
Universidade Federal do Paraná
Setor de Ciências Exatas

Departamento de Estatística
Programa de Especialização em Data Science e Big Data

Lucca Portes Cavalheiro

Analysis on Python Performance for
Data Stream Mining

Curitiba
2020



Lucca Portes Cavalheiro

Analysis on Python Performance for
Data Stream Mining

Monografia apresentada ao Programa de
Especialização em Data Science e Big Data da
Universidade Federal do Paraná como requisito
parcial para a obtenção do grau de especialista.

Orientador: Marco Antônio Zanata Alves

Curitiba

2020



Especialização em Data Science e Big Data
Universidade Federal do Paraná
dsbd.leg.ufpr.br

Analysis on Python Performance for Data Stream Mining
Lucca Portes Cavalheiro1

Marco Antônio Zanata Alves2

Jean Paul Barddal3

Abstract
Data stream mining is an essential task in today’s
scientific community. The most famous library for
performing such a task in Python, Scikit-Multiflow,
presents a severe performance problem, when compared
to the library it was inspired on, MOA, written in Java.
Python is an easy to use programming language, and
its libraries implemented improves the user experience,
however, with a performance cost. With the right tools,
Python libraries can present performance comparable to
low-level languages such as C/C++. This work performs
a comparison of the implementation of methods from
Scikit-Multiflow, with new implementations in low-level
languages with a binding to Python. The results showed
a significant improvement in the original performance of
the library, while keeping the predictions and prediction
results intact.
Keywords: High-performance Computing, Python,
Data Stream Mining.

Resumo
A mineração de fluxos de dados é uma tarefa essencial na
comunidade científica de hoje. A biblioteca mais famosa por
executar tal tarefa em Python, Scikit-Multiflow, apresenta
um grave problema de desempenho, em comparação com a
biblioteca na qual foi inspirada, MOA, em Java. Python é uma
linguagem de programação fácil de usar e suas bibliotecas
melhoram a experiência do usuário, no entanto, com um
custo para o desempenho. Com as ferramentas certas, as
bibliotecas Python podem apresentar desempenho comparável
a linguagens de baixo nível, como C / C ++. Este trabalho
tem como objetivo realizar uma comparação da implementação
de métodos do Scikit-Multiflow, com novas implementações
em linguagens de baixo nível com uma interface em Python.
Os resultados mostraram uma melhora significativa no
desempenho original da biblioteca.
Palavras-chave: Computação de Alto Desempenho, Python,
Mineração de Fluxo de Dados.
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1 Introduction
Nowadays, data is a valuable resource. As time passes
and the storage prices decrease, companies tend to
accumulate more and more data for further analysis.
In this scenario, machine learning comes as a valuable
tool to extract knowledge from this enormous data mass.
However, traditional machine learning techniques (also
referred to as batch machine learning) are not suitable
for big datasets that are made available over time. That
is because most algorithms require to load the whole
dataset into memory, which is very often not possible as
the data is potentially unbounded.

Thus, data stream mining techniques were proposed
to fill in this gap. Contrary to batch machine learning,
these algorithms process the instances once at a time,
updating their internal models as each instance arrives.
It allows the computation of a potentially infinite
amount of data. Thus, high speed and efficient use of
memory are essential.

The scientific community currently has two main
libraries available for applying data stream mining.
One of them is Massive Online Analysis (MOA) [1],
implemented in Java, which has been the default option
for implementing and comparing methods in the past
years. The other one is Scikit-Multiflow [2], more recent
and implemented in Python.

Although Scikit-Multiflow is still in its early stages,
we believe that it has excellent potential for community
adherence since it uses Python implementation, which
is considered by many a more beginner-friendly
language than Java. However, when comparing the
processing time of Scikit-Multiflow to MOA, the latter
is significantly faster (approximately 71× faster), as
shown in Table 1. We consider this an obstacle for Scikit-
Multiflow to acquire more active users.

Table 1: Time in second(s) for executing Naïve Bayes,
under the evaluation Prequential, with the SEA data
generator with 100,000 instances

MOA Scikit-Multiflow

0.2000 14.2303

In this paper, we compare a part of the original
implementation of Scikit-Multiflow with three proposed
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implementations of the same part in the low-level
languages C and Rust, with an interface for accessing
the algorithm in Python. We have reimplemented
the classification algorithm, Naïve Bayes, for streams,
the validation process Prequential [3], and the data
generators Streaming Ensemble Algorithm (SEA)
[4] and Random Radial Basis Function (Random
RBF). The source code for our implementation
is made available at https://github.com/nbpaper/

NaiveBayesImplementations.

2 Related work
Python is naturally not a fast programming language,
especially when compared to low-level languages such
as C and C++. However, this was not a requirement
for Python. Its dynamic-typed system and abstractions
of fairly complicated data structures prioritize easiness
over speed. Nonetheless, this does not mean that there
are not ways of using Python for high-performance
computations.

The first and most used Python implementation for
high performance is CPython, written in C, as the name
indicates. That causes Python to bind to compiled
libraries written in low-level languages. One of the most
used libraries in the Python ecosystem is NumPy [5],
a library for array processing that takes advantage of
bindings. NumPy is based on two highly optimized
libraries for array calculations written in C and Fortran:
BLAS (Basic Linear Algebra Subprograms) [6] and
LAPACK (Linear Algebra Package) [7].

# Pure Python
random_list = [ ]
for _ in range ( 1 0 0 0 0 0 0 ) :

random_list . append ( random . random ( ) )

# NumPy
random_list = np . random . rand (1000000)

Figure 1: Code generating random list using pure
Python and NumPy

Table 2: Time in seconds for generating random list using
pure Python and NumPy

Pure Python NumPy

0.2274 0.0321

With few code lines, it is possible to demonstrate
the difference in processing time from pure Python to
NumPy. The first part of the code in Figure 1 generates
a list of one million random numbers in pure Python.
While at the bottom, the code uses Numpy to achieve
the same behavior. Table 2 present the execution time
difference (in seconds). NumPy, in this case, performed
approximately 7× faster.

Another library that also takes advantage of low-
level implementation is NumExpr [8]. It takes input

previously built arrays from Python or NumPy and
computes array operations with minimal overhead.

Most of these libraries implemented in C/C++ take
advantage of Intel Intrinsics routines. These are
assembly-coded functions that provide access to highly
optimized vector operations. The compiler will convert
these routines to SIMD (single instruction multiple
data) instructions, which operate with the whole vector
simultaneously, which is called vectorization. Besides,
C/C++ compilers can automatically translate loops into
vectorized code, which is called auto-vectorization.

There are several sets of Intel Intrinsics routines, and
as CPUs are improved, more optimized functions are
released as Instruction Set Architecture (ISA) extensions
to vectorize the code. Modern CPUs maintain backward
compatibility with most of the previously released
functions. However, applications using newly released
functions will not run in older CPUs. When publishing a
library that uses Intrinsics, publishers must either specify
CPU compatibility or provide multiple implementations,
with new and old sets, chosen at compile time. Examples
of ISA extensions are SSE (Streaming SIMD Extensions),
SSE2, AVX (Advanced Vector Extensions), AVX2, and
AVX 512.

There are initiatives in many compiled languages that
allow writing code that can be bound to Python. One of
these is PyO3 [9], a library written in Rust that allows
bidirectional iteration, compiling Rust code so it can be
imported from Python and calling Python code from
within Rust programs. The orjson [10] library is an
example of a Python library for parsing JSON written in
Rust and using PyO3.

Another approach for increasing the Python code’s
speed is to transpile the Python code into C/C++ code,
and subsequently, compile it into binary, then importing
this compiled version into another Python script. This
method has limitations. For example, in order to
expect a significant increase in the speed, in many cases,
the programmer should give up the dynamic typing
convenience offered in Python. The most used tools of
this kind are Cython [11] and Numba [12].

Most of the popular Python-based software amongst
the scientific community uses one or more of the
previously explained approaches. For example, the data
processing library Pandas [13], and the machine learning
framework Scikit-Learn [14] use NumPy extensively in
its internal calculations, as well as Cython in critical
parts.

Many recently published papers also take advantage
of these tools. For example, the library pyts [15],
focused on time series classification, uses Numpy and
Numba in its implementation. Cornac [16], a library for
recommender systems, on the other hand, uses Cython
(instead of Numba) and Numpy.

3 Optimization Analysis
As stated in the introduction, we re-implemented
specific parts of the original Scikit-Multiflow code to
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obtain improved performance. In this work, we focus
on the Naïve Bayes algorithm implementation as a proof
of concept.

3.1 Naïve Bayes

The Naïve Bayes is a classification algorithm based on
the Bayes Theorem, given in Equation (1). This theorem
calculates the conditional probability of A happening,
given that B happened. Applying to a classification
problem, the probability computed by Naive Bayes is
of the set of features x belonging to the class y. This is
computed for each of the classes.

P(A|B) = P(B|A)× P(A)

P(B)
(1)

3.2 SEA Generator

The SEA generator generates data by creating a random
feature vector with tree elements {x1, x2, x3}, but only
two of them ({x1, x2}) contribute to classifying the
instance. The definition of the target feature follows
a linear threshold. If x1 + x2 > θ. The value of θ is
variable and changing it in the middle of an algorithm
execution creates a concept drift.

3.3 Random RBF Generator

The Random RBF generator works by drawing normally
distributed samples around previously created centroids.
It works by initially generating n centroids with a
random standard deviation associated. When an
instance needs to be generated, a centroid is randomly
chosen and the attributes for the instance are drawn from
a normal distribution with the standard deviation of the
centroid. The class of the instance is the same as of the
centroid.

3.4 Prequential

The Prequential validation process combines and
interacts data generation with the classifier learning and
testing processes. Its idea is reasonably straightforward,
where for each instance that arrives from the stream
(generator), the algorithm uses it first to test the model
and then train it. This order is essential because it
guarantees that the model is only evaluated against
instances never trained before.

Prequential works with integrated performance
analyzers that track how well the learning task is at a
given moment. The traditional metrics shown as output
of Prequential are accuracy and kappa. In this sense,
n_wait is a vital parameter to define after the interval
of how many instances the selected metrics will be
evaluated.

3.5 Challenges and Motivation
Although Scikit-Multiflow uses NumPy in its code,
many of its inner usages are suboptimal. An example is
given in Figure 2, where the matrix y_proba is iterated
row by row and the argmax function is applied to
each row, with its output appended on the variable
predictions. However, with a simple call to a NumPy
function, with the parameter axis = 1, as shown in the
bottom part of the same Figure, NumPy performs the
same computation, yet, in an optimized fashion. In order
to illustrate this, Table 3 compares the execution time
on both pieces of code using as input a matrix of shape
(1000000× 20) with random numbers ranging from zero
to one. The speedup was of approximately 19 times.

Table 3: Time in seconds for applying the argmax
function in a random matrix using pure Python and
NumPy

Pure Python NumPy

2.1245 0.1109

# Adapted from S c i k i t − M u l t i f l o w
preds = [ ]
for i in y_proba :

c l a s s _ v a l = numpy . argmax ( i )
preds . append ( c l a s s _ v a l )

# Optimal NumPy c o d e
preds = numpy . argmax ( y_proba , a x i s =1)

Figure 2: Code adapted from Scikit-Multiflow and its
NumPy version.

Nonetheless, as discussed in the previous sections,
the Prequential process works with a single instance
at a time, and this represents a problem for code
optimization. Libraries such as NumPy have overhead
when initializing their arrays as the memory must be
allocated all at once to perform fast array operations.
This overhead is negligible when dealing with arrays of a
reasonable size. However, creating a NumPy array with
unitary size per instance presents a significant overhead
in the execution.

Because of this characteristic, trying to optimize Scikit-
Multiflow’s code by transcribing pure Python code
to use NumPy or NumExpr functions or correcting
NumPy uses such as in Figure 2, may not be the wisest
solution. That is why we choose to perform low-level
implementations of the selected parts.

3.6 Experiments
For the re-implementation, the languages chosen were
C++ (using structures from its standard library), C++
(using Intel Intrinsics AVX for a faster array processing),
and Rust (using the ndarray library [17]). All of them
provide and were called using a Python interface. The
option for C++ was because of its widespread adoption
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in the Python community for developing libraries that
require fast processing. Rust was also selected to
compare a classical language’s speed, commonly known
for its performance, versus a more modern language,
which also targets performance.

Figure 3 provides a comparison between two sums of
arrays in order to exemplify the code difference between
C++ with its standard library versus C++ with Intel
Intrinsics. The functions are very similar, the basic
difference lies in comparing lines 6 and 15. While
the code using the standard library (line 5) iterates
over the vectors of the type double and individually
sum its elements, the code using AVX use the function
_mm256_add_pd to sum vectors of type __m256d. This type
is an array that can store up to 32 bytes of memory, in
this case, it is used for storing 4 doubles. All elements in
one __m256d array are summed at the same time on with
the function _mm256_add_pd, there are similar functions
for other types of operations.

1 / / Using STD
2 vector <double> vec_sum (
3 vector <double> v1 , vector <double> v2 ) {
4 vector <double> r e t ( v1 . s i z e ( ) ) ;
5 for ( auto i = 0 ; i < r e t . s i z e ( ) ; i ++)
6 r e t [ i ] = v1 [ i ] + v2 [ i ] ;
7 return r e t ;
8 }
9

10 / / Using AVX
11 vector <__m256d> vec_sum (
12 vector <__m256d> v1 , vector <__m256d> v2 ) {
13 vector <__m256d> r e t ( v1 . s i z e ( ) ) ;
14 for ( auto i = 0 ; i < r e t . s i z e ( ) ; i ++)
15 r e t [ i ] = _mm256_add_pd ( v1 [ i ] , v2 [ i ] ) ;
16 return r e t ;
17 }

Figure 3: Comparison of vector addition using C++
standard library versus C++ with AVX.

We did not merely translate the algorithms, from
Python, into the proposed languages. We also
redesigned them with a focus on the performance. Some
features present in the original implementation of Scikit-
Multiflow were left out, such as performance metric
computers other than the accuracy and support for
multiple classifiers in Prequential.

We executed the experiments on a Linux Ubuntu
18.04.1 with Intel Core i5-3570 (Ivy Bridge) 3.40GHz with
four cores as CPU (although all the experiments use a
single thread only), 8 GB of main memory. We executed
two different sets of experiments, for accessing the
impact on speed by increasing the number of instances
and features on each experiment.

For the experiments regarding the instance number,
we used the SEA generator. The number of instances
generated at each experiment varied from 20 to 100020,
with a step of 5000. We set the n_wait parameter as
1%, 5%, and 10% of the total number of instances. For
analyzing the features number, we used the Random
RBF generator, because its design allows us to define

the number of features generated at each instance. The
number of features generated in this set varied from 2 to
102, with a step of 5. The number of instances and the
n_wait parameter were set to 50000 and 2500 respectively.
The Prequential process was executed ten times for each
implementation and each experiment, plus the original
Scikit-Multiflow and MOA implementation. The time
was measured (in seconds) for each execution. In the
end, the average of the time values was computed.

As memory efficiency is also an important part of
data stream mining, we also performed a memory
usage analysis of all the methods. For this test, a
single execution of Prequential was used with the SEA
Generator with 100,000 instances and n_wait = 5000.

4 Results and Discussion

4.1 Processing Time
The results regarding the instance number increase for
n_wait = 1% can be seen in Figure 4, y axis displays
in logarithmic scale the execution time (in seconds),
x axis presents the number of instances. All of the
proposed implementations performed very similarly. It
is evident the difference between any of them versus
the original implementation of Scikit-Multiflow. All
of our implementations were also faster than the Java
implementation on MOA.

Figure 4: Comparison of processing time between
proposed implementations and original Scikit-Multiflow
and MOA functions regarding number of instances

Table 4 shows the average processing time of the
executions for 20, 50020 and 100020 instances. Once
again, is clear the improvement provided by the
implementations in low-level languages. With 100020
instances, the implementations in C++, C++ with AVX
and Rust outperformed the original implementation by
roughly 102×, 105× and 111×. The implementation in
MOA was 65× faster.

When comparing only with MOA (again with 100020
instances), the C++ implementations without and with
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Intel intrinsics were 1.57× and 1.62× respectively. The
Rust implementation was 1.71×.

Table 4: Mean time in second(s) for running the
experiments regarding instances

Instances Multiflow MOA C++ C++ AVX Rust

20 0.0039 0.0199 0.0003 0.0003 0.0003
50020 7.1149 0.1699 0.0700 0.0677 0.0642

100020 14.2713 0.2200 0.1400 0.1350 0.1284

Figure 5 shows the results for the experiments
concerning the increase of features. y axis displays
in logarithmic scale the execution time (in seconds),
x axis presents the number of features. It is clear
that there is a point in the features number, where the
vectorization provided by AVX starts to be better than
the C++ implementation with STL. The vectorization
was performed on features level, and it has a cost, so this
behavior was expected. The gains of vectorization are
better seen as the array sizes are increased, making the
cost of vectorization setup negligible.

Figure 5: Comparison of processing time between
proposed implementations and original Scikit-Multiflow
and MOA functions regarding number of features

As for the direct comparison of the times, Table
5 shows the average processing times for 2, 52, and
102 features. Compared to Scikit-Multiflow with 102
features, the C++ (STD) implementation was 92× better,
using Intel Intrinsics the number was 147×. Rust was
again the best performant, running at 155× faster. The
MOA implementation was 92×.

Comparing our implementations with MOA (with 102
features), C++ With Intel intrinsics and Rust performed
1.60× faster and 1.68× faster respectively. The C++
implementation with its standard library virtually tied
with MOA.

4.2 Memory Usage
Figure 6 shows the memory usage for all the
implementations over time. x axis is the processing

Table 5: Mean time in second(s) for running the
experiments regarding features

Features Multiflow MOA C++ C++ AVX Rust

2 11.2802 0.1559 0.0748 0.0976 0.0697
52 39.5166 0.4470 0.4053 0.2788 0.2519

102 67.2595 0.7300 0.7298 0.4551 0.4329

time normalized from 0 to 1, this was done for the
sake of clarity, so all of the curves would end at the
same point. y axis is the memory usage in MB. It
is evident that all of the proposed implementations
used considerably less memory than MOA and Scikit-
Multiflow. But it is worth noting that even though Scikit-
Multiflow used more memory than MOA, as it is shown
in Table 6, it presented a more consistent usage over
time. The observed behavior for MOA in Figure 6, with
the memory consumption considerably increasing as
new instances arrive, is not sustainable for an enormous
quantity of instances.

Figure 6: Comparison of memory usage between
proposed implementations and original Scikit-Multiflow
and MOA.

Table 6: Maximum memory usage (MB) for running
Prequential with 100,000 instances generated by the SEA
generator.

Multiflow MOA C++ C++ AVX Rust

148.8085 63.8750 8.7343 10.4531 10.0039

5 Conclusions and Future Work
We concluded by our analysis that a high-performance
and memory-efficient Python library for mining streams
of data is achievable. All the low-level implementations
proposed easily outperformed the original Scikit-
Multiflow implementation.

The least performant of the implementations proposed
by this project was with C++ using elements from its
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standard library. This was an expected result because
these elements provide a high level of abstraction for
dealing with data structures. This provides great help
for dealing with complicated algorithms easily, but it
comes with a performance cost, which can be observed
at the results.

The C++ implementation with Intel Intrinsics and
the Rust implementations were very close, with Rust
performing slightly better. The result for C++ with AVX
was expected because the AVX routines are very efficient
in vector processing. The explicit vectorization had
better performance with larger features array. Rust also
presented a good speedup because, besides being also
an extremely low-level language, its internal libraries
also abstracts some kind of vectorization. This result
is interesting because it showed that Rust has good
potential for serving as a backend for Python libraries.
As Rust is a more recent language, it provides some
facilities related to memory management that C++ does
not provide. While also contributes to a faster coding
time.

As for the comparison with MOA, all of our
implementations outperformed it regarding the number
of instances and features. Moreover, since MOA is open-
source and widely adopted by the scientific community,
it is expected that common algorithms, such as Naive
Bayes, are implemented in a reasonably optimized
way. Thus, we expect that there is still a gap in speed
improvement in our implementations.
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