
FEDERAL UNIVERSITY OF PARANÁ

JACKSON ANTONIO DO PRADO LIMA

A MULTI-ARMED BANDIT APPROACH FOR ENHANCING TEST CASE

PRIORITIZATION IN CONTINUOUS INTEGRATION ENVIRONMENTS

CURITIBA PR

2021

JACKSON ANTONIO DO PRADO LIMA

A MULTI-ARMED BANDIT APPROACH FOR ENHANCING TEST CASE

PRIORITIZATION IN CONTINUOUS INTEGRATION ENVIRONMENTS

Tese apresentada como requisito parcial à obtenção do grau

de Doutor em Ciência da Computação no Programa de

Pós-Graduação em Informática, Setor de Ciências Exatas,

da Universidade Federal do Paraná.

Área de concentração: Computer Science.

Orientador: Silvia Regina Vergilio.

CURITIBA PR

2021

MINISTÉRIO DA EDUCAÇÃO
SETOR DE CIENCIAS EXATAS
UNIVERSIDADE FEDERAL DO PARANÁ
PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO
PROGRAMA DE PÓS-GRADUAÇÃO INFORMÁTICA -
40001016034P5

TERMO DE APROVAÇÃO

Os membros da Banca Examinadora designada pelo Colegiado do Programa de Pós-Graduação INFORMÁTICA da Universidade

Federal do Paraná foram convocados para realizar a arguição da tese de Doutorado de JACKSON ANTONIO DO PRADO LIMA

intitulada: A Multi-Armed Bandit Approach for Enhancing Test Case Prioritization in Continuous Integration environments,

sob orientação da Profa. Dra. SILVIA REGINA VERGILIO, que após terem inquirido o aluno e realizada a avaliação do trabalho, são

de parecer pela sua APROVAÇÃO no rito de defesa.

A outorga do título de doutor está sujeita à homologação pelo colegiado, ao atendimento de todas as indicações e correções

solicitadas pela banca e ao pleno atendimento das demandas regimentais do Programa de Pós-Graduação.

CURITIBA, 10 de Dezembro de 2021.

Assinatura Eletrônica
13/12/2021 11:59:44.0

SILVIA REGINA VERGILIO
 Presidente da Banca Examinadora

Assinatura Eletrônica
14/01/2022 12:03:08.0

ALESSANDRO FABRICIO GARCIA
 Avaliador Externo (PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO

DE JANEIRO)

Assinatura Eletrônica
14/12/2021 15:05:55.0

BRENO MIRANDA
 Avaliador Externo (UNIVERSIDADE FEDERAL DE PERNAMBUCO)

Assinatura Eletrônica
10/01/2022 10:31:40.0

MARIA CLAUDIA FIGUEIREDO PEREIRA EMER
 Avaliador Externo (UNIVERSIDADE TECNOLÓGICA FEDERAL DO

PARANÁ)

Assinatura Eletrônica
14/12/2021 09:36:46.0

AURORA TRINIDAD RAMIREZ POZO
 Avaliador Interno (UNIVERSIDADE FEDERAL DO PARANÁ)

Rua Cel. Francisco H. dos Santos, 100 - Centro Politécnico da UFPR - CURITIBA - Paraná - Brasil
CEP 81531-980 - Tel: (41) 3361-3101 - E-mail: ppginf@inf.ufpr.br

Documento assinado eletronicamente de acordo com o disposto na legislação federal Decreto 8539 de 08 de outubro de 2015.
Gerado e autenticado pelo SIGA-UFPR, com a seguinte identificação única: 134608

Para autenticar este documento/assinatura, acesse https://www.prppg.ufpr.br/siga/visitante/autenticacaoassinaturas.jsp
e insira o codigo 134608

To my wife, son, and parents...

ACKNOWLEDGEMENTS

This thesis had support from several people. Firstly, I would like to thank my parents, Marcio do

Prado Lima and Sibila Brüsky do Prado Lima, for all support they have given me. Thanks for

encouraging me to pursue my goals and to focus on my studies, mainly when my goals looked

impossible you pushed me back to the right path. In this path, my sister Suelen do Prado Lima

was on my side, protecting and taking care of me.

I would like to thank my wife, Jéssica Röpke do Prado Lima. This doctorate would

not be possible without your love and patience. Due to the pandemic situation, you made the

difference more than ever. Thank you for standing on my side all these years. Moreover, I would

like to thank my son Miguel Augusto do Prado Lima. You bring me immense happiness in my

heart. Thanks for making this end of doctorate more special than ever.

Special thanks to my advisor, Prof. Dr. Silvia Regina Vergilio. You believed in me.

Beyond the excellent and outstanding supervision, and standing with me since the master’s degree,

you were my second mother. Indeed. In the moments that I would like to give up, you were there

to listen to me and help me. Moreover, I will not forget our discussion of the works and your

supervision style, they will be with me forever!

Thanks to Prof. Dr. Aurora Trinidad Ramirez Pozo from the C-Bio group at UFPR.

You had great importance during my academic journey since the master’s degree. In addition to

the advice and guidance, you were a friend.

Thanks to all my friends from the GrEs and C-Bio research groups. You were my

family during these almost seven years. We shared great moments together, and I learned a lot!

Moreover, my gratitude to all other friends and family members who were by my side during

these years. I am grateful for all.

Finally, I would like to GENI (Global Environment for Networking Innovation). I would

be not able to conduct my experiments without the infrastructure provided.

This work is also supported by the Brazilian funding agency Coordenação de Aper-

feiçoamento de Pessoal de Nível Superior (CAPES) under the grant: 88882.382199/2019-01.

RESUMO

A Integração Contínua (do inglês Continuous Integration, CI) é uma prática comum e amplamente
adotada na indústria que permite a integração frequente de mudanças de software, tornando a evolu-
ção do software mais rápida e econômica. Em ambientes que adotam CI, o Teste de Regressão (do
inglês Regression Testing, RT) é fundamental para assegurar que mudanças realizadas não afetaram
negativamente o comportamento do sistema. No entanto, RT é uma tarefa cara. Para reduzir os
custos do RT, o uso de técnicas de priorização de casos de teste (do inglês Test Case Prioritization,
TCP) desempenha um papel importante. Essas técnicas visam a identificar a ordem para os casos
de teste que maximiza objetivos específicos, como a detecção antecipada de falhas. Recentemente,
muitos estudos surgiram no contexto de TCP para ambientes de CI (do inglês Test Case Prioriti-
zation in Continuous Integration, TCPCI), mas poucos estudos consideram particularidades destes
ambientes, tais como restrições de tempo e a volatilidade dos casos de teste, ou seja, eles não
consideram o ambiente dinâmico do ciclo de vida do software no qual novos casos de teste podem
ser adicionados ou removidos (descontinuados) de um ciclo para outro. A volatilidade de casos de
teste está relacionada ao dilema de Exploração versus Intensificação (do inglês Exploration versus
Exploitation, EvE). Para resolver este dilema uma abordagem precisa balancear: i) a diversidade
do conjunto de testes; e ii) a quantidade de novos casos de teste e testes que possuem alta proba-
bilidade de revelar defeitos. Para lidar com isso, a maioria das abordagens usa, além do histórico
de falhas, outras métricas que consideram instrumentação de código ou necessitam de informações
adicionais, tais como a cobertura de testes. Contudo, manter as informações atualizadas pode
ser difícil e consumir tempo, e não ser escalável devido ao orçamento de teste do ambiente de
CI. Neste contexto, e para lidar apropriadamente com o problema de TCPCI, este trabalho apre-
senta uma abordagem baseada em problemas Multi-Armed Bandit (MAB) chamada COLEMAN
(Combinatorial VOlatiLE Multi-Armed BANdiT). Problemas MAB são uma classe de problemas
de decisão sequencial que são intensamente estudados para resolver o dilema de EvE. O problema
de TCPCI enquadra-se na categoria volátil e combinatorial, pois múltiplos braços (casos de teste)
necessitam ser selecionados, e eles são adicionados ou removidos ao longos dos ciclos. COLEMAN
foi avaliada em diferentes sistemas do mundo real, orçamentos de teste, funções de recompensa, e
políticas MAB, em relação a diferentes abordagens da literatura, e também no contexto de Sistemas
Altamente Configuráveis (do inglês Highly-Configurable Software, HCS). Diferentes indicadores
de qualidade foram utilizados, englobando diferentes perspectivas tais como a eficácia da detecção
de defeitos (com e sem considerar custo), rápida detecção de defeitos, redução do tempo de teste,
tempo de priorização, e acurácia. Os resultados mostram que a abordagem COLEMAN é promis-
sora e endossam sua aplicabilidade no problema de TCPCI. Em comparação com RETECS, uma
abordagem do estado da arte baseada em Aprendizado por Reforço, COLEMAN apresenta uma
melhor eficácia em detectar defeitos em ≈ 82% dos casos, e detecta-os mais rapidamente em 100%
dos casos. COLEMAN gasta um tempo negligível, menos do que um segundo para executar, e é
mais estável do que a abordagem RETECS, ou seja, melhor se adapta para lidar com os picos de
defeitos. Quando comparada com uma abordagem baseada em busca, COLEMAN provê soluções
próximas das ótimas em ≈ 90% dos casos, e soluções razoáveis em ≈ 92% dos casos em compara-
ção com uma abordagem determinística. Portanto, a contribuição deste trabalho é introduzir uma
abordagem eficiente e eficaz para o problema de TCPCI.

Palavras-chave: Teste de Software, Integração Contínua, Priorização de Casos de Teste, Multi-

Armed Bandit.

ABSTRACT

Continuous Integration (CI) is a practice commonly and widely adopted in the industry to allow
frequent integration of software changes, making software evolution faster and cost-effective. In CI
environments, Regression Testing (RT) is fundamental to ensure that changes have not adversely
affected existing features of the system. However, RT is an expensive task. To reduce RT costs,
the use of Test Case Prioritization (TCP) techniques plays an important role. These techniques
attempt to identify the test case order that maximizes specific goals, such as early fault detection.
Recently, many studies on TCP in CI environments (TCPCI) have arisen, but few pieces of work
consider CI particularities, such as the time constraint and the test case volatility, that is, they do
not consider the dynamic environment of the software life-cycle in which new test cases can be
added or removed (discontinued) over time. The test case volatility is a characteristic related to
the Exploration versus Exploitation (EvE) dilemma. To solve such a dilemma an approach needs
to balance: i) the diversity of the test suite; and ii) the quantity of new test cases and test cases
that are error-prone or that comprise high fault-detection capabilities. To deal with this, most
approaches use, besides the failure-history, other measures that rely on code instrumentation or
require additional information, such as testing coverage. However, maintaining this information
updated can be difficult and time-consuming, not scalable due to the test budget of CI environments.
In this context, and to properly deal with the TCPCI problem, this work presents an approach
based on Multi-Armed Bandit (MAB) called COLEMAN (Combinatorial VOlatiLE Multi-Armed
BANdiT). The MAB problems are a class of sequential decision problems that are intensively
studied for solving the EvE dilemma. The TCPCI problem falls into the category of volatile
and combinatorial MAB, because multiple arms (test cases) need to be selected, and they are
added or removed over the cycles. COLEMAN was evaluated under different real-world software
systems, time budgets, reward functions, and MAB policies, against different approaches from
the literature, and also considering the Highly-Configurable Software context. Different quality
indicators were used to encompass different perspectives such as fault detection effectiveness (and
with cost consideration), early fault detection, test time reduction, prioritization time, and accuracy.
The outcomes show that COLEMAN is promising and endorse its applicability for the TCPCI
problem. COLEMAN outperforms RETECS, a state-of-the-art approach based on Reinforcement
Learning, and stands out mainly regarding fault detection effectiveness (in ≈ 82% of the cases)
and early fault detection (in 100%). COLEMAN spends a negligible time, less than one second to
execute, and is more stable than RETECS, that is, adapts better to deal with peak of faults. When
compared with a search-based approach, COLEMAN provides near-optimal solutions in ≈ 90% of
the cases, and in comparison with a deterministic approach, provides reasonable solutions in 92%
of the cases. Thus, the main contribution of this work is to provide an efficient and efficacious
MAB-based approach for the TCPCI problem.

Keywords: Software Testing, Continuous Integration, Test Case Prioritization, Multi-Armed Bandit.

LIST OF FIGURES

2.1 First-in, First-out procedure in the SW (adapted from Li et al. [50]). 25

2.2 Difference between Standard MAB and Volatile MAB (adapted from Bnaya et

al. [7]). 26

2.3 Overview of Continuous Integration, Delivery, and Deployment (extracted from

Prado Lima and Vergilio [75]). 28

3.1 PRISMA flow diagram. 32

4.1 Overview of the proposed approach and how it is integrated in the test phase of a

CI environment. 38

4.2 Heatmap concerning the test cases vs. faults along CI cycles from the System

Example. 40

4.3 COLEMAN illustrative example - Commit 1. 41

4.4 COLEMAN illustrative example - Commit 2. 41

4.5 COLEMAN illustrative example - Commit 3. 42

4.6 COLEMAN illustrative example - Commit 4. 42

4.7 COLEMAN illustrative example - Commit 5. 43

4.8 Steps conducted for extracting and modeling build history from Travis CI. 46

4.9 Information extracted from Deeplearning4j system behavior. 47

4.10 Reward Based on Failures (RNFail) function. 51

4.11 Time-Ranked Reward (TimeRank) function. 51

4.12 Accumulative Reward values over the CI cycles from Druid system. 51

LIST OF TABLES

3.1 Inclusion and exclusion criteria applied on systematic mapping.. 31

3.2 Number of papers returned by each source. 33

4.1 Functions used by the Reward Functions.. 39

4.2 Test Case Set Information. 45

4.3 NAPFD and APFDc values (mean and standard deviation) for MAB policies using

time budget of 50%.. 49

4.4 Mean and standard deviation Prioritization Time (in seconds) with time budget of

50%. 50

4.5 Mean and standard deviation NAPFD, APFDc, and NTR values: COLEMAN
against RETECS. 51

4.6 Mean and standard deviation RFTC values: COLEMAN against RETECS. 52

5.1 Summary of the main characteristics of the results obtained in the other evaluations.55

LIST OF ACRONYMS

ANN Artificial Neural Network

APFD Average Percentage of Faults Detected

APFDc Average Percentage of Faults Detected with cost consideration

CI Continuous Integration

CD Continuous Deployment

CDE Continuous DElivery

CMAB Contextual Multi-Armed Bandit

COLEMAN Combinatorial vOlatiLE Multi-Armed BANdiT

EvE Exploitation versus Exploration

FIR Fitness Improvement Rate

FRRMAB Fitness-Rate-Rank based on Multi-Armed Bandit

FCS Fuzz Configuration Scheduling

GA Genetic Algorithm

HCS Highly-Configurable Software

HITO Hyper-heuristic for the Integration and Test Order Problem

ITO Integration and Test Order

LSTM Long Short Term Memory

MAB Multi-Armed Bandit

MOEA Multi-Objective Evolutionary Algorithm

NAPFD Normalized Average Percentage of Faults Detected

NTR Normalized Time Reduction

PRISMA Preferred Reporting Items for Systematic reviews and Meta-Analyses

RETECS Reinforced Test Case Selection

RFTC Rank of the Failing Test Cases

RMSE Root-Mean-Square Error

RNFail Reward Based on Failures

RL Reinforcement Learning

RT Regression Testing

SW Sliding Window

SUT System Under Test

TCP Test Case Prioritization

TCPCI Test Case Prioritization in Continuous Integration environments

TimeRank Time-Ranked Reward

TSM Test Suite Minimization

TCS Test Case Selection

UCB Upper Confidence Bound

VMAB Volatile-multi-Arm bandit

VTS Variant Test Set Strategy

WTS Whole Test Set Strategy

PUBLISHED WORK

The following works were published in the last 5 years within the subject of test prioritization

and continuous integration.

Journal Papers
• Jackson A. Prado Lima and Silvia R. Vergilio. Test case prioritization in continuous

integration environments: A systematic mapping study. Information and Software
Technology, 121:106268, 2020 [75].

• Jackson A. Prado Lima and Silvia R. Vergilio. A multi-armed bandit approach for

test case prioritization in continuous integration environments. IEEE Transactions on
Software Engineering, page 12, 2020 [71].

• Jackson A. Prado Lima, Willian D. F. Mendonça, Silvia R. Vergilio, and Wesley

K. G. Assunção. Cost-effective learning-based strategies for test case prioritization

in Continuous Integration of Highly-Configurable Software. Empirical Software
Engineering, 2021. Accepted [65].

• Jackson A. Prado Lima and Silvia R. Vergilio. An Evaluation of Ranking-to-Learn

Approaches for Test Case Prioritization in Continuous Integration. Journal of Software
Engineering Research and Development, 2021. Submitted [77].

Conference Papers
• Jackson A. Prado Lima and Silvia R. Vergilio. Multi-armed bandit test case prioritization

in continuous integration environments: A trade-off analysis. In Proceedings of the 5th
Brazilian Symposium on Systematic and Automated Software Testing, SAST’20. ACM,

2020 [72].

• Jackson A. Prado Lima, Willian D. F. Mendonça, Silvia R. Vergilio, and Wesley K. G.

Assunção. Learning-based prioritization of test cases in continuous integration of

highly-configurable software. In Proceedings of the 24th ACM Conference on Systems
and Software Product Line: Volume A-Volume A, pages 1–11, 2020 [64].

• Jackson A. Prado Lima and Silvia R. Vergilio. A Multi-Armed Bandit Approach for

Test Case Prioritization in Continuous Integration environments. European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), Aug 2021. Journal First Track. Presentation [76].

• Enrique A. Roza, Jackson A. Prado Lima, Silvia R. Vergilio, and Rogério C. Silva.

Machine Learning Regression Techniques for Test Case Prioritization in Continuous

Integration Environment. International Conference on Software Analysis, Evolution
and Reengineering (SANER), 2021. Approved [85].

Papers not included in the thesis
Besides that, I have been involved with the following works, which are not included in

the thesis, as they focus on topics that are not related with the main context of the PhD project.

Journal Papers

• Jackson A. Prado Lima and Silvia R. Vergilio. A systematic mapping study on higher

order mutation testing. Journal of Systems and Software, 154:92–109, 2019 [69].

• Henrique N. Silva, Jackson A. Prado Lima, Silvia R. Vergilio, and Andre T. Endo.

A Mapping Study on Mutation Testing for Mobile Applications. Software Testing,
Verification and Reliability, page 23, 2021 [89].

Conference Papers

• Jackson A. Prado Lima and Silvia R. Vergilio. A Multi-Objective Optimization Approach

for Selection of Second Order Mutant Generation Strategies. In Proceedings of the
2nd Brazilian Symposium on Systematic and Automated Software Testing, SAST. ACM,

2017 [68].

• Helson L. Jakubovski Filho, Jackson A. Prado Lima, and Silvia R. Vergilio. Automatic

Generation of Search-Based Algorithms Applied to the Feature Testing of Software

Product Lines. In Proceedings of the 31st Brazilian Symposium on Software Engineering,

SBES’17, page 114–123, New York, NY, USA, 2017. ACM [28].

• Jackson A. Prado Lima and Silvia Regina Vergilio. Search-Based Higher Order Mutation

Testing: A Mapping Study. In Proceedings of the III Brazilian Symposium on Systematic
and Automated Software Testing, SAST’18, page 87–96, New York, NY, USA, 2018.

Association for Computing Machinery [80].

• Jackson A. Prado Lima and Silvia Regina Vergilio. Comparing low level heuristics

selection methods in a higher-order mutation testing approach. In Proceedings of the IX
Workshop on Search Based Software Engineering, WESB, 2018 [79].

CONTENTS

1 INTRODUCTION . 18
1.1 MOTIVATIONS . 19

1.2 OBJECTIVES. 20

1.3 TEXT ORGANIZATION . 21

2 BACKGROUND . 23
2.1 MULTI-ARMED BANDIT . 23

2.2 VOLATILE AND COMBINATORIAL MAB/CMAB 25

2.3 TEST CASE PRIORITIZATION . 26

2.4 CONTINUOUS INTEGRATION ENVIRONMENTS 28

2.5 CONCLUDING REMARKS . 29

3 RELATED WORK . 30
3.1 MULTI-ARMED BANDIT FOR SOFTWARE TESTING. 30

3.2 TEST CASE PRIORITIZATION IN CONTINUOUS INTEGRATION ENVI-

RONMENTS . 31

3.3 CONCLUDING REMARKS . 36

4 PROPOSED APPROACH. 37
4.1 OVERVIEW. 37

4.2 MAB POLICIES . 37

4.3 CREDIT ASSIGNMENT . 38

4.3.1 Reward Functions . 39

4.4 COLEMAN’S ILLUSTRATIVE EXAMPLE 40

4.5 EVALUATION DESCRIPTION . 43

4.5.1 Quality Indicators . 44

4.5.2 Systems Under Test . 45

4.5.3 Data Collection . 46

4.5.4 Parameters Setting . 47

4.5.5 Threats to Validity . 48

4.6 RESULTS AND ANALYSES . 48

4.6.1 RQ1: COLEMAN Configuration . 48

4.6.2 RQ2: COLEMAN Applicability . 50

4.6.3 RQ3: Comparing COLEMAN and RETECS . 52

4.7 CONCLUDING REMARKS . 54

5 OTHER EVALUATIONS . 55
5.1 COMPARISON WITH A SEARCH-BASED APPROACH 55

5.2 COMPARISON WITH A DETERMINISTIC APPROACH 56

5.3 APPLICATION FOR HCS . 57

6 CONCLUSION . 58
6.1 LIMITATIONS . 59

6.2 CONTRIBUTIONS . 59

6.3 FUTURE WORK . 60

REFERENCES . 62
APPENDIX A – TCPCI: A SYSTEMATIC MAPPING STUDY. 71

A.1 INTRODUCTION . 71

A.2 BACKGROUND AND RELATED WORK . 72

A.2.1 Test Case Prioritization . 72

A.2.2 Continuous Integration Environments . 72

A.2.3 Related Work . 73

A.3 MAPPING PROCESS . 73

A.3.1 Definition of Research Questions . 73

A.3.2 Definition of the Search String . 74

A.3.3 Selection Criteria . 75

A.3.4 Conducting the Review . 75

A.3.5 Classification scheme, data extraction and dissemination 75

A.4 OUTCOMES . 76

A.4.1 Basic Information of the Field . 76

A.4.2 Characteristics of the approaches . 79

A.4.3 Evaluation Aspects . 82

A.5 TRENDS AND RESEARCH OPPORTUNITIES 84

A.5.1 Evolution of the field . 84

A.5.2 Type of approaches . 84

A.5.3 Application contexts . 84

A.5.4 Evaluation of the approaches . 85

A.6 THREATS TO VALIDITY . 85

A.7 CONCLUDING REMARKS . 85

A.8 PRIMARY STUDIES. 86

A.9 REFERENCES . 87

APPENDIX B – A MULTI-ARMED BANDIT APPROACH FOR TCPCI . 89
B.1 INTRODUCTION . 89

B.2 BACKGROUND . 90

B.2.1 Multi-Armed Bandit . 90

B.2.2 Continuous Integration Environments . 91

B.3 RELATED WORK . 91

B.4 PROPOSED APPROACH . 92

B.4.1 MAB Policies . 93

B.4.2 Credit Assignment . 93

B.5 EVALUATION DESCRIPTION . 94

B.5.1 Quality Indicators . 94

B.5.2 Systems Under Test . 95

B.5.3 Parameters Setting . 95

B.5.4 Threats to Validity . 95

B.6 RESULTS AND ANALYSIS . 95

B.6.1 RQ1: COLEMAN Configuration . 95

B.6.2 RQ2: COLEMAN Applicability . 97

B.6.3 RQ3: Comparing COLEMAN and RETECS. 97

B.7 CONCLUDING REMARKS . 99

B.8 REFERENCES . 99

APPENDIX C – MULTI-ARMED BANDIT TCPCI: A TRADE-OFF
ANALYSIS . 101

C.1 INTRODUCTION . 101

C.2 EVALUATED APPROACH . 102

C.2.1 Reward Functions . 102

C.2.2 FRRMAB . 103

C.3 FINDING NEAR-OPTIMAL SOLUTIONS . 104

C.3.1 Population Representation . 104

C.3.2 Fitness Function. 104

C.3.3 Algorithm . 104

C.3.4 Implementation Aspects . 104

C.4 EXPERIMENTAL SETUP . 105

C.4.1 Evaluation Measures . 105

C.4.2 Statistical Analysis . 105

C.4.3 Target Systems . 105

C.4.4 Execution Parameters . 105

C.4.5 Threats to Validity . 105

C.5 RESULTS . 106

C.5.1 Discussion. 109

C.6 RELATED WORK . 109

C.7 CONCLUDING REMARKS . 109

C.8 REFERENCES . 110

APPENDIX D – AN EVALUATION OF RANKING-TO-LEARN AP-
PROACHES FOR TCPCI. 111

D.1 INTRODUCTION . 111

D.2 BACKGROUND AND RELATED WORK . 112

D.2.1 TCP in CI environments . 112

D.3 LEARNING-BASED APPROACHES . 113

D.3.1 RETECS . 113

D.3.2 COLEMAN . 114

D.3.3 Reward Functions . 114

D.4 EVALUATION METHODOLOGY . 115

D.4.1 Evaluation Measures . 115

D.4.2 Target Systems . 116

D.4.3 Generating Optimal Solutions . 116

D.4.4 Executing Learning-based approaches . 116

D.5 RESULTS AND ANALYSIS . 116

D.5.1 Fault Detection Effectiveness . 117

D.5.2 Fault Detection Effectiveness with Cost Consideration. 119

D.5.3 Early Fault Detection and Test Time Reduction 120

D.5.4 Prioritization Time . 122

D.5.5 Accuracy . 122

D.5.6 Answering our RQ . 124

D.5.7 Discussions and Implications . 127

D.6 THREATS TO VALIDITY . 127

D.7 CONCLUDING REMARKS . 128

D.8 REFERENCES . 129

APPENDIX E – LEARNING-BASED PRIORITIZATION OF TEST
CASES IN CI OF HCS . 130

E.1 INTRODUCTION . 130

E.2 MOTIVATION EXAMPLE. 131

E.3 COLEMAN . 131

E.4 APPLICATION STRATEGIES. 132

E.5 EVALUATION SETUP . 133

E.5.1 Research Questions . 133

E.5.2 Subject System . 133

E.5.3 Quality Indicators . 133

E.5.4 Applying learning and random approaches . 134

E.5.5 Statistical Analysis . 135

E.6 RESULTS . 135

E.6.1 RQ1: COLEMAN vs Random . 135

E.6.2 RQ2: Strategies Applicability . 135

E.6.3 RQ3: Comparing VTS and WTS strategies . 135

E.6.4 Threats to Validity . 138

E.7 RELATED WORK . 138

E.8 CONCLUDING REMARKS . 139

E.9 REFERENCES . 139

APPENDIX F – COST-EFFECTIVE LEARNING-BASED STRATEGIES
FOR TCPCI OF HCS . 141

F.1 INTRODUCTION . 141

F.2 MOTIVATION EXAMPLE. 142

F.3 TEST CASE PRIORITIZATION IN CI . 143

F.3.1 Adopted Approach . 143

F.4 PROPOSED STRATEGIES . 145

F.5 EVALUATION SETUP . 145

F.5.1 Subject Systems . 146

F.5.2 Quality Indicators . 147

F.5.3 Applying Approaches . 147

F.5.4 Statistical Analysis . 148

F.6 RESULTS AND ANALYSIS . 149

F.6.1 RQ1: Performance of the strategies using COLEMAN and random approach. . . 149

F.6.2 RQ2: Performance of the strategies using COLEMAN and RETECS 151

F.6.3 RQ3: How far the solutions found by all approaches are from optimal solutions . 152

F.6.4 RQ4: Strategies Applicability . 154

F.6.5 RQ5: Comparing VTS and WTS strategies . 155

F.6.6 Implications and Limitations . 158

F.6.7 Threats to Validity . 160

F.7 RELATED WORK . 160

F.8 CONCLUDING REMARKS . 162

F.9 REFERENCES . 162

18

1 INTRODUCTION

With the adoption of the agile paradigm by most software organizations, we observe a growing

interest in Continuous Integration (CI) environments. Such environments allow more frequently

integration of software changes, making software evolution faster and cost-effective [103]. CI
environments automatically support tasks like build process, test execution, and test results report,

allowing software engineers to merge code that is under development or maintenance with the

mainline codebase at frequent time intervals [20]. The results are used to resolve problems and

locate faults, and a rapid feedback is fundamental to reduce development costs [43].

During the software life-cycle, there are continuous changes, either in the system itself

or its environment. The numerous changes made can make the software more complex and

different from the original design, decreasing the software quality. After the changes, the software

engineers perform Regression Testing (RT) to confirm that changes have not adversely affected

existing features of the system. However, RT is considered one of the most expensive tasks in

software maintenance activities [102].

Companies like Google [60], Facebook [86], and Microsoft [24] have adopted CI, as

well as open-source projects [40] using available CI frameworks (i.e., Travis CI and Jenkins). A

study shows that every day at Google, an amount of 800K builds, and 150 Million test runs are

performed on more than 13K code projects [60]. This amount of builds and testing can require

non-trivial amounts of time and resources [15, 30, 40]. Within an integration cycle, RT is an

activity that takes a significant amount of time. A test set, many times, includes thousands of

test cases that take several hours or days to execute [37]. Even though massive parallelism was

reported, Google developers must wait 45 minutes to 9 hours to receive testing results [60].

In the scenario aforementioned, to re-execute all test cases is unfeasible. Then it is

fundamental to perform RT activities in a very cost-effective way. In the literature, there are many

techniques to perform Regression Testing [102]. Test Case Minimization techniques usually

remove redundant test cases, minimizing the test set according to some criterion. Test Case

Selection selects a subset of test cases, the most important ones to test the software. Test Case
Prioritization (TCP) attempts to re-order a test suite to identify an “ideal” order of test cases that

maximizes specific goals, such as early fault detection.

In a company, multiple projects may share the same CI workflow and RT usually

runs a time restricted to a specific duration, the test budget. This makes difficult the use of

traditional RT techniques that usually rely on costly code analysis and instrumentation, what

can be time-consuming and produce results that quickly become inaccurate due to the frequent

changes [23]. TCP techniques are more suitable in the presence of time constraints, and it has

advantages concerning other techniques because TCP considers all the test cases, decreasing

the risk of reducing code coverage by discarding some of them [19]. Such a characteristic is

attractive in the RT scenario, in which there are limited resources, thus, it may not be possible

to execute the entire RT suite [84, 102]. Moreover, ideally, the test set should be executed to

maximize early fault detection. However, fault-detection information is unknown until the testing

is finished [102]. TCP techniques based on failure history can be used to overcome such a

difficulty [37].

Although we observe advantages in the use of TCP techniques, most of them require

adaptations to deal with the CI particularities, such as test case volatility, testing budget, and

limited resources. Test case volatility is related to the dynamic environment of the software

life-cycle in which new test cases can be added or removed (discontinued). The speed up of the

19

TCP approaches is an important factor to be considered due to the high frequency of changes in

CI environments and the high RT cost. Approaches that require exhaustive analysis are costly

and inefficient [23] because the time available to run the prioritized test suite can be reduced if

prioritization takes too long [39]. For this reason, the application of search-based techniques or

other ones that require extensive code analysis and coverage may be unfeasible, due to the time

constraints and the test budget.

To deal with the Test Case Prioritization in Continuous Integration environments
(TCPCI), some approaches have recently appeared in the literature [13, 16, 37, 55, 56, 58, 90].

The great majority are not adaptive, that is, they do not learn with past prioritizations and they do

not consider test case volatility. Learning approaches based on historical failure data have been

proposed to overcome some of these limitations.

Ranking-to-learn approaches learn from past prioritization, based on the rewards

obtained from the feedback of previously used ranks. The main idea is to maximize the rewards

[71, 90]. These approaches are more robust regarding the volatility of the test cases, code changes,

and the number of failing tests [6]. However, the challenge is to search for early fault detection

in the failure-history of past test cases, but also to explore new test cases. This is related to the

Exploitation versus Exploration (EvE) dilemma [47], and is a consequence of the test budget,

since whether only error-prone test cases are considered without diversity, some test cases can

never be executed.

The approach called RETECS [90] deals with the EvE dilemma and considers the test

budget by using historical test data and Reinforcement Learning (RL) [92]. RETECS reached the

best performance using an Artificial Neural Network (ANN), which is capable of handling a large

amount of decisions/states. However, determining why an ANN makes a particular decision is

a hard task (black box) [5]. Although many studies have arisen recently in the TCPCI context.

The existing TCPCI techniques have limitations, mainly regarding the CI particularities. In this

context, there is space for innovation [75].

1.1 MOTIVATIONS

The TCPCI problem requires approaches that consider the dynamic characteristics of the CI
environments, the test case volatility, and the test budget. Moreover, such approaches should

properly deal with the EvE dilemma, that is, an approach needs to balance: i) the diversity of test

suite, and ii) the quantity of new test cases and test cases that are error-prone or that comprise high

fault-detection capabilities. Multi-Armed Bandit (MAB) [2, 82] is a technique intensively studied

for solving the EvE dilemma. In probability theory, MAB problems are a class of sequential

decision problems that have many similarities to RL.

MAB is considered to be a “lite” form (one-state) of RL but MAB presents some

advantages. MAB does not require context information and its actions affect only the immediate

reward [104]. In contrast, RL actions change the state and it needs to handle the state space, as

well as to rely on function approximation to evaluate the value of being in a particular state and

taking a specific action.

Traditionally, MAB consists of slot machines with K arms, each giving a reward of an

unknown probability distribution. The player has a leverage number, and his/her purpose is to

choose which leverage lever gives him the best reward. In order to select one of the several arms,

a decision-maker (policy) is used. In our work, we conjecture that the use of MAB to solve the

TCPCI contributes to enhance TCP in CI environments. Modeling a MAB-based approach for

TCPCI problem gives us some advantages in relation to studies found in the literature, as follows:

20

• It learns how to incorporate the feedback from the application of the test cases thus

incorporating diversity in the test suite prioritization;

• It uses a policy to deal with the EvE dilemma, thus mitigating the problem of beginning

without knowledge (learning) and adapting to changes in the execution environment, for

instance, the fact that some test cases are added (new test cases) and removed (obsolete

test cases) from one cycle to another (volatility of test cases);

• It is model-free. To consider the dynamic characteristics of the CI environments, there

are no initial concept of the environment and the approach primarily rely on learning.

• The technique is independent of the development environment and programming

language, and does not require any analysis in the code level;

• It is more lightweight, that is, needs only the historical failure data to execute, and has

higher performance.

As far as we are aware, no work in the literature evaluates MAB approaches in TCPCI
context, as well as studies in probabilistic theories. Furthermore, no work in the literature

considers the use of standard MAB with the characteristics of combinatorial and volatile MAB,

even considering other software engineering fields.

1.2 OBJECTIVES

This work aims to investigate the advantages of MAB-based approach in the TCPCI context. The

hypothesis of this work is that a MAB-based approach can prioritize test cases in the CI context

in a very cost-effective way, such as prioritizing the tests quickly, providing early fault detection,

reducing the time spent running a test set, and outperforming approaches from the literature.

To test this hypothesis, we propose COLEMAN, a MAB-based approach which formulates

the TCPCI problem as a MAB problem and considers characteristics of volatile and combinatorial

MAB. In this context, each arm is a test case, and the reward is the feedback obtained

when the prioritized test suite is applied. However, the standard MAB does not consider the

dynamic environment (volatility) where the arms can be added (new test cases) or removed

(discontinued/removed test cases), and its probabilities are not fixed. Besides that, in the TCPCI
context, the policy needs to select multiple arms (test cases). This kind of MAB problem falls

into the category of volatile and combinatorial MAB.

We designed COLEMAN to be generic regarding the programming language in the

system under test, and adaptive to different contexts and testers’ guidelines. Hence, we aim to

evaluate the applicability in CI environments, that is, if we can use COLEMAN in practice. For

this end, we conducted a broad number of studies following a rigorous methodology. The studies

conducted are summarized as follows:

• We evaluated our approach against RETECS [90], a RL approach, and considered the

state-of-the-art in TCPCI. For this, we used 11 real-world software systems (chosen by

popularity), five metrics, five MAB policies (one of them is a random strategy), three

time budgets, and two reward functions.

• We evaluated our approach against a Genetic Algorithm (GA). We provide a trade-off

analysis about how far we are from optimal solutions, and we discuss the use of the

search-based approach in the TCPCI context and its associated costs. We used seven

real-world software systems, three metrics, three time budgets, and two reward functions.

21

• We evaluated our approach and a learning approach against a Deterministic approach.

We compare the solutions regarding six measures, 12 real-world software systems, three

time budgets, and two reward functions. Our findings have some implications for: i)

application of the approaches: we present guidelines that include the choice of the

reward function, cost consideration regarding test case duration, and characteristics of

the systems and budgets; ii) identification of limitations and possible improvements:

we analyze some aspects regarding the number of test cases, failures distribution over

test cases and CI cycles. Such aspects are drawbacks for the learning approaches and

constitute gaps for future research; and iii) benchmark construction: we identify complex

prioritization cases.

• We evaluated our approach in the Highly-Configurable Software (HCS) context. We

proposed strategies to be used by learning approaches to deal with HCS: Variant Test
Set Strategy (VTS) and Whole Test Set Strategy (WTS). In summary, we considered

two real-world software systems, five metrics, and three time budgets. We compared

COLEMAN against RETECS and Random approaches.

In this way, this work contributes to the TCP field proposing a MAB-based approach

for CI environments that focus on the CI particularities, such as test case volatility. Such an

approach is model-free and lightweight, capable of automating the TCP in CI environments

while learning with previous prioritization. We performed an in-depth investigation of MAB
in TCPCI considering real-world software systems. The results provide evidence to support

the claim that our approach can provide reasonable and near-optimal solutions, as well as our

approach outperforms an approach from the state-of-the-art.

1.3 TEXT ORGANIZATION

This work is organized as follows:

• Chapter 2 - Background: This chapter describes the background for the understanding

of this work. In presents concepts related to Multi-Armed Bandit, Test Case Prioritization,

and Continuous Integration environments.

• Chapter 3 - Related Work: This chapter presents and describes related work. In this

chapter, we present papers that apply MAB in software testing and the work on TCPCI
context.

• Chapter 4 - Proposed Approach: This chapter introduces COLEMAN, a MAB-based

approach, by describing the MAB policies used, adaption necessary to encompass the

combinatorial and volatile characteristics, the reward functions to assign individual

reward for each test case, and results from the approach evaluation.

• Chapter 5 - Other Evaluations: This chapter presents a summary of other evaluations

conducted to asses the feasibility of COLEMAN.

• Chapter 6 - Conclusion: This chapter presents a summary of the thesis, limitations,

and future work.

• Appendix A to F: The appendices present the full text of the articles published on the

subject of this thesis.

22

– Appendix A: “Test Case Prioritization in Continuous Integration Environments:
A Systematic Mapping Study”. This article is a systematic mapping on TCPCI, and

it allowed us to observe the research gaps and main characteristics needed in the

approaches to deal with TCPCI.
– Appendix B: “A Multi-Armed Bandit Approach for Test Case Prioritization

in Continuous Integration Environments”. Based on the systematic mapping

performed (Appendix A) and the research gaps identified, we proposed COLEMAN,

a MAB-based approach, in order to mitigate the main CI particularities with a

negligible prioritization time. We compare our approach against to RETECS
(considered as state-of-the-art in TCPCI).

– Appendix C: “Multi-Armed Bandit Test Case Prioritization in Continuous Integra-
tion Environments: A Trade-off Analysis”. Due to the promising results from the

paper presented in Appendix B, we started an in-depth COLEMAN’s evaluation.

In this paper, we compare COLEMAN against a GA algorithm, and we provide a

trade-off analysis regarding near-optimal solutions.

– Appendix D: “An Evaluation of Ranking-to-Learn Approaches for Test Case
Prioritization in Continuous Integration”. In contrast with the paper presented in

Appendix C, we compare the solutions produced by COLEMAN and RETECS, with

a deterministic approach. This evaluation aims to observe how far the solutions

produced by the proposed approaches in the literature are from optimal solutions.

– Appendix E: “Learning-based Prioritization of Test Cases in Continuous Inte-
gration of Highly-Configurable Software”. We evaluate COLEMAN in the HCS
context. Besides that, we proposed two strategies to deal with HCS and allow

ranking-to-learn algorithms to be easily applied in the this context: Variant Test Set
Strategy and Whole Test Set Strategy.

– Appendix F: “Cost-effective learning-based strategies for test case prioritization
in Continuous Integration of Highly-Configurable Software”. In Appendix E, we

observed promising results. Then, we extended the study to encompass a more

extensive system, more measures, and provide an in-depth analysis.

23

2 BACKGROUND

In this chapter, we review background related to our work: Multi-Armed Bandit, Combina-

torial and Volatile Multi-Armed Bandit; Test Case Prioritization; and Continuous Integration

environments.

2.1 MULTI-ARMED BANDIT

MAB problems [82] are sequential decision problems related to the EvE dilemma [47]. This

means that, for such problems, solutions with the best performance (exploitation) are desired, but

it is also important to ensure diversity (exploration), that is, dissimilar solutions.

The MAB problem is related to the scenario in which a player plays on a set K of slot

machines (or arms/actions) that even identical produce different gains. After a player pulls one

of the arms ai, ∀ i ∈ K, in a turn t, a reward (qi,t) is received drawn from some unknown

distribution, thus aiming to maximize the sum of the rewards.

A policy γ is a strategy that chooses, at each time t, the next arm to pull based on

previously observed rewards and decisions. The MAB problem is to determine the policy that

maximizes the expected cumulative reward [10] over the EvE dilemma. A review of the main

MAB policies proposed in the literature is presented in [47]. Among them, we can mention the

ε-greedy policy [95], a policy widely used due to its simplicity. At each time, such a policy

evaluates the arms and defines an empirical quality estimate q̂i,t based on previous executions.

The q̂i,t value of an arm i in the time t is based on the sum of its previous rewards divided by the

number of times that i has been pulled. After, the policy selects, with a probability 1 − ε, the

arm with the highest q̂i,t value (exploitation), or with a probability ε, randomly selects an arm

(exploration). The parameter ε is the key to balance the EvE dilemma in the ε-greedy policy.

The MAB policy called Upper Confidence Bound (UCB) provides a smarter way to

deal with the EvE dilemma and ensures asymptotic optimality in terms of the total cumulative

reward [2]. Most of the recent policies are UCB-based. In a policy based on UCB the ith arm

has an empirical quality estimate q̂i,t (the average of the rewards obtained up to the given time

instant) and a confidence interval that depends on the number of times, ni, the arm has been

applied before. At each time point t, the selection of the best arm is performed based on the arm

with the best upper bound of the confidence interval, according to Equation 2.1:

Select at = argmax
i∈K

⎛
⎜⎝q̂i,t +

√√√√2 × ln K
j=1 nj,t

ni,t

⎞
⎟⎠ (2.1)

where the exploitative first term favors the arms with best empirical rewards, while the exploratory

second term favors the infrequently tried arms.

When the rewards are usually among some real-value interval, the EvE balance may

“break”. To solve this problem, Fialho [27] introduced a scaling factor C in Equation 2.2.

Select at = argmax
i∈K

⎛
⎜⎝q̂i,t + C ×

√√√√2 × ln K
j=1 nj,t

ni,t

⎞
⎟⎠ (2.2)

24

If exploration is preferable, then C must be increased. On the other hand, if exploitation

must be focused, C is decreased. In this thesis the classical UCB is named UCB1, and the

adapted UCB proposed by Fialho [27] is named UCB.

Another UCB-based MAB policy is the Fitness-Rate-Rank based on Multi-Armed
Bandit (FRRMAB), a state policy that has presented good results in the Adaptive Operator

Selection context [50]. In this policy, the best arm is chosen according to Equation 2.3:

Select at = argmax
i∈K

(
FRRi,t + C ×

√√√√2 × ln K
j=1 nj,t

ni,t

)
(2.3)

where the goal is, at each time point, to select the best arm from a set of arms which has an

empirically estimated value (FRRi,t) in a range that depends on the number of times (ni,t) that

has been applied previously. Similary to UCB, the parameter C control the trade-off between

exploitation and the exploration.

This policy consists of two procedures: credit assignment and operator (arm/action)

selection. Credit Assignment (Algorithm 2.1) refers to a reward procedure that takes into account

the impact observed in the most recent applications. In the credit assignment, FRRMAB policy

changed the UCB quality estimator (Equation 2.2) by a rank-based method that uses the Fitness
Improvement Rate (FIR) method. In this procedure, the first step is to calculate the FIR for each

arm and not use the raw rewards values. The direct use of these values could deteriorate the

efficiency of the algorithm [27, 50].

Algorithm 2.1: Credit Assignment procedure from FRRMAB (adapted from Li et

al. [50]).

1 begin
2 foreach i ∈ K do
3 Rewardi = 0.0;

4 ni = 0;

5 end
6 foreach element ∈ SlidingWindow do
7 i = element.GetArm();
8 FIR = element.GetFIR();
9 Rewardi = Rewardi + FIR;

10 ni + +;

11 end
12 Ranking the rewards in a descending order (Rewardi);

13 Ranki = ranking value of Rewardi;

14 foreach i ∈ K do
15 Decayi = DRanki × Rewardi;

16 end
17 DecaySum = K

i=1 Decayi;

18 foreach i ∈ K do
19 FRRi =

Decayi

DecaySum
;

20 end
21 end

25

After, the FIR values are stored in a given SW organized as a first-in, first-out queue

used to evaluate the W recent applications. In this way, the most recent values are added to

the end while the oldest records are removed from the beginning to maintain a constant size.

Figure 2.1 shows how to store the FIR values related to the respective arm.

Figure 2.1: First-in, First-out procedure in the SW (adapted from Li et al. [50]).

Through the use of SW it is possible to evaluate an arm without it is hampered by its

performance at a very early stage, which may be irrelevant to its current performance. Thus, it is

guaranteed that the FIR information in SW refers to a current search situation [50]. Subsequently,

the Rewardi of an arm i is calculated, by the sum of all FIR values for the arm i in SW. Next, a

descending ranking of all rewards from the arm in SW is determined. Thus, we define a Ranki

that represents the ranking value of an arm i, which prioritizes the best arms. Then, a decay factor

D ∈ 0, 1 is used in order to transform the initial reward according to the relative position about the

reward from the other arms (Decayi). Lower values of D means great influence of the best arm.

Finally, the decayed values of the rewards are normalized and resulting in the Fitness-Rate-Rank
(FRR) for each arm i. These values (FRRi) are then used by the arm selection procedure.

The second procedure (Algorithm 2.2), randomly selects an arm until all arms are

selected, then uses the FRRMAB policy to evaluate each arm and selects the best one. This

procedure is similar to the original UCB policy [2]. The main difference is the use of FRR values

with quality indexes instead of the average of all the rewards received by a given operator [50].

Given that ni indicates the number of times an arm i has been used in its recent W applications

in SW. Besides that, FRRMAB starts acting only when all the arms have been previously used at

least once in the search, thus giving all of them chances to be equally selected.

Algorithm 2.2: Operator selection procedure from FRRMAB (adapted from Li et

al. [50]).

1 begin
2 if all arms not been selected yet then
3 at = an arm from set K chosen randomly;

4 else

5 at = argmax
i∈K

(
FRRi,t + C ×

√√√√2 × ln K
j=1 nj,t

ni,t

)
;

6 end
7 end

2.2 VOLATILE AND COMBINATORIAL MAB/CMAB

Although MAB policies can be used to solve many problems, in many real-world scenarios, a

policy needs to select multiple arms in each time. This is the case of our scenario, TCPCI

26

problem, where we need to prioritize a test case set, and we can consider a test case as an arm.

This kind of MAB problem is categorized as combinatorial bandit, where a set of arms are chosen

at each time t rather than one individual arm, that is, we are required to pull a fixed number m of

arms from a set of arms K, such that 1 ≤ m ≤ |K| [1].

In addition to this and considering the inherently dynamic nature of our problem, the

arms available at each time may change dynamically over time. In this sense, this work is based

on a MAB variant known as Volatile-multi-Arm bandit (VMAB) [7]. VMAB considers that the

arms can “appear” or “disappear” unexpectedly in each time. In VMAB, each arm i ∈ K is

associated with a lifespan given by an interval of time (startt,i, endt,i), during which this arm

is available. The arm’s lifespans are unknown in advance. Figure 2.2 shows the difference

between Standard MAB, that has a fixed set of K arms, and its variant, VMAB. The bold arm

(slot machine) represents the optimal arm in time tj .

Figure 2.2: Difference between Standard MAB and Volatile MAB (adapted from Bnaya et al. [7]).

2.3 TEST CASE PRIORITIZATION

Changes are frequent during the software life-cycle. In order to check if any change has not

adversely affected existing features of the system, software engineers perform RT . The most

straightforward RT approach, known as re-test all, executes all the current test cases in the test

suite. However, such an approach presents high costs [102].

Many techniques have been studied to aid the RT process, seeking to reduce the effort

required in various ways [102]. Among these techniques, the main branches are Test Suite
Minimization (TSM), Test Case Selection (TCS), and Test Case Prioritization. TSM seeks to

maintain the most important test cases in the test suite, removing obsolete or redundant test

cases. TCS aims to select a subset of test cases, the most important ones to test the software.

TCP attempts to re-order a test suite to identify an “ideal” ordering of test cases that maximizes

specific goals, such as early fault detection.

TCP techniques have advantages with respect to other techniques because they consider

the whole test suite, consequently decreasing the risk of reducing code coverage by discarding

some test cases [19]. On the other hand, this can be, in some cases, time-consuming. However,

as TCP allows the most crucial test cases are first executed, this characteristic is attractive (and

suggested), given that in a RT scenario, there are limited resources, that is, it may not be possible

to execute the entire RT suite [84, 102].

Given a test suite T , the set PT of all possible permutations of T , and a function f
that determines the performance of a given prioritization T ′′ from PT to real numbers, the TCP
problem aims at finding the best T ′ to achieve certain specific criteria measured by f [84]. The

TCP problem can then be formulated as [84]:

T ′ ∈ PT s.t. ∀T ′′ ∈ PTT ′′ � T ′fT ′ ≥ fT ′′ (2.4)

27

According to Rothermel et al. [84], some objectives of TCP techniques are: (i) to

increase the fault detection rate of a test suite already in the beginning of the RT execution; (ii) to

increase the system code coverage under test; (iii) to increase high-risk fault detection rate; and

(iv) to increase the probability to reveal faults related with specific code changes. To achieve such

objectives, many TCP techniques were proposed in the literature. According to the information

used in the prioritization, they can be classified into different categories [102]. They are:

• Cost-aware: prioritizes test cases based on the cost of the test cases, because the costs

of them cannot be equal;

• Coverage-based: prioritizes test cases based on the code coverage;

• Distribution-based: prioritizes test cases based on the distribution of the test case

profiles;

• Human-based: prioritizes test cases based on factors that (human) testers deem the

most important;

• History-based: prioritizes test cases based on test case execution history information

and code changes;

• Requirement-based: prioritizes test cases based on information extracted from software

requirements;

• Model-based: prioritizes test cases based on information extracted from models, for

instance, UML (Unified Modeling Language) models;

• Probabilistic: prioritizes test cases based on probabilistic theories;

• Others: prioritizes test cases based on other kind of information not included in the

other categories, for instance, prioritize the tests cases using search-based algorithms.

To evaluate the effectiveness of TCP techniques, several evaluation metrics were

proposed. Reviews on TCP [14, 44] reported the most frequently used evaluation metrics.

Among these metrics, we can mention Average Percentage of Faults Detected (APFD) [83] and

its variantions Average Percentage of Faults Detected with cost consideration (APFDc) [21] and

Normalized Average Percentage of Faults Detected (NAPFD) [81, 90].

APFD indicates how quickly a set of prioritized test cases (T ′) can detect faults present

in the application being tested, and its value is calculated from the weighted average of the

percentage of detected faults. Higher APFD value indicates that the faults are detected faster

using fewer test cases.

APFDc (Equation 2.5)1 was proposed to deal with an APFD limitation concerning

the assumption that all faults have equal severity, and the test cases have equal costs. These

assumptions are not possible in practice, and therefore, APFDc metric takes into account the

fault severity and test cost. Furthermore, if both fault severity and test case costs are identical,

APFDc can be used to compute the APFD value.

APFDcT ′
t =

m
i=1

n
j=T Fi

cj − 0.5cT Fi

n
j=1 cj × m

(2.5)

1In this work, we assume the same fault severity for all tests, and the test case duration is the cost associated.

28

where ci is the cost of a test case Ti, and TFi is the first test case from T ′ that reveals fault i.
The NAPFD metric (Equation 2.6) is an extension of the APFD. In the NAPFD, we

consider the ratio between detected and detectable faults within T . This metric is adequate to

prioritize test cases when not all of them are executed, and faults can be undetected.

NAPFDT ′ = p −
n
1 rankT ′

i

m x n
+

p

2n
(2.6)

where m denotes the number of faults detected by all test cases; rankT ′
i is the position of T ′

i

in T ′, if T ′
i did not reveal a fault we set T ′

i = 0; n denotes the number of test cases in T ′; and p
denotes the number of faults detected by T ′ divided by m. NAPFD is equal to APFD metric if

all faults are detected.

2.4 CONTINUOUS INTEGRATION ENVIRONMENTS

In the past, developers adopted a practice to work separately for a long time during the development,

and they only integrated their changes to the master branch when they completed their work.

However, this practice presents some disadvantages. It is time-consuming, adds unnecessary

bureaucratic cost to the projects, and accumulates uncorrected errors for long periods. These

factors hampered the rapid distribution of updates to customers.

With the advent of the agile development paradigm, Continuous Software Engineering
practices have become popular and adopted by most organizations, such as CI, Continuous
Deployment (CD), and Continuous DElivery (CDE). Such practices plays an important role in

agile development, allowing frequent integration, reduced integration effort, test of the changed

code, lower number of uncorrected errors for long periods, deployment, delivering a product

version at any moment, and quick feedback from the customer in a very rapid cycle [20].

Figure 2.3 presents the relationship between these practices.

Figure 2.3: Overview of Continuous Integration, Delivery, and Deployment (extracted from Prado Lima and

Vergilio [75]).

CI is an essential practice adopted before deployment and delivery. CI environments

provide automated software building and testing [48], helping to scale up headcount and delivery

output of engineering teams, as well as allowing software developers to work independently on

features in parallel. When they are ready to merge these features into the end product, they can

29

do this independently and rapidly. Among the popular open-source CI servers we can mention:

Buildbot [11], GoCD [31], Integrity [41], Jenkins [42], and Travis CI [93].

CI automated support is very important to CI in practice. Zhao et al [103] present

some results about the impact of adopting the framework Travis CI on development practices

in a collection of GitHub projects. They observed an increase in the number of daily commits

(frequency of 78 commits every day) and after some initial adjustments an increase in the number

of automated tests.

CDE aims at packing an artifact (the production-ready state from the application) to

be delivered for acceptance testing. In this sense, the artifact should be ready to be released to

end-users (production) at any given time. On the other hand, CD is responsible for automatically

packing, launching and distributing the software artifact to production. We can observe that CI
ensures that the artifact used in the CD and CDE successfully passed the integration phase.

In order to provide a swift and cost-effective way to validate and launch new software

updates, improving fault detection and software quality, RT is an essential activity in CI
environments. This is because to enable rapid test feedback in CI, test cycles are restricted to

a specific (short) duration. We refer to this time duration of each test cycle as a time budget.

Time budgets can vary from a cycle to another, and they include time to select relevant tests for

running, to run the tests, and to report test results to developers.

In this way, this makes difficult the use of traditional RT techniques that rely on costly

code analysis and instrumentation. They are time-consuming and produce results that quickly

become inaccurate due to the frequent changes [23]. Besides that, traditional TCP techniques

require some adaptations to be applied in the CI context. The techniques need to consider

specific particularities of CI environments like: parallel execution of test cases and allocation

of resources, the volatility of test cases, that is, the test cases can be added and removed in

subsequent commits. To address all these particularities, some approaches have being proposed

in the literature, being TCPCI an emergent research topic [75].

2.5 CONCLUDING REMARKS

This chapter presented the topics related to this work, including the main concepts about

Multi-Armed Bandit, Combinatorial and Volatile MAB, Test Case Prioritization, and Continuous
Integration environments. Concerning MAB, the policies that will be used in this work were

presented. The main TCP advantages were highlighted for a CI environment, which contains

many restrictions (TCPCI problem).

There are many works on TCP, subject of surveys and mappings [14, 44, 102]. However,

only few pieces of work address CI environments. To reach effective prioritization in such

environments, we need techniques to reduce the CI cycle time, and a key aspect is a short feedback

loop from code commits to test execution reports [55]. It is necessary to detect most of the faults

within a test budget, because of this, most of the TCP approaches for CI environments are based

on failure history, that is, they assume test cases which previously failed have a high probability

of failing again. This assumption has been explored for TCP in the presence of constraints by

many authors [45] however, without addressing CI.
The next chapter introduces works related to the theme of this thesis by showing the use

of MAB on software testing, and works on the TCPCI problem.

30

3 RELATED WORK

This chapter describes related work and contains three sections. Section 3.1 presents works that

use MAB to solve software engineering problems, mainly software testing problems. Section 3.2

presents results from a systematic mapping conducted to find studies in the TCPCI context and

reviews the main studies related to this work. Section 3.3 concludes this chapter and presents the

main differences between related work and our proposal .

3.1 MULTI-ARMED BANDIT FOR SOFTWARE TESTING

In the literature, we can find few studies that use MAB on software engineering and all

of them are related with software testing. These studies addressed Integration and Test
Order (ITO) problem [33–36], Software Production Line testing [25, 26, 91], Fuzz Configuration
Scheduling (FCS) [97], and Test Data Generation [18]. Such works do not specifically address

TCP problem, and most of them are related with hyper-heuristics [25, 26, 33–36, 91]1.

Guizzo et al [34] proposed a hyper-heuristic named Hyper-heuristic for the Integration
and Test Order Problem (HITO) for the ITO problem in order to reduce stubbing costs. The ITO
problem aims to find a sequence of units2 to be tested that minimizes the stubbing cost. A stub
is an emulation of a unit that is later dropped when the unit is developed. The stubbing cost is

related to the spent resources for developing stubs.
HITO uses two selection functions (Choice Function [53] and MAB3) to select the

best low-level heuristic (a combination of mutation and crossover operators) in each mating

of a Multi-Objective Evolutionary Algorithm (MOEA). To perform the selection, the low-level

heuristics are evaluated concerning its recent improvements. HITO was implemented using

NSGA-II [17] and evaluated in seven systems, and for all systems outperformed the traditional

NSGA-II. In another study, the SPEA2 [107] algorithm is also explored [36] and after that a

boarder set of objectives were used [35], as well as the MOEA/DD algorithm [49].

Guizzo et al. [35] explored more objectives (4 objectives) to be addressed for ITO

problem during the optimization rather than two objectives as explored in previous work [34, 36].

When compared, HITO outperformed NSGA-II and MOEA/DD [49]. Concerning the selection

functions used by the works mentioned above, CF yielded competitive results when compared

to MAB, except in [33] where HITO was evaluated in Google Guava system with same settings

from [35] and CF was better than the MAB used.

Using a similar concept from HITO, Strickler et al. [91] used hyper-heuristic with

FRRMAB as selection function to derive products for variability test of Feature Models. First,

three MOEAs were evaluated, NSGA-II, SPEA2, and IBEA [106]. In the experiments, NSGA-II

outperformed the other ones. After, NSGA-II was used to be adapted to a hyper-heuristic using

FRRMAB. The hyper-heuristic outperformed the traditional NSGA-II.

In the same problem, Ferreira et al. [25] used a hyper-heuristic with the MOEA/D

algorithm along with three selection methods: UCB, UCB-V, and UCB-Tuned. In the evaluation,

MOEAD/D with UCB-Tuned outperformed the other ones without statistical difference. In

1According to Burke et al. [12] hyper-heuristic is a methodology that automates the design and configuration

(tuning) of heuristic algorithms to solve computationally hard problems. It can be used to automatically determine

which operator should be applied in the optimization problem, at a given moment.

2The smallest part of the software, for instance, classes, methods, and procedures.

3The study uses Sliding Multi-Armed Bandit.

31

another evaluation, the authors compared MOEA/D-UCB (due to the low cost concerning with

the time consuming) against the algorithm MOEA/D-DRA. The hyper-heuristic outperformed

the MOEA/D-DRA. In a later work, Ferreira et al. [26] compared different algorithms: NSGA-II,

SPEA2, IBEA, and MOEA/D-DRA, and two selection methods: UCB and Random. NSGA-II

using UCB outperformed the other ones.

Woo et al. [97] propose a black-box mutational fuzzing model to find bugs in a given

program p by running it on a sequence of inputs generated by random mutation to a given seed

input s. The goal is to find values for s, which crash p. Given a list of configurations to be tested

and a time budget, the authors dubbed this as the FCS problem. FCS seeks to maximize the

number of unique bugs discovered that runs for a duration predefined. Due to this, the authors

modeled FCS as MAB problem for seed selection.

Degott et al. [18] proposed an approach to guide test generation for graphical user

interfaces. The problem was modeled as an instance of the MAB problem: (i) the arms are a pair

which contains a widget and an action type supported by the test generator; (ii) the probabilities

are related with each action triggering an app response; and (iii) the reward is 1 (one) if the app’s

user interface changed after executing the arm, and 0 (zero) otherwise. The implementation was

made as a plug-in for DroidMate-2 [9]. In the study, ε-Greedy and Thompson Sampling were

evaluated and led to an average coverage increase, respectively, of 18% and 24% when compared

to a statically gathered crowd-model [8].

In general, it is possible to notice there are several studies on the use of MAB with

hyper-heuristics to select operators during the mating. Among the presented studies, none of

them have explored the use of MAB to address the TCP problem.

3.2 TEST CASE PRIORITIZATION IN CONTINUOUS INTEGRATION ENVIRONMENTS

We conducted a systematic mapping to find studies in TCPCI context. This section summarized

the results of the conducted mapping.

The mapping adopted the guidelines proposed by Petersen et al [63], and followed a

research plan including research questions, inclusion and exclusion criteria, construction of the

search string and selection of known search databases.

At first, we used the main terms regarding this subject and we built the following search

string: (“continuous integration”) AND (prioritization OR prioritisation) AND (test OR testing),
which was validated using a control group. Besides, a set of inclusion and exclusion criteria was

established (Table 3.1). We performed the search in online repositories that were chosen due to

their popularity and because they provide many leading software engineering publications.

Table 3.1: Inclusion and exclusion criteria applied on systematic mapping.

Inclusion Criteria
I1 The paper is related to Software Engineering area;

I2 The paper is related to TCPCI.

Exclusion Criteria
E1 Out of scope, not related with TCPCI;

E2 Not available online;

E3 Not in English;

E4 Abstracts, posters, reviews, conference reviews, chapters, thesis, keynotes, doctoral symposiums

and patents.

32

The search started and finished in October, 2019. The mapping was conducted in a set

of steps, presented in Figure 3.1 following the Preferred Reporting Items for Systematic reviews
and Meta-Analyses (PRISMA) statement [61]. The figure presents, for each search engine, the

number of studies found and period covered. As we can see, a total of 818 studies was found,

including the period from 1979 to 2020.

Figure 3.1: PRISMA flow diagram.

For each search engine, the number of studies found is presented, as well as the range of publication data from these

studies.

We did not define an initial publication date for the studies, then all the returned papers

were included. Table 3.2 presents the data sources used and the period covered, with the data

separated by Digital Libraries, Grey Literature, and Snowballing. We performed the mapping in

17 data sources, identifying a total of 818, and covering the period from 1979 to 2020.

We then removed repeated studies, remaining 687. Then, we applied the selection

criteria and obtained 276 studies. The selection criteria was applied considering title, abstract,

and index terms of the papers (keywords). In case of doubts, reading in the following order was

performed: introduction, conclusion, and the entire paper. In the end, 35 papers remain. As a

result of this mapping a paper was published at the Information and Software Technology, and the

full text is available in Appendix A. In this mapping, we analyzed the details and characteristics

of each study found, as well as research gaps and trends. Furthermore, we classified the studies

found based on the goal and kind of TCP technique used, adopted evaluation measures, and

whether they addressed CI particularities and testing problems.

We observed a growing interest in this topic. Most of the studies were published in

the last four years - considering the year publication of the mapping. Most of the approaches

(80%) are based on historical information considering failure and/or test execution history. An

33

Table 3.2: Number of papers returned by each source.

Source Studies Period Covered
Digital Libraries

ACM 24 2009-2019

EBSCOhost 3 2012-2018

Ei Compendex 31 2009-2019

IEEEXplore 20 2009-2019

ISI Web of Science 27 2009-2019

MIT Libraries 20 2009-2019

ScienceDirect 2 2012-2018

Scopus 35 2009-2019

Springer Link 273 1993-2020

Wiley Online Library 60 2007-2019

Grey Literature
AWS Whitepapers & Guides 0 -

Google AI 0 -

Google Cloud 2 2018-2019

Google Scholar 129 2001-2019

Microsoft Academic 2 2009-2018

Microsoft Research 0 -

Science.gov 185 1979-2019

Snowballing
Forward and Backward procedures 5 2011-2019

Total 818 1979-2020

important finding is related to CI testing problems and characteristics, for instance, parallel

execution and test case volatility, in which few studies address them. Among the studies found

in the mapping and in the current literature, the most related studies are those that introduce

probabilistic and history-based approaches. These studies are described as follows.

Some approaches have the goal of reducing the amount of resources utilized in a CI
environment. Liang et al. [51] proposed an approach to prioritize commits based on the test suite

failure and execution history. The idea of prioritizing commits can be useful when there are no

differences in the fault detection rate between test case sets and there is a line of commits to be

executed in the environment.

Other approach that considers multiple test requests was proposed by Zhu et al. [105].

Such an approach uses co-failure distributions of tests, that is, tests that co-fail in previous

executions in different sets. The approach considers multiple test requests and they are prioritized

based on their failure likelihood and not on their arrival order. The re-prioritizaiton is dynamically

performed after each test run and considers that failures are not completely independent.

Elbaum et al. [23] introduced new algorithms for selection and prioritization of test

suites, to be used respectively in a pre-submit and pos-submit testing phases. In the first phase,

which occurs prior to commit, developers specify modules to be tested and the selection algorithm

selects test sets based on failure and execution windows, which allow, respectively, selection

based on the fault detection history and of test cases not recently executed. In the post-testing,

after commit, the TCP algorithm prioritizes test suites considering both windows and a time

window. In this way, the algorithm deals with test suite concurrency execution in the pos-submit

testing.

34

Najafi et al. [62] proposed a simple technique to prioritize the test cases similar to

Elbaum et al. [23]. In this study, the priority of test cases is given by the ratio between the total

of failures found by test cases and the all time spent on executing the tests. In this way, a high

priority is given to the test that finds more failures with shorter execution time.

Differently from the previous mentioned works, we assume a sequential execution

order of test cases and prioritize test cases in the suite to be executed after the commit, usually

considering a test budget. Approaches with such a goal are the most related to ours.

Marijan et al. [56] introduced ROCKET, an approach that, given a test budget, sets a

weight for each test case based on the distance of the failure status from its current execution

and its execution time. The implementation also uses domain specific heuristics to obtain the

prioritized set of test cases and was evaluated in the context of HCS. We observe a limitation

regarding the execution time. Test cases with an execution time greater than a limit are penalized,

and it is possible they are never executed. To set the weight, the prioritization feedback is not

considered, nor the total history of failures. An extension is proposed by the authors in [55]

to consider other fault detection and different perspectives given a testing budget: business,

performance, and technical. The algorithm calculates a weight to each test case considering:

failure frequency (business perspective), execution time (performance perspective), and severity

and cross-functionality (technical perspective). Such an extension needs additional information

related to coverage and features.

In order to analyze the effect of a time window in TCPCI context, Marijan et al. [57]

compared random ordering, an automatic algorithm for TCPCI [56], and manual prioritization.

During the analysis, the authors considered a time-limit constraint to run the tests, using different

window sizes at each test suite run. According to the authors, changing the window size can

impact in the prioritization performance, improving fault detection effectiveness up to a certain

limit. Defining an optimal value for the time window, the average percentage of faults detected

can increase from 5% to 21%. This study endorses that the use of a time window can improve

the prioritization. In this way, we adopt in our work the FRRMAB policy which uses a sliding

window.

In other analysis, Marijan et al. [59] proposed an approach for reducing long cycle times

in DevOps by reducing the duration of test cycles in CI. In this study, the authors prioritized the

test cases considering historical data information and risk coverage of test suites.

An approach and a tool called TITAN are proposed in [58]. It implements test

prioritization and minimization techniques, and provides test traceability and visualization. First,

a minimization step adopts the exact method constraint programming to determine a minimum

number of test cases (or cost) that cover some requirements that the original test suit covers

(regarding HCS features). The minimized set is then prioritized in a second step according

to previous work [56], by using several criteria fault detection, coverage, execution time and

failure impact. Again, additional information, such as feature coverage, is necessary. Moreover,

the prioritized set may not contain all available test cases because a minimization step is first

conducted.

Xiao et al. [100] proposed a technique for test case prioritization and selection. This

technique determines priority of test cases in the same commit, then, the test cases are ordered

considering the failure history, test coverage, test size and execution time. We observe that this

technique focuses only in test cases which failed recently; consequently, it does not explore new

test cases.

Cho et al. [16] proposed an approach, named AFSAC, composed by two stages. First,

weights for the test cases are determined using statistical analysis over the failure history. Then

35

the test cases are reordered using the correlation data of test cases acquired by previous test

results.

Haghighatkhah et al. [37] presented empirical results that show the use of historical

failure knowledge is a strong predictor for TCPCI, being effective to catch regression faults

earlier without requiring a large amount of historical data. In addition to this, the effectiveness

can be improved by using such a knowledge with a diversity measure, calculated by comparing

the text of test cases. The idea is not to calculate similarity based on measures that rely on code

such as coverage, call methods and so on. After a failure-history based approach the prioritized

set is improved with existing test cases that are the most dissimilar.

Azizi [3] proposed an approach based on Information Retrieval that prioritizes test cases

based on their textual similarity to the portion of the code that has been changed. However, this

technique relies on code analysis.

A problem observed in the approaches is that they do not consider the volatility of the

test cases, that is, they do not consider a test case may appear and/or disappear over the cycles.

Most of them do not take into consideration the feedback from the prioritization conducted.

Some works have addressed this limitation with the use of machine learning.

The approach of Busjaeger and Xie [13] used SV Mmap to create a model based on five

attributes: test coverage of modified code, textual similarity between tests and changes, recent

test-failure or fault history, and test age. Such a model is used to predict the fault-proneness of

the test cases and prioritize them. However, the attributes need additional information and rely

on code instrumentation.

Xiao et al. [99] proposed an approach based on Long Short Term Memory (LSTM)

Neural Network using historical test data of air-crafts to predict fault-proneness. The authors

also suggest a strategy for combining the LSTM approach with a deterministic one. Such a

combined approach was compared against ROCKET, RETECS and a random approach. The

LSTM approach achieved a satisfactory result, and presented better performance when the number

of CI cycles increases. However, CI particularities were not considered when evaluating the

LSTM performance, such as test budget and prioritization time.

We can see that some works mentioned above introduced learning-based approaches. In

this context, Bertolino et al. [6] distinguished and evaluated two kinds of TCP learning-based

approaches. The first kind, named Learning-to-Rank, uses supervised learning to train a model

based on some test features. The model is then used to rank test sets in future commits. The

problem with these strategies is that the model may no longer be representative when the commit

context changes.

The second kind, named Ranking-to-Learn, is more suitable to the dynamic CI context.

This strategy learns based on rewards obtained from the feedback of previously used ranks. The

main idea is to maximize the rewards. Ranking-to-learn approaches present some advantages.

They are more robust regarding the volatility of the test cases, code changes, and the number of

failing tests. Next, we describe works on this kind of approach and works that propose reward

functions and strategies.

Spieker et al. [90] introduced RETECS, an approach to prioritize and select test cases

based on Reinforcement Learning which considers as input the test case duration, historical failure

data, and previous last execution. The authors compared different variants of Reinforcement

Learning agents and the ANN variant presented the best results.

Wen et al. [96] adapted RETECS to reprioritize the test cases considering associated

test cases (relationship between test cases) found thought FP-Growth algorithm [38], a mining

frequent pattern algorithm. However, this algorithm requires several CI cycles to form the

associated pattern.

36

In other studies [87, 88, 98, 101] different reward functions were investigated. The

studies provide a picture of the importance of defining an adequate reward function. The reward

function has a considerable impact on the approach’s performance. For this reason, and to allow a

fair comparison against to RETECS, the approach most related with our approach, we adopted the

same reward functions used by Spieker et al. [90] to evaluate RETECS: RNFail and TimeRank.

To summarize, studies on TCPCI context are recent, and the number of them has

been increasing. However, few studies consider time constraints and test case volatility in CI
environments.

3.3 CONCLUDING REMARKS

This chapter presented related work regarding MAB in software testing and TCPCI context.

In one hand, MAB is typically used with hyper-heuristics to select operators in optimization

algorithms. On the other hand, TCPCI techniques tend to use historical test data.

We can summarize some drawbacks identified in related work concerning TCPCI. Some

of them have different goals from ours, for instance, to reduce server resources considering

concurrent test set executions. The most related approaches do not properly deal with the EvE
problem. This problem regards to the fact that as only a sub-set of the prioritized test cases can

be executed regarding its order, some test cases can never be executed given the test budget. To

deal with this, most approaches use, besides the failure-history, other measures that rely on code

instrumentation or require additional information, such as to calculate code or feature coverage.

This can be time-consuming, and to maintain the information updated can be difficult.

The great majority of the studies do not take into consideration the volatility of test

cases and feedback from last prioritizations. Differently, our approach considers the test cases

volatility and learns with the past prioritizations (online learning). It properly deals with the EvE
dilemma without requiring source code analysis or any initial concept (model) about the system.

Few knowledge about each test case is necessary. In this sense, the approach that is most similar

to ours is RETECS [90]. Differently, our approach uses MAB, which allows test cases rewards in

a sliding window, and less input information, as well as, context information is not necessary.

In this way, we aim for an approach more lightweight and with higher performance than

RETECS, as well as that deals appropriately with EvE dilemma. Furthermore, RETECS has the

best performance using an ANN [90]. However, neural networks take ample time [108], and

determining why an ANN makes a particular decision is a challenging task. The next chapter

presents the proposed approach.

37

4 PROPOSED APPROACH

This chapter describes our approach based on Multi-Armed Bandit, namely COLEMAN
(Combinatorial VOlatiLE Multi-Armed BANdiT) for TCPCI. This approach was introduced in

a paper published in IEEE Transaction on Software Engineering (the full text is available in

Appendix B), and compared against RETECS, an approach based on RL that can be considered

the state-of-the-art in TCPCI.
Next, we present COLEMAN and a summary of the results found in the comparison

against RETECS. Section 4.1 presents an overview of COLEMAN. Sections 4.2 and 4.3 describe

the adaption necessary in the MAB policies and how the historical test data is used by them.

Section 4.5 describes the methodology adopted to evaluate our approach, and Section 4.6 presents

the results produced in the experiments. Section 4.7 concludes this chapter.

4.1 OVERVIEW

Given the dynamic nature of our problem, our MAB approach combines two MAB variants: i)

combinatorial MAB, because we have a set of arms (test cases), and ii) volatile, because at a given

time t such set varies, test cases can be added or removed over the software life-cycle. In addition

to this, the approach works with a budget (constraint) to execute the test cases prioritized. To

ensure diversity of test cases to be executed, it uses MAB policies, allowing better exploitation

and exploration (EvE dilemma).

Figure 4.1 illustrates how our approach works in a CI environment. After a successful

build, in the test phase, the approach receives as input a set of test cases Tt (arms) available for the

current commit (cycle/time) t and, based on the choice order given by a MAB policy, generates the

prioritized test case set T ′
t . In each time t, only one test suite (test case set) is prioritized. Then

the system is tested using T ′
t and feedback from this test set is collected, containing information,

such as the test cases executed in a time limit, the number of failures, the test case failure rank,

and so on. This feedback is used by the reward function in the credit assignment procedure to set

individual rewards for each test case. In the T ′
t evaluation, a fitness value of T ′

t is obtained by

a quality indicator.1 This value can be used by testers along with the commits to evaluate the

prioritization quality.

Then, the credit assignment procedure calculates the rewards for each arm, test case

t′
c ∈ T ′

t , which are stored in a historical database to be used in the next commits by the policies.

In the end, results are reported back to the CI server. The CI server sets the result from the cycle

and notifies the parties interested in the cycle.

Next, we detail the main elements of COLEMAN: MAB policies (Section 4.2) and credit

assignment (Section 4.3).

4.2 MAB POLICIES

Considering the traditional behavior of a MAB policy, the best arm (test case) tc from a set Tt

at each time t is chosen and applied. However, we are working with TCP problem where a

prioritized test set is used. To this end, we can adapt a policy to choose the best arm (test case)

tc from Tt to compose T ′
t , then remove tc from Tt, and continue this process until no more test

cases are available in Tt. An arm tc is chosen only once and the order of choice defines the

1In this work we use NAPFD (see Section 4.5.1).

38

build

Checks out the
code from last

commit

Build the code

test

Apply
MAB Policy

Execute T't

Collect feedback

Evaluate T't
Credit

Assignment

Tt

T't

Time-Limit

Historical
Test Data

report results

Define the
commit status

Build
breaks?

No

Yes

Build
breaks?

Yes

No
build test report results

Figure 4.1: Overview of the proposed approach and how it is integrated in the test phase of a CI environment.

This figure presents in the top the main phases (activities) performed in a CI environment, and above these activities

are detailed. In the test phase, the proposed approach is applied using the test case set Tt from the current commit

and produces a prioritized test case set T ′
t .

prioritization execution. But this process of choice is costly, once that a new evaluation for each

test case in Tt is necessary to choose the next best test case to compose T ′
t .

To reduce the selection cost, we adapted the policies to evaluate all the test cases (arms)

at each time t. In this way, ordering the test cases, putting the best test case in the top, followed

by the second best one, and so on. When more than one test case has the same performance, the

order among them is defined randomly. This simple adaption allows a fast prioritization whilst

considers the characteristics of the policy chosen. We also adapt the chosen policy to consider

only the test cases available in time t and ignore the other ones from the previous time. This

modification allows us to consider the dynamic environment (volatility) of the test cases.

As mentioned in Section 2.1, there are many MAB policies. We chose the policies that

better work with the EvE dilemma: ε-greedy, UCB, and FRRMAB. Besides these policies, we

also assessed the following policies as baselines: i) Random: is a strategy (not a real strategy per

se) where the player will only do exploration; and ii) Greedy: only takes the best apparent arm,

and it is a special case of ε-greedy where ε = 0, i.e., it always does exploitation.

It is important to highlight that FRRMAB policy works with a sliding window. The

reward value (FIR for FRRMAB) is obtained through a reward function (Section 4.3.1), then the

last W rewards are used by the policy. In this way, for each test case, FRRMAB policy considers

the history of rewards whilst the other ones use cumulative rewards.

4.3 CREDIT ASSIGNMENT

This procedure reflects the goal of the prioritization and teaches the MAB-based policy about

the test cases considering historical test data. In this procedure, for t′
c ∀ t′

c ∈ T ′
t , two values are

assigned: the number of times nt′
c

has been applied before and the reward value (q̂t′
c,t). These

values are used by the policies to generate the prioritized test set. At the beginning (where t = 1)

39

and for each new test case, the values for nt′
c

and q̂t′
c,t are assigned with zero. After that, the

values are assigned as follows.

The number of times nt′
c

that t′
c has been applied before is considered to explore new

test cases (few used). Traditionally, a MAB policy selects an arm and increments the number

of times that this arm was chosen. In our case, we use a combinatorial MAB, and this kind of

MAB selects a set of arms (test cases). To counterbalance the order of choice, a weight is given

for each t′
c ∈ T ′

t according to its order in T ′
t . The weights are evenly spaced values within an

interval (0.0, 1.0) with a step size of
1

|T ′
t |

in descending order. In this way, the highest weight is

given to the first test case in T ′
t and the lowest to the last one. Then, nt′

c
is incremented with the

weight defined to t′
c.

The reward value is obtained by a reward function (Section 4.3.1). This value is used

to exploit the best test cases. As described in Section 4.2, the reward value is stored in a

sliding window when FRRMAB policy is used whilst ε-greedy, greedy, and UCB policies use a

cumulative reward strategy. If a new test case appears, a zero is set for the reward value, once

that we do not have a test case history. On the other hand, if a test case is removed in the current

cycle (commit), we remove its history.

4.3.1 Reward Functions

In this work, we adopt and adapted two reward functions from related work [90]. The first reward

function RNFail (Reward Based on Failures) is based on the number of failures associated with a

test case t′
c ∈ T ′

t and uses the function fails defined in Table 4.1.

Table 4.1: Functions used by the Reward Functions.

Definition Description
failurest′

c In our context, a test case t′
c can be composed by many parts (or test methods),

each one of this part can be associated with a failure. In this way, a failing test

case t′
c can be associated with one or more failures. Function failurest′

c returns

the number nf of failures associated with t′
c.

failst′
c The function failst′

c returns 1 if failurest′
c ≥ 1, and 0 otherwise.

rankt′
c The function rankt′

c returns the position of t′
c in a prioritized set T ′

t .

prect′
c1 , t′

c2 The function prect′
c1 , t′

c2 returns 1 if rankt′
c1 < rankt′

c2 .

RNFailt′
c =

⎧⎨
⎩

1 if failst′
c

0 otherwise
(4.1)

The second reward function TimeRank (Time-Ranked Reward) is based on the rank of

t′
c ∈ T ′

t (Equation 4.2). The idea is to evaluate whether failing test cases, with a greater number

of failures, are ranked in the first positions in T ′
t . To this end, a test case t′

c that does not fail and

precedes failing test cases is penalized by their early scheduling.

TimeRankt′
c =

|T ′fail| − ¬failst′
c × |T ′fail|

i=1 prect′
c, t′

ci

|T ′fail| (4.2)

where T ′fail
is composed by the test cases of T ′

t that failed. A non failed test case receives

a reward given by the accumulated number of test cases which failed until its position in the

40

prioritization rank, that is, it receives a reward decreased by the number of failing test cases

ranked after it in the rank.

4.4 COLEMAN’S ILLUSTRATIVE EXAMPLE

In order to provide a COLEMAN’s illustrative example, we created a small system that contains

5 commits (CI Cycles/Builds), 14 failures (all commits have at least one failing test case), and

8 tests that range between 4 and 7 tests across the commits. Figure 4.2 presents a heatmap

concerning the test cases vs. failures along with CI cycles, where the axis X represents the CI
Cycles and Y the all tests identified. In the matrix, the gray color in the intersection means the

presence of a test in a CI cycle, and the transition from gray to black color represents the number

of tests that failed in a CI cycle. Here, each test case reveals only one failure in each CI Cycle.

Figure 4.2: Heatmap concerning the test cases vs. faults along CI cycles from the System Example.

In our example, we use: UCB policy with C = 0.3, time budget of 50%, Time-ranked

reward function, and the quality indicators NAPFD and APFDc. Figure 4.3 presents the behavior

of the first commit (t = 1) inside COLEMAN. In this figure, the test case set available is composed

by T1 = {1, 2, 3, 4, 5, 6}, and in our example the failing test case set is T fail
1 = {1, 3, 5}. It is

important to highlight that T fail
t is unknown before the test execution.

After COLEMAN receives T1, it updates the arms to represent the available test cases,

and then the prioritization is performed based on the information from previous prioritizations.

For this, we use a Q-table, a lookup table used to calculate the maximum expected future rewards

for action at each state, that guides us to the best action at each state.

In our example, each row in the Q-table represents a test case, and each column contains:

the number of times, nt′
c
, a test case has been applied before (action attempts); the reward value

q̂t′
c,t (value estimates); and the quality estimate Q. The value estimate contains the accumulative

reward according to the MAB policy used. For instance, UCB uses this value, while FRRMAB
stores it in a sliding window. On the other hand, the quality estimate contains the evaluation

made by a MAB policy. For instance, considering the UCB policy, the quality estimate is the

result from Equation 2.2.

In the first commit, the prioritization is performed randomly because we do not have

information to guide us during the prioritization process. For this reason, all values in the Q-table
are filled with zeros, in which represents a new test cases. Then, the prioritized test set T ′1 is

executed in the system (test execution) under a time constraint (test budget), the feedback is

collected, and the prioritization quality is obtained. In the end, we apply the credit assignment to

41

Figure 4.3: COLEMAN illustrative example - Commit 1.

calculate the rewards for each test. Then, Q-table is updated, and the historical test data is stored

to be used by the policy in the subsequent commits.

In the second commit t = 2 (Figure 4.4), the test case available is composed by

T2 = {7, 6, 5, 2, 3, 1, 4}, and the failing test case set is T fail
2 = {7, 5, 3}. In this commit, the test

case tc7 appeared, consequently, a new arm is added to the policy and a new row with zeros is

added to Q-table. Such a behavior allow us to encompass the test case volatility.

Figure 4.4: COLEMAN illustrative example - Commit 2.

The historical data from the previous prioritization is used to guide the current prioriti-

zation from the second commit. Then, T ′2 is provided by the MAB policy, in which is executed,

42

provide feedback, evaluated, and Q-table is updated at the end of the COLEMAN’s process. Such

a behavior repeat for the subsequent commits.

In t = 3 (Figure 4.5), we have T3 = {6, 8, 7, 5, 2, 3, 4}, and the failing test case set

T fail
3 = {6, 7, 5, 3}. In this commit, the test tc8 was added and the test tc1 was removed.

Figure 4.5: COLEMAN illustrative example - Commit 3.

In t = 4 (Figure 4.6), we have T4 = {4, 5, 6, 7, 8} and T fail
4 = {5, 7}. In this commit,

the tests tc2 and tc3 were removed. In the last commit t = 5 (Figure 4.7), the test set available is

composed by T5 = {6, 8, 7, 5} and T fail
5 = {8, 7}. In this commit, the test tc4 was removed.

Figure 4.6: COLEMAN illustrative example - Commit 4.

43

Figure 4.7: COLEMAN illustrative example - Commit 5.

This illustrative example shows how COLEMAN acts in a system during the CI

environment. We can see how easy is to keep the historical information required by a MAB
policy, and we can test manually a MAB policy to assess the quality if needed.

4.5 EVALUATION DESCRIPTION

The main hypothesis of this work is that MAB can be used to address the TCPCI problem in a very

cost-effective way. Then, our experiment evaluates the COLEMAN applicability and performance

in CI environments. We also perform a comparison with related work. The experiment is guided

by the following research questions:

RQ1: What is the best configuration for COLEMAN? This question aims to identify the best

MAB policy and reward function to be used with COLEMAN.

RQ2: Is COLEMAN applicable in the CI development context? This question is specially

important for software testers that want to use COLEMAN in practice. It investigates

whether the time spent in the prioritization is acceptable considering CI cycles (commits).

RQ3: Can COLEMAN outperform RETECS? This question compares our approach, with

RETECS, the RL approach, which is the most similar to COLEMAN.

To answer RQ1, we compare five MAB policies: Random, ε-Greedy, Greedy, UCB, and

FRRMAB, (Section 4.2) and both reward functions: RNFail and TimeRank (Section 4.3.1). We

use indicators commonly applied in TCP (Section 4.5.1). We evaluate three time constraints

(budgets) considering: 10%, 50%, and 80% of the execution time of the overall test set available

in each commit. The best policy identified in RQ1 is used to answer the remaining questions.

To answer RQ2, we compare the prioritization time spent by COLEMAN and the time

between commits, as well as the percentage of reduced time to test execution.

To answer RQ3, we execute the implementation of RETECS available in the literature2

by using ANN, which obtained the best results in comparison with a Tableau representation [90].

Our approach considers only a minimal information to prioritize the test cases, historical failure

2https://bitbucket.org/helges/RETECS

44

data, whilst RETECS needs additional information concerning each test case: duration, the time

it was last executed, and results from its previous execution (passed or failed).

In this experiment, if a test case is removed in a commit, it is then removed along with

its history. The results are obtained from 30 independent executions for each system, reward

function, and time budget. All the experiments are performed on an Intel® Xeon® E5-2640 v3

with 2.60 GHz CPU, 94GB RAM, running Linux Ubuntu 18.04.1 LTS.

4.5.1 Quality Indicators

To evaluate the performance of the approaches concerning failure detection effectiveness of a test

suite T , we use NAPFD [81] and APFDc [21]. See Chapter 2.3 for further details.

To evaluate the test suite efficiency concerning how fast it is to detect a fault, we use the

RFTC. In this rank, lower values represent a faster failure detection. In this sense, we extract the

order of the first test case that fails from the prioritized test suite. This metric is useful when we

need fast feedback from test cases and there is only one fault that the test cases are seeking.

Furthermore, we define a metric (Equation 4.3) named NTR, in order to observe the

difference between time spent until the first test case fails rt and the total time spent to execute

all tests r̂t. In this metric, only the commits that failed, CIfail, are considered. In this way, we

can evaluate the capability of an algorithm to reduce the time spent in a CI cycle.

NTRA =
CIfail

t=1 r̂t − rt

CIfail

t=1 r̂t

(4.3)

The last indicator used is Prioritization Time. Such measure computes the time spent

(in seconds) by an algorithm to perform the prioritization. This value helps to observe whether

an approach spends much time, what can make it impracticable for real scenarios.

We apply Kruskal-Wallis [46], Mann-Whitney [54], and Friedman [29] statistical tests

with a confidence level of 95%. We use Kruskal-Wallis to evaluate the performance of the

approaches in each system over 30 independent runs. We use Mann-Whitney to evaluate a pair

of performances in the same system or for post-hoc analysis. We use Friedman to evaluate the

approach behavior across different systems. To this end, each system becomes a dependent

variable, in which we apply multiple approaches.

Additionally, to calculate the effect size magnitude of the difference between two groups,

we use the Vargha and Delaney’s Â12 [94] metric. This measure ranges from 0 to 1 and defines

the probability of a value, taken randomly from the first sample, is higher than a value taken

randomly from the second sample. A Negligible magnitude Â12 < 0.56 represents a very

small difference among the values and usually does not yield statistical difference. The Small
0.56 ≤ Â12 < 0.64 and Medium 0.64 ≤ Â12 < 0.71 magnitudes represent small and medium

differences among the values, and may or not yield statistical differences. Finally, a Large
magnitude 0.71 ≤ Â12 represents a significantly large difference that usually can be seen in the

numbers without much effort.

45

4.5.2 Systems Under Test

We select non-toy, non-fork, and active GitHub (GH) projects considering watchers and stars on

GH, as well as some systems already used in the literature [37, 90]. Most of them using Travis

CI [93] and Maven.3 To collect the Travis CI build history, we adapt and use TravisTorrent4 [4].

Each System Under Test (SUT) is detailed in Table 4.2. The second column shows the

period of build logs analyzed. The third column presents the total of builds identified, and in

parenthesis the number of builds included in the analysis. We discard build logs with some

problem, identified by Travis CI, such as the ones related to non-valid build logs and test cases

that did not execute. The fourth column shows the total of failures found, and in parenthesis the

number of builds in which at least one test failed. The fifth column shows the number of different

(unique) test cases identified from build logs, and in parenthesis the range of test cases executed in

the builds. The last columns present, for each system, the mean (± standard deviation) duration

in minutes of the CI cycles and the interval between them.

Table 4.2: Test Case Set Information.

Name Period Builds Failures Test Cases Duration (min) Interval (min)
Druid 2016/04/24-2016/11/08 286 (168) 270 (71) 2391 (1778-1910) 4.27 ± 10.66 384.76 ± 468.86

Fastjson 2016/04/15-2018/12/04 2710 (2371) 940 (323) 2416 (900-2102) 1.97 ± 0.89 233.22 ± 401.26

Deeplearning4j 2014/02/22-2016/01/01 3410 (483) 777 (323) 117 (1-52) 12.33 ± 14.91 306.05 ± 442.55

DSpace 2013/10/16-2019/01/08 6309 (5673) 13413 (387) 211 (16-136) 11.78 ± 7.03 291.29 ± 411.19

Guava 2014/11/06-2018/12/02 2011 (1689) 7659 (112) 568 (308-512) 62.53 ± 80.31 435.55 ± 464.52

OkHttp 2013/03/26-2018/05/30 9919 (6215) 9586 (1408) 289 (2-75) 7.64 ± 5.64 220.17 ± 405.93

Retrofit 2013/02/17-2018/11/26 3719 (2711) 611 (125) 206 (5-75) 2.40 ± 1.60 270.86 ± 449.41

ZXing 2014/01/17-2017/04/16 961 (605) 68 (11) 124 (81-123) 13.14 ± 12.37 411.10 ± 465.53

IOF/ROL 2015/02/13-2016/10/25 2392 (2392) 9289 (1627) 1941 (1-707) 1537.27 ± 2018.73 1324.26 ± 291.75

Paint Control 2016/01/12-2016/12/20 20711 (20711) 4956 (1980) 1980 (1-74) 424.46 ± 275.90 1417.86 ± 144.97

GSDTSR 2016/01/02-2016/02/01 259388 (259388) 3208 (2924) 5555 (1-390) 974.25 ± 4850.66 1439.91 ± 2.58

Druid is a database connection pool written in Java used by Alibaba. Fastjson,

created by Alibaba, is a Java library that can be used to a fast JSON parser/generator for Java.

Deeplearning4j is a deep learning library for Java Virtual Machine. DSpace is an open

source software that provides facilities for the management of digital collections, used for the

implementation of institutional repositories. Guava is a set of core libraries for Java, developed

by Google, which includes new collection types, APIs/utilities for concurrency, I/O, and others.

OkHttp, developed by Square, is an HTTP and HTTP/2 client for Android and Java applications.

Retrofit, also developed by Square, is a type-safe HTTP client for Android and Java. ZXing
(Zebra Crossing) is a barcode scanning library for Java and Android. The systems IOF/ROL and

Paint Control are industrial datasets for testing complex industrial robots from ABB Robotic5.

GSDTSR is The Google Dataset of Testing Results [22] with a sample of 3.5 million test suite

execution results from Google products.

The systems IOF/ROL, Paint Control, and GSDTSR are selected for comparison

because they are the same systems used in related work to evaluate RETECS [90]. However, in

the related work the datasets are analyzed considering that a CI cycle includes all the test cases

executed per day. In our study, we consider the CI cycle as a commit. In this way, we change

the datasets representations to consider each date in the last run information is a commit. These

systems have different characteristics (number of faults, test cases, and commits), and they can

ensure the evaluation of the approaches in relation to the generalization capacity.

3Maven is a build automation tool used primarily for Java projects. We choose projects which use Maven as a

testing framework because it provides detailed output traces (more verbose).

4https://github.com/jacksonpradolima/travistorrent-tools
5https://new.abb.com/products/robotics

46

4.5.3 Data Collection

In this work, we followed some steps (Figure 4.8) to identify relevant systems, extract information

from them, and model datasets with the data collected6. In the first phase we identify relevant

projects (systems). For this, we made use of the GHTorrent [32], which provides a GitHub REST

API, to identify relevant Java projects. We identified 16852 projects. After, we filtered en-mass

whether a project has a Travis CI [93] build history. For this, we used Travis Poker tool from

Travis Torrent, and we found 4128 out of 16852 projects. Due to a large number of projects, we

filtered the projects that use Maven and selected a subset of 8 projects, which contain different

characteristics concerning the number of build logs and test cases, as well as the systems already

used in the literature.

Figure 4.8: Steps conducted for extracting and modeling build history from Travis CI.

We chose Java systems that use Maven because they provide in the log execution (build

log7) adequate information about the list of executed test cases and their status (executed and

skipped test cases, errors, and time spent). This can help to minimize the effort in data extraction

phase, once that we analyzed the build logs, and their structures and formats vary among software

projects, depending on the build and testing framework used in the development.

The second phase of our experimental framework aims at finding and extracting relevant

information from Travis CI build history. So, for each system chosen, we downloaded detailed

information from Travis CI build history using Travis Harvester from Travis Torrent. Then,

we applied the Buildlog Analyzer from Travis Torrent that parses build logs and searched for

output traces. A testing framework used in a system can produce different outputs. Due to this,

we chose projects which use Maven as a testing framework which provides detailed output traces

(more verbose).

6The mining of the software repositories was performed on December, 2018.

7A build log contains the log of a CI cycle.

47

On the third phase, we employed feature modeling to organize the data collected. In

this way, we ran a pre-processing to identify and remove any noise in the build logs. During the

collection, we identified some noises in the build logs concerning duplicated information about

test cases. For these cases, we preserved the greatest values. We also extracted information about

the failures detected along the CI cycles and test case volatility. Figure 4.9(a) shows an example

of this information for the Deeplearning4j system, in which can be used to investigate any data

correlation with the results found by the experiment. On the other hand, Figure 4.9(b) presents

heatmap concerning the test cases vs. failures along CI cycles for Deeplearning4j system, and

this figure can be used to identify the test case volatility, as well as to identify if a test case which

appears reveal a failure. In this figure, the gray color represents the presence of a test case in a CI
cycle. The transition from gray to black color represents the number of tests that failed in a CI
cycle.

(a) Faults along CI cycles (Builds).
(b) Heatmap concerning the test cases vs. faults

along CI cycles.

Figure 4.9: Information extracted from Deeplearning4j system behavior.

In the end, the information extracted and selected were converted to a individual CSV

file for each system, including: Id: unique numeric identifier of the test execution; Name: unique

numeric identifier of the test case; BuildId: a value uniquely identifying the build; Duration:

approximated runtime of the test case; LastRun: previous last execution of the test case as

DateTime; NumRan: number of executed test cases; Errors: number of errors revealed; Verdict:

test verdict of this test execution (Failed: 1, Passed: 0).

4.5.4 Parameters Setting

RETECS is available online and it is evaluated using ANN with the default values defined in

related work [90], for Hidden Nodes, Replay Memory, and Replay Batch Size, with, respectively,

12, 10000, and 1000. In this way, a tuning phase was necessary only to choose the parameters

values for the MAB policies UCB, FRRMAB, and ε-Greedy. They are the scaling factor C to

control the trade-off among EvE for UCB and FRRMAB policies, the sliding window size W and

decayed factor DF for FRRMAB, and the probability ε for ε-Greedy policy. The possible values

used in this phase for C are 0.3, 0.5, 1.0, and 2.0, for W were 10, 50, 100, 150, 200, 250, and 300,

and for ε 0.1, 0.2, 0.5, 0.7, and 0.9. After some empirical studies, the decayed factor is no longer

used and a default value equals to 1 is defined.

We conduct an empirical evaluation with 10 independent runs for each MAB policy

with different parameters. For this evaluation, we consider the systems Deeplearning4j and

Fastjson. These systems are chosen because they have the best trade-off between the mean

number of failures by CI cycles and the number of CI cycles. Additionally, we define a test

48

budget for a CI cycle with a fixed percentage of 50% of the required time as adopted in [90]. The

best parameters found for the MAB policies are: ε-Greedy and UCB with 0.5 (in the TimeRank
function) and 0.3 (RNFail) for parameter C; and FRRMAB with 0.3 for C and 100 for W .

4.5.5 Threats to Validity

We identify the following points that can be threats to the validity of the results. The first threat is

the parameter configuration of the algorithms. Other parameters can lead to different results. To

mitigate this threat, we empirically evaluate different ranges of parameters for the MAB policies

and for RETECS we adopt the configuration of related work, since we are using the same systems.

The dataset representation used is a threat. We change information about the CI cycles

for systems IOF/ROL, Paint Control, and GSDTSR. This change can impact the results, mainly

because we do not know with precision what information is from each commit and whether

RETECS is deeply dependent on this kind of representation. For this reason, we group the data

by the last run date.

4.6 RESULTS AND ANALYSES

In this section, the experimental results are presented and analyzed aiming to answer the posed

questions. Supplementary material with datasets, results, and additional analysis can be found in

our public repository [70].

4.6.1 RQ1: COLEMAN Configuration

As mentioned before, to answer RQ1, we compare the five MAB policies with both reward

functions taking into account three budgets. We use the indicators: NAPFD, APFDc, and RFTC.

The results and a complete analysis are available in supplementary material [70]. Next, we detail

only NAPFD and APFDc results regarding the budget of 50% (Table 4.3). According to Spieker

et al. [90], a time budget of 50% presents a constraint that allows better comparison whilst keeps

the difficulty inherent from the problem.

The average is computed using results from 30 independent executions found by each

policy in each SUT . Values highlighted in bold are the best, and values that are statistically

equivalent to the best ones have their corresponding cells painted in light gray. Furthermore, we

use different symbols to indicate the effect size magnitude concerning the best values. For each

comparison in each SUT , we use the Kruskal-Wallis test. When detected statistical difference,

we apply a post-hoc analysis using the Mann-Whitney test with Bonferroni p-value adjustment

method to find the statistical difference among the policies. In order to evaluate the performance

of the policy concerning all systems, we compute the average across the systems. The average

values obtained are shown in the last line in each table. We compare these values using Friedman.

Regarding NAPFD, Table 4.3 shows FRRMAB stands out in 68% of the cases (15 out of

22 cases, considering 11 systems and 2 functions). Such cases are represented by grey cells in

the table. FRRMAB is followed by UCB with 50% of the cases (11 out of 22). FRRMAB is the

best with statistical difference over the others in 8 cases. UCB is the best only in one case for

RNFail. The effect size results endorse what we observed in the numbers. Besides that, when

there is a statistical difference among policies, the effect size tends to be large. The performance

of these policies is similar for both functions. For RNFail, FRRMAB stands out in 7 cases (out of

11), and UCB stands out in 5 (out of 11). For TimeRank, FRRMAB stands out in 8, and UCB
stands out in 6. Overall, we observe that for RNFail the other MAB policies perform better. For

this reward function, more policies have values that are close to the best one. Among the MAB

49

Table 4.3: NAPFD and APFDc values (mean and standard deviation) for MAB policies using time budget of 50%.

This table reports the NAPFD and APFDc results (averages ± standard deviation) obtained from 30 independent

runs with time budget of 50% and organized by each Reward Function under study (see Section 4.3.1). Values

highlighted in bold with a “�” symbol denotes the best algorithm for a Reward Function in a SUT and, in gray,

results that are statistically equal to the best one. A “�” indicates that the effect size was negligible in relation to the

best, while “�” denotes a small magnitude, “�” a medium magnitude, and “�” a large magnitude. The effect size

was performed during the post-hoc tests, that is, when there is a statistical difference.

NAPFD APFDc

SUT FRRMAB UCB ε-Greedy Greedy Random FRRMAB UCB ε-Greedy Greedy Random

RNFail - Reward based on Failures

Druid 0.9333 ± 0.013 � 0.9422 ± 0.007 � 0.8472 ± 0.110 � 0.8965 ± 0.072 � 0.7464 ± 0.014 � 0.9486 ± 0.016 � 0.9486 ± 0.007 � 0.8477 ± 0.110 � 0.8979 ± 0.073 � 0.7506 ± 0.014 �
Fastjson 0.9174 ± 0.021 � 0.9597 ± 0.001 � 0.9501 ± 0.005 � 0.9507 ± 0.005 � 0.9176 ± 0.003 � 0.9186 ± 0.021 � 0.9595 ± 0.001 � 0.9491 ± 0.006 � 0.9498 ± 0.005 � 0.9193 ± 0.002 �
Deeplearning4j 0.7890 ± 0.001 � 0.7911 ± 0.002 � 0.8066 ± 0.003 � 0.8084 ± 0.002 � 0.6381 ± 0.011 � 0.8106 ± 0.001 � 0.7971 ± 0.002 � 0.7974 ± 0.004 � 0.7961 ± 0.003 � 0.6404 ± 0.016 �
DSpace 0.9724 ± 0.009 � 0.9720 ± 0.001 � 0.9692 ± 0.002 � 0.9685 ± 0.002 � 0.9581 ± 0.001 � 0.9737 ± 0.009 � 0.9730 ± 0.001 � 0.9713 ± 0.002 � 0.9704 ± 0.002 � 0.9587 ± 0.001 �
Guava 0.9653 ± 0.004 � 0.9750 ± 0.002 � 0.9768 ± 0.006 � 0.9761 ± 0.010 � 0.9603 ± 0.002 � 0.9687 ± 0.003 � 0.9756 ± 0.002 � 0.9770 ± 0.006 � 0.9758 ± 0.010 � 0.9611 ± 0.002 �
OkHttp 0.9192 ± 0.000 � 0.9023 ± 0.001 � 0.9041 ± 0.005 � 0.8993 ± 0.006 � 0.8513 ± 0.002 � 0.9177 ± 0.000 � 0.9039 ± 0.002 � 0.8994 ± 0.005 � 0.8950 ± 0.006 � 0.8549 ± 0.002 �
Retrofit 0.9853 ± 0.000 � 0.9799 ± 0.001 � 0.9717 ± 0.001 � 0.9717 ± 0.001 � 0.9710 ± 0.002 � 0.9850 ± 0.000 � 0.9794 ± 0.001 � 0.9722 ± 0.001 � 0.9722 ± 0.001 � 0.9712 ± 0.001 �
ZXing 0.9846 ± 0.000 � 0.9876 ± 0.000 � 0.9873 ± 0.002 � 0.9869 ± 0.002 � 0.9892 ± 0.002 � 0.9862 ± 0.000 � 0.9877 ± 0.000 � 0.9876 ± 0.001 � 0.9873 ± 0.001 � 0.9893 ± 0.001 �
IOF/ROL 0.5046 ± 0.002 � 0.4791 ± 0.003 � 0.4792 ± 0.002 � 0.4790 ± 0.002 � 0.4786 ± 0.002 � 0.5081 ± 0.002 � 0.4794 ± 0.003 � 0.4796 ± 0.002 � 0.4793 ± 0.002 � 0.4788 ± 0.002 �
Paint Control 0.9150 ± 0.000 � 0.9145 ± 0.000 � 0.9145 ± 0.000 � 0.9145 ± 0.000 � 0.9145 ± 0.000 � 0.9162 ± 0.000 � 0.9145 ± 0.000 � 0.9145 ± 0.000 � 0.9145 ± 0.000 � 0.9145 ± 0.000 �
GSDTSR 0.9893 ± 0.000 � 0.9891 ± 0.000 � 0.9891 ± 0.000 � 0.9891 ± 0.000 � 0.9891 ± 0.000 � 0.9894 ± 0.000 � 0.9891 ± 0.000 � 0.9891 ± 0.000 � 0.9891 ± 0.000 � 0.9892 ± 0.000 �
Average 0.8978 0.8993 0.8905 0.8946 0.8558 0.9021 0.9007 0.8895 0.8934 0.8571

TimeRank - Time-Ranked Reward

Druid 0.9710 ± 0.008 � 0.8422 ± 0.066 � 0.8767 ± 0.040 � 0.8503 ± 0.048 � 0.7489 ± 0.014 � 0.9787 ± 0.009 � 0.8768 ± 0.078 � 0.8988 ± 0.042 � 0.8871 ± 0.056 � 0.7534 ± 0.014 �
Fastjson 0.9118 ± 0.028 � 0.9544 ± 0.002 � 0.9455 ± 0.004 � 0.9240 ± 0.009 � 0.9181 ± 0.003 � 0.9140 ± 0.027 � 0.9565 ± 0.002 � 0.9516 ± 0.004 � 0.9303 ± 0.009 � 0.9199 ± 0.003 �
Deeplearning4j 0.8200 ± 0.000 � 0.7193 ± 0.002 � 0.7028 ± 0.004 � 0.7047 ± 0.002 � 0.6366 ± 0.007 � 0.8134 ± 0.001 � 0.7879 ± 0.004 � 0.7774 ± 0.007 � 0.7805 ± 0.004 � 0.6405 ± 0.012 �
DSpace 0.9766 ± 0.008 � 0.9659 ± 0.001 � 0.9606 ± 0.002 � 0.9602 ± 0.002 � 0.9582 ± 0.001 � 0.9767 ± 0.009 � 0.9683 ± 0.001 � 0.9646 ± 0.002 � 0.9649 ± 0.002 � 0.9588 ± 0.001 �
Guava 0.9675 ± 0.007 � 0.9698 ± 0.002 � 0.9738 ± 0.002 � 0.9734 ± 0.004 � 0.9608 ± 0.002 � 0.9672 ± 0.007 � 0.9740 ± 0.003 � 0.9786 ± 0.003 � 0.9824 ± 0.004 � 0.9614 ± 0.002 �
OkHttp 0.9317 ± 0.000 � 0.8753 ± 0.001 � 0.8725 ± 0.002 � 0.8677 ± 0.004 � 0.8514 ± 0.002 � 0.9246 ± 0.000 � 0.8930 ± 0.001 � 0.8881 ± 0.002 � 0.8866 ± 0.004 � 0.8550 ± 0.002 �
Retrofit 0.9893 ± 0.000 � 0.9789 ± 0.001 � 0.9715 ± 0.002 � 0.9689 ± 0.001 � 0.9707 ± 0.001 � 0.9885 ± 0.000 � 0.9798 ± 0.001 � 0.9733 ± 0.002 � 0.9712 ± 0.001 � 0.9706 ± 0.001 �
ZXing 0.9857 ± 0.000 � 0.9879 ± 0.001 � 0.9882 ± 0.002 � 0.9861 ± 0.001 � 0.9891 ± 0.001 � 0.9869 ± 0.000 � 0.9880 ± 0.001 � 0.9882 ± 0.002 � 0.9861 ± 0.001 � 0.9894 ± 0.001 �
IOF/ROL 0.5189 ± 0.002 � 0.4787 ± 0.002 � 0.4789 ± 0.002 � 0.4786 ± 0.002 � 0.4785 ± 0.002 � 0.5223 ± 0.002 � 0.4789 ± 0.002 � 0.4792 ± 0.002 � 0.4789 ± 0.002 � 0.4786 ± 0.002 �
Paint Control 0.9150 ± 0.000 � 0.9145 ± 0.000 � 0.9145 ± 0.000 � 0.9145 ± 0.000 � 0.9145 ± 0.000 � 0.9162 ± 0.000 � 0.9146 ± 0.000 � 0.9146 ± 0.000 � 0.9145 ± 0.000 � 0.9145 ± 0.000 �
GSDTSR 0.9894 ± 0.000 � 0.9891 ± 0.000 � 0.9891 ± 0.000 � 0.9891 ± 0.000 � 0.9891 ± 0.000 � 0.9894 ± 0.000 � 0.9891 ± 0.000 � 0.9891 ± 0.000 � 0.9891 ± 0.000 � 0.9891 ± 0.000 �
Average 0.9070 0.8796 0.8795 0.8743 0.8560 0.9071 0.8915 0.8912 0.8883 0.8574

policies, the Random policy has the worst performance. Regarding APFDc we have similar

findings. FRRMAB stands out in 72% of the cases (16 out of 22), and UCB in 45% of the cases

(10 out of 22).

For the other budgets of 10% and 80%, we observed similar results regarding the

performance of the policies and functions. As expected, the values for all policies are better for

the budget of 80%, which is less restrictive. Considering NAPFD and all the 33 cases involving

the three budgets (11 systems × 3 time budgets), FRRMAB stands out the other policies in ≈
76% of the cases (25 out of 33) and 82% (27 cases), respectively, for the RNFail and TimeRank
functions. FRRMAB is the best policy with statistical difference in ≈ 40% of the cases (13 out of

33) for both reward functions, and UCB policy is the best in ≈ 6% of the cases (2) and ≈ 3% of

the cases (1), respectively, for the RNFail and TimeRank functions. FRRMAB also obtains the

best APFDc values and stands out in ≈ 82% of the cases (27 out of 33) for the RNFail function

and in ≈ 76% of the cases (25) for the TimeRank function.

For IOF/ROL, the approach had the worst performance. This system has a high test case

volatility and a high number of peaks of failure detection. In this way, it is an example of that to

find a solution to the TCPCI problem is hard. We observe that the Random policy is defeated by

MAB policies in almost all systems, except in ZXing in both reward functions. To understand

this behavior, we analyze the failures detected over the cycles. In this system, we verify peaks in

the failure detection in a few commits and long periods without failures. This scenario endorses

our approach behavior once that it is based on historical test data. Furthermore, this system has a

low test case volatility.

RFTC results are available in supplementary material [70]. We observe that the NAPFD
average values found in each independent execution by reward functions and the early fault

detection given by RFTC are, in most of the cases, correlated, that is, good NAPFD values

provide good RFTC values. In most of the systems, the MAB policies are better than Random

50

policy, as well as they are more stable (low dispersion of values). Among the MAB policies,

FRRMAB is more stable than the other ones. This shows that the use of a sliding window is

interesting when a system contains peaks of detecting faults and periods of stability, as well as

when there is a large number of commits.

RQ1: Results show FRRMAB is the best MAB policy, regarding NAPFD, APFDc values, and
early fault detection given by the indicator RFTC. This happens for both reward functions,
and the three budgets evaluated. As expected, better indicator values are obtained for the less
restrictive budget of 80%. This happens for all policies. In particular, the combination of
FRRMAB with TimeRank function provides better performance.

4.6.2 RQ2: COLEMAN Applicability

To answer RQ2, we use Table 4.4. The second and third columns presents, respectively, the

mean prioritization time and standard deviation of COLEMAN with the FRRMAB policy (the

best policy found in the analysis of RQ1), and time budget of 50%. In such a table, we can

observe the time spent is negligible in most of the systems. A great time is spent in Druid and

Fastjson, systems that also have a great number of test cases in a CI cycle. If we take the

standard deviation and the worst case (Fastjson), COLEMAN takes less than one second to

execute. The mean time spent with both reward functions is similar, as well as we do not observe

any impact on the other budgets.

Table 4.4: Mean and standard deviation Prioritization Time (in seconds) with time budget of 50%.

Prioritization Time (sec.)
SUT FRRMAB ANN

RNFail TimeRank RNFail TimeRank
Druid 0.2474 ± 0.040 0.2373 ± 0.041 0.3881 ± 0.268 0.3844 ± 0.279

Fastjson 0.3916 ± 0.191 0.3879 ± 0.191 0.2474 ± 1.382 0.2395 ± 1.288

Deeplearning4j 0.0271 ± 0.002 0.0271 ± 0.002 0.0038 ± 0.006 0.0187 ± 0.107

DSpace 0.0287 ± 0.002 0.0287 ± 0.002 0.0101 ± 0.042 0.0507 ± 0.186

Guava 0.0609 ± 0.016 0.0609 ± 0.016 0.0335 ± 0.039 0.0405 ± 0.066

OkHttp 0.0283 ± 0.002 0.0283 ± 0.002 0.0079 ± 0.022 0.0371 ± 0.125

Retrofit 0.0277 ± 0.002 0.0277 ± 0.002 0.0050 ± 0.010 0.0178 ± 0.079

ZXing 0.0343 ± 0.003 0.0343 ± 0.003 0.0156 ± 0.025 0.0229 ± 0.069

IOF/ROL 0.0278 ± 0.005 0.0278 ± 0.005 0.0034 ± 0.009 0.5364 ± 1.221

Paint Control 0.0256 ± 0.002 0.0256 ± 0.002 0.0020 ± 0.005 0.0028 ± 0.028

GSDTSR 0.0253 ± 0.002 0.0253 ± 0.002 0.0027 ± 0.014 0.0028 ± 0.013

Average 0.0841 0.0828 0.0654 0.1231

However, we need to consider the impact of this time in the complete CI cycle and the

interval between the CI cycles, and consequently, to observe whether the spent prioritization

time is expensive. In addition, it is important to analyze the impact concerning the time spent to

reveal the first failure, which can be used to reduce the time spent in a CI cycle once that the test

execution cost can be reduced when a failure is revealed because the test is ended. For this end,

Table 4.5 presents the time reduction average, given by the indicator NTR (Equation 4.3) with

both reward functions, over the three budgets. Refer to Table 4.2 to see duration of the CI cycles

and the interval between them.

Table 4.5 shows percentages of time reduction provided by our approach are close to

73% for IOF/ROL, 47% for Deeplearning4j, and 43% for Druid. This reduction in a CI cycle

is due to the early fault detection provided by our approach. But, in most systems, we can see a

low percentage. The performance of both functions is similar, as well as the NTR values for each

system. In overall, the RNFail function obtains better reduction than TimeRank considering time

51

Table 4.5: Mean and standard deviation NAPFD, APFDc, and NTR values: COLEMAN against RETECS.

(See caption of Table 4.3 for a description of the headings.)

SUT

NAPFD APFDc NTR
RNFail TimeRank RNFail TimeRank RNFail TimeRank

ANN FRRMAB ANN FRRMAB ANN FRRMAB ANN FRRMAB ANN FRRMAB ANN FRRMAB
Time Budget: 10%

Druid 0.6768 ± 0.129 � 0.6801 ± 0.052 � 0.6488 ± 0.074 � 0.7137 ± 0.074 � 0.8067 ± 0.088 � 0.6964 ± 0.063 � 0.7815 ± 0.051 � 0.7181 ± 0.076 � 0.1863 ± 0.124 0.2027 ± 0.115 0.1556 ± 0.077 0.2355 ± 0.135
Fastjson 0.8713 ± 0.015 � 0.9030 ± 0.014 � 0.8719 ± 0.005 � 0.8980 ± 0.018 � 0.8805 ± 0.014 � 0.9064 ± 0.013 � 0.8810 ± 0.004 � 0.8974 ± 0.018 � 0.0194 ± 0.016 0.3117 ± 0.221 0.0219 ± 0.007 0.2674 ± 0.232
Deeplearning4j 0.6615 ± 0.072 � 0.7533 ± 0.002 � 0.6739 ± 0.016 � 0.7716 ± 0.000 � 0.8135 ± 0.023 � 0.7766 ± 0.001 � 0.8185 ± 0.010 � 0.7773 ± 0.000 � 0.5488 ± 0.029 0.4626 ± 0.001 0.5546 ± 0.015 0.4663 ± 0.000

DSpace 0.9437 ± 0.001 � 0.9489 ± 0.003 � 0.9410 ± 0.001 � 0.9496 ± 0.004 � 0.9480 ± 0.001 � 0.9510 ± 0.002 � 0.9458 ± 0.001 � 0.9513 ± 0.004 � 0.0188 ± 0.001 0.0370 ± 0.015 0.0105 ± 0.001 0.0393 ± 0.018
Guava 0.9676 ± 0.015 � 0.9554 ± 0.002 � 0.9563 ± 0.004 0.9586 ± 0.001 � 0.9811 ± 0.007 � 0.9561 ± 0.001 � 0.9761 ± 0.003 � 0.9582 ± 0.001 � 0.0449 ± 0.015 0.0471 ± 0.016 0.0367 ± 0.005 0.0492 ± 0.015
OkHttp 0.8357 ± 0.002 � 0.8323 ± 0.000 � 0.8095 ± 0.006 � 0.8407 ± 0.000 � 0.8484 ± 0.001 � 0.8378 ± 0.000 � 0.8292 ± 0.006 � 0.8425 ± 0.000 � 0.0830 ± 0.001 0.0658 ± 0.000 0.0579 ± 0.008 0.0702 ± 0.000
Retrofit 0.9641 ± 0.001 � 0.9639 ± 0.000 0.9621 ± 0.001 � 0.9642 ± 0.000 � 0.9672 ± 0.001 � 0.9646 ± 0.000 � 0.9655 ± 0.001 � 0.9648 ± 0.000 � 0.0088 ± 0.000 0.0070 ± 0.000 0.0076 ± 0.001 0.0073 ± 0.000

ZXing 0.9854 ± 0.000 � 0.9826 ± 0.000 � 0.9855 ± 0.000 � 0.9828 ± 0.000 � 0.9893 ± 0.000 � 0.9832 ± 0.000 � 0.9893 ± 0.000 � 0.9835 ± 0.000 � 0.0122 ± 0.000 0.0037 ± 0.000 0.0126 ± 0.001 0.0037 ± 0.000

IOF/ROL 0.3704 ± 0.005 � 0.3632 ± 0.001 � 0.3779 ± 0.003 � 0.3670 ± 0.001 � 0.3746 ± 0.005 � 0.3661 ± 0.001 � 0.3819 ± 0.003 � 0.3701 ± 0.001 � 0.5133 ± 0.030 0.5585 ± 0.007 0.5646 ± 0.015 0.5701 ± 0.004
Paint Control 0.9078 ± 0.000 � 0.9076 ± 0.000 � 0.9077 ± 0.000 � 0.9076 ± 0.000 � 0.9082 ± 0.000 � 0.9080 ± 0.000 � 0.9081 ± 0.000 � 0.9080 ± 0.000 � 0.1151 ± 0.000 0.1133 ± 0.000 0.1139 ± 0.000 0.1131 ± 0.000

GSDTSR 0.9893 ± 0.000 � 0.9894 ± 0.000 � 0.9893 ± 0.000 � 0.9894 ± 0.000 � 0.9894 ± 0.000 0.9894 ± 0.000 0.9894 ± 0.000 � 0.9894 ± 0.000 � 0.0087 ± 0.000 0.0093 ± 0.000 0.0090 ± 0.000 0.0096 ± 0.000
Average 0.8340 0.8436 0.8294 0.8494 0.8643 0.8487 0.8294 0.8494 0.1428 0.1653 0.1404 0.1665

Time Budget: 50%
Druid 0.6851 ± 0.134 � 0.9333 ± 0.013 � 0.6323 ± 0.074 � 0.9710 ± 0.008 � 0.8147 ± 0.102 � 0.9486 ± 0.016 � 0.7597 ± 0.051 � 0.9787 ± 0.009 � 0.1840 ± 0.137 0.4057 ± 0.013 0.1213 ± 0.071 0.4225 ± 0.008
Fastjson 0.8714 ± 0.007 � 0.9174 ± 0.021 � 0.8902 ± 0.013 � 0.9118 ± 0.028 � 0.9326 ± 0.005 � 0.9186 ± 0.021 � 0.9392 ± 0.017 � 0.9140 ± 0.027 � 0.0399 ± 0.010 0.3539 ± 0.262 0.0602 ± 0.020 0.3394 ± 0.282
Deeplearning4j 0.7049 ± 0.070 � 0.7890 ± 0.001 � 0.6562 ± 0.018 � 0.8200 ± 0.000 � 0.8331 ± 0.041 � 0.8106 ± 0.001 � 0.8379 ± 0.012 � 0.8134 ± 0.001 � 0.5276 ± 0.039 0.4695 ± 0.000 0.5447 ± 0.010 0.4625 ± 0.000

DSpace 0.9568 ± 0.001 � 0.9724 ± 0.009 � 0.9485 ± 0.001 � 0.9766 ± 0.008 � 0.9683 ± 0.001 0.9737 ± 0.009 � 0.9615 ± 0.001 � 0.9767 ± 0.009 � 0.0334 ± 0.001 0.0751 ± 0.031 0.0218 ± 0.002 0.0776 ± 0.034
Guava 0.9502 ± 0.015 � 0.9653 ± 0.004 � 0.9578 ± 0.004 � 0.9675 ± 0.007 � 0.9767 ± 0.008 � 0.9687 ± 0.003 � 0.9806 ± 0.005 � 0.9672 ± 0.007 � 0.0303 ± 0.016 0.0662 ± 0.024 0.0387 ± 0.006 0.0659 ± 0.020
OkHttp 0.8812 ± 0.010 � 0.9192 ± 0.000 � 0.8446 ± 0.003 � 0.9317 ± 0.000 � 0.8878 ± 0.015 � 0.9177 ± 0.000 � 0.8869 ± 0.002 � 0.9246 ± 0.000 � 0.1118 ± 0.014 0.1431 ± 0.000 0.1060 ± 0.003 0.1486 ± 0.000
Retrofit 0.9706 ± 0.002 � 0.9853 ± 0.000 � 0.9718 ± 0.002 � 0.9893 ± 0.000 � 0.9762 ± 0.002 � 0.9850 ± 0.000 � 0.9778 ± 0.002 � 0.9885 ± 0.000 � 0.0134 ± 0.001 0.0156 ± 0.000 0.0138 ± 0.001 0.0172 ± 0.000
ZXing 0.9878 ± 0.000 � 0.9846 ± 0.000 � 0.9881 ± 0.001 � 0.9857 ± 0.000 � 0.9954 ± 0.000 � 0.9862 ± 0.000 � 0.9956 ± 0.001 � 0.9869 ± 0.000 � 0.0201 ± 0.000 0.0109 ± 0.000 0.0201 ± 0.001 0.0110 ± 0.000

IOF/ROL 0.5101 ± 0.007 � 0.5046 ± 0.002 � 0.5025 ± 0.006 � 0.5189 ± 0.002 � 0.5175 ± 0.008 � 0.5081 ± 0.002 � 0.5043 ± 0.006 � 0.5223 ± 0.002 � 0.7037 ± 0.019 0.7110 ± 0.003 0.6834 ± 0.014 0.7193 ± 0.003
Paint Control 0.9150 ± 0.000 � 0.9150 ± 0.000 � 0.9138 ± 0.000 � 0.9150 ± 0.000 � 0.9171 ± 0.000 � 0.9162 ± 0.000 � 0.9140 ± 0.000 � 0.9162 ± 0.000 � 0.1283 ± 0.000 0.1222 ± 0.000 0.1142 ± 0.001 0.1223 ± 0.000
GSDTSR 0.9911 ± 0.000 � 0.9893 ± 0.000 � 0.9906 ± 0.000 � 0.9894 ± 0.000 � 0.9911 ± 0.000 � 0.9894 ± 0.000 � 0.9910 ± 0.000 � 0.9894 ± 0.000 � 0.0199 ± 0.000 0.0093 ± 0.000 0.0179 ± 0.000 0.0096 ± 0.000

Average 0.8567 0.8978 0.8451 0.9070 0.8919 0.9021 0.8862 0.9071 0.1648 0.2166 0.1583 0.2178
Time Budget: 80%

Druid 0.6490 ± 0.113 � 0.9380 ± 0.012 � 0.6551 ± 0.099 � 0.9830 ± 0.003 � 0.7142 ± 0.111 � 0.9469 ± 0.015 � 0.6881 ± 0.090 � 0.9912 ± 0.004 � 0.1477 ± 0.113 0.4069 ± 0.014 0.1230 ± 0.096 0.4292 ± 0.004
Fastjson 0.8708 ± 0.007 � 0.9536 ± 0.010 � 0.8925 ± 0.010 � 0.9242 ± 0.028 � 0.9037 ± 0.008 � 0.9488 ± 0.012 � 0.9133 ± 0.015 0.927 ± 0.026 � 0.0385 ± 0.011 0.4613 ± 0.278 0.0516 ± 0.018 0.3963 ± 0.301
Deeplearning4j 0.7058 ± 0.091 � 0.8424 ± 0.001 � 0.6640 ± 0.016 � 0.8641 ± 0.001 � 0.8158 ± 0.064 � 0.8068 ± 0.002 � 0.8522 ± 0.012 � 0.7989 ± 0.001 � 0.5016 ± 0.058 0.4224 ± 0.001 0.5475 ± 0.007 0.4047 ± 0.000

DSpace 0.9601 ± 0.001 � 0.9792 ± 0.006 � 0.9508 ± 0.001 � 0.9825 ± 0.007 � 0.9738 ± 0.001 � 0.9796 ± 0.006 � 0.9639 ± 0.001 � 0.9810 ± 0.008 � 0.0374 ± 0.001 0.0800 ± 0.031 0.0269 ± 0.002 0.0812 ± 0.034
Guava 0.9441 ± 0.012 � 0.9784 ± 0.012 � 0.9581 ± 0.007 � 0.9841 ± 0.014 � 0.9627 ± 0.010 � 0.9780 ± 0.013 � 0.9689 ± 0.009 � 0.9825 ± 0.015 � 0.0247 ± 0.013 0.0812 ± 0.044 0.0348 ± 0.009 0.0888 ± 0.045
OkHttp 0.9027 ± 0.013 � 0.9350 ± 0.000 � 0.8558 ± 0.004 � 0.9478 ± 0.000 � 0.8836 ± 0.020 � 0.9271 ± 0.000 � 0.8974 ± 0.003 � 0.9362 ± 0.000 � 0.1112 ± 0.017 0.1493 ± 0.000 0.1153 ± 0.003 0.1551 ± 0.000
Retrofit 0.9724 ± 0.005 � 0.9881 ± 0.000 � 0.9745 ± 0.003 � 0.9916 ± 0.000 � 0.9785 ± 0.004 � 0.9873 ± 0.000 � 0.9808 ± 0.003 � 0.9903 ± 0.000 � 0.0140 ± 0.001 0.0161 ± 0.000 0.0145 ± 0.001 0.0179 ± 0.000
ZXing 0.9878 ± 0.000 � 0.9972 ± 0.000 � 0.9883 ± 0.001 � 0.9996 ± 0.000 � 0.9953 ± 0.000 � 0.9975 ± 0.000 � 0.9953 ± 0.001 � 0.9996 ± 0.000 � 0.0201 ± 0.000 0.0224 ± 0.000 0.0197 ± 0.002 0.0227 ± 0.000
IOF/ROL 0.5495 ± 0.006 � 0.5569 ± 0.002 � 0.5287 ± 0.007 � 0.5678 ± 0.001 � 0.5593 ± 0.006 � 0.5591 ± 0.002 0.5311 ± 0.006 � 0.5699 ± 0.001 � 0.7263 ± 0.015 0.7293 ± 0.002 0.6857 ± 0.011 0.7334 ± 0.001
Paint Control 0.9162 ± 0.000 � 0.9171 ± 0.000 � 0.9160 ± 0.000 � 0.9171 ± 0.000 � 0.9187 ± 0.000 � 0.9176 ± 0.000 � 0.9158 ± 0.000 � 0.9177 ± 0.000 � 0.1285 ± 0.000 0.1209 ± 0.000 0.1161 ± 0.001 0.1204 ± 0.000
GSDTSR 0.9921 ± 0.000 � 0.9893 ± 0.000 � 0.9914 ± 0.000 � 0.9894 ± 0.000 � 0.9919 ± 0.000 � 0.9894 ± 0.000 � 0.9917 ± 0.000 � 0.9894 ± 0.000 � 0.0218 ± 0.001 0.0093 ± 0.000 0.0203 ± 0.000 0.0096 ± 0.000

Average 0.8591 0.9159 0.8523 0.9228 0.8816 0.9126 0.8817 0.9167 0.1611 0.2272 0.1596 0.2236

25 50 75 100 125 150
CI Cycle

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Ac
cu

m
ul

at
iv

e
Re

w
ar

d
Ba

se
d

on
 F

ai
lu

re
s Time Budget: 10%

25 50 75 100 125 150
CI Cycle

Time Budget: 50%

25 50 75 100 125 150
CI Cycle

Time Budget: 80%

ANN
FRRMAB

Figure 4.10: Reward Based on Failures (RNFail) function.

25 50 75 100 125 150
CI Cycle

0

25

50

75

100

125

150

Ac
cu

m
ul

at
iv

e
Ti

m
e-

ra
nk

ed
 R

ew
ar

d

Time Budget: 10%

25 50 75 100 125 150
CI Cycle

Time Budget: 50%

25 50 75 100 125 150
CI Cycle

Time Budget: 80%

ANN
FRRMAB

Figure 4.11: Time-Ranked Reward (TimeRank) function.

Figure 4.12: Accumulative Reward values over the CI cycles from Druid system.

budget of 80%, and the TimeRank is better in the other time budgets. Comparing the average

percentage for the budget of 50% we observe an improvement regarding the budget of 10%. But

52

Table 4.6: Mean and standard deviation RFTC values: COLEMAN against RETECS.

SUT

RFTC
RNFail TimeRank

ANN FRRMAB ANN FRRMAB
Time Budget: 10%

Druid 1166.4411 ± 546.049 � 209.3289 ± 98.987 � 1240.8713 ± 356.817 � 56.1579 ± 31.056 �
Fastjson 1094.1147 ± 209.106 � 184.9911 ± 65.066 � 998.7949 ± 177.738 � 96.0378 ± 36.22 �
Deeplearning4j 5.3151 ± 2.456 � 2.3049 ± 0.048 � 5.7919 ± 0.677 � 2.0437 ± 0.007 �
DSpace 11.9561 ± 0.753 � 3.024 ± 1.33 � 13.6276 ± 0.754 � 2.1428 ± 0.67 �
Guava 129.3477 ± 99.443 � 31.8991 ± 20.546 � 191.1219 ± 29.545 � 15.0977 ± 13.75 �
OkHttp 7.4112 ± 0.397 � 4.3424 ± 0.0 � 15.8935 ± 1.951 � 1.8039 ± 0.0 �
Retrofit 3.7352 ± 0.439 � 1.5152 ± 0.0 � 4.7297 ± 0.772 � 1.7941 ± 0.0 �
ZXing 39.7929 ± 0.643 � 1.0 ± 0.0 � 39.1204 ± 1.701 � 1.0 ± 0.0 �
IOF/ROL 1.6445 ± 0.158 � 1.2626 ± 0.064 � 1.5639 ± 0.108 � 1.0992 ± 0.05 �
Paint Control 1 ± 0.0 1 ± 0.0 1.001 ± 0.002 � 1.0 ± 0.0 �
GSDTSR 3.2553 ± 0.387 � 2.1316 ± 0.1 � 3.8958 ± 0.18 � 1.1482 ± 0.071 �

Time Budget: 50%
Druid 1225.6197 ± 600.746 � 121.8396 ± 43.763 � 1420.3143 ± 418.926 � 51.2697 ± 11.926 �
Fastjson 1527.9434 ± 93.004 � 315.8923 ± 79.836 � 1173.9871 ± 321.789 � 335.9929 ± 125.629 �
Deeplearning4j 5.0267 ± 1.827 � 2.5496 ± 0.011 � 7.3264 ± 0.530 � 2.464 ± 0.005 �
DSpace 19.0354 ± 0.887 � 5.5312 ± 1.939 � 27.6301 ± 0.921 � 4.1089 ± 1.769 �
Guava 289.1586 ± 99.054 � 78.6409 ± 45.928 � 235.0919 ± 27.865 � 24.0869 ± 21.479 �
OkHttp 6.203 ± 2.066 � 4.188 ± 0.014 � 19.6306 ± 0.79 � 2.3643 ± 0.002 �
Retrofit 5.4302 ± 0.43 � 2.4059 ± 0.0 � 5.625 ± 0.415 � 1.4299 ± 0.0 �
ZXing 51.2576 ± 0.579 � 5.6 ± 0.0 � 49.4232 ± 3.15 � 2.0 ± 0.0 �
IOF/ROL 1.8009 ± 0.292 � 1.2588 ± 0.035 � 1.9213 ± 0.218 � 1.151 ± 0.024 �
Paint Control 1.0234 ± 0.004 � 1.0018 ± 0.001 � 1.0257 ± 0.007 � 1.0014 ± 0.001 �
GSDTSR 1.9072 ± 0.06 � 2.1461 ± 0.101 � 3.5648 ± 0.141 � 1.1505 ± 0.072 �

Time Budget: 80%
Druid 1427.8103 ± 493.429 � 146.9112 ± 46.436 � 1035.3369 ± 658.042 � 50.3805 ± 11.25 �
Fastjson 1535.2998 ± 101.625 � 398.4345 ± 105.27 � 993.382 ± 393.441 � 572.0954 ± 221.573 �
Deeplearning4j 5.5748 ± 2.358 � 2.8146 ± 0.014 � 7.8533 ± 0.581 � 2.5017 ± 0.011 �
DSpace 23.126 ± 1.021 � 6.8651 ± 2.946 � 33.4617 ± 1.119 � 6.0794 ± 3.343 �
Guava 330.5342 ± 74.0 � 84.6856 ± 34.075 � 202.2301 ± 47.258 � 83.9989 ± 78.446 �
OkHttp 4.2988 ± 2.242 4.0748 ± 0.021 21.5784 ± 1.148 � 2.282 ± 0.003 �
Retrofit 5.9252 ± 0.884 � 2.4636 ± 0.0 � 5.8832 ± 0.587 � 1.4386 ± 0.0 �
ZXing 51.0061 ± 1.233 � 4.2727 ± 0.0 � 48.6848 ± 2.926 � 1.3636 ± 0.0 �
IOF/ROL 2.021 ± 0.447 � 1.317 ± 0.026 � 2.5248 ± 0.362 � 1.2366 ± 0.017 �
Paint Control 1.015 ± 0.002 � 1.0003 ± 0.001 � 1.0344 ± 0.009 � 1.0003 ± 0.001 �
GSDTSR 1.9413 ± 0.322 � 2.1461 ± 0.101 � 3.4858 ± 0.112 � 1.1505 ± 0.072 �

this difference is slightly lower when we compare the budgets of 50% and 80%. Then, the budget

may be a reason to explain low reduction. Other possible reasons are the difficulty inherent to the

TCPCI problem and the need to consider other aspects in the prioritization, such as the time to

execute each test case.

Regarding the time spent in a CI cycle and interval between commits for each system,

we observe that a new commit is typically performed after a CI cycle is finished and with a

considered time, due to the time between commits is, in most systems, higher than the time

spent by a CI cycle. In this way, the systems chosen do not present a situation with multiple test

requests. In addition, the time spent in a CI cycle and between cycles is in minutes, and as our

approach spent, in the worst case, less than one second to prioritize the test cases, there is not a

negative impact in the use of our approach.

RQ2: Our approach is applicable to the CI context. It contributes to reducing the time spent
in a CI cycle, even with a restrictive budget of 10%. In some cases, the reduction can achieve a
percentage of 70%.

4.6.3 RQ3: Comparing COLEMAN and RETECS

To answer RQ3, we compare COLEMAN using FRRMAB (the best policy according to RQ1)

with RETECS using ANN. Table 4.5 shows the NAPFD and APFDc results obtained.

53

As we can observe for RNFail function and NAPFD, FRRMAB stands out in ≈ 70% of

the cases (23 out of 33). ANN stands out in 33% (11 cases). FRRMAB is the best with statistical

difference in ≈ 66% (22 out of 33) of the cases against 30% (10 cases) for ANN. Regarding the

NAPFD average across the SUTs, FRRMAB obtained the best results, with statistical difference

in the time budget of 80%. With the TimeRank function, FRRMAB presents even better results.

FRRMAB stands out in ≈ 82% (27 out of 33) of the cases against 21% (7 cases) for ANN.

FRRMAB is the best with statistical difference in ≈ 79% of the cases (26 out of 33) against 18%

(6 cases) for ANN. Across the SUTs, FRRMAB is the best, with statistical difference considering

the time budgets of 50% and 80%.

We observe that ANN has a bad performance for Druid and DeepLearning4j, and

improves performance in comparison with FRRMAB when the budget decreases. On the

other hand, FRRMAB presents more stability (low variation) in NAPFD average values than

ANN. FRRMAB has the best performance with low variation and better values for Druid and

DeepLearning4j. Regarding APFDc values, ANN using RNFail function stands out in 64% of

the cases (21 out of 33) against 45% (15 cases) for FRRMAB . ANN is the best with statistical

difference in ≈ 55% (18 out of 33) of the cases against 30% (10) for FRRMAB . Considering

TimeRank the opposite occurs. FRRMAB stands out in 55% of the cases (18 out of 33), against

48% (16) for ANN. FRRMAB is the best with statistical difference in ≈ 52% (17 out of 33) of the

cases against 42% (14) for ANN. Across the SUTs, overall, FRRMAB and ANN are statistically

equivalent in most of the time budgets and reward functions, except in TimeRank function with a

time budget of 80% in which FRRMAB is better than ANN. For this indicator, the results show

the approaches are competitive, that is, there is not a great difference between then. A possible

reason for this is that RETECS considers the individual test case duration, and COLEMAN,

differently, considers only historical failure data.

FRRMAB with TimeRank produces better values concerning NAPFD, APFDc, and time

budgets of 50% and 80%. But overall, the results of both functions are similar.

According to Table 4.4, ANN is a bit faster than FRRMAB considering the function

RNFail, and slower considering TimeRank. FRRMAB is stable for both functions, whilst ANN
spends more time using TimeRank function. Analyzing the prioritization time spent along with

CI cycles, we observe that both approaches spend more time when test cases are added or removed

from one cycle to another. This occurs because both approaches need to update the information

about the test cases, mainly when a high number of test cases increases or decreases abruptly. But

a greater impact is observed for RETECS. In particular, ANN has a great variation in the spent

time for IOF/ROL. For this system, RETECS can take in the worst case more than one second.

Regarding NTR, for the three budgets, FRRMAB is the best in ≈ 64% (21 out of 33) of

the cases against 36% (12) for ANN for RNFail function. Considering TimeRank, FRRMAB is

the best in ≈ 73% (24) of the cases against ≈ 27% (9) for ANN. Regarding RFTC (Table 4.6)

and RNFail, FRRMAB stands out in ≈ 94% of the cases (31 out of 33) against ≈ 12% (4) for

ANN. But in 2 of these 4 cases, ANN and FRRMAB are statistically equivalent. With TimeRank,

FRRMAB is the best in all cases.

With the systems used, we do not identify a scalability pattern concerning the time spent

to prioritize the test cases. The use of systems with a great number of test cases in each CI cycles

can help in the identification of our approach scalability in future studies.

Due to the bad performance of ANN in Druid, we analyze this system. Druid has the

lowest number of CI cycles (168) among the systems evaluated, as well as it has many tests

(2391). Figure 4.12 shows the accumulative reward values from ANN (blue line) and FRRMAB
(orange line) along the CI cycles considering RNFail and TimeRank functions. We can observe

that although RETECS better assigns the rewards in the RNFail function, the prioritization order

54

is not adequate, which we can see with the TimeRank function. In this way, FRRMAB better

mitigates than ANN the problem of beginning without learning, mainly in combination with the

TimeRank function, and adapts quickly to deal with a peak of faults in the first cycles8.

RQ3: COLEMAN using FRRMAB outperforms RETECS using ANN regarding NAPFD, RFTC
and NTR indicators, independently of the reward functions and budgets investigated. Regarding
APFDc, both approaches present similar results. Besides, with respect to the execution time,
FRRMAB is more stable, that is, adapts better to deal with peak of faults.

4.7 CONCLUDING REMARKS

This chapter presented COLEMAN, an approach to deal with the TCPCI problem. COLEMAN is

based on MAB with combinatorial and volatile characteristics to dynamically obtain an adequate

prioritized test suite for each CI cycle (commit) using historical failure data of test cases. The

approach properly deals with the EvE dilemma and takes into account TCPCI characteristics

such as test case volatility.

We evaluated our approach concerning three time budgets: 10%, 50%, and 80%; with

five MAB policies: FRRMAB, UCB, ε-Greedy, Greedy, and Random; and compared it against

an RL-based approach from literature, named RETECS [90]. The results show that FRRMAB
policy outperforms the other policies with both reward functions. In most cases, our approach

outperforms RETECS in terms of NAPFD, NTR, and earlier fault detection (RFTC). It also

does not present great variations in the prioritization time, and does not require any additional

information. Regarding APFDc, the obtained values are competitive with RETECS.

Our approach spends, in the worst case, less than one second to prioritize a test suite,

and the obtained results in many aspects investigated show high performance. Then, we can

conclude that COLEMAN contributes efficiently and effectively to address the TCPCI problem.

Due to the promising results observed in this chapter, we explored COLEMAN against

other approaches, such as a search-based approach (Appendix C) and a deterministic one

(Appendix D), as well as in the TCPCI context for HCS (Appendices E and F). In the next chapter,

we provide a summary of the results presented in these papers.

8See supplementary material about characteristics of this system.

55

5 OTHER EVALUATIONS

This chapter presents a summary of the results obtained in the other evaluations conducted with

COLEMAN. Section 5.1 presents an evaluation against a search-based approach, and Section 5.2

against to a deterministic one. Section 5.3 presents the results from two studies conducted in

the HCS context. We derived Table 5.1 containing for each study a summary of the approaches,

evaluation metrics, and reward functions used.

Table 5.1: Summary of the main characteristics of the results obtained in the other evaluations.

This table presents the approaches, evaluation metrics, and reward functions used in the papers published. The first

column contains the reference of the study, followed by whether the publication is in the HCS testing. Columns 3 to

7 show the Approaches Under Evaluation of each study, where “COL.” means COLEMAN, “RET.” RETECS, “Ran.”

Random, “GA” Genetic Algorithm, and “Det.” Deterministic. Columns 8 to 13 show the Evaluation Metric used for

prioritization assessment, where “NAPFD” means Normalized Average Percentage of Faults Detected, “APFDc”

Average Percentage of Faults Detected with cost consideration, “RFTC” Rank of the Failing Test Cases, “NTR”

Normalized Time Reduction, “PR” Prioritization Time, and “RMSE” Root-Mean-Square Error. Columns 14 to 15

show the used Reward Function (see Section 4.3.1). The last column shows the number of systems evaluated and, if

available, the number of variants in parenthesis.

Ref. HCS Approaches Under Evaluation Evaluation Metric Reward Function N# Systems

COL. RET. Ran. GA Det. NAPFD APFDc RFTC NTR PR RMSE RNFail TimeRank (Variants)

[72] - � - - � - � - - - � � � � 7 (0)

[77] - � � - - � � � � � � � � � 12 (0)

[64] � � - � - - � - � � � - � 1 (31)

[65] � � � � - � � - - � � � - � 2 (63)

5.1 COMPARISON WITH A SEARCH-BASED APPROACH

Although search-based algorithms are not suitable to the TCPCI context because it takes too

long to execute, this kind of approach can find near-optimal solutions. Considering this fact, we

analysed the trade-offs of the COLEMAN solutions in comparison with the near-optimal solutions

generated by a GA [72]. The full text is available in Appendix C.

In this study, for the GA algorithm, we represent each individual in the population as a

possible prioritization for the test case available in a commit. The fitness function is based on

the NAPFD metric. Besides that, the test results are already known by the algorithm. Then, we

observe the TCPCI problem’s difficulty in obtaining a feasible solution from the search space.

Regarding the evaluation process, we used seven large-scale real-world software systems

and three different test budgets, considering that the time available for a CI cycle corresponds to

respectively 10%, 50% and 80% of the total time required to execute the test case set available

for that cycle. We used three measures that better fit with time constraints: NAPFD, Root-Mean-
Square Error (RMSE), and Prioritization Time. RMSE metric was introduced in this study and

allows us to observe the distance between the solutions provided by COLEMAN and GA, that is,

it shows the accuracy of an algorithm.

The outcomes show that COLEMAN provides solutions that are near (or very near)

to the GA solutions in ≈ 90% of the cases, considering all systems, budgets, and both reward

functions. Concerning the prioritization time, the approach spends less than one second in the

worst case, even in challenging systems for the TCPCI problem, while GA spends in the worst

56

case around 31 seconds. This allows us to observe how complex the search space of the TCPCI
problem is, in which even knowing the test results in advance, GA takes a considerable time to

find reasonable solutions.

In this way, the main contribution of this paper is to conduct a trade-off analysis of our

online learning approach COLEMAN. The analysis points out research directions for TCPCI
considering the drawbacks and strengths found. Besides that, we provide supplementary material

with the source code of the Genetic Algorithm, additional analysis, and results. This replication

package allows future investigations [73].

5.2 COMPARISON WITH A DETERMINISTIC APPROACH

In contrast with the study presented in Section 5.1, we compared the solutions produced by

two approaches considered as state-of-the-art in TCPCI, COLEMAN and RETECS, against

the solutions produced by a deterministic approach [77]. The evaluation aimed to observe

how far the solutions produced by these approaches are from optimal solutions, as well as to

provide a guideline for future research, benchmark, and to present the limitations and room

for improvements. In addition to this, we made available a replication package containing

supplementary material [78]. The full text is available in Appendix D.

The conducted evaluation considered six evaluation measures to observe the results

in different perspectives: fault detection effectiveness (NAPFD), fault detection effectiveness

with cost consideration (APFDc), early fault detection (RFTC), test time reduction (NTR),

prioritization time, and accuracy (RMSE). For this evaluation, we considered 12 real-world

software systems, three time budgets (10%, 50%, and 80%), and two reward functions (RNFail
and TimeRank).

Considering the NAPFD values, we observed that COLEMAN presents better perfor-

mance than RETECS. Using TimeRank, COLEMAN obtained results that are equivalent to

optimal in 42% of the cases. This percentage increases in the presence of less restrictive budgets,

reaching 58% of the cases in the time budget of 80%. Besides that, the learning-based approaches

have the worst performance in systems with a high test case volatility and a few number of CI
cycles. One important finding is related to the failure distribution, in which a high number of

failures distributed over many test cases makes the TCP task harder.

Regarding APFDc values, COLEMAN outperforms RETECS in most cases. However,

RETECS has a better performance in the most restrictive budget of 10%. The analysis of APFDc
using test case duration as cost leads to results similar to those obtained in the NAPFD analysis.

In general, the APFDc values are close to the optimal, and the more significant differences are

obtained to the same systems.

Considering RFTC and NTR values, COLEMAN using TimeRank obtained performance

equivalent to the optimal results in ≈ 70% of the cases. Moreover, COLEMAN is better than

RETECS in all cases. The RFTC and NTR metrics provided an interesting finding. Even using

a deterministic approach, sometimes, the test time reduction is low due to peaks of failures,

failure distributed across the test cases, and variation of the failing test cases over CI cycles.

Nevertheless, COLEMAN reached high percentages of reductions for systems, considered hard

cases for prioritizing.

Although the learning-based approaches produced good results, the prioritization time

show us whether they are applicable in real scenarios. Overall, they spend less than one second

to execute. Consequently, both approaches are applicable.

The last analysis considered the RMSE values. In this analysis, we observed that a

high test case volatility combined with an increasing number of failures may be a limitation for

57

RETECS. Based on the RMSE values found, we defined an scale. Based on the proposed scale,

we observed that COLEMAN finds reasonable solutions in 92% of the cases and RETECS in

75%. The less restrictive the budget the greater the number of reasonable solutions found by both

approaches. We can then conclude that the solutions generated are very close to the optimal ones.

Considering the facts aforementioned, COLEMAN outperformed RETECS in the great

majority of the cases, considering all systems, budgets, and measures. Furthermore, both

approaches are applicable in real scenarios and spending negligible time to execute. Both

approaches allow reducing the CI cycle’s time cost.

5.3 APPLICATION FOR HCS

HCS testing is usually costly, as a significant number of variants need to be tested. This becomes

more problematic when CI practices are adopted. To address CI challenges, COLEMAN has

been successfully applied. However, our approach does not consider HCS particularities such as

the volatility of variants, in which some variants can be included/discontinued along with CI
cycles. In order to allow the applicability of our approach in the HCS context, as well as for

learning-based approaches designed for TCPCI, we conducted two studies [64, 65] (the second

study [65] is an extension). The full texts are available in Appendices E and F. We made available

the replication packages containing supplementary materials from both studies [66, 67].

In such studies, we introduced two strategies for applying learning-based approaches for

TCP in the CI of HCS: the VTS that relies on the test set specific for each variant; and the WTS
that prioritizes the test set composed by the union of the test cases of all variants.

Both strategies were applied to two real-world HCSs, considering three test budgets

(10%, 50%, and 80%), and evaluated regarding some indicators such as early fault detection,

time reduction, and accuracy. We used four approaches in the evaluation: COLEMAN, RETECS,

Random, and a deterministic approach. The main idea is to determine how far the solutions

produced by the strategies using each one of the approaches are from the optimal solutions

produced by the deterministic approach.

The outcomes show the strategies using COLEMAN are very cost-effective and better

than the other approaches, in which it produces more than 92% of the cases reasonable solutions

that are near to the optimal solutions obtained by a deterministic approach. Regarding the

prioritization time, both strategies spend less than one second. WTS provides better results in

the less restrictive budgets, and VTS the opposite. The main advantage of WTS is that if a new

variant appears, it can be tested based on the historical information collected from the cases

where there is a history of failed test cases reused among variants. In this way, mitigating the

problem of beginning without knowledge (learning) and adapting to changes in the execution

environment, either by test case volatility or variant volatility.

58

6 CONCLUSION

This work investigates the use of Multi-Armed Bandit to address the TCPCI problem. Firstly, we

performed a systematic mapping on this subject to obtain a general overview, and to identify

challenges faced in this context, gaps, and trends to guide our work and the research community.

Based on the findings observed in the mapping, we proposed a MAB-based approach, namely

COLEMAN (Combinatorial vOlatiLE Multi-Armed BANdiT).

COLEMAN formulates the TCPCI problem as a MAB problem. Such a formulation

considers that a test case is an arm to be pulled. However, due to the dynamic nature of our problem,

two MAB variations are needed: combinatorial and volatile. At each turn (commit/build/CI
cycle), the combinatorial variation allows a MAB policy to select all arms (test cases) available

instead of one. The prioritization is defined based on the order in which the policy selects the

arms. On the other hand, the volatile variation aims to figure out the test case volatility. For this,

only the test set available at each commit is used by the policy.

The proposed approach is lightweight, that is, it needs only the historical failure data to

prioritize a test case set. Moreover, no further detail about the system under test is needed, such

as code coverage or code instrumentation. COLEMAN acts in the CI pipeline after a successful

build and before test execution during the testing stage, prioritizing the test case set available.

COLEMAN learns with feedback obtained from past prioritizations performed (online learning).

Moreover, COLEMAN is a generic MAB-based approach, that is, we can use different MAB
policies and reward functions.

To figure out the COLEMAN applicability in real scenarios, we performed five studies

for assessing COLEMAN feasibility. In these studies, we considered a broad number of real-world

software systems, quality indicators, different configuration settings, three time budgets, and

different domains such as HCS context. COLEMAN was compared against different approaches

such as RETECS, the state-of-the-art approach, search-based and deterministic approaches. The

outcomes were extracted from the solutions analysis obtained in ≈ 42 thousand executions,

disregarding parameter settings.

Comparing COLEMAN against RETECS, our approach presents better performance

in the following indicators: NAPFD in ≈ 82% of the cases, NTR in ≈ 73%, and RFTC in

100%; independently of the reward functions and budgets investigated. On the other hand, both

approaches present similar results considering APFDc metric. In relation to the execution time,

COLEMAN is more stable, that is, adapts better to deal with peak of faults.

Furthermore, comparing COLEMAN solutions with the solutions provided by a GA
approach, it provides near-optimal solutions in ≈ 90% of the cases. Considering the execution

time and the worst case, COLEMAN spends less than one second to prioritize a test suite;

meanwhile, GA spends ≈ 31 seconds.

Finally, in comparison with a deterministic approach, COLEMAN obtained reasonable

solutions in 92% of the cases and RETECS in 75%. Both approaches generated solutions that are

very close to the optimal ones. Our findings allowed us to define guidelines for applying the

approaches, identify approaches’ limitations and improvements, and benchmark construction.

Regarding guidelines for application, COLEMAN is indicated in the great majority

of cases, mainly for the systems that can be considered hard cases. On the other hand,

RETECS is indicated in a restrictive budget scenario regarding early fault detection with cost

consideration. Both approaches obtained more reasonable solutions using the reward function

59

RNFail. Considering accuracy, COLEMAN obtained best performance using TimeRank, and

RETECS using RNFail.
In relation to the limitations and improvements, both approaches have some limitations

to learn with few historical test data. Such a limitation is related to systems with a small

number of CI cycles, peaks of failures, and a significant test case set, in which many failures

are distributed over many test cases. Based on this drawback, a possible research direction is to

design a hybrid approach that uses an algorithm with good performance with little historical data.

Such an algorithm can be used to overcome the limitation in the first commits, and after enough

information, RETECS or COLEMAN can be used.

Regarding benchmark construction, challenging prioritization cases are related to

systems with high volatility regarding the number of test cases, peaks of failures, and the high

number of failures distributed over many test cases. On the other hand, time reduction is more

challenging in systems with low failure distribution over the test cases, and that present a small

number of peaks in a few CI cycles, and failing test cases varying in each CI cycle.

Considering the evaluation conducted, we can accept the main hypothesis of this work

presented in the introduction. The results endorse the use of a MAB-based approach to address

the TCPCI problem, contributing efficiently and effectively.

6.1 LIMITATIONS

This section presents the limitations of the proposed approach. These limitations will be addressed

in future work.

We evaluated COLEMAN with two reward functions to provide a fair comparison against

RETECS. We have not explored other reward functions [87, 88, 98, 101] that could provide

better results. Moreover, we evaluated our approach against a few approaches, but there are other

approaches in the literature. A comprehensive evaluation is required to provide a better analysis

of our approach.

COLEMAN is only applied in a controlled experiment scenario. The effectiveness of

our approach is unclear, since we have not performed experiments in an industrial scenario.

Our approach addressed a few CI particularities. We have not explored other CI testing

problems, such as Flaky Tests and UI testing. Besides that, the systems evaluated do not

present the situation with multiple test requests (multiple commits). Another CI particularity not

addressed is concerning the parallel test execution.

As the resources in CI environments are limited and an approach needs to spend little

time to prioritize the test set, a limitation of our approach is related to the use of the Graphics

Processing Unit. We did not evaluate this kind of strategy with COLEMAN. Such a strategy

could speed up our approach regarding the prioritization process.

COLEMAN is based on historical information. A drawback regarding this kind of

approach is the impact when we have a lack of data. Furthermore, COLEMAN uses only historical

failure data to prioritize the most prominent tests, and other information related to tests can be

used to prioritize them. For instance, test case duration and detection when a test case is change.

6.2 CONTRIBUTIONS

This work has the main following contributions:

• A systematic mapping about Test Case Prioritization in Continuous Integration envi-
ronments;

60

• A model-free and lightweight MAB-based approach capable of automate the test case

prioritization in CI environments, while learns with previous prioritization;

• An in-depth investigation of Multi-Armed Bandit in the Test Case Prioritization in
Continuous Integration environments context considering real-world software systems;

• Comparison against a search-based algorithm in the Test Case Prioritization in Continu-
ous Integration environments context;

• Learning-based strategies for Test Case Prioritization in Continuous Integration of

Highly-Configurable Software;

• New quality indicators, benchmark, and guidelines for future research in the Test Case
Prioritization in Continuous Integration environments;

• Supplementary Material for all studies conducted:

– Jackson A Prado Lima and Silvia R Vergilio. Supplementary Material - Test Case

Prioritization in Continuous Integration Environments: A Mapping Study. DOI:

10.17605/OSF.IO/ZFE64, 2020 [74].

– Jackson A. Prado Lima and Silvia R. Vergilio. A Multi-Armed Bandit Ap-

proach for Test Case Prioritization in Continuous Integration environments. DOI:

10.17605/OSF.IO/WMCBT, 2020 [70].

– Jackson A. Prado Lima and Silvia R. Vergilio. Supplementary Material - Multi-

Armed Bandit Test Case Prioritization in Continuous Integration Environments: A

Trade-off Analysis. DOI: 10.17605/OSF.IO/J67EB, 2020 [73].

– Jackson A. Prado Lima and Silvia R. Vergilio. Supplementary Mate-

rial - An Evaluation of Ranking-to-Learn Approaches for Test Case Prior-

itization in Continuous Integration. https://osf.io/x96fk/?view_only=
020b612cbdd84fa38d6a974743f9d823, 2021 [78].

– Jackson A. Prado Lima, Willian D. F. Mendonça, Wesley K. G. Assunção,

and Silvia R. Vergilio. Supplementary material - learning-based prioritization

of test cases in continuous integration of highly-configurable software. DOI:

10.17605/OSF.IO/5CD8M, 2020 [66].

– Jackson A. Prado Lima, Willian D. F. Mendonça, Wesley K. G. As-

sunção, and Silvia R. Vergilio. Supplementary material - cost-effective

learning-based strategies for test case prioritization in continuous integra-

tion of highly-configurable software. https://osf.io/z3r2e/?view_only=
db9ab0ed2b8e4289b22d4ad0c83c13c1, 2021 [67].

6.3 FUTURE WORK

Although we had good results, there is space for improvements. The next direction for future

research includes the application of COLEMAN in other systems and possibly in an industrial

scenario (case study). Moreover, the study of other policies to consider the context surrounding

each CI cycle can give us relevant information to improve the prioritization. For instance, the

test case duration can be used to execute the maximum of tests in a given time budget. Such

kinds of policies are related to Contextual Multi-Armed Bandit (CMAB).

61

We intend to evaluate the scalability of our approach and provide a relationship between

the number of test cases and the prioritization time. Besides that, we intend to refine our approach

concerning an ideal configuration by using irace [52] as the tuner. Furthermore, compare

COLEMAN against to other techniques and reward functions available in the literature. Another

work to be conducted is to provide COLEMAN as an API or an add-on to allow the use with the

current CI tools available.

Regarding HCS context, we should conduct new evaluations applying the strategies

proposed for other HCSs from different domains and with different number of variants. We also

intend to apply the strategies using COLEMAN with other policies, as well as other features such

as test coverage, testers’ preference, test case duration and, to consider in how many variants a

test case fails. Specific metrics to the variants could be explored.

A possible research direction is to investigate ways to adapt or select a HCS strategy

according to some characteristics of the systems, for instance, related to the failure distribution.

To this end, meta-learning techniques could be used.

Finally, we intend to provide COLEMAN as an-open source software to allow the

research community to adopt, adapt, and improve the current study.

62

REFERENCES

[1] Venkatachalam Anantharam, Pravin Varaiya, and Jean Walrand. Asymptotically Efficient

Allocation Rules for the Multiarmed Bandit Problem with Multiple Plays-Part I: I.I.D.

Rewards. IEEE Transactions on Automatic Control, 32(11):968–976, November 1987.

[2] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time Analysis of the Multiarmed

Bandit Problem. Machine Learning, 47(2):235–256, May 2002.

[3] Maral Azizi. A Tag-based Recommender System for Regression Test Case Prioritization.

In Proceedings of the IEEE International Conference on Software Testing, Verification
and Validation Workshops, ICSTW, pages 146–157, 2021.

[4] Moritz Beller, Georgios Gousios, and Andy Zaidman. TravisTorrent: Synthesizing Travis

CI and GitHub for Full-Stack Research on Continuous Integration. In Proceedings of the
14th working conference on mining software repositories, 2017.

[5] José Manuel Benitez, Juan Luis Castro, and Ignacio Requena. Are Artificial Neural

Networks Black Boxes? Transactions on Neural Networks, 8(5):1156–1164, September

1997.

[6] Antonia Bertolino, Antonio Guerriero, Breno Miranda, Roberto Pietrantuono, and Stefano

Russo. Learning-to-Rank vs Ranking-to-Learn: Strategies for Regression Testing in

Continuous Integration. In 42nd International Conference on Software Engineering,

ICSE’20, New York, NY, USA, 2020. ACM.

[7] Zahy Bnaya, Rami Puzis, Roni Stern, and Ariel Felner. Volatile Multi-Armed Bandits

for Guaranteed Targeted Social Crawling. In Proceeding of Workshops at the 27th AAAI
Conference on Artificial Intelligence (Late-Breaking Developments), pages 8–10, 2013.

[8] Nataniel P. Borges, Jr., Maria Gómez, and Andreas Zeller. Guiding app testing with

mined interaction models. In Proceedings of the 5th International Conference on Mobile
Software Engineering and Systems, MOBILESoft’18, pages 133–143. ACM, 2018.

[9] Nataniel P. Borges Jr., Jenny Hotzkow, and Andreas Zeller. Droidmate-2: A platform for

android test generation. In Proceedings of the 33rd International Conference on Automated
Software Engineering, ASE, pages 916–919. ACM, 2018.

[10] Sébastien Bubeck and Nicolò et al. Cesa-Bianchi. Regret Analysis of Stochastic and

Nonstochastic Multi-armed Bandit Problems. Foundations and Trends® in Machine
Learning, 5(1):1–122, 2012.

[11] Buildbot. The Continuous Integration Framework. https://buildbot.net. Accessed:

2018-01-22.

[12] Edmund K. Burke, Michel Gendreau, Matthew Hyde, Graham Kendall, Gabriela Ochoa,

Ender Özcan, and Rong Qu. Hyper-heuristics: A survey of the state of the art. Journal of
the Operational Research Society, 64(12):1695–1724, 2013.

63

[13] Benjamin Busjaeger and Tao Xie. Learning for Test Prioritization: An Industrial Case

Study. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2016, pages 975–980, New York, NY, USA,

2016. ACM.

[14] Cagatay Catal and Deepti Mishra. Test case prioritization: a systematic mapping study.

Software Quality Journal, 21(3):445–478, Sep 2013.

[15] Ahmet Celik, Alex Knaust, Aleksandar Milicevic, and Milos Gligoric. Build System

with Lazy Retrieval for Java Projects. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE 2016, pages

643–654, New York, NY, USA, 2016. ACM.

[16] Younghwan Cho, Jeongho Kim, and Eunseok Lee. History-Based Test Case Prioritization

for Failure Information. In Proceedings of the 23rd Asia-Pacific Software Engineering
Conference, APSEC, pages 385–388, December 2016.

[17] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A fast and elitist

multiobjective genetic algorithm: NSGA-II. Transactions on Evolutionary Computation,

6(2):182–197, 2002.

[18] Christian Degott, Nataniel P. Borges Jr., and Andreas Zeller. Learning User Interface

Element Interactions. In Proceedings of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA, pages 296–306, New York, NY, USA, 2019.

ACM.

[19] Hyunsook Do, Siavash Mirarab, Ladan Tahvildari, and Gregg Rothermel. An Empirical

Study of the Effect of Time Constraints on the Cost-benefits of Regression Testing. In

Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, SIGSOFT ’08/FSE-16, pages 71–82, New York, NY, USA, 2008.

ACM.

[20] Paul M Duvall, Steve Matyas, and Andrew Glover. Continuous integration: improving
software quality and reducing risk. Pearson Education, 2007.

[21] Sebastian Elbaum, Alexey Malishevsky, and Gregg Rothermel. Incorporating varying

test costs and fault severities into test case prioritization. In Proceedings of the 23rd
International Conference on Software Engineering, pages 329–338, May 2001.

[22] Sebastian Elbaum, Andrew McLaughlin, and John Penix. The Google Dataset of Testing

Results, 2014.

[23] Sebastian Elbaum, Gregg Rothermel, and John Penix. Techniques for Improving Regression

Testing in Continuous Integration Development Environments. In Proceedings of the
22Nd ACM SIGSOFT International Symposium on Foundations of Software Engineering,

FSE 2014, pages 235–245, New York, NY, USA, 2014. ACM.

[24] Hamed Esfahani, Jonas Fietz, Qi Ke, Alexei Kolomiets, Erica Lan, Erik Mavrinac, Wolfram

Schulte, Newton Sanches, and Srikanth Kandula. CloudBuild: Microsoft’s distributed and

caching build service. In Proceedings of the 38th International Conference on Software
Engineering Companion, pages 11–20. ACM, 2016.

64

[25] Thiago do Nascimento Ferreira, Josiel Neumann Kuk, Aurora Pozo, and Silvia Regina

Vergilio. Product Selection Based on Upper Confidence Bound MOEA/D-DRA for

Testing Software Product Lines. In Congress on Evolutionary Computation, CEC, pages

4135–4142. IEEE, July 2016.

[26] Thiago do Nascimento Ferreira, Jackson Antonio do Prado Lima, Andrei Strickler,

Josiel Neumann Kuk, Silvia Regina Vergilio, and Aurora Pozo. Hyper-Heuristic Based

Product Selection for Software Product Line Testing. Computational Intelligence Magazine,

12(2):34–45, May 2017.

[27] Álvaro Fialho. Adaptive operator selection for optimization. PhD thesis, Université Paris

Sud-Paris XI, 2010.

[28] Helson L. Jakubovski Filho, Jackson A. Prado Lima, and Silvia R. Vergilio. Automatic

Generation of Search-Based Algorithms Applied to the Feature Testing of Software

Product Lines. In Proceedings of the 31st Brazilian Symposium on Software Engineering,

SBES’17, page 114–123, New York, NY, USA, 2017. ACM.

[29] M. Friedman. A comparison of alternative tests of significance for the problem of m

rankings. The Annals of Mathematical Statistics, 11(1):86–92, 1940.

[30] Alessio Gambi, Zabolotnyi Rostyslav, and Schahram Dustdar. Improving Cloud-based

Continuous Integration Environments. In Proceedings of the 37th International Conference
on Software Engineering - Volume 2, ICSE ’15, pages 797–798, Piscataway, NJ, USA,

2015. IEEE Press.

[31] GoCD. Open Source Continuous Delivery and Release Automation Server. https:
//www.gocd.org. Accessed: 2018-01-22.

[32] Georgios Gousios. The ghtorrent dataset and tool suite. In Proceedings of the 10th Working
Conference on Mining Software Repositories, MSR’13, pages 233–236, Piscataway, NJ,

USA, 2013. IEEE Press.

[33] Giovani Guizzo, Mosab Bazargani, Matheus Paixao, and John H. Drake. A Hyper-heuristic

for Multi-objective Integration and Test Ordering in Google Guava. In Proceedings of the
International Symposium on Search Based Software Engineering, SSBSE, pages 168–174.

Springer, 2017.

[34] Giovani Guizzo, Gian Mauricio Fritsche, Silvia Regina Vergilio, and Aurora

Trinidad Ramirez Pozo. A Hyper-Heuristic for the Multi-Objective Integration and

Test Order Problem. In Proceedings of the Annual Conference on Genetic and Evo-
lutionary Computation, GECCO’15, pages 1343–1350, New York, NY, USA, 2015.

ACM.

[35] Giovani Guizzo, Silvia R. Vergilio, Aurora T.R. Pozo, and Gian M. Fritsche. A multi-

objective and evolutionary hyper-heuristic applied to the Integration and Test Order

Problem. Applied Soft Computing, 56:331–344, 2017.

[36] Giovani Guizzo, Silvia Regina Vergilio, and Aurora Trinidad Ramirez Pozo. Evaluating a

Multi-objective Hyper-Heuristic for the Integration and Test Order Problem. In Brazilian
Conference on Intelligent Systems (BRACIS), pages 1–6, Nov 2015.

65

[37] Alireza Haghighatkhah, Mika Mäntylä, Markku Oivo, and Pasi Kuvaja. Test prioritization

in continuous integration environments. Journal of Systems and Software, 146:80–98,

2018.

[38] Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. Mining frequent patterns without

candidate generation: A frequent-pattern tree approach. Data Mining and Knowledge
Discovery, 8(1):53–87, Jan 2004.

[39] Christopher Henard, Mike Papadakis, Mark Harman, Yue Jia, and Yves Le Traon.

Comparing White-box and Black-box Test Prioritization. In Proceedings of the 38th
International Conference on Software Engineering, ICSE ’16, pages 523–534, New York,

NY, USA, 2016. ACM.

[40] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig. Usage,

Costs, and Benefits of Continuous Integration in Open-source Projects. In Proceedings of
the 31st IEEE/ACM International Conference on Automated Software Engineering, ASE

2016, pages 426–437, New York, NY, USA, 2016. ACM.

[41] Integrity. Continuous Integration Server. https://integrity.github.io. Accessed:

2018-01-22.

[42] Jenkins. https://wiki.jenkins-ci.org/display/JENKINS/Home. Accessed: 2018-

01-22.

[43] Bo Jiang and Wing Kwong Chan. Testing and Debugging in Continuous Integration with

Budget Quotas on Test Executions. In Proceedings of the IEEE International Conference
on Software Quality, Reliability and Security, QRS, pages 439–447. IEEE, August 2016.

[44] Muhammad Khatibsyarbini, Mohd Adham Isa, Dayang N.A. Jawawi, and Rooster Tumeng.

Test case prioritization approaches in regression testing: A systematic literature review.

Information and Software Technology, 93:74–93, 2018.

[45] Jung-Min Kim and Adam Porter. A History-based Test Prioritization Technique for

Regression Testing in Resource Constrained Environments. In Proceedings of the 24th
International Conference on Software Engineering, ICSE ’02, pages 119–129, New York,

NY, USA, 2002. ACM.

[46] William H. Kruskal and W. Allen Wallis. Use of Ranks in One-Criterion Variance Analysis.

Journal of the American Statistical Association, 47(260):583–621, 1952.

[47] Volodymyr Kuleshov and Doina Precup. Algorithms for multi-armed bandit problems.

arXiv preprint arXiv:1402.6028, 2014.

[48] Marco Leppänen, Simo Mäkinen, Max Pagels, Veli-Pekka Eloranta, Juha Itkonen, Mika V.

Mäntylä, and Tomi Männistö. The highways and country roads to continuous deployment.

IEEE Software, 32(2):64–72, Mar 2015.

[49] Ke Li, Kalyanmoy Deb, Qingfu Zhang, and Sam Kwong. An Evolutionary Many-

Objective Optimization Algorithm Based on Dominance and Decomposition. Transactions
on Evolutionary Computation, 19(5):694–716, Oct 2015.

66

[50] Ke Li, Álvaro Fialho, Sam Kwong, and Qingfu Zhang. Adaptive operator selection with

bandits for a multiobjective evolutionary algorithm based on decomposition. Evolutionary
Computation, IEEE Transactions on, 18(1):114–130, 2014.

[51] Jingjing Liang, Sebastian Elbaum, and Gregg Rothermel. Redefining Prioritization: Con-

tinuous Prioritization for Continuous Integration. In Proceedings of the 40th International
Conference on Software Engineering, ICSE ’18, pages 688–698, New York, NY, USA,

2018. ACM.

[52] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Thomas Stützle,

and Mauro Birattari. The irace package: Iterated Racing for Automatic Algorithm

Configuration. Operations Research Perspectives, 3:43–58, 2016.

[53] Mashael Maashi, Ender Özcan, and Graham Kendall. A multi-objective hyper-heuristic

based on choice function. Expert Systems with Applications, 41(9):4475–4493, 2014.

[54] Henry B Mann and Donald R Whitney. On a test of whether one of two random variables

is stochastically larger than the other. The annals of mathematical statistics, pages 50–60,

1947.

[55] Dusica Marijan. Multi-perspective Regression Test Prioritization for Time-Constrained

Environments. In Proceedings of the 2015 IEEE International Conference on Software
Quality, Reliability and Security, QRS ’15, pages 157–162. IEEE Computer Society, 2015.

[56] Dusica Marijan, Arnaud Gotlieb, and Sagar Sen. Test Case Prioritization for Continuous

Regression Testing: An Industrial Case Study. In 2013 IEEE International Conference on
Software Maintenance, pages 540–543, September 2013.

[57] Dusica Marijan and Marius Liaaen. Effect of Time Window on the Performance of

Continuous Regression Testing. In Proceedings of the IEEE International Conference on
Software Maintenance and Evolution, ICSME, pages 568–571. IEEE, October 2016.

[58] Dusica Marijan, Marius Liaaen, Arnaud Gotlieb, Sagar Sen, and Carlos Ieva. TITAN:

Test Suite Optimization for Highly Configurable Software. In 2017 IEEE International
Conference on Software Testing, Verification and Validation (ICST), pages 524–531,

March 2017.

[59] Dusica Marijan, Marius Liaaen, and Sagar Sen. DevOps Improvements for Reduced Cycle

Times with Integrated Test Optimizations for Continuous Integration. In Proceedings of
the IEEE 42nd Annual Computer Software and Applications Conference, volume 01 of

COMPSAC, pages 22–27. IEEE, July 2018.

[60] Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell, Rob Siemborski,

and John Micco. Taming Google-scale Continuous Testing. In Proceedings of the 39th
International Conference on Software Engineering: Software Engineering in Practice
Track, ICSE-SEIP ’17, pages 233–242, Piscataway, NJ, USA, 2017. IEEE Press.

[61] David Moher, Alessandro Liberati, Jennifer Tetzlaff, and Douglas G Altman. Preferred

Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement.

BMJ, 339, 2009.

67

[62] Armin Najafi, Weiyi Shang, and Peter C. Rigby. Improving test effectiveness using

test executions history: An industrial experience report. In Proceedings of the 41st
International Conference on Software Engineering: Software Engineering in Practice,

ICSE-SEIP, pages 213–222, Piscataway, NJ, USA, 2019. IEEE Press.

[63] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson. Systematic mapping studies in

software engineering. In Proceedings of the 12th International Conference on Evaluation
and Assessment in Software Engineering, EASE’08, pages 68–77, Swindon, UK, 2008.

BCS Learning & Development Ltd.

[64] Jackson A. Prado Lima, Willian D. F. Mendonça, Silvia R. Vergilio, and Wesley K. G.

Assunção. Learning-based prioritization of test cases in continuous integration of highly-

configurable software. In Proceedings of the 24th ACM Conference on Systems and
Software Product Line: Volume A-Volume A, pages 1–11, 2020.

[65] Jackson A. Prado Lima, Willian D. F. Mendonça, Silvia R. Vergilio, and Wesley K. G.

Assunção. Cost-effective learning-based strategies for test case prioritization in Continuous

Integration of Highly-Configurable Software. Empirical Software Engineering, 2021.

Accepted.

[66] Jackson A. Prado Lima, Willian D. F. Mendonça, Wesley K. G. Assunção, and Silvia R.

Vergilio. Supplementary material - learning-based prioritization of test cases in continuous

integration of highly-configurable software. DOI: 10.17605/OSF.IO/5CD8M, 2020.

[67] Jackson A. Prado Lima, Willian D. F. Mendonça, Wesley K. G. Assunção, and Silvia R.

Vergilio. Supplementary material - cost-effective learning-based strategies for test

case prioritization in continuous integration of highly-configurable software. https:
//osf.io/z3r2e/?view_only=db9ab0ed2b8e4289b22d4ad0c83c13c1, 2021.

[68] Jackson A. Prado Lima and Silvia R. Vergilio. A Multi-Objective Optimization Approach

for Selection of Second Order Mutant Generation Strategies. In Proceedings of the 2nd
Brazilian Symposium on Systematic and Automated Software Testing, SAST. ACM, 2017.

[69] Jackson A. Prado Lima and Silvia R. Vergilio. A systematic mapping study on higher

order mutation testing. Journal of Systems and Software, 154:92–109, 2019.

[70] Jackson A. Prado Lima and Silvia R. Vergilio. A Multi-Armed Bandit Ap-

proach for Test Case Prioritization in Continuous Integration environments. DOI:

10.17605/OSF.IO/WMCBT, 2020.

[71] Jackson A. Prado Lima and Silvia R. Vergilio. A multi-armed bandit approach for test case

prioritization in continuous integration environments. IEEE Transactions on Software
Engineering, page 12, 2020.

[72] Jackson A. Prado Lima and Silvia R. Vergilio. Multi-armed bandit test case prioritization

in continuous integration environments: A trade-off analysis. In Proceedings of the 5th
Brazilian Symposium on Systematic and Automated Software Testing, SAST’20. ACM,

2020.

[73] Jackson A. Prado Lima and Silvia R. Vergilio. Supplementary Material - Multi-Armed

Bandit Test Case Prioritization in Continuous Integration Environments: A Trade-off

Analysis. DOI: 10.17605/OSF.IO/J67EB, 2020.

68

[74] Jackson A Prado Lima and Silvia R Vergilio. Supplementary Material - Test Case

Prioritization in Continuous Integration Environments: A Mapping Study. DOI:

10.17605/OSF.IO/ZFE64, 2020.

[75] Jackson A. Prado Lima and Silvia R. Vergilio. Test case prioritization in continuous

integration environments: A systematic mapping study. Information and Software
Technology, 121:106268, 2020.

[76] Jackson A. Prado Lima and Silvia R. Vergilio. A Multi-Armed Bandit Approach for

Test Case Prioritization in Continuous Integration environments. European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), Aug 2021. Journal First Track. Presentation.

[77] Jackson A. Prado Lima and Silvia R. Vergilio. An Evaluation of Ranking-to-Learn

Approaches for Test Case Prioritization in Continuous Integration. Journal of Software
Engineering Research and Development, 2021. Submitted.

[78] Jackson A. Prado Lima and Silvia R. Vergilio. Supplementary Material - An Evaluation

of Ranking-to-Learn Approaches for Test Case Prioritization in Continuous Integra-

tion. https://osf.io/x96fk/?view_only=020b612cbdd84fa38d6a974743f9d823,

2021.

[79] Jackson A. Prado Lima and Silvia Regina Vergilio. Comparing low level heuristics

selection methods in a higher-order mutation testing approach. In Proceedings of the IX
Workshop on Search Based Software Engineering, WESB, 2018.

[80] Jackson A. Prado Lima and Silvia Regina Vergilio. Search-Based Higher Order Mutation

Testing: A Mapping Study. In Proceedings of the III Brazilian Symposium on Systematic
and Automated Software Testing, SAST’18, page 87–96, New York, NY, USA, 2018.

Association for Computing Machinery.

[81] Xiao Qu, Myra B. Cohen, and Katherine M. Woolf. Combinatorial Interaction Regression

Testing: A Study of Test Case Generation and Prioritization. In IEEE International
Conference on Software Maintenance, pages 255–264, October 2007.

[82] Herbert Robbins. Some aspects of the sequential design of experiments. In Herbert
Robbins Selected Papers, pages 169–177. Springer, 1985.

[83] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold. Test Case

Prioritization: An Empirical Study. In Proceedings of the IEEE International Conference
on Software Maintenance, ICSM ’99, pages 179–. IEEE Computer Society, 1999.

[84] Gregg Rothermel, Roland J. Untch, and Chengyun Chu. Prioritizing Test Cases For

Regression Testing. IEEE Trans. Softw. Eng., 27(10):929–948, October 2001.

[85] Enrique A. Roza, Jackson A. Prado Lima, Silvia R. Vergilio, and Rogério C. Silva.

Machine Learning Regression Techniques for Test Case Prioritization in Continuous

Integration Environment. International Conference on Software Analysis, Evolution and
Reengineering (SANER), 2021. Approved.

[86] Tony Savor, Mitchell Douglas, Michael Gentili, Laurie Williams, Kent Beck, and Michael

Stumm. Continuous Deployment at Facebook and OANDA. In 2016 IEEE/ACM 38th

69

International Conference on Software Engineering Companion (ICSE-C), pages 21–30,

May 2016.

[87] Ying Shang, Qianyu Li, Yang Yang, and Zheng Li. Occurrence Frequency and All

Historical Failure Information Based Method for TCP in CI. In Proceedings of the
International Conference on Software and System Processes, ICSSP ’20, page 105–114,

New York, NY, USA, 2020. Association for Computing Machinery.

[88] Tingting Shi, Lei Xiao, and Keshou Wu. Reinforcement Learning Based Test Case

Prioritization for Enhancing the Security of Software. In 2020 IEEE 7th International
Conference on Data Science and Advanced Analytics (DSAA), pages 663–672, 2020.

[89] Henrique N. Silva, Jackson A. Prado Lima, Silvia R. Vergilio, and Andre T. Endo. A

Mapping Study on Mutation Testing for Mobile Applications. Software Testing, Verification
and Reliability, page 23, 2021.

[90] Helge Spieker, Arnaud Gotlieb, Dusica Marijan, and Morten Mossige. Reinforcement

Learning for Automatic Test Case Prioritization and Selection in Continuous Integration.

In Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2017, pages 12–22, New York, NY, USA, 2017. ACM.

[91] Andrei Strickler, Jackson A. Prado Lima, Silvia R. Vergilio, and Aurora T.R. Pozo.

Deriving products for variability test of feature models with a hyper-heuristic approach.

Applied Soft Computing, 49:1232–1242, 2016.

[92] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. The
MIT Press, 2011.

[93] Travis CI. Travis CI. https://travis-ci.org. Accessed: 2018-01-22.

[94] Andras Vargha and Harold D. Delaney. A Critique and Improvement of the CL Common

Language Effect Size Statistics of McGraw and Wong. Journal of Educational and
Behavioral Statistics, 25(2):101–132, January 2000.

[95] Christopher John Cornish Hellaby Watkins. Learning from Delayed Rewards. PhD thesis,

King’s College, Cambridge, UK, May 1989.

[96] Wen Wen, Zhongju Yuan, and Yuyu Yuan. Improving RETECS method using FP-Growth

in continuous integration. In Proceedings of the 5th IEEE International Conference on
Cloud Computing and Intelligence Systems, CCIS, pages 636–639. IEEE, Nov 2018.

[97] Woo, Maverick and Cha, Sang Kil and Gottlieb, Samantha and Brumley, David. Scheduling

Black-box Mutational Fuzzing. In Proceedings of the SIGSAC Conference on Computer &
Communications Security, CCS’13, pages 511–522, New York, NY, USA, 2013. ACM.

[98] Zhaolin Wu, Yang Yang, Zheng Li, and Ruilian Zhao. A Time Window Based Rein-

forcement Learning Reward for Test Case Prioritization in Continuous Integration. In

Proceedings of the 11th Asia-Pacific Symposium on Internetware, Internetware ’19, New

York, NY, USA, 2019. Association for Computing Machinery.

[99] Lei Xiao, Huaikou Miao, Tingting Shi, and Yu Hong. LSTM-based deep learning for

spatial–temporal software testing. Distributed and Parallel Databases, 38:687–712, May

2020.

70

[100] Lei Xiao, Huaikou Miao, and Ying Zhong. Test case prioritization and selection technique

in continuous integration development environments: a case study. International Journal
of Engineering & Technology, 7(2.28):332–336, 2018.

[101] Yang Yang, Zheng Li, Liuliu He, and Ruilian Zhao. A systematic study of reward for

reinforcement learning based continuous integration testing. Journal of Systems and
Software, 170:110787, 2020.

[102] Shin Yoo and Mark Harman. Regression Testing Minimization, Selection and Prioritization:

A Survey. Softw. Test. Verif. Reliab., 22(2):67–120, March 2012.

[103] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou, Vladimir Filkov, and Bogdan

Vasilescu. The impact of continuous integration on other software development practices:

A large-scale empirical study. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 60–71, Oct 2017.

[104] Li Zhou. A Survey on Contextual Multi-armed Bandits. CoRR, abs/1508.03326, 2015.

[105] Yuecai Zhu, Emad Shihab, and Peter C. Rigby. Test Re-Prioritization in Continuous

Testing Environments. In Proceedings of the IEEE International Conference on Software
Maintenance and Evolution, ICSME, pages 69–79. IEEE, September 2018.

[106] Eckart Zitzler and Simon Künzli. Indicator-based selection in multiobjective search. In

Proceedings of the Parallel Problem Solving from Nature - PPSN VIII, pages 832–842,

Berlin, Heidelberg, 2004. Springer.

[107] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: improving the strength

pareto evolutionary algorithm. Technical report, Department of Electrical Engineering,

Swiss Federal Institute of Technology, Zurich, Switzerland, 2001.

[108] Barret Zoph and Quoc V. Le. Neural Architecture Search with Reinforcement Learning.

CoRR, abs/1611.01578, 2017.

71

APPENDIX A – TCPCI: A SYSTEMATIC MAPPING STUDY

Test Case Prioritization in Continuous Integration
Environments:

A Systematic Mapping Study

Jackson A. Prado Lima
Department of Informatics

Federal University of Paraná (UFPR)
Curitiba, Paraná, Brazil
japlima@inf.ufpr.br

Silvia R. Vergilio
Department of Informatics

Federal University of Paraná (UFPR)
Curitiba, Paraná, Brazil

silvia@inf.ufpr.br

ABSTRACT
Context: Continuous Integration (CI) environments allow
frequent integration of software changes, making software
evolution more rapid and cost-effective. In such environ-
ments, the regression test plays an important role, as well
as the use of Test Case Prioritization (TCP) techniques. Such
techniques attempt to identify the test case order that max-
imizes certain goals, such as early fault detection. This re-
search subject has been raising interest because some new
challenges are faced in the CI context, as TCP techniques
need to consider time constraints of the CI environments.
Objective: This work presents the results of a systematic
mapping study on Test Case Prioritization in Continuous
Integration environments (TCPCI) that reports the main
characteristics of TCPCI approaches and their evaluation
aspects. Method: The mapping was conducted following
a plan that includes the definition of research questions,
selection criteria and search string, and the selection of
search engines. The search returned 35 primary studies
classified based on the goal and kind of used TCP tech-
nique, addressed CI particularities and testing problems,
and adopted evaluation measures. Results: The results show
a growing interest in this research subject. Most studies
have been published in the last four years. 80% of the ap-
proaches are history-based, that is, are based on the failure
and test execution history. The great majority of studies
report evaluation results by comparing prioritization tech-
niques. The preferred measures are Time and number/per-
centage of Faults Detected. Few studies address CI testing
problems and characteristics, such as parallel execution
and test case volatility. Conclusions: We observed a growing
number of studies in the field. Future work should explore
other information sources such as models and requirements,
as well as CI particularities and testing problems, such as
test case volatility, time constraint, and flaky tests, to solve
existing challenges and offer cost-effective approaches to
the software industry.

KEYWORDS
Software Testing, Continuous Integration, Test Case Priori-
tization

1 INTRODUCTION
With the adoption of the agile paradigm by most software
organizations, we observe a growing interest in Continuous
Integration (CI) environments. Such environments allow
more frequent integration of software changes, making
software evolution more rapid and cost-effective [40]. This
because they automatically support tasks like build process,
test execution, and test results report. The results are used
to resolve problems and locate faults, and rapid feedback is
fundamental to reduce development costs [PS11].

Within an integration cycle (usually called build), regres-
sion testing is an activity that takes a significant amount
of time. A test set, many times, includes thousands of test
cases whose execution takes several hours or days [PS9].

To help in the regression testing task, we find in the
literature some techniques, which are usually classified into
three main categories [38]: minimization, selection, and
prioritization. Techniques based on Test Case Minimization
(TCM) usually remove redundant test cases, minimizing the
test set according to some criterion. Test Case Selection
(TCS) selects a subset of test cases, the most important
ones to test the software. Test Case Prioritization (TCP)
attempts to re-order a test suite to identify an “ideal” order
of test cases that maximizes specific goals, such as early
fault detection. TCP techniques are very popular in the
industry and are the focus of our work.

Existing TCP techniques can be applied in CI environ-
ments. However, most of them require adaptations to deal
with the testing budget, limited resources, and constraints
of the CI environments. For instance, the application of
search-based techniques or other ones that require exten-
sive code analysis and coverage may be unfeasible due to
the time constraints and the test budget for a build.

We can see that the intersection of TCP and CI (TCPCI
- Test Case Prioritization in Continuous Integration envi-
ronments) poses some difficulties. Such a subject has been
raising interest, and approaches to solve the problem have
been proposed in the literature. However, we have not found
works reporting the characteristics of such approaches, if
they differ from existing TCP approaches, and how they
have been evaluated. To provide such a general overview

is important to identify challenges faced, gaps, and trends
to guide research on this subject and to propose new ways
to perform regression testing within integration cycles. Mo-
tivated by these facts, this work presents the results of a
mapping study on TCPCI.

We adopted the process of Petersen et al. [27]. We fol-
lowed a research plan including research questions, in-
clusion and exclusion criteria, construction of the search
string, and selection of known search databases. We found
35 primary studies, and we analyzed the results according
to three aspects: i) basic information of the field, such as
evolution along the years, main authors and publication
fora; ii) characteristics of the approaches: main goal, kind
of used TCP technique, programming language, addressed
CI testing problems such as flaky and time-consuming tests,
as well as some CI particularities related to the testing bud-
get and constraints, parallelism, multiple test requests, and
volatility of test cases; and iii) evaluation aspects: such as
evaluation contexts and measures used for comparison. In
addition to this, some research trends and gaps were iden-
tified that allow researchers to direct future investigations.

The results show an increasing number of papers on
this research subject. Most studies have been published
in the last four years. 80% of the approaches are history-
based, that is, are based on the failure and test execution
history. The great majority of studies report evaluation re-
sults by comparing prioritization techniques, and we also
found studies that use TCP after (or in combination) with
TCS. The preferred measures are Time and number or per-
centage of Faults Detected (FD). Few studies consider CI
characteristics and testing problems.

Then the contribution of this mapping is twofold: i) to
present the main characteristics of the TCPCI approaches
according to a classification schema generated interactively
during the analysis of the studies found; and ii) to help
researchers in the identification of research opportunities
and encourage new works on this subject to solve existing
challenges and offer to the software industry cost-effective
approaches.

The remaining of this paper is organized as follows. Sec-
tion 2 overviews background and related work. Section 3
describes the adopted mapping process. Section 4 analyses
the results. Section 5 points out trends and identified re-
search opportunities. Section 6 discusses threats to validity.
Section 7 concludes the paper.

2 BACKGROUND AND RELATED WORK
This section first introduces the fields explored in our map-
ping: Test Case Prioritization (TCP) and Continuous Integra-
tion environments, and after, reviews related work.

2.1 Test Case Prioritization
According to Rothermel et al. [31] the TCP problem can be
formulated as:

Definition 2.1. Given 𝑇 , a test suite, 𝑃𝑇 , the set of all pos-
sible permutations of 𝑇 , and 𝑓 , a function that determines
the performance of a given prioritization from 𝑃𝑇 to real
numbers. Find:

𝑇 ′ ∈ 𝑃𝑇 s.t. (∀𝑇 ′′ ∈ 𝑃𝑇) (𝑇 ′′ ≠ 𝑇 ′) [𝑓 (𝑇 ′) ≥ 𝑓 (𝑇 ′′)]

TCP problem aims to find the best 𝑇 ′ that achieves certain
specific goals [31].

This technique allows the most crucial test cases are first
executed. This characteristic is interesting (and suggested),
given that in a regression testing scenario, there are limited
resources, and it may not be possible to execute the entire
regression test suite [31, 38]. TCP techniques consider all
the test suite and can be, in some cases, time-consuming.
But such a characteristic is also an advantage because the
coverage is maintained. Besides, in the presence of time
and cost constraints for the test activity that hinders the
execution of all test cases, TCP allows failing test cases are
executed first. This contributes to reduce resources and
costs spent in the test, as well as ensures that the maximum
possible fault coverage is achieved.

According to Rothermel et al. [31], some objectives of
TCP techniques are: (i) to increase the fault detection rate
of a test suite already in the beginning of the regression test
execution; (ii) to increase the system code coverage under
test; (iii) to increase high-risk fault detection rate; and (iv)
to increase the probability to reveal faults related with spe-
cific code changes. To achieve such objectives, many TCP
techniques were proposed in the literature. According to
the information used in the prioritization, they can be classi-
fied into different categories [38] that we use to categorize
the approaches found in our mapping. They are: Cost-aware,
Coverage-based, Distribution-based, Human-based, History-
based, Requirement-based, Model-based, and Probabilistic.
An overview of these categories is presented in Section 3.5,
which describes our classification schema.

2.2 Continuous Integration Environments
In the past, some developers worked alone (separately) for
a long time and only integrated their changes to the master
branch when they completed their work. However, this
practice presents some disadvantages. It is time-consuming,
adds unnecessary bureaucratic cost to the projects, and
results in the accumulation of uncorrected errors for long
periods. These factors hampered a rapid distribution of
updates to customers.

With the advent of the agile development paradigm, Con-
tinuous Software Engineering practices have become popu-
lar and adopted by most organizations, such as Continuous
Integration (CI), Continuous Deployment (CD), and Contin-
uous DElivery (CDE), allowing frequent integration, test of
the changed code, deployment, and quick feedback from the
customer in a very rapid cycle. The relationship between
such practices is illustrated in Figure 1.

2

72

Figure 1: Overview of the relationship between
Continuous Integration, Delivery, and Deployment
(adapted from Shahin et al. [32]).

CI is an essential practice adopted before deployment
and delivery. CI environments contain automated software
building and testing [23], helping to scale up headcount and
delivery output of engineering teams, as well as allowing
software developers to work independently on features in
parallel. When they are ready to merge these features into
the end product, they can do this independently and rapidly.
Among the popular open-source CI servers we can mention:
Buildbot [3], GoCD [13], Integrity [15], Jenkins [17], and
Travis CI [35].

CDE aims at packing an artifact (the production-ready
state from the application) to be delivered for Acceptance
Test. In this sense, the artifact should be ready to be re-
leased to end-users (production) at any given time. On the
other hand, CD is responsible for automatically packing,
launching and distributing the software artifact to produc-
tion. We can observe that CI ensures that the artifact used in
the CD and CDE successfully passed the integration phase.

In order to provide a swift and cost-effective way to val-
idate and launch new software updates, improving fault
detection and software quality, regression testing is an es-
sential activity in CI environments. This is because to enable
rapid test feedback in CI, test cycles are restricted to a spe-
cific (short) duration. We refer to this time duration of each
test cycle as a time budget. Time budgets can vary from a
cycle to a cycle, and they include time to select relevant
tests for running, to run the tests, and to report test results
to developers. In this way, traditional TCP techniques re-
quire some adaptations to be applied in the CI context. The
techniques need to consider specific particularities of CI
environments like as: parallel execution of test cases and al-
location of resources, the volatility of test cases, that is, the
test cases can be added and removed in subsequent com-
mits, the detection of as many faults as possible in a short
interval of time. To address all these particularities, some
approaches have emerged in the literature, being TCPCI an
emergent research topic that motivates our mapping. 3

2.3 Related Work
In the literature we can find some mappings, surveys and
systematic reviews on continuous integration practices and
environments [19, 32], on regression testing [38], test case
prioritization techniques in general [4, 20, 21, 33], and
on software testing in agile and continuous integration
context [5, 6, 25, 34]. Such works do not specifically address
the subject test case prioritization in continuous integration
environments. The work of Shahin et al. [32] mentions some
studies concerning TCP that were included in our mapping,
however, the focus of their work is neither TCP techniques
nor regression testing techniques.

We summarize the key aspects of the abovementioned
studies in Table 1, which presents, for each work, the cor-
responding research focus, type of study, the number of
primary studies (NS) found, the publication year, and the
period covered. In short, our work differs from existing
ones because our focus is on TCPCI. Our mapping offers
details and characteristics of the TCPCI studies, presents
research gaps and trends that can help the researchers in
future investigations. We can not find such results in the
works most related to ours, which map the general areas in
a separated way.

3 MAPPING PROCESS
In this section, we describe the main steps of our mapping,
conducted following the guidelines proposed by Petersen et
al. [27].

First of all, and to justify our mapping, we conducted a
search for related work with the following string: test AND
prioritization AND (map OR mapping OR review OR survey).
We did not find work with the same goal of ours. Given this
fact, which justifies and shows the need and relevance of
our mapping, we performed the steps described next.

3.1 Definition of Research Questions
To overview existing research on TCPCI, we used three
groups of research questions. The first one provides basic
information about the primary studies. The second group
characterizes the approaches found in the studies. The third
group refers to the evaluation aspects of each proposal. The
research questions from each group are presented below.

RQ1: Basic information of the field

RQ1.1: In which fora is the research on TCPCI published?
This question allows the identification of the tar-
get public, as well as the main fora where re-
search on TCPCI can be found and published.

RQ1.2: How have the number and frequency of publica-
tions evolved over the years? This question aims
to analyze the interest in TCPCI over the years
and to assess how relevant and active this topic

3

73

Table 1: Comparison of our work with existing secondary studies.

Work Focus Type NS Pub. Year Period Covered

Hellmann et al. [5] Agile Testing Mapping 166 2012 2003-2011

Eck et al. [6] CI Review 43 2014 Not Identified

Ståhl and Bosch [34] CI Review 46 2014 2003-2013

Mäntylä et al. [25] Rapid Release Review 24 2015 2003-2013

Karvonen et al. [19] Agile Release Review 71 2017 2005-2015

Shahin et al. [32] CI Review 69 2017 2004-2016

Yoo and Harman [38] TCM, TCS, and TCP Survey 159 2012 1977-2009

Singh et al. [33] TCP Review 65 2012 1997-2011

Catal et al. [4] TCP Mapping 120 2013 2001-2011

Kumar and Singh [21] TCP Survey 11 2014 2001-2013

Khatibsyarbini et al. [20] TCP Review 80 2018 1999-2016

Our work TCP and CI Mapping 35 2019 2009-2019

is, as well as the maturity of the research being
conducted.

RQ1.3: What are the main research groups? This question
aims to identify the main research groups as well
as authors and countries.

RQ2: Characteristics of the approach

RQ2.1: What types of approaches are proposed? As men-
tioned in Section 2, the approaches can be clas-
sified according to the information used in the
prioritization. This question aims to identify the
most common type of TCPCI approach and re-
search opportunities.

RQ2.2: What are the application contexts? This question
aims to identify application aspects related to:
the CI environment particularities, addressed
testing problems, programming language, as-
sumptions, requirements, and limitations. This
question aims to identify possible research gaps
and to point the need for future work.

RQ3: Evaluation Aspects

RQ3.1: How have the approaches been evaluated? This
question analyses different aspects of the con-
ducted evaluation, characterizing: used systems
and datasets, threats to validity, baseline ap-
proach used in the comparison, etc. The eval-
uation measure is an important aspect that is
treated in a separate question.

RQ3.2: What are the used evaluation measures? This ques-
tion identifies all the measures used in the eval-
uation and whether their values are statistically
analyzed. Most measures are based on the fault
detection ability, but in the context of CI environ-
ments, the runtime is an important aspect to be
evaluated.

3.2 Definition of the Search String
We formulated our search string, considering the mapping
goals, and posed research questions. The resulting search
terms were composed of synonymous for the main terms
“Test Prioritization” and “Continuous Integration” taking
into account different spelling. Then, we constructed the
search string using logical operators, “OR” and “AND”. After
tests, we adopted the following search string that returned
the greatest number of relevant articles.

(“continuous integration”) AND (prioritization OR
prioritisation) AND (test OR testing)

To verify the accuracy of the keywords chosen to compose
the search string, we used a control group. Such a group
comprises a set of previously known studies, which are
presented in Table 2 along with the number of citations
extracted from Google Scholar on 1st October 2019.

Table 2: Control group.

Year Authors Title Citations

2009 Jiang et al. [PS14] How Well Do Test Case Prioritization Techniques
Support Statistical Fault Localization

79

2012 Jiang et al. [PS13] How Well Does Test Case Prioritization Integrate
with Statistical Fault Localization?

41

2013 Marijan et al. [PS21] Test Case Prioritization for Continuous Regres-
sion Testing: An Industrial Case Study

73

2014 Elbaum et al. [PS7] Techniques for Improving Regression Testing
in Continuous Integration Development Environ-
ments

157

2016 Busjaeger and Xie
[PS4]

Learning for Test Prioritization: An Industrial
Case Study

27

2017 Spieker et al. [PS28] Reinforcement Learning for Automatic Test Case
Prioritization and Selection in Continuous Inte-
gration

33

2018 Liang et al. [PS18] Redefining Prioritization: Continuous Prioritiza-
tion for Continuous Integration

11

2018 Haghighatkhah et al.
[PS9]

Test prioritization in continuous integration envi-
ronments

4

4

74

3.3 Selection criteria
Table 3 presents the adopted inclusion and exclusion cri-
teria. In summary, we screened studies written in English,
available online, and verifying each one that fits the goals
of our mapping.

Table 3: Inclusion and exclusion criteria.

Inclusion Criteria

I1 The paper is related to Software Engineering area;

I2 The paper is related to TCPCI.

Exclusion Criteria

E1 Out of scope, not related to TCPCI;

E2 Not available online;

E3 Not in English;

E4 Abstracts, posters, reviews, conference reviews, chapters,

thesis, keynotes, and doctoral symposiums.

3.4 Conducting the review
The search started and finished in October 2019. The re-
view was conducted in a set of steps, presented in Figure 2
following the PRISMA (Preferred Reporting Items for Sys-
tematic reviews and Meta-Analyses) statement [26]. In such
a figure, we present three data sources used in our mapping:
Digital Libraries, Grey Literature, and Snowballing.

First, we selected primary studies by using the search
string in the digital libraries, considering the title, abstract,
and keywords. The engines for performing the search are
online repositories that were chosen due to their popular-
ity and because they provide many leading software en-
gineering publications. However, some of them required
adaptations, for example, searching in title, abstract, and
keywords individually.

In order to identify the state-of-the-art and -practice in
the subject of this mapping, we included a search in the
grey literature [11, 12] (non-published, nor peer-reviewed
sources of information) seeking relevant white papers, in-
dustrial (and technical) reports. However, the use of grey
literature can lead to unreasonably grow in the number of
studies. In addition to this, the quality assessment of the
studies found in the grey literature is more difficult. Be-
cause of this, we reduced the possible noise in the search,
i.e. ignoring theses and incomplete studies, once that there
is a high possibility that a thesis produces articles as results.
Additionally, we performed a snowballing reading (forward
and backward snowballing procedures, following Wohlin’s
guidelines [36]) by searching in the control group. In this
step, we found five papers.

We did not define an initial publication date for the stud-
ies, then all the returned papers were included. Table 4
presents the data sources used and the period covered,

Figure 2: PRISMA flow diagram. For each data source,
the number of studies found is presented, as well as
the range of publication data from these studies.

with the data separated by Digital Libraries, Grey Litera-
ture, and Snowballing. In total, we performed the mapping
in 17 data sources. As we can see, a total of 818 studies
were found, including the period from 1979 to 2020.

In the second step, we removed repeated studies, remain-
ing 687 ones. Then we applied the selection criteria and
obtained 276 studies. The selection was conducted by the
first author, who read the title, abstract, and index terms
of the papers (keywords). In case of doubts, reading in the
following order was performed: introduction, conclusion,
and the entire paper. If such a doubt persists, meetings and
discussions with the second author were accomplished to
solve it. The second author also revised the decisions of the
first one. In the end, 35 papers remain. The selected papers
are presented in the end of this paper (Primary Studies (PS)
Section).

3.5 Classification scheme, data extraction
and dissemination

We collected the following information to address the re-
search questions: title, authors, institution, publication
venue, publication year, and depending on the study type
(theoretical or experimental) other data were collected such

5

75

Table 4: Number of papers returned by each source.

Source Studies Period Covered

Digital Libraries

ACM 24 2009-2019

EBSCOhost 3 2012-2018

Ei Compendex 31 2009-2019

IEEEXplore 20 2009-2019

ISI Web of Science 27 2009-2019

MIT Libraries 20 2009-2019

ScienceDirect 2 2012-2018

Scopus 35 2009-2019

Springer Link 273 1993-2020

Wiley Online Library 60 2007-2019

Grey Literature

AWS Whitepapers & Guides 0 -

Google AI 0 -

Google Cloud 2 2018-2019

Google Scholar 129 2001-2019

Microsoft Academic 2 2009-2018

Microsoft Research 0 -

Science.gov 185 1979-2019

Snowballing

Forward and Backward procedures 5 2011-2019

Total 818 1979-2020

as all the characteristics of the techniques used by the ap-
proach and conducted evaluation. The raw data were an-
alyzed and disseminated in the Open Science Framework
(OSF) [28].

In order to avoid the researchers’ bias threat during the
extraction, which can affect negatively the results, we used
a classification scheme, derived interactively, which encom-
passes four dimensions to classify the studies found. The
schema is detailed in Table 5 with a brief description of each
category. Regarding the characteristics of the approach
(RQ2), we use the dimensions: research goal, information
source, and CI testing problems. The categories used in
the first dimension were adapted from the classification
proposed by Catal and Mishra [4]. In the second dimension,
the categories were extracted from the work of Yoo and
Harman [38], and in the third one, we used the problems
reported by Laukkanen et al. [22], which are more related
to test in CI environments. To answer RQ3, we considered
each measure used in the evaluation as a category.

4 OUTCOMES
This section presents the results of our mapping and anal-
ysis to answer our research questions. To this end, we de-
rived Table 6 containing for each study a summary of our
main findings: reference and year of the study, research

goal, information considered by the approach, and used
evaluation measure.

4.1 Basic Information of the field
This section presents answers to the questions concerning
basic Information of the field: Section 4.1.1 answers RQ1.1,
Section 4.1.2 answers RQ1.2, and Section 4.1.3 answers
RQ1.3.

4.1.1 RQ1.1 - Publication Fora. We analyzed the publica-
tion fora, and we observed that 28 papers (80%) were pub-
lished in events, and 7 papers in journals. We found 24
different publication venues. Most of them (16 (≈ 67%))
published only one paper, and 7 (29%) published two pa-
pers. The preferred journal is the Journal of Systems and
Software (JSS) with two papers. Among the events that pub-
lished more than one paper, we can mention: Asia-Pacific
Software Engineering Conference (APSEC), International
Computer Software and Applications Conference (COMP-
SAC), International Symposium on Foundations of Software
Engineering (FSE), International Conference on Software
Maintenance and Evolution (ICSME), International Confer-
ence on Software Testing, Verification and Validation (ICST),
International Conference on Software Quality, Reliability
and Security (QRS), and International Conference on Qual-
ity Software (QSIC). Figure 3 shows the distribution of main
venues: journals and events with more than two papers.
The preferred fora is the FSE with five papers. We can see
that the venues are all related to the general area of soft-
ware engineering and, specifically, with software quality
and maintenance.

Figure 3: Main publication fora with more than two
papers.

4.1.2 RQ1.2 - Publications over the years. The number of
publications over the years is depicted in Figure 4 together
with a trend-line. This figure also contains bars represent-
ing the venue (Journal or Event). The trend line shows a
crescent interest in the topic. The first paper appeared in

6

76

Table 5: Classification schema.

Dimension/Category Description

RQ2

Research Goal

Prioritization The study proposes a prioritization technique.
Measurement The study proposes an evaluation measure to evaluate prioritization technique.
Comparison The study compares prioritization techniques.
Minimization The study combines prioritization and minimization techniques.
Selection The study combines prioritization and selection techniques.
Localization The study uses the prioritization technique for fault localization.
Time-Limit Treatment The study considers time constraint in Continuous Integration environments.
Others The study has a different goal not included in the other categories.

Information Source

Cost-aware The approach prioritizes test cases based on the cost of the test cases, because their costs cannot be equal.
Coverage-based The approach prioritizes test cases based on the code coverage.
Distribution-based The approach prioritizes test cases based on the distribution of the test case profiles.
Human-based The approach prioritizes test cases based on factors that (human) testers deem the most important.
History-based The approach prioritizes test cases based on test case execution history information and code changes.
Requirement-based The approach prioritizes test cases based on information extracted from requirements.
Model-based The approach prioritizes test cases based on information extracted from models, such as UML (Unified

Modeling Language) models.
Probabilistic The approach prioritizes test cases based on probabilistic theories.
Others The approach prioritizes test cases based on other kind of information not included in the other categories.

CI Testing Problem

Flaky tests Tests that randomly fail sometimes.
Time-Consuming testing Testing takes too much time.
User Interface (UI) testing UI testing of the application.
Complex testing Testing is complex, e.g., setting up the environment is complex.

RQ3

Evaluation Measure

APFD Average Percentage of Faults Detected
APFDc Average Percentage of Faults Detected per Cost
NAPFD Normalized Average Percentage of Faults Detected
Expense Minimum percentage of statements in a program that must be examined to locate the fault.
FD Number or percentage of Faults Detected.
Time Time spent to execute the prioritization method or the test suite.
NA The study does not use an evaluation measure.
Others The study uses other types of evaluation measure not mentioned above.

2009, and since then, the interest in TCPCI has been in-
creasing. The most significant number of publications were
found in 2018, with 9 studies out of 35 (≈ 26%). Considering
the search ended in October 2019, and that some studies
of this year may not be included, we can see that 21 stud-
ies (≈ 60%) were published in the period 2016-2018. This
corroborates the fact TCPCI is an emergent research-topic
that has been arising interest in the last years.

4.1.3 RQ1.3 - Research Groups. We found 83 authors from
45 different institutions. We observe that the main research
groups are in the Simula Research Laboratory that appears
in 8 (23%) different studies, followed by Cisco appearing
in 6 (17%) studies. The University of Hong Kong and City
University of Hong Kong appearing in 4 (11%) studies, Bei-
hang University appearing in 3 (9%) studies, and Concordia
University, Sungkyunkwan University, Peking University,
Mälardalen University, University of Nebraska, Westermo
Research and Development, and Google in 2 studies.

Figure 4: Number of publications over the years.

Table 7 shows the main authors with more than two
studies published and the number of corresponding studies
(NS). Whilst, we identified 12 different countries. Table 8
presents the countries found and the corresponding number
of studies (NS).

7

77

T
a
b
le

6
:
M
a
in

fi
n
d
in
g
s

T
h
is
ta
b
le

p
resen

ts
th
e
m
a
in

fi
n
d
in
g
s
fo
r
ea
ch

stu
d
y.
T
h
e
fi
rst

co
lu
m
n
co
n
ta
in
s
th
e
referen

ce
o
f
th
e
stu

d
y,
fo
llo

w
ed

b
y
th
e
yea

r
o
f
p
u
b
lica

tio
n
in

th
e
seco

n
d
co
lu
m
n
.
C
o
lu
m
n
s
3
to

9
sh
o
w
th
e
R
esea

rch
G
o
a
ls

o
f
ea
ch

stu
d
y,
w
h
ere

“P
”
m
ea
n
s
P
rio

ritiza
tio

n
,
“C

”
C
o
m
p
a
riso

n
,
“S
”
S
electio

n
,
“M

”
M
in
im

iza
tio

n
,
“F

L”
F
a
u
lt
L
o
ca
liza

tio
n
,
“T
L”

T
im

e-L
im

it
T
rea

tm
en

t,
a
n
d
“O

”
O
th
e
rs.

C
o
lu
m
n
s
1
0
to

1
6
sh
o
w
th
e
C
o
n
sid

e
re
d
In
fo
rm

a
tio

n
d
u
rin

g
p
rio

ritiza
tio

n
,
w
h
e
re

“C
o
st”

m
e
a
n
s
C
o
st-a

w
a
re
,
“C

o
v”

C
o
ve
ra
g
e
-b
a
se
d
,
“D

is”
D
istrib

u
tio

n
-b
a
se
d
,

“H
ist”

H
isto

ry-b
a
se
d
,
“H

u
m
a
n
”
H
u
m
a
n
-b
a
se
d
,
“P
ro
b
”
P
ro
b
a
b
ilistic,

a
n
d
“O

”
O
th
e
rs.

T
h
e
la
st

co
lu
m
n
s
sh
o
w
th
e
u
se
d
E
va
lu
a
tio

n
M
e
a
su
re
s
(se

e
T
a
b
le

5
),
w
h
e
re

“E
”
m
e
a
n
s

E
xp

e
n
se

a
n
d
“O

”
O
th
e
rs.R

e
se
a
rc
h
G
o
a
l

C
o
n
sid

e
re
d
In
fo
rm

a
tio

n
E
va

lu
a
tio

n
M
e
a
su

re
R
e
f.

Y
e
a
r

P
C

S
M

F
L

T
L

O
C
o
st

C
o
v

D
is

H
ist

H
u
m
a
n

P
ro
b

O
A
P
F
D

A
P
F
D
c

N
A
P
F
D

E
F
D

T
im

e
O

[P
S
1
4
]

2
0
0
9

-
�

-
-

�
-

-
-

�
�

-
-

-
�

�
-

-
�

-
-

�
[P
S
1
0
]

2
0
1
0

-
�

-
-

�
-

-
-

�
-

-
-

-
�

-
-

-
�

-
-

�
[P
S
1
2
]

2
0
1
1

-
�

-
-

�
-

-
-

�
-

-
-

-
�

-
-

-
�

-
-

�
[P
S
3
3
]

2
0
1
1
�

-
�

�
-

�
-

-
�

-
�

-
-

�
-

-
-

-
-

�
�

[P
S
1
3
]

2
0
1
2

-
�

-
-

�
-

-
-

�
-

-
-

-
�

-
-

-
�

-
-

�
[P
S
2
1
]

2
0
1
3
�

�
-

-
-

�
-

�
-

-
�

�
-

-
-

�
-

-
�

�
-

[P
S
7
]

2
0
1
4
�

�
-

-
-

-
-

-
-

-
�

-
-

-
-

-
-

-
-

�
-

[P
S
1
9
]

2
0
1
5
�

�
-

-
-

�
-

�
�

-
�

-
-

-
-

�
-

-
-

-
-

[P
S
1
6
]

2
0
1
5

-
�

�
-

-
-

-
-

-
-

�
-

-
-

-
-

-
-

-
-

�
[P
S
2
2
]

2
0
1
6

-
�

-
-

-
�

-
-

-
-

�
-

-
-

�
-

-
-

�
-

-

[P
S
4
]

2
0
1
6
�

�
-

-
-

-
-

-
�

-
�

-
-

�
�

-
-

-
-

-
-

[P
S
6
]

2
0
1
6
�

�
-

-
-

-
-

-
-

-
�

-
-

-
�

-
-

-
-

-
-

[P
S
8
]

2
0
1
6

-
-
�

-
-

�
-

-
-

-
-

-
-

�
-

-
-

-
-

�
�

[P
S
3
0
]

2
0
1
6
�

-
-

-
-

�
-

-
-

-
�

�
-

�
-

-
-

-
�

�
�

[P
S
1
1
]

2
0
1
6

-
�

-
-

�
-

-
-

�
�

-
-

-
�

-
-

-
�

-
-

-

[P
S
2
8
]

2
0
1
7
�

�
-

-
-

�
-

-
-

-
�

-
-

�
-

-
�

-
-

-
-

[P
S
2
4
]

2
0
1
7

-
�

-
-

-
�

-
-

�
-

�
-

-
-

-
-

-
-

�
-

�
[P
S
1
5
]

2
0
1
7
�

�
-

-
-

-
-

-
-

-
�

-
-

-
�

-
-

-
-

-
-

[P
S
2
3
]

2
0
1
7
�

�
-

-
-

�
-

-
�

-
�

-
-

-
-

-
-

-
�

�
�

[P
S
2
9
]

2
0
1
7
�

-
-

-
-

�
-

-
-

-
�

�
-

�
-

-
-

-
�

�
�

[P
S
1
7
]

2
0
1
7
�

�
-

-
-

-
-

-
-

-
�

-
-

-
-

-
-

-
-

�
-

[P
S
3
2
]

2
0
1
8
�

�
-

-
-

�
-

-
-

-
�

-
-

-
-

-
�

-
�

-
-

[P
S
1
]

2
0
1
8
�

-
-

-
-

-
-

-
-

-
-

-
�

-
-

-
-

-
-

-
-

[P
S
1
8
]

2
0
1
8
�

�
-

-
-

�
-

�
-

-
�

-
-

-
-

�
-

-
-

-
-

[P
S
3
5
]

2
0
1
8
�

�
-

-
-

-
-

-
-

-
�

-
-

-
-

-
-

-
�

-
�

[P
S
9
]

2
0
1
8
�

�
-

-
-

-
-

-
-

-
�

-
-

�
�

-
-

-
-

�
-

[P
S
5
]

2
0
1
8
�

�
-

-
-

-
-

�
�

-
�

-
-

�
�

�
-

-
�

�
-

[P
S
2
]

2
0
1
8

-
-

-
-

-
�

�
-

-
-

�
�

-
-

-
-

-
-

-
�

�
[P
S
2
5
]

2
0
1
8
�

�
-

-
-

�
-

-
-

-
�

-
-

-
-

-
-

-
-

�
�

[P
S
3
1
]

2
0
1
8
�

�
-

-
-

�
-

-
-

-
�

-
-

-
-

-
�

-
-

-
-

[P
S
2
0
]

2
0
1
9

-
-
�

-
-

�
-

-
�

-
�

-
-

-
-

-
-

-
�

�
�

[P
S
2
6
]

2
0
1
9
�

�
�

-
-

�
-

-
-

-
�

-
-

-
-

-
-

-
-

�
�

[P
S
2
7
]

2
0
1
9

-
-

-
-

-
�

-
-

-
-

�
-

-
-

-
�

-
-

-
�

-

[P
S
3
]

2
0
1
9
�

-
�

-
-

-
-

-
�

-
�

-
-

�
�

-
-

-
�

-
�

[P
S
3
4
]

2
0
1
9
�

�
-

-
-

-
-

-
-

-
�

-
-

�
-

�
-

-
-

�
-

T
o
ta
l

2
3

2
6

6
1

5
1
8

1
4

1
3

2
2
8

4
1

1
5

8
6

3
5

1
1

1
6

1
7

8

78

Table 7: List of the most
prominent authors.

Author NS

Marijan, Dusica 8

Liaaen, Marius 6

Jiang, Bo 5

Chan, Wing Kwong 4

Gotlieb, Arnaud 4

Sen, Sagar 3

Tse, T. H. 3

Rothermel, Gregg 3

Table 8: List of coun-
tries.

Country NS

China 9

Norway 9

United States of America 5

Sweden 4

Republic of Korea 3

Australia 2

Canada 2

Finland 1

Germany 1

Pakistan 1

Switzerland 1

United Kingdom 1

4.2 Characteristics of the approaches
In this section, we address the second group of ques-
tions concerning the characteristics of the approaches, an-
swering RQ2.1 and RQ2.2, respectively, in Sections 4.2.1
and 4.2.2.

4.2.1 RQ2.1 - Types of approaches. To answer this question,
we first identified the research goal of the found studies,
according to the dimensions of our schema. The results can
be viewed in the first columns of Table 6.

We can observe, most studies (26 out of 35, ≈ 74%) com-
pare prioritization methods, followed by the introduction of
a prioritization technique (23, ≈ 66%). 18 (≈ 51%) studies
consider time constraints, 6 (≈ 17%) combine prioritization
and selection methods, 5 (≈ 14%) use prioritization for fault
localization, and we found 1 study that is included in the cat-
egory Others and another one combining prioritization with
minimization techniques. We did not find studies proposing,
explicitly, new evaluation measures.

Some papers do not have a simple goal. For instance,
some studies introduce a new technique and also com-
pare it with existing ones. To provide better visualization
of this intersection, we generated Figure 5 that presents
the interaction between goals and number of studies as-
sociated with each one1. In the figure, the bars represent
the number of studies; each category is associated with
one or more bars, and the bars are associated with one
or more categories. When the bar is associated with more
than one category, this means that there is an intersection
between them, represented by a line with bullets. Consider
the category Comparison (last row). There are 26 studies
belonging to this category (horizontal bar in the left). The
intersection with the other categories are represented in
the right by bullets, 9 studies have intersection only with
the category Prioritization; 8 studies with the categories
Prioritization and Time-Limit; and so on.

1The figure was build using UpSet [24].

9
8

5

2 2 2
1 1 1 1 1 1 1

0.0

2.5

5.0

7.5

10.0

In
te

rs
ec

tio
n

Si
ze

Comparison
Prioritization
Time.Limit
Selection

Localization
Minimization

Others

01020
Set Size

Figure 5: Interaction between research goals.

As evidenced by Figure 5, we observe a large number of
studies comparing prioritization techniques. Besides that,
we observe that all studies that aim fault localization (5
studies in the third bar) also compare techniques but with-
out any other intersection; they do not propose any new
technique, for instance. This can be considered a gap to be
explored.

Regarding the information source considered by the ap-
proach and our schema (Table 5), we can see in Table 6 that
we did not find works on the categories Requirement-based
and Model-based. The great majority of the studies (28 out
of 35 (80%)) are History-based, followed by the categories
Others and Coverage-based with, respectively, ≈ 43% and
≈ 37% of studies, Cost-aware and Human-based with ≈ 11%
each, Distribution-based with ≈ 6%, and Probabilistic
with only 1 study (≈ 3%).

Tables 9 and 10 show the number of information sources
used in the studies, as well as, the most commonly used.

Table 9: Number of information sources used in the
prioritization process in TCPCI.

Perc. Primary Studies

1 9% [PS1,PS8,PS35]
2 29% [PS6,PS9,PS15,PS16,PS18,PS20,PS22,PS26,PS

27,PS32]
3 31% [PS3,PS5,PS7,PS17,PS21,PS23,PS25,PS28,PS

31,PS33,PS34]
4 17% [PS2,PS4,PS19,PS24,PS29,PS30]
6 14% [PS10–PS14]

In total, we identified a maximum of six sources used
at the same time during the prioritization process and 30
different types of information sources. Besides the infor-
mation used in the prioritization shown in Table 10, we
can mention other kinds of information sources used, such
as prioritization order history, severity history, correlation
data, dissimilarity, text similarity, and text case description.
Moreover, most studies use three sources, and the most

9

79

Table 10: Most common information sources used in the prioritization process in TCPCI.

Category Subcategory Perc. Primary Studies

History-based Failure History 77% [PS2–PS4,PS6,PS7,PS9,PS15–PS35]
Execution History 54% [PS2,PS5,PS7,PS17–PS19,PS21–PS33]
Test Age 9% [PS4,PS7,PS17]

Coverage-based Test Coverage 14% [PS5,PS19,PS23,PS24,PS33]
Functions not yet covered 14% [PS10–PS14]
Functions covered 14% [PS10–PS14]
Statements covered 14% [PS10–PS14]
Statements not yet covered 14% [PS10–PS14]
Branches not yet covered 9% [PS10,PS12,PS13]
Branch covered 9% [PS10,PS12,PS13]

Human-based Importance 9% [PS2,PS29,PS30]
Others Code Changing 9% [PS16,PS29,PS30]

used kinds of information sources are failure and execution
history.

The works in the category History-based consider in-
formation about which test cases failed previously. We ob-
served that 19 of them (out of 28, 54%) also consider the
Test Execution History, that is, the time to execute the test
cases.

Studies in the category Coverage-based use the total
number of covered (or not covered) statements, functions,
methods, and features [PS3–PS5,PS10–PS14,PS19,PS20,PS
23,PS24,PS33].

Works in the category Others use different kinds of
information to prioritize the test cases. We identified 8
works that use Search-based or Machine Learning (ML)
techniques [PS3–PS5,PS10–PS14,PS28–PS30,PS33,PS34].
Besides that, studies in such a category perform the pri-
oritization considering test case dissimilarity (Diversity-
based) [PS9] or test selection strategies [PS8].

In the category Cost-aware [PS5,PS18,PS19,PS21] the
studies assume that each test case does not have the same
cost, that is, some may be more costly to execute than
others, maybe due to the fault severity or running time.
One way to evaluate this assumption is by using the APFDc
measure proposed by Elbaum et al. [7]. The test cases are
usually prioritized until a maximum cost is reached that is
feasible to execute.

Works in the category Distribution-based [PS11,PS14]
prioritize test cases considering the distribution of their
execution profiles via test case distances based on the dis-
similarity metrics: count metric and the proportional binary
metric. Then, test cases are clustered according to their
similarities, allowing, in this way, the identification of re-
dundant test cases and isolating clusters that may cause
failures.

We identified only 4 studies [PS2,PS21,PS29,PS30] in the
category Human-based. The work of Alegroth et al. [PS2]
uses a feature priority ranked by stakeholders, whilst
Strandberg et al. [PS29,PS30] use a level of priority de-
fined in each test case by the developers. On the other
hand, in the study of Marijan et al. [PS21], a human defines

domain-specific heuristics (weights) for the prioritization
according to the organization settings. Consequently, we
classified this approach as a prioritization based on user
preference.

In the category Probabilistic, Abdullah et al. [PS1]
propose an idea of a framework to test each Internet of
Things (IoT) layer in a separate Test Server (used as a CI
environment). The goal is to prioritize tests based on the
frequency of the features derived within an operational
profile (which characterizes how a system will be used in
production). Then, to predict fault location in IoT services,
operational profiles (derived from interface behaviors of IoT
services) are combined with Markov chain usage models.
This kind of test is also known as usage-based testing.

As we can observe from the description above, most stud-
ies consider different kinds of information in the test case
prioritization and belong to more than one category. This is
illustrated in Figure 6 which presents interactions among
the categories and the number of studies associated to
each one. Consider the category History-based (last row).
There are 28 studies belonging to this category (horizontal
bar in the left). The intersection with the other categories
are represented in the right by bullets, 12 studies do not
have any intersection with any other category (first ver-
tical bar), 3 studies of this category also are included in
the Coverage-based category (third bar), 3 in the category
Others, and so on.

As mentioned before and evidenced by Figure 6, we ob-
serve a large number of approaches based on historical
information about test cases previously executed in CI envi-
ronments. To obtain other kinds of information can be not
possible due to the constraints in the CI environments. As
a consequence, there is an effort to create lightweight ap-
proaches. Approaches that require exhaustive analysis are
costly and inefficient [PS7], as well as the time available to
run the prioritized test suite can be reduced if prioritization
takes too long [14].

To better analyze this fact, we can see in Figure 7
the categories used over the years. Coverage-based,
Distribution-based, and Others were the first kind of

10

80

12

3 3 3 3
2 2

1 1 1 1 1 1 1

0

5

10

In
te

rs
ec

tio
n

Si
ze

History.based
Others

Coverage.based
Human.based
Cost.aware

Distribution.based
Probabilistic

01020
Set Size

Figure 6: Intersection between the categories regard-
ing considered information.

categories used. The use of historical test data appeared in
2011. Since then, we observe a growing number of studies
in this category, mainly in the last two years 2017 and 2018,
when 14 studies in the category History-based (out of 28,
50%) were published. In this way, we can observe a growing
number of studies in this category and a trend in the field.

Figure 7: Categories regarding information used over
the years.

4.2.2 RQ2.2 - Application contexts. To characterize the ap-
plication context of the found approaches, we collected in-
formation about the programming language, requirements,
environments explored, and limitations, as well as some CI
particularities and testing problems.

We observed that few studies (11 out of 35, 31%)
make explicit the programming language addressed. From
them, we found only three programming languages: C
in six studies (55%) [PS5,PS10–PS14], Java in five stud-
ies (45%) [PS3,PS5,PS6,PS9,PS15], and Ruby in one study
(9%) [PS18]. Many studies use systems (datasets) from com-
panies. Consequently, details about the used systems are
limited. Furthermore, some datasets are a sample of prod-
ucts including many programming languages, i.e., Google
Shared Dataset of Test Suite Results (GSDTSR) [8].

On the other hand, we observed that 31% of the stud-
ies [PS3–PS5,PS9–PS14,PS16,PS33] need code analysis to
perform the prioritization. Most of these studies [PS3–
PS5,PS10–PS14,PS33] belong to the Coverage-based cate-
gory, whilst the other ones analyse code changing [PS16]
and dissimilarity of the test cases [PS9].

In the Coverage-based category only 4 studies do not
require code analysis [PS19,PS20,PS23,PS24]. Three stud-
ies [PS20,PS23,PS24] investigate TCPCI in Highly Config-
urable Systems (HCS) context, and one study evaluates
three Android systems [PS19]. Such studies analyze feature
coverage.

In relation to the CI environments investigated, we iden-
tified ten industrial environments and two CI frameworks
(services). The most common CI environment investigated is
from Google [PS7,PS17,PS18,PS27,PS28,PS32,PS33,PS35],
once that the GSDTSR dataset from Google is available on-
line2 allowing easy use and comparison. This environment
is followed by the Cisco environment [PS20–PS25,PS27],
result of the cooperation between Simula Research Lab-
oratory and Cisco company. ABB Robotics appears in the
sequence [PS27,PS28,PS31] and it also has its datasets
IOF/ROL and Paint Control available online3. The other
CI environments are: Ericsson [PS16,PS26], Westermo
[PS29,PS30], Axis Communications [PS16], Baidu [PS5],
LexisNexis [PS34], Salesforce.com [PS4], and Techship
[PS2].

Representing the CI frameworks category we found Jenk-
ins [PS19] and Travis CI [PS9,PS18]. Travis CI is the most
popular CI framework in the GitHub, accounting for roughly
50% of the CI market4, followed by Circle CI, and Jenkins.
The use of CI frameworks can be considered a gap to be
explored.

Table 11 presents the CI problems and particularities
investigated/addressed by the studies.

We identified that 34% of the studies (12 out of 35)
do not explicitly mention some CI testing problem ad-
dressed. Most studies (18 out of 26, around 78%) deal with
Time-Consuming testing (or Time-Limit Treatment), once
that this restriction is easier to deal rather than other prob-
lems.

43% (10 out of 26) of the studies address the Complex
testing problem. In such a problem, HCS are the most in-
vestigated (7 studies), followed by Android and IoT systems
(1 study each). The CI testing problems Flaky tests and
UI testing are few explored, respectively, 13% and 9% of
the studies address such problems. To investigate such CI
testing problems is a gap for future work.

2The GSDTSR dataset can found at https://code.google.com/archive/p/google-
shared-dataset-of-test-suite-results/.
3The datasets from ABB Robotics can found at https://bitbucket.org/HelgeS/
atcs-data.
4Information extracted from blog: GitHub welcomes all CI tools.

11

81

Table 11: Continuous Integration problems and par-
ticularities in TCPCI field.

Description Perc. Primary Studies

Continuous Integration Testing Problems

User Interface (UI) testing 9% [PS2,PS34]

Time-Consuming testing 78% [PS2,PS8,PS18–PS33]

Flaky tests 13% [PS4,PS7,PS33]

Complex testing 43% [PS1,PS19–PS25,PS

27,PS35]

Continuous Integration Particularities

Parallelism 14% [PS1,PS7,PS17,PS27,PS

35]

Volatility 34% [PS3,PS4,PS7,PS9,PS

17,PS18,PS23,PS28–

PS31,PS35]

Multiple Commits 11% [PS7,PS18,PS26,PS35]

(Test Requests)

Regarding the CI particularities, we observed that 14%
of the studies consider Parallelism, that is a particularity
of the CI environment where multiple test machines are
used and test cases are executed in parallel. Even with mod-
ern large-scale parallel test infrastructures, it can take a
relatively long time until an engineer has received complete
testing feedback for a given change [PS4].

Another particularity of the CI environment is the
Volatility of the test cases, that is, that new test cases can
be added or removed (discontinued) during the software
life-cycle. Although the studies aim to address TCPCI, we
identified few studies (12 out 35, ≈ 34%), which explicitly
consider this particularity.

Only 11% of the studies consider Multiple Commits (or
multiple test requests). This particularity is related to the
fact that the CI environment can receive multiple requests
(commits) to test at the same time, and an order to test
them is required. We observed that only two studies con-
sider prioritization of commits [PS18,PS35]. To address this
particularity is a research opportunity.

We also examined the works considering another particu-
larity about the use of resources in CI environments, such
as memory consumption and the use of GPU (Graphics Pro-
cessing Unit) to allow a fast prioritization process. However,
we have not identified any related work.

We can see that many approaches search for code inde-
pendence, due to the time constraints of a CI environment,
as well as independence regarding programming language.
However, few studies address CI environment particulari-
ties and problems, such as parallel execution of test suites,
the impact of time constraints, and volatility of test cases.

4.3 Evaluation Aspects
The evaluation phase is especially important to check the
usefulness and applicability of the proposed approaches. In
this section, we provide answers for RQ3, by analysing how
the approaches have been evaluated (RQ3.1, Section 4.3.1)
and how the results are measured and whether they are
statistically analyzed (RQ3.2, Section 4.3.2).

4.3.1 RQ3.1 - Evaluation of the approaches. It is interesting
to observe that almost all the found studies report evalua-
tion results, except two studies [PS1,PS8] that are theoreti-
cal. A possible reason for this is the fact that prioritization
of test cases is related to a practical issue. Then, 33 studies
were considered in our analysis to characterize the evalua-
tion contexts and answer our research questions.

We identified 99 systems (or datasets) used in the stud-
ies. Most of them were few used, ≈ 81% of them were
used once, and ≈ 9% twice. In this sense, we analyzed the
systems used more than twice (10%). Among them, GS-
DTSR [8] was used seven times. The other systems used
more than twice are Video Conferencing Systems from
Cisco, Paint Control from ABB Robotics, and the systems
that are part of Siemens suites obtained from the Software-
artifact Infrastructure Repository (SIR)5: tot_info, schedule,
print_tokens2, replace, print_tokens, schedule2, and tcas.

A rigorous evaluation methodology should consider the
techniques selected for a comparison with the proposed ap-
proach. In this sense, we identified 59 techniques commonly
used as a baseline. The most common is Random TCP used
in 19 studies out of 33 (≈ 54%), followed by the ROCKET
technique [PS21] and the use of untreated tests (that is
the use of the same order of the original set), both used
in 18% of the studies. We can also highlight the Manual
prioritization, used as a baseline in ≈ 15% of the studies.

We also analyzed the main threats mentioned by the
authors in the studies. 11 studies [PS1,PS8,PS11,PS16,PS
23,PS24,PS29–PS33] do not mention any threat. Among the
studies that mention threats, the most common one that
appeared in 100% of the studies is related to the Systems
used. This fact points out some concerns about the scala-
bility and generalization of the approaches proposed. After,
threats in the categories Evaluation Measure (58%), Tech-
niques Compared and Experimental Settings appear with
similar frequency (38% each). Other threats are related to
the tool used, randomness aspects, available resources, etc.

To understand how these threats can be related to CI
testing problems (discussed in Section 4.2.2) and possibly
affect them, we build Figure 8. In such a figure, we provide
an illustration showing the relationship between the dimen-
sions: CI testing problems, CI particularities, and the main
limitations (threats) found in the studies.

We can also observe the maturity of the TCPCI field re-
garding the investigation of CI testing problems and the

5Available at http://sir.unl.edu/

12

82

Complex testing

Flaky tests

Time-Consuming
testing

UI testing

Volatility Parallelism Multiple
Commits

Evaluation
Metric

Experimental
Settings

System Techniques
Compared

CI Testing Problems

CI Particularities Limitations

4

1

4

1

5

6

1

7

2

10

2

1

2

1

1

1

2

3

1

1

2

2

6

Figure 8: Relationship of the studies concerning CI
particularities, CI testing problems, and the main lim-
itations (threats) found by authors.

most involved limitations. For instance, most studies that
consider the CI particularity, Volatility of test cases, also
seek to address the Time-Consuming testing problem. Still,
they have the main limitation concerning the systems used
in the experiments. Moreover, the UI testing problem has
not been investigated considering any CI particularity, and
this should be explored in future work.

The figure shows that there are more limitations than
solutions in the TCPCI field. In this sense, there is a lack of
studies that consider, at the same time, CI particularities
and CI problems.

4.3.2 RQ3.2 - Evaluation Measures. Evaluation measures
play an essential role in measuring the efficacy of an ap-
proach, as well as to benchmark its effectiveness against
other existing ones. In this sense, we identified 23 evalua-
tion measures. Among them, 6 are the most common (used),
and the other ones were grouped in the category Others.

As we can see in Table 6 the most widely used measure
is Time, used in 16 out of 33 studies (48%), followed by
FD (33%), APFD (24%), APFDc (18%), Expense (15%), and
NAPFD (9%). In the studies, the measure Time can en-
compass: test case execution time, the time the approach
takes to perform the prioritization, and the time reduction
obtained. In this way, we can use Time concerning the exe-
cution time of an approach and test case execution time to
measure the efficiency of the approach, whilst to measure
the effectiveness we can use the time reduction obtained.
This last one concerns the time spent to the first failure,
which can impact the time spent in a CI cycle and conse-
quently, the test cost.

Average Percentage of Faults Detected (APFD) [30] in-
dicates how quickly a set of prioritized test cases (𝑇 ′) can
detect faults present in the application being tested, and
its value is calculated from the weighted average of the
percentage of detected faults. Higher APFD values indicate
that the faults are detected faster using fewer test cases.

Number or percentage of Faults Detected (FD) is a simple
version of the APFD measure, which considers only the fault
detected rate. This measure can be used to compare the
faults detected in the test reduction, for instance, concern-
ing a time constraint or a percentage of test case executed.
Besides that, we can find in the literature [PS20] a formal-
ization of this measure as Fault-detection effectiveness. This
measure considers the ratio of the number of nonrepeated
faults detected by the reduced test suite and the number
of nonrepeated faults detected by its original (nonreduced)
test suite. The values are between 0 and 1, higher values
indicate better fault-detection effectiveness of a test suite.
Nonrepeated faults are faults counted only once regardless
of the number of test cases that detect that fault. However,
to identify nonrepeated faults can be a hard task.

Expense [16, 18, 39] is a common metric to measure the
effectiveness of fault localization, and it is computed by di-
viding the number of statements needed to be examined to
find a specific fault by the total number of executable state-
ments in the program. A technique with a smaller expense
to locate a particular fault means better fault localization
effectiveness.

APFDc (APFD with cost consideration) [7] and NAPFD
(Normalized APFD) [29] [PS28] are measures adapted from
APFD. APFDc was proposed to deal with an APFD limitation
concerning the assumption that all faults have equal sever-
ity and the test cases have equal costs. These assumptions
are not possible in practice, and therefore, APFDc takes into
account the fault severity and test cost. Furthermore, if both
fault severity and test case costs are identical, APFDc can
be used to compute the APFD value. The NAPFD measure
is an extension of APFD. To calculate NAPFD, we consider
the ratio between detected and detectable faults within 𝑇 .
This measure is adequate to prioritize test cases when not
all of them are executed, and faults can be undetected.

Besides the most common evaluation measures described
before, we identified 17 measures which were grouped in
the category Others, such as recall, precision, f-measure,
the area under a curve, number of test cases run, the test
case/suite size, requirement coverage, and successful fault
localization percentage.

Although many studies conducted experiments and anal-
ysis of results, few of them (10 out 33 studies ≈ 30%) ap-
ply a statistical test. Table 12 presents the statistical tests
used in the primary studies. Among them, ANOVA is the
most preferred test. There is less use concerning the pair-
wise comparison and effect size measurement. Through this
analysis, we observed a lack of statistical tests applied to
evaluate the results.

13

83

Table 12: Statistical tests applied in TCPCI field.

Statistical Tests Percentage Primary
Studies

Pairwise Comparison

Wilcoxon Mann-Whitney 9% [PS9,PS20,PS

27]

Multiple Comparison

ANOVA 18% [PS5,PS10–

PS14]

Dunn’s 3% [PS27]

Kruskal-Wallis 3% [PS27]

Scott-Knott analysis 3% [PS34]

Tukey’s HSD 6% [PS5,PS13]

Effect Size Measurement

Cliff’s Delta 3% [PS34]

Vargha-Delaney �̂� measure 6% [PS9,PS27]

5 TRENDS AND RESEARCH
OPPORTUNITIES

During the analysis of the found studies, we identified some
trends and research gaps. Based on them, we discuss in this
section, the main research opportunities related to each
research question. We also present some trends in the field.

5.1 Evolution of the field
By analysing the publications over the years, we can con-
clude that TCP is an emergent research topic. The great
majority of the found studies (21 out of 35, 60%) have been
published in the last three years (2016-2018). As a conse-
quence, we observe that there are few research groups
working on this subject, and there is space for innovation.

5.2 Type of approaches
As mentioned in Section 4.2.1, we observe a trend and
preference by History-based techniques. Coverage-based
techniques and search-based ones can take time to per-
form the prioritization. The fault-based history is the most
used, but there are other kinds of information sources to
be taken into account, such as execution time, relation with
non-functional requirements, and so on. Moreover, we have
not found studies addressing Model-based prioritization,
considering, for example, behavior models and UML dia-
grams.

As evidenced by Table 10, most approaches use two and
three kinds of information sources. In this path, it is neces-
sary to investigate the impact of the amount of information
and identify the most reliable kind of information in the
prioritization process. Another research direction observed
is exploiting different information sources during the pri-
oritization process. Such a consideration falls in the use of
techniques which deal properly with multi-information and
dimensionality problem, a gap for future research.

We observed a trend that is to explore Artificial Intelli-
gence (AI) techniques like Machine Learning and probabilis-
tic ones, as well as the use of search-based algorithms with
a focus on multi- and many-objectives. According to Spieker
et al. [PS28] and Chen et al. [PS5], the use of Deep Learn-
ing techniques can be a promising path for future research
in the TCPCI context. Moreover, search-based techniques
can be time-consuming concerning the time spent to find
a suitable solution. Besides that, these techniques need to
consider the available resources, such as memory consump-
tion. In this sense, we observed that the use of GPU could
be considered (not explored in the TCPCI context), as well
as the use of Blockchain with Machine Learning6 which is
considered a trend in the AI field.

In the Search-Based Software Engineering (SBSE) field,
TCP approaches exploring user preferences to guide the
search for the best test case order [10] have been proposed
recently. The use of such preferences has been explored in
a few studies (only 4 studies in the Human-based category).
Another trend in SBSE is the use of Hyper-Heuristics [9]
that can provide flexible and adaptable solutions for testing
problems. These characteristics can be useful, considering
the TCPCI dynamic environment.

Another research opportunity is to explore the use of user
requirements and organizational constraints to prioritize
the test cases. Furthermore, we identified a lack of studies
proposing new techniques for TCP in combination with fault
localization. This is a gap to be explored by future research
that should consider the CI environment characteristics
and challenges. According to Jiang et al. [PS14], a gap is
to study how to achieve tighter integration between regres-
sion testing and debugging techniques. Additionally, Yu et
al. [PS34] mention that the use of fault location might help
to address the test failure classification problem. In such a
problem, each test failure can be related to a specific fault,
caused by some piece of code.

5.3 Application contexts
We identified that only three programming languages were
addressed by the studies: Java, C, and Ruby. The use of
TCPCI for other popular programming languages, such as
C# and Python, needs to be explored [1].

We also identified only ten industrial environments and
only two CI Frameworks: Travis CI and Jenkins. Consider-
ing other industrial scenarios with different kinds of sys-
tems is a gap. From such environments, only two environ-
ments made available their data used in their research:
Google with the GSDTSR dataset and ABB Robotics with
its datasets IOF/ROL and Paint Control. Moreover, only two
studies made available the proposed approach [PS5,PS28].
This hampers the replication of the experiments and under-
mines a more open science. We suggest future researches

6Microsoft Research Blog: Leveraging blockchain to make machine learning
models more accessible.

14

84

to use Open Science Framework to increase the openness,
integrity, accessibility, and reproducibility of scientific re-
search, consequently contributing to the Open Science com-
munity.

We observed that among the CI testing problems, UI test-
ing and Flaky tests have been few addressed. The most ad-
dressed problem is related to time constraints. Concerning
complex testing, a gap is to investigate TCPCI techniques
in emergent, new contexts, and systems that are hard to
test, i.e., UI systems, Service-based systems, dynamic appli-
cations, apps phones, and HCS.

We also found few works addressing some CI particular-
ities such as parallelism in the environment, the volatility
of test cases, and multiple commits. Future works should
focus on CI specific characteristics, such as the use of the
available resources, for instance, memory consuming.

5.4 Evaluation of the approaches
Almost all studies (33 out of 35) are dedicated to compare
and evaluate the proposed approaches. Recent studies are
concerned with the approach effectiveness evaluation by
using measures such as Time required to perform the pri-
oritization, given the CI time constraints, but FD is also a
measure used by a great number of studies. A gap is the
use of NAPFD measure, few explored.

Few studies use a statistical test and are worried about
scalability. In this way, more rigorous experiments are nec-
essary to evaluate these aspects and perform a comparison
of the approaches in practice. We identified a list of 99
systems used in TCPCI context (see Section 4.3.1, RQ3.1).
However, a lack of a benchmark for the field is a gap to be
addressed.

GSDTSR is the most used system which contains test
suite results from a sample of Google, and it could be used
in future studies. As mentioned before, Travis CI is the most
popular CI framework in the GitHub, as well as it provides
an API to access test results from open-source repositories.
A data mining procedure could be conducted to identify
different systems, such as HCS and Android. For this, the
use of Travis Torrent could be considered [2]. A possible
research opportunity is the construction of a repository
containing a set of systems that are considered deemed
TCP cases and have different characteristics regarding the
number of faults by commit and the number of test cases.
This could help to overcome the main threats found in the
evaluations and reported in the studies.

There is a lack of studies addressing CI particularities
and testing problems at the same time. This hampers the
evolution of the TCPCI field, mainly due to the high number
of limitations identified. The creation of a benchmark, the
use of adequate evaluation measures, and the availability
of techniques can accelerate research in the TCPCI context.

Moreover, a qualitative analysis of the impact of the tech-
niques in industrial settings might be considered as future
research.

6 THREATS TO VALIDITY
In this section, we identify possible threats to the validity of
our results, according to the taxonomy of Wohlin et al. [37].

Regarding construct validity, the research questions may
not address all TCPCI aspects. This threat was mitigated
through discussions, and we believe that the questions
reflect the goals of our work. Other authors can elabo-
rate other questions and obtain a different analysis. The
databases used are well-known and related to the software
engineering and software testing areas. In this way, we be-
lieve the found studies represent well the TCPCI field. Our
search string does not have many elements, but we carefully
created a search string capable of finding consistent results.
To construct the search string, we selected terms related
to our goals and synonymous used in mappings of the TCP
field [4, 20]. We refined our search string several times
by using a control group, reducing the risk that relevant
literature is omitted.

Concerning internal validity, maybe we may have ex-
tracted and misinterpreted some information. To minimize
such a threat during the data extraction, we followed a rig-
orous plan, using the PRISMA statement, and well-defined
inclusion and exclusion criteria. We had meetings and dis-
cussions to clarify any doubt arisen during the process.

Other possible threats, related to the conclusion validity,
is the granularity of the information described in the stud-
ies, which may affect our conclusions. Besides, our schema
can also be a threat, as well as the form we classified the
papers. To mitigate them, we first documented all relevant
information from the primary studies guided by the dimen-
sions associated with the research questions and defined
the categories interactively. However, other researchers
may obtain another scheme and ways to group and analyze
the papers.

Regarding reliability validity, our study can be easily repli-
cated, following the steps described and using the search
string or using the raw data analyzed and disseminated by
the Open Science Framework (OSF).

7 CONCLUDING REMARKS
In this paper, we present the results of a systematic map-
ping study on the TCPCI field. We investigated some aspects
of the found studies: the main research goal, characteris-
tics of the explored approach, used evaluation measures,
and how the evaluation has been conducted. Furthermore,
we also analyzed the main publication fora and how the
field has been evolved over the years, trends, and research
opportunities to guide future research.

The map found 35 papers, published in a wide range of
venues, without the indication of a preferred publication

15

85

vehicle. We observed an increasing number of studies in the
last years and a crescent interest in the field.

The main research goal of the studies is the comparison
of prioritization techniques followed by the introduction
of a prioritization technique. Concerning the information
considered in the prioritization, History-based approaches
seem to be a trend. Probabilistic and Distribution-based
approaches were explored by only one study. To explore
new sources of information to prioritize the test cases such
as requirements, organizational restrictions, and human
aspects can be an alternative, maybe in combination with
historical information. We identified few studies combining
TCP and fault localization, and there is no approach based
on requirements or models. These are gaps that can guide
future research.

To evaluate the proposed approaches, several systems
are used. We identified 99 different systems. GSDTSR is the
most common system used. The main threat found in the
evaluations is concerned with the systems used, followed by
the evaluation measures and techniques used in the compar-
ison. We observed that only 9 studies apply a statistical test.
Regarding evaluation measures, we identified 23 measures
in the primary studies, and Time and FD are the most used.

Some research opportunities are the application of TCPCI
in other contexts considering languages such as C# and
Python. It is necessary to address other CI testing problems
and particularities such as complex and time-consuming
testing, flaky tests, UI testing, parallelism, test case volatil-
ity, and multiple commits. Other limitations to be overcome
are the use of different systems with different characteris-
tics (size, faults by commit, number of commits, number of
test cases) to allow generalization and scalability evaluation,
as well as the construction of benchmarks.

ACKNOWLEDGMENTS
This work is supported by the Brazilian agencies CAPES
and CNPq. (Grant: 305968/2018-1).

PRIMARY STUDIES
[PS1] Ahmed Abdullah, Heinz W. Schmidt, Maria Spichkova, and Huai Liu.

2018. Monitoring Informed Testing for IoT. In Proceedings of the
25th Australasian Software Engineering Conference (ASWEC). IEEE,
91–95. https://doi.org/10.1109/ASWEC.2018.00020

[PS2] Emil Alégroth, Arvid Karlsson, and Alexander Radway. 2018. Continu-
ous Integration and Visual GUI Testing: Benefits and Drawbacks in
Industrial Practice. In Proceedings of the 11th International Confer-
ence on Software Testing, Verification and Validation (ICST). IEEE,
172–181. https://doi.org/10.1109/ICST.2018.00026

[PS3] Sadia Ali, Yaser Hafeez, Shariq Hussain, and Shunkun Yang. 2019.
Enhanced regression testing technique for agile software development
and continuous integration strategies. Software Quality Journal (Sep
2019). https://doi.org/10.1007/s11219-019-09463-4

[PS4] Benjamin Busjaeger and Tao Xie. 2016. Learning for Test Prioriti-
zation: An Industrial Case Study. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE). ACM, 975–980. https://doi.org/10.1145/2950290.
2983954

[PS5] Junjie Chen, Yiling Lou, Lingming Zhang, Jianyi Zhou, Xiaoleng Wang,
Dan Hao, and Lu Zhang. 2018. Optimizing Test Prioritization via Test
Distribution Analysis. In Proceedings of the 26th ACM Joint Meeting

on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE). ACM, 656–667.
https://doi.org/10.1145/3236024.3236053

[PS6] Younghwan Cho, Jeongho Kim, and Eunseok Lee. 2016. History-Based
Test Case Prioritization for Failure Information. In Proceedings of the
23rd Asia-Pacific Software Engineering Conference (APSEC). IEEE,
385–388. https://doi.org/10.1109/APSEC.2016.066

[PS7] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Tech-
niques for Improving Regression Testing in Continuous Integration
Development Environments. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineer-
ing (FSE). ACM, New York, NY, USA, 235–245. https://doi.org/10.
1145/2635868.2635910

[PS8] Martin Eyl, Clements Reichmann, and Klaus Müller-Glaser. 2016. Fast
Feedback from Automated Tests Executed with the Product Build.
In Proceedings of the 8th Internation Conference on Software Qual-
ity (SWQD). Springer, 199–210. https://doi.org/10.1007/978-3-319-
27033-3_14

[PS9] Alireza Haghighatkhah, Mika Mäntylä, Markku Oivo, and Pasi Kuvaja.
2018. Test prioritization in continuous integration environments.
Journal of Systems and Software 146 (2018), 80–98. https://doi.org/
10.1016/j.jss.2018.08.061

[PS10] Bo Jiang and Wing Kwong Chan. 2010. On the Integration of Test Ad-
equacy, Test Case Prioritization, and Statistical Fault Localization. In
Proceedings of the 10th International Conference on Quality Software
(QSIC). IEEE, 377–384. https://doi.org/10.1109/QSIC.2010.64

[PS11] Bo Jiang and Wing Kwong Chan. 2016. Testing and Debugging in
Continuous Integration with Budget Quotas on Test Executions. In
Proceedings of the IEEE International Conference on Software Quality,
Reliability and Security (QRS). IEEE, 439–447. https://doi.org/10.
1109/QRS.2016.66

[PS12] Bo Jiang, Wing Kwong Chan, and T. H. Tse. 2011. On Practical
Adequate Test Suites for Integrated Test Case Prioritization and Fault
Localization. In Proceedings of the 11th International Conference on
Quality Software (QSIC). IEEE, 21–30. https://doi.org/10.1109/QSIC.
2011.37

[PS13] Bo Jiang, Zhenyu Zhang, Wing Kwong Chan, T. H. Tse, and
Tsong Yueh Chen. 2012. How Well Does Test Case Prioritization
Integrate with Statistical Fault Localization? Informtation and Soft-
ware Technology 54, 7 (July 2012), 739–758. https://doi.org/10.1016/
j.infsof.2012.01.006

[PS14] Bo Jiang, Zhenyu Zhang, T. H. Tse, and Tsong Yueh Chen. 2009. How
Well Do Test Case Prioritization Techniques Support Statistical Fault
Localization. In Proceedings of the 33rd Annual IEEE International
Computer Software and Applications Conference (COMPSAC), Vol. 1.
IEEE, 99–106. https://doi.org/10.1109/COMPSAC.2009.23

[PS15] Jeongho Kim, Hohyeon Jeong, and Eunseok Lee. 2017. Failure His-
tory Data-based Test Case Prioritization for Effective Regression Test.
In Proceedings of the Symposium on Applied Computing (SAC). ACM,
New York, NY, USA, 1409–1415. https://doi.org/10.1145/3019612.
3019831

[PS16] Eric Knauss, Miroslaw Staron, Wilhelm Meding, Ola Söder, Agneta
Nilsson, and Magnus Castell. 2015. Supporting Continuous Inte-
gration by Code-Churn Based Test Selection. In Proceedings of the
IEEE/ACM 2nd International Workshop on Rapid Continuous Software
Engineering (RCoSE). IEEE, 19–25. https://doi.org/10.1109/RCoSE.
2015.11

[PS17] Jung-Hyun Kwon and In-Young Ko. 2017. Cost-Effective Regres-
sion Testing Using Bloom Filters in Continuous Integration Develop-
ment Environments. In Proceedings of the 24th Asia-Pacific Soft-
ware Engineering Conference (APSEC). IEEE, 160–168. https:
//doi.org/10.1109/APSEC.2017.22

[PS18] Jingjing Liang, Sebastian Elbaum, and Gregg Rothermel. 2018. Re-
defining Prioritization: Continuous Prioritization for Continuous In-
tegration. In Proceedings of the 40th International Conference on
Software Engineering (ICSE). ACM, New York, NY, USA, 688–698.
https://doi.org/10.1145/3180155.3180213

[PS19] Dusica Marijan. 2015. Multi-perspective Regression Test Prioritiza-
tion for Time-Constrained Environments. In Proceedings of the IEEE
International Conference on Software Quality, Reliability and Security
(QRS). IEEE Computer Society, 157–162. https://doi.org/10.1109/
QRS.2015.31

[PS20] Dusica Marijan, Arnaud Gotlieb, and Marius Liaaen. 2019. A learning
algorithm for optimizing continuous integration development and

16

86

testing practice. Software: Practice and Experience 49, 2 (2019),
192–213. https://doi.org/10.1002/spe.2661

[PS21] Dusica Marijan, Arnaud Gotlieb, and Sagar Sen. 2013. Test Case
Prioritization for Continuous Regression Testing: An Industrial Case
Study. In Proceedings of the IEEE International Conference on Soft-
ware Maintenance (ICMS). IEEE, 540–543. https://doi.org/10.1109/
ICSM.2013.91

[PS22] Dusica Marijan and Marius Liaaen. 2016. Effect of Time Window on
the Performance of Continuous Regression Testing. In Proceedings
of the IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 568–571. https://doi.org/10.1109/ICSME.
2016.77

[PS23] Dusica Marijan and Marius Liaaen. 2017. Test Prioritization with Op-
timally Balanced Configuration Coverage. In Proceedings of the IEEE
18th International Symposium on High Assurance Systems Engineer-
ing (HASE). IEEE, 100–103. https://doi.org/10.1109/HASE.2017.26

[PS24] Dusica Marijan, Marius Liaaen, Arnaud Gotlieb, Sagar Sen, and Carlo
Ieva. 2017. TITAN: Test Suite Optimization for Highly Configurable
Software. In Proceedings of the IEEE International Conference on
Software Testing, Verification and Validation (ICST). IEEE, 524–531.
https://doi.org/10.1109/ICST.2017.60

[PS25] Dusica Marijan, Marius Liaaen, and Sagar Sen. 2018. DevOps Im-
provements for Reduced Cycle Times with Integrated Test Optimiza-
tions for Continuous Integration. In Proceedings of the IEEE 42nd
Annual Computer Software and Applications Conference (COMPSAC),
Vol. 01. IEEE, 22–27. https://doi.org/10.1109/COMPSAC.2018.00012

[PS26] Armin Najafi, Weiyi Shang, and Peter C. Rigby. 2019. Improving
Test Effectiveness Using Test Executions History: An Industrial Ex-
perience Report. In Proceedings of the 41st International Confer-
ence on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE Press, Piscataway, NJ, USA, 213–222. https:
//doi.org/10.1109/ICSE-SEIP.2019.00031

[PS27] Dipesh Pradhan, Shuai Wang, Shaukat Ali, Tao Yue, and Marius
Liaaen. 2019. Employing rule mining and multi-objective search for
dynamic test case prioritization. Journal of Systems and Software 153
(2019), 86–104. https://doi.org/10.1016/j.jss.2019.03.064

[PS28] Helge Spieker, Arnaud Gotlieb, Dusica Marijan, and Morten Mossige.
2017. Reinforcement Learning for Automatic Test Case Prioritization
and Selection in Continuous Integration. In Proceedings of the 26th
ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA). ACM, New York, NY, USA, 12–22. https://doi.org/
10.1145/3092703.3092709

[PS29] Per Erik Strandberg, Wasif Afzal, Thomas J. Ostrand, Elaine J.
Weyuker, and Daniel Sundmark. 2017. Automated System-Level Re-
gression Test Prioritization in a Nutshell. IEEE Software 34, 4 (july
2017), 30–37. https://doi.org/10.1109/MS.2017.92

[PS30] Per Erik Strandberg, Daniel Sundmark, Wasif Afzal, Thomas J. Os-
trand, and Elaine J. Weyuker. 2016. Experience Report: Automated
System Level Regression Test Prioritization Using Multiple Factors.
In Proceedings of the 27th International Symposium on Software Reli-
ability Engineering (ISSRE). IEEE, 12–23. https://doi.org/10.1109/
ISSRE.2016.23

[PS31] Wen Wen, Zhongju Yuan, and Yuyu Yuan. 2018. Improving RETECS
method using FP-Growth in continuous integration. In Proceedings
of the 5th IEEE International Conference on Cloud Computing and
Intelligence Systems (CCIS). IEEE, 636–639. https://doi.org/10.1109/
CCIS.2018.8691385

[PS32] Lei Xiao, Huaikou Miao, and Ying Zhong. 2018. Test case prioritiza-
tion and selection technique in continuous integration development
environments: a case study. International Journal of Engineering &
Technology 7, 2.28 (2018), 332–336. https://doi.org/10.14419/ijet.
v7i2.28.13207

[PS33] Shin Yoo, Robert Nilsson, and Mark Harman. 2011. Faster Fault
Finding at Google Using Multi Objective Regression Test Optimisation.
In Proceedings of the 8th European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE’11). Industry Track.

[PS34] Zhe Yu, Fahmid Fahid, Tim Menzies, Gregg Rothermel, Kyle Patrick,
and Snehit Cherian. 2019. TERMINATOR: better automated UI test
case prioritization. In Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (FSE). ACM, 883–894. https:
//doi.org/10.1145/3338906.3340448

[PS35] Yuecai Zhu, Emad Shihab, and Peter C. Rigby. 2018. Test Re-
Prioritization in Continuous Testing Environments. In Proceedings

of the IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 69–79. https://doi.org/10.1109/ICSME.
2018.00016

REFERENCES
[1] [n.d.]. The RedMonk Programming Language Rankings: January 2018s.

https://redmonk.com/sogrady/2018/03/07/language-rankings-1-18/. Ac-
cessed: 2018-03-20.

[2] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. TravisTor-
rent: Synthesizing Travis CI and GitHub for Full-Stack Research on
Continuous Integration. In Proceedings of the 14th working conference
on mining software repositories.

[3] Buildbot. [n.d.]. The Continuous Integration Framework. https:
//buildbot.net. Accessed: 2018-01-22.

[4] Cagatay Catal and Deepti Mishra. 2013. Test Case Prioritization: A
Systematic Mapping Study. Software Quality Journal 21, 3 (09 2013),
445–478. https://doi.org/10.1007/s11219-012-9181-z

[5] Theodore D. Hellmann, Abhishek Sharma, Jennifer Ferreira, and Frank
Maurer. 2012. Agile Testing: Past, Present, and Future – Charting a Sys-
tematic Map of Testing in Agile Software Development. In Proceedings
of the Agile Conference. 55–63. https://doi.org/10.1109/Agile.2012.8

[6] Alexander Eck, Falk Uebernickel, and Walter Brenner. 2014. Fit for con-
tinuous integration: How organizations assimilate an agile practice. In
Proceedings of the 20th Americas Conference on Information Systems
(AMCIS). Association for Information Science.

[7] S. Elbaum, A. Malishevsky, and G. Rothermel. 2001. Incorporating vary-
ing test costs and fault severities into test case prioritization. In Pro-
ceedings of the 23rd International Conference on Software Engineering.
ICSE 2001. 329–338. https://doi.org/10.1109/ICSE.2001.919106

[8] Sebastian Elbaum, Andrew McLaughlin, and John Penix. 2014. The
Google Dataset of Testing Results.

[9] T. N. Ferreira, J. A. P. Lima, A. Strickler, J. N. Kuk, S. R. Vergilio, and
A. Pozo. 2017. Hyper-Heuristic Based Product Selection for Software
Product Line Testing. IEEE Computational Intelligence Magazine 12, 2
(May 2017), 34–45. https://doi.org/10.1109/MCI.2017.2670461

[10] T. N. Ferreira, S. R. Vergilio, and J. T. de Souza. 2017. Incorporating
user preferences in search-based software engineering: A systematic
mapping study. Information and Software Technology 90 (2017), 55–69.
https://doi.org/10.1016/j.infsof.2017.05.003

[11] Vahid Garousi, Michael Felderer, and Mika V. Mäntylä. 2016. The
Need for Multivocal Literature Reviews in Software Engineering: Com-
plementing Systematic Literature Reviews with Grey Literature. In
Proceedings of the 20th International Conference on Evaluation and
Assessment in Software Engineering (EASE). ACM, Article 26, 6 pages.
https://doi.org/10.1145/2915970.2916008

[12] Vahid Garousi, Michael Felderer, and Mika V. Mäntylä. 2019. Guide-
lines for including grey literature and conducting multivocal literature
reviews in software engineering. Information and Software Technology
106 (2019), 101 – 121. https://doi.org/10.1016/j.infsof.2018.09.006

[13] GoCD. [n.d.]. Open Source Continuous Delivery and Release Automation
Server. https://www.gocd.org. Accessed: 2018-01-22.

[14] Christopher Henard, Mike Papadakis, Mark Harman, Yue Jia, and Yves
Le Traon. 2016. Comparing White-box and Black-box Test Prioritization.
In Proceedings of the 38th International Conference on Software Engi-
neering (ICSE’16). ACM, 523–534. https://doi.org/10.1145/2884781.
2884791

[15] Integrity. [n.d.]. Continuous Integration Server. https://integrity.github.
io. Accessed: 2018-01-22.

[16] Dennis Jeffrey, Neelam Gupta, and Rajiv Gupta. 2008. Fault Localization
Using Value Replacement. In Proceedings of the 2008 International
Symposium on Software Testing and Analysis (ISSTA’08). ACM, 167–
178. https://doi.org/10.1145/1390630.1390652

[17] Jenkins. [n.d.]. https://wiki.jenkins-ci.org/display/JENKINS/Home. Ac-
cessed: 2018-01-22.

[18] James A. Jones and Mary Jean Harrold. 2005. Empirical Evaluation of
the Tarantula Automatic Fault-localization Technique. In Proceedings
of the 20th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE’05). ACM, 273–282. https://doi.org/10.1145/
1101908.1101949

[19] Teemu Karvonen, Woubshet Behutiye, Markku Oivo, and Pasi Kuvaja.
2017. Systematic literature review on the impacts of agile release
engineering practices. Information and Software Technology 86 (2017),

17

87

87 – 100. https://doi.org/10.1016/j.infsof.2017.01.009
[20] Muhammad Khatibsyarbini, Mohd Adham Isa, Dayang N.A. Jawawi,

and Rooster Tumeng. 2018. Test case prioritization approaches in
regression testing: A systematic literature review. Information and
Software Technology 93 (2018), 74–93. https://doi.org/10.1016/j.infsof.
2017.08.014

[21] Amit Kumar and Karambir Singh. 2014. A Literature Survey on test
case prioritization. Compusoft 3, 5 (2014), 793.

[22] Eero Laukkanen, Juha Itkonen, and Casper Lassenius. 2017. Problems,
causes and solutions when adopting continuous delivery—A systematic
literature review. Information and Software Technology 82 (2017), 55 –
79. https://doi.org/10.1016/j.infsof.2016.10.001

[23] Marco Leppänen, Simo Mäkinen, Max Pagels, Veli-Pekka Eloranta, Juha
Itkonen, Mika V. Mäntylä, and Tomi Männistö. 2015. The highways and
country roads to continuous deployment. IEEE Software 32, 2 (Mar
2015), 64–72. https://doi.org/10.1109/MS.2015.50

[24] Alexander Lex, Nils Gehlenborg, Hendrik Strobelt, Romain Vuillemot,
and Hanspeter Pfister. 2014. UpSet: Visualization of Intersecting Sets.
IEEE Transactions on Visualization and Computer Graphics (InfoVis’14)
20, 12 (2014), 1983–1992.

[25] Mika V. Mäntylä, Bram Adams, Foutse Khomh, Emelie Engström, and
Kai Petersen. 2015. On rapid releases and software testing: a case
study and a semi-systematic literature review. Empirical Software
Engineering 20, 5 (01 Oct 2015), 1384–1425.

[26] David Moher, Alessandro Liberati, Jennifer Tetzlaff, and Douglas G
Altman. 2009. Preferred Reporting Items for Systematic Reviews and
Meta-Analyses: The PRISMA Statement. BMJ 339 (2009). https:
//doi.org/10.1136/bmj.b2535

[27] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson. 2008. Systematic
Mapping Studies in Software Engineering. In Proceedings of the 12th
International Conference on Evaluation and Assessment in Software
Engineering (EASE’08). BCS Learning & Development Ltd., 68–77.

[28] Jackson A Prado Lima and Silvia R Vergilio. 2020. Supplementary Mate-
rial - Test Case Prioritization in Continuous Integration Environments:
A Mapping Study. https://doi.org/10.17605/OSF.IO/ZFE64

[29] Xiao Qu, Myra B. Cohen, and Katherine M. Woolf. 2007. Combinatorial
Interaction Regression Testing: A Study of Test Case Generation and Pri-
oritization. In IEEE International Conference on Software Maintenance.
255–264. https://doi.org/10.1109/ICSM.2007.4362638

[30] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean
Harrold. 1999. Test Case Prioritization: An Empirical Study. In Proceed-
ings of the IEEE International Conference on Software Maintenance
(ICSM’99). IEEE Computer Society, 179–188. https://doi.org/10.1109/
ICSM.1999.792604

[31] Gregg Rothermel, Roland J. Untch, and Chengyun Chu. 2001. Prioritiz-
ing Test Cases For Regression Testing. IEEE Transactions on Software
Engineering 27, 10 (Oct. 2001), 929–948. https://doi.org/10.1109/32.
962562

[32] Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. 2017. Contin-
uous Integration, Delivery and Deployment: A Systematic Review on
Approaches, Tools, Challenges and Practices. IEEE Access 5 (2017),
3909–3943. https://doi.org/10.1109/ACCESS.2017.2685629

[33] Yogesh Singh, Arvinder Kaur, Bharti Suri, and Shweta Singhal. 2012.
Systematic Literature Review on Regression Test Prioritization Tech-
niques. Informatica 36, 4 (2012), 379–408.

[34] Daniel Ståhl and Jan Bosch. 2014. Modeling continuous integration
practice differences in industry software development. Journal of Sys-
tems and Software 87 (2014), 48 – 59. https://doi.org/10.1016/j.jss.
2013.08.032

[35] Travis CI. [n.d.]. Travis CI. https://travis-ci.org. Accessed: 2018-01-22.
[36] C Wohlin. 2014. Guidelines for Snowballing in Systematic Literature

Studies and a Replication in Software Engineering. In Proceedings of
the 18th International Conference on Evaluation and Assessment in
Software Engineering (EASE’14). ACM, 38:1–38:10. https://doi.org/10.
1145/2601248.2601268

[37] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Bjöorn
Regnell, and Anders Wesslén. 2000. Experimentation in Software
Engineering: An Introduction. Kluwer Academic Publishers.

[38] S. Yoo and M. Harman. 2012. Regression Testing Minimization, Se-
lection and Prioritization: A Survey. Software Testing, Verification &
Reliability 22, 2 (March 2012), 67–120. https://doi.org/10.1002/stv.430

[39] Yanbing Yu, James A. Jones, and Mary Jean Harrold. 2008. An Empirical
Study of the Effects of Test-suite Reduction on Fault Localization. In Pro-
ceedings of the 30th International Conference on Software Engineering
(ICSE’08). ACM, 201–210. https://doi.org/10.1145/1368088.1368116

[40] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou, Vladimir Filkov,
and Bogdan Vasilescu. 2017. The impact of continuous integration on
other software development practices: A large-scale empirical study.
In Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). 60–71. https://doi.org/10.
1109/ASE.2017.8115619

18

88

89

APPENDIX B – A MULTI-ARMED BANDIT APPROACH FOR TCPCI

A Multi-Armed Bandit Approach for Test Case Prioritization in
Continuous Integration Environments

Jackson A. Prado Lima
DInf, Federal University of Paraná

Curitiba, Brazil
jackson.lima@ufpr.br

Silvia R. Vergilio
DInf, Federal University of Paraná

Curitiba, Brazil
silvia@inf.ufpr.br

ABSTRACT

Continuous Integration (CI) environments have been increasingly
adopted in the industry to allow frequent integration of software
changes, making software evolution faster and cost-effective. In
such environments, Test Case Prioritization (TCP) techniques play
an important role to reduce regression testing costs, establishing a
test case execution order that usually maximizes early fault detec-
tion. Existing works on TCP in CI environments (TCPCI) present
some limitations. Few pieces of work consider CI particularities,
such as the test case volatility, that is, they do not consider the
dynamic environment of the software life-cycle in which new test
cases can be added or removed (discontinued), characteristic related
to the Exploration versus Exploitation (EvE) dilemma. To solve such
a dilemma an approach needs to balance: i) the diversity of test
suite; and ii) the quantity of new test cases and test cases that are
error-prone or that comprise high fault-detection capabilities. To
deal with this, most approaches use, besides the failure-history,
other measures that rely on code instrumentation or require addi-
tional information, such as testing coverage. However, to maintain
the information updated can be difficult and time-consuming, not
scalable due to the test budget of CI environments. In this context,
and to properly deal with the TCPCI problem, this work presents
an approach based on Multi-Armed Bandit (MAB) called COLEMAN
(Combinatorial VOlatiLE Multi-Armed BANdit). The TCPCI prob-
lem falls into the category of volatile and combinatorial MAB, be-
cause multiple arms (test cases) need to be selected, and they are
added or removed over the cycles. We conducted an evaluation con-
sidering three time budgets and eleven systems. The results show
the applicability of our approach and that COLEMAN outperforms
the most similar approach from literature in terms of early fault
detection and performance.

KEYWORDS

Test Case Prioritization, Continuous Integration, Multi-Armed Ban-
dit

1 INTRODUCTION

Continuous Integration (CI) plays an important role in agile de-
velopment, allowing reduced integration effort, lower number of
uncorrected errors for long periods, and delivering a product ver-
sion at any moment. CI environments are fundamental to CI in
practice to support the frequent integration of changes and make
the software evolution more rapid and cost-effective. Studies in
the literature show that the adoption of such environments in the
industry is growing, as well as the number of daily commits and
the amount of automated tests as a consequence [38].

Companies like Google [27], Facebook, andMicrosoft have adopted
CI, as well as open-source projects [17] using available CI frame-
works (i.e., Travis CI and Jenkins). A study shows that every day
at Google, an amount of 800K builds, and 150 Million test runs are
performed on more than 13K code projects [27]. This amount of
builds and tests can require non-trivial amounts of time and re-
sources [17]. Within an integration cycle (many times called build),
the regression testing activity takes a significant amount of time.
A test set, many times, includes thousands of test cases that take
several hours or days to execute [15]. Even though massive paral-
lelism was reported, Google developers must wait 45 minutes to 9
hours to receive testing results [27].

In this scenario, to re-execute all test cases is unfeasible. Then
it is fundamental to perform Regression Testing (RT) activities in
a very cost-effective way. This ensures that recent changes have
not negatively impacted functionality previously tested, and con-
sidering CI goals, provides rapid test feedback on software failures.
Besides, in a company, multiple projects may share the same CI
workflow and regression testing usually runs a time restricted to
a specific duration, the test budget. This makes difficult the use of
traditional RT techniques for test case minimization and selection.
They usually rely on code analysis and instrumentation, what can
be time-consuming and produce results that quickly become inaccu-
rate due to the frequent changes [12]. Test Case Prioritization (TCP)
techniques are most suitable in the presence of time constraints.
TCP techniques allow the most crucial test cases are executed first,
by reordering a test suite according to specific goals, such as early
fault detection. TCP techniques have advantages with respect to
other techniques because they consider all test suite, consequently,
decreasing the risk of reducing code coverage by discarding some
test case [9].

Ideally, the test set should be executed to maximize early fault
detection. However, fault-detection information is unknown until
the testing is finished [37]. TCP techniques based on failure history
can be used to overcome such a difficulty [15]. But a problem re-
mains, related to the speed up of existing TCP approaches. Due to
the high frequency of changes in CI environments and the high
RT cost, approaches that require exhaustive analysis are costly and
inefficient [12] because the time available to run the prioritized test
suite can be reduced if prioritization takes too long [16].

To deal with the TCP problem in CI environments (TCPCI), some
approaches have recently appeared in the literature addressing such
difficulties: early fault detection and time constraints to run the test
suite [6, 8, 15, 24, 25, 26, 33]. But few pieces of work consider CI
particularities [29]. For instance, they do not consider the dynamic
environment of the software life-cycle, in which changes in the

code are frequent and test cases can be added or removed (discontin-
ued) over the CI cycles, particularity called test case volatility. Most
approaches do not properly deal with an important dilemma called
Exploration versus Exploitation (EvE). To solve such a dilemma
an approach needs to balance: i) the diversity of test suite, and ii)
the quantity of new test cases and test cases that are error-prone
or that comprise high fault-detection capabilities. This problem
is related with the test budget, because if only error-prone test
cases are considered without diversity, some test cases can never
be executed. To deal with this, existing approaches use, besides the
failure-history, other measures that rely on code instrumentation
or require additional information, such as to calculate code or fea-
ture coverage. This can be time-consuming, and to maintain the
information updated can be difficult.

The approach called RETECS (Reinforced Test Case Selection) [33]
deals with the EvE dilemma and considers the test budget by
using historical test data and Reinforcement Learning (RL) [34].
RETECS reached the best performance using an Artificial Neural
Network (ANN), which is capable of handling a large amount of de-
cisions/states. On the other hand, determining why an ANN makes
a particular decision is a hard task (black box) [4].

Considering the aforementioned limitations of existing work, in
this paper, we introduce an approach for the TCPCI problem based
on Multi-Armed Bandit (MAB) [2, 31]. The MAB problems are a
class of sequential decision problems that are intensively studied for
solving the EvE dilemma [20]. MAB has many similarities to RL and
is considered to be a “lite” form (one-state) of RL. But MAB presents
some advantages. MAB does not require context information and
its actions only affect the reward, that is, the actions do not change
the state of the environment. In contrast, RL actions change the
state. Due to this, RL needs to handle the state space, as well as to
rely on function approximation to evaluate the value of being in a
particular state and taking a specific action.

The TCPCI problem falls into the category of volatile and combi-
natorial MAB, because multiple arms (test cases) need to be selected,
and they are added or removed over the cycles. Then, we named our
approach COLEMAN (Combinatorial VOlatiLE Multi-Armed BANdit).
We implemented our approach with five MAB policies and evalu-
ated it in eleven large-scale real-world software systems, consid-
ering three time budgets. After that, we compared the best policy
found for COLEMAN against RETECS [33]. Quality indicators, such as
Normalized Average Percentage of Faults Detected (NAPFD), Aver-
age Percentage of Faults Detected with cost consideration (APFDc),
as well as statistical tests and effect size, are used. Evaluation results
show the applicability of our approach, which takes in all cases less
than one second to execute, even for the systems with the great-
est number of builds and test cases. COLEMAN outperforms RETECS
with statistical difference in the majority of the cases, considering
all budgets and indicators used. In summary, this work has the
following main contributions:

(1) The proposal of COLEMAN, a MAB-based approach for the TCPCI
problem. Such an approach has some advantages in comparison
with related work:

• It learns how to incorporate the feedback from the applica-
tion of the test cases thus incorporating diversity in the test
suite prioritization;

• It uses a policy to deal with the EvE dilemma, thus mitigat-
ing the problem of beginning without knowledge (learning)
and adapting to changes in the execution environment, for
instance, the fact that some test cases are added (new test
cases) and removed (obsolete test cases) from one cycle to
another (volatility of test cases);

• It is model-free. The technique is independent of the devel-
opment environment and programming language, and does
not require any analysis in the code level;

• It is more lightweight, that is, needs only the historical failure
data to execute, and has higher performance.

(2)As far as we know, COLEMAN is the firstMAB-based approach that
considers standard MAB with the characteristics of combinatorial
and volatile MAB, even considering other fields beyond software
testing.

(3) A public repository with the data used in this work, which
allows replication and can be used in future research available in
the Open Science Framework[28].

Paper structure. Section 2 provides background information
about MAB and CI environments. Section 3 reviews related work on
TCPCI. Our proposed approach, COLEMAN, is detailed in Section 4.
Section 5 describes how the experiments were conducted: research
questions, systems under test, quality indicators and used param-
eters. Results are presented and discussed in Section 6. Section 7
concludes the paper and presents the directions for future work.

2 BACKGROUND

In this section, we review background onCombinatorial and Volatile
Multi-Armed Bandit and CI environments.

2.1 Multi-Armed Bandit

MAB (Multi-Armed Bandit) problems [31] are sequential decision
problems related to the EvE (Exploitation versus Exploration) dilemma [20].
This means that, for such problems, solutions with the best perfor-
mance (exploitation) are desired, but it is also important to ensure
diversity, that is, dissimilar solutions (exploration).

The MAB problem is related to the scenario in which a player
plays on a set 𝐾 of slot machines (or arms/actions) that even iden-
tical produce different gains. After a player pulls one of the arms
𝑖 ∀ 𝑖 ∈ 𝐾 in a turn 𝑡 , a reward (𝑞𝑖,𝑡) is received drawn from some
unknown distribution, thus aiming to maximize the sum of the
rewards.

A policy is a strategy that chooses, at each time 𝑡 , the next arm to
pull based on previously observed rewards and decisions. The MAB
problem is to determine the policy that maximizes the expected
cumulative reward over the EvE dilemma. A review of the main
MAB policies proposed in the literature is presented in [20]. Among
them, we can mention the 𝜖-greedy policy, a policy widely used
due to its simplicity. At each time, such a policy evaluates the arms
and defines an empirical quality estimate 𝑞𝑖,𝑡 , based on previous
executions. The 𝑞𝑖,𝑡 value of an arm 𝑖 in the time 𝑡 is based on the
sum of its previous rewards divided by the number of times that 𝑖
has been pulled. After, the policy selects, with a probability 1−𝜖 , the
arm with the highest 𝑞𝑖,𝑡 value (exploitation), or randomly selects

90

A Multi-Armed Bandit Approach for Test Case Prioritization in Continuous Integration Environments

an arm (exploration) with a probability 𝜖 . The parameter 𝜖 is the
key to balance the EvE dilemma in the 𝜖-greedy policy.

The MAB-police called Upper Confidence Bound (UCB) provides
a smarter way to deal with the EvE dilemma and ensures asymptotic
optimality in terms of the total cumulative reward [2]. Most of
the recent policies are UCB-based. In such policies the 𝑖th arm
has an empirical quality estimate 𝑞𝑖,𝑡 (the average of the rewards
obtained up to the given time instant) and a confidence interval that
depends on the number of times,𝑛𝑖 , the arm has been applied before.
At each time point 𝑡 , the selection of the best arm is performed
based on the arm with the best upper bound of the confidence
interval. In addition to this, Fialho [13] introduced a scaling factor
𝐶 (Equation 1), encompassing the situation when the rewards are
usually among some real-value interval and the EvE balance may
“break”.

Select 𝑎𝑡 = argmax
𝑖∈𝐾

����𝑞𝑖,𝑡 𝐶 ×

√√
2 × 𝑙𝑛

∑𝐾
𝑗=1 𝑛 𝑗,𝑡

𝑛𝑖,𝑡

�		
 (1)

where the exploitative first term favors the arms with best empirical
rewards, while the exploratory second term favors the infrequently
tried arms. If exploration is preferable, C must be increased. Other-
wise, if exploitation is the focus, C must be decreased. In this work,
the acronym UCB is used to denominate the adaptation proposed
by Fialho.

Another UCB-based MAB policy is the Fitness-Rate-Rank (FR-
RMAB), a state policy that has presented good results in the Adap-
tive Operator Selection context [21]. This policy consists of two
procedures: credit assignment and operator (arm/action) selection.
The first procedure, Credit Assignment, refers to a reward proce-
dure that takes into account the impact observed in the most recent
applications. In the credit assignment, FRRMAB policy changed the
UCB quality estimator (Equation 1) by a rank-based method that
uses the Fitness Improvement Rate (FIR) method. The FIR value
is stored in a given Sliding Window (SW) organized as a first-in,
first-out queue that is used to evaluate the𝑊 recent applications.
The FRRMAB final value is corrected by a decaying factor (DF).
The second procedure randomly selects an arm until all arms are
selected, uses the FRRMAB policy to evaluate each arm, and selects
the best one.

In many real-world scenarios, a policy needs to select multiple
arms in each time. This is the case in our scenario, TCPCI problem,
where we need to prioritize a test set, and we can consider a test case
as an arm. This kind ofMAB problem is categorized as combinatorial

bandit, in which a set of arms are chosen in each time 𝑡 rather than
one individual arm, that is, we are required to pull a fixed number
𝑚 of arms from a set of arms 𝐾 , such that 1 ≤ 𝑚 ≤ |𝐾 | [1].

In addition to this and considering the inherently dynamic na-
ture of our problem, the arms available in each time may change
dynamically over time. In this sense, this work is based on a MAB
variant known as Volatile-multi-Arm bandit (VMAB) [5]. VMAB
considers that the arms can “appear” or “disappear” unexpectedly
in each time. In VMAB each arm 𝑎𝑖 is associated with a lifespan
given by an interval of time (𝑡𝑠𝑡𝑎𝑟𝑡𝑖 , 𝑡𝑒𝑛𝑑𝑖), during which this arm
is available. The arm’s lifespans are unknown in advance.

In this paper, we propose a novel approach that combines com-
binatorial MAB and VMAB. It allows the use of multiple plays in
an adaptive (volatile) scenario.

2.2 Continuous Integration environments

We observe an increasing use of Continuous Integration (CI) en-
vironments in the industry [10]. CI environments automate the
process of building and testing software, allowing engineers to
merge code that is under development or maintenance with the
mainline code base at frequent time intervals [10]. In CI develop-
ment, teams work continuously integrating code and make smaller
code commits every day, usually monitored by a CI server. When
a change occurs, the CI server clones this code, builds it and runs
the testing processes. When the entire process is finished, a report
(feedback) is generated by the CI server, and the developers are
informed. Figure 1 illustrates the process.

Figure 1: Overview of a Continuous Integration environ-

ment.

CI automated support is very important to CI in practice. Zhao
et al. [38] present some results about the impact of adopting the
framework Travis CI on development practices in a collection of
GitHub projects. They observed an increase in the number of daily
commits (frequency of 78 commits every day) and, after some initial
adjustments, an increase in the amount of automated tests.

In this scenario, RT activities are fundamental and TCP tech-
niques have been adopted to deal with the test budget, limited
resources and constraints of CI environments. In the next section,
we review related work on TCPCI.

3 RELATEDWORK

There are many works on TCP in the literature, which have been
subject of surveys and mappings [7, 18, 37]. However, only few
pieces of work address CI environments. Some approaches have the
goal of reducing the amount of resources utilized in a CI environ-
ment. Liang et al. [22] propose an approach to prioritize commits
based on the test suite failure and execution history. Other ap-
proach that considers multiple test requests was proposed by Zhu
et al. [39]. Such an approach uses co-failure distributions of tests,
that is, tests that co-fail in previous executions in different sets.
Elbaum et al. [12] introduce new algorithms for selection and prior-
itization of test suites, to be used respectively in a pre-submit and
pos-submit testing phases. In the first phase, which occurs prior to
commit, developers specify modules to be tested and the selection
algorithm selects test sets based on failure and execution windows.
This allows, respectively, selection based on the fault detection
history and of test cases not recently executed. In the post-testing,
after commit, the TCP algorithm prioritizes test suites considering

91

both windows and a time window. In this way, the algorithm deals
with test suite concurrency execution in the pos-submit testing.

Differently from the mentioned works, our work assumes a se-
quential execution order of test cases and prioritizes test cases in
the suite to be executed after the commit, usually considering a test
budget. Approaches with such a goal are the most related to ours,
and are described next.

Marijan et al. [25] introduce ROCKET, an approach that, given a
test budget, sets a weight for each test case based on the distance
of the failure status from its current execution and its execution
time. We observe a limitation regarding the execution time. Test
cases with an execution time greater than a limit are penalized, and
it is possible they are never executed. To set the weight, neither the
prioritization feedback is considered nor the total history of failures.
An extension is proposed by the authors in [24] to consider other
perspectives regarding fault detection, business, performance and
technical aspects. Such an extension needs additional information
related to coverage and features.

An approach and a tool called TITAN is proposed in [26] for
Highly Configurable Software (HCS). It implements test prioriti-
zation and minimization techniques, and provides test traceability
and visualization. Again, additional information, such as feature
coverage, is necessary. As first a minimization step is conducted
the prioritized set may not contain all available test cases.

Cho et al. [8] proposed an approach, named AFSAC, composed
by two stages. First, weights for the test cases are determined by
using statistical analysis over the failure history. Then, the test
cases are reordered using the correlation data of test cases acquired
by previous test results.

Haghighatkhah et al. [15] present empirical results that show the
use of historical failure knowledge is a strong predictor for TCPCI
problem. It is effective to catch regression faults earlier without
requiring a large amount of historical data. In addition to this, the
effectiveness can be improved by using such a knowledge with a
diversity measure, calculated by comparing the text of test cases.

The above-mentioned approaches do not consider the volatility
of the test cases, that is, they do not consider a test case may added
and/or removed over the cycles. Most of them do not consider the
feedback from the prioritization conducted previously. Some works
have addressed this limitation with the use of machine learning.
The approach of Busjaeger and Xie [6] uses (𝑆𝑉𝑀𝑚𝑎𝑝) to create
a model based on five attributes: test coverage of modified code,
textual similarity between tests and changes, recent test-failure
or fault history, and test age. Such a model is used to predict the
fault-proneness of the test cases and prioritize them. However, to
obtain the used attributes, additional information and code instru-
mentation are necessary. Other approach is RETECS, introduced by
Spieker et al. [33] to prioritize and select test cases based on Rein-
forcement Learning (RL). RETECS considers as input the test case
duration, historical failure data, and previous last execution. The
authors compared different RL variants and the Artificial Neural
Network (ANN) variant presented the best results.

We can summarize some drawbacks identified in related work.
Some of them have different goals from ours, for instance to reduce
server resources considering concurrent test set executions. The
most related approaches do not properly deal with the EvE problem.

This problem regards to the fact that as only a sub-set of the priori-
tized test cases can be executed regarding its order, some test cases
can never be executed given the test budget. To deal with this, most
approaches use, besides the failure-history, other measures that rely
on code instrumentation or require additional information, such as
to calculate code or feature coverage. This can be time-consuming
and to maintain the information updated can be difficult.

Existing works do not take into consideration the volatility of
test cases and feedback from last prioritizations. Differently, our
approach considers the test cases volatility and learns with the
past prioritizations (online learning). It properly deals with the
EvE dilemma without requiring source code analysis or any initial
concept (model) about the system. In this sense, RETECS [33] is the
most similar to ours. But RETECS has the best performance using
an ANN [33], which usually requires a large amount of data [40].
Moreover, determining why an ANN makes a particular decision
is a hard task. This makes difficult to trust in their reliability for
real-world problems [4]. Our approach uses MAB, which allows
test cases rewards in a sliding window, and works with less input
information. Context information is not necessary. In this way, we
aim to properly deal with the EvE dilemma with an approach more
lightweight and with higher performance.

4 PROPOSED APPROACH

In this section we describe our test case prioritization approach,
named COLEMAN (Combinatorial VOlatiLE Multi-Armed BANdit).
Given the dynamic nature of our problem, our MAB approach
combines two MAB variants: i) combinatorial MAB, because we
have a set of arms (test cases), and ii) volatile, because at a given
time 𝑡 such set varies, test cases can be added or removed over the
software life-cycle. In addition to this, the approach works with a
budget (constraint) to execute the test cases prioritized. To ensure
diversity of test cases to be executed, it uses MAB policies, allowing
better exploitation and exploration (EvE dilemma).

Figure 2 illustrates how our approach works in a CI environment.
After a successful build, in the test phase, the approach receives as
input a set of test cases 𝑇𝑡 (arms) available for the current commit
(cycle/time) 𝑡 and, based on the choice order given by a MAB policy,
generates the prioritized test case set𝑇 ′

𝑡 . In each time 𝑡 , only one test
suite (test case set) is prioritized. Then the system is tested using𝑇 ′

𝑡
and feedback from this test set is collected, containing information,
such as the test cases executed in a time limit, the number of failures,
the test case failure rank, and so on. This feedback is used by the
reward function in the credit assignment procedure to set individual
rewards for each test case. In the𝑇 ′

𝑡 evaluation, a fitness value of𝑇 ′
𝑡

is obtained by a quality indicator.1 This value can be used by testers
along with the commits to evaluate the prioritization quality.

Then, the credit assignment procedure calculates the rewards for
each arm, test case 𝑡 ′𝑐 ∈ 𝑇 ′

𝑡 , which are stored in a historical database
to be used in the next commits by the policies. In the end, results
are reported back to the CI server. The CI server sets the result
from the cycle and notifies the parties interested in the cycle.

Next, we detail the main elements of COLEMAN: MAB policies
(Section 4.1) and credit assignment (Section 4.2).

1In this work we use NAPFD (see Section 5.1).

92

A Multi-Armed Bandit Approach for Test Case Prioritization in Continuous Integration Environments

build

Checks out the
code from last

commit

Build the code

test

Apply
MAB Policy

Execute T't

Collect feedback

Evaluate T't
Credit

Assignment

Tt

T't

Time-Limit

Historical
Test Data

report results

Define the
commit status

Build
breaks?

No

Yes

Build
breaks?

Yes

No
build test report results

Figure 2: Overview of the proposed approach and how it is

integrated in the test phase of a CI environment.

4.1 MAB Policies

Considering the traditional behavior of a MAB policy, the best arm
(test case) 𝑡𝑐 from a set 𝑇𝑡 at each time 𝑡 is chosen and applied.
However, we are working with TCP problem where a prioritized
test set is used. To this end, we can adapt a policy to choose the
best arm (test case) 𝑡𝑐 from 𝑇𝑡 to compose 𝑇 ′

𝑡 , then remove 𝑡𝑐 from
𝑇𝑡 , and continue this process until no more test cases are available
in𝑇𝑡 . An arm 𝑡𝑐 is chosen only once and the order of choice defines
the prioritization execution. But this process of choice is costly,
once that a new evaluation for each test case in 𝑇𝑡 is necessary to
choose the next best test case to compose 𝑇 ′

𝑡 .
To reduce the selection cost, we adapted the policies to evaluate

all the test cases (arms), and order them, putting the best test case
in the top, followed by the second best one, and so on. When more
than one test case has the same performance, the order among them
is defined randomly. This simple adaption allows a fast prioritiza-
tion whilst considers the characteristics of the policy chosen. We
also adapt the chosen policy to consider only the test cases avail-
able in time 𝑡 and ignore the other ones from the previous time.
This modification allows us to consider the dynamic environment
(volatility) of the test cases.

As mentioned in Section 2.1, there are many MAB policies. We
chose the policies that better work with the EvE dilemma: 𝜖-greedy,
UCB, and FRRMAB. Besides these policies, we also assessed the
following policies as baselines: i) Random: is a strategy (not a real
strategy per se) where the player will only do exploration; and ii)
Greedy: only takes the best apparent arm, and it is a special case of
𝜖-greedy where 𝜖 = 0, i.e., it always does exploitation.

It is important to highlight that FRRMAB policy works with a
sliding window. The reward value (FIR for FRRMAB) is obtained
through a reward function (Section 4.2.1), then the last W rewards
are used by the policy. In this way, for each test case, FRRMAB
policy considers the history of rewards whilst the other ones use
cumulative rewards.

4.2 Credit Assignment

This procedure reflects the goal of the prioritization and teaches
the MAB-based policy about the test cases considering historical
test data. In this procedure, for 𝑡 ′𝑐 ∀ 𝑡 ′𝑐 ∈ 𝑇 ′

𝑡 , two values are assigned:

the number of times 𝑛𝑡 ′𝑐 has been applied before and the reward
value (𝑞𝑡 ′𝑐 ,𝑡). These values are used by the policies to generate the
prioritized test set. At the beginning (where 𝑡 = 1) and for each
new test case, the values for 𝑛𝑡 ′𝑐 and 𝑞𝑡 ′𝑐 ,𝑡 are assigned with zero.
After that, the values are assigned as follows.

The number of times 𝑛𝑡 ′𝑐 that 𝑡 ′𝑐 has been applied before is con-
sidered to explore new test cases (few used). Traditionally, a MAB
policy selects an arm and increments the number of times that this
arm was chosen. In our case, we use a combinatorial MAB, and this
kind of MAB selects a set of arms (test cases). To counterbalance
the order of choice, a weight is given for each 𝑡 ′𝑐 ∈ 𝑇 ′

𝑡 according
to its order in 𝑇 ′

𝑡 . The weights are evenly spaced values within an

interval (0.0, 1.0) with a step size of
1

|𝑇 ′
𝑡 |

in descending order. In

this way, the highest weight is given to the first test case in 𝑇 ′
𝑡 and

the lowest to the last one. Then, 𝑛𝑡 ′𝑐 is incremented with the weight
defined to 𝑡 ′𝑐 .

The reward value is obtained by a reward function (Section 4.2.1).
This value is used to exploit the best test cases. As described in
Section 4.1, the reward value is stored in a sliding window when
FRRMAB policy is used whilst 𝜖-greedy, greedy, and UCB policies
use a cumulative reward strategy. If a new test case appears, a zero
is set for the reward value, once that we do not have a test case

history. On the other hand, if a test case is removed in the current
cycle (commit), we remove its history.

4.2.1 Reward Functions. In this work, we adopt and adapted two
reward functions from related work [33]. The first reward function
𝑅𝑁𝐹𝑎𝑖𝑙 (Reward Based on Failures) is based on the number of
failures associated with a test case 𝑡 ′𝑐 ∈ 𝑇 ′

𝑡 and uses the function
𝑓 𝑎𝑖𝑙𝑠 defined in Table 1.

Table 1: Functions used by the Reward Functions.

Definition Description

𝑓 𝑎𝑖𝑙𝑢𝑟𝑒𝑠 (𝑡′𝑐) In our context, a test case 𝑡′𝑐 can be composed by many parts (or test meth-
ods), each one of this part can be associated with a failure. In this way, a
failing test case 𝑡′𝑐 can be associated with one or more failures. Function
𝑓 𝑎𝑖𝑙𝑢𝑟𝑒𝑠 (𝑡′𝑐) returns the number 𝑛𝑓 of failures associated with 𝑡′𝑐 .

𝑓 𝑎𝑖𝑙𝑠 (𝑡′𝑐) The function 𝑓 𝑎𝑖𝑙𝑠 (𝑡′𝑐) returns 1 if 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒𝑠 (𝑡
′
𝑐) ≥ 1, and 0 otherwise.

𝑟𝑎𝑛𝑘 (𝑡′𝑐) The function 𝑟𝑎𝑛𝑘 (𝑡′𝑐) returns the position of 𝑡′𝑐 in a prioritized set𝑇 ′
𝑡 .

𝑝𝑟𝑒𝑐 (𝑡′𝑐1 , 𝑡
′
𝑐2

) The function 𝑝𝑟𝑒𝑐 (𝑡′𝑐1 , 𝑡
′
𝑐2

) returns 1 if 𝑟𝑎𝑛𝑘 (𝑡′𝑐1) < 𝑟𝑎𝑛𝑘 (𝑡
′
𝑐2

) .

𝑅𝑁𝐹𝑎𝑖𝑙 (𝑡′𝑐) =

{
1 if 𝑓 𝑎𝑖𝑙𝑠 (𝑡′𝑐)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(2)

The second reward function 𝑇𝑖𝑚𝑒𝑅𝑎𝑛𝑘 (Time-Ranked Reward)
is based on the rank of 𝑡 ′𝑐 ∈ 𝑇 ′

𝑡 (Equation 3). The idea is to evaluate
whether failing test cases, with a greater number of failures, are
ranked in the first positions in 𝑇 ′

𝑡 . To this end, a test case 𝑡 ′𝑐 that
does not fail and precedes failing test cases is penalized by their
early scheduling.

𝑇𝑖𝑚𝑒𝑅𝑎𝑛𝑘 (𝑡′𝑐) =
|𝑇 ′𝑓 𝑎𝑖𝑙 | − [¬(𝑓 𝑎𝑖𝑙𝑠 (𝑡′𝑐)) ×

∑|𝑇 ′𝑓 𝑎𝑖𝑙 |
𝑖=1 𝑝𝑟𝑒𝑐 (𝑡′𝑐 , 𝑡

′
𝑐𝑖
)]

|𝑇 ′𝑓 𝑎𝑖𝑙 |
(3)

where 𝑇 ′𝑓 𝑎𝑖𝑙 is composed by the test cases of 𝑇 ′
𝑡 that failed. A non

failed test case receives a reward given by the accumulated number
of test cases which failed until its position in the prioritization rank,

93

that is, it receives a reward decreased by the number of failing test
cases ranked after it in the rank.

5 EVALUATION DESCRIPTION

The main hypothesis of this work is that MAB can be used to
address the TCPCI problem in a very cost-effective way. Then, our
experiment evaluates the COLEMAN applicability and performance in
CI environments. We also perform a comparison with related work.
The experiment is guided by the following research questions:

RQ1: What is the best configuration for COLEMAN? This question
aims to identify the best MAB policy and reward function
to be used with COLEMAN.

RQ2: Is COLEMAN applicable in the CI development context? This
question is specially important for software testers that
want to use COLEMAN in practice. It investigates whether the
time spent in the prioritization is acceptable considering CI
Cycles (commits).

RQ3: Can COLEMAN outperform RETECS? This question compares
our approach, with RETECS, the RL approach, which is the
most similar to COLEMAN.

To answer RQ1, we compare five MAB policies: Random, 𝜖-
Greedy, Greedy, UCB, and FRRMAB, (Section 4.1) and both reward
functions: RNFail and TimeRank (Section 4.2.1). We use indicators
commonly applied in TCP (Section 5.1). We evaluate three time
constraints (budgets) considering: 10%, 50%, and 80% of the execu-
tion time of the overall test set available in each commit. The best
policy identified in RQ1 is used to answer the remaining questions.

To answer RQ2, we compare the prioritization time spent by
COLEMAN and the time between commits, as well as the percentage
of reduced time to test execution.

To answer RQ3, we execute the implementation of RETECS avail-
able in the literature2 by using ANN, which obtained the best results
in comparison with a Tableau representation [33]. Our approach
considers only a minimal information to prioritize the test cases,
historical failure data, whilst RETECS needs additional information
concerning each test case: duration, the time it was last executed,
and results from its previous execution (passed or failed).

In this experiment, if a test case is removed in a commit, it is
then removed along with its history. The results are obtained from
30 independent executions for each system, reward function, and
time budget. All the experiments are performed on an Intel® Xeon®
E5-2640 v3 with 2.60 GHz CPU, 94GB RAM, running Linux Ubuntu
18.04.1 LTS.

5.1 Quality Indicators

To evaluate the performance of the approaches concerning failure
detection effectiveness of a test suite 𝑇 , we use NAPFD [30] (Equa-
tion 4) and APFDc [11] (Equation 5). Both metrics are extensions
of the Average Percentage of Faults Detected (APFD) [32]. APFD
indicates how quickly a set of prioritized test cases (𝑇 ′) can detect
the faults present in the application being tested, and its value is
calculated from the weighted average of the percentage of detected
faults. APFD values range from zero to one. Higher values indicate

2https://bitbucket.org/helges/RETECS

that the faults are detected faster using fewer test cases. To calcu-
late NAPFD, we consider the ratio between detected and detectable
faults within 𝑇 . This metric is adequate for prioritization of test
cases when not all of them are executed, and some faults can be
undetected.

𝑁𝐴𝑃𝐹𝐷 (𝑇 ′
𝑡) = 𝑝 −

∑𝑛
1 𝑟𝑎𝑛𝑘 (𝑇

′
𝑡𝑖
)

𝑚 × 𝑛

𝑝

2𝑛
(4)

where𝑚 is the number of faults detected by all test cases; 𝑟𝑎𝑛𝑘 (𝑇 ′
𝑖)

is the position of 𝑇 ′
𝑖 in 𝑇 ′, if 𝑇 ′

𝑖 did not reveal a fault we set 𝑇 ′
𝑖 = 0;

𝑛 is the number of tests cases in 𝑇 ′; and 𝑝 is the number of faults
detected by𝑇 ′ divided by𝑚. The last part of the equation represents
the full area under the curve when the percentage of faults found is
plotted on the y-axis and the percentage of the run test cases is on
the x-axis. NAPFD is equal to APFD metric if all faults are detected.

The APFDc metric assumes that the test cases do not have the
same cost, that is, some may be more costly to execute than others,
maybe due to the fault severity or running time. The test cases
are usually prioritized until a maximum cost is reached, which is
feasible to execute. Furthermore, if both fault severity and test case
costs are identical, APFDc can be used to compute the APFD value.
In this work, we consider that all faults have same severity.

𝐴𝑃𝐹𝐷𝑐 (𝑇 ′
𝑡) =

∑𝑚
𝑖=1 (

∑𝑛
𝑗=𝑇𝐹𝑖

𝑐 𝑗 − 0.5𝑐𝑇𝐹𝑖)∑𝑛
𝑗=1 𝑐 𝑗 ×𝑚

(5)

where 𝑐𝑖 is the cost of a test case 𝑇𝑖 , and 𝑇𝐹𝑖 is the first test case
from 𝑇 ′ that reveals fault 𝑖 .

To evaluate the test suite efficiency concerning how fast it is to
detect a fault, we use the Rank of the Failing Test Cases (RFTC).
In this rank, lower values represent a faster failure detection. In
this sense, we extract the order of the first test case that fails from
the prioritized test suite. This metric is useful when we need fast
feedback from test cases and there is only one fault that the test
cases are seeking.

Furthermore, we define a metric (Equation 6) named Normalized
Time Reduction (NTR), in order to observe the difference between
time spent until the first test case fails 𝑟𝑡 and the total time spent
to execute all tests 𝑟𝑡 . In this metric, only the commits that failed,
𝐶𝐼 𝑓 𝑎𝑖𝑙 , are considered. In this way, we can evaluate the capability
of an algorithm to reduce the time spent in a CI cycle.

𝑁𝑇𝑅(A) =

∑𝐶𝐼 𝑓 𝑎𝑖𝑙
𝑡=1 (𝑟𝑡 − 𝑟𝑡)∑𝐶𝐼 𝑓 𝑎𝑖𝑙
𝑡=1 (𝑟𝑡)

(6)

The last indicator used is Prioritization Time. Such measure com-
putes the time spent (in seconds) by an algorithm to perform the
prioritization. This value helps to observe whether an approach
spends much time, what can make it impracticable for real scenar-
ios.

We apply Kruskal-Wallis [19], Mann-Whitney [23], and Fried-
man [14] statistical tests with a confidence level of 95%. We use
Kruskal-Wallis to evaluate the performance of the approaches in
each system over 30 independent runs. We use Mann-Whitney to
evaluate a pair of performances in the same system or for post-hoc
analysis. We use Friedman to evaluate the approach behavior across
different systems. To this end, each system becomes a dependent
variable, in which we apply multiple approaches.

94

A Multi-Armed Bandit Approach for Test Case Prioritization in Continuous Integration Environments

Additionally, to calculate the effect size magnitude of the differ-
ence between two groups, we use the Vargha andDelaney’s𝐴12 [36]
metric. This measure ranges from 0 to 1 and defines the probability
of a value, taken randomly from the first sample, is higher than a
value taken randomly from the second sample. A 𝑁𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒 mag-
nitude (𝐴12 < 0.56) represents a very small difference among the
values and usually does not yield statistical difference. The 𝑆𝑚𝑎𝑙𝑙
(0.56 ≤ 𝐴12 < 0.64) and𝑀𝑒𝑑𝑖𝑢𝑚 (0.64 ≤ 𝐴12 < 0.71) magnitudes
represent small and medium differences among the values, and
may or not yield statistical differences. Finally, a 𝐿𝑎𝑟𝑔𝑒 magnitude
(0.71 ≤ 𝐴12) represents a significantly large difference that usually
can be seen in the numbers without much effort.

5.2 Systems Under Test

We select non-toy, non-fork, and active GitHub (GH) projects con-
sidering watchers and stars on GH, as well as some systems already
used in the literature [15, 33]. Most of them using Travis CI [35]
and Maven.3 To collect the Travis CI build history, we adapt and
use TravisTorrent4 [3].

The systems under test (SUTs) are detailed in Table 2. The second
column shows the period of build logs analyzed. The third column
presents the total of builds identified, and in parenthesis the number
of builds included in the analysis. We discard build logs with some
problem, identified by Travis CI, such as the ones related to non-
valid build logs and test cases that did not execute. The fourth
column shows the total of failures found, and in parenthesis the
number of builds in which at least one test failed. The fifth column
shows the number of different (unique) test cases identified from
build logs, and in parenthesis the range of test cases executed in
the builds. The last columns present, for each system, the mean (±
standard deviation) duration in minutes of the CI Cycles and the
interval between them.

The systems IOF/ROL, Paint Control, and GSDTSR are selected
for comparison because they are the same systems used in related
work to evaluate RETECS [33]. However, in the related work the
datasets are analyzed considering that a CI Cycle includes all the
test cases executed per day. In our study, we consider the CI Cycle
as a commit. In this way, we change the datasets representations to
consider each date in the last run information is a commit. These
systems have different characteristics (number of faults, test cases,
and commits), and they can ensure the evaluation of the approaches
in relation to the generalization capacity.

5.3 Parameters Setting

RETECS is available online and it is evaluated using ANN with
the default values defined in related work [33], for Hidden Nodes,
ReplayMemory, and Replay Batch Size, with, respectively, 12, 10000,
and 1000. In this way, a tuning phase was necessary only to choose
the parameters values for the MAB policies UCB, FRRMAB, and
𝜖-Greedy. They are the scaling factor C to control the trade-off
among EvE for UCB and FRRMAB policies, the sliding window size
W and decayed factor DF for FRRMAB, and the probability 𝜖 for

3Maven is a build automation tool used primarily for Java projects. We choose projects
which use Maven as a testing framework because it provides detailed output traces
(more verbose).
4https://github.com/jacksonpradolima/travistorrent-tools

𝜖-Greedy policy. The possible values used in this phase for C are
0.3, 0.5, 1.0, and 2.0, forW were 10, 50, 100, 150, 200, 250, and 300,
and for 𝜖 0.1, 0.2, 0.5, 0.7, and 0.9. After some empirical studies, the
decayed factor is no longer used and a default value equals to 1 is
defined.

We conduct an empirical evaluation with 10 independent runs
for each MAB policy with different parameters. For this evaluation,
we consider the systems Deeplearning4j and Fastjson. These
systems are chosen because they have the best trade-off between
the mean number of failures by CI Cycles and the number of CI
Cycles. Additionally, we define a test budget for a CI Cycle with a
fixed percentage of 50% of the required time as adopted in [33]. The
best parameters found for the MAB policies are: 𝜖-Greedy and UCB
with 0.5 (in the TimeRank function) and 0.3 (RNFail) for parameter
𝐶; and FRRMAB with 0.3 for 𝐶 and 100 for𝑊 .

5.4 Threats to Validity

We identify the following points that can be threats to the validity
of the results. The first threat is the parameter configuration of
the algorithms. Other parameters can lead to different results. To
mitigate this threat, we empirically evaluate different ranges of
parameters for the MAB policies and for RETECS we adopt the
configuration of related work, since we are using the same systems.

The dataset representation used is a threat. We change informa-
tion about the CI Cycles for systems IOF/ROL, Paint Control, and
GSDTSR. This change can impact the results, mainly because we do
not knowwith precision what information is from each commit and
whether RETECS is deeply dependent on this kind of representation.
For this reason, we group the data by the last run date.

6 RESULTS AND ANALYSES

In this section, the experimental results are presented and analyzed
aiming to answer the posed questions. Supplementary material
with datasets, results, and additional analysis can be found in our
public repository [28].

6.1 RQ1: COLEMAN Configuration

As mentioned before, to answer RQ1, we compare the five MAB
policies with both reward functions taking account three budgets.
We use the indicators: NAPFD, APFDc, and RFTC. The results and a
complete analysis are available in supplementary material [28]. Due
to lack of space, we detail only NAPFD and APFDc results regarding
the budget of 50% (Table 3). According to Spieker et al. [33], a time
budget of 50% presents a constraint that allows better comparison
whilst keeps the difficulty inherent from the problem.

The average is computed using results from 30 independent ex-
ecutions found by each policy in each SUT. Values highlighted in
bold are the best, and values that are statistically equivalent to
the best ones have their corresponding cells painted in light gray.
Furthermore, we use different symbols to indicate the effect size
magnitude concerning the best values. For each comparison in each
SUT, we use the Kruskal-Wallis test. When detected statistical dif-
ference, we apply a post-hoc analysis using the Mann-Whitney test
with Bonferroni p-value adjustment method to find the statistical
difference among the policies. In order to evaluate the performance
of the policy concerning all systems, we compute the average across

95

Table 2: Test Case Set Information.

Name Period Builds Failures Test Cases Duration (min) Interval (min)

Druid 2016/04/24-2016/11/08 286 (168) 270 (71) 2391 (1778-1910) 4.27 ± 10.66 384.76 ± 468.86
Fastjson 2016/04/15-2018/12/04 2710 (2371) 940 (323) 2416 (900-2102) 1.97 ± 0.89 233.22 ± 401.26
Deeplearning4j 2014/02/22-2016/01/01 3410 (483) 777 (323) 117 (1-52) 12.33 ± 14.91 306.05 ± 442.55
DSpace 2013/10/16-2019/01/08 6309 (5673) 13413 (387) 211 (16-136) 11.78 ± 7.03 291.29 ± 411.19
Guava 2014/11/06-2018/12/02 2011 (1689) 7659 (112) 568 (308-512) 62.53 ± 80.31 435.55 ± 464.52
OkHttp 2013/03/26-2018/05/30 9919 (6215) 9586 (1408) 289 (2-75) 7.64 ± 5.64 220.17 ± 405.93
Retrofit 2013/02/17-2018/11/26 3719 (2711) 611 (125) 206 (5-75) 2.40 ± 1.60 270.86 ± 449.41
ZXing 2014/01/17-2017/04/16 961 (605) 68 (11) 124 (81-123) 13.14 ± 12.37 411.10 ± 465.53
IOF/ROL 2015/02/13-2016/10/25 2392 (2392) 9289 (1627) 1941 (1-707) 1537.27 ± 2018.73 1324.26 ± 291.75
Paint Control 2016/01/12-2016/12/20 20711 (20711) 4956 (1980) 1980 (1-74) 424.46 ± 275.90 1417.86 ± 144.97
GSDTSR 2016/01/02-2016/02/01 259388 (259388) 3208 (2924) 5555 (1-390) 974.25 ± 4850.66 1439.91 ± 2.58

Table 3: NAPFD and APFDc values (mean and standard deviation) for MAB policies using time budget of 50%.

This table reports the NAPFD and APFDc results (averages ± standard deviation) obtained from 30 independent runs with time budget of 50% and organized by each Reward Function under
study (see Section 4.2.1). Values highlighted in bold with a “�” symbol denotes the best algorithm for a Reward Function in a SUT and, in gray, results that are statistically equal to the best
one. A “�” indicates that the effect size was negligible in relation to the best, while “�” denotes a small magnitude, “�” a medium magnitude, and “�” a large magnitude. The effect size
was performed during the post-hoc tests, that is, when there is a statistical difference.

NAPFD APFDc

SUT FRRMAB UCB 𝜖-Greedy Greedy Random FRRMAB UCB 𝜖-Greedy Greedy Random

RNFail - Reward based on Failures

Druid 0.9333 ± 0.013 � 0.9422 ± 0.007 � 0.8472 ± 0.110 � 0.8965 ± 0.072 � 0.7464 ± 0.014 � 0.9486 ± 0.016� 0.9486 ± 0.007 � 0.8477 ± 0.110 � 0.8979 ± 0.073 � 0.7506 ± 0.014 �
Fastjson 0.9174 ± 0.021 � 0.9597 ± 0.001 � 0.9501 ± 0.005 � 0.9507 ± 0.005 � 0.9176 ± 0.003 � 0.9186 ± 0.021 � 0.9595 ± 0.001 � 0.9491 ± 0.006 � 0.9498 ± 0.005 � 0.9193 ± 0.002 �
Deeplearning4j 0.7890 ± 0.001 � 0.7911 ± 0.002 � 0.8066 ± 0.003 � 0.8084 ± 0.002 � 0.6381 ± 0.011 � 0.8106 ± 0.001� 0.7971 ± 0.002 � 0.7974 ± 0.004 � 0.7961 ± 0.003 � 0.6404 ± 0.016 �
DSpace 0.9724 ± 0.009 � 0.9720 ± 0.001 � 0.9692 ± 0.002 � 0.9685 ± 0.002 � 0.9581 ± 0.001 � 0.9737 ± 0.009� 0.9730 ± 0.001 � 0.9713 ± 0.002 � 0.9704 ± 0.002 � 0.9587 ± 0.001 �
Guava 0.9653 ± 0.004 � 0.9750 ± 0.002 � 0.9768 ± 0.006 � 0.9761 ± 0.010 � 0.9603 ± 0.002 � 0.9687 ± 0.003 � 0.9756 ± 0.002 � 0.9770 ± 0.006� 0.9758 ± 0.010 � 0.9611 ± 0.002 �
OkHttp 0.9192 ± 0.000 � 0.9023 ± 0.001 � 0.9041 ± 0.005 � 0.8993 ± 0.006 � 0.8513 ± 0.002 � 0.9177 ± 0.000� 0.9039 ± 0.002 � 0.8994 ± 0.005 � 0.8950 ± 0.006 � 0.8549 ± 0.002 �
Retrofit 0.9853 ± 0.000 � 0.9799 ± 0.001 � 0.9717 ± 0.001 � 0.9717 ± 0.001 � 0.9710 ± 0.002 � 0.9850 ± 0.000� 0.9794 ± 0.001 � 0.9722 ± 0.001 � 0.9722 ± 0.001 � 0.9712 ± 0.001 �
ZXing 0.9846 ± 0.000 � 0.9876 ± 0.000 � 0.9873 ± 0.002 � 0.9869 ± 0.002 � 0.9892 ± 0.002 � 0.9862 ± 0.000 � 0.9877 ± 0.000 � 0.9876 ± 0.001 � 0.9873 ± 0.001 � 0.9893 ± 0.001�
IOF/ROL 0.5046 ± 0.002 � 0.4791 ± 0.003 � 0.4792 ± 0.002 � 0.4790 ± 0.002 � 0.4786 ± 0.002 � 0.5081 ± 0.002� 0.4794 ± 0.003 � 0.4796 ± 0.002 � 0.4793 ± 0.002 � 0.4788 ± 0.002 �
Paint Control 0.9150 ± 0.000 � 0.9145 ± 0.000 � 0.9145 ± 0.000 � 0.9145 ± 0.000 � 0.9145 ± 0.000 � 0.9162 ± 0.000� 0.9145 ± 0.000 � 0.9145 ± 0.000 � 0.9145 ± 0.000 � 0.9145 ± 0.000 �
GSDTSR 0.9893 ± 0.000� 0.9891 ± 0.000 � 0.9891 ± 0.000 � 0.9891 ± 0.000 � 0.9891 ± 0.000 � 0.9894 ± 0.000� 0.9891 ± 0.000 � 0.9891 ± 0.000 � 0.9891 ± 0.000 � 0.9892 ± 0.000 �
Average 0.8978 0.8993 0.8905 0.8946 0.8558 0.9021 0.9007 0.8895 0.8934 0.8571

TimeRank - Time-Ranked Reward

Druid 0.9710 ± 0.008 � 0.8422 ± 0.066 � 0.8767 ± 0.040 � 0.8503 ± 0.048 � 0.7489 ± 0.014 � 0.9787 ± 0.009� 0.8768 ± 0.078 � 0.8988 ± 0.042 � 0.8871 ± 0.056 � 0.7534 ± 0.014 �
Fastjson 0.9118 ± 0.028 � 0.9544 ± 0.002 � 0.9455 ± 0.004 � 0.9240 ± 0.009 � 0.9181 ± 0.003 � 0.9140 ± 0.027 � 0.9565 ± 0.002 � 0.9516 ± 0.004 � 0.9303 ± 0.009 � 0.9199 ± 0.003 �
Deeplearning4j 0.8200 ± 0.000 � 0.7193 ± 0.002 � 0.7028 ± 0.004 � 0.7047 ± 0.002 � 0.6366 ± 0.007 � 0.8134 ± 0.001� 0.7879 ± 0.004 � 0.7774 ± 0.007 � 0.7805 ± 0.004 � 0.6405 ± 0.012 �
DSpace 0.9766 ± 0.008 � 0.9659 ± 0.001 � 0.9606 ± 0.002 � 0.9602 ± 0.002 � 0.9582 ± 0.001 � 0.9767 ± 0.009� 0.9683 ± 0.001 � 0.9646 ± 0.002 � 0.9649 ± 0.002 � 0.9588 ± 0.001 �
Guava 0.9675 ± 0.007 � 0.9698 ± 0.002 � 0.9738 ± 0.002 � 0.9734 ± 0.004 � 0.9608 ± 0.002 � 0.9672 ± 0.007 � 0.9740 ± 0.003 � 0.9786 ± 0.003 � 0.9824 ± 0.004� 0.9614 ± 0.002 �
OkHttp 0.9317 ± 0.000 � 0.8753 ± 0.001 � 0.8725 ± 0.002 � 0.8677 ± 0.004 � 0.8514 ± 0.002 � 0.9246 ± 0.000� 0.8930 ± 0.001 � 0.8881 ± 0.002 � 0.8866 ± 0.004 � 0.8550 ± 0.002 �
Retrofit 0.9893 ± 0.000 � 0.9789 ± 0.001 � 0.9715 ± 0.002 � 0.9689 ± 0.001 � 0.9707 ± 0.001 � 0.9885 ± 0.000� 0.9798 ± 0.001 � 0.9733 ± 0.002 � 0.9712 ± 0.001 � 0.9706 ± 0.001 �
ZXing 0.9857 ± 0.000 � 0.9879 ± 0.001 � 0.9882 ± 0.002 � 0.9861 ± 0.001 � 0.9891 ± 0.001 � 0.9869 ± 0.000 � 0.9880 ± 0.001 � 0.9882 ± 0.002 � 0.9861 ± 0.001 � 0.9894 ± 0.001�
IOF/ROL 0.5189 ± 0.002 � 0.4787 ± 0.002 � 0.4789 ± 0.002 � 0.4786 ± 0.002 � 0.4785 ± 0.002 � 0.5223 ± 0.002� 0.4789 ± 0.002 � 0.4792 ± 0.002 � 0.4789 ± 0.002 � 0.4786 ± 0.002 �
Paint Control 0.9150 ± 0.000 � 0.9145 ± 0.000 � 0.9145 ± 0.000 � 0.9145 ± 0.000 � 0.9145 ± 0.000 � 0.9162 ± 0.000� 0.9146 ± 0.000 � 0.9146 ± 0.000 � 0.9145 ± 0.000 � 0.9145 ± 0.000 �
GSDTSR 0.9894 ± 0.000 � 0.9891 ± 0.000 � 0.9891 ± 0.000 � 0.9891 ± 0.000 � 0.9891 ± 0.000 � 0.9894 ± 0.000� 0.9891 ± 0.000 � 0.9891 ± 0.000 � 0.9891 ± 0.000 � 0.9891 ± 0.000 �
Average 0.9070 0.8796 0.8795 0.8743 0.8560 0.9071 0.8915 0.8912 0.8883 0.8574

the systems. The average values obtained are shown in the last line
in each table. We compare these values using Friedman.

Regarding NAPFD, Table 3 shows FRRMAB stands out in 68% of
the cases (15 out of 22 cases, considering 11 systems and 2 functions).
Such cases are represented by grey cells in the table. FRRMAB is
followed by UCB with 50% of the cases (11 out of 22). FRRMAB is
the best with statistical difference over the others in 8 cases. UCB is
the best only in one case for RNFail. The effect size results endorse
what we observed in the numbers. Besides that, when there is a
statistical difference among policies, the effect size tends to be large.
The performance of these policies is similar for both functions.
For RNFail, FRRMAB stands out in 7 cases (out of 11), and UCB
stands out in 5 (out of 11). For TimeRank, FRRMAB stands out in 8,
and UCB stands out in 6. Overall, we observe that for RNFail the
other MAB policies perform better. For this reward function, more
policies have values that are close to the best one. Among the MAB

policies, the Random policy has the worst performance. Regarding
APFDc we have similar findings. FRRMAB stands out in 72% of the
cases (16 out of 22), and UCB in 45% of the cases (10 out of 22).

For the other budgets of 10% and 80%, we observed similar re-
sults regarding the performance of the policies and functions. As
expected, the values for all policies are better for the budget of
80%, which is less restrictive. Considering NAPFD and all the 33
cases involving the three budgets (11 systems × 3 time budgets),
FRRMAB stands out the other policies in ≈ 76% of the cases (25 out
of 33) and 82% (27 cases), respectively, for the RNFail and TimeRank

functions. FRRMAB is the best policy with statistical difference in ≈
40% of the cases (13 out of 33) for both reward functions, and UCB
policy is the best in ≈ 6% of the cases (2) and ≈ 3% of the cases (1),
respectively, for the RNFail and TimeRank functions. FRRMAB also
obtains the best APFDc values and stands out in ≈ 82% of the cases

96

A Multi-Armed Bandit Approach for Test Case Prioritization in Continuous Integration Environments

(27 out of 33) for the RNFail function and in ≈ 76% of the cases (25)
for the TimeRank function.

For IOF/ROL, the approach had the worst performance. This
system has a high test case volatility and a high number of peaks
of failure detection. In this way, it is an example of that to find a
solution to the TCPCI problem is hard. We observe that the Random
policy is defeated by MAB policies in almost all systems, except
in ZXing in both reward functions. To understand this behavior,
we analyze the failures detected over the cycles. In this system, we
verify peaks in the failure detection in a few commits and long
periods without failures. This scenario endorses our approach be-
havior once that it is based on historical test data. Furthermore, this
system has a low test case volatility.

RFTC results are available in supplementary material [28]. We
observe that the NAPFD average values found in each independent
execution by reward functions and the early fault detection given
by RFTC are, in most of the cases, correlated, that is, good NAPFD
values provide good RFTC values. In most of the systems, the MAB
policies are better than Random policy, as well as they are more
stable (low dispersion of values). Among the MAB policies, FR-
RMAB is more stable than the other ones. This shows that the use
of a sliding window is interesting when a system contains peaks of
detecting faults and periods of stability, as well as when there is a
large number of commits.

RQ1: Results show FRRMAB is the best MAB policy, regarding

NAPFD, APFDc values, and early fault detection given by the indi-

cator RFTC. This happens for both reward functions, and the three

budgets evaluated. As expected, better indicator values are obtained

for the less restrictive budget of 80%. This happens for all policies.

In particular, the combination of FRRMAB with TimeRank function

provides better performance.

6.2 RQ2: COLEMAN Applicability

To answer RQ2, we use Table 4. The second and third columns
presents, respectively, the mean prioritization time and standard
deviation of COLEMAN with the FRRMAB policy (the best policy
found in the analysis of RQ1), and time budget of 50%. In such a
table, we can observe the time spent is negligible in most of the
systems. A great time is spent in Druid and Fastjson, systems that
also have a great number of test cases in a CI Cycle. If we take the
standard deviation and the worst case (Fastjson), COLEMAN takes
less than one second to execute. The mean time spent with both
reward functions is similar, as well as we do not observe any impact
on the other budgets.

However, we need to consider the impact of this time in the
complete CI Cycle and the interval between the CI Cycles, and
consequently, to observe whether the spent prioritization time
is expensive. In addition, it is important to analyze the impact
concerning the time spent to reveal the first failure, which can
be used to reduce the time spent in a CI Cycle once that the test
execution cost can be reduced when a failure is revealed because
the test is ended. For this end, Table 5 presents the time reduction
average, given by the indicator NTR (Equation 6) with both reward
functions, over the three budgets. Refer to Table 2 to see duration
of the CI cycles and the interval between them.

Table 4:Mean and standard deviation PrioritizationTime (in

seconds) with time budget of 50%.

Prioritization Time (sec.)

SUT FRRMAB ANN

RNFail TimeRank RNFail TimeRank

Druid 0.2474 ± 0.040 0.2373 ± 0.041 0.3881 ± 0.268 0.3844 ± 0.279
Fastjson 0.3916 ± 0.191 0.3879 ± 0.191 0.2474 ± 1.382 0.2395 ± 1.288
Deeplearning4j 0.0271 ± 0.002 0.0271 ± 0.002 0.0038 ± 0.006 0.0187 ± 0.107
DSpace 0.0287 ± 0.002 0.0287 ± 0.002 0.0101 ± 0.042 0.0507 ± 0.186
Guava 0.0609 ± 0.016 0.0609 ± 0.016 0.0335 ± 0.039 0.0405 ± 0.066
OkHttp 0.0283 ± 0.002 0.0283 ± 0.002 0.0079 ± 0.022 0.0371 ± 0.125
Retrofit 0.0277 ± 0.002 0.0277 ± 0.002 0.0050 ± 0.010 0.0178 ± 0.079
ZXing 0.0343 ± 0.003 0.0343 ± 0.003 0.0156 ± 0.025 0.0229 ± 0.069
IOF/ROL 0.0278 ± 0.005 0.0278 ± 0.005 0.0034 ± 0.009 0.5364 ± 1.221
Paint Control 0.0256 ± 0.002 0.0256 ± 0.002 0.0020 ± 0.005 0.0028 ± 0.028
GSDTSR 0.0253 ± 0.002 0.0253 ± 0.002 0.0027 ± 0.014 0.0028 ± 0.013

Average 0.0841 0.0828 0.0654 0.1231

Table 5 shows percentages of time reduction provided by our
approach are close to 73% for IOF/ROL, 47% for Deeplearning4j,
and 43% for Druid. This reduction in a CI cycle is due to the early
fault detection provided by our approach. But, in most systems, we
can see a low percentage. The performance of both functions is
similar, as well as the NTR values for each system. In overall, the
RNFail function obtains better reduction than TimeRank consider-
ing time budget of 80%, and the TimeRank is better in the other time
budgets. Comparing the average percentage for the budget of 50%
we observe an improvement regarding the budget of 10%. But this
difference is slightly lower when we compare the budgets of 50%
and 80%. Then, the budget may be a reason to explain low reduc-
tion. Other possible reasons are the difficulty inherent to the TCPCI
problem and the need to consider other aspects in the prioritization,
such as the time to execute each test case.

Regarding the time spent in a CI Cycle and interval between
commits for each system, we observe that a new commit is typically
performed after a CI Cycle is finished and with a considered time,
due to the time between commits is, in most systems, higher than
the time spent by a CI Cycle. In this way, the systems chosen do
not present a situation with multiple test requests. In addition, the
time spent in a CI Cycle and between cycles is in minutes, and
as our approach spent, in the worst case, less than one second to
prioritize the test cases, there is not a negative impact in the use of
our approach.

RQ2: Our approach is applicable to the CI context. It contributes to

reducing the time spent in a CI cycle, even with a restrictive budget

of 10%. In some cases, the reduction can achieve a percentage of 70%.

6.3 RQ3: Comparing COLEMAN and RETECS

To answer RQ3, we compare COLEMAN using FRRMAB (the best
policy according to RQ1) with RETECS using ANN. Table 5 shows
the NAPFD and APFDc results obtained.

As we can observe for RNFail function and NAPFD, FRRMAB
stands out in ≈ 70% of the cases (23 out of 33). ANN stands out in
33% (11 cases). FRRMAB is the best with statistical difference in
≈ 66% (22 out of 33) of the cases against 30% (10 cases) for ANN.
Regarding the NAPFD average across the SUTs, FRRMAB obtained
the best results, with statistical difference in the time budget of 80%.

97

Table 5: Mean and standard deviation NAPFD, APFDc, and NTR values: COLEMAN against RETECS.

(See caption of Table 3 for a description of the headings.)

SUT

NAPFD APFDc NTR

RNFail TimeRank RNFail TimeRank RNFail TimeRank

ANN FRRMAB ANN FRRMAB ANN FRRMAB ANN FRRMAB ANN FRRMAB ANN FRRMAB

Time Budget: 10%

Druid 0.6768 ± 0.129 � 0.6801 ± 0.052� 0.6488 ± 0.074 � 0.7137 ± 0.074� 0.8067 ± 0.088 � 0.6964 ± 0.063 � 0.7815 ± 0.051 � 0.7181 ± 0.076 � 0.1863 ± 0.124 0.2027 ± 0.115 0.1556 ± 0.077 0.2355 ± 0.135

Fastjson 0.8713 ± 0.015 � 0.9030 ± 0.014� 0.8719 ± 0.005 � 0.8980 ± 0.018� 0.8805 ± 0.014 � 0.9064 ± 0.013� 0.8810 ± 0.004 � 0.8974 ± 0.018 � 0.0194 ± 0.016 0.3117 ± 0.221 0.0219 ± 0.007 0.2674 ± 0.232

Deeplearning4j 0.6615 ± 0.072 � 0.7533 ± 0.002� 0.6739 ± 0.016 � 0.7716 ± 0.000� 0.8135 ± 0.023 � 0.7766 ± 0.001 � 0.8185 ± 0.010 � 0.7773 ± 0.000 � 0.5488 ± 0.029 0.4626 ± 0.001 0.5546 ± 0.015 0.4663 ± 0.000
DSpace 0.9437 ± 0.001 � 0.9489 ± 0.003� 0.9410 ± 0.001 � 0.9496 ± 0.004� 0.9480 ± 0.001 � 0.9510 ± 0.002� 0.9458 ± 0.001 � 0.9513 ± 0.004 � 0.0188 ± 0.001 0.0370 ± 0.015 0.0105 ± 0.001 0.0393 ± 0.018

Guava 0.9676 ± 0.015 � 0.9554 ± 0.002 � 0.9563 ± 0.004 0.9586 ± 0.001� 0.9811 ± 0.007 � 0.9561 ± 0.001 � 0.9761 ± 0.003 � 0.9582 ± 0.001 � 0.0449 ± 0.015 0.0471 ± 0.016 0.0367 ± 0.005 0.0492 ± 0.015

OkHttp 0.8357 ± 0.002 � 0.8323 ± 0.000 � 0.8095 ± 0.006 � 0.8407 ± 0.000� 0.8484 ± 0.001 � 0.8378 ± 0.000 � 0.8292 ± 0.006 � 0.8425 ± 0.000 � 0.0830 ± 0.001 0.0658 ± 0.000 0.0579 ± 0.008 0.0702 ± 0.000

Retrofit 0.9641 ± 0.001 � 0.9639 ± 0.000 0.9621 ± 0.001 � 0.9642 ± 0.000� 0.9672 ± 0.001 � 0.9646 ± 0.000 � 0.9655 ± 0.001 � 0.9648 ± 0.000 � 0.0088 ± 0.000 0.0070 ± 0.000 0.0076 ± 0.001 0.0073 ± 0.000
ZXing 0.9854 ± 0.000 � 0.9826 ± 0.000 � 0.9855 ± 0.000� 0.9828 ± 0.000 � 0.9893 ± 0.000 � 0.9832 ± 0.000 � 0.9893 ± 0.000 � 0.9835 ± 0.000 � 0.0122 ± 0.000 0.0037 ± 0.000 0.0126 ± 0.001 0.0037 ± 0.000
IOF/ROL 0.3704 ± 0.005 � 0.3632 ± 0.001 � 0.3779 ± 0.003� 0.3670 ± 0.001 � 0.3746 ± 0.005 � 0.3661 ± 0.001 � 0.3819 ± 0.003 � 0.3701 ± 0.001 � 0.5133 ± 0.030 0.5585 ± 0.007 0.5646 ± 0.015 0.5701 ± 0.004

Paint Control 0.9078 ± 0.000 � 0.9076 ± 0.000 � 0.9077 ± 0.000� 0.9076 ± 0.000 � 0.9082 ± 0.000 � 0.9080 ± 0.000 � 0.9081 ± 0.000 � 0.9080 ± 0.000 � 0.1151 ± 0.000 0.1133 ± 0.000 0.1139 ± 0.000 0.1131 ± 0.000
GSDTSR 0.9893 ± 0.000 � 0.9894 ± 0.000� 0.9893 ± 0.000 � 0.9894 ± 0.000� 0.9894 ± 0.000 0.9894 ± 0.000 0.9894 ± 0.000 � 0.9894 ± 0.000 � 0.0087 ± 0.000 0.0093 ± 0.000 0.0090 ± 0.000 0.0096 ± 0.000

Average 0.8340 0.8436 0.8294 0.8494 0.8643 0.8487 0.8294 0.8494 0.1428 0.1653 0.1404 0.1665

Time Budget: 50%

Druid 0.6851 ± 0.134 � 0.9333 ± 0.013� 0.6323 ± 0.074 � 0.9710 ± 0.008� 0.8147 ± 0.102 � 0.9486 ± 0.016� 0.7597 ± 0.051 � 0.9787 ± 0.009 � 0.1840 ± 0.137 0.4057 ± 0.013 0.1213 ± 0.071 0.4225 ± 0.008

Fastjson 0.8714 ± 0.007 � 0.9174 ± 0.021� 0.8902 ± 0.013 � 0.9118 ± 0.028� 0.9326 ± 0.005 � 0.9186 ± 0.021 � 0.9392 ± 0.017 � 0.9140 ± 0.027 � 0.0399 ± 0.010 0.3539 ± 0.262 0.0602 ± 0.020 0.3394 ± 0.282

Deeplearning4j 0.7049 ± 0.070 � 0.7890 ± 0.001� 0.6562 ± 0.018 � 0.8200 ± 0.000� 0.8331 ± 0.041 � 0.8106 ± 0.001 � 0.8379 ± 0.012 � 0.8134 ± 0.001 � 0.5276 ± 0.039 0.4695 ± 0.000 0.5447 ± 0.010 0.4625 ± 0.000
DSpace 0.9568 ± 0.001 � 0.9724 ± 0.009� 0.9485 ± 0.001 � 0.9766 ± 0.008� 0.9683 ± 0.001 0.9737 ± 0.009� 0.9615 ± 0.001 � 0.9767 ± 0.009 � 0.0334 ± 0.001 0.0751 ± 0.031 0.0218 ± 0.002 0.0776 ± 0.034

Guava 0.9502 ± 0.015 � 0.9653 ± 0.004� 0.9578 ± 0.004 � 0.9675 ± 0.007� 0.9767 ± 0.008 � 0.9687 ± 0.003 � 0.9806 ± 0.005 � 0.9672 ± 0.007 � 0.0303 ± 0.016 0.0662 ± 0.024 0.0387 ± 0.006 0.0659 ± 0.020

OkHttp 0.8812 ± 0.010 � 0.9192 ± 0.000� 0.8446 ± 0.003 � 0.9317 ± 0.000� 0.8878 ± 0.015 � 0.9177 ± 0.000� 0.8869 ± 0.002 � 0.9246 ± 0.000 � 0.1118 ± 0.014 0.1431 ± 0.000 0.1060 ± 0.003 0.1486 ± 0.000

Retrofit 0.9706 ± 0.002 � 0.9853 ± 0.000� 0.9718 ± 0.002 � 0.9893 ± 0.000� 0.9762 ± 0.002 � 0.9850 ± 0.000� 0.9778 ± 0.002 � 0.9885 ± 0.000 � 0.0134 ± 0.001 0.0156 ± 0.000 0.0138 ± 0.001 0.0172 ± 0.000

ZXing 0.9878 ± 0.000 � 0.9846 ± 0.000 � 0.9881 ± 0.001� 0.9857 ± 0.000 � 0.9954 ± 0.000 � 0.9862 ± 0.000 � 0.9956 ± 0.001 � 0.9869 ± 0.000 � 0.0201 ± 0.000 0.0109 ± 0.000 0.0201 ± 0.001 0.0110 ± 0.000
IOF/ROL 0.5101 ± 0.007 � 0.5046 ± 0.002 � 0.5025 ± 0.006 � 0.5189 ± 0.002� 0.5175 ± 0.008 � 0.5081 ± 0.002 � 0.5043 ± 0.006 � 0.5223 ± 0.002 � 0.7037 ± 0.019 0.7110 ± 0.003 0.6834 ± 0.014 0.7193 ± 0.003

Paint Control 0.9150 ± 0.000 � 0.9150 ± 0.000 � 0.9138 ± 0.000 � 0.9150 ± 0.000� 0.9171 ± 0.000 � 0.9162 ± 0.000 � 0.9140 ± 0.000 � 0.9162 ± 0.000 � 0.1283 ± 0.000 0.1222 ± 0.000 0.1142 ± 0.001 0.1223 ± 0.000

GSDTSR 0.9911 ± 0.000 � 0.9893 ± 0.000 � 0.9906 ± 0.000� 0.9894 ± 0.000 � 0.9911 ± 0.000 � 0.9894 ± 0.000 � 0.9910 ± 0.000 � 0.9894 ± 0.000 � 0.0199 ± 0.000 0.0093 ± 0.000 0.0179 ± 0.000 0.0096 ± 0.000

Average 0.8567 0.8978 0.8451 0.9070 0.8919 0.9021 0.8862 0.9071 0.1648 0.2166 0.1583 0.2178

Time Budget: 80%

Druid 0.6490 ± 0.113 � 0.9380 ± 0.012� 0.6551 ± 0.099 � 0.9830 ± 0.003� 0.7142 ± 0.111 � 0.9469 ± 0.015� 0.6881 ± 0.090 � 0.9912 ± 0.004 � 0.1477 ± 0.113 0.4069 ± 0.014 0.1230 ± 0.096 0.4292 ± 0.004

Fastjson 0.8708 ± 0.007 � 0.9536 ± 0.010� 0.8925 ± 0.010 � 0.9242 ± 0.028� 0.9037 ± 0.008 � 0.9488 ± 0.012� 0.9133 ± 0.015 0.927 ± 0.026 � 0.0385 ± 0.011 0.4613 ± 0.278 0.0516 ± 0.018 0.3963 ± 0.301

Deeplearning4j 0.7058 ± 0.091 � 0.8424 ± 0.001� 0.6640 ± 0.016 � 0.8641 ± 0.001� 0.8158 ± 0.064 � 0.8068 ± 0.002 � 0.8522 ± 0.012 � 0.7989 ± 0.001 � 0.5016 ± 0.058 0.4224 ± 0.001 0.5475 ± 0.007 0.4047 ± 0.000
DSpace 0.9601 ± 0.001 � 0.9792 ± 0.006� 0.9508 ± 0.001 � 0.9825 ± 0.007� 0.9738 ± 0.001 � 0.9796 ± 0.006� 0.9639 ± 0.001 � 0.9810 ± 0.008 � 0.0374 ± 0.001 0.0800 ± 0.031 0.0269 ± 0.002 0.0812 ± 0.034

Guava 0.9441 ± 0.012 � 0.9784 ± 0.012� 0.9581 ± 0.007 � 0.9841 ± 0.014� 0.9627 ± 0.010 � 0.9780 ± 0.013� 0.9689 ± 0.009 � 0.9825 ± 0.015 � 0.0247 ± 0.013 0.0812 ± 0.044 0.0348 ± 0.009 0.0888 ± 0.045

OkHttp 0.9027 ± 0.013 � 0.9350 ± 0.000� 0.8558 ± 0.004 � 0.9478 ± 0.000� 0.8836 ± 0.020 � 0.9271 ± 0.000� 0.8974 ± 0.003 � 0.9362 ± 0.000 � 0.1112 ± 0.017 0.1493 ± 0.000 0.1153 ± 0.003 0.1551 ± 0.000

Retrofit 0.9724 ± 0.005 � 0.9881 ± 0.000� 0.9745 ± 0.003 � 0.9916 ± 0.000� 0.9785 ± 0.004 � 0.9873 ± 0.000� 0.9808 ± 0.003 � 0.9903 ± 0.000 � 0.0140 ± 0.001 0.0161 ± 0.000 0.0145 ± 0.001 0.0179 ± 0.000

ZXing 0.9878 ± 0.000 � 0.9972 ± 0.000� 0.9883 ± 0.001 � 0.9996 ± 0.000� 0.9953 ± 0.000 � 0.9975 ± 0.000� 0.9953 ± 0.001 � 0.9996 ± 0.000 � 0.0201 ± 0.000 0.0224 ± 0.000 0.0197 ± 0.002 0.0227 ± 0.000

IOF/ROL 0.5495 ± 0.006 � 0.5569 ± 0.002� 0.5287 ± 0.007 � 0.5678 ± 0.001� 0.5593 ± 0.006 � 0.5591 ± 0.002 0.5311 ± 0.006 � 0.5699 ± 0.001 � 0.7263 ± 0.015 0.7293 ± 0.002 0.6857 ± 0.011 0.7334 ± 0.001

Paint Control 0.9162 ± 0.000 � 0.9171 ± 0.000� 0.9160 ± 0.000 � 0.9171 ± 0.000� 0.9187 ± 0.000 � 0.9176 ± 0.000 � 0.9158 ± 0.000 � 0.9177 ± 0.000 � 0.1285 ± 0.000 0.1209 ± 0.000 0.1161 ± 0.001 0.1204 ± 0.000

GSDTSR 0.9921 ± 0.000 � 0.9893 ± 0.000 � 0.9914 ± 0.000� 0.9894 ± 0.000 � 0.9919 ± 0.000 � 0.9894 ± 0.000 � 0.9917 ± 0.000 � 0.9894 ± 0.000 � 0.0218 ± 0.001 0.0093 ± 0.000 0.0203 ± 0.000 0.0096 ± 0.000

Average 0.8591 0.9159 0.8523 0.9228 0.8816 0.9126 0.8817 0.9167 0.1611 0.2272 0.1596 0.2236

25 50 75 100 125 150
CI Cycle

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Ac
cu

m
ul

at
iv

e
Re

w
ar

d
Ba

se
d

on
 F

ai
lu

re
s Time Budget: 10%

25 50 75 100 125 150
CI Cycle

Time Budget: 50%

25 50 75 100 125 150
CI Cycle

Time Budget: 80%

ANN
FRRMAB

(a) Reward Based on Failures (RNFail) function.

25 50 75 100 125 150
CI Cycle

0

25

50

75

100

125

150

Ac
cu

m
ul

at
iv

e
Ti

m
e-

ra
nk

ed
 R

ew
ar

d

Time Budget: 10%

25 50 75 100 125 150
CI Cycle

Time Budget: 50%

25 50 75 100 125 150
CI Cycle

Time Budget: 80%

ANN
FRRMAB

(b) Time-Ranked Reward (TimeRank) function.

Figure 3: Accumulative Reward values over the CI Cycles from Druid system.

With the TimeRank function, FRRMAB presents even better results.
FRRMAB stands out in ≈ 82% (27 out of 33) of the cases against 21%
(7 cases) for ANN. FRRMAB is the best with statistical difference
in ≈ 79% of the cases (26 out of 33) against 18% (6 cases) for ANN.
Across the SUTs, FRRMAB is the best, with statistical difference
considering the time budgets of 50% and 80%.

We observe that ANN has a bad performance for Druid and
DeepLearning4j, and improves performance in comparison with
FRRMAB when the budget decreases. On the other hand, FRRMAB
presents more stability in NAPFD average values than ANN. FR-
RMAB has the best performance with low variation and better
values for Druid and DeepLearning4j. Regarding APFDc values,
ANN using RNFail function stands out in 64% of the cases (21 out
of 33) against 45% (15 cases) for FRRMAB. ANN is the best with
statistical difference in ≈ 55% (18 out of 33) of the cases against

30% (10) for FRRMAB. Considering TimeRank the opposite occurs.
FRRMAB stands out in 55% of the cases (18 out of 33), against 48%
(16) for ANN. FRRMAB is the best with statistical difference in ≈

52% (17 out of 33) of the cases against 42% (14) for ANN. Across
the SUTs, overall, FRRMAB and ANN are statistically equivalent in
most of the time budgets and reward functions, except in TimeRank

function with a time budget of 80% in which FRRMAB is better
than ANN. For this indicator, the results show the approaches are
competitive, that is, there is not a great difference between then. A
possible reason for this is that RETECS considers the individual test
case duration, and COLEMAN, differently, considers only historical
failure data.

FRRMAB with TimeRank produces better values concerning
NAPFD, APFDc, and time budgets of 50% and 80%. But overall, the
results of both functions are similar.

98

A Multi-Armed Bandit Approach for Test Case Prioritization in Continuous Integration Environments

Table 6: Mean and standard deviation RFTC values: COLEMAN

against RETECS.

SUT

RFTC

RNFail TimeRank

ANN FRRMAB ANN FRRMAB

Time Budget: 10%

Druid 1166.4411 ± 546.049 � 209.3289 ± 98.987� 1240.8713 ± 356.817 � 56.1579 ± 31.056�
Fastjson 1094.1147 ± 209.106 � 184.9911 ± 65.066� 998.7949 ± 177.738 � 96.0378 ± 36.22�
Deeplearning4j 5.3151 ± 2.456 � 2.3049 ± 0.048� 5.7919 ± 0.677 � 2.0437 ± 0.007�
DSpace 11.9561 ± 0.753 � 3.024 ± 1.33� 13.6276 ± 0.754 � 2.1428 ± 0.67�
Guava 129.3477 ± 99.443 � 31.8991 ± 20.546� 191.1219 ± 29.545 � 15.0977 ± 13.75�
OkHttp 7.4112 ± 0.397 � 4.3424 ± 0.0� 15.8935 ± 1.951 � 1.8039 ± 0.0�
Retrofit 3.7352 ± 0.439 � 1.5152 ± 0.0� 4.7297 ± 0.772 � 1.7941 ± 0.0�
ZXing 39.7929 ± 0.643 � 1.0 ± 0.0� 39.1204 ± 1.701 � 1.0 ± 0.0�
IOF/ROL 1.6445 ± 0.158 � 1.2626 ± 0.064� 1.5639 ± 0.108 � 1.0992 ± 0.05�
Paint Control 1 ± 0.0 1 ± 0.0 1.001 ± 0.002 � 1.0 ± 0.0�
GSDTSR 3.2553 ± 0.387 � 2.1316 ± 0.1� 3.8958 ± 0.18 � 1.1482 ± 0.071�

Time Budget: 50%

Druid 1225.6197 ± 600.746 � 121.8396 ± 43.763� 1420.3143 ± 418.926 � 51.2697 ± 11.926�
Fastjson 1527.9434 ± 93.004 � 315.8923 ± 79.836� 1173.9871 ± 321.789 � 335.9929 ± 125.629�
Deeplearning4j 5.0267 ± 1.827 � 2.5496 ± 0.011� 7.3264 ± 0.530 � 2.464 ± 0.005�
DSpace 19.0354 ± 0.887 � 5.5312 ± 1.939� 27.6301 ± 0.921 � 4.1089 ± 1.769�
Guava 289.1586 ± 99.054 � 78.6409 ± 45.928� 235.0919 ± 27.865 � 24.0869 ± 21.479�
OkHttp 6.203 ± 2.066 � 4.188 ± 0.014 � 19.6306 ± 0.79 � 2.3643 ± 0.002�
Retrofit 5.4302 ± 0.43 � 2.4059 ± 0.0� 5.625 ± 0.415 � 1.4299 ± 0.0�
ZXing 51.2576 ± 0.579 � 5.6 ± 0.0� 49.4232 ± 3.15 � 2.0 ± 0.0�
IOF/ROL 1.8009 ± 0.292 � 1.2588 ± 0.035� 1.9213 ± 0.218 � 1.151 ± 0.024�
Paint Control 1.0234 ± 0.004 � 1.0018 ± 0.001� 1.0257 ± 0.007 � 1.0014 ± 0.001�
GSDTSR 1.9072 ± 0.06� 2.1461 ± 0.101 � 3.5648 ± 0.141 � 1.1505 ± 0.072�

Time Budget: 80%

Druid 1427.8103 ± 493.429 � 146.9112 ± 46.436� 1035.3369 ± 658.042 � 50.3805 ± 11.25�
Fastjson 1535.2998 ± 101.625 � 398.4345 ± 105.27� 993.382 ± 393.441 � 572.0954 ± 221.573�
Deeplearning4j 5.5748 ± 2.358 � 2.8146 ± 0.014� 7.8533 ± 0.581 � 2.5017 ± 0.011�
DSpace 23.126 ± 1.021 � 6.8651 ± 2.946� 33.4617 ± 1.119 � 6.0794 ± 3.343�
Guava 330.5342 ± 74.0 � 84.6856 ± 34.075� 202.2301 ± 47.258 � 83.9989 ± 78.446�
OkHttp 4.2988 ± 2.242 4.0748 ± 0.021 21.5784 ± 1.148 � 2.282 ± 0.003�
Retrofit 5.9252 ± 0.884 � 2.4636 ± 0.0� 5.8832 ± 0.587 � 1.4386 ± 0.0�
ZXing 51.0061 ± 1.233 � 4.2727 ± 0.0� 48.6848 ± 2.926 � 1.3636 ± 0.0�
IOF/ROL 2.021 ± 0.447 � 1.317 ± 0.026 � 2.5248 ± 0.362 � 1.2366 ± 0.017�
Paint Control 1.015 ± 0.002 � 1.0003 ± 0.001� 1.0344 ± 0.009 � 1.0003 ± 0.001�
GSDTSR 1.9413 ± 0.322� 2.1461 ± 0.101 � 3.4858 ± 0.112 � 1.1505 ± 0.072�

According to Table 4, ANN is a bit faster than FRRMAB con-
sidering the function RNFail, and slower considering TimeRank.
FRRMAB is stable for both functions, whilst ANN spends more
time using TimeRank function. Analyzing the prioritization time
spent along with CI Cycles, we observe that both approaches spend
more time when test cases are added or removed from one cycle to
another. This occurs because both approaches need to update the
information about the test cases, mainly when a high number of
test cases increases or decreases abruptly. But a greater impact is
observed for RETECS. In particular, ANN has a great variation in
the spent time for IOF/ROL. For this system, RETECS can take in the
worst case more than one second.

Regarding NTR, for the three budgets, FRRMAB is the best in ≈

64% (21 out of 33) of the cases against 36% (12) for ANN for RNFail
function. Considering TimeRank, FRRMAB is the best in ≈ 73% (24)
of the cases against ≈ 27% (9) for ANN. Regarding RFTC (Table 6)
and RNFail, FRRMAB stands out in ≈ 94% of the cases (31 out of
33) against ≈ 12% (4) for ANN. But in 2 of these 4 cases, ANN and
FRRMAB are statistically equivalent. With TimeRank, FRRMAB is
the best in all cases.

With the systems used, we do not identify a scalability pattern
concerning the time spent to prioritize the test cases. The use of
systems with a great number of test cases in each CI Cycles can help
in the identification of our approach scalability in future studies.

Due to the bad performance of ANN in Druid, we analyze this
system. Druid has the lowest number of CI Cycles (168) among
the systems evaluated, as well as it has many tests (2391). Figure 3
shows the accumulative reward values from ANN (blue line) and
FRRMAB (orange line) along the CI Cycles considering RNFail and

TimeRank functions. We can observe that although RETECS better
assigns the rewards in the RNFail function, the prioritization order
is not adequate, which we can see with the TimeRank function.
In this way, FRRMAB better mitigates than ANN the problem of
beginning without learning mainly using the TimeRank function,
and adapts quickly to deal with a peak of faults in the first cycles5.

RQ3: COLEMAN using FRRMAB outperforms RETECS using ANN

regarding NAPFD, RFTC and NTR indicators, independently of the

reward functions and budgets investigated. Regarding APFDc, both

approaches present similar results. Besides, with respect to the exe-

cution time, FRRMAB is more stable, that is, adapts better to deal

with peak of faults.

7 CONCLUDING REMARKS

This work introduces COLEMAN, an approach to deal with the TCPCI
problem. COLEMAN is based on MAB with combinatorial and volatile
characteristics to dynamically obtain an adequate prioritized test
suite for each CI Cycle (commit) using historical failure data of test
cases. The approach properly deals with the EvE dilemma and takes
into account TCPCI characteristics such as test case volatility.

We evaluated our approach concerning three time budgets: 10%,
50%, and 80%; with five MAB policies: FRRMAB, UCB, 𝜖-Greedy,
Greedy, and Random; and compared it against an RL-based ap-
proach from literature, named RETECS [33]. The results show that
FRRMAB policy outperforms the other policies with both reward
functions. In most cases, our approach outperforms RETECS in terms
of NAPFD, NTR, and earlier fault detection (RFTC). It also does
not present great variations in the prioritization time, and does not
require any additional information. Regarding APFDc, the obtained
values are competitive with RETECS.

Our approach spends, in the worst case, less than one second
to prioritize a test suite, and the obtained results in many aspects
investigated show high performance. Then, we can conclude that
COLEMAN contributes efficiently and effectively to address the TCPCI
problem.

Future work includes the application of our approach in other
systems, possibly in an industrial scenario, as well as the study of
other policies to include the individual test case duration in the
prioritization. We intend to evaluate the scalability of our approach
and provide a relationship between the number of test cases and
the prioritization time. Another work to be conducted is to provide
COLEMAN as an API or an add-on, as well as the source code.

ACKNOWLEDGMENTS

This work is supported by the Brazilian funding agencies CAPES
and CNPq. Grant: 305968/2018.

REFERENCES
[1] Venkatachalam Anantharam, Pravin Varaiya, and Jean Walrand. 1987. Asymptot-

ically Efficient Allocation Rules for the Multiarmed Bandit Problem with Multiple
Plays-Part I: I.I.D. Rewards. IEEE Trans. Automat. Control 32, 11 (November 1987),
968–976. https://doi.org/10.1109/TAC.1987.1104491

[2] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. 2002. Finite-time Analysis of
the Multiarmed Bandit Problem. Machine Learning 47, 2 (01 May 2002), 235–256.
https://doi.org/10.1023/A:1013689704352

5See supplementary material about characteristics of this system.

99

[3] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. TravisTorrent: Synthe-
sizing Travis CI and GitHub for Full-Stack Research on Continuous Integration.
In Proceedings of the 14th working conference on mining software repositories.

[4] J. M. Benitez, J. L. Castro, and I. Requena. 1997. Are Artificial Neural Networks
Black Boxes? Transactions on Neural Networks 8, 5 (Sept. 1997), 1156–1164.
https://doi.org/10.1109/72.623216

[5] Zahy Bnaya, Rami Puzis, Roni Stern, and Ariel Felner. 2013. Volatile Multi-Armed
Bandits for Guaranteed Targeted Social Crawling. In Proceeding of Workshops at
the 27th AAAI Conference on Artificial Intelligence (Late-Breaking Developments).
8–10.

[6] Benjamin Busjaeger and Tao Xie. 2016. Learning for Test Prioritization: An
Industrial Case Study. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE 2016). ACM, New York,
NY, USA, 975–980. https://doi.org/10.1145/2950290.2983954

[7] Cagatay Catal and Deepti Mishra. 2013. Test case prioritization: a systematic
mapping study. Software Quality Journal 21, 3 (01 Sep 2013), 445–478. https:
//doi.org/10.1007/s11219-012-9181-z

[8] Y. Cho, J. Kim, and E. Lee. 2016. History-Based Test Case Prioritization for Failure
Information. In 2016 23rd Asia-Pacific Software Engineering Conference (APSEC).
385–388. https://doi.org/10.1109/APSEC.2016.066

[9] Hyunsook Do, Siavash Mirarab, Ladan Tahvildari, and Gregg Rothermel. 2008.
An Empirical Study of the Effect of Time Constraints on the Cost-benefits of
Regression Testing. In Proceedings of the 16th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering (SIGSOFT ’08/FSE-16). ACM, New
York, NY, USA, 71–82. https://doi.org/10.1145/1453101.1453113

[10] Paul M Duvall, Steve Matyas, and Andrew Glover. 2007. Continuous integration:
improving software quality and reducing risk. Pearson Education.

[11] Sebastian Elbaum, AlexeyMalishevsky, andGregg Rothermel. 2001. Incorporating
varying test costs and fault severities into test case prioritization. In Proceedings
of the 23rd International Conference on Software Engineering. 329–338. https:
//doi.org/10.1109/ICSE.2001.919106

[12] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for
Improving Regression Testing in Continuous Integration Development Envi-
ronments. In Proceedings of the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE 2014). ACM, New York, NY, USA,
235–245. https://doi.org/10.1145/2635868.2635910

[13] A. Fialho. 2010. Adaptive operator selection for optimization. Ph.D. Dissertation.
Université Paris Sud-Paris XI.

[14] M. Friedman. 1940. A comparison of alternative tests of significance for the
problem of m rankings. The Annals of Mathematical Statistics 11, 1 (1940), 86–92.

[15] Alireza Haghighatkhah, Mika Mäntylä, Markku Oivo, and Pasi Kuvaja. 2018. Test
prioritization in continuous integration environments. Journal of Systems and
Software 146 (2018), 80–98. https://doi.org/10.1016/j.jss.2018.08.061

[16] Christopher Henard, Mike Papadakis, Mark Harman, Yue Jia, and Yves Le Traon.
2016. Comparing White-box and Black-box Test Prioritization. In Proceedings of
the 38th International Conference on Software Engineering (ICSE ’16). ACM, New
York, NY, USA, 523–534. https://doi.org/10.1145/2884781.2884791

[17] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.
2016. Usage, Costs, and Benefits of Continuous Integration in Open-source
Projects. In Proceedings of the 31st IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE 2016). ACM, New York, NY, USA, 426–437.
https://doi.org/10.1145/2970276.2970358

[18] Muhammad Khatibsyarbini, Mohd Adham Isa, Dayang N.A. Jawawi, and Rooster
Tumeng. 2018. Test case prioritization approaches in regression testing: A sys-
tematic literature review. Information and Software Technology 93 (2018), 74–93.
https://doi.org/10.1016/j.infsof.2017.08.014

[19] W. H. Kruskal and W. A. Wallis. 1952. Use of Ranks in One-Criterion Variance
Analysis. J. Amer. Statist. Assoc. 47, 260 (1952), 583–621.

[20] Volodymyr Kuleshov and Doina Precup. 2014. Algorithms for multi-armed bandit
problems. Journal of Machine Learning Research 1 (2014), 1–48.

[21] K. Li, A. Fialho, S. Kwong, and Q. Zhang. 2014. Adaptive operator selection with
bandits for a multiobjective evolutionary algorithm based on decomposition.
Evolutionary Computation, IEEE Transactions on 18, 1 (2014), 114–130.

[22] Jingjing Liang, Sebastian Elbaum, and Gregg Rothermel. 2018. Redefining Priori-
tization: Continuous Prioritization for Continuous Integration. In Proceedings of
the 40th International Conference on Software Engineering (ICSE ’18). ACM, New
York, NY, USA, 688–698. https://doi.org/10.1145/3180155.3180213

[23] Henry B Mann and Donald R Whitney. 1947. On a test of whether one of
two random variables is stochastically larger than the other. The annals of
mathematical statistics (1947), 50–60.

[24] Dusica Marijan. 2015. Multi-perspective Regression Test Prioritization for Time-
Constrained Environments. In Proceedings of the 2015 IEEE International Con-
ference on Software Quality, Reliability and Security (QRS ’15). IEEE Computer
Society, 157–162. https://doi.org/10.1109/QRS.2015.31

[25] Dusica Marijan, Arnaud Gotlieb, and Sagar Sen. 2013. Test Case Prioritization
for Continuous Regression Testing: An Industrial Case Study. In 2013 IEEE Inter-
national Conference on Software Maintenance. 540–543. https://doi.org/10.1109/
ICSM.2013.91

[26] D. Marijan, M. Liaaen, A. Gotlieb, S. Sen, and C. Ieva. 2017. TITAN: Test
Suite Optimization for Highly Configurable Software. In 2017 IEEE Interna-
tional Conference on Software Testing, Verification and Validation (ICST). 524–531.
https://doi.org/10.1109/ICST.2017.60

[27] Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell, Rob Siem-
borski, and John Micco. 2017. Taming Google-scale Continuous Testing. In
Proceedings of the 39th International Conference on Software Engineering: Software
Engineering in Practice Track (ICSE-SEIP ’17). IEEE Press, Piscataway, NJ, USA,
233–242. https://doi.org/10.1109/ICSE-SEIP.2017.16

[28] Jackson A. Prado Lima and Silvia R. Vergilio. 2020. A Multi-Armed Bandit
Approach for Test Case Prioritization in Continuous Integration environments.
https://doi.org/10.17605/OSF.IO/WMCBT

[29] Jackson A. Prado Lima and Silvia R. Vergilio. 2020. Test Case Prioritization in
Continuous Integration environments: A systematic mapping study. Information
and Software Technology 121 (2020), 106268. https://doi.org/10.1016/j.infsof.2020.
106268

[30] XiaoQu,Myra B. Cohen, and KatherineM.Woolf. 2007. Combinatorial Interaction
Regression Testing: A Study of Test Case Generation and Prioritization. In IEEE
International Conference on Software Maintenance. 255–264. https://doi.org/10.
1109/ICSM.2007.4362638

[31] Herbert Robbins. 1985. Some aspects of the sequential design of experiments. In
Herbert Robbins Selected Papers. Springer, 169–177.

[32] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold.
1999. Test Case Prioritization: An Empirical Study. In Proceedings of the IEEE
International Conference on Software Maintenance (ICSM ’99). IEEE Computer
Society, 179–.

[33] Helge Spieker, Arnaud Gotlieb, Dusica Marijan, and Morten Mossige. 2017. Re-
inforcement Learning for Automatic Test Case Prioritization and Selection in
Continuous Integration. In Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2017). ACM, New York, NY,
USA, 12–22. https://doi.org/10.1145/3092703.3092709

[34] Richard S. Sutton and Andrew G. Barto. 2011. Reinforcement learning: An
introduction. The MIT Press (2011).

[35] Travis CI. [n.d.]. Travis CI. https://travis-ci.org. Accessed: 2018-01-22.
[36] Andras Vargha and Harold D. Delaney. 2000. A Critique and Improvement of the

CL Common Language Effect Size Statistics of McGraw and Wong. Journal of
Educational and Behavioral Statistics 25, 2 (Jan. 2000), 101–132.

[37] S. Yoo and M. Harman. 2012. Regression Testing Minimization, Selection and
Prioritization: A Survey. Softw. Test. Verif. Reliab. 22, 2 (March 2012), 67–120.
https://doi.org/10.1002/stv.430

[38] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and B. Vasilescu. 2017. The impact of
continuous integration on other software development practices: A large-scale
empirical study. In 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE). 60–71. https://doi.org/10.1109/ASE.2017.8115619

[39] Y. Zhu, E. Shihab, and P. C. Rigby. 2018. Test Re-Prioritization in Continuous Test-
ing Environments. In 2018 IEEE International Conference on Software Maintenance
and Evolution (ICSME). 69–79. https://doi.org/10.1109/ICSME.2018.00016

[40] Barret Zoph andQuoc V. Le. 2017. Neural Architecture Searchwith Reinforcement
Learning. In 5th International Conference on Learning Representations (ICLR).

100

101

APPENDIX C – MULTI-ARMED BANDIT TCPCI: A TRADE-OFF ANALYSIS

Multi-Armed Bandit Test Case Prioritization in Continuous
Integration Environments: A Trade-off Analysis

Jackson A. Prado Lima
Department of Informatics

Federal University of Paraná (UFPR)
Curitiba, Paraná, Brazil
japlima@inf.ufpr.br

Silvia R. Vergilio
Department of Informatics

Federal University of Paraná (UFPR)
Curitiba, Paraná, Brazil

silvia@inf.ufpr.br

ABSTRACT

Continuous Integration (CI) practices lead the software to be inte-
grated and tested many times a day, usually subject to a test budget.
To deal with this scenario, cost-effective test case prioritization tech-
niques are required. COLEMAN is a Multi-Armed Bandit approach
that learns from the test case failure-history the best prioritization
order to maximize early fault detection. Reported results show that
COLEMAN has reached promising results with different test budgets
and spends, in the worst case, less than one second to execute.
However, COLEMAN has not been evaluated against a search-based
approach. Such an approach can generate near-optimal solutions
but is not suitable to the CI budget because it takes too long to
execute. Considering this fact, this paper analyses the trade-offs
of the COLEMAN solutions in comparison with the near-optimal so-
lutions generated by a Genetic Algorithm (GA). We use measures,
which better fit with time constraints: Normalized Average Percent-

age of Faults Detected (NAPFD), Root-Mean-Square-Error (RMSE),
and Prioritization Time. We use seven large-scale real-world soft-
ware systems, and three different test budgets, 10%, 50%, and 80%
of the total time required to execute the test set available for a CI
cycle. COLEMAN obtains solutions near to the GA solutions in 90%
of the cases, but scenarios with high volatility of test cases and a
small number of cycles hamper the prioritization.

KEYWORDS

Test Case Prioritization, Continuous Integration environments,
Multi-Armed Bandit

1 INTRODUCTION

In the Continuous Integration (CI) process, developers merge their
changes into a shared version control repository after every small
task is completed. This practice has become popular because it
allows early bug fixes, avoids conflicts, and duplicate efforts. But
CI leads the software to be integrated and tested many times a day,
and as a consequence increases testing costs. This is because a large
test case set may take many minutes, several hours, or even days
to execute [5].

The CI environments have other particularities. The constant
code changes also lead to many modifications in the test sets avail-
able for a build. Then, over the cycles test cases became obsolete and
are removed from the set. Others are included and some others can
reappear; a fact known as test case volatility. Another particularity
of CI environment is that, many times, a time constraint exists to
perform a CI cycle, the called test budget, because many projects

share the same environment in the organization. In addition to this,
it is very important to provide rapid test feedback.

In this scenario, Regression Testing (RT) plays an important role
to make sure that continuously integrated changes in the code
should not affect existing functionalities. The literature reports
three main techniques for RT, usually applied to reduce time and
costs: test case minimization, test case selection, and test case prior-
itization [24]. Test suite minimization seeks to eliminate redundant
test cases following certain objectives. Test case selection seeks to
identify the most relevant test cases according to some criteria or
recent changes. Test Case Prioritization (TCP) seeks to establish
a test case execution order, generally maximizing early fault de-
tection. TCP techniques do not remove test cases from the test set
and allows fault-proneness test cases to be executed first, providing
rapid feedback on failures in the CI cycle. Because of this, TCP in
CI environments (TCPCI) has gained importance and is considered
a trendy research topic. A recent map shows that most approaches
have been proposed in the last years [17].

Most of the existing approaches are based on the test failure
history and try to execute first the test cases that have previously
failed, assuming that they are likely to fail again [1, 5, 11–14, 20, 23].
On the other hand, search-based techniques, which are commonly
used for TCP in the literature [9], are few explored because they
usually take too long to execute, what makes them unsuitable in
the presence of the CI time constraints. In fact, approaches that rely
on code analysis and instrumentation, can be time-consuming and
produce results that quickly become inaccurate due to the frequent
changes [3].

We can see the TCPCI problem requires approaches that con-
sider the dynamic characteristics of the CI environments, the test
case volatility, and the test budget. In the literature, an approach
which successfully addresses all these CI particularities is COLEMAN
(Combinatorial VOlatiLE Multi-Armed BANdit) [15]. COLEMAN uses
Multi-Armed Bandit (MAB) techniques [7] to learn from past test
executions and deal with the EvE (Exploration versus Exploitation)
dilemma [19]. In this way, the approach is adaptive and deals with
test cases volatility balancing the quantity of error-prone test cases
(Exploitation) and the diversity of the test set, given the chance
for all test cases, including new ones, to execute (Exploration).
COLEMAN can be considered the state-of-the-art approach for TCPCI.
Reported results show that COLEMAN overcomes similar approaches
in terms of early fault detection and execution time. It takes in all
cases less than one second to execute, even for the systems with
the greatest number of builds and test cases.

Despite these promising results and advantages, there is no study
comparing COLEMAN with near-optimal solutions such as the ones

generated by a search-based approach. Given the fact that search-
based approaches consume much time to execute, then a question
that arises is: "How far are the solutions produced by a learning
approach like COLEMAN from the solutions produced by an optimiza-
tion approach"?

This paper aims to answer this question reporting experiments
results and analyzing the trade-offs of the solutions generated by
COLEMAN, regarding fault detection and prioritization time, in com-
parison with the near-optimal solutions generated by a Genetic
Algorithm (GA). In the experiments, we used three measures, which
better fits with time constraints: Normalized Average Percentage

of Faults Detected (NAPFD), Root-Mean-Square-Error (RMSE), and
Prioritization Time. We use seven large-scale real-world software
systems, and three different test budgets, considering that the time
available for a CI cycle corresponds to respectively 10%, 50% and
80% of the total time required to execute the test case set available
for that cycle.

The results show that, except for one system, COLEMAN solutions
are very near (or near) to the solutions produced by the GA, and
in return, there is a considerable gain in the time, mainly for the
hard cases. In this way, the main contribution of this paper is to
conduct a trade-off analysis of an on-line learning approach, con-
sidered the state-of-the-art in the TCPCI problem. The analysis
points out research directions for TCPCI considering the draw-
backs and strengths found. Besides that, we provide supplementary
material with the source code of the Genetic Algorithm, additional
analysis, and results. This replication package allows future inves-
tigations [16].

The remainder of this paper is as follows. Section 2 describes
COLEMAN. Section 3 presents aspects of our GA implementation.
Section 4 details the methodology adopted in our experiments.
Section 5 shows and analyses the results. Section 6 reviews related
work. Section 7 contains our final remarks and discusses future
work.

2 EVALUATED APPROACH

In this section, we describe the TCPCI approach evaluated in our
work, COLEMAN [15]. Figure 1 presents how such an approach inter-
acts with the CI environment.

CI environments automate the process of building and testing
software, and allow developers to merge code under development or
maintenance with the mainline codebase at frequent time intervals.
In CI development, teams work continuously integrating code and
make smaller code commits every day, usually monitored by a CI
source control server. When a change occurs, the CI server clones
this code, builds it, and runs the testing process. When the entire
process ends, the CI server generates a report (feedback).

Given a test case set 𝑇 , available for a build, the set 𝑃𝑇 of all
possible permutations of 𝑇 , and a function 𝑓 that determines the
performance of a given prioritization 𝑇 ′ from 𝑃𝑇 to real numbers,
the TCPCI problem aims at finding the best 𝑇 ′ to achieve certain
specific criteria measured by 𝑓 . In CI, the determination of 𝑇 ′ may
subject to a test budget that is the available time to execute the CI
cycle.

COLEMAN formulates the TCPCI problem as aMulti-Armed Bandit

(MAB) problem.MAB problems [7] are sequential decision problems

related to the Exploration versus Exploitation (EvE) dilemma [19].
In such a dilemma, there is a balance in the search between solutions
with the best performance and dissimilar solutions. In the MAB
scenario, a player plays on a set of slot machines (or arms/actions)
that even identical produce different gains. After a player pulls one
of the arms in a turn (𝑐), a reward is received drawn from some
unknown distribution, thus aiming to maximize the sum of the
rewards. Different strategies, called MAB policies, can be used to
choose the next arm by observing previous rewards and decisions.

Similarly, COLEMAN considers that a test case is an arm, but it
encompasses the dynamic nature of the TCPCI problem. For this,
COLEMAN incorporates two variants of MAB: volatile and combina-
torial. In the first variation, the approach selects multiple arms in
each turn (commit), rather than one, to produce an ordered set. In
the second one, only the test cases available in each commit are
considered for prioritization. The second variation aims to deal
with the test case volatility, in which the test cases (arms) may
change dynamically over time. In the end, a reward function is
used to obtain feedback (reward) from the prioritization proposed
by the approach. Based on such feedback, the approach aims to
incorporate the learning from the application of the prioritized test
case set. COLEMAN is generic and lightweight. That is, it does not
require any further detail about the system under tests such as code
coverage or code instrumentation, as well as, it allows the use of
any MAB policy and requires only historical failure data.

COLEMAN works with the CI environments according to the fol-
lowing steps (see Figure 1). After a successful build, during the
test phase, COLEMAN starts acting before the test execution. In this
moment, the approach uses a MAB policy to prioritize a test case
set available (𝑇) from the current commit (𝑐). Thus, the test cases of
the prioritized test case set (𝑇 ′) are executed until the available test
budget is reached. Feedback (reward) about 𝑇 ′ applied is obtained
and used by the MAB policy to adapt its experience for future ac-
tions (online learning). In the end, a report is generated, and the
developers are informed.

COLEMAN can use different reward functions and MAB policies. In
our previous experiments conducted [15], COLEMAN was evaluated
using two reward functions: Reward Based on Failures (RNFail)
and Time-Ranked Reward (TimeRank), and the Fitness-Rate-Rank
based on Multi-Armed Bandit (FRRMAB) policy presented the best
performance. Because of this, it is used in this study.

2.1 Reward Functions

Let 𝑡 ′𝑐 to be a test case from a prioritized test case set𝑇 ′
𝑐 at a commit

(cycle) 𝑐 . The first reward function 𝑅𝑁𝐹𝑎𝑖𝑙 (Equation 1) is based
on the number of failures associated with a test case 𝑡 ′𝑐 ∈ 𝑇 ′

𝑡 . This
function captures the ability of a test case to produce failures.

𝑅𝑁𝐹𝑎𝑖𝑙 (𝑡 ′𝑐) =

{
1 if 𝑡 ′𝑐 failed

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(1)

The second function is TimeRank, defined in Equation 2. Let

𝑇 ′𝑓 𝑎𝑖𝑙 is composed by the failing test cases from𝑇 ′
𝑐 ; The 𝑝𝑟𝑒𝑐 (𝑡

′
𝑐1 , 𝑡

′
𝑐2)

function returns 1 if the position in 𝑇 ′
𝑐 of 𝑡 ′𝑐1 is lower than the posi-

tion of 𝑡 ′𝑐2 .

2

102

Figure 1: Overview of the COLEMAN interaction with the CI environment.

𝑇𝑖𝑚𝑒𝑅𝑎𝑛𝑘 (𝑡 ′𝑐) =
|𝑇 ′𝑓 𝑎𝑖𝑙 | − [¬(𝑓 𝑎𝑖𝑙𝑠 (𝑡 ′𝑐)) ×

∑ |𝑇 ′𝑓 𝑎𝑖𝑙 |
𝑖=1 𝑝𝑟𝑒𝑐 (𝑡 ′𝑐 , 𝑡

′
𝑐𝑖)]

|𝑇 ′𝑓 𝑎𝑖𝑙 |
(2)

The TimeRank function observes the rank of each 𝑡 ′𝑐 in 𝑇
′
𝑐 and

considers the problem of early scheduling. This function privileges
the failing test cases ranked in the first positions in 𝑇 ′

𝑐 , and it
penalizes those that do not fail and precede failing ones. A non-
failed test case receives a reward given by the accumulated number
of test cases that failed until its position in the prioritization rank.
That is, it receives a reward decreased by the number of failing test
cases ranked after it.

2.2 FRRMAB

FRRMAB is a state policy that works with a sliding window 𝑆𝑊
as a smoother way to consider dynamic environments, allowing
the observation of the changes in the quality of the arms (test
cases) along the search process. Such a characteristic fits with the
particularities inherent of the TCPCI problem. In such a scenario,
COLEMAN treats the arm as a test case and the turn as a commit. In
FRRMAB policy, the best test case 𝑡 is chosen from𝑇 to compose the
prioritized test case set 𝑇 ′ in a commit 𝑐 according to Equation 3:

Select 𝑡𝑐 = argmax
𝑡 ∈𝑇

(
𝐹𝑅𝑅𝑡,𝑐 𝐶 ×

√√
2 × 𝑙𝑛

∑𝑇
𝑗=1 𝑛 𝑗,𝑐

𝑛𝑡,𝑐

)
(3)

where the goal is, at each commit (𝑐), to select the best test case
from the test case set available which has an empirically estimated
value (𝐹𝑅𝑅𝑡,𝑐) in a range that depends on the number of times (𝑛𝑡,𝑐)
that has been applied previously. The parameter 𝐶 controls the
trade-off between exploitation and exploration.

Equation 3 considers the traditional behavior of a MAB policy,
in which only a test case 𝑡 is chosen from 𝑇 available in a commit.
To deal with the TCPCI scenario, Equation 3 could be performed
multiple times, and in each time, a test case would be moved from
𝑇 to compose a prioritized test case set𝑇 ′. Thus, the process would
repeat until no more test cases are available in 𝑇 , and the order

of choice would define the ranking in 𝑇 ′. However, this can be
costly [15]. Thus, FRRMAB policy was modified to evaluate all test
cases and order them. In this way, the best test case is put at the
top, followed by the second best one, and so on. A tie is broken
at random. For the case when a new test case appears, its values
are assigned with zero for the estimated value, and the number of
times it has been applied previously.

FRRMAB uses a credit assignment procedure (Algorithm 1) to
compute the 𝐹𝑅𝑅 value for each test case. This procedure updates
the test case values after the feedback from 𝑇 ′ is received. In this
way, it takes into account the impact observed in the most recent
applications, allowing a quick prioritization for the next commit.

Algorithm 1: Credit Assignment procedure from FRRMAB
for TCPCI (adapted from [8]).

begin

𝑇 ′
𝑐 ← Prioritized Test Case Set applied in the last commit 𝑐 ;

foreach 𝑡 ′ ∈ 𝑇 ′
𝑐 do

𝑅𝑒𝑤𝑎𝑟𝑑𝑡′ = 0.0;

end

foreach 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 ∈ 𝑆𝑙𝑖𝑑𝑖𝑛𝑔𝑊𝑖𝑛𝑑𝑜𝑤 do

i = element.GetTestCase();

FIR = element.GetFIR();

𝑅𝑒𝑤𝑎𝑟𝑑𝑡′ = 𝑅𝑒𝑤𝑎𝑟𝑑𝑡′ 𝐹𝐼𝑅;

end

Ranking the 𝑟𝑒𝑤𝑎𝑟𝑑𝑠 in a descending order (𝑅𝑒𝑤𝑎𝑟𝑑𝑡′);

𝑅𝑎𝑛𝑘𝑡′ = ranking value of 𝑅𝑒𝑤𝑎𝑟𝑑𝑡′ ;

foreach 𝑡 ′ ∈ 𝑇 ′ do

𝐷𝑒𝑐𝑎𝑦𝑡′ = 𝐷𝑅𝑎𝑛𝑘𝑡′ × 𝑅𝑒𝑤𝑎𝑟𝑑𝑡′ ;

end

𝐷𝑒𝑐𝑎𝑦𝑆𝑢𝑚 =
∑|𝑇 ′ |

𝑖=1 𝐷𝑒𝑐𝑎𝑦𝑡′ ;

foreach 𝑡 ′ ∈ 𝑇 ′ do

𝐹𝑅𝑅𝑡′ =
𝐷𝑒𝑐𝑎𝑦𝑡′

𝐷𝑒𝑐𝑎𝑦𝑆𝑢𝑚
;

end

end

3

103

To compute the 𝐹𝑅𝑅 value for each test case, first, it is applied a
rank-based method that uses the Fitness Improvement Rate (FIR)
method to not use the raw value that could deteriorate the efficiency
of the algorithm [8]. To obtain the FIR value, we used the value
obtained through a reward function (see Section 2.1).

After, the FIR values are stored in a given Sliding Window (𝑆𝑊)
organized as a first-in, first-out (FIFO) queue that is used to evaluate
the𝑊 recent applications. In this way, most recent values are added
to the end, while the oldest records are removed from the beginning
to maintain a constant size.

The use of a 𝑆𝑊 allows evaluating a test case without it being
hampered by its performance at a very early stage, which may be
irrelevant to its current performance. Thus, it is guaranteed that
the FIR information in 𝑆𝑊 refers to a current search (prioritization)
situation [8]. Subsequently, the 𝑅𝑒𝑤𝑎𝑟𝑑𝑡 of a test case 𝑡 is calcu-
lated by the sum of all FIR values for the test case 𝑡 in 𝑆𝑊 . Next, a
descending ranking of all rewards from the test case in 𝑆𝑊 is de-
termined. Thus, it is defined as a 𝑅𝑎𝑛𝑘𝑡 that represents the ranking
value of a test case 𝑡 , which prioritizes the best test cases. Then,
a decay factor 𝐷 ∈ [0, 1] is used in order to transform the initial
reward according to the relative position about the reward from
the other test cases (𝐷𝑒𝑐𝑎𝑦𝑡). The lower the values of 𝐷 the greater
the influence of the best test case. Finally, the decayed values of the
rewards are normalized, resulting in the Fitness-Rate-Rank (𝐹𝑅𝑅)
for each test case 𝑡 .

3 FINDING NEAR-OPTIMAL SOLUTIONS

In our work, the near-optimal solutions (reasonable solutions to
serve as a baseline), are generated by a Genetic Algorithm (GA).
This section describes the implementation of such an algorithm.

3.1 Population Representation

Each individual in the population represents a possible prioriti-
zation (𝑇 ′) for the test case set available (𝑇) in a commit (𝑐). To
represent an individual in the population we use an integer en-
coding, where a gene represents a test case (𝑡 ∈ 𝑇) according to
Figure 2.

𝑡𝑖 𝑡𝑖 1 𝑡𝑖 2 𝑡𝑖 3 ... 𝑡𝑛

2 3 1 4 ... 𝑛

Figure 2: Individual Representation.

The value from i-th gene represents the test case priority (the
execution order) in the prioritization test case set 𝑇 ′, with integer
numbers in a range between [0, |𝑇 | − 1]. Thus, the GA is designed
as a permutation problem.

3.2 Fitness Function

To compose the fitness function, we use the Normalized Average
Percentage of Fault Detected (NAPFD) [18] (Equation 4) metric.
This is a common metric used to evaluate a prioritized test case set
under time constraints concerning failure detection effectiveness
when not all of them are executed [17, 20]. NAPFD values range

from zero to one, in which higher values indicate how fast the faults
are detected using fewer test cases.

𝑁𝐴𝑃𝐹𝐷 (𝑇 ′
𝑡) = 𝑝 −

∑𝑛
1 𝑟𝑎𝑛𝑘 (𝑇

′
𝑡𝑖
)

𝑚 × 𝑛

𝑝

2𝑛
(4)

where𝑚 is the number of faults detected by all test cases; 𝑟𝑎𝑛𝑘 (𝑇 ′
𝑖)

is the position of 𝑇 ′
𝑖 in 𝑇 ′, if 𝑇 ′

𝑖 did not reveal a fault we set 𝑇 ′
𝑖 = 0;

𝑛 is the number of tests cases in 𝑇 ′; and 𝑝 is the number of faults
detected by 𝑇 ′ divided by𝑚. As we desire the best prioritization,
the problem is treated as a maximization problem.

3.3 Algorithm

Algorithm 2 illustrates the proposed GA. Similarly to COLEMAN,
GA acts in each commit (𝑐). Based on the test case set available in
each commit (𝑇), the execution time of the overall test case set is
obtained (𝐴𝑐), and a time budget is defined (𝑇𝐵𝑐). It is essential to
highlight that the test results are already known. In this way, the
original time to run the test is available. Besides, in order to observe
the influence of time constraints, inherent to TCPCI problem, and
how it affects the learning process, we defined three time budgets:
10%, 50%, and 80%.

Algorithm 2: Genetic Algorithm to Find Near-Optimal
Solutions for TCPCI.

forall commit 𝑐 in System do
𝑇𝑐 ← Test Case set available from system in the current
commit;

𝐴𝑐 ← Available (total) time spent to run the tests;

𝑇𝐵𝑐 ← Time Budget (10%, 50%, or 80% from 𝐴𝑐);

𝑃𝑛 ← Population initialization;

Evaluate(𝑄𝑛 ,𝑇𝐵𝑐);

while stop criteria is not achieved do

𝑄𝑛 ← Selection(𝑃𝑛);

𝑄𝑛 ← Crossover(𝑄𝑛);

𝑄𝑛 ←Mutation(𝑄𝑛);

Evaluate(𝑄𝑛 ,𝑇𝐵𝑐);

Replacement(𝑄𝑛 , 𝑃𝑛);

end

𝑁𝐴𝑃𝐹𝐷𝑐 ← Value obtained by best solution from 𝑃𝑛 ;

end

In the algorithm, the NAPFD metric is used as a fitness function
to guide our GA in the search space. At the moment of the opti-
mization, an initial population is generated where each individual
(solution) represents a possible prioritization order. Such a pop-
ulation is evaluated considering the time budget available. After,
the optimization is performed, where the algorithm seeks to find
the best prioritization. The optimization is executed until a stop
criterion is achieved. Finally, the NAPFD value from the current
commit is obtained from the best solution (with the highest NAPFD
value).

3.4 Implementation Aspects

The algorithm was implemented using the DEAP framework [2]
and is available in our the replication package [16]. We used the

4

104

operators available in the framework that fits with our population
representation. They are:

• Selection: Tournament Selection. Picks randomly individuals
from the population and selects the fittest one;

• Crossover: Partially Matched Crossover [4]. Two individu-
als are modified in place, and two random cut points are
defined in each individual. One parent’s string is mapped
into the other parent’s string and the remaining information
is exchanged;

• Mutation: Shuffle Indexes Mutation. Shuffles the attributes
from an individual according to a probability of each attribute
to be moved;

4 EXPERIMENTAL SETUP

According to our goal, the experiment was guided by the following
general research question: RQ: “How are the solutions generated
by COLEMAN compared to the near-optimal solutions found by a
GA?”. To answer this question, we performed a trade-off analysis of
the solutions generated by COLEMAN, and reported in [15], regarding
early fault detection and prioritization time. Such an analysis had
as the baseline the solutions obtained in 30 independent executions
of the GA algorithm.

4.1 Evaluation measures

In this study, we used three measures. The first one is the NAPFD
(Section 3.2) which better fits the CI time constraints (budgets) [20].
The second metric is Root-Mean-Square-Error (RMSE), which is used
to observe the difference between the predicted and the observed
values. In this study, we use RMSE (Equation 5) to compute the
differences between the NAPFD values in each CI Cycle (commit) 𝑐 ,
obtained by COLEMAN (𝑠𝑐) and the near-optimal value 𝑇 ′ (𝑠𝑐) found
by the GA. For an algorithm A, the RMSE is computed as follows:

𝑅𝑀𝑆𝐸 (A) =

√∑𝐶𝐼
𝑐=1 (𝑠𝑐 − 𝑠𝑐)

2

𝐶𝐼
(5)

where𝐶𝐼 is the amount of CI cycles in a system. Smaller RMSE val-
ues mean more accurate algorithms. Due to the hard task to find an
optimal prioritization, 𝑠𝑐 found by GA represents an approximation
of the optimal prioritization.

The last metric used is the Prioritization Time. This metric takes
into account the runtime, in seconds, to perform the prioritization.

4.2 Statistical Analysis

We applied statistical tests and effect size measure to evaluate the re-
sults. To determine the significance level, we used Kruskal-Wallis [6]
and Mann-Whitney [10] statistical tests with a confidence level of
95%. On the other hand, to calculate the effect size magnitude (Neg-
ligible, Small, Medium, and Large) of the difference between two
groups, we used the Vargha and Delaney’s 𝐴12 [21] metric.

4.3 Target Systems

In order to provide a fair comparison and to maintain the repro-
ducibility of the research, we used the same systems used in our
previous work [15]. The seven target systems are detailed in Table 1.
The first column shows the system name, followed by the number of

builds identified, and in parenthesis the number of builds included
in the analysis. The third contains the total of failures found, and
in parenthesis the number of builds in which at least one test failed.
The last column shows the number of different (unique) test cases
identified from build logs, and in parenthesis the range of test cases
executed in the builds.

Table 1: Description of the Target Systems

Name Builds Failures Test Cases

Druid 286 (168) 270 (71) 2391 (1778-1910)
Deeplearning4j 3410 (483) 777 (323) 117 (1-52)
Guava 2011 (1689) 7659 (112) 568 (308-512)
IOF/ROL 2392 (2392) 9289 (1627) 1941 (1-707)
OkHttp 9919 (6215) 9586 (1408) 289 (2-75)
Retrofit 3719 (2711) 611 (125) 206 (5-75)
ZXing 961 (605) 68 (11) 124 (81-123)

Total 22125 (14263) 28260 (3677) 5636 (1-1910)

4.4 Execution Parameters

We used the results obtained by COLEMAN available in [15]. In such
work, the parameters are: sliding window size 𝑆𝑊 equals to 100, the
coefficient C to balance exploration and exploitation equals to 0.3,
and decayed factor equals to 1. Besides, in this work we evaluated
both reward functions (see Section 2.1).

The parameters for the GA were defined empirically. The pop-
ulation size is 100 individuals, 80% of crossover probability, 10%
of mutation probability, and stopping criteria of 100 generations
(corresponding to 10,000 fitness evaluations). All the experiments
were performed on an Intel® Xeon® E5-2450 with 2.10 GHz CPU,
47GB RAM, running Linux Ubuntu 18.04.1 LTS.

The results from GA and COLEMAN were obtained from 30 in-
dependent executions for each algorithm, considering three time
budgets: 10%, 50%, and 80% of the overall execution time test case
set available in each commit similarly to previous work [15].

4.5 Threats to Validity

In this section, we identify possible threats to the validity of our
results, according to the taxonomy of Wohlin et al. [22].
Internal Validity: the parameter setting can be considered a threat.
To minimize this threat, we used an empirical configuration for GA
and, for COLEMAN, we adopted parameters used in related work. It
is possible that using an automatic configuration setting the results
could improve.
External Validity: we used only seven systems. Thus, the results
cannot be generalized. However, our study provides some evidences
towards an initial validation. New experiments should be performed.
Besides that, we believe that our study can be easily replicated, using
the raw data analyzed and disseminated in our replication package.
Conclusion Validity: the randomness of the algorithms is a threat.
To minimize this threat, we executed the GA 30 times. Another
threat is related to the statistical tests used. To minimize this threat,
we used tests commonly adopted for non-deterministic algorithms
in software engineering problems.

5

105

The last threats are concerning the fitness used to guide the GA
in the search space, and the RMSE magnitude scale. On one hand,
NAPFD was chosen because its better fits in the CI environment
with time budgets. Our results may be different for other functions.
On the other hand, the RMSE magnitudes were obtained based
on our analysis, observations, SUTs behavior, and correlating the
NAPFD and RMSE values. Other researchers can observe different
aspects and propose a different scale.

5 RESULTS

In this section, the experimental results are presented and analyzed,
aiming at answering the posed question.

In order to answer the research question, we computed the
NAPFD, RMSE, and Prioritization Time averages for GA and COLEMAN
using both reward functions RNFail and TimeRank. Table 2 shows
the obtained mean values ± standard deviation. The average was
computed from 30 independent executions in each system and time
budget. Values highlighted in bold are the best. Besides, for the
NAPFD measure, values that are statistically equivalent to the best
ones have their corresponding cells painted in light gray. Different
symbols represent the effect size magnitudes (see caption of the
table). In each time budget, for each comparison in a system, the
Kruskal-Wallis test was performed.

Table 2 shows for all systems a relevant difference between GA
and COLEMAN execution time. As expected, COLEMAN is much faster
than GA. An expressive difference is observed in the Druid system,
a case that shows how hard the prioritization can be, even for our
GA that knows a priori the final results. However, how does such a
gain in time impact in the NAPFD values? Does more time imply
better prioritizations? Next, we investigate such a trade-off, by
analyzing NAPFD and RMSE.

Regarding the NAPFD values, GA outperforms COLEMAN in all
systems and all time budgets with a large magnitude and statistical
difference. This is expected, as mentioned before, the GA previously
knows the testing result and is required only to find an approxima-
tion from the optimal prioritization. In this way, the results found by
GA are used as a baseline to observe how distant the prioritization
proposed by COLEMAN is.

Considering this aspect, in some cases, the NAPFD values re-
ported by GA are close to the ones obtained by COLEMAN. They
suggest COLEMAN proposes near-optimal solutions. To a better vi-
sualization, Figure 3 illustrates radar charts (or spider graphs) for
each time budget. Each angle represents the NAPFD value for a
system. The green line represents the values found by GA, orange
line by TimeRank, and blue by RNFail.

The figure shows that increasing the time budget (less time con-
straint), COLEMAN produces solutions closest to optimal, in which
TimeRank performs a bit better than RNFail. Besides, in some sys-
tems, for instance, in the Deeplearning4j system, we observe that
even increasing the time budget, this difference continues the same
between the values found by both reward functions and by GA. In
order to understand this behavior, we generated Figure 4.

The figure presents, in overall (in the same scale), different in-
formation about each system: number of valid builds, number of

failures, number of failed builds, number of test cases, mean num-
ber of failures by cycles, and mean number of failing cycles. More
information is found in Table 1.

As we can observe, Deeplearning4j has a high average of fail-
ing builds. However, only this does not help COLEMAN to provide
a good prioritization. Because of this, we analyzed other relevant
characteristics that may impact the prioritization, such as the test
case volatility. In such a system, we observed a high test case volatil-
ity1, mainly in the failing test cases, consequently, hindering the
prioritization. This explains the difference across time budgets. Such
behavior also impacts in the GA performance, which is the second
worst for such a system in terms of prioritization time.

The ZXing system is the simplest one. Thus, such information
support to understand the closest values in the ZXing system be-
tween COLEMAN and GA. In this system, there is low test case volatil-
ity, and there are peaks in the failure detection in a few commits
with long periods without failures. This scenario endorses an ap-
proach based on historical test data.

The highest difference between COLEMAN and GA can be observed
in the Druid system in the presence of the most restrictive time
budget (10%). This system has some particularities: (i) although it
has a high average of failing cycles, what would benefit a failure
history approach, it has two peaks of failures which increases the
average of failing cycles; (ii) a large test case set, in which many
failures are distributed in many test cases; and (iii) few number of CI
Cycles. This hampers the failure-history prioritization performed by
COLEMAN in a very restrictive scenario. Another reason for the bad
performance from COLEMAN can be related to the slidingwindow size
used (100 cycles). A sliding window with a small size can improve
the results for systems with few numbers of CI cycles (commits).

Nevertheless, the difficulty in finding good prioritizations in the
Druid system is not exclusive of COLEMAN. The particularities from
this system also negatively affect the GA, which required a lot of
time to find the near-optimal solutions for this system.

The worst NAPFD values are obtained in the IOF/ROL system
for both algorithms. In this system, the values for both GA and
COLEMAN are far from the maximum value for the metric, which is
1. As we can observe in Figure 4, there is a considerable amount
of information to be used in the learning process. To a more in-
depth understanding, we analyzed the system behavior over the
CI Cycles according to the failures and test case volatility. This
system encompasses a high test case volatility coupled with a great
number of failures distributed over many test cases. The high test
case volatility may be associated with a pre-submit strategy [3],
because the test cases reappear in some cycles. Consequently, this
hampers to find reasonable solutions for the TCPCI problem.

The NAPFD metric gives us a quantitative notion about pri-
oritization quality, and the radar charts a better visualization for
comparison. However, to effectively calculate how far the COLEMAN
solutions are from the GA near-optimal solutions, we use the RMSE
values, presented in Table 2. In such a table, low values represent
near-optimal solutions. We can observe TimeRank has the best val-
ues, in most cases with statistical difference. RNFail outperforms
TimeRank in only one case, in the Guava system and time budget
of 50%. To a better visualization, we generated Figure 5.

1See supplementary material about characteristics of the systems.

6

106

Table 2: Values for the Evaluation Measures Obtained with GA and COLEMAN using both Reward Functions.

NAPFD RMSE Prioritization Time (sec.)

SUT RNFail TimeRank GA RNFail TimeRank RNFail TimeRank GA

Time Budget: 10%

Druid 0.6801 ± 0.052 � 0.7137 ± 0.074 � 0.9951 ± 0.000� 0.5173 ± 0.0793 � 0.4729 ± 0.1165 � 0.2383 ± 0.044 0.2316 ± 0.043 31.5148 ± 34.954
Deeplearning4j 0.7533 ± 0.002 � 0.7716 ± 0.000 � 0.8137 ± 0.000� 0.1512 ± 0.0031 � 0.1076 ± 0.0008� 0.0272 ± 0.002 0.0272 ± 0.002 1.8732 ± 1.254
Guava 0.9554 ± 0.002 � 0.9586 ± 0.001 � 0.9976 ± 0.000� 0.1973 ± 0.0030 � 0.1923 ± 0.0023 � 0.0660 ± 0.019 0.0660 ± 0.019 1.6643 ± 4.228
IOF/ROL 0.3632 ± 0.001 � 0.3670 ± 0.001 � 0.4081 ± 0.000� 0.1796 ± 0.0026 � 0.1704 ± 0.0030 � 0.0277 ± 0.004 0.0277 ± 0.004 0.9125 ± 1.693
OkHttp 0.8323 ± 0.000 � 0.8407 ± 0.000 � 0.8886 ± 0.000� 0.2200 ± 0.0000 � 0.2064 ± 0.0000 � 0.0286 ± 0.002 0.0285 ± 0.002 0.6554 ± 0.983
Retrofit 0.9639 ± 0.000 � 0.9642 ± 0.000 � 0.9712 ± 0.000� 0.0802 ± 0.0000� 0.0790 ± 0.0000� 0.0277 ± 0.002 0.0277 ± 0.002 0.2796 ± 0.517
ZXing 0.9826 ± 0.000 � 0.9828 ± 0.000 � 0.9998 ± 0.000� 0.1280 ± 0.0001� 0.1273 ± 0.0001� 0.0343 ± 0.002 0.0342 ± 0.002 0.4474 ± 0.874

Time Budget: 50%

Druid 0.9333 ± 0.013 � 0.9710 ± 0.008 � 0.9941 ± 0.000� 0.1689 ± 0.0366 � 0.1087 ± 0.0329� 0.2474 ± 0.040 0.2373 ± 0.041 31.4262 ± 34.849
Deeplearning4j 0.7890 ± 0.001 � 0.8200 ± 0.000 � 0.9024 ± 0.000� 0.2423 ± 0.0014 � 0.1742 ± 0.0006 � 0.0271 ± 0.002 0.0271 ± 0.002 1.8770 ± 1.255
Guava 0.9653 ± 0.004 � 0.9675 ± 0.007 � 0.9994 ± 0.000� 0.1693 ± 0.0083 � 0.1708 ± 0.0169 � 0.0648 ± 0.018 0.0648 ± 0.018 1.6790 ± 4.255
IOF/ROL 0.5046 ± 0.002 � 0.5189 ± 0.002 � 0.5790 ± 0.000� 0.2130 ± 0.0042 � 0.1906 ± 0.0040 � 0.0278 ± 0.005 0.0278 ± 0.005 0.9185 ± 1.695
OkHttp 0.9192 ± 0.000 � 0.9317 ± 0.000 � 0.9544 ± 0.000� 0.1536 ± 0.0004 � 0.1277 ± 0.0006� 0.0283 ± 0.002 0.0283 ± 0.002 0.6507 ± 0.983
Retrofit 0.9853 ± 0.000 � 0.9893 ± 0.000 � 0.9946 ± 0.000� 0.0836 ± 0.0000� 0.0644 ± 0.0000� 0.0277 ± 0.002 0.0277 ± 0.002 0.2867 ± 0.519
ZXing 0.9846 ± 0.000 � 0.9857 ± 0.000 � 0.9997 ± 0.000� 0.1153 ± 0.0002� 0.1110 ± 0.0002� 0.0343 ± 0.003 0.0343 ± 0.003 0.4507 ± 0.874

Time Budget: 80%

Druid 0.9380 ± 0.012 � 0.9830 ± 0.003 � 0.9942 ± 0.000� 0.1484 ± 0.0325� 0.0640 ± 0.0180� 0.2518 ± 0.039 0.2393 ± 0.041 31.5536 ± 34.989
Deeplearning4j 0.8424 ± 0.001 � 0.8641 ± 0.001 � 0.9519 ± 0.000� 0.2110 ± 0.0031 � 0.1804 ± 0.0013 � 0.0272 ± 0.002 0.0272 ± 0.002 1.8745 ± 1.254
Guava 0.9784 ± 0.012 � 0.9841 ± 0.014 � 0.9995 ± 0.000� 0.1120 ± 0.0500� 0.0870 ± 0.0567� 0.0655 ± 0.018 0.0649 ± 0.018 1.6609 ± 4.261
IOF/ROL 0.5569 ± 0.002 � 0.5678 ± 0.001 � 0.6096 ± 0.000� 0.1709 ± 0.0040 � 0.1568 ± 0.0034� 0.0279 ± 0.005 0.0279 ± 0.005 0.9205 ± 1.694
OkHttp 0.9350 ± 0.000 � 0.9478 ± 0.000 � 0.9606 ± 0.000� 0.1130 ± 0.0004� 0.0794 ± 0.0007� 0.0284 ± 0.002 0.0284 ± 0.002 0.6526 ± 0.983
Retrofit 0.9881 ± 0.000 � 0.9916 ± 0.000 � 0.9972 ± 0.000� 0.0808 ± 0.0000� 0.0652 ± 0.0000� 0.0277 ± 0.002 0.0277 ± 0.002 0.2927 ± 0.519
ZXing 0.9972 ± 0.000 � 0.9996 ± 0.000 � 0.9997 ± 0.000� 0.0271 ± 0.0005� 0.0014 ± 0.0005� 0.0343 ± 0.002 0.0343 ± 0.002 0.4531 ± 0.872

This table reports NAPFD and Prioritization Time (averages ± standard deviation), and RMSE values obtained from 30 independent runs and organized by each time budget evaluated (10%,
50%, and 80% of the available time). Values highlighted in bold denote the best algorithm. Results from the statistical test applied using NAPFD values are also presented: “�” denotes the
best algorithm for a time budget in a SUT. Results in gray are that statistically equal to the best one; “�” indicates that negligible effect size; “�” denotes a small magnitude, “�” a medium
magnitude, and “�” large. (see Section 4.1 for more information). Regarding to RMSE values, different symbols are used to represent the distance from optimal prioritization (see Eq. 6): a
“�” symbol which denotes the very near category; “�” indicates the category near, “�” denotes reasonable, “�” far, and “�” very far.

Druid

Deeplearning4j

Guava

IOF/ROLOkHttp

Retrofit

ZXing

0.2

0.4

0.6

0.8

1.0

0 60.6

0.2

0.4

0.60.60 6

Time Budget: 10%
Druid

Deeplearning4j

Guava

IOF/ROLOkHttp

Retrofit

ZXing

Time Budget: 50%
Druid

Deeplearning4j

Guava

IOF/ROLOkHttp

Retrofit

ZXing

Time Budget: 80%

RNFail
TimeRank
GA

Figure 3: Radar charts from NAPFD values found by GA, TimeRank, and RNFail.

As we can observe, both reward functions have similar behavior,
but the significant difference between them appears in the time
budget of 50%. This time budget presents a constraint that allows
better comparison while keeping the difficulty inherent to the prob-
lem [20]. Besides, increasing the time budget, smaller RMSE values
are obtained, even near-optimal values, as reported in the ZXing
system. We observe in the figures that TimeRank is better in the
hard cases, Deeplearning and Druid.

This metric is adequate to evaluate an approach effectively. For
instance, both algorithms reported small NAPFD values for the

IOF/ROL system, but this occurs due to its characteristics, the chal-
lenges inherent in finding reasonable solutions. In this system, all
RMSE values are around 0.2, which represents solutions close to
the optimal.

The worst RMSE values are for the system Druid, in the time
budget of 10%, with 𝑅𝑀𝑆𝐸 ≥≈ 0.5. As mentioned before, the bad
performance is associated with the characteristics of the system
and with the consistency of the historical data.

In order to provide a better representation of the RMSE values,
we defined an RMSE scale of magnitude. Such a scale shows the
distance from near-optimal solutions, as follows:

7

107

Valid Builds

Failures

Failed Builds

Test Cases

Failures by Cycles (AVG)

Failing Cycles (AVG)

20

40

60

80

100

20

Druid
Deeplearning4j
Guava
Retrofit

Valid Builds

Failures

Failed Builds

Test Cases

Failures by Cycles (AVG)

Failing Cycles (AVG)

20

40

60

80

100

40

60

80

20

4040

80

IOF/ROL
OkHttp
ZXing

Figure 4: Radar charts about the systems characteristics.

Druid

Deeplearning4j

Guava

IOF/ROLOkHttp

Retrofit

ZXing

0.2

0.4

0.6

0.8

1.0

0

Time Budget: 10%
Druid

Deeplearning4j

Guava

IOF/ROLOkHttp

Retrofit

ZXing

Time Budget: 50%
Druid

Deeplearning4j

Guava

IOF/ROLOkHttp

Retrofit

ZXing

Time Budget: 80%

RNFail
TimeRank

Figure 5: Radar charts from RMSE values from TimeRank and RNFail.

RMSE Magnitude =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

very near if 𝑅𝑀𝑆𝐸 < 0.15

𝑛𝑒𝑎𝑟 if 0.15 ≤ 𝑅𝑀𝑆𝐸 < 0.23

𝑟𝑒𝑎𝑠𝑜𝑛𝑎𝑏𝑙𝑒 if 0.23 ≤ 𝑅𝑀𝑆𝐸 < 0.30

𝑓 𝑎𝑟 if 0.30 ≤ 𝑅𝑀𝑆𝐸 < 0.35

very far if 0.35 ≤ 𝑅𝑀𝑆𝐸

(6)

where the very near category represents an approximated optimal
performance. The near category represents solutions that are reach-
ing optimal performance, and some improvements are necessary.
The reasonable category represents the minimum acceptable perfor-
mance. The solutions are acceptable. In such a category, the target
system behavior, or possibly the constraints, can make it hard for
the approach to obtain better solutions. The far category means
the solutions provided are not satisfactory. Approach performance
requires meaningful improvements. Finally, the very far category
represents the solutions that are far away from to be useful and
considered reasonable.

Based on the RMSE scale of magnitude, we identified that TimeR-

ank obtains very near optimal solutions in 13 cases (out of 21 - 62%,
7 systems × 3 time budgets) and 7 cases (≈ 33%) in the category near,
whilst RNFail, respectively, in 8 (38%) and 10 (≈ 48%) cases. Besides,

RNFail has 1 case in the reasonable category. Both reward functions
have one case in the very far category, in the Druid system for the
time budget of 10%. On the other hand, in both reward functions
the better solutions are obtained for the time budget of 80%, what
is aligned with previous analyses.

Considering the analysis reported in this section, we can con-
clude that the prioritization time had no significant negative impact
in the COLEMAN solutions. The time spent by COLEMAN to prioritize is
negligible. This metric also helped to observe the difficulty inherent
of the TCPCI problem though the values reported by GA. This algo-
rithm, in some systems, spent a lot of time to prioritize. The differ-
ence in the prioritization time values from GA and COLEMAN shows
how COLEMAN mitigates adequately the TCPCI problem reaching
solutions near to the GA solutions in most times.

Answering our RQ: COLEMAN provides solutions that are near
(or very near) to the GA solutions in 38 cases (out of 42, ≈ 90%)
considering all systems, budgets and both reward functions. It
spends a negligible time (less than one second) even in challenging
systems for the TCPCI problem.

8

108

5.1 Discussion

The last section presented results of an in-deeper analysis, per-
formed to understand the relevant characteristics that impact the
COLEMAN. In this section, we discuss the main findings highlight-
ing some research directions to COLEMAN and learning TCPCI ap-
proaches.

We observe that the COLEMAN performance is better in the pres-
ence of a less restrictive budget, that is, in this scenario, the solutions
are very near to the optimal. As COLEMAN is based on the failure-
history, a greater quantity of cycles and few peaks of failures seems
to make the prioritization easy. On the other hand, we observe some
factors that hamper the prioritization: high volatility of failed test
cases, a large test case set, in which many failures are distributed in
many test cases, and a small number of CI Cycles make the learning
hard, mainly in the presence of restrictive budgets.

Few cycles may imply a small failure history and low perfor-
mance. A way to solve this problem is to reduce the sliding window
size used by COLEMAN. This may get better results. Another research
direction to be investigated is the use of a hybrid approach, to
mitigate the limitation of starting without learning.

TimeRank performs a bit better than RNFail. A great difference is
observed in the less restrictive budget. It seems that the use of other
information besides the ability of a test case to produce failures can
improve the performance. Maybe other reward functions should be
explored, such as one that considers the test case execution time.
Other factors that are costly to calculate such as coverage should
be avoided.

6 RELATEDWORK

TCPCI approaches have been proposed recently [17]. We can me-
nion the works of Marijan et al [13]. The first approach these au-
thors introduced is named ROCKET that considers the distance
of the failure status from a current execution of a test case to its
execution time. But such an approach does not consider the total
history of failures. A posterior work [11] considers, given a test
budget, other fault detection, business, performance, and technical
perspectives. But these works need additional information related
to coverage and features. The tool, called TITAN, also proposed by
Marijan et al [14], uses constraint programming to minimize the
number of test cases that cover some requirements that the orig-
inal test cases cover. Then, the minimized set is prioritized using
ROCKET [13]. The problem with these works is the cost, because
feature coverage or other additional information are required. In
the most recent work, they propose a learning algorithm to classify
test cases considering the feature coverage. The main idea is to dis-
cover redundant test cases in the context of Highly Configuration
Systems (HCS), taking into account the test budget. The priority is
calculated based on its historical fault detection effectiveness. But
the approach also required an effort to calculate the coverage.

The work of Xiao et al. [23] focuses on test cases that failed
recently, to determine a priority for the test cases in a same commit
and after, orders them considering the failure history, test cover-
age, test size and execution time. Haghighatkhah et al. [5] tries to
improve the effectiveness of the prioritization by using historical
failure knowledge with a diversity measure, calculated by compar-
ing the text from test cases. The idea is not to calculate similarity

based on measures that rely on code such as coverage, call methods
and so on. Busjaeger and Xie [1] use (𝑆𝑉𝑀𝑚𝑎𝑝) to create a predic-
tion model for the fault-proneness of test cases to be used in the
prioritization, taking into account five attributes: test coverage of
modified code, textual similarity between tests and changes, recent
test-failure or fault history, and test age. But these attributes need
additional information and rely on code instrumentation.

The works mentioned above present some limitations. They
require code analysis, what can be costly. They do not address the
main characteristics of CI environments. For instance, they do not
consider test case volatility. They are not adaptive, that is, they do
not learn with past prioritizations. To overcome such limitations,
learning based approaches were proposed. They are: COLEMAN [15],
described in Section 2), and RETECS [20]. This last one is an approach
based on Reinforcement Learning. It takes as input the test case
duration, historical failure data, and previous last execution and
guided by a reward function that learns over the cycles and can
adapt to changes. RETECS presents performance, regarding NAPFD
(Normalized Average Percentage of Faults Detected), comparable with
deterministic methods [20]. However, COLEMAN outperformed the
RETECS, and can be considered as the state-of-the-art in TCPCI [15].
This is the reason COLEMAN was used in our analysis to evaluate the
current status of TCPCI.

We can see analyzing the above-mentioned works that search-
based approaches are not proposed for the TCPCI. They are com-
plex and take much time to execute, although they are capable of
performing an optimization and produce near-optimal solutions.
However, we have not found a study similar to ours that uses them
as a baseline to analyze the trade-offs, regarding early-fault detec-
tion and prioritization time. Our study is the first one evaluating
the gains and losses of the learning approaches.

7 CONCLUDING REMARKS

This paper presented results from a trade-off analysis of the solu-
tions produced by COLEMAN, a MAB-based approach for the TCPCI
problem, having as baseline near-optimal solutions found by a
GA. We evaluated COLEMAN using the FRRMAB policy and two re-
ward functions: Reward Based on Failures and Reward Based on
Time-Rank. The analysis was conducted using seven large-scale
real-world software systems, three different time budgets, and three
measures: NAPFD, representing the prioritization quality according
to early fault detection capability; RMSE, measuring the distance
between COLEMAN and GA solutions; and Prioritization Time.

The evaluation shows that inmost systems, except by one, COLEMAN
yields near-optimal solutions with negligible time. The unique ex-
ception is under a restrictive test budget associated with a few
historical data. Besides, we observed that a high test case volatil-
ity, mainly in failing test cases, associated with a high number of
failures distributed over many test cases hampers an adequate pri-
oritization. Such a difficulty makes the problem hard, even for GA,
that took a lot of time to execute.

The results presented here can serve as guidance to evaluate
future approaches in the TCPCI context. Furthermore, the charac-
teristics of the systems can be used by the researchers to redirect
their research to better results. In fact, we intend to use this paper
in future work as a basis to derive and evaluate new approaches. In

9

109

this sense, future work includes the use of other evaluation mea-
sures as a fitness function to the GA. Besides, other systems with a
greater number of failures and test cases should be used to evaluate
scalability.

ACKNOWLEDGMENTS

The work is supported by the Brazilian funding agencies CAPES
and CNPq (Grant 305968/2018).

REFERENCES
[1] Benjamin Busjaeger and Tao Xie. 2016. Learning for Test Prioritization: An

Industrial Case Study. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE 2016). ACM, New York,
NY, USA, 975–980.

[2] François-Michel De Rainville, Félix-Antoine Fortin, Marc-André Gardner, Marc
Parizeau, and Christian Gagné. 2012. DEAP: A Python Framework for Evolu-
tionary Algorithms. In Proceedings of the 14th Annual Conference Companion on
Genetic and Evolutionary Computation (GECCO ’12). Association for Computing
Machinery, New York, NY, USA, 85–92.

[3] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for Improv-
ing Regression Testing in Continuous Integration Development Environments.
In Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering (FSE 2014). ACM, New York, NY, USA, 235–245.

[4] David E. Goldberg and Robert Lingle. 1985. AllelesLociand the Traveling Salesman
Problem. In Proceedings of the 1st International Conference on Genetic Algorithms.
L. Erlbaum Associates Inc., USA, 154–159.

[5] Alireza Haghighatkhah, Mika Mäntylä, Markku Oivo, and Pasi Kuvaja. 2018. Test
prioritization in continuous integration environments. Journal of Systems and
Software 146 (2018), 80–98.

[6] William H. Kruskal and W. Allen Wallis. 1952. Use of Ranks in One-Criterion
Variance Analysis. J. Amer. Statist. Assoc. 47, 260 (1952), 583–621.

[7] Volodymyr Kuleshov and Doina Precup. 2014. Algorithms for multi-armed bandit
problems. Journal of Machine Learning Research 1 (2014), 1–48.

[8] K. Li, A. Fialho, S. Kwong, and Q. Zhang. 2014. Adaptive operator selection with
bandits for a multiobjective evolutionary algorithm based on decomposition.
Evolutionary Computation, IEEE Transactions on 18, 1 (2014), 114–130.

[9] Zheng Li, Mark Harman, and Robert M. Hierons. 2007. Search Algorithms for
Regression Test Case Prioritization. IEEE Transactions on Software Engineering
33, 4 (April 2007), 225–237.

[10] Henry B. Mann and Donald R. Whitney. 1947. On a test of whether one of
two random variables is stochastically larger than the other. The annals of
mathematical statistics (1947), 50–60.

[11] Dusica Marijan. 2015. Multi-perspective Regression Test Prioritization for Time-
Constrained Environments. In Proceedings of the 2015 IEEE International Con-
ference on Software Quality, Reliability and Security (QRS ’15). IEEE Computer
Society, Washington, DC, USA, 157–162.

[12] Dusica Marijan, Arnaud Gotlieb, and Marius Liaaen. 2019. A learning algorithm
for optimizing continuous integration development and testing practice. Software:
Practice and Experience 49, 2 (2019), 192–213.

[13] Dusica Marijan, Arnaud Gotlieb, and Sagar Sen. 2013. Test Case Prioritization for
Continuous Regression Testing: An Industrial Case Study. In IEEE International
Conference on Software Maintenance. IEEE, 540–543.

[14] Dusica Marijan, Marius Liaaen, Arnaud Gotlieb, Sagar Sen, and Carlos Ieva. 2017.
TITAN: Test Suite Optimization for Highly Configurable Software. In Proceedings
of the IEEE International Conference on Software Testing, Verification and Validation
(ICST). IEEE, 524–531.

[15] Jackson A. Prado Lima and Silvia R. Vergilio. 2020. A Multi-Armed Bandit
Approach for Test Case Prioritization in Continuous Integration Environments.
IEEE Transactions on Software Engineering (2020), 12.

[16] Jackson A. Prado Lima and Silvia R. Vergilio. 2020. Supplementary Material -
Multi-Armed Bandit Test Case Prioritization in Continuous Integration Environ-
ments: A Trade-off Analysis. https://doi.org/10.17605/OSF.IO/J67EB

[17] Jackson Antonio do Prado Lima and Silvia Regina Vergilio. 2020. Test Case
Prioritization in Continuous Integration Environments: A Systematic Mapping
Study. Information and Software Technology (2020).

[18] XiaoQu,Myra B. Cohen, and KatherineM.Woolf. 2007. Combinatorial Interaction
Regression Testing: A Study of Test Case Generation and Prioritization. In IEEE
International Conference on Software Maintenance. 255–264.

[19] Herbert Robbins. 1985. Some aspects of the sequential design of experiments. In
Herbert Robbins Selected Papers. Springer, 169–177.

[20] Helge Spieker, Arnaud Gotlieb, Dusica Marijan, and Morten Mossige. 2017. Re-
inforcement Learning for Automatic Test Case Prioritization and Selection in
Continuous Integration. In Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2017). ACM, New York, NY,
USA, 12–22.

[21] Andras Vargha and Harold D. Delaney. 2000. A Critique and Improvement of the
CL Common Language Effect Size Statistics of McGraw and Wong. Journal of
Educational and Behavioral Statistics 25, 2 (jan 2000), 101–132.

[22] ClaesWohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Bjöorn Regnell, and
Anders Wesslén. 2000. Experimentation in Software Engineering: An Introduction.
Kluwer Academic Publishers.

[23] Lei Xiao, Huaikou Miao, and Ying Zhong. 2018. Test case prioritization and
selection technique in continuous integration development environments: a case
study. International Journal of Engineering & Technology 7, 2.28 (2018), 332–336.

[24] Shin Yoo and Mark Harman. 2012. Regression Testing Minimization, Selection
and Prioritization: A Survey. Software Testing, Verification & Reliability 22, 2
(March 2012), 67–120.

10

110

111

APPENDIX D – AN EVALUATION OF RANKING-TO-LEARN APPROACHES FOR
TCPCI

An Evaluation of Ranking-to-Learn Approaches for Test Case
Prioritization in Continuous Integration

Jackson A. Prado Lima
Department of Informatics

Federal University of Paraná (UFPR)
Curitiba, Paraná, Brazil
japlima@inf.ufpr.br

Silvia R. Vergilio
Department of Informatics

Federal University of Paraná (UFPR)
Curitiba, Paraná, Brazil

silvia@inf.ufpr.br

ABSTRACT

Continuous Integration (CI) environments is a practice adopted by
most organizations that allows frequent integration of software
changes, making software evolution more rapid and cost-effective.
Such environments require dynamic Test Case Prioritization (TCP)
approaches that adapt better to the test budgets and frequent ad-
dition/removal of test cases. In this sense, Ranking-to-Learn ap-
proaches have been proposed and are more suitable for CI con-
straints. By observing past prioritizations and guided by reward
functions, they learn the best prioritization for a given commit. In
order to contribute for improvements and direct future research,
this work evaluates how far the solutions produced by these ap-
proaches are from optimal solutions produced by a deterministic
approach. To this end, we consider two approaches that can be
considered the state-of-the-art: i) RETECS, which is based on Re-
inforcement Learning; and ii) COLEMAN, an approach based on
Multi-Armed Bandit. The evaluation was conducted with twelve
systems, three test budgets, two reward functions, and six measures
concerning fault detection effectiveness, early fault detection, test
time reduction in the CI cycles, prioritization time, and accuracy.
Our findings have some implications for the approaches applica-
tion and reward function choice. The approaches are applicable
in real scenarios and produce solutions very close to the optimal
ones, respectively, in 92% and 75% of the cases. Both approaches
have some limitations to learn with few historical test data (a small
number of CI Cycles) and deal with a large test case set, in which
many failures are distributed over many test cases.

KEYWORDS

Test Case Prioritization, Continuous Integration environments,
Ranking-to-Learn

1 INTRODUCTION

Continuous Integration (CI) is a common practice adopted by many
organizations to make software evolution more cost-effective and
reliable. In a CI scenario, the software is changed, built, and tested
many times in a short period. This is usually costly because a test
suite often includes thousands of test cases and requires several
hours or even days to execute [9]. In such a scenario, the application
of regression testing techniques is fundamental.

Regression testing techniques are classified into three main cate-
gories [31]: minimization, selection, and prioritization. Techniques
based on Test Case Minimization (TCM) usually remove redundant
test cases, minimizing the test set according to some criterion. Test

Case Selection (TCS) selects a subset of test cases, the most im-
portant ones to test the software. Test Case Prioritization (TCP)
attempts to re-order a test suite to identify an “ideal” order of test
cases that maximizes specific goals, such as early fault detection.
TCP techniques are very popular in the industry and have some
advantages because they do not discard any test case. Moreover,
the test cases that have a higher probability of detecting a fault are
executed first. This allows interrupting the test activity early and
reducing costs and time between each CI cycle.

Existing TCP techniques use different kind of information to
prioritize the test cases: historical failure data, test coverage, re-
quirements, and system models [31]. However, most techniques
need adaptations to be applied in CI environments. This is because
in CI there are limited resources and constraints that can make the
application of a technique infeasible, due to the time spent for the
prioritization or code analysis. The application of TCP techniques
that require extensive code analysis or coverage, such as search-
based ones, is not always possible due to the test budget for a build.
To deal with these constraints, approaches have been proposed
recently [4, 9, 17–20, 30]. Most of them are history-based, that is,
they consider test cases that failed in the past are more likely to fail
in the future. This kind of TCP technique has been acknowledged as
one of the most suitable for the CI environment characteristics [9].

Nevertheless, these approaches present some limitations. Some
of them require code analysis, which can be costly. They do not con-
sider test case volatility, a characteristic associated with the fact that
test cases may be added and/or removed over the cycles. They are
not adaptive, that is, they do not learn with past prioritizations. To
overcome such limitations, learning approaches based on historical
failure data have been proposed [21, 27]. These approaches observe
previous cycles and learn with past prioritizations guided by a re-
ward function (online learning). We can mention two approaches
that can be considered the state-of-the-art in TCP in CI environ-
ments (TCPCI): i) RETECS[27] (Reinforced Test Case Selection), which
uses Reinforcement Learning (RL) to perform the prioritization; and
ii) COLEMAN [21] (Combinatorial VOlatiLE Multi-Armed BANdit),
an approach that uses a Multi-Armed Bandit (MAB) policy.

These two learning-based approaches are the focus of our work.
They deal properly with the test case volatility and CI constraints.
In evaluations conducted by the authors, they present promising
results regarding standard TCPmetrics such as Normalized Average
Percentage of Faults Detected (NAPFD) and Average Percentage of
Faults Detected with cost consideration (APFDc). The time spent
to perform the prioritization is suitable for the CI budget. However,
there are many difficulties inherent to the TCPCI problem, and we
do not get there yet. Sure there is room for improvement. With this

in mind, this paper aims to evaluate how far the solutions produced
by both learning-based approaches are from optimal solutions. To
answer this question, we evaluate the approaches having a deter-
ministic approach as a baseline. The deterministic approach knows
the test results a priori and can generate the optimal solutions
regarding fault detection. We report results from the use of two
reward functions: Reward Based on Failures and Reward Based
on Time-Rank, concerning twelve large-scale real-world software
systems in the presence of three different time constraints (budgets).
Six measures are used in the evaluation concerning: fault detection
effectiveness, early fault detection, test time reduction in the CI
cycles, prioritization time, and accuracy, regarding the distance
from the optimal solution.

In this way, we analyze the approaches solutions’ trade-offs
regarding fault detection and prioritization time. This allows the
assessment of lightweight test case prioritization approaches in CI
environments by evaluating how far their solutions are from opti-
mal ones. As contributions, our findings have some implications
we discuss in this work, for: i) application of the approaches: we
present guidelines that include the choice of the reward function,
cost consideration regarding test case duration, and characteristics
of the systems and budgets; ii) identification of limitations and pos-
sible improvements: we analyze some aspects regarding the number
of test cases, failures distribution over test cases and CI cycles. Such
aspects are drawbacks for the learning approaches and constitute
gaps for directing future research; and iii) benchmark construc-
tion: we identify hard prioritization cases. In addition to this, we
make available a replication package containing supplementary
material1.

The paper is structured as follows. Section 2 contains background
about CI environments, TCP works for CI, and related work. Sec-
tion 3.1 details evaluated approaches. Section 4 describes how our
evaluation was conducted: objectives, Systems Under Test (SUT),
evaluation measures and used parameters. Section 5 shows and
analyses the results. Section 6 presents the main threats to the
validity of our results. Section 7 contains our final remarks and
discusses future work.

2 BACKGROUND AND RELATEDWORK

Continuous Integration (CI) environments have been increasingly
adopted in the industry. CI environments automate the process
of building and testing software, and allow engineers to merge
code that is under development or maintenance with the main-
line codebase at frequent time intervals. In CI development, teams
work continuously integrating code and make smaller code com-
mits every day, usually monitored by a CI server. When a change
occurs, the CI server clones this code, builds it, and runs the testing
processes. When the entire process is finished, the CI server gener-
ates a report (feedback), and the developers are informed. Figure 1
illustrates this process.

1Our supplementary material is available at https://osf.io/x96fk/?view_only=
020b612cbdd84fa38d6a974743f9d823. After publication, we will use a DOI as a reference
for the material.

2.1 TCP in CI environments

Given a test case set𝑇 , available for a build, the set 𝑃𝑇 of all possible
permutations of 𝑇 , and a function 𝑓 that determines the perfor-
mance of a given prioritization 𝑇 ′ from 𝑃𝑇 to real numbers, the
TCPCI problem aims at finding the best 𝑇 ′ to achieve certain spe-
cific criteria measured by 𝑓 . In CI, the determination of 𝑇 ′ may
subject to a test budget that is the available time to execute the CI
cycle.

Many TCP approaches exist in the literature [11, 31]. Among
them, we can mention approaches that use evolutionary algo-
rithms [1, 5, 8, 15]. However, such approaches usually are complex
and take much time to execute. In addition to this, most of them
require coverage and code changes analysis, and do not consider
the CI particularities such as volatility of test cases, multiple test
requests, constraints and test budget. Because of this, approaches
specific for CI have been proposed recently [23].

Marijan et al [19] introduce an approach named ROCKET. Such
an approach implements domain specific heuristics that consider
the distance of the failure status from a current execution of a test
case to its execution time. However, ROCKET does not consider the
entire history of failures. An extension is proposed [17] to consider,
given a test budget, other fault detection, business, performance,
and technical perspectives. Such an extension needs additional
information related to coverage and features.

The tool, called TITAN [20], uses constraint programming to
minimize the number of test cases that cover some requirements
that the original test cases cover. Then, the minimized set is prior-
itized using ROCKET [19]. The problem with these works is the
cost because feature coverage or other additional information is
required.

In the context of Highly Configuration Systems,Marijan et al [18]
use a based-tree learning algorithm to classify test cases according
to the feature coverage into the following categories: unique, totally
redundant, and partially redundant. The main idea is to eliminate
test cases totally redundant. Partially redundant test cases can also
be included in the set according to its priority and time budget.
The priority is calculated based on its historical fault detection
effectiveness. Nevertheless, an effort to calculate the coverage is
also necessary.

The work of Xiao et al. [30] determines a priority for the test
cases in the same commit and after, orders them considering the
failure history, test coverage, test size, and execution time. The tech-
nique focuses only on test cases that failed recently, not exploring
new test cases. Haghighatkhah et al. [9] show the use of historical
failure knowledge is a strong predictor for TCP in CI environments,
and that it is effective to catch regression faults earlier without
requiring a large amount of historical data. In addition to this, the
effectiveness can be improved by using such knowledge with a
diversity measure, calculated by comparing the text from test cases.
The idea is not to calculate similarity based on measures that rely
on code such as coverage, call methods, and so on.

Busjaeger and Xie [4] use 𝑆𝑉𝑀𝑚𝑎𝑝 to create a prediction model
for the fault-proneness of test cases to be used in the prioritiza-
tion, taking into account five attributes: test coverage of modified

2

112

Figure 1: Overview of a Continuous Integration environment [21].

code, the textual similarity between tests and changes, recent test-
failure or fault history, and test age. However, these attributes need
additional information and rely on code instrumentation.

The works mentioned above present some limitations. They
require code analysis, which can be costly. They do not address the
main characteristics of CI environments. For instance, they do not
consider test case volatility, a characteristic associated with the fact
that test cases may be added and/or removed over the cycles. They
are not adaptive, that is, they do not learn with past prioritizations.

To overcome such limitations, learning approaches based on
historical failure data have been proposed. Bertolino et al [3] dis-
tinguish two kinds of TCP learning-based strategies. The first one,
named Learning-to-Rank, uses supervised learning to train a model
based on some test features. The model is then used to rank test
sets in future commits. The problem with these strategies is that
the model may no longer be representative when the commit con-
text changes. The second kind, named Ranking-to-Learn, is more
suitable to the dynamic CI context. This strategy learns based on
the rewards obtained from the feedback of previously used ranks.
The main idea is to maximize the rewards.

The work of Bertolino et al. [3] presents results comparing both
kinds of approaches in CI and evaluates the performance of different
Machine Learning (ML) algorithms. They conclude that Ranking-to-
Learn strategies are more robust regarding test case volatility, code
changes, and number of failing tests. Because of this, the focus of our
work is on this kind of strategy, evaluating two approaches that can
be considered the state-of-the-art in TCPCI context: RETECS[27]
(Reinforced Test Case Selection) and COLEMAN [21] (Combinatorial

VOlatiLE Multi-Armed BANdit).
In this sense, the work of Bertolino et al. has goals similar to ours.

However, the evaluation conducted by that work uses a different
approach, that is, in fact, a test case selection and prioritization
approach. It includes a step to first select a test case subset before
the prioritization through the learning strategies. In this way, the
Ranking-to-Learn approaches were not evaluated as they were pro-
posed in the literature. The work does not evaluate a MAB strategy,
as used by COLEMAN. The learning is based on different features
related to the test activity, which can be costly.We also used another
set of evaluation measures, adopted in the test case prioritization
context, leading to new findings and insights about the learning
approaches. The next section describes both approaches RETECS
and COLEMAN, in details.

3 LEARNING-BASED APPROACHES

This work aims to evaluate Ranking-to-Learn approaches for TCPCI
problem by comparing their solutions with optimal solutions pro-
duced by a deterministic approach. Figure 2 illustrates how such
approaches work in the CI environment. After a successful build,
the approaches are applied before the test execution and perform
the prioritization of a test case set (𝑇) available for the current
commit (𝑐). Thus, the test cases of the prioritized test case set (𝑇 ′)
are executed until the available test budget is reached. Feedback
(reward) about 𝑇 ′ execution is obtained and used the approaches
to adapt its experience for future actions (online learning). In the
end, a report is generated, and the developers are informed.

Next, we present the two learning-based approaches used in this
work: RETECS and COLEMAN, as well as the reward functions used
by both approaches in our evaluation, RNFail and TimeRank.

3.1 RETECS

RETECS (Reinforced Test Case Selection), introduced by Spieker
et al. [27], is a Reinforcement Learning (RL) based approach. It
uses an agent, for instance, an Artificial Neural Network (ANN) or a
Tableau Representation, to interact with the CI environment. Based
on the environment state, the agent defines an action (prioritiza-
tion) to be applied in such an environment. The state is given by
the information about a test case, such as the test case duration,
historical failure data, and previous last execution. After, according
to its previous action’s performance, the agent receives a reward
(feedback).

Based on rewards provided by a reward function, the agent
adapts its experience for future actions (online learning). To avoid
learning with irrelevant information due to long history informa-
tion (low reliability with the actual behavior of the system under
test), a memory representation (sliding window) is used to delimit
how much past information is used to learn.

Spieker et al. compared different variants of RL agents and evalu-
ated the best variation against three basic TCP methods, a random
prioritization and two deterministic methods: Sorting andWeighting.
The Sorting method prioritizes giving higher priority for the test
cases that failed recently, whileWeighting is based on the weighted
sum given to the input information used as state in the RL agent.
According to the authors, RETECS using the ANN variant presented
the best results. For this, we evaluated the performance of RETECS
using an ANN as an agent in our study.

3

113

Figure 2: Integration of the evaluated learning approaches in the CI environment.

3.2 COLEMAN

COLEMAN is aMulti-Armed Bandit (MAB) [13] based approach design
to solve the TCPCI problem dealing with the Exploration versus
Exploitation (EvE) dilemma [25]. In such a dilemma, there is a
balance in the search between solutions with the best performance
and dissimilar solutions.

In the MAB scenario, a player plays on a set of slot machines
(or arms/actions) that even identical produce different gains. After
a player pulls one of the arms in a turn (𝑐), a reward is received
drawn from some unknown distribution, thus aiming to maximize
the sum of the rewards. Different strategies, called MAB policies,
can be used to choose the next arm by observing previous rewards
and decisions.

Similarly, COLEMAN considers that a test case is an arm, but it
encompasses the dynamic nature of the TCPCI problem. For this,
COLEMAN incorporates two variants of MAB: volatile and combina-
torial. In the first variation, the approach selects multiple arms in
each turn (commit), rather than one, to produce an ordered set. In
the second one, only the test cases available in each commit are
considered for prioritization. The second variation aims to deal
with the test case volatility. In the end, a reward function is used to
obtain feedback (reward) from the prioritization proposed by the
approach. Based on such feedback, the approach aims to incorpo-
rate the learning from the application of the prioritized test case
set.

COLEMAN is generic and lightweight. That is, it does not require
any further detail about the system under tests such as code cov-
erage or code instrumentation, as well as, it allows the use of any
MAB policy and requires only historical failure data. According
to the authors of COLEMAN, it is possible to use different MAB poli-
cies. Among the policies evaluated in the experiments performed,
the Fitness-Rate-Rank based on Multi-Armed Bandit (FRRMAB) pol-
icy [14] presented the best performance.

FRRMAB is a state policy that works with a sliding window 𝑆𝑊
as a smoother way to consider dynamic environments, allowing the
observation of the changes in the quality of the arms (test cases)
along the search process. The use of a 𝑆𝑊 allows evaluating a test
case without it being hampered by its performance at a very early
stage, which may be irrelevant to its current performance.

The FRRMAB policy was used in a further study that analyses
the trade-offs of the COLEMAN solutions in comparison with the
near-optimal solutions generated by a Genetic Algorithm (GA) [22].
Such an study shows that, except for one system, COLEMAN yields
near-optimal solutions with negligible time. The unique exception
was under a restrictive test budget associated with a few historical
data. Because of this, FRRMAB is also adopted in our study that
compares COLEMAN with a deterministic approach.

3.3 Reward Functions

Reward functions are used to evaluate the performance of a priori-
tization. In this work, we use the same functions adopted in [21].
They are adapted from the work of Spieker et al [27]. They are: Re-
ward Based on Failures (RNFail) and Reward based on Time-ranked
(TimeRank), as follows.

Let 𝑡 ′𝑐 to be a test case from a prioritized test case set 𝑇 ′
𝑐 at a

commit (cycle) 𝑐 . The first reward function 𝑅𝑁𝐹𝑎𝑖𝑙 (Equation 1) is
based on the number of failures associated with a test case 𝑡 ′𝑐 ∈ 𝑇 ′

𝑡 .
This function captures the ability of a test case to produce failures.

𝑅𝑁𝐹𝑎𝑖𝑙 (𝑡 ′𝑐) =

{
1 if 𝑡 ′𝑐 failed

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(1)

The second function is TimeRank, defined in Equation 2.

Let 𝑇 ′𝑓 𝑎𝑖𝑙 is composed by the failing test cases from 𝑇 ′
𝑐 ; The

𝑝𝑟𝑒𝑐 (𝑡 ′𝑐1 , 𝑡
′
𝑐2) function returns 1 if the position in 𝑇 ′

𝑐 of 𝑡 ′𝑐1 is lower
than the position of 𝑡 ′𝑐2 .

𝑇𝑖𝑚𝑒𝑅𝑎𝑛𝑘 (𝑡 ′𝑐) =
|𝑇 ′𝑓 𝑎𝑖𝑙 | − [¬(𝑓 𝑎𝑖𝑙𝑠 (𝑡 ′𝑐))

|𝑇 ′𝑓 𝑎𝑖𝑙 |

�

∑ |𝑇 ′𝑓 𝑎𝑖𝑙 |
𝑖=1 𝑝𝑟𝑒𝑐 (𝑡 ′𝑐 , 𝑡

′
𝑐𝑖)]

|𝑇 ′𝑓 𝑎𝑖𝑙 |

(2)

The TimeRank function observes the rank of each 𝑡 ′𝑐 in 𝑇
′
𝑐 and

considers the problem of early scheduling. This function privileges
the failing test cases ranked in the first positions in 𝑇 ′

𝑐 , and it
penalizes those that do not fail and precede failing ones. A non-
failed test case receives a reward given by the accumulated number
of test cases that failed until its position in the prioritization rank.

4

114

That is, it receives a reward decreased by the number of failing test
cases ranked after it.

4 EVALUATION METHODOLOGY

This section describes how the evaluation was conducted, by pre-
senting objectives, used measures and systems, how the optimal
solutions were obtained, and how RETECS and COLEMAN were
executed.

The evaluation was guided by the following research question:
“How far are the solutions produced by learning approaches from
optimal solutions obtained through a deterministic approach?” To
answer this question, we adopted a methodology following Wohlin
et al.’s principles [29]. We formulated our main objectives according
to the Goal Question Metric (GQM) method [2], as described in
Table 1.

Table 1: Goal Question Metric Formulation

Goal: to evaluate learning-based approaches

Purpose: by analyzing their solutions

With respect to: the optimal solutions generated by a deter-
ministic approach

From the point of view: of the tester

In the context of: CI environments

Evaluation Measures: fault detection effectiveness (NAPFD)

fault detection effectiveness with cost con-
sideration (APFDc)

early fault detection (RFTC)

test time reduction (NTR)

prioritization time (PR)

accuracy (RMSE)

4.1 Evaluation Measures

In our study, we used six measures. These metrics were chosen be-
cause they are largely used in the TCP literature [31]. The first one,
NAPFD (Normalized APFD) metric [24] (Equation 3), evaluates fault
detection effectiveness and is an extension of the APFD Average Per-

centage of Faults Detected (APFD) [26] metric. APFD indicates how
quickly a set of prioritized test cases (𝑇 ′) can detect faults present
in the application being tested. On the other hand, the NAPFD
metric considers the ratio between detected and detectable faults
within 𝑇 . NAPFD fits the CI time constraints adequately, when not
all the test cases are executed due to a time budget, and faults can
be undetected. Higher NAPFD values indicate that the faults are
detected faster using fewer test cases.

𝑁𝐴𝑃𝐹𝐷 (𝑇 ′) = 𝑝 −

∑𝑛
1 𝑟𝑎𝑛𝑘 (𝑇

′
𝑖)

𝑚 × 𝑛

𝑝

2𝑛
(3)

where𝑚 denotes the number of faults detected by all test cases;
𝑟𝑎𝑛𝑘 (𝑇 ′

𝑖) is the position of 𝑇 ′
𝑖 in 𝑇 ′, if 𝑇 ′

𝑖 did not reveal a fault we
set 𝑇 ′

𝑖 = 0; 𝑛 denotes the number of test cases in 𝑇 ′; and 𝑝 denotes

the number of faults detected by 𝑇 ′ divided by𝑚. NAPFD is equal
to APFD metric if all faults are detected.

The second measure, named APFDc (APFD with cost considera-
tion) [6] (Equation 4), is also an extension from APFD. This metric
assumes that the test cases do not have the same cost. Thus, we
can consider that a test case can be more costly to execute than
others, concerning, for instance, to execution time. The cost can
be used as a limit, in which the test cases are usually prioritized
until a maximum cost is reached. Besides that, APFDc can compute
the APFD value, whether both fault severity and test case costs are
identical. In this work, we consider that all faults have the same
severity.

𝐴𝑃𝐹𝐷𝑐 (𝑇 ′
𝑡) =

∑𝑚
𝑖=1 (

∑𝑛
𝑗=𝑇𝐹𝑖

𝑐 𝑗 − 0.5𝑐𝑇𝐹𝑖)∑𝑛
𝑗=1 𝑐 𝑗 ×𝑚

(4)

where 𝑐𝑖 is the cost of a test case 𝑇𝑖 , and 𝑇𝐹𝑖 is the first test case
from 𝑇 ′ that reveals fault 𝑖 .

The third measure Rank of the Failing Test Cases (RFTC) evaluates
the test suite efficiency concerning early fault detection. In such
a rank, the value represents the first failing test cases’ execution
order in the prioritized test suite.

We defined a fourth measure, Normalized Time Reduction (NTR)

(Equation 5), to capture the difference between the time spent until
the first test case fails 𝑟𝑡 and the total time spent to execute all
tests 𝑟𝑡 . Only the commits which failed 𝐶𝐼 𝑓 𝑎𝑖𝑙 are considered in
the calculation. In this way, we can evaluate the capability of an
algorithm to reduce the time spent in a CI cycle.

𝑁𝑇𝑅(A) =

∑𝐶𝐼 𝑓 𝑎𝑖𝑙
𝑡=1 (𝑟𝑡 − 𝑟𝑡)∑𝐶𝐼 𝑓 𝑎𝑖𝑙
𝑡=1 (𝑟𝑡)

(5)

The fifth measure, Prioritization Time (PR), measures the time
spent by an approach to perform the prioritization. PR evaluates the
applicability of an approach. Based on this value, we can observe
whether an approach spends much time, making it impracticable
for real scenarios.

The last measure, Root-Mean-Square-Error (RMSE), measures the
difference between the predicted and the observed values of NAPFD
(or APFDc). In our case, RMSE (Equation 6) is the difference between
the value calculated for 𝑇 ′ in a CI Cycle (commit) 𝑡 , suggested by
the learning approaches (𝑠𝑡) and the optimal value 𝑇 ′ (𝑠𝑡) found
by the deterministic approach. For an algorithm A, the RMSE is
computed as follows:

𝑅𝑀𝑆𝐸 (A) =

√∑𝐶𝐼
𝑡=1 (𝑠𝑡 − 𝑠𝑡)

2

𝐶𝐼
(6)

where𝐶𝐼 is the amount of CI Cycles in a system. The most accurate
approach is the one with smallest RMSE.

We compared the results using Kruskal-Wallis [12] and Mann-
Whitney [16] statistical tests to determine the significance level, and
Vargha and Delaney’s 𝐴12 [28] metric as effect test. The statistical
tests were applied with 95% of confidence. The𝐴12 metric calculates
the effect size magnitude of the difference between two groups,
which defines the probability of a value taken randomly from the
first sample is higher than a value taken randomly from the second
sample.

5

115

The magnitude can be: 𝑁𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒 (Â12 < 0.56); 𝑆𝑚𝑎𝑙𝑙 (0.56 ≤

Â12 < 0.64);𝑀𝑒𝑑𝑖𝑢𝑚 (0.64 ≤ Â12 < 0.71); and 𝐿𝑎𝑟𝑔𝑒 (0.71 ≤ Â12).
A 𝑁𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒 magnitude represents a very small difference among
the values and usually does not yield statistical difference. The
𝑆𝑚𝑎𝑙𝑙 and𝑀𝑒𝑑𝑖𝑢𝑚 magnitudes may yield statistical differences (or
not). Finally, a 𝐿𝑎𝑟𝑔𝑒 magnitude represents a significantly large
difference that usually can be seen in the numbers without much
effort.

A 𝑁𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒 magnitude represents a very small difference
among the values and usually does not yield statistical difference.
The 𝑆𝑚𝑎𝑙𝑙 and𝑀𝑒𝑑𝑖𝑢𝑚 magnitudes represent small and medium
differences among the values, and may or not yield statistical differ-
ences. Finally, a 𝐿𝑎𝑟𝑔𝑒 magnitude represents a significantly large
difference that usually can be seen in the numbers without much
effort.

4.2 Target Systems

The study was performed with twelve systems already used in the
literature [21, 27, 32]. The target systems are detailed in Table 2
that contains: the system name, the period of build logs analyzed,
the total of builds identified, and in parentheses, the number of
builds included in the analysis. Build logs with some problems
were discarded, e.g., extracting information (non-valid build log),
and those the test cases did not execute. The fourth column shows
the total of failures found; in parentheses, the number of builds in
which at least one test failed. The fifth column shows the number
of unique test cases identified from build logs; in parenthesis, the
range of test cases executed in the builds. The sixth and seventh
columns present the average duration and standard deviation in
minutes of the CI Cycles (commits), and the interval between them.

Druid, developed by Alibaba, is a database connection pool writ-
ten in Java. Fastjson, created by Alibaba, is a Java library that can
be used to a fast JSON parser/generator for Java. Deeplearning4j
is a deep learning library for Java Virtual Machine. DSpace is an
open source software that provides facilities for the management
of digital collections, used for the implementation of institutional
repositories. GSDTSR is The Google Dataset of Testing Results [7]
with a sample of 3.5 million test suite execution results from Google
products. Guava, developed by Google, is a set of core libraries for
Java which includes new collection types, APIs/utilities for concur-
rency, I/O, and others. OkHttp, developed by Square, is an HTTP
and HTTP/2 client for Android and Java applications. Retrofit,
also developed by Square, is a type-safe HTTP client for Android
and Java. ZXing (Zebra Crossing) is a barcode scanning library for
Java and Android. The systems IOF/ROL and Paint Control are
industrial datasets for testing complex industrial robots from ABB
Robotic [27]. LexisNexis is an industrial dataset for testing com-
plex web-system at LexisNexis company [32].

More details about these systems are available in our replication
package2. This package contains some figures illustrating number
of failures per cycle for each SUT, which allows observing test case
volatility.

2Our supplementary material is available at https://osf.io/x96fk/?view_only=
020b612cbdd84fa38d6a974743f9d823. After publication, we will use a DOI as a reference
for the material.

4.3 Generating Optimal Solutions

The deterministic approach finds the optimal solution for each
commit associated with a SUT. The failure results from the test
case execution are known a priori and used in the prioritization,
according to Algorithm 1.

We identify the test set available𝑇𝑐 and the original time𝐴𝑐 spent
to run such set in each commit. After, we define a time budget to
run the tests. In this work, we evaluated three time budgets (𝑇𝐵𝑐)
concerning, respectively, 10%, 50%, and 80% of the execution time
of the overall test set 𝑇𝑐 available. They were chosen to observe
the influence of the test budget in the results and how it affects
the learning process, as well as they already were used in previous
work [21]. In the end, we sort the test case by the number of failures
in descending order, and test case duration in ascending order. This
sorter allows evaluating the prioritized test set through different
measures, such as failure detection (NAPFD) and cost (APFDc).

Algorithm 1: Deterministic Algorithm to Find Optimal
Solutions for Test Case Prioritization in Continuous Inte-
gration Environments Problem.

forall commit 𝑐 in Target System do
𝑇𝑐 ← Test Case set available from system in the current
commit;

𝐴𝑐 ← Total time spent to run𝑇𝑐 ;

𝑇𝐵𝑐 ← Time Budget (10%, 50%, or 80% from 𝐴𝑐);
𝑇 ′
𝑐 ←𝑇𝑐 ordered by number of failures (descending) and
duration (ascending);

Evaluate𝑇 ′
𝑐 considering𝑇𝐵𝑐 (e.g. NAPFD and APFDc);

end

4.4 Executing Learning-based approaches

We use the results from the execution of COLEMAN and RETECS

available in [21]3. They were obtained with 30 independent execu-
tions for each algorithm/configuration, using both reward functions,
RNFail and TimeRank. COLEMAN was configured with FRRMAB
policy, sliding window size 𝑆𝑊 equals to 100, coefficient C to bal-
ance exploration and exploitation equals to 0.3, and decayed factor
equals to 1. RETECS was executed with an Artificial Neural Network
(ANN), and the values used for Hidden Nodes, Replay Memory, and
Replay Batch Size, are, respectively, 12, 10000, and 1000. All the
experiments were performed on an Intel Xeon E5-2640 v3 with
2.60 GHz CPU, 94GB RAM, running Linux Ubuntu 18.04.1 LTS. The
system LexisNexis was not used in previous work [21]. For this
system, we executed the experiments following the same settings
abovementioned. The deterministic algorithm was executed in the
same computational environment.

5 RESULTS AND ANALYSIS

In this section, we analyze the results of the learning approaches,
RETECS and COLEMAN, having as a baseline the deterministic
approach and our six measures.

3Supplementary material available at https://doi.org/10.17605/OSF.IO/WMCBT

6

116

Table 2: Description of the Target Systems

Name Period Builds Failures Test Cases Duration (min) Interval (min)

Druid 2016/04/24-2016/11/08 286 (168) 270 (71) 2391 (1778-1910) 4.97 ± 10.66 384.76 ± 468.86
Fastjson 2016/04/15-2018/12/04 2710 (2371) 940 (323) 2416 (900-2102) 1.97 ± 0.89 233.22 ± 401.26
Deeplearning4j 2014/02/22-2016/01/01 3410 (483) 777 (323) 117 (1-52) 12.33 ± 14.91 306.05 ± 442.55
DSpace 2013/10/16-2019/01/08 6309 (5673) 13413 (387) 211 (16-136) 11.78 ± 7.03 291.29 ± 411.19
GSDTSR 2016/01/02-2016/02/01 259388 (259388) 3208 (2924) 5555 (1-390) 974.25 ± 4850.66 1439.91 ± 2.58
Guava 2014/11/06-2018/12/02 2011 (1689) 7659 (112) 568 (308-512) 62.53 ± 80.31 435.55 ± 464.52
IOF/ROL 2015/02/13-2016/10/25 2392 (2392) 9289 (1627) 1941 (1-707) 1537.27 ± 2018.73 1324.36 ± 291.78
LexisNexis 2018/09/27-2018/11/15 54 (54) 21189 (54) 2662 (2007-2377) 0.8668 ± 0.808 900.367 ± 305.125
OkHttp 2013/03/26-2018/05/30 9919 (6215) 9586 (1408) 289 (2-75) 7.64 ± 5.64 220.17 ± 405.93
Paint Control 2016/01/12-2016/12/20 20711 (20711) 4956 (1980) 1980 (1-74) 424.46 ± 275.90 1417.86 ± 144.97
Retrofit 2013/02/17-2018/11/26 3719 (2711) 611 (125) 206 (5-75) 2.40 ± 1.60 270.86 ± 449.41
ZXing 2014/01/17-2017/04/16 961 (605) 68 (11) 124 (81-123) 13.14 ± 12.37 411.10 ± 465.53

5.1 Fault Detection Effectiveness

To evaluate the prioritization quality regarding fault detection ca-
pacity, we compare NAPFD average values presented in Table 3.
This table presents average values ± standard deviation. The best
values are highlighted in bold. We applied the Kruskal-Wallis test
to compare the algorithms regarding each measure. Results that
are statistically equivalent to the best one are highlight in gray. We
also use different symbols to indicate the effect size magnitude con-
cerning the best values: “�” denotes the best algorithm for a time
budget in a SUT. “�” indicates a negligible effect size; “�” denotes
a small magnitude, “�” a medium magnitude, and “�” large.

As expected, the deterministic approach presents the best values
for all systems and budgets with statistical difference, that has, in
most cases, a large magnitude.

Although there are statistical differences, in some cases, we ob-
serve statistical equivalence, mainly for COLEMAN using TimeRank

function, in the less restrictive scenarios (budgets of 50% and 80%).
This means the results are very close to optimal. Using TimeRank,
for all systems and budgets, COLEMAN obtained equivalence to the
optimal in 15 cases out of 36 (≈ 42%). Considering each budget 10%,
50%, and 80%, COLEMAN reaches equivalence in, respectively, 17%,
50%, and 58% of the cases. COLEMAN does not reach such a good
performance using RNFail function. In contrast, RETECS reaches
results equivalent to the optimal using RNFail function, but only in
3 cases, out of 36 (≈ 8%). Its performance seems not be impacted
by the test budget. In conclusion, COLEMAN outperforms RETECS
regarding early fault detection.

Finding 1. COLEMAN presents better performance than
RETECS. Using TimeRank, COLEMAN obtained results that
are equivalent to optimal in 42% of the cases. This percent-
age increases in the presence of less restrictive budgets,
reaching 58% of the cases in the time budget of 80%.

To a better visualization, Figure 3 illustrates radar charts (or
spider graphs) for each time budget. Each angle represents the
NAPFD value for a system. The purple line represents the values
found by the Deterministc approach; blue and orange lines obtained

by RETECS using, respectively, RNFail and TimeRank functions;
and green and red lines obtained by COLEMAN using RNFail and
TimeRank functions.

As we can observe, increasing the time budget, the learning-
based approaches produce solutions closer to optimal, mainly
COLEMAN. In some systems, we observe that, even increasing
the time budget, the difference keeps the same; for instance,
Deeplearning4j and OkHttp. To a deeper analysis, we refer to
Figure 4. This figure presents, in overall (in the same scale), differ-
ent information about each system: number of valid builds, number
of failures, number of failed builds, number of test cases, mean
number of failures by cycles, and mean number of failing cycles.
More information is found in Table 2.

Regarding the Deeplearning4j system, it has a high average of
failing builds. However, as we observed, only this does not help to
provide good prioritization. On the other hand, OkHttp has a small
average of failing builds but more failures and failed builds. This
helped to provide better NAPFD values than in the Deepleaning4j
system. In both systems, COLEMAN obtained equivalence to opti-
mal in all time budgets evaluated.

We analyzed other characteristics of the systems that may impact
the prioritization, e.g., the test case volatility. We observe in the
Deeplearning4j and OkHttp systems that the failures are frequent
and well distributed in some tests, even having peaks of failures
and test case volatility. This scenario endorses an approach based
on historical test data.

Among the systems, ZXing is the simplest one. In this system,
the values found by learning-based approaches are the closest to the
optimal, that is, close to 1 which is the maximum value for NAPFD.
There is low test case volatility in this system, and there are peaks
in the failure detection in a few commits, with long periods without
failures. This situation can also be supported by an approach based
on historical test data.

Regarding the NAPFD results that are equivalent to the optimal,
we observe that RNFail fits better with RETECS and TimeRank with
COLEMAN. The worst results were obtained by RETECS and COLE-
MAN in the Druid and LexisNexis systems. The Druid system
presents the greatest difference between learning-based approaches
and Deterministic, mainly in the presence of the most restrictive

7

117

Table 3: NAPFD comparison.

RETECS
Deterministic

COLEMAN

SUT RNFail TimeRank RNFail TimeRank

Time Budget: 10%

Druid 0.6768 ± 0.129 � 0.6488 ± 0.074 � 0.9996 ± 0.000� 0.6801 ± 0.052 � 0.7137 ± 0.074 �
Fastjson 0.8713 ± 0.015 � 0.8719 ± 0.005 � 0.9988 ± 0.000� 0.9030 ± 0.014 � 0.8980 ± 0.018 �
Deeplearning4j 0.6615 ± 0.072 � 0.6739 ± 0.016 � 0.8137 ± 0.000� 0.7533 ± 0.002 � 0.7716 ± 0.000 �
DSpace 0.9437 ± 0.001 � 0.9410 ± 0.001 � 0.9739 ± 0.000� 0.9489 ± 0.003 � 0.9496 ± 0.004 �
GSDTSR 0.9893 ± 0.000 � 0.9893 ± 0.000 � 0.9898 ± 0.000� 0.9894 ± 0.000 � 0.9894 ± 0.000 �
Guava 0.9676 ± 0.015 � 0.9563 ± 0.004 � 0.9978 ± 0.000� 0.9554 ± 0.002 � 0.9586 ± 0.001 �
IOF/ROL 0.3704 ± 0.005 � 0.3779 ± 0.003 � 0.4098 ± 0.000� 0.3632 ± 0.001 � 0.3670 ± 0.001 �
LexisNexis 0.0508 ± 0.018 � 0.1004 ± 0.068 � 0.7011 ± 0.000� 0.1400 ± 0.001 � 0.1440 ± 0.001 �
Paint Control 0.9078 ± 0.000 � 0.9077 ± 0.000 � 0.9078 ± 0.000� 0.9076 ± 0.000 � 0.9076 ± 0.000 �
OkHttp 0.8357 ± 0.002 � 0.8095 ± 0.006 � 0.8886 ± 0.000� 0.8323 ± 0.000 � 0.8407 ± 0.000 �
Retrofit 0.9641 ± 0.001 � 0.9621 ± 0.001 � 0.9712 ± 0.000� 0.9639 ± 0.000 � 0.9642 ± 0.000 �
ZXing 0.9854 ± 0.000 � 0.9855 ± 0.000 � 0.9998 ± 0.000� 0.9826 ± 0.000 � 0.9828 ± 0.000 �

Time Budget: 50%

Druid 0.6851 ± 0.134 � 0.6323 ± 0.074 � 0.9996 ± 0.000� 0.9333 ± 0.013 � 0.9710 ± 0.008 �
Fastjson 0.8714 ± 0.007 � 0.8902 ± 0.013 � 0.9993 ± 0.000� 0.9174 ± 0.021 � 0.9118 ± 0.028 �
Deeplearning4j 0.7049 ± 0.070 � 0.6562 ± 0.018 � 0.9025 ± 0.000� 0.7890 ± 0.001 � 0.8200 ± 0.000 �
DSpace 0.9568 ± 0.001 � 0.9485 ± 0.001 � 0.9921 ± 0.000� 0.9724 ± 0.009 � 0.9766 ± 0.008 �
GSDTSR 0.9911 ± 0.000 � 0.9906 ± 0.000 � 0.9921 ± 0.000� 0.9893 ± 0.000 � 0.9894 ± 0.000 �
Guava 0.9502 ± 0.015 � 0.9578 ± 0.004 � 0.9997 ± 0.000� 0.9653 ± 0.004 � 0.9675 ± 0.007 �
IOF/ROL 0.5101 ± 0.007 � 0.5025 ± 0.006 � 0.5812 ± 0.000� 0.5046 ± 0.002 � 0.5189 ± 0.002 �
LexisNexis 0.1629 ± 0.026 � 0.2335 ± 0.099 � 0.9065 ± 0.000� 0.5332 ± 0.007 � 0.5625 ± 0.008 �
Paint Control 0.9150 ± 0.000 � 0.9138 ± 0.000 � 0.9153 ± 0.000� 0.9150 ± 0.000 � 0.9150 ± 0.000 �
OkHttp 0.8812 ± 0.010 � 0.8446 ± 0.003 � 0.9544 ± 0.000� 0.9192 ± 0.000 � 0.9317 ± 0.000 �
Retrofit 0.9706 ± 0.002 � 0.9718 ± 0.002 � 0.9946 ± 0.000� 0.9853 ± 0.000 � 0.9893 ± 0.000 �
ZXing 0.9878 ± 0.000 � 0.9881 ± 0.001 � 0.9998 ± 0.000� 0.9846 ± 0.000 � 0.9857 ± 0.000 �

Time Budget: 80%

Druid 0.6490 ± 0.113 � 0.6551 ± 0.099 � 0.9996 ± 0.000� 0.938 ± 0.012 � 0.9830 ± 0.003 �
Fastjson 0.8708 ± 0.007 � 0.8925 ± 0.010 � 0.9999 ± 0.000� 0.9536 ± 0.010 � 0.9242 ± 0.028 �
Deeplearning4j 0.7058 ± 0.091 � 0.6640 ± 0.016 � 0.9520 ± 0.000� 0.8424 ± 0.001 � 0.8641 ± 0.001 �
DSpace 0.9601 ± 0.001 � 0.9508 ± 0.001 � 0.9932 ± 0.000� 0.9792 ± 0.006 � 0.9825 ± 0.007 �
GSDTSR 0.9921 ± 0.000 � 0.9914 ± 0.000 � 0.9934 ± 0.000� 0.9893 ± 0.000 � 0.9894 ± 0.000 �
Guava 0.9441 ± 0.012 � 0.9581 ± 0.007 � 0.9999 ± 0.000� 0.9784 ± 0.012 � 0.9841 ± 0.014 �
IOF/ROL 0.5495 ± 0.006 � 0.5287 ± 0.007 � 0.6115 ± 0.000� 0.5569 ± 0.002 � 0.5678 ± 0.001 �
LexisNexis 0.2496 ± 0.048 � 0.3545 ± 0.131 � 0.9152 ± 0.000� 0.6442 ± 0.005 � 0.7033 ± 0.004 �
Paint Control 0.9162 ± 0.000 � 0.9160 ± 0.000 � 0.9180 ± 0.000� 0.9171 ± 0.000 � 0.9171 ± 0.000 �
OkHttp 0.9027 ± 0.013 � 0.8558 ± 0.004 � 0.9607 ± 0.000� 0.935 ± 0.000 � 0.9478 ± 0.000 �
Retrofit 0.9724 ± 0.005 � 0.9745 ± 0.003 � 0.9972 ± 0.000� 0.9881 ± 0.000 � 0.9916 ± 0.000 �
ZXing 0.9878 ± 0.000 � 0.9883 ± 0.001 � 0.9998 ± 0.000� 0.9972 ± 0.000 � 0.9996 ± 0.000 �

time budget (10%). These systems share some particularities: (i) a
few number of CI Cycles; and (ii) a large test case set, in which
many failures are distributed in many test cases. Apparently, such
characteristics are drawbacks for approaches based on historical
test data.

Finding 2. The learning-based approaches have the worst
performance in systems with a high test case volatility and
a few number of CI Cycles.

Concerning the optimal results, some of them are far from the
maximum value for the metric, specifically for the systems IOF/ROL
and LexisNexis. About the IOF/ROL system, we observe that the
difficulty in obtaining better NAPFD values is related to the ex-
tremely high test case volatility coupled with the high number of
failures, as well as the failure distribution over many test cases. This
hampers to find a reasonable prioritization. On the other hand, in
the LexisNexis system, we do not observe high test case volatility
but, similarly to IOF/ROL, a high number of failures distributed in
many test cases. In this way, both systems are examples of why it is
hard to find reasonable solutions for TCP in the CI environments.

8

118

Druid
Fastjson

Deeplearning4j

DSpace

GSDTSR

Guava
IOF/ROL

LexisNexis

Paint Control

OkHttp

Retrofit

ZXing

0.2

0.4

0.6

0.8

1.0

Time Budget: 10%
Druid

Fastjson

Deeplearning4j

DSpace

GSDTSR

Guava
IOF/ROL

LexisNexis

Paint Control

OkHttp

Retrofit

ZXing

Time Budget: 50%
Druid

Fastjson

Deeplearning4j

DSpace

GSDTSR

Guava
IOF/ROL

LexisNexis

Paint Control

OkHttp

Retrofit

ZXing

Time Budget: 80%

ANN (RNFail) ANN (TimeRank) FRRMAB (RNFail) FRRMAB (TimeRank) Deterministic

Figure 3: Radar charts - NAPFD values.

Valid Builds

Failures

Failed Builds

Test Cases

Failures by Cycles (AVG)

Failing Cycles (AVG)

20

40

60

80

100

(a) Deeplearning4j

Valid Builds

Failures

Failed Builds

Test Cases

Failures by Cycles (AVG)

Failing Cycles (AVG)

20

40

60

80

100

(b) OkHttp

Figure 4: Radar charts - systems characteristics

Finding 3. A high number of failures distributed over
many test cases makes the TCP task harder.

5.2 Fault Detection Effectiveness with Cost
Consideration

To evaluate how good is the prioritization considering the cost
associated for each test case, we calculate APFDc values, presented
in Table 4. We use the test case duration as cost. If two test cases
reveal the same number of failures and have different execution
times, that one that takes less time needs to appear first in the
prioritization rank.

As it happens for NAPFD, COLEMAN performs better in the less
restrictive budget using TimeRank, reaching results equivalent to
the optimal in 50% of the cases for the time budget of 80%. RETECS
also performs better using RNFail, but we observe a better perfor-
mance of RETECS, overcoming COLEMAN, in the more restrictive
budget of 10%. This is maybe due to the RETECS formulation that
considers test case duration during its prioritizations. Nevertheless,
considering a general case, COLEMAN outperforms RETECS, even
only focusing on historical failure data.

Finding 4. Regarding APFDc values COLEMAN outper-
forms RETECS in most cases. However, RETECS has a better
performance in the most restrictive budget of 10%.

Again, radar charts regarding APFDc values can provide a bet-
ter analysis (Figure 5). We can see that it is harder to obtain good
prioritizations with less cost for LexisNexis for both approaches.
We observe a great difference between COLEMAN and RETECS

in the Druid system and the time budgets of 50% and 80%. As we
observed in the NAPFD values, COLEMAN also has better per-
formance with TimeRank function, whilst RETECS with RNFail.
Besides that, NAPFD and APFDc values are not so far from optimal
solutions, in which we can observe close values but with a statistical
difference.

Finding 5. The analysis of APFDc using test case duration
as cost leads to results similar to those obtained in the
NAFPD analysis. In general, the APFDc values are close
to the optimal, and the more significant differences are
obtained to the same systems.

9

119

Table 4: APFDc comparison.

RETECS
Deterministic

COLEMAN

SUT RNFail TimeRank RNFail TimeRank

Time Budget: 10%

Druid 0.8067 ± 0.088 � 0.7815 ± 0.051 � 0.9998 ± 0.000� 0.6964 ± 0.063 � 0.7181 ± 0.076 �
Fastjson 0.8805 ± 0.014 � 0.8810 ± 0.004 � 0.9985 ± 0.000� 0.9064 ± 0.013 � 0.8974 ± 0.018 �
Deeplearning4j 0.8135 ± 0.023 � 0.8185 ± 0.010 � 0.8304 ± 0.000� 0.7766 ± 0.001 � 0.7773 ± 0.000 �
DSpace 0.9480 ± 0.001 � 0.9458 ± 0.001 � 0.9724 ± 0.000� 0.9510 ± 0.002 � 0.9513 ± 0.004 �
GSDTSR 0.9894 ± 0.000 � 0.9894 ± 0.000 � 0.9898 ± 0.000� 0.9894 ± 0.000 � 0.9894 ± 0.000 �
Guava 0.9811 ± 0.007 � 0.9761 ± 0.003 � 0.9980 ± 0.000� 0.9561 ± 0.001 � 0.9582 ± 0.001 �
IOF/ROL 0.3746 ± 0.005 � 0.3819 ± 0.003 � 0.4138 ± 0.000� 0.3661 ± 0.001 � 0.3701 ± 0.001 �
LexisNexis 0.0541 ± 0.017 � 0.1025 ± 0.066 � 0.7076 ± 0.000� 0.1394 ± 0.001 � 0.1434 ± 0.001 �
Paint Control 0.9082 ± 0.000 � 0.9081 ± 0.000 � 0.9082 ± 0.000� 0.9080 ± 0.000 � 0.9080 ± 0.000 �
OkHttp 0.8484 ± 0.001 � 0.8292 ± 0.006 � 0.8870 ± 0.000� 0.8378 ± 0.000 � 0.8425 ± 0.000 �
Retrofit 0.9672 ± 0.001 � 0.9655 ± 0.001 � 0.9717 ± 0.000� 0.9646 ± 0.000 � 0.9648 ± 0.000 �
ZXing 0.9893 ± 0.000 � 0.9893 ± 0.000 � 0.9998 ± 0.000� 0.9832 ± 0.000 � 0.9835 ± 0.000 �

Time Budget: 50%

Druid 0.8147 ± 0.102 � 0.7597 ± 0.051 � 0.9998 ± 0.000� 0.9486 ± 0.016 � 0.9787 ± 0.009 �
Fastjson 0.9326 ± 0.005 � 0.9392 ± 0.017 � 0.9989 ± 0.000� 0.9186 ± 0.021 � 0.9140 ± 0.027 �
Deeplearning4j 0.8331 ± 0.041 � 0.8379 ± 0.012 � 0.9077 ± 0.000� 0.8106 ± 0.001 � 0.8134 ± 0.001 �
DSpace 0.9683 ± 0.001 � 0.9615 ± 0.001 � 0.9918 ± 0.000� 0.9737 ± 0.009 � 0.9767 ± 0.009 �
GSDTSR 0.9911 ± 0.000 � 0.9910 ± 0.000 � 0.9920 ± 0.000� 0.9894 ± 0.000 � 0.9894 ± 0.000 �
Guava 0.9767 ± 0.008 � 0.9806 ± 0.005 � 0.9993 ± 0.000� 0.9687 ± 0.003 � 0.9672 ± 0.007 �
IOF/ROL 0.5175 ± 0.008 � 0.5043 ± 0.006 � 0.5905 ± 0.000� 0.5081 ± 0.002 � 0.5223 ± 0.002 �
LexisNexis 0.1891 ± 0.019 � 0.2477 ± 0.093 � 0.9035 ± 0.000� 0.5227 ± 0.007 � 0.5496 ± 0.007 �
Paint Control 0.9171 ± 0.000 � 0.9140 ± 0.000 � 0.9174 ± 0.000� 0.9162 ± 0.000 � 0.9162 ± 0.000 �
OkHttp 0.8878 ± 0.015 � 0.8869 ± 0.002 � 0.9477 ± 0.000� 0.9177 ± 0.000 � 0.9246 ± 0.000 �
Retrofit 0.9762 ± 0.002 � 0.9778 ± 0.002 � 0.9928 ± 0.000� 0.9850 ± 0.000 � 0.9885 ± 0.000 �
ZXing 0.9954 ± 0.000 � 0.9956 ± 0.001 � 0.9998 ± 0.000� 0.9862 ± 0.000 � 0.9869 ± 0.000 �

Time Budget: 80%

Druid 0.7142 ± 0.111 � 0.6881 ± 0.090 � 0.9998 ± 0.000� 0.9469 ± 0.015 � 0.9912 ± 0.004 �
Fastjson 0.9037 ± 0.008 � 0.9133 ± 0.015 � 0.9991 ± 0.000� 0.9488 ± 0.012 � 0.9270 ± 0.026 �
Deeplearning4j 0.8158 ± 0.064 � 0.8522 ± 0.012 � 0.9407 ± 0.000� 0.8068 ± 0.002 � 0.7989 ± 0.001 �
DSpace 0.9738 ± 0.001 � 0.9639 ± 0.001 � 0.9925 ± 0.000� 0.9796 ± 0.006 � 0.9810 ± 0.008 �
GSDTSR 0.9919 ± 0.000 � 0.9917 ± 0.000 � 0.9930 ± 0.000� 0.9894 ± 0.000 � 0.9894 ± 0.000 �
Guava 0.9627 ± 0.010 � 0.9689 ± 0.009 � 0.9994 ± 0.000� 0.9780 ± 0.013 � 0.9825 ± 0.015 �
IOF/ROL 0.5593 ± 0.006 � 0.5311 ± 0.006 � 0.6225 ± 0.000� 0.5591 ± 0.002 � 0.5699 ± 0.001 �
LexisNexis 0.2886 ± 0.039 � 0.3569 ± 0.104 � 0.9111 ± 0.000� 0.6287 ± 0.005 � 0.6791 ± 0.004 �
Paint Control 0.9187 ± 0.000 � 0.9158 ± 0.000 � 0.9204 ± 0.000� 0.9176 ± 0.000 � 0.9177 ± 0.000 �
OkHttp 0.8836 ± 0.020 � 0.8974 ± 0.003 � 0.9520 ± 0.000� 0.9271 ± 0.000 � 0.9362 ± 0.000 �
Retrofit 0.9785 ± 0.004 � 0.9808 ± 0.003 � 0.9946 ± 0.000� 0.9873 ± 0.000 � 0.9903 ± 0.000 �
ZXing 0.9953 ± 0.000 � 0.9953 ± 0.001 � 0.9998 ± 0.000� 0.9975 ± 0.000 � 0.9996 ± 0.000 �

5.3 Early Fault Detection and Test Time
Reduction

First of all, we calculate RFTC values (Table 5) that takes into ac-
count the position of the first failing test case in the prioritized test
case set. We observed that the NAPFD average values found and
the early fault detection (using RFTC) are correlated, that is, good
NAPFD values provide good RFTC values. However, the opposite
can not be true, once that the RFTC metric does not evaluate the
prioritization quality from the entire prioritized test set but only
the early fault detection.

As expected, the deterministic approach presents the best results
for all systems. Besides that, COLEMAN using TimeRank obtained

equivalent results in ≈ 70% of the cases, whilst RETECS only in ≈

3% (only one case). In some cases, RETECS has a higher standard
deviation than COLEMAN.

Finding 6. Regarding RFTC, COLEMAN using TimeRank

obtained performance equivalent to the optimal results in
≈ 70% of the cases. COLEMAN is better than RETECS in
all cases.

Early fault detection contributes to reduce test execution cost
because the test can be ended when a failure occurs. Given this fact,

10

120

Druid
Fastjson

Deeplearning4j

DSpace

GSDTSR

Guava
IOF/ROL

LexisNexis

Paint Control

OkHttp

Retrofit

ZXing

0.2

0.4

0.6

0.8

1.0

Time Budget: 10%
Druid

Fastjson

Deeplearning4j

DSpace

GSDTSR

Guava
IOF/ROL

LexisNexis

Paint Control

OkHttp

Retrofit

ZXing

Time Budget: 50%
Druid

Fastjson

Deeplearning4j

DSpace

GSDTSR

Guava
IOF/ROL

LexisNexis

Paint Control

OkHttp

Retrofit

ZXing

Time Budget: 80%

ANN (RNFail) ANN (TimeRank) FRRMAB (RNFail) FRRMAB (TimeRank) Deterministic

Figure 5: Radar charts - APFDc values.

Table 5: RFTC comparison.

RETECS
Deterministic

COLEMAN

SUT RNFail TimeRank RNFail TimeRank

Time Budget: 10%

Druid 1166.4411 ± 546.049 � 1240.8713 ± 356.817 � 1.0 ± 0.000� 209.3289 ± 98.987 � 56.1579 ± 31.056 �
Fastjson 1094.1147 ± 209.106 � 998.7949 ± 177.738 � 1.0 ± 0.000� 184.9911 ± 65.066 � 96.0378 ± 36.22 �
Deeplearning4j 5.3151 ± 2.456 � 5.7919 ± 0.677 � 1.0 ± 0.000� 2.3049 ± 0.048 � 2.0437 ± 0.007 �
DSpace 11.9561 ± 0.753 � 13.6276 ± 0.754 � 1.0 ± 0.000� 3.024 ± 1.33 � 2.1428 ± 0.67 �
GSDTSR 3.2553 ± 0.387 � 3.8958 ± 0.18 � 1.0 ± 0.000� 2.1316 ± 0.1 � 1.1482 ± 0.071 �
Guava 129.3477 ± 99.443 � 191.1219 ± 29.545 � 1.0 ± 0.000� 31.8991 ± 20.546 � 15.0977 ± 13.75 �
IOF/ROL 1.6445 ± 0.158 � 1.5639 ± 0.108 � 1.0 ± 0.000� 1.2626 ± 0.064 � 1.0992 ± 0.05 �
LexisNexis 73.097 ± 31.648 � 53.1777 ± 38.754 � 1.0 ± 0.000� 9.1333 ± 0.188 � 8.7611 ± 0.118 �
Paint Control 1.0 ± 0.000 � 1.001 ± 0.002 � 1.0 ± 0.000� 1.0 ± 0.000 � 1.0 ± 0.000 �
OkHttp 7.4112 ± 0.397 � 15.8935 ± 1.951 � 1.0 ± 0.000� 4.3424 ± 0.000 � 1.8039 ± 0.000 �
Retrofit 3.7352 ± 0.439 � 4.7297 ± 0.772 � 1.0 ± 0.000� 1.5152 ± 0.000 � 1.7941 ± 0.000 �
ZXing 39.7929 ± 0.643 � 39.1204 ± 1.701 � 1.0 ± 0.000� 1.0 ± 0.000 � 1.0 ± 0.000 �

Time Budget: 50%

Druid 1225.6197 ± 600.746 � 1420.3143 ± 418.926 � 1.0 ± 0.000� 121.8396 ± 43.763 � 51.2697 ± 11.926 �
Fastjson 1527.9434 ± 93.004 � 1173.9871 ± 321.789 � 1.0 ± 0.000� 315.8923 ± 79.836 � 335.9929 ± 125.629 �
Deeplearning4j 5.0267 ± 1.827 � 7.3264 ± 0.53 � 1.0 ± 0.000� 2.5496 ± 0.011 � 2.464 ± 0.005 �
DSpace 19.0354 ± 0.887 � 27.6301 ± 0.921 � 1.0 ± 0.000� 5.5312 ± 1.939 � 4.1089 ± 1.769 �
GSDTSR 1.9072 ± 0.06 � 3.5648 ± 0.141 � 1.0 ± 0.000� 2.1461 ± 0.101 � 1.1505 ± 0.072 �
Guava 289.1586 ± 99.054 � 235.0919 ± 27.865 � 1.0 ± 0.000� 78.6409 ± 45.928 � 24.0869 ± 21.479 �
IOF/ROL 1.8009 ± 0.292 � 1.9213 ± 0.218 � 1.0 ± 0.000� 1.2588 ± 0.035 � 1.151 ± 0.024 �
LexisNexis 73.6444 ± 41.192 � 47.3883 ± 37.993 � 1.0 ± 0.000� 9.2074 ± 0.178 � 8.784 ± 0.091 �
Paint Control 1.0234 ± 0.004 � 1.0257 ± 0.007 � 1.0 ± 0.000� 1.0018 ± 0.001 � 1.0014 ± 0.001 �
OkHttp 6.203 ± 2.066 � 19.6306 ± 0.79 � 1.0 ± 0.000� 4.188 ± 0.014 � 2.3643 ± 0.002 �
Retrofit 5.4302 ± 0.43 � 5.625 ± 0.415 � 1.0 ± 0.000� 2.4059 ± 0.000 � 1.4299 ± 0.000 �
ZXing 51.2576 ± 0.579 � 49.4232 ± 3.15 � 1.0 ± 0.000� 5.6 ± 0.000 � 2.0 ± 0.000 �

Time Budget: 80%

Druid 1427.8103 ± 493.429 � 1035.3369 ± 658.042 � 1.0 ± 0.000� 146.9112 ± 46.436 � 50.3805 ± 11.25 �
Fastjson 1535.2998 ± 101.625 � 993.382 ± 393.441 � 1.0 ± 0.000� 398.4345 ± 105.27 � 572.0954 ± 221.573 �
Deeplearning4j 5.5748 ± 2.358 � 7.8533 ± 0.581 � 1.0 ± 0.000� 2.8146 ± 0.014 � 2.5017 ± 0.011 �
DSpace 23.126 ± 1.021 � 33.4617 ± 1.119 � 1.0 ± 0.000� 6.8651 ± 2.946 � 6.0794 ± 3.343 �
GSDTSR 1.9413 ± 0.322 � 3.4858 ± 0.112 � 1.0 ± 0.000� 2.1461 ± 0.101 � 1.1505 ± 0.072 �
Guava 330.5342 ± 74.0 � 202.2301 ± 47.258 � 1.0 ± 0.000� 84.6856 ± 34.075 � 83.9989 ± 78.446 �
IOF/ROL 2.021 ± 0.447 � 2.5248 ± 0.362 � 1.0 ± 0.000� 1.317 ± 0.026 � 1.2366 ± 0.017 �
LexisNexis 47.6333 ± 43.432 � 43.5358 ± 39.71 � 1.0 ± 0.000� 9.2 ± 0.208 � 8.7981 ± 0.11 �
Paint Control 1.015 ± 0.002 � 1.0344 ± 0.009 � 1.0 ± 0.000� 1.0003 ± 0.001 � 1.0003 ± 0.001 �
OkHttp 4.2988 ± 2.242 � 21.5784 ± 1.148 � 1.0 ± 0.000� 4.0748 ± 0.021 � 2.282 ± 0.003 �
Retrofit 5.9252 ± 0.884 � 5.8832 ± 0.587 � 1.0 ± 0.000� 2.4636 ± 0.000 � 1.4386 ± 0.000 �
ZXing 51.0061 ± 1.233 � 48.6848 ± 2.926 � 1.0 ± 0.000� 4.2727 ± 0.000 � 1.3636 ± 0.000 �

11

121

we analyze NTR values (Table 6) to evaluate the impact in the time
reduction inside a CI Cycle.

We can observe that in most cases, the greater the time bud-
get the greater the NTR values. The deterministic approach gets
the best reduction values. However, other approaches have close
values for most systems. The best percentages of time reduction
for COLEMAN considering TimeRank function are in the systems:
LexisNexis with 99.61% in all time budgets; and IOF/ROL with
57.01%, 71.93%, and 73.94%, for the time budgets, respectively of,
10%, 50%, and 80%. On the other hand, RETECS presents the best val-
ues considering RNFail function in Deeplearning4j, with 55.46%,
54.47%, and 54.75%, respectively for three budgets.

As mentioned before, for LexisNexis and IOF/ROL the failures
are distributed over many test cases. This corroborates to the early
fault detection once that there is a high probability of prioritizing a
failing test case in the first positions.

The percentage found by the deterministic approach is low for
some systems, such as Guava, Retrofit, and ZXing. In these sys-
tems, there is a low failure distribution across the test cases along
with peaks of failures in a few CI Cycles, and the failing test cases
vary in each CI Cycle. This shows that sometimes we face test cases
that fail but spend much time executing, and there is not a pattern
that hampers a reasonable prioritization using historical failure
data.

Finding 7. Even using a deterministic approach, some-
times, the test time reduction is low due to peaks of fail-
ures, failure distributed across the test cases, and variation
of the failing test cases over CI cycles. Nevertheless, COLE-
MAN reached high percentages of reductions for systems,
considered hard cases for prioritizing, such as LexisNexis.

5.4 Prioritization Time

We also observed the time spent to prioritize the test cases (Priori-
tization Time in Table 7). Although the deterministic approach is
only a simple order, it can be used as a baseline.

We can observe the time spent by the approaches is negligi-
ble, even whimsy in most systems. A great time is spent in Druid,
Fastjson, and LexisNexis systems that also have a significant
number of test cases in a CI Cycle. RETECS using RNFail function
has PR values that are statistically equivalent to the optimal in 23
(≈ 73%) cases out of 36. In three cases, it presents the best values for
system Paint Control. But RETECS also presents the greatest varia-
tions; see system LexisNexis. In overall, RETECS and COLEMAN

spend less than one second to perform the prioritization.
To observe the applicability in real scenarios, we considered

the information presented in Table 2 regarding each SUT. In such
a table, we present the time spent in a CI Cycle and the interval
between commits for each system. As we can observe, typically, a
new commit is performed, with a considered time, after a CI Cycle
is ended. Such systems do not present a situation with multiple
test requests, except in IOF/ROL system. As mentioned before, the
approaches can reduce ≈ 99% of the CI Cycle time in such a system.

Moreover, the time presented in Table 2 is in minutes while the
prioritization time of the approaches is presented in Table 7 in sec-
onds. In this way, considering the interval between CI cycles, there
is no negative impact in the use of the approaches. Furthermore,
they can help developers concerning the time they spend waiting
for test feedback.

Finding 8. The learning-based approaches are applicable
in our real scenarios. Overall, they spend less than one
second to execute.

5.5 Accuracy

The accuracy (RMSE) is given by the difference between the pre-
dicted and the observed values of NAFPD and APFDc; these last
ones are obtained by the deterministic approach. The results are
presented in Tables 8 and 9. By analyzing such tables we can cor-
roborate our previous findings.

Regarding the RMSE values for NAPFD metric (Table 8), we
observe the predominance of COLEMAN (using TimeRank func-
tion) against RETECS. In the presence of a restrictive time budget
(10%), RETECS performs better than in the other ones. However,
COLEMAN is better in all time budgets.

The learning-based approaches obtain small RMSE values in
almost all systems, except in Druid and Lexis Nexis. The small-
est RMSE values are obtained under time budget of 80% and by
COLEMAN for the systems Druid, DSpace, Guava, Paint Control,
OkHttp, Retrofit, and ZXing. In these systems, the NAPFD values
obtained are the closest to the optimal values. To a better visualiza-
tion, we generated Figure 6.

One interesting point is that RMSE values lower than 0.2 rep-
resent NAPFD values closer to optimal values. For instance, in
IOF/ROL system, the NAPFD values are low, but this is because it
is challenging to find reasonable solutions. On the other hand, in
the LexisNexis system, the deterministic approach also obtained
low NAPFD values, but the learning-based approaches obtained
the worst RMSE values. Such values are between 0.22 and 0.76.

RETECS gets the worst RMSE values for the systems Druid
and LexisNexis in the time budget of 50%. They are, respectively,
𝑅𝑀𝑆𝐸 ≥ 0.58 and 𝑅𝑀𝑆𝐸 ≥≈ 0.75. For these systems, this phenom-
enon occurs, as mentioned before, due to the lack of historical data.
Besides them, we can observe in Figure 6 that the learning-based ap-
proaches also have a poor performance for Deeplearning4j. In this
system, we do not find a correlation between test case volatility and
the number of failures. For this, we investigated the accumulative
NAPFD across the CI Cycles (Figure 7).

As we can observe, the NAPFD values change a bit before the
100th CI Cycle and normalize after the 300th. Near to the 100th
cycle, the system Deeplearning4j starts presenting more failures,
and the duration of some test cases starts increasing. Probably,
such behavior influences more decisions taken by RETECS than by
COLEMAN, once the first considers besides the failures, the test case
duration. From then on, the number of failures increases with the
test case volatility. This may have favored a catastrophic forgetting
in the ANN.

12

122

Table 6: NTR comparison

RETECS
Deterministic

COLEMAN

SUT RNFail TimeRank RNFail TimeRank

Time Budget: 10%

Druid 0.1863 ± 0.124 0.1556 ± 0.077 0.4331 ± 0.000 0.2027 ± 0.115 0.2355 ± 0.135
Fastjson 0.0194 ± 0.016 0.0219 ± 0.007 0.1442 ± 0.000 0.0681 ± 0.014 0.0566 ± 0.020
Deeplearning4j 0.5488 ± 0.029 0.5546 ± 0.015 0.5642 ± 0.000 0.4626 ± 0.001 0.4663 ± 0.000
DSpace 0.0188 ± 0.001 0.0105 ± 0.001 0.0476 ± 0.000 0.0239 ± 0.002 0.0251 ± 0.003
GSDTSR 0.0087 ± 0.000 0.0090 ± 0.000 0.0136 ± 0.000 0.0093 ± 0.000 0.0096 ± 0.000
Guava 0.0449 ± 0.015 0.0367 ± 0.005 0.0660 ± 0.000 0.0313 ± 0.001 0.0333 ± 0.002
IOF/ROL 0.5133 ± 0.030 0.5646 ± 0.015 0.6222 ± 0.000 0.5585 ± 0.007 0.5701 ± 0.004
LexisNexis 0.9784 ± 0.012 0.9863 ± 0.010 0.9999 ± 0.000 0.9960 ± 0.000 0.9961 ± 0.000
Paint Control 0.1151 ± 0.000 0.1139 ± 0.000 0.1152 ± 0.000 0.1133 ± 0.000 0.1131 ± 0.000
OkHttp 0.0830 ± 0.001 0.0579 ± 0.008 0.1160 ± 0.000 0.0658 ± 0.000 0.0702 ± 0.000
Retrofit 0.0088 ± 0.000 0.0076 ± 0.001 0.0126 ± 0.000 0.0070 ± 0.000 0.0073 ± 0.000
ZXing 0.0122 ± 0.000 0.0126 ± 0.001 0.0227 ± 0.000 0.0037 ± 0.000 0.0037 ± 0.000

Time Budget: 50%

Druid 0.1840 ± 0.137 0.1213 ± 0.071 0.4331 ± 0.000 0.4057 ± 0.013 0.4225 ± 0.008
Fastjson 0.0399 ± 0.010 0.0602 ± 0.020 0.1445 ± 0.000 0.0768 ± 0.018 0.0724 ± 0.023
Deeplearning4j 0.5276 ± 0.039 0.5447 ± 0.010 0.5788 ± 0.000 0.4695 ± 0.000 0.4625 ± 0.000
DSpace 0.0334 ± 0.001 0.0218 ± 0.002 0.0604 ± 0.000 0.0486 ± 0.004 0.0499 ± 0.006
GSDTSR 0.0199 ± 0.000 0.0179 ± 0.000 0.0259 ± 0.000 0.0093 ± 0.000 0.0096 ± 0.000
Guava 0.0303 ± 0.016 0.0387 ± 0.006 0.0681 ± 0.000 0.0437 ± 0.002 0.0425 ± 0.005
IOF/ROL 0.7037 ± 0.019 0.6834 ± 0.014 0.7764 ± 0.000 0.7110 ± 0.003 0.7193 ± 0.003
LexisNexis 0.9894 ± 0.005 0.9902 ± 0.006 0.9999 ± 0.000 0.9959 ± 0.000 0.9961 ± 0.000
Paint Control 0.1283 ± 0.000 0.1142 ± 0.001 0.1290 ± 0.000 0.1222 ± 0.000 0.1223 ± 0.000
OkHttp 0.1118 ± 0.014 0.1060 ± 0.003 0.1671 ± 0.000 0.1431 ± 0.000 0.1486 ± 0.000
Retrofit 0.0134 ± 0.001 0.0138 ± 0.001 0.0188 ± 0.000 0.0156 ± 0.000 0.0172 ± 0.000
ZXing 0.0201 ± 0.000 0.0201 ± 0.001 0.0227 ± 0.000 0.0109 ± 0.000 0.0110 ± 0.000

Time Budget: 80%

Druid 0.1477 ± 0.113 0.1230 ± 0.096 0.4331 ± 0.000 0.4069 ± 0.014 0.4292 ± 0.004
Fastjson 0.0385 ± 0.011 0.0516 ± 0.018 0.1445 ± 0.000 0.1040 ± 0.010 0.0860 ± 0.022
Deeplearning4j 0.5016 ± 0.058 0.5475 ± 0.007 0.5806 ± 0.000 0.4224 ± 0.001 0.4047 ± 0.000
DSpace 0.0374 ± 0.001 0.0269 ± 0.002 0.0606 ± 0.000 0.0525 ± 0.003 0.0526 ± 0.005
GSDTSR 0.0218 ± 0.001 0.0203 ± 0.000 0.0280 ± 0.000 0.0093 ± 0.000 0.0096 ± 0.000
Guava 0.0247 ± 0.013 0.0348 ± 0.009 0.0681 ± 0.000 0.0501 ± 0.012 0.0556 ± 0.011
IOF/ROL 0.7263 ± 0.015 0.6857 ± 0.011 0.7789 ± 0.000 0.7293 ± 0.002 0.7334 ± 0.001
LexisNexis 0.9913 ± 0.005 0.9902 ± 0.006 0.9999 ± 0.000 0.9959 ± 0.000 0.9961 ± 0.000
Paint Control 0.1285 ± 0.000 0.1161 ± 0.001 0.1310 ± 0.000 0.1209 ± 0.000 0.1204 ± 0.000
OkHttp 0.1112 ± 0.017 0.1153 ± 0.003 0.1674 ± 0.000 0.1493 ± 0.000 0.1551 ± 0.000
Retrofit 0.0140 ± 0.001 0.0145 ± 0.001 0.0195 ± 0.000 0.0161 ± 0.000 0.0179 ± 0.000
ZXing 0.0201 ± 0.000 0.0197 ± 0.002 0.0227 ± 0.000 0.0224 ± 0.000 0.0227 ± 0.000

Druid
Fastjson

Deeplearning4j

DSpace

GSDTSR

Guava
IOF/ROL

LexisNexis

Paint Control

OkHttp

Retrofit

ZXing

0.2

0.4

0.6

0.8

1.0

Time Budget: 10%
Druid

Fastjson

Deeplearning4j

DSpace

GSDTSR

Guava
IOF/ROL

LexisNexis

Paint Control

OkHttp

Retrofit

ZXing

Time Budget: 50%
Druid

Fastjson

Deeplearning4j

DSpace

GSDTSR

Guava
IOF/ROL

LexisNexis

Paint Control

OkHttp

Retrofit

ZXing

Time Budget: 80%

ANN (RNFail) ANN (TimeRank) FRRMAB (RNFail) FRRMAB (TimeRank)

Figure 6: Radar charts - RMSE values found using NAPFD.

13

123

Table 7: Prioritization Time (sec.) comparison.

RETECS
Deterministic

COLEMAN

SUT RNFail TimeRank RNFail TimeRank

Time Budget: 10%

Druid 0.3035 ± 0.031 � 0.3113 ± 0.026 � 0.0029 ± 0.000� 0.2383 ± 0.005 � 0.2316 ± 0.004 �
Fastjson 0.2108 ± 0.022 � 0.2025 ± 0.012 � 0.0029 ± 0.000� 0.4947 ± 0.193 � 0.4806 ± 0.191 �
Deeplearning4j 0.0037 ± 0.000 � 0.0179 ± 0.003 � 0.0026 ± 0.000� 0.0272 ± 0.000 � 0.0272 ± 0.000 �
DSpace 0.0103 ± 0.001 � 0.0305 ± 0.002 � 0.0027 ± 0.000� 0.0296 ± 0.002 � 0.0296 ± 0.002 �
GSDTSR 0.0026 ± 0.000 � 0.0027 ± 0.000 � 0.0020 ± 0.000� 0.0253 ± 0.000 � 0.0253 ± 0.000 �
Guava 0.0335 ± 0.003 � 0.0385 ± 0.003 � 0.0027 ± 0.000� 0.0660 ± 0.013 � 0.0660 ± 0.013 �
IOF/ROL 0.0031 ± 0.000 � 0.2022 ± 0.036 � 0.0024 ± 0.000� 0.0277 ± 0.000 � 0.0277 ± 0.000 �
LexisNexis 0.4077 ± 0.036 � 0.5966 ± 0.052 � 0.0037 ± 0.000� 0.3328 ± 0.004 � 0.3277 ± 0.004 �
Paint Control 0.0019 ± 0.000� 0.0022 ± 0.000 � 0.0022 ± 0.000 � 0.0256 ± 0.000 � 0.0256 ± 0.000 �
OkHttp 0.0074 ± 0.001 � 0.0225 ± 0.002 � 0.0026 ± 0.000� 0.0286 ± 0.001 � 0.0285 ± 0.001 �
Retrofit 0.0044 ± 0.001 � 0.01 ± 0.002 � 0.0026 ± 0.000� 0.0277 ± 0.000 � 0.0277 ± 0.000 �
ZXing 0.0125 ± 0.001 � 0.0151 ± 0.001 � 0.0026 ± 0.000� 0.0343 ± 0.000 � 0.0342 ± 0.000 �

Time Budget: 50%

Druid 0.3881 ± 0.042 � 0.3844 ± 0.045 � 0.0029 ± 0.000� 0.2474 ± 0.004 � 0.2373 ± 0.002 �
Fastjson 0.2474 ± 0.016 � 0.2395 ± 0.028 � 0.0029 ± 0.000� 0.4774 ± 0.181 � 0.4740 ± 0.181 �
Deeplearning4j 0.0038 ± 0.000 � 0.0187 ± 0.003 � 0.0026 ± 0.000� 0.0271 ± 0.000 � 0.0271 ± 0.000 �
DSpace 0.0101 ± 0.001 � 0.0507 ± 0.002 � 0.0027 ± 0.000� 0.0291 ± 0.001 � 0.0291 ± 0.001 �
GSDTSR 0.0027 ± 0.000 � 0.0028 ± 0.000 � 0.0021 ± 0.000� 0.0253 ± 0.000 � 0.0253 ± 0.000 �
Guava 0.0335 ± 0.003 � 0.0405 ± 0.003 � 0.0028 ± 0.000� 0.0648 ± 0.012 � 0.0648 ± 0.012 �
IOF/ROL 0.0034 ± 0.000 � 0.5364 ± 0.088 � 0.0024 ± 0.000� 0.0278 ± 0.000 � 0.0278 ± 0.000 �
LexisNexis 0.7408 ± 0.114 � 1.5037 ± 0.290 � 0.0037 ± 0.000� 0.3745 ± 0.008 � 0.3710 ± 0.008 �
Paint Control 0.0020 ± 0.000� 0.0028 ± 0.000 � 0.0021 ± 0.000 � 0.0256 ± 0.000 � 0.0256 ± 0.000 �
OkHttp 0.0079 ± 0.001 � 0.0371 ± 0.003 � 0.0026 ± 0.000� 0.0283 ± 0.000 � 0.0283 ± 0.000 �
Retrofit 0.005 ± 0.001 � 0.0178 ± 0.003 � 0.0026 ± 0.000� 0.0277 ± 0.000 � 0.0277 ± 0.000 �
ZXing 0.0156 ± 0.002 � 0.0229 ± 0.006 � 0.0026 ± 0.000� 0.0343 ± 0.000 � 0.0343 ± 0.000 �

Time Budget: 80%

Druid 0.3733 ± 0.022 � 0.2954 ± 0.092 � 0.0029 ± 0.000� 0.2518 ± 0.003 � 0.2393 ± 0.002 �
Fastjson 0.2587 ± 0.019 � 0.223 ± 0.032 � 0.0028 ± 0.000� 0.4928 ± 0.185 � 0.4795 ± 0.182 �
Deeplearning4j 0.0037 ± 0.001 � 0.0217 ± 0.008 � 0.0025 ± 0.000� 0.0272 ± 0.000 � 0.0272 ± 0.000 �
DSpace 0.0107 ± 0.001 � 0.0556 ± 0.001 � 0.0025 ± 0.000� 0.0293 ± 0.001 � 0.0293 ± 0.001 �
GSDTSR 0.0026 ± 0.000 � 0.0028 ± 0.000 � 0.0021 ± 0.000� 0.0253 ± 0.000 � 0.0253 ± 0.000 �
Guava 0.0349 ± 0.003 � 0.0405 ± 0.003 � 0.0028 ± 0.000� 0.0655 ± 0.012 � 0.0649 ± 0.012 �
IOF/ROL 0.0033 ± 0.001 � 0.6649 ± 0.094 � 0.0023 ± 0.000� 0.0279 ± 0.000 � 0.0279 ± 0.000 �
LexisNexis 1.0343 ± 0.451 � 3.8491 ± 1.681 � 0.0036 ± 0.000� 0.4130 ± 0.013 � 0.4090 ± 0.013 �
Paint Control 0.0019 ± 0.000� 0.0032 ± 0.001 � 0.0021 ± 0.000 � 0.0257 ± 0.000 � 0.0257 ± 0.000 �
OkHttp 0.0076 ± 0.001 � 0.0417 ± 0.002 � 0.0026 ± 0.000� 0.0284 ± 0.000 � 0.0284 ± 0.000 �
Retrofit 0.0052 ± 0.001 � 0.0215 ± 0.004 � 0.0025 ± 0.000� 0.0277 ± 0.000 � 0.0277 ± 0.000 �
ZXing 0.0188 ± 0.007 � 0.0254 ± 0.011 � 0.0026 ± 0.000� 0.0343 ± 0.000 � 0.0343 ± 0.000 �

Finding 9. A high test case volatility combined with an in-
creasing number of failures may be a limitation for RETECS.

On the other hand, considering the RMSE values for APFDc
metric (Table 9), we observe that RETECS has better performance
than COLEMAN in a restrictive scenario, in the other time budgets
COLEMAN improves, been competitive in time budget of 50% and
better than RETECS in time budget of 80%. In overall, COLEMAN

obtained the best results using TimeRank function in 17 cases (47%),
and RETECS using RNFail function in 9 cases (25%). Figure 8 shows
the radar plot for RMSE values considering APFDc metric.

We observe similar charts to the ones obtained using the NAPFD
metric, including a bad performance in the same systems. However,
the RMSE values for APFDc are small, that is, both approaches
provide good performance to reduce testing costs.

5.6 Answering our RQ

Based on the aforementioned observations, we aim at answering
our RQ by defining a scale of RMSE magnitude to represent how
far the solutions found by the learning approaches are from the
optimal solutions, as follows:

14

124

Table 8: RMSE comparison - NAPFD.

RETECS COLEMAN

SUT RNFail TimeRank RNFail TimeRank

Time Budget: 10%

Druid 0.5326 ± 0.1449 � 0.5716 ± 0.0749 � 0.5225 ± 0.0790 � 0.4774 ± 0.1162 �
Fastjson 0.3513 ± 0.0256 � 0.3512 ± 0.0067 � 0.2975 ± 0.0261 � 0.3080 ± 0.0333 �
Deeplearning4j 0.2858 ± 0.0818 � 0.2971 ± 0.0197 � 0.1512 ± 0.0031 � 0.1077 ± 0.0009�
DSpace 0.1529 ± 0.0014 � 0.1635 ± 0.0012 � 0.1397 ± 0.0056� 0.1381 ± 0.0102�
GSDTSR 0.0203 ± 0.0002� 0.0201 ± 0.0002� 0.0190 ± 0.0005� 0.0186 ± 0.0005�
Guava 0.1583 ± 0.0396 � 0.1919 ± 0.0105 � 0.1981 ± 0.0030 � 0.1930 ± 0.0022 �
IOF/ROL 0.1695 ± 0.0116 � 0.1476 ± 0.0083� 0.1852 ± 0.0027 � 0.1759 ± 0.0030 �
LexisNexis 0.7026 ± 0.0142 � 0.6583 ± 0.0599 � 0.6216 ± 0.0017 � 0.6175 ± 0.0016 �
Paint Control 0.0005 ± 0.0006� 0.0026 ± 0.0004� 0.0048 ± 0.0001� 0.0048 ± 0.0001�
OkHttp 0.2126 ± 0.0033 � 0.2613 ± 0.0117 � 0.2200 ± 0.0000 � 0.2064 ± 0.0000 �
Retrofit 0.0730 ± 0.0056� 0.0835 ± 0.0079� 0.0802 ± 0.0000� 0.0790 ± 0.0000�
ZXing 0.1100 ± 0.0022� 0.1097 ± 0.0026� 0.1283 ± 0.0000� 0.1276 ± 0.0000�

Time Budget: 50%

Druid 0.5264 ± 0.1502 � 0.5885 ± 0.0778 � 0.1766 ± 0.0357 � 0.1129 ± 0.0327�
Fastjson 0.3516 ± 0.0105 � 0.3234 ± 0.0211 � 0.2645 ± 0.0488 � 0.2739 ± 0.0623 �
Deeplearning4j 0.3577 ± 0.0773 � 0.4235 ± 0.0213 � 0.2424 ± 0.0014 � 0.1743 ± 0.0006 �
DSpace 0.1655 ± 0.0022 � 0.1857 ± 0.0026 � 0.1116 ± 0.0292� 0.0959 ± 0.0271�
GSDTSR 0.0282 ± 0.0005� 0.0349 ± 0.0003� 0.0494 ± 0.0002� 0.0492 ± 0.0002�
Guava 0.2100 ± 0.0405 � 0.1951 ± 0.0114 � 0.1704 ± 0.0083 � 0.1717 ± 0.0170 �
IOF/ROL 0.2183 ± 0.0162 � 0.2258 ± 0.0129 � 0.2168 ± 0.0041 � 0.1937 ± 0.0040 �
LexisNexis 0.7598 ± 0.0230 � 0.6948 ± 0.0916 � 0.3820 ± 0.0074 � 0.3543 ± 0.0077 �
Paint Control 0.0071 ± 0.0005� 0.0160 ± 0.0010� 0.0049 ± 0.0004� 0.0048 ± 0.0003�
OkHttp 0.2531 ± 0.0169 � 0.3086 ± 0.0047 � 0.1537 ± 0.0004 � 0.1278 ± 0.0006�
Retrofit 0.1434 ± 0.0079� 0.1384 ± 0.0081� 0.0836 ± 0.0000� 0.0644 ± 0.0000�
ZXing 0.0914 ± 0.0008� 0.0897 ± 0.0043� 0.1158 ± 0.0000� 0.1114 ± 0.0000�

Time Budget: 80%

Druid 0.5656 ± 0.1268 � 0.5667 ± 0.1099 � 0.1562 ± 0.0312 � 0.0666 ± 0.0182�
Fastjson 0.3540 ± 0.0105 � 0.3221 ± 0.0160 � 0.1656 ± 0.0281 � 0.2392 ± 0.0739 �
Deeplearning4j 0.4147 ± 0.0949 � 0.4567 ± 0.0145 � 0.2111 ± 0.0031 � 0.1805 ± 0.0013 �
DSpace 0.1581 ± 0.0028 � 0.1807 ± 0.0031 � 0.0803 ± 0.0189� 0.0609 ± 0.0271�
GSDTSR 0.0312 ± 0.0015� 0.0398 ± 0.0003� 0.0597 ± 0.0002� 0.0595 ± 0.0002�
Guava 0.2268 ± 0.0309 � 0.1968 ± 0.0190 � 0.1131 ± 0.0498� 0.0876 ± 0.0572�
IOF/ROL 0.1893 ± 0.0155 � 0.2226 ± 0.0152 � 0.1733 ± 0.0040 � 0.1585 ± 0.0033 �
LexisNexis 0.6857 ± 0.0433 � 0.5898 ± 0.1237 � 0.2773 ± 0.0049 � 0.2230 ± 0.0037 �
Paint Control 0.0360 ± 0.0013� 0.0330 ± 0.0022� 0.0240 ± 0.0006� 0.0236 ± 0.0007�
OkHttp 0.2219 ± 0.0260 � 0.3007 ± 0.0067 � 0.1131 ± 0.0004� 0.0795 ± 0.0007�
Retrofit 0.1437 ± 0.0161� 0.1362 ± 0.0120� 0.0808 ± 0.0000� 0.0652 ± 0.0000�
ZXing 0.0912 ± 0.0007� 0.0892 ± 0.0035� 0.0283 ± 0.0000� 0.0019 ± 0.0000�

RMSE Magnitude =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
very near if 𝑅𝑀𝑆𝐸 < 0.15
𝑛𝑒𝑎𝑟 if 0.15 ≤ 𝑅𝑀𝑆𝐸 < 0.23
𝑟𝑒𝑎𝑠𝑜𝑛𝑎𝑏𝑙𝑒 if 0.23 ≤ 𝑅𝑀𝑆𝐸 < 0.30
𝑓 𝑎𝑟 if 0.30 ≤ 𝑅𝑀𝑆𝐸 < 0.35
very far if 0.35 ≤ 𝑅𝑀𝑆𝐸

(7)

where i) the very near category (“�”) represents an approxi-
mated optimal performance; ii) the near category (“�”) represents
reaching optimal performance, and that some improvements are
required; iii) the reasonable category (“�”) represents the minimum
acceptable performance. Solutions in this category are acceptable
and are related to the cases in which the SUT behavior, or possibly
the constraints, can make the TCP task hard; iv) the far category
(“�”) represents unsatisfactory performance, and that meaningful

improvements are required; and v) the very far category (“�”) in-
cludes solutions that are far away from to be useful and considered
reasonable. By analogy and to a better visualization, we represent
the RMSE magnitude with the same symbols used to represent the
effect size magnitude in Tables 8 and 9. In this way, we generate
Table 10 that presents the distribution of each magnitude for the
NAPFD and APFDc values found by COLEMAN and RETECS.

In this path, we consider an approach that finds reasonable solu-
tions when RMSE < 0.3. Moreover, other measures suggest such an
affirmation. For instance, with 10% of the available time to execute
the test cases and considering RMSE for NAPFD values, COLEMAN

obtains reasonable solutions with RNFail function in 10 out of 12
cases, while with the budgets of 50% and 80% obtains, respectively
11 and 12 cases. However, on the other hand, RETECS using RNFail

15

125

Table 9: RMSE comparison - APFDc.

RETECS COLEMAN

SUT RNFail TimeRank RNFail TimeRank

Time Budget: 10%

Druid 0.3798 ± 0.1186 � 0.4221 ± 0.0579 � 0.5072 ± 0.0922 � 0.4750 ± 0.1176 �
Fastjson 0.3340 ± 0.0244 � 0.3343 ± 0.0054 � 0.2935 ± 0.0246 � 0.3079 ± 0.0334 �
Deeplearning4j 0.0930 ± 0.0483� 0.0966 ± 0.0407� 0.1922 ± 0.0036 � 0.1839 ± 0.0014 �
DSpace 0.1471 ± 0.0012� 0.1567 ± 0.0013 � 0.1353 ± 0.0044� 0.1353 ± 0.0100�
GSDTSR 0.0193 ± 0.0002� 0.0188 ± 0.0002� 0.0191 ± 0.0005� 0.0186 ± 0.0005�
Guava 0.1203 ± 0.0237� 0.1380 ± 0.0105� 0.1977 ± 0.0024 � 0.1942 ± 0.0019 �
IOF/ROL 0.1696 ± 0.0116 � 0.1478 ± 0.0083� 0.1862 ± 0.0027 � 0.1768 ± 0.0030 �
LexisNexis 0.7056 ± 0.0140 � 0.6625 ± 0.0583 � 0.6284 ± 0.0017 � 0.6243 ± 0.0016 �
Paint Control 0.0005 ± 0.0007� 0.0033 ± 0.0006� 0.0060 ± 0.0001� 0.0060 ± 0.0001�
OkHttp 0.1868 ± 0.0028 � 0.2273 ± 0.0120 � 0.2083 ± 0.0000 � 0.1982 ± 0.0000 �
Retrofit 0.0636 ± 0.0058� 0.0744 ± 0.0084� 0.0816 ± 0.0000� 0.0803 ± 0.0000�
ZXing 0.0940 ± 0.0031� 0.0937 ± 0.0035� 0.1256 ± 0.0000� 0.1243 ± 0.0000�

Time Budget: 50%

Druid 0.3365 ± 0.1361 � 0.4203 ± 0.0602 � 0.1650 ± 0.0437 � 0.1050 ± 0.0341�
Fastjson 0.2018 ± 0.0097 � 0.1956 ± 0.0446 � 0.2594 ± 0.0492 � 0.2691 ± 0.0602 �
Deeplearning4j 0.2061 ± 0.0591 � 0.1983 ± 0.0248 � 0.2513 ± 0.0029 � 0.2363 ± 0.0011 �
DSpace 0.1401 ± 0.0028� 0.1568 ± 0.0033 � 0.1085 ± 0.0259� 0.0969 ± 0.0252�
GSDTSR 0.0267 ± 0.0004� 0.0290 ± 0.0003� 0.0473 ± 0.0002� 0.0471 ± 0.0002�
Guava 0.1114 ± 0.0253� 0.1049 ± 0.0199� 0.1606 ± 0.0084 � 0.1708 ± 0.0184 �
IOF/ROL 0.2186 ± 0.0166 � 0.2315 ± 0.0122 � 0.2209 ± 0.0041 � 0.1981 ± 0.0038 �
LexisNexis 0.7327 ± 0.0172 � 0.6780 ± 0.0868 � 0.3893 ± 0.0073 � 0.3636 ± 0.0075 �
Paint Control 0.0059 ± 0.0006� 0.0315 ± 0.0019� 0.0126 ± 0.0003� 0.0126 ± 0.0003�
OkHttp 0.2164 ± 0.0290 � 0.2114 ± 0.0040 � 0.1360 ± 0.0004� 0.1192 ± 0.0005�
Retrofit 0.1138 ± 0.0086� 0.1069 ± 0.0098� 0.0731 ± 0.0000� 0.0572 ± 0.0000�
ZXing 0.0420 ± 0.0018� 0.0407 ± 0.0071� 0.1078 ± 0.0000� 0.1059 ± 0.0000�

Time Budget: 80%

Druid 0.4928 ± 0.1520 � 0.5337 ± 0.1015 � 0.1562 ± 0.0396 � 0.0538 ± 0.0218�
Fastjson 0.2859 ± 0.0157 � 0.2739 ± 0.0318 � 0.1679 ± 0.0268 � 0.2309 ± 0.0689 �
Deeplearning4j 0.2728 ± 0.0838 � 0.2104 ± 0.0238 � 0.2842 ± 0.0034 � 0.3058 ± 0.0014 �
DSpace 0.1169 ± 0.0030� 0.1454 ± 0.0038� 0.0782 ± 0.0171� 0.0707 ± 0.0260�
GSDTSR 0.0284 ± 0.0006� 0.0305 ± 0.0003� 0.0541 ± 0.0002� 0.0539 ± 0.0002�
Guava 0.1686 ± 0.0333 � 0.1596 ± 0.0281 � 0.1134 ± 0.0524� 0.0922 ± 0.0584�
IOF/ROL 0.1870 ± 0.0160 � 0.2291 ± 0.0137 � 0.1797 ± 0.0037 � 0.1652 ± 0.0032 �
LexisNexis 0.6459 ± 0.0365 � 0.5812 ± 0.1008 � 0.2890 ± 0.0045 � 0.2424 ± 0.0037 �
Paint Control 0.0321 ± 0.0011� 0.0431 ± 0.0025� 0.0301 ± 0.0005� 0.0295 ± 0.0006�
OkHttp 0.2246 ± 0.0408 � 0.1846 ± 0.0074 � 0.1058 ± 0.0005� 0.0791 ± 0.0007�
Retrofit 0.1084 ± 0.0152� 0.0985 ± 0.0136� 0.0702 ± 0.0000� 0.0544 ± 0.0000�
ZXing 0.0431 ± 0.0014� 0.0437 ± 0.0116� 0.0258 ± 0.0000� 0.0030 ± 0.0000�

function obtains reasonable solutions in 9 out of 12 cases with the
budget of 10%, and in 8 cases with the budgets of 50% and 80%.

Considering RMSE values for APFDc metric, COLEMAN using
RNFail function, finds reasonable solutions in 10 cases, out of 12,
for a time budget of 10%, and 11 and 12 cases for, respectively,
the budgets of 50% and 80%. While RETECS using RNFail finds
reasonable solutions in 9 out of 12 cases with the budget of 10%,
and in 10 cases for the budgets of 50% and 80%. In such cases, we can
conclude that the approaches have, in overall, a good performance.

Considering all 72 cases - all systems, budgets and both measures
NAPFD and APDFc - COLEMAN obtained reasonable solutions in
66 cases (92%) using RNFail, and using TimeRank in 63 (88%). On
the other hand, RETECS obtained reasonable solutions in 54 cases
(75%) using RNFail and using TimeRank in 52 (72%). In overall,

RNFail produced more reasonable solutions than TimeRank for
both approaches. However, COLEMAN using TimeRank obtained
the best performance obtaining the best RMSE values (highlight in
gray in Tables 8 and 9) in 24 cases for NAPFD and in 17 for APFDc,
followed by RETECS using RNFail that obtained 5 cases for NAPFD
and 9 for APFDc.

Finding 10. Based on the proposed scale, COLEMAN finds
reasonable solutions in 92% of the cases and RETECS in
75%. The less restrictive the budget the greater the number
of reasonable solutions found by both approaches. We can
then conclude that the solutions generated are very close
to the optimal ones.

16

126

0 100 200 300 400 500
CI Cycle

0

100

200

300

400

Ac
cu

m
ul

at
iv

e
N

AP
FD

Time Budget: 10%

0 100 200 300 400 500
CI Cycle

Time Budget: 50%

0 100 200 300 400 500
CI Cycle

Time Budget: 80%

y y y
ANN (RNFail) ANN (TimeRank) Deterministic FRRMAB (RNFail) FRRMAB (TimeRank)

Figure 7: Accumulative NAPFD values for Deeplearning4j system.

Druid
Fastjson

Deeplearning4j

DSpace

GSDTSR

Guava
IOF/ROL

LexisNexis

Paint Control

OkHttp

Retrofit

ZXing

0.2

0.4

0.6

0.8

1.0

Time Budget: 10%
Druid

Fastjson

Deeplearning4j

DSpace

GSDTSR

Guava
IOF/ROL

LexisNexis

Paint Control

OkHttp

Retrofit

ZXing

Time Budget: 50%
Druid

Fastjson

Deeplearning4j

DSpace

GSDTSR

Guava
IOF/ROL

LexisNexis

Paint Control

OkHttp

Retrofit

ZXing

Time Budget: 80%

ANN (RNFail) ANN (TimeRank) FRRMAB (RNFail) FRRMAB (TimeRank)

Figure 8: Radar charts - RMSE values found using APFDc.

5.7 Discussions and Implications

In this section, we discuss some implications of our findings regard-
ing the application and limitations of the approaches.

Guidelines for application. Both approaches generate reason-
able solutions compared with optimal ones. COLEMAN and RETECS
are able to obtain reasonable solutions in, respectively, 92% and
75% of the cases. They are applicable in real scenarios, spending
around one second in the worst case to execute. In this way, they
contribute to reducing costs by decreasing the time spent in the
CI cycle. RETECS presents better performance with RNFail func-
tion. This happens with all measures evaluated. In contrast with
COLEMAN, which performs better with TimeRank.

COLEMAN outperforms RETECS in the great majority of cases. It
is important to highlight that this happens for the systems that can
be considered hard cases, and considering all measures. However,
the use of RETECS is indicated in a restrictive budget regarding
early fault detection with cost consideration, in this case, test case
execution. However, overall considering this cost does not seem to
impact the results, nor the performance of COLEMAN, which does
not include time in its formulation.

Limitations and Improvements. We observe that both ap-
proaches have some limitations to learn with few historical test
data. The following characteristics are drawbacks for the learning
approaches: systems with a small number of CI Cycles, with peaks
of failures, and a large test case set, in which many failures are

distributed over many test cases. In this way, a possible research
direction is to propose a hybrid approach. An algorithm with good
performance with few historical data could be used to overcome
that limitation in the first commits. After with enough information
RETECS or COLEMAN would be used. Another possible improve-
ment is the use of Long Short Term Memory (LSTM) networks [10].
The LSTM is well suited to classify, process, and predict time series
with time intervals of unknown duration. Gap length insensitivity
gives LSTM an advantage over traditional ANNs (used by RETECS).

Benchmark. Our analysis revealed some interesting character-
istics of the target systems that could be considered in the com-
position of a benchmark for future experiments. The IOF/ROL,
LexisNexis, Deeplearning4j, and Druid systems can be consid-
ered the most challenging prioritization cases, due to the high
volatility presented, as well as the number of test cases, peaks of
failures, and the high number of failures distributed over many test
cases. The Guava, Retrofit, and ZXing systems represent scenar-
ios for that it is challenging to obtain expressive time reduction.
The failure distribution over the test cases is low and presents small
number of peaks in a few CI Cycles. In addition to this, the failing
test cases vary in each CI Cycle.

6 THREATS TO VALIDITY

We identified the following points that can be threats to our results.
The first threat is the measures used. Other TCP measures could

17

127

Table 10: RMSE magnitudes for NAPFD and APFDc values found by COLEMAN and RETECS.

NAPFD APFDc

Scale RETECS COLEMAN RETECS COLEMAN

RNFail TimeRank RNFail TimeRank RNFail TimeRank RNFail TimeRank

Time Budget: 10%

� very near 4 (33%) 5 (42%) 5 (42%) 6 (50%) 7 (58%) 7 (58%) 5 (42%) 5 (42%)
� near 4 (33%) 2 (17%) 4 (33%) 3 (25%) 2 (17%) 2 (17%) 4 (33%) 4 (33%)
� reasonable 1 (8%) 2 (17%) 1 (8%) 0 (0%) 0 (0%) 0 (0%) 1 (8%) 0 (0%)
� far 0 (0%) 0 (0%) 0 (0%) 1 (8%) 1 (8%) 1 (8%) 0 (0%) 1 (8%)
� very far 3 (25%) 3 (25%) 2 (17%) 2 (17%) 2 (17%) 2 (17%) 2 (17%) 2 (17%)

Time Budget: 50%

� very near 4 (33%) 4 (33%) 5 (42%) 7 (58%) 6 (50%) 5 (42%) 6 (50%) 7 (58%)
� near 3 (25%) 3 (25%) 4 (33%) 3 (25%) 4 (33%) 4 (33%) 3 (25%) 2 (17%)
� reasonable 1 (8%) 0 (0%) 2 (17%) 1 (8%) 0 (0%) 1 (8%) 2 (17%) 2 (17%)
� far 0 (0%) 2 (17%) 0 (0%) 0 (0%) 1 (8%) 0 (0%) 0 (0%) 0 (0%)
� very far 4 (33%) 3 (25%) 1 (8%) 1 (8%) 1 (8%) 2 (17%) 1 (8%) 1 (8%)

Time Budget: 80%

� very near 4 (33%) 4 (33%) 7 (58%) 8 (67%) 5 (42%) 5 (42%) 7 (58%) 8 (67%)
� near 4 (33%) 3 (25%) 4 (33%) 3 (25%) 3 (25%) 4 (33%) 3 (25%) 1 (8%)
� reasonable 0 (0%) 0 (0%) 1 (8%) 1 (8%) 2 (17%) 1 (8%) 2 (17%) 2 (17%)
� far 0 (0%) 2 (17%) 0 (8%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (8%)
� very far 4 (33%) 3 (25%) 0 (0%) 0 (0%) 2 (17%) 2 (17%) 0 (0%) 0 (0%)

Total of

Reasonable

Solutions1
25 (69%) 23 (64%) 33 (92%) 32 (89%) 29 (81%) 29 (81%) 33 (92%) 31 (86%)

1The reasonable solutions are that ones with RMSE < 0.3.

lead to different results. To mitigate this threat, we chose distinct
measures largely used in the TCP literature that better deal with
the time budgets and allow us to analyze different perspectives.

The set of parameters used for the approaches is a threat. It is pos-
sible that using an automatic configuration setting, the results can
get improvements. To minimize such a threat, we used parameters
from previous experiments [21, 27] reported in the literature.

The datasets used can be considered a threat. For this, we used a
relevant set of systems with different behaviors and aspects con-
cerning the number of failures and test cases.

The last threat is concerning the RMSE magnitude scale. Such
magnitudes were obtained based on our analysis, observations,
SUTs behavior, and by making correlation with NAPFD and APFDc
values. Other researchers can observe different aspects and propose
a different scale.

7 CONCLUDING REMARKS

In this paper, we evaluate how far the solutions obtained by TCPCI
Ranking-to-Learn approaches, RETECS and COLEMAN, are from
optimal solutions produced by a deterministic approach. We ana-
lyzed three test budgets and two reward functions: Reward Based
on Failures and Reward Based on Time-Rank, concerning twelve

large-scale real-world software systems. Six measures are used to
evaluate: fault detection capability (and cost consideration), early
fault detection, time reduction percentage in the CI cycles, prioriti-
zation time, and distance from the approximated solution.

Regarding the application of the approaches, RETECS reaches
the best performance with RNFail function, in a less restrictive
budget of 10%, and APFDc considering test duration as cost. COLE-
MAN reaches the best performance with TimeRank function and
mainly for budgets of 50% and 80%. Overall, COLEMAN outper-
forms RETECS in the great majority of the cases, considering all
systems, budgets, and measures.

Regarding our RQ, we can conclude that both approaches are
applicable in real scenarios, taking a negligible time to execute and
reducing the CI cycle’s time cost. Considering all cases - all systems,
budgets and both measures NAPFD and APDFc - COLEMAN and
RETECS produce solutions that are close to the optimal ones in,
respectively, 92% and 75% of the cases.

We observe that a high test case volatility, i.e., test case addition
or removing along with the CI Cycles, and a high number of failures
distributed over many test cases make the problem hard for both
approaches. Other findings are that a few cycles can hamper the
learning process and that the reduction time in a CI cycle also
depends on the test case duration.

18

128

Future work includes the use of other evaluation measures to
evaluate the approaches. Other systems should be used with a
greater number of failures and test cases to allow scalability evalu-
ation.

ACKNOWLEDGMENTS

The work is supported by the Brazilian funding agencies CAPES
and CNPq (Grant 305968/2018).

REFERENCES
[1] Bajaj, A. and Sangwan, O. P. (2019). A Systematic Literature Review of Test Case
Prioritization Using Genetic Algorithms. IEEE Access, 7:126355–126375.

[2] Basili, V. R., Caldiera, G., and Rombach, H. D. (1994). The goal question metric
approach. Encyclopedia of software engineering, 2(1994):528–532.

[3] Bertolino, A., Guerriero, A., Breno Miranda, R. P., and Russo, S. (2020). Learning-to-
rank vs ranking-to-learn: Strategies for regression testing in continuous integration.
In 42nd International Conference on Software Engineering, ICSE’20, pages 1–12, New
York, NY, USA. ACM.

[4] Busjaeger, B. and Xie, T. (2016). Learning for Test Prioritization: An Industrial
Case Study. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2016, pages 975–980, New York, NY, USA.
ACM.

[5] Di Nucci, D., Panichella, A., Zaidman, A., and De Lucia, A. (2018). A Test Case Prior-
itization Genetic Algorithm guided by the Hypervolume Indicator. IEEE Transactions
on Software Engineering.

[6] Elbaum, S., Malishevsky, A., and Rothermel, G. (2001). Incorporating varying
test costs and fault severities into test case prioritization. In Proceedings of the 23rd
International Conference on Software Engineering, pages 329–338.

[7] Elbaum, S., McLaughlin, A., and Penix, J. (2014). The Google Dataset of Testing
Results.

[8] Epitropakis, M., Yoo, S., Harman, M., and Burke, E. (2015). Empirical evaluation
of pareto efficient multi-objective regression test case prioritisation. In Proceedings
of the 2015 International Symposium on Software Testing and Analysis, ISSTA, pages
234–245, New York, NY, USA. ACM.

[9] Haghighatkhah, A., Mäntylä, M., Oivo, M., and Kuvaja, P. (2018). Test prioritization
in continuous integration environments. Journal of Systems and Software, 146:80–98.

[10] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural
Computation, 9(8):1735–1780.

[11] Khatibsyarbini, M., Isa, M. A., Jawawi, D. N. A., and Tumeng, R. (2018). Test
case prioritization approaches in regression testing: A systematic literature review.
Information and Software Technology, 93:74–93.

[12] Kruskal, W. H. and Wallis, W. A. (1952). Use of Ranks in One-Criterion Variance
Analysis. Journal of the American Statistical Association, 47(260):583–621.

[13] Kuleshov, V. and Precup, D. (2014). Algorithms for multi-armed bandit problems.
Journal of Machine Learning Research, 1:1–48.

[14] Li, K., Fialho, A., Kwong, S., and Zhang, Q. (2014). Adaptive operator selection
with bandits for a multiobjective evolutionary algorithm based on decomposition.
Evolutionary Computation, IEEE Transactions on, 18(1):114–130.

[15] Li, Z., Harman, M., and Hierons, R. M. (2007). Search Algorithms for Regression
Test Case Prioritization. IEEE Transactions on Software Engineering, 33(4):225–237.

[16] Mann, H. B. and Whitney, D. R. (1947). On a test of whether one of two random
variables is stochastically larger than the other. The annals of mathematical statistics,
pages 50–60.

[17] Marijan, D. (2015). Multi-perspective Regression Test Prioritization for Time-
Constrained Environments. In Proceedings of the 2015 IEEE International Conference
on Software Quality, Reliability and Security, QRS’15, pages 157–162, Washington,
DC, USA. IEEE Computer Society.

[18] Marijan, D., Gotlieb, A., and Liaaen,M. (2019). A learning algorithm for optimizing
continuous integration development and testing practice. Software: Practice and
Experience, 49(2):192–213.

[19] Marijan, D., Gotlieb, A., and Sen, S. (2013). Test Case Prioritization for Continuous
Regression Testing: An Industrial Case Study. In IEEE International Conference on
Software Maintenance, pages 540–543. IEEE.

[20] Marijan, D., Liaaen, M., Gotlieb, A., Sen, S., and Ieva, C. (2017). TITAN: Test
Suite Optimization for Highly Configurable Software. In Proceedings of the IEEE
International Conference on Software Testing, Verification and Validation, ICST, pages
524–531. IEEE.

[21] Prado Lima, J. A. and Vergilio, S. R. (2020a). A multi-armed bandit approach for
test case prioritization in continuous integration environments. IEEE Transactions on
Software Engineering, page 12.

[22] Prado Lima, J. A. and Vergilio, S. R. (2020b). Multi-armed bandit test case priori-
tization in continuous integration environments: A trade-off analysis. In Proceedings
of the 5th Brazilian Symposium on Systematic and Automated Software Testing, pages
21–30, New York, NY, USA. Association for Computing Machinery.

[23] Prado Lima, J. A. and Vergilio, S. R. (2020c). Test Case Prioritization in Continuous
Integration Environments: A Systematic Mapping Study. Information and Software
Technology.

[24] Qu, X., Cohen, M. B., and Woolf, K. M. (2007). Combinatorial Interaction Regres-
sion Testing: A Study of Test Case Generation and Prioritization. In IEEE International
Conference on Software Maintenance, pages 255–264.

[25] Robbins, H. (1985). Some aspects of the sequential design of experiments. In
Herbert Robbins Selected Papers, pages 169–177. Springer.

[26] Rothermel, G., Untch, R. H., Chu, C., and Harrold, M. J. (1999). Test Case Prioriti-
zation: An Empirical Study. In Proceedings of the IEEE International Conference on
Software Maintenance, ICSM ’99, pages 179–188. IEEE Computer Society.

[27] Spieker, H., Gotlieb, A., Marijan, D., and Mossige, M. (2017). Reinforcement Learn-
ing for Automatic Test Case Prioritization and Selection in Continuous Integration.
In Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2017, pages 12–22, New York, NY, USA. ACM.

[28] Vargha, A. and Delaney, H. D. (2000). A Critique and Improvement of the CL
Common Language Effect Size Statistics of McGraw andWong. Journal of Educational
and Behavioral Statistics, 25(2):101–132.

[29] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén, A.
(2000). Experimentation in Software Engineering: An Introduction. Kluwer Academic
Publishers.

[30] Xiao, L., Miao, H., and Zhong, Y. (2018). Test case prioritization and selection
technique in continuous integration development environments: a case study. Inter-
national Journal of Engineering & Technology, 7(2.28):332–336.

[31] Yoo, S. and Harman, M. (2012). Regression Testing Minimization, Selection and
Prioritization: A Survey. Software Testing, Verification & Reliability, 22(2):67–120.

[32] Yu, Z., Fahid, F., Menzies, T., Rothermel, G., Patrick, K., and Cherian, S. (2019).
TERMINATOR: better automated UI test case prioritization. In Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, FSE, pages 883–894. ACM.

19

129

130

APPENDIX E – LEARNING-BASED PRIORITIZATION OF TEST CASES IN CI OF
HCS

Learning-based Prioritization of Test Cases in Continuous
Integration of Highly-Configurable Software

Jackson A. Prado Lima
DInf, Federal University of

Paraná
Curitiba, Brazil

jackson.lima@ufpr.br

Willian D. F.
Mendonça

DInf, Federal University of
Paraná

Curitiba, Brazil
willian.mendonca@ufpr.br

Silvia R. Vergilio
DInf, Federal University of

Paraná
Curitiba, Brazil

silvia@inf.ufpr.br

Wesley K. G. Assunção
COTSI, Federal University
of Technology - Paraná

Toledo, Brazil
wesleyk@utfpr.edu.br

ABSTRACT

Continuous Integration (CI) is a practice widely adopted in the
industry to allow frequent integration of code changes. During
the CI process, many test cases are executed multiple times a day,
subject to time constraints. In this scenario, a learning-based ap-
proach, named COLEMAN, has been successfully applied. COLEMAN
allows earlier execution of the most promising test cases to reveal
faults. This approach considers CI particularities such as time bud-
get and volatility of test cases, related to the fact that test cases can
be added/removed along the CI cycles. In the CI of Highly Configu-
ration System (HCS), many product variants must be tested, each
one with different configuration options, but having test cases that
are common to or reused from other variants. In this context, we
found, by analogy, another particularity, the volatility of variants,
that is, some variants can be included/discontinued along CI cycles.
Considering this context, this work introduces two strategies for
the application of COLEMAN in the CI of HCS: the Variant Test Set
Strategy (VTS) that relies on the test set specific for each variant,
and the Whole Test Set Strategy (WST) that prioritizes the test
set composed by the union of the test cases of all variants. Both
strategies are evaluated in a real-world HCS, considering three test
budgets. The results show that the proposed strategies are appli-
cable regarding the time spent for prioritization. They perform
similarly regarding early fault detection, but WTS better mitigates
the problem of beginning without knowledge, and is more suitable
when a new variant to be tested is added.

KEYWORDS

Test Case Prioritization, Family of Products, Software Product Line,
Continuous Integration

1 INTRODUCTION

Software systems have to be designed to fulfill demands and require-
ments of users and customers. However, by nature, users/customers
have different needs, mostly related to their business domain, orga-
nizational process, environment restriction, and specialized hard-
ware devices. To succeed, software systems must take into account
and operate over these different needs. Software Product Line (SPL)
is an approach to develop and manage family of software prod-
ucts that can be customized with different configurations (variabil-
ities), while common software assets can be reused in a system-
atic and disciplined way [15]. SPLs are usually implemented as
Highly-Configurable Systems (HCS) by using different configura-
tion options – applying strategies such as conditional compilation,

conditional execution, or build systems – to create custom system
products, a.k.a. variants [25, 39].

Modern software development greatly relies on the automation
of almost all software engineering processes. For instance, practices
like Continuous Integration (CI) have become popular to automati-
cally integrate, build, and test software projects, created by different
developers/teams collaboratively [36]. CI leads the software to be
integrated and tested multiple times a day to detect integration
errors as quickly as possible [6]. However, running a large set of
test cases can take many minutes or even hours [33]. For HCSs,
when many product variants must be tested, this becomes more
problematic. In addition to this, continuous regression testing of
HCS is a challenging activity [8]. Some studies on industrial HCS
practice conclude that automated tools are needed [8, 41]. In CI, it is
fundamental to perform regression testing in a very cost-effective
way, providing rapid test feedback on software failures.

Another important point to consider is that, in a company, mul-
tiple projects may share the same CI environment, imposing time
testing constraints [5]. The test must run a restricted slot of time,
referred as test budget. Therefore, some traditional regression test-
ing approaches are not suitable for CI, mainly those for selection
and minimization of test cases that rely on code coverage, code
instrumentation, or search-based techniques that take a long time
to execute. In this sense, Test Case Prioritization (TCP) is more
popular and used. TCP techniques improve the cost-effectiveness
of regression testing by ordering test cases to allow early execution
of the most important ones, generally those test cases with high
probability of revealing faults [7]. Considering the constraints of
test budgets, early fault detection is essential, because when a test
case fails, test execution can be ended, and less resources are spent.

A recent mapping reports approaches that adapt TCP techniques
for CI environments [30], some of them addressing the HCS con-
text [19, 21, 22]. But most existing approaches present some lim-
itations. Some of them require code analysis, what can be costly.
Furthermore, the great majority does not address the main charac-
teristics of CI environments. For instance, they do not consider test
case volatility, characteristic associated to the fact that test cases
may be added or removed (discontinued) over the CI cycles. They
are not adaptive, that is, they do not learn with past prioritizations.

To overcome such limitations, learning approaches based on
historical failure data have been proposed. These approaches learn
with past prioritizations, usually guided by a reward function [3].
The challenge is to search for early fault detection in the failure-
history of past test cases, but also to explore new test cases. This
is related to the Exploration versus Exploitation dilemma, and is

a consequence of the test budget, since whether only error-prone
test cases are considered without diversity, some test cases can
never be executed. COLEMAN (Combinatorial VOlatiLE Multi-Armed

BANdit) [28] is a promising approach to deal with the Exploration
versus Exploitation dilemma. COLEMAN formulates TCP in CI as a
Multi-Armed Bandit (MAB) problem [32]. A test case is as an arm
and at each time/build multiple arms are selected. In addition, the
arms available at each time may change dynamically over time. In
this way, it learns with the feedback from the application of the
test cases, incorporating diversity in the test suite prioritization.

In the HCS context, we have another particularity that is, by
analogy, the volatility of variants that have different configuration
options. Each variant can be seen as a system to be individually
tested, however, having test cases which are common to or reused
from other variants. Also, some variants can be included or dis-
continued over the CI cycles. To mitigate this problem, this work
proposes two strategies for the application of learning-based ap-
proaches, such as COLEMAN, in the CI of HCS: (i) the Variant Test Set
Strategy (VTS) that relies on the test set specific for each variant;
and (ii) the Whole Test Set Strategy (WTS) that prioritizes the test
set composed by the union of the test cases of all variants.

VTS and WTS are evaluated in a real-world HCS, namely libssh,
regarding some indicators of early fault detection and time reduc-
tion. The results allow (i) comparison on the use of COLEMAN with a
baseline approach that prioritizes the test cases by randomness; (ii)
applicability analysis regarding the time spent in the prioritization
and CI cycles; and (iii) comparison of both strategies. The applica-
tion of the strategies with the learning-based approach COLEMAN
produces better results that their application with a random ap-
proach. COLEMAN applied with both strategies requires only few
seconds to run, not interfering the CI cycles and demonstrating
practical usage. Finally, in our evaluation, VTS and WTS present
very similar results. However WTS clearly benefits from the cases
where there is a history of failed test cases reused among variants,
and better mitigates the problem of beginning without knowledge.

The main contribution of this work is the introduction of two
strategies for the application of a TCP learning-based approach in
CI of HCS. These strategies allowmitigation of the variant volatility
problem. VTS and WTS are evaluated using COLEMAN, a MAB based
approach that learns from the failure history of reused test cases
along the CI cycles, combining exploration and exploitation. The
proposed strategies neither require code analysis nor any other
model, such as feature model. Moreover, we make public all the
data used in this work and the implementation for mining the CI
information, which allows replication and future research [27].

The paper is organized as follows. Section 2 presents amotivating
example. Section 3 reviews COLEMAN, the learning-based approach
adopted in this work. Section 4 introduces the strategies proposed
for the HCS context. Section 5 describes how the evaluation was
conducted. Section 6 presents and analyzes the results. Section 7
overviews related work. Section 8 presents concluding remarks.

2 MOTIVATING EXAMPLE

To illustrate the importance of using TCP in CI, let us consider
the Pipeline #1168093111 from libssh, the subject system used in

1https://gitlab.com/libssh/libssh-mirror/pipelines/116809311/builds

Figure 1: Test #39 failed for ubuntu/openssl_1.1.x/x86_64 af-

ter 122.63 seconds of testing.

our evaluation (see Section 5.2). This pipeline aims to perform the
integration of a new feature in the system, included in the commit
17b518a62 and described below:

pki: add support for sk-ecdsa and sk-ed25519

This adds server-side support for the newly introduced
OpenSSH keytypes sk-ecdsa-sha2-nistp256@openssh.com
and sk-ed25519@openssh.com (including their corresponding
certificates), which are backed by U2F/FIDO2 tokens.

The aforementioned pipeline contains 27 jobs, each job is respon-
sible for building and testing a different variant of libssh. From
these jobs, two of them failed: ubuntu/openssl_1.1.x/x86_64
and visualstudio/x86_64. For instance, Figure 1 presents a screen-
shot of the build log from variant ubuntu/openssl_1.1.x/x86_64.
We can see that the test case #39 (on line 837) has failed.

Considering the testing order defined by the developers/testers,
this job took 122.63 seconds until executing the test case that failed.
In total, this variant has 57 test cases, and it takes 197.01 seconds
to run all tests. Based on that, the testing activity consumed 62% of
the runtime to reach the failed test case. In this case, if we had the
test budget to 50% of the total runtime and no prioritization, we
could not find the bug related to the inclusion of the new feature.

3 COLEMAN

The last section presented the importance of test case orders. Nev-
ertheless, as we mentioned before, TCP in CI for HCSs involves
challenging particularities such as time constraints (test budgets),
the volatility of test cases, and the volatility of variants. To address
such challenges, learning approaches based on historical failure
have been proposed. Bertolino et al [3] distinguish two kinds of
TCP learning-based approaches. The first one, named Learning-
to-rank uses supervised learning to train a model, based on some
test features, which is used to rank test sets in future commits. The
problem with them is that the model may no longer be representa-
tive, when the commit context changes. The second kind, named

2https://gitlab.com/libssh/libssh-mirror/-/commit/17b518a677c92d943cf016b81272ec
10ee1ca368

131

Learning-based Prioritization of Test Cases in CI of HCS

Figure 2: Overview of the COLEMAN interaction with the CI

environment (extracted from [29]).

Ranking-to-learn, is more suitable to the dynamic CI context. This
strategy learns based on the rewards obtained from the feedback
of previous used ranks. The main idea is to maximize the rewards.
Ranking-to-learn approaches are more robust regarding the volatil-
ity of the test cases, code changes, and number of failing tests.
Because of this, the focus of our work is on this kind of approach.

Our study adopts COLEMAN, which presented promising results
compared to similar approaches [28]. COLEMAN formulates the TCP
in CI as a Multi-Armed Bandit (MAB) problem. MAB problems are
sequential decision problems related to the scenario in which a
player plays on a set of slot machines (or arms/actions) that even
being identical produce different gains [32]. After a player pulls
one of the arms in a turn, a reward is received from some unknown
distribution, aiming to maximize the sum of the rewards. To this
end, a policy is the strategy that chooses, at each time, the next arm
to pull based on previously observed rewards and decisions.

To represent the TCP in CI problem as a MAB problem, COLEMAN
considers that a test case is an arm to be pulled, and it encompasses
two MAB variations, namely combinatorial and volatile, to deal
with the dynamic nature of our problem.

In the former variation, at each turn (commit/build/CI Cycle),
a MAB policy selects all arms (test cases) available instead of one.
According to the order in which the policy selects the arms, the
prioritization is being defined. The latter variation deal with the
test case volatility. In this case, only the test set available at each
commit is used by the policy.

COLEMAN is generic and lightweight approach and requires only
historical failure data. No further detail about the system under
test is required, such as code coverage or code instrumentation.
Figure 2 shows how COLEMAN interacts with the CI environment. In
such an environment, teams work continuously integrating code
and making smaller code commits every day, usually monitored by
a CI server. When a change occurs, the CI server clones this code,
builds it and runs the testing processes (on the right side of the
figure). When the entire process is finished, a report is generated
by the CI server, and the developers are informed. COLEMAN acts
after a successful build, in the test phase the approach prioritizes
the test case set available to be used during the test case execution.

For each build (commit 𝑐), a test case set 𝑇𝑐 is available, as well
as a test budget. When the budget is smaller than the total time
required to execute𝑇𝑐 , our approach is then used to obtain a priori-
tized test set𝑇 ′

𝑐 . The idea is that the most relevant test cases, i.e., the
ones that fail, are executed first. Then, according to the performance
of its previous prioritization, the policy receives a reward (feedback).

Based on rewards provided by a reward function, the policy adapts
its experience for future actions (online learning). COLEMAN can be
used with different MAB policies and reward functions. But as pre-
sented and evaluated in previous studies [28], COLEMAN obtained the
best performance using TimeRank (Time-Ranked) function and FR-
RMAB (Fitness-Rate-Rank based on Multi-Armed Bandit) policy [14].
For this reason, we used TimeRank and FRRMAB in this study. They
are described as follows.

The TimeRank function is defined in Equation 1. This function is

based on the rank of 𝑡 ′𝑐 in 𝑇
′
𝑐 ∀ 𝑡 ′𝑐 ∈ 𝑇 ′

𝑐 , where 𝑇
′𝑓 𝑎𝑖𝑙 is composed

by the failing test cases from 𝑇 ′
𝑐 ; 𝑅𝑁𝐹𝑎𝑖𝑙 returns 1 if 𝑡 ′𝑐 failed and

0 otherwise. The 𝑝𝑟𝑒𝑐 (𝑡 ′𝑐1 , 𝑡
′
𝑐2) function returns 1 if the position of

𝑡 ′𝑐1 is lower than the position of 𝑡 ′𝑐2 . The idea is to evaluate whether
failing test cases are ranked in the first positions in𝑇 ′

𝑐 . To this end, a
test case 𝑡 ′𝑐 that does not fail and precedes failing ones are penalized
by their early scheduling. A non-failed test case receives a reward
given by the accumulated number of test cases which failed until
its position in the prioritization rank, that is, it receives a reward
decreased by the number of failing test cases ranked after it.

𝑇𝑖𝑚𝑒𝑅𝑎𝑛𝑘 (𝑡 ′𝑐) = |𝑇 ′𝑓 𝑎𝑖𝑙 | − [¬(𝑅𝑁𝐹𝑎𝑖𝑙 (𝑡 ′𝑐)) ×

|𝑇 ′𝑓 𝑎𝑖𝑙 |∑
𝑖=1

𝑝𝑟𝑒𝑐 (𝑡 ′𝑐 , 𝑡
′
𝑐𝑖)] (1)

FRRMAB policy works with a sliding window with size W. The
reward value (FIR for FRRMAB), is obtained through the reward
function. In this way, it is considered the lastW commits as histori-
cal test data. Thus, for each test case, FRRMAB policy considers the
history of rewards whilst other policies use cumulative rewards.
During the execution, if a test case is discontinued in a commit
(build), it is then removed along with its history.

4 APPLICATION STRATEGIES

COLEMAN was initially designed to deal with a traditional CI process
and its particularities. However, the HCS context also has particu-
larities, namely variant volatility. Next we introduce two strategies
to deal with variant volatility in the CI of HCS.

For the integration of a commit 𝑐 of an HCS 𝑆 , COLEMAN was
adapted to consider that there is a set𝑉 of 𝑛 variants. For each vari-
ant 𝑣𝑖 ∈ 𝑉 a set of test cases𝑇𝑣𝑖 ,𝑐 is available. That is, in this studywe
consider that there is only one test set by variant. COLEMAN receives
as input 𝑛 test sets, {𝑇𝑣1,𝑐 ,𝑇𝑣2,𝑐 , ...,𝑇𝑣𝑛,𝑐 }, and produces 𝑛 prioritized
test sets, {𝑇 ′

𝑣1,𝑐 ,𝑇
′
𝑣2,𝑐 , ...,𝑇

′
𝑣𝑛,𝑐 }. The value 𝑛 can vary depending on

the number of existing variants of 𝑆 when 𝑐 is committed. For the
COLEMAN prioritization, we propose two strategies to deal with a
set of variants and volatility, as illustrated in Figure 3.

1. Variant Test Set Strategy (VTS): in this strategy (at the top
of Figure 3) COLEMAN is applied 𝑛 times for each 𝑐 treating each
variant independently. The 𝑖𝑡ℎ application has as input the set𝑇𝑣𝑖 ,𝑐𝑖
and as output the prioritized set 𝑇 ′

𝑣𝑖 ,𝑐𝑖 . When a new variant of 𝑆 is
introduced, no history information is available.

2.Whole Test Set Strategy (WTS): for this strategy (at the bottom
of Figure 3) COLEMAN is applied only once for each 𝑐 and has as
input only one test set 𝑇𝑆𝑐 =

⋃𝑛
𝑖=1𝑇𝑣𝑖 ,𝑐 composed by the union of

all test sets of all variants under test. A test case 𝑡 in 𝑇𝑆𝑐 can be
common/reused to more than one variant, but it appears in𝑇𝑆 only

132

Figure 3: COLEMAN strategies to deal with HCS variants and

their volatility.

once. The status of 𝑡 is set to failed whether 𝑡 failed in at least one
variant in which the test case have been executed previously. To
calculate the total time required to execute 𝑇𝑆 we set the duration
of 𝑡 with the maximum execution time for 𝑡 considering all variants.
The output is a prioritized set𝑇𝑆 ′𝑐 . The sets𝑇

′
𝑣𝑖 ,𝑐 are then generated,

by selecting from 𝑇𝑆 ′𝑐 only the same test cases that belong to 𝑇𝑣𝑖 ,𝑐
but keeping the prioritization order.

The main advantage of WTS is that if a new variant appears, it
can be tested based on the historical information collected from the
other ones. In this way, mitigating the problem of beginningwithout
knowledge (learning) and adapting to changes in the execution
environment, either by test case volatility or variant volatility.

5 EVALUATION SETUP

This section describes details of our study conducted to evaluate
COLEMAN. The goal is to evaluate the applicability of the proposed
strategies and their performance in comparison with a baseline
random approach. A replication package is available in [27].

5.1 Research Questions

The following research questions guide the evaluation:

RQ1: How is the performance of both strategies when a random

approach is used in comparison with COLEMAN? This question
compares the results obtained by VTS andWTS strategies us-
ing COLEMAN with a prioritization order generated randomly,
approach commonly used in the industry.

RQ2: Using COLEMAN, are the strategies applicable for HCSs in the

CI development context? This question investigates whether
the time spent in the prioritization is acceptable considering
CI Cycles (commits).

RQ3: What is the best strategy in the HCS context? This question
aims to compare the proposed strategies, VTS and WTS.

The idea is to evaluate their ability regarding early fault
detection, and percentage of reduced time.

5.2 Subject System

Our evaluation is based on the SSH library (libssh)3, which is an
open-source C multiplatform library implementing the SSHv2 pro-
tocol on client and server side. This library is designed to remotely
execute programs, transfer files, use a secure and transparent tunnel,
manage public keys, and the like. libssh is statically configurable
with the C preprocessor. libssh was used in the literature by other
pieces work on the topic of HCS and SPLs [10, 23, 24, 26].

Libssh is hosted on GitLab4, which provides an environment
with control version system and CI pipelines. The logs of the CI
pipeline jobs are the source of information for COLEMAN. Figure 4
presents a real example of log from a job5 of a libssh. The log
describes information related to the configuration, build, and ex-
ecution of test cases of a variant. This latter is the basis to collect
input information for COLEMAN. We can observe in Figure 4 that the
execution of test cases started on line 759, and the result of the first
test case is seen on line 761. This line 761 has the three pieces of
information that are collected: (1) The name of the test case, in this
example “torture_buffer”; (2) the status of the execution, which
in this case is “Passed”, but can also be “Failed ”, as we can see
in the bottom of the figure, on line 837; and (3) execution time that
in this test case on 761 is equal to “0.26 sec”. We make available6

the tool to collect such pieces of information.
The libssh mirror on GitLab was mined on 2020-04-02, from

where we collected the information of Table 1. We can find 44
product variants of libssh on GitLab, however, we selected 31 that
have at least one failed test case in their history of builds. The first
line of the table presents information of the set composed by the
union of the test cases related to all variants, which is considered
to evaluate WTS. The first two columns shows the variant name
and an acronym, used to improve the visualization in the analysis.
The third column shows the period that each variant was used. The
fourth column presents the total of builds identified. Only valid
builds (success or fail) were considered, that is, we discarded builds
with some problem, for instance, canceled builds. The fifth column
shows the total of failures found, and in parentheses the number of
builds in which at least one test failed. The sixth column shows the
number of different (unique) test cases identified from build logs,
and in parentheses the range of test cases executed in the builds.
The last columns present the mean (± standard deviation) duration
in minutes of the CI Cycles and the interval between them.

5.3 Quality Indicators

We adopted indicators from TCP literature [28, 31]: the Normalized
Average Percentage of Fault Detected (NAPFD), the Rank of the
Failing Test Cases (RFTC), Normalized Time Reduction (NTR), and
the Prioritization Time (PT). They are defined as follows.

NAPFD [31] is an extension of the Average Percentage of Faults
Detected (APFD) [34]. APFD measures how fast a set of prioritized

3https://www.libssh.org/
4https://gitlab.com/libssh/libssh-mirror
5https://gitlab.com/libssh/libssh-mirror/-/jobs/432862254#L837
6https://github.com/jacksonpradolima/gitlabci-torrent

133

Learning-based Prioritization of Test Cases in CI of HCS

Table 1: Test Case Set Information

Name Acronym Period Builds Faults Tests Duration (min) Interval (min)

Total 2018/04/12-2020/02/25 334 223 (127) 62 (17 - 62) 0.4029 (2.037) 1142.528 (459.283)

address-sanitizer addr-san 2018/04/18-2018/04/18 1 13 (1) 29 (29 - 29) 0.0110 (0.032) -
CentOS7-openssl cent-op1 2018/04/12-2018/04/12 1 1 (1) 17 (17 - 17) 0.0237 (0.042) -
CentOS7-openssl 1.0.x-x86-64 cent-op2 2018/04/12-2018/04/18 22 8 (7) 29 (17 - 29) 0.0104 (0.02) 1320.7984 (287.806)
centos7-openssl_1.0.x-x86-64 cent-op3 2018/04/18-2019/12/10 128 1 (1) 26 (17 - 25) 0.0332 (0.1) 972.3706 (457.855)
Debian.cross.mips-linux-gnu debi-cross 2018/07/02-2018/12/24 131 7 (7) 29 (19 - 29) 1.3815 (4.122) 956.783 (499.357)
Debian-openssl 1.0.x-aarch64 debi-op 2018/04/12-2018/04/13 8 1 (1) 17 (17 - 17) 0.0431 (0.083) 1298.6738 (306.178)
fedora-libgcrypt-x86_64 fed-lib 2018/09/10-2020/02/25 179 11 (11) 57 (40 - 57) 0.0669 (0.204) 930.5167 (533.409)
fedora-mbedtls-x86-64 fed-mb1 2018/06/27-2019/12/10 108 16 (6) 40 (30 - 40) 0.0554 (0.16) 987.9657 (458.517)
fedora-mbedtls-x86_64 fed-mb2 2018/09/10-2020/02/25 178 2 (2) 56 (39 - 56) 0.0568 (0.177) 904.7565 (534.632)
Fedora-openssl fed-op1 2018/04/12-2018/04/12 1 1 (1) 17 (17 - 17) 0.0149 (0.031) -
Fedora-openssl 1.1.x-x86-64 fed-op2 2018/04/12-2018/04/18 21 3 (3) 29 (17 - 29) 0.0120 (0.027) 1315.1925 (293.81)
fedora-openssl_1.1.x-x86-64 fed-op3 2018/04/18-2019/12/10 125 14 (13) 41 (29 - 41) 0.0489 (0.132) 993.4781 (455.632)
fedora-openssl_1.1.x-x86-64-release fed-op-r 2018/08/20-2019/03/13 57 4 (4) 41 (38 - 41) 0.0485 (0.126) 927.5525 (463.556)
fedora-openssl_1.1.x-x86_64 fed-op4 2018/09/10-2020/02/25 179 3 (3) 60 (40 - 60) 0.0604 (0.195) 905.6718 (535.739)
fedora-openssl_1.1.x-x86_64-fips fed-op-f 2019/06/13-2020/02/25 71 11 (10) 57 (55 - 57) 0.0805 (0.297) 1013.623 (538.089)
fedora-openssl_1.1.x-x86_64-minimal fed-op-m 2018/12/13-2020/02/25 124 1 (1) 45 (40 - 45) 0.0461 (0.15) 927.5229 (534.695)
fedora-undefined-sanitizer fed-und 2018/04/18-2020/02/25 307 16 (15) 57 (29 - 57) 0.0701 (0.208) 966.4755 (506.954)
freebsd-x86_64 freebsd 2018/09/10-2020/02/25 179 10 (3) 33 (24 - 33) 0.0346 (0.102) 886.7128 (543.546)
mingw32 mingw32 2018/06/27-2019/12/10 86 3 (3) 16 (10 - 16) 0.0849 (0.229) 951.7082 (482.182)
mingw64 mingw64 2018/06/27-2019/12/10 86 3 (3) 16 (10 - 16) 0.0610 (0.142) 957.3851 (477.583)
pages pages 2018/04/18-2018/04/18 3 18 (3) 29 (29 - 29) 0.0088 (0.022) 1434.4083 (0.608)
tumbleweed-openssl_1.1.x-x86-64 tumb-op 2018/05/30-2019/12/10 103 24 (8) 41 (29 - 41) 0.0568 (0.15) 963.3945 (482.27)
tumbleweed-openssl_1.1.x-x86-64-release tumb-op-r 2018/08/20-2019/03/13 57 1 (1) 41 (38 - 41) 0.0600 (0.155) 942.0249 (457.872)
tumbleweed-openssl_1.1.x-x86_64-clang tumb-op-c 2018/09/10-2020/02/25 180 19 (10) 57 (38 - 57) 0.0616 (0.184) 909.4417 (536.359)
tumbleweed-openssl_1.1.x-x86_64-gcc tumb-op-g 2018/09/10-2020/02/25 176 16 (7) 56 (38 - 56) 0.0620 (0.184) 896.6659 (536.939)
tumbleweed-openssl_1.1.x-x86_64-gcc7 tumb-op-g7 2018/09/10-2020/02/25 179 15 (7) 57 (38 - 57) 0.0625 (0.187) 902.7045 (540.006)
tumbleweed-undefined-sanitizer tumb-und 2018/05/30-2020/02/25 300 36 (14) 56 (29 - 56) 0.0707 (0.196) 956.385 (514.161)
ubuntu-openssl_1.1.x-x86_64 ubun-op 2019/12/23-2020/02/25 13 10 (5) 57 (57 - 57) 0.0583 (0.19) 1036.3259 (543.659)
undefined-sanitizer und-san 2018/04/18-2018/04/18 4 29 (2) 29 (29 - 29) 0.0162 (0.043) 1430.6278 (1.341)
visualstudio-x86 vs-x86 2018/11/30-2020/02/25 116 13 (11) 18 (16 - 18) 0.0044 (0.007) 953.6386 (530.41)
visualstudio-x86_64 vs-x86_64 2018/11/30-2020/02/25 116 14 (14) 18 (16 - 18) 0.0051 (0.01) 957.3534 (534.557)

Figure 4: Example of Job Log

test cases (𝑇 ′) can success on detecting faults in the program under
tested. APFD values range from zero to one and is computed from
the weighted average of the percentage of detected faults. Higher
values indicate that the faults are detected faster using fewer test
cases. On the other hand, NAPFD metric is adequate for prioriti-
zation of test cases when not all of them are executed, and some
faults can be undetected. NAPFD, in addition to APFD, considers
the ratio between detected and detectable faults within 𝑇 . Equa-
tion 2 describes how to compute NAPFD, where𝑚 is the number
of faults detected by all test cases; 𝑟𝑎𝑛𝑘 (𝑇 ′

𝑖) is the position of 𝑇 ′
𝑖

in 𝑇 ′. If 𝑇 ′
𝑖 did not reveal faults, then it is set to 𝑇 ′

𝑖 = 0. 𝑛 is the
number of tests cases in 𝑇 ′ and 𝑝 is the number of faults detected
by 𝑇 ′ divided by𝑚.

𝑁𝐴𝑃𝐹𝐷 (𝑇 ′
𝑡) = 𝑝 −

∑𝑛
1 𝑟𝑎𝑛𝑘 (𝑇

′
𝑡𝑖
)

𝑚 × 𝑛

𝑝

2𝑛
(2)

RFTC [28] evaluates how fast a prioritized test set 𝑇 ′ detects
a fault. RFTC considers the 𝑖𝑡ℎ position from the first test case in
𝑇 ′ that fails. In this way, the values range from 1 to |𝑇 ′|, and lower
values represent a faster failure detection. This indicator can be
used as a base to stop the testing process when reaching failure.

NTR [28] (Equation 3) evaluates the capability to reduce the
time spent in a CI Cycle. It measures the difference between the
time spent to reach the first failed test case 𝑟𝑡 and the time to
execute all tests 𝑟𝑡 . In such a metric, only commits that fail 𝐶𝐼 𝑓 𝑎𝑖𝑙

are considered. The values range from 0 to 1, in which higher values
represent a higher test time reduction.

𝑁𝑇𝑅(A) =

∑𝐶𝐼 𝑓 𝑎𝑖𝑙
𝑡=1 (𝑟𝑡 − 𝑟𝑡)∑𝐶𝐼 𝑓 𝑎𝑖𝑙
𝑡=1 (𝑟𝑡)

(3)

PT takes into account the runtime spent by an approach to
perform the prioritization in each commit. This value is used to
provide an indicative of the applicability of the proposed strategies
in real scenarios. In our experiments we measure PT in seconds.

5.4 Applying learning and random approaches

To apply the learning-based approach, COLEMAN, we adopted the
same settings reported in previous work [28]. We used the same
configuration for FRRMAB: sliding window sizeW equals to 100,
the coefficient C to balance exploration and exploitation equals to
0.3, and decayed factor equals to 1. We defined three configurations
of test budgets: 10%, 50%, and 80% of the execution time of the
overall test set available in each commit. These different test budgets
allow us to investigate the behavior of each approach and strategy
during the TCP in CI process.

134

The results were obtained from a total of 5,760 executions per-
forming 30 independent executions for each approach (FRRMAB
and Random) in each variant (31 variants), strategy (2 strategies),
and time budget (3 time budgets). As mentioned before, in VTS
strategy each variant is tested separately, whilst in WTS strategy
all variants are executed as a unique system. All the experiments
were performed on an Intel® Xeon® E5-2450 with 2.10 GHz CPU,
47GB RAM, running Linux Ubuntu 18.04.1 LTS.

5.5 Statistical Analysis

To evaluate a pair of performances in the same variant, we used
Mann-Whitney [18] statistical test with a confidence level of 95%.
Furthermore, we used the Vargha and Delaney’s 𝐴12 [38] to cal-
culate the difference between two groups. 𝐴12 evaluate the prob-
ability of a value, taken randomly from the first sample, is higher
than a value taken randomly from the second sample. This metric
provides a magnitude scale: (i) Negligible, represents a very small
difference among the values and usually does not yield statistical
difference; (ii) Small and Medium, represent small and medium dif-
ferences among the values, and may yield statistical differences;
and (iii) Large magnitude represents a significantly large difference
that usually can be seen in the numbers without much effort.

6 RESULTS

In this section, the results obtained are presented and discussed in
order to answer the posed questions.

6.1 RQ1: COLEMAN vs Random

To answer RQ1, we compare the results of both strategies using a
random prioritization to the results obtained using COLEMAN with
the FRRMAB policy. Such an analysis encompasses the three time
budgets. To compare the performance, we used NAPFD as the
main quality indicator. Table 2 presents the results obtained. The
best values are highlighted in bold, and values that are statistically
equivalent to the best ones have their corresponding cells painted
in light gray. Different symbols are used to indicate the effect size
magnitude concerning the best values (see Table 2 footnote).

As we can observe, COLEMAN using FRRMAB is the best approach
with a statistical difference in most cases. Considering 31 variants,
both strategies and the three time budgets (31 × 2 × 3 = 186 cases),
COLEMAN is the best approach with statistical difference in 157 cases
(84.4%). The random approach is the best only in 8 cases (4.3%) and
reaches statistically equivalent results in 21 cases (11.3%). Further-
more, when there is a statistical difference, the effect size tends to
be large (�). On the other hand, cases with statistical equivalence
appear across the time budgets. In these few cases, the variants
have few failures (most of them have only one failure), and clearly,
COLEMAN has not significant performance.

We also can see that COLEMAN outperforms the random approach,
independently of the strategy used. If we use the VTS strategy, FR-
RMAB is the best one in 87 out of 93 cases (31 variants × 3 budgets)
and presents equivalent results in 6. If we use WTS, FRRMAB is
the best in 70 cases (out of 93). It is statistically equivalent in 15
cases, and is the worst in 8 cases.

The worst performance of the approach is obtained for the vari-
ant address-sanitizer (addr-san). In this variant, we have only

one commit and 13 test cases that fail from 29 available. Before
this variant, only 8 variants are defined, and 12 commits have some
test case which failed. From these commits, the failed test cases
are scattered between the variants. From the test set available for
this variant, only 9 test cases have historical failure data. From
the available test cases, some take more time (duration) to execute
than others, and among them, the failed test cases. This shows
that sometimes we face test cases that fail but spend much time
to execute, and this hampers a reasonable prioritization. Another
similar case can be observed in the second worst performance, for
the undefined-sanitizer (und-san) variant.

The biggest difference can be observed in the variant
ubuntu-openssl_1.1.x-x86_64 (ubun-op). Although this variant
has few commits, there is a high test case volatility, mainly in two
commits in which failures occur7. Before these two commits, only
one commit failed.

RQ1: Independently of the strategy and time budget, we can then

conclude COLEMAN outperforms the random approach. It reaches the

best results or statistically equivalent ones in the great majority of

the cases (≈ 96%).

6.2 RQ2: Strategies Applicability

To analyze the applicability of the strategies using COLEMAN, we
compute PT, which is the prioritization time in seconds, spent by
them considering the three budgets. The results are depicted in
Table 3. We observe that both strategies spend in all cases less than
one second. In the worst case, VTS spends 0.0435 seconds in the
variant CentOS7-openssl (cent-op1) and time budget of 10%.

Regarding Table 1, we observe that a commit is typically per-
formed after another one is finished and with a considered time.
Considering the commit duration, the variants used do not present
a situation with multiple test requests for the same variant. The
approach is applicable considering the time between commits.

RQ2: Regarding the time spent to prioritize the test cases, both

strategies, VTS and WTS, spend less than one second to execute. In

addition to this, we do not observe any impact of the time budgets.

Considering the aforementioned facts, the time spent by the strategies

is feasible, that is, both strategies are applicable in the CI context.

6.3 RQ3: Comparing VTS and WTS strategies

To compare both strategies we analyse the NAPFD values, presented
in Table 2. The statistical test results between them are available in
the supplementary material [27].

Analyzing such a table, we observe that VTS is better than WTS
in time budget of 10%. For this budget VTS obtains the best per-
formance, with statistical difference, in 15 cases (out of 31, ≈ 48%).
On the other hand, WTS is the best in only ≈ 13% (4 cases). Con-
sidering the time budgets of 50% and 80%, VTS is the best in few
cases, respectively, ≈ 45% (14) and ≈ 29% (9) cases, whilst WTS is
the best in ≈ 32% (10) and ≈ 45% (14). In this sense, WTS provides
better results with less restrictive situation (more time budget), and
VTS the opposite. Considering all budgets and variants (93 cases),

7See supplementary material about characteristics of this variant. Available in [27].

135

Learning-based Prioritization of Test Cases in CI of HCS

Table 2: NAPFD values comparing COLEMAN using FRRMAB and Random approaches.

Time Budget 10% Time Budget 50% Time Budget 80%

Variant VTS WTS VTS WTS VTS WTS

FRRMAB Random FRRMAB Random FRRMAB Random FRRMAB Random FRRMAB Random FRRMAB Random

addr-san 0.7573 ± 0.000� 0.5710 ± 0.049 � 0.5887 ± 0.049� 0.5586 ± 0.050 � 0.7663 ± 0.004� 0.5127 ± 0.047 � 0.5226 ± 0.053 0.5035 ± 0.068 0.7635 ± 0.005� 0.4829 ± 0.071 � 0.5107 ± 0.068 0.4916 ± 0.053
cent-op1 0.9706 ± 0.000� 0.6078 ± 0.245 � 0.6902 ± 0.194 0.6000 ± 0.226 0.9706 ± 0.000� 0.5922 ± 0.290 � 0.6235 ± 0.265 0.5176 ± 0.264 0.9706 ± 0.000� 0.5118 ± 0.329 � 0.6127 ± 0.300 0.4627 ± 0.331
cent-op2 0.9742 ± 0.012� 0.8287 ± 0.034 � 0.8517 ± 0.059 0.8231 ± 0.041 0.9828 ± 0.002� 0.8400 ± 0.036 � 0.9659 ± 0.011� 0.8361 ± 0.038 � 0.9841 ± 0.003� 0.8516 ± 0.046 � 0.9706 ± 0.012� 0.8487 ± 0.031 �
cent-op3 0.9922 ± 0.000 0.9922 ± 0.000 0.9922 ± 0.000 0.9922 ± 0.000 0.9979 ± 0.000� 0.9968 ± 0.002 � 0.9998 ± 0.000� 0.9962 ± 0.002 � 0.9975 ± 0.000� 0.9946 ± 0.003 � 0.9922 ± 0.000 � 0.9952 ± 0.003�
debi-cross 0.9466 ± 0.000 0.9466 ± 0.000 0.9466 ± 0.000 0.9466 ± 0.000 0.9527 ± 0.000 0.9549 ± 0.007 0.9669 ± 0.010� 0.9548 ± 0.007 � 0.9949 ± 0.000� 0.9666 ± 0.006 � 0.9979 ± 0.002� 0.9674 ± 0.006 �
debi-op 0.9963 ± 0.000� 0.9556 ± 0.026 � 0.9963 ± 0.000� 0.9534 ± 0.028 � 0.9963 ± 0.000� 0.9404 ± 0.030 � 0.9963 ± 0.000� 0.9534 ± 0.032 � 0.9963 ± 0.000� 0.9426 ± 0.039 � 0.9963 ± 0.000� 0.9294 ± 0.033 �
fed-lib 0.9385 ± 0.000 0.9385 ± 0.000 0.9385 ± 0.000 0.9385 ± 0.000 0.9988 ± 0.000� 0.9563 ± 0.008 � 0.9985 ± 0.001� 0.9560 ± 0.007 � 0.9986 ± 0.000� 0.9680 ± 0.006 � 0.9979 ± 0.001� 0.9660 ± 0.006 �
fed-mb1 0.9596 ± 0.000� 0.9525 ± 0.002 � 0.9596 ± 0.000� 0.9535 ± 0.003 � 0.9743 ± 0.000� 0.9636 ± 0.003 � 0.9832 ± 0.000� 0.9638 ± 0.004 � 0.9946 ± 0.000� 0.9663 ± 0.004 � 0.9946 ± 0.000� 0.9663 ± 0.004 �
fed-mb2 0.9935 ± 0.000� 0.9922 ± 0.001 � 0.9943 ± 0.000� 0.9916 ± 0.002 � 0.9991 ± 0.000� 0.9927 ± 0.003 � 0.9965 ± 0.003� 0.9946 ± 0.003 � 0.9980 ± 0.002� 0.9946 ± 0.003 � 0.9980 ± 0.002� 0.9946 ± 0.003 �
fed-op1 0.9706 ± 0.000� 0.6078 ± 0.245 � 0.5843 ± 0.208 0.5863 ± 0.188 0.9706 ± 0.000� 0.6039 ± 0.281 � 0.4882 ± 0.213 0.5196 ± 0.249 0.9706 ± 0.000� 0.5412 ± 0.291 � 0.5059 ± 0.258 0.5588 ± 0.219
fed-op2 0.9932 ± 0.009� 0.9411 ± 0.020 � 0.9744 ± 0.014� 0.9429 ± 0.023 � 0.9910 ± 0.006� 0.9441 ± 0.029 � 0.9764 ± 0.012� 0.9310 ± 0.017 � 0.9923 ± 0.006� 0.9405 ± 0.024 � 0.9701 ± 0.011� 0.9343 ± 0.023 �
fed-op3 0.9722 ± 0.001� 0.9236 ± 0.009 � 0.9834 ± 0.002� 0.9227 ± 0.010 � 0.9896 ± 0.000� 0.9369 ± 0.012 � 0.9895 ± 0.004� 0.9374 ± 0.009 � 0.9851 ± 0.000� 0.9468 ± 0.009 � 0.9893 ± 0.004� 0.9445 ± 0.008 �
fed-op-r 0.9473 ± 0.000� 0.9350 ± 0.007 � 0.9298 ± 0.000 � 0.9335 ± 0.007� 0.9986 ± 0.000� 0.9552 ± 0.014 � 0.9965 ± 0.004� 0.9537 ± 0.015 � 0.9989 ± 0.000� 0.9595 ± 0.011 � 0.9916 ± 0.009� 0.9631 ± 0.011 �
fed-op4 0.9882 ± 0.000� 0.9855 ± 0.003 � 0.9873 ± 0.001� 0.9858 ± 0.003 � 0.9972 ± 0.000� 0.9899 ± 0.004 � 0.9929 ± 0.001� 0.9895 ± 0.003 � 0.9968 ± 0.000� 0.9916 ± 0.003 � 0.9961 ± 0.002� 0.9900 ± 0.003 �
fed-op-f 0.8797 ± 0.000� 0.8670 ± 0.010 � 0.9257 ± 0.025� 0.8700 ± 0.014 � 0.9962 ± 0.000� 0.9104 ± 0.018 � 0.9955 ± 0.003� 0.9072 ± 0.015 � 0.9964 ± 0.000� 0.9199 ± 0.013 � 0.9981 ± 0.001� 0.9240 ± 0.015 �
fed-op-m 0.9919 ± 0.000 0.9919 ± 0.000 0.9919 ± 0.000 0.9919 ± 0.000 0.9992 ± 0.000� 0.9954 ± 0.003 � 0.9999 ± 0.000� 0.9956 ± 0.003 � 0.9992 ± 0.000� 0.9951 ± 0.003 � 0.9999 ± 0.000� 0.9958 ± 0.002 �
fed-und 0.9714 ± 0.000� 0.9606 ± 0.004 � 0.9711 ± 0.002� 0.9619 ± 0.004 � 0.9910 ± 0.000� 0.9711 ± 0.005 � 0.9963 ± 0.001� 0.9701 ± 0.005 � 0.9939 ± 0.000� 0.9738 ± 0.004 � 0.9975 ± 0.001� 0.9727 ± 0.004 �
freebsd 0.9957 ± 0.000� 0.9915 ± 0.002 � 0.9995 ± 0.000� 0.9921 ± 0.002 � 0.9983 ± 0.000� 0.9914 ± 0.002 � 0.9995 ± 0.000� 0.9919 ± 0.002 � 0.9983 ± 0.000� 0.9912 ± 0.002 � 0.9995 ± 0.000� 0.9915 ± 0.002 �
mingw32 0.9913 ± 0.000� 0.9814 ± 0.008 � 0.9918 ± 0.004� 0.9817 ± 0.007 � 0.9901 ± 0.000� 0.9843 ± 0.005 � 0.9925 ± 0.003� 0.9828 ± 0.006 � 0.9901 ± 0.000� 0.9833 ± 0.005 � 0.9937 ± 0.003� 0.9836 ± 0.006 �
mingw64 0.9913 ± 0.000� 0.9808 ± 0.008 � 0.9919 ± 0.005� 0.9821 ± 0.008 � 0.9901 ± 0.000� 0.9843 ± 0.005 � 0.9928 ± 0.003� 0.9842 ± 0.006 � 0.9901 ± 0.000� 0.9833 ± 0.005 � 0.9930 ± 0.003� 0.9843 ± 0.005 �
pages 0.6022 ± 0.092� 0.3609 ± 0.104 � 0.6065 ± 0.145� 0.3495 ± 0.093 � 0.8570 ± 0.005� 0.4885 ± 0.088 � 0.7670 ± 0.044� 0.4548 ± 0.072 � 0.8543 ± 0.005� 0.5066 ± 0.076 � 0.7683 ± 0.051� 0.4769 ± 0.085 �
tumb-op 0.9797 ± 0.000� 0.9453 ± 0.009 � 0.9752 ± 0.000� 0.9435 ± 0.008 � 0.9923 ± 0.000� 0.9585 ± 0.007 � 0.9932 ± 0.000� 0.9567 ± 0.007 � 0.9902 ± 0.000� 0.9611 ± 0.006� 0.9947 ± 0.000� 0.9587 ± 0.006 �
tumb-op-r 0.9825 ± 0.000 0.9836 ± 0.004 0.9825 ± 0.000 � 0.9847 ± 0.006� 0.9997 ± 0.000� 0.9873 ± 0.006 � 0.9969 ± 0.002� 0.9880 ± 0.007 � 0.9997 ± 0.000� 0.9910 ± 0.006 � 0.9972 ± 0.003� 0.9904 ± 0.005 �
tumb-op-c 0.9708 ± 0.000� 0.9569 ± 0.004 � 0.9574 ± 0.006 0.9573 ± 0.005 0.9961 ± 0.000� 0.9669 ± 0.005 � 0.9865 ± 0.012� 0.9651 ± 0.005 � 0.9953 ± 0.000� 0.9700 ± 0.004 � 0.9947 ± 0.003� 0.9708 ± 0.005 �
tumb-op-g 0.9823 ± 0.000� 0.9692 ± 0.003 � 0.9618 ± 0.002 � 0.9686 ± 0.003� 0.9976 ± 0.000� 0.9772 ± 0.004 � 0.9639 ± 0.001 � 0.9758 ± 0.004� 0.9975 ± 0.000� 0.9791 ± 0.004 � 0.9974 ± 0.001� 0.9782 ± 0.004 �
tumb-op-g7 0.9772 ± 0.000� 0.9695 ± 0.003 � 0.9609 ± 0.000 � 0.9693 ± 0.003� 0.9977 ± 0.000� 0.9769 ± 0.004 � 0.9992 ± 0.000� 0.9775 ± 0.005 � 0.9977 ± 0.000� 0.9796 ± 0.004 � 0.9991 ± 0.000� 0.9782 ± 0.003 �
tumb-und 0.9821 ± 0.001� 0.9672 ± 0.004 � 0.9749 ± 0.000� 0.9658 ± 0.004 � 0.9950 ± 0.000� 0.9738 ± 0.004 � 0.9750 ± 0.000� 0.9738 ± 0.004 � 0.9936 ± 0.000� 0.9757 ± 0.003 � 0.9940 ± 0.000� 0.9762 ± 0.002 �
ubun-op 0.9443 ± 0.000� 0.6754 ± 0.044 � 0.9204 ± 0.000� 0.6877 ± 0.055 � 0.9599 ± 0.000� 0.7810 ± 0.057 � 0.9204 ± 0.000� 0.7533 ± 0.058 � 0.9599 ± 0.000� 0.7932 ± 0.055 � 0.9966 ± 0.000� 0.8061 ± 0.056 �
und-san 0.8057 ± 0.004� 0.7149 ± 0.040 � 0.7326 ± 0.037 0.7178 ± 0.042 0.8628 ± 0.001� 0.7520 ± 0.031 � 0.8294 ± 0.011� 0.7479 ± 0.032 � 0.8628 ± 0.001� 0.7520 ± 0.031 � 0.8270 ± 0.010� 0.7600 ± 0.016 �
vs-x86 0.9792 ± 0.000� 0.9185 ± 0.010 � 0.9052 ± 0.000 � 0.9205 ± 0.010� 0.9925 ± 0.000� 0.9442 ± 0.013 � 0.9841 ± 0.018� 0.9401 ± 0.012 � 0.9930 ± 0.000� 0.9466 ± 0.008 � 0.9945 ± 0.005� 0.9495 ± 0.011 �
vs-x86_64 0.9704 ± 0.000� 0.8933 ± 0.012 � 0.8793 ± 0.000 � 0.9001 ± 0.015� 0.9891 ± 0.000� 0.9301 ± 0.011 � 0.9516 ± 0.034� 0.9309 ± 0.011 � 0.9891 ± 0.000� 0.9316 ± 0.010 � 0.9913 ± 0.006� 0.9343 ± 0.010 �

This table reports the NAPFD results (averages ± standard deviation) obtained from 30 independent runs with three time budgets: 10%, 50%, and 80%; and organized by variant for Variant
test set (VTS) andWhole test set strategies (WTS). Values highlighted in bold with a “�” symbol denotes the best approach for a strategy in a variant and, in gray, results that are statistically
equal to the best one. A “�” indicates that the effect size was negligible in relation to the best, while “�” denotes a small magnitude, “�” a medium magnitude, and “�” a large magnitude.

Table 3: PT values considering Variant test set and Whole test set strategies.

Variant
Time Budget 10% Time Budget 50% Time Budget 80%

VTS WTS VTS WTS VTS WTS

addr-san 0.0370 ± 0.001� 0.0423 ± 0.003 � 0.0368 ± 0.000 0.0390 ± 0.004 0.0370 ± 0.000� 0.0424 ± 0.003 �
cent-op1 0.0428 ± 0.007 0.0425 ± 0.006 0.0384 ± 0.004 0.0382 ± 0.005 0.0402 ± 0.006 � 0.0354 ± 0.001�
cent-op2 0.0370 ± 0.001 � 0.0363 ± 0.001� 0.0371 ± 0.001 � 0.0363 ± 0.001� 0.0369 ± 0.001 0.0367 ± 0.001
cent-op3 0.0392 ± 0.000 � 0.0372 ± 0.000� 0.0392 ± 0.000 � 0.0370 ± 0.000� 0.0393 ± 0.000 � 0.0372 ± 0.001�
debi-cross 0.0405 ± 0.000 � 0.0373 ± 0.000� 0.0403 ± 0.000 � 0.0373 ± 0.000� 0.0404 ± 0.000 � 0.0375 ± 0.000�
debi-op 0.0361 ± 0.001 0.0361 ± 0.001 0.0368 ± 0.001 0.0365 ± 0.001 0.0362 ± 0.001 0.0361 ± 0.001
fed-lib 0.0422 ± 0.000 � 0.0412 ± 0.001� 0.0421 ± 0.000 � 0.0413 ± 0.001� 0.0421 ± 0.000 � 0.0411 ± 0.000�
fed-mb1 0.0396 ± 0.000 � 0.0391 ± 0.000� 0.0395 ± 0.000 � 0.0390 ± 0.000� 0.0396 ± 0.000 � 0.0387 ± 0.001�
fed-mb2 0.0422 ± 0.000 � 0.0409 ± 0.000� 0.0421 ± 0.000 � 0.0411 ± 0.001� 0.0421 ± 0.000 � 0.0410 ± 0.000�
fed-op1 0.0428 ± 0.007 0.0401 ± 0.006 0.0384 ± 0.004� 0.0418 ± 0.004 � 0.0402 ± 0.006 0.0416 ± 0.005
fed-op2 0.0369 ± 0.001 � 0.0364 ± 0.001� 0.0370 ± 0.001 0.0376 ± 0.002 0.0368 ± 0.001 0.0366 ± 0.001
fed-op3 0.0392 ± 0.000 0.0391 ± 0.001 0.0392 ± 0.000 0.0393 ± 0.001 0.0392 ± 0.000 0.0390 ± 0.001
fed-op-r 0.0406 ± 0.000 � 0.0386 ± 0.000� 0.0406 ± 0.000 � 0.0384 ± 0.000� 0.0406 ± 0.000 � 0.0391 ± 0.001�
fed-op4 0.0422 ± 0.000 � 0.0411 ± 0.001� 0.0421 ± 0.000 � 0.0412 ± 0.001� 0.0421 ± 0.000 � 0.0411 ± 0.000�
fed-op-f 0.0430 ± 0.000 � 0.0408 ± 0.001� 0.0431 ± 0.000 � 0.0407 ± 0.001� 0.0430 ± 0.000 � 0.0404 ± 0.000�
fed-op-m 0.0426 ± 0.000 � 0.0398 ± 0.001� 0.0426 ± 0.000 � 0.0397 ± 0.000� 0.0426 ± 0.000 � 0.0398 ± 0.000�
fed-und 0.0410 ± 0.000 0.0409 ± 0.000 0.0409 ± 0.000 0.0411 ± 0.000 0.0409 ± 0.000 0.0413 ± 0.001
freebsd 0.0422 ± 0.000 � 0.0380 ± 0.000� 0.0421 ± 0.000 � 0.0381 ± 0.000� 0.0421 ± 0.000 � 0.0381 ± 0.000�
mingw32 0.0395 ± 0.000 � 0.0360 ± 0.001� 0.0395 ± 0.000 � 0.0361 ± 0.001� 0.0395 ± 0.000 � 0.0361 ± 0.001�
mingw64 0.0395 ± 0.000 � 0.0360 ± 0.001� 0.0395 ± 0.000 � 0.0367 ± 0.001� 0.0395 ± 0.000 � 0.0359 ± 0.001�
pages 0.0375 ± 0.002 � 0.0370 ± 0.001� 0.0374 ± 0.002 0.0389 ± 0.004 0.0368 ± 0.000 0.0375 ± 0.002
tumb-op 0.0392 ± 0.000 � 0.0387 ± 0.001� 0.0391 ± 0.000 � 0.0386 ± 0.001� 0.0392 ± 0.000 � 0.0386 ± 0.000�
tumb-op-r 0.0406 ± 0.000 � 0.0386 ± 0.000� 0.0406 ± 0.000 � 0.0382 ± 0.000� 0.0406 ± 0.000 � 0.0385 ± 0.001�
tumb-op-c 0.0422 ± 0.000 � 0.0413 ± 0.000� 0.0421 ± 0.000 � 0.0411 ± 0.000� 0.0421 ± 0.000 � 0.0412 ± 0.000�
tumb-op-g 0.0422 ± 0.000 � 0.0411 ± 0.000� 0.0421 ± 0.000 � 0.0407 ± 0.000� 0.0421 ± 0.000 � 0.0410 ± 0.000�
tumb-op-g7 0.0422 ± 0.000 � 0.0410 ± 0.000� 0.0421 ± 0.000 � 0.0408 ± 0.000� 0.0421 ± 0.000 � 0.0411 ± 0.001�
tumb-und 0.0411 ± 0.000 0.0410 ± 0.000 0.0410 ± 0.000 0.0408 ± 0.000 0.0410 ± 0.000 0.0408 ± 0.000
ubun-op 0.0434 ± 0.000 � 0.0406 ± 0.001� 0.0436 ± 0.000 � 0.0400 ± 0.001� 0.0435 ± 0.000 � 0.0405 ± 0.001�
und-san 0.0371 ± 0.001 0.0376 ± 0.001 0.0374 ± 0.002 0.0384 ± 0.003 0.0371 ± 0.001 0.0378 ± 0.002
vs-x86 0.0424 ± 0.000 � 0.0365 ± 0.000� 0.0424 ± 0.000 � 0.0363 ± 0.000� 0.0424 ± 0.000 � 0.0362 ± 0.000�
vs-x86_64 0.0424 ± 0.000 � 0.0364 ± 0.000� 0.0424 ± 0.000 � 0.0363 ± 0.000� 0.0424 ± 0.000 � 0.0366 ± 0.001�

(See caption of Table 2 for a description of the headings.)

VTS is the best in 38 cases and WTS is the best in 28. They are
statistically equivalent in 27 cases.

Regarding PT values (Table 3), we observe that WTS has better
performance than VTS in all budgets. About the time budget of 10%,
WTS is the best strategy, with statistical difference, in ≈ 74% (23
out of 31) of the cases, and VTS is the best in ≈ 3% (1). Considering

the time budgets of 50% and 80%, the results are similar, WTS is the
best in ≈ 68% (21) of the cases and VTS in 3% (1). Although NAPFD
provides a good way to analyze the prioritization quality, it does
not encompass the situation in which the tests are ended when a
failure is revealed. For this, we use the metric RFTC to observe how
failing test case is defined in the prioritization process. On the other

136

Table 4: RFTC and NTR values considering VTS and WTS strategies.

Time Budget 10% Time Budget 50% Time Budget 80%

Variant RFTC NTR RFTC NTR RFTC NTR

VTS WTS VTS WTS VTS WTS VTS WTS VTS WTS VTS WTS

addr-san 1.0000 ± 0.000� 1.9000 ± 0.995 � 0.9990 ± 0.000 0.9600 ± 0.117 1.0000 ± 0.000� 2.0667 ± 1.172 � 0.9990 ± 0.000 0.9278 ± 0.154 1.0000 ± 0.000� 1.9667 ± 1.273 � 0.9990 ± 0.000 0.9167 ± 0.166
cent-op1 1.0000 ± 0.000� 5.7667 ± 3.298 � 0.9954 ± 0.000 0.6066 ± 0.341 1.0000 ± 0.000� 6.9000 ± 4.513 � 0.9954 ± 0.000 0.5458 ± 0.403 1.0000 ± 0.000 5.9259 ± 3.892 0.9954 ± 0.000 0.5736 ± 0.334
cent-op2 1.2667 ± 0.270� 2.4452 ± 0.801 � 0.3252 ± 0.001 0.1948 ± 0.062 1.6286 ± 0.217� 2.4286 ± 0.667 � 0.3231 ± 0.003 0.3027 ± 0.015 1.4857 ± 0.269� 2.1143 ± 0.660 � 0.3242 ± 0.003 0.3075 ± 0.011
cent-op3 - - 0.0000 ± 0.000 0.0000 ± 0.000 6.0000 ± 0.000 � 1.0000 ± 0.000� 0.0015 ± 0.000 0.0055 ± 0.000 7.0000 ± 0.000 - 0.0015 ± 0.000 0.0000 ± 0.000
debi-cross - - 0.0000 ± 0.000 0.0000 ± 0.000 10.0000 ± 0.000 2.0000 ± 3.672 0.0097 ± 0.000 0.0302 ± 0.016 5.4286 ± 0.000 � 2.0643 ± 0.738� 0.0644 ± 0.000 0.0601 ± 0.006
debi-op 1.0000 ± 0.000 1.0000 ± 0.000 0.1522 ± 0.000 0.1522 ± 0.000 1.0000 ± 0.000 1.0000 ± 0.000 0.1522 ± 0.000 0.1522 ± 0.000 1.0000 ± 0.000 1.0000 ± 0.000 0.1522 ± 0.000 0.1522 ± 0.000
fed-lib - - 0.0000 ± 0.000 0.0000 ± 0.000 2.2727 ± 0.000 2.5636 ± 1.480 0.0827 ± 0.000 0.0820 ± 0.002 2.6364 ± 0.000 3.5091 ± 2.038 0.0799 ± 0.000 0.0811 ± 0.002

fed-mb1 1.0000 ± 0.000 1.0000 ± 0.000 0.0213 ± 0.000 0.0213 ± 0.000 1.0000 ± 0.000� 1.6444 ± 0.122 � 0.0213 ± 0.000 0.0482 ± 0.002 1.6500 ± 0.141 1.6500 ± 0.141 0.0480 ± 0.002 0.0480 ± 0.002
fed-mb2 6.7000 ± 0.466 � 1.0000 ± 0.000� 0.0035 ± 0.000 0.0041 ± 0.000 4.0000 ± 0.000 � 1.6000 ± 0.747� 0.0112 ± 0.000 0.0072 ± 0.004 16.2333 ± 15.476 16.2333 ± 15.476 0.0110 ± 0.002 0.0110 ± 0.002
fed-op1 1.0000 ± 0.000� 7.5667 ± 3.530 � 0.9934 ± 0.000 0.4491 ± 0.400 1.0000 ± 0.000� 9.2000 ± 3.624 � 0.9934 ± 0.000 0.3798 ± 0.383 1.0000 ± 0.000� 8.9000 ± 4.381 � 0.9934 ± 0.000 0.4999 ± 0.346
fed-op2 1.3222 ± 0.557� 3.3056 ± 1.183 � 0.1438 ± 0.011 0.1201 ± 0.016 2.0889 ± 1.184� 3.4111 ± 1.515 � 0.1441 ± 0.004 0.1248 ± 0.016 1.8222 ± 1.140� 4.2556 ± 1.498 � 0.1449 ± 0.003 0.1232 ± 0.014
fed-op3 3.5133 ± 0.855� 5.0556 ± 0.103 � 0.0916 ± 0.000 0.1010 ± 0.003 4.6154 ± 0.000 3.1675 ± 1.613 0.1168 ± 0.000 0.1174 ± 0.004 4.1556 ± 0.029 � 2.7449 ± 1.539� 0.1050 ± 0.000 0.1147 ± 0.008

fed-op-r 1.0000 ± 0.000 - 0.0241 ± 0.001 0.0000 ± 0.000 2.0000 ± 0.000 4.3500 ± 4.287 0.1020 ± 0.000 0.1017 ± 0.004 1.7500 ± 0.000 9.7667 ± 10.202 0.1052 ± 0.000 0.0995 ± 0.006
fed-op4 9.0000 ± 0.000 21.9667 ± 18.648 0.0052 ± 0.000 0.0053 ± 0.003 18.3333 ± 0.000 � 14.8000 ± 8.814� 0.0181 ± 0.001 0.0171 ± 0.000 20.6667 ± 0.000 21.9000 ± 9.804 0.0148 ± 0.000 0.0225 ± 0.003

fed-op-f 5.0000 ± 0.000 � 1.9112 ± 1.365� 0.0570 ± 0.000 0.1201 ± 0.042 3.7000 ± 0.000 4.2333 ± 2.367 0.2263 ± 0.000 0.2236 ± 0.003 3.5000 ± 0.000 � 1.9733 ± 0.481� 0.2299 ± 0.000 0.2259 ± 0.002
fed-op-m - - 0.0000 ± 0.000 0.0000 ± 0.000 5.0000 ± 0.000 � 1.0000 ± 0.000� 0.0081 ± 0.000 0.0083 ± 0.000 5.0000 ± 0.000 � 1.0000 ± 0.000� 0.0081 ± 0.000 0.0083 ± 0.000

fed-und 3.6190 ± 0.427� 3.9103 ± 0.228 � 0.0181 ± 0.001 0.0165 ± 0.003 3.0769 ± 0.000 � 2.4824 ± 0.501� 0.0464 ± 0.000 0.0523 ± 0.001 3.5048 ± 0.090 � 2.2713 ± 0.532� 0.0497 ± 0.000 0.0528 ± 0.001

freebsd 8.6667 ± 0.000 � 1.0000 ± 0.000� 0.0281 ± 0.000 0.0282 ± 0.000 5.3333 ± 0.000 � 1.0000 ± 0.000� 0.0281 ± 0.000 0.0282 ± 0.000 5.3333 ± 0.000 � 1.0000 ± 0.000� 0.0281 ± 0.000 0.0282 ± 0.000

mingw32 3.0000 ± 0.000 � 1.4667 ± 0.571� 0.0106 ± 0.000 0.0085 ± 0.001 3.3333 ± 0.000 � 2.6556 ± 0.908� 0.0077 ± 0.000 0.0091 ± 0.002 3.3333 ± 0.000 � 2.3000 ± 0.984� 0.0077 ± 0.000 0.0091 ± 0.002

mingw64 3.0000 ± 0.000 � 1.3333 ± 0.438� 0.0138 ± 0.000 0.0114 ± 0.002 3.3333 ± 0.000 � 2.5556 ± 0.932� 0.0099 ± 0.000 0.0120 ± 0.002 3.3333 ± 0.000 � 2.5000 ± 0.883� 0.0099 ± 0.000 0.0113 ± 0.002

pages 2.1444 ± 0.168 � 1.7556 ± 0.716� 0.9424 ± 0.007 0.9448 ± 0.075 2.0000 ± 0.000 1.9667 ± 0.809 0.9487 ± 0.000 0.9538 ± 0.049 2.0222 ± 0.085� 2.1000 ± 1.554 � 0.9469 ± 0.005 0.9551 ± 0.062

tumb-op 1.7190 ± 0.026 � 1.4286 ± 0.000� 0.0331 ± 0.000 0.0301 ± 0.000 1.7500 ± 0.000 � 1.5000 ± 0.000� 0.0289 ± 0.000 0.0334 ± 0.000 1.7500 ± 0.000 � 1.5000 ± 0.000� 0.0289 ± 0.000 0.0334 ± 0.000

tumb-op-r - - 0.0000 ± 0.000 0.0000 ± 0.000 2.0000 ± 0.000� 14.4667 ± 11.088 � 0.0268 ± 0.000 0.0261 ± 0.001 2.0000 ± 0.000� 13.0000 ± 11.188 � 0.0268 ± 0.000 0.0262 ± 0.001
tumb-op-c 3.5000 ± 0.000 8.7333 ± 10.529 0.0579 ± 0.000 0.0275 ± 0.020 5.3000 ± 0.000 6.6150 ± 6.346 0.0683 ± 0.000 0.0670 ± 0.020 6.3000 ± 0.000 8.2641 ± 4.901 0.0654 ± 0.000 0.0785 ± 0.006

tumb-op-g 2.0000 ± 0.000 1.0000 ± 0.000 0.0601 ± 0.000 0.0046 ± 0.007 3.0000 ± 0.000 3.7667 ± 2.176 0.0471 ± 0.000 0.0128 ± 0.001 3.0000 ± 0.000 � 1.2667 ± 0.304� 0.0471 ± 0.000 0.0597 ± 0.001

tumb-op-g7 2.1667 ± 0.000 - 0.0456 ± 0.000 0.0000 ± 0.000 3.4286 ± 0.000 � 1.5333 ± 0.507� 0.0410 ± 0.000 0.0547 ± 0.001 3.4286 ± 0.000 � 1.6333 ± 0.490� 0.0410 ± 0.000 0.0545 ± 0.001

tumb-und 2.6265 ± 0.662 � 2.4286 ± 0.000� 0.0390 ± 0.000 0.0119 ± 0.000 3.8571 ± 0.000 � 2.1619 ± 0.290� 0.0306 ± 0.000 0.0132 ± 0.000 2.7179 ± 0.037 � 1.6923 ± 0.192� 0.0302 ± 0.000 0.0399 ± 0.000

ubun-op 17.2000 ± 0.000 � 1.1250 ± 0.127� 0.5635 ± 0.000 0.5193 ± 0.001 12.6000 ± 0.000 � 1.1167 ± 0.127� 0.3935 ± 0.000 0.5202 ± 0.002 12.6000 ± 0.000 � 1.1000 ± 0.102� 0.3935 ± 0.000 0.5702 ± 0.002

und-san 1.0000 ± 0.000� 1.3167 ± 0.425 � 0.5217 ± 0.000 0.5196 ± 0.013 1.0000 ± 0.000� 1.3167 ± 0.404 � 0.5217 ± 0.000 0.5166 ± 0.018 1.0000 ± 0.000� 1.3500 ± 0.418 � 0.5217 ± 0.000 0.5165 ± 0.018
vs-x86 2.0000 ± 0.000 - 0.1695 ± 0.000 0.0000 ± 0.000 3.4545 ± 0.000 � 2.0884 ± 1.092� 0.2132 ± 0.000 0.1902 ± 0.043 3.3636 ± 0.000 � 2.4879 ± 1.822� 0.2134 ± 0.000 0.2105 ± 0.018
vs-x86_64 1.8182 ± 0.000 - 0.1604 ± 0.000 0.0000 ± 0.000 3.4286 ± 0.000 1.8373 ± 0.659 0.2078 ± 0.000 0.1261 ± 0.059 3.4286 ± 0.000 2.9024 ± 1.587 0.2078 ± 0.000 0.2032 ± 0.015

(See caption of Table 2 for a description of the headings.)

hand, we use the NTR metric to observe the impact of the order to
reduce the test duration process.

Table 4 presents the RFTC and NTR values. We observe that,
considering the RFTC values, VTS is the best strategy in 12 cases
for time budget 10%, 8 for 50%, and 8 for 80%, whilst WTS is the
best, respectively in 9, 13, and 14 cases. These strategies have equal
performance in 5, 10, and 9 cases. In some cases there are no values,
this is due to the difficult inherent to the problem, that is, none
test case executed fails for the test budget under evaluation. On the
other hand, considering the NTR values, we observe that VTS is
the best strategy in 18 cases for time budget 10%, 17 for 50%, and 13
for 80%, whilst WTS is the best, respectively in 6, 13, and 15 cases.
These strategies have equal performance in 6, 1, and 3 cases.

As observed for NAPFD, the greater the budgets the greater the
WTS performance, and the opposite for VTS. However, the best
RFTC values highlighted do not provide good NTR values. This can
be related to the standard deviation that is higher for RFTC and
WTS. For the variants fedora-undefined-sanitizer (fed-und)
and tumbleweed-undefined-sanitizer (tumb-und),WTS has the
best performance in most cases, across the time budgets. These
variants are those with more builds. This suggests that increasing
the number of commitsWTS improves using the actual setting from
our approach. In this sense, the sliding window size used could have
impacted in the results. The use of a low size can improve the results
for variants with few builds.

To visualize the learning behavior of the proposed approach,
we analyze the accumulative NAPFD values. Figure 5 presents
results from ubuntu-openssl_1.1.x-x86_64 (ubun-op) variant,
as well as a comparison against the random prioritization. Aswe can
observe, COLEMAN better fits the problem regardless of the strategy
adopted, mainly when there are failures to occur (variation in the
lines). Furthermore, we observe that WTS was a bit better than VTS

in the first commits, that is, WTS better mitigates the problem of
beginning without learning.

To corroborate the quantitative analysis, we performed a qual-
itative analysis of the subject system variants and the potential
benefits of using WTS as a prioritization strategy during the con-
tinuous integration of HCS. Table 5 describes the history of reused
and failed test cases along with the different builds. In this table, we
can observe the first build in which each variant was introduced
(second column). The third column shows the number of test cases
applied during the continuous integration in that first build. The
number of reused and new test cases are presented in the fourth and
fifth columns, respectively. The last column presents the number
of the reused test cases that have failed when used for testing other
variants previously to be used for that specific variant.

For the variants whose the test cases have never failed before the
variant introduction, both VTS and WTS have the same behavior.
On the other hand, for a new variant whose test cases have been
failed before its introduction, failed history can be an important
source of information for the prioritization of test cases, then WTS
can bring benefits for the CI process, mainly considering time con-
straints. For instance, the variant mingw64 appears for the first time
during build 45. All the 10 test cases of this variant were reused,
since they were executed for testing other variants in previous
build. One of these test cases failed 14 times in previous builds. In
this case, this test case that revealed faults in previous build must
be prioritized and executed before other test cases, since it is most
likely to reveal faults.

Figure 6 presents the evolution of builds regarding the number of
variants and test cases. The number of variants (blue line) represents
the growth in the number of variants of libssh. Considering WTS,
all the test cases considered in each build (red line) can be source of
information during the learning process. Comparing to the average

137

Learning-based Prioritization of Test Cases in CI of HCS

1.0 2.0 7.0
CI Cycle

2

4

6

8

10

12

14

Ac
cu

m
ul

at
iv

e
N

AP
FD

Time Budget: 10%

1.0 2.0 7.0
CI Cycle

Time Budget: 50%

1.0 2.0 7.0
CI Cycle

Time Budget: 80%

FRRMAB-VTS
FRRMAB-WTS
Random-VTS
Random-WTS

Figure 5: Accumulative NAPFD from ubuntu-openssl_1.1.x-x86_64 (ubun-op) variant.

Table 5: Reused Test Cases (TCs) and Failed Reused Test

Cases along the build history.

Variant
First Test Reused New Reused TCs

Build Cases TCs TCs Failed

CentOS7/openssl 2 17 0 17 0
Fedora/openssl 2 17 0 17 0
CentOS7/openssl 1.0.x/x86-64 3 17 17 0 2
Fedora/openssl 1.1.x/x86-64 4 17 17 0 3
Debian/openssl 1.0.x/aarch64 5 17 17 0 0
pages 18 29 17 12 0
address-sanitizer 22 29 29 0 18
undefined-sanitizer 22 29 29 0 47
fedora/openssl_1.1.x/x86-64 26 29 29 0 0
fedora/undefined-sanitizer 26 29 29 0 0
tumbleweed/openssl_1.1.x/x86-64 33 29 29 0 0
tumbleweed/undefined-sanitizer 33 29 29 0 0
fedora/mbedtls/x86-64 44 30 28 2 0
mingw64 45 10 10 0 14
mingw32 45 10 10 0 14
Debian.cross.mips-linux-gnu 64 19 18 1 0
fedora/openssl_1.1.x/x86-64/release 95 38 32 6 0
tumbleweed/openssl_1.1.x/x86-64/release 95 38 32 6 0
fedora/libgcrypt/x86_64 131 40 38 2 0
centos7/openssl_1.0.x/x86_64 131 24 23 1 0
fedora/openssl_1.1.x/x86_64 131 40 38 2 0
fedora/mbedtls/x86_64 131 39 37 2 0
tumbleweed/openssl_1.1.x/x86_64/gcc 131 40 38 2 0
tumbleweed/openssl_1.1.x/x86_64/gcc7 131 40 38 2 0
tumbleweed/openssl_1.1.x/x86_64/clang 131 40 38 2 0
freebsd/x86_64 131 24 23 1 0
visualstudio/x86_64 188 16 11 5 0
visualstudio/x86 188 16 11 5 0
fedora/openssl_1.1.x/x86_64/minimal 197 40 39 1 0
fedora/openssl_1.1.x/x86_64/fips 258 55 46 9 0
ubuntu/openssl_1.1.x/x86_64 319 57 55 2 0

number of test cases per variant (yellow line), that represents the
prioritization considering only the test cases of a specific variant,
namely VTS, the source of information is very reduced.

RQ3: Based on the NAPDF results, we can not point the best strategy.
WTS provides better results with less restrictive situation (more time

budget), and VTS the opposite, as well as taking into account RFTC,

NTR, and PR values. The use of historical data information from the

test cases reused across the variants benefits WTS, which obtains

better results than VTS in the first commits when there in no enough

information to the learning.

6.4 Threats to Validity

Internal Validity: the parameter setting can be considered a threat.
An ideal tuning of parameters was not performed in virtue of time
constraints. To minimize this threat, we used the configuration
based on previous work.

External Validity: we used only one subject system in this work.
Thus, these results cannot be generalized. However, this system is a
real-world system and the study provides some evidences towards
an initial validation of our approach. New experiments should be
performed to confirm these findings. Besides that, we believe that
our study can be easily replicated, using the raw data analyzed and
disseminated by the Open Science Framework (OSF).

Conclusion Validity: the randomness is a threat. The algorithms
were executed 30 times but it is recommended they be executed
1000 times [2]. However, this is not possible due to the computa-
tional effort required. So, a larger number of executions should
be considered. Another threat is related with the statistical tests
used. To minimize this threat, we used tests commonly adopted for
non-deterministic algorithms in software engineering problems [4].
Finally, the analysis was made with a set of quality indicators. These
results may be different for other indicators.

7 RELATEDWORK

In the literature we find mapping studies on regression testing
and SPL engineering [11, 35]. Existing works explore the three
basic regression testing techniques [43]: minimization [40], selec-
tion [16, 17, 41, 42], and prioritization [1, 12, 13] of test cases. These
techniques are not excluding and can be combined [9]. These works
do not focus CI particularities and constraints, but some of these
approaches can be applied in a previous step to establish a test set
for a build to be prioritized by our strategies.

Regarding TCP in CI environments we refer a recent map-
ping [30] that highlights some works for the HCS context [19, 20,
21, 22]. The approach of Marijan et al. [20, 21] uses historical test
data to determine an optimal order of test cases to ensure feature
coverage, early fault detection and execution time. An approach
and a tool called TITAN is proposed in [22]. The tool implements
test prioritization and minimization techniques, and provides test

138

Figure 6: Number of variants and the number of test cases per build using Whole Test Set Strategy (WTS)

traceability and visualization. The idea is to obtain a high fault
detection rate and low test execution. Another work [19] uses the
coverage matrix of test cases and the fault detection history to iden-
tify redundant test cases that are not likely to detect faults. Their
method minimizes a test suite by excluding redundant test cases. It
is a learning algorithm that reduces test redundancy. The algorithm
minimizes the test execution time by avoiding unnecessary test exe-
cutions using coverage metrics and a fault-detection history. Again,
additional information, such as feature coverage, is necessary. As
firstly a minimization step is conducted, the prioritized set may not
contain all available test cases.

To overcome such limitations, learning approaches based on
historical failure data have been explored for TCP in CI. These ap-
proaches learn with past prioritizations, usually guided by a reward
function [3] and deals properly with the volatility of the test cases.
We canmention two approaches from the literature: (i) RETECS [37],
a Reinforcement Learning-based approach that uses an agent, for
instance, an Artificial Neural Network or a Tableau Representation,
to interact with the CI environment and define an action (prior-
itization) to be applied according to a reward (feedback); and (ii)
COLEMAN [28], which uses the MAB policy to establish the rewards.
COLEMAN presented better performance than RETECS in experiments
reported in the literature [28], and because of this was used in our
study. But both strategies were not proposed specifically for the
HCS context. Our work contributes to make possible the applica-
tion of these approaches in CI of HCS, by introducing strategies
that take into account particularities found in this context, such as
the volatility of the variants.

8 CONCLUDING REMARKS

This work introduces two strategies for the application of a TCP
learning-based approach, COLEMAN, in Continuous Integration of
HCSs: the Variant Test Set Strategy (VTS) that relies on the test set
specific for each variant, and the Whole Test Set Strategy (WTS)
that prioritizes the test set composed by the union of the test cases
of all variants. COLEMAN uses a MAB policy and a reward function
to learn from the failure-history of test cases, addressing, in this
way, the volatility problem, regarding test cases and variants that
can be added or removed along the CI cycles.

We evaluated the strategies in a real-world HCS, using the FR-
RMAB policy and TimeRank reward function, considering three
time budgets, namely 10%, 50%, and 80%. The results show that the
use of COLEMAN outperforms the use of a random prioritization in

terms of NAPFD, independently of the strategy and budget adopted.
COLEMAN presents results that are statistically better or equal to the
baseline in 93% of the cases. Furthermore, the strategies spend, in
the worst case, just 0.04535 seconds to execute, what shows their
applicability in the CI context. Both strategies present similar per-
formance considering the indicators. But VTS performs better in
the less restrictive scenario, i.e., time budget of 10%, and with WTS
occurs the opposite. Furthermore, WTS better mitigates the prob-
lem of beginning without knowledge. Consequently, this strategy
is adequate when there is a new variant to be tested.

Future work includes the application of the strategies (i) for
other HCSs from different domains and with different number of
variants; (ii) using COLEMAN with other policies, as well as other
features such as test coverage, testers’ preference, test case duration
and, to consider in how many variants a test case fails; (iii) using
other learning approaches such as the one based on Reinforcement
Learning [37]; and (iv) using specific metrics to the variants.

ACKNOWLEDGMENTS

This research was partially funded by the Brazilian research agen-
cies: CNPq (grants 408356/2018-9 and 305968/2018-1), Fundação
Araucária – FAPPR (grant no. 51435), and CAPES.

REFERENCES
[1] Mustafa Al-Hajjaji, Sascha Lity, Remo Lachmann, Thomas Thüm, Ina Schaefer,

and Gunter Saake. 2017. Delta-oriented product prioritization for similarity-based
product-line testing. In 2017 IEEE/ACM 2nd International Workshop on Variability
and Complexity in Software Design (VACE). IEEE, 34–40.

[2] Andrea Arcuri and Lionel Briand. 2011. A Practical Guide for Using Statistical
Tests to Assess Randomized Algorithms in Software Engineering. In 33rd Inter-
national Conference on Software Engineering (ICSE’11). ACM, New York, NY, USA,
1–10. https://doi.org/10.1145/1985793.1985795

[3] Antonia Bertolino, Antonio Guerriero, Breno Miranda, Roberto Pietrantuono,
and Stefano Russo. 2020. Learning-to-Rank vs Ranking-to-Learn: Strategies for
Regression Testing in Continuous Integration. In 42nd International Conference
on Software Engineering (ICSE’20). ACM, New York, NY, USA. https://doi.org/10
.1145/3377811.3380369

[4] Thelma Elita Colanzi, Wesley Klewerton Guez Assunção, Paulo Roberto Farah,
Silvia Regina Vergilio, and Giovani Guizzo. 2019. A Review of Ten Years of the
Symposium on Search-Based Software Engineering. In Symposium on Search-
Based Software Engineering. Springer, Cham, 42–57.

[5] Hyunsook Do, Siavash Mirarab, Ladan Tahvildari, and Gregg Rothermel. 2008.
An Empirical Study of the Effect of Time Constraints on the Cost-Benefits of
Regression Testing. In 16th ACMSIGSOFT International Symposium on Foundations
of Software Engineering. ACM, New York, NY, USA, 71–82.

[6] Paul M Duvall, Steve Matyas, and Andrew Glover. 2007. Continuous integration:
improving software quality and reducing risk. Pearson Education.

[7] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for Improv-
ing Regression Testing in Continuous Integration Development Environments. In

139

Learning-based Prioritization of Test Cases in CI of HCS

22nd ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing. ACM, New York, NY, USA, 235–245. https://doi.org/10.1145/2635868.2635910

[8] Emelie Engström. 2010. Regression Test Selection and Product Line System
Testing. In 3rd International Conference on Software Testing, Verification and
Validation. IEEE, 512–515.

[9] Alireza Ensan, Ebrahim Bagheri, Mohse Asadi, Dragan Gasevic, and Yevgen
Biletskiy. 2011. Goal-Oriented Test Case Selection and Prioritization for Product
Line Feature Models. In 8th International Conference on Information Technology:
New Generations. IEEE, 291–298. https://doi.org/10.1109/ITNG.2011.58

[10] Angelo Gargantini, Justyna Petke, Marco Radavelli, and Paolo Vavassori. 2016.
Validation of Constraints Among Configuration Parameters Using Search-Based
Combinatorial Interaction Testing. In 8th International Symposium on Search
Based Software Engineering. Springer, Cham, 49–63.

[11] Satendra Kumar and Rajkumar. 2016. Test case prioritization techniques for
software product line: A survey. In International Conference on Computing, Com-
munication and Automation (ICCCA). IEEE, 884–889.

[12] Remo Lachmann, Simon Beddig, Sascha Lity, Sandro Schulze, and Ina Schaefer.
2017. Risk-based integration testing of software product lines. In 11th Interna-
tional Workshop on Variability Modelling of Software-intensive Systems. 52–59.

[13] Remo Lachmann, Sascha Lity, Sabrina Lischke, Simon Beddig, Sandro Schulze,
and Ina Schaefer. 2015. Delta-oriented test case prioritization for integration
testing of software product lines. In 19th International Conference on Software
Product Line. 81–90.

[14] K. Li, A. Fialho, S. Kwong, and Q. Zhang. 2014. Adaptive operator selection with
bandits for a multiobjective evolutionary algorithm based on decomposition.
Evolutionary Computation, IEEE Transactions on 18, 1 (2014), 114–130.

[15] Frank J. van der Linden, Klaus Schmid, and Eelco Rommes. 2007. Software
Product Lines in Action: The Best Industrial Practice in Product Line Engineering.
Springer-Verlag, Berlin, Heidelberg.

[16] Sascha Lity, Manuel Nieke, Thomas Thüm, and Ina Schaefer. 2019. Retest test
selection for product-line regression testing of variants and versions of variants.
Journal of Systems and Software 147 (2019), 46–63.

[17] Malte Lochau, Ina Schaefer, Jochen Kamischke, and Sascha Lity. 2012. Incremental
Model-Based Testing of Delta-Oriented Software Product Lines. In Tests and Proofs.
Springer, Berlin, Heidelberg, 67–82.

[18] Henry B Mann and Donald R Whitney. 1947. On a test of whether one of
two random variables is stochastically larger than the other. The annals of
mathematical statistics 18 (1947), 50–60.

[19] Dusica Marijan, Arnaud Gotlieb, and Marius Liaaen. 2019. A learning algorithm
for optimizing continuous integration development and testing practice. Software:
Practice and Experience 49, 2 (2019), 192–213. https://doi.org/10.1002/spe.2661

[20] Dusica Marijan, Arnaud Gotlieb, and Sagar Sen. 2013. Test Case Prioritization for
Continuous Regression Testing: An Industrial Case Study. In IEEE International
Conference on Software Maintenance (ICMS). IEEE, 540–543.

[21] Dusica Marijan and Marius Liaaen. 2017. Test Prioritization with Optimally
Balanced Configuration Coverage. In IEEE 18th International Symposium on High
Assurance Systems Engineering (HASE). IEEE, 100–103.

[22] Dusica Marijan, Marius Liaaen, Arnaud Gotlieb, Sagar Sen, and Carlo Ieva. 2017.
TITAN: Test Suite Optimization for Highly Configurable Software. In IEEE Inter-
national Conference on Software Testing, Verification and Validation (ICST). IEEE,
524–531. https://doi.org/10.1109/ICST.2017.60

[23] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Rohit Gheyi, and Sven Apel.
2016. A Comparison of 10 Sampling Algorithms for Configurable Systems. In
38th International Conference on Software Engineering (ICSE ’16). ACM, New York,
NY, USA, 643–54. https://doi.org/10.1145/2884781.2884793

[24] Flávio Medeiros, Márcio Ribeiro, Rohit Gheyi, Sven Apel, Christian Kästner,
Bruno Ferreira, Luiz Carvalho, and Baldoino Fonseca. 2018. Discipline Matters:
Refactoring of Preprocessor Directives in the #ifdef Hell. IEEE Transactions on
Software Engineering 44, 5 (2018), 453–469.

[25] Mukelabai Mukelabai, Damir Nešiundefined, Salome Maro, Thorsten Berger,
and Jan-Philipp Steghöfer. 2018. Tackling Combinatorial Explosion: A Study
of Industrial Needs and Practices for Analyzing Highly Configurable Systems.
In 33rd ACM/IEEE International Conference on Automated Software Engineering.
ACM, New York, USA, 155–166. https://doi.org/10.1145/3238147.3238201

[26] Raiza Oliveira, Bruno Cafeo, and Andre Hora. 2019. On the Evolution of Feature
Dependencies: An Exploratory Study of Preprocessor-Based Systems. In 13th
International Workshop on Variability Modelling of Software-Intensive Systems.
ACM, New York, NY, USA, 1–9. https://doi.org/10.1145/3302333.3302342

[27] Jackson A. Prado Lima, Willian D. F. Mendonça, Wesley K. G. Assunção, and
Silvia R. Vergilio. 2020. Supplementary Material - Learning-based Prioritization
of Test Cases in Continuous Integration of Highly-Configurable Software. https:
//doi.org/10.17605/OSF.IO/5CD8M

[28] Jackson A. Prado Lima and Silvia R. Vergilio. 2020. A Multi-Armed Bandit
Approach for Test Case Prioritization in Continuous Integration Environments.
IEEE Transactions on Software Engineering (2020), 12. https://doi.org/10.1109/TS
E.2020.2992428

[29] Jackson A. Prado Lima and Silvia R. Vergilio. 2020. Multi-Armed Bandit Test Case
Prioritization in Continuous Integration Environments: A Trade-off Analysis. In

5th Brazilian Symposium on Systematic and Automated Software Testing (SAST
’20). ACM. https://doi.org/10.1145/3425174.3425210

[30] Jackson A. Prado Lima and Silvia R. Vergilio. 2020. Test Case Prioritization in
Continuous Integration environments: A systematic mapping study. Information
and Software Technology 121 (2020), 106268. https://doi.org/10.1016/j.infsof.202
0.106268

[31] XiaoQu,Myra B. Cohen, and KatherineM.Woolf. 2007. Combinatorial Interaction
Regression Testing: A Study of Test Case Generation and Prioritization. In IEEE
International Conference on Software Maintenance. IEEE, 255–264. https://doi.or
g/10.1109/ICSM.2007.4362638

[32] Herbert Robbins. 1985. Some aspects of the sequential design of experiments. In
Herbert Robbins Selected Papers. Springer, 169–177.

[33] Gregg Rothermel. 2018. Improving Regression Testing in Continuous Integra-
tion Development Environments (Keynote). In 9th ACM SIGSOFT International
Workshop on Automating TEST Case Design, Selection, and Evaluation (A-TEST
2018). ACM, New York, NY, USA, 1. https://doi.org/10.1145/3278186.3281454

[34] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold. 1999.
Test Case Prioritization: An Empirical Study. In IEEE International Conference on
Software Maintenance (ICSM ’99). IEEE Computer Society, 179.

[35] Per Runeson and Emelie Engström. 2012. Chapter 7 - Regression Testing in
Software Product Line Engineering. In Advances in Computers, Ali Hurson and
Atif Memon (Eds.). Vol. 86. Elsevier, 223–263. https://doi.org/10.1016/B978-0-
12-396535-6.00007-7

[36] M. Shahin, M. Ali Babar, and L. Zhu. 2017. Continuous Integration, Delivery
and Deployment: A Systematic Review on Approaches, Tools, Challenges and
Practices. IEEE Access 5 (2017), 3909–3943.

[37] Helge Spieker, Arnaud Gotlieb, Dusica Marijan, and Morten Mossige. 2017.
Reinforcement Learning for Automatic Test Case Prioritization and Selection
in Continuous Integration. In 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA 2017). ACM, New York, NY, USA, 12–22.
https://doi.org/10.1145/3092703.3092709

[38] Andras Vargha and Harold D. Delaney. 2000. A Critique and Improvement of the
CL Common Language Effect Size Statistics of McGraw and Wong. Journal of
Educational and Behavioral Statistics 25, 2 (Jan. 2000), 101–132.

[39] Alexander von Rhein, Alexander Grebhahn, Sven Apel, Norbert Siegmund, Dirk
Beyer, and Thorsten Berger. 2015. Presence-condition Simplification in Highly
Configurable Systems. In 37th International Conference on Software Engineering -
Volume 1 (ICSE 2015). IEEE, New York, USA, 178–188.

[40] Shuai Wang, Shaukat Ali, and Arnaud Gotlieb. 2015. Cost-effective test suite
minimization in product lines using search techniques. Journal of Systems and
Software 103 (2015), 370–391. https://doi.org/10.1016/j.jss.2014.08.024

[41] Shuai Wang, Shaukat Ali, Arnaud Gotlieb, and Marius Liaaen. 2016. A systematic
test case selection methodology for product lines: results and insights from an
industrial case study. Empirical Software Engineering 21 (2016), 1586–1622.

[42] Zhihong Xu, Myra B. Cohen, Wayne Motycka, and Gregg Rothermel. 2013. Con-
tinuous Test Suite Augmentation in Software Product Lines. In 17th International
Software Product Line Conference (SPLC ’13). Association for Computing Machin-
ery, New York, NY, USA, 52–61. https://doi.org/10.1145/2491627.2491650

[43] Shin Yoo and Mark Harman. 2012. Regression Testing Minimization, Selection
and Prioritization: A Survey. Software: Testing, Verification, and Reliability 22, 2
(March 2012), 67–120. https://doi.org/10.1002/stvr.430

140

141

APPENDIX F – COST-EFFECTIVE LEARNING-BASED STRATEGIES FOR TCPCI
OF HCS

Cost-effective learning-based strategies for test case
prioritization in Continuous Integration of Highly-Configurable

Software

Jackson A. Prado Lima
DInf, Federal University of

Paraná
Curitiba, Brazil

jackson.lima@ufpr.br

Willian D. F.
Mendonça

DInf, Federal University of
Paraná

Curitiba, Brazil
willian.mendonca@ufpr.br

Silvia R. Vergilio
DInf, Federal University of

Paraná
Curitiba, Brazil

silvia@inf.ufpr.br

Wesley K. G. Assunção
Pontifical Catholic

University of Rio de Janeiro
Rio de Janeiro, Brazil

wassuncao@inf.puc-rio.br

ABSTRACT

Highly-Configurable Software (HCSs) testing is usually costly, as
a significant number of variants need to be tested. This becomes
more problematic when Continuous Integration (CI) practices are
adopted. CI leads the software to be integrated and tested multi-
ple times a day, subject to time constraints (budgets). To address
CI challenges, a learning-based test case prioritization approach
named COLEMAN has been successfully applied. COLEMAN deals with
test case volatility, in which some test cases can be included/re-
moved over the CI cycles. Nevertheless, such an approach does not
consider HCS particularities such as, by analogy, the volatility of
variants. Given such a context, this work introduces two strategies
for applying COLEMAN in the CI of HCS: the Variant Test Set Strategy
(VTS) that relies on the test set specific for each variant; and the
Whole Test Set Strategy (WST) that prioritizes the test set com-
posed by the union of the test cases of all variants. Both strategies
are applied to two real-world HCSs, considering three test budgets.
Independently of the time budget, the proposed strategies using
COLEMAN have the best performance in comparison with solutions
generated randomly and by another learning approach from the
literature. Moreover, COLEMAN produces, in more than 92% of the
cases, reasonable solutions that are near to the optimal solutions
obtained by a deterministic approach. Both strategies spend less
than one second to execute. WTS provides better results in the less
restrictive budgets, and VTS the opposite. WTS seems to better
mitigate the problem of beginning without knowledge, and is more
suitable when a new variant to be tested is added.

KEYWORDS

Test Case Prioritization, Software Product Line, Continuous Inte-
gration, Highly-Configurable Software

1 INTRODUCTION

To succeed, software systems must consider and operate over differ-
ent user’s needs, mostly related to the different business domains,
organizational processes, environmental restrictions, and special-
ized hardware devices [4]. In this scenario, Highly Configurable
Software (HCS) provides adaptable and flexible solutions to com-
plex and real-world problems. HCS is usually implemented by using
different configuration options – applying strategies such as con-
ditional compilation, conditional execution, or build systems – to
create custom system products, a.k.a. variants [32, 50].

To ensure HCS quality is a fundamental issue, and some specific
approaches are needed. For instance, HCS testing can be more com-
plex and costly, as many variants usually need to be tested, and
many test cases overlap. This becomes more problematic if Contin-
uous Integration (CI) practices are adopted [25]. CI environments
have become popular in the industry to allow automatic integra-
tion, build, and testing of software projects, created by different
developers/teams collaboratively [47]. CI leads the software to be
integrated and tested multiple times a day to detect integration er-
rors as quickly as possible [9]. However, running a large set of test
cases can take many minutes or even hours [44]. This implies costs,
requires automated tools, and makes the continuous regression
testing of HCS more challenging [11, 52].

As we can see in CI, it is fundamental to perform regression test-
ing in a very cost-effective way, providing rapid test feedback on
software failures [53]. Another essential point to consider is that, in
a company, multiple projects may share the same CI environment,
imposing time testing constraints [8]. The test must run a restricted
slot of time, referred to as test budget. Therefore, some traditional
regression testing approaches are not suitable for CI, mainly those
for selection and minimization of test cases that rely on code cov-
erage, code instrumentation, or search-based techniques that take
a long time to execute [53]. In this sense, Test Case Prioritization
(TCP) is more popular and used [8]. TCP techniques improve the
cost-effectiveness of regression testing by ordering test cases to
allow early execution of the most important ones, generally those
test cases with a high probability of revealing faults [10]. Consider-
ing the constraints of test budgets, early fault detection is essential
because when a test case fails, test execution can be ended, and
fewer resources are spent.

Approaches have appeared to adapt TCP techniques for the CI
context (TCPCI) [39]. Nevertheless, the great majority are not adap-
tive, that is, they do not learn with past prioritizations; they do not
consider test case volatility, characteristically associated with the
fact that test cases may be added or removed (discontinued) over the
CI cycles. Learning approaches based on historical failure data have
been proposed to overcome some of these limitations. Ranking-
to-learn approaches learn from past prioritization, based on the
rewards obtained from the feedback of previously used ranks. The
main idea is to maximize the rewards [37, 48]. These approaches are
more robust regarding the volatility of the test cases, code changes,
and the number of failing tests [3]. However, the challenge is to
search for early fault detection in the failure-history of past test

cases, but also to explore new test cases. This is related to the Ex-
ploration versus Exploitation (EvE) dilemma, and is a consequence
of the test budget, since whether only error-prone test cases are
considered without diversity, some test cases can never be executed.
COLEMAN (Combinatorial VOlatiLE Multi-Armed BANdit) [37] is a
promising approach to deal with the EvE dilemma. COLEMAN for-
mulates TCPCI as a Multi-Armed Bandit (MAB) problem [43]. A
test case is an arm and at each time/build multiple arms are se-
lected. In addition, the arms available at each time may change
dynamically over time. In this way, it learns with the feedback from
the application of the test cases, incorporating diversity in the test
suite prioritization. COLEMAN has presented better results in com-
parison with other learning approaches and can be considered the
state-of-the-art ranking-to-learn approach [37]. However, COLEMAN
and other existing learning approaches do not consider the HCS
particularities.

The limitation of existing TCPCI approaches applied in the par-
ticular context of HCS, is that they do not adequately address test
case volatility or are model-dependent [15, 25, 27, 29]. To deal with
the EvE problem, most of them use, besides the failure-history,
other measures that rely on code instrumentation or require ad-
ditional information, such as code or feature coverage. This can
be time-consuming, and either maintaining this information and
updated models can be challenging.

Moreover, in the HCS context, we have another particularity,
that is, by analogy, the volatility of variants that have different
configuration options. Each variant can be seen as a system to be
individually tested, however, having test cases that are common to
or reused from other variants. Also, some variants can be included
or discontinued over the CI cycles. To mitigate this problem, in a
previous work [35], we proposed two strategies for the application
of learning-based approaches, such as COLEMAN, in the CI of HCS:
(i) the Variant Test Set Strategy (VTS) that relies on the test set
specific for each variant; and (ii) the Whole Test Set Strategy (WTS)
that prioritizes the test set composed by the union of the test cases
of all variants.

The proposed strategies were applied to the system LIBSSH and
evaluated regarding some indicators of early fault detection and
time reduction. The obtained results showed that the use of such
strategies with COLEMAN outperforms a random strategy. These
preliminary results motivated the present work, which extends
previous work by adding new evaluations and comparisons with
the other two approaches. Adopting the same procedures, we added
to the analysis a new HCS, namely DUNE, as well as new quality
indicators to evaluate the strategies. Moreover, we performed a
comparison with another approach from the literature, namely
RETECS [48], based on reinforcement learning. Moreover, all the
approaches - COLEMAN, RETECS and random - are also evaluated
against a deterministic approach. Such an approach determines the
optimal prioritization based on a priori knowledge of the tests re-
sults. The main idea is to determine how far the solutions produced
by the strategies using each one of the approaches are from the
optimal solutions produced by the deterministic approach.

The obtained results show that the proposed strategies using
COLEMAN are very cost-effective. COLEMAN produce, in the great ma-
jority of the cases and independently of the time budget, the best
solutions in comparison with the random and RETECS approaches.

The solutions produced by COLEMAN are considered reasonable, that
is, near to the optimal solutions in 92% of the cases. Moreover, both
strategies spend less than one second to execute, i.e., they are appli-
cable considering the CI Cycles. In this way, the main contributions
of this work are:

• A deeper evaluation on the use of the proposed strategies by
adding a new system to our evaluation. This contributed to
corroborating some previous results, which are also valid for
the system added, and to derive some guidelines for using the
strategies. WTS provides better results in a less restrictive
situation where more time and resources are available, and
VTS the opposite. The use of historical data information
from the test cases reused across the variants benefits WTS.
Because of this, WTS obtains better results than VTS in the
first commits when there is no enough information to the
learning and when a new variant is added.

• Evaluation on the use of another learning approach in com-
parison with COLEMAN. The obtained results show COLEMAN is
the best option in comparison with RETECS, and corroborate
the MAB-based approach to allow mitigating the variant
and test cases volatility problem, learning from the failure
history of reused test cases along with the CI cycles, and
combining exploration and exploitation.

• Evaluation results that show the strategies used with
COLEMAN are very cost-effective. The solutions generated
by COLEMAN are very close to the optimal solutions produced
by the deterministic approach. Moreover, they are applicable
in practice, considering the CI cycles, spending only a few
seconds to run.

• A set of findings whose implications are analyzed in terms
of practice and research aspects. They can serve to direct
future research in this subject.

• A public repository with the data used in this work and the
implementation for mining the CI information, which allows
replication and future research [36].

This paper is structured as follows. Section 2 presents a moti-
vating example. Section 3 reviews TCPCI approaches and Subsec-
tion 3.1 describes COLEMAN, the learning-based approach adopted in
this work. Section 4 introduces the strategies proposed for the HCS
context. Section 5 describes how the evaluation was conducted. Re-
sults are presented and analyzed in Section 6. Section 6.6 discusses
some findings and implications. Section 6.7 presents some threats
to the validity of our results. Section 7 overviews related work, TCP
approaches for SPLs and HCSs, in general and specific for the CI
context. Section 8 presents concluding remarks.

2 MOTIVATING EXAMPLE

To highlight the importance of having TCP during CI of HCSs, we
provide a real-world example from the LIBSSH system, which is
one of the subject systems used in our study (see Section 5.1). In
the commit #17b518a61 from the LIBSSH system, the developers in-
cluded a new feature that adds support for new OpenSSH keytypes,
as presented in Figure 1. The implementation of this new feature
implied changes on seven files with 245 additions and 13 deletions.

1https://gitlab.com/libssh/libssh-mirror/-/commit/17b518a677c92d943cf016b81272ec
10ee1ca368

142

Cost-effective Learning-based Strategies for TCP in CI of HCS

Figure 1: New LIBSSH feature introduced on Feb 11, 2020 to

support sk-ecdsa and sk-ed25519 OpenSSH keytypes.

In order to test the newly introduced feature, Pipeline
#1168093112 was triggered. Figure 2 presents a piece of information
from this pipeline that was composed of 27 jobs for the master
branch, in which each job is in charge of testing one variant. In
total, the CI with the 27 variants of LIBSSH took 23 minutes and
39 seconds. In the figure, we can notice that two jobs failed during
the CI, namely for variants ubuntu/openssl_1.1.x/x86_64 and
visualstudio/x86_64. This implies that some test cases failed.

Figure 2: CI pipeline for feature pki: add support for

sk-ecdsa and sk-ed25519 with 27 jobs/variants for the mas-

ter branch.

For a more in-depth analysis, we focus on the fails of variants
ubuntu/openssl_1.1.x/x86_64 in the job #4328622543. Figure 3
presents a snippet of the build log from the test of this variant.
In the figure, we can notice that the test case #39 (on line 837)
has failed. Based on the testing order defined for this job by the
developers/testers of LIBSSH, the test activity took 122.63 seconds
until reaching the test case that failed. In total, this variant has 57
test cases, and it takes 197.01 seconds to run all tests. Considering
this scenario, this job’s testing activity consumed 62% of the runtime
to reach the failed test case. Supposing we have a budget constraint
for testing LIBSSH and we defined 50% of the total runtime and no

2https://gitlab.com/libssh/libssh-mirror/pipelines/116809311/builds
3https://gitlab.com/libssh/libssh-mirror/-/jobs/432862254

prioritization, the test case that reveals a fail would not be executed,
without finding the bug related to the inclusion of the new feature.

This illustrative example shows the CI environment for a new
feature of the LIBSSH system. We can see how time consuming the
CI process is when there are many HCS variants. Also, we described
the problem of not having a proper prioritized testing order in cases
of budget constraints. This example highlights and motivates the
importance of having a prioritization strategy to execute earlier
those test cases that are more likely to reveal faults.

3 TEST CASE PRIORITIZATION IN CI

The last section presented the importance of test case orders. Never-
theless, as we mentioned before, TCPCI involves challenging partic-
ularities such as time constraints (test budgets) and the volatility of
test cases. Due to these particularities, some traditional approaches,
such as the ones based on search and coverage, are not suitable for
CI, because they take time to execute [10].

More recently, other approaches have been proposed to the CI
scenario, as reported by a study mapping on TCPCI [39]. However,
most of them [5, 14, 24, 27, 28] require code analysis, which can be
costly. Moreover, they do not address the main characteristics of CI
environments. For instance, they do not consider test case volatility,
a characteristic associated with the fact that test cases may be added
and/or removed over the cycles. They are not adaptive, that is, they
do not learn with past prioritizations.

To overcome such limitations, learning approaches based on
historical failure data have been proposed. Bertolino et al. [3] distin-
guish two kinds of TCP learning-based approaches. The first one,
named Learning-to-Rank, uses supervised learning to train a model
based on some test features. The model is then used to rank test
sets in future commits. The problem with these strategies is that
the model may no longer be representative when the commit con-
text changes. The second kind, named Ranking-to-Learn, is more
suitable to the dynamic CI context. This strategy learns based on
the rewards obtained from the feedback of previously used ranks.
The main idea is to maximize the rewards. Ranking-to-learn ap-
proaches present some advantages. They are more robust regarding
the volatility of the test cases, code changes, and the number of
failing tests. Because of this, the focus of our work is on this kind
of approach.

In the literature, we can find two ranking-to-learn approaches
in the CI context: RETECS[48] (Reinforced Test Case Selection), an
approach based on Reinforcement Learning; and (ii) COLEMAN [37]
(Combinatorial VOlatiLE Multi-Armed BANdit), an approach based
on Multi-Armed Bandit. In experiments reported in the litera-
ture [37], COLEMAN presented better performance than RETECS. Be-
cause of this, the strategies proposed adopt COLEMAN as learning
approach, and RETECS is used as a baseline for comparison.

3.1 Adopted Approach

COLEMAN, the approach adopted in our study, formulates the TCPCI
problem as a Multi-Armed Bandit (MAB) problem. MAB problems
are sequential decision problems related to the scenario in which a
player plays on a set of slot machines (or arms/actions) that even
being identical produce different gains [43]. After a player pulls
one of the arms in a turn, a reward is received from some unknown

143

Figure 3: Test #39 failed for ubuntu/openssl_1.1.x/x86_64 after 122.63 seconds of testing.

distribution, aiming to maximize the sum of the rewards. To this
end, a MAB policy is applied to choose, at each time, the next arm
to pull based on previously observed rewards and decisions.

The formulation of COLEMAN uses a test case as an arm to be
pulled, and it encompasses two MAB variations, namely combinato-
rial and volatile, to deal with the dynamic nature of our problem. In
the combinatorial variation, at each turn (commit/build/CI Cycle),
a MAB policy selects all arms (test cases) available instead of one.
According to the order in which the policy selects the arms, the
prioritization is defined. The volatile variation deal with the test
case volatility. In this case, only the test set available at each commit
is used by the policy.

Only historical failure data is required. No further detail about
the system under test is needed, such as code coverage or code
instrumentation. Figure 4 shows how COLEMAN interacts with the
CI environment. In such an environment, teams work continuously
integrating code and making smaller code commits every day, usu-
ally monitored by a CI server. When a change occurs, the CI server
clones this code, builds it, and runs the testing processes. When
the entire process is finished, a report is generated by the CI server,
and the developers are informed. COLEMAN acts after a successful
build, in the test phase the approach prioritizes the test case set
available 𝑇𝑐 to be used during the test case execution.

For each build triggered by a commit 𝑐 , a test case set 𝑇𝑐 is
available, as well as a test budget. When the budget is smaller than
the total time required to execute 𝑇𝑐 , our approach is then used to
obtain a prioritized test set 𝑇 ′

𝑐 . The idea is that the most relevant
test cases, i.e., the ones that fail, are executed first. A MAB policy
is used to determine the most relevant test cases. After the test
execution, the policy receives a reward (feedback) provided by a
reward function. The reward value is used in the credit assignment
procedure to set individual rewards for each test. Based on rewards,
the policy adapts its experience for future actions (online learning).

Check-in

Continuous Integration

COLEMAN

MAB Policy

Reward
Function

Test Execution

Test Set Tc
available

Feedback

Historical
Data

Tc
' p

rio
rit

iz
ed

BuildTestReport

Te
st

 e
xe

cu
tio

n
re

su
lts

Test zoom in

Report Fetch
ChangesRep

Check-in

ges

Bu
ilt

 s
ys

te
m

Developers Source Control
Server

Figure 4: Overview of the COLEMAN interaction with the CI

environment.

COLEMAN can be used with different MAB policies and reward
functions. But as presented and evaluated in previous studies [37],
COLEMAN obtained the best performance using TimeRank (Time-

Ranked) function and FRRMAB (Fitness-Rate-Rank based on Multi-

Armed Bandit) policy [20]. Thus, for each test case, FRRMAB policy
considers the history of rewards whilst other policies use cumula-
tive rewards. For this reason, we used FRRMAB and TimeRank in
this study. They are described next.

3.1.1 FRRMAB policy. The FRRMAB policy evaluates all test cases
from a test set available. It selects the best one considering an
empirically estimated value based on a range that depends on the
number of times that has been applied previously. For this, two

144

Cost-effective Learning-based Strategies for TCP in CI of HCS

procedures are used: credit assignment and operator (arm/action)
selection.
Credit Assignment refers to a reward procedure that takes into
account the impact observed in themost recent applications. During
the credit assignment, FRRMAB adopts a rank-based method that
uses the Fitness Improvement Rate (FIR) method. In our context,
the FIR value is obtained by the reward function. The FIR value
is stored in a given Sliding Window (W) organized as a first-in,
first-out queue that is used to evaluate the𝑊 recent applications.
In this way, it is considered the lastW commits as historical test
data. Such behavior allows to exploit the best test cases. If a new
test case appears, a zero is set for the reward value, once that in this
case there is no test case history. On the other hand, if a test case is
removed in the current cycle (commit), we remove its history. The
FRRMAB final value is corrected by a decaying factor.
Operator Selection takes in account the number of times that a
test case appeared in the last W commits. This value is used to
explore new test cases or test cases with few executions.

In order to consider the combinatorial MAB behavior, COLEMAN
adapts the policy to evaluate all the test cases (arms), and order
them, putting the best test case in the top, followed by the second
best one, and so on. When more than one test case has the same
performance, the order among them is defined randomly. On the
other hand, the MAB policy was also adapted to consider only the
test cases available in time 𝑡 and ignore the other ones from the
previous time. This modification allows considering the dynamic
environment (volatility) of the test cases.

3.1.2 Reward Function. The TimeRank function, adopted in our
study, is defined in Equation 1. This function is based on the rank

of 𝑡 ′𝑐 in 𝑇 ′
𝑐 ∀ 𝑡 ′𝑐 ∈ 𝑇 ′

𝑐 , where 𝑇
′𝑓 𝑎𝑖𝑙 is composed by the failing test

cases from 𝑇 ′
𝑐 ; 𝑅𝑁𝐹𝑎𝑖𝑙 returns 1 if 𝑡 ′𝑐 failed and 0 otherwise. The

𝑝𝑟𝑒𝑐 (𝑡 ′𝑐1 , 𝑡
′
𝑐2) function returns 1 if the position of 𝑡 ′𝑐1 is lower than

the position of 𝑡 ′𝑐2 . The idea is to evaluate whether failing test cases
are ranked in the first positions in𝑇 ′

𝑐 . To this end, a test case 𝑡
′
𝑐 that

does not fail and precedes failing ones are penalized by their early
scheduling. A non-failed test case receives a reward given by the
accumulated number of test cases which failed until its position in
the prioritization rank, that is, it receives a reward decreased by
the number of failing test cases ranked after it.

𝑇𝑖𝑚𝑒𝑅𝑎𝑛𝑘 (𝑡 ′𝑐) = |𝑇 ′𝑓 𝑎𝑖𝑙 | − [¬(𝑅𝑁𝐹𝑎𝑖𝑙 (𝑡 ′𝑐)) ×

|𝑇 ′𝑓 𝑎𝑖𝑙 |∑
𝑖=1

𝑝𝑟𝑒𝑐 (𝑡 ′𝑐 , 𝑡
′
𝑐𝑖)]

(1)

4 PROPOSED STRATEGIES

As we mentioned, the HCS context has some particularities, namely
variant volatility. To deal with variant volatility in the CI of HCS, in
this section, we introduce two strategies. They allow the application
of COLEMAN for HCS and learn from past failure history.

For the integration of a commit 𝑐 of an HCS 𝑆 , COLEMAN was
adapted to consider that there is a set𝑉 of 𝑛 variants. For each vari-
ant 𝑣𝑖 ∈ 𝑉 a set of test cases𝑇𝑣𝑖 ,𝑐 is available. That is, in this studywe
consider that there is only one test set by variant. COLEMAN receives
as input 𝑛 test sets, {𝑇𝑣1,𝑐 ,𝑇𝑣2,𝑐 , ...,𝑇𝑣𝑛,𝑐 }, and produces 𝑛 prioritized
test sets, {𝑇 ′

𝑣1,𝑐 ,𝑇
′
𝑣2,𝑐 , ...,𝑇

′
𝑣𝑛,𝑐 }. The value 𝑛 can vary depending on

the number of existing variants of 𝑆 when 𝑐 is committed. For the
COLEMAN prioritization, we propose two strategies to deal with a
set of variants and volatility, as illustrated in Figure 5.

Figure 5: Strategies to deal with HCS variants and their

volatility using COLEMAN.

1. Variant Test Set Strategy (VTS): in this strategy, presented at
the top of Figure 5, COLEMAN is applied 𝑛 times for each 𝑐 treating
each variant independently. The 𝑖𝑡ℎ application has as input the set
𝑇𝑣𝑖 ,𝑐𝑖 and as output the prioritized set 𝑇 ′

𝑣𝑖 ,𝑐𝑖 . When a new variant
of 𝑆 is introduced, no history information is available.

2. Whole Test Set Strategy (WTS): for this strategy, presented
at the bottom of Figure 5, COLEMAN is applied only once for each
𝑐 and has as input only one test set 𝑇𝑆𝑐 =

⋃𝑛
𝑖=1𝑇𝑣𝑖 ,𝑐 composed

by the union of all test sets of all variants under test. A test case
𝑡 in 𝑇𝑆𝑐 can be common/reused to more than one variant, but it
appears in 𝑇𝑆 only once. The status of 𝑡 is set to failed whether
𝑡 failed in at least one variant in which the test case have been
executed previously. To calculate the total time required to execute
𝑇𝑆 we set the duration of 𝑡 with the maximum execution time for
𝑡 considering all variants. The output is a prioritized set 𝑇𝑆 ′𝑐 . The
sets 𝑇 ′

𝑣𝑖 ,𝑐 are then generated, by selecting from 𝑇𝑆 ′𝑐 only the same
test cases that belong to 𝑇𝑣𝑖 ,𝑐 but keeping the prioritization order.

The main advantage of WTS is that if a new variant appears, it
can be tested based on the historical information collected from the
other ones. In this way, mitigating the problem of beginningwithout
knowledge (learning) and adapting to changes in the execution
environment, either by test case volatility or variant volatility.

5 EVALUATION SETUP

This section describes the evaluation setup of our study. The main
goal is to evaluate the proposed strategies regarding early fault
detection and time reduction. Based on this goal, we derived five
research questions (RQs). The first three RQs evaluate our pro-
posed strategies using COLEMAN, in comparison with three other

145

approaches: random, RETECS, and deterministic. The other two RQs
evaluate the applicability of the strategies in the CI cycles and
compare their performance4.

RQ1: What is the performance of the strategies VTS andWTS when

a random approach is used in comparison with COLEMAN?
This question compares the results obtained by the strate-
gies VTS and WTS using COLEMAN with a prioritization
order generated randomly. Random prioritization is one of
the most applicable and fundamental TCP technique [57].
The comparison is performed using an indicator of early
fault detection.

RQ2: What is the performance of the strategies VTS and WTS

using COLEMAN in comparison with RETECS? This question
compares the results obtained by the strategies VTS and
WTS using COLEMAN with another learning approach from
literature RETECS. RETECSwas chosen because it is specific
for CI. Other existing approaches are model-dependent or
required code instrumentation or annotations that make
difficult their application. The comparison also takes into
account early fault detection.

RQ3: How far are the solutions of all adopted approaches from

optimal solutions obtained using a deterministic approach?

This question allows us to know how reasonable the solu-
tions obtained by the three approaches - COLEMAN, RETECS,
and random - are. To answer this question, we use a pri-
oritization generated deterministically. The deterministic
approach uses a priori knowledge about the tests results.
This knowledge is not available in the moment the prior-
itization is performed, because it is generated only after
the test cases execution. Then, such an approach can not
be applied in practice, but gives us a measure to evaluate
the quality of the solutions.

RQ4: Are the strategies VTS andWTS applicable for HCSs in the CI

development context? This question investigates whether
the time spent in the prioritization is acceptable consider-
ing CI Cycles (commits) and if the strategies proposed can
be useful in practice.

RQ5: What is the best strategy for test case prioritization in the

context of HCS? This question aims to compare the pro-
posed strategies, VTS and WTS. The idea is to evaluate
their ability regarding early fault detection, and percentage
of reduced time, to provide directions for their adoption.

5.1 Subject Systems

In this section, we describe the systems under test (SUT) used in this
study, namely LIBSSH and DUNE. These systems have been already
used in the literature on the topic of HCS and SPLs [13, 30, 31, 33, 41,
42]. They have a representative number of variants and historical
to a preliminary evaluation of our strategies. These systems are
hosted at GitLab5, which provides an environment with control
version system and CI pipelines.

4The systems and data collected, as well as the values found for each metric with
statistical test results and plots, are available in our supplementary material [36].
5LIBSSH at https://gitlab.com/libssh/libssh-mirror and DUNE at https://gitlab.dune-
project.org

The logs of the CI pipeline jobs are the source of information
for COLEMAN and RETECS. Figure 6 presents a real example of log
from a job6 of LIBSSH. The log describes information related to the
configuration, build, and execution of test cases for a variant. This
latter is the basis to collect input information for COLEMAN. We can
observe in the figure that the execution of test cases started on line
759, and the result of the first test case is seen on line 761. This line
761 has the three pieces of information that are collected: (i) The
name of the test case, in this example “torture_buffer”; (ii) the
status of the execution, which in this case is “Passed”, but can also
be “Failed ”, as we can see in the bottom of the figure, on line
837; and (iii) execution time that in this test case on 761 is equal to
“0.26 sec”.

Figure 6: Example of Job Log

To collect the CI build history, we developed the tool name
GitLabCI Torrent, which the source code is available at GitHub7. We
choose these systems because they provide detailed output traces
(more verbose), allowing GitLabCI Torrent to extract the historical
test data information adequately. Both systems were mined on
January, 2021.

The SSH library (LIBSSH8) is an open-source C multiplatform
library implementing the SSHv2 protocol on client and server side.
This library is statically configurable with the C preprocessor, and
it is designed to remotely execute programs, transfer files, use a
secure and transparent tunnel, manage public keys, and the like.
In this system, we identified 43 variants on GitLab. From these
variants, we selected 34 that have at least one failed test case in
their history of builds.

The Distributed and Unified Numerics Environment (DUNE9) sys-
tem is a modular tool for solving partial differential equations with
grid-based methods. It supports the easy implementation of meth-
ods like Finite Elements, Finite Volumes, and also Finite Differences.
Using C++ techniques, DUNE allows one to use very implementa-
tions of the same concept, i.e., grid and solver, under a common
interface with a very low overhead. Similarly to the LIBSSH system,
we identified 33 variants for this system, and we selected 29.

6https://gitlab.com/libssh/libssh-mirror/-/jobs/432862254#L837
7https://github.com/jacksonpradolima/gitlabci-torrent
8https://www.libssh.org/
9https://www.dune-project.org/

146

Cost-effective Learning-based Strategies for TCP in CI of HCS

Information about the LIBSSH and DUNE systems are presented
in Tables 1 and 2, respectively. The first line of the tables presents
information of the set composed by the union of the test cases
related to all variants, which is considered to evaluate WTS. The
first column shows the variant name. The second column shows
the period that each variant was used. The third column presents
the total of builds identified. Only valid builds (success or fail) were
considered, that is, we discarded builds with some problem, for
instance, canceled builds. The fourth column shows the total of
failures found, and in parentheses the number of builds in which at
least one test failed. The fifth column presents a graph concerning
the faults by cycle. The sixth column shows the number of different
(unique) test cases identified from build logs, and in parentheses
the range of test cases executed in the builds. The seventh column
presents a graph concerning the test case volatility. The last columns
present the mean (± standard deviation) duration in minutes of the
CI Cycles and the interval between them.

5.2 Quality Indicators

We adopted indicators from TCP literature [37, 38, 40] regarding
early detection, time reduction, and accuracy. They are defined as
follows.

Normalized Average Percentage of Fault Detected

(NAPFD) [40] is an extension of the Average Percentage of
Faults Detected (APFD) [45]. APFD measures how fast a set of
prioritized test cases (𝑇 ′) can success on detecting faults in the
program under tested. APFD values range from zero to one and
is computed from the weighted average of the percentage of
detected faults. Higher values indicate that the faults are detected
faster using fewer test cases. On the other hand, NAPFD metric is
adequate for prioritization of test cases when not all of them are
executed, and some faults can be undetected. NAPFD, in addition
to APFD, considers the ratio between detected and detectable faults
within 𝑇 . Equation 2 describes how to compute NAPFD, where
𝑚 is the number of faults detected by all test cases; 𝑟𝑎𝑛𝑘 (𝑇 ′

𝑖) is
the position of 𝑇 ′

𝑖 in 𝑇 ′. If 𝑇 ′
𝑖 did not reveal faults, then it is set to

𝑇 ′
𝑖 = 0. 𝑛 is the number of tests cases in 𝑇 ′ and 𝑝 is the number of
faults detected by 𝑇 ′ divided by𝑚.

𝑁𝐴𝑃𝐹𝐷 (𝑇 ′
𝑡) = 𝑝 −

∑𝑛
1 𝑟𝑎𝑛𝑘 (𝑇

′
𝑡𝑖
)

𝑚 × 𝑛

𝑝

2𝑛
(2)

Normalized Time Reduction (NTR) [37] evaluates the capabil-
ity to reduce the time spent in a CI Cycle. It measures the difference
between the time spent to reach the first failed test case 𝑟𝑡 and the
time to execute all tests 𝑟𝑡 . In such a metric, only commits that
fail 𝐶𝐼 𝑓 𝑎𝑖𝑙 are considered. The values range from 0 to 1, in which
higher values represent a higher test time reduction. Its calculation
is given in Equation 3.

𝑁𝑇𝑅(A) =

∑𝐶𝐼 𝑓 𝑎𝑖𝑙
𝑡=1 (𝑟𝑡 − 𝑟𝑡)∑𝐶𝐼 𝑓 𝑎𝑖𝑙
𝑡=1 (𝑟𝑡)

(3)

Prioritization Time (PT) takes into account the runtime spent by
an approach to perform the prioritization in each commit. This value
is used to provide an indicative of the applicability of the proposed

strategies in real scenarios. In our experiments, we measure PT in
seconds.

Root Mean Square Error (RMSE) [38] is used to observe the dif-
ference between the predicted and the observed values, for instance,
concerning NAPFD values. In this study, we consider the differences
found by the approaches (𝑠𝑡) and the optimal values 𝑇 ′ (𝑠𝑡) found
by a deterministic approach. For an algorithm A, we compute the
difference for each CI Cycle (commit) 𝑡 in relation to the amount of
CI Cycles 𝐶𝐼 in a system. The most accurate algorithm is the one
with smallest RMSE. Equation 4 shows how to calculate RMSE.

𝑅𝑀𝑆𝐸 (A) =

√∑𝐶𝐼
𝑡=1 (𝑠𝑡 − 𝑠𝑡)

2

𝐶𝐼
(4)

In order to represent how far the solutions found by an algorithm
are from the optimal solutions, an ordinal scale of RMSE magnitude
is used, as follows:

RMSE Magnitude =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

very near if 𝑅𝑀𝑆𝐸 < 0.15

𝑛𝑒𝑎𝑟 if 0.15 ≤ 𝑅𝑀𝑆𝐸 < 0.23

𝑟𝑒𝑎𝑠𝑜𝑛𝑎𝑏𝑙𝑒 if 0.23 ≤ 𝑅𝑀𝑆𝐸 < 0.30

𝑓 𝑎𝑟 if 0.30 ≤ 𝑅𝑀𝑆𝐸 < 0.35

very far if 0.35 ≤ 𝑅𝑀𝑆𝐸

(5)

where (i) the very near category represents an approximated opti-
mal performance; (ii) the near category represents reaching optimal
performance, and that some improvements are required; (iii) the rea-
sonable category represents the minimum acceptable performance.
Solutions in this category are acceptable and are related to the
cases in which the system behavior, or possibly the constraints, can
make the prioritization task hard; (iv) the far category represents
unsatisfactory performance, and that meaningful improvements
are required; and (v) the very far category includes solutions that
are far away from to be useful and considered reasonable. In our
analysis, the solutions are considered acceptable if they are at least
reasonable, that is, if RMSE < 0.3.

5.3 Applying Approaches

We defined three configurations of test budgets, namely 10%, 50%,
and 80% of the execution time of the overall test set available in
each commit. These different test budgets allow us to investigate
the behavior of each approach and strategy during the TCP in CI
process. Below we describe how the three approaches evaluated in
this study were executed.

COLEMAN: To apply COLEMAN we adopted the same settings reported
in previous work [37].We used the same configuration for FRRMAB:
sliding window sizeW equals to 100, the coefficient C to balance
exploration and exploitation equals to 0.3, and decayed factor equals
to 1.

RETECS: This approach was executed with an Artificial Neural Net-
work (ANN) [7]. We adopted default values defined by the authors
and the version that is available online [48]. We set the param-
eters for Hidden Nodes, Replay Memory, and Replay Batch Size,
with, respectively, 12, 10000, and 1000. ANN was chosen because it
presented the best performance in the referred work.

147

Table 1: System Information - LIBSSH

Name Period Builds Faults Faults/Cycle Tests Volatility Duration Interval

Total 2018/04/12-2021/01/20 401 281 (159) 64 (1 - 60) 0.3206 (1.632) 1144.2097 (472.297)

CentOS7-openssl 2018/04/12-2018/04/12 1 1 (1) 17 (17 - 17) 0.0237 (0.042) -
CentOS7-openssl 1 0 x-x86-64 2018/04/12-2018/04/18 22 8 (7) 29 (17 - 29) 0.0104 (0.02) 1320.7984 (287.806)
Debian-openssl 1 0 x-aarch64 2018/04/12-2018/04/13 8 1 (1) 17 (17 - 17) 0.0431 (0.083) 1298.6738 (306.178)
Debian cross mips-linux-gnu 2018/07/02-2018/12/24 131 7 (7) 29 (19 - 29) 1.3815 (4.122) 956.783 (499.357)
Fedora-libgcrypt-x86-64 2018/04/12-2018/04/13 8 4 (2) 29 (17 - 29) 0.3144 (2.642) 1275.0729 (281.896)
Fedora-openssl 2018/04/12-2018/04/12 1 1 (1) 17 (17 - 17) 0.0149 (0.031) -
Fedora-openssl 1 1 x-x86-64 2018/04/12-2018/04/18 21 3 (3) 29 (17 - 29) 0.012 (0.027) 1315.1925 (293.81)
address-sanitizer 2018/04/18-2018/04/18 1 13 (1) 29 (29 - 29) 0.011 (0.032) -
centos7-openssl 1 0 x-x86-64 2018/04/18-2020/08/13 130 1 (1) 26 (17 - 25) 0.0333 (0.1) 969.0806 (457.799)
centos7-openssl 1 0 x-x86 64 2018/09/10-2021/01/20 244 1 (1) 59 (24 - 59) 0.0483 (0.168) 857.5936 (530.317)
fedora-libgcrypt-x86-64 2018/06/27-2020/08/13 112 21 (17) 41 (31 - 41) 0.0632 (0.175) 1023.4279 (453.763)
fedora-libgcrypt-x86 64 2018/09/10-2021/01/20 244 19 (16) 59 (40 - 59) 0.067 (0.204) 878.1499 (528.629)
fedora-mbedtls-x86-64 2018/06/27-2020/08/13 110 17 (7) 40 (30 - 40) 0.0556 (0.16) 983.861 (458.57)
fedora-mbedtls-x86 64 2018/09/10-2021/01/20 243 7 (4) 58 (39 - 58) 0.0567 (0.178) 863.7415 (527.787)
fedora-openssl 1 1 x-x86-64 2018/04/18-2020/08/13 126 15 (14) 41 (29 - 41) 0.0491 (0.132) 997.41 (449.877)
fedora-openssl 1 1 x-x86-64-release 2018/08/20-2019/03/13 56 4 (4) 41 (38 - 41) 0.0486 (0.126) 943.0119 (452.237)
fedora-openssl 1 1 x-x86 64 2018/09/10-2021/01/20 244 9 (6) 62 (40 - 62) 0.0609 (0.199) 862.0144 (529.794)
fedora-openssl 1 1 x-x86 64-fips 2019/06/13-2021/01/20 136 25 (22) 59 (55 - 59) 0.078 (0.295) 892.5534 (528.33)
fedora-openssl 1 1 x-x86 64-minimal 2018/12/13-2020/09/10 142 5 (2) 45 (40 - 45) 0.0465 (0.151) 905.5778 (535.623)
fedora-undefined-sanitizer 2018/04/18-2021/01/20 369 21 (17) 59 (29 - 57) 0.0627 (0.192) 926.7945 (513.759)
freebsd-x86 64 2018/09/10-2020/09/16 221 10 (3) 33 (24 - 33) 0.0338 (0.1) 862.8518 (539.28)
mingw32 2018/06/27-2020/08/13 88 3 (3) 16 (10 - 16) 0.093 (0.283) 947.305 (481.356)
mingw64 2018/06/27-2020/08/13 88 3 (3) 16 (10 - 16) 0.0696 (0.231) 952.9023 (476.915)
pages 2018/04/18-2018/04/18 3 18 (3) 29 (29 - 29) 0.0088 (0.022) 1434.4083 (0.608)
tumbleweed-openssl 1 1 x-x86-64 2018/05/30-2020/08/13 105 25 (9) 41 (29 - 41) 0.0568 (0.15) 959.523 (481.676)
tumbleweed-openssl 1 1 x-x86-64-release 2018/08/20-2019/03/13 56 1 (1) 41 (38 - 41) 0.06 (0.156) 958.8467 (447.542)
tumbleweed-openssl 1 1 x-x86 64-clang 2018/09/10-2021/01/20 245 29 (11) 59 (38 - 59) 0.0616 (0.192) 868.0569 (527.138)
tumbleweed-openssl 1 1 x-x86 64-gcc 2018/09/10-2021/01/20 241 28 (10) 59 (38 - 59) 0.0617 (0.192) 859.3641 (527.638)
tumbleweed-openssl 1 1 x-x86 64-gcc7 2018/09/10-2021/01/20 244 28 (11) 59 (38 - 59) 0.0623 (0.194) 865.4882 (528.868)
tumbleweed-undefined-sanitizer 2018/05/30-2020/09/10 320 37 (15) 56 (29 - 56) 0.0702 (0.195) 946.4755 (516.447)
ubuntu-openssl 1 1 x-x86 64 2019/12/23-2021/01/20 64 12 (7) 59 (57 - 59) 0.06 (0.197) 789.7291 (522.19)
undefined-sanitizer 2018/04/18-2018/04/18 4 29 (2) 29 (29 - 29) 0.0162 (0.043) 1430.6278 (1.341)
visualstudio-x86 2018/11/30-2021/01/20 177 22 (19) 18 (16 - 18) 0.0041 (0.006) 875.6071 (530.431)
visualstudio-x86 64 2018/11/30-2021/01/20 177 31 (27) 18 (16 - 18) 0.0048 (0.009) 881.6806 (528.593)

Random Approach: In each commit, this approach prioritizes the
test case set available at random. During the prioritization process,
neither the knowledge nor learning from previous prioritization
are considered. Thus, the approach performs only exploration.

Deterministic approach: To determine the optimal solution (pri-
oritization) for each commit associated with a system, the test case
execution, as well as the failure results, are known a priori. Al-
gorithm 1 presents the procedure adopted by the deterministic
approach.

Algorithm 1: Deterministic Algorithm to Find Optimal
Solutions

forall commit 𝑐 in Target System do
𝑇𝑐 ← Test Case set available from system in the current
commit;

𝐴𝑐 ← Total time spent to run 𝑇𝑐 ;

𝑇𝐵𝑐 ← Time Budget (10%, 50%, or 80% from 𝐴𝑐);
𝑇 ′
𝑐 ← 𝑇𝑐 ordered by number of failures (descending) and
duration (ascending);

Evaluate 𝑇 ′
𝑐 considering 𝑇𝐵𝑐 (e.g. NAPFD);

end

We identify the test set available𝑇𝑐 and the original time𝐴𝑐 spent
to run such set in each commit. After, we define a time budget to
run the tests. As aforementioned, we evaluated three time budgets
(𝑇𝐵𝑐), i.e., 10%, 50%, and 80% of the execution time of the overall
test set 𝑇𝑐 available. Finally, we sort the test case by the number of
failures in descending order, and test case duration in ascending
order. This sorter allows evaluating the prioritized test set through
different metrics, such as NAPFD.

The results were obtained from a total of 17,745 executions. From
this, 9,555 are from LIBSSH system and 8,190 from DUNE system. We
performed 30 independent executions for each approach (FRRMAB,
ANN, and Random) in each variant (34 and 29 variants, respectively),
strategy (two strategies), and time budget (three time budgets). The
deterministic approachwas executed only once for both systems. As
mentioned before, in VTS strategy each variant is tested separately,
whilst in WTS strategy all variants are executed as a unique system.
All the experiments were performed on an Intel® Xeon® E5-2640
v3 with 2.60 GHz CPU, 94GB RAM, running Linux Ubuntu 18.04.1
LTS.

5.4 Statistical Analysis

To evaluate a pair of performances in the same variant, we used
Mann-Whitney [23] statistical test with a confidence level of 95%.

148

Cost-effective Learning-based Strategies for TCP in CI of HCS

Table 2: System Information - DUNE

Name Period Builds Faults Faults/Cycle Tests Volatility Duration Interval

Total 2016/07/07-2021/01/23 2186 3094 (1010) 293 (1 - 134) 0.0236 (0.104) 1216.754 (380.477)

debian-11-gcc-9-17-downstream 2021/01/18-2021/01/18 1 14 (1) 70 (70 - 70) 0.0145 (0.015) -
debian-11-gcc-9-17-downstream-dune-grid 2021/01/19-2021/01/19 1 14 (1) 70 (70 - 70) 0.0146 (0.017) -
debian-11-gcc-9-17-python 2020/03/28-2021/01/20 485 747 (485) 121 (110 - 118) 0.025 (0.157) 1150.8498 (396.859)
debian 10 gcc c 17 2017/08/02-2018/08/21 527 93 (20) 139 (32 - 120) 0.0123 (0.065) 1154.8288 (417.893)
debian 10 clang-6-libcpp-17 2018/06/29-2018/12/05 88 93 (11) 114 (15 - 112) 0.0368 (0.097) 1147.0738 (462.165)
debian 10 clang-7-libcpp-17 2018/12/05-2021/01/20 1029 1417 (811) 144 (98 - 120) 0.0131 (0.052) 1152.6743 (401.464)
debian 10 gcc-7-14–expensive 2018/06/28-2020/12/14 570 342 (36) 147 (109 - 134) 0.0139 (0.058) 1141.2207 (421.781)
debian 10 gcc-7-17 2020/03/03-2021/01/20 516 194 (27) 126 (108 - 120) 0.0132 (0.029) 1138.9429 (404.074)
debian 10 gcc-7-17–expensive 2020/03/17-2021/01/20 503 290 (79) 135 (115 - 128) 0.0132 (0.033) 1143.1528 (399.122)
debian 10 gcc-8-noassert-17 2018/06/29-2021/01/20 1104 641 (86) 144 (28 - 120) 0.0129 (0.041) 1148.3567 (407.28)
debian 11 gcc-10-20 2020/07/24-2021/01/20 290 193 (95) 125 (110 - 120) 0.0123 (0.033) 1134.5357 (394.774)
debian 11 gcc-9-20 2019/11/11-2021/01/20 707 489 (118) 130 (106 - 120) 0.0079 (0.02) 1152.2548 (398.179)
debian 8–clang 2016/07/11-2016/11/13 112 81 (73) 68 (57 - 67) 0.0003 (0.001) 1055.3145 (463.64)
debian 8–gcc 2016/07/07-2018/06/29 589 113 (103) 92 (57 - 85) 0.0012 (0.004) 1100.6741 (438.61)
debian 8-backports–clang 2016/10/18-2018/06/29 359 9 (9) 91 (64 - 83) 0.0011 (0.003) 1105.6547 (435.358)
debian 9 clang-3 8-14 2018/06/28-2020/12/14 615 1021 (295) 145 (11 - 118) 0.0123 (0.019) 1151.5037 (414.411)
debian 9 gcc-6-14 2018/06/29-2020/12/14 614 866 (296) 144 (16 - 118) 0.0111 (0.023) 1152.7506 (414.322)
debian 9–clang 2016/07/11-2018/08/21 1012 333 (148) 143 (56 - 120) 0.0095 (0.038) 1135.7676 (427.604)
debian 9–gcc 2016/07/07-2018/08/21 1021 259 (147) 141 (20 - 117) 0.0095 (0.039) 1134.5392 (427.435)
ubuntu-20 04-gcc-9-17-python 2020/09/29-2020/09/29 2 2 (2) 112 (112 - 112) 0.0208 (0.125) 1375.15 (0.0)
ubuntu 16 04 clang-3 8-14 2018/06/29-2020/06/26 44 223 (21) 103 (17 - 102) 0.0086 (0.014) 1198.1442 (403.978)
ubuntu 16 04 gcc-5-14 2018/06/28-2020/12/14 614 970 (297) 147 (69 - 118) 0.0124 (0.023) 1153.3314 (413.792)
ubuntu 16 04–clang 2016/10/18-2018/08/21 885 142 (64) 141 (9 - 120) 0.0107 (0.028) 1135.5978 (427.863)
ubuntu 16 04–gcc 2016/10/18-2018/08/21 894 169 (69) 141 (37 - 117) 0.0101 (0.037) 1139.1877 (423.91)
ubuntu 18 04 clang-5-17 2020/05/28-2021/01/20 368 29 (21) 122 (109 - 120) 0.011 (0.018) 1141.8334 (396.813)
ubuntu 18 04 clang-6-17 2018/06/28-2021/01/20 1121 582 (77) 148 (77 - 120) 0.0116 (0.016) 1151.4211 (405.942)
ubuntu 20 04 clang-10-20 2020/05/28-2021/01/20 367 532 (367) 122 (109 - 120) 0.0122 (0.025) 1141.0444 (399.455)
ubuntu 20 04 gcc-10-20 2020/10/03-2021/01/20 243 43 (37) 125 (110 - 120) 0.012 (0.027) 1145.5798 (385.416)
ubuntu 20 04 gcc-9-20 2020/10/03-2021/01/20 242 19 (13) 125 (110 - 120) 0.0107 (0.026) 1146.748 (378.89)

Furthermore, we used the Vargha and Delaney’s 𝐴12 [49] to cal-
culate the difference between two groups. 𝐴12 evaluate the prob-
ability of a value, taken randomly from the first sample, is higher
than a value taken randomly from the second sample. This metric
provides a magnitude scale: (i) Negligible, represents a very small
difference among the values and usually does not yield statistical
difference; (ii) Small and Medium, represent small and medium dif-
ferences among the values, and may yield statistical differences;
and (iii) Large magnitude represents a significantly large difference
that usually can be seen in the numbers without much effort.

6 RESULTS AND ANALYSIS

In this section we present and analyze the results obtained. Due to
the large number of variants, and to improve visualization in the
tables, we named each variant as 𝐿𝑖 , ∀ variant 𝑖 ∈ LIBSSH system,
and 𝐷𝑖 , ∀ variant 𝑖 ∈ DUNE system. The 𝑖th value represents the
position of the variant 𝑖 in Tables 1 and 2 for the systems LIBSSH and
DUNE, respectively. For instance, L1 represents CentOS7-openssl,
the LIBSSH variant described in the first line of Table 1.

The results are presented in a summarized way in order to sup-
port our analysis and findings. The values of NAPFD, NTR, PT, and
RMSE obtained for each approach for both systems, including statis-
tical test results and effect size, can be found in our supplementary
material (see [36]).

6.1 RQ1: Performance of the strategies using
COLEMAN and random approach

To answer RQ1, we compare the results from both strategies using
a random prioritization to the results obtained using COLEMAN with
the FRRMAB policy. Such an analysis encompasses the three time
budgets. To compare the performance, we used NAPFD as the main
quality indicator. Tables 3 and 4 present the values obtained for the
LIBSSH and DUNE systems, respectively.

In such tables, for each approach, strategy, and time budget, we
present in the second column the variants in which the approaches
are statistically equivalent. In the other columns, we present the
variants in which an approach was better than another with a sta-
tistical difference. For instance, in Table 3 (LIBSSH), time budget
10%, the FRRMAB approach using VTS strategy has the best per-
formance in 20 variants (out of 34, 59% of the cases), Random is the
best in five variants out of 34 (15%). The approaches are equivalent
in nine variants.

When compared with the random approach, COLEMAN using FR-
RMAB is the best approach with a statistical difference in most cases
in both systems. Overall, considering both strategies, the three time
budgets, and 34 variants for the LIBSSH system (2 × 3 × 34 = 204
cases) and 29 for the DUNE system (2× 3× 29 = 174 cases), COLEMAN
is the best approach with a statistical difference in 175 cases out of
204 (≈ 86%) and in 167 out of 174 (96%), respectively.

In the DUNE system (Table 4), random prioritization does not
present a good performance. There is no case where it has the best
performance and there are seven (4% of the cases) where it reaches

149

Table 3: FRRMAB x Random - NAPFD values considering

VTS and WTS strategies for the LIBSSH system

Strategy
Equivalent Random FRRMAB

Time Budget 10%

VTS 9 (26%)
{L1,L5-L7,
L9,L10,L13,
L27,L34}

5 (15%)
{L17,L20,
L28-L30}

20 (59%)

{L2-L4,L8,L11,
L12,L14-L16,
L18,L19,

L21-L26,L31-L33}

WTS 5 (15%)
{L4,L9,L10,
L18,L26}

0 (0%) 29 (85%)
{L1-L3,

L5-L8,L11-L17,
L19-L25,L27-L34}

Time Budget 50%

VTS 2 (6%) {L6,L8} 2 (6%) {L1,L28} 30 (88%)
{L2-L5,L7,L9-L27,

L29-L34}

WTS 1 (3%) {L4} 0 (0%) 33 (97%) {L1-L3,L5-L34}

Time Budget 80%

VTS 3 (9%) {L1,L6,L8} 1 (3%) {L9} 30 (88%) {L3-L5,L8,L10-L34}

WTS 1 (3%) {L9} 0 (0%) 33 (97%) {L1-L8,L10-L34}

Table 4: FRRMAB x Random - NAPFD values considering

VTS and WTS strategies for the DUNE system.

Strategy
Equivalent Random FRRMAB

Time Budget 10%

VTS 3 (10%) {D1,D2,D20} 0 (0%) 26 (90%) {D3-D19,D21-D29}
WTS 0 (0%) 0 (0%) 29 (100%) {D1-D29}

Time Budget 50%

VTS 2 (7%) {D1,D2} 0 (0%) 27 (93%) {D3-D29}
WTS 0 (0%) 0 (0%) 29 (100%) {D1-D29}

Time Budget 80%

VTS 2 (7%) {D1,D2} 0 (0%) 27 (93%) {D3-D29}
WTS 0 (0%) 0 (0%) 29 (100%) {D1-D29}

equivalent results. On the other hand, in the LIBSSH system (Ta-
ble 3), Random is the best in eight cases (4%), and reaches statistical
equivalence results in 21 cases (10%). The equivalence is obtained
only when random is applied with VTS. We also observe that for
both systems random never reaches the best performance with
WTS. With COLEMAN seems to happen the opposite. Thus, it seems
that finding good prioritizations in the WTS strategy is harder than
in the VTS strategy.

Finding 1

Random presents better performance using the WTS strat-
egy in both systems.

We observed that when there is a statistical difference, the effect
size tends to be large. Furthermore, cases with statistical equiva-
lence appear across the time budgets. In these few cases, the variants
have few failures (most of them have only one failure), and clearly,
COLEMAN has no significant performance.

Finding 2

COLEMAN and Random have equivalent performance across
the time budgets in cases with few failures (most of them
only one failure).

We also can see that COLEMAN outperforms the random prior-
itization, independently of the strategy used. If we use the VTS
strategy, FRRMAB is the best one in 80 out of 102 cases (34 vari-
ants × 3 budgets) (78%) and presents equivalent results in 14 (13%)
in LIBSSH. In the DUNE system, it is the best in 80 out of 87 cases
(considering 29 variants × 3) (92%) and equivalent in seven (8%).
If we use WTS, FRRMAB is the best in 95 cases (out of 102) (93%)
for the LIBSSH system, and in all cases for the DUNE system. It is
statistically equivalent in seven (7%) cases for the LIBSSH system,
and is not the worst in any case.

Finding 3

COLEMAN presents better performance than Random in both
systems, independently of the strategy used. Considering
both systems (189 cases), COLEMAN obtained the best re-
sults (with a statistical difference) in 85% of the cases and
equivalent in 11% for VTS strategy. For WTS it is the best
in 96% of the cases and equivalent in 3%.

The COLEMAN’s worst performance is in few variants in both sys-
tems and using VTS strategy. Considering the LIBSSH system, the
worst performance is obtained for the variants CentOS7-openssl
(L1), Fedora-openssl (L6), address-sanitizer (L8), and pages
(L24). These variants share some important characteristics that
hamper a good prioritization: one to three commits as historical
test data and low failing cycles. Besides, in L1 and L6, only one
failure can be revealed.

Finding 4

COLEMAN presents the worst performance for variants with
few CI Cycles and a small number of failing cycles.

In a more in-depth analysis, we can observe other relevant as-
pects, for instance, in the variant address-sanitizer (L8). In this
variant, we have only one commit and 13 test cases that fail from 29
available. Before this variant, only nine variants are defined, and 13
commits have some test case which failed. From these commits, the
failed test cases are scattered between the variants. From the test set
available for this variant, only 11 test cases have historical failure
data. Some take more time (duration) to execute from the available
test cases than others, and among them, the failed test cases. This
shows that sometimes we face test cases that fail but spend much
time executing, which hampers a reasonable prioritization.

150

Cost-effective Learning-based Strategies for TCP in CI of HCS

Finding 5

Test cases that fail but spend much time executing hamper
a good prioritization.

On the other hand, we observed the worst performance in the
DUNE system for the variants debian-11-gcc-9-17-downstream
(D1), debian-11-gcc-9-17-downstream-dune-grid (D2), and
ubuntu-20_04-gcc-9-17-python (D20). Such variants share the
same characteristics identified in the LIBSSH system variants, and
a relevant (big) number of test cases to be prioritized.

The biggest difference between the approaches can be ob-
served in the variant ubuntu-openssl_1.1.x-x86_64 (L31) in the
LIBSSH system. Although this variant has few commits, there is
a high test case volatility, mainly in two commits in which fail-
ures occur10. Before these two commits, only one commit failed.
Considering the DUNE system, we observed biggest difference
in the variants debian-11-gcc-9-17-python (D3), debian_10
clang-7-libcpp-17 (D6), and ubuntu_20_04 gcc-10-20 (D28).
Such variants have many historical test data, high test case volatil-
ity, and failing commits. When we observe the characteristics of
each variant, we identify the reason behind the difference. The
variants D3 and D6 have few peaks of failures (one and four, respec-
tively), and the same test case fails in all commits. Consequently, in
such a scenario, our learning-based approach obtains better results
than random prioritization. On the other hand, the variant D28 has
a peak of failures but long periods without failures, and this allows
better performance for our approach based on historical test data.

Finding 6

COLEMAN deals adequately with a high test case volatility,
and obtains good prioritizations even when there is peaks
or long periods without failures.

Some of these findings are similar to the ones about COLEMAN per-
formance considering systems in general [37, 38]. They corroborate
to validate those results in the particular context of HCSs.

Answer for RQ1

Independently of the time budget, we can then con-
clude that both strategies have the best performance
with COLEMAN against random, for both systems. COLEMAN
reaches the best results or statistically equivalent ones in
the great majority of the cases (96%) for LIBSSH system
and all cases (100%) for DUNE system.

10See supplementary material about characteristics of this variant. Available in [36].

6.2 RQ2: Performance of the strategies using
COLEMAN and RETECS

To answer RQ2, we compare the results obtained from both strate-
gies for RETECS using an ANN against COLEMAN using FRRMAB.
For a fair comparison, we conducted the same analysis performed
in RQ1, but based on Tables 5 and 6.

Table 5: FRRMAB x ANN - NAPFD values considering VTS

and WTS strategies for the LIBSSH system.

Strategy
Equivalent ANN FRRMAB

Time Budget 10%

VTS 6 (18%)
{L4,L8,L9
L16,L26,
L34}

3 (9%)
{L19,L28,
L29}

24 (71%)

{L1-L3,L5-L7,
L10-L15,L17,
L18,L20-L25,
L27,L30-L33}

WTS 4 (12%)
{L4,L9,L10,

L26}
0 (0%) 30 (88%)

{L1-L3,
L5-L8,L11-L25,

L27-L34}

Time Budget 50%

VTS 3 (9%) {L1,L6,L8} 0 (0%) 31 (91%) {L2-L5,L7,L9-L34}

WTS 0 (0%) 0 (0%) 34 (100%) {L1-L34}

Time Budget 80%

VTS 2 (6%) {L1,L6} 1 (3%) {L9} 30 (88%) {L2-L5,L7,L8,L10-L34}

WTS 0 (0%) 0 (0%) 34 (100%) {L1-L34}

Table 6: FRRMAB x ANN - NAPFD values considering VTS

and WTS strategies for the DUNE system.

Strategy
Equivalent ANN FRRMAB

Time Budget 10%

VTS 2 (7%) {D2,D20} 0 (0%) 27 (93%) {D1,D3-D19,D21-D29}
WTS 0 (0%) 1 (3%) {D1} 28 (97%) {D2-D29}

Time Budget 50%

VTS 1 (3%) {D1} 1 (0%) {D2} 27 (97%) {D3-D29}
WTS 0 (0%) 1 (3%) {D1} 28 (97%) {D2-D29}

Time Budget 80%

VTS 2 (7%) {D1,D2} 0 (0%) 27 (93%) {D3-D29}
WTS 0 (0%) 1 (3%) {D1} 28 (97%) {D2-D29}

In comparison with RETECS, COLEMAN is the best in the great ma-
jority of the cases. Again, considering both strategies and systems,
and the three budgtes, COLEMAN is the best approach with statistical
difference, in 183 cases out of 204 (89%) and in 165 out of 174 (95%),
respectively for the systems DUNE and LIBSSH. They are equivalent
in 17 cases (8%) for LIBSSH, and in five cases (2%) for DUNE. We also
observed that when there is a statistical difference, the effect size
tends to be large.

We can observe that RETECS results when compared with
COLEMAN are similar to those obtained by random: RETECS does
not present good performance for DUNE, and performed best or
equivalent with VTS and with a more restrictive budget. The sets
of variants corresponding to these cases have intersection with
the sets of variants corresponding to the cases where random per-
formed best or equivalent to COLEMAN. We can mention the variants
L1, L5, L6, L8, L9, L28, L34 and D1, D2. Some of them are the hard
cases for COLEMAN as discussed in previous subsection.

We also can see that COLEMAN outperforms RETECS independently
of the strategy used. If we use the VTS strategy, FRRMAB is the
best one in 85 out of 102 cases (34 variants × 3 budgets) (83%) and
presents equivalent results in 13 (12.7%) in LIBSSH. In the DUNE

151

system, it is the best in 81 out of 87 cases (considering 29 variants
× 3) (93%) and equivalent in five (6%). If we use WTS, FRRMAB is
the best in 98 cases (out of 102) (96%) for the LIBSSH system, and
in 84 cases (96%) for the DUNE system. It is statistically equivalent
in four (4%) cases for the LIBSSH system, and there is no case of
equivalence for DUNE.

Finding 7

COLEMAN presents better performance than RETECS in both
systems, independently of the strategy used. Considering
both systems (189 cases), COLEMAN obtained the best re-
sults (with statistical difference) in 88% of the cases and
equivalent in 10% for VTS strategy. For WTS it is the best
in 96% of the cases and equivalent in 2%.

Answer for RQ2

We can conclude that independently of the time budget,
both strategies have the best performance with COLEMAN
compared with RETECS. COLEMAN obtained the best results
or statistically equivalent ones in 98% of the cases for both
systems.

6.3 RQ3: How far the solutions found by all
approaches are from optimal solutions.

To answer this question, we use in the comparison a prioritization
generated deterministically by using a priori knowledge about the
test results. RMSE metric is used to compare the accuracy of the
approaches, concerning NAPFD values. This allows us to observe
how distant the solutions produced are from optimal solutions.
Although NAPFD metric ranges between 0 and 1, a time budget
hampers to obtain its maximum value. In this way, the deterministic
approach shows the maximum values possible to reach in each
evaluation.

As expected and can be viewed in the tables of our repository
(see [36]), the deterministic approach presents the best NAPFD val-
ues with a statistical difference in almost all systems, budgets, and
strategies that has, in most cases, a large magnitude. Although this
difference appears in the great majority of the cases, in some cases,
we observe statistical equivalence between COLEMAN using the WTS
strategy and the deterministic approach. Moreover, such a strategy
using COLEMAN obtained the best values than the deterministic ap-
proach in the variants for the LIBSSH system: address-sanitizer
(L8) for all time budgets, and undefined-sanitizer (L32) for the
budgets of 50% and 80%.

The variants address-sanitizer (L8) and
undefined-sanitizer (L32) from the LIBSSH system show
a drawback for the use of WTS. Such a strategy defines an unique
prioritized test set to be used across the variants but the order
defined can not be valid in all variants. For instance, considering
these variants, the deterministic approach using the WTS strategy
defined an optimal order that contains a test case that fails in

undefined-sanitizer (L32) but not in address-sanitizer (L8).
On the other hand, COLEMAN mitigates this by considering the
knowledge from previous prioritizations. The difference was notice
in these variants because they are the hardest variants to prioritize
(lowest NAPFD values found). These variants have less than four
commits, and prioritizing individually each variant thought a
deterministic way the maximum NAPFD values possible are 0.7759
and 0.8750, respectively.

Finding 8

The prioritization order defined by the WTS strategy can
not be the best order for all variants, because some test
cases that do not fail in some variants can appear before
that a failing one. The use of WTS with COLEMAN is funda-
mental to mitigate this, to allow considering the knowledge
from previous prioritizations.

When we compare only the NAPFD results obtained by the deter-
ministic approach in both strategies, we observe that the results are
equals or very close. For instance, the variant CentOS7-openssl
(L1) presents the same NAPFD value in both strategies. In the vari-
ant visualstudio-x86_64 (L34) the best NAPFD value found by
the VTS strategy is 0.9978, and the WTS strategy reaches 0.9931 in
the time budget of 10% and 0.9957 in the other time budgets. An-
other example is centos7-openssl_1_0_x-x86_64 (L10), in which
the maximum NAPFD value found by the VTS strategy is 1 and
the WTS strategy reaches 0.9999. The facts observed show that the
WTS strategy is a valid strategy to be used. However, an approach
that reaches solutions close to optimal, when compared to the VTS
strategy, is a challenge.

Finding 9

The NAPFD values found by the deterministic approach
with both strategies are equals or very close. This suggests
that prioritizing each variant individually or as a unique
system has an equivalent performance. Although the WTS
strategy can seem impracticable, because each variant has
individual behavior and characteristics, this finding shows
the opposite.

To evaluate the accuracy (RMSE) obtained by COLEMAN and the
other two compared approaches, we evaluated the difference be-
tween the predicted and the observed values of NAPFD; these
last ones generated by the deterministic approach. The results are
available in the supplementary material (see [36]). To a better vi-
sualization, we generated Figures 7, 8, 9, and 10 that present the
distribution of RMSE values found in each strategy and variant
across the time budgets. In the RMSE metric, the lowest values
represent better performance.

We observe that COLEMAN obtains more cases with lowest RMSE
values in all time budgets, both strategies, and systems. In some
cases, there is a large difference between COLEMAN and the other

152

Cost-effective Learning-based Strategies for TCP in CI of HCS

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
RMSE

L1
L2
L3
L4
L5
L6
L7
L8
L9

L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L27
L28
L29
L30
L31
L32
L33
L34

Va
ria

nt

Random FRRMAB ANN

Figure 7: RMSE values found in the LIBSSH system for the

VTS strategy.

approaches. Comparing the strategies using COLEMAN,WTS presents
more cases near to optimal solutions (close to zero). Tables 7 and 8
present an overview of the results found. Each RMSE value has a
corresponding magnitude that are presented in such tables.

As we can observe, the WTS strategy, in the LIBSSH system and
time budget of 80%, reaches very near optimal solutions in 100% of
the cases. Regarding reasonable solutions, when RMSE < 0.3 [38],
WTS also presents better performance reaching 98% of the cases in
both systems. On the other hand, VTS reaches 93% and 92% of the
cases for the LIBSSH and DUNE systems, respectively.

Finding 10

COLEMAN using the WTS strategy presents better perfor-
mance, providing reasonable solutions in 98% of the cases
in both systems.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
RMSE

L1
L2
L3
L4
L5
L6
L7
L8
L9

L10
L11
L12
L13
L14
L15
L16
L17
L18
L19
L20
L21
L22
L23
L24
L25
L26
L27
L28
L29
L30
L31
L32
L33
L34

Va
ria

nt

Random FRRMAB ANN

Figure 8: RMSE values found in the LIBSSH system for the

WTS strategy.

On the other hand, Random reaches reasonable solutions around
64% in the DUNE system. Considering the LIBSSH system, the per-
centage of reasonable solutions found by Random increases to 90%
using the VTS strategy and 86% using the WTS strategy. RETECS
has the worst performance in comparison with the deterministic
approach. It reaches reasonable solutions in 45% of the cases in
the DUNE system, and a better performance in LIBSSH, 78% using
the VTS strategy and 72% using the WTS strategy. For RETECS and
random approaches we observe a low performance for DUNE and
no great differences between both strategies.

153

0.0 0.2 0.4 0.6 0.8 1.0
RMSE

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

D11

D12

D13

D14

D15

D16

D17

D18

D19

D20

D21

D22

D23

D24

D25

D26

D27

D28

D29

Va
ria

nt

Random FRRMAB ANN

Figure 9: RMSE values found in the DUNE system for the VTS

strategy.

Answer for RQ3

In comparison with the deterministic approach, the strate-
gies using COLEMAN provide reasonable solutions in most
of the cases (more than 92%) in both systems. Furthermore,
the optimal solutions found by the deterministic approach
using the WTS strategy are very close or equals to that
ones obtained using the VTS strategy.

6.4 RQ4: Strategies Applicability

To analyze the applicability of the strategies using COLEMAN, we
compute the time (PT values in seconds) spent to prioritize the test
cases considering the three budgets. An overview of the results is
depicted in Tables 9 and 10.

We observe that both strategies spend in all cases less than one
second in both systems. The worst cases were identified using
the VTS strategy. In the LIBSSH system, the VTS strategy spends

0.0 0.2 0.4 0.6 0.8 1.0
RMSE

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

D11

D12

D13

D14

D15

D16

D17

D18

D19

D20

D21

D22

D23

D24

D25

D26

D27

D28

D29

Va
ria

nt

Random FRRMAB ANN

Figure 10: RMSE values found in the DUNE system for the

WTS strategy.

0.0396 seconds in variant address-sanitize (L8) and time bud-
get of 50%. On the other hand, in the DUNE system and time bud-
get of 10%, the VTS strategy spends 0.0418 seconds in variant
debian-11-gcc-9-17-downstream (D1). Besides, we can observe
that the time budget has no influence in the prioritization time.

Finding 11

The time spent to execute the strategies using COLEMAN has
a low computational cost. Furthermore, the prioritization
time is not influenced by the time budget and is negligible
(less than 0.042 seconds).

Analyzing individually each system based on PT, we observe
that in the LIBSSH system the VTS strategy is the best strategy,
with a statistical difference, for the time budget of 10% in ≈ 71% (24
out of 34) of the cases. WTS is the best in ≈ 15% (5). Considering

154

Cost-effective Learning-based Strategies for TCP in CI of HCS

Table 7: RMSE magnitudes for NAPFD values found for

LIBSSH system.

Scale
VTS WTS

Random FRRMAB ANN Random FRRMAB ANN

Time Budget 10%

very near 18(53%) 22(65%) 13(38%) 19(56%) 30(88%) 14(41%)
near 7(21%) 6(18%) 11(32%) 6(18%) 2(6%) 5(15%)
reasonable 4(12%) 3(9%) 3(9%) 3(9%) 0(0%) 7(21%)
far 1(3%) 3(9%) 1(3%) 2(6%) 2(6%) 3(9%)
very far 4(12%) 0(0%) 6(18%) 4(12%) 0 (0%) 5(15%)

Time Budget 50%

very near 15(44%) 26(76%) 9(26%) 16(47%) 33(97%) 10(29%)
near 10(29%) 4(12%) 9(26%) 9(26%) 1(3%) 6(18%)
reasonable 6(18%) 2(6%) 9(26%) 5(15%) 0(0%) 9(26%)
far 1(3%) 0(0%) 2(6%) 1(3%) 0(0%) 4(12%)
very far 2(6%) 2(6%) 5(15%) 3(9%) 0(0%) 5(15%)

Time Budget 80%

very near 15(44%) 29(85%) 9(26%) 17(50%) 34(100%) 9(26%)
near 10(29%) 1(3%) 10(29%) 9(26%) 0(0%) 7(21%)
reasonable 6(18%) 2(6%) 7(21%) 4(12%) 0(0%) 6(18%)
far 0(0%) 0(0%) 2(6%) 1(3%) 0(0%) 6(18%)
very far 3(9%) 2(6%) 6(18%) 3(9%) 0(0%) 6(18%)

Reasonable 91(90%) 95(93%) 80(78%) 88(86%) 100(98%) 73(72%)

Table 8: RMSE magnitudes for NAPFD values found for the

Dune system.

Scale
VTS WTS

Random FRRMAB ANN Random FRRMAB ANN

Time Budget 10%

very near 10(34%) 26(90%) 9(31%) 9(31%) 27(93%) 8(28%)
near 4(14%) 1(3%) 4(14%) 5(17%) 0(0%) 3(10%)
reasonable 5(17%) 1(3%) 3(10%) 5(17%) 0(0%) 4(14%)
far 1(3%) 0(0%) 3(10%) 1(3%) 1(3%) 4(14%)
very far 9(31%) 1(3%) 10(34%) 9(31%) 1(3%) 10(34%)

Time Budget 50%

very near 8(28%) 25(86%) 2(7%) 8(28%) 28(97%) 4(14%)
near 6(21%) 1(3%) 7(24%) 6(21%) 0(0%) 6(21%)
reasonable 4(14%) 0(0%) 3(10%) 5(17%) 1(3%) 2(7%)
far 2(7%) 2(7%) 6(21%) 1(3%) 0(0%) 5(17%)
very far 9(31%) 1(3%) 11(38%) 9(31%) 0(0%) 12(41%)

Time Budget 80%

very near 8(28%) 26(90%) 1(3%) 8(28%) 27(93%) 2(7%)
near 8(28%) 0(0%) 8(28%) 8(28%) 2(7%) 7(24%)
reasonable 2(7%) 0(0%) 2(7%) 2(7%) 0(0%) 3(10%)
far 1(3%) 1(3%) 3(10%) 1(3%) 0(0%) 5(17%)
very far 10(34%) 2(8%) 15(52%) 10(34%) 0(0%) 12(41%)

Reasonable 55(63%) 80(92%) 39(45%) 56(64%) 85(98%) 39(45%)

the time budgets of 50% and 80%, the results are similar, VTS is the
best in ≈ 74% (25) of the cases in both time budgets, and WTS in
18% (6) and 15% (5), respectively.

Regarding the DUNE system, the VTS strategy is also the best
strategy. The VTS strategy is the best in 90% of the cases in all time
budgets, and the WTS strategy obtains the best performance in 7%
of the cases for time budget of 10%, 3% in the budget of 50%, and
10% in the budget of 80%. The strategies are equivalent only in the
time budgets of 10% and 50%, obtaining equivalence in 3% and 7%
of the cases, respectively.

Table 9: Summary comparison VTS x WTS about PT values

in the LIBSSH system.

Time Budget 10% Time Budget 50% Time Budget 80%

Equivalent 5 (15%)
{L2,L3,L5,
L7,L15}

3 (9%) {L3,L5,L7} 4 (12%) {L2,L3,L5,L7}

VTS 24 (71%)

{L4,L9-L14,
L16-L23,
L25-L31,
L33,L34}

25 (74%)
{L4,L9-L23,
L25-L31,
L33,L34}

25 (74%)
{L4,L9-L23,
L25-L31,
L33,L34}

Worst Time 0.0391 {L1} 0.0396 {L8} 0.0358 {L8}

WTS 5 (15%)
{L1,L6,L8
L24,L32}

6 (18%)
{L1,L2,L6,L8
L24,L32}

5 (15%)
{L1,L6,L8
L24,L32}

Worst Time 0.0271 {L31} 0.0273 {L31} 0.0273 {L31}

Table 10: Summary comparison VTS xWTS about PT values

in the DUNE system.

Time Budget 10% Time Budget 50% Time Budget 80%

Equivalent 1 (3%) {D20} 2 (7%) {D1,D20} 0 (0%)

VTS 26 (90%)
{D3-D19,
D21-D29}

26 (90%)
{D3-D19,
D21-D29}

26 (90%)
{D3-D19,
D21-D29}

Worst Time 0.0418 {D1} 0.0401 {D1} 0.0392 {D2}

WTS 2 (7%) {D1,D2} 1 (3%) {D2} 3 (10%) {D1,D2,D20}

Worst Time 0.0345 {D1} 0.0336 {D1} 0.0338 {D1}

If analyze the duration of the CI cycles and the interval between
them, presented in Tables 1 and 2 for both systems, we observe
that a commit is typically performed after another one is finished
and with a considerable time. Considering the commit duration,
the variants used in both systems do not present a situation with
multiple test requests for the same variant. Then, we can conclude
that both strategies using COLEMAN are applicable considering the
time between commits.

Answer for RQ4

Regarding the time spent prioritizing the test cases, both
VTS and WTS strategies spend less than one second to ex-
ecute. In addition to this, we do not observe any impact on
the time budgets. Considering the facts mentioned above,
the time spent by the strategies is feasible. That is, both
strategies are applicable in the CI context.

6.5 RQ5: Comparing VTS and WTS strategies

To compare both strategies using COLEMAN we analyze NAPFD and
applied statistical tests. Again, for the sake of space, we present
only a summary in Tables 11 and 12. Tables with the NAPFD values
are detailed in our supplementary material (see [36]).

We observe that WTS is the best in the LIBSSH system, and VTS
in the DUNE system. Considering the LIBSSH system, VTS obtains
the best performance, with a statistical difference, in 15%, 24%, and
38% of the cases for the time budgets 10%, 50%, and 80%, respectively.

155

In comparison, WTS is the best in 65%, 62%, and 53%. The strategies
are equivalent in 21%, 15%, and 9%. Considering all budgets and
variants (102 cases), VTS is the best in 26 cases (25%), and WTS is
the best in 61 cases (60%). They are statistically equivalent in 15
cases (15%).

On the other hand, in the DUNE system, WTS is closest to VTS
in the time budget of 10%. VTS obtains the best performance for
this budget, with a statistical difference, in 17 cases (out of 29, ≈
59%). WTS is the best in only ≈ 34% (10 cases). In the other time
budgets, VTS is the best in 20 cases (69%) for time budget of 50%,
and 22 cases (76%) for 80%. WTS is the best in 28% and 24%. The
strategies are equivalent in 7% and 3% for the time budgets 10% and
50%, and they are not equivalent in 80%. Overall, VTS is the best in
59 cases (68%), WTS in 25 cases (29%), and they are equivalent in
three cases (3%).

Overall, increasing the time budget, the VTS performance in-
creases, and WTS decreases for both systems. This suggests WTS
provides better results with a less restrictive situation (more time
budget), and VTS the opposite. Interestingly they are equivalent in
few cases. If we consider all budgets, the strategies are equivalent
in 15 cases (out of 102, 15%) and only three (out of 87, 3,4%) for,
respectively, LIBSSH and DUNE. This number is greater in the more
restrictive scenario (budget of 10%) and decreases, increasing the
budget.

Finding 12

The strategies have opposite behaviors. VTS provides bet-
ter NAPFD values with more time budget, and WTS the
opposite. The greater the budget, the lower is the number
of equivalent cases.

Although NAPFD provides a good way to analyze the prioriti-
zation quality, it does not encompass the situation in which the
tests are ended when a failure is revealed. For this, we use the NTR
metric to observe the impact of the order to reduce the test duration
process. The results are provided in our supplementary material
(see [36]), and Tables 13 and 14 present a summary of the results.

We observe that considering the NTR values for the LIBSSH
system, WTS is the best strategy in 23 cases for time budget 10%,
20 for 50%, and 15 for 80%, whilst VTS is the best, respectively in
five, 11, and 16 cases. These strategies have equal performance in
six, three, and three cases (out of 34). WTS reaches the maximum
reduction of 99.90% in the three time budgets evaluated in the
same variant L8 (address-sanitizer). Such a variant has only
one commit, and this fact shows the importance of WTS to mitigate
the problem in beginning without learning. Whilst, VTS has the
best reduction of 98.53% for 10% (variant L8), 93.88% for 50% (variant
pages L24), and 95.23% for 80% (variant L24). In this system, WTS
is the best for a restrictive scenario while VTS the opposite. This
observation corroborates with the results found previously.

Regarding the DUNE system, the strategies present similar behav-
ior identified in the LIBSSH system. WTS presents a better perfor-
mance in the time budget of 10%, and VTS in the other ones. The
strategies are equivalent in 3% for the time budgets 10% and 50%.

Table 11: Summary comparison VTS x WTS about NAPFD

values in the LIBSSH system.

Time Budget 10% Time Budget 50% Time Budget 80%

Equivalent 7 (21%)
{L3,L4,L9,

L22-L24,L26}
5 (15%)

{L3,L15,L16,
L18,L20}

3 (9%) {L3,L12,L16}

VTS 5 (15%)
{L10,L13,L15,
L18,L21}

8 (24%)
{L4,L9,L11,L13,
L19,L21-L23}

13 (38%)
{L4,L10,L11,L13,
L15,L18-L24,
L25,L30}

WTS 22 (65%)

{L1,L2,L5-L8,
L11,L12,L14,L16,
L17,L19,L20,L25,

L27-L34}

21 (62%)
{L1,L2,L5-L8,
L10,L12,L14,
L17,L24-L34}

18 (53%)

{L1,L2,L5-L9,
L14,L17,L24,
L26-L29,
L31-L34}

Table 12: Summary comparison VTS x WTS about NAPFD

values in the DUNE system.

Time Budget 10% Time Budget 50% Time Budget 80%

Equivalent 2 (7%) {D3,D13} 1 (3%) {D14} 0 (0%)

VTS 17 (59%)
{D5,D6,D8-D12,
D14,D16,D17,D19,
D21,D22,D25-D28}

20 (69%)
{D3,D6-D13,
D15-D17,D21,
D22,D24-D29}

22 (76%)
{D3,D6-D14,D16,
D17,D19,D21-D29}

WTS 10 (34%)
{D1,D2,D4,D7,
D15,D18,D20,
D23,D24,D29}

8 (28%)
{D1,D2,D4,D5,
D18-D20,D23}

7 (24%)
{D1,D2,D4,D5,
D15,D18,D20}

Table 13: Summary comparison VTS x WTS about NTR val-

ues in the LIBSSH system.

Time Budget 10% Time Budget 50% Time Budget 80%

Equivalent 6 (18%)
{L3,L4,L9,L13,

L21,L26}
3 (9%) {L3,L21,L27} 3 (9%) {L3,L21,L32}

VTS 5 (15%)
{L10,L12,L15,
L17,L18}

11 (32%)

{L4,L9,L10,
L13,L15,L16,
L18,L19,L22,
L23,L29}

16 (47%)

{L4,L10,L11,
L13,L15,
L18-L20,
L22-L25,
L27-L31}

Max Reduction 98.53% {L8} 93.88% {L24} 95.23% {L24}

WTS 23 (68%)

{L1,L2,L5-L8,
L11,L14,L16,
L17,L19,L20,
L22-L25,
L27-L34}

20 (59%)

{L1,L2,L5-L8,
L11,L12,L14,
L17,L20,

L24-L26,L28,
L30-L34}

15 (44%)

{L1,L2,L5-L9,
L11,L12,L14,
L16,L17,L26,
L33,L34}

Max Reduction 99.90% {L8} 99.90% {L8} 99.90% {L8}

Table 14: Summary comparison VTS x WTS about NTR val-

ues in the DUNE system.

Time Budget 10% Time Budget 50% Time Budget 80%

Equivalent 1 (3%) {D14} 2 (3%) {D18,D23} 0 (0%)

VTS 16 (55%)
{D3,D5,D6,

D8-D12,D16-D19,
D21,D25,D26,D28}

19 (66%)

{D3,D6-D13,
D15-D17,D19,
D21,D24-D26,
D28,D29}

20 (69%)
{D3,D6-D8,
D10-D19,D21,
D23-D26,D28}

Max Reduction 99.91% {D3} 99.93% {D3} 99.92% {D3}

WTS 12 (41%)
{D1,D2,D4,D7,
D13,D15,D20,

D22-D24,D27,D29}
8 (28%)

{D1,D2,D4,D5,
D14,D20,D22,D27}

9 (31%)
{D1,D2,D4,
D5,D9,D20,
D22,D27,D29}

Max Reduction 100% {D1,D2} 100% {D1,D2} 100% {D1,D2}

VTS is the best strategy in 169 cases for the time budgets 10%, 19 for
50%, and 20 for 80%. On the other hand, WTS is the best in 12 for

156

Cost-effective Learning-based Strategies for TCP in CI of HCS

Table 15: The highest NTR differences between the strate-

gies across the time budgets.

Time Budget 10% Time Budget 50% Time Budget 80%

Variant VTS WTS VTS WTS VTS WTS

LIBSSH

L1 0.5152 0.9954 0.4618 0.9954 0.4495 0.9954
L5 0.5631 0.9540 0.6686 0.9540 0.7439 0.9540
L6 0.3935 0.9934 0.6004 0.9934 0.5052 0.9934

DUNE

D20 0.4221 0.9997 0.6915 0.9997 0.7877 0.9997

Table 16: The worst performances for FRRMAB using VTS

and WTS strategies regarding NAPFD metric.

Time Budget 10% Time Budget 50% Time Budget 80%

Variant VTS WTS VTS WTS VTS WTS

LIBSSH

L1 0.6745 0.9706 0.5392 0.9706 0.4500 0.9706
L6 0.6235 0.9706 0.5647 0.9706 0.5294 0.9706
L8 0.5747 0.7656 0.5265 0.7706 0.5008 0.7674
L24 0.6310 0.6754 0.7450 0.8581 0.7609 0.8563

DUNE

D1 0.7269 0.8145 0.5799 0.7954 0.5051 0.8590
D2 0.7776 0.9000 0.5803 0.9000 0.5307 0.9000
D20 0.4375 0.9955 0.7126 0.9955 0.7648 0.9955

10%, eight for 50%, and nine for 80%. Both strategies reach the maxi-
mum reduction in the maximum performance for the same variants
across the time budgets. VTS for debian-11-gcc-9-17-python
(D3) and WTS for debian-11-gcc-9-17-downstream (L1) and
debian-11-gcc-9-17-downstream-dune-grid (L2). Similar be-
havior is identified in the LIBSSH system, WTS presents high test
time reduction in variants with only one commit.

Besides that, we identified that the highest differences of NTR
values between the strategies (Table 15) are in variants with few
historical test data. In this way, WTS provides higher performance
when new variants are added in the system, and VTS the opposite.

Finding 13

Due its characteristics, WTS strategy allows mitigating
some COLEMAN limitations: beginning without any knowl-
edge in new variants and the existence of variants with
few historical test data.

As we can observe with the facts aforementioned and in RQ1,
some factors hamper a good prioritization but the main ones con-
cern the historical test data and test case failure distribution. Such
aspects align with the difficulty of an approach beginning without
learning. To mitigate this, WTS should be used. As we can ob-
serve in the variants with the worst performance (Table 16), all of

them are using VTS strategy. When we consider the WTS strategy,
performance increases considerably.

Finding 14

The prioritization is mainly impacted by the amount of
historical test data and test case failure distribution.

In addition to the quantitative analysis, we performed a qual-
itative analysis to investigate the use of WTS as a prioritization
strategy during the continuous integration of HCS. Tables 17 and 18
describe the history of reused and failed test cases along with the
different builds. The second columns in the tables show the first
build in which each variant was introduced. The third, fourth, and
fifth columns present the number of test cases, the number of reused
test cases, and new test cases applied during the continuous inte-
gration in that first build, respectively. In the last column we can
observe the number of the reused test cases that have failed when
used for testing other variants in previous builds and have been
used used for testing that specific variant.

In the cases of variants in which test cases have never failed
before the fist build of the variants, both VTS and WTS have the
same behavior. On the other hand, for a new variant whose test
cases have been failed before its introduction, failed history can
be an important source of information for the prioritization of
test cases, then WTS can bring benefits for the CI process, mainly
considering time constraints. For instance, in Table 17 we can
see that the variants mingw64 and mingw64 of LIBSSH appear for
the first time during build 45. All the 10 test cases of these vari-
ants were reused, since they were executed for testing other vari-
ants in previous builds. One of these test cases failed 16 times in
previous builds of both variants. For DUNE (Table 18), the variant
debian-11-gcc-9-17-downstream-dune-grid (last row) has fail-
ing test cases in 14 times before build 2169, in which this variant
was introduced. In both cases, the test cases that failed in previous
builds must be prioritized and executed before other test cases,
since they are more likely to reveal faults.

For an overview of the testing history of LIBSSH and DUNE, Fig-
ure 11 presents the evolution of builds regarding the number of
variants and test cases. The blue lines represent the number of vari-
ants, and as we can see, despite the systems have new variants over
the time, the line remains constant, indicating volatility (inclusion
and exclusion) of variants. Comparing the test cases available for
the prioritization, the red lines indicate the amount of test cases
available to be used when applying the strategy WTS. On the other
hand, when using VTS, only a reduced number of test cases are
available, which is indicated by the yellow lines. With VTS, the
prioritization does not reuse the information from test cases of
other variants already executed in the previous CI cycles.

157

(a) LIBSSH

(b) DUNE

Figure 11: Number of variants and test cases per build

Finding 15

The history of test case failures and their reuse for testing
new variants is a rich source of information to be consid-
ered during the test case prioritization in the context CI of
HCSs. In this context, the problem of having volatility of
variants along the CI cycles can be alleviated by adopting
COLEMAN.

Answer for RQ5

Based on the quantitative and qualitative analysis of the
results, we cannot point the best strategy. WTS provides
better results with less restrictive situation (more time bud-
get), and VTS the opposite, as well as taking into account
NTR and PR values. The use of historical data information
from the test cases reused across the variants benefitsWTS.
Because of this, WTS obtains better results than VTS in
the first commits when there in no enough information to
the learning, and when a new variant is added.

6.6 Implications and Limitations

This section discusses some implications of our findings to both
practice and research. We also present some limitations that are
in need of future investigation and threats to the validity of our
results.

158

Cost-effective Learning-based Strategies for TCP in CI of HCS

Table 17: Reused and Failed Reused Test Cases (TCs) along

the build history of LIBSSH

Variant
First Test Reused New Reused TCs

Build Cases TCs TCs Failed

CentOS7-openssl 2 17 0 17 0
Fedora-openssl 2 17 0 17 0
CentOS7-openssl 1_0_x-x86-64 3 17 17 0 2
Fedora-openssl 1_1_x-x86-64 4 17 17 0 3
Debian-openssl 1_0_x-aarch64 5 17 17 0 0
Fedora-libgcrypt-x86-64 5 17 17 0 4
pages 18 29 17 12 0
address-sanitizer 22 29 29 0 19
undefined-sanitizer 22 29 29 0 53
centos7-openssl_1_0_x-x86-64 26 17 17 0 0
fedora-openssl_1_1_x-x86-64 26 29 29 0 0
fedora-undefined-sanitizer 26 29 29 0 0
tumbleweed-openssl_1_1_x-x86-64 33 29 29 0 0
tumbleweed-undefined-sanitizer 33 29 29 0 0
fedora-libgcrypt-x86-64 44 31 29 2 0
fedora-mbedtls-x86-64 44 30 28 2 0
mingw64 45 10 10 0 16
mingw32 45 10 10 0 16
Debian_cross_mips-linux-gnu 64 19 18 1 0
fedora-openssl_1_1_x-x86-64-release 95 38 32 6 0
tumbleweed-openssl_1_1_x-x86-64-release 95 38 32 6 0
fedora-libgcrypt-x86_64 131 40 38 2 0
centos7-openssl_1_0_x-x86_64 131 24 23 1 0
fedora-openssl_1_1_x-x86_64 131 40 38 2 0
fedora-mbedtls-x86_64 131 39 37 2 0
tumbleweed-openssl_1_1_x-x86_64-gcc 131 40 38 2 0
tumbleweed-openssl_1_1_x-x86_64-gcc7 131 40 38 2 0
tumbleweed-openssl_1_1_x-x86_64-clang 131 40 38 2 0
freebsd-x86_64 131 24 23 1 0
visualstudio-x86_64 188 16 11 5 0
visualstudio-x86 188 16 11 5 0
fedora-openssl_1_1_x-x86_64-minimal 197 40 39 1 0
fedora-openssl_1_1_x-x86_64-fips 258 55 46 9 0
ubuntu-openssl_1_1_x-x86_64 319 57 55 2 0

Table 18: Reused and Failed Reused Test Cases (TCs) along

the build history of DUNE.

Variant
First Test Reused New Reused TCs

Build Cases TCs TCs Failed

debian_9–gcc 1 56 0 56 0
debian_8–gcc 1 57 0 57 0
debian_9–clang 4 56 56 0 4
debian_8–clang 4 57 57 0 4
debian_8-backports–clang 114 64 57 7 0
ubuntu_16_04–gcc 114 64 57 7 0
ubuntu_16_04–clang 114 64 57 7 0
debian_10 gcc_c__17 467 82 63 19 0
debian_9 clang-3_8-14 1020 100 82 18 0
ubuntu_16_04 gcc-5-14 1020 100 82 18 0
ubuntu_18_04 clang-6-17 1020 100 82 18 0
debian_10 gcc-7-14–expensive 1020 109 82 27 0
debian_10 clang-6-libcpp-17 1020 104 82 22 0
debian_9 gcc-6-14 1022 104 104 0 0
ubuntu_16_04 clang-3_8-14 1027 98 97 1 0
debian_10 gcc-8-noassert-17 1040 100 100 0 0
debian_10 clang-7-libcpp-17 1123 101 100 1 0
debian_11 gcc-9-20 1465 106 100 6 0
debian_10 gcc-7-17 1606 117 106 11 0
debian_10 gcc-7-17–expensive 1632 124 121 3 0
debian-11-gcc-9-17-python 1648 110 110 0 3
ubuntu_20_04 clang-10-20 1787 113 113 0 4
ubuntu_18_04 clang-5-17 1787 113 113 0 0
debian_11 gcc-10-20 1850 114 113 1 0
ubuntu-20_04-gcc-9-17-python 1918 112 110 2 7
ubuntu_20_04 gcc-9-20 1935 117 117 0 0
ubuntu_20_04 gcc-10-20 1935 117 117 0 0
debian-11-gcc-9-17-downstream 2160 70 0 70 0
debian-11-gcc-9-17-downstream-dune-grid 2169 70 70 0 14

6.6.1 Implications to Practice. The implications below are related
to the application of the proposed strategies.

1. Approach to be used with VTS and WTS: The evaluation of
COLEMAN, RETECS, and Random using VTS and WTS strategies
shows that the approaches have equivalent performance across
the time budgets when a variant has few failures. Among the ap-
proaches, COLEMAN presents better performance, independently of
the strategy used. In this way, COLEMAN can provide good priori-
tizations in the context of HCS in CI, dealing with the situation
when there is a high test case volatility, and peaks or long periods
without failures.

2. VTS × WTS - Performance regarding early fault detection and

cost: Analyzing the strategies, they present similar performance
regarding NAPFD values under deterministic approach application.
The WTS strategy can obtain prioritizations close or equivalent
to those obtained by the VTS strategy. On the other hand, the
strategies have opposite behaviors, in which the WTS strategy
provides better NAPFD values with more time constraint (less time
budget) and VTS the opposite. Furthermore, the strategies provide
good results concerning the NAPFD metric. Thus, they contribute
to reducing the test costs by decreasing the time spent in the CI
Cycle. Among them, the prioritizations found by COLEMAN using the
WTS strategy are reasonable solutions in 98% of the cases in both
systems evaluated. Finally, both strategies are applicable in real
scenarios with a low computational cost, spending around 0.042
seconds in the worst case to execute, and the time budget does not
influence this time.

3. VTS ×WTS - Performance regarding volatility of variants: Regard-
ing the characteristics of the strategies, we observed that the VTS
strategy could provide good prioritizations. On the other hand, the
historical test data across the variants is a rich source of informa-
tion to be used when new variants are added. This is clear during
the analysis of the WTS strategy. Such a strategy allows mitigating
the problem in beginning without knowledge in new variants and
those with few historical test data.

6.6.2 Implications to Research. Some implications are concerned
to the limitations found, and serve as directions for future research.

1. Performance improvement: The worst performance reported by
the approaches and strategies is the case where there are variants
with a few CI Cycles and low failing ones. Another limitation is
that COLEMAN and strategies do not consider the test time execution.
Consequently, they have difficulty identifying test cases that fail
but spend much time executing, which hamper good prioritization.

2. Introduction of new strategies: Regarding the strategies, the VTS
strategy is directly connected to the approach characteristics. Thus,
the limitations of this strategy are inherited from the approach used.
On the other hand, the main characteristic of the WTS strategy
is also a drawback. According to the prioritization order defined
by such a strategy cannot be the best order for all variants. Some
test cases that do not fail in some variants can appear before those
failing ones. Thus, the WTS strategy should be used with COLEMAN
to consider the knowledge from previous prioritizations. A possi-
ble research direction is to investigate ways to adapt or select a

159

strategy according to some characteristics of the systems, for in-
stance, related to the failure distribution. To this end, meta-learning
techniques could be used.

3. Variants Prioritization: In our work, we assume that there is a set
of variants to be considered in the build and test phases of the CI
cycle. But a research direction to be investigated is a strategy to
establish an order of variants to be tested. Such an order should be
used in cases where many variants are available and there are few
resources for their execution. Some initiatives in the literature (see
next section) for variant prioritization take into account factors
such as similarity in terms of features and test cases to be reused,
user preferences, testing criteria coverage, pairwise testing, and so
on. However, the determination of these factors can imply costs.
Then, an open question to be investigated in future work is using
these factors to prioritize variants and their impact on the strategies
VTS and WTS.

4. Scalability of the approaches: Another research question to be
evaluated is the use of the proposed strategies with larger systems.
It is expected a better performance of WTS with more variants,
but more studies are needed to corroborate this finding. An open
problem in the area is to propose strategies capable of dealing with
huge configuration spaces with millions of variants. A research
direction to be further investigated is using the strategies with
techniques for variant selection and prioritization.

5. Benchmark construction: Our analysis revealed some interesting
characteristics of the target systems and its variants that could
be considered in the composition of a benchmark for future ex-
periments. Although we used only two systems, they have an in-
teresting number of variants that have different characteristics in
relation to the test case volatility, variant volatility, historical test
data, number of failures, number of failing cycles, test execution
time. Furthermore, we observe a lack of studies and systems in
context of HCS in CI. To built a benchmark for new studies is an
important issue to be addressed by future works.

6.7 Threats to Validity

In this section we discuss the main threats to the validity of our
results, and how we mitigate them. We use the taxonomy of Wohlin
et al. [54].

Internal Validity evaluates the relationship between the treat-
ment and the output. In our study, the parameter setting can
be considered a threat. We used the same settings from litera-
ture [37, 38, 48], but it is possible that using a tuned configuration
can lead to even better results. We did not perform the tuning in
virtue of time constraints.

Our developed tool for mining the systems can be considered a
threat. The interpretations that we made during the development
can impact the results. To mitigate this, we adopted a pattern valid
across the systems and variants to extract the tests. Besides that,
the tool and the systems with the logs are available online to allow
the replication.

Conclusion Validity is related to the ability to draw the cor-
rect conclusion from the study. An identified threat is the random-
ness. Ideally, it is recommended to execute the algorithms 1000

times [2]. However, this is not possible due to the computational ef-
fort required. For this, we considered a larger number of executions,
namely 30 independent executions.

Another threat is related to the choice of the statistical tests
used. The algorithms used are non-deterministic. We used tests
commonly adopted in software engineering problems for this kind
of algorithm to minimize this threat [6]. Finally, the analysis was
made with a set of quality indicators. These results found may
be different for other indicators. To minimize this threat, we used
measures already used in the literature [37–39, 48].

External Validity corresponds to the ability to generalize the
results beyond the experimental setting and whether our study’s
subjects are representative of real programs. In our study, we in-
vestigated two different open-source highly-configurable software
systems. Thus, our results cannot be generalized. Unfortunately,
we observe a lack of studies using systems in the context of HCS
in CI. Besides that, it is a hard task finding systems with test re-
sults available to apply a data mining process, as well as logs with
verbose information. In some occasions, the test result is available
but there is no information about the test cases applied neither
the test duration from each one. To mitigate this threat, we chose
real-world systems, including several variants, real-world CI builds,
test suites, and regression faults over a considerable period of time.
Both systems have different characteristics concerning the number
of commits, the number of failures, test case volatility, and variant
volatility. In this way, our findings are valid within the investigated
systems, and the study provides some evidence towards an initial
validation of our strategies. To confirm our findings, new exper-
iments should be performed; scalability for larger systems need
to be evaluated. Furthermore, our study can be easily replicated
using the raw data analyzed and disseminated by the Open Science
Framework (OSF).

7 RELATEDWORK

As we mentioned before, TCPCI for HCSs involves challenging
particularities such as time constraints (test budgets), the volatility
of test cases, and the volatility of variants. We find in the literature
studies addressing TCP in the SPL/HCS context, but few of them
address these CI challenges. In this section we first overviews work
related to general SPL regression testing approaches, and after we
focus on TCP approaches for SPL/HCS in the CI context. These last
ones are the most related to ours. TCP approaches applied for CI,
but not specific for SPL/HCS, were summarized in Section 3.

Pieces of work addressing regression testing and SPL engineering
have been subject of systematic mapping and reviews [17, 46].
These studies explore three basic regression testing techniques, as
classified by Yoo et al. [56]: test case minimization [51], test case
selection [21, 22, 52, 55], and test case prioritization [1, 18, 19].

Approaches based on Test Case Minimization (TCM) usually
remove redundant test cases, minimizing the test set according to
some criterion. Some works use search-based algorithms to opti-
mize a test suite considering time, revealing capability and cover-
age [51]. The use of these algorithms consume time and generally
they are not suitable for the CI environment.

Test Case Selection (TCS) selects a subset of test cases, the most
important ones. In the SPL context many works have as focus the

160

Cost-effective Learning-based Strategies for TCP in CI of HCS

selection of products to be tested considering different goals such
as: combinatorial testing, product similarity, coverage of variability
and important features [12]. Approaches that have as focus test
cases usually select a subset of existing test cases to be reused for
testing a new product [22, 52, 55]. The problem with these pieces
of work is that they consider differences between two products,
and not the whole family. More recent regression testing studies
are based on models and delta-oriented approaches [21], and code
analysis [16]. The work of Lity et al. [21] captures commonality
and variability of an evolving product line by means of differences
between variants and versions of variants to select the test cases to
be retested. Thework of Jung et al. [16] proposes an automated code-
based regression test selection method based on changes, and on
commonality and variability to reuse of test cases. The advantage of
this method is that it does not require specification or architectural
model. But the dependency between test cases and source-code is
not automatically determined.

The main disadvantage of test case minimization and selection
techniques is that they do not consider the whole test set and may
discard some important test cases. On the other hand, Test Case
Prioritization (TCP) assume that all the test cases available may be
executed. TCP attempts to re-order a test suite to identify an “ideal”
order of test cases that maximizes specific goals, such as early fault
detection.

The great majority of TCP existing work is devoted to the se-
lection of the best product configurations to be tested, having the
FM as starting point [17]. Some pieces of work consider TCP for
SPL based on models with a delta-oriented approach. Lachmann
et al. [19] showed an incremental delta-oriented approach for im-
proving SPL integration testing efficiency by prioritizing test cases
for product variants. Al-Hajjaji et al. [1] selected the most dissimi-
lar product to the previously tested ones, in terms of deltas, to be
tested next and studied the impact of adding delta modeling feature
selection on product prioritization. Lachmann et al.[18] presented
an approach for test case prioritization based on risk-based testing,
which can automatically compute component failure impact and
component failure probabilities for each product variant under test
automatically. The problem of these TCP works is that they do not
directly prioritize test cases. Such works do not consider the SPL
evolution, that is, the different versions of variants in a regression
testing scenario.

Hajri et al. [15] present an automated test case classification and
prioritization approach based on our use case-driven modeling and
configuration techniques. The approach adopts the incremental
testing. For new products in the SPL, it automatically classifies and
prioritizes test cases of previous products, and provides guidance in
modifying existing system test cases to cover new use case scenarios
that have not been tested in the product line before. Test cases
are prioritized based on a logistic regression model considering
multiple risk factors such as fault-proneness of requirements and
requirements volatility. This approach can be classified as to learn-
to-rank approach, but it assumes a use case-driven development
and is model-dependent.

The pieces of works mentioned above do not focus CI particu-
larities and constraints, but the regression testing techniques are
not exclusive [12], and some of the proposed approaches can be

applied in a previous step, in a complementary way to establish a
test set for a build to be prioritized by our strategies.

The work of Pett et al. [34] introduces a metric to measure the
stability of sampling algorithms in the context of SPL regression
testing. Considering that SPL products should be sampled for the
regression testing during each CI cycle, it is desired to have similar
products from one cycle to another. Despite focusing on CI and SPL
this work does not focus on test case prioritization. Also, there is no
discussion regarding the variant volatility and test case volatility
across the CI cycles in this study.

The work of Marijan et al. [27] introduces ROCKET, an approach
that sets a weight for each test case based on the distance of the
failure status from its current execution and its execution time. But
the approach does not consider prioritization feedback nor the total
history of failures. Test cases with an execution time greater than
a limit are penalized, and it is possible they are never executed.
An extension is proposed by the authors in [24] to consider other
perspectives regarding fault detection, business, performance and
technical aspects. Such an extension needs additional information
related to coverage and features. An approach and a tool called
TITAN is proposed by the authors in [29]. The tool implements
test prioritization and minimization techniques, and provides test
traceability and visualization. The idea is to obtain a high fault
detection rate and low test execution. The approach considers that
the test cases have tags for HCS features. However, in most open-
source HCS systems these macros do not exist. This hampers the
applicability of the approach for general scenarios.

Another work of Marijan et al. [26] uses the coverage matrix of
test cases and the fault detection history to identify redundant test
cases that are not likely to detect faults. Their method minimizes a
test suite by excluding redundant test cases. It is a learning algo-
rithm that reduces test redundancy. The algorithm minimizes the
test execution time by avoiding unnecessary test executions using
coverage metrics and a fault-detection history. Again, additional
information, such as feature coverage, is necessary. As firstly a
minimization step is conducted, the prioritized set may not contain
all available test cases

In summary, most TCP approaches [1, 17–19] have as focus
the prioritization of products to be tested; they do not directly
prioritize test cases. Incremental and delta-oriented approaches
can applied to select test cases (or reuse) when new products are
added. Despite these approaches do not address the CI context,
some TCM and TCS approaches can be used in a combined way
with our approach, as a previous step for establish the set test
case or products for a build. On the other hand, approaches that
have been applied in the CI context are model dependent [15]
or do not properly deal with the EvE problem [25, 27, 29]. This
problem regards to the fact that as only a sub-set of the prioritized
test cases can be executed regarding its order, some test cases can
never be executed given the test budget. To deal with this, most
approaches use, besides the failure-history, other measures that rely
on code instrumentation or require additional information, such as
to calculate code or feature coverage. This can be time-consuming
and to maintain the information updated can be difficult.

Ranking-to-learning approaches like COLEMAN and RETECS deal
properly with the EvE problem and test case volatility but they do
not consider the HCS context. Our work has as main contribution

161

to allow the use of such approaches, initially designed only for TCP
in CI, to TCP in CI of HCS, by proposing two strategies: VTS and
WTS. These strategies take into account particularities, such as the
variant volatility. In addition to this we provide results evaluating
both strategies, and comparing their performance using COLEMAN
and RETECS, and a deterministic approach.

8 CONCLUDING REMARKS

This work presents and evaluates two strategies for the application
of a TCP learning-based approach, COLEMAN, in Continuous Integra-
tion of HCSs: the Variant Test Set Strategy (VTS) that relies on the
test set specific for each variant, and the Whole Test Set Strategy
(WTS) that prioritizes the test set composed by the union of the
test cases of all variants. COLEMAN uses a MAB policy and a reward
function to learn from the failure-history of test cases, addressing,
in this way, the volatility problem, regarding test cases and variants
that can be added or removed along the CI cycles.

We evaluated the strategies in two real-world systems, using the
FRRMAB policy and TimeRank reward function and considering
three time budgets, namely 10%, 50%, and 80%. Our evaluation was
guided by five RQs. RQ1 and RQ2 evaluated the use of COLEMAN
in comparison with respectively, a random prioritization and the
learning-based approach RETECS. The results show that COLEMAN
overcomes both approaches in terms of NAPFD, independently of
the budget and strategy adopted. COLEMAN presents the best results
or statistically equivalent to the random approach in 96% of the
cases for the LIBSSH system and 100% for the DUNE system. Com-
paredwith RETECS, COLEMAN obtained the best results or statistically
equivalent ones in 98% of the cases for both systems.

The results of RQ3 and RQ4 show the strategies used with
COLEMAN are very cost-effective. In comparison with the determinis-
tic approach, COLEMAN presents reasonable solutions in the LIBSSH
system in 93% and 98% of the cases using respectively the VTS and
WTS strategies, that is, its solutions are very near or near to the op-
timal ones, against 90% and 82% produced by the random approach,
and 78% and 72% produced by RETECS. Regarding the DUNE system,
COLEMAN using the VTS strategy produces 92% of reasonable solu-
tions, and 98% using the WTS strategy. On the other hand, random
prioritization produces only 63% and 64%, respectively, and RETECS
produces 45%. Furthermore, the strategies spend, in the worst case,
just 0.0396 seconds to execute for LIBSSH and 0.0418 seconds for
DUNE, what shows their applicability in the CI context. We then can
conclude that the strategies

Results of RQ5 comparing both strategies show they present
similar performance considering the indicators. But WTS performs
better in a more restrictive scenario, i.e., time budget of 10%, and
with the VTS strategy occurs the opposite. Besides that, WTS better
mitigates the problem of beginning without knowledge. Conse-
quently, this strategy is adequate when there is a new variant to be
tested.

As future work we intend to investigate some research directions
discussed in Section 6.6, as well as to address some limitations. We
should conducted new evaluations applying the strategies for other
HCSs from different domains and with different number of variants.
We also intend to apply COLEMAN with other policies, as well as
other features such as test coverage, testers’ preference, test case

duration and, to consider in how many variants a test case fails.
Specific metrics to the variants could be explored.

ACKNOWLEDGMENTS

This research was partially funded by the Brazilian research agen-
cies: CNPq (grants 408356/2018-9 and 305968/2018-1), Fundação
Araucária – FAPPR (grant no. 51435), FAPERJ PDR-10 program
(grant no. 202073/2020), and CAPES.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES
[1] Mustafa Al-Hajjaji, Sascha Lity, Remo Lachmann, Thomas Thüm, Ina Schaefer,

and Gunter Saake. 2017. Delta-oriented product prioritization for similarity-based
product-line testing. In 2017 IEEE/ACM 2nd International Workshop on Variability
and Complexity in Software Design (VACE). IEEE, 34–40.

[2] Andrea Arcuri and Lionel Briand. 2011. A Practical Guide for Using Statistical
Tests to Assess Randomized Algorithms in Software Engineering. In 33rd Interna-
tional Conference on Software Engineering (Waikiki, Honolulu, HI, USA) (ICSE’11).
ACM, New York, NY, USA, 1–10. https://doi.org/10.1145/1985793.1985795

[3] Antonia Bertolino, Antonio Guerriero, Breno Miranda, Roberto Pietrantuono,
and Stefano Russo. 2020. Learning-to-Rank vs Ranking-to-Learn: Strategies for
Regression Testing in Continuous Integration. In 42nd International Conference
on Software Engineering (Seoul, Republic of Korea) (ICSE’20). ACM, New York,
NY, USA.

[4] R. Capilla, J. Bosch, and K.C. Kang. 2013. Systems and Software Variability Man-
agement: Concepts, Tools and Experiences. Springer.

[5] Y. Cho, J. Kim, and E. Lee. 2016. History-Based Test Case Prioritization for Failure
Information. In 2016 23rd Asia-Pacific Software Engineering Conference (APSEC).
385–388. https://doi.org/10.1109/APSEC.2016.066

[6] Thelma Elita Colanzi, Wesley Klewerton Guez Assunção, Paulo Roberto Farah,
Silvia Regina Vergilio, and Giovani Guizzo. 2019. A Review of Ten Years of the
Symposium on Search-Based Software Engineering. In Symposium on Search-
Based Software Engineering. Springer, Cham, 42–57.

[7] Judith E Dayhoff. 1990. Neural network architectures: an introduction. Van
Nostrand Reinhold Co.

[8] Hyunsook Do, Siavash Mirarab, Ladan Tahvildari, and Gregg Rothermel. 2008.
An Empirical Study of the Effect of Time Constraints on the Cost-Benefits of
Regression Testing. In 16th ACMSIGSOFT International Symposium on Foundations
of Software Engineering (Atlanta). ACM, New York, NY, USA, 71–82.

[9] Paul M Duvall, Steve Matyas, and Andrew Glover. 2007. Continuous integration:
improving software quality and reducing risk. Pearson Education.

[10] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for
Improving Regression Testing in Continuous Integration Development En-
vironments. In 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering (Hong Kong). ACM, New York, NY, USA, 235–245.
https://doi.org/10.1145/2635868.2635910

[11] Emelie Engström. 2010. Regression Test Selection and Product Line System
Testing. In 3rd International Conference on Software Testing, Verification and
Validation. IEEE, 512–515.

[12] Alireza Ensan, Ebrahim Bagheri, Mohse Asadi, Dragan Gasevic, and Yevgen
Biletskiy. 2011. Goal-Oriented Test Case Selection and Prioritization for Product
Line Feature Models. In 8th International Conference on Information Technology:
New Generations. IEEE, 291–298. https://doi.org/10.1109/ITNG.2011.58

[13] Angelo Gargantini, Justyna Petke, Marco Radavelli, and Paolo Vavassori. 2016.
Validation of Constraints Among Configuration Parameters Using Search-Based
Combinatorial Interaction Testing. In 8th International Symposium on Search
Based Software Engineering. Springer, Cham, 49–63.

[14] Alireza Haghighatkhah, Mika Mäntylä, Markku Oivo, and Pasi Kuvaja. 2018. Test
prioritization in continuous integration environments. Journal of Systems and
Software 146 (2018), 80–98. https://doi.org/10.1016/j.jss.2018.08.061

[15] Ines Hajri, Arda Goknil, Fabrizio Pastore, and Lionel C Briand. 2020. Automating
system test case classification and prioritization for use case-driven testing in
product lines. Empirical Software Engineering 25, 5 (2020), 3711–3769.

[16] Pilsu Jung, Sungwon Kang, and Jihyun Lee. 2019. Automated code-based test
selection for software product line regression testing. Journal of Systems and
Software 158 (2019), 110419. https://doi.org/10.1016/j.jss.2019.110419

[17] Satendra Kumar and Rajkumar. 2016. Test case prioritization techniques for
software product line: A survey. In International Conference on Computing, Com-
munication and Automation (ICCCA). IEEE, 884–889.

162

Cost-effective Learning-based Strategies for TCP in CI of HCS

[18] Remo Lachmann, Simon Beddig, Sascha Lity, Sandro Schulze, and Ina Schaefer.
2017. Risk-based integration testing of software product lines. In 11th Interna-
tional Workshop on Variability Modelling of Software-intensive Systems. 52–59.

[19] Remo Lachmann, Sascha Lity, Sabrina Lischke, Simon Beddig, Sandro Schulze,
and Ina Schaefer. 2015. Delta-oriented test case prioritization for integration
testing of software product lines. In 19th International Conference on Software
Product Line. 81–90.

[20] K. Li, A. Fialho, S. Kwong, and Q. Zhang. 2014. Adaptive operator selection with
bandits for a multiobjective evolutionary algorithm based on decomposition.
Evolutionary Computation, IEEE Transactions on 18, 1 (2014), 114–130.

[21] Sascha Lity, Manuel Nieke, Thomas Thüm, and Ina Schaefer. 2019. Retest test
selection for product-line regression testing of variants and versions of variants.
Journal of Systems and Software 147 (2019), 46–63.

[22] Malte Lochau, Ina Schaefer, Jochen Kamischke, and Sascha Lity. 2012. Incremental
Model-Based Testing of Delta-Oriented Software Product Lines. In Tests and Proofs.
Springer, Berlin, Heidelberg, 67–82.

[23] Henry B Mann and Donald R Whitney. 1947. On a test of whether one of
two random variables is stochastically larger than the other. The annals of
mathematical statistics 18 (1947), 50–60.

[24] Dusica Marijan. 2015. Multi-perspective Regression Test Prioritization for Time-
Constrained Environments. In Proceedings of the IEEE International Conference
on Software Quality, Reliability and Security (Washington, DC, USA) (QRS). IEEE
Computer Society, 157–162. https://doi.org/10.1109/QRS.2015.31

[25] Dusica Marijan, Arnaud Gotlieb, and Marius Liaaen. 2019. A learning algorithm
for optimizing continuous integration development and testing practice. Software:
Practice and Experience 49, 2 (2019), 192–213.

[26] Dusica Marijan, Arnaud Gotlieb, and Marius Liaaen. 2019. A learning algorithm
for optimizing continuous integration development and testing practice. Software:
Practice and Experience 49, 2 (2019), 192–213. https://doi.org/10.1002/spe.2661

[27] Dusica Marijan, Arnaud Gotlieb, and Sagar Sen. 2013. Test Case Prioritization for
Continuous Regression Testing: An Industrial Case Study. In IEEE International
Conference on Software Maintenance (ICMS). IEEE, 540–543.

[28] Dusica Marijan and Marius Liaaen. 2017. Test Prioritization with Optimally
Balanced Configuration Coverage. In IEEE 18th International Symposium on High
Assurance Systems Engineering (HASE). IEEE, 100–103.

[29] Dusica Marijan, Marius Liaaen, Arnaud Gotlieb, Sagar Sen, and Carlo Ieva. 2017.
TITAN: Test Suite Optimization for Highly Configurable Software. In IEEE Inter-
national Conference on Software Testing, Verification and Validation (ICST). IEEE,
524–531. https://doi.org/10.1109/ICST.2017.60

[30] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Rohit Gheyi, and Sven Apel.
2016. A Comparison of 10 Sampling Algorithms for Configurable Systems. In
38th International Conference on Software Engineering (Austin, Texas) (ICSE ’16).
ACM, New York, NY, USA, 643–54. https://doi.org/10.1145/2884781.2884793

[31] Flávio Medeiros, Márcio Ribeiro, Rohit Gheyi, Sven Apel, Christian Kästner,
Bruno Ferreira, Luiz Carvalho, and Baldoino Fonseca. 2018. Discipline Matters:
Refactoring of Preprocessor Directives in the #ifdef Hell. IEEE Transactions on
Software Engineering 44, 5 (2018), 453–469.

[32] Mukelabai Mukelabai, Damir Nešiundefined, Salome Maro, Thorsten Berger,
and Jan-Philipp Steghöfer. 2018. Tackling Combinatorial Explosion: A Study
of Industrial Needs and Practices for Analyzing Highly Configurable Systems.
In 33rd ACM/IEEE International Conference on Automated Software Engineering
(Montpellier, France). ACM, New York, USA, 155–166. https://doi.org/10.1145/
3238147.3238201

[33] Raiza Oliveira, Bruno Cafeo, and Andre Hora. 2019. On the Evolution of Feature
Dependencies: An Exploratory Study of Preprocessor-Based Systems. In 13th
International Workshop on Variability Modelling of Software-Intensive Systems
(Leuven, Belgium). ACM, New York, NY, USA, 1–9. https://doi.org/10.1145/3302
333.3302342

[34] Tobias Pett, Sebastian Krieter, Tobias Runge, Thomas Thüm, Malte Lochau, and
Ina Schaefer. 2021. Stability of Product-Line Sampling in Continuous Integration.
In 15th international Conference on Variability Modelling of Software-Intensive
Systems (Krems, Austria) (VaMoS’21). Association for Computing Machinery,
Article 18, 9 pages. https://doi.org/10.1145/3442391.3442410

[35] Jackson A. Prado Lima, Willian DF Mendonça, Silvia R Vergilio, and Wesley KG
Assunção. 2020. Learning-based prioritization of test cases in continuous integra-
tion of highly-configurable software. In Proceedings of the 24th ACM Conference
on Systems and Software Product Line: Volume A-Volume A. 1–11.

[36] Jackson A. Prado Lima, Willian D. F. Mendonça, Wesley K. G. Assunção, and
Silvia R. Vergilio. 2021. Supplementary Material - Cost-effective learning-
based strategies for test case prioritization in Continuous Integration of Highly-
Configurable Software. https://osf.io/z3r2e/?view_only=db9ab0ed2b8e4289b22d
4ad0c83c13c1

[37] Jackson A. Prado Lima and Silvia R. Vergilio. 2020. A Multi-Armed Bandit
Approach for Test Case Prioritization in Continuous Integration Environments.
IEEE Transactions on Software Engineering (2020), 12. https://doi.org/10.1109/TS
E.2020.2992428

[38] Jackson A. Prado Lima and Silvia R. Vergilio. 2020. Multi-Armed Bandit Test Case
Prioritization in Continuous Integration Environments: A Trade-off Analysis. In

5th Brazilian Symposium on Systematic and Automated Software Testing (SAST’20).
ACM. https://doi.org/10.1145/3425174.3425210

[39] Jackson A. Prado Lima and Silvia R. Vergilio. 2020. Test Case Prioritization in
Continuous Integration environments: A systematic mapping study. Information
and Software Technology 121 (2020), 106268. https://doi.org/10.1016/j.infsof.202
0.106268

[40] XiaoQu,Myra B. Cohen, and KatherineM.Woolf. 2007. Combinatorial Interaction
Regression Testing: A Study of Test Case Generation and Prioritization. In IEEE
International Conference on Software Maintenance. IEEE, 255–264. https://doi.or
g/10.1109/ICSM.2007.4362638

[41] Hanna Remmel, Barbara Paech, Peter Bastian, and Christian Engwer. 2011. System
testing a scientific framework using a regression-test environment. Computing
in Science & Engineering 14, 2 (2011), 38–45.

[42] Hanna Remmel, Barbara Paech, Christian Engwer, and Peter Bastian. 2013. Design
and rationale of a quality assurance process for a scientific framework. In 2013
5th International Workshop on Software Engineering for Computational Science
and Engineering (SE-CSE). IEEE, 58–67.

[43] Herbert Robbins. 1985. Some aspects of the sequential design of experiments. In
Herbert Robbins Selected Papers. Springer, 169–177.

[44] Gregg Rothermel. 2018. Improving Regression Testing in Continuous Inte-
gration Development Environments (Keynote). In 9th ACM SIGSOFT Interna-
tional Workshop on Automating TEST Case Design, Selection, and Evaluation
(Lake Buena Vista, FL, USA) (A-TEST 2018). ACM, New York, NY, USA, 1.
https://doi.org/10.1145/3278186.3281454

[45] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold. 1999.
Test Case Prioritization: An Empirical Study. In IEEE International Conference
on Software Maintenance (Washington, DC, USA) (ICSM ’99). IEEE Computer
Society, 179.

[46] Per Runeson and Emelie Engström. 2012. Chapter 7 - Regression Testing in
Software Product Line Engineering. In Advances in Computers, Ali Hurson and
Atif Memon (Eds.). Vol. 86. Elsevier, 223–263. https://doi.org/10.1016/B978-0-
12-396535-6.00007-7

[47] M. Shahin, M. Ali Babar, and L. Zhu. 2017. Continuous Integration, Delivery
and Deployment: A Systematic Review on Approaches, Tools, Challenges and
Practices. IEEE Access 5 (2017), 3909–3943.

[48] Helge Spieker, Arnaud Gotlieb, Dusica Marijan, and Morten Mossige. 2017. Re-
inforcement Learning for Automatic Test Case Prioritization and Selection in
Continuous Integration. In 26th ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis (Santa Barbara, CA, USA) (ISSTA 2017). ACM, New
York, NY, USA, 12–22. https://doi.org/10.1145/3092703.3092709

[49] Andras Vargha and Harold D. Delaney. 2000. A Critique and Improvement of the
CL Common Language Effect Size Statistics of McGraw and Wong. Journal of
Educational and Behavioral Statistics 25, 2 (Jan. 2000), 101–132.

[50] Alexander von Rhein, Alexander Grebhahn, Sven Apel, Norbert Siegmund, Dirk
Beyer, and Thorsten Berger. 2015. Presence-condition Simplification in Highly
Configurable Systems. In 37th International Conference on Software Engineering -
Volume 1 (Florence, Italy) (ICSE 2015). IEEE, New York, USA, 178–188.

[51] Shuai Wang, Shaukat Ali, and Arnaud Gotlieb. 2015. Cost-effective test suite
minimization in product lines using search techniques. Journal of Systems and
Software 103 (2015), 370–391. https://doi.org/10.1016/j.jss.2014.08.024

[52] Shuai Wang, Shaukat Ali, Arnaud Gotlieb, and Marius Liaaen. 2016. A systematic
test case selection methodology for product lines: results and insights from an
industrial case study. Empirical Software Engineering 21 (2016), 1586–1622.

[53] T. Wang and T. Yu. 2018. A Study of Regression Test Selection in Continuous
Integration Environments. In 2018 IEEE 29th International Symposium on Software
Reliability Engineering (ISSRE). 135–143.

[54] ClaesWohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Bjöorn Regnell, and
Anders Wesslén. 2000. Experimentation in Software Engineering: An Introduction.
Kluwer Academic Publishers, USA. https://doi.org/10.1007/978-1-4615-4625-2

[55] Zhihong Xu, Myra B. Cohen, Wayne Motycka, and Gregg Rothermel. 2013. Con-
tinuous Test Suite Augmentation in Software Product Lines. In 17th International
Software Product Line Conference (Tokyo, Japan) (SPLC ’13). Association for Com-
puting Machinery, New York, NY, USA, 52–61. https://doi.org/10.1145/2491627.
2491650

[56] Shin Yoo and Mark Harman. 2012. Regression Testing Minimization, Selection
and Prioritization: A Survey. Software: Testing, Verification, and Reliability 22, 2
(March 2012), 67–120. https://doi.org/10.1002/stvr.430

[57] Zhi Quan Zhou, Chen Liu, Tsong Yueh Chen, T. H. Tse, and Willy Susilo. 2021.
Beating Random Test Case Prioritization. IEEE Transactions on Reliability 70, 2
(2021), 654–675. https://doi.org/10.1109/TR.2020.2979815

163

