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RESUMO

Dados de riscos competitivos agrupados são um caso especial de dados de tempo de fa­
lha. Além da estrutura de grupo que implica uma dependência latente intra-grupo entre 
seus elementos, esse tipo de dado é caracterizado por 1) múltiplas causas/variáveis com­
petindo para ser a responsável pela ocorrência de um evento, uma falha; e 2) censura, 
quando o evento de interesse não ocorre no período de estudo, ou ocorre por uma dife­
rente causa. Para lidar com este tipo de dado, propomos um modelo linear generalizado 
misto (GLMM), ou seja, um modelo de efeitos latentes/aleatórios, em vez de um modelo 
de sobrevivência usual. Em análise de sobrevivência, a modelagem é usualmente feita 
por meio da taxa de risco, e a acomodação da dependência intra-grupo acaba por gerar 
uma complicada função de verossimilhança, às vezes intratável. Nós, por outro lado, 
modelamos as causas competidoras agrupadas na escala da probabilidada, por meio 
da função de incidência acumulada (CIF, em inglês) de cada causa competidora. Em 
nossa modelagem, supomos uma distribuição de probabilidade multinomial para as 
causas competidoras e censura, condicionado aos efeitos latentes. Os efeitos latentes são 
acomodados por meio de uma distribuição Gaussiana multivariada e são modelados 
via os parâmetros de sua matriz de covariância. As distribuições de probabilidade são 
conectadas por meio da CIF, modeladas aqui seguindo a especificação em Cederkvist et 
al. (2019), com base em sua decomposição como o produto de uma função de nível de 
risco instantâneo com uma função de nível de tempo de trajetória. Os efeitos latentes 
são inseridos nestas funções. Para tornar a estimativa dos parâmetros do modelo o mais 
eficiente possível, usamos o template model builder (TMB) (KRISTENSEN et al., 2016). 
Com este pacote R (R Core Team, 2021), temos 1) a função de log-verossimilhança escrita 
em C++; 2) acesso a eficientes bibliotecas de álgebra linear; 3) implementação eficiente 
da aproximação de Laplace para os efeitos latentes; e 4) uma rotina computacional de 
diferenciação automática, o estado da arte em computação de derivadas. Para verificar 
a performance do modelo foi realizado um amplo estudo de simulação, baseado em 
diferentes formulações de estruturas latentes, com o objetivo de verificar qual delas é 
a mais adequada a um cenário real. O modelo se apresenta de difícil estimatição, com 
nossos resultados convergindo para uma estrutura latente onde os níveis de risco e de 
trajetória estão correlacionados. Os menores vieses nas estimativas dos paramêtros são 
encontrados nos cenários de CIF alta, mas com uma excessiva variablidade, mostrando 
que melhorias são necessárias.

Palavras-chave: Riscos competitivos agrupados. Dependência intra-cluster. Modelo 
linear generalizado misto multinomial (MLGM). TMB: Template Model Builder. 
Aproximação de Laplace. Diferenciação automática.



ABSTRACT

Clustered competing risks data is a special case of failure time data. Besides the cluster 
structure which implies a latent within-cluster dependence between its elements, this 
kind of data is characterized by 1) multiple causes/variables competing to be the one 
responsible for the occurrence of an event, a failure; and 2) censorship, when the event 
of interest does not happen in the study period, or it happens by a different cause. 
To handle this type of data, we propose a generalized linear mixed model (GLMM) 
i.e., a latent-effects framework, instead of a usual survival model. In survival analysis, 
the modeling is usually done by means of the hazard rate, and the within-cluster 
dependence accommodation ends by generating a complicated likelihood function, 
sometimes intractable. We, on the other hand, model the clustered competing causes 
in the probability scale, in terms of the cumulative incidence function (CIF) of each 
competing cause. In our framework, we suppose a multinomial probability distribution 
for the competing causes and censorship, conditioned on the latent effects. The latent 
effects are accommodated via a multivariate Gaussian distribution and are modeled 
by the parameters of its covariance matrix. The probability distributions are connected 
via CIF, modeled here following Cederkvist et al. (2019) specification, based on its 
decomposition as the product of an instantaneous risk level function with a trajectory 
time level function. The latent effects are inserted in both functions. To make the model 
parameters estimation the most efficient as possible, we use the template model builder 
(TMB) (KRISTENSEN et al., 2016). With this R (R Core Team, 2021) package, we have 1) 
the log-likelihood function written in C++; 2) access to efficient linear algebra libraries; 
3) efficient Laplace approximation implementation for the latent-effects; and 4) an 
automatic differentiation (AD) routine, the state-of-the-art in derivatives computation. 
To check the model performance a large simulation study is performed, based on 
different latent structure formulations, with the aim to verify which one is the most 
adequate to real scenarios. The model presents to be of difficult estimation, with our 
results converging to a latent structure where the risk and trajectory time levels are 
correlated. The smallest parameter estimates biases are found in scenarios with high 
CIF, but the estimates present an excessive variance, showing that improvements are 
necessary.

Keywords: Clustered competing risks. Within-cluster dependence. Multinomial gener­
alized linear mixed model (GLMM). TMB: Template Model Builder. Laplace approxima­
tion. Automatic differentiation (AD).
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1 INTRODUCTION

Consider a cluster of random variables representing the time until the occur­
rence of some event. These random variables are assumed to be correlated, i.e. for 
some biological or environmental reason it is not adequate to assume independence 
between them. Also, we may be interested in the occurrence of not only one specific 
event, having in practice a competition of events to see which one happens first, if it 
happens. Such events may also be of low probability albeit severe consequences, this 
is the moment when the cluster correlation makes its difference: the occurrence of an 
event in a cluster member should affect the probability of the same happening in the 
others.

A realistic context that fits perfectly with the framework described above is 
the study of disease incidence in family members, where each member is indexed by a 
random variable and each cluster consists of a familiar structure. More specifically, we 
are interested in what is called family studies. Besides the dependence between family 
members, this kind of data is characterized by being consisted of big samples, or even a 
population, and having a lot of clusters/families of small size. The inspiration to these 
kinds of problems came from the work developed in Cederkvist et al. (2019), where 
they studied breast cancer incidence in mothers and daughters but using a nontrivial 
estimation framework. Based on that, the aim of this thesis is to propose a simpler 
estimation framework taking advantage of several state-of-art computational libraries 
and see how far we can go in several scenarios. Until now we have just contextualized, 
we still need to introduce the methodology. To do this, some definitions and theoretical 
contexts are welcome.

When the object under study is a random variable representing the time until 
some event occurs, we are in the field of failure time data (KALBFLEISCH; PRENTICE, 
2002). The occurrence of an event is generally denoted/m7»rc, and major areas of appli­
cation are biomedical studies and industrial life testing. In this thesis, we maintain our 
focus on the former. As common in science, same methodologies can receive different 
names depending on the area. In industrial life testing is performed what is called a 
reliability analysis; in biomedical studies is performed what is called survival analysis. 
Generally, the term survival is applied when we are interested in the occurrence of only 
one event, a failure time process. When we are interested in the occurrence of more than 
one event we enter in the yard of competing risks and multistate models. A visual aid is 
presented on Figure 1 and a comprehensive reference is Kalbfleisch & Prentice (2002).

Failure time and competing risks processes may be seen as particular cases of a 
multistate model. Besides the number of events (states) of interest, the main difference



between a multistate model and its particular cases is that only in the multistate scenario 
we may have transient states, using a stochastic process language. In the particular cases, 
all states besides the initial state 0, are absorbents - once you reached it you do not leave. 
The simplest multistate model that exemplify this behavior is the illness-death model, 
Figure 1 C), where a patient (initially in state 0) can get sick (state 1) or die (state 2); if 
sick it can recover (returns to state 0) or die. We work in this thesis only with competing 
risks processes, and for each patient we need the time (age) until the occurrence, or not, 
of the event.

FIGURE 1 -  ILLUSTRATIO N O F M ULTISTATE M O D ELS FO R A  A ) FA ILU R E TIM E PR O ­
CESS; B) COM PETING RISKS PROCESS; A N D  C) ILNESS-DEATH M ODEL, THE  
SIMPLEST MULTISTATE M ODEL

A)

®  ► ©

©

/  \

©  > ©

SOURCE: The author (2021).

When for some known or unknown reason we are not able to see the occurrence 
of an event, we have what is denoted censorship. Still in the illness-death model, during 
the period of follow up the patient may not get sick or die, staying at state 0. This is 
denoted right-censorship; if a patient is in state 1 at the end of the study, we are censored to 
see him reaching the state 2 or returning to state 0. This is the inherent idea to censorship 
and must be present in the modeling framework, thus arriving in the so-called survival 
models (KALBFLEISCH; PRENTICE, 2002).

A survival model deals with the survival experience. Usually, the survival 
experience is modeled in the hazard (failure rate) scale and it can be expressed for a 
subject i as

A(f | Xj) — Ao(f) x c(xjft) at time t, (1.1)

i.e. as the product of an arbitrary baseline hazard function Ao( •)/ with a specific function 
form c( ), that will depend on the probability distribution to be chosen for the failure 
time and on predictors/covariates/explanatory/independent variables Xj — ©  .. .  x p], 
where J$r =  [fti ... is the parameters vector.

B)



This structure is specified for a failure time process, as in Figure 1 A). Nev­
ertheless, the idea is easy to extend. We basically have the Equation 1.1's model to 
each cause-specific (in a competing risks process) or transition (in a multistate process). 
For competing risks, the probable most famous approach is the Fine & Gray (1999) 
subdistribution model. A complete and extensive detailing can be, again, found in 
Kalbfleisch & Prentice (2002).

In this work we approach the case of clustered competing risks. Besides the 
cause-specific structure, we have to deal with the fact that the events are happening 
in related individuals. This configures what is denoted family studies, i.e. we have a 
cluster/group/family dependence that needs to be considered, accommodated, and 
modeled. This, possible, dependence is something that we do not actually measure but 
know (or just suppose) that exists. In the statistical modeling language this characteristic 
receives the name of random or latent effect.

A survival model with a latent effect, association, or unobserved heterogeneity, 
is denoted frailty model (CLAYTON, 1978; VALPEL; MANTON; STALLARD, 1979; 
LIANG et al., 1995; PETERSEN, 1998). In its simplest form, a frailty is an unobserved 
random proportionality factor that modifies the hazard function of an individual, or of 
related individuals. Frailty models are extensions of Equation 1.1's model, and its use 
implies challengeable likelihood functions (statistical objective functions) and inference 
routines done via elaborated and slow expectation-maximization (EM) algorithms 
(NIELSEN et al., 1992; KLEIN, 1992) or inefficient Markov chain Monte Carlo (MCMC) 
schemes (HOUGAARD, 2000). With multiple survival experiences, the general idea 
is the same but with even more challengeable likelihoods (PRENTICE et al., 1978; 
LARSON; DINSE, 1985; KUK, 1992; THERNEAU; GRAMBSCH, 2000).

In the competing risks setting, the hazard scale (focusing on the cause-specific 
hazard) is not the only possible scale to work on. A more attractive possibility is to 
work on the probability scale (ANDERSEN et al., 2012), focusing on the cause-specific 
cumulative incidence function (CIF). Besides the within-family dependence, in family 
studies there is often a strong interest in describing age at disease onset, which is 
directly described by the cause-specific CIF. The CIF is the cumulative probability of 
experiencing a failure by a given competing cause along the time. Therefore, making the 
probability scale a more attractive and logical choice. Since the CIF plays a central role 
in this master thesis, it will be formally defined later in a place with greater emphasis.

Besides the CIF specification itself, the known works with clustered compet­
ing risks data in the probability scale, differ in terms of likelihood construction and 
parameters estimation routines. There is a lack of methodology predominance in the 
literature, but with its majority being designed for bivariate CIFs, where increasing the 
CIF's dimension is a limitation. Some of the existing options are



• Nonparametric approaches (CHENG; FINE; KOSOROK, 2007; CHENG; FINE;
KOSOROK, 2009);

• Linear transformation models (FINE, 1999; GERDS; SCHEIKE; ANDERSEN, 2012);

• Semiparametric approaches based on

-  Composite likelihoods (SHIH; ALBERT, 2009; CEDERKVIST et al., 2019);

-  Estimating equations (CHENG; FINE, 2012; SCHEIKE; SUN, 2012);

-  Copula models (SCHEIKE; ZHANG; JENSEN, 2010);

-  Mixture models (NASKAR; DAS; IBRAHIM, 2005; SHI; CHENG; JEONG, 
2013).

With the definitions and the theoretical context being made, let us be more 
specific. To work with competing risks data on the probability scale plus a latent 
structure allowing for within-cluster dependence of both risk and timing, Cederkvist et 
al. (2019) proposed a pairwise composite likelihood approach based on the factorization 
of the cause-specific CIF as the product of a cluster-specific risk level function with a 
cluster-specific failure time trajectory function. A composite approach (LINDSAY, 1988; 
COX; REID, 2004; VARIN; REID; FIRTH, 2011) is a valid alternative to a full likelihood 
analysis in high-dimensional situations when a full approach is too computational costly 
or even inviable. A clear advantage of this approach is that we do not need to care about 
a joint distribution specification, which generally translates also into a computational 
advantage. A disadvantage is the likelihood function specification, which becomes 
much more challengeable, besides the number of small details to workaround from the 
fact of being working with not an exact likelihood function.

We do not have any guarantees that a full likelihood inference procedure is 
not viable here, so we try to reach the same goal of Cederkvist et al. (2019) albeit with 
a simpler maximum likelihood estimation framework taking advantage of state-of-art 
software, something still not so common in the statistical modeling community. This 
simpler framework is based on a generalized linear mixed model (GLMM). Instead of 
concentrating on failure time data and consequently having a survival/frailty model 
based on the hazard scale, or using a composite approach (or any other of the options 
listed above), we just build the joint/full likelihood function (a multinomial model 
with its link function based on the cluster-specific CIF, accouting for an appropriate 
latent effects structure), marginalize (integrate out the latent effects) and optimize it. A 
Fisherian approach per se.

In a standard linear model we assume that the response variable Y,-, conditioned 
on the covariates Xj, follows a normal/Gaussian distribution and what we do is to 
model its mean, jij =  E(Y, | Xj), via a linear combination. As much well explained in



Nelder & Wedderburn (1972), with the aid of a link function g(-), this idea is generalized 
to distributions of the exponential family. Many of its members are useful for practical 
modelling, such as the Poisson (for counting data), binomial (dichotomic data), gamma 
(continuous but positive) and Gaussian (continuous data) distributions. This extended 
framework received the name of generalized linear models (GLMs) (NELDER; WED­
DERBURN, 1972), and is probably the most popular statistical modelling framework. A 
comprehensive reference is McCullagh & Nelder (1989).

Despite its flexibility, the GLMs are not suitable for dependent data. For the 
analysis of such data, Laird & Ware (1982) proposed the random effects regression 
models for longitudinal/repeated-measures data analysis. Breslow & Clayton (1993) 
presented the GLMMs for the analysis of non-Gaussian outcomes. What makes a GLM 
into a GLMM is the addition of a latent effect u (then, mixed) into the mean structure. 
The mean structure of a standard GLMM for a subject i is defined as

g(pi) — Xjfl +  Zjti, u ~  Multivariate N orm al(0,£)

where the latent effect is assumed to follow a multivariate Gaussian distribution of 
zero mean and a parametrized variance-covariance matrix L. Its correct linkage to the 
mean structure is made through the ;th vector row of a design-matrix Z. The covariates 
are into Xj, the ;th vector row of a model-matrix X , with f  being a vector of unknown 
parameters.

In the GLMM framework (MCCULLOCH; SEARLE, 2001), we can accommo­
date all competing causes of failure and censorship with a multinomial probability 
distribution, easily extend to any number of competing causes. The within-cluster 
dependence is accommodated via the latent effect and the cause-specific CIFs via the 
model's link function. The estimation and inference are done via an efficient implemen­
tation and state-of-art computational libraries provided through the R (R Core Team, 
2021) package TMB (KRISTENSEN et al., 2016). The latent effects are handled out by 
means of an efficient Laplace approximation (WOOD, 2015; BONAT; RIBEIRO-JR, 2016) 
and automatic differentiation (AD) (WOOD, 2015; PEYRe, 2020) routines.

1.1 GOALS

1.1.1 General goals

Propose and evaluate a maximum likelihood estimation approach of a multino­
mial generalized linear mixed model (multiGLMM) to the cluster and cause-specific 
cumulative incidence function (CIF) of clustered competing risks data.



1.1.2 Specific goals

1. Simulate from the model, i.e. generate synthetic data to study statistical properties.

2. Write the model in the Template Model Builder (TMB) software, developed by 
Kristensen et al. (2016) and possibly the most efficient likelihood-based way of 
doing such task.

3. Take advantage of TM B's functionalities with special attention to the computa­
tion of gradients and Hessians via a state-of-art automatic differentiation (AD) 
implementation; and a joint likelihood marginalization via an efficient Laplace 
approximation routine.

4. Assess the maximum likelihood estimation method embedded on TMB. Check 
its properties in our model for different complexity level in terms of parametric 
space and latent effect structures.

5. Make exact likelihood-based inference to the cluster and cause-specific CIF of 
clustered competing risks data.

1.2 JUSTIFICATION

In the biomedical statistical modeling literature, the study of disease occurrence 
in related individuals receives the name of family studies. Key points of interest are 
the within-family dependence and determining the role of different risk factors. The 
within-family dependence may reflect both disease heritability and the impact of shared 
environmental effects. The role of different risk factors arrives in the class of multivariate 
models, which options are limited in the statistical literature. Thus, the number of 
statistical models for competing risks data that accommodate the within-cluster/family 
dependence is even more limited. Some modeling options are briefly commented in 
Cederkvist et al. (2019), with his pairwise composite approach being proposed as a 
new and better option to model the cause-specific cumulative incidence function (CIF), 
describing age at disease onset, of clustered competing risks data on the probability 
scale. We propose to model the cause-specific CIF and accommodate the within-family 
dependence in the same fashion (via a latent structure that allows the absolute risk and 
the failure time distribution to vary between families) but with an easier estimation 
framework, based on a full-likelihood approach of a multinomial generalized linear 
mixed model.



1.3 LIMITATION

This work restraint to the proposition and maximum likelihood estimation 
method evaluation of a multinomial model for the cause-specific cumulative incidence 
function (CIF) of competing risks data in the context of family studies, with a latent 
effect structure to accommodate within-family dependence with regard to both risk 
and timing. Family studies are characterized by a considerable amount of clusters 
(families) but with each one having a small number of elements. Given its considerable 
model complexity, hypothesis tests; residual analysis; and good-of-fit measures are not 
contemplated.

1.4 THESIS ORGANIZATION

This master thesis contains 6 chapters including this introduction. Chapter 2 
presents a systematic review of the main aspects involved in the formulation, optimiza­
tion, and implementation of a generalized linear mixed model (GLMM). Given the mod­
eling framework overview, Chapter 3 presents our multinomial GLMM (multiGLMM) 
to model the cause-specific cumulative incidence function (CIF) of clustered competing 
risks data. In Chapter 4 we describe the simulation procedure to generate synthetic 
data and present some model particularities. In Chapter 5 the obtained results are 
presented, and in Chapter 6 we discuss the contributions of this thesis and present some 
suggestions for future work.



2 GENERALIZED LINEAR MIXED MODELS: FORMULATION, OPTIMIZA­

TION, AND IMPLEMENTATION

This chapter presents a review of the main theoretical aspects involved in the 
formulation, estimation, and implementation of a generalized linear mixed model 
(GLMM). We start in Section 2.1 with the model formulation framework, concluding 
with the so-called joint or full likelihood function. Section 2.2 address the marginal­
ization of that joint likelihood, performed here in terms of a Laplace approximation 
technique. Section 2.3 discusses available alternatives for the marginal likelihood pa­
rameters optimization. Section 2.4 present the automatic differentiation (AD) procedure, 
the most efficent routine for the computation of derivatives, and a key point for us. Last 
but not least, in Section 2.5 we present the computational tool used for the discussed 
methodology, a very exciting R (R Core Team, 2021) package called TMB: Template 
Model Builder, developed by Kristensen et al. (2016).

2.1 FORMULATION: OBTAINING A JOINT LIKELIHOOD FUNCTION

We model an n-vector of exponential family random variables Y, in terms of 
its conditional expected value }i =  E (Y  | X ,u),  via a linear combination called of linear 
predictor and generally expressed by

g(fi) — X fi  +  Zu, u ~  Multivariate N orm al(0,£). (2 .1)

In other words, a GLMM (MCCULLOCH; SEARLE, 2001) is a generalized linear model 
(GLM) in which the linear predictor depends on some Gaussian latent effects, u, times a 
latent effects design-matrix Z. Since we do not observe the latent component, an exem­
plification of the idea embedded in matrix Z is welcome. Suppose e.g., three individuals 
(or clusters) and that each one has two measures. This configures a repeated measures 
context, the most common latent structure in family studies. Also, it is reasonable to 
admit that each individual has its particular latent effect value. Consequently, we have

Zu —

1
1
0
0
0
0

0 0 
0 0 
1 0 
1 0 
0 1 
0 1

U1

»1
U1

»2
»2 —

»2
»3

»3

»3

where u T =  [iq »2 »3] and Z  has the role of projecting the values of u to match the 
number of measures.



In a mixed model the mean structure is approached as a combination of proba­
bility distributions. It is a combination since we have to assume probabilistic structures 
for the observed and non-observed/latent data. To each observed variable we have a 
probability distribution of the exponential family, denoted by /(yy | Ui,0). To the latent 
effect we have, generally, a (multivariate) Gaussian distribution, denoted by /(«,- | L). 
To each individual or unity under study i, and to each measure j, we have the product 
of these probability densities, a likelihood contribution.

Our goal is to estimate the parameter vector 6 — [/$ £ ]T of a mean structure, as 
in Equation 2.1. Besides the role of emphasizing the fact that ft is a function of 6, and 
that we want to estimate 6, the likelihood function ties the probability densities i.e., the 
likelihood is the product of the product of probability densities, to each subject i. Since 
Yj are mutually independent, the likelihood for 6 can be written as

w  i y>u) - n n  f (y i j  i « i '/ u )  /(«,• i e ) . (2 .2 )
<=i j=i

From standard probability theory is easy to see that in the right-hand side (r.h.s.) we 
have a joint density, consequently, Equation 2.2 represents what is called a full or a joint 
likelihood function. What makes problematic working with this joint likelihood is that 
we do not have all the necessary information to just maximize it and get the desired 
parameter estimates. The latent effect it is latent i.e., we do not observe it. To handle this 
we have basically two available paths.

2.2 MARGINALIZATION: LAPLACE APPROXIMATION AND ALTERNATIVES

To deal with a joint likelihood function as in Equation 2.2 we have a choice to 
make. Be or not to be Bayesian. Each choice has its own difficulties, advantages, and 
characteristics.

The Bayesian path assumes that all 6 components are random variables. With 
all parameters being treated as random variables, and since we do not observe them, 
what the Bayesian framework does is try to compute the mode of each "param eter" 
marginal distribution, generally, via a sampling algorithm called MCMC: Markov chain 
Monte Carlo (GELFAND; SMITH, 1990; DIACONIS, 2009).

The advantage of being Bayesian is that we can reach an MCMC algorithm 
to basically any statistical model, the disadvantage is that this approach is very time 
consuming and we have to propose prior distributions to each "param eter". These 
prior proposals are not always easy to make, and the resulting marginal distributions 
can be very depending of it. A Bayesian approach can be applied in basically any 
context, without guarantees that will work - obtain convergence to all parameters is not



a straightforward task. However, in complex scenarios they can be the only available 
method to "maximize" the likelihood function. This is not the case here.

We have a joint density where one of the random variables is not observed, 
but we are not interested in it, only in the variance parameters inherent in it. Again, 
from standard probability theory, if we have a joint density we can just integrate out the 
undesired variable resulting in

a marginal density that keeps the parameters £  of the integrated variable.

When the response distribution of a mixed model is Gaussian, is analytically 
tractable to integrate n out of the joint density. Consequently, it is possible to evaluate 
the marginal likelihood exactly. This is the case of the linear mixed models (LMMs) 
and one of the main differences to the GLMMs. When the response distribution is not 
Gaussian, generally, it is not anymore analytically tractable to integrate out the latent 
effect. So what do we do? Well, we have basically two options again.

We can avoid the integrals in Equation 2.3, replacing it by integrals that are 
tractable. This can be performed via an algorithm called Expectation-Maximization 
(EM), proposed by Dempster, Laird & Rubin (1977). This approach is considered a 
little bit naive and generally is not recommended if you have a better option. The 
other option consists of performing a numerical integration i.e., approximating the 
integral. The most common way of doing that in the statistical modeling literature is 
via an importance sampling version of the Gaussian quadrature rule, denoted adaptive 
Gaussian quadrature (AGQ) (PINHEIRO; CHAO, 2006). In general, adaptive Gaussian 
quadratures are not so simple to use (computationally expensive; we have to choose 
how many integration points will be used; and we also have to choose an importance 
distribution to approximate the integrand).

To us, the better option consists in take advantage of the exponential family 
structure together with the fact that we are dealing with Gaussian latent effects. These 
ideas converge to an adaptive Gaussian quadrature with one integration point, also 
called as Laplace approximation (MOLENBERGHS; VERBEKE, 2005; SHUN; MCCUL- 
LAGH, 1995; TIERNEY; KADANE, 1986; WOOD, 2015).

With an integral that is analytically intractable, we may approximate it to obtain 
a tractable closed-form expression allowing the numerical maximization of the resulting 
marginal likelihood function (BONAT; RIBEIRO-JR, 2016). The Laplace approximation



has been designed to approximate integrals in the form

exp{Q(M,-)}dMf «  (2n )n"/2 |Q"(fi,-)|- 1 / 2  exp{Q(fi,-)}, (2.4)
'nHi

where Q(iq) is a known, unimodal bounded function, and ii, is the value for which 
Q (h;) is maximized. As Wood (2015) shows, a Laplace approximation consists of a 
second order Taylor expansion of log/(y;,H; | 6), about ii„ that gives

!°gf ( xJ i ’ u i I e ) ~ log/ ( V i ' “ ; I d ) ~ \ { ui ~  Ui)J H  ( Uj -  iii), 

where H  — — V (̂ log/ft/,,«?, | 6). Hence, we can approximate the joint by

| 6) «  f{yi,Ui | 6) exp|-^(i// -  i / ; ) t H  (m,- -  fi,-)|. (2.5)

From here we start to take advantage of the points mentioned above.

First, the fact that we are dealing with Gaussian distributed latent effects. In 
Equation 2.5 we have the core of a Gaussian density, that complete is

k ;  (271 )» .n \ H -'\ W  e x p { - l ( Hi (Hi -  f,i) JdHi =  1

i.e., integrates to 1. Integrating Equation 2.5 follows that

[  fiy>'lli I 0 ) d«i ~  /(Vi'fii I 0) [  exp ~ iii)J H  (Uj -  h/)1 duiJ n ui J n ui ( 2  J

— (2tt)”'' 2̂ \H\~̂ 2̂ f(y j,t i j  | 0)

i.e., we get Equation 2.4, a first order Laplace approximation to the integral. Careful 
accounting of the approximation error shows it to generally be 0 ( n ~l ), where n is the 
sample size, and assuming a fixed length for h, (WOOD, 2015).

The second advantage of a Laplace approximation approach in a GLMM is the 
exponential family structure. In a usual GLMM the response follows a one-parameter 
exponential family distribution that can be written as

/(i/f I Hi,0) =  exp {y /  (xjp  +  Zitii) -  l j b ( x j p  +  z/iq) +  l j c ( y i )  J ,

where b(-) and c( ) are known functions.

This general and easy to compute expression, together with a (multivariate) 
Gaussian distribution, highlights the convenience of the Laplace method. The Q(iq) 
function to be maximized can be expressed as

Q(“i) =  y j(xip + ZiUi) -  l]b(xjp + ZiUi) + ljc{iji)
n 1 1  (2*6)

-  y  log(2/r) -  2 log lL l “



The approximation in Equation 2.4 requires the maximum ii, of the function Q(«,•). As 
we assume a Gaussian distribution with a known mean for the latent effects, we have the 
perfect initial guess for a Hessian-based maximization method, as the Newton-Raphson 
(NR) algorithm.

The NR method consists of an iterative scheme as follows:

« f +1) =  u f ] -  Q ' K W ), k =  0 , 1 ,  . . .

until convergence, which gives ii, . At this stage, all parameters 6 are considered known. 
Bonat & Ribeiro-Jr (2016) presents the generic expressions for the derivatives required 
by the NR method, given by the following:

Q '( « ,W ) =  {■/. -  b'fx.fi +  Zi«,W ) } T -  » f ’ V 1,

Q"(»,W ) =  -diag{6"(*,/S +  z,-«;*’) }  -  L - ’ .

We have the initial guesses at k — 0.

Finally, the marginal log-likelihood function returned by the Laplace approxi­
mation, to each individual or unit under study i, is as follows:

l{6  | ijj) =  logL{6  | ijj) =  |log(2/r) -  ^log diag{&"(*,-/? +  z/iq)} +

+  i j j  (xjft +  ZjUj) -  l ] b ( x j p  +  Zjtij) +  1 / c{iji)

-  y log(27r) -  ^ log lL l -

that can now be numerically maximized over the model parameters 6 — [ft £ ]T .

2.3 OPTIMIZATION: MARGINAL LIKELIHOOD FUNCTION

At this point it is already clear that we have two optimizations to be performed, 
an "inside" and an "outside" optimization. The inside one is made into the Laplace 
approximation layer via a Newton-Raphson algorithm, a Newton's method. The outside 
optimization is made with the Laplace approximation outputs i.e., the maximization 
of Equation 2.3's marginal log-likelihood over its parameters 6. This task is usually 
performed via a quasi-Newton method, we focus on two of the most traditional ones: 
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm and the PORT routines.

The inside optimization is the numerical maximization of the joint log- 
likelihood with respect to (w.r.t.) its latent effects. This is kind of a simple task since all 
model parameters are considered as fixed, and we "know " that the latent effects are 
distributed with zero mean i.e., we have the perfect initial guess. In this context, the use 
of a Newton's method is straightforward. When we talk about the outside optimization



it is a completely different scenario, it is not straightforward to find a good initial guess 
or reach convergence. Thus, more robust methods are a good choice.

In optimization, Newton methods are algorithms for finding local maxima 
and minima of functions i.e., the search for the zeroes of the gradient of that function. 
Newton methods are characterized by the use of a symmetric matrix of function's 
second derivatives, the Hessian matrix. Quasi-Newton methods are based on Newton's 
method and are seen as an alternative to it. They can be used if the Hessian is unavailable 
or if is too expensive to compute it at every iteration.

As shown in Nocedal & Wright (2006), major advantages of quasi-Newton 
methods over Newton's method are that the Hessian matrix does not need to be com­
puted, it is approximated; and it also does not need to be inverted. Newton's method 
requires the Hessian to be inverted, typically by solving a system of linear equations - 
often quite costly. In contrast, quasi-Newton methods usually generate an estimate of it 
directly. As in Newton's method, they use a second-order approximation to find the 
minimum of a function f ( x ) . The Taylor series of f ( x )  around an iterate is

f ( x k +  Ax) «  f ( x k) +  V f { x k) TAx +  x J B Ax,

where V/( •) is the gradient, and B  an approximation to the Hessian matrix. The gradient 
of this approximation w.r.t. Ax is

V f ( x k +  Ax) «  V/(xQ +  B Ax,

setting this gradient to zero provides the Newton step:

Ax — —B~l V f ( x k).

The Hessian approximation B  is chosen to satisfy

V f ( x k +  Ax) — V/(xQ +  B Ax,

which is called the secant equation i.e., the Taylor series of the gradient itself. Solving 
for B  and applying the Newton's step with the updated value is equivalent to the secant 
method. Quasi-Newton methods are a generalization of the secant method to find the 
root of the first derivative for multidimensional problems. The various quasi-Newton 
methods differ in their choice of the solution to the secant equation.

In a general quasi-Newton method, the unknown xk is updated applying the 
Newton's step calculated using the current approximate Hessian matrix Bk in the 
following fashion:

•1 ___

• Axk =  — xkB f  v f { x k), with a  chosen to satisfy some sufficient decrease and curva­
ture conditions collectively known as the Wolfe conditions (NOCEDAL; WRIGHT, 
2006, p. 34);



• x*+1 =  x* +  Ax*;

• The gradient computed at the new point V/(x*+i) , and y* — V/(x*+i) — V/(x*) 
is used to update the approximate Hessian Bk+i,  or directly its inverse H*+1 =

Bk h -

The most popular quasi-Newton method is the BFGS algorithm, named after its 
inventors, Broyden, Fletcher, Goldfarb, and Shanno. It has the following update formula

VkVk BkAxk(BkAxk)T
Bk+l — Bk +

yk Ax* Ax1 B*Ax*

-  ( '  ■ -  )  *  ( '  -  f S ]

T

1/*T Ax* '

Another quasi-Newton method popular in the statistical modeling literature, is the 
one based on the PORT routines (http://www.netlib.org/port/}. It is a Fortran math­
ematical subroutine library designed to be portable over different types of computers, 
developed by David Gay in the Bell Labs (GAY, 1990). It is a quasi-Newton adaptive 
nonlinear least-squares algorithm (DENNIS; GAY; WELSCH, 1981) with the following 
update formula

Bk+1 — Bk

(Vk ~ BkAxk) Ax] Bk +  B* Ax* (y* -  B* Ax*)T
Ax*1 B* Ax*

_  AxJ (y* -  B*Ax*)B*A x*Axa? B*

(Ax^ B*A x*)T Ax^ B*Ax*

As Nocedal & Wright (2006) points out, each quasi-Newton method iteration can be 
performed at a cost of 0 ( n 2) arithmetic operations (plus the cost of function and 
gradient evaluations); there are no 0 ( n 3) operations such as linear system solves or 
matrix-matrix operations. In the BFGS algorithm is known that the rate of convergence 
is superlinear, which is a valid assumption to any quasi-Newton method and is fast 
enough for most practical purposes. Even though Newton's method converges more 
rapidly, quadratically, its cost per iteration usually is higher because of its need for 
second derivatives and solution of a linear system.

In this thesis, the used BFGS implementation is the one in the R (R Core Team, 
2021) function base: :optim (), and the PORT routine used is the one implemented in 
the R function b a se :: nlminbQ.

2.4 AD: AUTOMATIC DIFFERENTIATION

The computation of gradients, V /(x), are a fundamental and crucial task but 
also the main computational bottleneck to any Newton and quasi-Newton method.

http://www.netlib.org/port/%7d


We choose to use the most efficient manner of computing gradients, and one of the 
best scientific computing techniques but still not so famous in the statistical modeling 
literature, the automatic differentiation (AD) procedure. AD has two modes, the so-called 
forward and reverse mode. We will talk a bit about both but we will use only the reverse 
mode. The reason can be illustraded by a simple example, given later.

Automatic differentiation, also called algorithmic differentiation or computa­
tional differentiation, is a set of techniques to numerically and recursively evaluate the 
derivative of a function specified by a computer program. AD techniques are based on 
the observation that any function, no matter how complicated, is evaluated by perform­
ing a sequence of simple elementary operations involving just one or two arguments at 
a time. Derivatives of arbitrary order can be computed automatically, automatized and 
accurately to working precision. Most of the information in this section was taken of 
Peyre (2020), but Wood (2015, p. 120) and Nocedal & Wright (2006, p. 204) are also very 
good references.

The most common differentiation approaches are finite differences (FD) and 
symbolic calculus. Considering a function / : RP —>• R  and the goal of deriving a method 
to evaluate V/ : RP —> RP, the approximation of this vector field via FD would require 
p +  1 evaluations of /. The same task via reverse mode AD has in most cases a cost 
proportional to a single evaluation of/. AD is similar to symbolic calculus in the sense 
that it provides an exact gradient computation, up to machine precision. However, 
symbolic calculus does not takes into account the underlying algorithm which compute 
the function, while AD factorizes the computation of the derivative according to an 
efficient algorithm. The use of AD is inherent to the use of a computational graph, as 
exemplified in Figure 2.

FIGURE 2 -  A  COM PUTATIONAL G RAPH
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SOURCE: Peyre (2020, p. 31).

Assuming that / is implemented in an algorithm, the goal is to compute the



derivatives

3/(*)
dxi-

e  R ' " x " c

for a numerical algorithm (succession of functions) of the form 

V k =  S +  1, . . . ,  t, Xk =  / *(*!, . . . ,  ),

where f k is a function which only depends on the previous variables. The computational 
graph as in Figure 2, has the role of represent the linking of the variables involved in f k 
to xk. The evaluation of f ( x )  corresponds to a forward traversal of this graph.

Now, how we evaluate / through the graph? Via one of the AD modes.

2.4.1 Forward Mode

The forward mode correspond to the usual way of computing differentials. The 
method initialize with the derivative of the input nodes

_  T J  d x 2  _ n  d x s _  n
-  — ^ m xnu  faT — u«2X«i/ 0^“ — un$xn \rdxi

and then iteratively make use of the following recursion formula

Vk
dxk

— s +  1, . . . ,  t,

=  E dxk dxi
X = E

dXl I e father(Jc) dXl dXl I e father(jt) dXl

r  t \ d x lfk(Xlr . . . ,  X —
1

The notation "father(/c)" denotes the nodes / < k of the graph that are connected to k. 
We make use of Peyre (2020, p. 32)'s simple example.

Example. Consider the function

f ( x ,y )  = y lo g (x ) +  s jy  log(x)

with the corresponding computational graph being displayed in Figure 3. 

FIGURE 3 -  EXA M PLE O F A  SIMPLE CO M PUTATIO N AL GRAPH



The forward mode iterations to compute the derivative w.r.t. x following the 
computational graph, are given by

dx , 3y
 =  1 - J -  =  o

dx ' dx
da da dx 1 dx , , . . ,

=  =  ( ^ «  =  'ogW >
db d bd a  db dy da r/ N .
Tx =  TaTx +  Tv Tx =  ̂  +  0 « * « ) - »  =  »»}
dc dc db 1 3b
3x 3b 3x 2\/b dx

{b c =  \/b}

3/ d f  db d f  dc db dc , ,  . ,
a&a^ +  a ? a ^ _  a ^ +  a i  { ( b , c ) ^ / _ b  +  c}

To compute the derivative w.r.t. y we run another forward process

^ = 0  ^  =  1 
dy 3y
da da dx „ , . . ,
3 i  =  t o 3 i  =  0 { * ~ «  =  log(*)>

3b 3b da db dy n dy , ,  . . .
-  +  5 - ^  =  °  +  * ^  {(y/fl) =3y 3a 3y 3y3y 3y

dc dc db 1 3b
3y 3b 3y 2>/b dy

{b c =  \/b}

3/ 3/ 3b 3/ dc db dc , ,  . ,
^r- =  { (b,c) f  =  b +  c}
3y db dy dc dy dy dy

2.4.2 Reverse Mode

Instead of evaluating the differentials for all the input nodes, which is prob­
lematic for a large number of nodes, the reverse mode evaluates the differentials of the 
output node w.r.t. all the inner nodes.

The method is based on a backward adjoint chain rule and initialize with the 
derivative of the final node

d x t  -  TH
3 *,

and then from the last to the first node, iteratively make use of the following recursion 
formula

V f c  =  f -  1 , f - 2 , . . . ,  1 ,

dxf r—i dxf 3 Xfll r—i dxf 3 . . x
3 3  ̂ 3  ̂ 3 \̂ 1' • • •' ) ■dx h ,,\dxm dxt, ,,\dxm dx vK nt e  son (k) m K m e  son(k) m K

The notation "son(/c)" denotes the nodes m < k of the graph that are connected to k. To 
be clear, the same simple example.



Example. Consider again the function

f ( x ,y )  =  ylog(x) +  ^/ylog(x).

The iterations of the reverse mode are given by

2 i  =  i
9/

dc d f  dc d f
1 {c t-> f  — b +  c}

d_£^d_£ds  d f d f  =  a / j _  d f  ( b ^ c =  y f i  b ^ f  =  b +  c\
db dc db d f  db dc 2Vb  d f  { V b , b ^ f  b + c \
d f  d f d b  d f
Ta =  dbd-a =  TbV { a ^ b  =  ya}
d f  d f d b  d f  r , 1
d j = 9 b d i = 9 b a i y ^ b  =  ya}

d f _ d f d a _ d f  1
d x ~ d a d x ~ d a x  { x ^ a - l o g W }

This is the advantage of reverse mode over the forward mode. A single traversal over 
the computational graph allows to compute both derivatives w.r.t. x and y, while the 
forward mode necessities two processes.

An drawback of the reverse mode is the need to store the entire computational 
graph, which is needed for the reverse sweep. In principle, storage of this graph is not 
too difficult to implement. However, the main benefit of AD is higher accuracy, and in 
many applications the cost is not critical.

2.5 TMB: TEMPLATE MODEL BUILDER

Note that the goal of AD is not to define an efficient computational graph, it 
is up to the user to provide it. However, computing an efficient graph associated to a 
mathematical formula is a complicated combinatorial problem. Thus, since our goal is 
to be able to fit our desired statistical models, a computational tool able to efficiently 
define and implement this computational graph is make necessary. To solve this and 
many other tasks we have the Template Model Builder (TMB), developed by Kristensen 
et al. (2016).

TMB (http://tmb-project.org) is an R (R Core Team, 2021) package for fit­
ting statistical latent variable models to data, inpired by AD Model Builder (ADMB) 
(FOURNIER et al., 2012). ADMB is a statistical application for fitting nonlinear statistical 
models and solve optimization problems, that implements AD using C++ classes and a 
native template language. Unlike most R packages, in TMB the model is formulated in 
C++. This characteristic provides great flexibility but requires some familiarity with the 
C/C++ programming language.

http://tmb-project.org


With TMB a user should be able to quickly implement complex latent effect 
models through simple C++ templates. As an illustrative example let us consider an 
simple mixed logistic regression i.e., a binomial GLMM with a logistic link function. 
The latent structure is in the context of repeated measures, the same subject is observed 
three times. Trying to keep it simple, no covariates. A hierarchical model's description 
is given by

i/ij | n j ~  Binomial (ft, p,y) 

nj ~  Norm al(0,1)

g(Pij) =  logi *(Pij) =  log 7 T ~ r  =  ^ +  Mf
1 Pij

Pa — exp {^  +  “»} j t j ^ e  subject j subject observation (1,2,3).
' 1 + e x p  {p  +  Uj}

The TMB implementation of this model is provided in Figure 4.

To keep the coherence would be more adequate to fit here a multinomial model. 
However, I want to show you that in TMB we can also simulate data from the model 
but not all r-distributions are implemented, as is the case of the multinomial. For this 
reason, a binomial model was the choice. An even easier implementation of a logistic 
model is available in TMB, called dbinom.robust ( ) , where we pass directly the logit(-) 
but we do not have an rbinom.robust () implementation available. Just for the sake of 
completeness, in Figure 5 we have the R code showing how to manipulate the C++ model 
template in terms of object definitions and parameters estimation and extraction for the 
logistic mixed model.

In this chapter we describe step-by-step all the processes involved in the formu­
lation and parameter estimation of a GLMM. With TMB all this is put in practice in an 
efficient and robust fashion. The user needs to provide the negative joint log-likelihood 
function writing in a C++ template as exemplified in Figure 4, using specialized macros 
that pass the parameters, latent effects and data from R, as exemplified in Figure 5.

When the model presents latent effects, during the model template compilation 
the latent effects are integrated out via an efficient Laplace approximation routine 
with the inner optimization made by a Newton algorithm, and the negative marginal 
log-likelihood gradient is computed, via AD. The negative marginal log-likelihood is 
returned into an R object that can then be optimized using the user's favorite quasi- 
Newton routine, available in R. All these procedures are briefly exemplified for a logistic 
mixed model in Figure 4 and Figure 5.

To accomplish all that, TMB combines some state-of-art software

• CppAD, a C++ AD package (https://coin-or.github.io/CppAD/};

• Eigen (GUENNEBAUD; JACOB et al., 2010), a C++ templated matrix-vector library;

https://coin-or.github.io/CppAD/%7d


• CHOLMOD, C sparse matrix routines available from R, used to obtain an efficient 
implementation of the Laplace approximation with exact derivatives (https:// 
developer.nvidia.com/cholmod);

• Parallelism through BLAS (http://www.netlib.org/blas/), a Fortran tuned set of 
Basic Linear Algebra Subprograms;

FIGURE 4 -  R CODE FOR THE TMB IM PLEM ENTATION O F A  LOGISTIC M IXED M ODEL

1 dll <- 'model'
2 filename <- paste0(dll, '.epp')
3 writeLines({'// A LOGISTIC MIXED MODEL (RANDOM INTERCEPT)
4 #include <TMB.hpp>
5 template<class Type>
6 Type objective_function<Type>::operator() ()
7 {
8 // SPECIFY THE MODEL INPUTS AS DATA.
9 DATA.VECTOR(y);
10 DATA.SPARSE.MATRIX(Z);
11 DATA.SCALAR(n);
12
13 // SPECIFY THE MODEL PARAMETERS AND LATENT EFFECTS AS PARAMETER.
14 PARAMETER(beta);
15 PARAMETER(logsd); Type sd = exp(logsd);
16 PARAMETER.VECTOR(u); vector<Type> Zu = Z*u;
17
18 // IMPLEMENT THE MODEL
19 vector<Type> risk = exp(beta+Zu);
20 vector<Type> level = 1+risk;
21 vector<Type> prob = risk/level;
22
23 / /  nil: NEGATIVE LOG-LIKELIHOOD
24 parallel.accumulator<Type> nll(this); // DO THE MODEL IN PARALLEL
25 nil -= dnorm(u, Type(0), s d , true).sum();
26 nil -= dbinom(y, n, prob, true).sum();
27
28 I !  TMB ALLOWS THE USER TO WRITE THE SIMULATION CODE AS AN INTEGRATED
29 // PART OF THE C++ MODEL TEMPLATE
30 SIMULATE {
31 y = rbinom(Type (100), prob);
32 REPORT(y);
33 }
34 // WE MODEL THE LOG STANDARD DEVIATION (logsd) BUT TMB ALLOWS US TO
35 // MAKE DIRECT INFERENCE TO PARAMETER TRANSFORMATIONS, IN THIS CASE
36 // THE STANDARD DEVIATION (sd)
37 ADREPORT(sd);
38
39 return nil;
40 }'}, con=filename)
41
42 library(TMB) ## install.packages( ’TMB ’ )
43 T M B ::compile(filename)
44 d y n .load(TMB::dynlib(dll)) ## loading the C++ model to R

http://www.netlib.org/blas/


• Matrix (BATES; MAECHLER, 2019), a rich hierarchy sparse and dense ma­
trix classes and methods using LAPACK (http://www.netlib.org/lapack/) and 
SuiteSparse (https://sparse.tamu.edu/) libraries.

FIGURE 5 -  R CODE FOR THE MODEL FITTING OF A LOGISTIC MIXED M ODEL WRITTEN
IN TM B

1 library(Matrix) ## install.packages( ’Matrix’)
2 beta <- 2
3 sd <- 1
4 cs < - 3  ## cluster size
5 nc <- 50 ## number of cluster
6 n <- nc * cs
7 Z <- Matrix::bdiag(replicate (nc, rep(1, cs) , simplify=FALSE))
8 u <- rnorm(nc, mean=0, sd=sd)
9 u0 <- numeric(nc) ## empty vector (initial guess)

10 risk <- exp(beta + Z %*% u)
11 prob <- risk/(1 + risk)
12 y <- numeric(n)
13 ## base::rbinom () is not vectorized, do a raw loop is an option
14 for (i in seq(y)) y[i] <- rbinom(n=1, size=n, prob=prob[i])
15
16 ## building objective functions with derivatives based on the compiled
17 ## C++ template
18 obj <- T M B ::MakeADFun(data =list(y=y, Z = Z, n = n) ,
19 parameters=1 ist(beta=beta, logsd=log(sd), u = u0),
20 DLL =dll,
21 random ='u ')
22 set.seed(l) ## optional
23 obj$simulate () ## generating a simulation
24 ## obj$simulate(complete=TRUE)
25 (opt <- nlminb(obj$par, obj$fn, obj$gr)) ## parameters estimation
26 sdr <- T M B ::sdreport(obj) ## standard deviations
27 summary(sdr, select='fixed') ## extracting model parameters
28 summary(sdr, select= ' report') ## ... reported variables
29 cbind(u, summary(sdr, select='random')) ## ... random effects

SOURCE: The author (2021).

An overview of the pachage design is shown in Figure 6.

FIGURE 6 -  TMB PACKAGE DESIGN

Matrixy ~  -Tcholmod\<— Tblas

User Template w— —\ TMB++ Eigen

CppAD

http://www.netlib.org/lapack/
https://sparse.tamu.edu/


Reinforcing, some key characteristics are

• TMB employs AD to calculate first and second order derivatives of the log- 
likelihood function or of any objective function written in C++;

• The objective function, and its derivatives, can be called from R. Hence, parameter 
estimation via base: :  optim() or base: :  nlminb() is easy to be performed;

• Standard deviations of any parameter, or derived parameter, can be obtained via 
the delta method (Ver HOEF, 2012) implemented in TMB:: sdreport().

Here we focus on GLMMs, but basically any statistical model with a latent 
structure (or not), linear (or not), can be fitted with TMB. In times of big data and with 
the TMB's authors having a professional preference for state-space and spatial models, 
TMB has also automatic sparseness detection and some other nice built tools. Pre and 
post-processing of data should be done in R.

A TMB Users' mailing list exists, and it is extremely helpful for taking doubts 
and questions (https://groups.google.eom/g/tmb-users). Also, a very didactic and 
comprehensive documentation with several examples is available online (https: //kaskr. 
github .io / adcomp / .book/ Tutorial.html).

https://groups.google.eom/g/tmb-users


3 multiGLMM: A MULTINOMIAL GLMM FOR CLUSTERED COMPETING 

RISKS DATA

The clustered competing risks setting is a specific survival data structure. Al­
though, we are using a general statistical modeling framework, a generalized linear 
mixed model (GLMM). Consequently, the data structure characteristics have to be 
properly accommodated into the modeling construction.

To model competing risks data we need a multivariate model and we have to 
choose in which scale to work on. We may work on the hazard scale and deal with 
the cause-specific hazard function or on the probability scale and deal with the cause- 
specific cumulative incidence function (CIF). By choosing the correct link function, we 
are able to construct an appropriate multivariate GLMM to work on the probability 
scale.

Our goal is to be able to deal with complex family studies, where there is 
generally a strong interest in describing age at disease onset in the scenarios of within- 
cluster dependence. The distribution of age at disease onset is directly described by 
the cause-specific CIF. To build a multivariate GLMM for this type of data we need to 
accommodate the cause-specific CIFs and the censorings. Assuming the conditional 
distribution for our model response as multinomial we already deal with both left- 
truncation and right-censoring, avoiding the specification of a censoring distribution. 
The cause-specific CIFs can be modeled via the link function of our, then, multinomial 
GLMM (multiGLMM). The multinomial distribution also guarantees that the CIFs of all 
causes are modeled.

Our choice for a general framework tries to make the inference of this complex 
model, easier. Besides, taking advantage of all the computational procedures mentioned 
in the previous chapter. This chapter presents our multiGLMM for clustered competing 
risks data and is divided into two sections. In Section 3.1 we discuss in detail the cluster- 
specific cumulative incidence function (CIF) and in Section 3.2 we present the complete 
modeling framework.

3.1 CLUSTER-SPECIFIC CUMULATIVE INCIDENCE FUNCTION (CIF)

Consider that the observed follow-up time of an individual is given by T — 
m in(T*,C), where T* denote the failure time and C denote the censoring time. Given 
the possible covariates x, for a cause-specific of failure k, the cumulative incidence



function (CIF) is defined as

Fk(t | x) — P [T  < t, K — k | x] — [  f k (z | x) dz
Jo

— [  Ak (z I x) S(z I x) dz, t >  0, k — l , . . . , K ,
Jo

where f k (t \ x) is the (sub)density for the time to a type k failure. This is the general 
definition of a CIF, and to define it we need to define the functions that compose the 
subdensity. The first is the cause-specific hazard function or process

1
Ak(t | x) — lim -  P[f <  T < t +  h, K — k \ T > t, x], t >  0, k — l , . . . , K .

/<—>o h

In words, the cause-specific hazard function Â (t \ x),  represents the instantaneous rate 
for failures of type k at time t given x and all other failure types (competing causes). If 
we sum up all cause-specific hazard functions we get the overall hazard function,

K
A(̂  I * )  =  I x )•

k=l

From the overall hazard function we arrive in the overall survival function,

S(t | x) — P [T  >  1 1 x] — exp | — J A(z | x)  d z| ,

the second function that compose the subdensity f^(t \ x). A  comprehensive reference 
for all these definitions is the book of Kalbfleisch & Prentice (2002).

Until this point, we were talking about a general CIF's definition. We need now 
a precise framework telling us how to take into consideration our clustered/family 
structure. We use the same CIF specification of Cederkvist et al. (2019) i.e., the approach 
that motivated this thesis.

For two competing causes of failure, the cause-specific CIFs are specified in the 
following manner

Fk(t | x, Hi, u2, rjk ) =  nk (x, m , u2) x <&[ivkg(t) -  x y k -  i]k], t >  0, k =  1, 2, (3.1)

cluster-specific 
risk level

cluster-specific 
failure time trajectory

i.e., as the product of a cluster-specific risk level with a cluster-specific failure time 
trajectory, resulting in a cluster-specific CIF. What makes these components cluster- 
specific are u — {u\, u2] and tj — {rj\, rj2}, Gaussian distributed latent effects with zero 
mean and potentially correlated i.e.,

Ul / o" a l x COv(»!, U2) COv(»!, } ] i ) COv(»!, i/2) \

»2 Multivariate
/\J

0 crft2 COv(»2, rji) COv(»2, 7 2 )

m Normal 0
f

a}n cov ( t j i ,  i ]2 )

J i2. I0 [ < J/



The cluster-specific survival function is given by S(t \ x, u, tj) — 1 — F] (t \ x, u, rj\) — 
F2{t | x, u, rj2). Since we use the same CIF specification of Cederkvist et al. (2019), the 
following details are essentially the same encountered in the paper.

Focusing first on the second component of Equation 3.1, the cluster-specific 
failure time trajectory

®[u>kg(t) ~ x ik  - m l  t > 0 ,  k =  1 ,2,

where <!>(•) is the cumulative distribution function of a standard Gaussian distribution. 
Instead of ittyg(f), in Cederkvist et al. (2019) is specified m(g( t ) )  with «*■(•) being a 
monotonically increasing function known up to a finite-dimensional parameter vector, 
iv*■. Examples are monotonically increasing B-splines or piecewise linear functions. How­
ever, to simplify the model structure we consider just the finite-dimensional parameter 
vector. The bottom line is that the authors do the same approach in their applications. 
With regard to the function g(t),  it plays a crucial role since the CIF separation in 
Equation 3.1 is only possible with it. It is used a time t transformation given by

g(t) — arctanh ^  , i e  (0, ^), g(t) €  ( - 00, 00),

where 8 depends on the data and cannot exceed the maximum observed follow-up 
time r  i.e., 8 <  r. With this Fisher-based transformation the value of the cluster-specific 
failure time trajectory is equal 1, at time 8. Consequently, Fj<(8 \ x, 11, rj*■) =  Jt^x \ 11) and 
we can interpret TC\{x \ 11) and Jt2 {x \ 11) as the cause-specific cluster-specific risk levels, 
at time 8.

The cluster-specific risk levels are modeled by a multinomial logistic regression 
model with latent effects i.e.,

nh(x u) = __________ e x p {s f t  +  Kfc}__________
k{ ' } 1 + e x p i x f a  +  Ml} + e x  p { x f c  +  »2} '

k= 1, 2,

where the f i / s  are the coefficients responsible for quantifying the impact of the covari- 
ates in the cause-specific risk levels. For individuals from the same cluster/family, at 
the same time point, the jS ŝ have the well-known odds ratio interpretation.

A direct understanding of all coefficients/parameters of Equation 3.1 can be 
reached via the illustrations in Figure 7. To really understand what is going on, we 
simplify the model. We still consider just two competing causes but without covariates 
and we plot just the cluster-specific CIF of one failure cause. In Figure 7 A) we see that 
the 0 's  are also related with the curve's maximum value i.e., bigger the />, highest the 
CIF will be.

The %'s are  the coefficients responsible for quantifying the impact of the co­
variates in the cause-specific failure time trajectories i.e., the shape of the cumulative



incidence. In Figure 7 B) we see that the 7 's are also related with an idea of midpoint 
and consequently, growth speed. The fact that 7 *. enters negatively in the cluster-specific 
failure time trajectory makes that a negative value causes an advance towards the curve, 
whereas a positive value causes a delay. Last but not least, the w's in Figure 7 C). With 
negative values, we have a decreasing curve and with positive values an increasing 
curve i.e., we are interested only on the positive side.

FIGURE 7 -  ILLUSTRATION OF COEFFICIENT BEHAVIORS FOR A GIVEN CUMULATIVE
INCIDENCE FUNCTION (CIF) (PROPOSED BY Cederkvist et al. (2019)), IN A 
MODEL WITH TWO COMPETING CAUSES OF FAILURE, WITHOUT COVARI- 
ATES, AND WITH THE FOLLOWING CONFIGURATION: /32 =  0, u =  0 AND 
t] =  0; IN EACH SCENARIO ALL OTHER COEFFICIENTS ARE SET TO ZERO, 
WITH THE EXCEPTION OF Wi =  1

Cumulative Incidence Function (CIF)

A) B) C)

0.4

Time

Pi — -0.5 - 0 —  0.5

Time

Y 1 — -2 - 0 —  2

Time

w, —  . 1  .... 0  —  1

SOURCE: The author (2021).

Remains to talk about the within-cluster dependence induced by the latent 
effects in 11 and tj. Unfortunately, they do not have an easy interpretation. To help in 
the discussion, Figure 8 illustrates the cluster-specific CIF for a given failure cause in a 
model without covariates, let us call it failure cause 1 (in total we have two).

The latent effects U\ and »2 always appear together in the cluster-specific risk 
level, as consequency they have a joint effect on the cumulative incidence of both causes. 
As we can see in Figure 8, an increase in a will increase the risk of failure from cause k. 
The interpretation of cov(f/i, i/2) and cov(iq, »2) is straightforward, and those values 
are in most of the cases positive, as said in Cederkvist et al. (2019). With regard to 
cov(»£, rjk), negative values are the common situation. A negative correlation between 
i]k and ilk imply that when rjk decreases, 11 k increases and conversely when ijk increases, 
ilk decreases. In other words, an increased risk level is reached quickly and a decreased 
risk level is reached later, respectively.

Practical situations with a positive within-cause correlation are hard to find i.e., 
where an increased risk level is associated with a late onset and vice versa. However, a 
positive cross-cause correlation between rj and u sounds much more realistic i.e., where



late onset of one failure cause is associated with a high absolute risk of another failure 
cause.

FIGURE 8 -  ILLUSTRATION OF A GIVEN CLUSTER-SPECIFIC CUMULATIVE INCIDENCE
FUNCTION (CIF), PROPOSED BY Cederkvist et al. (2019), IN A MODEL WITH 
TWO COMPETING CAUSES OF FAILURE, WITHOUT COVARIATES AND THE 
FOLLOWING CONFIGURATION: fa  =  - 2 ,  ß2 =  - 1 ,  y1 = l,w-[ = 3  AND u2 = 0. 
THE VARIATION BETWEEN FRAMES IS GIVEN BY THE LATENT EFFECTS ux 
AND //I
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SOURCE: The author (2021).

The latent effects { u % } are assumed independent across clusters and shared 
by individuals within the same cluster/family.

3.2 MODEL SPECIFICATION

The multiGLMM for clustered competing risks data is specified in the following 
hierarchical fashion. By simplicity, we focus on two competing causes of failure but an 
extension is straightforward.

For two competing causes of failure, a subject z, in the cluster/family j f in time



t, we have

yijt I { « 1;, »2 J/i;, 72; }  ~  Multinomial (pi,;;, p2f;f, P3ijt)

III / o’

»2 ~ M N
0

f
0

j i 2_ I0

a «1 COv(i/i, »2) 
-2J<2

COv(«i, 71)
cov(u2, 7l)

'/I

COv(«i, 72)
COv(«2/ 72) 
cov(71/ 72)

'/2

\

/

0
Pkijt =  f t Fk(t I a:, Ml, »2, m)  (3.3)

exp {**/;& +  »*;}

1 +  ^m = l exp{xmi/̂ m +

x Wk2 S t - 2 t 2 Q ( zy*arctanh ( f 5 / 2 ^ 'S)  ~ Xkijlk ~ >lkj 

k =  1,2.

The probabilities are given by the derivative w.r.t. time t of the cluster-specific CIF. The 
choice of a multinomial logistic regression model ensures that the sum of the predicted 
cause-specific CIFs does not exceed 1.

Considering two competing causes of failure, we have a multinomial with three 
classes. The third class exists to handle the censorship and its probability is given by 
the complementary to reach 1. This framework in Equation 3.3 results in what we call 
multiGLMM, a multinomial GLMM to handle the CIF of clustered competing risks data. 
For a random sample, the corresponding marginal likelihood function in given by

1 r
L (e ; y) =  n  L  n ^ i  I ri ) x  7r(r/) dri

j= 1

—  f t  f / rir r r  ( r r  j w  i
p i  {  P i  jP ! \yiijt'- yiijt'. y3/;f! J 3  kijt)

X

fixed effect component

1
2 ';  ~ • ! ( “ •!(2/r)-2|E|-1/2exp dr,-

1 V"
latent effect component

J ' N"1 N/1
fixed effect latent effect component

where 0 — [fi y  zv a 2 p] J  is the parameters vector to be maximized. In our framework, 
a subject can fail from just one competing cause or get censor, at a given time. Thus, the



fraction of factorials in the fixed effect component is made only by 0's and l's . Finally, 
returning the value 1. The matrix E is the variance-covariance matrix, which parameters 
are given by a 2 and p.

Now, Equation 3.4 in words. To each cluster/family j  we have a product of two 
components. The fixed effect component, given by a multinomial distribution with its 
probabilities specified through the cluster-specific CIF (Equation 3.1) and, the latent 
effect component, given by a multivariate Gaussian distribution.

To each subject i that composes a cluster j  we have its specific fixed effects 
contribution. The likelihood in Equation 3.4 is the most general as possible, allowing 
for repeated measures to each subject. Since all subjects of a given cluster shares the 
same latent effect, we have just one latent effect contribution multiplying the product 
of fixed effect contributions. As we do not observe the latent effect variables, r,, we 
integrate out in it. With two competing causes of failure, we have four latent effects (a 
multivariate Gaussian distribution in four dimensions). Consequently, for each cluster, 
we approximate an integral in four dimensions. The product of these approximated 
integrals results in the called marginal likelihood, to be maximized in 6.

3.2.1 Parametrization

We have to choose in which terms we parameterize the variance-covariance 
matrix E. Besides the latent effects variances { a 2 } , we have to choose if we will estimate 
its covariances or correlations. By the name variance-covariance matrix, it is natural 
to think on covariance terms. However, this option is not very attractive since its 
interpretation is not clear. A more attractive choice is in terms of correlation.

The covariance between two terms is defined as a triple product: the two terms 
standard deviations times the correlation p. Still thinking in two competing causes of 
failure, we have then an E matrix with six correlations

2
£  _  a U2 P » 2/'/l 17,12a >l\ P " 2/'/2 Crn2Cr>l2

G/l P>IU>l2 a>h 7>12

<  .

With the matrix parametrization being chosen, we have that the parameters to be es­
timated are the components of the vector 6 — [ft y  w  a 2 p ]T . There we have the fixed 
effects or mean components {ft 7  w } ,  the easiest to estimate in a statistical modeling 
framework; we have variance components {cr2}, the intermediate ones; and the correla­
tion components { p } ,  the hardest ones. This idea of easy or hard to estimate may be 
justified by three, connected, arguments.



The first comes from the fact that we are modeling the mean of a probability dis­
tribution in a hierarchical and structured fashion, consequently, the easiest parameters 
to estimate will be the mean components. We may make the analogy that to estimate 
the mean parameters we need data (resources); to estimate the variance parameters we 
need more data (more resources), and to estimate the correlation parameters we need 
much more data (even more resources). The second argument comes also to explain the 
first one via the parametric space constraints.

Generally, the fixed effect components do not present constraints i.e., they can 
vary in all R. The same can not be said from the variance components, constrained by 
definition into the R^. Finally, we have the correlation components, constrained to the 
interval [—1, 1]. These parametric space constraints drive us again to the first argument 
since we need more data/resources/information to be able to estimate coefficients 
constrained to some interval. Nevertheless, this may not be enough. Without providing 
some extra information in terms of an e.g., constrained algorithm, it is very reasonable to 
expect that during the optimization procedure some unrealistic areas of the parametric 
space could be visited and jeopardize the stability or even the whole optimization 
procedure. To overcome these possible difficulties, parameter reparametrizations are 
more than welcome.

The variance and correlation parameters are modeled in terms of the matrix E. 
This matrix is symmetric and more important, positive semi-definite. This last character­
istic is also the third argument to justify why is so difficult to estimate these parameters. 
Since the estimates should lead to a positive semi-definite matrix, the employment of a 
parametrization is welcome to enforces this condition.

In the subject of choosing the components parametrization for a positive- 
definite matrix E, we have basically two big options available in the statistical modeling 
literature. One of them consists of just transform the scale. By practical reasons, let us 
think in a 2 x 2 matrix

E =
exp { log o f  } z 1 (z (p1/2)) ^ e x p  { log <r\ } ^/exp { log <r\ }

exp {log  CT-f}

i.e., in the main diagonal we may now estimate the log-variances and in the off-diagonal 
we may estimate Fisher z-transformed correlations.

The estimation of the log-variances has two big advantages:

• Since the natural logarithm is a real-valued function, we overcome the parametric 
space constraint problem;

• High variances are problematic for many reasons but in the context of seeing 
them as the diagonal components of a restricted matrix, being able to control its



magnitudes is a crucial task to the stability of any optimization routine. With the 
natural logarithm transformation we shrink the parametric space as illustrated in 
Figure 9 A), avoiding some eventual numerical cumbersome.

With the correlation components we proceed with the estimation of its Fischer z- 
transformation. This transformation, and its inverse, are defined as

zW  = l los ( t ^ )  = arctanh(p)' z_ ,(p) = Z m  + 1 = tanh(',) '

The Fisher z-transformation plays the role of stretching the small correlation parametric 
space but doing this in a smooth fashion, as illustrated in Figure 9 B).

FIGURE 9 -  ILLUSTRATION OF THE PARAMETRIZATION BEHAVIOR FOR THE VARI­
ANCE COMPONENTS, IN A), AND CORRELATION COMPONENTS, IN B)

A)
Natural logarithm, log()
Identity line in dashed

10

o>o

B) Fisher z-transformation, z()
Identity line in dashed

N

X X

SOURCE: The author (2021).

The other parametrization option consist in estimate the elements of a factor­
ization or decomposition of the positive-definite matrix E. The most common is the 
Cholesky factorization or decomposition (PINHEIRO; BATES, 1996). For two competing 
causes of failure, a standard Cholesky decomposition of E may be expressed as

E =

Cl 0 0 0 ‘ Cl C2 c4 C7

C2 C3 0 0 0 C3 C5 C8

C4 C5 C6 0 0 0 C6 C9

Ç 7 C8 C9 ClO 0 0 0 ClO

=  LL T

where { c  }/=i arc the unconstrained coefficients to be estimated.

A disadvantage in the use of a decomposition as the Cholesky is the lack of 
a straightforward interpretation to the elements However, with the applica­
tion of the delta method, already implemented in TM B's (KRISTENSEN et al., 2016)



TMB: :sd rep ort(), it is straightforward to get back the E elements together with its 
respective standard errors. The main advantage of this parametrization apart from the 
fact that it ensures positive definiteness, is that it is computationally simple and stable.

Just to mention another viable possibilities, we could use a modified Cholesky 
decomposition (POURAHMADI, 2007) providing a better statistical interpretation of 
the decomposition elements or, we could parametrize the precision matrix, Q — E _1. 
Since we use E - 1  in the marginal likelihood of Equation 3.4, parametrizing directly its 
inverse save us some computations.

Besides the popularity of the Cholesky method, there is another factorization 
scheme available and efficiently implemented in TMB. It is a factorization based on a 
vector scale transformation of an unstructured correlation matrix. For two competing 
causes of failure the decomposition is specified in the following fashion

E =  VD~1/2LLT D~1/2VT,

where

"l 0 0 0

L _  ci 1 0 0

c2 c3 1 0

P  4 ^5 ̂ 6 1

This scheme is based initially on the factorization of a correlation matrix defined as 
D _ 1 2̂LLt D _1/2. The elements { c } f =1 to be estimated have the advantage of being 
unconstrained and guarantees the matrix symmetry and positive definiteness. The 
variances are scaled via the diagonal matrix V, its elements {cq- }f=1 are then the standard 
deviations to be estimated.

, D =  diag(LLT ) and W =  diag .



4 SIMULATION STUDIES

This chapter describes how to simulate from our multiGLMM and describes 
the performed simulation studies. The general simulation procedure is addressed in 
Section 4.1. In Section 4.2 the performed simulation studies are presented in detail.

4.1 SIMULATING FROM THE MODEL

Being able to simulate data from a model is a key task, fundamental to assess 
the finite-sample properties and the estimation procedure liability of a given statistical 
model. The step-by-step describing the simulation procedure of our multiGLMM is 
presented on Algorithm 1, following the model hierarchical structure stipulated in 
Equation 3.3.

ALGORITHM 1 SIMULATING FROM A multiGLMM FOR CLUSTERED COMPET-
ING RISKS DATA_________________________________________________________________

1 : Set /, the number of clusters
2: Set tij, the number of cluster elements t> can be of different sizes
3: Set K — 1, the number of competing causes of failure 
4: Set the model parameter values 6 =  [ft 7  w  a 2 p]T
5: Sample / latent effect vectors from a Multivariate Normal(^_1)x (^_1) (0, Y,(c 2, q)) 
6: Set 8 t> maximum follow-up time
7: Set the failure times tjj 
8: Compute the competing risks probabilities

=  e x p  { x k j j f t k j  +  U k j }

P h ’ 1 +  L ^ ,Z \  e x P  {  X m ij f tm j  +  u mj }

K -1
Censorship : p Kij — 1 — ^  p^j, k — 1, 2, . . . ,  K — 1

k = 1

9: Sample / x tij vectors from a Multinomial (pi,,, pjij, . . . ,  PKij)
10: If tjj — 8, moves to class K t> any failure at time 8 is a censorship
1 1 : return multinomial vectors and their respective failure/censoring times

SOURCE: The author (2021).

tjj - 8 / 2
i^arctanh ( â / 2  ) ~ xkijlkj ~ Vkj

The model described in Equation 3.3 is in a general form, allowing for varying 
coefficients between clusters. However, we focus on a simpler structure with just fixed



intercepts. Fixing the latent effects in its distribution mean, zero, and using the following 
fixed effects configuration for two competing causes of failure

/?= [ - 2  1.5]t

7 =  [1.2 1]T (4.1)

w  — [3 5]t ,

we get the CIF's and failure probabilities (CIF derivatives w.r.t. time t, dCIF) presented 
respectively in Figure 10.

FIGURE 10-CUMULATIVE INCIDENCE FUNCTIONS (CIF) AND RESPECTIVE DERIVA­
TIVES (dCIF) W.R.T TIME FOR A MODEL WITH TWO COMPETING CAUSES 
OF FAILURE, WITHOUT COVARIATES, LATENT EFFECTS IN ZERO, AND 
FIXED EFFECTS IN Equation 4.1
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0.05 
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— CIF 1 -  CIF 2 —  dCIF 1 -  dCIF 2

SOURCE: The author (2021).
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we are able to apply Algorithm 1 and generate a complete model sample with 50000 
clusters of size two (pairs), summarized in Figure 11. The R function written to simulate 
the data is available in Appendix C.

Varying the parameters configuration we are able to build basically any CIF's 
format. However, its dCIF will be always small i.e., the generated probabilities for 
the failure causes will always be (really) small, passing all the probability mass to the 
censorship class. Low probabilities imply few failures, making the multiGLMM even 
harder to fit. All these behaviors are seen in Figure 11.



FIGURE 11 -  HISTOGRAMS FOR SIMULATED PROBABILITIES WITH RESPECTIVE OUT­
PUT PCERCENTAGES AND FAILURE TIMES FOR A MODEL WITH TWO COM­
PETING CAUSES AND 50000 CLUSTERS OF SIZE TWO. THE SIMULATION 
FOLLOWED ALGORITHM 1 GUIDELINES WITH PARAMETER CONFIGURA­
TIONS SPECIFIED IN Equation 4.1 AND Equation 4.2
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SOURCE: The author (2021).

Thinking of epidemiological or public health problems, the reasonable CIF 
behaviors are the ones presented in Figure 10. In the simulation routine, the failure/- 
censorship times are based on the random sampling of values between 30 and 80-time 
units. Another approach could be performing this random sampling by age group, to 
have something similar to a realistic population pyramid. However, by performing 
some tests we saw that having a realistic CIF is enough. Even with a uniform time 
distribution, the failure times will not be uniform, as the CIF curves impose their form. 
We can see this happening in the bottom graphs of Figure 11.

Cederkvist et al. (2019) does something different through the sampling of the 
censorship times from a U(0, 5), the sampling of g ~  U(0, 1), and the computation of 
the cause-specific failure times by solving

tu -  5 /2  .
x kijlfk Vkjç — <î> ^ u ^ a r c ta n h  ^ 11

5 /2
for t,



4.2 SIMULATION STUDIES DESIGN

To stress the model and check the properties of the maximum likelihood esti­
mates, we propose seventy-two scenarios. All scenarios with two competing causes. 
Thus, a three classes multinomial distribution.

We consider two CIF scenarios, in summary, a low and a high CIF scenario. 
The parameter configurations are presented together with their curves in Figure 12. As 
mentioned before, independent of the configuration the censorship level is basically the 
same.

FIGURE 12 -  CUMULATIVE INCIDENCE FUNCTIONS (CIF) FOR A MODEL WITH TWO
COMPETING CAUSES OF FAILURE, WITHOUT COVARIATES, AND LATENT 
EFFECTS IN ZERO

0.6
0 . 1 5

—  CIF1: beta1=-2, gama1=1, w1=3 
CIF2: beta2=-1.5, gama2=1.5. w2=4

—  CIF1 : beta1=3, gama1=2.5, w1=5 
— • CIF2: beta2=2.6. gama2=4, w2=10

SOURCE: The author (2021).

We use four multiGLMMs, that can be discriminated by their latent effect 
structures

=  [ <  =  1 o?,2 =  0-6 of]x =  0.7 a}]2 =  0.9];

P ~  [̂ m 1,1/2 =  0-1 — —0.5 Pu\,>]2 — 0-3 Pu2,))\ — 0.3 Pi/2,//2 — —0.4 PiiX/ii2 — 0.2].

In

Z =
R C 

CT T
with

R =
a l x cov (p UlfU2)

, T =
afn cov (p>lu>l2)

, c  = CO v(p,n,,n ) coy(puu,l2)

aU2 .

r
<  .

r
cov (pU2/,n ) co v (Pu2,>12).



They are:

risk model A model with latent effects only on the risk level i.e., E 2x2 =  R>

time model A model with latent effects only on the trajectory time level i.e., E 2x2 — T;

block-diag model A model with latent effects on the risk and trajectory time level only 
i-e., E 4x4 =  diag(.R,T);

complete model A model with a complete latent effects structure i.e, E 4x4 =  E.

All models are based on some decomposition of the symmetric matrix

E =
R C 

CT T

1.0 0.0775 
0.6

-0 .4183
0.1944

0.7

0.2846
-0.2939
0.1587

0.9

Propose a 4 x 4 matrix like this is not so simple since we should not only look at the 
values coherence. The matrix should also be positive-definite, and more than that, the 
submatrices R, T, and diag(R ,T), should also be positive-definite since they are also 
used as variance-covariance matrices.

The inherent idea of these four models is to be able to check if a latent structure 
on both CIF levels is really necessary. To accomplish this goal we propose the simpler 
versions i.e., a latent structure only on the risk and only on the trajectory time. More 
than just check the necessity of a complete latent specification, we have to check if we 
are able to properly estimate all the covariance parameters. Thinking in these tasks, 
we have the block-diag and the complete model specifications, and also the CIF level 
configurations. Are we able to properly estimate the covariance parameters independent 
of the CIF level? Do we really need or can we estimate the cross-correlations? Those are 
the kind of questions that motivate the simulation study and consequently, the scenario 
specifications.

Together with the model specifications and CIF configurations, we 
have three sample sizes, 5000; 30000; and 60000 data points. They are com­
bined with three cluster sizes, size 2; size 5; and size 10 clusters. Thus,

5000 data points,

• 2500 clusters of size 2

30000 data points,

• 15000 clusters of size 2

• 1000 clusters of size 5 • 6000 clusters of size 5

60000 data points,

• 30000 clusters of size 2

• 12000 clusters of size 5

• 500 clusters of size 10 • 3000 clusters of size 10 • 6000 clusters of size 10



The sample and cluster size specifications were thought to agree with family 
studies, generally having big samples or even treating with populations i.e, a lot of 
families/clusters of small sizes. In Cederkvist et al. (2019), the simulation studies were 
performed with samples/populations of 50000 clusters of size 3. The real data example 
consisted of a study with more than 1200000 families with no more than 4 members. 
For computational reasons, they worked with a sample of fewer than 15000 clusters.

Besides the sample size per se, by increasing it we also increase the number of 
Laplace approximations to be performed since each cluster implies a Laplace approxi­
mation. This affects hugely the computational time. About the failure/censorship times, 
we work on a grid between 30 and 80 years. The times are sampled from a Uniform 
distribution on that grid, as explained in Section 4.1.

In summary, we have: two CIF configurations, four latent effect structures, three 
sample sizes, and three cluster sizes; 2 x 4 x 3 x 3  =  72 scenarios. For each scenario, 
we simulate 500 samples and fitted the corresponding model. Thus, 72 x 500 =  36000 
models/fits.

In Figure 13 we have the C++ code for the TMB implementation of the complete
model.

FIGURE 13-C++ CODE FOR THE TMB IMPLEMENTATION OF A multiGLMM WITH A
COMPLETE 4x4 LATENT STRUCTURE
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// multiGLMM: A MULTINOMIAL GLMM FOR CLUSTERED COMPETING RISKS DATA 

// COMPLETE 4x4 LATENT STRUCTURE (COMPLETE MODEL)
#include <TMB.hpp> 

template<class Type>

Type objective_function<Type>::operator() ()

{
using namespace density;

DATA.MATRIX(Y);
DATA.SPARSE.MATRIX(Z);

DATA.VECTOR(time);

DATA_SCALAR(delta);
PARAMETER(betal)

PARAMETER(beta2)

PARAMETER(gamal)
PARAMETER(gama2)

PARAMETER(w1);

PARAMETER(w2);

PARAMETER( l o g s2_1) 

PARAMETER( l o g s2_2) 
PARAMETER( l o g s2_3) 

PARAMETER( l o g s2_4)

Type s2_1=exp(logs2_1) 

Type s2_2=exp(logs2_2) 
Type s2_3=exp(logs2_3) 

Type s2_4=exp(logs2_4)



24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70

PARAMETER(rhoZ12) 

PARAMETER(rhoZ13) 
PARAMETER(rhoZ14) 

PARAMETER(rhoZ23) 

PARAMETER(rhoZ24) 
PARAMETER(rhoZ34)

Type

Type
Type

Type

Type
Type

rhol 2 
rhol 3 
rhol 4 

rho2 3 

rho24 
rho34

( exp  (2* 
( exp  (2* 
( exp  (2* 
( exp  (2* 
( exp  (2* 
( exp  ( 2 *

rhoZI2) 

rhoZI3) 
rhoZI4) 

rhoZ23) 

rhoZ24) 
rhoZ34)

/ (exp (2* 
/ (exp (2* 
/ (exp (2* 
/ (exp (2* 
/ (exp (2* 
/ (exp (2*

rhoZI2)+1) 

rhoZI3)+1) 
rhoZI4)+1) 

rhoZ23)+1) 

rhoZ24)+1) 
rhoZ34)+1)

PARAMETER.MATRIX(U); matrix<Type> ZU=Z*U;
Type riskl=0 ;

Type risk2=0;

Type level=0;
// gt=atanh(2*time/delta-1) ; atanh(x)=0.5*log ((1 + x)/(1-x)) 
vector<Type> gt=0.5*1og(time/(delta-time)); 

vector<Type> dgt=delta/(2*time*(delta-time));
Type x1=0 ;

Type x2=0;

vector<Type> y(Y.cols()); 
vector<Type> prob(Y .cols()); 

parallel.accumulator<Type> nll(this);

// Type nll=0; 
vector<Type> u(U.cols());

Type cov12=rho12*sqrt(s2_1)*sqrt(s2_2); 
Type covl3=rho13*sqrt(s2_1)*sqrt(s2_3); 

Type cov14=rho14*sqrt(s2_1)*sqrt(s2_4); 

Type cov23=rho23*sqrt(s2_2)*sqrt(s2_3); 
Type cov24=rho24*sqrt(s2_2)*sqrt(s2_4); 

Type cov34=rho34*sqrt(s2_3)*sqrt(s2_4); 

matrix<Type> Sigma(4, 4);
Sigma.row(0) << s2_1, covl 2, cov13, cov14

Sigma.row(1) << cov12, s2_2, cov23, cov24

Sigma.row(2) << cov13, cov23 , s2_3, cov34

Sigma.row(3) << cov14, cov24, cov34, s2_4

MVN0RM_t<Type> dmvnorm(Sigma); 

for (int i=0; i<U.rows(); i++) { 
u = U .row(i); 

nil += dmvnorm(u);

}
for (int i=0; i<Y.rows(); i++) { 

riskl=exp(beta1 + ZU(i, 0)); 

risk2=exp(beta2 + ZU(i, 1)); 
level=1 + riskl + risk2; 

x1=w1*gt(i) - gamal - ZU(i, 2);

x2=w2*gt(i) - gama2 - ZU(i, 3);
prob(0)=riskl/ level * w1*dgt(i) * dnorm(x1, Type(0), Type(1), false);

prob(1)=risk2/level * w2*dgt(i) * dnorm(x2, Type(0), Type(1), false);



71
72
73
74
75
76
77
78
79
80 
81 
82
83
84
85
86 
87

prob(2)=1 - prob (0)
y = Y .row(i);
nil -= dmultinom(y,

- prob ( 1);

prob, t rue);

}
ADREPORT(s2_ 1 ) 
ADREPORT(s2_ 2) 

ADREPORT(s2_ 3) 

ADREPORT(s2_4) 
ADREPORT(rhol2) 

ADREPORT(rhol3) 

ADREPORT(rhol4) 
ADREPORT(rho23) 

ADREPORT(rho24) 

ADREPORT(rho34) 
REPORT(Sigma); 

return nil;

}

SOURCE: The author (2021).

Since the other three models can be seen as special cases of the complete model, 
we show their TM B's implementation in the Appendix D (Section D .l, Section D.2, 
Section D.3). In the Appendix D (Section D.4), we also have the R code showing how to 
load and fit the models.



5 RESULTS

This chapter presents the simulation study results. We have seventy-two simu­
lation scenarios, as detailed in Chapter 4. For each scenario we simulate 500 samples. In 
total, we fit 36000 models.

5.1 SIMULATION STUDY

Let us just recap the parameter values used

1.5, 7 i = 1/ 72 = 1.5, uq -  3, w2 -  4 };

7 i == 2.6, VIICM w -i= 5 , io2 — 10}.

ill »2 m m

/ I 0.1 - 0.5 0.3 \ in
1 0.3 - 0.4 »2 •

1 0.2 m

V 1 I

^  =  1 
2

cri<2 =  0-7/ Correlation structure =

a}n =  0.6

0*2 =  °-9

The parameter values per se are not important. What is important is to keep in mind 
the behaviors implied by them, and see if the proposed model is able to estimate the 
true values in several different scenarios and measure the quality of the estimates.

The take-home message for the fixed-effect parameters, is to show that we can 
construct different level CIF scenarios. The j6s are responsible for the curve maximum 
point or plateau, being in the risk level CIF component, the 7 s and w s are responsible 
for basically the curve shape, being in the failure time trajectory level CIF component. 
Its interpretation is presented in detail in Chapter 3. About the latent-effects, the chosen 
covariance structure is considerably high but still acceptable. The underlying idea was 
to try to build a realistic covariance scenario and consequently be able to check how the 
model performs in such conditions.

In the following pages we have several graphs summarizing the estimates bias. 
In each figure, we have the estimate bias and its uncertainty described by a Wald-based 
confidence interval i.e., ±  1.96 the bias standard deviation. This is a good uncertainty 
representation choice since it is symmetric. In the Appendix D, we have the same 
estimates bias but with its uncertainty measure being the corresponding 2.5 and 97.5% 
bias quantiles. We chose to use these uncertainty representations uniquely based on the 
point estimates instead of the standard error computations. In several scenarios, the 
model fails to compute all the standard errors, caused by Hessian numerical instabilities.



In each of the following estimates bias graphs, the seventy-two scenarios are 
accommodated. We have up to four blocks of bars, each block representing a model. 
In each block we have eighteen bars, each bar representing the 500 fits in each of the 
eighteen scenarios, 4 x 18 x 500 =  36000.

Each scenario name consists of a combination of three strings

• The cluster size (cs), 2, 5, and 10;

• The CIF configuration, high and low;

• The sample size, 5, 30, and 60 thousand.

We have tried to fit a total of 36000 models but not all converged. To show these 
characteristic, we control the bar widths. Something specific can be said about each 
parameter but let us keep the focus on the general remarks. Starting from the fixed-effect 
parameters in Figure 14, Figure 15, Figure 16, Figure 17, Figure 18, and Figure 19, we 
have very nice results that already show a strong inclination towards the complete 
model's choice.

With a latent structure only in the risk level or in the failure time trajectory 
level, the low CIF scenarios are the ones with a much smaller bias-variance. In general, 
the mean-bias is small but the variances are high. When we have a latent structure on 
both levels but we still assume the cross-correlations as zero (block-diag model), the 
results get a little bit better. Nevertheless, when we assume a non-zero cross-correlation 
structure (complete model), basically everything changes for the better. The mean biases 
get even closer to zero, the standard deviations decrease 50% or more, and mainly, 
now the high CIF scenarios are the ones with a much smaller bias-variance. All this is 
accomplished through the consideration of the cross-correlations.

In the simpler models, with a latent structure just in one level, is hard to see 
some significant difference between the clusters and sample sizes. With the complete 
model, in the other hand, the difference is clear: as we increase the clusters and the 
sample sizes, the bias-variance decreases. The mean-bias is basically always the same. In 
the risk model is hard to point-out a scenario as the best or worst. For the time model,in 
the scenario with clusters of size 2, high CIF, and 5 thousand data points, we get a much 
bigger standard deviation in the j8s parameter estimates. For the block-diag model, in 
the scenario with clusters of size 2, low CIF, and 5 thousand data points, the standard 
deviations are huge for the curve shape parameter estimates of the competing cause 
1. In the Appendix D, with the 2.5 and 97.5% bias quantiles, the most extreme values 
are removed from the uncertainty representation. There, the main characteristic is the 
parameter estimates asymmetry.
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FIGURE 15 -  PARAMETER fa  BIAS WITH ±  1.96 STANDARD DEVIATIONS
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Param eter: Yi
with ±1.96 standard deviations
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FIGURE 17 -  PARAMETER 72 BIAS WITH ±  1.96 STANDARD DEVIATIONS

Param eter: Y2
with ±1.96 standard deviations
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Param eter: w 1
with ±1.96 standard deviations
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FIGURE 19 -  PARAMETER w2 BIAS WITH ±  1.96 STANDARD DEVIATIONS
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with ±1.96 standard deviations
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Parameter: log(o^)
with ± 1.96 standard deviations
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FIGURE 21 -  PARAMETER log(<7f ) BIAS WITH ±  1.96 STANDARD DEVIATIONS

Parameter: logiog)
with ±1.96 standard deviations

RISK MODEL
cs02-high-05k-
cs02-high-30k-
cs02-high-60k-
cs02--low-05k-
cs02-low-30k-
cs02--low-60k-
cs05-high-05k-
cs05-high-30k-
cs05-high-60k-
cs05-low-05k-
cs05--low-30k-
cs05-low-60k-
cs10-high-05k-
cs10-high-30k-
cs10-high-60k-
cs10--low-05k-
cs10--low-30k-
c$10-low-60k-

BLOCK-DIAG MODEL COMPLETE MODEL

Fittings | 350 | 400 |  450



Parameter: log (alp
with ± 1.96 standard deviations
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FIGURE 23 -  PARAMETER log(of ) BIAS WITH ±  1.96 STANDARD DEVIATIONS

Parameter: log (of)
with ±1.96 standard deviations
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Parameter: z(p12)
with ±1.96 standard deviations
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FIGURE 25 -  PARAMETER 2(^34) BIAS WITH ±  1.96 STANDARD DEVIATIONS

Parameter: z(p34) 
with ±1.96 standard deviations 
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Complete model's cross-correlations
with ± 1.96 standard deviations
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With the log-variances presented in Figure 20, Figure 21, Figure 22, and Fig­
ure 23, we have instead a similar behavior through the models. For all the models, 
the high CIF scenarios are the ones with a smaller mean and bias-variances. From the 
risk/time model to the block-diag model, we do not see a significant improvement 
in terms of bias reduction. Such improvement, however, is clear when we look at the 
complete model. Again, the magick of considering the cross-correlations.

The same said about the log-variances, can be applied to the risk correlations 
in Figure 24, with one addendum: the bias reduction is even bigger. With the time 
correlation in Figure 25, at least with clusters of size 2 and 5, we get the same behavior 
observed with the fixed-effect parameters i.e., with the simpler models, the smaller 
biases are observed in the low CIF scenarios. However, with the complete model, we 
get the opposite. With the cross-correlations in Figure 26, the mean and bias-variances 
are much smaller in the high CIF scenarios.

The biggest bias-variances are obtained in the log-variances. A final remark 
to be made is about convergences. With the simpler models, not all of them work, 
having in some scenarios (generally the ones with 60 thousand data points) a 50~60% 
convergence rate. With the complete model, basically, almost all fits reach convergence 

95% performance).



After looking at the parameter estimates biases, let us take a look at the implied 
mean-CIF curves. To nicely accommodate all seventy-two scenarios we split the curves 
by level-CIF. In Figure 27 we have the high CIF scenario curves and in Figure 28 the low 
CIF scenario curves. Since for all the models we have a latent structure for the within- 
cluster dependency, the inherent idea is that this also affect the fixed-effect parameter 
estimates. By taking its average in each of the seventy-two scenarios, we are able to 
construct the mean CIF curves.

In Figure 27 we have all the thirty-six curves obtained in the high CIF scenarios. 
It is clear that with the complete model we get a perfect fit in all nine scenarios. The risk 
and time models estimate well the curve shape parameters but they fail to learn the 
max incidence. A compensation between curves is clear.

FIGURE 27 -  HIGH CUMULATIVE INCIDENCE FUNCTION (CIF) SCENARIO CURVES
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FIGURE 28 -  LOW CUMULATIVE INCIDENCE FUNCTION (CIF) SCENARIO CURVES
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Still in Figure 27, in the risk model, there is a super estimation of in all 
scenarios. For failure cause 2, there is a sub estimation. With the time model, we observe 
the opposite compensation but on a smaller scale. With the time model, we get much 
better curves than with the risk model. The block-diag model results are a middle term 
between them. For the time model, the scenario with cluster size 10 and 60 thousand 
data points is a highlight. For the block-diag model, the highlight is the scenario with 
cluster size 5 and 30 thousand data points.

In the low CIF scenarios in Figure 28, the estimation is clearly more difficult. 
The overall fits are bad, being impossible to select a scenario with overall good results. 
For one of the failure causes, the estimation quality is not so bad. The problem is



when we look to the other. An interesting scenario is the one with cluster size 2 and 
60 thousand data points. In this scenario we see the worst fits for failure cause 1, with 
a negative highlight in the block-diag configuration. However, with this same model, 
for failure cause 2, it is the scenario were we better learn the true curve. An interesting 
compensation phenomena. The best joint fit is still with the complete model.

Now we look at how the latent-effect parameter estimates distribute themselves. 
Given the huge number of scenarios and the fact that is harder to estimate covariance 
parameters, we chose to plot the parameter estimates just in the scenarios with better 
performances. By the metrics of small bias and CIF shape learning, the scenarios with 
better results are the ones with high CIF and bigger sample sizes. We have the densities 
for the variance parameter estimates, in each of these scenarios, presented in Figure 29. 
In Figure 30 we have the same for the correlation parameter estimates.

An interesting result is the clear difference between risk and time models' co- 
variance parameter estimates. With the risk model, we have an evident super estimation 
and bigger variances. With the time model we get much better results, but still with 
high variances. The block-diag model generally performs better than the risk model and 
worst than the time model, showing again to be a compromise between them. Besides 
the bias itself, we should also pay attention to the values. We model the variances in the 
log-scale, so a value 5, in reality, implies a variance of exp(5) =  148. Terrible. This kind 
of problem do not sound to appear with the complete model.

All correlations are quite well estimated, in all three scenarios, with the complete 
model. Not only the correlations but the variances also. The lack of any considerable 
difference between the covariance densities, indicates no quality divergences in the 
results for different cluster sizes. The densities in Figure 29 and Figure 30 are the final 
corroboration indicating the good performance of the maximum likelihood method in 
the complete model.

Between the four tested models, the complete model was the one with the 
smallest biases, better CIF shape learning, and precisest covariance parameter estimates. 
In Figure 31 we have a heat-map of the correlations between parameter estimates for 
the complete model in the scenario with clusters of size 10, high CIF, and 60 thousand 
data points.

We have a little bit of everything in the parameter estimates correlations' heat- 
map. Some correlations are very close to zero, but we also have strong positive and 
negative correlations. We can mention some curiosities, but nothing pathological ap­
pears to happen, at least nothing clear.
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In Figure 31, all fixed-effect parameters are positive correlated, with an emphasis 
on the correlation between and fer  ar*d the one of the fis with the ms. Another 
interesting observation is the strong negative correlation between the fis and the risk 
level log-variances, and also the (less strong) positive correlation between the fis and 
the failure time trajectory level log-variances. The risk level log-variances are (strongly) 
positively correlated. So do the failure time trajectory level ones, but again, not so strong 
as in the risk level. The correlations between the log-variances of different levels are 
negative.



FIGURE 31 -  COMPLETE MODEL'S PARAMETERS CORRELATION HEAT-MAP IN THE
SCENARIO OF CLUSTER SIZE 10, HIGH CIF, AND SIXTY-THOUSAND DATA 
POINTS
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6 DISCUSSION

The general goal of this master thesis was the proposition and evaluation of 
a maximum likelihood estimation approach for the analysis of clustered competing 
risks data. Focused on the probability scale, by means of the cumulative incidence 
function (CIF), instead of the hazard scale usual in the survival modeling literature 
(KALBFLEISCH; PRENTICE, 2002). We model the clustered competing risks on a 
latent-effects framework, a generalized linear mixed model (GLMM) (MCCULLOCH; 
SEARLE, 2001), with a multinomial distribution for the competing risks and censorship, 
conditioned on the latent-effects. The within-cluster latent dependency is accommo­
dated by a multivariate Gaussian distribution and is modeled via its covariance matrix 
parameters.

The failures by the competing causes and their respective censorships are mod­
eled in the probability scale, by means of the CIF (KALBFLEISCH; PRENTICE, 2002; 
ANDERSEN et al., 2012). The CIF is accommodated in our GLMM framework in terms 
of the link function (MCCULLAGH; NELDER, 1989), as the product of two functions, 
one responsible to model the instantaneous risk and the other the failure time trajectory, 
both in a cluster-specific fashion. The shape of these functions is described in detail 
in Chapter 3. This particular GLMM formulation is what makes our model, particu­
lar. Thus, we have what we call a multiGLMM: a multinomial GLMM for clustered 
competing risks data.

The two-function product CIF formulation was taken from Cederkvist et al. 
(2019) but there they use a different estimation framework, a composite likelihood 
framework (LINDSAY, 1988; COX; REID, 2004; VARIN; REID; FIRTH, 2011). Here we 
do a full likelihood analysis instead. A composite approach is generally used when a full 
likelihood approach is impossible or computationally impracticable. Our goal here was 
to assess a full likelihood framework taking advantage of state-of-the-art computational 
libraries together with efficient algorithm implementations. We have all this with the R 
(R Core Team, 2021) package TMB (KRISTENSEN et al., 2016).

The applications in focus here were family studies. Besides the within- 
cluster/family dependence, this kind of study is characterized by involving big samples, 
generally, populations. Also, generally having a high number of small clusters, families. 
A maximum likelihood approach with the use of efficiently implemented Laplace ap­
proximations (TIERNEY; KADANE, 1986; BONAT; RIBEIRO-JR, 2016) together with an 
automatic differentiation (AD) (WOOD, 2015; NOCEDAL; WRIGHT, 2006) routine, all 
via TMB, is able to efficiently handle with a high number of clusters, independent of its 
size. The multinomial distribution assumption, on its own, is an excellent probabilistic



choice since it can accommodate virtually any number of competing causes of failure 
and its censorship. The presence of those two characteristics in our multiGLMM makes 
it an efficient and scalable modeling framework for clustered competing risks data.

Even with our modeling framework being virtually able to handle any number 
of competing causes of failure, we restrained ourselves to work here with only two 
of them. With two competing causes, we have a 4 x 4 covariance matrix for the latent 
effects, which implies ten covariance parameters, which is already a lot of parameters 
to be estimated in a latent structure. Since our goal was to assess the viability of the 
maximum likelihood estimation method, we kept it with two causes.

All models from the simulation study were run, in a parallelized fashion, in 
one of the two following Linux systems:

System 1 12 Intel (R) Core (TM) i7-8750H CPU @ 2.20GHz processors with 16GB RAM; 

System 2 30 Intel (R) Xeon (R) CPU E5-2690 v2 @ 3.00GHz processors and 206GB RAM.

Each risk and time model run is not so time-consuming, generally never taking 
more than 5 minutes. The inherent idea is that for each cluster we are always performing 
two-dimension integral approximations and we have just three covariance parameters. 
With the block-diag model, we are theoretically in four dimensions. However, since 
the covariance matrix is, block-diagonal, we experienced several numerical instability 
problems. The solution, as can be seen in the Section D.3 (Appendix D) code, was to split 
it into two two-dimension matrices, since the 4 x 4  covariance matrix is block-diagonal. 
This simple solution solved all numerical instability problems. The computational time 
was only a little bit bigger than with the risk and time models.

Finally, the complete model. In the biggest scenario, with 60 thousand data 
points and clusters of size 2 i.e., with 30 thousand four-dimension integral approxi­
mations (ten parameters in the covariance matrix), the model fitting takes 30 minutes, 
in parallel, with TMB. Before doing the TMB implementation, to really understand 
what we were doing, we did a complete R implementation. We wrote the marginal 
log-likelihood in R, based on our own Laplace approximation (BONAT; RIBEIRO-JR, 
2016) and Newton-Raphson implementation (the gradients, Appendix A, and Hessian, 
Appendix B, were computed by hand and implemented). Running this complete R 
implementation in a scenario with 20 thousand data points and clusters of size 2, took 
around 30 hours, parallelizing it between all threads of system 1. In summary, by using 
TMB we were able to increase the model size 3 times and to decrease the computational 
time 60 times. An incredible performance gain.

Still, with the complete model, we performed a Bayesian analysis via tmbstan 
(MONNAHAN; KRISTENSEN, 2018). tmbstan enables MCMC sampling (GELFAND;



SMITH, 1990; DIACONIS, 2009) from a TMB model object using Stan (Stan Development 
Team, 2019; Stan Development Team, 2020). Sampling can be performed with or without 
a Laplace approximation for the random effects, based on the probably state-of-art 
MCMC sampler algorithm, a Hamiltonian Monte Carlo (HMC) algorithm with the 
No-U-Turn Sampler (NUTS) extension (HOFFMAN; GELMAN, 2014). We performed 
just one Bayesian model fitting in a modest scenario with 5 thousand data points and 
clusters of size 2. It took around 1 whole week of parallelized processing in system 
1. The results were basically the same as the ones obtained with TMB but this high 
computational time just reinforces the, still, MCMC framework limitation.

An important point to be made here is about TMB's memory consumption. As 
the sample size increases, the dimension of the model matrices also increases. This, 
summed to a high number of clusters (Laplace approximations to be performed), turns 
out to be a computational nightmare. For several models, even the 16GB RAM of system
I was not enough. The bottleneck appears to be in the AD tape, which is made in 
parallel, by default, if the model fitting is in parallel. By turning this option off (line
I I  of Section D.4 (Appendix D) code), we were able to save a lot of memory, making 
several models practicable.

Model the CIF of clustered competing risks data is far from being trivial or 
straightforward. The formulation in Equation 3.1 implies the desired curve behavior, 
Figure 10. However, in counterpart, its derivatives w.r.t. time, generates very small prob­
abilities for the failure competing causes, ending by concentrating almost everything on 
censorship, Figure 11. For each competing cause with poor data representativity, we 
have three curve shape parameters to estimate, implying the necessity of having a lot of 
data to then have enough information about the causes.

We proposed for our multiGLMM an ideally complete latent-effects formulation
i.e., correlated latent effects on both levels, instantaneous risk and failure time trajectory. 
The main underlying idea of the Chapter 5 simulation study was to see in which 
scenarios we would be able to learn all the involved mean and covariance parameters. 
As part of that, simpler formulations were proposed i.e., latent-effects in only one level, 
or in both but without cross-correlations. As result, we got that latent effects only in 
the risk level did not work. The optimization appears to get lost as if something is 
missing. Inserting latent effects only in the failure time trajectory level returned better 
results, but still not satisfactorily good. In most of the evaluated scenarios, the block- 
diagonal model appeared to be in the middle of them, as a compromise. The best results 
(smallest parameter estimates biases) were obtained with the complete model i.e. when 
we consider the cross-correlations between levels. In general, we still observe some high 
variances between the parameter estimates, but given all the problem characteristics 
mentioned earlier, sounds to be reasonable. On average, the complete model works fine,



mainly in the scenarios of high CIF configuration, and also as expected, as the sample 
size increases. We can also say that as the cluster size increases, the estimates get better 
but we did not have very strong results supporting that.

6.1 ADDITIONAL CONSIDERATIONS

The next step was to compare our results with the ones obtained in Cederkvist 
et al. (2019), with the composite approach. In the GitHub repository (https://github. 
com/kkholst/mcif/} the authors provide their code. In mcif/inst/examples/datasim. R 
they show how to simulate from the model, and in mcif/src/loglik. cpp they have their 
marginal log-likelihood function. We tried to optimize their marginal log-likelihood 
over its parameters using basically all R base: :optim() and base: :nlminb() available 
methods, in the paper was used the BFGS, one of them. We made several scenarios, 
using their own simulation scripts and ours, and to our surprise, the model basically 
does not work.

The optimization in its majority fails, via any gradient-based algorithm (BFGS 
(NOCEDAL; WRIGHT, 2006), PORT (GAY, 1990; DENNIS; GAY; WELSCH, 1981), 
conjugate gradient (CG) (FLETCHER; REEVES, 1964)), generally by Hessian matrix 
instability problems, a problem which our model also suffers from when we try to 
compute the parameter estimates standard errors. When the model works, it is because 
we are using the parameter true values as initial guesses i.e. if the algorithm needs to 
walk on the log-likelihood surface following the gradient, it fails. Even when it works, 
the estimates are not always good. We also tried with a SANN and a Nelder-Mead 
algorithm. SANN (BELISLE, 1992) is a variant of a simulated annealing method, based 
on a Metropolis algorithm. Since it is based on simulation, it takes a lot of time and as the 
gradient-based methods, do not work most of the time. The best results were with the 
Nelder-Mead (NELDER; MEAD, 1965), a gradient-free method. Still, it only works when 
we use the parameter true values as initial guesses. This situation is completely the 
opposite of what is shown in the paper, making impossible any reasonable comparison 
between the models. We will enter in contact with the authors to see what is happening.

6.2 FUTURE WORKS

As show in Chapter 5 results, even with the complete model specification, the 
parameter estimates present an excessive variance. In terms of a traditional GLMM 
specification (MCCULLOCH; SEARLE, 2001), we do not have a lot more to do. We 
are already using a smart quasi-Newton algorithm (DENNIS; GAY; WELSCH, 1981), 
the most efficient derivatives computation technique (AD) (PEYRe, 2020), and an also 
efficient Laplace approximation routine (WOOD, 2015; BONAT; RIBEIRO-JR, 2016), via

https://github


TMB (KRISTENSEN et al., 2016). We could change the Laplace approximation for an 
adaptative Gaussian quadrature (PINHEIRO; CHAO, 2006), but we do not see any good 
reason to do that.

There are two possible paths here. We could instead of a conditional modeling 
framework (GLMM/latent-effects model), employ a marginal modeling framework. In 
this framework, instead of caring about the specification of a probability distribution 
to the competing causes conditioned on the latent effects, we just care about the speci­
fication of a mean and a variance structure. This approach does not have a likelihood 
function per se, but the estimation procedure tends to be easier than with the GLMM 
one. A marginal modeling framework that can be used here is the multivariate covari­
ance generalized linear model (McGLM) (BONAT; J0RGEN SEN , 2016; BONAT, 2018). 
How to exactly model the CIF of clustered competing risks data in this framework, is 
something to still be figured out.

The other path is by the use of a different way of modeling the dependence 
structure. Instead of a latent-effects approach, we could use copulas (EMBRECHTS, 
2009; SCHEIKE; ZHANG; JENSEN, 2010; MASAROTTO; VARIN, 2012; KRUPSKII; JOE, 
2013). How to do that is something to still be figured out by us, in terms of which kind 
(conditional or marginal) and version (Archimedean-, Gauss-, Maltesian-, t-, hyperbolic-, 
zebra-, and elliptical-) of copula to use, besides the estimability issue.
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APPENDIX A -  ANALYTIC GRADIENT OF THE LATENT EFFECTS FOR THE JOINT 

LOG-LIKELIHOOD FUNCTION OF THE MULTINOMIAL GLMM FOR CLUSTERED

COMPETING RISKS DATA

The following gradient components are computed by cluster, to be used e.g., 
a Newton optimization. Subject i at cluster j  and for competing cause k
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APPENDIX B -  ANALYTIC HESSIAN OF THE LATENT EFFECTS FOR THE JOINT 

LOG-LIKELIHOOD FUNCTION OF THE MULTINOMIAL GLMM FOR CLUSTERED

COMPETING RISKS DATA

The following hessian components are computed by cluster, to be used e.g., 
a Newton optimization. Subject i at cluster j  and for competing cause k
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APPENDIX C -  R CODE TO SIMULATE FROM A multiGLMM WITH TWO COMPETING 

CAUSES AND CLUSTERS OF SIZE TWO. FOR MORE INFORMATION CHECK SECTION 4.1

library(mvtnorm) ## install.packages('mvtnorm') 

library(tidyverse) ## install.packages('tidyverse ' ) 
library(mc2d) ## install.packages('mc2d ')

datasimu <- function(J, ## number of clusters
c s , ## clusters size (all the same size)

time, ## failure, censorship times

Z, ## latent effects design-matrix
S, ## variance-covariance matrix

delta =80,

beta =c( beta1=-2.0, beta2=-1.5),
gamma=c(gamma1= 1 .2, gamma2= 1 .0), 
w =c( w1= 3.0, w2= 5.0),

seedl=NULL , 
seed2=NULL)

{
out <- tibble : :tibble(i = rep(seq(cs) , times=J), ## cluster element

j = rep(seq(J) , each=cs), ## cluster

time=time,

p1=NA ,
p2=NA,

p3=NA)

K <- dim(S)[1]/2 + 1

ladim <- 2*(K-1) ## latent effects dimension

set.seed(seedl)
U <- mvtnorm::rmvnorm(J, mean=rep(0, ladim), sigma=S)

ZU <- Z%*%U

riskl <- exp(beta['beta 1 '] + ZU[, 1])
risk2 <- exp(beta['beta2'] + ZU[, 2])

level <- 1 + riskl + risk2
gt <- atanh(2*time/delta - 1)
dgt <- delta/(2* time*(delta - time))

x1 <- w['w1']*gt - gamma['gammal'] - ZU[, 3]

x2 <- w['w2']*gt - gamma['gamma2'] - ZU[, 4]

out$p1 <- riskl/ level*w['w1 ']*dgt*dnorm(x1) 
out$p2 <- risk2/ level*w['w2']*dgt*dnorm(x2)

out <- out %>% dplyr::mutate(p3=1-p1-p2) 

set.seed(seed2)
y <- mc2d: :rmultinomial(es*J , 1, prob = out%>%select(p1 :p3))

out <- out %>%
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dplyr::bind_cols(tibble::as_tibble(y)) %>% 

dplyr::rename(y1=V1, y2=V2, y3=V3) 
retu rn(out)

}
J <- 50e3
cs <- 2
time <- runif(n=cs*J, min=30, max=79.9)

Z <- Matrix::bdiag(replicate(J, rep(1, cs), simplify=FALSE))
S <- matrix(c( 1.0, 0.4, -0.1, 0.4,

0.4, 1 .0, 0.4, -0.1 ,

-0.1 , 0.4, 1 .0, 0.4,
0.4, -0.1, 0.4, 1.0), 4)

dat <- datasimu(J=J, cs=cs, time=time, Z=Z, S=S, seed1=1, seed2=2)

SOURCE: The author (2021).
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APPENDIX D -  C++CODES FOR THE TMB IMPLEMENTATION OF THE multiGLMM

COMPLETE MODELS SPECIAL CASES

D.1 C++ CODE FOR THE TMB IMPLEMENTATION OF A multiGLMM WITH A

2 x 2  LATENT STRUCTURE ON THE RISK LEVEL

// multiGLMM: A MULTINOMIAL GLMM FOR CLUSTERED COMPETING RISKS DATA 

// 2x2 LATENT STRUCTURE ON THE RISK LEVEL (RISK MODEL)
#include <TMB.hpp> 

template<class Type>

Type objective_function<Type>::operator() ()

{
using namespace density;

DATA.MATRIX(Y);
DATA.SPARSE.MATRIX(Z);

DATA.VECTOR(time);

DATA_SCALAR(delta);
PARAMETER(betal);

PARAMETER(beta2);

PARAMETER(gamal);
PARAMETER(gama2);

PARAMETER(w1);

PARAMETER(w2);
PARAMETER(logs2_1); Type s2_1=exp(logs2_1);

PARAMETER(logs2_2); Type s2_2=exp(logs2_2);

PARAMETER(rhoZI2); Type rhol2=(exp(2*rhoZI2)-1)/(exp(2*rhoZI2)+1);

PARAMETER.MATRIX(U); matrix<Type> ZU=Z*U;

Type riskl=0 ;
Type risk2=0;

Type level=0;

I I  gt=atanh (2*time/delta-1) ; atanh(x)=0.5*log ((1 + x)/(1-x)) 
vector<Type> gt=0.5*1og(time/(delta-time)); 

vector<Type> dgt=delta/(2*time*(delta-time));

Type x1=0 ;
Type x2=0;

vector<Type> y(Y.cols()); 

vector<Type> prob(Y .cols()); 
parallel.accumulator<Type> nll(this);

// Type nll=0; 

vector<Type> u(U.cols());

Type cov12=rho12*sqrt(s2_1)*sqrt(s2_2); 

matrix<Type> Sigma(2, 2);
Sigma.row(0) << s2_1, covl2 ;

Sigma.row(1) << cov12, s2_2;



41
42 MVNORM_t<Type> dmvnorm(Sigma);
43 for (int i =0; i<U.rows(); i ++) {

44 u = U .row(i);

45 nil += dmvnorm(u);
46 }

47 for (int i =0; i<Y.rows(); i ++) {

48 riskl=exp(beta1 + ZU(i, 0));
49 risk2=exp(beta2 + ZU(i, 1));

50 level=1 + riskl + risk2;

51 x1=w1*gt(i) - gamal ;
52 x2=w2*gt(i) - gama2;

53 prob(0)=riskl/ level * w1*dgt(i) * dnorm(x1, Type(0), Type(1), false);

54 prob(1)=risk2/level * w2*dgt(i) * dnorm(x2, Type(0), Type(1), false);
55 prob(2)=1 - prob (0) - prob(1);

56 y = Y .row(i);

57 nil -= dmultinom(y, prob, true);
58 }

59 ADREPORT(s2_1);

60 ADREPORT(s2_ 2);
61 ADREPORT(rhol2);

62 REPORT(Sigma);

63 return nil;
64 }

SOURCE: The author (2021).

D.2 C++ CODE FOR THE TMB IMPLEMENTATION OF A multiGLMM WITH A 

2 x 2  LATENT STRUCTURE ON THE TRAJECTORY TIME LEVEL

1 // multiGLMM: A MULTINOMIAL GLMM FOR CLUSTERED COMPETING RISKS DATA

2 // 2x2 LATENT STRUCTURE ON THE TRAJECTORY TIME LEVEL (TIME MODEL)
3 #include <TMB.hpp>

4 template<class Type>

5 Type objective_function<Type>::operator() ()

6 {
7 using namespace density;

8 DATA.MATRIX(Y);
9 DATA.SPARSE.MATRIX(Z);

10 DATA.VECTOR(time);

11 DATA_SCALAR(delta);
12 PARAMETER(betal)

13 PARAMETER(beta2)

14 PARAMETER(gamal)

15 PARAMETER(gama2)
16 PARAMETER(w1);
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PARAMETER(w2);

PARAMETER(logs2_3); Type s2_3=exp(logs2_3);
PARAMETER(logs2_4); Type s2_4=exp(logs2_4);

PARAMETER(rhoZ34); Type rho34=(exp(2*rhoZ34)-1)/(exp(2*rhoZ34)+1);

PARAMETER.MATRIX(U); matrix<Type> ZU=Z*U;

Type riskl=exp(betal);

Type risk2=exp(beta2);
Type level=1 + riskl + risk2;

I I  gt=atanh(2*time/delta-1) ; atanh(x)=0.5*log ((1 + x)/(1-x)) 
vector<Type> gt =0.5*1og(time/(delta-time)); 
vector<Type> dgt=delta/(2*time*(delta-time));

Type x1=0 ;

Type x2=0;
vector<Type> y(Y.cols());

vector<Type> prob(Y .cols());

parallel_accumulator<Type> nll(this);
// Type nll=0; 

vector<Type> u(U.cols());

Type cov34=rho34*sqrt(s2_3)*sqrt(s2_4); 

matrix<Type> Sigma(2, 2);

Sigma.row(0) << s2_3, cov34;
Sigma.row(1) << cov34, s2_4;

MVN0RM_t<Type> dmvnorm(Sigma); 
for (int i =0 ; i<U.rows(); i ++) { 

u = U .row(i); 

nil += dmvnorm(u);

}
for (int i =0 ; i<Y.rows(); i ++) { 

x1=w1*gt(i) - gamal - ZU(i, 0);

x2=w2*gt(i) - gama2 - ZU(i, 1);
prob(0)=riskl/ level * w1*dgt(i) * dnorm(x1, Type(0), Type(1), false);

prob(1)=risk2/level * w2*dgt(i) * dnorm(x2, Type(0), Type(1), false);

prob(2)=1 - prob (0) - prob(1);
y = Y .row(i);

nil -= dmultinom(y, prob , true);

}
ADREP0RT(s2_ 3);

ADREP0RT(s2_4);

ADREP0RT(rho34);
REPORT(Sigma); 

return nil;

}
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D.3 C++ CODE FOR THE TMB IMPLEMENTATION OF A multiGLMM WITH A 

BLOCK-DIAG 4 x 4  LATENT STRUCTURE

// multiGLMM: A MULTINOMIAL GLMM FOR CLUSTERED COMPETING RISKS DATA 

// BLOCK-DIAG LATENT STRUCTURE i.e., RISK, TRAJECTORY TIME, AND 

// CROSS-CORRELATIONS SET AT ZERO (BLOCK-DIAG MODEL)
#include <TMB.hpp> 

template<class Type>

Type objective_function<Type>::operator() ()

{
using namespace density;

DATA.MATRIX(Y);
DATA.SPARSE.MATRIX(Z);

DATA.VECTOR(time);

DATA_SCALAR(delta); 
PARAMETER(betal) 

PARAMETER(beta2) 

PARAMETER(gamal) 
PARAMETER(gama2) 

PARAMETER(w1); 

PARAMETER(w2);

PARAMETER(logs2_1) 

PARAMETER(logs2_2) 
PARAMETER(logs2_3) 

PARAMETER(logs2_4)

Type s2_1=exp(logs2_1) 

Type s2_2=exp(logs2_2) 
Type s2_3=exp(logs2_3) 

Type s2_4=exp(logs2_4)

PARAMETER(rhoZI2); Type rhol2=(exp(2*rhoZI2)-1)/(exp(2*rhoZI2)+1); 

PARAMETER(rhoZ34); Type rho34=(exp(2*rhoZ34)-1)/(exp(2*rhoZ34)+1);

PARAMETER.MATRIX(UI); matrix<Type> ZU1=Z*U1; 

PARAMETER_MATRIX(U2); matrix<Type> ZU2=Z*U2;

Type riskl=0 

Type risk2=0 
Type level=0

// gt=atanh(2*time/delta-1) ; atanh(x)=0.5*log ((1 + x) /(1 
vector<Type> gt=0.5*1og(time/(delta-time)); 
vector<Type> dgt=delta/(2*time*(delta-time));

Type x1=0 ;

Type x2=0;
vector<Type> y(Y.cols()); 

vector<Type> prob(Y .cols()); 

parallel.accumulator<Type> nll(this);
// Type nll=0; 

vector<Type> u1(U1.cols()); 

vector<Type> u2(U2.cols());

-x))
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Type cov12=rho12*sqrt(s2_1)*sqrt(s2_2);

Type cov34=rho34*sqrt(s2_3)*sqrt(s2_4); 
matrix<Type> Sigmal (2, 2);

Sigmal .row (0) << s2_1, covl2;

Sigmal .row (1) << cov12, s2_2; 
matrix<Type> Sigma2(2, 2);

Sigma2.row (0) << s2_3, cov34;

Sigma2.row(1) << cov34, s2_4;

MVN0RM_t<Type> dmvnorml(Sigmal);

MVN0RM_t<Type> dmvnorm2(Sigma2); 
for (int i=0; i<U1 .rows(); i++) { 

u1 =U1 .row(i) ; 
nil += dmvnorml (u1) ;

}
for (int i=0; i<U2.rows(); i++) { 

u2 =U2.row(i); 
nil += dmvnorm2(u2) ;

}
for (int i=0; i<Y.rows(); i++) { 

riskl=exp(beta1 + ZU1 (i , 0)); 

risk2=exp(beta2 + ZU1 (i , 1)); 

level=1 + riskl + risk2; 
x1=w1*gt(i) - gamal - ZU2(i, 0);

x2=w2*gt(i) - gama2 - ZU2(i, 1);

prob(0)=riskl/ level * w1*dgt(i) * dnorm(x1, Type(0), Type(1), false);
prob(1)=risk2/level * w2*dgt(i) * dnorm(x2, Type(0), Type(1), false);

prob(2)=1 - prob (0) - prob(1);
y = Y .row(i);
nil -= dmultinom(y, prob, true);

}
ADREPORT(s2_1)

ADREPORT(s2_ 2)
ADREPORT(s2_ 3)

ADREPORT(s2_4)

ADREPORT(rhol2);
ADREPORT(rho34);

REPORT(Sigmal);

REPORT(Sigma2); 
return nil;

}

D.4 R CODE SHOWING HOW TO LOAD AND FIT THE multiGLMM VERSIONS

## choose the desired MODEL to fit (risk, time, block-diag, complete)
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dll <- 'MODEL'

library(TMB) ## install.packages('TMB ' )

library(parallel) ## install.packages( ’parallel') 

library(Matrix) ## install.packages( ’Matrix')

filename <- paste0(dll, '.cpp')

TMB::compile(filename) 
d y n .load(TMB::dynlib(dll))

T M B ::config(tape.parallel=FALSE, DLL=dll) ## saves a lot of memory usage 

## if you want to make a multi-thread model fitting 
TMB::openmp(parallel::detectCores())

J <- 500 ## choose the number of clusters
cs <- 2 ## choose the cluster sizes

time <- runif(n=cs*J, min=30, max=79.9) ## generate the failure times

delta <- 80
blocks <- replicate(J, rep(1, cs) , simplify = FALSE)

Z <- Matrix::bdiag(blocks) ## build the latent-effect design-matrix

## set the fixed-effect parameters 

beta <- c(beta1=-2, beta2=-1.5) 

gamma <- c(gammal=1 .2, gamma2= 1) 
w <- c (w1=3, w2 =5)

## set the variances and correlations

s2_1 < - 1.0
s2_2 A 1 <S> CTt

s2_3 A 1 <S>

s2_4 <- 0.9
rhol 2 <- 0. 1
rhol 3

in
+

<s>iiV

rhol 4 <- 0. 3

rho2 3 <- 0. 3
rho24

<s>iiV

rho34

<N<s>1V

## auxiliary function to build and check if the Sigma is 
## positive-definite (PD)

buildSigma <- function(s2_1, s2_2, s2_3, s2_4,

rho12, rhol3, rho14, rho23 , rho24, rho34)

{
covl2 <- rhol2*sqrt(s2_ 1)*sqrt(s2_2) 
covl3 <- rhol3*sqrt(s2_ 1)*sqrt(s2_ 3) 
cov14 <- rhol4 * sqrt(s2_1)*sqrt(s2_4) 

cov23 <- rho23* sqrt(s2_2)*sqrt(s2_3) 

cov24 <- rho24*sqrt(s2_2)*sqrt(s2_4) 
cov34 <- rho34*sqrt(s2_3)*sqrt(s2_4)

Sigma <- matrix(c(s2_1, cov12, cov13, cov14,
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covl2 , s2_2, cov23 , cov24 , 

covl3 , cov23, s2_3, cov34 , 
cov14, cov24 , cov34 , s2_4), nrow=4)

## Sigma will only be returned if PD

if (
is.matrix(chol(Sigma))

)
retu rn(Sigma)

}
Sigma <- buildSigma(s2_1, s2_2, s2_3, s2_4,

rho12, rhol3, rho14, rho23, rho24 , rho34)

## generate data via the function datasimu() from APPENDIX C, to make it 

## simpler, you may save the function in a file and then load in the 
## current section 

source('datasimu.R')

dat <- datasimu(J=J, cs=cs, time=time,
Z = Z, S = Sigma , delta = delta,

beta=beta, gamma=gamma, w=w, seed1=1 , seed2=2) 
y <- as.matrix( dat%>%dplyr::select(y1 :y 3) )

## latent-effects matrix U filled with zeros (initial guesses)

## ncol has to be 2 or 4, depending of the chosen MODEL 
U <- matrix(0, nrow=J, ncol=4)

## the model fit per se starts now

obj <- T M B ::MakeADFun(data = 1 ist(Y = y , Z = Z, time = time, delta = delta),
parameters=1 ist(betal =beta['beta1 '],

beta2 =beta['beta2 ' ], 
gamal =gamma['gammal'], 
gama2 =gamma['gamma2 ' ], 
w1 = w [ 'w l '],

w2 = w [ 'w2'],

logs2_ 1=log(s2_ 1) , 
logs2_2=log(s2_2) , 

logs2_3=log(s2_3), 

logs2_4=log(s2_4), 
rhoZ12 =atanh(rhol2) , 

rhoZ13 =atanh(rhol3), 

rhoZ14 =atanh(rhol4) , 
rhoZ23 =atanh(rho23), 

rhoZ24 =atanh(rho24) , 

rhoZ34 =atanh(rho34),
U =U) ,

DLL=dll, random='U', hessian=TRUE, silent=TRUE) 

opt <- with(obj, nlminb(par, f n , gr))



APPENDIX E -  MODEL PARAMETERS BIAS WITH 2.5% AND 97.5% QUANTILES 

FIGURE 32 -  PARAMETER f a  BIAS WITH 2.5% AND 97.5% QUANTILES

Parameter: 3i
with 2.5% and 97.5% quantiles
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FIGURE 33 -  PARAMETER $ 2 BIAS WITH 2.5% AND 97.5% QUANTILES

Parameter: (32

with 2.5% and 97.5% quantiles
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Parameter: Yi
with 2.5% and 97.5% quantités
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FIGURE 35 -  PARAMETER 72 BIAS WITH 2.5% AND 97.5% QUANTILES

Parameter: Y2

with 2.5% and 97.5% quantités
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Parameter: w 1

with 2.5% and 97.5% quantités
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FIGURE 37 -  PARAMETER w 2 BIAS WITH 2.5% AND 97.5% QUANTILES

Parameter: w2

with 2.5% and 97.5% quantités
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Parameter: log(cf)
with 2.5% and 97.5% quantiles
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FIGURE 39 -  PARAMETER log(<7f) BIAS WITH 2.5% AND 97.5% QUANTILES

Parameter: log (o^)
with 2.5% and 97.5% quantiles
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Parameter: log (alp
with 2.5% and 97.5% quantiles
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FIGURE 41 -  PARAMETER log(of ) BIAS WITH 2.5% AND 97.5% QUANTILES

Parameter: log (04)
with 2.5% and 97.5% quantiles
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Parameter: z (p12)
with 2.5% and 97.5% quantités
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FIGURE 43 -  PARAMETER z(p34) BIAS WITH 2.5% AND 97.5% QUANTILES

Parameter: z(p34)
with 2.5% and 97.5% quantités
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FIGURE 44 -  PARAMETERS {z(p13), z{p1A), z(pu ), 2(^ 3)}  BIAS WITH 2.5% AND 97.5%
QUANTILES

Complete model's cross-correlations
with 2.5% and 97.5% quantiles
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