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RESUMO

O ininterrupto desenvolvimento de novas tecnologias e ferramentas para o controle e
simulagao de processos, aliado a constante busca por modelos matematicos mais
precisos e representativos da realidade, tem possibilitado uma aproximacgao entre
teoria e pratica inéditana operagao de cadeias de suprimentos. Plan ejamentostaticos
e operacionaisde alta acuraciasao essenciais para determinados tipos de operagdes,
como por exemplo em empresas de entrega de bens pereciveis e de distribuicdo de
combustiveis. Além da preocupacdo com o controle eficiente de seus estoques e de
suas frotas veiculares, seus clientes devem ser atendidos dentro de intervalos de
tempo determinados, de modo a atingir niveis de servigo estabelecidos e até mesmo
garantir a viabilidade de seus produtos. Mesmo com 0s avangos expressivos na area
da modelagem de sistemas de roteamento de veiculos, alguns desafios naresolugao
destes problemas ainda persistem. Este trabalho propdée um modelo matematico de
Programacao Linearinteira Mista (PLIM) para o Problema de Roteamento de Estoque
com Janelasde Tempo (Inventory-Routing Problem with Time-Windows- IRPTW). Um
modelo exato é elaborado, sendo testado seu desempenho computacional sob o
auxilio de dois conjuntos de desigualdades validas desenvolvidas para o Problema de
Roteamento de Estoque (Inventory-Routing Problem - IRP), variadas técnicas de pré-
processamento, heuristicas de melhoria de solugdo, e um algoritmo de Local
branching. Uma configuracéo utilizando desigualdades validas referentes a limites
melhorados proporciona os melhores resultados dentre todas as avaliadas. Esta
configuracao é usada como base para o algoritmo de Local Branching, que apresenta
modificagdes especificas para a exploracdo agressiva e rapida de vizinhangas
reduzidas do espaco de busca do problema. Os resultados obtidos sdo comparados
com um grupo de instancias desenvolvido para o problema, apresentando ganhos
consistentes quando comparado aos resultados existentes. Diversas novas melhores
solugcbes sao encontradas para o conjunto avaliado e estabelecem-se limites
superiores e inferiores (gaps) para diversas outras instancias. Este trabalho, até onde
sabemos, € o primeiro a integrar todas essas ferramentas de otimizagdo para a
resolucdo do IRPTW, e € o primeiro a comparar resultados com um conjunto de
instancias exclusivamente desenvolvido para o IRPTW, ao mesmo tempo que
expande este grupo com instancias ainda mais complexas. A estratégia focada em
exploragéo parcial de vizinhangas do Local Branching também & uma contribuicao,
podendo ser ainda mais aprofundada e melhorada em trabalhos futuros.

Palavras-chave: Roteamento de estoque. Roteamento de veiculos. Janelas de tempo.
Local branching.



ABSTRACT

The continuous development of new technologies and tools for better process control
and simulation, combined with the strive for better and more representative
mathematical models, has allowed supply chain models to reach levels of accuracy
never seen. Tactical and operational planning are essential to the operation of many
logistic chains, such as perishable products delivery and fuel distribution. Not only
these companies have to efficiently manage their inventories and vehicle fleets to
achieve predetermined levels of service, they must also fulfill their customers’ needs
in restricted time-windows and guarantee their product’'s viability during the entire
delivery process. Even though many improvements were made in the field of vehicle
routing, some challenges remain. This dissertation proposes a mixed-integer
programming (MIP) model for the Inventory-Routing Problem with Time-Windows
(IRPTW). An exact model is proposed and has its performance, alongside two groups
of valid inequalities developed for the Inventory-Routing Problem (IRP), different pre-
processing techniques, solution improvement heuristics, and a Local Branching
algorithm, analyzed. A configuration with inventory control valid inequalities presented
the best results between all analyzed configurations. This configuration isused as a
basis for the Local Branching algorithm, which is specifically adapted to explore
reduced neighborhoods of the problem’s search space quickly and aggressively. The
model is tested using a benchmark instance set and is shown to be superior in
comparison to the existing results. Several new best-known solutions are determined
for the instance set, just as new upper and lower bounds (gaps) are determined for
several other instances. The developments presented here are, as faras we know, the
first ones to integrate all these tools underone optimization framework for the IRPTW.
This dissertation is also the firstone to compare results with a benchmark instance set
developed specifically for the problem, while also expanding said instance set. The
partial neighborhood exploration used by the Local Branching algorithm is also a
contribution to the literature since it enables a quick and efficient exploration of the
method’s tree. This integration of optimization tools can be worked on future papers,
having its approach refined to provide even better results.

Keywords: Inventory-routing. Vehicle-routing. Time-windows. Local branching
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1 INITIAL REMARKS

The global post World War 2 scenario was a great driver for the development
of concepts associated with entrepreneurial logistics and supply chain. The
technological revolution that led to new industrial equipment and an expansion of
operations scope, imposed a need for better material input/output control, and product
transportation (MACHLINE, 2011). Operations Research had its origins during this
period, proposing quantitative techniques for this advanced system control using
algorithms based on linear programming (LP), mixed-integer linear programming
(MILP), heuristics, and process simulation (MACHLINE, 2011).

Because of these developments, the concept of supply chain was created.
This concept can be synthetized as the efforts around the production and delivery of a
product, starting at the supplier of the supplier, until it reaches the customer of the
customer (MACHLINE, 2011). One of the basic principles of a supply chain is that the
synchronized operations between departments tend to reduce the overall costs, and
to increase the aggregate value of the product generated by then. (SCAVARDA E
HAMACHER, 2001).

The ongoing technological evolution of control systems, both in terms of
hardware and software, allows companies to improve their operation’s management
computationally and systematically. In parallel to these technological advancements,
the scope and complexity of supply chains has also increased significantly. These two
aspects result in a continuous feedback loop that drives the technological
advancementof supply chains.

Within the field of Operations Research, there are several successful real-life
examples of mathematical modeling with the goal of optimizing supply chains. The
following items are considered vital for mathematical modeling (LACHTERMACHER,
2016):

Input:
e Decision Variables.
e Parameters.
Output:
e Performance.

e Consequences.
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The consequences of these models can be observed in three different

hierarchical tiers:

e Strategical: decisions taken by the higher managementof a company,
such as investment decisions and market-share targeting. Generally
associated with long-term initiatives (years).

e Tactical: decisions taken by regular management, such as
determination of commercial partners or suppliers. Generally
associated with medium-term initiatives (months, weeks).

e Operational: decisions taken by managers and supervisors, such as
shift planning and maintenance routines. Generally associated with

short-term initiatives (days, hours).

In the tactical and operational tiers, some of the most important optimization
aspects are those related to inventory and vehicle routing. Both have a vast literature
in terms of individual control methods, but considering today’s conception of a supply
chain, it is preferred a conjoint optimization, which is proven to yield higherfinancial
and operational gains.

The denomination Inventory-Routing Problem (IRP) was established in the
1980’s, and aims to gather optimization techniques for systems that consider different
(GUIMARAES et al., 2019):

¢ Fleethomogeneity (homogenous, heterogenous).
e Resupply policies (order-up-to-level, maximum-level).
e Supplychain structures (one-echelon, two-echelon, three-echelon).

e Planning horizon (days, weeks, months).

Time-windows can play an important role in industrial and commercial
operations. These can be represented mathematically as time intervals in which
suppliers/customers are ableto service or be serviced. The Inventory-Routing Problem
with Time-Windows (IRPTW) is the result of the addition of these time-windows to the

IRP. Some practical examples are:
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e Delivery deadlines imposed by suppliers.
e Preferential delivery hours requested by customers.

e Time restrictions imposed by legal/geographical reasons.

Companiesthat act as online marketplaces usually establish pre-determined
delivery deadlines for their sales, to offer greater reliability to their customers.
Violations ofthese deadlines can lead to decrease in service qualityindicators,or even
financial losses in the form of fines or refunds.

Passenger/food delivery services also have time-windows ingrained into their
operations. Apart from the already mentioned negative impacts that violating said time-
windows can cause to their business, factors such as food perishability and
arrival/departure delays must also be considered.

Fleet management software with different degrees of complexity can be found
in the market. They often rely on the efficient communication between a complex
architecture of services sustained by a telecommunication network. These networks
mightbe based on satellites, cellphones, orthe internet, and often depend on physical
servers maintained by these companies. This infrastructure is integrated with
applications (either mobile or desktop) that allow to automatize tasks, visualize real-
time statistics, reduce operational costs, and provide more security to drivers, as
illustrated in Figure 1. (ALTEXSOFT, 2019a).
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FIGURE 1 -TYPICAL SETUP OF A FLEET MANAGEMENT SYSTEM

Typical fleet telematics setup
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SOURCE: Altexsoft (2019a)

Among the base aspects contemplated within these software are
(ALTEXSOFT, 2019a):

e Routing: improved routing decisions through the usage of GPS
systems, estimation of time losses due to traffic, and calculation of
average movement speed on streets/highways.

e Fuel:tracking of fuel consumption and hazardous emissions.

¢ Vehicularmaintenance: diagnosis, scheduling, general alerts related to
routine inspections.

¢ Fleet management: service level analysis using integrated database
systems.

e Freight control: expense reports, license control, real-time tracking of
products/vehicles.

e Security: integrated systems aid drivers duringwork, reducingrisks both

to personnel and company property.
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Examples of commercial fleet management software are shown in Panel 1
(ALTEXSOFT, 2019a):

PANEL 1 — EXAMPLES OF FLEET MANAGEMENT SYSTEMS

Characteristics Geotab Verizon Teletrac Fleetio
Direct feedback for . Detailed maintenance
dri Route replay  Non-verbal check-in
rivers management
Security Proactive
Strong points functionalities alerts Dynamic dashboards Freight control
Custom mapping
Vehicularinspection
Fuel managementsystem
alerts
Provisions YES YES YES NO
hardware?
Price MODERATE MODERATE HIGH LOW
Usability EASY MODERATE MODERATE EASY
Mobile 1 3 1 3
applications
Technical MODERATE MINIMAL MODERATE GOOD
support

SOURCE: Adapted form Altexsoft (2019b)

New technologies centered on Internet of Things (IoT) and cloud computing
enable such applications to be used in manufacturing equipment, or to be embedded
into vehicularfleets. (ALTEXSOFT, 2019a).

Another important aspect present on these applications is the optimization
methodology behind them. While commercial solutions generally have specialized
teams working towards the development of models and optimization algorithms,
crafting highly specialized solutions, open-source initiatives allow small organizations
that do not possess these same resources to employ tools on a par with the onesused
by larger companies.

Open-source projects also deflect in some manner the responsibility of
developing and maintaining software, which can lead to cost reductions, and therefore
financial gain. Such solutions are usually designed around code libraries and APls,
some of which can be used for optimization purposes.

Some examples of popularopen-source, or free to use software, are:

e Google OR-Tools: encapsulates many commercial solvers (Gurobi,
CPLEX, COIN, CBC, SBIC, CP-SAT) and provides several

mathematical interfaces for optimization. Has embedded algorithms for
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routing problems and some of their variations, such as problems with
multiple vehicles, pickup-and-delivery, and time-windows.

e Concorde TSP solver: optimization library written in C forthe Travelling
Salesman Problem (TSP). Many papers reference this library, since it
is considered one of the benchmark sources for instances and results.

e TSPLIB: open-sourcelibrary for TSP and some of its variants. Contains
algorithms for the Sequential Ordering Problem (SOP) and the
Capacitated Vehicle-Routing Problem (CVRP).

Aside from the resources mentioned above, famous commercial solvers also
publish freeware versions of their libraries for academic research.

New data extraction methods and database technologies also contribute
towards the developmentof mathematical modeling. Recentstudiesfocuson the effect
of time dependency in vehicle routing problems. Time dependency is commonly
represented as variable time travel times/costs along periods. This aspect is often
considered when dealing with routing problems under time-windows constraints.

Kok et al. (2012) study strategies to avoid urban traffic by simulating a real
urban network. Work time reduction of 87% is achieved by incorporating models that
considertime dependency in the Shortest Path Problem (SPP).

Alvarez et al. (2018) analyze the importance of considering urban traffic in
VRPs. Data from the province of Catalonia is used for testing, which shows that
mathematical models yield results around 11% better when these effects are
considered.

Belhassine et al. (2018) present results for the TDVRP (Time-Dependent
Vehicle-Routing Problem) by using data extracted from Québec city’s urban network.
Reductions of 22% in travel times are achieved, while also saving around 43 tons of
CO, emissions.

Heni et al. (2018) study new fuel consumption estimation methods for time-
dependentsystems. Factors such as downtime, average movement speed, and cargo
weight, are considered in theiranalysis.

Allthese studies map urban networks and show the impacts of time-dependent
aspects in the problems. This shows thatthese parameters can yield greater accuracy

to optimization models when appropriately employed.
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For the optimization of such complex models, several techniques and
algorithms have been proposed in the literature. Coelho, Cordeau and Laporte (2014)

present some of these techniques:

e Branch-and-bound (B&B): exact procedure used for the resolution of
most mixed-integer programming (MIP) problems, where a tree
exploration is used and sequential problems are solved, each of them
considering different branching options for integer variables (0 or 1).
This algorithm can be extended to insert various specialized
constraints duringits execution (Branch-and-cut— B&C), or even use
column generation to solve relaxed versions of the tree’s nodes
(Branch-and-price - B&P).

e Valid inequalities: constraints that are not necessary to the
mathematical formulation of problems, but whose addition can lead to
improved initial bounds forthe B&B algorithm.

e Heuristics: algorithms that are not exact in nature but usually obtain
high quality solutions in fast times. Such algorithms can be based on
local search, node interchange, assignment, etc.

e Metaheuristics: specialized versions of heuristics that often integrate
multiple differentheuristics into a single optimization framework.

e Matheuristics: integration of heuristics/metaheuristics  with
mathematical programming. Given this intricate combination of tools,

many can determine optimality through theirusage.

Not only algorithms help the optimization of integrated logistics problems.
Managerial concepts such as Vendor-managed inventory (VMI) are key to understand
why conjointdecision-making is so valuable. Archetti and Speranza (2016) show that
employinga replenishmentpolicy where the suppliercontrols the inventorylevels of its
customers can achieve operational costs up to 10% cheaperthan it would if decisions
were made individually —and this cost reduction includes their customers’ operational
costs. The scenario where each actor in the supply chain take decisions for their sole

benefitis known as Retail-managed inventory (RMI).
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The replenishment policies that VMI uses can vary between supply chains.
Some of the most known ones are order-up-to-level (OU) and maximum-level (ML).
While the first always guarantee that the customer’s inventory is full after a delivery,
the second is free to choose the amountof product to be sentto a given customer. The
choice between them will depend on factors such as the ratio between inventory
holding costs and travel costs. Extensions of these policies also exist, for instance, the
optimized-target level (OTL) policy aims to determine a custom, constant, value to be
delivered for each customer in a determined time horizon. (COELHO AND LAPORTE,
2014a).

A next step would be to incorporate inventory costs and multi-period planning
into IRPTW models. The resulting complexity will probably be high, but the potential
gains to be obtained drive the development of more efficient resolution methods for
these problems. The IRPTW is one of the problems that must deal with an increased
complexity level. Accordingto the study conductedin this project, few models integrate
vehicle and inventory control simultaneously into their formulations, usually preferring
to focus on the vehicular aspect of the problem.

This project proposes the application of a Local branching algorithm together
with other optimization tools for an efficient optimization of the IRPTW. A model
concept is elaborated, and auxiliary tools that can aid the optimization process are
described. A thorough optimization framework is tested againstbenchmark instances,

and the obtained results are analyzed for different configurations and scenarios.

1.1 MOTIVATION

In the inventory control and vehicle routing field, accurate representation of
phenomena associated with periodicity/imprevisibility, such as travel and service
times, is a great challenge. Such aspects can turn a continuous operation very
complex, requiring the optimization system to have appropriate tools and
considerations to deal with them.

This project proposes integrating the most recent routing models with the
inventory aspect, while also representing decision-making processes associated with
periodicity (when to deliver), quantity (how much to deliver), and rentability of the

supply chain as whole (mutual benefitto customers and suppliers). Impacts caused by
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the integration of time-windows into the model, which renders the model closer to real-

world applications, are highlighted in ouranalysis.

1.2 OBJECTIVES

1.2.1 Main objective

The main objective of this project is to develop an exact mathematical model
for the IRPTW, and to integrate it with a solution framework that combines valid
inequalities, pre-processing techniques, solution improvement heuristics, and a Local

branching algorithm.

1.2.2 Specific objectives

The followingitems can be highlighted as the specific objectives of this project:

e Evaluate problems that are eithersimilar or precursorto the IRPTW and
find approaches/tools that might be useful for an exact mathematical
model.

e Determine the computational efficiency of different valid inequality
groups designed around routing decisions, symmetry break, and
improved variable bounds.

e Checkthe performance of pre-processing techniques thatallow drastic
reductionsin the total number of variables and constraints usedin the
mathematical model.

e Design aLocal Branching algorithm focused on the quick exploration of
reduced neighborhoods of the search space, so improvements to the
objective function are made consistently and in a quick manner.

e Develop an initial solution heuristic capable of providing solutions that
are good and obtainable in fast times, to trigger the execution of the
Local branching algorithm as quick as possible.

e Compare the results obtained by our solution framework with

benchmark results from the literature.
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1.3 LIMITATIONS

One meaningful limitation for project is the extensive variety of approaches
and interpretations given to the IRPTW in the literature. This leads to papers
considering different objective function compositions, constraints, and even variables
between models. This restricts the benchmarking thatcan be made between models,

since few of them share enough similarities to warrant numerical comparisons

1.4 STRUCTURE

This dissertation is structured as follows.

Chapter 2 contains an adaptation of the published version of the paper entitled
A local branching algorithm for the inventory-routing problem, which was submitted
and accepted by the International Journal of Production Research (IJPR), and thatis
available at https://doi.org/10.1080/00207543.2021.1998696. This paper presents a

methodologyto solve the IRPTW exactly usingamathematical model that is integrated

with tools such as differentvalid inequality groups, pre-processingtechniques, solution
improvement heuristics, and a Local branching algorithm.

Chapter 3 presents the conclusion and final remarks about the matheuristic
algorithm proposed by this project.
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2 METHODOLOGY

This chapter presents the resulting scientific paper of this research project. It

is titted A local branching algorithm for the inventory-routing problem with time

Windows, and it was accepted by the International Journal of Production Engineering

(JPR).

This adapted version of the paper was originally written by:

Bruno Eckwert Demantova, UFPR (PPGOLD). Conceptualization,
software implementation, validation, and writing.

Cassius Tadeu Scarpin, UFPR (PPGOLD). Conceptualization,
validation, and writing.

Leandro Callegari Coelho, Universitt Laval (CIRRELT).
Conceptualization, validation, and writing.

Maryam Darvish, Université Laval (CIRRELT). Conceptualization,

validation, and writing.

2.1 ABSTRACT

The Inventory-Routing Problem (IRP) deals with the joint optimization of

inventory and the associated routing decisions. The IRP with time windows (IRPTW)

considers time windows for the deliveries at the customers. Due to its importance and

several real-world applications, in this paper, we develop an intricate solution algorithm

for this problem. A mix of tools ranging from established groups of valid inequalities,

pre-processing techniques, local search procedures, and a local branching algorithm

is utilized, in order to efficiently solve the IRPTW. We compare the performance of our

algorithms over a benchmark set of instances and show how our solution algorithm

provides very promisingresults. Moreover, the results of ourstudy provide an overview

of the performance of several already proposed techniques and theirintegration in the

literature

2.2 INTRODUCTION
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Introduced in the seminal paper of Bell et al. (1983), the Inventory Routing
Problem (IRP) is an important optimization problem in which the inventory control
vehicle routing decisions are integrated. Therefore, the main objective of the IRP is to
minimize the total inventory and distribution costs. To date, several extensions of the
IRP have been proposed in the literature (COELHO et al., 2014), including variations
of the number of periods, number of suppliers and customers in the supply chain, type
of routing considered, and vehicle fleet composition (ANDERSSON et al., 2010).
Furthermore, with the recent interest in sustainable supply chains, growing attention
hasalso been given to sustainabilityconcernsin the IRP (SOYSAL etal.,2019). These
studies include several aspects of sustainability such as in perishable products
(SHAABANIAND KAMALABADI, 2016), reverse logistics (SOYSAL, 2016), emission
reduction (DARVISH et al., 2019), among others.

A typical application of the IRP and its variants is in the city logistics
(BERTAZZI et al., 2019). Application of this problem to several real-world city logistics
situation imposes additional constraints of delivery time windows, e.g., in retail delivery
every retailer has a preferred time interval to be visited (REPOUSSIS AND
TARANTILIS, 2010). This gives rise to an important variant of the IRP, which is the
IRP with Time Windows (IRPTW). Unlike the Vehicle Routing Problem with Time
windows (VRPTW) which has been thoroughly studied (PARASKEVOPQOULQOS et al.,
2008) and for which several problem instances are available (see TOTH AND VIGO
(2014)), there are a few studies proposing exact methods for the IRPTW.

This paper proposes an exact algorithm for the IRPTW. We considera single
product and a homogeneous multi-vehicle fleet setting. Given the importance of
greenhouse gas emission reduction in cities, the objective of our problem is to minimize
the distances traveled, which eventually leads to less fuel cost and emissions.
Moreover, we study the effectiveness of groups of valid inequalities, pre-processing
techniques, and an initial solution heuristic. In order to improve the solution quality for
bigger and more complex instances, a local branching algorithmis proposed. All tests
are conducted on benchmark instances from the literature.

The paper is organized as follows: Section 2.3 overviews the literature on the
IRPTW and local branching. Section 2.4 presents our problem definition. Section 2.5
presents the formal mathematical model of the problem along with several valid

inequalities and symmetry breaking considerations. Section 2.6 presents the solution
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algorithm. Section 2.7 contains the results of extensive computational experiments,

and Section 2.8 provides the conclusions and final remarks.

2.3 LITERATURE REVIEW

We now review the relevant literature for the IRPTW in Section 2.3.1 and for

the local branching algorithm in Section 2.3.2.

2.3.1 Inventory-routing problem with time windows

Several heuristics approaches are proposed in the literature to solve the IRP
and IRPTW (KHEIRI, 2020), here we focus to the exact methods and modeling efforts.

Liu and Lee (2011) develop an enhanced model for the IRPTW, where a
suppliermustserve a set of customers under softtime windows. The concept of order
cycle time to determine the periodicity of deliveries is used. A two-stage meta-heuristic
is proposed, obtaining an initial solution and then improving it by means of a local
search algorithm combined with a tabu search procedure. The authors use adaptations
of the instances proposed by Solomon (1987), providing exact solutions for smaller
instances and heuristic solutions for the larger ones.

Li et al. (2014) use a mixed integer programming model with a tabu search
algorithm and lagrangean relaxation techniques to solve an IRP model with the
objective of minimizing total travel time. Exact solutions for small instances are
presented, while larger ones are solved using both relaxation techniques and a meta-
heuristic.

Lappas, Kritikos, and loannou (2017) solve a model containing a set of
customers with hard time windows, a single product, a homogeneous fleet, and an
order-up-to-level (OU) policy for deliveries. A two-phase meta-heuristic is proposed,
which determines the periodicity and quantities of productdelivered, so a local search
algorithm can be employed to determine the best routing. The results are evaluatedon
a set of instances created by the authors.

The time-constrainedinventory routing problem (TCIRP) is a studiedin Lefever
et al. (2019) where the travel time on each arc is uncertain. The authors develop a
Benders decomposition-based heuristic and describe several valid inequalities for the

IRP. They test the efficiency of theirapproach on a set of benchmark instances.
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A two-echeloninventory routing problem is modeled in Farias et al. (2020) and
solved using a two-step matheuristic. The authors create a new set of benchmark
instances. They show the efficiency of the proposed approach and the introduced valid

inequalities on the created instances.

2.3.2 Local branching

As presented by Fischetti and Lodi (2003), the local branching method
explores restricted regions from the problem’s search space. The goal is to find
improvements in the objective function while guaranteeing that previous explored
spaces are notrevisited.

Hansen et al. (2006) propose an extension of the local branching with the
incorporation of a variable neighborhood search (VNS). Considering even smaller size
neighborhoods than the ones proposed by Fischetti and Lodi (2003), They use the
VNS as a local search tool and also utilize several neighborhoods to promote the
diversification of the currentone.

The application of local branching to the capacitated fixed-charge network
design problem studied in Rodriguez-Martin and Salazar-Gonzalez (2010) clearly
outperforms other heuristics proposed in the literature.

Yu et al. (2016) solve a robust gate assignment problem using a local
branching framework, comparing its performance with three other exact solution
algorithms, including diving and relaxation induced neighborhood search.

To solve the open pit mine production scheduling problem, Samavati et al.
(2017) combine local branching with an adaptive branching scheme. Tests conducted
on the benchmarkinstancesfrom the literature show thatthe method outperforms both
the Branch-and-Cutand Lagrangian relaxation techniques.

Hernandezetal. (2019) propose a local branching matheuristicto solve a VRP
with stochastic demands. This matheuristic employs an intensification procedure at

each node of the local branching tree, which is embedded in a multi-descentscheme.

2.4 PROBLEM DESCRIPTION

The problem is defined as follows. Considergraph G = (V, A), where V = {0,...,
N + 1} isthevertex setand A ={(i, j) :i,j € V,i #]} is the arc set. Vertices 0 andN + 1
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represent the depot location, being0 the starting pointof vehicleroutesandN + 1 their
ending point. SetV is partitioned as follows: V' = {0, ..., N}, V'={1, ..., N+ 1}, and C =
{1, ..., N}. For each periodt € T = {1, ..., T}, each customer must satisfy a known
demand

df while holding a maximum inventory capacity of U,, such that potentially
df > U,. The inventory is controlled by an order-up-to-level (OU) policy, i.e., whenever
a delivery occurs, the quantity must be enough to maximize the customer’s inventory

at the end of the period. Each arc has a travel cost ¢;; and a travel time ¢;;, both equal

n
to the Euclidean distance between points jand j. Whenever a customer is served by a
vehicle, the delivery must start within a specific time window, from E; to L;. Service
duration is denoted s;. Vehicles from a set k = {1, ..., K} may visit each customer only
once per period and can carry at most Q units.

In order to ensure cyclic operations and to avoid the end-of-horizon effect, all
customers start with full inventories at the first period and must have their inventories

replenished during the lastone.
2.5 MATHEMATICAL MODEL

The variables used in our model are as follows. Binary variable y{‘f is equal to

1 ifarc (i, j) is traversed by vehicle kduring period t, 0 otherwise. Binary variable z/t is
equal to 1 if vertex i is visited by vehicle k during period t, 0 otherwise. Variable gkt
represents the quantity delivered to customer j by vehicle kduring period t. Variable I}
is equal to the inventory level of customer  at the end of period t. Variable u¥* denotes

the time that vertex i starts being served by vehicle k during period t. The model
presented here is based on that of Lappas, Kritikos, and loannou (2017). Table 1

provides a summary of all parameters and variables used.
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Sets

V={0,.,N + 1} Set of vertices

C={1,..N} Set of customers
V' ={0,...,N} Set of vertices excluding the supplier's return node
V'={1,..N + 1} Set of vertices excluding the supplier's origin node
k={1,.,K} Set of available vehicles
t={1,.,T} Set of periods
Parameters
Cij Travel cost of arc originating at/ and ending at j;
tyj Travel time of arc originating at/ and ending atj;
I Initial inventory of supplier/customer i;
U; Inventory capacity of customer ;
Q Vehicle maximum capacity;
df Demand of customeriduring t;
s Service time of customer ;
E; Opening time of customer ;
L; Closing time of customer /.
M;; Big M parameter calculated foreach iand j combination
Variables
yl'kjt Binary variable equal to 1 if arc ij is traversed by vehicle k during period t, 0 otherwise;
zik‘ Binary variable equal to 1 if vertex i is serviced by vehicle k during period t, 0 otherwise;
xikt Quantity of product delivered to customer i by vehicle k during period £
1} Inventory level of supplier/customeriat the end of period ;
u{“ Time at which service starts for customeri by vehicle k during period t.

SOURCE: The Author (2021)

2.5.1 Mixed-integer linear programming formulation

The IRPTW model is described as follows.

minW=z Z Z ¢yt

tet(i,j) e Ak e kk<i,j

Subject to:

Wi+ d)zf' = 17" <qf* < Ui+ d))z"

i

ieCkexk<i,tet

(1)

(2)

)
(4)
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Zq <QZ t kexk<itert (5)
iec

Zy(’)‘]t—z(’)‘t, kexk<jter (6)
jeEC

zylcl\f+1—ZN+1,kEKk<lt€T )
iec

Z yl’jt zF, ieCkexk<ijter 8)
jev

Z yU Z y}‘it,iEC,kEK,kSi,j,tET ©)
]EV ]EV

ult + s, +tUSukt+MU(1—y{‘jt), LjEV,k€Exk <ijVteT (10)
EzF <uft <LzFieCkexk<itenr (11)
Z zFt <1, ie(Cter (12)
kex,k<i

IF'=U,i€ecC (13)
qFte Z*, ieCkexk <itert (14)
ut eRY, ieV,kexk<itert (15)
IfeZ*ieC,tet (16)
zFtef{0,1}, ieV,kexk<itert (17)
vif€e{0,1}, ieV',jev'kexk<ijter (18)

The objective function (1) minimizesthe total distance traveled by the vehicles.
Constraints (2) ensure inventory conservation forthe supplierand the customers. For
the initial period, I? = U,. Constraints (3) - (4) impose a maximum inventory level to
each customeranddictate an OU policy. In thiscase, itis necessary to add the demand
into these constraints, so that df > U; can be held. Constraints (5) limit delivered
quantities to respect the capacity of the vehicles. Constraints (6) - (9) are vehicle
routing constraints, establishing the required relationships between routing and
assignmentvariables. Constraints (10) prevent subtours whileimposingthatall visiting
times must be consistent with the respective travel times between arcs and service
times at customers. Constraints (11) forbid any customer to be visited outside their

time windows. Constraints (12) forbid split deliveries. Constraints (13) ensure that all
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customers are serviced during the last period. Constraints (14) - (18) impose the
domain and nature of the variables.

Note that symmetry breaking considerations are embedded in all applicable
constraintsets. These considerationsensurethatvehicle k + 1 will only visita customer
if vehicle k is also used in the period. This formulation helps reduce the number of
variables and constraints generated when compared against the model of Lappas,

Kritikos, and loannou (2017), especially when dealing with large instances.

2.5.2 Symmetry breaking and valid inequalities

The first group of valid inequalities is related to the IRP with multiple vehicles,

and is adapted from Coelho and Laporte (2014a,b):

yib<zM, jeCkexk<jter (19)
<zl jeCvkexk<ijter (20)
zkt<zK, ieCU{N+1}kexk<iter (21)
z8t =z, kextenT (22)
zKE < zk 1, kew\{1}t€eT (23)
L
zFE <y zk U e O\{1},k ex\{1},k<i,j t €
K< ) ozfn, , k<ijtert (24)

j=1

Valid inequalities (19) enforce that if the supplier is the immediate successor
of a customer, then both, the supplierand the customer, must be visited by the same
vehicle. Inequalities (20) establish relationships between arc usage and delivery
assignmentvariables. Inequalities (21) state that a customer can only be served by a
vehicleif it has left the depot. Inequalities (22) reinforce the relationship between the
two depot designation variables. Inequalities (23) and (24) are symmetry breaking
constraints. They ensure that a vehicle k cannotleave the depot if vehicle k-1 is not
yet used. This is extended to customer vertices, so that if customer j is assigned to
vehicle k in period ¢, then vehicle k — 1 must serve a customer with an index smaller
than jin the same period.

An extra group of symmetry breaking inequalities are added, stemming from

Coelho and Laporte (2014b), constraints (25) state thata customer with a higherindex
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is assignedto a vehicleonlyifall the previous customers are already assignedto lower

index vehicles. The extreme case is that each customer is assigned to one vehicle.

i
k(zk10) < Z 21 e C\{1} ke (LK} k< ijteT (25)

j=1

As a result, customer j can never be visited by a vehicle with an index greater
than i. Thus, we can significantly reduce the number of variables used in the model.
Another group of valid inequalities is derived from Lefever (2018) and are used to
estimate delivery occurrence and to strengthen the bounds of inventory control
variables. Two new parameters must be introduced, known as residual inventory (I_io't)
and residual demand (df) (DESAULNIERS et al., 2016). The residual inventory is the
remainingofinitialinventory (I?) at each customer in period ¢, and the residual demand
is the amountof demand that exceeds each customer’s initial inventory. As shown in
equations (26) — (28), both parameters vary over time. While the residual inventory
decreases until it reaches zero, the residual demand increases to a maximum of df

units per period.

t
I_io't = max {0, 1P — Z dis}, iEC,tET (26)
s=0
d} < max{0,d}! —1°},i€C (27)
df = max {0,df — """}, i € C,t € T\{1} (28)

Inequalities (29) determine a lower bound for the number of vehicles to be

used in order to satisfy the residual demand of a given period.

tET (29)

Yie cZ§=1d_fl
Q

Desaulniers etal. (2016) also employ a set of inequalities thatrevolves around
the minimum number of sub-deliveries per period. For each customer and period, the

authors separate the remaining periods in two sets: periods in which a delivery is
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enough to satisfy the demand of period t (t},), and periods that do not satisfy this
condition (t;;). Let us consider 6}, indicating if at period ¢, the inventory level at
customer i after the delivery is made at period s is positive. If a given customer has a
residual demand higherthan zero in ¢, the set tf, is non-empty. The elements of this
set can be determined by analyzing which periods s < t can receive a sub-delivery to
guarantee a residual demand equal to zero in t. If a sub-delivery results in a non-
positive residual demand, parameter /¢ is equal to 1. This parameter is then usedin
constraints (30) and, every time the left-hand side of the equation forms a non-empty

set, the corresponding inequality is added to the model.

t
z Z 2595 > 1i€C,tet (30)

s=1 kexkk<i

Since customer inventories might not be empty during the initial periods,
constraints (31) and (32) can be used to tighten the bounds of the inventory control

variables. An adaptation is doneto constraints (32), so theytake into accountdemands
higherthan customer’s holding capacities.

]

II>r"iecter (31)

Z qS U, - +dliecC,ten

(32)
k exk<i

Considering time windows for each customer leads to several paths in the
original graph to become infeasible. Having this information in advance enables us to
pre-process the graph and eliminate these infeasible paths a priori. Ascheuer et al.
(2001) describe a technique which allows tightening time window parameters and by
eliminating any infeasible arcs. We apply it to the IRPTW as follows.

Given a reference vertex i, in cases where the earliest service time leaving
from other vertices is later than E;, or the minimization of waiting times in i can be
achieved by shifting the original E;, the tightening of the vertex opening time window is
possible. If the earliest service time possible for vertex i when leaving from other
vertices is earlier than L, or the latest possible arrival time at a successor vertex of i

allows departures earlier than L, the tightening of the vertex closing time is viable.
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Algorithm 1 describes the calculation steps used for the pre-processing of Ej,
and L,. First, all arcs leading to customer h are evaluated in order to check if the
earliest arrival time possible is higherthan the original E;, which leads to an increase
in E,,. Then, all arcs leaving from h are evaluated in order to see if waiting times on the
vertex can be minimized, if possible, resultingin a furtherincrease of E,. Similarly, all
arcs leadingto h are analyzedin order to identifyif the latest possible arrival times from
these vertices are lower than L. Next, the latest possible arrival times in jleaving from
h are consideredand, if a valid valuelowerthan L, is found,the current parameter has
its value updated. If changes are made to any of the parameters, another execution is

triggered, recursively tightening the time windows of the vertices.

ALGORITHM 1 — Time-windows Tightening (TWT) calculation steps

1 repeat +— true;

2 while repeat = true do

3 repeat = false;

4 for h in O do

5 t1 +— L, ta + Ly, tg « 0

a for i in C U {0} do

T if E; +s; +t; =ty then
8 | t1 = Ei + si + tik;

o

end
10 end
11 Ey = maz(En, t1);
12 for j in CU{N + 1} do
13 if E; —tn; = ta then
14 | t2= El-'J- — th4;
15 en
16 end
17T ta = min(Ln, ta);
18 Ey = maz(Ey, ta);
18 ty — 0, tg +— 0,5 +— Ej;
20 for i in C U {0} do

if L; +5; +t;p = t1 then
| t1 = Ei+ si + tik;

23 end

24 end

25 ta = max|{En, t1);

26 Ly = min(Ly, ta);

27 for j in CU{N +1} do
28 if L; —tp; = tg then
20 | f3=ﬁj—fh_f:.

30 en

31 end

32 Ly = min(Ly, t3);

33 if Ey or Ly was changed then
34 | repeat = true;

a5 end

38 end

a7 end

SOURCE: The Author (2021)
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As afinal step, anyarc that violates time windows sequencingrulesisremoved
from the model. This is done by checking, for all valid y{‘f in the problem, if E; + s; +
t;j <L;. In other words, if a vehicle cannotreach jon time to respect the time windows
constraints,then, the correspondingarcis notfeasible, and is, therefore, removed from
the problem.

Algorithm 2 contains the final steps of the procedure, which dictates the
removal of any identified infeasible arcs in the problem. The calculation is done by
simply analyzingifthedestination’s L;islower than the earliest departure time possible
from i. If thatis true, then the arc is set as infeasible and removed from the problem’s

graph.

ALGORITHM 2 — Unfeasible arc removal steps

1 endTWT + false;

2 while endT'WT # true do

3 endl WT = true;

4 while All ares haven't been evaluated do
5 if £+ s; +tij> L;j then

6 | Are (i, ) is infeasible and therefore removed from the model;
T end

8 end

9 it Any arc was removed then

10 | endTWT = false;

11 end

12 end

SOURCE: The Author (2021)

It is important to note that the time-windows tightening and arc removal
(TWT/AR) can be repeated until no more changes are possible, creating each time a

smaller and tighter model.

2.6 SOLUTION ALGORITHM

Our algorithm contains three main steps. First, an initial solution procedure
creates the first feasible solution, described in Section 2.6.1. Then, a local branching
framework is used to control and diversify the search procedure, as presented in
Section 2.6.2. A solution improvement procedure based on local search is used to
polish feasible solutions, as presented in Section 2.6.3. Finally, in Section 2.6.4, we

describe how these building blocks are combinedto create a comprehensive algorithm.
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2.6.1 Initial Solution Heuristic (ISH)

In order to find an initial solution for the problem, we propose a heuristic: initial
solution heuristic (ISH). The goal is to determine the customers to be visited at each
period and theirassociated routes. The heuristicalgorithmconsists of two phases. The
first phase determines a basic delivery schedule for the customers and the associated
routes. In this step, a feasible solution is created. The second phase improves the
routing decisions by solving individual VRPTW sub-problems for each period.

In the first phase, all customers are sorted in an increasing E; order, and, for
each period, deliveries are assigned to customers facing stock-out, i.e., whenever
171 — df < 0. A cheapest insertion procedure is applied to determine the vehicle
routes (for a maximum number of K routes). This step is done concurrently with the
evaluation of possible time windows and vehicle capacity violations.

Another reason to use this heuristicis to estimate the required number of
vehicles. The number determined by the first phase (n,,) is used to reduce the size of
some models in our procedure. It causes sub-problems to become less complex and
enables more nodes to be explored in a limited time.

Although this heuristic can quickly provide feasible solutions, their quality can
be refined using other tools, motivating a second phase to improve the solutions. It
consists of solving a VRPTW for each period, further improving routing decisions
previously made by the best insertion criterion. Given the original sets V and C, two
new sets V, and C, can be generated by considering only the nodes included in the
sub-problem per period. Sets k, can also be established, containing only the vehicles
used by the first phase of the ISH for each corresponding period. A VRPTW is then

solved for each period.
2.6.2 Local branching

The exact framework presented here is based on Fischettiand Lodi (2003). In
order to show how the local branching method is structured, consideran optimization

model as follows:

min c”xj (33)
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Ax > b (34)
x; €{0,1},VjEL + 0 (35)

This model showcases a minimization problem containing a set of binary
variables x;. Given a reference solution X and a binary support group S={eB: Xj =

1}, an a—opt neighborhood can be established with the use of a branching constraint:

Alx,x) = Z(l — xj) + z X;<a (36)

jes JEB\S

Constraint(36) restricts the search space to an a-sized neighborhood, allowing
a maximum of a changesin the binary variable set. An optimization problem can be
generated from this reduced search space, possibly leading to new upperbound (UB)
improvements in much less time. After a given neighborhood is fully explored and a
new optimal solution is found, constraint (36) can be turned into (37), removing the

previously explored search space from future branching steps.
Alx,x) = a+1 (37)

After a restricted neighborhood is thoroughly explored in local branching, the
previous left-hand side branching constraint is transformed into a right-hand side
constraint, effectively changing the solution space considered during the creation of
the nextbranching step.

For our IRPTW, an algorithm based on the classic framework proposed by
Fischetti and Lodi (2003) is developed. The mathematical model considered by the
local branching algorithm is the same described in Section 2.5 with the following
differences. In order to better take advantage of problem-specific properties, only
delivery assignment binary variables (z[*) are fixed in the branching constraints.
Therefore, it leaves variables related to arc usage (y{j-f) free during optimization. Given

UB;

an initial solution and an initial upperbound (x mic)» @ first a—opt neighborhood,

init»
corresponding to a left-node of the local branching tree, can be generated and
optimized, providing a new current incumbent solution and a new UB for the problem

(X oyrrs UBoyrr)- If this new incumbent solution is better than all previously obtained
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solutions, it is deemed as (x,,.., UB,.s ) If an optimal solution is found for the given
search space, the leftnode constraint can be reversed into a right-node one. These
steps can be repeated indefinitely until a pre-determined ending condition is met.

In ourimplementation, left-nodes are optimized with a solution limit (s;), which
implies that execution is aborted after several incumbent solutions are found. Since
this leads to the a—opt neighborhood not being fully explored, the reversal of the left
node constraintinto aright-node one is notexact. Therefore, the previously generated
left-node is transformed into constraint (38), which excludes the previous solution from

the next sub-problems while still considering any previously unexplored regions.

A(x,x) =1 (38)

Details of ourimplementation are shown in Algorithm 3. An initial solution x;,,;,,
associated to an initial upper bound (UB,,;;), and the pre-determined number of
vehicles n, are fed to the algorithm, which allows left-nodes with an inital
neighborhood size of a;,,; to be optimized until a time limit of ¢/,,,, is reached or a new
incumbentsolution isfound. It should be noted that even if the conventional goal of the
method is to quickly reach optimality at left-nodes, in this framework, reaching
optimality means that no improved solutions can be found. Hence, the current
neighborhoodis altered for furtheroptimizations, havingits size permanentlyincreased
by a value of a,,,. This size change procedure is also exploited when the left-node
time limitis reached, dynamically changingthe left-node time limitand parameter a ,,, .
Parameters time and time;,, track the overalltime spentin the local branchingalgorithm
and the time spent in the innerloop, respectively, while parameter node tracks how

many left-nodes are executed.
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ALGORITHM 3 — Local branching framework optimization

1 Local branching(#l, tli- e, tlin, nlin, ®ini, Gaur, Tinie, nE, div);
2 Thest ¥ Teurr ¥ Tinit;

3 L'I-Ebcsf — L'r-B-e:rJvr' — L'I--Binz'i;

a time + 0, timein + 0, node « 0, diversify «+ 0 ;

s while timein < tlin, node < nlin and diversify < div do

6 create left branching constraint using r .., ng and o;
T optimize left-node for tlin — timen;

8 if termination due to solution limit reached then

g reverse last branching constraint into Az, 7) = 1;
10 update (Teurr, U Bewrs);

11 if new best solution found then

12 | update (Zpess, U Bpes);

13 end

14 end

15 if termination due to optimality then

16 remove the last branching constraint;

17 0= 0+ Qigyr}

18 end

19 if termination due to time limit then

20 remove the last branching constraint;

71 fix all variables from the considered binary set and refine the solution;
22 0= & + Qguz)

23 Xaour = Eﬂau::-

24 ﬂ:,,,fg = 2tl;. Fi

25 diversify = divers=ify + 1;

26 if diversify = div then

27 | mnode = nlin;

28 end

28 end

30 update time and time;,;

31 node = node + 1;

32 end

sz remove all previously added branching constraints;
34 optimize right-node for ¢ — #ime;

35 update time;

ze 1f termination due to optimalify then

a7 add all vehicles back to the model’s formulation;
38 optimize right-node for tl — time;
38 end

a0 return (Tpes, U Bhes )

SOURCE: The Author (2021)

In summary, our local branching algorithm takes the base ideas of the original
approach proposed by Fischettiand Lodi (2003) and implements an aggressive node
exploration strategy, which results from the solution limit imposed on each sub-
problem. This idea leads to more left-nodes explored per run and steeper UB
improvements.

Finally, it should be noted that the algorithm proposed here is exact, just as
the original one. What ensures optimality is optimizing the right-branch of the local
branchingtree, which correspondsto the complementary search space of the problem.
As long as this final sub-problemis fully optimized, optimality is guaranteed. The fact

that we do not explore entire left-node branches due to the imposed solution limitdoes
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not affect the method’s functionality, since constraint (38) only removes the current

solution fromthe next sub-problems, and notany additional feasible ones.

2.6.3 Solution improvement algorithm

A solution improvement procedure (Sl) improves any new incumbent solution
identified by the model. Based on the algorithm presented by Archetti et al. (2012) and
further developed in Guimaraes et al. (2019), a MIP sub-problem is solved using
customer insertion and removal costs for all routes presentin the solution, but without
using arc and assignment variables. While variables I} and x¥* remain unchanged,
routing variables are replaced by variables f/** and g/, representingwhethercustomer
i is removed from or inserted into route k in period f, respectively. The maximum
number of changes that a route can go through is fixed to one, which leads to exact
removal/insertion costs, represented by parameters a¥* and b¥*, respectively. This
sub-problem is always generated upon a reference solution that can be recursively
optimized, generating new reference solutions, until no more changes can be made to
the neighborhood. The parameters and variables used by the model are described in
Table 2.

TABLE 2 — NOTATION USED IN THE SOLUTION IMPROVEMENT MODEL

Parameters
aft Removal cost of customer i from route k in period t,
bkt Insertion cost of customeriinroute k in period t;
t Binary parameter equal to 1 if customer i is in route k in period t in the original solution, 0
T otherwise;
Variables
fkt Binary variable equal to 1 if customer i is removed from route k in period ¢, 0 otherwise;
gkt Binary variable equal to 1 if customer i is inserted to route k in period t, 0 otherwise;

SOURCE: The Author (2021)

minZ = — Z Z Z aktfkt +Z z z bkt gkt (39)

tetkexieC tetkexieC

Subiject to (4) and to:
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qlt > U+ d) (k= flt+gkt)ieCkexk<iter (40)
gt < U+ dd) (k= +gkt)ieCkexk<iter (41)
gt < U, (rFt = fFt + gkt),ieCkexk<iter (42)
git<1-rMieCkerxk<iter (43)
fk<rkieckerxk<iter (44)
Zfikt+2g{‘tgl,k6ic,k£i,t€r (49)
iec leC

Zq{‘tsQ,ke:c,kSi,teT (46)
iec

Zg{“sl,iec,ta (47)
iec

flte{o1}ieCkenk<iter (48)
gitefol}ieckexk<iter (49)
qfte Z*,ieCkexk<iter (50)

The objective function (39) minimizes routing costs. Constraints (40) — (42)
impose the OU replenishmentpolicy. Constraints (43) guarantee that only customers
who are not visited can be added to routes. Constraints (44) state that only customers
who are visited can be removed from theirrespective routes. Constraints (45) limit the
maximum number of changes per route, guaranteeing that all insertion and removal
costs are taken into account. Constraints (46) ensure that vehicles’ capacities are not
violated. Constraints (47) prevent a customer from being added to multiple routes.
Constraints (48) — (50) are domain and nature related.

The main differences between the formulation of the Sl algorithm described
here and the original formulation are as follows. Firstly, the symmetry breaking
considerations are adapted to the problem, represented by the limited ranges of index
k in the constraintsets. Secondly, to avoid infeasible and worse solutions throughout
optimization, callback functions are employed to analyze all incumbent solutions,
optimizing traveling salesman problem with time windows models for each route,

consequently identifying and removing infeasible solutions

2.6.4 Solution framework
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The optimization tools presented in this paper are organized and combined as
follows. The TWT/AR procedures are executed to adjust customer time windows to
tighter intervals and remove infeasible arcs. The ISH is used to provide an initial
solution. These steps yield a polished initial solution, which is then fed to the local
branching algorithm. The SI algorithm is applied, and the number of vehicles n, is
verified. Each time a new incumbent solution is found by local branching, the Sl
algorithm s executed recursively, furtherimproving the solution. Whenever one of the
preset diversification parameters is reached (innerloop time limit, innerloop node limit,
or diversify parameter), a rightnode is executed. If an optimal solution is obtained from
this right node, the number of vehicles returns to its original value, and a problem,
equivalentto the original one, is optimized. Any lower bound values obtained durng
this step will be valid for the original problem since this version of the right-node is
equivalentto the original IRPTW.

2.7 COMPUTATIONAL EXPERIMENTS

This section describes how the proposed improved local branching algorithm
performs. All tests are run on an Intel Core i7-4790 CPU with 3.60GHz cores and 32
GB RAM. The algorithmis implemented in C++, and Gurobi is used as the MIP solver.
A limit of fourthreads is set, and both tests, with and withoutlocal branching, have a
maximum time limit of 7200s. First, tests are performed considering only the original
model described in Section 2.4. These tests aimed to determine the computational
gains of applying the valid IRP inequalities and the TWT/AR procedures. The results
of these initial tests are used to tune the local branching parameters and the overall

algorithm framework.

2.7.1 Test Instances

Instances created by Lappas, Kritikos, and loannou (2017) are based on the
benchmark VRPTW instances of Solomon (1987) with the addition of IRP-related
parameters, such as demands for each period, customers’ holding capacities, and
service times. The Solomon (1987) problem classes differ with respect to the
disposition of the customers and the supplier: ‘C’ contains clusters of vertices, ‘R’

distributes them randomly, and ‘RC’ uses a combination of the two. The first number
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after each letter (‘1" or ‘2’) indicates the instance sub-class, and the next two ones
indicate the time length of the customer time windows: in this case, the value ‘01
indicates small time windows considered in all the original instance sets. Three
differentsupply chain sizes are considered: 25, 50, and 100 customers. An instance
example is ‘IRPTW C101_n25 p6’, which considers 25 customers separated in
clusters under small-sized time windows. All instances have six time periods.

Lappas, Kritikos, and loannou (2017) consider an OU replenishment policy
and demand values that can be higher than a customer’s inventory capacity. All
customers start with full inventories at the first period and must have their inventories
replenished during the lastone to create a closed order cycle. The supplier's inventory
flow is also not considered in their formulation, meaning that the supplier's initial
inventory is sufficientto serve all customers during the planning horizon.

To ensure feasibility is guaranteed, the number of vehicles must be equal to
the number of customers so that in the worst-case scenario, each customer is served
by one vehicle,i.e., K =N, which leads to a very large model.

To test the limits of our methods, we also generate larger instances with 9 and
12 periods following the same patterns used in Lappas, Kritikos, and loannou (2017).

These instances and detailed results are available upon request.

2.7.2 Results and analysis

Here, we first show the effectiveness of the methods proposed in the literature
to decrease the computational time to solve the problemin Sections 2.7.2.1 and 2.7.2.2
and then analyze the results obtained by our proposed local branching algorithmin
Section 2.6.2.

2.7.2.1 Original model with TWT/AR

First, we analyze the gains provided by the TWT/AR procedures described in
Section 2.6. Table 3 showsa comparison between the numberof arcs before and after
the model’s pre-processing. Here, we show the number of iterations for the recursive
algorithm and the number of changes made to the opening or closing times of the
customers. The results between instances vary, and in some cases, no changes are

made. Since these instance sub-classes (‘01’ and ‘02’) consider the smallest size time
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windows, not many overlaps occur between them. When changes occur, they are
usually related to those customers who have early opening times due to the suppliers
operation hours. This finding indicates the importance of exploitinga more powerful

solution algorithm.

TABLE 3 - CHANGES MADE TO THE MODEL BY THE TWT/AR PROCEDURES

TWT AR
Instance
Cycles Executed Changes Original Final %

IRPTW_C101_n25_p6 2 2 109350 50250 45,95%
IRPTW_C201_n25 p6 1 0 109350 57150 52,26%
IRPTW_R101_n25_p6 2 1 109350 37650 34,43%
IRPTW_R201_n25 p6 2 1 109350 63750 58,30%
IRPTW_RC101_n25_p6 2 1 109350 45600 41,70%
IRPTW_RC201_n25 p6 2 1 109350 64350 58,85%
IRPTW_C101_n50_p6 2 4 811200 365700 45,08%
IRPTW_C201_n50_p6 1 0 811200 417600 51,48%
IRPTW_R101_n50_p6 2 2 811200 258000 31,80%
IRPTW_R201_n50_p6 2 5 811200 471300 58,10%
IRPTW_RC101_n50_p6 2 5 811200 265500 32,73%
IRPTW_RC201_n50 p6 2 1 811200 464400 57,25%
IRPTW_C101_n100_p6 2 8 6242400 2707200  43,37%
IRPTW_C201_n100_p6 2 2 6242400 3193800 51,16%
IRPTW_R101_n100_p6 2 4 6242400 1998600 32,02%
IRPTW_R201_n100_p6 2 9 6242400 3612000 57,86%
IRPTW_RC101_n100_p6 2 9 6242400 2243400 35,94%
IRPTW_RC201_n100_p6 2 8 6242400 3610200 57,83%
Average 1,89 3,50 2387649,96 1107025 47,01%

SOURCE: The Author (2021)

The last three columns show the number of arcs presentin the original model,
the number of removed arcs during pre-processing, and the percentage of remaining
arcs at the end of the process, respectively. The number of original arcs is always the
same for each instance size since all instances contain the same number of vertices
(N + 2), vehicles (K = N), and periods (T). This step of the algorithm produces more
evidentgains,with an average arc removal rate of 53%. This step substantially reduces
the model size and the solver's pre-processing time, which is essential to optimize a
larger number of nodes of the local branching tree.

It can then be confirmed thatthese pre-processing tools result in an enhanced

model, which isused in all furthertest configurations.
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2.7.2.2 Enhanced model with validinequalities

First, we used the mathematical model with no valid inequalities, pre-
processing techniques, and initial solution heuristic, forwhich we obtained low quality
solutions. Moreover, no solutions can even be obtained within the time limit for several
medium and large-size instances.

Tests are executed with differentvalid inequality configurations to analyze the
computational gains of applyingthem together with symmetry breaking constraints, the
pre-processing techniques, and the ISH. In total, three different configurations are
used: Coelho and Laporte (2015) + Coelho and Laporte (2014) valid inequalities (19)
— (25), Lefever (2018) valid inequalities (26) — (32), and all valid inequalities. In order
to facilitate the attainment of the first lower bound, with which the solver can work and
start exploring the branch-and-bound (B&B) tree, all valid inequalities are added to the
model after the root node is solved. Therefore, the first lower bound is estimated only
by applying the pre-processing and ISH procedures, resulting in similar root nodes
throughoutall configurations. Even though better root node gaps can be achieved by
adding the inequalities mentioned earlier directly to the model, this can significanty
slow down the optimization process and even hinderthe solver from obtaining the first
lowerbound. The results forinstancesin C100, C200 and R100 classes are presented
in Table A1 and for instancesin R200, RC100 and RC200 classes in Table A2 in the
Appendix.

A summary of these results is presented in Table 4, where column Best UB
shows how many times the configuration reached the best overall UB obtained by all
three configurations, and column Best* evaluates configurations taking into account
UB ties, setting as tiebreakers (1) the gap and (2) the runtime. Column Deviation is
calculated as the average of UB — UB,,,,, Where UB is the value obtained by the
configurationand UB, ., is the best overall value obtained. This calculation allows to
determine which configuration had the best average performance, showing that the
useof onlyvalidinequalities (26) — (32) presentthe best average results. It is important
to note that these valid inequalities acton the routing part of the problem, which is the

hardest part of distribution problems with time windows.



44

TABLE 4 — COMPARISON BETWEEN TESTED CONFIGURATIONS

Config BestUB Best® Gap (%) Runtime(s) Root Gap (%) Root Runtime (s) Deviation

(19) - (25) 12 9 21,20 5.696,92 60,30 1.124,87 8,67
(26) - (32) 17 7 21,02 5.701,26 60,30 1.138,34 2,41
All 8 2 22,07 5.722,57 60,31 1.150,47 23,25

SOURCE: The Author (2021)

Valid inequalities (26) — (32) present superior results in terms of best upper
bounds, final gaps, and, most importantly Deviation. Valid inequalities (19) — (25)
perform best with smaller instances. This configuration presents the highestvalue of
parameter Best®, however its average performance is inferior to that of using
inequalities (26) — (32), as the Deviation parameter shows. The configuration
containingallinequalities presents the worst overall performance, both in terms of best
solutions and of Deviation, as the model becomes too large with too many constraints.

For the nextstep of tests, itis chosen to proceed with configuration (26) — (32),
since it presented the best average performance and because it reached the best
overall upperboundsin 17 out of 18 instances.

Table 5 compares the best results obtained by the three enhanced model
configurations presented so far with the method used in Lappas, Kritikos, and loannou
(2017). All obtained results for instances with 25 and 50 customers are significantly
better. Parameter AUB shows the UB improvement and is calculated as ((UB —

UB / UB appas) * 100. Among all new improvements, fournew optimal solutions

Lappas)
are obtained, which are highlighted in bold. The enhanced model, however, has

difficulties dealing with some 100-customer instances from classes R201 and RC101.
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TABLE 5 - COMPARISON BETWEEN THE RESULTS OF THE ENHANCED MODEL AND LAPPAS,
KRITIKOS, AND IOANNOU (2017)

Lappas, Kritikos, and loannou (2017) Exact Model
Instance
uB uB Gap (%) AUB
IRPTW_C101_n25 p6 1.115,40 913,73 22,72 -18,08
IRPTW_C201_n25 p6 883,80 665,71 0,00 -24,68
IRPTW_R101_n25 p6 1.880,09 1.682,85 0,00 -10,49
IRPTW_R201_n25 p6 1.629,61 1.407,57 0,00 -13,63
IRPTW_RC101_n25_p6 1.892,24 1.628,87 11,70 -13,92
IRPTW_RC201_n25_p6 1.521,46 1.083,72 0,00 -28,77
IRPTW_C101_n50_p6 2.077,38 1.943,49 32,44 -6,44
IRPTW_C201_n50_p6 1.614,12 1.233,11 10,20 -23,60
IRPTW_R101_n50_p6 3.462,52 3.069,58 0,54 -11,35
IRPTW_R201_n50_p6 2.626,25 2.313,34 2,27 -11,91
IRPTW_RC101_n50_p6 3.907,75 3.582,81 24,18 -8,32
IRPTW_RC201_n50_p6 2.878,27 2.187,04 24,53 -24,02
IRPTW_C101_n100_p6 5.067,13 4.920,21 43,26 -2,90
IRPTW_C201_n100_p6 2.812,41 2.390,79 38,60 -14,99
IRPTW_R101_n100_p6 5.566,81 5.021,40 8,62 -9,80
IRPTW_R201_n100_p6 3.837,75 3.968,80 48,13 3,41
IRPTW_RC101_n100_p6 6.145,41 6.628,08 48,63 7,85
IRPTW_RC201_n100_p6 5.053,30 4.710,53 58,80 -6,78

SOURCE: The Author (2021)

2.7.2.3 Local branching algorithm

Parameter tuning of the local branching algorithmis a critical step in obtaining
quality solutions. Some of these parameters include the a—opt neighborhood size used
foreach left-node, the aaux parameter, and both left-node (inner-loop)and overall time
limits.

Aiming to improve the previously obtained UBs, we use only one inner-loop (a
nonstop sequence of left-nodes, represented by lines 5 — 31 of Algorithm 3), and a
right-node that can be triggered during the execution. The right-node of the branching
is executed at the end of the local branching procedure, mainly being used to prove
optimality.

To improve the lower bounds, a limit of 50 left-nodes is used together with the
inner-loop time limitand the diversify parameter, triggering a right-node, if either of the
associated limits is reached. As for the value of a, we set itto 50 after preliminary tests.
A summary of the values used for the parameters in our implementation is shown in
Table 6.
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TABLE 6 — COMPARISON BETWEEN THE RESULTS OF THE ENHANCED MODEL AND LAPPAS,
KRITIKOS, AND IOANNOU (2017)

Parameter Value Description

5 2 Solution limit
a 50 Initial a-opt neighborhood size

Qg 65 Auxiliary neighborhood parameter
tl 7200s Overall time-limit

tliepe 650s Left-node time-limit

tlin s Inner-loop time-limit

nl;, 50 Inner-loop node limit

div 2 diversify parameter

SOURCE: The Author (2021)

Table 7 presents a comparison of the results obtained by Lappas, Kritikos, and
loannou (2017), the enhanced model, and the proposed local branching framework.
Our local branching algorithm improves the results of the enhanced model for 15 out
of 18 instances and significantly improves the results of Lappas, Kritikos, and loannou
(2017). The average improvement over the mathematical model is 4.66%; for large
instances containing 100 customers, this improvement reaches an average value of
10.69%. The average improvement over the original benchmarkis equal to 16.64%. It
should be noted that, compared to the enhanced model, we observe that the local
branching algorithm proves optimality for one extra instance, even though it reaches

the same optimal upper bounds for all other instances.
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In Table 8, we present a performance comparison between the method used
in Lappas, Kritikos, and loannou (2017) and our proposed optimization frameworks.
While our enhanced model has the advantage of determining optimal solutions faster
for smaller instances, the average performance of the local branching algorithm is
superior, as indicated by the Deviation parameter. We have also generated new and
larger instances as follows. Following the same procedure of Lappas, Kritikos, and
loannou (2017), we created 12 instances with nine periods and 12 instances with 12
periods. These are by far the largest instances available for IRPs, even withouttime
windows. We have six instances with 25 customers for each of these two sets and six
instances with 50 customers. They are based on the Solomon instances as before,
and for completeness, we also use all three configurations (C, R, and RC). These

instances and the detailed results described next are available upon request.

TABLE 8 - SUMMARY OF THE PERFORMANCE COMPARISON

Config UB,,,, Best*  Deviation
Lappas, Kritikos, and loannou (2017) 0 0 473,19
Enhanced Model 8 3 216,52
Local Branching 15 15 1,42

SOURCE: The Author (2021)

Table 9 presents the results for the instances with nine periods. We have run
our enhanced model and our local branching algorithm for 7200s. Three of these
instances have been solved to optimality, and average results indicate that our local
branching algorithm provides solutions almost 4% better, with individual cases of
improvements of more than 17%. In no case has our local branching provided worse

solutions.
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TABLE 9 — RESULTS FOR INSTANCES WITH NINE PERIODS

Instance Enhanced Model Local Branching
UB Gap (%) Runtime (s) uB Runtime (s) AUB (%)

IRPTW_C101_n25_p9 1.374,60 23,80 7.200,00 1.335,31 7.200,00 -2,86
IRPTW_C201_n25_p9 997,62 0,00 3.273,42 997,62 7.200,00 0,00
IRPTW_R101_n25_p9 2.358,82 0,00 2,86 2.358,82 187,36 0,00
IRPTW_R201_n25_p9 2.024,78 0,00 1.733,07 2.024,78 7.200,00 0,00
IRPTW_RC101_n25_p9 2.434,00 13,03 7.200,00 2.413,96 7.200,00 -0,82
IRPTW_RC201_n25_p9 1.654,77 2,22 7.200,00 1.654,77 7.200,00 0,00
IRPTW_C101_n50_p9 2.831,74 29,70 7.200,00 2.702,84 7.200,00 -4,55
IRPTW_C201_n50_p9 2.062,97 18,82 7.200,00 1.861,52 7.200,00 -9,76
IRPTW_R101_n50_p9 4.468,35 1,16 7.200,00 4.466,88 7.200,00 -0,03
IRPTW_R201_n50_p9 3.461,84 8,93 7.200,00 3.401,72 7.200,00 -1,74
IRPTW_RC101_n50_p9 5.289,00 2442 7.200,00 4.850,69 7.200,00 -8,29
IRPTW_RC201_n50_p9 3.855,41 45,93 7.200,00 3.184,03 7.200,00 -17,41
Average 2.734,49 14,00 5.817,45 2.604,41 6.615,61 -3,79

SOURCE: The Author (2021)

The most challenging instances with 12 periods have their results shown in
Table 10. Here, two instances are solved to optimality, and despite very similar
runtimes between our local branching algorithm and that of the enhanced model, the
improvements provided by our method are even more significanton smaller instances.
The average improvement now is more than 4.5%, with individual improvements of
more than 20%. These resultsindicate that our method can handle verylarge instances
and that it does so in a much more efficient way than the (already enhanced)

mathematical programming model.
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TABLE 10 — RESULTS FOR INSTANCES WITH 12 PERIODS

Enhanced Model Local Branching
Instance
uUB Gap (%) Runtime (s) uB Runtime (s) AUB (%)
IRPTW_C101_n25_p12 1.803,07 23,46 7.200,00 1.801,67 7.200,00 -0,08
IRPTW_C201_n25 p12 1.331,41 3,10 7.200,00 1.331,41 7.200,00 0,00
IRPTW_R101_n25_p12 3.152,22 0,00 10,99 3.152,22 435,51 0,00
IRPTW_R201_n25_p12 2.657,20 0,00 6.147,14 2.657,20 7.200,00 0,00
IRPTW_RC101_n25_p12 | 3.265,51 14,79 7.200,00 3.161,14  7.200,00 -3,20
IRPTW_RC201_n25 _p12 | 2.199,75 414 7.200,00 2.173,88  7.200,00 -1,18
IRPTW_C101_n50_p12 3.840,54 32,57 7.200,00 3.528,66  7.200,00 -8,12
IRPTW_C201_n50_p12 2.685,23 19,61 7.200,00 2.507,96  7.200,00 -6,60
IRPTW_R101_n50_p12 5.921,98 3,21 7.200,00 5.949,81 7.200,00 0,47
IRPTW_R201_n50_p12 4.703,78 11,86 7.200,00 4.504,39 7.200,00 -4,24
IRPTW_RC101_n50_p12 | 7.186,48 27,38 7.200,00 6.345,65  7.200,00 -11,70
IRPTW_RC201_n50_p12 | 5.285,92 53,14 7.200,00 4.211,64  7.200,00 -20,32
Average 3.669,42 16,11 6.513,18 344380 6.636,29 -4,58

SOURCE: The Author (2021)

2.8 CONCLUSION

In this paper, we have proposed an exact optimization approach to solve the
IRPTW. Our method combines different valid inequalities, pre-processing techniques,
a heuristic initial solution procedure, a solution improvement procedure, and a local
branching algorithm. Our method was tested on a recent benchmark set from the
literature, specifically introduced for this problem. We have also introduced larger
instances containing up to 12 periods, much larger than any other available IRP
instance. We have obtained significantimprovements and provided new best-known
solutions forall instances in this dataset, besides proving optimal solutions for some of
them. We have demonstrated through detailed experiments that the many different
aspects of our algorithm contribute to its success.

Aside from the contributions in terms of performance, this paper is also the
first, to the best of our knowledge, to integrate symmetry breaking considerations and
TWT/AR into the IRPTW. These pre-processing techniques significantly reduce the
complexity of the computational model, resulting in better bounds for the problem.
Additionally, the newly proposed local branching algorithm, which focuses on the
noncomplete exploration of sub-problems, showed high efficiency and potential for

furtherexploration in future studies.
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An important suggestion for further research is applying such high-
performance solution algorithms to real industrial cases. It might also prove beneficial
to assess businesses from an economic perspective and assess environmental gains
such as reduced greenhouse gas emissions, less fuel consumption, and the usage of

fewer trucks that contribute to congestion and pollution.
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3 FINAL REMARKS

This dissertation proposes an exact resolution approach for the IRPTW.
Differentgroups of valid inequalities developedforthe IRP, pre-processingtechniques,
solution improvement heuristics, and a Local branching algorithm, are employed to
solve the problem. The optimization model can efficiently explore reduced
neighborhoods and obtain consistentimprovements for the objective function of the
problem.

To our best knowledge, this is also the first project to compare results with
benchmark instances developed exclusively for the IRPTW. The interaction between
all the tools employed alongside the model can also be considered a contribution to
the literature. Valid inequalities associated with inventory control and symmetry break
have their trade-offs analyzed in our testing scenarios. It is observed that using only
the valid inequalities proposed by Lefever (2018) provide better results, since the
interaction between all groups at the same time resultin a greater model complexity,
but no proportional gainsin terms of results. One reason that might explain thisis the
fact that symmetry break is applied as a pre-processing technique in our model, which
leads to many inequalities becoming redundantin the system.

The pre-processing techniques used by Ascheuer et al. (2001), especially
those designed to eliminate unfeasible arcs, generate huge computational gains to the
performance of the mathematical model, both in terms of memory consumed as in
terms of optimization time. The consequences of this more efficientmodel and the valid
inequalities result in the root node being determined faster, which in turn speeds up
the initialization of the Local branching algorithm.

Another important aspect of the optimization framework developed are the
methods used to obtain improved initial solutions. The ISH and the SI model help to
find a feasible solution in nearinstanttime, and to quickly refine itinto a good starting
pointfor the model.

Even though the original Local branching algorithm was presented more than
10 years ago, it still lacks studies whereitis applied to routing problems. By restricting
the number of binary variables considered by this algorithm and applying a custom
strategy for the exploration of the algorithm’s tree, an aggressive and effective
exploration of the search space is achieved. This strategy, which is also a contribution

from this research project, is proven to obtain improved results over the base
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mathematical model, and the optimization heuristic proposed by Lappas, Kritikos, and
loannou (2017).

Regarding the tests executed, the optimization framework can consistently
beat the existing times for the benchmark instances studied, providing gains objective
function gains up to 20% depending on the instance. Plus, 24 new instances were
developed for the IRPTW, these considering even larger period horizons.

Real world scenarios could profitfrom the developments of this research. The
fact that the algorithm developed here is exact in nature, it can provide gaps and
upper/lower limits for its calculations, and it could also be further extended by other
optimization tools. The constant technological evolution mentioned in Chapter 1 will
eventually increase the complexity of the IRPTW. Resolution approaches that target
the root problem, such as this, helps tackling these more complex variants, since they
can be treated as a subproblem of a much more complex one.

Finally, the Local branching method has a high adaptability, and can be used
in pretty much any problem from the Operations Research field of study. The
improvements suggested to thisalgorithm by thisresearch can potentially be employed
in many other optimization problems, allowing complex operations to be better

controlled by supply chain managers.

3.1 SUGGESTIONS FOR FUTURE RESEARCH

Two main groups of valid inequalities were used in this project. These groups
are closely related to the IRP, but that does not mean that valid inequalities must be
related to the IRP to provide positive performance gains to the optimization model.
Inequalities designed for problems such as the VRP or VRPTW could be implemented
into the model and potentially boost performance even further.

The ISH has simple and efficient mechanisms to determine a first feasible
solution. More robust heuristics originated from the IRP or VRP could be adapted into
the model to provide more substantial gains to the initial upper bound of the problem.
Other heuristics could also be incorporated into the aggressive exploration strategy of
our Local branching algorithm.

To correct one flaw of this aggressive strategy, calculations could be
developed to determine how much of the current neighborhood was effectively

explored, so that a constraint could be added to the model to remove it from future
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iterations of the algorithm. Lastly, the base B&B used to solve the resulting
mathematical models could be replaced with more robust methods, such as the

branch-and-price and cut (BP&C) model.
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