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Resumo 
 

O rastreamento de pedestres é uma área de pesquisa bem estabelecido quando 

realizado em ambiente interno ou quando a câmera é estática. Mas quando a câmera 

está ativa, como no caso do ambiente externo, uma série de problemas e desafios 

emergem. Alguns desses desafios dizem respeito a: alterações de iluminação, 

oclusão, fundo desordenado e movimentos de pedestres. 

Nesta tese, buscou-se combinar os métodos baseados em aprendizado profundo 

e técnicas de processamento de imagens para detectar e rastrear pedestres a partir 

de imagens de alta resolução espacial obtidas em um ambiente externo. O 

procedimento inicia aplicando redes neurais convolucionais para detectar pedestres a 

partir de uma série de imagens. Em seguida, um algoritmo de supressão de fundo é 

proposto para reduzir a influência da mudança de fundo. O método se baseia na 

segmentação da imagem, na análise da possível pose e em uma etapa de refinamento 

final baseada no relaxamento probabilístico. Uma vez extraídas as regiões, 

informação espúria removida e a pose separada, os atributos da pose são derivados 

e analisados para rastreamento. Portanto, dois conjuntos de imagens estão 

disponíveis, com e sem supressão do fundo. Esses conjuntos são usados para 

rastrear pedestres em série de imagens. O rastreamento é formulado como um 

problema de “matching” de atributos de um pedestre em quadros de imagens 

subsequentes, criando, portanto, uma correspondência entre pedestres em sequência 

de imagens. Para tanto, são comparados os histogramas de duas regiões contendo 

um pedestre em imagens diferentes. Três opções são analisadas: usando a distância 

euclidiana; usando Dynamic Time Warping e usando a correlação entre histogramas. 

Os melhores resultados de rastreamento foram obtidos usando a abordagem de 

correlação, com precisões acima de 80% e é capaz de lidar com problemas de 

mudanças na aparência (i.e, pose e forma) e oclusões parciais. No entanto, como lidar 

com oclusões totais, fundo muito desordenado, permanecem um desafio a ser 

abordado em trabalhos futuros. 

Palavras-chave: detecção de pedestre; segmentação e rastreamento; modelos 

deep learning; processamento de imagem; supressão de fundo; relaxamento 

probabilístico; correspondência de histograma. 

 



 
 

Abstract 

 
Pedestrian tracking is a well-established research field when it is performed in an 

indoor environment or the camera is static. But when the camera is moving, as in the 

case of the outdoor environment, there are many open issues to be solved. Some of 

these issues concern: illumination changes, occlusion, cluttered background, and 

pedestrian movements. 

In this thesis, deep learning-based methods and image processing technique 

frameworks are combined to detect and track pedestrians from high spatial resolution 

images obtained in an outdoor environment. The framework starts by applying deep 

convolutional neural networks to detect pedestrians from a series of image frames. 

Then a background suppression algorithm is proposed to reduce the influence of the 

changing background. The method is based on image segmentation, the analysis of 

the possible pose, and a final refinement step based on probabilistic relaxation. Once 

the regions are extracted spurious information is removed and the human figure is 

separated from the background, feature blobs from the human figures are derived. So, 

two sets of images are available, with and without background suppression. These 

sets are used to track the pedestrian in the image series. The tracking approach 

matches the extracted features of an individual pedestrian in subsequent frames, 

hence creating a correspondence of targets across multiple image frames. For this 

purpose, the histograms of two regions containing a pedestrian in different images are 

compared. Three options are compared: using the Euclidean Distance; using Dynamic 

Time Warping (DTW) and using the correlation between histograms. The best tracking 

results were obtained using the correlation approach, with accuracies above 80%, and 

addresses the problem of changes in appearance (i.e., pose and shape) and partial 

occlusions. However, full occlusions, more cluttered scenarios, remains a challenge to 

be addressed for future work. 

Keywords: pedestrian detection, segmentation and tracking; deep learning models; 

image processing; background suppression; probabilistic relaxation; histogram 

matching. 
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1 INTRODUCTION 

Pedestrian detection and monitoring from images are promising research fields, as 

it has become a viable solution with the current technology of imaging sensors in 

various configurations. Its products can support public security services, such as the 

police and or fire departments. 

The increasing availability of imaging sensors in urban areas (e.g., street or indoor 

cameras, cameras mounted on vehicles, closed-circuit television systems, aircraft, and 

unmanned vehicle systems) for observing and monitoring humans have produced a 

huge amount of data images with detailed information. Visual analysis of such image 

series is tedious, so, automated methods are desired. The demand for automated 

methods to detect pedestrians in an image and track them along several images to 

support monitoring activities is growing. 

Over the years, different techniques have been developed to ease automatic 

object/pedestrian detection and monitoring. Thus, researches have focused on the 

improvement of image processing techniques by making algorithms more accurate and 

robust for object/human detection (Dalal and Triggs, 2005; Dollar et al., 2009; Braun 

et al., 2019; Baabou et al., 2019; Zhai et al., 2020), segmentation (Milan et al., 2015; 

Minaee et al., 2020) and tracking (Stauffer and Grimson, 1999; Yilmaz et al., 2006; 

Bibby and Reid, 2008; Milan et al., 2015; Chen et al., 2016; Sun et al., 2020).  

Although many approaches have been already proposed to track objects (Yilmaz et 

al., 2006; Yang et al., 2011; Pan et al., 2017; Li et al., 2018; Ciaparrone et al., 2020), 

there still challenges to address (Ruan and Wei, 2016). Cluttered background, 

illumination, and background geometry changes, partially or fully occlusion (caused by 

another person or tree), deformation of the person (the person changes his pose as 

he moves and his appearance also depends on the position and range of the imaging 

sensor), motion blur, and scale variation (when the person moves away from the 

camera, for example) are just some of the problems that are needed to be addressed 

in human detection and tracking. This thesis contributes to the solution to part of such 

challenges. It is proposed a framework that combines deep learning and image 

processing techniques to detect and track pedestrians from high-resolution images 

taken by a low-cost camera in an outdoor environment. The process starts by applying 

deep convolutional neural network models to extract a region of interest i.e., the 
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location of the pedestrian in the image as a bounding box. Then, the separation of a 

human figure from the background is performed based on predefined pose fields and 

probabilistic relaxation. After the human figure is separated, the segments are 

analyzed for feature extraction. Finally, the tracking is formulated as a problem of 

feature matching/correspondence based on the comparison of the histograms of the 

regions containing a pedestrian using correlation, Dynamic Time Warping, and the 

Euclidean distance approaches. 
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1.1 HYPOTHESIS 

State-of-the-art deep learning methods can detect pedestrians in high-resolution 

RGB images with enough accuracy and precision to extract features that enable 

pedestrian tracking along a sequence of image frames. 

As the objects move along the scene, the background changes, which difficult 

tracking. This problem can be solved with background/foreground segmentation 

algorithms. 

1.2 AIMS 

This thesis aims to develop methodology to detect and monitor the movement of 

pedestrians from high spatial resolution images, obtained in an outdoor environment, 

using deep learning-based methods and image processing techniques framework. To 

achieve this main aim, specific objectives have been set as follows:  

 Study the applicability of deep-learning models for object detection in image 

frames acquired by digital camera installed on mobile vehicles surveying urban 

areas. 

 Propose a novel foreground pedestrian segmentation-based approach.  

 Compare three different approaches to measure the similarity of regions of 

different images. 

 Explore image processing methods for pedestrian tracking in a series of image 

frames.  

 Propose histogram similarity measurement-based tracking technique for 

pedestrian tracking. 

1.3 BACKGROUND AND RELEVANCE 

Events or situations where large numbers of people are concentrated or moving are 

common in urban areas. Human mobility follows common patterns. Generally, it 

dependents on urban roads, sidewalks, as well as the necessity to reach certain 

locations. However, when an unusual event occurs, such as an accident, this routine 

can change drastically. The knowledge of people movements is important for 

institutions involved to security of society. For example, during sport events when fans 

and the general public gather and move around stadiums or arenas, looking for tickets 

to the venue and after the event, when they look for transportation for their return. 
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The seemingly random movement of individuals forms logical patterns at the scale 

of crowds. In the field of security policies, individual movements can be anticipated but 

'human' behaviour remains a mystery. Peaceful marches and sports events can still 

go horribly wrong. During marches or sports events, the interaction of rival groups can 

lead to outbreaks. Therefore, the flow or movement of pedestrians or groups of 

pedestrians remains almost impossible to simulate due to sheer lack of knowledge. 

Although predictable it exhibits some peculiar characteristics, and therefore, the safety 

of the population is guaranteed on the basis of this flow. However, casual events can 

occur, causing panic or disorder, for example, the clash between two rival factions. 

Likewise, the population today is subjected to threats and violence, such as robberies 

planned by elements who wish to take advantage of the chaos of the crowds, such as 

in markets, street fairs, or political demonstrations. Recent events, including major 

terrorist attacks, have forced governments to make personal and asset security a 

priority in their policies. 

In the context of a pandemic outbreak, currently a theme of discussion, monitoring 

systems can be useful for health and security services to detect, identify and monitor 

gatherings (thus enforcing quarantine rules and deterring gatherings that violate 

isolation or social distancing rules) and/or people walking around without a protective 

face mask. 

For safety and security purposes, for example, instead of monitoring large groups, 

the act can be applied only to persons who may be suspected, by virtue of specific 

facts, either of having committed or contributed to an offense. 

In this thesis, an approach to detect, segment, and track persons for application in 

surveillance systems is shown as well as in similar domains mainly in reasoning about 

people's intentions. 

The following contributions can be highlighted: 

 First, the usage of high-resolution RGB images, acquired through mobile 

cameras for pedestrian detection, is evaluated. Then, the state-of-the-art CNN-

based object detection methods, namely Faster R-CNN Inceptionv2, and SSD 

MobileNet v2, for the detection of pedestrians on said mobile/RGB imagery are 

compared.  

 A novel approach to perform the separation of human bodies from images with 

changing backgrounds is proposed. The method is based on image 
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segmentation, analysis of the possible pose, and a final refinement step based 

on probabilistic relaxation.  

 Finally, a histogram-based tracking approach is proposed. 

Part of the contents and results from this thesis has been published or submitted for 

publication. The following list provides some references to these documents. 

 Amisse, C., Jijón-Palma, M. E., Centeno, J. A. S. (2019). Fine-tuning deep 

learning models for pedestrian detection. Bulletin of Geodetic Sciences. 

 Amisse, C., Jijón-Palma, M. E., Centeno, J. A. S. (2019). Pedestrian 

segmentation from complex background based on predefined pose fields and 

probabilistic relaxation. Bulletin of Geodetic Sciences. 

 1.5 THESIS OUTLINE 
 

In this manuscript, after the introduction, we introduce the literature review, state-of-

the-art, the methods and experiments, results and conclusion of the research. The 

literature review shows an overview of some recent deep learning algorithms, utilized 

in human/object detection. The section also introduces transfer learning techniques 

and region-based detectors based on deep learning. Chapter 3 reviews relevant state-

of-the-art techniques for pedestrian detection, foreground segmentation and 

pedestrian monitoring. In Chapter 4 is give an in-depth overview of the methodology 

and how the different steps work and can be utilized together to achieve the goal of 

pedestrian monitoring. The framework starts by using transfer learning method to fine-

tune end-to-end deep learning models to detect pedestrians. Then a technique for 

foreground segmentation to separate human figure from foreground and extract 

features to feed the tracking algorithm is proposed and discussed. Here, is performed 

a comparison of three different pedestrian tracking methods based on the Euclidean 

Distance, Dynamic Time Warping and Correlation. In the next chapter, the proposed 

approaches are tested on several image sequences and the experimental results and 

analysis are provided. Finally, Chapter 6 summarises the findings of this thesis. It 

presents the conclusions based on the observations made in previous chapters and 

suggest future research directions. For the thesis purpose, the terms pedestrian, 

human, and person will be used as synonymous. 
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2 LITERATURE REVIEW 
 

2.1 MACHINE LEARNING AND DEEP LEARNING 

The concept of Machine learning was introduced in 1959 by Arthur Samuel as "the 

field of study that gives computers the ability to learn without being explicitly 

programmed" (Arthur L Samuel, 1959). In the last decades, the machine learning 

activities evolved significantly due mainly to the increase of computational power and 

Graphical Processing Units (GPU) acceleration, and the rise of large repositories of 

data, being almost ubiquitous nowadays. Machine learning systems, can be classified 

taking into account the amount and type of supervision they get during training into 

four concepts: 

Supervised learning – The training data includes the ground truth, also called 

labels. Those labels are usually defined by humans, and the algorithm is able to predict 

the label for the unseen data. Common tasks in this field are classification and 

regression. In the case of object detection, training images that were previously 

annotated mark the locations and the classes of meaningful objects. 

Unsupervised learning – In unsupervised learning, the training data is unlabelled, 

and the system tries to learn without guidance. The most relevant algorithms applied 

in this field are clustering, the visualization and dimensionality reduction, and the 

association rule learning. The major goal of unsupervised learning is to discover 

patterns in unlabelled data. 

Semi-supervised learning – In semi-supervised learning, the training data is 

composed partially with labelled data. It is a combination of both labelled and 

unlabelled data to train the model. 

Reinforcement learning – The learning system, denominated as agent, select and 

perform actions in an environment, getting rewards in return, or penalties as negative 

rewards, which allows the system to learn by itself, and able to identify the best strategy 

possible in order to get the most rewards. In this field, can be included genetic 

algorithms, swarm intelligence, among others. 
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Deep learning also known as deep structured learning or hierarchical learning is part 

of the Machine Learning methods. Deep Learning is defined as the study and modelling 

of learning processes and algorithms that give computers the ability to learn without 

being explicitly programmed. In the last few years, Deep Learning algorithms are 

gaining applications in remote sensing, as shown by recent publications such as Zhang 

et al. (2016), Zhu et al. (2017), and Li et al. (2018). 

The main difference between machine learning and deep learning methods is found 

in the learning process. While in machine learning the system learns patterns based 

on samples of characteristics and features of the objects of interest presented by the 

analyst (or system programmer), in deep learning algorithms, learning is based on the 

samples presented to the system. The system is responsible for identifying and 

parameterizing the most relevant characteristics of the object classes presented. In the 

learning process, the descriptors are automatically extracted from the images by the 

system. Then, analyses and comparison of the differences and similarities between 

groups of objects through the examples is performed. It is also said that deep learning 

performs “end to end” learning. Meaning that the inputs of this system are raw data 

and a task to be performed, in the case of this thesis, the detection of pedestrians, and 

the system learns how to perform the task automatically. One of the main advantages 

of deep learning algorithms is that their performance improves by increasing the 

amount of data. The deep learning algorithms relies heavily on appropriate training. 

For this reason, large reference data sets (training samples) are required. 

Deep learning algorithms are neural networks with many layers that learn the 

characteristics and features directly from the data using the backpropagation 

algorithm, generally without the need for manual extraction of object features. The 

most popular deep learning techniques include (Li et al., 2018): Multilayer Perceptron, 

Convolutional Neural Networks, Auto-encoders, and Restricted Boltzmann Machines. 

In the sequel, convolutional neural networks are described, as they were used for 

pedestrian detection in this thesis. 
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2.2 CONVOLUTIONAL NEURAL NETWORKS 

A neural network is, basically, an arrangement of small logical processing units in 

which the input signals are weighted and added together to generate an output signal 

that is passed on to other units (network). The weight adjustment is a function of 

training dataset or data that have the required information. Figure 2.1 shows a simple 

neural network scheme. In this figure, a vector of parameters derived from the image, 

for example, the values of the digital counter in each band of a multispectral image, 

are presented to the network through an input layer. In these processing units (the 

mathematical neurons), the inputs are combined and the result passed on to each unit 

of the next layer, the hidden layers. The process is repeated in the different hidden 

layers and finally, a set of output values is generated, which may, in the case of 

classification, be the most likely class. Variations can be introduced by changing 

hidden layers of neurons per layer. Likewise, the input can be varied. For example, 

instead of digital counter values, spatial and spectral parameters or features of regions 

resulting from the segmentation process can be used

FIGURE 2.1 - EXAMPLE OF THE STRUCTURE OF A NEURAL NETWORK. 
Input
 Layer

Hidden 
Layers

Output
 Layer

Pedestrian

Etc..

Features
Background

The neural network can also be applied for the analysis of regions of the image, 

through a sliding window. In this case, all pixels in the region would form the input 

vector. However, the architecture of a neural network does not take into account the 

spatial relationships between the elements of an image (pixels or segments). 

Convolutional Neural Networks (CNN) are class of Deep Learning algorithms, were 

designed to address this shortcoming. CNN uses three basic concepts: local receptive 

fields, shared weights and pool area. As Zhang et al. (2016) pointed out, the deep 

structure of CNN allows the model to learn, to detect highly abstract features or 

characteristics in the images and to be able to map and store such characteristics. 
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2.2.1 Local receptive fields 

In CNN, the input is a region of the image, a moving (sliding) window. For this, a 

rectangular (or square) array of neurons is used to register the local variation of the 

image in the researched region. Schematically, this can be represented according to 

Figure 2.2. The digital value of each pixel in the image is then read and used as input 

in the two-dimensional array of neurons represented by the red array in Figure 2.2. 

Each input is weighted using a weight (p1, p2, ..., pn), initially unknown and then 

adjusted during the iterative process, and “bias”, a constant value is added to the 

weighted sum of inputs. 

FIGURE 2.2- LOCAL RECEPTIVE FIELDS. 

Pn

bias

 

Each hidden neuron uses the bias and a matrix of weights to compute an output. 

So, for the entire single hidden neuron matrix, the same weights and biases are used. 

Within a neuron, the input signals are weighted and combined according to equation 

2.1 (Castelluccio et al., 2015):     

                                                       (2.1) 

σ denotes the activation function, for example, the sigmoid function, b is the bias, wl,m 

the weight matrix and ai,j the input activation at particular position i,j (row, column) of 

the image and N, M are the size of the sliding window. 

The summations in equation 2.1 resembles the formal description of a filtering 

process by convolution, where the filter is displaced along the image. Traditionally, the 

weights of the filter are previously selected to obtain the desired effect, like low-pass 

or high-pass filtering, but they can also be used to detect some spatial features, like 

edges in given directions (directional filtering). In equation 2.1, the result of the 
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convolution is modified by adding, or subtracting a constant (bias) and then modulated 

by the activation function. The difference here is that the weights are not previously 

programmed, but they are adjusted by the system according to the samples that are 

presented. 

As the process is repeated along the image, a neuron in the first hidden layer can 

detect the same image feature at different locations in the input image. Therefore, 

convolutional networks are quoted to be invariant to translation, a factor that becomes 

relevant in the pedestrian detection problem, because the position of the pedestrians 

in the image is “a priori” unknown. 

Figure 2.3 is an illustrative example of some convolutional kernels that could be 

obtained using a convolutional neural network to detect pedestrians. On the left it is 

shown a set of examples that are the input to the network. Based on the examples, the 

system adjusts the weights of the kernels (Figure 2.3b) to detect the most useful 

kernels. The 18 small images represent the kernels that are adjusted using 18 hidden 

neurons. Some of them can be used to detect corners, like those displayed in the 

second line. 

FIGURE 2. 3 - EXAMPLE OF LOCAL RECEPTIVE FIELD 

 

2.2.2 Convolution layer 

The use of a single filter allows detecting a special feature, a single characteristic. 

However, to detect a pedestrian in an image, several feature maps are needed. 

Therefore, a set of neurons is organized in a layer. A convolutional layer is composed 

of a set of different filters, each one detecting a different feature. Each neuron produces 

its own feature map, the result of the convolution. Figure 2.4 illustrates this procedure. 

When an image is presented, the filters are applied and each filter produces a feature 

map, like those displayed on the right side of Figure 2.4. As in the example, 18 neurons 

are applied, 18 feature (convolution) maps are obtained. 
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FIGURE 2.4 - EXAMPLE OF FEATURE MAPS 

 

The convolution maps can be used as input of a new convolutional layer. Then, the 

neurons in the next layer use the basic feature maps of the first layer to compute more 

complex feature maps. So, the input feature map is convolved with a set of learnable 

convolution kernels to generate new feature maps. Each neuron in a feature map has 

a receptive field, which is connected to a neighborhood of neurons in the previous layer 

via a set of trainable weights (also known as a filter bank) (LeCun et al., 2015). The 

convolutional layers are responsible for modeling the features from the images. The 

first layers usually obtain low-level features (like edges, lines, and corners), while the 

others get high-level features (like structures, objects, and shapes).  

A complete convolutional layer consists of several different feature maps, as 

illustrated in Figure 2.4. Note that the weights were adjusted to detect some different 

patterns in the presented input set. 

The user can specify the kernel size in the model architecture. The kernel is set to 

scan spatially the input image and at each location, it generates an output value. The 

kernel or filter is a feature detector that scans the image for specific features, that is, 

different types of shapes, edges, circular patterns, or specific color combinations. The 

kernel moves spatially over the input through the stride. These operations generate a 

map of features that compose the output of the convolutional layer expressed as (Xia 

et al., 2017):  

                                                                                     (2.2) 

where is the kth output feature map after the convolution of the kth group convolution 

kernel using the input feature map; each group contains C convolution kernel; k = 1, 2, 

... , K; n = 1, 2, ... , C is the channel index number of input feature maps;  is the 

weight of the convolution kernel at the ith layer, the filter of nth channel in the kth group 
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convolution kernel;  represents the convolutional operation;  is the input feature 

map of channel n, and  is the bias of the kth group filter in the i th layer. 

2.2.3 Pooling layer 

The result of a convolutional layer is a set of feature maps that have almost the 

same size as the original image. As they are used as input in the next convolutional 

layer, the amount of processing effort is increased drastically by the creation of multiple 

feature maps. To avoid this problem, the convolutional maps are resized before they 

are used as input in the next convolutional layer. This is performed by adding a “pooling 

layer” after the convolutional layer. 

Pooling layers (also known as subsampling or downsampling) are used immediately 

after convolutional layers to reduce the dimension and quantity of trainable parameters 

of a CNN and to screen the main representative features from the activation layer 

output feature maps (Li et al., 2018). A pooling layer generates a downsampling 

operation which reduces the in-plane dimensionality of the feature maps to introduce 

a translation invariance to small shifts and distortions and decrease the number of 

subsequent learnable parameters. The hyperparameters in pooling operations are filter 

size, stride, and padding. The downsampling of feature maps is typically performed 

through pooling operation (Figure 2.5) being the L2 norm and the max-pooling 

functions the most common ones. The L2 norm pooling takes the sum of squares of 

the activation values (wi) of the neuron region as: 

                                                                                                           (2.3) 

where λ is a smoothing factor. In the max-pooling function, the clustering unit adopts a 

maximum value as the representative value from all the elements in the corresponding 

region of the pooling window (LeCun et al, 2015), which is equivalent to consider the 

intensity of a given pattern. The mathematical expression of max-pooling is described 

as follows: 

                                                                                          (2.4) 

  is a window function to the patch of the convolution layer applied to the input 

data to extract the maximum in the neighborhood, and  is the maximum in the 
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neighborhood. Figure 2.5 shows an example of the average pooling and max pooling 

operations. 

FIGURE 2.5 - SCHEMATIC REPRESENTATION OF THE CONVOLUTION AND 
POOLING LAYERS ON A CNN. 

 

 

Another option for max-pooling is the average pooling operation that calculates the 

average value from all the elements as the representative value in the corresponding 

region of the pooling window. Comparatively, max-pooling is excellent at handling 

texture features, and average pooling is more sensitive to background information 

(Goodfellow et al., 2016). Regardless of which form of pooling operation is used, 

pooling layers aim to capture features, which ensures that the deep CNN can still learn 

effective features, even if a small amount of input data shift occurs. 

So, the basic array of a convolutional neural network is the pair of convolutional and 

pooling layers. Nevertheless, several layers can be stacked, which results in a deep 

neural network, composed of several convolutional/pooling layers, which enables 

computing more complex features as the network becomes deeper. 

2.2.4 Fully connected layer 

In the last stage of a convolutional neural network, it is necessary to compute the 

output from the stacked convolutional layers. As explained above, the last layer of the 

stack is a pooling layer, which is used to compute the output in a final layer, the fully 

connected layer. The fully connected layers connect each neuron of the pooling layer 

to the output neurons. The fully connected layers interpret the feature representations 

generated from previous layers and perform the function of high-level reasoning. 

Therefore, it analyses the specific class that the produced feature maps correlate most 

strongly and compute the corresponding probabilities. To do this, it first processes its 
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inputs x with a linear transformation by the weight w and the bias b vectors, and then, 

the pointwise non-linear activation is performed as follows: 

                                                                                                         (2.5) 

where out(x) is the output of a fully connected layer and f (·) the activation function. 

The activation function is necessary for the model to acquire the ability to capture 

variations and extract features in the data. The activation functions receive the input 

signal together with the "bias" and determine the output of the neuron. The most 

commonly used nonlinear activation functions are Sigmoid, Tanh, and ReLU (Rectified 

Linear Unit). Because the ReLU function has the form of linear, unsaturated, unilateral 

suppression and sparse activation, its use in CNN is more common than sigmoid and 

Tanh functions. The activation function ReLU (Nair e Hinton, 2010) (Figure 2.6) is given 

as:  

                                                                                           (2.6) 

FIGURE 2. 6 - ReLU ACTIVATION FUNCTION 
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Unfortunately, the ReLU activation function has some drawbacks. It suppresses all 

tiny non-zero values to zero, also known as the dying ReLUs problem. In this situation, 

a common solution is to use alternative classes of ReLU activation functions (e.g., 

Leaky ReLU, parametric leaky ReLU (PReLU), or randomized leaky ReLU (RReLU), 

etc.). 

2.3 TRAINING THE CNN 

All layers, including the convolutional layers and pooling layers of the deep CNN 

model, use learning algorithms to adjust their free parameters (i.e., the biases and 

weights) to achieve the desired output. Backpropagation (LeCun, 1989 and LeCun et 
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al., 1998) is the mechanism by which CNN is trained and learns. The backpropagation 

algorithm computes the gradient of an objective (i.e., a cost/loss/performance) function 

to adjust CNN parameters to minimize errors that affect its performance. The algorithm 

trains the CNN model layer by layer performing forward and backward computations 

stages. In the forward pass stage, the model computes an output based on the 

provided input and the available weights and biases. The system produces an output 

that is compared to the desired output and the error and a loss function related to the 

training dataset can be obtained. In the following stage, learnable parameters, namely 

kernels and weights, are updated according to the loss value through the backward 

pass, minimizing the error for each output neuron and the CNN as a whole. The 

weights w and bias b for any layer i update iteratively with the use of a loss function by 

the update formula:  

                                                   (2.7)                  

(2.8)

After sufficient iterations cycles of training (forward and backward computations), 

when the loss cost becomes acceptably low, the training can be concluded. Too often, 

the training CNN process is prone to overfitting. This is a poor performance on a held-

out test set after the CNN is trained on a small or even large training set. Numerous 

regularization methods have been proposed to prevent CNN from overfitting including 

dropout, DropConnect, stochastic pooling, among others. We refer to Kukačka et al. 

(2017) for a detailed discussion. A CNN network can be trained from scratch (complete 

training) or through transfer learning techniques.  

2.3.1 Training from Scratch 

A common trait in the success of deep learning is the abundance of training data. 

However, in many scientific and technological applications, gathering a sufficient 

amount of data to support complete training often seems to be impractical. This 

seriously limits the use of complete training or training from scratch for solving 

problems in the medical, archaeological, astronomical domain, in particular for remote 

sensing problems. Also, training a deep CNN from scratch requires extensive 

computational and memory resources, without which the training process can be 
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extremely time-consuming. Therefore, training a CNN from scratch is tedious and time-

consuming, and in most cases unviable.  

2.3.2 Transfer Learning 

When one does not have sufficient data nor the computational resources needed to 

train CNN from scratch, transfer learning emerges as a promising solution, as it allows 

transferring knowledge between models in order to reduce the demand for enormous 

data. Transfer learning gives smaller datasets the possibility to use the knowledge 

gathered from generic datasets (e.g., ImageNet, COCO, Pascal VOC, etc), saves the 

time of collecting its knowledge, while the generalization of the algorithm is improved. 

Pan and Yang (2009) conducted a critical survey about transfer learning through the 

following questions: "what, which and when to transfer?", "What to transfer" refers to 

the specific part to be transferred across domains corresponding to the "how to 

transfer" issue. "When to transfer" suggests transfer learning to be done in a specific 

situation. Pre-trained models can be used in two ways to transfer learning. 

FIGURE 2. 7 - SCHEMATIC REPRESENTATION OF TRANSFER LEARNING 

 
SOURCE: Adapted from Li and Hoiem (2017). 

a) Pre-trained model as a feature extractor 

For this application, the last fully connected layer of the CNN network topology is 

removed and replaced with the one that meets the task of extracting features from the 

new data. Then, a new classifier (e.g., softmax, SVM, kNN, or a new CNN) is added 
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on top of it, and retrained for the feature extraction, as shown in Figure 2.7a. Thus, the 

weight parameters of the previous layers (convolutional base) do not need to be 

updated in the retraining process and only the weights of the final layer (new classifier) 

are updated.  

b) Fine- tuning a pre-trained model 

Here, the strategy consists either by replacing and retraining the classifier on the 

top of the convolution base or fine-tuning the weights of the pre-trained model by 

continuing the backpropagation. As illustrated in Figure 2.7b, fine-tuning enable to fine-

tune all the layers of the convolution base, or keep some of the starting layers as fixed 

(i.e., locked or froze) to avoid overfitting or underfitting and simply fine-tune the higher 

layers of the network model (Yosinski et al., 2014). This is possible thanks to that CNNs 

learn general features on the lower level layers (convolution base) and more abstract 

and dataset-specific features on the higher-level layers (Yosinski et al., 2014).  

To fine-tune pre-trained models, it is required to label a new class that will be used 

to compute the losses. In this case, all layers of the new model will be initialized based 

on the pre-trained model, except for the last output layer that depends on the number 

of class labels of the target dataset. And it will, therefore, be randomly initialized. 

However, in some situations, it is very difficult to obtain the class labels for any target 

dataset.  

The protocol to do transfer learning as feature extraction or fine-tuning depends on 

the size of the dataset available and the similarity of the source and target datasets. 

One should apply a feature extraction approach when the target dataset is relatively 

too small and similar to the source dataset. In such scenarios, the higher-level features 

learned from the source dataset should transfer well to the target dataset, and therefore 

lead to a better result. Alternatively, one should apply a fine-tuning approach when the 

target dataset is large and similar to the source dataset. Altering the already learned 

and adjusted weights might work well since the CNN model is unlikely to overfit the 

large target dataset. 

2.4 R-CNN OBJECT DETECTOR 

Before the advent of deep learning, object detectors consisted of two stages. Hand-

crafted feature extraction (e.g., Haar Feature, HOG, LBP, ACF, etc.) and classification 

(e.g., SVM, Random Forest, among others). The main strengths of these methods are 
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efficiency in computing, analysis of bad cases, and reasonable performance on limited 

training data. On the downside, adding more datasets to the model does not impact 

the performance in a similar way. Driven by the need for boosting accuracy and the 

use of recently more freely available large datasets, deep-learning region-based CNN 

detectors have emerged and achieved great success in object detection (Ren et al., 

2015).  

Region-based object detectors convert the object detection task into a bounding box 

classification and a regression problem. The state-of-the-art deep-learning-based 

detector can be broadly divided into two types: one-stage detectors method and two-

stage detectors method.  

One-stage detectors perform the detections with one pass of the CNN, generating 

classification and regression outputs directly. These include YOLO and SSD, which 

can achieve comparatively very low inference time with fairly good accuracy, but they 

do not handle well objects of small size. On the other hand, R-CNN, Fast R-CNN, 

Faster R-CNN, and Mask R-CNN are two-stage detectors, i.e., they first generate 

region proposals and then classify the proposed regions. R-CNN, Fast R-CNN, Faster 

R-CNN, and SSD are more related to the present work, so they are described briefly 

in the following.  

R-CNN (Girshick et al., 2014): takes as input an image and outputs different regions 

of interest where the objects in the image could be located. Then, the vector with the 

different features extracted from each proposed region acts as the input for a set of 

fully connected layers that output a classification between the different classes and a 

confidence score. The confidence score helps to create a ranking with the proposals 

so the most confident ones are taken into account. The whole process can be 

summarized as follows: it extracts some region proposals from an input image, 

computes the features of those regions with a CNN, and classify these features with a 

support vector machine (SVM). The summary diagram of R-CNN is shown in Figure 

2.8 in which three main parts can be distinguished: the extraction of region proposals, 

computation of CCN features, and classification of proposed regions. 
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FIGURE 2. 8 - ILLUSTRATION OF THE R-CNN ARCHITECTURE. 

 

Fast R-CNN (Girshick, 2015): also comprises three modules, with the first one being 

identical to the one from R-CNN (see Figure 2.9). Unlike R-CNN, the features of the 

convolutional layers are extracted once, and then the regions proposed by the 

selective search are projected to the feature maps of the last layer. The Region of 

Interest (RoI) pooling layer passes these projected regions to the region-specific fully 

connected layers (fc) for classification and regression. The last module is applied once 

per region of interest, but the process is made much lighter by removing the need to 

call the full CNN on each proposal. Fast R-CNN optimizes classification and the 

bounding box regressors jointly by a multi-objective loss L defined as (Girshick, 2015): 

                                              [2.9] 

where  denotes the labels of the ground truth class,  the predicted class,  and   

are respectively, the dimensions of real and predicted bounding boxes. The term 

 assigns 1 to positive classes and 0 to negative classes.  and  are 

respectively losses functions of the softmax layers and the bounding box regression. 

FIGURE 2. 9 - ILLUSTRATION OF THE Fast R-CNN ARCHITECTURE. 

 

Faster-RCNN (Ren et al., 2015): in this, a feature map is initially generated by a pre-

trained CNN classifier (e.g: AlexNet, VGGNet, ResNet, etc.). Then the generated 

feature map is fed into a sub-network known as Region Proposal Network (RPN) that 
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will propose candidate object bounding boxes. Finally, Fast R-CNN also accesses the 

feature map and extracts features from each candidate bounding box using an RoI 

pooling layer. This operation is based on max-pooling and aims to obtain a fixed-size 

feature map, regardless of the size of the candidate bounding box at its input. A 

softmax layer then predicts the class of the proposed regions as well as the offset 

values for their bounding boxes. An example of a Faster R-CNN and its main stages 

are illustrated in Figure 2.10. 

FIGURE 2. 10 - ILLUSTRATION OF THE Faster R-CNN ARCHITECTURE. IN Faster 
R-CNN THE RPN SHARES LAYERS WITH A Fast R-CNN SYSTEM. 

 

Different from Fast R-CNN, the Faster R-CNN loss function L is defined by the equation 

(Ren et al., 2015): 

                                              (2.10) 

here i is the index of the anchor in the mini-batch. The classification loss Lcls (pi, pi*) is 

the log loss over two classes (object vs background). pᵢ is the output score from the 

classification branch for anchor i, and pᵢ* is the ground truth label (1 or 0). 

The output is obtained through the normalization of Ncls and Nreg via weighting by a 

balance parameter λ. 

The regression loss Lᵣₑ (tᵢ, tᵢ*) is activated only if the anchor contains an object (i.e., 

the ground truth pᵢ* is 1). The term tᵢ is the output prediction of the regression layer and 

consists of four variables [tₓ, tᵧ, tw, th]. The regression target tᵢ* and learned regression 

output tᵢ are calculated as (Girshick, et al., 2014): 

                                                        (2.11) 
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here x, y, w, and h correspond to the (x, y) coordinates of the top-left coordinate and 

the height h and width w of the box. x*, xₐ stands for the coordinates of the anchor box 

and its corresponding ground truth bounding box. 

SSD (Liu et al., 2016): unlike Faster-RCNN, which has a stage for region proposal, 

this addresses object detection as a problem of direct regression from pixels to 

bounding box coordinates and class probabilities. SSD runs a CNN network on a given 

input image on a single forward pass and computes a feature map. On the computed 

feature map, SSD runs a convolutional kernel to predict the bounding boxes and 

classification probabilities. Then, it uses anchor boxes at various aspect ratios to learn 

the offset rather than learning the box. Finally, bounding boxes are predicted after 

various convolutional layers. Since each convolutional layer operates at a different 

scale, it can detect objects of different scales. Figure 2.11 illustrates the SSD diagram. 

FIGURE 2. 11- ILLUSTRATION OF THE SSD ARCHITECTURE. 

 
The SSD loss function is a combination of confidence loss   which is dependent 

on the confidence rate, and the localization that represents the network's 

performance on estimating the bounding boxes. Both losses are weighted and added 

as (Liu, 2016):   

                       (2.10) 

here, N is a number of matched default boxes,  is the localization loss,  the weight 

term, c is the offset for the center, is the predicted box, and  is the ground truth box 

parameters. 

2.4.1 The feature extractor  

In the detector architecture, two types of deep neural networks can be distinguished, 

feature extractor and the detection network. Inception, Resnet, MobileNet, VGG-Net, 
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LeNet are examples of feature extractors networks. The two feature extractor networks 

used in the present work are described. 

Inception: Inception v2 is an enhanced version of the original version Inception v1 

(Szegedy et al., 2015), where the 5x5 convolution layer is replaced by two 3x3 layers. 

Then, the 3x3 convolutions are split into 1x3 and 3x1 and then made wider to remove 

the computational bottlenecks (Szegedy et al., 2015). There are other versions of 

inceptions: Inception v3 and v4 (Szegedy et al., 2016).  

MobileNet: MobileNets are class of models built with Depth-wise Separable 

convolution, that consists in a Depthwise convolution followed by a Point-wise one 

(kernel 1_1) as illustrated in Figure 2.12. Instead of the usual (CONV, BATCH_NORM, 

RELU), it splits 3x3 convolutions up into a 3x3 depthwise convolution, followed by a 

1x1 Pointwise CONV. The Figure 2.12 shows two different steps of the depthwise 

convolution and the pointwise convolution.  

FIGURE 2.12 - THE DEPTHWISE SEPARABLE CONVOLUTION, COMPOSED BY 

A DEPTHWISE CONVOLUTION AND A POINTWISE ONE. 

 
Source: from Tsang, 2019. 

 

Pointwise convolutions: These are like regular convolutions, but with a 1×1 kernel. 

The purpose of pointwise convolutions is to combine the different channels of the input. 

Applied to an RGB image, they will compute a weighted sum of all channels. 

Depthwise convolutions: These are like regular convolutions, but do not combine 

channels. The role of depthwise convolutions is to filter the content of the input (detect 
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lines or patterns). Applied to an RGB image, they will compute a feature map for each 

channel. 

When combined, these two types of convolutions perform similarly to regular 

convolutions. However, due to the small size of their kernels, they require fewer 

parameters and computational power, making this architecture suited for mobile 

devices. At present, MobileNet class of models include MobileNet v1 and MobileNet 

v2.  

MobileNet v2 (Sandler et al., 2018), the architecture used in present work is the 

update of MobileNet v1. It introduces a new convolutional block called "Inverted 

Bottleneck Residual Block" (Figure 2.13). The two novelty of this block are: the 

bottleneck and the residual connection. 

FIGURE 2.13 - DEPTHWISE SEPARABLE CONVOLUTION BLOCK. 

 
Source: from Sandler et al., 2018. 

 
The bottleneck block has three convolutional layers: Depthwise convolution layer, 

expansion layer, and a projection layer. A Depthwise convolution that filters the inputs 

is followed by a 1x1 Pointwise convolution layer. The 1x1 layer is called Projection 

layer, because it projects data with a high depth dimension (channels) into a tensor 

with a much lower one. This layer is also called a bottleneck layer because it reduces 

the amount of data that flows through the network. The first layer of the block is the 

new entry. It is again a 1x1 convolution and its purpose is to expand the number of 

channels of the input before it arrives to the Depthwise convolution. Hence, this layer 

called Expansion layer, produce an output depth dimension higher than the input ones. 

It is doing the opposite work of the Projection layer. The decision of how much expand 
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the input is left to the Expansion factor. It is another hyperparameters to choose during 

experiments to mitigate the trade-off between speed and accuracy. The default 

expansion factor is 6. The expansion layer acts as a decompressor that unzip the data, 

then the Depthwise layer performs the filtering, and finally the projection layer 

compresses the data to make it small again. The trick that makes this all work is that 

the expansions and projections are done using convolutional layers with learnable 

parameters, and the model is able to learn how to best compress and decompress the 

data at each stage in the network. 

The residual connection of the block has the function to help with the flow of 

gradients through the network. It makes a sum operation between the input and the 

output features maps of the block. The residual connection is used only when the 

number of channels in input in the block is the same of the number of channels in 

output.  

The advantage of MobileNet v2 over MobileNet v1 is that the input fed to the tensors 

(connections between each convolution block) is of lower dimension. Low dimension 

input means tensors now require comparatively less memory and computational 

resources but, having low-dimensional tensors can be worse too. Filtering a lower 

dimensional tensor might not give all the useful information. However, the expansion 

layer takes care of that by expanding the input fed by tensors before the filtering step. 

2.5 IMAGE SEGMENTATION MODELS 

 The image segmentation problem can be seen as an extension to the object 

detection problem since it is considered a pixel-wise classification task. The most 

known architectures to solve this problem include: DeepLab, Mask R-CNN, SegNet, 

RefiNet, PSPNet, UNET, among others (Minaee et al., 2020). In this work, Deeplab v3, 

Mask R-CNN, and Yolact++ are used to compare them with the proposed method for 

human segmentation. 

Mask R-CNN (He et al., 2017): Mask R-CNN model detects objects in an image 

while simultaneously generating a high-quality segmentation mask for each instance. 

Mask R-CNN is essentially a Faster RCNN with 3 output branches: the first computes 

the bounding box coordinates, the second computes the associated classes, and the 

third computes the binary mask to segment the object. The Mask R-CNN loss function 
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combines the losses of the bounding box coordinates, the predicted class, and the 

segmentation mask, and trains all of them jointly.  

 
YOLACT++: You Only Look At CoefficienTs (YOLACT) (Bolya et al., 2019) is one 

of the fastest state-of-the-art instance segmentation methods based on RetinaNet (Lin 

et al., 2017), a one-stage object detector algorithm. YOLACT proposes to first extract 

a set of feature maps of different resolutions using a deep convolutional neural network 

and then further process the feature maps using two parallel branches: (i) the 

segmentation head branch (the protenet), which is used to generate a dictionary of 

prototype masks, and (ii), the object detection head branch (the prediction head), which 

predicts a set of coefficients per instance.  

 
DeepLabv3: DeepLabv1 (Chen et al., 2014), DeepLabv2 (Chen et al., 2017), and 

DeepLabv3 (Chen et al., 2017) are among some of the most popular image 

segmentation methods. Deeplabv3 was proposed to capture contextual information at 

multiple scales by employing several parallel Atrous Spatial Pyramid Pooling (ASPPs). 

The model combines cascaded and parallel modules of dilated convolutions. The 

parallel convolution modules are grouped in the ASPP. A 1x1 convolution and batch 

normalisation are added in the ASPP. All the outputs are concatenated and processed 

by another 1x1 convolution to create the final output with logits for each pixel. In 2018, 

Chen et al. proposed DeepLabv3+ by combing the idea of both U-Net and Deeplabv3, 

as an extension of Deeplabv3 by adding a decoder module to recover the object 

boundaries. 
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3 LITERATURE REVIEW 

3.1 PEDESTRIAN DETECTION 

Pedestrian detection algorithms share similar computation pipelines. First, they 

extract higher-level spatial representations or features resorting from the raw pixel-

level image content to the arbitrarily complex transformation for the application of pixel-

by-pixel or window-by-window. Then, the features for any given spatial window are fed 

to a classifier that assesses whether such a region depicts a human. Next, a scale-

space is used to detect pedestrians at different scales. 

Viola et al. (2003) were among the first to build an efficient person detector. They 

used an integral image representation and a feature detection/learning algorithm 

based on AdaBoost. This was followed by the work of Dalal and Triggs (2005) in which 

they refine the process and they propose a Histogram of Gradients (HOG) as local 

image features to be fed to a linear Support Vector Machine aimed at identifying 

windows containing pedestrians. Felzenswalb et al. (2010) further improved the 

detection accuracy by combining the HOG with a Deformable Part Model (DPM). 

These were followed by improvements to the feature-based methods in order to 

improve feature-based detection. However, most of these methods used feature-based 

detection coupled with SVM regression methods to perform pedestrian detection.  

There has also been considerable work along these lines (e.g., Mikolajczyk et al., 

2004; Wu and Nevatia, 2005). Mikolajczyk et al. (2004) used a collection of supervised 

parts detectors to detect humans using co-occurrence features and AdaBoost 

classifier. Wu and Nevatia (2005) combine edgelet features and AdaBoost to learn a 

holistic model for the pedestrian as well as a collection of body parts. Efforts for 

boosting detection performance and speed include the work of Wojek et al. (2009) that 

combine HOG and Histogram of Flows, and Nam et al. (2014) that fuses Aggregated 

Channel Features (ACF) and Locally Decorrelated Channel Features, respectively. 

A survey conducted by Dollar et al. (2009) and (2011) summarizes the different 

feature-based methods and compare their performance on the Caltech pedestrian 

database. Dollar et al. (2009) and Benenson et al. (2014) state that improving the 

detection rate requires to improve both feature detection and machine learning 

algorithms. 

Modern pedestrian detectors are based on deep learning techniques. 

Chronologically, Sermanet et al. (2013) were the first to use CNN in an integrated 
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structure to detect pedestrians. They proposed two layers convolutional model, that 

adopts convolutional sparse coding to pre-train CNN for pedestrian detection. This 

approach can be considered as the beginning of the integrated network structures such 

as R-CNN, Fast R-CNN, and Faster R-CNN. In fact, for Girshick et al. (2014), overfeat 

can be seen as a special case of the R-CNN network. Chen et al. (2014) proposed a 

pre-trained Deep CNN (DCNN) to learn features from the ACF detector. These features 

are then fed to an SVM classifier. 

Ouyang and Wang, (2013) proposed a joint deep model that jointly learns four key 

components in pedestrian detection: feature extraction, deformation handling, 

occlusion handling, and classifier.  Based on Fast R-CNN, Li et al. (2015) proposed a 

Scale-Aware Fast R-CNN (SAF R-CNN) which takes scales of pedestrians into 

account in pedestrian detection. Najibi et al. (2016) propose a similar approach through 

a Grid CNN (G-CNN) network whose differential in relation to Fast R-CNN is the 

reduction of bounding boxes to be calculated. When testing the application of Faster 

R-CNN (RPN + Fast R-CNN) in pedestrian detection, Zhang et al. (2016) observed 

that the RPN network outperforms Fast R-CNN. Therefore, they propose to remove 

the Fast R-CNN network to improve the detector's performance. When testing on a 

new pedestrian dataset called CityPersons, Zhang et al. (2017) analyzed the Faster 

R-CNN architecture and found that the network fails to handle small-scale objects 

(pedestrians). 

Braun et al. (2019) present an overview of the main deep learning detection 

methods with a particular focus on pedestrian detection. The authors optimize and 

adapt Faster R-CNN, R-FCN, SSD, and YOLOv3 for the EuroCity Person dataset. 

They used Faster R-CNN, R-FCN, SSD with VGG-16 as the base classify network, 

and YOLOv3 with the DarkNet framework. They found that the variation of Faster R-

CNN has the best performance on the EuroCity Person dataset. In Lan et al. (2018) it 

is presented a pedestrian detection based on a variation of the YOLO network (i.e., 

three layers were added to the original one), in order to join the shallow layer 

pedestrian features to the deep layer pedestrian features and connect the high, and 

the low-resolution pedestrian features. Recently, Baabou et al. (2019) reported the 

state of the art for pedestrian detectors based on deep learning. They presented a 

comparison and evaluation criteria of the traditional hand-crafted features methods and 

R-CNN detectors. 
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3.2 BACKGROUND MODELLING/FOREGROUND SEGMENTATION 

Considering a generic situation, where the camera may be moving and the 

pedestrians move along a scene with varying elements, it is possible that the 

background around the image of a pedestrian changes from frame to frame. For 

example, when a pedestrian moves from a bright background into a shadowed area. 

In such cases, it would be expected that removing the background of the region of 

interest, and isolating the pedestrian figure, would be more useful for tracking 

purposes. Background modelling could be a crucial stage of target extraction and the 

following stages such as tracking needs would depend on the quality of the result 

produced.  

Depending on levels of noise and complexity of the background, simple frame 

differencing (Piccardi, 2004), optical flow (Horn and Schunck, 1981), or background 

subtraction (Babacan and Pappas, 2007) can be used. These approaches are 

implemented generally through extracting interframe motion information, detecting 

optical flow change, or background modelling. They are simple to implement and 

results in faster execution times but they are incapable to handle dynamic 

backgrounds. 

When considering complex background environment, one has to deal with a variety 

of different objects and motion types. More complex methods address these 

challenges using statistical models for each pixel. Widely used examples are the 

parametric statistical method which models each pixel with a mixture of Gaussian 

distributions (Stauffer and Grimson, 1999) and the non-parametric statistical method 

which estimates the probability density function at each pixel from many samples 

without any prior assumptions (Elgammal et al., 2000).  

One of the first important results of the Gaussian model for background modeling 

was the work of Wren et al. (1997). They proposed modeling the background at each 

pixel location with a Gaussian distribution. In order to cope with pixels having a non-

Gaussian distribution, Stauffer and Grimson (1999) suggested the Gaussian Mixture 

Model (GMM). The model is supposed to incorporate effects commonly found in 

outdoor scenes. Variations of Gaussian and GMM for background modeling have been 

studied. For example, Kim et al. (2007) have studied how to deal with strict constraints 

for better background modeling when using the Gaussian model.  Zivkovic (2004) also 

suggested an adaptive GMM (AGMM) to efficiently update parameters in GMM. 
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Similarly, Lee (2005) used a new adaptive learning rate to boost the convergence rate 

without changing the stability of GMM. Shimada et al. (2006) have discussed how to 

deal with accuracy improvement and computational time reduction problems of GMM. 

However, the problem of pixel-based parametric approaches is that the dynamic 

textures cause large changes at an individual pixel level (Dalley et al., 2008). 

Additionally, dynamic scenes make parameter tuning problematic leading to 

undetected or "ghost" contained foregrounds. 

The non-parametric approach, in contrast, can handle situations in which the 

background of the scene is cluttered and dynamic (Elgammal et al., 2000). Typical 

non-parametric algorithms are those based on the kernel density estimation (nKDE) 

technique which estimates the probability density function at each pixel from many 

samples without any prior assumptions. Although more flexible, it is difficult to choose 

the suitable bandwidth of KDE for implementation. Increased accuracy has been 

obtained thanks to the suitable choice of the bandwidth of KDE such as the adaptive 

Kernel Density Estimation (aKDE) (Mittal and Paragios, 2004), sequential Kernel 

Density Estimation (sKDE) (Han et al., 2008), and recursive Kernel Density Estimation 

(rKDE) (Brockwell, 2005). Likewise, the pixel-based adaptive segmenter (Hofman et 

al., 2012), which models the background by a history of recently observed pixel values, 

is also a non-parametric background modeling approach that introduces cybernetics 

to update threshold and background adaptively. Compared to parametric approach, a 

non-parametric approach is often viewed as more robust and efficiently deployed in 

the complex background scenes, however, the high computation cost limits its scope 

and practical application. 

Some similar and earlier approaches exploit robust principal component analysis 

(RPCA) to construct background models (Candès et al., 2011). In Bouwmans et al. 

(2017) are reviewed different methods based on RPCA. 

Other related approach includes visual background extractor (ViBe) method 

introduced by Barnich and Van Droogenbroeck (2010), which adopts a stochastic 

renewal strategy to set up and update background models, and then ensures that the 

information between adjacent pixels is transmitted. Bilodeau et al. (2013), propose a 

modified Local Binary Similarity Pattern descriptor to set up the background model in 

feature space. Learning historical representation of the background is another solution. 

For example, Kim et al. (2004) constructed a codebook to cluster background pixels 

and construct a background model.  
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Besides the approaches mentioned above, there is a line of approaches that 

suggest building a background model by training a neural network (Schofield et al., 

1996, Jiménez et al., 2003, Culibrk et al., 2007) to classify each pixel in frame into 

background or foreground. Schofield et al. (1996) trained neural networks for 

background modeling and foreground detection by using Random Access Memory 

neural networks.  Jiménez et al. (2003) classified each zone of a video frame into three 

classes of background with a Multilayer Perceptron Neural Network. In Culibrk et al. 

(2007), a feed-forward neural network based on an adaptive Bayesian model called 

Background Neural Network is used for background modeling. 

Regarding background/foreground segmentation-based approaches, several 

strategies were proposed (e.g., pixel-based adaptive segmenter (PBAS), self-

balanced sensitivity segmenter (SuBSENSE), pixel-based adaptive word consensus 

segmenter (PAWCS)). Besides these methods, the most relevant foreground 

segmentation approaches related to the proposed in the present thesis are those that 

employ superpixel models (Achanta et al., 2012). In particular, Yu et al. (2018), 

integrates the watershed algorithm and mean-shift clustering algorithm to obtain 

reliable initial foreground and background labels for simple linear iterative clustering 

superpixels. In Schick et al. (2012) the authors first convert a given pixel-based 

segmentation into a probabilistic superpixel representation. Based on these 

probabilistic superpixels, a Markov random field uses structural information and 

similarities to improve segmentation. 

Recently, deep neural networks (DNN) have emerged as remarkable approaches 

to background modeling. DNN-based methods learn and extract deep convolutional 

features of an image and use them to construct a background model. For example, 

Shafiee et al. (2016) trained Neural Response Mixture to learn deep features used in 

the GMM. In another way, Xu et al. (2014) designed a background generation method 

based on two auto-encoder neural networks, whilst Zhang et al. (2015) trained Stacked 

Denoising Auto-Encoder to learn robust spatial features and modeled the background 

with density analysis. Later, Qu et al. (2016) exploit a context-encoder network for a 

motion-based background generation method by removing the moving foreground 

objects and learning the feature. Chaibou et al. (2020) have suggested learning 

superpixels from CNN for foreground segmentation. The survey of Minaee et al. (2020) 

enables a good and updated view of the most recent literature in image segmentation 

and discusses more than a hundred deep learning-based segmentation methods. 
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Generally, deep neural networks can obtain better results at the cost of high the 

computational load of the process. 

3.3 PEDESTRIAN TRACKING 

By looking at the story, Rohr (1994) was the first author who tried to track 

pedestrians using image sequences, with a focus on motion capture of an isolated 

human. Since then, numerous researchers have developed different approaches to 

track humans, each approach with its strengths and weaknesses. A comprehensive 

overview of earlier tracking methods with a particular focus on human tracking is 

covered in Yilmaz et al. (2006).  

The simplest approach to track humans in image frames is to detect them first using 

background subtraction, and then establish correspondence from frame to frame to 

track (Wren et al., 1997). Wren et al. (1997) propose a system to track a human in an 

indoor environment, using color and shape to segment a human body from the 

background. Then the system detects and tracks the human's head. Haritaoglu et al. 

(2000) present a w4 model that operates on grayscale or infrared cameras to detect 

and track humans in an outdoor environment. The model adopts a combination of 

shape analysis and tracking to locate multiple humans and their body parts in the 

scene. In McKenna et al. (2000), it is proposed a sophisticated background subtraction 

method known as adaptive background subtraction to track multiple humans even 

during occlusion. The method combines color and gradient information to cope with 

shadows and unreliable color cues. In general, background subtraction is simple to 

compute, however, it solves the problem of human tracking in complex scenes in which 

there is unoccluded human and fixed camera. 

An alternative approach to background subtraction is to separate the 

foreground/background using statistical models learned from observed frames (or 

extracted features) of the frame image sequence. Some of the more prominent 

algorithms that use statistical models include Mean-Shift, Kalman filtering, particle 

filter, and template Matching. For instance, Lu and Tan (2001) propose a system based 

on the color histogram to track humans using a modified mean shift (CAMShift). 

Beleznai et al. (2006) also employ the mean-shift procedure on different images for 

detecting and tracking humans. 

Tracking systems such as those proposed by Zeng and Ma (2002), Jin et al. (2010), 

and Zhou et al. (2014) use particle filtering techniques to track people. Zeng and Ma 
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(2002) combine particle filtering with curve fitting to track heads. Jin et al. (2010) 

proposes to fuse the information of color-histogram and HOG to track humans in the 

complicated background through the Particle Filter algorithm. Zhou et al. (2014) 

introduce a human tracking approach that fuses two cues (color and spatio-temporal 

motion energy) within a particle filter-based framework. 

Another robust algorithm that has been often used for tracking humans is the 

Kalman Filter. For instance, Zhao et al. (2001), Mirabi and Javadi (2012) explored the 

Kalman Filter algorithm to track humans in real-world scenarios. Both experiments 

were able to deal with challenging situations including cluttered background, noise, 

shadow, and poor contrast. Kalman Filter trackers are claimed to be computationally 

cost-effective in tracking objects. Pan and co-authors (2017) reviewed moving target 

tracking. The authors classified the various tracking algorithm based on the extracted 

features. In their paper, feature extraction methods were discussed and improvement 

in the tracking algorithm was suggested.   

Recent algorithms use representations from CNNs for human tracking. Fan et al. 

(2010) propose a human tracking algorithm based on pre-trained CNN.  An image 

frame extracted from surveillance videos is used as an input to predict the foreground 

heat map by single-pass forward propagation and learns a separate class-specific 

network to track. Jin et al. (2013) use CNN to obtain high dimensional feature vector, 

and then the feature vector is fed into a radial basis function network to produce a 

confidence map to the task of tracking problems. Similarly, Hong et al. (2015) came up 

with the combination of SVM (to learn discriminative appearance models from pre-

trained CNN features) and sequential Bayesian filtering (to construct target-specific 

saliency map), such that they are united to achieve the promising online human tracker. 

In another work Song et al. (2018) use a one-stage Single shot multibox detector 

topology and MobileNet for pedestrian detection and tracking from the CCTV dataset. 

Luo et al. (2018) distinguish pedestrians in surveillance videos through Faster R-CNN 

and propose a deep Matching-Siamese network for tracking the previously 

distinguished pedestrian. For RGB-D datasets, Angelico and Wardani (2018) proposed 

combining the CNN method with Kalman Filter to detect and track humans. In Li et al. 

(2018) various deep learning-based trackers are discussed. They summarize and 

classify the existing deep learning trackers based on exploited deep learning networks, 

feature extraction function, and the training requirements. A comprehensive evaluation 

of up-to-date deep learning state-of-the-art was performed on available test datasets. 
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Later, Sun et al. (2020) give a comprehensive survey of recent advances of multiple 

pedestrian tracking based on a tracking-by-detection framework. 
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4 MATERIALS AND METHODS 

The methodology implemented in this thesis can be divided into three stages (Figure 

4.1). In the first stage, pedestrians are detected in each image frame using an object 

detection framework Faster R-CNN Inception v2 and SSD MobileNet v2. In the second 

stage, the detected pedestrian bounding boxes are segmented to extract features and 

compute histograms. So, two sets of images are available, with and without 

background suppression. These sets are used to track the pedestrian in the image 

series. In the last stage, an analysis of spatial correspondence between the elements 

of different images was performed based on the classification of the elements of 

consecutive image frames according to the histograms of the detected objects. 

FIGURE 4.1- OVERVIEW DIAGRAM OF THE PROPOSED WORKFLOW 
COMPOSED BY THE DEEP CNN OBJECT DETECTOR; FOREGROUND 
SEGMENTATION AND FEATURE EXTRACTION; CORRESPONDENCES 

ANALYSE AND TRACKING. 

 

 



49 
 

4.1 IMPLEMENTATION OF PEDESTRIAN DETECTORS  
 

There are mainly two types of state-of-the-art object detectors: one stage and two 

stage methods. The former models traditionally include R-CNN (Girshick et al., 2015), 

Fast R-CNN (Girshick, 2015), Faster R-CNN (Ren et al., 2017), and R-FCN (Dai et al., 

2016), which firstly generate a category-independent set of so-called region proposals 

(areas of the image that potentially contain an object) for further feature extraction and 

classification. The latter models based on end to end (also known as one-stage 

detectors) need setting the default box, training the network, and establishing the 

relationship of the prior box, default box, and ground truth box. The most common 

examples of end-to-end based models are YOLO (Redmon et al., 2016) and SSD (Liu 

et al., 2016). In the present work, the Faster R-CNN inception v2 and SSD MobileNet 

v2 detectors are tested and used to detect pedestrians in the transfer learning 

technique. 

Although advanced methods, such as Mask R-CNN, YOLO and their versions, 

provide a “relative” increase in accuracy, their main contribution is the improvement of 

speed. For example, Mask R-CNN differ from Faster R-CNN in having the 

segmentation module (Zhao et al., 2019). YOLO, a one stage detector is recognized 

by achieving higher speed than SSD, but not without affecting the accuracy (Liu et al., 

2016). In Huang et al. (2017) is presented a comprehensive review that compares the 

trade-off between accuracy and speed among different deep learning-based object 

detectors. They conclude that two-stage detectors achieve higher accuracy while one-

stage detectors perform better in speed.  

As the evaluation of the execution time is outside the scope of this thesis, these 

methods would not provide additional value to the experiments. Due to the need for high 

accuracy in the problem at hand Mask R-CNN and YOLO tests were not considered for 

pedestrian detection in this thesis. The focus of this step is to generate a bounding box 

where the pedestrian is located and therefore reduce the size of the region to be 

analyzed in further steps. 

4.1.1 Dataset and training

The dataset created contains 700 RGB images, resized to 1920x1080 pixels. The 

sequence of images was captured in an outdoor environment in an urban scene using 

mobile cameras. To simulate a more general situation, the camera was not fixed, so 
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that the exterior orientation of the sensor changed along the recording time. A raw 

image is Figured in 4.2a as a matter of example. The labelling was performed by using 

the labelImg tool (from https://github.com/tzutalin/labelImg). This tool allows creating 

bounding boxes around objects/pedestrian in order to extract the coordinates of those 

boxes in the image, as can be seen in Figure 4.2b. 

Pedestrian labelled in the images includes those who are walking or standing. In the 

upper part of image in the Figure 4.2b, some pedestrian that are seating or occluded 

by tree were not labelled. 

FIGURE 4.2 - EXAMPLE OF RAW IMAGE AND ANNOTATION USING THE 
LABELIMG TOOL 

  
 a b 

 For training the detectors, the dataset was randomly partitioned into a training set 

(80%), a validation set (15%), and a test set (5%). 

In the training step, transfer learning using the pre-trained models provided by the 

TensorFlow API (Huang et al., 2016) was applied. TensorFlow API, is a toolbox 

designed for simple, flexible, and easy use of CNN building blocks. It provides premade 

models (model zoo) combining some of the state-of-the-art detection algorithms with 

many of the main CNN backbone models. The provided models are trained on the MS 

COCO dataset with 90 classes. TensorFlow API also provides detailed tutorials to 

retrain models for new categories using transfer learning. An overview and usage of 

the TensorFlow Object Detection API is described in the URL: 

(https://github.com/tensorflow/models/blob/master/research/object_detection/READM

E.md). 
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Figure 4.3 presents an overview of the workflow to train an object detection model 

in TensorFlow Object Detection API, an open-source framework built on top of 

TensorFlow that makes it easy to construct, train and deploy object detection models. 

The main steps include: the extraction for each image a xml file with the coordinates 

of each bounding box and the corresponded label associated, in PASCAL VOC format. 

Because TensorFlow works with TFRecord files, a binary file format, where all the 

information stored in all the xml files corresponding to each partition will be rearranged 

and stored in one single file in the appropriate format. All the individual xml files 

(training, validation and test) obtained using labelImg should be converted to this 

format. 

Creation of a. pbtxt file that will contain the id and name for each of the possible labels 

in the dataset. The TensorFlow API, do not consider the background as a class. 

FIGURE 4.3 - FLOW DIAGRAM TO TRAIN AN OBJECT DETECTION MODEL IN 
TENSORFLOW OBJECT DETECTION API. 

 

 

4.1.2. Experiment Implementation 

The experiments were implemented on a computational server with the following 

hardware specifications: Intel (R) Core (TM) Processor i7-7500U CPU @ 2.70GHz 

2.90GHz, installed memory (RAM) 8.00 GB 64-bit operating system type, x64-based 

processor and NVIDIA GeoForce 940MX graphics processing unit.  
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With regard to hyperparameter setting, many of the settings used in this research 

were inherited from the original Faster R-CNN and SSD MobileNet settings however, 

the following parameters were determined empirically.  

a)  The batch size: The batch size defines the number of samples that will be passed 

through the network at once. One epoch corresponds to one propagation of all training 

samples on the network, while the number of steps defines the number of passes one 

batch size pass through the network. The batch size parameter is mainly selected 

based on the RAM available on the machine. The batch size impacts directly the 

training. Large batch processes tend to converge to sharp minimizers of the training 

function, that leads to a decrease in the capacity of generalization of the model (Kesker 

et al., 2016). 

The batch size is also highly correlated with the speed of the training: the larger the 

batch, the faster the training process. Another aspect to take into account by defining 

the batch size is the influence that is going to have on the learning rate parameter. The 

learning rate is applied once for every batch. In Smith et al. 2017 is verified that 

equivalent accuracy results can be achieved after the same number of training epochs, 

but with fewer parameter updates, which consequently shorts up the training time, by 

increasing the learning rate and scaling the batch size. Most algorithms use a batch 

size that falls in between, where the primary considerations are based on the memory 

available and the speed of the training (Goodfellow et al., 2016). The batch size value 

in the present thesis was set equal to 1. 

b) Momentum: The Momentum optimizer (Polyak, 1964) was designed in order to 

accelerate learning. It accumulates an exponentially decaying moving average of past 

gradients and continues to move in their direction (Goodfellow et al., 2016). The 

momentum optimizer is defined by a momentum term, usually set as 0.9, that increases 

for dimensions whose gradients point in the same directions and reduces updates for 

dimensions whose gradients change directions. Consequently, this leads to situations 

of faster convergence and diminished oscillations (Ruder, 2016). The default value of 

momentum (0.9) was used in experiments for Faster R-CNN Inception v2 and SSD 

MobileNet v2 models.  

c) Learning Rate: The learning rate hyperparameter in CNN is one of the most 

important hyperparameters to set when training a CNN. It has a strong impact on both 

stability and efficiency of training times. If the learning rate is too large, the CNN training 

can become unstable and never converges, while if too small, training can take orders 
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of magnitude longer than needed and never progresses. The process of finding a good 

initial learning rate can be difficult. One of the approaches to find a feasible learning 

rate to the problem at hand is to train the model for a few epochs using different 

learning rates and to compare the learning curves. The ideal learning rate will learn 

quickly and converge to a good solution. The decrease in the learning rate can be 

applied using different strategies, such as: constant learning rate, cosine decay 

learning rate, exponential decay learning rate, or manual step learning rate. In the 

present experiments, the learning rate was set equal to 0.0001. 

d) Early stopping was adopted for retraining the models. CNN start overfitting when 

they iterate too many times over the same “small” set of training samples. Therefore, 

a straightforward solution to prevent this problem is to figure out the number of training 

steps a model needs. The number should be low enough to stop before the network 

starts overfitting, but still high enough for the network to learn all it can from this training 

set. 

4.2 PEDESTRIAN SEGMENTATION BASED ON PREDEFINED POSE FIELDS AND 

PROBABILISTIC RELAXATION. 

In the previous step, the detectors architectures output delimiter boxes, the class, 

and the confidence score for each detected pedestrian. The background of a detected 

pedestrian in the bounding box contains spurious information (e.g., other foreground 

objects, illumination changes, poles, the roof of the bus stop). The aim of this step is 

to separate the pedestrian figure from the background. This is performed in four stages: 

(i) Preliminary segmentation (superpixel); (ii) Second Level Segmentation by 

clustering; (iii) Foreground estimation and (iv) Refinement through relaxation. 

(i) Preliminary segmentation (superpixel): For segmenting the input image, 

Simple Linear Iterative Clustering (SLIC) approach proposed by Achanta et al. (2012) 

is used. SLIC is appealing as it has shown to outperform other state-of-the-art 

superpixel methods in simplicity, segmentation performance and it does not require 

much computational power (Achanta et al., 2012).  

Given the input image, the SLIC superpixels initiate with sampling the image into K 

regularly spaced cluster centers and move them to seed locations corresponding to 

the lowest gradient position. The size (S) of the initial clusters is found through the 

equation: 
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                                                                                                                    (4.1) 

where N is the number of all pixels in the image, and S is the regular grid interval 

between the superpixels. 

Another initial operation in the SLIC process is the combination of a CIELab color 

vector and an xy spatial coordinates vector to form the five-dimensional Labxy feature 

vector. The five-dimensional feature vectors are used to display the location of the pixel 

in 5-dimensional space and to compute the cost distance, which contains the color 

space ( ) and the physical space ( ). 

Equations (4.2) - (4.4) summarizes the SLIC algorithm. For each pixel i in the 

neighborhood of the centroid Cj, the spatial proximity distance ( ) in coordinates 

space is computed as: 

                                                                                  (4.2) 

and the color proximity distance ( ) in L*a*b color space is: 

                                                               (4.3) 

Then, the overall distance metric (D) is formulated as: 

                                                                                                   (4.4) 

here, m controls the compactness of a superpixel to keep a good balance between 

color similarity and spatial proximity. 

(ii) Second Level segmentation by clustering: The preliminary SLIC 

segmentation process produces small compact regions.  Some parts of adjacent 

regions may be misclassified as may belong to the same image object and therefore 

have a similar color. To refine misclassified adjacent regions and achieve a reasonable 

estimation of the image objects, adjacent similar superpixels were grouped to build up 

a new larger uniform region. 

Having obtained N superpixels, the neighboring relationship between the regions 

was stored in an adjacency matrix (A, NxN), with the following characteristics: it is a 

square binary matrix whose dimension is equal to the number of segments (N x N). 
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The neighborhood of two regions is represented by each cell, (1) if two regions are 

neighbors or (0) if not represents the neighborhood.  

Then a second matrix is constructed to describe the color affinity of two neighboring 

regions (a and b), by computing the mean RGB values ( ) of each segment, and the 

Euclidean Distance (ED) between the average values of the two neighboring regions 

(a and b) as: 

                                                                                (4.5) 

In the next step, the ED is truncated to the range between 0 - 255 and a color 

similarity (S) measure derived (equation 4.6), which is normalized to the range 0-1. 

                                                                                                 (4.6) 

Finally, clustering is performed in an iterative manner. At each iteration, the best 

fusion is evaluated according to the color compatibility of the two neighboring 

segments: 

                                                                                                (4.7) 

where,  is the minimum similarity defined by the user. Values between 0.85-9.95 are 

recommended. The process ends when there are no more possible fusions that satisfy 

the equation (4.7).  

(iii) Foreground estimation: The result of the segmentation by clustering is a set 

of regions of different colors, but it is still confusing to distinguish which regions belong 

to the foreground and background. The goal now is to classify the segments in to two 

classes (foreground and background), although there is no previous information about 

the color of the classes available. It must also be considered that the background is 

varied and may be composed of different surfaces. So, pedestrian models with fuzzy 

boundaries were used to estimate the probability of belonging of a segment to the 

pedestrian (foreground).  

To estimate the probability that a segment belongs to the pedestrian (foreground), 

the probability of a pixel belonging to the foreground was estimated from a series of 

available binary images. Several binary human silhouettes in different poses (Figures 

4.4a) were downloaded from https://publicdomainvectors.org/ for this purpose. Given 

the articulated nature of the human body, people can adopt a wide range of poses 
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(e.g.: walking, standing, sitting, lying, jumping, dancing, running, kneeling, squatting, 

or crouching) and can be captured in different viewpoints from single or multiple 

cameras. For the experiments, and to keep a reduced number of poses to speed up 

the process, five different poses: “walking1”; “stand side”; “front”; “walking2” and 

“sitting” were considered (Figure 4.4c). From the available set, 70 silhouettes for each 

class were selected. Figure 4.4b displays a small set of silhouettes used as samples 

of the class “walking”. The selected binary images were resized to 140x70 pixels and 

added to obtain a new image (as displayed in Figure 4.4c) that stores the frequency of 

the foreground in the image.  

FIGURE 4.4 - COMPOSITION OF POSE IMAGES WITH FUZZY BORDERS. (a) 
ORIGINAL IMAGE DOWNLOADED FROM PUBLICDOMAINVECTORS.ORG; (b) 
BINARY IMAGE OF SELECTED POSE; (c) FIVE EXAMPLES OF THE 
COMBINATION OF MULTIPLE BINARY IMAGES WITH DIFFERENT POSES: 
“SITTING”; “WALKING1”; “FRONT”; “STAND SIDE”; AND “WALKING2”. 

 
As a result, a fuzzy image aiming to map the density of active pixels is 

composed by adding various binary images. Then the derived image is normalized to 

the range 0-1. This process was repeated for five different possible poses described 

in Figure 4.4c. This field is the description of the probability of a pixel belonging to the 

foreground. In this thesis it will be referred as density field.

                                                                                         (4.8) 

The probability fields obtained applying Equation 4.8 allows computing the 

probability that a segment belongs to the foreground, under the hypothesis that if a 

segment belongs to the foreground, it will cover a region associated with higher density 

values. Thus, the segmented image is overlaid to the probability fields of each pose 

(Figure 4.4c) and a mean value (probability) is computed for each segment. Obviously, 
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the probability values depend on the size of the segments. It is expected that fine over-

segmentation produces small segments that would be better defined in terms of 

probability, but while misclassified segments would be more difficult to correct. The 

overlay produces different probability values, as a segment may overlay regions with 

low and high density. In order to identify the pose model that fits better the image, the 

mean probability of other segments is computed for each pose and the pose with a 

higher mean is selected. The selected pose is then used to classify the image and 

separate the foreground from the background. The segments are classified according 

to their mean. Thus, all segments with a probability below 0.5 are discarded and those 

with higher mean value are taken into account. As an initial situation, all segments with 

a mean value above 50% are considered to belong foreground, i.e., pedestrian. 

(iv) Refinement through relaxation: Since the fuzzy model does not cover all 

possible poses, in this step, the aim is to update probability values using the 

information contained in the neighboring segments. It was hypothesised that if a 

segment that should belong to the foreground has a “relative” low mean value (e.g., 

below 50%), and it is not classified as that, its mean can be corrected considering the 

mean values of the surrounding segments. So, if a segment has low value but is 

surrounded by high value segments, then its neighborhood would contribute to 

increasing its probability. On the contrary, if it is surrounded by lower values its mean 

will decrease. This is done by updating iteratively the probabilities according to the 

formula: 

                                         (4. 9) 

 

where: 

  stands for the mean probability of the ith-segment at iteration t; 

  is the compatibility in terms of color between segments i and j; 

   denotes the class (foreground or background); 

K is a binary value that is one when region j belongs to class cl; 

L is a normalizing factor to keep the probabilities in the range between 0 and 1. 

In the iterative process, the probability of each segment is updated considering the 

information provided by the neighbors. The process stops when the classification 

reaches a steady situation, i.e., when no segment is reclassified in a different class. 

Thus, the compatibility function, derived from the Euclidean distance, can vary 



58 
 

between 1 (compatible) and -1 (totally incompatible). The color compatibility (CC) 

between two segments is described based on the color similarity function (S) derived 

from equation (4.6).  

Initially, the similarity is set to range -1 and 1 and then, the sigmoid function is 

employed according to equation 4.11. A value of 10 iterations is used as it is getting 

the best results without giving away too much performance. 

The color similarity function (S) proposed in equation 4.6, is used to describe the 

color compatibility (CC) between two segments. First, the similarity is scaled to the 

range -1 and 1 and then the sigmoid function is applied using equation 4.10. The use 

of the constant c = 5 is necessary to adapt the sigmoid function to the range (-1,1). 

The use of the sigmoid function is recommended because it has a higher slope for 

values close to zero and lower variation in the extremes, which allows changing the 

classification of dubious situations, as shown in Figure 4.5. 

                                                                             (4.10) 

                                                                                          (4.11) 

FIGURE 4. 5 - SIGMOID FUNCTION ADAPTED TO THE RANGE BETWEEN -1AND 
1. 
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4.3 TRACKING WITH HISTOGRAM CORRESPONDENCE 

To associate a human detected in an image with one in the following image frame, 

the histograms of the regions of interest are compared. The hypothesis is that, if two 

regions contain the same pedestrian, even considering pose changes and some 

variations of the background, the histograms of the regions will be similar, as a 

considerable portion of the region is occupied by the pedestrian’s clothes. This 

hypothesis is valid when considering two consecutive frames but could fail when the 
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interval between the frames increases. Therefore, different intervals will be analyzed 

in the experiments. 

The differences between the image frames containing pedestrian in two images are 

highly dependent on the temporal difference between the two images. To follow a 

pedestrian in the series of images, one can compare each image with the following. 

However, it should be considered that the shorter the interval between images, the 

more calculations are needed to complete the task. At the same time, as the temporal 

difference between the images increases, the likelihood of finding the person in the 

following image may decrease as a function of pose and background variations as the 

person move through the scene. It should also be noted that a pedestrian can be 

covered by other objects such as poles and other people (occlusion), as well as leave 

the scene. For this reason, in this part of the research, series were compared with 

different intervals between images. 

The imaging sensor stores 30 images per second. Analyzing a 20-second series, 

for example, would imply processing 20*30=600 images. For this reason, to verify the 

possibility of reducing processing load, it was verified the possibility of using one image 

every five, ten, and twenty frames.  

4.3.1 Similarity  

Given an image containing N1 regions in a region of interest containing pedestrians, 

the aim is to verify the presence of the pedestrian in one of the regions of the next 

frame. For this purpose, the following notation will be considered: 

 ima_1: image in which the regions to be analyzed are located 

 reg_i: a region of interest (containing a pedestrian) in the ima_1. 

 ima_2: image in which the desire is to find the selected region in the ima_1. It 

can be the following image, or a later image, for example after 5,10, or 20 frames. 

 reg_j = a selected region in the ima_2. 

4.3.2 Geometric normalization 

There is no guarantee that the size of the regions containing the same pedestrian 

in the two images is equal. The factors that contribute to this difference are the 

detection process, which can generate different regions depending on the contrast and 

pose of the pedestrian. So, for comparison purposes, all images were transformed to 
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the same size: 120 rows per 90 columns. This transformation can introduce severe 

deformations into the images, depending on the pedestrian’s pose. Figure 4.6 shows 

two examples of the result of this geometric transformation. In the first case, Figures 

4.6a and 4.6b, the original image is relatively narrow, so the result introduces 

exaggeration in the horizontal direction. In the second case, as the person extended 

the legs while walking, the result is compression in the horizontal direction. 

FIGURE 4. 6 - EXAMPLES OF THE GEOMETRIC NORMALIZATION. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

  

4.3.3 Color reduction 

Each image contains three bands (RGB). The comparison of two regions of interest 

implies the analysis of the three bands. Here, the images were transformed to 

grayscale to simplify the process. So, the mean intensity of each pixel was computed 

according to Equation 4.12. 

                                            I = 1/3 (R + G + B)                          (4.12) 

4.3.4 Comparison 

The region comparison was performed based on the similarity between the 

histograms of the two regions. Three options were considered and compared to 

measure the similarity between regions: the Euclidean distance, the distance 

measured by Dynamic Time Warping, and the correlation between image histograms. 

The histogram of an image is the function that represents the frequency of each 

digital value in the image. As the images are stored using eight bits, the histogram 

ranges between [0,255]. 

Besides, the position of each region of interest is also stored and used in the 

comparison step. A general comparison would compare a given region to all the 
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available regions in the next frame. Nevertheless, not all positions are possible, as the 

position of the pedestrian in the next frame is relatively close to the one in the first 

image when the interval is small. Therefore, the analysis was performed considering 

all possible combinations and considering only the regions within a pre-defined radius 

around the original position of the region of interest. 

4.3.5 Euclidean Distance 

After segmentation and feature extraction, we get a set of feature blobs in the image 

frame, and then establish the correspondence matching between the target feature. 

The matching is performed through a Euclidean-distance-based nearest neighbour 

approach defined as: 

                                                                             (4.13) 

where (Ai), (Bj) stands respectively, for a set of features in the consecutive image 

frames, and X is a vector of features. 

The matching is valid if the distance between the two objects is lower than a distance 

threshold. Otherwise, he will be treated as an untraced pedestrian and removed from 

the model. The Euclidean distance between two histograms is computed according to 

Equation 4.14. 

                                       (4.14) 

where H stands for the histogram and i for the digital value. 

4.3.6 Dynamic Time Warping 

The region correspondence was also evaluated based on a Dynamic Time Warping 

(DTW). DTW is useful to compare time series and can be applied to compare two 

histograms. DTW was first introduced by Vintsyuk (1968) in the field of speech 

recognition to match words at different speaking rates. Since then, it was widely applied 

in different fields such as handwriting recognition (Rath and Manmatha, 2003), 

matching series of medical images (Felipe et al, 2005), gesture recognition (Alon et al., 

2009). 
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The original DTW algorithm was defined to match temporal distortions between two 

signals, finding a warping path between two time series: an input signal A = (a1, a2, …, 

an) and a certain sequence B = (b1, b2, …, bn) (as illustrated in Figure 4.7). In the 

present application, the time series A and B are image histograms, where each aj and 

bi are the frequency of the digital values in regions i and j. To align these two 

sequences, a Mm×n matrix is designed, where position (i, j) of the matrix contains the 

alignment cost between ai and bj. Then, an adjustment route C= (c1, c2, …, ck) is 

defined as a set of contiguous matrix elements, defining a mapping between A and B. 

The adjustment route is subjected to the following restrictions: (i) it is bounded between 

c (1,1) and c (n, m); (ii) no sequence of the route is to be skipped, and (ii) the sequence 

should not be reversed. 

FIGURE 4. 7 - COMPARISON OF THE ED AND DTW DISTANCE MEASURES. (a) 
THE ED MEASURE COMPARES THE SAMPLES AT THE SAME TIME INSTANTS, 

WHEREAS (b) THE DTW MEASURE COMPARES SAMPLES WITH SIMILAR 
SHAPES TO MINIMIZE THE DISTANCE. 

 
SOURCE: Retrieved from http://upload.wikimedia.org/wikipedia/commons/6/69/Euclidean 

vs DTW.jpg. 

The best route (among several possible adjustment routes) is the one that minimizes 

the deformation cost, defined as: 

                                                                               (4.15) 

where: Ct is the t-th element of the adjustment route, L is the number of elements of 

the adjustment route. L is used to compensate for the fact that warping paths may have 

different lengths. The smaller the DTW dissimilarity between two sequences, the 

similar are the two compared sequences. 

The cumulative cost at a certain position  is found as the composition of the 

distance  between the feature vectors of the sequences ai and bj with the 
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minimum of the cumulative cost of the adjacent elements of the cost matrix up to that 

point as: 

                                                               (4.16) 

In our implementation, the matching is valid if the distance between the two objects 

is lower than a distance threshold. Otherwise, will be treated as an untraced pedestrian 

and removed from the model. 

4.3.7 Correlation 

The third similarity measure is based on the correlation of the histograms. As both 

histograms share the same size, the variation of the relative frequencies of the digital 

values can be compared through the correlation coefficient. 

Figure 4.8 displays the comparison of one region (a) with two candidate regions of 

the next frame (b and c). The first candidate (b) is the right solution and the other (c) 

would be the wrong choice. Figures 4.8d and 4.8e display the plot of the histogram 

pairs (a vs b) in Figure 4.8d and (a vs c) in Figure 4.8e.   

FIGURE 4. 8 - COMPARISON OF HISTOGRAMS. 

(a)             (b)                     (c) 

    (d)    (e) 
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Although Figures 4.8a and 4.8b are very similar, their histograms are not identical 

and there are large variations in the frequency of digital values in Figure 4.8d. This is 

expected due to differences in lighting, contrast, and brightness, as well as variations 

in the frame, pedestrian pose, and background. Even with these variations, there is a 

correlation between histograms, with a correlation coefficient value of 0.77. 

Considering the second pair, a comparison of histograms of Figures 4.8a and 4.8c, 

it is noted that there are large differences, which are reflected in Figure 4.8e. In this 

case, the variation of the values in image 4.8c is much higher than that of image 4.6a. 

The correlation coefficient, in this case, is 0.35. 

To accept only cases of high correlation, only matches with a correlation coefficient 

greater than 0.8 were accepted as true. 

4.4 EVALUATION OF DETECTION AND TRACKING 
 

Three types of performance metrics were used in our procedure: metrics based on 

detection, on segmentation, and based on tracking. 

 Detector metrics 

To check how anchor regions overlapped with ground truth bounding boxes it is 

used the intersection of the union (IoU) method. The IoU is the ratio of the overlapped 

area between the ground truth and predicted area to the total area, or area of union, 

as shown in Figure 4.9. A threshold is set for a region containing an object as a person 

or as background. The detection d is considered as true positive whenever its IoU with 

the closest ground truth g is greater than 0.5 (Ren et al., 2015). 

                                                              (4.17) 

 
FIGURE 4. 9 - THE IoU CONCEPT. 
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To measure in the detector if the pedestrian is present and where he is located 

within the image, we report the recall (r), precision (p), and F1-score (F) metrics (Goutte 

and Gaussier, 2005) computed as: 

                                                                                                               (4.18) 

                                                                                                               (4.19) 

and 

                                                                                                 (4.20) 

where:  

TP is true positive, number of detections with IoU>0.5; 

FN is false negative, number of detections with IoU <= 0.5 or detected more than once, 

and FP is false positive, number of objects not detected, or detected with an IoU <= 

0.5.  

 

 Segmentation metrics 

 
Once the pedestrian was segmented, we evaluated the results by comparing pixel-

by-pixel two binary images: the automatically segmented and the ground truth. To 

evaluate performance, the number of True Positives (TP), False Positives (FP), False 

Negatives (FN), Correct Classified (CC) pixels, and the total number of pixels labelled 

as pedestrians (TT = CC+FP) are counted, and then the following metrics are derived 

(McKeown et al., 1999): 

                                                                            (4.21) 

                                                          (4.22) 

These two quality parameters describe two types of error in the results, omission, 

and commission errors, but are relatively simple. Therefore, the detection success was 

also measured using recall, precision, and the intersection over union (IoU) (Minaee et 

al., 2020). 
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                                                                                                    (4.23) 

                                                                                                    (4.24) 

and 

                                                                                    (4.25) 

where Branching Factor (BF) is the measure of the ratio of incorrectly labeled 

pedestrian pixels. Miss Factor (Mf): it computes the rate of missed pedestrian pixels. 

The recall is a kind of user’s accuracy, while precision describes the rate of correct 

pixels within the set of pixels labelled as a pedestrian. The IoU combines aspects of 

both measures to summarize algorithm performance. 

 Tracker metrics 

The performance of the identification of the right pair in a second image was 

measured by counting the number of correct pairs in comparison to the possible 

matches. Three cases may occur in this search:  

1. TP: the j-region in the second image contains the pedestrian of the i-region of 

the first image (true positive). 

2. FP: the j-region in the second image contains a different pedestrian than the i-

region of the first image (false positive).  

3. FN: the i-region of the first image is not detected in the second image, although 

it exists (False negative).  

The result of the matching process was compared to a reference result, obtained by 

visual inspection of the images. This allowed computing metrics to describe the quality. 

For example, the quality of the result can be evaluated by counting the number of 

regions correctly identified (True Positive).   

The performance is reported by accuracy, precision, mean average precision 

(mAP), F1-score, and recall. The recall (r), precision (p), and F1-score metrics are 

computed respectively according to equations 4.18-4.20. The accuracy can be 

expressed mathematically as: 
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                                                                                       (4.26)    

The mean average precision metric is calculated as the mean of average precision 

of the object class. 

A comparative study was performed using a series of 10 images, considering the 

use of background suppression and the three similarity measurements. The metrics 

were computed for each pair of images and also for all the comparisons. This allowed, 

first, to state when the algorithms failed, identifying the pairs with low performance, and 

also compare the global accuracy of each experiment, according to Equation 4.27. 

  

                                                                                          (4.27)
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5 EXPERIMENTS AND RESULTS 

5.1 PEDESTRIAN DETECTION 

There are three main work steps in this thesis, where in first Faster R-CNN and SSD 

topologies are implemented to train a pedestrian detector. The second step of 

methodology comprises a segmentation process for automatic feature extraction. 

Finally, tracking is performed using the correspondence method.  

In the first step, Faster R-CNN and SSD models are trained to detect pedestrians in 

the image frames. A self-collected dataset was used for retraining the detectors, having 

700 different images containing multiple pedestrians. The data is collected from 

different urban scenes recorded in the city of Curitiba, Brazil. Transfer learning 

technique with the pre-trained models provided on TensorFlow model zoo was 

leveraged to generate the results. In the experiments, the training steps was set to 

4000. The training was stopped manually if the loss level did not change in the 

subsequent 10 epochs (Yao et al., 2007).   

Figure 5.1 shows the evolution of precision in relation to the training steps. What 

emerges is that precision increase with the increase of correct rate of identification and 

the training steps. After a certain number of training steps, the precision does not 

increase significantly. That is when the precisions models reach a plateau value. 

Precision plateaus after 500, and 1000 training steps for SSD and Faster R-CNN 

models respectively.  It is interesting to note that the SSD reaches the plateau earlier 

than Faster R-CNN. This means that, compared to the competing model, the SSD 

needs less processing time. This was also noted by Xu (2017).  

FIGURE 5.1- PERFORMANCE EVALUATION OF THE MODELS. 

The performance of the detectors models that are directly learned from sample data 

is listed in Table 5.1. The precision, F1-score, and recall were measured. Upon 
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evaluating the detectors, it can be seen that the SSD Mobilentev2 detector is 

outperformed by a considerable margin (see Table 5.1) by Faster R-CNN Inceptionv2.  

 TABLE 5.1- PERFORMANCE OF FINE-TUNED OBJECT DETECTION MODELS. 

 Precision Recall F1-score 

Faster R-CNN Inceptionv2 0.962 0.912 0.927 

SSD Mobilentev2 0.891 0.891 0.816 

The precision-recall curve is shown in Figure 5.2. The Faster R-CNN model shows 

a higher precision over the entire recall range, which is also indicated by comparing 

the average precision values of 0.962 (red) and 0.891 (blue).  

FIGURE 5.2- THE INTERPOLATED PRECISION-RECALL. 

 

Figures 5.3 and 5.4 depict results from testing the detectors on different scenarios 

from RGB imagery acquired using mobile cameras. The detectors output delimiter 

boxes for each detected pedestrian (green bounding box in the sample frames), 

additionally the class label (person) and the confidence score (which is almost 80% in 

most of the cases). The tested models were able to accurately detect and classify a 

pedestrian in the image, in some cases, even if the contours of the pedestrian were 

obscured by other objects, for example, poles, trees, and the roof of the bus stop. 

The images in Figure 5.3 represent some of the scenarios with the variation of 

pedestrian’s scales in the scene from test sample data. The columns on the left are 

the result from Faster-RCNN detector and the right from the SSD. Some of the worst 

results produced by the models are presented in Figure 5.3. In the first example, the 

pedestrians in the centre of the images are partially occluded (row 1), and part of 

pedestrian body is missing at the borders of the image (row 3). These were not counted 

as pedestrians. Apart from such difficulties, in general what can be seen from the 

results is that the SSD approach fails when the pedestrians appear on different scales.  
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FIGURE 5.3 - DETECTORS OUTPUT ON DIFFERENT TEST IMAGE FRAMES. 

 
(a) Faster R-CNN                                 (b) SSD 

Figure 5.4 demonstrates the robustness of the detectors even when pedestrians are 

partly occluded or stand too close to others. Some of the cases are pedestrians 

standing at the bus stop, or under trees. Others are standing in front of a similarly 

coloured background. The background where the pedestrians move varies from dark 

to light. In this case, it is difficult to detect all pedestrians present in the image, even by 

humans. Yet, the detectors were able to classify and detect pedestrians even if they 

were not fully shown in the image scene. For example, at the bottom and middle-left 

of the images (row 3), and in the lower-right corner of the images (row 2), only partial 

contours of the pedestrian were shown. Nevertheless, the detectors were able to 

accurately detect and classify almost all pedestrians present in the scene as a “person” 

class. In the scenes of Figure 5.4, the two detectors perform similarly in terms of 

performance, however, Faster R-CNN detects with relatively high confidence.   
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FIGURE 5.4 - DETECTORS OUTPUT ON DIFFERENT TEST IMAGE FRAMES. 

                                     (a) Faster R-CNN                 (b) SSD 
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The experimental results illustrate that although acceptable performance detection 

is achieved, some failure cases persist in both fine-tuned models (Figure 5.3 and 5.4). 

The ability of the fine-tuned models for object detection can be improved in several 

ways. For example, one can increase the training dataset, or improve the architecture 

model to enhance the performance and generalization ability of the model (Zhai et al., 

2020). 

Indeed, it is evident that the Fast R-CNN detects pedestrians with more accuracy, 

clearly with a greater processing time than the SSD. This is because Faster R-CNN 

comprises two sequential stages, the first one to propose regions, followed by the 

second one that classifies the proposed regions. The other reason is the huge 

difference in the number of parameters. For example, the fully connected layers on 

Faster R-CNN are 15 times bigger than the whole SSD network. As a direct 

consequence, the SSD has a lower processing time, which is a useful advantage when 

designing applications in embedded systems, mainly because the model handles 

object detection as a regression problem.  

 The importance of data set pre-processing, the computational costs, will have, 

together with the choice of hyperparameters, a major impact on how well the fine-

turning will work. Although some parameters are used in both models, each has its 

specific ones, too. In both models, the following hyperparameters were found to be 

optimal in fine-tuning: Learning Rate (LR) equal to 0.0001, a Momentum (M) equal to 

0.9, and a Batch Size (BS) of 1. LR influences the training time and precision. If one 

specifies a small learning rate, like for example 0.0001, the training will be longer but 

it could increase the overall precision. If a high value is chosen, like for example 0.95, 

then the training will be faster at the cost of a reduction in precision and increase of 

instability. The batch size value was defined as part of a strategy to adapt to the 

limitation of used graphic card memory. Additionally, to decrease the computational 

costs and reduce overfitting, an early stopping criterion (Yao et al., 2007), was 

implemented. By this criterion the training process is interrupted when validation 

accuracy does not improve for 10 subsequent epochs.   

The purpose of the research in this phase was to study the applicability of deep-

learning-based models for the detection of pedestrians in an outdoor environment to 

find the optimal model for applications in the next phase, which is tracking. So, it was 

found (in the present application) that Faster R-CNN was the best performing model, 
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thus, its output was used as input for feature extraction for the pedestrian tracking 

phase. 

5.2 PEDESTRIAN SEGMENTATION 

In the following phase, the aim was to separate pedestrian figure from the 

background to extract features for tracking purposes.  Recall that in the detection 

phase, the regions of interest on an image that contain a pedestrian were extracted. 

Having the region of interest, the pixel values describing the pedestrian body are 

separated from overall pixels. An example of this process is displayed in Figure 5.5. 

FIGURE 5.5 - EXAMPLE OF A NATURAL IMAGE USED IN THE EXPERIMENTS. 

In Figure 5.6, the different steps of the isolated pedestrian from Figure 5.5c are 

shown. The first image is the original RGB input image. Note that the person seems to 

hold a white object, but it can be also understood as part of the background. In the 

second image, the result of the initial segmentation and clustering is displayed. The 

image has a small number of segments and one can note that the borders of the person 

are relatively "well" delineated in the segmentation. The third image (Figure 5.6c) is 

the result of the initial classification. It is noticeable that the classification based on the 

density fields is good, but some mistakes are visible, like the inclusion of two segments 

that are part of the background (street) in the upper right corner. The result also 

includes the object that the man holds in his right hand. This can be an error but also 

correct, depending on the manual reference segmentation. Figure 5.6d displays the 

result after improvements obtained in the relaxation step. Comparing Figure 5.6c and 
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5.6d it is visible that errors like the light segments on the upper right corner and, a part 

of the foot of the pedestrian were removed. The white object the man carries is also 

removed. This can be attributed to the fact that the white object is more like the ground 

than to the person. 

FIGURE 5.6 - EXAMPLE OF DIFFERENT STEPS: a) ORIGINAL (171X91) RGB 
IMAGE; b) SEGMENTED IMAGE; c) CLASSIFIED IMAGE; d) RESULT IMPROVED 

BY RELAXATION. 

            a           b        c                 d

The Results can be compared to a manually obtained reference, as illustrated in 

Figure 5.7, where the reference image is displayed as a binary image. The commission 

errors are displayed in yellow and the omission errors in red. Figure 5.7b displays the 

comparison of the result of the first segmentation and the clustering. For the 

computation of the quality parameters, the total pixels omission (red) and commission 

(yellow) were counted. The black area displays the pixels that were correctly classified 

(agreement). 

FIGURE 5.7- EXAMPLE OF COMPARISON OF THE RESULTS. 

                     a      b                   c 
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The second example is displayed in Figure 5.8. The woman in the Figure 5.8 also 

holds an object, an orange bag. It can be noted that the classification (based on the 

model of a side view of a person) did not perform well. Parts of the pedestrian as her 

head were lost. In the right portion of the segmented image, the ground is also 

included. After the reclassification based on relaxation, the result is partially improved 

due to the removal of the ground, nevertheless, other parts of the pedestrian like the 

feet are lost.  

FIGURE 5.8 - EXAMPLE OF A WALKING WOMAN. 

The third example is how relaxation can improve the classification. Figure 5.9 

(column 3) displays the initial classification, which is not bad, but there are remaining 

some segments of the background. This happens because they are in the center of 

the image, where the density fields are high and consequently the mean value of the 

segments is also high. The relaxation step can remove such segments, as their 

compatibility with other background regions is higher than with the foreground regions.  

A common fact seen here and in other images is that the arms or feet are not 

included. This is because the density fields cannot model the position of the arms and 

feet. The probability fields (Figure 4.2) do not include a good description of the arms 

due to their variable position. In the examples, it is noticed a tendency to confuse skin 

with the background. This happens due to the lack of saturation of the skin color. As 

the saturation is low, it is easily confused with gray tones, that are frequent in the 

background. 
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FIGURE 5.9 - EXAMPLE OF A WALKING MAN. 

To evaluate the result with a reasonable set of images, five series of images were 

used. From each series, ten samples were collected so that fifty images were analyzed. 

For each image, the Branch Factor, Miss Factor, Recall, Precision, and IoU were 

computed. First, are presented results without the relaxation step. Table 5.2 

summarizes the results of the success of the classification method considering the 

quality parameters of Branch factor, Miss factor, Recall, Precision, and IoU.  

TABLE 5.2 - PERFORMANCE OF THE CLASSIFICATION MEASURED BY FIVE 
QUALITY PARAMETERS (%): BRANCH FACTOR (BF), MISS FACTOR (MF), 

RECALL, PRECISION AND IoU. 

 Branch factor Miss factor Recall Precision IoU 

Mean 28.91 36.80 82.04 79.90 67.48 

Minimum 2.33 1.31 19.14 47.23 17.87 

Maximum 111.73 >100 98.71 97.73 93.88 

Table 5.3 displays the same statistics computed for the final image, after the 

probabilistic relaxation step. A comparison of these tables reveals that the results can 

be improved by the relaxation step. The mean values of the Miss and Branch factors 

are lower after the relaxation step. This indicates that errors are removed. The Branch 

factor without relaxation ranges from 29 to 111%, and between 15 and 59% after the 

relaxation, for example.  

The same improvement is visible when comparing values of precision, recall, and 

IoU. The statistics after relaxation have smaller ranges and the mean values are 

higher. It is interesting to analyze the range of these parameters because it indicates 
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that extreme low values are corrected. Based on the comparison made, it can be stated 

that relaxation introduces improvements in the results. 

TABLE 5.3 - PERFORMANCE AFTER THE IMPROVEMENT BY RELAXATION, 
MEASURED BY FIVE QUALITY PARAMETERS (%): BRANCH FACTOR, MISS 

FACTOR, PRECISION, RECALL AND IoU. 

 Branch factor Miss factor Recall Precision IoU 

Mean 15.12 31.97 79.72 87.86 71.64 

Minimum 0.00 2.09 23.50 62.57 23.22 

Maximum 59.81 >100 97.95 100.00 87.36 

It is also important to analyze the statistics displayed in table 5.3 with the support of 

the histograms of the quality parameters displayed in Figures 5.10 and 5.11.  

FIGURE 5.10 - HISTOGRAMS OF THE BRANCH AND MISS FACTORS OF 50 
SAMPLES. 

The histograms of the Branch and Miss factors prove that the values concentrate 

on low values, although some high values are still present. The proposed method has 

limitations in solving all cases and, therefore, the errors are reflected as high values. 

Analyzing the histograms displayed in Figure 5.10, it is noticeable that the Miss factor 

is higher than the Branch factor, which reveals a tendency to miss segments in the 

result. In some cases, the Branch factor is almost zero, showing that the result is fully 

compatible with the reference image. Nevertheless, some bad results are also 

obtained, as it is indicated by the maximum Branch factor of 60%.   

The statistics of recall and precision can also be analyzed with the support of the 

Histograms displayed in Figure 5.11. The recall describes the rate of correct pixels 

within the total set of labelled pixels. The computed values concentrate around 80% 

and can be considered high. There is a pair of bad results that caused the mean to be 
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lower, showing that the method is not able to solve all the problems. It is worth to quote 

here that the density fields used are not able to model all possible poses and therefore 

not all the images can be correctly classified.  The mean rate of correct pixels within 

the set of labelled pixels (Correctness), like the producer’s accuracy concept is 82%, 

and some results have achieved values closer to 100%.  

FIGURE 5.11 - HISTOGRAMS OF THE RECALL AND PRECISION INDEXES OF 

THE 50 SAMPLES. 

 

Figure 5.12 displays the variation of the IoU index. It is visible that the values are 

concentrated and close to 100, indicating good quality. The mean value is 71%, as 

some parts of the human figure are lost. Nevertheless, the quality is good and proves 

that the method can be used to separate pedestrians from the background even when 

the background changes from image to image. 

FIGURE 5.12 - HISTOGRAMS OF THE IoU INDEX COMPUTED FROM 50 
SAMPLES. 

Apart from the experiments on high-resolution RGB images acquired through mobile 

cameras, we also tested the proposed method on two different datasets and made a 

comparison with some of the state-of-the-art methods. Cityscape dataset (Cordts et 

al., 2015), and Penn-Fudan dataset (Wang et al., 2007) are some acceptable 
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benchmarks for human segmentation. Cityscapes is comprised of a large dataset of 

real images, containing high-quality pixel-level annotations for 5000 images collected 

in street scenes from 50 different cities. Penn-Fudan benchmark contains 170 color 

images with 345 boxes/shape-labelled pedestrians. We compare the proposed method 

against three deep learning-based segmentation models: Mask R-CNN (He et al., 

2017), Yolact++ (Bolya et al., 2019), and DeepLabv3 (Chen et al., 2017). The results 

are obtained via finetuning their publicly available codes. 

FIGURE 5.13 - COMPARISON OF SEGMENTATION RESULTS BETWEEN THE 
PROPOSED METHOD AND OTHER METHODS ON (a) CITYSCAPE AND (b) 

PENN-FUNDAN DATASETS. THE RED PIXELS/REGIONS IN MASK R-CNN AND 
YOLACT++ BELONG TO PEDESTRIANS. 

 
(a)                                     (b) 

Mask R-CNN, Yolact++, and DeepLabv3 models are fully trainable end to end. For 

comparison purposes, the models were fine-tuned under the same experimental 

Orig. Image Mask R-CNN DeepLabv3Yolact++ Our Mask R-CNN DeepLabv3Yolact++ OurOrig. Image
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environments on Cityscapes and Penn-Fudan datasets using pre-trained weights 

learnt on the COCO dataset. Mask R-CNN and DeepLav3 fine-tuned models uses 

resnet 101 as backbone while Yolact++ uses resnet 50 as a backbone. 

Figure 5.13 displays the segmentation results on the two benchmarks. Figure 5.13a 

contains six images from the Cityscapes dataset while Figure 5.13b from the Penn-

Fudan dataset. The first columns in each subfigure show the input data, and the 

following columns display respectively the results of segmentation performed with the 

Mask R-CNN, Yolact++, DeepLabv3, and the proposed method. The first four rows 

contain single human images, while the two last rows contain more than one or 

occluded human figures. 

The results of segmentation on both benchmarks present the same characteristics: 

when a single human image is presented to the models, the human instance is 

segmented nearly perfect. In some cases, when two or than one human is present, or 

occluded the models do not segment properly all of them. In these examples, it could 

be caused due to the low exposure of the images and the mix between dark clothing 

and the environment. Additionally, the models sometimes fail to segment certain body 

parts (see the last two rows of Figure 5.13). This is a classical challenge in many 

segmentation algorithms including the proposed one. Overall, from the experimental 

results shown in Figure 5.13, we can see that our method performs comparatively well 

in a challenging background. 

Table 5.4 shows the performance indexes of the proposed method and the standard 

deep learning algorithm on Cityscapes and Penn-Fudan datasets. Looking at the 

numbers in Table 5.4, one can see that DeepLabv3 has comparatively low metric 

values in both evaluated benchmarks, the lowest values of precision, recall, and IoU 

being respectively 79.4%, 70.8%, and 72.9% (on Penn-Fudan dataset). The proposed 

method achieved metric values that are close to those obtained with Yolact++. By 

analyzing IoU values, the proposed method far outperforms the Yolact++ (by 1.3% and 

0.9%) in evaluated benchmarks. The same difference and ranking are verified when 

comparing the precision and recall indexes. These two methods can be considered 

equivalent.  
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TABLE 5.4 - PERFORMANCE COMPARISON OF THE PROPOSED METHOD 
AND OTHERS ON CITYSCAPES AND PENN-FUDAN DATASETS. 

Dataset Method Precision Recall IoU 

 Mask R-CNN 85.70 86.50  86.01 

Cityscapes Yolact++ 89.69 89.15      90.30 

 DeepLabv3 84.50  82.20  79.10  

 Proposed method 91.60 90.30  91.60 

 

Penn-Fudan 

Mask R-CNN 81.60  82.80 78.70 

Yolact++ 88.40 87.60 87.20 

DeepLabv3 79.40 70.80 72.90 

Proposed method 88.60  89.58 88.10 

Overall, the results show that, without the need for the fine-tuning process, our 

approach achieves a similar performance or outperforms the one that requires 

finetuning. One reason is that when the evaluation scenarios are very different from 

the training data, fine-tuning based methods may suffer from confusion between 

instances and their performance may degrade substantially. Recall that fine-tuning is 

expensive as it requires a large amount of well-annotated data for training the model, 

which is potentially not practical in real-world applications. In contrast, the proposed 

method employs a pre-defined pose without any further fine-tuning. Despite that, it 

produces promising segmentation results on two benchmark datasets (see Table 5.4 

and Figure 5.13). This demonstrates the potential of the proposed method since it is 

very different from some existing methods (such as Mask R-CNN, Yolact++, and 

DeepLabv3) which require careful fine-tuning of the pre-trained model for better 

results. 

5.3 PEDESTRIAN TRACKING 

The tracking algorithms were evaluated under two conditions, with and without 

background suppression, and considering different frame intervals. So, the results are 

organized as follows: First, the frames were grabbed at different intervals. Every five, 

ten, and twenty frames, to evaluate the possibility of reducing the processing effort 

needed to track a pedestrian. Then, the series tracking methods were applied using 

regions of interest with and without the background suppression. 
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5.3.1 Varying interval 

In this experiment, frames were grabbed every 5, 10, and 20 frames, which 

corresponds to intervals of 0.167, 0.333, and 0.667 seconds. Although such intervals 

seem to be small, the pose and position differences can be significant. 

Figure 5.14 displays the first image of this series and an example of a region of 

interest. 

FIGURE 5.14 - FIRST FRAME AND AN EXAMPLE OF A REGION OF INTEREST 

5.3.2 Five frames without spatial constraint 

For the first experiment, one image was extracted every five frames of the video. 

For the estimation of quality, the first 9 pairs are analyzed. The number of regions per 

image varies, depending on the entry and exit of pedestrians in the scene, nor as to 

their occlusion, as shown in Table 5.5. 

 TABLE 5.5 - EXAMPLE OF NUMBER OF REGIONS PER IMAGE. 

image 1 2 3 4 5 6 7 8 9 10 

regions 10 10 9 10 10 10 10 10 8 11 

The complete set of regions of interest is displayed in Figure 5.15.  
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FIGURE 5.15 - SET OF REGIONS OF INTEREST OF EACH IMAGE. 
ROW=FRAME, COLUMN=REGION. 

 
The reference matches obtained by visual analysis of each pair of consecutive 

images are shown in Table 5.6. In this table, each row displays the pair of images and 

the column the number of the region. As the number of regions varies, some cells 

contain a null value. Each element of the table shows the correct pair in the following 

image (search). For example, when comparing the second and third images, it is noted 

that the first region in the second image corresponds to the first region of the second. 

The zero in the third column denotes that the second region of the second image does 

not exist in the third image.  
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TABLE 5.6 - GROUND TRUTH OF EXPERIMENT 1. 

Region 1 2 3 4 5 6 7 8 9 10 
Image pairs           

1-2 1 2 3 4 5 6 7 8 9 10 

2-3 1 0 2 3 4 5 6 7 8 9 

3-4 1 2 3 4 5 6 7 8 9 0 

4-5 1 2 3 4 5 6 7 8 9 10 

5-6 1 2 3 4 0 6 8 7 9 10 

6-7 1 2 3 4 5 6 7 8 9 10 

7-8 1 0 3 6 5 0 8 7 9 10 

8-9 1 2 0 0 5 4 6 0 7 8 

9-10 1 2 3 4 0 7 10 9 0 0 

In the first experiment, all possible matches were considered, without taking into 

account the spatial distance between the regions of interest. 

(i) Euclidean Distance (ED) 

Table 5.7 shows the result of the analysis of correspondence between regions of 

consecutive images based on the ED. 

TABLE 5.7- MATCHES WITH THE ED. 

Region 1 2 3 4 5 6 7 8 9 10 

Image pair           

1-2 1 2 3 4 5 6 7 8 9 10 

2-3 1 0 2 3 4 5 6 7 8 9 

3-4 1 2 3 4 5 6 7 8 10 0 

4-5 1 2 3 4 5 6 7 8 9 10 

5-6 1 2 0 4 6 8 8 7 8 10 

6-7 1 2 3 4 5 9 7 8 8 10 

7-8 1 4 1 6 5 10 8 10 9 10 

8-9 1 2 1 3 1 4 8 1 7 8 

9-10 1 2 3 4 1 7 10 9 0 0 
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 The obtained matches were compared to the expected ones, which enabled 

computing the number of false positive, false negative, and true positive cases, as 

displayed in Table 5.8. Here, 1 stands for true positive, 2 for false positive, and 3 for 

false negative. 

TABLE 5.8 - COMPARISON OF THE OBTAINED RESULTS WITH THE ED. TRUE 
POSITIVE (TP)=1; FALSE POSITIVE (FP)=2; FALSE NEGATIVE (FN)=3. 

Region 1 2 3 4 5 6 7 8 9 10      

Image pair           Tot TP FP FN Acc. 

1-2 1 1 1 1 1 1 1 1 1 1 10 10 0 0 1.00 

2-3 1 0 1 1 1 1 1 1 1 1 9 9 0 0 1.00 

3-4 1 1 1 1 1 1 1 1 1 0 9 9 0 0 1.00 

4-5 1 1 1 1 1 1 1 1 1 1 10 10 0 0 1.00 

5-6 1 1 3 1 0 2 1 1 2 1 9 6 2 1 0.67 

6-7 1 1 1 1 1 2 1 1 2 1 10 8 2 0 0.80 

7-8 1 0 2 1 1 0 1 2 1 1 8 6 2 0 0.75 

8-9 1 1 0 0 2 1 2 0 1 1 7 5 2 0 0.71 

9-10 1 1 1 1 0 1 1 1 0 0 7 7 0 0 1.00 

Sum           79 70 8 1  

The performance statistics are all high. The accuracy and precision are equal to 

0.886 and 0.897, while the recall and F1-Score metrics reach respectively 0.986 and 

0.939.  

Although the number of regions varies in each image, it is noted that the use of the 

ED allows identifying correct pairs of regions. A maximum of two errors was counted, 

for example when comparing images 7 and 8, of a total of 79 regions, 70 were correctly 

identified, something around 89%.  

One factor that often causes errors is occlusion. This can be illustrated in the 

comparison between images 5 and 6. As shown in Figure 5.16, the detected person is 

partially hidden by a second person in front of them. As two pedestrians cross, one of 

them is occluded and the regions become more different. In Figure 5.16d, the image 

has many more white areas than the image of Figure 5.16b. This was an expected 

problem and greatly affects the ED. This situation caused the algorithm not to detect 

the region, producing a zero value in the fourth column (region 3 of pair 5-6).  
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FIGURE 5.16 - EXAMPLE OF THE EFFECT OF OCCLUSION. 

     (a) (b)  (c) (d) 

Other errors stem from color loss. For example, in the same pair, region 6 of image 

5 was identified as region 8 of the sixth image. Figure 5.17 shows these clippings.  

Note that the correct pair is the sixth region of image 6. However, this similarity is 

strongly supported by the similarity of the hue of the pixels, especially the pants. When 

comparing the gray level images, the situation changes because the person's body is 

composed of white pixels and dark gray areas. Such gray levels also occur in the gray-

level image in the eighth region. Comparing the correct pair of regions (a and b), it is 

noted that they have some significant differences, mainly due to the background and 

shadows. 

FIGURE 5.17 - EXAMPLE OF THE ERRORS DERIVED FROM COLOR 
SIMPLIFICATION. 

(a) image 5, region 6 (b) image 6, region 6 (c) image 6, region 8 

As the comparison is performed based on the histograms it is worth looking at them.  
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FIGURE 5.18 - HISTOGRAMS OF THREE REGIONS. 

Figure 5.18 displays the histograms of the three regions displayed in the previous 

figure. When analyzing the region around the gray value 120, it is visible that the 

histogram of the ideal match (red) presents a high peak, causing larger distances, while 

the histogram of the eighth region is closer to the original histogram. The Euclidean 

distance between the correct match is: Euclidean Distance (5-6, 6-6) = 7.54, but the 

shortest distance is associated with the eighth region Euclidean Distance (5-6, 6-8) = 

5.77. 

(ii) Dynamic Time Warping (DTW) 

Table 5.9 displays the results obtained using the dynamic time warping approach.   

TABLE 5. 9 - MATCHES COMPUTED WITH THE DTW APPROACH. 

Region 1 2 3 4 5 6 7 8 9 10 

Image pair           

1-2 1 4 3 4 5 6 7 8 9 10 

2-3 1 5 2 3 4 5 6 7 8 9 

3-4 1 2 3 4 5 6 7 8 10 0 

4-5 1 2 3 4 5 6 7 8 9 10 

5-6 10 2 0 4 6 8 8 7 9 10 

6-7 1 2 2 4 1 9 7 8 8 10 

7-8 4 1 1 6 5 9 8 9 9 10 

8-9 2 2 1 3 5 4 8 1 7 8 

9-10 1 2 3 4 6 7 8 9 0 0 
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Again, the results obtained were compared to the reference matches, as displayed 

in Table 5.10. The overall performance of this method is lower than that obtained with 

the ED. Only 65 regions were correctly identified and the error rate was higher. Errors 

occur especially between images 5-6 and 6-7. 

TABLE 5.10 - COMPARISON OF THE OBTAINED RESULTS WITH THE DTW.  

Region 1 2 3 4 5 6 7 8 9 10      

Image pair           Tot TP FP FN Acc. 

1-2 2 1 1 1 1 1 1 1 1 1 10 9 1 0 0.90 

2-3 1 0 1 1 1 1 1 1 1 1 9 9 0 0 1.00 

3-4 2 1 1 1 1 1 1 1 1 0 9 8 1 0 0.89 

4-5 1 1 1 1 1 1 1 1 1 1 10 10 0 0 1.00 

5-6 1 1 2 1 0 2 2 1 1 1 9 6 3 0 0.67 

6-7 1 1 2 1 1 2 1 1 2 1 10 7 3 0 0.70 

7-8 2 0 2 1 1 0 1 2 1 1 8 5 3 0 0.63 

8-9 2 1 0 0 1 1 2 0 1 1 7 5 2 0 0.71 

9-10 1 1 1 1 0 1 2 1 0 0 7 6 1 0 0.86 

Sum           79 65 13 1 0.822 

The DTW algorithm failed to find matches that visually seem easy, as shown in 

Figure 5.19. For example, the pair of the third region of the sixth image was expected 

to be the third region of the seventh image, but the algorithm pointed to the second 

region based on the histograms. The overall accuracy was therefore lower. The recall 

is equal to 1 while the F1-score is 0.903. The accuracy and precision are equal to 

0.823. 

FIGURE 5.19 - EXAMPLE OF MATCHES WITH THE DTW APPROACH. 
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(iii) Correlation  

A similar analysis was performed using the correlation to compare image pairs. The 

results are summarized in Table 5.11. 

TABLE 5.11- COMPARISON OF THE OBTAINED RESULTS WITH CORRELATION. 

Pairs Tot TP FP FN Acc. 

1-2 10 9 1 0 0.90 

2-3 9 9 0 0 1.00 

3-4 9 9 0 0 1.00 

4-5 10 10 0 0 1.00 

5-6 9 8 1 0 0.89 

6-7 10 9 1 0 0.90 

7-8 8 6 2 0 0.75 

8-9 7 6 1 0 0.86 

9-10 7 7 0 0 1.00 

sum 79 73 6 0 0.924 

This method performed better than the previous two. In most cases, a maximum of 

one error was committed in each image. Only on pair 7-8, two errors were found. These 

errors are illustrated in Figure 5.20. For example, the third region of the seventh image 

was not correctly matched with the third region of the next image, but with the second 

one. The problem is caused by occlusion, which increased the percentage of light 

pixels. However, it should be considered that correlation-based analysis may find high 

correlation values even when the compared variables occupy different ranges or even 

have different dispersion. The correlation points only to the linear dependence between 

the variables. For this reason, if the variation is similar, even comparing a light region 

with a dark area, the correlation can point to high correspondence.  

FIGURE 5.20 - EXAMPLES OF THE ERROS IN THE CORRELATION ANALYSIS. 



90 
 

 5.3.3 Ten and twenty frames without spatial constraint 

A similar process was repeated using one image every 10 frames and one image 

every 20 frames. The results will be summarized here to reduce redundancy in the 

text. The summary of the results using one image every 10 and 20 frames and the ED 

is shown in Table 5.12. 

TABLE 5.12 - STATISTICS OBTAINED USING ONE IMAGE EVERY TEN OR 
TWENY FRAMES WITH THE ED. 

 Every 10 Every 20 

Pairs tot TP FP FN Acc Tot TP FP FN Acc. 

1-3 9 9 0 0 1.00 9 6 2 1 0.67 

3-5 9 8 1 0 0.89 7 3 3 1 0.43 

5-7 9 4 5 0 0.44 8 4 4 0 0.50 

7-9 7 5 2 0 0.71 10 7 3 0 0.70 

9-11 8 6 2 0 0.75 9 5 4 0 0.56 

11-13 10 8 2 0 0.80 10 6 3 1 0.60 

13-15 10 10 0 0 1.00 10 6 2 2 0.60 

15-17 9 7 2 0 0.78 11 6 5 0 0.55 

17-19 10 9 1 0 0.90 12 6 3 3 0.50 

Sum 81 66 15 0  86 49 29 8  

The tracking performance changed rapidly for the experiment using one image 

every ten frames and when using one image every 20 frames. The precision value 

decreases from 0.815 to 0.628 and the recall (i.e., sensitivity) decreases from 1.000 to 

0.860. The F1-Score decreases from 0.898 to 0.726. The accuracy dropped 0.248 (i.e., 

from 0.815 to 0.567). 

To perform a comparison of the methods, the statistics that describe the quality of 

the results are summarized in Table 5.13. 

TABLE 5.13 - SUMMARY OF THE ACCURACY STATISTICS WITHOUT SPATIAL 
CONSTRAINT. 

 ED DTW Correlation 

frames 5 10 20 5 10 20 5 10 20 

Accuracy 0.924 0.815 0.57 0.949 0.765 0.57 0.962 0.79 0.535 
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Recall 0.948 1 0.86 0.987 1 1 0.987 1 1 

Precision 0.973 0.815 0.628 0.962 0.765 0.57 0.974 0.79 0.535 

F1-score 0.961 0.898 0.726 0.974 0.867 0.726 0.981 0.883 0.697 

The accuracies decrease as the distance between frames increases for all methods. 

The DTW method suffers more this effect when using one image every 10 frames but 

is better when using a 20 frames interval. 

Among the methods, the correlation-based method produced the best results when 

using one image every five frames. This is the best situation, considering the frame 

rate. The worst results are obtained with the Euclidean distance. From the 

experiments, it was concluded that the next experiments will be performed using one 

image every five frames because higher intervals cause a 10% accuracy loss. 

5.3.4 Inclusion of spatial constraint 

In the previous experiment, all possible matches were considered but some 

combinations are impossible as the spatial shifts are not large as a result of the 

pedestrian or camera movement. So, in the next experiment, the frame rate was 

maintained constant (one image every 5 frames) but a spatial distance constraint was 

included. The candidate region was searched within a 120 pixels radius region around 

the position on the first image. The radius was chosen as the mean value of the region 

width. 

TABLE 5.14 - SUMMARY OF THE ACCURACY STATISTICS WITH SPATIAL 
CONSTRAINT. 

 ED DTW Correlation 

Accuracy 0.924 0.949 0.962 

Recall 0.948 0.987 0.987 

Precision 0.973 0.962 0.974 

F1-score 0.960 0.974 0.981 

According to the accuracy values, the best results are obtained using the 

correlation, but the DTW method produces similar results. The statistics also show that 
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the quality can be increased by introducing a spatial constraint. Nevertheless, this 

decision needs to consider the pedestrian movement speed and the camera shift if 

installed on a moving platform. For a fixed camera, this option can contribute to 

obtaining better results. 

5.3.4 Tracking with background suppression 

Finally, the regions of interest were segmented using the proposed background 

suppression method and the spatial constraint. The resulting quality statistics are 

presented in Table 5.15. 

TABLE 5.15 - SUMMARY OF THE ACCURACY STATISTICS WITH BACKGROUND 
SUPPRESSION. 

 ED DTW Correlation 

Accuracy 0.810 0.937 0.899 

Recall 0.853 0.987 0.947 

Precision 0.941 0.949 0.947 

F1-score 0.895 0.967 0.947 

The proposed method does not cut completely the background, nevertheless, 

significantly reduces its occurrence in the analyzed regions. As consequence, the 

histograms are modified, and the results of the match analysis changed. The 

accuracies obtained using the correlation and the ED are lower, below 90%, while the 

one measured with the DTW stood above 90% and is like the one measured without 

background suppression. This means that background suppression did not improve 

the detection of matches with ED and correlation. As the images are obtained in short 

intervals, small background changes were expected, which supports the use of the 

background. 

On the other hand, when the background is suppressed, the DTW is still efficient, 

which means that it could perform better even if the interval between images is larger. 

All three algorithms proved that they can be used in tracking a human from image 

frames acquired using mobile cameras in an urban environment. As the results 

support, tracking with background suppression had improved performance tracking. 

These results sustain the working hypothesis of this thesis that the background 
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suppression would improve the tracking process rather than simple template matching. 

Surprisingly, the correlation was more robust than ED and DTW on sets of images 

without background suppression. Correlation can be a worthy option in cases where 

the background RoI containing a pedestrian has not been suppressed. Although the 

tracking experiment was only run on self-collected data, we believed that a similar 

tendency would occur for other datasets as well. 
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CONCLUSIONS 

In this thesis a method to detect and monitor the movement of pedestrians from high 

spatial resolution images, obtained in an outdoor environment, using deep learning-

based methods and image processing techniques framework was developed. 

For human detection, two techniques namely Faster R-CNN Inception v2 and SSD 

Mobilenet v2 were tested and evaluated to draw a comparison between them on the 

basis of accuracy, precision, recall, and mAP. The fine-tuned model of Faster R-CNN 

Inception v2 was selected as an optimal model for the proposed application. 

The Faster R-CNN Inception v2 model can identify pedestrians under challenging 

conditions with high confidence, precision, and recall whereas the SSD Mobilenetv2 

model performs better in speed which is useful for real-time pedestrian detection. Even 

so, Faster R-CNN models might be just fast if the number of proposed regions is 

limited. 

From the experiment, the fine-tuning of the Faster R-CNN Inception v2, and SSD 

Mobilenet v2 detectors generate a coherent increase in the values of accuracy, 

precision, recall, and F1-score when retrained in small data set (700 images, taking 

around 4000 training steps), this demonstrates the potential of transfer learning 

technique in practical applications.  

Changing parameters/hyperparameters can affect the performance of an object 

detection model significantly and should be evaluated and adjusted according to the 

problem in hand; 

Using transfer learning can be an essential step in order to achieve viable results in 

the short term. Since the problem being addressed uses input images with no similarity 

to the existent datasets, gathering only the weights of the pre-trained model can lead 

to better results than freezing some of the layers, with the repercussion of a slower 

training process; 

In the second phase of the framework, a method to perform the separation of human 

bodies from images with changing background was proposed and tested. The 

proposed method is based on image segmentation, the analysis of the possible pose, 

and a final refinement step based on probabilistic relaxation. Quantitative and 

qualitative experiments on different challenging image datasets demonstrate the 

superiority of the proposed approaches over some state-of-the-art methods. 
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The method was also tested with high-resolution RGB images acquired through 

mobile cameras and the results prove that the method can be used to identify the 

segments related to the pedestrian with relatively good performance. The tests reveal 

a mean IoU of around 71% with some cases reaching IoU values close to 100%. 

Nevertheless, the experiments also show that the method can fail. It occurs when the 

shape of the pedestrian cannot be modeled by the used density fields or when there is 

low contrast between the pedestrian and the background. The situation regarding the 

shape can be improved by including more templates with different poses, but it must 

also be considered difficult to model all possible poses and errors will persist.  

The problem of low contrast between clothes or skin of the pedestrian and the 

background, is more difficult to solve and causes difficulties even to a human 

interpreter. The low contrast that affects the segmentation and clustering steps cannot 

be improved in the following steps. The low contrast also can affect the refinement by 

probabilistic relaxation because it is based on the RGB color information. 

The method performed well and it can be used to segment pedestrians from images 

obtained from moving cameras as it does not depend on a fixed known background 

and can be applied to images with different sizes, which makes it usable in the analysis 

of images with varying depth. 

Tracking is achieved by creating a correspondence between consecutive image 

frames. The proposed tracking approach is characterized by a high person matching 

rate, meaning that very few false positives and false negatives are obtained by the 

tracking technique. Additionally, was investigated how the performance of the trackers 

is affected by the frame-rate with and without the spatial constraint of the input image 

frames and background suppression. In general, for evaluated metrics, the trackers 

performed well. It is also noted that the tracker's performance drops when the interval 

between image frames is larger. In general, using background suppression boosted 

the performance slightly compared to using image frames without background 

suppression. Among the three tested tracking algorithms, when the background is 

suppressed, the DTW perform better even if the interval between images is larger. 

 

Future work 

Since there are countless configurations for CNN architectures that could be 

employed and will likely remain an area of significant future research. Although CNN 
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fine-tuning and parameter configuration is important, for the purpose of this study only 

two architectures were tested. 

Future work should test these architectures (or others) with a different number of 

classes and use fine-tuning with model topology adjustment by varying some model 

parameters such as IoU, graph, batch size, moment, weight decay, and anchors 

boxes. 

It is recommended to improve the first segmentation step, by including more 

information about the possible shape of the human figures or, look for other alternatives 

to solve this problem. Other alternative color spaces like CIELab or CIELuv not 

explored in this thesis can be tested. 

Instead of matching features with DTW, ED, or correlation and future work should 

consider training a network to aid matching correspondence. 

The proposed approach to track pedestrians was based on histogram matching. 

The method is very promising for practical application in an outdoor environment. In a 

future application, one can use other segmentation methods such as DeepLab to 

extract silhouettes and perform correspondence. Along with the color histogram, other 

features like position, size, area, the perimeter can be incorporated in the proposed 

matching algorithms method. 

In this thesis tracking algorithms are performed on small and quite specific self-

collected data, an obvious future work is to apply the tests to larger datasets such as 

those in the MOTchallenge, PETS, so on. Another possible extension would be to test 

other tracking algorithms (e.g., SORT and Deep SORT) apart from those proposed in 

the present thesis. Testing other tracking algorithms would give further insights into 

how the use of the color-histogram feature affects tracking performance in the more 

general case. 

In the future, other color spaces like HSV, CIELab, or CIELuv may be experimented 

with to compute histogram features and see if further improvements could be achieved. 

The results obtained by the DTW method are very encouraging since accuracies of 

over 93% were obtained. Perhaps, this is the first time DTW is used for human tracking. 

For future work, experiments using extended dynamic time warping such as weighted 

distance time warping or probability-based dynamic time warping can be implemented 

and tested.
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