

modelling parameterization. HBV was calibrated using a genetic algorithm and Powell (GAP) 

method. The GAP optimization method works by selecting and recombining high-performing 

parameter sets with each other. At the conclusion of these runs, the parameter set associated with the 

highest objective value was selected. This process was repeated 10 times to produce 10 optimized 

parameter sets.  

 

Evaluation metrics 
We applied the statistical metrics Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970), 

Kling-Kupta Efficiency (KGE) (Gupta et al., 2009) and Non-Parametric Efficiency (NPE) (Pool, Vis 

and Seibert, 2018) to evaluate the model performance. These metrics were chosen to evaluate 

different hydrograph phases, the NSE focus on peaks and discharge dynamics, the KGE focus on the 

mean, variability, and dynamic, and the NPE is the non-parametric version of KGE. 
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Climate change impacts on the discharge 
 The climate change scenarios were projected on the hydrological components by using the 

corrected simulated climate variables as input to the calibrated hydrological models. The projected 

discharge under the two emission scenarios were compared to the simulated discharge in a reference 

period (1991 to 2009) to compute the changes projected for the future (near: 2040 – 2069 and far: 

2070 – 2099). The changes were computed using a simulated reference period in order to avoid that 

errors in the hydrological modelling were identified as changes. 

 

Uncertainty analysis 
The predictive uncertainties reflected five main sources of uncertainty: emission scenario 

(ES), global climate model downscaled by one regional climate model (GCM-RCM), bias correction 

(BC), hydrological model parameters (HMP) and hydrological model data inputs (precipitation) 

(HMI). We computed the relative contribution of each source of uncertainty to the change in mean 

discharge using the analysis of variance (ANOVA, Hawkins and Sutton, 2009). 

 

Fitness-For-Purpose (FFP) weighting system 
The optimization of the ensemble weights by the Nelder-Mead (Gao and Han, 2012) algorithm 

was performed to investigate whether the use of a Fitness-For-Purpose (FFP) weighting system, in 

which the optimization of the ensemble weights is based on the purpose variable, improved the 

predictive ensemble ability in relation to a simple ensemble average (equal weights) and ensemble 

median. In this method, not only the climate models were weighted based on accuracy but each 

individual ensemble member representing the combination of all the uncertainty sources under 

analysis and its interactions. The t-test for mean comparison was used to determine whether the means 

of the different ensemble strategies were equal at the significance level (α) of 0.05. The step-by-step 

approach is described as follows: 

1. Optimize the ensemble weights using the observed and simulated purpose variable in a 

historical period (e.g.: Nelder-Mead optimization algorithm). The loss-function was the 

absolute relative error (Equation 1): 

 
(1) 

2. Validate the optimized weights assigned a hold-out period (test) 

3. Use the optimized ensemble weights to project the change in the purpose-variable in future 

series 

4. Check the consistency of the changes 
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 If less than 60% of the ensemble members agree in the signal of the change: Low 

consistency 

 If 60 – 85% of the ensemble members project the same change signal:  Medium 

consistency 

 If more than 85% of the ensemble members agree in the signal of the change: High 

consistency 

Experimental design 
Overall, we combined two emission scenarios (ES), four global climate models downscaled 

by one regional climate model (GCM–RCM), two bias correction (BC) methods, four input data for 

the hydrological model (HMI) calibration, and one hydrological model run with 10 parameter sets 

(HMP). In a factorial way, we analysed 640 discharge simulations per catchment.  

We evaluated the following discharge flows: long-term mean daily discharge ( ) in 

mm.day-1, long-term annual maximum discharge ( ) in mm.day-1, and monthly maximum 

cumulative deficit ( ) (mm.month-1). The  statistic was calculated to regularize 60% of the 

long-term monthly discharge (Equation 2) (Detzel et al., 2016). 

 =                 , if positive 

0, otherwise 

 

(2) 

Where  is the monthly discharge in time ,  is the discharge regularization,  is the long-term 

monthly discharge, and  is the maximum cumulative deficit. 

Results  
HBV model performance and uncertainties 

The hydrological modelling uncertainties were addressed regarding the precipitation input 

data used in the calibration process and the parameters. The HBV model was calibrated and validated 

with good performance indices (Calibration: 0.5 < NPE <0.9, mean of 0.7; Validation:  0.3 < NPE <0.9, 

mean of 0.7). The global model efficiency is shown in Figure 2.  
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Calibration 

 
Validation 

 
Figure 2. Global performance of the hydrological model for ten catchments in calibration and validation based on different 
performance metrics (columns), using different input data in model calibration (x-axis). The boxplots show the 10 sets of 
hydrological parameters simulations per catchment. 

When the hydrological model was tested against other performance metrics not used as 

objective functions, poor performance was found for the NSE using the CFSv2 as input data, indicating 

poor representation of peak flows, focus of the NSE metric. Satisfactory performance was obtained 

for KGE, which is very similar to the metric used in the calibration process, only differing in terms of 

considering parametric statistics instead of the non-parametric approach. Figure 2 show similar 

performance results of the hydrological model obtained from the calibration using the MSWEP input 

data and ground-level gauge stations (Hidroweb), indicating that good quality model-based reanalysis 

data products are valuable for climate change impact assessments, especially on data-scarce areas. 

The best model performance was found for the catchment 85623000 in the Atlantic South 

basin using the MSWEP (calibration) and Hidroweb (validation) input data. The worst calibration 

and validation performance were found for the catchment 64830000 in the Parana basin using the 

CFSv2 data input. The best and worst calibrated catchments will be used as catchment examples in 

the figures of hydrological model performance in this paper. The hydrographs of simulated and 

observed discharge for the best and the worst catchments are presented in Figure 3a and Figure 3b, 

respectively. 
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Calibration Validation 

  
a 

  

b 
Figure 3. Hydrographs of observed and simulated discharge in calibration and validation for (a) São Sepé - Montante 
catchment (code: 85623000) and (b) Balsa Santa Maria catchments (code: 64830000). The predictive uncertainty bound 
was computed as the 5% and 95% percentiles of the projections.  

There was an overestimation of the discharge for Balsa Santa Maria catchment for the low 

flows by all the input data, which indicates the poor performance of the model is more related to the 

structure and/or parameter sets of the model in representing such catchment than quality of the input 

data used in calibration. On the other hand, an overestimation of the peak flows was found for the 

São Sepé – Montante catchment. 

Figure 4 illustrates the performance of the hydrological model in the representation of the 

seasonal discharge,  and water deficits (observed against simulated). As expected, there was a 

decrease in model representativeness when applying the calibrated model in the daily series to 

simulate maximum flows and water deficit in the worst catchment. The seasonal discharge was 

overestimated in the best catchment in Calibration and underestimated in the first half of the annual 

cycle in Validation. High biases were found using the CFSv2 data product in the simulation of the 

annual cycle in the worst catchment. However, the CFSv2 input was shown to be more adequate to 

represent the maximum flows in the worst catchment, and despite of overestimating the water deficits, 

it could be a better estimate compared to the other input sources that usually underestimate the 

variable. While the hydrological parameterization seems to not add much uncertainty (shading), the 
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use of different data input in calibration led to a more spread simulation (coloured lines), especially 

the CFSv2 stood out from the other data inputs.  
 Calibration Validation 

 85623000 64830000 85623000 64830000 

a 

    

b 

    

c 

    
Figure 4. Observed and simulated hydrological variables: (a) long-term seasonal discharge, (b) annual maximum 

discharge and (c) monthly water deficit in Calibration and Validation for two example study cases (best performance 

catchment: 85623000 and worse performance catchment: 64830000). 

 

Performance of Bias Correction 
The performance of the LS and EQM bias correction of the precipitation outputs of the GCM-

RCM were tested by Moura et al (2021). Here, we applied a process-based method for evaluating the 

impact of the bias correction in the hydrological response as described by Hakala et al. (2018).  The 

bias correction effect was evaluated comparing the discharge simulations using the raw climate model 

simulations and the bias-corrected simulations. Figure 5 shows the effect of the bias correction in the 

air temperature, precipitation, and discharge for two example catchments.  

Most of the regional climate models underestimated air temperature, except for the Eta-BESM 

model. The raw simulations of the Eta-HadGEM2-ES and Eta-CanESM2 agreed more to the observed 

temperature. All the models presented high precipitation biases, and the bias correction showed 

improvement in the representation of seasonal precipitation, with better performance of the EQM 

method for precipitation, and LS method for precipitation and discharge. However, Moura et al., 

(2021) showed that the quantile-based correction factor might represent better other aspects of the 

precipitation like multi-day and seasonal precipitations not showed in Figure 5. 
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85623000 64800000 

 

Figure 5. The long-term mean monthly air temperature, precipitation, and discharge for two example catchments. The 
data from one GCM-RCM are used for each catchment. (left) 85623000, Eta-HadGEM2-ES; and (right) 6480000 
catchment, Eta-MIROC5. All figures are for the period 1991-2005. Note the different y-axes for the different plots. 
 
Uncertainty analysis 

The results of the ANOVA showed that climate models were the dominant source of 

uncertainty (average of 46% (near) and 33%, (far)), followed by the input data (average of 38% (near) 

and 32% (far)), whereas bias correction and emission scenario contributed a relatively small amount 

of uncertainty to the hydrological projections (4.9% and 3.1%, respectively for near future, and 3.1% 

and 5.4% for far future) (Figure 6). The parameterization of the HBV model was found to not 

contribute to the total uncertainty. In far future, uncertainties due to residuals and interactions among 

sources are larger than in the near future, accounting for 15% and 11%, respectively against 1% and 

6% respectively in near future. 
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Figure 6. Decomposition of the projection variance. ANOVA partitioning among the five sources of uncertainty (ES: 

emission scenario, GCM-RCM: Global Climate Model-Regional Climate Model, BC: Bias Correction, HMI: 

Hydrological Model Input data, HMP: Hydrological Model Parameter), interactions among main sources, and the residual 

errors for discharge change. Catchments are shown in the x axis. 

 

Ensemble strategy 
Tables S2 - S7 in Appendix C show the results of the ensemble simulation in different ways 

(minimum ensemble member performance, maximum ensemble member performance, ensemble 

mean, ensemble median and a fitness-for-purpose (FFP) weighting system) for the ,  

and  in calibration and validation period. As for the bias correction method, we assumed that the 

weights optimized in the historical period were valid for a period in the future, considering only the 

accuracy of the ensemble members in the historical period.  

The use of FFP weighted ensemble average was shown to minimize the error in the annual 

maximum discharge, mean daily discharge, and maximum cumulative deficit in 80%, 50% and 50% 

of the catchments in relation to both the traditional ensemble mean (equal weights) and ensemble 

median.  

The weights were optimized by purpose variable and cross-validated among the variables in 

order to test the hypothesis that a fit-to-purpose weighting system is beneficial for climate change 

assessment in different aspects of the flow (mean, maximum and minimum). The t-test showed that 

the error is minimized using the fit-to-purpose weighing system in relation to a generalist weighting 

system (e.g., optimizing the weights for the daily series and applying in maximum flows and vice-

versa) (α = 0.05). The generalist weighting system was comparable to using the mean or median of 

the ensemble. 

Climate change impacts on the future discharge 
The climate change impacts on the purpose variables were estimated by the median of the 

ensemble projections, and by the FFP ensemble weights in order to visualise the differences among 

the ensemble strategies (Figure 7). The consistency of the simulations was evaluated based on the 

agreement of the signal of the change by the ensemble members.  
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The long-term daily mean discharge was projected to increase in all catchments with medium 

and high consistency under the RCP4.5 scenario in near and far future, except for the 75780000 where 

the change was inconsistent. The magnitude of the changes differs depending on the ensemble 

strategy. Under the RCP8.5 scenario in near future, the ensemble median projects increase for most 

of the catchments, except for the 643820000 and 64775000 catchments (inconsistent change). 

However, the FFP projects decreases for 64830000, 75450000, 75500000 catchments. In the far 

future, decreases are projected with median consistency for the catchments 64382000 and 64775000. 

On the other hand, an increase is projected for the 64775000 by the ensemble median in agreement 

with the consistent change among the models.  

 The changes are highly consistent towards an increase in near and far future for both 

RCP4.5 and RCP8.5 scenarios among the ensemble members for most of the catchments, except for 

75450000 and 75550000 in Uruguay basins where a decrease is projected. The changes projected by 

the FFP estimates are much higher than the ones projected by the ensemble median, and sometimes 

differ in terms of signal. The scenarios RCP4.5 and RCP 8.5 and the near and far future projections 

are very similar. 

The  projections overall indicate a homogeneous increase in drier periods in the near and 

far future both using the ensemble median and the FFP with high consistency for all the catchments 

and emission scenarios, except for two catchments in the Uruguay basin (75450000 and 75550000). 

The magnitude of the changes is much higher using the FFP ensemble estimate. 

There was sometimes disagreement between the general trend of the change signal among the 

ensembles and the signal of change obtained by the ensemble estimate (median or FFP). In the FFP 

method, that can be related to the optimized weights based on the ensemble accuracy in the historical 

period. On the other hand, the difference in the median might be related to the interdependency among 

the ensemble members. 
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Figure 7. Future changes in (a) long-term mean discharge, (b) long-term annual maximum discharge and (c) long-term maximum 
cumulative deficit for the near (2040 - 2069) and far (2070-2099) future. 

Discussion 
The use of different precipitation data input in the hydrological model calibration indicated 

that the choice of the ‘observational data’ affected model performance. On the other hand, the results 

showed that good quality model-based reanalysis data products (MSWEP) are comparable to ground-

level gauge stations data (Hidroweb) and could be useful in climate change impact studies where data 

scarcity is a problem. This confirms the work by Sivasubramaniam et al. (2020), where model-based, 

gauge and observational gridded data were compared for long-term operational hydropower 

production planning.  

CFSv2 input data was shown to stood out among the data products, and to not lead to good 

performance of the daily discharge series, but sometimes useful in representing extreme flows. The 

use of a calibrated hydrological model for the representation of other aspects of the flow not objective 

of the calibration raised the question about the ‘right model for the right reasons’ (Kirchner, 2006). 

In this work, instead of seeking the ‘perfect model’, we approached the adequacy-for-purpose view, 

where models should be assessed with respect to their adequacy or fitness for particular purposes 

(Parker, 2020). 

Inconsistent or no change
Consistency

RCP 8.5

Emission scenario

Between 60 - 85%

>85%

Median

FFP

Ensemble strategy
RCP 4.5
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There were some poor performances of the HBV model in some catchments, regardless the 

data input, which points to either problems in the model structure to represent the hydrological 

system, or in the parameter ranges used in the model automatic calibration. Despite of the intensive 

use of the HBV model in European countries, and more recently USA, its use in South America is 

less investigated. Here, we argue that investigating the model structures uncertainty by including 

more diverse hydrological models is recommended in future research to compose the ensemble (Dion, 

Martel and Arsenault, 2021), which was out of the scope of this work. 

 The comparison of the simulated discharge using the raw simulations from the climate models 

against the simulated discharge of the model in a reference period (only taking into account 

hydrological model errors), showed that the bias correction of the climate variables was essential to 

a better representation of the seasonal discharge. 

The uncertainty analysis confirmed previous works showing the high uncertainties due to the 

climate models in the projection of future discharge (Vetter et al., 2017, Krysanova et al., 2017). The 

precipitation input data used in model calibration (less investigated in literature) surprisingly showed 

to be an important factor in the uncertainties, in the same magnitude of climate models, as reported 

by Tarek, Brissette, and Arsenault (2021), and should not be neglected in uncertainty analysis 

sampling. Bias correction and emission scenarios were the least contributors to the total uncertainty. 

The controversial contribution of hydrological model parameters was found to be irrelevant in the 

uncertainty analysis unlike other studies (Goderniaux et al., 2015, Dams et al., 2015, Zhang, Xu and 

Fu, 2014, Bastola et al., 2011). In the far future period, the residual errors, and interactions among 

sources of uncertainties are likely to lead to more uncertain climate projections than in near future.  

A fitness-for-purpose optimization of the ensemble weights against the simple ensemble mean 

or median was shown to improve the representation of other variables than the daily time series. The 

use of the optimized ensemble weights can take advantage of other sources of uncertainty that can 

contribute to the total uncertainty, and the interaction between the ensemble models. For example, if 

there was a model in the performance validation that poorly represented daily flows, removing this 

model in the early steps of the modelling chain design can hinder the opportunity of using this model 

to predict well a specific purpose variable for the future (e.g. maximum or minimum flows). In climate 

change impact assessment chains, a fitness -for-purpose model seems to be more important than the 

right model for the right reasons when deep uncertainties exist. 

 

 

Limitations of the study 
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Recent studies have shown that the use of a single hydrological model tend to under-sample 

the variability needed to provide a good representation of streamflow observations. A multi-

hydrological model approach is recommended in further studies.  

In reference to the proposed fitness-for-purpose weighting system, many questions are still 

open regarding this approach and should be further studied, such as the validation of this method in 

more catchments, and with diverse hydrological characteristics. The consequences of the 

interdependence among the ensemble members on finding the optimal weighting system was also not 

the scope of this paper. Additionally, considering that the ‘true value’ or observed value used for 

minimizing the loss function is only one realization of a stochastic process like discharge, the use of 

the optimized values in the historical might lead to a false idea of optimal performance, and even 

aggregate more uncertainties to the climate change assessment cascade, especially when applying 

these weights in long-term projections. Before applying this method in practical exercises with end-

users, we recommend additional analysis for the validation of this approach. 

Conclusion 
The uncertainties in the projection of discharge can be very large, pointing to the importance 

of the deep investigation of the uncertainty in the climate change impact assessment on water 

resources. The climate models were confirmed to yield large uncertainties to the total uncertainty (as 

expected), and the quality of the precipitation input data was surprisingly in the same magnitude of 

climate models. The bias correction and emission scenarios were found to be the least contributors to 

the total uncertainty. The hydrological model parameters did not contribute to the uncertainty. 

At the end of the day, a large ensemble is challenging to work with due to the size and 

complexity. The urge to process and combine this huge amount of data generated in one value 

(median, mean) is very appealing. However, here we aimed to demonstrate that instead of looking 

for a perfect model (right for the right reasons), more importantly is working with a fit-to-purpose 

model, and for that, the individual members of the ensemble should not be combined in a single 

estimate in the first steps of the modelling cascade. The use of optimized weights by purpose variable 

can help representing aspects of the flow not used in the hydrological model calibration process. 
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7 CONCLUSIONS

The results presented in this thesis confirmed the hypothesis that the uncertainties

can significantly influence the magnitude of the climate change impacts projected on river

discharge. The climate models yield great uncertainties to the total uncertainty (as expected),

the bias correction was shown to be a great contributor as well as the data input used in the

hydrological model calibration process. The hydrological model parameters did not contribute to

the uncertainties in the climate change assessment cascade.

The use of a data-driven method as a hydrological model was tested under changing

conditions, and despite of the general good performance of the model (comparable to the HBV

bucket-type model), the LSTM network was less robust under changing conditions; especially

extrapolating the trained parameters to a condition wetter than the one used in calibration. Because

of that, the use of data-driven methods are not recommended in climate change assessments

(where climate and hydrological patterns are expected to change in the future). However, new

calibration protocols and methods can achieve better results (e.g. hybrid models) and should be

studied further.

The precipitation data used in the hydrological modelling calibration was an important

factor and should not be neglected in the uncertainty sampling. The use of good quality

model-based precipitation data (e.g., MSWEP) was shown to be as accurate as ground-level

Hidroweb observations, and could be useful in data-scarce areas in Brazil.

At the end, the large ensemble was challenging to handle due to the size and complexity.

The urge to process this huge amount of data generated in the thesis made the desire of combining

the simulations altogether in one value (median, mean) very appealing. However, here we aimed

to show that instead of looking for a ’perfect model’ (right for the right reasons), more importantly

is working with a fit-to-purpose model, and for that, the individual members of the ensemble

should not be combined in a single estimate in the early stages of the modelling process.

While this study does not allow conclusive evidence that a fitness-for-purpose ensemble

weighting system outperforms mean and median ensemble estimates, it clearly demonstrates that

taking into account the strengths of different ensemble members can lead to a better estimate of

specific purpose-variables, and its promising incorporating user-centred modelling in climate

change impact assessments under large uncertainty. Along with that, there is an urgency to better

communicate the large uncertainties so end-users (decision makers, policy makers) can make

better decisions.
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8 FUTURE RESEARCH

As a fruit of this research, many other topics were found to be interesting and could be

developed further to expand the results of this thesis:

• Testing other data-driven methods or the use of hybrid models to predict river discharge

under changing conditions, as well as different calibration protocols; including hydrolog-

ical models of different structures in the climate change impact assessment framework.

Paper III and Paper IV

• Testing the impact of a fitness-for-purpose ensemble weighting system on more catch-

ments of diverse hydrological characteristics, as well as testing on risk related to climate

change impacts on water resources. Paper IV
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RESUMO: As mudanças climáticas poderão ter graves consequências nos recursos hídricos, como 
variações na disponibilidade hídrica, redução e/ou aumento de vazões e aumento na ocorrência de 
eventos extremos. Neste contexto, a adaptação da sociedade às mudanças climáticas é 
indispensável, o que exige a compreensão de seus impactos e o planejamento por parte dos 
tomadores de decisão. Atualmente, uma das abordagens existentes para avaliar os impactos das 
mudanças climáticas nos recursos hídricos consiste em realizar projeções hidrológicas com base em 
cenários de modelagem climática futura. Contudo, existem diversas fontes de incertezas que podem 
ser consideradas nesse método, provenientes dos cenários de emissões de gases do efeito estufa, dos 
modelos climáticos, da técnica de remoção de viés e da modelagem hidrológica, que podem 
impactar nos resultados obtidos, e consequentemente, interferir na qualidade das ações e planos de 
adaptação. O objetivo deste trabalho é apresentar o estado da arte quanto às incertezas inerentes aos 
estudos de mudanças climáticas e principais métodos que têm sido utilizados na sua quantificação. 
Esse conhecimento pode levar a uma nova visão do processo de modelagem hidrológica em estudos 
de mudança climática, promovendo uma compreensão de meios que aumentem a robustez dos 
estudos futuros e a confiabilidade das projeções.  

 
ABSTRACT: Climate change may have serious consequences on water resources, such as 
variations in water availability, reduction and/or increase in flows and increase in the occurrence of 
extreme events. In this context, the adaptation of society to climate change is indispensable, which 
requires the understanding of its impacts and the planning by the decision makers. One of the 
current approaches to assessing the impacts of climate change on water resources is to carry out 
hydrological projections based on future climate modeling scenarios. However, there are several 
sources of uncertainties that can be considered in this method, from the scenarios of greenhouse gas 
emissions, climate models, bias removal techniques and hydrological modeling, which may have an 
impact on the results obtained, and consequently, to prejudice the quality of actions and adaptation 
plans. The aim of this work is to present the state of the art regarding the uncertainties inherent in 
the studies of climate change and main methods that have been used in its quantification. This 
knowledge can lead to a new view of the hydrological modeling process in climate change studies, 
promoting an understanding of ways that increase the robustness of future studies and the reliability 
of projections. 
 
 
PALAVRAS-CHAVE: confiabilidade; métodos estatísticos; projeção hidrológica 
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INTRODUÇÃO 

 
Diversos estudos têm mostrado que as mudanças climáticas poderão ter graves impactos nos 

recursos hídricos disponíveis em todo o mundo, como variações na disponibilidade hídrica, 
aumento e/ou redução de vazão, e aumento na ocorrência de eventos extremos, que variam 
dependendo da localização geográfica (Milly; Dunne; Vecchia, 2005). Por isso, a adaptação da 
sociedade às mudanças climáticas é indispensável, o que exige a compreensão de seus impactos e o 
planejamento por parte dos tomadores de decisão. 

Modelos chuva-vazão combinados com cenários de mudanças climáticas são amplamente 
utilizados para avaliar o impacto das mudanças do clima na escala de bacias hidrográficas, o que 
requer projeções climáticas realistas e modelos hidrológicos robustos, que produzam informações 
confiáveis em condições climáticas variáveis. Contudo, existem diversas fontes de incertezas que 
podem ser consideradas nessa abordagem, provenientes dos cenários de emissões de gases do efeito 
estufa, dos modelos climáticos globais e regionais, da técnica de downscaling usada para trazer a 
informação à escala da bacia hidrográfica e do modelo hidrológico utilizado (Wilby, 2005).  

O conhecimento sobre as incertezas inerentes aos estudos de impacto das mudanças 
climáticas, permite obter uma visão consistente de como os resultados devem ser interpretados e 
possibilita a obtenção de informações mais confiáveis sobre a resposta hidrológica, como média, 
desvio padrão, níveis e intervalos de confiança e a probabilidade de exceder certo valor crítico, 
como vazões máximas ou mínimas (Webster; Sokolov, 2000). 

No Brasil, sua quantificação em estudos de impactos das mudanças climáticas não é prática 
frequente, e quando é abordada, geralmente considera somente àquelas relativas aos modelos 
climáticos e cenários e negligencia outras fontes (Adam, 2016). Uma forma de abordá-la na 
previsão e tomada de decisão na área de hidrologia é a partir da utilização de previsões 
probabilísticas, obtidas na forma de previsões por conjunto (ou por ensemble). Nesta modalidade de 
previsões, geralmente são gerados diversos cenários futuros possíveis, com o objetivo de reduzir o 
erro de previsão, oriundo de apenas um resultado determinístico (Fan, Ramos, Collischonn, 2015). 

A média ou a mediana do conjunto das projeções do modelo é muitas vezes defendida como 
uma representação útil do futuro. No entanto, uma questão importante que deveria ser levantada é, e 
se a maioria (ou todos) os modelos se revelarem errados na projeção de uma mudança na variável 
de interesse? Como apontaram Fan e Collishonn (2015), não se tem uma compreensão completa do 
benefício e necessidade da consideração de todas as fontes de incertezas existentes no processo de 
previsão nos sistemas hidrológicos de previsão por conjunto, no entanto é consensual que ao menos, 
deveriam ser encorajadas pesquisas que avaliem os benefícios econômicos em setores dependentes 
de condições climáticas futuras (hidroeletricidade, irrigação, navegação, etc). 

Os estudos conduzidos em bacias brasileiras que abordaram algumas dessas fontes 
concluíram que as alterações nas vazões e disponibilidade hídrica podem variar de acordo com o 
modelo climático utilizado, método de downscaling e/ou cenários de emissão, obtendo-se resultados 
divergentes entre aumento e redução das variáveis sob o efeito de mudanças climáticas em um 
mesmo local estudado (Adam; Collischonn, 2013, Bravo et al., 2013, Paiva; Collischonn, 2010, 
Nóbrega et al., 2010). Dessa forma, salienta-se a importância da análise e quantificação nesses 
estudos, auxiliando na projeção de impactos confiáveis que subsidiem a gestão de recursos hídricos, 
planejamento energético e de outros setores ligados à disponibilidade de água.  

 
MODELOS E CENÁRIOS DE PROJEÇÃO CLIMÁTICA 

 
Nos últimos anos, séries históricas de variáveis climáticas, tais como temperatura do ar e 

precipitação, são estudadas em diversas regiões do mundo, para testar hipóteses de que existem 
alterações no comportamento do clima. Previsões do Painel Intergovernamental sobre Mudanças 
Climáticas (IPCC) sugerem que pode haver um aumento acima de 2°C na temperatura média global 
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e uma alteração na distribuição da precipitação no mundo, decorrente das concentrações elevadas 
dos Gases de Efeito Estufa (GEE), caso estes continuem a ser produzidos a taxas crescentes (IPCC, 
2007). 

Projeções de cenários de mudanças climáticas a longo prazo, com alta resolução, são 
realizadas em Modelos Climáticos Regionais (RCM) a partir de downscaling de Modelos 
Climáticos Globais (GCM) (Chou et al., 2014). Para a realização de projeções do clima, os modelos 
do sistema terrestre são forçados por um conjunto de condições de contorno determinadas por 
cenários de emissões antropogênicas de dióxido de carbono e outros gases radiativamente ativos 
(Sampaio; Dias, 2014). As emissões antropogênicas de gases do efeito estufa são principalmente 
motivadas pelo tamanho da população, atividade econômica, estilo de vida, uso de energia, padrões 
de uso da terra, tecnologias e políticas climáticas. 

As alterações climáticas projetadas pelos modelos climáticos, caracterizadas em função da 
emissão de gases e o aumento do efeito estufa, se refletem na modificação de variáveis 
representativas do clima, tais como precipitação, temperatura do ar, umidade do ar, vento, radiação 
solar, entre outras. Essas projeções servem como base para a aplicação em modelos hidrológicos 
que estimam as possíveis mudanças nas variáveis de interesse em recursos hídricos.  

Os cenários utilizados para projeções climáticas, até o 4º Relatório de Avaliação (AR4) das 
Mudanças Climáticas, são nomeados pelas famílias A1, A2, B1 e B2, provenientes do Relatório 
Especial sobre Cenários de Emissão (SRES), divulgado nos anos 2000 pelo IPCC (Quadro 1). 

 
Quadro 1. – Descrição dos cenários provenientes do Relatório Especial sobre Cenários de Emissão (SRES, 

2000), famílias A1, A2, B1 e B2. 
Cenário Descrição 

A1 

Mundo futuro de crescimento econômico muito rápido, população global atinge um pico 
em meados do século e declina em seguida, rápida introdução de tecnologias novas e 
mais eficientes. A família de cenários A1 se desdobra em três grupos que descrevem 
direções alternativas da mudança tecnológica no sistema energético. Os três grupos A1 
distinguem-se por sua ênfase tecnológica:  
A1FI: intensivo uso de combustíveis fósseis; 
A1T: fontes energéticas não-fósseis; 
A1B: equilíbrio entre todas as fontes. 

A2 

Mundo muito heterogêneo. Caracterizado pela autossuficiência e a preservação das 
identidades locais. Os padrões de fertilidade entre as regiões convergem muito 
lentamente, o que acarreta um aumento crescente da população. O desenvolvimento 
econômico é orientado primeiramente para a região, sendo que o crescimento econômico 
per capita e a mudança tecnológica são mais fragmentados e mais lentos do que nos 
outros contextos. 

B1 

Mundo convergente com a mesma população global, que atinge o pico em meados do 
século e declina em seguida, como no contexto A1, mas com uma mudança rápida nas 
estruturas econômicas em direção a uma economia de serviços e informações, com 
reduções da intensidade material e a introdução de tecnologias limpas e eficientes em 
relação ao uso dos recursos. A ênfase está nas soluções globais para a sustentabilidade 
econômica, social e ambiental, inclusive a melhoria da equidade, mas sem iniciativas 
adicionais relacionadas com o clima. 

B2 

Mundo em que a ênfase está nas soluções locais para a sustentabilidade econômica, social 
e ambiental. É um mundo em que a população global aumenta continuamente, a uma taxa 
inferior à do A2, com níveis intermediários de desenvolvimento econômico e mudança 
tecnológica menos rápida e mais diversa do que nos contextos B1 e A1. O cenário 
também está orientado para a proteção ambiental e a equidade social, mas seu foco são os 
níveis local e regional. 

Fonte: IPCC, 2000. 
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A partir do 5º Relatório de Mudanças Climáticas (IPCC, 2013) foram criados quatro 
diferentes cenários de projeções para representar as consequências climáticas até o final do século 
XXI, denominados de Caminhos Representativos de Concentração (RCP), relacionados às 
concentrações equivalentes de CO2 na atmosfera. O termo "caminho" enfatiza que não só os níveis 
de concentração de CO2 a longo prazo são de interesse, mas também a trajetória tomada ao longo do 
tempo para alcançar esse resultado, e a palavra "representativo" significa que cada RCP fornece 
apenas um dos muitos cenários possíveis que levariam às características de forçamento radiativo 
específico (Moss et al., 2010). A descrição dos cenários RCPs é apresentada no Quadro 2. 
 

Quadro 2. - Descrição dos cenários RCPs. 
Cenário Forçante radiativa Concentração (ppm) Caminho Modelo 
RCP 8.5 > 8.5 Wm-2 em 2100  > 1,370 CO2 equiv. em 2100 Aumento MESSAGE 

RCP 6.0 
~ 6 Wm-2 com 
estabilização após 
2100 

~ 850 CO2 equiv. (com 
estabilização após 2100)  

Estabilização 
sem 
superação 

AIM 

RCP 4.5 
~ 4.5 Wm-2 
com estabilização após 
2100 

~ 650 CO2 equiv. (com 
estabilização após 2100) 

Estabilização 
sem 
superação 

GCAM 

RCP 2.6 
Pico de ~3Wm-2 
antes de 2100 e depois 
declínio 

Pico de ~ 490 CO2-equiv. 
antes de 2100 e depois declínio Pico e declínio IMAGE 

Fonte: MOSS et al., 2010. 
 
Os RCPs incluem um cenário de mitigação rigoroso (RCP 2.6), dois cenários intermediários 

(RCP 4.5 e RCP 6.0) e um cenário com emissões de GEE muito altas (RCP 8.5). Comparando as 
concentrações de dióxido de carbono e a variação da temperatura global entre os cenários SRES e 
RCP, SRES A1FI é semelhante ao RCP 8.5, SRES A1B ao RCP 6.0 e SRES B1 ao RCP 4.5. O 
cenário do RCP 2.6 é representativo de um cenário que visa manter o aquecimento global abaixo de 
2°C acima das temperaturas pré-industriais (IPCC, 2014) porque inclui a opção de usar políticas 
para alcançar emissões líquidas negativas de dióxido de carbono antes do final do século, o que não 
acontece nos cenários SRES.  

Apesar do grande avanço científico e computacional que proporcionou maior entendimento 
do sistema climático e permite a projeção de cenários de mudanças climáticas, ainda há grande 
incerteza inerente a esses dados (IPCC, 2000), principalmente na escala regional, sendo algumas 
variáveis mais confiáveis (temperatura) que outras (precipitação, por exemplo) (Santos et al., 2015).  

Os modelos climáticos podem não representar perfeitamente o clima atual devido 
principalmente à influência da discretização espacial dos modelos e erros sistemáticos causados   
pela conceituação imperfeita dos fenômenos e processos que governam o clima (Oliveira; Pedrollo; 
Castro, 2015, Teutschbein; Seibert, 2012). Além de erros sistemáticos na modelagem de clima, 
existem outras fontes de incertezas como àquelas provenientes das emissões futuras de gases de 
efeito estufa,  aerossóis e atividades vulcânicas e solares, inclusão de efeitos diretos do aumento na 
concentração de CO2 atmosférico nas plantas e do efeito do comportamento das plantas no clima 
futuro e sensibilidade do clima global e padrões regionais das projeções do clima futuro simulado 
pelos modelos, devido às diferentes formas em que cada modelo de circulação geral da atmosfera 
representa os processos físicos e os mecanismos do sistema climático (Marengo, 2006). 

Diante disso, alguns estudos buscam quantificá-las a partir da utilização de simulações por 
conjunto (emsemble) de diversos GCMs e/ou RCMs e cenários de emissão, nas quais os resultados 
das previsões são sintetizados em uma média simples, onde para cada membro é atribuído igual 
probabilidade de ocorrência ou a partir da utilização de aproximações probabilísticas. Na 
aproximação probabilística, os resultados de diferentes modelos ou integrações de um mesmo 
modelo são utilizados para a produção de uma Função Densidade de Probabilidade (FDP) ou uma 
Função Distribuição Acumulada (FDA), no qual a amplitude das curvas representa uma medida da 

121



XXVIII Congreso Latinoamericano de Hidráulica 2018 - Argentina1406 |

incerteza na projeção, e a integral entre dois limiares estabelecidos indicam a probabilidade de sua 
ocorrência (Santos et al., 2015). 

 
MODELAGEM HIDROLÓGICA 

 
A modelagem hidrológica apresenta-se como uma ferramenta essencial de análise para 

representar um sistema (bacia hidrográfica) no todo ou em partes, o comportamento de um processo 
hidrológico ou conjunto de processos, em um dado instante ou intervalo de tempo (Moreira, 2005). 
Atualmente, modelos hidrológicos têm sido utilizados para realizar projeções dos impactos das 
mudanças climáticas nos recursos hídricos em nível de bacias hidrográficas a partir de cenários 
climáticos fornecidos por GCMs e/ou RCMs (Amin et al., 2017, Chilkoti; Bolisetti; Balachandar, 
2017, Zhang et al., 2014). A transferência dos dados de projeção climática para um modelo 
hidrológico tem a função de projetar o estado dos componentes da fase atmosférica para a fase 
terrestre do ciclo hidrológico da bacia.  

Um dos produtos da modelagem hidrológica com base em cenários de mudanças climáticas 
é a estimativa da frequência no futuro de eventos importantes para a gestão de recursos hídricos, 
como por exemplo, vazões baixas que podem prejudicar a produção de energia ou sistemas de 
irrigação, assim como enchentes que podem danificar infraestruturas e impactar a sociedade. 

Uma vez apresentadas as incertezas inerentes às projeções climáticas, é necessário destacar 
que estas se propagam para a modelagem hidrológica. Por exemplo, se os cenários utilizados 
tendem a superestimar as temperaturas no futuro, um impacto hidrológico poderia ser um aumento 
na evapotranspiração da bacia hidrográfica, indicando um cenário mais drástico que a realidade.  

Ainda, existem as fontes próprias da modelagem hidrológica em condições estacionárias 
(condições climáticas e/ou características físicas), que incluem erros na estrutura do modelo, 
problemas no processo de calibração, e erros nos dados utilizados para a calibração (Brigode; 
Oudin; Perrin, 2013). Em condições não estacionárias, como em estudos de mudanças climáticas, 
adicionam-se ainda a instabilidade de parâmetros, que podem ocorrer devido às possíveis alterações 
nas características físicas e de captação nos processos dominantes. Os erros de estrutura do modelo 
e a estabilidade de seus parâmetros são consideradas como as duas principais fontes na etapa de 
modelagem hidrológica (Adam, 2016). Para a quantificação dos erros inerentes à modelagem 
hidrológica (estrutura), o método geral consiste em avaliar a resposta hidrológica de diferentes 
modelos chuva-vazão, numa abordagem de simulação por conjunto (Wilby; Harris, 2006). 
 
INCERTEZAS DAS MUDANÇAS CLIMÁTICAS NO RECURSOS HÍDRICOS  

 
Muitos estudos conduzidos ao redor do mundo investigaram o efeito das mudanças 

climáticas na resposta hidrológica de bacias hidrográficas. As análises de vazões de rios na América 
do Sul e no Brasil apontam para aumentos entre 2% e 30% na bacia do Rio Paraná e nas regiões 
vizinhas no Sudeste da América do Sul (Milly; Dunne; Vecchia, 2005), consistente com as análises 
de tendência de chuva observada na região (Marengo, 2008). No entanto, a maioria desses estudos 
não abordam a quantificação das incertezas associadas aos resultados apresentados, ainda que seja 
fundamental para o desenvolvimento de planos e estratégias de adaptação robustos, reduzindo os 
riscos associados às decisões em recursos hídricos. 

Existe um consenso na literatura sobre a importância relativa das diferentes fontes de 
incerteza. Os resultados indicam que o GCM domina outras fontes em estudos de impacto 
hidrológico (Wilby; Harris, 2006, Prudhomme; Davies, 2009, Kay et al., 2009, Arnell, 2011). No 
entanto, alguns estudos afirmam que a previsão dos modelos hidrológicos pode estar na mesma 
faixa de importância ou até maior que a climática (Goderniaux et al., 2015, Dams et al., 2015, 
Zhang; Xu; Fu, 2014, Bastola et al., 2011). Ainda, a importância dessas fontes pode variar 
temporalmente e sob a escala de análise escolhida (Shrestha et al., 2016) e variável em análise 
(vazões baixas ou vazões altas) (Meresa; Romanowicz, 2016). 

122



XXVIII Congreso Latinoamericano de Hidráulica 2018 - Argentina | 1407

Atualmente, as abordagens adotadas para o estudo de impacto das mudanças climáticas 
incluem a avaliação sem qualquer quantificação desse parâmetro (Gosain; Rao; Basuray, 2006; 
Thodsen, 2007), focam apenas na climática e negligenciam a hidrológica (Woldemeskel; Sharma; 
Mehrotra, 2014) ou mesmo tomam uma única projeção climática e avaliam apenas a hidrológica 
(Steele-Dunne et al., 2008).   

A análise multi-propagação é utilizada para detectar a incerteza total do conjunto, em vez da 
análise de propagação única, na qual os elementos de uma única fonte são variados enquanto os de 
outras são estáticos. Esta análise considera todas as combinações possíveis de elementos entre as 
fontes e as contribuições de cada uma para a estimativa total e os efeitos das interações entre as 
fontes podem ser decompostos, por exemplo, por análise de variância (Meresa; Romanowicz, 2016, 
Addor et al., 2014). Exemplos de estudos que contemplaram a análise de diversas fontes de 
incerteza como modelos climáticos, cenários de emissão e modelagem hidrológica foram os 
trabalhos conduzidos por Meresa e Romanowicz, 2017, Addor et al, 2014 e Minville et al., 2008. 

Estudos em bacias hidrográficas brasileiras têm utilizado diferentes modelos climáticos 
globais para estimar os impactos de mudanças climáticas, no entanto poucos têm avaliado a 
influência das demais fontes de incertezas. Uma síntese de trabalhos publicados no Brasil que 
avaliaram os impactos de mudanças climáticas contemplando essa análise é apresentada no trabalho 
de Adam (2016), o qual aponta as divergências nos resultados. Adam et al. (2015) concluíram que 
os impactos do cenário A1B sobre as vazões da bacia do Paraná são altamente dependentes do 
membro de perturbação do modelo utilizado para obter as projeções climáticas e na maioria dos 
casos as vazões máximas projetadas estão dentro dos limites de incerteza em relação às series 
atuais. Os resultados apontaram que a variabilidade natural do clima pode ser tão importante quanto 
a influência de mudanças climáticas e a incerteza aumenta com a ampliação do horizonte de tempo 
analisado. 
 
ANÁLISE E QUANTIFICAÇÃO DAS INCERTEZAS 
 

Processos que não são totalmente compreendidos, e cujos resultados não podem ser 
previstos com precisão, frequentemente são denominados incertos. A incerteza é atribuída à falta de 
informações perfeitas sobre os fenômenos, processos e dados envolvidos na definição e resolução 
de um problema, condição gerada pela falta de controle sobre a ocorrência de determinados eventos 
(Mays; Tung, 1992).  

É importante enfatizar a diferença entre o termo erro e incerteza, o primeiro expressa a 
diferença entre um valor simulado ou medido e o valor verdadeiro, enquanto o outro está associado 
ao sentido probabilístico, uma vez que trata da variação nos resultados de um evento aleatório, dos 
distúrbios derivados de considerações errôneas ou da distribuição de erros associados com as 
quantidades observadas ou estimadas. A maioria das entradas e saídas de processos na área de 
recursos hídricos não são conhecidas com certeza. Por isso, ignorar esse fator em estudos 
hidrológicos pode levar a conclusões incorretas sobre os fenômenos que se buscam representar 
(Loucks; Van Beek, 2005). 

Os fenômenos naturais, incluindo os hidrológicos, contêm incertezas que lhes são inerentes 
sendo que existem duas fontes: (i) a aleatoriedade natural associada às possíveis ocorrências (ou 
realizações) de um certo fenômeno; e (ii) as imperfeições e/ou insuficiências do conhecimento 
humano sobre os processos que determinam tais ocorrências. As aleatórias, podem ser expressas em 
termos da maior ou menor variabilidade de uma ou mais das variáveis (ou grandezas mensuráveis) 
associadas ao fenômeno em estudo. Já as do segundo tipo resultam da interpretação imperfeita ou 
imprecisa da realidade subjacente ao referido fenômeno, por parte dos modelos teóricos e/ou físicos 
utilizados para o caracterizar (Naghettini; Portela, 2011). 

Em resumo, em todas as situações reais, não se conhece o valor verdadeiro da grandeza que 
se pretende conhecer, e por isso é então necessário obter a melhor representação desse valor 
verdadeiro e a incerteza associada a este erro. Uma boa estimativa do valor verdadeiro da grandeza 
pode ser obtida a partir da repetição dos experimentos, sendo a melhor estimativa obtida da média 
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dos resultados dos experimentos. Contudo, a repetição dos experimentos auxilia no controle de 
erros aleatórios, mas não dos erros sistemáticos. Estes dois erros devem ser combinados para a 
estimativa do erro final. 

A análise da incerteza em hidrosistemas ou seus componentes requer o uso de probabilidade 
e estatística. Uma forma de análise é baseada no conceito de intervalo de confiança, sendo que este 
é um intervalo estimado de um parâmetro de interesse de uma população. Em vez de estimar o 
parâmetro por um único valor, é dado um intervalo de estimativas prováveis. O quanto estas 
estimativas são prováveis será determinado pelo coeficiente de confiança , para Į (0,1) ࣅ. 

Intervalos de confiança (IC) são usados para indicar a confiabilidade de uma estimativa. Por 
exemplo, sendo todas as estimativas iguais, uma pesquisa que resulte num IC pequeno é mais 
confiável do que uma que resulte num IC maior. O IC depende do desvio padrão e da distribuição 
estatística do fenômeno, sendo que o Teorema do Limite Central afirma que a soma de muitas 
variáveis independentes aleatórias e com mesma distribuição de probabilidade sempre tende a uma 
distribuição normal. 

De acordo com Vuolo (2008), as principais formas para indicar a incerteza são: incerteza 
padrão (ࢽ), incerteza expandida com confiança P (kࢽ), limite de erro (L) e erro provável (ǻ). O 
parâmetro ࢽ pode ser definido como o desvio padrão da distribuição dos erros, já kࢽ é um múltiplo 
da incerteza padrão. O parâmetro L é o valor máximo admissível para o erro e erro provável é o 
valor ǻ que tem 50� de probabilidade de ser excedido pelo erro Ș, em módulo, porpm este 
indicador não é muito usado atualmente.  

Além das incertezas individuais, é conveniente estimar a propagação destas em uma 
grandeza  ( ,...), a partir das ࢽx, ࢽy, ࢽz,... e das covariâncias associadas às grandezas ,... 

A análise multi-propagação pode ser utilizada para detectar a estimativa total do conjunto 
(isto é, incerteza geral nas avaliações de mudanças climáticas), em vez da análise de propagação 
única, na qual os elementos de uma única fonte são variados enquanto os de outras são estáticos. 
Esta análise considera todas as combinações possíveis de elementos entre as fontes e suas 
contribuições para a estimativa geral e os efeitos das interações entre elas (Meresa; Romanowicz, 
2016, Addor et al., 2014). 

Segundo Vuolo (2008), se os erros nas variáveis ,... são completamente independentes 
entre si, ࢽ em w (Equação 1) é, em primeira aproximação, dada por: 
 

    [1] 
 

Uma expressão mais completa quando os erros não são completamente independentes é dada 
pela Equação 2. 
 

+

       [2] 
 

A equação geral para propagação de incerteza fornece uma informação importante acerca do 
quanto uma determinada variável influi na precisão final da quantidade chave. A sensibilidade é 
dada pelo termo da Equação 3, sendo que quanto maior o valor de , maior será o peso daquela 
variável no resultado final. 

 
        [3] 
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ANÁLISE DE VARIÂNCIA 
 

A utilização da Análise de Variância (ANOVA) tem sido uma técnica frequentemente 
utilizada (Meresa; Romanowics, 2017, Vetter et al., 2017, Addor et al., 2014, Bosshard et al., 2013). 
Na abordagem ANOVA, escolhe-se a variância da projeção como uma estimativa de sua incerteza e 
quantifica-se a contribuição das diferentes fontes para a incerteza total (Addor et al., 2014). 

Meresa e Romanowicks utilizaram ANOVA para identificar a contribuição relativa de cada 
fonte, correspondente aos conjuntos de parâmetros (P), modelos climáticos (C) e conjuntos de 
distribuição de parâmetros (D), a partir do espalhamento da mudança do quantil de vazão no futuro 
próximo e distante, segundo o modelo ANOVA descrito na Equação 4. 
 

  [4] 
 

Em que  é o erro total da soma quadrada para o indicador hidrológico extremo específico 
(por exemplo, mudança relativa no quantil de vazões máximas no período de retorno de 30 anos), 
para o i-ésimo conjunto de parâmetros, j-ésimo modelo climático e k-ésimo intervalo de 
distribuição de parâmetros, μ é a média geral, e denota o erro branco de Gauss. 
 
MODELO DA MÉDIA BAYESIANA 
 

Outro modelo que pode ser empregado é o Modelo de Média Bayesiana (BMA), que 
combina distribuições preditivas de diferentes fontes de incerteza. A aplicação deste modelo está 
crescendo em projeções emsemble para produzir projeções médias e probabilísticas de impactos de 
mudanças climáticas.  

Neste método, a Função Densidade de Probabilidade (FDP) de qualquer variável de 
interesse é uma média ponderada de FDPs centradas nas previsões individuais, onde os pesos são 
iguais às probabilidades posteriores dos modelos que geram as previsões, e reflete em contribuições 
relativas dos modelos para a habilidade preditiva no período de treinamento. Os pesos do BMA 
podem ser usados para avaliar a utilidade dos membros do grupo, e isso pode ser usado como base 
para selecionar os membros do conjunto para previsão (Bastola; Murphy; Sweeney, 2011). 

A descrição que segue refere-se a metodologia empregada por Bastola et al. (2011), para 
aplicação do BMA. 

Na situação em que vários modelos { , . ., } são teoricamente possíveis, é arriscado 
basear a inferência nas estimativas pontuais de um único modelo . BMA permite contabilizar este 
tipo de incerteza a partir da distribuição preditiva da quantidade de interesse (Equação 5), o cálculo 
é feito a partir da média da distribuição preditiva posterior da quantidade derivada de cada modelo 
individual ponderada pelas correspondentes probabilidades posteriores do modelo. 
 

    [5] 
 
A probabilidade posterior do modelo  do modelo  de acordo com os dados é pela 

Equação 6. 
       [6] 

 
Em que a constante de proporcionalidade é escolhida de modo que o modelo de 

probabilidade posterior some um. A probabilidade anterior, p( ), na Equação 6 apresenta a 
preferência do modelo  antes da reavaliação. Portanto, um modelo com histórico de melhor 
desempenho terá um maior peso na aplicação futura. Note-se que sem qualquer conhecimento 
prévio da preferência do modelo, a probabilidade anterior é assumida como tendo uma distribuição 
uniforme entre os modelos N. A quantidade p (D| ) é a probabilidade integrada do modelo . 

A média e a variância posterior de ǻ são apresentadas nas Equações 7 e 8, respectivamente. 
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, D)] =       [7] 

 
  [8] 

 
Em que  = . Note-se que peso tem um valor apenas entre 0 e 1. Um valor 

maior indica maior preferência na predição. Nesta aplicação, a FDP de cada modelo no momento  
é modelado por uma distribuição gama (Equação 9) com variância heteroscedástica (Equação 10). 
 

)       [9] 
 

     [10] 
 

  [11] 
 
Onde  e  na Equação 10 são os coeficientes que relacionam a saída do modelo com as 

variações do modelo. Como a vazão é diferente de zero e a distribuição da vazão diária é altamente 
distorcida, a FDP de cada modelo é modelada usando distribuição gama. Em cada passo do tempo, 
a FDP escolhida é centrada nas previsões individuais com uma variância associada que é 
heterocedástica e depende diretamente na previsão da vazão real. Os parâmetros do BMA, ou seja, 
pesos e variâncias, podem ser obtidas a partir da vazão observada histórica usando amostragem de 
Markov Chain Monte Carlo (MCMC).  

As previsões probabilísticas da vazão diária são derivadas com base em previsões 
individuais determinísticas obtidas a partir de cada modelo hidrológico e seu peso e variância. O 
procedimento utilizado por Bastola (2011) para gerar previsões probabilísticas para cada etapa de 
tempo t é descrito abaixo: 

Etapa 1: Selecionar os modelos  que podem ser estrutural ou parametricamente diferentes. 
Etapa 2: Gerar conjuntos de previsão de modelo  
Etapa 3: Calcular pesos e variância  para cada um dos modelos selecionados. 
Etapa 4: Gerar uma nova previsão baseada em modelo  usando a Equação 7. 
Etapa 5: As previsões probabilísticas são feitas usando o peso médio ( ) e parâmetros de 

variância ( ) da seguinte forma: 
- Selecionar um modelo concorrente individual ( ) com probabilidade proporcional ao seu 

peso. 
- Obter amostra da distribuição de probabilidade associada com a saída de cada modelo 

individual. 
- Repetir os dois passos acima para obter uma amostra de vários valores que representam a 

distribuição da vazão no tempo   e, subsequentemente, derivar o intervalo de incerteza. 
 
CONCLUSÃO 
 

Apesar da análise das incertezas não ser um tema recente na área de mudanças climáticas e 
hidrologia, muitos estudos não incluem essa análise em seus resultados. No entanto, sem a inclusão 
desse fator, os estudos podem indicar variações que não representem as condições futuras, e acabar 
por prejudicar a gestão dos recursos hídricos. A propagação desse parâmetro durante as etapas de 
aquisição de dados, tratamento dos dados, modelagem e análise dos resultados faz com que as 
mudanças climáticas ainda sejam foco de especulação e até mesmo, contradição. 

Os métodos anteriormente empregados em trabalhos, que avaliavam a incerteza unitária de 
fontes diversas devem ser substituídos por análises conjuntas, através de métodos como o BMA ou 
ANOVA. Essa abordagem deveria ser considerada padrão para os estudos de impactos de mudanças 
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climáticas nos recursos hídricos a fim de melhorar a qualidade e confiabilidade dos resultados 
obtidos, e consequentemente, os planos e ações desenvolvidos pelos tomadores de decisão. 
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APPENDIX B: Paper II: Supplementary
Materials



 

Supplementary Materials – Paper II 
 
Table S1. Precipitation gauge stations description. 

Gauge ID Gauge name 
Hydrografic 

region 
Latitude Longitude 

Altitude 

(m) 

Long - term 

annual  

precipitation (mm) 

83442 Aracuaí East Atlantic -16.83 -42.05 289 686 

82571 Barra do Corda 
North/Northeast 

Atlantic 
-5.5 -45.23 153 1048 

83967 Porto Alegre 
Southeast 

Atlantic 
-30.05 -51.16 46.97 1194 

83676 Catanduva Paraná -21.11 -48.93 570 1215 

83669 São Simão Paraná -21.48 -47.55 617.39 1295 

83581 Florestal São Francisco -19.88 -44.41 760 1321 

83587 Belo Horizonte São Francisco -19.93 -43.93 915 1372 

83526 Catalão Paraná -18.18 -47.95 840.47 1381 

83842 Curitiba 
Southeast 

Atlantic 
-25.43 -49.26 923.5 1406 

83736 São Lourenço Paraná -22.1 -45.01 953.2 1413 

83726 São Carlos Paraná -21.96 -47.86 856 1437 

83781 São Paulo – Mirante de Santana Paraná -23.5 -46.61 792.06 1478 

83064 Porto Nacional Tocantins -10.71 -48.41 239.2 1496 

83714 Campos do Jordão Paraná -22.75 -45.6 1642 1542 

83423 Goiânia Paraná -16.66 -49.25 741.48 1556 

83630 Franca Paraná -20.58 -47.36 1026.2 1557 

83374 Goiás Tocantins -15.91 -50.13 512.22 1720 

82861 Conceição do Araguaia Tocantins -8.26 -49.26 156.85 1721 

82353 Altamira Amazon -3.21 -52.21 74.04 1846 

83844 Paranaguá 
Southeast 

Atlantic 
-25.53 -48.51 4.5 1896 

82113 Barcelos Amazon -0.96 -62.91 40 2204 

82331 Manaus Amazon -3.1 -60.01 61.25 2209 

82106 São Gabriel da Cachoeira (UAUPES) Amazon -0.11 -67 90 2751 

82191 Belém North/Northeast 
Atlantic -1.43 -48.43 10 2790 

82141 Soure Amazon -0.73 -48.51 10.49 3146 

82067 Iauarete Amazon 0.61 -69.18 120 3266 
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Figure S1. Raw Eta Regional Climate Model performance based on the Absolute value of the Mean Error (Ame) 
for the daily, monthly, low, high and seasonal (DJF, MAM, JJA, SON) precipitation indices across 26 
precipitation gauge stations over North, Middle and South Brazil. 
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Figure S2. Long-term monthly precipitation (a) and Cumulative Distribution Function (b) in validation (1997 
– 2005) of observed (obs), raw and bias-corrected by Linear Scaling (LS) and Empirical Quantile Mapping 
(EQM) (using yearly:_y and monthly: _m correction factors) ensemble median of all the Eta Regional Climate 
Models (Eta-HadGEM2-ES, Eta-MIROC5, Eta-CanESM2 and Eta-BESM), as well as individual raw climate 
model simulations in light-grey lines. 
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(c) 

Figure S3. Significance of the ANOVA model elements in the near (2041 – 2070) and far (2070 – 2099) future 
for the (a) daily, (b) high and (c) low precipitation. The boxplots summarize the p-values of the F-test of the 
26 gauge stations under analysis and the horizontal dashed line illustrates the test significance level of 0.05. 
A p-value smaller or equal the significance level indicated that the factor and/or interaction uncertainty 
contribution was significant for the projected precipitation uncertainty. C: Climate Model, B: Bias 
Correction, E: Emission Scenario, C:E, C:B, C:E the interactions between the respective sources. 
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Figure S4. Significance of the ANOVA model elements in the near (2041 – 2070) and far (2070 – 2099) future 
for the monthly rainfall. The boxplots summarize the p-values of the F-test of the 26 gauge stations under 
analysis and the horizontal dashed line illustrates the test significance level of 0.05. A p-value smaller or equal 
the significance level indicated that the factor and/or interaction uncertainty contribution was significant for 
the projected precipitation uncertainty. C: Climate Model, B: Bias Correction, E: Emission Scenario, C:E, C:B, 
C:E the interactions between the respective sources. 
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Near Far 

  

  

  
Figure S5. Absolute changes (mm) by precipitation gauge station and variable (daily – first row, high – second 
row and low indices – third row) for the near (left column) and far future (right column). The stations were 
sorted by average long-term annual precipitation (from the driest to the wettest).  
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Figure S6. Relative changes (%) by precipitation gauge station and variable (daily – first row, high – second 
row and low indices– third row) for the near (left column) and far future (right column). The stations were 
sorted by average long-term annual precipitation (from the driest to the wettest). 
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Near Far 
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Figure S7. Seasonal absolute changes (mm) by precipitation gauge station and season for the near (left column) 
and far future (right column). The stations were sorted by average long-term annual precipitation (from the 
driest to the wettest). 

Near Far 
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Figure S8. Seasonal relative changes (%) by precipitation gauge station and season for the near (left column) 
and far future (right column). The stations were sorted by average long-term annual precipitation (from the 
driest to the wettest). 
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Figure S9. Scatter plot of the bias corrected future changes versus the raw future changes for the DJF (first 
row), MAM (second row), JJA (third row) and SON (fourth row) seasonal precipitation in the near (left column) 
and far (right column) future. The grey dots represent all the model’s simulation, while the black dots represent 
the robust ensemble median. 
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Figure S10. Correlation between near and far future (left column - a) and RCP 4.5 and RCP 8.5 scenarios (right 
column – b) for the seasonal precipitation. 
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APPENDIX C: Paper IV: Supplementary
Materials



Supplementary Materials – Paper IV 

Table S1. Catchment characteristics. 

River Basin Gauge 
name 

Gauge 
code 

Latitud
e 

Longitu
de 

Mean 
altitud
e (m) 

Area 
(km2) 

Daily 
mean 

temperatu
re (°C) 

Total 
Precipitati

on 
(mm year-

1) 

Mean 
dischar

ge 
(mm d-

1) 

Piquiri Parana 

Balsa 
Santa 
Maria 

648300
00 -24.19 -53.75 565 20'947 21 1839 2.2 

Cantu Parana 
Balsa do 
Cantu 

647750
00 -24.75 -52.70 664 2’522 20 2004 2.7 

Laranjin
ha Parana 

Fazenda 
Casa 
Branca 

643820
00 -23.40 -50.45 656 2’639 21 1465 1.7 

São Sepé 
Atlantic 
Southea
st 

São Sepé 
-
Montant
e 

856230
00 -30.19 -53.56 232 685 19 1528 2.2 

Itajaí do 
Sul 

Atlantic 
Southea
st 

Ituporan
ga 

832500
00 -27.40 -49.61 707 1’681 17 1550 1.9 

Braço do 
Norte 

Atlantic 
Southea
st 

Divisa de 
Anitápol
is 

845200
00 -28.00 -49.12 802 376 18 1919 2.7 

Forquilh
a or 
Inhandu
va 

Urugua
y 

Passo do 
Granzott
o 

724300
00 -27.88 -51.75 743 1’626 18 1845 2.5 

Piratini Urugua
y 

Passo 
Santa 
Maria 

754500
00 -28.58 -54.92 272 3’233 20 1742 2.4 

Piratini Urugua
y 

Passo do 
Sarment
o 

755000
00 -28.21 -55.32 234 5’236 26 1753 2.2 

Uruguai Urugua
y 

Passo 
São 
Borja 

757800
00 -28.62 -56.04 584 123’23

4 19 1843 2.4 
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Table S2. Ensemble estimate relative error for the long-term mean daily discharge based on the ensemble member 
minimum error (Min), ensemble member maximum error (Max), ensemble mean (equal weights), ensemble median 
and fitness-for-purpose (FFP) weighting system in Calibration.  

Catchment Min Max Mean Median FFP 
64382000 0.0 0.3 0.02 0.0 0.0 
64775000 0.02 1.79 0.49 0.39 0.0 
64830000 0.04 1.48 0.37 0.28 0.0 
72430000 0.05 0.8 0.28 0.3 0.0 
75450000 0.11 1.58 0.78 0.6 0.0 
75500000 0.06 1.21 0.54 0.28 0.0 
75780000 0.01 0.5 0.0 0.02 0.0 
83250000 0.07 0.72 0.27 0.23 0.0 
84520000 0.02 1.09 0.17 0.15 0.0 
85623000 0.01 0.72 0.03 0.05 0.0 

 

Table S3. Ensemble estimate relative error for the long-term mean daily discharge based on the ensemble minimum 
error (Min), ensemble maximum error (Max), ensemble mean (equal weights), ensemble median and fitness-for-
purpose (Fit) weighting system in Validation. 

Catchment Min Max Mean Median FFP 
64382000 0.3 0.05 0.17 0.22 0.17 
64775000 0.3 0.31 0.39 0.33 0.23 
64830000 0.43 0.31 0.31 0.29 0.11 
72430000 0.38 0.03 0.07 0.09 0.18 
75450000 0.51 0.92 0.26 0.27 0.09 
75500000 0.56 0.32 0.23 0.28 0.04 
75780000 0.21 0.09 0.16 0.19 0.16 
83250000 0.07 0.12 0.02 0.02 0.13 
84520000 0.28 0.17 0.07 0.08 0.13 
85623000 0.15 0.26 0.06 0.0 0.05 

 
Table S4. Ensemble estimate relative error for the long-term annual maximum discharge based on the ensemble 
member minimum error (Min), ensemble member maximum error (Max), ensemble mean (equal weights), ensemble 
median and fitness-for-purpose (FFP) weighting system in Calibration. 

Catchment Min Max Mean Median FFP 
64382000 0.13 0.56 0.38 0.4 0.0 
64775000 0.32 0.65 0.5 0.51 0.0 
64830000 0.03 0.71 0.48 0.56 0.0 
72430000 0.53 0.8 0.69 0.7 0.0 
75450000 0.0 0.66 0.26 0.24 0.0 
75500000 0.02 0.81 0.36 0.36 0.0 
75780000 0.02 0.54 0.38 0.4 0.0 
83250000 0.02 0.67 0.39 0.41 0.0 
84520000 0.24 0.54 0.43 0.45 0.0 
85623000 0.09 0.5 0.34 0.35 0.0 
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Table S5. Ensemble estimate relative error for the long-term annual maximum discharge based on the ensemble 
member minimum error (Min), ensemble member maximum error (Max), ensemble mean (equal weights), ensemble 
median and fitness-for-purpose (FFP) weighting system in Validation. 

Catchment Min Max Mean Median FFP 
64382000 0.3 0.53 0.34 0.35 0.02 
64775000 0.45 0.56 0.42 0.43 0.1 
64830000 0.27 0.63 0.36 0.43 0.27 
72430000 0.66 0.64 0.58 0.56 0.28 
75450000 0.37 1.29 0.27 0.26 0.05 
75500000 0.07 1.37 0.3 0.31 0.04 
75780000 0.45 0.32 0.2 0.20 0.21 
83250000 0.22 0.63 0.35 0.35 0.02 
84520000 0.21 0.58 0.43 0.44 0.01 
85623000 0.56 0.37 0.11 0.16 0.42 

 
Table S6. Ensemble estimate relative error for the long-term maximum cumulative deficit based on the ensemble 
member minimum error (Min), ensemble member maximum error (Max), ensemble mean (equal weights), ensemble 
median and fitness-for-purpose (FFP) weighting system in Calibration. 

Catchment Min Max Mean Median FFP 
64382000 0.03 0.72 0.35 0.38 0.0 
64775000 0.06 0.9 0.62 0.66 0.0 
64830000 0.02 0.92 0.59 0.63 0.0 
72430000 0.49 0.93 0.73 0.73 0.0 
75450000 0.01 2.0 0.22 0.04 0.0 
75500000 0.0 2.29 0.54 0.22 0.0 
75780000 0.51 0.94 0.83 0.85 0.0 
83250000 0.09 0.76 0.47 0.46 0.0 
84520000 0.03 2.01 0.25 0.49 0.0 
85623000 0.01 0.91 0.3 0.19 0.0 

 
Table S7. Ensemble estimate relative error for the long-term maximum cumulative deficit based on the ensemble 
member minimum error (Min), ensemble member maximum error (Max), ensemble mean (equal weights), ensemble 
median and fitness-for-purpose (FFP) weighting system in Validation. 

Catchment Min Max Mean Median FFP 
64382000 2.78 0.35 1.25 1.07 2.48 
64775000 1.05 0.3 0.13 0.21 1.06 
64830000 1.65 0.52 0.05 0.15 1.27 
72430000 0.78 0.8 0.56 0.77 0.45 
75450000 0.31 0.43 0.44 0.52 0.54 
75500000 0.27 0.4 0.33 0.38 0.51 
75780000 0.79 0.81 0.76 0.81 0.12 
83250000 0.73 0.76 0.69 0.72 0.00 
84520000 0.95 0.29 0.47 0.5 0.41 
856230 0.34 0.56 0.42 0.36 0.27 
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