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RESUMO

A producio e exportagdo do café ¢ uma grande for¢a motriz para a economia dos
principais paises produtores, tais como Brasil, Honduras e Coloémbia, chegando a
contribuir em mais de 3% para o Produto Interno Bruto (PIB). No entanto, ndo ha o
reflexo desse impacto econdmico nas linhas produtivas de café, uma vez que a etapa de
processamento pos-colheita ocorre de maneira rudimentar. Por essa razdo, o presente
trabalho visou: i) o estudo da diversidade, composi¢do e dinamica de leveduras e
bactérias durante o processo fermentativo dos graos de café; ii) e o estudo do
comportamento de fermentagdes (i.e. espontanea e inoculada) conduzidas em
biorreatores de tanque agitado em condi¢des controladas de temperatura, agitagdo e
aeracdo. Em fermentacdes espontineas e em condi¢des de campo na regido de Minas
Gerais, o sequenciamento do gene ITS-rRNA revelou que a populagao de leveduras foi
representada, principalmente, por Saccharomyces sp., seguido de Torulaspora
delbrueckii, Pichia kluyveri, Hanseniaspora wuvarum, H. vineae, e Meyerozyma
caribicca. Utilizando a técnica de Sequenciamento de Nova Geragdo na plataforma
[llumina, foi possivel observar a presenca de mais de 80 géneros bacterianos, muitos
dos quais foram descritos pela primeira vez em uma fermentacdo de graos de café.
Dentre estes estdo inclusos Fructobacillus, Pseudonocardia, Pedobacter,
Sphingomonas e Hymenobacter. A anélise temporal demonstrou uma forte dominancia
de bactérias laticas, representando mais de 97% do total de sequéncias analisadas ao
final da fermentagdo. As fermenta¢des de café conduzidas em bioreatores em condigoes
controladas permitiram um crescimento eficiente das culturas iniciadoras Lactobacillus
plantarum LPBRO1 (pico de 10,7 log CFU/mL em 10 h) e Pichia fermentans YCS5.2
(8,85 log CFU/mL), resultando em uma rapida acidificagdo do meio (pH <4,0 em 6 h),
elevadas produgdes de acido latico (8,602 g/L) e acetato de etila (pico de 97,93 umol/L
em 8 h). A difusdo desses compostos para o interior do grao resultou em bebidas com
notas sensoriais superiores a 91 pontos na escala Specialty Coffee Association of
America (SCAA), a qual foi significativamente superior as bebidas produzidas pelo
método convencional. Este novo modelo de fermentagdo pode ser utilizado para
conduzir fermentagdes de café¢ controladas e fornecer graos homogéneos e de elevada
qualidade para a industria.

Palavras-chave: Café, microorganismos, processamento via umida, biorreator de
tanque agitado.



ABSTRACT

The production and export of coffee is a major driving force for the economy of
the main producing countries, such as Brazil, Honduras and Colombia, which
contributes with over 3% of the Gross Domestic Product (GDP). However, there is no
reflection of this economic impact on coffee production sites, since the post-harvest
processing stage occurs rudimentary. For this reason, the present work aimed at: 1) the
study of the diversity, composition and dynamics of yeasts and bacteria during the
fermentative process of coffee beans; ii) and the behavior study of fermentations (i.e.,
spontaneous and inoculated) conducted in stirred tank bioreactors under controlled
conditions of temperature, agitation and aeration. In spontaneous fermentations
conduced at on-farm conditions at Minas Gerais region, the sequencing of the ITS-
rRNA gene revealed that the yeast population was represented mainly by
Saccharomyces sp., followed by Torulaspora delbrueckii, Pichia kluyveri,
Hanseniaspora uvarum, H. vineae, and Meyerozyma caribicca. The New Generation
Sequencing technique on the Illumina platform revealed the presence of over 80
bacterial genera, many of which were described for the first time in coffee beans
fermentation. These include  Fructobacillus,  Pseudonocardia, = Pedobacter,
Sphingomonas and Hymenobacter. The temporal analysis demonstrated a strong
dominance of lactic bacteria, representing more than 97% of the total read sequences at
the end of the fermentation. The coffee fermentations conducted in bioreactors under
controlled conditions allowed efficient growth of the Lactobacillus plantarum LPBRO1
(peak of 10.7 log CFU/mL in 10 h) and Pichia fermentans YC5.2 (8.85 log CFU/mL)
starter cultures. This domination resulted in a rapid acidification of the coffee-pulp bean
mass (pH <4.0 in 6 h) and high production of lactic acid (8.602 g / L) and ethyl acetate
(peak of 97.93 umol/L in 8 h). The diffusion of these compounds into the beans resulted
in beverages scores above 91 points on the Specialty Coffee Association of America
(SCAA) scale, which was significantly higher than those produced by the conventional
method. This new fermentation model can be used to conduct controlled coffee
fermentations and provide homogenous and high quality grains for the industry.

Keywords: Coffee, microorganisms, wet processing, stirred-tank bioreactor.
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1. INTRODUCTION

The coffee (Coffea arabica L.) belongs to the Rubicaceae family, which
comprises more than 600 genera and 10,000 species of tropical trees and shrubs
(BREMER; ERIKSSON, 2009). The coffee originates from Ethiopian highlands, where
it is still possible to observe the growth of wild coffee plants. Until the fifteenth century,
coffee production was restricted to Arabia, more precisely to Yemen, where the coffee
beans were of great economic importance to producers and traders. In 1615 the first
sacks of coffee reached the non-Islamic world, and coffee plantations soon gained the
European colonies in Central and South America (GRIGG, 2002; PEREIRA et al.,
2017).

Exceeding a global production of 9.5 million tons and a global industry valued at
more than US$ 200 billion, coffee is in a prominent position in the world economic
scenario. With a production of 3.6 million tons, Brazil is the largest producer and
exporter of coffee, followed by Vietnam, Colombia, Indonesia and Honduras (ICO,
2018). Although this cultivar has a significant impact on the economy of producing
countries, the fermentation stage is carried out in a traditional way, via spontaneous
methods. This fact contrasts with fermented products produced in developed countries,
where fully controlled processes are performed, such as wines, beers and dairy products
(AYAD et al., 2003; BRANYIK et al., 2005; SINGH; SOOCH, 2009; UGLIANO;
GENEVESE; MOIO, 2003).

Coffee beans fermentation stage is performed by indigenous bacteria and yeasts
present in the surface of coffee cherries. Spontaneous fermentations have several
disadvantages, such as the lack of predictability and control over the final quality of the
beverage produced, resulting in the commercial depreciation of the final product. In this
sense, the search for starter cultures that can promote a homogeneous degradation of the
mesocarp, reduction of fermentation time, and production of flavoring compounds has
become the target of several recent studies (SILVA et al., 2013; PEREIRA et al., 2014,
2015, 2016; LEE et al., 2016a, 2017a). However, the rudimentary conditions and the
lack of control (i.e., temperature, agitation, aeration control or anaerobic system) in
which the fermentations are performed hinder the reproducibility and standardization
necessary for the development of commercial lines of starter cultures.

In order to contribute to a better understanding of microbial diversity and the
improvement of coffee bean fermentation technology in Brazil, the present study aimed

to carry out studies using dependent- and independent-cultivation methodologies to
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evaluate the dynamics of the bacterial population and to propose a new fermentation

model.

2. OBJECTIVES

2.1. Main objective

The present study aims to characterize the diversity, composition and dynamics

of the microbiota in spontaneous coffee fermentations conducted in the region of Minas

Gerais

and to perform kinetic, metabolic and sensorial studies of inoculated and

spontaneous fermentations in stirred tank reactors.

2.2. Secondary objectives

Characterize the different microbial groups present in the region of Minas Gerais
and estabilish a relationship between microbiome versus quality;

Standardize and apply Next Generation Sequencing tools through the Illumina
Platform in coffee fermentations;

Establish the relationship between the dominant microorganisms observed in the
fermentation processes and the difference between the profile of aromatic
compounds in the coffee beans obtained;

Determine the kinetic parameters of fermentations conducted in stirred-tank
bioreactors;

Characterize the coffee fruits' profile of organic volatile compounds, sugars and
organic acids (GC-MS and HPLC) and establish a correlation with the dominant
microbiota in the fermentation process;

Evaluate the effect of the implementation of starter cultures on the natural
microflora of coffee processing through the Illumina MiSeq Next Generation
Sequencing Platform.

Produce coffee beans with high content of aromatic compounds;

Produce high quality coffee beverages.
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CHAPTER I (LITERATURE REVIEW) — EXPLORING THE IMPACTS ON
THE AROMA FORMATION OF COFFEE BEANS — A REVIEW

Manuscript published in the Food Chemistry, volume 272, pages 441-452, August 2018

ABSTRACT
The aim of this review is to describe the volatile aroma compounds of green coffee

beans and evaluate sources of variation in the formation and development of coffee
aroma through postharvest processing. The findings of this survey showed that the
volatile constituents of green coffee beans (e.g., alcohols, aldehydes, and alkanes) have
no significant influence on the final coffee aroma composition, as only a few such
compounds remain in the beans after roasting. On the other hand, microbial-derived,
odor-active compounds produced during removal of the fruit mucilage layer, including
esters, higher alcohols, aldehydes, and ketones, can be detected in the final coffee
product. Many postharvest processing including drying and storage processes could
influence the levels of coffee aroma compositions, which remain to be elucidated. Better
understanding of the effect of these processes on coffee aroma composition would assist
coffee producers in the optimal selection of postharvest parameters that favor the

consistent production of flavorful coffee beans.

Keywords: Green coffee beans; volatile aroma compounds; coffee aroma; postharvest
processing

1.1. INTRODUCTION

The popularity of coffee products is related to their unique sensory and pleasant
flavor. A critical contributor to coffee beverage quality is the series of postharvest
practices performed to obtain dried beans suitable for roasting (HUCH; FRANZ 2015).
These practices involve a number of relatively complex steps, including fruit harvesting,
depulping, drying, and storage. Following on-farm postharvest processing, coffee beans
can be transported to industrial plants, where semi-manufactured or finished products
are obtained for commercialization (PEREIRA et al., 2017).

More than 90 years of scientific studies exploring the complex volatile aroma
composition of coffee have yielded over 1,000 volatile compounds (LEE;

SHIBAMOTO, 2002; CZERNY; MAYER; GROSCH, 1999; GROSCH, 1998; SANZ et
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al., 2002). These volatiles, including sulfur compounds, pyrazines, pyridines, oxazoles,
pyrroles, furans, aldehydes, higher alcohols, ketones, esters, and phenols, are mostly
generated by thermal reactions that occur during roasting and brewing (BUFFO;
CARDELLI-FREIRE, 2004; BROHAN et al., 2009; RODRIGUEZ; DURAN; REYES,
2010). However, the chemical composition of green coffee beans, as well as chemical
changes that occur through postharvest processing, can have a direct impact on the
quality and value of the final product (WINTGENS, 2004; BHUMIRATANA;
ADHIKARI; CHAMBERS, 2011; SUNARHARUM; WILLIAMS; SMYTH, 2014).
The influence of genotype, cultivation method and postharvest treatment
(harvesting, depulping, drying, and storage) on the final coffee quality is still under
study (AVALLONE et al., 2002; BYTOF et al., 2005; KNYSAK, 2017; LEE et al.,
2015; LEE; SHIBAMOTO, 2002; PEREIRA et al., 2016; RENDON; SALVA;
BRAGAGNOLO, 2014; SELMAR; BYTOF; KNOPP, 2008; SELMAR et al., 2006).
The aim of this review is to examine all the factors related to coffee volatile
composition and variation through postharvest processing. Additionally, we discuss
strategies that can be exploited to improve the flavor of coffee with a special focus on

the microbial-derived metabolites generated during removal of the fruit mucilage layer.

1.2. COFFEE PRODUCTION AND POSTHARVESTING PROCESSING

Coffee is derived from the tree of the genus Coffea, including more than 103
species of tropical trees and shrubs (FERRAO et al., 2015). The coffee tree is
commercially cultivated throughout the geographic region between latitudes 30° N and
30° S, known as the “coffee belt.” Brazil is one of the leading coffee producers,
supplying about a third of total world production, followed by Vietnam, Indonesia,
Colombia, India, Peru, Honduras, Ethiopia, Guatemala, Mexico, and 60 other countries
(PEREIRA et al., 2017). The total worldwide production of coffee beans exceeded 9
million tons in the 2015-2016 crop, with a turnover close to US$21 billion (ICO, 2017).
It is one of the most traded and consumed agricultural products worldwide, at times
surpassed only by oil (LEE et al., 2015).

The fruit of the coffee tree consists of an orange-red to red skin on ripening
(exocarp), a fleshy yellow-white pulp and mucilage (mesocarp), and a plain yellow
parchment (endocarp) and silver skin (integument) surrounding the seeds (endosperm)

(FIGURE 1.1). The exocarp gives the fruit external resistance. It is a monocellular layer
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protected by a waxy substance; when unripe, the fruits are green and turn to red-violet,
deep red, yellow, or orange (depending on the genotype) when ripe. The mesocarp is a
fleshy, fibrous, and sweet pulp, which is rich in carbohydrates (glucose, fructose, and
pectin), proteins, fat, lipid minerals and considerable amounts of tannins, poliphenols,
and caffeine (JANISSEN; HUYNH, 2018; MURTHY; NAIDU, 2012). The endocarp,
the so-called parchment layer, is a thin, yellowish, crumbly, paper-like polysaccharide
composed principally of a-cellulose, hemicellulose, lignin, and ashes (ESQUIVEL;
JIMENEZ, 2012). The silver skin is predominantly composed of polysaccharides,
especially cellulose and hemicelluloses, in addition to monosaccharides, proteins,
polyphenols, and other minor compounds (FARAH; DOS SANTOS, 2014). This layer
is high in total dietary fibers and phenolic compounds with significant antioxidant
activity (JANISSEN; HUYNH, 2018). The silver skin covers two hemispheres of
elliptical seeds which, in turn, contain the endosperm and embryos (FARAH; DOS
SANTOS, 2014; ESQUIVEL; JIMENEZ, 2012).
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FIGURE 1.1 — COFFEE FRUIT STRUCTURE AND SCHEMATIC PRESENTATION OF
POSTHARVEST PROCESSING METHODS CORRELATED WITH MAJOR BIOCHEMICAL
CHANGES THAT IMPACT ON COFFEE VOLATILE FORMATION. THIS FIGURE IS ADAPTED
FROM BYTOF et al. (2005), LEE et al. (2015), SELMAR et al. (2006), AND PEREIRA et al. (2017).

@ Green coffee fruit
Alkanes \
Aldehydes
4 Depulping
© Seed germination @
— e e ey

Sugars consumption

Proteins hydrolysis I Skin
Exocarp

Bean
Endosperm

—_— — — — — — — @ Biological Pulp Silver Skin
Aroma compounds formation demucilage Mesocarp Integument
Enzymes production

Y P Mucilage Parchment
Pectin Layer Endocarp

4 Initial drying (65% moisture content)
© Drying coffee

— e —————— — — — Final drying (10-12% moisture content)
Free water evaporation
Fatty acid’s liberation

Dried coffee beans )

@ Thermal reactions

_M”_d____j Ketones
aillard reaction ) Esters
Strecker degradation I
Roasted coffee beans @

Pyrroles

@ Volatile organic compounds Sulfur compounds

Wet processing e et Reasting Furans
= Semi-dry processing Fhenolics
= Dry processing Esters

@ Process Fyrazines

Fruit harvesting is the first step in postharvest coffee processing. The
heterogeneous development of coffee fruits leads to a simultaneous presence of
different maturation stages in the same coffee tree—that is, green (immature), cherry

(ripe), and raisin (overripe) (PEZZOPANE et al., 2003). When mature, the coffee fruits
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present lower concentrations of phenolic compounds, which implies a reduction of
astringency; moreover, coffee cherries show a higher content of volatile compounds
(aldehydes, ketones, and higher alcohols) in comparison to immature fruits
(WINTGENS, 2004). Thus, coffee harvesting should be initiated when the plant reaches
a homogeneous stage of maturation with a minimum prevalence of immature fruits
(BEE et al., 2005).

Harvesting of coffee is predominantly performed by handpicking or by stripping
the fruits onto sheets placed beneath the tree; however, the use of mechanical harvesters
based on the vibration of tree branches (e.g., self-propelled machines, portable and
mechanical stripping machines) has greatly increased all around the world (BEE et al.,
2005). The choice of method employed will interfere directly in the quality of the fruit
used for further steps of on-farm processing. Handpicking allows the exclusive selection
of fruits in their ideal stage of maturation (i.e., coffee cherries). Obtaining only ripe
coffee cherries through selective handpicking is, however, expensive and laborious. In
this sense, many producers choose between stripping or mechanical harvesting of coffee
fruits, followed by removal of immature beans through sorting (HUCH; FRANZ, 2015).

After harvesting, coffee processing should begin as quickly as possible to
prevent fruit spoilage by unfavorable fermentation or mold formation (BEE et al., 2005;
ILLY, 2002). The outer layers of the coffee fruit (i.e., the skin and pulp) are easily
removed, while the mucilage, parchment, and silver skin are firmly attached to the
beans (DE BRUYN et al., 2017). FIGURE 1.1 illustrates the three different methods
commonly used to eliminate these layers. In the dry processing, seeds are exposed to the
sun or air dryers until the moisture content is approximately 10%—12%. After drying,
the fruits are cleaned and dehulled, and then the dried skin and pulp are removed. Wet
processing, in contrast, involves a relatively complex series of steps, including
mechanical removal of the coffee skin and pulp, microbial degradation (fermentation) of
the mucilage layer and, finally, water removal by sun-drying (FIGURE 1.1). This
process reduces the time (from 3—5 weeks to 8—10 days) and area required for drying
the beans in relation to dry processing (BEE et al., 2005). Finally, semi-dry processing
presents stages of both dry and wet methods, where the coffee fruits are mechanically
depulped and then submitted to sun-drying (PEREIRA et al., 2017; BEE et al., 2005).

The beans resulting from any processing method must be dried to a final water
content of 10-12%. This process can be performed by sun-drying or using various

mechanical dryers (i.e., static dryers, column dryers, round dryers, or forced air dryers).
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The choice of the drying technique used is linked to economic factors and/or to the type
of processing employed. For example, in dry processing, the preservation of the exocarp
and mesocarp extends the time required to reach the desirable humidity levels because
the moisture of the harvested fruits is approximately 70%. For this reason, the use of
mechanical dryers is not recommended because it would represent a high and
unnecessary cost (KLEINWACHTER; BYTOF; SELMAR, 2015). On the other hand,
the use of mechanical dryers for wet-processed coffees has gained greater visibility

because of the reduction in both drying time and risk of microbial contamination.

1.3. GREEN COFFEE BEAN COMPOSITION AND FLAVOR PRECURSOR
FORMATION

The term “green coffee beans” in this study refers to the raw, unprocessed seeds
of Coffea fruits (FIGURE 1.1). The chemical composition of green coffee beans is very
complex, including more than 1,000 substances with different chemical and physical
properties (BAGCHI; MORUYAMA; SWAROOP, 2016). The main aroma precursors
are insoluble carbohydrates (cellulose and hemicellulose), soluble carbohydrates (i.e.,
arabinose, fructose, galactose, glucose, sucrose, raffinose, and stachyose), lipids,
chlorogenic acids, and nitrogen (N)-containing compounds (FADAI et al., 2017;
POISSON et al., 2017). Low-molecular-weight carbohydrates, such as sucrose, glucose,
and fructose, contribute to the formation of acids and other volatile compounds during
roasting (CLARKE; VITZHUM, 2008). In addition, polysaccharides are important
constituents for the retention of volatiles and, consequently, flavor formation (BUFFO;
CARDELLI-FREIRE, 2004). The lipid fraction of coffee is mainly composed of
triacylglycerols, sterols, coffeadiol, arabiol, and tocopherols. These compounds are
located mostly in the endosperm of green coffee beans, and only a small amount, the
coffee wax, is located in the outer layer of the bean (SPEER; KOLLING-SPEER, 2006;
ESQUIVEL; JIMENEZ, 2012).

Nitrogen-containing compounds, such as alkaloids (e.g., caffeine and
trigonelline) and proteins, as well as nonvolatile, aliphatic acids (citric, malic, and
quinic acids) and volatile acids (such as acetic, butanoic, decanoic, formic, hexanoic,
isovaleric, and propanoic acids), are also found in high concentrations in green coffee

beans. These compounds break down during the roasting process and generate
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important flavor-active metabolites such as pyridines and pyrroles (SUNARHARUM et
al., 2014; POISSON et al., 2017).

Other minor compounds present in green coffee beans include phenolics, thiols,
and minerals. Thiols are crucial compounds that are responsible for the distinctive
“coffee” and “roasty” smell notes, influencing the sensory perception of coffee
(DULSAT-SERRA; QUINTANILLA-CASAS; VICHI, 2016). The most important
phenolic compounds in coffee are caffeoylquinic acid-CQA, feruloylquinic acid-FQA,
and dicaffeoylquinic acid-diCQA. These components are known to have antioxidant
activity and various beneficial properties in human health (OGAWA, 2014). The
mineral composition of green coffee beans is related to soil constitution as well as to
other environmental factors, such as altitude, humidity, temperature, and shading during
the formation of the coffee fruits. In general, potassium appears in high amounts

followed by phosphorus, magnesium, and calcium (CARVALHO NETO et al., 2017).

1.4. AROMA FORMATION THROUGH POSTHARVEST PROCESSING

1.4.1. Green coffee beans volatile constituents.

Green coffee beans are characterized by an unpleasant taste, and development of
the characteristic beverage flavor is achieved through thermal reactions during roasting
and brewing. In fact, green coffee beans have only a basic composition of chemical
volatiles when compared to roasted beans. Whereas more than 1,000 volatile
compounds are generally detected in roasted coffee, on average, only 200 are found in
green beans. In addition, heterocyclic compounds, important components in providing
the distinctive flavor of roasted beans, are generally not found in green coffee beans
(LEE; SHIBAMOTO, 2002). Lee and Shibamoto (2002) reported that of the more than
350 heterocyclic compounds identified in roasted coffee (e.g., pyrroles, furans,
pyrazines, thiazoles, oxazoles, thiopheones, and imidazoles), only 2-methoxy-3-(2-
methylpropyl)-pyrazine was found in green coffee bean samples. Thus, these and other
odorous molecules are mostly formed during the roasting process from nonvolatile
precursors present in green coffee beans, such as polysaccharides, lipids, proteins, and
free amino acids (LEE; SHIBAMOTO, 2002).

TABLE 1.1 summarizes the volatile compounds reported in green, dried, and

roasted coffee beans. The volatile compounds of green coffee beans comprise
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hydrocarbons, higher alcohols, aldehydes, ketones, acids, esters, lactones, sulfur
compounds, furans, and phenols. Among these, aldehydes and alkanes are the most
abundant chemical classes found (FIGURE 1.1). Of the 21 volatile compounds reported
by Poyraz et al. (2016) in Turkish green coffee bean samples, isoamyl alcohol (10.4%),
hexanal (10.4%) and hexacosane (8.2%) were the most predominant. In Hawaiian green
coffee samples, Lee and Shibamoto (2002) identified 3-methyl butanoic acid (32.8%),
phenyl ethyl alcohol (17.3%), hexanol (7.2%), 4-hydroxy-3-methylacetophenone
(3.7%), and 3-methyl butanol (3.6%) as the major constituents, and aldehydes (hexanal
and benzaldehyde) and alkanes (tetradecane and cyclotetrasiloxane, octamethyl-) were

detected in high concentration in Thai green coffee beans by Somporn et al. (2011).
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The survey shown in TABLE 1.1 shows that many raw coffee volatiles are lost
during the roasting process, especially those of nonthermal origin, such as hexanal,
isoamyl alcohol, 1-hexanol, 1-pentanol, 2-heptanol, 1-octen-30l, benzyl alcohol, and
benzaldehyde (GONZALEZ-RIOS et al., 2007a; POYRAZ et al., 2016). On the other
hand, some compounds are reported to be common in both green and roasted samples,
including y-butyrolactone, linalool, guaiacol, pyridine, furfural, 5-methylfurfural, 1-
methylpyrrole, and p-damascenone (GONZALES-RIOS et al., 2007a; 2007b;
HOLSCHER; STEINHART, 1995; POYRAZ et al., 2016), which are responsible for
mainly spicy or green, vegetable-like  flavors of the final coffee beverage
(HOLSCHER; STEINHART, 1995; POYRAZ et al., 2016). Furthermore, some raw
coffee volatiles (e.g., geosmin, 2,4,6-trichloroanisol-phenol, and 4-heptenal) are
externally caused by insect attacks or immaturity of coffee beans and generally
associated with sensory defects (OESTREICH-JANZEN, 2010).

The species C. arabica L. (Arabica coffee) and C. canephora Pierre (Robusta
coffee) economically dominate the world coffee trade, accounting for about 99% of
world bean production. Presently, Arabica coffee dominates the volume of world
production (about 75% of total production) because of its superior bean quality
(BELITZ; GROSCH; SCHIEBERLE, 2009). In this sense, there is a price difference
between the above-mentioned types of coffee on the global market. The average price of
Arabica on the US market is 170 cents per pound, while the price of Robusta is 100
cents per pound (INDEXMUNDI, 2017a; 2017b). The high caffeine concentration in
Robusta beans in relation to Arabica coffee is the main chemical difference between
them. However, volatile chemical constituents can also serve as markers in the
differentiation of these beverages; for instance, 2-methylisoborneol has been detected in
high concentrations in Robusta coffees and may be responsible for their typical earthy
flavor (HOLSCHER; STEINHART, 1995). Further studies on this topic are necessary
in order to obtain volatile markers for differentiation of these two coffee species

(KNYSAK, 2017).

1.4.2. Impact of processing methods.

Coffee fruit can be processed according to the three above-mentioned
postharvest processing methods. The chosen method will have a direct influence on the

quality of the final coffee beverage (GONZALEZ-RIOS et al., 2007a; JOET et al.,
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2010; PEREIRA et al., 2017; SELMAR et al., 2006). In general, wet-processed coffees
are known to present higher acidity and more aroma than dry-processed coffees
(MAZZAFERA; PURCINO, 2004). This fact can be attributed to the different
metabolic activities of sugar and free amino acids inside the seeds as a result of the
chosen conditions (FIGURE 1.1). These compounds are important aroma precursors in
the formation of many volatiles during roasting, such as furans, diketones, pyrazines,
pyrrolines, lactones, and phenolic acids (BYTOF et al., 2005; KNOPP; SELMAR;
BYTOF, 2006; SELMAR et al., 2006). In a study conducted by Knopp et al. (2006),
glucose and fructose content was significantly lowered through wet processing. This
outcome may be associated with sugar metabolism (i.e., alcoholic or lactic fermentation
due the anoxic conditions of wet processing) and inter-conversions that are expected
during the seed-germination process (JOET et al.,, 2010). In addition, the superior
concentration of free amino acids (i.e., aspartate, glutamate, and alanine) in wet-
processed coffee is associated with the hydrolysis of proteins in order to generate raw
materials for the germination process (BYTOF et al., 2005; SELMAR; BYTOF;
KNOPP, 2002). On the other hand, the accumulation of y-aminobutyric acid in dry-
processed coffees could be associated with a response to drought stress during long
exposure while drying (FIGURE 1.1). These alterations in the pool of free amino acids
and low-weight sugars can explain the differences between the aroma profiles of wet-

and dry-processed coffee beans.

1.4.3. Mucilage removal

After harvesting and pulping, the coffee beans are submitted to underwater tank
fermentation (wet process) or placed on a terrace (semi-dry process) for mucilage
breakdown and removal. The sugars present in the mucilage will allow microorganisms'
growth, especially yeasts (e.g., Pichia guilliermondii, P. anomala Kluvyeromyces
marxianus, and Saccharomyces cerevisae) and lactic acid bacteria (e.g., Leuconostoc
mesenteroides, Lactobacillus plantarum and Lb. brevis) (EVANGELISTA, 2014b;
LEONG et al., 2014; PEREIRA et al., 2017; VILELA, 2010). The microbial growth
generates a range of end-metabolites, which can diffuse into the seeds and have an
impact on the final coffee quality (EVANGELISTA et al., 2014a; PEREIRA et al.,
2015; SILVA et al., 2013). In this respect, yeasts have a pivotal influence through the

generation of different aroma-influencing molecules via central carbon and nitrogen
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metabolism. In addition, various studies have shown that coffee-associated yeast strains
of Candida parapsilosis, Debaryomyces hansenii, Kluyveromyces marxianus, Pichia
guilliermondii, P. fermentans, P. kluyveri, and Saccharomyces cerevisiae are capable of
promoting pectin breakdown (the major carbohydrate polymer present in coffee
mucilage) through the production of different hydrolytic enzymes, such as pectin
methyl esterase, pectin lyase, and polygalacturonase (MASOUD; JESPERSEN, 2006;
PEREIRA et al., 2014; SILVA et al., 2008; Silva et al., 2013). The hydrolysis of pectin
releases simple sugars (i.e., glucose, rhamnose, L-arabinose and D-galacturonate) as an
additional carbon source for yeast metabolism and aroma formation (GERMANE et al.,
2015; KIM et al., 2016).

Ethanol, acetaldehyde, and acetic acid are the primary metabolites produced by
yeast during coffee mucilage fermentation (FIGURE 1.2). Coffee yeasts appear to have
low aldehyde dehydrogenase activity because no acetic acid is produced by selected
single cultures (TABLE 1.2). Along with ethanol, fermenting yeast cultures produce
many low-molecular-weight flavor compounds during the mucilage removal process,
including esters, higher alcohols, aldehydes, ketone, and terpenoids (FIGURE 1.2).
Among these compounds, esters (acetate and ethyl esters) are quantitatively the most
abundant group of volatiles formed. They are generated by a condensation reaction
between fatty acids and an alcohol molecule (SAERENS et al., 2010). In addition, the
direct connection to higher alcohols and their amino acid precursors makes ester
production highly dependent on a nitrogen source (DZIALO et al., 2017). Esters are
widely known to contribute to floral and fruity sensory notes in alcoholic beverages
(PROCOPIO; QIAN; BECKER, 2011). The exploration of yeast-derived esters to assist
coffee quality is, however, a relatively recent and recurrent approach. In this context,
different studies are currently dedicated to the selection of ester-producing coffee yeasts
(e.g., Pichia fermentans, P. guilliermondii, Candida parapsilosis, Saccharomyces
cerevisiae, Torulaspora delbrueckii, and Yarrowia lipolytica) with the potential to
increase the contents of these compounds in the beans (BRESSANI et al., 2018;
EVANGELISTA et al., 2014a; LEE et al., 2017a; PEREIRA et al., 2014, 2015; SILVA
et al., 2013). The production of ethyl acetate, isoamyl acetate, propyl acetate, ethyl
hexanoate, and n-butyl acetate has been shown to contribute to the development of

bh 13

exotic sensory notes in coffee beverages, such as “Sicilian lemon,” “apricot,”
“caramel,” “nutty” and “banana raisin” (EVANGELISTA et al., 2014a;

EVANGELISTA et al., 2014b; PEREIRA et al., 2015). In addition, the metabolism of
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lactic acid bacteria has also recently been used for ester formation (e.g., ethyl acetate,
ethyl isobutyrate, and hexyl acetate) and the production of flavorful coffee beans
(TABLE 1.2).
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Yeast commonly synthesizes a great variety of higher alcohols during coffee
fermentation, such as n-butanol, isobutanol, 1-propanol, 2-phenylethanol, isoamyl
alcohol, 2,3-butanediol, and 2-methyl-1-butanol (TABLE 1.1). These compounds are
derived from amino acid catabolism via the Ehrlich pathway (FIGURE 1.2). The coffee
mucilage is rich in amino acids that are assimilated by the Ehrlich pathway, including
leucine, valine, phenylalanine, threonine, and isoleucine (ELIAS, 1979; PEREIRA et
al., 2014). The direct relationship between microbial-derived higher alcohols and coffee
quality is not yet known. Higher alcohols are known for their higher sensory threshold,
which differs by several orders of magnitude from that of their corresponding acetate
esters (DZIALO et al., 2017). Thus, it is possible to speculate that an intense diffusion
process during fermentation is required to impact overall coffee quality.

FIGURE 1.2 — PROPOSED SCHEMATIC REPRESENTATION OF POTENTIAL AROMA

COMPOUNDS THAT CAN BE GENERATED IN YEAST FERMENTATION OF COFFEE
MUCILAGE FROM EXISTING PRECURSORS.
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A range of ketone compounds are formed during the coffee bean fermentation
process (TABLE 1.1). Some of these compounds are associated with yeast metabolism,
especially diacetyl (2,3-butanedione) (FIGURE 1.2). The presence of 2,3-butanedione
in roasted beans is linked to the generation of a buttery-like aroma in coffee beverages
(EVANGELISTA et al., 2015). Through yeast metabolism, this compound is formed
extracellularly by chemically driven decarboxylation of a-acetolactate (HIRST;
RICHTER, 2016). Thus, since the conversion of a-acetolactate into diacetyl is a
nonenzymatic process, fermentations conducted at high temperatures may increase the
conversion rate of excess a-acetolactate into flavor-impacting 2,3-butanedione
(KOBAYASHI; KUSAKA; SATO, 2005).

The terpenes formed during the coffee mucilage removal process (B-citronelol,
linalool, geraniol, a-terpeniol, citronellol, and B-citronelol) originate from glycoside
precursors through yeast B-glucosidase enzymes (HERNANDEZ et al, 2003;
MENDES-FERREIRA et al., 2009). In addition, some yeast species found in coffee
fermentation (e.g., Sacharomyces cerevisiae, Torulaspora delbrueckii, and
Hanseniaspora uvarum) can produce terpene derivatives through the mevalonic acid
pathway (CARRAU et al., 2005; GRUCHATTKA et al., 2013). Silva et al. (2013)
showed that linalool produced by coffee-associated Saccharomyces cerevisiae and
Pichia guilliermondii yeasts can be detected in beans after the roasting process (TABLE
2). The aroma of linalool has been described as fresh, citrusy, and woody in various
food products (GORSKA et al., 2017). For coffee, however, more studies are necessary
to evaluate the direct impact of this compound on the final product quality.

The aldehydes generated during the coffee mucilage removal process are
important precursors in the formation of aromatic compounds such as higher alcohols
and esters (FIGURE 1.2). These compounds are catabolized by the interconversion of
alcohols and the corresponding aldehydes or ketones via alcohol dehydrogenase activity
(HIRST; RICHTER, 2016). In addition, some aroma-active aldehydes (e.g. 2-methyl-2-
butenal and acetaldehyde) can be released from yeast cells during the apoptosis event
and diffuse into the beans, affecting the fruity and floral aromas of the coffee beverage
(BRESSANI et al., 2018; PEREIRA et al., 2014, 2015; RIBEIRO et al. 2017).

TABLE 1.2 outlines suitable starter cultures used to conduct a controlled coffee
mucilage removal process. It shows the diverse range of volatile compounds produced
by the different microbial strains selected. Thus, the selection criteria of fermenting

microorganisms should be driven by the targeted flavor with a focus on the relevant
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metabolic activities. Preference should be given to strains that deliver an overall
pleasant aroma to the end product with no off-flavors or unwanted acids such as acetic,
succinic, or butyric (PEREIRA et al.,, 2016). The combination of starter cultures
possessing different aroma-producing profiles can be considered for flavor
enhancement. In addition, the application of stressor factors, such as high or low
temperatures, can be exploited to modulate the concentration of individual or groups of

compounds for flavor improvement (PEREIRA et al., 2014).

1.4.4. Drying and storage processes

During the drying process, coffee beans remain viable with intense metabolic
activities (BYTOF et al., 2005; KNOPP et al., 2006). These include reactions of
interconversion of low-molecular-weight sugars (i.e., glucose, fructose, and mannose)
and hydrolysis of proteins, resulting in the accumulation of a wide variety of free amino
acids (JOET et al., 2010; KNOPP et al., 2006; SELMAR et al., 2002). So far, no
research has investigated changes in specific volatile compounds through the drying
process, and some studies have focused only on the major chemical compounds (i.e.,
sugar and proteins). More detailed chemical studies could assist in the understanding of
volatile losses caused by evaporation and/or oxidation reactions during drying.

After the drying process, the freshly processed coffee beans are stored for a
period of up to 3 years. The storage process must be maintained under ideal conditions
of humidity (e.g., 11% humidity), in a low temperature, and in an inert atmosphere in
order to preserve bean quality. During the storage process, coffee beans can remain
viable for up to 6 months. However, if the beans are stored within the parchment layer
(FIGURE 1.1), living seeds can be found for up to one year. After this period, the coffee
beans die, starting the senescence reactions (SPEER; KOLLING-SPEER, 2006;
RIBEIRO et al., 2011; TOCI et al., 2013). In general, a decline in cup quality is linked
to the loss of bean viability. This is mainly correlated with the chemical reactions
occurring during the senescence process, such as chlorogenic acid oxidation, which
leads to the development of a bluish-green color in the beans.

Works dedicated to biochemical alterations that occur during storage have
reported mainly on the major nonvolatile constituents, including sugars, lipids, and
carbohydrates. Selmar et al. (2008) found that the relatively high content of glucose

present in on-farm processed coffee beans decreased markedly through the storage time.
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On the other hand, Bucheli et al. (1998) found an increase in glucose under storage
conditions; these authors also detected a significant decrease in sucrose, which is
hydrolyzed to produce glucose and fructose. Thus, the carbohydrate fraction present in
freshly processed coffee beans has a direct influence on the germination process during
storage. For example, the glucose and fructose concentration is markedly higher in dry-
processed beans than in wet-processed beans, while that of beans originating from a
semi-dry process is between those of wet- and dry-processed beans (RENDON et al.,
2014).

During storage, undesired changes within the lipid fraction occur due to
oxidation processes (BOREM; MARQUES; ALVES, 2008; SPEER; KOLLING-
SPEER, 2006). Lipid oxidation is favored during the first three months because of a
high rate of respiration and the accumulation of reactive oxygen species. After this
period, the respiration is interrupted and the products of lipid oxidation react with
proteins, forming polymers (RENDON et al., 2014; SPEER; KOLLING-SPEER, 2006).

While many storage-associated reactions are already known, the specific causes
of the progressive weakening of cup quality are still unclear. Carbohydrates, lipids, and
proteins are all important precursors in the development of chemical aromas during the
roasting process. However, at present, there are no studies demonstrating the changes of
specific volatile molecules during storage. Coffees prepared by beans stored for only 6
months are attributed raspy, woody, or stale notes, while after one year stored, flat
aromas and old and woody notes are detected (RENDON et al., 2014; SELMAR et al.,
2008). These data demonstrate a possible direct influence of volatile constituents

formed and/or generated during the storage process.

1.5. ROASTING PROCESS

The color, taste, and aroma of coffee is related to chemical reactions that occur
during roasting. In general, this process takes between 3 and 20 minutes and can be
classified into three different stages: (i) the initial stage of water removal, where the
temperature is raised to 180 °C and the moisture of the beans changes from 10-12.5%
to 2.5% moisture; (i1) the second stage at 200-300 °C, during which physical-chemical
transformation occurs, leading to flavor development; and (iii) the phase of cooling via

cold air or water jets (FADAI et al., 2017).
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A wide variety of volatile compounds are present in roasted coffee beans, such
as alcohols, aldehydes, amines, carboxylic acids, dicarbonyls, enoles, esters, furans,
furanones, hydrocarbons, imidazoles, indoles, ketones, lactones, oxazoles, phenols,
pyrazines, pyridines, pyrroles, quinoxalines, sulfur compounds, terpenes, and thiazoles
(TABLE 1) (BUFFO; CARDELLI-FREIRE, 2004; POISSON et al., 2017;
SUNARHARUM et al., 2014). However, only some of these compounds have a major
impact on human perception, such as pyrazines, furans, esters, ketones, phenols, and
sulfur compounds (FIGURE 1.1). These compounds can undergo dramatic changes
depending on the thermal profile applied during the roasting process (CAPORASO et
al., 2018a). Several chemical events take place in the coffee seeds during the formation
of such molecules, such as cleavage, cyclization, dehydration, enolization,
epimerization, fragmentation, hydrolysis, isomerization, lactonization, and
recombination (AGUIAR; ESTEVINHO; SANTOS, 2016; POISSON et al., 2017). The
predominant chemical processes are the Strecker degradation and the Maillard and
pyrolysis reactions (FADAI et al., 2017; FLAMENT; BESSIERE-THOMAS, 2002).
The Maillard reaction is a chemical reaction between reducing sugars and amino acids,
leading to the formation of a range of important volatile compounds such as pyridines,
pyrazines, dicarbonyls, diacetyl, oxazoles, thiazoles, pyrroles and imidazoles, enolones
(furaneol, maltol, cyclotene), and formic and acetic acids (LEE et al., 2015; POISSON
et al., 2017). The Strecker degradation consists of a chemical reaction in which a-amino
acids are converted into aldehydes and sulfur compounds (e.g., 3-2-methylbutanal,
methional,  3-mercapto-3-methylbutyl formate, 3-methyl-2-butene-1-thiol,  2-
furfurylthiol, methanethiol, and phenylacetaldehyde), contributing to the complex
aroma composition of coffee (POISSON et al., 2017). In the pyrolysis reaction,
structural carbohydrates of the intercellular coffee bean matrix are degraded, increasing
internal porosity and CO; production (FADAI et al., 2017). Other minor reactions,
including the degradation of specific individual amino acids (i.e., proline and hydroxy
amino acids), aliphatic acids (particularly quinic acid) and lipids, have important
impacts on the formation of volatiles during roasting. For more information concerning
these reactions, readers are directed to the reviews published by Buffo and Cardelli-
Freire (2004), Martins et al. (2001), and Toledo et al. (2016).

The concentration of volatile compounds in roasted coffee strongly depends on
the genetic differences in the plant (CAPORASO et al., 2018a). Arabica is known to

contain high concentrations of 2,3-butanedione, 2,3-pentanedione, furfural, 1-
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(acetyloxy)-2-propanone, 2-acetylfuran, ethyl propanoate, furaneol, 2,3-butanediol,
acetoin, and 1-hydroxy-2-butanone, whereas Robusta is generally associated with
pyrazine compounds such as 2-methyl-pyrazine, 2,6-dimethylpyrazine, 2,5-
dimethylpyrazine,  ethylpyrazine,  2-ethyl-6-methylpyrazine, and  2-ethyl-5-
methylpyrazine (BLANK; SEN; GROSCH, 1991; CAPORASO et al., 2018a). Other
factors that influence roasted volatile constitution include green coffee bean
composition, geographic origin, postharvest processing of beans, environmental factors
in pre-harvest processing, presence of defective beans, and ripening stage (FREITAS;

MOSCA 1999; JOET et al., 2010; TOLEDO et al., 2016).

1.6. CONCLUSION

The findings presented in this review show that the main odor-active compounds
in coffee beverages, such as furans, pyrazines, and pyrroles, are not found in raw green
coffee beans. Thus, green coffee bean quality is determined by major, nonvolatile
constituents present in the raw material, such as sugar, amino acids, and lipids. These
aroma precursors will further undergo modifications in the postharvest processing steps
due to the seed germination process and lipid oxidation.

Among the different steps in postharvest coffee processing, microbial mucilage
removal has a major influence on the volatile composition of processed beans. Various
studies have shown that microbial-derived metabolites can diffuse into seeds and remain
after the roasting process, including esters, higher alcohols, aldehydes, ketone, and
terpenoids. Among these, flavor-active esters show great potential to influence the
quality of the final coffee beverage. So far, no research has investigated the changes of
specific volatile compounds through drying and storage. With respect to this issue, the

volatile kinetics that take place during these steps should be studied further.
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CHAPTER II (RESEARCH RESULTS) - YEAST DIVERSITY AND
PHYSICOCHEMICAL CHARACTERISTICS ASSOCIATED WITH COFFEE
BEAN FERMENTATION FROM THE BRAZILIAN CERRADO MINEIRO
REGION

Manuscript published in the Fermentation, volume 3, article #11, March 2017.

ABSTRACT

The aim of this study was to evaluate yeast diversity and physicochemical
characteristics of spontaneous coffee beans fermentation conducted in the coffee-
producing region at Cerrado Mineiro, Brazil. During 48 h of fermentation, yeast
population increased from 6.60 to 7.89 log CFU/mL with concomitant pulp sugar
consumption and organic acids production (mainly lactic (3.35 g/L) and acetic acids
(1.27 g/L)). According to ITS-rRNA gene sequencing, yeast population was mainly
represented by Saccharomyces sp., followed by Torulaspora delbrueckii, Pichia
kluyveri, Hanseniaspora uvarum, H. vineae, and Meyerozyma caribicca. SPME-GC-MS
analysis revealed a total of 25 volatile organic compounds with predominance of
hydrocarbons (9 compounds) and higher alcohols (6 compounds). The resulting
fermented, roasted coffee beans were analyzed by diverse chemical analysis methods,
including Fourier Transform Infrared (FTIR) spectroscopy and mineral and
thermogravimetric analysis. The thermal decomposition of the coffee beans occurred in
four stages between 90 and 390 °C, with significant mass loss (68%) after the second
stage at 190 °C. FTIR spectroscopy confirmed the presence of the main organic
functions associated with the coffee aroma, such as aromatic acids, ketones, aldehydes
and aliphatic esters. The results presented in this study enrich our knowledge
concerning yeast diversity and physicochemical characteristics associated with coffee

beans fermentation, and can be used to promote a controlled on-farm processing.

Keywords: Wet processing, coffee, yeasts, physicochemical characteristics
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2.1. INTRODUCTION

Coffea is a genus of flowering plants whose seeds are used to make coffee
beverage. Although there are many steps in the manufacturing of coffee beverage,
microbial fermentation plays an important role with great impacts on product quality
and value (EVANGELISTA et al., 2014a, 2015; PEREIRA et al., 2014, 2015, 2016).
Coffee fermentation consists of an on-farm process, occurred in the so-called wet
processing, during which microorganisms grow in the pulp material that surrounds the
seeds of the coffee fruit (PEREIRA et al., 2017). In this processing method, the pulp
(the exocarp and a part of the mesocarp) is removed mechanically. Subsequently, the
beans are submitted to 24-48 h of underwater tank fermentation to allow microbial
degradation of the remaining mesocarp layer (called mucilage) adhering to the
parchment. In addition, the microbiota responsible for the fermentation may also
contribute to the beverage’s sensory characteristics and other qualities due to the
excretion of metabolites produced during this process (PEREIRA et al., 2017). The
main chemical changes that occur during coffee fermentation are pectin degradation and
microbial production of organic acids, ethanol, esters and other metabolites from the
carbohydrates (PEREIRA et al., 2014; SIVERTZ, 1963; WOOTTON, 1963).

Yeasts are among the most frequently isolated microorganisms from fermenting
coffee beans. They are considered to be important to the fermentation process and
coffee flavor development. Consequently, yeast is the microbial group most widely
studied in coffee fermentations, which metabolic function has been elucidated in recent
studies (EVANGELISTA et al., 2014a; PEREIRA et al., 2014). The most frequently
occurring yeast species during coffee processing are Pichia kluyveri, Pichia anomala,
Hanseniaspora wuvarum, Saccharomyces cerevisiae, Debaryomyces hansenii and
Torulaspora delbrueckii (MASOUD et al., 2004; SILVA et al., 2008; VILELA et al.,
2010).

Recent studies published by our research group have reported the yeast and
bacteria diversity associated with coffee beans fermentation in Brazil (PEREIRA et al.,
2014, 2015, 2016, 2017). Pichia fermentans (YCS5.2), Saccharomyces sp. (YC9.15) and
Lactobacillus plantarum (LPBRO1) were studied as having a potential for use as starter
cultures for coffee wet fermentation (PEREIRA et al., 2015, 2016). However, studies
still are needed to improve the knowledge of the microbiota present in coffee processing

due to the variation in climate and altitude (EVANGELISTA et al., 2015). Cerrado



47

Mineiro is one of the largest coffee-producing regions in Brazil, located at Alto
Paranaiba, Mineiro Triangle and Norwest Minas Gerais. This region presents a uniform
edaphoclimatic pattern with an average temperature of 23 °C and flat relief situated at
800-1300 m, which enables the production of high-quality coffees (ABOPCAFE, 2017).
To the best of our knowledge, there is no study on the yeast diversity and
physicochemical characteristics associated with coffee bean fermentation performed in
this coffee-producing region. In this regard, the aim of this study was to study the yeast
diversity and physicochemical characteristics associated to coffee beans fermentation

during on-farm wet processing in the Cerrado Mineiro region.

2.2. MATERIAL AND METHODS

2.2.1. Spontaneous coffee beans fermentation and sampling

Coffee cherries (Coffea arabica) were manually harvested at the mature stage
from the Fazenda Shalon (Patrocinio, Minas Gerais State, Brazil). FIGURE 2.1 shows
the experimental setup and analytical procedures of each step conducted in this study.
The fruits were mechanically depulped and approximately 75 kg of depulped beans
were then conveyed in a clear water stream to tanks and left to ferment for 48 h in
accordance with local wet processing method (PEREIRA et al., 2015, 2016). Every 12
h, liquid fraction samples were withdrawn from the middle depth of the tank
fermentation and transferred to the laboratory in ice boxes for microbiological and

chemical analyses.

FIGURE 2.1. EXPERIMENTAL SETUP OF THE CASE STUDY OF COFFEE-PROCESSING
EXPERIMENTS CARRIED OUT AT THE CERRADO MINEIRO REGION

Tank fermentation Sundrying Fermented, dried beans Roasted beans
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¥ Thermal stability

2.2.2. Yeast isolation

Ten milliliters of each sample were added to 90 mL sterile saline-peptone water,

followed by serial dilutions. Yeasts were enumerated by surface inoculation on YEPG
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agar containing 100 mg/L chloramphenicol (Sigma, Sao Paulo, Brazil) to inhibit
bacterial growth. Plating was performed with 100 uL of each dilution and cultures were
incubated at 30 °C for 5 days (PEREIRA et al., 2014). According to the macroscopic
observations (texture, surface, margin, elevation, and color), colonies of different types
on YEPG medium were counted separately, and representatives isolated from different
fermentation times were purified by repetitive streaking. The purified isolates were
stored at —80 °C in YEPG broth containing 20% (v/v) glycerol (Difco, Franklin Lakes,
NJ).

2.2.3. Identification of yeast isolates

Yeast cultures were grown under appropriate conditions, collected from agar
plates with a sterile pipette tip and resuspended in 50 pL of ultra-pure water. The
suspension was heated for 15 min at 95 °C, and 1 pL of this suspension was used as a
DNA template in PCR experiments. The 5.8S ITS rRNA gene region of yeast isolates
was amplified using the primers ITS1 and ITS4. The 55 pL volume reaction consisted
of 5.5 uL of 10x PCR buffer (Invitrogen, Carlsbad, CA), 2 uL of MgCl, (50mM), 1.21
uL of dANTP Mix (10mM), 4 uL of the combined forward and reverse primers (ITS5
and ITS4), 0.4 uL of 5U/uL Platinum® Taq DNA polymerase (Invitrogen, Waltham,
MA, USA). The 5.8S ITS rRNA gene region was sequenced using an ABI3730 XL
automatic DNA sequencer. The sequences obtained were compared with sequences
available in the GenBank database through a basic local alignment search tool

(BLAST).

2.2.4. High performance liquid chromatography (HPLC) analysis of fermenting coffee

beans samples

The concentration of the reducing sugars (glucose and fructose) and organic
acids (acetic, citric, succinic, lactic, propionic and butyric acids) of fermenting coffee-
pulp bean mass was monitored during the course of fermentation. Samples (2 pL) of
each time were centrifuged at 6000 g and filtered through 0.22-pm pore size filter
(Sartorius Stedim, Goettingen, Germany). The samples were analyzed through a HPLC
apparatus (Aglient Technologies 1260 Infinity Series; Aglient Technologies, Santa
Clara, CA, USA) equipped with a Hi-Plex H column (300 x 7.7 mm; Aglient
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Technologies, Santa Clara, CA, USA) connected to a refractive index (RI) detector
(Aglient Technologies, Santa Clara, CA, USA). The column was eluted with a mobile
phase containing SmM H>SO4, at 60 °C and a flow rate of 0.6 mL/min.

2.2.5. Physicochemical characterization of fermented and roasted coffee beans

2.2.5.1. Volatile organic compounds determination by Gas Chromatography coupled to

mass spectrometry (GC-MS)

The resulting parchment coffee was dried in a laboratory oven at 3540 °C until
a water content of 12% was achieved. The extraction of volatile compounds from the
fermented, dried coffee bean samples (FIGURE 2.1) were performed using a headspace
(HS) vial coupled to a Solid Phase Micro Extraction (SPME) fiber (Carboxen®
(CAR)/Polydimethylsiloxane (PDMS) df75um partially crosslinked, Supelco, St. Louis,
MI, USA). For each determination, 1 g of sample was stored in a 20 mL HS vial. The
flask was heated at 70 °C for 10 min without shaking, followed by 15 min of fiber
exposure in COMBI-PAL system for balancing the volume within the vial. The
compounds adsorbed by the fiber were desorbed into the gas chromatograph injection
system gas phase (CGMS TQ Series 8040 and 2010 Plus GC-MS Shimadzu, Tokyo,
Japan) to 250 °C. The compounds were separated on a column 95% PDMS/5%
PHENYL (30 m x 0.25 mm, 0.25 mm film thickness, Shimadzu, Tokyo, Japan). The GC
was equipped with an HP 5972 mass selective detector (Hewlett Packard Enterprise,
Palo Alto, CA, USA). Helium was used as carrier gas at a rate of 1.0 mL/min. Mass
spectra were obtained by electron impact at 70 eV. The compounds were identified by

comparison to the mass spectra from the library database (Nist'98 and Wiley7n).

2.2.5.2. Metal analysis

Metal analysis was performed of fermented and roasted coffee beans. The
fermented, dried coffee samples were roasted in a semi-industrial roaster (Probatino,
Leogap model, Brazil) at 140 °C for 30 min. For sample preparation, fermented and
roasted coffee samples were transferred to a 250 mL volumetric flask and acidified with
5 mL of concentrated P.A. HNO3 and H>O> 30%. Subsequently, the system was allowed
to heating for 40 min at 80 °C. The extract was filtered with a 0.45 um pore size filter
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and the volume was completed to 100 mL. Reference solutions were prepared using
deionized water with resistivity of 18.2 MQ/cm through a Milli-Q water purification
system linked to a water distillatory Fisatom (Model 534, Brazil). Glassware used in
this procedure was subjected to a decontamination treatment with HNO3; 10% (w/v) for
24 hours prior to use.

For metal content determination, an Inductively Coupled Plasma - Optical
Emission Spectrometry (ICP-OES, Varian, Model ES 720, Palo Alto, CA, USA) was
used simultaneously with axial arrangement and solid-state detector. The torch was
aligned horizontally and vertically with a Mn?* standard solution concentration of 5.0
mg/L. The optical system of the ICP OES was calibrated with multi-element stock
solution of scanned patterns. Spectral lines were selected considering the absence of
interferences and appropriate sensitivity for determining elements in high and low
concentrations. The operation conditions were as follows: power of 1.10 kW, plasma
gas flow of 15 L/min, auxiliary gas flow of 1.5 L/min, nebulizer pressure of 180 kPa,
triplicate time read of 3 s, stabilization time of 15 s, sample delay of 30 s, pump speed

of 15 rpm and sample washing time of 3 s.

2.2.5.3. Fourier transform infrared (FTIR) spectroscopy

Functional groups in samples of grounded coffee beans (fermented and roasted)
were determined by FTIR on a VERTEX 70 (Bruker, Billerica, MA, USA) containing a
DRIFT accessory with 64 scans and a 4 cm™ resolution at the 4000 to 400 cm™' wave
length region. The samples were crushed, pulverized and oven dried. Before
determination, about 20 mg of the samples were mixed and homogenized with 100 mg

of Potassium bromide (KBr), and the reads were recorded.

2.2.5.4. Thermal stability

Thermal stability of fermented, dried coffee beans was evaluated by
Thermogravimetry (TG) analysis. Analyzes were performed under an Ox(g) atmosphere
at 20 °C/min rates to a maximum temperature of 800 °C in a Setsys Evolution

TG/DTA/DSC (SETARAM, Hillsborough, NJ, USA) system.
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2.3. RESULTS AND DISCUSSION

2.3.1. Microbiological and chemical characterization of coffee beans fermentation

Descriptions of the load of yeast in coffee fermentation have been provided by
some studies (AVALLONE et al., 2001; MASOUD et al., 2004; SILVA et al., 2010;
VELMOUROUGANE, 2013). This has been reported to range between 2 to 7 log
CFU/mL, depending on the study. Factors affecting the initial yeast load include the
quality and integrity of the coffee beans and the hygiene of fermentation tank, utensils
and water used at the commencement of the fermentation process (PEREIRA et al.,
2017). In this study, the average number of yeast, which was 6.60 log CFU/mL early in
the fermentation process, increased to 7.89 CFU/mL by the end of 48 h of fermentation
(FIGURE 2.2). This growth is favored by the ability of yeast cells to metabolize coffee
pulp sugars as well to adapt and to cope with the hostile environment and stress

conditions prevailing in coffee fermentation matrix (PEREIRA et al., 2014).

FIGURE 2.2 - TOTAL YEAST COUNT, ORGANIC ACIDS PRODUCTION AND PULP-SUGAR
CONSUMPTION DURING THE ON-FARM WET PROCESSING
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The yeast growth was accompanied by a regular consumption of the pulp sugars

(glucose and fructose) and their conversion into organic acids. Lactic acid was the major
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metabolite produced reaching a concentration of 3.28 g/L at 48 h, followed by acetic
and succinic acids (1.27 and 0.30 g/L, respectively). The low production of acetic acid
(<1.5 g/L) and the absence of butyric and propionic acids minimize the formation of
off-flavors in the final beverage (LOPEZ et al., 1989; SILVA et al., 2013). On the other
hand, lactic acid production can assist in the coffee-pulp acidification process without
interfering in the product final quality (PEREIRA et al., 2017). Such organic acids
production during coffee fermentation is mainly associated with lactic acid bacteria
metabolism (PEREIRA et al., 2016). However, yeasts of the genera Saccharomyces,
Pichia and Hanseniaspora may also have produced a fraction of the concentration of
organic acids found in the coffee pulp beans mass in this study (BLOMBERG; ALDER,
1992; CIANI et al., 2006; SAUER et al., 2008).

2.3.2. Yeast identification

A total of 35 yeasts were isolated at the beginning and end of the fermentation
process and identified by ITS-rRNA gene sequencing (FIGURE 2.3). The most
frequently detected species were Saccharomyces sp. (17 isolates), Torulaspora
delbrueckii (6 isolates) and Pichia kluyveri (7 isolates). However, Saccharomyces sp.
was found to be dominant at the end of the fermentation process proving its easy
adaptation to the coffee fermentation environment. In addition, the ability to metabolize
pulp coffee pectin showed by some Saccharomyces species might be considered an

advantage over other non-pectinolytic yeasts (PEREIRA et al., 2014).
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FIGURE 2.3 — DISTRIBUTION AND FREQUENCY OF ISOLATES DURING ON-FARM COFEE
WET PROCESSING
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Two isolates of Hanseniaspora uvarum and one isolate of each Meyerozyma
caribbica, Torulaspora sp. and Hanseniaspora vineae were identified at the beginning
of the fermentation process. These yeast species have been previously found in coffee
processing environments (MASOUD et al., 2004; PEREIRA et al., 2014; VILELA et
al., 2010), except for H. vineae which was isolated for the first time. H. vineae is mainly
associated with grapes and has been demonstrated to increase fruity aromas of wine by
producing a high amount of acetate esters, such as 2-phenylethyl acetate and ethyl
acetate (LLEIXA et al., 2016; MEDINA et al., 2013; VIANA et al., 2013). For coffee
fermentation, these flavor-active esters could attribute distinct fruity sensory notes to
the coffee bean through their diffusion during the fermentation process, enriching the
flavor of the final beverage (PEREIRA et al., 2016). Thus, this yeast species should be
included in research programs for the selection and development of functional starter

cultures.

2.3.3. Volatile organic compounds determination of fermented coffee beans by gas

chromatography coupled to mass spectrometry (GC-MS)

Yeast fermentation of pulp sugars produces a vast array of volatile metabolites

that are well known for their aromatic and flavorant properties (PEREIRA et al., 2015;
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SWIEGERS; PETRORIUS, 2005). These volatiles can diffuse into the coffee beans
which may influence in its chemical composition (PEREIRA et al., 2015). In this study,
a total of 25 volatile organic compounds were identified in the fermented coffee beans
by SPME-GC-MS analysis, with a predominance of hydrocarbons (9 compounds) and
higher alcohols (6 compounds) (TABLE 2.1). Although most of the compounds
identified originate from the bean itself, some are known to be related to bacterial (i.e.
nonanal, citric acid and heptanal) and yeast (i.e., hexane, heptane and tiophenes)
metabolism (DAMIANI et al., 1996). Despite the diffusion mechanism has not yet been
elucidated, it is often referenced in the literature that these volatile organic compounds
diffuse into the beans (OWUSU; PETERSEN; HEIMDAL, 2012; PEREIRA et al.,
2014, 2016). Further research to understand how these volatiles are conserved during

roasting operation and reach the final product is required.

TABLE 2.1 - VOLATILE COMPOUNDS IDENTIFIED IN FERMENTED COFFEE SAMPLES BY

GC-MS
Organic Functional Groups Volatile organic compounds
Nonanal
Aldehydes (2) Heptanal

1,3-Cyclohexanediol, 5-(1,1-dimethylethyl)
2-Propyl-1-pentanol

Alcohol (6) 1-Octynol, 4-ethyl
1-Decanol, 2-ethyl-

Benzyloxy tridecanoic acid

Dodecanoic acid, 3-hydroxy-
Carboxylic acid (4) Methacrylic acid

Acetic acid

Ester (1) Heptyl valerate

Heptane, 2,2,3,5-tetramethyl-

Pentane, 2,2,3,4-tetramethyl-

Heptane, 2,2,6,6-tetramethyl-

Hexane, 2,2,5-trimethyl-
Hydrocarbons (9) Eicosane, 3-methyl-

Dodecane, 2,6,11-trimethyl-

Heptane, 5-ethyl-2,2,3-trimethyl-

Hexadecane

9-Octadecene, 1,1-dimethoxy-

3-Methyl-4-(phenylthio)-2-prop-2-enyl-2,5-
Sulfur Compounds (1) dihydrothiophene, 1,1-dioxide

Ketone (1) p-Benzoquinone

Pyrazine (1) 2-Isobutyl-3-methoxypyrazine
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2.3.4. Physicochemical characterization of coffee beans

The mineral composition of fermented, dried and roasted samples is shown in
Table 2.2. Potassium displayed the higher amount among the minerals analyzed in
fermented and roasted coffee samples (12,453.10 and 13,117.50 mg/kg, respectively),
followed by phosphorus (1,932.76 and 2,110.71 mg/kg, respectively), magnesium
(1,554.31 and 1,772.65 mg/kg, respectively) and calcium (1,360.19 and 1,192.32
mg/kg, respectively). These results are in agreement with those found by Martin et al.
(1998), except for the high aluminum content present in our samples. Although the
Coffea arabica is not reported as an aluminum accumulator, the levels of such metal
present in the analyzed samples may be indicative of a soil with a high availability of

this metal to the plants (FRANKAVA et al., 2009).

TABLE 2.2 — CONTENT OF METALS ON FERMENTED AND ROASTED WET PROCESSED
COFFEE CHERRIES

Trait

Metals (mg/kg)

Fermented Coffee

Roasted Coffee

Al 234.71 £29.22° 362.56 £ 106.12°
Ba 3.40 £ 0.49¢ 2.61 +0.09¢

B 7.28 £0.30° 6.26 £0.21°¢
Cd ND¢ ND¢

Ca 1360.19 £ 20.53¢ 1192.32 £ 0.88°¢
Co ND¢ ND¢

Cu 16.51 £ 0.38¢ 17.57 £ 0.25°¢
Fe 33.75+1.32¢ 33.12 + 44¢

P 1932.76 = 43.56f 2110.71 + 28.40¢
Li ND¢ ND¢
Mg 1554.31 £ 17.47" 1772.65 + 24.87
Mn 16.32+0.01° 17.43 +£0.07°
Mo ND¢ ND¢

Ni ND¢ ND¢

K 12453.10 = 8.35 13117.50 £ 16.41%
Se ND¢ ND¢

Na 350.565 +17.83° 380.99 + 16.40°
\Y 0.86 £ 0.05¢ 0.47 £0.04¢
Zn 10.15+0.12°¢ 9.78 £ 0.30¢

*Means of triplicate in each row bearing the same letters are not significantly different (p > 0.05) from
one another using Duncan’s Test (mean + standard variation). ND: not detectable.

Al = Aluminum; Ba = Barium; B = Boron; Cd = Cadmium; Ca = Calcium; Co = Cobalt; Cu = Copper; Fe
= Iron; P = Phosphorus; Li = Lithium; Mg = Magnesium; Mn = Manganese; Mo = Molybdenum; Ni =
Nickel; K = Potassium; Se = Selenium; Na = Sodium; V = Vanadium; Z = Zinc.
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Over the last two decades, vibrational spectroscopy methods have proven to be a
reliable and fast technique for the identification and quantification of several primary
and secondary metabolites generated during fermented processes or to estimate the
quality of the food itself (GIOVENZANA; BEGHI; GUIDETTI, 2014; KRAHMER,
2015; LYMAN et al., 2003; PARADKAR; IRUDAYARAJ, 2002; SINIJA; MISHRA,
2009). In this study, FTIR spectroscopy analysis showed a quite similar spectrum for
both fermented and roasted coffee beans (FIGURE 2.4). It was possible to verify the
presence of the main organic functions associated with the coffee aroma, such as
aromatic acids (1700-1680 cm™'), ketones (1725-1705 cm™), aldehydes (1739-1724 cm’
1) and aliphatic esters (1755-1740 cm™). Those results corroborates with the wide
variety of volatile organic compounds identified by the SPME-GC-MS technique
(TABLE 2.1).

FIGURE 2.4 — FUNCTIONAL GROUPS PRESENT IN FERMENTED AND ROASTED SAMPLES OF
COFFEE BEANS DETERMINED BY FOURIER TRANSFORM OF INFRARED (FTIR)
SPECTROSCOPY ON RANGE OF 400 — 4000 WAVENUMBER. THE MAIN BANDS IDENTIFIED
AND ORGANIC FUNCTIONS ASSOCIATED WERE: O-H (3350 AND 3010 CM™!; ALCOHOLS); C-
H (2930 AND 2856 CM™!; ALKANES); C=0 (1739 CM™!; CARBOXYLIC ACIDS AND ESTERS); C-O
(1650 CM™'; ALCOHOLS OR PHENOLS).
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Thermogravimetric analysis, especially  thermogravimetry/differential
thermogravimetry (TG/dTG), are already being utilized to measure the physical and
chemical proprieties of coffee samples as a function of temperature or time. For the
coffee samples analyzed in this study, the thermal decomposition occorred in four

stages between 90 and 390 °C (FIGURE 2.5). A significant mass loss (68%) can be
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observed after the second stage at 190 °C. At temperatures above 420 ° C only ashes

remain in the final matter.

FIGURE 2.5 - THERMOSTABILITY OF FERMENTED COFFEE CHERRIES SUBMITTED TO AN
OXYGEN ATMOSPHERE HEATED UP TO 800°C. DTG: PROFILES OF MAIN VOLATILE
PRODUCTS; TG: MASS LOSS RATE CURVE
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The first two thermal degradation events that occur at the temperatures of 90 and
138 °C are associated with loss of free water and volatile compounds (i.e. alcohols,
aldehydes and organic acids) and absorbed water, respectively. A small variation (9%)
in the total weight loss within this temperature range corresponds to the water content in
fermented beans (JAKAB; FAIX; TILL, 1997). A study performed by Yeretzian et al.
(2002) monitored the emission of volatile components during the roasting step of the
fermented beans which observed that during the endothermic phase the loss of water
and volatile compounds that are not derived from Maillard’s reaction or non-volatile
precursors is prominent. The latter thermal degradation events representing a significant
loss in mass (68%) of the fermented beans correspond to a depolymerisation of
hemicelluloses or pectin and cellulose decomposition which occurs at 240-315 °C and

370-400 °C, respectively (OUAJAIL SHANKS, 2005).

2.4. CONCLUSION

The results of the present study indicated that Saccharomyces sp. is a dominant,

well- adapted yeast found in coffee fermentation at Brazilian Cerrado Mineiro region. In
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addition, this study is the first to report the presence of aroma-producing yeast
Hanseniaspora vineae in coffee beans fermentation. Physicochemical analyses showed
that different organic compounds present in coffee bean samples may be derived from
microbial metabolism during the fermentation process. Future studies should focus on
the dynamic of diffusion of these compounds into the beans, and to determine the actual
role of the microbial fermentation for beverage quality. Our findings are relevant as a

support for the development of usual starter cultures and controlled batch processes.
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CHAPTER III (RESEARCH RESULTS) — HIGH THROUGHPUT rRNA GENE
SEQUENCING REVEALS HIGH AND COMPLEX BACTERIAL DIVERSITY
ASSOCIATED WITH BRAZILIAN COFFEE BEAN FERMENTATION

Manuscript published in the Food Technology and Biotechnology, volume 56, n° 1,
pages 88-93, December 2017

ABSTRACT

Coffee bean fermentation is a spontaneous, on-farm process involving the action of
different microbial groups, including bacteria and fungi. In this study, high-throughput
sequencing approach was employed to study the diversity and dynamics of bacteria
associated with Brazilian coffee bean fermentation. The total DNA from fermenting
coffee samples was extracted at different time points, and the 16S rRNA gene with
segments around the V4 variable region was sequenced by Illumina high-throughput
platform. Using this approach, the presence of over eighty bacterial genera was
determined, many of which have been detected for the first time during coffee bean
fermentation, including Fructobacillus, Pseudonocardia, Pedobacter, Sphingomonas
and Hymenobacter. The presence of Fructobacillus suggests an influence of these
bacteria on fructose metabolism during coffee fermentation. Temporal analysis showed
a strong dominance of lactic acid bacteria with over 97 % of read sequences at the end
of fermentation, mainly represented by the Leuconostoc and Lactococcus. Metabolism
of lactic acid bacteria was associated with the high formation of lactic acid during
fermentation, as determined by HPLC analysis. The results reported in this study
confirm the underestimation of bacterial diversity associated with coffee fermentation.
New microbial groups reported in this study may be explored as functional starter
cultures for on-farm coffee processing.

Keywords: Lactic acid bacteria, coffee fermentation, bacterial dynamics,

Fructobacillus sp.

3.1. INTRODUCTION

Coffee is one of the most appreciated beverages in the world, with a

consumption of more than 500 billion coffee cups per year. Surpassing a global
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production of 9 million tonnes, the coffee now stands as the second largest commodity
in market value, after only petroleum (LEE et al., 2015). With an annual output of 3.02
million tonnes, Brazil is the main producer and exporter of coffee beans, followed by
Vietnam, Colombia, Indonesia, Ethiopia, India and Honduras (ICO et al., 2017).

Coffee beans, unlike other fermented foods, require fermentation to facilitate the
drying process. After harvesting and pulping, the residual mucilaginous layer that
surrounds the coffee beans can be eliminated through microbial fermentation. This
involves the action of complex microbial interactions, led mainly by yeasts (e.g. Pichia
guilliermondii, P. anomala, Kluvyeromyces marxianus and Saccharomyces cerevisae)
and lactic acid bacteria (e.g. Erwinia herbicola, Klebsiella pneumoniae and
Lactobacillus brevis) (AVALLONE et al., 2002; EVANGELISTA et al., 2014a; SILVA
et al.,, 2013). These fermentation organisms utilize the bean pulp as a carbon and
nitrogen source and produce significant amounts of ethanol, lactic acid and other
microbial metabolites, resulting in lowered pH (from 5.5-6.0 to 3.5-4.0) (AVALLONE
et al.,, 2001; PEREIRA et al., 2014). In addition, some of these microbial metabolites,
which are precursors of volatile compounds formed during roasting, help in improving
beverage flavour (MUSSATO et al., 2011; PEREIRA et al., 2014).

Culture-independent techniques have helped to change the way to study food
microbial ecology, leading to consideration of microbial populations as consortia
(COCOLIN; ERCOLINI, 2015). The advent of the use of molecular techniques and,
more specifically, the use of high-throughput sequencing (HTS), permitted to overcome
the limitations of the cultivation-associated methods, allowing a breakthrough in
understanding the diversity and composition of several food microbial ecosystems
(DOYLE et al., 2017; GAROFALO et al., 2017; POLKA et al., 2015; YANG et al.,
2016). Illumina MiSeq® (Illumina Inc, San Diego, CA, USA) generates shorter reads
(250 bp) than other HTS systems but gives a higher throughput, providing thousands of
high-quality reads of the generated amplicons and allowing a superior taxonomical
analysis (VASILEIADIS et al., 2012).

In this work, we report a diversity analysis aiming to characterize bacterial
communities associated with coffee bean fermentation, using high-throughput
sequencing, as part of a whole metagenome study of the microbiota associated with the

Brazilian coffee processing chain.
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3.2. MATERIAL AND METHODS

3.2.1. On-farm coffee fermentation and sampling

Spontaneous fermentations were performed at the Fazenda Apucarana located in
the Cerrado Mineiro region (18°55'59.4" S, 46°50'41.5" W) at Minas Gerais, Brazil.
Freshly harvested coffee (Coffea arabica var. Catuai) cherries were depulped using a
BDSV-04 depulper (Pinhalense, Sdo Paulo, Brazil) obtaining beans with a surrounding
layer of mucilage (PEREIRA et al., 2015). Fermentations were conducted for 24 h in
cement tanks with a nominal volume of 4.5 m?, containing 20 kg of depulped beans and
approx. 500 L of fresh water, in accordance with the local wet processing method. At
the end of the process, fermented beans were sun-dried for 20 days until 11-12%
moisture, as measured by a moisture meter (model AL-102 ECO; Agrologic, Sao
Leopoldo, Brazil). Environmental temperature during the experimental procedure was
24-32 °C (day) and 12-15 °C (night). Samples (fermenting coffee pulp bean mass) were
collected at random at 0, 12 and 24 h for HTS and target metabolic analysis.

3.2.2. Total DNA extraction

For extraction of total DNA from the samples, 1 mL of coffee pulp bean mass
was centrifuged at 12 000xg for 1 min (centrifuge model 5430; Eppendorf, Hamburg,
Germany). Cell pellet was resuspended in 500 pL of Tris-Ethylenediamine Tetraacetic
Acid (EDTA), homogenized with 10 pL of lysozyme solution (20 mg/mL; Sigma-
Aldrich, Arklow, Ireland) and incubated at 30 °C for 60 min. Then, 50 pL of Sodium
dodecyl sulfate (SDS, 10 %; by mass per volume) and 10 pL of proteinase K solution at
20 mg/mL (Sigma-Aldrich) were added to the lysis solution, followed by
homogenization and incubation at 60 °C for 60 min. A volume of 150 pL of
phenol/chloroform (25:24; Sigma-Aldrich) were added, homogenized by inversion and
centrifuged at 12 000xg (model 5430R; Eppendorf) for 5 min. Supernatant was
removed and the DNA was precipitated with 3% (by volume) absolute ethanol (Sigma-
Aldrich). Pellets was washed with 80% ethanol, dried and resuspended in Mili-Q®
ultrapure water (Merck, Kenilworth, NJ, USA). Total DNA was quantified with the
Nanodrop 2000 instrument (Thermo Fisher Scientific, Inc., Waltham, MA, USA).
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3.2.3. Illumina high-throughput sequencing

A fragment of the 16S rRNA gene was amplified from the total DNA extracted
using primers for the V4 region (bases 515 to 806), containing complementary adaptors
for Illumina platform (CAPORASO et al., 2012) using KlenTAQ polymerase (Sigma-
Aldrich). Amplification was performed using the degenerated primers 515F (5°-
GTGCCAGCMGCCGCGGTAA-3’) and 806R (5’-GGACTACHVGGGTWTCTAAT-
3”), where M is A/C, H is A/C/T, V is A/C/G and W is A/T (CAPORASO et al., 2010).
Bar-coded amplicons were generated by PCR under the following conditions: 95 °C for
3 min, followed by 18 cycles at 95 °C for 30 s, annealing at 50 °C for 30 s, extension at
68 °C for 60 s, final extension at 68 °C for 10 min. Samples were sequenced in the
MiSeq (Illumina Inc) platform using 500 V2 kit (Illumina Inc), following standard

[Nllumina protocols.

3.2.4. Bioinformatics and data analysis

Data generated by sequencing went through a rigorous quality system that
involved: (i) identification and removal of sequences containing more than one
ambiguous base (N), and (if) evaluation of the presence and complementarity of primer
and barcode sequences. Chimeric sequence detection, removal of noises from pre-
cluster and taxonomic attribution were also performed using standard parameters of
QIIME (Quantitative Insights Into Microbial Ecology) software package, v. 1.9.0
(CAPORASO et al., 2010). Applying the UCLUST method (EDGARD, 2010),
sequences presenting identity above 97% were considered the same operational

taxonomic units (OTUs) according to the SILVA database (QUAST et al., 2013).

3.2.5. High-performance liquid chromatography

The concentration of reducing sugars (glucose and fructose), organic acids
(acetic, succinic, lactic and propionic acids) and ethanol was determined during coffee
bean fermentation by high-performance liquid chromatography (HPLC). Samples were
centrifuged at 6000xg (centrifuge model CT-6000; Cientec, Porto Alegre, Brazil) and
filtered through 0.22-um pore size filter (Sartorius Stedim, Goettingen, Germany) in

order to remove debris. Analysis parameters were performed according to de Carvalho



63

Neto et al. (2017). Filtered samples were injected into HPLC system equipped with an
Aminex HPX 87 H column (300 mm x 7.8 mm; Bio-Rad, Richmond, CA, USA) and a
refractive index (RI) detector (model HPG1362A; Hewlett-Packard Company, Sao
Paulo, Brazil). The column was eluted in isocratic mode with a mobile phase of 5 mM

H>SO4 at 60 °C and a flow rate of 0.6 mL/min.

3.3. RESULTS AND DISCUSSION

3.3.1. Sugar consumption and metabolite formation

TABLE 3.1 shows the evolution of sugar consumption, metabolite formation
and pH decrease during fermentation of coffee pulp bean. The observed increase in the
concentration of reducing sugars (glucose and fructose) at 12 h of fermentation can be
attributed to the hydrolysis of sucrose by the action of yeast invertase (MAGALHAES
et al., 2010). These sugars were partially consumed after 24 h of fermentation, with a
final residual content of 3.2 and 4.5 g/L of glucose and fructose, respectively. Lactic
acid (0.32 g/L) was the most important organic compound formed during fermentation,
followed by succinic and acetic acids (0.08 and 0.05 g/L, respectively). Lactic acid is an
important organic compound for coffee bean fermentation that assists in the coffee
acidification process without interfering with the final product quality (PEREIRA et al.,
2015). The accentuated production of lactic acid is in agreement with the strong
dominance of lactic acid bacteria found in the present study (FIGURE 3.1), resulting in
pH decrease from 5.3 to 4.0 at the end of fermentation (TABLE 3.1). The reduction of
pH below 4.5 is a widely used method by coffee producers to determine the end of

fermentation of coffee bean during wet processing (PEREIRA et al., 2016).
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TABLE 3.1 — CONCENTRATION OF SUGARS, ORGANIC ACIDS AND ETHANOL DURING
COFFEE BEAN FERMENTATION

J(e/L) - t(fermerll‘;ation)/h -
Glucose 2.740.3* 5.5+0.3° 3.3+0.1*
Fructose 3.4+0.3° 7.33+0.09° 4.5+0.2¢
Succinic acid n.d. n.d. 0.08+0.01
Lactic acid n.d. n.d. 0.32+0.01
Acetic acid n.d. n.d. 0.051+0.004
Propionic acid n.d. n.d. n.d.
Ethanol n.d. n.d. n.d.
pH 5.30+0.03* 4.90+0.05° 4.00+0.10°

Mean values of triplicate measurements in each row with the same letter are not significantly different
(p>0.05) from one another using Duncan’s test (mean value+standard variation)
n.d.=not detected.
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3.3.2. Characteristics of sample sequencing data

A total of 440 524 high-quality sequences of the hypervariable V3 region of the
16S rRNA gene region were obtained after trimming on the [llumina MiSeq sequencing,
with an average length of 250 bp. A great coverage was obtained in all samples as

demonstrated by the rarefaction curves (FIGURE 3.2).

FIGURE 3.2 - RAREFACTION ANALYSIS OF THE GENERA FOUND AT 0, 12 AND 24 H OF
COFFEE BEAN FERMENTATION. OTU = OPERATIONAL TAXONOMIC UNIT
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3.3.3. Bacterial diversity and dynamics

Studies evaluating the microbiology of coffee fermentation have been performed
over the last 100 years in several coffee-producing regions, evidencing the dominant
species during the post-harvest processing (AGATE; BHAT, 1966; AVALLONE et al.,
2001; FRANK; LUM; DELACRUZ, 1965; MASOUD et al.,, 2004; PEDERSON;
BREED, 1946; PEREIRA et al., 2014; SILVA et al., 2000, 2008). On average, nine
bacterial genera had been reported in previous studies using culture-dependent methods
(EVANGELISTA et al., 2015; FENG et al.,, 2016; HAMDOUCHE et al., 2016;
NASANIT; SATAYAWUT, 2015; PEREIRA et al., 2014, 2015). Our work
demonstrates that these findings are underestimate, since over eighty genera of bacteria
have been identified by HTS. High frequency and abundance of readings corresponding
to Proteobacteria (e.g. Erwinia, Pseudomonas and Methylobacterium) and Firmicutes

(e.g. Bacillus, Fructobacillus, Leuconostoc and Lactococcus) were observed. The
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possible habitat origins of these microbial groups are: human contact, e.g. Pseudomonas
sp., Enterobacter, Erwinia and Actinobacteria (GRICE et al., 2008), soil or aerial parts
of coffee plants, eg  Mesorhizobium, Methylobacterium, Stentrophomonas,
Sphingobium and Sphingomonas (CARREL; FRANK, 2014; MAI et al., 2013; VEGA
et al., 2005), the water source used for wet processing, e.g. Planctomyces, Luteimonas,
Devosia and Brevundimonas (MARTINY et al., 2005), and the air surrounding the
fermentation tank, e.g. Janthinobacterium, Pedobacter, Burkholderia and Kaistobacter
(FAHLGREN et al., 2010). These findings indicate the need for a program of research
to understand the microbial ecology origin of coffee cherries and processing sites.

The rich and complex bacterial diversity revealed in this study demonstrates the
potential of coffee terroir as a source of microorganism species with biotechnological
application. An example is the first report of the presence of Fructobacillus in coffee
fermentation. This LAB group has a unique biochemical metabolism when compared to
other LAB, having preference consumption for fructose and the necessity of an electron
acceptor when in presence of glucose (ENDO; DICKS, 2014a). Fructobacillus
microorganisms were found in gastrointestinal tracts of insects feeding on fructose-rich
diet and presented symbiotic interactions with its hosts (JANASHIA et al., 2016;
JANASHIA; ALUX, 2016). A survey of previous studies demonstrates significant
amount of residual pulp fructose at the end of coffee fermentations conducted under
field conditions (CARVALHO NETO et al., 2017), even by using selected starter
cultures (EVANGELISTA et al., 2014a, 2014b; PEREIRA et al., 2015). With these
findings, the isolation and further implementation of Fructobacillus may assist in the
fructose metabolism, contributing to drying of coffee beans.

Bacterial composition and dynamics shown in FIGURE 3.1 reveal that, despite
the presence of a high bacterial diversity associated with coffee fermentation
environment, several microorganisms are suppressed by the growth and dominance of
LAB group. Reads assigned to LAB genera, including Lactobacillus, Pediococcus,
Enterococcus, Leuconostoc, Lactococcus and Fructobacillus, corresponded to 26.32%
at the start of the process and reached a total of 97.59% of the total operational
taxonomic unity (OTU) at 24 h. The high availability of fermentable sugars coupled
with the low presence of dissolved oxygen creates a propitious environment for the
rapid growth and colonization of these species, which promote an efficient conversion

of sugars into mainly lactic acid (ENDO; DICKS, 2014b).
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Within the LAB group, Leuconostoc and Lactococcus shared dominance.
Species of Leuconostoc, such as L. mesenteroides, L. pseudomesenteroides and L.
citreum, have already been reported as dominant LAB in coffee fermentations
performed in Mexico, Colombia, India and Taiwan (AVALLONE et al., 2001; LEONG
et al., 2014; VELMOUROUGANE, 2013), while Lactococcus species dominates coffee
fermentations performed in Taiwan and Brazil (LEONG et al., 2014; VILELA et al.,
2010). Co-dominance of LAB enables the production of a wide range of organic
compounds (e.g. acetate, acetaldehyde, ethanol, short-chain fatty acids) by
heterofermentation (e.g. Leuconostoc sp.) and a high production of lactic acid through
the homofermentation (e.g. Lactococcus sp.), which promotes yeast growth and reduces

the prevalence of spoilage microorganisms.

3.5. CONCLUSION

The present study suggests that most of bacterial species involved in the coffee
bean fermentation have not been determined. High-throughput 16S rRNA gene
sequencing analysis allowed us to reveal in deepth the presence of several microbial
groups with potential applications. A strong dominance of LAB was confirmed, proving
the good adaptation of this microbial group to coffee fermentation environment. Further
studies should focus on the isolation of some microbial groups first reported in this

study for potential biotechnological applications.
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CHAPTER IV (RESEARCH RESULTS) - EFFICIENT COFFEE BEANS
MUCILAGE LAYER REMOVAL USING LACTIC ACID FERMENTATION IN
A STIRRED-TANK BIOREACTOR: KINETIC, METABOLIC AND
SENSORIAL STUDIES

Manuscript published in the Food Bioscience, volume 26, pages 80-87, October 2018
Patented process under publication number: BR 102016029488-6

ABSTRACT

Post-harvest coffee processing involves a microbial process to remove the mucilage
layer adhering to the fruits, prior to storage and transport of the coffee beans. In this
study, coffee mucilage removal was done using lactic acid fermentation in a stirred-tank
bioreactor (STR). Fermentation assays were done with or without the addition of starter
culture (i.e., Lactobacillus plantarum LPBROI1), and kinetic parameters, including
microbial growth, sugar pulp consumption and metabolite production, were studied.
High lactic acid bacteria (reaching 10.7 log CFU/mL at 10 h) were obtained in the STR
process with the starter culture, which led to a high lactic acid productivity (0.366
g/L.h) and a pH decrease to below 4.0 during the initial 10 h. A temporal analysis using
[llumina high-throughput 16S rRNA Gene Sequencing (HTS) showed the Lactobacillus
genera’s dominance in the inoculation process, as it reached over 88% of read
sequences at the end of fermentation, while the Leuconostocaceae family was the
dominant bacterial group in the spontaneous treatment. The STR fermentation process
led to the production of coffee beans with richer aroma composition and beverages with
a notable increase in the sensorial analysis of the coffee beverages compared to those
resulting from the conventional process. This new fermentation model can be used to do
controlled bean fermentation to supply the coffee industry with homogeneous and high-
quality coffee beans.

Keywords: Lactic acid bacteria; coffee fermentation; coffee processing; stirred-tank

reactor; Lactobacillus plantarum.
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4.1. INTRODUCTION

Fermentation is one of the oldest food-processing technologies. Among the
classical fermentation processes are winemaking, which has been documented from as
early as 6000 B.C. in the Caucasus area, cheese making in northern Europe and soya
sauce production in Japan and China (NIELSEN, 2002; SALQUE et al., 2013). It was,
however, with penicillin production during World War II that large-scale fermentations
were first introduced. Today a variety of fermented foods are produced using this
technology in large commercial enterprises.

Coffee is one of the few globally produced food commodities where the
fermentation process occurs spontaneously. The primary objective of coffee
fermentation is to remove the mucilage layer adhering to the fruits during post-harvest
processing, assisting in the drying process. The microbial species responsible for this
process (i.e., yeast and lactic acid bacteria) originate from coffee processing sites,
including fermentation tank, water, soil, air or the fruit itself (AVALLONE et al., 2001;
MASOUD et al, 2004; VILELA et al, 2010; PEREIRA et al., 2014
VELMOUGRANE, 2013; LUDLOW et al., 2016; CARVALHO NETO et al., 2017,
2018). This uncontrolled, on-farm process results in the lack of predictability of final
coffee beans quality because several microbial metabolites can diffuse into the beans
and act as aroma precursors to the roasting process (MASOUD et al., 2005; PEREIRA
et al., 2015; SILVA et al., 2013). Therefore, the use of selected yeasts has been
suggested to have reproducible and predictable coffee beans by controlling the
fermentation (EVANGELISTA et al., 2014a; EVANGELISTA et al., 2014b; PEREIRA
etal., 2015; PEREIRA et al., 2016; LEE et al., 2017).

Recently, the removal of coffee mucilage using lactic acid fermentation was
proposed by introducing a selected lactic acid bacteria, Lactobacillus plantarum
LPBROI, into the field situation (PEREIRA et al., 2016). This bacterium strain was able
to promote an accelerated coffee-pulp acidification process reducing the time required
for mucilage removal. One of the limitations of introducing starter cultures into field
systems is that coffee fermentations are done in open cement tanks that facilitate
contamination by natural microbiota (PEREIRA et al., 2017). This means the added
starter culture has to compete with a high load of indigenous microorganisms,
decreasing its metabolic activity and effectiveness. The demand for hygienic production

practices has increased the appeal of using stainless steel tanks in industrial
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bioprocesses (e.g., the production of yogurt, beer, wine and cider) (STEINKRAUS,
2004). The use of bioreactors can provide a suitable environment for the development of
controlled coffee beans fermentation.

The aim of this chapter was to study the kinetic parameters of coffee beans
fermentation using a previously selected lactic acid bacteria (LAB) starter culture (i.e.,
L. plantarum LPBRO1) and a stirred-tank bioreactor (STR) model. Additionally, the
effects of this new process on the chemical and sensory quality of hot coffee were
evaluated. The fermentation system used is part of a patented process (SOCCOL et al.,
2016).

4.2. MATERIAL AND METHODS

4.2.1. STR fermentation

Coffee cherries of Coffea arabica var. Catuai were manually harvested (2017
crop) at the mature stage from a farm 1270 m above sea level situated in Patrocinio in
the Minas Gerais State, Brazil. The fruits were packed in plastic bags and transported at
4 °C to the Bioprocess Engineering and Biotechnology Laboratory, Federal University
of Parand, Curitiba, Brazil. Coffee fruits (2 kg) were manually depulped 1 day after
harvesting and immediately deposited into a 10.5 L New Brunswick"™ BioFlo® 110
fermenter (Eppendorf, Hamburg, Germany), containing 2 L of sterilized water (pH 6.5)
and equipped with pitched blade impellers. Two batch fermentations were done in
triplicate: (i) spontaneous (non-inoculated control) and (ii) inoculated (lactic acid starter
culture-added). The LAB strain used in this study, L. plantarum LPBRO1, was
previously selected as detailed in Pereira et al. (2016). The inoculum solution was added
in the bioreactor with an initial concentration of 103 CFU/mL. For both fermentation
processes, temperature (30 °C), agitation (200 rpm) and aeration (1 L/min) were
controlled during the initial 12 h (aerobic phase). Then, aeration and agitation were
interrupted and an anaerobic environment was formed by injecting COzg) into the
fermenting coffee-pulp bean mass, allowing an anaerobic fermentation during the final
12 h (anaerobic phase). At the end of fermentation, coffee beans were dried in an air
recirculation drying oven at 35 °C until a 12% aw was reached. Relative humidity was
measured at 6 h intervals using a portable grain moisture meter (Agrologic, Sdo

Leopoldo, RS, Brazil).
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Samples (10 mL) of the fermenting coffee-pulp bean mass (liquid fraction) were
randomly collected at intervals of 2 h to do microbiological and metabolite target
analysis. At each sampling point, the pH was measured using a digital pH meter

(Requipal, Curitiba, Brazil).

4.2.2. Microbial counts

Samples (100 pL) of the liquid fraction were homogenized in 900 puL of 0.1%
saline-peptone water (10! solution) using a Vortex Mixer (Kasvi, Curitiba, Brazil) and
diluted serially. Enumeration of total yeasts and LAB was done using the spread plate
technique using Rose Bengal chloramphenicol agar (Oxoid, Sao Paulo, Brazil)
containing 0.01% (w/v) chloramphenicol and MRS agar (Merck, Whitehouse Station,
NJ, USA) containing 0.1% (w/v) nystatin, respectively. Plates were incubated at 30 °C
for 48 h and the number of colony-forming units (CFU) was quantified.

4.2.3. High performance liquid chromatography (HPLC)

Sugar consumption (glucose and fructose) and organic acids (citric, succinic,
lactic, acetic and propionic acids) and ethanol formation were monitored from the liquid
fraction of the fermenting coffee pulp—bean mass at 2 h intervals using the method of
Pereira et al. (2016). Initially the liquid fraction (2 mL) was centrifuged at 6000 g for 5
min at 4 °C using an Eppendorf centrifuge (SP Labor, SP, Brazil), and filtered using a
0.22-pm pore size filter (Millipore Corp., Billerica, MA, USA). Then, the samples were
injected (50 pL) into a HPLC system (Aglient Technologies 1260 Infinity Series;
Aglient Technologies, Santa Clara, CA, USA) equipped with an Aminex HPX 87 H
column (300 x 7.8 mm; Bio-Rad, Richmond, CA, USA) and a refractive index (RI)
detector, using H>SO4 (5 mM) at 60 °C as the mobile phase to elute the column at a flow

rate of 0.6 mL/min.

4.2 4. Kinetic parameters

The kinetic parameters determined in this study were maximum specific growth

rate (um) for yeast and LAB, and product formation rate (q) and specific product
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formation rate (qp) for organic acids and ethanol (LETTI et al., 2012). All parameters
were calculated at 10 h of fermentation (time with maximum biomass accumulation),
except um values, which were calculated at intervals of 4-6 h in the inoculated treatment
and 8-10 h in the spontaneous process. The following equations were used for the

determination of kinetic parameters:

1 dx

p= X (1)
1 dx

Pmae = 3 X o (2)

_r:iP

q=— (3)
1 dP

9@ =3 X (4)

Where X and P are the final concentration of biomass and products (g/L),

respectively, generated in the coffee-pulp bean mass during fermentation time (in h).

4.2.5. lllumina high-throughput 16S rRNA gene sequencing

Fermenting coffee-pulp bean mass samples were taken at 0, 12 and 24 h to
access the total bacteria community composition and dynamics using Illumina high-
throughput sequencing. Purified total DNA was obtained using the phenol-chloroform
extraction method of Carvalho Neto et al. (2018). Total DNA was separated on a 0.8%
(w/v) agarose gel at 40 V during 1 h using a horizontal electrophoresis apparatus
(Loccus Biotecnologia, Cotia, Brazil). DNA fragments were stained with SYBR Green [
(Life Technologies, Carlsbad, CA, USA) and visualized using 300 nm excitation and
Polaroid DS-34 camera (Polaroid, Cambridge, MA, USA). The total DNA was
quantified using a Nanodrop 2000 spectrophotometer (Thermo Fisher Scientific,
Wilmington, DE, USA). Twenty ng of DNA was used as a template for the
amplification of the V4 region of the 16S rRNA gene, using the primers 515F and 806R
(CAPORASO et al., 2012) and KlenTaq Master Mix (Sigma-Aldrich, Saint Louis, MO,
USA). The PCR products were quantified using the Qubit dsSDNA HS kit (Invitrogen,
Carlsbad, CA, USA) and sequenced using the 500V2 Sequencing Kit (Illumina, San
Diego, CA, USA) on an Illumina MiSeq (Illumina). After sequencing, chimeric
sequences detection, removal of noises from pre-cluster and taxonomic attribution were

done using standard parameters with the QIIME software package, version 1.9.0
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(http://qiime.org/). A similarity above 97% between the sequences was used as a
parameter to group them as the same operational taxonomic unit (OTU) using the
SILVA database (https://www.arb-silva.de/aligner/) (QUAST et al., 2013). The
nucleotide  sequences  were  deposited in  the  GenBank  database
(https://www.ncbi.nlm.nih.gov/genbank) with access numbers MG729835 to
MG730031.

4.2.6. Fermented coffee beans quality assessment

4.2.6.1. Chemical analysis

Sugar and organic acids present in dried, fermented coffee beans from
spontaneous and inoculated samples, as well as in green coffee beans (i.e., unfermented
beans), were extracted using the method of Pereira et al. (2015a). For the samples
preparations, 5 g of the dried, fermented coffee beans were ground using a domestic
coffee grinder (Philco, Philadelphia, PA, USA) and mixed with 20 mL of ultrapure
water (Merck Millipore, Burlington, MA, USA) using a Vortex Mixer. The
concentration of the sugar and organic acids were obtained using high-performance
liquid chromatograph (HPLC) as previously described in section 4.2.3. The volatile
composition of samples was obtained using gas chromatography coupled to mass
spectrometry (GC-MS) using the method of Carvalho Neto et al. (2017) with slight
modifications. A carboxen/polydimethylsiloxilane (5%/95%) SPME fiber (Supelco,
Saint Louis, MO, USA) was used to absorb the volatile compounds present in the coffee
beans (fermented and unfermented samples). Samples (2.0 + 0.1 g of grounded beans)
were heated at 70 °C for 10 min without agitation. The SPME fiber was put in the
autosampler for 15 min. The compounds were thermally desorbed at 260 °C and directly
introduced into the gas chromatograph injection system. The analysis was done using a
Shimadzu® - GCMS2010 Plus coupled to a mass spectrometer with a triple quadrupole
TQ8040, equipped with an A0 5000 autosampler (Shimadzu, Tokyo, Japan). The GC
temperature program was as follows: the column oven temperature was maintained at
60 °C for 10 min, followed by two heating ramps of 4 and 10 °C/min until reaching the
temperatures of 100 and 200 °C, respectively. Mass spectra were obtained using
electron impact at 70 eV and a start and end mass-to-charge ratio (m/z) of 30 and 200,

respectively. The compounds were identified in full scan mode by comparison to the
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mass spectra from library databases (Nist’98 (http://www.nist.gov) and Wiley7N
(http://www .palisade.com)).

4.2.6.2. Coffee cup quality analysis

Fermented, dried coffee beans were roasted in a semi-industrial roaster (Leogap
model, Probatino, Curitiba, Brazil) with nominal capacity of 1.3 kg. Roasted coffee was
ground to 360-420 um using a Coffee Grinder M-50 (Probat Leogap, Curitiba, Brazil).
The samples for tasting were prepared using 105 g of roasted and ground coffee beans
in 1,500 mL of filtered water (pH 6.5) (Aquasana, Austin, TX, USA) using a VP17-3
BLK coffee brewer (Bunn Corp., Springfield, IL, USA) using a bleached paper filter
(Melitta orginal 1 x 4, Minden, Germany).

The beverages were evaluated by a panel of 4 expert coffee tasters with a Q-
Grader Coffee Certificate (PEREIRA et al., 2018). A beverage prepared with coffee
beans obtained by traditional processing from the same coffee farm shown in section
4.2.1 was included as a control. Cups were prepared and the attributes of acidity, aroma,
balance, body, clean cup, finish, flavor, overall quality, uniformity and sweetness of the
beverages were evaluated using the method of the Specialty Coffee Association of
America Cupping Protocols (see ‘http://www.scaa.org/?page=resourcesandd=cupping-
protocols’). This protocol involves the determination of scores, on a scale from 6 to 10
at 0.25 point intervals, for each of the attributes. The samples were served in 240 mL
snifters of 8§ cm diameter to allow dispersion of volatile compounds to increase
olfactory perception. Assessments started when the beverage temperature reached 65 °C
for the olfactory step and 43 °C for the gustatory step. After the gustatory step, sensory

descriptive terms were assigned by the coffee tasters for each beverage.

4.2.7. Statistical analysis

The data obtained using target metabolite analysis and sensory evaluation was
analyzed using post-hoc comparison of means using Duncan’s test. Statistical analyses
were done using the SAS program, version 7.0 (Statistical Analysis System, Cary, NC,

USA). Level of significance was established using a two-sided p-value <0.05.
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4.3. RESULTS

4.3.1. Controlled bioreactor fermentations

The pH monitoring, microbial analysis (total yeast and LAB growth), sugar
consumption (glucose and fructose) and organic acid production (citric, succinic, lactic,
acetic and propionic acids) from inoculated and spontanecous STR processes are
disposed in FIGURE 4.1. LAB counts remained high throughout the inoculated
fermentation processes and peaked at 10 h. Conversely, initial LAB counts were low in
the spontaneous process and peaked only after 22 h. In both processes, yeasts were
present during the whole fermentation with maximum population sizes of 7.48 log
CFU/mL at 24 h and 6.46 log CFU/mL at 10 h for inoculated and spontaneous

processes, respectively.
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In the starter culture-added fermentation, efficient sugar consumption was
observed through total glucose consumption in 12 h of fermentation (FIGURE 4.1). On
the other hand, a considerable residual amount of both glucose and fructose was
observed at the end of the spontaneous process. The level of lactic acid, the most
abundant product of LAB metabolism, was higher in the inoculated treatment compared
to the spontaneous, inducing a more pronounced mucilage acidification process
(FIGURE 4.1).

The fermentative kinetic parameters of inoculated and spontaneous assays are
shown in TABLE 4.1. In general, both processes showed similar LAB specific growth
rates (0.05 and 0.06 h! in the spontaneous and inoculated assays, respectively).
However, the inoculated treatment showed a higher biomass accumulation and lactic
acid productivity than the spontaneous process (TABLE 4.1). The maximum specific
LAB growth rate was achieved around 4-6 h in the inoculated treatment and 8-10 h in

the spontaneous process (TABLE 4.1).

TABLE 4.1 — KINETIC PARAMETERS OF SPONTANEOUS AND INOCULATED COFFEE
FERMENTATION PROCESSES DONE IN A STIRRED-TANK BIOREACTOR

Fermentation assay*

Fermentation variable Kinetic Parameter
Inoculated Spontaneous
m (h! 0.10 0.13
LAB | Hm (h7) |
Biomass accumulation (g) 3.84 3.09
Yeasts tm (h) 0.05 0.07
Biomass accumulation (g) 2.72 2.65
q(g/L.h) 0.37 0.14
Lactic acid
gp (b)) 0.10 0.05
/L.h 0.02 0.04
Acetic acid U/Lb)
qp (hh) ND ND
/L.h 0.04 0.01
Ethanol 1(gL-h)
qp (b)) 0.01 0.002

ND. = not detected. um, = maximum specific growth rate; q = product formation rate; q, = specific product
formation rate.

*All parameters were determined at 10 h of fermentation process, except maximum specific growth (pum)
values, which were calculated at intervals of 4 to 6 h in the inoculated treatment and 8-10 h in the
spontaneous process.
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4.3.2. Bacterial population composition and dynamics

The number of high quality bacterial 16S rRNA gene sequences obtained by
high-throughput sequencing was 369,101, resulting in more than 240 OTU at 97%
sequence similarity. The rarefaction curves for all the samples did not reach a plateau at
this sequencing depth (FIGURE A4.1), suggesting that major bacterial communities
were largely covered.

The HTS analysis showed that LAB was the dominant group in both
fermentation processes (FIGURE 4.2A and B). In the starter culture-added assay, reads
assigned to the Lactobacillus genus reached from 75% at the start of the process to
88.8% of the total OTU at 24 h. Other LAB groups, including Fructobacillus,
Leuconostoc, Pediococcus and Leuconostocaceae, as well as acetic acid bacteria
belonging to Acetobacter and Gluconobacter, were also found but in very minor
proportions. On the other hand, the Leuconostocaceae family dominated the STR
spontaneous process, reaching 74.8% of the reads at the end of fermentation. Along
with the Leuconostocaceae family, Fructobacillus, Leuconostoc, Erwinia,
Pseudomonas, Pediococcus, Serratia and Enterobacteriaceae were found in

significantly relative abundance.
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The HTS also showed the presence of over 100 bacterial genera in both
inoculated and spontaneous processes, many of which detected for the first time in
coffee beans fermentation, including Agrobacterium, Aeromicobium, Pediococcus,
Citrobacter, Methylobacterium and Fructobacillus. Microorganisms that were
characterized as “Others” in the HTS analysis (FIGURE 4.2) and whose prevalence was
<0.5% are described in the supplementary data (TABLE A4.1).

4.3.3. Coffee bean and beverage quality assessment

The chemical composition of green beans (unfermented coffee sample) and
fermented samples from inoculated and spontaneous treatments was determined using
HPLC and GC-MS (TABLE 4.2). No differences (p>0.05) in the concentration of
sugars (glucose and fructose) and citric and succinic acids were observed in beans from
any treatment. However, the lactic acid concentration was approximately twice as high

in the inoculated process compared to spontaneous treatment (TABLE 4.2).
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A wide variety of volatile compounds was identified in the dried beans,
including aldehydes (9 compounds), esters (6 compounds) and hydrocarbons (6
compounds). Phenylacetaldehyde, styrene, phenethyl alcohol and D-limonene were the
most important aromatic compounds quantified in the dried bean samples. The
concentrations of phenylacetaldehyde and 1-methoxy-2-propyl acetate had a significant
increase (p<0.05) in dried beans from inoculated treatment compared to the spontaneous
process. In addition, the use of the starter culture promoted the formation of aroma
compounds (e.g., 2-phenethyl acetate, 1-hexanol, 2-phenyl-2-butenal, tetradecanal,
1soamyl acetate and 2-methyl-butanoic acid) that were not detected in the spontaneously
fermented beans (TABLE 4.2).

Beverages, which were produced with roasted coffee beans from inoculated and
spontaneous treatments, received different scores for several important sensory
attributes (FIGURE 4.3). Aroma, flavor, acidity, body, and balance reached higher
scores in the inoculated treatment compared to the spontaneous, while sweetness, clean
cup, and uniformity were statistically similar for both treatments. Nonetheless, both
beverages were scored over 80 points (91.5 and 85.5 for inoculated and spontaneous
processes, respectively), being superior to those found from coffee beverage produced

using a natural, on-farm processing.

FIGURE 4.3 — SENSORY EVALUATION OF BEVERAGES PRODUCED WITH FERMENTED,
ROASTED COFFEE BEANS FROM SPONTANEOUS AND INOCULATED STR COFFEE
FERMENTATIONS AND FROM A NATURAL, ON-FARM PROCESSING (CONTROL).
COMPARISONS WERE MADE BY A PANEL OF FOUR EXPERIENCED COFFEE TASTERS.
ASTERISK REPRESENT SIGNIFICANTLY DIFFERENCE IN A TWO-SIDED P-VALUE <0.05

Overall
10.0

Aroma

Clean cup Flavor

Uniformity Acidity

== Inoculated (Total score: 91.5
Balance Body ( )
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According to the sensory descriptive terms selected by the coffee tasters, the
coffee beverage produced with the inoculated treatment produced a cup with intense
lactic perceptions (terms mentioned by the coffee tasters: “Aroma with lactic
background”; “Taste with intense lactic character”; “Excellent combination between
lactic and citric acidity”; “Perception of velvet-like body”; “Elegant finalization with
medium-to-long persistence and lactic touch”) as well as a caramel-like taste and
intense perception of ‘citric’ and “fruity” notes (data not shown). Terms relating to
lactic perception were also mentioned from the beverages prepared with beans of
spontaneous treatment, (viz., ‘“Perception of velvet-like body” and “Taste with slight
lactic character”), in addition to the terms “Aroma with herbaceous notes, such as lemon
grass and fennel” and “Caramel-like taste perception”. On the other hand, control (on-

farm processed coffee beans) showed a beverage with basic sensory profile, with

caramel-like taste and full bodied perception.

4.4. DISCUSSION

Over the last decade, disposable equipment has become an integral part of
several biologic manufacturing processes, promoting greater consistency, predictability,
and product value (STEINKRAUS, 2004). Coffee beans fermentation is still done as a
natural process that brings inconsistent quality and depreciated product value
(SCHWAN, 1998; SCHWAN et al., 2014). The present study is the first to set up coffee
beans fermentation in a STR. Conditions of sanitization, aeration and temperature were
controlled to achieve an improved process. The fermentation was done with the
inoculation of a recently selected LAB strain, L. plantarum LPBRO1, which has shown
an ability to result in faster and improved on-farm coffee processing (PEREIRA et al.,
2016).

It is known that coffee mucilage removal occurs three ways: (i) mucilage sugar
consumption; (ii) pectinolytic enzymes production; and (iii) mucilage acidification
process (MASOUD et al., 2004; MASOUD; JESPERSEN, 2006; PEREIRA et al.,
2014). A survey of previous studies showed that significant residual sugars can be
observed in the coffee mucilage after on-farm fermentation (CARVALHO NETO et al.,
2017), even by using selected starter cultures (EVANGELISTA et al, 2014a;
EVANGELISTA et al., 2014b; PEREIRA et al., 2015a). In this study, a high residual

sugar content was also observed at the end of the spontaneous STR process, suggesting
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that the initial microbial load found in coffee fruit is not sufficient for efficient mucilage
layer degradation. On the other hand, the STR system combined with the use of the
selected starter culture (i.e., L. plantarum LPBROIL) efficiently promoted the
consumption of fermentable sugars and, consequently, a faster acidification process
(lower than 4.0 after 10 h of fermentation process) through lactic acid production. In
previous studies pH levels lower than 4.0, an ideal parameter for signaling the end of
the coffee fermentation process, were only reached after 24 h (JACKELS; JACKELS,
2005; VELMOUROUGANE, 2013). Therefore, taking into account these crucial
aspects (i.e., pulp sugar consumption and pH level lower than 4.0), the use of the STR
system combined with a selected LAB starter culture shows potential to reduce the time
required for coffee fermentation from 24 to 10 h.

Consistent with the results of other coffee fermentation biodiversity studies,
HTS showed that STR fermentation process supports a complex association of bacteria,
mainly from the LAB group. However, the addition of starter culture changed
drastically the dominant group, as showed by high sequence reads of the Lactobacillus
genus in the inoculated process, while the Leuconostocaceae family dominated in the
spontaneous treatment. The Leuconostocaceae family includes Fructobacillus,
Leuconostoc, Oenococcus and Weissella genera, which may have shared this
dominance. The microbial members of this family are obligatory heterofermentative and
associated with the production of a vast array of compounds, including those that
promote “off-flavor” in the final coffee beverage, such as volatile sulfur compounds
(COMI; TACUMIN, 2012; PRIPIS-NICOLAU et al., 2004). This fact highlights the
importance of adding starter culture to coffee fermentation to ensure process
homogeneity and generation of desirable molecules.

The coffee industry has traditionally dedicated efforts in improving the final
beverage quality using roasting and brewing steps (CAPRIOLI et al., 2015; LEE et al.,
2015). However, recent studies have shown a significant increase in the quality of
coffee beans that were subjected to fermentative processes using starter cultures
(EVANGELISTA et al., 2014a; EVANGELISTA et al., 2014b; PEREIRA et al., 2015a;
PEREIRA et al., 2016). In the present study, the STR coffee fermentation done with
added starter culture enabled the production of coffee beans with richer aroma
composition and beverages with increased quality compared to the conventional
process. The stimulation of LAB growth and, consequently production of lactic acid and

volatile organic compounds (i.e., 1-hexanol, nonanal, 2-phenethyl acetate, 2-methyl-
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butanoic acid) positively influenced the final quality of the beverage. Previous studies
showed that these compounds can be directly linked to the LAB metabolism
(DAMIANT et al., 1996; MAICAS et al., 1999; MONTANARI et al., 2018). Although
no experimental evidence has been given yet, it is often shown in the literature that the
diffusion of such metabolites may occur and they modulate the chemical and sensorial

profile of the coffee beans (PEREIRA et al., 2017).

4.5. CONCLUSION

In summary, the STR fermentation model used in this study (consecutive aerobic
and anaerobic phases) was shown to be a positive environment for starter culture
growth, removal of coffee-pulp sugar and formation of flavor-associated molecules.
This new fermentation system showed a potential to reduce the time required for coffee
fermentation from 24 to 10 h, taking into account important aspects such as pH and
pulp-reducing sugars content. The kinetic parameters established can provide a basis for
optimization and scaling-up of the proposed process. Finally, this new fermentation
model can be used to supply the coffee industry with homogeneous and high-quality

coffee beans.
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CHAPTER V  (RESEARCH RESULTS) - MICROBIOLOGICAL,
PHYSICOCHEMICAL AND SENSORY STUDIES OF COFFEE BEANS
FERMENTATION IN A YEAST BIOREACTOR MODEL

Manuscript submitted in the European Food Research and Technology, January 2019
Patented process under publication number: BR 102016029488-6

ABSTRACT

Coffee fermentation refers to the on-farm, microbial process of removal of the mucilage
layer adhered to the fruits, necessary for storage and transport of the coffee beans. This
process is traditionally conducted spontaneously, thus leading to end-products of
variable quality. The aim of this study was to evaluate the microbiological,
physicochemical and sensory aspects of coffee beans fermentation conducted in a
controlled yeast bioreactor model. Fermentations were conducted with or without the
addition of a selected yeast starter culture (viz., Pichia fermentans YC5.2), and kinetic
parameters, including microbial growth, pulp sugar consumption and metabolite
formation, were studied. This fermentation system enabled an efficient yeast starter
culture growth, which led to high ethanol (0.136 g/L.h) and ethyl acetate (0.383
umol/L.h) formation rates. In the course of STR fermentation, an exponential lactic acid
bacteria growth and, consequently, organic acid production and pH decreasing were
reported. This bacteria population was mainly represented by Pediococcus sp. and
Leuconostocaceae family, as reveled by Illumina-based metagenomic sequencing. The
STR system combined with the use of the selected yeast starter culture also enabled the
production of coffee beans with rich aroma composition and beverages with remarkable
increase in quality compared to the conventional process. With further refinements, the
STR model may be useful in designing novel bioreactors for the optimization of coffee
fermentation with starter cultures.

Keywords: Bioreactor, coffee fermentation; coffee beverage; Pichia fermentans; starter

culture
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5.1. INTRODUCTION

After harvesting and pulping, the residual mucilaginous layer that surrounds the
coffee beans is eliminated by microbial fermentation. This involves the action of
complex microbial interactions, led mainly by yeasts (e.g., Pichia guilliermondii, P.
anomala, Kluyeromyces marxianus and Saccharomyces cerevisae) and lactic acid
bacteria (e.g., Leuconostoc mesenteroides, Lactococcus lactis and Lactobacillus brevis)
(AVALLONE et al., 2002; EVANGELISTA et al., 2014a; SILVA et al., 2013). These
fermenting organisms utilize the bean mucilage as a source of carbon and nitrogen to
produce significant amounts of ethanol, lactic acid, and other microbial metabolites,
resulting in lowered pH (from 5.5-6.0 to 3.5-4.0) (AVALLONE et al., 2001; PEREIRA
et al., 2014). This process generates a range of microbial-derived volatile metabolites,
which can diffuse into the seeds and have an impact on the final coffee quality
(EVANGELISTA et al., 2014b; PEREIRA et al., 2015; SILVA et al., 2013). In this
respect, yeasts have a pivotal influence through the generation of different aroma-
influencing molecules (e.g., esters, higher alcohols, aldehydes, ketone, and terpenoids)
via central carbon metabolism (DZIALO et al., 2017; HIRST; RICHTER, 2016; PIRES
etal., 2014).

Coftee is one of the few remaining beverages produced on a global scale where
the fermentation occurs in a spontaneous way. Common problems involve levels of
acidity of over-fermented coffee beans or incomplete mucilage removal by insufficient
fermentation which hinders the drying process and encourages the growth of spoilage
bacteria and fungi (PEREIRA et al., 2017). Thus, one of the current challenges for the
coffee processing chain is to control the fermentation process in terms of both kinetics
and quality of the resulting product. While experimental applications of defined yeast
starter cultures have produced satisfactory results (EVANGELISTA et al., 2014a,
2014b; PEREIRA et al., 2015, 2016), this technique has not been implemented in the
field. One limitation to the introduction of starter cultures is that coffee fermentations
are conducted in cement tanks that facilitate contamination by natural microbiota
(PEREIRA et al., 2017).

The demand for hygienic production practices has increased the appeal of using
stainless steel tanks in industrial bioprocesses (e.g., the production of yogurt, beer,
wine, and cider) (STEINKRAUS, 2004). The use of designed bioreactors can provide a

suitable environment for the development of controlled coffee bean fermentation. The



91

aim of this study was to determine the kinetic parameters of coffee bean fermentation
conducted with a selected yeast starter culture (viz., Pichia fermentans YCS5.2) in a
stirred-tank bioreactor (STR) model, and to evaluate the effects of this new process on

the chemical and sensory quality of coffee beverage.

5.2. MATERIAL AND METHODS

5.2.1. Controlled coffee beans fermentation in STR bioreactor

Coftee cherries of Coffea arabica var. Catuai were obtained from a farm 1,270
m above sea level situated in Patrocinio in the Minas Gerais State, Brazil. The fruits
were transported to the laboratory and manually depulped to obtain beans with
mucilage. A total of 2 kg of manually depulped beans were deposited in a 10.5 | New
Brunswick™ BioFlo® 110 fermenter (Eppendorf, Hamburg, Germany) equipped with
pitched blade impellers, previously sterilized, with 2 L of sterile water (pH 6.5)
(CARVALHO NETO et al., 2018). Two batch fermentations were conducted in
triplicate: (i) spontaneous (non-inoculated control) and (ii) inoculated (yeast starter
culture-added). The selected yeast starter culture used in this study, Pichia fermentans
YC5.2, was previously isolated for its high ethyl- and isoamyl acetate production, as
detailed in Pereira et al. (2014). The inoculum solution was added into the bioreactor
reaching an initial concentration of 6 log CFU/mL. For both fermentation processes,
conditions of temperature (30 °C), agitation (200 rpm) and aeration (I L/min) were
maintained controlled during the initial 12 h. After this time, aeration and agitation were
interrupted and an anaerobic environment was created by injecting COzg) into the
fermenting coffee-pulp bean mass, allowing a static fermentation during the final 12 h.
At the end of fermentation, coffee beans were washed with water to remove the
degraded mucilaginous layer and avoid secondary fermentations during the drying
process. Then, coffee beans were dried in an air recirculation drying oven at 35 °C until

the value of 12% of moisture was reached.

5.2.2. Sampling and pH measurement

Samples (5 mL) of the liquid fraction of the fermenting coffee-pulp bean mass

were collected in triplicate at intervals of 2 h to perform microbial counts and
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metabolite target analysis. At each sampling point, the pH was measured using a digital

pH meter (Requipal, Curitiba, Brazil).

5.2.3. Microbial counts

Aliquots of 100 pL of the liquid fraction samples were homogenized with 900
uL of 0.1% saline-peptone water (10" solution) and diluted serially. Total yeasts and
lactic acid bacteria (LAB) were enumerated according to Pereira et al. (2016), where
100 pL of the diluted solutions were inoculated on the surface of Rose Bengal
Chloramphenicol agar (RBCA, Oxoid, Sao Paulo, Brazil) containing 0.01% (w/v)
chloramphenicol and MRS agar containing 0.1% (w/v) natamycin, respectively. Plates
were incubated at 35 °C for 48 h and the number of cell-forming units (CFU) were

recorded.

5.2.4. Verification of inoculum dominance

To verify inoculum dominance, colonies of P. fermentans YCS5.2 were
distinguished from the indigenous yeasts through colony morphology (i.e., cream color
with furrowed appearance, membranous texture, oval shape, and absence of filaments)
(CAPUTO et al., 2012). To confirm the identification of P. fermentans, representative
yeast isolates were submitted to a P. fermentans-specific PCR primer protocol
(PEREIRA et al., 2014) that contained 12.5 pL of Mix GoTaq® Green Master 1X
(Promega, Sao Paulo, Brazil) and 0.3 uM of each P. fermentans-specific primer (PFF2
— 5S'GAAGGAAACGACGCTCAGAC3’ and PFR2 —
S'ATCTCTTGGTTCTCGCATCG3'). A 136-bp amplification product pointed to the

identification of P. fermentans.

5.2.5. High performance liquid chromatography (HPLC)

The concentration of reducing sugars (glucose and fructose), organic acids
(citric, succinic, lactic, acetic, and propionic acids), and ethanol were determined in
intervals of 2 h. Aliquots of 2 mL of the liquid fraction samples were centrifuged at
6000 xg for 15 min and filtered through 0.22 pm pore size filter (Millipore Corp.,

Billerica, MA, USA). Analysis parameters were performed according to Carvalho Neto
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et al. (2017). The filtered samples were injected into HPLC system equipped with an
Aminex HPX 87 H column (300 x 7.8 mm; Bio-Rad, Richmond, CA, USA) and a
refractive index (RI) detector (HPG1362A; Hewlett-Packard Company, Palo Alto, CA,
USA). The column was eluted in an isocratic mode with a mobile phase of 5 mM H>SO4

at 60 °C and a flow rate of 0.6 mL/min.

5.2.6. Ethyl acetate quantification by gas chromatography

Production of ethyl acetate, the major volatile organic compound produced by P.
fermentans YCS5.2 (PEREIRA et al., 2014), was monitored by gas chromatography.
Every two hours, the gases formed in the bioreactor headspace were collected and
injected into a gas chromatograph (model 17A; Shimadzu, Kyoto, Japan) equipped with
a flame 1onization detector at 230 °C. The operation conditions were as follows: a 30 m
% 0.32 mm HP-5 capillary column, column temperature of 40 to 150 °C at a rate of 20
°C/min. A standard curve was constructed using an authentic standard purchased from

Sigma and ethyl acetate concentration was expressed as umol/L of headspace

5.2.7. Kinetic parameters

The kinetic parameters for bacteria and yeast growth [specific growth rate (u)]
and product formation [product formation rate (Q) and specific product formation rate
(Qp) of organic acids (acetic and lactic acids), ethanol, and ethyl acetate] were
determined for both inoculated and spontaneous processes. To achieve these parameters

the following equations were used:

1 dx
PEx % ar
_ap
¢
1 _dP
% Tx*a

Where X and P are the final concentration of biomass and products (g/L)

generated in the coffee-pulp bean mass during fermentation time t (in hours).

(1)

(2)

(3)
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5.2.8. Bacterial diversity by Illumina high-throughput sequencing

The bacteria community composition from liquid fraction samples withdrawn at
0, 12 and 24 h of spontaneous and inoculated STR fermentation was analyzed by
[llumina high-throughput sequencing. For extraction of genomic DNA, 1 mL of each
sample was centrifuged at 12,000 xg for 1 min. The cell pellet was resuspended in 500
uL Tris-EDTA, homogenized with 10 pL of lysozyme solution at 20 mg/mL (Sigma
Aldrich, Arklow, Ireland) and incubated at 30 °C for 60 min. Then, 50 pL of SDS 10%
(w/v) and 10 pL of proteinase K solution at 20 mg/mL (Sigma Aldrich, Arklow,
Ireland) were added to the lysis solution, followed by homogenization and incubation at
60 °C during 60 min. Then, 150 pL of phenol-chloroform (25:24) were added,
homogenized by inversion and centrifuged at 12,000 xg for 5 min. The supernatant was
collected and the DNA was precipitated with 3x (v/v) absolute ethanol. Pellets were
washed with 80% ethanol, dried, and resuspended in ultrapure water. Total DNA was
quantified with a Nanodrop 2000 instrument (Thermo Fisher Scientific, Inc., Waltham,
MA, USA).

A fragment of the of the 16S rRNA gene was amplified from the total extracted
DNA using primers for the V4 region (bases 515 to 806) containing complementary
adaptors for Illumina platform (CAPORASO et al., 2012) using KlenTAQ polymerase
(Sigma Aldrich, Arklow, Ireland). Bar-coded amplicons were generated by PCR under
the following conditions: 95 °C for 3 min, followed by 18 cycles at 95 °C for 30 s,
annealing at 50 °C for 30 s, extension at 68 °C for 60 s, final extension at 68 °C for 10
min. Samples were sequenced in the MiSeq platform using the 500 V2 kit, following
standard [llumina protocols.

After sequencing, chimeric sequences detection, removal of noises from pre-
cluster and taxonomic attribution were performed using standard parameters of QIIME
software package, version 1.9.0. Applying the uclust method (EDGARD et al., 2010),
sequences presenting identity above 97% were considered the same operational

taxonomic units (OTUs) according to the SILVA database (QUAST et al., 2013).

5.2.9. Chemical analysis of dried, fermented coffee beans

Sugars and organic acids present in dried, fermented beans from spontaneous

and inoculated processes, as well as in green coffee beans (namely unfermented beans),



95

were extracted in water and determined by high-performance liquid chromatography
(HPLC). The HPLC procedure was performed as described in section 5.2.4.

The volatile aroma compound composition of spontaneous, inoculated and
unfermented coffee beans was determined by gas chromatography coupled to mass
spectrometry (GC-MS) according to Carvalho Neto et al. (2017). The extraction of
volatile compounds from the beans was performed using a headspace vial coupled to a
solid phase microextraction (SPME) fiber (5% Carboxen [CARB]/95%
Polydimethylsiloxane [PDMS] df75 pm partially crosslinked) (Supelco, St. Louis, MI,
USA). The flasks were heated at 70 °C for 10 min without agitation, followed by 15 min
of exposition of the fiber in a COMBI-PAL system. The compounds were desorbed into
the gas chromatograph injection system gas phase (CGMS TQ Series 8040 and 2010
Plus GC-MS; Shimadzu, Tokyo, Japan) at 260 °C. The column oven temperature was
maintained at 60 °C during 10 min, followed by two heating ramps of 4 and 10 °C/min
until reaching the temperatures of 100 and 200 °C, respectively. The compounds were
separated on a column 95% PDMS/5% PHENYL (30 m x 0.25 mm x 0.25 mm film
thickness). The GC was equipped with an HP 5972 mass selective detector (Hewlett
Packard, Palo Alto, CA, USA). Helium was used as carrier gas at a rate of 1.0 mL/min.
Mass spectra were obtained by electron impact at 70 eV and a start and end mass-to-
charge ratio (m/z) of 30 and 200, respectively. The compounds were identified by

comparison to the mass spectra from library databases (Nist’98 and Wiley7N).

5.2.10. Coffee cup quality analysis

After dried, about 800 g of fermented coffee beans from spontaneous and
inoculated STR processes were roasted in a semi-industrial roaster (Probatino, Leogap
model, Brazil). A coffee beverage derived from conventional processing (i.e., on-farm
fermentation condition) was included as a control. The roasting cycle was defined
through the sensory markers technique according to the procedures described by Pereira
et al. (2015). The roasted coffee was ground in a G3 Bulk Coffee Grinder (Bunn
Corporation, Sdo Paulo, Brazil) to an average particle size between 360 and 420 pum.
The coffee samples for cupping were prepared using 105 g of roasted and ground coffee
in 1500 mL of filtered water (Everpure Water Filter System, Sao Paulo, Brasil) using a
VP17-3 BLK Coffee Brewer (Bunn Corporation) with paper filter method (Melitta

original 1 x 4). The water was treated to avoid the influence of different solutes and
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contained 90 ppm of total dissolved solids with a balance ratio of 1:4 sodium and
calcium, and had a pH of 6.50. Cupping evaluation was performed by a panel of four
expert coffee tasters with Q-Grader Coffee Certificate, as described in Pereira et al.
(2015). An evaluation was conducted assessing the following attributes: aroma, taste,
acidity, body, balance, aftertaste and overall quality according to the Specialty Coffee
Association of America Cupping Protocols (see
‘http://www.scaa.org/?page=resources&d=cupping-protocols’). =~ The quality and
intensity of each attribute were evaluated simultaneously using a scale varying from 0 to
10, with 0.25 increments, and a total score for each sample was assigned. After the
gustatory step, coffee tasters assigned a score unfermented beans e to each sample and

highlighted the remarkable attributes of each beverage in a descriptive analysis.

5.2.11. Statistical analysis

The data obtained of target metabolite analysis and sensory evaluations were
analyzed by post-hoc comparison of means by Duncan’s test. Statistical analyses were
performed using the SAS program (Statistical Analysis System Cary, NC, USA). Level

of significance was established in a two-sided p-value <0.05.

5.3. RESULTS AND DISCUSSION

5.3.1. Controlled bioreactor fermentation assay

The FIGURE 5.1 shows the time evolution of microbial growth and pH decrease
during inoculated and spontaneous STR fermentation. For both processes, the bioreactor
system enabled an ideal, continuous yeast and LAB growth. This led to a correct coffee-
mucilage acidification, reaching final pHs of 4.63 and 4.27 in the inoculated and
spontaneous process, respectively. The reduction in pH levels below 4.5 is a method
widely used by coffee producers to determine the end of coffee beans fermentation
(JACKELS; JACKELS, 2005). The acidification process assists in the promotion of
pectin breakdown (the major carbohydrate polymer present in coffee mucilage),
contributing to the removal of the fruit mucilage layer and drying of the beans

(GERMANE et al., 2015; KIM et al., 2016; PEREIRA et al., 2017).
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FIGURE 5.1 - GROWTH KINETICS OF TOTAL YEASTS (A) AND TOTAL LACTIC ACID
BACTERIA (B) IN COFFEE FERMENTATIONS CONDUCTED IN A STR BIOREACTOR.
INOCULATED PROCESS = YEAST STARTER CULTURE-ADDED (YC5.2); SPONTANEOUS
PROCESS = NON-INOCULATED CONTROL (SPO)
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The inoculation of P. fermentans resulted in high counts of total yeasts during
entire fermentation process, reaching a peak of 8.85 log CFU/mL at 24 h of
fermentation (FIGURE 5.1A). This yeast population was represented by over 75% of P.
fermentans at the end of the fermentation process, as reveled by primer-specific PCR
analysis (data not shown). On the other hand, the spontancous fermentation showed a
significantly lower yeast count, reaching a maximum of 6.46 log CFU/mL at 10 h of
fermentation. The high yeast population present in the inoculated process led to an
efficient coffee-mucilage sugar consumption, with glucose being totally consumed at 12
h (TABLE 5.1). A survey of previous studies demonstrates significant residual amounts
of pulp sugars (approximately 6.93 g/L) at the end of coffee fermentations conducted
under field conditions (CARVALHO NETO et al., 2017), even by using selected starter
cultures (EVANGELISTA et al., 2014a, 2014b; PEREIRA et al., 2015). Unsatisfactory
coffee bean demucilaging interferes with the drying process encouraging the growth of
spoilage bacteria and fungi (AGATE; BHAT, 1996). Thus, the STR system combined
with the use of selected yeast starter culture showed great potential for efficient removal

of coffee beans mucilage layer.
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The fermentative kinetic parameters for both inoculated and spontaneous assays
are disposed in TABLE 5.2. In general, the efficient yeast biomass accumulation in the
inoculated process (3.72 g/L) led to higher ethanol (0.136 g/L.h) and ethyl acetate
(0.383 g/L.h) formation rates when compared to spontaneous treatment. A similar lactic
acid bacteria growth rate (0.028 h') and lactic acid formation rate (~0.11 h'') was
observed in the course of both fermentation processes (TABLE 5.2). Lactic acid is an
important organic compound to coffee beans fermentation, which assists in the coffee
pulp acidification process without interfering in the final product quality (PEREIRA et
al., 2017). On the other hand, acetic acid content (a common coffee-transmitting off-
flavor) was higher in the spontaneous process (0.752 and 0.098 g/L in spontaneous and
inoculated assays, respectively), indicating a possible difference in the bacterial
composition between treatments. To prove this hypothesis, a high throughput 16S
rDNA gene sequencing analysis was performed at 0, 12, and 24 h of fermentation
(FIGURE 5.2). In both inoculated and spontaneous processes, a constant increase in the
population of LAB was observed, reaching over 85% of the total read sequences at the
end of the fermentation process. A great diversity of LAB genera was reported,
including Fructobacillus, Leuconostoc, Pediococcus, Erwinia, and Lactobacillus, with
strong dominance of Leuconostocaceae family. However, 16S rDNA gene sequencing
revealed differences in the minor bacteria composition between the treatments. At the
end of the spontaneous process, it was detected the presence of acetic acid bacteria
(AAB) belonging to genera Gluconobacter, Roseomonas, Roseococcus, and
Acetobacter, that were not detected in the inoculated treatment. AAB are known to have
unique fermentation ability, so called “oxidative fermentation” of acetic acid from
ethanol (WAGNER et al., 2005), indicating the probable origin of this organic acid in
the spontaneous process. Thus, the use of yeast starter culture was seen to be essential to

decrease acetic acid production in coffee beans fermentation.
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TABLE 5.2 — ESTIMATED KINETIC PARAMETERS OF THE SPONTANEOUS AND INCULATED

FERMENTATIONS
Kinetic parameters Fermentation assay
Fermentation variable Parameter Inoculated Spontaneous
h! 0.028 0.028
LAB u(h7)
Biomass accumulation (g) 3.844 3.844
u(hh) 0.011 0.012
Yeasts
Biomass accumulation (g) 3.720 2.520
o Q (g/L.h) 0.119 0.101
Lactic acid
Q, (h'h 0.031 0.026
o Q (g/L.h) 0.008 0.030
Acetic acid
Q, (h'h ND ND
/L.h 0.136 0.012
Ethanol QELb)
Qp (h'h 0.037 0.004
Q (umol/L.h) 0.383 ND
Ethyl acetate
Qp (h'h 0.103 ND

L, specific growth rate; Q, product formation rate; Qp specific product formation rate.
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5.3.1. Determination of coffee beans and beverage quality

The chemical composition of coffee beans before (unfermented beans) and after
inoculated and spontaneous processes was analyzed by HPLC and GC-MS (TABLE
5.3). HPLC analysis demonstrated that glucose, fructose and citric acid were unaltered
in the seeds after fermentation processes, while lactic acid, acetic acid and succinic acid
increased significantly (p<0.05) due to the microbial activity. In addition, acetic acid
content was higher in the beans originated from spontaneous process, probably derived
from AAB metabolism occurred during this treatment.

A total of 36 volatile organic compounds were identified in the analyzed coffee
beans by SPME-GC-MS analysis, including hydrocarbons, aldehyde, ketones, alcohols,
esters, furans, terpenes, pyrazine, and carboxylic acids (TABLE 5.3). Phenyl-
acetaldehyde, styrene, phenylethyl alcohol, and D-limonene were the most important
aromatic compounds quantified in both unfermented and fermented beans. Interestingly,
coffee beans generated from Pichia fermentans-inoculated treatment had significantly
higher concentrations (p<0.05) of specific volatile compounds, such as D-limonene,
phenyl-acetaldehyde, and phenylethyl alcohol. In addition, the use of the starter culture
promoted specific formation of some compounds, including phenylethyl acetate,
ethylsalycilate, butanoic acid, 2-ethyl, and furfural, 5-methyl, that were not detected in
beans from spontaneous process. Many of these compounds are typically reported in the
literature as attributable to Pichia metabolism (i.e., benzaldehyde, ethyl acetate,
phenylethyl alcohol, phenyl-acetaldehyde) (KONE et al., 2016; MANTZOURIDOU;
PARASKEVOPOULOU, 2013; ROJAS et al., 2003), while others may have been
originated from the beans itself (i.e., linalool and B-myrcene). This indicated that the use
of selected starter culture in bioreactor promoted a modification in the aromatic
chemical compounds composition of coffee beans, although more studies on these

kinetics should be performed.
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Sensory analysis of beverages produced with roasted coffee beans from STR
fermentations and on-farm processing (control) is shown in FIGURE 5.3. The beverage
produced from Pichia fermentans-inoculated treatment received scores above 90 points,
which indicate a very high coffee quality according to Specialty Coffee Association of
America Cupping Protocol. This beverage had higher scores in overall, aroma, flavor,
acidity, body, finish and balance aspects when compared to STR spontaneous processes
and control fermentation. This indicates the positive influence of yeast metabolism in

final coffee beverage quality.

FIGURE 5.3 - SENSORIAL DIFFERENCES OF COFFEE BEVERAGES GENERATED FROM
FERMENTED, ROASTED COFFEE BEANS OF THE CONTROL (SPONTANEOUS) AND
INOCULATED PROCESSES ASTERISK REPRESENT SIGNIFICANTLY DIFFERENCE IN A TWO-
SIDED P-VALUE <0.05

Overall

Clean cup Flavor

Uniformity Acidity

—d— Inoculated (T otal Score: 91)

== Spontaneous (Total Score: 85.5)
Finish
-- @ Control (Total Score: 82.25)

Comparisons were made by a panel of four experienced coffee tasters.
Control indicates a coffee beverage derived from conventional processing (i.e., on-farm fermentation
condition). Asterisk= significantly higher in a two-sided p-value<0.05.

5.4. CONCLUSION

In summary, for the first time, a yeast bioreactor model was applied to the coffee
fermentation process. The fermentation system adopted in this work (consecutive

aerobic and anaerobic phases) proved to be a conducive environment for starter culture
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growth, coffee-pulp sugar consumption and formation of metabolite compounds that
can improve coffee beverage quality. The inoculation with high titers of selected yeast
cultures modulates the overall fermentation, with efficient sugar mucilage consumption
and aroma compounds formation. In addition, very high-quality coffee beans and
beverages were produced from bioreactor processes. The use of STR may be of great
interest for those who seek improved control over the coffee beans fermentation process

and/or to optimize coffee fermentation through the use of starter cultures.
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GENERAL CONCLUSION

In summary, the application of the next generation sequencing (Illumina
platform) in the present study allowed a good representation of both high- and low-
prevalent bacterial population, obtaining a total of 440,524 OTUs and over 80 families
and genera identified. Among these, it is possible to highlight the first report of
Fructobacillus, Pseudonocardia, Pedobacter, Sphingomonas, Hymenobacter and other
52 microbial groups, showing the potential of the terroir in the isolation of
microorganisms with potential biotechnological applications. In parallel, the proposition
of a new fermentation model in stirred-tank bioreactors under controlled parameters
allowed the creation of a favorable environment for the Lactobacillus plantarum
LPBRO1 and Pichia fermentans YC5.2 development. The starter culture growth resulted
in an effective consumption of sugars, with glucose being totally consumed at 12 h and
the presence of a low concentration of residual fructose (1.14 and 0.98 g/L, repectively)
at the end of the fermentation, and the production of important metabolites such as
lactic acid, ethyl acetate, D-limonene and 2-phenylethyl acetate. The diffusion of lactic
acid and volatile organic compounds into the beans promoted the sensorial modulation
of the coffee beverages, which reached scores above 90 points in the SCAA scale and
were significantly superior to the spontaneous fermentations conducted in bioreactors
and on-farm conditions. In addition, the LAB bioreactor model showed a pronounced
acidification of the coffee pulp-bean mass, achieving a pH bellow 4.0 during the initial
6 h of fermentation and significantly reducing the time required for the fermentation.
Thus, the present study allowed an in-deepth temporal analysis of the microbial
populations’ dynamics associated with coffee fermentation and suggested a new
segment for the technological advance of the coffee post-harvest processing.
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