UNIVERSIDADE FEDERAL DO PARANÁ

LEONARDO ANTONIO CLAUSEN BASSO

DESEMPENHO DE MÉTODOS DE ELEMENTOS FINITOS ENRIQUECIDOS NA ANÁLISE ESTÁTICA DE CABOS

> CURITIBA 2021

LEONARDO ANTONIO CLAUSEN BASSO

DESEMPENHO DE MÉTODOS DE ELEMENTOS FINITOS ENRIQUECIDOS NA ANÁLISE ESTÁTICA DE CABOS

Dissertação apresentado ao Programa de Pós-Graduação em Engenharia Civil, Setor de Tecnologia, Universidade Federal do Paraná como requisito parcial a obtenção do título de Mestre em Engenharia Civil. Orientador: Prof. Dr. Marcos Arndt

CURITIBA 2021

Catalogação na Fonte: Sistema de Bibliotecas, UFPR Biblioteca de Ciência e Tecnologia

B322d Basso, Leonardo Antonio Clausen Desempenho de métodos de elementos finitos enriquecidos na análise estática de cabos [recurso eletrônico] / Leonardo Antonio Clausen Basso – Curitiba, 2021

Dissertação : Universidade Federal do Paraná, Setor de Tecnologia, Programa de Pós-Graduação em Engenharia Civil.

Orientador: Prof. Dr. Marcos Arndt

1. Método dos Elementos Finitos. I. Universidade Federal do Paraná. II. Arndt, Marcos. III. Título.

CDD: 624.171

Bibliotecária: Roseny Rivelini Morciani CRB-9/1585

MINISTÉRIO DA EDUCAÇÃO SETOR DE TECNOLOGIA UNIVERSIDADE FEDERAL DO PARANÁ PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO ENGENHARIA CIVIL -40001016049P2

TERMO DE APROVAÇÃO

Os membros da Banca Examinadora designada pelo Colegiado do Programa de Pós-Graduação ENGENHARIA CIVIL da Universidade Federal do Paraná foram convocados para realizar a arguição da Dissertação de Mestrado de **LEONARDO ANTONIO CLAUSEN BASSO** intitulada: **Desempenho de Métodos de Elementos Finitos Enriquecidos na Análise Estática de Cabos**, sob orientação do Prof. Dr. MARCOS ARNDT, que após terem inquirido o aluno e realizada a avaliação do trabalho, são de parecer pela sua APROVAÇÃO no rito de defesa.

A outorga do título de mestre está sujeita à homologação pelo colegiado, ao atendimento de todas as indicações e correções solicitadas pela banca e ao pleno atendimento das demandas regimentais do Programa de Pós-Graduação.

CURITIBA, 23 de Setembro de 2021.

Assinatura Eletrônica 24/09/2021 15:44:14.0 MARCOS ARNDT Presidente da Banca Examinadora

Assinatura Eletrônica 27/09/2021 12:47:22.0 JOÃO ELIAS ABDALLA FILHO Avaliador Externo (UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ)

> Assinatura Eletrônica 20/10/2021 13:23:59.0 ROBERTO DALLEDONE MACHADO Avaliador Interno (UNIVERSIDADE FEDERAL DO PARANÁ)

AGRADECIMENTOS

A Deus.

Aos meus pais, pelo amor, apoio, confiança, paciência e também pelo incentivo ao estudo desde a infância.

À minha irmã, pela motivação e pelo exemplo como pessoa e como profissional, pela alegria que compartilhamos todos os dias.

Ao professor Dr. Marcos Arndt, especialmente pela orientação, essencial durante todo o trabalho, e também pela dedicação, profissionalismo, paciência e disponibilidade.

Aos engenheiros Diogo e Diego Capraro, pelo incentivo e pela motivação. Aos meus amigos, pelo apoio, confiança e paciência.

RESUMO

Cabos com função estrutural têm sido utilizados em pontes suspensas, pontes estaiadas, linhas de transmissão, construções off-shore, treliças de cabos e estruturas de telhados e coberturas. Vantagens do uso de cabos incluem o seu baixo peso próprio, sua relação custo benefício e a possibilidade de se aplicar tensões prévias (pré-tensionamento). A análise de cabos pelo Método dos Elementos Finitos (MEF) usando elementos retos usualmente requer um elevado número de graus de liberdade para que o perfil do cabo e suas propriedades, tais como tensão no cabo e seu comprimento, apresentem resultados satisfatórios. Nesse contexto, vários métodos enriquecidos foram desenvolvidos com a finalidade de obter resultados ao mesmo tempo mais precisos e com menor custo computacional que o MEF. O Método dos Elementos Finitos Generalizado (MEFG) é um método enriquecido no qual as funções de forma são obtidas por meio da multiplicação entre a função partição da unidade e uma função de enriquecimento. Portanto, nesse trabalho é estudado o MEFG com a aplicação de diferentes funções de enriquecimento, considerando uma análise linear e inextensível de cabos. Os resultados obtidos pelo MEFG por meio das funções de enriquecimento polinomiais, trigonométricas e hiperbólicas são comparados com respostas analíticas encontradas na literatura. Os resultados também são comparados com respostas não lineares obtidas pelo MEF, considerando a não linearidade geométrica. O custo computacional é analisado em termos do número de graus de liberdade utilizados, do número de condição da matriz de rigidez e do tempo de execução do programa. A análise linear pelo MEFG obteve bons resultados guando comparada às respostas analíticas e do MEF tradicional. Já quando comparada com soluções do Método dos Elementos Finitos Hierárguico (MEFH), houve equivalência de resultados. Entretanto, em algumas análises, o MEFH obteve resultados tão bons quando o MEFG, utilizando menor número de graus de liberdade. Em alguns dos casos estudados a diferença entre a análise linear e não linear geométrica foi mais evidente, onde foi possível verificar a influência da elasticidade do cabo.

Palavras-chave: Métodos enriquecidos. Método dos Elementos Finitos Hierárquico. Método dos Elementos Finitos Generalizados. Análise linear de cabos. Análise nãolinear de cabos.

ABSTRACT

Cables have been extensively used as structural elements in suspension bridges, transmission lines, mooring lines, guyed towers, marine and off-shore constructions, cable trusses and roof structures. This is due to light weight of the cables, their costeffective construction and the possibility of pre-tensioning. The analysis of cable structures by the Finite Element Method (FEM) using straight elements usually requires a high number of degrees of freedom in order to obtain acceptable results for the cable profile and its properties, such as cable tension and length. Several enriched methods have been developed in order to obtain more precise results than those provided by the FEM, and with lower computational cost. The Generalized Finite Element Method (GFEM) is an enriched method in which the shape functions are the product of the partition of unity function and the enrichment function. Therefore, in this paper the GFEM is studied with the use of several different enrichment functions, considering a linear and inextensible cable analysis. The results obtained by the GFEM using the proposed polynomial, trigonometric and hyperbolic enrichment functions are compared to analytical solutions found in literature. The results are also compared to nonlinear solutions provided by the FEM, considering the geometric nonlinearity. The computational cost is analyzed in terms of the total number of degrees of freedom and the program execution time. The condition number of the stiffness matrix in each analysis is also discussed. The linear analysis by GFEM obtained good results when compared to analytical and FEM solution. When compared with solutions of the Hierarchical Finite Element Method (HFEM), there was equivalence of results. However, in some analyses, the HFEM obtained results as good as those from GFEM while using fewer degrees of freedom. In some of the studied cases, the difference between linear and non-linear analysis was more evident, where it was possible to verify the influence of cable elasticity.

Keywords: Enriched methods. Hierarchical Finite Element Method. Generalized Finite Element Method. Cable Linear Analysis. Cable Non-Linear Analysis.

LISTA DE FIGURAS

Figura 1 – Ponte pênsil Golden Gate – São Francisco	14
Figura 2 – Ponte estaiada Octávio Frias de Oliveira – São Paulo	14
Figura 3 – State Fair Arena - Raleigh	15
Figura 4 – Cabo parabólico	24
Figura 5 – Cabo catenária	28
Figura 6 – Elemento finito linear de cabo	31
Figura 7 – Polinômios de Lobatto	38
Figura 8 – Configurações nos instantes 0, $t \in t + \Delta t$	39
Figura 9 – Movimento do corpo	41
Figura 10 – Elemento de cabo	50
Figura 11 – Método de Newton-Raphson	57
Figura 12 – Subcoberturas {Ωi}	58
Figura 13 – Polinômios lineares de Lagrange	61
Figura 14 – Funções de enriquecimento <i>HY</i> 1	63
Figura 15 – Funções de enriquecimento $HY2$, $k = 0,5$	64
Figura 16 – Funções de enriquecimento <i>Fci</i>	66
Figura 17 – Funções de enriquecimento <i>Fsi</i>	66
Figura 18 – Fluxograma do MEFG linear	68
Figura 19 - Fluxograma do MEF não linear	70
Figura 20 – Caso 1: Cabo sob ação de cargas concentradas	73
Figura 21 – Caso 1: Comparação entre tempo de execução e número de graus o	de
liberdade	76
Figura 22 – Caso 1: Comparação entre erros e número de graus de liberdade	76
Figura 23 – Caso 1: Número de Condição	78
Figura 24 – Caso 2: Cabo sob ação do peso próprio	79
Figura 25 – Caso 2: Comparação entre tempo de execução e número de graus	de
liberdade	82
Figura 26 – Caso 2: Comparação entre erros e número de graus de liberdade	83
Figura 27 – Perfil do cabo (MEF com 2 e 10 elementos)	84
Figura 28 – Caso 2: Número de Condição	85
Figura 29 – Caso 3: Cabo com apoios desnivelados	86

Figura 30 – Caso 3: Comparação entre tempo de execução e número de graus de
liberdade
Figura 31 – Caso 3: Comparação entre erros e número de graus de liberdade89
Figura 32 – Caso 3: Número de Condição91
Figura 33 – Caso 3: Comparação entre tempo de execução e número de graus de
liberdade – 10 elementos94
Figura 34 – Caso 3: Comparação entre erros e número de graus de liberdade – 10
elementos94
Figura 35 – Caso 3: Cabo sob ação de carregamento distribuído ao longo do vão95
Figura 36 – Caso 4: Comparação entre tempo de execução e número de graus de
liberdade98
Figura 37 – Caso 4: Comparação entre erros e número de graus de liberdade99
Figura 38 – Caso 4: Número de Condição100
Figura 39 – Caso 5: Cabo sob a ação do peso próprio e carga concentrada100
Figura 40 – Caso 5: Comparação entre tempo de execução e número de graus de
liberdade
Figura 41 – Caso 5: Número de Condição104
Figura 42 – Caso 5: Comparação entre erros e número de graus de liberdade 105

LISTA DE TABELAS

Tabela 1 – Coeficientes <i>c</i> 1 e <i>c</i> 2 – Cabo parabólico	25
Tabela 2 – Coeficientes <i>c</i> 1 e <i>c</i> 2 – Cabo catenária	29
Tabela 3 – Prefixos das análises	71
Tabela 4 – Siglas das análises	71
Tabela 5 – Resultados do Caso 1: Cabo sob ação de cargas concentradas	74
Tabela 6 – Análise não linear: trações e ângulos	77
Tabela 7 – Resultados do Caso 2: Cabo sob ação do peso próprio	79
Tabela 8 – Caso 2: Melhores soluções	81
Tabela 9 – Resultados do Caso 3: Cabo com apoios desnivelados	86
Tabela 10 – Resultados do Caso 3: Cabo com apoios desnivelados – 10 elemen	tos
	92
Tabela 11 – Resultados do Caso 4: Cabo sob ação de carregamento distribuído	ao
longo do vão	96
Tabela 12 – Caso 5: Deslocamentos em análises não-lineares	.101
Tabela 13 – Resultados do Caso 5: Cabo sob a ação do peso próprio e carga	
concentrada	. 102
Tabela 14 – Soluções equivalentes: Casos 2 e 3	. 107

LISTA DE SÍMBOLOS

- a_k deslocamentos nodais
- B_L matriz de relação deslocamento-deformação linear
- ${\bf B}_{\rm NL}$ matriz de relação deslocamento-deformação não linear

 c_1, c_2 – constantes

- Cijrs componentes do tensor de relações tensão-deformação
- C tensor de deformações de Cauchy-Green à direita
- eii componentes do tensor de deformações
- f flecha do cabo
- fi componentes das forças externas por unidade de área
- F vetor de forças nodais, tensor de deformações
- h desnível entre apoios
- H força horizontal
- K matriz de rigidez
- K_L matriz de rigidez tangente linear
- K_{NL} matriz de rigidez tangente não linear
- l_n polinômio de Legendre de grau n
- L comprimento do vão
- L_e comprimento do elemento
- L_n polinômio de Lobatto de grau n
- N_1 , N_2 funções de forma
- Ncond número de condição da matriz de rigidez
- Nal número de graus de liberdade
- N_i^{m-1} polinômio de Lagrange
- N vetor de funções de forma
- q carregamento uniformemente distribuído ao longo do vão
- \mathcal{R} trabalho das forças externas
- R vetor das forças nodais externas, tensor de rotação
- S comprimento do cabo, espaço global de aproximação
- S_f superfície onde ocorrem f_i
- S_{ii} componentes do tensor de tensões de Piola-Kirchhoff
- S segundo tensor de tensões de Piola-Kirchhoff

- T tração no cabo
- u_n deslocamento na direção n
- u_h função aproximada
- u vetor deslocamento
- U vetor incremental de deslocamentos
- V força vertical, volume
- w peso próprio do cabo
- w_p função peso
- \mathbf{w}_p vetor de funções peso
- x coordenada cartesiana no plano
- x_1, x_2, x_3 eixos de coordenadas tridimensionais
- x_v abcissa onde ocorre a flecha
- x vetor posição
- y coordenada cartesiana no plano
- y_1, y_2 graus de liberdade
- y vetor de graus de liberdade
- Γ contorno
- ϵ_{ij} componentes do tensor de deformações de Green-Lagrange
- ϵ_{tol} tolerância do processo iterativo linear
- ϵ tensor de deformações de Green-Lagrange
- η_i função partição da unidade
- θ_A ângulo formado entre o apoio A e a horizontal
- θ_B ângulo formado entre o apoio *B* e a horizontal
- ξ coordenada adimensional
- ρ densidade
- τ_{ij} componentes do tensor de tensões de Cauchy
- τ tensor de tensões de Cauchy
- $\Omega domínio$
- Ω_i subcobertura do domínio

SUMÁRIO

1 INTRODUÇÃO	14
1.1 OBJETIVO GERAL	16
1.2 OBJETIVOS ESPECÍFICOS	16
1.3 ESTRUTURA DO TRABALHO	17
2 REVISÃO DA LITERATURA	18
3 REFERENCIAL TEÓRICO	24
3.1 TEORIA ANALÍTICA DE CABOS	24
3.1.1 Cabo parabólico	24
3.1.2 Cabo catenária	27
3.2 MÉTODO DOS ELEMENTOS FINITOS LINEAR	30
3.2.1 Processo iterativo	35
3.3 MÉTODO DOS ELEMENTOS FINITOS HIERÁRQUICO LINEAR	36
3.4 MÉTODO DOS ELEMENTOS FINITOS NÃO LINEAR	38
3.4.1 Elemento finito não linear de cabo	50
3.5 MÉTODO DE NEWTON-RAPHSON	55
3.6 MÉTODO DOS ELEMENTOS FINITOS GENERALIZADOS	57
4 METODOLOGIA	68
5 SIMULAÇÕES NUMÉRICAS	71
5.1 CASO 1: CABO SOB A AÇÃO DE CARGAS CONCENTRADAS	72
5.2 CASO 2: CABO SOB AÇÃO DO PESO PRÓPRIO	78
5.3 CASO 3: CABO COM APOIOS DESNIVELADOS	86
5.4 CASO 4: CABO SOB AÇÃO DE CARREGAMENTO DISTRIBUÍDO A	O LONGO
DO VÃO	95
5.5 CASO 5: CABO SOB AÇÃO DO PESO PRÓPRIO E CARGA CONCE	NTRADA
	100
6 CONCLUSÕES	107
6.1 SUGESTÕES DE CONTINUIDADE	108
REFERÊNCIAS	110

1 INTRODUÇÃO

Cabos podem ser utilizados como elementos estruturais em vários tipos de obras de engenharia. Dentre as suas vantagens construtivas, pode-se citar o baixo peso próprio e a facilidade de montagem.

Um dos usos mais notáveis dos cabos em estruturas está nas pontes pênseis e estaiadas, como mostrado na Figura 1 e Figura 2. Além do elevado apelo arquitetônico, essas tipologias de ponte têm possibilitado vãos cada vez maiores, podendo chegar a 1 km (KAROUMI, 1999).

FIGURA 1 – PONTE PÊNSIL GOLDEN GATE – SÃO FRANCISCO

FONTE: Golden Gate Bridge¹.

De acordo com Ren e Peng (2005), as pontes estaiadas ainda apresentam vantagens sobre outras tipologias de pontes, incluindo pontes penseis, e essas são: melhor eficiência na utilização dos materiais, maior rigidez e menor tamanho dos elementos estruturais, facilitando sua fabricação/construção.

Outro uso essencial de cabos é em linhas de transmissão. Costa (2014) destaca que, devido ao Brasil ser um país de grandes dimensões, a energia gerada em usinas precisa percorrer grandes distâncias em linhas de transmissão até chegar ao consumidor final. Do ponto de vista econômico, é interessante que os cabos possam vencer grandes vãos sem comprometer sua característica estrutural, pois,

¹ Disponível em: https://www.goldengate.org/contemporary-photos/. Acesso em mai. 2020.

² Disponível em: http://www.oas.com.br/oas-com/oas-engenharia/realizacoes/especiais/pontesviadutos/emurb-sp-ponte-estaiada-octavio-frias-de-oliveir. Acesso em mai. 2020.

assim como nas pontes, tais cabos estão sujeitos a cargas estáticas, como o peso próprio, cargas térmicas e cargas dinâmicas, como a ação do vento.

Em 1950, o projeto da *State Fair Arena*, mostrada na Figura 3, em Raleigh, na Carolina do Norte, promoveu um maior estudo e construção de coberturas suspensas (TIBERT, 1999).

FIGURA 3 - STATE FAIR ARENA - RALEIGH

Uma vantagem deste tipo de cobertura é a capacidade de se cobrir grandes áreas com pouco material (TIBERT, 1999).

Entretanto, todos os usos citados para os cabos requerem uma análise estrutural rigorosa. Uma dificuldade inicial no estudo de cabos é que sua geometria é dependente do carregamento, isto é, sua forma varia conforme as forças aplicadas (IRVINE, 1981). Carregamentos distribuídos ao longo do comprimento de arco do cabo, como o peso próprio, fazem com que ele assuma a forma de uma catenária. Já carregamentos distribuídos ao longo do vão produzem a forma de uma curva parabólica.

Diante dessa dificuldade, o estudo analítico dos cabos e de estruturas que os contenham pode se mostrar bastante complexo. Nesse contexto, pode-se utilizar o Método dos Elementos Finitos (MEF), amplamente aplicado no estudo da Mecânica Computacional. Entretanto, embora o MEF apresente a teoria e resultados bem embasados e consolidados, possui limitações. No caso da análise de cabos, a utilização de elementos retos implica na necessidade de um elevado número de graus de liberdade para que o perfil dos cabos e suas propriedades, como seu comprimento e as tensões desenvolvidas no próprio cabo, sejam determinados com precisão

FONTE: Tibert (1999).

aceitável. Possibilidades de contornar esses problemas, utilizando o próprio MEF, são os refinamentos h, p e hp. O refinamento h consiste em refinar a malha ao aumentar o número de elementos, o que pode demandar alto custo computacional. Já o refinamento p consiste em aumentar o grau dos polinômios interpoladores, entretanto, a formulação de elementos no refino p não é simples, dificultando sua implementação computacional (PROENÇA; TORRES, 2007). O refinamento hp, por sua vez, é aplicação simultânea dos refinamentos h e p.

Dessa forma, nos últimos anos têm sido desenvolvidos métodos enriquecidos, entre eles o Método dos Elementos Finitos Generalizados (MEFG), que inclui informações conhecidas (a priori) do problema com o objetivo de melhorar a solução obtida com menor custo computacional que o MEF.

O Método dos Elementos Finitos Generalizados (MEFG) tem sido utilizado com sucesso em diversos problemas de mecânica computacional, como em análises estáticas e dinâmicas lineares e não lineares de estruturas (PROENÇA; TORRES, 2007; ARNDT, 2009; PIEDADE NETO; PROENÇA, 2015; ARNDT; MACHADO; SCREMIN, 2016). Sendo assim justifica-se estudar a aplicabilidade do MEFG também na análise estrutural estática de cabos.

1.1 OBJETIVO GERAL

O objetivo do trabalho é estudar o desempenho de Métodos Enriquecidos na análise estática de cabos.

1.2 OBJETIVOS ESPECÍFICOS

Para que o objetivo geral seja atingido, são objetivos específicos desse trabalho:

- Testar diferentes funções de enriquecimento para aplicação do MEFG na análise estática de cabos;
- Estudar a convergência e o número de condição das matrizes de rigidez das formulações dos Métodos enriquecidos propostos;

- Comparar as respostas obtidas pelo MEFG, MEFH e MEF entre si no contexto da análise estática linear de cabos;
- Estudar a diferença entre as respostas lineares do MEFG, MEFH e MEF e não lineares obtidas com a aplicação do MEF.

1.3 ESTRUTURA DO TRABALHO

O presente trabalho é composto em 6 capítulos.

No capítulo 2 é apresentada a revisão da literatura, abrangendo algumas das pesquisas desenvolvidas envolvendo o tema de cabos, do Método dos Elementos Finitos. No capítulo 3 é desenvolvido o referencial teórico que aborda as bases dos métodos numéricos utilizados para atingir o objetivo deste trabalho. A metodologia é descrita no capítulo 4, onde é mostrado como a teoria desenvolvida no capítulo 3 será aplicada. No capítulo 5 são apresentados os casos estudados e os resultados. Por fim, no capítulo 6 estão apresentadas as conclusões do trabalho e sugestões de continuidade da pesquisa.

2 REVISÃO DA LITERATURA

Em 1638 Galileu concluiu, em sua obra "Duas novas ciências", que a forma que um cabo suspenso assume é parabólica (IRVINE, 1981). Anos mais tarde, em 1691, os irmãos Johann e Jacob Bernoulli, e Leibniz e Huygens descobriram que a forma correta é da catenária, o que evidencia que o tema de cabos tem sido estudado há séculos. Vários trabalhos foram publicados tratando do estudo estático e dinâmico de cabos.

Neste capítulo são descritos os principais trabalhos científicos encontrados na literatura sobre o tema, sendo esta revisão dividida em dois tópicos: análise de cabos e Método dos Elementos Finitos Generalizados.

2.1.1. Análise de Cabos

Vários métodos já foram empregados para o estudo de cabos, para vários tipos de análise, como a linear, não-linear, estática, dinâmica, modal, etc.

2.1.1.1 Análise Estática de Cabos

No contexto da análise estática, Wood e Zienkiewicz (1977) estudaram a análise não linear geométrica, por meio do Método dos Elementos Finitos, de vários tipos de elementos estruturais, incluindo elementos curvos, por meio da abordagem isoparamétrica. A formulação utilizada foi a Lagrangeana total, sendo as equações não lineares resolvidas pelo Método de Newton-Raphson, obtendo boa correlação entre os resultados numéricos e os analíticos. Entretanto, os elementos apresentados por Wood e Zienkiewicz (1977) eram uni e bidimensionais. Anos depois, Peyrot e Goulois (1979) desenvolveram um código computacional para a análise estática de estruturas tridimensionais complexas compostas por vários segmentos de cabos considerando carregamentos gravitacionais, térmicos e o arrasto de fluidos. O elemento finito de cabo foi desenvolvido com base nas equações analíticas da catenária e o algoritmo desenvolvido obteve bons resultados considerando grandes deslocamentos.

Jayaraman e Knudson (1981) também apresentaram um elemento de cabo baseado nas equações analíticas da catenária, curvo de dois nós, que permitiu a aplicação de carregamentos de peso próprio sem aproximações. O elemento foi utilizado em análise estáticas e dinâmicas, sendo comparado com elementos de dois e três nós. Todas as análises consideraram a não linearidade geométrica, sendo utilizado o Método de Newton-Raphson para solução do sistema não linear de equações, considerando grandes deslocamentos, mas pequenas deformações. Para a análise dinâmica, foi utilizado o Método da Diferença Central.

Desai *et al.* (1988) formularam um elemento parabólico de três nós para a análise tridimensional estática de cabos e o compararam com aqueles desenvolvidos com as equações da catenária. Os estudos de casos mostraram que os resultados foram bem próximos aos obtidos por Jayaraman e Knudson (1981).

Um possível uso de cabos em construções civis é em pontes suspensas. Karoumi (1999) modelou a ponte suspensa "Great Belt", localizada na Dinamarca. O perfil longitudinal da ponte foi discretizado em elementos de cabo, desenvolvidos a partir das equações da catenária, e elementos de viga. A análise não linear realizada considerou a estática e também os modos e frequências naturais da ponte, onde se destacou a facilidade de incluir efeitos de pré-tensionamento e a aplicação exata do peso próprio do cabo.

Oliveira (2002) aplicou o MEF considerando a não linearidade em cabos, utilizando o Método de Newton-Raphson para solução das equações não lineares. Na análise estática, foram comparados os resultados obtidos por elementos de cabo reto e elementos em forma de catenária, submetidos à carregamentos distribuídos e forças concentradas. Embora os resultados obtidos tenham sido condizentes com os de outros pesquisadores, nota-se que, em alguns exemplos estudados, foram necessários 16 elementos retilíneos para se obter uma resposta equiparável àquela com um único elemento de catenária.

Pereira Júnior (2002) utilizou o MEF para a análise não linear geométrica e do material de cabos suspensos. A matriz de rigidez tangente dos elementos é obtida a partir de um sistema de coordenadas corrotacional. Foi desenvolvido um programa computacional considerando grandes deslocamentos e comportamento elasto-plástico do material. O Método de Newton-Raphson foi utilizado para solução do sistema não linear de equações. Costa (2014), assim como Pereira Júnior (2002), utilizou um sistema de coordenadas corrotacional na análise não linear pelo MEF de cabos e treliças espaciais, com vistas à aplicação em torres metálicas estaiadas para linhas de transmissão.

Przybysz *et al.* (2019) estudaram a aplicação do MEFG na análise linear estática de cabos inextensíveis utilizando como funções interpoladoras os polinômios de Lobatto de segundo grau e também funções hiperbólicas. O MEFG mostrou bons resultados, permitindo que os cabos fossem modelados com apenas um elemento, diferentemente do MEF tradicional, onde vários elementos são necessários para haver boa representação da geometria do cabo.

Zhu *et al.* (2021) desenvolveram um novo método para encontrar a forma do cabo principal de pontes suspensas, sendo o Método dos Elementos Finitos Não Linear utilizado juntamente a um sistema de coordenadas Euleriano. O método necessita, além das iterações de Newton-Raphson para resolução das equações não lineares, da utilização do método da secante para convergência da componente horizontal da tração desenvolvida no cabo. Comparado com soluções baseadas nas equações da catenária, o método proposto apresentou bons resultados numéricos.

2.1.1.2 Análise Dinâmica de Cabos

Já no contexto da análise dinâmica, Irvine e Caughey (1974) desenvolveram uma teoria linear para vibração livre do cabo suspenso cuja razão entre a flecha e o vão seja 1/8 ou menor, considerando o cabo elástico. A teoria leva em consideração a vibração no plano e fora do plano, incluindo modos simétricos e antissimétricos. Os resultados foram verificados com experimentos e apresentaram boa correlação. Entretanto, mesmo antes do desenvolvimento dessa teoria linear já haviam estudos sobre a dinâmica de cabos. Simpson (1966) utilizou o Método da Matriz de Transferência para obter as frequências e modos naturais de linhas de transmissão no plano. A dedução da matriz de transferência foi feita a partir da solução da equação dinâmica da vibração da catenária elástica "rasa", isto é, com pequena razão entre a flecha e o vão. O método pôde então ser usado para a obtenção das frequências e modos naturais de um cabo com vários apoios intermediários.

No trabalho de Hagedorn e Schäfer (1980) foi estudado o efeito de termos não lineares na vibração livre de cabos elásticos. O estudo da não linearidade no primeiro modo simétrico e antissimétrico se deu por meio do Método de Ritz-Galerkin e concluiu-se que a frequência natural pode ser consideravelmente diferente daquela obtida numa análise linear. Entretanto, o estudo se restringiu à análise de cabos no plano. Já Takahashi e Konishi (1987) estudaram a vibração livre não-linear de cabos

em três dimensões, não limitando a análise a cabos com pequena razão entre a flecha e o vão.

Thai, Kim e Lee (2017) estudaram a vibração livre de cabos por meio da Análise Isogeométrica, utilizando funções racionais não uniformes *B-splines* (NURBS).

Fei, Zichen e Danhui (2020) formularam um método para a análise dinâmica de cabos compostos por vários segmentos. O método é capaz de levar em consideração a rigidez à flexão (normalmente desprezada na análise de cabos) e não é restringido a pequenas ou grandes razões entre flecha e vão. Os resultados foram comparados com experimentos e modelos em elementos finitos.

Observa-se da revisão da literatura até aqui apresentada que a análise de cabos é um assunto relevante no meio técnico e científico.

2.1.2. Método dos Elementos Finitos Generalizados

O Método dos Elementos Finitos Generalizados (MEFG) é um método enriquecido baseado no Método da Partição da Unidade (MPU).

Melenk e Babuška (1996) propuseram o Método da Partição da Unidade (MPU) que, assim como o MEF, é um método de resolução de equações diferenciais e pode ser considerado como uma das bases teóricas do MEFG. Potenciais aplicações do MPU envolvem problemas nos quais a solução não pode ser satisfatoriamente aproximada por polinômios e os refinos *h* e *p* resultariam em custos computacionais muito altos (MELENK; BABUŠKA, 1996). Tais problemas incluem equações da Teoria da Elasticidade e a equação de Helmholtz. Além disso, é um método no qual é possível introduzir conhecimentos a priori sobre o comportamento da solução em locais específicos do domínio. O MPU pode ser considerado um método "sem malha", ou seja, não é exigida a criação de uma malha em elementos finitos (MELENK; BABUŠKA, 1996). Strouboulis, Copps e Babuška (1999) afirmam que o MEFG é uma combinação do MEF tradicional e do MPU.

O MEFG foi proposto independentemente por Babuška e colaboradores, e por Duarte e Oden (DUARTE; BABUŠKA; ODEN, 2000) sob o nome *hp Clouds*. Ainda de acordo com Duarte, Babuška e Oden (2000), vários métodos sem malha podem ser considerados como casos especiais do MEFG, que se destacam pela utilização de uma partição da unidade, que é um conjunto de funções cuja soma é a unidade em todo ponto x de um domínio Ω .

Há outros métodos enriquecidos baseados em malhas e que utilizam o MPU. Um deles é o Método dos Elementos Finitos EXtendidos (MEFX) (MOES; DOLBOW; BELYTSCHKO, 1999). De acordo com Fries e Belytschko (2010), o MEFX e o MEFG são métodos semelhantes uma vez que seus enriquecimentos têm a mesma estrutura.

Vários pesquisadores verificaram a aplicabilidade com sucesso do MEFG em diversas áreas, como a modelagem de trincas tridimensionais (SUKUMAR *et al.*, 1999), a propagação dinâmica de trincas (DUARTE *et al.*, 2000), a aplicação em placas de Reissner-Mindlin (DOLBOW; MOES; BELYTSCHKO, 2000), a equação da onda bidimensional (TORII; MACHADO; ARNDT, 2015), a vibração livre em vigas de Euler-Bernoulli e estruturas reticuladas (ARNDT; MACHADO; SCREMIN, 2016), dentre outras aplicações.

Piedade Neto e Proença (2015) empregaram o MEFG em análises dinâmicas lineares e não lineares, utilizando matrizes de massa consistentes e agrupadas. Os resultados mostraram que o MEFG se manteve estável numericamente e proveu respostas adequadas para a análise linear de vibração forçada de uma viga engastada, para o problema não linear de associação de materiais em um sólido e também para o exemplo de um material hiperelástico sujeito a grandes deformações. O uso de matrizes de massa agrupadas também se mostrou efetivo ao diminuir e número de condição do sistema linear.

A análise elastoplástica de vigas de Euler-Bernoulli foi estudada por Shang, Machado e Abdalla Filho (2016). Os autores constataram que o MEFG alcançou bons resultados comparado como o MEF tradicional e o Método dos Elementos Finitos Hierárquico (MEFH). Também se concluiu que, ao utilizar o MEFG aliado a um método de integração no tempo que permita a dissipação de energia, como o método de Hilber-Hughes-Taylor (HHT), obtém-se estabilidade numérica para as deformações não lineares decorrentes da plastificação.

Debella *et al.* (2020) aplicaram o MEFG adaptativo na análise dinâmica transiente de barras e treliças, utilizando juntamente com o MFEG o Método da Superposição Modal e o Método de Newmark. No estudo, foi proposto um fator de influência capaz de identificar os modos de vibração preponderantes, de forma a deixar apenas os valores dos modos mais influentes na matriz modal. Comparados com soluções analíticas e com resultados do MEF, o MEFG adaptativo apresentou

bons resultados, com a vantagem de que, ao utilizar apenas os modos mais influentes na matriz modal, diminuiu-se o esforço computacional.

Corrêa, Arndt e Machado (2021) aplicaram o MEFG na vibração livre (no plano) de arcos finos e espessos. Em relação as frequências naturais de vibração, o MEFG convergiu mais rapidamente do que o MEF tradicional e o Método p-Fourier, utilizando menor número de graus de liberdade. Já em relação ao espectro de frequências, o MEFG conseguiu bons resultados para as baixas frequências, embora tenha apresentado erros consideráveis para as frequências maiores.

Dessa forma, observa-se que o MEFG é um método eficiente na análise estática e dinâmica de estruturas, com formulações atuais e em constante desenvolvimento que abrangem diversos elementos estruturais.

3 REFERENCIAL TEÓRICO

A seguir apresenta-se a fundamentação teórica necessária para o desenvolvimento do trabalho.

3.1 TEORIA ANALÍTICA DE CABOS

A teoria analítica de cabos faz uso de algumas hipóteses simplificadoras para que se possa calcular a deformada do cabo e suas propriedades. Considera-se que o cabo é perfeitamente flexível, ou seja, não possui rigidez à flexão. Assume-se também que é inextensível, isto é, o comprimento do cabo não varia entre sua configuração inicial e sua configuração deformada (PEREIRA JÚNIOR, 2002).

Para se obter a curva descrita por um cabo, é preciso saber o desnível *h* entre os apoios e pelo menos uma das seguintes informações: o ângulo θ_A , a abcissa x_v da flecha ou a própria flecha *f* (Figura 4).

Uma dificuldade intrínseca ao estudo dos cabos é a variação da sua forma devido ao carregamento. Um cabo submetido apenas ao seu peso próprio assumirá a forma de uma catenária. Já um cabo que apresente um carregamento distribuído ao longo do vão terá geometria parabólica. Estas duas situações são analisadas a seguir.

3.1.1 Cabo parabólico

Considera-se o carregamento q uniformemente distribuído ao longo do vão L, como mostrado na Figura 4 e que o peso próprio do cabo seja desprezível.

FONTE: O autor (2021).

Pelo equilíbrio de forças e momentos do elemento diferencial mostrado na Figura 4 e desprezando-se infinitésimos de ordem superior, tem-se as equações:

$$dH = 0 \tag{1}$$

$$dV = q \ dx \tag{2}$$

$$H \, dy - V \, dx - \frac{q \, dx^2}{2} = 0 \quad \therefore \quad \frac{dy}{dx} = \frac{V}{H} \tag{3}$$

Pela Equação (1) conclui-se que a força horizontal H é constante. A partir das Equações (2) e (3) tem-se:

$$H\frac{d^2y}{dx^2} = q \tag{4}$$

Integrando a Equação (4) duas vezes, obtém-se:

$$\frac{dy}{dx} = \frac{q}{H}x + c_1 \tag{5}$$

$$y = \frac{q}{H}\frac{x^2}{2} + c_1 x + c_2 \tag{6}$$

As constantes de integração podem ser obtidas com as condições de contorno e são mostradas na Tabela 1.

TABELA 1 – COEFICIENTES
$$c_1 \ge c_2$$
 – CABO PARABÓLICO

(Continua)

Condições de contorno	<i>C</i> ₁	<i>C</i> ₂
y(0) = 0 $y(L) = 0$	qL	0
$\left.\frac{dy}{dx}\right _{x=\frac{L}{2}} = 0$	2H	Ŭ
y(0) = 0 $y(1) = b$		
$\frac{dy}{dx} = \operatorname{tg} \theta_A$	tg $ heta_A$	0
	Condições de contorno $y(0) = 0$ $y(L) = 0$ $\frac{dy}{dx}\Big _{x=\frac{L}{2}} = 0$ $y(0) = 0$ $y(L) = h$ $\frac{dy}{dx}\Big _{x=0} = \operatorname{tg} \theta_A$	Condições de contorno $\begin{aligned} y(0) &= 0 \\ y(L) &= 0 \\ \frac{dy}{dx}\Big _{x=\frac{L}{2}} &= 0 \end{aligned} \qquad -\frac{qL}{2H} \\ y(0) &= 0 \\ y(L) &= h \\ \frac{dy}{dx}\Big _{x=0} &= \operatorname{tg} \theta_A \end{aligned}$

			(Conclusão)
Dados	Condições de contorno	<i>c</i> ₁	<i>C</i> ₂
	y(0)=0		
Conhecidos $h \in x_v$	y(L) = h	$-\frac{qx_{v}}{dx_{v}}$	0
	$\left. \frac{dy}{dx} \right _{x=x_{\nu}} = 0$	Н	, , , , , , , , , , , , , , , , , , ,
	y(0)=0		
Conhecidos $h \in f$	y(L) = h	$2f\left(1+\sqrt{1-\frac{h}{2}}\right)$	
	$y(x_v) = f$	$\frac{2f\left(1+\sqrt{1-f}\right)}{f}$	0
	$\left. \frac{dy}{dx} \right _{x=x_v} = 0$	L	

TABELA 1 – COEFICIENTES $c_1 \to c_2$ – CABO PARABÓLICO

FONTE: O autor (2021).

O comprimento ds é dado por:

$$ds = \sqrt{dx^2 + dy^2} = \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx \tag{7}$$

e a força T de tração no cabo, considerando as componentes V e H, é:

$$T = \frac{H}{\cos(\theta_A)} = \frac{H}{\frac{dx}{ds}} = H \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$
(8)

Para o caso do cabo com apoios desnivelados e θ_A conhecido, a parábola é dada por:

$$y = \frac{q}{H}\frac{x^2}{2} + tg(\theta_A) x \tag{9}$$

É possível obter o valor de *H* sabendo que em x = L, y = h:

$$H = \frac{qL^2}{2(h - L tg(\theta_A))}$$
(10)

O comprimento *S* do cabo e a força de tração *T* podem ser encontrados pelas Equações (7) e (8).

Quando se conhece o desnível h e a abcissa x_v da flecha, a curva tem a forma dada por:

$$y = \frac{q}{H} \frac{x^2}{2} - \frac{qx_v}{H} x$$
(11)

Novamente, y(L) = h, e a força horizontal *H* é dada por:

$$H = \frac{qL}{2h}(L - 2x_v) \tag{12}$$

e, *S* e *T* são obtidos pela substituição das Equações (11) e (12) nas Equações (7) e (8) e pela relação tg $(\theta_A) = -\frac{qx_v}{H}$.

Já quando $h \in f$ são conhecidos, y é dado por:

$$y = \frac{q}{H}\frac{x^2}{2} + \frac{2f\left(1 + \sqrt{1 - \frac{h}{f}}\right)}{L}x$$
(13)

e *H* é obtido por:

$$H = \frac{qL^2}{2h - 4f\left(1 + \sqrt{1 - \frac{h}{f}}\right)} \tag{14}$$

Para encontrar o comprimento S do cabo e a força de tração T, utilizam-se novamente as Equações (7) e (8).

3.1.2 Cabo catenária

Considera-se o carregamento w uniformemente distribuído ao longo do comprimento do cabo *S*, como mostrado na Figura 5.

FONTE: O autor (2021).

O equilíbrio de forças e momentos do elemento diferencial da Figura 5, novamente desprezando infinitésimos de ordem superior, implica em:

$$dH = 0 \tag{15}$$

$$dV = w \, ds \tag{16}$$

$$H \, dy - V \, dx - \frac{w \, ds^2}{2} = 0 \quad \therefore \quad \frac{dy}{dx} = \frac{V}{H} \tag{17}$$

Novamente, pela Equação (15) conclui-se que a força horizontal H é constante. A partir das Equações (7), (16) e (17) tem-se que:

$$H\frac{d^2y}{dx^2} = w\sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$
(18)

Ao integrar a Equação (18) duas vezes, obtém-se:

$$\frac{dy}{dx} = \operatorname{senh}\left(\frac{w}{H}x + c_1\right) \tag{19}$$

$$y = \frac{H}{w} \cosh\left(\frac{w}{H}x + c_1\right) + c_2 \tag{20}$$

As constantes de integração podem ser obtidas com as condições de contorno e são mostradas na Tabela 1.

Dados	Condições de contorno	<i>C</i> ₁	<i>C</i> ₂	
Apoios nivelados ($h = 0$)	y(0)=0			
	y(L)=0	$-\frac{wL}{2H}$	$-\frac{H}{w}\cosh\frac{wL}{2H}$	
	$\left.\frac{dy}{dx}\right _{x=\frac{L}{2}} = 0$			
	y(0)=0			
Conhecidos $h \in \theta_A$	y(L) = h	$\operatorname{senh}^{-1}(\operatorname{tg} \theta_A)$	$-\frac{H}{w}\cosh(\sinh^{-1}(\operatorname{tg}\theta_A))$	
	$\left.\frac{dy}{dx}\right _{x=0} = \operatorname{tg} \theta_A$			
	y(0)=0			
Conhecidos $h \in x_v$	y(L) = h	$-\frac{wx_v}{H}$	$-\frac{H}{w}\cosh\left(-\frac{wx_{v}}{H}\right)$	
	$\left. \frac{dy}{dx} \right _{x=x_v} = 0$			
Conhecidos <i>h</i> e <i>f</i>	y(0)=0			
	y(L) = h	$-\cosh^{-1}\left(1-\frac{wf}{H}\right)$	$-\frac{H}{W}+f$	
	$y(x_v) = f$			
	$\left. \frac{dy}{dx} \right _{x=x_{\nu}} = 0$			
FONTE: O autor (2021).				

TABELA 2 – COEFICIENTES $c_1 \to c_2$ – CABO CATENÁRIA

Para um cabo catenária com *h* e θ_A conhecidos, por meio das Equações (7) e (20) e dos coeficientes da Tabela 2, obtém-se:

$$y = \frac{H}{w} \cosh\left(\frac{w}{H}x + \operatorname{senh}^{-1}(\operatorname{tg}\theta_A)\right) - \frac{H}{w} \cosh(\operatorname{senh}^{-1}(\operatorname{tg}\theta_A))$$
(21)

Ao contrário do cabo parabólico, onde a força *H* pode ser obtida analiticamente, no cabo catenária é necessário obtê-la por tentativas, usando a Equação (20) e a condição y(L) = h, que recai na expressão:

$$h = \frac{H}{w} \cosh\left(\frac{wL}{H} + \operatorname{senh}^{-1}(\operatorname{tg}\theta_A)\right) - \frac{H}{w} \cosh(\operatorname{senh}^{-1}(\operatorname{tg}\theta_A))$$
(22)

O comprimento *S* e a força de tração *T* podem ser calculados pelas Equações (7) e (8).

Para o caso em que se conhece $h \in x_v$, a equação da curva catenária é:

$$y = \frac{H}{w} \cosh\left(\frac{w}{H}x - \frac{wx_{v}}{H}\right) - \frac{H}{w} \cosh\left(-\frac{wx_{v}}{H}\right)$$
(23)

A força horizontal é encontrada por tentativas utilizando a Equação (20) e y(L) = h, que recai na expressão:

$$h = \frac{H}{w} \cosh\left(\frac{wL}{H} - \frac{wx_v}{H}\right) - \frac{H}{w} \cosh\left(-\frac{wx_v}{H}\right)$$
(24)

Novamente o comprimento S e a força de tração T são obtidos pelas Equações (7) e (8).

Por fim, conhecendo o desnível h e a flecha f, tem-se que:

$$y = \frac{H}{w} \cosh\left(\frac{w}{H}x - \cosh^{-1}\left(1 - \frac{wf}{H}\right)\right) - \frac{H}{w} + f$$
(25)

Como nos casos anteriores, calcula-se *H* por tentativas através da expressão:

$$h = \frac{H}{w} \cosh\left(\frac{wL}{H} - \cosh^{-1}\left(1 - \frac{wf}{H}\right)\right) - \frac{H}{w} + f$$
(26)

e, *S* e *T* são obtidos pelas Equações (7) e (8), respectivamente.

3.2 MÉTODO DOS ELEMENTOS FINITOS LINEAR

O elemento finito linear utilizado nesse trabalho, foi apresentado por Przybysz *et al.* (2019), e é mostrado na Figura 6. Esse elemento é baseado nas equações lineares do cabo apresentadas e, portanto, considera o cabo perfeitamente flexível e inextensível.

FIGURA 6 - ELEMENTO FINITO LINEAR DE CABO

FONTE: O autor (2021).

Na Figura 6, *x* é a coordenada global, ξ é a coordenada local adimensional do elemento, que varia entre -1 e 1, L_e é o comprimento do elemento e, y_1 e y_2 são os deslocamentos nodais verticais dos nós 1 e 2, respectivamente. A relação entre as variáveis *x* e ξ é:

$$x = \frac{x_{i+1} - x_i}{2}\xi + \frac{x_{i+1} + x_i}{2}$$
(27)

Considerando que $x_{i+1} = x_i + L_e$ e substituindo esta expressão na Equação (27), obtém-se:

$$x = \frac{L_e}{2}\xi + \frac{2x_i + L_e}{2}$$
(28)

Para o elemento da Figura 6, considera-se um campo linear de deslocamentos na forma:

$$y(\xi) = \mathbf{N}^T \mathbf{y} = [N_1(\xi) \quad N_2(\xi)] \begin{cases} y_1 \\ y_2 \end{cases} = N_1(\xi) \ y_1 + N_2(\xi) \ y_2$$
(29)

onde N_1 e N_2 são as funções de forma lineares:

$$N_1 = \frac{1-\xi}{2}, \qquad N_2 = \frac{1+\xi}{2}$$
 (30)

Considerando a Equação (4) e a Equação (18), para um cabo submetido simultaneamente a carregamentos distribuídos ao longo do vão e ao longo de seu próprio comprimento, tem-se a equação diferencial:

$$H\frac{d^2y}{dx^2} = q + w \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$
(31)

Pode-se utilizar a simplificação:

$$\frac{dy}{dx} = \operatorname{senh}\left(\frac{w}{H}x - \frac{wL}{2H}\right)$$
(32)

de acordo com a Equação (19) e com o coeficiente c_1 para cabo nivelado indicado na Tabela 2. Substituindo a Equação (32) na Equação (31), obtém-se:

$$H\frac{d^2y}{dx^2} = q + w\sqrt{1 + \operatorname{senh}^2\left(\frac{w}{H}x - \frac{wL}{2H}\right)}$$
(33)

e, usando a identidade das funções hiperbólicas $1 + \operatorname{senh}^2 a = \cosh^2 a$, obtém-se:

$$H\frac{d^2y}{dx^2} = q + w \cosh\left(\frac{w}{H}x - \frac{wL}{2H}\right)$$
(34)

Uma forma de resolução da Equação (34) é a aplicação de um método de resíduos ponderados, como o Método de Galerkin, por exemplo. A particularidade do Método de Galerkin é que as funções peso são tomadas iguais às funções de forma (SORIANO, 2009). Primeiramente, movem-se todos os termos da Equação (34) para o lado esquerdo da igualdade, na forma:

$$H\frac{d^2y}{dx^2} - \left[q + w\cosh\left(\frac{w}{H}x - \frac{wL}{2H}\right)\right] = 0$$
(35)

A Equação (35) é então multiplicada pela função peso w_p e integrada no domínio Ω , obtendo-se:

$$\int_{\Omega} H \frac{d^2 y}{dx^2} w_p \, d\Omega - \int_{\Omega} \left[q + w \cosh\left(\frac{w}{H}x - \frac{wL}{2H}\right) \right] w_p \, d\Omega = 0 \tag{36}$$

onde w_p é:

$$w_p = \mathbf{N}^T \mathbf{w}_p = \begin{bmatrix} N_1 & N_2 \end{bmatrix} { \begin{cases} w_{p1} \\ w_{p2} \end{cases}} = N_1 w_{p1} + N_2 w_{p2}$$
(37)

Integra-se por partes o primeiro termo da Equação (36) e obtém-se:

$$H\frac{dy}{dx}w_p\Big|_{\Gamma} - \int_{\Omega} H\frac{dy}{dx}\frac{dw_p}{dx} \ d\Omega - \int_{\Omega} \Big[q + w \cosh\left(\frac{w}{H}x - \frac{wL}{2H}\right)\Big]w_p \ d\Omega = 0$$
(38)

onde o primeiro termo da Equação (38) é a condição de contorno no contorno Γ do domínio Ω . Substituir a Equação (29) e Equação (37) na Equação (38) resulta em:

$$H\frac{dy}{dx}\mathbf{w}_{p}{}^{T}\mathbf{N}\Big|_{\Gamma} - \int_{\Omega} H\mathbf{w}_{p}{}^{T}\frac{d\mathbf{N}}{dx}\frac{d\mathbf{N}^{T}}{dx}\mathbf{y}\,d\Omega$$

$$-\int_{\Omega} \left[q + w\cosh\left(\frac{w}{H}x - \frac{wL}{2H}\right)\right]\mathbf{w}_{p}{}^{T}\mathbf{N}\,d\Omega = 0$$
(39)

Rearranjando a Equação (39), obtém-se:

$$\mathbf{w}_{p}^{T} \left[H \frac{dy}{dx} \mathbf{N} \Big|_{\Gamma} - H \int_{\Omega} \frac{d\mathbf{N}}{dx} \frac{d\mathbf{N}^{T}}{dx} d\Omega \mathbf{y} - \int_{\Omega} \mathbf{N} \left[q + w \cosh\left(\frac{w}{H}x - \frac{wL}{2H}\right) \right] d\Omega \right] = 0$$
(40)

Como a formulação é válida para qualquer w_p , então:

$$H \int_{\Omega} \frac{d\mathbf{N}}{dx} \frac{d\mathbf{N}^{T}}{dx} d\Omega \mathbf{y} = -\int_{\Omega} \mathbf{N} \left[q + w \cosh\left(\frac{w}{H}x - \frac{wL}{2H}\right) \right] d\Omega + H \frac{dy}{dx} \mathbf{N} \Big|_{\Gamma}$$
(41)

O domínio do elemento considerado, de acordo com a Figura 6, é $\Omega = [x_i, x_{i+1}]$. Dessa forma, inserem-se os limites de integração na Equação (41), na forma:

$$H \int_{x_i}^{x_{i+1}} \frac{d\mathbf{N}}{dx} \frac{d\mathbf{N}^T}{dx} dx \, \mathbf{y} = -\int_{x_i}^{x_{i+1}} \mathbf{N} \left[q + w \cosh\left(\frac{w}{H}x - \frac{wL}{2H}\right) \right] dx + H \frac{dy}{dx} \mathbf{N} \Big|_{x_i}^{x_{i+1}}$$
(42)

Para fazer a mudança de variável de x para ξ , tem-se, de acordo com a Equação (28), que:

$$\frac{dx}{d\xi} = \frac{L_e}{2} \tag{43}$$

e, usando a regra da cadeia e a Equação (43), obtém-se:

$$\frac{d\mathbf{N}}{dx} = \frac{d\mathbf{N}}{d\xi}\frac{d\xi}{dx} = \frac{d\mathbf{N}}{d\xi}\frac{2}{L_e}$$
(44)

Fazendo a mudança de variável e substituindo as Equações (43) e (44) na Equação (42) chega-se a:

$$H \int_{-1}^{1} \frac{d\mathbf{N}}{d\xi} \frac{d\mathbf{N}^{T}}{d\xi} \frac{2}{L_{e}} d\xi \,\mathbf{y} = -\int_{-1}^{1} \mathbf{N} \left[q + w \cosh\left(\frac{w}{H}x - \frac{wL}{2H}\right) \right] \frac{L_{e}}{2} d\xi + H \frac{dy}{dx} \mathbf{N} \Big|_{-1}^{1}$$
(45)

onde

$$\mathbf{K} = \frac{2H}{L_e} \int_{-1}^{1} \frac{d\mathbf{N}}{d\xi} \frac{d\mathbf{N}^T}{d\xi} d\xi$$
(46)

é a matriz de rigidez do elemento e

$$\mathbf{F} = -\frac{L_e}{2} \int_{-1}^{1} \mathbf{N} \left[q + w \cosh\left(\frac{w}{H}x - \frac{wL}{2H}\right) \right] d\xi$$
(47)

é o vetor de forças do elemento. O termo

$$H\frac{dy}{dx}\mathbf{N}\Big|_{-1}^{1} \tag{48}$$

também presente na Equação (45), representa as condições de contorno referentes às forças de tração nos apoios.

3.2.1 Processo iterativo

De acordo com as Equações (46) e (47), a matriz da rigidez e o vetor de forças do elemento dependem da tração horizontal do cabo H. Entretanto, H não é conhecida previamente, exceto no caso do cabo parabólico. No cabo catenária, H pode ser encontrada por meio das Equações (22), (24) e (26).

Entretanto, quando se trata de um caso geral de cabo, onde possam ocorrer carregamentos distribuídos e concentrados concomitantemente, não há uma expressão geral pela qual se possa calcular H. Nesse caso, estuda-se a relação entre a tração H e a flecha f do cabo.

Para um cabo submetido apenas a esforços verticais, a componente de tração horizontal, H, é constante em todo o cabo (IRVINE, 1981). Ao se utilizar uma estimativa para H, chamada de H_i , é possível calcular a matriz de rigidez e o vetor de forças dos elementos, obter o vetor de deslocamentos e, por conseguinte, uma flecha f_i , baseada na estimativa H_i . Sendo o valor da flecha f conhecido, é possível utilizar um processo iterativo para que a diferença $f_i - f$ seja menor que dada tolerância ao se aproximar melhores valores para H_i .

Como não há uma expressão para f em termos de H, não seria possível utilizar, por exemplo, o método de Newton-Raphson, visto que seria necessário o cálculo de f(H) e sua derivada f'(H). Nesse caso, assim como no trabalho de Przybysz *et al.* (2019), utiliza-se o método da secante, sendo que H_{i+1} é calculada por:

$$H_{i+1} = \frac{H_{i-1}(f_i - f) - H_i(f_{i-1} - f)}{(f_i - f) - (f_{i-1} - f)}, \quad i = 1, 2, \dots$$
(49)

sendo *i* o número da iteração.

Uma das características do método da secante é a necessidade de dois valores iniciais para se calcular um terceiro, isto é, quando i = 1, H_0 e H_1 são valores de entrada para o método. Dessa forma, para os casos estudados, H_0 é tomado como a tração horizontal no caso de um cabo parabólico, conforme Equação (14), com h =

0, e H_1 é 1,01 H_0 . Então f_0 e f_1 são obtidos pela solução do sistema **Ky** = **F** com as trações H_0 e H_1 .

O processo iterativo é interrompido quando a diferença $|f_i - f|$ é menor que dada tolerância, isto é, $|f_i - f| \le \epsilon_{tol}$.

Especialmente no caso de análises enriquecidas, para se encontrar o valor das flechas f_n não é necessário que um ponto nodal de um elemento coincida com a abcissa onde a flecha f ocorre. Quando a coincidência não ocorre, f_n pode ser encontrada por meio de interpolação de valores nodais.

3.3 MÉTODO DOS ELEMENTOS FINITOS HIERÁRQUICO LINEAR

Uma desvantagem do Método dos Elementos Finitos usual é que, quando há a necessidade de refinar os elementos ao aumentar o grau da interpolação, é necessário um novo conjunto de funções de forma e, portanto, a análise deve ser inteiramente refeita de acordo com as novas funções (ZIENKIEWICZ; TAYLOR; ZHU, 2005). No Método dos Elementos Finitos Hierárquico (MEFH), ao utilizar um conjunto de funções hierárquicas, o conjunto de funções de forma de um refino de ordem p+1 contém o conjunto de funções de forma do refino anterior de ordem p (ŠOLÍN; SEGETH; DOLEŽEL, 2004). Isso permite que a matriz de rigidez construída no refino de ordem p seja reaproveitada para o refino de ordem p+1 apenas com acréscimo de novas linha e novas colunas.

Em elementos unidimensionais, a introdução do refino *p* hierárquico utilizando funções k ortogonais conduz à introdução de valores ao longo da diagonal principal da matriz de rigidez, o que contribui para que a análise numérica seja bem condicionada (ZIENKIEWICZ; TAYLOR; ZHU, 2005). Nesse contexto, um conjunto de funções hierárquico comumente utilizado é composto pelos polinômios de Lobatto, que já possuem boas propriedades de condicionamento (ŠOLÍN; SEGETH; DOLEŽEL, 2004).

Sendo os polinômios de Lobatto L_0 e L_1 :

$$L_0 = \frac{1 - x}{2}$$
(50)

$$L_1 = \frac{1+x}{2} \tag{51}$$
o polinômio L_n pode então ser obtido a partir dos polinômios de Legendre l_n , (ŠOLÍN; SEGETH; DOLEŽEL, 2004):

$$L_n = \frac{1}{\|l_{n-1}\|_2} \int_{-1}^{\xi} l_{n-1}(x) \, dx, \ n \ge 2$$
(52)

onde $||l_{k-1}||_2 = \sqrt{2/(2n-1)}$ (ŠOLÍN; SEGETH; DOLEŽEL, 2004). Dessa forma, utilizando-se a Equação (52), obtém-se os polinômios de Lobatto até o sexto grau:

$$L_2 = \frac{1}{2} \sqrt{\frac{3}{2}} (\xi^2 - 1) \tag{53}$$

$$L_3 = \frac{1}{2} \sqrt{\frac{5}{2}} (\xi^2 - 1)\xi \tag{54}$$

$$L_4 = \frac{1}{8} \sqrt{\frac{7}{2}} (\xi^2 - 1)(5\xi^2 - 1)$$
(55)

$$L_5 = \frac{1}{8} \sqrt{\frac{9}{2}} (\xi^2 - 1)(7\xi^2 - 3)\xi$$
(56)

$$L_6 = \frac{1}{16} \sqrt{\frac{11}{2}} (\xi^2 - 1)(21\xi^4 - 14\xi^2 + 1)$$
(57)

Os polinômios de Lobatto são utilizados no refinamento p hierárquico ou Método dos Elementos Finitos Hierárquico, especialmente em elementos unidimensionais e de estado plano. Além de serem ortogonais, as derivadas dos polinômios de Lobatto são polinômios de Legendre normalizados, também ortogonais, o que contribui para o bom condicionamento dessa família de polinômios (ŠOLÍN; SEGETH; DOLEŽEL, 2004). Dessa forma, a matriz de rigidez elementar do elemento de cabo obtida pelo refinamento p hierárquico tem a forma:

$$K = \begin{bmatrix} k_{11} & k_{12} & 0 & 0 & \dots & 0 \\ k_{21} & k_{22} & 0 & 0 & \dots & 0 \\ 0 & 0 & k_{33} & 0 & \dots & 0 \\ 0 & 0 & 0 & k_{44} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & k_{NN} \end{bmatrix}$$
(58)

onde os termos k_{33} , k_{44} , ..., k_{NN} são provenientes do enriquecimento *p* hierárquico. Na Figura 7 são representadas as funções L_2 , L_3 , L_4 , L_5 e L_6 .

FIGURA 7 – POLINÔMIOS DE LOBATTO

3.4 MÉTODO DOS ELEMENTOS FINITOS NÃO LINEAR

Por apresentar pouca rigidez à flexão, que é frequentemente desprezada, cabos estão sujeitos a grandes deslocamentos, sendo interessante, nesse caso, a análise não linear deste tipo de elemento (IRVINE, 1981).

O referencial teórico para o MEF desenvolvido a seguir utiliza a notação proposta por Bathe (2014) na forma:

$${}^{t+\Delta t}_{0}u_1 \tag{59}$$

onde o índice superior à esquerda (nesse caso, $t + \Delta t$) indica em qual configuração ocorreu a variável u, o índice inferior esquerdo denota qual foi a configuração de referência para medição da variável u e o índice inferior direito representa as componentes do vetor ou tensor.

O sistema de eixos utilizado é cartesiano fixo $0x_1x_2x_3$, como mostrado na Figura 8, e considera-se que a trajetória dos pontos materiais do corpo é conhecida entre o tempo 0 e o tempo *t*, desejando-se obter a configuração no instante $t + \Delta t$.

FIGURA 8 – CONFIGURAÇÕES NOS INSTANTES 0, $t \in t + \Delta t$

O equilíbrio do corpo mostrado na Figura 8, no instante de tempo $t + \Delta t$, pode ser descrito a partir do princípio dos deslocamentos virtuais (BATHE, 2014) na forma:

$$\int_{t+\Delta t_V} {}^{t+\Delta t} \tau_{ij} \,\delta_{t+\Delta t} e_{ij} \,d^{t+\Delta t} V = {}^{t+\Delta t} \mathcal{R}$$
(60)

onde ${}^{t+\Delta t}\tau_{ij}$ são as componentes do tensor de tensões de Cauchy, $\delta_{t+\Delta t}e_{ij}$ são as componentes do tensor de deformações correspondentes aos deslocamentos virtuais, ${}^{t+\Delta t}V$ é o volume do corpo no instante $t + \Delta t$ e ${}^{t+\Delta t}\mathcal{R}$ corresponde ao trabalho das forças externas. As componentes do tensor de deformações podem ser escritas como:

$$\delta_{t+\Delta t} e_{ij} = \frac{1}{2} \left(\frac{\partial \delta u_i}{\partial^{t+\Delta t} x_j} + \frac{\partial \delta u_j}{\partial^{t+\Delta t} x_i} \right)$$
(61)

sendo δu_i os deslocamentos virtuais impostos no instante $t + \Delta t$ e $t + \Delta t$ as coordenadas cartesianas também no instante $t + \Delta t$.

O membro direito da equação (60) inclui o trabalho das forças de volume ou de corpo e das forças de superfície e é dado por:

$${}^{t+\Delta t}\mathcal{R} = \int_{t+\Delta t_V} {}^{t+\Delta t} f_i^V \,\delta u_i \, d^{t+\Delta t}V + \int_{t+\Delta t_{S_f}} {}^{t+\Delta t} f_i^S \,\delta u_i^S \, d^{t+\Delta t}S \tag{62}$$

Na Equação (62), ${}^{t+\Delta t}f_i^V$ são as componentes das forças externas por unidade de volume, ${}^{t+\Delta t}f_i^S$ são as componentes das forças externas por unidade de área, ${}^{t+\Delta t}S_f$ é a superfície onde ocorrem as componentes ${}^{t+\Delta t}f_i^S$ e δu_i^S são os deslocamentos que ocorrem na superfície ${}^{t+\Delta t}S_f$.

De acordo com Bathe (2014), em análises lineares considerando pequenos deslocamentos, a Equação (60) pode ser resolvida em termos da configuração original conhecida. Em contrapartida, a análise não linear apresenta dificuldades na aplicação direta da Equação (60), justamente por não se conhecer a configuração do corpo no instante $t + \Delta t$. Dessa forma, devem ser utilizados tensores de tensão e deformação diferentes daqueles da Equação (60), o que é mostrado a seguir.

É considerado o movimento do corpo da Figura 9, entre os instantes 0 e t. Em especial, são analisados os segmentos d^0 **x** e d^t **x**.

FONTE: O autor (2021).

No instante *t*, de acordo com a Figura 9, a posição do ponto material A é dada por:

$$^{t}\mathbf{x} = {}^{0}\mathbf{x} + \mathbf{u}({}^{0}\mathbf{x}, t)$$
(63)

e do ponto B por:

$${}^{t}\mathbf{x} + d^{t}\mathbf{x} = {}^{0}\mathbf{x} + d^{0}\mathbf{x} + \mathbf{u}({}^{0}\mathbf{x} + d^{0}\mathbf{x}, t)$$
(64)

Ao subtrair da Equação (64) a Equação (63), obtém-se:

$$d^{t}\mathbf{x} = d^{0}\mathbf{x} + \mathbf{u}(^{0}\mathbf{x} + d^{0}\mathbf{x}, t) - \mathbf{u}(^{0}\mathbf{x}, t) = d^{0}\mathbf{x} + {}^{t}_{0}(\nabla\mathbf{u})d^{0}\mathbf{x}$$
(65)

onde ∇u é o gradiente de deslocamentos, sendo suas componentes dadas por:

$${}_{0}^{t}(\nabla \mathbf{u})_{ij} = \frac{\partial u_i}{\partial^0 x_j} = {}_{0}^{t} u_{i,j}$$
(66)

A partir da Equação (65) define-se o tensor de deformações F na forma:

$$d^{t}\mathbf{x} = {}_{0}^{t}\mathbf{F} d^{0}\mathbf{x}, \qquad \text{sendo} \ {}_{0}^{t}\mathbf{F} = \mathbf{I} + {}_{0}^{t}\nabla\mathbf{u}$$
(67)

e o tensor de deformações de Cauchy-Green à direita C como:

$${}_{0}^{t}\mathbf{C} = {}_{0}^{t}\mathbf{F}^{T}{}_{0}^{t}\mathbf{F}$$
(68)

Substituindo a Equação (67) na Equação (68), tem-se:

$${}_{0}^{t}\mathbf{C} = (\mathbf{I} + \nabla \mathbf{u})^{T}(\mathbf{I} + \nabla \mathbf{u}) = \mathbf{I} + \nabla \mathbf{u} + \nabla \mathbf{u}^{T} + \nabla \mathbf{u}^{T} \nabla \mathbf{u}$$
(69)

O tensor de deformações de Cauchy-Green à direita considera os movimentos de corpo rígido e também a mudança do comprimento dos segmentos entre pontos materiais do corpo contínuo (LAI; KREMPL; RUBEN, 2010). O tensor de deformações de Green-Lagrange ϵ é parte do tensor de Cauchy-Green à direita e é dado por:

$$_{0}^{t}\boldsymbol{\epsilon} = \frac{1}{2}(\nabla \mathbf{u} + \nabla \mathbf{u}^{T} + \nabla \mathbf{u}^{T} \nabla \mathbf{u})$$
(70)

Em termos das componentes, pode-se escrever:

$${}_{0}^{t}\epsilon_{ij} = \frac{1}{2} \left({}_{0}^{t}u_{i,j} + {}_{0}^{t}u_{j,i} + {}_{0}^{t}u_{k,i} {}_{0}^{t}u_{k,j} \right)$$
(71)

ou seja,

$$_{0}^{t}\boldsymbol{\epsilon} = \frac{1}{2} \begin{pmatrix} {}_{0}^{t} \boldsymbol{\mathsf{C}} - \boldsymbol{\mathsf{I}} \end{pmatrix}$$
(72)

De acordo com a Equação (71) e Equação (66), todas as derivadas no tensor de deformações de Green-Lagrange são definidas em relação à configuração inicial, e nenhuma desconsideração de termos de ordem superior foi feita na obtenção deste tensor (BATHE, 2014).

O tensor de tensões conjugado ao tensor de deformações de Green-Lagrange é o segundo tensor de Piola-Kirchhoff **S** dado por:

$${}_{0}^{t}\mathbf{S} = \frac{{}_{0}^{0}\rho}{{}_{\rho}}{}_{0}^{t}\mathbf{F}^{-1} {}^{t}\mathbf{\tau} \left({}_{0}^{t}\mathbf{F}^{-1}\right)^{T}$$
(73)

onde τ é o tensor de tensões de Cauchy e ${}^{0}\rho$ e ${}^{t}\rho$, são, respectivamente, as densidades no instante 0 e *t*, relacionadas por:

$${}^{0}\rho = \det({}^{t}_{0}\mathbf{F}) {}^{t}\rho \tag{74}$$

Em termos das componentes do segundo tensor de Piola-Kirchhoff, tem-se:

$${}_{0}^{t}S_{ij} = \frac{{}^{0}\rho}{{}^{t}\rho} {}_{0}^{t}F_{ik}^{-1} \tau_{kl} {}_{0}^{t}F_{jl}^{-1}$$
(75)

Na formulação apresentada a seguir, serão usados alguns componentes do segundo tensor de Piola-Kirchhoff em forma de vetor (BATHE, 2014) dada por:

$${}^{t}_{0}\hat{\mathbf{S}} = \begin{bmatrix} {}^{t}_{0}S_{11} & {}^{t}_{0}S_{22} & {}^{t}_{0}S_{12} & {}^{t}_{0}S_{33} \end{bmatrix}$$
(76)

A partir do segundo tensor de Piola-Kirchhoff e do tensor de Green-Lagrange, pode-se escrever o trabalho das forças internas, no instante de tempo t, como:

$$\int_{t_V} t_{ij} \,\delta_t e_{ij} \,d^t V = \int_{0_V} \delta_0^t \delta_0^t \epsilon_{ij} \,d^0 V \tag{77}$$

Sabendo a configuração de equilíbrio do corpo contínuo no instante de tempo t, deseja-se obter a configuração em $t + \Delta t$. A Equação (60), obtida a partir do princípio dos deslocamentos virtuais, pode ser então reescrita como:

$$\int_{{}^{0}V} {}^{t+\Delta t} S_{ij} \,\delta^{t+\Delta t} {}^{0} \epsilon_{ij} \,d^{0}V = {}^{t+\Delta t} \mathcal{R}$$
(78)

Na Equação (78), o volume de integração é conhecido, ao contrário daquele da Equação (60). Para se resolver a Equação (78) no incremento de tempo $t + \Delta t$, faz-se o incremento do tensor de Piola-Kirchhoff e de Green-Lagrange:

$${}^{t+\Delta t}_{0}S_{ij} = \underbrace{{}^{t}_{0}S_{ij}}_{\text{conhecido}} + \underbrace{{}^{0}_{0}S_{ij}}_{\text{incremento desconhecido}}$$
(79)

$${}^{t+\Delta t}_{0}\epsilon_{ij} = \underbrace{{}^{t}_{0}\epsilon_{ij}}_{\text{conhecido}} + \underbrace{{}^{0}_{0}\epsilon_{ij}}_{\text{incremento desconhecido}}$$
(80)

Pela Equação (71), sabe-se que:

$${}^{t+\Delta t}_{0}\epsilon_{ij} = \frac{1}{2} \left({}^{t+\Delta t}_{0}u_{i,j} + {}^{t+\Delta t}_{0}u_{j,i} + {}^{t+\Delta t}_{0}u_{k,i} {}^{t+\Delta t}_{0}u_{k,j} \right)$$
(81)

Substituindo a Equação (71) e Equação (81) na Equação (80) obtém-se:

$${}_{0}\epsilon_{ij} = \frac{1}{2} \left({}^{t+\Delta t}_{0}u_{i,j} + {}^{t+\Delta t}_{0}u_{j,i} + {}^{t+\Delta t}_{0}u_{k,i} {}^{t+\Delta t}_{0}u_{k,j} \right) - \frac{1}{2} \left({}^{t}_{0}u_{i,j} + {}^{t}_{0}u_{j,i} + {}^{t}_{0}u_{k,i} {}^{t}_{0}u_{k,j} \right)$$

$$= \frac{1}{2} \left[\left({}^{t+\Delta t}_{0}u_{i,j} - {}^{t}_{0}u_{i,j} \right) + \left({}^{t+\Delta t}_{0}u_{j,i} - {}^{t}_{0}u_{j,i} \right) + \left({}^{t+\Delta t}_{0}u_{k,i} {}^{t+\Delta t}_{0}u_{k,j} \right)$$

$$= \frac{1}{2} \left[{}_{0}u_{i,j} + {}_{0}u_{j,i} + \underbrace{\left({}^{t+\Delta t}_{0}u_{k,i} {}^{t+\Delta t}_{0}u_{k,j} - {}^{t}_{0}u_{k,i} {}^{t}_{0}u_{k,j} \right) \right]$$

$$= \frac{1}{2} \left[{}_{0}u_{i,j} + {}_{0}u_{j,i} + \underbrace{\left({}^{t+\Delta t}_{0}u_{k,i} {}^{t+\Delta t}_{0}u_{k,j} - {}^{t}_{0}u_{k,i} {}^{t}_{0}u_{k,j} \right) \right]$$

$$= \frac{1}{2} \left[{}_{0}u_{i,j} + {}_{0}u_{j,i} + \underbrace{\left({}^{t+\Delta t}_{0}u_{k,i} {}^{t+\Delta t}_{0}u_{k,j} - {}^{t}_{0}u_{k,i} {}^{t}_{0}u_{k,j} \right) \right]$$

$$= \frac{1}{2} \left[{}_{0}u_{i,j} + {}_{0}u_{j,i} + \underbrace{\left({}^{t+\Delta t}_{0}u_{k,i} {}^{t+\Delta t}_{0}u_{k,j} - {}^{t}_{0}u_{k,i} {}^{t}_{0}u_{k,j} \right) \right]$$

Na Equação (82), o termo * pode ser escrito como:

$${}^{t+\Delta t}_{0} u_{k,i} {}^{t+\Delta t}_{0} u_{k,j} - {}^{t}_{0} u_{k,i} {}^{t}_{0} u_{k,j} = ({}^{t}_{0} u_{k,i} + {}_{0} u_{k,i}) ({}^{t}_{0} u_{k,j} + {}_{0} u_{k,j}) - {}^{t}_{0} u_{k,i} {}^{t}_{0} u_{k,j}$$

$$= {}^{t}_{0} u_{k,i} {}^{t}_{0} u_{k,j} + {}^{t}_{0} u_{k,i} {}^{0}_{0} u_{k,j} + {}_{0} u_{k,i} {}^{t}_{0} u_{k,j} + {}_{0} u_{k,i} {}^{t}_{0} u_{k,j} - {}^{t}_{0} u_{k,i} {}^{t}_{0} u_{k,j}$$

$$= {}^{t}_{0} u_{k,i} {}^{0}_{0} u_{k,j} + {}_{0} u_{k,i} {}^{t}_{0} u_{k,j} + {}_{0} u_{k,i} {}^{0}_{0} u_{k,j}$$

$$(83)$$

Substituindo a Equação (83) na Equação (82), tem-se:

$${}_{0}\epsilon_{ij} = \frac{1}{2} \left(\underbrace{{}_{0}u_{i,j} + {}_{0}u_{j,i} + {}_{0}^{t}u_{k,i} {}_{0}u_{k,j} + {}_{0}u_{k,i} {}_{0}^{t}u_{k,j}}_{\text{linear nos incrementos de } u} + \underbrace{{}_{0}u_{k,i} {}_{0}u_{k,j}}_{\text{não linear nos incrementos de } u} \right)$$
(84)

Bathe (2014) sugere a seguinte divisão dos termos lineares e não lineares da Equação (84):

$${}_0\epsilon_{ij} = {}_0e_{ij} + {}_0\eta_{ij} \tag{85}$$

$${}_{0}e_{ij} = \frac{1}{2} \left({}_{0}u_{i,j} + {}_{0}u_{j,i} + {}_{0}^{t}u_{k,i} {}_{0}u_{k,j} + {}_{0}u_{k,i} {}_{0}^{t}u_{k,j} \right)$$
(86)

$${}_{0}\eta_{ij} = \frac{1}{2} ({}_{0}u_{k,i} {}_{0}u_{k,j})$$
(87)

Em posse dos incrementos de tensão e deformação, reescreve-se a Equação (78):

$$\int_{0_V} \left({}^t_0 S_{ij} + {}_0 S_{ij} \right) \delta\left({}^t_0 \epsilon_{ij} + {}_0 \epsilon_{ij} \right) d^0 V = {}^{t+\Delta t} \mathcal{R}$$
(88)

que resulta em:

$$\int_{{}^{0}V} \left({}^{t}_{0}S_{ij} + {}_{0}S_{ij} \right) \delta\left({}^{t}_{0}\epsilon_{ij} + {}_{0}e_{ij} + {}_{0}\eta_{ij} \right) d^{0}V = {}^{t+\Delta t}\mathcal{R}$$
(89)

Da consideração de que os deslocamentos virtuais são impostos no instante de tempo $t + \Delta t$, segue que:

$$\delta^{t+\Delta t}_{0}\epsilon_{ij} = \delta \begin{pmatrix} t \\ 0 \\ \epsilon_{ij} + 0 \\ \epsilon_{ij} \end{pmatrix} = \delta_{0}\epsilon_{ij} \quad \therefore \quad \delta_{0}^{t}\epsilon_{ij} = 0$$
(90)

portanto, a Equação (89) se transforma em:

$$\int_{0_V} \left({}_0^t S_{ij} + {}_0 S_{ij} \right) \delta({}_0 e_{ij} + {}_0 \eta_{ij}) d^0 V = {}^{t+\Delta t} \mathcal{R}$$
(91)

que resulta em:

$$\int_{0_V} \left({}_0^t S_{ij} \,\delta_0 e_{ij} + {}_0^t S_{ij} \,\delta_0 \eta_{ij} + {}_0 S_{ij} \,\delta_0 e_{ij} + {}_0 S_{ij} \,\delta_0 \eta_{ij} \right) d^0 V = {}^{t+\Delta t} \mathcal{R}$$
(92)

Reorganizando os termos da Equação (92), obtém-se:

$$\int_{0_{V}} {}_{0}S_{ij} \,\delta_{0}\epsilon_{ij} \,d^{0}V + \int_{0_{V}} {}_{0}^{t}S_{ij} \,\delta_{0}\eta_{ij} \,d^{0}V = {}^{t+\Delta t}\mathcal{R} - \int_{0_{V}} {}_{0}^{t}S_{ij} \,\delta_{0}e_{ij} \,d^{0}V \tag{93}$$

Dados deslocamentos virtuais δu , a integral no membro direito da Equação (93) é conhecida.

No membro esquerdo, o termo $\int_{0_V} {}_0^t S_{ij} \, \delta_0 \eta_{ij} \, d^0 V$ é linear. Embora ${}_0\eta_{ij}$ seja não linear em relação aos incrementos dos deslocamentos ${}_0u_{k,i}$ e ${}_0u_{k,j}$, conforme Equação (87), $\delta_0\eta_{ij}$ é linear em relação a esses incrementos, dado que:

$$\delta_0 \eta_{ij} = \frac{1}{2} (\delta_0 u_{k,i} \,_0 u_{k,j} + {}_0 u_{k,i} \,_0 u_{k,j}) \tag{94}$$

e, além disso, ${}_{0}^{t}S_{ij}$ é um valor conhecido, calculado entre os instantes 0 e *t*, portanto, não depende dos incrementos ${}_{0}u_{k,i}$ e ${}_{0}u_{k,j}$ (BATHE, 2014). Já o termo $\int_{0_{V}} {}_{0}S_{ij} \delta_{0}\epsilon_{ij} d^{0}V$ é não linear, visto que ${}_{0}S_{ij}$ é, no caso mais geral, uma função não linear de ${}_{0}\epsilon_{ij}$ (BATHE, 2014). Este termo pode ser linearizado utilizando a série de Taylor em torno do instante *t* na forma:

$$\int_{{}^{0}V} {}_{0}S_{ij} \,\delta_0 \epsilon_{ij} \,d^0 V = \int_{{}^{0}V} \left(\frac{\partial {}^{t}_0 S_{ij}}{\partial {}^{t}_0 \epsilon_{rs}} \right|_t {}^{0} \epsilon_{rs} + \frac{\text{termos de}}{\text{ordem superior}} \right) \delta_0 \epsilon_{ij} \,d^0 V \tag{95}$$

Considerando que $_0\epsilon_{rs} = _0e_{rs} + _0\eta_{rs}$, conforme Equação (85), o membro direito da Equação (95) torna-se:

$$\int_{0_V} \left(\frac{\partial {}_0^t S_{ij}}{\partial {}_0^t \epsilon_{rs}} \Big|_t ({}_0e_{rs} + {}_0\eta_{rs}) + \frac{\text{termos de}}{\text{ordem superior}} \right) \delta({}_0e_{ij} + {}_0\eta_{ij}) d^0V$$
(96)

Na Equação (96), $_0\eta_{rs}$, $_0\eta_{ij}$ e os termos de ordem superior são não lineares. Desprezando esses termos, a Equação (83) transforma-se em:

$$\int_{0_V} {}_0 S_{ij} \,\delta_0 \epsilon_{ij} \,d^0 V \cong \int_{0_V} \left(\frac{\partial {}_0^t S_{ij}}{\partial {}_0^t \epsilon_{rs}} \Big|_{t^0} e_{rs} \right) \delta_0 e_{ij} \,d^0 V \tag{97}$$

Admite-se que o material trabalhe apenas no regime elástico linear, sendo a lei de Hooke dada por:

$$\frac{\partial_0^t S_{ij}}{\partial_0^t \epsilon_{rs}} = {}_0 C_{ijrs} \tag{98}$$

onde $_{0}C_{ijrs}$, são as componentes do tensor de relações tensão-deformação. Ao substituir a Equação (98) na Equação (97), é obtida a equação linearizada:

$$\int_{0_V} {}_0S_{ij} \,\delta_0\epsilon_{ij} \,d^0V \cong \int_{0_V} {}_0C_{ijrs\ 0}e_{rs}\,\delta_0e_{ij} \,d^0V \tag{99}$$

Dessa forma, a equação do movimento linearizada é dada por:

$$\int_{0_V} {}_{0}C_{ijrs\ 0}e_{rs}\,\delta_0 e_{ij}\,d^0V + \int_{0_V} {}_{0}^{t}S_{ij}\,\delta_0\eta_{ij}\,d^0V = {}^{t+\Delta t}\mathcal{R} - \int_{0_V} {}_{0}^{t}S_{ij}\,\delta_0 e_{ij}\,d^0V \qquad (100)$$

Como todas as derivações presentes na Equação (100) são calculadas em relação à configuração de referência no instante de tempo 0, essa formulação é chamada de Lagrangeana Total. A Equação (100) pode ser utilizada para calcular os incrementos de deslocamento e, portanto, obter aproximações para os deslocamentos, tensões e deformações no instante $t + \Delta t$ (BATHE, 2014).

Para se obter os deslocamentos em $t + \Delta t$, pode-se adequar a Equação (100) ao utilizar incrementos de tensão e deformação. Em forma incremental, para se obter um incremento dos deslocamentos, a Equação (100) é escrita na forma (BATHE, 2014):

$$\int_{0_{V}} {}_{0}C_{ijrs}^{(k-1)} \Delta_{0}e_{rs}^{(k)} \delta_{0}e_{ij} d^{0}V + \int_{0_{V}} {}^{t+\Delta t}S_{ij}^{(k-1)} \delta\Delta_{0}\eta_{ij}^{(k)} d^{0}V = {}^{t+\Delta t}\mathcal{R} - \int_{0_{V}} {}^{t+\Delta t}S_{ij}^{(k-1)} \delta^{t+\Delta t}e_{ij}^{(k-1)} d^{0}V$$
(101)

onde k = 1, 2, ... representa os incrementos, ou seja, a Equação (101) é resolvida repetidas vezes e, a cada iteração, soma-se o incremento do deslocamento obtido no instante $t + (k)\Delta t$ ao deslocamento do instante t. A Equação (101) representa uma linearização do princípio dos deslocamentos virtuais no instante $t + \Delta t$ em um sistema contínuo. No contexto do Método dos Elementos Finitos, essa expressão é linearizada em termos dos deslocamentos nodais a_k . Para isso, será assumido que o termo $t + \Delta t \mathcal{R}$ é independente das deformações. A expansão em série de Taylor no integrando da Equação (78) resulta em:

$${}^{t+\Delta t}_{0}S_{ij}\,\delta^{t+\Delta t}_{0}\epsilon_{ij} = {}^{t}_{0}S_{ij}\,\delta^{t}_{0}\epsilon_{ij} + \frac{\partial}{\partial^{t}a_{k}}\left({}^{t}_{0}S_{ij}\,\delta^{t}_{0}\epsilon_{ij}\right)da_{k}$$
(102)

onde da_k é um incremente diferencial em ta_k . Ao termo $\frac{\partial}{\partial {}^ta_k} \left({}_0^tS_{ij} \, \delta_0^t\epsilon_{ij} \right) da_k$ da Equação (102) pode-se aplicar a regra da cadeia, obtendo-se:

$$\frac{\partial}{\partial^{t}a_{k}} \left({}_{0}^{t}S_{ij} \,\delta_{0}^{t}\epsilon_{ij} \right) da_{k} = \frac{\partial}{\partial}{}_{0}^{t}S_{ij}}{\partial^{t}a_{k}} \delta_{0}^{t}\epsilon_{ij} da_{k} + {}_{0}^{t}S_{ij} \frac{\partial\delta_{0}^{t}\epsilon_{ij}}{\partial^{t}a_{k}} da_{k}
= \frac{\partial}{\partial}{}_{0}^{t}S_{ij}}{\partial}{}_{0}^{t}\epsilon_{rs}} \frac{\partial}{\partial}{}_{0}^{t}\epsilon_{ij} da_{k} + {}_{0}^{t}S_{ij} \frac{\partial\delta_{0}^{t}\epsilon_{ij}}{\partial^{t}a_{k}} da_{k}$$
(103)

Sabendo que:

$$\delta_0^t \epsilon_{ij} = \frac{\partial_0^t \epsilon_{ij}}{\partial^t a_l} \delta a_l \tag{104}$$

em que δa_l é uma variação em ta_l e pela Equação (98), reescreve-se a Equação (103) na forma:

$$\frac{\partial}{\partial^{t}a_{k}}\left({}_{0}^{t}S_{ij}\,\delta_{0}^{t}\epsilon_{ij}\right)da_{k} = {}_{0}C_{ijrs}\frac{\partial_{0}^{t}\epsilon_{rs}}{\partial^{t}a_{k}}\frac{\partial_{0}^{t}\epsilon_{ij}}{\partial^{t}a_{l}}\delta a_{l}\,da_{k} + {}_{0}^{t}S_{ij}\frac{\partial_{0}^{2}}{\partial^{t}a_{k}}\frac{\partial^{2}}{\partial^{t}a_{l}}\delta a_{l}\,da_{k}$$
(105)

Dessa forma, o princípio dos deslocamentos virtuais em termos dos deslocamentos a_k é dado por:

$$\left(\int_{0_{V}} {}_{0}C_{ijrs} \frac{\partial_{0}^{t}\epsilon_{rs}}{\partial^{t}a_{k}} \frac{\partial_{0}^{t}\epsilon_{ij}}{\partial^{t}a_{l}} d^{0}V + \int_{0_{V}} {}_{0}^{t}S_{ij} \frac{\partial^{2}{}_{0}^{t}\epsilon_{ij}}{\partial^{t}a_{k}} \partial^{0}V \right) \delta a_{l} da_{k}
= {}^{t+\Delta t}\mathcal{R}_{l} - \left(\int_{0_{V}} {}_{0}^{t}S_{ij} \frac{\partial}{\partial^{t}a_{l}} d^{0}V \right) \delta a_{l}$$
(106)

sendo ${}^{t+\Delta t}\mathcal{R}_l$ o trabalho virtual das forças externas devido a δa_l . Em forma matricial, a Equação (106) tem a forma:

sendo ${}_{0}^{t}\mathbf{K}_{L}$ a matriz global de rigidez incremental linear, ${}_{0}^{t}\mathbf{K}_{NL}$ a matriz global de rigidez incremental não linear, **U** o vetor incremental de deslocamentos, ${}^{t+\Delta t}\mathbf{R}$ o vetor das forças externas aplicadas nos nós no instante $t + \Delta t$ e ${}_{0}^{t}\mathbf{F}$ o vetor global de forças nodais internas, equivalente às tensões internas apresentadas pelo elemento no instante *t*. As matrizes ${}_{0}^{t}\mathbf{K}_{L}$ e ${}_{0}^{t}\mathbf{K}_{NL}$, e o vetor ${}_{0}^{t}\mathbf{F}$, são obtidos por:

$${}_{0}^{t}\mathbf{K}_{\mathrm{L}} = \int_{0_{V}} {}_{0}^{t}\mathbf{B}_{L}^{T} {}_{0}\mathbf{C} {}_{0}^{t}\mathbf{B}_{L} d^{0}V$$
(108)

$${}_{0}^{t}\mathbf{K}_{\mathrm{NL}} = \int_{0_{V}} {}_{0}^{t}\mathbf{B}_{NL}^{T} {}_{0}^{t}\mathbf{S} {}_{0}^{t}\mathbf{B}_{NL} d^{0}V$$
(109)

$${}_{0}^{t}\mathbf{F} = \int_{0_{V}} {}_{0}^{t}\mathbf{B}_{L}^{T} {}_{0}^{t}\widehat{\mathbf{S}} d^{0}V$$
(110)

onde ${}_{0}^{t}\mathbf{B}_{L}^{T}$ e ${}_{0}^{t}\mathbf{B}_{NL}^{T}$ são as matrizes de relação deslocamento-deformação linear e não linear, respectivamente, ${}_{0}\mathbf{C}$ é a matriz de propriedades do material (tensão-deformação) e ${}_{0}^{t}\mathbf{S}$ e ${}_{0}^{t}\hat{\mathbf{S}}$ são a segunda matriz e vetor de tensões de Piola-Kirchhoff.

3.4.1 Elemento finito não linear de cabo

Considera-se um elemento de cabo reto, como na Figura 10, nos instantes de tempo 0 e *t*, com área de seção transversal *A* constante.

FIGURA 10 - ELEMENTO DE CABO

Na Figura 10, $(u_1)^1 e (u_2)^1$ são os deslocamentos do nó 1 nas direções de x_1 e x_2 , respectivamente, assim como $(u_1)^2 e (u_2)^2$ são os deslocamentos do nó 2 nas direções $x_1 e x_2$. A força de tração desenvolvida no cabo no instante $t e^{t}P$.

Para o elemento estudado, apenas o termo ${}_{0}^{t}S_{11}$ do segundo tensor de Piola-Kirchhoff é diferente de zero, como será demonstrado a seguir. O tensor de deformações ${}_{0}^{t}F$ pode ser obtido a partir do teorema da decomposição polar. Este teorema pode ser interpretado da seguinte forma: a deformação total de um segmento, conforme mostrado na Figura 9, pode ser decomposto em um alongamento seguido de uma rotação (BATHE, 2014):

$$\mathbf{F} = \mathbf{R}\mathbf{U} \tag{111}$$

onde **R** é o tensor de rotação e **U** é o tensor de "alongamento". Para o elemento mostrado na Figura 10, os tensores **R** e **U** são:

$$\mathbf{R} = \begin{bmatrix} \cos^{t}\theta & -\sin^{t}\theta \\ \sin^{t}\theta & \cos^{t}\theta \end{bmatrix}$$
(112)

FONTE: O autor (2021).

$$\mathbf{U} = \begin{bmatrix} \frac{t_L}{0_L} & 0\\ 0 & 1 \end{bmatrix}$$
(113)

e o tensor ${}_{0}^{t}\mathbf{F}$, portanto, é:

$${}_{0}^{t}\mathbf{F} = \begin{bmatrix} \frac{{}^{t}L}{{}^{0}L}\cos{}^{t}\theta & -\sin{}^{t}\theta \\ {}^{t}L\\ \frac{{}^{t}L}{{}^{0}L}\sin{}^{t}\theta & \cos{}^{t}\theta \end{bmatrix}$$
(114)

O tensor de tensões de Cauchy, no instante *t* e na direção do eixo do elemento nesse instante é:

$${}^{t}\overline{\mathbf{\tau}} = \begin{bmatrix} {}^{t}\underline{P} & 0\\ A & 0 \end{bmatrix}$$
(115)

onde considerou-se que a área da seção transversal *A* do elemento é constante em relação às deformações. No sistema de eixos x_1x_2 , obtém-se o tensor de Cauchy por:

$${}^{t}\mathbf{\tau} = \mathbf{R} \begin{bmatrix} \frac{{}^{t}P}{A} & 0\\ 0 & 0 \end{bmatrix} \mathbf{R}^{T} = \frac{{}^{t}P}{A} \begin{bmatrix} \cos^{2}{}^{t}\theta & \cos^{t}\theta \sin^{t}\theta\\ \cos^{t}\theta \sin^{t}\theta & \sin^{2}{}^{t}\theta \end{bmatrix}$$
(116)

Com as Equações (114) e (76), obtém-se o tensor de Piola-Kirchhoff pela Equação (73) (usando a notação $c = \cos^{t}\theta$ e $s = \sin^{t}\theta$):

$${}_{0}^{t}\mathbf{S} = \mathbf{det}({}_{0}^{t}\mathbf{F}){}_{0}^{t}\mathbf{F}^{-1}{}^{t}\mathbf{\tau}({}_{0}^{t}\mathbf{F}^{-1})^{T}$$
(117)

que resulta em:

$${}_{0}^{t}\mathbf{S} = \frac{{}_{0}^{t}L}{{}_{0}^{t}L} \begin{bmatrix} {}_{0}^{0}L & {}_{0}^{0}L \\ {}_{L}^{t}C & {}_{L}^{t}S \\ -S & C \end{bmatrix} \frac{{}_{0}^{t}P}{A} \begin{bmatrix} {}_{c}^{2} & {}_{c}S \\ {}_{c}S & {}_{s}^{2} \end{bmatrix} \begin{bmatrix} {}_{0}^{0}L & {}_{c} & {}_{-S} \\ {}_{0}L \\ {}_{t}L \\ S & C \end{bmatrix} = \frac{{}_{0}^{t}L}{{}_{0}L} \frac{{}_{t}P}{A} \frac{{}_{0}L^{2}}{{}_{t}L^{2}} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
(118)

Logo, o único termo diferente de zero do segundo tensor de Piola Kirchhoff é:

$${}_{0}^{t}S_{11} = \frac{{}^{t}P}{A} \frac{{}^{0}L}{{}^{t}L} = \frac{{}^{t}P}{A} \frac{{}^{0}L}{{}^{0}L + \Delta L}$$
(119)

As deformações $_{0}e_{11}$ e $_{0}\eta_{11}$, particularizadas para o elemento de cabo, são:

$${}_{0}e_{11} = \frac{1}{2} \left(2_{0}u_{1,1} + 2_{0}^{t}u_{k,1} {}_{0}u_{k,1} \right) = \frac{\partial u_{1}}{\partial^{0}x_{1}} + \frac{\partial^{t}u_{1}}{\partial^{0}x_{1}} \frac{\partial u_{1}}{\partial^{0}x_{1}} + \frac{\partial^{t}u_{2}}{\partial^{0}x_{1}} \frac{\partial u_{2}}{\partial^{0}x_{1}}$$
(120)

$${}_{0}\eta_{11} = \frac{1}{2} \left({}_{0}u_{k,1} {}_{0}u_{k,1} \right) = \frac{1}{2} \left[\left(\frac{\partial u_{1}}{\partial^{0} x_{1}} \right)^{2} + \left(\frac{\partial u_{2}}{\partial^{0} x_{1}} \right)^{2} \right]$$
(121)

De acordo com a Figura 10, por geometria:

$${}^{t}u_{1}^{2} = {}^{t}u_{1}^{1} + {}^{t}L\cos{}^{t}\theta - {}^{0}L$$
(122)

е

$${}^{t}u_{2}^{2} = {}^{t}u_{2}^{1} + {}^{t}L \operatorname{sen}{}^{t}\theta$$
(123)

Os deslocamentos no interior do elemento em cada direção *i*, considerando as funções de forma N_1 e N_2 :

$$N_1 = \frac{1}{2}(1-\xi) \qquad N_2 = \frac{1}{2}(1+\xi) \tag{124}$$

são interpolados por:

$$u_i(\xi) = \sum_{j=1}^2 N_j \ u_i^j = N_1 \ u_i^1 + N_2 \ u_i^2$$
(125)

Então é possível obter:

$$\frac{\partial^{t} u_{1}}{\partial^{0} x_{1}} = \frac{\partial N_{1}}{\partial \xi} \frac{\partial \xi}{\partial^{0} x_{1}} {}^{t} u_{1}^{1} + \frac{\partial N_{2}}{\partial \xi} \frac{\partial \xi}{\partial^{0} x_{1}} {}^{t} u_{1}^{2} = \frac{1}{{}^{0}L} ({}^{t} u_{1}^{2} - {}^{t} u_{1}^{1}) = \frac{{}^{t}L \cos^{t}\theta}{{}^{0}L} - 1$$
(126)

$$\frac{\partial^t u_2}{\partial^0 x_1} = \frac{\partial N_1}{\partial \xi} \frac{\partial \xi}{\partial^0 x_1} {}^t u_2^1 + \frac{\partial N_2}{\partial \xi} \frac{\partial \xi}{\partial^0 x_1} {}^t u_2^2 = \frac{1}{{}^0 L} ({}^t u_2^2 - {}^t u_2^1) = \frac{{}^t L \operatorname{sen}{}^t \theta}{{}^0 L}$$
(127)

$$\frac{\partial u_1}{\partial^0 x_1} = \frac{\partial N_1}{\partial \xi} \frac{\partial \xi}{\partial^0 x_1} u_1^1 + \frac{\partial N_2}{\partial \xi} \frac{\partial \xi}{\partial^0 x_1} u_1^2 = -\frac{1}{2} \frac{2}{0L} u_1^1 + \frac{1}{2} \frac{2}{0L} u_1^2 = \frac{1}{0L} (u_1^2 - u_1^1)$$
(128)

$$\frac{\partial u_2}{\partial^0 x_1} = \frac{\partial N_1}{\partial \xi} \frac{\partial \xi}{\partial^0 x_1} u_2^1 + \frac{\partial N_2}{\partial \xi} \frac{\partial \xi}{\partial^0 x_1} u_2^2 = -\frac{1}{2} \frac{2}{0L} u_2^1 + \frac{1}{2} \frac{2}{0L} u_2^2 = \frac{1}{0L} (u_2^2 - u_2^1)$$
(129)

Substituindo as Equações (126) a (129) na Equação (120), obtém-se a parcela de deformação $_0e_{11}$:

$${}_{0}e_{11} = \left\{ \frac{1}{{}_{0L}} \begin{bmatrix} -1 & 0 & 1 & 0 \end{bmatrix} + \left(\frac{{}^{t}L\cos{}^{t}\theta}{{}_{0L}} - 1 \right) \frac{1}{{}_{0L}} \begin{bmatrix} -1 & 0 & 1 & 0 \end{bmatrix} + \left(\frac{{}^{t}L\cos{}^{t}\theta}{{}_{0L}} - 1 \right) \frac{1}{{}_{0L}} \begin{bmatrix} -1 & 0 & 1 & 0 \end{bmatrix} + \left(\frac{{}^{u_{1}}_{1}}{{}_{u_{2}}^{2}} \right) \right\} \left(\frac{{}^{u_{1}}_{1}}{{}_{u_{2}}^{2}} \right]$$

$$= \frac{{}^{t}L}{{}_{0L^{2}}} \begin{bmatrix} -\cos{}^{t}\theta & -\sin{}^{t}\theta & \cos{}^{t}\theta & \sin{}^{t}\theta \end{bmatrix} \left[\frac{{}^{u_{1}}_{1}}{{}_{u_{2}}^{2}} \right] = {}^{t}_{0}\mathbf{B}_{L} \begin{bmatrix} {}^{u_{1}}_{1} \\ {}^{u_{1}}_{2} \\ {}^{u_{2}}_{2} \end{bmatrix}$$

$$(130)$$

onde ${}_{0}^{t}\mathbf{B}_{L}$ é a matriz linear da relação entre deslocamentos e deformações. Já a matriz ${}_{0}^{t}\mathbf{B}_{NL}$, referente à parte não linear desta relação, pode ser obtida por (BATHE, 2014):

$${}_{0}^{t}\mathbf{B}_{NL} = \frac{2}{{}_{0L}} \mathbf{N}_{,\xi}$$
(131)

onde $\mathbf{N}_{,\xi}$ é uma matriz que contêm as derivadas das funções de forma, sendo:

$$\mathbf{N} = \begin{bmatrix} \frac{1}{2}(1-\xi) & 0 & \frac{1}{2}(1+\xi) & 0\\ 0 & \frac{1}{2}(1-\xi) & 0 & \frac{1}{2}(1+\xi) \end{bmatrix}$$
(132)

$$\mathbf{N}_{,\xi} = \begin{bmatrix} -\frac{1}{2} & 0 & \frac{1}{2} & 0\\ 0 & -\frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}$$
(133)

De acordo com as Equações (108), (109) e (110), e considerando que a lei constitutiva é:

$$\frac{\partial {}_{0}^{t} S_{11}}{\partial {}_{0}^{t} \epsilon_{11}} = {}_{0} C_{1111} = E$$
(134)

sendo *E* o módulo de elasticidade do cabo, são obtidos as matrizes e o vetor a seguir:

$${}_{0}^{t}\mathbf{K}_{L} = EA \frac{{}_{0}L^{2}}{{}_{0}L^{3}} \begin{bmatrix} \cos^{2}t\theta & \cos^{t}\theta \, \sin^{t}\theta & -\cos^{2}t\theta & -\cos^{t}\theta \, \sin^{t}\theta \\ & \sin^{2}t\theta & -\cos^{t}\theta \, \sin^{t}\theta & -\sin^{2}t\theta \\ & & \cos^{2}t\theta & \cos^{t}\theta \, \sin^{t}\theta \\ simétrico. & & & \sin^{2}t\theta \end{bmatrix}$$
(135)

$${}_{0}^{t}\mathbf{K}_{NL} = \frac{{}^{t}P}{{}^{t}L} \begin{bmatrix} 1 & 0 & -1 & 0\\ 0 & 1 & 0 & -1\\ -1 & 0 & 1 & 0\\ 0 & -1 & 0 & 1 \end{bmatrix}$$
(136)

$${}_{0}^{t}\mathbf{F} = {}^{t}P \begin{bmatrix} -\cos{}^{t}\theta \\ -\sin{}^{t}\theta \\ \cos{}^{t}\theta \\ \sin{}^{t}\theta \end{bmatrix}$$
(137)

Dado que a formulação das matrizes de rigidez e do vetor de carregamentos foi feita considerando uma linearização, dada pela Equação (100), pode-se utilizar um processo iterativo, como o Método de Newton-Raphson, que minimize os erros provindos de tal linearização.

3.5 MÉTODO DE NEWTON-RAPHSON

A equação de equilíbrio entre as forças externas e internas, no instante $t + \Delta t$, é:

$$^{t+\Delta t}\mathbf{R} = {}^{t+\Delta t}\mathbf{F} \tag{138}$$

sendo que os dois vetores são obtidos a partir do princípio dos deslocamentos virtuais e admitindo que $t+\Delta t$ **R** é independente das deformações e que $t+\Delta t$ **F** depende dos deslocamentos nodais, mas não de forma linear (BATHE, 2014).

Para satisfazer a Equação (138) se usa um processo iterativo. Existem diversos procedimentos para a solução de sistemas de equações não lineares, como, por exemplo, o método de Newton-Raphson, Newton-Raphson modificado, Quasi-Newton, método do comprimento do arco e método BFGS. No campo da mecânica dos sólidos, devido à grande diversidade de problemas, não se pode definir apenas um dos métodos citados como ideal, sendo necessário analisar qual método é mais adequado a cada situação (WRIGGERS, 2008).

Nesse contexto, vários trabalhos focados na análise não linear de cabos têm utilizado o método de Newton-Raphson com sucesso (OLIVEIRA, 2002; PEREIRA JÚNIOR, 2002; THAI; KIM, 2011; COSTA, 2014).

As informações iniciais, ou dados de entrada, do método de Newton-Raphson são os vetores ^{*t*}**U** e ^{*t*}**F**, lembrando que a configuração do sistema é conhecida nos instantes 0 e *t*. Admitindo os incrementos i = 1, 2, 3, ... define-se:

$$\Delta \mathbf{R}^{(i-1)} = {}^{t+\Delta t} \mathbf{R} - {}^{t+\Delta t} \mathbf{F}^{(i-1)}$$
(139)

onde $\Delta \mathbf{R}$ é o vetor que representa o "desbalanço" entre as forças nodais externas e internas. Para o caso inicial *i* = 1, tem-se:

$$\Delta \mathbf{R}^{(0)} = {}^{t+\Delta t} \mathbf{R} - {}^{t+\Delta t} \mathbf{F}^{(0)} = {}^{t+\Delta t} \mathbf{R} - {}^{t} \mathbf{F}$$
(140)

Com o vetor $\Delta \mathbf{R}$ obtém-se um incremento de deslocamentos $\Delta \mathbf{U}$ pela solução do problema:

$${}^{t+\Delta t}\mathbf{K}^{(i-1)}\,\Delta\mathbf{U}^{(i)} = \Delta\mathbf{R}^{(i-1)} \tag{141}$$

onde a matriz ${}^{t+\Delta t}\mathbf{K}^{(i-1)}$ inclui a parcela linear e não linear da matriz de rigidez, conforme Equações (135) e (136). Os deslocamentos são então atualizados por:

$${}^{t+\Delta t}\mathbf{U}^{(i)} = {}^{t+\Delta t}\mathbf{U}^{(i-1)} + \Delta\mathbf{U}^{(i)}$$
(142)

No passo inicial i = 1, a Equação (142) é dada por:

$${}^{t+\Delta t}\mathbf{U}^{(1)} = {}^{t+\Delta t}\mathbf{U}^{(0)} + \Delta\mathbf{U}^{(1)} = {}^{t}\mathbf{U} + \Delta\mathbf{U}^{(1)}$$
(143)

É necessário verificar se o processo iterativo converge para a solução. Bathe (2014) utiliza a seguinte expressão como critério de convergência:

$$\frac{\left\|\Delta \mathbf{U}^{(i)}\right\|_{2}}{\left\|^{t+\Delta t}\mathbf{U}^{(i)}\right\|_{2}} \le tol \tag{144}$$

Caso o quociente à esquerda da desigualdade seja menor que o dado valor da tolerância *tol*, considera-se que o processo convergiu, sendo os deslocamentos finais ${}^{t+\Delta t}\mathbf{U}^{(i)}$. Caso o critério da Equação (144) não seja atendido, atualiza-se o vetor das forças internas e, iniciando uma nova iteração, calcula-se o vetor $\Delta \mathbf{R}$ pela Equação (139). O método pode ser melhor entendido pelo fluxograma da Figura 11.

FIGURA 11 – MÉTODO DE NEWTON-RAPHSON

3.6 MÉTODO DOS ELEMENTOS FINITOS GENERALIZADOS

O Método dos Elemento Finitos Generalizados (MEFG), proposto por Melenk e Babuška (MELENK; BABUŠKA, 1996) e paralelamente por Duarte e Oden (DUARTE; ODEN, 1996), foi originado a partir do Método da Partição da Unidade. No MEFG, as aproximações não utilizam necessariamente funções polinomiais, e seus resultados são, em geral, mais precisos e demandam menor custo computacional, se comparado aos refinamentos do MEF.

As funções de forma do MEFG são construídas pelo produto entre a função partição da unidade e uma função de enriquecimento, não necessariamente polinomial (KIM; DUARTE; PROENÇA, 2009). Essas funções são então geralmente atribuídas aos nós do elemento, expressas em função das coordenadas globais do sistema (SCHWEBKE; HOLZER, 2002).

Uma das particularidades do MEFG é a utilização de informações previamente conhecidas sobre a solução da equação diferencial que descreve o sistema na construção das funções de enriquecimento, apresentando bons resultados locais e globais. O MEFG vêm sendo utilizado com sucesso em vários campos como na análise de trincas (SUKUMAR *et al.*, 1999; O'HARA; DUARTE; EASON, 2016) e na análise dinâmica de estruturas (ARNDT, 2009; TORII, 2012; PIEDADE NETO; PROENÇA, 2015; ARNDT; MACHADO; SCREMIN, 2016). A seguir é apresentada a base matemática do MEFG.

Considera-se um conjunto aberto $\Omega \subset \mathbb{R}^n$, conforme a Figura 12, e { Ω_i } as subcoberturas desse conjunto que, sobrepostas, cobrem o domínio Ω satisfazendo:

$$\exists M \in \mathbb{N} \mid \forall x \in \Omega \ card\{i \mid x \in \Omega_i\} \le M$$
(145)

onde *M* é uma constante que é maior ou igual ao número máximo de subcoberturas Ω_i que se sobrepõem em um ponto $x \in \Omega$ (MELENK; BABUŠKA, 1996).

FONTE: O autor (2021).

Na Figura 12, u é a função que se deseja aproximar e u_i são aproximações locais de u que pertencem à um espaço local $\chi_i(\Omega_i)$ definidas nas subcoberturas Ω_i (DUARTE; BABUŠKA; ODEN, 2000).

Considera-se também uma partição da unidade $\{\eta_i\}$ na cobertura $\{\Omega_i\}$ que satisfaz:

$$supp(\eta_i) = \{x \in \Omega | \eta_i(x) \neq 0\} \subset [\Omega_i]$$
(146)

$$\sum_{i} \eta_{i} \equiv 1 \ em \ \Omega \tag{147}$$

$$\|\eta_i\|_{L^{\infty}(\mathbb{R}^n)} \le C_{\infty} \tag{148}$$

$$\|\nabla \eta_i\|_{L^{\infty}(\mathbb{R}^n)} \le \frac{C_G}{di\hat{a}m \,\Omega_i} \tag{149}$$

A Equação (146) indica que o suporte da partição da unidade η_i (*supp*(η_i)) é um subconjunto do fechamento da subcobertura Ω_i e que as funções η_i podem assumir valores não nulos apenas nas coberturas que as contêm.

A Equação (147) demonstra que o somatório das partições da unidade η_i é unitário em todo o domínio Ω .

Na Equação (148) é tomada a norma $\|\eta_i\|_{L^{\infty}(\mathbb{R}^n)}$, sendo o resultado dessa norma menor que uma constante C_{∞} , o que indica que η_i é limitada.

Já a Equação (149) mostra que o gradiente de η_i é limitado, visto que C_G é uma constante.

Dadas as Equações (146) a (149), $\{\eta_i\}$ é chamada de partição da unidade (M, C_{∞}, C_G) subordinada à subcobertura $\{\Omega_i\}$ (MELENK; BABUŠKA; 1996).

Com base nas propriedades da partição da unidade apresentadas, é possível definir um espaço global de aproximação, denotado por S, com a finalidade de aproximar a função u, dado por:

$$S = \sum_{i} \eta_{i} S_{i} = \left\{ \sum_{i} \eta_{i} s_{i}^{j} | s_{i}^{j} \in S_{i} \right\} \subset H^{1}(\Omega)$$
(150)

onde S_i são funções contidas em um espaço de Hilbert $H^1(\Omega_i \cap \Omega)$. As funções contidas em S_i aproximam u localmente em cada subdomínio $\Omega_i \cap \Omega$. A função aproximada u_h é, então, dada por:

$$u_h(x) = \sum_i \sum_{s_i^j \in S_i} \eta_i s_i^j(x) a_{ij}$$
(151)

onde a_{ii} são os graus de liberdade. Em cada subcobertura pode-se tomar as normas:

$$\left\|u - s_i^j\right\|_{L^2(\Omega_i \cap \Omega)} \le \varepsilon_1(i) \tag{152}$$

$$\left\|\nabla(u-s_i^j)\right\|_{L^2(\Omega_i\cap\Omega)} \le \varepsilon_2(i) \tag{153}$$

e então a função aproximada u_h satisfaz as seguintes condições (MELENK; BABUŠKA; 1996):

$$\|u - u_h\|_{L^2(\Omega)} \le \sqrt{M} C_{\infty} \left(\sum_i \varepsilon_1^2(i)\right)^{\frac{1}{2}}$$
(154)

$$\|\nabla(u-u_h)\|_{L^2(\Omega)} \le \sqrt{2M} \left(\sum_i \left(\frac{C_G}{di\hat{a}m\,\Omega_i}\right)^{\frac{1}{2}} \varepsilon_1^2(i) + C_\infty^2 \varepsilon_2^2(i)\right)^{\frac{1}{2}}$$
(155)

Pelas Equações (154) e (155) pode-se afirmar que o espaço global *S* tem as propriedades de aproximação dos espaços S_i , isto é, a aproximação de u em Ω pelas funções do espaço *S* é tão boa quanto a aproximação de S_i em Ω_i .

Uma família de funções que atende às condições da partição da unidade é a família dos polinômios da Lagrange N_i^{m-1} , dados por:

$$N_{i}^{m-1} = \prod_{\substack{j=1\\j\neq i}}^{m} \frac{\xi - \xi_{j}}{\xi_{i} - \xi_{j}}$$
(156)

Um polinômio de Lagrange, gerado a partir de *m* pontos ou nós, é uma função de grau (m - 1) igual à unidade no nó *i* e igual à zero nos demais nós. Os polinômios de Lagrange lineares no domínio [-1,1] são:

$$N_1^1 = \frac{1-\xi}{2}, \quad N_2^1 = \frac{1+\xi}{2}$$
 (157)

e são mostrados na Figura 13.

Os polinômios da Equação (157) são usualmente utilizados como funções de forma em elementos de barra, e são utilizados neste trabalho no elemento reto de cabo.

Com o auxílio das funções partição da unidade, a resposta u_h^e , no domínio do elemento (-1,1), pode ser dividida em duas parcelas (ARNDT, 2009):

$$u_h^e(\xi) = u_{MEF}^e + u_{ENRIQ}^e \tag{158}$$

em que u_{MEF}^{e} é o campo de deslocamentos descrito pelo MEF convencional, relacionado aos graus de liberdade nodais, e u_{ENRIQ}^{e} é o campo de deslocamentos referente ao enriquecimento possibilitado pela partição da unidade e pelas funções enriquecedoras. Em termos gerais, a parcela u_{ENRIQ}^{e} se relaciona com graus de liberdade não nodais ou de campo a_{ij} na forma:

$$u_{ENRIQ}^{e} = \sum_{i=1}^{2} \eta_i \left(\sum_{j=1}^{n_l} \gamma_j \ a_{ij} \right)$$
(159)

onde γ_j são as funções enriquecedoras e n_l é o número de níveis de enriquecimento. No presente trabalho, foram consideradas diversas funções de enriquecimento, como os polinômios de Lobatto L_n , apresentados nas Equações (53), (54), (55), (56) e (57). Utilizando as funções lineares de Lagrange como partição da unidade e os polinômios de Lobatto como funções enriquecedoras, a Equação (159) resulta em:

$$u_{ENRIQ}^{e} = \sum_{i=1}^{2} N_{i}^{1} \left(\sum_{j=1}^{n_{l}} L_{j+1} \ a_{ij} \right)$$
(160)

Przybysz *et al*. (2019) propuseram funções trigonométricas hiperbólicas para o enriquecimento de elementos de cabo, na forma:

$$HY1_1 = -\cosh(\xi + 1) - \xi$$
 (161)

$$HY1_2 = -\cosh(\xi - 1) + \xi$$
 (162)

е

$$HY2_{1} = -\cosh(\xi k + k) + \xi^{2}$$
(163)

$$HY2_{2} = -\cosh(\xi k - k) + \xi^{2}$$
(164)

onde k = w/H, sendo *w* o peso próprio por unidade de comprimento do cabo e *H* a força horizontal no cabo. As Equações (161), (162), (163) e (164) são representadas graficamente na Figura 14 e Figura 15, respectivamente, com k = 0,5.

Para a obtenção da resposta enriquecida das funções de enriquecimento hiperbólicas, utiliza-se uma forma modificada a Equação (159):

$$u_{ENRIQ}^{e} = \sum_{i=1}^{2} \eta_i \left(\sum_{j=1}^{n_l} \gamma_{ij} \ a_{ij} \right)$$
(165)

visto que as funções das Equações (161), (162), (163) e (164) não são nulas nos dois nós.

FIGURA 14 – FUNÇÕES DE ENRIQUECIMENTO HY1

FONTE: Adaptado de PRZYBYSZ et al. (2019).

Quando são consideradas apenas as funções hiperbólicas para o enriquecimento e utilizando os polinômios de Lagrange N_i^1 como partição da unidade, a Equação (165) resulta em:

$$u_{ENRIQ}^{e} = \sum_{i=1}^{2} N_{i}^{1} \left(\sum_{j=1}^{n_{l}} HYj_{i} \ a_{ij} \right)$$
(166)

FONTE: Adaptado de PRZYBYSZ et al. (2019).

Também são consideradas funções de enriquecimento trigonométricas. Monteiro (2017) desenvolveu um procedimento sistemático para a construção de conjuntos de funções hierárquicas de continuidade C^m a partir de funções trigonométricas propostas por Li (2002). A robustez do método para conjuntos hierárquicos de continuidade C^1 pôde ser confirmada a partir da avaliação da carga de flambagem linear de uma viga axialmente carregada, sob cinco condições de apoio diferentes. No presente trabalho, foram utilizados os conjuntos hierárquicos de cossenos e senos de continuidade C^0 propostos por Monteiro (2017) como funções de enriquecimento.

As funções de enriquecimento em cossenos são obtidas de acordo com as seguintes equações (MONTEIRO, 2017):

$$Fc_1 = \frac{1}{4}(3\xi + 1)(\xi - 1) \tag{167}$$

$$Fc_2 = \frac{1}{4}(3\xi - 1)(\xi + 1) \tag{168}$$

$$Fc_i = \cos\left(\frac{\pi}{2}(i-3)(\xi+1)\right) - Fc_1 + (-1)^i Fc_2 \quad i = 3, 4, \dots$$
(169)

sendo que as funções utilizadas para enriquecimento do elemento neste trabalho foram Fc_3 , Fc_4 , Fc_5 e Fc_6 . Monteiro (2017) ainda recomenda a normalização das funções Fc_i dividindo as funções obtidas nas Equações (167), (168) e (169) por:

$$\|Fc_i\| = \sqrt{\int_{-1}^{1} Fc_i^2 d\xi}$$
(170)

para fins de estabilidade numérica. O gráfico das funções Fc_i , para $3 \le i \le 6$, considerando a normalização pela Equação (170), é mostrado na Figura 16.

As funções de senos são obtidas de forma mais direta por (MONTEIRO, 2017):

$$Fs_i = \operatorname{sen}\left(\frac{\pi}{2}(i-2)(\xi+1)\right) \quad i = 3, 4, \dots$$
 (171)

As funções de senos utilizadas para fins de enriquecimento neste trabalho foram Fs_3 , Fs_4 , Fs_5 e Fs_6 , mostradas na Figura 17.

FONTE: O autor (2021).

Para o conjunto das funções de enriquecimento em cossenos, e utilizando os polinômios de Lagrange como partição da unidade, a parcela enriquecida u_{ENRIQ}^{e} é:

$$u_{ENRIQ}^{e} = \sum_{i=1}^{2} N_{i}^{1} \left(\sum_{j=1}^{n_{l}} Fc_{j+2} \ a_{ij} \right)$$
(172)

e, para o conjunto de senos, é:

$$u_{ENRIQ}^{e} = \sum_{i=1}^{2} N_{i}^{1} \left(\sum_{j=1}^{n_{l}} Fs_{j+2} \ a_{ij} \right)$$
(173)

As funções até aqui apresentadas serão utilizadas como funções de enriquecimento do MEFG para análise estática linear de cabos. Os polinômios de Lobatto serão utilizados para o refinamento *p* do MEFH.

4 METODOLOGIA

A análise estática linear de cabos neste trabalho é feita por meio da programação, em linguagem Python, de um código computacional que recebe, como dados de entrada, o vão do cabo *L*, o desnível dos apoios *h*, a flecha *f*, uma estimativa para a tração horizontal H_0 , a tolerância ϵ_{tol} para verificação de convergência do processo iterativo, o número de nós $N_{nós}$, o vetor de carregamentos, as funções enriquecedoras e os níveis de enriquecimento. A integração das matrizes de rigidez é feita analiticamente e a integração do vetor de forças é feita utilizando a função *scipy.integrate.quad*, presente na biblioteca SciPy disponível no Python.

Na Figura 18 é mostrado um fluxograma do MEFG linear.

FIGURA 18 – FLUXOGRAMA DO MEFG LINEAR

FONTE: O autor (2021).

A aplicação do MEFG nessa análise será verificada por meio de comparação entre as respostas obtidas pelo próprio MEFG e por outros métodos, como o MEF convencional e o Método dos Elementos Finitos Hierárquico (MEFH). As respostas também serão comparadas, inicialmente, com os exemplos e soluções encontrados na literatura e apresentados no próximo capítulo.

As principais variáveis analisadas são a tração horizontal H, o comprimento do cabo S, as forças nos apoios e o ângulo formado entre o perfil do cabo e a horizontal em pontos de interesse, como nos apoios e nos locais onde são aplicados carregamentos concentrados. A eficiência computacional é estudada considerando o número de graus de liberdade N_{gl} , o número de condição da matriz de rigidez N_{cond} , o número de iterações necessárias para convergência e o tempo de execução do programa.

O número de condição indica as propriedades de condicionamento de um problema, isto é, o quanto pequenos erros e/ou perturbações nos dados de entrada influenciam os resultados e dados de saída. Um baixo número de condição indica que o problema é bem condicionado. Já um número de condição alto ocorre em problemas mal condicionados. Nesse trabalho é calculado o número de condição das matrizes de rigidez por meio da função *np.linalg.cond*, presente na biblioteca NumPy disponível no Python.

A análise estática não linear, também programada em Python, tem como dados de entrada o módulo de elasticidade *E*, a área de seção transversal *A*, a tolerância *tol* para verificação de convergência do método de Newton-Raphson, o vetor de carregamentos e as coordenadas dos nós dos elementos, ou seja, o perfil inicial do cabo calculado de acordo com a teoria analítica, e é feita com incrementos da carga aplicada. Os dados fornecidos permitem calcular as matrizes de rigidez tangente e iniciar o método de Newton-Raphson. Após a convergência do método, tem-se os deslocamentos e forças internas e, considerando-os como a nova configuração de referência, faz-se o incremento da carga, até que ela seja totalmente aplicada para que se obtenha a configuração final do cabo. O fluxograma do MEF não linear é mostrado na Figura 19.

O elemento utilizado na análise não linear considera os efeitos de grandes deslocamentos e do aumento de comprimento do cabo, de forma que será possível

verificar a influência da elasticidade sobre as variáveis estudadas ao comparar as soluções obtidas pelo MEFG e MEFH linear e o MEF não linear.

FONTE: O autor (2021).

5 SIMULAÇÕES NUMÉRICAS

A fim de avaliar o desempenho do Método dos Elementos Finitos Generalizados (MEFG), com as funções de enriquecimento indicadas no capítulo 3, na análise estática linear de cabos, são analisadas diferentes configurações de cabos, considerando carregamentos distribuídos ao longo do comprimento do cabo e ao longo da sua projeção horizontal, e cargas concentradas. Também é analisado o caso de cabo com apoios desnivelados. Os resultados obtidos são comparados com soluções analíticas lineares e com respostas não-lineares encontradas na literatura e obtidas através do MEF não linear descrito neste trabalho no capítulo 3.

A nomenclatura das análises é feita com base no método utilizado (prefixo) e nas funções empregadas para o refinamento *p* ou para o enriquecimento (sufixo). Os prefixos dos métodos empregados são indicados na Tabela 3.

Prefixo	Método
MEF	Método dos Elementos Finitos
MEFH	Método dos Elementos Finitos Hierárquico
MEFG	Método dos Elementos Finitos Generalizado
MEF-NL	Método dos Elementos Finitos Não Linear
	FONTE: O autor (2021).

TABELA 3 – PREFIXOS DAS ANÁLISES

Na Tabela 4 mostram-se as siglas utilizadas para identificar cada análise e as funções incluídas para obtenção do seu resultado.

TABELA 4 – SIGLAS DAS ANÁLISES

(Continua)

Sigla da análise		Funções incluídas no refinamento <i>p</i> ou enriquecimento													
	L ₂	L_3	L_4	L_5	L ₆	HY1	HY2	Fc ₃	Fc_4	Fc_5	Fc_6	Fs ₃	Fs_4	Fs_5	Fs ₆
MEFH L ₂	~														
MEFH L ₃	\checkmark	\checkmark													
$MEFH\ L_4$	\checkmark	\checkmark	\checkmark												
MEFH L ₅	\checkmark	\checkmark	\checkmark	~											
MEFH L ₆	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark										
MEFG L ₂	\checkmark														

Sigla da Análise	Funções incluídas no refinamento <i>p</i> ou enriquecimento														
	L_2	<i>L</i> ₃	L_4	L_5	L ₆	HY1	HY2	Fc_3	Fc ₄	Fc ₅	Fc ₆	Fs ₃	Fs_4	Fs_5	Fs ₆
MEFG L ₃	\checkmark	~													
MEFG L_4	\checkmark	~	\checkmark												
MEFG L ₅	\checkmark	~	~	~											
MEFG L ₆	\checkmark	~	\checkmark	~	\checkmark										
MEFG HY ₁						~									
MEFG HY ₂							~								
MEFG L_2 - HY_1	\checkmark					\checkmark									
MEFG L_2 - HY_2	\checkmark						~								
$MEFG\ HY_1\text{-}HY_2$						~	~								
MEFG Fc ₃								~							
MEFG Fc ₄								>	~						
MEFG Fc ₅								>	~	~					
MEFG Fc ₆								~	~	~	~				
MEFG Fs ₃												~			
MEFG Fs ₄												~	~		
MEFG Fs ₅												~	~	~	
MEFG Fs ₆												~	~	~	~

TABELA 4 – SIGLAS DAS ANÁLISES

(Conclusão)

Para todas as análises lineares, o valor da tolerância para o processo iterativo, conforme descrito em 3.2.1, é de $\epsilon_{tol} = 0,0001$.

5.1 CASO 1: CABO SOB A AÇÃO DE CARGAS CONCENTRADAS

Com o intuito de verificar os códigos computacionais implementados, analisase inicialmente um cabo simples, submetido apenas à carregamentos concentrados, mostrado na Figura 20. Esse cabo foi estudado considerando a análise não linear geométrica pelo MEF por Pereira Júnior (2002), e também por Przybysz *et al.* (2019) em uma análise linear pelo MEFG utilizando as funções de enriquecimento HY1.

O cabo tem vão L = 18 m e flecha f = 12 m. As cargas concentradas são de 4 kN, 15 kN e 3 kN, conforme Figura 20.

FIGURA 20 – CASO 1: CABO SOB AÇÃO DE CARGAS CONCENTRADAS

FONTE: O autor (2021).

O cabo mostrado na Figura 20 está submetido apenas a carregamentos concentrados, e, portanto, os trechos AC, CD, DE e EB são retilíneos. Dessa forma, espera-se que o enriquecimento do elemento não melhore a resposta em comparação com os resultados de MEF tradicional, visto que o MEF tradicional já consegue representar adequadamente os trechos retos do cabo. Entretanto, espera-se que o MEFH e o MEFG atinjam resultados tão bons quanto os do MEF no que diz respeito aos deslocamentos nodais e às demais variáveis analisadas.

Devido à aplicação das cargas concentradas, para as análises em MEF foram propostas duas malhas, uma de quatro e outra de dezoito elementos. Para as soluções do MEFH e MEFG sempre são usados 4 elementos, necessários para representar os apoios e pontos de aplicação das cargas concentradas.

Já para a análise não linear, foi necessário atribuir um valor de flecha inicial para o cabo anteriormente a aplicação das cargas concentradas, para definição da configuração do cabo no instante 0. Pereira Júnior (2002) considerou $f_{inicial} = 11$ m, para o mesmo exemplo de estudo. Já Costa (2014) adotou $f_{inicial} = 11,035$ m, de forma que a flecha final após a análise não linear não ultrapassasse f = 12 m. Neste trabalho, também se adotou o valor de $f_{inicial} = 11,035$ m. Também foi considerada área da seção transversal de A = 2,5 cm² e módulo de elasticidade E = 165 GPA, conforme utilizado pelos autores citados.

A solução analítica linear foi obtida a partir dos conceitos apresentados no capítulo 2.

Nesse caso, como se analisa um maior número de variáveis, optou-se por apresentar inicialmente os resultados dos esforços axiais em cada trecho do cabo e os ângulos apenas em figuras. Na Tabela 5 são mostrados os resultados das análises.

TABELA 5 – RESULTADOS DO CASO 1: CABO SOB AÇÃO DE CARGAS CONCENTRADAS (Continua)

				(-)
Solução	<i>H</i> (kN)	<i>S</i> (m)	N _{cond}	Iterações
Analítica, linear	6,33333	30,14470	-	-
MEF-NL	6,40911	30,24127	8,85E+05	-
(18 elementos)	(1,1965%)	(0,3204%)		
MEF-NL	6,40051	30,26272	9,89E+07	-
(180 elementos)	(1,0607%)	(0,3915%)		
MEF-NL	6,40043	30,26294	9,96E+09	-
(1800 elementos)	(1,0594%)	(0,3922%)		
	6,33333	30,14470	4,03E+00	7
MEF (4 elementos) MEF (18 elementos) MEFH L ₂	(0,000%)	(0,0000%)		
MEE (19 alamantas)	6,33333	30,14470	1,31E+02	7
MEF (18 elementos) MEFH L_2 MEFH L_3 MEFH L_4	(0,000%)	(0,000%)		
	6,33333	30,14470	5,63E+00	7
MEFH L_2	(0,000%)	(0,0000%)		
	6,33333	30,14470	5,63E+00	7
	(0,000%)	(0,000%)		
	6,33333	30,14470	5,63E+00	7
	(0,000%)	(0,000%)		
	6,33333	30,14470	5,63E+00	7
MEFIT L5	(0,000%)	(0,0000%)		
	6,33333	30,14470	5,63E+00	7
	(0,000%)	(0,0000%)		
MEEC I	6,33333	30,14470	Ncond Itera 470 - 127 $8,85E+05$ 4%) - 272 $9,89E+07$ 5%) - 294 $9,96E+09$ 2%) - 470 $4,03E+00$ 0%) - 470 $5,63E+00$ 0%) - 470 $8,74E+15$ 0%) - 470 $3,22E+16$ 0%) - 470 $1,33E+16$ 0%) -	7
	(0,000%)	N) S (m) N_{cond} Iter. 333 30,14470 - 311 30,24127 $8,85E+05$ 5%) (0,3204%) - 351 $30,26272$ $9,89E+07$ 17%) (0,3915%) - 333 $30,26294$ $9,96E+09$ 14%) (0,3922%) - 333 $30,14470$ $4,03E+00$ 10%) (0,0000%) - 333 $30,14470$ $5,63E+00$ 10%) (0,0000%) - 333 $30,14470$ $8,74E+15$ 0%) (0,0000%) -		
MEEC I	$ \begin{array}{c} (0,0000\%) & (0,0000\%) \\ (0,0000\%) & (0,0000\%) \\ \hline \\ (0,000\%) & (0,000\%) \\ \hline \\ \end{array} $	7		
	(0,000%)	(0,000%)		
MEEC I	6,33333	30,14470	7,71E+15	7
MEFG L4	(0,000%)	(0,0000%)		
MEEC I	6,33333	30,14470	3,22E+16	7
	(0,0000%)	(0,0000%)		
MEEGI	6,33333	30,14470	1,33E+16	7
	(0,000%)	(0,000%)		

			(0	Conclusão)
Solução	H (kN)	<i>S</i> (m)	N _{cond}	Iterações
	6,33333	30,14470	3,82E+01	7
MEFG HY ₁	(0,0000%)	(0,000%)		
	6,33333	30,14470	6,64E+04	7
MEFG L_2 - HI_1	(0,0000%)	(0,000%)		
	6,33333	30,14470	7,04E+00	7
MEFG FC3	(0,0000%)	(0,000%)		
	6,33333	30,14470	1,14E+04	7
MEFG FC_4	(0,0000%)	(0,000%)		
	6,33333	30,14470	1,66E+06	7
MEFG Fc_5	(0,0000%)	(0,000%)		
	6,33333	30,14470	1,41E+08	7
MEFGFC ₆	(0,0000%)	(0,000%)		
MEEC Ec	6,33333	30,14470	7,46E+00	7
	(0,0000%)	(0,000%)		
MEEC Fo	6,33333	30,14470	1,21E+03	7
MEFG 1'54	(0,0000%)	(0,000%)		
MEEC Fo	6,33333	30,14470	2,97E+04	7
MERG PS5	(0,0000%)	(0,000%)		
MEEC Es	6,33333	30,14470	1,09E+06	7
	(0,0000%)	(0,0000%)		
	FONTE: O a	utor (2021).		

TABELA 5 – RESULTADOS DO CASO 1: CABO SOB AÇÃO DE CARGAS CONCENTRADAS

Pela Tabela 5, houve concordância entre a solução analítica e as análises lineares, seja pelo MEFG, MEFH ou MEF. Nota-se, entretanto, que houve diferença em relação à análise não linear, com a MEF-NL (1800 elementos) apresentando variação de 1,0594% e 0,3922% comparada a solução analítica linear para $H \in S$, respectivamente.

Na Figura 21 é apresentado o tempo de execução do programa em comparação com o número de graus de liberdade em cada análise.

FIGURA 21 – CASO 1: COMPARAÇÃO ENTRE TEMPO DE EXECUÇÃO E NÚMERO DE GRAUS DE LIBERDADE

O maior tempo de execução foi do MEFG Fc_6 , de 1,76 segundos, e os

menores tempos foram os do MEF de 4 e 18 elementos, com 0,0008 e 0,0030 segundos, respectivamente. Na Figura 22 mostram-se os erros relativos das variáveis analisadas.

FIGURA 22 – CASO 1: COMPARAÇÃO ENTRE ERROS E NÚMERO DE GRAUS DE LIBERDADE

FONTE: O autor (2021).

Na Figura 22, *H* e *S* não foram representados pois todas as análises lineares apresentaram $\varepsilon = 0\%$, sendo H = 6,33333 kN e S = 30,14470 m. Já as variáveis que apresentaram maior erro foram aquelas relacionadas aos trechos *AC* e *CD* do cabo, conforme Figura 20. O maior erro foi de 0,0043% para T_{AC} , seguido de 0,0021% para θ_{AC} . Os erros de T_{CD} e θ_{CD} foram próximos um do outro, sendo 0,0005% e 0,0004%, respectivamente. Em relação aos trechos *DE* e *EB*, T_{DE} , θ_{DE} , T_{EB} e θ_{EB} apresentaram $\varepsilon \leq 0,0001\%$.

Como foi possível verificar pela Tabela 5 e pela Figura 22, não houve diferença significativa entre as análises lineares. Entretanto, houve variação quando considerada a não linearidade, conforme mostrado na Tabela 6.

Solução	T_{AC} (kN)	T_{CD} (kN)	T_{DE} (kN)	T_{EB} (kN)	$ heta_{AC}$ (°)	$ heta_{CD}$ (°)	$ heta_{DE}$ (°)	$ heta_{EB}$ (°)
Analítica	13,5682	10,2034	9,4399	11,8369	-62,1746	-51,6323	47,8625	57,6526
MEF-NL	14,1837	10,7681	9,0200	11,3332	-63,1366	-53,4736	44,7206	55,5619
(18 elementos)	(4,54%)	(5,53%)	(4,45%)	(4,25%)	(1,55%)	(3,57%)	(6,56%)	(3,63%)
MEF-NL	14,1833	10,7661	9,0111	11,3251	-63,1747	-53,5227	44,7416	55,5867
(180 elementos)	(4,53%)	(5,51%)	(4,54%)	(4,32%)	(1,61%)	(3,66%)	(6,52%)	(3,58%)
MEF-NL	14,1833	10,7661	9,0111	11,3251	-63,1751	-53,5231	44,7418	55,5869
(1800 elementos)	(4,53%)	(5,51%)	(4,54%)	(4,32%)	(1,61%)	(3,66%)	(6,52%)	(3,58%)
		F	ONTE: O	autor (202	1).			

TABELA 6 – ANÁLISE NÃO LINEAR: TRAÇÕES E ÂNGULOS

Todas as trações desenvolvidas no cabo, no caso da análise não linear, desviaram mais de 4,32%, de acordo com a Tabela 6. Houve variação significativa também nos ângulos, especialmente θ_{DE} , que chegou a 6,52%.

Em relação ao número de condição, os piores N_{cond} foram os das análises MEFG enriquecidas com Lobatto. Para um mesmo nível de enriquecimento, as matrizes do MEFG *Fc* se apresentaram pior condicionadas que as do MEFG *Fs*.

FIGURA 23 – CASO 1: NÚMERO DE CONDIÇÃO

FONTE: O autor (2021).

5.2 CASO 2: CABO SOB AÇÃO DO PESO PRÓPRIO

Na Figura 24 é mostrado um cabo suspenso sob ação do peso próprio w = 0,005 kN/m, vão L = 20 m e flecha f = 6 m. O cabo tem área da seção transversal $A = 0,5 \text{ cm}^2$ e módulo de elasticidade E = 165 GPa.

Esse cabo, apresentado por Hibbeler (2011), foi analisado considerando a análise não linear geométrica pelo MEF por Pereira Júnior (2002) e também por Przybysz *et al.* (2019) em uma análise linear pelo MEFG utilizando as funções de enriquecimento HY1, HY2 e L₂.

Os resultados são mostrados na Tabela 7 onde *H* é a força horizontal do cabo (constante), *S* é o comprimento do cabo, T_A é o valor da tração no apoio *A*, θ_{max} é o ângulo formado entre o cabo e a horizontal, conforme Figura 24, N_{gl} é o número de graus de liberdade após a imposição das condições de contorno e N_{cond} é o número de condição da matriz de rigidez na última iteração.

FIGURA 24 – CASO 2: CABO SOB AÇÃO DO PESO PRÓPRIO

FONTE: O autor (2021).

Foram modeladas malhas com 2 e 10 elementos para a análise linear apenas pelo MEF. Já para as soluções pelo MEFH e pelo MEFG, utilizou-se apenas um elemento.

Nas análises em MEF não linear (MEF-NL), o carregamento foi aplicado em 10 passos de carga.

As porcentagens abaixo dos valores mostrados na Tabela 7 indicam os erros relativos em relação à resposta analítica de Hibbeler (2011), calculados por:

$$\varepsilon = \left| \frac{A_{calculado} - A_{analítico}}{A_{analítico}} \right| \cdot 100\%$$
(174)

onde ε é o erro relativo e *A* é o valor de interesse, como a componente horizontal da tração *H*, o comprimento do cabo *S*, etc.

TABELA 7 – RESULTADOS DO CASO 2: CABO SOB AÇÃO DO PESO PRÓPRIO

(Continua)

							· · · · ·
Solução	<i>H</i> (N)	<i>S</i> (m)	T_A (N)	θ_{max} (°)	Ngl	N _{cond}	Iterações
Analítica, linear (Hibbeler, 2011)	45,944707	24,188203	75,944707	-52,772902		-	-
Não linear	45,94	24,1882	75,88	-52,74	-	-	-
(Pereira Júnior,							
2002)	(0,0102%)	(0,0000%)	(0.0852%)	(0,0623%)			
(1000 elementos)				(,			
MEF-NL	46,050662	24,154912	70,047263	-48,896390	18	6,71E+06	-
(10 elementos)	(0,2306%)	(0,1376%)	(7,7654%)	(7,3456%)			

(Continuação)

						-	
MEF-NL	45,944625	24,188036	75,293203	-52,395350	198	7,22E+08	-
(100 elementos)	(0,0002%)	(0,0007%)	(0,8579%)	(0,7154%)			
MEF-NL	45,943565	24,188367	75,878274	-52,735863	1998	7,27E+10	-
(1000 elementos)	(0,0025%)	(0,0007%)	(0,0875%)	(0,0702%)			
MEF (2	45,944706	23,323903	53,580494	-30,964149	1	1,00E+00	5
elementos)	(0,000%)	(3,5732%)	(29,4480%)	(41,3257%)			
MEF (10	45,944706	24,154860	69,879912	-48,891968	9	3,99E+01	5
elementos)	(0,000%)	(0,1379%)	(7,9858%)	(7,3540%)			
MEFH L ₂	46,653161	24,086943	72,870269	-50,191613	1	1,00E+00	6
	(1,5420%)	(0,4186%)	(4,0483%)	(4,8913%)			
	46,653161	24,086943	72,870269	-50,191613	2	1,00E+00	6
	(1,5420%)	(0,4186%)	(4,0483%)	(4,8913%)			
	45,937960	24,189581	75,875202	-52,739416	3	1,00E+00	5
$\begin{array}{c} {\sf MEF} (10\\ {\sf elementos}) \\ \\ {\sf MEFH} L_2 \\ \\ {\sf MEFH} L_3 \\ \\ {\sf MEFH} L_4 \\ \\ \\ {\sf MEFH} L_5 \\ \\ \\ {\sf MEFH} L_6 \\ \\ \\ {\sf MEFG} L_2 \\ \\ \\ {\sf MEFG} L_2 \\ \\ \\ {\sf MEFG} L_3 \\ \\ \\ {\sf MEFG} L_5 \\ \\ \\ {\sf MEFG} L_6 \\ \\ \\ {\sf MEFG} L_6 \\ \\ \end{array}$	(0,0147%)	(0,0057%)	(0,0915%)	(0,0635%)			
	45,937960	24,189581	75,875202	-52,739416	4	1,00E+00	5
	(0,0147%)	(0,0057%)	(0,0915%)	(0,0635%)			
MEFH L ₆	45,944741	24,188312	75,938481	-52,769301	5	1,00E+00	5
	(0,0001%)	(0,0004%)	(0,0082%)	(0,0068%)			
$MEFGL_2$	46,653161	24,086943	72,870269	-50,191613	2	1,67E+00	6
	(1,5420%)	(0,4186%)	(4,0483%)	(4,8913%)			
MEFG L ₃	45,937960	24,189581	75,875202	-52,739416	4	2,01E+15	5
	(0,0147%)	(0,0057%)	(0,0915%)	(0,0635%)			
	45,937960	24,189581	75,875202	-52,739416	6	2,34E+15	5
MEFG L_4	(0,0147%)	(0,0057%)	(0,0915%)	(0,0635%)			
MEFG L_3 MEFG L_4 MEFG L_5	45,944741	24,188312	75,938481	-52,769301	8	2,78E+16	5
MEFG L_5	(0,0001%)	(0,0004%)	(0,0082%)	(0,0068%)			
	45,944741	24,188036 75,293203 -52,395350 198 7,22E+08 (0,0007%) (0,8579%) (0,7154%)	5				
MEFG L_6	(0,0001%)	(0,0004%)	(0,0082%)	(0,0068%)			
	45,961746	24,185725	75,912237	-52,738122	2	9,55E+00	6
MEFG HY_1	(0,0371%)	(0,0102%)	(0,0428%)	(0,0659%)			
	46,653051	24,086959	72,870804	-50,192076	2	1,71E+00	6
MEFG HY_2	(1,5417%)	(0,4186%)	(4,0476%)	(4,8904%)			
	45,947780	24,187748	75,966879	-52,782696	4	1,66E+04	5
MEFG L_2 -HY ₁	(0,0067%)	(0,0019%)	(0,0292%)	(0,0186%)			
	45,936182	24,189767	75,883651	-52,745955	4	1,30E+12	7
$MEFGL_2\text{-}HY_2$	(0,0186%)	(0,0065%)	(0,0804%)	(0,0511%)			
	45,947780	24,187752	75,966914	-52,782716	4	1,36E+04	5
$MEFG HY_1 - HY_2$	(0,0067%)	(0,0019%)	(0,0292%)	(0,0186%)			
$\begin{array}{c} \text{MEFR} L_6 & (0,00019) \\ \\ \text{MEFG} L_2 & 46,6531 \\ (1,54209) \\ \\ \text{MEFG} L_3 & 45,9379 \\ (0,01479) \\ \\ \text{MEFG} L_4 & 45,9379 \\ (0,01479) \\ \\ \text{MEFG} L_4 & 45,9447 \\ (0,00019) \\ \\ \text{MEFG} L_5 & (0,00019) \\ \\ \text{MEFG} L_5 & 45,9447 \\ (0,00019) \\ \\ \text{MEFG} L_5 & 45,9447 \\ (0,00019) \\ \\ \text{MEFG} HY_1 & 45,9477 \\ (0,00679) \\ \\ \text{MEFG} L_2 - HY_1 & 45,9477 \\ (0,00679) \\ \\ \text{MEFG} L_2 - HY_2 & 45,93619 \\ (0,01869) \\ \\ \text{MEFG} HY_1 - HY_2 & 45,9477 \\ (0,00679) \\ \\ \text{MEFG} HY_1 - HY_2 & 45,9477 \\ (0,00679) \\ \\ \text{MEFG} HY_1 - HY_2 & 45,9477 \\ (0,00679) \\ \\ \text{MEFG} FC_3 & 46,65311 \\ (1,54209) \\ \end{array}$	46,653161	24,086943	72,870269	-50,191613	2	1,67E+00	6
MEFG FC3	(1,5420%)	(0,4186%)	(4,0483%)	(4,8913%)	2072 2 9,33E+00 2076 2 1,71E+00 4%) 2696 4 1,66E+04 5%) 5955 4 1,30E+12 1%) 2716 4 1,36E+04 5%) 613 2 1,67E+00 3%) 3% 3 1,67E+00		

TABELA 7 – RESULTADOS DO CASO 2: CABO SOB AÇÃO DO PESO PRÓPRIO

(Conciusao)

Solução	<i>H</i> (N)	<i>S</i> (m)	T_A (N)	θ_{max} (°)	Nal	Ncond	Iterações
	45,916611	24,193683	75,650792	-52,630361	4	2,86E+03	5
$MEFG FC_4$	(0,0612%)	(0,0227%)	(0,3870%)	(0,2701%)			
	45,946191	24,188033	75,915221	-52,754585	6	4,16E+05	5
MEFG <i>FC</i> 5	(0,0032%)	(0,0007%)	(0,0388%)	(0,0347%)			
	45,944581	24,188343	75,935907	-52,767977	8	3,52E+07	5
MEFG FC ₆	(0,0003%)	(0,0006%)	(0,0116%)	(0,0093%)			
MEFG Fs ₃	47,659228	23,889048	65,490524	-43,303815	2	1,87E+00	6
	(3,7317%)	(1,2368%)	(13,7655%)	(17,9431%)			
	45,659436	24,243551	72,074434	-50,690889	4	3,03E+02	5
MEFG FS4	(0,6209%)	(0,2288%)	(5,0962%)	(3,9452%)			
	45,983914	24,180770	75,169033	-52,284568	6	7,42E+03	5
MEFG FS5	(0,0853%)	(0,0307%)	(1,0214%)	(0,9254%)			
	45,938462	24,189524	75,756189	-52,670435	8	2,71E+05	5
	(0,0136%)	(0,0055%)	(0,2482%)	(0,1942%)			
		FON	TE: O autor (2	2021).			

De acordo com a Tabela 7, pode-se perceber que, para o caso analisado, onde o vão é de 20 metros e o cabo está sujeito apenas à ação do peso próprio, não houve um efeito considerável da não-linearidade, visto que as respostas obtidas por Pereira Junior (2002), pelo MEF não linear (1000 elementos) e pelas soluções mais enriquecidas do MEFG pouco se desviaram da solução analítica de referência. Na Tabela 8 são compilados os melhores resultados de cada tipo de análise, comparados à resposta analítica linear. Por exemplo, a melhor solução para o comprimento *S* obtida pelo MEFG linear foi a obtida pelo MEFG L_5 , com erro de 0,0004%, enquanto, em uma análise não linear, a tração T_A foi melhor aproximada pela malha de 1000 elementos.

				(Continua)
Solução	<i>H</i> (N)	<i>S</i> (m)	T_A (N)	θ_{max} (°)
Pereira Júnior (2002) (1000 elementos)	(0,0102%)	(0,0000%)	(0,0852%)	(0,0623%)
MEE pão lipoor	100 elementos	1000 elementos	1000 elementos	1000 elementos
MEF não línear	(0,0002%)	(0,0007%)	(0,0875%)	(0,0702%)

TABELA 8 - CASO 2: MELHORES SOLUÇÕES

Solução	<i>H</i> (N)	<i>S</i> (m)	T_A (N)	$ heta_{max}$ (°)
MEF linear	10 elementos	10 elementos	10 elementos	10 elementos
	(0,0000%)	(0,1379%)	(7,9858%)	(7,3540%)
MEEH linear	MEFH L_6	MEFH L_6	MEFH L_6	MEFH L_6
	(0,0001%)	(0,0004%)	(0,0082%)	(0,0068%)
MEEC linear	MEFG L_5	MEFG L_5	MEFG L_5	MEFG L ₅
MEFG IIIeai	(0,0001%)	(0,0004%)	(0,0082%)	(0,0068%)
	ΓC	NITE O outor (202	1)	

FONTE: O autor (2021).

Na Figura 25 são comparados os tempos de execução dos programas (MEF e MEFG lineares) com o número de graus de liberdade de cada modelo. Na Figura 26 são comparados os erros relativos obtidos em cada análise com o número de graus de liberdade.

FIGURA 25 – CASO 2: COMPARAÇÃO ENTRE TEMPO DE EXECUÇÃO E NÚMERO DE GRAUS DE LIBERDADE

FONTE: O autor (2021).

(Conclusão)

FIGURA 26 – CASO 2: COMPARAÇÃO ENTRE ERROS E NÚMERO DE GRAUS DE LIBERDADE

FONTE: O autor (2021).

De acordo com os valores da Tabela 7, Figura 25 e Figura 26, para a componente horizontal de tração *H*, o melhor resultado foi obtido pelo MEF (2 e 10 elementos), seguido do MEFH L_6 , MEFG L_6 , MEFG L_5 , MEF não linear (100 elementos) e MEFG F_{c6} , todos com erro $\varepsilon \leq 0,0003\%$. Dessa forma, a análise MEF (2 elementos) foi a que obteve a melhor resposta para *H* com o menor custo computacional. Destaca-se a rapidez de execução dos modelos MEF, tanto em 2 como em 10 elementos, sendo o tempo de execução do programa, para cada uma dessas configurações, de 0,00050 e 0,00176 segundos, respectivamente.

Entretanto, as malhas MEF apresentaram piores resultados para *S*, $T_A \in \theta_{max}$. Essas três variáveis são obtidas de acordo com os deslocamentos calculados, ou seja, de acordo com o perfil do cabo. Como as funções de interpolação para as análises em MEF são lineares, o perfil do cabo é formado por trechos retos, conforme Figura 27.

FIGURA 27 – PERFIL DO CABO (MEF COM 2 E 10 ELEMENTOS)

FONTE: O autor (2021).

Em relação ao comprimento do cabo *S*, as melhores soluções foram a de Pereira Junior (2002), com 1000 elementos, MEFH L_6 , MEFG L_5 , MEFG L_6 , MEFG F_{c5} e MEFG F_{c6} , sendo que todas apresentaram $\varepsilon \leq 0,0007\%$.

Para a tração no apoio A, o melhor resultado foi obtido pelos métodos MEFG F_{c5} e MEFG F_{c6} . Embora ambas tenham apresentado o mesmo valor para T_A , ressaltase o menor custo computacional da solução MEFG F_{c5} . O mesmo ocorre para o ângulo do cabo com a horizontal no apoio A, denotado por θ_{max} .

Dentre as variáveis analisadas, percebe-se que MEFG F_{c5} e MEFG F_{c6} apresentaram resultados satisfatórios em relação à solução analítica. Se por um lado MEFG F_{c5} apresenta menor custo computacional devido à dimensão da matriz de rigidez enriquecida e do vetor carregamento, essa solução apresentou o número de condição maior que MEFG F_{c6} . Por outro lado, ambas as soluções foram as que apresentaram maior tempo de execução.

No geral, as soluções MEFH L_6 e MEFG L_6 apresentaram resultados muito semelhantes, embora MEFH L_6 tenha a metade do número de graus de liberdade do

método MEFG L_6 , além de ter apresentado menor tempo de execução e menor número de condição, conforme Figura 28.

FIGURA 28 - CASO 2: NÚMERO DE CONDIÇÃO

FONTE: O autor (2021).

De acordo com a Figura 28, as análises com o maior número de condição foram as do MEFG enriquecidas com os polinômios de Lobatto, as quais apresentaram $N_{cond} > 1,00E+15$, com exceção da MEFG L_2 . Dentre as enriquecidas com funções hiperbólicas, o número de condição excedeu 1,66E+04 apenas no caso da MEFG L_2 - HY_2 . Já para as funções trigonométricas, o comportamento entre as funções de cossenos e senos foi similar, com as funções de cossenos apresentando, no geral, número de condição maior que as de senos, para um mesmo nível de enriquecimento.

5.3 CASO 3: CABO COM APOIOS DESNIVELADOS

Na Figura 29 é apresentado um cabo sujeito à ação do peso próprio com apoios desnivelados, também estudado por Przybysz *et al.* (2019). O peso do cabo é w = 0,25 kN/m, o vão é L = 80 m e o desnível entre os apoios é de h = 5 m. A flecha, considerada como a distância entre o ponto mais baixo do cabo e o apoio A, é f =15 m. O cabo tem área da seção transversal $A = 0,5 \text{ cm}^2$ e módulo de elasticidade E =165 GPa.

FIGURA 29 - CASO 3: CABO COM APOIOS DESNIVELADOS

FONTE: O autor (2021).

Os resultados analíticos e obtidos pelos métodos analisados são mostrados na Tabela 9. Nessa Tabela foram adicionadas colunas para T_B , o valor da tração no apoio B, e θ_A e θ_B , os ângulos formados entre o cabo e a horizontal nos apoios A e B, respectivamente. A solução analítica linear foi desenvolvida pelo autor utilizando os conceitos apresentados no capítulo 2, sendo feita a aproximação da 5^a casa decimal.

TABELA 9 - RESULTADOS DO CASO 3: CABO COM APOIOS DESNIVELADOS

(Continua)

								-
Solução	<i>H</i> (kN)	<i>S</i> (m)	T_A (kN)	T_B (kN)	$ heta_A$ (°)	$ heta_B$ (°)	N _{cond}	Ite.
Analítica, linear	16,66837	85,03326	20,41837	19,16837	-35,27974	29,59050	-	-
MEF-NL	16,35022	85,16725	19,47634	18,36402	-32,91351	27,08399	1,9E+04	-
(10 elementos)	(1,9087%)	(0,1576%)	(4,6136%)	(4,1962%)	(6,7071%)	(8,4707%)		
MEF-NL	16,34184	85,21223	20,07049	18,83727	-35,48947	29,82749	2,1E+06	-
(100 elementos)	(1,9590%)	(0,21048%)	(1,7037%)	(1,7273%)	(0,5945%)	(0,8009%)		

Solução	H (kN)	<i>S</i> (m)	T_A (kN)	T_B (kN)	θ_A (°)	θ_B (°)	N _{cond}	Ite.
MEF-NL	16,34176	85,21268	20,13442	18,88875	-35,74423	30,09922	2,1E+08	-
elementos)	(1,9595%)	(0,21101%)	(1,3906%)	(1,4588%)	(1,3166%)	(1,7192%)		
MEF (2	16,49602	83,95108	17,61776	17,00371	-20,55605	14,03624	1,0E+00	6
elementos)	(1,034%)	(1,273%)	(13,716%)	(11,293%)	(41,734%)	(52,565%)		
MEF (10	16,51469	85,06549	19,56469	18,53992	-32,42362	27,03057	4,0E+01	6
elementos)	(0,922%)	(0,038%)	(4,181%)	(3,279%)	(8,096%)	(8,651%)		
	16,74698	84,97739	20,26271	19,16251	-34,25987	29,07965	1,0E+00	6
MEFH L ₂	(0,472%)	(0,066%)	(0,762%)	(0,031%)	(2,891%)	(1,726%)		
	16,74698	84,97739	20,26271	19,16251	-34,25987	29,07965	1,0E+00	6
MEFH L ₃	(0,472%)	(0,066%)	(0,762%)	(0,031%)	(2,891%)	(1,726%)		
	16,65940	85,02425	20,32881	19,21136	-34,96556	29,86927	1,0E+00	6
MEFT L4	(0,054%)	(0,011%)	(0,439%)	(0,224%)	(0,891%)	(0,942%)		
	16,65940	85,02425	20,32881	19,21136	-34,96556	29,86927	1,0E+00	6
MEFH L ₅	(0,054%)	(0,011%)	(0,439%)	(0,224%)	(0,891%)	(0,942%)		
	16,65962	85,02412	20,32979	19,21223	-34,96840	29,87245	1,0E+00	6
MEFH L ₆	(0,052%)	(0,011%)	(0,434%)	(0,229%)	(0,883%)	(0,953%)		
	16,74698	84,97734	20,26267	19,16249	-34,25973	29,07950	1,7E+00	6
MEFG L_2	(0,472%)	(0,066%)	(0,763%)	(0,031%)	(2,891%)	(1,727%)		
	16,65940	85,02421	20,32879	19,21133	-34,96545	29,86915	2,0E+15	6
MEFG L_3	(0,054%)	(0,011%)	(0,439%)	(0,224%)	(0,891%)	(0,942%)		
	16,65940	85,02421	20,32879	19,21133	-34,96545	29,86915	2,2E+15	6
MEFG L_4	(0,054%)	(0,011%)	(0,439%)	(0,224%)	(0,891%)	(0,942%)		
	16,65962	85,02408	20,32977	19,21220	-34,96829	29,87233	2,0E+16	6
MEFG L_5	(0,052%)	(0,011%)	(0,434%)	(0,229%)	(0,883%)	(0,952%)		
	16,65962	85,02408	20,32977	19,21220	-34,96829	29,87233	3,7E+15	6
MEFG L_6	(0,052%)	(0,011%)	(0,434%)	(0,229%)	(0,883%)	(0,952%)		
MEFG	16,45441	85,12929	20,46515	19,31310	-36,48418	31,57213	9,6E+00	6
HY_1	(1,284%)	(0,113%)	(0,229%)	(0,755%)	(3,414%)	(6,697%)		
MEFG	16,74698	84,97734	20,26267	19,16249	-34,25973	29,07950	1,7E+00	6
HY_2	(0,472%)	(0,066%)	(0,763%)	(0,031%)	(2,891%)	(1,727%)		
MEFG L_2 -	16,66048	85,02357	20,33338	19,21542	-34,97863	29,88391	1,7E+04	6
HY_1	(0,047%)	(0,011%)	(0,416%)	(0,245%)	(0,853%)	(0,992%)		
MEFG L_2 -	16,74698	84,97734	20,26267	19,16249	-34,25973	29,07950	4,0E+10	6
HY_2	(0,472%)	(0,066%)	(0,763%)	(0,031%)	(2,891%)	(1,727%)		
MEFG	16,66048	85,02357	20,33338	19,21542	-34,97863	29,88391	1,4E+04	6
HY_1 - HY_2	(0,047%)	(0,011%)	(0,416%)	(0,245%)	(0,853%)	(0,992%)		
MEFG	16,74698	84,97734	20,26267	19,16249	-34,25973	29,07950	1,7E+00	6
Fc_3	(0,472%)	(0,066%)	(0,763%)	(0,031%)	(2,891%)	(1,727%)		
MEFG	16,65708	85,02560	20,31779	19,20156	-34,93247	29,83223	2,9E+03	6
Fc_4	(0,068%)	(0,009%)	(0,493%)	(0,173%)	(0,984%)	(0,817%)		

((Conc	lusão)	١
1		iusuoj	

Solução	<i>H</i> (kN)	<i>S</i> (m)	T_A (kN)	T_B (kN)	$ heta_A$ (°)	$ heta_B$ (°)	N _{cond}	Ite.
MEFG	16,65973	85,02401	20,32905	19,21159	-34,96490	29,86854	4,2E+05	6
Fc_5	(0,052%)	(0,011%)	(0,437%)	(0,226%)	(0,892%)	(0,940%)		
MEFG	16,65961	85,02408	20,32966	19,21212	-34,96791	29,87190	3,5E+07	6
Fc_6	(0,053%)	(0,011%)	(0,434%)	(0,228%)	(0,884%)	(0,951%)		
MEFG	17,18904	84,68179	19,61203	18,67270	-28,78249	22,99426	1,9E+00	7
Fs_3	(3,124%)	(0,413%)	(3,949%)	(2,586%)	(18,416%)	(22,292%)		
MEFG	16,58986	85,06350	19,88819	18,82411	-33,47188	28,19932	3,0E+02	6
Fs_4	(0,471%)	(0,036%)	(2,597%)	(1,796%)	(5,124%)	(4,701%)		
MEFG	16,66753	85,01930	20,25812	19,15078	-34,63815	29,50278	7,4E+03	6
Fs_5	(0,005%)	(0,016%)	(0,785%)	(0,092%)	(1,819%)	(0,296%)		
MEFG	16,65878	85,02458	20,31105	19,19586	-34,89688	29,79238	2,7E+05	6
Fs_6	(0,058%)	(0,010%)	(0,526%)	(0,143%)	(1,085%)	(0,682%)		
			FONTE: O	autor (2021)			

FONTE: O autor (2021).

Para resolução do processo iterativo, o primeiro valor de tração horizontal foi considerado H = 13,33 kN, que seria o valor de tração caso o cabo fosse nivelado e o carregamento fosse distribuído na horizontal, considerando f = 15 m e w = 0,25 kN/m.

Diferentemente do caso 1 estudado, para este caso foi perceptível uma maior influência da não linearidade nos resultados. Considerando o MEF-NL (1000 elementos), a força *H* apresentou uma diferença $\varepsilon = 1,9595\%$ em relação à resposta analítica linear. Já a diferença do comprimento do cabo foi de aproximadamente 18 cm. Além disso, nota-se que a flecha máxima obtida pela MEF-NL foi de 15,2328 m, ou seja, 0,2328 m a mais do que a flecha obtida nas análises lineares.

Na Figura 30 e Figura 31 são comparados os tempos de execução dos programas (MEF e MEFG lineares) e os erros com o número de graus de liberdade.

FIGURA 30 – CASO 3: COMPARAÇÃO ENTRE TEMPO DE EXECUÇÃO E NÚMERO DE GRAUS DE LIBERDADE

FIGURA 31 – CASO 3: COMPARAÇÃO ENTRE ERROS E NÚMERO DE GRAUS DE LIBERDADE

FONTE: O autor (2021).

Percebe-se, de acordo com a Figura 30, que os tempos de execução do programa para o cabo do caso 3 não foram muito diferentes do que aqueles do caso 2. Novamente, o MEF (2 elementos) e MEF (10 elementos) foram os mais rápidos, com tempos de execução de 0,00050 e 0,00179 segundos, respectivamente.

Em relação ao número de iterações necessárias para atingir convergência, praticamente todas as soluções precisaram de 6 iterações, com exceção do MEFG Fs_3 , que necessitou de 7 iterações.

O tempo de execução do MEFG Fs_3 não destoou do que era esperado, considerando o nível de enriquecimento e, consequentemente, o número de graus de liberdade. Entretanto, o MEFG Fs_3 foi a solução enriquecida que apresentou os maiores erros para as variáveis analisadas.

No caso da determinação da força horizontal no cabo H, o MEFG Fs_5 obteve o menor erro em comparação com a resposta analítica, que foi de 0,005%. Diferentemente do que aconteceu no caso 2, as soluções MEF não aproximaram Hmelhor que os modelos enriquecidos. Analisando a Figura 7, destaca-se também que não houve diminuição significativa do erro nos MEFG enriquecidos com os polinômios de Lobatto a partir do 3º grau, isto é, o MEFG L_3 apresentou resultados para H tão bons quanto o MEFG L_6 , embora seu tempo de execução seja 2,71 vezes menor. O mesmo ocorre entre os métodos MEFG Fc_4 , MEFG Fc_5 e MEFG Fc_6 . Para o MEFH, pode-se notar uma leve melhora entre o MEFH L_4 e o MEFH L_6 .

Já o comprimento do cabo foi melhor aproximado pelo MEFG Fc_4 e MEFG Fs_6 , com erros de 0,009% e 0,010%, respectivamente. Assim como no caso de H, não houve melhora significativa nas soluções enriquecidas com polinômios de Lobatto e com as funções cosseno Fc a partir do 2º nível de enriquecimento. Em relação aos resultados do MEFH, nota-se que o MEFH L_4 apresentou o mesmo comprimento de MEFH L_6 e de MEFG L_6 mesmo com menor número de graus de liberdade.

No caso das forças nos apoios, T_B foi melhor aproximada do que T_A , exceto na solução pelo MEFG HY_1 . Entretanto, este método apresentou o menor erro para T_A , de 0,229%. Em relação a T_B , MEFH L_2 , MEFH L_3 , MEFG L_2 , MEFG HY_2 , MEFG L_2 - HY_2 e MEFG Fc_3 obtiveram o mesmo erro de 0,031%, o menor para essa variável. Nota-se que esses métodos, com exceção de MEFH L_2 e MEFG L_2 - HY_2 , têm apenas um nível de enriquecimento, ou seja, dois graus de liberdade, enquanto MEFH L_2 tem apenas um grau de liberdade. Dessa forma, destaca-se que o aumento do nível de enriquecimento, dos graus de liberdade e, consequentemente, do número de condição das matrizes e do tempo de execução do programa não contribuiu para melhor aproximação de T_B .

As variáveis $\theta_A \in \theta_B$ foram as que mais se desviaram da solução analítica linear, sendo o menor erro de 0,853% para θ_A , obtido pelos métodos MEFG L_2 - HY_2 e MEFG HY_1 - HY_2 , e 0,296% para θ_B , obtido pelo MEFG Fs_5 , dentre as respostas lineares.

O número de condição das análises é mostrado na Figura 32.

FIGURA 32 - CASO 3: NÚMERO DE CONDIÇÃO

FONTE: O autor (2021).

Assim como no Caso 2, as análises com o maior número de condição foram as do MEFG enriquecidas com os polinômios de Lobatto, que apresentaram $N_{cond} >$ 1,00E+15, com exceção da MEFG L_2 . Dentre as enriquecidas com funções hiperbólicas, o número de condição excedeu 1,66E+04 apenas no caso da MEFG L_2 - HY_2 . Para as funções trigonométricas, as funções de cossenos apresentaram, no geral, número de condição maior que as de senos, para um mesmo nível de enriquecimento. Comparando os Casos 1 e 2, a maior diferença quanto ao número de condição foi notada nas análises do MEF-NL, sendo os menores N_{cond} obtidos no Caso 2. O mesmo cabo mostrado na Figura 29 foi analisado novamente considerando as mesmas funções de enriquecimento, mas com 10 elementos para as soluções enriquecidas. Os resultados numéricos obtidos são mostrados na Tabela 10.

TABELA 10 – RESULTADOS DO CASO 3: CABO COM APOIOS DESNIVELADOS – 10 ELEMENTOS (Continua)

Solução	<i>H</i> (kN)	<i>S</i> (m)	T_A (kN)	T_B (kN)	$ heta_A$ (°)	$ heta_B$ (°)	N _{cond}	Ite.
Analítica, linear	16,66837	85,03326	20,41837	19,16837	-35,27974	29,59050	-	-
MEF (10	16,51469	85,06554	19,56472	18,53994	-32,42374	27,03070	3,99E+01	6
elementos)	(0,922%)	(0,038%)	(4,181%)	(3,278%)	(8,095%)	(8,651%)		
	16,65962	85,02412	20,32375	19,20698	-34,94403	29,84516	3,99E+01	6
MEFH L ₂	(0,052%)	(0,011%)	(0,463%)	(0,201%)	(0,952%)	(0,861%)		
	16,65963	85,02411	20,33026	19,21263	-34,97022	29,87449	3,99E+01	6
MEFH L3	(0,052%)	(0,011%)	(0,432%)	(0,231%)	(0,877%)	(0,960%)		
	16,65962	85,02412	20,33041	19,21276	-34,97087	29,87522	3,99E+01	6
NIEFT L4	(0,052%)	(0,011%)	(0,431%)	(0,232%)	(0,876%)	(0,962%)		
	16,65962	85,02412	20,33041	19,21276	-34,97087	29,87522	3,99E+01	6
	(0,052%)	(0,011%)	(0,431%)	(0,232%)	(0,875%)	(0,962%)		
	16,65962	85,02412	20,33041	19,21276	-34,97087	29,87522	3,99E+01	6
MEFH L ₆	(0,052%)	(0,011%)	(0,431%)	(0,232%)	(0,875%)	(0,962%)		
	16,65963	85,02411	20,33026	19,21263	-34,97022	29,87449	1,67E+00	6
MEFG L ₂	(0,052%)	(0,011%)	(0,432%)	(0,231%)	(0,877%)	(0,960%)		
	16,65962	85,02412	20,33041	19,21276	-34,97087	29,87522	2,03E+15	6
MEFG L ₃	(0,052%)	(0,011%)	(0,431%)	(0,232%)	(0,876%)	(0,962%)		
	16,65962	85,02412	20,33041	19,21276	-34,97087	29,87522	2,19E+15	6
MEFG L ₄	(0,052%)	(0,011%)	(0,431%)	(0,232%)	(0,875%)	(0,962%)		
	16,65962	85,02412	20,33041	19,21276	-34,97087	29,87522	1,99E+16	6
MEFG L_5	(0,052%)	(0,011%)	(0,431%)	(0,232%)	(0,875%)	(0,962%)		
	16,65962	85,02412	20,33041	19,21276	-34,97087	29,87522	3,66E+15	6
MEFG L ₆	(0,052%)	(0,011%)	(0,431%)	(0,232%)	(0,875%)	(0,962%)		
MEFG	16,65650	85,02587	20,37636	19,25244	-35,17040	30,09868	9,55E+00	6
HY_1	(0,071%)	(0,009%)	(0,206%)	(0,439%)	(0,310%)	(1,717%)		
MEFG	16,65963	85,02411	20,33026	19,21263	-34,97022	29,87449	1,67E+00	6
HY_2	(0,052%)	(0,011%)	(0,432%)	(0,231%)	(0,877%)	(0,960%)		
MEFG L ₂ -	16,65962	85,02412	20,33041	19,21277	-34,97089	29,87524	1,66E+04	6
HY_1	(0,052%)	(0,011%)	(0,431%)	(0,232%)	(0,875%)	(0,962%)		

TABELA 10 - RESULTADOS DO CASO 3: CABO COM APOIOS DESNIVELADOS - 10 ELEMENTOS (Conclusão)

Solução	<i>H</i> (kN)	<i>S</i> (m)	T_A (kN)	T_B (kN)	$ heta_A$ (°)	$ heta_B$ (°)	N _{cond}	Ite.
MEFG L_2 -	16,65963	85,02411	20,33026	19,21263	-34,97022	29,87449	4,03E+10	6
HY_2	(0,052%)	(0,011%)	(0,432%)	(0,231%)	(0,877%)	(0,960%)		
MEFG	16,65962	85,02412	20,33041	19,21277	-34,97089	29,87524	1,35E+04	6
HY_1 - HY_2	(0,052%)	(0,011%)	(0,431%)	(0,232%)	(0,875%)	(0,962%)		
MEFG	16,65963	85,02411	20,33026	19,21263	-34,97022	29,87449	1,67E+00	6
Fc_3	(0,052%)	(0,011%)	(0,432%)	(0,231%)	(0,877%)	(0,960%)		
MEFG	16,65962	85,02412	20,33040	19,21275	-34,97083	29,87517	2,86E+03	6
Fc_4	(0,052%)	(0,011%)	(0,431%)	(0,232%)	(0,876%)	(0,962%)		
MEFG	16,65962	85,02412	20,33041	19,21276	-34,97087	29,87522	4,16E+05	6
Fc_5	(0,052%)	(0,011%)	(0,431%)	(0,232%)	(0,876%)	(0,962%)		
MEFG	16,65962	85,02412	20,33041	19,21276	-34,97087	29,87522	3,52E+07	6
Fc_6	(0,052%)	(0,011%)	(0,431%)	(0,232%)	(0,875%)	(0,962%)		
MEFG	16,66452	85,02055	20,20936	19,10828	-34,45262	29,29521	1,87E+00	7
Fs_3	(0,023%)	(0,015%)	(1,024%)	(0,313%)	(2,344%)	(0,998%)		
MEFG	16,65889	85,02452	20,29197	19,17931	-34,81902	29,70521	3,03E+02	6
Fs_4	(0,057%)	(0,010%)	(0,619%)	(0,057%)	(1,306%)	(0,388%)		
MEFG	16,65972	85,02406	20,32295	19,20629	-34,94034	29,84103	7,42E+03	6
Fs_5	(0,052%)	(0,011%)	(0,467%)	(0,198%)	(0,962%)	(0,847%)		
MEFG	16,65961	85,02412	20,32867	19,21125	-34,96394	29,86746	2,71E+05	6
Fs ₆	(0,053%)	(0,011%)	(0,439%)	(0,224%)	(0,895%)	(0,936%)		
			EONTE	$\cdot \cap \text{outor} / 2$	021)			

FONTE: O autor (2021).

Novamente, o valor inicial para o processo iterativo da tração horizontal foi considerado H = 13,33 kN. Na Figura 33 e Figura 34 são comparados os tempos de execução dos programas e os erros com o número de graus de liberdade.

FIGURA 33 – CASO 3: COMPARAÇÃO ENTRE TEMPO DE EXECUÇÃO E NÚMERO DE GRAUS DE LIBERDADE – 10 ELEMENTOS

FONTE: O autor (2021).

FIGURA 34 – CASO 3: COMPARAÇÃO ENTRE ERROS E NÚMERO DE GRAUS DE LIBERDADE – 10 ELEMENTOS

FONTE: O autor (2021).

De acordo com a Figura 33, o MEFG Fc_6 teve o maior tempo de execução, embora não possua o maior número de graus liberdade. Observa-se nas Tabelas 5 e 6 que o número de iterações para as análises com 1 e com 10 elementos foi o mesmo.

Para as variáveis analisadas na Figura 34, a resposta não melhorou significativamente para as soluções mais enriquecidas, de forma que a modelagem do cabo com apenas um elemento já forneceria a resposta mais precisa possível. Entretanto, o aumento do número de elementos foi útil para as análises "menos" enriquecidas (com menos níveis de enriquecimento), como o MEFG L_2 , MEFG HY_1 , MEFG HY_2 , MEFG HY_1-HY_2 e MEFG Fc_3 , sendo perceptível a melhoria da resposta comparada àquela obtida com um elemento apenas e como os modelos com maior grau de enriquecimento/número de graus de liberdade.

5.4 CASO 4: CABO SOB AÇÃO DE CARREGAMENTO DISTRIBUÍDO AO LONGO DO VÃO

Nesse caso é analisado um cabo nivelado submetido a um carregamento distribuído na horizontal (ao longo do vão), disponível em Karnovsky e Lebed (2010). O vão do cabo é L = 36 m e a flecha é f = 6 m. O carregamento é q = 2 kN/m, conforme Figura 35, e o peso próprio é desprezado. O cabo tem área da seção transversal A = 0.5 cm² e módulo de elasticidade E = 165 GPa.

FIGURA 35 – CASO 3: CABO SOB AÇÃO DE CARREGAMENTO DISTRIBUÍDO AO LONGO DO VÃO

FONTE: O autor (2021).

Na Tabela 11 mostram-se os resultados analíticos e obtidos pelos métodos numéricos analisados. Visto que nessa análise não há consideração do peso próprio do cabo, não foram consideradas as soluções que incluíam a função de enriquecimento HY_2 , pois a consideração do parâmetro k = 0, conforme Equação (163), implica em divisões por zero em elementos das matrizes de rigidez obtidas pela função HY_2 . A solução analítica linear foi obtida a partir dos conceitos apresentados no capítulo 2.

TABELA 11 – RESULTADOS DO CASO 4: CABO SOB AÇÃO DE CARREGAMENTO DISTRIBUÍDO AO LONGO DO VÃO

						(Continua)
Solução	H (kN)	<i>S</i> (m)	T_A (kN)	θ_{max} (°)	N _{cond}	Iterações
Analítica, linear	54,00000	38,51223	64,89992	-33,69007	-	-
MEF-NL	50,94052	38,77248	60,37133	-32,45782	6,38E+03	-
(10 elementos)	(5,666%)	(0,676%)	(6,978%)	(3,658%)		
MEF-NL	50,94925	38,79598	62,17746	-34,97354	6,63E+05	-
(100 elementos)	(5,650%)	(0,737%)	(4,195%)	(3,810%)		
MEF-NL	50,94934	38,79622	62,36381	-35,21741	6,66E+07	-
(1000 elementos)	(5,649%)	(0,737%)	(3,908%)	(4,534%)		
MEE (2 clomentee)	54,00000	37,94733	57,49021	-18,43495	1,00E+00	1
MEF (2 elementos)	(0,000%)	(1,467%)	(11,417%)	(45,281%)		
MEE (10 alamantas)	54,00000	38,49002	63,60402	-30,96376	3,99E+01	1
	(0,000%)	(0,058%)	(1,997%)	(8,092%)		
MEFH L ₂	54,00000	38,51223	65,54691	-33,68742	1,00E+00	1
	(0,000%)	(0,000%)	(0,997%)	(0,008%)		
	54,00000	38,51223	65,54691	-33,68742	1,00E+00	1
	(0,000%)	(0,000%)	(0,997%)	(0,008%)		
	54,00000	38,51223	65,54691	-33,68742	1,00E+00	1
	(0,000%)	(0,000%)	(0,997%)	(0,008%)		
	54,00000	38,51223	65,54691	-33,68742	1,00E+00	1
	(0,000%)	(0,000%)	(0,997%)	(0,008%)		
	54,00000	38,51223	65,54691	-33,68742	1,00E+00	1
	(0,000%)	(0,000%)	(0,997%)	(0,008%)		
MEEC I	54,00000	38,51223	65,54691	-33,68742	1,67E+00	1
MEFG L ₂	(0,000%)	(0,000%)	(0,997%)	(0,008%)		
MEEC I	54,00000	38,51223	65,54691	-33,68742	2,31E+15	1
MEFG L3	(0,000%)	(0,000%)	(0,997%)	(0,008%)		
MEEGI	54,00000	38,51223	65,54691	-33,68742	1,90E+15	1
	(0,000%)	(0,000%)	(0,997%)	(0,008%)		
MEEGI	54,00000	38,51223	65,54691	-33,68742	1,76E+16	1
MEFG L_5	(0,000%)	(0,000%)	(0,997%)	(0,008%)		

						()
Solução	H (kN)	<i>S</i> (m)	T_A (kN)	$ heta_{max}$ (°)	N _{cond}	Iterações
	54,00000	38,51223	65,54691	-33,68742	2,85E+15	1
MEFG L ₆	(0,000%)	(0,000%)	(0,997%)	(0,008%)		
	52,89539	38,59414	65,49864	-36,13985	9,55E+00	5
MEFG HY_1	(2,046%)	(0,213%)	(0,923%)	(7,272%)		
	54,00000	38,51223	65,54691	-33,68742	1,66E+04	1
MEFG L_2 - HY_1	(0,000%)	(0,000%)	(0,997%)	(0,008%)		
	54,00000	38,51223	65,54691	-33,68742	1,67E+00	1
MEFG FC3	(0,000%)	(0,000%)	(0,997%)	(0,008%)		
	54,00000	38,51223	65,54691	-33,68742	2,86E+03	1
MEFG FC_4	(0,000%)	(0,000%)	(0,997%)	(0,008%)		
	54,00000	38,51223	65,54691	-33,68742	4,16E+05	1
MEFG FC ₅	(0,000%)	(0,000%)	(0,997%)	(0,008%)		
	54,00000	38,51223	65,54691	-33,68742	3,52E+07	1
MEFG FC ₆	(0,000%)	(0,000%)	(0,997%)	(0,008%)		
	55,73065	38,35326	62,90812	-27,63683	1,87E+00	4
MEFG FS3	(3,205%)	(0,413%)	(3,069%)	(17,967%)		
	53,73539	38,53471	63,55345	-32,27285	3,03E+02	4
MEFG FS ₄	(0,490%)	(0,058%)	(2,075%)	(4,207%)		
	54,03538	38,50906	64,70084	-33,36778	7,42E+03	3
MEFG FS5	(0,066%)	(0,008%)	(0,307%)	(0,957%)		
	53,99445	38,51272	64,84122	-33,62104	2,71E+05	3
MEFG FS6	(0,010%)	(0,001%)	(0,090%)	(0,205%)		
		FONTE.	Q autor (202	1)		

TABELA 11 – RESULTADOS DO CASO 4: CABO SOB AÇÃO DE CARREGAMENTO DISTRIBUÍDO AO LONGO DO VÃO

Devido ao cabo estar submetido apenas ao carregamento distribuído na horizontal, a sua forma é a de uma parábola. Como a primeira tentativa no processo iterativo para força horizontal no cabo é aquela que se teria em um cabo de perfil parabólico, percebe-se na Tabela 11 que a grande maioria das análises foi feita em apenas uma iteração, sendo que o erro para a aproximação da força *H* para tais respostas foi de 0%.

Nesse caso também é perceptível a influência da não linearidade. A diferença entre as respostas linear e não linear, para *H*, foi de 5,649% para o MEF-NL (1000 elementos), e o comprimento do cabo, no caso não linear, foi 28,33 centímetros maior que a solução de referência. A flecha atingida pelo cabo foi de 6,34680 m. A força no apoio T_A e o ângulo θ_{max} também se desviaram significativamente da resposta linear, apresentando diferenças de 3,908% e 5,534%, respectivamente.

(Conclusão)

FONTE: O autor (2021).

Na Figura 36 mostram-se os tempos de execução do programa comparados ao número de graus de liberdade.

FIGURA 36 – CASO 4: COMPARAÇÃO ENTRE TEMPO DE EXECUÇÃO E NÚMERO DE GRAUS DE LIBERDADE

Os resultados apresentados na Figura 36 não foram muito diferentes daqueles dos outros casos estudados, sendo o maior tempo de execução o do MEFG Fc_6 . Novamente o tempo de execução do MEF foi bem inferior às demais análises enriquecidas.

Na Figura 37 estão os erros relativos das variáveis analisadas, também mostrados na Tabela 11. Com já foi observado, nota-se que grande parte das análises não mostra erro para *H* visto que a primeira aproximação de *H* para o processo iterativo coincide com a tração horizontal que atua no cabo. Entretanto, os métodos MEFG HY_1 , MEFG Fs_3 , MEFG Fs_4 , MEFG Fs_5 e MEFG Fs_6 não foram capazes de, através do processo iterativo utilizado, atingir a flecha do cabo de f = 6 m para a tração horizontal H = 54 kN.

As soluções dos métodos citados também apresentaram maiores erros para S, $T_A \in \theta_A$ quando comparadas às análises que incluíam enriquecimento com os polinômios de Lobatto ou com as funções cossenoidais Fc.

FONTE: O autor (2021).

FIGURA 37 – CASO 4: COMPARAÇÃO ENTRE ERROS E NÚMERO DE GRAUS DE LIBERDADE

FONTE: O autor (2021).

Como o cabo assume perfil parabólico devido ao carregamento aplicado nesse caso, as respostas de MEFH L_2 e MEFG L_2 atingiram os resultados mais precisos dentre aquelas refinadas ou enriquecidas com polinômios de Lobatto sem necessidade de novos refinamentos, pois, pela Figura 37, percebe-se que os métodos MEFH L_3 , MEFH L_4 , MEFH L_5 e MEFH L_6 e os métodos MEFG L_3 , MEFG L_4 , MEFG L_5 e MEFG L_6 não conseguiram reduzir os erros obtidos por esses dois métodos. O mesmo acontece para o MEFG L_2 - HY_1 e para os métodos MEFG Fc. Dessa forma, ressalta-se a eficiência das soluções MEFH L_2 , MEFG L_2 e MEFG Fc_3 que, com apenas um nível de enriquecimento, forneceram resultados substancialmente melhores para $S \in \theta_a$, em comparação ao MEF tradicional.

O número de condição de cada análise é mostrado Figura 38, onde percebese que não houve grande variação do número de condição das soluções refinadas e enriquecidas entre o caso 3 e os casos 1 e 2.

FIGURA 38 – CASO 4: NÚMERO DE CONDIÇÃO

5.5 CASO 5: CABO SOB AÇÃO DO PESO PRÓPRIO E CARGA CONCENTRADA

O cabo da Figura 39 foi estudado por Jayamaran e Knudson (1981), Tibert (1999) e, Thai e Kim (2011). Este cabo está submetido ao peso próprio de 46,12 kN/m e à carga concentrada de 35,586 kN, e possui área da seção transversal $A = 5,484 \text{ cm}^2$, módulo de elasticidade $E = 13100 \text{ kN/cm}^2$ e comprimento antes do carregamento S = 312,73 m.

w = 46,12 N/m *B* 35,586 kN 121,92 m

FIGURA 39 – CASO 5: CABO SOB A AÇÃO DO PESO PRÓPRIO E CARGA CONCENTRADA

FONTE: O autor (2021).

L = 304.8 m

Para a análise linear e inextensível, foi utilizado como dado de entrada nas análises a flecha f = 34,3181 m, no ponto de aplicação da carga concentrada. Essa flecha foi encontrada pelas equações de equilíbrio do cabo e por geometria, dado que o comprimento do cabo é conhecido e considerando apenas a carga concentrada, desprezando o peso próprio. Ressalta-se que, nas análises por todos os métodos numéricos para obtenção das variáveis estudadas, foi considerado também o peso próprio, sendo este desprezado apenas na obtenção da flecha como dado de entrada nas análises lineares.

Na análise não linear, o carregamento foi aplicado em passos de 10% do carregamento total, tanto para carga distribuída quanto concentrada, e a configuração inicial do cabo é a da Figura 39.

Na Tabela 12 são apresentados os deslocamentos vertical e horizontal do ponto de aplicação da carga de 35,586 kN, obtidos na análise não linear.

SoldçãoNão de ElementoselementosVertical (m)Horizontal (m)Jayaraman e Knudson (1981)Reto, elástico10-5,4715-0,8449Jayaraman e Knudson (1981)Catenária, elástico2-5,6260-0,8592Tibert (1999)Parábola, elástico5,6013-0,8662Tibert (1999)Catenária, elástico5,6257-0,8592Thai e Kim (2011)Catenária, elástico2-5,6266-0,8592MEF não linearReto, elástico10-5,6352-0,8597MEF não linearReto, elástico100-5,7876-0,8741MEF não linearReto, elástico1000-5,7891-0,8743	Solução	Tino do Flomonto	Número de	Desloo	Deslocamento	
Jayaraman e Knudson (1981)Reto, elástico10-5,4715-0,8449Jayaraman e Knudson (1981)Catenária, elástico2-5,6260-0,8592Tibert (1999)Parábola, elástico5,6013-0,8662Tibert (1999)Catenária, elástico5,6257-0,8592Thai e Kim (2011)Catenária, elástico2-5,626-0,859MEF não linearReto, elástico10-5,6352-0,8597MEF não linearReto, elástico100-5,7876-0,8741MEF não linearReto, elástico1000-5,7891-0,8743	Solução	ripo de Elemento	elementos	Vertical (m)	Horizontal (m)	
Knudson (1981) Itelo, elastico Itelo -5,4713 -0,8443 Jayaraman e Knudson (1981) Catenária, elástico 2 -5,6260 -0,8592 Tibert (1999) Parábola, elástico - -5,6013 -0,8662 Tibert (1999) Catenária, elástico - -5,6257 -0,8592 Tibert (1999) Catenária, elástico - -5,6257 -0,8592 Thai e Kim (2011) Catenária, elástico 2 -5,626 -0,859 MEF não linear Reto, elástico 10 -5,6352 -0,8597 MEF não linear Reto, elástico 100 -5,7876 -0,8741 MEF não linear Reto, elástico 1000 -5,7891 -0,8743	Jayaraman e	Peto elástico	10	5 1715	0.8440	
Jayaraman e Knudson (1981) Catenária, elástico 2 -5,6260 -0,8592 Tibert (1999) Parábola, elástico - -5,6013 -0,8662 Tibert (1999) Catenária, elástico - -5,6257 -0,8592 Tibert (1999) Catenária, elástico - -5,6267 -0,8592 Thai e Kim (2011) Catenária, elástico 2 -5,626 -0,859 MEF não linear Reto, elástico 10 -5,6352 -0,8597 MEF não linear Reto, elástico 100 -5,7876 -0,8741 MEF não linear Reto, elástico 1000 -5,7891 -0,8743	Knudson (1981)	Neio, elastico	10	-3,4713	-0,0449	
Knudson (1981) Catenaria, elastico 2 -5,0200 -0,0392 Tibert (1999) Parábola, elástico - -5,6013 -0,8662 Tibert (1999) Catenária, elástico - -5,6257 -0,8592 Thai e Kim (2011) Catenária, elástico 2 -5,626 -0,859 MEF não linear Reto, elástico 10 -5,6352 -0,8597 MEF não linear Reto, elástico 100 -5,7876 -0,8741 MEF não linear Reto, elástico 1000 -5,7891 -0,8743	Jayaraman e	Catenária elástico	2	5 6260	0 8502	
Tibert (1999) Parábola, elástico - -5,6013 -0,8662 Tibert (1999) Catenária, elástico - -5,6257 -0,8592 Thai e Kim (2011) Catenária, elástico 2 -5,626 -0,859 MEF não linear Reto, elástico 10 -5,6352 -0,8597 MEF não linear Reto, elástico 100 -5,7876 -0,8741 MEF não linear Reto, elástico 1000 -5,7891 -0,8743	Knudson (1981)	Catenana, elastico	2	-3,0200	-0,0392	
Tibert (1999) Catenária, elástico - -5,6257 -0,8592 Thai e Kim (2011) Catenária, elástico 2 -5,626 -0,859 MEF não linear Reto, elástico 10 -5,6352 -0,8597 MEF não linear Reto, elástico 100 -5,7876 -0,8741 MEF não linear Reto, elástico 1000 -5,7891 -0,8743	Tibert (1999)	Parábola, elástico	-	-5,6013	-0,8662	
Thai e Kim (2011) Catenária, elástico 2 -5,626 -0,859 MEF não linear Reto, elástico 10 -5,6352 -0,8597 MEF não linear Reto, elástico 100 -5,7876 -0,8741 MEF não linear Reto, elástico 1000 -5,7891 -0,8743	Tibert (1999)	Catenária, elástico	-	-5,6257	-0,8592	
MEF não linear Reto, elástico 10 -5,6352 -0,8597 MEF não linear Reto, elástico 100 -5,7876 -0,8741 MEF não linear Reto, elástico 1000 -5,7891 -0,8743	Thai e Kim (2011)	Catenária, elástico	2	-5,626	-0,859	
MEF não linear Reto, elástico 100 -5,7876 -0,8741 MEF não linear Reto, elástico 1000 -5,7891 -0,8743	MEF não linear	Reto, elástico	10	-5,6352	-0,8597	
MEF não linear Reto, elástico 1000 -5,7891 -0,8743	MEF não linear	Reto, elástico	100	-5,7876	-0,8741	
	MEF não linear	Reto, elástico	1000	-5,7891	-0,8743	

TABELA 12 – CASO 5: DESLOCAMENTOS EM ANÁLISES NÃO-LINEARES

FONTE: O autor (2021).

Pela Tabela 12, observa-se que a solução do MEF não linear apresentado no presente trabalho com 10 elementos foi muito semelhante à solução dos demais pesquisadores utilizando número de graus de liberdade entre 2 e 10, especialmente se comparada aos elementos baseados nas equações da catenária. Entretanto, o

aumento do número de elementos no MEF não linear resultou em deslocamentos maiores, tanto na vertical quanto na horizontal.

A solução linear, para o mesmo problema, é mostrada na Tabela 13. A resposta de referência considerada para cálculo das diferenças percentuais foi a do MEF não linear de 1000 elementos.

TABELA 13 – RESULTADOS DO CASO 5: CABO SOB A AÇÃO DO PESO PRÓPRIO E CARGA CONCENTRADA

	\sim		``
- (Con	ntini	1a)
	001		JUJ

								-
Solução	H (kN)	<i>S</i> (m)	T_A (kN)	T_B (kN)	$ heta_A$ (°)	$ heta_B$ (°)	N _{cond}	Ite.
MEF-NL (1000 elementos)	89,02541	313,17931	93,53503	91,53886	-17,86410	13,45763	3,31E+08	
MEF-NL	89,42018	313,10364	93,68623	91,75417	-17,35700	12,95088	3,19E+04	
elementos)	(0,443%)	(0,024%)	(0,162%)	(0,235%)	(2,839%)	(3,765%)		
MEF-NL	89,02929	313,17856	93,51784	91,52680	-17,82362	13,41558	3,30E+06	
(100 elementos)	(0,004%)	(0,000%)	(0,018%)	(0,013%)	(0,227%)	(0,312%)		
MFF (2	90,84467	312,72998	94,37494	92,43033	-15,72087	10,62816	1,00E+00	11
elementos)	(2,044%)	(0,143%)	(0,898%)	(0,974%)	(11,997%)	(21,025 %)		
MEF (10	90,84467	312,80699	94,96884	93,14338	-16,94726	12,75561	3,99E+01	11
elementos)	(2,044%)	(0,119%)	(1,533%)	(1,753%)	(5,132%)	(5,217%)		
меен І	90,84467	312,80981	95,17610	93,30081	-17,35203	13,17586	1,50E+00	11
	(2,044%)	(0,118%)	(1,755%)	(1,925%)	(2,867%)	(2,093%)		
	90,84467	312,80981	95,17650	93,30127	-17,35280	13,17707	1,50E+00	11
MEFH L_3	(2,044%)	(0,118%)	(1,755%)	(1,925%)	(2,862%)	(2,084%)		
меец І	90,84467	312,80981	95,17655	93,30141	-17,35291	13,17743	1,50E+00	11
wi⊏r⊓ <i>L</i> 4	(2,044%)	(0,118%)	(1,755%)	(1,925%)	(2,862%)	(2,082%)		
	90,84467	312,80981	95,17655	93,30141	-17,35291	13,17743	1,50E+00	11
	(2,044%)	(0,118%)	(1,755%)	(1,925%)	(2,862%)	(2,082%)		
меец І	90,84467	312,80981	95,17655	93,30141	-17,35291	13,17743	1,50E+00	11
	(2,044%)	(0,118%)	(1,755%)	(1,925%)	(2,862%)	(2,082%)		
	90,84467	312,80981	95,17650	93,30127	-17,35281	13,17707	4,17E+00	11
WEFG L2	(2,044%)	(0,118%)	(1,755%)	(1,925%)	(2,862%)	(2,085%)		
	90,84467	312,80981	95,17656	93,30141	-17,35291	13,17743	2,97E+15	11
NIEFG L3	(2,044%)	(0,118%)	(1,755%)	(1,925%)	(2,862%)	(2,082%)		
	90,84467	312,80981	95,17656	93,30141	-17,35291	13,17743	3,46E+15	11
WEFG L4	(2,044%)	(0,118%)	(1,755%)	(1,925%)	(2,862%)	(2,082%)		
	90,84467	312,80981	95,17656	93,30141	-17,35291	13,17743	2,33E+16	11
NEFG L5	(2,044%)	(0,118%)	(1,755%)	(1,925%)	(2,862%)	(2,082%)		
	90,84467	312,80981	95,17656	93,30141	-17,35291	13,17743	4,06E+15	11
NIEFG L6	(2,044%)	(0,118%)	(1,755%)	(1,925%)	(2,862%)	(2,082%)		

(Conclusão) 1,43E+01 312,80962 95,23810 93,37212 -17,47102 13,36148 11 MEFG 90,84467 HY_1 (2,044%) (0,714%)(0,118%) (1,821%) (2,003%) (2,200%) -17,35280 2,50E+00 MEFG 90,84467 312,80981 95,17650 93,30127 13,17706 11 HY_2 (2,044%) (0,118%) (1,755%)(1,925%) (2,862%) (2,085%)90,84467 312,80981 95,17656 93,30141 -17,35291 13,17744 2,49E+04 11 MEFG L_2 - HY_1 (2,044%) (0,118%) (1,755%)(1,925%)(2,862%) (2,082%)MEFG L_2 -90,84467 312,80981 95,17650 93,30127 -17,35281 13,17707 2,92E+06 11 HY_2 (2,044%) (0, 118%)(1,755%)(1,925%)(2,862%)(2,085%)MEFG 90,84467 312,80981 95,17666 93,30153 -17,35311 13,17775 2,02E+04 11 HY_1 - HY_2 (2,044%) (0, 118%)(1,755%)(1,926%) (2,860%)(2,080%)MEFG -17,35281 2,50E+00 11 90,84467 312,80981 95,17650 93,30127 13,17707 Fc_3 (2,044%) (0,118%) (1,755%)(1,925%)(2,862%) (2,085%)MEFG 90,84467 312,80981 95,17655 93,30140 -17,35290 13,17741 4,28E+03 11 Fc_4 (2,044%) (0,118%) (1,755%) (1,925%) (2,862%) (2,082%)-17,35291 MEFG 90,84467 312,80981 95,17656 93,30141 13,17743 6,23E+05 11 FC_5 (2,044%) (0,118%) (1,755%)(1,925%) (2,862%) (2,082%)-17,35291 90,84467 312,80981 95,17656 93,30141 13,17743 5,28E+07 11 MEFG Fc_6 (2,044%) (0,118%) (1,755%)(1,925%) (2,862%) (2,082%)2,80E+00 MEFG 90,84467 312,80866 95,01886 93,12231 -17,04597 12,69821 11 Fs_3 (2,044%) (0,118%) (1,586%)(1,730%) (5,643%)(4,580%) 4,55E+02 MEFG 90,84467 312,80975 95,12857 93,24655 -17,26018 13,03268 11 Fs_4 (2,044%) (0,118%) (1,704%) (1,866%) (3,381%) (3, 158%)90,84467 312,80981 95,16700 93,29045 -17,33448 13,14866 1,11E+04 MEFG 11 Fs_5 (2,044%) (0,118%) (1,745%)(1,914%) (2,965%) (2,296%)MEFG 90,84467 312,80981 95,17436 93,29890 -17,34868 13,17084 4,07E+05 11 Fs_6 (2.044%)(0, 118%)(1,753%)(1,923%)(2,885%)(2, 131%)

TABELA 13 – RESULTADOS DO CASO 5: CABO SOB A AÇÃO DO PESO PRÓPRIO E CARGA CONCENTRADA

FONTE: O autor (2021).

De acordo com a Tabela 13, todos as soluções lineares necessitaram de 11 iterações para atender o critério de convergência. Em relação ao tempo de execução, este se manteve em linha com o que era esperado, de acordo com os casos anteriores, como se verifica na Figura 40. Observam-se tempos maiores em razão do maior número de iterações necessárias para se atingir a convergência.

FIGURA 40 – CASO 5: COMPARAÇÃO ENTRE TEMPO DE EXECUÇÃO E NÚMERO DE GRAUS DE LIBERDADE

Novamente, a análise com maior tempo de execução foi a do MEFG Fc_6 , com 0,9364 segundos de duração, e as mais rápidas as de MEF com 2 e 10 elementos, com 0,0005 e 0,0024 segundos, respectivamente. Os números de condição são mostrados na Figura 41.

FIGURA 41 - CASO 5: NÚMERO DE CONDIÇÃO

FONTE: O autor (2021).

Pode-se verificar que, para cada análise, o número de condição não destoou dos demais casos estudados. Entretanto, nota-se que a análise MEFG L_2 - HY_2 mostrou-se melhor condicionada que a MEFG Fc_6 , o que não ocorreu nos casos 1 e 2.

Na Figura 42 mostram-se as diferenças percentuais entre as análises lineares e a não linear de 1000 elementos. Com exceção do comprimento do cabo S, que apresentou, em geral, diferença de 0,118%, todas as outras variáveis mostraram diferença, na maioria das análises, entre 1,9 e 2,9%.

FIGURA 42 – CASO 5: COMPARAÇÃO ENTRE ERROS E NÚMERO DE GRAUS DE LIBERDADE

FONTE: O autor (2021).

De acordo com a Tabela 13 e com a Figura 42, praticamente todas as análises refinadas e enriquecidas apresentaram resultados semelhantes entre si e, dessa forma, obtiveram desvio também semelhante em relação à análise não linear, com exceção da MEFG HY_1 , que obteve melhores valores para os ângulos θ_a e θ_b , e das

MEFG Fs_3 e Fs_4 , cujos valores para θ_a e θ_b apresentaram maior erro se comparados àqueles das demais soluções lineares.

Parte das diferenças entre a análise não linear e linear deve-se ao fato de que, na análise não linear, há o efeito da elasticidade do cabo e de grandes deslocamentos. Ainda, a flecha não linear obtida, sob o ponto de aplicação da força concentrada, foi de 35,0651 m (1000 elementos), enquanto, no caso linear, o valor utilizado para convergência do processo iterativo foi de 34,3181 m.

Há também outra questão a ser analisada: o elemento linear utilizado para o enriquecimento possui graus de liberdade apenas na direção do carregamento vertical, conforme Figura 6, enquanto o não linear os possui nas duas direções. Dessa forma, verifica-se na análise não linear que o ponto sob a carga concentrada se desloca também na horizontal, e este deslocamento não é possível de se obter com o elemento linear utilizado.

6 CONCLUSÕES

Neste trabalho foi estudada a análise linear estática de cabos inextensíveis através de um elemento linear de dois nós do MEF, através do MEFH e também de diferentes formulações do MEFG. Uma formulação do MEF não linear para a análise de cabos também foi apresentada. Estes métodos foram aplicados em 5 diferentes casos de cabos com variados carregamentos para verificação do seu desempenho e comportamento numérico.

A análise linear do problema de cabos pelas formulações do MEFG aqui estudadas apresentou bons resultados quando comparados às soluções analíticas lineares e às soluções em MEF e MEFH. Em termos dos valores encontrados para as variáveis estudadas, praticamente todas as soluções enriquecidas do MEFG superaram o MEF, sendo que muitas apresentavam menor número de graus de liberdade que a malha do MEF de 10 elementos, especialmente nos casos em que o cabo pôde ser resolvido com apenas um elemento enriquecido. Entretanto, todas as análises MEF foram mais rápidas que as do MEFG, e em geral apresentaram menor número de condição para a matriz de rigidez.

Já em relação ao MEFH, especialmente nos Casos 2 e 3 foi possível perceber que os resultados do MEFH e do MEFG enriquecido com funções de Lobatto foram semelhantes. Entretanto, é interessante comparar as análises em relação ao número de graus de liberdade. Na Tabela 14 é apresentada a relação das soluções equivalentes, isto é, soluções que obtiveram resultados numéricos muito próximos.

ME	FH	MEFG equivalente		
Solução	GDL	Solução	GDL	
L ₂	1	L ₂	2	
L ₃	2	L ₂	2	
L_4	3	L_3	4	
L_4	3	L_4	6	
L_5	4	L_3	4	
L_5	4	L_4	6	
L ₆	5	L_5	8	
L ₆ 5		L_6	10	
	FONTE O	1 (0001)		

TABELA 14 – SOLUÇÕES EQUIVALENTES: CASOS 2 E 3

FONTE: O autor (2021).

Pela Tabela 14 conclui-se que o MEFH obteve resultados equivalentes ao MEFG enriquecido com polinômios de Lobatto, sempre com número igual ou menor de graus de liberdade, o que implicou na mesma qualidade dos resultados, mas menor tempo de execução, por parte do MEFH. Entretanto, o MEFG se destaca pela facilidade, por meio das funções de enriquecimento, de se obter campos de deslocamentos não necessariamente polinomiais, que também obtiveram bons resultados, especialmente quando utilizada a função cossenoidal Fc_6 . Nos Casos 1, 4 e 5, os resultados do MEFH L_2 e MEFG L_2 foram equivalentes e melhores que os do MEF tradicional, mas não houve melhora nas respostas com o aumento do nível de refinamento ou enriquecimento.

Pode-se dizer que, dentre as formulações do MEFG apresentadas, destacaram-se a MEFG L_5 , MEFG L_6 e MEFG Fc_6 , pois apresentaram bons resultados em todas as análises independentemente do tipo do carregamento, sendo esses resultados pelo menos iguais ou melhores que os das demais análises. Dentre essas soluções, o tempo de execução da MEFG Fc_6 sempre foi maior do que o da MEFG L_6 que, por sua vez, sempre foi maior que o da MEFG L_5 . Por outro lado, a matriz de rigidez da MEFG L_5 foi pior condicionada em todas as análises, seguida da MEFG L_6 , sendo a melhor condicionada a da MEFG Fc_6 .

Foi possível verificar, também, que em certos casos houve maior diferença entre as soluções lineares e a não linear, em especial no Caso 3, onde o carregamento aplicado no cabo pode ser considerado "alto" se comparado aos carregamentos do peso próprio dos casos anteriores. Outro ponto a ser analisado é que os efeitos de elasticidade no cabo foram melhor evidenciados em um cabo com grande vão, de tal forma que, quanto maior o vão do cabo, para uma mesma rigidez, mais se espera divergência entre os valores de análises inextensíveis e extensíveis. Uma questão ainda a ser pontuada é a formulação dos elementos pois, enquanto o elemento não linear possui graus de liberdade nas duas direções do plano, o elemento linear possui apenas na direção do catregamento, de forma que não é possível identificar os deslocamentos horizontais do cabo, especialmente em pontos de aplicação de cargas distribuídas.

6.1 SUGESTÕES DE CONTINUIDADE

Futuros trabalhos que englobem o tema apresentado poderiam abordar:
- A aplicação do MEFG na análise dinâmica de cabos;
- A aplicação do MEFG na análise não linear estática e dinâmica de cabos;
- O estudo de outro método iterativo para obtenção da força *H* na análise linear;
- O estudo de outras funções de enriquecimento e de outros refinos *p*.
- A adição de graus de liberdade no elemento de cabo usado na análise linear.
- O estudo de cabos pelo Método dos Elementos Finitos Posicional e pelo Método dos Elementos Finitos Generalizados Estável

REFERÊNCIAS

ARNDT, M. **O Método dos Elementos Finitos Generalizados aplicado à análise de vibrações livres de estruturas reticuladas**. 261f. Tese (Doutorado em Métodos Numéricos em Engenharia) – Universidade Federal do Paraná, Curitiba. 2009.

ARNDT, M.; MACHADO, R. D.; SCREMIN, A. Accurate assessment of natural frequencies for uniform and non-uniform Euler-Bernoulli beams and frames by adaptive generalized finite element method. **Engineering Computations.** p. 1586-1609. jan. 2016.

BATHE, K.-J. Finite Element Procedures. New Jersey: Prentice Hall, 2014.

CÔRREA, R. M.; ARNDT, M.; MACHADO, R. D. Free in-plane vibration analysis of curved beams by the generalized/extended finite element method. **European Journal of Mechanics / A solids**, v. 88, 2021

COSTA, R. S. Formulação para a análise avançada de sistemas estruturais formados por cabos e treliças espaciais visando à aplicação em torres estaiadas para linhas de transmissão. 264p. Tese (Doutorado em Engenharia de Estruturas) – Programa de Pós-Graduação em Engenharia de Estruturas, Universidade Federal de Minas Gerais, 2014.

DEBELLA, L. C.; CITTADIN, C. C.; ARNDT, M.; MACHADO, R. D. Transient dynamic analysis of bars and trusses by the adaptative generalized finite element method. **Engineering Computations,** v. 37, n.3, p. 789-821, 2020.

DESAI, Y. M.; POPPLEWELL, N.; SHAH, A. H.; BURAGOHAIN, D. N. Geometric nonlinear static analysis of cable structures. **Computers & Structures**, v. 29, n. 6, p. 1001-1009, 1988.

DOLBOW, J.; MOËS, N.; BELYTSCHKO, T. Discontinuous enrichment in finite elements with a partition of unity method. **Finite Elements in Analysis and Design.** p. 235-260, 2000.

DUARTE, C. A.; BABUŠKA, I; ODEN, J. T. Generalized finite element methods for three-dimensional structural mechanics problems. **Computers & Structures**, v. 77, p. 215-232, 2000.

DUARTE, C. A.; ODEN, J. T. An *h-p* adaptative method using clouds. **Computer Methods in Applied Mechanics and Engineering**, v. 139, p. 237-262, 1996.

DUARTE, C. A.; HAMZEH, O. N.; LISKZA, T. J. TWORZYDLO, W. W. A generalized finite element method for the simulation of three-dimensional dynamic crack propagation. **Computer Methods in Applied Mechanics and Engineering,** v. 190, p. 2227-2262, 2000.

FEI, H.; ZICHEN, D.; DANHUI, D. A novel method for dynamic analysis of complex multi-segment cable systems. **Mechanical Systems and Signal Processing**, v. 142, p. 1-19, 2020.

FRIES, T.-P.; BELYTSCHKO, T. The extended/generalized finite element method: An overview of the method and its application. **International Journal for Numerical Methods in Engineering**, v.84, p. 253-304, 2010.

HAGEDORN, P.; SCHÄFER, B. On non-linear free vibrations of elastic cable. **International Journal of Non-Linear Mechanics**, v. 15, p. 333-340, 1980. HIBBELER, R. C. **Estática: Mecânica para Engenharia**, 12 ed. São Paulo: Pearson, 2011.

IRVINE, H. M.; CAUGHEY, T. K. The linear theory of free vibrations of a suspended cable. **Proceedings of the Royal Society**, v. 341, p.299-315, 1974.

IRVINE, M. Cable Structures. Massachusetts: 1981.

JAYARAMAN, H. B.; KNUDSON W. C. A curved element for the analysis of cable structures. **Computers & Structures**, v. 14, p. 325-333, 1981.

KARNOVSKY, I. A.; LEBED, O. Advanced Methods of Structural Analysis. Springer: 2010.

KAROUMI, R. Some modelling aspects in the nonlinear finite element analysis of cable supported bridges. **Computers and Structures**, v.71, p. 397-412, 1999.

KIM, D. J.; DUARTE, C. A.; PROENÇA, S. P. Generalized Finite Element Method with global-local enrichments for nonlinear fracture analysis. **Brazilian Society of Mechanical Sciences and Engineering**, 2009.

LAI, M.; KREMPL, E.; RUBEN, D. Introduction to continuum mechanics. Oxford: Elsevier. 2010.

LI, W. L. Comparison of Fourier sine and cosine expansions for beams with arbitrary boundary conditions. **Journal of Sound and Vibration**, v. 255, p. 185-194.

MELENK, J.M.; BABUŠKA, I. The Partition of Unity Finite Element Method: Basic Theory and Applications. **Seminar für Angewandte Mathematik.** Zürich, p. 1-31. jan. 1996.

MONTEIRO, F. A. C. **Construção sistemática de conjuntos de funções hierárquicas C^m segundo a teoria da série de Fourier**. 113f. Tese (Doutorado em Engenharia de Infraestrutura Aeronáutica) – Instituto Tecnológico de Aeronáutica, São José dos Campos. 2017.

MOËS, N.; DOLBOW, J.; BELYTSCHKO, T. A finite element method for crack growth without remeshing. **International Journal for Numerical Methods in Engineering**, v.46, p. 131-150, 1999.

O'HARA, P.; DUARTE, C. A.; EASON, T. A two-scale generalized finite element method for interaction and coalescence of multiple crack surfaces. **Engineering Fracture Mechanics**, v. 163, p.274-302, 2016.

OLIVEIRA, P. A. **Análise estática não-linear de cabos suspensos utilizando o Método dos Elementos Finitos**. 93p. Dissertação (Mestrado em Métodos Numéricos em Engenharia) – Universidade Federal do Paraná, Curitiba, 2002.

PEREIRA JÚNIOR, E. J. P. **Uma formulação consistente para análise não-linear de estruturas de cabos suspensos**. 131p. Dissertação (Mestrado em Engenharia de Estruturas) – Departamento de Engenharia de Estruturas, Universidade Federal de Minas Gerais, Belo Horizonte, 2002.

PEYROT, A. H.; GOULOIS, A. M. Analysis of cable structures. **Computers & Structures**, v. 10, p. 805-813, 1979.

PIEDADE NETO, D.; PROENÇA, S. P. B. Generalized Finite Element Method in linear and nonlinear structural dynamic analyses. **Engineering Computations**, v. 33, n. 3, p.806-830, ago. 2015.

PROENÇA, S. P. B; TORRES, I. F. R. Generalized finite element method for nonlinear three-dimensional analysis of solids. **International Journal of Computational Methods**, v. 5, n. 1, p.37-62, ago. 2007.

PRZYBYSZ, J. C.; MACHADO, R. D.; WEINHARDT, P. O.; ARNDT, M. Static analysis of inextensible suspended cables by the GFEM. In: **XL CILAMCE Ibero-Latin american congress on computational methods in engineering**, 2019.

REN, W.-X.; PENG, X.-L. Baseline finite element modeling of a large span cablestayed bridge through field ambient vibration tests. **Computers & Structures**. v. 83, p. 536-550, 2005.

SCHWEBKE, K.G.; HOLZER, S.M. Some Remarks on Generalized Finite Element Methods (GFEM) in Solid Mechanics. **Fifth World Congress on Computational Mechanics**, Viena, 2002.

SHANG, H. Y.; MACHADO, R. D., ABDALLA FILHO, J. E. Dynamic analysis of Euler-Bernoulli beam problems using the Generalized Finite Element Method. **Computers and Structures**, v. 173, p.109-122, set. 2016.

SIMPSON, A. Determination of the inplane natural frequencies of multispan transmission lines by a transfer-matrix method. **Proc. IEE**, v. 113, n. 5, p. 870-878, mai. 1966.

SORIANO, H. J. **Elementos Finitos – Formulação e Aplicação na Estática e Dinâmica das Estruturas**. Rio de Janeiro: Editora Ciência Moderna Ltda., 2009. 411 p.

ŠOLÍN, P.; SEGETH, K.; DOLEŽEL, I. **Higher-order finite element methods.** CRC, 2003.

STROUBOULIS, T.; COPPS, K.; BABUŠKA, I. The generalized finite element method: an example of its implementation and illustration of its performance. **International Journal for Numerical Methods In Engineering.** p. 1401-1417, 1999.

SUKUMAR, N.; MOËS, N.; MORAN, B.; BELYTSCHKO, T. Extended finite element method for three-dimensional crack modelling. **International Journal for Numerical Methods in Engineering.** p. 1549-1570. nov. 1999.

TAKAHASHI, K.; KONISHI, Y. Non-linear vibrations of cables in three dimensions, Part 1: Non-linear free vibration. **Journal of Sound and Vibration**, v. 188, p. 69-84, 1987.

THAI, H.-T.; KIM, S.-E. Nonlinear static and dynamic analysis of cable structures. **Finite Elements in Analysis and Design**, v. 47, p. 237-246, 2011.

THAI, S; KIM, N.; LEE, J. Free vibration analysis of cable structures using isogeometric approach. **International Journey of Computational Methods**, v. 14, n. 3, p. 1-26, 2017.

TIBERT, G. **Numerical analyses of cable roof structures**. 179p. Tese – Royal Institute of Technology, Stockholm, 1999.

TORII, A. J. **Análise dinâmica de estruturas com o Método dos Elementos Finitos Generalizado**. 223p. Tese (Doutorado em Métodos Numéricos em Engenharia) – Universidade Federal do Paraná, Curitiba. 2012.

TORII, A. J.; MACHADO, R. D.; ARNDT, M. GFEM for modal analysis of 2D wave equation. **Engineering Computations, v. 32, n. 6**, p. 1779-1801. fev. 2015.

WOOD, R. D.; ZIENKIEWICZ, O. C. Geometrically nonlinear finite element analysis of beams, frames, arches and axisymmetric shells. **Computers & Structures**, v. 7, p. 725-735, 1977.

WRIGGERS, P. Nonlinear finite element methods. Berlin: Springer, 2008.

ZIENKIEWICZ, O. C.; TAYLOR, R. L.; ZHU, J. Z. The Finite Element Method: Its Basis and Fundamentals. Elsevier, 2005.

ZHU, W.; GE, Y.; FANG, G.; CAO, J. A novel shape finding method for the main cable of suspension bridge using Nonlinear Finite Element Method approach. **Applied Sciences**, v. 11, n. 10, 2021.