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RESUMO 

 

Estudos sobre o comportamento ecofisiológico de plantações de Eucalyptus 
são importantes para prever as interações entre o crescimento e as variáveis 
climáticas. No entanto, aqueles que envolvem monitoramento fisiológico em 
plantações jovens e altamente adensadas, que são mais propensos a danos causados 
por água e estresse térmico, não são comuns. O primeiro capítulo desta tese, 
intitulado “Differences in early seasonal growth efficiency and productivity of 
Eucalyptus genotypes” apresenta um estudo explorando as mudanças na eficiência 
de crescimento de povoamento de genótipos de Eucalyptus mediterrâneos ao longo 
de diferentes estações (verão, outono, inverno e primavera) durante seu 
desenvolvimento inicial. Concluímos que as mudanças de classificação ocorrem no 
incremento de volume e o crescimento máximo foi observado no verão, 
independentemente do genótipo. Diferenças no volume final da madeira sugerem que 
o mesmo ambiente estimula diferentes respostas de alocação de carbono para o 
crescimento e consequentemente na eficiência de crescimento de cada local. O 
segundo capítulo intitulado “Physiological responses and growth of Eucalyptus 
genotypes under cumulative water stress” apresenta um estudo que investiga a 
resposta fisiológica de genótipos de Eucalyptus durante uma redução progressiva do 
teor de água no solo e sua relação com o crescimento e estresse hídrico acumulados 
no mesmo período. No entanto, independentemente das diferenças genotípicas, foi 
observada uma diminuição na taxa de fotossíntese e fechamento estomático, o que 
aumentou a eficiência intrínseca do uso da água ao longo do tempo. Esta redução nas 
variáveis de troca gasosa foliar com mudanças moderadas na água do solo foi mais 
pronunciada no híbrido Eucalyptus nitens x Eucalyptus globulus (E. gloni), sendo o 
táxon mais sensível a mudanças na disponibilidade reduzida de água no solo. O 
terceiro capítulo intitulado “Temperature effects on early growth of Eucalyptus 
genotypes of three taxa” apresenta um estudo sobre o efeito da temperatura na taxa 
de crescimento diária. Concluímos que genótipos de alta produtividade, têm sua 
temperatura ótima média (16 ° C) mais próxima da temperatura média do ar do local 
(14 ° C) do que genótipos de baixa produtividade (25 ° C) e maior amplitude de 
temperatura cardinal (<17 ° C) é uma vantagem para o crescimento de genótipos face 
às mudanças na temperatura do ar ao longo das estações, não limitando o 
crescimento. Por fim, observamos que a interação entre genótipo e ambiente é 
determinante para orientar a partição de carbono em Eucalyptus e o estresse hídrico 
e térmico operam da mesma forma para o crescimento em situações de início de 
estresse no desenvolvimento inicial dos plantios. 

 
Palavras-chave: Eficiência no crescimento, Fotossíntese, Eficiência no uso da água, 

Temperaturas cardiais, Ecofisiologia florestal. 
 
 

 



 
 

ABSTRACT 

 

Studies on ecophysiological behavior of Eucalyptus plantations are important 
to predict the interactions between growth and climatic variables. However, those 
involving physiological monitoring in young and highly dense plantations that are more 
prone to damage caused by water and thermal stress are not common. The first 
chapter of this thesis entitled “Differences in early seasonal growth efficiency and 
productivity of Eucalyptus genotypes” presents a study exploring changes in stand 
growth efficiency of Mediterranean Eucalyptus genotypes over different seasons 
(summer, autumn, winter, and spring) during their initial development. We conclude 
that ranking changes occur in volume increment and the maximum growth was 
observed in the summer regardless of genotype. Differences in the final wood volume 
suggest that the same environment stimulates different responses carbon allocation 
for growth and consequently in growth efficiency each the site. The second chapter 
entitled “Physiological responses and growth of Eucalyptus genotypes under 
cumulative water stress” presents a study investigating the physiological response of 
Eucalyptus genotypes during a progressive reduction of soil water content and its 
relationship with growth and water stress accumulated in the same period. However, 
regardless of genotype differences, a decrease in the rate of photosynthesis and 
stomatal closure was observed, and that increased the intrinsic water use efficiency 
over time. This reduction in leaf gas exchange variables with moderate changes in soil 
water was more pronounced in Eucalyptus nitens x Eucalyptus globulus hybrid (E. 
gloni), being the most sensitive taxon to changes in reduced soil water availability. The 
third chapter entitled “Temperature effects on early growth of Eucalyptus genotypes of 
three taxa” presents a study on the effect of temperature on daily growth rate. We 
concluded that high productivity genotypes, have its average optimum temperature (16 
°C) closer to mean air temperature of the site (14 °C) then low productivity genotypes 
(25 °C) and higher amplitude of cardinal temperatures (< 17 °C) is an advantage for 
genotypes growth face air temperature changes along the seasons not limiting stem 
growth. Finally, we observed that the interaction between genotype and environment 
is determinant to guide carbon partitioning in Eucalyptus and water and temperature 
stress operate in the same manner for stem growth in situations of beginning of stress 
in the initial development of plantations.  

 
 

Keywords: Growth efficiency, Photosynthesis, Water use efficiency, Cardinal 
temperatures, Forest ecophysiology. 

 

 

 

 

 

 

 

 
 



 
 

RESUMEN 

 

Los estudios sobre el comportamiento ecofisiológico de las plantaciones de 
Eucalyptus son importantes para predecir las interacciones entre el crecimiento y las 
variables climáticas. Sin embargo, no son comunes los que involucran el monitoreo 
fisiológico en plantaciones jóvenes y muy densas que son más propensas a sufrir 
daños por estrés hídrico y térmico. El primer capítulo de esta tesis titulado “Differences 
in early seasonal growth efficiency and productivity of Eucalyptus genotypes” presenta 
un estudio que explora los cambios en la eficiencia de crecimiento de los rodales de 
los genotipos de Eucalyptus mediterráneos en diferentes estaciones (verano, otoño, 
invierno y primavera) durante su desarrollo inicial. Concluimos que los cambios de 
clasificación ocurren en el incremento de volumen y el crecimiento máximo se observó 
en el verano independientemente del genotipo. Las diferencias en el volumen final de 
madera sugieren que el mismo ambiente estimula diferentes respuestas de asignación 
de carbono para el crecimiento y, en consecuencia, en la eficiencia del crecimiento en 
cada sitio. El segundo capítulo titulado “Physiological responses and growth of 
Eucalyptus genotypes under cumulative water stress” presenta un estudio que 
investiga la respuesta fisiológica de genotipos de Eucalyptus durante una reducción 
progresiva del contenido de agua del suelo y su relación con el crecimiento y estrés 
hídrico acumulados en el mismo período. Sin embargo, independientemente de las 
diferencias de genotipo, se observó una disminución en la tasa de fotosíntesis y cierre 
de estomas, lo que aumentó la eficiencia intrínseca del uso del agua con el tiempo. 
Esta reducción en las variables de intercambio de gases en las hojas con cambios 
moderados en el agua del suelo fue más pronunciada en el híbrido Eucalyptus nitens 
x Eucalyptus globulus (E. gloni), siendo el taxón más sensible a los cambios en la 
disponibilidad reducida de agua del suelo. El tercer capítulo titulado “Temperature 
effects on early growth of Eucalyptus genotypes of three taxa” presenta un estudio 
sobre el efecto de la temperatura en la tasa de crecimiento diaria. Concluimos que los 
genotipos de alta productividad, tienen su temperatura óptima promedio (16 ° C) más 
cercana a la temperatura media del aire del sitio (14 ° C) que los genotipos de baja 
productividad (25 ° C) y mayor amplitud de temperaturas cardinales (<17 ° C) es una 
ventaja para el crecimiento de los genotipos ante los cambios de temperatura del aire 
a lo largo de las estaciones que no limitan el crecimiento. Finalmente, observamos 
que la interacción entre genotipo y ambiente es determinante para guiar la partición 
de carbono en Eucalyptus y el estrés hídrico y térmico operan de la misma manera 
para el crecimiento en situaciones de inicio de estrés en el desarrollo inicial de las 
plantaciones. 

 
Palabras-clave: Eficiencia de crecimiento, Fotosíntesis, Eficiencia en el uso del agua, 

Temperaturas cardinales, Ecofisiología forestal. 
 
 



 
 

SYMBOL LIST 

 a, b, c  Empirical coefficients in growth models (dimensionless) 

A Canopy absorbance  

Adj-R2 Adjusted coefficient of determination  An  Net assimilation rate (μmol CO2 m-2 s-1) At  Tree crown area (m2) B  Bias Ci  Intercellular CO2 (μmol CO2 mol air-1) CSI  Current seasonal increment (m3 ha-1 season-1) Dn Tree crown diameter in the north orientation (m) De Tree crown diameter in the east orientation (m) ET  Potential evapotranspiration (mm) 𝑓𝑏 Light beam fraction G  Soil heat flux density (MJ m2 day-1) GE  Growth efficiency (m3 10,000 mleaf -2) gs  Stomatal conductance (mol H2O m-2 s-1) h   Total tree height (cm) iWUE  Intrinsic water use efficiency (μmol CO2 mol-1 H2O) 𝐾𝑐  Light extinction coefficient (dimensionless) LAI  Leaf area index (m2 m-2) LAI𝑐 Corrected leaf area index (m2 m-2) MAE  Mean absolute error PAR  Photosynthetic active radiation (MJ m-2) PPT  Precipitation (mm) 

R2 Coefficient of determination R  Correlation coefficient  rn Radius of tree crown in north orientation (m) r𝑒 Radius of tree crown in east orientation (m) rcd  Root collar diameter at 0.1-m height (cm) RH  Relative humidity (%) 

RMSE Root mean square error Rn  Net radiation (MJ m2 day-1) 



 
 

SWHC  Soil water holding capacity (%) t  Time (years) T  Air temperature (°C) Tmean, Tmax, Tmin   Mean, maximum, and minimum air temperature (°C) Toptg , Tming , Tmaxg  Optimum, base minimum, and base maximum growth 

temperatures (°C) Tr  Transpiration (mmol H2O m-2 s-1) u2  Wind speed measured at 2-m height (m s-1) V  Volume per square meter (cm3 m-2) vi  Individual tree volume (cm3) VPD  Vapor pressure deficit (kPa) WSI  Water stress integral (MPa day-1) wstem Tree stem biomass (kg) Wstem Stem biomass per square meter (kg m-2) 

Z Zenit angle (radian) γ  Psychometric constant (kPa °C-1) Δ  Slope of vapor pressure curve (kPa °C-1) Δ%  Relative variation (%) 𝜃  Soil water volumetric content (m3 m-3) 𝜏 Ratio of PAR below canopy and above canopy (dimensionless) 𝜒 Leaf distribution parameter (dimensionless) Ψmd  Midday leaf water potential (MPa) Ψpd  Predawn leaf water potential (MPa) Ω Clumping index (dimensionless) 
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1 GENERAL INTRODUCTION 

 

The pressure for natural forest conservation, global population, and demand 

for wood products expect to largely increase until 2050, then we will face an increment 

in investments, research, and importance in planted forest around the world (World 

Wildlife Fund, 2012), especially in areas where industrial forestry is dominant such as 

South America (Elias and Boucher, 2014). Countries in South America were dominated 

by annual forest plantation, mainly Eucalyptus species (Payn et al., 2015) and these 

plantations sum up billions of dollars into world economies (Booth, 2013). 

Eucalyptus competitiveness is high productivity compared to other species and 

natural forests (above 30 m3 ha-1 yr-1), short rotations (average 10 years), and a wide 

variation of wood products such as charcoal, pulp, paper, and solid products 

(Rockwood et al., 2008; Booth, 2013). This was possible due to advances in 

silvicultural practices, breeding programs, hybridization, and clonal forest production 

(Gonçalves et al., 2013).  

Recent studies have shown that the increase in environmental changes, such 

as drought and extremes temperatures along Eucalyptus development, generate 

impacts in final timber production (Binkley et al., 2017; Elli et al., 2020). Global climate 

is undergoing changes that will impact all ecosystems and the consequences of these 

changes are still uncertain as well (IPCC, 2014). In this context, ecophysiological 

approaches are necessary to understand the influence rate of environmental variables 

in early forest production (Gauthier and Jacobs, 2018). 

Chile is one of these countries that faced environmental constraints because 

most forest plantations are in areas with a Mediterranean climate, characterized by 

rains during winter and a drought period in summer (INIA, 1989). Since 2000, the 

reforestation areas increased in the country, and forest plantation areas with 

eucalyptus species accumulated in Chile were of 45,482 hectares. E. globulus and E. 

nitens species and its hybrids genotypes have been extensively planted in Chile 

because of high productivity, desire for fiber and pulp yield, and tolerance to drought 

and cold temperatures (INFLOR, 2020; Rubilar et al., 2020). 

Among environmental constraints, variations in air temperature and soil water 

content are recognized as being key factors that control plant growth and development 

along the months, seasons, and years (Battaglia et al., 1996; Wang et al., 2013). These 

factors have a direct relation with Eucalyptus productivity, affecting physiological 
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processes such as photosynthesis (Taiz et al., 2017) and efficiency of resources use 

and consequently wood production (Stape et al., 2004; Binkley et al., 2017).  

For instance, water supply influence carbohydrate available for wood 

production (Stape et al., 2008), increased net primary production by 27%, foliage 

production by 14%, and light use efficiency by 20% in response to irrigation in different 

sites in Brazil (Ryan et al., 2010), because increasing in available water increase 

fraction of photosynthesis used for wood growth. Furthermore, sub-optimal 

temperatures also affect plant metabolism due to this effect in enzymatic reactions 

(Taiz et al., 2017), since out of minimum and maximum temperatures for development, 

forest growth is interrupted (Landsberg and Sands, 2011). 

Considering these environmental traits, the foresters decision of the proper 

Eucalyptus species and genotypes must be related to the susceptibility of plants to 

water deficit, growth, survival and adaptations during establishment, with selection of 

best materials for ecophysiological attributes, such as photosynthesis, leaf area index, 

growth efficiency, water use efficiency and leaf water potential (Albaugh et al., 2013). 

For this, seeking a better understanding of the genetic, growth, and 

physiological process along the early Eucalyptus development is crucial for better 

understanding stress tolerance and match genotypes to a particular site, due higher 

susceptibility to abiotic stress by young Eucalyptus plantations (Drake et al., 2009). 

Faced with these gaps, it defined the three chapters of this thesis. In the first chapter, 

we discuss the changes in early growth and leaf area (growth efficiency) relationships 

among eucalyptus genotypes in different growing seasons. In the second chapter, we 

discuss changes in physiology during decreased soil water content among eucalyptus 

genotypes with different growth rates and accumulated water stress integral. Finally, 

the third chapter will deal with cardinal air temperature effects in early growth among 

eucalyptus genotypes. The chapters were entitled as follows: 

 

1)  Differences in early seasonal growth efficiency and productivity of Eucalyptus 

genotypes. 

2) Physiological responses and growth of Eucalyptus genotypes under cumulative 

water stress. 

3) Temperature effects on early growth of Eucalyptus genotypes of three taxa. 
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1.1 OBJECTIVES 

 

1.1.1 General objective 

 

The study aimed to evaluate the response of different Eucalyptus genotypes 

to environmental drivers (e.g., soil water content and temperature), in changes of early 

growth, leaf area and physiological behavior on 1.5-year of development in experiment 

in Central South Chile. 

 

1.1.2 Specific objectives 

 

- The first chapter aimed to determine the interaction between season and 

genotype on early growth efficiency over 1.5 year of development of different 

Eucalyptus genotypes. 

- The second chapter aimed to analyze the relationship between growth and 

water stress integral on changes in photosynthesis, intrinsic water use efficiency, 

midday water potential and leaf area index of different Eucalyptus genotypes under a 

short period of decreased soil water content. 

- The third chapter aimed to identify the cardinal air temperatures effects on 

early daily growth over 1.3 year of development of different Eucalyptus genotypes. 

 

2 GENERAL MATERIALS AND METHODS 

 

2.1 SITE CHARACTERISTICS 

 

The study site was located 9.6 km east of Yumbel, Bio-Bio region, central 

South Chile (37°8′0.01″ S, 72°27′34.70″ W, 200 m.a.s.l.) (FIGURE 1), in the forest 

nursey of CMPC Forestal Mininco. The experiment was established on land previously 

used for a bioenergy study involving Acacia and Eucalyptus spp., where the stumps, 

after harvesting, were removed mechanically, and the remaining residues crushed and 

incorporated into the soil by harrowing. The study soil site is classified as an Entisol 

(Soil Survey Staff, 1999), formed by volcanic black sands of andesitic and basaltic 

origin with low water holding capacity. A summary of the local soil profile description is 

presented in TABLE 1.  
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FIGURE 1 – LOCATION OF THE TRIAL SITE (RED STAR) USED FOR DETERMINING GROWTH 
AND PHYSIOLOGY OF EUCALYPTUS GENOTYPES. 

 

Source: The author (2021). 

 

TABLE 1 – SOIL BULK DENSITY, SOIL WATER HOLDING CAPACITY (SWHC), ORGANIC MATTER 
(O.M.), CLAY. SILT, SAND, TOTAL NITROGEN (N), AND TOTAL CARBON (C) AT THE EXPERIMENT 
SITE FROM SOIL 100-cm PROFILE DEPTH. 

Depth 
(cm) 

Bulk 
density 
(g cm-3) 

SWHC O.M. Clay Silt Sand Total N Total C 

% 

0 – 20 1.50 4.46 1.28 0.99 12.3 86.6 0.13 1.54 
20 – 40 1.45 4.79 0.44 1.50 5.16 93.3 0.03 0.36 
40 – 60 1.43 5.07 0.30 2.06 3.53 94.3 0.01 0.21 
60 – 80 1.43 4.88 0.27 2.06 4.31 93.6 0.01 0.13 
80 – 100 1.43 5.15 0.22 0.90 6.80 92.2 0.01 0.10 

Source: Rubilar et al. (2020). 

 

The climate of the experimental site is characterized as Csb (i.e., warn-

summer Mediterranean climate), with winter rains (Sarricolea et al., 2017). Historical 

climate records for a period of 35 years (1979–2014) were available 

(https://globalweather.tamu.edu/) at the time of the study. The average annual 

precipitation at the site is 1328 mm, occurring mainly during winter (600 mm). Summer 

is drier with an average annual precipitation of 60 mm. The mean annual temperature 

is 14.2 °C, with an absolute maximum occurring in January (38.9 °C) and an absolute 

https://globalweather.tamu.edu/
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minimum in July (−1.7 °C). Solar radiation ranged between 10.4 MJ m−2 day−1 in July 

(winter) to 29.3 MJ m−2 day−1 in January (summer) (FIGURE 2). 

 

FIGURE 2 – MONTHLY CHANGES IN PRECIPITATION (mm) AND MEAN TEMPERATURE (°C) FOR 
YUMBEL CHILE DURING 1979 TO 2014. 

 
Source: The author (2021). 

 

2.2 EXPERIMENTAL DESIGN 

 

A completely randomized block design with three replicates was established 

on October 31, 2017, using 22 Eucalyptus genotypes. These genotypes are 

commercial and are part of the tree-improvement program of CMPC Forestal Mininco 

and ARAUCO forest companies. These tree-improvement programs aimed the 

selection of genotypes with desirable fiber and pulp yield, higher growth rate and 

resistance to drought and cold temperatures as well. Plant genetic material consisted 

in ten cuttings of E. globulus (EG1, EG17, EG18, EG19, EG21, EG28, EG30, EG31, 

EG33, and EG34), three seedlings of E. nitens (EN12, EN13, and EN14), and nine 

cuttings of E. nitens × E. globulus (E. gloni) hybrids (ENG2, ENG3, ENG4, ENG5, 

ENG7, ENG8, ENG20, ENG22, and ENG25) (FIGURE 3). 
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FIGURE 3 – PHOTOGRAPH OF THE EXPERIMENT IN MARCH 2018 (a) AND MARCH 2019 (b). 

 
 Source: The author (2021). 

 

Plants of homogeneous size (3-mm root collar diameter and 30-cm height) for 

each genotype and with no visual disease symptoms or damage were selected from 

nursery material. Plants were established at 1 x 1.5 m spacing (6667 tress ha-1), and 

experimental plots consisted of 4 x 4 trees with 2 x 2 trees internal measurement plots 

(FIGURE 4). Small dimensions plots were used to ensure maximum homogeneous 

conditions of plant growth, to accelerate early canopy closure, intraspecific competition 

by greater site occupancy, genotype response on use of site available resources, and 

increase stress and risks in response to droughts (Hakamada et al., 2020a). 

Replanting occurred one month after establishment and proportion of replanted 

individuals was 2% (8 seedlings). 

 

(b) 

(a) (b) 
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FIGURE 4 – DIAGRAM OF THE EXPERIMENT DESING. 

 
Source: The author (2021). 

 

Weed control using glyphosate (2.5 l ha−1) was done before planting in 

December 2017 and again in September 2018 to maintain weed-free conditions. 

Nutrient additions were applied to eliminate any potential nutritional deficits. During 

planting, individual trees were fertilized with 30 g commercial controlled-release 

fertilizer (Basacote® Plus 12M; COMPO EXPERT, Münster, Germany) containing 15% 

N, 8% P2O5, 12% K2O, 2% MgO, and 5% S which was applied into the planting holes. 

Plants were properly irrigated from the time of planting until March 2018 (first dry 

summer season) to ensure survival, and again from the end of November 2018 until 

mid-February 2019 (second dry summer season). The irrigation was performed by 

dripper lines, with 50-cm emission point spacing along the planting line. The 

accumulated water provided by irrigation during the first and second dry summer 

periods was 664 and 158 mm, respectively. Furthermore, the irrigation management 

was performed based on a daily water balance, with evaporation records from a Class-

A evaporation pan, located near the experimental area (McMahon et al., 2013). The 

irrigation was always carried out until the soil reached field capacity. It is emphasized 

that from mid-February 2019 until late March 2019 the irrigation treatment was turned 

off to evaluate plant physiological responses as soil water decreased. 
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2.3 CLIMATE VARIABLES 

 

Daily values of minimum, mean, and maximum air temperature (°C), 

precipitation (mm), relative humidity (%), wind speed (m s−1), and photosynthetic active 

radiation (MJ m−2 day−1) were collected from a weather station located 600 m near the 

experiment site. Also, minimum, mean, and maximum vapor pressure deficit (VPD; 

kPa) was calculated as follows: 

VPD =  1 − RH

100
 .  610.7 × 10

 7.5T
237.7+T

 
1000

  

 

where, VPD is the vapor pressure deficit (kPa), RH is the relative humidity (%), and T 
is the air temperature (°C). 
 

Daily potential evapotranspiration (ET) was calculated using the Penman-

Monteith equation (Allen et al., 1989): 

ET =
0.408 .Δ.  Rn − G + γ.

900
T + 273

. u2 . VPD

Δ + γ. (1 + 0.34. u2)
 

 

where, ET is the potential evapotranspiration (mm), Rn is the net radiation of crop 
surface (MJ m−2 day−1), G is the soil heat flux density (MJ m−2 day−1), γ is the 
psychometric constant (kPa °C−1), u2 is the wind speed measured at 2-m height (m 
s−1), and Δ is the slope of the vapor pressure curve (kPa °C−1). 
   

 

 

 

 

 

 

 

 

 

 

 

(1) 

(2) 
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3 CHAPTER 1 - DIFFERENCES IN EARLY SEASONAL GROWTH EFFICIENCY 

AND PRODUCTIVITY OF EUCALYPTUS GENOTYPES 

 

ABSTRACT 

Understanding the changes in early growth efficiency (GE, growth / leaf area) 
may improve forest production through selection of specific genotypes at early stages. 
We investigated the early growth response of different genotypes of Eucalyptus 
globulus (10), E. nitens (3), and E. nitens × E globulus (E. gloni) (9) in south central 
Chile. To evaluate seasonal growth, seedlings of each genotype were established in a 
complete randomized block design in a coarse sandy soil (i.e., low water holding 
capacity) with irrigation during spring and summer. A current seasonal increment (CSI) 
in wood volume (cm3 m-2) and leaf area index (LAI) were estimated to calculate GE 
(CSI/LAI) at 4.1, 7.5, 10.4, 13.4, and 17.1 months of age, corresponding to five 
sequential growing seasons (first summer, fall, winter, spring, and second summer). 
The interaction of genotype and season had a significant effect (p < 0.001) on CSI, but 
not on LAI causing large changes in seasonal GE. In general, CSI values declined in 
winter but increased greatly in second summer. LAI values were stable during the first 
three seasons, increased in spring, and peaked in the second summer. During the 
season of maximum growth rate, a strong relationship between growth and LAI was 
not observed. The highest growth efficiencies were observed mainly for E. nitens and 
E. gloni genotypes, which were able to growth with small values of LAI. Our findings 
showed that eucalyptus genotypes with higher annual GE did not present higher 
seasonal GE, except in the second summer season. Changes in seasonal and annual 
growth efficiency performance, suggest that the same environment drive a large 
response in genotypes early growth, as consequence of climate influences in carbon 
allocation in Eucalyptus genotypes.  

 
Keywords: Leaf area index, Wood growth, Forest production, Growing season. 

 

3.1 INTRODUCTION 

 

Eucalyptus plantations are increasingly exposed to drought, fires, heat, and 

pests that could reduce productivity under climate change (Booth, 2013). However, 

there is potential to mitigate these adverse factors by planting adapted genetic 

materials (Binkley et al., 2017; Binkley and Stape, 2004). The interaction of genotype 

and environment has strong implications regarding the selection of the best genetic 

material for a specific site (Oliveira et al., 2018), particularly during the early ages 

where the potential for genotype selection for growth and adaptation in Eucalyptus 

breeding programs has been observed (Harrand et al., 2009; Luo et al., 2010). Relative 

growth responses, matched with appropriate genotype selection and an adequate site 
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potentially, enable increased Eucalyptus productivity and facilitate high stocking at full 

rotation (Binkley et al., 2004; Boreham and Pallett, 2009).  

A key driver of forest growth rates is leaf area, and its interaction with 

environmental conditions largely determines stem growth (Du Toit and Dovey, 2005; 

Laclau et al., 2008; Smethurst et al., 2003). Leaf area represented an important 

variable for ecophysiological studies, since higher values of leaf area indicated higher 

plant photosynthetic area, however higher plant transpiration (Hakamada et al., 

2020b), which are influenced by water balance and climate variations over the months 

and years of forest growth (Khoury and Coomes, 2020).  

The ratio of annual or periodic growth to leaf area is called growth efficiency 

(GE) (Waring et al., 1980), and it defines canopy efficiency in terms of net assimilation 

rates of carbon dioxide (CO2) (Waring et al., 2016). When Eucalyptus is grown under 

conditions of adequate resource supply (i.e., water and nutrients) or in managed 

plantations at favorable sites, GE is known to increase because plant increase the leave 

efficiency in assimilate and allocate CO2 to stem growth (Whitehead and Beadle, 

2004). However, since Eucalyptus genotypes did not show a similar growth rate in the 

same environment, these changes are also possible related to the dynamics of the leaf 

area over the same period. 

Eucalyptus forest areas placed in subtropical regions faced seasonal changes 

in air temperature and radiation, also in regions with Mediterranean climate, such as 

Central South Chile, they present the dry summer period with high atmospheric 

demand (Rubilar et al., 2020), resulting in interaction of season and genotype in growth 

rate and leaf area. However, little is known about whether the driver of early GE 

changes is seasonal growth or seasonal change in leaf area index (LAI), especially 

during early forest development when stress effects, such as drought, are most 

pronounced (Drake et al., 2009). Our understanding is that, if a seasonal increment in 

leaf area leads to the same proportional seasonal increment in growth, there is no 

change in seasonal GE. 

Considering the gap in knowledge about eucalyptus GE during early 

development, this study aimed to determine the interaction between season and 

genetic on early growth efficiency (growth/LAI) over 1.5 years of development of 

different Eucalyptus genotypes. We tested the hypothesis that during the early 

development the interaction of season and genetic are potential effect of changing in 

ranking of early growth and leaf area index among different Eucalyptus genotypes and 
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higher growth efficiencies during the seasons are expected for genotypes with higher 

annual growth efficiencies. 

3.2 MATERIAL AND METHODS 

 

3.2.1 Tree measurements 

 

Total tree height (h; cm) and root collar diameter (rcd; cm) were measured 

monthly for each tree of the measurement plots (2 x 2 trees). Seasonal cumulative 

values of rcd and h were measured to match the dates when the leaf area index (LAI) 
was measured. Monthly tree growth measurements were taken from January 2018 to 

March 2019 (67 and 513 days after planting, respectively). For seasonal growth 

comparisons, five growing seasons were considered: first summer (January 2018 to 

March 2018), fall (April 2018 to June 2018), winter (July 2018 to September 2018), 

spring (October 2018 to December 2018), and second summer (January 2019 to 

March 2019). These five seasons present different average values of air temperature 

(T), precipitation (PPT), radiation (Rn) and vapor pressure deficit (VPD) for experiment 

site. We estimated individual tree volume (vi; cm³) as: 

 

vi = 0.33π .
rdc2

4
. h 

 
(3.1) 

where, vi is the individual tree volume (cm3), rdc is the root collar diameter measured 

at 10 cm above ground (cm), and h is the total tree height (cm).   

                                                                                      

Volume was scaled up to square meter (V; cm3 m-2) by summing vi in 

measurement plots and divided by measurement plot area (6 m2). The form factor 

value (0.33) was according to others studies with similar genotypes on the same 

location (Rubilar et al., 2020; Watt et al., 2014). The current seasonal increment (CSI; 
cm³ m−2 season−1) for each of the five growing seasons was estimated as the difference 

between V at the beginning and end of each season. Also, we evaluate tree survival 

and there was no mortality during the experiment. LAI was estimated for each plot (66 measurements plots). Estimates were 

obtained using midday (11:00h to 14:00h) photosynthetically active radiation (PAR) 

interception, by measures below the tree canopy PAR in the north and east orientation 
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(n = 6) avoiding empty spaces in between tree canopy that did not contribute to light 

interception (FIGURE 5), and outside the experimental area (n =1) using a ceptometer 

(Li-191R & Li-250; LICOR Scientific, Lincoln, Nebraska, USA).  

 

FIGURE 5 – REPRESENTATION OF THE NORTH AND EAST INTERCEPTED RADIATION 
READINGS BELLOW CANOPY PERFORMED WITH LI-250 IN THE MEASUREMENT PLOTS. 

 
Source: The author (2021). 

 

Estimates were obtained under clear-sky conditions in March 2018 (S1), June 

2018 (S2), August 2018 (S3), December 2018 (S4), and February 2019 (S5). The LAI 
is derived from the model proposed by Norman and Jarvis (1975) which computes the 

sky conditions at data acquisition, effects of canopy architecture, optical properties of 

the leaves, in addition of the time of year and hour of day under sun angle, assuming 

that leaves are randomly distributed in the canopy. 

 

LAI =  [ 1 − 12𝐾𝑐 𝑓𝑏 − 1] ln  𝜏 𝐴 1 − 0.47𝑓𝑏  (3.2) 

 

where, LAI is tree leaf area index (m2 m-2), 𝐾𝑐 is tree extinction coefficient (Campbell, 

1986),  𝑓𝑏 is the light beam fraction, assumed to be 0.881, ln  𝜏  is the logarithmic of 



28 
 

 

ratio of PAR bellow tree canopy and outside of experimental area, and 𝐴 is canopy 

absorbance in PAR, assumed to be 0.86. 

 𝐾𝑐 = √𝜒2 + tan 𝑍 2𝜒 + 1.744 𝜒 + 1.182 −0.733 (3.3) 

 

where, 𝑍 is zenit angle in radians and 𝜒 is leaf distribution parameter, assumed to be 1. 

Since LAI measurements were performed before canopy closure, we corrected LAI values base on average trees crown area (At; m²) in measurement plots, using 

measurements of trees crown diameter in the north  Dn; m) and east (De; m) 

orientation, assuming a geometric shape equivalent to ellipsoid with horizontal axes 

formed by the crown projection radius. 

 rn;  re =  Dn; De 2  (3.4) 

 At =  𝜋. rnre (3.5) 

 

where, rn is the radius of tree crown in north orientation (m), re is the radius of tree 

crown in east orientation (m) for horizontal plane, Dn is the tree crown diameter in the 

north orientation (m), De is the tree crown diameter in the east orientation (m), 𝜋 is pi 

constant (3.1415926), and At is the tree crown area (m2). 

 

It was used the relationship between At and plot area (6 m2) to estimated 

clumping index (Ω) and calculated the corrected LAI (LAIc) for each genotype. 

 Ω =  At6  (3.6) LAIc =  LAI .  Ω (3.7) 

 

where, Ω is the clumping index (dimensionless) and LAIc is the corrected leaf area 

index (m2 m-2). 
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Finally, GE was estimated as the ratio of CSI to LAIc calculated at the 

corresponding season (le Maire et al., 2019; Waring et al., 2016). We also calculated 

the annual GE as the difference between V measured in January 2018 and March 2019 

divided by the LAIc estimated in February 2019. 

 

3.2.2  Statistical Analyses 

 

Analyses of variance (ANOVA) were used to analyze season and genotype 

differences in cumulative and seasonal growth and LAIc. Season was considered fixed 

effects, because climate variables in seasons (e.g., temperature, PPT, VPD, and PAR) 

changes systematically along the years and also genotype was considered fixed effect 

because in this study we evaluated only a few numbers of genotypes of interest. Blocks 

were considered random effects because in this study was assumed that soil 

characteristics varied aleatory among blocks. All ANOVA analyses were performed 

using the MIXED procedure. Seasons and genotypes differences in rcd, h, vi, V, CSI, 
and LAIc, were determined with the LSMEANS statement using the Tukey-Kramer 

adjustment (p < 0.05) in MIXED procedure.  

Linear regression was used to evaluated changes in CSI responses during 

each season with the previous season considering all genotypes. We used regression 

analysis in the GLM procedure to assess the relationship between CSI and LAIc, 
considering full versus reduced models for season and genotypes, using contrast 

options in GLM procedure. For the relationship among annual GE and seasonal GE, we 

used regression analyses for all evaluated genotypes.  

Models were compared using significance of coefficients (p < 0.05) adjusted 

coefficient of determination (Adj-R2; Eq. 3.8) and root mean square error (RMSE; Eq. 

3.9). Analyses were performed using SAS®Studio 

(https://www.sas.com/en_us/software/studio.html). When required, variables were log 

transformed to meet the assumptions of normality and homoscedasticity. All graphical 

analyses were performed in R software using the ggplot2 package (Wickham et al., 

2020). Adj_R2 = 1 −  1 − R2  n − 1n − p − 1   (3.8) 

https://www.sas.com/en_us/software/studio.html
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RMSE = √1n∑ Oi − Ei 2n
i=1  (3.9) 

 

where, Adj_R2 is the adjusted coefficient of determination, R2 is the coefficient of 

determination,  p is the number of coefficients in the model, RMSE is the root mean 

square error, n is the number of observations, Oi is the ith observed value, and Ei is 

the ith estimated value. 

 

3.3 RESULTS 

 

3.3.1  Climate 

 

Average T, VPD, sum of PPT, and ET across seasons are presented in TABLE 

2. During the experiment, the average temperature was 14 °C. The maximum and 

minimum absolute air temperatures were recorded in February 2019 (41.2 °C) and 

June 2018 (−5.4 °C), respectively. Seasonal VPD showed a similar trend to 

temperature. During summer (January to March), maximum VPD ranged between 2.0 

and 5.0 kPa, whereas during winter (July to September) VPD ranged from 0.03 to 0.51 

kPa. During the experiment, total PPT and ET were 1212 and 1217 mm, respectively. 

Precipitation occurred mainly in winter (July to September; 414 mm) with 60 mm falling 

during the summer months. Total PAR in summer was almost the double of total PAR 

in winter (FIGURE 6). 

TABLE 2 – AVERAGE MEAN (Tmean), MAXIMUM (Tmax), AND MINIMUM (Tmin) AIR TEMPERATURE, 
PRECIPITATION (PPT), POTENTIAL EVAPOTRANSPIRATION (ET), MAXIMUM VAPOR PRESSURE 
DEFICIT (VPDmax), AND PHOTOSYNTHETIC ACTIVE RADIATION (PAR) DURING GROWING 
SEASONS. 

Season Months Year 𝐓𝐦𝐞𝐚𝐧 
(°C) 

𝐓𝐦𝐚𝐱 
(°C) 

𝐓𝐦𝐢𝐧 
(°C) 

𝐏𝐏𝐓 
(mm) 

𝐄𝐓 
(mm) 

𝐕𝐏𝐃𝐦𝐚𝐱 
(kPa) 

𝐏𝐀𝐑 (MJ 
season-

1) 
First 
summer 

Jan–Mar 

2018 

19.1 27.5 10.6 63 387 2.54 1720 

Fall Apr–Jun 9.9 16.1 4.5 420 115 0.66 775 
Winter Jul–Sep 7.8 13.7 2.7 414 97 0.52 889 
Spring Oct–Dec 14.2 21.2 7.4 262 273 1.39 1556 
Second 
summer 

Jan–Mar 2019 18.8 29.0 10.2 53 345 2.50 1396 

Source: The author (2021). 
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FIGURE 6 – AIR TEMPERATURE (a) 1, PRECIPITATION AND POTENTIAL EVAPOTRANSPIRATION 
(b) 2, VAPOR PRESSURE DEFICIT (c) 1, AND PHOTOSSINTHEIC ACTIVE RADIATION (d) DURING 
OCTOBER 2017 AND APRIL 2019.  

Source: The author (2021). 
1 Minimum temperature and VPD are represented by open blue circles, mean temperature and VPD by 
closed clack circles, and maximum temperature and VPD by open red circles. 
2 Blue bars represent cumulative monthly precipitation and red bars cumulative monthly potential 
evapotranspiration. 
 
 
3.3.2 Genotype and seasonal effects on growth and growth efficiency 

 

All growth variables showed effects of season and genotype (TABLE 3); 

however, significant interactions for genotype × season were observed only for CSI. 
The differences CSI among genotypes at the end of the 1.5-year survey were very large 

and highly significant in the last season (second summer). In the second summer, CSI 
ranged from 1766 to 3642 cm3 m-2 season-1 and we observed that all genotypes 

presented a large growth increment between the spring and second summer.  
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TABLE 3 – ANALYSIS OF VARIANCE TESTING SEASON, GENOTYPE, AND GENOTYPE × SEASON 
INTERACTION EFFECTS FOR GROUND LINE DIAMETER (rcd), TOTAL HEIGHT (h), INDIVIDUAL 
VOLUME (vi), HECTARE VOLUME (V), CURRENT SEASONAL INCREMENT (CSI), LEAF AREA 
INDEX (LAIc). 

Effects 𝐫𝐜𝐝 𝐡 𝐯𝐢 𝐕 𝐂𝐒𝐈 𝐋𝐀𝐈𝐜 
Season < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

Genotype < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

Genotype × Season 0.9999 0.9921 0.0862 0.1168 0.0021 0.9258 

Source: The author (2021). 

 

According to Tukey-Kramer adjustment in ANOVA, we observed two genotype 

groups which showed significantly different CSI values (p < 0.05) in the second summer 

(S5): high productivity (3172 ± 318 cm3 m-2 season-1 – EN14, ENG3, ENG8, ENG2, 

ENG5, EG17, ENG7, EN13, EN12) and low productivity (2235 ± 262 cm3 m-2 season-

1 – ENG4, EG30, EG18, EG28, EG33, EG21, ENG22, ENG20, EG31, EG1, EG34, 

ENG25, EG19).  

Genotype ranking changed through the study period. Some genotypes (e.g., 

EG18 or EG31) started with strong growth for the first three seasons, but then slowed 

down, while others (e.g., EN14 and ENG3) improved growth over time (FIGURE 7). In 

general, E. globulus genotypes presented the lowest growth rate at the end of the 1.5-

year period compared to E. nitens and E. gloni genotypes. As a rule, we observed a 

similar growth pattern in each season, e.g., in winter the growth rate of all genotypes 

decreased and improved again in spring.  
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FIGURE 7 – CURRENT SEASONAL INCREMENT (CSI) FOR EACH GENOTYPE IN SECOND 
SUMMER (a), SPRING (b), WINTER (c), FALL (d), AND FIRST SUMMER (e), AND THE 
RELATIONSHIP BETWEEN CURRENT CSI WITH CSI IN PREVIOUS SEASON (f, g, h, AND i).1 

 

Source: The author (2021). 

1Mean value is the red point and box plots rankings are based on volume growth at second summer. 
asterisks indicate significance (** p < 0.001, *p < 0.05, “ ” = not significant). 
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The relationship between a particular season CSI with the previous season CSI 
values decreased over time. Genotypes with the highest CSI in the first summer also 

presented higher CSI in the fall, and the highest CSI values observed in fall also 

presented higher CSI in winter. However, genotypes that presented 200 cm3 m-2 

season-1 in winter reached a large range of CSI in spring (500 to 1500 cm3 m-2 season-

1), the same was observed for CSI in spring and second summer, where a large range 

of second summer CSI (1500 to 4000 cm3 m-2 season-1) occurred for the same CSI in 

spring (500 cm3 m-2 season-1). These results suggest that as trees get older, they 

responded differently to environmental constraints (season) even in a short early 

development period (1.5 years). 

The average LAIc showed little change during the first summer (0.56 m2 m-2), 

fall (0.76 m2 m-2), and winter (0.70 m2 m-2). Across all genotypes, LAIc increased after 

winter and reached the highest values during the second summer (3.64 m2 m-2). It was 

also observed that seasonal changes in LAIc followed seasonal changes in growth 

during early development (FIGURE 8), especially after winter. 

 

FIGURE 8 – SEASONAL AND GENOTYPE VARIATION OF LEAF AREA INDEX (LAIc). 

 

Source: The author (2021). 
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Comparisons of the full versus the reduced linear models between CSI and LAIc showed that season effects were significant (F = 515.1, p<0.0001) (TABLE 4). 

Interestingly, there were no differences in models tested for first summer and for winter 

(F=0.78, p=0.4383). In fact, similar growth rates among genotypes were observed for 

these first summer and for winter. The slope of the linear models represents the 

relationship between CSI and LAIc, in other words, the GE. For the first summer, fall, 

winter and spring, all genotypes followed a single line (TABLE 4; FIGURE 9).  

Lower GE was observed in the first summer and winter with a growth rate of 

112.5 cm3 m-2leaf. A significant improvement in GE (267.9 cm3 m-2leaf) was observed in 

fall, since we found an increase in growth with small changes in LAIc. A similar 

increment in GE (211.9 cm3 m-2leaf) was observed in spring. A single regression for the 

second summer did not show any significant relationship between CSI and LAIc (Adj-

R2=0.10, p=0.02) unlike other seasons. Therefore, we adjusted linear models 

considering ANOVA genotype groups (high productivity and low productivity).  

 

TABLE 4 – LINEAR MODELS ADJUSTED FOR THE LAIc AND CSI (GROWTH EFFICIENCY) 
RELATIONSHIP FOR SEASONS AND GENOTYPES GROUPS THAT SHOWED SIGNIFICANT 
DIFFERENCES.1  

Groups 𝜷̂𝟎 𝜷̂𝟏 𝐀𝐝𝐣 − 𝐑² 𝐑𝐌𝐒𝐄 

First summer and Winter 35.72 ** 112.5 ** 0.51 48.26 
Fall 95.43 ** 267.9 ** 0.61 87.92 

Spring 291.9 ** 211.9 ** 0.59 167.3 

Second summer – High 
productivity 

EN14, ENG2, ENG3, 
ENG7, ENG8 

258.5 ns 865.8 * 0.51 630.3 

ENG5, EG17, EN12, 
EN13 

2703 ** 64.95 ns 0.04 485.2 

Second summer – Low 
productivity 

ENG4, EG30, EG33, 
EG21 

1224 * 365.9 * 0.27 550.6 

EG1, EG18, EG19, 
EG31, EG34, ENG20, 

ENG22, ENG25 
1670 ** 121.9 ns 0.10 419.7 

Source: The author (2021). 
1 Linear models are represented by the expression 𝐶𝑆𝐼 = 𝛽̂0 + 𝛽̂1.𝐿𝐴𝐼𝑐 and goodness of fit of models was 
evaluated by coefficient significance (ns = not significance, * = p < 0.05, and ** = p < 0.001), adjust 
coefficient of determination (Adj-R2), and root mean square error (RMSE). 
 

For high productivity genotypes, a first group (EN14, ENG2, ENG3, ENG7, and 

ENG8) presented the highest GE values (865.8 cm3 m-2leaf). A second group (ENG5, 

EG17, EN12, and EN13) that showed high LAI values did not show proportional 

increases in growth and growth rate could be considered as a single line (2703 cm3 m-

2leaf) for all observed LAI values. For low productivity genotypes, we also observed a 



36 
 

 

third group (ENG4, EG30, EG33, and EG21) which increased their growth with LAIc 
(365.9 cm3 m-2leaf), although this response was not as strong as in the high productivity 

group (Adj − R² = 0.27). Also, a fourth low productivity group (EG1, EG18, EG19, EG31, 

EG34, ENG20, ENG22, and ENG25) also did not present a significative relationship 

between growth and LAI (FIGURE 9). 
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FIGURE 9 – LINEAR MODELS ADJUSTED FOR THE LEAF AREA INDEX (LAIc) AND CURRENT 
SEASONAL INCREMENT (CSI) RELATIONSHIP FOR FIRST SUMMER AND WINTER (a), FALL (b), 
SPRING (c), HIGH PRODUCTIVITY GENOTYPES IN SECOND SUMMER (d), AND LOW 
PRODUCTIVITY GENOTYPES IN SECOND SUMMER (e). 

 
Source: The author (2021). 
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When we compared seasonal GE with annual GE, we observed that the second 

summer GE was the only season significantly related to annual GE (F = 436.53, p 

<0.001, Adj − R2 = 0.87), while fall (F=3.11, p=0.08, Adj − R2 = 0.05), winter (F=0.56, 

p=0.46, Adj − R2 = 0.01), and spring (F=0.63, p=0.63, Adj − R2 = 0.01) were not 

significant (FIGURE 10). The main reason for this were the differences in growth rates 

among genotypes through the seasons. Genotypes that presented higher annual 

growth were the ones that grew more during the second summer. However, we 

observed that a single E. gloni genotype (ENG5) had the highest annual GE and it was 

able to maintain higher seasonal GE over time, showing a strong regulation in growth 

without changes leaf area values. We did not use data from the first summer GE in 

seasonal and annual GE analysis, because that season was similar to winter GE.  
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FIGURE 10 – ANNUAL GROWTH EFFICIENCY AND SEASONAL GROWTH EFFICIENCY 
RELATIONSHIP AMONG EUCALYPTUS GENOTYPES DURING FALL (a), WINTER (b), SPRING (c), 
AND SECOND SUMMER (d). 

 
Source: The author (2021). 

 

 

3.4 DISCUSSION 

 

This study evaluated the early growth, LAIc and GE responses of Eucalyptus 

genotypes across different seasons during their 1.5-year of development. To date, few 

studies have investigated the performance of genotypes during early growth under 

different seasonal conditions in the same environment. We observed that the 

increment in growth across seasons improved early GE, even with greater changes in 
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LAI. Higher productivity was observed mainly for E. nitens and E. gloni genotypes, 

possibly because E. nitens and some of its hybrids were capable of using the available 

resource (soil water and temperature) efficiently during early development and properly 

partition the photosynthetic compounds for wood production, even with the lack of E. 

nitens ability to acclimate under warmer temperatures (spring and summer) (Battaglia 

et al., 1998). 

The reduction of CSI in winter resulted in a decrease in GE during the same 

period for all genotypes, even with small changes in LAIc, when compared to the 

previous seasons (first summer and fall). According to Whitehead and Beadle (2004), 

the dominant factor causing a reduction in growth during winter is lower available 

radiation, especially at higher latitudes, and we also observed lower PAR values in that 

season. As radiation is an essential resource for photosynthesis, its low availability 

results in decreased plant metabolism, affecting growth (Whitehead and Beadle, 

2004). In addition, lower winter temperatures (sometimes below 0 °C in our study) are 

known to affect forest productivity (McMurtrie et al., 1994; Watt et al., 2014). 

Differences in Eucalyptus growth along the plantations get older showed constating 

strategies of resource acquisition dynamics and allocation among genotypes (le Maire 

et al., 2019). This was confirmed by the decrease in season CSI relationships along the 

survey, where genotypes with maximum growth in second summer were not the same 

during the previous season. 

Several studies have shown that volume increment is strongly dependent on 

leaf area and its variation during tree growth (Stape et al., 2004; Binkey et al., 2017; 

Rubilar et al., 2020). Although the relationship between LAIc and growth in Eucalyptus 

has been evaluated (Smethurst et al., 2003; Whitehead and Beadle, 2004), few studies 

have investigated how this relationship changes, especially during the early 

development of Eucalyptus. Such information will facilitate improved genotype 

selection and the achievement of better genetic gain in eucalyptus breeding programs 

since the peak stress in Eucalyptus stands occur after complete crown closure what 

occurs earlier in high density stands allowing that stress effect be visualized earlier 

between genotypes (Luo et al., 2010). In our season with the maximum growth rate 

(second summer), we did not observe a stronger relationship between growth and LAIc. 
This response may suggest a different efficiency behavior in some genotypes, which 

achieved a higher growth rate without an increase in leaf area, this makes them more 

efficient in wood volume production and possible changes in early growth efficiency 
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was related to changes in genotype growth rates since there was a non-significant 

interaction for LAIc. 
We observed a 128% increase in average LAIc values between the spring and 

the second summer and a 313% increment in CSI values during the same seasons. 

This low LAI– CSI correlation in the second summer could be linked to higher 

atmospheric demand in the summer months (i.e., VPD), potentially leading to increased 

water deficits and resulting in the partitioning of carbon assimilates to other plant 

organs, such as roots, which would reduce the relative stem growth in some 

Eucalyptus genotypes (Ryan et al., 2010).  Another possible explanation is that canopy 

closure, as reflected by an increment in LAIc between spring and second summer, 

increased intraspecific competition between genotypes which affected stem biomass 

increment (Gonçalves et al., 2013; Tomé et al., 1994), consequently changing the GE 

response. This explanation is supported by the non-strong relationship observed 

between leaf area and growth in the second summer compared to other seasons.  

One group of high productivity genotypes in the second summer did respond 

with a larger increment in growth with leaf area increment, compared with the other 

high productivity group which presented an average growth values regardless of LAIc. 
Although leaf area is very important for Eucalyptus growth, it is not the only parameter 

which affects growth (Wang et al. 2019), and sometimes genotypes with lower LAIc can 

present higher photosynthetic rates (Mu et al., 2010). Changes in GE across the 

seasons were more strongly related to CSI than to LAIc. Consequently, the second 

summer, which had the highest CSI of all seasons during early development, also 

showed higher GE (300 to 2000 cm3 m-2leaf). This accounted for our observation of 

significant differences in GE only in the second summer, because during this season 

we observed a greater range in CSI between genotypes (1200 to 4900 cm3 m−2 season-1). 

Different seasonal GE compared to annual GE resulted from changes in 

genotype growth increments through the seasons. Our findings showed that 

eucalyptus genotypes with higher GE at the end of early development did not presented 

higher seasonal GE, excepted in the second summer. This supports the suggestion 

that the season with maximum growth should be used for the selection of genotypes 

with higher annual GE and allowing forest managers to make decisions about the 

productivity of Eucalyptus plantations (Silva et al., 2016). 
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Eucalyptus globulus genotypes showed the highest GE in the first summer; 

however, we observed a decrease in the GE of these genotypes in subsequent 

seasons. This was most likely related to a reduction in relative growth compared to the 

maximum possible growth during each season, and may indicate that most E. globulus 

genotypes did not exhibit their full growth potential at this site. The GE results of this 

study suggest that E. globulus genotypes may be highly sensitive to environmental 

differences during early development because they largely changed growth and GE 

across the seasons, compare to E. nitens and E. gloni (Rubilar et al., 2020; White et 

al., 1996; White et al., 2009). 

Since environmental differences (seasons) affect early growth and leaf area in 

eucalypts, a lower GE could indicate poor species and/or genotype adaptation to the 

experimental location. Our results showed that the growth ranking of genotypes was 

not stable among seasons, which implies an interaction between genotypes × season 

(environment). Furthermore, we observed that leaf area affected growth for the first 

year of development, after which there was a genotype interaction in the growth / leaf 

area relationship (GE). However, physiological comparisons among Eucalyptus 

genotypes in controlled studies are needed to ensure a deeper understanding of 

genotype differences and possible strategies under drought and heat risks throughout 

their development. 

 

3.5 CONCLUSIONS 

 

Seasons and genetic interaction presented a large effect on early growth 

relationships among Eucalyptus genotypes, however non-significant changes in leaf 

area index. Changes in seasonal and annual growth efficiency performance, suggest 

that the same environment drive a large response in genotypes early growth, as 

consequence of climate influences in carbon allocation in Eucalyptus plantations. This 

information should be taken in consideration for specific genotypes plantation in each 

site, allowing them to achieve their full growth potential. 
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4 CHAPTER 2 - PHYSIOLOGICAL RESPONSES AND GROWTH OF EUCALYPTUS 

GENOTYPES UNDER CUMULATIVE PLANT WATER STRESS  

 

ABSTRACT 

 

Understanding how changes in soil water availability affects Eucalyptus 
physiology and growth is critical under the current climate change scenario. However, 
reduced information exist on how even small changes in soil water may affect 
physiological responses of Eucalyptus genotypes and their relationship with early 
productivity. Our experiment evaluated changes in physiological traits during a short 
period of decreased soil water availability and compared growth and cumulative water 
stress of 1.5-year-old 22 Mediterranean eucalyptus genotypes established at high 
initial planting density (6666 trees ha-1). The experiment was established over a coarse 
sandy soil with low water holding capacity in central South Chile under high summer 
vapor pressure deficits (VPD). Selected genotypes considered 10 Eucalyptus globulus, 
3 E. nitens and 9 E. nitens x E. globulus hybrids. Seasonal predawn leaf water potential 
(Ψpd) was evaluated at 114, 224, 281, 379, and 475 days after planting under well 
irrigated conditions. Afterwards and until 510 days after planting (40 days without 
irrigation) two sampling instances were considered: a first sampling instance at the end 
of well irrigated conditions M0 (475 days after planting) and second instance after 40 
days without irrigation Mfinal (508 days after planting). During that period, we measured 
midday water potential (Ψmd), diurnal changes in net photosynthesis (An), stomatal 
conductance (gs) and leaf area index (LAI). Using ANOVA and linear regression, we 
evaluated genotype differential responses at each sampling instance. Results 
indicated a broad range of water stress integral (WSI) values among genotypes 
showing contrasting levels of accumulated water stress during the early development. 
Interestingly, E. globulus presented 30% more water stress than E. nitens, and 
genotypes with the highest WSI showed the lowest volume growth during decreased 
soil water. In general, there was a reduction in An and gs for genotypes in the morning 
and midday between M0 and Mfinal, but small changes in mid-afternoon values. Average 
values of intrinsic water use efficiency (iWUE) increased between M0 and Mfinal. Midday 
water potential presented small changes, however there was a large increment in LAI 
for almost all genotypes. We observed that there was no relationship between growth 
and WSI with An, while changes in iWUE were more pronounced for genotypes with 
lower WSI, which suggested that genotypes showing high changes of iWUE they were 
more sensible to changes in soil water, such as ENG2, ENG5 and EN14. Our results 
suggest that E. gloni genotypes were more sensible to small changes in soil water 
availability, allowing them to maintain average high productivity. Observed response 
patterns of genotypes physiology may allow for advanced in understanding possible 
drought risk for eucalyptus genotypes. 

 
Key-words: Water stress integral, photosynthesis, intrinsic water use efficiency, forest 

growth, water potential. 
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4.1 INTRODUCTION 

 

Eucalyptus species dominate ecosystems across Australia and nearby islands 

and many species have been introduced in other countries for forest production, 

occupying a broad range of environmental conditions (Whitehead and Beadle, 2004; 

Binkley et al., 2017). However, climate change scenarios predict increasing droughts 

duration and intensity in tropical and subtropical areas (IPCC, 2014). Lower water 

availability in regions with a Mediterranean climate that include severe summer 

droughts may affect severely eucalyptus growth, survival, and physiology under 

limiting water stress conditions and understanding the genetic response of improved 

materials is required (Héroult et al., 2013; Correia et al., 2014; Rubilar et al., 2020). 

Water availability is one of the principal factors controlling the productivity of 

ecosystems and drought is the most critical threat for agriculture and tree mortality 

(Stape et al., 2010; Allen et al., 2010; Lévesque et al., 2013; Allen et al., 2015). The 

severity and temporal scale of water deficits affect tree physiology and growth. 

Identifying water deficit responses is critical for early detection of tree mortality and 

productivity, and these response patterns may determine the tolerance of tree species 

to lower water availability (Waring and Landsberg, 2011; Vicente-Serrano et al., 2013; 

Héroult et al., 2013). Breeding of trees that are tolerant to water deficits may be a 

promising approach, but it requires knowledge of plant genetics and physiological 

mechanisms during plant development (Landsberg and Waring, 2017). 

Water deficits have short and long terms effects on plants. Short terms are 

linked with physiological responses and long terms with morphological and growth 

responses. Thus, the relationship between plant water status (e.g., leaf water potential) 

and forest yield was necessary to integrate effects of water status over of plant 

development, called water stress integral (WSI) (Myers, 1988). The water stress 

integral consists of the summation of plant water potential at defined intervals over the 

measurement periods. A larger absolute values of water stress integral represented 

larger amounts of accumulated water stress and causes a reduction in forest growth. 

The ability of plants to develop and succeed under expect limited soil water conditions 

is the manifestation of one or more adaptative changes at all these different levels 

(Chaves et al., 2003).  

Water deficits limit cell division and elongation because of the reduction in 

turgor pressure (Taiz et al., 2017). Short-term responses to avoid water stress include 



45 
 

 

the maintenance of higher water potentials, reduction of carbon assimilation, stomatal 

closure, root signal recognition (Chaves et al., 2003; Silva et al., 2016; Silva et al., 

2017), and reduction of leaf area by shedding or diminishing leaf sizes (Gauthier and 

Jacobs, 2018). Leaf water potential, stomatal conductance, and transpiration are key 

important factors that influence the plant water status (Farooq et al., 2009; Martorell et 

al., 2014). Higher water-use efficiency is usually linked with stomatal closure to reduce 

transpiration when the soil dries, but it is also sometimes positively correlated with 

productivity (Saravanan, 2018). Water use efficiency has been identified as a key 

parameter for evaluating Eucalyptus adaptation to water deficits and shows a wide 

variation among Eucalyptus species and genotypes (Navarrete-Campos et al., 2013). 

However, stomatal closure limits CO2 uptake by leaves reducing photosynthetic rates 

(Myers and Landsberg, 1989; Santos et al., 2019; Saravanan, 2018), which in turn 

reduces productivity. 

Stomata respond to chemical signals while the leaf water potential is kept 

constant and a negative carbon balance can occur as a result of the reduction in 

photosynthesis; these responses tend to increase during periods of water stress (Kolb 

and Stone, 2000). However, some Eucalyptus genotypes show different responses 

accumulated water stress (White et al., 2000; Silva et al., 2017). Plants with higher 

osmotic adjustment are capable of tolerating drought periods by allowing the cell to 

maintain turgor (Chaves et al., 2003), and this is very common among Eucalyptus 

species (Merchant et al., 2007). According to Merchant et al. (2007), Eucalyptus show 

a clear coordination of physiological and structural adaptations to soil water availability.  

Many physiological studies have been performed in greenhouses to avoid the 

complication of access to different water sources in the field; however, the behavior of 

greenhouse plants does not necessarily reflect how trees behave in the field (Szota et 

al., 2011; Adams et al., 2017). The study aimed to analyze the relationship between 

growth and water stress integral on changes in photosynthesis, intrinsic water use 

efficiency, midday water potential and leaf area index of different eucalyptus genotypes 

under a short period of decreased soil water. We tested the hypothesis that Eucalyptus 

genotypes subjected to higher accumulated water stress integral would show lower 

growth during changes in soil water, resulting in higher decrease on net 

photosynthesis, intrinsic water use efficiency, midday water potential and leaf area 

index. 
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4.2 MATERIALS AND METHODS 

 

4.2.1 Growth 

 

In February 2019 and March 2019, individual tree height (h), and root collar 

diameter at 0.1 m height (rcd) were measured on four central plants in each 

measurement plot (6 m2). According to Eq. (4.1) individual tree volume index (vi) was 

determined from these measurements: 

 vi = 0.33π . rdc24 . ℎ (4.1) 

where, vi is the individual tree volume (cm3), rdc is the root collar diameter measured 

at 0.1-m height (cm), and h is the total tree height (cm).   

 

The form factor value (0.33) was according to others studies with similar 

genotypes on the same location (Rubilar et al., 2020; Watt et al., 2014). Volume was 

scaled up to square meter (V; cm3 m-2) by summing vi in measurement plots and 

divided by measurement plot area (6 m2). Volume increment (IncVol) was determined 

as the difference between V in March 2019 and V in February 2019.  

 

4.2.2 Seasonal measurements of predawn leaf water potential 

 

Predawn leaf water potential (Ψpd) was measured at different times during the 

early growth with a Scholander pressure chamber (PMS Instruments, Corvallis, OR 

USA). Measurements were made in mature, fully expanded, and sun-exposed leaves 

of the upper canopy between 4:30 to 7:00 h. Seasonal measurements considered first 

mid-summer 2018 (February 22), early winter 2018 (June 12), mid-winter 2018 (August 

8), mid-spring 2018 (November 14), second mid-summer 2019 (February 19), and 

early fall (March 27). These dates coincided with different periods of precipitation (PPT), 

evapotranspiration (ET), temperature (T), and vapor pressure deficit (VPD) at the 

experiment site (FIGURE 11). 
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FIGURE 11 –RAINFALL (PPT) and TEMPERATURE (T), DURING THE FIRST 1.5 YEAR OF STUDY 
DEVELOPMENT.  

 

Source: The author (2021). 

 

Following Myers (1988), we calculated the cumulative water stress integral 

(WSI) which integrating effects of plant water status over time considering the 

cumulative integral of Ψpd (Mitchell et al, 1999; Galindo et al., 2017) over the entire 

period of growth (Eq. 4.2). 

WSI = ∑(Ψ̅𝑖,𝑖+1 − c). nt
𝑖=0  (4.2) 

 

where,WSI is the cumulative water stress integral (MPa day-1), Ψ̅i,i+1 is the mean of 

predawn leaf water potential for interval 𝑖, 𝑖 + 1 (MPa), c is the maximum or less 

negative value of predawn leaf water potential during the measurements (MPa), and n 

is the number of days at interval 𝑖, 𝑖 + 1. 

 

4.2.3 Volumetric soil water content (θ) and sampling instances 

 

Monitoring of volumetric soil water content (θ) was carried out by installing 

three soil moisture sensors (CS655, Campbell Scientific) at two depths (i.e. 0-20 cm 

and 20-40 cm) in each block. Sensors were inserted to monitor water content at 5 min-

intervals from February 19 until April 4 in 2019 (45 days). Sensors were connected to 

a CR1000 datalogger (Campbell Scientific) to record θV data. From θ measurements, 
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two sampling instances were determined and used to analyze genotype response 

differences in physiological behavior during this period of decreased soil water 

availability (FIGURE 12). M0 represented the final point under irrigation and the starting 

point under no irrigation, and Mfinal represented the final period after nearly 40 days 

without irrigation before increment the numbers of daily precipitation. During this 

period, it rained approximately 20 mm between March 6 and March 7. The final 

difference in θ from M0 to Mfinal was approximately 40% for each soil depth. 

  

1) M0 – initial measurement instance – February 18 to February 22, 2019 (θ 0-20cm 

= 0.081 m3.m-3 ± 0.02 and θ 20-40cm = 0.146 m3.m-3 ± 0.03);  

2) Mfinal – final measurement instance – March 21 to March 25, 2019 (θ 0-20cm = 

0.046 m3.m-3 ± 0.01 and θ 20-40cm = 0.095 m3.m-3 ± 0.02). 

 

FIGURE 12 –CHANGES IN VOLUMETRIC SOIL WATER CONTENT (m3 m-3) AND RAINFALL (mm) 
BETWEEN M0 and Mfinal1. 

 

Source: The author (2021). 

1 Red dash lines represented the measurements intervals for M0 and Mfinal. 
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4.2.4 Leaf gas-exchange 

 

Leaf gas exchange measurements occurred every two days during M0 and Mfinal sampling instances and considered net CO2 assimilation rate (An; μmol CO2 m-2 

s-1), stomatal conductance (gs; mol H2O m-2 s-1), transpiration (Tr; mmol H2O m-2 s-1), 

and intercellular CO2 (Ci; μmol CO2 mol air -1). Measurements were made in one plant 

of each genotype for each plot (block) assessing mature, fully expanded and sun-

exposed leaves at 10:00h and 11:00h, 12:30h and 13:30h and 14:30h and 15:30h, 

using a portable infrared gas analyzer LICOR-6400 (Li-Cor, Inc., Lincoln, NE, USA). 

All measurements were made setting reference CO2 at 400 μmol.mol-1, light intensity 

(PAR) in the leaf chamber at 1500 μmol m-2 s-1, a constant flow rate of 500 μmol s-1 

and leaf temperature (Tleaf) as close possible to ambient air temperature (T) on each 

measurement instance. Intrinsic water use efficiency (iWUE; μmol CO2 mol-1 H2O) was 

calculated by the ratio of An and gs. 
 

4.2.5 Midday water potential (Ψmd) 

 

Midday leaf water potential (Ψmd) was measured with a Scholander pressure 

chamber (PMS Instruments, Corvallis, OR USA). Measurements were made in mature, 

fully expanded, and sun-exposed leaves of the upper canopy between 11:30 to 14:00, 

and occurred every two days between in M0 and Mfinal sampling instances.  

 

4.2.6 Leaf area index (LAI) 
 LAI was estimated for each plot in February 23 and March 25 2019 under clear-

sky conditions. Estimates were obtained using midday (11:00h to 14:00h) 

photosynthetically active radiation (PAR) interception, by measuring below the canopy 

(n = 3) PAR in the north and east orientation, and outside the experimental area (n = 

1) using a ceptometer (Li-191R & Li-250; LICOR Scientific, Lincoln, Nebraska, USA). 

For PAR below canopy measurements the sensor was placed in the center of the plot 

and among trees in the interrow. In order to estimate LAI from PAR measurements, we 

considered uniform leaf distribution parameter (χ = 1) for calculations of light extinction 

coefficient (𝐾𝑐) (Norman and Jarvis, 1975; Campbell, 1986): 
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𝐾𝑐 = √𝜒2 + tan 𝑍 2𝜒 + 1.744 𝜒 + 1.182 −0.733 (4.3) 

 

where, 𝑍 is zenit angle in radians and 𝜒 is leaf distribution parameter. 

 

LAI =  [ 1 − 12𝐾𝑐 𝑓𝑏 − 1] ln  𝜏 𝐴 1 − 0.47𝑓𝑏  (4.4) 

 

where, LAI is tree leaf area index (m2 m-2), 𝐾𝑐 is tree extinction coefficient (Campbell, 

1986),  𝑓𝑏 is the light beam fraction, assumed to be 0.881, ln  𝜏  is the logarithmic of 

ratio of PAR bellow tree canopy and outside of experimental area, and 𝐴 is canopy 

absorbance in PAR, assumed to be 0.86. 

 

4.2.7 Statistical analyses 

 

The relationship between volume growth (IncVol) during soil water reduced 

availability (between M0 and Mfinal) with cumulative WSI during early development was 

evaluated using linear regression using GLM procedure considering all taxa.  We used 

the relationship between IncVol and WSI to check genotypes behavior for growth (high 

and low productivity) and for absolute WSI (high and low water stress). 

Analyses of variance (ANOVA) were used to evaluate response differences 

among genotypes and interactions in An, gs, Tr, Ci, Ψmd and LAI between sampling 

instances (M0 and Mfinal) considering morning, midday and afternoon assessment 

periods. Sampling instances, periods and genotypes were considered fixed effects and 

blocks were considered random effects. All ANOVA analyses were performed using 

the SAS PROC MIXED. Differences in An, gs, Tr, Ci, Ψmd and LAI were determined 

with the LSMEANS statement using the Tukey-Kramer adjustment (p < 0.05). 

Graphical analyses were performed to evaluate changes in An throughout the day 

using the maximum values for each taxon (E. globulus, E. nitens, and E. gloni) and key 

genotypes considering the relationship between IncVol and WSI.  
The percentage mean increases or reduction value (Δ%) of each physiological 

variable and LAI between M0 and Mfinal was used to check genotype responses 

between measurement (Eq. 4.5). Linear regression and graphical analyses were used 
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to evaluate the relationship between An and iWUE with IncVol and also with WSI for all 

genotypes: Δ% = (𝑋𝑀𝑓𝑖𝑛𝑎𝑙 − 𝑋𝑀0𝑋𝑀0 ) . 100 (4.5) 

 

where, Δ% is the variation in physiological variables (%), 𝑋𝑀𝑓𝑖𝑛𝑎𝑙 is the measurement 

value at  Mfinal and 𝑋𝑀0 is the measurement value at M0. 

 

Variables were transformed as required to meet the assumptions of normality 

and homogeneity of variance using a Box-Cox transformation (Gaudry and Dagenais, 

1979). All analyses were performed using SAS®Studio 

(https://www.sas.com/en_us/software/studio.html) and graphs were built using the 

package ggplot (Wickham, 2020) in R software (R Core Team, 2019).  

 

4.3 RESULTS 

 

4.3.1 Growth in a period of moderately decreased soil water (M0 and Mfinal) 

 

A larger IncVol was observed between M0 and Mfinal. Across all genotypes 

mean IncVol was 1890 ± 446 cm3 m-2 in 40 days. At Mfinal, average V ranged from 2859 

to 6086 cm3 m-2 for E. globulus with IncVol of 1599 cm3 m-2 in 40 days, while for E. 

nitens average V ranged from 4718 to 6526 cm3 m-2 with IncVol of 2238 cm3 m-2 in 40 

days. For E. gloni, V ranged from 2900 to 6418 cm3 m-2 with an average increment, 

similar to E. nitens, of 2086 cm3 m-2 in 40 days. As similar percentage increments were 

obtained for all genotypes, the ranking in wood volume did not present great changes 

between M0 and Mfinal (FIGURE 13). 

https://www.sas.com/en_us/software/studio.html
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FIGURE 13 – CUMULATIVE VOLUME FOR ALL EUCALYPTUS GENOTYPES BETWEEN M0 and Mfinal1. 

 

Source: The author (2021). 

1 Percentage represents the variation of average values between the two sampling instances. The 
genotype order represents the largest to the smallest cumulative volume at M0 for each taxon. Vertical 
bars represent the plot mean standard error (n = 3). 
 
 
4.3.2 Seasonal measurements of predawn leaf water potential (Ψpd) and water stress 

integral (WSI) 
 

Magnitude of seasonal changes in Ψpd was different for each taxon during the 

study period (FIGURE 14 a, c, and e). Genotypes EG17, EG18, EG19, EG21, EG28, 

ENG3, ENG20, and ENG22 reached Ψpd values below -0.5 MPa in mid-winter (August 

2018 – 281 days after planting). During the second mid-summer (February 2019 – 475 

days after planting) Ψpd ranged from -0.2 to -0.4 MPa. The less negative Ψpd was -0.05 

MPa (c parameter in WSI). In general, we observed a significant reduction of the Ψpd when VPD increased over the seasons for all taxa (FIGURE 14 b, d, and f). 
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FIGURE 14 – GENOTYPE CHANGES IN PREDAWN WATER POTENTIAL AND ITS RELATIONSHIP 
WITH VAPOR PRESSURE DEFICIT ALONG SEASONS FOR E. globulus (a, b), E. nitens (c, d), AND 
E. gloni (e, f) IN EARLY DEVELOPMENT.1 

 

Source: The author (2021). 

1 Red lines are the linear models represented by the expression Ψpd = 𝛽0+𝛽1* VPD. 

 

The absolute cumulative WSI for the whole period of mensuration (508 days 

after planting) ranged from 100 to 158 MPa day-1 for E. globulus, from 67 to 100 MPa 
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day-1 for E. nitens, and 67 to 161 MPa day-1 for E. gloni. Larger absolute values of WSI 
indicated larger amounts of accumulated water stress reflected in more negative 

values of Ψpd. E. globulus showed the largest absolute average WSI (124 MPa day-1) 

compared to E. nitens (-31%) and E. gloni (-12%), however the largest range in WSI 
was observed in the E. gloni genotypes (FIGURE 15 a, b, and c). 
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FIGURE 15 - GENOTYPE CHANGES IN WATER STRESS INTEGRAL FOR E. globulus (a), E. nitens 
(b) AND E. gloni (c) IN EARLY DEVELOPMENT. 

 

Source: The author (2021). 
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4.3.3 Volume increment (IncVol) and water stress integral (WSI) 
 

A significant and negative relationship was observed between IncVol, during M0 and Mfinal, and the absolute WSI during early development (F = 23.19, p < 0.0001). 

The slope of the regression model showed a decrease of IncVol of 13.9 cm3 m-2 for 

each 1 MPa day-1. In other words, genotypes that presented larger amounts of 

accumulated water stress along early development reduced growth during decrease 

soil water availability (between M0 and Mfinal), except for ENG3 (E. gloni), which showed 

the highest absolute WSI and the higher IncVol when compared to our regression 

model. All E. nitens genotypes (EN12, EN13, and EN14) presented high productivity 

(above 1900 cm3 m-2 between M0 and Mfinal) with low water stress (below 90 MPa day-

1), unlike almost all E. globulus genotypes (EG18, EG19, EG21, EG28, EG31, and 

EG34) which showed the opposite behavior. Interestingly, some E. gloni genotypes 

showed similar values to E. nitens (ENG2, ENG5, ENG7, and ENG8), while others 

followed E. globulus (ENG22 and ENG25) (FIGURE 16). 

 

FIGURE 16 - WATER STRESS INTEGRAL AND VOLUME INCREMENT RELATIONSHIP BETWEEN M0 and Mfinal FOR EUCALYPTUS GENOTYPES. 

 
Source: The author (2021). 
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4.3.4 Physiological and LAI measurements during the decreased soil water availability 

period (M0 and Mfinal) 

 

Physiology and LAI measurements showed contrasting results (TABLE 5). For 

E. globulus, there were significative interaction for sampling instance × period for An, Ci, and Tr, and for sampling instance × genotype for LAI. Genotype was significative 

only for gs and Ci, and sampling instance only for  Ψmd. For E. nitens, a significative effect of sampling instance and genotype for gs and Tr was observed, and a significative interaction was only observed for An for sampling 

instance × period. Sampling instances was significative only for LAI. E. gloni showed 

the most significative effects among taxa. The interaction between sampling instances 

× period × genotype was significant for gs and Tr, and sampling instances × period for An and Ci. Also genotype effects was significant for all physiological variables and LAI. 
TABLE 5 – ANALYSES OF VARIANCE P-VALUES TESTING SAMPLING INSTANCES (SI – M0 and Mfinal), PERIODS (P – MORNING, MIDDAY, AND AFTERNOON), GENOTYPE (G) AND INTERACTION 
EFFECTS EVALUATED FOR PHOTOSYNTHESIS (An), STOMATAL CONDUCTANCE (gs), 
INTERCELLULAR CARBON (Ci), TRANSPIRATION (Tr), MIDDAY WATER POTENTIAL ( Ψmd), AND LEAF AREA INDEX ( LAI). 

Taxa Effects 𝐀𝐧 𝐠𝐬 𝐂𝐢 𝐓𝐫 𝚿𝐦𝐝 𝐋𝐀𝐈 

E
. 
g

lo
b

u
lu

s
 

SI < 0.001 < 0.001 0.066 < 0.001 0.020 < 0.001 

P 0.901 0.595 0.921 0.653 - - 

G 0.372 0.008 0.005 0.059 0.218 < 0.001 
SI × P < 0.001 0.065 0.041 0.040 - - 
SI × G 0.554 0.812 0.216 0.775 0.806 < 0.001 
P × G 0.764 0.155 0.101 0.690 - - 
SI × P × G 0.588 0.470 0.475 0.675 - - 

E
. 
n

it
e

n
s
 

SI 0.011 0.005 0.215 < 0.001 0.351 0.006 
P 0.725 0.005 0.054 0.213 - - 
G 0.004 0.002 0.479 0.007 0.730 0.150 
SI × P 0.022 0.609 0.242 0.147 - - 
SI × G 0.949 0.231 0.114 0.305 0.222 0.072 
P × G 0.596 0.517 0.661 0.466 - - 
SI × P × G 0.739 0.585 0.854 0.824 - - 

E
. 
g

lo
n

i 

SI < 0.001 < 0.001 < 0.001 < 0.001 0.367 < 0.001 
P 0.003 0.333 0.691 0.488 - - 
G 0.021 0.001 0.021 0.005 0.174 < 0.001 
SI × P 0.003 0.146 0.006 0.135 - - 
SI × G 0.201 0.005 0.245 0.023 0.194 0.058 
P × G 0.258 0.042 0.744 0.091 - - 
SI × P × G 0.459 0.005 0.924 0.034 - - 

Source: The author (2021). 
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Across all genotypes and measurement period, the decrease in soil water 

between sampling instances reduced average physiology performance by 20% for An, 

34% for gs, 4% for Ci, 37% for Tr, and 5% for Ψmd, excepted for LAI which presented 

an increment of 40%. Considering individual taxa, E. gloni showed the greatest 

reduction in gas-exchange variables with 23% for An, 43% for gs, 5% for Ci, and 42% 

for Tr, and could be considered the most sensible taxa in the survey of physiological 

changes, and E. nitens presented the lowest reduction with 11% for An, 22% for gs, 2% 

for Ci, and 28% for Tr. E. globulus presented the greatest reduction in Ψmd (10%) and E. 

nitens genotypes were capable to increase average Ψmd in 5% with decrease in soil 

water, showing very contrasting behaviors. LAI increased for all taxa, being E. gloni 

which invested more in LAI (43%), followed by E. nitens (38%), and E. globulus (37%) 

(TABLE 6). 

TABLE 6 – DESCRIPTIVE STATISTICS FOR PHOTOSYNTHESIS (An - μmol CO2 m-2 s-1), STOMATAL 
CONDUCTANCE (gs - mol H2O m-2 s-1), INTERCELLULAR CARBON (Ci - μmol CO2 mol air -1), 
TRANSPIRATION (Tr - mmol H2O m-2 s-1), MIDDAY WATER POTENTIAL ( Ψmd - MPa), AND LEAF AREA INDEX ( LAI – m2 m-2) FOR EUCALYPTUS TAXA DURING SAMPLING INSTANCES1. 

Taxa Desc. 
𝐀𝐧 𝐠𝐬 𝐂𝐢 𝐓𝐫 𝚿𝐦𝐝 𝐋𝐀𝐈 𝐌0 𝐌final 𝐌0 𝐌final 𝐌0 𝐌final 𝐌0 𝐌final 𝐌0 𝐌final 𝐌0 𝐌final 

E
. 

g
lo

b
u
lu

s
 Mean 18.74 15.25 0.47 0.34 293.8 284.4 5.52 3.58 -1.21 -1.32 3.64 5.01 

Min. 6.34 6.71 0.08 0.12 225.5 192.3 1.49 1.73 -0.72 -0.35 1.78 2.95 
Max. 26.14 23.99 0.83 0.84 353.0 344.4 9.06 7.31 -1.78 -1.78 6.04 8.42 

Sd. 3.94 3.89 0.15 0.15 44.46 32.16 1.32 1.11 0.23 0.29 0.95 1.48 

E
. 

n
it
e

n
s
 Mean 20.04 17.76 0.64 0.50 304.1 298.0 6.32 4.54 -1.40 -1.32 4.09 5.66 

Min. 13.25 10.27 0.32 0.22 273.0 248.6 4.06 2.53 -0.88 -0.90 1.80 4.26 
Max. 25.16 24.44 0.89 1.39 326.4 334.9 9.13 8.56 -1.74 -1.82 6.83 7.41 
Sd. 3.16 3.82 0.16 0.25 13.61 22.02 1.20 1.51 0.21 0.26 0.94 1.29 

E
. 
g

lo
n

i Mean 20.00 15.45 0.62 0.35 302.4 287.1 6.35 3.68 -1.32 -1.36 3.49 5.01 
Min. 11.18 6.60 0.19 0.08 271.8 211.1 3.39 1.18 -0.72 -0.75 1.80 2.14 
Max. 27.60 26.31 1.03 1.06 338.8 3384 9.20 7.90 -1.70 -1.75 6.75 6.54 
Sd. 4.24 4.03 0.17 0.16 17.32 25.70 0.97 1.20 0.24 0.26 0.98 0.94 

Source: The author (2021). 

1 Desc: Descriptive; Min: Minimum; Max: Maximum; and Sd: Standard deviation. 

 

 We graphically analyzed the average maximum daily value of An for each 

taxon and for key genotypes (EG34 (E. globulus), EN14 (E. nitens), ENG3 (E. gloni)) 

that showed a different relationship between IncVol and WSI behavior (FIGURE 17). In 

fact, greatest reductions were observed for morning An for all taxa between M0 and 

Mfinal (20% for E. globulus, E. nitens, and E. gloni). At midday, only E. gloni presented 

a significative decrease in An (20%), and small changes (< 10%) were observed in the 

afternoon An for all taxa. 
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The key genotypes showed similar An behavior as the individual taxa. 

Regardless of productivity and accumulated water stress, morning and midday An 

were the first to respond to changes in soil water availability. For ENG3, which showed 

larger accumulated water stress and higher growth than other genotypes, we observed 

a greater reduction in morning (40%) and midday (33%) An when compared to other 

genotypes (EG34 and EN14). During afternoon, there were no great changes in An, 

and genotypes like EN14 also improved An during this period. 

FIGURE 17 – MAXIMUM DAILY PHOTOSYNTHESIS FOR EACH TAXON (UPPER) AND DAILY 
PHOTOSYNTHESIS FOR EG34, EN14, AND ENG3 (BOTTOM). 

 

Source: The author (2021). 
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Pearson correlation between An and gs was 0.31 (p=0.01) at M0 and 0.68 

(p<0.001) at Mfinal. These positive and significant relationship between An and gs during 

sampling instances suggesting that An was affected by changes in gs, and 

consequently intrinsic water use efficiency (iWUE). Regard of significance, at M0 we 

observed that gs smoothly decreased with VPD increment along the day, on the other 

hand, at Mfinal occurred reduction in the gs during all periods and this significative 

relationship was not observed. Average iWUE increased 27% between M0 and Mfinal, 

and the greatest increment was observed in afternoon (33%), followed by morning 

(27%), and midday (21%). However, we do not observe a significant relationship with VPD changes along the day in M0 and Mfinal (FIGURE 18). Also, we observed an 

increase in iWUE under soil water changes for all taxa, the highest average increment 

was observed for E. gloni (45%), followed by E. nitens (21%), and E. globulus (16%). 

FIGURE 18 – RELATIONSHIP BETWEEN STOMATAL CONDUCTANCE AND VAPOR PRESSURE 
DEFICIT IN M0 (a) AND Mfinal (b), AND BETWEEN INTRINSIC WATER USE EFFICIENCY AND VAPOR 
PRESSURE DEFICIT IN M0 (c) AND Mfinal (d).1 

 
Source: The author (2021). 

1 Red lines are the linear models represented by the expression gs or iWUE = 𝛽0+𝛽1* VPD. 
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Non-significative relationships were observed for IncVol and WSI to changes 

in An, (FIGURE 19 a, b). Regardless of growth and cumulative water stress, An 

decreased for all genotypes. However, with the same average IncVol and WSI, we 

observed a large An range in response to the decrease in soil water. E. nitens 

genotypes reduced An between 5 and 10%, while almost all E. gloni genotypes 

presented an average An reductions above 20%.  

Tree growth was not correlated with changes in iWUE (Figure 19 c). Unlike An, iWUE showed a significative relationship with WSI (FIGURE 19 d). Genotypes with 

lower WSI improved their water use efficiency at individual leaves, mainly because of 

stomatal closure under reduced soil water availability. Genotypes with distinct behavior 

in IncVol and WSI relationship, e.g. ENG3, presented iWUE range similar to genotypes 

with higher accumulated stress, e.g. EG21 and EG28, indicated that WSI possible 

influenced more physiology changes of individual leaves than growth. However, ENG3 

was very productive, and we could conclude that this genotype seems to be highly 

efficient in partitioning carbon to stem growth. 



62 
 

 

FIGURE 19 – VARIATION IN PHOTOSYNTHETIS (a AND b) AND INTRINSIC WATER USE 
EFFICIENCY (c AND d) BETWEEN M0 AND Mfinal, AND ITS RELATIONSHIP WITH GROWTH (a AND 
c) AND WATER STRESS INTEGRAL (b AND d) FOR EUCALYPTUS GENOTYPES.1 

 
Source: The author (2021). 

1 Regressions models are represented by expression Δ (%) = 𝛽0+𝛽1* log(Y). 

 

Almost all genotypes (78%) increased their LAI between M0 and Mfinal (FIGURE 

20 a). This LAI increments occurred regardless WSI, since genotypes with high 

absolute WSI (e.g. EG21, ENG3, and ENG22) and low absolute WSI (e.g. EN14, 

ENG2, and ENG5) showed similar LAI increments. Ψmd presented a small reduction 

between M0 and Mfinal from -1.29 to -1.34 MPa (-4.3%). We observed that, even with 

decreased soil water availability, eucalyptus genotypes did not present great changes 

in Ψmd  values. That is the reason of decrease stomata conductance as the first 

response to changes in soil water availability (FIGURE 20 b). In general, genotypes 

with low absolute WSI, such as E. nitens, were capable to maintained Ψmd values, 

however, genotypes with high absolute WSI, such as almost E. globulus, decreased 

their Ψmd values with decrease soil water availability.  
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FIGURE 20 – CHANGES IN (a) LEAF AREA INDEX AND (b) MIDDAY WATER POTENTIAL BETWEEN 
M0 AND Mfinal 1.  

 

Source: The author (2021). 

1 Genotypes were ordered from the maximum to minimum change between M0 and Mfinal. 
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4.4 DISCUSSION 

 

Before irrigation was turned off, we observed a large range in WSI indicating 

that trees faced different water stress levels through the 1.5-year and these negatively 

influenced growth in the period of decreased soil water (Waghorn et al., 2015). 

However, Myers (1988), who developed the concept of WSI, observed that the WSI 
was not only determined by soil water deficits. At the site of this experiment, we 

observed higher values of summer VPD and temperature, and this increased plant 

water stress because of a higher atmospheric demand (Lim et al., 2020). 

Before and after the period of decreased soil water (M0 and Mfinal), there was 

a large change in the IncVol of eucalyptus genotypes. Increment in wood production 

from Eucalyptus genotypes were also reported by other studies at the same site 

(Rubilar et al., 2020). The genotypes that grew the most were E. gloni which reached 

values of WSI ranging between -60 to -168 MPa day-1. Interestingly, ENG3 showed 

higher IncVol (2692 cm³ m-2 in 40 days) between M0 and Mfinal, but lower values of WSI 
(-152. MPa day-1), indicated that even with higher accumulated water stress this 

genotype was very productive during decrease soil water availability. In contrast, EG34 

presented lower growth during the same period (1412 cm³ m-2 in days) and higher 

values of WSI (-90 MPa day-1). This indicated that even with lower accumulated water 

stress this genotype was not able to improve its growth as soil water decrease. 

Despite of the different responses of some Eucalyptus genotypes, we 

observed that WSI was a useful tool for assessing the effect of water availability on tree 

growth (Gonzalez-Benecke and Dinger, 2018). Hakamada et al. (2017) highlighted that 

eucalypt genotypes changes in leaf water potential could be a predictor of plant water 

status in forest development. In our study, genotypes that had lower predawn water 

potential showed lower WSI, mainly because the genotypes were more stressed during 

the survey. Changes in leaf water potential is a response of plants when soil water 

decreases and water stress starts (Silva et al., 2017). However, between M0 and Mfinal, 

we observed small average changes in midday water potential, indicated that 

genotypes were very conservative and did not change their water status even if soil 

water decrease, showing an isohydric behavior.  

In our study, An and gs showed no consistent trend between Eucalyptus 

genotypes. In general, average An and gs reduced for almost all genotypes in midday 
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and increase in afternoon, as expected for Eucalyptus with decrease soil water 

(Mokotedi et al., 2010). The same authors observed that osmotic adjusted helped 

Eucalyptus species in maintained photosynthetic capacity during periods of lower soil 

water availability which makes plant growth possible when soil water decreased. 

Interestedly, that genotypes decreased their physiology and increase leaf area under 

soil water changes, suggesting that maybe small reduction in An would be 

compensated increase number and/or size of leaves, regardless accumulated water 

stress.  

Previous studies showed that stomatal closure is the first event occurring in 

response to decreasing soil water and it limits photosynthetic rate (Flexas, et al., 2004) 

and this is the way to avoid water losses (Tafur et al., 2017; Taiz et al., 2017). 

Eucalyptus closes their stomata for long periods or at different hours of the day to avoid 

water losses during drought and because of high atmospheric demand (Silva et al., 

2016; Gonçalves et al., 2017). However, eucalyptus show a high variation in 

physiological responses even in genotypes of the same taxon, as reported in this study. 

Stomatal closure improves iWUE (Saadaoui et al., 2017) and this could be used as a 

tool to select genotypes that are tolerant of water stress (Navarrete-Campos et al., 

2013). E. gloni genotypes showed the highest average increment in iWUE as soil water 

decreased, from 33.84 to 49.34 µmol CO2 mol H2O, and E. nitens showed the lowest 

response, from 33.01 to 40.27 µmol CO2 mol H2O. 

Changes in daily values of leaf gas exchanges in Eucalyptus were reported by 

Battie-Laclau et al. (2016), and also observed in this study (TABEL 5; FIGURE 11). 

When irrigation was turned on, average An was higher in the morning for all taxa, 

decreasing throughout the day. For E. gloni higher values of An were observed in the 

morning and midday, decreasing An in the afternoon. However, An did not ever reach 

maximum values at midday, even in the well-irrigated period (M0) and decreased on 

average for all taxa with decreasing soil water. Sometimes, midday depression in An 

arises because of the negative association with weather conditions (Borišev et al., 

2015), while An increases at other periods of the day, such as morning or afternoon 

(Baldocchi, 1997). 

These patterns may reflect stomatal closure during the day, reducing the 

uptake of CO2 in the leaves, decreasing intercellular CO2. After 40 days of decreased 

soil water (between M0 and Mfinal), there were no specific patterns among Eucalyptus 
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genotypes and there was high variability in the response of An. During the dry season, 

Battie-Laclau et al. (2016) observed that E. grandis clones responded to a water deficit, 

increasing their midday values of iWUE, mainly because at noon there was a higher 

atmospheric demand (VPD).  

Higher increments in iWUE were observed for higher productive genotypes and 

with lower accumulate water stress (WSI , suggesting that these genotypes were very 

coordinated in stomatal closure. This occurred because, during a decrease in soil 

water, most plants reduced their metabolism at midday. Some ecological studies 

observed that above 35 °C (midday) there was a significant reduction in plant 

metabolism (George et al., 2018). Other studies reported that changes in physiology 

did not explain changes in growth for E. tereticornis Sm seedings, mainly because non-

photosynthetic parameters, such as leaf water potential and shoot: root relationships, 

were kept constant (Campany et al., 2017), like we observed in our study. 

However, the link between physiology and productivity is not clear. This is 

mainly because stem growth is not just the result of photosynthesis measurements of 

individuals leaves and consequently intrinsic water use efficiency, since Eucalyptus 

genotypes presented a large crown with leaves of different conditions of radiation and 

atmospheric demand along the day (Battie-Laclau et al., 2016), and sometimes, tree 

growth and An or iWUE are not well correlated (Farquhar et al., 1989; Lévesque et al., 

2014), like we observed on this study. Contraty to iWUE, water use efficiency for stem 

growth is influenced by many non photosynthetic factors, such as carbon loss from 

respiration, allocation to turnover and litter, and water loss independently from 

photosynthesis (Farquhar et al., 1989; Battie-Laclau et al., 2016). However, our results 

indicate the most productive genotypes generally maintaned less negative water 

potential (WSI) along early development, suggesting a correlation between growth and 

plant water status in the first year. Also, genotypes with less negative WSI along early 

development, could smoothly improve their iWUE during soil water decrease, indicating 

that water potential could be a key parameters to connected physiology, growth, and 

plant water demand in early forest managment.  
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4.5 CONCLUSIONS 

 

Genotypes with higher absolute WSI after 1.5 years of development also 

present the lowest IncVol, indicating that accumulated water stress affected growth 

performance. Photosynthesis (An), stomatal conductance (gs), and midday water 

potential (Ψmd) reduce under soil water decrease, resulting in increment of intrinsic 

water use efficiency (iWUE) being most pronounced by E. gloni genotypes. 

Regardless WSI, all Eucalyptus genotypes in this study invest in leaf area during small 

changes in soil water. In general, leaf water potential is a key parameter to connect 

productivity, physiology and water use in young Eucalyptus plantations, and 

differences responses in water potential among Eucalyptus genotypes on the same 

environment still show the possibility of progress in our understanding drought risks in 

forest management. 
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5 CHAPTER 3 TEMPERATURE EFFECTS ON EARLY GROWTH OF EUCALYPTUS 

GENOTYPES OF THREE TAXA 

 

ABSTRACT 

Temperature is a crucial factor that affect tree physiology and consequently 
growth. Understanding temperatures range (cardinal) for optimal growth are necessary 
for Eucalyptus genotypes production during different phenological stages. Our 
experiment evaluated monthly stem biomass growth (kg m-2) in 1.3-year-old of 
development of 22 eucalyptus genotypes of E. globulus, E. nitens and E. nitens x E. 
globulus hybrid. We used a model that match mean daily air temperature and early 
daily growth to estimated genotype cardinal temperatures. The model showed a small 
root mean square error (RSME) ranging from 0.01 to 0.09 kg m-2, and correlation 
between observed and predicted values was above 0.97. Average optimum 
temperature was 21.4 °C and considering stem biomass growth, high productivity 
genotypes showed optimum temperature closer to mean air temperature at this site 
(14 °C). Interestingly, some genotypes exhibited a large range between base minimum 
(Tming) and base maximum (Tmaxg) temperatures, which allowed them to growth during 

almost all seasons. These results support the idea that some eucalyptus genotypes 
should be planted in different sites to increase early growth. Cardinal temperatures 
provide an insight of genotypes growth at different sites and are useful for produced 
maps that describe species growth along the years. 

 
Keywords: Eucalyptus growth, cardinal temperatures, growth models. 

 

5.1 INTRODUCTION 

 

Climate drives forest development and the incorporation of climate variables 

in growth modeling must increase our understands in forest ecology and management. 

Among climate, the most important variable is temperature (Went, 1953; Ryan, 2010; 

Binkley et al., 2017), since prediction of future climates average temperatures are 

projected to increase 0.2 °C, arriving at an increase of up to 3 °C in the worst scenarios 

and increase the number of extreme events connected with temperatures, such as 

frost and heat (IPCC, 2014).  

Temperature is the main factor affecting tree metabolism, such as plant 

biochemistry and photosynthesis, and varies dramatically across seasons in 

subtropical areas (Aspinwall et al., 2019). Way and Oren (2010) observed that 

increased temperatures increase tree growth in subtropical forests, however this 

response was not simply because plant growth showed a maximum temperature that 

growth could occurred (Watt et al., 2014). Growth rate depend of the cardinal 
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temperatures, represented by minimum, maximum and optimum temperature for plant 

development (Hatfield and Prueger, 2015). 

The estimation of cardinal temperatures among plant development is very 

useful, since temperature is an important driver in process-based models to describe 

the influence of whether conditions on plant growth, such as 3-PG (Landsberg and 

Waring, 1997), CABALA (Battaglia et al., 2004), and BIOMASS (McMurtrie et al., 

1990). The incorporation of temperature effects in plant growth is done by modifiers 

that varying between 0 and 1 among a temperature range, out of this range the 

modifiers is equal to 0 and growth stops (Yin et al., 1995). The models that used this 

modifier information are more precisely than empirical plant growth models, however 

they are more complex because the number of parameters to estimated, requiring 

restrictions and calibrations (Kimberley and Richardson, 2004). 

Using a model to estimated responses of Eucalyptus early growth to 

temperature changes will allowed to planning species/genotypes allocation at different 

production areas, ensuring the maintenance of forest production over the years 

(Binkley et al., 2017). The study aimed to identify the cardinal air temperatures effects 

on early growth over 1.3 years of development of different Eucalyptus genotypes. We 

tested the hypothesis that the most productive Eucalyptus genotypes maintain 

optimum temperature close to mean site air temperature and average cardinal 

temperatures for E. nitens are lower than E. gloni and E. globulus. 

 

5.2 MATERIAL AND METHODS 

 

5.2.1 Tree measurements 

 

Measurements were made in the four central trees in each plot, considering 

monthly root collar diameter (rcd) in centimeters and total height (h) in centimeters. 

The measurements occurred between mid-summer on January 2018 to mid-summer 

on February 2019.  

For growth models in this chapter, we used stem biomass data (wstem). 

Destructive sampling of trees for stem biomass were performed at May 2019 in all 

genotypes. Sampled trees were distributed among blocks and selected to encompass 

the rcd range in inventories, using four trees per genotype. After felling the tree, h and rcd was measured and all branches were cut from the stem. After removing all 
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branches, stem was sectioned into three or four sections. Individual tree stem biomass 

was estimated with a balance accurate to 0.05 kg. A sample disc of 8 cm thick was cut 

from stem at 10 cm groundline to determine moisture content with analytical balance 

accurate to 0.01 g. Dry weights of the discs were measured after samples were dried 

at 65°C to constant weight. Then individual stem biomass was calculated based on the 

ratio of dry weight to fresh weight. Nonlinear models for each genotype were used to 

estimated stem biomass using as independent variable rcd2h: 

 wstem = 𝛽0 ∗  rcd2h 𝛽1 (5.1) 

 

where, wstem is the individual stem biomass (kg), rdc is the root collar diameter 

measured at 0.1-m height (cm), h is the total tree height (cm), and 𝛽 is the model 

coefficients. 

 

Coefficient 𝛽0 ranged between 0.0003 to 0.2474 and 𝛽1 ranged between 

0.4525 to 1.6778. Mean R2 was 0.93 ± 0.08 and mean RMSE was 0.23 ± 0.16 kg 

(TABLE 7). In this chapter, we did not use E. globulus genotypes EG28 and EG31, 

because their biomass models did not show significative adjustment. 

Biomass models were used to estimate wstem in the previous dates using 

measurements of rdc and h along the survey. Stem biomass was scaled up to square 

meter (Wstem - kg m-2) by summing wstem in measurement plots and divided by 

measurement plot area (6 m2). Using stem biomass did not interfere in our main 

conclusions because we observed a strong and significative correlation between stem 

biomass and wood volume calculated in previous chapters during February 2019 

(FIGURE 21). 
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TABLE 7 – ADJUSTED COEFFICENTS, R2, AND ROOT MEAN SQUARE ERROR (RMSE) IN STEM 
BIOMASS MODEL FOR EACH GENOTYPE.   

Specie Genotype 𝜷̂𝟎 𝜷̂𝟏 R2 RMSE 
E

. 
g

lo
b

u
lu

s
 

EG1 0.0554 0.7368 0.99 0.05 

EG17 0.0982 0.6677 0.70 0.55 

EG18 0.0188 0.9192 0.94 0.41 

EG19 0.0681 0.6961 0.99 0.41 

EG21 0.0533 0.7760 0.95 0.07 

EG30 0.0685 0.7085 0.91 0.20 

EG33 0.0395 0.7813 0.99 0.13 

EG34 0.2474 0.4525 0.99 0.01 

E
. 

n
it
e

n
s

 EN12 0.0618 0.6950 0.88 0.23 

EN13 0.1433 0.5745 0.86 0.20 

EN14 0.0549 0.7293 0.98 0.23 

E
. 
g

lo
n

i 

ENG2 0.1287 0.5895 0.96 0.21 

ENG3 0.0576 0.7603 0.76 0.46 

ENG4 0.0098 1.0175 0.99 0.13 

ENG5 0.0757 0.6891 0.83 0.59 

ENG7 0.0085 1.0459 0.97 0.22 

ENG8 0.0124 0.9691 0.95 0.29 

ENG20 0.0096 1.0082 0.99 0.07 

ENG22 0.0003 1.6778 0.92 0.29 

ENG25 0.0194 0.9071 0.99 0.01 

Source: The author (2021). 

FIGURE 21 – RELATIONSHIP BETWEEN VOLUME (cm3 m-2) AND STEM BIOMASS (kg m-2) ON 
FEBRUARY 2019.1 

 

Source: The author (2021). 

1 Red line represent the linear model: 𝑌 = 𝑎𝑋;  ** = p < 0.001. 
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5.2.2 Growth Model and data analyses 

 

Under optimal environmental conditions growth (e.g. diameter, height, volume 

or biomass) could be describe by large number of functions according to Kimberley 

and Richardson (2004). For this study, we tested three models to described growth as 

a function of time (t) (TABLE 8): 

 

TABLE 8 – GROWTH FUNCTION, INVERSE AND DERIVATIVES FOR GROWTH (f(t)) IN FUNCTION 
OF TIME (t) WHERE a, b AND c ARE MODEL PARAMETERS. 

Model 
Growth Function 

(f(t)) 
Inverse  

f-1(t) 
Derivative (f’(t)) 

Power bat  

1

by

a

 
 
   

1babt −
 

Schumacher 
batce

−−
 

1

1
ln

by

a c

−
  −       

(1 ) bb atabct e
−− + −

 

Exponential atce  
1

ln
y

a c

  
      

atce a  

Source: The author (2021). 

 

Stem biomass growth during the 1.3-year (January 2018 to February 2019) 

was modeled using block-level measurements. The model parameters (a, b, and c) 
from the functions in TABLE 8 were estimated using PROC NLIN in SAS®Studio 

(https://www.sas.com/en_us/software/studio.html). Iterative convergence to minimize 

the residual sum of squares was the Marquardt method. Modeling performance was 

assessed by bias (B; Eq. 5.2), mean absolute error (MAE; Eq. 5.3), root mean square 

error (RMSE; Eq. 5.4) and correlation coefficient (𝑅). 

 

 

 

 

 

 

 

https://www.sas.com/en_us/software/studio.html
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B = 1n∑ Oi − Ei n
i=1  (5.2) 

MAE = 1𝑛∑|𝑂𝑖 − 𝐸𝑖|𝑛
𝑖=1  (5.3) 

RMSE = √1n∑ Oi − Ei 2n
i=1  (5.4) 

where, B is bias, n is the number of observations, Oi is the ith observed value, Ei is the 

ith estimated value, MAE is the mean absolute error, and RMSE is the root mean square 

error. 

 

For adding temperature effects on growth, we used the approach described by 

Kimberley and Richardson (2004) and Watt et al. (2014). According to these authors, 

growth can be expressed by the differential equation considering an interval t to t + Δt: 
 yt+Δt = yt + [𝑓 𝑓−1 yt + Δt − yt] (5.5) 

 

Where, yt is the growth function, 𝑓−1 yt  is the inverse of growth function, and Δt is the 

interval of time. 

 

Considering that model explained growth under optimal conditions, we need 

to add a modifier (m), which varies between 0 to 1, and reduce growth under 

suboptimal conditions (e.g., air temperature, soil water content, radiation): 

 yt+Δt = yt + [𝑓 𝑓−1 yt + Δt − yt].m (5.6) 

 

Where, yt is the growth function, 𝑓−1 yt  is the inverse of growth function, Δt is the 

interval of time and m is modifier describing the impacts of environmental conditions 

on growth. 

 

The growth data used in this study is from a period of the experiment was 

irrigated, so the modifier only requires to account for air temperature responses, 

because we assumed that plant optimal soil water availability was maintained during 
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irrigation period. The three specifics parameters that characterized growth modifier 

with temperature called cardinal temperatures are the base minimum (Tming), optimum 

(Toptg) and base maximum (Tmaxg) temperatures of growth (Landsberg and Sands, 

2011). The temperature modifier approaches to the shape of normal distribution with 

maximum growth rate (m=1) in Toptg and a reduction in growth rate with decrease and 

increase in air temperatures. Following Watt et al. (2014) we used a modifier (m) 

developed by Yin et al. (1995) based of beta distribution, that described growth 

responses to air temperature (Eq. 5.7): 

 

m = [( T − TmingToptg − Tming)( Tmaxg − TTmaxg − Toptg)(Tmaxg−ToptgToptg−Tming)]c (5.7) 

 

where, T is the air temperature (°C), Tming is the base minimum temperature of growth 

(°C), Toptg is the optimum temperature of growth (°C), Tmaxg  is the base maximum 

temperature of growth (°C), and c is the shape parameter of beta distribution. 

 

All parameters except c are biologically meaningful, so we simplified the 

equation by setting c equal to 1 (Yan and Hunt, 1999). Since the model is quite complex 

with five or six parameters (a, b, c, Tming, Toptg, Tmaxg) to adjust, we use non-linear 

Generalized Reduced Gradient (GRG) solver in Microsoft Excel®. The model was 

adjusted to minimize root mean square error (RSME) by changing the values of the 

model parameters. One-way analysis of variance was fitted using PROC MIXED 

procedure in SAS to test genotypes or taxon significative differences (p < 0.05) in 

model parameters. 

 
5.3 RESULTS 

 

5.3.1 Tree growth 

 

Significant genotypes differences were observed by the end of the evaluation 

period (468 days after planting) for h (p=0.020), rcd (p=0.014) and Wstem (p<0.001). 

Changes in Wstem growth exhibited an exponential increase after October 2018 
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(FIGURE 22). Genotypes cumulative growth at the end of the study ranged from 3.9 

to 5.4 m for h, 4.5 to 6.6 cm for rcd, and from 0.49 to 2.44 kg m-2 for Wstem. Among 

taxa, genotypes EN14 (E. nitens), ENG5 (E. gloni), and EG17 (E. globulus) showed 

the highest average cumulative Wstem at the end of the measurements. For our three 

models, the coefficient of correlation between predicted and observed values was 

significant and always above 0.97. In general, the Power and Schumacher models 

underestimated growth and the Exponential model overestimated growth along the 

survey (TABLE 9). 

 

FIGURE 22 – CHANGES IN STEM BIOMASS (Wstem) OVER THE SURVEY FOR EUCALYPTUS 
GENOTYPES.1 

 
Source: The author (2021). 

1 Each value shown is the mean of three blocks. 

 

TABLE 9 – CORRELATION (R), BIAS (B), MEAN ABSOLUTE ERROR (MAE), AND ROOT MEAN 
SQUARE ERROR (RMSE) FROM THE ADJUSTED GROWTH MODELS. 

Model 𝐑 𝐁 𝐌𝐀𝐄 𝐑𝐌𝐒𝐄 

Power 0.97 ± 0.008 0.009 ± 0.006 0.07 ± 0.029 0.08 ± 0.035 
Schumacher 0.97 ± 0.007 0.009 ± 0.006 0.07 ± 0.029 0.09 ± 0.035 
Exponential 0.98 ± 0.008 -0.004 ± 0.005 0.06 ± 0.031 0.08 ± .0.040 

Source: The author (2021). 
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5.3.2 Site range in air temperature 

 

There was a higher seasonal range in air temperature at the site, with 

maximum temperature in summer (Jan-Mar) and minimum temperature in winter (Jun-

Aug). Summer showed the highest temperature amplitude. During the study, the lowest 

temperature was -5.4 °C on June 2018 and the highest temperature was 41.2 °C in 

February 2019. The mean temperature was 14 °C and ranged between 0.79 °C to 26.9 

°C (FIGURE 23). 

 

FIGURE 23 – CHANGES IN MINIMUM, MEAN, AND MAXIMUM TEMPERATURES FOR THE STUDY 
SITE DURING JANUARY 2018 TO MARCH 2019. 

 

Source: The author (2021). 

 

5.3.3 Temperature model parameters and air temperature modifier 

 

We used the temperature modifier with the Power, Schumacher and 

Exponential models. The Exponential and Schumacher models showed worse RMSE 
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values and did not showed convergence for some genotypes. Only the Power functions 

showed convergence with more realistic values for cardinal temperatures. 

The temperature modifier corresponded well to early growth data, with a 

decreasing average RMSE values from 0.08 kg m-2 to 0.05 kg m-2 (40%) in our models, 

regardless of genotype productivity. For example, we observed good temperature 

responses for two genotypes with different Wstem at the end of the trial (FIGURE 24). 

This suggested that all genotypes were influenced by the temperature range during 

early growth. Statistically, significance difference (p > 0.05) was observed among 

eucalyptus genotypes for a, b, Tming, Toptg, Tmaxg, m, and temperature amplitude (Tmaxg - Tming) (TABLE 10). 

 

FIGURE 24 – VARIATION IN MEASUREMENT (SYMBOLS) AND MODELLED (LINE) STEM BIOMASS 
FOR EG17 (ABOVE FIGURES) AND FOR ENG20 (BELLOW FIGURES) OVER THE COURSE OF THE 
TRIAL FOR TREES WITHOUT (a AND c) AND WITH TEMPERATURE MODIFIER (b AND d). 

 
Source: The author (2021). 
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TABLE 10 – MEAN, STANDARD DEVIATION (SD), COEFFICIENT OF VARIATION (CV%), F-VALUES 
OF ANALYSIS OF VARIANCE BY THE p-CATEGORY 1, MODEL PARAMETERS (a, b, c, Tming, Toptg, Tmaxg ), ROOT MEAN SQUARE ERROR (RMSE) FOR EUCALYPTUS GENOTYPES. 

Taxa Genotype 𝐚 𝐛 𝐑𝐌𝐒𝐄 𝐓𝐦𝐢𝐧𝐠 𝐓𝐨𝐩𝐭𝐠 𝐓𝐦𝐚𝐱𝐠   𝐓𝐦𝐚𝐱𝐠 − 𝐓𝐦𝐢𝐧𝐠  𝐦 Wstem 

E
. 
g

lo
b

u
lu

s
 

EG1 2.000 1.723 0.06 9.7 21.4 23.5 13.8 0.452 1.70 

EG17 2.013 1.421 0.09 10.3 15.6 21.3 11.0 0.410 2.44 

EG18 2.803 1.793 0.08 11.5 16.9 19.4 7.9 0.267 1.76 

EG19 0.722 1.664 0.03 9.1 22.2 27.7 18.7 0.511 1.02 

EG21 1.301 1.719 0.04 8.9 18.9 24.6 15.4 0.553 1.82 

EG30 1.146 1.618 0.05 7.6 19.7 22.8 15.1 0.554 1.74 

EG33 1.215 1.696 0.03 9.1 23.7 27.8 18.7 0.465 1.17 

EG34 1.005 1.235 0.05 5.7 23.4 28.0 22.4 0.567 1.53 

E
. 
n

it
e

n
s
 

EN12 1.109 1.581 0.05 8.2 19.7 24.4 16.2 0.570 1.51 

EN13 1.677 1.501 0.08 10.0 22.3 23.6 13.6 0.412 1.65 

EN14 0.950 1.675 0.04 6.9 18.2 25.9 19.0 0.656 1.72 

E
 g

lo
n

i 

ENG2 1.171 1.628 0.05 8.4 20.4 26.3 17.9 0.559 1.70 

ENG3 1.426 1.711 0.08 9.3 18.9 25.0 15.7 0.554 1.89 

ENG4 2.614 1.806 0.04 10.9 25.6 26.5 15.5 0.316 1.34 

ENG5 1.378 1.523 0.07 7.7 15.6 25.4 17.6 0.548 2.16 

ENG7 1.527 1.748 0.01 10.5 27.0 28.9 18.4 0.310 0.80 

ENG8 2.523 1.771 0.04 10.6 23.7 24.6 13.9 0.329 1.26 

ENG20 0.949 1.666 0.02 7.5 22.1 29.7 22.2 0.554 0.89 

ENG22 0.079 7.80 0.02 9.4 27.6 28.3 18.9 0.312 0.49 

ENG25 1.673 1.752 0.02 10.7 25.0 28.3 17.6 0.363 0.87 

Mean 1.464 1.952 0.05 9.1 21.4 25.6 16.5 0.464 1.47 

Sd 0.67 1.38 0.02 1.51 3.51 2.68 3.46 0.11 0.48 

CV% 45.78 70.89 43.29 16.58 16.40 10.50 21.03 24.72 33.00 

F-stat 3.96* 64.6** - 1.94* 9.02** 5.94** 4.60** 4.52** 7.71** 

Source: The author (2021). 

1 * - significant at p = 0.05; ns – not significant at p = 0.05. 
 

Average Toptgwas 21.4 °C, and ranged between 15.6 and 27.6 °C. Almost all 

low productivity genotypes (EG19, EG33, ENG4, ENG7, ENG20, ENG22, and ENG25) 

presented higher Toptg (> 22 °C) than the average temperature of the experiment site 

(14 °C), which suggest that these genotypes were not able to achieve their full potential 

early growth and temperature was a limiting factor. Differently of high productivity 

genotypes (EG17, EN14, ENG3, and ENG5) which presented average Toptg(17 °C) 

close to average temperature of the experiment site. 
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Average Tming and  Tmaxg was 9.1 °C and 25.6 °C, respectively, and they were 

significative different among Eucalyptus genotypes. The temperature modifier (m) 

ranged from 0.26 to 0.65, being sub-optimal for genotypes EG18 (0.26) and ENG22 

(0.31), and optimal for genotypes EN12 (0.57) and EN14 (0.65). Interestedly, higher m 

values were not only observed for genotypes that present Toptg close to the average 

site air temperature but also for genotypes that presented higher cardinal temperature 

amplitude (Tmaxg − Tming) (FIGURE 25). 

 

FIGURE 25 - RELATIONSHIP BETWEEN TEMPERATURE MODIFIER (m) WITH OPTIMAL 
TEMPERATURE (a), AND WITH CARDINAL TEMPERATURE AMPLITUDE (Tmaxg − Tming) (b). 

 
Source: The author (2021). 

 

At taxa level, it was only observed significative differences for Toptg, Tmaxg  and  Wstem.  E. nitens presented the lowest Tming (8.4 °C), Toptg (20.1 °C) and a median 

cardinal temperature amplitude (16.3 °C) than other taxa, therefore higher m (0.55) 

was observed. E. gloni presented the lowest average modifier (0.42) and highest Toptg 

(22.9 °C) among taxa, consequently presented the lowest average Wstem growth (1.27 

kg m-2) (TABLE 11).  
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TABLE 11 - MEAN, STANDARD DEVIATION (SD), COEFFICIENT OF VARIATION (CV%), F-VALUES 
OF ANALYSIS OF VARIANCE BY THE p-CATEGORY 1, AND MODEL PARAMETERS (a, b, c, Tming, Toptg, Tmaxg ) AT TAXA LEVEL. 

Taxa a b 𝐓𝐦𝐢𝐧𝐠 𝐓𝐨𝐩𝐭𝐠 𝐓𝐦𝐚𝐱𝐠  𝐓𝐦𝐚𝐱𝐠 − 𝐓𝐦𝐢𝐧𝐠  𝐦 Wstem 

E. globulus 1.526 1.609 9.0 20.2 24.4 15.4 0.472 1.64 

E. nitens 1.245 1.586 8.4 20.1 24.7 16.3 0.546 1.62 

E. gloni 1.483 2.379 9.5 22.9 27.0 17.5 0.428 1.27 

Mean 1.418 1.858 8.9 21.1 25.4 16.4 0.482 1.51 

Sd 0.15 0.45 0.53 1.60 1.45 1.09 0.06 0.21 

CV(%) 10.64 24.28 6.03 7.63 5.72 6.62 12.38 14.00 

F-stat 0.39ns 2.46ns 0.92ns 4.13* 6.14* 1.18ns 2.73ns 3.78* 

Source: The author (2021). 

1 * - significant at p = 0.05; ns – not significant at p = 0.05. 
 

As we observed in FIGURE 22, almost all genotypes presented a peak in 

growth during late spring (Nov-Dec), as a result, a higher air temperature modifier was 

observed in warner months due to average Toptg was close to 21 °C. For instance, we 

observed different temperature responses for two genotypes with different growth 

along the trial (FIGURE 26). For ENG20 (E. gloni), we observed a higher seasonal 

change in temperature modifier (m), with increment in spring and summer periods (Oct-

Feb), reaching its maximum on January. In winter, we observed a higher decrease in 

early growth rate since Toptg was 22.1 °C for this genotype. Interestingly, EG17 (E. 

globulus) did not presented the same pattern, since for this genotype Toptg was 15.6 

°C which is close to average air temperature for this site (14 °C). However, the smallest 

cardinal temperature amplitude for EG17 (11 °C), not allowed this genotype to maintain 

the same range of temperature responses in growth rate during seasons. 
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FIGURE 26 – TEMPERATURE MODIFIER OVER THE COURSE O THE TRIAL FOR EG17 AND 
ENG20. 

 
Source: The author (2021). 

 

The temperature modifier varied markedly among E. gloni genotypes 

compared to E. globulus and E. nitens genotypes (FIGURE 27). High productivity 

genotypes always showed Toptg close to the mean air temperature, regardless of taxa. 

During early development, large differences in temperature modifier behavior were 

observed for E. gloni genotypes, since ENG22 (low productivity) presented Toptg(27.6 

°C) higher than daily maximum mean air temperature (26.9 °C) for this site, differently 

from ENG5 (high productivity), with Toptg closer to mean air temperature of the site 

(15.6 vs. 14 °C). Regardless of productivity, smoothly differences were observed 

among E. nitens genotypes and their temperature amplitude were always between 

daily minimum and maximum mean air temperature of the site. 
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FIGURE 27 – AVERAGE TEMPERATURE MODIFIER (DOTTED LINE) FOR E. globulus (a), E. nitens 
(b), AND E. gloni (c) AND CONSIDERING THE HIGHEST (GREEN LINE) AND THE LOWEST (RED 
LINE) PRODUCTIVITY GENOTYPE FOR EACH TAXA.1 

 
Source: The author (2021). 

1 Dotted lines represent the minimum (0.79 °C) and maximum (26.9 °C) mean air temperature and solid 
line represent the mean (14 °C) air temperature for the site. 
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5.4 DISCUSSION 

 

The model used in study increase the precision of estimated growth along the 

early development with inclusion of daily mean air temperature. Since, the inclusion of 

environmental variables, such as temperature, in forest growth models increase the 

understanding of forest development in physiological point of view (Watt et al., 2010). 

Temperatures changes are key parameter to control photosynthetic and respiration 

rate, which result in forest growth (Battaglia et al., 1996), and therefore differences in 

carbon allocation among genotypes. 

The method used in this study estimated higher average optimal temperatures 

(21 °C) than other studies with E. globulus and E. nitens, such as Booth and Pryor 

(1991) with optimal mean annual air temperatures ranging from 9-18 °C, and Watt et 

al. (2014), with optimal mean temperature ranging from 14-18 °C. Despite of this 

differences, Booth and Pryor (1991) estimated mean temperatures from the hottest 

months for E. globulus and E. nitens development between 20-28 °C, which is on the 

range of average optimal temperature estimated by our models (15-27 °C). However, 

when we considered optimal temperatures of high productivity genotypes among taxa 

(EG17, EG18, EN14, ENG3, and ENG5), average optimal temperatures were closer 

than mean air temperature of the site (17° vs. 14 °C).  

The optimal temperature development was always above mean site air 

temperature (14 °C), this indicated that increase temperatures could favor stem 

biomass growth for some genotypes, as was observed in Coops et al. (2010) using 

ecophysiological model 3-PG for Douglas-Fir plantations and Way and Oren (2010) 

using growth temperatures in different forest biomes. On the other hand, it was 

observed differences in basal minimum temperature required for Eucalyptus 

genotypes grow and Tming ranged between 5.6 to 11.5 °C, with almost genotypes 

began to growth at 9.0 °C. Low temperature is common in subtropical regions (Watt et 

al., 2014; Queiroz et al., 2020) and that is the reason in winter there was a reduction 

in tree growth for all genotypes, because the average temperature on this period was 

6.6 °C (0.8 – 10 °C). The same was observed for Tmaxg, with average of 25.6 °C. Some 

genotypes, such as, EG18 (E. globulus) stopped growing around 19.4 °C and ENG20 

(E. gloni) stopped growing around 29.7 °C, which is very advantageous in summer 

when there were warner periods. 
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Temperatures above or below cardinal temperatures for plant development 

induced heat and chilling stress, and can impact crop productivity due changes in 

physiological traits. Under temperatures stress there is a reduced in chlorophyll (Chl) 

biosynthesis and enzyme activities, resulting in a damage of plant metabolism, growth 

and adaptation (Raza et al., 2021). Taking into account, large differences were also 

observed for amplitude of cardinal temperatures (Tmaxg − Tming), ranged between 7.8 

° and 22.4 °C. Higher amplitude of cardinal temperatures allowed genotypes maintain 

growth during seasonal temperature changes, and is an indication of genotypes 

adaptability of different environmental conditions, such as changes in annual mean air 

temperature (Martínez-Villegas et al., 2021), resulting in a high competitive ability 

against other genotypes that have lower cardinal temperature amplitude. 

Our results also indicated that the best matching in Eucalyptus genotypes with 

particular site result in increase or decrease forest production (Watt et al., 2014). 

Nowadays, forest breeding programs result in higher specific genotypes for particular 

sites (Gonçalves et al., 2013) which they will respond to specific range in air 

temperature for optimal development (Binkley et al., 2017). Different sites could also 

present large range estimated cardinal temperatures and this is more important 

considering intra-specific genotypes (Queiroz et al., 2020). Since we observed a large 

difference in stem growth and temperature parameters for genotypes at the same taxa, 

since average taxa value was not significative and result in similar temperature 

responses regardless of differences in growth. 

The cardinal temperatures are the inputs to process based models in forest 

development using a temperature modifier that reduced tree growth, such as, Sands 

and Landsberg (2002) which defined minimum, optimum and maximum temperatures 

for net photosynthesis of E. globulus were 7.5, 15 and 35 °C, respectively, and Pérez-

Cruzado et al. (2011) for E. nitens were 2, 15, and 32 °C. These temperatures range 

were similar what was observed in our models (16.4 °C).  As we observed, each 

genotype presented different temperature ranged for growth, and this knowledge is 

quite important for accurate estimated in ecophysiological models. 

Overall, it has remained clear the relationship between early tree growth and 

cardinal temperatures, since genotypes with different accumulated stem biomass at 

the end of the trail showed different values of Tming, Toptg, and Tmaxg. Maybe for this 

particular experiment on early growth, temperature influences were not similar for all 
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genotypes and early stem biomass growth could not respond unique to temperature, 

but its interaction with other parameters could be affecting tree development, such as, 

genotypes photosynthetic rates, litter fall, root turnover, and carbon partitioning 

(Landsberg and Sands, 2011). Despite of higher model precision, there were 

limitations of our study that should be take into account. Dataset was in short period of 

time, in juvenile trees growing in higher density plots (~6000 tree ha-1) and one site. 

However, we observed a robust estimated cardinal temperature and its relation with 

stem growth which could be used for forest companies, considering model applicability 

and parameter understanding. For calibration and validation of the cardinal 

temperatures, we recommended add more measurements along forest development 

and different sites with distinct mean temperature ranges. 

 

5.5 CONCLUSION 

 

The range of favorable temperature of Eucalyptus early growth on this site was 

5.6 to 29.7 °C, with average optimal temperature of 21.4 °C. High productivity 

eucalyptus genotypes (EG17, EN14, ENG3, and ENG5) maintained optimal 

temperatures close to mean site air temperature. On the other hand, high cardinal 

temperature amplitude for some Eucalyptus genotypes is connected to adaptation and 

competitive ability against other genotypes that have lower cardinal temperature 

amplitude, which makes them more tolerant to temperature changes along the year. 

Average base minimum, optimal, and base maximum temperature for E. nitens is 

similar to E. globulus and E. gloni. Cardinal temperatures results supporting the 

recommendation of specific genotypes in different sites, help forest plantation faced 

temperature increments under climate changes scenario, and are useful to produce 

maps of genotypes early growth along the year.  
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6 FINAL CONCLUSIONS AND CONSIDERATIONS 

 

Climate change, mainly related to the increase in water deficit areas and 

extreme temperatures, is a huge threat to forest, as it causes stresses that lead to 

decrease in forest productivity. Therefore, the link between the three chapters of this 

study is genotypes differences in stem carbon allocation face of seasonal changes in 

temperature and the accumulation of water stress during the early development. So, 

we have a greater interest in increasing the planting area of tolerant and avoidance 

species or genotypes (White et al., 2009; Luo, 2010).  

Our thesis aimed to evaluate the response of Eucalyptus early growth and 

physiology to genetic and environmental changes along the 1.5 years old of 

development. We divided the thesis in three chapters and some hypotheses were 

corroborated, partial corroborated, and not corroborated. Among different early growth 

rates, Eucalyptus has a wide variety of physiological responses to environmental 

conditions, being characterized as an isohydric behavior. The isohydric behavior 

indicates that the first response to decrease soil water is stomatal closure, 

consequently decreasing the photosynthetic rate, and no significative changes in 

midday leaf water potential (Silva et al., 2017). 

In the first chapter, we observed that growth efficiency was higher during 

season with higher growth rate, such as fall, spring and second summer, however in 

second summer we observed genotype effect in the relationship of early growth and 

leaf area index, where for some genotypes an increment in leaf area index did not 

follow higher growth rate (low growth efficiency). Otherwise, this could be an 

advantage when we observed E. nitens and E. gloni genotypes with higher productivity 

did not increase leaf area index, consequently, diminish water loss by transpiration.  

For early growth we observed changing in ranking of the best genotypes on 

each season, however these was not observed for leaf area index that presented a 

similar behavior during 1.5 years of development, indicating genotypes differences in 

stem carbon allocation face of climate changes throughout the year. Also, annual 

growth efficiency was not related with seasonal growth efficiency, however we 

observed one E. gloni genotype (ENG5) that was capable to maintaining higher growth 

efficiency along the early development, with higher growth rate and lower leaf area 

index. 
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In the second chapter, we discuss changes in physiology at leaf level during 

decreased soil water among Eucalyptus genotypes with different growth rates and 

accumulated water stress integral. Average photosynthesis decreased for all 

genotypes during soil water changes, however there was no significative relationship 

with growth rate and water stress integral. Interestedly that for all genotypes, leaf area 

index increased during soil water changes, and a possible explanation was to 

compensate the decrease in the photosynthetic rate.  A significative relationship with 

accumulated water stress integral was observed only with intrinsic water use efficiency, 

since we observed a higher reduction in stomatal conductance and transpiration during 

soil water decrease (isohydric behavior).  

We observed that Eucalyptus genotypes, mainly E. globulus, with higher 

absolute accumulated water stress integral presented lower growth rate during soil 

water decrease, and like season in previous chapter, water stress affected genotypes 

carbon allocation during soil water changes. Genotypes with higher accumulate water 

stress, such as E. globulus, were less efficient in use water at leaf level, however we 

observed a single E. gloni (ENG3) which were capable to improve growth with higher 

accumulate water stress and presented small changes in intrinsic water use efficiency, 

being less sensitive to soil water changes. However, these results should be treated 

carefully, since studies like Battie-Laclau et al. (2016) observed that physiological 

variables at leaf level did not necessarily related at tree level (growth), mainly due to 

different microclimatic conditions, e.g. light and temperature, of the leaves in the crown. 

In third chapter, we discuss the cardinal temperature effects in early growth 

among Eucalyptus genotypes. We observed that temperature effects on early growth 

was high significative, since genotypes with different final stem biomass presented 

different cardinal air temperatures. In general, the temperature increase will be 

advantageous for early growth for almost all eucalyptus genotypes, because average 

optimal temperature was 21 ºC and average air temperature was 14 ºC. Also, despite 

of E. nitens has its origin in colder regions than E. globulus in Australia, we observed 

similar average values for optimal temperatures considering the taxa. 

However, high productivity genotypes such as EG17, ENG3, and ENG5 

presented optimal temperature closer to mean site air temperature (16 vs. 14 °C) what 

allowed them partitioning more carbon to stem then low productivity genotypes such 

as ENG20, ENG22, and ENG25 (25 vs. 14 °C) and we observed that higher amplitude 
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of cardinal temperatures will be an advantage for genotypes growth face air 

temperature changes along early development in different sites.   

Finally, we observed that the same silvicultural practices and the same climate 

led to different growth patterns which have implied interaction between genotype and 

environmental and influenced carbon partitioning in Eucalyptus. Also, we observed that 

water and temperature stress operate in the same manner for early growth, since lower 

absolute accumulated water stress was observed for genotypes that have optimal 

temperatures for growth close to mean air temperature, and consequently had higher 

growth over 1.5 years. We conclude that this study opens the way for forest companies 

and research institutes to evaluate ecophysiology against forest planning, in situations 

of beginning of stresses in the initial development of plantations. 
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