UNIVERSIDADE FEDERAL DO PARANA

BRUNA LEAL MASKE

EFFICIENCY OF SPONTANEOUS LACTIC ACID FERMENTATION TO
IMPROVE THE QUALITY OF RAW MILK CONTAINING HIGH LEVELS OF
Pseudomonas CONTAMINATION: AN ALERT FOR SANITARY MEASURES

CURITIBA

2021



BRUNA LEAL MASKE

EFFICIENCY OF SPONTANEOUS LACTIC ACID FERMENTATION TO
IMPROVE THE QUALITY OF RAW MILK CONTAINING HIGH LEVELS OF
Pseudomonas CONTAMINATION: AN ALERT FOR SANITARY MEASURES

Dissertacdo apresentada ao curso de Pos-Graduagdo em
Engenharia de Bioprocessos e Biotecnologia, Setor de
Tecnologia, Universidade Federal do Parana, como requisito
parcial a obtencdo do titulo de mestre em Engenharia de
Bioprocessos e Biotecnologia.

Orientador: Prof. Dr. Gilberto Vinicius de Melo Pereira

CURITIBA

2021



FICHA CATALOGRAFICA

CATALOGAGAO NA FONTE — SIBIUFPR

L435m Leal. Bruna

Maske efficiency of spontaneous lactic acid fermentation to improve
the quality of raw milk containing high levels of pseudomonas
contamination: an alert for sanitary measures [recurso eletrénico]/
Bruna Leal — Cuntiba, 2021.

Dissertacio (Mestrado) — Programa de Pos-Graduacio em
Engenharia de Bioprocessos e Biotecnologia. Setor de Tecnologia,
Universidade Federal do Parana. como requisito parcial a obtencio do
titulo de mestre em Engenharia de Bioprocessos e Biotecnologia.

Onentador: Prof. Dr. Gilberto Vinicius de Melo Pereira.

1. Leite fermentado. 2. Tecnologia de alimentos. 1. Pereira, Gilberto
Vinicius de Melo. II. Titule. III. Universidade Federal do Parana.

CDD 637.136

Bibliotecaria: Vilma Machado CEB9/1363



MINISTERIO DA EDUCAGAO

SETOR DE TECNOLOGIA

UNIVERSIDADE FEDERAL DO PARANA
PRO-REITORIA DE PESQUISA E POS-GRADUA(}AO
PROGRAMA DE POS-GRADUAGAO ENGENHARIA DE
BIOPROCESSOS E BIOTECNOLOGIA - 40001016036P8

TERMO DE APROVAGAO

Os membros da Banca Examinadora designada pelo Colegiado do Programa de Pés-Graduagdo em ENGENHARIA DE
BIOPROCESSOS E BIOTECNOLOGIA da Universidade Federal do Parana foram convocados para realizar a arguigao da
dissertagdo de Mestrado de BRUNA LEAL MASKE intitulada: Efficiency of spontaneous lactic acid fermentation to improve
the quality of raw milk containing high levels of Pseudomonas contamination: An alert for sanitary measures, sob
orientagdo do Prof. Dr. GILBERTO VINICIUS DE MELO PEREIRA, que apés terem inquirido a aluna e realizada a avaliagdo do
trabalho, sao de parecer pela sua APROVAGAO no rito de defesa.

A outorga do titulo de mestre esta sujeita & homologagéo pelo colegiado, ao atendimento de todas as indicagdes e corregdes

solicitadas pela banca e ao pleno atendimento das demandas regimentais do Programa de Pés-Graduagéo.

CURITIBA, 25 de Fevereiro de 2021.

Assinatura Eletrénica Assinatura Eletrénica
01/03/2021 11:12:27.0 27/02/2021 18:28:00.0
GILBERTO VINICIUS DE MELO PEREIRA MARIA GIOVANA BINDER PAGNONCELLI
Presidente da Banca Examinadora Avaliador Externo (UNIVERSIDADE TECNOLOGICA FEDERAL DO
PARANA)
Assinatura Eletrénica Assinatura Eletrénica
25/02/2021 17:36:45.0 26/02/2021 13:32:10.0
SUSAN GRACE KARP KARINA TEIXEIRA MAGALHAES GUEDES
Avaliador Interno (UNIVERSIDADE FEDERAL DO PARANA) Avaliador Externo (UNIVERSIDADE FEDERAL DA BAHIA)

Universidade Federal do Parana- Centro Politécnico - CURITIBA - Parana - Brasil
CEP 81531-990 - Tel: (41) 3361-3695 - E-mail: secretaria.pb@ufpr.br
Documento assinado eletronicamente de acordo com o disposto na legislagao federal Decreto 8539 de 08 de outubro de 2015.
Gerado e autenticado pelo SIGA-UFPR, com a seguinte identificagdo unica: 77440
Para autenticar este documento/assinatura, acesse https://iwww.prppg.ufpr.br/siga/visitante/autenticacaoassinaturas.jsp
e insira o codigo 77440




Dedico este trabalho a minha familia, Beatriz,

Solange e Irineu.



AGRADECIMENTOS

A Deus, pela vida;

A Universidade Federal do Parand e ao Curso de P6s-Graduacio em Engenharia
de Bioprocessos e Biotecnologia pela oportunidade concedida para a realizagdo do

mestrado;

A Coordenagio de Aperfeigoamento de Pessoal de Nivel Superior (CAPES) pela

concessao da bolsa de estudo;

Ao meu orientador, Prof. Dr. Gilberto Vinicius de Melo Pereira, pela orientacao,
dedicacdo, disponibilidade e toda paciéncia, assim como todas oportunidades

oferecidas;

Aos professores e técnicos integrantes da Pos-Graduacdo em Engenharia de

Bioprocessos e Biotecnologia pelo apoio;

Aos meus pais, Solange e Irineu, que nunca mediram esforcos para a realizagdo
dos meus sonhos. Sou imensamente grata por toda forgca, presenca, carinho,

compreensdo e confianga. Vocés sao meu exemplo de coragem;

A minha irma Beatriz, por ser sempre meu porto seguro. Vocé sempre me

mostra o ponto de luz quando tudo parece escuro;

As familias do Rio de Janeiro e Rio Grande do Sul, que, mesmo distantes,

proporcionaram momentos de leveza e descontracao;

Aos amigos pelo companheirismo;

Obrigada!



“Sou o que quero ser, porque possuo apenas uma vida e

nela so tenho uma chance de fazer o que quero.
Tenho felicidade o bastante para fazé-la doce,
dificuldades para fazé-la forte,

tristeza para fazé-la humana e esperanga suficiente para

fazé-la feliz.

As pessoas mais felizes ndo t€ém as melhores coisas, elas
sabem fazer o melhor das oportunidades que aparecem em

seus caminhos”

Clarice Lispector



RESUMO

Produtos lacteos fermentados t€ém sido um componente vital na dieta de grupos
étnicos de todo o mundo desde tempos remotos. Nos dias atuais, a popularidade destes
produtos tem aumentado devido as suas propriedades funcionais e ao aumento do tempo
de vida de prateleira. Estes processos sao realizados em sistemas abertos e baseiam-se
na microbiota indigena presente na matéria-prima ou do inéculo originado pelo
processo chamado backslooping. No primeiro capitulo deste trabalho, foi construida
uma revisdo critica sobre o surgimento de tecnologias de sequenciamento de nova
geracdo (SNG) e os impactos na caracterizagdo microbioldgica de produtos lacteos
fermentados tradicionais. Os produtos abrangidos nesta revisao incluiram kefir, leitelho,
koumiss, dahi, kurut, airag, tarag, khoormog, lait caillé e suero costeiio. Grupos
dominantes detectados por SNG, principalmente bactérias do acido latico, também
foram identificados por técnicas anteriores de caracterizacdo microbioldgica. No
entanto, as plataformas de SNG revelaram a diversidade bacteriana total, incluindo
microrganismos ndo cultivaveis, populagdes sub-dominantes e espécies de crescimento
tardio. Os conhecimentos adquiridos sdo vitais para melhorar a monitorizacao,
manipulacdo e seguranga destes alimentos fermentados. Na segunda fase deste trabalho,
foi avaliado o desempenho da fermentagdo espontanea de iogurte do tipo Mar Caspio
para melhorar a qualidade de leite pasteurizado contendo altos niveis de contaminagdo
por Pseudomonas, com foco na seguranga microbioldgica e estabilidade do produto
final. A diversidade bacteriana do leite pasteurizado, processo de fermentacao e apos 60
dias de armazenamento foi analisada por SNG e a presenca de células viaveis foi
confirmada através de cultivos em meios seletivos. Além disso, os metabolitos
produzidos durante o processo fermentativo foram analisados por cromatografia liquida
de alta performance e cromatografia gasosa com espectrometria de massa. Inicialmente,
leites pasteurizados contendo altas contagens de Pseudomonas foram selecionados para
a fermentacdo. Durante o processo fermentativo, sequéncias relacionadas com
Pseudomonas, e em menor grau para Enterobacteriaceae, permaneceram constantes até
o fim do processo. A abordagem dependente de cultivo confirmou a presenca de
Pseudomonas viaveis durante a fermentacdo. Acido latico foi o principal metabolito
produzido (5.93 g/L em 24 horas de fermentagdo) e, entre os compostos volateis
encontrados, acido benzdico e acido hexanodico apresentaram aumentos significativos
durante a fermentagdo. 2-nonanona foi também observado em concentragdes
significativas, o qual ¢ considerado um biomarcador volatil de P. aeruginosa e espécies
correlacionadas. Os resultados demonstraram que fermentagdes naturais podem
frequentemente nao inibir o desenvolvimento de agentes patogénicos e deteriorantes de
origem alimentar. Finalmente, a terceira etapa deste estudo avaliou diferentes cepas de
bactérias acido-laticas (obtidas a partir do leite fermentado no estilo do mar Céspio,
mantido a 4°C durante 60 dias) contra Pseudomonas aeruginosa. Isolados dos géneros
Leuconostoc e Lactobacillus apresentaram halos de inibi¢do significativos, indicando
que o produto € uma fonte promissora para isolamento de bactérias do 4cido latico com
atividade antimicrobiana.

Palavras-chave: Leites fermentados; sequenciamento de nova geragdo; diversidade
microbiana; microrganismos de origem alimentar; bactérias lacticas; seguranca
alimentar; probidtico.



ABSTRACT

Traditional fermented milk products have been a vital component in the daily
diet of ethnic groups all around the world since ancient times. Today, the popularity and
availability of these products have been increased due to their functional properties and
prolonged shelf-life. The fermentation process is performed in open systems and it is
based on the indigenous microbiota present in the raw material or on the inoculum,
originated from backslooping process. In the first chapter of this work, a critical review
on the application of NGS for microbiome analysis of traditional fermented milk
products worldwide was constructed. Fermented milk products covered in this review
include kefir, buttermilk, koumiss, dahi, kurut, airag, tarag, khoormog, lait caillé, and
suero costerio. In general, dominant species detected by culturing were also identified
by NGS. However, NGS studies have revealed a more complex bacterial diversity,
comprising uncultivable microorganisms, sub-dominant populations, and late-growing
species. The knowledge that has been gained is vital in improving the monitoring,
manipulation, and safety of these traditional fermented foods. In the second stage of this
work, the performance of Caspian Sea-style spontaneous milk fermentation to improve
the quality of pasteurized milk containing high levels of Pseudomonas contamination
was evaluated, with a focus on microbiological safety and stability of the final product.
Bacterial diversity of pasteurized milk, fermentation process, and after 60 days of
storage was analyzed by NGS and the presence of viable taxa was confirmed by
culturing on selective media. Microbial-derived metabolites were also analyzed by
high—performance liquid chromatography and gas chromatography—mass spectrometry.
Initially, pasteurized milks containing high Pseudomonas counts were selected for
fermentation. Sequences related to Pseudomonas, and to a lesser extent to
Enterobacteriaceae, remained constant throughout the fermentation process and the
culture-dependent approach confirmed the presence of viable Pseudomonas through
fermentation. Lactic acid (5.93 g/L in 24 h) was the major end-metabolite produced.
Among the volatile compounds found, benzoic and hexanoic acids showed significant
increase during fermentation in addition to 2-nonanone, a volatile biomarker of P.
aeruginosa and related species. The results demonstrated that natural milk fermentation
may often not inhibit the development of foodborne pathogens and food spoilage
microorganisms. Finally, the third stage of this work evaluated lactic acid bacteria
strains (isolated from Caspian Sea-style sample kept at 4°C for 60 days) against
Pseudomonas aeruginosa. Leuconostoc and Lactobacillus isolates showed a significant
inhibition halo, suggesting that the product is a promising source for isolation of lactic
acid bacteria with antimicrobial activity.

Keywords: Fermented milks; next generation sequencing; microbial diversity; food-
borne microorganisms; lactic acid bacteria; food safety; probiotic.
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1. INTRODUCTION

Fermentation practice was an important step for prehistoric farmers to extend the
lifetime of milk (Carrer et al., 2016). These products were produced spontaneously by
the action of indigenous microorganisms present in the raw milk of different animals or
from the environment. The spontaneous fermentations were then replaced by the
backslopping technique, which involves inoculating milk in a small amount of previous
successful fermentation (Shrivastava and Ananthanarayan 2015). This procedure
naturally selects well adapted microorganisms, reducing the fermentation time and
increasing the quality of the product. To date, milks produced by natural fermentation
are part of the diet of several cultures, including caspian yogurt, kefir, koumiss, dahi,
buttermilk, airag, tarag, khoormog, lait caillé and suero costerio (Kim et al. 2018; Li et
al. 2020; Dewan and Tamang 2007; Oki et al. 2014; Owusu-Kwarteng et al. 2017;
Motato et al. 2017; Uchida et al. 2007). The popularity and availability of these
products has increased due to their functional properties, being a vital component not
just in traditional ethnic groups but also in modern life (Panesar, 2011; Grandos Conde

et al., 2013; Singh and Shah, 2017; Granato et al., 2010).

Fermented milks have a rich microbiota, composed predominantly of lactic acid
bacteria (LAB). Although many of these microorganisms are beneficial, these
traditional products are highly susceptible to contamination with deteriorating and
pathogenic bacteria due to the conduction of fermentation in open systems and the poor
microbiological quality of the raw material (Capozzi et al., 2017). Pseudomonas spp.,
for example, 1s commonly found in milk and, because of its high metabolic versatility,
is a relevant contaminant. Besides causing defects in texture, odor and taste, this group
harbors members with pathogenic potential (Scatamburlo et al., 2015; Chen et al.,
2011). Microbiological characterization and control are, therefore, of extreme necessity

for the safety in the consumption of these products.

However, for a long time, microbiological characterization of fermented milks
was performed using culture-dependent methods, mainly based on morphological and
biochemical characteristics, accessing only dominant groups. Therefore, contaminating
microrganisms present at low levels were not detected. The advancement of molecular

technologies enabled the use of the ribosomal RNA region (rDNA amplicons) for
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microbiota characterization (Ray and Bhunia 2007; De Melo Pereira et al. 2019). The
improvement of studies resulted in independent cultivation methodologies to overcome
limitations of previous methods. Today, high-throughput sequencing (HTS)
technologies are available in the era of next generation sequencing (NGS), which has
revolutionized the way of investigating the microbial diversity of traditional fermented
milks. Roche's 454 pyrosequencing platforms, Life Sciences' SOLiD/Ion Torrent PGM,
and Illumina's Genome Analyzer/HiSeq 2000/MiSeq permited the discovery of several
non-cultivable microorganisms, sub-dominant populations, and late-growing species in
several fermented milks (Humblot and Guyot, 2009; Serafini et al., 2014; Dertli and
Con, 2017). To date, Caspian Sea yoghurt has not yet been analyzed by NGS.

This study aimed to evaluate the microbial safety of the Caspian Sea yogurt
inoculum circulated in Brazil and its efficiency to improve the quality of pasteurized
milk containing high levels of Pseudomonas used as substrate, by characterizing the
fermentation dynamic process using dependent and independent cultivation

methodologies.
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2. OBJECTIVES

2.1 Main objective

The present study aimed to evaluate the efficiency of Caspian Sea yogurt
inoculum circulated in Brazil to improve the quality of pasteurized milk containing high
levels of Pseudomonas used as substrate, and characterize the diversity, composition

and dynamics of the fermentation process.
2.2 Secondary objectives

o Build a literature review addressing the importance of next generation

sequencing in the elucidation of traditional fermented milks microbiota;

o Characterize the microbiota of Caspian Sea style fermented milk during
fermentation process, substrate (pasteurized milk) and fermented milk after 60

days of storage in low temperatures through Illumina Miseq platform;

o Confirm the presence of viable cells by culture-dependent method in selected

medium;

o Determine substrate consumption, production of organic acids and volatile

compounds during Caspian Sea style milk fermentation;

o Evaluate the antimicrobial activity of presumptive strains of lactic acid bacteria
isolated from Caspian Sea style fermented milk stored for 60 days at low

temperatures.
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CHAPTER ONE (LITERATURE REVIEW) — AN UPDATE ON BACTERIAL
COMMUNITY COMPOSITION OF TRADITIONAL FERMENTED MILK
PRODUCTS: WHAT NEXT-GENERATION SEQUENCING HAS REVEALED SO
FAR?

Manuscript published in Critical Reviews in Food Science and Nutrition journal. DOI:

https://doi.org/10.1080/10408398.2020.1848787.

ABSTRACT

The emergence of next-generation sequencing (NGS) technologies has revolutionized
the way to investigate the microbial diversity in traditional fermentations. In the field of
food microbial ecology, different NGS platforms have been used for community
analysis, including 454 pyrosequencing from Roche, [llumina’s instruments and
Thermo Fisher’s SOLiD/Ion Torrent sequencers. These recent platforms generate
information about millions of rDNA amplicons in a single running, enabling accurate
phylogenetic resolution of microbial taxa. This review provides a comprehensive
overview of the application of NGS for microbiome analysis of traditional fermented
milk products worldwide. Fermented milk products covered in this review include kefir,
buttermilk, koumiss, dahi, kurut, airag, tarag, khoormog, lait caillé, and suero costerio.
Lactobacillus—mainly represented by Lb. helveticus, Lb. kefiranofaciens, and Lb.
delbrueckii—is the most important and frequent genus with 51 reported species. In
general, dominant species detected by culturing were also identified by NGS. However,
NGS studies have revealed a more complex bacterial diversity, with estimated 400-600
operational taxonomic units, comprising uncultivable microorganisms, sub-dominant
populations, and late-growing species. This review explores the importance of these
discoveries and address related topics on workflow, NGS platforms, and knowledge
bioinformatics devoted to fermented milk products. The knowledge that has been
gained is vital in improving the monitoring, manipulation, and safety of these traditional

fermented foods.

Keywords: kefir; probiotic; lactic acid bacteria; food safety; microbial diversity.
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1.1 INTRODUCTION

Fermented milk products have been a vital component in the daily diet of ethnic
groups all around the world, and play an important nutritional role in modern life
(Granato et al. 2010). At early times, fermented milk products were produced
spontaneously by the action of indigenous microorganisms present in the raw milk or
from the environment. Subsequently, spontaneous fermentations were replaced by the
“backslopping” technique, which involves inoculating milk with a small amount of a
precedent successful fermentation (Shrivastava and Ananthanarayan 2015). This
procedure naturally selects well-adapted microorganisms reducing fermentation time
and increasing predictability and quality. Nowadays, several naturally fermented milk
products are produced by backslopping, including kefir, koumiss, dahi, mohi, chhurpi,
somar, philu, shyow, buttermilk, airag, tarag, khoormog, lait caillé and suero costerio
(Kim et al. 2018; Li et al. 2020; Dewan and Tamang 2007; Oki et al. 2014; Owusu-
Kwarteng et al. 2017; Motato et al. 2017; Uchida et al. 2007).

The evolution of studies on microbial diversity of naturally fermented milk products
started at the end of the 19th century, when Grigoroff (1905) isolated Lactobacillus
bulgaricus from Bulgarian fermented milk (Oberman and Libudzisz 1998).
Thenceforth, various culture-dependent-based studies reported lactic acid bacteria
(LAB) as the predominant microbiota present in natural milk fermentation, mostly
represented by Lactobacillus, Lactococcus, Streptococcus, and Enterococcus genera
(Shangpliang et al. 2018; Akabanda et al. 2013; Savadogo et al. 2004). The early studies
were based on the cultivation, isolation, and identification of microorganisms according
to their morphological or biochemical characteristics and, posteriorly, through the
sequencing of the ribosomal RNA gene (rDNA amplicons) (Ray and Bhunia 2007; De
Melo Pereira et al. 2019). The culture-dependent approach drove advances in
microbiology, despite its well-known serious limitations (Al-Awadhi et al. 2013). In
this methodology, microbial groups that appear in small numbers compete for growth
with abundance populations (Hugenholtz, Goebel, and Pace 1998), and many fastidious
microorganisms may be unable to grow in vitro by the difficulty in simulating the
natural habitat conditions (Gatti et al. 2008). Thus, the major limitation of classical
cultivation techniques is to drastically underestimate the number and microbial

composition in the samples under study (Cao et al. 2017; Al-Awadhi et al. 2013).
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In recent decades, culture-independent methodologies were developed to
overcome the limitations of conventional microbiology testing, through DNA analyses
without any culturing step. These include, for example, denaturing gradient gel
electrophoresis (DGGE), temporal temperature gradient gel electrophoresis (TTGE),
single-stranded conformation polymorphism (SSCP), real-time quantitative PCR
(qPCR), automated PCR-based techniques (PCR-ARDRA, ARISA-PCR, AP-PCR, and
AFLP), and terminal restriction fragment length polymorphism (T-RFLP) (Giraffa and
Neviani 2001; Ercolini 2004; Fusco and Quero 2014; Mayo et al. 2014). Studies applied
to natural milk fermentation using these techniques revealed a more accurate analysis of
the microbial composition, diversity, and dynamics, uncovered by traditional
cultivation. A complete list of microbial groups identified by these culture-independent
methods is shown in the supplementary material (TABLE Al.1). PCR-DGGE is the
most widely applied technique, although it has provided uncertain results, not being

able to reveal many species identified by cultivation (Ercolini 2004).

The emergence of next-generation DNA sequencing (NGS) methodology, and
the first application of the pyrosequencing platform in kefir samples from Ireland
(Dobson et al., 2011), produced exceedingly high numbers of DNA sequences and
allowed an in-depth characterization of the microbial constituents of this ecosystem. To
date, the 454 pyrosequencing, Illumina, and PacBio platforms revealed a diverse
community in naturally fermented milk products, with the estimated average ranging
from 400-600 operational taxonomic units (OTUs), represented by Proteobacteria,
Bacteroides, Actinobacteria, Acidobacteria, Firmicutes, Chloroflexi, Deinococcus-
Thermus, TM7, and Spirochaetes (Marsh et al. 2013; Gesudu et al. 2016; Liu, Xi, et al.
2015; Jayashree et al. 2013; Sun et al. 2014; Wurihan et al. 2019; Gao et al. 2013; Liu,
Zheng, et al. 2015; Oki et al. 2014). This review aims to provide an update into the
current knowledge of the microbial composition of traditional fermented milk products

after a short introduction to the most common NGS platforms.

1.2 NGS AND WORKFLOWS IN FERMENTED MILK MICROBIOMES

Fermented milk' microbiome is the aggregate of all the microbes that reside in
this ecosystem. Bacteria are the core microbiota components, comprising commensal,
symbiotic and pathogenic microorganisms (Quigley et al. 2013). Recent advances in
sequencing technologies have allowed an increasing number of microbiome studies into

popular and ethnic fermented milks. FIGURE 1.1 illustrates standard NGS workflow for
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microbiome analysis for these products, including (1) sampling, (2) DNA extraction, (3)

library preparation, (4) sequencing, and (5) data analysis.

FIGURE 1.1 - SCHEMATIC WORKFLOW FOR THE IMPLEMENTATION OF NGS-BASED
STUDIES IN FERMENTED MILK MICROBIOME ANALYSIS.
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1.2.1 Sampling

There is no standardized sampling strategy for fermented milk, which sample
volumes ranging from one to 30 mL are withdrawn at various time points, representing
the beginning, middle and end of fermentation (Hong et al. 2019; Marsh et al. 2013;
Shangpliang et al. 2018). The sampled liquid fraction is subsequently centrifuged under
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varied parameters (16,000 x g for 10 min; 10,000 g for 15 min; 5,444 x g for 30 min;
8,000 g for 10 min; 16,000 x g for 10 min) and the DNA is extracted from the resulting
pellet (Nalbantoglu et al. 2014; Walsh et al. 2016; Walsh et al. 2017; Jayashree et al.
2013; Liu, Xi, et al. 2015). In the case of solid matrices such as kefir grains, a pre-phase
of sample preparation is usually performed before DNA extraction. For instance, while
Nalbantoglu et al. (2014) manually macerated kefir grains in 0.9% NaCl, Walsh et al.
(2016) ground them into a fine powder using PowerBead tube on the TissueLyser II
from Qiagen company. The resulting extracts are homogenized to remove
microorganisms from the kefir matrix, releasing them into suspension. Some solutions
used for this purpose included CTAB pre-heated at 60 °C (Zamberi et al. 2016), 0.9%
NaCl (Nalbantoglu et al. 2014), 0.1% peptone (Gao and Zhang 2019), and 1.2 M
sorbitol (Wang et al. 2018).

1.2.2 DNA extraction

Following sampling, a variety of DNA extraction methods has been utilized to
isolate DNA from fermented milk samples (TABLE 1.1); however, no studies are
focusing on different DNA protocols designed for subsequent NGS approaches. In
general, four common steps are followed, including mechanical homogenization, cell
lysis, removal of cell fragments, and precipitation and purification of nucleic acids.
When reviewing DNA extraction procedures for fermented milk samples (TABLE 1.1),
cell lysis is the most variable procedure. This is a critical step, as microbial taxa within
a community have different cell wall compositions (Quigley et al. 2012). Bacterial cell
lysis is usually performed by either chemical, enzymatic, and physical methods, or even
a combination of different principles (TABLE 1.1). Generally, LAB are more sensitive
to enzymatic methods, while microorganisms of the Bacillaceae, Acetobacteraceae, and
Clostridiaceae families are more susceptible to physical and chemical methods (Keisam
et al. 2016). Buffers, such as sodium citrate (2%) and trisodium citrate (2%), are
generally used to improve lysis procedure by removing lipids, proteins, and salts
(Jatmiko, Mustafa, and Ardyati 2019; Shangpliang et al. 2018). After cell lysis, the
following steps for DNA separation, precipitation, and purification are usually
performed using commercial DNA extraction kits, including PowerFood™ Microbial
DNA Isolation Kit, FastDNA® Spin Kit for Soil, Qiagen DNA Stool Mini Kit, Wizard
Genomic DNA Purification Kit, and GeneMATRIX Food-Extract DNA Purification Kit
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(Dertli and Con 2017; Gao and Zhang 2019; Gesudu et al. 2016; Wurihan et al. 2019;
Nalbantoglu et al. 2014). However, some studies have shown a low efficiency of
commercial kits—based on the amount and the purity of the recovered DNA— when
compared to in-house protocols (Hurt et al. 2001; Luna, Dell’Anno, and Danovaro
2006; Keisam et al. 2016; Quigley et al. 2012). A particularly important and limiting
factor in NGS investigations is the usual small amount of suitable starting DNA or too
much DNA degradation, which underestimates the OTUs in the sample (Lienhard and
Schéffer 2019). Inhibitors within environmental samples, such as DNase and excess
protein, may create similar problems (Ariefdjohan, Savaiano, and Nakatsu 2010).
Therefore, DNA extraction optimization is a further important factor in gaining reliable

results for NGS (Lamble et al. 2013; Arseneau, Steeves, and Laflamme 2016).
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1.2.3 Library preparation

Library construction prepares DNA into a form that is compatible with the
sequencing system to be used (FIGURE 1.1). The core steps in preparing DNA for NGS
analysis are: (i) fragmenting or sizing the target DNA to the desired length, (i)
converting target to single-stranded DNA, (iii) attaching oligonucleotide adapters, and
(iv) quantitating the final library product for sequencing (Head et al. 2014). Physical,
enzymatic, and chemical processes can perform the DNA fragmentation. Physical
methods include acoustic shearing and sonication, enzymatic fragmentation uses non-
specific endonuclease cocktails and transposase tagmentation reactions, and chemical
process involves PCR amplification of a single taxonomically informative “marker

gene” from organisms of interest (Ari and Arikan 2016; Hennig et al. 2018).

The chemical process targeting rRNA gene is more widely used for microbiome
studies. This process, also called metagenetic, increases the depth of taxonomic
information (Beiko, Hsiao, and Parkinson 2018). The bacterial small subunit ribosomal
RNA gene (16S rRNA) is the most popular genomic region for profiling bacterial
communities. This locus presents a series of characteristics that make it particularly
suited for bacteria analysis, including its universal distribution in prokaryotic species, its
high number of copies making it easy for isolation and purification, and its intrinsic
constitution with conserved regions (used for primer annealing) and hypervariable
regions (used for phylogenetics comparison) (Hodkinson and Grice 2015; Silva, de
Oliveira, and Grisolia 2016). The choice of the primers for targeting the 16S rDNA
region is essential to the success of analysis (Ercolini 2013). TABLE 1.2 summarizes
the hypervariable regions of the 16S rDNA (namely V1 to V9) and NGS platforms that
were used to investigate microbiomes from fermented milks. The hypervariable regions
V1-V2-V3 and V4 were the most widely used, allowing identifications down to the
species level (TABLE 1.2). Other regions covered include V2-V3 (Chakravorty et al.
2007), V1-V2-V3 (Sundquist et al. 2007), V2-V3-V4 (Liu et al., 2008), and V1-V4 (K.
H. Kim and Bae 2011).
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After DNA amplification, oligonucleotides of a known short sequence (called
adapters) are connected to the end of each generated 16S rDNA fragment (Bystrykh, de
Haan, and Verovskaya 2014). The adapters are complementary and hybridize with
synthetic DNA sequences coated on the surface of planar or spherical surfaces. After
hybridization, 16S rDNA fragments are amplified and grouped into clusters using
different strategies according to the sequencing system to be used, e.g., emulsion or
“bridge” PCR (Adessi et al. 2000; Mitra and Church 1999; Williams et al. 2006). The
emulsion PCR was the first in vitro clonal amplification technique developed, and it
consists of the hybridization of a ssDNA on paramagnetic beads. After hybridization,
reagents necessary for PCR are added and the aqueous solution is mixed with oil,
capturing the beads in micelles. Each micelle acts then as individual microreactors
generating thousands of copies from a single fragment or amplicon (Dressman et al.
2003). This methodology is used in the 454 Roche, Ion Torrent, ABI SOLiD, Complete

Genomics, and Polonator G.007 sequencing systems.

On the hand, the “bridge” PCR amplification is exclusive for Illumina platform,
in which is performed in a glass flow cell coated with short synthetic DNA fragments
complementary to the adaptors (Glaxo Group Ltd. 1998). The ssDNA fragments are
hybridized in the flow cell by the 5 terminal adaptor, leaving the 3’ termination
exposed to allow primer extension. Due to the high density of these complementary
sequences, the free 3’-termination of the fragments hybridizes, forming a “bridge”
structure during the annealing and extension steps. This cycle is repeated using
formamide based denaturation and Bst DNA polymerase, generating “clusters” of clonal

amplicons (Cao et al. 2017).

The metagenetic methodology has a few disadvantages, such as biases
associated with PCR, overestimation of community diversity or species abundance, and
inability to describing biological functions (Xia, Sun, and Chen 2018). As an
alternative, shotgun metagenomic sequencing can be used to fulfill lacks and provide a
better understanding of the microbiome, especially taxonomic analysis (who is there?),
functional analysis (what are they doing?), and comparative analysis (how to compare
them?) (Xia, Sun, and Chen 2018). In general, the core steps in preparing DNA by
shotgun metagenomic are (i) DNA extraction, (ii) fragmentation by physical or

chemical methods and library preparation, (iii) DNA sequencing, (iv) quality checking,



46

(v) assembly, and (vi) binning/annotation. The steps (i) to (iv) are quite similar to the
metagenetic method, except that no specific gene is targeted during PCR amplification.
Thus, library construction is performed from random PCR amplification or physical
fragmentation, so the entire community DNA is extracted and independently sequenced.
This produces a massive number of DNA reads that can be aligned to genomic locations
in the sample (Hodkinson and Grice 2015). For instance, it can be sampled from
taxonomically informative genome loci (e.g., 16S) or coding sequences, providing
insights into the community structure and metagenome. Therefore, the construction of
shotgun libraries has the potential to discriminate strains of common species by gene
content and the detection of novel microorganisms (Xia, Sun, and Chen 2018). Besides,
it offers the possibility to identify genes of interest and to understand the functional
pathways that define the microbiome under study. This methodology, however, has a
few disadvantages, such as technical challenges in processing huge amounts of data,
large and complex outputs that difficult gene tracking, and complications identifying

different taxa between communities (Xia, Sun, and Chen 2018).

1.2.4 Sequencing

The sequencing technologies can be categorized according to fragment length
read, namely short-read (35 ~700 bp) and long-read (> 1 kb) (FIGURE 1.1). Both
metagenetic and shotgun metagenome prepares DNA samples to be compatible with
short-read sequencing platforms (e.g., Roche 454, Illumina, ABI SOLiD, Polonator
G.007, Complete Genomics, and Ion Torrent). The Roche 454 sequencer was the first
NGS platform commercially available. It uses pyrosequencing to identify the
nucleotides added during the extension of the fragments. The pyrosequencing operates
in a sequencing-by-synthesis methodology mediated by an enzymatic cocktail
containing DNA polymerase, ATP sulfurylase, and luciferase (FIGURE 1.2). This
process consists of three steps: (i) a single nucleotide is added and its incorporation in
the elongation chain releases inorganic pyrophosphate (PPi) during the condensation
reaction; (if) the released PPi is converted into adenosine triphosphate (ATP); (iii) ATP-
mediated oxidation of luciferin into oxyluciferin emits light that is captured by a camera
and the software records the nucleotide added to the sequence (Harrington et al. 2013).
The pyrosequencing of the 16S rRNA gene was a pioneer in revealing microbiomes of

fermented milk products, including kefir, buttermilk, kurut, tarag, airag, and khoormog
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(Sun et al. 2014; Marsh et al. 2013; Jayashree et al. 2013; Oki et al. 2014; Liu, Xi, et al.
2015). However, Roche shut down 454 Life Sciences in 2013 due to high reagents cost

and non-competitiveness with the upcoming platforms (Humblot and Guyot 2009).

[llumina became the most current library preparation protocol and sequencing
kits available for 16S rRNA amplicon sequencing. This system works using a cyclic
reversible termination approach, where the ribose 3’-OH of each base is blocked by a
chemically cleavable fluorescent reporter, which prevents elongation (FIGURE 1.2).
After incorporation of a single base, the reporter is cleaved allowing the identification of
the nucleotide and the further extension of the ssDNA template (Cao et al. 2017). This
platform was used for microbiome analysis of kefir, koumiss, suero costerno, and lait

caillé (Groenenboom et al. 2019; Parker et al. 2018; Motato et al. 2017).
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FIGURE 1.2 SCHEMATIC REPRESENTATION OF THE DIFFERENT NGS PLATFORMS USED IN
MICROBIOME STUDIES.
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Unlike Illumina and Roche 454, the sequencing in SOLiD Polonator G.007 and
Complete Genomics are mediated by a DNA ligase instead of DNA polymerase. The
sequencing method depends on the hybridization of fluorophore-labeled octamer probes
to the ssDNA fragments. These probes are single or dual encoding, which means that
only the first and second bases are known and correlate to a specific fluorescent color
(FIGURE 1.2). The third, fourth, and fifth bases are degenerated in all possible
combinations, while the sixth, seventh, and eighth are inosines carrying the fluorophore
(Goodwin, McPherson, and McCombie 2016; Ari and Arikan 2016). After the ligation
of one probe, the last three nucleotides are removed allowing the incorporation of a new
probe and the extension of the DNA strand. Due to the existence of a 3-nucleotide gap,

it is necessary the repetition of this process seven times with the addition of universal
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primers with one base set back (n-1) (Ari and Arikan 2016). Due to the short reading
size and low throughput, these platforms have not been used for the analysis of
fermented milk microbiomes. Instead, sequence-by-ligation platforms’ applicability has
been restricted to the identification of evolutionary changes between pathogenic strains

and mutation studies (Jarvik et al. 2010; Chin, da Silva, and Hegde 2013).

The Ion Torrent is considered the most versatile and less expensive equipment
between the short-read platforms. The core of this technology relies on the
quantification of H" ions released during the addition of a nucleotide by DNA
polymerase (FIGURE 1.2). The lon Torrent was the first platform without an optical
sensing detector, which reduced the costs of the runs and the equipment itself (Rothberg
et al. 2011). Although this technology offers superior total reads count and length when
compared to Illumina platform, it has high error rates related to insertion and deletion,
and sequence truncation on both forward and reverse DNA strands, which was
associated with the semiconductor sequencing methodology (Salipante et al. 2014).
Therefore, few studies on fermented milk microbiomes have been conducted on this

platform (de la Fuente et al. 2014; Verce, De Vuyst, and Weckx 2019).

The third-generation sequencing (also known as long-read sequencing) is a class
of DNA sequencing methods currently under active development (FIGURE 1.1). Pacific
Biosciences’ (PacBio) single-molecule real-time sequencing (SMRT) and Oxford
Nanopore Technologies’ (ONT) nanopore sequencing are the two long-read sequencing
technologies currently available (Hui 2012; Ameur, Kloosterman, and Hestand 2019).
In contrast to short-read sequencing, these platforms work by amplifying long strands of
DNA in a single run. The major advance of the PacBio sequencing was the
immobilization of the DNA polymerase, instead of the DNA fragment, at the base of
each one of the 150,000 zeptoliter wells (FIGURE 1.2). The immobilized polymerase
binds to the hairpin adaptor and an uninterrupted chain elongation is performed through
the addition of dNTPs tagged with a fluorescent dye attached to the phosphate group.
This technology allows the reduction of background noise, and the throughput range is
only limited by the DNA polymerase activity. Until now, only two studies in profiling
bacterial community composition of traditional fermented milk (Koumiss in Inner
Mongolia) were performed using the SMRT sequencing technology (Gesudu et al.,
2016; Mo et al., 2019). Finally, in the Nanopore sequencing, a single molecule of DNA

can be sequenced without the need for PCR amplification or chemical labeling of the
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sample. Instead, the circularized DNA is translocated through synthetic or biological
nanometer-sized pores when applying a constant electric field (FIGURE 1.2). The
changes in the ionic current caused by base shifting along the sequence are measured
and recorded (Jain et al. 2016). Nanopore sequencing has yet not been used for
generating microbiomes of fermented milk. However, a recent study demonstrated the
applicability of this methodology in the identification of both Gram + and Gram- -
pathogenic bacteria in food matrices through direct metatranscriptome (Yang, Zhang, et

al. 2019).

1.2.5 Data analysis

After sequencing, sequence processing and bioinformatics analysis are required
to transform the raw data into variant lists that can be used in phylogenetic studies.
Sequence processing involves removing chimeras, low-quality sequences, and short
reads. It improves accuracy and avoids the overestimation of community taxa (Beiko,
Hsiao, & Parkinson, 2018). Pipelines like Quantitative Insights into Microbial Ecology
(QIIME) and Morthur allow users to demultiplex files, remove barcodes and adaptors,
and perform quality checking. The filtered sequences are clustered using the OTU-based
method (or phylotype-based method), providing taxonomic distance between sequences.
OTUs are defined as sequences that have great similarity (usually 97% for species) with
other sequences. The percentage similarity between OTUs and a referenced database
(e.g., SILVA, RDP and Greengenes, NCBI, and UNITE) allows taxonomy assignment

and relative abundances of the microbiome under analysis (Xia, Sun, and Chen 2018).

There is no perfect database choice, since each has its protocols, taxonomic
coverage, and particularities. For instance, SILVA, RDP, and Greengenes are
commonly used with 16S analysis due to vast archaeal and bacterial data, while UNITE
is better used with 18S and ITS analysis due to their high content of fungi data (Beiko,
Hsiao, and Parkinson 2018). Finally, it can perform statistical analysis such as
alpha/beta diversity, dispersion plots, and boxplots. Buza et al. (2019) developed a full
pipeline for 16S analysis in which both Morthur and QIIME are used as platforms, with
raw reads and mapping file as input and alpha/beta diversity and phylogenetic trees as

outputs, which can give a head start for anyone that just arrived in this field.
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1.3 BACTERIAL WORLD DIVERSITY IN FERMENTED MILKS

1.3.1 LAB diversity

LAB are largely predominant in milk fermentations comprising 91 species
identified by NGS studies (FIGURE 1.3). They are divided into two major clades (low
G+C content Firmicutes phylum and high G+C content Bifidobacterium) occurring in
the taxonomic genera Lactobacillus, Leuconostoc, Pediococcus, Lactococcus,
Enterococcus, Weissella, and Oenococcus. Lactobacillus, which is highly efficient in
consuming lactose (Beermann and Hartung, 2016), is the most frequent and important
genus with 51 species reported. Lactobacillus helveticus followed by Lb.
kefiranofaciens, Lb. delbrueckii, and Lb. kefiri are the ubiquity species found in kefir,
koumiss, tarag, buttermilk, dahi, khoormog, and kurut (FIGURE 1.3). Genome
sequencing of Lb. helveticus, Lb. kefiranofaciens, and Lb. delbrueckii strains revealed
that the ongoing reduction of the genome (called “reductive evolution”), together with
the acquisition or overexpression of genes related to milk sugar metabolism, reflect their
adaptation to the dairy niche (Germond et al. 2003; Callanan et al. 2008; Slattery et al.
2010; Cavanagh, Fitzgerald, and McAuliffe 2015; Xing et al. 2017). Lb. helveticus has a
potent proteolytic activity, introducing important lipolysis-derivative aroma compounds
for fermented milk (Quigley et al., 2013). Lb. kefiranofaciens and Lb. kefiri are
involved in the mechanism of polysaccharide production, and Lb. delbrueckii promotes

rapid acidification with desired organoleptic properties (Herve-Jimenez et al. 2009).

FIGURE 1.3 - 16S rRNA NEIGHBOR-JOINING TREE SHOWING THE PHYLOGENETIC
PROXIMITY OF LAB SPECIES REPORTED IN POPULAR FERMENTED MILK PRODUCTS. THE
16S RRNA GENE SEQUENCES WERE RETRIEVED FROM GENBANK DATABASE AND
ALIGNED WITH CLUSTALW. THE PHYLOGENETIC TREE WAS CONSTRUCTED USING
MEGA X PROGRAM. THE ABBREVIATION OF THE LABS GENUS ARE AS FOLLOW:
Lactobacillus = LB.; Oenococcus = O.; Leuconostoc = LEU.; Pediococcus = P.; Tetragenococcus = T.;
Enterococcus = E.; Lactococcus = LC.; Streptococcus = S.; Bifidobacterium = B. (DOBSON ET AL.
2011), (LEITE ET AL. 2012), (MARSH ET AL. 2013), (GAO ET AL. 2013), JAYASHREE ET AL.
2013), (OKI ET AL. 2014), NALBANTOGLU ET AL. 2014), (GAROFALO ET AL. 2015), (KORSAK
ET AL. 2015), (LIU, XI, ET AL. 2015), (LIU, ZHENG, ET AL. 2015), (ZAMBERI ET AL. 2016),
(WALSH ET AL. 2016), (ZHONG ET AL. 2016), (GESUDU ET AL. 2016), (DALLAS ET AL. 2016),
(MOTATO ET AL. 2017), (WALSH ET AL. 2017), (YAO ET AL. 2017), (DERTLI AND CON 2017),
(PARKER ET AL. 2018),(WANG ET AL. 2018), (SHANGPLIANG ET AL. 2018), (GAO AND
ZHANG 2019), (WURIHAN ET AL. 2019), (WENWEN LIU ET AL. 2019), (HONG ET AL. 2019),
(JTANG ET AL. 2020), (KIM, KIM, AND SEO 2020).
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Leuconostc and Streptococcus are other common genera — with Leu.
mesenteroides and S. thermophilus being the most common species (FIGURE 1.3).
Milk contains low concentrations of free amino acids and peptides, and nitrogen is a
growth-limiting factor for LAB (Christensen et al. 1999; Christiansen et al. 2008;
Morishita et al. 1981; Cavanagh, Fitzgerald, and McAuliffe 2015). However, some
species of Leuconostoc, Lactobacillus and Streptococus exhibit high proteolytic activity
supporting their growth in milk (Liu et al. 2010; Sasaki, Bosman, and Tan 1995; Kunji
et al. 1996). S. thermophilus has important functions for milk fermentation, including
rapid acidification through the production of lactic acid, galactose metabolism,
proteolytic and urease activities (Iyer et al. 2010). In addition, the production of
secondary metabolites (e.g., formate, acetaldehyde or diacetyl) contributes to the
development of aroma and texture of fermented milks (Uriot et al. 2017). Leu.
mesenteroides 1s often associated with lactic acid and bacteriocins production, assisting
the maintenance of fermented milk by inhibiting the development of Listeria
monocytogenes, Clostridium botulinum, Enterococcus faecalis, and other pathogenic

bacteria (Hechard et al. 1992; Wulijideligen et al. 2012; Arakawa et al. 2016).

NGS studies have enabled the first detection of Bifidobacterium in kefir,
koumiss, tarag, lait caillé, and suero costerio (FIGURE 1.3). The cultivation of
Bifidobacterium from natural habitats is difficult because it is generally overgrown by
other LAB or yeasts (Thitaram et al. 2005). In addition, Bifidobacterium strains have
strict growth requirements, being poorly tolerant to oxygen, refrigeration temperatures,
and low pH (Gonzalez-Sanchez et al., 2010). This underscores the fact that culture-
independent analysis is a powerful tool for a better understanding of microbial consortia
and that bifidobacteria with unknown taxonomy and physiology may contribute to

various extents to such consortia (Gulitz et al. 2013).

Currently, kefir is the most widely studied and with the largest number of LAB
species identified (FIGURE 1.3). This led to the covering of many less abundant species
detected only in kefir, including Lb. kalixensis, Lb. parafarraginis, Lb. crispatus, Lb.
apis, Lb. intestinalis, Lb. gigeriorum, Lb. taiwanensis, Lb. gasseri, Lb. lactis, Lb.
psittaci, Lb. reuteri, Lb. rossiae, Lb. thailandensis, Lb. tucceti, Lb. senmaizukei, Lb.
sanfranciscensis, Lb. farraginis, Lb. parafarraginis, Lb. rapi, Lb. parakefiri, Lb. sunkii,
Lb. parabuchneri, Lb. nagelii, Lb. animalis, and Lb. sakei. On the other hand, fewer

LAB were exclusive to other fermentation processes, such as Lb. crustorum and
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Enterococcus spp. in koumiss, Lb. bifermentans and Lb. curvatus in dahi, Lb.
acetotolerans, Lb. hamster, and Lb. capillatus in kurut (FIGURE 1.3). Although present
in low relative abundances, their presence indicates a microbial activity specific to
geographical region, which can have several implications for community interactions
and metabolite formations. Whether a causal influence of these minor LAB groups for

milk fermentation exists, it remains unclear.

1.4 FERMENTED PRODUCTS

1.4.1 Kefir

Kefir is produced by adding kefir grains to a quantity of milk at a proportion of
2-5% (w/v) grains-to-milk (Van Wyk 2019). The kefir grains start the fermentation and
consist of a symbiotic culture of bacteria and yeast embedded in a polysaccharide
matrix called kefiran. During fermentation, LAB convert lactose to lactic acid causing
milk proteolysis, and lactose-fermenting yeast and acetic acid bacteria (AAB) produce
COz, alcohol and acetate, respectively, responsible for the effervescent and acid taste of
the final yeast product (Kim et al., 2015; Leite et al., 2013; Pogaci¢ et al. 2013;
Magalhaes et al. 2011; Kesmen and Kacmaz 2011; Tas, Ekinci, and Guzel-Seydim
2012; Witthuhn, Schoeman, and Britz 2004; Guzel-Seydim et al. 2005; Grennevik,
Falstad, and Narvhus 2011; Miguel et al. 2010). Other smaller microbial groups
generally isolated are Acinetobacter, Alistipes, Allobaculum, Bacteroides, Brochothrix,
Clostridium, Enterobacter, and Faecalibacterium. A complete list of all bacterial
groups found in kefir and other fermented milk products is shown in the supplementary
material TABLE Al.2. These are generally more correlated to environmental
contamination rather than kefir grain microbiota (Zamberi et al. 2016; Marsh et al.

2013; Walsh et al. 2016; Dertli and Con 2017).

The bacterial community composition of kefir grains and beverage has been
extensively studied by NGS. The dominant species detected by culturing were also
identified by NGS technologies (FIGURE 1.4). Lb. kefiranofaciens was reported as the
dominant bacteria in kefir grains from Turkey, Malaysia, France, Ireland, United
Kingdom, China, Tibet, USA, Italy, and Belgium (Kim, Kim, and Seo 2020; Garofalo et
al. 2015; Korsak et al. 2015; Dallas et al. 2016; Hong et al. 2019; Zamberi et al. 2016;
Dertli and Con 2017; Walsh et al. 2016; Gao and Zhang 2019). All NGS studies

reported that Lb. kefiranofaciens dominance was accompanied by a rich variety of sub-
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dominant groups, including Lb. kefiri, Lb. helveticus, Lb. parakefiri, Lb. crispatus, Leu.
mesenteroides, and Acetobacter orientalis, except Wang et al. (2018), which found Lb.
kefiranofaciens as the only dominant species in Tibetan kefir grains cultured in different
conditions. The authors reported that Lb. kefiranofaciens is more resistant to variations
in culture conditions and plays a more important role in the formation and stability of
Tibetan kefir grains in comparison to other bacterial species. Although lactose is a
suitable carbon source for Lb. kefiranofaciens metabolism (Cheirsilp et al. 2018), strong
symbiotic association with yeast and particular growth requirements (e.g., strictly
anaerobic) may be limiting factors for the growth of this species in milk (Vardjan et al.

2013; Wang et al. 2008).

FIGURE 1.4 REPRESENTATION OF THE DOMINANT BACTERIAL GROUPS OF POPULAR
FERMENTED MILK PRODUCTS. KEFIR GRAINS: DERTLI & CON (2017), GAO & ZHANG
(2019); GAROFALO ET AL. (2015), HONG ET AL. (2019), KIM, KIM, AND SEO (2020); KOUMISS:
GESUDU ET AL. (2016), TANG ET AL. (2020), WANG ET AL. (2012), WURIHAN ET AL. (2019),
YAO ET AL. (2017), ZHONG ET AL. (2016); DAHI: SHANGPLIANG ET AL. (2018); KURUT:
ZHONG ET AL. (2016) AND JIANG ET AL. (2020); BUTTERMILK: JAYASHREE ET AL. (2013);
AIRAG AND KHOORMOG: OKI ET AL. (2014); TARAG: SUN ET AL. (2014); LAIT CAILLE:
PARKER ET AL. (2018); SUERO COSTENO: WALSH ET AL. (2017) AND MOTATO ET AL. (2017).
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Concerning kefir beverage, Lactococcus lactis has been detected as the dominant
species in different geographical locations (FIGURE 1.4), although the number of
studies is quite limited compared to kefir grains (Vedamuthu 1994; Gao and Zhang
2019; Korsak et al. 2015). Lc. lactis is widely associated with sauerkraut, cheese,
yoghurt and like, being an important starter agent in the food industry (Song et al.
2017; Wels et al. 2019). Lc. lactis initiates the fermentation by rapidly converting
lactose to lactic acid, besides producing volatile metabolites, proteolytic enzymes, and
exopolysaccharides (Song et al. 2017). Lc. lactis is also responsible for several bio
functionalities attributed to regular kefir consumption, including potential probiotic
proprieties, conjugated linoleic acid synthesis and antimutagenic and anticarcinogenic

effects (Oliveira et al. 2017; Vieira et al. 2017).

Surprisingly, many bacterial genera other than LAB were described as dominant
in kefir by NGS studies. In Turkey kefir samples, Dertli and Con (2017) alerted on food
safety when Enterobacter amnigenus and Enterobacter hormaechei were found as
dominant species by Illumina sequencing. The authors showed that these enterobacteria
could pass to the kefir grains from the milk, which should be assessed as it can create
safety concerns. In Tibet and Belgium, AAB, Acetobacter orientalis and Gluconobacter
frateurii, were, respectively, the dominant species detected by Illumina sequencing
system (Gao & Zhang 2019; Korsak et al., 2015). Early microbiological studies
considered AAB as contaminants from the handling of kefir grains or improper
practices adopted during the preparation of the kefir beverage (Angulo, Lope, and Lema
1993). However, AAB species were constantly reported in kefir from different
geographical origins and, today, are considered key microorganisms for kefir
fermentation. They are associated with acetic acid production and water-soluble
polysaccharides synthesis that increases the viscosity of the kefir beverage (Irigoyen et
al., 2005). However, some NGS studies using pyrosequencing did not detect any AAB
in kefir samples from Ireland, Belgium, and South Africa (Dobson et al. 2011; Korsak
et al. 2015).

Plenty of other non-dominant LAB groups, mainly represented by Lactobacillus
with 44 species, have been detected in kefir by NGS (FIGURE 1.3). Many of these
minor species represent geographical spread, such as Lb. ultunensis, Lb. rhamnosus, Lb.
apis, Lb. casei, Lb. crispatus Lb. johnsonii, and Pediococcus spp. in Turkey and

Malaysia; S. thermophilus in Italy, United Kingdom, and France; Lb. farraginis in
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South Korea; and extremely rare Tetragenococcus and Oenococcus in Tibet and Korea
(Nalbantoglu et al. 2014; Dertli and Con 2017; Garofalo et al. 2015). Finally, microbial
groups other than LAB were detected by NGS for the first time in kefir grains,
including Shewanella, Acinetobacter, Pelomonas, Dysgonomonas, Faecalibacterium,
Allistipes, Rickenellaceae, and Allobaculum (Gao et al. 2013; Dertli and Con 2017;
Marsh et al. 2013). The identification and understanding of these minor microorganisms
contribute to physicochemical assignments of kefir beverage and discovery of new

strains with potential probiotic properties (Bengoa et al. 2019; Walsh et al. 2016).

1.4.2 Koumiss (Fermented mare's milk)

Koumiss, also known as airag, chige, chigo or arrag, is an ancient yeast-lactic
fermented product consumed in Mongolia, China, and Russia (Vedamuthu 1994).
Traditionally, koumiss is prepared with mare’s milk by backsloping process, where a
small quantity of the previous koumiss is used as starter raw material for the next
fermentation batch. Fermentation takes place in wooden casks, containers made of
animal skin, urns or porcelain, by 1 to 3 days at ambient temperature (~20°C). The
fermenting mass is beaten or stirred with a wooden stick to ensure mixing evenly and
fast fermentation (Yao et al. 2017; Gesudu et al. 2016). The microbiota isolated from
koumiss consists of LAB, AAB, and yeast, including Lb. helveticus, Lb. kefiranofaciens,
Acetobacter pasteurianus, Kluyveromyces marxianus, and Saccharomyces cerevisiae

(Ringg et al., 2014; Bai and Ji, 2017).

The first NGS-based metagenomic study on koumiss (referenced as airag) was
performed by Oki et al. (2014) using the pyrosequencing platform. The authors reported
the dominance of Lb. helveticus, followed by Lb. kefirofaciens, Lb. kefiri, Lb.
parakefiri, and Lb. diolivorans, from 22 koumiss samples collected in Mongolia
(FIGURE 1.4). More recently, Tang et al. (2020), using long-read SMRT sequencing
technology (PacBio), confirmed the dominance of Lb. helveticus and Lb. kefirofaciens
in Mongolian koumis. However, Tang et al. (2020) also identified a novel dominant
bacterial species, Citrobacter freundii that had not been reported previously. The
authors associated the presence of Citrobacter freundii as environmental contamination,
since it is widely distributed as an opportunistic pathogen found in soil and human gut

(Wang et al., 2000).
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NGS also revealed several minor bacterial constituents in koumiss uncovered by
culturing methods. These included Lb. casei, Lb. farciminis, Lb. parafarraginis, Lb.
paraplantarum, Leu. pseudomesenteroides, Leu. pentosaceus, Enterococcus faecium,
Acetobacter pasteurianus, A. russicus, Acidobacteria, Tenericutes, Verrucomicrobia,
Escherichia, Clostridium perfingens, Enhydrobacter aerosaccus, and Shigella (Oki et
al. 2014; Wurihan et al. 2019; Zhong et al. 2016; Tang et al. 2020). The non-LAB
OTUs were regarded as environmental contaminants from soils, animals, and nomads
since milk for koumiss production are not heat-treated. In addition, the identification of
OTUs without species assignment suggested the presence of uncultivable

microorganisms (Oki et al. 2014).

Yao et al. (2017) used a modified, single-cell amplification metagenomic
method to analyze low-abundant bacteria of koumiss samples collected from Mongolia
and Inner Mongolia of China. The method involved a serial dilution of samples to a
final count of 100 cell, followed by an amplification step to increase the quantity of
DNA of diluted samples and Illumina HiSeq 2500 sequencing. With these additional
steps, the authors detected Lb. otakiensis and S. macedonicus, which has never been
isolated in koumiss samples. Lb. otakiensis has also never been reported in other dairy
niches. This procedure proved to be a potential tool for analyzing minority microbial

populations, which can be extended for other fermented foods.

1.4.3 Dahi

Dahi i1s a popular fermented milk beverage produced in India, Bhutan,
Bangladesh, Nepal, and Pakistan (Shangpliang et al. 2018; Nahidul-Islam et al. 2018).
The fermentation takes place in earthenware, sub-culturing pre-existent fermented dahi
in fresh cow, yak, or buffalo’s milk. The fermentation lasts 1 to 2 days and the finished
product has brown color and caramelized flavor characteristics resulted of milk intense
heating before fermentation (Tamang et al. 2012; Harun-Ur-Rashid et al. 2007). Dahi is
a ready-to-drink beverage or it can be used for the preparation of various ethnic

fermented products (e.g., gheu, mohi, chhurpi) (Shangpliang et al. 2017).

Culture-dependent studies demonstrated that dahi fermentation is governed by
LAB load from 6.6 to 8.4 log CFU/g (Harun-Ur-Rashid et al. 2007; Shangpliang et al.
2017). However, the dominant species were discrepant. S. bovis was reported as the

dominant species in Bangladesh (Harun-Ur-Rashid et al. 2007), while E. faecalis was
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isolated in greater numbers from dahi samples in India (Shangpliang et al. 2017). In the
same way, the application of NGS has reported discrepant dominant species, such as Lc.
lactis or A. pasteurianus dominating in dahi samples from India, and Lactobacillus sp.
in Bangladesh (FIGURE 1.4). All this great diversity within the dominant species in
dahi was attributed to environmental factors, such as the animal origin of the milk,
altitude, different technical conditions of product preparation and temperature
oscillation (Koirala et al. 2014). In addition, NGS revealed several minor species not
detected by cultivation, including Acinetobacter, Enterobacteriaceae, Pseudomonas, and

Micrococcaceae (Nahidul-Islam et al. 2018).

1.4.4 Kurut (natural fermented yak milk)

Kurut is a fermented dairy product in northwestern China that is generally
prepared using qula—a traditional product made by defatting, acidifying, and air-drying
yak milk (Duan et al. 2008; Yang, Alyssa, et al. 2019). Yak (Bos grunniens) is a long-
haired bovid found throughout the Himalaya region of southern Central Asia, the
Tibetan Plateau, Mongolia, and Russia. Its milk is a highly nutritious product, rich in
fat, protein, essential minerals, and polyunsaturated fatty acids. Fermentation, flavor,
and preservation of the kurut are strongly dependent on the milk's natural microbiota.
Yak milk usually ferments at 4 to 15°C for 12 to 36 h (Jiang et al. 2020; Liu, Xi, et al.
2015).

Using the cultivation approach, Wu et al. (2009) detected Lb. fermentum as the
dominant species in Tibetan kurut. NGS studies confirmed Lactobacillus as the most
dominant genera; however, Lb. delbrueckii and Lb. helveticus were the most abundant
bacterial species (FIGURE 1.4; Liu, Xi, et al. 2015). Lactobacillus plays a significant
role in kurut flavor by releasing the volatiles benzaldehyde, 2,3-pentanedione, ethanol,
and ethyl acetate (Jiang et al. 2020). Jiang et al. (2020) found a negative correlation
between Lactobacillus and Streptococcus using Illumina MiSeq technology, indicating
a competitive relationship in the later stages of fermentation when nutrients are scarce.
Using pyrosequencing, Liu, Xi, et al. (2015) explored the microbial community of kurut
from two Tibetan villages and found significant diversity between microbial
composition associated with geographical differences and other external environmental
conditions (Gesudu et al. 2016). Among 49 OTU, 42 (Massilia, Propionibacterium,

Lactococcus, Leuconostoc, and Enterococcus) were related to Ningzhong village and 7
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(unidentified Firmicutes, Pantoea, Streptococcus, Lactobacillus, unidentified

Proteobacteria, Acinetobacter, and Bacteroidetes) to Geda village.

1.4.5 Buttermilk

Buttermilk is the aqueous phase released during cream churning in the butter-
making process. It is rich in protein, lactose, and minerals (Sodini et al. 2006). This
precious by-product is traditionally used as a substrate to produce fermented buttermilk
in Northern Ethiopia, India, Asian Countries, and USA (Gebreselassie, Abay and
Beyene 2016; Jayashree et al., 2013). Fermented buttermilk can be classified as a
cultured or a natural beverage. The cultured is manufactured by adding commercial
strains (e.g., Lc. lactis ssp. lactis, Lc. lactis ssp. cremoris, Leu. mesenteroides ssp.
cremoris, S. lactis, Lc. lactis ssp. lactis biovar) (Gebreselassie, Abay, and Beyene
2016). Naturally fermented buttermilk, in contrast, is prepared by adding previous day’s
curd as inoculum to cow’s milk, fermented overnight at room temperature (~32 °C), and

finally churned.

Culture-dependent analyses revealed Lc. lactis ssp. lactis, Lb. pentosus and Lb.
plantarum as the main species of naturally fermented buttermilk from Northern Ethiopia
(Gebreselassie, Abay, and Beyene 2016). The study conducted by Jayashree et al.
(2013) was the only one to use NGS in naturally fermented buttermilk. Evaluating
samples from China by pyrosequencing, the authors found Lb. delbruecki as the
dominant species, followed by S. thermophiles, Lb. fermentum, Lb. johnsonii, and Lb.
helveticus (FIGURE 1.4). Pyrosequencing of rDNA amplicons also revealed
microorganisms that have never been associated with food fermentation before,
including Methylobacterium populi, M. radiotolerans, Ralstonia solanacearum,

Synechocystis sp., and Thermoanaerobacter sp.

1.4.6 Tarag

Tarag is a fermented cow's milk produced by backslopping method, consumed
in Mongolia and China. Unlike other fermented milk products, farag requires at least 5
days of fermentation to achieve the desired acidity, alcoholic degree, and sensorial
characteristics. In most tarag samples originated from Mongolia and China, Lb.
helveticus and Lb. delbrueckii ssp. bulgaricus were recovered by culturing methods (Yu

et al. 2011; Uchida et al. 2007). These dominant species were late confirmed by the
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pyrosequencing of the rDNA gene (Sun et al. 2014; Oki et al. 2014). The NGS results
also demonstrated that bacterial diversity was stratified by geographic region. For
instance, farag samples from Inner Mongolia revealed a high prevalence of Lb. kefiri,
Lb. capillatus, and Lb. kefirofaciens, while samples from China provinces (Sichuan and
Gansu) showed the dominance of Lb. helveticus and Lb. delbrueckii ssp. bulgaricus
(FIGURE 1.4). Finally, several bacterial groups not previously isolated from tarag were
identified by pyrosequencing, including Acinetobacter, Klebsiella, Escherichia, and

Salmonella (Sun et al. 2014).

1.4.7 Khoormog

Khoormog is a traditional Mongolian fermented beverage made from raw camel
milk. The fermentation is performed spontaneously in a wooden barrel or cow’s skin
bag (Oki et al. 2014). The microbiome study performed by Oki et al. (2014) was the
first microbiological report about khoormog. The pyrosequencing of tagged 16S rRNA
gene amplicons revealed that the bacteria population was similar to airag. Members of
the genus Lactobacillus were dominant, mainly represented by Lb. kefiranofaciens,
followed by Lb. helveticus and Lb. kefiri (FIGURE 1.4). Other minor bacteria found
included Lc. lactis, Brevundimonas nasdae, and A. pasteurianus. Lb. kefiranofaciens
was first isolated from kefir grains in 1988, which was subsequently found in various
other fermented milk products (Fujisawa et al. 1988; Sun et al. 2014; Gesudu et al.
2016; Oki et al. 2014). However, this bacterium had never been found as a dominant
group in a fermented product other than kefir grains. Lb. kefiranofaciens is a strictly
anaerobic bacterium known for its auto-aggregation ability. This characteristic confers
its protection against stress environmental factors, including temperature and oxygen
availability, and may be the reason for its dominance during camel milk fermentation
(Trunk, Khalil, and Leo 2018). In addition, Lb. kefiranofaciens dominance can be
associated with the presence of Lb. kefiri during khoormog fermentation, supported by

the well-known protocooperation between these two species (Wang et al. 2012).

1.4.8 Lait caille

Lait caillé is an ethnic beverage produced by the Fulani people from sub-
Saharan countries, Burkina Faso, and Senegal, by spontaneous fermentation of cow’s

milk (Bayili et al. 2019). The household production of lait caillé is performed as an
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“imperfect” backslopping method, where the cow’s milk is firstly heated in aluminum
pots and transferred to familiar clay pots (lahals), gourds or calabashes. The
fermentation is conducted spontaneously for a period of 1 to 3 days (Savadogo et al.
2004; Parker et al. 2018). The main species isolated from the /ait caillé fermentation
process include Enterococcus hirae, E. lactis, and Lc. lactis, as well as subdominant
populations of Lactobacillus, Weissella, Leuconostoc, and Pediococcus (Bayili et al.

2019).

Bacterial community composition of /ait caillé from different towns and villages
in Senegal was investigated by Parker et al. (2018) and Groenenboom et al. (2019)
using Illumina technology, which found Strepfococcus and Lactobacillus as the
dominant genera. This composition resembles regular yogurt, which is the product of
controlled milk fermentation by two species (Lb. delbrueckii ssp. bulgaricus and S.
thermophilus) of the same two bacterial genera (Groenenboom et al. 2019). However,
several other genera were related at relatively high abundances, including Lactococcus,
Weisella, Enterococcus, Leuconostoc, Vagococcus, Pediococcus, Acetobacter,
Acinetobacter, and enterobacteria Escherichia/Shigella. In addition, consistent with the
uncontrolled nature of lait caillé fermentation, over 100 minor bacterial genera were

reported, including Kocuria and Bifidobacterium.

1.4.9 Suero costerio

Suero costenio is a fermented milk product manufactured by rural people of the
Colombian Caribbean Coast. It is produced spontaneously with indigenous
microorganisms from the fermentation containers (calabash or plastic vessels), the raw
cow's milk, and the environmental surroundings, or by backsloping inoculating milk
with 30% (v/v) of a precedent successful fermentation. The whey formed during 24 h of
fermentation is removed, resulting in a final product with sour cream-like characteristic.
The peculiar organoleptic characteristics of suero costerio is a result of a combination of
factors, including Caribbean warm temperature (~30 °C), environmental humidity
(greater than 74%), and indigenous microbiota (Motato et al. 2017). The fermentation is
mainly conducted by LAB (such as Lb. plantarum and Lb. paracasei subsp. paracasei)
and smaller populations of yeast, aerobic mesophilic bacteria, and Enterobacteria (Cueto

etal., 2017).
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Suero costerio produced under different conditions (recipient, fermentation time,
and the existence or not of backslopping) was characterized by Motato et al. (2017)
using Illumina MiSeq platform. The study reported the dominance of Lactobacillus and
Streptococcus, and 12 other bacterial genera. Interestingly, a relative high incidence of
Aeromonas (10%) and the presence of other toxin-producing bacteria
(Escherichial/Shigella) were found in suero costerio produced via backslopping. In the
backslopping technique, part of a previous fermentation is recovered, reused, and grown
often over periods of several decades (De Melo Pereira et al. 2019). It is possible to
hypothesize that the backslopping process may be contributing to the generation and
spread of well-adapted pathogenic bacteria in suero costerio. Further investigation is
needed to confirm this hypothesis. Finally, the study by Motato et al. (2017) revealed
the first report of Bifidobacterium and other important genera (e.g., Lactococcus and
Leuconostoc) in suero costeiio, contributing to a deep knowledge of this peculiar

fermentation process (Motato et al. 2017).

1.5 PATHOGENS AND FOOD SPOILAGE MICROORGANISMS

Increased consumption of fermented milk products has been driven, in part, by
the safe status these products confer. The inhibitory effect on pathogenic and food
spoilage microorganisms are due to the various antimicrobial molecules produced by
LAB during fermentation, including organic acids, bacteriocins, hydrogen peroxide,
carbon dioxide, diacetyl, and ethanol (Reis et al. 2012; Tesfaye, Mehari, and Ashenafi
2011; Magnusson and Schniirer 2001). Therefore, several culture-based studies have
been dedicated to elucidating the composition of LAB in natural milk fermentations.
However, these antimicrobial factors may not be effective when fermentation is under
non- or low-aseptic manipulation conditions. Some crucial factors that affect the
fermented milk microbiota composition are the hygienic quality of the milk and the

manufacturing process.

High-throughput sequencing also effectively unveiled the presence of a number
of unwanted bacteria in traditional milk fermentations. Importantly detrimental bacteria
comes from low-quality milk, manly represented by the Pseudomonadaceae family and
sub-dominant species of Acinetobacter, Enterobacteriaceae, Sphingomonas,
Staphylococcus, and Comamonadaceae (Dogan and Boor 2003; Issa and Tahergorabi
2019). Pseudomonas has been shown to be inhibited by hydrogen peroxide, diacetyl,

and organic acids produced by LAB, and are rarely part of the milk fermentation
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microbiota (Reis et al. 2012; Tesfaye, Mehari, and Ashenafi 2011). However, studies
using NGS reported that some Pseudomonas species, including P. aeruginosa and P.

otitidis, are part of the microbial composition of kefir grains from different origins

(Dertli and Con 2017).

Pseudomonas are known to produce various enzymes (e.g., lipases, proteases,
and phospholipases) that lead to odor, flavor, and body defects (Chen et al., 2011). In
addition, it may indicate potential health relevance when consumers believe they are
ingesting only beneficial microorganisms. Although the incidence of Pseudomonas
bacteremia from foods is very rare, some studies reported the presence of virulence in P.
aeruginosa associated with fresh vegetables, water, and meat (Allydice-Francis and
Brown 2012; Xu et al. 2019). Recent evidence suggests that virulence factors found in
environmental isolates, such as pilin gene, multidrug efflux transport system, porin
oprD gene, and haemolytic and proteolytic activities, show no difference with clinical
P. aeruginosa (Allydice-Francis and Brown 2012). P. aeruginosa is considered an
opportunistic pathogen, able to cause urinary tract infections, respiratory dermatitis, soft
tissue infections, bacteremia, gastrointestinal infections, and a variety of systemic
infections (Bentzmann and Plésiat 2011; Lucchetti-Miganeh et al. 2014; Sader et al.
2015; Castaldo et al. 2017). In this sense, great efforts are being explored to prevent
contamination by Pseudomonas in dairy products (Meesilp and Mesil 2019; Nan et al.

2016; Picoli et al. 2017; Yasmin et al. 2017).

NGS technologies have revealed the presence of members of the
Enterobacteriaceae family in almost all microbiological studies of natural milk
fermentations. Escherichia, Shigella, Salmonella, and Klebsiella were reported in
natural milk fermentations from Northern Senegal, Sumbawa mare’s fermented milk
(Indonesia), and Tibetan naturally fermented yak milk using Illumina MiSeq platform
(Walsh et al. 2017; Jatmiko, Mustafa, and Ardyati 2019; Jiang et al. 2020).
Enterobacteriaceae was the dominant family in kefir grains from different regions of
Turkey using 16S rRNA gene sequencing on Illumina platform (Wang et al. 2006;
Walsh et al. 2016; Dertli and Con 2017). The presence of these bacterial groups
indicates unhygienic conditions and contamination from either fecal material, dairy
farm environment or human contact (Martin et al. 2016). Oki et al. (2014) also
attributed the presence of these potential pathogen microorganisms by transfer from

animals, because the milk for airag and khoormog are generally not heat-treated. It is
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important to point out that all of these studies using NGS cannot confirm the presence
of viable taxa of Enterobacteria. NGS technologies analyze DNA from pathogens that
are present in the sample and do not discriminate viable from non-viable cells (Ursell et
al. 2012; Wen et al. 2017; Martinez et al., 2013). Thus, it is important that food safety-
related studies be conducted with plating methods to confirm the presence of viable
taxa. Finally, some Enterobacteriaceae family could be not relevant as foodborne
pathogens since many of them are plant and human commensal organisms (Jha et al.

2011).

1.6 CONCLUDING REMARKS

The popularization of NGS technology is driving penetration of microbiome
research into popular fermented milk products across the globe. The studies produced so
far has enormously extended our knowledge on food microbiology and revealed
limitations and biases that were previously ignored. While the recent NGS platforms
have confirmed the success of culturing approaches for detecting dominant species, they
have enabled the discovery of yet uncultured genus- or species-level clades. An
important example is the first detection of late-growing species of Bifidobacterium and
other sub-dominant populations with potential probiotic activities in kefir, koumiss,
tarag, lait caillé, and suero costerio. The discovery of these new taxa will promote the
best opportunities to isolate novel microorganisms with functional proprieties and,

ultimately, their use as improved starters.

Pyrosequencing and Illumina platforms have been, by far, the most popular
techniques used to study fermented food microbiomes. Coming in, meanwhile,
alternative sequencing techniques that can generate long reads, such as Pacific
Biosciences’ (PacBio) single-molecule real-time sequencing and Oxford Nanopore
Technologies’ (ONT) sequencing, have yet been underutilized. The introduction of
these recent sequencing technologies can increase the length of reads to cover the whole
of the 16S rRNA gene and assembly of complete genomes. This will enable accurate
taxonomic identification down to the strain level and assist in determining critical
microbial variables and better control of food quality and safety. Furthermore, other
omics techniques, such as proteomics, transcriptomics, and metabolomics, can be
coupled to the current NGS studies to confirm the functions and metabolic capacity of

microbiomes of fermented milk products.
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CHAPTER TWO (RESEARCH RESULTS) — PRESENCE AND PERSISTENCE OF
Pseudomonas spp. DURING CASPIAN SEA STYLE SPONTANEOUS MILK
FERMENTATION HIGHLIGHTS THE IMPORTANCE OF SAFETY AND
REGULATORY CONCERNS FOR TRADITIONAL AND ETHNIC FOODS
Manuscript published in  Food Science and Technology journal. DOI:
https://doi.org/10.1590/fst. 15620

ABSTRACT

The aim of this study was to evaluate the performance of Caspian Sea-style spontaneous
milk fermentation to improve the quality of pasteurized milk containing high levels of
Pseudomonas contamination, with a focus on microbiological safety and stability of the
final product. Bacterial diversity of pasteurized milk, fermentation process, and after 60
days of storage was analyzed by Illumina-based sequencing, and presence of viable taxa
was confirmed by culturing on selective media. Low quality pasteurized milk harbored
mainly Gram-negative bacteria, markedly dominated by Pseudomonas. Following
fermentation, lactic acid bacteria rapidly became dominant with maximum population
of 10.15 log CFU/mL at 18 h, represented mainly by Lactococcus. However, sequences
related to Pseudomonas, and to a lesser extent for enterobacteria, remained constant
throughout the fermentation process. The culture-dependent approach confirmed the
presence of viable Pseudomonas, with a final population of 5.60 log CFU/mL.
Biochemical transformations were further analyzed, indicating lactic acid as the main
end-metabolite produced (maximum concentration of 5.93 g/L. at 24 h). In addition, the
increase of 2-nonanone can be correlated as a volatile biomarker of P. aeruginosa and
related species. Altogether, the results demonstrated that natural milk fermentation may

often not inhibit the development of pathogens and food spoilage microorganisms.

Keywords: Fermented milk; food-borne microorganisms; lactic acid fermentation; food

safety; probiotic.
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2.1 INTRODUCTION

The emergence of dairying was a critical step in early agriculture, with
considerable importance in the human diet (Panesar, 2011). As a rich nutritional source
for microbial growth, prehistoric farmers used lactic acid fermentation to prolong the
shelf life of milk (Carrer et al., 2016). The finding of abundant milk residues in pottery
vessels from seventh- millennium sites from north-western Anatolia provided the
earliest evidence of milk processing (Salque et al., 2013). Until now, fermented dairy
products have been a vital component in the daily diet of ethnic groups all around the

world, and play an important nutritional role in modern life (Granato et al., 2010).

The popularity and the availability of fermented dairy products (e.g., kefir,
koumiss, curd, lassi, laben, and Suero costeiio) have been increased throughout the
world due to their functional properties and prolonged shelf-life, given by the dynamics
of the microbial community living there (Grandos Conde et al., 2013; Panesar, 2011;
Singh & Shah, 2017). The fermentation is based on the indigenous microbiota present in
the raw material or using part of a successful fermentation as back-slopping in order to
ensure the dominance of the original microbiota (Capozzi et al., 2012; Pereira et al.,
2019; Capozzi et al., 2020). Caspian Sea-style spontaneously fermented milk is
widespread as a traditional product. It is usually produced by natural fermentation (12-
24 h) of raw cow's milk at ambient temperature (approximately 25 °C) (Kiryu et al.,
2009). The finished product has a highly viscous consistency with a pleasant acid taste,
due to the presence of Lactococcus lactis ssp. cremoris and, to a lesser extent,
Leuconostoc sp., Gluconobacter sp., and Acetobacter orientalis (Ishida et al., 2005;
Uchida et al., 2009). In Brazil, a similar fermented milk is produced by different
families (private households) that believe the "mother inoculum" is originated from
Caucasus region, so-called Caspian Sea-style fermented milk. However, there are no

studies of this traditional product circulated in Brazil.

Although natural fermented milk products harbored various beneficial
microorganisms, they are susceptible to contamination due to the conduct of
fermentation in open systems and poor microbiological quality of the raw material
(Fernandez et al., 2015; Capozzi et al., 2017). Pseudomonas spp. is a relevant
contaminant for fermented milk products (del Olmo et al., 2018; Reichler et al., 2018;
Scatamburlo et al., 2015). Due to their high metabolic versatility, Pseudomonas are able

to survive in different environments, such as food, soil, water, and air (Scatamburlo et
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al., 2015). In raw milk, Pseudomonas are the dominant group due to their proteolytic
activity (Ercolini et al., 2009). In addition, Pseudomonas have also been found in
pasteurized milks due to post-pasteurization contamination or processing environment
(Gennari & Dragotto, 1992; Reichler et al., 2018). Reichler et al. (2018) identified the
contaminating bacteria of pasteurized milk samples from 10 facilities across the
northeastern United States. The study revealed that 76.5% of the spoiled samples were
contaminated with Pseudomonas spp., and 8 out of 10 facilities showed repeated
isolation of one or more Pseudomonas strains, suggesting a difficulty on controlling this
microorganism in the supplying industries. Thus, the use of low-quality milk can affect
the bacterial ecosystem through fermentation processes and compromise both quality

and health- assurance of finalized products (Leitner et al., 2008; Motato et al., 2017).

The emergence of high-throughput sequencing (HTS) technologies has
revolutionized the way to investigate microbial diversity of traditional fermentations.
These recent platforms have enabled the discovery of several uncultivable
microorganisms, sub-dominant populations, and late-growing species, overlooked by
culture-based approaches. In the field of food microbial ecology, different HTS
platforms have been used for community analysis, including 454 pyrosequencing from
Roche, SOLiD/Ion Torrent PGM from Life Sciences, and Genome Analyzer/HiSeq
2000/MiSeq from Illumina (Dertli & Con, 2017; Humblot & Guyot, 2009; Serafini et
al., 2014). These platforms have been used to accurately detect, identify, and
characterize foodborne pathogens without any culturing step (Jagadeesan et al., 2019;

Leonard et al., 2015).

The aim of this study was to evaluate the performance of Caspian-style milk
spontaneous fermentation using low quality milk as a raw material, with focus on
microbiological safety and stability of the final product. Due to the high incidence and
persistence of Pseudomonas found in this study, we applied culture-dependent methods
to confirm the presence of viable taxa. In addition, biochemical transformation
dynamics (sugar consumption and end-metabolite generation) were examined for better

insight into microbial activity during the process.

2.2 MATERIAL AND METHODS

2.2.1 Fermentation and sampling
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The sample of domestic fermented milk was obtained from a private household
that traditionally produces Caspian Sea-style spontaneously fermented milk through
back-slopping in Curitiba city, Parana State, Brazil. 50 mL of the “mother” culture was
inoculated into 450 mL pasteurized whole cow’s milk and renewed daily in the same
proportion (10 % vol/vol) at 25 °C for 7 days. This was performed for microbial

stabilization before experimental fermentation.

100 mL of resulting fermented milk (“mother” culture) was transferred in
triplicate into 2-L Erlenmeyer flasks, containing 900 mL of industrially pasteurized
milk of low microbiological quality, and incubated under static condition at 25 °C for 24
h. The low- quality milk, purchased at a local Curitiba market, was selected after
quantification of Pseudomonas, a common contaminant in pasteurized milk, on
Pseudomonas F agar (PFA; Thermo Fisher Oxoid). The milk samples that reached plate
counts above 20,000 CFU/mL were selected for the fermentation assay (Alles et al.,

2018).

Samples (20 mL) of fermenting milk in triplicate were collected at intervals of 6
hours (0, 6, 12, 18, and 24 h) to perform microbiological and metabolite target analysis.
At each sampling point, the pH was measured using a digital pH meter (LUCA-210
model, Requipal, Curitiba, PR, Brazil). The resulting fermented product was stored at 4
°C for 60 days (storage stability) and submitted to both culture-dependent and-

independent microbiological analyses.

2.2.2 Total DNA extraction and high-throughput sequencing

Samples of pasteurized milk, fermentation times, and storage stability were
withdrawn to perform total genomic DNA extraction and metagenetic analysis. The
extraction protocol was performed according Junqueira et al. (2019), with slight
modifications. The cell pellets, obtained after centrifugation of each sample at 12,000
xg for 1 min, were resuspended in 500 uL Tris-EDTA (pH 8.0), vortexed with 10 pL of
lysozyme solution at 20 mg/mL (Sigma Aldrich, San Louis, MO, USA), and incubated
at 30 °C for 60 min. Then, 50 pL of sodium dodecyl sulfate (10% w/v in distilled,
deionized water) and 10 pL of proteinase K solution (20 mg/mL in deionized water;
Sigma Aldrich) were added to the lysis solution, followed by incubation at 60 °C during
60 min. 150 pL of phenol-chloroform (25:24; Sigma Aldrich) was added, homogenized
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by inversion, and centrifuged at 12,000 xg for 5 min. The supernatant was collected,
and the DNA was precipitated with 3x (v/v) absolute ethanol. Pellets were washed with
80% ethanol, dried, and resuspended in ultrapure water. Extracted DNA quality was
checked on a 0.8% (w/v) agarose gel and quantified with the Nanodrop 2000
spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA).

Twenty ng of the extracted DNA, containing complementary adaptors for Illumina
platform, was amplified using degenerated primers for the hypervariable V4 region of
16S (515F and 806R) rRNA gene (Caporaso et al., 2012). Bar-coded amplicons were
generated by PCR following conditions described by Junqueira et al. (2019). Samples
were sequenced in the MiSeq platform using the 500 V2 kit, following standard
[llumina protocols. Resulting sequences in FASTQ files were deposited in the NCBI
Sequence Read Archive (SRA) repository with accession BioProject ID PRINAS592162.

2.2.3 Bioinformatic analyses

After sequencing, chimeric sequences detection, removal of noises from pre-cluster,
and taxonomic attribution were performed using standard parameters of QIIME
software package, version 1.9.0. Applying the UCLUST method (Edgar, 2010),
sequences presenting identity above 97% were considered the same operational

taxonomic units (OTUs) according to the SILVA database (Quast et al., 2013).
2.2.4 Microbial counts

Aliquots of 1 mL of each sample (pasteurized milk, fermentation times, and storage

stability) were vortexed with 9 mL of 0.1% saline-peptone water (10'1 solution) and
diluted serially. Total aerobic bacteria (TAB) were enumerated on Nutrient Agar
medium (NA; Thermo Fisher Oxoid, Waltham, MA, USA), lactic acid bacteria (LAB)
on De Man, Rogosa, and Sharpe Agar (MRS, Thermo Fisher Oxoid), and Pseudomonas
on Pseudomonas F agar (PFA; Thermo Fisher Oxoid); all media containing 0.1% (w/v)
nystatin (Sigma Aldrich, San Louis, MO, USA) for fungal growth inhibition. NA and
MRS plates were incubated at 30 °C for 24 h, and PFA plates were incubated at 37 °C
for 48 h. Subsequently, the numbers of cell- forming units (CFU) were recorded.

2.2.5 Substrates and metabolites
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Lactose consumption and organic acids production were determined at intervals
of 6 hours (0, 6, 12, 18, and 24 h) by high-performance liquid chromatography (HPLC)
according to Junqueira et al. (2019), with slight modifications. Aliquots of 2 mL were
centrifuged at 6000xg for 15 min and filtered through a 0.22 um pore size hydrophilic
Polyethersulfone (PES) membrane (Millipore Corp., Burlington, MA, USA). 100 puL of
filtered samples were injected into the HPLC system, equipped with an Aminex HPX
87 H column (300 x 7.8 mm; Bio-Rad, Richmond, CA, USA), and a refractive index
(RI) detector (HPG1362A; Hewlett- Packard Company, Palo Alto, CA, USA). The
column was eluted in an isocratic mode with a mobile phase of 5 mM H2SOs at 60 °C,

and a flow rate of 0.6 mL/min.

The extraction of volatile compounds was performed using a headspace
(HS) wvial coupled to a SPME fiber (CAR/PDMS df75 pum partially crosslinked,
Supelco., Saint Louis, MO, USA). For each determination, 2 mL of sample was
stored in a 20 mL HS vial, in triplicate. The SPME fiber was exposed for 30 min at
60 °C. The compounds were thermally desorbed into the GC injection system gas phase
(GC-MS TQ Series 8040 and 2010 Plus GC- MS; Shimadzu, Tokyo, Japan) at 260 °C.
The column oven temperature was maintained at 60 °C for 10 min, followed by two
heating ramps of 4 and 10 °C/min until reaching the temperatures of 100 and 200 °C,
respectively. The compounds were separated on a column 95% PDMS/5% PHENYL
(30 m x 0.25 mm x 0.25 mm film thickness). The GC was equipped with an HP 5972
mass selective detector (Hewlett Packard, Palo Alto, CA, USA). The compounds were
identified by comparison to the mass spectra from library databases (Nist’98 and
Wiley7n). For quantification, standard solutions of ethanol were prepared in different
concentration levels (1, 10, 20, 50, 100 and 1000 umol L") and used to construct a
calibration curve. The volatile compound concentrations were expressed as pmol L of

headspace, as ethanol equivalent.
2.2.6 Statistical analysis

The data obtained of microbial count and target metabolites were analyzed by post-
hoc comparison of means by Duncan’s test. Statistical analyses were performed using
the SAS program (Statistical Analysis System Cary, NC, USA). The level of

significance was established in a two-sided p-value <0.05.
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2.3 RESULTS AND DISCUSSION

2.3.1 Microbiological analysis

A total of 651,747 Illumina paired-end reads (average of 93,107 reads/sample)
were obtained and clustered into 215 OTUs at 97% sequence similarity. Rarefaction
curve analysis showed a trend to level-off at the genus level, indicating that the majority
of bacterial communities were covered (Annexes FIGURE A2.1). Sequences were
classified, using QIIME and SILVA database, to the lowest possible taxonomic rank
(i.e., genus level), and the results are represented in FIGURE 2.1. Selected low-quality
pasteurized milk harbored mainly Gram-negative bacteria, markedly dominated by
Pseudomonas (83.74%), and subpopulations of Acinetobacter, Enterobacteriaceae,
Sphingomonas, Staphylococcus, and Comamonadaceae, while Lactococcus (3.40%) was
the only Gram-positive bacteria found. Viable cell count of pasteurized milk on
Pseudomonas-specific culture medium was 6.40 log CFU/mL, while LAB and TAB
were not detected (FIGURE 2.2A). The milk used in this study was within the shelf life
and stored under ideal conditions. Thus, it is possible to assume that failures occurred
during the pasteurization process (Elmoslemany et al., 2010; Vidal et al., 2017; Martin
et al., 2018; Russo et al., 2020). Recalls of pasteurized milk contaminated with spoilage
bacteria are relatively frequent (Kumaresan & Villi, 2008; Quigley et al., 2013; Samet-
Bali et al., 2013; Walsh et al., 2016;).
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FIGURE 2.1 - RELATIVE BACTERIAL ABUNDANCE AND DYNAMICS DURING CASPIAN SEA-
STYLE SPONTANEOUS MILK FERMENTATION PRODUCED WITH LOW QUALITY
PASTEURIZED MILK. LOW PREVALENCE: BACTERIAL GROUPS WITH RELATIVE

PREVALENCE <0.1%. THE COMPLETE LIST OF BACTERIA PRESENT AT A LOW
PREVALENCE IS SHOWN IN THE SUPPLEMENTAL MATERIAL (TABLE A2.1).
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Following fermentation, the number of LAB was always higher, showing the
maximum value of 10.15 log CFU/mL at 18 h (FIGURE 2.2A). Similarly, TAB
increased through the fermentation process, reaching 9.60 log CFU/mL at 18 h.
[llumina-based amplicon sequencing showed that LAB population was mainly
represented by Lactococcus, reaching 66% among the common OTUs at 6h (FIGURE
2.1). Previous studies, using culture-dependent approaches, reported the dominance of
Lactococcus lactis ssp.  cremoris in Caspian Sea yogurt circulated in Japan,
accompanied by species of Leuconostoc, Lactobacillus, Gluconobacter and Acetobacter
(Kiryu et al., 2009; Uchida et al., 2009). Lactococcus dominance genus was confirmed
in this study using Illumina-based amplicon sequencing. Lactococcus species have also
been found as part of LAB members of other naturally fermented dairy products
(Elortondo et al., 1998; Ferchichi et al., 2001; Fortina et al., 2003; Lopez-Diaz et al.,
2000). This microbial group has several important implications for fermentative

process, including (i) milk acidification and casein proteolysis, (ii) metabolism of



74

amino acids and fatty acids for flavor development, and (iii) action against food-borne

pathogens and spoilage bacteria (El1-Ghaish et al., 2011; Matamoros et al., 2009).

In addition, a more complex bacterial diversity, uncovered by the previous
traditional cultivation studies, was revealed. These includes Leuconostoc, Pediococcus,
Streptococcus, Plesiomonas, Bacillus, Sphingomonas, Acinetobacter,
Comamonadaceae,  Ruminococcaceae, Serratia,  Prevotella,  Staphylococcus,
Chryseobacterium, Hydrogenophaga, Methylobacterium (FIGURE 2.1), and other 143
minor bacterial groups with relative prevalence <0.1% (Annexes TABLE A2.1). These
findings indicate the need for the use of next-generation sequencing technologies for an
in-deep knowledge of the microbial ecology of natural milk fermentation. The discovery
of these new taxa will promote the best opportunities to isolate novel microorganisms

with functional proprieties and, ultimately, their use as improved starters.

FIGURE 2.2 - VIABLE CELL COUNT AND BIOCHEMICAL CHANGES DURING CASPIAN
SEA-STYLE SPONTANEOUS MILK FERMENTATION PRODUCED WITH LOW QUALITY
PASTEURIZED MILK. (A) ENUMERATION OF LACTIC ACID BACTERIA (LAB), TOTAL
AEROBIC BACTERIA (TAB) AND Pseudomonas, AND pH MONITORING. (B) COURSE OF
SUGAR CONSUMPTION AND ORGANIC ACIDS PRODUCTION. ASTERISK =
SIGNIFICANTLY HIGHER FROM ONE ANOTHER IN A TWO-SIDED P VALUE < 0.05
ACCORDING TO DUNCAN’S TEST.
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Even though Pseudomonas load decreased by more than 99% after 24h of
fermentation (8.29 to 5.60 log CFU/mL; FIGURE 2.2A), the significant final population
can compromise the quality of the fermented product since Pseudomonas are known to
produce various enzymes (e.g., lipases, proteases, and phospholipases) that lead to odor,
flavor, and body defects (Chen et al., 2011). In addition, it may indicate potential health
relevance when consumers believe they are ingesting only beneficial microorganisms.
Although the incidence of Pseudomonas bacteremia from foods is very rare, some
studies reported the presence of virulence in P. aeruginosa associated with fresh
vegetables, water, and meat (Allydice- Francis & Brown, 2012; Xu et al., 2019). Recent
evidence suggests that virulence factors found in environmental isolates, such as pilin
gene, multidrug efflux transport system, porin oprD gene, and haemolytic and
proteolytic activities, show no difference with clinical P. aeruginosa (Allydice-Francis
& Brown, 2012). P. aeruginosa is considered an opportunistic pathogen, able to cause
urinary tract infections, respiratory dermatitis, soft tissue infections, bacteremia,
gastrointestinal infections, and a variety of systemic infections (Bentzmann and Plésiat,
2011; Lucchetti-Miganeh et al., 2014; Sader et al., 2015; Castaldo et al., 2017). In this
sense, great efforts are being explored to prevent contamination by Pseudomonas in
dairy products (Meesilp & Mesil, 2019; Nan et al., 2016; Picoli et al., 2017; Yasmin et
al., 2017).

Sequences related to Enterobacteriaceae remained constant throughout the
fermentation (FIGURE 2.1). The presence of Enterobacteriaceae indicates poor hygiene
during the manufacturing process, and high numbers of enterobacteria have been linked
to the accumulation of undesirable compounds with implications to flavor and texture
defects in dairy products (Linares et al., 2012; Morales et al., 2003). Several studies
showed the presence of enterobacteria in kefir grains (Dertli & Con, 2017; Walsh et al.,
2016; Wang et al., 2006) and in cheese samples (Saxer et al., 2013). Dertli and Con
(2017) showed that Enterobacter species can pass to the kefir grains from the milk,
which should be assessed as they might create safety concerns. However, further
studies using enterobacteria-selective culture media should be performed to confirm the
presence of viable taxa through the Caspian Sea-style spontaneous milk fermentation. In
addition, some Enterobacteriaceae genera could be not relevant as food-borne pathogens

since many of them are plant commensal organisms (Jha et al., 2011).
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There was a substantial discrepancy between viable cell count and Illumina-
based amplicon sequencing; for example, Pseudomonas spp. accounted for more than
20% of the 16S rRNA gene sequences after 24h (FIGURE 2.1), while culture-dependent
analysis demonstrated that these organisms account for less than 1% of viable bacterial
cells (FIGURE 2.2A). This discrepancy is frequently observed in DNA-dependent
analyses after contaminants that were present in the raw material are killed while their
DNA is still amplified (Mayo et al., 2014). This overestimation of B-diversity in culture-
independent analysis is recurrently observed in several studies (Martinez et al., 2013;

Ursell et al., 2012; Wen et al., 2017).

Interestingly, after the storage process at 4 °C for 60 days, LAB was present at
7.41 log CFU/mL and Lactococcus represented 90% of total OTUs by sequencing
(FIGURE 2.1 and 2.2). On the other hand, Pseudomonas was no longer detected by
plating and represented less than 5% of total OTUs (FIGURE 2.1 and 2.2), indicating
amplification of reminiscent dead cells (Mayo et al., 2014). The metabolites formed
during the fermentation process promotes the survivability of LAB, maintaining their
viability over storage time. It is widely known that refrigerated storage is a key point in
LAB dominance, increasing shelf life of fermented beverages (Lopusiewicz et al.,
2019). Even so, the sampled fermented product should still represent a health concern
since Caspian Sea-style spontaneously fermented milk consumption is usually

performed within a few days after refrigeration.

2.3.2 Substrates and metabolites

Changes in non-volatiles (lactose and organic acids) and volatile compounds
(carboxylic acids, aldehydes, and ketones) were monitored during the course of the
fermentation (FIGURE 2.2B and TABLE 2.1, respectively). The initial lactose content
(40.43 g/L) was rapidly reduced to 29.39 g/L. within 6 h and remained constant until the
end of the process. Lactose is the main carbohydrate in milk, with an average
concentration of around 5% (w/v) (Barros et al., 2019). Fermentation reduces lactose in
dairy products, helping to prevent symptoms in lactose-intolerant individuals (Savaiano,
2014). In the present study, the highest population of LAB was represented by the genus
Lactococcus, which uses lactose by active transportation into the cytoplasm via

phosphotransferase (PTS) system and hydrolyzing it into glucose and galactose (Mayo
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et al., 2010). Both monosaccharides enter glycolysis at the level of glucose-6P or

metabolized via the Leloir pathway (Kandler, 1983; Mayo et al., 2010).



‘(uonjeLIBA PIEPUB)S FUBOW) JSO], S,Uueoun( Suisn Ioyjoue duo woiy (G0'0 < d) JudIayyIp AJUBdIIUSIS JOU oIk SIONJ| dwes Y} SuLedq MOI yoed ur djedor[din jo suedy

Kyder3ojeworyo ses ‘)0 pajoajap jou ‘gN

eSO0FLYO  ¢600F 10 eP00F P00 600 F0C0 aN ‘AT INU0209 ‘AWBIID 49IMS QU0IOB[OPOP-Q
2l0°0F SE0 2€0°0F 8S°0 eVCOF 1€°0 aN aN Ay ‘Ksaay) QUOUBUON-T
20C0F €¥°0 aN el90F980 RIO0OFICO0 aN 21U019Y ‘AInig ‘As99y) ououelrdof]-7
() sauozay
aN aN LYOFSO'T aN aN Annu “A1opamod “Aynyy ‘puowyy opAyoprezULg
eL10F0€0 aN V00 F 110 aN aN 19od aSueI0 ‘SNNIo ‘A1) 999MS [euROS
SE0TF6E0 aN aN aN AN  Apul uoow ‘snnio ‘douenu oyI] [99d UOW] USAID) [eUBUON
(€) sapAyapry
eCCOF 180 2000 F VL0 e8I'0FCLO IO0FESO el00F S0 Aarep A9y PIoB OI0UBUON
qIPCLF86'L6 qCl'IF1996 'L FIE69 IL'6FE8TY  £99°€F01'89 £82940 “AJ10 ‘“Aney proe o10UBIQ)
QeSTTFO0IT  qETEFIL0C  gSIEFIBYL b0 F90C aN proe orozuog
ee8 VI FE08F 6C0FELYVY 2?89 F100€ ITLFISTE IS 11 FSTSE SN0 ‘AYe} “Inos ‘prouey pIo® d10UBdId(J-U
26C0F QS 2910 F 6571 n_mmm.o F960 n_mmﬁ.o F690 n_wﬁ I'0F6C1 orddesurd pojusunioy ‘Axem ‘Aseay) proe oroueydoyq
ot TTFINIL opSO6TFIBEY  pLTTIFOTSS qOL'EFOIVE 981 F68°CS K900 ‘Ayeoms ‘A1eJ “Inog p1oB J10UBXdH
(9) spov 21jdx0q4v)
0D

e w%c :o.«ﬁ:v&u&mh_.z ’ 0 uondrLIdsap d9)se) pue BwOIY spunodwo)

TIZVdd NI d4LVINOEIO ATIN AININTFd ATSNOINV.LNOIS

ATALS-VAS NVIdSVD 40 NOLLVINAWIAL ONTINA AANIOA (S0T+ VAIV) SANNOJNOD VINOUV ATILVIOA A0 NOILVIINADNOD 1'7 414V.L

8.



79

Lactic acid is the primary end-product observed, showing a continuous increase
with maximum concentration of 5.93 g/LL at 24 h. The accentuated production of lactic
acid is in agreement with the strong dominance of LAB found in the present study
(FIGURE 2.1 and 2.2), resulting in pH decrease from 5.10 to 4.10 at the end of
fermentation. Lactic acid is the major fermentation product of various bacterial families
related to dairy products. This compound is responsible for the milk acidification and
partial casein coagulation, resulting in the formation of desirable sensory notes and
rheological modifications. In addition, lactic acid is the main antimicrobial metabolite
produced by LAB, which is responsible for the inhibition of various pathogens and
food-borne microorganisms (Chahad et al., 2012; Galvez et al., 2010; Ito et al., 2003;
Nakai & Siebert, 2004). Specifically, Nakai and Siebert (2004) showed that P.
aeruginosa was extremely sensitive to lactic acid, having the lowest MIC (minimum
inhibitory concentration) among six different bacteria analyzed. Other factors that also
contribute to antagonist action of LAB include the production of hydrogen peroxide,
bacteriocins, and antibiotic-like substances (Arqués et al., 2015). Other minor organic
acids produced during the fermentative process can be associated with the growth of
sub-dominant bacteria reported by the 16S rRNA gene high-throughput sequencing,
including succinic acid produced by Leuconostoc or Acinetobacter, propionic acid from
hexose metabolism of Enterobacter species, and acetic acid by both acetic acid bacteria
and heterofermentative LAB (Andriani et al., 2019; de Souza et al., 2019; Kang et al.,
2012).

Volatiles compound metabolites were, for the first time, measured during
Caspian-sea milk fermentation. Twelve volatile compounds were detected by GC/MS
during fermentation, including six carboxylic acids, three aldehydes, and three ketones
(TABLE 2.1). Amongst the carboxylic acids class, benzoic, hexanoic, and octanoic
acids showed a significant increase through the fermentation. Hexanoic and octanoic
acids are mainly related to Lactococcus metabolism of lipids and have been associated
with cheesy aroma in fermented milk beverages (Azizan et al., 2012; Ziadi et al., 2008).
In addition, benzoic acid was detected after 6 h and showed a steady increase, reaching
a maximum peak at 24 h. This organic acid is commonly produced by species of
Lactococcus, Lactobacillus, and Streptococcus through the conversion of hippuric acid,
a natural component of milk. Benzoic acid has an inhibitory effect against spoilage

microorganisms, such as yeast, mold, Listeria innocua, Listeria ivanovii, P. aeruginosa,
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and Oenococcus oeni (Garmiene et al., 2010; Horni¢kova et al., 2014; Nakai & Siebert,

2004).

Ketones were the second class of volatile aroma reported. Both 2-heptanone and
0- dodelactone were produced after 6 h of fermentation, referring to LAB activity of
unsaturated fatty acids hydrolysis (Azizan et al., 2012; Wanikawa et al., 2002). These
volatile compounds are commonly reported in the literature for conferring a cheesy-like
aroma in fermented milk beverages (Braun, 2019; Walsh et al., 2016). On the other
hand, 2-nonanone was produced after 18 h, time in which Pseudomonas count showed a
significant increase (FIGURE 2.1). This molecule has been recurrently used as a volatile
biomarker for rapid detection of Pseudomonas aeruginosa and related species in
hospital environments (Savelev et al., 2011; Zechman, 1985). In this sense, this volatile
can also be used for monitoring of quality control in dairy production facilities. Finally,
as a minority group, the aldehydes nonanal, decanal, and benzaldehyde were produced
at specific fermentation times, being mainly associated with lipid oxidation by LAB

(Génzle et al., 2007).

2.4 CONCLUSIONS

The results of this study demonstrated that Caspian Sea-style spontaneous milk
fermentation is not an efficient tool to overcome poor microbiological quality of the
milk used as raw material. Although Caspian Sea-style fermented milk showed a high
load of LAB and lactic acid content, the presence and persistence of Pseudomonas and
enterobacteria through fermentation indicate a potential health risk in the final
fermented product. Because of the increased focus on consumption of naturally
fermented dairy products, this is a major health concern, since the spread of pathogenic
organisms can be facilitated among unsuspecting individuals. The use of poor-quality
pasteurized milk is also recurrent in other natural milk fermentation (e.g., kefir,
koumiss, curd, lassi, laben, and Suero costerio) and further studies should be expanded
to cover the safety status of these traditional foods. In addition, for a better
understanding of Pseudomonas control using natural milk fermentation, it is crucial to
evaluate different Pseudomonas inoculum concentration and more time during storage.
The establishment of programs emphasizing hygienic manufacturing procedures can
have a major effect on improving the microbiological quality of traditional and ethnic

foods circulated n Brazil.
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CHAPTER THREE (COMPLEMENTARY RESEARCH RESULTS) -
ANTIMICROBIAL POTENTIAL OF PRESUNCTIVE LACTIC ACID BACTERIA
ISOLATED FROM CASPIAN SEA STYLE FERMENTED MILK STORED AT LOW
TEMPERATURES

3.1. INTRODUCTION

Traditional fermented milks are part of several culture’s diet around the world, and also
plays a key role in the routine of modern life in many countries (Gavrilova et al., 2019).
Lactic acid bacteria (LAB) are widely distributed in the indigenous microbiota of
naturally fermented dairy products, promoting digestibility and nutritional quality to the
final product (Gavrilova et al., 2019; Rhee et al., 2011). The group includes the genera
Lactobacillus, Lactococcus, Streptococcus, Leuconostoc, Pediococcus, among others
(Sharma, 2019). The practice of fermentation of traditional milk-based products is
performed in open systems under uncontrolled hygiene conditions and is, therefore,
susceptible to contamination (Biratu & Seifu, 2016; Parry-Hanson Kunadu et al., 2019).
These foods often contain pathogenic bacteria that must be eliminated during
fermentation (Aliyu et al., 2020; De Buyser et al., 2001; Keba et al., 2020). Presence of
LAB can reduce the risk of pathogenic microorganism’s occurrence, as they excrete
organic acids, hydrogen peroxide and bacteriocins during fermentation, acting as bio
preservative agents and increasing the safety and lifetime of the final product (Ozogul &

Hamed, 2018; Gao et al., 2019).

Pseudomonas spp. are deteriorating and pathogenic Gram-negative bacteria
(FAO 1992). The genus consists of microorganisms capable of surviving at low
temperatures and are classified as psychrotrophic. They often contaminate milk and its
derivatives, multiplying during storage at low temperatures (Doyle et al., 2017). The
group includes Pseudomonas aeruginosa, which is an opportunistic pathogen that
causes fatal infections, mainly affecting immunocompromised people (Fijan, 2015). P.
aeruginosa is one of the pathogens most associated with contamination in the food
industry (Bellil et al., 2018). Among other six bacteria, P. aerugionosa showed high
sensitivity to lactic acid, having the lowest minimum inhibitory concentration (MIC)
(Nakai & Siebert 2004). The isolation of LAB strains able to survive at low

temperatures with antimicrobial properties is essential on traditional fermented milks
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manufacture processes and in the food industry (Liu et al., 2017; Messens & De Vuyst,

2002).

Recently, the presence and persistence of considerable amounts of Pseudomonas
sp. has been found during 24 hours of spontaneous fermentation of Caspian-style milk
using the next generation Illumina sequencing platform. Surprisingly, after 60 days of
storage at low temperatures, there was a large increase in LAB and a drastic decrease in
the Pseudomonas genus. In order to exploit the antimicrobial capacity of indigenous
Caspian Sea style LAB isolated at low temperatures against P. aeruginosa, colonies
from this sample were isolated, purified, identified and tested against this pathogen.

Acidification capacity was also evaluated.

3.2 MATERIAL AND METHODS
3.2.1 Sampling and isolation of presumptive lactic acid bacteria

Caspian Sea style fermented milk was stored at 4 °C for 60 days after the main
fermentation described by Maske et al (2020). At the end of this period, 1 mL aliquots
of fermented milk were vortexed with 9 mL of 0.1% peptone water (10" solution) and
diluted in series in triplicate. Then, 100 uL of each dilution was inoculated using the
spread plate technique on the surface of De Man, Rogosa, and Sharpe Agar (MRS,
Thermo Fisher Oxoid), selective for lactic acid bacteria (LAB), containing 0.1% (w/v)
Nistatin (Sigma Aldrich, San Louis, MO, USA) for fungal growth inhibition. The plates
were incubated at 30 °C for 24 h. 16 colonies were selected by morphology and were
purified on MRS agar added on MRS broth containing 10% (v/v) glycerol and stored at
-80 °C..

3.2.2 Pathogen

The ATCC 27853 strain of P. aeruginosa used as an indicator was obtained at
Laboratorio de Microbiologia in Centro Politécnico (UFPR), Curitiba-PR, Brazil. It was
maintained by subculture in Brain Heart Broth Infusion (BHI) (Himedia) and incubation
at 40 °C for 18 h. Stock cultures were prepared in BHI broth containing 10% (v/v)
glycerol and stored at -80 °C.

3.2.3 Identification of presumptive isolates of lactic acid bacteria
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The 16 selected isolates were identified by analysis of the 16S rRNA gene
partial sequence. Genomic DNA was extracted from presumptive LAB isolates,
previously cultured in 10 mL of MRS broth at 30°C for 24 hours, using the
phenol/chloroform method adapted from the standard method by Neumann et al.,
(1992). Universal primers 27F (5'-AGAGTTGATCCTGCTCAG-3") and 1492R (5’
CGGCTACCTTGTACGACTT-3") were used to amplify the 16S rRNA gene region
(Lane et al., 1985) by PCR in a Veriti thermal cycler (Applied Biosystems, Paisley,
United Kingdom). Amplifications were performed at a final volume of 25 pL containing
5 uL of 5x GoTaq® reaction buffer supplied with MgCl, (7.5 mM) (Promega, Madison,
WI, USA), 0.55 pL of ANTP Mix (10 mM) (Invitrogen, Carlsbad, CA, USA), 0.5 uL of
27F and 1492R (10 mM) primers and 0.2 pL of GoTag® DNA Polymerase (5U/uL)
(Promega). Amplicons were generated by PCR under the following conditions: initial
denaturation at 95°C for 5 min, followed by 35 cycles at 94°C for 15 s, ringing at 55°C
for 45 s, extension at 72°C for 90 s, and final extension at 72°C for 6 min. The PCR
products were sequenced by automated capillary electrophoresis in an ABI 3730x1 DNA
analyzer (Applied Biosystems, Paisley, United Kingdom). The sequences obtained were
analyzed and aligned using the BioEdit 7.7 sequence alignment editor and compared
with the GenBank database. Homology research to determine the closest known species
of ribosomal DNA partial sequences was performed using the BLAST algorithm
(http://blast.ncbi.nlm.nih.gov/Blast.cgi) at the National Center for Biotechnology
Information (NCBI) (Alstchul et al., 1990).

3.2.4 In vitro determination of antimicrobial activity

The antimicrobial activity of the 16 presumptive isolates of lactic acid bacteria
was investigated by the agar plug diffusion assay against P. aeruginosa ATCC 27853
according to Balouiri et al. (2016), with modifications. Presumptive isolates of LAB and
P. aeruginosa were reactivated in MRS broth at 30 °C and BHI broth at 40 °C,
respectively, in the proportion of 1% v/v and incubated overnight. The media were
centrifuged (10,000g for 15 minutes) and the supernatant was discarded. Then, the
pellets were resuspended with their respective autoclaved culture media to adjust the
turbidity scale. The media were adjusted to 0.5 Mac Fareland scale, corresponding to
approximately 1.5 x 10% colony forming units (CFU)/mL. A sterile swab was used to

inoculate the bacteria on agar medium (MRS agar for presumptive LAB and BHI agar
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for P. aeruginosa ATCC) using the plate spreading technique. After drying at room
temperature, three 6 mm agar cylinders were aseptically cut from the presumptive LAB
plates and deposited on the surface of the BHI medium containing P. aeruginosa ATCC
27853 indicator microorganisms. The plates were incubated at 30°C for 24 hours.
Antimicrobial activity was detected by the appearance of the inhibition zone around the

agar plug. The diameters of the halos were measured using the Image]® program.
3.2.5 LAB acidification capacity on ultrahigh temperature (UHT) skim milk

After the antimicrobial assay, nine LAB strains were selected for acid
production capacity test. Milk cultures were prepared in a medium composed of 100%
UHT skim milk (Naturalle) according to Raveschot et al. (2020). Strains were
inoculated to 30 mL of UHT skim milk, reaching an initial cellular OD600 of 0.3, and
grown at 37 °C for 48 h statically. Concomitantly, a non-inoculated UHT skim milk was
incubated in the same conditions and served as negative control. After incubation, the
pH value of culture media was determined using a pH meter (Requipal, Curitiba,
Brazil). Experiments were performed in triplicate and the results were expressed as the

mean plus standard error.
3.2.6 Statistical analysis

The results obtained from the triplicate measurement of inhibition halos and pH
values were expressed as mean and standard deviation. Statistical analysis of the data
was performed in the STATISTICA 7 StatSoft software (STATSOFT, 2007), with a
level of statistical significance determined as p<0.05. The data were submitted to
ANOVA and the differences between treatments versus control were evaluated by a

Tukey's HSD.

3.3 RESULTS AND DISCUSSION

IMlumina Miseq sequencing of the viability test sample (Caspian Sea-style
fermented milk sample stored at 4°C refrigerated for 60 days) performed by Maske et al
(2020) revealed a decrease in Pseudomonas load compared to the alarming
concentration and persistence in 24 hours of fermentation process. Additionally, there
was a significant increase in the lactic acid bacteria population level. In order to explore

the antagonisctic activity of LAB toward P. aeruginosa, a pathogenic species of the
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genus Pseudomonas, presumptive colonies were randomly selected from the viability

test sample, identified and evaluated.

The 16 isolates had their 16S rRNA partial gene sequenced and taxonomic strain
characterization was performed by comparing the sequences of each isolate with those
reported in the NCBI Reference. Considering species and subspecies with 97 to 100%
similarity, the isolates were identified as Leuconostoc mesenteroides subsp.
mesenteroides (n=1), Leu. mesenteroides (n=7), Staphylococcus saprophyticus (n=4),
Leu. lactis (n=2), Leuconostoc sp. (n=1) and Lactobacillus sp. (n=1). Three distinct
clusters were formed according to neighbor-joining method (Lactobacillus, Leuconostoc

and Staphylococcus) (FIGURE 3.1).

FIGURE 3.1 - MAXIMUM-LIKELIHOOD TREE BASED ON 16S rRNA GENE SEQUENCES
SHOWING THE PHYLOGENETIC RELATIONSHIPS OF PRESUMPTIVE LAB ISOLATED FROM
CASPIAN SEA-LIKE FERMENTED MILK FERMENTATION. BOOTSTRAP VALUES (%) BASED

ON 1000 REPLICATIONS ARE SHOWN AT BRANCH POINTS. THE SUBSTITUTION MODEL

USED WAS KIMURA 2-PARAMETER MODEL. BAR = 0.05% SEQUENCE DIVERGENCE.
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Although MRS medium is selective for lactic acid bacteria, other groups of
bacteria may also be isolated eventually (Yang et al 2018). Staphylococcus
saprophyticus can be found in fermented foods (Fiorentini et al., 2009) and its presence
can cause urinary tract infections (Zhang & Zhao, 2018). To avoid isolation of non-
LAB groups, prior to the identification of the strains, a biochemical evaluation can be
performed, selecting Gram-positive, catalase-negative and nitrate-negative bacilli (Saez
et al., 2018), and also by supplementing the agar medium with CaCO3 to indicate lactic
acid production (Viesser et al., 2020).

The antimicrobial activity of the isolates against P. aeruginosa ATCC 27853
through agar plug diffusion method is shown in TABLE 3.1. The inhibition zones were
measured, and the halo diameter was expressed in mm. P. aeruginosa was more
sensitive to the isolate CSY08, corresponding to Lactobacillus sp., with a halo of 22.22d
+ 0.35 mm. Leuconostoc sp. and Leuconostoc mesenteroides were the most abundant

LAB isolates and also showed significant antimicrobial activity.

TABLE 3.1 - SPECIES IDENTIFIED THROUGH THE PARTIAL SEQUENCE OF 16S AND THE
AVERAGE VALUES OF HALOS’ DIAMETERS RESULTING FROM THE ANTIMICROBIAL TEST
EXPRESSED IN mm AGAINST Pseudomonas aeruginosa INDICATOR ATCC 27853.

Isolates Inhibition halo diameter (mm)
Leuconostoc sp. CSY01 8,09+0,06%¢
Leu. mesenteroides CSY02 9,83+0,612°
Leu. mesenteroides CSY03 n.d.
Leu. lactis CSY04 10,9140,132¢
Leu. lactis CSYO05 3,05+0,072
Leu. mesenteroides subsp. mesenteroides CSY 06 n.d.
Leu. mesenteroides CSYQ07 2,21+0,05°
Lactobacillus sp. CSY08 22,22+0,35¢
Leu. mesenteroides CSY010 15,86+0,06%
Staphylococcus saprophyticus CSY011 3,41+0,03%*
S. saprophyticus CSY012 n.d.
S. saprophyticus CSY013 n.d.
Leu. mesenteroides CSY014 n.d.
Leu. mesenteroides CSY015 11,83+0,43%
Leu. mesenteroides CSY016 17,70+0,28%
S. saprophyticus CSY017 n.d.

*The diameter of each agar plug was not considered. Values in triplicate on each line with the same
letters are not significantly different (p>0.05) from each other using the Tukey test (mean valuetstandard
deviation). ND = Not detected.

Lactobacillus is the largest genus within the LAB group, widely used in the
manufacture of fermented dairy products. They are generally regarded as safe (GRAS)
and have great potential to be used in starter cultures and as probiotics (De Angelis &

Gobbetti, 2016). Innumerous studies have tested the supernatants of Lactobacillus sp.
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cultures isolated from milk-based fermented foods against P. aeruginosa, finding a wide
spectrum of halos diameters, ranging from 2 to 18.6 mm (Adesina et al., 2016;
Haghshenas et al., 2016; Poornachandra Rao et al., 2015; Karami et al. 2017; Hashemi
et al. 2017; Sharma, 2019). Among them, the highest value of 18.6 mm was found by
Hashemi et al. (2017), who tested the supernatant of L. plantarum culture isolated from
sarshir, a milk-based fermented product, through the well diffusion method. They
attributed the antimicrobial activity to the presence of bacteriocin compounds and the
generation of organic acids. Nevertheless, the isolate CSYO08 corresponding to
Lactobacillus sp. showed the largest halo size within the milk-based fermented products
in the literature. Recently, Evurani et al. (2019) reported a halo diameter of 25 mm by
the small spot technique, achieved through mixed culture of strains of L. brevis and L.
casei, isolated from Kunun-Zak, a traditional non-alcoholic fermented drink widely
consumed in Nigeria. The authors suggested, therefore, that a combination of two

strains could have a superior result.

Leuconostoc also belongs to the LAB group and is commonly used in starter
cultures. The isolated species identified as Leu. mesenteroides, Leu. mesenteroides
subsp. mesenteroides and Leu. lactis have already been isolated from several other
fermented foods such as vegetables and fermented dairy products, where they produce
aromatic components and cause changes in their textures (Chen et al., 2012; Duthoit et
al., 2005; Firmesse et al., 2008; Nieto-Arribas et al., 2010). Theheir presence has
already been reported to have an effect on pathogen growth control (Cotter & Beresford,
2017; Korkeala & Johanna Bjorkroth, 1997; Samelis & Georgiadou, 2000). The
reported diameters of Leuconostoc ranged from 2.21 to 17.70 mm against P.
aeruginosa, being in agreement with previous studies that isolated Leuconostoc strains
from the fermented food.(Ahmaed, 2019; Bellil et al., 2018; Coulibaly et al., 2017;
Morandi et al., 2013; Olaniyi et al., 2019). Bellil et al. (2018) evaluated, by the agar
well diffusion method, the antimicrobial activity of Leu. mesenteroides isolated from
fermented dromedary milk, reaching an inhibition zone of 15 to 20 mm in diameter. The
tested supernatant was treated with catalase to avoid antimicrobial effect of hydrogen
peroxide and the antimicrobial potential was inhibited by protease, indicating that
bacteriocin was the main agent against P. aeruginosa. The isolates CSY10 and CSY16

of Leu. mesenteroides reached halos of 15.86 and 17.70 respectively and did not differ
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statistically from the result for Lactobacillus sp. CSYO0S8, also showing a promising

result for antimicrobial activity against foodborne pathogens.

The acidification capacity of selected strains (CSY strains 01, 02, 04, 05, 07, 08,
10, 15 and 16) was measured by pH determination after 48h of culture (TABLE 3.2).
The initial pH value of skim milk was 6.68 and, after 48h incubation, reached
6.59+0.005 (control). Lactobacillus and Leuconostoc displayed similar acidification
pattern. Leu. lactis strains led to a pH decrease of 2 pH units, reaching a mean of
4,71+0,15 , whereas the pH of milk inoculated with Lactobacillus sp. and Leu.
mesenteroides decreased by a maximum of 1 pH unit. Leu. lactis strains were the most
efficient for acidification capacity and, as expected, were the only that led to milk
protein coagulation due to casein precipitation at pH lower than 4.6 (Raak, Rohm, &

Jaros, 2017).

TABLE 3.2 — ACIDIFICATION CAPACITY TEST.

Isolates pH

Skim milk 6,68 +0,00*

Control 6,59 +0,05%
Leuconostoc sp. CSY01 5,42 £ 0,20%f
Leu. mesenteroides CSY02 5,19 +0,07¢
Leu. lactis CSY04 4,68 +0,108

Leu. lactis CSYO05 474 +0,21¢8

Leu. mesenteroides CSY07 5,14+0,31"%
Lactobacillus sp. CSY08 5,57 +0,08%f
Leu. mesenteroides CSY010 6,31 +£0,03%¢
Leu. mesenteroides CSY015 5,99 + 0,584
Leu. mesenteroides CSY016 5,83 £ 0,04

*Values in triplicate on each line with the same letters are not significantly different (p>0.05) from each
other using the Tukey test (mean value+standard deviation).

3.4 CONCLUDING REMARKS

This is the first experiment to date that reports the antimicrobial activity of lactic
acid bacteria isolated from Caspian Sea style spontaneously fermented milk. This
product has proven to be a promising source for isolation of LAB with action against P.
aeruginosa growth. Further tests should be carried out with the supernatants of the

strains to unravel to which component(s) the antimicrobial activity is attributed.
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GENERAL CONCLUSIONS

In summary, the popularization of next generation sequencing technology
allowed a successful characterization of popular fermented milk products microbiota
around the globe. Besides confirming dominant species identified previously through
culture-dependent methods, recent NGS platforms enabled the discovery of yet
uncultured genera/species and sub-dominant populations for the first time. The
discovery of these new taxa enhances the chance to isolate potential microorganisms
with functional proprieties and facilitates food quality and safety control. Illumina
Miseq platform successfully accessed the microbiota of Caspian Sea style fermented
milk, showing that it is not an efficient process to overcome the poor microbiological
quality of milk used as substrate. Although the final product exhibited significant
number of LAB and lactic acid concentration, the presence and persistence of
Pseudomonas through fermentation indicated a potential health risk in the final
fermented product. Results indicate that food safety authorities in Brazil need to carry
out more rigorous surveillance of ethnic fermented dairy products. In addition,
presumptive LAB strains isolated from Caspian Sea style fermented milk stored for 60
days at low temperatures showed significant antimicrobial activity against P.
aeruginosa, a pathogenic member of Pseudomonas, often associated with food
contamination. Thus, the present study allowed the use of NGS platform to monitor
food security of traditional fermented milks and technological advance of discovery of

new functional strains.
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