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RESUMO 

A produção e exportação do café é uma grande força motriz para a economia dos 
principais países produtores, tais como Brasil, Honduras e Colômbia, chegando a 
contribuir em mais de 3% para o Produto Interno Bruto (PIB). No entanto, não há o 
reflexo desse impacto econômico nas linhas produtivas de café, uma vez que a etapa de 
processamento pós-colheita ocorre de maneira rudimentar. Por essa razão, o presente 
trabalho visou: i) o estudo da diversidade, composição e dinâmica de leveduras e 
bactérias durante o processo fermentativo dos grãos de café; ii) e o estudo do 
comportamento de fermentações (i.e. espontânea e inoculada) conduzidas em 
biorreatores de tanque agitado em condições controladas de temperatura, agitação e 
aeração. Em fermentações espontâneas e em condições de campo na região de Minas 
Gerais, o sequenciamento do gene ITS-rRNA revelou que a população de leveduras foi 
representada, principalmente, por Saccharomyces sp., seguido de Torulaspora 
delbrueckii, Pichia kluyveri, Hanseniaspora uvarum, H. vineae, e Meyerozyma 
caribicca. Utilizando a técnica de Sequenciamento de Nova Geração na plataforma 
Illumina, foi possível observar a presença de mais de 80 gêneros bacterianos, muitos 
dos quais foram descritos pela primeira vez em uma fermentação de grãos de café. 
Dentre estes estão inclusos Fructobacillus, Pseudonocardia, Pedobacter, 
Sphingomonas e Hymenobacter. A análise temporal demonstrou uma forte dominância 
de bactérias láticas, representando mais de 97% do total de sequências analisadas ao 
final da fermentação. As fermentações de café conduzidas em bioreatores em condições 
controladas permitiram um crescimento eficiente das culturas iniciadoras Lactobacillus 
plantarum LPBR01 (pico de 10,7 log CFU/mL em 10 h) e Pichia fermentans YC5.2 
(8,85 log CFU/mL), resultando em uma rápida acidificação do meio (pH <4,0 em 6 h), 
elevadas produções de ácido lático (8,602 g/L) e acetato de etila (pico de 97,93 μmol/L 
em 8 h). A difusão desses compostos para o interior do grão resultou em bebidas com 
notas sensoriais superiores a 91 pontos na escala Specialty Coffee Association of 
America (SCAA), a qual foi significativamente superior às bebidas produzidas pelo 
método convencional. Este novo modelo de fermentação pode ser utilizado para 
conduzir fermentações de café controladas e fornecer grãos homogêneos e de elevada 
qualidade para a indústria.  

Palavras-chave: Café, microorganismos, processamento via úmida, biorreator de 
tanque agitado. 

 

 

 

 

 

 

 

 

 



 
 

ABSTRACT 

The production and export of coffee is a major driving force for the economy of 
the main producing countries, such as Brazil, Honduras and Colombia, which 
contributes with over 3% of the Gross Domestic Product (GDP). However, there is no 
reflection of this economic impact on coffee production sites, since the post-harvest 
processing stage occurs rudimentary. For this reason, the present work aimed at: i) the 
study of the diversity, composition and dynamics of yeasts and bacteria during the 
fermentative process of coffee beans; ii) and the behavior study of fermentations (i.e., 
spontaneous and inoculated) conducted in stirred tank bioreactors under controlled 
conditions of temperature, agitation and aeration. In spontaneous fermentations 
conduced at on-farm conditions at Minas Gerais region, the sequencing of the ITS-
rRNA gene revealed that the yeast population was represented mainly by 
Saccharomyces sp., followed by Torulaspora delbrueckii, Pichia kluyveri, 
Hanseniaspora uvarum, H. vineae, and Meyerozyma caribicca. The New Generation 
Sequencing technique on the Illumina platform revealed the presence of over 80 
bacterial genera, many of which were described for the first time in coffee beans 
fermentation. These include Fructobacillus, Pseudonocardia, Pedobacter, 
Sphingomonas and Hymenobacter. The temporal analysis demonstrated a strong 
dominance of lactic bacteria, representing more than 97% of the total read sequences at 
the end of the fermentation. The coffee fermentations conducted in bioreactors under 
controlled conditions allowed efficient growth of the Lactobacillus plantarum LPBR01 
(peak of 10.7 log CFU/mL in 10 h) and Pichia fermentans YC5.2 (8.85 log CFU/mL) 
starter cultures. This domination resulted in a rapid acidification of the coffee-pulp bean 
mass (pH <4.0 in 6 h) and high production of lactic acid (8.602 g / L) and ethyl acetate 
(peak of 97.93 μmol/L in 8 h). The diffusion of these compounds into the beans resulted 
in beverages scores above 91 points on the Specialty Coffee Association of America 
(SCAA) scale, which was significantly higher than those produced by the conventional 
method. This new fermentation model can be used to conduct controlled coffee 
fermentations and provide homogenous and high quality grains for the industry. 

Keywords: Coffee, microorganisms, wet processing, stirred-tank bioreactor. 
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1. INTRODUCTION 

The coffee (Coffea arabica L.) belongs to the Rubicaceae family, which 

comprises more than 600 genera and 10,000 species of tropical trees and shrubs 

(BREMER; ERIKSSON, 2009). The coffee originates from Ethiopian highlands, where 

it is still possible to observe the growth of wild coffee plants. Until the fifteenth century, 

coffee production was restricted to Arabia, more precisely to Yemen, where the coffee 

beans were of great economic importance to producers and traders. In 1615 the first 

sacks of coffee reached the non-Islamic world, and coffee plantations soon gained the 

European colonies in Central and South America (GRIGG, 2002; PEREIRA et al., 

2017). 

Exceeding a global production of 9.5 million tons and a global industry valued at 

more than US$ 200 billion, coffee is in a prominent position in the world economic 

scenario. With a production of 3.6 million tons, Brazil is the largest producer and 

exporter of coffee, followed by Vietnam, Colombia, Indonesia and Honduras (ICO, 

2018). Although this cultivar has a significant impact on the economy of producing 

countries, the fermentation stage is carried out in a traditional way, via spontaneous 

methods. This fact contrasts with fermented products produced in developed countries, 

where fully controlled processes are performed, such as wines, beers and dairy products 

(AYAD et al., 2003; BRÁNYIK et al., 2005; SINGH; SOOCH, 2009; UGLIANO; 

GENEVESE; MOIO, 2003). 

Coffee beans fermentation stage is performed by indigenous bacteria and yeasts 

present in the surface of coffee cherries. Spontaneous fermentations have several 

disadvantages, such as the lack of predictability and control over the final quality of the 

beverage produced, resulting in the commercial depreciation of the final product. In this 

sense, the search for starter cultures that can promote a homogeneous degradation of the 

mesocarp, reduction of fermentation time, and production of flavoring compounds has 

become the target of several recent studies (SILVA et al., 2013; PEREIRA et al., 2014, 

2015, 2016; LEE et al., 2016a, 2017a). However, the rudimentary conditions and the 

lack of control (i.e., temperature, agitation, aeration control or anaerobic system) in 

which the fermentations are performed hinder the reproducibility and standardization 

necessary for the development of commercial lines of starter cultures. 

In order to contribute to a better understanding of microbial diversity and the 

improvement of coffee bean fermentation technology in Brazil, the present study aimed 

to carry out studies using dependent- and independent-cultivation methodologies to 
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evaluate the dynamics of the bacterial population and to propose a new fermentation 

model.  

 

2. OBJECTIVES 

 

2.1. Main objective 

The present study aims to characterize the diversity, composition and dynamics 

of the microbiota in spontaneous coffee fermentations conducted in the region of Minas 

Gerais and to perform kinetic, metabolic and sensorial studies of inoculated and 

spontaneous fermentations in stirred tank reactors. 

 

2.2. Secondary objectives 

 Characterize the different microbial groups present in the region of Minas Gerais 
and estabilish a relationship between microbiome versus quality; 

 Standardize and apply Next Generation Sequencing tools through the Illumina 
Platform in coffee fermentations; 

 Establish the relationship between the dominant microorganisms observed in the 
fermentation processes and the difference between the profile of aromatic 
compounds in the coffee beans obtained; 

 Determine the kinetic parameters of fermentations conducted in stirred-tank 
bioreactors; 

 Characterize the coffee fruits' profile of organic volatile compounds, sugars and 
organic acids (GC-MS and HPLC) and establish a correlation with the dominant 
microbiota in the fermentation process; 

 Evaluate the effect of the implementation of starter cultures on the natural 
microflora of coffee processing through the Illumina MiSeq Next Generation 
Sequencing Platform. 

 Produce coffee beans with high content of aromatic compounds; 
 Produce high quality coffee beverages. 
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CHAPTER I (LITERATURE REVIEW) – EXPLORING THE IMPACTS ON 

THE AROMA FORMATION OF COFFEE BEANS – A REVIEW 

 

Manuscript published in the Food Chemistry, volume 272, pages 441-452, August 2018 
 
ABSTRACT  
The aim of this review is to describe the volatile aroma compounds of green coffee 

beans and evaluate sources of variation in the formation and development of coffee 

aroma through postharvest processing. The findings of this survey showed that the 

volatile constituents of green coffee beans (e.g., alcohols, aldehydes, and alkanes) have 

no significant influence on the final coffee aroma composition, as only a few such 

compounds remain in the beans after roasting. On the other hand, microbial-derived, 

odor-active compounds produced during removal of the fruit mucilage layer, including 

esters, higher alcohols, aldehydes, and ketones, can be detected in the final coffee 

product. Many postharvest processing including drying and storage processes could 

influence the levels of coffee aroma compositions, which remain to be elucidated. Better 

understanding of the effect of these processes on coffee aroma composition would assist 

coffee producers in the optimal selection of postharvest parameters that favor the 

consistent production of flavorful coffee beans. 

 

Keywords: Green coffee beans; volatile aroma compounds; coffee aroma; postharvest 
processing 
 
1.1. INTRODUCTION 

 

The popularity of coffee products is related to their unique sensory and pleasant 

flavor. A critical contributor to coffee beverage quality is the series of postharvest 

practices performed to obtain dried beans suitable for roasting (HUCH; FRANZ 2015). 

These practices involve a number of relatively complex steps, including fruit harvesting, 

depulping, drying, and storage. Following on-farm postharvest processing, coffee beans 

can be transported to industrial plants, where semi-manufactured or finished products 

are obtained for commercialization (PEREIRA et al., 2017).  

More than 90 years of scientific studies exploring the complex volatile aroma 

composition of coffee have yielded over 1,000 volatile compounds (LEE; 

SHIBAMOTO, 2002; CZERNY; MAYER; GROSCH, 1999; GROSCH, 1998; SANZ et 
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al., 2002). These volatiles, including sulfur compounds, pyrazines, pyridines, oxazoles, 

pyrroles, furans, aldehydes, higher alcohols, ketones, esters, and phenols, are mostly 

generated by thermal reactions that occur during roasting and brewing (BUFFO; 

CARDELLI-FREIRE, 2004; BRÖHAN et al., 2009; RODRIGUEZ; DURAN; REYES, 

2010). However, the chemical composition of green coffee beans, as well as chemical 

changes that occur through postharvest processing, can have a direct impact on the 

quality and value of the final product (WINTGENS, 2004; BHUMIRATANA; 

ADHIKARI; CHAMBERS, 2011; SUNARHARUM; WILLIAMS; SMYTH, 2014). 

The influence of genotype, cultivation method and postharvest treatment 

(harvesting, depulping, drying, and storage) on the final coffee quality is still under 

study (AVALLONE et al., 2002; BYTOF et al., 2005; KNYSAK, 2017; LEE et al., 

2015; LEE; SHIBAMOTO, 2002; PEREIRA et al., 2016; RENDÓN; SALVA; 

BRAGAGNOLO, 2014; SELMAR; BYTOF; KNOPP, 2008; SELMAR et al., 2006). 

The aim of this review is to examine all the factors related to coffee volatile 

composition and variation through postharvest processing. Additionally, we discuss 

strategies that can be exploited to improve the flavor of coffee with a special focus on 

the microbial-derived metabolites generated during removal of the fruit mucilage layer. 

 

1.2. COFFEE PRODUCTION AND POSTHARVESTING PROCESSING  

 
Coffee is derived from the tree of the genus Coffea, including more than 103 

species of tropical trees and shrubs (FERRÃO et al., 2015). The coffee tree is 

commercially cultivated throughout the geographic region between latitudes 30° N and 

30° S, known as the “coffee belt.” Brazil is one of the leading coffee producers, 

supplying about a third of total world production, followed by Vietnam, Indonesia, 

Colombia, India, Peru, Honduras, Ethiopia, Guatemala, Mexico, and 60 other countries 

(PEREIRA et al., 2017). The total worldwide production of coffee beans exceeded 9 

million tons in the 2015–2016 crop, with a turnover close to US$21 billion (ICO, 2017). 

It is one of the most traded and consumed agricultural products worldwide, at times 

surpassed only by oil (LEE et al., 2015).  

The fruit of the coffee tree consists of an orange-red to red skin on ripening 

(exocarp), a fleshy yellow-white pulp and mucilage (mesocarp), and a plain yellow 

parchment (endocarp) and silver skin (integument) surrounding the seeds (endosperm) 

(FIGURE 1.1). The exocarp gives the fruit external resistance. It is a monocellular layer 



19 
 

protected by a waxy substance; when unripe, the fruits are green and turn to red-violet, 

deep red, yellow, or orange (depending on the genotype) when ripe. The mesocarp is a 

fleshy, fibrous, and sweet pulp, which is rich in carbohydrates (glucose, fructose, and 

pectin), proteins, fat, lipid minerals and considerable amounts of tannins, poliphenols, 

and caffeine (JANISSEN; HUYNH, 2018; MURTHY; NAIDU, 2012). The endocarp, 

the so-called parchment layer, is a thin, yellowish, crumbly, paper-like polysaccharide 

composed principally of α-cellulose, hemicellulose, lignin, and ashes (ESQUIVEL; 

JIMÉNEZ, 2012). The silver skin is predominantly composed of polysaccharides, 

especially cellulose and hemicelluloses, in addition to monosaccharides, proteins, 

polyphenols, and other minor compounds (FARAH; DOS SANTOS, 2014). This layer 

is high in total dietary fibers and phenolic compounds with significant antioxidant 

activity (JANISSEN; HUYNH, 2018). The silver skin covers two hemispheres of 

elliptical seeds which, in turn, contain the endosperm and embryos (FARAH; DOS 

SANTOS, 2014; ESQUIVEL; JIMÉNEZ, 2012). 
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FIGURE 1.1 – COFFEE FRUIT STRUCTURE AND SCHEMATIC PRESENTATION OF 
POSTHARVEST PROCESSING METHODS CORRELATED WITH MAJOR BIOCHEMICAL 

CHANGES THAT IMPACT ON COFFEE VOLATILE FORMATION. THIS FIGURE IS ADAPTED 
FROM BYTOF et al. (2005), LEE et al. (2015), SELMAR et al. (2006), AND PEREIRA et al. (2017). 

 
Fruit harvesting is the first step in postharvest coffee processing. The 

heterogeneous development of coffee fruits leads to a simultaneous presence of 

different maturation stages in the same coffee tree—that is, green (immature), cherry 

(ripe), and raisin (overripe) (PEZZOPANE et al., 2003). When mature, the coffee fruits 
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present lower concentrations of phenolic compounds, which implies a reduction of 

astringency; moreover, coffee cherries show a higher content of volatile compounds 

(aldehydes, ketones, and higher alcohols) in comparison to immature fruits 

(WINTGENS, 2004). Thus, coffee harvesting should be initiated when the plant reaches 

a homogeneous stage of maturation with a minimum prevalence of immature fruits 

(BEE et al., 2005). 

Harvesting of coffee is predominantly performed by handpicking or by stripping 

the fruits onto sheets placed beneath the tree; however, the use of mechanical harvesters 

based on the vibration of tree branches (e.g., self-propelled machines, portable and 

mechanical stripping machines) has greatly increased all around the world (BEE et al., 

2005). The choice of method employed will interfere directly in the quality of the fruit 

used for further steps of on-farm processing. Handpicking allows the exclusive selection 

of fruits in their ideal stage of maturation (i.e., coffee cherries). Obtaining only ripe 

coffee cherries through selective handpicking is, however, expensive and laborious. In 

this sense, many producers choose between stripping or mechanical harvesting of coffee 

fruits, followed by removal of immature beans through sorting (HUCH; FRANZ, 2015). 

After harvesting, coffee processing should begin as quickly as possible to 

prevent fruit spoilage by unfavorable fermentation or mold formation (BEE et al., 2005; 

ILLY, 2002). The outer layers of the coffee fruit (i.e., the skin and pulp) are easily 

removed, while the mucilage, parchment, and silver skin are firmly attached to the 

beans (DE BRUYN et al., 2017). FIGURE 1.1 illustrates the three different methods 

commonly used to eliminate these layers. In the dry processing, seeds are exposed to the 

sun or air dryers until the moisture content is approximately 10%–12%. After drying, 

the fruits are cleaned and dehulled, and then the dried skin and pulp are removed. Wet 

processing, in contrast, involves a relatively complex series of steps, including 

mechanical removal of the coffee skin and pulp, microbial degradation (fermentation) of 

the mucilage layer and, finally, water removal by sun-drying (FIGURE 1.1). This 

process reduces the time (from 3–5 weeks to 8–10 days) and area required for drying 

the beans in relation to dry processing (BEE et al., 2005). Finally, semi-dry processing 

presents stages of both dry and wet methods, where the coffee fruits are mechanically 

depulped and then submitted to sun-drying (PEREIRA et al., 2017; BEE et al., 2005). 

The beans resulting from any processing method must be dried to a final water 

content of 10–12%. This process can be performed by sun-drying or using various 

mechanical dryers (i.e., static dryers, column dryers, round dryers, or forced air dryers). 
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The choice of the drying technique used is linked to economic factors and/or to the type 

of processing employed. For example, in dry processing, the preservation of the exocarp 

and mesocarp extends the time required to reach the desirable humidity levels because 

the moisture of the harvested fruits is approximately 70%. For this reason, the use of 

mechanical dryers is not recommended because it would represent a high and 

unnecessary cost (KLEINWÄCHTER; BYTOF; SELMAR, 2015). On the other hand, 

the use of mechanical dryers for wet-processed coffees has gained greater visibility 

because of the reduction in both drying time and risk of microbial contamination. 

 

1.3. GREEN COFFEE BEAN COMPOSITION AND FLAVOR PRECURSOR 

FORMATION 

 
The term “green coffee beans” in this study refers to the raw, unprocessed seeds 

of Coffea fruits (FIGURE 1.1). The chemical composition of green coffee beans is very 

complex, including more than 1,000 substances with different chemical and physical 

properties (BAGCHI; MORUYAMA; SWAROOP, 2016). The main aroma precursors 

are insoluble carbohydrates (cellulose and hemicellulose), soluble carbohydrates (i.e., 

arabinose, fructose, galactose, glucose, sucrose, raffinose, and stachyose), lipids, 

chlorogenic acids, and nitrogen (N)-containing compounds (FADAI et al., 2017; 

POISSON et al., 2017). Low-molecular-weight carbohydrates, such as sucrose, glucose, 

and fructose, contribute to the formation of acids and other volatile compounds during 

roasting (CLARKE; VITZHUM, 2008). In addition, polysaccharides are important 

constituents for the retention of volatiles and, consequently, flavor formation (BUFFO; 

CARDELLI-FREIRE, 2004). The lipid fraction of coffee is mainly composed of 

triacylglycerols, sterols, coffeadiol, arabiol, and tocopherols. These compounds are 

located mostly in the endosperm of green coffee beans, and only a small amount, the 

coffee wax, is located in the outer layer of the bean (SPEER; KÖLLING-SPEER, 2006; 

ESQUIVEL; JIMENEZ, 2012). 

Nitrogen-containing compounds, such as alkaloids (e.g., caffeine and 

trigonelline) and proteins, as well as nonvolatile, aliphatic acids (citric, malic, and 

quinic acids) and volatile acids (such as acetic, butanoic, decanoic, formic, hexanoic, 

isovaleric, and propanoic acids), are also found in high concentrations in green coffee 

beans. These compounds break down during the roasting process and generate 
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important flavor-active metabolites such as pyridines and pyrroles (SUNARHARUM et 

al., 2014; POISSON et al., 2017). 

Other minor compounds present in green coffee beans include phenolics, thiols, 

and minerals. Thiols are crucial compounds that are responsible for the distinctive 

“coffee” and “roasty” smell notes, influencing the sensory perception of coffee 

(DULSAT-SERRA; QUINTANILLA-CASAS; VICHI, 2016). The most important 

phenolic compounds in coffee are caffeoylquinic acid-CQA, feruloylquinic acid-FQA, 

and dicaffeoylquinic acid-diCQA. These components are known to have antioxidant 

activity and various beneficial properties in human health (OGAWA, 2014). The 

mineral composition of green coffee beans is related to soil constitution as well as to 

other environmental factors, such as altitude, humidity, temperature, and shading during 

the formation of the coffee fruits. In general, potassium appears in high amounts 

followed by phosphorus, magnesium, and calcium (CARVALHO NETO et al., 2017).  

 

1.4. AROMA FORMATION THROUGH POSTHARVEST PROCESSING 

 
1.4.1. Green coffee beans volatile constituents. 

 
Green coffee beans are characterized by an unpleasant taste, and development of 

the characteristic beverage flavor is achieved through thermal reactions during roasting 

and brewing. In fact, green coffee beans have only a basic composition of chemical 

volatiles when compared to roasted beans. Whereas more than 1,000 volatile 

compounds are generally detected in roasted coffee, on average, only 200 are found in 

green beans. In addition, heterocyclic compounds, important components in providing 

the distinctive flavor of roasted beans, are generally not found in green coffee beans 

(LEE; SHIBAMOTO, 2002). Lee and Shibamoto (2002) reported that of the more than 

350 heterocyclic compounds identified in roasted coffee (e.g., pyrroles, furans, 

pyrazines, thiazoles, oxazoles, thiopheones, and imidazoles), only 2-methoxy-3-(2-

methylpropyl)-pyrazine was found in green coffee bean samples. Thus, these and other 

odorous molecules are mostly formed during the roasting process from nonvolatile 

precursors present in green coffee beans, such as polysaccharides, lipids, proteins, and 

free amino acids (LEE; SHIBAMOTO, 2002).  

TABLE 1.1 summarizes the volatile compounds reported in green, dried, and 

roasted coffee beans. The volatile compounds of green coffee beans comprise 
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hydrocarbons, higher alcohols, aldehydes, ketones, acids, esters, lactones, sulfur 

compounds, furans, and phenols. Among these, aldehydes and alkanes are the most 

abundant chemical classes found (FIGURE 1.1). Of the 21 volatile compounds reported 

by Poyraz et al. (2016) in Turkish green coffee bean samples, isoamyl alcohol (10.4%), 

hexanal (10.4%) and hexacosane (8.2%) were the most predominant. In Hawaiian green 

coffee samples, Lee and Shibamoto (2002) identified 3-methyl butanoic acid (32.8%), 

phenyl ethyl alcohol (17.3%), hexanol (7.2%), 4-hydroxy-3-methylacetophenone 

(3.7%), and 3-methyl butanol (3.6%) as the major constituents, and aldehydes (hexanal 

and benzaldehyde) and alkanes (tetradecane and cyclotetrasiloxane, octamethyl-) were 

detected in high concentration in Thai green coffee beans by Somporn et al. (2011). 
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The survey shown in TABLE 1.1 shows that many raw coffee volatiles are lost 

during the roasting process, especially those of nonthermal origin, such as hexanal, 

isoamyl alcohol, 1-hexanol, 1-pentanol, 2-heptanol, 1-octen-3ol, benzyl alcohol, and 

benzaldehyde (GONZALEZ-RIOS et al., 2007a; POYRAZ et al., 2016). On the other 

hand, some compounds are reported to be common in both green and roasted samples, 

including γ-butyrolactone, linalool, guaiacol, pyridine, furfural, 5-methylfurfural, 1-

methylpyrrole, and β-damascenone (GONZALES-RIOS et al., 2007a; 2007b; 

HOLSCHER; STEINHART, 1995; POYRAZ et al., 2016), which are responsible for 

mainly spicy or green, vegetable-like  flavors of the final coffee beverage 

(HOLSCHER; STEINHART, 1995; POYRAZ et al., 2016). Furthermore, some raw 

coffee volatiles (e.g., geosmin, 2,4,6-trichloroanisol-phenol, and 4-heptenal) are 

externally caused by insect attacks or immaturity of coffee beans and generally 

associated with sensory defects (OESTREICH-JANZEN, 2010). 

The species C. arabica L. (Arabica coffee) and C. canephora Pierre (Robusta 

coffee) economically dominate the world coffee trade, accounting for about 99% of 

world bean production. Presently, Arabica coffee dominates the volume of world 

production (about 75% of total production) because of its superior bean quality 

(BELITZ; GROSCH; SCHIEBERLE, 2009). In this sense, there is a price difference 

between the above-mentioned types of coffee on the global market. The average price of 

Arabica on the US market is 170 cents per pound, while the price of Robusta is 100 

cents per pound (INDEXMUNDI, 2017a; 2017b). The high caffeine concentration in 

Robusta beans in relation to Arabica coffee is the main chemical difference between 

them. However, volatile chemical constituents can also serve as markers in the 

differentiation of these beverages; for instance, 2-methylisoborneol has been detected in 

high concentrations in Robusta coffees and may be responsible for their typical earthy 

flavor (HOLSCHER; STEINHART, 1995). Further studies on this topic are necessary 

in order to obtain volatile markers for differentiation of these two coffee species 

(KNYSAK, 2017). 

 

1.4.2. Impact of processing methods.  

 
Coffee fruit can be processed according to the three above-mentioned 

postharvest processing methods. The chosen method will have a direct influence on the 

quality of the final coffee beverage (GONZALEZ-RIOS et al., 2007a; JÖET et al., 
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2010; PEREIRA et al., 2017; SELMAR et al., 2006). In general, wet-processed coffees 

are known to present higher acidity and more aroma than dry-processed coffees 

(MAZZAFERA; PURCINO, 2004). This fact can be attributed to the different 

metabolic activities of sugar and free amino acids inside the seeds as a result of the 

chosen conditions (FIGURE 1.1). These compounds are important aroma precursors in 

the formation of many volatiles during roasting, such as furans, diketones, pyrazines, 

pyrrolines, lactones, and phenolic acids (BYTOF et al., 2005; KNOPP; SELMAR; 

BYTOF, 2006; SELMAR et al., 2006). In a study conducted by Knopp et al. (2006), 

glucose and fructose content was significantly lowered through wet processing. This 

outcome may be associated with sugar metabolism (i.e., alcoholic or lactic fermentation 

due the anoxic conditions of wet processing) and inter-conversions that are expected 

during the seed-germination process (JÖET et al., 2010). In addition, the superior 

concentration of free amino acids (i.e., aspartate, glutamate, and alanine) in wet-

processed coffee is associated with the hydrolysis of proteins in order to generate raw 

materials for the germination process (BYTOF et al., 2005; SELMAR; BYTOF; 

KNOPP, 2002). On the other hand, the accumulation of γ-aminobutyric acid in dry-

processed coffees could be associated with a response to drought stress during long 

exposure while drying (FIGURE 1.1). These alterations in the pool of free amino acids 

and low-weight sugars can explain the differences between the aroma profiles of wet- 

and dry-processed coffee beans. 

 

1.4.3. Mucilage removal  

 
After harvesting and pulping, the coffee beans are submitted to underwater tank 

fermentation (wet process) or placed on a terrace (semi-dry process) for mucilage 

breakdown and removal. The sugars present in the mucilage will allow microorganisms' 

growth, especially yeasts (e.g., Pichia guilliermondii, P. anomala Kluvyeromyces 

marxianus, and Saccharomyces cerevisae) and lactic acid bacteria (e.g., Leuconostoc 

mesenteroides, Lactobacillus plantarum and Lb. brevis) (EVANGELISTA, 2014b; 

LEONG et al., 2014; PEREIRA et al., 2017; VILELA, 2010). The microbial growth 

generates a range of end-metabolites, which can diffuse into the seeds and have an 

impact on the final coffee quality (EVANGELISTA et al., 2014a; PEREIRA et al., 

2015; SILVA et al., 2013). In this respect, yeasts have a pivotal influence through the 

generation of different aroma-influencing molecules via central carbon and nitrogen 



33 
 

metabolism. In addition, various studies have shown that coffee-associated yeast strains 

of Candida parapsilosis, Debaryomyces hansenii, Kluyveromyces marxianus, Pichia 

guilliermondii, P. fermentans, P. kluyveri, and Saccharomyces cerevisiae are capable of 

promoting pectin breakdown (the major carbohydrate polymer present in coffee 

mucilage) through the production of different hydrolytic enzymes, such as pectin 

methyl esterase, pectin lyase, and polygalacturonase (MASOUD; JESPERSEN, 2006; 

PEREIRA et al., 2014; SILVA et al., 2008; Silva et al., 2013). The hydrolysis of pectin 

releases simple sugars (i.e., glucose, rhamnose, L-arabinose and D-galacturonate) as an 

additional carbon source for yeast metabolism and aroma formation (GERMANE et al., 

2015; KIM et al., 2016). 

Ethanol, acetaldehyde, and acetic acid are the primary metabolites produced by 

yeast during coffee mucilage fermentation (FIGURE 1.2). Coffee yeasts appear to have 

low aldehyde dehydrogenase activity because no acetic acid is produced by selected 

single cultures (TABLE 1.2). Along with ethanol, fermenting yeast cultures produce 

many low-molecular-weight flavor compounds during the mucilage removal process, 

including esters, higher alcohols, aldehydes, ketone, and terpenoids (FIGURE 1.2). 

Among these compounds, esters (acetate and ethyl esters) are quantitatively the most 

abundant group of volatiles formed. They are generated by a condensation reaction 

between fatty acids and an alcohol molecule (SAERENS et al., 2010). In addition, the 

direct connection to higher alcohols and their amino acid precursors makes ester 

production highly dependent on a nitrogen source (DZIALO et al., 2017). Esters are 

widely known to contribute to floral and fruity sensory notes in alcoholic beverages 

(PROCOPIO; QIAN; BECKER, 2011). The exploration of yeast-derived esters to assist 

coffee quality is, however, a relatively recent and recurrent approach. In this context, 

different studies are currently dedicated to the selection of ester-producing coffee yeasts 

(e.g., Pichia fermentans, P. guilliermondii, Candida parapsilosis, Saccharomyces 

cerevisiae, Torulaspora delbrueckii, and Yarrowia lipolytica) with the potential to 

increase the contents of these compounds in the beans (BRESSANI et al., 2018; 

EVANGELISTA et al., 2014a; LEE et al., 2017a; PEREIRA et al., 2014, 2015; SILVA 

et al., 2013). The production of ethyl acetate, isoamyl acetate, propyl acetate, ethyl 

hexanoate, and n-butyl acetate has been shown to contribute to the development of 

exotic sensory notes in coffee beverages, such as “Sicilian lemon,” “apricot,” 

“caramel,” “nutty” and “banana raisin” (EVANGELISTA et al., 2014a; 

EVANGELISTA et al., 2014b; PEREIRA et al., 2015). In addition, the metabolism of 
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lactic acid bacteria has also recently been used for ester formation (e.g., ethyl acetate, 

ethyl isobutyrate, and hexyl acetate) and the production of flavorful coffee beans 

(TABLE 1.2). 
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Yeast commonly synthesizes a great variety of higher alcohols during coffee 

fermentation, such as n-butanol, isobutanol, 1-propanol, 2-phenylethanol, isoamyl 

alcohol, 2,3-butanediol, and 2-methyl-1-butanol (TABLE 1.1). These compounds are 

derived from amino acid catabolism via the Ehrlich pathway (FIGURE 1.2). The coffee 

mucilage is rich in amino acids that are assimilated by the Ehrlich pathway, including 

leucine, valine, phenylalanine, threonine, and isoleucine (ELÍAS, 1979; PEREIRA et 

al., 2014). The direct relationship between microbial-derived higher alcohols and coffee 

quality is not yet known. Higher alcohols are known for their higher sensory threshold, 

which differs by several orders of magnitude from that of their corresponding acetate 

esters (DZIALO et al., 2017). Thus, it is possible to speculate that an intense diffusion 

process during fermentation is required to impact overall coffee quality. 

FIGURE 1.2 – PROPOSED SCHEMATIC REPRESENTATION OF POTENTIAL AROMA 
COMPOUNDS THAT CAN BE GENERATED IN YEAST FERMENTATION OF COFFEE 

MUCILAGE FROM EXISTING PRECURSORS. 
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A range of ketone compounds are formed during the coffee bean fermentation 

process (TABLE 1.1). Some of these compounds are associated with yeast metabolism, 

especially diacetyl (2,3-butanedione) (FIGURE 1.2). The presence of 2,3-butanedione 

in roasted beans is linked to the generation of a buttery-like aroma in coffee beverages 

(EVANGELISTA et al., 2015). Through yeast metabolism, this compound is formed 

extracellularly by chemically driven decarboxylation of α-acetolactate (HIRST; 

RICHTER, 2016). Thus, since the conversion of α-acetolactate into diacetyl is a 

nonenzymatic process, fermentations conducted at high temperatures may increase the 

conversion rate of excess α-acetolactate into flavor-impacting 2,3-butanedione 

(KOBAYASHI; KUSAKA; SATO, 2005). 

The terpenes formed during the coffee mucilage removal process (β-citronelol, 

linalool, geraniol, α-terpeniol, citronellol, and β-citronelol) originate from glycoside 

precursors through yeast β-glucosidase enzymes (HERNÁNDEZ et al., 2003; 

MENDES-FERREIRA et al., 2009). In addition, some yeast species found in coffee 

fermentation (e.g., Sacharomyces cerevisiae, Torulaspora delbrueckii, and 

Hanseniaspora uvarum) can produce terpene derivatives through the mevalonic acid 

pathway (CARRAU et al., 2005; GRUCHATTKA et al., 2013). Silva et al. (2013) 

showed that linalool produced by coffee-associated Saccharomyces cerevisiae and 

Pichia guilliermondii yeasts can be detected in beans after the roasting process (TABLE 

2). The aroma of linalool has been described as fresh, citrusy, and woody in various 

food products (GÓRSKA et al., 2017). For coffee, however, more studies are necessary 

to evaluate the direct impact of this compound on the final product quality. 

The aldehydes generated during the coffee mucilage removal process are 

important precursors in the formation of aromatic compounds such as higher alcohols 

and esters (FIGURE 1.2). These compounds are catabolized by the interconversion of 

alcohols and the corresponding aldehydes or ketones via alcohol dehydrogenase activity 

(HIRST; RICHTER, 2016). In addition, some aroma-active aldehydes (e.g. 2-methyl-2-

butenal and acetaldehyde) can be released from yeast cells during the apoptosis event 

and diffuse into the beans, affecting the fruity and floral aromas of the coffee beverage 

(BRESSANI et al., 2018; PEREIRA et al., 2014, 2015; RIBEIRO et al. 2017). 

TABLE 1.2 outlines suitable starter cultures used to conduct a controlled coffee 

mucilage removal process. It shows the diverse range of volatile compounds produced 

by the different microbial strains selected. Thus, the selection criteria of fermenting 

microorganisms should be driven by the targeted flavor with a focus on the relevant 
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metabolic activities. Preference should be given to strains that deliver an overall 

pleasant aroma to the end product with no off-flavors or unwanted acids such as acetic, 

succinic, or butyric (PEREIRA et al., 2016). The combination of starter cultures 

possessing different aroma-producing profiles can be considered for flavor 

enhancement. In addition, the application of stressor factors, such as high or low 

temperatures, can be exploited to modulate the concentration of individual or groups of 

compounds for flavor improvement (PEREIRA et al., 2014). 

  

1.4.4. Drying and storage processes 

 

During the drying process, coffee beans remain viable with intense metabolic 

activities (BYTOF et al., 2005; KNOPP et al., 2006). These include reactions of 

interconversion of low-molecular-weight sugars (i.e., glucose, fructose, and mannose) 

and hydrolysis of proteins, resulting in the accumulation of a wide variety of free amino 

acids (JÖET et al., 2010; KNOPP et al., 2006; SELMAR et al., 2002). So far, no 

research has investigated changes in specific volatile compounds through the drying 

process, and some studies have focused only on the major chemical compounds (i.e., 

sugar and proteins). More detailed chemical studies could assist in the understanding of 

volatile losses caused by evaporation and/or oxidation reactions during drying.  

After the drying process, the freshly processed coffee beans are stored for a 

period of up to 3 years. The storage process must be maintained under ideal conditions 

of humidity (e.g., 11% humidity), in a low temperature, and in an inert atmosphere in 

order to preserve bean quality. During the storage process, coffee beans can remain 

viable for up to 6 months. However, if the beans are stored within the parchment layer 

(FIGURE 1.1), living seeds can be found for up to one year. After this period, the coffee 

beans die, starting the senescence reactions (SPEER; KÖLLING-SPEER, 2006; 

RIBEIRO et al., 2011; TOCI et al., 2013). In general, a decline in cup quality is linked 

to the loss of bean viability. This is mainly correlated with the chemical reactions 

occurring during the senescence process, such as chlorogenic acid oxidation, which 

leads to the development of a bluish-green color in the beans.  

Works dedicated to biochemical alterations that occur during storage have 

reported mainly on the major nonvolatile constituents, including sugars, lipids, and 

carbohydrates. Selmar et al. (2008) found that the relatively high content of glucose 

present in on-farm processed coffee beans decreased markedly through the storage time. 



42 
 

On the other hand, Bucheli et al. (1998) found an increase in glucose under storage 

conditions; these authors also detected a significant decrease in sucrose, which is 

hydrolyzed to produce glucose and fructose. Thus, the carbohydrate fraction present in 

freshly processed coffee beans has a direct influence on the germination process during 

storage. For example, the glucose and fructose concentration is markedly higher in dry-

processed beans than in wet-processed beans, while that of beans originating from a 

semi-dry process is between those of wet- and dry-processed beans (RENDÓN et al., 

2014). 

During storage, undesired changes within the lipid fraction occur due to 

oxidation processes (BORÉM; MARQUES; ALVES, 2008; SPEER; KÖLLING-

SPEER, 2006). Lipid oxidation is favored during the first three months because of a 

high rate of respiration and the accumulation of reactive oxygen species. After this 

period, the respiration is interrupted and the products of lipid oxidation react with 

proteins, forming polymers (RENDÓN et al., 2014; SPEER; KÖLLING-SPEER, 2006). 

While many storage-associated reactions are already known, the specific causes 

of the progressive weakening of cup quality are still unclear. Carbohydrates, lipids, and 

proteins are all important precursors in the development of chemical aromas during the 

roasting process. However, at present, there are no studies demonstrating the changes of 

specific volatile molecules during storage. Coffees prepared by beans stored for only 6 

months are attributed raspy, woody, or stale notes, while after one year stored, flat 

aromas and old and woody notes are detected (RENDÓN et al., 2014; SELMAR et al., 

2008). These data demonstrate a possible direct influence of volatile constituents 

formed and/or generated during the storage process. 

 

1.5. ROASTING PROCESS 

 

The color, taste, and aroma of coffee is related to chemical reactions that occur 

during roasting. In general, this process takes between 3 and 20 minutes and can be 

classified into three different stages: (i) the initial stage of water removal, where the 

temperature is raised to 180 °C and the moisture of the beans changes from 10–12.5% 

to 2.5% moisture; (ii) the second stage at 200–300 °C, during which physical-chemical 

transformation occurs, leading to flavor development; and (iii) the phase of cooling via 

cold air or water jets (FADAI et al., 2017). 
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A wide variety of volatile compounds are present in roasted coffee beans, such 

as alcohols, aldehydes, amines, carboxylic acids, dicarbonyls, enoles, esters, furans, 

furanones, hydrocarbons, imidazoles, indoles, ketones, lactones, oxazoles, phenols, 

pyrazines, pyridines, pyrroles, quinoxalines, sulfur compounds, terpenes, and thiazoles 

(TABLE 1) (BUFFO; CARDELLI-FREIRE, 2004; POISSON et al., 2017; 

SUNARHARUM et al., 2014). However, only some of these compounds have a major 

impact on human perception, such as pyrazines, furans, esters, ketones, phenols, and 

sulfur compounds (FIGURE 1.1). These compounds can undergo dramatic changes 

depending on the thermal profile applied during the roasting process (CAPORASO et 

al., 2018a). Several chemical events take place in the coffee seeds during the formation 

of such molecules, such as cleavage, cyclization, dehydration, enolization, 

epimerization, fragmentation, hydrolysis, isomerization, lactonization, and 

recombination (AGUIAR; ESTEVINHO; SANTOS, 2016; POISSON et al., 2017). The 

predominant chemical processes are the Strecker degradation and the Maillard and 

pyrolysis reactions (FADAI et al., 2017; FLAMENT; BESSIÈRE-THOMAS, 2002). 

The Maillard reaction is a chemical reaction between reducing sugars and amino acids, 

leading to the formation of a range of important volatile compounds such as pyridines, 

pyrazines, dicarbonyls, diacetyl, oxazoles, thiazoles, pyrroles and imidazoles, enolones 

(furaneol, maltol, cyclotene), and formic and acetic acids (LEE et al.,  2015; POISSON 

et al., 2017). The Strecker degradation consists of a chemical reaction in which α-amino 

acids are converted into aldehydes and sulfur compounds (e.g., 3-2-methylbutanal, 

methional, 3-mercapto-3-methylbutyl formate, 3-methyl-2-butene-1-thiol, 2-

furfurylthiol, methanethiol, and phenylacetaldehyde), contributing to the complex 

aroma composition of coffee (POISSON et al., 2017). In the pyrolysis reaction, 

structural carbohydrates of the intercellular coffee bean matrix are degraded, increasing 

internal porosity and CO2 production (FADAI et al., 2017). Other minor reactions, 

including the degradation of specific individual amino acids (i.e., proline and hydroxy 

amino acids), aliphatic acids (particularly quinic acid) and lipids, have important 

impacts on the formation of volatiles during roasting. For more information concerning 

these reactions, readers are directed to the reviews published by Buffo and Cardelli-

Freire (2004), Martins et al. (2001), and Toledo et al. (2016).  

The concentration of volatile compounds in roasted coffee strongly depends on 

the genetic differences in the plant (CAPORASO et al., 2018a). Arabica is known to 

contain high concentrations of 2,3-butanedione, 2,3-pentanedione, furfural, 1-
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(acetyloxy)-2-propanone, 2-acetylfuran, ethyl propanoate, furaneol, 2,3-butanediol, 

acetoin, and 1-hydroxy-2-butanone, whereas Robusta is generally associated with 

pyrazine compounds such as 2-methyl-pyrazine, 2,6-dimethylpyrazine, 2,5-

dimethylpyrazine, ethylpyrazine, 2-ethyl-6-methylpyrazine, and 2-ethyl-5-

methylpyrazine (BLANK; SEN; GROSCH, 1991; CAPORASO et al., 2018a). Other 

factors that influence roasted volatile constitution include green coffee bean 

composition, geographic origin, postharvest processing of beans, environmental factors 

in pre-harvest processing, presence of defective beans, and ripening stage (FREITAS; 

MOSCA 1999; JÖET et al., 2010; TOLEDO et al., 2016). 

 

1.6. CONCLUSION 

 

The findings presented in this review show that the main odor-active compounds 

in coffee beverages, such as furans, pyrazines, and pyrroles, are not found in raw green 

coffee beans. Thus, green coffee bean quality is determined by major, nonvolatile 

constituents present in the raw material, such as sugar, amino acids, and lipids. These 

aroma precursors will further undergo modifications in the postharvest processing steps 

due to the seed germination process and lipid oxidation.  

Among the different steps in postharvest coffee processing, microbial mucilage 

removal has a major influence on the volatile composition of processed beans. Various 

studies have shown that microbial-derived metabolites can diffuse into seeds and remain 

after the roasting process, including esters, higher alcohols, aldehydes, ketone, and 

terpenoids. Among these, flavor-active esters show great potential to influence the 

quality of the final coffee beverage. So far, no research has investigated the changes of 

specific volatile compounds through drying and storage. With respect to this issue, the 

volatile kinetics that take place during these steps should be studied further. 
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CHAPTER II (RESEARCH RESULTS) – YEAST DIVERSITY AND 

PHYSICOCHEMICAL CHARACTERISTICS ASSOCIATED WITH COFFEE 

BEAN FERMENTATION FROM THE BRAZILIAN CERRADO MINEIRO 

REGION 

 

Manuscript published in the Fermentation, volume 3, article #11, March 2017. 

 

ABSTRACT 

 

The aim of this study was to evaluate yeast diversity and physicochemical 

characteristics of spontaneous coffee beans fermentation conducted in the coffee-

producing region at Cerrado Mineiro, Brazil. During 48 h of fermentation, yeast 

population increased from 6.60 to 7.89 log CFU/mL with concomitant pulp sugar 

consumption and organic acids production (mainly lactic (3.35 g/L) and acetic acids 

(1.27 g/L)). According to ITS-rRNA gene sequencing, yeast population was mainly 

represented by Saccharomyces sp., followed by Torulaspora delbrueckii, Pichia 

kluyveri, Hanseniaspora uvarum, H. vineae, and Meyerozyma caribicca. SPME-GC-MS 

analysis revealed a total of 25 volatile organic compounds with predominance of 

hydrocarbons (9 compounds) and higher alcohols (6 compounds). The resulting 

fermented, roasted coffee beans were analyzed by diverse chemical analysis methods, 

including Fourier Transform Infrared (FTIR) spectroscopy and mineral and 

thermogravimetric analysis. The thermal decomposition of the coffee beans occurred in 

four stages between 90 and 390 ºC, with significant mass loss (68%) after the second 

stage at 190 ºC. FTIR spectroscopy confirmed the presence of the main organic 

functions associated with the coffee aroma, such as aromatic acids, ketones, aldehydes 

and aliphatic esters. The results presented in this study enrich our knowledge 

concerning yeast diversity and physicochemical characteristics associated with coffee 

beans fermentation, and can be used to promote a controlled on-farm processing. 

 

Keywords: Wet processing, coffee, yeasts, physicochemical characteristics 
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2.1. INTRODUCTION 

 

Coffea is a genus of flowering plants whose seeds are used to make coffee 

beverage. Although there are many steps in the manufacturing of coffee beverage, 

microbial fermentation plays an important role with great impacts on product quality 

and value (EVANGELISTA et al., 2014a, 2015; PEREIRA et al., 2014, 2015, 2016). 

Coffee fermentation consists of an on-farm process, occurred in the so-called wet 

processing, during which microorganisms grow in the pulp material that surrounds the 

seeds of the coffee fruit (PEREIRA et al., 2017). In this processing method, the pulp 

(the exocarp and a part of the mesocarp) is removed mechanically. Subsequently, the 

beans are submitted to 24–48 h of underwater tank fermentation to allow microbial 

degradation of the remaining mesocarp layer (called mucilage) adhering to the 

parchment. In addition, the microbiota responsible for the fermentation may also 

contribute to the beverage’s sensory characteristics and other qualities due to the 

excretion of metabolites produced during this process (PEREIRA et al., 2017). The 

main chemical changes that occur during coffee fermentation are pectin degradation and 

microbial production of organic acids, ethanol, esters and other metabolites from the 

carbohydrates (PEREIRA et al., 2014; SIVERTZ, 1963; WOOTTON, 1963). 

Yeasts are among the most frequently isolated microorganisms from fermenting 

coffee beans. They are considered to be important to the fermentation process and 

coffee flavor development. Consequently, yeast is the microbial group most widely 

studied in coffee fermentations, which metabolic function has been elucidated in recent 

studies (EVANGELISTA et al., 2014a; PEREIRA et al., 2014). The most frequently 

occurring yeast species during coffee processing are Pichia kluyveri, Pichia anomala, 

Hanseniaspora uvarum, Saccharomyces cerevisiae, Debaryomyces hansenii and 

Torulaspora delbrueckii (MASOUD et al., 2004; SILVA et al., 2008; VILELA et al., 

2010).  

Recent studies published by our research group have reported the yeast and 

bacteria diversity associated with coffee beans fermentation in Brazil (PEREIRA et al., 

2014, 2015, 2016, 2017). Pichia fermentans (YC5.2), Saccharomyces sp. (YC9.15) and 

Lactobacillus plantarum (LPBR01) were studied as having a potential for use as starter 

cultures for coffee wet fermentation (PEREIRA et al., 2015, 2016). However, studies 

still are needed to improve the knowledge of the microbiota present in coffee processing 

due to the variation in climate and altitude (EVANGELISTA et al., 2015). Cerrado 
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Mineiro is one of the largest coffee-producing regions in Brazil, located at Alto 

Paranaíba, Mineiro Triangle and Norwest Minas Gerais. This region presents a uniform 

edaphoclimatic pattern with an average temperature of 23 ºC and flat relief situated at 

800-1300 m, which enables the production of high-quality coffees (ABOPCAFE, 2017). 

To the best of our knowledge, there is no study on the yeast diversity and 

physicochemical characteristics associated with coffee bean fermentation performed in 

this coffee-producing region. In this regard, the aim of this study was to study the yeast 

diversity and physicochemical characteristics associated to coffee beans fermentation 

during on-farm wet processing in the Cerrado Mineiro region. 

 

2.2. MATERIAL AND METHODS 

 

2.2.1. Spontaneous coffee beans fermentation and sampling 

 

Coffee cherries (Coffea arabica) were manually harvested at the mature stage 

from the Fazenda Shalon (Patrocínio, Minas Gerais State, Brazil). FIGURE 2.1 shows 

the experimental  setup and analytical procedures of each step conducted in this study. 

The fruits were mechanically depulped and approximately 75 kg of depulped beans 

were then conveyed in a clear water stream to tanks and left to ferment for 48 h in 

accordance with local wet processing method (PEREIRA et al., 2015, 2016). Every 12 

h, liquid fraction samples were withdrawn from the middle depth of the tank 

fermentation and transferred to the laboratory in ice boxes for microbiological and 

chemical analyses. 

 
FIGURE 2.1. EXPERIMENTAL SETUP OF THE CASE STUDY OF COFFEE-PROCESSING  

EXPERIMENTS CARRIED OUT AT THE CERRADO MINEIRO REGION 

 
 
2.2.2. Yeast isolation 

 
Ten milliliters of each sample were added to 90 mL sterile saline-peptone water, 

followed by serial dilutions. Yeasts were enumerated by surface inoculation on YEPG 
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agar containing 100 mg/L chloramphenicol (Sigma, São Paulo, Brazil) to inhibit 

bacterial growth. Plating was performed with 100 μL of each dilution and cultures were 

incubated at 30 ºC for 5 days (PEREIRA et al., 2014). According to the macroscopic 

observations (texture, surface, margin, elevation, and color), colonies of different types 

on YEPG medium were counted separately, and representatives isolated from different 

fermentation times were purified by repetitive streaking. The purified isolates were 

stored at –80 °C in YEPG broth containing 20% (v/v) glycerol (Difco, Franklin Lakes, 

NJ). 

 

2.2.3. Identification of yeast isolates 

 

Yeast cultures were grown under appropriate conditions, collected from agar 

plates with a sterile pipette tip and resuspended in 50 μL of ultra-pure water. The 

suspension was heated for 15 min at 95 °C, and 1 μL of this suspension was used as a 

DNA template in PCR experiments. The 5.8S ITS rRNA gene region of yeast isolates 

was amplified using the primers ITS1 and ITS4. The 55 μL volume reaction consisted 

of 5.5 μL of 10x PCR buffer (Invitrogen, Carlsbad, CA), 2 μL of MgCl2 (50mM), 1.21 

μL of  dNTP Mix (10mM), 4 μL of the combined forward and reverse primers (ITS5 

and ITS4), 0.4 μL of 5U/μL Platinum® Taq DNA polymerase (Invitrogen, Waltham, 

MA, USA). The 5.8S ITS rRNA gene region was sequenced using an ABI3730 XL 

automatic DNA sequencer. The sequences obtained were compared with sequences 

available in the GenBank database through a basic local alignment search tool 

(BLAST). 

 

2.2.4. High performance liquid chromatography (HPLC) analysis of fermenting coffee 

beans samples 

 

The concentration of the reducing sugars (glucose and fructose) and organic 

acids (acetic, citric, succinic, lactic, propionic and butyric acids) of fermenting coffee-

pulp bean mass was monitored during the course of fermentation. Samples (2 μL) of 

each time were centrifuged at 6000 g and filtered through 0.22-μm pore size filter 

(Sartorius Stedim, Goettingen, Germany). The samples were analyzed through a HPLC 

apparatus (Aglient Technologies 1260 Infinity Series; Aglient Technologies, Santa 

Clara, CA, USA) equipped with a Hi-Plex  H column (300 x 7.7 mm; Aglient 
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Technologies, Santa Clara, CA, USA) connected to a refractive index (RI) detector 

(Aglient Technologies, Santa Clara, CA, USA). The column was eluted with a mobile 

phase containing 5mM H2SO4, at 60 ºC and a flow rate of 0.6 mL/min. 

 

2.2.5. Physicochemical characterization of fermented and roasted coffee beans 

 

2.2.5.1. Volatile organic compounds determination by Gas Chromatography coupled to 

mass spectrometry (GC-MS) 

 

The resulting parchment coffee was dried in a laboratory oven at 35–40 °C until 

a water content of 12% was achieved. The extraction of volatile compounds from the 

fermented, dried coffee bean samples (FIGURE 2.1) were performed using a headspace 

(HS) vial coupled to a Solid Phase Micro Extraction (SPME) fiber (Carboxen® 

(CAR)/Polydimethylsiloxane (PDMS) df75μm partially crosslinked, Supelco, St. Louis, 

MI, USA). For each determination, 1 g of sample was stored in a 20 mL HS vial. The 

flask was heated at 70 °C for 10 min without shaking, followed by 15 min of fiber 

exposure in COMBI-PAL system for balancing the volume within the vial. The 

compounds adsorbed by the fiber were desorbed into the gas chromatograph injection 

system gas phase (CGMS TQ Series 8040 and 2010 Plus GC-MS Shimadzu, Tokyo, 

Japan) to 250 °C. The compounds were separated on a column 95% PDMS/5% 

PHENYL (30 m x 0.25 mm, 0.25 mm film thickness, Shimadzu, Tokyo, Japan). The GC 

was equipped with an HP 5972 mass selective detector (Hewlett Packard Enterprise, 

Palo Alto, CA, USA). Helium was used as carrier gas at a rate of 1.0 mL/min. Mass 

spectra were obtained by electron impact at 70 eV. The compounds were identified by 

comparison to the mass spectra from the library database (Nist'98 and Wiley7n). 

 

2.2.5.2. Metal analysis 

 

Metal analysis was performed of fermented and roasted coffee beans. The 

fermented, dried coffee samples were roasted in a semi-industrial roaster (Probatino, 

Leogap model, Brazil) at 140 °C for 30 min. For sample preparation, fermented and 

roasted coffee samples were transferred to a 250 mL volumetric flask and acidified with 

5 mL of concentrated P.A. HNO3 and H2O2 30%. Subsequently, the system was allowed 

to heating for 40 min at 80 ºC. The extract was filtered with a 0.45 μm pore size filter 
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and the volume was completed to 100 mL. Reference solutions were prepared using 

deionized water with resistivity of 18.2 MΩ/cm through a Milli-Q water purification 

system linked to a water distillatory Fisatom (Model 534, Brazil). Glassware used in 

this procedure was subjected to a decontamination treatment with HNO3 10% (w/v) for 

24 hours prior to use. 

For metal content determination, an Inductively Coupled Plasma - Optical 

Emission Spectrometry (ICP-OES, Varian, Model ES 720, Palo Alto, CA, USA) was 

used simultaneously with axial arrangement and solid-state detector. The torch was 

aligned horizontally and vertically with a Mn2+ standard solution concentration of 5.0 

mg/L. The optical system of the ICP OES was calibrated with multi-element stock 

solution of scanned patterns. Spectral lines were selected considering the absence of 

interferences and appropriate sensitivity for determining elements in high and low 

concentrations. The operation conditions were as follows: power of 1.10 kW, plasma 

gas flow of 15 L/min, auxiliary gas flow of 1.5 L/min, nebulizer pressure of 180 kPa, 

triplicate time read of 3 s, stabilization time of 15 s, sample delay of 30 s, pump speed 

of 15 rpm and sample washing time of 3 s. 

 

2.2.5.3. Fourier transform infrared (FTIR) spectroscopy 

 

Functional groups in samples of grounded coffee beans (fermented and roasted)  

were determined by FTIR on a VERTEX 70 (Bruker, Billerica, MA, USA) containing a 

DRIFT accessory with 64 scans and a 4 cm-1 resolution at the 4000 to 400 cm-1 wave 

length region. The samples were crushed, pulverized and oven dried. Before 

determination, about 20 mg of the samples were mixed and homogenized with 100 mg 

of Potassium bromide (KBr), and the reads were recorded. 

 

2.2.5.4. Thermal stability 

 

Thermal stability of fermented, dried coffee beans was evaluated by 

Thermogravimetry (TG) analysis. Analyzes were performed under an O2(g) atmosphere 

at 20 °C/min rates to a maximum temperature of 800 °C in a Setsys Evolution 

TG/DTA/DSC (SETARAM, Hillsborough, NJ, USA) system. 
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2.3. RESULTS AND DISCUSSION 

 

2.3.1. Microbiological and chemical characterization of coffee beans fermentation 

 

Descriptions of the load of yeast in coffee fermentation have been provided by 

some studies (AVALLONE et al., 2001; MASOUD et al., 2004; SILVA et al., 2010; 

VELMOUROUGANE, 2013). This has been reported to range between 2 to 7 log 

CFU/mL, depending on the study. Factors affecting the initial yeast load include the 

quality and integrity of the coffee beans and the hygiene of fermentation tank, utensils 

and water used at the commencement of the fermentation process (PEREIRA et al., 

2017). In this study, the average number of yeast, which was 6.60 log CFU/mL early in 

the fermentation process, increased to 7.89 CFU/mL by the end of 48 h of fermentation 

(FIGURE 2.2). This growth is favored by the ability of yeast cells to metabolize coffee 

pulp sugars as well to adapt and to cope with the hostile environment and stress 

conditions prevailing in coffee fermentation matrix (PEREIRA et al., 2014). 

 
FIGURE 2.2 – TOTAL YEAST COUNT, ORGANIC ACIDS PRODUCTION AND PULP-SUGAR 

CONSUMPTION DURING THE ON-FARM WET PROCESSING 

 
 

The yeast growth was accompanied by a regular consumption of the pulp sugars 

(glucose and fructose) and their conversion into organic acids. Lactic acid was the major 
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metabolite produced reaching a concentration of 3.28 g/L at 48 h, followed by acetic 

and succinic acids (1.27 and 0.30 g/L, respectively). The low production of acetic acid 

(<1.5 g/L) and the absence of butyric and propionic acids minimize the formation of 

off-flavors in the final beverage (LOPEZ et al., 1989; SILVA et al., 2013). On the other 

hand, lactic acid production can assist in the coffee-pulp acidification process without 

interfering in the product final quality (PEREIRA et al., 2017). Such organic acids 

production during coffee fermentation is mainly associated with lactic acid bacteria 

metabolism (PEREIRA et al., 2016). However, yeasts of the genera Saccharomyces, 

Pichia and Hanseniaspora may also have produced a fraction of the concentration of 

organic acids found in the coffee pulp beans mass in this study (BLOMBERG; ALDER, 

1992; CIANI et al., 2006; SAUER et al., 2008). 

 

2.3.2. Yeast identification 

 

A total of 35 yeasts were isolated at the beginning and end of the fermentation 

process and identified by ITS-rRNA gene sequencing (FIGURE 2.3). The most 

frequently detected species were Saccharomyces sp. (17 isolates), Torulaspora 

delbrueckii (6 isolates) and Pichia kluyveri (7 isolates). However, Saccharomyces sp. 

was found to be dominant at the end of the fermentation process proving its easy 

adaptation to the coffee fermentation environment. In addition, the ability to metabolize 

pulp coffee pectin showed by some Saccharomyces species  might be considered an 

advantage over other non-pectinolytic yeasts (PEREIRA et al., 2014). 
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FIGURE 2.3 – DISTRIBUTION AND FREQUENCY OF ISOLATES DURING ON-FARM COFEE 
WET PROCESSING 

 

 

Two isolates of Hanseniaspora uvarum and one isolate of each Meyerozyma 

caribbica, Torulaspora sp. and Hanseniaspora vineae were identified at the beginning 

of the fermentation process. These yeast species have been previously found in coffee 

processing environments (MASOUD et al., 2004; PEREIRA et al., 2014; VILELA et 

al., 2010), except for H. vineae which was isolated for the first time. H. vineae is mainly 

associated with grapes and has been demonstrated to increase fruity aromas of wine by 

producing a high amount of acetate esters, such as 2-phenylethyl acetate and ethyl 

acetate (LLEIXÀ et al., 2016; MEDINA et al., 2013; VIANA et al., 2013). For coffee 

fermentation, these flavor-active esters could attribute distinct fruity sensory notes to 

the coffee bean through their diffusion during the fermentation process, enriching the 

flavor of the final beverage (PEREIRA et al., 2016). Thus, this yeast species should be 

included in research programs for the selection and development of functional starter 

cultures. 

 

2.3.3. Volatile organic compounds determination of fermented coffee beans by gas 

chromatography coupled to mass spectrometry (GC-MS) 

 

Yeast fermentation of pulp sugars produces a vast array of volatile metabolites 

that are well known for their aromatic and flavorant properties (PEREIRA et al., 2015; 
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SWIEGERS; PETRORIUS, 2005). These volatiles can diffuse into the coffee beans 

which may influence in its chemical composition (PEREIRA et al., 2015). In this study, 

a total of 25 volatile organic compounds were identified in the fermented coffee beans 

by SPME-GC-MS analysis, with a predominance of  hydrocarbons (9 compounds) and 

higher alcohols (6 compounds) (TABLE 2.1). Although most of the compounds 

identified originate from the bean itself, some are known to be related to bacterial (i.e. 

nonanal, citric acid and heptanal) and yeast (i.e., hexane, heptane and tiophenes) 

metabolism (DAMIANI et al., 1996). Despite the diffusion mechanism has not yet been 

elucidated, it is often referenced in the literature that these volatile organic compounds 

diffuse into the beans (OWUSU; PETERSEN; HEIMDAL, 2012; PEREIRA et al., 

2014, 2016). Further research to understand how these volatiles are conserved during 

roasting operation and reach the final product is required. 

 
 

TABLE 2.1 – VOLATILE COMPOUNDS IDENTIFIED IN FERMENTED COFFEE SAMPLES BY 
GC-MS 

Organic Functional Groups Volatile organic compounds 

Aldehydes (2) Nonanal 
Heptanal 

Alcohol (6) 

1,3-Cyclohexanediol, 5-(1,1-dimethylethyl) 
2-Propyl-1-pentanol  
1-Octynol, 4-ethyl  
1-Decanol, 2-ethyl- 

Carboxylic acid (4) 

Benzyloxy tridecanoic acid  
Dodecanoic acid, 3-hydroxy- 
Methacrylic acid 
Acetic acid 

Ester (1) Heptyl valerate 

Hydrocarbons (9) 

Heptane, 2,2,3,5-tetramethyl- 
Pentane, 2,2,3,4-tetramethyl- 
Heptane, 2,2,6,6-tetramethyl- 
Hexane, 2,2,5-trimethyl- 
Eicosane, 3-methyl- 
Dodecane, 2,6,11-trimethyl- 
Heptane, 5-ethyl-2,2,3-trimethyl- 
Hexadecane 
9-Octadecene, 1,1-dimethoxy- 

Sulfur Compounds (1) 
3-Methyl-4-(phenylthio)-2-prop-2-enyl-2,5-
dihydrothiophene, 1,1-dioxide 

Ketone (1) p-Benzoquinone 

Pyrazine (1) 2-Isobutyl-3-methoxypyrazine 
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2.3.4. Physicochemical characterization of coffee beans 

 

The mineral composition of fermented, dried and roasted samples is shown in 

Table 2.2. Potassium displayed the higher amount among the minerals analyzed in 

fermented and roasted coffee samples (12,453.10 and 13,117.50 mg/kg, respectively), 

followed by phosphorus (1,932.76 and 2,110.71 mg/kg, respectively), magnesium 

(1,554.31 and 1,772.65 mg/kg, respectively) and calcium (1,360.19 and 1,192.32 

mg/kg, respectively). These results are in agreement with those found by Martín et al. 

(1998), except for the high aluminum content present in our samples. Although the 

Coffea arabica is not reported as an aluminum accumulator, the levels of such metal 

present in the analyzed samples may be indicative of a soil with a high availability of 

this metal to the plants (FRANKAVÁ et al., 2009). 
TABLE 2.2 – CONTENT OF METALS ON FERMENTED AND ROASTED WET PROCESSED 

COFFEE CHERRIES 

Metals (mg/kg) 
Trait 

Fermented Coffee Roasted Coffee 

Al 234.71 ± 29.22a 362.56 ± 106.12b 

Ba 3.40 ± 0.49c 2.61 ± 0.09c 

B 7.28 ± 0.30c 6.26 ± 0.21c 

Cd NDc NDc 

Ca 1360.19 ± 20.53d 1192.32 ± 0.88e 

Co NDc NDc 

Cu 16.51 ± 0.38c 17.57 ± 0.25c 

Fe 33.75 ± 1.32c 33.12 ± .44c 

P 1932.76 ± 43.56f 2110.71 ± 28.40g 

Li NDc NDc 

Mg 1554.31 ± 17.47h 1772.65 ± 24.87i 

Mn 16.32 ± 0.01c 17.43 ± 0.07c 

Mo NDc NDc 

Ni NDc NDc 

K 12453.10 ± 8.35j 13117.50 ± 16.41k 

Se NDc NDc 

Na 350.565 ± 17.83b 380.99 ± 16.40b 

V 0.86 ± 0.05c 0.47 ± 0.04c 

Zn 10.15 ± 0.12c 9.78 ± 0.30c 

*Means of triplicate in each row bearing the same letters are not significantly different (p > 0.05) from 
one another using Duncan’s Test (mean ± standard variation). ND: not detectable.  
Al = Aluminum; Ba = Barium; B = Boron; Cd = Cadmium; Ca = Calcium; Co = Cobalt; Cu = Copper; Fe 
= Iron; P = Phosphorus; Li = Lithium; Mg = Magnesium; Mn = Manganese; Mo = Molybdenum; Ni = 
Nickel; K = Potassium; Se = Selenium; Na = Sodium; V = Vanadium; Z = Zinc. 
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Over the last two decades, vibrational spectroscopy methods have proven to be a 

reliable and fast technique for the identification and quantification of several primary 

and secondary metabolites generated during fermented processes or to estimate the 

quality of the food itself (GIOVENZANA; BEGHI; GUIDETTI, 2014; KRÄHMER, 

2015; LYMAN et al., 2003; PARADKAR; IRUDAYARAJ, 2002; SINIJA; MISHRA, 

2009). In this study, FTIR spectroscopy analysis showed a quite similar spectrum for 

both fermented and roasted coffee beans (FIGURE 2.4). It was possible to verify the 

presence of the main organic functions associated with the coffee aroma, such as 

aromatic acids (1700-1680 cm-1), ketones (1725-1705 cm-1), aldehydes (1739-1724 cm-

1) and aliphatic esters (1755-1740 cm-1). Those results corroborates with the wide 

variety of volatile organic compounds identified by the SPME-GC-MS technique 

(TABLE 2.1). 

 
FIGURE 2.4 – FUNCTIONAL GROUPS PRESENT IN FERMENTED AND ROASTED SAMPLES OF 

COFFEE BEANS DETERMINED BY FOURIER TRANSFORM OF INFRARED (FTIR) 
SPECTROSCOPY ON RANGE OF 400 – 4000 WAVENUMBER. THE MAIN BANDS IDENTIFIED 
AND ORGANIC FUNCTIONS ASSOCIATED WERE: O-H (3350 AND 3010 CM-1; ALCOHOLS); C-
H (2930 AND 2856 CM-1; ALKANES); C=O (1739 CM-1; CARBOXYLIC ACIDS AND ESTERS); C-O 

(1650 CM-1; ALCOHOLS OR PHENOLS). 

 
 

Thermogravimetric analysis, especially thermogravimetry/differential 

thermogravimetry (TG/dTG), are already being utilized to measure the physical and 

chemical proprieties of coffee samples as a function of temperature or time.   For the 

coffee samples analyzed in this study, the thermal decomposition occorred in  four 

stages between 90 and 390 ºC (FIGURE 2.5). A significant mass loss (68%) can be 
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observed after the second stage at 190 ºC. At temperatures above 420 ° C only ashes 

remain in the final matter. 

 
FIGURE 2.5 – THERMOSTABILITY OF FERMENTED COFFEE CHERRIES SUBMITTED TO AN 

OXYGEN ATMOSPHERE HEATED UP TO 800ºC. DTG: PROFILES OF MAIN VOLATILE 
PRODUCTS; TG: MASS LOSS RATE CURVE 

 

 

The first two thermal degradation events that occur at the temperatures of 90 and 

138 °C are associated with loss of free water and volatile compounds (i.e. alcohols, 

aldehydes and organic acids) and absorbed water, respectively. A small variation (9%) 

in the total weight loss within this temperature range corresponds to the water content in 

fermented beans (JAKAB; FAIX; TILL, 1997). A study performed by Yeretzian et al. 

(2002) monitored the emission of volatile components during the roasting step of the 

fermented beans which observed that during the endothermic phase the loss of water 

and volatile compounds that are not derived from Maillard’s reaction or non-volatile 

precursors is prominent. The latter thermal degradation events representing a significant 

loss in mass (68%) of the fermented beans correspond to a depolymerisation of 

hemicelluloses or pectin and cellulose decomposition which occurs at 240-315 ºC and 

370-400 ºC, respectively (OUAJAI; SHANKS, 2005).  

 

2.4. CONCLUSION 
  

The results of the present study indicated that Saccharomyces sp. is a dominant, 

well- adapted yeast found in coffee fermentation at Brazilian Cerrado Mineiro region. In 
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addition, this study is the first to report the presence of aroma-producing yeast 

Hanseniaspora vineae in coffee beans fermentation. Physicochemical analyses showed 

that different organic compounds present in coffee bean samples may be derived from 

microbial metabolism during the fermentation process. Future studies should focus on 

the dynamic of diffusion of these compounds into the beans, and to determine the actual 

role of the microbial fermentation for beverage quality. Our findings are relevant as a 

support for the development of usual starter cultures and controlled batch processes. 
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CHAPTER III (RESEARCH RESULTS) – HIGH THROUGHPUT rRNA GENE 

SEQUENCING REVEALS HIGH AND COMPLEX BACTERIAL DIVERSITY 

ASSOCIATED WITH BRAZILIAN COFFEE BEAN FERMENTATION 

 

Manuscript published in the Food Technology and Biotechnology, volume 56, nº 1, 

pages 88-93, December 2017 

 

ABSTRACT 

 

Coffee bean fermentation is a spontaneous, on-farm process involving the action of 

different microbial groups, including bacteria and fungi. In this study, high-throughput 

sequencing approach was employed to study the diversity and dynamics of bacteria 

associated with Brazilian coffee bean fermentation. The total DNA from fermenting 

coffee samples was extracted at different time points, and the 16S rRNA gene with 

segments around the V4 variable region was sequenced by Illumina high-throughput 

platform. Using this approach, the presence of over eighty bacterial genera was 

determined, many of which have been detected for the first time during coffee bean 

fermentation, including Fructobacillus, Pseudonocardia, Pedobacter, Sphingomonas 

and Hymenobacter. The presence of Fructobacillus suggests an influence of these 

bacteria on fructose metabolism during coffee fermentation. Temporal analysis showed 

a strong dominance of lactic acid bacteria with over 97 % of read sequences at the end 

of fermentation, mainly represented by the Leuconostoc and Lactococcus. Metabolism 

of lactic acid bacteria was associated with the high formation of lactic acid during 

fermentation, as determined by HPLC analysis. The results reported in this study 

confirm the underestimation of bacterial diversity associated with coffee fermentation. 

New microbial groups reported in this study may be explored as functional starter 

cultures for on-farm coffee processing. 

Keywords: Lactic acid bacteria, coffee fermentation, bacterial dynamics, 

Fructobacillus sp. 

 

3.1. INTRODUCTION 

 

Coffee is one of the most appreciated beverages in the world, with a 

consumption of more than 500 billion coffee cups per year. Surpassing a global 
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production of 9 million tonnes, the coffee now stands as the second largest commodity 

in market value, after only petroleum (LEE et al., 2015). With an annual output of 3.02 

million tonnes, Brazil is the main producer and exporter of coffee beans, followed by 

Vietnam, Colombia, Indonesia, Ethiopia, India and Honduras (ICO et al., 2017).  

Coffee beans, unlike other fermented foods, require fermentation to facilitate the 

drying process. After harvesting and pulping, the residual mucilaginous layer that 

surrounds the coffee beans can be eliminated through microbial fermentation. This 

involves the action of complex microbial interactions, led mainly by yeasts (e.g. Pichia 

guilliermondii, P. anomala, Kluvyeromyces marxianus and Saccharomyces cerevisae) 

and lactic acid bacteria (e.g. Erwinia herbicola, Klebsiella pneumoniae and 

Lactobacillus brevis) (AVALLONE et al., 2002; EVANGELISTA et al., 2014a; SILVA 

et al., 2013).  These fermentation organisms utilize the bean pulp as a carbon and 

nitrogen source and produce significant amounts of ethanol, lactic acid and other 

microbial metabolites, resulting in lowered pH (from 5.5–6.0 to 3.5–4.0) (AVALLONE 

et al., 2001; PEREIRA et al., 2014). In addition, some of these microbial metabolites, 

which are precursors of volatile compounds formed during roasting, help in improving 

beverage flavour (MUSSATO et al., 2011; PEREIRA et al., 2014). 

Culture-independent techniques have helped to change the way to study food 

microbial ecology, leading to consideration of microbial populations as consortia 

(COCOLIN; ERCOLINI, 2015). The advent of the use of molecular techniques and, 

more specifically, the use of high-throughput sequencing (HTS), permitted to overcome 

the limitations of the cultivation-associated methods, allowing a breakthrough in 

understanding the diversity and composition of several food microbial ecosystems 

(DOYLE et al., 2017; GAROFALO et al., 2017; POŁKA et al., 2015; YANG et al., 

2016). Illumina MiSeq® (Illumina Inc, San Diego, CA, USA) generates shorter reads 

(250 bp) than other HTS systems but gives a higher throughput, providing thousands of 

high-quality reads of the generated amplicons and allowing a superior taxonomical 

analysis (VASILEIADIS et al., 2012). 

In this work, we report a diversity analysis aiming to characterize bacterial 

communities associated with coffee bean fermentation, using high-throughput 

sequencing, as part of a whole metagenome study of the microbiota associated with the 

Brazilian coffee processing chain. 
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3.2. MATERIAL AND METHODS 

 

3.2.1. On-farm coffee fermentation and sampling 

 

Spontaneous fermentations were performed at the Fazenda Apucarana located in 

the Cerrado Mineiro region (18°55'59.4" S, 46°50'41.5" W) at Minas Gerais, Brazil. 

Freshly harvested coffee (Coffea arabica var. Catuaí) cherries were depulped using a 

BDSV-04 depulper (Pinhalense, São Paulo, Brazil) obtaining beans with a surrounding 

layer of mucilage (PEREIRA et al., 2015). Fermentations were conducted for 24 h in 

cement tanks with a nominal volume of 4.5 m³, containing 20 kg of depulped beans and 

approx. 500 L of fresh water, in accordance with the local wet processing method. At 

the end of the process, fermented beans were sun-dried for 20 days until 11-12% 

moisture, as measured by a moisture meter (model AL-102 ECO; Agrologic, São 

Leopoldo, Brazil). Environmental temperature during the experimental procedure was 

24-32 ºC (day) and 12-15 ºC (night). Samples (fermenting coffee pulp bean mass) were 

collected at random at 0, 12 and 24 h for HTS and target metabolic analysis. 

 

3.2.2. Total DNA extraction 

 

For extraction of total DNA from the samples, 1 mL of coffee pulp bean mass 

was centrifuged at 12 000×g for 1 min (centrifuge model 5430; Eppendorf, Hamburg, 

Germany). Cell pellet was resuspended in 500 μL of Tris-Ethylenediamine Tetraacetic 

Acid (EDTA), homogenized with 10 μL of lysozyme solution (20 mg/mL; Sigma-

Aldrich, Arklow, Ireland) and incubated at 30 °C for 60 min. Then, 50 μL of Sodium 

dodecyl sulfate (SDS, 10 %; by mass per volume) and 10 μL of proteinase K solution at 

20 mg/mL (Sigma-Aldrich) were added to the lysis solution, followed by 

homogenization and incubation at 60 ºC for 60 min. A volume of 150 μL of 

phenol/chloroform (25:24; Sigma-Aldrich) were added, homogenized by inversion and 

centrifuged at 12 000×g (model 5430R; Eppendorf) for 5 min. Supernatant was 

removed and the DNA was precipitated with 3× (by volume) absolute ethanol (Sigma-

Aldrich). Pellets was washed with 80% ethanol, dried and resuspended in Mili-Q® 

ultrapure water (Merck, Kenilworth, NJ, USA). Total DNA was quantified with the 

Nanodrop 2000 instrument (Thermo Fisher Scientific, Inc., Waltham, MA, USA). 
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3.2.3. Illumina high-throughput sequencing 

 

A fragment of the 16S rRNA gene was amplified from the total DNA extracted 

using primers for the V4 region (bases 515 to 806), containing complementary adaptors 

for Illumina platform (CAPORASO et al., 2012) using KlenTAQ polymerase (Sigma-

Aldrich). Amplification was performed using the degenerated primers 515F (5’-

GTGCCAGCMGCCGCGGTAA-3’) and 806R (5’-GGACTACHVGGGTWTCTAAT-

3’), where M is A/C, H is A/C/T, V is A/C/G and W is A/T (CAPORASO et al., 2010). 

Bar-coded amplicons were generated by PCR under the following conditions: 95 ºC for 

3 min, followed by 18 cycles at 95 ºC for 30 s, annealing at 50 ºC for 30 s, extension at 

68 ºC for 60 s, final extension at 68 ºC for 10 min. Samples were sequenced in the 

MiSeq (Illumina Inc) platform using 500 V2 kit (Illumina Inc), following standard 

Illumina protocols. 

 

3.2.4. Bioinformatics and data analysis 

 

Data generated by sequencing went through a rigorous quality system that 

involved: (i) identification and removal of sequences containing more than one 

ambiguous base (N), and (ii) evaluation of the presence and complementarity of primer 

and barcode sequences. Chimeric sequence detection, removal of noises from pre-

cluster and taxonomic attribution were also performed using standard parameters of 

QIIME (Quantitative Insights Into Microbial Ecology) software package, v. 1.9.0 

(CAPORASO et al., 2010). Applying the UCLUST method (EDGARD, 2010), 

sequences presenting identity above 97% were considered the same operational 

taxonomic units (OTUs) according to the SILVA database (QUAST et al., 2013).  

 

3.2.5. High-performance liquid chromatography 

 

The concentration of reducing sugars (glucose and fructose), organic acids 

(acetic, succinic, lactic and propionic acids) and ethanol was determined during coffee 

bean fermentation by high-performance liquid chromatography (HPLC). Samples were 

centrifuged at 6000×g (centrifuge model CT-6000; Cientec, Porto Alegre, Brazil) and 

filtered through 0.22-μm pore size filter (Sartorius Stedim, Goettingen, Germany) in 

order to remove debris. Analysis parameters were performed according to de Carvalho 
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Neto et al. (2017). Filtered samples were injected into HPLC system equipped with an 

Aminex HPX 87 H column (300 mm × 7.8 mm; Bio-Rad, Richmond, CA, USA) and a 

refractive index (RI) detector (model HPG1362A; Hewlett-Packard Company, São 

Paulo, Brazil). The column was eluted in isocratic mode with a mobile phase of 5 mM 

H2SO4 at 60 °C and a flow rate of 0.6 mL/min. 

 

3.3. RESULTS AND DISCUSSION 

 

3.3.1. Sugar consumption and metabolite formation  

 

TABLE 3.1 shows the evolution of sugar consumption, metabolite formation 

and pH decrease during fermentation of coffee pulp bean. The observed increase in the 

concentration of reducing sugars (glucose and fructose) at 12 h of fermentation can be 

attributed to the hydrolysis of sucrose by the action of yeast invertase (MAGALHÃES 

et al., 2010). These sugars were partially consumed after 24 h of fermentation, with a 

final residual content of 3.2 and 4.5 g/L of glucose and fructose, respectively. Lactic 

acid (0.32 g/L) was the most important organic compound formed during fermentation, 

followed by succinic and acetic acids (0.08 and 0.05 g/L, respectively). Lactic acid is an 

important organic compound for coffee bean fermentation that assists in the coffee 

acidification process without interfering with the final product quality (PEREIRA et al., 

2015). The accentuated production of lactic acid is in agreement with the strong 

dominance of lactic acid bacteria found in the present study (FIGURE 3.1), resulting in 

pH decrease from 5.3 to 4.0 at the end of fermentation (TABLE 3.1). The reduction of 

pH below 4.5 is a widely used method by coffee producers to determine the end of 

fermentation of coffee bean during wet processing (PEREIRA et al., 2016). 
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TABLE 3.1 – CONCENTRATION OF SUGARS, ORGANIC ACIDS AND ETHANOL DURING 
COFFEE BEAN FERMENTATION 

γ/(g/L) 
t(fermentation)/h 

0 12 24 
Glucose 

Fructose 

Succinic acid 

Lactic acid 

Acetic acid 

Propionic acid 

Ethanol 

2.7±0.3a 

3.4±0.3a 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 

5.5±0.3b 

7.33±0.09b 

n.d. 

n.d. 

n.d. 

n.d. 

n.d. 

3.3±0.1a 

4.5±0.2c 

0.08±0.01 

0.32±0.01 

0.051±0.004 

n.d. 

n.d. 

pH 5.30±0.03a 4.90±0.05a 4.00±0.10b 

Mean values of triplicate measurements in each row with the same letter are not significantly different 
(p>0.05) from one another using Duncan’s test (mean value±standard variation) 
n.d.=not detected. 
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3.3.2. Characteristics of sample sequencing data 

 

A total of 440 524 high-quality sequences of the hypervariable V3 region of the 

16S rRNA gene region were obtained after trimming on the Illumina MiSeq sequencing, 

with an average length of 250 bp. A great coverage was obtained in all samples as 

demonstrated by the rarefaction curves (FIGURE 3.2).  

 
FIGURE 3.2 – RAREFACTION ANALYSIS OF THE GENERA FOUND AT 0, 12 AND 24 H OF 

COFFEE BEAN FERMENTATION. OTU = OPERATIONAL TAXONOMIC UNIT 

 
3.3.3. Bacterial diversity and dynamics 

 

Studies evaluating the microbiology of coffee fermentation have been performed 

over the last 100 years in several coffee-producing regions, evidencing the dominant 

species during the post-harvest processing (AGATE; BHAT, 1966; AVALLONE et al., 

2001; FRANK; LUM; DELACRUZ, 1965; MASOUD et al., 2004; PEDERSON; 

BREED, 1946; PEREIRA et al., 2014; SILVA et al., 2000, 2008). On average, nine 

bacterial genera had been reported in previous studies using culture-dependent methods 

(EVANGELISTA et al., 2015; FENG et al., 2016; HAMDOUCHE et al., 2016; 

NASANIT; SATAYAWUT, 2015; PEREIRA et al., 2014, 2015). Our work 

demonstrates that these findings are underestimate, since over eighty genera of bacteria 

have been identified by HTS. High frequency and abundance of readings corresponding 

to Proteobacteria (e.g. Erwinia, Pseudomonas and Methylobacterium) and Firmicutes 

(e.g. Bacillus, Fructobacillus, Leuconostoc and Lactococcus) were observed. The 
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possible habitat origins of these microbial groups are: human contact, e.g. Pseudomonas 

sp., Enterobacter, Erwinia and Actinobacteria (GRICE et al., 2008), soil or aerial parts 

of coffee plants, e.g. Mesorhizobium, Methylobacterium, Stentrophomonas, 

Sphingobium and Sphingomonas (CARREL; FRANK, 2014; MAI et al., 2013; VEGA 

et al., 2005), the water source used for wet processing, e.g. Planctomyces, Luteimonas, 

Devosia and Brevundimonas (MARTINY et al., 2005), and the air surrounding the 

fermentation tank, e.g. Janthinobacterium, Pedobacter, Burkholderia and Kaistobacter 

(FAHLGREN et al., 2010).  These findings indicate the need for a program of research 

to understand the microbial ecology origin of coffee cherries and processing sites. 

The rich and complex bacterial diversity revealed in this study demonstrates the 

potential of coffee terroir as a source of microorganism species with biotechnological 

application. An example is the first report of the presence of Fructobacillus in coffee 

fermentation. This LAB group has a unique biochemical metabolism when compared to 

other LAB, having preference consumption for fructose and the necessity of an electron 

acceptor when in presence of glucose (ENDO; DICKS, 2014a). Fructobacillus 

microorganisms were found in gastrointestinal tracts of insects feeding on fructose-rich 

diet and presented symbiotic interactions with its hosts (JANASHIA et al., 2016; 

JANASHIA; ALUX, 2016). A survey of previous studies demonstrates significant 

amount of residual pulp fructose at the end of coffee fermentations conducted under 

field conditions (CARVALHO NETO et al., 2017), even by using selected starter 

cultures (EVANGELISTA et al., 2014a, 2014b; PEREIRA et al., 2015). With these 

findings, the isolation and further implementation of Fructobacillus may assist in the 

fructose metabolism, contributing to drying of coffee beans.  

Bacterial composition and dynamics shown in FIGURE 3.1 reveal that, despite 

the presence of a high bacterial diversity associated with coffee fermentation 

environment, several microorganisms are suppressed by the growth and dominance of 

LAB group. Reads assigned to LAB genera, including Lactobacillus, Pediococcus, 

Enterococcus, Leuconostoc, Lactococcus and Fructobacillus, corresponded to 26.32% 

at the start of the process and reached a total of 97.59% of the total operational 

taxonomic unity (OTU) at 24 h. The high availability of fermentable sugars coupled 

with the low presence of dissolved oxygen creates a propitious environment for the 

rapid growth and colonization of these species, which promote an efficient conversion 

of sugars into mainly lactic acid (ENDO; DICKS, 2014b).  
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Within the LAB group, Leuconostoc and Lactococcus shared dominance. 

Species of Leuconostoc, such as L. mesenteroides, L. pseudomesenteroides and L. 

citreum, have already been reported as dominant LAB in coffee fermentations 

performed in Mexico, Colombia, India and Taiwan (AVALLONE et al., 2001; LEONG 

et al., 2014; VELMOUROUGANE, 2013), while Lactococcus species dominates coffee 

fermentations performed in Taiwan and Brazil (LEONG et al., 2014; VILELA et al., 

2010). Co-dominance of LAB enables the production of a wide range of organic 

compounds (e.g. acetate, acetaldehyde, ethanol, short-chain fatty acids) by 

heterofermentation (e.g. Leuconostoc sp.) and a high production of lactic acid through 

the homofermentation (e.g. Lactococcus sp.), which promotes yeast growth and reduces 

the prevalence of spoilage microorganisms.  

 

3.5. CONCLUSION 

 

The present study suggests that most of bacterial species involved in the coffee 

bean fermentation have not been determined. High-throughput 16S rRNA gene 

sequencing analysis allowed us to reveal in deepth the presence of several microbial 

groups with potential applications. A strong dominance of LAB was confirmed, proving 

the good adaptation of this microbial group to coffee fermentation environment. Further 

studies should focus on the isolation of some microbial groups first reported in this 

study for potential biotechnological applications. 
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CHAPTER IV (RESEARCH RESULTS) – EFFICIENT COFFEE BEANS 

MUCILAGE LAYER REMOVAL USING LACTIC ACID FERMENTATION IN 

A STIRRED-TANK BIOREACTOR: KINETIC, METABOLIC AND 

SENSORIAL STUDIES 

 

Manuscript published in the Food Bioscience, volume 26, pages 80-87, October 2018 

Patented process under publication number: BR 102016029488-6 

 

ABSTRACT 

 

Post-harvest coffee processing involves a microbial process to remove the mucilage 

layer adhering to the fruits, prior to storage and transport of the coffee beans. In this 

study, coffee mucilage removal was done using lactic acid fermentation in a stirred-tank 

bioreactor (STR). Fermentation assays were done with or without the addition of starter 

culture (i.e., Lactobacillus plantarum LPBR01), and kinetic parameters, including 

microbial growth, sugar pulp consumption and metabolite production, were studied. 

High lactic acid bacteria (reaching 10.7 log CFU/mL at 10 h) were obtained in the STR 

process with the starter culture, which led to a high lactic acid productivity (0.366 

g/L.h) and a pH decrease to below 4.0 during the initial 10 h. A temporal analysis using 

Illumina high-throughput 16S rRNA Gene Sequencing (HTS) showed the Lactobacillus 

genera’s dominance in the inoculation process, as it reached over 88% of read 

sequences at the end of fermentation, while the Leuconostocaceae family was the 

dominant bacterial group in the spontaneous treatment. The STR fermentation process 

led to the production of coffee beans with richer aroma composition and beverages with 

a notable increase in the sensorial analysis of the coffee beverages compared to those 

resulting from the conventional process. This new fermentation model can be used to do 

controlled bean fermentation to supply the coffee industry with homogeneous and high-

quality coffee beans. 

Keywords: Lactic acid bacteria; coffee fermentation; coffee processing; stirred-tank 

reactor; Lactobacillus plantarum. 
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4.1. INTRODUCTION 

 

Fermentation is one of the oldest food-processing technologies. Among the 

classical fermentation processes are winemaking, which has been documented from as 

early as 6000 B.C. in the Caucasus area, cheese making in northern Europe and soya 

sauce production in Japan and China (NIELSEN, 2002; SALQUE et al., 2013). It was, 

however, with penicillin production during World War II that large-scale fermentations 

were first introduced. Today a variety of fermented foods are produced using this 

technology in large commercial enterprises. 

Coffee is one of the few globally produced food commodities where the 

fermentation process occurs spontaneously. The primary objective of coffee 

fermentation is to remove the mucilage layer adhering to the fruits during post-harvest 

processing, assisting in the drying process. The microbial species responsible for this 

process (i.e., yeast and lactic acid bacteria) originate from coffee processing sites, 

including fermentation tank, water, soil, air or the fruit itself (AVALLONE et al., 2001; 

MASOUD et al., 2004; VILELA et al., 2010; PEREIRA et al., 2014; 

VELMOUGRANE, 2013; LUDLOW et al., 2016; CARVALHO NETO et al., 2017, 

2018). This uncontrolled, on-farm process results in the lack of predictability of final 

coffee beans quality because several microbial metabolites can diffuse into the beans 

and act as aroma precursors to the roasting process (MASOUD et al., 2005; PEREIRA 

et al., 2015; SILVA et al., 2013). Therefore, the use of selected yeasts has been 

suggested to have reproducible and predictable coffee beans by controlling the 

fermentation (EVANGELISTA et al., 2014a; EVANGELISTA et al., 2014b; PEREIRA 

et al., 2015; PEREIRA et al., 2016; LEE et al., 2017).  

Recently, the removal of coffee mucilage using lactic acid fermentation was 

proposed by introducing a selected lactic acid bacteria, Lactobacillus plantarum 

LPBR01, into the field situation (PEREIRA et al., 2016). This bacterium strain was able 

to promote an accelerated coffee-pulp acidification process reducing the time required 

for mucilage removal. One of the limitations of introducing starter cultures into field 

systems is that coffee fermentations are done in open cement tanks that facilitate 

contamination by natural microbiota (PEREIRA et al., 2017). This means the added 

starter culture has to compete with a high load of indigenous microorganisms, 

decreasing its metabolic activity and effectiveness. The demand for hygienic production 

practices has increased the appeal of using stainless steel tanks in industrial 
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bioprocesses (e.g., the production of yogurt, beer, wine and cider) (STEINKRAUS, 

2004). The use of bioreactors can provide a suitable environment for the development of 

controlled coffee beans fermentation. 

The aim of this chapter was to study the kinetic parameters of coffee beans 

fermentation using a previously selected lactic acid bacteria (LAB) starter culture (i.e., 

L. plantarum LPBR01) and a stirred-tank bioreactor (STR) model. Additionally, the 

effects of this new process on the chemical and sensory quality of hot coffee were 

evaluated. The fermentation system used is part of a patented process (SOCCOL et al., 

2016). 

 

4.2. MATERIAL AND METHODS 

 

4.2.1. STR fermentation 

 

Coffee cherries of Coffea arabica var. Catuaí were manually harvested (2017 

crop) at the mature stage from a farm 1270 m above sea level situated in Patrocínio in 

the Minas Gerais State, Brazil. The fruits were packed in plastic bags and transported at 

4 ºC to the Bioprocess Engineering and Biotechnology Laboratory, Federal University 

of Paraná, Curitiba, Brazil. Coffee fruits (2 kg) were manually depulped 1 day after 

harvesting and immediately deposited into a 10.5 L New Brunswick™  BioFlo® 110 

fermenter (Eppendorf, Hamburg, Germany), containing 2 L of sterilized water (pH 6.5) 

and equipped with pitched blade impellers. Two batch fermentations were done in 

triplicate: (i) spontaneous (non-inoculated control) and (ii) inoculated (lactic acid starter 

culture-added). The LAB strain used in this study, L. plantarum LPBR01, was 

previously selected as detailed in Pereira et al. (2016). The inoculum solution was added 

in the bioreactor with an initial concentration of 108 CFU/mL. For both fermentation 

processes, temperature (30 °C), agitation (200 rpm) and aeration (1 L/min) were 

controlled during the initial 12 h (aerobic phase). Then, aeration and agitation were 

interrupted and an anaerobic environment was formed by injecting CO2(g) into the 

fermenting coffee-pulp bean mass, allowing an anaerobic fermentation during the final 

12 h (anaerobic phase). At the end of fermentation, coffee beans were dried in an air 

recirculation drying oven at 35 °C until a 12% aw was reached. Relative humidity was 

measured at 6 h intervals using a portable grain moisture meter (Agrologic, São 

Leopoldo, RS, Brazil). 
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Samples (10 mL) of the fermenting coffee-pulp bean mass (liquid fraction) were 

randomly collected at intervals of 2 h to do microbiological and metabolite target 

analysis. At each sampling point, the pH was measured using a digital pH meter 

(Requipal, Curitiba, Brazil). 

 

4.2.2. Microbial counts 

 

Samples (100 μL) of the liquid fraction were homogenized in 900 μL of 0.1% 

saline-peptone water (10-1 solution) using a Vortex Mixer (Kasvi, Curitiba, Brazil) and 

diluted serially. Enumeration of total yeasts and LAB was done using the spread plate 

technique using Rose Bengal chloramphenicol agar (Oxoid, São Paulo, Brazil) 

containing 0.01% (w/v) chloramphenicol and MRS agar (Merck, Whitehouse Station, 

NJ, USA) containing 0.1% (w/v) nystatin, respectively. Plates were incubated at 30 ºC 

for 48 h and the number of colony-forming units (CFU) was quantified. 

 

4.2.3. High performance liquid chromatography (HPLC) 

 

Sugar consumption (glucose and fructose) and organic acids (citric, succinic, 

lactic, acetic and propionic acids) and ethanol formation were monitored from the liquid 

fraction of the fermenting coffee pulp–bean mass at 2 h intervals using the method of 

Pereira et al. (2016). Initially the liquid fraction (2 mL) was centrifuged at 6000 g for 5 

min at 4 ºC using an Eppendorf centrifuge (SP Labor, SP, Brazil), and filtered using a 

0.22-μm pore size filter (Millipore Corp., Billerica, MA, USA). Then, the samples were 

injected (50 μL) into a HPLC system (Aglient Technologies 1260 Infinity Series; 

Aglient Technologies, Santa Clara, CA, USA) equipped with an Aminex HPX 87 H 

column (300 x 7.8 mm; Bio-Rad, Richmond, CA, USA) and a refractive index (RI) 

detector, using H2SO4 (5 mM) at 60 ºC as the mobile phase to elute the column at a flow 

rate of 0.6 mL/min. 

 

4.2.4. Kinetic parameters 

 

The kinetic parameters determined in this study were maximum specific growth 

rate (μm) for yeast and LAB, and product formation rate (q) and specific product 
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formation rate (qp) for organic acids and ethanol (LETTI et al., 2012). All parameters 

were calculated at 10 h of fermentation (time with maximum biomass accumulation), 

except μm values, which were calculated at intervals of 4-6 h in the inoculated treatment 

and 8-10 h in the spontaneous process. The following equations were used for the 

determination of kinetic parameters: 

 

 

 

 
Where X and P are the final concentration of biomass and products (g/L), 

respectively, generated in the coffee-pulp bean mass during fermentation time (in h). 

 

4.2.5. Illumina high-throughput 16S rRNA gene sequencing 

 

Fermenting coffee-pulp bean mass samples were taken at 0, 12 and 24 h to 

access the total bacteria community composition and dynamics using Illumina high-

throughput sequencing. Purified total DNA was obtained using the phenol-chloroform 

extraction method of Carvalho Neto et al. (2018). Total DNA was separated on a 0.8% 

(w/v) agarose gel at 40 V during 1 h using a horizontal electrophoresis apparatus 

(Loccus Biotecnologia, Cotia, Brazil). DNA fragments were stained with SYBR Green I 

(Life Technologies, Carlsbad, CA, USA) and visualized using 300 nm excitation and 

Polaroid DS-34 camera (Polaroid, Cambridge, MA, USA). The total DNA was 

quantified using a Nanodrop 2000 spectrophotometer (Thermo Fisher Scientific, 

Wilmington, DE, USA). Twenty ng of DNA was used as a template for the 

amplification of the V4 region of the 16S rRNA gene, using the primers 515F and 806R 

(CAPORASO et al., 2012) and KlenTaq Master Mix (Sigma-Aldrich, Saint Louis, MO, 

USA). The PCR products were quantified using the Qubit dsDNA HS kit (Invitrogen, 

Carlsbad, CA, USA) and sequenced using the 500V2 Sequencing Kit (Illumina, San 

Diego, CA, USA) on an Illumina MiSeq (Illumina). After sequencing, chimeric 

sequences detection, removal of noises from pre-cluster and taxonomic attribution were 

done using standard parameters with the QIIME software package, version 1.9.0 
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(http://qiime.org/). A similarity above 97% between the sequences was used as a 

parameter to group them as the same operational taxonomic unit (OTU) using the 

SILVA database (https://www.arb-silva.de/aligner/) (QUAST et al., 2013). The 

nucleotide sequences were deposited in the GenBank database 

(https://www.ncbi.nlm.nih.gov/genbank) with access numbers MG729835 to 

MG730031. 

 

4.2.6. Fermented coffee beans quality assessment 

 

4.2.6.1. Chemical analysis 

 

Sugar and organic acids present in dried, fermented coffee beans from 

spontaneous and inoculated samples, as well as in green coffee beans (i.e., unfermented 

beans), were extracted using the method of Pereira et al. (2015a). For the samples 

preparations, 5 g of the dried, fermented coffee beans were ground using a domestic 

coffee grinder (Philco, Philadelphia, PA, USA) and mixed with 20 mL of ultrapure 

water (Merck Millipore, Burlington, MA, USA) using a Vortex Mixer. The 

concentration of the sugar and organic acids were obtained using high-performance 

liquid chromatograph (HPLC) as previously described in section 4.2.3. The volatile 

composition of samples was obtained using gas chromatography coupled to mass 

spectrometry (GC-MS) using the method of Carvalho Neto et al. (2017) with slight 

modifications. A carboxen/polydimethylsiloxilane (5%/95%) SPME fiber (Supelco, 

Saint Louis, MO, USA) was used to absorb the volatile compounds present in the coffee 

beans (fermented and unfermented samples). Samples (2.0 ± 0.1 g of grounded beans) 

were heated at 70 ºC for 10 min without agitation. The SPME fiber was put in the 

autosampler for 15 min. The compounds were thermally desorbed at 260 ºC and directly 

introduced into the gas chromatograph injection system. The analysis was done using a 

Shimadzu® - GCMS2010 Plus coupled to a mass spectrometer with a triple quadrupole 

TQ8040, equipped with an AO 5000 autosampler (Shimadzu, Tokyo, Japan). The GC 

temperature program was as follows: the column oven temperature was maintained at 

60 ºC for 10 min, followed by two heating ramps of 4 and 10 ºC/min until reaching the 

temperatures of 100 and 200 ºC, respectively. Mass spectra were obtained using 

electron impact at 70 eV and a start and end mass-to-charge ratio (m/z) of 30 and 200, 

respectively. The compounds were identified in full scan mode by comparison to the 
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mass spectra from library databases (Nist’98 (http://www.nist.gov) and Wiley7N 

(http://www.palisade.com)). 

 

4.2.6.2. Coffee cup quality analysis 

 

Fermented, dried coffee beans were roasted in a semi-industrial roaster (Leogap 

model, Probatino, Curitiba, Brazil) with nominal capacity of 1.3 kg. Roasted coffee was 

ground to 360-420 μm using a Coffee Grinder M-50 (Probat Leogap, Curitiba, Brazil). 

The samples for tasting were prepared using 105 g of roasted and ground coffee beans 

in 1,500 mL of filtered water (pH 6.5) (Aquasana, Austin, TX, USA) using a VP17-3 

BLK coffee brewer (Bunn Corp., Springfield, IL, USA) using a bleached paper filter 

(Melitta orginal 1 × 4, Minden, Germany).  

The beverages were evaluated by a panel of 4 expert coffee tasters with a Q-

Grader Coffee Certificate (PEREIRA et al., 2018). A beverage prepared with coffee 

beans obtained by traditional processing from the same coffee farm shown in section 

4.2.1 was included as a control. Cups were prepared and the attributes of acidity, aroma, 

balance, body, clean cup, finish, flavor, overall quality, uniformity and sweetness of the 

beverages were evaluated using the method of the Specialty Coffee Association of 

America Cupping Protocols (see ‘http://www.scaa.org/?page=resourcesandd=cupping-

protocols’). This protocol involves the determination of scores, on a scale from 6 to 10 

at 0.25 point intervals, for each of the attributes. The samples were served in 240 mL 

snifters of 8 cm diameter to allow dispersion of volatile compounds to increase 

olfactory perception. Assessments started when the beverage temperature reached 65 °C 

for the olfactory step and 43 °C for the gustatory step. After the gustatory step, sensory 

descriptive terms were assigned by the coffee tasters for each beverage. 

 

4.2.7. Statistical analysis 

 

The data obtained using target metabolite analysis and sensory evaluation was 

analyzed using post-hoc comparison of means using Duncan’s test. Statistical analyses 

were done using the SAS program, version 7.0 (Statistical Analysis System, Cary, NC, 

USA). Level of significance was established using a two-sided p-value <0.05. 
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4.3. RESULTS 

 

4.3.1. Controlled bioreactor fermentations 

The pH monitoring, microbial analysis (total yeast and LAB growth), sugar 

consumption (glucose and fructose) and organic acid production (citric, succinic, lactic, 

acetic and propionic acids) from inoculated and spontaneous STR processes are 

disposed in FIGURE 4.1. LAB counts remained high throughout the inoculated 

fermentation processes and peaked at 10 h. Conversely, initial LAB counts were low in 

the spontaneous process and peaked only after 22 h. In both processes, yeasts were 

present during the whole fermentation with maximum population sizes of 7.48 log 

CFU/mL at 24 h and 6.46 log CFU/mL at 10 h for inoculated and spontaneous 

processes, respectively. 
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In the starter culture-added fermentation, efficient sugar consumption was 

observed through total glucose consumption in 12 h of fermentation (FIGURE 4.1). On 

the other hand, a considerable residual amount of both glucose and fructose was 

observed at the end of the spontaneous process. The level of lactic acid, the most 

abundant product of LAB metabolism, was higher in the inoculated treatment compared 

to the spontaneous, inducing a more pronounced mucilage acidification process 

(FIGURE 4.1). 

The fermentative kinetic parameters of inoculated and spontaneous assays are 

shown in TABLE 4.1. In general, both processes showed similar LAB specific growth 

rates (0.05 and 0.06 h-1 in the spontaneous and inoculated assays, respectively). 

However, the inoculated treatment showed a higher biomass accumulation and lactic 

acid productivity than the spontaneous process (TABLE 4.1). The maximum specific 

LAB growth rate was achieved around 4-6 h in the inoculated treatment and 8-10 h in 

the spontaneous process (TABLE 4.1). 

 
TABLE 4.1 – KINETIC PARAMETERS OF SPONTANEOUS AND INOCULATED COFFEE 

FERMENTATION PROCESSES DONE IN A STIRRED-TANK BIOREACTOR 

Fermentation variable Kinetic Parameter 
Fermentation assay* 

Inoculated Spontaneous 

LAB 
μm (h-1) 0.10 0.13 

Biomass accumulation (g) 3.84 3.09 

Yeasts 

   

μm (h-1) 0.05 0.07 

Biomass accumulation (g) 2.72 2.65 

    

Lactic acid 
q(g/L.h) 0.37 0.14 

qp (h-1) 0.10 0.05 

    

Acetic acid 
q(g/L.h) 0.02 0.04 

 qp (h-1) ND ND 

    

Ethanol 
q (g/L.h) 0.04 0.01 

qp (h-1) 0.01 0.002 

ND. = not detected. μm = maximum specific growth rate; q = product formation rate; qp = specific product 
formation rate. 
*All parameters were determined at 10 h of fermentation process, except maximum specific growth (μm) 
values, which were calculated at intervals of 4 to 6 h in the inoculated treatment and 8-10 h in the 
spontaneous process. 
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4.3.2. Bacterial population composition and dynamics 

 

The number of high quality bacterial 16S rRNA gene sequences obtained by 

high-throughput sequencing was 369,101, resulting in more than 240 OTU at 97% 

sequence similarity. The rarefaction curves for all the samples did not reach a plateau at 

this sequencing depth (FIGURE A4.1), suggesting that major bacterial communities 

were largely covered. 

The HTS analysis showed that LAB was the dominant group in both 

fermentation processes (FIGURE 4.2A and B). In the starter culture-added assay, reads 

assigned to the Lactobacillus genus reached from 75% at the start of the process to 

88.8% of the total OTU at 24 h. Other LAB groups, including Fructobacillus, 

Leuconostoc, Pediococcus and Leuconostocaceae, as well as acetic acid bacteria 

belonging to Acetobacter and Gluconobacter, were also found but in very minor 

proportions. On the other hand, the Leuconostocaceae family dominated the STR 

spontaneous process, reaching 74.8% of the reads at the end of fermentation. Along 

with the Leuconostocaceae family, Fructobacillus, Leuconostoc, Erwinia, 

Pseudomonas, Pediococcus, Serratia and Enterobacteriaceae were found in 

significantly relative abundance. 
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The HTS also showed the presence of over 100 bacterial genera in both 

inoculated and spontaneous processes, many of which detected for the first time in 

coffee beans fermentation, including Agrobacterium, Aeromicobium, Pediococcus, 

Citrobacter, Methylobacterium and Fructobacillus. Microorganisms that were 

characterized as “Others” in the HTS analysis (FIGURE 4.2) and whose prevalence was 

<0.5% are described in the supplementary data (TABLE A4.1). 

 

4.3.3. Coffee bean and beverage quality assessment 

 

The chemical composition of green beans (unfermented coffee sample) and 

fermented samples from inoculated and spontaneous treatments was determined using 

HPLC and GC-MS (TABLE 4.2). No differences (p≥0.05) in the concentration of 

sugars (glucose and fructose) and citric and succinic acids were observed in beans from 

any treatment. However, the lactic acid concentration was approximately twice as high 

in the inoculated process compared to spontaneous treatment (TABLE 4.2). 
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A wide variety of volatile compounds was identified in the dried beans, 

including aldehydes (9 compounds), esters (6 compounds) and hydrocarbons (6 

compounds). Phenylacetaldehyde, styrene, phenethyl alcohol and D-limonene were the 

most important aromatic compounds quantified in the dried bean samples. The 

concentrations of phenylacetaldehyde and 1-methoxy-2-propyl acetate had a significant 

increase (p<0.05) in dried beans from inoculated treatment compared to the spontaneous 

process. In addition, the use of the starter culture promoted the formation of aroma 

compounds (e.g., 2-phenethyl acetate, 1-hexanol, 2-phenyl-2-butenal, tetradecanal, 

isoamyl acetate and 2-methyl-butanoic acid) that were not detected in the spontaneously 

fermented beans (TABLE 4.2).  

Beverages, which were produced with roasted coffee beans from inoculated and 

spontaneous treatments, received different scores for several important sensory 

attributes (FIGURE 4.3). Aroma, flavor, acidity, body, and balance reached higher 

scores in the inoculated treatment compared to the spontaneous, while sweetness, clean 

cup, and uniformity were statistically similar for both treatments. Nonetheless, both 

beverages were scored over 80 points (91.5 and 85.5 for inoculated and spontaneous 

processes, respectively), being superior to those found from coffee beverage produced 

using a natural, on-farm processing. 

 
FIGURE 4.3 – SENSORY EVALUATION OF BEVERAGES PRODUCED WITH FERMENTED, 

ROASTED COFFEE BEANS FROM SPONTANEOUS AND INOCULATED STR COFFEE 
FERMENTATIONS AND FROM A NATURAL, ON-FARM PROCESSING (CONTROL). 

COMPARISONS WERE MADE BY A PANEL OF FOUR EXPERIENCED COFFEE TASTERS. 
ASTERISK REPRESENT SIGNIFICANTLY DIFFERENCE IN A TWO-SIDED P-VALUE <0.05 
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According to the sensory descriptive terms selected by the coffee tasters, the 

coffee beverage produced with the inoculated treatment produced a cup with intense 

lactic perceptions (terms mentioned by the coffee tasters: “Aroma with lactic 

background”; “Taste with intense lactic character”; “Excellent combination between 

lactic and citric acidity”; “Perception of velvet-like body”; “Elegant finalization with 

medium-to-long persistence and lactic touch”) as well as a caramel-like taste and 

intense perception of ‘citric’ and “fruity” notes (data not shown). Terms relating to 

lactic perception were also mentioned from the beverages prepared with beans of 

spontaneous treatment, (viz., “Perception of velvet-like body” and “Taste with slight 

lactic character”), in addition to the terms “Aroma with herbaceous notes, such as lemon 

grass and fennel” and “Caramel-like taste perception”. On the other hand, control (on-

farm processed coffee beans) showed a beverage with basic sensory profile, with 

caramel-like taste and full bodied perception. 

 

4.4. DISCUSSION 

 

Over the last decade, disposable equipment has become an integral part of 

several biologic manufacturing processes, promoting greater consistency, predictability, 

and product value (STEINKRAUS, 2004). Coffee beans fermentation is still done as a 

natural process that brings inconsistent quality and depreciated product value 

(SCHWAN, 1998; SCHWAN et al., 2014). The present study is the first to set up coffee 

beans fermentation in a STR. Conditions of sanitization, aeration and temperature were 

controlled to achieve an improved process. The fermentation was done with the 

inoculation of a recently selected LAB strain, L. plantarum LPBR01, which has shown 

an ability to result in faster and improved on-farm coffee processing (PEREIRA et al., 

2016). 

It is known that coffee mucilage removal occurs three ways: (i) mucilage sugar 

consumption; (ii) pectinolytic enzymes production; and (iii) mucilage acidification 

process (MASOUD et al., 2004; MASOUD; JESPERSEN, 2006; PEREIRA et al., 

2014). A survey of previous studies showed that significant residual sugars can be 

observed in the coffee mucilage after on-farm fermentation (CARVALHO NETO et al., 

2017), even by using selected starter cultures (EVANGELISTA et al., 2014a; 

EVANGELISTA et al., 2014b; PEREIRA et al., 2015a). In this study, a high residual 

sugar content was also observed at the end of the spontaneous STR process, suggesting 
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that the initial microbial load found in coffee fruit is not sufficient for efficient mucilage 

layer degradation. On the other hand, the STR system combined with the use of the 

selected starter culture (i.e., L. plantarum LPBR01) efficiently promoted the 

consumption of fermentable sugars and, consequently, a faster acidification process 

(lower than 4.0 after 10 h of fermentation process) through lactic acid production. In 

previous studies pH levels lower than 4.0, an ideal parameter for signaling the end of 

the coffee fermentation process, were only reached after 24 h (JACKELS; JACKELS, 

2005; VELMOUROUGANE, 2013). Therefore, taking into account these crucial 

aspects (i.e., pulp sugar consumption and pH level lower than 4.0), the use of the STR 

system combined with a selected LAB starter culture shows potential to reduce the time 

required for coffee fermentation from 24 to 10 h. 

Consistent with the results of other coffee fermentation biodiversity studies, 

HTS showed that STR fermentation process supports a complex association of bacteria, 

mainly from the LAB group. However, the addition of starter culture changed 

drastically the dominant group, as showed by high sequence reads of the Lactobacillus 

genus in the inoculated process, while the Leuconostocaceae family dominated in the 

spontaneous treatment. The Leuconostocaceae family includes Fructobacillus, 

Leuconostoc, Oenococcus and Weissella genera, which may have shared this 

dominance. The microbial members of this family are obligatory heterofermentative and 

associated with the production of a vast array of compounds, including those that 

promote “off-flavor” in the final coffee beverage, such as volatile sulfur compounds 

(COMI; IACUMIN, 2012; PRIPIS-NICOLAU et al., 2004). This fact highlights the 

importance of adding starter culture to coffee fermentation to ensure process 

homogeneity and generation of desirable molecules.  

The coffee industry has traditionally dedicated efforts in improving the final 

beverage quality using roasting and brewing steps (CAPRIOLI et al., 2015; LEE et al., 

2015). However, recent studies have shown a significant increase in the quality of 

coffee beans that were subjected to fermentative processes using starter cultures 

(EVANGELISTA et al., 2014a; EVANGELISTA et al., 2014b; PEREIRA et al., 2015a; 

PEREIRA et al., 2016). In the present study, the STR coffee fermentation done with 

added starter culture enabled the production of coffee beans with richer aroma 

composition and beverages with increased quality compared to the conventional 

process. The stimulation of LAB growth and, consequently production of lactic acid and 

volatile organic compounds (i.e., 1-hexanol, nonanal, 2-phenethyl acetate, 2-methyl-
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butanoic acid) positively influenced the final quality of the beverage. Previous studies 

showed that these compounds can be directly linked to the LAB metabolism 

(DAMIANI et al., 1996; MAICAS et al., 1999; MONTANARI et al., 2018). Although 

no experimental evidence has been given yet, it is often shown in the literature that the 

diffusion of such metabolites may occur and they modulate the chemical and sensorial 

profile of the coffee beans (PEREIRA et al., 2017). 

 

4.5. CONCLUSION 

 

In summary, the STR fermentation model used in this study (consecutive aerobic 

and anaerobic phases) was shown to be a positive environment for starter culture 

growth, removal of coffee-pulp sugar and formation of flavor-associated molecules. 

This new fermentation system showed a potential to reduce the time required for coffee 

fermentation from 24 to 10 h, taking into account important aspects such as pH and 

pulp-reducing sugars content. The kinetic parameters established can provide a basis for 

optimization and scaling-up of the proposed process. Finally, this new fermentation 

model can be used to supply the coffee industry with homogeneous and high-quality 

coffee beans. 
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CHAPTER V (RESEARCH RESULTS) – MICROBIOLOGICAL, 

PHYSICOCHEMICAL AND SENSORY STUDIES OF COFFEE BEANS 

FERMENTATION IN A YEAST BIOREACTOR MODEL 

 

Manuscript submitted in the European Food Research and Technology, January 2019 

Patented process under publication number: BR 102016029488-6 

 

ABSTRACT 

 

Coffee fermentation refers to the on-farm, microbial process of removal of the mucilage 

layer adhered to the fruits, necessary for storage and transport of the coffee beans. This 

process is traditionally conducted spontaneously, thus leading to end-products of 

variable quality. The aim of this study was to evaluate the microbiological, 

physicochemical and sensory aspects of coffee beans fermentation conducted in a 

controlled yeast bioreactor model. Fermentations were conducted with or without the 

addition of a selected yeast starter culture (viz., Pichia fermentans YC5.2), and kinetic 

parameters, including microbial growth, pulp sugar consumption and metabolite 

formation, were studied. This fermentation system enabled an efficient yeast starter 

culture growth, which led to high ethanol (0.136 g/L.h) and ethyl acetate (0.383 

μmol/L.h) formation rates. In the course of STR fermentation, an exponential lactic acid 

bacteria growth and, consequently, organic acid production and pH decreasing were 

reported. This bacteria population was mainly represented by Pediococcus sp. and 

Leuconostocaceae family, as reveled by Illumina-based metagenomic sequencing. The 

STR system combined with the use of the selected yeast starter culture also enabled the 

production of coffee beans with rich aroma composition and beverages with remarkable 

increase in quality compared to the conventional process. With further refinements, the 

STR model may be useful in designing novel bioreactors for the optimization of coffee 

fermentation with starter cultures. 

Keywords: Bioreactor, coffee fermentation; coffee beverage; Pichia fermentans; starter 

culture 
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5.1. INTRODUCTION 

 

After harvesting and pulping, the residual mucilaginous layer that surrounds the 

coffee beans is eliminated by microbial fermentation. This involves the action of 

complex microbial interactions, led mainly by yeasts (e.g., Pichia guilliermondii, P. 

anomala, Kluyeromyces marxianus and Saccharomyces cerevisae) and lactic acid 

bacteria (e.g., Leuconostoc mesenteroides, Lactococcus lactis and Lactobacillus brevis) 

(AVALLONE et al., 2002; EVANGELISTA et al., 2014a; SILVA et al., 2013). These 

fermenting organisms utilize the bean mucilage as a source of carbon and nitrogen to 

produce significant amounts of ethanol, lactic acid, and other microbial metabolites, 

resulting in lowered pH (from 5.5–6.0 to 3.5–4.0) (AVALLONE et al., 2001; PEREIRA 

et al., 2014). This process generates a range of microbial-derived volatile metabolites, 

which can diffuse into the seeds and have an impact on the final coffee quality 

(EVANGELISTA et al., 2014b; PEREIRA et al., 2015; SILVA et al., 2013). In this 

respect, yeasts have a pivotal influence through the generation of different aroma-

influencing molecules (e.g., esters, higher alcohols, aldehydes, ketone, and terpenoids) 

via central carbon metabolism (DZIALO et al., 2017; HIRST; RICHTER, 2016; PIRES 

et al., 2014).  

Coffee is one of the few remaining beverages produced on a global scale where 

the fermentation occurs in a spontaneous way. Common problems involve levels of 

acidity of over-fermented coffee beans or incomplete mucilage removal by insufficient 

fermentation which hinders the drying process and encourages the growth of spoilage 

bacteria and fungi (PEREIRA et al., 2017). Thus, one of the current challenges for the 

coffee processing chain is to control the fermentation process in terms of both kinetics 

and quality of the resulting product. While experimental applications of defined yeast 

starter cultures have produced satisfactory results (EVANGELISTA et al., 2014a, 

2014b; PEREIRA et al., 2015, 2016), this technique has not been implemented in the 

field. One limitation to the introduction of starter cultures is that coffee fermentations 

are conducted in cement tanks that facilitate contamination by natural microbiota 

(PEREIRA et al., 2017).  

The demand for hygienic production practices has increased the appeal of using 

stainless steel tanks in industrial bioprocesses (e.g., the production of yogurt, beer, 

wine, and cider) (STEINKRAUS, 2004). The use of designed bioreactors can provide a 

suitable environment for the development of controlled coffee bean fermentation. The 
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aim of this study was to determine the kinetic parameters of coffee bean fermentation 

conducted with a selected yeast starter culture (viz., Pichia fermentans YC5.2) in a 

stirred-tank bioreactor (STR) model, and to evaluate the effects of this new process on 

the chemical and sensory quality of coffee beverage. 

 

5.2. MATERIAL AND METHODS 

 

5.2.1. Controlled coffee beans fermentation in STR bioreactor 

 

Coffee cherries of Coffea arabica var. Catuaí were obtained from a farm 1,270 

m above sea level situated in Patrocínio in the Minas Gerais State, Brazil. The fruits 

were transported to the laboratory and manually depulped to obtain beans with 

mucilage. A total of 2 kg of manually depulped beans were deposited in a 10.5 l New 

Brunswick™ BioFlo® 110 fermenter (Eppendorf, Hamburg, Germany) equipped with 

pitched blade impellers, previously sterilized, with 2 L of sterile water (pH 6.5) 

(CARVALHO NETO et al., 2018). Two batch fermentations were conducted in 

triplicate: (i) spontaneous (non-inoculated control) and (ii) inoculated (yeast starter 

culture-added). The selected yeast starter culture used in this study, Pichia fermentans 

YC5.2, was previously isolated for its high ethyl- and isoamyl acetate production, as 

detailed in Pereira et al. (2014). The inoculum solution was added into the bioreactor 

reaching an initial concentration of 6 log CFU/mL. For both fermentation processes, 

conditions of temperature (30 °C), agitation (200 rpm) and aeration (1 L/min) were 

maintained controlled during the initial 12 h. After this time, aeration and agitation were 

interrupted and an anaerobic environment was created by injecting CO2(g) into the 

fermenting coffee-pulp bean mass, allowing a static fermentation during the final 12 h. 

At the end of fermentation, coffee beans were washed with water to remove the 

degraded mucilaginous layer and avoid secondary fermentations during the drying 

process. Then, coffee beans were dried in an air recirculation drying oven at 35 °C until 

the value of 12% of moisture was reached. 

 

5.2.2. Sampling and pH measurement  

 

Samples (5 mL) of the liquid fraction of the fermenting coffee-pulp bean mass 

were collected in triplicate at intervals of 2 h to perform microbial counts and 
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metabolite target analysis. At each sampling point, the pH was measured using a digital 

pH meter (Requipal, Curitiba, Brazil). 

 

5.2.3. Microbial counts 

 

Aliquots of 100 μL of the liquid fraction samples were homogenized with 900 

μL of 0.1% saline-peptone water (10-1 solution) and diluted serially. Total yeasts and 

lactic acid bacteria (LAB) were enumerated according to Pereira et al. (2016), where 

100 μL of the diluted solutions were inoculated on the surface of Rose Bengal 

Chloramphenicol agar (RBCA, Oxoid, São Paulo, Brazil) containing 0.01% (w/v) 

chloramphenicol and MRS agar containing 0.1% (w/v) natamycin, respectively. Plates 

were incubated at 35 ºC for 48 h and the number of cell-forming units (CFU) were 

recorded. 

 

5.2.4. Verification of inoculum dominance 

 

To verify inoculum dominance, colonies of P. fermentans YC5.2 were 

distinguished from the indigenous yeasts through colony morphology (i.e., cream color 

with furrowed appearance, membranous texture, oval shape, and absence of filaments) 

(CAPUTO et al., 2012). To confirm the identification of P. fermentans, representative 

yeast isolates were submitted to a P. fermentans-specific PCR primer protocol 

(PEREIRA et al., 2014) that contained 12.5 μL of Mix GoTaq® Green Master 1X 

(Promega, São Paulo, Brazil) and 0.3 μM of each P. fermentans-specific primer (PFF2 

— 5′GAAGGAAACGACGCTCAGAC3′ and PFR2 — 

5′ATCTCTTGGTTCTCGCATCG3′). A 136-bp amplification product pointed to the 

identification of P. fermentans.  

 

5.2.5. High performance liquid chromatography (HPLC) 

 

The concentration of reducing sugars (glucose and fructose), organic acids 

(citric, succinic, lactic, acetic, and propionic acids), and ethanol were determined in 

intervals of 2 h. Aliquots of 2 mL of the liquid fraction samples were centrifuged at 

6000 ×g for 15 min and filtered through 0.22 μm pore size filter (Millipore Corp., 

Billerica, MA, USA). Analysis parameters were performed according to Carvalho Neto 
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et al. (2017). The filtered samples were injected into HPLC system equipped with an 

Aminex HPX 87 H column (300 x 7.8 mm; Bio-Rad, Richmond, CA, USA) and a 

refractive index (RI) detector (HPG1362A; Hewlett-Packard Company, Palo Alto, CA, 

USA). The column was eluted in an isocratic mode with a mobile phase of 5 mM H2SO4 

at 60 ºC and a flow rate of 0.6 mL/min. 

 

5.2.6. Ethyl acetate quantification by gas chromatography  

 

Production of ethyl acetate, the major volatile organic compound produced by P. 

fermentans YC5.2 (PEREIRA et al., 2014), was monitored by gas chromatography. 

Every two hours, the gases formed in the bioreactor headspace were collected and 

injected into a gas chromatograph (model 17A; Shimadzu, Kyoto, Japan) equipped with 

a flame ionization detector at 230 °C. The operation conditions were as follows: a 30 m 

× 0.32 mm HP-5 capillary column, column temperature of 40 to 150 °C at a rate of 20 

°C/min. A standard curve was constructed using an authentic standard purchased from 

Sigma and ethyl acetate concentration was expressed as μmol/L of headspace 

 

5.2.7. Kinetic parameters 

 

The kinetic parameters for bacteria and yeast growth [specific growth rate (μ)] 

and product formation [product formation rate (Q) and specific product formation rate 

(Qp) of organic acids (acetic and lactic acids), ethanol, and ethyl acetate] were 

determined for both inoculated and spontaneous processes. To achieve these parameters 

the following equations were used: 

 

 

 
Where  and  are the final concentration of biomass and products (g/L) 

generated in the coffee-pulp bean mass during fermentation time  (in hours).   
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5.2.8. Bacterial diversity by Illumina high-throughput sequencing 

 

The bacteria community composition from liquid fraction samples withdrawn at 

0, 12 and 24 h of spontaneous and inoculated STR fermentation was analyzed by 

Illumina high-throughput sequencing. For extraction of genomic DNA, 1 mL of each 

sample was centrifuged at 12,000 ×g for 1 min. The cell pellet was resuspended in 500 

μL Tris-EDTA, homogenized with 10 μL of lysozyme solution at 20 mg/mL (Sigma 

Aldrich, Arklow, Ireland) and incubated at 30 °C for 60 min. Then, 50 μL of SDS 10% 

(w/v) and 10 μL of proteinase K solution at 20 mg/mL (Sigma Aldrich, Arklow, 

Ireland) were added to the lysis solution, followed by homogenization and incubation at 

60 ºC during 60 min. Then, 150 μL of phenol-chloroform (25:24) were added, 

homogenized by inversion and centrifuged at 12,000 ×g for 5 min. The supernatant was 

collected and the DNA was precipitated with 3x (v/v) absolute ethanol. Pellets were 

washed with 80% ethanol, dried, and resuspended in ultrapure water. Total DNA was 

quantified with a Nanodrop 2000 instrument (Thermo Fisher Scientific, Inc., Waltham, 

MA, USA). 

A fragment of the of the 16S rRNA gene was amplified from the total extracted 

DNA using primers for the V4 region (bases 515 to 806) containing complementary 

adaptors for Illumina platform (CAPORASO et al., 2012) using KlenTAQ polymerase 

(Sigma Aldrich, Arklow, Ireland). Bar-coded amplicons were generated by PCR under 

the following conditions: 95 ºC for 3 min, followed by 18 cycles at 95 ºC for 30 s, 

annealing at 50 ºC for 30 s, extension at 68 ºC for 60 s, final extension at 68 ºC for 10 

min. Samples were sequenced in the MiSeq platform using the 500 V2 kit, following 

standard Illumina protocols. 

After sequencing, chimeric sequences detection, removal of noises from pre-

cluster and taxonomic attribution were performed using standard parameters of QIIME 

software package, version 1.9.0. Applying the uclust method (EDGARD et al., 2010), 

sequences presenting identity above 97% were considered the same operational 

taxonomic units (OTUs) according to the SILVA database (QUAST et al., 2013). 

 

5.2.9. Chemical analysis of dried, fermented coffee beans 

 

Sugars and organic acids present in dried, fermented beans from spontaneous 

and inoculated processes, as well as in green coffee beans (namely unfermented beans), 
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were extracted in water and determined by high-performance liquid chromatography 

(HPLC). The HPLC procedure was performed as described in section 5.2.4.  

The volatile aroma compound composition of spontaneous, inoculated and 

unfermented coffee beans was determined by gas chromatography coupled to mass 

spectrometry (GC-MS) according to Carvalho Neto et al. (2017). The extraction of 

volatile compounds from the beans was performed using a headspace vial coupled to a 

solid phase microextraction (SPME) fiber (5% Carboxen [CARB]/95% 

Polydimethylsiloxane [PDMS] df75 μm partially crosslinked) (Supelco, St. Louis, MI, 

USA). The flasks were heated at 70 ºC for 10 min without agitation, followed by 15 min 

of exposition of the fiber in a COMBI-PAL system. The compounds were desorbed into 

the gas chromatograph injection system gas phase (CGMS TQ Series 8040 and 2010 

Plus GC-MS; Shimadzu, Tokyo, Japan) at 260 ºC. The column oven temperature was 

maintained at 60 ºC during 10 min, followed by two heating ramps of 4 and 10 ºC/min 

until reaching the temperatures of 100 and 200 ºC, respectively. The compounds were 

separated on a column 95% PDMS/5% PHENYL (30 m x 0.25 mm x 0.25 mm film 

thickness). The GC was equipped with an HP 5972 mass selective detector (Hewlett 

Packard, Palo Alto, CA, USA). Helium was used as carrier gas at a rate of 1.0 mL/min. 

Mass spectra were obtained by electron impact at 70 eV and a start and end mass-to-

charge ratio (m/z) of 30 and 200, respectively. The compounds were identified by 

comparison to the mass spectra from library databases (Nist’98 and Wiley7N). 

 

5.2.10. Coffee cup quality analysis 

 

After dried, about 800 g of fermented coffee beans from spontaneous and 

inoculated STR processes were roasted in a semi-industrial roaster (Probatino, Leogap 

model, Brazil). A coffee beverage derived from conventional processing (i.e., on-farm 

fermentation condition) was included as a control. The roasting cycle was defined 

through the sensory markers technique according to the procedures described by Pereira 

et al. (2015).  The roasted coffee was ground in a G3 Bulk Coffee Grinder (Bunn 

Corporation, São Paulo, Brazil) to an average particle size between 360 and 420 μm. 

The coffee samples for cupping were prepared using 105 g of roasted and ground coffee 

in 1500 mL of filtered water (Everpure Water Filter System, São Paulo, Brasil) using a 

VP17-3 BLK Coffee Brewer (Bunn Corporation) with paper filter method (Melitta 

original 1 x 4). The water was treated to avoid the influence of different solutes and 
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contained 90 ppm of total dissolved solids with a balance ratio of 1:4 sodium and 

calcium, and had a pH of 6.50. Cupping evaluation was performed by a panel of four 

expert coffee tasters with Q-Grader Coffee Certificate, as described in Pereira et al. 

(2015). An evaluation was conducted assessing the following attributes: aroma, taste, 

acidity, body, balance, aftertaste and overall quality according to the Specialty Coffee 

Association of America Cupping Protocols (see 

‘http://www.scaa.org/?page=resources&d=cupping-protocols’). The quality and 

intensity of each attribute were evaluated simultaneously using a scale varying from 0 to 

10, with 0.25 increments, and a total score for each sample was assigned.  After the 

gustatory step, coffee tasters assigned a score unfermented beans e to each sample and 

highlighted the remarkable attributes of each beverage in a descriptive analysis. 

 

5.2.11. Statistical analysis 

 

The data obtained of target metabolite analysis and sensory evaluations were 

analyzed by post-hoc comparison of means by Duncan’s test. Statistical analyses were 

performed using the SAS program (Statistical Analysis System Cary, NC, USA). Level 

of significance was established in a two-sided p-value <0.05. 

 

5.3. RESULTS AND DISCUSSION 

 

5.3.1. Controlled bioreactor fermentation assay 

 

The FIGURE 5.1 shows the time evolution of microbial growth and pH decrease 

during inoculated and spontaneous STR fermentation. For both processes, the bioreactor 

system enabled an ideal, continuous yeast and LAB growth. This led to a correct coffee-

mucilage acidification, reaching final pHs of 4.63 and 4.27 in the inoculated and 

spontaneous process, respectively. The reduction in pH levels below 4.5 is a method 

widely used by coffee producers to determine the end of coffee beans fermentation 

(JACKELS; JACKELS, 2005). The acidification process assists in the promotion of 

pectin breakdown (the major carbohydrate polymer present in coffee mucilage), 

contributing to the removal of the fruit mucilage layer and drying of the beans 

(GERMANE et al., 2015; KIM et al., 2016; PEREIRA et al., 2017). 
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FIGURE 5.1 – GROWTH KINETICS OF TOTAL YEASTS (A) AND TOTAL LACTIC ACID 
BACTERIA (B) IN COFFEE FERMENTATIONS CONDUCTED IN A STR BIOREACTOR. 

INOCULATED PROCESS = YEAST STARTER CULTURE-ADDED (YC5.2); SPONTANEOUS 
PROCESS = NON-INOCULATED CONTROL (SPO) 

 
 

The inoculation of P. fermentans resulted in high counts of total yeasts during 

entire fermentation process, reaching a peak of 8.85 log CFU/mL at 24 h of 

fermentation (FIGURE 5.1A). This yeast population was represented by over 75% of P. 

fermentans at the end of the fermentation process, as reveled by primer-specific PCR 

analysis (data not shown). On the other hand, the spontaneous fermentation showed a 

significantly lower yeast count, reaching a maximum of 6.46 log CFU/mL at 10 h of 

fermentation. The high yeast population present in the inoculated process led to an 

efficient coffee-mucilage sugar consumption, with glucose being totally consumed at 12 

h (TABLE 5.1). A survey of previous studies demonstrates significant residual amounts 

of pulp sugars (approximately 6.93 g/L) at the end of coffee fermentations conducted 

under field conditions (CARVALHO NETO et al., 2017), even by using selected starter 

cultures (EVANGELISTA et al., 2014a, 2014b; PEREIRA et al., 2015). Unsatisfactory 

coffee bean demucilaging interferes with the drying process encouraging the growth of 

spoilage bacteria and fungi (AGATE; BHAT, 1996). Thus, the STR system combined 

with the use of selected yeast starter culture showed great potential for efficient removal 

of coffee beans mucilage layer. 
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The fermentative kinetic parameters for both inoculated and spontaneous assays 

are disposed in TABLE 5.2. In general, the efficient yeast biomass accumulation in the 

inoculated process (3.72 g/L) led to higher ethanol (0.136 g/L.h) and ethyl acetate 

(0.383 g/L.h) formation rates when compared to spontaneous treatment. A similar lactic 

acid bacteria growth rate (0.028 h-1) and lactic acid formation rate (~0.11 h-1) was 

observed in the course of both fermentation processes (TABLE 5.2). Lactic acid is an 

important organic compound to coffee beans fermentation, which assists in the coffee 

pulp acidification process without interfering in the final product quality (PEREIRA et 

al., 2017). On the other hand, acetic acid content (a common coffee-transmitting off-

flavor) was higher in the spontaneous process (0.752 and 0.098 g/L in spontaneous and 

inoculated assays, respectively), indicating a possible difference in the bacterial 

composition between treatments. To prove this hypothesis, a high throughput 16S 

rDNA gene sequencing analysis was performed at 0, 12, and 24 h of fermentation 

(FIGURE 5.2). In both inoculated and spontaneous processes, a constant increase in the 

population of LAB was observed, reaching over 85% of the total read sequences at the 

end of the fermentation process. A great diversity of LAB genera was reported, 

including Fructobacillus, Leuconostoc, Pediococcus, Erwinia, and Lactobacillus, with 

strong dominance of Leuconostocaceae family. However, 16S rDNA gene sequencing 

revealed differences in the minor bacteria composition between the treatments. At the 

end of the spontaneous process, it was detected the presence of acetic acid bacteria 

(AAB) belonging to genera Gluconobacter, Roseomonas, Roseococcus, and 

Acetobacter, that were not detected in the inoculated treatment. AAB are known to have 

unique fermentation ability, so called “oxidative fermentation” of acetic acid from 

ethanol (WAGNER et al., 2005), indicating the probable origin of this organic acid in 

the spontaneous process. Thus, the use of yeast starter culture was seen to be essential to 

decrease acetic acid production in coffee beans fermentation. 
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TABLE 5.2 – ESTIMATED KINETIC PARAMETERS OF THE SPONTANEOUS AND INCULATED 
FERMENTATIONS 

Kinetic parameters Fermentation assay 

Fermentation variable Parameter Inoculated Spontaneous 

LAB  
μ (h-1) 0.028 0.028 

Biomass accumulation (g) 3.844 3.844 

Yeasts 
μ (h-1) 0.011 0.012 

Biomass accumulation (g) 3.720 2.520 

Lactic acid 
Q (g/L.h) 0.119 0.101 

Qp (h-1) 0.031 0.026 

Acetic acid 
Q (g/L.h) 0.008 0.030 

Qp (h-1) ND ND 

Ethanol 
Q (g/L.h) 0.136 0.012 

Qp (h-1) 0.037 0.004 

Ethyl acetate 
Q (μmol/L.h) 0.383 ND 

Qp (h-1) 0.103 ND 

μ, specific growth rate; Q, product formation rate; Qp specific product formation rate. 
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5.3.1. Determination of coffee beans and beverage quality 

 

The chemical composition of coffee beans before (unfermented beans) and after 

inoculated and spontaneous processes was analyzed by HPLC and GC-MS (TABLE 

5.3). HPLC analysis demonstrated that glucose, fructose and citric acid were unaltered 

in the seeds after fermentation processes, while lactic acid, acetic acid and succinic acid 

increased significantly (p<0.05) due to the microbial activity. In addition, acetic acid 

content was higher in the beans originated from spontaneous process, probably derived 

from AAB metabolism occurred during this treatment.  

A total of 36 volatile organic compounds were identified in the analyzed coffee 

beans by SPME-GC-MS analysis, including hydrocarbons, aldehyde, ketones, alcohols, 

esters, furans, terpenes, pyrazine, and carboxylic acids (TABLE 5.3). Phenyl-

acetaldehyde, styrene, phenylethyl alcohol, and D-limonene were the most important 

aromatic compounds quantified in both unfermented and fermented beans. Interestingly, 

coffee beans generated from Pichia fermentans-inoculated treatment had significantly 

higher concentrations (p<0.05) of specific volatile compounds, such as D-limonene, 

phenyl-acetaldehyde, and phenylethyl alcohol. In addition, the use of the starter culture 

promoted specific formation of some compounds, including phenylethyl acetate, 

ethylsalycilate, butanoic acid, 2-ethyl, and furfural, 5-methyl, that were not detected in 

beans from spontaneous process. Many of these compounds are typically reported in the 

literature as attributable to Pichia metabolism (i.e., benzaldehyde, ethyl acetate, 

phenylethyl alcohol, phenyl-acetaldehyde) (KONÉ et al., 2016; MANTZOURIDOU; 

PARASKEVOPOULOU, 2013; ROJAS et al., 2003), while others may have been 

originated from the beans itself (i.e., linalool and β-myrcene). This indicated that the use 

of selected starter culture in bioreactor promoted a modification in the aromatic 

chemical compounds composition of coffee beans, although more studies on these 

kinetics should be performed. 
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Sensory analysis of beverages produced with roasted coffee beans from STR 

fermentations and on-farm processing (control) is shown in FIGURE 5.3. The beverage 

produced from Pichia fermentans-inoculated treatment received scores above 90 points, 

which indicate a very high coffee quality according to Specialty Coffee Association of 

America Cupping Protocol. This beverage had higher scores in overall, aroma, flavor, 

acidity, body, finish and balance aspects when compared to STR spontaneous processes 

and control fermentation. This indicates the positive influence of yeast metabolism in 

final coffee beverage quality. 

 
FIGURE 5.3 - SENSORIAL DIFFERENCES OF COFFEE BEVERAGES GENERATED FROM 

FERMENTED, ROASTED COFFEE BEANS OF THE CONTROL (SPONTANEOUS) AND 
INOCULATED PROCESSES ASTERISK REPRESENT SIGNIFICANTLY DIFFERENCE IN A TWO-

SIDED P-VALUE <0.05 

 
Comparisons were made by a panel of four experienced coffee tasters. 
Control indicates a coffee beverage derived from conventional processing (i.e., on-farm fermentation 
condition). Asterisk= significantly higher in a two-sided p-value<0.05. 

 

5.4. CONCLUSION 

 

In summary, for the first time, a yeast bioreactor model was applied to the coffee 

fermentation process. The fermentation system adopted in this work (consecutive 

aerobic and anaerobic phases) proved to be a conducive environment for starter culture 
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growth, coffee-pulp sugar consumption and formation of metabolite compounds that 

can improve coffee beverage quality. The inoculation with high titers of selected yeast 

cultures modulates the overall fermentation, with efficient sugar mucilage consumption 

and aroma compounds formation. In addition, very high-quality coffee beans and 

beverages were produced from bioreactor processes. The use of STR may be of great 

interest for those who seek improved control over the coffee beans fermentation process 

and/or to optimize coffee fermentation through the use of starter cultures. 
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GENERAL CONCLUSION 

In summary, the application of the next generation sequencing (Illumina 
platform) in the present study allowed a good representation of both high- and low-
prevalent bacterial population, obtaining a total of 440,524 OTUs and over 80 families 
and genera identified. Among these, it is possible to highlight the first report of 
Fructobacillus, Pseudonocardia, Pedobacter, Sphingomonas, Hymenobacter and other 
52 microbial groups, showing the potential of the terroir in the isolation of 
microorganisms with potential biotechnological applications. In parallel, the proposition 
of a new fermentation model in stirred-tank bioreactors under controlled parameters 
allowed the creation of a favorable environment for the Lactobacillus plantarum 
LPBR01 and Pichia fermentans YC5.2 development. The starter culture growth resulted 
in an effective consumption of sugars, with glucose being totally consumed at 12 h and 
the presence of a low concentration of residual fructose (1.14 and 0.98 g/L, repectively) 
at the end of the fermentation, and the production of important metabolites such as 
lactic acid, ethyl acetate, D-limonene and 2-phenylethyl acetate. The diffusion of lactic 
acid and volatile organic compounds into the beans promoted the sensorial modulation 
of the coffee beverages, which reached scores above 90 points in the SCAA scale and 
were significantly superior to the spontaneous fermentations conducted in bioreactors 
and on-farm conditions. In addition, the LAB bioreactor model showed a pronounced 
acidification of the coffee pulp-bean mass, achieving a pH bellow 4.0 during the initial 
6 h of fermentation and significantly reducing the time required for the fermentation. 
Thus, the present study allowed an in-deepth temporal analysis of the microbial 
populations’ dynamics associated with coffee fermentation and suggested a new 
segment for the technological advance of the coffee post-harvest processing. 
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