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RESUMO

A utilização de algoritmos de inteligência artificial tem crescido nos últimos anos com a

maior disponibilidade de poder computacional a baixo custo. Uma demanda por dispositivos que

usem comunicação sem fio também cresce e esses dispositivos podem ter diversas aplicações

em inúmeros ambientes diferentes, portanto, é importante que o seu hardware possa adaptar-se

às condições do ambiente ao redor para que a comunicação seja otimizada. A adaptação de

conexão pode ser feita alterando-se a modulação em tempo real dependendo das características

do canal. Como essa mudança é feita no transmissor, o receptor precisa conseguir identificar a

modulação que está sendo usada no sinal recebido para que sua demodulação seja feita, ou seja,

uma classificação automática de modulação é necessária no receptor para que o sistema funcione.

As soluções mais populares encontradas no estado da arte para a classificação automática de

modulação são o uso de redes neurais artificiais, que são técnicas de inteligência artificial. Porém,

em sua maioria elas são análises computacionais do problema buscando uma acurácia maior

e sistemas robustos que tentam classificar uma grande quantidade de modulações diferentes.

A proposta desta dissertação é usar uma rede neural artificial com três camadas ocultas para

classificar modulações digitais em fase e amplitude e ruído branco gaussiano para que a rede

possa identificar se há um sinal chegando ou não, implementá-la em um sistema embarcado

e comparar seu desempenho antes e depois da implementação. Para que a classificação seja

possível, a rede neural artificial recebe como entrada uma série de características extraídas

matematicamente desses sinais modulados, o que é chamado no estado da arte de classificação

baseada em características. Como o objetivo principal da dissertação é a implementação em

sistema embarcado, a quantidade de características de sinais utilizadas para a classificação deve

ser reduzida para economizar recursos e a rede neural artificial é quantizada em ponto fixo para

extrair maior desempenho do hardware. Uma varredura de parâmetros é feita com o objetivo de

melhorar o desempenho da rede neural artificial em sua acurácia, como por exemplo variar o

tamanho das suas camadas e o número de neurônios. Os testes finais são feitos usando sinais

modulados com relação sinal-ruído variando de -10 dB a 20 dB, seis características de sinais e

uma rede neural artificial com 3 camadas ocultas, com 26, 29 e 30 neurônios respectivamente.

Obteve-se como resultado uma rede neural capaz de classificar com acurácia próxima a 100%

as modulações PSK (Phase Shift Keying) para relação sinal ruído acima de 8 dB, enquanto

as modulações QAM (Quadrature Amplitude Modulation) apresentaram um resultado pior,

com acurácia variando demais sem uma estabilidade. No sistema embarcado os resultados das

modulações PSK se repetiram, 64QAM piorou e 16QAM melhorou. Com isso, observa-se que

é possível implementar um sistema de classificação automática de modulação em um sistema

embarcado com poucas características sendo usadas na rede neural artificial.

Palavras-chave: Classificação Automática de Modulação. Sistemas Embarcados. Redes Neurais

Artificiais.



ABSTRACT

The use of artificial intelligence algorithms has grown in recent years with the increased

availability of low-cost computing power. Demand for devices that use wireless communication

is also increasing. These devices can have many applications in numerous different environ-

ments, so self-adaptation is important to the surrounding environment’s conditions so that the

communication is optimized. Link adaptation can be made by changing the modulation in

real-time depending on the channel characteristics. Since this change is made at the transmitter,

the receiver needs to identify the modulation used in the received signal to demodulate it, i.e., an

automatic modulation classification is required at the receiver for the system to work. The most

popular solutions found in state-of-the-art automatic modulation classification are artificial neural

networks, artificial intelligence techniques. However, most of them are computational analyses

of the problem seeking higher accuracy and robust systems that try to classify many different

modulations. This dissertation proposes to use an artificial neural network with three hidden

layers to classify digital modulations in phase and amplitude and a Gaussian white noise so that

the network can identify if there is an incoming signal or not. Implement it in an embedded

system and compare its performance before and after implementation. For classification to be

possible, the artificial neural network receives input a series of features extracted mathematically

from these modulated signals called feature-based classification in state of the art. Since the

dissertation’s primary goal is implementation on an embedded system, the number of signal

features used for classification must be reduced to save resources. Also, the artificial neural

network is fixed-point quantized to extract more performance from the hardware. A sweep of

parameters is done to improve the accuracy performance of the artificial neural network, varying

the size of its layers and the number of neurons. The final tests are done using modulated

signals with signal-to-noise ratios ranging from -10 dB to 20 dB, six signal characteristics, and a

3-layer artificial neural network with 26, 29, and 30 neurons. The result was a neural network

able to classify with accuracy close to 100% the PSK (Phase Shift Keying) modulations for a

signal-to-noise ratio above 8 dB. In contrast, the QAM (Quadrature Amplitude Modulation)

modulations presented a worse result, with accuracy varying too much without stability. The PSK

modulations’ results were repeated in the embedded system, 64QAM worsened, and 16QAM

improved. With this, it is observed that it is possible to implement an automatic modulation

classification system in an embedded system with few features in the artificial neural network.

Keywords: Automatic Modulation Classification. Embedded Systems. Artificial Neural

Networks.
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1 INTRODUCTION

The increasing computational power linked to microprocessors’ low manufacturing

costs has allowed the rapid development of solutions to various engineering problems, such as

automation of processes, using algorithms of artificial intelligence. Communication between

devices using wireless networks, called the Internet of Things, offers the possibility of data

collection and control in both industrial environments and inside people’s homes.

Combining the performance, low cost, and low power consumption found in micropro-

cessors in recent years, the use of artificial intelligence algorithms to solve problems, and the

internet of things, it is possible to develop simple and practical solutions to automate more and

more of the surrounding environment. In contrast, the use of devices connected to the Internet of

Things via wireless networks requires optimal connection performance since the environments in

which these devices can be connected vary significantly, given their application.

The system needs to change the connection in real-time to offer the best connection in

a dynamic environment, aiming to balance data transmission and connection robustness. Link

adaptation is how a wireless communication system measures its environment and automatically

changes, for example, the modulation used in transmission and reception to achieve the best

connection. The link adaptation is made in the transmitter, so the receiver needs to identify the

modulation used in the received signal in order for demodulation to occur, i.e., for the information

to be correctly interpreted in the receiver. For the whole process to be fast, an automatic

modulation classification algorithm is needed at the receiver for the whole system to work. As

demonstrated in Figure 1.1, the modulation used is changed following a channel estimator that

selects the best modulation for the environment from high reliability to high throughput.

Figure 1.1: AMC in link adaptation system
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The most popular solutions found in state-of-the-art automatic modulation classification

are artificial neural networks and deep learning, which are artificial intelligence techniques.

However, most of them are computational analyses of the problem seeking a higher accuracy

and robust systems that try to classify as many modulations as possible as a benchmark for the

proposed solution. The Automatic Modulation Classification (AMC) algorithms can use two

different methods: likelihood-based method or feature-based method. This project will focus

only on feature-based methods because it is the most simple to be implemented on embedded

systems and can deliver satisfactory results. The features extracted from the receiver’s signals are
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often statistical measures based on the instantaneous amplitude, phase, or frequency of these

signals [1].

The importance of investigating the behavior and performance of a fully embedded

automatic modulation classification algorithm based on artificial neural networks is valid because

almost all scientific studies on the AMC subject are made with only the artificial neural network’s

accuracy performance in mind. In a few implementations of this algorithm, high-performance

hardware is used, such as Field Programmable Gate Arrays (FPGA) and Graphic Processing

Units (GPU) [2] [3], so implementing an AMC algorithm on an embedded system opens the

possibilities for developing products using low-cost hardware and low power consumption.

Hence, the limitations of a low-cost embedded system are not yet studied. Sometimes,

the solution for the AMC problem proposed in the state-of-the-art is also different from the

proposal of this work, for example, some papers are using convolutional neural networks and

images of the modulations constellations instead of the classical feature-based method discussed

in the literature review [4] [5].

1.1 AIM

This project aims to implement a feature-based classification algorithm using fully-

connected deep artificial neural networks in an embedded system and compare the Personal

Computer (PC) and the embedded system’s accuracy results. The PC results are obtained by

the training and test of the neural network using some available tools in Python, like Keras and

Tensorflow. The embedded system result is the data collected from the same neural network

trained in the PC but properly deployed and embedded into a defined microprocessor.

1.2 OBJECTIVES

In order to achieve the desired aim of this project, the following objectives are being set:

• Select a small group of modulations and generate a large dataset of modulated signals

with a wide range of signal-to-noise ratio;

• Find the most relevant features used to classify modulated signals and study their

behavior;

• Implement most of the features found in the literature, and measure hardware usage;

• Use the data obtained from the implementation of the features selected, and reduce

the necessary number of features to classify the selected modulations whenever it is

possible;

• Try to obtain an optimal neural network for the reduced number of features using an

available hyperparameter sweeping tool;

• Compare the embedded system’s classification accuracy to the training accuracy found

in the PC.

The following document is divided into four chapters, where the literature needed to

understand the development of this project is described in chapter two. Chapter three summarizes

the overall methodology used to generate modulated signals, study the features used by the

feature-based algorithm, train the artificial neural networks, and communicate with the embedded

system. Chapter four comprehends both results and discussions, and finally, chapter five gives

the conclusions and open space for future work.
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2 LITERATURE REVIEW

In this chapter, an introduction to the most important aspects of the theory behind this

dissertation will be presented, starting with telecommunications systems, then some review on

artificial neural networks, and finishing with embedded systems properties.

2.1 DIGITAL WIRELESS MODULATIONS

The transmission of wireless signals using digital modulation is widely used over analog

modulations because it offers a high data rate, powerful error correction techniques, better security,

and resistance to channel impairments. The transmitter needs to map the digital information into

an analog signal. This technique transforms bits into analog symbols that are transmitted over

the channel [6].

Figure 2.1: Basic wireless communication

Information source Information destination

Modulation technique 
and transmission

Modulation detection 
and error correction

Channel

(THE AUTHOR, 2020)

Some considerations need to be made regarding the choice of a modulation. The first is

the amount of data sent in a symbol, i.e., how many bits of information are converted to a single

analog signal. The more bits are placed in a single symbol, the greater its spectral efficiency,

measured in bits/s/Hz. A good example is to compare a modulation that uses a 100 kHz band to

transmit 100 kbits/s and has an efficiency of 1 bit/s/Hz with another modulation that can send

200 kbits/s using the same 100 kHz band and therefore has an efficiency of 2 bit/s/Hz [6]. It is

essential that the modulation has robustness against noise and other factors that may interfere

with communication. That is, a robust modulation has a low error rate. Last but not least is the

complexity and cost of its implementation [6].

The information can be modulated using one of two main categories of digital modula-

tions: amplitude and phase modulation or frequency modulation. This work will address only

the first category because amplitude and phase modulations have better spectral properties than

frequency modulation [6].

2.1.1 Amplitude and phase modulation

In amplitude and phase modulation, the binary information is encoded into amplitude

or phase, sometimes in both. Over a time interval of length 𝑇𝑠 (called symbol time), K bits

are encoded, and K is defined to be log2(𝑀), where M is the modulation number. The PSK

(Phase Shift Keying) technique uses only phase modulation, and QAM (Quadrature Amplitude

Modulation) uses amplitude and phase modulations. Some PSK modulations are BPSK (Binary

Phase Shift Keying) and QPSK (Quadrature Phase Shift Keying), and some QAM examples are

16QAM and 64QAM [6]. Also, amplitude and phase modulations are used in communication
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protocols such as WiFi and communication technologies for mobile telephony, such as the current

fourth-generation (4G) and fifth-generation (5G) in the implementation state [7] [8].

The transmitted signal can be defined as an in-phase and quadrature components (Figure

2.2) where 𝑠(𝑡) = 𝑠𝐼 (𝑡) cos(2𝜋 𝑓𝑐𝑡) − 𝑠𝑄 (𝑡) sin(2𝜋 𝑓𝑐𝑡) with a signal space representation written

as 𝑠(𝑡) = 𝑠𝑖1(𝑡)𝜙1(𝑡) − 𝑠𝑖2(𝑡)𝜙2(𝑡), where the 𝜙(𝑡) functions are 𝜙1(𝑡) = 𝑔(𝑡) cos(2𝜋 𝑓𝑐𝑡 +𝜙0) and

𝜙2(𝑡) = −𝑔(𝑡) cos(2𝜋 𝑓𝑐𝑡 + 𝜙0), 𝑠𝐼 is the In-Phase component, 𝑠𝑄 is the Quadrature component,

𝑓𝑐 is the carrier frequency, 𝜙0 is an initial phase and g(t) is a shaping pulse that is designed

to improve spectral efficiency. The signal constellation is defined based on the constellation

point 𝑠𝑖 = (𝑠𝑖1, 𝑠𝑖2) ∈ �2, 𝑖 = (1, 2, ..., 𝑀) and the complex representation of 𝑠(𝑡) is shown at

the Equation 2.1 [6]:

𝑠(𝑡) = �{𝑥(𝑡)𝑒 𝑗𝜙0𝑒 𝑗 (2𝜋 𝑓𝑐𝑡) } (2.1)

where 𝑥(𝑡) = 𝑠𝐼 (𝑡) + 𝑗 𝑠𝑄 (𝑡) = (𝑠𝑖1(𝑡) + 𝑗 𝑠𝑖2(𝑡))𝑔(𝑡). The bit rate for this kind of modulation is

calculated by 𝐾 bits per symbol or 𝑅 = log2(𝑀/𝑇𝑠) bits per second [6].

Figure 2.2: Amplitude and phase modulator
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(GOLDSMITH, 2005)

2.1.2 Phase Shift Keying

Since all information is coded in the phase of the transmitted signal, the signal over one

symbol can be written as [6]:

𝑠𝑖 (𝑡) = �{𝐴𝑔(𝑡)𝑒 𝑗2𝜋(𝑖−1)/𝑀𝑒 𝑗2𝜋 𝑓𝑐𝑡}, 0 ≤ 𝑡 ≤ 𝑇𝑠
= 𝐴𝑔(𝑡) cos

[
2𝜋 𝑓𝑐𝑡 + 2𝜋(𝑖 − 1)

𝑀

]
= 𝐴𝑔(𝑡) cos

[
2𝜋(𝑖 − 1)

𝑀

]
cos(2𝜋 𝑓𝑐𝑡) − 𝐴𝑔(𝑡) sin

[
2𝜋(𝑖 − 1)

𝑀

]
sin(2𝜋 𝑓𝑐𝑡)

(2.2)

The minimum distance between two constellation points is 𝑑𝑚𝑖𝑛 = 2𝐴 sin(𝜋/𝑀) and

𝐴 is a function of the signal energy. The PSK symbols are 𝑠𝑖1 = 𝐴 cos(2𝜋(𝑖 − 1)/𝑀) and

𝑠𝑖2 = 𝐴 sin(2𝜋(𝑖 − 1)/𝑀) for 𝑖 = (1, 2, ..., 𝑀). All possible transmitted symbols have the same
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energy and it is defined by the Equation 2.3. The figure 2.3 shows how the symbols are positioned

in a geometric representation of the PSK signals [6]:

𝐸𝑠𝑖 =
∫ 𝑇𝑠

0

𝑠2𝑖 (𝑡)𝑑𝑡 = 𝐴2 (2.3)

Figure 2.3: PSK constellations examples
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Figure 2.3 illustrates how the constellation mapping is done using Gray encoding to

ensure that adjacent symbols only differ by one bit. Mistaking a symbol for an adjacent one

causes no more than a one-bit error.

2.1.3 Quadratude Amplitude Modulation

To encode the information in amplitude and phase, the transmitted signal is given by [6]:

𝑠𝑖 (𝑡) = �{𝐴𝑖𝑒 𝑗𝜃𝑖𝑔(𝑡)𝑒 𝑗2𝜋 𝑓𝑐𝑡}, 0 ≤ 𝑡 ≤ 𝑇𝑠
= 𝐴𝑖 cos(𝜃𝑖)𝑔(𝑡) cos(2𝜋 𝑓𝑐𝑡) − 𝐴𝑖 sin(𝜃𝑖)𝑔(𝑡) sin(2𝜋 𝑓𝑐𝑡)

(2.4)

The distance between two symbols in the signal constellation for QAM is calculated by

the Equation 2.5. The most common QAM techniques use square constellations, as shown in

Figure 2.4. It can be hard to find a good mapping for irregular constellations where adjacent

symbols only differ by one bit.

𝑑𝑖 𝑗 = ‖𝑠𝑖 − 𝑠 𝑗 ‖ =
√
(𝑠𝑖1 − 𝑠 𝑗1)2 + (𝑠𝑖2 − 𝑠 𝑗2)2 (2.5)

Figure 2.4: QAM constellations examples
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The energy for QAM symbols is:

𝐸𝑠𝑖 =
∫ 𝑇𝑠

0

𝑠2𝑖 (𝑡)𝑑𝑡 = 𝐴2
𝑖 (2.6)

2.1.4 Channel modeling

In a communication system, the channel can be modeled differently to simulate various

behaviors encountered in nature. This work will focus only on Additive White Gaussian Noise

(AWGN, details in Figure 2.5), which is is one of the simplest mathematical models used in radio

communication systems [9], so it is easy to simulate in a controlled environment. The sources of

noise that can be found in a communication system may be external, for example, atmospheric

noise or internal to the system like thermal noise [10].

The Gaussian distribution (Equation 2.7) that generates the white Gaussian noise can be

described by the Equation 2.7, where 𝑓𝑋 is the probability density function of 𝑥, 𝜇 is the mean

and 𝜎2 is the variance.

𝑓𝑋 (𝑥) = 1√
2𝜋𝜎

exp
−(𝑥 − 𝜇)2

2𝜎2
(2.7)

Figure 2.5: AWGN channel model
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The term white denotes processes in which all frequency components have the same

power [9], i.e., the white noise’s power spectral density is equal for all frequencies and is described

in the Equation 2.8. Considering that the signal transmitted over the channel has a limited

bandwidth and the noise power is uniform inside the same bandwidth, the Signal-to-Noise Ratio

(SNR) is written in the Equation 2.9, where 𝑃𝑆 is the signal power [10]:

𝑆𝑊 ( 𝑓 ) = 𝑁0

2
= 𝜎2

𝑊 (2.8)

𝑆𝑁𝑅 =
𝑃𝑆
𝑁0/2 (2.9)

2.2 DIGITAL MODULATION FEATURES

The feature-based modulation classification method is a method that uses information

extracted from signals through mathematical, often statistical, calculations. It can be said that a

feature is a result obtained by a calculation made with samples of a given modulated signal. This

calculation can have variations when there is noise in the modulated signal, so it is repeated for

several SNR values. The variation of the feature’s value through a range of SNR is often plotted

with SNR as the x-axis to understand the feature’s behavior in different noise environments [1].
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The information needed to classify modulations comes from many different features

extracted from the signal spectrum, the instantaneous time values, or high-order statistics [1].

Each feature can be optimal for differencing a couple of modulations but not satisfactory for

differencing many other modulations, so the combination of features is often used to correctly

classify a group of desired modulations [11] [12] [13].

2.2.1 Obtaining the instantaneous values

The received modulated signal is sampled at a frequency 𝑓 𝑠 and separated into frames

containing 𝑁 samples each. Most of the features selected for this work use the instantaneous

amplitude, phase, or frequency of the unknown signal. The instantaneous amplitude is the

amplitude measured from every sample from the received signal. The instantaneous phase is the

angle between the complex-valued sample’s imaginary and real amplitudes (respectively, the

received Quadrature and In-Phase signals). Finally, the instantaneous frequency is defined by

[14]:

𝑓𝑖 (𝑡) = 1

2𝜋

𝑑

𝑑𝑡
[arg 𝑧(𝑡)] (2.10)

where 𝑧(𝑡) is the complex-valued signal and arg 𝑧[𝑛] is the unwrapped phase of the received

signal, and the derivative on the discrete-time domain is the difference between consecutive

samples. So the Equation 2.10 can be rewritten as Equation 2.11. Phase unwrapping is the

process by which phase differences between samples accumulate over time, forming a new array

whose minimum or maximum phase is not defined between −𝜋 and 𝜋.

𝑓𝑖 [𝑛] = 1

2𝜋
diff

[
unwrap

(
arctan

( �{𝑧[𝑛]}
�{𝑧[𝑛]}

))]
, 𝑘 = (1, 2, ..., 𝑁) (2.11)

2.2.2 Spectrum-based features

The first feature is the maximum value of the spectral power density of the normalized

and centered instantaneous amplitude of the received signal (𝛾𝑚𝑎𝑥), proposed by Azzouz and

Nandi (1996a), Equation 2.12, and it is also called Gmax:

𝛾𝑚𝑎𝑥 =
max |𝐷𝐹𝑇 (𝐴𝑐𝑛 [𝑛]) |2

𝑁
(2.12)

where DFT is the Discrete Fourier Transform, 𝐴𝑐𝑛 is the normalized and centered instantaneous

amplitude, 𝑁 is the frame size, i.e., number of samples and 𝑛 = (1, 2, ..., 𝑁). The normalization

needed to extract this feature is achieved by using the Equations 2.14 and 2.13, where 𝜇𝐴 is the

mean of the instantaneous amplitude of one signal frame and 𝐴[𝑛] is the instantaneous amplitude

of a sample. The normalization operation is designed to compensate the unknown channel

attenuation [13].

𝐴𝑛 [𝑛] = 𝐴[𝑛]
𝜇𝐴

(2.13)

𝐴𝑐𝑛 [𝑛] = 𝐴𝑛 [𝑛] − 1 (2.14)

The two following features are the standard deviation of the absolute value of the

non-linear component of the instantaneous phase (𝜎𝑎𝑝) and standard deviation of the direct value
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of the non-linear component of the instantaneous phase (𝜎𝑑𝑝), demonstrated respectively by the

Equations 2.15 and 2.16 [13]:

𝜎𝑎𝑝 =

√√√√√
1

𝑁𝑐

��

∑

𝐴𝑛 [𝑛]>𝐴𝑡 )
𝜙2
𝑁𝐿 [𝑛])

��� − ��
 1

𝑁𝑐

∑
𝐴𝑛 [𝑛]>𝐴𝑡

|𝜙𝑁𝐿 [𝑛] |���
2

(2.15)

𝜎𝑑𝑝 =

√√√√√
1

𝑁𝑐

��

∑

𝐴𝑛 [𝑛]>𝐴𝑡 )
𝜙2
𝑁𝐿 [𝑛])

��� − ��
 1

𝑁𝑐

∑
𝐴𝑛 [𝑛]>𝐴𝑡

𝜙𝑁𝐿 [𝑛]���
2

(2.16)

where 𝑁𝑐 is the number of samples with an amplitude above a specific threshold value (𝐴𝑡),
which filters out the low-amplitude samples taking out the noise. The term 𝜙𝑁𝐿 is the non-linear

component of the instantaneous phase of the 𝑛𝑡ℎ signal sample, i.e., the signal phase without the

contributions of the carrier frequency, as defined by:

𝜙𝑁𝐿 = 𝜙𝑢𝑤 − 2𝜋 𝑓𝑐
𝑓𝑠

(2.17)

where 𝑓𝑐 is the carrier frequency, 𝑓𝑠 is the sampling frequency, and 𝜙𝑢𝑤 is the unwrapped phase

sequence. The next two features are the standard deviation of the absolute value of the normalized

and centered instantaneous amplitude of the signal (𝜎𝑎𝑎) and standard deviation of the absolute

value of the normalized and centered frequency of the signal (𝜎𝑎 𝑓 ), shown respectively by the

Equations 2.18 and 2.19 [13]:

𝜎𝑎𝑎 =

√√√√
1

𝑁

(
𝑁∑
𝑛=1

𝐴2
𝑐𝑛 [𝑛]

)
−
(

1

𝑁

𝑁∑
𝑛=1

|𝐴𝑐𝑛 [𝑛] |
)2

(2.18)

𝜎𝑎 𝑓 =

√√√√√
1

𝑁𝑐

��

∑

𝐴𝑛 [𝑛]>𝐴𝑡 )
𝑓 2
𝑁 [𝑛]

��� − ��
 1

𝑁𝑐

∑
𝐴𝑛 [𝑛]>𝐴𝑡

| 𝑓𝑁 [𝑛] |���
2

(2.19)

where the centered instantaneous frequency 𝑓𝑁 [𝑛] is normalized by the sampling frequency 𝑓𝑠,
(Equations 2.20 and 2.21), and 𝜇 𝑓 is the frequency mean [13]:

𝑓𝑁 [𝑛] = 𝑓𝑚 [𝑛]
𝑓𝑠

(2.20)

𝑓𝑚 = 𝑓 [𝑛] − 𝜇 𝑓 (2.21)

The mean value of the signal magnitude (𝑋) is also used, Equation 2.22, and the

normalized square root value of sum of amplitude of signal samples (𝑋2) [15], Equation 2.23:

𝑋 =
1

𝑁

𝑁∑
𝑛=1

|𝐴[𝑛] | (2.22)

𝑋2 =

√∑𝑁
𝑛=1 |𝐴[𝑛] |
𝑁

(2.23)
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Another two features that use instantaneous values are the kurtosis of the normalized and

centered instantaneous amplitude (𝜇𝑎
42

) and kurtosis of the normalized and centered instantaneous

frequency (𝜇
𝑓
42

), Equations 2.24 and 2.25:

𝜇𝑎42 =
𝐸
{
𝐴4
𝑐𝑛 [𝑛]

}{
𝐸
{
𝐴2
𝑐𝑛 [𝑛]

}}2
(2.24)

𝜇
𝑓
42

=
𝐸
{
𝑓 4
𝑁 [𝑛]

}{
𝐸
{
𝑓 2
𝑁 [𝑛]

}}2
(2.25)

2.2.3 Moments and Cumulants

High order statistical features are being used as features to automatic modulation

classification for a long time. They are based on expected values, like the standard deviation, the

variance, and the kurtosis. Since the received signals are complex-valued, the complex moments

and cumulants are defined in Equations 2.26 to 2.33. The notation of moments and cumulants

are based on how many conjugates there are [16] [17] [18] [19]:

𝑀𝑝𝑞 = 𝐸 [𝑦(𝑛)𝑝−𝑞 (𝑦∗(𝑛))𝑞] (2.26)

𝐶20 = 𝐶𝑢𝑚(𝑋, 𝑋) = 𝑀20 = 𝐸 [𝑦2(𝑛)] (2.27)

𝐶21 = 𝐶𝑢𝑚(𝑋, 𝑋∗) = 𝑀21 = 𝐸 [|𝑦(𝑛) |2] (2.28)

𝐶40 = 𝐶𝑢𝑚(𝑋, 𝑋, 𝑋, 𝑋) = 𝑀40 − 3𝑀2
20 (2.29)

𝐶41 = 𝐶𝑢𝑚(𝑋, 𝑋, 𝑋, 𝑋∗) = 𝑀41 − 3𝑀20𝑀21 (2.30)

𝐶42 = 𝐶𝑢𝑚(𝑋, 𝑋, 𝑋∗, 𝑋∗) = 𝑀42 − |𝑀20 |2 − 2𝑀2
21 (2.31)

𝐶60 = 𝐶𝑢𝑚(𝑋, 𝑋, 𝑋, 𝑋, 𝑋, 𝑋) = 𝑀60 − 15𝑀40𝑀20 + 30𝑀3
20 (2.32)

𝐶63 = 𝐶𝑢𝑚(𝑋, 𝑋, 𝑋, 𝑋∗, 𝑋∗, 𝑋∗) = 𝑀63 − 6𝑀41𝑀20 − 9𝑀42𝑀21 + 18𝑀2
20𝑀21 + 12𝑀3

21 (2.33)

where 𝐸 is the expected value and 𝐶𝑢𝑚 is the cumulant. The notation often used is 𝐶𝑎𝑏, where 𝑎
is the number of times the input is repeated, and 𝑏 is the number of conjugates on the 𝑎 inputs.

Table 2.1 summarizes some of the features found in the literature and state-of-the-art

chosen for study in this work. All features presented from Equation 2.12 to Equation 2.33 are

listed on Table 2.1.

Table 2.1: List of selected features

Feature name and number
01 - 𝛾𝑚𝑎𝑥 (Gmax)

Continued on next page
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Table 2.1 – continued from previous page
Feature name and number

02 - Standard deviation of the absolute instantaneous phase

03 - Standard deviation of the instantaneous phase

04 - Standard deviation of the absolute instantaneous centered normalized amplitude

05 - Standard deviation of the instantaneous frequency

06 - Mean value of the signal magnitude

07 - Normalized square root value of sum of amplitude

08 - Kurtosis of the centered normalized amplitude

09 - Kurtosis of the centered normalized frequency

10 - Cumulant 𝐶20

11 - Cumulant 𝐶21

12 - Cumulant 𝐶40

13 - Cumulant 𝐶41

14 - Cumulant 𝐶42

15 - Cumulant 𝐶60

16 - Cumulant 𝐶61

17 - Cumulant 𝐶62

18 - Cumulant 𝐶63

2.3 ARTIFICIAL NEURAL NETWORKS

In this work, an ANN (Artificial Neural Network) is used to solve a classification

problem. For this specific task, the computer is asked to specify which of the predefined

categories some input belongs. As an example of a classification task, object recognition is one

of the most used. The input is usually an image. The ANN returns a numeric code representing

the class of the object found in the image with the most significant probability of being correct

[20].

The single neuron model, known as the perceptron, is shown in Figure 2.6 and it can

be expressed mathematically in the Equation 2.34, where 𝑤 is the weight, 𝑏 is the bias, 𝑥 is the

input, 𝑚 is the number of inputs and 𝑣 is the input of the activation function.

Figure 2.6: Perceptron model

(HAYKIN, 2009)

𝑣 =
𝑚∑
𝑖=1

𝑤𝑖𝑥𝑖 + 𝑏 (2.34)
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The single neuron perceptron is limited and can only classify two classes. More neurons

can be added to upgrade the ANN capability to classify patterns [21]. Every neuron computes a

linear combination of its inputs, using weights for every input and a bias for each neuron. The

result of this calculation is then applied to a hard limiter, which is a fixed nonlinear function

called activation function [20].

2.3.1 Activation functions

The most known and used activation functions in ANN are the ReLU (Rectified Linear

Unit) function, the sigmoid function, and the hyperbolic tangent function. The most simple is the

ReLU function because it returns zero if the input is negative and returns the input if it is positive.

The ReLU function is shown in the Equation 2.35, and the most notorious advantage of using it

is its linearity versus the non-linearity of the other functions [21].

The sigmoid and hyperbolic tangent are very similar, the main difference between the

two functions is the output when the input is negative. Their Equations and the relationship

between the two are shown in Equations 2.36 to 2.38.

𝑔(𝑣) = max(0, 𝑣) (2.35)

𝑔(𝑣) = 𝜎(𝑣) = 1

1 + 𝑒−𝑣 (2.36)

𝑔(𝑣) = tanh (𝑣) = 𝑒𝑣 − 𝑒−𝑣
𝑒𝑣 + 𝑒−𝑣 (2.37)

𝑡𝑎𝑛ℎ(𝑣) = 2𝜎(2𝑣) − 1 (2.38)

where 𝑣 is defined by the Equation 2.34. The main problem with these non-linear function is the

saturation that may occur due to a very high or very low input. This saturation can make the

learning algorithm difficult because it often depends on the gradient of those functions. For this

reason, their usage is discouraged [21].

2.3.2 Multilayer artificial neural networks

A multilayer perceptron is a ANN that contains more than one layer fully-connected to

another. If there is any layer between the input layer and the output layer, it is called a hidden layer.

Because the ANN is highly connected, the theoretical analysis of a multilayer ANN is challenging

to undertake. The use of hidden layers of neurons makes the learning process obscure, and the

understanding of what happens in those hidden neurons is a subject of proper research [20].

The most common algorithm to update the neuron’s weights and biases for training is

the backpropagation algorithm. It is evaluated in two phases: the ANN weights and biases are

fixed (and randomly generated if it is the first time) in the forward phase. The input signal is

propagated through the entire ANN during this phase.

The backward phase occurs when an error signal is propagated through the ANN from

output to input. The adjustments of weights and biases of the ANN are made during this phase.

[21]. The training algorithm’s primary goal is to minimize the output error when comparing

the classification result with the ground truth. The propagation signals used in both phases are

shown in Figure 2.7.
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Figure 2.8 shows an example of a multilayer ANN with two hidden layers. The

classification is performed when the signal flows from the inputs to the outputs. Each output

corresponds to a class, and the output with the higher value is the class chosen by the ANN based

on the selected input. The softmax function is commonly used at the end of multilayer ANN to

select the output with a higher value automatically.

Figure 2.7: Propagation signals

(HAYKIN, 2009)

Figure 2.8: Multilayer perceptron
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2.3.3 Overfitting and underfitting

The main difficulty in training neural ANN is to avoid underfitting and overfitting the

accuracy of the ANN. The underfitting problem can occur when the ANN fails to classify a

determined dataset. It can be related to the dataset’s size being too small and insufficient to

differentiate the classes and not enough training. The dataset is also divided into training and

test, so the proportion of the dataset used to train and test can lead to overfitting or underfitting.

The overfitting problem is related to the ability to classify a training dataset perfectly

but performing poorly in test datasets that are different from the training dataset. It can be related

to the ANN size and excessive training, the ANN memorizes the training data [21].

A technique called Dropout [22] can be used to prevent overfitting in a ANN. This

technique consists of randomly disconnect neurons from each layer during the training. There



24

are also other techniques like L1 regularization (Lasso Regression [23]) and L2 regularization

(Ridge Regression [24]) and soft weight sharing [25][26].

2.3.4 Normalization and standardization

One of the most common and efficient kinds of normalization is the z-score normalization,

also called standardization. It removes the mean and scales the input to unit variance [27]. Also,

many elements used in a machine learning algorithm, such as L1 and L2 regularizers, assume

that the ANN input is centered around zero and variance of the same order [28]:

𝑧 =
(𝑥 − 𝜇)
𝜎

(2.39)

where 𝑥 is the input, 𝜇 is the mean of the input, 𝜎 is the standard deviation of the input and 𝑧 is

the normalized output. Any kind of normalization of data before the training of neural ANN is

often beneficial to the ANN performance. However, it has been shown that if the training data is

too large, the difference between the ANN performance (considering original and transformed

data) is small. It is because ANN have the capabilities of learning all characteristics from a

dataset [29] [30] [31].

2.4 WORKING WITH EMBEDDED SYSTEMS

The most used types of numbers in computing are floating-point numbers. Their

accuracy and range are high enough to solve numerous problems with only 32 bits. The 32-bit

floating-point numbers are called single precision. For 32-bit numbers, 8 bits are used for

the exponent, while 23 bits are used for the mantissa. The first bit of the number is used to

define its positive or negative sign, completing the 32 bits [32]. Many embedded systems have

specific hardware for accelerating calculations involving floating-point numbers. The name given

to this type of hardware is Floating-Point Unit (FPU). The IEEE (Institute of Electrical and

Electronics Engineers) 754 Standard defines the representation of the floating-point number for

Floating-Point Arithmetic (Figure 2.9).

Figure 2.9: Floating-point number representation
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(Adapted from PYEATT AND UGHETTA, 2020)

The representation of fixed-point numbers is shown in Figure 2.10. The first bit can

be used to define the positive or negative sign of the number. The rest of the bits are divided

between integer and fractional parts. One of the notations used to define fixed point is the format

𝑄(𝐼, 𝐹), where I represents the number of bits for the integer part and F represents the number

of bits for the fractional part [32].
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Figure 2.10: Fixed-point number representation
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Fixed point numbers are widely used when hardware needs to be fast and straightforward.

Their implementation is more manageable than floating-point numbers. They can work with

fewer bits when the precision and range allows, thus taking up less space in memory. The

transformation of floating point numbers into fixed point is done through the Tensorflow library

[33]. The main characteristics of fixed-point numbers are their range and resolution. Both are

shown in Table 1 for a specific number of fixed-point numbers in Q format [32].

Table 2.2: Fixed-point numbers range and precision

Q format number Minimum Maximum Precision
Q0.15 -0.5 0.49996948 3.0517578e-05

Q1.14 -1 0.99993896 6.1035156e-05

Q2.13 -2 1.9998779 1.2207031e-04

Q3.12 -4 3.9997559 2.4414062e-04

Q4.11 -8 7.9995117 4.8828125e-04

Q5.10 -16 15.999023 9.7656250e-04

Q6.9 -32 31.998047 1.9531250e-03

Some processor architectures like Advanced Risc Machine (ARM) have libraries

available for processing ANN developed specifically for best use of the architecture (like CMSIS-

NN [34]). The use of ANN in embedded systems is done using numbers in fixed-point format. The

fixed-point numbers usually vary between 8 and 16 bits depending on the precision required and

available space in memory. Fixed-point numbers with more bits can describe decimal numbers

with more precision while occupying more memory. Some researches on the implementation of

ANN in embedded systems even use less than 8 bits [35].
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3 METHODOLOGY

This chapter is divided into topics to understand better all the methodology involved in

developing this project. The first step is to correctly generate all desired modulation signals and a

white noise signal with the same power to calculate features. The normalization of the modulated

signals prior to the calculation of the features is arbitrary, because if needed, the normalization in

amplitude is described in the feature’s equation. However, all signals will be generated with 0

dBW power so that the comparison between the signals is straightforward, and to be easier to add

the white Gaussian noise with the desired signal-to-noise ratio.

After the generation of signals is validated through the time domain plot and the scatter

plot (constellation diagram), the features that will be effectively used will be selected based on

the embedded system’s performance and their capability to recognize modulations of the neural

network. With the dataset created and the features selected, the next step is to search for a good

performance neural network to achieve the desired results in accuracy and resources needed to

run the system. The search for a good network includes a parameter sweep analysis, like changing

the number of neurons by layer and the number of layers.

After the neural network is selected, the next step is to implement that network into

the embedded system using the tools available. The selected embedded system is the ARM

Cortex-M7 [36], one of the high performance and low-cost system available on the market.

The processor is embedded in an ST Microelectronics NUCLEO-H745ZI-Q board, using an

STM32H745ZI microcontroller unit [37] [38]. This device was selected because it is expected to

be more than enough to accomplish its task concerning the memory available and the processor’s

instruction set.

The results obtained by the embedded network can be compared to the ideal network

trained on the PC. The goal is to pass a modulated signal through both systems and compare the

results, as shown in Figure 3.1. All features calculations on the PC are made using Python 3 and

an Intel Core i7 8700 processor, and the neural networks are trained using Google’s Tensorflow 2

API (Application Programming Interface) with NVidia’s RTX 2060 GPU (Graphic Processing

Unit) to accelerate the training time.

Figure 3.1: Proposed methodology for comparing results

Features extraction + ANN (TensorFlow API)

NUCLEO-H745ZI-Q
STM32H745ZI MCU

(ARM Cortex-M7)

Features extraction (CMSIS-DSP)
+

Embedded ANN (CMSIS-NN)

Results
comparison

Generate a 
modulated signal

Apply
AWGN Channel

PC Intel Core i7-8700 +
NVidia RTX 2060 UART UART

(THE AUTHOR, 2020)
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3.1 GENERATION OF MODULATED SIGNALS

For every new frame, a random binary stream is generated with size 𝐿 log2(𝑀) so that

when the modulation occurs, every frame has the same number of symbols. The shaping filter

selected is the raised cosine (RC) filter, with a roll-off factor of 0.2, 8 samples per symbol, and

filter span equals 10. Since this project’s intuit is not to study the effects of a pulse-shaping filter

during the modulation classification, the parameters used are the default values encountered

in MATLAB software. The raised cosine filter is often used in wireless communications, and

its primary goal is to eliminate or control intersymbol interference. This distortion causes one

symbol to interfere with subsequent symbols [6] [39].

The signal coming in the antenna is unknown, and the receiver does not know the

incoming signal phase to synchronize itself. A normal distribution of values with zero mean and

standard deviation equal to one radian will be generated for the initial random phase to simulate

that behavior. For the simulation to be more controlled and the same initial phases to be tested

for all SNR values, a fixed number of phases will be generated equal to the number of frames

created.

All signals will be created in MATLAB with 32-bit floating-point precision because

it is the maximum floating-point precision that the selected embedded system can calculate in

hardware, and the proposed modulations to be used are BPSK, QPSK, 8PSK, 16QAM, and

64QAM. One of the objectives of this work is to reduce the number of features used in a

feature-based classification looking for optimization concerning hardware use. Because of that,

only five modulations were selected among all modulations used by other paper’s work in the

state-of-the-art. All features will be extracted from the white Gaussian noise to be used as an

input to the neural network to see if the network can identify if it is receiving a modulated signal

or just noise.

Algorithm 1 Dataset generation

for all modulations do
for 𝑆𝑁𝑅 = −10 to 20 with step = 2 do

for 𝑓 𝑟𝑎𝑚𝑒 = 0 to 1000 do
generate new frame

apply random phase offset

normalize power

end for
end for

end for

3.2 FEATURE SELECTION

After studying all features, it is intended to select a few of them to be used in the

final neural network. The proposal is to reduce the computational cost and thus reduce energy

consumption, aiming at the application in low-budget embedded systems.

The methodology of selecting the features will be to analyze these features’ behavior

with the signals modulated in different SNR and phase configurations. All the selected features

for this work will also be implemented in an embedded system to analyze the calculation time and

computational complexity required. Based on this information, it will be possible to considerably

reduce the number of features used in the final neural network.
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Other feature selection methods can be found in the literature, and they take into account

the importance of the feature to the ANN using mathematical analysis. However, as this project

requires a finite time to be done, they will be left for future work.

3.3 ARTIFICIAL NEURAL NETWORKS

The artificial neural network consisting of an input layer, three hidden layers and an

output layer is trained done using the Keras API for Tensorflow. The dataset will consist of 1000

frames per SNR for each modulation. This database of the modulated signals will be converted

into two distinct datasets, one containing all the studied features and the other containing the

values of the best-selected features, where 𝑁 is the number of selected features (Figure 3.2).

The noise is simulated with the same power multiple times for the variation of SNR of other

modulations. It is done to simplify the matrix use and creation of the dataset and store it in

memory.

The goal behind creating datasets with a different number of features is to compare the

performance of neural networks to define whether or not it is viable to use only a few features to

classify modulations. Both neural nets will be trained using different parts of the dataset. The

first training will be done with all available SNR values. Then newly trained nets will be created

only with SNR equal to or greater than zero. Finally, new networks will be created and trained

with SNR equal to or greater than 10 dB. With this result, it will be possible to identify whether

neural network training with low SNR values is viable. Every neuron network will use all the

available techniques to avoid overfitting.

Figure 3.2: Distinct datasets in detail
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(THE AUTHOR, 2020)

Figure 3.3 summarizes how the communication between PC and the embedded system

will occur. The neural network’s weights and biases will be converted into 16 bit fixed-points

and sent to the board via UART communication because the CMSIS-NN requires it to evaluate

the ANN. The board will respond with an echo of all received values, and if this echo is valid,

then the communication can continue. The standard scaler used to normalize and standardize the

data before training is also sent to the board and validated through the same echo process. After

this first part of sending data to the board, the embedded system will wait until a full frame of

4096 32-bit floating-point values is sent (2048 for In-Phase and 2048 for Quadrature).

The frame size controls the number of symbols that can be used to calculate features,

so with a higher number of samples and symbols, the features will be more accurate. However,
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it will also need more available memory in the embedded system. Choosing a frame size is

a compromise between feature precision and memory allocation, and 2048 samples are the

maximum power of 2 number samples that does not overflow the selected embedded system. The

frame size needs to be a power of 2 so that the Fast Fourier Transform (FFT) algorithm can be

used. After calculating features by the embedded system, the features are standardized using

the previously sent standard scaler, and then the features are input into the neural network. The

classification result is sent back to the PC to compute accuracy and store the data.

Figure 3.3: Embedded system communication and tests
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The neural network to be implemented in an embedded system will be the network that

will have the best features as input and is optimized regarding the number of neurons by layer.

The optimization of neural networks will be done using the sweeping tools available at Weights

and Biases website and Python library to track the experiments [40].

The neural network could be implemented using 32 bits in floating-point. However, the

use of numbers and calculations in fixed-point reduces memory use and allows the neural network

to be embedded in systems without floating-point calculation capabilities. The calculation of

the features is done using floating-point numbers. It ends up requiring an FPU or a processor

that can calculate floating-point numbers, so it would be interesting to transform the features

into fixed-point numbers. However, the analysis of the feature’s performance in fixed point is

better suited for future work. The last test will compare the neural network implementation in the

embedded system and its version generated in Python 3.8 on the PC.

For the embedded system, the programming language for the implementation is C. The

C++ language was also available, but the object-oriented language is not necessary for this

project. The main library used for the signal processing and neural network is the CMSIS from

ARM [34].
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4 RESULTS AND DISCUSSION

The results are written based on the methodology’s topics, starting from the generation

of modulated signals to the final implementation and comparison of the ANNs.

4.1 MODULATED SIGNAL GENERATION

Figure 4.1 shows a BPSK signal waveform generated for the entire dataset. To be more

comfortable to visualize, the time domain signal is cut to the first 250 samples, and the simulation

was done without the addition of noise. On the left, the constellation of this modulation is shown

using a scatter plot, and on the right is the time domain plot. Every scatter-plot used in this work

shows the ideal symbol position for the modulation in context with average unit power and all

the symbols simulated via software after applying the RC filter. The results show that the filter

changes the symbols’ position regarding the ideal mathematical symbol for every modulation.

For the validation of the signals in the dataset, the initial phase offset was turned off.

Figure 4.1: BPSK signal example

(a) BPSK scatter plot (b) BPSK time domain plot

The BPSK signal generation is valid because only the In-Phase signal on the time

domain plot for the initial phase equals zero. The symbols are grouped around the ideal symbols

expected for this modulation. Figure 4.2 shows a QPSK signal and Figure 4.4 shows a 8PSK

signal. Both modulations were simulated correctly because the constellation position after the

application of RC filter matches with the ideal symbols, but of course with a slight deviation

caused by the filter.

It is shown in Figure 4.3(a) that the application of a 𝜋/8 phase offset changes the position

of the constellation regarding the ideal one. The waveform is multiplied by 𝑒 𝑗𝜃 , where 𝜃 is the

phase angle, resulting in a rotation of the signal constellation. Figure 4.5 shows the 16QAM

signal waveform and its constellation, and Figure 4.6 shows the same for 64QAM. Just like the

PSK signals, both 16QAM and 64QAM have their constellation matching with what is expected

from the theory.
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Figure 4.2: QPSK signal example

(a) QPSK scatter plot (b) QPSK time domain plot

Figure 4.3: QPSK signal example with phase offset

(a) QPSK scatter plot with phase offset (b) QPSK time domain plot with phase offset

Figure 4.4: 8PSK signal example

(a) 8PSK scatter plot (b) 8PSK time domain plot
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Figure 4.5: 16QAM signal example

(a) 16QAM scatter plot (b) 16QAM time domain plot

Figure 4.6: 64QAM signal example

(a) 64QAM scatter plot (b) 64QAM time domain plot

All the generated signals are considered the transmitted signals over-the-air received and

converted to baseband by the quadrature demodulator. From this point forward, the modulation

signal is a complex envelope containing In-Phase and Quadrature components, and all features

are calculated using these complex signals.

4.2 FEATURES EXTRACTION

After calculating features from all generated frames of all modulations, it is necessary

to analyze the behavior of the feature’s values. This analysis is done to see if the values of the

features are different for every modulation for the selected range of SNR in the methodology.

The features are being extracted from at least 100 frames for each selected SNR because

each frame has its initial phase, and it can change the feature’s value. In the end, the mean value

of the feature for those 100 frames is calculated for the visual analysis to be more accessible.

Also, since the ANN is trained with thousands of frames, and the values of the weights and
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biases are updated using small batches of features, it can be expected that the average value of

the features will prevail.

Figure 4.7 shows an aggregate of a hundred frames for each modulation plotted at the

same graphic for the 𝛾𝑚𝑎𝑥 feature. This graphic demonstrates how the feature’s value varies

depending not only on the noise but on the received phase offset. A mean value is taken for each

modulation to simplify the visualization, and the result is shown in Figure 4.8. The 𝛾𝑚𝑎𝑥 feature

is expensive computationally because of the need for a Discrete Fourier Transform (DFT).

Figure 4.7: Feature 1 - 𝛾𝑚𝑎𝑥 with 100 frames plotted for each modulation and the noise

Figure 4.8: Feature 1 - 𝛾𝑚𝑎𝑥 with the mean of 100 frames plotted for each modulation and the noise

Considering Figures 4.7 and 4.8, the variation of noise in the modulated signals changes

the value of the 𝛾𝑚𝑎𝑥 feature from less than 20 for all modulations up to almost 120 in one of the

8PSK frames. All modulations show the same result, on average, from -10 dB to 20 dB of SNR,

aside from BPSK, which seems to give an average result of 𝛾𝑚𝑎𝑥 below the other modulations.

The features 2 and 3 shown in Figures 4.9 and 4.10 are very similar in behavior

considering the variation of SNR. Besides the amplitude difference, feature 2 is more smooth,

so it is more robust to phase offset and noise changes. Both features come from calculating the

instantaneous phase of the modulated signals, and BPSK is more distinguishable from the other

modulations when the SNR goes high.
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Figure 4.9: Feature 2 - Standard deviation of the abs. value of the non-linear component of the instantaneous phase

Figure 4.10: Feature 3 - Standard deviation of the non-linear component of the instantaneous phase

Figure 4.11 illustrates feature four and shows that it tends to separate all modulations’

values when the SNR is high. However, for SNR equal and below 8 dB, QPSK and 8PSK

modulations have the same value of the feature, and BPSK intercepts 16QAM at 8 dB and

64QAM at 12 dB. This behavior can lead to a decrease in the ANN’s accuracy for these discussed

values and modulations.

Feature five, on the other hand (Figure 4.12), does not separate very well the modulated

signals. This behavior occurs because the signals studied in this project are not modulated in

frequency. Therefore the standard deviation of the instantaneous frequency is not suitable for

classifying amplitude and phase-modulated signals. It is a proven mistake of this work to have

selected such features to study.

Figure 4.13 shows the mean value of the signal magnitude, and it looks good to separate

QPSK and 8PSK from the other modulations but not between them. The ANN can use these

feature values to help classify QPSK or 8PSK in addition to other features.
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Figure 4.11: Feature 4 - Standard deviation of the abs. value of the normalized and centered instantaneous amplitude

Figure 4.12: Feature 5 - Standard deviation of the abs. value of the instantaneous frequency

Figure 4.13: Feature 6 - Mean value of the signal magnitude
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For feature 7, shown in Figure 4.14, its similarity to the previous feature is quite

apparent, differing only by its magnitude values. It can be observed that the difference between

its maximum and minimum values for this SNR variation is two orders of magnitude smaller

than feature 6. These small values can be a problem for identification by the ANN. If, on average,

the feature value is almost the same for every modulation, with a random initial phase, they will

merge like feature 1.

Figure 4.14: Feature 7 - Normalized square root value of sum of amplitude of signal samples

Feature 8 (Figure 4.15) is one of the best features used so far because it shows a clear

separation between the values corresponding to QPSK and 8PSK modulations considering an

SNR above 5 dB. Each modulation curve follows a different path. This differentiation is important

for this project, since most features seen so far do not show a clear separation, on average, for

these modulations.

Figure 4.15: Feature 8 - Kurtosis of the normalized and centered instantaneous amplitude

Feature 9 presents a problem concerning the differentiation between QAM signals.

Figure 4.16 indicates that both 16QAM and 64QAM modulations show the same average value

through all frames studied for almost all SNR values. The second-order cumulants are shown in

Figures 4.17 and 4.18. None of these cumulants gave any satisfactory result because the only

modulation that had an advantage in its identification was the BPSK modulation through Feature

10.
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Figure 4.16: Feature 9 - Kurtosis of the instantaneous frequency

Figure 4.17: Feature 10 - Cumulant 20

Figure 4.18: Feature 11 - Cumulant 21
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The fourth-order cumulants are arranged in Figures 4.19 to 4.21. Feature 12 (Figure

4.19) manages to differentiate the PSK modulations very well. There is a slight difference for

the QAM modulations, but it is not considered satisfactory considering the other modulations’

difference. Feature 13 (Figure 4.20) shows the same behavior as Feature 10 (Figure 4.17), so it

can be discarded because it needs more calculations steps with no actual benefit.

Figure 4.19: Feature 12 - Cumulant 40

Figure 4.20: Feature 13 - Cumulant 41

Feature 14 (Figure 4.21) is similar to Feature 12, but it has the disadvantage of mixing

QPSK and 8PSK completely. Here, one can see that after analyzing many features giving relative

values between QPSK and 8PSK, if MPSK modulations with 𝑀 > 8 were used, it will probably

be merged with QPSK and 8PSK.

Sixth order cumulants require a longer processing time but do not offer a good cost-

benefit. Of the cumulants analyzed, Feature 16 and Feature 18 (Figures 4.23 and 4.25) gave

the best result, separating QPSK and 8PSK, respectively, from the other modulations. The

only problem is that these cumulants have not yet offered an essential differentiation for QAM

modulations. As none of the features presents a clear differentiation for the QAM modulations,

the ANN will have difficulties classifying the selected QAM modulations.
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Figure 4.21: Feature 14 - Cumulant 42

Figure 4.22: Feature 15 - Cumulant 60

Figure 4.23: Feature 16 - Cumulant 61
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Figure 4.24: Feature 17 - Cumulant 62

Figure 4.25: Feature 18 - Cumulant 63

After visualizing all features’ behavior, they were implemented in the embedded system

(ARM Cortex-M7). A selection of the best features could be made considering the graphic

results and their computational complexity and hardware use. The Table 4.1 was generated to

compare calculation errors between PC and ARM and their times (measured in clock cycles).

Because there are errors in the calculations comparing the embedded system and the PC, it can

be expected that the implemented ANN will not show the same performance as the original.

The features selected as the best are arranged in Table 4.2. The first feature selected aims

at detecting the BPSK modulation. The second feature serves to differentiate all the modulations

used in this work. The third feature was selected for its low complexity compared to the others

and still helps separate the PSK and QAM modulations, except for the BPSK, as previously

discussed. The fourth feature also serves to differentiate all modulations, and the last two features

selected are the best cumulants that need less than 200000 clock cycles to be computed.

It is expected that the reduction of the number of features for the ANN will have a

decrease in accuracy because, from the eighteen available features from the literature review, only

a third of these features remain. Training a ANN with a third of the available information about
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the modulations is a risky solution. Even if this available information is not precisely the best, the

ANNs can learn something from it, thus giving the best performance over the minimal network.

To measure the performance of the ANNs, they were trained using different ranges of

SNR. This training expects to see if the ANNs can classify modulating signals with negative

SNR and the networks’ general behavior for all ranges. Even if the ANN is trained using a small

variety of SNR, they are tested using all defined range.

Table 4.1: Feature calculation timing

Features and instantaneous values Aprox. max error Timing
Inst. absolute value 1.19E-07 39786

Inst. phase value 2.38E-07 173906

Inst. unwrapped phase value 1.91E-05 239044

Inst. frequency value 6.34E-07 304598

Inst. centered norm. amp. value 1.43E-06 124762

01 - Gmax 3.81E-06 209080

02 - Std. dev. of the abs. inst. phase 3.15E-04 182906

03 - Std. dev. of the inst. phase 4.06E-04 178930

04 - Std. dev. of the abs. inst. centered norm. amp. 6.01E-05 133080

05 - Std. dev. of the inst. frequency 4.47E-08 309450

06 - Mean value of the signal magnitude 5.36E-07 43994

07 - Norm. square root value of sum of amp. 5.59E-09 54732

08 - Kurtosis of the centered norm. amp. 2.56E-06 66854

09 - Kurtosis of the centered norm. frequency 8.58E-06 331902

10 - Cumulant 𝐶20 4.17E-07 39570

11 - Cumulant 𝐶21 4.17E-07 55132

12 - Cumulant 𝐶40 1.28E-05 88922

13 - Cumulant 𝐶41 4.29E-06 147356

14 - Cumulant 𝐶42 2.62E-06 147098

15 - Cumulant 𝐶60 6.48E-05 158548

16 - Cumulant 𝐶61 4.29E-05 273214

17 - Cumulant 𝐶62 3.72E-05 370714

18 - Cumulant 𝐶63 3.24E-05 375430

Table 4.2: Selected features

Selected features Aprox. max error Timing
02 - Std. dev. of the abs. inst. phase 3.15E-04 182906

04 - Std. dev. of the abs. inst. centered norm. amp. 6.01E-05 133080

06 - Mean value of the signal magnitude 5.36E-07 43994

08 - Kurtosis of the centered norm. amp. 2.56E-06 66854

12 - Cumulant 𝐶40 1.28E-05 88922

14 - Cumulant 𝐶42 2.62E-06 147098

4.3 ARTIFICIAL NEURAL NETWORKS

Using a generic ANN with hyperparameters described in Table 4.3. Apart from the

default values found in Tensorflow and Keras, the ReLU activation function recommended, as
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discussed in Chapter 2, all other values were random guesses. The ANN use 80% of the input to

train the weights and biases and 20% to validade the training.

Table 4.3: Generic neural network

Hyperparameter Values
Activation function ReLU

Batch size 32

Dropout 0.4

Epochs 10

Number of hidden layers 3

Layer size 18

Optimizer RMSprop (default)

Learning rate 1e-3 (default for RMSprop)

The result of ANN training for applying the six best selected features studied in this

work in all the proposed SNR values is in Figure 4.26(a). It is possible to observe good accuracy

for most of the modulations, except for 64QAM, because its peak is at 90% accuracy in 2 dB

of SNR, and it behaves poorly for higher and lower SNR values. Thinking about a device that

will often adapt its connection link due to changes in the telecommunication channel, it can be

expected that the received signals will have a high SNR value during most of the communication.

So the neural network must correctly classify signals with high SNR.

Training the network with all SNR values is interesting for detecting MPSK modulations

with low SNR. This finding can be used in future work to implement a system capable of working

in harsh environments. By changing the database to SNR values equal to or greater than zero dB,

an interesting phenomenon occurs (Figure 4.26(b)). First, the BPSK modulation is identified

with lower SNR values. Then QPSK requires more SNR to be classified, and finally, the 64QAM

modulation is a bit better, reaching above 90% from 2 dB to 9 dB of SNR.

Figure 4.26: Training with different datasets

(a) Example of ANN accuracy trained with all dataset (b) Example of ANN accuracy trained with 0 dB to 20 dB of SNR

Finally, training only with SNR values equal to or above 10 dB, the result is shown in the

Figure 4.27. There is a clear improvement in ANN accuracy, especially for 64QAM modulation.

The only disadvantage is that the neural net cannot identify any modulation with negative SNR

and needs values above 15 dB SNR to discern 16QAM modulation with accuracy above 80%.
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Considering the three ANNs trained so far, both ANNs shown in Figures 4.26(b) and 4.27 have

advantages versus the other. The only problem with the ANN in Figure 4.26(b) is that 64QAM

drops too much its accuracy for higher SNR values, and it seems to work properly for a range of

SNR in which 16QAM does not work. This behavior also occurs in Figure 4.27, but in this case,

there are more points in which both modulations can be classified with more accuracy.

Figure 4.27: Example of ANN accuracy trained with 10 dB to 20 dB of SNR

The best method to train the ANN is to use the dataset that gives the best accuracy for

all modulations for a given SNR. The last trained ANN gives at least around 60% accuracy for

all modulations above 13 dB of SNR. With the Weights and Biases website and Python library, a

sweep was made using the hyperparameters shown in the columns of Figure 4.28. The Weights

and Biases sweep algorithm has an optimization that selects the next iteration based on the ANN

evaluation.

Figure 4.28: Hyperparameter sweep
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The columns of Figure 4.28 show the sweep range for each hyperparameter, and the

colors identify the final accuracy. Figures 4.29(a), 4.29(b) and 4.30 show the accuracy obtained

training a few ANNs with only the six best features selected before and dataset with only 10

dB to 20 dB of SNR. The x-axis for these graphics shows the number of neurons used for each

hidden layer. Each circle in the graphic corresponds to a fully trained ANN with three hidden

layers, but with the hidden layer in focus with the number of neurons determined by the x-axis.

Figure 4.29: Hidden layers 1 and 2 size
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(a) Hidden layer 1 sweep
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(b) Hidden layer 2 sweep

Figure 4.30: Hidden layer 3 sweep
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The moving average for the overall accuracy of the trained ANNs is also shown in these

graphics. It is easier to see if adding neurons to hidden layers is optimal. It can be seen that

with some neurons above 15, approximately for all figures, the accuracy of the ANN is almost

optimal, not raising much after adding more neurons.

After finding the approximate optimal range to look for the number of neurons for each

hidden layer, a series of ANNs were trained using another sweep of parameters, but this time

trying to find the best number of neurons by layer from 15 neurons minimum to 30 at maximum.

Figures 4.31(a) and 4.31(b) show the accuracy results for the training of a few ANNs.

The x-axis identifies different ANNs for both figures. The most accurate ANNs on training and

validation were identified with a star. It can be seen that the best ANN is not the same for training

and validation. Also, the validation accuracy is higher than the training accuracy, which is not

expected.
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Figures 4.32(a) and 4.32(b) show training loss and validation loss, respectively. Just

like the accuracy results, the validation loss is better than the training loss. It was expected that

the validation accuracy and validation losses were worst than the training ones. Because from

the dataset selected for the ANN training, actually 80% of this dataset was used for real training,

i. e., updating weights and biases of the network, and only 20% was used to validate the ANN to

make sure that there is no overfitting.

Figure 4.31: Accuracy for the ANN sweep
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(b) Validation Accuracy

Figure 4.32: Loss
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(a) Loss
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(b) Validation Loss

The structure found that fits the best the automatic modulation classification with six

features is shown in Figure 4.33. The number of neurons and the activation functions is described

together with the dropout rate used to avoid overfitting in the network. Converting this ANN

to fixed-point numbers was done looking for the best Q-format number for the input, weights,

biases, and outputs of every layer (Table 4.4.

The best Q-format number for quantization is the best range of values that fits the number

to be quantized; the ranges are shown in Table 2.2. Since the quantization of a floating-point

number takes out half of the bits used to give its precision, it is expected that the fixed-point

number has a quantization error, and this error for the weights and biases of the ANN is shown in

Table 4.5.
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Figure 4.33: Final ANN structure
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Figures 4.34(a) and 4.34(b) show the final results for this project based on the best

ANN found in the hyperparameter sweeps. These figures compare the best ANN’s accuracy and

evaluated on PC versus the same network quantized and evaluated by the embedded system and

using features calculated inside that system.

The errors found in calculating the features by the embedded system and the quantization

error can explain why both graphics are not the same. Some overflow in the embedded system

causes errors found in the feature calculations. Since both on the PC and on the embedded

system the calculations are done with 32 bits floating point, these errors should not exist. Another

explanation is that using the standard C language libraries may have lower precision on the

embedded system when a numerical approximation is made.

The details of the Figures 4.34(a) and 4.34(b) are shown in Tables 4.6 and 4.7. The

figures and tables were generated using data from one hundred frames by modulation and by

SNR (ARM) and one thousand frames by modulation and SNR (PC). The absolute precision of

the data presented is 1% for the embedded system and 0.1% for the PC.

Table 4.4: ANN quantization

Location in the network Optimal Q number format
Input Q3.12

Layer 1 weights Q2.13

Layer 1 biases Q1.14

Layer 1 outputs Q4.11

Layer 2 weights Q1.14

Layer 2 biases Q0.15

Layer 2 outputs Q4.11

Layer 3 weights Q0.15

Layer 3 biases Q0.15

Layer 3 outputs Q4.11

Layer 4 weights Q0.15

Layer 4 biases Q1.14

Layer 4 outputs Q4.11

Layer 5 weights Q3.12

Layer 5 biases Q1.14

Layer 5 outputs Q2.13
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Table 4.5: Quantization error

Location in the network Maximum error
Layer 1 weights 3.05e-05

Layer 1 biases 7.39e-06

Layer 2 weights 1.52e-05

Layer 2 biases 5.87e-06

Layer 3 weights 7.54e-06

Layer 3 biases 7.53e-06

Layer 4 weights 7.59e-06

Layer 4 biases 1.38e-05

Layer 5 weights 6.1e-05

Layer 5 biases 9.15e-06

Figure 4.34: Results comparison between PC and embedded system

(a) Accuracy results for best NN on PC (b) Accuracy results for best NN on ARM

Table 4.6: Accuracy results for best NN on PC

Signals accuracy
SNR (dB) BPSK QPSK 8PSK 16QAM 64QAM Noise

-10 to -2 0 % 0 % 0 % 0 % 0 % 100 %

0 0 % 0 % 0 % 0 % 0 % 100 %

2 36.1 % 0 % 0 % 0 % 0.2 % 100 %

4 100 % 0 % 18 % 0 % 16 % 100 %

6 100 % 0.4 % 97.8 % 0 % 75.2 % 100 %

8 100 % 89.4 % 100 % 0 % 97.6 % 100 %

10 100 % 100 % 100 % 2.8 % 99.9 % 100 %

12 100 % 100 % 100 % 31.1 % 98.2 % 100 %

14 100 % 100 % 100 % 71.5 % 90.7 % 100 %

16 100 % 100 % 100 % 89.3 % 77.8 % 100 %

18 100 % 100 % 100 % 95 % 68.5 % 100 %

20 100 % 100 % 100 % 98.3 % 58.9 % 100 %
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Table 4.7: Accuracy results for best NN on ARM

Signals accuracy
SNR (dB) BPSK QPSK 8PSK 16QAM 64QAM Noise

-10 0 % 0 % 0 % 0 % 0 % 98 %

-8 0 % 0 % 1 % 0 % 0 % 97 %

-6 0 % 0 % 0 % 0 % 0 % 100 %

-4 0 % 0 % 0 % 0 % 0 % 99 %

-2 0 % 0 % 0 % 0 % 0 % 99 %

0 0 % 0 % 0 % 0 % 0 % 99 %

2 43 % 0 % 0 % 0 % 0 % 100 %

4 100 % 0 % 20 % 0 % 17 % 99 %

6 100 % 1 % 100 % 0 % 79 % 100 %

8 100 % 93 % 100 % 1 % 95 % 98 %

10 100 % 100 % 100 % 28 % 100 % 99 %

12 100 % 100 % 100 % 77 % 83 % 96 %

14 100 % 100 % 100 % 90 % 62 % 100 %

16 100 % 100 % 100 % 97 % 52 % 97 %

18 100 % 100 % 100 % 99 % 31 % 100 %

20 100 % 100 % 100 % 100 % 29 % 96 %

The number of frames by modulation and SNR evaluated by the embedded system is

ten times smaller than the PC version. The serial communication and validation of data take

at least 4 seconds per frame. Every time something changes regarding the ANN, every tested

frame needs to be tested again. Using 100 frames, six different signals, 16 different SNR values

give 9600 frames that need to be sent and validated, approximately 10 hours and 40 minutes.

Multiplying the result by 10 (that is, the entire dataset) is four days, 10 hours, and 40 minutes.
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5 CONCLUSION

The correct generation of modulated signals with a wide range of SNR was crucial for

analyzing the features and neural networks training. This analysis showed that, on average, values

of each feature change according to noise and facilitated a selection of better features to be used

in the final neural networks. Besides their numerical behavior, the analysis of computational use

of the implementation of the features was an essential factor in eliminating the most expensive

features that do not give a favorable result to the point of cost-benefit.

Also, the individual study of features was important to understand from which SNR

value this feature becomes usable. Most features ended up showing an average behavior that

favors the detection of modulations for high SNR values. Some features like Cumulant C21 and

Gmax ended up giving horrible results, and it was not possible to identify the modulations used.

This information can define an operating point for the device if it is turned into a product.

With the best-selected features and some trained neural nets, it was possible to observe

the net’s behavior for training with different SNR values. It was observed that training neural nets

with much noise hinders their performance and confuses the net, causing the QAM modulations

to be misinterpreted by the ANN and causing the hit rates to be misaligned. When 64QAM is

classified with higher accuracy, 16QAM is not, and vice versa.

Supposing this behavior occurs for QAM modulations. In that case, it is expected that if

the same neural network architecture and features were used to classify modulations with higher

spectral efficiency, such as 256QAM and 1024QAM, the classification result of the network as a

whole would be worse.

Also, training with low SNR causes the accuracy for high SNR to drop for the QAM

modulations. It is not good, because as discussed before, it is expected that the device is receiving

a high SNR modulation signal most of the time. After optimizing the neural network with only

six features, its quantization was done, looking for the best Q formats representing the numbers

found in the network weights and biases.

The quantization error is as small as possible because a simple algorithm was developed

to look for the best Q-format representation that fits into the data that is being quantified. The

final results show that using a feature-based modulation classification using neural networks can

be done, expecting it to be as good as the PC version. Further work can be done looking for

the quantization effects on the calculation of features and the impact on the neural network’s

accuracy.

The achievement of this paper is not its result regarding the accuracy found in the

ANN or its implementation in an embedded device, but rather to show that after this first step

many future topics can be followed. The first work that can be done on improving this is on a

better selection of features and even the development of a feature with suitable characteristics to

differentiate QAM modulated signals.

After this, a second possible work is to optimize the C implementation for more ARM

processors, DSPs (Digital Signal Processors), and other embedded system architectures that exist

on the market. The ARM architecture has the advantage of having a floating-point multiplier,

which is not always the case for other processors. It would be interesting to research how to

calculate features using only fixed-point numbers. With this, this implementation in embedded

systems becomes broader, and at the same time, there is the difficulty of dealing with more

quantization errors.
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Finally, it would be interesting to research different neural network and machine learning

architectures that can solve the modulation classification problem more simply and objectively,

with their implementation in an embedded system to make a comparison.
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