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RESUMO

Nesta tese, estudamos uma classe de problemas de otimização, chamada Mathematical
Programs with Cardinality Constraints (MPCaC)). Este tipo de problema é geralmente
dif́ıcil de lidar, porque envolve uma restrição que não é cont́ınua e nem convexa, mas
fornece soluções esparsas. Assim, reformulamos o problema de uma forma adequada,
modelando-o como um problema inteiro misto e então consideramos a sua contraparte
cont́ınua, a qual será referida como problema relaxado. Investigamos o problema relaxado
analisando as restrições gerais em dois casos: linear e não linear. No caso linear, propo-
mos uma abordagem geral e apresentamos uma discussão das condições de qualificação
de Abadie e Guignard, provando neste caso que todo minimizador do problema relaxado
satisfaz as condições de Karush-Kuhn-Tucker (KKT). Por outro lado, no caso não linear,
mostramos que as condições de qualificação clássicas podem ser violadas. Motivados por
encontrar um minimizador para o problema MPCaC, definimos uma nova condição de
estacionariedade, mais fraca do que KKT, propondo uma abordagem unificada que vai da
estacionariedade mais fraca até a mais forte (dentro de um certo espectro de condições).
Entretanto, estas condições não são condições de otimalidade. Deste modo, propomos
também um conceito de estacionariedade fraca aproximada chamado AW-stationarity (do
inglês, Approximate Weak stationarity), desenhado para lidar com problemas MPCaC.
Provamos que é uma condição de otimalidade leǵıtima independentemente de qualquer
condição de qualificação. Muitas pesquisas em condições sequenciais de otimalidade têm
sido feitas para otimização não linear com restrições nos últimos anos, sendo alguns tra-
balhos no contexto de problemas da classe Mathematical Programs with Complementarity
Constraints (MPCC). No entanto, até onde sabemos, nenhuma condição sequencial de
otimalidade foi proposta para problemas MPCaC. Estabelecemos algumas relações entre
a nossa condição AW-stationarity e outras condições sequenciais de otimalidade usuais,
tais como AKKT, CAKKT e PAKKT. Ressaltamos que, apesar do apelo computacional
das condições sequenciais de otimalidade, nosso objetivo até este momento foi discutir os
aspectos teóricos de tais condições para problemas MPCaC. Os aspectos algoŕıtmicos por
trás de nossa teoria são temas de pesquisa em andamento.

Palavras-chave: Problemas Matemáticos com restrições de cardinalidade; Soluções espar-
sas; Condições sequenciais de otimalidade; Estacionariedade fraca; Condição de quali-
ficação; Programação não linear.



ABSTRACT

In this thesis, we study a class of optimization problems, called Mathematical Programs
with Cardinality Constraints (MPCaC). This kind of problem is generally difficult to deal
with, because it involves a constraint that is not continuous neither convex, but provi-
des sparse solutions. Thereby we reformulate MPCaC in a suitable way, by modeling
it as mixed-integer problem and then addressing its continuous counterpart, which will
be referred to as relaxed problem. We investigate the relaxed problem by analyzing the
general constraints in two cases: linear and nonlinear. In the linear case, we propose a
general approach and present a discussion of the Guignard and Abadie constraint qua-
lifications, proving in this case that every minimizer of the relaxed problem satisfies the
Karush-Kuhn-Tucker (KKT) conditions. On the other hand, in the nonlinear case, we
show that some standard constraint qualifications may be violated. Motivated to find a
minimizer for the MPCaC problem, we define new stationarity conditions, weaker than
KKT, by proposing a unified approach that goes from the weakest to the strongest statio-
narity (within a certain range of conditions). However, these conditions are not optimality
conditions. Thereby, we also propose an Approximate Weak stationarity (AW-stationa-
rity) concept designed to deal with MPCaC problems. We proved that it is a legitimate
optimality condition independently of any constraint qualification. Many research on se-
quential optimality conditions has been addressed for nonlinear constrained optimization
in the last few years, some works in the context of Mathematical Programs with Com-
plementarity Constraints (MPCC). However, as far as we know, no sequential optimality
condition has been proposed for MPCaC problems. We also establish some relationships
between our AW-stationarity and other usual sequential optimality conditions, such as
AKKT, CAKKT and PAKKT. We point out that, despite the computational appeal of
the sequential optimality conditions, our aim until this moment was to discuss the theo-
retical aspects of such conditions for MPCaC problems. The algorithmic aspects behind
our theory are subject of ongoing research.

Keywords: Mathematical programs with cardinality constraints; Sparse solutions; Se-
quential optimality conditions; Weak stationarity; Constraint qualification; Nonlinear
programming.



LIST OF SYMBOLS

The main symbols used in this thesis are as follows.

|J | The cardinality of J

‖x‖0 Cardinality of the vector x ∈ R
n

I00(x, y) Index set {i | xi = 0, yi = 0}
I±0(x, y) Index set {i | xi �= 0, yi = 0}
I0±(x, y) Index set {i | xi = 0, yi �= 0}
I0+(x, y) Index set {i | xi = 0, yi ∈ (0, 1)}
I0>(x, y) Index set {i | xi = 0, yi > 0}
I01(x, y) Index set {i | xi = 0, yi = 1}

I0(x) Index set {i | xi = 0}
Ig(x) For a function g : Rn → R

s, denote the set of active indexes {i | gi(x) = 0}
xI The vector in R

|I| consisting of the components xi, i ∈ I

TΩ(x̄) The tangent cone to Ω at x

DΩ(x̄) The linearized cone to Ω at x

S0 The polar cone to S

g+(x) Maximum Function, i.e., g+(x) = max{0, g(x)}
∇ξ(x) Gradient of the function ξ at point x. If ξ : Rn → R

m is differentiable,

∇ξ = (∇ξ1, . . . ,∇ξm) denotes the transpose of the Jacobian of ξ

x ∗ y Hadamard product between x, y ∈ R
n, i.e., x ∗ y = (x1y1, . . . , xnyn) ∈ R

n

TNLPI(x̄, ȳ) The Tightened Nonlinear Problem at (x̄, ȳ)

LI(x, y, λ) Lagrangian associated with TNLPI(x̄, ȳ)

L(x, λ) Usual Lagrangian function

Other notations will be introduced throughout the text if they are needed.
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Introduction

In this work we study a class of optimization problems called Mathematical Programs with
Cardinality Constraints (MPCaC) given by

minimize f(x)
subject to x ∈ X,

‖x‖0 ≤ α,
(1)

where f : Rn → R is a continuously differentiable function, X ⊂ R
n is a set described by

equality and/or inequality constraints, α > 0 is a given natural number and ‖x‖0 denotes
the cardinality of the vector x ∈ R

n, that is, the number of nonzero components of x.
Throughout this work we assume that α < n, since otherwise the cardinality constraint
would not have any effect. On the other hand, if α is too small, the cardinality constraint
may be too restrictive leading to an empty feasible set.

The main difference between problem (1) and a standard nonlinear programming
problem is that the cardinality constraint, despite of the notation, is not a norm, nor con-
tinuous neither convex. A classical way [1] to deal with this difficult cardinality constraint
consists of introducing binary variables and then rewriting the problem as a mixed-integer
problem

minimize
x,y

f(x)

subject to x ∈ X,
eTy ≥ n− α,
xiyi = 0, i = 1, . . . , n,
yi ∈ {0, 1}, i = 1, . . . , n,

(2)

where e ∈ R
n denotes the vector of ones. Note that this reformulation is quite natural by

noting that if a vector x ∈ R
n is such that ‖x‖0 = r ≤ α, defining y ∈ R

n by yi = 0, if
xi �= 0 and yi = 1, if xi = 0, we have eTy = n− r ≥ n−α and xiyi = 0 for all i = 1, . . . , n.

Alternatively to the formulation (2), which is still complicated to deal with, in
view of the binary variables, one may address its continuous counterpart [2]

minimize
x,y

f(x)

subject to x ∈ X,
eTy ≥ n− α,
xiyi = 0, i = 1, . . . , n,
0 ≤ yi ≤ 1, i = 1, . . . , n,

(3)

which will be referred to as relaxed problem and plays an important role in this work.
Besides, with some abuse of terminology, it will be indicated as MPCaC as well. As we
shall see in Section 1.3, the problems (2) and (3) are closely related to (1) in terms of
feasible points and solutions.

11
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Despite demanding artificial variables that increase the dimension of the problem,
it is precisely due to this augmentation that problem (3) has the feature of being manage-
able, in the sense of being differentiable, which favors one to discuss stationarity concepts.
This approach is common to deal with optimization problems [3–7].

In many areas of applications of optimization we seek to find solutions with a
small or a bounded number of nonzero components, namely sparse solutions, such as
sampling signals or images, machine learning, subset selection in regression, portfolio
problems [8–13]. See also [14–16] and the references therein for some more ideas.

One standard way to obtain sparse solutions consists of employing penalization
techniques based on the �1-norm [17]. Another way is imposing explicitly a cardinality
constraint to the problem, as the pioneering work [1]. Here, we follow the approach that
considers the cardinality constrained problem MPCaC, as [2,18,19]. Specifically, we focus
on the theoretical features of the cardinality problem (1), which may be inferred from
the properties of the relaxed problem (3), in view of constraint qualifications (CQs) and
stationarity concepts. We stress that in this work we are neither concerned with applica-
tions nor with computational aspects or algorithmic consequences, which are subject of
ongoing research.

In our analysis, we consider two cases: the set X given by linear constraints in the
relaxed problem (3), providing a feasible set consisting of linear (separable) constraints
in the variables x and y besides the complementarity constraint; and the set X given by
nonlinear constraints.

In the first case, we propose a general approach that allows us to simplify the
proofs of the results, as compared with the ones presented in [2], as well as establishing
Abadie CQ (ACQ), instead of only Guignard CQ (GCQ). We therefore conclude that
every minimizer of the relaxed problem (3) satisfies the KKT conditions. This, however,
does not mean that weaker stationarity conditions are unnecessary or less important.
They are of interest from both the theoretical and the algorithmic viewpoint, as seen
in the context of sparsity constrained optimization (MPCaC problems with X = R

n)
[14,20,21].

On the other hand, in the nonlinear case, we show that the most known CQs,
namely LICQ and MFCQ, are not satisfied, under the assumption that the feasible point
(x, y) has at least one nonzero x-component. We also prove that even a weaker condi-
tion, ACQ, fails to hold in a wide range of cardinality problems. Moreover, even GCQ,
the weakest CQ, may be violated. Therefore, we cannot assert the convergence results
for MPCaC in the same way as we usually have in the context of standard nonlinear
programming, i.e. for KKT points.

Motivated to find a minimizer for the MPCaC problem (1) for general constraints,
we define new and weaker (than KKT) stationarity conditions for this class of problems.
This approach is common in the literature. For example, in the works [22–24] the following
stationarity conditions are established for Mathematical Programs with Complementarity
Constraints (MPCC): Weak, Clarke, Mordukhovich and Strong; whereas for Mathematical
Programs with Vanishing Constraints (MPVC) the concept of T -stationarity is proposed
[25].

In order to find stationarity conditions for this class of problems, in the present
work we define an auxiliary problem, namely Tightened Nonlinear Problem. Its resulting
formulation is similar to that made for Mathematical Programs with Complementarity
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Constraints [26]. In this way, based on the stationarity concepts established for MPCC
in [27,28], we propose new stationarity concepts for the class of MPCaC problems.

Specifically, we propose a unified approach that goes from the weakest to the
strongest stationarity (within a range) for the cardinality problem with general cons-
traints. This approach, which will be called WI-stationarity, is based on a given set of
indices I such that the complementarity constraint is always satisfied. Moreover, different
levels of stationarity can be obtained depending on the range for the set I. Besides, we
prove that this condition is indeed weaker than the classical KKT condition, that is, every
KKT point fulfills WI-stationarity. We also point out that our definition corresponds to
concepts of S- and M -stationarity presented in [2] for a proper choice of the index set I.

We stress that although the relaxed problem (3) resembles an MPCC problem,
for which there is a vast literature, and also MPVC and Mathematical Programs with
Switching Constraints (MPSC) [29], there are important differences between these classes
of optimization problems, which in turn increase the importance of specialized research on
MPCaC problems. One of such differences is that here we only require positivity for one
term in the complementarity constraint xiyi = 0. Besides, we establish results that are
stronger than the corresponding ones known for MPCC’s, as for example, the fulfillment
of GCQ in the linear case (see Remark 2.1 ahead). It is also worth mentioning that,
besides the usual CQs, the MPCC-tailored CQs are also violated for MPCaC problems in
the general case (see [2,30] for a more detailed discussion). On the other hand, we shall
conclude that WI-stationarity is a necessary optimality condition under the MPCaC-
tailored CQs proposed in [30].

The proposed condition WI-stationarity, despite being weaker than KKT, is not
a necessary optimality condition. Therefore, we propose in this work an Approximate
Weak stationarity (AW-stationarity) concept, which will be proved to be a legitimate
optimality condition, independently of any constraint qualification.

Approximate stationarity conditions, also referred to as sequential optimality
conditions, has been subject of intense research [6,31–36] and provide strong conver-
gence results when associated with practical methods, such as the augmented Lagrangian
method (see [37] and references therein). This is due to the fact that such conditions are
necessary for optimality independently of the fulfillment of any constraint qualification
(CQ). One of the most popular of these conditions for standard nonlinear programming
is the approximate Karush-Kuhn-Tucker (AKKT) [32]. Another two of such conditions,
both stronger than AKKT, are positive approximate KKT (PAKKT) [31] and comple-
mentary approximate KKT (CAKKT) [35]. Whenever it is proved that an AKKT (or
CAKKT or PAKKT) point is indeed a Karush-Kuhn-Tucker (KKT) point under a certain
CQ, any algorithm that reaches AKKT (or CAKKT or PAKKT) points (e.g. augmen-
ted Lagrangian-type methods) automatically has the theoretical convergence established
assuming the same CQ.

Sequential optimality conditions have also been proposed for nonstandard opti-
mization [27,28,38,39]. In the context of Mathematical Programs with Equilibrium Cons-
traints (MPECs) and motivated by AKKT, it was introduced in [28] the MPEC-AKKT
condition with a geometric appeal and in [27], new conditions were established for Mathe-
matical Problems with Complementarity Constraints (MPCCs), namely AW-, AC- and
AM-stationarity. The latter one was compared with the sequential condition presents in
[28].

Even though there is a considerable literature devoted to sequential conditions for
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standard nonlinear optimization and even for specific problems (MPCC), to the best of our
knowledge, no sequential optimality condition has been proposed for MPCaC problems.
Such problems are very degenerate because of the challenging complementarity constraints
xiyi = 0 and therefore the known sequential optimality conditions may not be suitable
to deal with them. Thereby, our sequential optimality condition, AW-stationarity, which
is associated with WI-stationarity and designed to deal with MPCaC problems comes
to fill this gap. This condition is indeed a necessary optimality condition, without any
constraint qualification assumption, and it is based on the one proposed in [27] for MPCC
problems. We also establish some relationships between our AW-stationarity and other
well known sequential optimality conditions. In particular, and surprisingly, we prove
that AKKT fails to detect good candidates for optimality for every MPCaC problem.

Organization of the thesis. This thesis consists of two papers developed during the
PhD On the weak stationarity conditions for Mathematical Programs with Cardinality
Constraints: a unified approach [50] and A sequential optimality condition for Mathema-
tical Programs with Cardinality Constraints [51]. In order to facilitate the reading, we
start with a short presentation on what the two papers are about. The work is organized
as follows: in Chapter 1 we establish some basic definitions, results and examples regar-
ding standard nonlinear programming as well as one of the contributions of this work for
cardinality constrained problems. Particularly, in Section 1.1, we establish more general
results than the ones presented in [2] (for the linear case) as well as a discussion about
ACQ, instead of only GCQ. Section 1.2 brings the known sequential optimality conditi-
ons for standard NLP. In Section 1.3 we present relations between the MPCaC and the
reformulated problems. Section 1.4 treats some relations between the MPCaC and other
classes of optimization problems. We define in Chapter 2 the weak stationarity conditi-
ons for Mathematical Programs with Cardinality Constraints. In Section 2.1 we present
one of the contributions, by considering the relaxed problem (3) with X given by linear
constraints. Section 2.2 is devoted to our main contribution, presenting the analysis of
the nonlinear case, including a discussion of the main CQs, with results, examples and
counterexamples. In Chapter 3 we present the theoretical results obtained until now con-
cerning sequential optimality conditions for MPCaC problems. Section 3.1 presents our
definition of AW-stationarity and, among several results, the proof that it is a legitimate
optimality condition without any constraint qualification assumption. In Section 3.2 we
provide some relationships between approximate stationarity for standard nonlinear op-
timization and AW-stationarity. In Section 3.3 we discuss some ideas for future work
on MPCaC, in particular, regarding sequential optimality conditions. Finally, concluding
remarks are presented in Chapter 3.3 and Appendix A brings some additional examples
discussed along the seminars and alternative proofs for some results of this work.
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Preliminaries

In this chapter we recall some basic definitions, results and examples regarding standard
nonlinear programming (NLP) as well as some of the contributions of this work, esta-
blishing general results from which we can derive properties for the specific problem (3).
We present some relations between the MPCaC and the reformulated problems as well as
a short comparison between the MPCaC and other classes of optimization problems.

1.1 NLP and constraint qualifications

Consider the problem
minimize f(x)
subject to g(x) ≤ 0,

h(x) = 0,
(1.1)

where f : R
n → R, g : R

n → R
m and h : R

n → R
p are continuously differentiable

functions. The feasible set of the problem (1.1) is denoted by

Ω = {x ∈ R
n | g(x) ≤ 0, h(x) = 0}. (1.2)

Definition 1.1.1 We say that x∗ ∈ Ω is a global solution of the problem (1.1), that is, a
global minimizer of f in Ω, if f(x∗) ≤ f(x) for all x ∈ Ω. If f(x∗) ≤ f(x) for all x ∈ Ω
such that ‖x− x∗‖ ≤ δ, for some δ > 0, x∗ is said to be a local solution of the problem.

A feasible point x∗ ∈ Ω is said to be stationary for the problem (1.1) if there
exists a vector λ = (λg, λh) ∈ R

m
+ × R

p (Lagrange multipliers) such that

∇f(x∗) +
m∑
i=1

λg
i∇gi(x

∗) +
p∑

i=1

λh
i ∇hi(x

∗) = 0, (1.3a)

(λg)T g(x∗) = 0. (1.3b)

The function L : Rn × R
m × R

p → R given by

L(x, λg, λh) = f(x) + (λg)T g(x) + (λh)Th(x) (1.4)

is the Lagrangian function associated with the problem (1.1).
The conditions (1.3a)–(1.3b) are known as Karush-Kuhn-Tucker (KKT) conditi-

ons and, under certain qualification assumptions, are satisfied at a local minimizer. There
are a lot of constraint qualifications, that is, conditions under which every minimizer sa-
tisfies KKT [40–46]. In order to discuss some of them, let us recall the definition of cone,
which plays an important role in this context.

15
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We say that a nonempty set C ⊂ R
n is a cone if td ∈ C for all t ≥ 0 and d ∈ C.

Given a set S ⊂ R
n, its polar is the cone S◦ = {p ∈ R

n | pTx ≤ 0, ∀x ∈ S}. See
Figure 1.1.

S

S
◦

S

S
◦

Figura 1.1: Illustration of some sets and their polar cones.

Associated with the feasible set of the problem (1.1), the tangent cone at x̄ ∈ Ω
is given by

TΩ(x̄) =

{
d ∈ R

n | ∃(xk) ⊂ Ω, (tk) ⊂ R+ : tk → 0 and
xk − x̄

tk
→ d

}

and the linearized cone at x̄ ∈ Ω is

DΩ(x̄) =
{
d ∈ R

n | ∇gi(x̄)
Td ≤ 0, i ∈ Ig(x̄) and ∇h(x̄)Td = 0

}
.

The following basic result says that we may ignore inactive constraints whenever
dealing with the tangent and linearized cones.

Lemma 1.1.2 Consider a feasible point x̄ ∈ Ω, defined in (1.2), an index set J ⊃ Ig(x̄)
and

Ω′ = {x ∈ R
n | gi(x) ≤ 0, i ∈ J, h(x) = 0}.

Then, TΩ(x̄) = TΩ′(x̄) and DΩ(x̄) = DΩ′(x̄).

Proof. Note first that x̄ ∈ Ω′ since Ω ⊂ Ω′. Moreover, since gi(x̄) < 0 for i /∈ J , there exists
δ > 0 such that B(x̄, δ) ∩Ω′ = B(x̄, δ) ∩Ω. Thus, TΩ′(x̄) = TΩ(x̄) because the conditions
tk → 0 and (xk − x̄)/tk → d imply that xk → x̄. The equality between the linearized
cones is straightforward, as the active indices corresponding to Ω and Ω′ coincide.

Now we relate the cones of feasible sets if some variables do not appear in the
constraints.

Lemma 1.1.3 Consider the general feasible set Ω, defined in (1.2), and the set

Ω′ = {(x, y) ∈ R
n × R

m | g(x) ≤ 0, h(x) = 0}.
Given a feasible point (x̄, ȳ) ∈ Ω′, we have

TΩ′(x̄, ȳ) = TΩ(x̄)× R
m and DΩ′(x̄, ȳ) = DΩ(x̄)× R

m.

As a consequence,

T ◦
Ω′(x̄, ȳ) = T ◦

Ω(x̄)× {0} and D◦
Ω′(x̄, ȳ) = D◦

Ω(x̄)× {0}.
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Proof. Consider a tangent direction d = (α, β) ∈ TΩ′(x̄, ȳ). Then there exist sequences
(xk, yk) ⊂ Ω′ and tk → 0 such that

(xk, yk)− (x̄, ȳ)

tk
→ d.

Thus,
xk − x̄

tk
→ α ∈ TΩ(x̄), since (xk) ⊂ Ω, proving that TΩ′(x̄, ȳ) ⊂ TΩ(x̄) × R

m. Now,

consider a vector d = (α, β)1 ∈ TΩ(x̄) × R
m. Then there exist sequences (xk) ⊂ Ω and

tk → 0 such that
xk − x̄

tk
→ α.

Defining yk = ȳ + tkβ, we have (xk, yk) ⊂ Ω′ and

(xk, yk)− (x̄, ȳ)

tk
→ d,

giving d ∈ TΩ′(x̄, ȳ). The relation between the linearized cones follows from the fact that if
ζ(x, y) = g(x) and ξ(x, y) = h(x) represent the constraints that define Ω′ and d = (α, β),
then

∇ζi(x, y)
Td = ∇gi(x)

Tα and ∇ξj(x, y)
Td = ∇hj(x)

Tα.

Finally, in order to prove the last statement of the lemma, we claim that (S × R
m)◦ =

S◦ × {0}. Indeed, if (u, v) ∈ (S × R
m)◦, then uTα + vTβ ≤ 0 for all α ∈ S, β ∈ R

m. In
particular, for β = tv, t ∈ R, we have uTα + t‖v‖2 ≤ 0 for all t ∈ R. This means that
v = 0 and hence, u ∈ S◦. The reverse inclusion is immediate.

Two well known constraint qualifications are defined below. Gould and Tolle
[41] proved that one of them, namely Guignard CQ, is the weakest CQ that guarantees
that local minimality implies KKT. The other one is Abadie CQ, which is stronger than
Guignard CQ.

Definition 1.1.4 We say that Abadie constraint qualification (ACQ) holds at x̄ ∈ Ω if
TΩ(x̄) = DΩ(x̄). If T ◦

Ω(x̄) = D◦
Ω(x̄), we say that Guignard constraint qualification (GCQ)

holds at x̄.

We stress that if Ω is defined only by linear constraints, then TΩ(x̄) = DΩ(x̄) for
any x̄ ∈ Ω, that is, every point satisfies ACQ.

From now on, for a better analysis we consider (x̄, ȳ) a feasible point of the
problem (3) and the following sets in Table 1.1. If there is no chance for ambiguity, we
sometimes suppress the argument and, for example, write I00 for I00(x̄, ȳ), I0± for I0±(x̄, ȳ)
and so on.

1Strictly speaking, we should write α and β in a single column, but we wrote in this manner for
notational convenience.
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x̄i = 0 x̄i �= 0
ȳi = 0 I00(x̄, ȳ) I±0(x̄, ȳ)
ȳi �= 0 I0±(x̄, ȳ) does not exist
ȳi ∈ (0, 1) I0+(x̄, ȳ) does not exist
ȳi = 1 I01(x̄, ȳ) does not exist

Tabela 1.1: Index sets at (x̄, ȳ) for the problem (3). The index set I0(x̄) = {i | x̄i = 0} is
equal to I00 ∪ I0+ ∪ I01. Moreover, I0 ∪ I±0 = {1, . . . , n}.

In the following lemma we analyze GCQ for simple complementarity constraints.

Lemma 1.1.5 Consider the set

Ω = {(x, y) ∈ R
n × R

n | y ≥ 0, x ∗ y = 0}. (1.5)

Given (x̄, ȳ) ∈ Ω, it holds T ◦
Ω(x̄, ȳ) = D◦

Ω(x̄, ȳ).

Proof. Denote the constraints that define Ω by ζ(x, y) = −y and ξ(x, y) = x ∗ y. Given
(u, v) ∈ DΩ(x̄, ȳ), we claim that the vectors (u, 0) and (0, v) belong to TΩ(x̄, ȳ). Indeed,

ȳiui + x̄ivi = ∇ξi(x̄, ȳ)
T

(
u
v

)
= 0.

for all i = 1, . . . , n. Thus,
uI0+ = 0 and vI±0 = 0. (1.6)

To prove that (u, 0) ∈ TΩ(x̄, ȳ), define tk = 1/k and (xk, yk) = (x̄+ tku, ȳ). Thus,

(xk, yk)− (x̄, ȳ)

tk
→ (u, 0).

Moreover, yk = ȳ ≥ 0 and, using (1.6), we see that xk
I0+

= 0 and ykI±0∪I00 = 0, giving

xk ∗ yk = 0. So, (xk, yk) ⊂ Ω and then (u, 0) ∈ TΩ(x̄, ȳ). Let us see that (0, v) ∈ TΩ(x̄, ȳ).
For this we define the sequence (zk, wk) by

zk = x̄ and wk = ȳ + tkv.

Analogously to the previous case, we see that

(zk, wk)− (x̄, ȳ)

tk
→ (0, v) and zk ∗ wk = 0,

where the equality follows from the fact that zkI0+∪I00 = 0 and wk
I±0

= 0. Furthermore, if

i ∈ I0+, we have ȳi > 0, which implies that wk
i > 0 for all sufficiently large k. On the

other hand, for i ∈ I00, the constraint ζi is active and hence,

−vi = ∇ζi(x̄, ȳ)
T

(
u
v

)
≤ 0,

which implies that wk
i = ȳi+ tkvi = tkvi ≥ 0. Thus, (zk, wk) ⊂ Ω, giving (0, v) ∈ TΩ(x̄, ȳ).

Now let us prove GCQ. Since the tangent cone is always a subset of the linearized
cone, we only need to prove the inclusion T ◦

Ω(x̄, ȳ) ⊂ D◦
Ω(x̄, ȳ). Consider then p ∈ T ◦

Ω(x̄, ȳ).
Thus, pTd ≤ 0 for all d ∈ TΩ(x̄, ȳ). Given d = (u, v) ∈ DΩ(x̄, ȳ), we can use the claim
just established to write

d1 = (u, 0) ∈ TΩ(x̄, ȳ), d2 = (0, v) ∈ TΩ(x̄, ȳ) and d = d1 + d2.

Therefore, pTd = pTd1 + pTd2 ≤ 0, proving that p ∈ D◦
Ω(x̄, ȳ).
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Remark 1.1 In fact we can also analyze ACQ for the set given in Lemma 1.1.5. In
particular, we give explicit representations for the cones so that the constraint qualification
can be precisely described. Given (x̄, ȳ) ∈ Ω, we have

TΩ(x̄, ȳ) =
{
(u, v) ∈ R

n × R
n | uI0> = 0; vI±0 = 0; vI00 ≥ 0; u ∗ v = 0

}
,

DΩ(x̄, ȳ) =
{
(u, v) ∈ R

n × R
n | uI0> = 0; vI±0 = 0; vI00 ≥ 0

}
,

where we have denoted I0> = I0>(x̄, ȳ), I0± = I0±(x̄, ȳ) and so on. Thus, ACQ holds if
and only if I00 = ∅.

We present in Proposition A.2 the proof of the claim in the above remark. Besides,
part of the statements are revisited and generalized in Theorems 1.1.7 and 1.1.8.

An interesting property obtained under the strict complementarity condition
I00(x̄, ȳ) = ∅ says that the constraint x ∗ y = 0 near (x̄, ȳ) can be rewritten only by
linear constraints, as proved in the following result and illustrated in the Figure 1.2.

Lemma 1.1.6 Consider the set

Ω = {(x, y) ∈ R
n × R

n | ϕ(x, y) ≤ 0, ρ(x, y) = 0, x ∗ y = 0},
where ϕ : Rn×R

n → R
m and ρ : Rn×R

n → R
p are continuously differentiable functions.

Suppose that a feasible point (x̄, ȳ) ∈ Ω satisfies I00(x̄, ȳ) = ∅. Define the set

Ω′ = {(x, y) ∈ R
n × R

n | ϕ(x, y) ≤ 0, ρ(x, y) = 0, xI0± = 0, yI±0 = 0},
again using the simplified notation I0± = I0±(x̄, ȳ) and I±0 = I±0(x̄, ȳ). Then, we have
TΩ(x̄, ȳ) = TΩ′(x̄, ȳ) and DΩ(x̄, ȳ) = DΩ′(x̄, ȳ).

Proof. Note first that (x̄, ȳ) ∈ Ω′. Besides, since I0± ∪ I±0 = {1, . . . , n}, we have Ω′ ⊂ Ω.
We claim that there exists δ > 0 such that

B
(
(x̄, ȳ), δ

) ∩ Ω = B
(
(x̄, ȳ), δ

) ∩ Ω′. (1.7)

Indeed, take δ = min{|x̄i|, i ∈ I±0, |ȳi|, i ∈ I0±} and consider the ‖ · ‖∞ norm to define
the ball. So, given (x, y) ∈ B

(
(x̄, ȳ), δ

) ∩ Ω, if i ∈ I0±, then yi �= 0, implying that
xi = 0. Analogously, we see that yi = 0 for i ∈ I±0. Thus we have (1.7) and hence,
TΩ(x̄, ȳ) = TΩ′(x̄, ȳ).

Now, consider the sets

Gϕρ =

⎧⎨
⎩
∑
i∈Iϕ

λϕ
i ∇ϕi(x̄, ȳ) +

p∑
i=1

λρ
i∇ρi(x̄, ȳ) | λϕ

i ∈ R+, i ∈ Iϕ, λ
ρ ∈ R

p

⎫⎬
⎭ ,

where Iϕ = Iϕ(x̄, ȳ),

G0 =

⎧⎨
⎩

∑
i∈I0±

λi

(
ȳiei
0

)
+

∑
i∈I±0

λi

(
0

x̄iei

)
| λ ∈ R

n

⎫⎬
⎭

and

G ′
0 =

⎧⎨
⎩

∑
i∈I0±

λi

(
ei
0

)
+

∑
i∈I±0

λi

(
0
ei

)
| λ ∈ R

n

⎫⎬
⎭ .

Since G0 = G ′
0, we have

DΩ(x̄, ȳ) = (Gϕρ + G0)
◦ = (Gϕρ + G ′

0)
◦ = DΩ′(x̄, ȳ),

completing the proof.
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Figura 1.2: Illustration of Lemma 1.1.6. The thick red line is the feasible set Ω = {(x, y) ∈
R

2 | y ≤ (x+ 1)(4− x), y = 0, xy = 0} and the feasible point (2, 0) satisfies I00(2, 0) = ∅.
The constraint xy = 0 near (2, 0) can be rewritten by y = 0, see the set Ω′. Note that the
tangent and linearized cones coincide.

Now, we present one of the contributions of this work, establishing more general
results from which we will derive, in Section 2.1, properties for the specific problem (3).
Moreover, this general approach enables us to simplify the proofs, as compared with the
ones presented in [2], as well as to discuss also ACQ, instead of only GCQ. The major
difference between our approach and the strategy used in [2] for proving the Guignard
CQ is that they use partitions of the index set I00 to construct decompositions of the
feasible set and the corresponding cones in terms of simpler sets, whereas we decompose
an arbitrary vector of the linearized cone as a sum of two vectors belonging to the tangent
cone, making the proof very simple. Furthermore, we also provide here the analysis of
the Abadie condition under the strict complementarity condition.

Consider then the set

Ω = {(x, y) ∈ R
n × R

n | Ax = b, Ãx ≤ b̃, My = r, M̃y ≤ r̃, x ∗ y = 0}, (1.8)

where the matrices A, Ã, M and M̃ and the vectors b, b̃, r and r̃ have appropriate
dimensions.

We start by giving sufficient conditions for ACQ to be satisfied.

Theorem 1.1.7 Consider the set Ω, defined in (1.8), and a feasible point (x̄, ȳ) ∈ Ω. If
I00(x̄, ȳ) = ∅, then ACQ holds at (x̄, ȳ).

Proof. Consider the set Ω′ defined in Lemma 1.1.6 associated with the set Ω given in (1.8).
Using such a lemma and the fact that Ω′ is given by linear constraints, we have

TΩ(x̄, ȳ) = TΩ′(x̄, ȳ) = DΩ′(x̄, ȳ) = DΩ(x̄, ȳ)

and therefore ACQ holds at (x̄, ȳ).
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Remark 1.2 Note that the validity of Theorem 1.1.7 does not depend on the separability
of the linear constraints, that is, it is valid for the more general set

{(x, y) ∈ R
n × R

n | Bx+ Cy = c, B̄x+ C̄y ≤ c̄, x ∗ y = 0}, (1.9)

where the matrices B, C, B̄ and C̄ and the vectors c and c̄ have appropriate dimensions.
Moreover, in the case I00(x̄, ȳ) �= ∅, ACQ may or may not be valid. For example, ACQ is
satisfied at every (x, y) in the set

Ω = {(x, y) ∈ R
2 | x = 0, 0 ≤ y ≤ 1, xy = 0}, (1.10)

in particular at the point (x̄, ȳ) = (0, 0). On the other hand, if

Ω′ = {(x, y) ∈ R
2 | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, xy = 0}, (1.11)

ACQ does not hold at the point (x̄, ȳ), as illustrated in the Figure 1.3.

Figura 1.3: Note that in both pictures we have I00(x̄, ȳ) �= ∅. The first picture illustrates
the set Ω given by (1.10) and the fact that ACQ holds at (x̄, ȳ). The second picture
illustrates the set Ω′ given by (1.11) where ACQ does not hold.

The next result is more precise and does not depend on strict complementarity
if we replace ACQ by GCQ.

Theorem 1.1.8 Consider the set Ω defined in (1.8). Then, every feasible point (x̄, ȳ) ∈ Ω
satisfies GCQ.

Proof. We invoke Lemma 1.1.2 to assume without loss of generality that there is no
inactive constraint at (x̄, ȳ). Denote ρ(x, y) = Ax− b, ρ̃(x, y) = Ãx− b̃, ζ(x, y) = My− r,
ζ̃(x, y) = M̃x − r̃ and ξ(x, y) = x ∗ y. Whenever there is no chance for ambiguity, we
suppress the argument and, for example, write I00 for I00(x̄, ȳ), I0± for I0±(x̄, ȳ) and so
on. Consider an arbitrary d = (u, v) ∈ DΩ(x̄, ȳ). We claim that the vectors (u, 0) and
(0, v) belong to TΩ(x̄, ȳ). Indeed,

ȳiui + x̄ivi = ∇ξi(x̄, ȳ)
Td = 0

for all i = 1, . . . , n. Thus,
uI0± = 0 and vI±0 = 0. (1.12)
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To prove that (u, 0) ∈ TΩ(x̄, ȳ), define tk = 1/k and the sequence (xk, yk) by

xk = x̄+ tku and yk = ȳ.

Thus,
(xk, yk)− (x̄, ȳ)

tk
→ (u, 0). Let us prove that (xk, yk) ⊂ Ω. Using (1.12), we see

that xk
I0± = 0 and ykI±0∪I00 = 0 and then xk ∗ yk = 0. Moreover, since (u, v) ∈ DΩ(x̄, ȳ),

we obtain
Au = 0, Ãu ≤ 0, Mv = 0 and M̃v ≤ 0

implying that
Axk = b, Ãxk ≤ b̃, Myk = r and M̃yk ≤ r̃.

So, (xk, yk) ⊂ Ω and then (u, 0) ∈ TΩ(x̄, ȳ). The fact that (0, v) ∈ TΩ(x̄, ȳ) can be proved
analogously.

Finally, to establish the relation T ◦
Ω(x̄, ȳ) = D◦

Ω(x̄, ȳ), consider arbitrary vectors
p ∈ T ◦

Ω(x̄, ȳ) and d ∈ DΩ(x̄, ȳ). As seen above, we can write d = d1 + d2, with d1, d2 ∈
TΩ(x̄, ȳ). Thus, p

Td = pTd1 + pTd2 ≤ 0.

It should be noted that, contrary to what occurs in Theorem 1.1.7, the above
result cannot be generalized for the set defined in (1.9), as can be seen in the following
example.

Example 1.1.9 Consider the set

Ω = {(x, y) ∈ R
2 | x ≥ 0, y ≥ 0, −x+ y ≤ 0, xy = 0}.

It can be seen that
TΩ(0, 0) =

{
d ∈ R

2 | d1 ≥ 0, d2 = 0
}

and
DΩ(0, 0) =

{
d ∈ R

2 | 0 ≤ d2 ≤ d1
}
.

Hence, T ◦
Ω(0, 0) �= D◦

Ω(0, 0) (see Figure 1.4).

Figura 1.4: Illustration of the cones associated with the set Ω of the Example 1.1.9,
showing that GCQ does not hold.
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Obviously, we could bring Lemma 1.1.5 and Remark 1.1 back and analyze them
in the light of Theorems 1.1.7 and 1.1.8.

Now we recall the most well known constraint qualifications regarding the pro-
blem (1.1).

Definition 1.1.10 We say that linear independence constraint qualification (LICQ) is
satisfied at x̄ ∈ Ω if the set formed by the gradients of the active inequality constraints
and the gradients of the equality constraints

{∇gi(x̄) | i ∈ Ig(x̄)} ∪ {∇hi(x̄), i = 1, . . . , p}

is linearly independent.

Definition 1.1.11 We say that Mangasarian-Fromovitz constraint qualification (MFCQ)
holds at x̄ ∈ Ω if the gradient vectors ∇hi(x̄), i = 1, . . . , p, are linearly independent and
there exists a vector d ∈ R

n such that

∇gi(x̄)
Td < 0 and ∇hj(x̄)

Td = 0

for all i ∈ Ig(x̄) and j = 1, . . . , p.

It is well known that LICQ implies MFCQ, which in turn implies ACQ (see
Figure 1.5).

LICQ MFCQ ACQ GCQ

Figura 1.5: Some of the constraint qualifications considered in this work. An arrow
indicates a strict implication between two conditions.

Moreover, any constraint qualification ensures that a local minimizer is a KKT
point, as stated in the following classical result.

Theorem 1.1.12 (Karush-Kuhn-Tucker (KKT)) Let x∗ ∈ R
n be a local minimizer

of problem (1.1) and suppose that a constraint qualification is satisfied. Then there exists
λ = (λg, λh) ∈ R

m
+ × R

p such that (x∗, λg, λh) satisfies (1.3a) and (1.3b).

1.2 Sequential optimality conditions for standard NLP

The goal of this section is to present some well known approximate optimality conditions
for nonlinear constrained optimization [32–37].

Definition 1.2.1 [32] Let x̄ ∈ R
n be a feasible point for the problem (1.1). We say

that x̄ is an Approximate KKT (AKKT) point if there exist sequences (xk) ⊂ R
n and

(λk) =
(
λg,k, λh,k

) ⊂ R
m
+ × R

p such that xk → x̄,

∇xL(x
k, λg,k, λh,k) → 0, (1.13a)

min{−g(xk), λg,k} → 0. (1.13b)

We present in the appendix A two conditions equivalent to the above definition.
On the other hand, we have below two conditions stronger than AKKT.
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Definition 1.2.2 [35] Let x̄ ∈ R
n be a feasible point for the problem (1.1). We say

that x̄ is a Complementary Approximate KKT (CAKKT) point if there exist sequences
(xk) ⊂ R

n and (λk) =
(
λg,k, λh,k

) ⊂ R
m
+ × R

p such that xk → x̄,

∇xL(x
k, λg,k, λh,k) → 0, (1.14a)

λg,k ∗ g(xk) → 0 and λh,k ∗ h(xk) → 0. (1.14b)

Remark 1.3 Note that if (αk) ⊂ R+ and (βk) ⊂ R are sequences satisfying αkβk → 0
and βk → β̄ ≤ 0, then min{−βk, αk} → 0. Indeed, if β̄ < 0, we have αk → 0 and
hence αk < −βk for all k sufficiently large, giving min{−βk, αk} = αk → 0. On the other
hand, if β̄ = 0, we also conclude that min{−βk, αk} → 0, since αk ≥ 0. This means that
condition (1.14b) implies (1.13b), and thus CAKKT implies AKKT.

Another known sequential optimality condition aims to control the sign of the
Lagrange multipliers.

Definition 1.2.3 [31] Let x̄ ∈ R
n be a feasible point for the problem (1.1). We say that

x̄ is a Positive Approximate KKT (PAKKT) point if there exist sequences (xk) ⊂ R
n and

(λk) =
(
λg,k, λh,k

) ⊂ R
m
+ × R

p such that xk → x̄,

∇xL(x
k, λg,k, λh,k) → 0, (1.15a)

min{−g(xk), λg,k} → 0, (1.15b)

λg,k
i gi(x

k) > 0 if lim sup
k→∞

λg,k
i

δk
> 0, (1.15c)

λh,k
j hj(x

k) > 0 if lim sup
k→∞

|λh,k
j |
δk

> 0, (1.15d)

where δk = ‖(1, λk)‖∞.

As well known in the literature, all the three sequential conditions above are
necessary optimality conditions without any constraint qualification.

1.3 Relations between the MPCaC and the reformu-

lated problems

In this section we present results that show some properties of the reformulated problems
(2) and (3) and the equivalence between their solutions and the solutions of the cardinality
problem (1). Such results are based on the ones presented in [2].

We start by noting that it is immediate that every feasible point of the mixed-
integer problem (2) is also feasible for the relaxed problem (3), but the converse is clearly
false. There is, however, a particular case in which the equivalence holds, as we can see
from the next result.

Lemma 1.3.1 Let (x̄, ȳ) be a feasible point of the relaxed problem (3) and suppose that
‖x̄‖0 = α. Then,

1. eT ȳ = n− α;

2. ȳi =

{
0, if i /∈ I0(x̄)
1, if i ∈ I0(x̄).
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So, I00(x̄, ȳ) = ∅ and, in particular, (x̄, ȳ) is feasible for the mixed-integer problem (2).

Proof. Note first that |I0(x̄)| = n− α and ȳi = 0 for i /∈ I0(x̄). Thus, since ȳi ≤ 1,

n− α ≤ eT ȳ =
∑

i∈I0(x̄)
ȳi ≤ n− α,

yielding eT ȳ = n− α. Therefore, ȳi = 1 for i ∈ I0(x̄).

Now we relate feasible points of the cardinality problem with feasible points of
the reformulated ones.

Lemma 1.3.2 Consider a point x̄ ∈ R
n.

1. If x̄ is feasible for the cardinality problem (1), then there exists ȳ ∈ R
n such that

(x̄, ȳ) is feasible for the mixed-integer problem (2) and, hence, feasible for the relaxed
problem (3). If, in addition, ‖x̄‖0 = α, then the vector ȳ is unique;

2. If (x̄, ȳ) is feasible for (3), then x̄ is feasible for (1).

Proof. Denote r = ‖x̄‖0 and J = {i | ȳi = 0}.
1. Defining ȳ ∈ R

n by ȳi = 0, if i /∈ I0(x̄) and ȳi = 1, if i ∈ I0(x̄), we have eT ȳ =
n− r ≥ n− α and x̄iȳi = 0 for all i = 1, . . . , n, which implies that (x̄, ȳ) is feasible
for (2). If ‖x̄‖0 = α, the uniqueness follows from Lemma 1.3.1.

2. If (x̄, ȳ) is feasible for (3), then |J | ≥ r. So, n − α ≤ eT ȳ ≤ n − r, meaning that
‖x̄‖0 ≤ α. Therefore, x̄ is feasible for (1).

The following theorem states that the MPCaC problem has a global minimizer if
and only if the reformulated problems have global minimizers too.

Theorem 1.3.3 Consider a point x∗ ∈ R
n.

1. If x∗ is a global solution of problem (1), then there exists a vector y∗ ∈ R
n such that

(x∗, y∗) is a global solution of problems (2) and (3). Moreover, for each reformulated
problem, every feasible pair of the form (x∗, ȳ) is a global solution;

2. If (x∗, y∗) is a global solution of (2) or (3), then x∗ is a global solution of (1).

Proof.

1. Let x∗ be a global solution of (1). By Lemma 1.3.2 there exists y∗ ∈ R
n such that

(x∗, y∗) is feasible for (2) and, hence, feasible for (3). Given an arbitrary feasible
point (x, y) for (2), it is also feasible for (3) and again by Lemma 1.3.2, we conclude
that x is feasible for (1). So, f(x∗) ≤ f(x) for such an x, proving that (x∗, y∗) is a
global solution of (2) and (3). Since this argument does not depend on y, the second
statement is valid as well.

2. If (x∗, y∗) is a global solution of (2), by Lemma 1.3.2 we have that x∗ is feasible
for (1). Given an arbitrary feasible point x for (1), there exists y ∈ R

n such that
(x, y) is feasible for (2). So, f(x∗) ≤ f(x) for such an x, proving that x∗ is a global
solution of (1). On the other hand, if (x∗, y∗) is a global solution of (3), we can use
the same arguments to see that x∗ is a global solution of (1).
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As a consequence of Theorem 1.3.3, we have that every global solution of (2) is
also a global solution of (3). However, the converse is not necessarily true, as we can see
in the example below.

Example 1.3.4 Consider the relaxed problem

minimize
x,y∈R3

(x1 − 1)2 + (x2 − 1)2 + x2
3

subject to x1 ≤ 0,
y1 + y2 + y3 ≥ 1,
xiyi = 0, i = 1, 2, 3,
0 ≤ yi ≤ 1, i = 1, 2, 3.

Given any t ∈ [0, 1], the pair (x∗, y∗), with x∗ = (0, 1, 0) and y∗ = (1− t, 0, t), is a global
solution of the relaxed problem, but for t ∈ (0, 1) this point is not even feasible for the
mixed-integer problem (2).

Now, let us discuss a result concerning the existence of global minimizers for the
MPCaC and the reformulated problems. For this purpose, note first the closedness of
the set defined by the cardinality constraint. Indeed, despite the fact that the function
x �→ ‖x‖0 is not continuous, it is lower semicontinuous and hence, given α ≥ 0, the level
set C = {x ∈ R

n | ‖x‖0 ≤ α} is closed [47]. In Appendix A we give an alternative and
direct proof of the closedness of the set defined by the cardinality constraint. Therefore,
another consequence of Theorem 1.3.3 is the following result.

Theorem 1.3.5 [2] Suppose that the feasible set Ω0 = {x ∈ X | ‖x‖0 ≤ α} of the
cardinality-constrained problem (1) is nonempty and that X is compact. Then the problems
(1), (2) and (3) have a nonempty solution set.

Now, let us analyze the relations among the problems by considering local solu-
tions. We shall see that, differently from the global case, part of the equivalence is lost,
but the relations of MPCaC with the relaxed problem remains valid.

Theorem 1.3.6 [2] Let x∗ ∈ R
n be a local minimizer of (1). Then there exists a vector

y∗ ∈ R
n such that the pair (x∗, y∗) is a local minimizer of (3).

The next example shows that the converse of the above result is not valid.

Example 1.3.7 Consider the MPCaC and the corresponding relaxed problem

minimize
x∈R3

x2
1 + (x2 − 1)2 + (x3 − 1)2

subject to x1 ≤ 0,
‖x‖0 ≤ 2,

minimize
x,y∈R3

x2
1 + (x2 − 1)2 + (x3 − 1)2

subject to x1 ≤ 0,
y1 + y2 + y3 ≥ 1,
xiyi = 0, i = 1, 2, 3,
0 ≤ yi ≤ 1, i = 1, 2, 3.

Fix t ∈ (0, 1) and define x∗ = (0, 1, 0) and y∗ = (1−t, 0, t). We claim that the pair (x∗, y∗)
is a local solution of the relaxed problem. Indeed, if (x, y) is sufficiently close to (x∗, y∗),
then y1 �= 0 and y3 �= 0, which implies that x1 = 0 and x3 = 0. So, the objective value at
(x, y) is (x2 − 1)2 + 1 ≥ 1, proving the claim. Nevertheless, x∗ is not a local minimizer
of the MPCaC, because we can consider a point xδ = (0, 1, δ) with δ ∈ (0, 1) as close to
x∗ = (0, 1, 0) as we want whose objective value at this point is (δ − 1)2 < 1.
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Note that, in the above example, there are infinitely many vectors y∗ such that
(x∗, y∗) is a local solution of the relaxed problem. This is the reason why x∗ is not a local
minimizer of the MPCaC, as we can see from the next result.

Theorem 1.3.8 Let (x∗, y∗) be a local minimizer of problem (3). Then ‖x∗‖0 = α if and
only if y∗ is unique, that is, if there is exactly one y∗ such that (x∗, y∗) is a local minimizer
of (3). In this case, the components of y∗ are binary and x∗ is a local minimizer of (1).

Proof. The “only if” part and the claim that y∗ is a binary vector follow directly from
Lemma 1.3.1. The “if” part and the proof that x∗ is a local minimizer of (1) are in [2].

1.4 Relations between the MPCaC and other classes

of optimization problems

This section provides a brief comparison between MPCaC, MPCC, MPVC and MPSC.
Despite the similarities, there are significant differences between these classes of optimi-
zation problems.

Considering the set X ⊂ R
n defined by inequality and equality constraints, our

relaxed problem can be rewritten as

minimize
x,y

f(x)

subject to g(x) ≤ 0, h(x) = 0,
eTy ≥ n− α,
xiyi = 0, i = 1, . . . , n,
0 ≤ yi ≤ 1, i = 1, . . . , n,

(1.16)

where g : Rn → R
m and h : Rn → R

p are continuously differentiable functions. Using the
same arguments as in [2,30], if the inequality constraint g(x) ≤ 0 encompasses a positivity
constraint x ≥ 0, say, gi(x) = −xi, i = 1, . . . , n, we see that the problem (1.16) is exactly

minimize
x,y

f(x)

subject to gi(x) ≤ 0, i = n+ 1, . . . ,m,
h(x) = 0,
eTy ≥ n− α,
xi ≥ 0, i = 1, . . . , n,
xiyi = 0, i = 1, . . . , n,
0 ≤ yi ≤ 1, i = 1, . . . , n.

(1.17)

Thus, in this very specific case, the MPCaC problem has the form of an MPCC problem
[27,28], which is given by

minimize
x

f(x)

subject to g(x) ≤ 0, h(x) = 0,
G(x) ≥ 0, H(x) ≥ 0,
Gi(x)Hi(x) = 0, i = 1, . . . , n.

(1.18)

Note that we made an abuse of notation, since the variable x of the problem (1.18) plays
the role of the pair (x, y), of the problem (1.17). A similar discussion is presented at the
end of Section 4.1 of [2] and in Section 5 of [30]. We emphasize, however, that a general
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MPCaC problem cannot be stated as an MPCC, since we do not have the constraint
x ≥ 0.

Now, observe that if we replace the constraints xiyi = 0, i = 1, . . . , n, in the
problem (1.17) by xiyi ≤ 0, we have exactly the same problem, since x ≥ 0 and y ≥ 0.
Therefore this problem can be viewed as an MPVC problem [48], namely,

minimize
x

f(x)

subject to g(x) ≤ 0, h(x) = 0,
Hi(x) ≥ 0, Gi(x)Hi(x) ≤ 0, i = 1, . . . , n.

(1.19)

Finally, consider an MPSC problem [29]

minimize
x

f(x)

subject to g(x) ≤ 0, h(x) = 0,
Gi(x)Hi(x) = 0, i = 1, . . . , n.

(1.20)

In contrast to the above discussion, the relaxed problem (1.16), without any further
assumption, may be stated as an MPSC problem.

In view of the above relations, we conclude that it is not possible to employ the
stationarity concepts (weak and approximate) established for MPCC and MPVC to our
MPCaC problem. On the other hand, despite MPCaC is a particular case of an MPSC
problem, it may be not suitable to inherit the stationarity concepts of MPSC since this
problem is more general than an MPCaC. Therefore, considering the specific features of
an MPCaC problem, it becomes necessary to propose tailored stationarity concepts for
this class of problems.



Caṕıtulo 2

Weak stationarity conditions for
Mathematical Programs with
Cardinality Constraints: a unified
approach

The aim of this chapter is to analyze constraint qualifications and propose stationarity
conditions for MPCaC. For this purpose, we consider two cases: the linear case, if the set
X is given by linear constraints in the relaxed problem (3), and the nonlinear case, if the
set X is given by nonlinear constraints.

We start by showing that the most well known constraint qualifications, LICQ
and MFCQ, are not satisfied almost anywhere.

Proposition 2.1 Let (x̄, ȳ) be a feasible point of the problem (3) and suppose that x̄� �= 0
for some index � ∈ {1, . . . , n}. Then (x̄, ȳ) does not satisfy MFCQ and, therefore, it does
not satisfy LICQ.

Proof. Denote ξi(x, y) = xiyi and Hi(y) = −yi. Given d = (u, v) ∈ R
n × R

n, we have
∇ξi(x̄, ȳ)

Td = ȳiui + x̄ivi and ∇Hi(ȳ)
Tv = −vi. Since x̄� �= 0, it holds ȳ� = 0, which

implies that the constraint H� is active at ȳ and

∇ξ�(x̄, ȳ)
Td = x̄�v� and ∇H�(ȳ)

Tv = −v�.

So, there is no d ∈ R
n×R

n satisfying ∇ξ�(x̄, ȳ)
Td = 0 and ∇H�(ȳ)

Td < 0 simultaneously.
This means that (x̄, ȳ) cannot satisfy MFCQ and, hence, it does not satisfy LICQ as well.

We stress that, for MPCC problems, MFCQ is violated at every feasible point.
This constraint qualification has also been analyzed for MPVC [48] and MPSC [29] pro-
blems.

In the next section, we show, for the linear case, that every minimizer of the
relaxed problem (3) satisfies the KKT conditions.

2.1 MPCaC: the Linear Case

It is well known that a set defined by linear constraints naturally satisfies a constraint
qualification in standard NLP. In particular, ACQ holds for this kind of constraints. Now
we discuss what happens if we consider the relaxed problem (3) with X given by linear

29
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constraints. Note that in this case, we have linear (separable) constraints together with
a coupling complementarity constraint.

We obtain in this section, as a direct consequence of the Theorems 1.1.7 and
1.1.8, the constraint qualification analysis for the relaxed problem (3) in the linear case.

Theorem 2.1.1 Consider the problem (3), with X defined by linear (equality and/or
inequality) constraints, and its feasible set

Ω = {(x, y) ∈ X × R
n | eTy ≥ n− α, x ∗ y = 0, 0 ≤ y ≤ e}.

Then, every feasible point (x̄, ȳ) ∈ Ω satisfies GCQ. Moreover, If I00(x̄, ȳ) = ∅, then ACQ
holds at (x̄, ȳ).

Proof. It follows directly from Theorems 1.1.7 and 1.1.8.

Remark 2.1 Note that given an arbitrary function f : R2 → R, the problem of minimi-
zing f over the set Ω of the Example 1.1.9, is an MPCC for which GCQ does not hold
at the origin. Therefore, this example points out a significant difference between the class
of problems we are considering in this work, MPCaC, and the closely related problems
MPCC’s. Another MPCC problem in which all but the complementarity constraint are
linear and GCQ does not hold is presented in [24]. Hence, Theorem 2.1.1 evidences that
MPCaC is less degenerate than MPCC. Concerning the ACQ, a similar relationship is
found in [48], in which a variant of the standard MFCQ condition for MPVC, namely
VC-MFCQ, implies standard ACQ, provided that I00 = ∅.

Corollary 2.1.2 Under the assumptions of Theorem 2.1.1, if ‖x̄‖0 = α, then ACQ holds
at (x̄, ȳ).

Proof. It follows directly from Lemma 1.3.1.
In real problems, when modeling the problem, one can choose the parameter α

in such a way that the cardinality constraint is active. Thus, the above corollary suggests
that MPCaC problems are even less degenerate if the hypothesis is not considered.

As we pointed out in Remark 1.2, the condition I00(x̄, ȳ) = ∅ is sufficient but not
necessary for ACQ. There is, however, a situation in which the equivalence holds.

Proposition 2.1.3 Consider the problem (3) with X = R
n and its feasible set

Ω = {(x, y) ∈ R
n × R

n | eTy ≥ n− α, x ∗ y = 0, 0 ≤ y ≤ e}.

Given an arbitrary feasible point (x̄, ȳ) ∈ Ω, ACQ holds at (x̄, ȳ) if and only if I00(x̄, ȳ) = ∅.
Proof. Denote

θ(y) = n− α− eTy, H(y) = −y, H̃(y) = y − e and ξ(x, y) = x ∗ y.

Then, given d = (u, v) ∈ R
n × R

n, we have

∇θ(ȳ)Tv = −eTv, (2.1a)

∇Hi(ȳ)
Tv = −vi, (2.1b)

∇H̃i(ȳ)
Tv = vi, (2.1c)

∇ξi(x̄, ȳ)
Td = ȳiui + x̄ivi. (2.1d)
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Assume first that I00(x̄, ȳ) �= ∅, take an index � ∈ I00(x̄, ȳ) and consider the vector
d̄ = (e�, e�) ∈ R

n × R
n. Let us prove that d̄ ∈ DΩ(x̄, ȳ). We have

∇θ(ȳ)T e� = −1 and ∇Hi(ȳ)
T e� ≤ 0

for all i. Moreover, the constraint H̃� is inactive at (ȳ) and ∇Hi(ȳ)
T e� = 0 for all

i �= �. Note also that ∇ξi(x̄, ȳ)
T d̄ = 0 for all i. Therefore, d̄ ∈ DΩ(x̄, ȳ). We claim that

d̄ /∈ TΩ(x̄, ȳ). Indeed, given any d = (u, v) ∈ TΩ(x̄, ȳ), there exist sequences (xk, yk) ⊂ Ω

and tk → 0 such that
(xk, yk)− (x̄, ȳ)

tk
→ (u, v). This implies that

xk
�

tk
=

xk
� − x̄�

tk
→ u� and

yk�
tk

=
yk� − ȳ�

tk
→ v�.

So, 0 =
xk
�y

k
�

t2k
→ u�v�, yielding u�v� = 0. Therefore, d̄ = (e�, e�) /∈ TΩ(x̄, ȳ) and, hence,

ACQ does not hold at (x̄, ȳ). The converse follows directly from Theorem 1.1.7.

A concluding remark of this section is that, in view of Theorem 2.1.1, with X
defined by linear constraints, every minimizer of the relaxed problem (3) satisfies the KKT
conditions. This fact, however, does not mean that weaker stationarity conditions (than
KKT) are unnecessary or less important. They are of interest from both the theoretical
and the practical viewpoint, as in the sparsity constrained optimization (if there is only
the cardinality constraint). See [14,20,21] and references therein for a more detailed
discussion.

We now turn our attention to the general nonlinear case, to be discussed in the
next section.

2.2 MPCaC: the Nonlinear Case

In this section we present one of the main contributions of this work. We propose a unified
approach that goes from the weakest to the strongest stationarity for the cardinality
problem with general constraints. This approach, which will be called WI-stationarity,
is based on a given set of indices I such that the complementarity constraint is always
satisfied. Moreover, different levels of stationarity can be obtained depending on the range
for the set I. Besides, we prove that this condition is indeed weaker than the classical
KKT condition, that is, every KKT point fulfills WI-stationarity. We also point out that
our definition generalizes the concepts of S- and M -stationarity presented in [2] for a
proper choice of the index set I.

For this purpose, consider the MPCaC problem (1) with

X = {x ∈ R
n | g(x) ≤ 0, h(x) = 0}, (2.2)

where g : Rn → R
m and h : Rn → R

p are continuously differentiable functions.
Differently from the linear case, if the set X is given by nonlinear constraints we

cannot guarantee that the standard constraints qualifications are satisfied for the relaxed
problem (3), making convenient the study of stationarity conditions weaker than KKT.

2.2.1 Constraint qualifications for MPCaC

We have proved at the beginning of this chapter that the most well known constraint
qualifications, LICQ and MFCQ, are not satisfied almost anywhere. Even the weaker
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condition, ACQ, may fail to hold in a wide range of cardinality problems, as we saw in
Proposition 2.1.3. In that situation, despite considering the simplest MPCaC problem,
without constraints other than the cardinality constraint itself, ACQ does not hold if
there is an index i for which x̄i = ȳi = 0.

Since MPCaC are highly degenerate problems, even GCQ, the weakest constraint
qualification, may be violated. Indeed, it can be seen in the following example where the
set X is given by a single quadratic constraint.

Example 2.2.1 Consider the MPCaC and the corresponding relaxed problem

minimize
x∈R2

x1 + x2

subject to −x1 + x2
2 ≤ 0,

‖x‖0 ≤ 1,

minimize
x,y∈R2

x1 + x2

subject to −x1 + x2
2 ≤ 0,

y1 + y2 ≥ 1,
xiyi = 0, i = 1, 2,
0 ≤ yi ≤ 1, i = 1, 2.

Note that x∗ = (0, 0) is the unique global solution of the cardinality problem and, defining
y∗ = (1, 0), the pair (x∗, y∗) is a global solution of the relaxed problem. However, this pair
does not satisfy GCQ, because otherwise it would be a KKT point, that is, the expression⎛

⎜⎜⎝
1
1
0
0

⎞
⎟⎟⎠+ μ1

⎛
⎜⎜⎝

−1
0
0
0

⎞
⎟⎟⎠+ μ2

⎛
⎜⎜⎝

0
0

−1
−1

⎞
⎟⎟⎠+ μ3

⎛
⎜⎜⎝

0
0
0

−1

⎞
⎟⎟⎠+ μ4

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠+ λ

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠

would vanish for some Lagrange multipliers μ ∈ R
4, λ ∈ R, what is impossible due to its

second row. Figure 2.1 illustrates this example.

- 2 0 2 4

- 2

- 1

0

1

2

3

Figura 2.1: Illustration of MPCaC problem in Example 2.2.1. The feasible set is the thick
horizontal line and the level curves of the objective function are shown as dashed lines.
The global solution x∗ is the origin.

The violation of GCQ in the previous example is due to the existence of a nonli-
near constraint, since in the linear case GCQ is always satisfied. Moreover, the example
shows that the classical stationarity conditions may not be able to detect the solution.

2.2.2 Stationarity conditions for MPCaC

As we have seen before, except in special cases, e.g., if X is polyhedral and convex, we do
not have a constraint qualification for the relaxed problem (3). So, even in simple cases
the standard KKT conditions are not necessary optimality conditions.



Weak stationarity conditions for MPCaC: a unified approach 33

Thus, in this section we define weaker stationarity concepts to deal with this class
of problems. In fact, we propose a unified approach that goes from the weakest to the
strongest stationarity.

For ease of presentation we consider the functions (some of which have already
been used in the proof of Proposition 2.1.3) θ : Rn → R, H, H̃,G : Rn → R

n given by

θ(y) = n− α− eTy, H(y) = −y, H̃(y) = y − e and G(x) = x.

Then we can rewrite the relaxed problem (3) as

minimize
x,y

f(x)

subject to g(x) ≤ 0, h(x) = 0,
θ(y) ≤ 0,

H(y) ≤ 0, H̃(y) ≤ 0,
G(x) ∗H(y) = 0.

(2.3)

Given a feasible point (x̄, ȳ) for the problem (2.3) and a set of indices I such that

I0+(x̄, ȳ) ∪ I01(x̄, ȳ) ⊂ I ⊂ I0(x̄), (2.4)

we have thatGi(x̄) = 0 for i ∈ I andHi(ȳ) = 0 for i ∈ I00(x̄, ȳ)∪I±0(x̄, ȳ). This suggests to
consider an auxiliary problem by removing the challenging constraint G(x)∗H(y) = 0 and
including alternative ones that ensure the null product. We then define the I-Tightened
Nonlinear Problem at (x̄, ȳ) by

minimize
x,y

f(x)

subject to g(x) ≤ 0, h(x) = 0,
θ(y) ≤ 0,

H̃(y) ≤ 0,
Hi(y) ≤ 0, i ∈ I0+(x̄, ȳ) ∪ I01(x̄, ȳ),
Hi(y) = 0, i ∈ I00(x̄, ȳ) ∪ I±0(x̄, ȳ),
Gi(x) = 0, i ∈ I.

(2.5)

This problem will be also indicated by TNLPI(x̄, ȳ) and, whenever there is no
chance for ambiguity, it will be referred to simply as tightened problem. Note that we
tighten only those constraints that are involved with the complementarity constraint
G(x)∗H(y) = 0, by converting the active inequalitiesHi’s into equalities and incorporating
the equality constraints Gi’s. The upper set I0(x̄) in the range given by (2.4) guarantees
that we do not incorporate a constraint Gi(x) = 0 for some i such that Gi(x̄) = x̄i �= 0.

The following lemma is a straightforward consequence of the definition of TNLPI(x̄, ȳ).

Lemma 2.2.2 Consider the tightened problem (2.5). Then,

1. all the inequalities defined by Hi, i ∈ I0+(x̄, ȳ) ∪ I01(x̄, ȳ), are inactive at (x̄, ȳ);

2. (x̄, ȳ) is feasible for TLNPI(x̄, ȳ);

3. every feasible point of (2.5) is feasible for (2.3);

4. if (x̄, ȳ) is a global (local) minimizer of (2.3), then it is also a global (local) minimizer
of TNLPI(x̄, ȳ).
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The Lagrangian function associated with TNLPI(x̄, ȳ) is the function

LI : R
n × R

n × R
m × R

p × R× R
n × R

n × R
|I| → R

given by

LI(x, y, λ
g, λh, λθ, λH , λH̃ , λG

I ) = f(x) + (λg)T g(x) + (λh)Th(x) + λθθ(y)

+(λH)TH(y) + (λH̃)T H̃(y) + (λG
I )

TGI(x).

Note that the tightened problem, and hence its Lagrangian, depends on the index
set I, which in turn depends on the point (x̄, ȳ). It should be also noted that

∇x,yLI(x, y, λ) =

⎛
⎝ ∇xL(x, λ

g, λh) +
∑
i∈I

λG
i ei

−λθe− λH + λH̃

⎞
⎠ . (2.6)

Weak stationarity

Our weaker stationarity concept for the relaxed problem (2.3) is then defined in terms of
the tightened problem as follows.

Definition 2.2.3 Consider a feasible point (x̄, ȳ) of the relaxed problem (2.3) and a set
of indices I satisfying (2.4). We say that (x̄, ȳ) is I-weakly stationary (WI-stationary)
for this problem if there exists a vector

λ = (λg, λh, λθ, λH , λH̃ , λG
I ) ∈ R

m
+ × R

p × R+ × R
n × R

n
+ × R

|I|

such that

1. ∇x,yLI(x̄, ȳ, λ) = 0;

2. (λg)T g(x̄) = 0;

3. λθθ(ȳ) = 0;

4. (λH̃)T H̃(ȳ) = 0;

5. λH
i = 0 for all i ∈ I0+(x̄, ȳ) ∪ I01(x̄, ȳ).

Remark 2.2 In view of (2.6), the first item of Definition 2.2.3 means that

∇f(x̄) +
m∑
i=1

λg
i∇gi(x̄) +

p∑
i=1

λh
i ∇hi(x̄) +

∑
i∈I

λG
i ei = 0 (2.7)

−λθe− λH + λH̃ = 0. (2.8)

Items 2, 3 and 4 represent the standard KKT complementarity conditions for the inequality
constraints g(x) ≤ 0, θ(y) ≤ 0 and H̃(y) ≤ 0, respectively, of the tightened problem
(2.5). In view of Lemma 2.2.2(1), the last item also represents the KKT complementarity
conditions for the constraints Hi(y) ≤ 0, i ∈ I0+(x̄, ȳ)∪I01(x̄, ȳ), of the tightened problem.

As an immediate consequence of Remark 2.2 we have the following characteri-
zation of WI-stationarity for the relaxed problem in terms of the stationarity for the
tightened problem.
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Proposition 2.2.4 Let (x̄, ȳ) be a feasible point of the relaxed problem (2.3). Then, (x̄, ȳ)
is WI-stationary if and only if it is a KKT point for the tightened problem (2.5).

Proof. It follows from the feasibility of (x̄, ȳ), stated in Lemma 2.2.2(2), the comments
in Remark 2.2, the fact that LI is the Lagrangian of TNLPI(x̄, ȳ) and that the non-
negativeness of the multipliers corresponding to the inequality constraints Hi(x, y) ≤ 0,
i ∈ I0+(x̄, ȳ)∪I01(x̄, ȳ), is equivalent to the last item of Definition 2.2.3, because of Lemma
2.2.2(1).

Note that in view of Proposition 2.2.4 we could have defined WI-stationarity sim-
ply as KKT for the tightened problem (2.5). Nevertheless, we prefer as in Definition 2.2.3
in order to have its last condition 5 explicitly, instead of hiding it in the complementarity
condition. This way of stating weak stationarity is also similar to that used in the MPCC
setting, see [27,49].

In the next result we justify why Definition 2.2.3 is considered a weaker statio-
narity concept than KKT for the relaxed problem.

Theorem 2.2.5 Suppose that (x̄, ȳ) is a KKT point for the relaxed problem (2.3). Then
(x̄, ȳ) is WI-stationary for every I satisfying (2.4).

Proof. Denoting ξ(x, y) = x ∗ y, we have ∇ξi(x̄, ȳ) =

(
ȳiei
x̄iei

)
. By the hypothesis, there

exists a vector

(λg, λh, λθ, μ, λH̃ , λξ) ∈ R
m
+ × R

p × R+ × R
n
+ × R

n
+ × R

n

such that ( ∇f(x̄)
0

)
+

m∑
i=1

λg
i

( ∇gi(x̄)
0

)
+

p∑
i=1

λh
i

( ∇hi(x̄)
0

)
+ λθ∇θ(ȳ)

+
n∑

i=1

μi∇Hi(ȳ) +
n∑

i=1

λH̃
i ∇H̃i(ȳ) +

n∑
i=1

λξ
i∇ξi(x̄, ȳ) =

(
0
0

)
,

which means that

∇f(x̄) +
m∑
i=1

λg
i∇gi(x̄) +

p∑
i=1

λh
i ∇hi(x̄) +

∑
i∈I01

λξ
i ei +

∑
i∈I0+

λξ
i ȳiei = 0, (2.9)

−λθe− μ+ λH̃ +
∑
i∈I±0

λξ
i x̄iei = 0, (2.10)

where, for simplicity, we denoted I0+ = I0+(x̄, ȳ) and I±0 = I±0(x̄, ȳ).
Moreover, we have

(λg)T g(x̄) = λθθ(ȳ) = μTH(ȳ) = (λH̃)T H̃(ȳ) = 0. (2.11)

Defining

λG
i =

{
λξ
i ȳi, for i ∈ I01 ∪ I0+,

0, for i ∈ I \ I01 ∪ I0+
and λH

i =

{
μi, for i ∈ I0,

μi − λξ
i x̄i, for i ∈ I±0,
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we conclude immediately that (λg, λh, λθ, λH , λH̃ , λG
I ) satisfies (2.7) and items 2–5 of De-

finition 2.2.3. To finish the proof, note that

−λθe− λH + λH̃ = −λθe+ λH̃ −
∑
i∈I0

μiei −
∑
i∈I±0

(μi − λξ
i x̄i)ei

= −λθe+ λH̃ − μ+
∑
i∈I±0

λξ
i x̄iei

which, in view of (2.10), gives (2.8).
As we have discussed before, a minimizer of the relaxed problem does not ne-

cessarily satisfy the KKT conditions mostly because of the complementarity constraint,
which may prevent the fulfillment of constraint qualifications. This fact was illustrated
in Example 2.2.1. Let us revisit this example in the light of our WI-stationarity concept.
Now we can capture the minimizer by means of the KKT conditions for the tightened
problem.

Example 2.2.6 Consider the MPCaC and the corresponding relaxed problem presented
in Example 2.2.1.

minimize
x∈R2

x1 + x2

subject to −x1 + x2
2 ≤ 0,

‖x‖0 ≤ 1,

minimize
x,y∈R2

x1 + x2

subject to −x1 + x2
2 ≤ 0,

y1 + y2 ≥ 1,
xiyi = 0, i = 1, 2,
0 ≤ yi ≤ 1, i = 1, 2.

We saw that x∗ = (0, 0) is the unique global solution of MPCaC and (x∗, y∗), with y∗ =
(1, 0), is a global solution of the relaxed problem. Besides, this pair does not satisfy GCQ
and it is not a KKT point. Let us formulate the tightened problem for I = I0(x

∗). We
have, suppressing the arguments x∗ and (x∗, y∗),

I0 = {1, 2}, I01 = {1}, I00 = {2} and I±0 = I0+ = ∅.
So, the TNLPI(x

∗, y∗) is given by

minimize
x,y∈R2

x1 + x2

subject to −x1 + x2
2 ≤ 0,

1− y1 − y2 ≤ 0,
yi − 1 ≤ 0, i = 1, 2,
−y1 ≤ 0,
−y2 = 0,
xi = 0, i = 1, 2.

Defining

λg = 0, λθ = 1, λH̃ =

(
1
0

)
, λG =

( −1
−1

)
and λH =

(
0

−1

)
,

we have

∇x,yLI(x
∗, y∗, λ) =

⎛
⎜⎜⎝

1
1
0
0

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

0
0

−1
−1

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠−

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠−

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠−

⎛
⎜⎜⎝

0
0
0

−1

⎞
⎟⎟⎠ = 0.

Thus, (x∗, y∗) is a KKT point for the tightened problem, that is, it is WI-stationary for
the relaxed problem. Note also that ACQ holds at this point for TNLPI(x

∗, y∗).
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As a matter of fact, we can state WI-stationarity using only the original variables
x. This follows from the next result.

Proposition 2.2.7 If (x̄, ȳ) is WI-stationary for the relaxed problem (2.3) then there
exists a vector

(λg, λh, γ) ∈ R
m
+ × R

p × R
|I|

such that

∇f(x̄) +
m∑
i=1

λg
i∇gi(x̄) +

p∑
i=1

λh
i ∇hi(x̄) +

∑
i∈I

γiei = 0, (2.12)

(λg)T g(x̄) = 0. (2.13)

Conversely, if x̄ satisfies the conditions (2.12) and (2.13) then every feasible point (x̄, ŷ)
for the relaxed problem (2.3) is WI-stationary.

Proof. Suppose first that (x̄, ȳ) is WI-stationary, that is, it satisfies Definition 2.2.3. In
view of (2.7), if we define γ = λG

I , we obtain (2.12). Moreover, (2.13) follows from
Definition 2.2.3(2).

On the other hand, assume that x̄ satisfies the conditions (2.12) and (2.13) and

(x̄, ŷ) is feasible for (2.3). Then, defining λG
I = γ and setting λθ = 0, λH = λH̃ = 0, we

obtain (2.7) and (2.8). Therefore, (x̄, ŷ) is a WI-stationary point.

Remark 2.3 Note that the conditions (2.12) and (2.13) generalize the concepts of S-
and M-stationarity presented in [2] if we consider I = I0+(x̄, ȳ)∪ I01(x̄, ȳ) and I = I0(x̄),
respectively. However, we stress that here we have different levels of weak stationarity,
according to the set I between I0+(x̄, ȳ) ∪ I01(x̄, ȳ) and I0(x̄). Moreover, an interesting
and direct consequence of Proposition 2.2.7 is that stationarity gets stronger as the index
set reduces (cf. proposition below).

Proposition 2.2.8 Let (x̄, ȳ) be feasible for the relaxed problem (2.3). If

I0+(x̄, ȳ) ∪ I01(x̄, ȳ) ⊂ I ′ ⊂ I ⊂ I0(x̄),

then WI′-stationarity implies WI-stationarity.

Proposition 2.2.7 also makes easier the task of verifying whether a point is or is
not WI-stationary, as we can see in the next example.

Example 2.2.9 Consider the following MPCaC and the associated relaxed problem.

minimize
x∈Rn

f(x)

subject to g(x) ≤ 0,
‖x‖0 ≤ n− 1,

minimize
x,y∈Rn

f(x)

subject to g(x) ≤ 0,
eTy ≥ 1,
x ∗ y = 0,
0 ≤ y ≤ e,

where the functions f : R
n → R and g : R

n → R
n−1 are given by f(x) = eTx and

gi(x) = −xi + x2
n, i = 1, . . . , n − 1. Note that every feasible point x of MPCaC satisfies

xn = 0 because otherwise we would have ‖x‖0 = n. Therefore, x∗ = 0 is the unique global
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solution of MPCaC and (x∗, y∗), with y∗ = e1, is a global solution of the relaxed problem.
Besides, we have

I0 = {1, . . . , n}, I01 = {1}, I00 = {2, . . . , n} and I0+ = ∅.

Consider an arbitrary index set I such that I01 ⊂ I ⊂ I0. Then, the point (x∗, y∗) is
WI-stationary if and only if n ∈ I.

Indeed, suppose first that n ∈ I. Defining λg
i = 1, i = 1, . . . , n− 1, γn = −1 and

γi = 0, i ∈ I \ {n}, we have

∇f(x∗) +
n−1∑
i=1

λg
i∇gi(x

∗) +
∑
i∈I

γiei =

(
ẽ
1

)
+

( −ẽ
0

)
+

(
0

−1

)
,

where ẽ denotes the vector of all ones in R
n−1. So, we obtain (2.12) and (2.13). On the

other hand, if n /∈ I, then there is no vector (λg, γ) ∈ R
n−1
+ ×R

|I| such that the expression

∇f(x∗) +
n−1∑
i=1

λg
i∇gi(x

∗) +
∑
i∈I

γiei =

(
ẽ
1

)
−

(
λg

0

)
+

(
γI
0

)

vanishes. Therefore, condition (2.12) can never be satisfied.

Another feature of Proposition 2.2.7 is that it suggests that our WI-stationarity
concept can be formulated in terms of x only, for the original cardinality-constrained
problem.

Definition 2.2.10 Consider the MPCaC problem defined in (1) with the set X given by
(2.2) and a feasible point x̄ for this problem. Given I ⊂ I0(x̄), we say that the point x̄ is
I-weakly stationary (WI-stationary) for problem (1) if there exists a vector (λg, λh, γ) ∈
R

m
+ × R

p × R
|I| satisfying the conditions (2.12) and (2.13).

We can state here a result analogous to Proposition 2.2.4, relating the WI-
stationarity for the cardinality problem with the classical notion of stationarity for some
tightened problem. More precisely, given a feasible point x̄ of (1), consider the associated
tightened problem, indicated by TNLPI(x̄),

minimize f(x)
subject to g(x) ≤ 0,

h(x) = 0,
xi = 0, i ∈ I.

(2.14)

Proposition 2.2.11 Let x̄ be a feasible point of the MPCaC problem (1). Then, x̄ is
WI-stationary if and only if it is a KKT point for the tightened problem (2.14).

Despite the idea of working only on x, instead of adding the artificial variable y,
seems to be better and simpler, this approach is not suitable here. Indeed, it should be
noted that tightening the MPCaC problem does not necessarily preserve the minimizers.
For example, if |I| < n−α, then the feasible set of TNLPI(x̄) is no longer a subset of the
feasible set of problem(1). This means that we loose here properties like the last items
of Lemma 2.2.2. Another issue in this setting is that, unlike the relaxed formulation, for
which we shall define stronger stationarity, we cannot define stronger stationarity concepts
for the cardinality problem. We have, however, the following result if |I| ≥ n− α.
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Proposition 2.2.12 Let x∗ be a minimizer of the MPCaC problem (1). If I ⊂ I0(x
∗) is

such that |I| ≥ n − α, then x∗ is also a minimizer of TNLPI(x
∗). In particular, x∗ is a

minimizer of TNLPI0(x∗)(x
∗).

We have to mention that Propositions 2.2.11 and 2.2.12, specialized for I = I0(x̄),
are presented in [2].

We conclude this section with an important consequence of the Remark 2.3 and
Proposition 2.2.8 that refers to the fulfillment of WI-stationarity under some CQ for
MPCaC. In [30] the authors introduced several MPCaC-tailored constraint qualifications
(CC-CQ). In particular, they proved that S-stationarity (see Remark 2.3) holds at mini-
mizers under each one of the proposed CC-CQ. Therefore, since S-stationarity at a point
(x̄, ȳ) is equivalent to WIS -stationarity, with IS = I0+(x̄, ȳ) ∪ I01(x̄, ȳ), and WIS implies
any other WI in the range IS ⊂ I ⊂ I0(x̄), we have that a local minimizer of the relaxed
problem (3), for which a CC-CQ holds, satisfies WI .

Strong stationarity

In this section we define strong stationarity as a special case of Definition 2.2.3 and prove,
among other results, that it coincides with the classical KKT conditions for the relaxed
problem.

Definition 2.2.13 Consider a feasible point (x̄, ȳ) for the relaxed problem (2.3). We say
that (x̄, ȳ) is strongly stationary (S-stationary) for this problem if it is WI-stationary with
I = I0+(x̄, ȳ)∪ I01(x̄, ȳ), that is, if it satisfies Definition 2.2.3 with this specific index set.

Let us start by showing the equivalence between S-stationarity and KKT.

Theorem 2.2.14 [2] Let (x̄, ȳ) be a feasible point for the relaxed problem (2.3). Then,
(x̄, ȳ) is S-stationary if and only if it satisfies the usual KKT conditions for this problem.

Proof. Note first that sufficiency follows directly from Theorem 2.2.5. To prove the neces-
sity, note that by Proposition 2.2.7 there exists a vector

(λg, λh, γ) ∈ R
m
+ × R

p × R
|I0+∪I01|

such that

∇f(x̄) +
m∑
i=1

λg
i∇gi(x̄) +

p∑
i=1

λh
i ∇hi(x̄) +

∑
i∈I0+∪I01

γiei = 0,

(λg)Tg(x̄) = 0.

Defining λθ = 0, λH = λH̃ = 0 and

λξ
i =

{
γi/ȳi, for i ∈ I0+ ∪ I01,

0, for i ∈ I±0 ∪ I00,

we conclude that the vector

(λg, λh, λθ, λH , λH̃ , λξ) ∈ R
m
+ × R

p × R+ × R
n
+ × R

n
+ × R

n
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fulfills the conditions

∇f(x̄) +
m∑
i=1

λg
i∇gi(x̄) +

p∑
i=1

λh
i ∇hi(x̄) +

∑
i∈I0+∪I01

λξ
i ȳiei = 0, (2.15)

−λθe− λH + λH̃ +
∑
i∈I±0

λξ
i x̄iei = 0, (2.16)

(λg)Tg(x̄) = λθθ(ȳ) = (λH)TH(ȳ) = (λH̃)T H̃(ȳ) = 0. (2.17)

Since we have defined ξ(x, y) = x ∗ y, we see that (2.15) and (2.16) are equivalent to

( ∇f(x̄)
0

)
+

m∑
i=1

λg
i

( ∇gi(x̄)
0

)
+

p∑
i=1

λh
i

( ∇hi(x̄)
0

)
+ λθ∇θ(ȳ)

+
n∑

i=1

λH
i ∇Hi(ȳ) +

n∑
i=1

λH̃
i ∇H̃i(ȳ) +

n∑
i=1

λξ
i∇ξi(x̄, ȳ) =

(
0
0

)

and, consequently, (x̄, ȳ) is a KKT point for the relaxed problem (2.3).
As an immediate consequence of Theorem 2.2.14 and Proposition 2.2.4 we have

the equivalence between the KKT conditions for the relaxed and tightened problems if
I = I0+(x̄, ȳ) ∪ I01(x̄, ȳ).

Corollary 2.2.15 Consider a feasible point (x̄, ȳ) for the relaxed problem (2.3) and I =
I0+(x̄, ȳ)∪I01(x̄, ȳ). Then, (x̄, ȳ) is a KKT point for (2.3) if and only if it is a KKT point
for the tightened problem TNLPI(x̄, ȳ), given by (2.5).

It should be noted that, if I00(x̄, ȳ) = ∅ then all stationarity conditions presented
here are the same and correspond to KKT for the relaxed problem. This follows directly
from (2.4). In this case, we say that (x̄, ȳ) satisfies the strict complementarity.

On the other hand, given an arbitrary index set I satisfying (2.4), we have the
following result.

Proposition 2.2.16 Suppose that (x̄, ȳ) is WI-stationary for the relaxed problem (2.3)

with the associated vector of multipliers λ = (λg, λh, λθ, λH , λH̃ , λG
I ). If λG

I00(x̄,ȳ)
= 0, then

(x̄, ȳ) is S-stationary.

Proof. Note that Definition 2.2.3, relation (2.7) and the condition λG
I00(x̄,ȳ)

= 0 allow us to
write

∇f(x̄) +
m∑
i=1

λg
i∇gi(x̄) +

p∑
i=1

λh
i ∇hi(x̄) +

∑
i∈I0+∪I01

λG
i ei = 0,

(λg)Tg(x̄) = 0.

Using Proposition 2.2.7 with I = I0+ ∪ I01, we see that (x̄, ȳ) is WI-stationary, which
means S-stationary.

Note that, by Definition 2.2.13, S-stationarity at a point (x̄, ȳ) isWIS -stationarity
with IS = I0+(x̄, ȳ) ∪ I01(x̄, ȳ). Therefore, in view of Proposition 2.2.8, we have that S-
stationarity implies WI-stationarity for any I satisfying IS ⊂ I ⊂ I0(x̄). Moreover, this
implication is strict in view of Example 2.2.6.
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Ongoing research on sequential
optimality conditions for MPCaC
and future perspectives

In this chapter, we present the theoretical results concerning an ongoing research on
sequential optimality condition, associated with the weak stationarity condition presen-
ted in Chapter 2. The algorithmic consequences, among other future perspectives, are
preliminarily discussed in the Section 3.3.

As we have seen in the previous chapter, WI-stationarity is weaker than KKT.
Thereby, it seems natural to ask if it is a necessary optimality condition. That is, can
we ensure that a minimizer of the relaxed problem is WI-stationary for some index set I
satisfying (2.4)? The answer is no, as illustrated in the following example.

Example 3.1 Consider the MPCaC and the corresponding relaxed problem given below.

minimize
x∈R3

x1

subject to (1− x1)
3 + x2

3 ≤ 0,
‖x‖0 ≤ 2,

minimize
x,y∈R3

x1

subject to (1− x1)
3 + x2

3 ≤ 0,
y1 + y2 + y3 ≥ 1,
xiyi = 0, i = 1, 2, 3,
0 ≤ yi ≤ 1, i = 1, 2, 3.

We claim that x∗ = (1, 0, 0) is a global solution of MPCaC and (x∗, y∗), with y∗ = (0, 1, 0),
is a global solution of the relaxed problem. Indeed, denoting the feasible sets of MPCaC
and the relaxed problem by Ω0 and Ω, respectively, given any feasible point x ∈ Ω0, we
have

(x1 − 1)3 ≥ x2
3 ≥ 0,

which means that x1 ≥ 1. This proves the first part of the claim. Now, note that (x∗, y∗) ∈
Ω. Moreover, given (x, y) ∈ Ω, we have that x ∈ Ω0 and hence x1 ≥ 1, proving the second
statement of the claim. For the points x∗ and (x∗, y∗) we have

I0 = {2, 3}, I01 = {2}, I±0 = {1}, I00 = {3} and I0+ = ∅.
So, there are two choices for I that satisfy (2.4): I ′ = {2} or I ′′ = {2, 3}. In view of
the Proposition 2.2.8, it is enough to prove that (x∗, y∗) is not WI-stationary for I = I ′′.
Indeed, we have

∇xL(x
∗, λg) +

∑
i∈I

λG
i ei =

⎛
⎝ 1

0
0

⎞
⎠+

⎛
⎝ 0

λG
2

λG
3

⎞
⎠ ,
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which clearly does not vanish.

In view of Example 3.1 and motivated to find a necessary optimality condition
for MPCaC problems, we propose in the next section the concept of approximately weak
stationarity, which will be satisfied at every minimizer, independently of any constraint
qualification.

3.1 Sequential optimality conditions for MPCaC

In order to define our sequential optimality condition, consider the function

L : Rn × R
n × R

m × R
p × R× R

n × R
n × R

n → R

defined by

L(x, y, λg, λh, λθ, λG, λH , λH̃) =L(x, λg, λh) + λθθ(y) + (λG)TG(x)

+ (λH)TH(y) + (λH̃)T H̃(y),

where L is the Lagrangian defined in (1.4).
Note that L resembles the Lagrangian LI , associated with TNLPI(x̄, ȳ). The

only difference is that the term (λG
I )

TGI(x) was replaced by (λG)TG(x). Here it will be
convenient to see that

∇x,yL(x, y, λ) =

⎛
⎜⎜⎜⎝

∇xL(x, λ
g, λh) +

n∑
i=1

λG
i ∇Gi(x)

λθ∇θ(y) +
n∑

i=1

λH
i ∇Hi(y) +

n∑
i=1

λH̃
i ∇H̃i(y)

⎞
⎟⎟⎟⎠ . (3.1)

Definition 3.1.1 Let (x̄, ȳ) be a feasible point of the relaxed problem (2.3). We say that
(x̄, ȳ) is Approximately Weakly stationary (AW-stationary) for this problem if there exist
sequences (xk, yk) ⊂ R

n × R
n and

(λk) =
(
λg,k, λh,k, λθ,k, λG,k, λH,k, λH̃,k

) ⊂ R
m
+ × R

p × R+ × R
n × R

n × R
n
+

such that

1. (xk, yk) → (x̄, ȳ);

2. ∇x,yL(xk, yk, λk) → 0;

3. min{−g(xk), λg,k} → 0;

4. min{−θ(yk), λθ,k} → 0;

5. min{|Gi(x
k)|, |λG,k

i |} → 0 for all i = 1, . . . , n;

6. min{−Hi(y
k), |λH,k

i |} → 0 for all i = 1, . . . , n;

7. min{−H̃(yk), λH̃,k} → 0.
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Remark 3.1 Definition 3.1.1 resembles AKKT condition for the relaxed problem (3),
where 3, 4 and 7 represent the approximate complementarity conditions for the inequality
constraints g(x) ≤ 0, θ(y) ≤ 0 and H̃(y) ≤ 0, respectively and 6 is related to the last
complementarity condition in WI-stationarity. As a matter of fact, AW-stationarity is
equivalent to AKKT for TNLPI0, as we shall see ahead in Theorem 3.2.4.

Let us review Example 3.1 in the light of the above definition. We have seen that
the minimizer is not WI-stationary, but now we can see that it is AW-stationary.

Example 3.1.2 Consider the problem given in Example 3.1. We claim that the global
solution of the relaxed problem, (x∗, y∗), is AW-stationary. Indeed, consider the sequences
(xk, yk) ⊂ R

3 × R
3 and

(λk) =
(
λg,k, λθ,k, λG,k, λH,k, λH̃,k

) ⊂ R
3
+ × R+ × R

3 × R
3 × R

3
+

given by xk = (1 + 1/k, 0, 0), yk = (0, 1, 0), λg,k = k2/3, λθ,k = 0 and λG,k = λH,k =

λH̃,k = 0. Then, we have (xk, yk) → (x∗, y∗) and

∇xL(x
k, λg,k) +

n∑
i=1

λG,k
i ∇Gi(x

k) =

⎛
⎝ 1− 3λg,k(1− xk

1)
2

0
2λg,kxk

3

⎞
⎠ = 0.

Therefore, in view of (3.1), we obtain the first two items of Definition 3.1.1. Now, note
that g(xk) → g(x∗) = 0 and θ(yk) → θ(y∗) = 0, giving min{−g(xk), λg,k} → 0 and
min{−θ(yk), λθ,k} → 0, yielding items (3) and (4). The relation min{|Gi(x

k)|, |λG,k
i |} → 0

is immediate. Besides, since H̃(yk) → H̃(y∗) ≤ 0, λH̃,k = 0, H(yk) → H(y∗) ≤ 0 and

λH,k = 0, we have min{−H̃(yk), λH̃,k} → 0 and min{−Hi(y
k), |λH,k

i |} → 0, obtaining
items 5, 6 and 7.

Now we shall prove that the above example reflects a general result, that is, every
minimizer of an MPCaC problem is AW-stationary. We start the theoretical analysis
with two simple facts. The first one says that the expression

∑n
i=1 λ

G,k
i ∇Gi(x

k) could be

replaced by
∑

i∈I0 λ
G,k
i ∇Gi(x

k). The second fact states that AW-stationarity is weaker
than WI-stationarity, and consequently weaker than KKT, in view of Theorem 2.2.5.

Lemma 3.1.3 Let (x̄, ȳ) be an AW-stationary point for the relaxed problem (2.3), with
corresponding sequences (xk, yk) and (λk). Then,

∇xL(x
k, λg,k, λh,k) +

∑
i∈I0

λG,k
i ∇Gi(x

k) → 0.

Proof. In view of (3.1), we have, in particular,

∇xL(x
k, λg,k, λh,k) +

n∑
i=1

λG,k
i ∇Gi(x

k) → 0. (3.2)

For i /∈ I0, we have
lim
k→∞

Gi(x
k) = Gi(x̄) = x̄i �= 0.

Therefore, we can assume without loss of generality that there exists ε > 0 such that
|Gi(x

k)| ≥ ε for all k. Since min{|Gi(x
k)|, |λG,k

i |} → 0, we obtain |λG,k
i | → 0 and hence,∑

i/∈I0
λG,k
i ∇Gi(x

k) → 0.
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By subtracting this from (3.2), we conclude the proof.
According to Lemma 3.1.3 we could define our sequential stationarity concept in

terms of I0 and call it AWI0-stationarity. However, since this index set does not appear
in Definition 3.1.1, we maintain the more general notation AW-stationarity.

Lemma 3.1.4 Let (x̄, ȳ) be a WI-stationary point for the relaxed problem (2.3), in the
sense of Definition 2.2.3. Then (x̄, ȳ) is AW-stationary for this problem.

Proof. Consider a vector

λ = (λg, λh, λθ, λG
I , λ

H , λH̃) ∈ R
m
+ × R

p × R+ × R
|I| × R

n × R
n
+

satisfying Definition 2.2.3. Then, the (constant) sequences (xk, yk) ⊂ R
n × R

n and

(λk) =
(
λg,k, λh,k, λθ,k, λG,k, λH,k, λH̃,k

) ⊂ R
m
+ × R

p × R+ × R
n × R

n × R
n
+,

defined by

(xk, yk) = (x̄, ȳ) ,
(
λg,k, λh,k, λθ,k, λG,k

I , λH,k, λH̃,k
)
= (λg, λh, λθ, λG

I , λ
H , λH̃)

and λG,k
i = 0 for i /∈ I and k ∈ N, satisfy Definition 3.1.1. Indeed, item (1) is immediate

and item (2) follows from the fact that

∇x,yL(xk, yk, λk) = ∇x,yLI(x̄, ȳ, λ) = 0.

By the feasibility of (x̄, ȳ), the nonnegativity of λg, λθ and λH̃ and the complementarity
conditions associated with these multipliers, we have

min{−g(xk), λg,k} = min{−g(x̄), λg} = 0,

min{−θ(yk), λθ,k} = min{−θ(ȳ), λθ} = 0,

min{−H̃(yk), λH̃,k} = min{−H̃(ȳ), λH̃} = 0,

proving (3), (4) and (7). Now, Gi(x
k) = Gi(x̄) = 0 for i ∈ I and λG,k

i = 0 for i /∈ I. In
any case, it holds

min{|Gi(x
k)|, |λG,k

i |} = min{|Gi(x̄)|, |λG,k
i |} = 0,

which proves (5). Finally, note that λH,k
i = λH

i = 0 for i ∈ I0+(x̄, ȳ) ∪ I01(x̄, ȳ) and
Hi(y

k) = Hi(ȳ) = 0 for i ∈ I00(x̄, ȳ) ∪ I±0(x̄, ȳ). So,

min{−Hi(y
k), |λH,k

i |} = min{−Hi(ȳ), |λH
i |} = 0

for all i = 1, . . . , n, proving (6) and completing the proof.

Remark 3.2 We point out here that, in contrast to WI-stationarity, which conveniently
depends on the set I, our sequential optimality condition is independent of any set I. This
is a desirable feature since AW-stationarity has a certain amount of algorithmic appeal. In
practice, one should be able to use such a condition as stopping criterion for an algorithm
designed to solve the MPCaC problem.
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Before proving our main sequential optimality results, let us see some preliminary
lemmas. To this purpose, consider the augmented problem

minimize
x,y,w

f(x)

subject to g(x) ≤ 0, h(x) = 0,
θ(y) ≤ 0,
wG −G(x) = 0, wH +H(y) = 0,

H̃(y) ≤ 0,
w ∈ W,

(3.3)

where W = {w =
(
wG, wH

) ∈ R
n × R

n
+ | wG ∗ wH = 0}.

This problem will be crucial in the analysis. In the next two lemmas we establish
the equivalence between the relaxed problem (2.3) and this augmented problem. More-
over, there is a suitable reason to write the constraints H(y) ≤ 0 and G(x) ∗ H(y) = 0
of (2.3) in the format w ∈ W . Such a strategy will enable us to apply Lemma 1.1.5 to
obtain Guignard constraint qualification for an auxiliary problem ahead.

Lemma 3.1.5 Let (x∗, y∗) be a local (global) minimizer of the relaxed problem (2.3).
Given w∗ ∈ R

n ×R
n
+, if the point (x∗, y∗, w∗) is feasible for the augmented problem (3.3),

then it is a local (global) minimizer of this problem. In particular, this holds for w∗ =(
G(x∗),−H(y∗)

)
.

Proof. First, let us prove the relation between local minimizers. In view of the equiva-
lence of norms, we consider ‖ · ‖∞, for convenience1. By hypothesis, there exists δ > 0
such that if (x, y) is feasible for (2.3) and ‖(x, y) − (x∗, y∗)‖∞ ≤ δ, then f(x∗) ≤ f(x).
Suppose that (x∗, y∗, w∗) is feasible for the problem (3.3) and consider an arbitrary fe-
asible point (x, y, w) for this problem such that ‖(x, y, w) − (x∗, y∗, w∗)‖∞ ≤ δ. Then,
the pair (x, y) is feasible for (2.3) and ‖(x, y) − (x∗, y∗)‖∞ ≤ δ. Hence, f(x∗) ≤ f(x)
and, therefore, (x∗, y∗, w∗) is a local minimizer of (3.3). Note that (x∗, y∗, w∗), with
w∗ =

(
G(x∗),−H(y∗)

)
, is trivially feasible. Finally, if we ignore the neighborhoods in the

argument above, we obtain the relation between global minimizers.
For the sake of completeness we establish in the next result the converse of Lemma

3.1.5.

Lemma 3.1.6 Let (x∗, y∗, w∗) be a local (global) minimizer of (3.3). Then (x∗, y∗) is a
local (global) minimizer of (2.3).

Proof. By the feasibility of (x∗, y∗, w∗) we have that (x∗, y∗) is feasible for (2.3),

(w∗)G = G(x∗) and (w∗)H = −H(y∗). (3.4)

Consider δ1 > 0 such that f(x∗) ≤ f(x) for all feasible point (x, y, w) of (3.3), satisfying
‖(x, y, w)− (x∗, y∗, w∗)‖∞ ≤ δ1. Let δ2 > 0 be such that

‖G(x)−G(x∗)‖∞ ≤ δ1 and ‖H(y)−H(y∗)‖∞ ≤ δ1 (3.5)

for all (x, y) ∈ R
n × R

n with ‖(x, y) − (x∗, y∗)‖∞ ≤ δ2. Define δ = min{δ1, δ2} and take
(x, y), feasible for (2.3), such that ‖(x, y)− (x∗, y∗)‖∞ ≤ δ. Thus we have (3.5), which in

1Suppose that there exists δ > 0 such that ζ(z∗) ≤ ζ(z) if ‖z − z∗‖∞ ≤ δ. Given an arbitrary norm
‖ · ‖, by the equivalence of norms, there exists a constant c > 0 such that ‖z‖∞ ≤ c‖z‖ for all z. Thus,
defining δ′ = δ/c, if ‖z − z∗‖ ≤ δ′, then ‖z − z∗‖∞ ≤ c‖z − z∗‖ ≤ cδ′ = δ. Hence, ζ(z∗) ≤ ζ(z). This
means that the concept of local minimizer does not depend on the norm considered.
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view of (3.4) can be rewritten as ‖w − w∗‖∞ ≤ δ1, with w =
(
G(x),−H(y)

)
. Therefore,

(x, y, w) is feasible for (3.3) and

‖(x, y, w)− (x∗, y∗, w∗)‖∞ ≤ δ1,

implying that f(x∗) ≤ f(x).
Now, let us see the global optimality. So, assume that (x∗, y∗, w∗) is a global

minimizer of (3.3). Then (x∗, y∗) is feasible for (2.3). Furthermore, given an arbitrary
feasible point (x, y), we have that (x, y, w), with w =

(
G(x),−H(y)

)
, is feasible for (3.3).

Therefore, f(x∗) ≤ f(x).

Lemma 3.1.7 Suppose that (x∗, y∗) is a local minimizer of the relaxed problem (2.3).
Then, given an arbitrary norm ‖ · ‖, there exists δ > 0 such that (x∗, y∗, w∗), with w∗ =(
G(x∗),−H(y∗)

)
, is the unique global minimizer of the problem

minimize
x,y,w

f(x) +
1

2
‖(x, y)− (x∗, y∗)‖22

subject to g(x) ≤ 0, h(x) = 0,
θ(y) ≤ 0,
wG −G(x) = 0, wH +H(y) = 0,

H̃(y) ≤ 0,
w ∈ W,
‖(x, y, w)− (x∗, y∗, w∗)‖ ≤ δ.

(3.6)

Proof. By Lemma 3.1.5, we have that (x∗, y∗, w∗) is a local minimizer of (3.3). Consider
δ > 0 such that if (x, y, w) is feasible for (3.3) and

‖(x, y, w)− (x∗, y∗, w∗)‖ ≤ δ, (3.7)

then f(x∗) ≤ f(x). Note that (x∗, y∗, w∗) is feasible for (3.6). Moreover, given any feasible
point (x, y, w), of (3.6), we have that it is also feasible for (3.3) and satisfies (3.7). Hence,

f(x∗) +
1

2
‖(x∗, y∗)− (x∗, y∗)‖22 = f(x∗) ≤ f(x) ≤ f(x) +

1

2
‖(x, y)− (x∗, y∗)‖22,

proving that (x∗, y∗, w∗) is a global minimizer of (3.6).
Now, suppose that (x̄, ȳ, w̄) is also a global minimizer of (3.6). Then,

f(x̄) +
1

2
‖(x̄, ȳ)− (x∗, y∗)‖22 ≤ f(x∗) +

1

2
‖(x∗, y∗)− (x∗, y∗)‖22 = f(x∗) ≤ f(x̄),

where the last inequality follows from the fact that (x̄, ȳ, w̄) is feasible for (3.3) and satisfies
(3.7). Therefore, (x̄, ȳ) = (x∗, y∗), and hence

w̄ =
(
G(x̄),−H(ȳ)

)
=

(
G(x∗),−H(y∗)

)
= w∗,

proving the uniqueness.
The next result shows that our stationarity concept, given in Definition 3.1.1, is

a legitimate optimality condition, independently of any constraint qualification. This is
a requirement for such a condition to be useful in the analysis of algorithms.

Theorem 3.1.8 If (x∗, y∗) is a local minimizer of the relaxed problem (2.3), then it is an
AW-stationary point, in the sense of Definition 3.1.1.
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Proof. Defining w∗ =
(
G(x∗),−H(y∗)

)
, we conclude from Lemma 3.1.7 that there exists

δ > 0 such that the point (x∗, y∗, w∗) is the unique global minimizer of the problem (3.6),
with ‖ · ‖2 in the last constraint. Define the (partial) infeasibility measure associated with
this problem as

ϕ(x, y, w) =
1

2

(
‖g+(x)‖22 + ‖h(x)‖22 + ‖θ+(y)‖22 + ‖wG −G(x)‖22

+‖wH +H(y)‖22 + ‖H̃+(y)‖22
)
,

consider a sequence ρk → ∞ and let (xk, yk, wk) be a global minimizer of the penalized
problem

minimize
x,y,w

f(x) +
1

2
‖(x, y)− (x∗, y∗)‖22 + ρkϕ(x, y, w)

subject to w ∈ W,
‖(x, y, w)− (x∗, y∗, w∗)‖22 ≤ δ2,

(3.8)

which is well defined because the objective function is continuous and the feasible set is
compact. Since ‖(xk, yk, wk)−(x∗, y∗, w∗)‖2 ≤ δ, we can assume without loss of generality
that the sequence (xk, yk, wk) converges to some point (x̄, ȳ, w̄). We claim that (x̄, ȳ, w̄) =
(x∗, y∗, w∗). Note first that (x∗, y∗, w∗) is feasible for (3.8) and ϕ(x∗, y∗, w∗) = 0. So, by
the optimality of (xk, yk, wk) we have

f(xk) +
1

2
‖(xk, yk)− (x∗, y∗)‖22 + ρkϕ(x

k, yk, wk) ≤ f(x∗), (3.9)

implying that ϕ(xk, yk, wk) → 0, because ρk → ∞. This in turn implies that ϕ(x̄, ȳ, w̄) =
0, giving g+(x̄) = 0, h(x̄) = 0, θ+(ȳ) = 0, w̄G = G(x̄), w̄H = −H(ȳ) and H̃+(ȳ) = 0.
Moreover, as the sequence (xk, yk, wk) is feasible for (3.8), its limit point (x̄, ȳ, w̄) satisfies
w̄ ∈ W , because W is a closed set, and ‖(x̄, ȳ, w̄)− (x∗, y∗, w∗)‖ ≤ δ. Therefore, (x̄, ȳ, w̄)
is feasible for (3.6). Furthermore, from (3.9) we obtain

f(xk) +
1

2
‖(xk, yk)− (x∗, y∗)‖22 ≤ f(x∗).

Taking the limit, it follows that

f(x̄) +
1

2
‖(x̄, ȳ)− (x∗, y∗)‖22 ≤ f(x∗),

which means that (x̄, ȳ, w̄) is optimal for (3.6). By the uniqueness of the optimal so-
lution of this problem, we conclude that (x̄, ȳ, w̄) = (x∗, y∗, w∗), proving the claim. As
consequence, we have the first item of Definition 3.1.1.

In order to prove the next item, let us see first that a constraint qualification holds
at the minimizer (xk, yk, wk). Since (xk, yk, wk) → (x∗, y∗, w∗), we may assume without
loss of generality that ‖(xk, yk, wk) − (x∗, y∗, w∗)‖2 < δ for all k. That is, the inequality
constraint in the problem (3.8) is inactive at the minimizer. By Lemma 1.1.2, the tangent
and linearized cones at this point are the ones taking into account only the constraints in
w ∈ W , namely,

−wH ≤ 0 and wG ∗ wH = 0. (3.10)

So, in view of Lemmas 1.1.3 and 1.1.5, Guignard constraint qualification holds at (xk, yk, wk).
This implies that this point satisfies the KKT conditions, which means that there exist
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multipliers μH,k ∈ R
n
+ and μ0,k ∈ R

n, associated with the constraints in w ∈ W , such that

∇f(xk) + (xk − x∗) + ρk∇xϕ(x
k, yk, wk) = 0 (3.11a)

(yk − y∗) + ρk∇yϕ(x
k, yk, wk) = 0 (3.11b)

ρk∇wGϕ(xk, yk, wk) + μ0,k ∗ wH,k = 0 (3.11c)

ρk∇wHϕ(xk, yk, wk)− μH,k + μ0,k ∗ wG,k = 0 (3.11d)

μH,k ∗ wH,k = 0. (3.11e)

Noting that the partial gradients of ϕ are given by

∇xϕ(x, y, w) = ∇g(x)g+(x) +∇h(x)h(x) +∇G(x)
(
G(x)− wG

)
, (3.12a)

∇yϕ(x, y, w) = θ+(y)∇θ(y) +∇H̃(y)H̃+(y) +∇H(y)
(
wH +H(y)

)
, (3.12b)

∇wGϕ(x, y, w) = wG −G(x) and ∇wHϕ(x, y, w) = wH +H(y) (3.12c)

and defining the components of λk as

λg,k = ρkg
+(xk), λh,k = ρkh(x

k), λθ,k = ρkθ
+(yk),

λG,k = ρk
(
G(xk)− wG,k

)
, λH,k = ρk

(
wH,k +H(yk)

)
, λH̃,k = ρkH̃

+(yk),

we see immediately that λg,k ≥ 0, λθ,k ≥ 0 and λH̃,k ≥ 0. Moreover, using (3.11a) and
(3.12a), we obtain

∇xL(xk, yk, λk) = ∇f(xk) + ρk∇xϕ(x
k, yk, wk) = x∗ − xk → 0.

Furthermore, from (3.11b) and (3.12b), we have

∇yL(xk, yk, λk) = ρk∇yϕ(x
k, yk, wk) = y∗ − yk → 0,

proving item 2.
Let us prove item 3. By the feasibility of (x∗, y∗) we have gi(x

∗) ≤ 0 for all
i = 1, . . . ,m. If gi(x

∗) = 0, then min{−gi(x
k), λg,k

i } → 0 since gi(x
k) → 0 and λg,k

i ≥ 0.
On the other hand, if gi(x

∗) < 0, we may assume that gi(x
k) < 0 for all k. Thus,

g+i (x
k) = 0, yielding λg,k

i = ρkg
+
i (x

k) = 0. Therefore, min{−gi(x
k), λg,k

i } = 0. Items 4
and 7 can be proved by the same reasoning.

Now, note that by (3.11c) ,(3.11d) and (3.12c) we have

λG,k = μ0,k ∗ wH,k and λH,k = μH,k − μ0,k ∗ wG,k. (3.13)

Therefore, using the fact that wk ∈ W , we obtain

λG,k
i wG,k

i = μ0,k
i wH,k

i wG,k
i = 0

for all i = 1, . . . ,m. Furthermore, given i /∈ I0(x
∗), we have

wG,k
i → (w∗

i )
G = Gi(x

∗) = x∗
i �= 0,

implying that λG,k
i = 0 for all k large enough. So, min{|Gi(x

k)|, |λG,k
i |} = 0. On the other

hand, if i ∈ I0(x
∗), we haveGi(x

k) → Gi(x
∗) = x∗

i = 0, and hence, min{|Gi(x
k)|, |λG,k

i |} →
0, proving item 5.

To prove the next item, note that using (3.13), (3.11e) and the fact that wk ∈ W ,

λH,k ∗ wH,k = μH,k ∗ wH,k − μ0,k ∗ wG,k ∗ wH,k = 0. (3.14)

By the feasibility of (x∗, y∗), we have H(y∗) ≤ 0. In the case Hi(y
∗) < 0,

wH,k
i → (w∗

i )
H = −Hi(y

∗) > 0,

giving λH,k
i = 0 for all k large enough. Thus, min{−Hi(y

k), |λH,k
i |} = 0. On the other

hand, if Hi(y
∗) = 0, we have Hi(y

k) → Hi(y
∗) = 0, and hence, min{−Hi(y

k), |λH,k
i |} → 0,

proving item 6 and completing the proof.
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3.2 Relations to other sequential optimality conditi-

ons

In this section we discuss the relationships between approximate stationarity for standard
nonlinear optimization and AW-stationarity.

As it is well known, every minimizer of an optimization problem is AKKT (see
Definition 1.2.1). However, and surprisingly, we start by proving that the AKKT condition
fails to detect good candidates for optimality for every MPCaC problem.

Theorem 3.2.1 Every feasible point (x̄, ȳ) for the relaxed problem (2.3) is AKKT.

Proof. We need to prove that there exist sequences (xk, yk) ⊂ R
n × R

n and

(
μg,k, μh,k, μθ,k, μH,k, μH̃,k, μξ,k

) ⊂ R
m
+ × R

p × R+ × R
n
+ × R

n
+ × R

n

such that (xk, yk) → (x̄, ȳ) and

( ∇xL(x
k, μg,k, μh,k)
0

)
+

(
0

μθ,k∇θ(yk)

)
+

n∑
i=1

(
0

μH,k
i ∇Hi(y

k)

)

+
n∑

i=1

(
0

μH̃,k
i ∇H̃i(y

k)

)
+

n∑
i=1

μξ,k
i

(
Hi(y

k)∇Gi(x
k)

Gi(x
k)∇Hi(y

k)

)
→ 0, (3.15a)

min{−g(xk), μg,k} → 0 , min{−θ(yk), μθ,k} → 0, (3.15b)

min{−H(yk), μH,k} → 0 , min{−H̃(yk), μH̃,k} → 0. (3.15c)

Let b = ∇f(x̄) and define xk = x̄, μg,k = 0, μh,k = 0, μθ,k = 0, μH̃,k = 0 and

yki = ȳi , μH,k
i = 0 , μξ,k

i =
bi
yki

for i ∈ I0+(x̄, ȳ) ∪ I01(x̄, ȳ),

yki =
bi
k
, μH,k

i = 0 , μξ,k
i = k for i ∈ I00(x̄, ȳ),

yki = −sign(x̄i)bi
k

, μξ,k
i = −sign(x̄i)k , μH,k

i = −μξ,k
i xk

i for i ∈ I±0(x̄, ȳ).

Thus we have μH,k
i ≥ 0, (xk, yk) → (x̄, ȳ),

∇xi
L(xk, μg,k, μh,k)− μξ,k

i yki = bi − μξ,k
i yki → 0,

and
−μθ,k − μH,k

i + μH̃,k
i − μξ,k

i xk
i → 0

for all i = 1, . . . , n, giving (3.15a). Moreover, it is easy to see that (3.15b) and (3.15c)
also hold.

Another sequential optimality condition for standard NLP is PAKKT (Definition
1.2.3). It is stronger than AKKT, but not stronger than AW-stationarity. The next
example shows that PAKKT for the relaxed problem does not imply AW-stationarity,
even under strict complementarity.
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Example 3.2.2 Consider the MPCaC and the corresponding relaxed problem given below.

minimize
x∈R2

x2

subject to x2
1 ≤ 0,

‖x‖0 ≤ 1,

minimize
x,y∈R2

x2

subject to x2
1 ≤ 0,

y1 + y2 ≥ 1,
xiyi = 0, i = 1, 2,
0 ≤ yi ≤ 1, i = 1, 2.

Given a > 0, we claim that the point (x̄, ȳ), with x̄ = (0, a) and ȳ = (1, 0), is PAKKT
but not AW-stationary. Indeed, for the first statement, consider the sequences (xk, yk) ⊂
R

2 × R
2 and

(γk) =
(
λg,k, λθ,k, μk, λH̃,k, λξ,k

) ⊂ R+ × R+ × R
2
+ × R

2
+ × R

2

given by xk = (1/k3, a), yk = (1,−1/k), λg,k = k2, λθ,k = 0, μk = (0, ak), λH̃,k = (0, 0)
and λξ,k = (0, k). Then we have (xk, yk) → (x̄, ȳ) and, denoting ξ(x, y) = x ∗ y, the
gradient of the Lagrangian of the relaxed problem reduces to( ∇f(xk)

0

)
+ λg,k

( ∇g(xk)
0

)
+ μk

2∇H2(y
k) + λξ,k

2 ∇ξ2(x
k, yk)

=

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

2λg,kxk
1

0
0
0

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

0
0
0

−μk
2

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

0

λξ,k
2 yk2
0

λξ,k
2 xk

2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

2/k
0
0
0

⎞
⎟⎟⎠ → 0,

proving (1.15a). Now, note that g(xk) → g(x̄) = 0 and θ(yk) → θ(ȳ) = 0, which in turn
implies that

min{−g(xk), λg,k} → 0 and min{−θ(yk), λθ,k} → 0. (3.17)

Moreover, we have −H̃(yk) → −H̃(ȳ) ≥ 0 and λH̃,k = (0, 0), giving

min{−H̃(yk), λH̃,k} → 0. (3.18)

Furthermore, since −H1(y
k) → −H1(ȳ) ≥ 0, μk

1 = 0 and −H2(y
k) = yk2 → 0, we have

min{−H(yk), μk} → 0. (3.19)

Conditions (3.17), (3.18) and (3.19) prove the approximate complementarity (1.15b). Mo-
reover, we have δk = ‖(1, γk)‖∞ = k2 for all k large enough,

lim sup
k→∞

λg,k

δk
> 0 and λg,kg(xk) > 0.

For the remaining multipliers the lim sup is zero and so we conclude that (1.15c) and
(1.15d) hold, proving that Definition 1.2.3 is satisfied, that is, (x̄, ȳ) is PAKKT.

Now, let us see that (x̄, ȳ) is not AW-stationary. For this purpose, assume that
the sequences (xk, yk) ⊂ R

2 × R
2 and

(λk) =
(
λg,k, λθ,k, λG,k, λH,k, λH̃,k

) ⊂ R+ × R+ × R
2 × R

2 × R
2
+

are such that (xk, yk) → (x̄, ȳ) and min{|G2(x
k)|, |λG,k

2 |} → 0. Then, since |G2(x
k)| =

|xk
2| → a > 0, we obtain λG,k

2 → 0. Therefore, the expression

∇xL(x
k, λg,k) +

2∑
i=1

λG,k
i ∇Gi(x

k) =

(
2λg,kxk

1 + λG,k
1

1 + λG,k
2

)
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cannot converge to zero. Thus, taking into account (3.1), item (2) of Definition 3.1.1 does
not hold and hence (x̄, ȳ) is not AW-stationary.

In contrast to AKKT and PAKKT, the other classical sequential optimality con-
dition, CAKKT (Definition 1.2.2), does imply AW-stationarity, as we can see in the next
result.

Theorem 3.2.3 If (x̄, ȳ) is a CAKKT point for the relaxed problem (2.3), then it is
AW-stationary.

Proof. In view of Definition 1.2.2, there exist sequences (xk, yk) ⊂ R
n × R

n and(
λg,k, λh,k, λθ,k, μk, λH̃,k, λξ,k

) ⊂ R
m
+ × R

p × R+ × R
n
+ × R

n
+ × R

n

such that (xk, yk) → (x̄, ȳ),( ∇xL(x
k, λg,k, λh,k)
0

)
+

(
0

λθ,k∇θ(yk)

)
+

n∑
i=1

(
0

μk
i∇Hi(y

k)

)

+
n∑

i=1

(
0

λH̃,k
i ∇H̃i(y

k)

)
+

n∑
i=1

λξ,k
i

(
Hi(y

k)∇Gi(x
k)

Gi(x
k)∇Hi(y

k)

)
→ 0, (3.20a)

λg,k ∗ g(xk) → 0 , λh,k ∗ h(xk) → 0 , λθ,kθ(yk) → 0 , (3.20b)

μk ∗H(yk) → 0 , λH̃,k ∗ H̃(yk) → 0, (3.20c)

λξ,k ∗G(xk) ∗H(yk) → 0. (3.20d)

So, we may define

λH,k = μk + λξ,k ∗G(xk) and λG,k = λξ,k ∗H(yk)

to obtain item (2) of Definition 3.1.1 from (3.20a). Items (3), (4) and (7) follow from
(3.20b), (3.20c) and Remark 1.3. Let us prove item (5). For i ∈ I0, it holds Gi(x

k) →
Gi(x̄) = x̄i = 0. Thus, min{|Gi(x

k)|, |λG,k
i |} → 0. If i /∈ I0, we have Gi(x

k) → x̄i �= 0,
which in view of (3.20d) yields

λG,k
i = λξ,k

i Hi(y
k) → 0.

Therefore, min{|Gi(x
k)|, |λG,k

i |} → 0 for all i = 1, . . . , n. Finally, in order to prove item
(6), note that (3.20c) and (3.20d) give

λH,k
i Hi(y

k) = μk
iHi(y

k) + λξ,k
i Gi(x

k)Hi(y
k) → 0.

So, applying the argument of Remark 1.3 with αk = |λH,k
i | and βk = Hi(y

k), we obtain

min{−Hi(y
k), |λH,k

i |} → 0

for all i = 1, . . . , n. Therefore, (x̄, ȳ) is AW-stationary for the problem (2.3).

Remark 3.3 Despite being stronger than AW-stationarity, we emphasize that the se-
quential optimality condition CAKKT is not so suitable to deal with MPCaC problems as
AW-stationarity is. The goal of considering CAKKT is to obtain, under certain constraint
qualifications, KKT points for standard nonlinear programming problems. However, as we
have been discussed, MPCaC are very degenerate problems because of the challenging com-
plementarity constraint G(x)∗H(y) = 0. This means that we cannot expect to find strong
stationary points for this class of problems and thereby making AW-stationarity a more
suitable tool for dealing with such problems.
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We summarize the relations discussed so far in the diagram presented in Figure
3.1.

AW -
stationary

PAKKT

CAKKT

AKKT
Feasible
of (2.3)

Ex. 3.2.2

Th. 3.2.3

[31]

[35]

Th. 3.2.1

Figura 3.1: Relationships between AW -stationarity and some of the standard sequential
optimality conditions. An arrow indicates a strict implication between two conditions.

To finish this section, we relate our sequential optimality condition to the tigh-
tened problem. The following result may be viewed as a sequential version of Proposi-
tion 2.2.4.

Theorem 3.2.4 Let (x̄, ȳ) be a feasible point of the relaxed problem (2.3). Then (x̄, ȳ) is
AW-stationary if and only if it is an AKKT point for the tightened problem TNLPI0(x̄, ȳ)
defined in (2.5).

Proof. Suppose first that (x̄, ȳ) is AW-stationary. Then, in view of Lemma 3.1.3, we
conclude that there exist sequences (xk, yk) ⊂ R

n × R
n and

(λk) =
(
λg,k, λh,k, λθ,k, λG,k, λH,k, λH̃,k

) ⊂ R
m
+ × R

p × R+ × R
n × R

n × R
n
+

such that (xk, yk) → (x̄, ȳ),

∇xL(x
k, λg,k, λh,k) +

∑
i∈I0

λG,k
i ∇Gi(x

k) → 0, (3.21a)

λθ,k∇θ(yk) +
n∑

i=1

λH,k
i ∇Hi(y

k) +
n∑

i=1

λH̃,k
i ∇H̃i(y

k) → 0, (3.21b)

min{−g(xk), λg,k} → 0 , min{−θ(yk), λθ,k} → 0, (3.21c)

min{−Hi(y
k), |λH,k

i |} → 0 , i = 1, . . . , n, min{−H̃(yk), λH̃,k} → 0. (3.21d)

For i ∈ I0+ ∪ I01 we have
Hi(y

k) → Hi(ȳ) = −ȳi < 0.

Therefore, we can assume without loss of generality that there exists ε > 0 such that
−Hi(y

k) ≥ ε for all k. So, using (3.21d), we obtain |λH,k
i | → 0, which in turn implies that∑

i∈I0+∪I01
λH,k
i ∇Hi(y

k) → 0.

By subtracting this from (3.21b), we obtain

λθ,k∇θ(yk) +
∑

i∈I00∪I±0

λH,k
i ∇Hi(y

k) +
n∑

i=1

λH̃,k
i ∇H̃i(y

k) → 0.

So, we can redefine λH,k
i , i ∈ I0+ ∪ I01, to be zero, without affecting (3.21b). The-

refore, taking into account (3.21a), (3.21c), the second part of (3.21d) and the fact
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that min{−Hi(y
k), λH,k

i } = 0 for i ∈ I0+ ∪ I01, we conclude that (x̄, ȳ) is AKKT for
TNLPI0(x̄, ȳ), which we recall here for convenience,

minimize
x,y

f(x)

subject to g(x) ≤ 0, h(x) = 0,
θ(y) ≤ 0,
Gi(x) = 0, i ∈ I0,
Hi(y) ≤ 0, i ∈ I0+ ∪ I01,
Hi(y) = 0, i ∈ I00 ∪ I±0,

H̃(y) ≤ 0.

To prove the converse, suppose that (x̄, ȳ) is AKKT for TNLPI0(x̄, ȳ). Then there
exist sequences (xk, yk) ⊂ R

n × R
n and

(λk) =
(
λg,k, λh,k, λθ,k, λG,k

I0
, λH,k, λH̃,k

) ⊂ R
m
+ × R

p × R+ × R
|I0| × R

n × R
n
+,

with λH,k
i ≥ 0 for i ∈ I0+ ∪ I01, such that (xk, yk) → (x̄, ȳ),

∇xL(x
k, λg,k, λh,k) +

∑
i∈I0

λG,k
i ∇Gi(x

k) → 0, (3.22a)

λθ,k∇θ(yk) +
n∑

i=1

λH,k
i ∇Hi(y

k) +
n∑

i=1

λH̃,k
i ∇H̃i(y

k) → 0, (3.22b)

min{−g(xk), λg,k} → 0 , min{−θ(yk), λθ,k} → 0, (3.22c)

min{−Hi(y
k), λH,k

i } → 0, i ∈ I0+ ∪ I01 , min{−H̃(yk), λH̃,k} → 0. (3.22d)

Extending the sequence
(
λG,k
I0

)
from R

|I0| to R
n by setting λG,k

i = 0 for i /∈ I0, we can
rewrite (3.22a) as

∇xL(x
k, λg,k, λh,k) +

n∑
i=1

λG,k
i ∇Gi(x

k) → 0. (3.23)

Moreover, for i ∈ I0, it holds Gi(x
k) → Gi(x̄) = x̄i = 0. Thus,

min{|Gi(x
k)|, |λG,k

i |} → 0 (3.24)

for all i = 1, . . . , n. Besides, for i ∈ I00 ∪ I±0, we have

Hi(y
k) → Hi(ȳ) = −ȳi = 0,

which implies min{−Hi(y
k), |λH,k

i |} → 0. Therefore, in view of (3.22d) and the fact that
λH,k
i ≥ 0 for i ∈ I0+ ∪ I01, we have

min{−Hi(y
k), |λH,k

i |} → 0 (3.25)

for all i = 1, . . . , n. Thus, from (3.22b), (3.22c), the second part of (3.22d), (3.23), (3.24)
and (3.25), we conclude that (x̄, ȳ) satisfies the conditions of Definition 3.1.1, that is,
(x̄, ȳ) is an AW-stationary point for the problem (2.3).

The above relations are summarized in the diagram presented in Figure 3.2.
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Local
minimizer
of (2.3)

AW -
stationary

AKKT for
TNLPI0

WI-
stationary

KKT for
TNLPI

KKT
for (2.3)

Th. 3.1.8
Th. 3.2.4

Ex. 3.1

Prop. 2.2.4

Lem. 3.1.4

Th. 2.2.5

Figura 3.2: Relationships between local optimality and our stationarity concepts. An
arrow indicates a strict implication between two conditions.

3.3 Future perspectives

In this chapter, we have defined a new sequential optimality condition for MPCaC and
established several results. Despite of that, we are aware that there are open questions
to be addressed in future works. Such questions concern both theoretical aspects and
algorithmic consequences. Some of them are discussed below.

On the theoretical issues, we believe that it is possible to strengthen the definition
of AW-stationarity, either by defining an AWI-stationarity, associated with a set I in the
range (2.4); and/or by adding another requirement in Definition 3.1.1, perhaps involving
the product λG,k ∗ λH,k, similarly to that made in [27]. This improvement should be able
to establish that the new optimality condition must be legitimate, in the sense that every
minimizer satisfies it, independently of any constraint qualification. Moreover, it should
be at least as strong as PAKKT and CAKKT.

Now, it is known that improving the convergence of an algorithm by means
of sequential condition requires stating the associated constraint qualification, because
ultimately we want to say something about the exact stationarity. In other words, it
is of interest to investigate under which MPCaC-tailored constraint qualifications our
sequential condition guarantees WI-stationary points or even KKT points, similarly to
that established in [31,33,34].

Another subject of great interest nowadays concerns to second-order conditions.
We think that the sequential condition introduced in this work will support the proposal
of a second-order condition for MPCaC problems and the study of convergence to second-
order stationary points.

Finally, we turn our attention to the computational aspects that may be derived
from the results established in this work. It is necessary to measure the strength and
usefulness of our sequential optimality condition by connecting it to practical algorithms
with the hope of improving their convergence.



Conclusions

In many areas of applications of optimization we aim to find sparse solutions. In this work,
we followed the approach that considers the cardinality constrained problem MPCaC to
obtain sparse solutions.

We have presented a new stationarity condition, weaker than KKT, called WI-
stationarity, for the MPCaC problem. We proposed a unified approach that goes from
the weakest to the strongest stationarity (within a certain range of conditions). Several
theoretical results were presented, such as properties and relations concerning the refor-
mulated problems and the original one. In addition, we discussed the relaxed problem by
analyzing the general constraints in two cases, linear and nonlinear, with results, examples
and counterexamples.

As we have seen in this work, KKT implies WI-stationarity. However, despite
being weaker than KKT, WI-stationarity is not a necessary optimality condition. The-
refore, another subject of research was the proposal of sequential optimality conditions
for MPCaC problems in the hope of obtaining a weaker condition than WI-stationarity,
which would be satisfied at every minimizer, independently of any constraint qualification.
Thus, we have presented a sequential optimality condition, namely Approximate Weak
stationarity (AW-stationarity), for MPCaC problems.

Several theoretical results were presented, such as: AW-stationarity is a legitimate
optimality condition independently of any constraint qualification; every feasible point
of MPCaC is AKKT; the equivalence between the AW-stationarity and AKKT for the
tightened problem TNLPI0 . In addition, we have established some relationships between
our AW-stationarity and other usual sequential optimality conditions, such as AKKT,
CAKKT and PAKKT, by means of properties, examples and counterexamples.

This in turn will allow us to discuss algorithmic consequences, once we believe
it is worth studying MPCaC, which is an important problem, both theoretically and
numerically. It should be mentioned that, despite this computational appeal, our aim
until this moment was to discuss the theoretical aspects of such conditions for MPCaC
problems. The algorithmic aspects behind our theory are subject of ongoing research,
since we consider it is possible to obtain suitable algorithms for solving MPCaC.



Apêndice A

Appendix

In this appendix we present some additional results and examples discussed along the
seminars. Besides, we present here alternative proofs for some of the results proved in
this work.

The following lemma provides another characterization of the tangent cone.

Lemma A.1 The tangent cone to Ω at x̄ can be expressed alternatively as

TΩ(x̄) = {0} ∪
{
d ∈ R

n | ∃(xk) ⊂ Ω : xk → x̄ and
xk − x̄

‖xk − x̄‖ → d

‖d‖
}
.

Proof. Consider d ∈ R
n \ {0} and a sequence (xk) ⊂ Ω such that xk → x̄ and

xk − x̄

‖xk − x̄‖ → d

‖d‖ .

Defining tk =
‖xk − x̄‖

‖d‖ , we have tk → 0 and
xk − x̄

tk
→ d. Conversely, if (xk) ⊂ Ω, tk → 0

and
xk − x̄

tk
→ d, then

‖xk − x̄‖
tk

→ ‖d‖. Therefore,

xk − x̄

‖xk − x̄‖ → d

‖d‖ .

Moreover, xk − x̄ = tk
xk − x̄

tk
→ 0 completing the proof.

Now we obtain explicit representations for the cones of the Lemma 1.1.5 and
describe precisely the constraint qualification ACQ as well.

Proposition A.2 Consider the set Ω, given in (1.5) and a point (x̄, ȳ) ∈ Ω. Then,

TΩ(x̄, ȳ) =
{
(u, v) ∈ R

n × R
n | uI0> = 0; vI±0 = 0; vI00 ≥ 0; u ∗ v = 0

}
and

DΩ(x̄, ȳ) =
{
(u, v) ∈ R

n × R
n | uI0> = 0; vI±0 = 0; vI00 ≥ 0

}
Therefore, ACQ holds if and only if I00 = ∅.
Proof. Indeed, given (u, v) ∈ TΩ(x̄, ȳ), there exist sequences (x

k, yk) ⊂ Ω and tk → 0 such
that

xk − x̄

tk
→ u and

yk − ȳ

tk
→ v.
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If i ∈ I0>, then x̄i = 0 and ȳi > 0, which implies that yki > 0 (for all sufficiently large k)

and hence xk
i = 0. So, ui = lim

k→∞
xk
i − x̄i

tk
= 0. If i ∈ I±0, then x̄i �= 0 and ȳi = 0. Hence,

xk
i �= 0 (for all sufficiently large k), giving yki = 0. So, vi = lim

k→∞
yki − ȳi

tk
= 0. For i ∈ I00,

we have vi ≥ 0, because ȳi = 0, yk ≥ 0 and tk > 0. To see that u ∗ v = 0, it is enough to

prove that uivi = 0 for i ∈ I00. But for such an i we have 0 =
xk
i y

k
i

t2k
→ uivi.

Now, consider a vector (u, v) ∈ R
n × R

n such that uI0> = 0, vI±0 = 0, vI00 ≥ 0
and u ∗ v = 0. Let us prove that (u, v) ∈ TΩ(x̄, ȳ). For this purpose, define the sequence
(xk, yk) ⊂ R

n × R
n by

xk = x̄+
1

k
u and yk = ȳ +

1

k
v.

If i ∈ I±0 ∪ I00, then ȳi = 0, vi ≥ 0 and hence, yki ≥ 0. For i ∈ I0>, we have ȳi > 0, which
implies that yki > 0 (for sufficiently large k). Moreover, it can be easily verified that(

x̄i +
1

k
ui

)(
ȳi +

1

k
vi

)
= 0

for all i by analyzing the three cases i ∈ I±0, i ∈ I0> and i ∈ I00. Thus we conclude that
(xk, yk) ⊂ Ω and hence, (u, v) ∈ TΩ(x̄, ȳ).

To analyze the linearized cone, denote the constraints that define Ω by ζ(x, y) =
−y and ξ(x, y) = x ∗ y. Given (u, v) ∈ DΩ(x̄, ȳ), we have

ȳiui + x̄ivi = ∇ξi(x̄, ȳ)
T

(
u
v

)
= 0.

Therefore, if i ∈ I0>, we have x̄i = 0 and ȳi > 0, which implies that ui = 0. For i ∈ I±0,
it holds x̄i �= 0 and ȳi = 0, giving vi = 0. On the other hand, for i ∈ I00, the constraint ζi
is active and hence,

−vi = ∇ζi(x̄, ȳ)
T

(
u
v

)
≤ 0,

which means that vi ≥ 0. This proves the inclusion TΩ(x̄, ȳ) ⊂ DΩ(x̄, ȳ). To prove the
reverse inclusion, consider a vector (u, v) ∈ R

n × R
n such that uI0> = 0, vI±0 = 0 and

vI00 ≥ 0. Then,

∇ζj(x̄, ȳ)
T

(
u
v

)
= −vj ≤ 0

for j ∈ I±0 ∪ I00. Moreover, it is easy to see that

∇ξi(x̄, ȳ)
T

(
u
v

)
= ȳiui + x̄ivi = 0

for all i by considering the three cases i ∈ I±0, i ∈ I0> and i ∈ I00, proving that
(u, v) ∈ DΩ(x̄, ȳ).

Finally, if there exists an index � ∈ I00, then (e�, e�) ∈ DΩ(x̄, ȳ) \ TΩ(x̄, ȳ). So,
ACQ implies I00 = ∅. Conversely, assume that I00 = ∅. Thus, given (u, v) ∈ DΩ(x̄, ȳ) and
i ∈ {1, . . . , n}, we have i ∈ I0> or i ∈ I±0. In any case it holds uivi = 0, which implies
that DΩ(x̄, ȳ) ⊂ TΩ(x̄, ȳ), that is, ACQ holds.

In the next lemma we give an alternative and direct proof of the closedness of
the set defined by the cardinality constraint. Note that this is not so obvious because the
function x �→ ‖x‖0 is not continuous.
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Lemma A.3 The set C = {x ∈ R
n | ‖x‖0 ≤ α} is closed.

Proof. Let (xk) ⊂ C be a sequence such that xk → x̄. Since ‖xk‖0 ≤ α, the set Jk =
{i | xk

i = 0} satisfies |Jk| ≥ n − α for all k ∈ N. Moreover, there are only finitely many
possible choices of index sets Jk and hence at least one index set occurs infinitely often
in the sequence, say Jk = J for all k ∈ N

′ ⊂ N. Thus, xk
j = 0 for all j ∈ J and k ∈ N

′,
which yields x̄j = lim

k∈N′
xk
j = 0 for all j ∈ J . Therefore, as |J | ≥ n − α, we conclude that

‖x̄‖0 ≤ α.
We give below an alternative and direct proof of Theorem 1.1.7.

Theorem A.4 [Theorem 1.1.7] Consider the set Ω, defined in (1.8), and a feasible point
(x̄, ȳ) ∈ Ω. If I00(x̄, ȳ) = ∅, then ACQ holds at (x̄, ȳ).

Proof. In view of Lemma 1.1.2, we can assume without loss of generality that there is no
inactive constraint at (x̄, ȳ). Denote ρ(x, y) = Ax− b, ρ̃(x, y) = Ãx− b̃, ζ(x, y) = My− r,
ζ̃(x, y) = M̃x− r̃ and ξ(x, y) = x ∗ y. Given d = (u, v) ∈ R

n × R
n, we have

∇ρ(x̄, ȳ)Td = Au, (A.1a)

∇ρ̃(x̄, ȳ)Td = Ãu, (A.1b)

∇ζ(x̄, ȳ)Td = Mv, (A.1c)

∇ζ̃(x̄, ȳ)Td = M̃v, (A.1d)

∇ξi(x̄, ȳ)
Td = ȳiui + x̄ivi. (A.1e)

Take an arbitrary vector d = (u, v) ∈ DΩ(x̄, ȳ). Then, using (A.1e),

ȳiui + x̄ivi = ∇ξi(x̄, ȳ)
Td = 0

for all i = 1, . . . , n. Thus,
uI0± = 0 and vI±0 = 0. (A.2)

In order to prove that d ∈ TΩ(x̄, ȳ), define tk = 1/k and the sequence (xk, yk) by

xk = x̄+ tku and yk = ȳ + tkv.

Thus,
(xk, yk)− (x̄, ȳ)

tk
→ (u, v) = d. It remains to prove that (xk, yk) ⊂ Ω. By (A.2) we

obtain xk
I0± = 0 and ykI±0

= 0. Since I00 = ∅, we have I0± ∪ I±0 = {1, . . . , n} and then

xk ∗ yk = 0. Moreover, as (u, v) ∈ DΩ(x̄, ȳ), using (A.1a)–(A.1d), we obtain

Au = 0, Ãu ≤ 0, Mv = 0 and M̃v ≤ 0

yielding immediately

Axk = b, Ãxk ≤ b̃, Myk = r and M̃yk ≤ r̃.

So, (xk, yk) ⊂ Ω and then d ∈ TΩ(x̄, ȳ).
We show the following three equivalent (cf. Proposition A.5, below) conditions

for the optimization problem (1.1). Recall that the Lagrangian of this problem is given
in (1.4).

Condition 1 There exist sequences (xk) ⊂ R
n and (λk) =

(
λg,k, λh,k

) ⊂ R
m
+ × R

p such
that xk → x̄,

∇xL(x
k, λg,k, λh,k) → 0, (A.3a)

min{−g(xk), λg,k} → 0. (A.3b)
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Condition 2 There exist sequences (xk) ⊂ R
n and (λk) =

(
λg,k, λh,k

) ⊂ R
m
+ × R

p such
that xk → x̄,

∇xL(x
k, λg,k, λh,k) → 0, (A.4a)

λg,k
i = 0 for all i /∈ Ig(x̄). (A.4b)

Condition 3 There exist sequences (xk) ⊂ R
n, (λk) =

(
λg,k, λh,k

) ⊂ R
m
+ ×R

p and (εk) ⊂
R+ such that xk → x̄, εk → 0 and for all k ∈ N,

‖∇xL(x
k, λg,k, λh,k)‖ ≤ εk, (A.5a)

‖g+(xk)‖ ≤ εk, ‖h(xk)‖ ≤ εk, (A.5b)

λg,k
i = 0 if gi(x

k) < −εk. (A.5c)

Proposition A.5 Conditions 1, 2 and 3 are equivalent.

Proof. First, assume that the sequences (xk) and (λk) satisfy Condition 1. If i ∈ {1, . . . ,m}
is such that gi(x̄) < 0, then there exists δ > 0 satisfying −gi(x

k) ≥ δ for all k ∈ N

sufficiently large. So, in view of (A.3b), we have λg,k
i → 0. Since ∇gi(x

k) → ∇gi(x̄), we
have ∑

i/∈Ig(x̄)
λg,k
i ∇gi(x

k) → 0.

Subtracting this from (A.3a), we obtain

∇f(xk) +
∑

i∈Ig(x̄)
λg,k
i ∇gi(x

k) +∇h(xk)λh,k → 0.

Therefore, defining (λ̄g,k) ⊂ R
m
+ by

λ̄g,k
i =

{
λg,k
i , if i ∈ Ig(x̄)

0 , otherwise,

we have
∇xL(x

k, λ̄g,k, λh,k) → 0.

This means that the sequences (xk) and (λ̄g,k, λh,k) satisfy Condition 2.
Now, assume that Condition 2 is true and define

εk = max
i∈Ig(x̄)

{−gi(x
k), ‖∇xL(x

k, λg,k, λh,k)‖, ‖g+(xk)‖, ‖h(xk)‖} .

By (A.4a) and the facts that ‖g+(xk)‖ → ‖g+(x̄)‖ = 0, ‖h(xk)‖ → ‖h(x̄)‖ = 0 and
gi(x

k) → gi(x̄) = 0, i ∈ Ig(x̄), we conclude that εk → 0. Furthermore, from the definition
of εk we immediately have (A.5a) and (A.5b). To prove (A.5c), note that if gi(x

k) < −εk,
then i /∈ Ig(x̄) because −εk ≤ gi(x

k) for all i ∈ Ig(x̄). Thus, from (A.4b), we have λg,k
i = 0,

proving Condition 3.
Finally, suppose that Condition 3 is valid. From (A.5a) we get (A.3a). To see

(A.3b), consider i ∈ {1, . . . ,m} fixed and assume first that i ∈ Ig(x̄). Defining

N
′ = {k ∈ N | −gi(x

k) ≤ λg,k
i } and N

′′ = {k ∈ N | −gi(x
k) > λg,k

i },
we have

min{−gi(x
k), λg,k

i } =

{ −gi(x
k) , if k ∈ N

′

λg,k
i ∈ [0,−gi(x

k)] , if k ∈ N
′′.

Since gi(x
k) → gi(x̄) = 0, we obtain (A.3b) for this i. On the other hand, if i /∈ Ig(x̄),

then gi(x̄) < 0, which in turn implies that gi(x
k) < −εk for all k ∈ N sufficiently large.

Thus, using (A.5c) we obtain λg,k
i = 0 and then min{−gi(x

k), λg,k
i } = 0 for all k ∈ N

sufficiently large, proving (A.3b) in this case and completing the proof.
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[15] Ruiz-Torrubiano R, Garćıa-Moratilla S, Suárez A. Optimization problems with cardinality cons-
traints. In: Tenne Y, Goh CK, editors. Computational intelligence in optimization. Berlin: Academic
Press; 2010. p. 105–130.

[16] Sun X, Zheng X, Li D. Recent advances in mathematical programming with semi-continuous varia-
bles and cardinality constraint. J Oper Res Soc China. 2013;1:55–77.

[17] Hastie T, Tibshirani R, Friedman J. The elements of statistical learning. New York, NY, USA:
Springer New York Inc.; 2001.

60



Bibliography 61

[18] Bucher M, Schwartz A. Second-order optimality conditions and improved convergence results for
regularization methods for cardinality-constrained optimization problems. J Optim Theory Appl.
2018;178:383–410.

[19] Burdakov O, Kanzow C, Schwartz A. On a reformulation of mathematical programs with cardinality
constraints. In: Gao D, Ruan N, Xing W, editors. Advances in Global Optimization. Springer
Proceedings in Mathematics and Statistics; 2015.

[20] Li X, Song W. The first-order necessary conditions for sparsity constrained optimization. J Oper
Res Soc China. 2015;3:521–535.

[21] Pan L.L, Xiu N.H, Zhou S.L. On solutions of sparsity constrained optimization. J Oper Res Soc
China. 2015;3:421–439.

[22] Dussault J.P, Haddou M, Kadrani A, Migot T. How to compute an M-stationary point of the MPCC.
Canada: Université Sherbrooke; 2019.
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