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RESUMO

Traços oculares são amplamente utilizados em sistema biométricos devido a alta distinção
e unicidade da íris, e a viabilidade de projetar métodos robustos de reconhecimento periocular
em ambientes sem restrições. Sistemas biométricos que empregam imagens de íris obtidas no
infravermelho próximo (NIR) e capturadas em ambientes controlados podem ser considerados
uma tecnologia madura, provando serem eficazes em diferentes cenários. Um dos maiores desafios
atuais da biometria ocular é a utilização de imagens obtidas no espectro visível em ambientes
não controlados. O principal problema com essas imagens é que elas geralmente possuem vários
ruídos causados por diversos fatores como desfoque, desfoque de movimento, baixo contraste,
reflexo especular, ângulo do olhar, olho fora de ângulo e oclusão. Esses ruídos geralmente
aumentam as variações intra e interclasses, degradando a acurácia dos sistemas biométricos
oculares tanto para a íris quanto para as regiões perioculares. Com o recente avanço das técnicas
de aprendizado profundo, várias abordagens aplicando Redes Neurais Convolucionais (CNN)
para reconhecimento ocular vem sendo desenvolvidas. A principal vantagem das aplicações
baseadas em deep learning é que, ao contrário da engenharia de características, existe um
processo de aprendizagem de características. Dessa forma, estas aplicações podem produzir
modelos de extração de características invariantes a algumas variações intra e interclasses,
dependendo das amostras de imagens presentes no conjunto de treinamento. Considerando a
necessidade de constante evolução dos métodos biométricos, nesta tese, exploramos e investigamos
representações profundas para o reconhecimento da íris e da região periocular em diferentes
cenários. Nossa hipótese principal é que é possível alcançar resultados a nível do estado da arte
empregando técnicas de aprendizagem profunda em diferentes etapas de sistemas biométricos
oculares baseados nos traços da região periocular e da íris. Para testar esta hipótese, investigamos,
propomos e avaliamos diversas abordagens para sistemas biométricos de reconhecimento da íris e
da região periocular, produzindo as seguintes contribuições: desenvolvendo uma abordagem para
o reconhecimento da íris em ambientes sem restrições removendo as etapas de pré-processamento,
projetando um único modelo capaz de aprender diretamente representações de imagens de íris e
de regiões perioculares obtidas em espectros diferentes, propondo um método de normalização
de atributos presentes em imagens perioculares para reduzir a variabilidade intraclasse causada
por atributos não inerentes dos sujeitos, e utilizando soft-biometria no estágio de treinamento
de um modelo multitarefa para melhorar a discriminabilidade da representação profunda da
região periocular. Outra importante contribuição é a coleta de uma nova base de dados de
imagens perioculares capturadas por dispositivos móveis em ambientes sem restrições. Até
onde sabemos, essa base de dados é a que possui a maior quantidade de indivíduos presente na
literatura e está públicamente disponível para a comunidade científica. Experimentos extensivos
com as abordagens propostas utilizando bases de dados publicas demonstram que as técnicas de
aprendizado profundo aplicadas ao reconhecimento ocular empregando os traços da íris e da
região periocular podem alcançar resultados interessantes, mesmo em ambientes irrestritos e não
controlados.

Palavras-chave: Biometria ocular, Reconhecimento de íris, Reconhecimento periocular, ambientes
sem restrição, Reconhecimento em espectros cruzados.



ABSTRACT

Ocular traits in biometric systems are widely used because of the iris’ high distinction
and uniqueness, and the feasibility of designing robust periocular recognition methods in
unconstrained environments. Biometric systems employing Near-infrared (NIR) iris images
captured in controlled environments can be considered a mature technology, proving to be
effective in different scenarios. One of the current greatest challenges in ocular biometrics
is the use of images obtained at the visible spectrum (VIS) under uncontrolled environments.
The main problem with these images is that they usually have several noises caused by factors
such as blur, motion blur, low contrast, specular reflection, eye gaze, off-angle, and occlusion.
These noises generally increase intra and inter-class variations, degrading the ocular biometric
systems’ accuracy for both iris and periocular regions. With the recent advancement of deep
learning techniques, several approaches applying Convolutional Neural Networks (CNN) to
ocular recognition have been designed. The main advantage of applications based on deep
learning is that, unlike the handcrafted features, there is a process of representation learning. This
process can produce feature extractor models invariant for some intra and inter-class variations,
depending on the image samples present in the training set. Considering the need for the constant
evolution of biometric methods, in this thesis, we explored and investigated deep representations
for iris and periocular recognition in different scenarios. Our main hypothesis is that it is possible
to achieve state-of-the-art results by employing deep learning techniques at different stages of
ocular biometric systems based on periocular and iris traits. To support this hypothesis, we
investigate, propose, and evaluate several approaches for iris and periocular recognition producing
the following contributions: an approach for iris recognition in unconstrained environments
without preprocessing steps, a single model to directly learn representations from cross-spectral
images of iris and periocular regions, an attribute normalization method to reduce the intra-class
variability present in periocular images caused by subjects’ noninherent attributes, and the
use of soft biometrics in the training stage of a multi-task model to improve the periocular
deep representation’s discriminability. Another important contribution is the release of a new
periocular database captured by mobile devices in unconstrained environments. To the best of our
knowledge, the collected database is the largest one in terms of the number of subjects publicly
available to the research community. Extensive experiments with our proposed approaches using
publicly ocular databases support that deep learning techniques applied to ocular recognition
for both the iris and periocular traits can achieve impressive results even in unconstrained and
uncontrolled environments.

Keywords: Ocular biometrics, Iris recognition, Periocular recognition, Unconstrained Environ-
ments, Cross-spectral recognition.
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1 INTRODUCTION

Several corporations and governments fund biometrics research due to various applica-
tions such as combating terrorism and the social networks, showing that this is a strategically
important research area [30, 31]. A biometric system exploits pattern recognition techniques to
extract distinctive information/signatures of a person [3]. Such signatures are stored and used
to compare and determine the identity of a person sample within a population. As biometric
systems require robustness against acquisition and/or preprocessing fails, as well as high accuracy,
the challenges and the methodologies for identifying individuals are constantly evolving.

Methods that identify a person based on their physical or behavioral features are
particularly important since such characteristics cannot be lost or forget, as may occur with
passwords or identity cards [32]. In this context, the use of ocular information as a biometric
trait is interesting regarding a noninvasive technology and also because the biomedical literature
indicates that irises are one of the most distinct biometric sources [33]. Moreover, the periocular
region can provide discriminative patterns even in noisy images when the iris recognition is
difficult [27, 34, 35, 25, 24].

The most common ocular biometrics task is recognition, divided into verification (1:1
comparison) and identification (1:# comparisons). Furthermore, recognition can be performed
in two distinct protocols called closed-world (subject-dependent) and open-world (subject-
independent). In the closed world protocol, samples of an individual are present in the training
and test set. On the other hand, there may be samples in the test set belonging to individuals that
are not present in training set in the open-world protocol. The identification process generally
is performed on the closed-world protocol (except the open-set scenario, which has imposters
that are only in the test set, i.e., individuals who should not match any subject in the gallery
set), while verification (authentication) can be performed in both, being the open-world most
common protocol adopted in this setup. In additional to identification and verification, there are
other tasks in ocular biometrics such as spoofing and liveness detection [36, 37], recognition of
mislabeled left and right iris images [38], gender classification [39], iris and periocular region
detection [40, 41, 42], iris and sclera segmentation [43, 44], and sensor model identification [45].

Nowadays, with the advancement of deep learning-based techniques, several metho-
dologies applying this kind of frameworks have been developed for iris and periocular recog-
nition [46, 23, 47, 48, 49, 50, 24, 25, 34, 51, 35]. The advancement of the ocular biometric
systems can be observed by the recent contests that have been conducted to evaluate the evolution
of the state-of-the-art methods for different applications, such as iris recognition in heteroge-
neous lighting conditions (NICE.I and NICE.II) [1, 52], iris recognition using mobile images
(MICHE.I and MICHE.II) [15, 27], iris and periocular recognition in cross-spectral scenarios
(Cross-Eyed 1 and 2) [18, 19], and periocular recognition using mobile images captured in
different lighting conditions (VISOB 1 and 2) [14, 28]. Furthermore, several approaches using
soft-biometrics as a second (auxiliary) biometric information have been explored to improve
biometric tasks [53, 54, 55, 56, 17]. Generally, soft-biometric information does not have a high
level of discrimination. However, it can be used to index databases or to enhance the recognition
accuracy of primary biometric traits as the face, periocular region, and iris [54].

Considering the constant evolution of biometric methods as stated by the aforementioned
competitions and ocular recognition methods, in this thesis, we investigated the following topics
regarding iris and periocular recognition employing deep learning techniques:

• The impact of preprocessing on deep representations extracted from iris images.
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• Iris and periocular deep representations for cross-spectral ocular biometrics.

• Periocular attribute normalization employing generative adversarial networks.

• Benchmark of several CNN architectures in a large periocular database in the uncons-
trained environment.

• Periocular multitask learning with soft-biometrics.

Classical biometric methods employing the iris traits usually apply preprocessing
techniques such as iris detection, segmentation, and normalization [57]. Recent works on ocular
biometrics stated that CNN models could automatically define the region of interest and extract
discriminative representations of this region [34, 51]. Thus, in our first study, we analyze the
impact of preprocessing steps on iris recognition. This investigation was carried out by an
ablation study about the impact of the following preprocessing steps on deep representations
of NIR and VIS iris images: iris detection, segmentation for noise removal and normalization
using the rubber sheet model [57, 4, 30].

As we stated that it is possible to develop a robust iris biometric system by directly
employing the iris bounding box region [23] as input of CNN models, we evaluated the use of
this approach combined with the periocular region in a cross-spectral scenario. We performed
extensive experiments on two publicly available cross-spectral ocular databases for both the
closed and open-world protocols for this study. We also evaluated different weights to fuse the
iris and the periocular verification scores, and the performance of the approach in terms of EER
varying the depth of the layer from where representations were taken.

Regarding, only the periocular region, we observed that factors as eye-gaze and eyeglasses
present in the images, generally increase the intra-class variability, degrading the performance of
the biometric system [24]. To handle with these problems, we proposed an attribute normalization
method employing a state-of-the-art Generative Adversarial Network (GAN) model for automatic
image editing. This method is a prepossessing step to correct different attributes of a pair of
images. As proof of concept, we considered the “eyeglasses” and “eye-gaze” factors, comparing
the levels of performance of different recognition methods based on deep representations and
hand-crafted features with/without using the proposed normalization strategy.

Finally, to investigate the scalability of periocular biometric systems developed with CNN
models and soft-biometrics information to improve the recognition accuracy of these systems,
we developed a new database (currently the largest one in terms of the number of subjects)
containing images obtained by mobile devices in unconstrained scenarios.

1.1 MOTIVATION

Periocular recognition has been demonstrated to be an alternative when the iris trait
is not available due to occlusions or low image resolution. However, the iris trait has a high
uniqueness than the periocular region. Thus, the study of both traits for biometrics is essential to
design and develop robust biometric systems. Furthermore, a recent study [58] stated that the
use of masks (currently due to the Covid-19 pandemic) decreases significantly the verification
performance of face biometric systems. In this sense, ocular recognition can be employed as an
alternative since masks usually do not occlude the periocular region.

Machine learning techniques based on deep learning have achieved great popularity in
the last years due to the literature results. Recently works reported results outperforming the state
of the art in several problems, such as object detection [59, 60, 61, 62, 63], speech recognition [64,
65, 66, 67, 68], natural language processing [69, 70, 71, 72], medical research [73, 74], optical
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character recognition [75, 76, 77, 78, 79], handwritten digit recognition [80, 81, 82, 83],
and face recognition [84, 85, 86, 87]. In the field of ocular biometrics, the use of deep
learning representation has been advocated both for the periocular [46, 48, 51, 88, 89] and iris
regions [90, 91, 92, 93, 34, 29, 35, 47, 94], with interesting and promising results being reported.

As stated in previous works [95, 90], an often and open problem in ocular recognition
is matching heterogeneous images captured at different resolutions, distances, and devices
(cross-sensor and cross-spectral). It is difficult to design a robust handcrafted feature extractor to
address the intra-class variations present in these scenarios regarding these problems. In this
sense, several recent works demonstrate that deep representations report better results compared
to handcrafted features in iris and periocular region recognition [90, 46, 51, 29].

Another recent advancement is the use of deep learning techniques for automatic
facial attribute editing. Approaches based on Generative Adversarial net (GAN) [96] and
Variational Autoencoder (VAE) [97] architectures reported promising results performing these
tasks [98, 99, 100, 101, 26, 102, 103, 104, 105]. The models for face attributes editing can be divide
based on their ability to manipulate a single [102, 103] or multiple attributes [98, 99, 100, 101, 26],
such as eyeglasses, hair color, age, mustache, gender, beard, among others. Also, there are
strategies for image attribute editing by transferring face attributes [100, 105, 104]. The concept
of this task is to modify a face image based on attributes contained in another image, preserving
the subject’s identity. Regarding the intra-class variability present in the periocular trait caused by
attributes in the image such as eyeglasses, eye-gaze, makeup, and contact lenses, we hypothesize
that this family of frameworks for automatic image editing can be explored and employed to
reduce this intra-class variability.

Finally, Soft biometrics, such as gender and age classification, using ocular traits are
tasks that have gained attention in research in recent years [53, 54, 55, 56, 17]. It can be used
as second biometric information to improve the accuracy of biometric systems [54]. Some
works employing ocular traits (iris and periocular region) using VIS images for gender and age
estimation/classification based on deep learning techniques achieved promising results [106, 55,
56, 107, 17].

1.2 PROBLEM DEFINITION

Ocular recognition using iris images captured at controlled NIR wavelength environments
is a mature technology, proving to be effective in different scenarios [32, 108, 109, 52, 34, 94].
Currently, one of the greatest challenges in ocular biometrics is the use of images obtained in
the visible spectrum (VIS) under uncontrolled environments [52, 27]. The main problem with
these images is that they may have some noises caused by factors such as blur, motion blur, low
contrast, specular reflection, eye gaze, off-angle, and occlusion. These noises generally increase
intra and inter-class variations, degrading the ocular biometric systems’ accuracy for both iris
and periocular regions. Samples of some of these problems are shown in Fig. 1.1.
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(a) (b) (c) (d) (e) (f)

Figura 1.1: Some problems found in VIS (UBIRIS.V2 [1] database) and NIR (CASIA-THOUSAND [2] database)
iris images. (a) VIS and (b) NIR specular reflection, (c) VIS and (d) NIR noise caused by glasses, (e) VIS eye-gaze
and (f) NIR pupil dilatation.

Regarding the problems caused by noises present in the images, classical ocular biometric
systems employ some preprocessing methods to correct or reduce these factors’ impact. As
previously described, an iris biometric system can be decomposed in some steps. These steps
usually consist of image preprocessing, feature extraction (representation), and classification
(e.g., matching). On preprocessing, commonly, three stages are performed. The first process
consists of iris region detection and/or iris and pupil delineation. Then, a segmentation approach
is applied for noise removal. With delineated and segmented image, the last preprocess is
realized to normalize the effect of scale and pupil dilation/constriction. Finally, the feature
extraction/representation and classification (matching or identification) are performed using the
preprocessed images. Considering that preprocessing such as iris detection and segmentation
for noise removal are still a complex and an open problem, some errors may occur in these
stages. As shown in Fig. 1.2, these errors are propagated to the next steps, decreasing the system
performance.

(1)

(2)

(3)

(a) (b) (c) (d)

Figura 1.2: Errors in iris preprocessing stages. (a) original image, (b) delineated and segmented iris, (c) normalized
iris, and (d) segmented and normalized iris image. (1) and (2) error in pupil boundary detection caused by reflection,
(3) error in iris boundary detection.

A recent challenge in ocular recognition is the application of biometric systems in a
cross-spectral scenario/setting. The term cross-spectral refers to matching features extracted
from images captured at different wavelengths, usually VIS images against NIR. Based on the
configuration of the experiment, the feature extraction training step can be performed using
images obtained at only one wavelength (VIS or NIR) or both (VIS and NIR). The problem in
this scenario is that the features present in NIR images are not always the same as that extracted
in VIS images. Several recent approaches have been developed [18, 19, 20, 29, 24], showing that
ocular biometric systems based on both iris and periocular traits still need improvements for the
cross-spectral scenario.
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In periocular recognition, another problem that still needs attention is the subject’s non-
inherent attributes, such as eyeglasses, eye gaze, and makeup present in the images captured under
unconstrained environments. These problems generate high intra-class variability, degrading the
uniqueness of the features extracted from the biometric trait.

Finally, the evaluation of the proposed ocular biometric methods’ scalability remains a
problem since the available databases do not have samples from a large number of subjects. The
term scalability refers to a biometric system’s ability to maintain efficiency (accuracy) even when
applied to databases with a large number of images and subjects. The largest NIR iris database
available in the literature in terms of the number of subjects is CASIA-IrisV4-Thousand [2], which
has 20,000 images taken in a controlled environment from 1,000 subjects. In an uncontrolled
environment and with VIS ocular images, the largest database is VISOB [14], which is composed
of 158,136 images from 550 subjects. Although several proposed methodologies achieve
high decidability index in these databases [93, 34, 94, 14, 110, 111, 112], indicating that
these approaches have impressive and high separation of the intra- and inter-class comparison
distribution, can we state that these methodologies are scalable? In this sense, it is necessary to
research new methods and new databases with a larger number of images/subjects to evaluate the
scalability of existing approaches in the literature.

1.3 CHALLENGES

Considering the aforementioned problems, the main challenge is how to improve the
performance in terms of accuracy of ocular biometric systems employing deep learning techniques.
In this sense, to design robust biometric ocular systems using irises and the periocular region
separately and also to fuse these traits, we can present the following specific challenges:

• The preprocessing steps in iris recognition methods as segmentation for noise removal
and normalization remain a complex problem, usually leading the biometric system to
mismatched, specifically in unconstrained scenarios. Thus, a recent challenge is how to
develop a biometric approach employing a deep learning technique using the iris trait
that does not require these preprocessing steps.

• Design a methodology approach that can learn specific representations from different
ocular biometrics sources such as NIR and VIS images obtained in constrained and
unconstrained environments from cross-spectral scenarios.

• Regarding the intra-class variation problem present in the periocular recognition under
unconstrained scenarios, a challenge is how we can employ deep learning frameworks
to handle and reduce this problem.

• Since the available ocular databases do not have samples from a larger number of subjects,
and also taking into account that several recent ocular approaches have been developed
using mobile images, it is important to create/collect a new database considering theses
features.

• Finally, a recent challenge is how to use soft biometrics as gender and age to improve
the accuracy of ocular biometric systems.

1.4 HYPOTHESES

The main hypothesis of this work is that it is possible to achieve state-of-the-art results
by employing deep learning techniques at different stages of ocular biometric systems based
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on periocular and iris traits. For such aim, we have to develop ocular biometric systems based
on deep learning frameworks and compare the proposed approaches with state-of-the-art methods.
Summarizing the hypothesis, we aim to answer the following research questions:

• Can we eliminate the preprocessing stages, i.e., directly use an iris squared/rectangular
bounding box to extract iris deep representations?

• It is possible to use a single model to directly learn representations from iris and
periocular region captured under different wavelengths (cross-spectral representation)?

• Can we employ GAN architectures for automatic image editing to normalize different
attributes present in periocular images reducing the intra-class variability?

• Finally, can we use soft biometrics information to improve the accuracy of ocular
biometric systems?

To address all these research questions, we have to study and investigate recent ocular
biometrics approaches and also recent works employing deep learning techniques for several
tasks such as segmentation, recognition, and automatic image editing. All the investigations and
experiments are described in the next chapters.

1.5 OBJECTIVES

This thesis’s main objective is to investigate and develop ocular biometric systems
employing recent deep learning techniques from iris and periocular traits. For this purpose, it was
necessary to design and evaluate ocular biometric methods using the iris and periocular region in
different scenarios. The developed methods and their specific objectives can be organized into
the following topics:

1. Iris recognition in unconstrained environments without preprocessing as segmentation
and normalization: this approach aims to create an iris biometric system removing the
preprocessing steps since it usually returns errors degrading the feature matching process.
To design an iris biometric system addressing these features, we have to perform an
ablation study of the impact of preprocessing stages as segmentation for noise removal
and normalization using iris images captured under unconstrained environments.

2. Iris and periocular recognition on the cross-spectral scenario: the objective is to
investigate and develop an ocular biometric system that can directly learn representations
from ocular images captured at VIS and NIR wavelengths.

3. Periocular attribute normalization to reduce the intra-class variability: the objective
is to develop an attribute normalization process employing recent GAN models to
automatic remove or correct eyeglasses and eye-gaze factors present in the periocular
images. Performing this normalization process, the intra-class variation will be reduced,
improving periocular recognition systems’ accuracy.

4. Benchmark of state-of-the-art CNN architectures employing them for periocular re-
cognition in unconstrained environments: the objective is to perform a benchmark for
the identification and verification tasks extracting deep representations for periocular
images captured by mobile devices in the unconstrained environment;
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5. Soft biometrics to improve the accuracy of periocular recognition methods: the objective
is to employ soft biometric information such as age and gender in the deep representation
extractor’s training stage to improve the learning process.

Another important objective is creating a new periocular database containing periocular
images collected by the participants using their own smartphone. This database will be used to
investigated soft biometrics and the scalability of the existing ocular biometrics approaches.

To accomplish the main objective, some secondary or specific objectives are required,
as follows:

• To study and compare different CNN models to extract deep representations from the
iris and the periocular region.

• To evaluate shallow and deep ocular representations from different CNN architectures.

• To study approaches to train CNN models, such as transfer learning and fine-tuning.

• To investigate recent approaches for automatic image editing keeping the discriminative
features in the image.

• To create a mobile application enabling the subject himself to capture his periocular
images.

• To study which soft biometrics can be used to improve the performance of the ocular
biometric systems in terms of accuracy.

1.6 CONTRIBUTIONS

Addressing the aforementioned objectives, some methodologies and approaches were
investigated and developed, generating the following contributions:

• A survey of ocular databases and the most challenging biometric problems employing
the iris and periocular traits. We research and explore most of the ocular databases
found in literature and their applications, as well as competitions on ocular biometric
recognition and the methodologies that reported the best results to overview the recent
and challenging problems. The produced survey can provide a general overview of the
challenges in ocular recognition over the years, the databases used in the literature, and
some future directions in this research field.

• An approach for iris recognition not requiring preprocessing steps as segmentation and
normalization, achieving state-of-the-art results.

• Extensive experiments and evaluation of a method employing CNN models to directly
learn representations from iris and periocular and fusing these traits to achieve state-of-
the-art results on the cross-spectral ocular recognition scenario.

• A new and original attribute normalization process employing recent GAN architectures
to reduce the intra-class variability in periocular images. The proposed normalization
method was validated for periocular recognition approaches based on hand-crafted
features and deep representations, improving both techniques’ accuracy.
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• A new periocular database (UFPR-Periocular) containing 33,660 images from 1,122

subjects. This database is currently the largest one in the literature in terms of the number
of subjects. We also manually annotated each image’s eye corners and store information
about the subjects as gender and age. The UFPR-Periocular, manual annotations, and
information are available to the research community and can be employed to study new
ocular biometric methods for realistic unconstrained scenarios.

1.7 LIST OF PUBLICATIONS

This document generated the following original produced and published works:

• Ocular Recognition Databases and Competitions: A Survey; L. A. Zanlorensi, R.
Laroca, E. Luz, A. S. Britto Jr., L. S. Oliveira, D. Menotti. Artificial Intelligence Review;
2021.

• The Impact of Preprocessing on Deep Representations for Iris Recognition on
Unconstrained Environments; L. A. Zanlorensi, E. Luz, R. Laroca, A. S. Britto Jr., L.
S. Oliveira, D. Menotti;31st Conference on Graphics, Patterns and Images (SIBGRAPI);
2018.

• Deep Representations for Cross-spectral Ocular Biometrics; L. A. Zanlorensi, D.
R. Lucio, A. S. Britto Jr., H. Proença, D. Menotti; IET Biometrics, 9(2):68–77; 2020.

• Unconstrained Periocular Recognition: Using Generative Deep Learning Fra-
meworks for Attribute Normalization; L. A. Zanlorensi, H. Proença, D. Menotti;
IEEE International Conference on Image Processing (ICIP); 2020.

• UFPR-Periocular: A Periocular Dataset Collected by Mobile Devices in Uncons-
trained Scenarios; L. A. Zanlorensi, R. Laroca, D. R. Lucio, L. R. Santos, A. S. Britto
Jr., D. Menotti; [Under Review with required major changes in Journal Qualis A1];
2020.

1.8 DOCUMENT ORGANIZATION

This work is further organized in 6 chapters. Chapter 2 contains the theoretical
foundation about iris and periocular biometrics, Deep learning, and Convolutional Neural
Networks. In Chapter 3, the literature review is described. First, we discuss some surveys on
ocular recognition. The next subsection details ocular databases and their applications. To
illustrate the state-of-the-art challenges, we describe and discuss the major recent competitions on
ocular recognition and the approaches that have performed the best results. The last subsection
of this chapter presents works applying deep learning methodologies to several ocular biometric
tasks. The proposed methodologies are detailed in Chapter 4. The results are described and
discussed in Chapter 5. Finally, the conclusion is given in Chapter 6.
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2 THEORETICAL FOUNDATION

This Chapter introduces biometric systems based on ocular traits and deep learning
fundamentals. We describe a mature biometric method for iris recognition and explain when
periocular recognition can be employed. Finally, we detail different CNN architectures and
models that have been explored to design ocular biometric systems.

2.1 BIOMETRICS

Several human traits can be employed for diverse biometric applications. The design
of a biometric system using a particular biometric trait depends on a variety of issues besides
its performance [3]. The suitability of a physical or a behavioral trait to be used in a biometric
application can be determined by the following factors [113, 3]:

1. Universality: Every individual should possess the trait.

2. Uniqueness: The trait should be different across individuals from the population.

3. Permanence: The biometric trait should be invariant over a period of time.

4. Measurability: It should be possible to acquire the biometric trait using suitable devices
in a non-inconvenient way. Furthermore, it should be possible to extract representative
features from the acquired data.

5. Performance: The recognition accuracy and the resources required to achieve that
accuracy should meet the constraints imposed by the application.

6. Acceptability: Individuals that will utilize the application should be willing to provide
their biometric trait to the system.

7. Circumvention: This refers to the ease with which a biometric trait of an individual
can be imitated/simulated.

No single biometric is expected to meet all the requirements imposed by all applications
effectively. The relevance of a specific trait to a biometric system depends on the nature and
requirements of that application, as well as on the properties of the biometric characteristics [3].
Unlike a password-based system where a perfect match is required between two values, a
biometric system seldom encounters two samples of the same individual having the same feature
set. This is due to imperfect sensing conditions caused by noises, sensor malfunctions, lighting
problems, occlusions, and reflections. When two sets of feature biometric match perfectly, there
is a high probability that one set comes from an attack on the system [3].

Biometrics systems can operate at least in two main modes: verification(1:1 comparison)
and identification(1:# comparison) as shown in Figure 2.1.

The Verification task refers to the problem of verifying whether an individual is whom
he claims to be. If two samples match sufficiently, the identity is verified; otherwise, it is rejected.
In this way, verification can result in four possibilities [32]:

• True accept: the system accepts an identity claim, and the claim is true.
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Figura 2.1: Biometric system stages. In enrollment, the features are extracted and stored in the gallery (database).
The matching (verification or identification) is performed with the new input data features. Extracted from [3].

• False accept: the system accepts an identity claim, but the claim if false.

• True reject: the system rejects an identity claim, and the claim is false.

• False reject: the system rejects an identity claim, but the claim is true.

The two errors that can occur are false acceptance, measured by False Acceptance Rate
(FAR), and false rejection, measured by False Rejection Rate (FRR). Regarding the supra-cited
possibilities, the performance of biometric systems operating in a verification task is usually
measured by the EER, which is computed from the ROC curve. This curve plots the TPR by
the FPR, or alternatively, the FRR by the FAR. Then, the EER is the value where TPR and FPR
are equals. Another metric that can be extracted from the ROC curve is the AUC, which informs
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the quality of the predictions (verification matching) based on different thresholds. The EER
and AUC metrics are show in Figure 2.2.
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Figura 2.2: Receiver Operating Characteristic (ROC) curve. The EER is the value where TPR equals the FPR.
The AUC measures the entire area underneath the ROC curve.

The decidability index 3′ [57] can be employed to compute the dissimilarity between
samples. The metric or index 3′ measures how well separated are the two types of distributions
(genuines and impostors), in the sense that recognition errors correspond to the regions where
both distributions overlap:

3′ =
|`� − `� |

√

1

2
(f2

�
+ f2

�
)

, (2.1)

where the means and standard deviations of the genuine and impostor distributions are given
by `� , `� , f� , and f� , respectively. Whereas the index 3′ can be related to the feature vector
discrimination ability of an approach, the EER metric measures a biometric system’s real
performance.

For the identification task, the problem is to establish an individual sample’s identity
within a known database. Generally, the known database is called gallery, and the sample that will
be classified is called probe. The probe sample is matched against all samples in the gallery, and
the closest match is considered the individual’s identity. Similar to verification, the identification
results in four possibilities ([32]):

• True Positive (TP): the system says that an unknown sample matches a particular
person in the gallery and the match is correct.

• False Positive (FP): the system says that an unknown sample matches a particular
person in the gallery and the match is not correct.

• True Negative (TN): the system says that the sample does not match any of the entries
in the gallery, and the sample in fact does not.
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• False Negative (FN): the system says that the sample does not match any of the entries
in the gallery, but the sample in fact does belong to someone in the galery.

The performance in an identification system is usually evaluated in a Cumulative Match
Characteristic (CMC) curve. This curve plots the percent correctly recognized against the
cumulative rank considered as a correct match. For example, for a cumulative rank of 3, if the
correct individual is among the first 3 closest combinations, it is classified as correct. Usually,
the rank value 1 of a CMC curve is highlighted to evaluate the identification performance.

Verification is usually used for positive recognition, where the goal is to prevent multiple
people from using the same identity. Whereas identification is a critical component in negative
recognition where the goal is to prevent a single person from using multiple identities [3].

2.1.1 Ocular Recognition

Ocular biometric systems can be designed employing information from the iris, periocular
region, or both traits. The iris trait comprises the region between the sclera and pupil. The term
periocular is associated with the region around the eye, composed of eyebrows, eyelashes, and
eyelids [114, 115, 116], as illustrated in Fig. 2.3.

Figura 2.3: Ocular components.

As described by Daugman [4], to capture the rich details of iris patterns, an iris image
should have a minimum of 70 pixels in iris radius. Being typical of a resolved iris radius of
80 − 130 pixels. Generally, the pupil center is nasal and inferior to the iris center and its radius
can range from 0.1 to 0.8 of the iris radius [4].

The iris recognition method proposed by Daugman [57, 4, 30, 117], can be considered
a mature and consolidated approach, being employed in several works as the baseline. However,
its performance is usually better using NIR images obtained in a controlled environment. This
approach consists of four stages: iris and pupil localization (segmentation), iris normalization,
feature extraction, and matching. Each one of these steps is detailed below.

The first process (segmentation) is performed by integrodifferential operators [4], which
consist of circular edge detectors used to locate the limbal and pupil boundaries of the iris [118].
These operators define the pupillary circle parameters separately from those of the iris due to the
non-concentricity of the pupil and iris. Considering the abrupt intensity transition between the
iris and sclera, the search for the iris boundary sets the smoothing function for a coarse scale of
analysis [118]. This search is exhaustive across the image. With the iris delimited, the same
process is performed for the pupil search but only looking at the detected iris region.
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In the next stage, the normalization process is performed using the iris boundaries
parameters. The homogeneous rubber sheet model (Fig. 2.4) assigns to each point on the iris a
pair of real coordinates ((A, \)) where A is on the unit interval [0, 1] and \ is angle[0, 2c] [4].
This remapping can be represented as

� (G(A, \), H(A, \)) → � (A, \) (2.2)

Also, G(A, \) and H(A, \) are defined as

G(A, \) = (1 − A)G? (\) + AGB (\) (2.3)

H(A, \) = (1 − A)H? (\) + AHB (\) (2.4)

where (G? (\), H? (\)) and (GB (\), HB (\)) represent the points between inner and outer boundary
of the iris, respectively.

Figura 2.4: Rubber sheet model normalization proposed by Daugman [4].

The features are extracted from the normalized images applying 2-D Gabor wavelets.
Considering that amplitude information is not very discriminating, and it depends upon extraneous
factors (contrast, illumination), only phase information is used for recognizing irises [4]. With
this information, a binary iris code is created. An iris mask is also generated, indicating which
area will be used (iris) and discarded (noise/occlusion) in the matching step.

At last, the dissimilarity(matching) between two irises is measured computing the
fractional Hamming Distance, whose two-phase code bit vectors are denoted 2>34�, 2>34� and
mask bit vectors are denoted <0B:�, <0B:�:

�� =
‖(2>34�

⊗

2>34�)
⋂

<0B:�
⋂

<0B:�‖

‖<0B:�
⋂

<0B:�‖
(2.5)

where
⊗

represents the XOR operator and
⋂

represents the AND operator, and irises from the
same class should produce �� = 0.

Considering that Daugman’s approach is one of the first proposals for iris recognition
and one of the most widespread, several current methods based on handcrafted and deep
representations use segmented and normalized iris images.

Iris recognition under controlled environments at NIR demonstrates impressive results,
and as reported in several works [32, 108, 109, 34, 94] can be considered a mature technology.
However, iris trait in uncontrolled environments and images captured at VIS wavelength still
is one of the greatest challenges in ocular biometrics [52, 14]. This kind of image usually
presents noise caused by illumination, occlusion, reflection, and motion blur. Therefore, to
improve the biometric system’s performance in these scenarios, recent approaches have used
information extracted only from the periocular region [16, 51, 46] or fusing them with iris
features [119, 120, 121, 122]. Usually, the periocular region is used when there are poor
quality in the iris region, commonly in VIS images or part of the face is occluded (in face
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images) [114, 46]. In the literature regarding the periocular region, some works kept the iris and
sclera regions [46, 52, 27] and others that removed them [18, 19, 51].

2.2 CONVOLUTIONAL NEURAL NETWORK (CNN)

As described by Lecun et al. [123], conventional machine-learning techniques were
limited to process natural data in their raw form. Thus, pattern recognition or machine learning
system requires domain expertise to design a feature extractor that transformed the raw data into
representations or feature vectors used by the learning system to detect or classify patterns.

Deep learning methods learn multiple level representations, obtained by composing
simple but non-linear modules that each transform the representation at one level into a
representation at a higher, slightly more abstract level [123]. Deep learning somehow seeks
to imitate the human brain. There are several reasons to believe that the human visual system
contains multilayer generative models [124, 125] in which top-down connections can be used to
generate low-level sample features from high-level representations and that bottom-up connections
can be used to infer high-level representations that would have generated an observed set of
low-level features.

Its important to emphasize that the deep learning representation generates generative
feature models, whereas a conventional classifier, e.g., Support Vector Machine (SVM) [126, 127]
is a discriminative model/classifier. Thus, representations obtained by deep learning can still be
classified (inferred) by another generative model, such as a multilayer neural network or even an
SVM.

One particular model of the deep network generalized much better than networks with
full connectivity between adjacent layers. This model was the CNN [128, 129]. It achieved
many practical successes when neural networks were out of favor, and it has recently been widely
adopted by the computer-vision community [123].

In general, the CNNs is composed of multiple layers, each of which performs a filtering
process through a convolution, activation, pooling, and normalization. There are four key ideas
behind CNN models that take advantage of natural signals’ properties: local connections, shared
weights, pooling, and the use of many layers [123].

The architecture of a typical CNN model presents a series of stages, as can be seen
in Fig. 2.5. The first few stages are composed of two types of layers: convolutional layers
and pooling layers. Units in a convolutional layer are organized in feature maps. Each unit is
connected to local patches in the previous layer’s feature maps through a set of weights called
a filter bank. The result of this locally weighted sum is then passed through a non-linearity
function. All units in a feature map share the same filter bank. Different feature maps in a layer
use different filter banks.

The convolution layer (filter bank) extracts features through the input sample’s con-
volution operation with a kernel and detects local conjunctions of features from the previous
layer. The activation layer plays an important role in the network information flow, improving the
robustness of the features, rectifying the convoluted sample’s output, and discarding less important
information. Pooling is an operation that aims at bringing translational invariance to the features,
employing operations, as a maximum or average, of certain regions of the sample, merging
semantically similar features into one. Finally, the normalization layer promotes competition
among filters, forcing the use of filters with the best response, according to a criterion [130, 123].

As detailed in [5], the convolutional layer consists of a set of learnable kernels or filters,
which extract local features from the input and calculate feature maps. Each feature map is
generated by sliding a filter over the input and computing the dot product. Then, a non-linear
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Figura 2.5: Generic structure of a CNN, consisting of convolutional, pooling, and fully-connected layers. Extracted
from [5].

activation function is applied to introduce non-linearity into the model. All units share the same
weights (filters) among each feature map. The advantage of sharing weights is the reduced
number of parameters and the ability to detect the same feature, regardless of its location in the
inputs.

There are several nonlinear activation functions, such as Logistic or Sigmoid (Eq. 2.6),
TanH (Eq. 2.7), ArcTan (Eq. 2.8), ReLU (Eq. 2.9), among others. However, ReLU and some
modifications of it are more used because they make the training faster than others [131, 132].

5 (G) = fG =
1

1 + 4−G
(2.6)

5 (G) =
4G − 4−G

4G + 4−G
(2.7)

5 (G) = C0=−1(G) (2.8)

5 (G) =

{

0, if G < 0

G, if G ≥ 0
(2.9)

The size of the output feature map is based on the filter size and stride [5]. Thus,
convolving the input image with a size of (� × �) over a filter with a size of (� × �) and a stride
of ((), the output size of (, ×,) is given by:

, =

⌊

� − �

(

⌋

+ 1 (2.10)

Usually, after one or a few convolutional layers, there is a pooling or down-sampling
layer, which reduces the previous feature maps’ resolution. Layers of this type split the inputs
into disjoint regions with a size of (' × ') to produce one output with max or average pixel



33

values from each region [5]. If a given input with a size of (, ×,) is fed to the pooling layer,
then the output size will be obtained by:

% =

⌊

,

'

⌋

(2.11)

At last, the top layers of CNNs models are one or more fully-connected layers, also
called in some cases dense layers, similar to a feed-forward neural network, which aims to extract
the global features of the inputs. The last layer has a softmax function (classifier), which reports
the posterior probability of each class [5].

According to Lecun et al. [123] ,there have been numerous applications of CNN
models going back to the early 1990s, starting with time-delay neural networks for speech
recognition [133] and document reading [129]. More recently, works report results outperforming
state of the art in several problems, such as speech recognition [64, 65, 66], natural language
processing [69, 70], face recognition [84, 85], among others. With greater effort in generic
object recognition, especially after the creation of the Imagenet database [131], which has more
than 14 million images, several CNN architectures were created for multi-class classification as
VGG-16 and VGG-19 [134], ResNet-50 [6], Inception and Inception-ResNet [7], Xception [135],
DenseNet [136], NASNet [137], MobileNetV2 [138], among others. Furthermore, a recently
interesting topic regarding deep learning is Neural Architecture Research [139, 140, 141, 142],
which aims to design convolutional network architectures automatically. In the next subsections,
we describe the most applied CNN architectures and models in ocular recognition systems.

2.2.1 Multi-class Classification

Multi-class classification is the task of classifying instances into three or more classes,
where each sample must have a single unique class/label. Several techniques [143, 144, 145] have
been proposed combining multiple binary classifiers to solve multi-class classification problems.
Deep learning-based approaches usually address this problem through CNN models with softmax
cross-entropy loss. In summary, these models’ architecture has several convolutional, pooling,
activation, and fully-connected layers, as shown in Fig. 2.6.

Input Images Convolutional model
F.C.

Features
F.C.

Softmax

Figura 2.6: Multi-class classification CNN architecture.

In the training stage, a batch of images and their labels feed these models. The model
extracts the image features through convolutional, pooling, and fully connected (dense) layers.
The last layer is composed of a fully connected layer using the softmax cross-entropy as a loss
function. Note that the model exactly as shown in Fig. 2.6 can be only applied in the closed-world
protocol. However, its also possible to use a similar model for open-world protocol by using the
last layer (softmax) only in the training stage and removing it to use the remaining architecture as
a feature extractor. Below we describe the main characteristics of each model.
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The VGG model, proposed by Simonyan and Zisserman [134], consists of a CNN using
small convolution filters (3 × 3) with a fixed stride of 1 pixel. The spatial polling is computed by
5 max-pooling layers over a 2 × 2 pixel window. Two models were proposed varying the number
of convolutional layers: VGG16 and VGG19. Both models have two fully connected layers at
the top with 4096 channels each – these architectures achieved the first and second places in the
localization and classification tracks on the ImageNet Challenge 2014. The authors also stated that
it is possible to improve prior-art configurations by increasing the models’ depth. Parkhi et al. [84]
applied these models (called VGG16-Face) on the face recognition problem, showing that a deep
CNN with a simpler network architecture can achieve results comparable to the state of the art.
Furthermore, recent approaches for ocular (iris/periocular) biometrics employing VGG models
have demonstrated the ability to produce discriminant features [23, 48, 46, 29, 146, 24, 147].

The Residual Network (ResNet) was introduced by He et al. [6] and applied to
biometrics for face recognition [85], iris recognition [23, 148, 24, 29, 146] and periocular
recognition [24, 49, 147, 149]. The authors addressed the degradation (vanishing gradient)
problem caused by deeper network architectures proposing a deep residual learning framework.
They added shortcut connections between residual blocks to insert residual information, as
shown in Fig. 2.7. These residual blocks are composed of a weighted layer followed by batch
normalization, an activation function, another weighted layer, and batch normalization. Let � (G)
be a residual block, and G the input of this block (identity map), the residual information consists
of adding G to � (G), i.e., � (G) + G, and using it as input to the next residual block.

Figura 2.7: Residual building block. Extracted from [6]

Different architectures were proposed and evaluated, varying the models’ depth: Res-
Net50, ResNet101, and ResNet152. These models achieved promising results on the ImageNet
database [131]. In [150], He et al. proposed the ResNetV2 by changing the residual block by
adding a pre-activation into it. Empirical experiments showed that the proposed method improved
the network generalization ability, reporting better results than ResNetV1 on ImageNet. Besides
the depth, one of the main differences of the ResNet models compared to the VGG models is the
insertion of a global average pooling layer instead of a fully connected layer to the top of the
network. The VGG models have fully connected layers at the top of the architecture to classify
the feature maps generated by the convolutional layers. A common problem in this strategy
is the overfitting of the fully connected layers, reducing the generalization ability of the entire
model [151]. Regarding this problem, Hinton et al. [152] proposed the dropout technique, which
works as a regularizer that randomly removes some activations from the fully connected layers.
The ResNet models employ the global average polling at the top of the models. The global
average polling strategy, proposed by Lin et al. [151] consists of generating one feature map for
each corresponding category of the classification task in the last convolutional layer. Then this
feature map is directly fed into the softmax layer. The main advantage of the global average
polling over the fully connected layer is that the generated feature maps can be interpreted as
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categories confident maps, and no parameter is needed to be optimized. Also, the global average
polling is more robust to the spatial translations since it sums out the spatial information. [151]

The InceptionResNet model [7] combines the residual connections [6] and the inception
architecture [7]. The first inception model [153], known as GoogLeNet, introduced the Inception
module aiming to increase the network depth while keeping a relatively low computational cost.
The main idea of inception is to approximate a sparse CNN with a normal dense construction.
The inception module consists of several convolutional layers, where their output filter banks
are concatenated and used as the input to the next module. The model version difference is
based on the organization inside its inception module. Combining the residual connections
with the InceptionV3 and InceptionV4 models, the author developed InceptionResNetV1 and
InceptionResNetV2, respectively. The InceptionResNet building blocks are shown in Fig. 2.8.
Experiments performed on the ImageNet database showed that the InceptionResNet models
trained faster and reached slightly better results than the inception architecture [7].

(a) (b)

Figura 2.8: The schema for 35 × 35 grid (Inception-ResNet-A) module of the InceptionResNetV1 (a) and
InceptionResNetV2 (b). Adapted from [7].

The first version of the MobileNet model (MobileNetV1) [154] was developed focusing
on mobile and embedded vision applications, in which the CNN model should have a small
size and high computational efficiency. This model is based on depthwise separable filters,
which are composed of depthwise and pointwise convolutions. As described in [154], depthwise
convolutions apply a single filter for each input channel, and pointwise convolutions use a 1 × 1

convolution to compute a linear combination of the depthwise output. Both layers use batch
normalization and ReLU activation. MobileNetV1 achieved promising results in performance and
accuracy on several tasks such as fine-grained recognition, large-scale geolocation, face attributes
classification, object detection, and face recognition [154]. MobileNetV2 [138] combines the first
version architecture with an inverted ResNet [6] structure, which has shortcut connections between
the bottleneck layers. Experiments performed in different tasks such as image classification,
object detection, and image segmentation showed that the MobileNetV2 could achieve high
accuracy with low computation costs compared to state-of-the-art methods [138].

The Dense Convolutional Network (DenseNet) model [136] consists of a CNN archi-
tecture where each layer is connected to every other layer in a feed-forward way. Thus, let !
be the number of layers from a network, a DenseNet layer has ! (!+1)

2
direct connections with

subsequent layers – instead of ! as a traditional CNN model. As in the ResNet models [6, 150],
these connections can handle the vanishing-gradient problem and ensure maximum information
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flow between layers. The feed-forward is preserved, passing the output from all layers as an
additional input to the subsequent ones in a channel-wise concatenation. The DenseNet models
achieved state-of-the-art accuracies in image classification on the CIFAR10/100 and ImageNet
databases [131, 136]. The authors proposed different models varying the depth of the network.

Inception modules inspired the creation of the Xception model, which can be defined
as an intermediate step between regular convolution and the depthwise separable convolution
operation [135]. The proposed architecture replaces the standard inception modules with
depthwise separable convolutions and also has residual connections. The Xception architecture has
the same number of parameters as InceptionV3 but outperforms it on the ImageNet database [131].

2.2.2 Multi-task Learning

Multi-task learning uses the domain information of related tasks as an inductive bias to
improve generalization [155]. A Multi-task network can learn several tasks using a shared CNN
model, where each task can help the generalization for other tasks. Caruana [155] introduced the
Multi-task learning concept and evaluated it in different domains, demonstrating that this method
can achieve better results than single-task learning models for related tasks. In deep neural
networks, multi-task learning can be performed by using hard or soft parameter sharing [156].
The most common one is the hard parameter sharing, where all the hidden (convolutional) layers
weights are shared, i.e., the model learns a single representation for all tasks. Then, different tasks
use these shared features by adding some layers for each specific task. On the other hand, in soft
parameter sharing, one model is employed for each task. Then, the parameters of these models
are regularized to encourage similarities among them. Fig. 2.6 shows a Multi-task network
sharing all the convolutional layers and some dense layers. The model has exclusive dense layers
for each task, followed by the prediction layers, using the softmax cross-entropy as function loss.

Input Images Convolutional model F.C.
Features

F.C.
Softmax

Figura 2.9: Multi-task CNN architecture. In this model, each task has its own output, and all tasks share the
convolutional layers. The loss of all tasks is used to update the weights of the convolutional layers.

2.2.3 Pairwise Filters Network

This kind of model directly learns the similarity between a pair of images through
pairwise filters. The Pairwise Filters Network is a Multi-class classification model that contains
one or two outputs informing whether the input pairs are from the same or different classes. The
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difference is that the network input is a pair of images instead of a single image. The network
architecture is usually composed f convolutional, pooling, activation, and fully connected layers,
as shown in Fig. 2.10.

Input
 Pair Images

F.C.
Features

F.C.
SoftmaxConvolutional model - Pairwise filters

Figura 2.10: Pairwise filters CNN architecture. This model contains filters that directly learn the similarity between
a pair of images. The output informs whether the images are of the same person or not.

Liu et al. [90] proposed one of the first works applying deep learning for ocular biometrics
(iris verification) employing a pairwise filters network. As this model requires a pair of images
as input, the authors generated the input pairs by concatenating the images at the depth level. Let
two RGB images with shapes of 224 × 224 × 3, concatenating both images by their channels; the
resulting input image will have a shape of 224 × 224 × 6. For the verification problem, which has
only two classes, this model’s output can also have only one neuron using a binary cross-entropy
loss function.

2.2.4 Siamese Network

Introduced by Bromley et al. [157] for signature verification, Siamese networks consist
of twin branches sharing their parameters (trainable parameters). Such models learn similariti-
es/distances between a pair of inputs, being used mainly for verification tasks. As illustrated in
Fig. 2.11, each branch of the Siamese structure is composed of a CNN model followed by some
dense layers. These models can also have shared and non-shared dense layers at the top.

F.C.
FeaturesConvolutional modelInput Images

F.C.
Contrastive

Shared layers

Figura 2.11: Siamese CNN architecture. This model is composed of two twin branches of convolutional layers
sharing their trainable parameters. The output computes a distance between the input image pairs.

A typical Siamese architecture employs the contrastive loss as an activation function in
the last layer. The contrastive loss was proposed and applied to face verification [158, 159] and
has been employed for periocular recognition [88, 147] and iris recognition [29]. As described
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in [159], let �, be the Euclidean distance between two input vectors, the contrastive loss can be
written as follows:
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and % is the number of training pairs, (., ®-1, ®-2)
8 corresponds to the 8-th label (. ) of the

sample pair ®-1, ®-2, and !( and !� are partial losses for a pair of similar and dissimilar points,
respectively. The objective of this function is to minimize ! for !( and !� by computing low
and high values of �, for similar and dissimilar pairs, respectively.

2.2.5 Final Remarks

This Chapter described and detailed biometrics fundamentals and ocular recognition
employing iris and periocular traits. We also detailed several CNN architectures and models
that have been employed to design robust ocular biometric approaches. Note that we employed
all the described CNN architectures and models as a benchmark to our new collected dataset
(UFPR-Periocular), detailed in Section 4.4.3 and evaluated in Section 5.4.
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3 LITERATURE REVIEW

This chapter presents a literature review describing surveys, databases, competitions, and
deep learning-based methods on ocular biometrics. The remainder of this chapter is organized as
follows: Section 3.1 presents works that survey state-of-the-art methods on ocular recognition.
To summarize and describe applications using ocular images, Section 3.2 presents several ocular
databases. The evolution of the problems and challenges, as well as some solutions, are presented
in Section 3.3, which describes competitions in ocular recognition. Finally, Section 3.4 presents
recent deep learning-based approaches applied to iris and periocular biometrics.

3.1 SURVEYS ON OCULAR RECOGNITION

One of the first surveys on iris recognition was presented by Wildes [33], who examined
iris recognition biometric systems and issues in the design and operation of such systems. This
work explored the typical steps present in ocular biometric systems employing iris images,
such as image acquisition, iris detection, and pattern matching. Also, some iris recognition
methodologies that are still used as baseline are described [57, 160].

Bowyer et al. [32] described both the historical and the state-of-the-art development in
iris biometrics, focusing on segmentation and recognition methodologies. This survey detailed
several works organized by the steps present in standard iris recognition systems, such as image
acquisition, segmentation, analysis and iris texture representation, and feature matching.

In [161], the authors surveyed researches for iris image acquisition, preprocessing
techniques, segmentation approaches, feature extraction methods, matching, and indexing
methods. The work also addressed problems such as off-angle iris recognition, spoofing,
template aging (change in the iris with time), and recognition in uncontrolled, cross-spectral, and
cross-sensor environments. Software and databases for ocular recognition were also described,
organized into the iris, periocular, iris/periocular, and eye movement. For future research, the
authors proposed the following directions: improvement of sensing technology, exploration of
advanced machine learning algorithms for better representation and classification algorithms,
heterogeneous recognition, ocular recognition at a distance, multimodal ocular biometrics,
benchmark standards, and open-source software.

Focusing only on recognition, DeMarsico et al. [95] surveyed iris recognition through
machine learning techniques. The work presented researches using different machine learning
methods such as Artificial Neural Network (ANN), Self-Organizing Map (SOM), Radial Basis
Function Neural Network (RBFNN), Fuzzy Neural Networks, Probabilistic Neural Network
(PNN), Gabor Wavelet Neural Networks, Restricted Boltzmann Machines (RBM), and SVM.
The authors highlighted the different types and architectures of artificial neural networks and
their specific advantages, emphasizing the potential of deep learning for feature representation.

Nguyen et al. [162] discussed the design and implementation of iris recognition systems
at a distance addressing long-range iris recognition. The authors also presented a solution for an
iris recognition system at a distance with hardware and algorithms and a discussion about the
fusion of ocular information and iris to improve the system’s performance.

Regarding ocular biometrics in the visible spectrum, Rattani and Derakhshani [163]
described state-of-the-art methods for periocular, iris, and conjunctival vasculature recognition.
The authors also proposed a hardware-based acquisition set-up for ocular data and reported
results for intra-ocular fusion.
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3.2 OCULAR DATABASES

Currently, there are various databases of ocular images, constructed in different scenarios
and for different purposes. These databases can be classified by VIS and NIR images and separated
into controlled (cooperatives) and uncontrolled (non-cooperatives) environments, according to
the process of image acquisition. Controlled databases contain images captured in environments
with controlled conditions, such as lighting, distance, and focus. On the other hand, uncontrolled
databases are composed of images obtained in uncontrolled environments and usually present
problems such as defocus, occlusion, reflection, off-angle, to cite a few. A database containing
images captured at different wavelengths is referred to as cross-spectral, while a database with
images acquired by different sensors is referred to as cross-sensor. The summary of all databases
cited in this work as well as links to find more information about how they are available can be
found at [www.inf.ufpr.br/vri/publications/ocularDatabases.html].

The ocular databases described bellow are presented and organized into three subsections.
First, we describe databases that contain only NIR images, as well as synthetic iris databases.
Then, we present databases composed of images captured at both VIS and cross-spectral scenarios
(i.e., VIS and NIR images from the same subjects). Finally, we describe multimodal databases,
which contain data from different biometric traits, including iris and/or periocular.

3.2.1 Near-Infrared Ocular Images Databases

Ocular images captured at NIR wavelength are generally used to study the features
present in the iris [2, 108, 109]. As even darker pigmentation irises reveal rich and complex
features [4], most of the visible light is absorbed by the melanin pigment while longer wavelengths
of light are reflected [32]. Other studies can also be performed with this kind of databases, such as
methodologies to create synthetic irises [164, 165], vulnerabilities in iris recognition and liveness
detection [166, 167, 168, 169], impact of contact lenses in iris recognition [170, 9, 12, 8], template
aging [171, 172], influence of alcohol consumption [173], and study of gender recognition through
the iris [174]. The databases used for these and other studies are described in Table 3.1 and
detailed in this session. Some samples of ocular images from NIR databases are shown in
Figure 3.1.

Figura 3.1: From top to bottom: NIR ocular image samples from the CASIA-IrisV3-Lamp [2], CASIA-IrisV3-
Interval [2], NDCLD15 [8], IIITD CLI [9, 10], and ND Cosmetic Contact Lenses [11, 12] databases. Extracted
from [13].
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Tabela 3.1: NIR ocular databases. Modalities: Iris [IR] and Periocular [PR]. Extracted from [13].

Database Year
Controlled

Environment
Cross-sensor Subjects Images Modality

CASIA-IrisV1 [2] 2002 Yes No *108 eyes 756 [IR]
CASIA-IrisV2 [2] 2004 Yes Yes *120 classes 2,400 [IR]
ND-IRIS-0405 [109] 2005 Yes No 356 64,980 [IR]
ICE 2005 [108] 2005 Yes No 132 2,953 [IR]
ICE 2006 [109] 2006 No No 240 59,558 [IR]
WVU Synthetic Iris Texture Based [164] 2006 N/A N/A *1,000 classes 7,000 [IR]
WVU Synthetic Iris Model Based [165] 2007 N/A N/A 5,000 160,000 [IR]
Fake Iris Database [166] 2008 N/A No 50 800 [IR]
CASIA-IrisV3-Interval [2] 2010 Yes No 249 2,639 [IR]
CASIA-IrisV3-Lamp [2] 2010 Yes No 411 16,212 [IR]
CASIA-IrisV3-Twins [2] 2010 Yes No 200 3,183 [IR]
CASIA-IrisV4-Thousand [2] 2010 Yes No 1,000 20,000 [IR]
CASIA-IrisV4-Syn [2] 2010 N/A N/A *1,000 classes 10,000 [IR]
IIT Delhi Iris [175] 2010 Yes No 224 1,120 [IR]
ND Iris Contact Lenses 2010 [170] 2010 Yes No 124 21,700 [IR]
ND Iris Template Aging [171] 2012 Yes No 322 22,156 [IR]
ND TimeLapseIris [172] 2012 Yes No 23 6,797 [IR]
IIITD IUAI [173] 2012 Yes No 55 440 [IR]
IIITD CLI [9] 2013 Yes Yes 101 6,570 [IR]
ND Cosmetic Contact Lenses [11, 12] 2013 Yes Yes N/A 5,100 [IR]
ND Cross-Sensor-Iris-2013 [176] 2013 Yes Yes 676 146,550 [IR]
Database of Iris Printouts [167] 2013 Yes No *243 eyes 1,976 [IR]
IIITD Iris Spoofing [168] 2014 Yes Yes 101 4,848 [IR]
NDCLD15 [8] 2015 Yes Yes N/A 7,300 [IR]
IIITD Combined Spoofing [169] 2016 N/A Yes 1,872 20,693 [IR]
ND-GFI [174] 2016 Yes No 1,500 3,000 [IR]
BERC mobile-iris database [177] 2016 No No 100 500 [IR]
Cataract Surgery on Iris [178] 2016 Yes No 84 504 [IR]
ORNL [179] 2016 Yes No 50 1,100 [IR]
MUID [180] 2016 Yes No 111 24,360 [IR]
CASIA-Iris-Mobile-V1.0 [89] 2018 Yes Yes 630 11,000 [IR]/[PR]
OpenEDS [181] 2019 Yes No 152 356,649 [IR]

One of the first iris databases found in the literature was created and made available
by CASIA (Chinese Academy of Science). The first version, called CASIA-IrisV1, was made
available in 2002. The CASIA-IrisV1 database has 756 images of 108 eyes with a size of
320×280 pixels. The NIR images were captured in two sections with a homemade iris camera [2].
In a second version (CASIA-IrisV2), made available in 2004, the authors included two subsets
captured by an OKI IRISPASS-h and CASIA-IrisCamV2 sensors. Each subset has 1,200 images
belonging to 60 classes with a resolution of 640 × 480 pixels [2]. The third version of the
database (CASIA-IrisV3), made available in 2010, has a total of 22,034 images from more
than 700 individuals, arranged among its three subsets: CASIA-Iris-Interval, CASIA-Iris-Lamp
and CASIA-Iris-Twins. Finally, CASIA-IrisV4, an extension of CASIA-IrisV3 and also made
available in 2010, is composed of six subsets: three from the previous version and three new
ones: CASIA-Iris-Distance, CASIA-Iris-Thousand and CASIA-Iris-Syn. All six subsets together
contain 54,601 ocular images belonging to more than 1,800 real subjects and 1,000 synthetic
ones. Each subset will be detailed below, according to the specifications described in [2].

The CASIA-Iris-Interval database has images captured under a near-infrared LED
illumination. In this way, these images are used to study the texture information contained in
the iris traits. The database is composed of 2,639 images, obtained in two sections, from 249

subjects and 395 classes with a resolution of 320 × 280 pixels.
The images from the CASIA-Iris-Lamp database were acquire by a non-fixed sensor

(OKI IRISPASS-h) and thus the individual collected the iris image with the sensor in their own
hands. During the acquisition, a lamp was switched on and off to produce more intra-class
variations due to contraction and expansion of the pupil, creating a non-linear deformation.
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Therefore, this database can be used to study problems such as iris normalization and robust
iris feature representation. A total of 16,212 images, from 411 subjects, with a resolution of
640 × 480 pixels were collected in a single section.

During an annual twin festival in Beĳing, iris images from 100 pairs of twins were
collected to form the CASIA-Iris-Twins database, enabling the study of similarity between iris
patterns of twins. This database contains 3,183 images (400 classes from 200 subjects) captured
in a single section with the OKI IRISPASS-h camera at a resolution of 640 × 480 pixels.

The CASIA-Iris-Thousand database is composed of 20,000 ocular images from 1,000

subjects, with a resolution of 640 × 480 pixels, collected in a single section by an IKEMB-100
IrisKing camera [182]. Due to a large number of subjects, this database can be used to study the
uniqueness of iris features. The main source of intra-class variations that occur in this database
is due to specular reflections and eyeglasses.

The last subset of CASIA-IrisV4, called CASIA-IRIS-Syn, is composed of iris images
generated with iris textures automatically synthesized from the CASIA-IrisV1 subset. The
generation process applied the segmentation approach proposed by Tan et al. [183]. Factors such
as blurring, deformation, and rotation were introduced to create some intra-class variations. In
total, this database has 10,000 images belonging to 1,000 classes.

The images from the ND-IRIS-0405 [109] database were captured with the LG2200
imaging system using NIR illumination. The database contains 64,980 images from 356 subjects
and there are several images with subjects wearing contact lenses. Even the images being captured
under a controlled environment, some conditions such as blur, occlusion of part of the iris region,
and problems like off-angle may occur. The ND-IRIS-0405 is a superset of the databases used in
the ICE 2005 [108] and ICE 2006 [109] competitions.

The ICE 2005 database was created for the Iris Challenge Evaluation 2005 competi-
tion [108]. This database contains a total of 2,953 iris images from 132 subjects. The images
were captured under NIR illumination using a complete LG EOU 2200 acquisition system
with a resolution of 640 × 480 pixels. Images that did not pass through the automatic quality
control of the acquisition system were also added to the database. Experiments were performed
independently for the left and right eyes. The results of the competition can be seen in [108].

The ICE 2006 database has images collected using the LG EOU 2200 acquisition system
with a resolution of 640 × 480 pixels. For each subject, two ‘shots’ of 3 images of each eye were
performed per session, totaling 12 images. The imaging sessions were held in three academic
semesters between 2004 and 2005. The database has a total of 59,558 iris images from 240

subjects [109].
The WVU Synthetic Iris Texture Based database, created at West Virginia University,

has 1,000 classes with 7 grayscale images each. It consists exclusively of synthetic data, with the
irises being generated in two phases. First, a Markov Random Field model was used to generate
the overall iris appearance texture. Then, a variety of features were generated (e.g., radial and
concentric furrows, crypts and collarette) and incorporated into the iris texture. This database
was created to evaluate iris recognition algorithms since, at the time of publication, there were
few available iris databases and they had a small number of individuals [164].

The WVU Synthetic Iris Model Based database also consists of synthetically generated
iris images. This database contains 10,000 classes from 5,000 individuals, with degenerated
images by a combination of several effects such as specular reflection, noise, blur, rotation, and
low contrast. The image gallery was created in five steps using a model and anatomy-based
approach [165], which contains 40 randomized and controlled parameters. The evaluation of
their synthetic iris generation methodology was performed using a traditional Gabor filter-based
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iris recognition system. This database provides a large amount of data that can be used to evaluate
ocular biometric systems.

The Fake Iris Database was created using images from 50 subjects belonging to the
BioSec baseline database [184] and has 800 fake iris images [166]. The process for creating
new images is divided into three steps. The original images were first reprocessed to improve
quality using techniques such as noise filtering, histogram equalization, opening/closing, and
top hat. Then, the images were printed on paper using two commercial printers: an HP Deskjet
970cxi and an HP LaserJet 4200L, with six distinct types of papers: white paper, recycled paper,
photographic paper, high-resolution paper, butter paper, and cardboard [166]. Finally, the printed
images were recaptured by an LG IrisAccess EOU3000 camera.

The IIT Delhi Iris database consists of 1,120 images, with a resolution of 320×240 pixels,
from 224 subjects captured with the JIRIS JPC1000 digital CMOS camera. This database was
created to provide a large-scale database of iris images of Indian users. In [175], Kumar and Passi
employed these images to compare the performance of different approaches for iris identification
(e.g., Discrete Cosine Transform, Fast Fourier Transform, Haar wavelet, and Log-Gabor filter)
and to investigate the impact in recognition performance using a score-level combination.

The images from the ND Iris Contact Lenses 2010 database were captured using the LG
2200 iris imaging system. Visual inspections were performed to reject low-quality images or
those with poor results in segmentation and matching. To compose the database, the authors
captured 9,697 images from 124 subjects that were not wearing contact lenses and 12,003 images
from 87 subjects that were wearing contact lenses. More specifically, the images were acquired
from 92 subjects not wearing lenses, 52 subjects wearing the same lens type in all acquisitions,
32 subjects who wore lenses only in some acquisitions and 3 subjects that changed the lens type
between acquisitions [170]. According to Baker et al. [170], the purpose of this database is to
verify the degradation of iris recognition performance due to non-cosmetic prescription contact
lenses.

The ND Iris Template Aging database, described and used by Fenker and Bowyer [171],
was created to analyze the template aging in iris biometrics. The images were collected from
2008 to 2011 using an LG 4000 sensor, which captures images at NIR. This database has 22,156

images, being 2,312 from 2008, 5,859 from 2009, 6,215 from 2010 and 7,770 from 2011,
corresponding to 644 irises from 322 subjects. The ND-Iris-Template-Aging-2008-2010 subset
belongs to this database.

All images from the ND TimeLapseIris database [172] were taken with the LG 2200
iris imaging system, without hardware or software modifications throughout 4 years. Imaging
sessions were held at each academic semester over 4 years, with 6 images of each eye being
captured per individual in each session. From 2004 to 2008, a total of 6,797 images were obtained
from 23 subjects who were not wearing eyeglasses, 5 subjects who were wearing contact lenses,
and 18 subjects who were not wearing eyeglasses or contact lenses in any session. This database
was created to investigate template aging in iris biometrics.

To investigate the effect of alcohol consumption on iris recognition, Arora et al. [173]
created the Iris Under Alcohol Influence (IIITD IUAI) database, which contains 440 images
from 55 subjects, with 220 images being acquired before alcohol consumption and 220 after
it. The subjects consumed approximately 200 ml of alcohol (with 42% concentration level) in
approximately 15 minutes, and the second half of the images were taken between 15 and 20

minutes after consumption. Due to alcohol consumption, there is a deformation in iris patterns
caused by the dilation of the pupil, affecting iris recognition performance [173]. The images
were captured using the Vista IRIS scanner at NIR wavelength.
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The IIITD Contact Lens Iris (IIITD CLI) database is composed of 6,570 iris images
belonging to 101 subjects. The images were captured by two different sensors: Cogent CIS 202
dual iris sensor and VistaFA2E single iris sensor with each subject (i) not wearing contact lenses,
(ii) wearing color cosmetic lenses, and (iii) wearing transparent lenses. Four lens colors were
used: blue, gray, hazel and green. At least 5 images of each iris were collected in each lens
category for each sensor [9].

The images from the ND Cosmetic Contact Lenses database [11] were captured by
two iris cameras, an LG4000 and an IrisGuard AD100, in a controlled environment under NIR
illumination with a resolution of 640 × 480 pixels. These images are divided into four classes,
(i) no contact lenses, (ii) soft, (iii) non-textured and (iv) textured contact lenses. Also, this
database is organized into two subsets: Subset1 (LG4000) and Subset2 (AD100). Subset1 has
3,000 images in the training set and 1,200 images in the validation set. Subset2 contains 600 and
300 images for training and validation, respectively [12, 10, 42]. Both subsets have 10 equal
folds of training images for testing purposes.

The ND Cross-Sensor-Iris-2013 database [176] is composed of 146,550 NIR images
belonging to 676 unique subjects, being 29,986 images captured using an LG4000 and 116,564

taken by an LG2200 iris sensor with 640× 480 pixels of resolution. The images were captured in
27 sessions over three years, from 2008 to 2010, and in at least two sessions there are images of
the same subject. The purpose of this database is to investigate the effect of cross-sensor images
on iris recognition. Initially, this database was released for a competition to be held at the BTAS
2013 Conference, but the competition did not have enough submission.

The Database of Iris Printouts was created for liveness detection in iris images and
contains 729 printout images of 243 eyes, and 1,274 images of imitations from genuine eyes.
The database was constructed as follows. First, the iris images were obtained with an IrisGuard
AD100 camera. Then, they were printed using the HP LaserJet 1320 and Lexmark c534dn
printers. To check the print quality, the printed images were captured by the Panasonic ET-100
camera using an iris recognition software, and the images that were successfully recognized were
recaptured by an AD100 camera with a resolution of 640 × 480 pixels to create the imitation
subset. Initially, images from 426 distinct eyes belonging to 237 subjects were collected. After
the process of recognizing the printed images, 243 eyes images (which compose the database)
were successfully verified [167].

The IIITD Iris Spoofing (IIS) database was created to study spoofing methods. To this
end, printed images from the IIITD CLI [9] database were used. Spoofing was simulated in
two ways. In the first, the printed images were captured by a specific iris scanner (Cogent CIS
202 dual eye), while in the second, the printed images were scanned using an HP flatbed optical
scanner. The database contains 4,848 images from 101 individuals [168].

The Notre Dame Contact Lenses 2015 (NDCLD15) database contains 7,300 iris images.
The images were obtained under consistent lighting conditions by an LG4000 and an IrisGuard
AD100 sensor. All images have 640 × 480 pixels of resolution and are divided into three classes
based on the lens type: no lens, soft, and textured. This database was created to investigate
methods to classify iris images based on types of contact lenses [8].

The IIITD Combined Spoofing database was proposed to simulate a real-world scenario
of attacks against iris recognition systems. This database consists of joining the following
databases: IIITD CLI [9], IIITD IIS [168], SDB [164], IIT Delhi Iris [175] and, to represent
genuine classes, iris images from 547 subjects were collected. The CSD database has a total of
1,872 subjects, with 9,325 normal image samples and 11,368 samples of impostor images [169].

The Gender from Iris (ND-GFI) database was created to study the recognition of the
subject’s gender through the iris, specifically using the binary iris code (which is normally used
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in iris recognition systems) [174]. The images were obtained at NIR wavelength by an LG4000
sensor and labeled by gender. The ND-GFI database contains a single image of each eye (left
and right) from 750 men and 750 women, totaling 3,000 images. About a quarter of the images
were captured with the subjects wearing clear contact lenses. This database has another set of
images that can be used for validation, called UND_V, containing 1,944 images, being 3 images
of each eye from 175 men and 149 women. In this subset, there are also images using clear
contact lenses and some cosmetics [174].

According to [185], an iris image has good quality if the iris diameter is larger than 200

pixels, and if the diameter is between 150 and 200 pixels, the image is classified as adequate
quality. In this context, the images from the BERC mobile-iris database have irises with a
diameter between 170 and 200 pixels, obtained at NIR wavelength with 1280 × 960 pixels of
resolution. Using a mobile iris recognition system, the images were taken in sequences of 90

shots [177] moving the device at three distances: 15 to 25 cm, 25 to 15 cm, and 40 to 15 cm. In
total, the database has 500 images from 100 subjects, which were the best ones selected by the
authors of each sequence.

Raghavendra et al. [178] created the Cataract Surgery on Iris database to analyze the
impact of cataract surgery on the verification performance of iris recognition systems. The
database contains 504 images belonging to 84 subjects who were affected by cataracts. The
subjects’ ages vary from 50 to 80 years, being 34 males and 49 females. Three eye samples of
each subject were collected before (24 hours) and after (36 - 42 hours) the surgery to remove
the cataractous lens. The images were captured using a commercial dual-iris NIR device with a
resolution of 640 × 480 pixels.

The Oak Ridge National Laboratory (ORNL) Off-angle database was created to study
how the gaze angle affects the performance of iris biometrics [186, 179, 187]. This database
encompasses 1,100 NIR iris images from 50 subjects varying the angle acquisition from −50°

to +50° with a step-size of 10°. The gender distribution consists of 56% male and 44% female
subjects, and iris color of 64% with dark colors and 36% with light-colors. The images were
collected by a Toshiba Teli CleverDragon series camera and have a resolution of 4096×3072 pixels.

The Meliksah University Iris Database (MUID) was collected to investigate the off-angle
iris recognition. The authors developed an iris image capture system composed of two cameras
to simultaneously capture frontal and off-angle samples. Thus, it is possible to isolate the effect
of the gaze angle from pupil dilation and accommodation [180]. In total, the database has
24,360 NIR images from 111 subjects, 64 males and 57 females, with an average age of 26 years.
The images were captured by two infrared-sensitive IDS-UI-3240ML-NIR cameras varying from
−50° to +50° angles with a step-size of 10° and have a resolution of 1280 × 1024 pixels. More
details about the iris image acquisition platform are described in [180].

The CASIA-Iris-Mobile-V1.0 database is composed of 11,000 NIR images belonging to
630 subjects, divided into three subsets: CASIA-Iris-M1-S1 [188], CASIA-Iris-M1-S2 [189] and
a new one called CASIA-IRIS-M1-S3. The images were captured simultaneously from the left
and right eyes and stored in 8 bits gray-level JPG files. The CASIA-Iris-M1-S1 subset has 1,400

images from 70 subjects with a resolution of 1920 × 1080 pixels, acquired using a NIR imaging
module attached to a mobile phone. The CASIA-Iris-M1-S2 subset has images captured using a
similar device. In total, this subset contains 6,000 images from 200 subjects with a resolution of
1968×1024 pixels, collected at three distances: 20, 25 and 30 cm. At last, the CASIA-Iris-M1-S3
subset is composed of 3,600 images belonging to 360 subjects with a resolution of 1920 × 1920

pixels, which were taken with a NIR iris-scanning technology equipped on a mobile phone.
The Open Eye Dataset (OpenEDS) was created to investigate the semantic segmentation

of eyes components, and background [181]. This database is composed of 356,649 eye images,
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being 12,759 images with pixel-level annotations, 252,690 unlabeled ones, and 91,200 images
from video sequences belonging from 152 subjects. The images were captured with a head-
mounted display with two synchronized cameras under controlled NIR illumination with a
resolution of 640 × 400 pixels.

3.2.2 Visible and Cross-spectral Ocular Images Databases

Iris recognition using images taken at controlled NIR wavelength environments is a
mature technology, proving to be effective in different scenarios [32, 108, 109, 52, 34, 94].
Databases captured under controlled environments have few or no noise factors in the images.
However, these conditions are not easy to achieve and require a high degree of collaboration
from subjects. In a more challenging/realistic scenario, investigations on biometric recognition
employing iris images obtained in uncontrolled environments and at VIS wavelength have begun
to be conducted [190, 1]. There is also research on biometric recognition using cross-spectral
databases, i.e., databases with ocular images from the same individual obtained at both NIR and
VIS wavelengths [191, 192, 20, 193, 29]. Currently, many types of research have been performed
on biometric recognition using iris and periocular region with images obtained from mobile
devices, obtained in an uncontrolled environment and by different types of sensors [15, 194, 14].
In this subsection, we describe databases with these characteristics. Table 3.2 summarize these
databases. Some samples of ocular images from VIS and Cross-spectral databases are shown in
Figure 3.2.

Figura 3.2: From top to bottom: VIS and Cross-spectral ocular image samples from the VISOB [14], MICHE-I [15],
UBIPr [16], UFPR-Periocular [17], CROSS-EYED [18, 19], PolyU Cross-Spectral [20] databases. Extracted
from [13].

The UPOL (University of Palackeho and Olomouc) database has high-quality iris images
obtained at VIS wavelength using the optometric framework (TOPCON TRC501A) and the Sony
DXC-950P 3CCD camera. In total, 384 images of the left and right eyes were obtained from 64

subjects at a distance of approximately 0.15 cm with a resolution of 768 × 576 pixels, stored in
24 bits (RGB) [195].



47

Tabela 3.2: Visible and Cross-spectral ocular databases. Wavelengths: Near-Infrared (NIR), Visible (VIS) and Night
Vision (NV). Modalities: Iris [IR] and Periocular [PR]. Extracted from [13].

Database Year
Controlled

Environment
Wavelength Cross-sensor Subjects Images Modality

UPOL [195] 2004 Yes VIS No 64 384 [IR]
UBIRIS.v1 [190] 2005 No VIS No 241 1,877 [IR]
UTIRIS [191] 2007 Yes VIS / NIR Yes 79 1,540 [IR]
UBIRIS.v2 [1] 2010 No VIS No 261 11,102 [IR]
UBIPr [16] 2012 No VIS No 261 10,950 [PR]
BDCP [196] 2012 No VIS / NIR Yes 99 4,314 [IR]/[PR]
MobBIOfake [197] 2013 No VIS No N/A 1,600 [IR]
IIITD Multi-spectral Periocular [192] 2014 Yes VIS / NIR / NV Yes 62 1,240 [PR]
PolyU Cross-Spectral [20] 2015 N/A VIS / NIR Yes 209 12,540 [IR]
MICHE-I [15] 2015 No VIS Yes (Mobile) 92 3,732 [IR]
VSSIRIS [194] 2015 No VIS Yes (Mobile) 28 560 [IR]
CSIP [198] 2015 No VIS Yes (Mobile) 50 2,004 [IR]/[PR]
VISOB [14] 2016 No VIS Yes (Mobile) 550 158,136 [PR]
CROSS-EYED [18, 19] 2016 No VIS / NIR Yes 120 3,840 [IR]/[PR]
Post-mortem Human Iris [199] 2016 Yes VIS / NIR Yes 6 104 [IR]
QUT Multispectral Periocular [193] 2017 N/A VIS / NIR / NV Yes 53 212 [PR]
VISOB 2.0 [28] 2020 No VIS Yes 150 75,428 [PR]
I-SOCIAL-DB [200] 2020 No VIS No 400 3,286 [IR]/[PR]
UFPR-Periocular [17] 2020 No VIS No 1,122 33,660 [PR]
UFPR-Eyeglasses [25] 2020 No VIS No 83 2,270 [PR]

The UBIRIS.v1 database [190] was created to provide images with different types of
noise, simulating image capture with minimal collaboration from the users. This database has
1,877 images belonging to 241 subjects, obtained in two sections by a Nikon E5700 camera. For
the first section (enrollment), some noise factors such as reflection, lighting, and contrast were
minimized. However, in the second section, natural lighting factors were introduced by changing
the location to simulate an image capture with minimal or without active collaboration from the
subjects. The database is available in three formats: color with a resolution of 800 × 600 pixels,
color with 200 × 150 pixels, and 200 × 150 pixels in grayscale [190].

The UTIRIS is one of the first databases containing iris images captured at two different
wavelengths (cross-spectral) [191]. The database is composed of 1,540 images of the left and
right eyes from 79 subjects, resulting in 158 classes. The VIS images were obtained by a Canon
EOS 10D camera with 2048 × 1360 pixels of resolution. To capture the NIR images, the ISW
Lightwise LW camera was used, obtaining iris images with a resolution of 1000 × 776 pixels.
As the melanin pigment provides a rich source of features at the VIS spectrum, which is not
available at NIR, this database can be used to investigate the impact of the fusion of iris image
features extracted at both wavelengths.

The UBIRIS.v2 database was built representing the most realistic noise factors. For
this reason, the images that constitute the database were obtained at VIS without restrictions
such as distance, angles, light, and movement. The main purpose of this database is to provide
a tool for the research on the use of VIS images for iris recognition in an environment with
adverse conditions. This database contains images captured by a Canon EOS 5D camera, with
a resolution of 400 × 300 pixels, in RGB from 261 subjects containing 522 irises and 11,102

images taken in two sessions [1].
The UBIPr (University of Beira Interior Periocular) database [16] was created to

investigate periocular recognition using images taken under uncontrolled environments and
setups. The images from this database were captured by a Canon EOS 5D camera with a 400mm
focal length. Five different distances and resolutions were configured: 501 × 401 pixels (8m),
561× 541 pixels (7m), 651× 501 pixels (6m), 801× 651 pixels (5m), and 1001× 801 pixels (4m).
In total, the database has 10,950 images from 261 subjects (the images from 104 subjects were
obtained in 2 sessions). Several variability factors were introduced in the images, for example,
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different distances between the subject and the camera, as well as different illumination, poses
and occlusions levels.

The BDCP (Biometrics Development Challenge Problem) database [196] contains
images from two different sensors: an LG4000 sensor that captures images in gray levels, and a
Honeywell Combined Face and Iris Recognition System (CFAIRS) camera [196], which captures
VIS images. The resolutions of the images are 640 × 480 pixels for the LG4000 sensor and
750 × 600 pixels for the CFAIRS camera. To compose the database, 2,577 images from 82

subjects were acquired by the CFAIRS sensor and 1,737 images belonging to 99 subjects were
taken by an LG4000 sensor. Images of the same subject were obtained for both sensors [201].
The main objective of this database is the cross-sensor evaluation, matching NIR against VIS
images [163]. It should be noted that this database was used only in [201] and no availability
information is reported.

Sequeira et al. [197] built the MobBIOfake database to investigate iris liveliness detection
using images taken from mobile devices under an uncontrolled environment. It consists of 1,600

fake iris images obtained from a subset of the MobBIO database [21]. The fake images were
generated by printing the original images using a professional printer in a high-quality photo
paper and recapturing the image with the same device and environmental conditions used in the
construction of MobBIO.

The images that compose the IIITD Multi-spectral Periocular database were obtained
under a controlled environment at NIR, VIS, and night-vision spectra. The NIR images were
captured by a Cogent iris Scanner sensor at a distance of 6 inches from the subject, while the
night vision subset was created using the Sony Handycam camera in night vision mode at a
distance of 1.3 meters. The VIS images were captured with the Nikon SLR camera, also at a
distance of 1.3 meters. The database contains 1,240 images belonging to 62 subjects, being 310

images, 5 from each subject, at VIS and night vision spectra, and 620 images, 10 from each
subject, at NIR spectrum [192].

Nalla and Kumar [20] developed the PolyU Cross-Spectral database to study iris
recognition in the cross-spectral scenario. The images were obtained simultaneously under
VIS and NIR illumination, totaling 12,540 images from 209 subjects with 640 × 480 pixels of
resolution, being 15 images from each eye in each spectrum.

To evaluate the state of the art on iris recognition using images acquired by mobile
devices, the Mobile Iris Challenge Evaluation (MICHE) competition (Part I) was created [15].
The MICHE-I (or MICHEDB) database consists of 3,732 VIS images obtained by mobile devices
from 92 subjects. To simulate a real application, the iris images were obtained by the users
themselves, indoors and outdoors, with and without glasses. Images of only one eye of each
individual were captured. The mobile devices used and their respective resolutions are iPhone5
(1536× 2048), Galaxy S4 (2322× 4128) and Galaxy Tablet II (640× 480). Due to the acquisition
mode and the purpose of the database, several noises are found in images such as specular
reflections, focus, motion blur, lighting variations, occlusion due to eyelids, among others. The
authors also proposed a subset, called MICHE FAKE, containing 80 printed iris images. Such
images were created as follows. First, they were captured using the iPhone5 the Samsung Galaxy
S4 mobile devices. Then, using a LaserJet printer, the images were printed and captured again by
a Samsung Galaxy S4 smartphone. There is still another subset, called MICHE Video, containing
videos of irises from 10 subjects obtained indoor and outdoor. A Samsung Galaxy S4 and a
Samsung Galaxy Tab 2 mobile devices were used to capture these videos. In total, this subset
has 120 videos of approximately 15 seconds each.

The VSSIRIS database, proposed by Raja et al. [194], has a total of 560 images captured
in a single session under an uncontrolled environment from 28 subjects. The purpose of this
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database is to investigate the mixed lighting effect (natural daylight and artificial indoor) for iris
recognition at the VIS spectrum with images obtained by mobile devices [194]. More specifically,
the images were acquired by the rear camera of two smartphones: an iPhone 5S, with a resolution
of 3264 × 2448 pixels, and a Nokia Lumia 1020, with a resolution of 7712 × 5360 pixels.

Santos et al. [198] created the CSIP (Cross-Sensor Iris and Periocular) database simula-
ting mobile application scenarios. This database has images captured by four different device
models: Xperia Arc S (Sony Ericsson), iPhone 4 (Apple), w200 (THL) and U8510 (Huawei).
The resolutions of the images taken with these devices are as follows: Xperia Arc S (Rear
3264 × 2448), iPhone 4 (Front 640 × 480, Rear 2592 × 1936), W200 (Front 2592 × 1936, Rear
3264× 2448) and U8510 (Front 640× 480, Rear 2048× 1536). Combining the models with front
and rear cameras, as well as flash, 10 different setups were created with the images obtained. In
order to simulate noise variation, the image capture sessions were carried out in different sites
with the following lighting conditions: artificial, natural and mixed. Several noise factors are
presented in these images, such as different scales, off-angle, defocus, gaze, occlusion, reflection,
rotation and distortions [198]. The database has 2,004 images from 50 subjects and the binary
iris segmentation masks were obtained using the method described by Tan et al. [183] (winners
of the NICE I contest).

The VISOB database was created for the ICIP 2016 Competition on mobile ocular
biometric recognition, whose main objective was to evaluate methods for mobile ocular recognition
using images taken at the visible spectrum [14]. The front cameras of 3 mobile devices were
used to obtain the images: iPhone 5S at 720p resolution, Samsung Note 4 at 1080p resolution
and Oppo N1 at 1080p resolution. The images were captured in 2 sessions for each one of the 2
visits, which occurred between 2 and 4 weeks, counting in the total 158,136 images from 550

subjects. At each visit, it was required that each volunteer (subject) capture their face using each
one of the three mobile devices at a distance between 8 and 12 inches from the face. For each
image capture session, 3 light conditions settings were applied: regular office light, dim light,
and natural daylight. The collected images were preprocessed using the Viola-Jones eye detector
and the region of the image containing the eyes was cropped to a size of 240 × 160 pixels.

Sequeira et al. [18, 19] created the Cross-Spectral Iris/Periocular (CROSS-EYED)
database to investigate iris and periocular region recognition in cross-spectral scenarios. CROSS-
EYED is composed of VIS and NIR spectrum images obtained simultaneously with 2K×2K pixel
resolution cameras. The database is organized into three subsets: ocular, periocular (without
iris and sclera regions) and iris. There are 3,840 images from 120 subjects (240 classes), being
8 samples from each of the classes for every spectrum. The periocular/ocular images have
dimensions of 900 × 800 pixels, while the iris images have dimensions of 400 × 300 pixels. All
images were obtained at a distance of 1.5 meters, under uncontrolled indoor environment, with a
wide variation of ethnicity and eye colors, and lightning reflexes.

The Post-mortem Human Iris database was collected to investigate the post-mortem
human iris recognition. Due to the difficulty and restriction in collecting such images, this
database has only 104 images from 6 subjects. The images were acquired in three sessions with
an interval of approximately 11 hours using the IriShield M2120U NIR and Olympus TG-3 VIS
cameras.

The QUT Multispectral Periocular database was developed and used by Algashaam et
al. [193] to study multi-spectral periocular recognition. In total, 212 images belonging to 53

subjects were captured at VIS, NIR and night vision spectrum with 800× 600 pixels of resolution.
The VIS and NIR images were taken using a Sony DCR-DVD653E camera, while the night
vision images were acquired with an IP2M-842B camera.
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Regarding some ocular biometrics problems caused by substantial degradation due to
variations on illumination, distance, noise, and blur when using single-frame mobile captures,
Nguyen et al. [28] created the VISOB 2.0 database. This database comprises multi-frame
captures and has stacks of eye images acquired using the burst mode of two mobile devices:
Samsung Note 4 and Oppo N1. It is the second version of the VISOB database and was used
in the 2020 IEEE WCCI competition [28]. The images were collected in two visits. At each
visit, the subjects collected their own images under three lighting conditions in two sessions. The
available subset of the VISOB 2.0 database (competition training set) has 75,428 images of left
and right eyes belonging to 150 subjects. The VISOB 2.0 can also be employed to investigate the
probing fairness of ocular biometrics across gender [53].

The Iris Social Database (I-SOCIAL-DB) has 3,286 VIS images from 400 subjects,
being 43.75% male and 56.25% female. It is composed of images of public persons such as artists
and athletes. This database was created by collecting 1,643 high-resolution portrait images using
Google Image Search. Then, the ocular regions were cropped as rectangles of 350 × 300 pixels.
The binary masks for the iris region (created by a human expert) are also available. This database
can be employed to evaluate iris segmentation and recognition under unconstrained scenarios.

The UFPR-Periocular database has VIS images acquired in unconstrained environments
by mobile devices. These images were captured by the subjects themselves using their own
smartphone models through a mobile application (app) developed by the authors [17]. In total,
this database contains 33,660 samples from 1,122 subjects acquired during 3 sessions by 196

different mobile devices. The image resolutions vary from 360 × 160 to 1862 × 1008 pixels.
The main intra- and inter-class variability are caused by occlusion, blur, motion blur, specular
reflection, eyeglasses, off-angle, eye-gaze, makeup, facial expression, and variations in lighting,
distance, and angles. The authors manually annotated the eye corners and used them to normalize
the periocular images regarding scale and rotation. This database can also be employed to
investigate gender recognition, age estimation, and the effect of intra-class variability in biometric
systems. The UFPR-Periocular database, which includes the manual annotations of the eye
corners, as well as information on the subjects’ age and gender, is publicly available for the
research community.

Zanlorensi et al. [25] created the UFPR-Eyeglasses database to investigate intra-class
variability and also the effect of the occlusion by eyeglasses in periocular recognition under
uncontrolled environments. This database has 2,270 images captured by mobile devices from
83 subjects with a resolution of 256 × 256 pixels. The subjects captured the images using the
same mobile app used to collect the UFPR-Periocular database. This database can be considered
a subset of the UFPR-Periocular database containing some additional images. The authors
manually annotated the iris’s bounding box in each image and used it to perform scale and rotation
normalization. The intra-class variations in this database are mainly caused by illumination,
occlusions, distances, reflection, eyeglasses, and image quality. The UFPR-Eyeglasses database,
which includes the authors’ manual annotations, is publicly available to the research community.

3.2.3 Multimodal Databases

In addition to the databases proposed specifically to assist the development and evaluation
of new methodologies for iris/periocular recognition, some multimodal databases can also be
used for this purpose. Table 3.3 show these databases. As described in this subsection, most of
these databases consist of iris images obtained at NIR wavelength. Figure 3.3 shows samples of
ocular images from some multimodal databases.

The BioSec baseline database, proposed by Fierrez et al. [184], has biometric data of
fingerprint, face, iris and voice. Data were acquired from 200 subjects in two acquisition sessions,
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Figura 3.3: From top to bottom: ocular image samples from the MobBIO [21], SDUMLA-HMT [22] and
CASIA-IrisV4-Distance [2] multimodal databases. Extracted from [13].

Tabela 3.3: Multimodal databases. Modalities: Face [FC], Fingerprint [FP], Finger vein [FV], Gait [GT], Hand
[HD], Handwriting [HW], Iris [IR], KeyStroking [KS], Periocular [PR], Signature [SG], Speech [SP], and Voice
[VC]. Extracted from [13].

Database Year
Controlled

Environment
Wavelength Cross-sensor Subjects Images Modality

BioSec [184] 2006 No NIR No 200 3,200 [IR]/[FC]/[FP]/[VC]
BiosecurID [202] 2007 Yes NIR No 400 12,800 [IR]/[FC]/[SP]/[SG]/[FP]/[HD]/[HW]/[KS]
BMDB [203] 2008 Yes NIR No 667 5,336 [IR]/[FC]/[SP]/[SG]/[FP]/[HD]
MBGC [204] 2009 No NIR No *268 eyes *986 videos [IR]/[FC]
Q-FIRE [205] 2010 No NIR No 195 N/A [IR]/[FC]
FOCS [206] 2010 No NIR No 136 9,581 [IR]/[PR]/[FC]
CASIA-IrisV4-Distance [2] 2010 Yes NIR No 142 2,567 [IR]/[PR]/[FC]
SDUMLA-HMT [22] 2011 Yes NIR No 106 1,060 [IR]/[FC]/[FV]/[GT]/[FP]
MobBIO [21] 2013 No VIS No 105 1,680 [IR]/[FC]/[VC]
gb2s` MOD [207] 2015 Yes NIR No 60 *600 videos [IR]/[FC]/[HD]

with environmental conditions (e.g., lighting and background noise) not being controlled to
simulate a real situation. There are 3,200 NIR iris images, being 4 images of each eye for each
session, captured by an LG IrisAccess EOU3000 camera [184].

The BiosecurID multimodal database consists of 8 unimodal biometric traits: iris, face,
speech, signature, fingerprints, hand, handwriting, and keystroking [202]. The authors collected
data from 400 subjects in four acquisition sessions through 4 months at six Spanish institutions.
The iris images were captured at NIR by an LG Iris Access EOU 3000 camera with a resolution
of 640 × 480 pixels. Four images of each eye were obtained in each of the 4 sessions, totaling 32

images per individual and a final set of 12,800 iris images.
The BMDB (multienvironment multiscale BioSecure Multimodal Database) [203] has

biometric data from more than 600 subjects, obtained from 11 European institutions participating
in the BioSecure Network of Excellence [203]. This database contains biometric data of iris,
face, speech, signature, fingerprint and hand, and is organized into three subsets: DS1, which has
data collected from the Internet under unsupervised conditions; DS2, with data obtained in an
office environment under supervision; and DS3, in which mobile hardware was used to take data
indoor and outdoor. The iris images belong to the DS2 subset and were obtained in 2 sessions
at NIR wavelength in an indoor environment with supervision. For the acquisition, the use of
contact lenses was accepted, but glasses needed to be removed. Four images (2 of each eye) were
obtained in each session for each of the 667 subjects, totaling 5,336 images. These images have a
resolution of 640 × 480 pixels and were acquired by an LG Iris Access EOU3000 sensor.

The goal of the Multiple Biometrics Grand Challenge (MBGC) [204] was the evaluation
of iris and face recognition methods using data obtained from still images and videos under
unconstrained conditions [31]. The MBGC is divided into three problems: the portal challenge
problem, the still face challenge problem, and the video challenge problem [204]. This competition
has two versions. The first one was held to introduce the problems and protocol, whereas version
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2 was released to evaluate the approaches in large databases [31]. The iris images were obtained
from videos captured at NIR by an Iridian LG EOU 2200 camera [208]. The videos present
variations such as pose, illumination, and camera angle. The MBGC database has 986 iris videos
from 268 eyes collected in 2008 [208].

The Q-FIRE database (Quality in Face and Iris Research Ensemble) has iris and face
images from 195 subjects, obtained through videos at different distances [205]. This database
has 28 and 27 videos of face and iris, respectively, captured in 2 sections, with varying camera
distance between 5, 7, 11, 15 and 25 feet. The videos have approximately 6 seconds each and were
captured at approximately 25 frames per second. A Dalsa 4M30 infrared camera equipped with a
Tamron AF 70-300mm 1:4.5-5.6 LD DI lens were used to capture iris videos. For distances of
15 and 25 feet, a Sigma APO 300-800mm F5.6 EX DG HSM lens was used. The most attractive
distance of capture for iris is 5 (300 × 280 pixels), 7 (220×200 pixels), and 11 (120 × 100 pixels)
feet since they respectively represent high, medium and low resolution, based on the number of
pixels in the iris diameter. The images also have variations of illumination, defocus, blur, eye
angles, motion blur, and occlusions [205].

The NIR images from the ocular region (iris and periocular) of the FOCS database [206]
were extracted from the MBGC database [204] videos, which were collected from moving
subjects [209]. These videos were captured in an uncontrolled environment presenting some
variations such as noise, gaze, occlusion and lighting. The database has 9,581 images (4,792 left,
4,789 right) with a resolution of 750 × 600 pixels from 136 subjects [201].

The CASIA-IrisV4-Distance database consists of iris images acquired by a long-range
multi-modal biometric image acquisition and recognition system developed by the database
authors [2]. Their system can recognize users from up to 3 meters (10 feet) using a system with
an active search for iris, face or palmprint patterns. The images were taken using a camera
with high resolution so that a single image includes regions of interest for both eyes and face
traits. Information from the face trait such as skin pattern can also be used for multi-modal
fusion. The database has 2,567 images from 142 individuals and 284 classes with a resolution of
2352 × 1728 pixels.

The SDUMLA-HMT multimodal database contains biometric traits of iris, face, finger
vein, gait, and fingerprint [22]. All data belong to 106 subjects and were collected at Shandong
University in China. The iris images were collected at NIR and under a controlled environment
at a distance of 6 cm to 32 cm between the camera and the subject. In total, the authors collected
1,060 iris images with 768 × 576 pixels of resolution, being 10 images (5 of each eye) from each
subject [22].

Sequeira et al. [21] created the MobBIO database due to the growing interest in mobile
biometric applications, as well as the growing interest and application of multimodal biometrics.
This database has data from iris, face, and voice belonging to 105 subjects. The data were
obtained using an Asus TPad TF 300T mobile device, and the images were captured using the
rear camera of this device in 8 MP of resolution. The iris images were obtained at VIS and in
two different illumination conditions varying eye orientations and occlusion levels. For each
subject, 16 images (8 of each eye, cropped from an image of both eyes) were captured. The
cropped images have a resolution of 300 × 200 pixels. Manual annotations of the iris and pupil
contours are provided along with the database, but iris illumination noises are not identified.

The gb2s`MOD database is composed of 8,160 iris, face and hand videos belonging to
60 subjects and captured in three sessions with environment condition variation [207]. Sessions 1

and 2 were obtained in a controlled environment, while session 3 was acquired in an uncontrolled
environment. The iris videos were recorded only in sessions 1 and 2 with a NIR camera (850 nm)
held by the subject himself as close to the face as possible capturing both eyes. The diameter of
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the iris in such videos is approximately 60 pixels. Ten iris videos were collected in two (5 in each
session) for each one of the 60 subjects. Along with the videos, information such as name, ID
card number, age, gender, and handedness are also available.

All databases described in this subsection contain iris and/or periocular subsets, however,
some databases that do not have such subsets can also be employed for iris/periocular recognition.
For example, the FRGC [210] database, which is a database of face images, has already been
used for iris [120] and periocular [211, 115, 201] recognition in the literature.

3.3 OCULAR RECOGNITION COMPETITIONS

In this section, we describe the major recent competitions and the algorithms that
achieved the best results in iris and/or periocular region information. Through these competitions,
it is possible to demonstrate the advancement in terms of methodologies for ocular biometrics
and also the current challenges in this research area.

The competitions usually provide a database in which the competitors must perform
their experiments and submit their algorithms. Once submitted, the algorithms are evaluated with
another subset of the database, according to the metrics established by the competition protocol.
In this way, it is possible to fairly assess the performance of different methodologies for specific
objectives.

In ocular biometrics including iris and periocular recognition, there are several compe-
titions aimed at evaluating different situations, such as recognition in images captured at NIR
and/or VIS wavelengths, images captured in an uncontrolled environment, images obtained
with mobile devices, among others. For each competition, we describe the approaches that
achieved the best results using fused information from iris and periocular region, and also the best
performing methodologies using only iris information. Table 3.4 presents the main competitions
held in recent years and the best results achieved, while Table 3.5 details the methodologies that
obtained the best results in these competitions.
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Tabela 3.4: Best results achieved in ocular biometric competitions. Extracted from [13].

Competition Year Database Wavelength Best Result Traits

NICE.II [52] 2010 portion of UBIRIS v2 VIS DI = 2.57 [119] Iris + Periocular
NICE.II [52] 2010 portion of UBIRIS v2 VIS DI = 1.82 [212] Iris
MICHE-II [27] 2016 MICHE-I and MICHE-II VIS AVG = 1.00 [121, 122] Iris + Periocular
MICHE-II [27] 2016 MICHE-I and MICHE-II VIS AVG = 0.86 [213] Iris
MIR [214] 2016 MIR-Train and MIR-Test NIR FNMR4 = 2.24%, EER = 1.41% e DI = 3.33 [214] Iris
VISOB 1.0 [14] 2016 VISOB VIS EER = 0.06% - 0.20% [110] Periocular
CROSS-EYED [18] 2016 CROSS-EYED CROSS GF2 = 0.00% and EER = 0.29% (��1) [18] Periocular
CROSS-EYED [18] 2016 CROSS-EYED CROSS GF2 = 3.31% and EER = 2.78% (#) #*6) [18] Iris
2=3 CROSS-EYED [19] 2017 CROSS-EYED CROSS GF2 = 0.00% and EER = 0.05% (#) #*4) [19] Iris
2=3 CROSS-EYED [19] 2017 CROSS-EYED CROSS GF2 = 0.74% and EER = 0.82% (��1) [19] Periocular
VISOB 2.0 [28] 2020 VISOB 2.0 VIS EER = 5.25% and AUC = 98.8% [24] Periocular

Tabela 3.5: Best methodologies in ocular biometric competitions. Extracted from [13].

Contest/Author Periocular Features Iris Features Periocular Matching Iris Matching Fusion Technique

NICE.II [119]
Texton histogram and Semantic

information
Ordinal measures and color

histogram
chi-square distance and exclusive or

SOBoost and diffusion
distance

Sum rule

NICE.II [212] - 2D Gabor - AdaBoost learning -

MICHE-II [121, 122]
Multi-Block Transitional Local

Binary Pattern (MB-TLBP)
1D Log-Gabor filter chi-square distance Hamming distance

Weighted sum of
scores

MICHE-II [213] - Deep sparse filters -
Maximized likelihood in a

collaborative subspace
representation

-

MIR [214] - Gabor wavelet -
Cosine distance and hamming

distance
-

VISOB 1.0 [110] Maximum Response (MR) filters -
DNN based on deeply coupled

autoencoders
- -

CROSS-EYED ��1 [18]
SAFE, GABOR, SIFT, LBP and

HOG
- Probabilistic bayesian - -

CROSS-EYED #) #*6 [18] - M-BSIF - chi-square distance and SVM -
2=3 CROSS-EYED #) #*4 [19] - M-BSIF - chi-square distance -

2=3 CROSS-EYED ��1 [19]
SAFE, GABOR, SIFT, LBP and

HOG
- Probabilistic bayesian - -

VISOB 2.0 [24] ResNet-50 - Cosine Distance - -
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3.3.1 NICE - Noisy Iris Challenge Evaluation

The Noisy Iris Challenge Evaluation (NICE) competition contains two different contests.
In the first one (NICE.I), held in 2008, the goal was the evaluation of methods for iris segmentation
to remove noise factors such as specular reflections and occlusions. Regarding the evaluation of
encoding and matching methods, the second competition (NICE.II), was carried out in 2010. The
databases used in both competitions are subsets of UBIRIS.v2 [1], which contains VIS ocular
images captured under uncontrolled environments.

Described by Proença and Alexandre [52], the first competition aimed to answer: “is it
possible to automatically segment a small target as the iris in unconstrained data (obtained in a
non-cooperative environment)?” In total, 97 research laboratories from 22 countries participate
in the competition. The training set consisted of 500 images, and their respective manually
generated binary iris masks. The committee evaluated the proposed approaches using another 500

images through a pixel-to-pixel comparison between the original and the generated segmentation
masks. As a metric, the organizers choose the following error rate based on pixel-level:

� 9 =
1

=Fℎ

=
∑

8=1

ℎ
∑

A=1

F
∑

2=1

%8 (A, 2) ⊗ �8 (A, 2) , (3.1)

where = refers to the number of test images, F and ℎ are respectively the width and height of these
images, %8 (A, 2) means the intensity of the pixel on row A and column 2 of the 8th segmentation
mask, �8 (A, 2) is the actual pixel value and ⊗ is the or-exclusive operator.

According to the values of � 9 , NICE.I’s best results are the following: 0.0131 [183],
0.0162 [215], 0.0180 [216], 0.0224 [217], 0.0282 [218], 0.0297 [219], 0.0301 [220],
0.0305 [221].

The second competition (NICE.II) evaluated only the feature extraction and matching
results. Therefore, all the participants used the same segmented images, which were generated
by the winner methodology in the NICE.I contest [52], proposed by Tan et al. [183]. The main
goal was to investigate the impact of noise presented inside the iris region in the biometric
recognition process. As described in both competitions [52], these noise factors have different
sources, e.g., specular reflection and occlusion, caused by the uncontrolled environment where
the images were taken. This competition received algorithms sent by 67 participants from 30

countries. The training set consists of 1,000 images and their respective binary masks. The
proposed methods had to receive a pair of images followed by their masks as input and generate
an output file containing the dissimilarity scores (3) of which pairwise comparison with the
following conditions:

1. 3 (�, �) = 0

2. 3 (�1, �2) = 0 ⇒ �1 = �2

3. 3 (�1, �2) + 3 (�2, �3) ≥ 3 (�1, �3).

The submitted approaches were evaluated using a new set of 1,000 images with their
binary masks. Consider �" = {�1, ..., �=} as a collection of iris images, "� = {"1, ..., "=}

as their respective masks, and 83 (.) representing a function that identifies an image. The
comparison protocol one-against-all returns a match set � �

= {38
1
, ..., 38<} and a non-match set

��
= 34

1
, ..., 34

:
} of dissimilarity scores, where 83 (�8) = 83 (� 9 ) and 83 (�8) ≠ 83 (� 9 ), respectively.

The best results of NICE.II ranked by their 3′ scores are as follows: 2.5748 [119],
1.8213 [212], 1.7786 [222], 1.6398 [223], 1.4758 [224], 1.2565 [225], 1.1892 [226], 1.0931 [227].
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The winner method, proposed by Tan et al. [119], achieved a decidability value of
2.5748 by fusing iris and periocular features. The fusion process was performed at the score
level by the sum rule method. Therefore, for iris and periocular images, different features and
matching techniques were used. The iris features were extracted with ordinal measures and color
histogram and for the periocular ones, texton histogram, and semantic information. To compute
the matching scores, the authors employed the following metrics: SOBoost learning, diffusion
distance, chi-square distance, and exclusive OR operator.

Wang et al. [212] proposed a method using only iris information. Their approach was
ranked second in the competition, achieving a decidability value of 1.8213. The algorithm
performed the segmentation and normalization of iris using the Daugman technique [57]. Features
were extracted by applying the Gabor filters from different patches generated from the normalized
image. The AdaBoost algorithm computed a selection of features and the similarity.

The main contribution of NICE competitions was the evaluation of iris segmentation and
recognition methods independently, as several iris segmentation methodologies were evaluated
in the first competition and the best one was applied to generate the binary masks used in the
second one, in which the recognition task was evaluated. Hence, the approaches described in
both competitions can be fairly compared since they employed the same images for training
and testing.

Although NICE.II was intended to evaluate iris recognition systems, some approaches
using information from the periocular region were also included in the final ranking. The
winning method fused iris and periocular information, however, it should be noted that some
approaches that also fused these two traits achieved lower results than methodologies that used
only iris features. Moreover, it would be interesting to analyze the best performing approaches in
the NICE.II competition in larger databases to verify the scalability of the proposed methodologies,
as the database used in these competitions was not composed of a large number of images/classes.

Some recent works applying deep CNN models have achieved state-of-the-art results
in the NICE.II database using information from the iris [23], periocular region [46] and fusing
iris/periocular traits [48] with decidability values of 2.25, 3.47, 3.45, respectively.

3.3.2 MICHE - Mobile Iris Challenge Evaluation

In order to assess the performance that can be reached in iris recognition without the use
of special equipment, the Mobile Iris CHallenge Evaluation II, or simply MICHE-II competition,
was held [27]. The MICHE-I database, introduced by De Marsico et al. [15] has 3,732 images
taken by mobile devices and was made available to the participants to train their algorithms,
while other images obtained in the same way were employed for the evaluation.

Similarly to NICE.I and NICE.II, MICHE is also divided into two phases. MICHE.I and
MICHE.II focused on iris segmentation and recognition, respectively. Ensuring a fair assessment
and targeting only the recognition step, all MICHE.II participants used the segmentation algorithm
proposed by Haindl and Krupicka [228], which achieved the best performance on MICHE.I.

The performance of each algorithm was evaluated through dissimilarity. Assuming � as
a set of the MICHE.II database and that �0, �1 ∈ �, the dissimilarity function � is defined by:

� (�0, �1) ⇒ [0, 1] ⊂ R , (3.2)

satisfying the following properties:

1. � (�0, �0) = 0

2. � (�0, �1) = 0 ⇒ �0 = �1
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3. � (�0, �1) = � (�1, �0).

Two metrics were employed to assess the algorithms. The first, called RR, was used
to evaluate the performance in the identification problem (1:N), while the second, called AUC,
was applied to evaluate the performance in the verification problem (1:1). In addition, the
methodologies were evaluated in two different setups: first comparing only images acquired by
the same device and then using images obtained by two different devices (cross-sensor). The
algorithms were ranked by the average performance of RR and AUC. The best results are listed
in Table 3.6.

Tabela 3.6: Results of the MICHE.II competition. Average between RR and AUC. Adapted from [27].

Authors All×All GS4×GS4 Ip5×Ip5 Average

Ahmed et al. [121, 122] 0.99 1.00 1.00 1.00

Ahuja et al. [112, 229] 0.89 0.89 0.96 0.91

Raja et al. [213] 0.82 0.95 0.83 0.86

Abate et al. [230, 231] 0.79 0.82 0.88 0.83

Galdi and Dugelay [232, 233] 0.77 0.78 0.92 0.82

Aginako et al. [234, 235] 0.78 0.80 0.78 0.79

Aginako et al. [236, 237] 0.75 0.72 0.77 0.75

Ahmed et al. [121, 122] proposed the algorithm that achieved the best result. Their
methodology performs the matching of the iris and the periocular region separately and combines
the final score values of each approach. For the iris, they used the rubber sheet model normalization
proposed by Daugman [57]. Then, the iris codes were generated from the normalized images
with the 1-D Log-Gabor filter. The matching was computed with the Hamming distance. Using
only iris information, an EER of 2.12% was reached. Features from the periocular region were
extracted with Multi-Block Transitional Local Binary Patterns and the matching was computed
with the chi-square distance. With features from the periocular region, an EER of 2.74% was
reported. The outputs of both modalities (iris and periocular) were normalized with z-score
and combined with weighted scores. The weights used for the fusion were 0.55 for the iris and
0.45 for the periocular region, yielding an EER of 1.22% and an average between RR and AUC
of 1.00.

The best performing approach using only iris information was proposed by Raja et
al. [213]. In their method, the iris region was first located through a segmentation method
proposed by Raja et al. [194] and then normalized using the rubber sheet expansion model [4].
Each image band (red, green and blue) was divided into several blocks. The features were
extracted from these blocks, as well as from the entire image, using a set of deep sparse
filters, resulting in deep sparse histograms. The histograms of each block and each band were
concatenated with the histogram of the entire image, forming the vector of iris features. The
features extracted were used to learn a collaborative subspace, which was employed for matching.
This algorithm achieved the third place in the competition, with an average between RR and AUC
of 0.86 and with EER values of 0% in the images obtained by the iPhone 5S and 6.55% in the
images obtained by Samsung S4.

This competition was the first to evaluate iris recognition using images captured by
mobile devices and also to evaluate methodologies applied to the cross-sensor problem, i.e., to
recognize images acquired by different sensors.

As in the NICE.II competition, one issue is the scalability evaluation of the evaluated
approaches. Although the reported results are very promising, we have to consider them as
preliminary since the test set used for the assessment is very small, containing only 120 images.
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As expected, the best results were attained using iris and periocular region information, however,
some approaches that used only iris information achieved better results than others that fused iris
and periocular region information.

3.3.3 MIR - Competition on Mobile Iris Recognition

The BTAS Competition on Mobile Iris Recognition (MIR2016) was proposed to raise
the state of the art of iris recognition algorithms on mobile devices under NIR illumination [214].
Five algorithms, submitted by two participants, were eligible for the evaluation.

A database (MIR-Train) was made available for training the algorithms and a second
database (MIR-Test) was used for the evaluation. Both databases were collected under NIR
illumination. The images of the two irises were collected simultaneously under an indoor
environment. Three sets of images were obtained, with distances of 20 cm, 25 cm, and 30

cm, and 10 images for each distance. The images from both databases were collected in the
same session. The MIR-Train database is composed of 4,500 images from 150 subjects, while
MIR-Test has 12,000 images from 400 subjects. All images are grayscale with a resolution of
1968 × 1024 pixels. The main sources of intra-class variation in the images are due to variations
in lighting, eyeglasses and specular reflections, defocus, distance changes, and others. Differently
from NICE.II, the segmentation masks were not provided in MIR2016, thus, the methodologies
submitted included iris detection, segmentation, feature extraction, and matching.

For the evaluation, the organizing committee considered that the left and right irises
belong to the same class; thus, a fusion of the matching scores of both irises was performed.
All possible intra-class comparisons (i.e., irises from the same subjects) were implemented to
compute the False Non-Match Rate (FNMR). From each iris class, two samples were randomly
selected to calculate the False Match Rate (FMR). In total, 174,000 intra-class and 319,200

inter-class matches were used. In cases where intra- or inter-class comparisons could not be
performed due to failure enrollment or failure match, a random value between 0 and 1 was
assigned to the score. The classification of the participants was performed using the FNMR4
metric, but the EER and DI metrics were also reported. The FNMR4 metric reports the FNMR
value when the FMR equals to 0.0001. The EER is the value when FNMR is equal to the FMR,
and the DI value is the decidability index, as explained previously.

The best result was from the Beĳing Bata Technology Co. Ltd. reporting FNMR4
= 2.24%, EER = 1.41% and DI = 3.33. The methodology, described in [214], includes four
steps: iris detection, preprocessing, feature extraction, and matching. For iris detection, the
face is found using the AdaBoost algorithm [238] and eye positions are found by using SVM.
Next, to lessen the effect of light reflections, the irises and pupils are detected by the modified
Daugmans Integro-Differential operator [4]. In pre-processing, reflection regions are located and
then removed using a threshold and shape information. Afterward, the iris region is normalized
using the method proposed by Daugman [57]. Eyelashes are also detected and removed using
a threshold. An improvement in image quality is achieved through histogram equalization.
The features were extracted with Gabor wavelet, while Principal Component Analysis (PCA)
and Linear Discriminant Analysis (LDA) were applied for dimensionality reduction. The
matching was performed using the cosine and Hamming distances, and the results combined.

The second place was achieved by TigerIT Bangladesh Ltd. with FNMR4 = 7.07%,
EER = 1.29% and DI = 3.94. The proposed approach also made improvements in image quality
through histogram equalization and smoothing. After pre-processing, the iris was normalized
using the rubber sheet model [117]. Features were then extracted with 2D Gabor wavelets, while
the matching was performed employing the Hamming distance. This methodology was classified
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in second place since it obtained a higher FNMR4 value than the first one, but the EER and DI
values were better than those reported by the winning algorithm of the competition.

The MIR2016’s main contribution is to be the first competition using NIR images
acquired by mobile modules, in addition to the construction of a new database containing images
from both eyes of each individual. Unfortunately, the competition did not have many participants
and the proposed methodologies consist only of classical literature techniques.

3.3.4 VISOB - Competition on Mobile Ocular Biometric Recognition

The VISOB 1.0 competition was designed to evaluate ocular biometric recognition
methodologies using images obtained from mobile devices in visible light on a large-scale
database. The database created and used for the competition was VISOB (VISOB Database
ICIP2016 Challenge Version) [14]. This database has 158,136 images from 550 subjects, and is
the database of images obtained from mobile devices with the largest number of subjects. The
images were captured by 3 different devices (iPhone 5S, Oppo N1 and Samsung Note 4) under
3 different lighting classes: ‘daylight’, ‘office’, and ‘dim light’. Four different research groups
participated in the competition and 5 algorithms were submitted. The metric used to assess the
performance of the algorithms was EER.

In almost all competitions, participants submit an algorithm already trained and the
evaluation is performed on an unknown portion of the database. On the other hand, VISOB
1.0 competitors submitted an algorithm that was trained and tested on an unknown portion of
the database. Two different evaluations were carried out. In the first one (see Table 3.7), the
algorithms were trained (enrollment) and tested for each device and type of illumination.

Tabela 3.7: EER (%) rank by device and lighting condition. Adapted from [14].

Day light

Method iPhone 5S Oppo N1 Samsung Note 4

NTNU-1 [110] 0.06 0.10 0.07

NTNU-2 [111] 0.40 0.43 0.33

ANU 7.67 7.91 8.42

IIITG [112] 18.98 18.12 15.98

Anonymous 38.09 38.29 62.23

Office

NTNU-1 [110] 0.06 0.04 0.05

NTNU-2 [111] 0.48 0.63 0.49

ANU 10.36 16.01 9.10

IIITG [112] 19.29 19.79 18.65

Anonymous 35.26 31.69 72.84

Dim light

NTNU-1 [110] 0.06 0.07 0.07

NTNU-2 [111] 0.45 0.16 0.16

ANU 8.44 9.02 11.89

IIITG [112] 17.54 19.49 23.25

Anonymous 31.06 34.00 67.20

In the second evaluation, the algorithms were trained only with the images from the
‘office’ lighting class for each of the 3 devices. To assess the effect of illumination on ocular
recognition, the tests were performed with the 3 types of illumination for each device. The results
are shown in Table 3.8.

Raghavendra and Busch [110] achieved an EER between 0.06% and 0.20% in all
assessments, obtaining the best result of the competition. The proposed approach extracted
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Tabela 3.8: EER (%) rank by device and lighting condition. The algorithms were trained only with the ‘office’
lighting class (O) and tested on all the others. Table adapted from [14].

iPhone 5S

Method O-O O-Day O-Dim

NTNU-1 [110] 0.06 0.13 0.20

NTNU-2 [111] 0.48 1.82 1.45

ANU 10.36 11.03 16.64

IIITG [112] 19.29 32.93 45.34

Anonymous 35.26 28.67 42.29

Oppo N1

NTNU-1 [110] 0.04 0.10 0.09

NTNU-2 [111] 0.63 1.90 3.34

ANU 16.01 14.75 18.24

IIITG [112] 19.79 38.24 42.59

Anonymous 31.69 31.21 37.17

Samsung Note 4

NTNU-1 [110] 0.05 0.13 0.10

NTNU-2 [111] 0.49 2.50 4.25

ANU 9.10 13.69 19.57

IIITG [112] 18.65 34.29 40.21

Anonymous 27.73 24.33 50.74

periocular features using Maximum Response (MR) filters from a bank containing 38 filters,
and a deep neural network learned with a regularized stacked autoencoders [110]. For noise
removal, the authors applied a Gaussian filter and performed histogram equalization and image
resizing. Finally, the classification was performed through a deep neural network based on deeply
coupled autoencoders.

All participants explored features based on the texture of the eye images, extracted from
the periocular region. None of the submitted algorithms extracted features only from the iris.
The organizing committee compared the performance of the algorithms using images obtained
only by the same devices, that is, the algorithms were not trained and tested on images from
different devices (cross-sensor). Thus, the main contributions of this competition were a large
database containing images from different sensors and environments, along with the assessments
on these different setups.

The second edition of this competition, called VISOB 2.0, was carried out at IEEE
WCCI in 2020 [28]. A new VISOB’s subset with eye images from 250 subjects captured by
two mobile devices: Samsung Note 4 and Oppo N1, was employed to compare the submitted
approaches. This competition evaluated ocular biometrics recognition methods using stacks of
five images in the open-world (subject-independent) protocol in different lighting conditions:
Dark, Office, and Daylight. In the development (training) stage, the competitors were provided
with stacks of images from 150 subjects. Regarding the subject-independent evaluation, the
comparison of the submitted methods was performed employing samples from other 100 subjects
that were not available in the training stage. The main idea of using multi-frame (stacks) captures
for ocular biometrics is to avoid degradation in the images caused by variations in illumination,
noise, blur, and user to camera distance. Two participants submitted algorithms based on deep
representations and one based on hand-crafted features. Table 3.9 presents the results.

The rank 1 algorithm proposed by Zanlorensi et al. [24] (UFPR) consists of an ensemble
of ResNet-50 models (5 models, one for each image in the stack) pre-trained for face-recognition
using the VGG-Face database. The authors had previously employed this method for cross-
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Tabela 3.9: EER (%) rank by device and lighting condition: Dark (DK), Daylight (DL), and Office (O). Table
adapted from [28].

Samsung Note 4

Method DK-DK DK-DL DK-O DL-DK DL-DL DL-O O-DK O-DL O-O

UFPR [24] 7.46 10.03 6.66 11.46 7.76 6.72 12.10 8.06 5.26

Bennett University 35.01 40.47 42.15 41.45 30.68 34.40 43.65 34.31 27.05

Anonymous 42.07 44.69 43.44 44.41 40.69 42.51 46.09 42.69 39.77

Oppo N1

DK-DK DK-DL DK-O DL-DK DL-DL DL-O O-DK O-DL O-O

UFPR [24] 6.39 9.40 8.08 8.28 8.11 6.67 9.76 8.65 6.49

Bennett University 34.33 40.36 40.90 41.99 29.70 31.91 42.95 31.79 26.21

Anonymous 40.30 44.94 43.71 45.41 42.46 45.14 46.68 45.70 42.05

spectral ocular recognition achieving state-of-the-art results on the CROSS-EYED and the PolyU
Cross-Spectral databases using iris and periocular traits. In this method, each ResNet-50 model
was fine-tuned using the periocular images from VISOB 2.0. The only modification in the model
was the addition of a fully connected layer containing 256 neurons at the top to reduce the
feature dimensionality. The training was computed in the identification mode using a Softmax
cross-entropy loss function as a prediction layer. Then, in the evaluation, the prediction layer was
removed, and the final combined feature vector with a size of 1280 (5 × 256) was used to match
samples by computing the cosine distance similarity. This algorithm’s best result was 5.26% of
EER using images in the Office vs. Office lighting condition.

The second-place method (Bennet University) used Directional Threshold Local Binary
Pattern (DTLBP), and wavelet transform for feature extraction (handcrafted features). Then, the
Chi-square distance was employed to compute the similarity between the stack of images. This
method’s best result was 26.21% of EER in the Office vs. Office lighting condition. Finally, the
third approach employed the GoogleNet model pre-trained in the ImageNet database for feature
extraction and euclidean distance to compute the similarity between the pairs of images. A Long
Short Term Memory (LSTM) model using the euclidean distance scores as input was used to
predict whether the pair of images is from the same subject or not. This method’s best result was
39.77 of EER in the Office vs. Office lighting condition.

To the best of our knowledge, VISOB 2.0 was the first competition to use multi-frame
ocular recognition. The results show that comparison across different illumination was the most
difficult for all methods. The open-world (subject-independent) protocol is a realistic scenario for
applications in environments without restriction and prior knowledge of the subjects. Finally, the
submitted algorithms’ performance shows that there is still room for improvement in this area.

3.3.5 Cross-Eyed - Cross-Spectral Iris/Periocular Competition

The first Cross-Eyed competition was held in 2016 at the 8th IEEE International
Conference on Biometrics: Theory, Applications, and Systems (BTAS). The aim of the
competition was the evaluation of iris and periocular recognition algorithms using images
captured at different wavelengths. The CROSS-EYED database [18, 19], employed in the
competition, has iris and periocular images obtained simultaneously at the VIS and NIR
wavelengths.

Iris and periocular recognition were evaluated separately. To avoid the use of iris
information in the periocular evaluation, a mask excluding the entire iris region was applied. Six
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algorithms submitted by 2 participants, named HH from Halmstad University and NTNU from
Norway Biometrics Laboratory, qualified. The final evaluation was carried out with another set
of images, containing 632 images from 80 subjects for periocular recognition and 1,280 images
from 160 subjects for iris recognition.

The evaluation consisted of enrollment and template matching of intra-class (all NIR
against all VIS images) and inter-class comparisons (3 NIR against 3 VIS images – per class).
A metric based on Generalized False Accept Rate (GFAR) and Generalized False Reject Rate
(GFFR) was used to verify the performance of the submitted algorithms. These metrics generalize
the FMR and the FNMR, including Failure-to-enroll (FTE) and Failure-to-acquire (FTA). Finally,
to compare the algorithms, the GF2 metric (GFRR@GFAR = 0.01) was employed.

Halmstad University (HH) team submitted 3 algorithms. The approaches consist
of fusing features extracted with Symmetry Patterns (SAFE), Gabor Spectral Decomposition
(GABOR), Scale-Invariant Feature Transform (SIFT), Local Binary Patterns (LBP) and Histogram
of Oriented Gradients (HOG). These fusions were evaluated combining scores from images
obtained by the same sensors and also by different sensors. The evaluated algorithms differ by
the fusion of different features: ��1 fusing all the features; ��2 fusing SAFE, GABOR, LBP
and HOG; and ��3 fusing GABOR, LBP and HOG. The algorithms were applied only to
periocular recognition, and the best performance was achieved by ��1, which achieved an EER
of 0.29% and GF2 of 0.00%. More details can be found in [18].

The Norwegian Biometrics Laboratory (NTNU) also submitted 3 algorithms, which
applied the same approaches for feature extraction from iris and periocular traits. The iris region
was located using a technique based on the approach proposed by Raja et. al. [194], and features
were extracted through histograms resulting from the multi-scale BSIF, a bank of independent
binarized statistical filters. These histograms were compared using the Chi-Square distance
metric. Lastly, an SVM was employed to obtain the fusion and scores corresponding to each
filter. The best approach achieved EER of 4.84% and GF2 of 14.43% in periocular matching,
and EER of 2.78% and GF2 of 3.31% in iris matching.

In 2017, the second edition of this competition was held [19]. Similarly to the first
competition, the submitted approaches were ranked by EER and GF2 values. Comparisons in
periocular images were made separately for each eye, i. e., the left eyes were compared only with
left eyes, and the same for the right eyes. The main difference was in the database used, as the
training set consisted of the CROSS-EYED database and the test set was made with 55 subjects.
As in the first competition, the matching protocol consisted of intra- and inter-class comparisons,
in which all intra-class comparisons were performed and only 3 random images per class were
applied in the inter-class comparisons. Results and methodologies of 4 participants were reported,
being 4 participants with 11 algorithms for periocular recognition, and 1 participant with 4

algorithms for iris recognition. Two of these participants took part in the first competition,
Halmstad University (HH) and Norwegian Biometrics Laboratory (NTNU). The other three
competitors were IDIAP from Switzerland, IIT Indore from India, and an anonymous.

The best method using periocular information was submitted by ��1, which fused
features based on SAFE, GABOR, SIFT, LBP and HOG. Their approach, similar to the one
proposed in the first competition, reached EER and GF2 values of 0.82% and 0.74%, respectively.
For iris recognition, the best results were attained by #)#*4, which was based on BSIF features
and reported EER and GF2 values of 0.05% and 0.00%, respectively.

We point out two main contributions of these competitions: (i) the release of a new
cross-spectral database, and (ii) the evaluation of several approaches using iris and periocular
traits with some promising strategies that can be applied for cross-spectral ocular recognition.
Nevertheless, we also highlight some problems in their evaluation protocols. First, the periocular
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evaluation in the second competition only matches left eyes against left eyes and right eyes against
right eyes using prior knowledge of the database. Another problem is the comparison protocol,
which uses only 3 images per class in inter-class comparisons instead of all images without
specifically reporting which ones were used. There is also no information on code availability,
and details of the methodologies are lacking, limiting the reproducibility.

3.4 DEEP LEARNING APPROACHES FOR OCULAR RECOGNITION

Recently, deep learning approaches have won many machine learning competitions,
even achieving superhuman visual results in some domains [123]. Therefore, in this section, we
describe recent works that applied deep learning-based techniques to ocular biometrics including
iris, periocular and sclera recognition, gender and age classification, and subject-independent
recognition.

3.4.1 Iris Recognition

Liu et al. [90] presented one of the first works applying deep learning to iris recognition.
Their approach, called DeepIris, was created for recognizing heterogeneous irises captured by
different sensors. The proposed method was based on a CNN model with a bank of Pairwise filters,
which learns the similarity between a pair of images. The evaluation in verification protocol was
carried out in the Q-FIRE and CASIA cross-sensor databases and reported promising results
with EER of 0.15% and 0.31%, respectively.

Gangwar and Joshi [91] also developed a deep learning method for iris verification
on the cross-sensor scenario, called DeepIrisNet. They presented two CNN architectures for
extracting iris representations and evaluated them using images from the ND-IRIS-0405 and ND
Cross-Sensor-Iris-2013 databases. The first model was composed of 8 standard convolutional,
8 normalization, and 2 dropout layers. The second one, on the other hand, has inception
layers [153] and consists of 5 convolutional layers, 7 normalization layers, 2 inception layers,
and 2 dropout layers. Compared to the baselines, their methodology reported better robustness
on different factors such as the quality of segmentation, rotation, and input, training, and
network sizes.

To demonstrate that generic descriptors can generate discriminant iris features, Nguyen
et al. [93] applied distinct deep learning architectures to NIR databases obtained in controlled
environments. They evaluated the following CNN models pre-trained using images from the
ImageNet database [131]: AlexNet, VGG, Inception, ResNet and DenseNet. Iris representations
were extracted from normalized images at different depths of each CNN architecture, and a multi-
class SVM classifier was employed for the identification task. Although no fine-tuning process
was performed, interesting results were reported in the LG2200 (ND Cross-Sensor-Iris-2013)
and CASIA-IrisV4-Thousand databases. In their experiments, the representations extracted from
intermediate layers of the networks reported better results than the representations from deeper
layers.

The method proposed by Al-Waisy et al. [92] used left and right irises information
for the identification task. In this approach, each iris was first detected and normalized, and
then features were extracted and matched. Finally, the left and right irises matching scores
were fused. Several CNN configurations and architectures were evaluated during the training
phase and, based on a validation set, the best one was chosen. The authors also evaluated other
training strategies such as dropout and data augmentation. Experiments carried out on three
databases (i.e., SDUMLA-HMT, CASIA-IrisV3-Interval, and IIT Delhi Iris) reported a 100%
rank-1 recognition rate in all of them.
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Generally, an iris recognition system has several preprocessing steps, including seg-
mentation and normalization (using Daugman’s approach [57]). In this context, Zanlorensi et
al. [23] analyzed the impact of these steps when extracting deep representations from iris images.
Applying deep representations extracted from an iris bounding box without both segmentation
and normalization processes, they reported better results compared to those obtained using
normalized and segmented images. The authors also fine-tuned two pre-trained models for face
recognition (i.e., VGG-16 and ResNet50) and proposed a data augmentation technique by rotating
the iris bounding boxes. In their experiments, using only iris information, an EER of 13.98%
(i.e., state-of-the-art results) was reached in the NICE.II database.

As the performance of many iris recognition systems is related to the quality of detection
and segmentation of the iris, Proença and Neves [34] proposed a robust method for inaccurately
segmented images. Their approach consisted of corresponding iris patches between pairs of
images using a CNN model, which estimates the probability that two patches belong to the same
biological region. According to the authors, the comparison of these patches can also be performed
in cases of bad segmentation and non-linear deformations caused by pupil constriction/dilation.
The following databases were used in the experiments: CASIA-IrisV3-Lamp, CASIA-IrisV4-
Lamp, CASIA-IrisV4-Thousand, and WVU. The authors reported results using good quality
data as well as data with severe segmentation errors. Using accurately segmented data, they
achieved EER values of 0.6% (CASIA-IrisV3-Lamp), 2.6% (CASIA-IrisV4-Lamp), 3.0%
(CASIA-IrisV4-Thousand) and 4.2% (WVU).

The methodology proposed in [94] does not require preprocessing steps, such as iris
segmentation and normalization, for iris verification. In this approach, which is based on deep
learning models, the authors used biologically corresponding patches to discriminate genuine
and impostor comparisons in pairs of iris images, similarly to IRINA [34]. These patches were
learned in the normalized iris images and then remapped into a polar coordinate system. In this
way, only a detected/cropped iris bounding box is required in the matching stage. State-of-the-art
results were reported in three NIR databases, achieving EER values of 0.6%, 3.0%, and 6.3% in
the CASIA-Iris-V4-Lamp, CASIA-IrisV4-Thousand, and WVU, respectively.

In [29], Wang and Kumar claimed that iris features extracted from CNN models are
generally sparse and can be used for template compression. In the cross-spectral scenario, the
authors evaluated several hashing algorithms to reduce the size of iris templates, reporting that
the supervised discrete hashing was the most effective in terms of size and matching. Features
were extracted from normalized iris images with some deep learning architectures, e.g., CNN
with softmax cross-entropy loss, Siamese network, and Triplet network. Promising results were
reported by incorporating supervised discrete hashing on the deep representations extracted
with a CNN model trained with a softmax cross-entropy loss. The proposed methodology was
evaluated on a cross-spectral scenario and achieved EER values of 12.41% and 6.34% on the
PolyU Cross-Spectral and CROSS-EYED databases, respectively.

Zanlorensi et al. [24] performed extensive experiments in the cross-spectral scenario
applying two CNN models: ResNet-50 [85] and VGG16 [84]. Both models were first pre-trained
for face recognition and then fine-tuned using periocular and iris images. The results of the
experiments, carried out in two databases: CROSS-EYED and PolyU Cross-Spectral, indicated
that it is possible to apply a single CNN model to extract discriminant features from images
captured at both NIR and VIS wavelengths. The authors also evaluate the impact of representation
extraction at different depths from the ResNet-50 model and the use of different weights for fusing
iris and periocular features. For the verification task, their approach achieved state-of-the-art
results in both databases on intra- and cross-spectral scenarios using iris, periocular, and fused
features.
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3.4.2 Periocular Recognition

Luz et al. [46] designed a biometric system for the periocular region employing the
VGG-16 model [84]. Promising results were reported by performing transfer learning from
the face recognition domain and fine-tuning the system for periocular images. This model was
compared to a model trained from scratch, showing that the proposed transfer learning and fine-
tuning processes were crucial for obtaining state-of-the-art results. The evaluation was performed
in the NICE.II and MobBIO databases, reporting EER values of 5.92% and 5.42%, respectively.

Using a similar methodology, Silva et al. [48] fused deep representations from iris and
periocular regions by applying the Particle Swarm Optimization (PSO) to reduce the feature vector
dimensionality. The experiments were performed in the NICE.II database and promising results
were reported using only iris information and also fusing iris and periocular traits, reaching EER
values of 14.56% and 5.55%, respectively.

Proença and Neves [51] demonstrated that periocular recognition performance can
be optimized by first removing the iris and sclera regions. The proposed approach, called
Deep-PRWIS, consists of a CNNs model that automatically defines the regions of interest in the
periocular input image. The input images were generated by cropping the ocular region (iris and
sclera) belonging to an individual and pasting the ocular area from another individual in this
same region. They obtained state-of-the-art results (closed-world protocol) in the UBIRIS.v2
and FRGC databases, with EER values of 1.9% and 1.1%, respectively.

Zhao and Kumar [88] developed a CNN-based method for periocular verification. This
method first detects eyebrow and eye regions using a Fully Convolutional Network (FCN) and
then uses these traits as key regions of interest to extract features from the periocular images.
The authors also developed a verification oriented loss function (Distance-driven Sigmoid
Cross-entropy loss (DSC)). Promising results were reported on six databases both in closed- and
open-world protocols, achieving EER values of 2.26% (UBIPr), 8.59% (FRGC), 7.68% (FOCS),
4.90% (CASIA-IrisV4-Distance), 0.14% (UBIRIS.v2) and 1.47% (VISOB).

Using NIR images acquired by mobile devices, Zhang et al. [89] developed a method
based on CNN models to generate iris and periocular region features. A weighted concatenation
fused these features. These weights and also the parameters of convolution filters were learned
simultaneously. In this sense, the joint representation of both traits was optimized. They
performed experiments in a subset of the CASIA-Iris-Mobile-V1.0 database reporting EER
values of 1.13% (Periocular), 0.96% (Iris) and 0.60% (Fusion).

3.4.3 Sclera, Age, and Gender Recognition

In ocular biometrics using the sclera region, deep learning techniques are generally
applied in the segmentation stage [43, 239, 240, 241], helping the recognition system by locating
traits as the sclera itself and the iris. As described by Vitek et al. [242], the recognition is
often performed using the segmented sclera vasculature by employing key-point and dense-grid
descriptors as SIFT, SURF, ORB, and Dense SIFT. As the sclera is a relatively new ocular
biometric trait, there are currently few deep learning-based approaches to perform person
recognition [243, 244].

Regarding segmentation methods, Lucio et al. [43] proposed two approaches based
on FCN and GAN to segment the sclera region. Experiments performed on two ocular databases
demonstrated that the FCN model achieved better results on a single-sensor configuration.
In contrast, for the cross-sensor scenario, the GAN model reached higher scores. Wang et
al. [241] presented the ScleraSegNet, which is based on the U-Net model. The authors also
proposed and compared different embed attention modules in the U-Net model regarding learning
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discriminative features. Extensive experiments using three ocular databases showed that the
channel-wise attention module was the most effective for performing the segmentation and that
data augmentation techniques improved the generalization ability. Naqvi and Loh [240] proposed
a model for sclera segmentation employing a residual encoder and decoder network, called Sclera-
Net. The authors also addressed sclera segmentation in images acquired by different sensors
achieving promising results in this work. Recent competitions on sclera segmentation [239, 245]
demonstrated that deep learning-based methods achieved the highest results, mainly models
based on the U-Net and FCN architectures. The results reached in these competitions show that
sclera segmentation is still an open and challenging problem.

Regarding the sclera recognition task based on deep learning methods, one of the first
approaches found in the literature is the ScleraNET [243]. In this work, the authors proposed
a multi-task CNN model combining losses from the identity and gaze direction recognition.
This model extracts vasculature descriptors and uses them to infer the identity of the subject.
Promising results were achieved and compared with handcrafted-based methods. Maheshan et
al. [244] also proposed a method based on CNN for sclera recognition. The model comprises
four convolutional layers, followed by a max-pooling layer and a fully connected layer at the top.
The proposed model was evaluated and compared with the top 2 ranked algorithms in the SSRBC
2016 Sclera Segmentation and Recognition Competition [246] reaching the higher scores.

Soft biometrics, such as gender and age classification, using ocular traits are tasks that
have gained attention in research in recent years [53, 54, 55, 56, 17]. It can be used as primary
biometric information to improve the accuracy of biometric systems [54]. A few works in the
literature employ ocular traits (iris and periocular region) using VIS images for gender and age
estimation/classification based on deep learning techniques [106, 55, 56, 107, 17].

Kuehlkanp and Bowyer [56] performed extensive experiments using hand-crafted and
deep-representations with iris and periocular traits for gender classification. The results sustain
that gender prediction using periocular images is at least 17% more accurate than normalized iris
images, regardless of the classifier (hand-crafted or deep representations). Krishnan et al. [53]
investigated the fairness of ocular biometrics methods using mobile images across gender. The
evaluation employing the ResNet, LightCNN, and MobileNet models for periocular biometrics
presented an equivalent verification performance for males and females. However, in gender
classification, males outperformed females by a difference of 22.58%.

Rattani et al. [106] investigated age classification using VIS ocular images acquired by
mobile devices. The proposed method consists of a 6-layer CNN model comprising convolution,
max-pooling, batch-normalization, and fully connected layers. Ages were grouped into 8 ranges,
and a soft-max activation was employed to compute each group’s probability. Experiments
conducted on a 5-fold cross-validation protocol using only the ocular region (both eyes, eyebrows,
and periocular region) reported closer and promising results than full-face methods for age
estimation, achieving an accuracy (%) of 46.97 ± 2.9 against 49.5 ± 4.4, respectively. Angeloni
et al. [107] proposed a multi-stream CNN model using facial parts for age classification. The
model consists of 4 streams, each one for the following traits: eyebrows, eyes, nose, and mouth.
The proposed approach reached better results in accuracy than methods employing images from
the entire face. Furthermore, an ablation study on the method reported that the eyes region was
the most important trait to improve the entire approach accuracy.

In a recent work [17], the authors proposed a multi-task learning network for periocular
recognition using VIS images acquired by mobile devices. The CNN architecture was composed
of a MobileNetV2 as a base model and 5 fully connected layers followed by soft-max layers for
the following soft biometrics tasks: identity, age, gender, eye side, and smartphone model classi-
fication. The proposed multi-task model reached better results than several CNN architectures
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for verification and identification tasks on experiments conducted on closed- and open-world
(subject-independent) protocols. Moreover, performing an ablation study, the authors stated that
age, gender, and mobile device classification were critical components regarding the accuracy of
the method for the identification task.

3.4.4 Final Remarks

Regarding the works described in this section, we point out that some deep learning-based
approaches for iris recognition aim to develop end-to-end systems by removing preprocessing
steps (e.g., segmentation and normalization) since a failure in such processes would probably
affect recognition systems [23, 34, 94]. Several works [46, 48, 51, 88, 89] show that the periocular
region contains discriminant features and can be used, or fused with iris and sclera information,
to improve the performance of biometric systems. Furthermore, recent works on soft-biometrics
for periocular recognition [53, 54, 55, 56, 17] reported promising results and stated that this kind
of information can be used to improve the accuracy of the biometric system. Finally, biometric
systems evaluated in the open-world setting are still a challenging task since it is highly affected by
the intra- and inter-class variability, especially in VIS images collected in unconstrained scenarios.
Some works [29, 17] evaluated the most employed CNN architectures for the verification task
in the open-world setting. These approaches are generally based on Pairwise filters, Siamese,
and Triplet networks. Regarding only these kinds of architectures, in [29], the Siamese model
achieved better results than the Triplet network. On the other hand, in [17] the Pairwise filters
network reached better results than the Siamese network. It is important to note that in both
works [29, 17], even in the open-world setting, the best results for the verification task were
achieved employing CNN models using a soft-max layer in the training stage.

For completeness, there are several works and applications with ocular images using
deep learning frameworks, such as: spoofing and liveness detection [36, 37], left and right
iris images recognition [38], contact lens detection [40], iris detection [42], sclera and iris
segmentation [43, 44], iris and periocular region detection [41], gender classification [174, 39],
iris/periocular biometrics by in-set analysis [35], iris recognition using capsule networks [47],
and sensor model identification [45].
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4 PROPOSED METHODS

This chapter describes the proposed methods organized into the following subjects: Iris
recognition without preprocessing, Cross-spectral ocular biometrics, Attribute normalization for
the periocular region, and the newest collected periocular database (UFPR-Periocular). We also
detail all the experimental protocols and the databases employed for each experiment.

4.1 IRIS RECOGNITION WITHOUT PREPROCESSING

As described in the previous sections, a typical iris recognition system comprises
the following stages: image acquisition, feature extraction, and matching. Before feature
extraction and recognition, a preprocessing technique is applied, such as iris and pupil detection,
segmentation for noise removal, and normalization using the rubber sheet model [57], as shown
in Figure 4.1.

(a) (b) (c) (d) 

Figura 4.1: Preprocessing steps: (a) original image, (b) iris and pupil delineation, (c) iris segmentation for noise
removal and (d) normalization.

The first step – the iris detection – is of paramount importance because an error in
this stage will be propagated to the next steps (feature extraction and matching), degrading
the biometric system’s accuracy. Several works in the literature propose methodologies and
approaches for iris detection [33, 4, 247, 248, 249, 250, 251, 252]. Considering that many
applications use normalized iris images as input for feature representation, most iris detection
methodologies are based on finding a circle to delimit iris and pupil regions. These methodologies
usually have some parameters, such as min/max iris and pupil boundaries, which need to be tuned
specifically for each database. Recently we have found methodologies developed for the detection
of the iris bounding box, i.e., the smallest square/rectangle bounding box that encompasses the
entire region of the iris [42].

The second step, i.e., the iris segmentation, consists of extracting the visible iris portion
of the image. This process uses a variety of boundary and region detection, and active contour
techniques [30]. The delineation process’s output image contains only the annulus region
(delimited by iris and pupil circles) of the iris. This image may have occlusion by eyelids and
eyelashes and noises caused by reflections, glasses, angle, among others. In order to totally
or partially remove these noises/occlusions, a segmentation approach is applied. Commonly,
the approaches for NIR and VIS iris images segmentation are different. There are several
works with different techniques in the literature, usually applied to segment non-ideal iris
images [183, 228, 91]. An extensive and detailed survey on iris segmentation and detection is
presented by Jan [253].

Finally, the delineated and segmented iris image is normalized using the rubber sheet
model [57, 4, 30]. This normalization process consists of transforming the iris’s circular
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region from the Cartesian space into a polar coordinate system resulting in a rectangular region.
Regarding image scale and iris deformation caused by pupil dilation or constriction (considering
the uniform iris elasticity), normalization processes are applied to reduce these issues. After the
preprocessing steps, features are extracted from the resultant image. Then, the final biometric task
uses these features (e.g., matching, classification, verification). Nonetheless, errors may occur
in the preprocessing, and these can degrade and compromise the effectiveness of a biometric
system.

In our first investigation, we study the use of iris images without preprocessing to extract
deep representations. For this, it was necessary to evaluate the impact of the preprocessing
steps such as segmentation for noise removal and normalization in the recognition system’s
performance. The iris recognition system employed consists of three main stages: image
preprocessing, feature extraction, and matching, as shown in Fig. 4.2.

Figura 4.2: Ocular biometric system employed to evaluate the impact of iris preprocessing. Extracted from [23].

In the preprocessing stage, we applied segmentation and normalization techniques. We
also employed a data augmentation technique to increase the number of training samples. The
features were extracted using two CNN models, which were fine-tuned using the original images,
and the images generated through data augmentation. Finally, the matching was performed using
the cosine distance.

We performed the experiments using images from two databases: Nice.II [52] and
CASIA-IrisV3-Interval [2]. These databases were chosen because they can represent the best and
worst-case concerning the images’ capture since the CASIA-IrisV3-Interval has images obtained
in a controlled environment and the Nice.II was obtained in an uncontrolled environment.

For the Nice.II the official competition protocol was used, being 1, 000 images from 171

classes for training and 1, 000 images from 150 classes for the test. As the CASIA-IrisV3-Interval
database does not have an official protocol, we split the database into two subsets based on
the number of classes. In this way, the protocol consists of 1, 383 images from 197 classes for
training (first 197 classes of the database) and 1, 256 images from 196 classes for the test. It is
important to note that each class corresponds to one eye of the individual, i.e., the right and left
eyes of the same individual corresponds to two distinct classes.

4.1.1 Image preprocessing

To fine-tuning CNN models trained in other domains without excluding any layers
and using them as feature extractors, it was necessary to resize the input images to the CNN
default input size. Depending on the aspect ratio of the image, the resizing process can generate
distortions. Considering that the input size of the most common CNN models has a 1 : 1 aspect
ratio, normalized images are the ones with the most significant distortions. The distortion caused
by resizing in normalized images is shown in Fig. 4.3.
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(original image) (a) (b)

Figura 4.3: (a) Non-segmented and (b) segmented images for noise removal from Nice.II database. From top to
bottom, it is shown 8:1, 4:2 aspect ratios and non-normalized images. Adapted from [23].

We generated six different inputs from the original iris images to analyze the impact
of the preprocessing. In the first input image scheme, irises were normalized with the standard
rubber sheet model [57] using an 8:1 aspect ratio. The second one was also normalized. However,
from the standard 8:1 ratio, they were rearranged in a 4:2 ratio to employ less interpolation. In
the third and last one, no normalization was performed, applying only the original iris image
as input to the models. We also evaluated the impact of the segmentation technique for noise
removal in all representations. When fine-tuning was applied, all the iris images used as inputs
for the feature representation models, once normalized, were resized to 224 × 224 pixels.

The normalization through the rubber sheet model [57] aims to obtain invariance
regarding size and pupil dilatation. In the NICE.II database, the main problem is the difference
of the iris size due to distances in the image capture. On the other hand, the images from the
CASIA-IrisV3-Interval database were obtained in a controlled environment. Thus there is no
variation in distance, pupil dilation/contraction, or noises in the iris region.

The segmentation process for noise removal was performed using the methodology
proposed by Tan et al. [183], winner of NICE.I [52] and Gangwar et al. [254], for Nice.II and
CASIA-IrisV3-Interval databases, respectively. It is important to note that in non-normalized
images, an arc delimitation preprocessing (i.e., two circles, an outer and an inner), based on the
iris mask, was used.

4.1.2 Data Augmentation

Since the training subset has only 1, 000 images belonging to 171 classes in Nice.II
database and 1, 383 images from 197 classes in the CASIA-IrisV3-Interval database, it is essential
to apply data augmentation techniques to increase the number of training samples. The fine-tuning
process can result in a better generalization of the models with more images. In this sense, we
rotate the original images at specific angles since we noted some slightly rotated images in the
dataset.

The ranges of angles used were: −15° to 15°, −30° to 30°, −45° to 45°, −60° to 60°,
−90° to 90° and −120° to 120°. The rotation angles were proportional for each range, generating
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4, 6, and 8 images for each original image, respectively. For example, considering the range −60°

to 60° with 6 angles, for each original image, another six were generated rotating −60°, −40°,
−20°, 20°, 40° and 60°. Performing the validation of all these data augmentation methods on all
input images, we determined (based on accuracy and loss) that the best range was −60° to 60° with
6 rotation angles. These parameters were applied to perform the data augmentation in the training
set, totaling 7, 000 images in Nice.II database and 9, 681 images in CASIA-IrisV3-Interval
database. Some samples generated by data augmentation can be seen in Fig. 4.4.

(a) (b) (c)

Figura 4.4: Data augmentation samples in Nice.II database: (a) −45° rotated images, (b) original images and (c) 45°

rotated images. Extracted from [23].

4.1.3 Feature Extraction and Matching

For feature extraction, the fine-tuning of VGG16 [134] and ResNet-50 [6] CNN models
(architectures) trained for face recognition (VGG16 [84] and ResNet-50 [85]) were applied. The
VGG16 model has an architecture composed of convolution, activation (ReLu), pooling, and fully
connected layers. The Resnet-50 model has the same operations as VGG16, with the difference
being deeper and considering residual information between the layers. We choose these models
based on the promising results reported by Luz et al. [46] employing the VGG16 architecture
for the periocular recognition and the capability of better generalization of the ResNet models
compared to the VGG ones, as detailed in Section 2.2.1.

For both models, we employed the same architecture modifications and parameters
described in [46]: in the training stage, we removed the last layer (used to predict) and added two
new layers. The new last layer, used for classification, is composed of 171 neurons for Nice.II
database and 197 neurons for CASIA-IrisV3-Interval database, where each neuron corresponds
to a class in the training set and has a softmax-loss function. The layer before that one is a
fully-connected layer with 256 neurons used to reduce feature dimensionality.

We split the training set into two subsets with 80% of the data for training and 20%
for validation. We defined two learning rates for 30 epochs: 0.001 for the first 10 epochs and
0.0005 for the remaining 20. Other parameters include momentum = 0.9 and batch size = 48.
The number of epochs used for training was chosen based on the experiments carried out in the
validation set (highest accuracy and lowest loss). Similarly to [255, 46], we do not freeze the
weights of any layer during training to perform the fine-tuning. The last layer of each model was
removed, and the features were extracted on the new last layer.
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We evaluated the models adopting the verification protocol reporting EER and Decida-
bility metrics. For this, the all against all approach was applied in the test set, generating 4,634

intra-class pairs and 494,866 inter-class pairs.
The cosine metric, which measures the cosine of the angle between two vectors, was

applied to compute the difference between feature vectors. This metric can be used for information
retrieval [256] due to its invariance to scalar transformation. The cosine distance metric is
represented by
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where � and � stand for the features vectors. We also employed other distances such as Euclidean,
Mahalanobis, Jaccard, and Manhattan. However, due to its best performance, only the cosine
distance was reported.

4.2 CROSS-SPECTRAL OCULAR BIOMETRICS

In this research, we analyzed the use of deep representations from the eye regions (iris
and periocular) on the cross-spectral scenario, i.e., obtaining models able to match VIS against
NIR wavelength images. Particularly, we evaluated and combined deep representations extracted
from two modalities (traits): the iris and periocular regions. In the periocular modality, features
were extracted from the entire image (considering the iris, sclera, skin, eyelids, and eyelashes
components). On the other way, the iris features were extracted from a bounding box, i.e., a
cropped image that contains only the iris region, as described by Zanlorensi et al. [23] (detailed
in Section 4.1). These bounding boxes were generated manually by coarse annotations and are
publicly available to the research community1 and appear in [41]. Samples of the periocular and
iris images used in our experiments are shown in Figure 4.5.

(a) (b) (c) (d)

Figura 4.5: VIS (a,c) and NIR (b,d) samples from the PolyU Cross-Spectral (a,b) and CROSS-EYED (c,d) databases.
First and second rows show periocular and iris images, respectively. Extracted from [24].

Deep representations from the periocular and iris regions were extracted using a similar
approach proposed in [23]. In this way, the VGG16 [84] and ResNet-50 [85] CNN models trained
for face recognition were fine-tuned to each modality. We choose these models because they
reported promising results in recent works applied in ocular recognition [46, 23, 48, 29]. The
architecture modifications for both models consist of removing the last layer and adding two
new layers. The first one is a fully-connected layer with 256 neurons that will be used as the
feature representation and aim to reduce the feature dimensionality, since originally VGG16 and

1https://web.inf.ufpr.br/vri/databases/iris-periocular-coarse-

annotations/
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ResNet-50 have 4096 and 2048 features/outputs, respectively. The other layer added has a softmax
cross-entropy loss function, and it is used only in the training phase in an identification mode.
We chose a feature vector of 256 features based on the results reported by Luz et al. [46], where
the authors evaluated different feature vector sizes and stated that vector with such size (256)
showed the best trade-off regarding matching time, amount of memory required and matching
effectiveness. The strategy applied to extract features from NIR and VIS images is detailed in
Figure 4.6.
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Figura 4.6: The cross-/intra-spectral ocular recognition strategy. A single model (ResNet50 or VGG16) is used to
learn features from both spectra: NIR and VIS. Extracted from [24].

The number of epochs used for training was chosen based on a validation subset
composed of 20% of the training set images. After defining the number of epochs, the CNN
models were trained using the entire training set. The training was performed with the Stochastic
Gradient Descent (SGD) optimizer without freezing any weights of the pre-trained layers. As
previously mentioned, the last layer of each model was removed in the test phase, and the features
were extracted from the first new last layer, composed of 256 neurons.

The all-against-all matching was performed using the cosine distance metric, which
measures the cosine of the angle between two vectors. Regarding the similarity of biometrics
features/representations, it is known that orientation is more important than the magnitude
coefficient. Thus, the cosine distance often outperforms other distance measures.

The iris and periocular region representations were combined, applying the score-level
fusion technique. Similar to approaches that used score-level fusion for iris and periocular region
traits [121, 122, 20] and also based on the individual performance of each trait in our experiments,
we chose to use weights of 0.6 and 0.4 for the periocular region and iris representations,
respectively. To perform fusion at the score-level, first, we compute the matching for each trait
independently. Then we calculated the weighted arithmetic mean between the cosine distances
computed for the iris and periocular modalities.

It is important to note that, in the model learning process, all images (NIR and VIS)
were used to feed the CNN models, making a single model to learn discriminant features of
images captured in both spectra. To the best of our knowledge, this procedure is similar to the
adopted in [29] for the CNN architecture. In the test phase the features are extracted for all
images NIR or VIS images. However, note that only images acquired under different wavelengths
are paired to match for evaluating the cross-spectral scenario.

4.2.1 Database, Metrics and Protocol

To evaluate the proposed method, we employed two well-known databases: the PolyU
Cross-Spectral, and the CROSS-EYED. The PolyU Cross-Spectral database is composed of
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images obtained simultaneously under both NIR and VIS wavelengths. The entire database has
12,540 images with a resolution of 640 × 480 pixels. For every spectrum, there are 15 samples of
each eye (left and right) from 209 subjects (418 classes) [20]. The CROSS-EYED iris database
has 3,840 images from 120 subjects (240 classes). There are 8 samples from each of the classes
for every spectrum. The resolution of the images is 400 × 300 pixels. All images were obtained
at a distance of 1.5 meters, in an uncontrolled indoor environment, with a wide variation of
ethnicity and eye colors, and lightning reflexes [18].

In all experiments, the verification setting was the unique considered, in which pairs of
images are compared in order to determine whether a subject is whom he claims to be or not. For
this, following a one-against-all pairwise matching strategy, all pairs of genuine and impostor
comparisons were generated.

For a fair comparison with the state-of-the-art methods, the test protocol used in this
work follows the procedures given in[20, 29], which consists of a closed-world protocol, where
different instances of the same class are distributed in the training and test sets. In the PolyU
Cross-Spectral database, the first ten instances from every subject were used for training, and
the remainder (five) were employed for the matching. In the CROSS-EYED database, the first
five instances from every subject are used for training, and the remaining three instances were
employed for the matching.

To perform the experiments, we considered that in both databases, the NIR and VIS
images were obtained synchronously. Thus, here in the intra-class comparison in the cross-spectral
scenario, images of the same index were not matched because they represent the same image but
in different spectra. Note that in work by Wang and Kumar [29], the authors considered that in
the CROSS-EYED database, non-synchronously spectrum images were obtained (based on the
numbers of intra- and inter-class comparisons), so they matched NIR against VIS images of the
same index in the intra-class comparison. Then for a fair comparison with the state-of-the-art
method [29], in the closed-world protocol, we also report results considering that the NIR and
VIS images were obtained non-synchronously in the CROSS-EYED database.

To evaluate the robustness of the proposed methodology, we also evaluated and reported
results on the open-world protocol, in which the training and test sets have images from different
classes. In other words, there are no images from the same subject in the training and testing.
For both databases, we use the first half of the subject images for training and the second half for
testing in this protocol.

The images and class distributions for the training and test sets, as well as the number of
genuine and impostors pairs generated in the test phase for both databases and protocols, are
detailed in Table 4.1.

Tabela 4.1: Genuine and impostor matches for the Closed-world (CW) and Open-world (OW) protocols on Cross- and
Intra-spectral scenarios. *The comparison with the state-of-the-art methods was performed using the closed-world
protocol. Adapted from [24].

Database Protocol Scenario Train/Test Images(Classes) Gen./Imp. pairs

PolyU Cross-Spectral
CW

Cross 8,360(418)/4,180(418) 4,180/4,357,650

Intra 8,360(418)/2,090(418) 4,180/2,178,825

OW
Cross 6,270(209)/6,270(209) 21,945/9,781,200

Intra 6,270(209)/3,135(209) 21,945/4,890,600

CROSS-EYED
CW

Cross 2,400(240)/1,440(240) 720/516,240

Intra 2,400(240)/720(240) 720/258,120

OW
Cross 1,920(120)/1,920(120) 3,360/913,920

Intra 1,920(120)/960(120) 3,360/456,960
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For evaluating the algorithms, we choose the EER metric and the decidability index
3′ [257]. The mean and standard deviation of 30 repetitions for the EER and decidability figures
obtained by the proposed methodology are shown.

4.3 ATTRIBUTE NORMALIZATION

The development of ocular biometric systems operating under unconstrained environ-
ments is challenging since the collected data (images) may present some problems caused by
noise, blur, motion blur, occlusion, eye gaze, off-angle, eyeglasses, contact lenses, makeup,
among others. These problems generate high intra-class variability, degrading the uniqueness of
the features extracted from the biometric trait.

With the recent advancement of deep learning techniques, several approaches applying
Convolutional Neural Networks (CNN) to periocular recognition have been developed [46, 51, 88,
258, 24, 259]. An advantage of applications based on deep learning is that, unlike the handcrafted
features, there is a process of representation learning. This process can produce feature extractor
models invariant for some intra-class factors, depending on the training set’s image samples.
Nevertheless, new approaches are still being developed using handcrafted features and achieving
top-ranked results in ocular recognition competitions [19, 27, 122, 13]. The main advantage
of these approaches is the computational cost compared with methods based on deep learning
techniques.

Even though CNN approaches can handle intra-class variability, several factors are
present in images captured under unconstrained environments, which affect periocular recognition
in biometric systems based on deep learning and mainly on handcrafted features. Regarding these
kinds of problems, we proposed an image preprocessing method to normalize the most common
image attributes that can decrease the recognition effectiveness in periocular biometric systems.
The proposed attribute normalization prepossessing consists of remove or correct attributes that
are different in a pairwise image comparison using deep models for image editing, as shown
in Fig. 4.7. For example, in a database containing images from the same subject wearing and
not wearing eyeglasses, the proposed preprocess will normalize all the images by removing the
eyeglasses.

The proposed attribute normalization preprocess consists of applying generative deep
models for image attribute editing to a pair of ocular images aiming for the correction/removal of
different attributes. Regarding the intra-class variability in periocular images caused by different
aspects such as eyeglasses and eye gaze, the hypothesis that we considered in this work is that it
is possible to decrease this variability by an attribute normalization preprocess.

To perform such a normalization process, we employed the AttGAN model [26] since its
results compared with other state-of-the-art methods demonstrated a better capacity in changing
facial attributes keeping the subject identity information as can be seen in Fig. 4.8, which is a
crucial factor for a biometric system.

The AttGAN [26] is a deep model based on an encoder/decoder architecture. Compared
with other facial attribute editing models, its main difference is an attribute classification constraint,
which requires the correct attribute manipulation in the generated images. Regarding information
loss, the architecture has a reconstruction learning, used to preserve the other attribute details,
i.e., changing only the required attribute. The model training is performed using three learning
components: reconstruction, attribute classification, and adversarial learning. These components
guarantee the visual and reconstruction quality of the generated images with the correct attribute
manipulation. Due to all these features and mainly regarding reducing the information loss, we
choose the AttGAN network to perform the proposed attribute normalization. As the generative
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Figura 4.7: Cohesive perspective of the proposed attribute normalization scheme: images feed an encoder/decoder
deep model for automatic image editing, removing the eyeglasses and correcting deviated gazes before the recognition
step. This contributes for reducing the intra-class variability without significantly reducing the discriminability
between classes, which is the key for the observed improvements in performance. Extracted from [25].
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Figura 4.8: Comparison of state-of-the-art methods for facial attribute editing results. Adapted from [26].

model receives as input an image and the attributes to be changed, we performed the attribute
normalization by feeding the model with the images and requesting removing the eyeglasses and
correcting the eye gaze.

The AttGAN can handle multiple attribute editing, i.e., changing more than one attribute
with a single model. However, as we had to use different databases for each attribute normalization
in our experiments, we trained two models, one for each attribute. We validate our proposed
normalization by comparing the results of biometric systems based on handcrafted features and
deep learning approaches using the original and normalized images.
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4.3.1 Databases and Baseline Methods

We performed the experiments in two databases: the UFPR-Eyeglasses, collected for
this research and used for the eyeglasses attribute normalization, and the UBIPr [16] for the eye
gaze normalization. These databases were detailed below.

The UFPR-Eyeglasses is a new challenging database to evaluate the occlusion effect
caused by eyeglasses in periocular recognition using images captured by mobile devices under
real uncontrolled environments. The database has 2,270 periocular images (containing both
eyes) from 83 subjects (166 classes), all taken by the subject himself/herself using his/her
smartphone at the visible wavelength in 3 distinct sessions. This database comprises images
captured by mobile devices from subjects wearing and not wearing eyeglasses. We manually
annotated each image’s iris bounding box to perform the image normalization regarding rotation
and scale and to crop the periocular region of each eye to 256 × 256 pixels. The intra-
class variations are mainly caused by different aspects of the images, such as illumination,
occlusions, distances, reflection, eyeglasses, and image quality. The UFPR-Eyeglasses database
(images and annotations) is available (under author request) to the research community at
[https://web.inf.ufpr.br/vri/databases/ufpr-eyeglasses/].

The UBIPr database [16] is composed of 10,250 ocular images from 344 subjects. These
images were captured under an uncontrolled environment by a Canon OS 5D camera with a
400mm focal length at visible wavelength. The main challenge of this database includes several
variability factors in the images, such as different distances, scales, occlusions, poses, eye gazes,
and eyeglasses. Unlike the UFPR-eyeglasses, this database does not contain images from the
same subject with and without eyeglasses. Instead, there are images from the same subject with
and without eye gaze. Thus, we used this database to evaluate eye gaze normalization.

We evaluated the proposed ocular normalization scheme using handcrafted features [115,
122], and deep representations based on approaches that recently reported state-of-the-art
performances in the periocular and iris recognition [46, 23]. These methods are detailed below.

For the evaluation of the handcrafted features-based methods, we employed three
approaches. The first is one of the first periocular recognition methods found in the literature,
proposed by Park et al. [115]. This approach combined Local Binary Patterns (LBP) [260,
261], Histogram of Oriented Gradients (HOG) [262], and Scale-Invariant Feature Transform
(SIFT) [263] features. The second one is the winner approach in the Miche-II contest [27, 122],
which also has an iris recognition scheme. However, in our experiments, we used only the
periocular recognition module, which was performed using Multi-Block Transitional Local
Binary Patters (MB-TLBP) features [122]. Finally, we combine the following features by a
score-level fusion: LBP, Local Phase Quantization (LPQ) [264], HOG and SIFT. All the features
were extracted from a gray representation of the images extracted by the intensity channel. The
normalized LBP and LPQ features were extracted from 16 patches with a size of 64 × 64 pixels
cropped from each image. Then, each patch’s features were concatenated, generating feature
vectors with a size of 944 and 4096 for the LBP and LPQ, respectively. The HOG features were
extracted from the entire image producing a feature vector with 72,900 of size.

Recent works reported promising results in developing biometric systems based on deep
representations of the periocular region [46, 51, 258, 24, 259]. These approaches generally consist
of a CNN model with a Softmax layer at the top, and it is trained using the cross-entropy loss
function. After the training stage, the Softmax layer is removed, and then the deep representations
can be extracted at the newest last layer. To evaluate the attribute normalization using these kinds of
models, we employed two state-of-the-art methods to extract deep representations [46, 24]. These
methods are based on the VGG16 and ResNet50 architectures pre-trained for face recognition [85].
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Both methods generated a feature vector with a size of 256 for each image. We reported results
from 5 runs (repetitions) for each model.

4.4 UFPR-PERIOCULAR DATABASE AND SOFT-BIOMETRICS

Regarding the existing ocular databases, it is difficult to assess the scalability performance
of biometric applications, i.e., if an approach can produce discriminative features even in a large
database in terms of the number of subjects. As we can see in Table 4.2, the databases in the
literature do not present a large number of subjects and have few sensors and session captures.
As described in some previous works [24, 25], one common problem in ocular biometric systems
is the intra-class variability, which is generally affected by noises and attributes present in the
same individual images. A robust biometric system must handle images obtained from different
sensors, extracting distinctive representations regardless of the source and environment. In this
sense, samples from the same subject obtained in different sessions are of paramount importance
to capture the intra-class variation caused by various noise factors.

Tabela 4.2: Comparison of the available ocular databases containing VIS images with our database (UFPR-Periocular).

database Subjects Images Sessions Sensors

VSSIRIS [194] 28 560 1 2

CSIP [198] 50 2,004 N/A 7

QUT [193] 53 212 N/A 2

IIITD [192] 62 1,240 N/A 3

UPOL [195] 64 384 N/A 1

UTIRIS [191] 79 1,540 2 2

MICHE-I [15] 92 3,732 2 3

CROSS-EYED [18, 19] 120 3,840 N/A 2

PolyU Cross-Spectral [20] 209 12,540 2 2

UBIRIS.v1 [190] 241 1,877 2 1

UBIRIS.v2 [1] 261 11,102 2 1

UBIPr [16] 261 10,950 2 1

VISOB [14] 550 158,136 2 3

UFPR-Periocular 1,122 33,660 3 196

Considering the above discussion, we created a new periocular database, called UFPR-
Periocular. The subjects themselves collected the images that compose our database through a
mobile application (app). In this way, the images were captured in unconstrained environments,
with a minimum of cooperation from the participant, and have real noises caused by poor lighting,
occlusion, specular reflection, blur, and motion blur. Fig. 4.9 shows some samples from the
UFPR-Periocular. We also performed an extensive benchmark, employing several state-of-the-art
architectures of CNN models that have been explored to develop ocular biometric systems.

Note that our database is the largest one in terms of the number of subjects, sessions, and
sensors, as shown in Table 4.2. It also has more images than all databases except VISOB. Another
key feature is that the proposed database has images captured by 196 different mobile devices.
The samples captured with less cooperation of the participant in unconstrained environments have
several variations on the ocular images since they are obtained during three different sessions. To
the best of our knowledge, this is the first ocular database with more than 1,000 subject samples
and the largest one in different sensors in the literature. Thus, we believe that it can provide a
new benchmark to evaluate and develop new robust ocular biometric approaches.
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Figura 4.9: Sample images from the UFPR-Periocular database. Observe that there is great diversity in terms of
lighting conditions, age, gender, eyeglasses, specular reflection, occlusion, resolution, eye gaze, and ethnic diversity.

4.4.1 Database Information

The UFPR-Periocular database was created to obtain images in unconstrained scenarios
that contain realistic noises caused by occlusion, blur, and variations in lighting, distance, and
angles. To this end, we developed a mobile application (app) enabling the participants to collect
their pictures using their smartphones2. The single instruction to the participants is to place their
eyes on a region of interest marked by a rectangle drawn in the app, as illustrated in “Picture”
in Fig. 4.11. We also restricted the images to be captured in 3 sessions, with 5 images per
session and a minimum interval of 8 hours between sessions. In this way, we guarantee that the
database has samples of the same subject with different noises, mainly due to different lighting
and environments. Furthermore, imposing this minimum time interval between sessions, it
is possible to collect different attributes in the same subject’s periocular region, e.g., subjects
wearing and not wearing glasses and makeup. Another attractive feature of this database is that
all participants are Brazilian. As Brazil has great ethnic diversity, there are images of subjects
from different races, making this one of the first periocular databases with such cultural diversity.

The images were collected from June 2019 to January 2020. The gender distribution of
the subjects is (53,65%) male and (46,35%) female, and approximately 66% of the subjects are
under 31 years old. In total, the database has images captured from 196 different mobile devices
– the five most used device models were: Apple iPhone 8 (4.1%), Apple iPhone 9 (3.1%), Xiaomi

Mi 8 Lite (3.0%), Apple iPhone 7 (3.0%), and Samsung Galaxy J7 Prime (2.7%). We remark
that each subject captured all of their images using the same device model. The distribution of
age, gender, and image resolutions present in our database is shown in Fig. 4.10.

The database has 16,830 images of both eyes from 1,122 subjects. Image resolutions
vary from 360 × 160 to 1862 × 1008 pixels – depending on the mobile device used to capture the
image. We cropped/separated the right and left eyes’ periocular regions to perform the benchmark,
assigning a unique class to each side. Note that, once the image is cropped, the remainder image
region is discarded as claimed in our project request to the Ethics Committee Board to preserve at
maximum the identity of the participants. We manually annotated the eye corners with 4 points

2Project approved by the Ethics Committee Board from the Health Science Sector of the Federal University
of Paraná, Brazil – Process CAAE 02166918.2.0000.0102, registered in the Plataforma Brazil system – https:
//plataformabrasil.saude.gov.br/
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Figura 4.10: Age, gender, and image resolution distributions in the UFPR-Periocular database. (a) note that gender
has a balanced distribution, but the age range is concentrated under 30 years old (64% of the subjects). (b) more
than 45% of the images have a resolution between 1034 × 480 and 1736 × 772 pixels, and more than 65% of the
images have resolution higher than 740 × 400 pixels.

per image (inside and outside eye corners) and used these points to normalize the periocular region
regarding scale and rotation. This process is detailed in Fig. 4.11. All the original and cropped
periocular images, along with the eye corner annotations, are publicly available for the research
community (upon request) at https://web.inf.ufpr.br/vri/databases/ufpr-
periocular/.

Using the center point of each eye (average corners point), the images were rotated and
scaled to normalize the eye positions in size of 512 × 512 pixels. Then, the images were split
into 2 patches to create the left and right eye sides, generating 33,660 periocular images from
2,244 classes. This database’s intra- and inter-class variability are mainly caused by lighting,
occlusion, specular reflection, blur, motion blur, eyeglasses, off-angle, eye-gaze, makeup, and
facial expression.

4.4.2 Experimental Protocols

We proposed protocols for the two most common tasks in biometric systems: identifica-
tion (1:#) and verification (1:1). The identification task consists of determining a subject sample
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Figura 4.11: Image acquisition and normalization process. After the subject takes the shot, the rectangular region
(outlined in blue) is cropped and stored. Then, the images are normalized in terms of rotation and scale using the
manual annotations of the eyes’ corners. Finally, the normalized images are cropped, generating the periocular
regions of the left and right eyes.

identity (probe) within a known database or a cluster (gallery). The probe is compared against
all the gallery samples, considering the closest match as the subject’s identity. Furthermore,
probabilistic models can be employed/trained using the gallery data to determine the probe
subject’s identity based on the highest confidence output. The verification task refers to verifying
whether a subject is whom she/he claims to be. If two samples match sufficiently, the identity
is verified; otherwise, it is rejected [32]. Verification is usually used for positive recognition,
where the goal is to prevent multiple people from using the same identity. The identification
is a critical component in negative recognition, where the goal is to prevent a single person
from using multiple identities [3]. Furthermore, the proposed protocol also encompasses two
different scenarios: closed-world and open-world. In the closed-world protocol, the database is
split through different samples from the same subject, i.e., training and test sets have samples of
the same subjects. In the open-world protocol, there are different subjects both in the training and
test sets. The identification task is performed in the closed-world protocol, while the verification
task can be performed in both closed and open-world protocols.

In the open-world protocol, we also proposed two different splits regarding the training
and validation sets. Note that we do not change the test set, keeping it in the open-world
protocol, and only vary the training protocols. The first split uses the closed-world protocol,
in which the training and validation sets have samples from the same subjects. On the other
hand, the second split has different subjects in the training and validation sets, i.e., in an
open-world protocol. With these two training/validation splits, it is possible to use multi-class
networks (classification/identification) and also models based on the similarity of two distinct
inputs (verification task): Siamese networks, triplet networks, and pairwise filters. Although
models built for the verification task can be trained through the closed-world protocol, the design
can be better improved using the open-world protocol to split the training and validation sets, as
it is a more realistic scenario regarding the test set. Table 4.3 summarizes the proposed protocols.

Tabela 4.3: Images, Classes, and Pairwise comparison distributions for the closed-world (CW) and open-world (OW)
protocols. Values for each fold (3 folds).

Protocol Train/Val
Images / Classes Genuine pairs / Impostor pairs

Train Validation Test Train Validation Test

CW CW/CW 13,464/2,244 8,976/2,244 11,220/2,244 33,660/ 90,599,256 13,464/40,266,336 22,440/12,583,230

OW OW/CW 13,464/1,496 8,976/1,496 11,220/ 748 53,856/ 90,579,060 22,440/40,257,360 78,540/ 4,190,670

OW OW/OW 15,000/1,000 7,440/ 496 11,220/ 748 105,000/112,387,500 52,080/27,621,000 78,540/ 4,190,670
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We defined 3 folds with a stratified split into training, validation, and test sets for both
biometric tasks (identification and verification) for all protocols. The test set comprises all
against all comparisons for genuine pairs and aiming to reduce the pairwise comparisons only
impostor pairs using the images of all subjects with the same sequence index, i.e., the 8-th images
of each subject are combined two-at-a-time to generate all impostor pairs, for 1 ≤ 8 ≤ =, where
= = 3 sessions × 5 images. As the UFPR-Periocular database has images captured under 3

sessions, we designated one session as a test set for each fold in the closed-world protocol. Thus,
we have images from sessions 1 and 2, 2 and 3, 3 and 1 for training/validation, and sessions 3, 1,
and 2 for testing, respectively for each of the three folds. To evaluate the ability of the models to
recognize subjects samples at different environments, for all folds, we employed samples of both
sessions in the training and validation sets to fed the models with images from the same subject
varying the capture conditions. For each subject, we employed the first 3 images of each session
for training and the remaining 2 for validation (60%/40% for training/validation splits). The test
set contains new images from the subjects present in the training/validation sets with different
noises caused by the environment, lighting, occlusion, and facial attributes.

For the open-world protocol we generated the training, validation, and test sets by
splitting the database through different subjects. Thus, for each fold, the test set has samples
of subjects not present in the training/validation set. Splitting sequentially by the subject index
for each fold, we have samples of 748 subjects for training/validation and 374 subjects for
testing. Moreover, we proposed two different splits for the training/validation splits, the first one
containing images of the same subject in the training and validation sets (closed-world validation).
The second one contains samples from different subjects in the training and validation sets
(open-world validation). Both training/validation protocols have pros and cons. The advantage
of using the closed-world validation is that the training has samples of more subjects than the
open-world validation protocol. However, in this scenario, the models can only learn distinctive
features for the gallery samples and may not extract distinctive features for subjects not present in
the training process. On the other hand, the open-world validation has samples of fewer subjects
than the closed-world validation protocol, presenting a more realistic scenario since samples of
subjects not known in the training stage are present in the validation set. In the closed-world
validation protocol, for each one of the 748 subjects in the training set, we used the first 3 images
of each session for training and the remaining 2 for validation (60%/40% for training/validation
splits). In the open-world validation protocol, we employed samples of the first 700 subjects
for training and samples of the remaining 48 subjects to validate each fold. The number of the
generated pairwise comparison for all protocols are detailed in Table 4.3. The files determining
all splits and setups detailed in this section are available along with the UFPR-Periocular database.

4.4.3 Benchmark and Experimental Setup

To carry out an extensive benchmark, we employed different models and strategies
based on deep learning that achieved promising results in the ImageNet database/contest [131]
and were applied in recent ocular works recognition [23, 48, 46, 29, 24]. These methods differ
from each other in network architecture, loss function, and training strategies. We employed the
following CNN architectures: Multi-class classification, Multi-task learning, Siamese networks,
and Pairwise filters networks.

Inspired by several recent works [46, 23, 265, 29, 266, 24, 149, 50, 49], we performed
the benchmark employing pre-trained models on ImageNet and also for face recognition (VGG16-
Face and ResNet50-Face). Afterward, we fine-tuned these models using the UFPR-Periocular
database.
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Regarding Multi-class models, we evaluated the following CNN architectures that achie-
ved expressive results in the ImageNet database/contest [131]: VGG16 [134], VGG16-Face [84],
ResNet50 [6], ResNet50V2 [150], ResNet50-Face [85], InceptionResNet [7], MobileNetV2 [138],
DenseNet121 [136], and Xception [135]. In summary, these models’ architecture has several
convolutional, pooling, activation, and fully-connected layers.

Regarding soft-biometric information, we created a Multi-task network sharing all
convolutional layers and some dense layers. The model has exclusive dense layers for each task
(soft-biometric prediction), followed by the prediction layers, using the softmax cross-entropy as
function loss. Based on the multi-class classification results, we employed the MobileNetV2
as the base model on the multi-task approach. Furthermore, as detailed in Table 4.4, we build
our multi-task model with hard parameter sharing for the following 5 tasks: (i) class prediction,
(ii) age rate, (iii) gender, (iv) eye side, and (v) smartphone model.

Tabela 4.4: Multi-task architecture in the closed-world protocol.

# Layer Connected to Input Output

0 MobileNetV2 (88 layers) – 224 × 224 × 3 1280

1 dense (classes) #0 1280 256

2 dense (age) #0 1280 256

3 dense (gender) #0 1280 256

4 dense (eye side) #0 1280 256

5 dense (smartphone model) #0 1280 256

6 predict (classes) #1 256 2244

7 predict (age) #2 256 10

8 predict (gender) #3 256 2

9 predict (eye side) #4 256 2

10 predict (smartphone model) #5 256 196

For the age estimation task, we generated the classes by grouping ages into the following
10 ranges: 18-20, 21-23, 24-26, 27-29, 30-34, 35-39, 40-49, 50-59, 60-69, and 70-79. The
gender and eye side prediction tasks have only 2 classes, while the smartphone model prediction
has 196 classes. Note that Multi-task learning networks can use the weighted loss for the tasks,
penalizing the wrong classification of some tasks more than others. For simplicity, we do not use
weighted losses in our experiments in this research, giving equal importance to all tasks.

Inspired by [90], which is one of the first works applying deep learning for iris verification,
we also evaluated the performance of the pairwise filters network. This kind of model directly
learns the similarity between a pair of images through pairwise filters. The Pairwise Filters
Network is a Multi-class classification model that contains one or two outputs informing whether
the input pairs are from the same class or different classes. The difference is that the network
input is a pair of images instead of a single image. As this model requires a pair of images as
input, different concatenation strategies can be employed. Following Liu et al. [90], we generated
the input pairs by concatenating the images at the depth level. Let two RGB images with shapes
of 224 × 224 × 3, concatenating both images by their channels; the resulting input image will
have a shape of 224 × 224 × 6. The output of our model has two neurons and uses a softmax
cross-entropy loss. As the verification problem has only two classes, this model’s output can
have only one neuron using a binary cross-entropy loss function. As in the Multi-task network,
we employed the MobileNetV2 as a base model for our Pairwise Filters Network.

We also evaluated the Siamese Network, which learns similarities between a pair of
images by a twin branch architecture sharing its parameters. As detailed in Table 4.5 we employ
the MobileNetV2 as a base model for each branch and compute the similarity between the input
pair images using the contrastive loss [158, 159].
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Tabela 4.5: Siamese network architecture description.

# Layer Connected to Input Output

0 branch_a (MobileNetV2 (88 layers)) – 224 × 224 × 3 256

1 branch_b (MobileNetV2 (88 layers)) – 224 × 224 × 3 256

2 dense #0 and #1 512 256

3 Euclidean dist. / Contrastive loss #2 256 1

Similar to recent works on ocular recognition [46, 23, 48, 13], we modify all models
by adding a fully convolutional layer before the last layer (softmax) to generate a feature vector
with a size of 256 for each image. The models’ default input size is 224 × 224 × 3, except for the
InceptionResNet and Xception models, which have an input size of 299 × 299 × 3. Note that the
input dimensions are different because we used pre-trained models, and our fine-tuning process
should respect the input size of the original architectures.

For all methods, the training was performed during 60 epochs with a learning rate of
10

−3 for the first 15 epochs and 5 × 10
−4 for the remaining epochs using the Stochastic Gradient

Descent (SGD) optimizer. Then, we used the epoch’s weights that achieve the lower loss in the
validation set to perform the evaluation.

We employed Rank 1 and Rank 5 accuracy for the identification task and the Area Under
the Curve (AUC), Equal Error Rate (EER), and Decidability (DEC) metrics for verification.
Furthermore, to generate the verification scores, we computed the cosine distance between the
deep representations generated by each CNN model.

Regarding the models explicitly developed for the verification tasks, i.e., the Siamese
network and the Pairwise Filters network, as this task has unbalanced samples of genuine and
impostors pairs, selecting the best samples to perform the training is challenging. Thus, trying to
fit the models by feeding them as diverse samples as possible, we employed all genuine pairs
and randomly selected the same number from the impostor pairs for each epoch. Hence, each
epoch may have different impostor samples. However, for a fair comparison, we generated the
random impostor pairs only once for each epoch and fold and used the same samples for training
both models. The reported results are from 5 repetitions for each fold, except for the Siamese and
Pairwise filter networks, in which we ran only 3 repetitions due to the high computational cost.

4.4.4 Final Remarks

This Chapter described and detailed the proposed methods, experimental protocols,
and databases employed to evaluate the raised hypothesis. We started by our method to analyze
the need for segmentation and normalization process in iris recognition when using deep
representations. Then, we described a method using a single CNN model to directly learn
representations from ocular images (iris and periocular) captured at NIR and VIS wavelengths.
Regarding the intra-class variability due to non-inherent subject attributes, we described our
proposed approach employing a GAN model to perform an attribute normalization. Finally, we
presented our new collected periocular database (UFPR-Periocular), describing how the images
were collected, the database stats, and the proposed experimental protocol.
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5 RESULTS AND DISCUSSION

In this chapter, we report and discuss the results achieved for our approaches organized
by the same subjects detailed in Chapter 4 (Proposed Methods).

5.1 THE IMPACT OF PREPROCESSING ON DEEP REPRESENTATIONS FOR IRIS RE-
COGNITION

In our first investigation, we performed an ablation study of preprocessing steps on deep
representations for iris recognition analyzing the impact of the data augmentation techniques
using non-segmented iris images. Then, the impact of both iris segmentation and iris delineation.
Finally, the best results obtained by the proposed approaches are compared with state-of-the-art
in the Nice.II database. In all subsections, the impact of normalization is also analyzed. Note
that in all experiments, the mean and standard deviation values from 30 runs are reported. For
analyzing the different results, we perform statistical paired t-tests at significance level U = 0.05.
The table rows with the results that have no statistical difference were painted with the same color.

5.1.1 Data Augmentation

In the first analysis, we evaluated the impact of the data augmentation. For ease of
analysis, all iris images employed in this initial experiment may contain noise in the iris region,
i.e., no segmentation preprocessing was applied. As shown in Table 5.1 and Table 5.2, in all
cases where data augmentation was employed, the decidability and EER values improved with
statistical difference. Note that the models trained with data augmentation reported smaller
standard deviations. In general, it is also observed that non-normalization yielded better results
than 8 : 1 and 4 : 2 normalization schemes for both trained models, i.e., VGG16 and ResNet-50.

Tabela 5.1: Impact of the data augmentation (DA) on the effectiveness obtained with VGG16 and ResNet-50 in
Non-Seg. experiments in Nice.II database

Network Norm. DA EER (%) Decidability

VGG16 8 : 1 26.19 ± 1.95 1.3140 ± 0.1246

VGG16 8 : 1 X 23.63 ± 1.33 1.4712 ± 0.0881

ResNet-50 8 : 1 24.38 ± 1.41 1.4297 ± 0.0916

ResNet-50 8 : 1 X 19.18 ± 0.75 1.7988 ± 0.0552

VGG16 4 : 2 24.77 ± 1.42 1.4127 ± 0.1001

VGG16 4 : 2 X 18.74 ± 0.89 1.8527 ± 0.0712

ResNet-50 4 : 2 22.78 ± 1.22 1.5307 ± 0.0853

ResNet-50 4 : 2 X 17.11 ± 0.53 1.9822 ± 0.0482

VGG16 Non-Norm 23.32 ± 1.10 1.4891 ± 0.0740

VGG16 Non-Norm X 17.49 ± 0.90 1.9529 ± 0.0760
ResNet-50 Non-Norm 21.51 ± 0.97 1.6119 ± 0.0677

ResNet-50 Non-Norm X 13.98 ± 0.55 2.2480 ± 0.0528

It is worth noting that the largest differences occurred in the non-normalized inputs in
both databases, with greater impact specifically in the ResNet-50 model in Nice.II database,
where the mean EER dropped 7.53% and the decidability improved 0.6361 when applying data
augmentation.
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Tabela 5.2: Impact of the data augmentation (DA) on the effectiveness obtained with VGG16 and ResNet-50 in
Non-Seg. experiments in CASIA-Interval database

Network Norm. DA EER (%) Decidability

VGG16 8 : 1 11.67 ± 1.47 2.5992 ± 0.1845

VGG16 8 : 1 X 10.86 ± 0.86 2.7117 ± 0.1089

ResNet-50 8 : 1 8.30 ± 0.90 2.9443 ± 0.1257

ResNet-50 8 : 1 X 6.95 ± 0.66 3.2183 ± 0.1220

VGG16 4 : 2 12.18 ± 1.13 2.5552 ± 0.1300

VGG16 4 : 2 X 11.37 ± 0.73 2.6376 ± 0.0978

ResNet-50 4 : 2 10.43 ± 0.77 2.6682 ± 0.1015

ResNet-50 4 : 2 X 9.01 ± 0.95 2.9009 ± 0.1322

VGG16 Non-Norm 9.85 ± 0.79 2.8412 ± 0.1104

VGG16 Non-Norm X 7.42 ± 0.50 3.2700 ± 0.0798
ResNet-50 Non-Norm 7.06 ± 0.65 3.1861 ± 0.1003

ResNet-50 Non-Norm X 5.50 ± 0.37 3.5350 ± 0.0781

5.1.2 Segmentation

In the second analysis, we investigated the impact of the segmentation for noise removal.
For such an aim, the CNN models were trained (fine-tuned): using segmented and non-segmented
images, all with data augmentation.

In Nice.II database, as can be seen in Table 5.3, for the VGG model segmentation has
improved the results. On the other hand, for the ResNet-50 model, the non-segmented images
have presented better results. For both models, statistical difference is achieved in two situations,
and in another one (rows painted with the same color), there is no statistical difference.

Tabela 5.3: Impact of the segmentation (Seg.) on the effectiveness of iris verification for VGG16 and ResNet-50
networks in Nice.II database. Same color rows do not present statistical significance.

Network Norm. Seg. EER(%) Decidability

VGG16 8 : 1 X 22.58 ± 1.07 1.5437 ± 0.0697

VGG16 8 : 1 23.63 ± 1.33 1.4712 ± 0.0881

ResNet-50 8 : 1 X 20.68 ± 1.39 1.6801 ± 0.1071

ResNet-50 8 : 1 19.18 ± 0.75 1.7988 ± 0.0552

VGG16 4 : 2 X 18.00 ± 0.93 1.9055 ± 0.0750

VGG16 4 : 2 18.74 ± 0.89 1.8527 ± 0.0712

ResNet-50 4 : 2 X 17.44 ± 0.85 1.9450 ± 0.0803

ResNet-50 4 : 2 17.11 ± 0.53 1.9822 ± 0.0482

VGG16 Non-Norm X 17.48 ± 0.68 1.9439 ± 0.0589

VGG16 Non-Norm 17.49 ± 0.90 1.9529 ± 0.0760

ResNet-50 Non-Norm X 14.89 ± 0.78 2.1781 ± 0.0794

ResNet-50 Non-Norm 13.98 ± 0.55 2.2480 ± 0.0528

The results of the CASIA-Interval database (Table 5.4) show that in the two cases where
there is a statistical difference, the best performance occurred using segmented images, with
the lowest impact on ResNet-50. In the normalized images in aspect ratio 8 : 1, there is no
statistical difference using or not a segmentation technique. The results of non-normalized and
non-segmented images are not presented because the methodology used for segmentation does
not provide these images. However, unlike the Nice.II database, in this one, the images do not
have a specular reflection, and the segmentation process only removes eyelid and eyelash.
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Tabela 5.4: Impact of the segmentation (Seg.) on the effectiveness of iris verification for VGG16 and ResNet-50
networks in CASIA-Interval database. Same color rows do not present statistical significance.

Network Norm. Seg. EER(%) Decidability

VGG16 8 : 1 X 10.69 ± 0.95 2.7085 ± 0.1132

VGG16 8 : 1 10.86 ± 0.86 2.7117 ± 0.1089

ResNet-50 8 : 1 X 6.84 ± 0.45 3.2607 ± 0.0853

ResNet-50 8 : 1 6.95 ± 0.66 3.2183 ± 0.1220

VGG16 4 : 2 X 10.19 ± 0.96 2.7869 ± 0.1195

VGG16 4 : 2 11.37 ± 0.73 2.6376 ± 0.0978

ResNet-50 4 : 2 X 8.27 ± 0.82 3.0154 ± 0.1251

ResNet-50 4 : 2 9.01 ± 0.95 2.9009 ± 0.1322

VGG16 Non-Norm X 7.42 ± 0.50 3.2700 ± 0.0798

VGG16 Non-Norm ∗ ∗ ∗ ∗ ∗ ∗

ResNet-50 Non-Norm X 5.50 ± 0.37 3.5350 ± 0.0781
ResNet-50 Non-Norm ∗ ∗ ∗ ∗ ∗ ∗

Regarding the better results achieved by the ResNet-50 models when using non-
segmented images, we hypothesized that this might be related to the fact that the ResNet-50
architecture uses residual information and is deeper than VGG. Thus, some layers of ResNet-50
might be responsible for extracting discriminant patterns present in regions that were occluded in
the segmented images but not in non-segmented ones. Moreover, in segmented images, black
regions (zero values) were employed for representing noise regions, and no special treatment was
given for those regions.

It is noteworthy that segmentation is a complex process and might impact positively
or negatively. However, as the best results were achieved by the ResNet-50 models using
non-segmented images, we state that the segmentation preprocessing can be disregarded using
the suitable representation model. Once again, non-normalization showed better results in all
scenarios, being more expressive than in the data augmentation analysis.

5.1.3 Delineation

We also evaluated the impact on recognizing using a usual delineated iris image and a
non-delineated iris image, i.e., applying only the squared iris bounding box as input to the deep
feature extractor. In both situations, non-normalized and non-segmented images are used. A
delineated iris image and its corresponding bounding box (or non-delineated) from Nice.II and
CASIA-Interval databases are shown in Fig. 5.1.

The comparison of the results of this analysis is shown in Table 5.5 and 5.6. Although
the results reported by delineated iris images are better in some cases, there is a statistical
difference only using the VGG16 model in the CASIA-Interval database. From this result, we
state that the iris bounding box can be used as input for deep representation without the iris
delineating (a.k.a. detection) preprocessing.

Tabela 5.5: Comparison of delineated and non-delineated iris images in Nice.II database. Both with no segmentation
(for noise removal), normalization and data augmentation.

Method Delineated EER (%) Decidability

VGG16 X 17.49 ± 0.90 1.9529 ± 0.0760

VGG16 17.52 ± 0.98 1.9652 ± 0.0790

Resnet-50 X 13.98 ± 0.55 2.2480 ± 0.0528

Resnet-50 14.26 ± 0.47 2.2304 ± 0.0542
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(a) (b)

Figura 5.1: Input images: (a) delineated iris and (b) non-delineated iris / bounding box version from the NICE.II
(top row) and CASIA-IrisV3-Interval database.

Tabela 5.6: Comparison of delineated and non-delineated iris images in CASIA-Interval database. Both with no
normalization and data augmentation.

Method Delineated EER (%) Decidability

VGG16 X 7.42 ± 0.50 3.2700 ± 0.0798

VGG16 7.02 ± 0.48 3.3583 ± 0.0973

Resnet-50 X 5.50 ± 0.37 3.5350 ± 0.0781

Resnet-50 5.42 ± 0.43 3.5532 ± 0.0900

Considering that the bounding box is not pure iris, it is important to verify if this
modality can still be considered iris recognition since there may be discriminant patterns that
have been extracted from regions outside the iris. Therefore, the proposed methodology was
compared with state-of-the-art methods using delineated iris images.

5.1.4 Final Considerations

Finally, the results attained with our models using non-normalized, non-segmented, and
delineated iris images are compared with the state-of-the-art approaches in the Nice.II database
and it is shown in Table 5.7.

These experiments showed that the representations learned using deep models perform
better the iris verification task on the Nice.II competition when the preprocessing steps of
normalization and segmentation (for noise removal) are removed, outperforming the state-of-the-
art method, which uses preprocessed images.

Tabela 5.7: Results on the NICE.II contest database. Comparison of the state of the art with the results achieved by
our proposed approaches using non-normalized, non-segmented, and delineated iris images.

Method EER (%) Decidability

Wang et al.[212] 19.00 1.8213

Silva et al.[48] 14.56 2.2200

Proposed ResNet-50 [23] 13.98 2.2480

It is important to note that the methodology proposed by Silva et al. [48] reports the
result of the CNN model that achieved better values of EER and decidability, so we also report
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the results of our best CNN model. However, for a fair comparison, we encourage using the
models’ mean value since there may be variations in the results.

5.2 DEEP REPRESENTATIONS FOR CROSS-SPECTRAL OCULAR BIOMETRICS

This section presents and discusses the results observed for the intra- and cross-spectral
scenarios for both iris and periocular recognition. We started by providing the results using the
closed-world protocol to establish a baseline concerning the state-of-the-art methods. We also
investigated the impact of the feature vector size and the weights used to merge information from
the periocular region and iris traits. The results using the open-world protocol are then presented
to perceive how robust deep representations can be obtained. Using the ResNet-50 model, a
comparison of the verification effectiveness using features extracted from various network depths
is performed. Lastly, we performed a subjective analysis of the pairwise errors.

In a complementary setting, we explored the advantages of fusing representations
from the periocular and iris traits to improve the recognition performance. Similar to previous
works [20, 121, 122] that applied higher weights in the most discriminating traits, and also
considering that in all our experiments, the periocular region reported better results compared to
the iris, we decided to use constant weights of 0.6 and 0.4 respectively for the periocular and iris
representations when obtaining the fused score by linear combination.

5.2.1 Closed-world protocol

At first, Table 5.8 and Table 5.9 report the results observed for verification mode, in the
cross-spectral and intra-spectral scenarios (NIR against NIR and VIS against VIS) and using the
closed-world protocol. In a way similar to Nalla and Kumar [20] and also to guarantee a fair
comparison to their method, the fusion of two spectra on the PolyU Cross-Spectral database was
carried out by linear combination, using weights of 0.6 and 0.4, respectively, to the NIR and
VIS images. However, based on the individual spectral results, on the CROSS-EYED database,
we used weights of 0.6 and 0.4 for the VIS and NIR representations, respectively. Also, on
the CROSS-EYED database, we can perceive that the spectral fusion using iris representations
extracted by the VGG16 model reported lower results than the only VIS spectral information.
The results show that the representations obtained from NIR images presented a higher EER
value, which penalized the fusion of spectra. Therefore, lower weight for NIR representations
may improve the fusion result. The results of those fusions are shown in Table 5.8 and Table 5.9
(VIS and NIR Fusion section).

Anyway, it can be seen that - for both databases - the proposed approach achieved
better results than the state-of-the-art methods, both in the cross-spectral and in the intra-spectral
scenarios even that the protocol used in our experiments is more challenging. For example, in the
PolyU Cross-Spectral database, we used images from all 209 subjects in the experiments, while
the approaches proposed by Wang and Kumar [29], and Nalla and Kumar [20] used images from
only 140 subjects. In the CROSS-EYED database, based on the number of pairs of intra-class
comparisons reported in the experiments by Wang and Kumar [29], the authors considered
that the database has images obtained non-synchronously. Images from the CROSS-EYED
database were obtained using a dual sensor with a beam splitter, so the NIR and VIS images
are acquired simultaneously. However, we visually verified that the same index images, i.e.,
those that should be the same one in the NIR and VIS, have a random shift in each spectrum.
Thus, we reported the results using both protocols for a fair comparison with the state-of-the-art
approaches, considering the images obtained synchronously and non-synchronously. Note that
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Tabela 5.8: Results - closed-world protocol on the PolyU Cross-Spectral database. *Using only 140 subjects from a
total of 209. Extracted from [24].

Approach Modality EER (%) Decidability

Cross-Spectral

CNN with SDH [29]* Iris 5.39 2.13

CNN with SDH [29] Iris 12.41 −

VGG16 with SDH [29]* Iris 4.85 −

Proposed VGG16 Iris 2.16 ± 0.16 5.23 ± 0.08

ResNet50 with SDH [29]* Iris 7.17 −

Proposed ResNet50 Iris 1.13 ± 0.14 5.17 ± 0.08
Proposed VGG16 Periocular 1.80 ± 0.21 6.03 ± 0.20

Proposed ResNet50 Periocular 0.78 ± 0.09 5.97 ± 0.08
Proposed VGG16 Fusion 0.93 ± 0.10 6.97 ± 0.13

Proposed ResNet50 Fusion 0.49 ± 0.06 6.75 ± 0.08

VIS vs VIS

Nalla and Kumar [20]* Iris 6.56 −

Proposed VGG16 Iris 1.53 ± 0.12 6.27 ± 0.08

Proposed ResNet50 Iris 0.78 ± 0.08 5.91 ± 0.07
Proposed VGG16 Periocular 1.50 ± 0.16 6.63 ± 0.21

Proposed ResNet50 Periocular 0.61 ± 0.11 6.57 ± 0.08
Proposed VGG16 Fusion 0.76 ± 0.10 7.73 ± 0.14

Proposed ResNet50 Fusion 0.35 ± 0.06 7.44 ± 0.10

NIR vs NIR

Nalla and Kumar [20]* Iris 3.97 −

Proposed VGG16 Iris 1.21 ± 0.13 6.61 ± 0.10

Proposed ResNet50 Iris 0.68 ± 0.07 6.05 ± 0.07
Proposed VGG16 Periocular 1.56 ± 0.19 6.58 ± 0.21

Proposed ResNet50 Periocular 0.68 ± 0.10 6.59 ± 0.07
Proposed VGG16 Fusion 0.70 ± 0.11 7.86 ± 0.17

Proposed ResNet50 Fusion 0.40 ± 0.06 7.54 ± 0.09

VIS and NIR Fusion

Nalla and Kumar [20]* Iris 2.86 −

Proposed VGG16 Iris 1.01 ± 0.09 6.81 ± 0.08

Proposed ResNet50 Iris 0.59 ± 0.08 6.29 ± 0.07
Proposed VGG16 Periocular 1.36 ± 0.15 6.79 ± 0.21

Proposed ResNet50 Periocular 0.56 ± 0.10 6.82 ± 0.08
Proposed VGG16 Fusion 0.63 ± 0.10 8.05 ± 0.16

Proposed ResNet50 Fusion 0.35 ± 0.05 7.75 ± 0.10

we collected the state-of-the-art results from the original papers [20, 29], i.e., we did not have
implemented any approach from these works.

In terms of the CNN architectures, the ResNet-50 model reported lower EER values
compared to the VGG16 model in all cases. However, in some cases, specifically in the PolyU
Cross-Spectral database, the representations extracted with the VGG16 model obtained a better
separation of intra- and inter-class distributions, as shown in their Decidability index.

The results show that in CROSS-EYED, the periocular modality achieved better results
than the iris one. However, in the PolyU Cross-Spectral database, there is no significant difference
between iris and periocular representations, mainly in the intra-spectral experiments. From
a visual inspection analysis of the pairwise comparison errors (some examples are shown in
Subsection 5.2.5), we perceived that in the PolyU Cross-Spectral database, some uncontrolled
conditions present in the images such as pose, eye gaze, and rotation might penalize the quality
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Tabela 5.9: Results - closed-world protocol on the CROSS-EYED database. *Same protocol used by Wang and
Kumar [29]. Extracted from [24].

Approach Modality EER (%) Decidability

Cross-spectral

CNN with SDH [29] Iris 6.34 2.54

VGG16 with SDH [29] Iris 3.13 −

Proposed VGG16* Iris 5.58 ± 0.59 3.87 ± 0.16

Proposed VGG16 Iris 6.76 ± 0.56 3.58 ± 0.14

ResNet50 with SDH [29] Iris 6.11 −

Proposed ResNet50* Iris 2.45 ± 0.25 4.73 ± 0.09
Proposed ResNet50 Iris 3.07 ± 0.38 4.49 ± 0.09
Proposed VGG16* Periocular 2.35 ± 0.28 5.61 ± 0.20

Proposed VGG16 Periocular 3.18 ± 0.42 5.19 ± 0.21

Proposed ResNet50* Periocular 1.45 ± 0.24 4.73 ± 0.09
Proposed ResNet50 Periocular 1.95 ± 0.35 5.34 ± 0.12
Proposed VGG16* Fusion 1.86 ± 0.19 5.78 ± 0.11

Proposed VGG16 Fusion 2.66 ± 0.29 5.31 ± 0.12

Proposed ResNet50* Fusion 1.06 ± 0.15 6.29 ± 0.11
Proposed ResNet50 Fusion 1.40 ± 0.26 5.93 ± 0.12

VIS vs VIS

Proposed VGG16 Iris 3.66 ± 0.39 4.85 ± 0.16

Proposed ResNet50 Iris 2.47 ± 0.42 5.12 ± 0.13
Proposed VGG16 Periocular 2.60 ± 0.40 5.57 ± 0.21

Proposed ResNet50 Periocular 1.70 ± 0.37 5.66 ± 0.13
Proposed VGG16 Fusion 1.94 ± 0.29 6.15 ± 0.16

Proposed ResNet50 Fusion 1.17 ± 0.25 6.39 ± 0.13

NIR vs NIR

Proposed VGG16 Iris 7.31 ± 0.91 3.46 ± 0.18

Proposed ResNet50 Iris 2.74 ± 0.34 4.72 ± 0.08
Proposed VGG16 Periocular 2.97 ± 0.46 5.36 ± 0.23

Proposed ResNet50 Periocular 1.78 ± 0.39 5.54 ± 0.13
Proposed VGG16 Fusion 2.40 ± 0.35 5.36 ± 0.12

Proposed ResNet50 Fusion 1.31 ± 0.24 6.14 ± 0.12

VIS and NIR Fusion

Proposed VGG16 Iris 3.69 ± 0.39 4.65 ± 0.15

Proposed ResNet50 Iris 2.18 ± 0.31 5.25 ± 0.10
Proposed VGG16 Periocular 2.44 ± 0.43 5.70 ± 0.22

Proposed ResNet50 Periocular 1.54 ± 0.30 5.76 ± 0.13
Proposed VGG16 Fusion 1.92 ± 0.29 6.09 ± 0.14

Proposed ResNet50 Fusion 1.11 ± 0.20 6.47 ± 0.12

of the periocular representations. These conditions are more controlled in the CROSS-EYED
images. Also, CROSS-EYED images are smaller than PolyU Cross-Spectral images, so the iris
region is even smaller. The periocular images are better centralized based on the iris region in
the CROSS-EYED and not in the PolyU Cross-Spectral database. Nevertheless, CROSS-EYED
images present a more significant difference in color and illumination among classes, which
makes them more distinct and may explain the better results in VIS against VIS comparisons
than NIR against NIR.
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5.2.2 Feature size and fusion weights analyses

This section analyzes and discusses the impact of feature vector size and the weights
used for the fusion of the iris and periocular region representations. We choose the feature size
of 256 based on the experiments and results reported in [46]. Therefore, we also performed
some experiments creating new models with different sizes in the last layer before the Softmax
one, i.e., the layer used to extract the features (representations). The results of the fusion of iris
and periocular representations extracted with these models are presented in Table 5.10. Luz et
al. [46] stated that for the cosine distance metric, high dimensional vectors resulted in better
performance. Conversely, our results show that representations extracted with the ResNet50
model achieve lower values of EER when the feature vector is smaller. The same occurs in the
VGG16 model features in the PolyU Cross-Spectral database. Regarding the decidability index,
the size of the feature vector does not show to have much impact. These results may be related to
the fact that both models can generate sparse feature vectors, as stated by Wang and Kumar [29].
Thus a bigger feature vector will not always improve the performance of the biometric system.
Here, we decided to keep a feature vector size of 256 because it keeps a trade-off between EER
and Decidability.

Tabela 5.10: Feature vector size results fusing iris and periocular region traits on Cross-spectral scenario. Extracted
from [24].

Model Feat. Size
PolyU Cross-Spectral CROSS-EYED

EER (%) Decidability EER (%) Decidability

ResNet50

1024 0.54 ± 0.09 6.76 ± 0.10 1.61 ± 0.25 5.93 ± 0.13

512 0.56 ± 0.06 6.73 ± 0.08 1.35 ± 0.22 6.00 ± 0.11

256 0.49 ± 0.06 6.75 ± 0.08 1.40 ± 0.26 5.93 ± 0.12

128 0.43 ± 0.05 6.70 ± 0.08 1.35 ± 0.30 5.99 ± 0.13

64 0.37 ± 0.07 6.50 ± 0.08 1.26 ± 0.22 5.93 ± 0.15

32 0.30 ± 0.05 6.05 ± 0.15 1.41 ± 0.27 5.65 ± 0.16

VGG16

1024 0.99 ± 0.10 6.85 ± 0.08 2.68 ± 0.28 5.29 ± 0.11

512 0.92 ± 0.12 6.94 ± 0.11 2.53 ± 0.38 5.35 ± 0.14

256 0.93 ± 0.10 6.97 ± 0.13 2.66 ± 0.29 5.31 ± 0.12

128 0.80 ± 0.12 7.03 ± 0.10 2.78 ± 0.33 5.28 ± 0.10

64 0.73 ± 0.11 6.93 ± 0.11 2.67 ± 0.37 5.23 ± 0.15

32 0.69 ± 0.10 6.46 ± 0.07 2.79 ± 0.47 4.98 ± 0.17

Similar to some approaches [121, 122, 20] and based on the individual performance in
our experiments, we choose weights of 0.6 and 0.4 for the periocular and iris fusion, respectively.
Nevertheless, we evaluated the impact of different iris and periocular weights on the trait
representations fusion in the cross-spectral scenario for both models. Indeed, we impose
F? ∈ [0, 1], such that F8 + F? = 1, where F? and F8 stand for the periocular and iris weights,
respectively. The results are reported in Figure 5.2.

Even though the values of EER are lower using features extracted with the ResNet50
model, we can observe a similar behavior regarding the weight difference in both databases for
both models. That is, when the weights are appropriately combined, the best results were achieved.
We can also observe that the periocular trait has more impact on the CROSS-EYED database than
on the PolyU Cross-Spectral database. We also note that on the PolyU Cross-Spectral database,
in some cases, fusion with a higher iris weight (F8 = 0.6 and F? = 0.4 using VGG16 features)
may achieve a lower value of EER.
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VGG16 Features ResNet50 Features

Figura 5.2: Periocular weights impact on the traits fusion in the cross-spectral scenario on the PolyU Cross-Spectral
(top row) and CROSS-EYED (bottom row) databases. Extracted from [24].

5.2.3 Open-world protocol

The experimental results observed for the open-world scenario are presented in Table 5.11
and Table 5.12 for the PolyU Cross-Spectral and CROSS-EYED databases, respectively. Notice
that this protocol is more challenging since there is no sample of the test classes in the training set.
Another factor that makes it more difficult is that fewer images are available for model training
compared to the closed-world protocol, and there are more images on the test set, increasing the
pair of genuine and imposter comparisons.

Tabela 5.11: Verification in the open-world protocol on the PolyU Cross-Spectral database. Extracted from [24].

Approach Modality EER (%) Decidability

Cross-spectral

Proposed ResNet50 Iris 12.01 ± 0.78 2.44 ± 0.08

Proposed ResNet50 Periocular 8.02 ± 0.65 3.00 ± 0.11

Proposed ResNet50 Fusion 6.01 ± 0.39 3.35 ± 0.08

VIS vs VIS

Proposed ResNet50 Iris 4.30 ± 0.24 3.86 ± 0.07

Proposed ResNet50 Periocular 3.94 ± 0.27 4.14 ± 0.09

Proposed ResNet50 Fusion 2.61 ± 0.11 4.71 ± 0.06

NIR vs NIR

Proposed ResNet50 Iris 4.00 ± 0.24 3.88 ± 0.08

Proposed ResNet50 Periocular 4.00 ± 0.26 4.10 ± 0.10

Proposed ResNet50 Fusion 2.55 ± 0.17 4.68 ± 0.10



94

Tabela 5.12: Results - open-world protocol on the CROSS-EYED database. Extracted from [24].

Approach Modality EER (%) Decidability

Cross-spectral

Proposed ResNet50 Iris 8.87 ± 0.77 2.85 ± 0.11

Proposed ResNet50 Periocular 4.39 ± 0.44 3.85 ± 0.11

Proposed ResNet50 Fusion 3.51 ± 0.32 4.17 ± 0.07

VIS vs VIS

Proposed ResNet50 Iris 4.25 ± 0.35 4.01 ± 0.10

Proposed ResNet50 Periocular 3.41 ± 0.38 4.41 ± 0.11

Proposed ResNet50 Fusion 2.57 ± 0.26 4.97 ± 0.09

NIR vs NIR

Proposed ResNet50 Iris 5.04 ± 0.43 3.63 ± 0.12

Proposed ResNet50 Periocular 3.51 ± 0.40 4.38 ± 0.12

Proposed ResNet50 Fusion 2.75 ± 0.28 4.83 ± 0.10

Figura 5.3: ROC curves comparing the closed- and open-world protocols on the PolyU Cross-Spectral (top row) and
CROSS-EYED (bottom row) databases. Extracted from [24].

To perceive the differences in performance, a comparison of the results using closed-
and open-world is shown with the ROC curve in Figure 5.3. Even though a fully fair comparison
between closed- and open-world protocols is not feasible because the number of subjects used for
learning is different, it is noticeable that the open-world protocol reported worse performance
in all modes than the closed-world protocol. Nevertheless, we conclude that fusing the ocular
and iris representations also leads to promising results in the open-world protocol, given that the
observed decidability was higher than three for both databases considered.
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5.2.4 ResNet-50: Performance vs. Network Depth

Having concluded that the ResNet-50 yields the optimal results in terms of EER in our
experiments, our next goal was to perceive how the verification performance varies concerning
the depth of the layer from where representations are taken. In this experiment, we considered all
the convolution layers with stride equal to 2, resulting in four different depths to be tested: 12, 24,
42, and 50 layers. For each of the four possibilities (depths), the same modifications described in
the methodology section were made, adding a fully-connected layer with 256 neurons and a layer
with a softmax cross-entropy loss function. The verification results using the different depths are
reported in Table 5.13 for the PolyU Cross-Spectral and CROSS-EYED databases.

Tabela 5.13: EER values observed for different depths (trainable parameters) of ResNet-50 architecture, using the
closed-world protocol. Extracted from [24].

Spec. Trait
12 layers 24 layers 42 layers 50 layers
(26M) (14.5M) (15.6M) (24.1M)

PolyU Cross-Spectral

VIS
Iris 3.21 ± 0.16 2.29 ± 0.15 1.60 ± 0.10 0.78 ± 0.08

Perioc. 3.84 ± 0.14 3.17 ± 0.18 2.17 ± 0.12 0.61 ± 0.11

Fusion 1.66 ± 0.06 1.41 ± 0.07 1.06 ± 0.11 0.35 ± 0.06

NIR
Iris 3.55 ± 0.18 2.36 ± 0.11 1.46 ± 0.10 0.68 ± 0.07

Perioc. 4.16 ± 0.17 3.39 ± 0.18 2.27 ± 0.14 0.68 ± 0.10

Fusion 2.13 ± 0.08 1.56 ± 0.08 1.09 ± 0.10 0.40 ± 0.06

Cross
Iris 6.39 ± 0.41 4.50 ± 0.23 3.09 ± 0.19 1.13 ± 0.14

Perioc. 5.38 ± 0.20 4.04 ± 0.17 2.71 ± 0.14 0.78 ± 0.09

Fusion 2.95 ± 0.15 2.07 ± 0.13 1.41 ± 0.09 0.49 ± 0.06

CROSS-EYED

VIS
Iris 4.77 ± 0.38 3.29 ± 0.26 2.16 ± 0.34 2.47 ± 0.42

Perioc. 6.34 ± 0.36 3.70 ± 0.35 1.90 ± 0.23 1.70 ± 0.37

Fusion 3.78 ± 0.22 1.94 ± 0.16 1.25 ± 0.18 1.17 ± 0.25

NIR
Iris 20.24 ± 0.70 16.28 ± 0.66 8.78 ± 0.56 2.74 ± 0.34

Perioc. 7.28 ± 0.35 4.08 ± 0.32 1.88 ± 0.23 1.78 ± 0.39

Fusion 7.78 ± 0.30 4.90 ± 0.33 2.03 ± 0.23 1.31 ± 0.24

Cross
Iris 20.88 ± 0.74 15.91 ± 0.60 8.12 ± 0.63 3.07 ± 0.38

Perioc. 7.53 ± 0.38 4.17 ± 0.38 2.31 ± 0.31 1.95 ± 0.35

Fusion 8.29 ± 0.46 4.43 ± 0.29 2.14 ± 0.24 1.40 ± 0.26

It can be observed that the largest degradation of the results occurred when using shallow
models occurs in the CROSS-EYED database. In all cases, the VIS against VIS comparison
reports the best results, and it is the scenario where it presents the lowest degradation of the
response in the different depths of the model.

As shown in the NIR against NIR and Cross-spectral results in the CROSS-EYED
database, some EER values in the fusion of traits is higher than the ones using information from
the periocular region only. This behavior is due to the weight used in the fusion of features where
the low discrimination of the iris region penalizes and degrades the fused matching score, as we
discuss in Section 5.2.2.

The experiments performed by Nguyen et al. [93] show that features extracted from
intermediate layers of the networks achieved better results compared to deep layer representations.
However, our results report lower EER rates using features extracted from deeper layers. It is
important to point out that in [93] the ResNet152 model (i.e., a deeper model than ResNet50,
used in our work) was employed. The same behavior can be observed in work by Henandez-Diaz
et al. [259], where the authors stated that features extracted from the intermediate layers of the
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ResNet-101 model reported the best results. Thus, the deepest layer reported in this work is
approximately at the same depth as the intermediate layer reported by Nguyen et al. [93] and by
Hernandez-Diaz et al. [259]. In another work, Hernandez-Diaz et al. [258] reported that using the
ResNet50 model, representations from the intermediate layers achieved better results in the UBIPr
Periocular database [16]. Oppositely, in this work, periocular representations extracted from the
last layer of the ResNet50 model achieved the best results. Notice the UBIPr database has some
larger images (from 501 × 401 pixels (8m) to 1001 × 801 (4m)) than PolyU Cross-Spectral and
CROSS-EYED databases and also the periocular region is more extensive, containing eyebrows
information, which can explain why a shallow model can extract more discriminant features from
the intermediate layers, in this case.

As described in [29], a disadvantage of the VGG16 model, when compared to ResNet,
is its larger number of trainable parameters (98.6M, when compared to their CNN with SD
methodology 0.6M). As before stated, in our case, the best responses were observed when using
the ResNet50 model, which after the modifications has 24.1M (four times lower compared to
VGG16). As shown in Table 5.13, smaller networks in terms of depth lead to increasingly
high losses in performance, however also decreasing nearly 10M training parameters, which
can be an interesting solution for embedded systems and other cases where the computational
complexity might be a concern. The ResNet with 12 layers has more trainable parameters than
the other models since it considers an input image of 28 × 28 pixels and 128 filters. Besides, its
convolutional part is connected with a fully connected layer containing 256 neurons added to
reduce feature dimensionality.

5.2.5 Subjective evaluation

To provide some insight into the weaknesses of the solutions proposed in our work and
a basis for subsequent improvements in the technology, this section highlights some notable cases
of image pairwise comparisons that led to the best/worst performance (using the closed-world
protocol). Results are shown in Figure 5.4, grouped into the worst genuine (when the system
rejected a true matching) and the best impostors (when the system accepted a false matching)
comparisons.

Although Figure 5.4 only shows VIS images, we noticed that pose and gaze are factors
that can lead to matching errors also in NIR against NIR and cross-spectral scenarios. We
observed that there were also confusions in images of the same subject but from different classes
(left and right eyes) no matter the spectral scenario. Thus, we believe that it is possible to improve
the recognition system accuracy using information based on the angle of the periocular region
images and performing a preprocessing to determine the left and right eyes (i.e., a soft biometrics
process). Also, based on the pairwise comparison errors, we can state that another factor that
may improve system accuracy is the process of centralization/resizing of the periocular image
based on the iris region size and location, similar to the method proposed by Hernande-Diaz et al.
[258].

5.2.6 Final Considerations

The experiments showed that the models learned on the ResNet-50 architecture reported
best results in terms of EER than its VGG counterpart, both in the PolyU Cross-Spectral and
CROSS-EYED databases. Interestingly, we note that even this simple processing chain was
observed to advance the state-of-the-art results in both databases.
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Worst Genuine

Best Impostor

Figura 5.4: Pairwise comparison errors in the VIS against VIS scenario on CROSS-EYED (left) and PolyU
Cross-Spectral (right) databases. Periocular and iris matching modalities are presented at Top and Bottom rows,
respectively. Extracted from [24].

Overall, in most of the experiments, features taken from the periocular region were
observed to provide better performance than iris features. However, the fusion of these two traits
reported better EER and decidability index than the best individual trait.

Finally, our subjective analysis of the best/worst false genuine and true impostors image
pairwise comparisons showed that factors such as the angle of image capture might interfere
with the recognition system’s accuracy. In this direction, it is interesting to investigate how to
build representation taking into account eye gaze and pose.

5.3 ATTRIBUTE NORMALIZATION FOR UNCONSTRAINED PERIOCULAR RECOGNI-
TION

This section presents the evaluation of our proposed attribute normalization process to
reduce the intra-class variability in periocular images captured under unconstrained environments.

The first step in our normalization strategy was training the AttGAN model for ocular
attribute editing using periocular images. For the eyeglasses normalization (removal), we
employed the entire UBIPr database in the training stage. Then, we normalized all the images
from the UFPR-eyeglasses database by removing the eyeglasses. For the eye gaze normalization,
we trained the Att-GAN using images from the first half of the subjects from the UBIPr database
and normalized all images from the second half of the subjects by correcting the eye gaze. The
Deep learning-based approaches were trained using the first half of the subjects for both databases.
The second half of the subjects were used to evaluate and compare handcrafted features and
deep learning approaches using original and normalized images. Some qualitative results of the
attribute normalization using the AttGAN model are shown in Fig. 5.5.

For the recognition performance evaluation, according to the conclusions we previously
drew about distance measures in ocular representations [46, 24], we chose to use the cosine
distance metric to match both deep learning-based and handcrafted approaches. Regarding the
SIFT features matching, we used the ratio test proposed by Lowe [263].
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UFPR-Eyeglasses UBIPr

Original Normalized Original Normalized

Figura 5.5: Examples of original and normalized images from the UFPR-Eyeglasses (Eyeglasses removal) and
UBIPr (Eyegaze correction) databases. Extracted from [25].

We started by generating pairwise comparisons considering only images with different
attributes, i.e., pairs with eyeglasses/no-eyeglasses in the UFPR-Eyeglasses database and pairs
with different gazes, the case of the UBIPr database. Using the second half of the subjects for
each database, we applied the all-against-all protocol, generating 3,072 genuine and 274,464

impostor pairs for the UFPR-Eyeglasses database and 22,012 genuine / 6,246,232 impostors pairs
for the UBIPr database.

Considering a verification task, we used the Decidability index and the Area Under the
Curve (AUC) as metrics to evaluate the methods. As the proposed normalization aims to decrease
the intra-class variability, we considered Decidability as the primary metric. The results achieved
with the proposed attribute normalization are shown in Table 5.14 for the UFPR-Eyeglasses
and UBIPr databases. Note that we compared the results of the methods using the original and
normalized images to evaluate better the improvements in performance concerning the solution
described in this work.

Tabela 5.14: Comparison of results using original and normalized images in the UFPR-Eyeglasses and UBIPr
databases. Adapted from [25].

Method - Features Att. Normalization
UFPR-Eyeglasses UBIPr

AUC (%) Decidability AUC (%) Decidability

Ahmed et al. [122]
73.0 0.77 84.9 1.16

X 73.2 0.79 85.2 1.17

Park et al. [115]
78.8 1.11 89.6 1.73

X 85.2 1.43 87.8 1.62

LBP + LPQ + HOG + SIFT
75.9 0.92 90.2 1.71

X 87.2 1.58 90.0 1.77

Luz et al. [46]
85.9 1.57 98.3 3.64

X 89.0 1.81 98.1 3.50

Zanlorensi et al. [24]
92.2 2.09 99.2 4.00

X 92.9 2.16 99.4 4.14



99

Original Normalized Original Normalized

0.24 0.87 0.25 0.89

0.39 0.64 0.40 0.92

0.58 0.92 0.59 0.90

0.56 0.91 0.66 0.92

Figura 5.6: Genuine scores comparison from original and normalized images. Higher scores mean that the periocular
image pairwise is more likely to be genuine. Extracted from [25].

The results showed that the proposed normalization preprocessing consistently improve
the verification results in the UFPR-Eyeglasses database, increasing the Decidability by 28% (i.e.,
1.4261/1.1093) and 71% (i.e., 1.5764/0.9206), respectively using the features from the method
proposed by Park et al. [115] and from the proposed handcrafted features fusion. Using the deep
learning-based approaches, the attribute normalization improved the Decidability by 15% and
4% for the methods proposed by Luz et al. [46] and Zanlorensi et al. [24], respectively. Unlike
the experiments performed using the UFPR-Eyeglasses database, in the UBIPr one, the attribute
normalization process consists of the eye gaze correction. Since this process is computed in a
small portion of the periocular image (only in the eyeball region), in general, we can observe
that the impact of applying the attribute normalization is smaller than the ones obtained in the
UFPR-Eyeglasses images. Nevertheless, the highest Decidability index in the UBIPr database
using handcrafted features and Deep learning-based models was achieved by employing the
normalized images. Fig. 5.6 shows some qualitative results where wrong genuine matching
between original images was corrected using the proposed attribute normalization.

One can also observe that in the UFPR-Eyeglasses database, even when the eyeglasses
were not entirely removed, the generative model was able to smooth them, such that the biometric
system was able to correctly classified a pair as genuine. Investigating other wrong genuine
matches, we stated that the pose and illumination aspect is one of the most significant factors that
penalize the intra-class variability in the UBIPr database.

5.3.1 Final Considerations

The idea of this investigation was to employ a state-of-the-art generative model that
normalizes specific factors of all samples before being used by the recognition algorithm. The
proposed solution is fully agnostic to the recognition method used, and our proof-of-concept was
conducted in two databases and five different baseline methods. We compare the performance
levels attained by the recognition methods when using the raw data and when receiving the
images preprocessed by our solution. The observed results corroborated our hypothesis that
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the proposed attribute normalization is highly effective in reducing the intra-class variabilities
without compromising the discriminability between classes, which is the root for the observed
improvements in performance.

5.4 UFPR-PERIOCULAR DATABASE AND SOFT-BIOMETRICS

This section presents the results obtained by each approach in the closed-world and
open-world protocols and an ablation study on the Multi-task learning network to evaluate each
task’s influence in the identification mode. First, we show in Table 5.15 the size and the number
of trainable parameters of each CNN model used as a benchmark. This information is from the
models that we used on the closed-world protocol since they have more neurons on the last layer
than the open-world protocol models.

Tabela 5.15: Size (MB) and number of trainable parameters of the CNN models used in the benchmark.

Model Size (MB) Trainable parameters

VGG16 1088 135,886,084

VGG16-Face 1088 135,886,084

InceptionResNet 445 55,246,372

ResNet50V2 400 49,786,436

ResNet50 198 24,609,284

ResNet50-Face 198 24,609,284

Xception 176 21,908,204

DenseNet121 64 7,792,964

MobileNetV2 26 3,128,516

Multi-task 37 4,494,230

Siamese 21 2,551,808

Pairwise 20 2,349,479

As can be seen, the benchmark has a great diversity of models with different sizes and
parameters due to their difference in structure, depth, concept, and architectures.

5.4.1 Closed-world protocol

In the closed-world protocol, we perform the benchmark for both the identification and
verification tasks. All results are presented in Table 5.16. As can be seen, although MobileNetV2
is the smallest model in terms of size and trainable parameters, it achieved the best results for
both identification and verification tasks. Hence, we used MobileNetV2 as the base model for
the Multi-task, Siamese, and Pairwise Filters networks.

In general, the Multi-task model achieved the best results in terms of Rank 1, Rank 5,
AUC, and EER. We highlight that we only explored the other tasks – age, gender, eye side,
and mobile device model – at this model’s training stage. For the evaluation, we extracted the
representations for the classification task and used them for identification (using the softmax
layer) and verification (using the cosine distance) tasks. The Siamese network obtained the worst
results in the benchmark. In contrast, the Pairwise Filters network reached the higher Decidability
index, indicating that it was best to separate genuine and impostors distributions. However, it did
not achieve the best results in terms of AUC and EER.

As stated in some previous works [46, 266], the models pre-trained for face recognition
generally achieve the best results than those pre-trained on the ImageNet database.
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Tabela 5.16: Benchmark results in the closed-world protocol for the identification and verification tasks.

Model
Identification (1:#) Verification (1:1)

Rank 1 (%) Rank 5 (%) AUC (%) EER (%) Decidability

VGG16 50.56 ± 3.30 68.73 ± 3.01 99.41 ± 0.11 3.59 ± 0.32 4.4544 ± 0.1502

VGG16-Face 56.29 ± 1.62 73.84 ± 1.48 99.43 ± 0.08 3.44 ± 0.28 4.5069 ± 0.1379

Xception 57.43 ± 1.43 75.88 ± 1.52 99.77 ± 0.04 2.19 ± 0.18 4.2470 ± 0.0538

ResNet50V2 63.18 ± 2.14 77.79 ± 1.81 99.74 ± 0.04 2.24 ± 0.18 4.9382 ± 0.1184

InceptionResNet 65.16 ± 2.45 81.53 ± 1.99 99.78 ± 0.15 1.85 ± 0.40 4.5561 ± 0.1183

ResNet50 71.06 ± 1.14 85.22 ± 0.82 99.89 ± 0.02 1.41 ± 0.10 5.1242 ± 0.0634

ResNet50-Face 73.76 ± 1.43 86.86 ± 1.02 99.83 ± 0.03 1.74 ± 0.12 5.2400 ± 0.0837

DenseNet121 75.54 ± 1.36 88.53 ± 0.97 99.93 ± 0.02 1.11 ± 0.09 5.1730 ± 0.0497

MobileNetV2 77.98 ± 1.08 90.19 ± 0.79 99.93 ± 0.01 1.13 ± 0.07 5.2477 ± 0.0650

Multi-task 84.32 ± 0.71 94.55 ± 0.58 99.96 ± 0.01 0.81 ± 0.06 5.1978 ± 0.0340

Siamese − − 98.94 ± 0.22 4.86 ± 0.44 3.0005 ± 0.1871

Pairwise − − 99.44 ± 0.66 3.06 ± 1.84 6.4503 ± 1.2270

5.4.2 Open-world protocol

The main idea of employing the open-world protocol was to evaluate the methods to
extract discriminant features from samples of classes that are not present in the training stage.
Thus, for this protocol, we performed a benchmark only for the verification task. The results are
shown in Table 5.17.

Tabela 5.17: Benchmark results in the open-world protocol for the verification task.

Model Validation
Verification (1:1)

AUC (%) EER (%) Decidability

VGG16 Closed-World 97.38 ± 0.53 8.52 ± 0.92 2.9599 ± 0.1572

VGG16-Face Closed-World 97.70 ± 0.42 7.78 ± 0.75 3.0327 ± 0.1428

ResNet50 Closed-World 98.60 ± 0.28 5.98 ± 0.67 3.3702 ± 0.1413

ResNet50V2 Closed-World 98.73 ± 0.28 5.69 ± 0.64 3.4312 ± 0.1459

Xception Closed-World 98.93 ± 0.16 5.23 ± 0.42 3.3493 ± 0.0712

InceptionResNet Closed-World 99.10 ± 0.24 4.61 ± 0.65 3.4982 ± 0.1208

ResNet50-Face Closed-World 99.18 ± 0.16 4.38 ± 0.47 3.8319 ± 0.1239

DenseNet121 Closed-World 99.51 ± 0.12 3.39 ± 0.46 3.8646 ± 0.1215

MobileNet Closed-World 99.56 ± 0.08 3.17 ± 0.33 3.9868 ± 0.1067

Multi-task Closed-World 99.67 ± 0.08 2.81 ± 0.39 3.9263 ± 0.0921

Siamese Closed-World 97.27 ± 0.64 8.10 ± 1.01 2.6678 ± 0.2433

Pairwise Closed-World 98.62 ± 0.72 5.77 ± 1.57 4.4404 ± 0.5834

Siamese Open-World 96.85 ± 0.70 8.87 ± 1.14 2.6218 ± 0.1514

Pairwise Open-World 97.80 ± 2.03 7.11 ± 3.66 4.1977 ± 1.0663

Like the closed-world protocol, the Multi-task model achieved the best results in Rank 1,
Rank 5, AUC, and EER, and the Pairwise network achieved the best Decidability index. The
Siamese and Pairwise Filters networks trained using the closed-world validation split reached
better results than when trained using the open-world validation split. We believe this occurred
because the open-world validation split’s training has samples of fewer classes than in the
closed-world validation split.

Although the open-world validation split corresponds to a more realistic scenario
regarding the test set, the networks trained with samples from a larger number of classes can
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reach a higher capability of generalization, producing discriminative representations even for
samples from classes that are not present in the training stage.

5.4.3 Multi-task Learning

The Multi-task model achieved the best results both in the closed- and open-world
protocols. As this network simultaneously learns different tasks, we perform an ablation study by
running some experiments with 4 new models created by removing one of the tasks at a time. The
experiments were carried out in the closed-world protocol to evaluate the performance of both
identification and verification. We also evaluated the results achieved by all models in each task.

Tabela 5.18: Results (%) from several Multi-task models trained to predict different tasks.

Model Rank 1 Rank 5 Device Model Age Gender Eye Side

Multi-task (no model) 80.76 ± 0.94 91.96 ± 0.51 − 82.14 ± 0.83 97.72 ± 0.17 99.99 ± 0.01
Multi-task (no age) 81.93 ± 0.99 93.51 ± 0.69 87.20 ± 0.63 − 97.65 ± 0.20 99.99 ± 0.01
Multi-task (no gender) 82.48 ± 0.64 93.55 ± 0.52 86.71 ± 0.54 83.17 ± 0.54 − 99.99 ± 0.01
Multi-task (no side) 83.72 ± 0.61 94.07 ± 0.54 87.22 ± 0.79 83.75 ± 0.53 97.70 ± 0.20 −

Multi-task 84.32 ± 0.71 94.55 ± 0.58 87.42 ± 0.65 84.34 ± 0.71 97.80 ± 0.21 99.98 ± 0.02

According to Table 5.18, the Multi-task network without the prediction of the mobile
device model was the most penalized for the identification task, followed by the network variations
without age, gender, and eye side estimation, respectively. The gender and eye side classification
tasks were handled well by all models, while the device model and age range classification tasks
proved to be more challenging. One problem in the device model and age range classification is
the unbalanced number of samples per class, which can generate a bias during the training stage.

Note that in both closed-world and open-world protocols, we only explored the class
prediction for the matching. However, as shown in Table 5.18, the multi-task architecture also
achieved promising results in the other tasks. In this sense, it may be possible to further improve
the recognition results by adopting heuristic rules based on the scores of the other tasks.

5.4.4 Subjective evaluation

In this section, we perform a subjective evaluation through visual inspection on the
pairs of images erroneously classified by the Multi-task model, which achieved the best result in
the verification task in the closed-world protocol. The best impostors (impostors classified as
genuine) and the worst genuines (genuine classified as impostors) pairs are presented in Fig. 5.7.

Performing a visual analysis of all pairwise errors, it is clear that hair occlusion, age,
eyeglasses, and eye shape were the most influential factors that led the model to the wrong
classification of genuine pairs (intra-class comparison). In pairs wrongly classified as impostors
(inter-class comparison), we saw that lighting, blur, eyeglasses, off-angle, eye-gaze, reflection,
and facial expression caused the main difference between the images. We hypothesize that some
errors caused by lightning, blur, reflection, and occlusion can be reduced by employing some data
augmentation techniques in the training stage. Attribute normalization [25] can also reduce the
errors caused by attributes present in the periocular region such as eyeglasses, eye gaze, makeup,
and some types of occlusion. Although some methods can be applied to reduce the matching
errors, there are still several characteristics in these images that make the mobile periocular
recognition a challenging task, mainly to the high intra-class variations.
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Wrong Genuines (Best Impostors)
0.98 0.96 0.95 0.95

0.95 0.95 0.94 0.94

0.94 0.94 0.93 0.93

Wrong Impostors (Worst Genuines)
0.66 0.68 0.69 0.69

0.69 0.70 0.70 0.70

0.70 0.71 0.72 0.73

Figura 5.7: Pairwise images wrongly classified by the model that obtained the best result in the verification task in
the open-world protocol. Higher scores mean that the pair of periocular images is more likely to be genuine.

5.4.5 Final Considerations

This research aimed to create a database with real-world images regarding lighting,
noises, and attributes in the periocular region. To the best of our knowledge, in the literature, this
is the first periocular database with more than 1,000 subject samples and the largest one in the
number of different sensors (196).

We presented an extensive benchmark with several CNN models and architectures
employed in recent works for ocular recognition. These architectures consist of models for
Multi-class classification and Multi-task Learning, in addition to Siamese and Pairwise Filters
networks. We evaluated the methods in the closed-world and open-world protocols for the
identification and verification tasks. For both protocols and tasks, the Multi-task model achieved
the best results. Thus, we conducted an ablation study on this model to understand which tasks had
the most significant influence on the results. We stated that the mobile device model identification
task was the most important, followed by age range, gender, and eye side classification. The
model trained using all these tasks reported the best result for the identification and verification
in the closed- and open-world protocols.

In a complementary way, we performed a subjective analysis of the best/worst false
genuine and true impostors image pairwise comparisons using the Multi-task model, which
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achieved the best performance for the verification task. We observed that lighting, occlusion, and
image resolution were the most critical factors that led the model to wrong verification.

We believe that the UFPR-Periocular database will be of great relevance to assist in
evolving ocular biometric systems using images obtained by mobile devices in unconstrained
scenarios. This database is the most extensive in terms of the number of subjects in the literature
and has natural intra-class variability due to samples captured in different sessions.

The Multi-task network using the MobileNetV2 as baseline model achieved the best
benchmark results for the identification and verification tasks, reaching a rank 1 of 84, 32% and
an EER of 0.81% in the closed-world protocol, and an EER of 2.81% in the open-world protocol.
Therefore, there is still room for improvement in both identification and verification tasks.
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6 CONCLUSION

In this thesis, we explored and investigated deep representations for iris and periocular
recognition. Considering the hypothesis that it is possible to achieve state-of-the-art results by
employing deep learning techniques at different stages of ocular biometric systems based on
periocular and iris traits, we proposed and evaluated several approaches achieving state-of-the-art
results for ocular recognition in different scenarios.

First, we investigated the impact of preprocessing steps on iris recognition. Performing
an ablation study on the preprocessing steps as segmentation and normalization on controlled
and uncontrolled iris databases, we stated that it is possible to directly use an iris bounding box
as input to CNN models to extract iris deep representations. The proposed method achieved the
state-of-the-art EER in the NICE.II contest database. Regarding cross-spectral ocular recognition,
we performed extensive experiments on two publicly available databases showing that CNN
models can directly learn representation from NIR and VIS images for both iris and periocular
traits. The proposed method reached state-of-the-art results in both databases using the iris
trait and significantly decrease the EER by fusing iris and periocular region. As we stated in
previous work, some subjects’ noninherent attributes, e.g., eyeglasses and eye gaze, usually
increase intra-class variability. Thus, we proposed an attribute normalization method to handle
this problem. The attribute normalization method proved to be effective for both handcrafted
features and deep representations. Finally, we collected a new periocular database comprising
images from mobile devices under unconstrained environments. Employing this database, we
proposed a multitask model using soft biometrics information in the training stage, improving
the periocular deep representation’s discriminability. We also performed an extensive benchmark
of the most recent CNN architectures that have been employed to build ocular biometric systems.

Supported by our investigation, experiments, and results, we can state that deep learning
techniques applied to ocular recognition for both the iris and periocular traits can achieve
impressive results even in unconstrained and uncontrolled environments. However, there is
still room for improvements since there are complex and open problems related to the methods’
scalability, multimodal biometric fusion, multi-session (intra-class variability), cross-sensor and
cross-spectral images, and different protocols (closed and open-world, and cross-database).
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