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RESUMO

A indústria automotiva tem como uma de suas tecnologias mais notáveis e promisso-
ras as funções de sistemas avançados de assistência ao condutor — Advanced Driver Assistance
System (ADAS) e consequentemente a direção autônoma. Isto não só deve afetar positiva-
mente a segurança atualmente encontrada no tráfego urbano, mas deve revolucionar todo o
modelo de negócios dessa indústria, como já se observa. Este projeto objetiva investigar se
sensores acústicos automotivos podem ser considerados uma contribuição tecnológica viável
ao atual grupo de sensores usualmente utilizados. Uma rede neural convolucional (CNN)
foi treinada como modelo de classificação binário para detecção de veículos de emergência.
O classificador que teve melhor desempenho foi obtido utilizando uma versão modificada da
arquitetura AlexNet, treinada com uma variedade de sons de tráfego urbano e sirenes de
veículos de emergência de diversas regiões do mundo. Foi utilizado um total de 23 horas de
gravação. Os segmentos de áudio foram tratados e pré-processados até chegar à forma de
espectrogramas-mel, os quais foram utilizados na camada de entrada da CNN. Isto permitiu
ao modelo uma melhor capacidade de generalização sobre o conceito da presença, ou não, de
um veículo de emergência. Obteve-se um score-f1 médio de 0,935 e 0,895 no treinamento
e validação cruzada, respectivamente, e um valor de 98% de área sob a curva ROC (AUC).
Também se avaliou a localização da fonte sonora utilizando a técnica de correlação-cruzada
generalizada — Generalized Cross-Correlation (GCC) para estimar a diferença de tempo de
chegada — time difference of arrival (TDOA) das frentes de ondas, e um conjunto de regras
heurísticas para obter a direção de chegada — direction of arrival (DOA). Assim se obteve o
azimute relativo da fonte, com acurácia de 89,89% em cenários estáticos, mas somente 4,88%
em cenários dinâmicos. O conjunto de treinamento utilizado foi uma mistura entre o banco
de áudios AudioSet and ensaios gravados nas premissas Center of Automotive Research on
Integrated Safety Systems and Measurement Area (CARISSMA). Os resultados da classifi-
cação foram melhores do que os encontrados em outros estudos de classificação de áudio em
situações de trânsito, enquanto os resultados de localização de fonte sonoras só se mostraram
eficientes em cenários estáticos.

Palavras-chave: Processamento Digital de Áudio, Classificação de Cenários de Áudio,
Redes Neurais Convolucionais, Sensores Automotivos.



ABSTRACT

One of the most prominent and promising technologies in the modern automotive
industry is the advent of Advanced Driver Assistance System (ADAS) and the autonomous
driving. It may not only change safety levels currently found in traffic, but also revolutionize
the whole automotive industry business model, as we can see hints of it happening already.
This project investigates whether audio sensors can be a technological viable addition to the
current sensor set vehicle commonly use. A Convolutional Neural Network (CNN) was trained
to classify auditory scenarios as containing emergency vehicles or not containing emergency
vehicles. The best performing classifier was obtained using a slightly modified AlexNet archi-
tecture, trained with audio excerpts of various urban and traffic scenarios as well as emergency
vehicle sirens from all over the world, totaling a duration of almost 23 hours. These excerpts
went through a series pre-processing steps, and transformation to mel-spectrograms that were
fed to CNN’s input layer. That granted the model better generalization over the class of
emergency vehicles, allowing the model to achieve class-averaged f1-scores for the training
and validation sets of 0.935 and 0.895, respectively. Using the latter dataset, a 98% Area
Under the ROC Curve (AUC) was achieved. Moreover, a sound source localization algo-
rithm was employed using generalized cross-correlation (GCC) to provide the source’s audio
wavefront Time-Difference of Arrival (TDOA) on the microphone array. A group of heuristic
rules were applied to disambiguate these values, transforming to Direction of Arrival (DOA).
The obtained relative azimuth, presented 89.89% accuracy in static scenarios, but only 4.88%
accuracy in dynamic scenarios. The training data was assembled using a mixture between
AudioSet dataset and tests recorded in enter of Automotive Research on Integrated Safety
Systems and Measurement Area (CARISSMA) facilities, and the latter source was also used
for source localization estimation and could be validated against data recorded using the Au-
tomative Dynamic Motion Analyzer (ADMA). Results show that classification results were
better than the ones found in closely correlated works, but source localization results only
showed efficiency in static scenarios.

Keywords: Digital Audio Processing, Auditory Classification, Convolutional Neural
Networks, Automotive Sensors.
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1 Introduction

1.1 The Automotive Business Model Revolution

Huge shifts towards the development and usage of autonomous driving are forcing
the whole automotive industry to quickly adapt, as example the German Original Equipment
Manufacturer (OEM) Volkswagen, BMW and Daimler cooperation geared towards automated
driving. This technology impacted the whole business model in the automotive field. Predic-
tions point towards a transformation from the current business model to transport-as-a-service
(TaaS). This means that instead of each private entity owning a vehicle in order to commute
around, the means of transportation are shared between them. In this model, the car is per-
ceived as an asset which is shared between users, while its property remain tied to the company
offering the service. This resembles — to some extent — the current services offered by com-
panies such as Uber and Lyft, also called pre-TaaS platforms, whereas the major difference
between these two category of services lie in the absence of a human driver in front of the
wheel. That way, robo-taxis will operate under lower operation costs for the provider. It is
possible mainly due to fleet optimization (instead of having a privately owned vehicle with a
time usage rate of 4%), that TaaS vehicles would be available on-demand 24 hours per day
(ARBIB; SEBA, 2017). That is, once a person is dropped at their destiny the can be immediately
summoned by a different user. It is estimated that costs would be cut from four to ten times
if a person would adopt TaaS instead of buying a new car in 2021 (ARBIB; SEBA, 2017), as
seen in figure 1.

Robo-taxis are self-driving cars (so called self-driving taxis) with a Society of Automo-
tive Engineers (SAE) autonomous level of 4 or 5, which is operated by an on-demand mobility
service. The concepts of autonomous levels aggregate how a feature or set of features when
engaged interact with the human driver, from no automation (level 0 — Systems in place to
issue warnings, but no vehicle control) to full automation (level 5 — No human intervention
required) (SAE, 2018). These levels are depicted in figure 2.
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Figure 1: Comparison of costs between individually owned Internal Combustion Engine (ICE)
and Electric Vehicles (EV), and TaaS. (ARBIB; SEBA, 2017)

This business model transformation is predicted to happen within 10 years, which
juxtapose with the expected full self-driving arrival (ARBIB; SEBA, 2017).

1.2 Computers on-board

The automotive industry is going through a major overhaul, with the global au-
tonomous driving market expected to grow up to $173.15 billions by 2030, with shared mobility
services contributing to approximately 65% (CORPORATION, 2018). However, even though cars
are a relatively new advent, it is not the first time this industry has gone through prominent
changes. May it be due to technology pull or push, the field has historically demanded high
investments in research and development. Some of the biggest milestones achieved during
the automotive sensor industry history can be seen in figure 3. Many mechanical and electro-
mechanical parts in a car have been replaced by digital electronic devices. Nowadays these
parts and systems are mostly controlled by Electronic Control Unit (ECU), which convert and
process signals output by the sensors.
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Figure 2: Summary of the interactions between automatic features and human responsibilities
among the levels of driving automation. (SAE, 2018)

There is a trend of embedding technology onto vehicles, that may have started with
analog parts, but recent higher efficiency and safety demands — often times imposed by
legislation — started charging heavier computational tasks. Evidently, Advanced Driving As-
sistance Systems (ADAS) and Fully Automated Driving (FAD) are one biggest focus of today’s
attention in the industry, comprising one of the four key parts of the Combined Active & Pas-
sive Safety (CAPS) systems. The main objective of this category of functions is to sense the
surroundings of ego and provide appropriate information or automatic actuation (PFÄFFLE,
2006), such as done in the Adaptive Cruise Control.

Figure 3: Milestones in automotive sensor development. (BOTSCH, 2018)
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These functions created a huge demand for specialized hardware capable of analyzing
images from cameras, rasters from radars, and point clouds from lidars.

1.3 Automotive Safety as a Priority

The trend for 2030 indicates that not only Highly Automated Driving (HAD) functions
will become more popular in terms of adoption in mid-range vehicles, but also that some of
high-end cars are going to be totally autonomous, rather than restraining automation just to
certain functions of the vehicle (Corporate Partnership Board, 2015).

Within this context, above comfort and convenience that these autonomous vehicles
may deliver, the main motivation for wide adoption of these technologies is the safety factor.
In 2015, the US National Highway Traffic Safety Administration (NHTSA) asserted that 94%
of accidents are caused by human error in American traffic (General Motors, 2019). The num-
ber ascertained by the German Federal Statistical Office in 2018 was even higher, crediting
about 98% of the accidents causes to human error (STATISTISCHESBUNDESAMT, 2017). More
responsibility now lies on the shoulders of sensors of a vehicle than ever before, aiding or even
replacing the human senses in order to provide better traffic safety. This is why providing
world-class object detection and tracking reliability is pivotal for the vehicular application.

1.4 Project Outline

An autonomous driving system conceptually consists of three independent high level
subsystems: The sensor subsystem, the data fusion subsystem, and the actuation subsystem.
The first one acts as an input interface for the whole architecture. The data fusion layer
processes all data and acts as a middleware. It is able to manage and transform the input data
and also synthesize new data from the numerous raw inputs as needed to serve the output
layer. The actuators use all data previously collected and processed to effectively perform
driving functions such as steering, accelerating, and breaking.

This work unfolds the first subsystem, looking to provide exploratory analysis on
an unconventional sensor for ADAS and FAD functions. To sense the environment au-
tonomous and automated driving classically relies mainly on radar, sonar, lidar and camera
sets (MARCHEGIANI; POSNER, 2017). However, human basic senses are the ones which society
has most relied on for driving so far — namely, sight and hearing. Sight can be compared
to computer vision, which is already widely applied in automated driving functions. Humans
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use hearing in traffic constantly for being aware of the presence of cars, trucks, sirens, bi-
cycles, pedestrians, animals and so on. These acoustic cues definitely improve surroundings
awareness, Thorslund (2014) shows that people suffering from hearing loss tend not to get a
driver’s license, despite showing similar performance under baseline conditions and Gordon e
Pearson (2016) shows that deaf and hard-of-hearing drivers on Rochester Institute of Technol-
ogy campus are 1.5 to 3.1 times more likely to get involved in motor vehicle accidents. In the
other hand, Thorslund (2014) also showed that persons in such conditions apply compensatory
strategies, i.e., they look more often at the mirrors, drive slower and scan the environment in
a more general way before looking away from the road. An interesting conclusion is that the
performance difference between deaf and non-deaf drivers is reduced when the scenario is more
demanding than the baseline driving — another cognitive task is simultaneously requested, as
using a navigation system. This leads us to the conclusion that lack of hearing diminishes the
overall confidence for the driving activity. For automated driving functions, this information
means that interpreting the surroundings soundscape will help improve the system performance
if this analogy holds true.

This opening has already been recognized and approached by other authors using
classical digital signal processing to detect characteristic emergency vehicles’ sirens (MEUCCI

et al., 2008), but with limited generalization capabilities. To solve this problem, many different
algorithms can be employed, or even a combination of these. Since audio related classification
problems have started being better addressed during the last decade (GUBBI et al., 2013), the
number of classifier categories employed and analyzed in this context has greatly risen. This can
also be said for the increasing number of audio applications such as auditory scene classification
(MESAROS; HEITTOLA; VIRTANEN, 2016), acoustic event detection (HRABINA; SIGMUND, 2018),
automatic speech recognition (O’Shaughnessy, 2015), sound source separation (Slizovskaia et al.,
2019), musical genre classification (TZANETAKIS; COOK, 2002), among others.

This project comprises a set of microphones giving the vehicle the ability to interpret
acoustic cues in order to provide yet another input to the data fusion layer. Related works
such as (MARCHEGIANI; POSNER, 2017), will serve as a baseline of comparison. The scope of
both works is virtually identical where (MARCHEGIANI; POSNER, 2017) provides a model for
multi-class classification using the k-nearest neighbors (kNN) algorithm for classifying audio
excerpts recorded in traffic scenarios, whilst no proper localization implementation is provided
by the reference.
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Figure 4: Schematic of expected driver’s behavior for forming the Rettungsgasse. (DEFEUG,
2013) .

Microphones may excel in situations in which the others would not be able to provide
reliable information about the objects in the scene, such as corners — situations where neither
cameras or radars present good performance due to its geometrical characteristics.

In section 2.1.3, we will further discuss related works and also state-of-the-art tech-
niques which are being currently employed to solve the auditory classification problem.

What is desired with this project is to assert the performance of acoustic sensors in
automated driving applications. This will be accomplished by developing a prototype pipeline
for providing an object list and basic localization.

For simplicity’s sake, the scope will be restricted to classify whether emergency vehicles
are present in the auditory scenario, which accompanied by sirens stand out more clearly in
the urban soundscapes. This fact should be taken in account, as our main comparison work
(MARCHEGIANI; POSNER, 2017) provides multi-class classification, while we provide a binary
one. To validate the prototype a use case consisting of roadways coping with traffic jams where
emergency vehicles with the sirens turned on go through a corridor made by the other drivers.
This structure called Rettungsgasse is represented in figures 4 and 5. This work lastly strives for
laying the foundations for automating this task, providing a basic setup for future development
by providing elementary classification and localization features to the integration layer. Such
function would certainly be necessary for achieving SAE levels 4 and 5 of autonomous driving
in German roadways.

1.5 Project Structure

This document is comprised of an bibliographic review, where we shall provide a
handful of closely related works and what they affirm and what can be taken from these
statements to provide more land coverage to this project. It will cover the core concepts in
machine learning in general, from its conceptual employment and which problems it looks to



23

Figure 5: Example of an actual Rettungsgasse. (WIKIPEDIA, 2005) .

solve to the mathematical framework. Later on, we will dive in how Deep Neural Network
(DNN) works, providing better understanding on what must be done in order to retrieve a good
model from the training process. We will initially cover image processing as it is much more
intuitive and then translate these concepts to audio processing. We will also cover the main
parameters of digital audio, how it reproduces a analog signal in much more compressed space
using not only digital signals but also encoding and decoding to gain in compression while
losing the smallest amount of information we possibly can. Lastly, an overview on the main
sound source localization algorithms are going to be provided, along with a pick justification,
following the mathematical framework introduction.

In section 3, a detailed overview on the tooling built around the problem is going to
be described. This is an important part of the project, consuming the biggest amount of time
as many tools were home-brewed and thereafter verified by the author. It will go through the
methodology employed to build the datasets, and the software engineering behind the classifier
and the localization algorithms.

In section 4, we will analyze the results obtained from applying all the tools together
in a cooperative way that culminates in a series of performance indicators. These performance
indicators provide insights on how good the classifier is, so we can start drawing conclusive
statements over the viability of such an algorithm on the automotive area, provided this
prototype offers a satisfactory performance for the project’s scope. A conclusion gathers all
the analysis results on a consolidated manner and provides future improvements for the current
work.
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2 Bibliographic Review

2.1 Sound Source Classification

With the plethora of algorithms designed for classification, detection, and segmen-
tation, it is simpler to shape a parallel between image processing as this domain is easier for
humans to visualize — due to the media being used — what are the actual implications in the
signal and then return to the acoustic domain.

2.1.1 Tasks Taxonomy within Computer Vision

The course of Convolutional Neural Networks for Visual Recognition offered by the
Stanford University (NG; LI; KARPATHY, ) offers great insight on the subject — as said before,
the field of computer vision works with the very same types of algorithms, since both audio
and images are nothing more than digital signals arranged in different forms.

The most fundamental problem computer vision looks to solve is image classification.
Labels can be interpreted as tags given to each image in a dataset. Images consist of of pixels
with values associated to them, e.g., an image composed of 248 horizontal pixels and 400
vertical pixels, will accommodate 99200 values between 0 and 255 per channel. Monochromatic
images possess only a single channel, but we usually look at full color pictures and it means
three channels are present: Red, Green and Blue. This combination is also known as RGB.
Considering that, we get 297,600 values ranging from 0 to 255, illustrated by figure 6 . Hence,
the problem can be mathematically summarized as finding a good model that maps these
297,600 values to a single set of characters or integer number.

Often called ’Classification + Localization’ and Object detection, they differ by the
number of instances being analyzed, as localization only looks for the semantic meaning of the
concept, while object detection looks for the actual objects. Both of these techniques utilize
bounding boxes, which are a type of labeling where a box can be created, edited and deleted,
and the box is assigned concepts. It surrounds the concept and is described by its position in
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Figure 6: Example of how an image is interpreted at lower level. (NG; LI; KARPATHY, )

the image or in a grid within the image. The comparison between both tasks can be seen in
figure 7.

Lastly, the task of segmentation is approached. Segmentation also be done in regard
to both semantics and objects, as showed in figure 8. The objective here is to find exact
bounds which describe a given concept, i.e., associate labels with areas in the image. In
that way, the limits between all objects are strictly described under coordinates, not allowing
overlaps between these segments.

Independent of number of classes present and the way data is associated or arranged,
every problem is a linear combination of the data aspects, such as pixel position, value and
neighbor pixels relation.

2.1.2 Digital Audio and Auditory Classification Tasks

For images, we have values associated to each pixels in each color channel. For digital
audio, we have different values associated to discrete amplitude levels across the discrete time.
Videos can be nicely compared to audio, since both are arranged along time. Generically
processes can be described by n independent variables (Weinstein; Feder; Oppenheim, 1993). For
three channels we would have:
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Figure 7: Comparison between the output of Classification+Localization and Object Detection
Algorithms. (NG; LI; KARPATHY, )

Figure 8: Examples of segmentation on a road alongside a grass field with sheep. (NG; DROR,
2018)
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where Hxxpωq are the transfer functions of each channel separately and Hxypωq represent the
cross-coupling effects between them. Thus, for three completely decorrelated independent
variables, we would have:
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We can describe video signals as a 3-dimensional matrix containing information for
the red, green, and blue channel — where each transfer function carries information about the
pixel position matrix as well, height and width. Stereo audios are described on a 2-dimensional
matrix, left and right channel — where each transfer function carries information about the
instant wave amplitude.

The last step is to stack these transfer function matrixes along the time axis. For
digital signals, the time axis is discrete, so the number of stacked matrixes represent the
number of samples.

Electric audio signals can be analog, using varying voltage to represent amplitude
against a continuous time axis. However, most modern digital audio formats use Pulse-Code
Modulation (PCM). This is the process of digitizing signal, and consists of three stages:

1. Sampling

2. Quantization

3. Encoding

Sampling is the process of discretizing in time, taking regular samples of the instan-
taneous amplitude at a constant Sampling Rate (SR). The most commonly used SR for audio
signals are 44.1kHz and 48kHz.

These values are used to comply with the Nyquist theorem. Given the signal in figure
9, ωM is the highest frequency component for an analog signal, which in turn determines the
bandwidth of that signal. The theorem states that a sampling rate ωs must be at least 2ωM

in order to adequately reproduce a signal without producing any aliasing effects (OPPENHEIM;

WILLSKY; NAWAB, 1996), as shown in comparison of figures 10 and 11. Since human hearing
can detect noise up to 20 kHz, this is meant to avoid aliasing.

Quantization is the process of discretizing amplitude, where the values are bounded
to a maximum value and any sound wave that stimulates a sensor’s membrane may clip to this
maximum value. On the other hand, sounds with low intensity will not be detected as it will
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Figure 9: Analog periodic function of ω Xpjωq. (OPPENHEIM; WILLSKY; NAWAB, 1996)

Figure 10: Spectrum of sampled signal with ωs ă 2ωM . (OPPENHEIM; WILLSKY; NAWAB, 1996)

be below the very first value different from zero. Bit-Depth is the number of different discrete
levels of amplitude the sound may assume, and therefore higher storage space is needed for
representing higher resolutions, e.g. 16 bits can store up to 65,536 different levels. Sensitivity
is used in tandem with the Bit-Depth to choose optimal results, since increasing the number
of possible levels, decreases the smallest value it can detect. Figure 12 shows the digitization
process.

Encoding, in turn, is the process transforming this stream of data to a more compact
and efficient format. This transformation can be done to lossy formats such as .ogg or lossless
formats such as .wav. Also different codecs may use encode the signal not even using the

Figure 11: Spectrum of sampled signal with ωs ě 2ωM . (OPPENHEIM; WILLSKY; NAWAB, 1996)
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Figure 12: Juxtaposition between an analog audio signal and its digital counterpart. Y axis
represents the Amplitude in discrete levels, and X axis represents Time in seconds. (FANDOM,
2014)

PCM process. Some of them use perceptual codecs, which apply Fourier Transform to store
data frequency-wise instead of amplitude-wise.

Finally, returning to the classification tasks context, object localization and object
detection can be associated to the Acoustic Event Detection task, which looks for timeframes
that get an positive association to a given sound source which is taken as the interest event, but
it restrains itself to classifying and triggering an event of detection, not actually estimating the
relative localization of the interest sound source. Thus, what has to be designed is a classifier
to employ the segmentation task in the audio stream. This stream has to be buffered into
an optimum buffer size to provide good precision and real-time processing. This is critical for
automotive applications due to the nature of its dynamic.

2.1.3 Related works in the field of audio classification models

The classification of sound sources task in an audio signal has already been proposed in
the literature using features such as Mel-Frequency Cepstral Coeficient (MFCC) and classifiers
such as Hidden Markov Model (HMM) in Durey e Clements (2012) and Chan e Eric (2010) or
GMM in Mesaros et al. (2010). (Sigtia et al., 2016) provides a thorough analysis in compromises
between performance and computational cost for the most successful and commonly used
algorithms for completing the task we are interested in. Sigtia et al. (2016) compares results
between Gaussian mixture model (GMM), Support Vector Machine (SVM), and Deep Neural
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Network (DNN). The comparison is run on the Acoustic Event Detection task investigating
whether DNN are able to outperform classic models when provided large data sets. Two tasks
were evaluated using the distinct models: Detecting baby cries and detecting smoke alarms
against a large number of impostor sounds. The results from their analysis suggest that GMM
provide a good baseline compromise between computational cost and performance, while SVM
presented similar performance while having worse computational costs, and since SVM are not
parametric models, the employment of kernels are defined by the data, which is not a consistent
and reliable way of scaling this solution. Lastly, DNN consistently outperformed both previous
models, and since these networks posses a very high quantity of parameters one can employ
an optimal model for each specific task and hardware.

Moreover, in recent years a solution that has stood out in the scientific environment
is the use of Convolutional Neural Networks (CNN) to accomplish all sorts of acoustic clas-
sification tasks. DNN have earned a lot of prominence in competitions for the detection and
classification of acoustic scenes and events, such as the Detection and Classification of Acous-
tic Scenes and Events (DCASE) competitions. The DCASE editions 2013 (STOWELL et al.,
2015) and DCASE 2017 (MESAROS et al., 2017), for example, built their baseline algorithms
on GMM using Mel-Frequency Cepstral Coeficient (MFCC). However, the winner model in
the acoustic scene category Mun et al. (2017) used log banks along with a combination of
Recurrent Neural Networks (RNN) and CNN. This shows that currently the best results in the
core application aimed by this project really lie in the use of DNN. The question that follows
now would be which exact DNN algorithm or combination of algorithms should be used to
this application. This shall be discussed in section 3.2.2. Furthermore, there is no consensus
on the academic community whether pure CNN or RNN, o mixed models are better suited
for audio classification applications. This situation seems to become clearer as we take Choi
et al. (2016) in account, stating that it seems like more complex architecture seem to have
better performance general, like a parallel CNN+RNN one, we see a compromise between
speed and accuracy. This trade-off is even more critical for automotive applications, where
real-time is demanding. What we can see as a consesus, however, is the use of Log-amplitude
mel-spectrograms as the main feature provider, as can be asserted by Huzaifah (2017) and
Cowling e Sitte (2003). These works compared many domain knowledge representations which
can be used to provide features for environmental sound classification model training — such
as MFCC, Perceptual Linear Prediction (PLP) coefficients, bare short-time Fourier transform
(STFT), fast Wavelet transform (FWT) and continuous Wavelet transform (CWT), between
many others. The outcome from the afore mentioned works is that for deep learning, dif-
ferently than classic models using GMMs for example, de-correlation is not pivotal anymore,
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presenting Mel-frequency spectrograms consistently performing best in such applications at
the time being. This comes with some caveats as window size tuning, as (HUZAIFAH, 2017)
reinforces it is dataset dependant and is a parameter to be tuned per dataset. Filter size is
not as data dependant but rather representation dependant, as depending on the scale for
amplitude and pitch, a representation might be more or less tolerant to parameter invariance.
This holds true to mel-spectrograms as both scales are logarithmic.

Related works such as Marchegiani e Posner (2017) and Tadjine et al. (2015) already
show results for audio detection applied to the automotive area. In the first work, Marchegiani
presents a similar architecture to the current proposal, based on a two-fold system, classifying
events (the presence of the emergency vehicle for the given case) on stage one and then
performing the location of the sound source on stage two. The first stage greatly differs
from the one being proposed by this project, basing their event identification on One-Class
Gaussian Process Classification (OCGPC), extracting the signal of interest using a mask, and
then performing the classification through Nearest Neighbors, without implementing the of
the second stage, where the sound source should be properly localized. Tadjine et al. (2015)
approaches the related instrumentation and localization aspects, where it utilizes Microelectro-
Mechanical Systems (MEMS) microphones from two Kinect sensors from Microsoft, applying
techniques such as Generalized Cross-Correlation (GCC) to perform the localization of the
sound source, and this approach will be of great importance for basing the development of the
localization contraption in this project.

2.1.4 Basic concepts in Machine Learning

The simple underlying concept of a Machine Learning (ML) algorithm is simply that
for any given task T, the performance P is continuously enhanced proportionally to experience
E (NG; DROR, 2018). Simply put, similarly to humans, as more good-quality examples are fed
to the algorithm, better it performs on the task it has been designed to do.

Thus, this project focuses on applying ML to find patterns in audio signals structure
that correlate with classes of objects in the real world.

2.1.4.1 Classes of Machine Learning Algorithms

ML algorithms can be roughly divided into three categories:

1. Supervised Learning
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2. Unsupervised Learning

3. Semi-Supervised Learning

Classifiers and Regression algorithms fall on the first category. An algorithm is said
to be supervised when the input is built by labeled examples. On the other hand, there is
unsupervised learning, which does not relies on labels, but simply groups data that shows
similar features in clusters. Lastly, there is semi-supervised learning algorithms which only
have partially labeled data, in quantities which may vary. Data points can be correlated to
each other and then inferred as belonging to a class depending on its nearest neighbors.

2.1.4.2 Examples and Features

Examples and features relate to each other in a very important way for machine
learning algorithms. A good example would be trying to predict houses prices, where we have
m examples and n features. Examples are instances of houses we have obtained information
about and Features are concepts that allow us to compare them, as number of bedrooms,
total size in squared meters and etc.

x
piq
j “ value of feature j in the ith training example

xpiq “ the input (features) of the ith training example

m “ the number of training examples

n “ the number of features

At the beginning of the training phase a model would know nothing about predicting
houses prices based on the house features. We would then provide examples gathered from
the real world — newspaper ads, real state agencies online sites, apartments listing sites and
so on. Each of these examples contain features from the each house but also they contain the
price which is being asked for them. The training process consists of showing to the model
each and every example along with its features and price and allowing the model to tweak its
parameters to best map features to price prediction. After training, we would be able to use
this model to predict a house’s price y (the prediction output by the model) of an example
never seen before by it based on the features xi

j where j “ 0 to j “ n (number of rooms and
total house size and so on) of each example i it saw at the training phase.
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2.1.4.3 Model Representation and Fitting

That said, the core ML framework utilizes another statistical concept for providing
information about the subject: Hypothesis testing. Hypotheses strive to fit a model to the
data available, and each of them is a candidate model that approximates a target function for
mapping inputs to outputs (NILSSON, 1998). For simplicity’s sake, an example of hypothesis
ŷ to be considered is a linear first order relationship for the regression task:

ŷ “ hθpxq “ θ0 ` θ1x (2.3)

This relationship describes a linear curve on a plane with θ0 and θ1x as the linear and
angular parameters. It is important to note that this curve is generically called a hyper-plane,
as in higher dimension spaces, it may assume other geometrical characteristics. In regressions,
the model looks for parameters θ — also called weights — that best fit the data presented. This
could be useful for predicting future realizations of similar data obeying a similar distribution as
the sample used. This tuning is done by using the Cost Function Jpθ0, θ1q using m examples:

Jpθ0, θ1q “ 1
2m

mÿ
i“1

pŷi ´ yiq2 “ 1
2m

mÿ
i“1

phθpxiq ´ yiq2 (2.4)

Literature sometimes uses the nomenclature Loss Function when referring to data
points, but these concepts are both highly correlated, and often used interchangeably. The
cost function evaluates if a hypothesis is the most suitable one between the many being tried.
In equation 2.4 the result of the sum figure is called the sum of the residues, which is the
difference between the prediction ŷ and the realization y. The Euclidean distance between a
data point and its orthogonal projection against the curve is the value which composes the
residue. It could also be described as the difference between the ground truth points and the
estimated points. Now, it is possible to measure the accuracy of the hypothesis function by
using the Cost Function and assess which hypothesis minimizes the outcome of this value, as
can be seen in figure 13.

Classical classifiers such as SVM utilizes a kernel — which is still being represented by
a hyper-plane which looks to optimally separate two groups of data points. This means that
this model will look for parameters θ that maximizes separation between the groups through
the minimization of its Cost Function. In figure 14, the curve describes what is the limit
between the two classes. Consequently, both θ values have to be tuned to best fit the curve
that best segregates the two groups.
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Figure 13: Linear Regression example using Gaussian distributed random data. (x, y) pair
was arbitrarily generated and has no meaning nor unit.

Not only the Euclidean distance has to be used as the Loss Function, but a whole
family of error measurement functions. The mean squared error shown in equation 2.5 is
usually the standard one used in ML applications, but many other algorithms such as the
Cross Entropy can also be employed.

MSE “
řn

i“1pŷpiq ´ ypiqq2

n
(2.5)

where n corresponds to the number of examples.

The Learning process iterates over the data set of examples and minimizes the loss
function. The loss function alone, however, only evaluates the hypothesis. A new one has to
be proposed which would ideally better fit the data points. The algorithm used for this task
is named the optimization algorithm, e.g., the gradient descent.
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Figure 14: Linear Classification example using Gaussian distributed random data. (x, y) pair
was arbitrarily generated and has no meaning nor unit.

This method consists taking a moving differentiation from the last loss function re-
sults, and as soon as the derivative plateaus and approximates zero the minimum value for
the loss function will have been achieved with all the updated theta values which compose the
polynomial expression describing the model. The gradient descent depends on the learning
rate α. This is a hyperparamter. It describes how big of a jump the algorithm should take
on each iteration. If it is too small, it will take very long to converge, and if too expressive,
may overstep the minima and instead of converge, start to diverge unsteadily. That is, each
iteration would take the form of

repeat until convergence: t

θ0 :“ θ0 ´ α
1
m

mÿ
i“1

phθpxpiqq ´ ypiqq ¨ x
piq
0

θ1 :“ θ1 ´ α
1
m

mÿ
i“1

phθpxpiqq ´ ypiqq ¨ x
piq
1

θ2 :“ θ2 ´ α
1
m

mÿ
i“1

phθpxpiqq ´ ypiqq ¨ x
piq
2

¨ ¨ ¨
u

with all parameters θ simultaneously updated.
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Using vectorized operations are much more computationally efficient than element-
wise operations (NG; DROR, 2018):

repeat until convergence: t

θj :“ θj ´ α
1
m

mÿ
i“1

phθpxpiqq ´ ypiqq ¨ x
piq
j for j := 0...n

u

2.1.4.4 Bias and Variance Trade-Off

For a number of reasons, a model may overfit or underfit.

Underfitting occurs when a model is under-trained (left side of figure 15). In cases
of underfit models they are considered biased model. While bias still high, the model has not
learned enough about the data, and will struggle to get accurate results, however it will still
be precise.

An algorithm can also overfit data (right side of figure 15). Even if intuitively it would
make sense to train as much as possible, it would be a problem if the model would simply
memorize the data, and lose the capacity to generalize what the underlying concept the data
really has. This problem is represented by high variance. In this case, accuracy would near
100%, although with low capacity of generalization precision would be low.

2.1.4.5 Cross-validation

A hypothesis may have a low error for the training examples but still be inaccurate
(because of overfitting). Thus, to evaluate a hypothesis, given a dataset of training examples,
we can split up the data into two sets: a training set and a test set.

Typically, the training set consists of 70 % of data and the test set consists of the
remaining 30 % (NG; DROR, 2018).

Just because a learning algorithm fits a training set well, that does not mean it is a
good hypothesis. It could overfit and as a result the predictions on the test set would be poor.
Given that, the error of the hypothesis as measured on the data set with which we trained the
parameters would be lower than the error on any other data set. Understanding this behavior
helps to identify situations when the model is too complex to be manually analyzed or even
inaccessible to the user.
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Figure 15: Representation of the principle of the Variance versus Bias Trade-off (NG; DROR,
2018)

Given many models with different polynomial degrees, we can use a systematic ap-
proach to identify the most suitable function. A good methodology for choosing the best
model complexity for our hypothesis would be test each polynomial degree and thereafter look
at the resulting error.

Another way to break down our dataset into the three sets would be:

• Training set: 60 %

• Cross validation set: 20 %

• Test set: 20 %

For cross-validation there are many different approaches available. We could try
different θ values (weights or polynomials, depending on the algorithm). Also, try different
learning rates, regularization or any other hyperparameter.

However, a very important approach using the validation set and the cross-validation
approach is to effectively utilize all data instead of only train on 70 %, for example.

We could achieve that using the k-fold or the Leave One Out techniques. The former
consists in shuffling and then dividing the dataset in k different parts. If we consider k “ 10,
we would divide the data in 10 parts, then train using 9 parts out 10. Afterwards, with the
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model accordingly trained, we test in against the one part left out and write down the results.
The technique then requires it to be repeated for all 10 parts, distinctly leaving one out each
time.

In the end, we would have a great sum of results against these 10 different develop-
ment sets used in each iteration, depicted by figure 16. A recommended course of actions is
to synthesize the results as they were the output of one single training and validation routine
(NG; DROR, 2018). That way, it would be possible to assembly a confusion matrix that used
all the data, and can be used for performance measurement the same way as in conventional
validation routines.

Figure 16: 10-fold cross-validation illustration. (NG; DROR, 2018)

2.1.4.6 Classification Evaluation

Since classification models are validated applying labels to data which is already
labeled, it is possible to measure how good or bad a model is. However, this measurement
has to be quantifiable, so analytically it would be possible to choose the best one from the
many being tested. This is the role of performance metrics, which are fundamental for gaining
important insights on a model behavior when validated or tested.

The most fundamental concept in evaluation is the assembly of a confusion matrix
(KOHAVI; PROVOST, 1998).

For binary classification, a confusion matrix would be composed of True Positives
(TP), False Positives (FP), True Negative (TN), and False Negatives (FN) (KOHAVI; PROVOST,
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Table 1: Confusion matrix structure.

Predicted Class
Negative Positive

Actual Class Negative a b
Positive c d

1998). For contextualization, let us use a fire alarm example: If there is a fire detected by
the system the alarm should go off, otherwise the alarm should remain silent. When there is
a fire, it is a positive event: The event of a fire happened. That means there are a total of 4
combinations possible, which can more generally be described as:

• True Positives: The event happened and it was detected

• True Negatives: The event did not happen and it was not detected

• False Positives: The event did not happen but it was detected as it had happened

• False Negatives: The event happened but it was not detected as it had happened

This allow us to then assemble the confusion matrix, which takes the form seen in
table 1. a represents the TN values, b represents the FP values (also known as Type-1 errors),
c represents FN values (also known as Type-2 errors), and finally d represents TP values.

Metrics are very important in both business and engineering world, since they actually
allows this measure the gap between the real world objective and the proxy training objective,
set by the Cost Function (NILSSON, 1998).

The most important performance metrics are (ZHENG, 2015):

• Accuracy is the proportion of the total number of predictions that were actually correct:

AC “ a ` d

a ` b ` c ` d
(2.6)

• Sensitivity (also known as both Recall or True Positive Rate) is the proportion of positive
cases that were correctly identified:

TP “ d

c ` d
(2.7)



40

Table 2: Confusion matrix structure for 3 class classification.

Predicted Class
Class 1 Class 2 Class 3

Actual Class
Class 1 a b c
Class 2 d e f
Class 3 g h i

• Specificity (also known as True Negative Rate) is defined as the proportion of negatives
cases that were classified correctly:

TN “ a

a ` b
(2.8)

• Precision is the proportion of predicted positive cases that were correct:

P “ d

b ` d
(2.9)

If more than two classes were available, not only the training procedure would change,
but also the confusion matrix itself would as well. An example of a three classes classification
confusion matrix can be seen in table 2. For these cases each of the metrics would have to be
extracted for each single class, comparing correct predictions against wrong prediction, i.e.,
any other prediction that was not the given class being currently analyzed.

2.1.5 Artificial Neural Networks and Deep Learning

2.1.5.1 Artificial Neurons

A Artificial Neural Networks (ANN) is a mathematical model, and also a computa-
tional model which is composed of a set of neurons organized in layers. This is a biologically
inspired model to mimic our brain structure. Simplifying the composition of neurons, they
have dendrites, a cell body, and an axon.

The idea of combining neurons to form a network has already been long established
now (dating back to 1959, with Bernard Widrow and Marcian Hoff in Stanford). Making a
parallel between the biological and the artificial neuron we have the following:

1. The dendrites: The model input connections

2. The cell body (or Soma): The linear calculation and the activation functions

3. The axon: The output connections
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On a high level, these are the only parts composing artificial neurons, or as they are
also often called — perceptrons. In order to summarize these concepts through a illustration,
perceptrons use their dendrites to take in inputs (x1, x2, x3 in figure 17), use their cell body
to apply the linear combination operations to all these inputs and then applies a non-linear
activation function, and lastly use their axon to output the results (NIELSEN, 2015).

Figure 17: A simple perceptron representation. (NIELSEN, 2015)

The operations carried through the cell body are the multiplication of each input
by a respective weight, then all the results are summed and submitted to a function. This
function has a particular name – the activation function. This name comes after the biological
neuron counterpart, where during the transmission of processing of information in our brains,
some cells are not activated and therefore will not pass forward the electrical pulse they
might receive. Therefore, to mimic this behavior we apply an activation function. So, the
mathematical operations for a single perceptron are described by equation 2.10.

z “ wTx ` b (2.10)

where z is the output, x is the input vector, w is the weight vector, and b is the bias. Bias is a
special weight that require no input, and this it corresponds to the output when there is zero
input. It represents an extra neuron included with each pre-output layer and stores the value
of ’1’, helping the model to represent patterns that do not necessarily pass through the origin.
That way if all features would have value 0 associated to them, it offsets the model to assume
some base value. Bias is not part of the perceptron itself, but a unit from the network layer.
Despite having output z we still have to process this input through the activation function.
The most commonly used activation function is the ReLu function, described by equation 2.11.

gpzq “ maxp0, xq (2.11)

The function itself is quite straight forward, if the sum output z is a positive value,
the ReLu output g responds linearly (NG; DROR, 2018). The reason why this function is so
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commonly used is because it adds non-linearity to the input output mapping. The output h

from the single perceptron is described by equation 2.12, which is the output value seen in
figure 17. It is worth noting different activation functions work better for different problems
and architectures, as a classical example being the sigmoid function, which is the classical
activation function used in logistic regression.

h “ gpzq (2.12)

2.1.5.2 Multi-layer Perceptrons

When stacking neurons, each connection that provides inputs for z configure a layer.
A layer may not consist of a single neuron, but have j units with each one of them connecting
to all the units in the following layer. However, the concept of a single-layer Neural Network
(NN) is established by the presence of three layers: An Input layer, a Hidden layer, and an
Output layer. This structure can be seen in figure 18.

Figure 18: Neural Network representation. (NIELSEN, 2015)

A single perceptron is able to output predictions, however the complexity of problems
it can solve are really low. If these functions were linear, we would be able to simplify all the
mathematical operations to a single linear combination (GOODFELLOW; BENGIO; COURVILLE,
2016). This way, more layers and more units in a network actually translate into model
complexity.
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The problem is we are limited to an input layer, a hidden layer and an output layer.
Well, this concept can be manipulated unfolding the hidden layer — a hidden layer has this
name because we are not able to understand what is the logic behind the weight vector, taking
it as a black box. So what we can do is further develop this black box, since we only care
about its input and output, and place as many hidden layers in the model as the problem to be
solved needs. Furthermore, this is exactly what taking figure 18 and replacing its hidden layer
with one or more layers shown in figure 19 would achieve. This operation is what distinguish a
regular NN and a DNN — when all units are connected to all the units in the previous layer this
is called a Multilayer Perceptron (MLP). This greatly improves our capacity to better fit the
training data with much more complex models, but computational complexity also increases.
This is why Deep Learning (DL) has seen a big increase in popularity in the last years in many
different ML applications, and this project is no exception to that. Equation 2.10 was used for
a single perceptron, but for more general units description within the DNN, equation 2.13 is
used to relate the vector w of weights, the vector x of outputs incoming from the last layer
i ´ 1, the bias from last layer i ´ 1 and the unit output z. Note that subscripts j indicates
the jth element of the hidden unit, while superscripts i indicate the ith layer of the network.

z
ris
j “ w

ris
j

T
x ` b

ris
j (2.13)

Figure 19: Two Fully Connected Layers with different line thicknesses representing different
weights (RAMSUNDAR; ZADEH, 2018).

Furthermore, it is possible to consider bias units function once again. They are not
tied to any previous layer in the network, so they don’t represent any form of activity, but are
treated the same as any other weight. Without a bias node, no layer would be able to produce
an output for the next layer that differs from 0 if the feature values were 0 (NG; DROR, 2018).
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After all, what bias nodes do is help networks solve more types of problems by allowing them
to employ more complex logic gates.

NNs map input to output through forward propagation, and after that compares the
output with the ground truth provided during the training phase to employ back-propagation
(GOODFELLOW; BENGIO; COURVILLE, 2016).

A NN makes a prediction propagating the input data forward through the network,
layer by layer, until it reaches the final layer which outputs a prediction. The mathematical
model is a combination of successive operations applied through the entire network. In simple
input-hidden-output layers networks equation 2.14 shows how forward propagation is executed
layer-wise, providing prediction Pred. Apq is the application of the activation function, x is the
vector of inputs, wh is the weights vector applied to the hidden layer, and wo is the weights
vector applied to the output layer. With each additional layer, more additional activation
functions would be applied and also more weight vectors would be added to each one of those
(NIELSEN, 2015).

Pred “ Ap Ap xwh qwo q (2.14)

To learn, a DNN adjusts its weights once per batch during the training phase, where
additionally to forward propagation also back-propagation takes place. After the network has
finished training, it does not perform the latter. Back-propagation is carried comparing the
actual output and the desired output (NG; DROR, 2018). As seen in section 2.1.4 equation
2.4 used the mean squared error in equation 2.5 to make this comparison. In DL instead of
using equation 2.4 and the MSE (which would only make sense for solving problems unrelated
to Classification) though, cross-entropy usually perform better as a Loss Function, which is
expressed as:

Lpz, yq “ ´
”
y logpzq ` p1 ´ yq logp1 ´ zq

ı
(2.15)

With this updated Cost Function, we start by applying the chain rule, where:

fpxq “ ApBpCpxqqq (2.16)

can be expressed as:
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f 1pBq “ f 1pAq ¨ A1pBq (2.17)

and using this property we can take:

Cost “ LpApzpxwqqq (2.18)

and obtain:

L1pwq “ L1pAq ¨ A1pzq ¨ z1pwiq
“ L1pwq ¨ A1pzq ¨ Hi´1

(2.19)

where Hi´1 “ Apwi´1xi´1q is the output from layer i ´ 1 (also known as the layer i ´ 1
current hypothesis). Since from equation 2.19, we get the term leading to the Hi´1 we could
differentiate in relation to even farther weight vectors towards the beginning of the network,
even getting to layer i “ 1. Therefore, generalizing this idea we obtain:

BLpz, yq
Bw

“ BLpz, yq
Ba

ˆ Ba

Bz
ˆ Bz

Bw
(2.20)

This way, we would have access to the contribution each weight has regarding the
Loss Function through the gradient being back propagated. That means if we only wanted
to obtain the corresponding loss for weight vector corresponding to the last layer it would be
much easier on the computational demand. In the other hand, for obtaining the corresponding
loss for the weights of the first layer I would have to calculate the gradient of every single
layer that came after it. So we would have to calculate the entire gradient either way, which is
really computational demanding. Equation 2.21 summarizes the update routine, with α being
the learning rate parameter which has been explained in section 2.1.4.3 (NG; DROR, 2018).

w :“ w ´ α
BLpz, yq

Bw
(2.21)

From equation 2.21, it is possible to note that both the Loss Function and the
Learning Rate are hyper-parameters that can and directly impact how training is carried on
DL frameworks.
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2.1.5.3 Convolutional Neural Networks

CNN are an especialized form of DNN. They assume special spatial structure in
its input. In particular, it assumes that inputs that are close to each other spatially are
semantically related. This assumption makes most sense for images, since pixels close to one
another are likely semantically linked. As a result, convolutional layers have found wide use
in deep architectures for image processing (RAMSUNDAR; ZADEH, 2018). That is to say the
biggest differences between MLP and CNN are the implementation of convolutional layers and
the connections of units between two layers.

Mathematically, CNN provide tools for exploiting the local structure of data effectively
(RAMSUNDAR; ZADEH, 2018). Parts of an image that are close to one other in the pixel grid
are likely to vary together (for example, all pixels corresponding to a table in the image are
probably brown). These networks learn to exploit this natural covariance structure in order
to learn effectively. Therefore, CNN are not fully connected throughout the hidden layers
(PATTANAYAK, 2017). Lastly, the final output will be reduced to a single vector of probability
scores called logits, allocated along the depth dimension (RAMSUNDAR; ZADEH, 2018).

Input An image is composed of the dimensions heightˆwidthˆchannels. HeightˆWidth

is the Resolution of the image, and the number of channels (usually Red, Green and Blue
channels) can be 3 (R,G,B), 1 (grayscale), and etc. For other applications other than images
we could call Channels "Depth". To our application, the analogy would be represented by the
dimensions frequency (or timeseries), amplitude and audio channels (stereo would have two
channels, for example).

Local Receptive Fields The local receptive field concept originates in neuroscience, where
the receptive field of a neuron is the part of the body’s sensory perception that affects the
neuron’s firing. Neurons have a certain field of view as they process sensory input that the
brain sees. This field of view is traditionally called the local receptive field, and could be
interpreted as a patch of skin or to a segment of a person’s visual field.

Convolutional Kernels (or Filters) A convolutional layer applies nonlinear function to a local
receptive field in its input. We have the stride size of the kernel which controls how the
receptive field is moved over the input. It could move one, two or N tiles at a time (it’s like a
matt moving under a fixed format, and how much the matt moves is the stride). the filter size
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f is usually odd, that is because otherwise the padding would be assymetric and it wouldn’t
have a centered value.

Convolution of an image with different filters can perform operations such as edge
detection, blur and sharpen by applying filters. The below example shows various convolution
image after applying different types of filters (Kernels).

Pooling Through empirical use the scientific community realized max pooling helps because
it extracts the sharpest features of an image (RAMSUNDAR; ZADEH, 2018). So given an image,
the sharpest features are the best lower-level representation of an image. But even according
to Andrew Ng, max pooling works well but no one knows why (LI; JOHNSON; YEUNG, 2018).

Softmax Function Softmax is useful because it maps [-inf, +inf] to [0, 1] similar as a
Sigmoid Function would. But Softmax also normalizes the sum of the values(output vector)
to be 1. This function consumes the last layer of weights being propagated forward, which are
called logits. This name comes from the fact we are mapping weight values without bound to
probabilities.

Architecture

1. Feature extraction: In this part, the network will perform a series of convolutions and
pooling operations during which the features are detected. If we had a picture of a
zebra, this is the part where the network would recognise its stripes, two ears, and four
legs (its lower level features).

We retrieve the Local Receptive Field — each of these image patches will be handled by
a separate perceptron. A nonlinear transformation is applied to incoming data through
the neuron (which originates from the local receptive image patch) (PATTANAYAK, 2017).

(a) Convolutional Layer: The convolution is performed on the input data with the use
of a filter to then produce a feature map. We execute a convolution by sliding
the filter over the input. At every location, a matrix multiplication is performed
and sums the result onto the feature map. Convolution is one of the main building
blocks of a CNN. The term convolution refers to the mathematical combination
of two functions to produce a third function. It merges two sets of information.
Units map learned features and the layer put them together as the final output of
the convolution layer.
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Figure 20: Iterations taken between the Kernal and the input (LI; JOHNSON; YEUNG, 2018).

(b) Pooling Layer: After a convolution layer, it is common to add a pooling layer
in between CNN layers. The function of pooling is to continuously reduce the
dimensionality to reduce the number of parameters and computation in the network.
This shortens the training time and controls overfitting. The most frequent type
of pooling is max pooling, which takes the maximum value in each window. These
window sizes need to be specified beforehand. This decreases the feature map size
while at the same time keeping the significant information. Average Pooling or
Sum Pooling could be used as well.

Figure 21: CNN Pooling Layer Illustration (LI; JOHNSON; YEUNG, 2018).

(c) Recursively Stack Layers.
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2. Classification: Now, the fully connected layers will serve as a classifier on top of these
extracted features. They will assign a probability for the object on the image being what
the algorithm predicts it is (LI; JOHNSON; YEUNG, 2018).

(a) Flatten: After the convolution and pooling layers, our classification part consists of
a few fully connected layers. However, these fully connected layers can only accept
1 Dimensional data. To convert our 3D data to 1D, we use flatten the matrix,
collapsing each vector from axes 2 and 3 into one dimension. This essentially
arranges our 3D volume into a 1D vector.

(b) Fully Connected layer: The last layers of a ConvNet are fully connected layers,
so that means neurons have full connections to all the activations in the previous
layer. This part is in principle the same as a regular NN seen in section 2.1.5.2.
With the fully connected layers, we combined these features together to create a
model.

(c) Output layer: Finally, we have an activation function such as softmax or sigmoid to
classify the outputs nouns as cat, dog, car, truck etc. For the project’s application,
the project would output the binary positive or negative class to the ambulance
siren at this point. This will maps how probable it is that the image belongs to a
class then.

We could even make use of transfer knowledge if we would like to use another classifier
instead of the fully connected NN which is concatenated to the end of the feature extraction
layer. They are complex due to the extensive amount of parameters available for tuning, but
they are also powerful. This seems to be perfect for audio applications due to the complexity
of audio features retrieval, it is more difficult to gather features compared to image and video
retrieval. As the original audio data is made up of non semantic and non structured binary
stream, it lacks of semantic description and structured organization (RONG, 2016). CNN
are suitable for this application, as they can filter and extract semantic content from the
unstructured data which would be otherwise difficult to manually work with.

2.2 Acoustic Source Localization

Acoustic Source Localization (ASL) is the estimation of the sound source position
taking in account the acoustic signal the it generates. Many researches on the subject were
carried out on the field of robotics as it provides a way for them to do an intelligent surrounding
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environment analysis. The whole idea is to make robots and systems to benefit from hearing
as we humans do.

Localization algorithms are closely related to microphone configuration. There are
four main localization strategy groups (MARKOVIĆ; PETROVIĆ, 2010). The first group of
algorithms are beamforming methods in which an array of microphones is steered to various
locations of interest, searching for peaks in signal power. The second group are beamforming
methods based on spectral analysis done via a correlation matrix which associates spatial
space to power and outputs likelihood values. The third group are computational simulations
algorithms of the physiologically known parts of the hearing system. The fourth and last
group is comprised of localization strategies based on estimating the Time Difference of Arrival
(TDOA) of audio signals matching other elements in the microphone array. Since the elements
of the array are arranged with a relative distance between them, it is possible to associate the
latency between detection of the signal among these elements and the source location. The
choice of the author for using TDOA based algorithms is justified by the fact they that even
though they are not the most accurate in comparison to other state of the art techniques
(Badali et al., 2009), it is simpler and easier to implement. Since the current project has tight
time constraints, and documentation on TDOA implementations is plenty this was an obvious
choice.

TDOA algorithms take a whole array in consideration, but iterate between microphone
pair combinations at a time. This means even a two-microphone array composition is possible.
The biggest problem is that it will never be possible to triangulate the source location, and
its position will always be ambiguous, since it will not be able to tell if the delay detected
come orthogonality form the front or the back side of the array. That means that with two
microphones the Direction of Arrival (DOA) is ambiguous for a 2-dimensional plane, but
many other possibilities open up with we consider 3-dimensional spaces. For that cause, 3-
microphone arrays and above are required. After the microphones receive the data, it is then
necessary to process them. This processing phase looks to infer from some a priori knowledge,
the source location.

That said, using the observed time differences between audio signals arriving at the
microphone pairs, we can constrain maximum and minimum delays, as a sound source placed
ortoghonally to the microphone pair will produce near to zero time difference and on an
opposite case, a sound source placed on top of the line connecting the two microphones will
produce a maximum delay, which is described by the distance between the pair. The first step
is to calculate the time difference estimation. There are many methods that could be used,
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each in varying degrees of accuracy and computational complexity. The basic method is the
calculation of Cross Correlation between signals received by two different microphones, and
finding which value of delay (or phase) maximizes the correlation between these two processes.
The GCC method is an improved method for the Cross Correlation. To obtain the estimated
time difference, we need to consider two sensor inputs (Carter, 1987):

r1ptq “ sptq (2.22)

r2ptq “ spt ´ Dq (2.23)

where s(t) is the time variant audio signal process and D is the actual time delay. The cross
correlation can be calculated as the product of the expectation:

Rpτq “ Err1ptqr2pt ` τqs (2.24)

Finally, the estimated correlation peak τ̂ will converge to D when the cross correlation
is maximum:

D “ argmax Rpτ̂q (2.25)

When the correlation function is more sharply peaked, performance improves. Using
some kind of weighting could lead to performance improvements. A weighting technique called
Phase Transform (PHAT) normalizes the signal spectral density by the spectrum magnitude.
A implementation for calculating the PHAT cross correlation in discrete frequency domain
using a audio samples within a window could be done as follows:

R̂r1,r2 “
ÿ Xr1pkqXr̊2pkq

|Xr1pkq||Xr2pkq|e
j2π kτ

a (2.26)

where Xr1 and Xr2 are respectively the microphone inputs in the frequency domain.

GCC-PHAT however shows some potential issues. GCC with PHAT weighting is
indiscriminately weights all frequency bins regardless of signal Signal-to-Noise Ratio (SNR),
and therefore makes the system less robust to noise. Also, GCC-PHAT shows multiple sharp
maxima and the direct path maximum is not necessarily the strongest one causing ambiguity
in via multiple possible paths. Lastly, when multiple sources are present GCC-PHAT shows
multiple maxima and it is difficult to group the TDOA originating from the same source.
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Since we know the distance between our microphones L, we can then transform tau
into a relative number instead of an absolute delay using τmax “ L ˜ c, where c is the sound
speed in the medium, and thereafter τrelative “ τ ˜ τmax.

After calculating the time difference value, we can obtain the DOA by using an far-
field simplification (MARKOVIĆ; PETROVIĆ, 2010). φ is represents the aperture from the line
connecting the microphone pair, and since it could be either clockwise or counter-clockwise,
we have two possibilities for each φ — φ` and φ´, as seen in equation 2.27. Figure 22 shows
how parameters φ and θ relate.

φr1,r2 “ ˘arccospτrelativepr1, r2qq (2.27)

Figure 22: Example of interaction between the wavefront and the possible parameters θ and
φ values (MARKOVIĆ; PETROVIĆ, 2010).

This would be enough if we would be using only two microphones, and we would
fall the in the ambiguity case. However, the following transformation in order to fuse the
estimated DOA:

θ˘
r1,r2 “ atan2p yr2 ´ yr1

xr2 ´ xr1
q ˘ arccospτrelativepr1, r2qq (2.28)

where the angles ˘θ are the ambiguous angle between the orthogonal interception of the line
connecting microphones r1 and r2, and the reference line. It makes it easier for humans to
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visualize the aperture in relation to trigonometric circle. (xr1, yr1) and (xr2, yr2) pairs are the
microphone (x, y) coordinates on the proving ground.

Finally, we would need to solve the front-back ambiguity. This can later on be solved
using heuristics as a way to simplify the problem instead of using a statistical framework. Of
course, it would offer much less robustness in exchange of implementation simplicity.
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3 Methodology

This project proposes the development of a system for classification and thereafter
the sound source localization for the audio signal coming from emergency vehicles inserted in
real urban auditory scenes. For accomplishing this objective, we will break the problems down
and provide modular and as simple as possible systems for outputting what is necessary for
each proposed specific objective.

For automated driving applications, a architecture should ideally encapsulate each
sensor that provides information to be interpreted by the data fusion layer (AEBERHARD, 2017).
This leads us to the point where no matter what sensors are available for a vehicle model, the
same rest of the system would be able to fuse them based on data they provide. This kind
of abstraction is important as it allows us not to depend on a specific implementation for a
specific model of vehicle, a specific hardware, or specific firmware version. This means in this
context, we should not rely on microphones being detected or integrated to a given system, but
rather comply with the demands the architecture has, therefore passing over parameters which
do not know or depend on which actual sensor they are being provided from as illustrated in
figure 23.

Furthermore, at a sensor level, what Aeberhard (2017) proposes is an architecture as
seen in figure 24. This architecture outputs an object list O at sensor level, i.e., each sensor
shall output its own list independently of any other sensor present at this same level. This list
contains information about the current state of all the objects being detected at moment t.
As seen in figure 24, objects at sensor level can be described by their statistical descriptors:

• x̂S: Estimated state vector

• P S: State covariance matrix

• d̂
S
: Estimated object dimension vector

• d̂
S

σ : Dimension uncertainty vector
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Figure 23: Data fusion architecture with decentralized tracking algorithms. (AEBERHARD,
2017)

• fS: Feature vector

• cS: Classification vector

• pSpDxq: Probability of existence

where state vector x̂S contains the following parameters for modeling each object:

x̂S “ rx y vx vy ax ay ψ ψ1s (3.1)

where x and y are the object’s geometrical coordinates of the center of mass position, vx and
vy are the absolute velocity, ax and ay are the absolute acceleration, ψx is the orientation, and
ψ1 is the orientation change rate.

From this framework proposed by Aeberhard (2017), it is up to us to pick some of these
parameters for our prototype. Since we are not interested in Tracking an indiscriminate object
but rather classifying and localizing single emergency vehicles, the service being proposed will
have to output the classification vector cS and a simplified version of x̂S for describing object
position. Therefore, due to time constraints, what is proposed by this work is to describe the
estimated object position direction via the azimuth α. Also, since we are restricted to single
objects we shall simplify it classification vector to cS.

The specific objectives are described in the Figure 25. Yellow boxes indicate that
these two stages should operate on compatible number of audio channels in a real application,
but for this project these phases operate on different number of channels. The filtering stage
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Figure 24: Sensor level object tracking architecture. (AEBERHARD, 2017)

simply aims to decouple Very Low Frequencies outside human hearing spectrum with a High
Pass Filter with cut-off frequency at 200Hz. For this work, classification is proposed for mono
audio streaming, herein implemented to ease data collection. On the other hand, for localizing
sound sources we need multiple channels, so for that matter multi-channel data was mocked
directly into its model.

From 25, the idea proposed is to isolate functionalities by self-contained projects. For
this prototype, three sub-projects will be developed, as shown in figure 26.

The first sub-project — called audioset-download-tool – is a set of tightly cou-
pled entities and methods designed to select, download, log, normalize parameters, and
finally organize the files onto a logically structured database. The second one is called
auditory-classifier responsible for building and testing models for classifying the presence
of ambulances in an audio scene. As a co-product, it is proposed for this project to build an
extensible system using services. Services can contain a single or a set of software function-
alities, and for this project the architecture will be driven loosely by the dependency injection
and inversion of control principles. This increases system’s modularity and expansibility. For
each purpose, services within the classifier project can serve different clients as needed, so they
can reuse it for different purposes or even implement new ones, together with the policies that
should control their usage. The third and last sub-project is called source_localization
and is a set of scripts rather than entities. This scripts are responsible for reading the data
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Figure 25: Block diagrams of the project stages

Figure 26: Sub-projects contained inside the Masters parent project and their required tasks.

written by the previous sub-projects and then perform the data source localization, providing
a performance measurement against ground truth data and finally producing a JSON file pro-
viding a YAML object listing the classification probabilities cs and the respective azimuths α

along the time axis. The detailed tasks performed by the tools can be seen in figure 26.

No totally automated integration has been implemented between these sub-projects.
They should be operated manually via its user interface, and once the user is given an output,
he can manually use it as the input for the next package. Aside from this project being
a prototype it is also focused for research purposes, therefore it gives freedom to the user
to use different inputs at later stages other than those output by the previous stage. This
further complies with the modularity principle which has been previously mentioned — a user
can choose whether to only use one these sub-projects isolatedly or combine them for an
end-to-end result.
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3.1 Database

Two different databases are going to be developed — the first containing large
amounts of data, obtained through web scrapping techniques. This is necessary as DNN
are data hungry and at least one of the distributions available have to provide generic and
labeled data. For collecting such a high quantity of data automation definitely plays an im-
portant role. Neural networks are robust to data outliers, however if there is a systematic
problem is present between labels and its content, the algorithm performance will certainly be
significantly lower. The second database comprises a set of technical tests to be performed on
the outdoors proving ground of CARISSMA. This will ensure that both real and experimental
data are collected, allowing for good model generalization capacity while having further unseen
data by the model for validation of results at the end of the training phase. It means we can
compare the model against real cases and validate them against this applied situation.

3.1.1 Google AudioSet dataset

The first package developed was an automated HTTP request robot. But before firing
requests a problem had to be solved, which was a source of trustworthy labeled, structured
and accessible audio fragments. There are great image open-source databases out there,
such as CIFAR-10 and ImageNet. For audio, however options were more scarce and good
options found were the freesound.org database and DCASE2017 database. DCASE2017
was proposed for the DCASE challange and therefore audio clips belonged to some restricted
domain aimed for each task given by the challange rather than trying to embrace all possible
sounds. freesound.org seemed like a great choice, having a crowd-sourced annotation
system, a great ontology collection, but failing at only tagging whole videos. That means the
clips would have as long as 20 minutes of playback time and if for one of those minutes there
was a vehicle sound present, the other 19 minutes would misleadingly carry this label to the
other audio fragments as well. Since the amount of data is beyond of careful human manual
verification, it would not be possible to manually split the audio into fragments and re-annotate
them. Another option considered was downloading video databases and then extract the audio
from them. Two good options found were the Youtube-8M database, which consists of millions
of youtube videos IDs and automated labels, and the Google AudioSet, which is composed of
youtube video IDs and automated labels. Both of them were actually easier to access than
static binaries, since downloading the entire database is unrealistic to this project and we do
not need every single data point available. So being able to download just the audios relying
on its video IDs would be a really desirable characteristic. The first had an amazing quantity
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of data, but the latter had a huge advantage for us: It had an ontology instead of just entities
scattered all around. This lead Google AudioSet to be chosen (GEMMEKE et al., 2017).

This sub-project was entirely written using Python 3.7, which was also used to in-
terface the multimedia framework FFmpeg. This framework is a default tool for encode and
decoding both video and audio formats. Incoming audios when downloaded directly from the
internet are subject to be in almost any encoding format, the library has been used for trans-
parently convert any incoming format into a single standardized one, not to mention other
important data standardization chores.

Google AudioSet provides three types of data per class — balanced, unbalanced
and evaluation data. Balanced segments are those which were used to compose ’maximally-
balanced’ subset, which intent to provide at least 50 segments for as many classes as possible.
unbalanced segments are those which are not contemplated in the previous set (and due to
the fact segments can receive multiple labels, the overall labels count is not uniform). Lastly,
the evaluation files are those which were manually conferred in order to provide a performance
measure for each of the labels, so in classes with high health levels, these data can be completely
trusted (GEMMEKE et al., 2017).

The arguments and options exposed by the Command Line Interface (CLI) using the
audioset-download-tool python main.py –help flag. Another way of quick start using
the tool is reading its README.md file.

The architecture is constituted of only two main classes: the AudioSetDownloader
and the AudioProcessor. The AudioSetDownloader is responsible for managing the input
CSVs according to the arguments and options passed via CLI, assembling the dataframes
containing the desired data, logging information, warning, and errors related to the support
files management and HTTP response statuses, and finally executing the audios download
consuming the dataframe which was built. The AudioProcessor, in turn, is responsible for
fetching the audio files, recognize malformed data, trim the audios, and save the audio using
the desired sampling rate, encoding and number of channels.

The dataset was prepared to accommodate two classes, negative and positive, config-
uring a binary classification. Auditory scenarios where ambulances are not present correspond
to the negative, and scenarios where ambulances could be detected in the surrounding environ-
ment are the positive cases. The goal was to build the negative class with sounds which were
sufficiently generic to provide general features that represent a traffic scene on the absence
of emergency vehicles, whether on the presence of other non-emergency vehicles or even on
usual urban or countryside landscapes.
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Using the AudioSet ontology the following structure was assembled (for further details,
refer to Gemmeke et al. (2017)):

i Positive class:

(a) Sounds of things > Vehicle > Motor Vehicle (road) > Emergency vehicle

ii Negative class:

(a) Sounds of things Ñ Vehicle Ñ Motor vehicle (road) Ñ Car

(b) Sounds of things Ñ Vehicle Ñ Motor vehicle (road) Ñ Truck

(c) Sounds of things Ñ Vehicle Ñ Motor vehicle (road) Ñ Motorcycle

(d) Sounds of things Ñ Vehicle Ñ Motor vehicle (road) Ñ Traffic noise, roadway noise

(e) Channel environment and background Ñ Acoustic environment Ñ Outside, urban
or manmade

Note that classes such as "Sound of things Ñ Alarm Ñ Ambulance (siren)" are
inherently included in the positive class, since the AudioSet ontology allows for multi-labeling,
thus it can be said that every "Ambulance (siren)" is included in "Emergency Vehicle", making
it a subset of the latter class.

To be on the safe side, the AudioProcessor is responsible for filtering the audios
according to desired properties found on them. The following audio properties were selected:

1. Sampling Rate: 48 kHz

2. Bit Depth: 16 bits

3. Number of Channels: 2 (Stereo)

This provides high audio quality to the database, and future-proofs the database in
case mono audios are not good enough for other applications, even though for this current
application it would be of no harm.

After that, the author manually curated the classes. There were some overlaps as,
for example, the class "cars" could contain siren sounds in it. This guaranteed (not taking in
factor human fail-prone nature) that all audios were homogeneous property-wise and that the
positive and negative classes did not leak onto each other. Minor mistakes like mislabeling do
not present a major issue for CNN algorithms, but rather systematic ones could be an actual
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one. Manually listening and curating them guarantees that no systematic mistake has taken
place.

Finally, after downloading, filtering and curating the audio files, the negative class
was composed of 3,692 files, totaling 6.9 GB GB on disk. The positive class was composed
of 8.150 files, totaling 2,7 GB GB. Since the negative class would not greatly benefit from
data augmentation and it would further unbalance classes, the technique was applied solely
on the positive class. The modifiers applied were doubling and halving speed, and stepping 4
semitones up and 4 semitones down. It resulted in the positive class being composed now of
10,588 files totaling 7.3 GB. This slightly uneven proportion did not show negative effects on
training results after iterative training sections with different configurations. The grand totals
in the database resulted in 14,290 files, totaling 14,3 GB, finally amounting for 22 hours, 44
minutes and 41 seconds of audio duration.

Providing annotations between sub-types of siren in the database would be o great
benefit for getting a good insight on the data. On the other hand, due to the size of the
database it would not the practical to do so. Thus, a natural assumption is that the database
would be naturally biased towards American emergency vehicle sirens signatures in detriment of
any other, but it should not greatly hurt performance for other countries’ signatures. Figures
27 and 28 show how noticeable is the difference in the signature seen between a auditory
scenario in the presence of a vehicle with without any sirens and an generic ambulance with
the sirens on. Also figure 29 shows the most common siren signatures found in the database,
associating them with their countries via either the video title language or the name of the
place mentioned in the title.

Figure 27: Negative class. Figure 28: Positive class

As we as humans do, the model is expected be able to recognize for patterns using
them as features, and thus characteristics that make a siren sound familiar for humans, in
order to describe an example as an emergency vehicle.
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(a) (b)

(c) (d)

Figure 29: Mel-spectrograms noramlized to 0dB. (a) Germany (b) United Kingdom (c) USA
(d) France.

3.1.2 CARISSMA dataset

CARISSMA is an institute related to the Technische Hochschule Ingolstadt responsible
for performing research in the field of Automotive Safety. The assembly of dataset no. 2 was
made for us to have controlled audio clip conditions. The idea was to generate the audio
clips using known recording and test parameters. The following tests were realized inside its
premisses, more exactly on its denominated outdoor proving ground (seen in figure 30). Track
measurements can be found in figure 31. Equipment employed in tests were the following:

• Set of four omni-directional condenser microphones from the AMMOON brand

– Frequency Response Range: 50 Hz – 16kHz

– Sensitivity: -30dB ˘ 3dB

– Interface: USB 2.0

• Siren speaker from the ZKXX brand

– Power: 100W
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Figure 30: CARISSMA proving grounds facilities

– Noise Level: 120 – 150 dB

• Apple MacBook notebook (MacOS v10.14.3) using GarageBand v10.3.2 as the digital
audio workstation

• Audi Q7 Second Generation vehicle

• Smart Fortwo Electric Drive Fourth Generation vehicle

• GeneSys Automative Dynamic Motion Analyzer (ADMA) hardware V3.0

• Bavaria’s police vehicle model BMW F31 equipped with original siren speakers used by
the police force.

First test For the first test, a 4-microphone array mount was built to be placed on the roof
of the Smart where distances between each microphone were measured as 101 cm, forming a
square using the frame where the vertices are the points where the microphones were placed, as
can be seen in figure 32. These were wired to the computer via usb interfaces for recording the
data (figure 33), then the four distinct microphones were recorded each one to a respective
independent channel, taking care of adjusting parameters the same for all of them. This
resulted in having one four-channel recording for each run. It is worth noting that MacOS’
operating system tries to keep all microphone clocks synchronized while recording, but they
might drift during recordings as their crystal oscillators are never built exactly the same. As
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Figure 31: CARISSMA proving ground track official measurements

a result, their frequency might differ slightly, which turn out noticeable after long periods of
recording.

The polar characteristic of the microphones are omni-directional, therefore they will all
be positioned with their tip pointing straight up, disregarding any specific horizontal direction.
The Smart played the role of ego in this test context. The target consisted of the Q7 equipped
with a multi-tonal Siren mounted on its roof utilizing a frame for fixation. It was the dynamic
component of the test which was prone to move around.

The siren speaker used for the first test was the ZKXX siren. The mount directives
were the following:

1. Positioning

(a) Laterally: The siren must be placed as centered as possible in the roof of the car.

(b) Longitudinally: The siren must be placed as offset to the front of the car as possible,
respecting the limits of the frame mounted on top of its roof.
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Figure 32: Smart Electronic Drive set up with the microphone array mount.

2. Roll: As centralized as possible

3. Pitch: Pointing straight to the horizon, as parallel as possible to the floor

4. Yaw: Pointing outwards to the center of the car, in the forward direction of the car

The test was carried out on 19th March of 2019. Before beginning the actual tests,
the points of interest needed to be mapped to be offset in the ADMA’s data recording software.
Measurements were made in relation to a reference point and assured that both the microphone
array and the siren were the points of interest being measured. The microphones and the
siren were positioned 176.9 cm and 194.3 cm from the floor, respectively. Car reference
position, point of interest (microphone array and siren) position, car speed, car acceleration,
car turning rate, and other parameters were recorded and matched with timestamps. The
sampling frequency used for ADMA measurement was 100Hz. Base noise levels averaged 74
dB.

In order to synchronize the audio recording and the ADMA data a small project
containing a toolset for generating timestamps using the same 100 Hz of sampling frequency
was built. The script would detect the click event from the mouse used to start the recording,
and begin recording timestamps into a CSV file using the UNIX Epoch time protocol. That
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Figure 33: Recording setup on board of the Smart Electronic Drive.

way, it was possible to know which recording sample was related to what ADMA position data.
The recordings were made using a sampling rate of 44.1kHz, a bit-depth of 16 bits, and 4
channels (one for each microphone present in the array).

The test script consisted of 30 runs. Table 3 contains each routine description. Tests
1 to 16 were made in positions marked by the red crosses in figure 31. The black vehicle in
the picture represents ego while the target was changing positions according to the crosses.

CARISSMA team has greatly supported the measurements, providing the vehicles,
equipment, and the ADMA data recordings. Figure 34 shows the setup for test no. 1 and the
measurement wheel which was used along with cones to mark the proper positions.

The result data was composed CSV files containing the UNIX Epoch timestamp, raw
audio files for each of the four microphones, and binary MATLAB data containers containing
ADMA data. All data was organized using a folder structure for placing each test’s data.
Helper shell scripts were built for automating bulk transport and renaming of the files which
would be employed also for the second test.
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Id Routine Name Activity Description Recording
Duration

1 Static Placement - First Siren
Tone

Static Target directly in FRONT of the center
point of the array - 10 m

60 seconds

2 Static Placement - First Siren
Tone

Static Target directly in RIGHT of the center
point of the array - 10 m

60 seconds

3 Static Placement - First Siren
Tone

Static Target directly in LEFT of the center
point of the array - 10 m

60 seconds

4 Static Placement - First Siren
Tone

Static Target directly in BACK of the center
point of the array - 10 m

60 seconds

5 Static Placement - First Siren
Tone

Static Target directly in FRONT of the center
point of the array - 35 m

60 seconds

6 Static Placement - First Siren
Tone

Static Target directly in RIGHT of the center
point of the array - 35 m

60 seconds

7 Static Placement - First Siren
Tone

Static Target directly in LEFT of the center
point of the array - 35 m

60 seconds

8 Static Placement - First Siren
Tone

Static Target directly in BACK of the center
point of the array - 35 m

60 seconds

9 Static Placement - Second
Siren Tone

Static Target directly in FRONT of the center
point of the array - 10 m

60 seconds

10 Static Placement - Second
Siren Tone

Static Target directly in RIGHT of the center
point of the array - 10 m

60 seconds

11 Static Placement - Second
Siren Tone

Static Target directly in LEFT of the center
point of the array - 10 m

60 seconds

12 Static Placement - Second
Siren Tone

Static Target directly in BACK of the center
point of the array - 10 m

60 seconds

13 Static Placement - Second
Siren Tone

Static Target directly in FRONT of the center
point of the array - 35 m

60 seconds

14 Static Placement - Second
Siren Tone

Static Target directly in RIGHT of the center
point of the array - 35 m

60 seconds

15 Static Placement - Second
Siren Tone

Static Target directly in LEFT of the center
point of the array - 35 m

60 seconds

16 Static Placement - Second
Siren Tone

Static Target directly in BACK of the center
point of the array - 35 m

60 seconds

17 Circular movement around
Ego - First Siren Tone

Target performs two full circles keeping 35 m
from Ego - 20 km/h

90 seconds

18 Circular movement around
Ego - Second Siren Tone

Target performs two full circles keeping 35 m
from Ego - 20 km/h

90 seconds

19 Moving Target at a single face
- First Siren Tone

Target moves away from the FRONT of Ego
and then returns - 30 km/h

110 seconds

27 Moving Target passing by Ego
- First Siren Tone

Target incomes from the FRONT of Ego, offset
to the RIGHT by 3.5 m, passing by and finishing
to the BACK of Ego - 30 km/h

25 seconds

28 Moving Target passing by Ego
- Second Siren Tone

Target incomes from the FRONT of Ego, offset
to the RIGHT by 3.5 m, passing by and finishing
to the BACK of Ego - 30 km/hh

25 seconds

Table 3: Description of test routines used in the first test — Part I
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Id Routine Name Activity Description Recording
Duration

29 Moving Target passing by Ego
- First Siren Tone

Target incomes from the FRONT of Ego, offset
to the RIGHT by 3.5 m, passing by and finishing
to the BACK of Ego - 60 km/h

20 seconds

30 Moving Target passing by Ego
- Second Siren Tone

Target incomes from the FRONT of Ego, offset
to the RIGHT by 3.5 m, passing by and finishing
to the BACK of Ego - 60 km/h

20 seconds

33 Moving Target passing by Ego
- First Siren Tone

Target incomes from the LEFT of Ego, offset
to the FRONT by 3.5 m, passing by and ending
the course in the RIGHT of Ego - 60 km/h

20 seconds

34 Moving Target passing by Ego
- Second Siren Tone

Target incomes from the LEFT of Ego, offset
to the FRONT by 3.5 m, passing by and ending
the course in the RIGHT of Ego - 60 km/h

20 seconds

35 Moving Target Simulate Case
- First Siren Tone

Target simulates joining an Autobahn by the
RIGHT, overtaking Ego - 60 km/h

25 seconds

36 Moving Target Simulate Case
- Second Siren Tone

Target simulates joining an Autobahn by the
RIGHT, overtaking Ego - 60 km/h

25 seconds

Table 4: Description of test routines used in the first test — Part II.

Figure 34: Example of test setup.
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Second test The same 4-microphone array mount and setup was reused on the roof of the
Smart for the second test. A big improvement was reworking the timestamp grabber script,
which was relying on a single thread to capture the timestamps. That way, besides reworking
the storing routine, now the script could run freely while a separate thread was responsible for
getting the precise timestamp after the clock period has expired. This eliminated the variation
which timestamps were experiencing during the first test. This was caused by the fact since
only one thread was responsible for the whole routine, if the CPU would stutter even though
slightly during the whole recording period, the measurement would be delayed. Therefore,
instead of having timestamps vector being composed of [0ms 10ms 22ms 30ms 43ms...]
— as it was the case of the first test —, now it would rather be composed of [0ms 10ms
20ms 30ms 40ms...].

The test was carried out on 7th June of 2019. Like for the first test, before beginning
the actual tests, the points of interest needed to be mapped to be offset in the ADMA’s data
recording software. However, now instead of the Q7 holding the siren, the Bavarian police
vehicle model F31 would act as the target. Consequently, the ADMA equipment had to be
installed, and the same measurements for offsetting the actual position of the siren sound
source had to be done (35). The siren sound signature follow the German norm DIN 14610,
which determines a square wave with a low tone and a high tone — the low tone fundamental
must lie between 360 Hz and 630 Hz, and the high tone must be a multiple of 0.33 (tolerance
from 0.293 to 0.426) higher than low tone. The duty cycle must be of 50%, with the total
cycle period between 2.5 and 3.5 seconds. Differently from the first test, now the siren speaker
is located in the front-end part of the vehicle at a low position, about 23cm from the ground.
All ADMA configuration is the same as the first test, including the sampling rate at 100Hz.
Base noise levels averaged 64 dB.

The test script now consisted of 21 runs, since the main cases have been identified
now. Tests should be able to depict typical situations which could challenge the classification
model not only statically having the siren on, but also toggling between siren on and off,
relatively high speed to cause bigger Doppler effects, and trying sound occlusion cases. Table
5 contains each routine’s description. As in the first test set, tests 1 and 3 to 9 compose the
static tests described by the red cross marks in figure 31.

With all data in hands, and properly structured via the script made for the first test,
the audios were trimmed in order to match exactly what is defined by the tests script. The last
step was writing a script capable of plotting the data from the ADMA in a Cartesian plane,
matching the timestamps from both sources — the ADMA data and the timestamps from the
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Figure 35: ADMA module installed in the police vehicle.

timestamp_grabber script ran on the audio recording environment, calculating the distance
and azimuth between Ego and Target per sample, and finally assembling a master object
containing timestamp, instant position of each of the Ego microphones, instant position of the
Target’s siren speaker, calculated relative azimuth, and calculated relative euclidean distance.
This master object is fundamental, so we may have a ground truth source to compare the
estimated parameters against this data which is known to be correct.

Is worth noting that synchronizing the data was not possible for every case. The
script by the author used the Unix Epoch Time timestamp which begins at 0h of 1/1/1970
and used the millisecond resolution format, generating a integer number which amounts for
the total milliseconds that have passed from the clock start. This means the first timestamp
recorded by the script — 1559893668905 converts to 7th of June, 09:47:48. The exact time
when the first test was run. However the ADMA system, according to the Firmware version
30.5.X.X technical documentation states that its GPS time was set to match UTC in 0h 6th

of January, 1980. It says also that the GPS is now ahead of UTC by 18 seconds. Therefore, a
18 seconds compensation was manually added along with other instructions for converting the
ADMA data timestamp to the Unix Epoch timestamp format. However, for some tests, even
after applying all information given by the technical document, timestamps would mismatch
as long as up to 5 minutes. Other tests would align closely enough. Thus, the following list
shows which tests had to be forcefully matched:
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• Dynamic tests which were correctly matched: 6, 7, 11, 14, 15, 16, 18, 19, 20, 21

(a) 6: 4 seconds difference

(b) 7: 4 seconds difference

(c) 11: 2.5 seconds difference

(d) 14: 2 seconds difference

(e) 15: 2 seconds difference

(f) 16: 2 seconds difference

(g) 18: 3 seconds difference

(h) 19: 2 seconds difference

(i) 20: 2 seconds difference

(j) 21: 3 seconds difference

• Dynamic tests which were forcefully matched: 1, 2, 3, 4, 5, 8, 9, 10, 17

Forcing matches was done by ignoring the timestamps altogether, and rather count
timestamp positions. This methodology was employed every time the first timestamp of one
data source was larger than the last timestamp of the other source, bidirectionally. That is
to say, the first row of data from Ego was matched to the first row of data from the Target
(ADMA data) and so on. This maneuver was a last resort resource that does not guarantee
that data is correctly synchronized by any means. Figure 36 shows a variety of plots examples
which were made using the post-processed ADMA data. Color scale goes from darker to
lighter, representing earlier to later timestamps, respectively.

3.2 Audio Source Classifier

A major difference in this sub-project is the presence of a setup.py file. It means
that this whole project is distributable. If we take a closer look at audio_classifier, we
can see it is a special folder — it contains a structure with all the source code inside of it.
This folder represents a package, which contains other sub-packages, similar to what can be
seen in Java Enterprise projects. In setup.py, a tool called setuptools includes all relevant
packages of the source tree in a python egg or a python wheel, which are analogous to Java’s
JAR files. It means this code can be packed into a single file and used as a dependency for
other projects as well, protected by GPL license.
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Figure 36: Example plots from the ADMA data in the second test.

All functions can be accessed using the which can be accessed via CLI context menu,
called via the help flag using the audio_classifier command python -m audio_classifier
--help, and its modes — fit_model, evaluate, predict, utilities.

3.2.1 Pre-processing

This sub-package was responsible for all functionalities related to configuration, input
preparation, application bootstrap, and finally feature or representation extraction. Librosa
(MCFEE et al., 2019) was extensively used, which is a package focused on music and audio
analysis. It provided the building blocks necessary to create the whole audio information
retrieval and processing necessary for greatly speeding up the progress of this project.

Depending on the mode selected, whether model fitting, evaluation or prediction, this
sub-package would have to load the proper data. For example, in cases only evaluation was
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selected by the user, a model would already be available from previous mode fitting sessions.
Therefore, it would not be needed to go through the phase of deserialization of the training
data, but rather only load and assemble the evaluation data object. This context could be
used for training sessions, evaluation and and pure prediction as well, when no data would
have to be loaded at all apart from the new data. Also related to input loading, a cache
function was implemented. Since more than 8 hours of audios would have to be loaded per
training section, this deserialization process could take up to 4 hours to complete. Therefore,
a good solution was to implement a cache system utilizing NumPy matrix objects along with
a package called pickle, in order to save this objects to binary data. This made prototyping
much more flexible, reducing the time spend by the CPU reading the audio files from up to
8 hours to no more than 30 seconds. If input data would change, then the cache could be
cleaned up and the new data would create new cache files. Also, note that all filepaths are
configurable via the InputPreparation constructor, so referring to specific input folders are
not important, as they can be changed at will.

The first step was to remove any nonconforming audio stream, providing a consistent
data structure to be injected in the NN architecture. In order to train a network, it is pivotal
that all input data are of the same dimensions, so they can be passed forward through the NN
layers. Thus, the pre-processor would automatically identify the standard bitstream size using
the matrix dimension most present in the ensemble and discard any data which would not fit
this dimensions.

The result would then be cached for future uses and thereafter would pass through
additional functions, depending on the options passed by the user. The first function is silence
trimming. The silence trimming took zones of relative low power leading or trailing the data
and cut it out, refilling this blank vector positions with copies of what was left intact on
the matrix. That meant if silence was something undesirable for a given class, this would
prevent the model to systematically learn something incoherent with what that given class
fundamentally meant. This function can be customized to be applied to none, one, or more
classes present in the input data. The second function was a data augmentation service — this
means increasing the number of data points. Since at some point the data available through the
database formed could not be enough for the whole learning process. Two supported kinds of
data augmentation were developed: augmentation via time compression or widening, in which
cases the same approach as in the silence trimming would be applied, and augmentation via
pitch shifting, where different semitones could be passed as arguments. This provides a greater
generalization power to the classifier, so if an sound signature would have a faster, slower,
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higher pitched or lower pitched tone, it could still understand it as a recognized source and
correctly classify it McFee, Humphrey e Bello (2015).

The last step was to extract some kind of knowledge representation from the raw
audio data. The audio data at this point is a MxN matrix, where M is the number of channels
and N the number of samples for that audio file. Yet, since instead of having a single audio
file deserialized and vectorized, we have thousands of them, so they get stacked on top of each
other forming now a MxNxO matrix where O is the number of audio files loaded. However,
injecting this object directly to the neural network would greatly slow down its learning pro-
cess, even hindering it from making discoveries and potentially generating new features which
could enable better understanding over the goal concept. Two strategies could be adopted,
implementing a representation descriptor, which could ease this processing, or implementing
actual feature extractors. This is where a interesting characteristic about this package comes
into play: extendability. The class PreProcessor is responsible for transforming and giving
meaning to the raw audio input data. It can be easily extended to support new features, since
a base module was designed to expose new feature extraction methods. As for the state of
this project, only the mel-frequency spectrum representation is available.

A spectrogram is a visual representation of the spectrum of signal frequencies as it
varies with time. In the time domain, audio signals are represented by amplitude versus time,
a simple two-dimensional representation to provide us a good understanding about such a
complex and rich concept which is a traffic auditory scene, thus it gives us little immediate
information about the signal itself (figure 37). From this signal it is possible to get its Fourier
Transform, which is a function that gets a signal in the time domain as input, and outputs
its decomposition into frequencies, now describing it in the frequency domain rather than the
time domain. What is actually done computationally is the use of a DFT, which gives us a
really good approximation comparing to what the continuous transformation would give us.
This can be achieved by the use of a common algorithm called FFT, but we do not just want
to apply it to the entire signal and get its output. Rather, it we want to extract a spectrogram
from this signal.



75

Figure 37: Example ambulance audio time domain wave envelope plot sampled at 48kHz.
Amplitude is in the digital +1 to -1 limits scale.

To extract a spectrogram from an audio signal, the following steps are required
(CHAKROBORTY, 2008):

1. Apply Windowing: As used as base for Finite Impulse Response (FIR) design filters, a
windowing function is applied to the signal. For audio applications, commonly we use
Hanning windows as the function is designed to smooth out spectral leakages that arise
from the fact that real world data is not periodic as the Fourier Transform assumes.

so “ si ˝ w (3.2)

where si is the audio signal matrix and w is the window function matrix applied element-
wise to the audio.

2. Zero-pad: To compute the FFT, matrix so needs to be compatible with a factor matrix
in order to obtain all DFT coefficients.

3. Apply DFT: A DFT is a discrete function which outputs coefficients. These coefficients
are the discrete analog to those present in a N-periodic and N-normalized Fourier series.

xn “ 1
N

N´1ÿ
k“0

Xk ¨ ei2πkn{N , n P Z (3.3)
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Therefore, the vectorized implementation is as follows:

X “ szpW (3.4)

where szp is the zero-padded, windowed, and framed input audio signal. W is the
Twiddle factor used to calculate the DFT. Its elements are defined by:

`
WN

˘k “ ej2π k
N “ pωN qk (3.5)

so the result is a N points discrete Fourier transforms (DFT) operation, which outputs
N frequency bins. This means at this point, we have a FIR filter bank with N banks.
This means we can consider DFT to be equivalent to filter bank.

4. Compute the power spectral density: The power spectrum is simply obtained by the
obtaining the element-wise power of X:

D “ X ˝ X˚ (3.6)

On a practical perspective to extract the spectrogram from signals, we first slice the
audio into small audio frames. The idea behind this step is that frequencies in a signal change
over time, so in most cases it does not make sense to do the Fourier transform across the entire
signal in that we would lose the frequency contours of the signal over time. Therefore, choosing
a proper frame length is important, so it is long enough to capture the phenomenon we are
interested in, but also short enough that we can make this approximation that the frequencies
over this period are stationary. Thus, the DFT over this short-time frame would retrieve us
a good enough approximation of the frequency envelope by concatenating adjacent frames.
Calling these frames reminds us from frames used in videos, and it is not by coincidence
— the concept is fundamentally the same, which is finding the smallest possible block of
information that provides a comprehensible insight of complete content. May it be a video
or an audio. With our frames in place, we multiply our pieces of signal against a windowing
function, calculating the DFT for each of them. This method is called the STFT, windowing
an appropriate number of samples according to the total amount of time to be framed and the
signal sample rate, and applying local DFT to the frame, which is composed of N samples.
Figure 38 shows the Fast Fourier Transform (FFT) algorithm applied to a single window of the
example signal, while figure 39 shows all the windows extracted using N=8196 for a physical
duration of 112 milliseconds for the signal’s 48kHz sampling rate. Therefore, 111 windows are
showed since there is a 1/4 window overlap per window frequency hop. The value of N can be
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experimentally adjusted given specific applications, since not only it affects the window length,
but also the number of times the DFT is applied, causing higher computational demand.

Figure 38: Example ambulance audio for a single DFT window. Magnitude of frequency bins
are composed of complex-valued dimensionless coefficients.

Figure 39: Example ambulance audio for multiple DFT windows. Magnitude of frequency bins
are composed of complex-valued dimensionless coefficients.
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The two next steps would be to simply compute the power spectrum from the ampli-
tude now in decibels and change its representation, accommodating each of these bins across
time instead of plot them overlapped on each other. This is done by extracting the peri-
odogram from the frequency spectrum, as shown in 3.7 (HUANG; ACERO; HON, 2001). Figure
40 shows this form known as a spectrogram on linear frequency scale. Observe how is much
easier to detect data properties in this form already, which can also be used as features. This
way, sound can be identified much better by the formants and their transitions.

P “ |FT pXq|2
N

(3.7)

Also note how each fundamental high magnitude peaks in figure 39 can be seen
forming the fundamental formant at figure 40.

Figure 40: Spectrogram using the example ambulance audio. Time axis in seconds, frequency
axis in Herz, and power normalized to 0 in dB.

For building a mel-spectrogram, we would need to modify some of the latter steps. To
be more precise, what we are looking to build is a log-amplitude mel-spectrogram — this is a
special kind of spectrogram which instead of using linear scales, uses a logarithmic scale on the
magnitude axis and a mel scale on the frequency axis. But first we need to understand what the
Mel scale is. The Mel scale relates perceived frequency of a pure tone to its actual measured
frequency. As humans, we perceive pitches differently, and we also discern variations in tones



79

differently depending on its frequency region. The Mel scale maps the frequency spectrum to
the mel-frequency spectrum using equation 3.8 (CHAKROBORTY, 2008).

mpfq “ 1125 lnp1 ` f

700q (3.8)

With the mel-scale now applied, what we would see in the current shape of the spectro-
gram would mimic human sound perception which is notably nearly linear in low-frequencies
and approximately logarithmic at mid- and high-frequencies (CHAKROBORTY, 2008). Re-
referring to figure 38, instead of directly computing linearly spaced bins via the DFT, we now
compute filter banks by multiplying the signal by triangular filters equally mel-spaced between
them. Each filter in the filter bank is triangular having a response of 1 at the center frequency
and decrease linearly towards 0 till it reaches the center frequencies of the two adjacent filters
where the response is 0 (HUANG; ACERO; HON, 2001). This behavior can be implemented using
equation 3.9 (HUANG; ACERO; HON, 2001). This will give us the filter bank comprised of an
arbitrary number k of filters, combining FFT-obtained bins into Mel-frequency bins. This is
called a k-filter Mel filter bank and the bins (or frequency bands) formed by this filter bank
are thereafter piled up on the log-frequency axis just as before, but now matching the desired
human perception scale, as seen in figure 41.

Hmpkq “

$’’’’’’’’’’’’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’’’’’’’’’’’’%

0 k ă fpm ´ 1q

k ´ fpm ´ 1q
fpmq ´ fpm ´ 1q fpm ´ 1q ď k ă fpmq

1 k “ fpmq

fpm ` 1q ´ k

fpm ` 1q ´ fpmq fpmq ă k ď fpm ` 1q

0 k ą fpm ` 1q

(3.9)

where fpq represents the inter-space of the triangle for each bin, which equals to q list of
m ` 2 mel-spaced frequencies, and m is the total number of desired filters.
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Figure 41: Mel-spectrograms using the example ambulance audio. Time axis in seconds,
frequency axis in Herz, and power normalized to 0 in dB. Left m “ 128 and Right m “ 512.

From this point on, we could optionally extract the MFCC. The Discrete Cosine
Transform (DCT) can be used to decorrelate filter bank coefficients, a process also referred to
as whitening (HUANG; ACERO; HON, 2001). For CNN this is not necessary, as the representation
alone will be fed to the initial feature extraction layers, and the work of understanding and
extracting meaningful features from the data can be left to the NN. Some ML algorithms may
struggle or not be capable to work with this representation alone at all, thus MFCC would be
of great use in those cases. But for this project, it is not needed at all.

Before approaching the next sub-package, it is indispensable to talk about the one-
hot encoding function contained in the pre-processing sub-package. This is a static method
acting as a middleware, taking the entire data labels on a vector and comparing it against a
list for checking for the number of unique classes present in the data and in case of a mismatch
between the user intentions and what is contained in the array, a error is thrown. the one-hot
encode is really simple, as it takes categorical labels or integer labels and encodes it using a
fixed sized vector of bitstreams. This is a widely accepted and used form of identifying and
storing labels throughout data. Now categorical data is defined as variables with a finite set of
label values, can be easily be converted to integer data and vice-versa, and lastly the number
of bits won’t vary according to class, as all bitstreams hold a constant size which is identified
before running any training operations.

3.2.2 Classification

At this point in the system the preprocessing sub-package has prepared the input
data, applying generic data massage methods, augmentation and finally returning the pre-
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processed audio mel-spectrograms matrix and a one-hot encoded labels array. Note that at
this moment we are not dealing with audio data anymore. This approach is inspired by Hershey
(HERSHEY et al., 2017) and the idea of extracting visual information from data to only then
process it through the CNN.

Also, it is pivotal to check if data is synchronized. For this project, automatized
tests are responsible for ensuring labels correspond to their origin audio streams, and when
the application is run using debug mode, the user can visually check if the spectrogram being
carried out actually matches the label being shown. This shown to be a great tool during the
initial development.

This sub-package counts with a class responsible for training (Classifier), a
module for injecting new architectures seamlessly (_nn_architectures.py), a debugging
module (data_verification.py), a class responsible for evaluating model performances
(Evaluator), and finally a module responsible for bootstrapping and executing predictions
using a previously trained model (predict.py).

The application core class Classifier contains methods for taking the both examples
matrix and the labels vector and perform the classifier model training when the user specifies
the model_fit mode.

First, the class initializes taking user arguments for controlling the training lifecycle,
such as using or skipping previous training checkpoints. Currently the class does not support
auto hyperparameter scheduling. This method instead of receiving a single hyperparameter,
would take a vector of values and train multiple models using each one of them, so we may
select the best one afterwards. It does support some different hyperparameters, however.

CNN are on the opposite spectrum of Random Forests when talking about parametriza-
tion (LI; JOHNSON; YEUNG, 2018) (PATTANAYAK, 2017). CNN provide a huge amount of hy-
perparameters, and therefore, hyperparameter tuning efforts as well. There are some further
hyperparameters which also have to be configured aside from the ones already seen in section
2.1.5. They can be correlated to the DNN architecture structure or to the training behavior
itself.

Training Using a software component responsibilities segregation approach, the CNN struc-
tural design was moved and injected from another module. This guarantees new architectures
can be easily built and called from within the Classifier. This project does not aim to train,
compare, and achieve the best model for the given problem proposed to be solved, but rather
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looks to accomplish a valid prototype which proves and points the direction for further develop-
ments using audio sensors for automatic driving applications. Nevertheless, three architectures
were built — a simple baseline implementation inspired on (CHOI; FAZEKAS; SANDLER, 2016),
an adapted AlexNet implementation (KRIZHEVSKY; SUTSKEVER; HINTON, 2012), and lastly a
adapted VGG16 implementation (SIMONYAN; ZISSERMAN, 2015). The AlexNet implementa-
tion tried to mimic to the best of the authors’ abilities the original architecture, keeping the
same number of activation constant and its original 8 layers provided by the original paper. As
previously mentioned, what changes between these architectures are their morphology and ac-
tivations. The CNN architectures had to define the Number of Layers, Number of hidden units
per layer, Activation Functions, Kernel Sizes, Activation Padding, and Filter Stride. While for
the training procedure, the only hyperparameters used were the Learning Rate and Number of
Epochs.

For brevity purposes, only the most prominent architecture will be further approached
in this thesis, which is the AlexNet architecture. In the original paper, the authors used a 224
ˆ 224 ˆ 3 input layer, and 4 pixels of stride. This is due to the nature of the data they used
in their experiment. Therefore, this topic will be resumed in the results section, when input
data size is known.

Before beginning the actual training, the Classifier verifies the consistency in data
and then splits data between two subsets. A training and a test/development set. Those two
sets are synchronously shuffled, so no bias is introduced into the training process, as until
this moment all the audio excerpt spectrograms were still sequentially after each other. At
this moment, it is of extreme importance that both the examples and the labels are split
and shuffled synchronously. The application uses TensorFlow backend to accomplish model
training and evaluation.

The final model (architecture plus weights) are saved using HDF5 format files. The
Hierarchical Data Format version 5, is an open source file format that supports large, complex,
heterogeneous data. It is largely used for high-demanding spaces such as backing up whole
databases.

Model Evaluation The model evaluation class is called Evaluator and inherits from the
Classifier due to the nature of sharing many of its functionalities to operate. It also performs
a similar task if we consider bootstrapping, but instead of loading data from __audio_input__
as its training counterpart, it loads audio data from __eval_audios__. It is important to
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note that data loaded in this mode has to match the characteristics of the training data, in
all aspects, even excerpts duration.

After a similar bootstrap process to training is done, the input matrix is injected into
the classification model to extract its performance metrics. At this phase, all layers are frozen,
meaning their weights are not open to back-propagation tuning anymore. Following recom-
mendations found in (LI; KATANFOROOSH, ), to compare and thereafter get to the best model
possible using architecture and parameters tweaking some kind of measurements are needed
to quantify their characteristics somehow. These concepts have already been approached in
section 2.1.4.The first obvious performance measurement implemented in this module is the
extraction of the confusion matrix, comparing ground truth labels against predictions. With
the confusion matrix, the most important classification metrics are calculated — precision, re-
call (or sensitivity), and F1-score. Since we are not looking for maximizing either true positives
or true negatives specifically in this application, the F1-score which combines both previous
metrics will be the focus as it can summarize how well the model performs.

Another good metric which can be used also provides a visual feedback is the extrac-
tion of the Receiver Operating Characteristic (ROC) curve. This curve shows the performance
at all classification thresholds, i.e., how many more False Positives are going to happen in
order to obtain more True Positives. That is to say, we would set how liberal the model is,
because if we would classify everything as a positive, we would maximize both True Positives
and False Positives. This would be the case of having a threshold of 0. All thresholds from 0
to 1 is exactly what the ROC curve shows. However, only having the visual information does
not mean much for us. Therefore, to extract a meaningful value that provides us a way to
compare models quantitatively is the AUC. It measures the entire two-dimensional area under-
neath the entire ROC curve from graph origin to (1,1), which also means we do the integral
of the curve. Therefore, the bigger the AUC, higher the rate of True positives, without giving
up too many False Positives. That means the model discriminates the two classes while really
understanding the underlying concept that steers this behavior.

Making Predictions This last module is responsible for taking audio files provided in the
__predict__ directory and providing them to the model to actually carry predictions out.
This module also provides a bootstrap customization to only initialize what is important for
making predictions using the current model available in __output_files__/models, created
during training. It also provides some tools, such as providing verbose on the input data,
and providing the the feature extraction method and frame sizes used in training, so they are
compatible with the model.
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This module simply outputs classification against each excerpt with the periodicity
given by the user, along with the confidence level associated to each prediction. After out-
putting the results to the terminal, using Numeric Python package, it saves the predictions to
a storage format with extension .npy, which is simply a matrix container which can be later
on loaded in the next sub-project, if that would be the intent of the user.

3.2.3 Utilities

This sub-package simply provides some auxiliary tools which were developed to sup-
port common tasks such as splitting audio files into excerpts or trimming leading or trailing
silence. The implementation is really similar to the one provided via InputPreparation but
adapted for quick application without the need of any bootstrapping nor application con-
text. Also the CLI manager can be found in this sub-package, interfacing user inputs and the
application itself.

3.3 Audio Source Localization

This last sub-project connects the classification results with the sound source localiza-
tion system. From a re-utilization perspective this is the sub-project which offers least offers
generalization, being tightly coupled to the track tests done in this project. This sub-project
has three main objectives:

1. Load and interpret classification data

2. Call the chosen MATLAB function with the correct arguments provided via the script
using the MATLAB engine API

3. Fill and save the result object using JSON data structure
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Id Routine Category Activity Description Recording
Duration

1 Static Placement Static Target directly in FRONT of the center
point of the array - 10 m

60 seconds

2 Static Placement - Siren Tog-
gle

Static Target directly in FRONT of the center
point of the array - 10 m - Toggles: 0 (on), 15s
(off), 30s (on),

60 seconds

3 Static Placement Static Target directly in FRONT of the center
point of the array - 35 m

60 seconds

4 Static Placement Static Target directly in LEFT of the center
point of the array - 10 m

60 seconds

5 Static Placement Static Target directly in LEFT of the center
point of the array - 35 m

60 seconds

6 Static Placement Static Target directly in BACK of the center
point of the array - 10 m

60 seconds

7 Static Placement Static Target directly in BACK of the center
point of the array - 35 m

60 seconds

8 Static Placement Static Target directly in RIGHT of the center
point of the array - 10 m

60 seconds

9 Static Placement Static Target directly in RIGHT of the center
point of the array - 35 m

60 seconds

10 Circle around Two circles around ego with a radius of 20 m
and speed of 20 km/h

30 seconds

11 Circle around Two circles around ego with a radius of 35 m
and speed of 20 km/h

45 seconds

12 Static Placement - Siren Tog-
gle

Static Target in the opposite side of the track
- Toggles: 0 (on), 15s (off), 30s (on),

90 seconds

13 Static Placement - Siren Tog-
gle

Static Target at halfway track distance from
ego - Toggles: 0 (on), 15s (off), 30s (on),

90 seconds

14 Doppler Effect Target offset to the LEFT 3.5 m from the center
of the car. Incoming from the FRONT to the
REAR - 60 km/h

30 seconds

15 Doppler Effect Target offset to the LEFT 3.5 m from the center
of the car. Incoming from the REAR to the
FRONT - 60 km/h

30 seconds

16 Doppler Effect Target moves away in a straight line, turns
around, and returns to the original position -
60 km/h

60 seconds

17 Doppler Effect Target offset to the FRONT 3.5 m from the
center of the car. Incoming from the LEFT to
the RIGHT - 60 km/h

30 seconds

18 Doppler Effect Target offset to the FRONT 7 m from the cen-
ter of the car. Incoming from the RIGHT to
the LEFT - 60 km/h

25 seconds

19 Autobahn join simulation Target simulates joining an Autobahn lane by
taking over Ego from the RIGHT

25 seconds

20 Autobahn join simulation Target simulates joining an Autobahn lane by
taking over Ego from the LEFT

25 seconds

21 Use case simulation Target approaching Ego from its REAR. Object
causing occlusion between Ego and the Target

30 seconds

Table 5: Description of test routines used in the second test.
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First, a file called prediction_output.npy placed in the root of the project gets
loaded in main.py. This file contains all the estimated classifications for each time frame. If
the class for the frame is negative, the algorithm will skip localization, as there is no ambu-
lance to be localized. In the opposite case, the localization gets called, and based on which
localization algorithm is selected python calls the MATLAB API, invoking the corresponding
script developed for doing localization estimations and evaluating against the ADMA ground
truth data, as seen in section 3.1.2.

In MATLAB, two folders contain different kind of scripts, the first one contain ADMA
post-processing scripts. Those scripts make their best effort to match timestamps in ADMA
data and recording data and plot the position of objects of interest found in ADMA data. The
second folder contain scripts for loading and filtering audio data and also the actual source
localization algorithms, GCC-PHAT and SRP-PHAT. It takes the 4 microphones channels audio
data as input (our 4-microphone-squared array), along with some experimental parameters,
such as ADMA sampling rate, sound speed in meters per second and the distance between the
microphones, forming the array. SRP-PHAT implementation is based on (DO; YU; SILVERMAN,
2007) and brought very poor results while the GCC-PHAT based on section 2.2 with some
tweaks brought decent ones. The main tweak needed was to zero the first τ values, both
to the left and to the right. This is due to GCC-PHAT not finding any specific correlation
between the to microphones in regard of the interest signal, then correlating the noise which
is a stochastic process and since the power distribution is even, it maximizes at 0. This led to
some improvement, but the localization algorithm had to deal with serious limitations as can be
seen in section 4. Equation 2.28 results in ˘θ angles which are ambiguous, and that ambiguity
has been tackled via hard coded heuristic rules that assume that the first two microphones to
detect the signal would indicate a proper wavefront DOA. It seems to be a poor assumption,
and is the probable cause of unsatisfying results.

main.m mimics the behavior of the project root main.py serving as a switch between
the localization algorithms, but it also offers validation. Therefore, running this script is needed
for getting analytical scoring for validating the estimation data against the ground truth data
collected via ADMA. Validation takes a single parameter called tolerance, which is the degrees
aperture the algorithm accepts deviation between estimated values and ground truth ones.

Lastly, the classification and azimuth estimation is dumped onto a JSON file, as the
final result of this project. File result.json contains the fields [frameStart, frameEnd,
emergencyVehicleProb, noEmergencyVehicleProb, azimuth]. Therefore, we would have the
confidence levels along with the inferred class and the estimated azimuth per frame.
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4 Results

This section covers the practical use of the all the fundamentals and tools built
through this thesis. We will also cover needed tweaks to the tools when necessary, describing
the whole process from user perspective now.

4.1 Model Training

The classifier accepts audio input in folder __audio_input__ by default, thus all
directories containing the audios were placed inside of it. Model training proved to be a really
tough and problematic step. The first challenge was to select and successfully implement
the best architecture possible respecting the timeframe of the project. The first step was to
look for a baseline architecture, known for working accordingly with audio applications — this
was fundamental for isolating problems, ease debugging and have a first working example. It
was difficult to break through the 50% accuracy threshold, as it proves the algorithm is just
guessing since this is what we expect having two options when just trying by chance. It denotes
the algorithm has no understanding over the problem. The implementation used by the author
was based on the (CHOI; FAZEKAS; SANDLER, 2016) implementation, but instead of using fixed
amount of layers as for example the 4-layers MLP used in the reference, the architecture was
generated generically depending on the number of layers specified by the user. The architecture
presented scaling problems, being unable to learn further than presenting mediocre 78 or 79%
accuracy even with architectures as big as the 12gb GDDR memory of the Nvidia Titan X. In
reference to (CHOI; FAZEKAS; SANDLER, 2016), many modifications were necessary.

The input layer depends on the input data. The results achieved by (HERSHEY et

al., 2017) led the author to follow similar parameters for the audio pre-processing, considering
differences in application. (HERSHEY et al., 2017) had a very wide of audio applications to
consider, hence he had to find a good mid-ground between small audio segments that would
work for impulse-like sound responses as gunshots and large audio fragments which work better
for long lived events, such as a song. For that same reason, sirens should sit at a similar place,
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as short segments as 50 ms would make it difficult for a model to identify inherent ascents
and descents on the frequency and thereafter to recognize periodicity along the signal.

Information in the previous paragraph led the author to build the standard input
tensors sizes: The frequency is arranged in 128 bands, which as seen in previous chapters
partitions the frequency scale into bins, and transforms each bin into a corresponding bin in
the mel scale. Therefore those 128 bins are evenly spaced in the mel scale, so that is to say the
algorithm will learn from the training data as humans would. Even though the whole Dataset
1 is loaded in the application’s bootstrap, the feature extractor discards any data which is not
conforming to the standard duration detected in the whole dataset. This is done using the
maximum duration identified in the dataset which is 10 seconds long — which with a sampling
rate of 48 kHz totals for 480,000 samples in the audio array. Any audio array which deviates
from this value is not used. A windowing function was then applied to transform the excerpts
into frames (the definition of audio frames comes from the number of audio samples which
are played to match a single video frame, but that is a rather wide definition). Frames were
windowed within 46080 samples (960 milliseconds) following (HERSHEY et al., 2017) approach,
and then these frames were fed into the mel transform to extract the mel-spectrograms using
a fixed hop length of 480 samples (10 milliseconds) and Fourier windows size of 1200 samples
(25 milliseconds), yielding 960 ˜ p25 ˜ 2.5q “ 96 decomposed frames per original frame. Note
that the overlap of 40% per hop since each window can fit 2.5 times each shift in time. And
lastly, since there were 2 channels present in for each audio, the tensor shape per frame was
96 ˆ 128 ˆ 2. Hence, the first layer (input layer) of our CNN architectures have to be able to
accommodate this shape.

Also, the sigmoid function do work on output layers for multi-class classifiers, mapping
the output to probabilities which fall between 0 and 1. However, since our output only has
two complementary probabilities the softmax function was employed instead.

Using the same approach as seen above, there were two good candidates which pre-
sented good performance in competitions in the past — the AlexNet architecture (KRIZHEVSKY;

SUTSKEVER; HINTON, 2012) and the ResNet architecture (HE et al., 2015). ResNet showed to
be problematic to fit in memory as no good results were obtained used low layer count ones. In
the counterpart, AlexNet showed very promising result in pilot results, and after much tuning
the end result utilized is as 6 shows.

There were three most important changes from the original architecture that needed
to be changed or included in the implementation. THe first was to include sparse dropout
throughout the layers. It greatly helped the architecture not to overfit the training data,
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Table 6: AlexNet-based architecture employed for model training

diagnosed by high accuracy against the training data and low accuracy against the test set.
This proven to be true when applying it on the learning transfer layers, as the feature learning
itself don’t benefit from regulation — and feature extraction happens on convolutional layers,
thus the option of applying regulation more aggressively at the fully connected layers. Also
Batch normalization was employed instead of Local Response Normalization. Lastly, the since
AlexNet was created to handle 224ˆ224 shape per image channel, we wanted to achieve the
same number of activations in the input layers, as our input is different. Thus, since the
original stride is kept at 4ˆ4, and our data is composed by a 96ˆ128 shape per channel,
the original number of activations was calculated using 224 ¨ 224 “ 5176 (closest possible
approximation) that in turn has a moving stride of 4 ¨ 4 “ 16, totaling 50176 ˜ 16 “ 3136
activations. In order to achieve an analogous number 128 ¨ 96 “ 12288, that turned to be
12288 ˜ 3136 “ 3.91. This means stride should be adapted to cover 4 tiles over the tensor
per hop, which means a 2ˆ2 stride needed to be implemented.

Also is worth noting that to fit in memory, the architecture was reduced in half
regarding layer width. The original AlexNet had 62.5M parameters to be trained, whereas our
architecture presented 30.7M, which is roughly half. Other multipliers were tried out as well,
but showed not significant difference or benefit to the one chosen. The same ReLU activation
function were used along with the same softmax activation function on the output layer.

Now, for training, the cross-entropy in all cases, and after iterating over a plethora
of optimizers, the one most performed was the Adadelta optimizer. Batch normalization was
applied after all convolutional layers and a very slight l2 regularization was applied using a value
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of 0.001. Training was carried out using the label association [class 0: No EV, class
1: EV] — EV standing for Emergency Vehicle. All trainings were employed using a Early
stoppage patience of 1/20 Epochs, while the number of Epochs to be run was 100, which
bring us to 5 Epochs patience. Adaptive learning rates did not show much results, therefore
learning rates of 0.001 and 0.00001 were the most successful, as the best performing model
was trained using a learning rate of 0.00001. The batch sizes could accommodate numbers
as high as 32 using the huge chunks of memory available to us. For the chosen model, the
training report can be seen in figure 42, while the training target loss and accuracy over time
can be seen in figure 43.

Figure 42: Training report for chosen model.

The train report shows a sensitiveness of 0.9, which while not being ideal as the
model is too liberal, classifying other sounds like silence as the positive class, shows a good
performance even though. Support means the total number of labels used for each case. As
training was nearly balanced, micro and macro averages turned to be similar. Macro averages
calculate metrics globally, micro averages calculate metrics for each label, finding then their
unweighted mean, and weighted average does the same as the micro average, but use their
average taking in account the number of samples present for each label, i.e. support. The
latter is most useful in unbalanced cases, which does not describe the current one.
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Figure 43: Training history for chosen model — shows convergence rate and levels plateau.

Then, using the acquired model, evaluation was carried out using random unknown
audio sources from youtube which were not included in neither the training nor the test
dataset, along with samples from the first and second test. This small evaluation dataset was
manually annotated and show very impressive results. This model has a very specific scope
of classifying traffic auditory scenarios regarding presence of emergency vehicles, but table 7
shows the confusion matrices extracted from from the evaluation reports run against 4 key
files: the first one is a very negative unbalanced one, the second a very positive unbalanced
one, the third were CARISSMA test from the first tests (both tests describe the same routine
the only difference being the tone used in the recording), and the fourth one was a tests from
the second CARISSMA using a routine designed to test the algorithm with intermittent toggles
on the siren.
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Figure 44: ROC curve for CARISSMA first test scenarios 33 and 34.

Figure 45: ROC curve for CARISSMA second test scenario 13.

The youtube videos can be found on the urls https://www.youtube.com/watch?
v=Bpu4dXxMhOs and https://www.youtube.com/watch?v=ac9FMGeA8FQ&t=3s.

Confusion matrices are then synthesized in metrics. The evaluation routine calculates
class precision, class recall, overall accuracy, and AUC calculated using the ROC curve (figure
44 and 45). Depending on their actual class computed, as false positives (FP) or true positives
(TP), the ROC it takes a step upward on the y-axis, and when it passes a FP it takes a step
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Table 7: Model evaluation using

Table 8: Model evaluation using evaluation mode.

rightward on the x-axis. The step sizes are inversely proportional to the number of actual
positives (in the y-direction) or negatives (in the x-direction), so the path always ends at
coordinates (1, 1). The result is a plot of true positive rate (TPR, or sensitivity) against false
positive rate (FPR, or 1 - specificity), which is all an ROC curve is. Computing the area under
the curve is one way to summarize it in a single value; this metric is simply the integral took
from the axis base (0, 0) until the maximum (1, 1) which lies underneath the plotted ROC,
and it is so commonly used that any mentions to “area under the curve” or “AUC”, generally
assume we mean an ROC curve unless otherwise specified.

Once again, even though reference article scope (MARCHEGIANI; POSNER, 2017) is
larger than the one presented in this project, results output by the our model are more robust
and perform better (0.87 against 0.98 average AUC in evaluation according to table 8).

Prediction mode outputs a raw prediction, with no knowledge regarding ground truths
on the audio. This is what we would see if the algorithm would be run in production. The
following excerpt exemplifies the output the algorithm returns.
Running P r e d i c t i o n s on f i l e : FL . wav
2019´06´20 1 0 : 4 3 : 2 7 . 1 0 4 2 4 6 : I t e n s o r f l o w / s t r eam_executo r / dso_ loade r . cc : 1 5 2 ] s u c c e s s f u l l y opened CUDA l i b r a r y l i b c u b l a s .

ãÑ so . 1 0 . 0 l o c a l l y
92/92 [==============================] ´ 6 s 60ms/ sample
X=From 0 0 : 0 0 : 0 0 . 0 0 0 to 0 0 : 0 0 : 0 0 . 9 5 0 , P r e d i c t e d=0 (No EV) wi th Con f i d ence o f 96.4%
X=From 0 0 : 0 0 : 0 0 . 9 5 0 to 0 0 : 0 0 : 0 1 . 9 0 0 , P r e d i c t e d=0 (No EV) wi th Con f i d ence o f 96.1%
X=From 0 0 : 0 0 : 0 1 . 9 0 0 to 0 0 : 0 0 : 0 2 . 8 5 0 , P r e d i c t e d=1 (EV) wi th Con f i d ence o f 59.3%
X=From 0 0 : 0 0 : 0 2 . 8 5 0 to 0 0 : 0 0 : 0 3 . 8 0 0 , P r e d i c t e d=1 (EV) wi th Con f i d ence o f 78.7%
X=From 0 0 : 0 0 : 0 3 . 8 0 0 to 0 0 : 0 0 : 0 4 . 7 5 0 , P r e d i c t e d=1 (EV) wi th Con f i d ence o f 95.7%
X=From 0 0 : 0 0 : 0 4 . 7 5 0 to 0 0 : 0 0 : 0 5 . 7 0 0 , P r e d i c t e d=1 (EV) wi th Con f i d ence o f 97.0%
X=From 0 0 : 0 0 : 0 5 . 7 0 0 to 0 0 : 0 0 : 0 6 . 6 5 0 , P r e d i c t e d=1 (EV) wi th Con f i d ence o f 94.4%
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. . .
X=From 0 0 : 0 1 : 2 0 . 7 5 0 to 0 0 : 0 1 : 2 1 . 7 0 0 , P r e d i c t e d=1 (EV) wi th Con f i d ence o f 91.6%
X=From 0 0 : 0 1 : 2 1 . 7 0 0 to 0 0 : 0 1 : 2 2 . 6 5 0 , P r e d i c t e d=1 (EV) wi th Con f i d ence o f 77.9%
X=From 0 0 : 0 1 : 2 2 . 6 5 0 to 0 0 : 0 1 : 2 3 . 6 0 0 , P r e d i c t e d=0 (No EV) wi th Con f i d ence o f 92.8%
X=From 0 0 : 0 1 : 2 3 . 6 0 0 to 0 0 : 0 1 : 2 4 . 5 5 0 , P r e d i c t e d=0 (No EV) wi th Con f i d ence o f 97.2%
X=From 0 0 : 0 1 : 2 4 . 5 5 0 to 0 0 : 0 1 : 2 5 . 5 0 0 , P r e d i c t e d=0 (No EV) wi th Con f i d ence o f 96.6%
X=From 0 0 : 0 1 : 2 5 . 5 0 0 to 0 0 : 0 1 : 2 6 . 4 5 0 , P r e d i c t e d=0 (No EV) wi th Con f i d ence o f 96.1%
X=From 0 0 : 0 1 : 2 6 . 4 5 0 to 0 0 : 0 1 : 2 7 . 4 0 0 , P r e d i c t e d=0 (No EV) wi th Con f i d ence o f 97.5%

After every prediction session, a file is created on the root of the project in as
prediction_output.npy. This is a numpy matrix carrying all the prediction results, which
can then be loaded when performing further tasks. This is the mode used which will be used
for end-to-end validation.

4.2 Source Localization

Last step is to load the prediction output using the source_localization com-
ponent via a python interface — it uses the MATLAB engine API to call the by default
GCC-PHAT localization algorithm. The results for static scenarios had an estimation success
rate of 0.89 as we can see in table 9, but for moving targets it could not provide reliable data
achieving a mere 0.03 estimation success rate. Thus, for dynamic scenarios it does not track
the source position. The files are loaded on MATLAB after the API call done by the python
client, then after high-pass filtering, GCC-PHAT is calculated. Figure 46 shows the rear left
microphone as reference, and all how all other microphones interact with it. In scenario 1
of the second test, we know the target is in the front of ego, and this can attested here,
since we can see the front microphones are maximally correlated with a delay of approximately
-2.5 milliseconds, so the wavefront arrives first at them, and only then they arrive at the rear
microphones. Also it is interesting noting that the rear microphone is maximally correlated at
almost 0 milliseconds, which also makes sense, since the target is located roughly directly in
front of ego, thus the sound wave would arrive nearly at the same time on both microphones.
Afterwards, using DOA equations along the heuristic rules we get our estimations and the
representation in figure 47 and figure 48.
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Table 9: Estimation results against ADMA data for — Scenarios from the second CARISSMA
tests.

Figure 46: Cross-correlation versus time lag between the microphones

Bad performance on dynamic cases suspects are the GCC-PHAT algorithm itself
— multipath issue might come in case — since at times it was detected that the audio
wavefront was arriving at a different direction than the expected and the synchronization
between timestamps from ADMA and the recording — when the difference in the timestamps
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is bigger than the test itself, it tries to match only via sample index, which does not guarantee
synchronization at all, thus that would be the explanation on why static cases could behave
differently. Efforts to tackle the issues manually did not have much effect. An heuristic method
was responsible for tracking the first microphone to be stimulated, then the second and so
forth. The idea behind it was that the audio would come directly from the source, but it showed
not to be robust against wavefront multipath. During debugging, at many times the cross
correlation was correct, the time difference was correct, but at the end the wrong microphone
would detect the incoming wavefront first. (MARKOVIĆ; PETROVIĆ, 2010) also mentions the
problem that microphone pairs do not perform well at skewed angles, thus it is important to
rotate which microphone pair to be used, striving to always use the microphone pair most
orthogonal to the sound source. However, when the wrong microphone pair was activated
due to multipathing, it would be positioned unfavorably in relation to the source, deeply
hurting the source localization estimation, as can be seen in table 9. Apart from algorithm
performance, also other options for instrumentation could be considered, as using an array of
MEMS microphones, widely used in robotics and for speech recognition and localization. Note
that results found in table 9 use a tolerance of 20 degrees, totaling 89.89% accuracy in the
static cases, while only performing 4.88% accuracy for the presented dynamic cases.

Figure 47: Azimuth estimation for scenario 1. Distance displayed comes from ground truth
data. X and Y axis are a 2D overhead view in meters.
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Figure 48: Azimuth estimation for scenario 11. Distance displayed comes from ground truth
data. X and Y axis are a 2D overhead view in meters.

4.3 Validation

This section provides an end-to-end example using the Rettungsgasse situation.
The CARISSMA dataset is used here, since all controlled parameters are known, provid-
ing thoroughly ground truth checks against the results. First, the classifier runs in pre-
dictions mode (figure 49 presents some key moments in scenario 21), we then copy the
prediction_output.npy on sound localization sub-project root. After loading the file, we
generate the list seen in figure 50.
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(a) (b)

(c) (d)

Figure 49: Use case Mel-spectrograms normalized to 0dB. (a)2.85-3.80s (b)3.80-4.75s
(c)26.60-27.55s (d)27.55-28.50s.

Figure 50: Attributes of predictions list loaded by the source position estimator component.
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For scenario 21, all 31 frames were correctly classified when manually listening to
the audio and thereafter comparing the results. Position estimation can be seen in figure 51,
totaling 1 correct position estimation and 31 incorrect ones.

Figure 51: Attributes of predictions list loaded by the source position estimator component.

finally it outputs results on a JSON file:

[

{

" f r ameS ta r t " : 0 . 0 ,

" frameEnd " : 0 . 95 ,

" emergencyVeh i c l eProb " : 0 .095000029 ,

" noEmergencyVeh ic leProb " : 0 .9049999713897705 ,

" az imuth " : NaN,

} ,

{

" f r ame S ta r t " : 0 . 95 ,

" frameEnd " : 1 . 9 ,

" emergencyVeh i c l eProb " : 0 .0709999999999998 ,

" noEmergencyVeh ic leProb " : 0 .9290000200271606 ,

" az imuth " : NaN,

} ,

{
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" f r ameS ta r t " : 1 . 9 ,

" frameEnd " : 2 .8499999999999996 ,

" emergencyVeh i c l eProb " : 0 ,079999983 ,

" noEmergencyVeh ic leProb " : 0 .9200000166893005 ,

" az imuth " : NaN,

} ,

{

" f r a me S ta r t " : 2 .8499999999999996 ,

" frameEnd " : 3 . 8 ,

" emergencyVeh i c l eProb " : 0 .906000018119812 ,

" noEmergencyVeh ic leProb " : 0 ,09399999999982 ,

" az imuth " : 56 .842393247536 ,

} ,

. . .

]
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5 Conclusion

This project demanded multidisciplinary knowledge, making use of software archi-
tecture, code design, digital signal processing, digital audio and images format knowledge,
machine learning techniques, automotive tests, and acoustic instrumentation. It presents the
first steps towards a potential Rettungsgasse formation function and strives to lay good foun-
dations that may convince the community that audio sensors can be a powerful asset for ADAS
functions and autonomous driving.

Through auditory classification it is possible to provide new information to the system
that can lead to better overall performance and safety for ADAS and autonomous driving.
Classification models proved to be a promising audio object detection algorithm, which can
provide a list of objects in the immediate environment,

CNN showed to be a very robust training method for developing classification models,
which are widely employed by the scientific community for object detection and tracking.
Taking advantage of information extensively available for this kind of application, transforming
audio signals into mel-spectrograms, we could then approach the problem as an image detection
one. This methodology has proven to be very successful, achieving the AUC of 0.979 in the
worst case when validating the classification task using newly acquired data which has never
been seen by the model before. This provide us enough confidence to say we have a robust
model for the ambulance presence auditory classification model.

The end-to-end architecture laid in this project outputs a list containing object binary
auditory classification (presence or not of an emergency vehicle in the surroundings) along
with the decision confidence level and the estimated azimuth per audio frame. On the current
state, sound source localization using GCC-PHAT works well for static target positions. It
was implemented an automated source download robot available for the AudioSet database, a
generic and extensible audio classifier powered by CNN, a sound source localization algorithm,
and finally an interface to verify all components working together.
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The localization algorithm when performed with moving sources did not show the
same robustness against the combination of reverberation, echo, and noise. This could be due
to the acoustic instrumentation setup, since the comparison between other papers using the
same algorithm obtained much better success employing it. Even so, it is not possible to say
for sure what caused such poor performance at this time.

Although, many immediate improvements are clear. First, we could fork the auditory
classifier project to employ an audio object detector instead — this would make it possible not
only to detect an auditory state (as the presence or not of an emergency vehicle), but instead
also to provide an actual list of objects that could summarize what objects have been detected
in the surroundings. Secondly, instead of assigning the job of localization to an external
algorithm, a single model could be able to do both tasks, saving computational resources
in exchange of higher project implementation complexity as training data with more than 2
audio channels is much more difficult to acquire. In case we would stick with the current
components, then creating a formal interface between the classifier and the source localization
algorithm is imperative for the architecture to actually be able to work in a more production-like
environment. Thirdly, saving data to disk, so another component has to load it in the following
moment does not make any sense for real time applications, and should rather be exchanged
by an API, socket or shared application memory with no memory violation restrictions between
them. Lastly, the sound source localization could use a more robust algorithm in detriment to
GCC-PHAT — also providing target relative distance and elevation — and also make use of
MEMS microphones instead of studio recording ones. They are still cheap, so they would still
be viable for prototyping, but providing much better results when it comes to beamforming,
as they are fabricated with this application in mind.

Regarding takeaways, the author of this project is not convinced whether audio lower
features could be useful for the sensor fusion layer, as these are potentially less accurate and
robust than other sensors with much higher resolution such as lidars. This would require an
extensive study to tackle whether acoustic sensors can provide low level features data on par
to the other sensors. Furthermore, to calculate objects azimuth and distance proved to be a
much more difficult task than anticipated, and thus this conclusion deviates from Marchegiani
e Posner (2017) when it comes to acoustic localization algorithms, treating them as out-of-the-
shelves. Choosing among the many GCC family of algorithms, or even further ones depends
on the recording techniques, electronics and acoustic instrumentation, and the conditions the
sensor will have to work on, such as exposed environment with low SNR or high reverberation
levels. This is a complex matter, that has to be addressed taking in account both training and
deployment phases.
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ANNEX A -- Visual guideline of CARISSMA’s second
test cases

Figure 52: Drawing representing the test carried out in scenarios: 17 and 18 (left); 19 (center);
27, 28, 29, and 30 (right).
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Figure 53: Drawing representing the test car-
ried out in scenario 33 and 34.

Figure 54: Drawing representing the test car-
ried out in scenario 35 and 36.

Figure 55: Siren toggling tests — 2 (left), 12 (center), 13 (right).
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Figure 56: Target pass-by longitudinal tests — 14 (left) and 15 (right).

Figure 57: Target straight line drive away and back test — 16 (left) & Target pass-by transver-
sal tests — 17 (center) and 18 (right).
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Figure 58: Target takeover tests — 19 (left) and 20 (center) & use case scenario test — 21
(right).


