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RESUMO 
 

O ininterrupto desenvolvimento de novas tecnologias e ferramentas para o controle e 
simulação de processos, aliado à constante busca por modelos matemáticos mais 
precisos e representativos da realidade, tem possibilitado uma aproximação entre 
teoria e prática inédita na operação de cadeias de suprimentos. Planejamentos táticos 
e operacionais de alta acurácia são essenciais para determinados tipos de operações, 
como por exemplo em empresas de entrega de bens perecíveis e de distribuição de 
combustíveis. Além da preocupação com o controle eficiente de seus estoques e de 
suas frotas veiculares, seus clientes devem ser atendidos dentro de intervalos de 
tempo determinados, de modo a atingir níveis de serviço estabelecidos e até mesmo 
garantir a viabilidade de seus produtos. Mesmo com os avanços expressivos na área 
da modelagem de sistemas de roteamento de veículos, alguns desafios na resolução 
destes problemas ainda persistem. Este trabalho propõe um modelo matemático de 
Programação Linear Inteira Mista (PLIM) para o Problema de Roteamento de Estoque 
com Janelas de Tempo (Inventory-Routing Problem with Time-Windows - IRPTW). Um 
modelo exato é elaborado, sendo testado seu desempenho computacional sob o 
auxílio de dois conjuntos de desigualdades válidas desenvolvidas para o Problema de 
Roteamento de Estoque (Inventory-Routing Problem - IRP), variadas técnicas de pré-
processamento, heurísticas de melhoria de solução, e um algoritmo de Local 
branching. Uma configuração utilizando desigualdades válidas referentes a limites 
melhorados proporciona os melhores resultados dentre todas as avaliadas. Esta 
configuração é usada como base para o algoritmo de Local Branching, que apresenta 
modificações específicas para a exploração agressiva e rápida de vizinhanças 
reduzidas do espaço de busca do problema. Os resultados obtidos são comparados 
com um grupo de instâncias desenvolvido para o problema, apresentando ganhos 
consistentes quando comparado aos resultados existentes. Diversas novas melhores 
soluções são encontradas para o conjunto avaliado e estabelecem-se limites 
superiores e inferiores (gaps) para diversas outras instâncias. Este trabalho, até onde 
sabemos, é o primeiro a integrar todas essas ferramentas de otimização para a 
resolução do IRPTW, e é o primeiro a comparar resultados com um conjunto de 
instâncias exclusivamente desenvolvido para o IRPTW, ao mesmo tempo que 
expande este grupo com instâncias ainda mais complexas. A estratégia focada em 
exploração parcial de vizinhanças do Local Branching também é uma contribuição, 
podendo ser ainda mais aprofundada e melhorada em trabalhos futuros.   

 
Palavras-chave: Roteamento de estoque. Roteamento de veículos. Janelas de tempo. 

Local branching. 
  



ABSTRACT 
 

The continuous development of new technologies and tools for better process control 
and simulation, combined with the strive for better and more representative 
mathematical models, has allowed supply chain models to reach levels of accuracy 
never seen. Tactical and operational planning are essential to the operation of many 
logistic chains, such as perishable products delivery and fuel distribution. Not only 
these companies have to efficiently manage their inventories and vehicle fleets to 
achieve predetermined levels of service, they must also fulfill their customers’ needs 
in restricted time-windows and guarantee their product’s viability during the entire 
delivery process. Even though many improvements were made in the field of vehicle 
routing, some challenges remain. This dissertation proposes a mixed-integer 
programming (MIP) model for the Inventory-Routing Problem with Time-Windows 
(IRPTW). An exact model is proposed and has its performance, alongside two groups 
of valid inequalities developed for the Inventory-Routing Problem (IRP), different pre-
processing techniques, solution improvement heuristics, and a Local Branching 
algorithm, analyzed. A configuration with inventory control valid inequalities presented 
the best results between all analyzed configurations. This configuration is used as a 
basis for the Local Branching algorithm, which is specifically adapted to explore 
reduced neighborhoods of the problem’s search space quickly and aggressively. The 
model is tested using a benchmark instance set and is shown to be superior in 
comparison to the existing results. Several new best-known solutions are determined 
for the instance set, just as new upper and lower bounds (gaps) are determined for 
several other instances. The developments presented here are, as far as we know, the 
first ones to integrate all these tools under one optimization framework for the IRPTW. 
This dissertation is also the first one to compare results with a benchmark instance set 
developed specifically for the problem, while also expanding said instance set. The 
partial neighborhood exploration used by the Local Branching algorithm is also a 
contribution to the literature since it enables a quick and efficient exploration of the 
method’s tree. This integration of optimization tools can be worked on future papers, 
having its approach refined to provide even better results. 

 
Keywords: Inventory-routing. Vehicle-routing. Time-windows. Local branching 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



SUMMARY 
 

1 INITIAL REMARKS........................................................................................................... 12 

1.1 MOTIVATION .................................................................................................................. 19 

1.2 OBJECTIVES .................................................................................................................. 20 

1.2.1 Main objective .............................................................................................................. 20 

1.2.2 Specific objectives ...................................................................................................... 20 

1.3 LIMITATIONS.................................................................................................................. 21 

1.4 STRUCTURE .................................................................................................................. 21 

2 METHODOLOGY .............................................................................................................. 22 

2.1 ABSTRACT ..................................................................................................................... 22 

2.2 INTRODUCTION ............................................................................................................ 22 

2.3 LITERATURE REVIEW ................................................................................................. 24 

2.3.1 Inventory-routing problem with time windows ........................................................ 24 

2.3.2 Local branching ........................................................................................................... 25 

2.4 PROBLEM DESCRIPTION........................................................................................... 25 

2.5 MATHEMATICAL MODEL ............................................................................................ 26 

2.5.1 Mixed-integer linear programming formulation....................................................... 27 

2.5.2 Symmetry breaking and valid inequalities............................................................... 29 

2.6 SOLUTION ALGORITHM ............................................................................................. 33 

2.6.1 Initial Solution Heuristic (ISH) ................................................................................... 34 

2.6.2 Local branching ........................................................................................................... 34 

2.6.3 Solution improvement algorithm ............................................................................... 38 

2.6.4 Solution framework ..................................................................................................... 39 

2.7 COMPUTATIONAL EXPERIMENTS .......................................................................... 40 

2.7.1 Test Instances ............................................................................................................. 40 

2.7.2 Results and analysis................................................................................................... 41 

2.7.2.1 Original model with TWT/AR................................................................................. 41 

2.7.2.2 Enhanced model with valid inequalities .............................................................. 43 

2.7.2.3 Local branching algorithm ..................................................................................... 45 

2.8 CONCLUSION ................................................................................................................ 50 

2.9 DATA AVAILABILITY STATEMENT ........................................................................... 51 

2.10 ACKNOWLEDGEMENTS ........................................................................................... 51 

2.11 REFERENCES ............................................................................................................. 51 



2.12 APPENDIX A. RESULTS ............................................................................................ 55 

3 FINAL REMARKS ............................................................................................................. 57 

3.1 SUGGESTIONS FOR FUTURE RESEARCH ........................................................... 58 

BIBLIOGRAPHY................................................................................................................... 60 

 



12 
 

1 INITIAL REMARKS  
 

The global post World War 2 scenario was a great driver for the development 
of concepts associated with entrepreneurial logistics and supply chain. The 

technological revolution that led to new industrial equipment and an expansion of 
operations scope, imposed a need for better material input/output control, and product 

transportation (MACHLINE, 2011). Operations Research had its origins during this 

period, proposing quantitative techniques for this advanced system control using 
algorithms based on linear programming (LP), mixed-integer linear programming 

(MILP), heuristics, and process simulation (MACHLINE, 2011). 
Because of these developments, the concept of supply chain was created. 

This concept can be synthetized as the efforts around the production and delivery of a 

product, starting at the supplier of the supplier, until it reaches the customer of the 
customer (MACHLINE, 2011). One of the basic principles of a supply chain is that the 

synchronized operations between departments tend to reduce the overall costs, and 
to increase the aggregate value of the product generated by then. (SCAVARDA E 

HAMACHER, 2001). 

The ongoing technological evolution of control systems, both in terms of 
hardware and software, allows companies to improve their operation ’s management 

computationally and systematically. In parallel to these technological advancements, 
the scope and complexity of supply chains has also increased significantly. These two 

aspects result in a continuous feedback loop that drives the technological 

advancement of supply chains. 
Within the field of Operations Research, there are several successful real-life 

examples of mathematical modeling with the goal of optimizing supply chains. The 
following items are considered vital for mathematical modeling (LACHTERMACHER, 

2016): 

 
Input: 

 Decision Variables. 

 Parameters. 

Output: 

 Performance. 

 Consequences. 
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The consequences of these models can be observed in three different 

hierarchical tiers: 

 

 Strategical: decisions taken by the higher management of a company, 

such as investment decisions and market-share targeting. Generally 
associated with long-term initiatives (years). 

 Tactical: decisions taken by regular management, such as 

determination of commercial partners or suppliers. Generally 
associated with medium-term initiatives (months, weeks). 

 Operational: decisions taken by managers and supervisors, such as 

shift planning and maintenance routines. Generally associated with 
short-term initiatives (days, hours).  

 
In the tactical and operational tiers, some of the most important optimization 

aspects are those related to inventory and vehicle routing. Both have a vast literature 

in terms of individual control methods, but considering today’s conception of a supply 
chain, it is preferred a conjoint optimization, which is proven to yield higher financial 

and operational gains.  
The denomination Inventory-Routing Problem (IRP) was established in the 

1980’s, and aims to gather optimization techniques for systems that consider different 

(GUIMARÃES et al., 2019): 
 

 Fleet homogeneity (homogenous, heterogenous). 

 Resupply policies (order-up-to-level, maximum-level). 

 Supply chain structures (one-echelon, two-echelon, three-echelon). 

 Planning horizon (days, weeks, months). 
 

Time-windows can play an important role in industrial and commercial 

operations. These can be represented mathematically as time intervals in which 
suppliers/customers are able to service or be serviced. The Inventory-Routing Problem 

with Time-Windows (IRPTW) is the result of the addition of these time-windows to the 
IRP. Some practical examples are: 
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 Delivery deadlines imposed by suppliers. 

 Preferential delivery hours requested by customers. 

 Time restrictions imposed by legal/geographical reasons. 
 

Companies that act as online marketplaces usually establish pre-determined 

delivery deadlines for their sales, to offer greater reliability to their customers. 
Violations of these deadlines can lead to decrease in service quality indicators, or even 

financial losses in the form of fines or refunds. 
Passenger/food delivery services also have time-windows ingrained into their 

operations. Apart from the already mentioned negative impacts that violating said time-

windows can cause to their business, factors such as food perishability and 
arrival/departure delays must also be considered. 

Fleet management software with different degrees of complexity can be found 
in the market. They often rely on the efficient communication between a complex 

architecture of services sustained by a telecommunication network. These networks 

might be based on satellites, cellphones, or the internet, and often depend on physical 
servers maintained by these companies. This infrastructure is integrated with 

applications (either mobile or desktop) that allow to automatize tasks, visualize real-
time statistics, reduce operational costs, and provide more security to drivers, as 

illustrated in Figure 1. (ALTEXSOFT, 2019a).  
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FIGURE 1 –TYPICAL SETUP OF A FLEET MANAGEMENT SYSTEM 

 
SOURCE: Altexsof t (2019a) 

 

Among the base aspects contemplated within these software are 
(ALTEXSOFT, 2019a): 

 

 Routing: improved routing decisions through the usage of GPS 

systems, estimation of time losses due to traffic, and calculation of 

average movement speed on streets/highways. 

 Fuel: tracking of fuel consumption and hazardous emissions. 

 Vehicular maintenance: diagnosis, scheduling, general alerts related to 

routine inspections. 

 Fleet management: service level analysis using integrated database 

systems. 

 Freight control: expense reports, license control, real-time tracking of 

products/vehicles. 

 Security: integrated systems aid drivers during work, reducing risks both 
to personnel and company property. 
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Examples of commercial fleet management software are shown in Panel 1 

(ALTEXSOFT, 2019a): 

 

PANEL 1 – EXAMPLES OF FLEET MANAGEMENT SYSTEMS 

Characteristics Geotab Verizon Teletrac Fleetio 

Strong points 

Direct feedback for 
drivers Route replay Non-verbal check-in Detailed maintenance 

management 
Security 

functionalities 
Custom mapping 

Proactive 
alerts Dynamic dashboards Freight control 

  Vehicular inspection 
alerts Fuel management system 

Provisions 
hardware? YES YES YES NO 

Price MODERATE MODERATE HIGH LOW 

Usability EASY MODERATE MODERATE EASY 
Mobile 

applications 1 3 1 3 

Technical 
support MODERATE MINIMAL MODERATE GOOD 

SOURCE: Adapted form Altexsof t (2019b) 

 

New technologies centered on Internet of Things (IoT) and cloud computing 
enable such applications to be used in manufacturing equipment, or to be embedded 

into vehicular fleets. (ALTEXSOFT, 2019a).  
Another important aspect present on these applications is the optimization 

methodology behind them. While commercial solutions generally have specialized 
teams working towards the development of models and optimization algorithms, 

crafting highly specialized solutions, open-source initiatives allow small organizations 

that do not possess these same resources to employ tools on a par with the ones used 
by larger companies. 

Open-source projects also deflect in some manner the responsibility of 
developing and maintaining software, which can lead to cost reductions, and therefore 

financial gain. Such solutions are usually designed around code libraries and APIs, 

some of which can be used for optimization purposes.  
Some examples of popular open-source, or free to use software, are: 

 

 Google OR-Tools: encapsulates many commercial solvers (Gurobi, 

CPLEX, COIN, CBC, SBIC, CP-SAT) and provides several 

mathematical interfaces for optimization. Has embedded algorithms for 
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routing problems and some of their variations, such as problems with 

multiple vehicles, pickup-and-delivery, and time-windows. 

 Concorde TSP solver: optimization library written in C for the Travelling 
Salesman Problem (TSP). Many papers reference this library, since it 

is considered one of the benchmark sources for instances and results. 

 TSPLIB: open-source library for TSP and some of its variants. Contains 

algorithms for the Sequential Ordering Problem (SOP) and the 

Capacitated Vehicle-Routing Problem (CVRP). 
 

Aside from the resources mentioned above, famous commercial solvers also 

publish freeware versions of their libraries for academic research. 
New data extraction methods and database technologies also contribute 

towards the development of mathematical modeling. Recent studies focus on the effect 
of time dependency in vehicle routing problems. Time dependency is commonly 

represented as variable time travel times/costs along periods. This aspect is often 

considered when dealing with routing problems under time-windows constraints. 
Kok et al. (2012) study strategies to avoid urban traffic by simulating a real 

urban network. Work time reduction of 87% is achieved by incorporating models that 
consider time dependency in the Shortest Path Problem (SPP). 

Alvarez et al. (2018) analyze the importance of considering urban traffic in 

VRPs. Data from the province of Catalonia is used for testing, which shows that 
mathematical models yield results around 11% better when these effects are 

considered. 
Belhassine et al. (2018) present results for the TDVRP (Time-Dependent 

Vehicle-Routing Problem) by using data extracted from Québec city’s urban network. 
Reductions of 22% in travel times are achieved, while also saving around 43 tons of 

 emissions.  

Heni et al. (2018) study new fuel consumption estimation methods for time-

dependent systems. Factors such as downtime, average movement speed, and cargo 
weight, are considered in their analysis. 

All these studies map urban networks and show the impacts of time-dependent 

aspects in the problems. This shows that these parameters can yield greater accuracy 
to optimization models when appropriately employed. 
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For the optimization of such complex models, several techniques and 

algorithms have been proposed in the literature. Coelho, Cordeau and Laporte (2014) 

present some of these techniques: 
 

 Branch-and-bound (B&B): exact procedure used for the resolution of 
most mixed-integer programming (MIP) problems, where a tree 

exploration is used and sequential problems are solved, each of them 

considering different branching options for integer variables (0 or 1). 
This algorithm can be extended to insert various specialized 

constraints during its execution (Branch-and-cut – B&C), or even use 
column generation to solve relaxed versions of the tree’s nodes 

(Branch-and-price - B&P). 

 Valid inequalities: constraints that are not necessary to the 
mathematical formulation of problems, but whose addition can lead to 

improved initial bounds for the B&B algorithm. 

 Heuristics: algorithms that are not exact in nature but usually obtain 
high quality solutions in fast times. Such algorithms can be based on 

local search, node interchange, assignment, etc. 

 Metaheuristics: specialized versions of heuristics that often integrate 

multiple different heuristics into a single optimization framework. 

 Matheuristics: integration of heuristics/metaheuristics with 
mathematical programming. Given this intricate combination of tools, 

many can determine optimality through their usage. 

 
Not only algorithms help the optimization of integrated logistics problems. 

Managerial concepts such as Vendor-managed inventory (VMI) are key to understand 
why conjoint decision-making is so valuable. Archetti and Speranza (2016) show that 

employing a replenishment policy where the supplier controls the inventory levels of its 

customers can achieve operational costs up to 10% cheaper than it would if decisions 
were made individually – and this cost reduction includes their customers’ operational 

costs. The scenario where each actor in the supply chain take decisions for their sole 
benefit is known as Retail-managed inventory (RMI). 
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The replenishment policies that VMI uses can vary between supply chains. 

Some of the most known ones are order-up-to-level (OU) and maximum-level (ML). 

While the first always guarantee that the customer’s inventory is full after a delivery, 
the second is free to choose the amount of product to be sent to a given customer. The 

choice between them will depend on factors such as the ratio between inventory 
holding costs and travel costs. Extensions of these policies also exist, for instance, the 

optimized-target level (OTL) policy aims to determine a custom, constant, value to be 

delivered for each customer in a determined time horizon. (COELHO AND LAPORTE, 
2014a). 

A next step would be to incorporate inventory costs and multi-period planning 
into IRPTW models. The resulting complexity will probably be high, but the potential 

gains to be obtained drive the development of more efficient resolution methods for 

these problems. The IRPTW is one of the problems that must deal with an increased 
complexity level. According to the study conducted in this project, few models integrate 

vehicle and inventory control simultaneously into their formulations, usually preferring 
to focus on the vehicular aspect of the problem. 

This project proposes the application of a Local branching algorithm together 

with other optimization tools for an efficient optimization of the IRPTW. A model 
concept is elaborated, and auxiliary tools that can aid the optimization process are 

described. A thorough optimization framework is tested against benchmark instances, 
and the obtained results are analyzed for different configurations and scenarios. 

 

1.1 MOTIVATION 
 

In the inventory control and vehicle routing field, accurate representation of 
phenomena associated with periodicity/imprevisibility, such as travel and service 

times, is a great challenge. Such aspects can turn a continuous operation very 

complex, requiring the optimization system to have appropriate tools and 
considerations to deal with them. 

This project proposes integrating the most recent routing models with the 
inventory aspect, while also representing decision-making processes associated with 

periodicity (when to deliver), quantity (how much to deliver), and rentability of the 

supply chain as whole (mutual benefit to customers and suppliers). Impacts caused by 
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the integration of time-windows into the model, which renders the model closer to real-

world applications, are highlighted in our analysis. 

 
1.2 OBJECTIVES 

 
1.2.1 Main objective 

 

The main objective of this project is to develop an exact mathematical model 
for the IRPTW, and to integrate it with a solution framework that combines valid 

inequalities, pre-processing techniques, solution improvement heuristics, and a Local 
branching algorithm. 

 

1.2.2 Specific objectives 

 

The following items can be highlighted as the specific objectives of this project: 
 

 Evaluate problems that are either similar or precursor to the IRPTW and 

find approaches/tools that might be useful for an exact mathematical 
model. 

 Determine the computational efficiency of different valid inequality 

groups designed around routing decisions, symmetry break, and 
improved variable bounds. 

 Check the performance of pre-processing techniques that allow drastic 
reductions in the total number of variables and constraints used in the 

mathematical model. 

 Design a Local Branching algorithm focused on the quick exploration of 
reduced neighborhoods of the search space, so improvements to the 

objective function are made consistently and in a quick manner. 

 Develop an initial solution heuristic capable of providing solutions that 

are good and obtainable in fast times, to trigger the execution of the 

Local branching algorithm as quick as possible. 

 Compare the results obtained by our solution framework with 

benchmark results from the literature. 
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1.3 LIMITATIONS 

 
One meaningful limitation for project is the extensive variety of approaches 

and interpretations given to the IRPTW in the literature. This leads to papers 
considering different objective function compositions, constraints, and even variables 

between models. This restricts the benchmarking that can be made between models, 

since few of them share enough similarities to warrant numerical comparisons 
 

1.4 STRUCTURE 
 

This dissertation is structured as follows. 

Chapter 2 contains an adaptation of the published version of the paper entitled 
A local branching algorithm for the inventory-routing problem, which was submitted 

and accepted by the International Journal of Production Research (IJPR), and that is 
available at https://doi.org/10.1080/00207543.2021.1998696. This paper presents a 

methodology to solve the IRPTW exactly using a mathematical model that is integrated 

with tools such as different valid inequality groups, pre-processing techniques, solution 
improvement heuristics, and a Local branching algorithm. 

Chapter 3 presents the conclusion and final remarks about the matheuristic 
algorithm proposed by this project. 
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2 METHODOLOGY 
 

This chapter presents the resulting scientific paper of this research project. It 
is titled A local branching algorithm for the inventory-routing problem with time 

Windows, and it was accepted by the International Journal of Production Engineering 
(IJPR). 

This adapted version of the paper was originally written by: 

 

 Bruno Eckwert Demantova, UFPR (PPGOLD). Conceptualization, 

software implementation, validation, and writing. 

 Cassius Tadeu Scarpin, UFPR (PPGOLD). Conceptualization, 

validation, and writing. 

 Leandro Callegari Coelho, Université Laval (CIRRELT). 
Conceptualization, validation, and writing. 

 Maryam Darvish, Université Laval (CIRRELT). Conceptualization, 

validation, and writing. 
 

2.1 ABSTRACT 
 

The Inventory-Routing Problem (IRP) deals with the joint optimization of 

inventory and the associated routing decisions. The IRP with time windows (IRPTW) 
considers time windows for the deliveries at the customers. Due to its importance and 

several real-world applications, in this paper, we develop an intricate solution algorithm 
for this problem. A mix of tools ranging from established groups of valid inequalities, 

pre-processing techniques, local search procedures, and a local branching algorithm 

is utilized, in order to efficiently solve the IRPTW. We compare the performance of our 
algorithms over a benchmark set of instances and show how our solution algorithm 

provides very promising results. Moreover, the results of our study provide an overview 
of the performance of several already proposed techniques and their integration in the 

literature 

 
2.2 INTRODUCTION 
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Introduced in the seminal paper of Bell et al. (1983), the Inventory Routing 

Problem (IRP) is an important optimization problem in which the inventory control 

vehicle routing decisions are integrated. Therefore, the main objective of the IRP is to 
minimize the total inventory and distribution costs. To date, several extensions of the 

IRP have been proposed in the literature (COELHO et al., 2014), including variations 
of the number of periods, number of suppliers and customers in the supply chain, type 

of routing considered, and vehicle fleet composition (ANDERSSON et al., 2010). 

Furthermore, with the recent interest in sustainable supply chains, growing attention 
has also been given to sustainability concerns in the IRP (SOYSAL et al., 2019). These 

studies include several aspects of sustainability such as in perishable products 
(SHAABANI AND KAMALABADI, 2016), reverse logistics (SOYSAL, 2016), emission 

reduction (DARVISH et al., 2019), among others.  

A typical application of the IRP and its variants is in the city logistics 
(BERTAZZI et al., 2019). Application of this problem to several real-world city logistics 

situation imposes additional constraints of delivery time windows, e.g., in retail delivery 
every retailer has a preferred time interval to be visited (REPOUSSIS AND 

TARANTILIS, 2010). This gives rise to an important variant of the IRP, which is the 

IRP with Time Windows (IRPTW). Unlike the Vehicle Routing Problem with Time 
windows (VRPTW) which has been thoroughly studied (PARASKEVOPOULOS et al., 

2008) and for which several problem instances are available (see TOTH AND VIGO 
(2014)), there are a few studies proposing exact methods for the IRPTW.  

This paper proposes an exact algorithm for the IRPTW. We consider a single 

product and a homogeneous multi-vehicle fleet setting. Given the importance of 
greenhouse gas emission reduction in cities, the objective of our problem is to minimize 

the distances traveled, which eventually leads to less fuel cost and emissions. 
Moreover, we study the effectiveness of groups of valid inequalities, pre-processing 

techniques, and an initial solution heuristic. In order to improve the solution quality for 

bigger and more complex instances, a local branching algorithm is proposed. All tests 
are conducted on benchmark instances from the literature.  

The paper is organized as follows: Section 2.3 overviews the literature on the 
IRPTW and local branching. Section 2.4 presents our problem definition. Section 2.5 

presents the formal mathematical model of the problem along with several valid 

inequalities and symmetry breaking considerations. Section 2.6 presents the solution 
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algorithm. Section 2.7 contains the results of extensive computational experiments, 

and Section 2.8 provides the conclusions and final remarks. 

 
2.3 LITERATURE REVIEW 

 
We now review the relevant literature for the IRPTW in Section 2.3.1 and for 

the local branching algorithm in Section 2.3.2. 

 
2.3.1 Inventory-routing problem with time windows 

 
Several heuristics approaches are proposed in the literature to solve the IRP 

and IRPTW (KHEIRI, 2020), here we focus to the exact methods and modeling efforts.  

Liu and Lee (2011) develop an enhanced model for the IRPTW, where a 
supplier must serve a set of customers under soft time windows. The concept of order 

cycle time to determine the periodicity of deliveries is used. A two-stage meta-heuristic 
is proposed, obtaining an initial solution and then improving it by means of a local 

search algorithm combined with a tabu search procedure. The authors use adaptations 

of the instances proposed by Solomon (1987), providing exact solutions for smaller 
instances and heuristic solutions for the larger ones.  

Li et al. (2014) use a mixed integer programming model with a tabu search 
algorithm and lagrangean relaxation techniques to solve an IRP model with the 

objective of minimizing total travel time. Exact solutions for small instances are 

presented, while larger ones are solved using both relaxation techniques and a meta-
heuristic.  

Lappas, Kritikos, and Ioannou (2017) solve a model containing a set of 
customers with hard time windows, a single product, a homogeneous fleet, and an 

order-up-to-level (OU) policy for deliveries. A two-phase meta-heuristic is proposed, 

which determines the periodicity and quantities of product delivered, so a local search 
algorithm can be employed to determine the best routing. The results are evaluated on 

a set of instances created by the authors.  
The time-constrained inventory routing problem (TCIRP) is a studied in Lefever 

et al. (2019) where the travel time on each arc is uncertain. The authors develop a 

Benders decomposition-based heuristic and describe several valid inequalities for the 
IRP. They test the efficiency of their approach on a set of benchmark instances.  
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A two-echelon inventory routing problem is modeled in Farias et al. (2020) and 

solved using a two-step matheuristic. The authors create a new set of benchmark 

instances. They show the efficiency of the proposed approach and the introduced valid 
inequalities on the created instances. 

 
2.3.2 Local branching 

 

As presented by Fischetti and Lodi (2003), the local branching method 
explores restricted regions from the problem’s search space. The goal is to find 

improvements in the objective function while guaranteeing that previous explored 
spaces are not revisited.  

Hansen et al. (2006) propose an extension of the local branching with the 

incorporation of a variable neighborhood search (VNS). Considering even smaller size 
neighborhoods than the ones proposed by Fischetti and Lodi (2003), They use the 

VNS as a local search tool and also utilize several neighborhoods to promote the 
diversification of the current one.  

The application of local branching to the capacitated fixed-charge network 

design problem studied in Rodríguez-Martín and Salazar-González (2010) clearly 
outperforms other heuristics proposed in the literature.  

Yu et al. (2016) solve a robust gate assignment problem using a local 
branching framework, comparing its performance with three other exact solution 

algorithms, including diving and relaxation induced neighborhood search.  

To solve the open pit mine production scheduling problem, Samavati et al. 
(2017) combine local branching with an adaptive branching scheme. Tests conducted 

on the benchmark instances from the literature show that the method outperforms both 
the Branch-and-Cut and Lagrangian relaxation techniques.  

Hernandez et al. (2019) propose a local branching matheuristic to solve a VRP 

with stochastic demands. This matheuristic employs an intensification procedure at 
each node of the local branching tree, which is embedded in a multi-descent scheme. 

 
2.4 PROBLEM DESCRIPTION 

 

The problem is defined as follows. Consider graph G = (V, A), where V = {0,..., 
N + 1} is the vertex set and A = {(i, j) : i, j  V, i ≠ j} is the arc set. Vertices 0 and N + 1 
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represent the depot location, being 0 the starting point of vehicle routes and N + 1 their 

ending point. Set V is partitioned as follows: V ’ = {0, ..., N}, V’’ = {1, ..., N + 1}, and C = 
{1, ..., N}. For each period t   = {1, ..., T}, each customer must satisfy a known 

demand 
 while holding a maximum inventory capacity of , such that potentially 

. The inventory is controlled by an order-up-to-level (OU) policy, i.e., whenever 

a delivery occurs, the quantity must be enough to maximize the customer’s inventory 

at the end of the period. Each arc has a travel cost  and a travel time , both equal 

to the Euclidean distance between points i and j. Whenever a customer is served by a 
vehicle, the delivery must start within a specific time window, from  to . Service 

duration is denoted . Vehicles from a set κ = {1, ..., K} may visit each customer only 

once per period and can carry at most Q units.  

In order to ensure cyclic operations and to avoid the end-of-horizon effect, all 
customers start with full inventories at the first period and must have their inventories 

replenished during the last one. 
 

2.5 MATHEMATICAL MODEL 

 

The variables used in our model are as follows. Binary variable  is equal to 

1 if arc (i, j) is traversed by vehicle k during period t, 0 otherwise. Binary variable  is 

equal to 1 if vertex i is visited by vehicle k during period t, 0 otherwise. Variable  

represents the quantity delivered to customer i by vehicle k during period t. Variable  

is equal to the inventory level of customer i at the end of period t. Variable  denotes 

the time that vertex i starts being served by vehicle k during period t. The model 
presented here is based on that of Lappas, Kritikos, and Ioannou (2017). Table 1 

provides a summary of all parameters and variables used. 



27 
 

TABLE 1 - NOTATION USED IN THE MODEL 

Sets 

V = {0,...,N + 1} Set of vertices 
C = {1,...,N} Set of customers 
V' = {0,...,N} Set of vertices excluding the supplier's return node 
V'' = {1,...,N + 1} Set of vertices excluding the supplier's origin node 

 = {1,...,K} Set of available vehicles 
 = {1,...,T} Set of periods 

Parameters 

 Travel cost of arc originating at i and ending at j; 
 Travel time of arc originating at i and ending at j; 
 Initial inventory of supplier/customer i; 
 Inventory capacity of customer i; 

Q Vehicle maximum capacity; 
 Demand of customer i during t; 
 Service time of customer i; 
 Opening time of customer i; 
 Closing time of customer i. 
 Big M parameter calculated for each i and j combination 

Variables 
 Binary variable equal to 1 if arc ij is traversed by vehicle k during period t, 0 otherwise; 
 Binary variable equal to 1 if vertex i is serviced by vehicle k during period t, 0 otherwise; 
 Quantity of product delivered to customer i by vehicle k during period t; 

 Inventory level of supplier/customer i at the end of period t; 
 Time at which service starts for customer i by vehicle k during period t. 

SOURCE: The Author (2021) 

 

2.5.1 Mixed-integer linear programming formulation 

 

The IRPTW model is described as follows. 
 

 (1) 

            Subject to:  

 (2) 

 (3) 

 (4) 
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 (5) 

 (6) 

 (7) 

 (8) 

 (9) 

 (10) 

 (11) 

 (12) 

 (13) 

 (14) 

 (15) 

 (16) 

 (17) 

 (18) 

 
The objective function (1) minimizes the total distance traveled by the vehicles. 

Constraints (2) ensure inventory conservation for the supplier and the customers. For 

the initial period, . Constraints (3) - (4) impose a maximum inventory level to 

each customer and dictate an OU policy. In this case, it is necessary to add the demand 
into these constraints, so that  can be held. Constraints (5) limit delivered 

quantities to respect the capacity of the vehicles. Constraints (6) - (9) are vehicle 
routing constraints, establishing the required relationships between routing and 

assignment variables. Constraints (10) prevent subtours while imposing that all  visiting 
times must be consistent with the respective travel times between arcs and service 

times at customers. Constraints (11) forbid any customer to be visited outside their 

time windows. Constraints (12) forbid split deliveries. Constraints (13) ensure that all 
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customers are serviced during the last period. Constraints (14) - (18) impose the 

domain and nature of the variables. 

Note that symmetry breaking considerations are embedded in all applicable 
constraint sets. These considerations ensure that vehicle k + 1 will only visit a customer 

if vehicle k is also used in the period. This formulation helps reduce the number of 
variables and constraints generated when compared against the model of Lappas, 

Kritikos, and Ioannou (2017), especially when dealing with large instances. 

 
2.5.2 Symmetry breaking and valid inequalities 

 
The first group of valid inequalities is related to the IRP with multiple vehicles, 

and is adapted from Coelho and Laporte (2014a,b): 

 

 (19) 

 (20) 

 (21) 

 (22) 

 (23) 

 (24) 

 

Valid inequalities (19) enforce that if the supplier is the immediate successor 

of a customer, then both, the supplier and the customer, must be visited by the same 
vehicle. Inequalities (20) establish relationships between arc usage and delivery 

assignment variables. Inequalities (21) state that a customer can only be served by a 
vehicle if it has left the depot. Inequalities (22) reinforce the relationship between the 

two depot designation variables. Inequalities (23) and (24) are symmetry breaking 

constraints. They ensure that a vehicle k cannot leave the depot if vehicle k − 1 is not 
yet used. This is extended to customer vertices, so that if customer i is assigned to 

vehicle k in period t, then vehicle k − 1 must serve a customer with an index smaller 
than i in the same period.  

An extra group of symmetry breaking inequalities are added, stemming from 
Coelho and Laporte (2014b), constraints (25) state that a customer with a higher index 
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is assigned to a vehicle only if all the previous customers are already assigned to lower 

index vehicles. The extreme case is that each customer is assigned to one vehicle. 

 

 (25) 

  

As a result, customer i can never be visited by a vehicle with an index greater 
than i. Thus, we can significantly reduce the number of variables used in the model. 

Another group of valid inequalities is derived from Lefever (2018) and are used to 

estimate delivery occurrence and to strengthen the bounds of inventory control 

variables. Two new parameters must be introduced, known as residual inventory ( ) 

and residual demand ( ) (DESAULNIERS et al., 2016). The residual inventory is the 

remaining of initial inventory ( ) at each customer in period t, and the residual demand 

is the amount of demand that exceeds each customer’s initial inventory. As shown in 
equations (26) – (28), both parameters vary over time. While the residual inventory 

decreases until it reaches zero, the residual demand increases to a maximum of  

units per period. 

 

 (26) 

 (27) 

 (28) 

 
Inequalities (29) determine a lower bound for the number of vehicles to be 

used in order to satisfy the residual demand of a given period. 

 

 (29) 

 

Desaulniers et al. (2016) also employ a set of inequalities that revolves around 
the minimum number of sub-deliveries per period. For each customer and period, the 

authors separate the remaining periods in two sets: periods in which a delivery is 
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enough to satisfy the demand of period t ( ), and periods that do not satisfy this 

condition ( ). Let us consider , indicating if at period t, the inventory level at 

customer i after the delivery is made at period s is positive. If a given customer has a 

residual demand higher than zero in t, the set  is non-empty. The elements of this 

set can be determined by analyzing which periods s ≤ t can receive a sub-delivery to 

guarantee a residual demand equal to zero in t. If a sub-delivery results in a non-

positive residual demand, parameter  is equal to 1. This parameter is then used in 

constraints (30) and, every time the left-hand side of the equation forms a non-empty 
set, the corresponding inequality is added to the model. 

 

 (30) 

 
Since customer inventories might not be empty during the initial periods, 

constraints (31) and (32) can be used to tighten the bounds of the inventory control 

variables. An adaptation is done to constraints (32), so they take into account demands 
higher than customer’s holding capacities. 

 

 (31) 

 (32) 

 

Considering time windows for each customer leads to several paths in the 
original graph to become infeasible. Having this information in advance enables us to 

pre-process the graph and eliminate these infeasible paths a priori. Ascheuer et al. 
(2001) describe a technique which allows tightening time window parameters and by 

eliminating any infeasible arcs. We apply it to the IRPTW as follows.  
Given a reference vertex i, in cases where the earliest service time leaving 

from other vertices is later than , or the minimization of waiting times in  i can be 

achieved by shifting the original , the tightening of the vertex opening time window is 

possible. If the earliest service time possible for vertex i when leaving from other 
vertices is earlier than , or the latest possible arrival time at a successor vertex of i 

allows departures earlier than , the tightening of the vertex closing time is viable.  
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Algorithm 1 describes the calculation steps used for the pre-processing of  

and . First, all arcs leading to customer h are evaluated in order to check if the 

earliest arrival time possible is higher than the original , which leads to an increase 

in . Then, all arcs leaving from h are evaluated in order to see if waiting times on the 

vertex can be minimized, if possible, resulting in a further increase of . Similarly, all 

arcs leading to h are analyzed in order to identify if the latest possible arrival times from 
these vertices are lower than . Next, the latest possible arrival times in  j leaving from 

h are considered and, if a valid value lower than  is found, the current parameter has 

its value updated. If changes are made to any of the parameters, another execution is 

triggered, recursively tightening the time windows of the vertices.  
 

ALGORITHM 1 – Time-windows Tightening (TWT) calculation steps 

 
SOURCE: The Author (2021) 
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As a final step, any arc that violates time windows sequencing rules is removed 

from the model. This is done by checking, for all valid  in the problem, if 

. In other words, if a vehicle cannot reach  j on time to respect the time windows 

constraints, then, the corresponding arc is not feasible, and is, therefore, removed from 
the problem. 

Algorithm 2 contains the final steps of the procedure, which dictates the 

removal of any identified infeasible arcs in the problem. The calculation is done by 
simply analyzing if the destination’s  is lower than the earliest departure time possible 

from i. If that is true, then the arc is set as infeasible and removed from the problem’s 

graph. 
 

ALGORITHM 2 – Unfeasible arc removal steps 

 
SOURCE: The Author (2021) 

 

It is important to note that the time-windows tightening and arc removal 
(TWT/AR) can be repeated until no more changes are possible, creating each time a 

smaller and tighter model. 

 
2.6 SOLUTION ALGORITHM 

 
Our algorithm contains three main steps. First, an initial solution procedure 

creates the first feasible solution, described in Section 2.6.1. Then, a local branching 

framework is used to control and diversify the search procedure, as presented in 
Section 2.6.2. A solution improvement procedure based on local search is used to 

polish feasible solutions, as presented in Section 2.6.3. Finally, in Section 2.6.4, we 
describe how these building blocks are combined to create a comprehensive algorithm. 
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2.6.1 Initial Solution Heuristic (ISH) 

 

In order to find an initial solution for the problem, we propose a heuristic: initial 
solution heuristic (ISH). The goal is to determine the customers to be visited at each 

period and their associated routes. The heuristic algorithm consists of two phases. The 
first phase determines a basic delivery schedule for the customers and the associated 

routes. In this step, a feasible solution is created. The second phase improves the 

routing decisions by solving individual VRPTW sub-problems for each period.  
In the first phase, all customers are sorted in an increasing  order, and, for 

each period, deliveries are assigned to customers facing stock-out, i.e., whenever 

. A cheapest insertion procedure is applied to determine the vehicle 

routes (for a maximum number of K routes). This step is done concurrently with the 

evaluation of possible time windows and vehicle capacity violations.  
Another reason to use this heuristic is to estimate the required number of 

vehicles. The number determined by the first phase ( ) is used to reduce the size of 

some models in our procedure. It causes sub-problems to become less complex and 

enables more nodes to be explored in a limited time.  
Although this heuristic can quickly provide feasible solutions, their quality can 

be refined using other tools, motivating a second phase to improve the solutions. It 
consists of solving a VRPTW for each period, further improving routing decisions 

previously made by the best insertion criterion. Given the original sets V and C, two 
new sets  and  can be generated by considering only the nodes included in the 

sub-problem per period. Sets  can also be established, containing only the vehicles 

used by the first phase of the ISH for each corresponding period. A VRPTW is then 

solved for each period. 
 

2.6.2 Local branching 

 

The exact framework presented here is based on Fischetti and Lodi (2003). In 

order to show how the local branching method is structured, consider an optimization 
model as follows: 

 
 (33) 
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 (34) 

 (35) 

 
This model showcases a minimization problem containing a set of binary 

variables . Given a reference solution  and a binary support group  = {j  β :  = 

1}, an α−opt neighborhood can be established with the use of a branching constraint: 

 

 (36) 

 

Constraint (36) restricts the search space to an α-sized neighborhood, allowing 
a maximum of α changes in the binary variable set. An optimization problem can be 

generated from this reduced search space, possibly leading to new upper bound (UB) 
improvements in much less time. After a given neighborhood is fully explored and a 

new optimal solution is found, constraint (36) can be turned into (37), removing the 

previously explored search space from future branching steps. 
 

 (37) 

 
After a restricted neighborhood is thoroughly explored in local branching, the 

previous left-hand side branching constraint is transformed into a right-hand side 

constraint, effectively changing the solution space considered during the creation of 
the next branching step.  

For our IRPTW, an algorithm based on the classic framework proposed by 
Fischetti and Lodi (2003) is developed. The mathematical model considered by the 

local branching algorithm is the same described in Section 2.5 with the following 

differences. In order to better take advantage of problem-specific properties, only 

delivery assignment binary variables ( ) are fixed in the branching constraints. 

Therefore, it leaves variables related to arc usage ( ) free during optimization. Given 

an initial solution and an initial upper bound ( , ), a first α−opt neighborhood, 

corresponding to a left-node of the local branching tree, can be generated and 
optimized, providing a new current incumbent solution and a new UB for the problem 
( , ). If this new incumbent solution is better than all previously obtained 
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solutions, it is deemed as ( , ). If an optimal solution is found for the given 

search space, the leftnode constraint can be reversed into a right-node one. These 
steps can be repeated indefinitely until a pre-determined ending condition is met.  

In our implementation, left-nodes are optimized with a solution limit ( ), which 

implies that execution is aborted after several incumbent solutions are found. Since 
this leads to the α−opt neighborhood not being fully explored, the reversal of the left 

node constraint into a right-node one is not exact. Therefore, the previously generated 

left-node is transformed into constraint (38), which excludes the previous solution from 
the next sub-problems while still considering any previously unexplored regions. 

 
 (38) 

 
Details of our implementation are shown in Algorithm 3. An initial solution , 

associated to an initial upper bound ( ), and the pre-determined number of 

vehicles  are fed to the algorithm, which allows left-nodes with an initial 

neighborhood size of  to be optimized until a time limit of  is reached or a new 

incumbent solution is found. It should be noted that even if the conventional goal of the 
method is to quickly reach optimality at left-nodes, in this framework, reaching 

optimality means that no improved solutions can be found. Hence, the current 
neighborhood is altered for further optimizations, having its size permanently increased 
by a value of . This size change procedure is also exploited when the left-node 

time limit is reached, dynamically changing the left-node time limit and parameter . 

Parameters time and  track the overall time spent in the local branching algorithm 

and the time spent in the inner loop, respectively, while parameter node tracks how 

many left-nodes are executed.  
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ALGORITHM 3 – Local branching f ramework optimization

 
SOURCE: The Author (2021) 

 
In summary, our local branching algorithm takes the base ideas of the original 

approach proposed by Fischetti and Lodi (2003) and implements an aggressive node 
exploration strategy, which results from the solution limit imposed on each sub-

problem. This idea leads to more left-nodes explored per run and steeper UB 

improvements.  
Finally, it should be noted that the algorithm proposed here is exact, just as 

the original one. What ensures optimality is optimizing the right-branch of the local 
branching tree, which corresponds to the complementary search space of the problem. 

As long as this final sub-problem is fully optimized, optimality is guaranteed. The fact 

that we do not explore entire left-node branches due to the imposed solution limit does 



38 
 

not affect the method’s functionality, since constraint (38) only removes the current 

solution from the next sub-problems, and not any additional feasible ones. 

 
2.6.3 Solution improvement algorithm 

 
A solution improvement procedure (SI) improves any new incumbent solution 

identified by the model. Based on the algorithm presented by Archetti et al. (2012) and 

further developed in Guimaraes et al. (2019), a MIP sub-problem is solved using 
customer insertion and removal costs for all routes present in the solution, but without 

using arc and assignment variables. While variables  and  remain unchanged, 

routing variables are replaced by variables  and , representing whether customer 

i is removed from or inserted into route k in period t, respectively. The maximum 

number of changes that a route can go through is fixed to one, which leads to exact 

removal/insertion costs, represented by parameters and , respectively. This 

sub-problem is always generated upon a reference solution that can be recursively 

optimized, generating new reference solutions, until no more changes can be made to 
the neighborhood. The parameters and variables used by the model are described in  

Table 2. 
 

TABLE 2 – NOTATION USED IN THE SOLUTION IMPROVEMENT MODEL 

Parameters 

 Removal cost of  customer i f rom route k in period t; 
 Insertion cost of  customer i in route k in period t; 

 
Binary parameter equal to 1 if  customer i is in route k in period t in the original solution, 0 

otherwise; 
Variables 

 Binary variable equal to 1 if  customer i is removed f rom route k in period t, 0 otherwise; 

 Binary variable equal to 1 if  customer i is inserted to route k in period t, 0 otherwise; 
SOURCE: The Author (2021) 

 

 (39) 

 
Subject to (4) and to: 
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 (40) 

 (41) 

 (42) 

 (43) 

 (44) 

 (45) 

 (46) 

 (47) 

 (48) 

 (49) 

 (50) 

 

The objective function (39) minimizes routing costs. Constraints (40) – (42) 
impose the OU replenishment policy. Constraints (43) guarantee that only customers 

who are not visited can be added to routes. Constraints (44) state that only customers 
who are visited can be removed from their respective routes. Constraints (45) limit the 

maximum number of changes per route, guaranteeing that all insertion and removal 

costs are taken into account. Constraints (46) ensure that vehicles’ capacities are not 
violated. Constraints (47) prevent a customer from being added to multiple routes. 

Constraints (48) – (50) are domain and nature related.  
The main differences between the formulation of the SI algorithm described 

here and the original formulation are as follows. Firstly, the symmetry breaking 

considerations are adapted to the problem, represented by the limited ranges of index 

k in the constraint sets. Secondly, to avoid infeasible and worse solutions throughout 

optimization, callback functions are employed to analyze all incumbent solutions, 
optimizing traveling salesman problem with time windows models for each route, 

consequently identifying and removing infeasible solutions 

 
2.6.4 Solution framework 
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The optimization tools presented in this paper are organized and combined as 

follows. The TWT/AR procedures are executed to adjust customer time windows to 

tighter intervals and remove infeasible arcs. The ISH is used to provide an initial 
solution. These steps yield a polished initial solution, which is then fed to the local 
branching algorithm. The SI algorithm is applied, and the number of vehicles  is 

verified. Each time a new incumbent solution is found by local branching, the SI 

algorithm is executed recursively, further improving the solution. Whenever one of the 
preset diversification parameters is reached (inner loop time l imit, inner loop node limit, 

or diversify parameter), a right node is executed. If an optimal solution is obtained from 
this right node, the number of vehicles returns to its original value, and a problem, 

equivalent to the original one, is optimized. Any lower bound values obtained during 

this step will be valid for the original problem since this version of the right-node is 
equivalent to the original IRPTW. 

 
2.7 COMPUTATIONAL EXPERIMENTS 

 

This section describes how the proposed improved local branching algorithm 
performs. All tests are run on an Intel Core i7-4790 CPU with 3.60GHz cores and 32 

GB RAM. The algorithm is implemented in C++, and Gurobi is used as the MIP solver. 
A limit of four threads is set, and both tests, with and without local branching, have a 

maximum time limit of 7200s. First, tests are performed considering only the original 
model described in Section 2.4. These tests aimed to determine the computational 

gains of applying the valid IRP inequalities and the TWT/AR procedures. The results 

of these initial tests are used to tune the local branching parameters and the overall 
algorithm framework. 

 
2.7.1 Test Instances 

 

Instances created by Lappas, Kritikos, and Ioannou (2017) are based on the 
benchmark VRPTW instances of Solomon (1987) with the addition of IRP-related 

parameters, such as demands for each period, customers’ holding capacities, and 
service times. The Solomon (1987) problem classes differ with respect to the 

disposition of the customers and the supplier: ‘C’ contains clusters of vertices, ‘R’ 

distributes them randomly, and ‘RC’ uses a combination of the two. The first number 
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after each letter (‘1’ or ‘2’) indicates the instance sub-class, and the next two ones 

indicate the time length of the customer time windows: in this case, the value ‘01’ 

indicates small time windows considered in all the original instance sets. Three 
different supply chain sizes are considered: 25, 50, and 100 customers. An instance 

example is ‘IRPTW C101_n25_p6’, which considers 25 customers separated in 
clusters under small-sized time windows. All instances have six time periods. 

Lappas, Kritikos, and Ioannou (2017) consider an OU replenishment policy 

and demand values that can be higher than a customer’s inventory capacity. All 
customers start with full inventories at the first period and must have their inventories 

replenished during the last one to create a closed order cycle. The supplier’s inventory 
flow is also not considered in their formulation, meaning that the supplier’s initial 

inventory is sufficient to serve all customers during the planning horizon.  

To ensure feasibility is guaranteed, the number of vehicles must be equal to 
the number of customers so that in the worst-case scenario, each customer is served 

by one vehicle, i.e., K = N, which leads to a very large model.  
To test the limits of our methods, we also generate larger instances with 9 and 

12 periods following the same patterns used in Lappas, Kritikos, and Ioannou (2017). 

These instances and detailed results are available upon request. 
 

2.7.2 Results and analysis 

 

Here, we first show the effectiveness of the methods proposed in the literature 

to decrease the computational time to solve the problem in Sections 2.7.2.1 and 2.7.2.2 
and then analyze the results obtained by our proposed local branching algorithm in 

Section 2.6.2. 
 

2.7.2.1 Original model with TWT/AR 
 

First, we analyze the gains provided by the TWT/AR procedures described in 

Section 2.6. Table 3 shows a comparison between the number of arcs before and after 
the model’s pre-processing. Here, we show the number of iterations for the recursive 

algorithm and the number of changes made to the opening or closing times of the 
customers. The results between instances vary, and in some cases, no changes are 

made. Since these instance sub-classes (‘01’ and ‘02’) consider the smallest size time 
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windows, not many overlaps occur between them. When changes occur, they are 

usually related to those customers who have early opening times due to the supplier’s 

operation hours. This finding indicates the importance of exploiting a more powerful 
solution algorithm. 

 

TABLE 3 – CHANGES MADE TO THE MODEL BY THE TWT/AR PROCEDURES 

Instance 
TWT AR 

Cycles Executed Changes Original Final % 
IRPTW_C101_n25_p6 2 2 109350 50250 45,95% 
IRPTW_C201_n25_p6 1 0 109350 57150 52,26% 
IRPTW_R101_n25_p6 2 1 109350 37650 34,43% 
IRPTW_R201_n25_p6 2 1 109350 63750 58,30% 

IRPTW_RC101_n25_p6 2 1 109350 45600 41,70% 
IRPTW_RC201_n25_p6 2 1 109350 64350 58,85% 
IRPTW_C101_n50_p6 2 4 811200 365700 45,08% 
IRPTW_C201_n50_p6 1 0 811200 417600 51,48% 
IRPTW_R101_n50_p6 2 2 811200 258000 31,80% 
IRPTW_R201_n50_p6 2 5 811200 471300 58,10% 

IRPTW_RC101_n50_p6 2 5 811200 265500 32,73% 
IRPTW_RC201_n50_p6 2 1 811200 464400 57,25% 
IRPTW_C101_n100_p6 2 8 6242400 2707200 43,37% 
IRPTW_C201_n100_p6 2 2 6242400 3193800 51,16% 
IRPTW_R101_n100_p6 2 4 6242400 1998600 32,02% 
IRPTW_R201_n100_p6 2 9 6242400 3612000 57,86% 

IRPTW_RC101_n100_p6 2 9 6242400 2243400 35,94% 
IRPTW_RC201_n100_p6 2 8 6242400 3610200 57,83% 

Average 1,89 3,50 2387649,96 1107025 47,01% 
SOURCE: The Author (2021) 

 

The last three columns show the number of arcs present in the original model, 

the number of removed arcs during pre-processing, and the percentage of remaining 
arcs at the end of the process, respectively. The number of original arcs is always the 

same for each instance size since all instances contain the same number of vertices 
(N + 2), vehicles (K = N), and periods (T). This step of the algorithm produces more 

evident gains, with an average arc removal rate of 53%. This step substantially reduces 

the model size and the solver’s pre-processing time, which is essential to optimize a 
larger number of nodes of the local branching tree.  

It can then be confirmed that these pre-processing tools result in an enhanced 
model, which is used in all further test configurations. 
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2.7.2.2 Enhanced model with valid inequalities 

 

First, we used the mathematical model with no valid inequalities, pre-

processing techniques, and initial solution heuristic, for which we obtained low quality 
solutions. Moreover, no solutions can even be obtained within the time limit for several 

medium and large-size instances.  
Tests are executed with different valid inequality configurations to analyze the 

computational gains of applying them together with symmetry breaking constraints, the 

pre-processing techniques, and the ISH. In total, three different configurations are 
used: Coelho and Laporte (2015) + Coelho and Laporte (2014) valid inequalities (19) 

– (25), Lefever (2018) valid inequalities (26) – (32), and all valid inequalities. In order 
to facilitate the attainment of the first lower bound, with which the solver can work and 

start exploring the branch-and-bound (B&B) tree, all valid inequalities are added to the 

model after the root node is solved. Therefore, the first lower bound is estimated only 
by applying the pre-processing and ISH procedures, resulting in similar root nodes 

throughout all configurations. Even though better root node gaps can be achieved by 
adding the inequalities mentioned earlier directly to the model, this can signi ficantly 

slow down the optimization process and even hinder the solver from obtaining the first 

lower bound. The results for instances in C100, C200 and R100 classes are presented 
in Table A1 and for instances in R200, RC100 and RC200 classes in Table A2 in the 

Appendix.  
A summary of these results is presented in Table 4, where column Best UB 

shows how many times the configuration reached the best overall UB obtained by all 
three configurations, and column  evaluates configurations taking into account 

UB ties, setting as tiebreakers (1) the gap and (2) the runtime. Column Deviation is 
calculated as the average of UB – , where UB is the value obtained by the 

configuration and  is the best overall value obtained. This calculation allows to 

determine which configuration had the best average performance, showing that the 
use of only valid inequalities (26) – (32) present the best average results. It is important 

to note that these valid inequalities act on the routing part of the problem, which is the 
hardest part of distribution problems with time windows. 
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TABLE 4 – COMPARISON BETWEEN TESTED CONFIGURATIONS 

Config Best UB  Gap (%) Runtime (s) Root Gap (%) Root Runtime (s) Deviation 

(19) – (25) 12 9 21,20        5.696,92  60,30                   1.124,87  8,67 
(26) – (32) 17 7 21,02        5.701,26  60,30                   1.138,34  2,41 

All 8 2 22,07        5.722,57  60,31                   1.150,47  23,25 

SOURCE: The Author (2021) 

 

Valid inequalities (26) – (32) present superior results in terms of best upper 
bounds, final gaps, and, most importantly Deviation. Valid inequalities (19) – (25) 

perform best with smaller instances. This configuration presents the highest value of 
parameter , however its average performance is inferior to that of using 

inequalities (26) – (32), as the Deviation parameter shows. The configuration 
containing all inequalities presents the worst overall performance, both in terms of best 

solutions and of Deviation, as the model becomes too large with too many constraints.  
For the next step of tests, it is chosen to proceed with configuration (26) – (32), 

since it presented the best average performance and because it reached the best 

overall upper bounds in 17 out of 18 instances.  
Table 5 compares the best results obtained by the three enhanced model 

configurations presented so far with the method used in Lappas, Kritikos, and Ioannou 
(2017). All obtained results for instances with 25 and 50 customers are significantly 

better. Parameter ∆UB shows the UB improvement and is calculated as ((UB – 

)/ ) × 100. Among all new improvements, four new optimal solutions 

are obtained, which are highlighted in bold. The enhanced model, however, has 
difficulties dealing with some 100-customer instances from classes R201 and RC101. 
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TABLE 5 – COMPARISON BETWEEN THE RESULTS OF THE ENHANCED MODEL AND LAPPAS, 
KRITIKOS, AND IOANNOU (2017) 

Instance 
Lappas, Kritikos, and Ioannou (2017) Exact Model 

UB UB Gap (%) UB 
IRPTW_C101_n25_p6 1.115,40 913,73 22,72 -18,08 
IRPTW_C201_n25_p6 883,80 665,71 0,00 -24,68 
IRPTW_R101_n25_p6 1.880,09 1.682,85 0,00 -10,49 
IRPTW_R201_n25_p6 1.629,61 1.407,57 0,00 -13,63 

IRPTW_RC101_n25_p6 1.892,24 1.628,87 11,70 -13,92 
IRPTW_RC201_n25_p6 1.521,46 1.083,72 0,00 -28,77 
IRPTW_C101_n50_p6 2.077,38 1.943,49 32,44 -6,44 
IRPTW_C201_n50_p6 1.614,12 1.233,11 10,20 -23,60 
IRPTW_R101_n50_p6 3.462,52 3.069,58 0,54 -11,35 
IRPTW_R201_n50_p6 2.626,25 2.313,34 2,27 -11,91 

IRPTW_RC101_n50_p6 3.907,75 3.582,81 24,18 -8,32 
IRPTW_RC201_n50_p6 2.878,27 2.187,04 24,53 -24,02 
IRPTW_C101_n100_p6 5.067,13 4.920,21 43,26 -2,90 
IRPTW_C201_n100_p6 2.812,41 2.390,79 38,60 -14,99 
IRPTW_R101_n100_p6 5.566,81 5.021,40 8,62 -9,80 
IRPTW_R201_n100_p6 3.837,75 3.968,80 48,13 3,41 

IRPTW_RC101_n100_p6 6.145,41 6.628,08 48,63 7,85 
IRPTW_RC201_n100_p6 5.053,30 4.710,53 58,80 -6,78 

SOURCE: The Author (2021) 

 

2.7.2.3 Local branching algorithm 
 

Parameter tuning of the local branching algorithm is a critical step in obtaining 

quality solutions. Some of these parameters include the α−opt neighborhood size used 
for each left-node, the αaux parameter, and both left-node (inner-loop) and overall time 

limits.  
Aiming to improve the previously obtained UBs, we use only one inner-loop (a 

nonstop sequence of left-nodes, represented by lines 5 – 31 of Algorithm 3), and a 

right-node that can be triggered during the execution. The right-node of the branching 
is executed at the end of the local branching procedure, mainly being used to prove 

optimality.  
To improve the lower bounds, a limit of 50 left-nodes is used together with the 

inner-loop time limit and the diversify parameter, triggering a right-node, if either of the 

associated limits is reached. As for the value of α, we set it to 50 after preliminary tests. 
A summary of the values used for the parameters in our implementation is shown in 

Table 6. 
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TABLE 6 – COMPARISON BETWEEN THE RESULTS OF THE ENHANCED MODEL AND LAPPAS, 
KRITIKOS, AND IOANNOU (2017) 

Parameter Value Description 
 2 Solution limit 
 50 Initial -opt neighborhood size 

 65 Auxiliary neighborhood parameter 
 7200s Overall time-limit 

 650s Lef t-node time-limit 
  Inner-loop time-limit 
 50 Inner-loop node limit 
 2 diversify parameter 

SOURCE: The Author (2021) 

 
Table 7 presents a comparison of the results obtained by Lappas, Kritikos, and 

Ioannou (2017), the enhanced model, and the proposed local branching framework. 
Our local branching algorithm improves the results of the enhanced model for 15 out 

of 18 instances and significantly improves the results of Lappas, Kritikos, and Ioannou 

(2017). The average improvement over the mathematical model is 4.66%; for large 
instances containing 100 customers, this improvement reaches an average value of 

10.69%. The average improvement over the original benchmark is equal to 16.64%. It 
should be noted that, compared to the enhanced model, we observe that the local 

branching algorithm proves optimality for one extra instance, even though it reaches 

the same optimal upper bounds for all other instances. 
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In Table 8, we present a performance comparison between the method used 

in Lappas, Kritikos, and Ioannou (2017) and our proposed optimization frameworks. 

While our enhanced model has the advantage of determining optimal solutions faster 
for smaller instances, the average performance of the local branching algorithm is 

superior, as indicated by the Deviation parameter. We have also generated new and 
larger instances as follows. Following the same procedure of Lappas, Kritikos, and 

Ioannou (2017), we created 12 instances with nine periods and 12 instances with 12 

periods. These are by far the largest instances available for IRPs, even without time 
windows. We have six instances with 25 customers for each of these two sets and six 

instances with 50 customers. They are based on the Solomon instances as before, 
and for completeness, we also use all three configurations (C, R, and RC). These 

instances and the detailed results described next are available upon request.  

 

TABLE 8 – SUMMARY OF THE PERFORMANCE COMPARISON 

Config   Deviation 

Lappas, Kritikos, and Ioannou (2017) 0 0 473,19 
Enhanced Model 8 3 216,52 
Local Branching 15 15 1,42 

SOURCE: The Author (2021) 

 

Table 9 presents the results for the instances with nine periods. We have run 

our enhanced model and our local branching algorithm for 7200s. Three of these 
instances have been solved to optimality, and average results indicate that our local 

branching algorithm provides solutions almost 4% better, with individual cases of 
improvements of more than 17%. In no case has our local branching provided worse 

solutions. 
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TABLE 9 – RESULTS FOR INSTANCES WITH NINE PERIODS 

Instance 
Enhanced Model Local Branching 

UB Gap (%) Runtime (s) UB Runtime (s)  (%) 

IRPTW_C101_n25_p9 1.374,60 23,80 7.200,00 1.335,31 7.200,00 -2,86 
IRPTW_C201_n25_p9 997,62 0,00 3.273,42 997,62 7.200,00 0,00 
IRPTW_R101_n25_p9 2.358,82 0,00 2,86 2.358,82 187,36 0,00 
IRPTW_R201_n25_p9 2.024,78 0,00 1.733,07 2.024,78 7.200,00 0,00 

IRPTW_RC101_n25_p9 2.434,00 13,03 7.200,00 2.413,96 7.200,00 -0,82 
IRPTW_RC201_n25_p9 1.654,77 2,22 7.200,00 1.654,77 7.200,00 0,00 
IRPTW_C101_n50_p9 2.831,74 29,70 7.200,00 2.702,84 7.200,00 -4,55 
IRPTW_C201_n50_p9 2.062,97 18,82 7.200,00 1.861,52 7.200,00 -9,76 
IRPTW_R101_n50_p9 4.468,35 1,16 7.200,00 4.466,88 7.200,00 -0,03 
IRPTW_R201_n50_p9 3.461,84 8,93 7.200,00 3.401,72 7.200,00 -1,74 

IRPTW_RC101_n50_p9 5.289,00 24,42 7.200,00 4.850,69 7.200,00 -8,29 
IRPTW_RC201_n50_p9 3.855,41 45,93 7.200,00 3.184,03 7.200,00 -17,41 

Average 2.734,49 14,00 5.817,45 2.604,41 6.615,61 -3,79 

SOURCE: The Author (2021) 

 

The most challenging instances with 12 periods have their results shown in 
Table 10. Here, two instances are solved to optimality, and despite very similar 

runtimes between our local branching algorithm and that of the enhanced model, the 
improvements provided by our method are even more significant on smaller instances. 

The average improvement now is more than 4.5%, with individual improvements of 

more than 20%. These results indicate that our method can handle very large instances 
and that it does so in a much more efficient way than the (already enhanced) 

mathematical programming model. 
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TABLE 10 – RESULTS FOR INSTANCES WITH 12 PERIODS 

Instance 
Enhanced Model Local Branching 

UB Gap (%) Runtime (s) UB Runtime (s)  (%) 

IRPTW_C101_n25_p12 1.803,07 23,46 7.200,00 1.801,67 7.200,00 -0,08 
IRPTW_C201_n25_p12 1.331,41 3,10 7.200,00 1.331,41 7.200,00 0,00 
IRPTW_R101_n25_p12 3.152,22 0,00 10,99 3.152,22 435,51 0,00 
IRPTW_R201_n25_p12 2.657,20 0,00 6.147,14 2.657,20 7.200,00 0,00 

IRPTW_RC101_n25_p12 3.265,51 14,79 7.200,00 3.161,14 7.200,00 -3,20 
IRPTW_RC201_n25_p12 2.199,75 4,14 7.200,00 2.173,88 7.200,00 -1,18 
IRPTW_C101_n50_p12 3.840,54 32,57 7.200,00 3.528,66 7.200,00 -8,12 
IRPTW_C201_n50_p12 2.685,23 19,61 7.200,00 2.507,96 7.200,00 -6,60 
IRPTW_R101_n50_p12 5.921,98 3,21 7.200,00 5.949,81 7.200,00 0,47 
IRPTW_R201_n50_p12 4.703,78 11,86 7.200,00 4.504,39 7.200,00 -4,24 

IRPTW_RC101_n50_p12 7.186,48 27,38 7.200,00 6.345,65 7.200,00 -11,70 
IRPTW_RC201_n50_p12 5.285,92 53,14 7.200,00 4.211,64 7.200,00 -20,32 

Average 3.669,42 16,11 6.513,18 3.443,80 6.636,29 -4,58 

SOURCE: The Author (2021) 

 

2.8 CONCLUSION 

 
In this paper, we have proposed an exact optimization approach to solve the 

IRPTW. Our method combines different valid inequalities, pre-processing techniques, 
a heuristic initial solution procedure, a solution improvement procedure, and a local 

branching algorithm. Our method was tested on a recent benchmark set from the 

literature, specifically introduced for this problem. We have also introduced larger 
instances containing up to 12 periods, much larger than any other available IRP 

instance. We have obtained significant improvements and provided new best-known 
solutions for all instances in this dataset, besides proving optimal solutions for some of 

them. We have demonstrated through detailed experiments that the many different 

aspects of our algorithm contribute to its success.  
Aside from the contributions in terms of performance, this paper is also the 

first, to the best of our knowledge, to integrate symmetry breaking considerations and 
TWT/AR into the IRPTW. These pre-processing techniques significantly reduce the 

complexity of the computational model, resulting in better bounds for the problem. 

Additionally, the newly proposed local branching algorithm, which focuses on the 
noncomplete exploration of sub-problems, showed high efficiency and potential for 

further exploration in future studies.  
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An important suggestion for further research is applying such high-

performance solution algorithms to real industrial cases. It might also prove beneficial 

to assess businesses from an economic perspective and assess environmental gains 
such as reduced greenhouse gas emissions, less fuel consumption, and the usage of 

fewer trucks that contribute to congestion and pollution. 
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3 FINAL REMARKS  
 

This dissertation proposes an exact resolution approach for the IRPTW. 
Different groups of valid inequalities developed for the IRP, pre-processing techniques, 

solution improvement heuristics, and a Local branching algorithm, are employed to 
solve the problem. The optimization model can efficiently explore reduced 

neighborhoods and obtain consistent improvements for the objective function of the 

problem.  
To our best knowledge, this is also the first project to compare results with 

benchmark instances developed exclusively for the IRPTW. The interaction between 
all the tools employed alongside the model can also be considered a contribution to 

the literature. Valid inequalities associated with inventory control and symmetry break 

have their trade-offs analyzed in our testing scenarios. It is observed that using only 
the valid inequalities proposed by Lefever (2018) provide better results, since the 

interaction between all groups at the same time result in a greater model complexity, 
but no proportional gains in terms of results. One reason that might explain this is the 

fact that symmetry break is applied as a pre-processing technique in our model, which 

leads to many inequalities becoming redundant in the system. 
The pre-processing techniques used by Ascheuer et al. (2001), especially 

those designed to eliminate unfeasible arcs, generate huge computational gains to the 
performance of the mathematical model, both in terms of memory consumed as in 

terms of optimization time. The consequences of this more efficient model and the valid 

inequalities result in the root node being determined faster, which in turn speeds up 
the initialization of the Local branching algorithm. 

Another important aspect of the optimization framework developed are the 
methods used to obtain improved initial solutions. The ISH and the SI model help to 

find a feasible solution in near instant time, and to quickly refine it into a good starting 

point for the model.  
Even though the original Local branching algorithm was presented more than 

10 years ago, it still lacks studies where it is applied to routing problems. By restricting 
the number of binary variables considered by this algorithm and applying a custom 

strategy for the exploration of the algorithm’s tree, an aggressive and effective 

exploration of the search space is achieved. This strategy, which is also a contribution 
from this research project, is proven to obtain improved results over the base 
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mathematical model, and the optimization heuristic proposed by Lappas, Kritikos, and 

Ioannou (2017). 

Regarding the tests executed, the optimization framework can consistently 
beat the existing times for the benchmark instances studied, providing gains objective 

function gains up to 20% depending on the instance. Plus, 24 new instances were 
developed for the IRPTW, these considering even larger period horizons. 

Real world scenarios could profit from the developments of this research. The 

fact that the algorithm developed here is exact in nature, it can provide gaps and 
upper/lower limits for its calculations, and it could also be further extended by other 

optimization tools. The constant technological evolution mentioned in Chapter 1 will 
eventually increase the complexity of the IRPTW. Resolution approaches that target 

the root problem, such as this, helps tackling these more complex variants, since they 

can be treated as a subproblem of a much more complex one. 
Finally, the Local branching method has a high adaptability, and can be used 

in pretty much any problem from the Operations Research field of study. The 
improvements suggested to this algorithm by this research can potentially be employed 

in many other optimization problems, allowing complex operations to be better 

controlled by supply chain managers. 
 

3.1 SUGGESTIONS FOR FUTURE RESEARCH 
 

Two main groups of valid inequalities were used in this project. These groups 

are closely related to the IRP, but that does not mean that valid inequalities must be 
related to the IRP to provide positive performance gains to the optimization model. 

Inequalities designed for problems such as the VRP or VRPTW could be implemented 
into the model and potentially boost performance even further. 

The ISH has simple and efficient mechanisms to determine a first feasible 

solution. More robust heuristics originated from the IRP or VRP could be adapted into 
the model to provide more substantial gains to the initial upper bound of the problem. 

Other heuristics could also be incorporated into the aggressive exploration strategy of 
our Local branching algorithm.  

To correct one flaw of this aggressive strategy, calculations could be 

developed to determine how much of the current neighborhood was effectively 
explored, so that a constraint could be added to the model to remove it from future 
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iterations of the algorithm. Lastly, the base B&B used to solve the resulting 

mathematical models could be replaced with more robust methods, such as the 

branch-and-price and cut (BP&C) model. 
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