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RESUMO

Os codigos computacionais complexos das mais diversas dreas, tais como industria 4.0
e energia, apresentam caracteristicas como nao-linearidade, escala, multimodalidade e presenca
de restricoes. Por este motivo, as técnicas cldssicas Newtonianas e baseadas em gradiente nio
sdo recomendadas para problemas de otimizacdo global, os quais contém inimeras varidveis de
projeto, restri¢des e simulacdes incorporadas. Isso incentivou novas pesquisas em metaheuristicas
baseadas em fendmenos naturais, principalmente comportamentos de animais com caracteristicas
cooperativas ou colaborativas. Entretanto, ndo existe um algoritmo dnico capaz de ter bom
desempenho para todos os tipos de problemas de otimizagdo, o que justifica a busca recorrente
por novas abordagens para solucionar esses problemas. Portanto, a presente tese introduz duas
metaheuristicas com estruturas inovadoras inspiradas na natureza e nunca propostas. A primeira
€ baseada na espécie Canis latrans e denominada Algoritmo de Otimizacao dos Coiotes (do
inglés Coyote Optimization Algorithm, COA). A segunda, por sua vez, € inspirada na espécie
Cebus capucinus e denominada Otimizador dos Macacos-prego-da-cara-branca (do inglés White-
faced Capuchin Monkeys Optimizer, WfCMO). Os algoritmos propostos sao avaliados sob um
conjunto de fun¢des de benchmarks empregadas nas competi¢cdes do Congresso de Computagao
Evolutiva (do inglés Congress on Evolutionary Computation, CEC) organizado pelo Instituto de
Engenheiros Eletricistas e Eletronicos (do inglés Institute of Electrical and Electronics Engineers,
IEEE) e comparadas a outras metaheuristicas inspiradas na natureza. Além disso, a modelagem
de um problema de otimizacdo com restricoes de uma turbina a gas do tipo heavy-duty de
uma termelétrica brasileira também € proposto nesta pesquisa. Para soluciond-lo, uma versao
cultural do COA ¢é proposta e seu desempenho € avaliado e comparado com outros algoritmos
do estado-da-arte. Os resultados mostram que as metaheuristicas propostos nesta pesquisa
alcancaram desempenho satisfatorio e superaram os outros algoritmos com 95% de confianga
estatistica com base no teste nao-paramétrico de Wilcoxon-Mann-Whitney e também nos critérios
do IEEE CEC 2017. Ainda, os resultados conquistados para problems multimodais e de alta
dimensao mostram que as técnicas sao promissoras para estes tipos de problema, que sdo usuais
em problemas reais. Ademais, as andlises de curva de convergéncia e de diversidade da populagao
indicam um balanco adequado entre exploracdo e aproveitamento. Por fim, a versao cultural do
COA, que se demonstrou capaz de evitar convergéncia prematura, superou os demais algoritmos
do estado-da-arte para o problema de otimizagdo da operagao da turbina.

Palavras-chave: Industria 4.0, Inteligéncia Computacional, Otimiza¢do Global, Metaheuristicas
inspiradas na natureza.



ABSTRACT

The real-world applications from the most diverse fields such as industry 4.0 and energy
have been formulated into complex computational codes with features as non-linearity, scale,
multimodality, and the presence of constraints. Because of that, the classic Newtonians and
gradient-based techniques are not recommended for global optimization applications with many
design variables, constraints, and simulations embedded. It has encouraged new researches
on metaheuristics based on natural phenomena, mainly animal behaviors with cooperative or
collaborative features. However, there is not a unique algorithm able to perform well for all types
of optimization problems, which justifies the recurrent search for new approaches. Hence, this
thesis presents two never-proposed nature-inspired metaheuristics with innovative structures. The
first one is based on the Canis latrans species and it is denoted Coyote Optimization Algorithm
(COA). The second one is inspired by the Cebus capucinus species and receives the name of
White-faced Capuchin Monkeys Optimizer (WfCMO). The proposed algorithms are evaluated
under a set of benchmark functions employed in the Institute of Electrical and Electronics
Engineers (IEEE) Congress on Evolutionary Computation (CEC) competitions and compared
to other state-of-the-art nature-inspired metaheuristics. Besides, the design of a constrained
optimization problem of a heavy-duty gas turbine operation from a Brazilian thermoelectric
power plant is proposed in this research. To solve it, a cultural version of the COA is proposed
and its performance is evaluated and compared to other state-of-the-art algorithms. The results
show that the proposed metaheuristics achieve profitable performance and outperform some
state-of-the-art algorithms with 95% of statistical confidence based on the Wilcoxon-Mann-
Whitney non-parametric test and the criteria of the IEEE CEC of 2017. Also, these algorithms
present promising results for multimodal and high dimensional problems, which are the most
usual features of real-world problems. Moreover, the convergence and diversity curves indicate a
suitable balance between exploration and exploitation. Further, the proposed cultural version of
the COA outperforms other state-of-the-art algorithms for the gas turbine operation problem. Its
ability to avoid premature convergence is also demonstrated.

Keywords: Industry 4.0, Computational Intelligence, Global Optimization, Nature-Inspired
Metaheuristics.
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1 INTRODUCTION

Real-world problems have been formulated into computational codes from the most
diverse application fields including robotics, aerospace, civil, mechanical, mechatronics, chemi-
cals, health science, information science, and sports (Antoniou and Lu, 2007; Yang and Koziel,
2011). The combination of intelligent algorithms and digital integration to applications of these
fields has generated the term Industry 4.0 (I4.0) (Muhuri et al., 2019). This term has become
widespread among the researcher, especially because of the numerous applications that have been
published in scientific journals during the last decade, as drawn in Fig. 1.1. A considerable set of
Artificial Intelligence (Al) techniques have already been applied to complex industrial systems
(Shukla et al., 2019), such as the Industrial Gas Turbines (GT).
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Figure 1.1: Number of papers related to Industry 4.0 over the last decade (Scopus and IEEEXplore databases).

The industrial GTs, also denoted heavy-duty GTs, have been widely used in the energy
generation industry. The GTs offer high power output along with a high combined cycle efficiency,
lower emissions, and also high fuel flexibility (Vyncke-Wilson, 2013). It is a consequence of the
price, the environmental concerns, and the fuel diversification (Demirbas, 2009) provided by the
natural gas, which has been used as fuel for power plants able to generate a couple of hundred
megawatts. Unlike the advantages of this type of equipment, there are numerous problems related
to the gas turbines maintenance, such as aging of gas path components, fouling in the air filter
and compressor, excessive clearance due to rubbing, and malfunctions (Lemma et al., 2016). In
addition, problems related to the polluting emissions and pressure oscillations in the combustion
chamber that are highly complex to be mathematically written as white-box systems have been
studied (Yamao et al., 2017a,b; Pierezan et al., 2017b).

Therefore, many internal and external features might be considered in order to improve
a heavy-duty gas turbine effectiveness. The main topics explored are modeling and simulation,
control, thermodynamic analysis, pollutant emissions, vibration, fault diagnosis, and exergy
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efficiency. As example, some recent researches related to industrial GTs are summarized in Tabs.
1.1 and 1.2.

An approach suggested by many researchers is to convert mechanical, electrical, and
chemical systems into optimization problems, which means to search for a set of parameters to
achieve a determined objective (Yang et al., 2013). Such methodology has been successfully
employed in many industrial and engineering applications in the last decades (LaTorre et al.,
2015; Zelinka et al., 2013). The most challenging part of this methodology is that the resulting
optimization problem usually presents non-linear behavior, multimodality, which means the
presence of only one convex region or numerous local optima, non-separability, which means the
minimization of the problem’s cost depends on the manipulation of multiple variables at a time,
and the presence of optimization constraints (Mahdavi et al., 2015; Suganthan et al., 2016).

The first optimization techniques proposed were the classic Newtonians and gradient-
based (as the Hill-climbing, Conjugate Gradient, Downhill Simplex, and Pattern Search), which
mathematically guarantee the convergence to an optimal solution. According to (Rao, 1996),
these methods can be classified as deterministic ones and they perform well for local search
problems. However, considering many recent global optimization problems with multiple design
variables, constraints, and simulations embedded, other approaches are welcome to complement
these methods.

Hence, the research on new algorithmic approaches for complex global optimization
has begun with heuristics like the Simulated Annealing, the Tabu Search, and the GA (Goldberg,
1989). These methods are classified as stochastic and according to (Boyd and Vandenberghe,
2004) they do not guarantee the convergence to the global optimum, but they do guarantee the
avoidance of the worst solutions possible due to their evolutionary feature. Based on this principle,
the development of new stochastic techniques has started and some of the most widespread
metaheuristics have been proposed. The Evolutionary Algorithm (EA) denoted Differential
Evolution (DE) (Storn and Price, 1995, 1997), which is based on Darwin’s evolution theory, and
the Swarm Intelligence (SI) algorithm called Particle Swarm Optimization (PSO) (Kennedy and
Eberhart, 1995), which is inspired on the synchronized flock of birds.

After the proposal of these algorithms, the exponential growth of researches on new
metaheuristics for handling global optimization has been noted in the literature, as shown in
Fig. 1.2. Several EA and SI methods have been proposed mainly as an improvement of the
GA, the DE, and the PSO techniques (Mahdavi et al., 2015; Boussaid et al., 2013; Das et al.,
2011). Furthermore, many algorithms inspired by nature have been proposed and explored in the
last decades, resulting in the creation of the Nature-inspired Metehuristics (NiM) classification
(Dokeroglu et al., 2019).

Among the numerous optimization techniques, from the classic methods to the most
recent metaheuristics, the nature-inspired ones have shown the most promising results in many
research areas (Yang, 2014; Boussaid et al., 2013; Salcedo-Sanz, 2016). Defined as techniques
that try to copy nature, these algorithms are inspired by the most diverse phenomena. Some are
based on animal movements, another on the social relations of some species. The communication,
social hierarchy, and echolocation are examples of many other diverse natural inspirations found
in the recent literature (Zang et al., 2010).

Several nature-inspired metaheuristics have been proposed in the last decades and the
majority of them is based on some animal behavior. As example of that, there are the Ant Colony
Optimization (ACO) (Dorigo et al., 2006), the Artificial Bee Colony (ABC) (Karaboga and
Basturk, 2007), the Bacterial Colony Foraging (BCF) (Chen et al., 2014a), the Bat-Inspired
Algorithm (BA) (Yang, 2010), the Cat Swarm Optimization (CSO) (Chu et al., 2006), the Dolphin
Echolocation (DEc) (Kaveh and Farhoudi, 2013), the Firefly Algorithm(FA) (Yang, 2009), the



Table 1.1: Literature review related to industrial GTs - Part I

Year | Short description

2011 | A white-box turbulence model based on the Semi-Implicit Method for Pressure Linked
Equations (SIMPLE) algorithm (Wang et al., 2011).

2011 | Correlation of reliability indicators, fuel consumption and carbon dioxide (CO,) emissions
of a GT cogeneration power plant (Hazi et al., 2011).

2011 | Evaluation of the aerodynamic performance resulting from the fuel change on the turbine
cascade of ground heavy-duty GT (Liu and Wang, 2011).

2011 | White-box identification and real-time simulation of a GT (Chacartegui et al., 2011).

2012 | GT heat and power identification from real data using ANN (Nikpey et al., 2012).

2013 | Analysis of hybrid solid oxide fuel cells in the GT cycle (Zabihian and Fung, 2013).

2014 | GT fault diagnosis system using Support Vector Machine (SVM) (Hu et al., 2014).

2014 | Optimization of the performance of a GT cycle using a thermodynamic and energy study
of a regenerator (Saria et al., 2014).

2014 | Analysis of GT cycle NOx releases (Hajer et al., 2014).

2015 | GT frequency vibration prediction using real data and ANN (Ben Rahmoune et al., 2015).

2015 | Dynamic Multilayer Perceptron (MLP) networks as pattern classifier applied to GT fault
detection (Sina Tayarani-Bathaie and Khorasani, 2015).

2015 | Different methods of cooling the inlet air to GTs in Fars combined cycle power plants
(Ghanaatpisheh and Pakaein, 2015).

2016 | Analysis of the effect of ambient parameters on the performance of combined cycle GT
power plants (Plis and Rusinowski, 2016).

2016 | A Fuzzy Proportional-Integral-Derivative (PID) Controller for a GT power plant (Karande
et al., 2015).

2016 | The reliability analysis of the combined cycle GT power plant using the multi-state Markov
model (Lisnianski et al., 2016).

2016 | Efficiency metrics of heavy-duty GT systems using natural gas and syngas (Sorgenfrei
and Tsatsaronis, 2016).

2016 | GT modeling using fuzzy neural network approaches based on real data acquired and
classification (Benyounes et al., 2017, 2016).

2017 | Thermal performance evaluation of a GT power plant based on exergy analysis (Ibrahim
etal., 2017).

2017 | Optimization of Inlet Guide Vanes (IGV) position in a heavy-duty GT on part-load
performance using a multiobjective approach (Mehrpanahi and Payganeh, 2017).

2017 | Combined cycle efficiency optimization using evolutionary metaheuristic based on the
Genetic Algorithm (GA) (Cao et al., 2017)

2017 | A GT white-box model and its respective simulation (Zhang, 2017).

2017 | A GT black-box dry low emissions model approach using Nonlinear Autoregressive
Exogenous (NARX) model (Tarik et al., 2017)

2017 | A regression-based prognostic model combined with an Adaptive Neuro-Fuzzy Inference
System (ANFIS) to predict deposition and fouling in the compressor section of GT engines
(Hanachi et al., 2017).

2017 | A system of control and diagnostic of vibration in GTs using NARX neural networks (Ben

Rahmoune et al., 2017).
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Table 1.2: Literature review related to industrial GTs - Part 11

Year | Short description

2018 | Transient behavior of heavy-duty GTs based on a white-box simulation model optimized
by a Genetic Algorithm (GA) (Chaibakhsh and Amirkhani, 2018).

2018 | A multi-objective approach for Computational Fluid Dynamics (CFD) optimizations of
water spray injection in GT combustors considering the Nitrogen Oxides (NO, ) emissions
(Amani et al., 2018).

2018 | Two-steps method to improve the robustness of GT gas-path fault diagnosis against sensor
faults (Li and Ying, 2018).

2018 | The modeling and simulation of a heavy-duty GT operating under temperature control
mode under steady-state conditions in the popular Rowen GT model (Kim et al., 2018).

2018 | Flameless combustion and its potential towards GTs (Perpignan et al., 2018).

2018 | A simulation of combined cycle GT power plants (Liu and Karimi, 2018).

2018 | Multiobjective Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
multicriteria decision strategy to power generation costs and exergy efficiency optimization
(Entezari et al., 2018).

2018 | Analysis of specific power and Specific Fuel Consumption (SFC) of open-cycle GTs using
the ideal gas model with temperature-independent heat capacities (Delgado-Torres, 2018).

2018 | Optimization of power generation costs in a system involving a combined cycle GT, a
compressed air energy storage system, and solar energy collectors using Non-dominated
Sorting Genetic Algorithm IT (NSGA-II) (Wang et al., 2018).

2018 | Multiobjective Artificial Bee Colony (ABC) optimizing energy cost, investment, and
generators power output of an offshore GT (Zhang et al., 2018).

2019 | A Dual Fuel GT (DFGT) model using natural gas and biogas (Amiri Rad and Kazemiani-
Najafabadi, 2019).

2019 | A modeling and system identification of gas fuel valves from real data (Omar et al., 2018).

2019 | A GT fault classification method using machine learning techniques and real data
acquisition (Batayev, 2018).

2019 A numerical scheme for the thermodynamic analysis of GTs (Colera et al., 2019).

2019 | A white-box simulation model of industrial GTs (Tsoutsanis and Meskin, 2019).

2019 | A thermo-economic analysis applied to multi-fuel fired GT (Udeh and Udeh, 2019).

2019 | A multiobjective optimization approach applied to the conceptual design of a conventional
GT combustor (Saboohi et al., 2019).

2020 | GT fault diagnosis using a Multi Feedforward Artificial Neural Networks (MFANN)
system (Alblawi, 2020)

2020 | Grey-box modelling of the swirl characteristics in gas turbine combustion system (Zhang
et al., 2020d)

2020 | GT signal fault isolation using Kalman filter, ANN and Fuzzy logic (Togni et al., 2020)

2020 | Multi-objective-optimization of GT process parameters using Grey-Taguchi and ANN
(Gul et al., 2020)

2020 | GT operation characteristics design and prediction in real-time (Park et al., 2020).
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and/or keywords, over the last two decades (Scopus database).

Grasshopper Optimisation Algorithm (GSA) (Saremi et al., 2017), the Grey Wolf Optimizer
(GWO) (Mirjalili et al., 2014), the Particle Swarm Optimization (PSO) (Kennedy and Eberhart,
1995), the Social Spider Algorithm (SSA) (Yu and Li, 2015), the Spider Monkey Optimization
(SMO) (Bansal et al., 2014) and the Whale Optimization Algorithm (WOA) (Mirjalili and Lewis,
2016). There is also some NiM inspired by other natural phenomena instead of a specific animal.
It is the case of the Flower Pollination Algorithm (FPA) (Yang, 2012), the Symbiotic Organisms
Search (SOS) (Cheng and Prayogo, 2014), the Virus Colony Search (VCS) (Li et al., 2016) and
many others (Salcedo-Sanz, 2016; Boussaid et al., 2013). A complete review o NiM and the
most diverse inspirations are presented in (Lones, 2019; Molina et al., 2020).

1.1 JUSTIFICATION

Considering the world energy scenario, the total energy supply has grown around 134%
(8098 Mtoe to 14282 Mtoe) from 1971 to 2018. The share of natural gas supply has increased
around 265% and it represented around 22.8% of the total energy in 2018. In the Americas, the
total energy supply represented a share of 23.4% of the world energy in 2018. (IEA, 2020).

According to the Brazilian Energy Review (Resenha Brasileira Energética) 2020, which
is written by the Ministry of Mines and Energy (Ministério de Minas e Energia) regarding
the year 2019, the energy demand in Brazil grows above the Gross Domestic Product - GDP (
Produto Interno Bruto - PIB). In 2019, the Brazilian energy matrix has grown around 15.5%
considering both renewable and non-renewable sources (Brasil, 2020). The development of
sustainable energy has become more than an international policy objective, but also an integral
part of sustainable development (Gunnarsdottir et al., 2020). Moreover, the search for robust
solutions to optimize different energy sources has increased (Impram et al., 2020; Igbal et al.,
2014).

The current research is based on an Research and Development (R&D) project of a
thermoelectric power plant located at Araucdria, Parand state, Brazil, which generates electrical



21

energy using natural gas as an energy source. The power plant operates in a combined cycle
and it is composed of two Siemens Westinghouse W501FD combustion turbine generators, two
Aalborg unfired heat recovery steam generators, one Alstom steam turbine of condensing type,
and one Alstom single-shell two-pass condenser. A photograph from the facility is shown in Fig.
1.3, where it is possible to see the exhaust tower of each gas turbine.

Figure 1.3: Exhaust towers view of the UEGA power plant at Araucdria, Parana State, Brazil.

Each gas turbine has 173 MW of nominal power output with around 36% of efficiency
in normal conditions, while the steam turbine has around 123 MW. Thus, the total nominal
power output is 469 MW and the efliciency considering the combined cycle reaches around 50%.
The performance of the power plant is measured by the Heat Rate (HR), which is calculated in
Btu/kWh (the lower, the better) and it considers the individual equipment’s energy conversion and
the energy spent to run the operation (electrical transformers, office, etc) (Yamao et al., 2018).

Since the construction of the facility, a set of technical reports has been written to
evaluate the performance after each setup procedure. It has been noticed that HR has increased
significantly while the energy spent to run the operation has not increased in the same proportion.
Hence, the employees of the power plant have concluded that the efficiency loss may be a result
of the individual equipment’s performances, mainly the gas turbine, which has a double impact
on HR. Because of the dimension of the system, any small variation in the performance impacts
hundreds of thousands of dollars per year.

1.2 OBJECTIVES

The objectives of the present thesis are (i) to propose a metaheuristic for global
optimization inspired on the Canis latrans species; (ii) to propose a metaheuristic for global
optimization inspired on the Cebus capucinus species; and (iii) to evaluate at least one proposed
algorithm under a constrained real-parameter engineering optimization problem. According to
the aforementioned goals of this research, the specific objectives are summarized as follows:

* To compare the proposed algorithms with the other similar nature-inspired metaheuristics
from literature in terms of structure, mechanisms, and optimization strategies;

* In order to explore the advantages of the proposed algorithms, to test them on a set of
continuous optimization benchmark functions with distinct features as multimodality;
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* To compare the performances of the proposed algorithms with other nature-inspired
metaheuristics in terms of convergence and diversity of the population;

* To design an optimization problem to improve the efficiency of a heavy-duty gas turbine
respecting the physical and operational constraints;

* To applied the proposed algorithms to the designed problem of the constrained opti-
mization of a heavy-duty gas turbine operation.

1.3 ORIGINAL CONTRIBUTIONS

The present thesis introduces two original NiM for global optimization with different
inspirations. Each NiM presents an original approach to the global population structure, division,
and interaction. Conceptually, each algorithm introduces a new metaphor regarding the solutions
of an optimization problem and the balance between exploration and exploitation is analyzed.

The first proposed NiM is inspired by the Canis latrans species, which contains a distinct
structure when compared to other similar state-of-the-art algorithms. The global population
is divided into subpopulations with local interactions and the social exchange between the
individuals of the population based on real observations of this species is introduced. The second
one is inspired by the Cebus capucinus species, which is designed with separated groups of
monkeys composed of males and females. Instead of sharing information and working as a team
as most population-based and swarm intelligence metaheuristics, the social behavior employed is
the fight between the groups of the same species.

Moreover, the present research contributes to the optimization of a real-world application
using the proposed NiM. The optimization problem is the operation of a heavy-duty gas turbine
of 173 MW from a combined cycle power plant with two of these turbines and an additional steam
turbine. A computational grey-box model is proposed to simulate the power output considering
constraints as the gas emissions and pressure oscillations inside the combustion chamber.

Furthermore, alternative optimization mechanisms and strategies from literature are
pursued to improve the performance of the proposed NiM. The domains from the cultural
algorithms and the chaotic maps are examples of possibilities for NiM improvements. Besides,
multi and many-objective versions of the proposed NiM are explored during this research.

1.4 RESEARCH LIMITATIONS

Due to the numerous repetitive evaluations of an objective function, one single optimiza-
tion process using evolutionary algorithms (EAs) is usually quite slow in terms of computational
execution time. When a new metaheuristic is proposed, multiples EAs are compared and the
total execution time increases considerably (LaTorre et al., 2015; Suganthan et al., 2016). First
and evident, because the number of EAs being tested increases. Second, because the higher the
number of objective functions tested, the more reliable is going to be the conclusion obtained.
Third and last, because the higher the number of experiments performed, the more reliable is
going to be the statistical analysis provided.

Because of that, a small number of algorithms chosen from the state-of-the-art are used
for comparison, as well as a limited number, and experiments are performed. Moreover, the
set of parameters for each algorithm is reduced and the state-of-the-art algorithms employed
assumes only one, while the proposed NiM assumes two or three sets.

In order to reduce the total execution time, some experiments have shared experimental
unity. As a consequence, the full computational execution time of each EA can not be precisely
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and reliably measured for comparison. Nevertheless, the computational complexity of each
can be estimated using a technique from literature (Suganthan et al., 2005; Chen et al., 2014b;
Suganthan et al., 2016). As the objective of the present thesis is to evaluate the design and
contributions of the proposed algorithms, this is a limitation with a low impact on this research.

Considering the engineering application, this study is focused on gas turbine performance

improvement through data analysis and operation optimization. The data has been acquired from
a two days operation in October of 2015 because after that the power plant has been idle for a
couple of years. Because the acquisition system was still under construction, only one gas turbine
data was correctly acquired and this research does not consider the second gas turbine.

1.5 OUTLINE

The present thesis is organized as follows:

Chapter 1: In this chapter, the general introduction is presented, including the justification,
the motivation, the research limitations, and the objectives;

Chapter 2: This chapter contains the basic concepts of global optimization, and the
performance analysis methods using statistical inference and convergence analysis;

Chapter 3: The state-of-the-art nature-inspired metaheuristics used for comparison in
this research are presented in this chapter;

Chapter 4: In this chapter, the proposed algorithms inspired on the canis latrans and
Cebus capucinus species are described and the performances are evaluated under a set
of benchmark functions;

Chapter 5: A cultural version of the COA is introduced in this chapter and its performance
is evaluated to the constrained optimization of a heavy-duty gas turbine operation;

Chapter 6: The discussion related to the results presented is provided, as well as the
contributed publications and the future activities for the continuation of this research.
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2 SINGLE-OBJECTIVE GLOBAL OPTIMIZATION

The present chapter contains the basic concepts regarding the global optimization
process. The first subsection stands for the basic concepts and definitions of a global optimization
problem. The following subsection contains the stopping criteria usually adopted to test the
optimization methods under global optimization problems.

2.1 OPTIMIZATION PROBLEM DEFINITION

According to (Simon, 2013), an global optimization problem containing a number of
constraints to be satisfied can be written as:

minimize f(x)
subjectto g;(x) >0, j=1,2,...,J;
he(x) =0, k=1,2,...,K;

L U
xi,) Sdexfl )d:1,2,...,D,
where xc(lL) and xflU) represent, respectively, the lower and upper bound of each decision variable

x4, defining the search space of the problem Q C RP. The g;(x) and hy(x) are denoted the
constraint functions with J inequalities and K equalities that might exist. A solution x must
satisfy all of the J + K constraints to be considered feasible; it it does not, the it is considered
infeasible. If the optimization problem contains any variable bounds, equality or inequality, then
it is called a constrained problem. Otherwise, it is denoted unconstrained problem.

2.2 STOPPING CRITERIA

The stop criteria are part of the structure of the iterative optimization methods and are
the ones responsible for closing the execution of the experiment. According to (Engelbrecht,
2005), the most common criteria are:

1. The maximum number of iterations or evaluations of the objective function reached: if
this value is too small, the experiment will end before finding a good solution; otherwise,
the processing time will be very high;

2. An acceptable solution found: an error measure is defined concerning the desired global
optimum; care must be taken with very high values, since they generate an unsatisfactory
solution, and also with low values, which can never be reached, generating an infinite
loop.

3. When the solution is not improved for a certain time: there are different ways to stop,
but it means that the method has already converged, regardless of whether the value
found is the global optimal.

There may be particular stopping criteria for some metaheuristics, but this approach will not be
addressed in this thesis.
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2.3 STATISTICAL EVALUATION OF STOCHASTIC ALGORITHMS

Unlike the mathematical and deterministic methods, the stochastic ones do not have
a proof of convergence to the global optimal solution (Sergeyev et al., 2018). Hence, many
statistical tools have already been used to evaluate the performance of these algorithms (Rao,
1996). This section presents the techniques used in the present work based on (Montgomery and
Runger, 2011).

2.3.1 Descriptive Statistics

The descriptive statistics can be described as a set of numerical summaries of data
combined with graphical views of the results. In other words, it means to convert a considerable
amount of data into a reduced group of features with understandable views. In global optimization,
this approach is used to compare the performance of different methods after a set of independent
runs, which means different initial conditions (or seeds).

One of the most widespread approaches used to present these numerical summaries is
through a table, as shown in Tab. 2.1.

Methods | Minimum Average Median Maximum Standard Deviation
Method 1 7.2 9.6 9.1 9.9 1.9
Method 2 6.1 7.1 7.2 9.0 1.6
Method 3 7.3 8.9 9.5 9.8 1.7
Method M 6.8 8.7 8.5 8.8 1.2

Table 2.1: Example of a table with numerical summaries (only representative values).

For a finite population with N values, the probability mass function is 1/N and the
mean can be considered the average value among a set of observations, such as:

X == X;. (2.1)

To complement the analysis, the standard deviation of a sample evaluates the dispersion
of the observations. Note that, only a sample of N independent runs is taken into account. The
standard deviation (std) is then computed as:

N
1
=4 i —X)2. 2.2
std N—l;(x X) (2.2)

Although the combination of the sample average and standard deviation enables the
comparison of two or more methods, the existence of outliers is always possible and it needs
to be considered. The outliers are described as atypical/unusual observations, it means a value
far from the sample average. The sample median is a metric that can be used to evaluate the
performance and reduce the influence of the outliers. It happens because this feature carries
the tendency of the sample. The calculation of the median begins with sorting the sample and



26

picking the observation of the middle. In case of even sample size, the average between the two
central observations is used, such that:

X+, Nis odd
median =< x y +x, x> (2.3)
(7) (7*’1) .
———, otherwise

One method used to analyze the median and the outliers is the "box plot", which is
composed of a box with length denoted interquartile range (IQR) drawn from reference values
called quartiles. The lower edge is denoted the first quartile (g1, 25%) and the upper one is the
third (g3, (75%)). The second quartile is represented by a line inside the box, which is denoted
the 50th percentile or the median itself. A line denoted whisker is drawn from ¢1 to the smallest
sample value inside the 1.5 IQR. The upper whisker is drawn from g3 to the largest observation
inside the 1.5 IQR. The representation of a box plot is drawn in Fig. 2.1, where the outliers are
the observations outside the region between the end of the whiskers.

Whisker extends to Whisker extends to
smallest data point within largest data point within
1.5 interquartile ranges from 1.5 interquartile ranges
first quartile from third quartile

First guartile  Second quartile  Third quartile

D_\ /0- /O/O /D

Cutliers Qutliers Extreme outlier

le——1.5[QR —l=—1.5 IQR ——l+=——][QR—>l+—1.5 [QR —»l=—1.5 [QR —>I

Figure 2.1: Description of a box plot (Montgomery and Runger, 2011).

Through this analysis, it is possible to evaluate the repeatability of different methods
separately and compare them. Considering a minimization optimization problem, where the
goal is to find the smallest costs for eh objective function, the smallest the sample average,
the minimum, the median, and the maximum, the better is the result. On the other hand, for
maximization problems, where the goal is to find high values for the objective function, the
higher these values, the better. In both cases, the desired standard deviation is always the smallest
possible, which highlights the method capacity to find solutions near the sample average.

2.3.2 Statistical inference

As mentioned in the previous section, descriptive analysis provides a compact and
graphical interpretation of the observed samples. The weakness of that analysis is the lack of
confidence to conclude about the difference between two or more samples. When the samples
have nearly similar means, for example, how is it possible to infer if one is higher/lower than the
other?

Using statistical significance tests it is possible to estimate that with a certain probability,
for example, 95% (Hollander and Wolfe, 1999; Gibbons and Wolfe, 2003). Let’s Hy be the null
hypothesis, which states that two samples belong to the same population, while H; states that the
samples do not belong to the same population. A statistical test compares the sample distributions
and provides an indicator denoted p-value, the probability of rejecting the null hypothesis, which
is compared to the significance level « (for probability 95%, a@=0.05). If the p-value is lower
than «, then it is possible to say that "the samples do not belong to the same population with 95%
of statistical confidence".
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There are many methods on literature to estimate the p-value and it is possible to
separate into two groups: the parametrical and the non-parametrical ones. The difference is that
the parametrical ones assume that the probability density functions of the samples are Normal,
with average equals to u and variance equals to o2, as illustrated in Fig 2.2.

feo o2l ot

0'2=4

i w=15 x
Figure 2.2: Normal probability density functions (Montgomery and Runger, 2011).

However, this assumption is not recommended when comparing the results of stochastic
algorithms (Garcia et al., 2010; Derrac et al., 2011). The samples obtained after a set of
independent runs with different initial conditions can present several probability density functions,
as the example shown in Fig. 2.3. The first sample has similarity with a Normal probability
density, but the other samples are more similar to Beta, Weibull, and Uniform, for example
(Gibbons and Wolfe, 2003).
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Figure 2.3: Examples of probability distributions

Therefore, the non-parametric statistical significance tests are recommended to compare
the performances. The most recommended method for multiple comparisons is the Friedman
Ranks test (Hogg and Ledolter, 1987), which discovers if the median errors of all algorithms
belong to the same population (Hp). To perform the Friedman test, the data is arranged as
demonstrated in a table as Tab. 2.2 with n rows and k columns with only one observation or ¢
data in each of the n X k cells. The observations in the different lines are independent, while the
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columns are not due to some association units. The lines represent the blocks, which contain
only one subject each, and the columns represent the treatments. The k treatments are applied to
the n subjects. The observation of each treatment should be replaced by its respective relative
rank among the observations in the same block (Gibbons and Wolfe, 2003).

Treatments
T, n ... T
Bl r1,1 1’1,2 rl’k
B, r r . T
Blocks 2 2,1 2,2 2.k
B, ru1 ru2 .o Tak

Table 2.2: Data arrangement for the Friedman test.

The observations of each i’ block are sorted in ascending order from 1 to k. The rank
is then the order of the observation and in tie cases, the average rank is used. Considering r; ; the
rank of the i" block observation and j'” treatment, the average of the ranks of this treatment is
calculated as follows (Derrac et al., 2011):

1 n
Rj:r—erl-,j. (24)
i=1
forj=1,2,..., k. The Friedman statistic is then calculated by:
(2.5

»  12n
XFZ e+ 1) 4

k(k+1)>2
2

§ R} — ————
J

which is distributed according to the y? distribution with k — 1 degrees of freedom for n > 10
and k > 5. Otherwise, the exact values should be calculated. The Kendall’s coefficient (W) is
then calculated to indicate a perfect concordance (W = 1) or no concordance (W = 0):

7,
T nk-1)
Kendall’s coefficient of agreement uses the size levels of the effect suggested by (Cohen,
1988). If the null hypothesis is rejected, the Friedman test can not indicate which algorithm
has achieved a different performance when the null hypothesis Hy is reject. Thus, the multiple
comparisons considering NxN or 1xN with a control method are recommended (Derrac et al.,
2011). To perform this comparison, the Wilcoxon-Mann-Whitney method also known as the
Rank sum test is recommended (Hollander and Wolfe, 1999).
When multiple comparisons are executed, there is no control over the Family-Wise Error
Rate (FWER), which is defined as the probability of making one or more false discoveries among
all the hypotheses when performing several 1x1 tests. It means that, when a p-value is considered
in a multiple comparison test, it reflects the error probability of a given comparison, but it does
not consider the other comparisons of the group (Garcia et al., 2010; Derrac et al., 2011).
Therefore, the denoted post-hoc methods are recommended to reduce the impact of the
FWER. These methods are used to correct the p-values after the multiple comparisons using an
inference method. Because of its ability to control the FWER, the Bonferroni-Holm method is
recommended (Garcia et al., 2010; Derrac et al., 2011). It works as follows (Holm, 1979):

(2.6)
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1. All p-values are sorted in ascending order and m is the total number of p-values (it
means the number of treatments compared);

2. If the first p-value is greater than or equal to <, the procedure is stopped and no p-values
are significant; Otherwise, go on;

3. The first p-value is declared significant and now the second p-value is compared to
(ma_—1)- If the second p-value is greater than or equal to (m“—_l), the procedure is stopped
and no further p-values are significant; Otherwise, go on;

4. Go on with these logical steps until the algorithm stops.

In this research, the 1xN comparisons strategy with each proposed algorithm as a control
method is used. More information about the NxN strategy and more details about non-parametric
statistical tests can be found in (Gibbons and Wolfe, 2003).

2.4 CONVERGENCE ANALYSIS

As mentioned, the optimization process aims to find the best solution to a single-objective
function. It is reasonable to consider only the final result when there is a mathematical proof of
convergence, which is not the case for stochastic metaheuristics. Instead, it might result in a poor
analysis not to look inside the process. That is why the researchers began to analyze the behavior
of an optimization metaheuristic, from the beginning to the end of the process (Back et al., 1997).

In this context, a convergence curve can be defined as the historical values of a function
cost along the optimization process, as illustrated in Fig. 2.4. At this point, it is important to
remember the very common feature found in real-world optimization problems, the multimodality,
which means several local optima along with the search space. The local optima can be considered
a trap in the optimization process and the convergence curve is a powerful tool to evaluate the

ability to avoid these traps, in other words, to avoid premature convergence (Morales-Castafieda
et al., 2020).
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Figure 2.4: Convergence curves.

In Fig. 2.4, curves 1, 2, and 4 are good examples of premature convergence, where a
local optimum is quickly found and the solution is not significantly improved until the end of the
process. On the other hand, curves 3 and 5 are examples of better convergence, where the global
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optimal has been discovered gradually. It is important to point out that the shape of these curves
depends on the x-axis, so there is not an absolute ideal shape. The objective will always be to
converge to the global optima, the faster, the better.

In this example, the iterations have been considering in the x-axis. However, other
indexes can also be used, such as chronological time or the number of function evaluations.
Regarding the y-axis, different values of the cost can be used: the average of a population, the
average of a set of experiments, or even the raw cost, as illustrated. In cases where the global
optimal cost is known, the error curve can be generated for comparison purposes. Besides, the
scales in this example are linear for both x and y-axis, however, it can also be customized. For
example, if the range of the costs is too high, the y-axis can be shown on a logarithmic scale to
improve the view. The same idea can be applied to the x-axis and the main idea is that this setup
depends on the analysis desired.

After several analyses and discoveries about the convergence of stochastic metaheuristics,
a process to find out how to avoid the premature convergence keeping good results at the end
of the process has started. Some researchers state that the key factor to solve this issue is to
achieve a good balance between exploration and exploitation. In this context, exploration means
to test new solutions from different regions of the search space, while exploitation means to
investigate deeper the regions and the solutions already discovered. Some researchers denote
"local search" and "global search" respectively for exploitation and exploration, but is not reliable
to set a threshold to distinguish these modes of search (Xu and Zhang, 2014).

Hence, the diversity curve has been introduced to measure the exploration ability of
the metaheuristics, as illustrated in Fig. 2.5. This analysis is based on a metric able to estimate
the spread of the population in the search space. There are many ways to calculate the diversity
and one of them is to measure the average distance of the solutions (x) to a hypothetical mean
solution (X) with normalized values (Chi et al., 2012). In this research, the values are normalized
according to the search space maximum diagonal.

Figure 2.5: Diversity curves.
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In Fig. 2.5, curves 3 and 4 indicate a concentration of solutions in the same region of
the search space after iteration 20. On the other hand, curve 5 indicates that the diversity of the
initial set of solutions is kept during the entire optimization process. Finally, curves 1 and 2
demonstrate an increase in diversity along with the iterations, which indicates a good exploratory
ability.
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Similarly to the convergence, the x — axis of the diversity analysis can be set up with
different indexes and scales. Combining these curves analysis, it is possible to evaluate the
balance between exploration and exploitation. In general, this is a qualitative analysis and the
desired result is the convergence to the global optima keeping a high diversity of solutions.
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3 NATURE-INSPIRED METAHEURISTICS

The Nature-inspired Metaheuristics (NiM) perform an iterative search for the solution of
a optimization problem. In the following sections, the NiM studied in this research are presented.

3.1 ARTIFICIAL BEE COLONY (ABC)

The Artificial Bee Colony (ABC) algorithm is inspired by the behavior of a swarm of
bees searching for food. According to (Karaboga, 2005), bees have an intelligent behavior of
communication through movements. This allows them to convey positive or negative information
about explored food sources.

According to the analyzes made by Dervis Karaboga, bees can be classified as unem-
ployed or employed (Karaboga, 2005). The employed ones are responsible for exploiting a
particular food source, while the unemployed are divided into two groups: the onlooker, who
stand around the hive waiting for information from the employed about the food sources, and the
scouts, which go out in search of some new food sources.

The control parameters of this metaheuristic are the size of the swarm N, the number
of scout bees Ny, the limit number of attempts available for the bees employed to find more food
in the source, and the number of employed N, and onlooker N, bees. The number of employed
bees defines the number of food sources S (Karaboga and Basturk, 2007).

Considering a swarm with N, employed bees exploring a food source each (the number
of food sources S is equal to N,), for each i = {1,2, ..., S} there exists a possible solution x; of
dimension D (problem dimension) which, similarly, represents the position of the source of food.
Initially, random food sources are generated to be explored within the range of the search space,
such that:

0 _ .min max __ .min
X; = X; +r><(xj X7, 3.1
where r is a random number within the interval [0,1] and x"" and x™“* are the limits minimum

and maximum variables, respectively.
Each food source has a certain amount of nectar, similarly called fitness, depending on
the cost f; of the objective function, which is calculated by:

1 .
fitness(x;) = { I+fi fi>0 (3.2)

1 +|f;| otherwise
Onlookers wait around the hive for feedback from employed, which informs them about
food sources by dancing. The frequency of this dance indicates a higher quality of the source
and, consequently, more probability of an onlooker to choose such a source to explore. This
probability is calculated as the normalized fitness, such that:

P - fitness(x;) . (3.3)

i fitness(xy)
k=1
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The new food sources, which are candidates to assume the positions of the old ones, are
generated by:

Vijj = Xij+ i X (Xij— Xpj) (3.4)

withrandom k € {1,2,...,8}and k #i # j, where ¢; ; is arandom real value inside the interval
[-1,1] generate by uniform probability density function. A clipper mechanism is adopted right
after this step in order to keep the new food source inside the optimization problem search space.

The process of exploring new food sources is repeated until some of the food sources
stop evolving for limit times, and when it happens, the food source is replaced by a new one
discovered by a scout bee in a random position (in this step, the new food source is generated by
the Eq. 3.1). The entire search process is repeated until the defined stop criterion is reached, as
shown in Alg. 1, which contains the pseudo-code of the ABC. The process of generating a new
candidate food source is shown in Alg. 2.

Algorithm 1 Pseudo code of the ABC

1: Define the control parameters
2: Generate S random food sources (Eq. 3.1)
3: Evaluate all food sources
4: while stopping criterion is not achieved do
for each i employed bee do

Search for new food sources (Alg. 2)
end for
Calculate the food sources fitness (Eq. 3.2)
Calculate the probabilities (Eq. 3.3)
10:  Define fs =1 and counter =0
11:  while counter < N, do

R N

12: if rand < Py, then

13: counter = counter + 1

14: Search for new food sources (Alg. 2)
15: end if

16: Iterate fs rotatively

17:  end while
18:  for each i scout bee do

19: Verify the food source i that has more attempts

20: if attempts; > limit then

21: Generate one new random food sources (Eq. 3.1)
22: Evaluate this new food source

23: Replace the old food source by the new one

24: end if

25:  end for

26: end while
27: The best food source is selected as the solution of the problem

3.2 BAT ALGORITHM (BA)

The Bat Algorithm (BA) is a nature-inspired metaheuristic developed by Xin-She Yang
(Yang, 2010) and is based on the ability of microbats to use a type of sonar, called echolocation,
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Algorithm 2 Generation of new food sources in ABC

1: Generate a new candidate food source (Eq. 3.4)

2: Clip the new candidate in the search space

3: Evaluate this new candidate

4. Replace the old one if the new candidate is better, increment attempts instead

for distance sensing and prey hunting. This algorithm presents advantages regarding automatic
switching between exploration and exploitation, enabling a quick convergence rate at the early
stages. It is based on a population of N, bats.

The mentioned bats can emit loud sound pulses and listen for the echoes that bounce back
from objects in the surrounding area (Lemma and Hashim, 2011). Each pulse in echolocation
lasts up to about 8-10 ms, usually in the region of 25-150 kHz (Gandomi et al., 2013).

The basic steps of such an algorithm are shown in Alg. 3, which are based on the
idealization and approximations that are taken into account in (Yang, 2010). The initial population
of bats is generated randomly. After discovering the initial fitness of the population, the values
are changed according to their movement, intensity, and pulse rate. All bats use echolocation
to sense distances, magically differentiating between preys and background. Bats fly randomly
with fixed echolocation pulse frequency, which can be adjusted given the target proximity. The
echolocation loudness varies from a large positive value to a minimum constant value. (Yang
and He, 2013a).

Algorithm 3 Pseudo code of the BA.

1: Initialize the position x; and velocity v; of each of the N p bats
2: Define the pulse frequency f; of each bat
3: Initialize the pulse rates r; and loudness A;
4: while stopping criterion is not achieved do
5. for each i bat do
6: Adjust new solution (Egs. 3.5, 3.6 and 3.7)
7: if rand, > r; then
8: Select a solution among the best solutions
9: Generate a local solution around the selected best solution (Eq. 3.8)
10: end if
11: Compute fitness of new solution
12: if rand, < A; & f(x;) < f(x*) then
13: Accept the new solution
14: Increase r; and reduce A; (Egs. 3.9 and 3.10)
15: end if
16:  end for

17:  Rank the bats and find the current best x*
18: end while
19: The best bat is selected as the solution of the problem

The bats are defined by their position x!, velocity v!, frequency f;, loudness A! and
the emission pulse rate r! in a D-dimensional search space (Guo and Lihong, 2013). After
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the random initialization of solutions and velocities, the new solutions xlf and velocities vf. ata
specific time ¢ are given by

fi = fmin + (fmax - fmin)ﬂ» (35)
vi=viT 4 (- x) fi, (3.6)
xp=xi" v, (3.7)

in which B8 € [0, 1] is a random vector obtained from a uniform distribution and x, the current
global best solution after comparing the locations of all bats. At first, a random frequency f; is
assigned for each bat i in the initial population.

To perform a local search, a new local solution is generated based on one of the best
solutions using a random walk, as seen in Eq. (3.8), where € € [—1, 1] is a random number in
the mentioned interval and A’ is the average loudness of all bats in the respective time step.

Xnew = Xold + €A’ (3.8)

This local search process is controlled by the pulse rate and the loudness. For simplicity,
Ap can be defined as 1 and A,,;, as 0, assuming that this null value means that a bat has just
found its prey and temporarily stops emitting sound. Then,

Al = @ x Al (3.9)

and
rf“ = r? X [1=exp(—yt)], (3.10)

where @ and y are constants. Thus, for any « in the interval [0, 1] and 7 in the interval [0, co],
we have

0

Al’.—>0, rf—)rl.,t—>oo 3.11)

The loudness and the sound emission rates are updated only if the new solutions are
better than the previous ones, which would mean that the algorithm is moving towards a better
solution, which can be optimal (but not guaranteed).

3.3 FIREFLY ALGORITHM (FA)

The firefly algorithm (FA) is a bioinspired optimization algorithm developed by Xin-She
Yang (Yang, 2009) that is based on the flashing characteristics of fireflies, which are used to
attract mating partners and potential prey (Hackl et al., 2016). According to (Yang and He,
2013b), the main advantages of the FA algorithm include parameters that can be tuned to control
the randomness as the iterations increase, making it possible to speed up the convergence; an
automatic subdivision of the population in several groups that swarm around each mode or local
optimum, where the global best solution can be found; and an adsorption coefficient y (Mohammed
et al., 2016), which controls the average distance of a group that allows adjacent groups to see it.
The automatic subdivision is suitable for highly nonlinear, multimodal optimization problems,
allowing the fireflies to find all optima simultaneously in the case of population size being
sufficiently higher than the number of modes.
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FA was idealized taking into account three rules (Sdnchez et al., 2016; Ma and Cao,
2016): (1) fireflies are unisex and can attract to other fireflies independently of their sex; (2)
the brightness or light intensity of a firefly is determined by the objective function; and (3) the
attractiveness is defined proportionally to the brightness, where both decreases as the distance
between the fireflies also decrease. The less bright firefly will move towards the brighter one. If
there are no brighter fireflies than the one analyzed, it will move randomly in the defined search
space (Khosravi et al., 2015).

The attractiveness of a firefly is determined by its brightness, which is associated with the
objective function (Iy oc f(x)). Such a brightness varies according to the adsorption coefficient
v and distance r between fireflies, as illustrated in equation (3.12):

1(r) = Iye™"” (3.12)

The distance r between two fireflies, i and j, at positions x; and x; is the Cartesian
distance, which means:

d

rog =l x =g 1= 4| D Gk = %7002, (3.13)
k=1

where x; x is the kth component of the coordinate x; of ith firefly.
Equation (3.14) demonstrates another function that represents the light intensity, which
decreases monotonically at a slower rate.

Iy
1 +yr?

I(r) = (3.14)

The attractiveness 8 can be defined given Eq. (3.15), where S is the attractiveness at a
distance r = 0, usually defined as Sy = 1. In order to reduce computation time, Eq. (3.15) can be
replaced by Eq. (3.16).

B(r) = Boe™" (3.15)
B(r) = 1;8;2 (3.16)

In the implementation, 8(r) can be represented as any monotonically decreasing function
such as the generalized form shown in Eq. (3.17).

B(r) = Boe™", (k> 1). 3.17)

Finally, given the above values, the movement of a firefly i that is attracted to a brighter
firefly is determined by:

1
X = X; +ﬂoe_7ri2f (xj —x;) + a(rand — 5)’ (3.18)

in which the second term is related to the attraction, the third term is randomization with «
parameter for scaling and rand is a random number inside the range [0,1] generated by a uniform
probability density function.

As a conclusion, given the mentioned rules and equations, the FA with N fireflies is
demonstrated in the Alg. 4.
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Algorithm 4 Pseudo code of the FA

1: Generate the initial population x with N, fireflies
2: Calculate the light intensity 7 of all fireflies

3: while stopping criterion is not achieved do

4: fori=1toN do

5 for j =1to N do

6: Compute r (Eq. 3.13)

7: Compute /; and I; (Eq. 3.14)
8
9

if /; > I; then
Calculate 8 (Eq. 3.17)

10: Move firefly i towards j’s one (Eq. 3.18)
11: end if

12: end for

13:  end for

14:  Rank the fireflies according to the objective function costs
15: end while
16: Select the best firefly as the solution of the optimization problem

3.4 GREY WOLF OPTIMIZER (GWO)

The grey wolf optimization algorithm (GWO) is a NiM algorithm that has been recently
proposed and developed by (Mirjalili et al., 2014). It is inspired by the social leadership and
hunting behavior of grey wolves in nature.

Such an algorithm has a faster convergence due to the continuous reduction of the search
space and to the fact that there are fewer decision variables. Moreover, it has adaptive parameters,
which avoids local optima and guarantees exploitation and exploration capabilities (Mirjalili
et al., 2014; Long and Xu, 2016).

The wolves groups contain between 5 and 12 wolves, counting with a dominant hierarchy
where leaders are called alpha (a), followed by the beta (8) and gamma (), making them
responsible for making the decisions (Sanchez et al., 2017; Mirjalili, 2015). The best solutions
are ranked according to the social hierarchy, @, 8, and y, which are used to guide the rest of the
candidate solutions, assumed to be omega (w) (Muangkote et al., 2014), to an optimal value
during the hunting process (optimization) (Hassanin et al., 2016; Mosavi et al., 2016).

As part of the hunting process, the wolves encircle the prey. Eqgs. (3.19) and (3.20)
model this encircling behavior.

D=|C-X,(t)-X(1) |, (3.19)
X(t+1)=X,()—A-D, (3.20)

where ¢ indicates the current iteration, A and C the coefficient vectors, X » the position vector of

prey, and X the position vector of a grey wolf. The mentioned vectors A and C are calculated by
Egs. (3.21) and (3.22) respectively.

A=2d-7 -a, (3.21)

C=2-7, (3.22)
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where r; and r, are random vectors in the interval [0, 1] generated by a uniform probability
density function and the @ components are linearly decreased from 2 to 0 as the iterations increase,
in order to emphasize exploration and exploitation, respectively (Mirjalili et al., 2014).

The wolves will attack when the prey stops moving. To model this process mathematically,
the value of a is decreased. This implies that A is also decreased, as it is a random value in
the interval [-2a, 2a]. As soon as | A |< 1, the wolves attack the prey. Therefore, the a value
models the divergence (| A | > 1) and convergence (| A | < 1) characteristics of the optimization
algorithm and determines whether the grey wolves will attack or diverge from the prey, which
will determine an approach to the best solution or pursuit in the search space for a fitter solution,
respectively.

Also, the C component is a factor that favors exploration. According to Eq. (3.22), it
contains values in [0, 2]. This component provides random weights for preys to stochastically
emphasize (5 > 1) or deemphasizes (5 < 1) the effect of the prey in defining the distance
demonstrated in Eq. (3.19). This process favors explorations and improves local optima
avoidance.

The hunting process is mainly guided by the alpha group. The beta and gamma might
also participate occasionally. It is supposed that the alpha (best candidate solution), beta, and
gamma have a better estimate of the location of the prey. Thus, the mentioned three results
are stored and the other search agents, mainly from the omega group, update their positions
according to the positions of the best search agents. These processes are demonstrated in the Egs.
(3.23), (3.24) and (3.25), in which the final position of the current solution is represented in Eq.
(3.25), where:

Dy=|C-Xo—-X|, Dp=|Cr-X5-X|, Dy=Cs-X,-X|, (3.23)
Xi =X, —d1-(Dy), Xa=Xg—dr-(Dg), X3=X,—-ds-(D,), (3.24)

)_() 1+ )_()2 + 5()3
— s

The GWO algorithm is terminated when it satisfies the stop criterion and the solution
that best fits is chosen (the alpha). The basic steps and methodology to implement the grey wolf
algorithm are demonstrated in Alg. 5.

X(t+1)= (3.25)

3.5 PARTICLE SWARM OPTIMIZATION (PSO)

The Particle Swarm Optimization (PSO) has been proposed in 1995 to treat problems in
continuous search space (Kennedy and Eberhart, 1995). Its creation is inspired by the behavior
of animals that live in flocks, as is the case of birds and fishes. The main factor studied is the
synchronous movement that this species presents when it is in a group.

The operation of the method is based on particles that move in the search interval, whose
positioning of each represents a possible solution to the problem. The position depends on the
particle’s own experience and also on its neighbors, an influence that happens due to the social
relation in the swarm (Parsopoulos and Vrahatis, 2002).
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Algorithm 5 Pseudo code of the GWO
1: Initialize the grey wolf population X with size N
Initialize a, A and C
Calculate the fitness of all grey wolves
Define the best grey wolf, X,
Define the second best grey wolf, Xz
Define the third best grey wolf, X,
while stopping criterion is not achieved do
for each grey wolf do
Update the position (Eqgs. 3.23, 3.24 and 3.25)
end for
Update a, A and C (Eqgs. 3.21 and 3.22)
Calculate the fitness of all grey wolves
Update X,, Xg and X,
: end while
: Select X, as the solution of the optimization problem

R AN A
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It is a swarm of size N, that moves continuously as a function of time t, for each
i={1,2,...,N,} there exists a particle located in x; of dimension D (dimension of the problem)
representing a possible solution for the problem. The initialization of these particles occurs
randomly within the range of D variables, such as:

X0 = Xjmin +7j X (Xjmax — xj,min), (3.26)

for j = {1,2,..., D}, where r; is arandom number generated by uniform probability distribution
within the interval [0,1] and x,,;;, and x,;,,, are the minimum and maximum limits of the decision
variables, respectively.

Each particle also has a velocity with an initial value equal to zero and is updated with
each time instant. According to (Engelbrecht, 2005), there are different ways of calculating the
updated value.

The basic form is calculated using a cognitive component, which depends on the best
position the particle has occupied to date, and a social component, which may depend on the best
position known to the neighborhood or the whole swarm. The general case is described by:

Virli =W X Vi +cp Xrandy X (y; — X ;) + co X randy X (91 — Xt) (3.27)

where v, ; and x; ; are respectively the velocity and position of the particle i at the previous instant,
y;i 1s the best position that particle 7 has ever reached (¥;) is the best position in the neighborhood
of i, c¢1 and ¢, are cognitive and social constants, respectively, rand; and rand, are random
values generated by uniform probability density function inside the interval [0,1] and w is the
inertia weight.

The neighborhood of size Nv is defined by the set V;, such that:

Vi = {Xi=Nv.ts XieNvg4+1s « + o> XieLts Xigs XikLt> - > XikNv,t } (3.28)

and the best position will be of the particle that presents lower cost of the objective function.
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The most simple case is a particularity of the general one, where the neighborhood
is considered the whole swarm, i.e., Nv = N,, and the inertia weight is ignored, it means that
w = 1. The choice of the case depends on the optimization problem studied.

However, the most employed PSO case considers a linear decay of w, which is described
as:

I3 -1
We = (Wini = W finat) X ( "’;‘" ) + W final (3.29)
max

where w;,; and w ;4 are respectively the initial and final values of inertia and 7,4, is the number
of total iterations that will be executed. The necessary condition for the decay to occur is
Wini > W final -

There is also the linear decreasing method presented by (Abido, 2002), which is
independent of the total execution time. The updating of inertia weight is defined as:

Wir]l = @ X Wy (330)

where w, is the inertia of the previous instant and « is a decreasing constant. In this case, w;, must
assume an initial value w. Other velocity limitation strategies can be seen in (Engelbrecht, 2005)
The position of each particle at the same time ¢ + 1 is then calculated by:

Xetl,i = Xpi + Vgl (3.31)

where x;; is its previous position and v, ; is its already updated velocity.
Finally, the best position of the neighborhood and of each particle is updated, such that:

y[+],i — { xl‘,ia f(xl‘+l,i) > f()’z) (332)

Vi otherwise

where f(y;) is the objective function cost of the best position of the particle thus far and f (x4 ;)
is the cost of the updated position of the particle.

The process of updating the velocity and position of the particles is repeated until the
defined stop criterion is reached. The pseudo-code of the PSO used in this thesis is described in
Alg. 6, which is known as the asynchronous version (the global best is updated without evaluating
all particles) and considers N, = N, and dynamic linear decreasing w.

Algorithm 6 Pseudo code of the PSO

. Initialize N, particles (Eq. 3.26) with velocities equal to zero

—_—

2: Evaluate the N, particles

3: while stopping criterion is not achieved do

4. for each i particle do

5: Update the local and global best (Eq. 3.32)
6: Update the velocity (Eq. 3.27)

7: Update the position (Eq. 3.31)

8:  end for

9:  Update w (Eq. 3.29)
10: end while

p—
—

: The best particle is selected as the solution of the problem
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3.6 SYMBIOTIC ORGANISMS SEARCH (SOS)

The Symbiotic Organisms Search (SOS) is a population-based metaheuristic proposed
by (Cheng and Prayogo, 2014) to solve numerical optimization over continuous search spaces.
It is inspired by the reliance-based relationships seen in different species in nature, called
symbiosis. The SOS algorithm takes into account the most common symbiotic relationships
found: mutualism, commensalism, and parasitism.

The mutualism happens when both species are benefited, as the pollination. When bees
fly amongst flowers, the pollen is distributed — it benefits the flowers. It simultaneously benefits
bees, because during this activity the nectar is gathered for producing honey. Commensalism
occurs when only one species is benefited, without causing any harm to the other species. The
relation between remora fishes and sharks is an example of that because remora eats the shark’s
leftovers — being benefited — and the sharks are unaffected by this activity. Parasitism happens
when one species is benefited and the other is consequently damaged. The plasmodium parasite
is an example of that because it uses the relationship with the anopheles mosquito to pass between
humans. As a result of that, the parasite is benefited by living inside the human body, while the
human suffers malaria with life-threatening (Cheng and Prayogo, 2014).

In the SOS structure, each organism passes through three phases, which are represented
by the symbiotic relationships. Hence, the structure of the algorithm can be written as shown by
Alg. 7.

Algorithm 7 Pseudo code of the SOS.

1: Ecosystem initialization

2: while stopping criterion is not achieved do
3 for each each organism do

4: Mutualism phase
5

6

7

Commensalism phase
Parasitism phase
end for
8: end while
9: Select the best organism of the ecosystem (in terms of objective function’s cost)

The initialization covers the creation of N randomly positioned organisms in the search
space, the evaluation of all organisms, and the verification of the best organism in terms of cost.
The following subsections describe the operation of each phase previously mentioned.

3.6.1 Mutualism

In the mutualism phase, the i’ and j* organisms of the ecosystem — where the second
one is randomly selected using uniform distribution — engage in a mutual relationship to increase
mutual survival advantage in the ecosystem. The mutualistic symbiosis between these organisms
is modeled as follows:

XY = x; 4+ 11 X (Xpest — MutVec x BF)) (3.33)

1

x’;ew =Xj+72 X (Xpess — MutVec X BF>) (3.34)
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(x; +x j)
2
where r; and r; are vectors with D (objective function’s dimension) random numbers generated
inside the range [0,1] with uniform distribution of probability, x;. is the organism with the best
fitness in the ecosystem, MutVec is the mutual vector calculated from the organisms x; and x;,
x“" and x"*" are the new organisms and BF and BF; are the benefit factor of each organism.
These factors exist due to the intensity of the benefit received by each organism in the mutualism.
Thus, BF| and BF, assume value 1 in case of partially benefit and value 2 in case of the full
benefit. Each of these values is chosen randomly with uniform probability and is not mandatorily

equal to the other.
Then, the boundaries are verified and the organisms pass through a selection operator,
which keeps the solution with the best fitness. In other words, the organism x; is replaced by

x'“" only if the new fitness is better than the old one. The same happens with the j " organism.

MutVec = (3.35)

3.6.2 Commensalism

In commensalism, the i’ organism tries to be benefited from the j** organism, which is
picked randomly from the ecosystem. On the other hand, the j” organism neither is benefited
nor suffers from the relationship. Thus, the operation is described as:

new

Xi

=X +Te X (Xpess = Xj) (3.36)

where r. is a vector with D random numbers generated inside the range [0,1] with uniform
distribution of probability. After that, the boundaries are verified, x?ew is evaluated and the
selection operator is performed. The organism with the best fitness is kept. It means that the i""
organism is replaced only if the new fitness is better than the older one.

3.6.3 Parasitism

In the parasitism phase, a parasite organism pary is created from the i organism using
the following role:

(3.37)

min max min
P +rp X (=X, pr < Q.S
d Xik, oOtherwise

for k € {1,2,..., D}, where r; and py are random numbers generated inside the range [0,1] with
uniform distribution of probability and x;""" and x}'** are, respectively, the minimum and the
maximum k’" boundary of the search space. After that, the parasite is evaluated and tries to kill

the j' organism — which is picked randomly with uniform probability:

J xj, otherwise. '
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4 PROPOSED METAHEURISTICS FOR GLOBAL OPTIMIZATION

This chapter presents the proposed nature-inspired metaheuristics nature-inspired on
the Canis latrans, which is denoted Coyote Optimization Algorithm (COA), and on the Cebus
capucinus species, denoted White-faced Capuchin Monkeys Optimizer (WfCMO).

Experimental results from a set of boundary constrained real-parameter optimization
benchmarks are provided and analyzed. The performances of the COA and the WfCMO are
compared with other state-of-the-art nature-inspired metaheuristics and an extended statistical
analysis is employed to prove the metaheuristics’ contributions. A brief conclusion about the
results is also given in this chapter.

4.1 COYOTE OPTIMIZATION ALGORITHM (COA)

The proposed COA is based on the behavior of the wild species (canis latrans), also
known as brush wolf, prairie wolf and American jackal. This species belongs to the family
Canidae and can be found from Costa Rica to northern Alaska and from coast to coast in the
United States (Bekoff, 1977; Conner et al., 2008; Pitt et al., 2003).

The COA is a algorithm that can be classified as both swarm intelligence and evolutionary
heuristic, once it is population-based and the coyotes that best adapt to environment are selected
to "survive" along a set of iterations. In contrast with the Grey Wolf Optimizer (GWO) (Mirjalili
et al., 2014), which is inspired on the Canis lupus species, the COA has a different algorithmic
structural setup and it does not focus on the social hierarchy and dominance rules of these animals,
even though the alpha is employed as the leader of a pack (as explained forward). Further, the
COA focus on the social structure and experiences exchange by the coyotes instead of only
hunting preys as it happens in the GWO.

In the COA, the population of coyotes is divided into N, € N* packs with N. € N*
coyotes each. In this first proposal, the number of coyotes per pack is static and similar for all
packs. Hence, the total population in the algorithm is obtained by the multiplication of N, and
N.. For simplification purposes, the solitary (or transient) coyotes are not considered in this
first version of the algorithm. To facilitate the reader’s understanding, each coyote is a possible
solution for the optimization problem and its social condition is the cost of the objective function.

According to (Poessel et al., 2014; Gese et al., 1996), intrinsic factors (sex, the social
status and the pack that the coyote is a member) and extrinsic ones (such as snow depth, snowpack
hardness, temperature and carcass biomass) have been pointed out as influences in the coyote’s
activities. Therefore, the COA mechanism has been designed based on the social conditions of
the coyotes, which means the decision variables X of an global optimization problem. Thus, the
social condition of the ¢ coyote of the p'* pack in the 7' instant of time is written as

soc?! =% = (x1,x2, ..., xD) 4.1

and it implies in the coyote’s adaptation to the environment fir’’ € R.
The first step in the COA is to initialize the global population of coyotes. As the COA is
a stochastic algorithm, the initial social conditions are set randomly for each coyote. It happens
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by assigning random values inside the search space for the ¢!” coyote of the p'” pack of the ;"
dimension, as follows:
Dt

SOCC:J~ =Xjmin T 7j X (xj,max - xj,min)’ 4.2)

wherein x; i, and x; 4, represents, respectively, the lower and upper bounds of the j th decision
variable, D is the search space dimension and r; is a real random number generated inside the
range [0,1] using uniform probability. After that, the coyotes’ adaptation in the respective current
social conditions are evaluated:

fit!" = f(socl") (4.3)

Initially, the coyotes are randomly assigned to the packs, however the coyotes sometimes
leave their packs and become solitary or join a pack instead (Pitt et al., 2003). According to
(Conner et al., 2008), the coyote eviction from a pack depends on the number of coyotes inside
the pack and occurs with probability P,, such that:

P, =0.005 x N2. (4.4)

Considering that P, could assume values greater than 1 for N¢ < V200, the number of
coyotes per pack is limited to 14. This mechanism helps the COA to diversify the interaction
between all the coyotes of the population, which means a cultural exchange in the global
population. Two random coyotes from random packs are picked to change their positions, which
means that the population size remains constant along the whole optimization process, as well as
the packs sizes.

In this species, the packs usually has two alphas (Gese et al., 1996; Conner et al., 2008),
however the COA considers only one, which is the best adapted to the environment. Considering
an minimization problem, the alpha of the p'* pack in the ¢ instant of time is defined as:

alpha™ = {soc{'|arge=(1 2. nminf(socl")}. 4.5)

Due to the evident signs of swarm intelligence in this specie, the COA assumes that the
coyotes are sufficiently organized to share the social conditions and to contribute to the pack’s
maintenance. Thus, the COA links all information from the coyotes and computes it as the
cultural tendency of the pack:

p,t o
O'Nowry » Ncis odd
cult™ =3 ore Lori® (4.6)
/ Ne j " (New, .
— A, otherwise

where OP* represents the ranked social conditions of all coyotes of the p'* pack in the " instant
of time for every j in the range [1,D]. In other words, the cultural tendency of the pack is
computed as the median social conditions of all coyotes from that specific pack.

Taking into account the two main biological events of life, the birth and the death, the
COA computes the age of the coyotes (in years), which is denoted as age””’ € N. The birth of a
new coyotes is written as a combination of the social conditions of two parents (randomly chosen)
plus a environmental influence, such that:

p,[ .

t socrl’tj, rnd; < Psor j = j;

p’ _ p’ .
pup;” =y soc, ., rndjz Ps+Pgorj=j 4.7)

R;, otherwise
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wherein r; and r, are random coyotes from the p'* pack selected using a uniform probability
density function, j; and j are two random dimensions of the problem also generated by a uniform
probability density function, P; is the scatter probability, P, is the association probability, R; is
a random number inside the decision variable bound of the j dimension and rnd j 1s arandom
number inside [0,1] generated with uniform probability. The scatter and association probabilities
guide the cultural diversity of the coyotes from the pack. In this initial version of the COA, the
P, and the P, have been defined as

P;=1/D and (4.8)

P,=(1-"Py)/2, 4.9)

where P, establish the same influence impact for both parents.

According to some researches, the pups have around 10% of chances of dying even
before living (Conner et al., 2008) and the higher the coyote’s age, the higher is the mortality
probability (Pitt et al., 2003). In order to keep the population size static, the COA syncs the
coyote’s birth and death as described in the Alg. 8, where w and ¢ represent, respectively, the
group of coyotes worse adapted to the environment than the pup and the number of coyotes in this
group. Note that it is possible that two or more coyotes have similar age (in line 4). In this case,
the less adapted coyote is the one who dies. It is important to highlight that the age a coyotes has
no limit, differently from the nature.

Algorithm 8 Birth and death inside a pack of coyotes.

1: Compute w and ¢

2: if ¢ =1 then

3:  The pup survives and the only coyote in w dies.

4: else

5. if ¢ > 1 then

6: The pup survives and the oldest coyote in w dies.
7 else

8: The pup dies.

9: endif
10: end if

In order to represent the cultural interaction inside the packs, the COA assumes that
coyotes are under the alpha influence (61) and the pack influence (6,). The first one means a
cultural difference from a random coyote of the pack (cr;) to the alpha coyote, while the second
one means a cultural difference from a random coyote (cr7) to the cultural tendency of the pack.
The random coyotes are chosen by uniform distribution of probability and 61 and ¢, are written
respectively as:

81 = alpha™ - soch;! (4.10)
62 = cult™ — socky. 4.11)

Hence, the coyote’s new social condition is updated using the alpha and the pack
influence through the following equation:

N3 N
new_soclé7 = socf +r1 X0 +ry X0, 4.12)
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where r| and r, are, respectively, the weights of the alpha and the pack influence. Initially, r;
and r, have been defined as random numbers inside the range [0,1] generated with uniform
probability. It is important to highlight that a clip mechanism is included to maintain the coyotes
inside the search space. The new social condition is then evaluated:

new_fit?" = f(new_soc?"), (4.13)

and the coyote’s cognitive capacity decide if the new social condition is better than the older one
to keep it, it means:

t . Pt Dt

pa+l new_socf , new_fzté7 < fztf 414

soc.” = Dt . 4.14)
soc,, otherwise

Finally, the social condition of the coyote that best adapted itself to the environment
is selected and is used as the global solution of the problem. The pseudo-code of the COA is
described in Alg. 9, while the geometrical interpretation is drawn in Fig. 4.1, where the circles
represent the coyotes and the star represents the cultural tendency. In this representation, the ¢
and the 0, can be better interpreted, where the first component forces the coyote to the direction
of the best and the second one to the direction of the center of the group. The new solutions are
more likely to be generated inside the group space and it tends to converge along the iterations.
Combined with the pack exchange, the whole population slowly converges to a promising region.

Algorithm 9 Pseudo code of the COA

1: Initialize N, packs with N, coyotes each (Eq. 4.2)
2: Verify the coyote’s adaptation (Eq. 4.3)

3: while stopping criterion is not achieved do

4:  for each p pack do

5: Define the alpha coyote of the pack (Eq. 4.5)
6: Compute the social tendency of the pack (Eq. 4.6)
7: for each ¢ coyotes of the p pack do
8: Update the social condition (Eq. 4.12)
0: Evaluate the new social condition (Eq. 4.13)
10: Adaptation (Eq. 4.14)
11: end for
12: Birth and death (Eq.4.7 and Alg. 8)
13:  end for

14:  Transition between packs (Eq. 4.4)
15:  Update the coyotes’ ages

16: end while

17: Select the best adapted coyote

4.2 WHITE-FACED CAPUCHIN MONKEYS OPTIMIZER (WFCMO)

The Cebus capucinus species, also known as white-faced capuchin monkeys, white-
throated capuchin or white-headed capuchin dwells in Central and South America and it performs
an important role to ecology by dispersing pollen and seeds. This species lives in groups from 4
to 40 members (Fragaszy et al., 2004a), usually around 20, and its maximum lifespan is 54 years,
which is considerably high compared to other primate’s species (Schaik and Isler, 2012). The life
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Figure 4.1: Geometrical interpretation of the COA.

maintenance of this species occurs though the reproduction and death, as well as it happen in the
Homo sapiens species.

According to (Schaik and Isler, 2012), living in a cohesive groups causes food competition
and reduces growth and reproduction. On the other hand, it enables individuals to develop
long-term cooperative relationships. In fact, it has been observed that groups formed Cebus
capucinus species fight with groups from the same species for food and other resources (Vogel
et al., 2007).

In contrast with the SMO algorithm (Bansal et al., 2014), which is based on the
fission—fusion social system of the spyder-monkey species and aims to reduce the foraging
competition, the proposed WICMO has the completely opposite purpose. It is inspired on the
grouping and fighting behaviour of this species (Fragaszy et al., 2004b). Yet, while the SMO
considers a global leader and sub groups led by a female, the WfCMO considers the decentralized
leadership observed in the white-faced capuchins, where the initiation of group movements are
not concentrated into a single individual (Leca et al., 2003).

Hence, the WfCMO can be classified as a nature-inspired population based and
evolutionary heuristic and its population is divided into N, € N* groups with N,, € N* monkeys
each. In this first proposal, the number of monkeys per pack is static and similar for all groups.
Hence, the total population in the algorithm is obtained by the multiplication of N, and N,,.
To facilitate the reader’s understanding, each monkey’s position is a possible set of variables
(X) for the global optimization problem and its adaptation to the environment is the cost of the
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objective function. Thus, the position of the m'"* monkey of the g" group in the ¢'# instant of
time is written as
pOSﬁ,;l :)_C): (XI,XZ,...,XD) (415)

and it implies in the monkeys adaptation to the environment firs; € R.

The first step in the WFCMO is to initialize the global population of monkeys. As the
WICMO is a stochastic algorithm, the initial positions are set randomly for each monkey. It
happens by assigning random values inside the search space for # = 0 in the j dimension, such
that:

posfn’g =Xjmint7Tj-* (xj,max - xj,min), (4.16)
wherein x; i, and x; 4, represents, respectively, the lower and upper bounds of the j th decision
variable, D is the search space dimension and r; is a real random number generated inside
the range [0,1] using uniform probability function. After that, the monkeys’ adaptations in the
respective current position are evaluated:

fits' = f(poss) (4.17)

Initially, the coyotes are randomly assigned to the packs. It has been observed that the
males migrate from a group to another (Vogel et al., 2007), however this feature is not considered
in the WfCMO. In this first proposal, the males and females are redefined in every iteration of
the algorithm - after some tests, it has achieved best results with this setup. To perform this, a
control parameter has been set, the male probability, denoted p. Therefore, the definition of
males and females in the ¢/ iteration is performed by:

of true, {m=i} U {rnd, <p N m#+j}
maley, _{ false, {m=j} U {rnd, >p N m#i} (4.18)
forg=1,2,...,Noand m = 1,2, ..., Ny, where male stores the genre of the monkeys (true
for males, false for females), i and j are random numbers inside 1,2, ..., N,, with i # j and

rnd,, is a random number inside [0,1] generated with uniform probability. Note that, with this
mechanism at least one male and one female are guaranteed in each group.

At each iteration of the algorithm, every group fight with another group for the
competition for resources. In this version of the WfCMO, it occurs randomly, which means that
each group fight with another random group. As observed by (Perry, 1996), in the most cases the
males fight while the females run to defense the resources.

Considering that, the WfCMO considers distinct males and females movements initiated
by the g group in a fight against the g, group. The male movement is composed by two
components with different purposes. The first (A1) is to advance against the opponent to fight.
The second (A}) is to lure the opponent away from their own group to increase the safety of the
kin females. The complete male movement is described as:

Ay = (posie’ — posy') (4.19)
Ay = (posy = Cy) (4.20)

poss! = posST 41 XA +12 X Ay 4.21)
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where r; and r, are random numbers in the range [-1,1] generated by uniform probability
distribution function, r,, is a random male of the opponent group and Cy is the geometrical center
of the group g.

The geometrical interpretation of the males movements is drawn in Fig. 4.2, where the
stars, the circles and the triangles represent the center of the groups, the male monkeys and the
female monkeys, respectively. Note that the new solution tends to be generated around a solution
from another group, promoting the information exchange between the groups.
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Figure 4.2: Geometrical interpretation of the males movements of WfCMO.

On the other hand, the females movements consists only into depart from the center of
the opponent group (Az), which is computed as:

As = (posi! - Cy.) (4.22)
poss’ = poss +r3 X Az (4.23)

where r3 is a random number in the range [-1,1] generated by uniform probability distribution
function and Cy, is the geometrical center of the opponent group. The geometrical interpretation
of the females movements is drawn in Fig. 4.3, note that the female monkey moves away from
the group, improving the exploration of the algorithm.

It is important to highlight that, as mentioned before, due to the decentralized leadership
all monkeys can initiate an action and, therefore, all males and females perform one trial movement
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Figure 4.3: Geometrical interpretation of the females movements of WfCMO.

at each iteration. Moreover, a clip mechanism is included to maintain the monkeys inside the
search space.

After that, the monkey check its adaptation to decide if it is a better or worse position.
For males, it means a better position to fight, while for females it means better protection
conditions. It means:

g+l poss!, ﬁg’t < firs!
pos,, = = o m mo, (4.24)
posy, , otherwise

where fity, = f(poss).

In order to take into account the two main biological events of life, the birth and the
death, the WFCMO computes the age of the monkeys, which is denoted as age’;’ € N. Unlike
most NiM that generates offspring from parents, the WfCMO must locate the new monkeys in
the space. Thus, the birth of an young occurs by placing it as a combination of the position of the
monkeys of the group, which is defined as:

gt _ gt
young, ;= pos, . (4.25)
forj=1,2,...,D,wherery,; € {1,2,...,N,} is chosen randomly with uniform probability

an represents a random monkey from the group. If r,, ; is equal for all j, then the process is
repeated until the young borns in a different location of all monkeys of the group.
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Aiming to keep the population size static, the birth and death are synchronized in the
W{CMO. Whenever a young is born, its position is compared to the monkeys of the group. If the
young is better adapted than any other monkey, it survives. If there are multiples monkeys worse
adapted than the oldest dies (the ages are computed as age’” € N). If the young is not better
adapted, then it dies.

The Alg. 10 shows the birth and death process, where w and ¢ represent, respectively,
the set of monkeys worse adapted than the young and the number of monkeys in this set. Note
that it is possible that two or more monkeys have similar age (in line 5). In this case, the monkey
that presents the worst condition is the one who dies.

Algorithm 10 Birth and death inside a group of capuchins.

1: Compute w and ¢

2: if ¢ =1 then
3:  The young survives and the only monkey in w dies.
4: else
5. if ¢ > 1 then
6: The young survives and the oldest monkey in w dies.
7. else
8: The young dies.
9: endif
10: end if

Another important events observed in the white-faced capuchins are the immigration
and emigration (Wikberg et al., 2014). However, these events have not been considered in this
initial proposal of the WCMO. Therefore, the pseudo-code of the WFCMO is shown in Alg. 11.

Algorithm 11 Pseudo code of the WfCMO

1: Initialize N, groups with N,, monkeys each (Eq. 4.16)

2: Verify the monkeys adaptation (Eq. 4.17)

3: while stopping criterion is not achieved do

4:  Define all males and females (Eq. 4.18)

5:  for each g group do

6 Assign a random group to fight against g,

7: Compute the geometrical centers of the groups g and g,
8

9

for each m monkey of the p group do
if the monkey is male then

10: Male fighting movement (Eq. 4.21)

11: else

12: Female running away movement (Eq. 4.23)

13: end if

14: Evaluate the new position and choose the best one (Eq. 4.24)
15: end for

16: Birth and death (Eq.4.25 and Alg. 10)

17:  end for

18:  Update the monkeys’ ages
19: end while
20: Select the monkey in the best position as the solution of the problem




52

4.3 NATURE-INSPIRED METAHEURISTICS PARAMETERS

The three main factors considered for selecting the algorithms for comparison are (i) the
natural inspiration adopted for designing the algorithm; (ii) the diffusion and relevance in this
research area; (iii) the use of industrial applications. For comparison purposes, the population
size (i.e. number of food sources (S) for ABC, population size (N,) for BA and FA, number of
wolves (N) for GWO, swarm size for PSO (), and ecosystem size (N) for SOS) has been set
as 100 for all problems dimensions. It also gives a perspective about the performance of the
algorithms regarding the trade-off between the problem’s dimension and the population size.

Considering that, the ABC has been chosen mainly because of the intelligent dancing
bee’s behavior. Further, it has been applied to numerous applications as bioinformatics, scheduling
image processing, economic dispatch, engineering design, clustering, and data mining (Bolaji
et al., 2013), and its performance has been proved in literature (Karaboga and Basturk, 2008).
In this thesis, the ABC parameters limit, % of employed bees (N,) , % of onlooker bees (N,)
and number of scouts (Ny) have been set respectively as D X S, 50%, 50% and 1 (Karaboga and
Akay, 2009).

The BA presents a dissimilar design based on the bat’s echolocation. Further, it has a
variety of applications, such as continuous optimization; combined optimization and scheduling;
inverse problems and parameter estimation; classifications, clustering and data mining; image
processing, and fuzzy inference systems (Hasangebi et al., 2013; Yang and He, 2013a). In this
thesis, the optimal parameters suggested by (Xue et al., 2015) have been employed, such that:
loudness (A), pulse rate (r) and y equal to 0.9, minimum frequency (f;,i,) equals to 0, maximum
frequency (fimqx) €quals to 5 and « equals to 0.99.

The FA design is based on the light intensities that depend on the distance between the
fireflies. This NiM has been adopted for multimodal problems, continuous and combinatorial
optimization, classification, and engineering applications as image processing, antenna design,
robotics, and chemistry (Fister et al., 2013). Its parameters randomness (@) and absorption
coeflicient () have been set as 0.2 and 1, respectively (b. Mo et al., 2013).

The GWO is more recent than the other NiM mentioned and it is inspired by the hierarchy
and the hunting behavior of the grey wolfs. In the few years of its existence, it has already
been applied to machine learning purposes (clustering and features selection) (Fahad et al.,
2018; Emary et al., 2016), economic load dispatch (Pradhan et al., 2018), and some constrained
problems (Kohli and Arora, 2017). The GWO’s parameter a has been set as linearly decreasing
from 2 to 0.

The PSO is one of the most widespread NiM and it is inspired by the synchronized
movement observed in the species. It has been used for many real-life applications, such as
clustering (Alam et al., 2014), economic dispatch (Mahor et al., 2009), and solar photovoltaic
system (Khare and Rangnekar, 2013). Its parameters cognitive constant (c) and social constant
(c2) have been both set 2. The inertia weight (w) has been set up from 0.9 to 0.4 with linear
decreasing (Poli et al., 2007).

The SOS presents an interesting inspiration that includes different species coexisting in
nature. It has already been used in applications as hydrothermal scheduling (Das and Bhattacharya,
2018), economic dispatch (Secui, 2016), truss structures (Tejani et al., 2018), and machine
learning purposes (Liao and Kuo, 2018). The only SOS’s parameter is the ecosystem size N.

To perform a fair comparison, the proposed NiM has been set accordingly. The COA’s
number of coyotes(N.) per pack has been tested as 5 and 10, resulting in, respectively, the COAS
and the COA10 versions. Hence, the resulting number of packs (N,) is, respectively, 20 and
10. On the other hand, the WfCMO parameter number of monkeys (V,,) has been tested as 5
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(WICMOS5), 10 (WICMO10), and 20 (WECMO20). The resulting number of groups (N,) then is,
respectively, 20, 10, and 5. The male probability (p) has been defined as 0.7. For simplification,
let ¥ be the set of all algorithms tested, which means that ¥ = { COAS, COA10, ABC, BA, FA,
GWO, PSO, SOS, WCMO5, WfCMO10, WfCMO20}.

4.4 EXPERIMENTAL DESIGN

The algorithms have been tested on a series of 291 benchmark functions from the Institute
of Electrical and Electronics Engineers Congress on Evolutionary Computation (IEEE-CEC) 2017
Special Session and Competition on Single Objective Real-Parameter Numerical Optimization
(Suganthan et al., 2016). The detailed description of the IEEE-CEC-2017 benchmarks and
evaluation criteria are presented in Appendix A. Each benchmark has been tested with dimensions
10, 30, 50, and 100, resulting in a total of 116 cases, summarized in Tab. 4.1, where D means the
dimension of the problem, Fcgc is the respective function from IEEE-CEC-2017 and the search
space is [-100,100]P for all cases tested.

These cases are classified according to some features (Suganthan et al., 2016), resulting
in the group 6 = {Overall, Unimodal, Composition, Hybrid, D=10, D=30, D=50, D=100,
Multimodal}. It provides a diversified functions landscape and implies in a richer analysis of the
algorithms’ advantages and disadvantages.

As the NiMs are stochastic algorithms, the validation of the results occurs by the analysis
of the repeatability and reliability, which occurs through the statistical information from a series
of experiments. It means that the algorithms are tested N, times with different initial conditions
for each optimization problem. Although in some competitions the N, is set as 51, in this
thesis it has been set as 30, which is a suitable value for a reliable statistical comparison with
lower computational cost (Suganthan et al., 2005; Chen et al., 2014b).

To perform the fairest comparison possible, the stopping criteria have been defined as
the total number of function evaluations N¥%*. As not all algorithms evaluate the objective
function at the same time in an iteration 2, it would not be relevant to use the number of iterations
as the stopping criteria. The N }” %* has been defined as 10000 x D.

The score evaluation from the IEEE-CEC 2017 has also been employed, which is up to
100 and equally considers two criteria, denoted SE and SR. The first one represents the sum of
the errors, while the second one is the sum of the ranks. Each index results in a score of up to 50,
which is S; and §», respectively.

Furthermore, the complexity of the algorithms has been evaluated based on the IEEE-
CEC 2017 definitions. This analysis is based on the time spent to optimize objective functions
with dimensions D = 10, D = 30 and D = 50. Thus, it provides not only the computational cost
comparison among the algorithms but also how the algorithm’s sensitivity to the dimensions of
the problems.

To improve this analysis, two modifications have been implemented in the complexity
estimator from IEEE-CEC 2017. First, the dimension D = 100 has been included in the analysis.
Second, the objective function computational time (denoted Tj by definition) has been measured
five times instead of only one, as suggested in (Suganthan et al., 2016). The benchmark function
used is the Fg and the number of function evaluations is 200000. The entire description of the
IEEE-CEC 2017 performance analysis is written in Appendix A.

1A set of 30 functions has been initially proposed, however, one of these functions has been suspended from the
competition because of technical problems.

2For example, the SOS evaluates the objective function four times each iteration. If it would be considered the
stopping criteria, it would have up to four times more evaluations than the other algorithms.
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F  Fcec D F  Fcgc D F  Fcgc D F  Fcgc D

F 1 10 F3o 9 30 Fso 16 50 Fgg 23 100
F, 1 30 F3; 9 50 Fgo 16 100 Fgo 24 10
F3 1 50 F3 9 100 Fe1 17 10 Fyo 24 30
Fy 1 100 F33 10 10 Fgo 17 30 Fo; 24 50
Fs 3 10 F3y 10 30 Fg3 17 50 Fo 24 100
Fq 3 30 F35 10 50 Foq 17 100 Fos3 25 10
F; 3 50 F6 10 100 Fes 18 10 Foy 25 30
Fy 3 100 F37 11 10 Feg 18 30 Foys 25 50
Fy 4 10 Fsg 11 30 Fg7 18 50 Foyg 25 100
Fio 4 30 Fo 11 50 Fes 18 100 Fy7 26 10
Fi 4 50 Fy 11 100 Fso 19 10 Fog 26 30
Fp 4 100 Fy 12 10 Fyg 19 30 Fyg 26 50
Fi3 5 10 Fp 12 30 F7 19 50 Fioo 26 100
Fiy 5 30 Fy3 12 50 Fpn 19 100 Fio 27 10
Fis 5 50 Fyy 12 100 F73 20 10 Fion 27 30
Fie 5 100 Fys 13 10 Fry 20 30 Fio3 27 50
Fi7 6 10 Fu6 13 30 Fs 20 50 Fio4 27 100
Fg 6 30 Fy7 13 50 F6 20 100 Fios 28 10
Fio 6 50 Fug 13 100 Fry 21 10 Fio6 28 30
Fy 6 100 Fyo 14 10 Fg 21 30 Fio7 28 50
> 7 10 Fsg 14 30 Fq9 21 50 Fiog 28 100
Fy 7 30 Fsy 14 50 Fgo 21 100 Fio9 29 10
F>s 7 50 Fs 14 100 F31 22 10 Fio 29 30
Fy 7 100 Fs3 15 10 Fgs» 22 30 Fi 29 50
Frs 8 10 Fs4 15 30 Fg3 22 50 Fiin 29 100
Fy 8 30 Fss 15 50 Fgq 22 100 Fii3 30 10
F>y 8 50 Fs¢ 15 100 Fgs 23 10 Fii4 30 30
Fg 8 100 Fsy 16 10 Fse 23 30 Fiis 30 50
Fyo 9 10 Fsg 16 30 Fg7 23 50 Fiie 30 100

Table 4.1: Description of the 116 optimization problems based on the IEEE-CEC 2017 benchmark functions
described in Appendix A

4.5 CHAPTER RESULTS

This section is devoted to showing the experimental results, which are separated in 1)
the ranking analysis, ii) the scores according to the IEEE-CEC 2017 competition, and iii) the
statistical significance tests, iv) the algorithms complexity analysis and v) the convergence and
diversity graphics. Considering all these approaches the performance analysis becomes more
reliable. The descriptive statistic is presented in Appendix B.

4.5.1 The ranking analysis

The first metric computed is the percentage of victories achieved by the algorithms,
which is based on the smallest average error found compared to the global optimal. This metric
has been evaluated for each class in 0, as shown in Tab. 4.2.

Overall, the COA10 has won in 22.4% of the cases tested followed by the WfCMOS5,
which has found the smallest average error in 20.7% of the cases. The ABC has outperformed
the other variants of the WfCMO and the COAS with 19% of victories. The other algorithms
have not achieved significant performance in terms of victories.
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Table 4.2: Percentage of smallest average error separated by the classes in 6 (where Alg.: Algorithm. Uni.: Unimodal.
Comp.:Composition and Multi.: Multimodal).

Alg. Overall | Uni. | Comp. | Hybrid | D=10 | D=30 | D=50 | D=100 | Multi.
COAS 12.9% | 12.5% | 27.5% | 7.5% | 13.8% | 20.7% | 6.9% | 10.3% | 13.0%
COA10 224% | 0.0% | 17.5% | 25.0% | 24.1% | 10.3% | 17.2% | 37.9% | 24.1%
ABC 19.0% | 12.5% | 5.0% | 30.0% | 20.7% | 20.7% | 17.2% | 17.2% | 19.4%

BA 5.2% 0.0% 0.0% | 12.5% | 0.0% 3.4% 6.9% | 10.3% | 5.6%
FA 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
GWO 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
PSO 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
SOS 6.9% | 12.5% | 0.0% | 15.0% | 10.3% | 10.3% | 6.9% 0.0% 6.5%

WICMOS5 | 20.7% | 37.5% | 30.0% | 5.0% | 24.1% | 17.2% | 27.6% | 13.8% | 19.4%
WIECMO10 | 11.2% | 25.0% | 15.0% | 5.0% 6.9% | 13.8% | 13.8% | 10.3% | 10.2%
WICMO20 | 1.7% 0.0% 5.0% 0.0% 0.0% 3.4% 3.4% 0.0% 1.9%

Considering the unimodal functions, the WfCMOS has presented the best performance
with 37.5% of victories, while the WfCMO10 has achieved 25%. The COAS, the ABC, and the
SOS have all presented 12.5% of victories and the other algorithms have not scored.

Further, the WfCMOS has outperformed the other algorithms for the composition
functions, with 30% of victories against 27.5%, 17.5%, and 15% achieved by the COAS, COA10,
and WICMOI0 respectively. The ABC and the WICMO20 both have won in 5% of the cases
and the other algorithms have not won in any case.

Nevertheless, the proposed algorithms have presented a more reticent performance for
the hybrid functions. The ABC has achieved 30% of victories against 25% of COA10, 7.5%
of COAS, and 5% of WfCMOS5 and WfCMO10. The BA has achieved 12.5% and the other
algorithms have not won any case.

Considering the different dimensions tested, the COA 10 has achieved the best perfor-
mance for D=10 and D=100, with 24.1% and 37.9% of victories, respectively. Among the
W{CMO variants, the WFCMOS has achieved the best performance for D=50, 27.6% of victories.
For D=30, the COAS5 and the ABC have found the best solution in 20.7% of the cases tested.

For multimodal functions, the COA10 has achieved the first position with 24.1% of
victories against 19.4% of ABC and WfCMOS. The COAS, the WCMO10, the WfCMO20, the
BA, and the SOS have achieved, respectively, 13%, 10.2%, 1.9%, 6.5%, and 5.6% of victories.
The other algorithms have not won any case.

To evaluate how suitable the algorithms are for each class in ¢, the average rankings
(LaTorre et al., 2015) have been computed and described in Tab. 4.3 and illustrated by the Radar
plot in Fig. 4.4. Although COAS5 and WfCMO10 have not achieved a high number of victories
overall, both have presented a good average ranking, 3.89 and 3.87, respectively. It means that in
many cases these algorithms have not won, they have been well-ranked anyway. The same can be
said considering the multimodal functions, where the COAS has achieved the lowest average
ranking, 3.78. Again, the WfCMOS5 and WfCMO10 have achieved the lowest average ranking for
problems with dimension equals 30.

In Fig. 4.4, where the smaller ranks are around the center of the Radar plot, it is easier
to see that the proposed algorithms are concentrated nearest to the center. Regardless of the
ABC and the SOS, which have shown competitive performance, the proposed algorithms have
outperformed the other state-of-the-art algorithms for the experimental design employed.
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Table 4.3: Average ranking separated by the classes in ¢ (where Alg.: Algorithm, Uni.: Unimodal.,
Comp.:Composition and Multi.: Multimodal).

Alg. Overall | Uni. | Comp. | Hybrid | D=10 | D=30 | D=50 | D=100 | Multi.
COAS 3.89 5.38 3.30 3.98 341 | 428 | 4.14 3.72 3.78
COA10 4.07 5.88 4.85 3.75 328 | 476 | 4.28 3.97 3.94
ABC 4.66 6.50 5.80 3.25 434 | 424 | 5.00 5.03 4.52
BA 8.35 6.50 8.78 8.13 9.21 | 8.21 | 8.10 7.90 8.49

FA 11.00 | 11.00 | 11.00 | 11.00 | 11.00 | 11.00 | 11.00 | 11.00 | 11.00
GWO 8.02 8.50 8.43 7.95 828 | 8.07 | 7.83 7.90 7.98
PSO 8.79 7.38 8.88 8.98 893 | 9.00 | 8.72 8.52 8.90
SOS 4.38 5.38 4.80 3.58 500 | 428 | 4.21 4.03 4.31
WFCMOS5 3.91 3.25 2.83 5.03 383 | 3.62 | 3.76 4.45 3.96
WICMOI10 | 3.87 2.50 3.08 4.75 386 | 3.62 | 393 4.07 3.97
WIECMO20 | 5.06 3.75 4.28 5.63 486 | 493 | 5.03 541 5.16

Overall

Unimodal

Non-separable

—@—COA5
—@— COAI10

' \ —— ABC
D=10

D=100 —|{>—BA
FA
\ GWO
‘ PSO
’” D=50 SOS
/ —O— WfCMO5

—— WfCMO10
—p— WfCMO20

D=30 N

Composition : Multimodal

Hybrid

Figure 4.4: Average ranking separated by the classes in 9.

4.5.2 The performance scores

In this section, the score analysis is provided (Suganthan et al., 2016), which considers
both the sum of the errors and the ranks weighted by the problems’ dimensions. This analysis
helps to evaluate the general performance of each algorithm due to the combination of those two
criteria.

The Tab. 4.4 shows the scores achieved by the algorithm, where the resulting rank is
computed in the last column. The COAS has achieved the best performance in this criterion,
followed by the COA10, the SOS, the WfCMO10, the WfCMOS, the WfCMO20, the ABC, the
BA, the GWO, the PSO, and finally the FA.

Considering only the sum of the errors (S7), the COAS has achieved the best score,
the COA10 the second best, and the SOS the third-best one. The WfCMO20, the WfCMO10,
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Table 4.4: Scores according to the IEEE-CEC 2017.

Algorithm Name S A\Y) Final Score | Rank
COA5S 50.00 | 49.87 99.87 1
COA10 45.58 | 47.22 92.80 2
ABC 11.73 | 40.83 52.57 7
BA 1.98 | 24.03 26.00 8
FA 0.00 | 17.81 17.81 11
GWO 0.01 | 24.64 24.65 9
PSO 0.02 | 22.47 22.49 10
SOS 27.54 | 46.29 73.83 3
WECMO5 11.70 | 48.80 60.50 5
WECMO10 18.08 | 50.00 68.08 4
WECMO20 20.34 | 38.04 58.39 6

the ABC, and the WfCMOS5 have achieved lower scores, but still relevant values. The other
algorithms have not achieved competitive performance for (Sy).

On the other hand, the WFCMO10 has presented the best score considering only the
sum of the ranks (S5;), followed by the COAS, the WICMOS, the COA10, the SOS, the ABC, the
WIECMO20, the GWO, the BA, the PSO, and the FA, respectively. As the scores are weighted
by the dimension of the problem (which tends to increase the complexity of finding the global
optimal), it is not possible to say that the algorithms that presented lower scores can not be good
options for low dimensional (10 and 30, for example) optimization problems.

4.6 STATISTICAL SIGNIFICANCE TESTS

In this section, a deeper analysis of the significance of the results is provided. Due to
the high number of benchmark functions with different domains in terms of objective costs, the
median values have been computed and converted to rankings to represent the set of experiments
(Garcia et al., 2010; Derrac et al., 2011; Gibbons and Wolfe, 2003). The null hypothesis H states
that the medians of all algorithms belong to the same population and the statistical confidence
considered is @ = 0.5.

According to the Friedmann Rank sum test, the resulting p-value is neatly equal to zero
(3.4343e-138) and the null hypothesis is rejected. It means that there is at least one algorithm
significantly different from the others. In other to achieve a more complete analysis, multiple
1xN comparisons with the proposed algorithms as the control method are presented. In this
context, the one-tailed Wilcoxon-Mann-Whitney’s test has been applied and the Holm-Bonferroni
post-hoc method is used to correct the p-values found. The null hypothesis H states that the
median error of the control method is not smaller than the median of the opponent, while H;
states that the median error achieved by the control method is smaller than the other algorithms.

The results of the 1xN comparisons are exposed in Table 4.5, where the corrected
p-values are presented and the null hypothesis is rejected if the p-value is smaller than @. The
Hj has been rejected for all comparisons with the BA, the FA, the GWO, and the PSO. Then, it
can be said that all variations of COA and WfCMO have outperformed these algorithms. On the
other hand, the Hy has not been rejected in any comparison with the ABC and the SOS. It means
that these two algorithms have not been outperformed by the proposed algorithms. Considering
the comparison between the proposed algorithms, there is no significant difference in the results.
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Algorithm COAS COA10 WFCMOS5 WICMOI10 WFCMO20
p-value H;? | p-valuee H;? | p-value H;? | p-value H;? | p-value H;?

COAS - - 1.00E+00 No | 1.00E+00 No | 1.00E+00 No | 1.00E+00 No

COA10 1.00E+00 No - - 1.00E+00 No | 1.00E+00 No | 1.00E+00 No

WICMOS5 | 1.00E+00 No | 1.00E+00 No - - 1.00E+00 No | 1.00E+00 No
WICMO10 | 1.00E+00 No | 1.00E+00 No | 1.00E+00 No - - 1.00E+00 No
WICMO20 | 1.00E+00 No | 1.00E+00 No | 1.00E+00 No | 1.00E+00 No - -
ABC 3.24E-01 No | 543E-01 No | 2.13E-01 No | 2.19E-01 No | 6.07E-01 No
BA 3.75E-07 Yes | 2.09E-06 Yes | 1.36E-07 Yes | 1.86E-07 Yes | 1.30E-06 Yes
FA 5.40E-19 Yes | 1.82E-17 Yes | 1.36E-19 Yes | 2.44E-19 Yes | 1.75E-18 Yes
GWO 9.77E-04 Yes | 2.73E-03 Yes | 4.11E-04 Yes | 4.71E-04 Yes | 2.27E-03 Yes
PSO 1.98E-04 Yes | 1.00E-03 Yes | 9.82E-05 Yes | 1.30E-04 Yes | 6.87E-04 Yes
SOS 6.28E-01 No | 1.00E+00 No | 4.67E-01 No | 5.40E-01 No | 1.00E+00 No

Table 4.5: The one-tailed Wilcoxon-Mann-Whitney non-parametric test using the proposed algorithms as control
methods individually for a significance level of @ = 0.05 combined with the post-hoc method of Holm-Bonferroni.

4.6.1 The metaheuristics complexity

This analysis provides a point of view that contrasts the performances based on the
quality of the solutions achieved, which is the computational cost required by the algorithms.
The computational complexities are described in Tab. 4.6, where a higher value indicates high
computational cost and vice-versa. Moreover, the percent growth according to the problem’s
dimension is also shown for a clearer understanding. For a better view, these values are drawn
side by sidebars on Fig. 4.5, where the complexity axis is set to a logarithmic scale.

Algorithms | D=10 | D=30 D=50 D=100
COA5S 95.33 | 101.06 (+6.02% ) | 106.15  (+5.03% ) | 11398 (+7.38 %)
COA10 81.10 | 85.67 (+5.63% ) | 9234 (+7.78 %) 99.66  (+7.93 %)
ABC 305.03 | 307.69 (+0.87 % ) | 312.55 (+1.58% ) | 312.47 (-0.02 %)

BA 2083 | 2472  (+1870% ) | 2595  (+4.96 % ) 26.57 (+2.38 %)
FA 121.11 | 678.09 (+459.89 %) | 862.33 (+27.17 % ) | 1101.04 (+27.68 % )
GWO 24.02 | 4282 (+7825% ) | 61.20 (+42.93 %) 98.91 (+61.62 %)
PSO 1845 | 2141  (+16.06% ) | 2443 (+14.12%) 28.24  (+15.58 %)
SOS 85.56 | 88.50 (+3.44 %) | 91.86  (+3.80 %) 99.53  (+8.34 %)

WICMOS5 | 177.00 | 182.75 (+3.25% ) | 188.26  (+3.02% ) | 19794 (+5.14 %)
WICMOI10 | 116.10 | 123.58 (+6.44 % ) | 12841  (+391 %) | 133.58 (+4.02%)
WICMO20 | 82.27 | 87.87 (+6.81 %) | 9325 (+6.12%) | 100.60  (+7.88 %)

Table 4.6: Algorithms complexity and the respective percent growth according to the problem dimension.

The first insight is that the WfCMO presents a notable difference in complexity according
to the number of monkeys per group. The smaller this number, the higher is the computational
cost. Considering that the population size is constant, this difference suggests that the complexity
growth is caused by the group’s management. It means the operations executed inside each group
excepting those related to the monkey itself, like the male/female definition, the choice of groups
to fight, and the birth and death.

On the other hand, the COA presents a smaller difference according to the number
of packs, which suggests that COA has operators computationally simpler than WfCMO. The
complexities presented by the COAS and the COA10 are generally smaller than WfCMO variants.
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Figure 4.5: Complexity analysis based on the IEEE-CEC 2017 definitions.

The only exception is that the COAS is slower than WfCMO20 due to the packs’ management,
however, it tends to be closer as the dimension increases.

Moreover, both COA and WfCMO variants present a linear computational cost growth,
with values from 3.02% (WfCMOS5 from D = 30 to D = 50%) to 7.93% (COA10 from D = 50
to D = 100%). In fact, the only algorithm that achieves a nearly constant computational cost
from D = 50 to D = 100% is the ABC, where the variation is very close to zeros (0.02%).

Comparing the complexity values from the COA and the WfCMO variants with the other
algorithms, it is notable that ABC and FA required more computational power, while BA and PSO
are the fastest algorithms in the set. Regarding the SOS, the values are close to the COA variants
and WfCMO20, while WfCMOS5 and WfCMO10 present more costly values. Considering GWO,
the costs presented are smaller than COA and WCMO variants for all dimensions. However, the
results present a growth tendency as the dimension increases, suggesting a higher cost than the
proposed algorithms for dimensions higher than D = 100.

4.6.2 Convergence and diversity analysis

This analysis is devoted to correlate the convergence and diversity curves of the COA
and the WfCMO among the optimization process. As stated, the balance between exploration
and exploitation is an important factor to achieved good performance.

Overall, the COA versions have presented a more diverse population during the process
compared to the WfCMO versions. As an example, Fig. 4.6 illustrates these curves for a
unimodal function with dimension equals to 10, where the COA has kept higher diversity and still
could converge as well as the WfCMO versions. Further, the COAS and COA10 have presented
similar behavior of convergence and diversity, as well as the WfCMO variants. Considering the
unimodal functions, the difference can be considered wispy.

Nevertheless, this gap becomes notable for the other type of functions, as the example
drawn in Fig. 4.7, which represents a multimodal function with dimension equals to 50. The
resulting curves of the WCMO variants are slightly different, where the higher the number of
monkeys per group, the higher the diversity and the average error. On the other hand, the COAS
has presented higher diversity than the COA10, as well as higher average errors. The COA10 has
present the best trade-off between diversity and convergence for this case.

Considering hybrid functions, otherwise, the algorithms have presented continuous
convergence curves with steady diversity ones. As an example, Fig. 4.8 contains the results
of a hybrid function with the dimension equals to 100. Again, the COA10 has achieved an
intermediate diversity with the best convergence compared to the other algorithms. The WfCMO
variants have shown similar curves in both cases.
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Figure 4.6: Convergence and diversity graphics of a unimodal function with dimension equals to 10 (f5).
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Figure 4.7: Convergence and diversity graphics of a simple multimodal function with dimension equals to 50 (f31).

In the case of composition functions, all algorithms have presented similar convergence
curves, however the diversity is notably different. In the example illustrated in Fig. 4.9, the
COA10°s diversity curve is bounded by the other algorithms, closer to the WFCMO variants.
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Figure 4.8: Convergence and diversity graphics of a hybrid function with dimension equals to 100 (fa4).

The WCMO with fewer monkeys per group has resulted in a less spread population during the
optimization process.

a) Convergence curve

4.
10 — =COAS5
2 = =COAI0
5 WFCMO5
g =e=es WFCMO10
o 10°F WFCMO20
g
>
<
102 L L L |
102 108 104 108 108
Number of function evaluations (-)
. b) Diversity curve
o == =COAS5
Toat — =COAI0
‘é WFCMO5
g 03r senes WECMO10
S == Wf{CMO20
po2r
<
o1t
<
0
102 108 104 10° 108

Number of function evaluations (-)

Figure 4.9: Convergence and diversity graphics of a composition function with dimension equals to 50 (function
number 27 of the IEEE-CEC2017).
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4.7 CHAPTER DISCUSSION

According to the analysis provided in this chapter, the proposed algorithms have
presented competitive or better performance when compared to other state-of-the-art NiMs. The
different performance metrics and classes of problems employed provided a complete view of
the best cases for the algorithms. The high dimensional and multimodal problems have been
included, which are the two more explored classes in the global optimization research area.

Considering the IEEE-CEC 2017 performance analysis, the COA variants have achieved
the best performance in most cases. The COA10 has found the best solutions in almost a quarter
of the cases tested, with the significant 37.9% of first place for the problems with dimension
equals to 100 and 24.1% for multimodal ones. For hybrid functions, it has won a quarter of the
cases, which is an important contribution considering that the proposed algorithms have not
performed well for this class. It has also achieved low average rankings overall, which means
that it could be employed for any desired problem class.

Moreover, the COAS has presented good performance mainly for composition functions,
which has won in 27.5% of the cases and it has achieved a lower average ranking. Although it
has not been the best winner for high dimensional and multimodal problems, it has presented the
lowest average ranking for both classes. It means that it could be reliably employed for these
classes too.

Regarding the WfCMO variants, the main result is the performance gap between the
WICMO20 compared to the other variants. This one could not perform well for most cases tested
and it could easily be replaced by the WfCMOS of the WfCMO10, which has achieved better
performance for the percentage of first place and average ranking. Even though it has presented
higher diversity values during the optimization process, it could no converge better than the other
variants.

On the other hand, the WfCMOS5 and the WfCMO10 have presented competitive
performance. Both have outperformed the BA, the FA, the GWO, and the PSO with a statistical
confidence of 95%, while the ABC and the SOS have not been outperformed. The WfCMO10
has achieved the lowest overall average ranking and for unimodal problems, which is a class that
the proposed algorithms have not shown expressive performance. It is more likely to be applied
for unimodal and composition problems, not for hybrid functions though. The WfCMO10 has
also achieved the best score among the WfCMO variants according to the IEEE-CEC competition
criteria.

Nevertheless, the WICMOS has shown good performance in terms of victories mainly
for composition, unimodal, and D=50 problems, in which it has won in a quarter or more of the
cases tested. Overall, where it has won in 20.7% of the problems, it has only been outperformed
by the COA10. It also appears as a good option for multimodal problems, while it is not the right
choice for hybrid functions. Although it is not in the top rank of the final scores, it has achieved
the best average ranking at all for composition functions and very good values for D=30 and
D=50 problems. There might exist a correlation between the population size and the problem
dimension not only for the WfCMOS5 but for all WICMO variants.

Considering the convergence and diversity graphics exposed, which are the best examples
of the general behavior of the algorithms, the COA10 has shown a better ability to keep high
diversity and convergence simultaneously. Although the WfCMO variants have presented small
diversity values in the optimization process, the results presented have not been significantly worst
than the COA variants. Hence, it is not possible to affirm that the balance between exploration
and exploitation has not been achieved because of the low diversity presented.
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S IMPROVED COA FOR A GAS TURBINE OPTIMIZATION

Because of the promising results presented by the COA for IEEE CEC 2017 benchmarks,
this algorithm has been chosen to be further explored. An improved version of the COA based
on cultural algorithms is proposed and applied to the constrained optimization of a heavy-duty
gas turbine operation. The results for five variations of the optimization problem are presented.

It is important to highlight that part of the content presented in this chapter has been
published in the "Energy Conversion and Management" journal in the article entitled "Cultural
coyote optimization algorithm applied to a heavy-duty gas turbine operation".

5.1 PROPOSED CULTURAL COA

The cultural algorithm is a methodology responsible for gathering knowledge to any
optimization method based on populations(Ribeiro and Aguiar, 2011). According to (Peng
et al., 2003; Ali et al., 2018) there are five types of knowledge sources: normative, situational,
topographic, domain, and historical. Though the authors indicated that not all of them must be
applied to all situations. Thus, once COA has good exploratory behavior, as mentioned in the
previous chapter, the normative space is included, as it has the potential to restrict the search
space when it is suitable.

The normative belief constrains the search space to a promising region, which is defined
by the minimum (/) and maximum () values. The minimum and maximum costs, L and U,
respectively, are also defined. These values are set from a subgroup (x) from the total population
formed by nAccepted best individuals. The number of individuals accepted is defined by the
parameter , which represents a percentage of the population, and the belief space of the "
iteration is updated as follows:

oo | K Xig S Ilorf (x;) < L <
a l;-_l otherwise G.D
. . =1 . -1
Il = f(xl? Xij < lj orf(x;) < L!. 52)
! L' otherwise
-1 -1
f_ ) X Xij 2 u; orf(x;) < UJ.
YT { UTI otherwise (5.3)
Ul = fx) xij = uflorf(x) < UL 5
I Ut otherwise :

fori ={1,2,...,nAccepted} and j = {1,2,...,D}.

In the CCOA, the normative knowledge is employed in the coyote’s social condition
update. The mechanism is inspired by the suggestions of (Ma et al., 2008; Yan et al., 2012), and
can be written as follows:

Dot p.t
t SOCI?{-I")/XVX(M]'_ZJ')" soc;’f]. <
fj =1 socg; =y x|rx(u; =1yl soc.; > u; (5.5)

ctf’t +yxrX(u;—1;), otherwise

new_soc
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forp=1,2,...,Np,c=1,2,..,Ncand j = 1,2,..., D, where r represents a random number
generated by normal distribution of probability with average and variance equal to O and 1,
respectively, and vy is the step weight, which can be initially defined in the range ]0,1]. The y
setup is discussed in the next sections.

It means that when outside, the coyotes are conducted to the cultural promising region
defined by the normative belief among all population members. On the other hand, when inside,
the coyotes are influenced by the social tendency of the respective pack. The pseudocode of the
proposed CCOA is shown in the Algorithm 12, where r is a random number inside the range
[0,1] generated by a uniform distribution of probability.

Algorithm 12 Pseudo code of the CCOA
Define the control parameters N, N., ¥, P, and y

I:
2: Initialize N, packs with N, coyotes each (Eq. 4.2)
3: Verify the coyote’s adaptation (Eq. 4.3)
4: while stopping criterion is not achieved do
5:  Update normative knowledge (Egs. 5.1, 5.2, 5.3 and 5.4)
6:  for each p pack do
7: Define the alpha coyote of the pack (Eq. 4.5)
8: Compute the social tendency of the pack (Eq. 4.6)
9: for each ¢ coyotes of the p pack do
10: if r < P, then
11: Update the social condition (Eq. 5.5)
12: else
13: Update the social condition (Eq. 4.12)
14: end if
15: Evaluate the new social condition (Eq. 4.13)
16: Adaptation (Eq. 4.14)
17: end for
18: Birth and death (Eq.4.7 and Alg. 8)
19:  end for
20:  Transition between packs (Eq. 4.4)

21:  Update the coyotes’ ages
22: end while
23: Select the best adapted coyote

5.2 PROBLEM FORMULATION

The heavy-duty GT studied in this research is the Siemens Westinghouse W501FD, as
illustrated in Fig. 5.1. This equipment performs the Brayton cycle, the technical specifications of
the system are written in Tab. 5.1 and the six subsystems of the heavy-duty GT are:

1. Admission system. The air intake system provides clean and cool atmospheric air to the
compressor through the use of filters and an air cooling system, and it is composed of a
weather protection cover, double barrier air filter, evaporative cooler, muffler, ducts, and
vane control of intake air.
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2. Compression system. The compressor has sixteen stages, or set of vanes mounted on
a single shaft and is of the axial type, which guarantees a virtually constant flow at
pressures variables.

3. Combustion system. The combustion system consists of sixteen low-emission Nitrogen
Oxides (NOy) in a circular arrangement, each combustion consisting of a combustion
chamber cylindrical. Each set of combustors is composed of four subsets that have
independent firing nozzles. The central nozzle is denoted the Pilot stage. It is surrounded
by eight nozzles, which are four of stage A and four of stage B. There is also stage
C, called the dispersion ring, which calibrates holes that disperse the gas inside the
chamber.

4. Turbine system. The turbine of this equipment is a simple flow and internal combustion
machine. It is a reaction type, it has four stages and is assembled with curved discs,
which are responsible for transforming the flow of the working fluid (air) into torque.

5. Exhaust system. The temperature of the hot gases generated by the fuel burning in the
primary section is cooled in the secondary section. The spaces along the combustion
chamber allow cool air to pass and refrigerate its walls.

6. Fuel manifold system. It is a chamber that has a number of outlets for distributing the
resulting gases to the outside.

The Pilot differs from the other stages since it injects an air-gas mixture instead of only
gas. The power generated by the turbine relies on the combination of the gas inputs through
those injection stages, and as they have different positions in the combustor design, the right
combination of gas in the injectors can produce more power and emit fewer pollutants (Yamao
et al., 2017a). Once pollutant emissions from combustion processes is a major public concern
because of their impact on health and the environment (Lefebvre and Ballal, 2010), the set
of values to the fuel injectors must be less than a predefined value. In concern to Brazilian
regulations, the most critical pollutant in GT operations are the NO,, which cannot exceed the
value of 25 ppm (Brasil, 2018).

Nominal load 173 MW

Heat Rate (single cycle) 9360 Btu/kWh
Heat Rate (combined cycle) 5595 Btu/kWh
Air flow mass 449 kg/s
Efficiency using Natural Gas (NG) 36 %

Nominal speed 3600 rpm
Number of burners 16

Compressor stages (axial flow) 16

Turbine stages (reaction type) 04

Compression ratio 15:1

Turbine inlet temperature 2350 °F / 1288 °C
Exhaust temperature 1076 °F / 580 °C

Table 5.1: W501F technical specifications.

The GT has also two main operation restrictions due to its physical characteristics.
The first is the maximum exhaust temperature, chosen in order to avoid damaging the chimney
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Figure 5.1: Heavy-duty gas turbine Siemens Westinghouse W501FD

materials, the highest allowed exhaust temperature (ET) is 600 °C. And the second critical
restriction is the maximum value of Pressure Oscillations (PQO) inside the combustion chamber,
caused by the flame instability in combustor stages (Pierezan et al., 2017b; Iurashev et al., 2017).

The maximum value of PO is related to the frequency range, thus there are different
threshold values to each frequency band. These constraints have been defined according to the
equipment technical specifications and values allowed are exposed on Tab. 5.2.

Table 5.2: Frequency ranges and maximum pressure oscillations.

Ranges setup  fi S 3 Ja S5 fo f1 s fo
From (KHz) O 0.015 0.05 0.1 0.16 03 05 1 3
To (KHz) 0.015 0.05 0.1 0.16 0.3 05 1 3 4.2
Limit (PSI) 0.3 0.6 1.6 1.6 1.0 0.3 0.2 0.1 0.1

5.2.1 The simulation model

To simulate the GT, two different black-box modeling methods were employed using
real data collected during the GT tuning procedure. At the tuning, a technician manually varies
the gas inputs, called stages, until finding a sub-optimal adjustment to a given power range, thus
generating a wide range of data to system identification.

As seen in the block diagram of Fig. 5.3, the ambient temperature and the gas flow in
the fuel injectors A, B, C and Pilot are common inputs to all the four modeled phenomena: the
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GT power output, the estimated power output (Pot), the NO, emission, the pressure oscillations
in the combustion chamber, and the Exhaust temperature. The gas flow has been measured by
the original gas turbine sensors at the combustion chamber stages entries. However, to the last
three mentioned models, the output of the power model is also used as an input, in a cascade
arrangement.

The values to the GT power output (Pot), the NO, emission, and the ET are predicted
through Radial Basis Function (RBF) feed-forward ANNs previously developed for this specific
turbine in (Yamao et al., 2017a,b). Meanwhile, multilinear regression models are used to predict
the maximum value of the pressure oscillations to each frequency range, in the same means of
the model studied in (Pierezan et al., 2017b).

The models’ accuracies are shown in Table 5.3, where the symmetric Mean Absolute
Percentage Error (sSMAPE) values, the Coeflicient of Determination (R?) and the Pearson’s r
(both indicators of the identification quality) to the validation data are presented. The validation
set is composed of 16000 samples, corresponding to 50% of total samples. High correlation
values are shown in the table, with a small percentage error. The NO, model has shown the
highest error, although it is within an acceptable value to assist in coping with the optimization
problem treated in this work.

The real and predicted values to the Pot, NO,, and ET are illustrated in Fig. 5.2, where
it’s possible to verify small errors and well-correlated models. The pressure oscillations model’s
accuracy is not shown once they are processed in a special method to guarantee a small error
at the oscillation’s peak, therefore this method is well detailed in (Pierezan et al., 2017b). All
simulations mentioned in this research have been performed in the Mathworks Matlab 2015a
platform.

160
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——NOx
140 45 - = - Estimated NOx 580
40 560
120 QN
S 35 540
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é 100 ® 1<
=z 30 520
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= 2 500
60 Power output 20 480 Exhaust temperature
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40 15 460
Samples (k) Samples (k) Samples (k)

Figure 5.2: Comparison of the real data with the simulation of the identified data-driven models.

Table 5.3: Models errors evaluation.

Model sMAPE R? r

Pot 0.5396% 0.9997 0.9999
NO, 2.3070% 0.9760 0.9879
ET 0.2935% 0.9947 0.9973
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5.2.2 Objective Function Design

Once the gas consumption is the highest operational cost in gas-Potered energy generation,
the optimization problem aims to minimize the sum of stage’s gas demands, also denoted the
total gas demand (G D), to produce the desired power output (dPow) while coping with the
constraints regarding the GT operation, such that:

minimize F(G)=Ga+Gp+Gc+Gp

subjectto Pot = dPow,
NO, < NO.limit, (5.6)
ET < ET,4x,
PO < POy,

where G4, Gp, G¢, and Gp are the gas flow in Kg/s in the inlet stages A, B, C, and Pilot,
respectively. And its values are restricted to the following range:

1.125 < G4 < 4.389,
1.125 < Gp < 4.389,

0 <Gc <£0.385,
0.432 < Gp < 1.822,

which are the minimum and maximum value from the data set used to train the models, and
present the measured flow range in each valve.

In the optimization procedure, only the values to G4, G¢, and G p are manipulated,
once G p must be equal to G 4 to avoid pressure instability inside the combustion chamber due to
their geometrical positioning.

As mentioned, the operational constraints are the NO, limit, the maximum exhaust
temperature, ET,,,., and the maximum pressure oscillation at each i h frequency range, PO px.i-
However, carbon monoxide (CO) emissions are not included as a constraint once it is an issue
only in low power generation of the heavy-duty GT, in a range below the studied in this work and
which is not often used in practice.

Hence, the minimization objective functions J used as a metric to guide the optimizers

(5.7

is:
J = F(G) + penalty,

N
where penalty = 1000 = (|Pot — dPow| + Z C,),
n=1
|Cn - Cn,limit|a if ¢, > Cn,limit
0, otherwise

(5.8)
such that C :{

Thus, C, is the value of the violation in the n'” constraint (c,) over the limit Cn.limir and
the penalization constant equals to 1000 has been chosen arbitrarily without any previous study.
There are twelve constraints, nine limit values to the nine different PO frequency ranges, the
values to NO,, ET, and dPow.
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5.3 EXPERIMENTAL SETUP

The case studies tested in this work are a combination of an ambient temperature and
the desired power output, which are independent variables in the simulation model. It means that
these variables are treated as inputs that can be separately handled to obtain the desired outputs,
which are the gas consumption, pressure oscillations, and pollutant emissions.

The values adopted have been selected from the available data set, as described in
Tab. 5.4, to ease the process of comparison with the current GT setup. Further, five different
combinations of parameters have been selected to analyze the CCOA’s performance repeatability.
These combinations have been chosen to cover differently values of each parameter (Because of
the lack of data - only one day of operation - the temperature range could still be enlarged).

Table 5.4: Definition of the case studies in terms of power output and ambience temperature.

Independent Variables Case 1 Case 2 Case 3 Case 4 Case 5
Power Output (MW) 130.020469 140.007642 145.012707 150.000516 149.979658
Ambient Temperature (°C) 25.078574  21.910850  21.900713  21.985192  24.009801

The CCOA has been applied to the five case studies aforementioned and its performance
has been compared to the original COA and also to the ABC (Karaboga and Basturk, 2007),
the Backtracking Search Optimization Algorithm (BSA) (Civicioglu, 2013), the Self-adaptive
Differential Evolution (SaDE) (Qin et al., 2009), the GWO (Mirjalili et al., 2014), the PSO
(Kennedy and Eberhart, 1995) and the SOS (Cheng and Prayogo, 2014). The CCOA parameters
v, ¢ and P, have been arbitrarily defined as 0.3, 0.3 and 0.8, respectively.

The ABC, the GWO, the PSO, and the SOS have been selected because of the competitive
results presented in Chapter 4. The BA and the FA have not been tested due to the performance
demonstrated. The BSA and the SaDE have been selected considering the diffusion and relevance
in this research area and the use of general industrial applications.

The BSA has presented a strong potential for solving numerical optimization and
competitive performance toward several types of optimization problems (Hassan and Rashid,
2020). Besides, it has been successfully applied to many numerous industrial and energy-related
research, including power dispatch, home energy management, wind speed forecasting, thermal
power systems, hydroelectric generation, photovoltaic systems, and others (Chaib et al., 2016;
Zhang et al., 2017; Bhattacharjee et al., 2015; Ahmed et al., 2017; Vitayasak et al., 2017; Madasu
et al., 2017; Islam et al., 2017; Modiri-Delshad et al., 2016; Yan et al., 2018; Zhang et al.,
2020b,c,a; Tsai, 2019; Kartite and Cherkaoui, 2017).

The SaDE is an adaptive version of the original Differential Evolution proposed in the
’90s by Rainer Storn and Kenneth Price (Storn and Price, 1995, 1997). It has been designed to
self-adapt to any optimization problem and a variety of researches have presented successful
results for industrial and energy-related applications (Pierezan et al., 2017a; Acharjee, 2013;
Ghimire et al., 2018; Beirami et al., 2015; Costa and Fichera, 2017; Fan and Zhang, 2016;
Sivananaithaperumal et al., 2011; Moussa and Awotunde, 2018).

For comparison purposes, the population size (i.e. number of food sources (S) for ABC,
population size (N,) for BA and FA, number of wolves (N) for GWO, swarm size for PSO (N,,),
and ecosystem size (N) for SOS) has been set as 30 (ten times the number of decision variables).
Equivalently, the total population of COA and CCOA has been set as 30 by two combinations:
six-packs with five coyotes each (denoted COAS and CCOAS5) and three packs with ten coyotes
each (denoted COA10 and CCOA10).
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The remaining parameters have been chosen from literature, as follows. The ABC
parameters /imit, number of employed bees (NN, ), number of onlooker bees (N,) and number of
scouts (Ny) have been set respectively as D xS, 15, 15 and 1 (Karaboga and Akay, 2009). The
GWO'’s parameter a has been set as linearly decreasing from 2 to O (Mirjalili et al., 2014). The
PSO parameters cognitive constant ¢; and social constant ¢, have been both set 2, while the
inertia weight w has been setup from 0.9 to 0.4 with linear decreasing (Poli et al., 2007). The
SaDE parameters learning period (L P) and crossover rate medians (C Rmk) have been defined as
50 and 0.5, respectively (Qin et al., 2009). The only SOS’s parameter is the ecosystem size (N),
as well as the population size (N,,) for the BSA. The level of statistical significance considered in
this research 1s 95% (i.e., the @ has been defined as 0.05 and any p-value smaller than « indicates
that exists significant difference with 95% of statistical confidence).

5.4 CHAPTER RESULTS

The results achieved by the algorithm are shown in Tabs. 5.5 to 5.9 considering the
case studies 1 to 5, respectively. In these tables are presented the minimum, average, median,
maximum, and standard deviation of the objective function, total gas demand obtained by CCOA.
Moreover, the Wilcoxon-Mann-Whitney nonparametric statistical significance test combined
with the post-hoc Bonferroni-Holm’s method has been applied with @=0.05 using the CCOAS
and CCOA10 as the control method. In these cases, the null hypothesis Hy states that the median
error of the control method sample is equal or greater than the other algorithms compared. In
contrast, the H; means that the median error of the control method is smaller than the other
algorithms.

The proposed CCOA10 has found the smallest gas demand for all case studies, while
the CCOAS has not been found only for the case study 1. Considering the average objective
function values, both algorithms have found the best values for 80% of the cases, while the other
algorithms could not find as good results for this criterion. Moreover, the smallest maximum
values have also been found by these algorithms, which reinforce the robustness of the proposed
algorithm for the objective problem studied.

In addition, there is a significant difference between the CCOA versions and the
other algorithms performances. Considering case study 4, the CCOA10 has outperformed all
algorithms, including CCOAS, COAS, and COA10.

In order to improve the view, the results of the case study 1, 2, 3, 4, and 5 are drawn
in Fig. 5.4 a), b), ¢), d) and e), respectively, where the percentiles are 25% and 75% and the
whisker length is 1.5. The CCOAS and CCOA10 have found the smallest gas demands with lower
spreads after all experiments, for all case studies.

As a result of the experiments, the solutions that presented the smallest gas demands
found by each algorithm have been selected for comparison. These solutions and the current
power plant operation setup are all compared side by side in terms of power output, NOx
emissions, exhaust temperature, and pressure oscillations, as shown in Tabs. 5.10 to 5.14. The
constraints in the limit allowed are written in boldface.
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e) Case study 5

Figure 5.4: Boxplot of the best results achieved after a set of 30 independent experiments for all case studies.
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5.5 CONVERGENCE AND DIVERSITY ANALYSIS

In this section, the convergence and diversity curves of CCOA are analyzed and compared
to the other algorithms tested. The resulting curves are drawn in Figs. 5.5 - 5.9 for all case
studies, where the set of box plots represent the average values among all experiments inside
each interval indicated in the x-axis. This view is focused on the beginning of the optimization
process, where it is possible to evaluate the algorithms’ ability to avoid premature convergence.

In general, the proposed algorithms demonstrated a similar behavior, mainly for case
studies 1, 2, and 3. Regarding the convergence curves, the COA and the CCOA variants have
presented slow convergence at the beginning of the process, with medians and boxes higher than
PSO, SOS, ABS, and GWO. It indicates that these methods have not converged prematurely, as
well as the BSA and the SaDE that have presented similar characteristics of median and boxes
sizes. However, the median and the boxes sizes of the proposed algorithms have decreased
significantly along the optimization process. The CCOA has demonstrated a promising ability to
improve the search in the second half of the optimization process, mainly when compared to the
COA. For case studies 4 and 5, this ability is evident in the convergence curve, where the most
significant difference is in the last interval.

Considering the diversity curves, the initial values of median and boxes sizes presented
by the CCOA variants are smaller than most of the algorithms. Along the process, these values
decrease slower than PSO, faster than COA, SOS, ABC, GWO, and SaDE, and quite similar to
the BSA. From 3% to 25% of the process, the median and the boxes sizes seem to be maintained
and at the end of the process, these values have decreased.
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5.6 CHAPTER DISCUSSION

In this chapter, a new metaheuristic combining the normative knowledge from cultural
algorithms with COA has been proposed to optimize the operation of a heavy-duty GT. The
objective function is composed of the stages of the GT as optimized variables and the pressure
oscillations in the combustion can, the NO, emissions, and the Power Output error as constraints.
A set of experiments has been executed for five different operation points to evaluate the
repeatability of results.

First, all algorithms have found better setups than the current one regarding the GD, with
improvements up to 3.13%, 3.29%, 3.6%, 3.52%, and 3.26% for study cases 1 to 5, respectively.
It might impact a considerable financial saving in the operations of the power plant. As a result
of this improvement, the emissions and the pressure oscillations reached values close to the limits
specified. The NOx constraint is most likely to achieve the limits, as it has happened in some
cases, as well as the pressure oscillation in the f3 range (which is the range 100Hz to 160Hz).

This is a result of the valves setups, where stage C is handled to reduce the total GD. It
directly influences the amount of gas burnt, generating more/fewer NOx emissions. Similarly,
it balances (or the opposite) the natural gas injection and influences the pressure oscillations.
On the other hand, the exhaust temperature seems not to be as affected as the emissions and
oscillations for different valves setup. The resulting values are even smaller considering the
solutions achieved by the algorithms.

In general, the oscillations in the remaining frequency ranges seem a little bit higher
than the current setup, except for f, f> and/or f5 (in some cases). However, the differences seem
not to be relevant considering the physical constraints defined by the manufacturer. Regarding
the Power Output, which has been treated as an equality constraint, the results appeared very
precise when compared to the real data. It proves that the penalization strategy was worth it and
it reinforces the reliability of the identified data-driven mathematical models.

Regarding the performance achieved by the proposed CCOA, it has outperformed the
BSA, the PSO, the SOS, the ABS, the GWO, and the SaDE in all case studies. It has been
observed a small variance in the results achieved, it means solid repeatability of performance. It
has also outperformed the original COA in some cases and the CCOA10 variant has presented
better performance than the CCOAS in all cases.

Besides, it has been noticed that the CCOA does not converge prematurely and it takes
around 25% of the optimization process to find a promising region. After that, the CCOA variants
have performed well for refining the solutions. It indicates a good versatility for a local search at
the end of the process. Moreover, the CCOA spread of the population along the optimization
process seems to be smaller than the COA. As a consequence of the cultural mechanism, it shows
that the normative knowledge has reduced the search space to a promising region (comparing to
the results achieved by all algorithms).
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6 GENERAL CONCLUSION

In this thesis, two NiM have been proposed for global optimization. The first one is
inspired in the Canis latrans species, while the second one is based on the behavior of the Cebus
capucinus species. Both metaheuristics can be classified as swarm intelligence and evolutionary
heuristic, once both are population-based and the animals that best adapt to the environment
survive along with the iterations. These metaheuristics have been validated and under a set
of 116 continuous benchmark functions with features as multimodality, high dimension, and
non-separability, and the performances have been compared to the other six state-of-the-art NiM.

Besides, an optimization problem has been designed to improve the efficiency of a
heavy-duty gas turbine of 173 MW of nominal load considering the maximum NOx emissions
allowed and the pressure oscillations in the combustion chamber. A cultural version of the COA
denoted CCOA has been applied to solve the designed problem. The performance achieved has
been compared to the original COA and other state-of-the-art algorithms for five operation points
described in terms of power output and ambient temperature.

6.1 PROPOSED METAHEURISTICS

The proposed COA and WfCMO have achieved a promising performance for a set
of benchmark functions with different features as multimodality and dimension. Both COA
and WfCMO have outperformed other state-of-the-art metaheuristics considering statistical
confidence of 95%. On the other hand, neither the COA nor the WfCMO has presented superior
performance when compared to each other. In addition, both COA and WfCMO have presented
suitable computational complexity when increasing the dimension of the optimization problem
and satisfactory convergence behavior. Because of the algorithmic structure, both COA and
WI{CMO are flexible and ready to be adapted to different applications. Both have few parameters
to be adjusted and original social mechanisms when compared to other NiM.

Moreover, both are composed by original approaches inspired on nature. The fighting
behavior between the same species developed in WfCMO has never been implemented in other
NiM before. The death mechanisms as proposed is also an original contribution, considering the
age of the animals according to the iterations. The birth mechanisms are also slightly different
from the approaches found in literature.

Furthermore, both algorithms are ready to be combined with a local search method.
Similarly to the NiM from literature, the output of these algorithms is a single-solution with
the best objective function cost that can be further improved. The COA variants have achieved
relevant scores (IEEE-CEC 2017 analysis) even without specific local search mechanisms. It
highlights the COA’s ability to refine the solutions (exploitation) after finding a suitable region
(exploration).

6.2 THE ENGINEERING APPLICATION

The methodology used to design the constrained optimization problem has fulfilled the
need of estimating the pollutant emissions, the pressure oscillations, and the exhaust temperature
for each operation point. Thus, the exploration of different setups has been possible considering
the system’s constraints. This design and simulation would have probably not been viable using
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white-box tools and simulation software, once part of the information needed was not even
known, as the air-fuel ratio.

The results achieved with NiM presented a small improvement in the natural gas
demand by exploring the limits of the constraints. It has been achieved by setting up the stages
accordingly and observing the outputs from the models. Considering the dimension of the system,
this improvement represents savings of thousands of hundreds of dollars a year, which is an
outstanding achievement from a business perspective. However, the optimization methodology
has been designed to explore the operation constraints limits, which does not necessarily mean
that extra maintenance costs would not appear. To optimize the power plant costs, it would be
necessary to expand the approach and to include the whole combined cycle and its costs.

Furthermore, there are two important attention points considering the methodology
used in this research. The first one is that the black-box models have been designed from a very
limited data set, which does not answer how much the simulation model generalizes the real
system. The second one is that the black-box models identified present validation errors, which
influence the optimization results. It means that part of the improvement presented could be a
consequence of the black-box models (especially the constraints). Therefore, the setups found
in this research should be reviewed by the expert engineers from the power plant before it is
carefully and supervised tested in the real system.

6.3 PUBLICATIONS

Along with the development of this research, many results have been obtained and
published in national and international engineering events, as well as in a peer-reviewed
international journal. Some have been contemplated in the scope of the present document, but all
of them present some scientific contributions in the optimization of real engineering problems.

6.3.1 Peer-reviewed Journals

1. S. R. Moreno, J. Pierezan, L. S. Coelho and V. C. Mariani. Multi-objective lightning
search algorithm applied to wind farmlayout optimization, Energy, Vol. 216, Feb. 2021.

2. J. Pierezan, L. S. Coelho, V. C. Mariani, E. H. V. Segundo and D. Prayogo. Chaotic
coyote algorithm applied to truss optimization problems, Computers & Structures, Vol.
242, Jan. 2021.

3. A. D. Boursianis, M. S. Papadopoulou, J. Pierezan, V. C. Mariani, L. S. Coelho, P.
Sarigiannidis, S. Koulouridis and S. K. Goudos. Multiband patch antenna design using
nature-inspired optimization method. IEEE Open Journal of Antennas and Propagation,
Vol. 2, pp 151-162, 2021.

4. R.C.T.de Souza, C. A. de Macedo, L. S. Coelho,J. Pierezan and V. C. Mariani. Binary
coyote optimization algorithm for feature selection. Pattern Recognition, Vol. 107, Nov.
2020.

5. J. Pierezan, G. Maidl, E. M. Yamao, L. S. Coelho and V. C. Mariani. Cultural coyote
optimization algorithm applied to a heavy duty gas turbine operation. Energy Conversion
and Management, Vol. 199, Nov. 2019.

6. J. Pierezan, R. Z. Freire, L. Weihmann, G. Reynoso-Meza and L. S. Coelho. Static
force capability optimization of humanoids robots based on modified self-adaptive
differential evolution. Computers and Operations Research, Vol. 84, Aug. 2016.
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6.3.2 Book Chapters

1. E. M. Yamao, J. Pierezan, J. P. S. Gon¢alves, M. C. Gritti, L. G. T. Ribas, F. Chiesa, V.
M. L. Santos, M. D. Freitas, A. D. S. Orlandi and L. S. Coelho (2018). Abordagem de
inteligéncia computacional aplicada para modelagem preditiva de emissdes de NO, e
CO de uma turbina a gds de uma usina termelétrica de ciclo combinado (in portuguese).
Energia Elétrica e Sustentabilidade 2, chapter 7, Atena Editora, Belo Horizonte, Brazil.

6.3.3 Conference Proceedings

1. A. Ferrari, G. Leandro, L. S. Coelho, J. Pierezan and L. F. Manke. Algoritmo
de otimizagdo do coiote aplicado na identificacdo de um sistema multivaridvel (in

portuguese). Anais do 14° Simpdsio Brasileiro de Automagao Inteligente, Campinas,
Brazil, Oct. 2019.

2. J. Pierezan, L. dos Santos Coelho, V. C. Mariani and L. Lebensztajn. Multiobjective
coyote algorithm applied to electromagnetic optimization. 22nd International Conference
on the Computation of Electromagnetic Fields (COMPUMAG), Paris, France, Jul. 2019.

3. G. Maidl, E. M. Yamao, J. Pierezan, R. A. P. Neto, L. S. Coelho and C. C. Toledo.
Extreme learning machine to a gas turbine emissions modelling. XXXIX Ibero-Latin

American Congress on Computational Methods in Engineering (CILAMCE), Paris,
France, Nov. 2018.

4. J. Pierezan and L. S. Coelho. Coyote optimization algorithm: a new metaheuristic for
global optimization problems. IEEE Congress on Evolutionary Computation (CEC),
Rio de Janeiro, Brazil, Jul. 2018.

5. R.C.T.de Souza, C. A. Macedo, J. Pierezan and L. S. Coelho. A v-shaped binary crow
search algorithm for feature selection. IEEE Congress on Evolutionary Computation
(CEC), Rio de Janeiro, Brazil, Jul. 2018.

6. L. S. Coelho, J. Pierezan, N. J. Batistela, J. V. Leite and S. K. Goudos. Multiobjective
lightning search applied to Jiles-Atherton hysteresis model parameter. IEEE International
Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki,
Greece, May 2018.

7. L. S. Coelho, G. Maidl, J. Pierezan, V. C. Mariani, M. V. F. da Luz and J. V. Leite. Ant
lion approach based on Lozi map for multiobjective transformer design optimization.
International Symposium on Power Electronics, Electrical Drives, Automation and
Motion (SPEEDAM). Amalfi Coast, Italy, Jun. 2018.

8. J. Pierezan, G. Maidl, E. M. Yamao, J. P. S. Gongalves, F. Chiesa and L. S. Coelho.
Robust identification of pressure oscillations in the combustion chamber of a heavy-duty
turbine. 24th ABCM International Congress of Mechanical Engineering (COBEM),
Curitiba, Brazil, Dec. 2017.

9. E. M. Yamao, J. Pierezan, J. P. S. Gongalves, M. C. Gritti, L. G. T. Ribas, F. Chiesa,
V. M. L. Santos, M. D. Freitas, A. D. S. Orlandi and L. S. Coelho. Abordagem de
Inteligéncia Computacional aplicada para modelagem preditiva de emissdes de NO, e
CO de uma turbina a gas de uma usina termelétrica de ciclo combinado (in portuguese).
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XXIV Semindrio Nacional de Producao e Transmissao de Energia Elétrica (SNPTEE),
Curitiba, Brazil, Oct. 2017.

P. G. In¢a, F. Chiesa, E. M. Yamao, J. Pierezan, F. T. R. Tovar and T. L. Peruscello.
Simulagdo da emissao de NO, de uma turbina a gds do tipo heavy duty utilizando redes

neurais (in portuguese). Workshop de Pesquisa em Computacdo dos Campos Gerais
(WPCCQG), Ponta Grossa, Brazil, Oct. 2017.

E. M. Yamao, J. P. S. Gongalves, J. Pierezan, L. G. T. Ribas, F. Chiesa and L. S.
Coelho. Identificac@o caixa preta de uma turbina a gés usando redes neurais artificiais
integradas a algoritmos evolutivos de otimizacao (in portuguese). Simp6sio Brasileiro
de Automacdo Inteligente (SBAI), Porto Alegre, Brazil, Oct. 2017.

6.4 FUTURE RESEARCH

During the development of the present work, a set of future research fronts has been

discovered to improve the COA and the WfCMO performances and to use the mechanisms
proposed in other NiM. Therefore, the topics for future research regarding the COA, the WfCMO,
and other NiM are:

1.
2.

To test the COA and the WICMO for other real-world engineering problems;

To implement and test adaptive versions of the COA and the WfCMO regarding the
total population size, from the initial values to the dynamic flow along the optimization
process (Morales-Castaneda et al., 2020);

. To implement and test the multi and many-objective versions of the COA and the

WICMO;

. To explore improvements on the COA and the WfCMO using quantum inspiration (Yu

et al., 2020; Sun et al., 2012; Talbi and Draa, 2017);

. To propose the binary (Thom de Souza et al., 2020) and chaotic (Pierezan et al., 2021)

versions of the WfCMO;

To propose a hybrid NiM combining the COA and the WfCMO populations and
mechanisms.

Regarding the heavy-duty gas turbine application scope, the following topics can be

explored in future research:

1.

2.

3.

To improve the black-box models using new acquired data to increase the reliability of
the optimization results;

To explore a multiobjective optimization approach considering the gas consumption,
the pressure oscillations, and the NO, emissions as objectives to be minimized;

To design the other elements from the combined-cycle power plant to obtain and
complete the operation model and optimize the Heat Rate.
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APPENDIX A - DEFINITIONS OF THE BENCHMARK FUNCTIONS

This appendix is based on the definitions of the IEEE-CEC 2017 competition of single-
objective optimization (Suganthan et al., 2016). A general description of the benchmark functions
and the evaluation criteria are provided.

A.1 BENCHMARKS DESCRIPTION

A set of 30 benchmark functions has been proposed in the IEEE-CEC 2017 competition
of single-objective real-parameter optimization. However, one function has presented technical
issues and it has been removed from the set (the function 2). The remaining benchmark functions
are presented in Tab. A.l, where an identification (F) assigned and main the features are
presented, including the base functions and the global optima.

As it can be seen, the benchmark functions can be pure or a combination of more
functions, called Base Functions. As consequence, the benchmark problems are labeled according
to the resulting features. The features notations are:

e C: Composition;

H: Hybrid;

M: Multimodal;

N-s: Non-separable;

S: Separable;

U: Unimodal.

By definition, the composition functions are written as:

n

F(3) = ) {wi - [igi(x) + biasi]} + F*, (A1)
i=1
where g;(x) is the i basic function used to construct the composition function, 7 is the number
of basic functions, w; and A; are used to normalize and to weight the composition, bias; is used
to define the global optima position and F'x defines the optimal cost of the benchmark.
On the other hand, the hybrid functions are defined as:

F(E) = ) {g(Miz)} + F", (A2)
i=1

where M; is a component used to rotate the global optima and z; is used to shift the global optima
of g;. Finally, the multimodal functions are those that present numerous local optima, while
unimodal functions present only one region of convergence.

The search space of all benchmarks is defined as [—100, 100] D where D is the dimension
of the function or, in other words, the number of design variables. The stopping criteria is the
number of function evaluations, denoted N"***, set to 10000 x D.
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Fcec Base Functions Features F* = F(X*)
1 Bent Cigar U, S 100
3 Zakharov U, S 300
4 Rosenbrock M, N-s 400
5 Rastrigin M, N-s 500
6 Scaffer M, N-s 600
7 Lunacek Bi-Rastrigin M, N-s 700
8 Non-Continuous Rastrigin M, N-s 800
9 Levy M, N-s 900
10 Schwefel M, N-s 1000
11 Zakharov, Rosenbrock, Rastrigin M, H, N-s 1100
12 High Conditioned Elliptic, Modified Schwefel, Bent Cigar M, H, N-s 1200
13 Bent Cigar, Rosenbrock, Lunache Bi-Rastrigin M, H, N-s 1300
14 High Conditioned Elliptic, Ackley, Schaffer, Rastrigin M, H, N-s 1400
15 Bent Cigar, HGBat, Rastrigin, Rosenbrock M, H, N-s 1500
16 Expanded Schaffer, HGBat, Rocenbrock, Modified Schwefel M, H, N-s 1600
17 Katsuura, Ackley, Expanded Griewank plus Rosenbrock, M, H, N-s 1700
Modified Schwefel, Rastrigin
18 High Conditioned Elliptic, Ackley, Rastrigin, HGBat, Discus M, H, N-s 1800
19 Bent Cigar, Rastrigin, Expanded Griewank plus Rocenbrock, M, H, N-s 1900
Weiertrass, Expanded Schaffer
20 Happycat, Katsuura, Ackley, Rastrigin, M, H, N-s 2000
Modified Schwefel, Schaffer
21 Rosenbrock, High Conditioned Elliptic, Rastrigin M, C, N-s 2100
22 Rastrigin, Griewank, Modified Schwefel M, C, N-s 2200
23 Rosenbrock, Ackley, Modified Schwefel, Rastrigin M, C, N-s 2300
24 Ackley, High Conditioned Elliptic, Griewank, Rastrigin M, C, N-s 2400
25 Rastrigin, Happycat, Ackley, Discus, Rosenbrock M, C, N-s 2500
26 Expanded Scaffer, Modified Schwefel, Griewank, M, C, N-s 2600
Rosenbrock, Rastrigin
27 HGBat, Rastrigin, Modified Schwefel, Bent-Cigar, M, C, N-s 2700
High Conditioned Elliptic, Expanded Scaffer
28 Ackley, Griewank, Discus, Rocwnbrock, M, C, N-s 2800
Happycat, Expanded Scaffer
29 F15, F16, F17 M, C, N-s 2900
30 Fis, F1g, Fi9 M, C, N-s 3000

Table A.1: Benchmarks definition from IEEE-CEC2017

To improve the readers understanding, some of the benchmark functions are drawn in
Figs. A.1 and A.2, which contain the shape and the level plots for D = 2 and 50 points in each
input axis.

A.2 EVALUATION CRITERIA

The evaluation criteria presented in this section is a tool for comparing the performance
of a set of optimization algorithms, denoted Y. It is divided into two analyses: score evaluation
and computational complexity.
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The score evaluation is an index with values from O to 100 that equally considers two
criteria. The first one is the sum of the errors between the optimal and the achieved cost (SE) for
all dimensions, such that:

29
SEa=2§ua1xey0y+mQXe§Dy+m3Xe?Dy+m4xef“7] (A.3)

i=1
for all a € ¥, where e0P, ¢30P | ¢50P and 1990 contains the error values for the algorithm a and

functions with dimensions 10, 30, 50 and 100, respectively. This sum is transformed into the first
score S, which is defined as:
SE, - SEM™"
Sta=(0—-———) x50 A4
1,a ( S Ea ) ( )

for all a € W, where SEM" represents the minimum of the errors sum among all algorithms.

The second one considers the sum of ranks achieved by the algorithms for each
benchmark function dimension, such that:

29
SR, = Z[(O.l X rank}lOD) + (0.2 x rankiOD) + (0.3 % rankiOD) + (0.4 x rank},OOD)] (A.5)
i=1

for all a € W, which results in the second score (S;), defined as:

SR, — SRMin
SZ,a =(1- S—Ra) x50 (A.6)
for all a € ¥, where SRM™" represents the minimum of the rank sum among all algorithms. The

final score of each algorithm is the combination of those two criteria, such that:

Score; = S1.4+ 824 (A.7)

forall a € V.

The computational complexity is calculated according to the time spent to execute the
optimization, mitigating the influence of the benchmark function itself and the computer features.
The complexity of the a'” algorithm regarding the dimension D is defined by the following
equation:

cD = (TZL,)a - TID)
a TO ’
where Tj is the computer time calculated according to Alg. 13, TlD is a specific function time
considering D and Tzl?a is the time spent by the a’" algorithm to run the function for D.

According to the IEEE-CEC 2017 definitions, the time TID is calculated based on one
time run with N, evaluations of the specific function for D. To mitigate possible oscillations
in the Computer Processor Units (CPU) or even in the Random Access Memory (RAM), the
time TlD is obtained through the average of N; runs of N, evaluations. Finally, the time ffa is
obtained as the average time among N, optimizations with N, evaluations of the specific function
with dimension D.

(A.8)
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Algorithm 13 Computation of time TO

1: Initialize the time counter TO and x = 0.55
2: for i from 1 to 1000000 do

3: X=XxX+x
X

4: Xzz

5: X=XxX-X
6: x:\/)_c

7. x=Inx

& x=expx
9: x:(xxTz)

10:  Stop the time counter 7y and store the resulting time.
11: end for
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APPENDIX B - COMPLEMENTAR RESULTS

This appendix presents the complementary results from the IEEE-CEC 2017 116
benchmark functions. The descriptive statistic of the errors is presented in terms of minimum,
average, median, maximum, and standard deviation values from Tabs. B.1 to B.29.
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