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RESUMO

É bem sabido que existe uma conexão interessante entre a função geradora de span­

ning tree S TG F  (spanning tree generating function) T(z)  e a função de partição do 

modelo de Ising isotrópico (sem campo magnético) na rede quadrada. Esses dois 

objetos são aparentemente diferentes. Por um lado, o STG F T(z)  é definido por meio 

de uma equação diferencial envolvendo a função geradora de probabilidade do passeio 

aleatório simples numa rede vértice-transitiva e fornece a constante de spanning tree 

para z =  1. Por outro lado, o modelo de Ising é uma ferramenta criada para modelar 

ferromagetismo no contexto de física estatística. Neste trabalho mostramos que essa 

conexão é mais geral do que apenas no caso descrito. Para mostrar isso definimos 

uma S TG F  estendida Te(z), que inc lu itodas as redes q-regulares e que se reduz a 

T (z ) quando a rede é vértice-transitiva. Fornecemos uma fórmula integral para Te(z) 

e a usamos para calcular T (z ) para todos as onze redes Arquimedianas, bem como 

para computar Te(z) para duas redes não vértice-transitivas relevantes, a rede martini 

e a rede (4, 82) covering/medial. Além disso, estabelecemos algumas conexões entre 

a STG F T(z) e a energia livre do modelo de Ising isotrópico (sem campo magnético) 

das onze redes Arquimedianas. Mostramos que a energia livre do modelo de Ising 

pode ser obtida a partir de S TG F  por meio de um conjunto de funções auxiliares, 

( K ) , . . .  , 0 nL( K ), onde nL é um inteiro positivo que depende da topologia da rede. 

No caso nL =  1 (redes quadrada, triângula, hexagonal, kagome e estrela), obtemos a 

propriedade adicional de que 0 (K c) =  1, onde K c é o ponto crítico do sistema. Também 

definimos a noção de uma função geradora de spanning tree com pesos w S T G F , 

generalizando a eSTG F , permitindo pesos nas arestas bem como sendo válida para 

redes não-regulares. Usando essa nova idéia, mostramos as relações entre o modelo 

de Ising anisotrópico (sem campo magnetico) e a w S TG F  na rede quadrada, triangular 

e hexagonal, e entre a w S TG F  e o modelo de Dímeros nas redes quadrada e triangular. 

Por último, encontramos que a energia livre de um modelo de Random Walk Loop Soup 

(definido a partir de passeios aleatórios fechados sobre uma rede) pode ser escrita em 

termos de Te(z) para qualquer rede q-regular.

Palavras-chaves: Física estatística. Função geradora de spanning tree. Modelo de 

Ising..



ABSTRACT

It has been known there exists an interesting connection between the spanning tree 

generating function STG F T(z)  and the partition function (at zero-field) of the isotropic 

Ising model on the square lattice. Those two objects are seemingly different. On the 

one hand, the S TG F T (z ) is defined by means of a differential equation involving the 

probability generating function of the simple random walk on a vertex-transitive lattice 

and gives the spanning tree constant when evaluated at z =  1 . On the other hand, 

the Ising is a simple model proposed to describe ferromagnetism under the realm of 

statistical physics. In this work we show this connection is more general than just in 

such particular case. To prove that, we define an extended spanning tree generating 

function Te(z) , which include all the q-regular lattices and reduces to the T(z), when 

the lattice is vertex-transitive. We provide an integral formula for Te(z) and use it to 

calculate the T(z) for all the eleven Archimedean lattices and the Te(z) for two relevant 

non-vertex-transitive lattices, m artin iand  (4,82) covering/medial. We establish some 

links between the STG F T(z), and the (zero-field) isotropic Ising free energy on the 

eleven Archimedean lattices. We then demonstrate that the Ising free energy can be 

derived from the STG F  via a set of auxiliary functions, f a ( K ) , . . . ,  0nL( K ), where nL 

is a positive integer that depends on the lattice topology. In the case nL =  1 (square, 

triangle, hexagonal, kagome and star lattices) we obtain the additional property that 

0 (K c) =  1 , where K c is the critical point of the system. We also propose the notion of 

a weighted spanning tree generating function w S T G F , which generalizes the eSTG F , 

allowing positive weights on the edges and being well defined for non-regular lattices. 

Using this new idea, we establish relations between the (zero-field) anisotropic Ising 

model and the w S TG F  on the square, triangle and hexagonal lattices, and between the 

w S TG F  and the Dimer model on the square and triangle lattices. Additionally, we show 

that the free energy of a random walk loop soup model (defined from closed random 

walks over the lattice) can be written in terms of Te(z) for any q-regular lattice.

Key-words: Statistical physics. Spanning tree generating function. Ising model.
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1 INTRODUCTION

1.1 GRAPHS IN PHYSICS

Often, in order to theoretically understand a real physical system we must 

develop a mathematical model that captures at least some of its main features. The 

model should allow proper calculations, helping to solve the problem, namely, to predict 

the underlying dynamics and to determine the relevant quantities associated to the 

process under study.

Therefore, it should be clear that finding connections between different objects 

in Mathematics and Physics is of fundamental importance. On one hand, this might 

provide new approaches to comprehend and express many natural phenomena. On 

the other hand, it potentially can indicate alternative points of view for the interpretation 

(and even extension) of pure mathematical theories [2] .

A useful tool, frequently used in physics with the above purpose, is a graph. A 

graph is an abstract object composed by two distinct collections of elements. Heuristi- 

cally, pairs of elements of the first type, the vertices, may or may not be connected by 

the elements of the second type, the edges. We usually represent a graph in the plane 

(although in distinct occasions we also consider higher dimensional spaces) by a set of 

points (vertices) and segments (edges). As examples of concrete realizations of graphs 

in nature (in the 3D case), we mention bulk crystalline structures. Indeed, in this kind of 

matter organization —  atoms regularly disposed and interacting through chemical bonds 

—  can be characterized by a "visible"diagram in the Euclidean three-dimensional space. 

The atoms are represented by the mentioned points and the nearby interactions by 

the segments. There are many good references treating in general terms the standard 

theory of graph, here we mention Refs. [3] and [4].

Actually, graph theory has been applied in many scientific areas: the already 

mentioned crystallography [5], random walks [6] , biology [7], computer science [8] , 

and general network structures in natural and artificial (human related) phenomena 

[9, 10, 11], to cite just a few. But in special, the mathematical theory of graphs finds 

important associations with all of Physics [12]. For instance, it is an important source of 

active research in statistical mechanics and stochastic processes [13, 14]. Given the 

particularities of the sort of systems addressed in statistical physics, when studying a 

rather involving problem, the general concept of a graph is quite useful to simplify the 

analysis. Indeed, the original system may be modeled as a discrete graph. The constitu­

ents or parts become "sites"(or vertices) and their interactions can be represented by 

"links"(or edges): no edges exist between parts which do not influence each other.
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These simplified descriptions are generally called lattice models. Among the 

most studied (and elemental) in statistical physics are the: q-state Potts, Ising (a particu­

lar case of the Potts, but generally examined in its own right), random walks loop soups 

ensembles, Dimer, etc. The latter three will be discussed in details along the present 

work. So, only to give a "flavor"of the usefulness and construction of lattice models, we 

mention that the Potts have been employed to simulate different aspects of magnetism, 

tumor migration and social demographics [14]. For its definition, one supposes a graph 

G (a specific arrangement of vertices and edges). At each edge (or site) one associates 

a spin variable a, which can assume q possible values (say, 1 , 2 , . . .  q). Only the spins at 

sites which are connected to each other (e.g., vertices A  and B) can interact. The local 

energy EAB is zero if aA =  aB and a constant value otherwise. The physical attributes 

of the Potts model will depend on the energetic configurations resulting from the whole 

G structure.

There exist deep correlations between partition functions of statistical physics 

lattice models (like the Ising, Potts and loop soups) with graph theory [14]. Consider 

again the q -s ta te  Potts as an illustration (which is universally taken as a paradigmatic 

model for investigating how micro-scale nearest neighbor energy interactions in a com­

plex system determ ine the macro-scale behavior of the system). Given a graph G, a 

notable two variables function associated to it is called Tutte polynomial (in essence, 

determining the degree of connectivity as well as the number of spanning trees (Chap. 

2) of G) [15]. Many characteristics of the Potts model in G are closely related to the 

Tutte polynomial of G [14].

In this thesis, our interest is to focus on graph theory and topology (more 

specifically, spanning trees generating functions) and their significance to solve some 

statistical physics lattice models.

1.2 LATTICE MODELS AND TOPOLOGY

When formulating lattice models, many graphs or network patterns (i.e., the 

"medium"under which the dynamics takes place) are particularly recurrent either be­

cause their prominence in actual problems or due to adequate properties (e.g., for 

facilitating calculations). As example we mention the eleven Archimedean lattices (the 

readily recognized being the square, triangular and hexagonal ones), which are tilling of 

the plane by regular polygons, where every vertex is surrounded by the same sequence 

of polygons [1]. The Archimedean lattices are periodic, thence invariant under two inde­

pendent translations in the plane. For certain lattice models, all these "nice"symmetries 

allow to perform explicit analytic computations, which otherwise would be unfeasible for 

the same systems but on other G ’s. The Archimedean lattices have been employed to
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study viruses [16] and photonic crystals [17]. Of course, there are many other important 

periodic lattices, as the Martini lattice (see Chap. 2), relevant in percolation theory. Also, 

non-periodic lattices may play a fundamental role in Physics, such as the Penrose’s [18], 

Bethe’s [19] and Cayley trees. Examples of lattices are depicted in Fig 1.

(a)

Figure 1 -  Examples of lattices. (a) The Archimedean square (periodic). (b) Penrose tilling 
(non-periodic). (c) Bethe lattice (non-periodic).

Since the exact topology of a graph G —  used to construct a specific lattice 

model —  does strongly determine the physical features of the system, it is paramount 

to identify and to characterize the topological properties of G. A particularly important 

way to do so is through the idea of spanning trees. A Spanning tree on a graph G 

is a loopless connected subgraph that visits every vertex in G (for details see Chap. 

2). The number of spanning trees N ST(G) of G somehow quantifies the diversity of 

configurations possible for G. For applications in Physics, spanning trees are related to 

the analysis of electric circuits [20] and of the q -s ta te  Pott model [21, 22].

For infinite, but periodic, lattices L  there is a quantity AL (to be rigorously defined 

later on), which is usually named the spanning tree constant or the spanning tree entropy

[23] (this last nomenclature, of course, indicating a close association between spanning 

trees and statistical physics). There is a vast literature on AL. For instance, it has been 

calculated for many lattices, including for all the Archim edean’s [24, 25]. A valuable 

function is the spanning tree generating function STGF T(z) [26], such that T (1 ) =  AL.

Very recently, it has been conjectured [27] that T(z) would be a fundamental 

mathematical tool to solve exactly lattice models. This has been concretely demonstrated 

for the Ising model in a square lattice and convincingly argued for the triangular lattice 

[27]. Such conjecture will be one of principal guides in all the developments in the 

present work. However, we will show that in fact T(z) must be properly generalized so 

that the proposal in [27] can be implemented.
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1.3 SOME REPRESENTATIVE LATTICE MODELS IN STATISTICAL PHYSICS

Along the main body of this thesis we will certainly discuss the necessary details 

about the system we shall address. Nonetheless, to better explain in the next section 

our main goals with the present work, next we quickly describe key elements of our 

lattice models.

Let G =  (V , E ) be a graph with vertex set V  and edge set E . The q -s ta te  

Potts model is defined by assigning a spin variable a, to each vertex i g V . The spins 

can take q different values, by convention chosen as a, =  1 ,2 ,. . .  ,q. The Hamiltonian 

(dimensionless energy functional) of the Potts model is thus

H  (a) =  - K  £  S„, ,
(*j)ee

with K  =  J /k BT  a dimensionless coupling constant (interaction energy) and 6xy is the 

Kronecker’s delta function.

The Thermodynamic information about the Potts model is encoded in the 

partition function

Z  =  £  exp[H  (a)], 
a

where the sum is over all the spin configurations a : V  ^ { 1 , . . . , q } .

We will analysis only the particular case of q =  2. This restriction of the Potts, 

shortly described above, is equivalent to the Ising. Historically, the Ising model was 

proposed by W. Lenz in 1920 and solved in 1D by his PhD student, E. Ising, in 1924­

1925. We mention that the R. Potts, advised by C. Domb, developed the lattice system 

which bears his name in 1951 (a generalization of Ashkin-Teller system of 1943).

The 2D Ising model in the thermodynamic limit was exactly solved by Onsager 

in 1944 [28] (for a square lattice). Onsager proof was rewritten into a modern formalism 

by Kaufman considering spinors (Onsager’s original paper used quaternions). Later, a 

novel approach was introduced by Kac and Ward in 1952 [29], subsequently refined 

by Feynmann [30]. The Ising model was originally introduced to understand the phase 

transition of magnets, from a ferromagnetic to a paramagnetic behavior. In a very 

simplified description, a magnet is a material whose atoms are arranged in a regular 

crystalline structure. Each atom carries a magnetic moment called spin. The Ising 

model assumes that the spins are located at the vertices of a graph G =  (V, E ) and are 

restricted to point only along a single particular direction, either up (+1) or down (-1) [31]. 

It follows that a microstate of the system, called a spin configuration, mathematically is 

a function a : V  ^  { - 1 ,1 }  (see Fig. 1.2).
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Figure 2 -  A very simple example of a spin configuration a : V ^  { -1 ,1 }  in a 3 x 3 square 
lattice.

The 2D Ising model has been analytically calculated for periodic lattices such 

as square, triangle, hexagonal and kagome [28, 32, 33]. Moreover, it has also been 

studied in non-periodic networks such as the Bethe [19] and Penrose [18] lattices. To 

date, the exact solution of the 3D Ising model is still a major challenging in Mathematical 

Physics.

The Dimer model [34, 35] is another paradigmatic system in theoretical Physics. 

A dimer is an extremely idealized polymer with only two atoms. A dimer covering of a 

graph G is a collection of edges that covers all the vertices of G exactly once. In other 

words, each vertex is the endpoint of a unique edge. Even further, one can think of 

vertices of G as univalent atoms, each bonding to exactly one neighbor. Dimer coverings 

are also called perfect matchings. Mathematically, the dimer model is the study of natural 

measures (“Gibbs measures”) on the set of dimer coverings of a graph [3 6 ], usually a 

periodic planar graph such as Z 2.

Figure 3 -  Two different Dimer configuration for the Grid graph 4x4

A last lattice model which we mention —  being of great interest in Mathematical
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Physics —  is the Random Walk Loop Soup (RWLS). It can be described as a Poisson 

process of lattice loops, or a lattice gas of loops since it fits within the ideal gas framework 

of statistical mechanics [37]. Its rigorous definition is a bit technical (presented in Chap. 

2 ), but we can intuitively think about all the distinct loops formed with vertices and 

edges of G, moreover combing these loops in distinct ways to form "chains". Hence, this 

"soup"of closed patterns constitutes an ensemble and the aim is to study the statistical 

properties of these objects, associating energies to their different configurations.

The RWLS has been introduced in [38] as a proper discrete version of the 

Brownian loop soup. This system has been extensively studied due to its relation 

with discrete Gaussian free fields [39] and with conformal loop ensembles [40]. Also, 

a non-backtracking loop soup has been developed in [41], where it has been proved 

that the resulting model partition function is likewise associated with Gaussian free fields.

The specific lattice models we are going to investigate are the ones summarized 

above (see the following Chapters). Also, all the lattices G which we are going to consider 

are planar and periodic. However, we should observe that there are many other lattices 

system for which graph theory and topology are fundamental, for instance, topological 

lattice models in four dimensions [42] and Ising models on sphere-like lattices [43].

1.4 PLAN OF THE THESIS

In this thesis we are interested in finding connections between spanning trees 

and lattice systems in Statistical Physics, specifically, Ising, RWLS and Dimer models. 

The Ising model studied in this work will be with zero magnetic field (B =  0). We do so by 

analyzing (and extending) the notion of a spanning tree generating function S TG F T (z) 

(originally defined in [26]). It was shown in [27] that the S TG F T (z) and the partition 

function Z  of the isotropic Ising model in square and triangular lattices are related to 

each other for any value of the temperature. A key issue is then if these finding can also 

be valid for other lattices and even for other models. The main purpose of the present 

work is to present an affirmative answer to this question in some particular, nevertheless 

noticeably, situations.

We organize the work as follows. Each Chapter (with a general structure inde­

pendent of the others) is self-contained and address a specific set of problems. However, 

all the Chapters are interconnected through the general proposal underlying the present 

Thesis.

• In Chapter 2 we start reviewing the fundamental concepts of graph theory (ne­

cessary for our purposes), spanning trees, distinct symmetries of periodic graphs
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(among them Archimedean lattices), and the rigorous theory of random walks 

on graphs. Then, we present a formula for the spanning tree generating function 

which generalizes that in [26], called S T G F . Our eSTGF satisfies a differential 

equation involving the lattice Green function (LGF), but it also can be given in an 

integral form. Moreover, our expression leads to the spanning tree constant when 

evaluated at z =  1. For the Archimedean lattices we show that eSTGF =  S T G F . 

The S TG F for the eleven Archimedean lattices are then derived (seven of them for 

the very first time in the literature). Finally, the free energy of RWLS model for arbi­

trary regular periodic lattices is written in terms of the corresponding eSTGF. This 

provides a second example, besides the Ising model, in which such association is 

possible.

• Chapter 3 starts discussing important topological concepts of periodic lattices, 

useful in the solution of the Ising model. Then, we present the isotropic Ising model 

solution for all the eleven Archimedean lattices as well as for the Martini lattice. 

We lastly use the eSTGF of Chapter 2 to prove that in all the eleven cases the 

conjecture in [27] indeed holds true.

• In Chapter 4 we develop our final and most important extension of an expression 

for the spanning tree generating function. We derive an expression which maintain 

all the desired previous properties of S TG F and eSTGF and that is also valid for 

lattices that can be non-regular and weighted. We next use such spanning tree 

generating function to analyze the Ising model with arbitrary couplings (anisotropic 

Ising model) on the square, triangle an hexagonal lattices and the Dimer model on 

the square and triangle lattices, obtaining connections between such models and 

spanning trees.

• A final Conclusion Chapter summarizes our results and put in perspective eventual 

future continuation for our present study.

• Very technical calculations are left to Appendices.
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2 SPANNING TREE GENERATING FUNCTIONS FOR INFINITE PERIODIC 

GRAPHS L  AND SOME CONNECTIONS WITH SIMPLE CLOSED RANDOM 

W ALKS ON L

2.1 ABSTRACT

A spanning tree generating function T (z) for d-dimensional infinite periodic 

graphs (or lattices) L  which are also vertex-transitive has been proposed in J. Phys. A 

45, 494001 (2012). The spanning tree constants \ L of such lattices are then given by 

T(z  =  1 ). Here a generating function Te(z), relaxing the previous condition to q-regular 

L ’s, is constructed for which also \ L =  Te(1). Surprisingly, the extended Te is more 

amenable for explicit computations and in the vertex-transitive case leads to a new 

integral formula for the lattice Green function. As examples, spanning tree generating 

functions for all the eleven Archimedean (vertex-transitive) and two relevant non-vertex­

transitive lattices, m artin iand the (4,82) covering/medial, are derived for the first time. 

As a further application, it is shown that the free energy of the random walk loop soup 

model (defined from closed random walks, the loops, over L) can be written in terms 

of Te(z). This demonstrates that the system critical point —  existing only for d =  1 and 

d =  2 —  is directly related to the spanning tree constant of L.

Keywords: Spanning tree generating functions, periodic lattices, random walk models, 

loop soup models

2.2 INTRODUCTION

There is a close connection between rigorous graph theory and certain areas of 

physics [44, 45 , 46], specially those in which lattice models play a relevant role [47, 48 , 

49, 14]. A key point is that enumeration and topological properties are often fundamental 

in lattice systems [50, 23, 51, 52]. Therefore, important physical quantities —  e.g., in the 

realm of statistical physics [30], partition function, free energy and critical temperature 

Tc —  can be written in terms of underlying graph structures [53, 4 , 6] as polynomial 

invariants, lattice Green functions (LGFs), spanning trees, etc [14, 54, 55, 56, 56].

An illustrative example is the relation between the spanning tree constant AG of 

an infinite periodic graph G (for proper definitions, see section 2.3) and certain discrete 

spin-like models on G [21, 57]. As explained in details in [27] (even with a brief historical 

account, refer to the refs. therein), for some problems like the Ising in the square lattice, 

the partition function at the critical temperature can be expressed as function of Asq.

Few universal methods can be employed to obtain the spanning tree constant. 

The most commonly considered are those based on the Laplacian matrix or on the Tutte
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polynomial of G [25, 24]. Another possibility is by means of the LGF (see, for instance, 

the discussion in [26]). Actually, this motivated a clever approach [26] to determine AG 

through a spanning tree generating function (STGF) T (z), for which AG =  T (1 ).

The idea of generating functions in the present context is not new [58, 59, 60, 

61, 62], being used to study the number of spanning trees in various situations, like for 

circular graphs [63]. Nonetheless, in [26] the framework has been put in very solid and 

general grounds, establishing T (z) as an important tool for calculating AG. Remarkably, 

by analyzing the corresponding STGFs it was shown [27] that T (z) and the partition 

function of the Ising model in square and triangular lattices are related not only at the 

Tc, but also for any value of the temperature.

In the original formulation [26], the STGF was defined for infinite periodic vertex­

transitive graphs (or lattices) L, where T (z) satisfies a differential equation involving the 

probability generating function (another nomenclature for the LGF) of L. Unfortunately, 

for many lattices of interest the necessary integration to obtain T (z) might be a very 

hard task. Hence, the objective of this contribution is mainly twofold.

First, to broaden the STGF validity by dropping the imposition of L  to be vertex­

transitive (relaxing just to q-regularity, see section 2.3). We thus construct an extended 

spanning tree generating function (eSTGF) Te(z) for which still AL =  Te(1), also leading 

to T (z) if L  is vertex-transitive. Our eSTGF is given either as a series, or it can be written 

as an integral (in w) with an integrand in the form ln[det(1 -  z A(w ) ) /z S], for A(w) e CSxS 

the structure matrix of L. Such representation allows, in the vertex-transitive case, to 

obtain Te(z) =  T (z) regardless of the LGF P (0 ,z ). For vertex-transitive lattices our 

protocol provides a new formula for the associated P (0, z).

To illustrate the operational convenience of Te, we determine the integral repre­

sentations of Te(z) =  T (z) for the eleven vertex-transitive Archimedean L ’s. With the 

exception of the square, triangular and hexagonal cases [26], as far as we know the 

STGF for all the other eight Archimedean lattices have not been calculated before. The 

LGF are also presented for such lattices. We further get Te(z) for two significant L ’s 

(specially in the study of percolation) which are non-vertex-transitives: the martini and 

(4, 82) covering/medial lattices. The AL for the former agrees with the previous known 

value, whereas for the latter it is accessed for the first time.

Our second goal is to provide a new example (besides that in [27]) in which the 

STGF, actually the eSTGF, and a lattice model are intrinsically linked. We demonstrate 

that the free energy of the Random Walk Loop Soup (RWLS) model [38] — valuable in 

different branches of theoretical physics —  can be given in terms of Te(z) for arbitrary 

infinite periodic regular lattices L. As an application we also show that the system critical 

point (when existing) is directly connected with AL.



Figure 4 -  A graph G and all its spanning tree TG, whose total number is N (T G) — a spanning 
tree is a loop-free subgraph of G, for which V (TG) =  V(G). (a) A triangle-like G for 
which N (T g) =  3, (b) a one-diagonal-square-like graph G with N (T G) =  8.

We organize the chapter as the following. In section 2.3 we briefly review the 

necessary basic concepts, definitions and important known results. Our main novel 

expressions, summarized in Theorem 2.4.2 and Corollary 2.4.2.1 (this later for the 

LGF), are demonstrated in section 2.4 . In section 2.5 we present concrete examples, 

the eleven Archimedean and the martini and (4,82) covering/medial lattices. In section

2.6 we prove Theorem 2.6.2, a new finding relating in the thermodynamic limit the free 

energy of the RWLS to the eSTGF. The conclusion is drawn in section 2.7.

Certain key results used along our work, known by specialists, but usually either 

just mentioned or whose proof are found only very sketched or developed only for 

particular situations in the literature, are made rigorous and general in the Appendices. 

This may be considered a third contribution of this study.

2.3 GENERAL DEFINITIONS AND THE BASIC THEORY

We start summarizing only the basic aspects of arbitrary graphs which will be 

necessary for the present work (for a comprehensive introduction to graph theory and 

applications see, e.g., ref. [4]).
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(a) (b)

Figure 5 -  (a) An illustration of a periodic infinite graph (or lattice) L: a 2D infinite square lattice.
(b) Two examples, G2 and G3, of finite induced subgraphs of L — constituted by finite 
collections of vertices and edges of L — such that iimn^ œ Gn =  L.

A graph G is an ordered pair of disjoints sets (V ,E). The order (size) of G 

is the cardinality |V(G)| (|E (G )|) of its collection of vertices or sites V (G) (edges or 

bonds E (G)). Let V (2)(G) be the set of unordered pairs of distinct elements of V ( G), i.e.,

V (2)(G) =  {(vx,vy) =  (vy,vx) | V vx,vy e V(G), vx =  vy}. G is said undirected, simple

and connected if E (G) is a subset of V (2)(G) and V vx,vy e V (G), always there exists at 

least one collection of elements vb v2 ,v3, . . .  ,vM of V  (G) (where M  =  1 ,2,3 ,. .. ) , such 

that

{(vx ,v i), (v i,v 2), . . . , (vm -1,vm ), (vM,vy)}

is a subset of E (G). We call the sequence {(vx, v1) , . . . ,  (vM ,vy) }  a “path” between vx 

and vy. The degree deg(x) (or coordination number) of a vertex vx e V (G) is the total 

number of elements of E (G) in the form (vx,vm) for all vm’s distinct elements of V (G). A 

graph G is q-regular if deg(x) =  q V vx e V (G). We define the adjacency matrix of G,

A g, by (vx,vy e V(G))

A G(Vx,Vy ) =  1 ,

A G(Vx,Vy ) =  0,

if (Vx,Vy ) G E  (G),

otherwise. (2.1)

Hereafter we will consider only undirected, simple and connected G ’s, moreover with 

deg(x) finite V vx e V (G), i.e., locally finite graphs.

A spanning tree TG of G is a loop-free subgraph connecting all vertices of G, 

Fig. 4 . For a finite graph G, we denote by N ( T G) the finite total number of spanning 

trees of G. Now, assume L  an infinite periodic graph (more formally defined in section

2.3.2 and in this work indistinguishable also called a periodic lattice) so that: (a) Gn is a 

finite induced subgraph[4] of L; (b) |V(Gn)| and |E(Gn)| increases monotonically with n; 

and (c) lim n^  Gn =  L  (for an illustration, see Fig. 5). Then, the following limit exists[25]
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(and is independent on the choice of the growing sequences of subgraphs)

t o  =  A l (2 .2 )n^ ~  |V (Gn)|

Al  is known as the spanning tree constant of L. We remark that Eq. (2.2) can be 

generalized in terms of measures on G (Theorem 5.1 in [23]), in which case Al  is called 

tree entropy.

A relevant question is how to obtain Al for different L ’s. A powerful approach 

to calculate Al —  relying on the general concept of a generating function [64] —  has 

been proposed in [26]. Indeed, it has been shown [26] that a spanning tree generating 

function STGF, T(z), can be constructed for an important class of periodic lattices (next 

Sections). One of its instrumental properties is that T (1) =  Al (or, as we are going to 

see, more rigorously T (z  ^  1- ) =  Al ).

Among our main goals in the present contribution, one is to extend the classes 

of L ’s for which one can define and explicit derive a STGF.

2.3.1 A simple random walk on a graph G

A simple random walk on a graph G is a Markov chain CG: (i) whose elements 

(states) are constructed from the set of vertices V (G) of G, so that a typical element 

of CG is a set (or chain) =  {vx, v1;. . .  ,vM , vy} formed by the successive vertices 

of a path (see the definition above) between vx and vy; and for which (ii) a number 

0 <  p(m, m +  1) <  1 is ascribed to each successive pair  of vertices vm and vm+1 in any 

chain cV^X of CG. Generally, p (x ,y ) is called the transition probability from vx to vy and 

given by

p (x ,y ) =  A 1  \ > if (vx,% ) e E (G ),deg(x)
p (x ,y ) =  0, otherwise. (2.3)

For M  =  n -  1 (with n =  1 ,2 ,...)  and specified vx,vy e V (G ), let Cn(y,x) 

represent the total number of distinct chains of CG in the form cV̂ VX =  {vx, v1, . . . ,  vM , vy}. 

Since G is simple, C1(x ,x ) = 0  Vvx e V . For a graph G, we define pn(x ,x 0) as the 

probability to get to the vertex vx, leaving from the vertex vx0, after n steps. We have 

that
, \ Cn(x , x0) /O A\

Pn(x ,x 0) ^ ^ -----------W~( r . (2.4)
ey(G) Cn(y ,x 0)

Note that for finite n, Cn(y, x 0) <  ro is non-zero only for a finite number of vy’s. Moreover, 

for the particular case of G a q-regular graph, pn(x, x 0) =  Cn(x, x0)/q n. If n =  0, we set 

p0(x ,x 0) =  £xx0, with 6 the Kronecker’s delta.
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Considering Eq. (2.4), we define the probability generating function of a random 

walk from vx0 to vx as (z e ( - 1 , 1 ))

P (x ,xo ,z ) =  ^  Pn(x,xo) zn. (2.5)
n=0

Using the shorthand notation pn(x0) =  pn(x0 ,x 0) and P (x 0 ,z) =  P (x 0 ,x 0 ,z), it follows 

that <x>
P(xo,z) =  ^  Pn(xo) zn =  1 +  ^  Pn(xo) zn, (2.6)

n=0 n=l

from which obviously P (x 0 , 0) =  1 .

2.3.2 Certain classes of infinite periodic graphs and the structure matrix

For our purposes, it is more appropriate to follow the characterization of infinite 

periodic graphs considered in [23, 65]. L  is an infinite d-periodic —  or just periodic for 

short —  graph (lattice) if: (1) its vertices are labeled in Z d x S , where S =  {1 ,2 , . . . ,  S }, 

with |S| =  S finite (thus, for vx e V (L) we write x  =  (k, s), with k =  (k1, k2 , . . . ,  kd), all 

the kn ’s being integers and s e S); (2) the adjacency matrix A L of L  has the following 

property

AL((k,s), ( l , t ) )  =  AL((k -  l,s), (0,t)), V k , l  e Z d, V s , t  e S. (2.7)

Note that a periodic lattice does not need to be q-regular [66] (cf., the beginning of 

section 2.3).

The above general definition can be put in more concrete terms by realizing 

L  as an embedding structure in the Rd (a procedure obviously relevant in the explicit

construction of physics lattice models [48, 47]). For completeness, this is described in

the Appendix A .

An important concept is that of vertex-transitive graphs (see, e.g., ref. [3]). An 

isomorphism between two graphs G and H  is a bijection 9 : V (G) ^  V ( H ) preserving 

adjacency, that is, the vertices vx and vy are adjacent in G if and only if 9(vx) and 9(vy) 

are adjacent in H . An automorphism of a graph is the isomorphism 9 : V (G) ^  V(G). 

If vx and vy are two vertices of G and if there is an automorphism mapping vx to vy, 

then vx and vy are said to be similar vertices. If vx and vy are similar vertices, for all n 

we have that Cn(x ,x ) =  Cn(y,y). For L  a periodic lattice, for all k e Z d and s e S the 

vertices (0, s) and (k, s) are similar. This is so because the map 9k : Z d x S ^  Z d x S , 
defined by (V l e Z d)

9k (l,s ) =  (l +  k,s), (2 .8)

is an automorphism of L  with 9k(0, s) =  (k, s). This is a direct consequence of Eq. (2.7).
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A graph for which all vertices are sim ilar is called a vertex-transitive graph. A 

vertex-transitive graph is always q-regular but the converse is not necessarily true. A 

periodic L  can be vertex-transitive only if it is also q-regular. However, a q-regular 

periodic L  does not need to be vertex-transitive. Also, vertex-transitive graphs may not 

be periodic (a standard example being a Cayley graph).

Let (Z d x S, E ) be a periodic q-regular lattice L, then the transition probability 

between the vertices (k, s) and ( l , t )  of L  reads

p ((k ,s ) , ( l , t ) )  =  p ( ( l , t ) , (k,s)) =  A L ((k ’ S)’ ( l , t ) ) . (2.9)
q

Hence p((k, s), ( l , t) )  =  p((k -  l,s), (0, t)). The function r  : Z d ^  [0, 1]SxS is defined such 

that for k e Z d, the element r s t (k) of the matrix r (k )  e [0 ,1]SxS is given by

r s t (k) =  p((k,s), (0,t)). (2 .10)

r  is known as the transfer matrix of a simple random walk on L. Observe that r ( k )  is 

not zero only for a finite number of k’s.

The following results will be useful for some derivations in the next Secs. For r T 

representing the transpose of r ,  once

r Ts t (k) =  r t s (k) =  p ( ( k , t ) , (0, s ) ) =  p ((0, s ) , ( k , t ) ) =  p(( k ,s ) , (0,t))

=  ^st( — k ) ’

then

r T(k) =  r ( - k ) .  (2 .1 1 )

Furthermore, from the definition of r (k ) , the matrix $  =  ^ kezd r (k )  is doubly stochastic. 

But so, it is well known that the spectrum radius p($) <  1. In other words, by denoting 

the eigenvalues of $  as 0n , n = 1 , 2 , . . . ,  S , then necessarily we have that f a  =  1 is the 

eigenvalue of largest modulus and |0n | <  1 , n =  2 , 3 , . . . ,  S .

Now, A : Rd ^  CSxS defined by (with all wn’s in w =  (w1,w 2, .. .  ,wd) reals)

A(w) =  ^  r ( k )e x p [ ik  ■ w], (2.12)
kezd

is the structure matrix of L  (observe that A is 2n-periodic in w). Given the relation in Eq. 

(2.11), A(w) is Hermitian, namely, Af (w) =  A(w) (for Af the Hermitian adjoint of A). Also, 

because |As t (w)| <  ^ k^Zd r s t (k) =  $ s t  (Vs,t e S , V w e Rd), the Theorem 8.1.18 in 

[67] guarantees that p(A(w)) <  1 V w e Rd.

2.3.3 Important known results for the probability generating function and the spanning 

tree constant of certain classes of L ’s

Finally we review fundamental results for some types of infinite periodic graphs

(lattices). Although they are discussed in the pertinent literature (e.g., ref. [53]), certain
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aspects of their proofs and implications are found fragmented, scattered in different 

sources. Therefore, next we outline known key facts, compiled as three main Theorems. 

We also present a relatively more compact proof (for instance, than that in ref.[53]) for 

one of them, namely, for Theorem 2.3.1. Hereafter B  =  [ - n ,n ]d and 1 will represent the 

S x S identity matrix (S =  |S|).

The following Theorem (see [53]) relates the transition probabilities and the 

probability generating function of a simple random walk on a periodic q-regular lattice 

L  to the structure matrix of L. Due to its importance, a complete proof is given in the 

Appendix A .

Theorem  2.3.1 . Let L  be an infinite d-periodic q-regular lattice o f structure matrices

A(w) e CSxS for w e Rd. Thus, V k e Z d, V s ,t e S, V z e ( -1 ,1 ) , it holds true that

Pn((k,s), (0 ,t)) =  - - 1 -  I  e x p [- i w ■ k] [An]st(w) dw,
(2n)d Jb

P((k,s), (0 ,t) ,z)  =  ^  Pn((k,s), (0 ,t)) zn
n=0

=  T ^ d  I exP[ - iw  ■ k][(1 -  z A (w ))_1] si dw- (2n) Jb

For k =  0 and any s e S , we define pn(0,s) =  pn((0,s), (0,s)) and P((0 ,s),z)  =  

P ((0, s), (0, s), z). If L  is also vertex-transitive, then independent on s e S

Pn (0) =  Pn(0,s), P  (0, z) =  P ((0,s),z). (2.13)

The probability generating function P (0, z) is also called the lattice Green function LGF 

of L. It has been studied for distinct lattices in different dimensions (see, e.g., refs. 

[54, 68]).

Here it is worth commenting on a particularly straightforward, but relevant, 

situation. When the vertex set of a periodic lattice L =  (Z d x S, E ) is such that S =  {1}, 

it implies that L  is also vertex-transitive and trivially isomorphic to D  =  (Z d,E Zd), 

where ((k, 1), (l, 1)) e E  (k , l)  e E Zd. The isomorphism is given by the simple map 

(k, 1) e Z d x S k e V  =  Z d. Thence, the adjacency matrices A L A D, where

A d (k , l)  =  A d ((k -  l), 0) V k , l  e Z d. (2.14)

In this way, every graph with vertex set V  =  Z d is d-periodic and vertex-transitive 

(hence also q-regular) if the above relation is satisfied by its adjacency matrix (a result 

guaranteed by Eq. (2.8) if s assumes just a single value).

Further, for the lattice D  =  (Z d, E Zd), the function (in opposition to a matrix) A : 

Rd ^  C , defined by (for all wn’s in w =  (w1 ,w2, . . .  ,wd) reals) A(w) =  keZd M k )e x p [ ik ■
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w], is called the structure function of D, where ^ (k ) =  p(k, 0) with p(k, l) =  A D(k, 1)/q. In 

this case, the Theorem 2.3.1 assumes the following form.

Theorem  2.3.2 Let D  =  (Z d, E Zd) be as previously defined, also having the structure 

function A(w) g C for w g Rd. Then, V k g Z d, V z g (-1 ,1 ) ,

For k =  0, it reads pn(0) =  pn(0 ,0) and P (0,z) =  P (0 ,0 ,z ).

Another important result, making use of the transfer matrix A(w) of L, has been de­

monstrated in [25]. It states that

Theorem  2.3.3 For L  an infinite d-periodic q-regular lattice, its spanning tree constant 

is given by

Note that since a vertex-transitive infinite periodic graph is a particular case of the L 

above, the relations in Eq. (2.15) extend to such class of lattices as well. In special, the 

eleven (vertex-transitive) Archimedean lattices L Archim depicted in Fig. 6 constitute all 

the possible convex vertex-uniform tiling of the plane by means of regular polygons. For 

this full set, the expressions for q (1 -  A(w)) have been derived and the above integrals 

have been solved in refs.[25, 24]. It has lead to the spanning tree constants for all the 

L Archim (see Table 1 in section 2.5).

Also, for the particular case of the lattices D  above, the Theorem 2 leads to a 

simpler expression for Al , which has been an important motivation for the advancements 

in [26].

Theorem  2.3.4 Let D  =  (Z d, E Zd) be a lattice as in Theorem 2.3.1 Then, the spanning 

tree constant for D  reads

ln det(1  — A(w)) dw. (2.15)

Lastly, we address the STGF T(z) for a periodic vertex-transitive lattice develo­

ped in [26]. It can be summarized through the following theorem.
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(6 3)

(3 3,4 2)

(32, 4 ,3 ,4 )

(34, 6) (4 ,6 ,1 2 )

Figure 6 -T h e  eleven bidimensional (d =  2) Archimedean infinite periodic vertex-transitive 
lattices. The labels (a^1 ,da,2,...)  follow the nomenclature in ref.[1] and indicate, in a 
cyclic order, all the polygons which meet at any arbitrary vertex of the graph.

Theorem  2.3.5 Let L  be an infinite d-periodic and vertex-transitive (hence q-regular) 

lattice. Assume P (0, z) its LGF (or equivalently, the probability generating function o f a 

simple random walk on L) andpn(0) as given before. For 0 <  z <  1, the spanning tree 

generating function STGF T (z) of L  is defined by

T (z ) =  ln[q] -  ln[z] -  i  ^ (0 ,U ---- -  du.
Jo u

Then, the above T (z) is the solution o f the differential equation

- z dTP  =  P (0, z) =  f  pn(0)zn,

(2.17)

dz

with the boundary condition T(z ^  1 - ) =  XL.

(2.18)
n=0

Proof. The proof is straightforward using the fact that

pn (0)
Al =  ln[q] -  :

n=1 n
ln[q] -  I '  (P(0,U) -  ^  du.

u

obtained in [23].

0
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We should observe that the more rigorous condition of T (z  ^  1 - ) =  Al  above 

is justified since in principle P (0, z) in Eqs. (2.17) and (2.18) is defined only for |z| <  1 
(cf., Theorem 2.3.1). However, in practice when one explicit calculates T (z) and then 

make the direct substitution z =  1 , the final T (1 ) readily gives Al . Therefore, one can 

write Al  =  T (1 ) but bearing this technical point in mind.

It is worth noticing that the introduction of the STGF in [26] seems to be 

motivated by some particular known cases [59, 60, 61, 62, 23], as well as by the great 

similarity between the expressions for LGFs and Al for L ’s like hypercubes (in nD) and 

triangular (in 2D) periodic lattices. For instance, take (1 -  A) ^  (z-1 -  A) in Eq. (2.16) 

of Theorem 2.3.4. In the resulting equation apply - z d /d z .  Then, the final expression 

yields exactly P (0,0, z) of Theorem 2.3.2.

By means of direct calculations [26], T(z) has been obtained for three Archime­

dean —  square, triangular and honeycomb —  lattices (the first three in Fig. 6) , leading 

to the corresponding AL’s from T ( 1 ). We note the square and triangular are the only 

Archimedean examples in the form D  =  (Z d,E Zd) (however, the honeycomb presents 

an important similarity with them as discussed in section 2.5.1).

To be able to write a STGF for a vertex-transitive lattice L  in terms of the 

associated LGF —  moreover having the very relevant property of T (1 ) =  Al  —  is 

certainly a fundamental result, relating aspects of graph theory to simple random walks. 

Nonetheless, from a more practical point of view, namely, as a handily technique to 

obtain T (z ) and Al , Theorem 2.3.5 may not be so easy to apply. It has been explicit 

mentioned in [26] that: “ In most cases, particularly for lattices of dimension greater 

than 2 [when often S >  1], the integral [connecting T  and P] cannot be performed”. 

The difficulty to perform such integration is not really due to the dimension d per se, 

but rather to the size S of the unit cell. For example, in [26] the STGF for arbitrary 

d-d im ensiona l simple hypercubes have been directly derived since S =  1. However, 

the explicitly studied L ’s with S =  2 (regardless of d) were only those whose particular 

symmetry features allowed close similarities to lattices of S =  1 (e.g., see the hexagonal 

L  in section 2.5.1). Our Te(z) next circumvents such problem once instead of computing 

more complicated integrals as S increases, we have to calculate determinants of larger

5  x S matrices.

But just to give a glance on the problem, we next explicit discuss T (z ) (using 

Eq. (2.17)) for the so called Archimedean cross lattice (4,6,12) —  the last graph in Fig.

6 —  whose unit cell has S =  12 points and the coordination number is q =  3. The matrix 

A (w 1, w2) for this lattice is given in [24], or

(2.19)
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with

X

0 1 0 0 0 1 0 0 0 0 0
1 0 1 0 0 0 0 0 giwx 0 0 0
0 1 0 1 0 0

,Y  =
0 0 0 0 0 giW2

0 0 1 0 1 0 0 0 0 0 eiw2 0
0 0 0 1 0 1 0 1 0 0 0 0

1 0 0 0 1 0 1 0 0 0 0 0

(2.20)

We calculate P (0, z) from the Theorem 2.3.1. For so, we can choose any index s e 

{ 1 , 2 , . . . ,  12} =  S since the (4,6,12) lattice is vertex-transitive. Choosing s =  1 (with

c =  (2n)-2 (531441/59049))

(1 -  z A(w)) 1
11

(2n )2 c
2 P(z; w i,w 2)

Q(z; w i , w2) '

for

P(z; w 1,w 2) =  a10 z +  as z +  a6 z +53946 z -  98415 z +59049, 

Q(z; w 1,w 2) =  b12 z12 +  b10 z10 +  bs zs +  b6 z6 +  728271 z4 -  1062882 z2

+531441,

where

a10 =  8 sin[w2 -  w 1] sin[w2] -  10 cos[w2 -  w 1] -  10 cos[w1] -  14 cos[w2]

-17 ,

as =  216 cos[w2 -  w 1] +  36 cos[w1] +  288 cos[w2] +  801,

a6 =  -486 cos[w2 -  w 1] -  162 cos[w1] -  810 cos[w2] -  11340,

and

b12 =  (8 (cos[w1] cos[w2] +  cos[w1] +  cos[w2]) +  12) cos[w1 -  w2]

+ 8cos[w1] cos[w2] +  12 (cos[w1] +  cos[w2]) +  13, 

b10 =  -(144  cos[w1 -  w2] +  468) (cos[w1] +  cos[w2]) -  468cos[w1 -  w2]

-  144cos[w1] cos[w2] -  918, 

bs =  4860 (cos[w1 -  w2] +  cos[w1] +  cos[w2]) +  21627,

b6 =  -8748 (cos[w1 -  w2] +  cos[w1] +  cos[w2]) -  204120.

Thus
P (0, z) =  c f  [  P (z; w1,w2) dw1dw2, (2.21)

J -n J -n  Q(z; w 1,w 2)
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and finally (inverting the integration order)

/n pn
/  I ( w i ; w2) dwi dw2,

•n J —n

I ( w i ,w 2) =  c f  P (M;Wi,W2) - du.  (2 .22 )
Jo u \Q (u ;w i,w 2) c )

In principle, the above integral in u could be solved by finding the roots of P  and Q, 

but which cannot be obtained through elementary methods because the polynomials 

degrees. Moreover, such roots should depend on involving trigonometric expressions 

of w i and W2. Hence, the integrals in w- and W2 seems to be too hard for a full analytic 

treatment (in fact, numerically it also would be a bit cumbersome, e.g., if the goal was to 

calculate only T (1 )).

2.4 THE MAIN RESULTS

Here we present our main results. We introduce a (extended) spanning tree 

generating function eSTGF, Te(z), valid for infinite periodic q-regular lattices L, but 

which do not need to be vertex-transitive. Also, it obeys to Te(z ^  1—) =  AL (or for 

abuse of notation, Te( l)  =  AL) and when particularized to vertex-transitive L ’s, Te(z) is 

somehow easily worked out than T(z), thus providing simpler expressions for the STGF 

of graphs like all the Archimedean lattices.

The Lemma 2.4.1 below is necessary to prove fundamental properties of Te(z).

Lem ma 2.4.1 Let L  =  (Z d x S, E ) be an infinite d-periodic and q-regular lattice o f  

structure matrix A(w) e CSxS for w e Rd. Thus, V z e ( -1 ,1 )  it holds that

r S

s n=i
X X (0’ s)

L s=i

z
n

1 1 
S (2n)d

ln [det(1 — z A(w))] dw. (2.23)

Above, pn(0, s) is the probability o f  a simple random walk on L  to start at (0, s) and to 

return to (0, s) after n steps (Eq. (2.4)).

Proof. For any s e S, by the Theorem 2.3.1 we have

1

Pn(0,s) =  pn((0,s), (0, s))
(2n )d

[An]ss(w) dw.
B

Since |z | <  1, the following is a convergent series (for Tr[M ] the trace of the matrix M )

r S

s n=i
5^p™ (0,s)

L s=i

zn
n

1 1
)d E

Tr[(z A)n(w)]
S (2n)d    j bv ' n=i B

dw.
n

(2.24)

1

1
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For A(w) in section 2.3.2, p(z A(w)) <  1. Then, the Theorem A.2.1 in the Appendix A 

guarantees we can interchange the infinite sum with the integral in Eq. (2.24) and also 

that ^ ° =1 Tr[(zA)n(w )]/n  =  -  ln[det(1 -  z A(w))]. Hence, Eq. (2.23) follows.

Now we prove the principal result of our work.

Theorem  2.4.2 Let L  =  (Z d x S ,E ) be as in Lemma 2.4.1. For L, we define the 

extended spanning tree generating function eSTGF, Te : (0, 1 ) ^  R, as the well behaved

series

Te(z) =  ln [q] -  ln[z] -  ^  Y  Y P n (0,s)
n=1 s=1

zn
n

(2.25)

Then:

(i) Te(z) can be cast as

ln[q] +
1 1 
S (2n)d

ln
' B

det(1  -  z A(w))
dw; (2.26)s

(ii) Te(z) satisfies to
7/7-7 -1 S

- z ^ ( z ) ^  Y  P ((0 .s).z ). (2.27)
s=1

with Te(z ^  1- ) =  \ L; and
(iii) for L  also vertex-transitive, Te(z) =  T (z).

Proof. First, by Lemma 2.4.1 and Eq. (2.25) one has that Te(z) can also be written as

Te(z) =  ln[q] -  ln[z] +  

1 1
=  ln[q] +

1 1
S (2^ 7  ' ln [d e t(1 -  zA (w ))] dwB

ln
det(1 -  z A(w))

S (2n)d JB

in agreement with Eq. (2.26).

Next, for Te(z) as in Eq. (2.25), take its derivative

dw,

dT  1 _ ,   .
- z ~ ^  (z) =  1 +  ^  Y  Y  Pn(0,s)dz S n=1 L s=1 

:-1  S ^ (n, „ \ ^0Now, since p0(0, s) =  1, one gets S -1 ^ S = 1 P0(0, s) z0 =  1 and from Eq. (2.29)

dTe„
dz- z —  (z) =  ^  Y  Y P n (0, s)z"

s=1 n=0
Y  p  ((0,s ) ,z )-
s=1

(2.28)

(2.29)

(2.30)

nz

1
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Hence, Eq. (2.27) is verified. Furthermore, making z ^  1 -  in Eq. (2.28), one obtains 

exactly the first relation in Eq. (2.15) of Theorem 2.3.3, leading to Xl . In this way, (ii) 

holds true.

Finally, if L  is vertex-transitive, P ((0 ,s ),z ) =  P (0,z) Vs. Therefore, Eq. (2.27) 

reduces to Eq. (2.18) and also considering that Te(1) =  \ L, the statement (iii) follows.

The first identity in Eq. (2.28) is amazingly sim ilar to the integral form of the 

spanning tree constant in Theorem 2.3.3. Such type of resemblance has already been 

observed in [26] for infinite periodic vertex-transitive graphs. At the same token, Theorem

2.4.2 (i) expresses Te(z) as an integral involving the matrix A(w), analogously to how 

the Theorem 2.3.1 gives P ((0 ,s),z) in terms of an integral also involving A(w). For L  

moreover vertex-transitive, it is worth contrasting Theorems 3 and 4. They describe 

two distinct approaches to get the same STGF T (z). The workflow of Theorem 2.3.5 is 

L  ^  A(w) ^  P (0, z) ^  T (z), whereas for Theorem 2.4.2 one has L  ^  A(w) ^  T (z). 

Hence, from Theorem 2.4.2 it is not necessary to calculate the function P (0, z) to 

compute the STGF T (z). Actually, in this case we can derive the eSTGF and then to 

use it to obtain the LGF through P (0, z) =  - z  dTe(z)/dz.

Note that Theorem 2.4.2 implies that

This alternative series representation for \ L can be obtained as an immediate conse­

quence of Theorem 5.1 in [23]. As a last comment regarding eSTGF, we observe that 

for z small, we have from Eq. (2.25) Te(z) ^  ln[q/z]. This fact will be illustrated with 

numerical examples in Secs. 2.5.2 and 2.5.3.

Now we prove an important corollary of Theorem 2.4.2, leading to a new integral 

representation for the lattice Green function LGF of vertex-transitive lattices. It should 

be compared to Theorem 2.3.1.

C oro lla ry  2.4.2.1 Let L  =  (Z d x S, E ) be an infinite d-periodic, vertex-transitive (thus 

q-regular) lattice, then Vz e ( -1 ,1 )  the associated LGF P (0, z) can be written as

1 ^  ^ 1 
Xl =  ln [q] -  £  ^  ^  Pn(0,s) n  ■ (2.31)

n=1 |_s=1

d[det(1  -  z A (w ))]/dz  . 
det(1 -  z A(w))

(2.32)

Proof. For such L, Te(z) =  T (z ) Vz e (0,1). But in this case P (0,z) =  

-z d T (z ) /d z .  Using the first relation in Eq. (2.28), we directly get Eq. (2.32) for z e (0,1).
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The integrand in Eq. (2.32) gives the finite result —Tr[A(w)] when z ^  0. Thus, 

taking into account z multiplying the integral in Eq. (2.32), for z =  0 we find the correct

P (0,0) =  1 (see Eq. (2.6)).

Finally, for z e (—1,0) let us define the well behaved real series

/(z )  =  ln [q] — ln [—z] — ^  E
n=i

E P n (0,s)
s=i

zn
n

(2.33)

By Lemma 2.4.1

/  (z) =  ln [q] — ln [—z] +
1 1
S  (2 ^7  /b  ln[det(1 — z A(w))]dw . (2.34)

So, for z e (—1,0) we have that —z d /(z )/d z  is exactly the right hand side of Eq. (2.32). 

On the other hand, following very analogous steps to those used to prove Eq. (2.30) 

from Eq. (2.25), it reads

df 1 S
zd z (z) =  "? E  P  ((0, s )z )  =  P  (0, z ). (2.35)

s=i

Therefore, Eq. (2.32) is also true in the interval (—1 , 0).

To conclude this section, it is instructive to consider the equivalence of the 

Corollary 2.4.2.1 with the Theorem 2.3.1 (for vertex-transitive lattices) by means of an 

example. For so, we choose the Archimedean kagome lattice, (3 ,6,3 ,6) in Fig. 6. Its 

matrix A (w i ,w 2) is given in [25], thus

/ 1 —z (i+eiw2) —z (i+e-iwl ) \
' 1 4 4 '

1 — z A (w i , w2) —z (i+e-iw2) 1 —z (i+e- i(wl+w2))
4 1 4

—z (i+eiwl ) —z (i+ei(wl+w2)) 1
\  4 4 1

Hence (for A  =  cos[wi ] +  cos[w2] +  cos[wi +  w2])

D(z; w i ,w 2) =  det(1 — z A(w)) — — ( z3 +  6z2 — 16 +  (z3 +  2z2) A
16 \

and (with / s(wi , w2) =  1 +  cos[2 s (3 — s) w i +  (s — 2)2 w2], s =  1,2, 3)

( (1 — "  A (w ))—i ) „  =  D (z ; ?1 1,w 2) i 1 — IT  / »(w --w2>) ■

From Theorem 2.3.1, P (0, z) for the kagome lattice obeys to

P(0 ) 1 r  r ( 1 —z2 / s(wi ,w 2) / 8) d d (236)
P(0, z) =  P>~V2------------ --------- Tv---------- -̂-----  dwi dw2. (2.36)(2n ) 2 J—n J —n D (z ; w -,w t )

Equation (2.36) must lead to a same final expression for the LGF regardless the 

assumed value of s =  1 , 2 ,3 in the integration. And in fact, noticing the particular D
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dependence on w1 and w2 (in terms of A  above), and once f 3 =  1 +  cos[w2], f 2 =  

1 +  cos[w1 ] and f 1 =  1 +  cos[w1 +  w2], we find that V s in Eq. (2.36), all the corresponding 

integrals are actually equivalent from the simple variables change: (s =  3) w 1 =  v,

w2 =  u; (s =  2) w1 =  u, w2 =  v; and (s =  1) w 1 =  - v, w2 =  v +  u.

Now, taking the z derivative of det(1 -  z A(w)) =  D(z; w 1;w2), we obtain

z d V (zZ 1,w2) =  3D(z; w 1,w 2) -  Y  ( 1  -  z - fs(w 1,w 2^  . (2.37)
s=1 ' '

Considering Eq. (2.32) of Corollary 2.4.2.1 (with S =  3), after some direct manipulations 

we get

D(0 ) 1 1  ^  f  * f  * 1 -  i  f  s (w1. w2) d d (238)
P  (0, z) =  F F ~V 2Q ^ j dw1dw2. (2.38)(2n )2 3 J -n J -n  D (z ; w1.w2)

Since, as previously shown, for each s the above integral yields the exact same result, 

Eq. (2.38) readily reduces to Eq. (2.36), as it should be.

2.5 Te(z) FOR DISTINCT LATTICES

Using the Theorem 2.4.2, we next provide the eSTGF for different examples. 

We first consider vertex-transitive L ’s (so, with the eSTGF  identical to the STG F  of 

Theorem 2.3.5), discussing the eleven Archimedean cases, Fig. 6. They represent all 

the possible combinations of regular polygons with every site being equivalent and 

uniformly tiling the plane (i.e., any vertex is surrounded by the same sequence of 

polygons, moreover with a translational symmetry). The AL’s for these lattices have 

been calculated in [26] from T(z  =  1), but only for the square, triangular and honeycomb 

cases. For the other eight Archimedean lattices, the AL’s have been directly obtained 

from Eq. (2.15) of Theorem 2.3.3 (see refs. [25, 24]).

In the sequel, we discuss two important non-vertex-transitive lattices (for which, 

obviously, there were no spanning tree generating functions previously calculated): the 

martini, whose spanning tree constant has already been derived in the literature; and 

the (4, 82) covering/medial, for which AL, as far as we known, has not been reported 

anywhere.
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2.5.1 The eSTGF (equivalent to the STGF) for the eleven Archimedean lattices

Table 1 -  All the Archimedean lattices (ordered in increasing values of S and then of q, exactly 
as in Fig. 6). From the Bravais lattices, S is the number of points in an unit cell and q 
is the lattice coordination number. Here G =  Y ^=0 (2- +1)2 is the Catalan constant and

3-̂ 3 ( i 
n 2-^n=0

(  1 1
 ̂(5+6n)2 (7+6n)2))■

Square (44) 1 4 Xsq =  f  = 1.1662

Triangular (36) 1 6 Xtr = 1.6153...

Honeycomb (63) 2 3 Xtr 
2

Bridge (33, 42) 2 5 1.4069258315...

Kagome (3,6,3,6 ) 3 4 Xtr +ln[6] 
2

Bathroom (4,82) 4 3 0.7866842753...

Puzzle (32,4,3,4) 4 5 1.4108556457...

Star (3,122) 6 3 Xtr +ln[15]
6

Ruby (3,4,6,4 ) 6 4 1.1448011236...

Maple Leaf (34, 6) 6 5 1.3920235634...

Cross (4,6,12) 12 3 0.7777955061...

To the best of our knowledge, the only Archimedean L ’s for which the STGF 

have been obtained are the square, triangular and honeycomb lattices, derived in [26] 

(and whose explicit integrations in w 1 and w2 have lead to Generalized Hypergeometric 

Functions, GHFs). As already illustrated in the end of section 2.3.3, the difficulty for the 

others is that to obtain T (z) from Eq. 2.18, one must first calculate P (0, z) and then to 

perform the integral in Eq. (2.17), which can be a cumbersome task. On the other hand, 

for Te(z) in Eq. (2.25) no integration on the argument of P  is required.

To calculate the eSTGF (here with eSTGF equals to the STGF) for the Archime­

dean lattices —  see Table 1 —  we have evaluated A using the definition in Eq. (2.12), 

with r  from Eq. (2.10), and then employed the second equality of Eq. (2.25). For these 

lattices, we also have derived the LGF P (0, z) considering the Corollary 2.4.2.1.

Next, we list just the final integral form expressions, resulting from above descri­

bed intermediary computations. We should mention that for the square, triangular and 

honeycomb lattices, our Te(z) =  T (z) (as well as the corresponding P (0, z)’s) completely 

agree with the same functions in [26]. In all which follows, Te(z) =  T (z ) and P (0, z) are
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given in the compact forms

T  (z) =  ln
1 1  r  r

+  ^7n~v? ln[D(z; w)]
S (2n)2 J -n J -n

^  v 1 r  r  e (z ,w ) , ,
P(0,z) =  7̂ 7^ / /  TV r dwl dw2j(2n)2 J - ^ - n  D (z ; w)

(2.39)

where

zs+i O f  \
D(z; w) =  det(1 -  z A (w i,W 2)), E (z; w) = -----—  ~q^ \ Z -S D (z ; w) j  . (2.40)

For each Archimedean lattice, the values of q and S are listed in Table 1. For further 

compactness of notation, we set

A 0 =  cos[w1] +  cos[w2], A ±  =  cos[w1 ±  w2]. (2.41)

In this way, one finds

• Square-(44) ; S =  1 , q =  4:

z
D (z ; w) =  1 -  2 A 0j 

E(z; w) =  1 .

• Triangular-(36); S =  1, q =  6:

z
D(z; w) =  1 — 3 ( a o +  a +)j

E(z; w) =  1.

• Honeycomb-(63) ; S =  2, q =  3:

. z2 2z2 , . . .
D(z; w) =  — — +  1 ----^ (A o +  A +)j

E(z; w) =  1.

• Bridge-(33,42); S =  2 , q =  5:

_ ,  . 3z2 4z /  z \  2z2
D (z; «,) =  — -  +  i — T ( i — 5 a 3  a + — -2 5  (a o +  A +).

E (z; w) =  1 — y  A +.

• Kagome-(3,6,3 ,6); S =  3 ,q =  4:

_ ,  . z3 3z2 (2 +  z) z2
D(z; w) =  —16 — T  +  1 — ~ 1 ^ (Ao +  A + ) '

z2 z2
E(z; w) =  — — +  1 — —  (A0 +  A z ) -
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Bathroom-(4, S2); S =  4, q =  3:
z4

D(z; w)

E(z ; w )

Puzzle-(32, 4,3,4); S =  4, q =  5:

z4 2z2 4z3 2z4
--------------h i --------- A o --------- (A+ h  A_),
Si 3 27 o Si v

z2 z3
 h i --------A o.

3 27 o

D(z; w) — ao h  ai Ao h  a2 Ao h  a3 ( A ,  h  A - ), 

E(z; w) =  bo h  bi Ao h  b2 ( A ,  h  A - ) ,  

z4 Sz3 2z2
T

4z2
7 7 :

ao =
625 i25 ;

4z4 Sz3
ai =

625
4z4

i25

a2 =
625,

i 2z4 4z3
a3 =

625 — T25 ,

bo =
2z3 

— T25 '

z2

- ^  +  i

bi =
2z3 

— T25 '
2z2 
25 ,

z 3
125 •

b2 =

■-(3, i 22); 

D(z; w) 

E(z ; w )

6,q = 3:

4z5 1 2z4 4z3
t t

-h
~ 9  —"  7 7

2z5
+

2z4 2z3
243 7 7  —"  7 7

z
2(2z +  3) z4

243 (A o h  A +),

3
+ i  2 +

729 243 z4 (A o h  A +Z

Ruby-(3,4 ,6,4); S =  6 ,q =  4:

D(z; w) =  ao h  ai(Ao h  A +)

ha2(A + h  A — h  2 Ao A+ — (A+ h  A - ) A+),

E(z; w) =  bo h  bi (A o +  A +),

■v6 o_4 3̂
ao

ai

a2

bo

bi

z“ 3z4
5T2 +  77"

z
T6

z6 z4

5i2 32
z6

z3
W

i024
z4 z3 z 

32 — 32 — "2 
(3 h  z) z3

2

96

2 z
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Maple Leaf-(34, 6); S =  6,q =  5:

D (z ; w) — 00 +  01 (A 0 +  A+) +  02 (A+ +  A — +  2 A 0 A+)

+ a3 (A + +  A - )A +)

E (z ; w) =  60 +  &1 (A 0 +  A+) +  62 (A+ +  A -  +  2 A 0 A+),

00

01 

0,2 

O3

60

61

62

13z6 24z5 27z4
+  +15625 3125 625

16z6 8z5 24z4 8z3

16z3 3z2
 + 1,125 5 ’

15625 3125 625 125'
8z6 4z5

15625 3125'
4z6

15625 
4z5 9z4

3125 +  625
4z5 8z4

8z3 
125 "

4z3

2z2
+  1,

9375 625 125'
2z5

9375

Cross-(4,6,12); S =  12, q =  3:

D (z ; w) — 00 +  01 (A 0 +  A+) +  0,2 (A+ +  A -  +  2 A 0 A+)

+ a3 (A + +  A - ) A +;

E(z; w) =  60 +  61 (A 0 +  A+) +  62 (A+ +  A -  +  2 A 0 A+),

00

01

02

03

60

61

62

13z12

531441 
4z12 

177147 
4z12 

531441 
4z12 

531441:

34z10 89z8
+  2187

20z8
19683 
52z10 
59049 
8z10 

59049;

280z6 37z4 „  2
+  -  2z2 +  1,

+
2187

729
4z6 
243 ’

27

17z10 89z8
+

59049
26z10

+

140z6 74z4 5z2
 1 + 1,

6561 729 81 3 ’
20z8 2z6

177147 6561 243
4z10

177147

For the above, we mention that by choosing different (but totally equivalent) 

unity cells for any lattice, the resulting A ’s at first sight may seem distinct. However, 

all can be transformed into each other through proper variable transformations upon

5
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integration, cf. Eq. (2.39). In particular, this is a procedure we have explicit used for the 

bridge and cross cases, seeking to symmetrise their final formulae. Thence, as it should 

be the T (z) and P (0, z) are unique.

From the functional form of the above T (z)’s, some interesting features can be 

identified. First, as previously remarked, the only Archimedean lattices classified as 

D  =  (Z d,E Zd) (thus verifying Theorems 2.3.2 and 2.1) are the square and triangular. 

Nevertheless, although S =  2 for the honeycomb, its D  is similar to the triangular lattice. 

Moreover, the honeycomb is the only example in which S >  1 , but with E =  1 . So, 

in some aspects the honeycomb displays properties sim ilar to a L  having a structure 

function (section 2.3.3) rather than a structure matrix. This allows to construct T (z) for 

the honeycomb through a direct analogy with the square and triangular lattices, what 

has been done in [26].

Second, the D  for the bridge has the most uneven dependence on the A ’s 

(because A+). It could indicate a certain spatial asymmetry for this lattice, which indeed 

is confirmed from the analysis of the Archimedean lattices unit cells presented in

[24]. The bridge is the only example displaying an unbalanced (regarding the x  and y 

directions) basic structure which once translated tiles the entire plane.

Third, as we have already mentioned, it is not our goal in the present contribution 

to work out in details the obtained Te’s (for instance, trying to write them in terms of 

special functions). But as proposed in [26], to view Te(z) in Eq. (2.25) as the logarithmic 

Mahler measure (see, e.g., refs. [69, 70, 71, 72]) of the proper Laurent polynomial 

related to det(1 -  z A) constitutes an important way to look for analytical expressions 

for the eSTGF. Actually, such idea has made possible [26] to express T (z) for the 

square, triangular and honeycomb —  as well as for other L ’s in higher dimensions —  in 

terms of GHFs. Therefore, given that the D  dependence on the A ’s, Eq. (2.41), for the 

honeycomb, kagome, and star, is exactly the same than that for the triangular lattice, 

the solution for this latter in [26] simply extends to the former three cases (observe also 

that the AL for these four lattices are closely associated, Table 1). Similarly, an eventual 

closed analytical expression for the ruby should be naturally extendable to the maple 

leaf and cross Archimedean L ’s.

2.5.2 The eSTGF for the martini lattice

The martini lattice in Fig. 7 —  introduced in [1] —  is an important network in the 

study of inhomogeneous site percolation [73]. Together with the honeycomb, it has been 

used [74] to accurately estimates the bond percolation of the kagome and star-(3,122) 

lattices. Also, the O(n) loop model on the martini allows an exact derivation of critical 

points [75]. Its spanning tree constant has been obtained in [51].

The m artin ila ttice  is a 2-period ic regular graph. To realize it is not vertex-
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transitive, observe from Fig. 7 that C3((0 ,1), (0,1)) =  0, thus distinct from C3((0 ,2), (0, 2)) =  

2. Hence, for this graph one needs to consider the eSTGF instead of the STGF. In every 

unit cell there are S =  4 points and the coordination number is q =  3. Its structure matrix 

is given by
(  0 1 e*W2

1 1
e-iW2A(w i ,W2) =  3

Ve"

1

0

1

1

1

0

1

1

1

0 /

Figure 7 -  The martini lattice, whose unit cell has 4 vertices (as indicated).

We have that
i a / w 6 (z +  3) z3 (  1

de t(l -  z A (w)) =   8 i i # (z) -  3 (Aq +  A - )

g(z)
z3 — 5z2 — 3z +  9

2Z3 '
Thus, from Eq. (2.25)

Te(z) =  4 ln
6 (z +  3) 1 1

+  T- ln
' —nJ — n

g(z) — 3 (A o +  A+)4 (2n)2

where the substitution of A -  by A +  in the above integral has been achieved from a 

trivial change of variable. Note that Eq. (2.5.2) can be directly associated to the STGF 

of the Archimedean triangular lattice (previous section), with g(z) here playing the role 

of 1 /z  in that expression. Therefore, following the exact same procedure of ref.[26], one 

can write the Te(z) for the martini lattice in terms of GHFs. For the present example we 

just observe that for z close to zero (recall we are assuming z >  0), Te(z) ^  ln[3/z] and 

that the plot of Te(z) (numerically calculated) for 0 <  z <  1 is depicted in Fig. 8.

Finally, one can check that the spanning tree constant is

Te(1) 4 ' n ^ / i / ;  
1

ln[3 — A 0 — A +] dw1 dw2

=  4(ln[4] +  Atr) =  0.7504060243

hence in full agreement with [51].
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Figure 8 -  The eSTGF for the martini lattice (calculated numerically). Note that ln[3/z] is a good 
approximation for Te(z) for z until around 0.5 (their difference is of about 31.7% for 
z =  1, see inset).

2.5.3 The eSTGF for the (4 ,82) covering/medial lattice

A challenging problem is that of determining the precise percolation thresholds 

in different graphs, for instance, in the Archimedean and related lattices [76, 77]. In 

this regard, a particularly interesting example is the (4 ,82) covering/medial, obtained 

from relatively simple edge transformations applied to the Archimedean bathroom-

(4 .82) (indeed, compare (4,82) in Fig. 6 with Fig. 9 ). It is also known as the square 

kagome [78], sharing several features with the Archimedean kagom e-(3,6,3,6) lattice 

[79]. The bond percolation threshold and the critical point for the Potts model on the

(4.82) covering/medial lattice have been studied in [80]. However, as far as we know, its 

spanning tree constant has not been analyzed in the literature.

The (4 ,82) covering/medial lattice is a 2-periodic regular graph which is non­

vertex-transitive, Fig. 9 . In every unit cell there are S =  6 points and the coordination 

number of this lattice is q =  4.

From direct computations, we have that

A M  . iO  O \  , . 1O O '
r(o ,o ) r ( i ,  o)

B T C .

r ( - i ,  o) =  r ( i ,  o)T, 

where O is the 3 3 null matrix and

„  r ( o , i )  =
D O )

r ( o , - i )  =  r(o , i ) T

E  E

o i o i o o o o i
A = i o i , B  = o i o , C  = o o o

o i o i i i i o o

o o o \ o o o \
D  = o o o , E  = i o o

i i o o o o

z
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Figure 9 -  The (4,82) covering/medial lattice. Its unit cell has 6 vertices (as shown). 

So

A(w1,w2) =  7

0 1 0 1 e-iw2 e -iw i\

1 0 1 0 1 e -iwi

1 0 1 0 1 1 1
4 1 0 1 0 e-iw2 1

eiw2 1 1 eiw2 0 0
. eiwi 
e

eiwi 1 1 0 0
and

det(1 -  z A(w 1,w 2))

g(z)

(z +  2)2 z4 /  , . (z -  4) 1
( g( z ) + L — 2 A -  2<a + + a - )

(8 -  z2)(8 -  8z +  z2)

Te(z)
1 l n r4(z +  2)
3

-  2 (A +  +  A - )

1 1
+  -

6 (2n)2 J -n J -
ln

4
g(z) +  (1 -  - ) A c

z

dw1 dw2

For z small, Te(z) ^  ln[4/z]. The plot of Te(z) (numerically calculated) for 0 <  z <  1 is 

shown in Fig. 10.

Lastly, the spanning tree constant of the (4 ,82) covering/medial lattice is given

by

1 1 1  r  r
Te(1) =  a ^ a c a o * /  I

ln
'  — TV d  —  TV

7 -  3A0 -  1 (A +  +  A - ) dw1 dw2

1.1217093(5)...

where the last result has been obtained by numerical integration (using two distinct 

procedures, to double check for numerical accuracy).

z

7T f 'T i
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z

Figure 10 -  The eSTGF for the (4,82) covering/medial lattice (calculated numerically). ln[4/z] is 
a good fit for Te(z) for z up to 0.6 (their difference is of about 19.1% for z =  1, see 
inset).

2.6 THE eSTGF AND THE RANDOM WALK LOOP SOUP MODEL

As mentioned in the introductory section there is an important connection 

between spanning trees and lattice models in physics. In particular, as reviewed in [27], 

the spanning tree constant is known to bear a close relation with the critical temperature 

Tc in the Ising model. Moreover, it has been shown in [27] —  using the STGF T(z) 

—  which for some simple vertex-transitive lattices (square and triangular), this type of 

relation is also valid at any temperature value.

So, a natural question is: there are also other physical models in which the 

STGF would map into some relevant quantity characterizing the system, furthermore 

this being the case for non-vertex-transitive graphs? As a final application for our present 

Te(z), we show the answer is positive for the random walk loop soup RWLS model.

The RWLS is a Poissonian ensemble of lattice loops. Generally, such type 

of model involves sets of one-dimensional loops living in higher dimensional spaces. 

The RWLS has been introduced in [38] as a proper discrete version of the Brownian 

loop soup. In fact, under Brownian scaling the former converges (in an appropriate 

sense) to the latter. This system has been extensively studied due to its relation with 

discrete Gaussian free fields [39] and with conformal loop ensembles [40]. Also, a 

non-backtracking loop soup has been developed in ref. [41], where it has been proved 

that the resulting model partition function is likewise associated with Gaussian free 

fields.

Below we present a brief review of the model. In the sequel, we show how an 

eSTGF can be used to construct the RWLS free-energy.
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2.6.1 Basics of the RWLS model

Hereafter we closely follow the definitions in [44]. For G =  (V, E ) an undirected, 

simple, connected and locally finite graph, a closed walk c of length 4  =  M  +  i  (M  =  

i,  2 ,3 ,...)  is a closed chain in G (section 2.3.1), i.e., c =  c)Ml x =  {vx,v 1 ,v 2 , . . .  ,vM ,vx}. 

The reversal of c is denoted as c-1 =  {vx,vM ,vM - 1, . . . ,  v1, vx}. A cyclic shift operation 

an (of order o <  n <  M )  over the closed walk c =  {vx,v 1,v2 , . . .  ,vM ,vx} results in 

(where for n =  o, v0 =  vx)

&n(c) {vn, vn+1, . . . , vM — 1, vM ,vx,v 1,v 2 ,> . . . , vn - 1, vn} .

For two closed walks d' and d  such that vx» =  vx  =  vx, we define their concatenation by

d' © d  =  {vx, v1// ,v 2u, . . . ,vm" ,vx,v 1  ,v2i , . . . ,vm ' ,vx}.

The multiplicity m c of a closed walk c is the largest number m  such that c is the m-fold 

concatenation of some closed walk d with itself, or c =  ® m d  .

For a closed walk c, the related loop l is the equivalent class of all the distinct 

cyclic shifts and associated inverses of c. Obviously, to c, c-1 , an(c), [an(c)]-1 V n 

corresponds a same l. The length and multiplicity of a loop are defined as 4  =  4  and 

mi =  m c, for c any element of the equivalent class l. Note that given c we wave t c/m c 

possible different cyclic shifts of this closed walk, each with its unique reverse. Thence, 

there are |l| =  2^i /m i representative closed curves in the equivalent class l. We denote 

by L(G ) the set of all loops in G and by L r (G) the set of all loops in G with length r.

The weight of every loop l depends on a parameter z (for the range of z, see 

below) and is defined as

w(l, z) =  — . (2.42)
mi

A loop configuration is a multiset [81] over L (G), namely, a mapping 

a : L(G ) ^  N , written as the formal linear combination

a =  a i l ,
leL(G)

where V l, a l e N . The set of all loop configurations L S(G) will be called a loop soup. 

Thus, we next can establish the weight of a, w(a, z), as

w(ln, z)a. \annw (a ,z ) " "
an .

(a, z ) =

Now, for the remaining of this section we discuss the partition function Z G(z) of 

the loop soup L S(G). For so, we are going to perform some formal manipulations, but 

which can be justified rigorously only for a finite G (although the final results might be
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valid for some infinite graphs [44]). Reference [44] properly mentions such fact, however 

with no further details. In the Appendix A we clarify this important technical point.

One can define the loop soup L S(G) partition function as

1 1  v .m=1 r=1 (l1;...,lm)eLr(m) i= l

Equation (2.45) is defined for z e [0 ,1 /kmax(G)), where kmax(G) is the maximum degree 

of G (see the Appendix A , Theorem A.3.1 ).

2.6.2 A novel formula for the free-energy of the RWLS model

Let L  =  (Z d x S ,E ) be an infinite d-periodic q-regular lattice. We define 

Gn =  (Vn, En) as the vertex-induced subgraph of L  (see section 2.3), determined by the 

vertex set

vn =  {(k ,s ) e x S : k e [ -n ,  n]d}.

We can construct a well defined function F  : [0 ,1/q) ^  R, known as the free-energy of 

the RWLS in the thermodynamic limit, reading

The next relevant result for F (z) is considered in the literature (see, e.g., [49] 

for the hypercube case), nonetheless whose general proof is not easily found in a 

single source. Because its importance for our purposes, we enunciate it here and give 

a complete proof in the Appendix A (for so we follow similar steps to those in [55], but 

which deals with non-backtracking walks in the context of the Ising model).

Zg(z) =  ^ 2  w (a,z)
aeLs (G)

=  1 +  E  m  E  n  w(1i , z )-
m=1 (li,...,lm) i=1I I  V.m=1 (li,...,lm) i=1

(2.43)

Let L r (m) be the set of all sequences (/1;. . . ,  1m) of loops satisfying

4 l +  • • • +  =  G

(2.44)

where L ( r 1, r m) =  L r i (G) x L r2(G) x . . .  x L rm(G). Then, by Eq. (2.43)

Z G(z) =  1 +  E  m  E  E  n  w (/i ’ z ). (2.45)

(2.46)
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Theorem  2.6.1 Let L  =  (Z d x S ,E ) be an infinite d -period ic  q -regu ia r lattice and  

A(w) e CSxS its structure matrix. Then, for z e [0 ,1/q) the free-energy FL(z) o f the 

RWLS on L  can be written as

Fl (z )
1 1

2S (2n)d JB
ln det(1 -  zq A(w)) dw. (2.47)

Finally, we connect the eSTGF of the lattice L  with the corresponding RWLS by 

means of the following new theorem.

Theorem  2.6.2 Let L  =  (Z d x S, E) be an infinite d -period ic  q-regu ia r lattice, whose 

eSTGF is Te(z). For FL (z) the free-energy o f the RWLS model on L , for all z e [0,1)

F l I  ^  = 1 (  Te(z) -  ln

Proof. For z e (0,1) the proof is a direct consequence of Eqs. (2.26) and (2.47). The 

case z =  0 can also be rigorously included if taking as the limit

F l (0) =  lim  Fl ( ^  =  1 lim  (T e(z) -  ln -  )
z—o+ \ q j  2 z—o+ V z J

0.

From Theorem 2.6.2 and Eq. (2.27) we have that FL(0) =  0 and lim z—0 dFL(z)/dz  

is finite, whereas

Am- f l {  q ) = f l {  q ) = 2  ( f l  -  ln,q|)
and

lim  dF-L (z) =  q f  1 — 1  lim  P ((0, s ),z )^  . 
z—— 1/q dz W  2 V S ^  z—1 U ' WV s=1 7

  vv-,s),z) . (2.48)
z—1/q dz 2 V S

Therefore, it is natural to ask if the boundary point 1/q represents a critical point of the 

function FL(z), i.e., whether the limit in Eq. (2.48) does or does not exist.

For d >  3 (d = 1  or d =  2), a simple random walk on L  is transient (recurrent) 

—  see, e.g., refs. [6, 82]. In other words, for d >  3 (d = 1  or d =  2), lim z—1P ((0, s), z) is 

finite Vs e S (limz—1P ((0 ,s ),z )  =  V s e S). So, when d >  3 (d = 1  or d =  2), the 

mentioned limit is finite (diverges). Hence, we conclude that a critical point or singularity 

appears only for the dimensions d =  1 and d =  2.

We illustrate this result with d-dimensional hypercubes (for d =  1,2,3), which 

are vertex-transitive lattices where q =  2d and thus lim z—1/(2d) dFL(z)/dz  =  d (1 -  

lim z—1 P (0, z)). For such L ’s [26]

Ahypercube(w) =  ^ c o s ^ ]  +--------+ cos[wd|) .
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Then, from Theorem 2.3.1

f i

P (0, z) = {  2 K (z),

s/l—z

4(1—9 h4)[K (4h 3/ ^ ( l—h)3(l+3 h))]2
n2 ( l—h)3 (1+3h)

d =  1,

d = 2 ,

d = 3 ,

where

h (1 +  V l  -  z2)  1/2 M  -  ^
1/2

1 -  ¥

The d = 1  expression comes straightforwardly from the integration of (2n)-1 (1 -

z cos[w1])-1 dw1. The planar square lattice, d =  2 case, is given in [53], with K (■)

representing the complete elliptic integral of the first kind. Finally, for the cubic lattice,

d =  3, the above P (0, z) has been derived in [83].

Observing that lim z^ 1 K (z) =  ro, from the previous LGF, we have that FL(z) 

has a critical point at z =  1/2 and z =  1/4, respectively, for d = 1  and d =  2. On the 

other hand, since for d =  3 [83, 84]

1212 /  \
P (0,1) =  —  (  18 +  12 -  10v¥ -

x [K ((2 -  v/3)^v/3 -  v ^ ) ) ]2 

w 1.516386...,

we conclude that for the cubic lattice the boundary point z =  1/6 is not a critical point.

Finally we should remark that for a non-backtracking loop soup (nbLS) model, 

the free energy for hypercube lattices has been obtained in [41]. In this case the critical 

points emerge also only when d = 1  and d =  2, at z =  1/(2d -  1). However, the nbLS 

critical points at 1 (d =  1) and 1/3 (d =  2) contrast with our respective values of 1/2 and 

1/4 for the RWLS model.

2

2

2.7 CONCLUSION

In this contribution we have broadening the spanning tree generating function 

scope, first introduced in [26] for infinite periodic vertex-transitive lattices. Our Te(z) is: 

(i) valid for non-vertex-transitive regular L ’s, (ii) yields the spanning tree constant when 

evaluated at z =  1, and (iii) reduces to the previous T (z) in the vertex-transitive case.

The original T (z) satisfies a differential equation involving the probability ge­

nerating function (or lattice Green function LGF) of the corresponding lattice. In some 

contexts, however, the integration to get T (z) can be a hard task (as we have seen 

through few examples). The eSTGF Te(z) can be obtained by integrating (over w)
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ln[det(1 -  z A (w ))/zS], with A(w) e CSxS the structure matrix of L. Such representation 

allows, for vertex-transitive lattices, to compute Te(z) =  T(z) independently on the LGF 

P (0, z). In this case our approach also allow to derive a new integral expression for

P  (0, z).

As illustrations we have worked in details the eleven Archimedean (all vertex­

transitive) and the non-vertex-transitive martini and (4 ,82) covering/medial lattices. It is 

worth recalling that the purpose of this contribution was not to present an exhaustive list 

of examples. So, we have considered just planar (d =  2) L ’s. Surely, an interesting future 

development is to explore other lattices, in special those in three or more dimensions 

(d >  3) usually with higher S values. Regarding further generalizations of Te(z), currently 

we are studying the eventual relaxation of the q-regularity condition (results will be 

reported in the due course).

Finally, we have demonstrated that the eSTGF is, in the thermodynamic limit, 

essentially the free energy of the random walk loop soup model [38]. This provides a 

second example after the Ising model (for the square and triangular lattices [27]) —  and 

a first for non-vertex-transitive L ’s —  in which not only the spanning tree constant but 

also the full spanning tree generating function has a direct relation to key statistical 

physics quantities for lattice systems.

Of course, a very ambitious research project would be to determ ine which 

are the minimal necessary conditions for a physical discrete (lattice) model to be at 

least in part described by a eSTGF. We hope the present findings may motivate future 

investigations with such a goal.
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3 THE EXACT SOLUTION OF THE ISOTROPIC ISING MODEL FOR THE ELEVEN 

ARCHIMEDEAN LATTICES IN TERMS OF THE CORRESPONDING SPANNING 

TREES GENERATING FUNCTIONS

3.1 ABSTRACT

We calculated the isotropic Ising free energy for the eleven Archimedean lattices 

and the m artin ila ttice , and established some connections with the formulas for its 

eSTG F, that were obtained in chapter 2, the connections we found follows the work in

[27] and they show that for these lattices, the Ising free energy can be obtained from the 

eSTGF via a set of auxiliary functions, ^ ( K ), .. ,0 „L(K ), where is a positive integer 

that depends on the lattice. In the case =  1 (square, triangle, hexagonal, kagome, 

Star, Martini) we obtained the additional property that

0 (K C) =  1,

where K c is the critical point of the isotropic Ising free energy.

3.2 INTRODUCTION

The utmost approach towards describing matter in its condensed forms [85] 

involves the application of quantum many-body theory [86]. There are, however, pheno­

mena whose proper understanding depends less on the detailed microscopic description 

of constituent interactions and more on the exact topological structure of matter organi­

zation, resulting in emergent properties and scaling behavior.

Indeed, the mathematical framework of the renormalization group [87] is spec­

tacularly successful in predicting what happens near a continuous phase transition. 

Is conceptual pillars are scaling, renormalization and universality. Nonetheless, a too 

simplistic view on the problem may lead to wrong conclusions. For instance, somewhat 

naïve scaling assumptions led Landau to infer incorrect exponents for critical points [88]. 

The crucial mistake was to assume that a sequence of functions with a certain property 

— e.g., smoothness —  has a limit that automatically inherits this property (that is why, in 

quantum mechanics for instance, valid states must belong to bona fide Hilbert spaces).

In this context, the tour de force Onsager’s exact solution of the 2D ferromagnetic 

Ising model in 1942 (in zero field and for a square latticed), which he published in 1944

[28], was a breakthrough achievement (for a nice historical account see, e.g., [89]). His 

solution correctly predicted the scaling exponents and provided fascinating insights into 

what actually happens near the critical point. The ensuing advances also showed the 

value of closed analytic results. Since that time, a number of other solvable models
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have been studied, providing considerable insight into the macroscopic behavior of 

condensed matter systems [90, 91, 92, 93].

More broadly, exact expressions have provided especially useful information 

about the behavior of systems far from critical points, beyond the reach of renormali­

zation group protocols (since scale invariance symmetry breaks down far from critical 

points). Frequently, only numerical solutions are used to investigate regimes far from 

critical points [94, 95].

In this context, exact solutions stand unparalleled in providing such insight.

The importance of topology in physics has been well known for centuries. 

Symplectic geometry and later differential topology are of fundamental importance to 

classical and relativistic mechanics, for instance. Not surprisingly, topology also plays a 

fundamental role in statistical mechanics. Topological data analysis, which has its roots 

in statistical mechanics, is a recent example.

In the 1960s, the statistical mechanics community was introduced to the 

methods of mathematical graph theory via the books of Harary, in particular, Graph 

Theory and Theoretical Physics. The chapter of Kastelyn, considered by many to be 

seminal, showed the connection between graph theory and exact enumeration problems 

in combinatorics, including a graph theoretical approach to the exact solution of the 2D 

Ising model. In fact, every planar lattice model can be treated this way.

Intuitively, a full periodic tiling (or tessellation) of the flat plane implies that it 

is possible to cover the entire Euclidean 2D space by means translations of a basic 

motif (or geometric shape) without leaving overlaps or gaps. The most symmetric tilings 

are those provided by regular convex polygons. The three so called regular tilings give 

rise to the simplest structures (for a formal definition see, e.g., [1]), resulting from the 

ordered repetition of either an equilateral triangle, a square, or a regular hexagonal. The 

second family in this hierarchical classification is formed by the eight semiregular tilings, 

whose fundamental shape is constituted by the juxtaposition of two or three regular 

convex polygons. They yield the bridge, kagome, bathroom, puzzle, star, ruby, maple 

leaf and cross lattices.

The above set of tessellations, depicted in Fig. 11, is known as the eleven Archi­

medean lattices. They exhaust all the possible combinations of regular polygons tiling the 

plane with the condition that every vertex is equivalent, namely, any vertex is surrounded 

by the same sequence of polygons, moreover with a translational symmetry [1]. The full 

equivalence of their vertices make Archimedean lattices very useful in treating a great 

diversity of distinct phenomena in physics [96, 97, 98, 99, 100, 101, 102, 103, 104, 105]. 

Actually, their great symmetry give rise to special features like isotropic structures in 

photonic crystals [106] and quantum states which allow universal quantum computation
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[107], or yet being a key geometry in the architecture of protein containers in viruses [16].

In [27] was found a relation between spanning trees and the Ising model for 

the square lattice via a spanning tree generating function (STGF) defined in [26], this 

relations is valid for all temperatures T . Therefore, given the mentioned importance 

of Archimedean lattices, they seem a first natural class of infinite periodic graphs to 

study those relations, in trying to do so, we defined in chapter 2 the notion of an 

extended STG F (eSTGF ) that allows also regular non-vertex transitive lattices. If the 

lattice is vertex transitive then STG F  =  eSTG F . We calculated the eSTGF  for all the 

archimedan lattices and for the m artin ila ttice  (Fig. 7) in chapter 2. In this chapter we 

will show some relations between the eSTGF  and the Ising model of all Archimedean 

lattices and the m artin ila ttice. We also calculated the Ising model for all these lattice 

since in the literature, the only solutions reported out of this set are only six, namely, for 

the square, triangle, hexagonal, kagome, star and bathroom lattice. So in this chapter 

we also report for the first time the Ising free energy for the other 5 archimedian lattice 

and for the martini lattice.

(3 4, 6)

(6 3)

(3, 6 , 3, 6)

(3 2, 4 ,3 ,  4) (3 3, 4 2)

(3, 4 , 6, 4)

Figure 11 -  The eleven planar Archimedean lattices. The nomenclature (a f1 ,a02,. . . )  is that 
defined in [1] and indicates cyclically all the polygons which meet at any lattice 
arbitrary vertex.
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3.3 BASIC CONCEPTS

3.3.1 Graphs

A graph G is an ordered pair (V (G ),E (G)) consisting of two sets, of vertices 

V  =  0 and of edges E , together with an incidence function $G, which associates 

each edge of E  to unordered pair of vertices of V  (whenever the dependence on G is 

apparent, we just write V  and E  for short). The number of elements of V  and E  are 

denoted by |V | and |E| (throughout this work |X | will represent the cardinality of the set 

X ). If e is an edge and u and v are vertices such that 0G(e) =  {u ,v } ,  then e is said to 

join u and v. In this case, u and v are called adjacent vertices as well as “extremes” of e. 

An edge with distinct (identical) extremes is a link (loop). Two or more edges with the 

same pair of extremes are parallel edges. The degree (or coordination number) q of a 

vertex v e V  is the number of elements of E  in the form {v ,u }  with u e V  .A  graph is 

locally finite if for any v e V  the corresponding degree is always finite. A q-regular G is a 

graph whose all vertices have the same degree q. Finally, G is connected if there are 

not two disjoint sets Va and Vb such that V  =  Va u Vb and {va,vb} e E  for any va e Va 

and any vb e Vb. An empty (also known as fully disconnected) graph has no adjacent 

vertices, i.e., the edge set is empty. Examples of elementary graphs are given in Fig. 12.

Given a graph G (possibly with loops and parallel edges) embedded in a surface 

S such that each edge is a continuous curve, we can define two orientations for each 

edge obtaining the set of all directed edges E (G) (or simply E ), with |E| =  2|E|. If d e E , 

then d : [0,1] ^  S is a continuous curve whose origin is d(0) and end d(1). The inverse 

of d, d : [0,1] ^  S , is defined as d(t) =  d(1 -  t); obviously of origin d(0) =  d(1) and end 

d(1) =  d(0).

A simple graph G(V, E ) has no loops or parallel links and allows a somewhat 

more straightforward description since one may dispense the concept of incident function 

0G. Indeed, the elements of E  can generally be written as {u, v}, with u ,v  e V  adjacent 

vertices and u =  v . In a diagram of a simple G , the edges (or links) labels might then be 

omitted. Further, for (v,u) an ordered pair with v ,u  e V , one can define E  as

E  =  {(v ,w ) : {v ,w }  e E }. (3.1)

If d =  (v, w) e E , d(0) =  v, d(1) =  w and d =  (w, v) e E .

3.3.2 Periodic and quotient graphs

Obviously, in physical models periodic lattices are fundamental. So, here it is 

convenient to introduce periodic graphs and quotient graphs in a bit more rigorous 

manner, but whose effort pays off due to their usefulness for our later purposes. Actually, 

these concepts can be formulated in very abstract —  hence general —  terms based
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(a) (b)

(c) (d)

• -----------• -----------9----------------------------- * • • -• ------9----------- 9

1 2  3 n- 2  n- 1 n

Figure 12 -  Four very simple finite graphs: (a) a simple loop; (b) a double loop; (c) open chain 
of n vertices; (d) a cycle of n vertices.

on the idea of a d dimensional Z d-action on a graph (see some basic properties in the 

Appendix B). However, next we shall avoid excessive technicalities, presenting a more 

direct definition particularized to the d =  2 case.

We first observe that generally an isomorphism between two graphs G and H  

is a bijection 9 : V(G) ^  V (H ) preserving adjacency, that is, the vertices v and w are 

adjacent in G if and only if 9(v) and 9(w) are adjacent in H . An automorphism of a graph 

is the isomorphism 9 : V(G ) ^  V(G).

A simple infinite graph G in R2 is called 2-periodic if there are two independent 

vectors, v i and v2 in R2, such that

i) The translations by either v1 or v2 are automorphims of G.

ii) The number S of vertices of G in the parallelogram D  spanned by the vectors v1 

and v2, namely,

D  =  |a v 1 +  bv2 : a, b G [0,1)}, 

is finite. D  is known as the fundamental region of G.

It is then a trivial fact that for any (k, 1) g Z 2, the map t(k,z)(v) =  v +  k v1 +1 v2 is 

an automorphism of G. We have that ( { t ^ } ,  +), for “+” the usual sum of vectors, forms 

the translation group TG of G. Examples of the fundamental domain D  for three distinct 

infinite periodic graphs are depicted in Fig. 13. Note that the group TG tiles the entire 

plane by acting on D.

We now recall that n Z  © n Z  (for a given n g N ) is the abelian additive group 

An =  (n Z  x n Z , + ), where here the operation “+” is applied componentwise and the 

identity element is (0,0). Since An is a subgroup of Z 2 we can define a quotient graph
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Gn =  G /A n for each integer n >  1 (see Appendix B ). G1 =  G /A 1 =  G /Z 2 is called the 

fundamental quotient graph of G (illustrations in Fig. 14). The graph G1 is finite and we 

have that our previously defined S is equal to |V (G 1)| (Theorem B.1.2 in the Appendix 

B). If L  is also a q -regu la r graph we have that (Theorem B.1.2)

E =  |E (G i )| =

Figure 13 -  Three examples of infinite periodic graphs and their fundamental domains D: (a) 
square, (b) hexagonal (honeycomb) and (c) kagome. The number of vertices, S, 
within the fundamental domain is also highlighted.

Hereafter a planar (i.e., embedded in R2), simple, connected, locally finite and 

2-periodic graph, moreover with each face being a topological disc (thus non-generated, 

see [108] for details) will be called a lattice L.

Very relevant in present context is the so called “A ltered” Kac-Ward Matrix. Let 

G =  (V, E ) a finite graph embedded in an oriented torus T 2, such that the edges and 

faces of G are, respectively, rectilinear segments and topological discs. Assume yx 

and Yy two simple closed curves in T 2, whose homology classes form a basis for the 

homology group of the torus. Consider also that this two curves avoid the vertices of 

G (in Fig. 15 we give an example with G =  L sq/Z 2, for L sq denoting the square lattice). 

Thence, for each pair of complex numbers z =  (z1,z2) e C2 the “A ltered” Kac-Ward 

Matrix K(z; G) is a 2|E| x 2|E| complex matrix indexed by the directed edges E (G),



59

Figure 14-Three  different representations for the fundamental quotient graph of an infinite:
(a) square G; (b) triangular G. In the grid representation, G /Z 2 corresponds to the 
dashed square (of equivalent parallel sides).

v ,
b

a Yy

Figure 15 -  An example of a finite graph, here G =  LsqjZ2, embedded in the torus such that 
the simple closed curves yx and j y (the arrows indicate the positive orientations) 
do not cross any of the G vertices. As in Fig. 14, the parallel sides of the dashed 
square are equivalent (i.e., periodic boundary conditions).

reading [108]

K (zi, z2; G)di ,dj

a (z1, z2,d i ,d j), di(1) =  d j(0) and

dj (1) =  di (0)

0, otherwise

(3.2)

where

2 0(d i,d j)a (z1, z2, d i,d j) =  (z1)Yx'di (z2)Yy'dj exp

for d(di ,d j ) e ( - n ,n )  the oriented angle between the vectors di and dj  (see Fig. 16).
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Furthermore, yx ■ d, is 0 if d  doesn’t intersect yx, otherwise it is +1 (-1) if yx and d, are 

both oriented either positively or negatively (have opposite orientations). The same 

applies to Yy ■ dj . To illustrate this construction, from Fig. 15 we have that the angles for 

the Altered Kac-Ward matrix of the square lattice fundamental quotient graph are (here 

ad, a«, b and br means down, up, left and right regarding the vertex v in Fig. 15)

Yx ■ b =  Yx ■br Yy ' ad Yy ' a«

Yx ■ ad =  Yy ■b =  -1 ,

Yx ■ a« =  Yy ■br =  +1,

0(br , br ) =  6>(b, b) =  0(a«, a«) =  6»(ad, ad)

d(adA ), =  d(a.«,bi) =  d(br , a«) =  d(bi,ad)

d (a dA ) =  d(a.u,br ) =  6>(b, a«) =  d(br , ad)

n
+  2 ’ 

n
-  2'

i ,dj ) > 0

i , d j ) < 0

Figure 16 -  For planar graphs whose edges are rectilinear segments, every directed d  can be 
thought as a vector. So, if d ( i )  =  dj (0) and d j(1) =  d,(0) there is a well defined 
oriented angle d(di, dj ) e ( -n , n). Here two examples of such angles.

3.3.3 Spanning trees, even subgraphs and their generating functions

A spanning tree tG of an arbitrary connected, simple and locally finite graph G 

is a loop-free subgraph connecting all vertices of G. Examples of which is and which is 

not a spanning tree of a graph G is illustrated in Fig. 17. For G furthermore finite, the 

total number of its spanning trees is denoted by N t (G).

An important concept is that of spanning constant zG for an infinite periodic 

graph G (see, e.g., [25]). In our present context, it is readily given by the well-behaved 

limit [25]
Nt(Gn)

zG lim
n-+co V  (Gra)

(3.3)

with Gn the n quotient graph of G.

For infinite periodic graphs G which are also vertex-transitive [3] (just the case 

of the Archimedean lattices) it has been proposed in [26] a Spanning Tree Generating 

Function (STGF) TG(z), written in terms of an integral over the corresponding lattice

di

di
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Green’s function [50, 54] and with the relevant property that TG(z =  1) =  zG. The 

condition of vertex-transitivity has been relaxed to just q-regular G ’s in Theorem 2.4.2, 

yielding an expression TG(z) based on the structure matrix of G and hence easier to 

calculate. Furthermore, also TG(z =  1) =  zG and if G is vertex-transitive TG(z) reduces 

to TG(z). The explicit formula for TG(z) reads (Theorem 2.4.2)

TL(z) =  ln [q /z ] +
1

S 4 n 2 JB
ln [DL(z, w)] dw. (3.4)

Details of Eq. (3.4) for the eleven Archimedean lattices will be presented in section 3.5.

(a) G

(b) A possible t
 •---- G

(c) Not a tG

(d)

------o

o

o

•

Not a t
•------ iG

4

Figure 17 -  (a) A graph G and (b) a possible spanning tree of it. A subgraph of G with (c) the 
edges forming loops or (d) not including all of its vertices is not a TG.

We say that a subgraph H  of G =  (E, V ), with V (H ) =  V (G) and E (H ) c  E(G), 

is even if any v e V (H ) has an even number of links (the number of loops can be 

arbitrary). The set of all even subgraphs of a graph G is denoted by E (G). Note that an 

even subgraph does not need to be connected, see the example in Fig. 18.

Let G =  (E, V ) be a finite graph, we define the Even Graph Generating Function 

(EGGF) of G as
|E(G)|

F (G ,x )=  ^  x |E(H)| =  ^  N ( r )  x r , (3.5)
H€E(G) r=0

where N ( r )  is the number of even subgraphs that have in total r  edges (links plus loops). 

Since in any graph G =  (V ,E ) there is only one even graph with 0 edges, the empty 

graph, then N (0) =  1.

It is worth illustrating Eq. (3.5) with the very simple examples of Fig. 12: (a) one 

vertex and one loop; (b) one vertex and two loops; (c) a finite open chain of n vertices; 

(d) a finite closed chain (cycle) of n vertices. For these graphs, all the even subgraphs 

and the corresponding F (G ,x) are:
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Figure 18 -  Example of a disconnected even subgraph H  of a finite 7 x 9 square graph G. Every 
vertex of H  has even degree. All the vertices of G also belong to H .

(a) The trivial empty graph and G itself, hence

i
F (G, x) =  ^  N ( r )  x r =  1 +  x.

r=0

(b) Since V  =  {v }  and E (G) =  {e1,e2}, for both e1 and e2 loops, the even subgraphs 

are the empty graph, G, ({v }, {e1}) and ({v } , {e2}), with

2
F (G, x) =  ^  N ( r )  xr =  1 +  2x +  x 2 .

r=0

(c) Only the empty graph, so

n— 1
F  (G, x) =  ^  N  (r) x r =  1.

r=0

(d) Similarly to (a), just the empty graph and G itself, thus

n
F (G , x) =  ^ N ( r )  xr =  1 +  xn.

r=0

An important limit associating EGGF and infinite lattices L  has been proved in

[108] (Lemma 4.3 in such Ref.). Let L  be an infinite lattice as previously defined, also 

with all its edges being rectilinear segments. Hence, for B  =  [0,2n]2 and Gn =  L /A n, we 

have for each x  e [0,1) that (w =  (w1; w2) e B)

ln [F (G n,x)] 1 f  , D  ^ d (36)
lim  ---------2-------- =  7T^ ln [Dl (x , w)] dw, (3.6)

n n2 on2 JB

with (where I  is the identity matrix)

D L(x, w) =  d e t[I  — x W L (w)] (3.7)

and (cf., Eq. (3.2))

W L(w) =  K (exp[iw 1], exp[iw2]; L /Z 2). (3.8)
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3.4 THE ISING MODEL.

The 2D Ising model in the thermodynamic limit and for a vanishing magnetic field 

(B  =  0) was solved by Onsager in 1944 [28] using quaternions. Kaufman reformulated 

the solution in terms of spinors in 1949 [109]. A different approach was introduced by 

Kac and Ward in 1952 [29], subsequently refined by Feynman [110] and Vdovichenko 

[111]. The Feynman-Vdovichenko method (FVM) relies on counting properly constructed 

graphs drawn on the same discrete lattice of the Ising model.

The partition function of the isotropic Ising model (with B  =  0) on a finite (simple) 

graph G =  (E, V ) is defined as Z  : [0, +œ ) ^  R, such that (K  =  J (kB T ) -1)

z g (K ) =  ^  ^  exp[K au av], (3.9)
aGH {u,v}GE

where Q =  { - 1 , 1 }V, i.e., Q is the set of all functions (spin configurations) a : V  ^

{ -1 ,1 } .

The following result is well known and its proof can be found, e.g., in [112]. Let 

G =  (E, V ) be a finite graph. Then, it holds for the Ising model partition function that

Zg (K  ) =  2|V 1 cosh|E| [K  ] F  (G, tanh[K ]). (3.10)

The above function F  is exactly the EGGF given in Eq. (3.5).

3.4.1 Thermodynamic limit and an exact general expression for the model free energy

Equation (3.9) has been defined for a finite graph G. Of course, the statistical 

physics interest relies on the model thermodynamic limit. To establish it, let L  be a lattice 

as described above. So, the thermodynamic limit the free energy of the Ising model on 

L  is given by
f . ,■ >n[ZG„(K )]
M .K )  =  hm iV tG  '| .IV (Gn)|

where Gn is the quotient graph Gn =  L /A n.

The following expression provides a way to calculate the Ising model free energy 

for planar infinite periodic lattices L  (see Theorem B.1.4 in the Appendix B)

f L(K ) =  ln[2] +  E  ln[cosh(K)]

+  2 f  ln [D L (tanh [K ],w )] dw. (3.11)
S 8 n 2 JB

We shall remark that a formula equivalent to Eq. (3.11) has been reported in 

Refs. [111, 113]. It has been used to calculate the critical Ising temperature for all the 

eleven Archimedean lattices in Ref. [114]. However, despite the success in all these
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calculations, Eq. (3.11) has been proven to be rigorous (based on a method consisting 

of summing over random walk loops) only for the special case of the square lattice [55] . 

Therefore, as far as we know, the first general formal proof of Eq. (3.11) in the literature 

is that given in our Theorem B.1.4 in the Appendix B

Finally, from Theorem 1.1 and Proposition 2.2 in [108], it is straightforward to 

show that the Ising model critical point is given by K c =  arctanh[xc], where xc is the

unique root in the interval (0,1) of the polynomial

P L(x) =  d e t[I — x K(0, 0; L /Z 2)]. (3.12)

3.5 THE ISING MODEL SOLUTIONS FOR ALL THE ELEVEN ARCHIMEDEAN LAT­

TICES

Important parameters of the Archimedean lattices as well as and the related 

values of xc are listed in the Table 2. Further, by defining

A ± =  cos[w1 ±  w2],

A o =  cos[w1] +  cos[w2],

A i =  cos[2w1] +  cos[2w2],

A 2 =  cos[2w1 +  w2] +  cos[w1 +  2w2],

A 3 =  cos[2w1 +  2w2],

the expressions for in Eq. (3.4) —  for q and S see Table 2 —  leading to the STGF for 

such lattices are summarized in Table 3 (for their derivations see Theorem 2.4.2).

To the best of our knowledge, six —  out of eleven —  exact solutions of the Ising 

model on Archimedean lattices (Fig. 11) have already been published in the literature 

[28, 32, 33]. They are the square, triangular, honeycomb, kagome, bathroom and star. 

Nonetheless, the other five, i.e., bridge, puzzle, ruby, maple leaf and cross, should still 

be calculated and we will do it shortly.

Now we fill this gap by deriving an exact integral representation of for all the above 

L ’s, which is readily written down from the general expression in Eq. (3.11). For so, we 

determine L /Z 2 for each L  and then explicitly construct W L, Eq. (3.8), to obtain Eq. 

(3.7). The necessary numerical constants S , q and E are listed in Table 1 and in Table 2. 

The present full set of D L’s has not been reported anywhere. We also observe that as it 

should be, our expressions below for the previously known cases do agree with those in 

[28, 32, 33] after few algebraic manipulations 1.

Therefore, the Ising free energy f L’s for the eleven Archimedean lattices follow 

from Eq. (3.11) using the parameters in Table 2 and for (with x =  tanh [K ])

1 Actually, from such careful comparison, we have spotted a simple sign misprint in f L of the bathroom 
lattice in [33].
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Table 2 -  All the eleven Archimedean lattices in some of their features.

Lattice L Label [1] E nL The polynomial PL(x) in Eq. (3.12) “ xcb

Square (44) 2 1 ( -  1 + 2x + x2)2 0.414214.
Triangular (36) 3 1 (1 + x)2(1 -  4x + x2)2 0.267949.
Honeycomb (63) 3 1 (1 -3 x 2)2 0.577350.
Bridge (33,42) 5 2 (1 -  3x)2(1 + x)2(1 + x2)2 1/3
Kagome (3,6,3,6) 6 1 (1 + x)4(1 -  2x -  2x3 + x4)2 0.435421.
Bathroom (4 , 82) 6 2 1 -  8x3 -  2x4 + 16x6 + 8x7 + x8 0.601232.
Puzzle (32 ,4,3,4) 10 3 (1 + x)4( — 1 + 2x + x2 + 4x3 + 9x4 -  6x5 + 7x6)2 0.329024.
Star (3,122) 9 1 (1 + x)4 ( — 1 + 2x -  3x2 + 2x3 + 2x4)2 0.670698.
Ruby (3,4,6,4) 12 3 (1 + x)4(1 + x2)6(1 -  2x -  2x3 + x4)2 0.435421.
Maple Leaf (34,6) 15 3 (1 + x)8(1 + 3x2)2(-1 + 4x -  7x2 + 12x3 -  3x4 + 3x6)2 0.344296.
Cross (4,6,12) 18 3 (1 + 2x2 + 5x4)2(1 -  2x2 + 2x4 -  10x6 + x8)2 0.616606.

“ The PL for the Kagome, Bathroom and Ruby lattices are different from those reported in [114]. 
However, as we have mentioned in the main text, the exact form of the polynomial depends on the 
embedding used for L. On the other hand, the value for xc is always the same.

b xc coincides with tanh[Kc] for Kc the critical point of the corresponding Ising model on L. Our xc’s 
values agree with [114].

Table 3 -  All the eleven Archimedean lattices and the corresponding DL in Eq. (3.4).

Lattice L Coefficients bn
Square 60 + biA0
Triangular 60 + 61(A0 + A+)
Honeycomb 60 + b1(A0 + A+).
Bridge 60 + b1 cos[w1] + 62(cos[w2] — cos[2w1] + A+)
Kagome 60 + 64A 0 + A+)
Bathroom 60 + 61 A0 + 62(A+ + A_)
Puzzle 60 + 61(A+ + A_) + 62A 0 + 63 A 1

Star 60 + 61 (A0 + A+)
Ruby 60 + 61 (A0 + A+) + 62(A_ + A 2) + 63 (A1 + A3)

Maple Leaf bo + bi(Ao + A+) + b2(A_ + A2) + b3(Ai + A3)

Cross

bo = 1, bi = - 2
bo = 1, bi = - i f  

bo = -  + 1, bi = -2 I2.
bo = 1 -  25, bi = -25z2 -  5^, b2 = -25z2.

bo = -  is -  31- + 1, bi = -
(2+z) z 

i6l    z4 2z2 1 1  ̂ _ 4z3  ̂ _ 2z4bo = st -  ~T + 1, bi = -  427, b2 = - -§r. 
b = _z4_______ 25-  + 1 b = — 8z4 _ 4z3bo i25 i25 5 + 1, bi 625 i25

b = _ 4z4 _ _ 4z- b =b2 625 i25 25 , bf 625
bo 4z~ + 2z~ 4z~ _ z2 + 1 b8i + 9 27 z + 1, b

3z6 I 3z
= 2(2z+3) z4

i = 243 .
b = — 3z6 + 3z4 _ z3   3z- + 1bo = 2o48 + e32 ^6 3 4 + 1

bi = ~ ~ ~z
io264

bo = -  -z— be, =b2 io24, bf 2o48.
b = _ iiz6 + 24z5 + 27z4 i6z3 3z2 + 1bo 1CCOC + 3i25 + 625 i25 5 + 18z6 i2z5 24z4 8z3

32
2o48 .4

i5625
bi =
b2 =

i56258z6 3i254z 625

bo + bi(Ao + A+) + b2(A_ + A 2) + b3 (Ai + A3) bo =
bq =  3i25 , b3

i6252z6

i77i47
i5625 _ 34ziU + 89z8 

i9683 + 2i87 
-  2z2 + 1,

i5625 28oz6 + 37z4
729 27

i6zi
bi 53i44i b = 4z
b2 53i44i

2ozi 2oz8 4z6
i9683 + 2i87 243 ’8zl8 b = 2z59o49 , b3 53i44i.

5z
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Table 4 -  The coefficients an’s for DL’s for all the Archimedean lattices.

Lattice L Coefficients an
Square
Triangular

Honeycomb
Bridge

Kagome

Bathroom

Puzzle

Star

Ruby

Maple Leaf

Cross

ao = (1 + x2)2, ai = 2 x ( — 1 + x2).
a0 = (1 + x)2 (1 — 2x + 6x2 — 2x3 + x4),
ai = —2 x ( —1 + x2)2.
ao = 1 + 3x4, ai = 2x2 ( — 1+ x2).
a0 = (1 + x)2 (1 + x2)2 (1 — 2x + 5x2),
a1 = 2 x ( — 1+ x) (1 + x)2 (2 — x + 5x2 + x3
+x4),
a2 = 2x2 ( —1 + x2)3.
ao = (1 + x)4 (1 — 4x + 10x2 — 16x3 + 22x4
— 16x5 + 10x6 — 4x7 + x8),
ai = —2 x2 ( —1 + x) 2 (1 + x) 4 (1 + x2 ) .
a0 = (1 + x2)2 (1 — 2x2 + 5x4), 
a1 = 4x3 ( —1 + x4), 
a2 = —2x4 (1 — x2)2
a0 = (1 + x)4 (1 + x2)2 (1 — 4x + 8x2 — 4x3 
+2x4 + 20x5 + 32x6 — 12x7 + 21x8), 
ai = —4x3 (—1 + x) 4 (1 + x) 6 (1 + x2 ) , 
a2 = 4x2 ( — 1 + x)3 (1 + x)5 (1 + x2)2 (1 + 3x2), 
a3 = 2x4 ( — 1 + x2)6.
a0 = (1 + x)4 (1 — 4x + 10x2 — 16x3 + 19x4
— 16x5 + 10x6 — 4x7 + 4x8),
a1 = 2x4 (1 + x)4 ( — 1 + 2x — 3x2 + 2x3).
a0 = x24 + 4x21 + 6x20 + 12x19 + 26x18 + 72x17 
+ 195x16 + 312x15 + 390x14 + 624x13 + 812x12 
+624x11 + 390x10 + 312x9 + 195x8 + 72x7
+26x6 + 12x5 + 6x4 + 4x3 + 1,
a1 = —4(x — 1)2x3(x + 1)4(x12 + 4x10 — x9 
+9x8 + x7 + 4x6 + x5 + 9x4 — x3 + 4x2 + 1), 
a2 = —4x6 (x2 — 1)6 , 
a3 = 2x6 (x2 — 1)6
a0 = 63x24 + 456x23 + 1578x22 + 3768x21 
+7530x20 + 13392x19 + 20904x18 + 28608x17 
+34899x16 + 37968x15 + 36204x14 + 29808x13 
+21172x12 + 13152x11 + 7176x10 + 3328x9 
+ 1341x8 + 552x7 + 186x6 + 24x5 + 18x4
+16x3 + 1,
a1 = 4x3 ( — 1 + x)3 (1 + x)8 (2 — 4x + 15x2
— 11x3 + 27x4 — x5 + 15x6 + 11x7 + 3x8 + 5x9 
+2x10),
a2 = 4x5 ( — 1 + x)7 (1 + x)9 (1 + x2),
a3 = —2x6 ( — 1 + x2)9. 
a0 = 127x24 + 384x22 + 1188x20 + 992x18 
+837x16 + 324x14 + 182x12 + 24x10 + 27x8 
+4x6 + 6x4 + 1,
a1 = —4x6 ( — 1 + x2)2 (3 + 9x2 + 31x4 + 56x6 
+ 101x8 + 93x10 + 81x12 + 10x14), 
a2 = 4x10 ( — 1 + x2)4 (—2 — 3x2 — 4x4 + x6),
a3 = 2x12 ( — 1 + x2)6.
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3.6 RELATION BETWEEN THE FREE ENERGY OF THE ISING MODEL ON L  AND 

THE STGF OF L

Here we prove our key finding, namely, that given a lattice L  with a STG F T (z), 

the free energy f  (K ) of the Ising model on it can be exactly mapped to T (z) if L  is an 

Archimedean lattice.

For so, we start considering the following Laurent polynomials (for z1,z2 e C 

and n and m  integers)

< L „ ( ;1 , ;2) =  i  ( ^  +  ; M ' “)  (3 -13)

Observe that $1-1 =  $-11 and for \ L =  e x p ^ ]  we have

$nm(exp[iw1], exp[iw2]) =  cos[nw1 +  mw2]. (3.14)

and let L  =  {$10 +  $01,$10 +  $01 +  $11 , $10, $01 -  $20 +  $11, $11 +  $1 - 1 , $20 +  $02,$1 - 1 +
$21 +  $12, $22 +  $21 +  $12}. and for any $(z1,z2) e L, we define

$(w1,w 2) =  $(exp[iw1], exp[iw2])

For convenience we also define f L : [0,1) ^  R with

f L(x) =  ln[2] -  2̂  ln[1 -  x2]

+  2 i  ln [D l(x , w)] dw. (3.15)
S 8 n 2 Jb

So, trivially from cosh2[K ] =  (1 -  tanh2[K ])-1 one gets f L(K ) =  f L(tanh[K ]).

Now we present two formulas that will be the basis for our calculations.

By considering the polynomials set L  and the explicit expressions for the f ’s in section

3.5 and the T ’s in section 2.5.1, we have that for any Archimedean lattice L, there exists

an integer 1 <  nL <  3, two sequences of polynomials

aL (a0 (x) j ■■■) anL (x)) i

bL = (b0(z),...,bnL (z)),

with a0(x),b0(z) >  0 for all x ,z  e [0,1), and a sequence of Laurent polynomials in L,

$L =  {$0, $nL }

such that f L(K ) =  f L(x) with x  =  tanh [K ] and TL(z) are given by
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/ L( x ) = in [2 ]— 2 ^ i n [ i —x2]

+
1

5 8  n2
ln

nL
ao(x) +  ^ 2  a ,(x)d (w )

TL(z) =  in

+

q
z

1
5 8  n2

in
B

,=1

nL

dw,

bo(z) +  ^  b,(z)d(w)
,=1

dw,

(3.16)

(3.17)

The next lemma will be used to prove theorems 3.6.2 and 3.6.4.

Lem ma 3.6.1 Let L  be an Archimedean lattice with Ising free energy f L(K ) =  f L(tanh[K ]) 

and STG FTL(z) given by the formulas (3.16) and (3.17). For i =  1 , . . . ,  nL consider the 

polynomials o f two variables

J L(x, z) =  bo(z) a,(x) — b,(z) ao(x).

If for any  i =  1 , . . . ,  nL exists fa : [0,1] ^  [0, + A  such that Jq (x, A x ) )  =  0 one can

define nL functions fa : [0, +rc>) ^  [0, +rc>) by A - K ) =  A ta n h [K ]) such that

a)

f  (K ) =  Ho(tanh[K ])

+
5 8  n2

nL

X ln t 1 + H

b j(0 j(K )) 
bo(0,(K))

d (w ) dw.

where

b) If nL =  1 then

where

Ho(x) =  ln[2] — 2^: ln[1 — x 2] +
ln[ao(x)] 

25 '

f  (K ) =  Ho (tanh[K  ]) — H1(^ (K )} +  2 T  (0 (K )),

H 1(z) =  ln +
ln[bo(z)] 

5  ‘

(3.18)

(3.19)

1

Proof. The proof is straightforward using the fact that for each Archimedean lattice L 

and each i =  1, .„, nL, it reads

rLf 1 r n n „  ai(x) b (A x))J  (x, 1 [x ])  =  0 ^  / z =  , ( , ( ^ 'ao(x) bo(0,(x))
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For the next theorems we define the following subsets of the Archimedean lattices L (A )

L 1(A) =  {S 'quare, Triangle, Honeycomb, Kagome, S ta r}

A ( A )  =  L (A ) -  L 1 (A)

Note that for all Archimedean lattice L  e L 1(A) we have that nL =  1.

We also recall that K c =  arctanh[vc] is the critical point of the Ising Free Energy 

f  (K ) as is given in Table 2 . The following theorem is a generalization of theorem 1 in 

[27] where it was proved in the case of the square lattice.

Our next theorem relates the Ising free energy f L(K ) =  f L(tanh[K ]) and STGF TL (z) for 

all the Archimedean lattices L  in L 1 (A). The relation is given by means of an auxiliary 

function ( L(K ).

Theorem  3.6.2 Le tL  be an Archimedean lattice in L 1(A) with Ising free energy f L(K ) =  

f L(tanh[K ]) and STG FTL(z) given by the formulas (3.16) and  (3.17). Then there exist 

a continuous function ( L : [0, + ro ) ^  [0,1] such that

a)

fL ( K ) =  H 2 (K ) +  2 T  (4 ,l(K  )),

where

H 2 (K ) =  T ^ g
a0 (tanh[K  ])(cosh[K ])2E 

b0 ($ (K )) +  log
.V q .

+ log [( (K ) ] 
2 '

b) $(Kc) =  1.

c) ( L is real analytic in (0, + ro ).

Furthermore the function ( L : [0, rc>) ^  [0,1] is given by the following explicit expressi­

ons:

• Square, see Fig. 19.
$ ( ) 4x (x2 -  1)<$sq (x) =  —  2 ,

(x 2 +  1)

( sq (K ) =  ( sq (tanh (K )) =  2 tanh(2K  )sech(2K ).

• Triangle, see Fig. 20.

6(x -  1)2x
( tr  (x) =

( tr  (K ) =  ( t r  (tanh (K ))

x4 -  2x3 +  6x2 -  2x +  1 ’

3 sinh(2K)
sinh (2 K ) +  cosh (2 K )
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• Hexagonal, see Fig. 21.
- 3V x2 — x 4

* “ (x) =  7 3 X 2 + 1 '

. /T ,. - , , I 9sinh2(2 K )
* * (K ) =  * “ (tanh(K )) ^ ,3sinh2(2K) +  2 (c« h » (2 y ) +  l ) '

• Kagome, see Fig. 22.

-  k +  V l
0(x) =  — t— ’

and

k =  — x 2 +  2x3 — 2x4 +  2x5 — x 6,

I = x 14 — 6x13 +  23x12 — 58X11 +  107x10 — 152x9 +  170x8 — 152x7 +  107x6 

— 58x5 +  23x4 — 6x3 +  x 2, 

t  = x 8 — 4x7 +  12x6 — 20x5 +  26x4 — 20x3 +  12x2 — 4x +  1

• Star, see Fig. 23.

is t(x )  =  — y  — 2 V81k2 — 9k 

+  ^  /  162k2 — p +  99k,

and

—5832k3 — 3240k2 +  432k 

P =  V  81k2 — 9k ’
2x 7 — 3x 6 +  2x5 — x 4

k = --------------------------------------- o ,
(2x4 +  2x3 — 3x2 +  2x — 1)2

0st(K ) =  (- st(tanh[K ]).

Proof. The proof is a direct consequence of Lemma 3.6.1. Using the fact that

VL e A  (A)

J l (x ,0 l (x )) =  0

O b s e rv a t io n : Note that the function 0sq given by this theorem is the same 

function given in Eq. 7 in [111].
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C oro lla ry  3.6.2.1 L e tL  be a lattice in A (A )  then we have the following relation between 

the spanning tree constant AL and the Ising critical energy /£  =  / L(K c)

Asq = 2 / q  -  ln [2],

Airi = 2/ tri -  ln (^ 3 ) ,

Ahc =2/hc -  ln[2V3],
1 4  1 ^

Akg =2/hCc +  2  ln[3] -  3 ln[2] -  3 ln[2 +  /3 ] ,

Astr = 2/ St +  ^  ln
27 / '

640(^ v/3 +  y  &v^3 +  c +  d)

+  2 ln
L /e J

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

where

a =22968, 

b =1828939440, 

c =3167815977, 

d =39789.

Proof. The proof is an immediate consequence of Theorem 3.6.2.

The relations (3.20),(3.21)(3.22) and (3.23) are already reported, see for example Ref. 

[25],and to the best of our knowledge the relation (3.24) is new.

C oro lla ry  3.6.2.2 If  L  is the linear, square, triangle or hexagonal lattice, we have that 

there exist 0L(K ) such that

/ l (K ) =  ln a/ 2 sinh[2K] +  1 T (0 L (K ))

where d =  1 i f  L is the linear lattice and  d =  2 otherwise.

Proof. If L  is the square, triangle or hexagonal, the proof is a direct consequence of 

theorem 1, now we prove the case when L  is the linear lattice. It is known that

/ l (K ) =  ln ^eK +  / e 2K -  2s inh(2K )

Now, using this following identity



We have
1 r 2n _________

f L(K  ) =  —  ln(2eK — 2y j2s inh (2K ) cos(9))d9,
2n J 0
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so,

1 i  ln ( — ---e-  _____
lo V \ / 2 s inh(2 K )

f L(K ) =  ln(2) +  2~ f  l n i  — cos(9)l  dd +  ln( J 2sinh(2K))
2n Jo \ \ /2 s in h (2 K ) /

Now, since the Spanning tree generating function is given by

i  r 2n , 71
T (z) =  ln(2) +  ^— J  ln ^ ------cos(9) )d9

The result follows choosing the function

0L : (0, + ^ ) ^  (0, 1]

j2 s in h (2 K )
0l (K  ) eK

Lem ma 3.6.3 Let L  be an Archimedean lattice in L 2(A) with Ising free energy f L(K ) =  

f L (tanh[K ]) and STG FTL(z) given by the formulas (3.16) and (3.17). Then there exists 

nL continuous functions >  : [0,1] ^  [0, + ro ) such that jL (x , 4>i(x)) =  0 for all i =  1, ...,nL 

with the following properties

1 . >  are real analytic in (0,1), for a ll i =  1,..., nL.

2 . <^(0) =  <^(1) =  0 for a ll i =  1, ...,nL.

3. If <j)i =  4>i,, then 0 <  4>i (x) <  1 for all x  e (0,1)

4. There exists two points x a < x b e (0,1) (see Table 5) such that

• xc e (xa,xb),

• 4>l(xa) =  <) l(xb) =  1,

• 0 < <) 1(x) <  1 i f  x  e (0, xa) U (xb, 1),

• 1 <  4)1(x) <  1.05 i f x  e (xa,x b).

5. If L  is the bridge lattice, then

4>i(x) =  ,
92

,
P3
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and

q1 =  — x8 +  3x6 — 3x4 +  x 2

q2 =1 +  5x2 +  8x3 +  7x4 +  16x5 +  15x6 +  8x7 +  4x8,

p 1 =  — 5x8 — 8x7 — 12x6 — 16x5 — 10x4 — 8x3 — 4x2 — 1

p2 =21x16 +  66x15 +  145x14 +  286x13 +  430x12 +  538x11 

+  587x10 +  582x9 +  534x8 +  390x7 +  247x6 +  154x5 

+  70x4 +  30x3 +  13x2 +  2x +  1, 

p3 = 4x8 +  6x7 +  7x6 +  14x5 +  15x4 +  10x3 +  5x2 +  2x +  1.

Proof. We prove only for the case of the cross lattice the other cases are proven in a

similar way.

We have that for all x  e (0,1),

a0[x] >0, 

a1[x] <0, 

a2[x] <0, 

a3[x] >0,

and for all z e (0,1.05), (the sym bo l' means first derivative)

b0[z] < 0, 

b[[z] <0, 

b'2 [z] <0,

b3[z] > 0,

so for all x ,z  e (0,1) x (0,1.05) and i =  1,2,3, we have

8Z(Ji(x, z)) =  ao[x]b'[z] — a*[x]b0[z] =  0 (3.25)

We also have for i =  1,2,3 and y e (0,1.05)

Ji(0,y) =  0 ^  y =  0 (3.26)

Ji (1, y ) =  0 ^  y =  0 (3.27)

(i) We first construct 0i , for i =  2,3 

We have for x  e (0,1).

Ji (x, 0) Ji (x, 1) <  0, (3.28)
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by eqs. (3.25), (3.28) and Theorem B.1.5(b) we have that there exists a real analytic 

function f i : (0,1) ^  (0,1) such that

we define &  as

Ji(x, f i(x ) )  =  0, Vx e (0,1)

0 x  =  0,

0 i(x) =  \  f i(x )  x  e (0,1),

0 x  =  1,

By Eqs. (3.26),(3.27) and Theorem B.1.6, ^ i is continuous in [0,1].

(ii) Finally we need to prove the existence of the function 0 1 and the points xa

and xb.

The polynomial J i(x , 1) have two real roots x a,x b in (0,1) such that

J i(x , 1) <0 Vx e (0 ,xa) U (xb, 1) (3.29)

J1(x, 1) >0 Vx e (xa,x b) (3.30)

We also have for all x  e (0,1)

J1(x, 0) >  0. (3.31)

by eqs. (3.25),(3.31) and (3.29) and Theorem B.1.5(b), for a e {a ,b } there exist a 

function

f a : la  ^  (0, 1)

such that

J l( x , fa ( x ) )= 0 ,  Vx e la  

where I a =  (0 ,xa) and I b =  (xb, 1).

Now we note that

J i(x , 1.05) <  0, V e (0,1),

so by eqs (3.25) and (3.30) and Theorem B.1.5(b) there exists a function f ab: (xa, xb) ^  

(1,1.05) such that

J l(x , fab(x)) = 0  Vx e (xa,xb)
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Now we define f  1 : [0,1] ^  [0,1.05) as

0 x =  0,

fa(x) X G (0,Xa)

1 X =  x a,

f 1(x) =  S fab(x) X G (Xa,Xb),

1 X =  Xb,

fb(x) X G (Xb, 1),

0 x = 1 ,

Since J1(x ,0 1(x)) =  0, Vx g (0,1), by Theorem B.1.5(a) this function is real analytic in 

(0,1) and by Eqs. (3.26),(3.27) and Theorem B.1.6, f  1 is continuous in [0,1].

Note that by Lemma 3.6.3 we have that for each L  g L 2(A),

Table 5 -  Values for xa and xb given by Lemma 3.6.3

Lattice L Label [1] nL Xa Xb axc

Bridge (33,42) 2 0.315861... 0.355582... 1/3
Bathroom (4,82) 2 0.567257... 0.6446... 0.601232...
Puzzle (32,4,3,4) 3 0.308764... 0.353893... 0.329024...
Ruby (3,4,6,4) 3 0.429997... 0.441133... 0.435421...
Maple Leaf (34,6) 3 0.337389... 0.351785... 0.344296...
Cross (4,6,12) 3 0.608415... 0.625407... 0.616606...

b xc coincides with tanh[Kc] for Kc the critical point of the corresponding Ising model on L.

Our next theorem relate the Ising free energy f L(K ) =  f L(tanh [K ]) and STGF 

TL(z) for all the Archimedean lattices L. The relation is given by means of a set of 

auxiliary functions 0 1(K ), . . . , fnL(K )

Theorem  3.6.4 Let L  be an Archimedean lattice with Ising free energy  f L(K ) =  

f L(tanh [K ]) and STGF  TL(z) given by the formulas (3.16) and  (3.17). Then there 

exists nL functions f : [0, + ro ) ^  [0, + ro ) for a ll i =  1 , nL, such that

1
Zl (k ) =  H o(tanh[K ]) +  /  ln

r r nL

L ln l + ?

b j[ f i(K  )] 
bo [fi(K  )] ^i[w] dw.

furthermore
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1. 0i are real analytic in (0, + ro ), for a ll i =  1 , ...,nL.

2. 000) =  0, 00+ ro ) =  0 for a ll i =  1 ,.., nL

3. If nL =  1, then 0 (K c) =  1,

4. If nL =  2 or nL =  3, then

a) If 0i =  0 1, then 0 <  0i (K ) <  1 for all K  e (0, ro),

b) there exists two points K a <  K b e (0, ro) (see Table 6) such that

• Kc e (Ka, Kb),

• 01 (Ka) =  01(Kb) =  1,

• 0 <  0 1(K ) <  1 i f  x  e [0 ,K a) U (K b, ro),

• 1 <  01 (K ) <  1.05 i f  i f  K  e (Ka, Kb).

c) If L  is the Bridge lattice

0 1(K ) = 0-1(tanh[K  ]),

02 (K ) = 0 2(tanh[K ]),

where 0 1(x) and  02(x) are given by Lemma 3.6.3.

Proof. The proof is an immediate consequence of Lemma 3.6.1 and Lemma 

3.6.3, defining for all i =  1 ,...,nL,

0 i(K ) =  0 i(tanh [K  ]).

Note that by Theorem 3.6.4, we have that for each L  e L 2(A),

Ka -  Kb -  Kc

Table 6 -  Values for K a and K b given by Theorem 3.6.4

Lattice L Label [1] nL Ka Kb Kc a

Bridge (33,42) 2 0.327043... 0.371819... 0.346574...
Bathroom (4,82) 2 0.643469... 0.766004... 0.695074..
Puzzle (32,4,3,4) 3 0.319178... 0.369887... 0.341729..
Ruby (3,4,6,4) 3 0.459893... 0.473636... 0.466566. .
Maple Leaf (34,6) 3 0.351143... 0.36748... 0.358958..
Cross (4,6,12) 3 0.7064... 0.733837... 0.71951...

b Kc is the critical point of the corresponding Ising model on L.
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3.7 PLOT OF THE AUXILIARY FUNCTIONS & ( K ) AND <^(x)

In this section we present the plots of the auxiliary functions <^(K) and ^ ( x )  

for all the Archimedean lattices L, whose existence was given in our Theorem 3.6.2 

and Theorem 3.6.4. We recall that & ( K ) =  <^(tanh[K]) and <^(x) are functions that are 

given by the implicit equations Vi =  l , . . , n L

where J i ( z , x ) , J nL(x,z)  are polynomials in two variables and I  is a square region in 

the plane x  -  z, more precisely

We remark that for each lattice with nL =  1, it is indicated the point (xc, 1) in the plane 

x  -  z and the point (K c, 1) in the plane K  -  z.

3.7.1 Square lattice, nL =  1.

J i(x ,fa (x)) =  0, V(x, z) e I

I  =  [0,1] x [0,1.05].

z z

0.6

0.4

0.2

0.8

1.C

0.2 0.4 0.6 0.8 1.0
x

0.5 1.0 1.5 2.0 2.5 3.0

(b)

K

Figure 19- (a )  Graph of the function z =  >>sq(x) (b) Graph of the function z =  <psq( K ) =
4>sq (tanh(K)).
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3.7.2 Triangle lattice, nL =  1.

z z

K

Figure2 0 -(a )  Graph of the function z =  ( tr (x) (b) Graph of the function z =  ( tr (K )
( tr  (tanh(K)).

3.7.3 Hexagonal lattice, nL =  1.

z z

x K

Figure 21 -  (a) Graph of the function z =  ( hx(x) (b) Graph of the function z =  ( hx(K ) =
(hx(tanh(K)).
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3.7.4 Kagome lattice, n L =  1.

z z

K

Figure2 2 -(a )  Graph of the function z =  <kg(x) (b) Graph of the function z =  <kg(K )
<kg (tanh(K)).

3.7.5 Star lattice, nL =  1.

z z

x K

Figure 23 -  (a) Graph of the functions z =  <st(x) (b) Graph of the function z =  <st(K ) =
<st(tanh(K)).
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3.7.6 Bathroom lattice, nL =  2.

z z

x

Figure 24 -  (a) Graphs of the functions z =  (br (x), i =  1,2. (b) Graphs of the functions z
(br (K ) =  (br (tanh(K)), i =  1, 2.

3.7.7 Bridge lattice, nL =  2.

z z

K

Figure2 5 -(a )  Graphs of the functions z =  ( brg(x), i =  1,2 (b) Graphs of the functions
z =  (brg(K ) =  (brg(tanh(K)), i =  1, 2.
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3.7.8 Puzzle lattice, nL =  3.

z z

K

Figure2 6 -(a )  Graphs of the functions z =  $ z(x), i =  1,2,3. (b) Graphs of the function
z =  4pZ(K ) =  4pz(tanh(K)), i =  1, 2, 3.

3.7.9 Ruby lattice, nL =  3.

z z

Figure2 7 -(a )  Graphs of the functions z =  > b(x), i =  1,2,3. (b) Graphs of the function
z =  Vrb(K ) =  Vrb(tanh(K)), i =  1,2,3.
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3.7.10 Maple lattice, n L =  3.

z z
1.0

0.8

0.6 -----01

0.4 ......02

0.2 03

x

V' (b)

0.5 1.5 2.0
K

Figure2 8 -(a )  Graphs of the functions z =  <™p(x), i =  1,2,3. (b) Graphs of the function
z =  <mP(K ) =  <™p(tanh(K)), i =  1,2, 3.

3.7.11 Cross lattice, nL =  3.

z

x K

z

Figure2 9 -(a )  Graphs of the functions z =  (x), i =  1,2,3. (b) Graphs of the function
z =  <cr( k ) =  <cr(tanh(K)), i =  1, 2, 3.
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In the previous sections we worked with the STFG of the eleven Archimedean 

lattices, which are vertex-transitive, now we will work with a non-vertex transitive lattice 

L, called the m artin ila ttice  (fig.7) , so we can not use the STGF but we can use our 

formula for the eSTGF . Actually the eSTGF was calculated in (sec 2.5.2 ), and we write 

it again here.

Since by Theorem 2.4.2, the eSTGF have a closed form expression for periodic lattices 

in any dimension (that don’t need to be vertex transitive), we think that a deeper study 

of the eSTGF could be useful in determine properties of the Ising free energy in any 

dimensions, particularly in the important case of the simple cube lattice in 3D. We hope 

to find more connections between eSTGF and f  (K ) in future projects.

3.7.12 eSTGF and Ising free energy of the Martini lattice

Tl (z) 

where

4 in
6 (z +  3) 1 1

+  -
4 (2n)2 J - n J -

in g(z) -  g (A o +  A +) dwi dw2, (3.32)

g(z)
z3 — 5z2 — 3z +  9

2Z3 '

Using lemma 4.3 in Ref.[108] we calculated the The Ising free energy of the

martini lattice and is given by the following formula.

/ l (K )
3 1  

1n[2] +  2 ln [cosh(K )] +  8(2n)d

x ln ao +  ai(Ao +  A+) dwi dw2, (3.33)

where

ao

ai

a0(tanh[K  ]) 

a'i (tanh[K  ])

and

d0(x) =  3(x +  1)2(x6 +  x4 — 2x3 +  3x2 — 2x +  1)

ai (x) =  2(x +  1)2(x — 1)x3(x2 +  1)

Also by theorem 1.1 and proposition 2.2 in ref [108] we calculated the critical inverse 

temperature K c of f  (K ) and is given by

K c =  arctand ( 1 ( ^ 2 7 ^ ^ + 1 0 9  —
8

V7 27^17 +  109
+ 1

Before proving our next theorem we remark that, to the best of our knowledge, the / l ( K ) 

and K c that are reported above in this thesis, are not found in the literature.

z
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Theorem  3.7.1 Let L  be an M artin i lattice with Ising free energy f L(K ) and eSTGF  

TL(z) given by the formulas (3.33) and  (3.32). Then we found the following relation 

between TL(z) and f L(K )

fL (K )  =  C [K ] +  \ t l \4,(K )],

where

C [K ] =  1 lo g (R ( ta n h [K ]> [K ]) )  +  log ( — ,

and
R (x  y) = _____________ -8 1 a »<x)_____________

{ ’ y> (1 -  x2)6( -3 y 3 +  15y2 +  9y -  27)(3 +  y ) '

Furthermore, the function $ : [0, ro) ^  [0,1] satisfies that $ [K c] =  1 and its given by the 

following explicit expressions:

$ [K  ] =  $ [tanh[K  ]],

where

A B  5 (x6 -  x5 +  x 4 -  x 3)
 1 1   -
768-—2C  384 24/3C C  ’

^ L + —n , 

y  l  -  —n,

6x6 -  3x5 +  4x4 -  5x3 +  3x2 -  2x +  1,

L 2 +  4S3,

and

L  =  - 204749144064x18 +  235099127808x17 -  327508033536x16 

+534975086592x15 -  687630974976x14 +  1148316549120x13 

- 1611267047424x12 +  1917484793856x11 -  1951458656256x10 

+  1709111771136x9 -  1276058271744x8 +  811295834112x7 

- 432147529728x6 +  183458856960x5 -  61152952320x4 

+  12230590464x3,

S =  - 25362432x12 +  45416448x11 -  67239936x10 +  90832896x9 

- 70778880x8 +  54263808x7 -  34209792x6,

+  10616832x5 -  5308416x4 +  1769472x3.

Note that in Theorem 3.7.1 all the lattices are vertex-transitive and in Theorem 3.6.2, 

the martini lattice is non-vertex transitive, so one important conclusion of Theorem 3.7.1 

is that it supports the idea that sim ilar relations could be obtain even is the lattice is 

non-vertex transitive. We hope to explore this idea in the future.

4>[x] =

A =

B  =  

C  =  

n =
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Figure 30 -  The plot of the function < [K ] for the martini lattice in Theorem 3.7.1.

3.8 CONCLUSION.

In this chapter, we calculated the formulas for the isotropic Ising free energy for 

all the Archimedean lattices, our results match with the Ising free energy that are already 

published in the literature, namely, the Square, Triangle, Hexagonal, Kagome, Bathroom 

and Star lattices,[28, 32, 33], the isotropic Ising free energy for the other 5 Archimedean 

lattices that we present in this chapter, to the best of our knowledge are not reported 

anywhere. With the S TG F  calculated for all the Archimedean lattices in Chapter 2 

we show some relations between the S TG F  and the Ising free energy for the eleven 

Archimedean lattices. Theorem 3.6.2 and Theorem 3.6.4 are our main results in this 

chapter, which say essentially that we can reconstruct the Ising free energy for all the 

Archimedean lattices using its S TG F  via a set of auxiliary real analytic functions. These 

new contributions extend the relation between the S TG F  and the Ising free energy of 

the square lattice given by Theorem 1 in [27] considering all the Archimedean lattices. 

Furthermore at the end of this chapter, we found also a connection but in the case of an 

important non-vertex transitive lattice called the martini lattice, this new relation required 

our notion of the extended S TG F (eSTGF ) and is given in Theorem 3.7.1.
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4 CONNECTIONS BETWEEN THE WEIGHTED SPANNING TREES AND THE ANI­

SOTROPIC ISING MODEL AND DIMERS MODEL.

4.1 ABSTRACT

We found connections between the eSTGF  and the isotropic Ising model, for 

the eleven Archimedean lattices and the martini lattice in chapter 3. It is natural to ask 

whether similar relations can be found between spanning trees and the anisotropic 

Ising model and also with some other systems defined on weighted graphs like the 

Dimer model. We define the notion of a weighted Spanning tree generating function 

(w S TG F ) and could find some relations with the anisotropic Ising model with arbitrary 

couplings that generalize the results on chapter 2, and with Dimer model on the square 

and triangle lattice.

4.2 INTRODUCTION

Finding a formula for the function S T G F , originally defined in [26], provides us 

with a tool to extend the work developed in [27], consisting in finding relations between 

spanning trees and Ising models. Futhermore since we define a extended spanning 

tree generating function eSTGF  in chapter 2, we can also investigate relations when 

the lattice is regular but non-vertex-transitive (like the m artin ila ttice). We found such 

relations between the STG F  and all the Archimedean lattices and between the eSTF  

and the martini lattice in chapter 3.

Given a graph G =  (V ,E ) a weight system is simply an assigment w : E  ^  

(0, ro) and a pair (G, w) is called a weighted graph. Weighted graphs are really important 

in physics, for example, the anisotropic Ising model can be defined on a weighted graph, 

where the positive weights on every edge J  =  (Je)eee are called couplings, and the 

energy of a spin configuration a is given by the hamiltonian

Onsager[28] proved that the Ising model in the thermodynamic limit for the square lattice 

with the coupling constant for every horizontal edge equal to J1, and for every vertical 

edge equal to J2, the following expression

Where K  =  J i(kBT ) -1 , for i =  1,2. Another important example where a weighted lattice 

is used in Physics is the Dimer model. The dimer model arose initially as an attempt to

ln[cosh[2K1] cosh[2K2]+sin[2K1] cos[0i]+sin[2K2] cos[02]] dd



87

describe the adsorption of diatomic molecules on the surface of crystals, and has had 

been successful in describing the behavior of partially dissolved crystals in equilibrium. 

Futhermore, quantum versions of the dimer model were also proposed in studies of 

high temperature superconductors, specifically in the study of SU (2) singlet dominated 

phases in various spin models [115]. In this chapter we define a weighted Spanning 

tree generating function that allows a positive weight in every edge and also that allows 

a non-regular lattice. So if the weights are equal to 1 and the lattice is regular we have 

eSTGF  =  w S T G F . We found that if we choose special weights the w S TG F  is related to 

the Dimer model in the case of the square lattice and triangle lattice. We also calculated 

the w S TG F  for two non-regular lattices, the Union jack lattice (Fig.34) and the Cairo 

pentagonal lattice (Fig. 35). The Cairo pentagonal is the dual of the Archimedean lattice 

(32,4,4) (Fig. 6) and is not regular since the degrees in it are 3 or 4. The Union Jack 

lattice is the dual of the Archimedean lattice (4.8.8) (Fig. 6) and is not regular since the 

degrees in it are 4 or 6.

4.3 BASIC CONCEPTS

4.3.1 Dimer Configuration

A perfect matching or dimer configuration (also known as close-packed dimers) 

on a graph G =  ( V ( G ) , E (G)) is a subset D  c  E (G), where the edges satisfy the 

condition that each vertex of G is incident to exactly one edge in D, see Fig. 31, every 

edge e in a dimer configuration D  is called a dimer. Given a finite graph G, the set D(G) 

is the set of all dimer configurations of G. A weight on G is a positive real-valued function 

w : E (G) ^  (0, rc>). The pair (G,w)  is called a weighted graph, w(e) is called a dimer 

weight and the Dimer partition function is defined as

Z (G ,w )=  £  W(D) ,
DeD(G)

where

W  (D) =  H  w(e)
e£D

If (Gn,wn) is a sequence of finite graph such that the limit

77 / \ l- Z  (Gn ,wn)Fd m (w) =  lim  |V(G )|n^œ 1V (Gn)|
2

exist, then f w is called the Dimer entropy or the free energy per dimer of the sequence 

(Gn, wn) . The Dimer entropy have been calculated for many periodic lattices, such as 

triangle [116], square [117] and the Cairo pentagonal lattice [118], which is a non-regular 

lattice
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Figure 31 -  Two different Dimer configuration for the Grid graph 4x4

4.3.2 Weighted periodic lattices

In Chapter 2 and chapter 3, we worked with d -period ic lattices, for convenience 

we repeat here its definition.

L  is an infinite d-periodic —  or just periodic for short —  graph (lattice) if [23, 65].:

1. its vertices are labeled in x S, where S =  { 1 ,2 , . . . ,S }, with |S| =  S finite

(thus, for e V (L ) we write x =  (k, s), with k =  (k i, k2, . . . ,  kd), all the kn’s being

integers and s e S);

2. the adjacency matrix of L  has the following property

A l ((k,s), (M )) =  A L((k -  1,s), (0 ,t)), Vk,1 e , V s ,t e S. (4.1)

Note that a d -pe riod ic  lattice does not need to be q-regular nor vertex-transitive[66]. 

Now we will endow a d -pe riod ic  lattice with an extra structure defined by a positive 

weight in every edge, so that we get the following definition.

A weighted d-period ic L  =  (Z d,Z dxS ,w ) is a d-period ic graph L  =  (Z d,Z dx S ) 

with a function w : V (L ) x V (L ) ^  (0, to) 

such that w(k, l) =  0 if (k, l) e E (G) and

w ((k ,i) , (1 ,j)) =  w ((k -  1),i), ( 0 , j)) V k,1 e (4.2)

The function A : ^  c SxS, defined by (for all 9n’s in 9 =  (d1) 92, . . . ,  9d) reals)

a (9) =  E  ^ (k ) exp[i k ■ 9]

is called the weighted structure function of L, where [M k)]^ =  p ((k ,i) , (0, j )) with

p ((k ,i) , (0 , j )) =  w ((k ^ - j  »  (4.3)
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where

£ (*)=  w ( ( 0 , i ) ( l , j )
(i,j)ezdxS

Note that if for some constant c >  0, w ((k ,i), ( l , j )  =  c, for all ((k ,i) , ( l , j )) e E(G) 

then w is simply the adjacency matrix of L  and 6 (i) =  Deg((0, i)).

Note that every graph can be consider weighted if every edge have a weight equal to 1, 

and the concept of pn(0, s) and lattice green function P (0, s, z) =  Y^pn(0, s)zn given in 

chapter 1, extend naturally if we use the weighted transfer matrix of Eq. (4.3).

Theorem  4.3.1 For L  =  (Z d, E (L ),w ) an infinite w eightedd-periodic lattice, its weigh­

ted spanning tree constant is given by

Proof. The proof is an immediate consequence of theorem 5.1 and remark 5 in [23].

We denote B  =  [0,2n]d.

4.4 EXTENSION OF STGF FOR WEIGHTED PERIODIC GRAPHS

The following theorem is an extension of Theorem 3 of chapter 1, given that 

now we are considering lattices that can be non-regular and weighted.

Theorem  4.4.1 Let L  =  (Z d, E (L ),w ) be a weighted d -pe riod ic  for L, we define weigh­

ted spanning tree generating function w S T G F , Tw : ( -1 ,0 )  u (0,1) ^  R, as the well 

behaved series

(4.4)

(4.5)

Then:

(i) Tw (z) can be cast as

Tw(z) =  1  t ln [ i( i) ]  -  ln[|z|] +  S (2 L p
L

ln [DW (z,0)] dd

where

D W(z,d) =  det[1 -  z A(d)]

(ii) Tw (z) satisfies to

z - d f  (z) =  P  (0-z)
(4.6)
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with Tw(z ^  1- ) =  zL;

(iii) Tw (z ^  - 1 - ) is finite.

(iv) If for all (a, b) e E (L ) w(a, b) =  1 and L  is vertex transitive then

Tw(z) =  T (z), Vz e (0,1] 

where T (z ) is the STGF defined in [26].

Proof. The proof of i),ii) and iii) is just an adaptation of Theorem 2.4.2 . The proof of (iii) 

and iv) are trivial.

remark. Note that if w =  c, and L  is regular, then Tw(z) =  ln[a] +  Te(z). And if L  is vertex 

transitive then b(i) =  b ( j), Vi, j .

4.5 DIMER FREE ENERGY, ANISOTROPIC ISING FREE ENERGY AND THE w STG F 

FOR THE SQUARE AND TRIANGLE LATTICE

In Theorem 4.5.2 and Theorem 4.5.3 that we will present in the next section, we 

will relate the anisotropic Ising free energy, the Dimer free energy and the w S TG F for 

the square and the triangle. We present bellow a list of the 3 functions for each lattice 

that we need for those theorems.

• Square lattice.

-  Dimer free energy. The Dimer model for the Square Lattice is given by [116].

1 /*2n /*2n
Fdm (z i,z2) =  77̂ 2  ln2 [z2 +  z2 +  zj2 cos[0i] +  z2 co s^ ]] dd

(2n)2 Jo Jo

-  Anisotropic Ising free energy. [28],[32].

i /*2n /*2n
f  (K i,K 2 ) =  ln[2] +  2^ ^  I  A(0i,02) d0

where

A (01,02) =  ln[cosh2K1 cosh2K2 +  sinh[2Ki] cos[01] +  sinh[2Ki ] cos[02]].

-  wSTGF.

The w S TG F for the Square lattice T (z 1 ,z2,z ) =  Tw(z) is given by (See 

section 4.6.)

1 />2n /*2n z
Tw (z) =  ln[2a +  2b] -  1n[|z|]+ 2 ln [1    (a cos[di] +  b cos^]] dd

(2n)G o io  a +  b



91

-  Dimer free energy. The Dimer free energy for the Triangle Lattice is given by

[116].

Triangle lattice.

^  z l+ z j2 cos[0i]+z2 cos[02]+zf COs[0i+02]
L i= i

1 r2n r2n

1 p2n p2n
Fd m  (zi ,Z2,Z3) =  8 n ^ y  J

-  Anisotropic Ising free energy[32].

/ (K i,K 2 ,K 3 )  =  ln[2] +  2( ^ ^  J  B (<M 2) d6,

where

B(di, 62) =ln[C iC2C3 +  S1S2S3 -  Si cos[0i] -  S2 co s ^ ] -  S3 cos[6i +  62 ]],

Si =  sinh[2Ki], Vi =  1, 2, 3,

Ci =  cosh[2Ki], Vi =  1, 2, 3.

w S T G F .

The w S TG F  for the Triangle lattice T (zi ,z2,z3,z) =  Tw(z) is given by (See 

section 4.6.)

Tw(z) =  — 1n[|z|] +
1 fn  fn

ln2[a +  b +  c — z(a cos[6i ] +  b cos[62] +  c cos[6i +  62]] d6

d6

(2n)2 J - n J -  
Hexagonal lattice

-  Anisotropic Ising free energy [32].
q I r2n r2n

/ ( K i , K 2,K 3) =  4 ln[2] +  ^ |  J  C(0i,02) d6

where

C(6i, 62) =  ln [C iC 2C3 +  1 — S2S3 cos[6i] — S3 Si cos[02] — SiS2 cos[6i — 62]], 

Si =  sinh[2Ki], Vi =  1, 2, 3,

Ci =  cosh[2Ki], Vi =  1, 2, 3.

w STG F
1 r2n r2n

Tw(z) =  ln[a +  b +  c] — 1n[|z|] +  ln [D W(z,6)] d6
2(2n)2 Jo Jo

where
2z2

(z,6) =  1 ------— —------ (ac cos[6i ] +  bc cos[62] +  ab cos[6i +  62]a2 +  b2 +  c2
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Theorem  4.5.1 Let T  (zi , . . .  ,zn, z ), FDM (zi , . .. ,zn) the w S T G F , and Dimer free energy 

for the square lattice (n =  2) or the triangle lattice (n =  3) then

4.5.1 Dimer model and the w STG F.

T  (z i ,...,z 2n, -1 )  =  2Fdm  (z i,...,zn) +  ln[2]

Proof. The proof follows just by looking at the expressions for the Dimer free energy 

and the w S TFG  given in section 4.5. .

4.5.2 Anisotropic Ising model (Connections.)

Theorem  4.5.2 Let T  ( a , . . .  ,an,Z  ) and f  (K b . . . ,  K n) the w S T G F , and the anisotropic 

Ising free energy for the Square lattice (n =  2) or the triangle lattice (n =  3), then

f  ( K i , . . . ,  Kn) =  1 T  (a! , . . . ,a n ,Z  ) +  1 ln [2Z ],

where

smh[2Ki]
a i[K i ]= ----- z  , =  1 ,.. . ,n

Z  [K i, . . . ,K n ]
E E  sinh[2Ki ]

Ü E  cosh[2Ki] +  (n -  2) n E  sinh[2Ki]

Proof. The proof follows just by looking at the expressions for the Dimer free energy 

and the w S TFG  given in section 4.5. .

Theorem  4.5.3 Let T (a ,  a3,a3, Z ) and f  (K b K 2, K 3) the w S T G F , and the anisotropic 

Ising free energy for the Hexagonal lattice, then

where

1 1 3
f  (K i, K i,  K 3) =  2 T (a i,a i,a 3 ,Z ) +  ^ ln [Z ] +  ^ ln [2 ],

ai [Ki] = Sinh^ 2K i], y* = 1 ,  2, 3

Z [K i, K i,K 3 ] J  3 (^ 3=i Sinh[2Ki])1 2 .
V 2 (n3= i cosh[2Ki] +  1) +  E3=i sinh2[2Ki]

Proof. The proof follows just by looking at the expressions for the Dimer free energy 

and the w S TFG  given in section 4.5. .
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We remark that if K 's  are equal in the above theorem we obtain the results for 

the isotropic Ising model, obtained for the case of the square in [27] and for triangle and 

hexagonal lattices in chapter 3 (Theorem 3.6.2),

4.6 w S TG F FOR THE SQUARE, TRIANGLE, UNION JACK AND CAIRO PENTAGO­

NAL LATTICE

In this section we present the w S TG F for the square triangle, union jack and 

cairo pentagonal lattices, according to the Theorem 4.4.1. For the case of the square 

and traingle lattices we present the full details to obtain the final expression of the

wSTGF.

4.6.1 Tw(z) for the Square lattice

Given the square lattice we can define a periodic weight w with parameters 

a, b e (0, to) as in fig. 32. In this case

w [(0 ,0), (1,0)] =  w [(0 ,0), ( -1 ,0 )] =  a

w [(0 ,0), (0,1)] =  w [(0 ,0), (0, -1 ) ] =  b

£(0, 0 )=  £  w [(0 ,0), (i, 0)] +  w[(0, 0), (0, i)]
ie{i , - 1}

so £(0, 0) =  2a +  2b,

A[k] =  p(1, 0)ei01 +  p ( -1 , 0)e-i01 +  p(1, 0)ei02 +  p (-1 , 0)e-i02

so

A[k] = -------(a  cos[0J +  b cos[02]),
a +  b

finally by Theorem 2

We can write Eq. (4.7) as follows
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b b b

a a a a

b b b

a a a a

b b b

a a a a

b b b

a a a a

Figure 32 -  Square lattice with a periodic weight given by 2 real numbers positive numbers a,b.

4.6.2 Tw(z) for the triangle lattice

Given the Triangle lattice we can define a periodic weight w with parameters 

a,b,c  e (0, to ) as in fig. 33. In this case

w[(0, 0), (1, 0)] =  w[(0, 0), (—1, 0)] =  a

w[(0, 0), (0 ,1 )]=  w[(0, 0), (0, —1)] =  b 

w[(0, 0), (1,1)] =  w[(0, 0), (—1, —1 )]=  c

6(0,0) =  ^  w[(0, 0 )  (i, 0)] +  w[(0, 0), ( 0 , i) ]+  w[(0, 0), ( i, i) ] 
ie{i,-i>

so 6(0, 0) =  2a +  2b +  2c,

p(1, 0 )=  p (—1, 0) = 

p (0 ,1 )=  p (0 ,1) =

P(1,1) =  P(—1, —1)

2(a +  b +  c) 

b
2(a +  b +  c) 

c
2(a +  b +  c)

A[k] =  p(1, 0)ei&1 + p (—1, 0)e-i&1 +p(1, 0)ei&2 + p (—1, 0)e-i&2 +p(1,1)ei(&1+d2')+ p (—1, — 1)e-i(dl+d2)

so

A[k]
1

a + b + c
(a cos[6i ] +  b cos[62] +  c cos[6i +  62]],

b

b

b

b

a
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finally by Theorem 2

1 r 2n f 2n^  z
Tw(z) =  ln[2a+2b+2c]—1n[|z|] +  ln[1----------------(acos[^i]+bcos[^2]+ccos[0i + 02]]

(2n)2 Jo Jo a +  b +  c
(4.9)

We can write Eq. (4.7) as follows

1 fn pn
Tw(z) =  —1n[|z|] +  —— -  ln2[a +  b +  c -  z(a cos[#i] +  bcos[^] +  ccos[#i +  02]]

(2n)2 J -W -n
(4.10)

b

b

b

b

Figure 33 -  Triangle lattice with a periodic weight given by 3 real numbers non-negative numbers 
a,b,c.

a a a a
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4.6.3 Tw(z) for the Union Jack Lattice.

Dun(x, y) =  a0 +  ai cos(x) +  a1 cos(y) +  a3 cos(x +  y) +  a4 cos(x — y)

i  i  i  i  i  i  i  iao — — a z — b z — c z — d z +  qiqi,

ai =  — 2abz — 2cdz — 2eqiz,

a2 =  — 2aczi  — 2bdz1 — 2 fq i z,

a3 =  — 2bcz ,

a4 =  — 2adz .

where qi =  a +  b +  c +  d, and q2 =  e +  f .

4.6.4 Tw(z) for the Cairo lattice

DCrr (x, y) =  a0 +  ai cos(x) +  a2 cos(y) +  a3 cos(2x) +  a4 cos(2y) +  a5 cos(x — y) +  a6 cos(x +  y)
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2i2<-2 6 |  2 j2 4 , 22 4 ,  2 (-2 4 2 2 - 2 6 ,  22  4a0 =  — a d /  z +  a d q5q6z +  a e q3q6z +  a /  q3q4z — a g j  z +  a g q4q6z

+  a2j 2q3 q5z4 — a2q3q4q5q6z2 +  2abe/hjz6 — 2ab/giq4z5 +  2acdegiz6 — 2acdhjq5z5
7,2 2 -2 6 , 7,2 2 4 , 7,2 t-2 4 , 7,2 -2 4 , 7,2 -2 4 7,2 2— b e i z +  b e q ^ z  +  b /  q ^ z  +  b i q4q5z +  b j  q ^ z  — b q ^ q 5q6z

— 2bcde/qi z5 +  c2d2qi q5z4 — c2e2h2z6 +  c2 e2qi q3 z4 +  c2g2qi q4z4 +  c2h2q4q5z4
2 2 , 72 7-2 4 , 72 - 2 4 72 2 , 2 7,2 4 , 2 - 2  4— c qiq3q4q5z +  d /  qiq2z +  d i q2q5z — d qiq2q5q6z +  e h q2q6z +  e i q2q3z
2 2 o L-- 5 , f2f2 4 _f2 2 | 2-2 4 , 2 - 2  4— e qiq2q3q6z — 2 eghijq2z +  /  h q2q4z — /  q ^ q ^ z  +  g i q2q4z +  g j  qiq2z
2 2 | 7,2 -2 4 7,2 2 - 2  2 - 2  2 ,— g qiq2q4q6z +  h j  q2q5z — h q2q4q5q6z — i q2q3q4q5z — j  qiq2q3q5z +  qiq2q3q4q5q6,

ai =2a2e / jq 3z5 +  2abe2hq6z5 — 2abegijz6 +  2abf 2hq4z5 +  2abhj 2q5z5 — 2abhq4q5q6 z3

— 2acde/hz6 +  2b2e / jq iz 5 — 2 bcdjqiq5z4 +  2 e /h 2jq 2z5 — 2 e /jq iq 2q3z3 — 2 /g h iq 2q4z4,

a2 =2a2degq6z5 — 2abde/iz6 +  2acd2iq5z5 +  2ace2iq3z5 — 2aceghjz6 +  2acg2iq4z5 — 2aciq3q4 q5z3

— 2bc/gqi q4z4 +  2c2degqi z5 +  2degi2q2z5 — 2degqi q2q6z3 — 2dhijq2 q5z4, 

a3 = 2abe /h jz6,

a4 = 2acdegiz6,

a5 =2bce2h iz6 — 2bcegjqi z5 — 2bchiq4 q5z4 — 2de/hiq2z5, 

a6 =2a2d /g jz 6 — 2abdijq5z5 — 2ac/ghq4z5 — 2d/ g jq i q2z4.

where
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qi = i  +  a +  h,

92 =a  +  c +  b,

93 = d  +  g +  b +  h,

94 = d  +  j  +  e,

95 = e +  f  +  g ,

96 = c +  f  +  i +  j .

4.7 CONCLUSION

In this chapter we have extended the formula (and notion) for the eSTGF given 

in Chapter 2 (Theorem 2.4.2) to a more general setting where we allow non-regular 

periodic lattices with positive weights on every edge. We call this new function as 

w S TG F (w for weighted), the formula for the w S TG F is given in Theorem 2, further­

more we relate this function to the Dimer free energy(Theorem 4.5.1 on the square 

and triangle lattices and to the anisotropic Ising model on the square, triangle and 

hexagonal lattices(Theorems 4.5.2 and 4.5.3). Note that in chapter 3 we generalized the 

relation between the Ising model and spanning trees reported in [27] to other lattices, 

but in this final chapter we follow a different route because our generalization was in the 

direction of allowing general couplings on the Ising model (Theorem 4.5.2 and Theorem 

). We also calculated explicitly the w S TG F for the square, triangle and for to important 

non-regular lattices: the Union jack lattice and the Cairo pentagonal lattices.
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5 CONCLUSIONS

A. Main results achieved

In this Thesis we have generally addressed the problem of solving lattice models 

(defined on a planar graph G) in Statistical Physics using the combinatorial idea of 

counting the number of spanning trees on G. With this aim, we have revised many 

aspects of rigorous graph theory as well as discussed distinct topological features of 

random walks on periodic graphs. In particular, we have proposed new extensions of the 

Spanning Tree Generating Function (STGF) originally developed in [26]. Considering 

such functions, we have derived mappings associating the corresponding STGF to the 

partition function and free energy of some representative models commonly studied in 

the literature.

Our main findings have been divided into three major Chapters, each describing 

a specific group of results. They have been organized as explained below. But before 

listing each one of them, we can summarize the essential core of the present work as 

the following.

We have obtained relations between the isotropic Ising free energy and the 

spanning tree generating function (STGF) for all the Archimedean lattices (an impor­

tant set of vertex-transitive periodic planar lattices). Also, for an important non-vertex 

transitive lattice, called the Martini lattice, we have done the same but then employing a 

new extended spanning tree generating function (eSTG F ) proposed in this Thesis. We 

have further found a relation between a weighted Spanning Tree Generating Function 

(w S TG F ) and two lattice models on the square and triangle lattices, namely the aniso­

tropic Ising model and the Dimer model. This was inspired by the conjecture in Ref. [27].

In Chapter 2 we have developed in Theorem 2.4.2 a novel integral formula for 

the S T G F , which was defined only for vertex-transitive periodic lattices in [26] via a 

differential equation. Furthermore, in this theorem we have extend the definition of STG F  

(which we call the eSTG F ), thus including regular non-vertex transitive lattices. We have 

provided explicit calculations of our eSTGF  expression for the eleven Archimedean 

lattices, which are examples of vertex-transitive graphs (we emphasize that in this 

case STG F  =  eSTG F ). We should remark that in 2D, the expressions for the STG F  

previously reported in the literature where only for the square, triangle and hexagonal 

lattices [26]. In this way, most of the expressions for the STG F  presented in this thesis 

are completely new. We also have treated non-vertex transitive lattices, obtaining the
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eSTGF for the M artin iand  medial lattices. Lastly, regarding the eSTG F, thanks to 

theorem 2.3.1 in Corollary 2.4.2.1 we have obtained an original handy relation for the 

Lattice Green fucntion P(z, 0) of a vertex-transitive lattice.

In Chapter 2 we also have thoroughly introduced the RWLS model on regular 

periodic lattices G, moreover generalizing some formal results associated to it in the 

literature. We have proved a new result (theorem 2.6.2), which essentially shows that 

the eSTGF of G yields the free-energy of a loop soup model on the same G.

In Chapter 3 we have first calculated the formulas for the isotropic Ising free 

energy for all the eleven Archimedean lattices. Our results agree with those isotropic 

Ising free energy already published in the literature, namely, the square, triangle, hexa­

gonal, kagome, bathroom and star lattices [28, 32, 33]. To the best of our knowledge, 

the isotropic Ising free energy derived here for the other 5 Archimedean lattices have 

not been previously reported anywhere. From the explicit expressions for the STG F 

computed for the Archimedean lattices in Chapter 2, we have demonstrated important 

relations between each STG F and the related isotropic Ising free energy.

Theorem 3.6.2 and Corollary 3.6.4 are our main results in this Chapter. They 

state that we can reconstruct the isotropic Ising free energy for any Archimedean case 

using its STG F via a set of auxiliary real analytic functions. This new contribution 

extends the relation between the S TG F and the Ising free energy of the square lattice 

given by Theorem 1 in [27]. In fact, we propose a new conjecture, that S TG F and 

isotropic Ising free energy can be mapped into each other for any vertex-transitive 

periodic lattice.

Finally, at the end of Chapter 3 we have proved a result sim ilar to Theorem 1, 

but for the particular (and important) case of the non-vertex transitive Martini lattice. 

Such theorem 3.7.1 is a step forward in trying to generalize the hypothesis in [27] to a 

more general class of periodic graphs.

Finally, in Chapter 4 we have extended the notion of eSTG F, given in Chapter 2 

(Theorem 2.4.2), to an even more universal setting, where we allow non-regular periodic 

lattices with positive weights on every edge. This is probably the most general situation 

possible for a periodic lattice. We have called this new function the w S TG F (w for 

weighted). The formula for our w STG F is given as Theorem 4.4.1. As illustrations we 

have considered the w S TG F for the square, triangle and two important non-regular 

examples: the union jack and the Cairo pentagonal lattices.

For the cases of square and triangular lattices, we have related the w STG F 

to the Dimer model free energy (Theorem 4.5.1). This has also been done for the
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Anisotropic Ising model for the case of the square, triangle and hexagonal lattices 

(Theorem 4.5.2 and Theorem 4.5.3).

We should observe that in Chapter 3 we have generalized the relation between 

the Ising model and spanning trees, previously determined only for the square and trian­

gular lattices [27], to all the other Archimedean lattices by means of direct comparison 

between the expressions and then deriving appropriate mappings. Nonetheless, in this 

Chapter 4 we have followed a different route, towards allowing general couplings for the 

Ising model, hence we worked with the anisotropic Ising model. (Theorem 4.5.2 and 

Theorem 4.5.3).

B. Potential continuations for the present study

Many interesting questions have emerged while developing the present Thesis and 

unfortunately we have no time to analyze them in more details. Therefore, we believe 

some findings here could be the starting point for future studies addressing different 

aspects of the relevant Ising and Dimer models.

In this way, further work could be focused on the following issues:

• Try to define a notion of S TG F  on lattices whose quotient can be embedded on a 

bi-torus or sphere, or any other surface with a different topology.

• By Corollary 2 in Chapter 3 for a grid Z d, with d = 1 ,2 , we have the equation

/ l (K  ) =  ln / 2  sinh[2K ] +  1 T  ( fa ( K )),
d

where / l (K ) is the isotropic Ising free-energy, T (z) is the STGF and 0 l (K ) is an 

auxiliary function, mapping the two quantities. It should be really a great result 

(related to the Ising model in 3D) to extend this equation for the case of d >  2. In 

other words, to derive a proper mapping between isotropic Ising free-energy and 

STG F  for any hypercube.

• To extend the formula in Corollary 3 of Chapter 3 to any vertex-transitive periodic 

lattice, which presently are applied only to the eleven Archimedean lattices.

• To find a formula that relates the w S TG F  for a lattice and its dual.

• Although not clear to us about potential physical interpretations, mathematically it 

would be very interesting trying to generalize the expression for the w STG F  given 

in Theorem 4.4.1 to settings like complex weights in each edge and for bigger 

domains in z (maybe z e C). Also, try to extend w S TG F  for directed lattices and 

eventually to non-periodic lattices such as the Bethe [19] and Penrose [18] lattices.
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Perhaps, these more universal constructions would allow the analytical solution of 

other more involving lattice models.

• From Theorem 4.5.1 we have obtained the following relation between the Dimer 

model free-energy FDM and the w S TG F  for the square (n =  2) and triangular 

(n =  3) lattices

FDM (zl, ■■■, zn) =  2 T(z l , ■■■2  —1) +  2 ln[2]-

Of course, a natural step would be to look for a similar relation for other lattices.

• Finally, Theorem 4.5.2 leads to the following relation between the anisotropic Ising 

model of free-energy f  ( K l , ■■■,Kn), and the w S TG F  for the square (n =  2) and 

triangular (n =  3) lattices

f  ( K i , ■■■, Kn) =  2 T(a i,  ■■,an, z) +  ^ln[2z],

where ai (i =  1,  ̂■ ■ ,n) and z are auxiliary functions of the variables K l }  ̂■ ■, K n. 

Futhermore, we obtained a sim ilar relation for the hexagonal lattice in Theorem 

4.5.3. So an important question is how to obtain akin formulas for other lattices.



103

REFERENCES

[1] B. Grunbaum and G. C. Shephard, Tilings and Patterns. New York: W. H. Freeman 

& Co., 1986.

[2] D. Z. Zhang, “C.n. yang and contemporary mathematics,” in Mathematical Con­

versations, pp. 61-73, Springer New York, 2001.

[3] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications. New York: 

Elsevier, 1976.

[4] B. Bollobas, Modern Graph Theory. Heidelberg: Springer, 1998.

[5] T. Sunada, Topological Crystallography: With a View Towards Discrete Geometric

Analysis. Surveys and Tutorials in the Applied Mathematical Sciences, Tokyo: 

Springer, 2012.

[6] W. Woess, Random Walks on Infinite Graphs and Groups. Cambridge: Cambridge 

University Press, 2000.

[7] L. Lovasz, L. Lovasz, A. Gyarfas, G. Katona, and A. Recski, Graph Theory 

and Combinatorial Biology. BolyaiSociety mathematical studies, Janos Bolyai 

Mathematical Society, 1999.

[8] W. Kocay and D. L. Kreher, Graphs, A lgorithms and Optimization. Chapman & 

Hall/CRC, 2004.

[9] M. Aigner, A Course in Enumeration. Berlin: Springer, 2007.

[10] A. Barabasi and M. Posfai, Network science. Cambridge: Cambridge University

Press, 2016.

[11] M. A. Porter and J. P. Gleeson, Dynam ical systems on networks: a tutorial. 

Frontiers in applied dynamical systems reviews and tutorials, Cham: Springer, 

2016.

[12] F. Harary, F. NATO Advanced Study Institute (1963 : Paris, and . NATO Advanced 

Study Institute, Paris, Graph Theory and Theoretical Physics. Academic P., 1967.

[13] J. W. Essam, “Graph theory and statistical physics,” Discrete Mathematics, vol. 1, 

pp. 83-112, 1971.

[14] L. Beaudin, J. Ellis-Monaghan, G. Pangborn, and R. Shrock, “A little statistical 

mechanics for the graph theorist,” Discrete Math., vol. 310, pp. 2037-2053, 2010.



104

[15] J. A. Ellis-Monaghan and C. Merino, “Graph polynomials and their applications i: 

The tutte polynomial,” in Structural Analysis o f Complex Networks, pp. 219-255, 

Birkhäuser Boston, 2010.

[16] R. Twarock and A. Luque, “Structural puzzles in virology solved with an overar­

ching icosahedral design principle,” Nat. Commun., vol. 10, p. 4414, 2019.

[17] R. Gajic, . Jovanovic, K. Hingerl, R. Meisels, and F Kuchar, “2d photonic crystals 

on the archimedean lattices (tribute to johannes kepler (1571-1630)),” Optical 

Materials, vol. 30, pp. 1065-1069, 2008.

[18] E. S. Sorensen, M. V. Jaric, and M. Ronchetti, “ Ising model on penrose lattices: 

Boundary conditions,” Phys. Rev. B, vol. 44, pp. 9271-9282, 1991.

[19] M. Ostilli, “Cayley trees and bethe lattices: A concise analysis for mathematicians 

and physicists,” Physica A : Statistical Mechanics and its Applications, vol. 391, 

pp. 3417-3423, 2012.

[20] G. Kirchhoff, “Ueber die auflösung der gleichungen, auf welche man b e id e r 

untersuchung der linearen vertheilung galvanischer ströme geführt wird,” Annalen 

der Physik, vol. 148, 1847.

[21] C. Fortuin and P. Kasteleyn, “On the random-cluster model: I. introduction and 

relation to other models,” Physica, vol. 57, pp. 536-564, 1972.

[22] F Y. Wu, “The potts model,” Rev. Mod. Phys., vol. 54, pp. 235-268, 1982.

[23] R. Lyons, “Asymptotic enumeration of spanning trees,” Combin. Probab. Comput., 

vol. 14, pp. 491-522, 2005.

[24] S.-C. Chang and W. Wang, “Spanning trees on lattices and integral identities,” J. 

Phys. A : Math. Gen., vol. 39, pp. 10263-10275, 2006.

[25] R. Shrock and F Y. Wu, “Spanning trees on graphs and lattices in d dimensions,” 

J. Phys. A, vol. 33, pp. 3881-3902, 2000.

[26] A. Guttmann and M. Rogers, “Spanning tree generating functions and mahler 

measures,” J. Phys. A, vol. 45, p. 494001, 2012.

[27] G. M. Viswanathan, “Correspondence between spanning trees and the Ising 

model on a square lattice,” Phys. Rev. E, vol. 95, p. 062138, 2017.

[28] L. Onsager, “Crystal statistics. i. a two-dimensional model with an order-disorder 

transition,” Phys. Rev., vol. 65, pp. 117-149, 1944.



105

[29] J. C. W. M. Kac, “A combinatorial solution of the two-dimensional ising model,” 

Phys. Rev., vol. 88, p. 1332, 1952.

[30] R. Feynman, Statistical Mechanics: A Set O f Lectures. Boca Raton: CRC Press, 

2018.

[31] S. Friedli and Y. Velenik, Statistical Mechanics o f Lattice Systems: A Concrete 

Mathematical Introduction. Cambridge: Cambridge University Press, 2017.

[32] C. Domb, “On the theory of cooperative phenomena in crystals,” Advances in 

Physics, vol. 9, pp. 149-244, 1960.

[33] V. Matveev and R. Shrock, “Complex-temperature properties of the ising model 

on 2d heteropolygonal lattices,” Journal o f Physics A : Mathematical and General, 

vol. 28, pp. 5235-5256, 1995.

[34] P. W. Kasteleyn, “Dimer statistics and phase transitions,” Journal o f Mathematical 

Physics, vol. 4, pp. 287-293, 1963.

[35] P. W. Kasteleyn, “Graph theory and cristal physics,” in Graph Theory and Theore­

tical Physics, pp. 43-110, London: Academic Press, 1967.

[36] D. Cimasoni and N. Reshetikhin, “Dimers on surface graphs and spin structures. 

i,” Communications in Mathematical Physics, vol. 275, pp. 187-208, 2007.

[37] F. Camia, “Scaling limits, brownian loops, and conformal fields,” in Advances in 

Disordered Systems, Random Processes and Some Applications (P. Contucci 

and C. Giardina, eds.), pp. 205-269, Cambridge: Cambridge University Press, 

2016.

[38] G. F. Lawler and J. A. T. Ferreras, “Random walk loop soup,” Trans. Amer. Math. 

Soc., vol. 359, pp. 767-787, 2007.

[39] Y. Le Jan, “Markov loops and renormalization,” Ann. Probab., vol. 38, pp. 1280­

1319, 2010.

[40] T. van de Brug, F. Camia, and M. Lis, “Random walk loop soups and conformal 

loop ensembles,” Probab. Theory Relat. Fields, vol. 166, pp. 553-584, 2016.

[41] F. Camia and M. Lis, “Non-backtracking loop soups and statistical mechanics on 

spin networks,” Ann. Henri Poincare, vol. 18, pp. 403-433, 2017.

[42] H. Ooguri, “Topological lattice models in four dimensions,” Mod. Phys. Lett. A, 

vol. 7, pp. 2799-2810, 1992.



106

[43] C. Hoelbling and C. B. Lang, “Universality of the ising model on spherelike lattices,” 

Phys. Rev. B, vol. 54, pp. 3434-3441, 1996.

[44] M. Bauer and D. Bernard, “2d growth processes: SLE and Loewner chains,” Phys. 

Rep., vol. 432, pp. 115-221, 2006.

[45] E. Estrada, “Graph and network theory in physics,” 2013.

[46] G. Grimmett, Probability on Graphs: Random Processes on Graphs and Lattices. 

Institute of Mathematical Statistics Textbooks, Cambridge: Cambridge University 

Press, 2 ed., 2018.

[47] G. Mo-lin, P. H, and W. Yueh, Lattice Statistics And Mathematical Physics: Fests­

chrift Dedicated To Professor Fa-yueh Wu On The Occasion O f His 70th Birthday, 

Proceedings O f Apctp-nankai Joint Symposium. Series On Advances In Statistical 

Mechanics, Singapore: World Scientific Publishing Company, 2002.

[48] T. Degushi, “Introduction to solvable lattice models in statistical and mathematical

physics,” in Classical and Quantum Integrable Systems: Theory and Applications

(A. Kundu, ed.), ch. 5, pp. 113-151, Bristol: IOP Publishing, 2003.

[49] M. Kardar, Statistical Physics o f Particles. Cambridge: Cambridge University

Press, 2007.

[50] S. Katsura, T. Morita, S. Inawashiro, T. Horiguchi, and Y. Abe, “Lattice G reen’s 

function. Introduction,” J. Math Phys., vol. 12, pp. 892-895, 1971.

[51] E. D. Ocansey, “Enumeration problems on lattices,” m.S. thesis, Stellenbosch 

University, 2013.

[52] J.-M. Choi, A. I. Gilson, and E. I. Shakhnovich, “Graph’s topology and free energy

of a spin model on the graph,” Phys. Rev. Lett., vol. 118, p. 088302, 2017.

[53] B. Hughes and S. Hughes, Random Walks and Random Environments: Random

walks. No. v. 1 in Oxford science publications, Clarendon Press, 1995.

[54] A. J. Guttmann, “Lattice Green’s functions in all dimensions,” J. Phys. A, vol. 43, 

p. 305205, 2010.

[55] W. Kager, M. Lis, and R. W. J. Meester, “The signed loop approach to the ising 

model: foundations and critical point,” J. Stat. Phys., vol. 152, pp. 353-387, 2013.

[56] B. de Tiliere, “From cycle rooted spanning forests to the critical Ising model: an 

explicit construction,” Comm. Math. Phys., vol. 319, pp. 69-110, 2013.



107

[57] F. Y. Wu, “Number of spanning trees on a lattice,” J. Phys. A, vol. 10, pp. L113- 

L115, 1977.

[58] B. R. Myers, “Generating function for spanning trees,” Electron. Lett., vol. 9, 

pp. 360-361, 1973.

[59] A. Rosengren, “On the number of spanning trees for the 3D simple cubic lattice,” 

J. Phys. A, vol. 20, pp. L923-L927, 1987.

[60] G. S. Joyce, R. T. Delves, and I. J. Zucker, “Exact evaluation of the Baxter- 

Bazhanov Green function,” J. Phys. A, vol. 31, pp. 1781-1790, 1998.

[61] G. S. Joyce, “Singular behaviour of the cubic lattice Green functions and associa­

ted integrals,” J. Phys. A, vol. 34, pp. 3831-3839, 2001.

[62] M. L. Glasser and G. Lamb, “A lattice spanning-tree entropy function,” J. Phys. A, 

vol. 38, pp. L471-L475, 2005.

[63] A. D. Mednykh and I. A. Mednykh, “On Rationality of Generating Function for 

the Number of Spanning Trees in Circulant Graphs,” Algebra Colloq., vol. 27, 

pp. 87-94, 2020.

[64] H. S. Wilf, Generatingfunctionology. Wellesley: A.K. Peters, 2006.

[65] R. Burton and R. Pemantle, “Local characteristics, entropy and limit theorems for 

spanning trees and domino tilings via transfer-impedances,” Ann. Probab., vol. 21, 

pp. 1329-1371, 1993.

[66] S.-C. Chang, “Spanning trees on the two-dimensional lattices with more than one 

type of vertex,” J. Phys. A : Math. Theor., vol. 42, p. 015208, 2008.

[67] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge: Cambridge University 

Press, 1985.

[68] S. Hassani, C. Koutschan, J.-M. Maillard, and N. Zenine, “Lattice Green functions: 

the d-dimensional face-centered cubic lattice, d= 8, 9, 10, 11, 12,” J. Phys. A, 

vol. 49, p. 164003, 2016.

[69] G. Everest and T. Ward, Heights o f Polynomials and Entropy in Algebraic Dyna­

mics. London: Springer, 1999.

[70] C. Smyth, “The Mahler measure of algebraic numbers: a survey,” in Number theory 

and polynomials, vol. 352 of London Math. Soc. Lecture Note Ser., pp. 322-349, 

Cambridge: Cambridge Univercity Press, 2008.



108

[71] M.-J. Bertin and M. Lalin, “Mahler measure of multivariable polynomials,” in 

Women in numbers 2: research directions in number theory, vol. 606 of Contemp. 

Math., pp. 125-147, Providence: Amer. Math. Soc., 2013.

[72] D. S. Silver and S. G. Williams, “Graph complexity and mahler measure,” 2017.

[73] C. Scullard, “Exact site percolation thresholds using the site-to-bond and star-

triangle transformations,” Phys. Rev. E, vol. 73, p. 016107, 2006.

[74] C. Scullard and R. Ziff, “Predictions of bond percolation thresholds for the kagome

and Archimedean (3,12(2)) lattices,” Phys. Rev. E, vol. 73, p. 045102, 2006.

[75] C. Ding, Z. Fu, and W. Guo, “Critical points of the o(n) loop model on the martini

and the 3-12 lattices,” Phys. Rev. E, vol. 85, p. 062101, 2012.

[76] R. Parviainen, “Estimation of bond percolation thresholds on the Archimedean 

lattices,” J. Phys. A, vol. 40, pp. 9253-9258, 2007.

[77] R. A. Neher, K. Mecke, and H. Wagner, “Topological estimation of percolation 

thresholds,” J. Stat. Mech., vol. 2008, p. P01011, 2008.

[78] R. Siddharthan and A. Georges, “Square kagome quantum antiferromagnet and 

the eight-vertex model,” Phys. Rev. B, vol. 65, p. 014417, 2001.

[79] H. Nakano, Y. Hasegawa, and T. Sakai, “Magnetization jump in the magnetization 

process of the spin-1/2 heisenberg antiferromagnet on a distorted square-kagome 

lattice,” J. Phys. Soc. Jpn., vol. 84, p. 114703, 2015.

[80] J. L. Jacobsen, “High-precision percolation thresholds and potts-model critical 

manifolds from graph polynomials,” J. Phys. A, vol. 47, p. 135001, 2014.

[81] J.-M. Couvreur, D. Poitrenaud, and P. Weil, “Branching processes of general petri 

nets,” in Applications and Theory o f Petri Nets (L. M. Kristensen and L. Petrucci, 

eds.), (Berlin), pp. 129-148, Springer, 2011.

[82] M. Kotani, T. Shirai, and T. Sunada, “Asymptotic behavior of the transition proba­

bility of a random walk on an infinite graph,” J. Funct. Anal., vol. 159, pp. 664-689, 

1998.

[83] G. S. Joyce, “On the cubic modular transformation and the cubic lattice Green 

functions,” J. Phys. A, vol. 31, pp. 5105-5115, 1998.

[84] G. N. Watson, “Three triple integrals,” Quart. J. Math. OxfordSer., vol. 10, pp. 266­

276, 1939.



109

[85] B. Halpering and A. Sevrin (Eds.), Quantum Theory o f Condensed Matter: Proce­

edings o f the 24th Solvay Conference on Physics. Singapore: World Scientific, 

2010.

[86] P. Coleman, Introduction to Many-Body Physics. Cambridge: Cambridge Univer­

sity Press, 2015.

[87] M. E. Fisher, “Renormalization group theory: Its basis and formulation in statistical 

physics,” Rev. Mod. Phys., vol. 70, p. 653, 1998.

[88] J. Y. Fu, “On the landau theory of phase transitions: a hierarchical dynamic model,” 

J. Phys.: Condens. Matter., vol. 25, p. 075903, 2013.

[89] S. M. Bhattacharjee and A. Khare, “Fifty years of the exact solution of the two­

dimensional ising model by onsager,” Curr. Sc., vol. 69, pp. 816-821, 1995.

[90] D. A. Lavis and G. M. Bell, Statistical Mechanics o f Lattice Systems 1: Closed­

Form and Exact Solutions. Berlin: Springer-Verlag, 1999.

[91] B. Sutherland, Beautiful Models: 70 Years o f Exactly Solved Quantum Many-Body 

Problems. Singapore: World Scientific, 2004.

[92] R. J. Baxter, Exactly Solved Models in Statistical Physics. Minneola: Dover, 2007.

[93] L. Samaj and Z. Bjnok, Introduction to the Statistical Physics o f Integrable Many- 

Body Systems. Cambridge U: Cambridge University Press, 2013.

[94] D. P. Landau and K. Binder, Monte Carlo Simulations in Statistical Physics, 4th 

ed. Cambridge: Cambridge University Press, 2014.

[95] A. G. Percus, G. Istrate, and C. E. Moore, Computational Complexity and Statisti­

cal Physics. Oxford: Oxford University Press, 2006.

[96] C. d ’Iribarne, G. Rasigni, and M. Rasigni, “Determination of site percolation 

transitions for 2d mosaics by means of minimal spanning tree approach,” Phys. 

Lett. A, vol. 209, pp. 95-98, 1995.

[97] R. Shrock and S. H. Tsai, “Ground-state entropy of potts antiferromagnets: 

Bounds, series, and monte carlo measurements,” Phys. Rev. E, vol. 56, p. 2733, 

1997.

[98] P. N. Suding and R. M. Ziff, “Site percolation thresholds for archimedean lattices,” 

Phys. Rev. E, vol. 60, p. 275, 1999.

[99] A. A. David, T. Fujii, E. Matioli, R. Sharma, S. Nakamura, S. P. DenBaars, C. Weis- 

buchc, and H. Benisty, “Gan light-emitting diodes with archimedean lattice photo­

nic crystals,” Appl. Phys. Lett., vol. 88, p. 073510, 2006.



110

[100] C. R. Scullard and R. M. Ziff, “Critical surfaces for general bond percolation 

problems,” Phys. Rev. Lett., vol. 100, p. 185701, 2008.

[101] A. Eddi, A. Decelle, E. Fort, and Y. Counder, “Archimedean lattices in the bound 

states of wave interacting particles,” EPL, vol. 87, p. 540002, 2009.

[102] J. A. Millan, D. Ortiz, G. van Anders, and S. C. Glotzer, “Self-assembly of archi­

medean tilings with enthalpically and entropically patchy polygons,” ACS Nano, 

vol. 8, pp. 2918-2928, 2014.

[103] F. C. de Lima, G. J. Ferreira, and R. H. Miwa, “Topological flat band, dirac fermions 

and quantum spin hall phase in 2d archimedean lattices,” Phys. Chem. Chem. 

Phys., vol. 21, p. 22344, 2019.

[104] C. R. Scullard and J. L. Jacobsen, “Bond percolation thresholds on archimedean 

lattices from critical polynomial roots,” Phys. Rev. Res., vol. 2, p. 012050(R), 2020.

[105] A. A. Kulkarni, E. Hanson, R. Zhang, K. Thornton, and P. V. Braun, “Archimedean 

lattices emerge in template-directed eutectic solidification,” Nature, vol. 577, 

p. 355, 2020.

[106] S. S. David, A. Chelnikov, and J. Lourioz, “ Isotropic photonic structures: 

Archimedean-like fillings and quasi-crystals,” IEEE J. Quant. Electr., vol. 37, 

p. 1427, 2001.

[107] A. K. Daniel, R. Alexander, and A. Miyake, “Computational universality of 

symmetry-protected topologically ordered cluster phases on 2d archimedean 

lattices,” Quantum , vol. 4, p. 228, 2020.

[108] D. Cimasoni and H. Duminil-Copin, “The critical temperature for the Ising model 

on planar doubly periodic graphs,” Electron. J. Probab., vol. 18, pp. no. 44, 18, 

2013.

[109] B. Kafman, “Crystal statistics. ii. partition function evaluated by spinor analysis,” 

Phys. Rev., vol. 76, p. 1232, 1949.

[110] R. Feynman, Statistical Mechanics: A Set O f Lectures. Boca Raton: CRC Press, 

2018.

[111] N. V. Vdovichenko, “A calculation of the partition function for a plane dipole lattice,” 

Soviet Physics JETP, vol. 20, pp. 477-488, 1965.

[112] B. L. van der Waerden, “Die lange reichweite der regelmäßigen atomanordnung 

in mischkristallen,” Zeitschrift für Physik, vol. 118, pp. 473-488, 1941.



111

[113] T. Morita, “Justification of vdovichenko’s method for the ising model on a tw o­

dimensional lattice,” J. Phys. A : Math. Gen., vol. 19, p. 1197, 1986.

[114] A. Codello, “Exact curie temperature for the ising model on archimedean and 

laves lattices,” J. Phys. A : Math. Theor., vol. 43, p. 399801, 2010.

[115] Y. Hirose, A. Oguchi, and Y. Fukumoto, “Quantum dimer model containing rokhsar- 

kivelson point expressed by spin-2 heisenberg antiferromagnets,” Phys. Rev. B, 

vol. 101, p. 174440, 2020.

[116] F. Y. Wu, “Dimers on two-dimensional lattices,” Internat. J. Modern Phys. B, vol. 20, 

pp. 5357-5371, 2006.

[117] P. Kasteleyn, “The statistics of dimers on a lattice: I. the number of dimer arrange­

ments on a quadratic lattice,” Physica, vol. 27, pp. 1209-1225, 1961.

[118] S. L iand  W. Yan, “Spanning trees and dimer problem on the cairo pentagonal 

lattice,” Applied Mathematics and Computation, vol. 337, pp. 34-40, 2018.

[119] T. Fritz, “Corrigendum to “Velocity polytopes of periodic graphs and a no-go 

theorem for digital physics” [Discrete Mathematics 313 (2013) 1289-1301] 

[mr3061113],” Discrete Math., vol. 313, p. 2380, 2013.

[120] A. Badanin, E. Korotyaev, and N. Saburova, “Laplacians on periodic discrete 

graphs,” 2013.

[121] C. S. Borcea and I. Streinu, “Periodic frameworks and flexibility,” Proc. R. Soc. 

Lond. Ser. A, vol. 466, pp. 2633-2649, 2010.

[122] O. Delgado-Friedrichs, “Barycentric drawings of periodic graphs,” in Graph 

Drawing (G. Liotta, ed.), (Berlin), pp. 178-189, Springer, 2004.

[123] S. Krantz, A Primer o f Real Analytic Funtions. Basel: Birkhauser Verlag, 1992.

[124] W. Rudin, Principles o f Mathematical Analysis. 3rd. New York: McGraw-Hill, 1976.



112

APPENDIX A  -  PERIODIC GRAPHS AND PROOF OF THEOREM 2.3.1 AND

THEOREM 2.6.1.

A.1 PERIODIC GRAPHS AS STRUCTURES IN THE Z d

Let G =  (V ,E ) be an undirected, simple, connected and locally finite graph. 

Recalling the notation in section 2.3 —  for which the elements of E (G ) are denoted by 

(vx,vy) with vx,vy e V (G) —  if G is also an infinite d-periodic graph with the vertex set 

given by Z d x S for S =  { 1 , S} ,  then V k , l  e Z d and s,t  e S it reads

((k,s), ( l , t ))  ^  ((k — l ,s),  (0, t)). (A.1)

For A g representing the adjacency matrix of G, the above condition can be expressed 

as

A g ((k,s), ( l , t ))  =  AG((k — l ,s),  (0 ,t)), (A.2)

i.e., the properties in Eqs. (A.1) and (A.2) are equivalent.

The above is an abstract definition. However, in modeling distinct problems the 

tradition is to work with actual graph structures embedded in Rn (n >  d). We call these 

concrete constructions spatial lattices. Hence, the natural question is if all the findings 

in the present contribution, which are based on a general description of periodic graphs, 

are directly extended to spatial lattices. The answer is yes, as we show below (we refer 

to [119, 120, 121, 122] for important results).

For every u e Rn a translation ru : Rn ^  Rn is defined as

Tu(v) =  v +  U.

Then, typical spatial lattices in physical models can be defined as the following. A spatial 

lattice L t =  (VT,E t ) is an undirected, simple, connected and locally finite graph, with 

the vertex set VT c  Rn given by

n d
Vt =  U ( K  +  vi), K  = {  ^  kt t i : kt e Z } ,

i=l i=l

where t i , . . .  , td e Rn are linearly independent vectors, such that the translations r ti (res­

tricted to V ) are automorphisms for each i =  1 , . . . ,  n. Also, the vi ’s are non-equivalent 

by any translations, i.e., K  +  vi f |  K  +  vy =  0 if i =  j .

Next we need the following definitions.

(i) A free Z d-action (by automorphism) on G =  (V ,E ) is a map Z  : Z d x V (G) ^  V (G ), 

verifying the properties (we consider the usual notation for an action Z (k ,vx) for 

k e Z d, vx e V , namely, simply Z (k ,vx) =  k v x):
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(1) k (l vx) =  (k +  l) vx, V k, l G Z d, V vx G V .

(2) 0 vx =  vx, V v G V .

(3) k vx =  l vx ^  k =  l, Vk, l G Z d, Vvx G V .

(4) For any k g Z d, the map Z (k) : V  ^  V , defined by Z (k)(vx) =  k v x, is an

automorphism of G.

(ii) An orbit of a free action is the set

Ox =  {kvx  : k G Z d} =  U  Z (k)(vx).

(iii) If vx// g ox , then ox  =  ox//. For Z (1)(vx ) =  vx», this readily follows from the identity

U  Z (fc)(vx») =  U  Z (k+1)(vx') =  U  Z (fc)(vx').

(iv) The set of all orbits under the action of Z d is represented by V /Z d, with n =  | V /Z d|.

Therefore, a free-action graph Gf  =  (V f, E f ) is an undirected, simple, connected 

and locally finite graph, equipped with a free Z d-action by automorphism, with finitely 

many orbits.

Theorem  A.1.1 Let L T =  (VT ,E T) be a spatiallattice (with vertex set in Rn) as previously

defined. Then, L T is also a free-action graph.

Proof. Since the translations Tt l , r t2, . . . ,  Ttn are automorphisms of L T, we can define a 

free Z d-action Z  : Z d x VT ^  VT by automorphisms as follows

Z ((k i,  k2, . . . , kn), vx) =  vx +  k i t i  +  k2 t2 +  . . . +  kn in ­

Note then that Z (k) = r fclil+...+fcnin. There are n orbits for this action: o, = K  + v , for all 

i =  1 , . . . ,  n. Hence, by definition L T is a free-action graph.

Theorem  A.1.2 Let Gf  =  (V f, E f ) be a free-action graph as previously defined. Then 

there exist a finite set S and an isomorphism  0 : V(G) ^  Vf  such that G =  (Z d x S, E(G )) 

is a formal periodic graph and  |S I =  |Vf /Z d|.

Proof. Let S =  {1 ,2 , . . .  ,n }  with n =  |Vf /Z d|. For each s g S, let vs be one element of

the orbit os. We have that (t g S)

vs G Ot, Vs =  t. (A.3)
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Figure 36 -  The honeycomb (hexagonal) spatial lattice — whose unitary cell is shown in the 
right. The orbits O(0,0) =  K  and O(10) =  K  +  (1,0) are represented, respectively, by 
filled and void circles. It is a periodic graph of vertex set Z 2 x {s1, s2} (with s1, s2 
being 1 and 2).

By eq. (A.3) the sets Z (k)(S) have n elements for all k e Z d, so

n

V> =  U  0> =  U  Z (k)(S).
s=i kezd

Once the action is free this is a disjoint union. So we can define a bijection 0 : Z d x S ^  

Vf  by

0(k,s)  =  Z (k)(s).

In this way, we can define the graph G =  (V(G), E (G)), where the vertex set reads

V(G) =  Z d x S, 

whereas the edge set is naturally induced by

((k,s), ( l , t ))  ^  (0(k, s) ,0 ( l , t )) .

Given the above definition for the edge set E (G), it follows that the map 0 is an 

isomorphism of graph. So the Gf  and G are isomorphic. It remains to prove that G is a 

periodic graph, i.e., that A.1 holds true. And indeed

( (k,s), ( l, t ) )  ^  (Z (k)(s ) ,Z (1)(t)) ^  (Z (0)(s ) ,Z (k-1)(t))

^  (0 (0 , s ) ,0 (k — l , t ) )  ^  ((0,s), (k — l , t ) ) .
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Finally

Theorem  A.1.3 Let GT =  (VT ,E T) be an arbitrary spatia l lattice. Then GT is always 

isomorphic to some formal periodic G.

Proof. This is a direct consequence of Theorems A.1.1 and A.1.2

We exemplify the previous construction addressing the honeycomb (hexagonal) 

lattice, see Fig. 36. Assume the two vectors in R2

t i  =  (0, V3), t 2 =  (3/2, V3/2).

We define the following set in R2

K  =  {k i t i  +  k212 : ki,k2 e Z }.

The honeycomb spatial lattice L hon can be defined as the simple graph with the vertex 

set V  given as

Vhon =  K  U (K  +  (1, 0)), 

and the edge set Ehon defined as

Ehon =  j(p ,P  +  Vi), (p,p +  V2), (p,p +  V3) : p e

for

Vi =  (1, 0), V2 =  (—1/2, V 3/2), V3 =  (—1/2, —V3/2).

It is clear that the translations Ttl , r t2 are automorphism of L hon. We can define a free 

Z 2-action Z  : Z 2 x Vhon ^  Vhon by automorphisms through

Z {(ki ,k2),vx) =  vx +  ki t i  +  k212.

The orbits of this action are

0(0,0) =  K , o(i,0) =  K  +  (1, 0)-

So, by the previous theorems, the honeycomb spatial lattice is a periodic graph, i.e., it is 

isomorphic to a periodic graph G =  (Z 2 x {s i , s2}, E (G)).



116

A.2 PROOF OF THEOREM 2.3.1 AND SOME SUPPORTING RESULTS FOR THE 

LEMMA 2.4.1.

We first recall the following well know result. Let f  : Z d ^  C . The discrete 

Fourier transform  (DFT) of f  is the continuous function f  : Rd ^  C , defined by

f  (w) =  f  (k) exp [+ iw  ■k]
kezd

If f  has finite support, then for all k e Z d

f  (k) =  7 I  f  (w) exP[—iw  ■ k] dw- 
( 2 n)d Jb

Next, we proof the Theorem 2.3.1. For simplicity we discuss S =  {1 ,2 } (for the 

general situation see below). We assume that the walk begins at (0,t) e Z d x S . So, by 

definition p0((k, s), (0 ,t)) =  80k 8ts (with t  being 1 or 2).

The walk evolution is then governed by

P n + i(k ,s )=  ^ 2  p((k,s), ( l , r ) )Pn( l , r ) ,
(l,r)ez dxS

(A.4)

where we are using the notation pn(k, s) =  pn((k, s), (0, t)). We define for all n e N  the 

column vector

( 2 -  A

Pn(k)

( Pn(k, 1 )\

\Pn(k, 2 ) /

in particular p0(k) =  8,k0

v  — V

Further

/p i(k , 1A  / r n (k) r i2 (k A  / 2 — A

p i (k) =

\ p i (k , 2)/

In this way, we can write Eq. (A.4) as

\ r 2 i(k) r 22(k)/

pn+i(k) =  ^  r ( k  — l) p,n(l).
lezd

Now, for pn+i (w) =  ^2keZd pn+i (k) exp[i w ■ k] we have that (taking into account 

the relation between A and r ,  Eq. (2.12))

pn+i(w) =  2̂ 5^r ( k  — l) pn(l)exp [iw  ■ k]
kezd Liezd

E E r ( k  — l ) pn(l) exp[iw  ■ (k — l)]
iezd kezd

x exp[i w  ■ l] A(w) pn(w). (A.5)
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Therefore (ei =  (2 - 1, t  -  1)T)

pn(w) =  An(w) e1, Vn >  0. 

But pn has finite support Vn, thus

Pn(k) =  —^  I  exp—  w ■ k] pn(k) dw,
(2n)d 7b

I  e x p [- i w ■ k] An(w) (2 — t, t — 1)T dw.
' B(2n)d

This leads to (s =  1,2)

P n (k ,s )=  Pn((k,s), (0 ,t)) =  — I  exp[—iw  ■ k] [An]si(w) dw. (A.6)
(2nj J b

This equation is straightforwardly extended to the general case of s ,t e S =  { 1 , . . . ,  S }, 
leading to the first relation in the Theorem 2.3.1.

The expression for the LGF (or probability generating function) follows from Eq. 

(A.6) with S =  { 1 , . . . ,  S } as (—1 <  z <  +1)

P ((k ,s ), (0, t)) =  ^ P n ( ( k ,s ) ,  (0, t)) zn
n=0

1 r  ^
1 * ^  ̂ r • T n _n ra n

(2n
— / exp[—iw  ■ k] zn [An]st(w) dw,
)^ B n = o

foXd I exp [—iw  ■ k ] [ ( 1 — z A (w )) 1] st dw- 
(2n) JB

Above, the summation and integration can be exchanged due to uniform conver­

gence (since p(zA (w )) <  1). Also, the last relation comes from the basic result

0 An =  (1 — A )-1 , valid for A e CSxS with p(A) <  1.

To prove the Theorem A.2.1 next —  necessary for the Lemma 2.4.1—  we recall 

the following known identity. If A e CSxS is Hermitian (A f =  A) and p(A) <  1, then

—  Tr[An]
ln [det(1 — A)] =  — £  - L i , (A.7)

n=1 n

a direct consequence of ln[1 — x] =  — —  Xn, x e [—1,1).

Theorem  A.2.1 If A : X  c  Rd ^  c mxm is a continuous function on a compact set X  

such that A(w) is a Hermitian matrix a n d p(A(w)) <  1 V w e X , then

—  Tr[An(w)] n _  .. ...
}  y =  — ln [det(1 — A(w))]
n=1 n

is uniformly convergent in X .
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Proof. By Eq. (A.7)

2^  Tr[An(w)] =  — in[det(1 — A (w ) ) ] , Vw e X .
n=i n

Because A(w) is Hermitian, the real function w e X  ^  p(A(w))  =  |A (w)|2 is continuous. 

We define 0 <  n <  1 as the number

n ='we X ]max p(A(w)).

Then (for Xi (i = 1 , 2,. . .  ,m)  eigenvalues of A(w))

Tr[An(w)]
n n E  xn(w)

i=i

nn
< m — , V w e X.  

n

By the Weierstrass M-test, the series ^ ^ = i Tr[An(w)] converges uniformly on X .

1

A.3 PROOF OF THEOREM 2.6.1

Let G =  (V ,E ) be an undirected, simple, connected, and locally finite graph (of 

maximum degree kmax(G)) and Cr (G) the set of all the closed walks of length r  on G. 

We remark that Cr (G) is a disjoint union of all the loops in L r (G) (remember that a loop 

is a equivalent class of closed curves, so a loop l e L(G ) is a subset of Cr (G)). In this 

way

Cr (G) =  U  l.
leLr (G)

Note that if G is a finite graph, Cr (G) is a finite set. Because |Lr (G)| <  |Cr (G)| 

the sets L r (m) are also finite. Furthermore, leaving from vx the number of ways which a 

walk can return to vx after r  steps cannot be greater than (kmax(G ))r . Since we have 

|V(G)| vertices, then

Cr(G) =  |Cr(G)| <  |V(G)| (kmax(G))r . (A.8)

Recalling that |l| =  2i l / m l , we have

Cr (g ) =  e  ! =  E E 1 =  E  m  ■ (A-9)
ceCr(G) leLr(G) cel leLr(G) l

Theorem  A.3.1 Let G =  (V, E ) be an undirected, simple, connected, and finite graph 

with maximum degree kmax(G). For z in the the num erical interval [0 ,1/kmax (G)), the 

RWLS partition function defined in section 2.6.1 can be written as

Z g (z ) =  exp J 2 j G (z)
r=i

(A.10)
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where

JrG(z )=  w(l,z). (A.11)
leLr (G)

Proof. From Eqs. (2.42), (A.9) and (A.8), it reads (for notation simplicity we drop 

the superindex G in JrG)

Jr(z) =  y  w ( l , z ) =  y  i l  =  ^  ^
^  ^  m t 2r ^  m lleLr (G) leLr (G) leLr (G) l

Zr _Cr(G)
2r

<  |V(G)| (zkmax(G))r (A.12)

Given that |V(G)| is finite and z k max(G) <  1, the series ^ ~ i Jr (z) is absolutely 

convergent. Thus, by the Cauchy theorem

^  \ m ^
/r iz '

r=1
y . j  ( z ) ) =  y  ( y  n  Jri (z)

r=1 ViH +rm=r i=1

(A.13)

where the term between (■) in the rhs of Eq. (A.13) is a finite series and always positive. 

So, in the following expression we can interchange the order of the summations as 

indicated

exp
r=1
Y Jr (z) =  1 +  X !  m! ( ^ 2 Jr (z)1 m!m=1 x r=1

1 + s s  m \ s  n  Jri (z)-
r=1 m=1 r1+------+rm=r i=1

(A.14)

Now, from Eq. (A.11), i.e., Jr i (z) =  ^ l€L w(l ,z) ,  Eq. (2.44) and the fact thati leLri
over a Cartesian product, the product of sums is a sum of products, it reads

s  n  Jri (z)
ri+----+rm=r i=1

s  s  n  w(i i , z)
ri +--- +rm=r (li,...,lm)eL(ri,...,rm) i=1>lm )

m

Y  \ \ w (li ,z )•
(ll ,...,lm)eLr (m) i=1

Hence, considering Eqs. (A.14) and (A.15) we find

exp
r=1
y j r (z) =  1 ^  m  n Jr< ^m !m=1 r=1 ri +--- +rm=r i=1

^  I ^  m

1 + s  m  s  s  n  w(i i ’ z)
m=1 r=1 (li ,...,lm)eLr(m) i=1

(A.15)

(A.16)

m
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Lastly, the rhs of the second equality in Eq. (A.16) coincides with the rhs of Eq. (2.45). 

Thus, the Theorem A.3.1 follows.

Finally, we turn to the proof of Theorem 2.6.1. We consider L  =  (V  (L ) ,E  (L))

an infinite q-regular lattice for the vertex set V (L ) being in x S, with |S| =  S . We

define for any W  c  V (L )

Cf  (L) =  {{vx, Vi, ..., Vr-1, Vx} G C r(L ): Vx G W },

C f  (L) =  | C f  (L)|,

V f  (L) =  {Vx G V (L ) : 3 (vx, Vy) G E (L ) & Vy G W }.

If W  =  {vx}, we simply write C f  (L) =  C{Vx} (L) =  C f  (L). If all the vertices forming a

closed walk c are in W , c c  W , otherwise c C W . Thus, we further define

Cr (Gn) =  {c G C f  (L) : c C Vn}. (A.17)

For L, suppose a sequence of vertex-induced subgraphs Gn(Vn, En) for which

Vn =  {(k , s) G x S : k G [ -n ,  n]d},

|Vn| =  (2n +  1)dS , kmax(Gn) =  q (so p(AGn) <  q), and lim n ^ ^  Gn =  L. For each k g 

the sets c  x S are (with |Uk | =  S)

Ufc =  {(k , s) : s G S} =  {(k , 1 ) , . . . ,  (k, S )}.

In special, U0 =  { (0 ,1 ) , . . . ,  (0 ,S )}. Note that

Vn =  U  Uc.
fce[-n,n]d n

The boundary Bn of Gn is the set

Bn =  {Vx G Vn : 3 (Vx, Vy) G E (L ) & Vy G Vn}.

Next we shall prove the following properties:

(i)

lim  f  =  ° '

(ii)

lim  f C  =  i  lim  CV" (L)
n |Vn| 2r n |Vn|

(iii)

C f  (L)
|V n |C f (L)

«S '



121

Proof o f (i). For any k e Z d the set V Uk (L) is finite once L  is q-regular. Therefore, 

since L  is periodic

[ ( k )  =  [  =  m ax{|l — k| : (I, s) e V Uk (L )} 

is independent on k and thus

(k,s), ( l , t )J  e E (L) ^  |k — l| <  [ .  (A.18)

For n =  1 ,2 , . . let Rn =  [— (n — [ ) , n  — [ ] d n Z d. For all n >  [ , the [- in te r io r I £ c  V  (Gn)

and [ -boundary Bn c  V (G n) are defined as

I f  =  {(k ,s ) e Z d x S : k e Rn} =  U  U ,
kenn

Bn =  V  (Gn) — I f .

In Fig. 37 we illustrate these sets for the Archimedean lattice (4,82) considering n =  2. 

Given that [  e N  and R  n Z d| =  (2n — 2 [  +  l ) d, we have

|I« | =  (2n — 2 [  +  1)dS ,

B  | =  ((2n +  1)d — (2n — 2 [  +  1)d)S .

Thus

lim  =  lim  (2n — 2 [  S =  1, (A.19)
n l<̂  |Vn| n lro  (2n +  1)dS

lim  M  =  lim  ((2n + 1 f — (2n ~  +1)d)S  =  0. (A.20)
n l<̂  |Vn | n l<̂  (2n +  1)dS

For any (k, s) e I f  and ((k, s), ( l , t ))  e E (L ) we have by Eq. (A.18) that |k —1| < 

[  and so ( l , t )  e Vn. In this way (k, s) /  Bn and Bn c  B n. Hence Eq. (A.20) leads to (i).

Proof o f (ii). >From Eq. (A.17) we have the following disjoint decomposition

CVn (L) =  Cr (Gn) +  Dr (Bn), where Dr (Bn) =  {c e CVn (L) : c C Vn}. Thus, (L) =  

Cr (Gn) +  |Dr (Bn)|. But if c e D r (Bn) then c visits a vertex in Bn and |Dr (Bn)| < 

qr x |Bn | x r  since: there are at most qr possibilities of a c of length r  to be composed 

by a vx e Bn; in total there are |Bn| vertices in the border; and vx can be any of the r  

vertices along c.

Thence by (i) we have lim nlTO |Dr (Bn)|/|V n| =  0 and

— lim  =  —  lim  Cr(Gn) +  |Dr(Bn)| =  lim  , (A.21)
2r n i®  | Vn | 2r | Vn| mcx | Vn |

proving (ii).

Proof o f (iii). For all s e S , (0, s) and (k, s) are sim ilar points in L  and we have 

that CU0 (L) =  CrUk (L). Moreover

CV  (L) =  ^  CrUk (L) =  Ĵ C f0 (L). (A.22)
fce[-n,n]d nzd
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Figure 3 7 -T h e  induced G2 subgraph of the Archimedean lattice (4,82), for which ft 1.
i f  c  V(G2) and c  V(G2) are, respectively, the ft-interior and ft-boundary sets
of vertices (in the figure separated by the dashed square). The set U0 is delimited 
by the dashed circle.

So (iii) holds true.

Lastly, since L  is a periodic q-regular lattice then (see the discussion just after 

Eq. (2.4))

pr (0, s) =  pr ((0, s) , (0, s)) =  Cr ((0’ s)r’ (0,s)) ,qr

and
c  c~r zV S z r S

-Cl'0 (L) =  -  V  Cv ((0 ,8), (0, s)) =  -  y >  (0, s) qV. (A.23)
r  r  rs=i s=i

By (ii), (iii) and Eq. (A.23), we have for r  = 1 , 2,. . .

s
1- Jr n (z) 1 (zq)V in \
llm  IT/ I =  ^ -------- l ^ p r  (0 ,s).n ^ ^  |Vn| 2S r1 1  S=1

In this way

n |Vn| 2S r
J (Gn (z) 1 (zq)r

l l m -1 V T  =  E pv<0-s>- (A-24)
S=1

By Eq. (A.24), Theorem A.3.1 and Lemma 2.4.1, we conclude that for z in the interval 

[0 ,1/q), in the thermodynamic limit (here meaning n ^  w )

Fl (z ) =  llm n ^ ^  (Z)] =  — llm n ^~  ivb E ~ i  J G  (z)

 L V  ~2S r= i

1 1

E S=i pv (0,s) (zq)r

=  2S ̂ / b  ln [det(1 — z q A(w))] dw, 

which is exactly the statement of Theorem 2.6.1.

r
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APPENDIX B -  PROOF OF SUPPORTING THEOREM AND LEMMAS FOR

CHAPTER 3

B.1 2-PERIODIC GRAPHS.

Here we will define some notations and state important observations of a 2- 

periodic graph G as defined in section  II.C.

We have two vectors V1 and v2, such that for each integer n >  1, and any (k, l) e Z 2 we 

have an automorphism of G given by the translation

note that

If we define the vectors

t(M) (v) =  v +  n (kv i +  lv2)

we can write

v(fc,z) :=  kvi +  Zv2,

v(k,1) :=  n (kv1 +  lv2) >

(̂fĉ ) (x) x +  v(k,1) >

t7fc,i)(x) =  x +  v(k,i)>

Since G is 2-periodic we have that

V (G) n D  =  { s i }.

so there is a1, ...,aS,b1, ...,bS e [0,1) such that

Si =  ajV1 +  biV2, Vi =  1,..., S .

Note that the sets D (k, l) defined for all (k, l) e Z 2 by

D (k, l) :=  {t(k,z)(avi +  bv2) : a, b G [0,1)}.

are disjoint and

R2 =  U  D (k, l),
(fc,z)ez2

we also have that D (0 ,0) =  D.

(B.1)
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Since G is simple we have that t(k i) have a a non-inversion property on the 

edges, meaning that if e =  {v ,w }  e E (G) then form any (k, l )  e Z 2 we have

(t(k,l)(v),t(k,l)(w)) =  (w ,v)

We now also recall that for n Z  © n Z  (for a given n e N ) is the abelian additive group 

An =  (n Z  x n Z ,  + ), where here the operation “+” is applied componentwise and the 

identity element is (0,0). Since An is a subgroup of Z 2, for each integer n >  1 we can 

define the quotient graph Gn as follows:

First Let Rn c  V (G) x V (G) an equivalent relation on vertices given by:

(v i,v 2) e Rn if and only if it exists a (k,l )  e Z 2 such that

v2 =  tnik,i)(vi ) -

An equivalence class of the vertex v is the set

Anv :=  {tnk,i) ( v ) : ( k , l )  e Z 2} 

the set of all vertex classes is denoted by V /A n.

We also have an equivalent relation R'n c  E (G) x E (G) on the edges defined as follows: 

(e1 ,e2) e R'n if and only if it exists (k, l )  e Z 2 such that

{ tnk,i)(vi ) , tnk,i)(wi )}  =  {v 2 j w2}

where e1 =  {v 1,w 1} and e2 =  {v2,w 2}.

An equivalence class of the edge e =  { v, w } is the set

Ane : = { {i?k,i)(v),i?k,i)(w)> : ( k , l )  e Z 2|

the set of all edge classes is denoted by E / A n.

The quotient graph G /A n is defined as follows

V  (G/An) =  V/An, E(G/An)  =  E/An

and the incidence function is defined as

^o(Ane) =  {Anv, Anw},

where e =  { v, w } .

Note that Ane is a loop (link) if there exist an edge e e Ane such that its vertices 

are equivalent (not equivalent), in which case all the edges in the loop (link) Ane are 

equivalent (not equivalent).

Note that for n =  1, A 1 =  Z 2 so we can write for any vertex v e V (G) and any e e E (G)

Z 2v =  A 1v, Z 2e =  A 1e
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Lem ma B.1.1 Let B  be a finite set with m elements, T  : B  ^  B  a function such that

a) T  is injective,

b) T(b) =  b, Vb e B,

c) b =  T(b') ^  T(b) =  b', for a ll b, b' e B.

Then m is even and there are m /2  elements b1,..., bm/2 e B  such that

B  =  {b1, T(b1), , bTO/2, T(bm/2)}

Proof. The proof will use a finite number of steps.

Step 0: Let b1 B,

Step 1: if B  -  {b1,T (b1)}  =  0, take

b2 e B  -  {b1,T(b1)},

we have T(b2) G {b1,T (b1),b2}

Step 2:if B  -  {b1,T (b1),b2,T (b2)}  =  0, take

b3 e B  -  {b1,T(b1),b2,T(b2)}

we have T(b3) G {b1 ,T (b 1),b2,T (b2) A }

This process must stop in a step p such that

B  -{b 1 ,T (b 1 ),...,b p,T(bp)}  =  0

So m =  2p and

B  =  {b1,T(b1), , bTO/2, T(bm/2)}.

Theorem  B.1.2 Let G =  (V, E ) be a 2-periodic, locally finite graph, then the fundamen­

tal quotient graph G1 :=  G /A 1 is finite and locally finite, more precisely

a) V (G 1) have S elements and

V  (G 1) =  {Z  2Si,i =  1,..., S }

where

V(G) n D  =  {S1,...,SS}

b)

D eg [Z 2Sj] =  Deg[si], Vi =  1 ,...,S
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c) E =  E (G i ) is finite and if  G is also q-regu lar, then

e = f

Proof. To prove a) we need to prove two facts

i) US=i Z 2Si =  V(G)

ii) Vs, s' g V (G) n D  with s =  s'

Z 2s =  Z 2 s'

Proof o f i). Since it is clear that

S
U  Z 2si c  V(G),
i=i

we just need to prove the inclusion

S
V (G) c  U  Z 2si.

i=i

Let v g V (G) then by Eq. (B.1) there is (k' , l ')  g Z 2 and a',b' g [0,1) such that

v =  t(k',i')(a'vi +  b'v2),

t(-k>,-v)(v) =  a'vi +  b'v2 G V (G) n D,

then

t (-k',-l')

so for some integer 1 <  a <  S , we have

t ( -k,-1) (v) sa

then
S

v e Z 2sa c  y  Z 2si
i=i

So
S

V (G) c  y  Z 2si.
i= i

then
S

V(G) =  y  Z 2si.
i= i

So we proved i).

Proof o f ii). Asume that s =  s and Z 2s =  Z 2s', so there is a, b, a', b' e [0,1) and (k, l) e Z 2 

such that

s = a v i +  bv2 , 

s' = a 'v i +  b'v2
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and

av1 +  bv2 =  (a' +  k)v1 +  (b' +  1)v2,

but the above equation implies that (k, l) =  0 so s =  s', which is a contradiction. So this 

prove ii), hence we proved a).

Now we will prove b).

Let s e D  n V(G ), since G is locally finite, we have

Deg(s) =  9,

and since G is simple, we have q distinct vertices r 1, ..., r q and q links

^ M , . . . ,  { s , rq} G E  (G)

Consider the sets

A = { r 1, ..., r q}

B  = { r  G A : (s, r ')  G R 1}

C = A -  B  =  { C^ ..., Cq-TO}

and let m  be the number of elements in B.

Let c, c' e C , if {s, c} and {s, c'} are equivalent then there is a (k, l) e Z 2 such that

s +  v(fc,i) =  s

c +  V(fc,i) =  c'

or

s +  V(fc,i) =  c',

c +  v(fc,i) =  s

The first pair of equation implies that c =  c' which is a contradiction and the second pair 

of equation implies that c, c' e B  which is also a contradiction.

So we have q -  m different links in G1 given by

Z 2 {A c1^ ..., Z2{s, cq-m}

Now for all b e B  exist a unique (kb, 1b) e Z 2 such that (kb, 1b) =  0 and

t (fcb,ib )(b) =  s

define the function T  : B  ^  B  as

T  (b) =  W b) (s), 

we will prove the following properties of T
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i) T  is injective,

ii) T (b) =  b, Vb e B,

iii) b =  T (b') ^  T (b) =  b', for all b, bb e B.

Proof o f i). If T (b) =  T (b'), then

s +  v(kb,ib) =  s +  v(kb ,i'b),

so (kb, lb) =  (kb, lb), now since

b +  v(kb,ib) =  s =  b' +  v(kb,ib) j

then b =  b'. So T  is injective.

Proof o f ii). We have

T  (b) =  s +  v(kb,ib)

and

s =  b +  v(kb,ib)

So

T  (b) =  b +  2v(kb ,ib)

Now since (kb, lb) =  0 we have T (b) =  b.

Proof o f iii). Assume that b =  T(b') then

b =  s +  v(kbb ,ibb)

so

s =  b +  v(-kbb ,-ibb)

then (—kbb, —lbb) =  (kb, lb) Since

b' +  v(kbb ,iy) =  s

then

b' +  v(-kb,-ib) =  s

So

b' =  s +  v(kb,ib) =  T  (b)

So iii) is Proved.

Now by Lemma B.1.1

B  =  {b1 ,T  (61), ....,bm/2,T  (bm/2)}
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By the definition of B , for all b e B  the equivalence classes of edges Z 2{s, b} are loops 

in G i, futhermore, since

{s +  v(kbh ) ,b +  v(kb M } =  {T  (b),b}

we have that for all b e B

({s ,b }, { s , T (b)}) e Ri, 

in other words the edges{s,b} and {s ,T (b )} are equivalent, so

Z 2 {s ,b } =  Z  2{s, T  (b)}

Next consider the edges

{s, bi }, Vi =  1, .. .,m/2,

we will prove that for i =  j

Z  2{s,b i}  =  Z  2{s, bj}.

If {s, bi } and {s, bj } are equivalent then there would be a (k, l) e Z 2 such that

s +  v(k,l) =  s,> 

bi +  v(k,l) =  bj

or

s +  v(k,l) =  bj , 

bi +  v(k,l) s

The first pair of equations above implies that bi =  bj  which is a contradiction and the 

second pair implies that (k, l )  =  (kbi, lbi), and

T  (bi) =  s +  v(k,l) =  bj

which is also a contradiction. So

Z  2{s ,b i} =  Z  2{s, bj}.

This means that G i have m / 2 loops.

So

Deg[Z 2s] =  2(m/2) +  (q — m) =  Deg[s],

so we proved b).

Proof o f c). Using b) along with the Handshaking Lemma from Graph theory which 

states that for a locally finite graph G with finite set of vertices it holds that

E (G) D [ ]
= 2 ^  ^ g ^ i

vev ((G)
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we conclude that E ( G ) is finite, now if G is also q—regular then

e = qs-

Theorem  B.1.3 Let G =  (V, E ) be a 2-periodic, locally finite graph, then for each integer 

n >  l ,  we have the relations

a) | V (G n)| =  n2S ,

b) |E(Gn)| =  n2E.

Proof The case n =  l  was proved in Theorem B.1.2, now we will prove only b) because 

the proof of a) is analogous.

Assume n ,m  >  2 and define the following sets

I (m) = { 0 , m — l }

I  (n, n) = I  (n) x I  (n)

I  (m, n, n) = I  (m) x I  (n) x I  (n)

E
Let —2 =  { Z 2e0, Z 2em-1}, where m =  E and

Z 2

e  =  {v^wq} g E(G ), Vi =  0 ,...,m  — l.

Now define for all i =  0, ...,m  -  1 and for all r, s =  0, ...,n  -  1, the following edges in

E  (G),

airs {v i +  v(r,s), +  v(r,s)}

We need to prove two facts:

i)

|^J Ara(airs) — E,
(i,r,s)E/(m,n,n)

ii) (i, r, s) =  (i , r  , s ) , then An(airs) =  An(ai/r/s/) ,

Proof o f i). It is clear that

(^J Ara(airs) — Z  eG
(r,s)E/(n,n)

so
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(^J An(airs ) — IJ  ( LJ An(airs)
(i,r,s)El (m,n,n) i£ l (m) (r,s)El(n)

— U  Z 2ei — E
i£l (m)

So i) is proved.

Proof o f ii). Suppose (i, r, s) — (i', r ', s'). 

case (1). i — i'

If An(airs) An(air's') then

airs G An(ai,r,s') C Z  ei.

Since airs g Z 2ei , then Z 2ei — Z 2ei but this is a contradiction so An(airs) — An(aiVs' ). 

case (2). i — i '

If An(airs) — An(air's') then

airs G An (air's') *

So for some (k ,l)  g Z d

airs — {v i +  V(r',s') +  v(k,Z)> Wi +  V(r' ,s') +  V'{k,l)} •

By the non-inversion property

Vi +  V(r,s) —Vi +  V(r',s') +  v(M) , 

wi +  V(r,s) —wi +  V(r',s') +  V(k,1)} -

This implies that

(r — r', s — s') — (nk, nl)

Now since (r, s), (r', s') g I (n ,  n) then |r — r'| < n and |s — s'| <  n, so (k, l) — 0, then

(r, s) — (r', s'),

but this is also a contradiction, then in this case we also have that An(airs) — An(airV ). 

So ii) is proved, we conclude that

e (Gn) — {An(airs) : ( i , r ,s )  g I (m ,n ,n ) } .

So |E(Gn)| — n2E — n2|E (G i)|.
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Theorem  B.1.4 Let L  be a 2-periodic, connected, locally finite graph, embedded in the 

plane such that each edge is a rectilinear segment and each face is a topological disc. 

Then

f  (K > ,■ l ” [Zc. (K )]Sl (K  ) =  lim  )
\V (Gn)|

=  ln[2] +  E  ln[cosh(K)]
S

+  2 I  ln [det (DL(tanh[K ],w ))] dw
S 8 n2 .IB

where

G =  -
*-n

Proof. By Theorem B.1.3, we have

|E (Gn)| =  IE (G i)| =  E 
|V(Gn)| |V (G i)| S

and by formula (3.11)

lim  )] =  ln[2] +  E  ln[cosh(K)]
1 Vn1 S

ln [F (Gn, tanh [K ])]
+  lim  ----------- Ü71-----------n^ ~  |Vn|

So we have

f  ( K )= ln [2 ] +  E  ln[cosh(K)]

+  2 ln [D L(tanh[K ],w )] dw,
S 8 n2 .iß

. Next we will prove two theorems that are needed to prove Lemma 3.6.3.

Theorem  B.1.5 Let J  : R2 ^  R be a real analytic function such that for a ll x ,z  e

(a,b) x (c,d), dz (J  (x ,z )) =  0 and let ( e , f ) C (a,b), then

a) If 0 : (e, f ) ^  (c, d) is a function such that

J (x ,0 (x )) =  O, Vx e ( e , f ),

then 0 is real analytic.

b) If J(x ,c )J(x ,d )  <  0 for all x  e ( e , f ), there exists a real analytic function 0 : (e,d) ^  

(c, d) such that

J (x ,0 (x )) =  O, Vx e ( e , f )•
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Proof.

Proof o f a). For all (x0,z0) e ( e , f ) x (c, d), by the real analytic Implicit Function Theorem 

([123]), there exist a real analytic function

0xo : (x0 -  0  x0 +  d) ^  (z0 -  e  z0 +  e)

such that

J (x ,0 xo (x)) =  0, Vx G (x0 -  0  x0 +  d),

where (x0 -  d, x0 +  d) c  (e, f ) and (z0 -  e, z0 +  e) c  (c, d).

Since (J(x, z)) =  0, then

0xo (x) =  0(x) , Vx G (x0 -  d, x0 +  d),

so 0 is real analytic in (e, f ).

Proof o f b). Since J(x, c) J(x, d) <  0 for all x e (e, f ), by the Intermediate Value Theorem, 

for each x e (e, f ), there exist a number zx e (c, d) such that J(x, zx)) =  0, By part a) 

the function 0 : (e, f ) ^  (c, d), defined by 0(x) =  zx is real analytic.

Theorem  B.1.6 Let J  : R2 ^  R be a continuous function and  e >  0.

a) If r  is the unique number in [c, d] such that

J  (a, r) =  0

and  0 : (a, a +  e) ^  (c, d) is a function such that

J(x, 0(x)) =  0, Vx G (a, a +  e).

then 0 (a+) =  r

b) If s is the unique number in [c, d] such that

J(b, s) =  0

and  0 : (b -  e, b) ^  (c, d) is a function such that

J(x, 0 (x)) =  0, Vx G (b -  e, b).

then 0 (b -)  =  s

Proof. We only prove a) because the proof of b) is analogous.

Let (xn) be a sequence in (a, a +  e) such that xn ^  a. We need to prove that 0 (xn) ^  r.
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First we have that $(xn) is bounded so it have a limit point in [c, d] (see [124]), so take 

any subsequence 0(xnk) of 0(xn) such that 0(xnk) ^  l e [c, d]. Note that

(xnk j 0 (xnk )) ^  (a , l ) -

Since J(x, z) is continuous and

J(xnk,^(x.nk)) =  0 Vk >  1.

we have that

J  (xnk ,0(xnk )) ^  J  (a, l) =  0, 

so by hypothesis l =  r, hence the sequence 0 (xn) have a unique limit point, then

0(x,n) ^  r

so 0(a+) =  r.


