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RESUMO

Os códigos computacionais complexos das mais diversas áreas, tais como indústria 4.0

e energia, apresentam características como não-linearidade, escala, multimodalidade e presença

de restrições. Por este motivo, as técnicas clássicas Newtonianas e baseadas em gradiente não

são recomendadas para problemas de otimização global, os quais contém inúmeras variáveis de

projeto, restrições e simulações incorporadas. Isso incentivou novas pesquisas emmetaheurísticas

baseadas em fenômenos naturais, principalmente comportamentos de animais com características

cooperativas ou colaborativas. Entretanto, não existe um algoritmo único capaz de ter bom

desempenho para todos os tipos de problemas de otimização, o que justifica a busca recorrente

por novas abordagens para solucionar esses problemas. Portanto, a presente tese introduz duas

metaheurísticas com estruturas inovadoras inspiradas na natureza e nunca propostas. A primeira

é baseada na espécie Canis latrans e denominada Algoritmo de Otimização dos Coiotes (do
inglês Coyote Optimization Algorithm, COA). A segunda, por sua vez, é inspirada na espécie

Cebus capucinus e denominada Otimizador dos Macacos-prego-da-cara-branca (do inglês White-
faced Capuchin Monkeys Optimizer, WfCMO). Os algoritmos propostos são avaliados sob um

conjunto de funções de benchmarks empregadas nas competições do Congresso de Computação

Evolutiva (do inglês Congress on Evolutionary Computation, CEC) organizado pelo Instituto de
Engenheiros Eletricistas e Eletrônicos (do inglês Institute of Electrical and Electronics Engineers,
IEEE) e comparadas a outras metaheurísticas inspiradas na natureza. Além disso, a modelagem

de um problema de otimização com restrições de uma turbina a gás do tipo heavy-duty de

uma termelétrica brasileira também é proposto nesta pesquisa. Para solucioná-lo, uma versão

cultural do COA é proposta e seu desempenho é avaliado e comparado com outros algoritmos

do estado-da-arte. Os resultados mostram que as metaheurísticas propostos nesta pesquisa

alcançaram desempenho satisfatório e superaram os outros algoritmos com 95% de confiança

estatística com base no teste não-paramétrico de Wilcoxon-Mann-Whitney e também nos critérios

do IEEE CEC 2017. Ainda, os resultados conquistados para problems multimodais e de alta

dimensão mostram que as técnicas são promissoras para estes tipos de problema, que são usuais

em problemas reais. Ademais, as análises de curva de convergência e de diversidade da população

indicam um balanço adequado entre exploração e aproveitamento. Por fim, a versão cultural do

COA, que se demonstrou capaz de evitar convergência prematura, superou os demais algoritmos

do estado-da-arte para o problema de otimização da operação da turbina.

Palavras-chave: Indústria 4.0, Inteligência Computacional, Otimização Global, Metaheurísticas

inspiradas na natureza.



ABSTRACT

The real-world applications from the most diverse fields such as industry 4.0 and energy

have been formulated into complex computational codes with features as non-linearity, scale,

multimodality, and the presence of constraints. Because of that, the classic Newtonians and

gradient-based techniques are not recommended for global optimization applications with many

design variables, constraints, and simulations embedded. It has encouraged new researches

on metaheuristics based on natural phenomena, mainly animal behaviors with cooperative or

collaborative features. However, there is not a unique algorithm able to perform well for all types

of optimization problems, which justifies the recurrent search for new approaches. Hence, this

thesis presents two never-proposed nature-inspired metaheuristics with innovative structures. The

first one is based on the Canis latrans species and it is denoted Coyote Optimization Algorithm
(COA). The second one is inspired by the Cebus capucinus species and receives the name of
White-faced Capuchin Monkeys Optimizer (WfCMO). The proposed algorithms are evaluated

under a set of benchmark functions employed in the Institute of Electrical and Electronics

Engineers (IEEE) Congress on Evolutionary Computation (CEC) competitions and compared

to other state-of-the-art nature-inspired metaheuristics. Besides, the design of a constrained

optimization problem of a heavy-duty gas turbine operation from a Brazilian thermoelectric

power plant is proposed in this research. To solve it, a cultural version of the COA is proposed

and its performance is evaluated and compared to other state-of-the-art algorithms. The results

show that the proposed metaheuristics achieve profitable performance and outperform some

state-of-the-art algorithms with 95% of statistical confidence based on the Wilcoxon-Mann-

Whitney non-parametric test and the criteria of the IEEE CEC of 2017. Also, these algorithms

present promising results for multimodal and high dimensional problems, which are the most

usual features of real-world problems. Moreover, the convergence and diversity curves indicate a

suitable balance between exploration and exploitation. Further, the proposed cultural version of

the COA outperforms other state-of-the-art algorithms for the gas turbine operation problem. Its

ability to avoid premature convergence is also demonstrated.

Keywords: Industry 4.0, Computational Intelligence, Global Optimization, Nature-Inspired

Metaheuristics.
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1 INTRODUCTION

Real-world problems have been formulated into computational codes from the most

diverse application fields including robotics, aerospace, civil, mechanical, mechatronics, chemi-

cals, health science, information science, and sports (Antoniou and Lu, 2007; Yang and Koziel,

2011). The combination of intelligent algorithms and digital integration to applications of these

fields has generated the term Industry 4.0 (I4.0) (Muhuri et al., 2019). This term has become

widespread among the researcher, especially because of the numerous applications that have been

published in scientific journals during the last decade, as drawn in Fig. 1.1. A considerable set of

Artificial Intelligence (AI) techniques have already been applied to complex industrial systems

(Shukla et al., 2019), such as the Industrial Gas Turbines (GT).

Figure 1.1: Number of papers related to Industry 4.0 over the last decade (Scopus and IEEEXplore databases).

The industrial GTs, also denoted heavy-duty GTs, have been widely used in the energy

generation industry. The GTs offer high power output along with a high combined cycle efficiency,

lower emissions, and also high fuel flexibility (Vyncke-Wilson, 2013). It is a consequence of the

price, the environmental concerns, and the fuel diversification (Demirbas, 2009) provided by the

natural gas, which has been used as fuel for power plants able to generate a couple of hundred

megawatts. Unlike the advantages of this type of equipment, there are numerous problems related

to the gas turbines maintenance, such as aging of gas path components, fouling in the air filter

and compressor, excessive clearance due to rubbing, and malfunctions (Lemma et al., 2016). In

addition, problems related to the polluting emissions and pressure oscillations in the combustion

chamber that are highly complex to be mathematically written as white-box systems have been

studied (Yamao et al., 2017a,b; Pierezan et al., 2017b).

Therefore, many internal and external features might be considered in order to improve

a heavy-duty gas turbine effectiveness. The main topics explored are modeling and simulation,

control, thermodynamic analysis, pollutant emissions, vibration, fault diagnosis, and exergy
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efficiency. As example, some recent researches related to industrial GTs are summarized in Tabs.

1.1 and 1.2.

An approach suggested by many researchers is to convert mechanical, electrical, and

chemical systems into optimization problems, which means to search for a set of parameters to

achieve a determined objective (Yang et al., 2013). Such methodology has been successfully

employed in many industrial and engineering applications in the last decades (LaTorre et al.,

2015; Zelinka et al., 2013). The most challenging part of this methodology is that the resulting

optimization problem usually presents non-linear behavior, multimodality, which means the

presence of only one convex region or numerous local optima, non-separability, which means the

minimization of the problem’s cost depends on the manipulation of multiple variables at a time,

and the presence of optimization constraints (Mahdavi et al., 2015; Suganthan et al., 2016).

The first optimization techniques proposed were the classic Newtonians and gradient-

based (as the Hill-climbing, Conjugate Gradient, Downhill Simplex, and Pattern Search), which

mathematically guarantee the convergence to an optimal solution. According to (Rao, 1996),

these methods can be classified as deterministic ones and they perform well for local search

problems. However, considering many recent global optimization problems with multiple design

variables, constraints, and simulations embedded, other approaches are welcome to complement

these methods.

Hence, the research on new algorithmic approaches for complex global optimization

has begun with heuristics like the Simulated Annealing, the Tabu Search, and the GA (Goldberg,

1989). These methods are classified as stochastic and according to (Boyd and Vandenberghe,

2004) they do not guarantee the convergence to the global optimum, but they do guarantee the

avoidance of the worst solutions possible due to their evolutionary feature. Based on this principle,

the development of new stochastic techniques has started and some of the most widespread

metaheuristics have been proposed. The Evolutionary Algorithm (EA) denoted Differential

Evolution (DE) (Storn and Price, 1995, 1997), which is based on Darwin’s evolution theory, and

the Swarm Intelligence (SI) algorithm called Particle Swarm Optimization (PSO) (Kennedy and

Eberhart, 1995), which is inspired on the synchronized flock of birds.

After the proposal of these algorithms, the exponential growth of researches on new

metaheuristics for handling global optimization has been noted in the literature, as shown in

Fig. 1.2. Several EA and SI methods have been proposed mainly as an improvement of the

GA, the DE, and the PSO techniques (Mahdavi et al., 2015; Boussaïd et al., 2013; Das et al.,

2011). Furthermore, many algorithms inspired by nature have been proposed and explored in the

last decades, resulting in the creation of the Nature-inspired Metehuristics (NiM) classification

(Dokeroglu et al., 2019).

Among the numerous optimization techniques, from the classic methods to the most

recent metaheuristics, the nature-inspired ones have shown the most promising results in many

research areas (Yang, 2014; Boussaïd et al., 2013; Salcedo-Sanz, 2016). Defined as techniques

that try to copy nature, these algorithms are inspired by the most diverse phenomena. Some are

based on animal movements, another on the social relations of some species. The communication,

social hierarchy, and echolocation are examples of many other diverse natural inspirations found

in the recent literature (Zang et al., 2010).

Several nature-inspired metaheuristics have been proposed in the last decades and the

majority of them is based on some animal behavior. As example of that, there are the Ant Colony

Optimization (ACO) (Dorigo et al., 2006), the Artificial Bee Colony (ABC) (Karaboga and

Basturk, 2007), the Bacterial Colony Foraging (BCF) (Chen et al., 2014a), the Bat-Inspired

Algorithm (BA) (Yang, 2010), the Cat Swarm Optimization (CSO) (Chu et al., 2006), the Dolphin

Echolocation (DEc) (Kaveh and Farhoudi, 2013), the Firefly Algorithm(FA) (Yang, 2009), the
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Table 1.1: Literature review related to industrial GTs - Part I

Year Short description

2011 A white-box turbulence model based on the Semi-Implicit Method for Pressure Linked

Equations (SIMPLE) algorithm (Wang et al., 2011).

2011 Correlation of reliability indicators, fuel consumption and carbon dioxide (CO2) emissions

of a GT cogeneration power plant (Hazi et al., 2011).

2011 Evaluation of the aerodynamic performance resulting from the fuel change on the turbine

cascade of ground heavy-duty GT (Liu and Wang, 2011).

2011 White-box identification and real-time simulation of a GT (Chacartegui et al., 2011).

2012 GT heat and power identification from real data using ANN (Nikpey et al., 2012).

2013 Analysis of hybrid solid oxide fuel cells in the GT cycle (Zabihian and Fung, 2013).

2014 GT fault diagnosis system using Support Vector Machine (SVM) (Hu et al., 2014).

2014 Optimization of the performance of a GT cycle using a thermodynamic and energy study

of a regenerator (Saria et al., 2014).

2014 Analysis of GT cycle NOx releases (Hajer et al., 2014).

2015 GT frequency vibration prediction using real data and ANN (Ben Rahmoune et al., 2015).

2015 Dynamic Multilayer Perceptron (MLP) networks as pattern classifier applied to GT fault

detection (Sina Tayarani-Bathaie and Khorasani, 2015).

2015 Different methods of cooling the inlet air to GTs in Fars combined cycle power plants

(Ghanaatpisheh and Pakaein, 2015).

2016 Analysis of the effect of ambient parameters on the performance of combined cycle GT

power plants (Plis and Rusinowski, 2016).

2016 A Fuzzy Proportional-Integral-Derivative (PID) Controller for a GT power plant (Karande

et al., 2015).

2016 The reliability analysis of the combined cycle GT power plant using the multi-state Markov

model (Lisnianski et al., 2016).

2016 Efficiency metrics of heavy-duty GT systems using natural gas and syngas (Sorgenfrei

and Tsatsaronis, 2016).

2016 GT modeling using fuzzy neural network approaches based on real data acquired and

classification (Benyounes et al., 2017, 2016).

2017 Thermal performance evaluation of a GT power plant based on exergy analysis (Ibrahim

et al., 2017).

2017 Optimization of Inlet Guide Vanes (IGV) position in a heavy-duty GT on part-load

performance using a multiobjective approach (Mehrpanahi and Payganeh, 2017).

2017 Combined cycle efficiency optimization using evolutionary metaheuristic based on the

Genetic Algorithm (GA) (Cao et al., 2017)

2017 A GT white-box model and its respective simulation (Zhang, 2017).

2017 A GT black-box dry low emissions model approach using Nonlinear Autoregressive

Exogenous (NARX) model (Tarik et al., 2017)

2017 A regression-based prognostic model combined with an Adaptive Neuro-Fuzzy Inference

System (ANFIS) to predict deposition and fouling in the compressor section of GT engines

(Hanachi et al., 2017).

2017 A system of control and diagnostic of vibration in GTs using NARX neural networks (Ben

Rahmoune et al., 2017).
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Table 1.2: Literature review related to industrial GTs - Part II

Year Short description

2018 Transient behavior of heavy-duty GTs based on a white-box simulation model optimized

by a Genetic Algorithm (GA) (Chaibakhsh and Amirkhani, 2018).

2018 A multi-objective approach for Computational Fluid Dynamics (CFD) optimizations of

water spray injection in GT combustors considering the Nitrogen Oxides (NO𝑥) emissions

(Amani et al., 2018).

2018 Two-steps method to improve the robustness of GT gas-path fault diagnosis against sensor

faults (Li and Ying, 2018).

2018 The modeling and simulation of a heavy-duty GT operating under temperature control

mode under steady-state conditions in the popular Rowen GT model (Kim et al., 2018).

2018 Flameless combustion and its potential towards GTs (Perpignan et al., 2018).

2018 A simulation of combined cycle GT power plants (Liu and Karimi, 2018).

2018 Multiobjective Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

multicriteria decision strategy to power generation costs and exergy efficiency optimization

(Entezari et al., 2018).

2018 Analysis of specific power and Specific Fuel Consumption (SFC) of open-cycle GTs using

the ideal gas model with temperature-independent heat capacities (Delgado-Torres, 2018).

2018 Optimization of power generation costs in a system involving a combined cycle GT, a

compressed air energy storage system, and solar energy collectors using Non-dominated

Sorting Genetic Algorithm II (NSGA-II) (Wang et al., 2018).

2018 Multiobjective Artificial Bee Colony (ABC) optimizing energy cost, investment, and

generators power output of an offshore GT (Zhang et al., 2018).

2019 A Dual Fuel GT (DFGT) model using natural gas and biogas (Amiri Rad and Kazemiani-

Najafabadi, 2019).

2019 A modeling and system identification of gas fuel valves from real data (Omar et al., 2018).

2019 A GT fault classification method using machine learning techniques and real data

acquisition (Batayev, 2018).

2019 A numerical scheme for the thermodynamic analysis of GTs (Colera et al., 2019).

2019 A white-box simulation model of industrial GTs (Tsoutsanis and Meskin, 2019).

2019 A thermo-economic analysis applied to multi-fuel fired GT (Udeh and Udeh, 2019).

2019 A multiobjective optimization approach applied to the conceptual design of a conventional

GT combustor (Saboohi et al., 2019).

2020 GT fault diagnosis using a Multi Feedforward Artificial Neural Networks (MFANN)

system (Alblawi, 2020)

2020 Grey-box modelling of the swirl characteristics in gas turbine combustion system (Zhang

et al., 2020d)

2020 GT signal fault isolation using Kalman filter, ANN and Fuzzy logic (Togni et al., 2020)

2020 Multi-objective-optimization of GT process parameters using Grey-Taguchi and ANN

(Gul et al., 2020)

2020 GT operation characteristics design and prediction in real-time (Park et al., 2020).
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Figure 1.2: Number of papers with bio/nature-inspired optimization and global optimization in the title, abstract

and/or keywords, over the last two decades (Scopus database).

Grasshopper Optimisation Algorithm (GSA) (Saremi et al., 2017), the Grey Wolf Optimizer

(GWO) (Mirjalili et al., 2014), the Particle Swarm Optimization (PSO) (Kennedy and Eberhart,

1995), the Social Spider Algorithm (SSA) (Yu and Li, 2015), the Spider Monkey Optimization

(SMO) (Bansal et al., 2014) and the Whale Optimization Algorithm (WOA) (Mirjalili and Lewis,

2016). There is also some NiM inspired by other natural phenomena instead of a specific animal.

It is the case of the Flower Pollination Algorithm (FPA) (Yang, 2012), the Symbiotic Organisms

Search (SOS) (Cheng and Prayogo, 2014), the Virus Colony Search (VCS) (Li et al., 2016) and

many others (Salcedo-Sanz, 2016; Boussaïd et al., 2013). A complete review o NiM and the

most diverse inspirations are presented in (Lones, 2019; Molina et al., 2020).

1.1 JUSTIFICATION

Considering the world energy scenario, the total energy supply has grown around 134%

(8098 Mtoe to 14282 Mtoe) from 1971 to 2018. The share of natural gas supply has increased

around 265% and it represented around 22.8% of the total energy in 2018. In the Americas, the

total energy supply represented a share of 23.4% of the world energy in 2018. (IEA, 2020).

According to the Brazilian Energy Review (Resenha Brasileira Energética) 2020, which
is written by the Ministry of Mines and Energy (Ministério de Minas e Energia) regarding
the year 2019, the energy demand in Brazil grows above the Gross Domestic Product - GDP (

Produto Interno Bruto - PIB). In 2019, the Brazilian energy matrix has grown around 15.5%
considering both renewable and non-renewable sources (Brasil, 2020). The development of

sustainable energy has become more than an international policy objective, but also an integral

part of sustainable development (Gunnarsdottir et al., 2020). Moreover, the search for robust

solutions to optimize different energy sources has increased (Impram et al., 2020; Iqbal et al.,

2014).

The current research is based on an Research and Development (R&D) project of a

thermoelectric power plant located at Araucária, Paraná state, Brazil, which generates electrical
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energy using natural gas as an energy source. The power plant operates in a combined cycle

and it is composed of two Siemens Westinghouse W501FD combustion turbine generators, two

Aalborg unfired heat recovery steam generators, one Alstom steam turbine of condensing type,

and one Alstom single-shell two-pass condenser. A photograph from the facility is shown in Fig.

1.3, where it is possible to see the exhaust tower of each gas turbine.

Figure 1.3: Exhaust towers view of the UEGA power plant at Araucária, Parana State, Brazil.

Each gas turbine has 173 MW of nominal power output with around 36% of efficiency

in normal conditions, while the steam turbine has around 123 MW. Thus, the total nominal

power output is 469 MW and the efficiency considering the combined cycle reaches around 50%.

The performance of the power plant is measured by the Heat Rate (HR), which is calculated in

Btu/kWh (the lower, the better) and it considers the individual equipment’s energy conversion and

the energy spent to run the operation (electrical transformers, office, etc) (Yamao et al., 2018).

Since the construction of the facility, a set of technical reports has been written to

evaluate the performance after each setup procedure. It has been noticed that HR has increased

significantly while the energy spent to run the operation has not increased in the same proportion.

Hence, the employees of the power plant have concluded that the efficiency loss may be a result

of the individual equipment’s performances, mainly the gas turbine, which has a double impact

on HR. Because of the dimension of the system, any small variation in the performance impacts

hundreds of thousands of dollars per year.

1.2 OBJECTIVES

The objectives of the present thesis are (i) to propose a metaheuristic for global

optimization inspired on the Canis latrans species; (ii) to propose a metaheuristic for global
optimization inspired on the Cebus capucinus species; and (iii) to evaluate at least one proposed
algorithm under a constrained real-parameter engineering optimization problem. According to

the aforementioned goals of this research, the specific objectives are summarized as follows:

• To compare the proposed algorithmswith the other similar nature-inspiredmetaheuristics

from literature in terms of structure, mechanisms, and optimization strategies;

• In order to explore the advantages of the proposed algorithms, to test them on a set of

continuous optimization benchmark functions with distinct features as multimodality;
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• To compare the performances of the proposed algorithms with other nature-inspired

metaheuristics in terms of convergence and diversity of the population;

• To design an optimization problem to improve the efficiency of a heavy-duty gas turbine

respecting the physical and operational constraints;

• To applied the proposed algorithms to the designed problem of the constrained opti-

mization of a heavy-duty gas turbine operation.

1.3 ORIGINAL CONTRIBUTIONS

The present thesis introduces two original NiM for global optimization with different

inspirations. Each NiM presents an original approach to the global population structure, division,

and interaction. Conceptually, each algorithm introduces a new metaphor regarding the solutions

of an optimization problem and the balance between exploration and exploitation is analyzed.

The first proposed NiM is inspired by the Canis latrans species, which contains a distinct
structure when compared to other similar state-of-the-art algorithms. The global population

is divided into subpopulations with local interactions and the social exchange between the

individuals of the population based on real observations of this species is introduced. The second

one is inspired by the Cebus capucinus species, which is designed with separated groups of
monkeys composed of males and females. Instead of sharing information and working as a team

as most population-based and swarm intelligence metaheuristics, the social behavior employed is

the fight between the groups of the same species.

Moreover, the present research contributes to the optimization of a real-world application

using the proposed NiM. The optimization problem is the operation of a heavy-duty gas turbine

of 173 MW from a combined cycle power plant with two of these turbines and an additional steam

turbine. A computational grey-box model is proposed to simulate the power output considering

constraints as the gas emissions and pressure oscillations inside the combustion chamber.

Furthermore, alternative optimization mechanisms and strategies from literature are

pursued to improve the performance of the proposed NiM. The domains from the cultural

algorithms and the chaotic maps are examples of possibilities for NiM improvements. Besides,

multi and many-objective versions of the proposed NiM are explored during this research.

1.4 RESEARCH LIMITATIONS

Due to the numerous repetitive evaluations of an objective function, one single optimiza-

tion process using evolutionary algorithms (EAs) is usually quite slow in terms of computational

execution time. When a new metaheuristic is proposed, multiples EAs are compared and the

total execution time increases considerably (LaTorre et al., 2015; Suganthan et al., 2016). First

and evident, because the number of EAs being tested increases. Second, because the higher the

number of objective functions tested, the more reliable is going to be the conclusion obtained.

Third and last, because the higher the number of experiments performed, the more reliable is

going to be the statistical analysis provided.

Because of that, a small number of algorithms chosen from the state-of-the-art are used

for comparison, as well as a limited number, and experiments are performed. Moreover, the

set of parameters for each algorithm is reduced and the state-of-the-art algorithms employed

assumes only one, while the proposed NiM assumes two or three sets.

In order to reduce the total execution time, some experiments have shared experimental

unity. As a consequence, the full computational execution time of each EA can not be precisely
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and reliably measured for comparison. Nevertheless, the computational complexity of each

can be estimated using a technique from literature (Suganthan et al., 2005; Chen et al., 2014b;

Suganthan et al., 2016). As the objective of the present thesis is to evaluate the design and

contributions of the proposed algorithms, this is a limitation with a low impact on this research.

Considering the engineering application, this study is focused on gas turbine performance

improvement through data analysis and operation optimization. The data has been acquired from

a two days operation in October of 2015 because after that the power plant has been idle for a

couple of years. Because the acquisition system was still under construction, only one gas turbine

data was correctly acquired and this research does not consider the second gas turbine.

1.5 OUTLINE

The present thesis is organized as follows:

• Chapter 1: In this chapter, the general introduction is presented, including the justification,

the motivation, the research limitations, and the objectives;

• Chapter 2: This chapter contains the basic concepts of global optimization, and the

performance analysis methods using statistical inference and convergence analysis;

• Chapter 3: The state-of-the-art nature-inspired metaheuristics used for comparison in

this research are presented in this chapter;

• Chapter 4: In this chapter, the proposed algorithms inspired on the canis latrans and
Cebus capucinus species are described and the performances are evaluated under a set
of benchmark functions;

• Chapter 5: A cultural version of the COA is introduced in this chapter and its performance

is evaluated to the constrained optimization of a heavy-duty gas turbine operation;

• Chapter 6: The discussion related to the results presented is provided, as well as the

contributed publications and the future activities for the continuation of this research.
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2 SINGLE-OBJECTIVE GLOBAL OPTIMIZATION

The present chapter contains the basic concepts regarding the global optimization

process. The first subsection stands for the basic concepts and definitions of a global optimization

problem. The following subsection contains the stopping criteria usually adopted to test the

optimization methods under global optimization problems.

2.1 OPTIMIZATION PROBLEM DEFINITION

According to (Simon, 2013), an global optimization problem containing a number of

constraints to be satisfied can be written as:

minimize 𝑓 (𝑥)
subject to 𝑔 𝑗 (𝑥) ≥ 0, 𝑗 = 1, 2, . . . , 𝐽;

ℎ𝑘 (𝑥) = 0, 𝑘 = 1, 2, . . . , 𝐾;

𝑥 (𝐿)𝑑 ≤ 𝑥𝑑 ≤ 𝑥 (𝑈)
𝑑 𝑑 = 1, 2, . . . , 𝐷,

where 𝑥 (𝐿)𝑑 and 𝑥 (𝑈)
𝑑 represent, respectively, the lower and upper bound of each decision variable

𝑥𝑑 , defining the search space of the problem Ω ⊆ R𝐷 . The 𝑔 𝑗 (𝑥) and ℎ𝑘 (𝑥) are denoted the
constraint functions with 𝐽 inequalities and 𝐾 equalities that might exist. A solution 𝑥 must
satisfy all of the 𝐽 + 𝐾 constraints to be considered feasible; it it does not, the it is considered

infeasible. If the optimization problem contains any variable bounds, equality or inequality, then

it is called a constrained problem. Otherwise, it is denoted unconstrained problem.

2.2 STOPPING CRITERIA

The stop criteria are part of the structure of the iterative optimization methods and are

the ones responsible for closing the execution of the experiment. According to (Engelbrecht,

2005), the most common criteria are:

1. The maximum number of iterations or evaluations of the objective function reached: if

this value is too small, the experiment will end before finding a good solution; otherwise,

the processing time will be very high;

2. An acceptable solution found: an error measure is defined concerning the desired global

optimum; care must be taken with very high values, since they generate an unsatisfactory

solution, and also with low values, which can never be reached, generating an infinite

loop.

3. When the solution is not improved for a certain time: there are different ways to stop,

but it means that the method has already converged, regardless of whether the value

found is the global optimal.

There may be particular stopping criteria for some metaheuristics, but this approach will not be

addressed in this thesis.



25

2.3 STATISTICAL EVALUATION OF STOCHASTIC ALGORITHMS

Unlike the mathematical and deterministic methods, the stochastic ones do not have

a proof of convergence to the global optimal solution (Sergeyev et al., 2018). Hence, many

statistical tools have already been used to evaluate the performance of these algorithms (Rao,

1996). This section presents the techniques used in the present work based on (Montgomery and

Runger, 2011).

2.3.1 Descriptive Statistics

The descriptive statistics can be described as a set of numerical summaries of data

combined with graphical views of the results. In other words, it means to convert a considerable

amount of data into a reduced group of features with understandable views. In global optimization,

this approach is used to compare the performance of different methods after a set of independent

runs, which means different initial conditions (or seeds).

One of the most widespread approaches used to present these numerical summaries is

through a table, as shown in Tab. 2.1.

Methods Minimum Average Median Maximum Standard Deviation
Method 1 7.2 9.6 9.1 9.9 1.9

Method 2 6.1 7.1 7.2 9.0 1.6

Method 3 7.3 8.9 9.5 9.8 1.7

... ... ... ... ... ...

Method 𝑀 6.8 8.7 8.5 8.8 1.2

Table 2.1: Example of a table with numerical summaries (only representative values).

For a finite population with 𝑁 values, the probability mass function is 1/𝑁 and the

mean can be considered the average value among a set of observations, such as:

𝑥 =
1

𝑁

𝑁∑
𝑖=1

𝑥𝑖. (2.1)

To complement the analysis, the standard deviation of a sample evaluates the dispersion

of the observations. Note that, only a sample of 𝑁 independent runs is taken into account. The

standard deviation (𝑠𝑡𝑑) is then computed as:

𝑠𝑡𝑑 =

√√√
1

𝑁 − 1

𝑁∑
𝑖=1

(𝑥𝑖 − 𝑥)2. (2.2)

Although the combination of the sample average and standard deviation enables the

comparison of two or more methods, the existence of outliers is always possible and it needs

to be considered. The outliers are described as atypical/unusual observations, it means a value

far from the sample average. The sample median is a metric that can be used to evaluate the

performance and reduce the influence of the outliers. It happens because this feature carries

the tendency of the sample. The calculation of the median begins with sorting the sample and
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picking the observation of the middle. In case of even sample size, the average between the two

central observations is used, such that:

𝑚𝑒𝑑𝑖𝑎𝑛 =

{
𝑥 (𝑁+1)

2

, 𝑁 is odd
𝑥 ( 𝑁

2
)+𝑥 ( 𝑁

2
+1)

2
, otherwise

(2.3)

One method used to analyze the median and the outliers is the "box plot", which is

composed of a box with length denoted interquartile range (IQR) drawn from reference values

called quartiles. The lower edge is denoted the first quartile (𝑞1, 25%) and the upper one is the
third (𝑞3, (75%)). The second quartile is represented by a line inside the box, which is denoted
the 50th percentile or the median itself. A line denoted whisker is drawn from 𝑞1 to the smallest
sample value inside the 1.5 IQR. The upper whisker is drawn from 𝑞3 to the largest observation
inside the 1.5 IQR. The representation of a box plot is drawn in Fig. 2.1, where the outliers are

the observations outside the region between the end of the whiskers.

Figure 2.1: Description of a box plot (Montgomery and Runger, 2011).

Through this analysis, it is possible to evaluate the repeatability of different methods

separately and compare them. Considering a minimization optimization problem, where the

goal is to find the smallest costs for eh objective function, the smallest the sample average,

the minimum, the median, and the maximum, the better is the result. On the other hand, for

maximization problems, where the goal is to find high values for the objective function, the

higher these values, the better. In both cases, the desired standard deviation is always the smallest

possible, which highlights the method capacity to find solutions near the sample average.

2.3.2 Statistical inference

As mentioned in the previous section, descriptive analysis provides a compact and

graphical interpretation of the observed samples. The weakness of that analysis is the lack of

confidence to conclude about the difference between two or more samples. When the samples

have nearly similar means, for example, how is it possible to infer if one is higher/lower than the

other?

Using statistical significance tests it is possible to estimate that with a certain probability,

for example, 95% (Hollander and Wolfe, 1999; Gibbons and Wolfe, 2003). Let’s 𝐻0 be the null

hypothesis, which states that two samples belong to the same population, while 𝐻1 states that the

samples do not belong to the same population. A statistical test compares the sample distributions

and provides an indicator denoted 𝑝-value, the probability of rejecting the null hypothesis, which
is compared to the significance level 𝛼 (for probability 95%, 𝛼=0.05). If the 𝑝-value is lower
than 𝛼, then it is possible to say that "the samples do not belong to the same population with 95%
of statistical confidence".
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There are many methods on literature to estimate the 𝑝-value and it is possible to

separate into two groups: the parametrical and the non-parametrical ones. The difference is that

the parametrical ones assume that the probability density functions of the samples are Normal,

with average equals to 𝜇 and variance equals to 𝜎2, as illustrated in Fig 2.2.

Figure 2.2: Normal probability density functions (Montgomery and Runger, 2011).

However, this assumption is not recommended when comparing the results of stochastic

algorithms (García et al., 2010; Derrac et al., 2011). The samples obtained after a set of

independent runs with different initial conditions can present several probability density functions,

as the example shown in Fig. 2.3. The first sample has similarity with a Normal probability

density, but the other samples are more similar to Beta, Weibull, and Uniform, for example

(Gibbons and Wolfe, 2003).

Figure 2.3: Examples of probability distributions

Therefore, the non-parametric statistical significance tests are recommended to compare

the performances. The most recommended method for multiple comparisons is the Friedman

Ranks test (Hogg and Ledolter, 1987), which discovers if the median errors of all algorithms

belong to the same population (𝐻0). To perform the Friedman test, the data is arranged as

demonstrated in a table as Tab. 2.2 with 𝑛 rows and 𝑘 columns with only one observation or 𝑐
data in each of the 𝑛 × 𝑘 cells. The observations in the different lines are independent, while the
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columns are not due to some association units. The lines represent the blocks, which contain

only one subject each, and the columns represent the treatments. The 𝑘 treatments are applied to
the 𝑛 subjects. The observation of each treatment should be replaced by its respective relative
rank among the observations in the same block (Gibbons and Wolfe, 2003).

Treatments

𝑇1 𝑇2 ... 𝑇𝑘

Blocks

𝐵1 𝑟1,1 𝑟1,2 ... 𝑟1,𝑘
𝐵2 𝑟2,1 𝑟2,2 ... 𝑟2,𝑘
...
𝐵𝑛 𝑟𝑛,1 𝑟𝑛,2 ... 𝑟𝑛,𝑘

Table 2.2: Data arrangement for the Friedman test.

The observations of each 𝑖𝑡ℎ block are sorted in ascending order from 1 to 𝑘 . The rank
is then the order of the observation and in tie cases, the average rank is used. Considering 𝑟𝑖, 𝑗 the
rank of the 𝑖𝑡ℎ block observation and 𝑗 𝑡ℎ treatment, the average of the ranks of this treatment is
calculated as follows (Derrac et al., 2011):

𝑅𝑗 =
1

𝑛

𝑛∑
𝑖=1

𝑟𝑖, 𝑗 . (2.4)

𝑓 𝑜𝑟 𝑗 = 1, 2, ..., 𝑘 . The Friedman statistic is then calculated by:

𝜒2𝐹 =
12𝑛

𝑘 (𝑘 + 1)

[∑
𝑗

𝑅2𝑗 −
𝑘 (𝑘 + 1)2

4

]
(2.5)

which is distributed according to the 𝜒2 distribution with 𝑘 − 1 degrees of freedom for 𝑛 > 10

and 𝑘 > 5. Otherwise, the exact values should be calculated. The Kendall’s coefficient (𝑊) is

then calculated to indicate a perfect concordance (𝑊 = 1) or no concordance (𝑊 = 0):

𝑊 =
𝜒2𝐹

𝑛(𝑘 − 1) . (2.6)

Kendall’s coefficient of agreement uses the size levels of the effect suggested by (Cohen,

1988). If the null hypothesis is rejected, the Friedman test can not indicate which algorithm

has achieved a different performance when the null hypothesis 𝐻0 is reject. Thus, the multiple

comparisons considering 𝑁𝑥𝑁 or 1𝑥𝑁 with a control method are recommended (Derrac et al.,

2011). To perform this comparison, the Wilcoxon-Mann-Whitney method also known as the

Rank sum test is recommended (Hollander and Wolfe, 1999).

When multiple comparisons are executed, there is no control over the Family-Wise Error

Rate (FWER), which is defined as the probability of making one or more false discoveries among

all the hypotheses when performing several 1𝑥1 tests. It means that, when a 𝑝-value is considered
in a multiple comparison test, it reflects the error probability of a given comparison, but it does

not consider the other comparisons of the group (García et al., 2010; Derrac et al., 2011).

Therefore, the denoted post-hoc methods are recommended to reduce the impact of the

FWER. These methods are used to correct the 𝑝-values after the multiple comparisons using an
inference method. Because of its ability to control the FWER, the Bonferroni-Holm method is

recommended (García et al., 2010; Derrac et al., 2011). It works as follows (Holm, 1979):
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1. All 𝑝-values are sorted in ascending order and 𝑚 is the total number of 𝑝-values (it
means the number of treatments compared);

2. If the first 𝑝-value is greater than or equal to 𝛼
𝑚 , the procedure is stopped and no 𝑝-values

are significant; Otherwise, go on;

3. The first 𝑝-value is declared significant and now the second 𝑝-value is compared to
𝛼

(𝑚−1) . If the second 𝑝-value is greater than or equal to
𝛼

(𝑚−1) , the procedure is stopped
and no further 𝑝-values are significant; Otherwise, go on;

4. Go on with these logical steps until the algorithm stops.

In this research, the 1𝑥𝑁 comparisons strategy with each proposed algorithm as a control

method is used. More information about the 𝑁𝑥𝑁 strategy and more details about non-parametric

statistical tests can be found in (Gibbons and Wolfe, 2003).

2.4 CONVERGENCE ANALYSIS

Asmentioned, the optimization process aims to find the best solution to a single-objective

function. It is reasonable to consider only the final result when there is a mathematical proof of

convergence, which is not the case for stochastic metaheuristics. Instead, it might result in a poor

analysis not to look inside the process. That is why the researchers began to analyze the behavior

of an optimization metaheuristic, from the beginning to the end of the process (Back et al., 1997).

In this context, a convergence curve can be defined as the historical values of a function

cost along the optimization process, as illustrated in Fig. 2.4. At this point, it is important to

remember the very common feature found in real-world optimization problems, the multimodality,

which means several local optima along with the search space. The local optima can be considered

a trap in the optimization process and the convergence curve is a powerful tool to evaluate the

ability to avoid these traps, in other words, to avoid premature convergence (Morales-Castañeda

et al., 2020).
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Figure 2.4: Convergence curves.

In Fig. 2.4, curves 1, 2, and 4 are good examples of premature convergence, where a

local optimum is quickly found and the solution is not significantly improved until the end of the

process. On the other hand, curves 3 and 5 are examples of better convergence, where the global
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optimal has been discovered gradually. It is important to point out that the shape of these curves

depends on the 𝑥-axis, so there is not an absolute ideal shape. The objective will always be to
converge to the global optima, the faster, the better.

In this example, the iterations have been considering in the 𝑥-axis. However, other
indexes can also be used, such as chronological time or the number of function evaluations.

Regarding the 𝑦-axis, different values of the cost can be used: the average of a population, the
average of a set of experiments, or even the raw cost, as illustrated. In cases where the global

optimal cost is known, the error curve can be generated for comparison purposes. Besides, the

scales in this example are linear for both 𝑥 and 𝑦-axis, however, it can also be customized. For
example, if the range of the costs is too high, the 𝑦-axis can be shown on a logarithmic scale to
improve the view. The same idea can be applied to the 𝑥-axis and the main idea is that this setup
depends on the analysis desired.

After several analyses and discoveries about the convergence of stochastic metaheuristics,

a process to find out how to avoid the premature convergence keeping good results at the end

of the process has started. Some researchers state that the key factor to solve this issue is to

achieve a good balance between exploration and exploitation. In this context, exploration means

to test new solutions from different regions of the search space, while exploitation means to

investigate deeper the regions and the solutions already discovered. Some researchers denote

"local search" and "global search" respectively for exploitation and exploration, but is not reliable

to set a threshold to distinguish these modes of search (Xu and Zhang, 2014).

Hence, the diversity curve has been introduced to measure the exploration ability of

the metaheuristics, as illustrated in Fig. 2.5. This analysis is based on a metric able to estimate

the spread of the population in the search space. There are many ways to calculate the diversity

and one of them is to measure the average distance of the solutions (𝑥) to a hypothetical mean
solution (𝑥) with normalized values (Chi et al., 2012). In this research, the values are normalized
according to the search space maximum diagonal.

Figure 2.5: Diversity curves.
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In Fig. 2.5, curves 3 and 4 indicate a concentration of solutions in the same region of

the search space after iteration 20. On the other hand, curve 5 indicates that the diversity of the

initial set of solutions is kept during the entire optimization process. Finally, curves 1 and 2

demonstrate an increase in diversity along with the iterations, which indicates a good exploratory

ability.
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Similarly to the convergence, the 𝑥 − 𝑎𝑥𝑖𝑠 of the diversity analysis can be set up with
different indexes and scales. Combining these curves analysis, it is possible to evaluate the

balance between exploration and exploitation. In general, this is a qualitative analysis and the

desired result is the convergence to the global optima keeping a high diversity of solutions.
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3 NATURE-INSPIRED METAHEURISTICS

The Nature-inspired Metaheuristics (NiM) perform an iterative search for the solution of

a optimization problem. In the following sections, the NiM studied in this research are presented.

3.1 ARTIFICIAL BEE COLONY (ABC)

The Artificial Bee Colony (ABC) algorithm is inspired by the behavior of a swarm of

bees searching for food. According to (Karaboga, 2005), bees have an intelligent behavior of

communication through movements. This allows them to convey positive or negative information

about explored food sources.

According to the analyzes made by Dervis Karaboga, bees can be classified as unem-

ployed or employed (Karaboga, 2005). The employed ones are responsible for exploiting a

particular food source, while the unemployed are divided into two groups: the onlooker, who

stand around the hive waiting for information from the employed about the food sources, and the

scouts, which go out in search of some new food sources.

The control parameters of this metaheuristic are the size of the swarm 𝑁𝑝, the number

of scout bees 𝑁𝑠, the limit number of attempts available for the bees employed to find more food
in the source, and the number of employed 𝑁𝑒 and onlooker 𝑁𝑜 bees. The number of employed
bees defines the number of food sources 𝑆 (Karaboga and Basturk, 2007).

Considering a swarm with 𝑁𝑒 employed bees exploring a food source each (the number
of food sources 𝑆 is equal to 𝑁𝑒), for each 𝑖 = {1, 2, . . . , 𝑆} there exists a possible solution 𝑥𝑖 of
dimension 𝐷 (problem dimension) which, similarly, represents the position of the source of food.

Initially, random food sources are generated to be explored within the range of the search space,

such that:

𝑥0𝑖, 𝑗 = 𝑥
𝑚𝑖𝑛
𝑗 + 𝑟 × (𝑥𝑚𝑎𝑥𝑗 − 𝑥𝑚𝑖𝑛𝑗 ), (3.1)

where 𝑟 is a random number within the interval [0,1] and 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are the limits minimum
and maximum variables, respectively.

Each food source has a certain amount of nectar, similarly called fitness, depending on

the cost 𝑓𝑖 of the objective function, which is calculated by:

𝑓 𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) =
{

1
1+ 𝑓𝑖 , 𝑓𝑖 > 0

1 + | 𝑓𝑖 | otherwise
(3.2)

Onlookers wait around the hive for feedback from employed, which informs them about

food sources by dancing. The frequency of this dance indicates a higher quality of the source

and, consequently, more probability of an onlooker to choose such a source to explore. This

probability is calculated as the normalized fitness, such that:

𝑃𝑖 =
𝑓 𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖)

𝑆∑
𝑘=1

𝑓 𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑘 )
. (3.3)
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The new food sources, which are candidates to assume the positions of the old ones, are

generated by:

𝑣𝑖, 𝑗 = 𝑥𝑖, 𝑗 + 𝜙𝑖, 𝑗 × (𝑥𝑖, 𝑗 − 𝑥𝑘, 𝑗 ) (3.4)

with random 𝑘 ∈ {1, 2, . . . , 𝑆} and 𝑘 ≠ 𝑖 ≠ 𝑗 , where 𝜙𝑖, 𝑗 is a random real value inside the interval

[-1,1] generate by uniform probability density function. A clipper mechanism is adopted right

after this step in order to keep the new food source inside the optimization problem search space.

The process of exploring new food sources is repeated until some of the food sources

stop evolving for 𝑙𝑖𝑚𝑖𝑡 times, and when it happens, the food source is replaced by a new one

discovered by a scout bee in a random position (in this step, the new food source is generated by

the Eq. 3.1). The entire search process is repeated until the defined stop criterion is reached, as

shown in Alg. 1, which contains the pseudo-code of the ABC. The process of generating a new

candidate food source is shown in Alg. 2.

Algorithm 1 Pseudo code of the ABC
1: Define the control parameters

2: Generate 𝑆 random food sources (Eq. 3.1)

3: Evaluate all food sources

4: while stopping criterion is not achieved do
5: for each 𝑖 employed bee do
6: Search for new food sources (Alg. 2)

7: end for
8: Calculate the food sources fitness (Eq. 3.2)

9: Calculate the probabilities (Eq. 3.3)

10: Define 𝑓 𝑠 = 1 and 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 0

11: while 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 < 𝑁𝑜 do
12: if 𝑟𝑎𝑛𝑑 < 𝑃 𝑓 𝑠 then
13: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1
14: Search for new food sources (Alg. 2)

15: end if
16: Iterate 𝑓 𝑠 rotatively
17: end while
18: for each 𝑖 scout bee do
19: Verify the food source 𝑖 that has more attempts
20: if 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠𝑖 > 𝑙𝑖𝑚𝑖𝑡 then
21: Generate one new random food sources (Eq. 3.1)

22: Evaluate this new food source

23: Replace the old food source by the new one

24: end if
25: end for
26: end while
27: The best food source is selected as the solution of the problem

3.2 BAT ALGORITHM (BA)

The Bat Algorithm (BA) is a nature-inspired metaheuristic developed by Xin-She Yang

(Yang, 2010) and is based on the ability of microbats to use a type of sonar, called echolocation,



34

Algorithm 2 Generation of new food sources in ABC

1: Generate a new candidate food source (Eq. 3.4)

2: Clip the new candidate in the search space

3: Evaluate this new candidate

4: Replace the old one if the new candidate is better, increment attempts instead

for distance sensing and prey hunting. This algorithm presents advantages regarding automatic

switching between exploration and exploitation, enabling a quick convergence rate at the early

stages. It is based on a population of 𝑁𝑝 bats.

The mentioned bats can emit loud sound pulses and listen for the echoes that bounce back

from objects in the surrounding area (Lemma and Hashim, 2011). Each pulse in echolocation

lasts up to about 8-10 ms, usually in the region of 25-150 kHz (Gandomi et al., 2013).

The basic steps of such an algorithm are shown in Alg. 3, which are based on the

idealization and approximations that are taken into account in (Yang, 2010). The initial population

of bats is generated randomly. After discovering the initial fitness of the population, the values

are changed according to their movement, intensity, and pulse rate. All bats use echolocation

to sense distances, magically differentiating between preys and background. Bats fly randomly

with fixed echolocation pulse frequency, which can be adjusted given the target proximity. The

echolocation loudness varies from a large positive value to a minimum constant value. (Yang

and He, 2013a).

Algorithm 3 Pseudo code of the BA.
1: Initialize the position 𝑥𝑖 and velocity 𝑣𝑖 of each of the 𝑁𝑝 bats
2: Define the pulse frequency 𝑓𝑖 of each bat
3: Initialize the pulse rates 𝑟𝑖 and loudness 𝐴𝑖
4: while stopping criterion is not achieved do
5: for each 𝑖 bat do
6: Adjust new solution (Eqs. 3.5, 3.6 and 3.7)

7: if 𝑟𝑎𝑛𝑑1 > 𝑟𝑖 then
8: Select a solution among the best solutions

9: Generate a local solution around the selected best solution (Eq. 3.8)

10: end if
11: Compute fitness of new solution

12: if 𝑟𝑎𝑛𝑑2 < 𝐴𝑖 & 𝑓 (𝑥𝑖) < 𝑓 (𝑥∗) then
13: Accept the new solution

14: Increase 𝑟𝑖 and reduce 𝐴𝑖 (Eqs. 3.9 and 3.10)
15: end if
16: end for
17: Rank the bats and find the current best 𝑥∗

18: end while
19: The best bat is selected as the solution of the problem

The bats are defined by their position 𝑥𝑡𝑖 , velocity 𝑣
𝑡
𝑖 , frequency 𝑓𝑖, loudness 𝐴

𝑡
𝑖 and

the emission pulse rate 𝑟𝑡𝑖 in a 𝐷-dimensional search space (Guo and Lihong, 2013). After
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the random initialization of solutions and velocities, the new solutions 𝑥𝑡𝑖 and velocities 𝑣
𝑡
𝑖 at a

specific time t are given by

𝑓𝑖 = 𝑓𝑚𝑖𝑛 + ( 𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)𝛽, (3.5)

𝑣𝑡𝑖 = 𝑣
𝑡−1
𝑖 + (𝑥𝑡𝑖 − 𝑥∗) 𝑓𝑖, (3.6)

𝑥𝑡𝑖 = 𝑥
𝑡−1
𝑖 + 𝑣𝑡𝑖 , (3.7)

in which 𝛽 ∈ [0, 1] is a random vector obtained from a uniform distribution and 𝑥∗ the current
global best solution after comparing the locations of all bats. At first, a random frequency 𝑓𝑖 is
assigned for each bat 𝑖 in the initial population.

To perform a local search, a new local solution is generated based on one of the best

solutions using a random walk, as seen in Eq. (3.8), where 𝜖 ∈ [−1, 1] is a random number in

the mentioned interval and 𝐴𝑡 is the average loudness of all bats in the respective time step.

𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 + 𝜖 𝐴𝑡 (3.8)

This local search process is controlled by the pulse rate and the loudness. For simplicity,

𝐴0 can be defined as 1 and 𝐴𝑚𝑖𝑛 as 0, assuming that this null value means that a bat has just
found its prey and temporarily stops emitting sound. Then,

𝐴𝑡+1𝑖 = 𝛼 × 𝐴𝑡𝑖 (3.9)

and

𝑟𝑡+1𝑖 = 𝑟0𝑖 × [1 − 𝑒𝑥𝑝(−𝛾𝑡)], (3.10)

where 𝛼 and 𝛾 are constants. Thus, for any 𝛼 in the interval [0, 1] and 𝛾 in the interval [0,∞],
we have

𝐴𝑡𝑖 → 0, 𝑟𝑡𝑖 → 𝑟0𝑖 , 𝑡 → ∞ (3.11)

The loudness and the sound emission rates are updated only if the new solutions are

better than the previous ones, which would mean that the algorithm is moving towards a better

solution, which can be optimal (but not guaranteed).

3.3 FIREFLY ALGORITHM (FA)

The firefly algorithm (FA) is a bioinspired optimization algorithm developed by Xin-She

Yang (Yang, 2009) that is based on the flashing characteristics of fireflies, which are used to

attract mating partners and potential prey (Hackl et al., 2016). According to (Yang and He,

2013b), the main advantages of the FA algorithm include parameters that can be tuned to control

the randomness as the iterations increase, making it possible to speed up the convergence; an

automatic subdivision of the population in several groups that swarm around each mode or local

optimum, where the global best solution can be found; and an adsorption coefficient 𝛾 (Mohammed

et al., 2016), which controls the average distance of a group that allows adjacent groups to see it.

The automatic subdivision is suitable for highly nonlinear, multimodal optimization problems,

allowing the fireflies to find all optima simultaneously in the case of population size being

sufficiently higher than the number of modes.
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FA was idealized taking into account three rules (Sánchez et al., 2016; Ma and Cao,

2016): (1) fireflies are unisex and can attract to other fireflies independently of their sex; (2)

the brightness or light intensity of a firefly is determined by the objective function; and (3) the

attractiveness is defined proportionally to the brightness, where both decreases as the distance

between the fireflies also decrease. The less bright firefly will move towards the brighter one. If

there are no brighter fireflies than the one analyzed, it will move randomly in the defined search

space (Khosravi et al., 2015).

The attractiveness of a firefly is determined by its brightness, which is associated with the

objective function (𝐼0 ∝ 𝑓 (x)). Such a brightness varies according to the adsorption coefficient
𝛾 and distance 𝑟 between fireflies, as illustrated in equation (3.12):

𝐼 (𝑟) = 𝐼0𝑒
−𝛾𝑟2 (3.12)

The distance 𝑟 between two fireflies, i and j, at positions 𝑥𝑖 and 𝑥 𝑗 is the Cartesian
distance, which means:

𝑟𝑖, 𝑗 =| | 𝑥𝑖 − 𝑥 𝑗 | |=
√√√ 𝑑∑

𝑘=1

(𝑥𝑖,𝑘 − 𝑥 𝑗,𝑘 )2, (3.13)

where 𝑥𝑖,𝑘 is the kth component of the coordinate 𝑥𝑖 of ith firefly.
Equation (3.14) demonstrates another function that represents the light intensity, which

decreases monotonically at a slower rate.

𝐼 (𝑟) = 𝐼0
1 + 𝛾𝑟2 (3.14)

The attractiveness 𝛽 can be defined given Eq. (3.15), where 𝛽0 is the attractiveness at a
distance 𝑟 = 0, usually defined as 𝛽0 = 1. In order to reduce computation time, Eq. (3.15) can be

replaced by Eq. (3.16).

𝛽(𝑟) = 𝛽0𝑒
−𝛾𝑟2 (3.15)

𝛽(𝑟) = 𝛽0

1 + 𝛾𝑟2 (3.16)

In the implementation, 𝛽(𝑟) can be represented as anymonotonically decreasing function
such as the generalized form shown in Eq. (3.17).

𝛽(𝑟) = 𝛽0𝑒
−𝛾𝑟𝑘 , (𝑘 ≥ 1). (3.17)

Finally, given the above values, the movement of a firefly i that is attracted to a brighter
firefly is determined by:

𝑥𝑖 = 𝑥𝑖 + 𝛽0𝑒−𝛾𝑟
2
𝑖 𝑗 (𝑥 𝑗 − 𝑥𝑖) + 𝛼(𝑟𝑎𝑛𝑑 − 1

2
), (3.18)

in which the second term is related to the attraction, the third term is randomization with 𝛼
parameter for scaling and 𝑟𝑎𝑛𝑑 is a random number inside the range [0,1] generated by a uniform

probability density function.

As a conclusion, given the mentioned rules and equations, the FA with 𝑁 fireflies is

demonstrated in the Alg. 4.
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Algorithm 4 Pseudo code of the FA
1: Generate the initial population 𝑥 with 𝑁𝑝 fireflies

2: Calculate the light intensity 𝐼 of all fireflies
3: while stopping criterion is not achieved do
4: for 𝑖 = 1 to 𝑁 do
5: for 𝑗 = 1 to 𝑁 do
6: Compute 𝑟 (Eq. 3.13)
7: Compute 𝐼 𝑗 and 𝐼𝑖 (Eq. 3.14)
8: if 𝐼 𝑗 > 𝐼𝑖 then
9: Calculate 𝛽 (Eq. 3.17)
10: Move firefly 𝑖 towards 𝑗’s one (Eq. 3.18)
11: end if
12: end for
13: end for
14: Rank the fireflies according to the objective function costs

15: end while
16: Select the best firefly as the solution of the optimization problem

3.4 GREY WOLF OPTIMIZER (GWO)

The grey wolf optimization algorithm (GWO) is a NiM algorithm that has been recently

proposed and developed by (Mirjalili et al., 2014). It is inspired by the social leadership and

hunting behavior of grey wolves in nature.

Such an algorithm has a faster convergence due to the continuous reduction of the search

space and to the fact that there are fewer decision variables. Moreover, it has adaptive parameters,

which avoids local optima and guarantees exploitation and exploration capabilities (Mirjalili

et al., 2014; Long and Xu, 2016).

The wolves groups contain between 5 and 12 wolves, counting with a dominant hierarchy

where leaders are called alpha (𝛼), followed by the beta (𝛽) and gamma (𝛾), making them

responsible for making the decisions (Sánchez et al., 2017; Mirjalili, 2015). The best solutions

are ranked according to the social hierarchy, 𝛼, 𝛽, and 𝛾, which are used to guide the rest of the
candidate solutions, assumed to be omega (𝜔) (Muangkote et al., 2014), to an optimal value

during the hunting process (optimization) (Hassanin et al., 2016; Mosavi et al., 2016).

As part of the hunting process, the wolves encircle the prey. Eqs. (3.19) and (3.20)

model this encircling behavior.


𝐷 =| 
𝐶 · 
𝑋𝑝 (𝑡) − 
𝑋 (𝑡) |, (3.19)


𝑋 (𝑡 + 1) = 
𝑋𝑝 (𝑡) − 
𝐴 · 
𝐷, (3.20)

where t indicates the current iteration, 
𝐴 and 
𝐶 the coefficient vectors, 
𝑋𝑝 the position vector of
prey, and 
𝑋 the position vector of a grey wolf. The mentioned vectors 
𝐴 and 
𝐶 are calculated by

Eqs. (3.21) and (3.22) respectively.


𝐴 = 2
𝑎 · 
𝑟1 − 
𝑎, (3.21)


𝐶 = 2 · 
𝑟2, (3.22)
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where 𝑟1 and 𝑟2 are random vectors in the interval [0, 1] generated by a uniform probability

density function and the 
𝑎 components are linearly decreased from 2 to 0 as the iterations increase,

in order to emphasize exploration and exploitation, respectively (Mirjalili et al., 2014).

Thewolveswill attackwhen the prey stopsmoving. Tomodel this processmathematically,

the value of 
𝑎 is decreased. This implies that 
𝐴 is also decreased, as it is a random value in

the interval [−2𝑎, 2𝑎]. As soon as | 
𝐴 |< 1, the wolves attack the prey. Therefore, the 
𝑎 value
models the divergence (| 
𝐴 | > 1) and convergence (| 
𝐴 | < 1) characteristics of the optimization

algorithm and determines whether the grey wolves will attack or diverge from the prey, which

will determine an approach to the best solution or pursuit in the search space for a fitter solution,

respectively.

Also, the 
𝐶 component is a factor that favors exploration. According to Eq. (3.22), it

contains values in [0, 2]. This component provides random weights for preys to stochastically

emphasize ( 
𝐶 > 1) or deemphasizes ( 
𝐶 < 1) the effect of the prey in defining the distance

demonstrated in Eq. (3.19). This process favors explorations and improves local optima

avoidance.

The hunting process is mainly guided by the alpha group. The beta and gamma might

also participate occasionally. It is supposed that the alpha (best candidate solution), beta, and

gamma have a better estimate of the location of the prey. Thus, the mentioned three results

are stored and the other search agents, mainly from the omega group, update their positions

according to the positions of the best search agents. These processes are demonstrated in the Eqs.

(3.23), (3.24) and (3.25), in which the final position of the current solution is represented in Eq.

(3.25), where:


𝐷𝛼 =| 
𝐶1 · 
𝑋𝛼 − 
𝑋 |, 
𝐷𝛽 =| 
𝐶2 · 
𝑋𝛽 − 
𝑋 |, 
𝐷𝛾 =| 
𝐶3 · 
𝑋𝛾 − 
𝑋 |, (3.23)


𝑋1 = 
𝑋𝛼 − 
𝑎1 · ( 
𝐷𝛼), 
𝑋2 = 
𝑋𝛽 − 
𝑎2 · ( 
𝐷𝛽), 
𝑋3 = 
𝑋𝛾 − 
𝑎3 · ( 
𝐷𝛾), (3.24)


𝑋 (𝑡 + 1) =

𝑋1 + 
𝑋2 + 
𝑋3

3
. (3.25)

The GWO algorithm is terminated when it satisfies the stop criterion and the solution

that best fits is chosen (the alpha). The basic steps and methodology to implement the grey wolf

algorithm are demonstrated in Alg. 5.

3.5 PARTICLE SWARM OPTIMIZATION (PSO)

The Particle Swarm Optimization (PSO) has been proposed in 1995 to treat problems in

continuous search space (Kennedy and Eberhart, 1995). Its creation is inspired by the behavior

of animals that live in flocks, as is the case of birds and fishes. The main factor studied is the

synchronous movement that this species presents when it is in a group.

The operation of the method is based on particles that move in the search interval, whose

positioning of each represents a possible solution to the problem. The position depends on the

particle’s own experience and also on its neighbors, an influence that happens due to the social

relation in the swarm (Parsopoulos and Vrahatis, 2002).
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Algorithm 5 Pseudo code of the GWO

1: Initialize the grey wolf population 𝑋 with size 𝑁
2: Initialize 𝑎, 𝐴 and 𝐶
3: Calculate the fitness of all grey wolves

4: Define the best grey wolf, 𝑋𝛼
5: Define the second best grey wolf, 𝑋𝛽
6: Define the third best grey wolf, 𝑋𝛾
7: while stopping criterion is not achieved do
8: for each grey wolf do
9: Update the position (Eqs. 3.23, 3.24 and 3.25)

10: end for
11: Update 𝑎, 𝐴 and 𝐶 (Eqs. 3.21 and 3.22)

12: Calculate the fitness of all grey wolves

13: Update 𝑋𝛼, 𝑋𝛽 and 𝑋𝛾
14: end while
15: Select 𝑋𝛼 as the solution of the optimization problem

It is a swarm of size 𝑁𝑝 that moves continuously as a function of time t, for each

𝑖 = {1, 2, . . . , 𝑁𝑝} there exists a particle located in 𝑥𝑖 of dimension 𝐷 (dimension of the problem)

representing a possible solution for the problem. The initialization of these particles occurs

randomly within the range of D variables, such as:

𝑥0 = 𝑥 𝑗,𝑚𝑖𝑛 + 𝑟 𝑗 × (𝑥 𝑗,𝑚𝑎𝑥 − 𝑥 𝑗,𝑚𝑖𝑛), (3.26)

for 𝑗 = {1, 2, . . . , 𝐷}, where 𝑟 𝑗 is a random number generated by uniform probability distribution

within the interval [0,1] and 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are the minimum and maximum limits of the decision

variables, respectively.

Each particle also has a velocity with an initial value equal to zero and is updated with

each time instant. According to (Engelbrecht, 2005), there are different ways of calculating the

updated value.

The basic form is calculated using a cognitive component, which depends on the best

position the particle has occupied to date, and a social component, which may depend on the best

position known to the neighborhood or the whole swarm. The general case is described by:

𝑣𝑡+1,𝑖 = 𝑤 × 𝑣𝑡,𝑖 + 𝑐1 × 𝑟𝑎𝑛𝑑1 × (𝑦𝑖 − 𝑥𝑡,𝑖) + 𝑐2 × 𝑟𝑎𝑛𝑑2 × ( �̂�𝑡,𝑖 − 𝑥𝑡,𝑖) (3.27)

where 𝑣𝑡,𝑖 and 𝑥𝑡,𝑖 are respectively the velocity and position of the particle i at the previous instant,
𝑦𝑖 is the best position that particle 𝑖 has ever reached (�̂�𝑡) is the best position in the neighborhood
of 𝑖, 𝑐1 and 𝑐2 are cognitive and social constants, respectively, 𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 are random
values generated by uniform probability density function inside the interval [0,1] and 𝑤 is the

inertia weight.

The neighborhood of size 𝑁𝑣 is defined by the set 𝑉𝑖, such that:

𝑉𝑖 = {𝑥𝑖−𝑁𝑣,𝑡 , 𝑥𝑖−𝑁𝑣,𝑡+1, . . . , 𝑥𝑖−1,𝑡 , 𝑥𝑖,𝑡 , 𝑥𝑖+1,𝑡 , . . . , 𝑥𝑖+𝑁𝑣,𝑡} (3.28)

and the best position will be of the particle that presents lower cost of the objective function.
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The most simple case is a particularity of the general one, where the neighborhood

is considered the whole swarm, i.e., 𝑁𝑣 = 𝑁𝑝, and the inertia weight is ignored, it means that

𝑤 = 1. The choice of the case depends on the optimization problem studied.

However, the most employed PSO case considers a linear decay of 𝑤, which is described
as:

𝑤𝑡 = (𝑤𝑖𝑛𝑖 − 𝑤 𝑓 𝑖𝑛𝑎𝑙) × ( 𝑡𝑚𝑎𝑥 − 𝑡
𝑡𝑚𝑎𝑥

) + 𝑤 𝑓 𝑖𝑛𝑎𝑙 (3.29)

where 𝑤𝑖𝑛𝑖 and 𝑤 𝑓 𝑖𝑛𝑎𝑙 are respectively the initial and final values of inertia and 𝑡𝑚𝑎𝑥 is the number
of total iterations that will be executed. The necessary condition for the decay to occur is

𝑤𝑖𝑛𝑖 > 𝑤 𝑓 𝑖𝑛𝑎𝑙 .

There is also the linear decreasing method presented by (Abido, 2002), which is

independent of the total execution time. The updating of inertia weight is defined as:

𝑤𝑡+1 = 𝛼 × 𝑤𝑡 (3.30)

where 𝑤𝑡 is the inertia of the previous instant and 𝛼 is a decreasing constant. In this case, 𝑤𝑡 must
assume an initial value 𝑤. Other velocity limitation strategies can be seen in (Engelbrecht, 2005)

The position of each particle at the same time 𝑡 + 1 is then calculated by:

𝑥𝑡+1,𝑖 = 𝑥𝑡,𝑖 + 𝑣𝑡+1,𝑖 (3.31)

where 𝑥𝑡,𝑖 is its previous position and 𝑣𝑡+1,𝑖 is its already updated velocity.
Finally, the best position of the neighborhood and of each particle is updated, such that:

𝑦𝑡+1,𝑖 =
{
𝑥𝑡,𝑖, 𝑓 (𝑥𝑡+1,𝑖) > 𝑓 (𝑦𝑖)
𝑦𝑖 otherwise

(3.32)

where 𝑓 (𝑦𝑖) is the objective function cost of the best position of the particle thus far and 𝑓 (𝑥𝑡+1,𝑖)
is the cost of the updated position of the particle.

The process of updating the velocity and position of the particles is repeated until the

defined stop criterion is reached. The pseudo-code of the PSO used in this thesis is described in

Alg. 6, which is known as the asynchronous version (the global best is updated without evaluating

all particles) and considers 𝑁𝑣 = 𝑁𝑝 and dynamic linear decreasing 𝑤.

Algorithm 6 Pseudo code of the PSO
1: Initialize 𝑁𝑝 particles (Eq. 3.26) with velocities equal to zero

2: Evaluate the 𝑁𝑝 particles

3: while stopping criterion is not achieved do
4: for each 𝑖 particle do
5: Update the local and global best (Eq. 3.32)

6: Update the velocity (Eq. 3.27)

7: Update the position (Eq. 3.31)

8: end for
9: Update 𝑤 (Eq. 3.29)

10: end while
11: The best particle is selected as the solution of the problem



41

3.6 SYMBIOTIC ORGANISMS SEARCH (SOS)

The Symbiotic Organisms Search (SOS) is a population-based metaheuristic proposed

by (Cheng and Prayogo, 2014) to solve numerical optimization over continuous search spaces.

It is inspired by the reliance-based relationships seen in different species in nature, called

symbiosis. The SOS algorithm takes into account the most common symbiotic relationships

found: mutualism, commensalism, and parasitism.

The mutualism happens when both species are benefited, as the pollination. When bees

fly amongst flowers, the pollen is distributed – it benefits the flowers. It simultaneously benefits

bees, because during this activity the nectar is gathered for producing honey. Commensalism

occurs when only one species is benefited, without causing any harm to the other species. The

relation between remora fishes and sharks is an example of that because remora eats the shark’s

leftovers – being benefited – and the sharks are unaffected by this activity. Parasitism happens

when one species is benefited and the other is consequently damaged. The plasmodium parasite

is an example of that because it uses the relationship with the anopheles mosquito to pass between

humans. As a result of that, the parasite is benefited by living inside the human body, while the

human suffers malaria with life-threatening (Cheng and Prayogo, 2014).

In the SOS structure, each organism passes through three phases, which are represented

by the symbiotic relationships. Hence, the structure of the algorithm can be written as shown by

Alg. 7.

Algorithm 7 Pseudo code of the SOS.
1: Ecosystem initialization

2: while stopping criterion is not achieved do
3: for each each organism do
4: Mutualism phase

5: Commensalism phase

6: Parasitism phase

7: end for
8: end while
9: Select the best organism of the ecosystem (in terms of objective function’s cost)

The initialization covers the creation of 𝑁 randomly positioned organisms in the search

space, the evaluation of all organisms, and the verification of the best organism in terms of cost.

The following subsections describe the operation of each phase previously mentioned.

3.6.1 Mutualism

In the mutualism phase, the 𝑖𝑡ℎ and 𝑗 𝑡ℎ organisms of the ecosystem – where the second

one is randomly selected using uniform distribution – engage in a mutual relationship to increase

mutual survival advantage in the ecosystem. The mutualistic symbiosis between these organisms

is modeled as follows:

𝑥𝑛𝑒𝑤𝑖 = 𝑥𝑖 + 𝑟1 × (𝑥𝑏𝑒𝑠𝑡 − 𝑀𝑢𝑡𝑉𝑒𝑐 × 𝐵𝐹1) (3.33)

𝑥𝑛𝑒𝑤𝑗 = 𝑥 𝑗 + 𝑟2 × (𝑥𝑏𝑒𝑠𝑡 − 𝑀𝑢𝑡𝑉𝑒𝑐 × 𝐵𝐹2) (3.34)
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𝑀𝑢𝑡𝑉𝑒𝑐 =
(𝑥𝑖 + 𝑥 𝑗 )

2
(3.35)

where 𝑟1 and 𝑟2 are vectors with 𝐷 (objective function’s dimension) random numbers generated

inside the range [0,1] with uniform distribution of probability, 𝑥𝑏𝑒𝑠𝑡 is the organism with the best

fitness in the ecosystem, 𝑀𝑢𝑡𝑉𝑒𝑐 is the mutual vector calculated from the organisms 𝑥𝑖 and 𝑥 𝑗 ,
𝑥𝑛𝑒𝑤𝑖 and 𝑥𝑛𝑒𝑤𝑗 are the new organisms and 𝐵𝐹1 and 𝐵𝐹2 are the benefit factor of each organism.
These factors exist due to the intensity of the benefit received by each organism in the mutualism.

Thus, 𝐵𝐹1 and 𝐵𝐹2 assume value 1 in case of partially benefit and value 2 in case of the full
benefit. Each of these values is chosen randomly with uniform probability and is not mandatorily

equal to the other.

Then, the boundaries are verified and the organisms pass through a selection operator,

which keeps the solution with the best fitness. In other words, the organism 𝑥𝑖 is replaced by
𝑥𝑛𝑒𝑤𝑖 only if the new fitness is better than the old one. The same happens with the 𝑗 𝑡ℎ organism.

3.6.2 Commensalism

In commensalism, the 𝑖𝑡ℎ organism tries to be benefited from the 𝑗 𝑡ℎ organism, which is
picked randomly from the ecosystem. On the other hand, the 𝑗 𝑡ℎ organism neither is benefited

nor suffers from the relationship. Thus, the operation is described as:

𝑥𝑛𝑒𝑤𝑖 = 𝑥𝑖 + 𝑟𝑐 × (𝑥𝑏𝑒𝑠𝑡 − 𝑥 𝑗 ) (3.36)

where 𝑟𝑐 is a vector with 𝐷 random numbers generated inside the range [0,1] with uniform

distribution of probability. After that, the boundaries are verified, 𝑥𝑛𝑒𝑤𝑖 is evaluated and the

selection operator is performed. The organism with the best fitness is kept. It means that the 𝑖𝑡ℎ

organism is replaced only if the new fitness is better than the older one.

3.6.3 Parasitism

In the parasitism phase, a parasite organism 𝑝𝑎𝑟𝑘 is created from the 𝑖𝑡ℎ organism using

the following role:

𝑥 𝑗 =

{
𝑥𝑚𝑖𝑛𝑘 + 𝑟𝑘 × (𝑥𝑚𝑎𝑥𝑘 − 𝑥𝑚𝑖𝑛𝑘 ), 𝑝𝑘 < 0.5

𝑥𝑖,𝑘 , otherwise
(3.37)

for 𝑘 ∈ {1, 2, ..., 𝐷}, where 𝑟𝑘 and 𝑝𝑘 are random numbers generated inside the range [0,1] with

uniform distribution of probability and 𝑥𝑚𝑖𝑛𝑘 and 𝑥𝑚𝑎𝑥𝑘 are, respectively, the minimum and the

maximum 𝑘𝑡ℎ boundary of the search space. After that, the parasite is evaluated and tries to kill
the 𝑗 𝑡ℎ organism – which is picked randomly with uniform probability:

𝑥 𝑗 =

{
𝑝𝑎𝑟, 𝑓 (𝑝𝑎𝑟) < 𝑓 (𝑥 𝑗 )
𝑥 𝑗 , otherwise.

(3.38)
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4 PROPOSED METAHEURISTICS FOR GLOBAL OPTIMIZATION

This chapter presents the proposed nature-inspired metaheuristics nature-inspired on

the Canis latrans, which is denoted Coyote Optimization Algorithm (COA), and on the Cebus
capucinus species, denoted White-faced Capuchin Monkeys Optimizer (WfCMO).

Experimental results from a set of boundary constrained real-parameter optimization

benchmarks are provided and analyzed. The performances of the COA and the WfCMO are

compared with other state-of-the-art nature-inspired metaheuristics and an extended statistical

analysis is employed to prove the metaheuristics’ contributions. A brief conclusion about the

results is also given in this chapter.

4.1 COYOTE OPTIMIZATION ALGORITHM (COA)

The proposed COA is based on the behavior of the wild species (canis latrans), also
known as brush wolf, prairie wolf and American jackal. This species belongs to the family

Canidae and can be found from Costa Rica to northern Alaska and from coast to coast in the

United States (Bekoff, 1977; Conner et al., 2008; Pitt et al., 2003).

The COA is a algorithm that can be classified as both swarm intelligence and evolutionary

heuristic, once it is population-based and the coyotes that best adapt to environment are selected

to "survive" along a set of iterations. In contrast with the Grey Wolf Optimizer (GWO) (Mirjalili

et al., 2014), which is inspired on the Canis lupus species, the COA has a different algorithmic

structural setup and it does not focus on the social hierarchy and dominance rules of these animals,

even though the alpha is employed as the leader of a pack (as explained forward). Further, the

COA focus on the social structure and experiences exchange by the coyotes instead of only

hunting preys as it happens in the GWO.

In the COA, the population of coyotes is divided into 𝑁𝑝 ∈ N∗ packs with 𝑁𝑐 ∈ N∗

coyotes each. In this first proposal, the number of coyotes per pack is static and similar for all

packs. Hence, the total population in the algorithm is obtained by the multiplication of 𝑁𝑝 and

𝑁𝑐. For simplification purposes, the solitary (or transient) coyotes are not considered in this
first version of the algorithm. To facilitate the reader’s understanding, each coyote is a possible

solution for the optimization problem and its social condition is the cost of the objective function.

According to (Poessel et al., 2014; Gese et al., 1996), intrinsic factors (sex, the social

status and the pack that the coyote is a member) and extrinsic ones (such as snow depth, snowpack

hardness, temperature and carcass biomass) have been pointed out as influences in the coyote’s

activities. Therefore, the COA mechanism has been designed based on the social conditions of

the coyotes, which means the decision variables 
𝑥 of an global optimization problem. Thus, the
social condition of the 𝑐𝑡ℎ coyote of the 𝑝𝑡ℎ pack in the 𝑡𝑡ℎ instant of time is written as

𝑠𝑜𝑐
𝑝,𝑡
𝑐 = 
𝑥 = (𝑥1, 𝑥2, ..., 𝑥𝐷) (4.1)

and it implies in the coyote’s adaptation to the environment 𝑓 𝑖𝑡
𝑝,𝑡
𝑐 ∈ R.

The first step in the COA is to initialize the global population of coyotes. As the COA is

a stochastic algorithm, the initial social conditions are set randomly for each coyote. It happens



44

by assigning random values inside the search space for the 𝑐𝑡ℎ coyote of the 𝑝𝑡ℎ pack of the 𝑗 𝑡ℎ

dimension, as follows:

𝑠𝑜𝑐
𝑝,𝑡
𝑐, 𝑗 = 𝑥 𝑗,𝑚𝑖𝑛 + 𝑟 𝑗 × (𝑥 𝑗,𝑚𝑎𝑥 − 𝑥 𝑗,𝑚𝑖𝑛), (4.2)

wherein 𝑥 𝑗,𝑚𝑖𝑛 and 𝑥 𝑗,𝑚𝑎𝑥 represents, respectively, the lower and upper bounds of the 𝑗
𝑡ℎ decision

variable, 𝐷 is the search space dimension and 𝑟 𝑗 is a real random number generated inside the

range [0,1] using uniform probability. After that, the coyotes’ adaptation in the respective current

social conditions are evaluated:

𝑓 𝑖𝑡
𝑝,𝑡
𝑐 = 𝑓 (𝑠𝑜𝑐𝑝,𝑡𝑐 ) (4.3)

Initially, the coyotes are randomly assigned to the packs, however the coyotes sometimes

leave their packs and become solitary or join a pack instead (Pitt et al., 2003). According to

(Conner et al., 2008), the coyote eviction from a pack depends on the number of coyotes inside

the pack and occurs with probability 𝑃𝑒, such that:

𝑃𝑒 = 0.005 × 𝑁2
𝑐 . (4.4)

Considering that 𝑃𝑒 could assume values greater than 1 for 𝑁𝑐 ≤ √
200, the number of

coyotes per pack is limited to 14. This mechanism helps the COA to diversify the interaction

between all the coyotes of the population, which means a cultural exchange in the global

population. Two random coyotes from random packs are picked to change their positions, which

means that the population size remains constant along the whole optimization process, as well as

the packs sizes.

In this species, the packs usually has two alphas (Gese et al., 1996; Conner et al., 2008),

however the COA considers only one, which is the best adapted to the environment. Considering

an minimization problem, the alpha of the 𝑝𝑡ℎ pack in the 𝑡𝑡ℎ instant of time is defined as:

𝑎𝑙 𝑝ℎ𝑎𝑝,𝑡 = {𝑠𝑜𝑐𝑝,𝑡𝑐 |𝑎𝑟𝑔𝑐={1,2,...,𝑁𝑐}𝑚𝑖𝑛 𝑓 (𝑠𝑜𝑐𝑝,𝑡𝑐 )}. (4.5)

Due to the evident signs of swarm intelligence in this specie, the COA assumes that the

coyotes are sufficiently organized to share the social conditions and to contribute to the pack’s

maintenance. Thus, the COA links all information from the coyotes and computes it as the

cultural tendency of the pack:

𝑐𝑢𝑙𝑡
𝑝,𝑡
𝑗 =

⎧⎪⎪⎨⎪⎪⎩
𝑂
𝑝,𝑡
(𝑁𝑐+1)

2 , 𝑗
, 𝑁𝑐 is odd

𝑂
𝑝,𝑡
𝑁𝑐
2

, 𝑗
+𝑂 𝑝,𝑡

( 𝑁𝑐
2

+1) , 𝑗
2

, otherwise

(4.6)

where 𝑂𝑝,𝑡 represents the ranked social conditions of all coyotes of the 𝑝𝑡ℎ pack in the 𝑡𝑡ℎ instant
of time for every 𝑗 in the range [1,𝐷]. In other words, the cultural tendency of the pack is

computed as the median social conditions of all coyotes from that specific pack.

Taking into account the two main biological events of life, the birth and the death, the

COA computes the age of the coyotes (in years), which is denoted as 𝑎𝑔𝑒
𝑝,𝑡
𝑐 ∈ N. The birth of a

new coyotes is written as a combination of the social conditions of two parents (randomly chosen)

plus a environmental influence, such that:

𝑝𝑢𝑝
𝑝,𝑡
𝑗 =

⎧⎪⎪⎨⎪⎪⎩
𝑠𝑜𝑐

𝑝,𝑡
𝑟1, 𝑗

, 𝑟𝑛𝑑 𝑗 < 𝑃𝑠 or 𝑗 = 𝑗1
𝑠𝑜𝑐

𝑝,𝑡
𝑟2, 𝑗

, 𝑟𝑛𝑑 𝑗 ≥ 𝑃𝑠 + 𝑃𝑎 or 𝑗 = 𝑗2
𝑅𝑗 , otherwise

(4.7)
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wherein 𝑟1 and 𝑟2 are random coyotes from the 𝑝𝑡ℎ pack selected using a uniform probability

density function, 𝑗1 and 𝑗2 are two random dimensions of the problem also generated by a uniform

probability density function, 𝑃𝑠 is the scatter probability, 𝑃𝑎 is the association probability, 𝑅𝑗 is

a random number inside the decision variable bound of the 𝑗 𝑡ℎ dimension and 𝑟𝑛𝑑 𝑗 is a random
number inside [0,1] generated with uniform probability. The scatter and association probabilities

guide the cultural diversity of the coyotes from the pack. In this initial version of the COA, the

𝑃𝑠 and the 𝑃𝑎 have been defined as

𝑃𝑠 = 1/𝐷 and (4.8)

𝑃𝑎 = (1 − 𝑃𝑠)/2, (4.9)

where 𝑃𝑎 establish the same influence impact for both parents.
According to some researches, the pups have around 10% of chances of dying even

before living (Conner et al., 2008) and the higher the coyote’s age, the higher is the mortality

probability (Pitt et al., 2003). In order to keep the population size static, the COA syncs the

coyote’s birth and death as described in the Alg. 8, where 𝜔 and 𝜑 represent, respectively, the
group of coyotes worse adapted to the environment than the pup and the number of coyotes in this

group. Note that it is possible that two or more coyotes have similar age (in line 4). In this case,

the less adapted coyote is the one who dies. It is important to highlight that the age a coyotes has

no limit, differently from the nature.

Algorithm 8 Birth and death inside a pack of coyotes.
1: Compute 𝜔 and 𝜑
2: if 𝜑 = 1 then
3: The pup survives and the only coyote in 𝜔 dies.

4: else
5: if 𝜑 > 1 then
6: The pup survives and the oldest coyote in 𝜔 dies.

7: else
8: The pup dies.

9: end if
10: end if

In order to represent the cultural interaction inside the packs, the COA assumes that

coyotes are under the alpha influence (𝛿1) and the pack influence (𝛿2). The first one means a
cultural difference from a random coyote of the pack (𝑐𝑟1) to the alpha coyote, while the second
one means a cultural difference from a random coyote (𝑐𝑟2) to the cultural tendency of the pack.
The random coyotes are chosen by uniform distribution of probability and 𝛿1 and 𝛿2 are written
respectively as:

𝛿1 = 𝑎𝑙 𝑝ℎ𝑎
𝑝,𝑡 − 𝑠𝑜𝑐𝑝,𝑡𝑐𝑟1 (4.10)

𝛿2 = 𝑐𝑢𝑙𝑡
𝑝,𝑡 − 𝑠𝑜𝑐𝑝,𝑡𝑐𝑟2 . (4.11)

Hence, the coyote’s new social condition is updated using the alpha and the pack

influence through the following equation:

𝑛𝑒𝑤_𝑠𝑜𝑐
𝑝,𝑡
𝑐 = 𝑠𝑜𝑐

𝑝,𝑡
𝑐 + 𝑟1 × 𝛿1 + 𝑟2 × 𝛿2, (4.12)
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where 𝑟1 and 𝑟2 are, respectively, the weights of the alpha and the pack influence. Initially, 𝑟1
and 𝑟2 have been defined as random numbers inside the range [0,1] generated with uniform

probability. It is important to highlight that a clip mechanism is included to maintain the coyotes

inside the search space. The new social condition is then evaluated:

𝑛𝑒𝑤_ 𝑓 𝑖𝑡
𝑝,𝑡
𝑐 = 𝑓 (𝑛𝑒𝑤_𝑠𝑜𝑐𝑝,𝑡𝑐 ), (4.13)

and the coyote’s cognitive capacity decide if the new social condition is better than the older one

to keep it, it means:

𝑠𝑜𝑐
𝑝,𝑡+1
𝑐 =

{
𝑛𝑒𝑤_𝑠𝑜𝑐

𝑝,𝑡
𝑐 , 𝑛𝑒𝑤_ 𝑓 𝑖𝑡

𝑝,𝑡
𝑐 < 𝑓 𝑖𝑡

𝑝,𝑡
𝑐

𝑠𝑜𝑐
𝑝,𝑡
𝑐 , otherwise

. (4.14)

Finally, the social condition of the coyote that best adapted itself to the environment

is selected and is used as the global solution of the problem. The pseudo-code of the COA is

described in Alg. 9, while the geometrical interpretation is drawn in Fig. 4.1, where the circles

represent the coyotes and the star represents the cultural tendency. In this representation, the 𝛿1
and the 𝛿2 can be better interpreted, where the first component forces the coyote to the direction
of the best and the second one to the direction of the center of the group. The new solutions are

more likely to be generated inside the group space and it tends to converge along the iterations.

Combined with the pack exchange, the whole population slowly converges to a promising region.

Algorithm 9 Pseudo code of the COA
1: Initialize 𝑁𝑝 packs with 𝑁𝑐 coyotes each (Eq. 4.2)
2: Verify the coyote’s adaptation (Eq. 4.3)

3: while stopping criterion is not achieved do
4: for each 𝑝 pack do
5: Define the alpha coyote of the pack (Eq. 4.5)

6: Compute the social tendency of the pack (Eq. 4.6)

7: for each 𝑐 coyotes of the 𝑝 pack do
8: Update the social condition (Eq. 4.12)

9: Evaluate the new social condition (Eq. 4.13)

10: Adaptation (Eq. 4.14)

11: end for
12: Birth and death (Eq.4.7 and Alg. 8)

13: end for
14: Transition between packs (Eq. 4.4)

15: Update the coyotes’ ages

16: end while
17: Select the best adapted coyote

4.2 WHITE-FACED CAPUCHIN MONKEYS OPTIMIZER (WFCMO)

The Cebus capucinus species, also known as white-faced capuchin monkeys, white-
throated capuchin or white-headed capuchin dwells in Central and South America and it performs

an important role to ecology by dispersing pollen and seeds. This species lives in groups from 4

to 40 members (Fragaszy et al., 2004a), usually around 20, and its maximum lifespan is 54 years,

which is considerably high compared to other primate’s species (Schaik and Isler, 2012). The life
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Figure 4.1: Geometrical interpretation of the COA.

maintenance of this species occurs though the reproduction and death, as well as it happen in the

Homo sapiens species.
According to (Schaik and Isler, 2012), living in a cohesive groups causes food competition

and reduces growth and reproduction. On the other hand, it enables individuals to develop

long-term cooperative relationships. In fact, it has been observed that groups formed Cebus
capucinus species fight with groups from the same species for food and other resources (Vogel

et al., 2007).

In contrast with the SMO algorithm (Bansal et al., 2014), which is based on the

fission–fusion social system of the spyder-monkey species and aims to reduce the foraging

competition, the proposed WfCMO has the completely opposite purpose. It is inspired on the

grouping and fighting behaviour of this species (Fragaszy et al., 2004b). Yet, while the SMO

considers a global leader and sub groups led by a female, the WfCMO considers the decentralized

leadership observed in the white-faced capuchins, where the initiation of group movements are

not concentrated into a single individual (Leca et al., 2003).

Hence, the WfCMO can be classified as a nature-inspired population based and

evolutionary heuristic and its population is divided into 𝑁𝑔 ∈ N∗ groups with 𝑁𝑚 ∈ N∗ monkeys
each. In this first proposal, the number of monkeys per pack is static and similar for all groups.

Hence, the total population in the algorithm is obtained by the multiplication of 𝑁𝑔 and 𝑁𝑚.
To facilitate the reader’s understanding, each monkey’s position is a possible set of variables

(
𝑥) for the global optimization problem and its adaptation to the environment is the cost of the
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objective function. Thus, the position of the 𝑚𝑡ℎ monkey of the 𝑔𝑡ℎ group in the 𝑡𝑡ℎ instant of
time is written as

𝑝𝑜𝑠
𝑔,𝑡
𝑚 = 
𝑥 = (𝑥1, 𝑥2, ..., 𝑥𝐷) (4.15)

and it implies in the monkeys adaptation to the environment 𝑓 𝑖𝑡
𝑔,𝑡
𝑚 ∈ R.

The first step in the WfCMO is to initialize the global population of monkeys. As the

WfCMO is a stochastic algorithm, the initial positions are set randomly for each monkey. It

happens by assigning random values inside the search space for 𝑡 = 0 in the 𝑗 𝑡ℎ dimension, such
that:

𝑝𝑜𝑠
𝑔,0
𝑚, 𝑗 = 𝑥 𝑗,𝑚𝑖𝑛 + 𝑟 𝑗 · (𝑥 𝑗,𝑚𝑎𝑥 − 𝑥 𝑗,𝑚𝑖𝑛), (4.16)

wherein 𝑥 𝑗,𝑚𝑖𝑛 and 𝑥 𝑗,𝑚𝑎𝑥 represents, respectively, the lower and upper bounds of the 𝑗
𝑡ℎ decision

variable, 𝐷 is the search space dimension and 𝑟 𝑗 is a real random number generated inside

the range [0,1] using uniform probability function. After that, the monkeys’ adaptations in the

respective current position are evaluated:

𝑓 𝑖𝑡
𝑔,𝑡
𝑚 = 𝑓 (𝑝𝑜𝑠𝑔,𝑡𝑚 ) (4.17)

Initially, the coyotes are randomly assigned to the packs. It has been observed that the

males migrate from a group to another (Vogel et al., 2007), however this feature is not considered

in the WfCMO. In this first proposal, the males and females are redefined in every iteration of

the algorithm - after some tests, it has achieved best results with this setup. To perform this, a

control parameter has been set, the male probability, denoted 𝜌. Therefore, the definition of
males and females in the 𝑡𝑡ℎ iteration is performed by:

𝑚𝑎𝑙𝑒
𝑔,𝑡
𝑚 =

{
𝑡𝑟𝑢𝑒, {𝑚 = 𝑖} ∪ {𝑟𝑛𝑑𝑚 ≤ 𝜌 ∩ 𝑚 ≠ 𝑗}
𝑓 𝑎𝑙𝑠𝑒, {𝑚 = 𝑗} ∪ {𝑟𝑛𝑑𝑚 > 𝜌 ∩ 𝑚 ≠ 𝑖} (4.18)

for 𝑔 = 1, 2, . . . , 𝑁𝑔 and 𝑚 = 1, 2, . . . , 𝑁𝑚, where 𝑚𝑎𝑙𝑒 stores the genre of the monkeys (true
for males, false for females), 𝑖 and 𝑗 are random numbers inside 1, 2, . . . , 𝑁𝑚 with 𝑖 ≠ 𝑗 and
𝑟𝑛𝑑𝑚 is a random number inside [0,1] generated with uniform probability. Note that, with this

mechanism at least one male and one female are guaranteed in each group.

At each iteration of the algorithm, every group fight with another group for the

competition for resources. In this version of the WfCMO, it occurs randomly, which means that

each group fight with another random group. As observed by (Perry, 1996), in the most cases the

males fight while the females run to defense the resources.

Considering that, the WfCMO considers distinct males and females movements initiated

by the 𝑔 group in a fight against the 𝑔𝑎 group. The male movement is composed by two

components with different purposes. The first (Δ1) is to advance against the opponent to fight.

The second (Δ1) is to lure the opponent away from their own group to increase the safety of the

kin females. The complete male movement is described as:

Δ1 = (𝑝𝑜𝑠𝑔𝑎 ,𝑡𝑟𝑚 − 𝑝𝑜𝑠
𝑔,𝑡
𝑚 ) (4.19)

Δ2 = (𝑝𝑜𝑠𝑔,𝑡𝑚 − 𝐶𝑔) (4.20)

𝑝𝑜𝑠𝑔,𝑡𝑚 = 𝑝𝑜𝑠
𝑔,𝑡
𝑚 + 𝑟1 × Δ1 + 𝑟2 × Δ2 (4.21)
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where 𝑟1 and 𝑟2 are random numbers in the range [-1,1] generated by uniform probability

distribution function, 𝑟𝑚 is a random male of the opponent group and 𝐶𝑔 is the geometrical center
of the group 𝑔.

The geometrical interpretation of the males movements is drawn in Fig. 4.2, where the

stars, the circles and the triangles represent the center of the groups, the male monkeys and the

female monkeys, respectively. Note that the new solution tends to be generated around a solution

from another group, promoting the information exchange between the groups.

Figure 4.2: Geometrical interpretation of the males movements of WfCMO.

On the other hand, the females movements consists only into depart from the center of

the opponent group (Δ3), which is computed as:

Δ3 = (𝑝𝑜𝑠𝑔,𝑡𝑚 − 𝐶𝑔𝑎) (4.22)

𝑝𝑜𝑠𝑔,𝑡𝑚 = 𝑝𝑜𝑠
𝑔,𝑡
𝑚 + 𝑟3 × Δ3 (4.23)

where 𝑟3 is a random number in the range [-1,1] generated by uniform probability distribution

function and 𝐶𝑔𝑎 is the geometrical center of the opponent group. The geometrical interpretation
of the females movements is drawn in Fig. 4.3, note that the female monkey moves away from

the group, improving the exploration of the algorithm.

It is important to highlight that, as mentioned before, due to the decentralized leadership

all monkeys can initiate an action and, therefore, all males and females perform one trial movement
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Figure 4.3: Geometrical interpretation of the females movements of WfCMO.

at each iteration. Moreover, a clip mechanism is included to maintain the monkeys inside the

search space.

After that, the monkey check its adaptation to decide if it is a better or worse position.

For males, it means a better position to fight, while for females it means better protection

conditions. It means:

𝑝𝑜𝑠
𝑔,𝑡+1
𝑚 =

{
𝑝𝑜𝑠𝑔,𝑡𝑚 , �̂� 𝑖𝑡

𝑔,𝑡

𝑚 < 𝑓 𝑖𝑡
𝑔,𝑡
𝑚

𝑝𝑜𝑠
𝑔,𝑡
𝑚 , otherwise

, (4.24)

where �̂� 𝑖𝑡
𝑔,𝑡

𝑚 = 𝑓 (𝑝𝑜𝑠𝑔,𝑡𝑚 ).
In order to take into account the two main biological events of life, the birth and the

death, the WfCMO computes the age of the monkeys, which is denoted as 𝑎𝑔𝑒
𝑔,𝑡
𝑚 ∈ N. Unlike

most NiM that generates offspring from parents, the WfCMO must locate the new monkeys in

the space. Thus, the birth of an young occurs by placing it as a combination of the position of the

monkeys of the group, which is defined as:

𝑦𝑜𝑢𝑛𝑔
𝑔,𝑡
𝑚, 𝑗 = 𝑝𝑜𝑠

𝑔,𝑡
𝑟𝑚, 𝑗 , 𝑗

(4.25)

for 𝑗 = 1, 2, . . . , 𝐷, where 𝑟𝑚, 𝑗 ∈ {1, 2, . . . , 𝑁𝑚} is chosen randomly with uniform probability

an represents a random monkey from the group. If 𝑟𝑚, 𝑗 is equal for all 𝑗 , then the process is
repeated until the young borns in a different location of all monkeys of the group.
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Aiming to keep the population size static, the birth and death are synchronized in the

WfCMO. Whenever a young is born, its position is compared to the monkeys of the group. If the

young is better adapted than any other monkey, it survives. If there are multiples monkeys worse

adapted than the oldest dies (the ages are computed as 𝑎𝑔𝑒
𝑝,𝑡
𝑐 ∈ N). If the young is not better

adapted, then it dies.

The Alg. 10 shows the birth and death process, where 𝜔 and 𝜑 represent, respectively,
the set of monkeys worse adapted than the young and the number of monkeys in this set. Note

that it is possible that two or more monkeys have similar age (in line 5). In this case, the monkey

that presents the worst condition is the one who dies.

Algorithm 10 Birth and death inside a group of capuchins.
1: Compute 𝜔 and 𝜑
2: if 𝜑 = 1 then
3: The young survives and the only monkey in 𝜔 dies.

4: else
5: if 𝜑 > 1 then
6: The young survives and the oldest monkey in 𝜔 dies.

7: else
8: The young dies.

9: end if
10: end if

Another important events observed in the white-faced capuchins are the immigration

and emigration (Wikberg et al., 2014). However, these events have not been considered in this

initial proposal of the WfCMO. Therefore, the pseudo-code of the WfCMO is shown in Alg. 11.

Algorithm 11 Pseudo code of the WfCMO

1: Initialize 𝑁𝑔 groups with 𝑁𝑚 monkeys each (Eq. 4.16)

2: Verify the monkeys adaptation (Eq. 4.17)

3: while stopping criterion is not achieved do
4: Define all males and females (Eq. 4.18)

5: for each 𝑔 group do
6: Assign a random group to fight against 𝑔𝑎
7: Compute the geometrical centers of the groups 𝑔 and 𝑔𝑎
8: for each 𝑚 monkey of the 𝑝 group do
9: if the monkey is male then
10: Male fighting movement (Eq. 4.21)

11: else
12: Female running away movement (Eq. 4.23)

13: end if
14: Evaluate the new position and choose the best one (Eq. 4.24)

15: end for
16: Birth and death (Eq.4.25 and Alg. 10)

17: end for
18: Update the monkeys’ ages

19: end while
20: Select the monkey in the best position as the solution of the problem
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4.3 NATURE-INSPIRED METAHEURISTICS PARAMETERS

The three main factors considered for selecting the algorithms for comparison are (i) the

natural inspiration adopted for designing the algorithm; (ii) the diffusion and relevance in this

research area; (iii) the use of industrial applications. For comparison purposes, the population

size (i.e. number of food sources (𝑆) for ABC, population size (𝑁𝑝) for BA and FA, number of

wolves (𝑁) for GWO, swarm size for PSO (𝑁𝑝), and ecosystem size (𝑁) for SOS) has been set
as 100 for all problems dimensions. It also gives a perspective about the performance of the

algorithms regarding the trade-off between the problem’s dimension and the population size.

Considering that, the ABC has been chosen mainly because of the intelligent dancing

bee’s behavior. Further, it has been applied to numerous applications as bioinformatics, scheduling

image processing, economic dispatch, engineering design, clustering, and data mining (Bolaji

et al., 2013), and its performance has been proved in literature (Karaboga and Basturk, 2008).

In this thesis, the ABC parameters limit, % of employed bees (𝑁𝑒) , % of onlooker bees (𝑁𝑜)
and number of scouts (𝑁𝑠) have been set respectively as 𝐷 × 𝑆, 50%, 50% and 1 (Karaboga and

Akay, 2009).

The BA presents a dissimilar design based on the bat’s echolocation. Further, it has a

variety of applications, such as continuous optimization; combined optimization and scheduling;

inverse problems and parameter estimation; classifications, clustering and data mining; image

processing, and fuzzy inference systems (Hasançebi et al., 2013; Yang and He, 2013a). In this

thesis, the optimal parameters suggested by (Xue et al., 2015) have been employed, such that:

loudness (𝐴), pulse rate (𝑟) and 𝛾 equal to 0.9, minimum frequency ( 𝑓𝑚𝑖𝑛) equals to 0, maximum
frequency ( 𝑓𝑚𝑎𝑥) equals to 5 and 𝛼 equals to 0.99.

The FA design is based on the light intensities that depend on the distance between the

fireflies. This NiM has been adopted for multimodal problems, continuous and combinatorial

optimization, classification, and engineering applications as image processing, antenna design,

robotics, and chemistry (Fister et al., 2013). Its parameters randomness (𝛼) and absorption
coefficient (𝛾) have been set as 0.2 and 1, respectively (b. Mo et al., 2013).

The GWO is more recent than the other NiMmentioned and it is inspired by the hierarchy

and the hunting behavior of the grey wolfs. In the few years of its existence, it has already

been applied to machine learning purposes (clustering and features selection) (Fahad et al.,

2018; Emary et al., 2016), economic load dispatch (Pradhan et al., 2018), and some constrained

problems (Kohli and Arora, 2017). The GWO’s parameter 𝑎 has been set as linearly decreasing
from 2 to 0.

The PSO is one of the most widespread NiM and it is inspired by the synchronized

movement observed in the species. It has been used for many real-life applications, such as

clustering (Alam et al., 2014), economic dispatch (Mahor et al., 2009), and solar photovoltaic

system (Khare and Rangnekar, 2013). Its parameters cognitive constant (𝑐1) and social constant
(𝑐2) have been both set 2. The inertia weight (𝑤) has been set up from 0.9 to 0.4 with linear

decreasing (Poli et al., 2007).

The SOS presents an interesting inspiration that includes different species coexisting in

nature. It has already been used in applications as hydrothermal scheduling (Das and Bhattacharya,

2018), economic dispatch (Secui, 2016), truss structures (Tejani et al., 2018), and machine

learning purposes (Liao and Kuo, 2018). The only SOS’s parameter is the ecosystem size 𝑁 .
To perform a fair comparison, the proposed NiM has been set accordingly. The COA’s

number of coyotes(𝑁𝑐) per pack has been tested as 5 and 10, resulting in, respectively, the COA5
and the COA10 versions. Hence, the resulting number of packs (𝑁𝑝) is, respectively, 20 and

10. On the other hand, the WfCMO parameter number of monkeys (𝑁𝑚) has been tested as 5
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(WfCMO5), 10 (WfCMO10), and 20 (WfCMO20). The resulting number of groups (𝑁𝑔) then is,
respectively, 20, 10, and 5. The male probability (𝜌) has been defined as 0.7. For simplification,
let Ψ be the set of all algorithms tested, which means that Ψ = {COA5, COA10, ABC, BA, FA,

GWO, PSO, SOS, WfCMO5, WfCMO10, WfCMO20}.

4.4 EXPERIMENTAL DESIGN

The algorithms have been tested on a series of 291 benchmark functions from the Institute

of Electrical and Electronics Engineers Congress on Evolutionary Computation (IEEE-CEC) 2017

Special Session and Competition on Single Objective Real-Parameter Numerical Optimization

(Suganthan et al., 2016). The detailed description of the IEEE-CEC-2017 benchmarks and

evaluation criteria are presented in Appendix A. Each benchmark has been tested with dimensions

10, 30, 50, and 100, resulting in a total of 116 cases, summarized in Tab. 4.1, where 𝐷 means the

dimension of the problem, 𝐹𝐶𝐸𝐶 is the respective function from IEEE-CEC-2017 and the search

space is [-100,100]𝐷 for all cases tested.

These cases are classified according to some features (Suganthan et al., 2016), resulting

in the group 𝛿 = {Overall, Unimodal, Composition, Hybrid, D=10, D=30, D=50, D=100,
Multimodal}. It provides a diversified functions landscape and implies in a richer analysis of the

algorithms’ advantages and disadvantages.

As the NiMs are stochastic algorithms, the validation of the results occurs by the analysis

of the repeatability and reliability, which occurs through the statistical information from a series

of experiments. It means that the algorithms are tested 𝑁𝑒𝑥𝑝 times with different initial conditions
for each optimization problem. Although in some competitions the 𝑁𝑒𝑥𝑝 is set as 51, in this
thesis it has been set as 30, which is a suitable value for a reliable statistical comparison with

lower computational cost (Suganthan et al., 2005; Chen et al., 2014b).

To perform the fairest comparison possible, the stopping criteria have been defined as

the total number of function evaluations 𝑁𝑀𝑎𝑥
𝑓 . As not all algorithms evaluate the objective

function at the same time in an iteration 2, it would not be relevant to use the number of iterations

as the stopping criteria. The 𝑁𝑀𝑎𝑥
𝑓 has been defined as 10000 × 𝐷.

The score evaluation from the IEEE-CEC 2017 has also been employed, which is up to

100 and equally considers two criteria, denoted 𝑆𝐸 and 𝑆𝑅. The first one represents the sum of

the errors, while the second one is the sum of the ranks. Each index results in a score of up to 50,

which is 𝑆1 and 𝑆2, respectively.
Furthermore, the complexity of the algorithms has been evaluated based on the IEEE-

CEC 2017 definitions. This analysis is based on the time spent to optimize objective functions

with dimensions 𝐷 = 10, 𝐷 = 30 and 𝐷 = 50. Thus, it provides not only the computational cost

comparison among the algorithms but also how the algorithm’s sensitivity to the dimensions of

the problems.

To improve this analysis, two modifications have been implemented in the complexity

estimator from IEEE-CEC 2017. First, the dimension 𝐷 = 100 has been included in the analysis.

Second, the objective function computational time (denoted 𝑇0 by definition) has been measured
five times instead of only one, as suggested in (Suganthan et al., 2016). The benchmark function

used is the 𝐹18 and the number of function evaluations is 200000. The entire description of the
IEEE-CEC 2017 performance analysis is written in Appendix A.

1A set of 30 functions has been initially proposed, however, one of these functions has been suspended from the

competition because of technical problems.

2For example, the SOS evaluates the objective function four times each iteration. If it would be considered the

stopping criteria, it would have up to four times more evaluations than the other algorithms.



54

𝐹 𝐹𝐶𝐸𝐶 𝐷 𝐹 𝐹𝐶𝐸𝐶 𝐷 𝐹 𝐹𝐶𝐸𝐶 𝐷 𝐹 𝐹𝐶𝐸𝐶 𝐷

𝐹1 1 10 𝐹30 9 30 𝐹59 16 50 𝐹88 23 100

𝐹2 1 30 𝐹31 9 50 𝐹60 16 100 𝐹89 24 10

𝐹3 1 50 𝐹32 9 100 𝐹61 17 10 𝐹90 24 30

𝐹4 1 100 𝐹33 10 10 𝐹62 17 30 𝐹91 24 50

𝐹5 3 10 𝐹34 10 30 𝐹63 17 50 𝐹92 24 100

𝐹6 3 30 𝐹35 10 50 𝐹64 17 100 𝐹93 25 10

𝐹7 3 50 𝐹36 10 100 𝐹65 18 10 𝐹94 25 30

𝐹8 3 100 𝐹37 11 10 𝐹66 18 30 𝐹95 25 50

𝐹9 4 10 𝐹38 11 30 𝐹67 18 50 𝐹96 25 100

𝐹10 4 30 𝐹39 11 50 𝐹68 18 100 𝐹97 26 10

𝐹11 4 50 𝐹40 11 100 𝐹69 19 10 𝐹98 26 30

𝐹12 4 100 𝐹41 12 10 𝐹70 19 30 𝐹99 26 50

𝐹13 5 10 𝐹42 12 30 𝐹71 19 50 𝐹100 26 100

𝐹14 5 30 𝐹43 12 50 𝐹72 19 100 𝐹101 27 10

𝐹15 5 50 𝐹44 12 100 𝐹73 20 10 𝐹102 27 30

𝐹16 5 100 𝐹45 13 10 𝐹74 20 30 𝐹103 27 50

𝐹17 6 10 𝐹46 13 30 𝐹75 20 50 𝐹104 27 100

𝐹18 6 30 𝐹47 13 50 𝐹76 20 100 𝐹105 28 10

𝐹19 6 50 𝐹48 13 100 𝐹77 21 10 𝐹106 28 30

𝐹20 6 100 𝐹49 14 10 𝐹78 21 30 𝐹107 28 50

𝐹21 7 10 𝐹50 14 30 𝐹79 21 50 𝐹108 28 100

𝐹22 7 30 𝐹51 14 50 𝐹80 21 100 𝐹109 29 10

𝐹23 7 50 𝐹52 14 100 𝐹81 22 10 𝐹110 29 30

𝐹24 7 100 𝐹53 15 10 𝐹82 22 30 𝐹111 29 50

𝐹25 8 10 𝐹54 15 30 𝐹83 22 50 𝐹112 29 100

𝐹26 8 30 𝐹55 15 50 𝐹84 22 100 𝐹113 30 10

𝐹27 8 50 𝐹56 15 100 𝐹85 23 10 𝐹114 30 30

𝐹28 8 100 𝐹57 16 10 𝐹86 23 30 𝐹115 30 50

𝐹29 9 10 𝐹58 16 30 𝐹87 23 50 𝐹116 30 100

Table 4.1: Description of the 116 optimization problems based on the IEEE-CEC 2017 benchmark functions

described in Appendix A

4.5 CHAPTER RESULTS

This section is devoted to showing the experimental results, which are separated in i)

the ranking analysis, ii) the scores according to the IEEE-CEC 2017 competition, and iii) the

statistical significance tests, iv) the algorithms complexity analysis and v) the convergence and

diversity graphics. Considering all these approaches the performance analysis becomes more

reliable. The descriptive statistic is presented in Appendix B.

4.5.1 The ranking analysis

The first metric computed is the percentage of victories achieved by the algorithms,

which is based on the smallest average error found compared to the global optimal. This metric

has been evaluated for each class in 𝛿, as shown in Tab. 4.2.
Overall, the COA10 has won in 22.4% of the cases tested followed by the WfCMO5,

which has found the smallest average error in 20.7% of the cases. The ABC has outperformed

the other variants of the WfCMO and the COA5 with 19% of victories. The other algorithms

have not achieved significant performance in terms of victories.
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Table 4.2: Percentage of smallest average error separated by the classes in 𝛿 (where Alg.: Algorithm. Uni.: Unimodal.
Comp.:Composition and Multi.: Multimodal).

Alg. Overall Uni. Comp. Hybrid D=10 D=30 D=50 D=100 Multi.

COA5 12.9% 12.5% 27.5% 7.5% 13.8% 20.7% 6.9% 10.3% 13.0%

COA10 22.4% 0.0% 17.5% 25.0% 24.1% 10.3% 17.2% 37.9% 24.1%
ABC 19.0% 12.5% 5.0% 30.0% 20.7% 20.7% 17.2% 17.2% 19.4%

BA 5.2% 0.0% 0.0% 12.5% 0.0% 3.4% 6.9% 10.3% 5.6%

FA 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

GWO 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

PSO 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

SOS 6.9% 12.5% 0.0% 15.0% 10.3% 10.3% 6.9% 0.0% 6.5%

WfCMO5 20.7% 37.5% 30.0% 5.0% 24.1% 17.2% 27.6% 13.8% 19.4%

WfCMO10 11.2% 25.0% 15.0% 5.0% 6.9% 13.8% 13.8% 10.3% 10.2%

WfCMO20 1.7% 0.0% 5.0% 0.0% 0.0% 3.4% 3.4% 0.0% 1.9%

Considering the unimodal functions, the WfCMO5 has presented the best performance

with 37.5% of victories, while the WfCMO10 has achieved 25%. The COA5, the ABC, and the

SOS have all presented 12.5% of victories and the other algorithms have not scored.

Further, the WfCMO5 has outperformed the other algorithms for the composition

functions, with 30% of victories against 27.5%, 17.5%, and 15% achieved by the COA5, COA10,

and WfCMO10 respectively. The ABC and the WfCMO20 both have won in 5% of the cases

and the other algorithms have not won in any case.

Nevertheless, the proposed algorithms have presented a more reticent performance for

the hybrid functions. The ABC has achieved 30% of victories against 25% of COA10, 7.5%

of COA5, and 5% of WfCMO5 and WfCMO10. The BA has achieved 12.5% and the other

algorithms have not won any case.

Considering the different dimensions tested, the COA10 has achieved the best perfor-

mance for D=10 and D=100, with 24.1% and 37.9% of victories, respectively. Among the

WfCMO variants, the WfCMO5 has achieved the best performance for D=50, 27.6% of victories.

For D=30, the COA5 and the ABC have found the best solution in 20.7% of the cases tested.

For multimodal functions, the COA10 has achieved the first position with 24.1% of

victories against 19.4% of ABC and WfCMO5. The COA5, the WfCMO10, the WfCMO20, the

BA, and the SOS have achieved, respectively, 13%, 10.2%, 1.9%, 6.5%, and 5.6% of victories.

The other algorithms have not won any case.

To evaluate how suitable the algorithms are for each class in 𝛿, the average rankings
(LaTorre et al., 2015) have been computed and described in Tab. 4.3 and illustrated by the Radar

plot in Fig. 4.4. Although COA5 and WfCMO10 have not achieved a high number of victories

overall, both have presented a good average ranking, 3.89 and 3.87, respectively. It means that in

many cases these algorithms have not won, they have been well-ranked anyway. The same can be

said considering the multimodal functions, where the COA5 has achieved the lowest average

ranking, 3.78. Again, the WfCMO5 and WfCMO10 have achieved the lowest average ranking for

problems with dimension equals 30.

In Fig. 4.4, where the smaller ranks are around the center of the Radar plot, it is easier

to see that the proposed algorithms are concentrated nearest to the center. Regardless of the

ABC and the SOS, which have shown competitive performance, the proposed algorithms have

outperformed the other state-of-the-art algorithms for the experimental design employed.
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Table 4.3: Average ranking separated by the classes in 𝛿 (where Alg.: Algorithm, Uni.: Unimodal.,

Comp.:Composition and Multi.: Multimodal).

Alg. Overall Uni. Comp. Hybrid D=10 D=30 D=50 D=100 Multi.

COA5 3.89 5.38 3.30 3.98 3.41 4.28 4.14 3.72 3.78
COA10 4.07 5.88 4.85 3.75 3.28 4.76 4.28 3.97 3.94

ABC 4.66 6.50 5.80 3.25 4.34 4.24 5.00 5.03 4.52

BA 8.35 6.50 8.78 8.13 9.21 8.21 8.10 7.90 8.49

FA 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00

GWO 8.02 8.50 8.43 7.95 8.28 8.07 7.83 7.90 7.98

PSO 8.79 7.38 8.88 8.98 8.93 9.00 8.72 8.52 8.90

SOS 4.38 5.38 4.80 3.58 5.00 4.28 4.21 4.03 4.31

WfCMO5 3.91 3.25 2.83 5.03 3.83 3.62 3.76 4.45 3.96

WfCMO10 3.87 2.50 3.08 4.75 3.86 3.62 3.93 4.07 3.97

WfCMO20 5.06 3.75 4.28 5.63 4.86 4.93 5.03 5.41 5.16
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Overall

Unimodal
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ABC
BA
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GWO
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WfCMO5
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WfCMO20

Figure 4.4: Average ranking separated by the classes in 𝛿.

4.5.2 The performance scores

In this section, the score analysis is provided (Suganthan et al., 2016), which considers

both the sum of the errors and the ranks weighted by the problems’ dimensions. This analysis

helps to evaluate the general performance of each algorithm due to the combination of those two

criteria.

The Tab. 4.4 shows the scores achieved by the algorithm, where the resulting rank is

computed in the last column. The COA5 has achieved the best performance in this criterion,

followed by the COA10, the SOS, the WfCMO10, the WfCMO5, the WfCMO20, the ABC, the

BA, the GWO, the PSO, and finally the FA.

Considering only the sum of the errors (𝑆1), the COA5 has achieved the best score,
the COA10 the second best, and the SOS the third-best one. The WfCMO20, the WfCMO10,
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Table 4.4: Scores according to the IEEE-CEC 2017.

Algorithm Name 𝑆1 𝑆2 Final Score Rank

COA5 50.00 49.87 99.87 1

COA10 45.58 47.22 92.80 2

ABC 11.73 40.83 52.57 7

BA 1.98 24.03 26.00 8

FA 0.00 17.81 17.81 11

GWO 0.01 24.64 24.65 9

PSO 0.02 22.47 22.49 10

SOS 27.54 46.29 73.83 3

WfCMO5 11.70 48.80 60.50 5

WfCMO10 18.08 50.00 68.08 4

WfCMO20 20.34 38.04 58.39 6

the ABC, and the WfCMO5 have achieved lower scores, but still relevant values. The other

algorithms have not achieved competitive performance for (𝑆1).
On the other hand, the WfCMO10 has presented the best score considering only the

sum of the ranks (𝑆2), followed by the COA5, the WfCMO5, the COA10, the SOS, the ABC, the

WfCMO20, the GWO, the BA, the PSO, and the FA, respectively. As the scores are weighted

by the dimension of the problem (which tends to increase the complexity of finding the global

optimal), it is not possible to say that the algorithms that presented lower scores can not be good

options for low dimensional (10 and 30, for example) optimization problems.

4.6 STATISTICAL SIGNIFICANCE TESTS

In this section, a deeper analysis of the significance of the results is provided. Due to

the high number of benchmark functions with different domains in terms of objective costs, the

median values have been computed and converted to rankings to represent the set of experiments

(García et al., 2010; Derrac et al., 2011; Gibbons and Wolfe, 2003). The null hypothesis 𝐻0 states

that the medians of all algorithms belong to the same population and the statistical confidence

considered is 𝛼 = 0.5.
According to the Friedmann Rank sum test, the resulting 𝑝-value is neatly equal to zero

(3.4343e-138) and the null hypothesis is rejected. It means that there is at least one algorithm

significantly different from the others. In other to achieve a more complete analysis, multiple

1𝑥𝑁 comparisons with the proposed algorithms as the control method are presented. In this

context, the one-tailed Wilcoxon-Mann-Whitney’s test has been applied and the Holm-Bonferroni

post-hoc method is used to correct the 𝑝-values found. The null hypothesis 𝐻0 states that the

median error of the control method is not smaller than the median of the opponent, while 𝐻1

states that the median error achieved by the control method is smaller than the other algorithms.

The results of the 1𝑥𝑁 comparisons are exposed in Table 4.5, where the corrected

𝑝-values are presented and the null hypothesis is rejected if the 𝑝-value is smaller than 𝛼. The
𝐻0 has been rejected for all comparisons with the BA, the FA, the GWO, and the PSO. Then, it

can be said that all variations of COA and WfCMO have outperformed these algorithms. On the

other hand, the 𝐻0 has not been rejected in any comparison with the ABC and the SOS. It means

that these two algorithms have not been outperformed by the proposed algorithms. Considering

the comparison between the proposed algorithms, there is no significant difference in the results.
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Algorithm
COA5 COA10 WfCMO5 WfCMO10 WfCMO20

𝑝-value 𝐻1? 𝑝-value 𝐻1? 𝑝-value 𝐻1? 𝑝-value 𝐻1? 𝑝-value 𝐻1?

COA5 - - 1.00E+00 No 1.00E+00 No 1.00E+00 No 1.00E+00 No

COA10 1.00E+00 No - - 1.00E+00 No 1.00E+00 No 1.00E+00 No

WfCMO5 1.00E+00 No 1.00E+00 No - - 1.00E+00 No 1.00E+00 No

WfCMO10 1.00E+00 No 1.00E+00 No 1.00E+00 No - - 1.00E+00 No

WfCMO20 1.00E+00 No 1.00E+00 No 1.00E+00 No 1.00E+00 No - -

ABC 3.24E-01 No 5.43E-01 No 2.13E-01 No 2.19E-01 No 6.07E-01 No

BA 3.75E-07 Yes 2.09E-06 Yes 1.36E-07 Yes 1.86E-07 Yes 1.30E-06 Yes
FA 5.40E-19 Yes 1.82E-17 Yes 1.36E-19 Yes 2.44E-19 Yes 1.75E-18 Yes
GWO 9.77E-04 Yes 2.73E-03 Yes 4.11E-04 Yes 4.71E-04 Yes 2.27E-03 Yes
PSO 1.98E-04 Yes 1.00E-03 Yes 9.82E-05 Yes 1.30E-04 Yes 6.87E-04 Yes
SOS 6.28E-01 No 1.00E+00 No 4.67E-01 No 5.40E-01 No 1.00E+00 No

Table 4.5: The one-tailed Wilcoxon-Mann-Whitney non-parametric test using the proposed algorithms as control

methods individually for a significance level of 𝛼 = 0.05 combined with the post-hoc method of Holm-Bonferroni.

4.6.1 The metaheuristics complexity

This analysis provides a point of view that contrasts the performances based on the

quality of the solutions achieved, which is the computational cost required by the algorithms.

The computational complexities are described in Tab. 4.6, where a higher value indicates high

computational cost and vice-versa. Moreover, the percent growth according to the problem’s

dimension is also shown for a clearer understanding. For a better view, these values are drawn

side by sidebars on Fig. 4.5, where the complexity axis is set to a logarithmic scale.

Algorithms 𝐷=10 𝐷=30 𝐷=50 𝐷=100

COA5 95.33 101.06 (+6.02 % ) 106.15 (+5.03 % ) 113.98 (+7.38 % )

COA10 81.10 85.67 (+5.63 % ) 92.34 (+7.78 % ) 99.66 (+7.93 % )

ABC 305.03 307.69 (+0.87 % ) 312.55 (+1.58 % ) 312.47 (-0.02 % )

BA 20.83 24.72 (+18.70 % ) 25.95 (+4.96 % ) 26.57 (+2.38 % )

FA 121.11 678.09 (+459.89 % ) 862.33 (+27.17 % ) 1101.04 (+27.68 % )

GWO 24.02 42.82 (+78.25 % ) 61.20 (+42.93 % ) 98.91 (+61.62 % )

PSO 18.45 21.41 (+16.06 % ) 24.43 (+14.12 % ) 28.24 (+15.58 % )

SOS 85.56 88.50 (+3.44 % ) 91.86 (+3.80 % ) 99.53 (+8.34 % )

WfCMO5 177.00 182.75 (+3.25 % ) 188.26 (+3.02 % ) 197.94 (+5.14 % )

WfCMO10 116.10 123.58 (+6.44 % ) 128.41 (+3.91 % ) 133.58 (+4.02 % )

WfCMO20 82.27 87.87 (+6.81 % ) 93.25 (+6.12 % ) 100.60 (+7.88 % )

Table 4.6: Algorithms complexity and the respective percent growth according to the problem dimension.

The first insight is that theWfCMO presents a notable difference in complexity according

to the number of monkeys per group. The smaller this number, the higher is the computational

cost. Considering that the population size is constant, this difference suggests that the complexity

growth is caused by the group’s management. It means the operations executed inside each group

excepting those related to the monkey itself, like the male/female definition, the choice of groups

to fight, and the birth and death.

On the other hand, the COA presents a smaller difference according to the number

of packs, which suggests that COA has operators computationally simpler than WfCMO. The

complexities presented by the COA5 and the COA10 are generally smaller than WfCMO variants.
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Figure 4.5: Complexity analysis based on the IEEE-CEC 2017 definitions.

The only exception is that the COA5 is slower than WfCMO20 due to the packs’ management,

however, it tends to be closer as the dimension increases.

Moreover, both COA and WfCMO variants present a linear computational cost growth,

with values from 3.02% (WfCMO5 from 𝐷 = 30 to 𝐷 = 50%) to 7.93% (COA10 from 𝐷 = 50

to 𝐷 = 100%). In fact, the only algorithm that achieves a nearly constant computational cost

from 𝐷 = 50 to 𝐷 = 100% is the ABC, where the variation is very close to zeros (0.02%).

Comparing the complexity values from the COA and the WfCMO variants with the other

algorithms, it is notable that ABC and FA required more computational power, while BA and PSO

are the fastest algorithms in the set. Regarding the SOS, the values are close to the COA variants

and WfCMO20, while WfCMO5 and WfCMO10 present more costly values. Considering GWO,

the costs presented are smaller than COA and WfCMO variants for all dimensions. However, the

results present a growth tendency as the dimension increases, suggesting a higher cost than the

proposed algorithms for dimensions higher than 𝐷 = 100.

4.6.2 Convergence and diversity analysis

This analysis is devoted to correlate the convergence and diversity curves of the COA

and the WfCMO among the optimization process. As stated, the balance between exploration

and exploitation is an important factor to achieved good performance.

Overall, the COA versions have presented a more diverse population during the process

compared to the WfCMO versions. As an example, Fig. 4.6 illustrates these curves for a

unimodal function with dimension equals to 10, where the COA has kept higher diversity and still

could converge as well as the WfCMO versions. Further, the COA5 and COA10 have presented

similar behavior of convergence and diversity, as well as the WfCMO variants. Considering the

unimodal functions, the difference can be considered wispy.

Nevertheless, this gap becomes notable for the other type of functions, as the example

drawn in Fig. 4.7, which represents a multimodal function with dimension equals to 50. The

resulting curves of the WfCMO variants are slightly different, where the higher the number of

monkeys per group, the higher the diversity and the average error. On the other hand, the COA5

has presented higher diversity than the COA10, as well as higher average errors. The COA10 has

present the best trade-off between diversity and convergence for this case.

Considering hybrid functions, otherwise, the algorithms have presented continuous

convergence curves with steady diversity ones. As an example, Fig. 4.8 contains the results

of a hybrid function with the dimension equals to 100. Again, the COA10 has achieved an

intermediate diversity with the best convergence compared to the other algorithms. The WfCMO

variants have shown similar curves in both cases.
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Figure 4.6: Convergence and diversity graphics of a unimodal function with dimension equals to 10 ( 𝑓5).
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Figure 4.7: Convergence and diversity graphics of a simple multimodal function with dimension equals to 50 ( 𝑓31).

In the case of composition functions, all algorithms have presented similar convergence

curves, however the diversity is notably different. In the example illustrated in Fig. 4.9, the

COA10‘s diversity curve is bounded by the other algorithms, closer to the WfCMO variants.
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Figure 4.8: Convergence and diversity graphics of a hybrid function with dimension equals to 100 ( 𝑓44).

The WfCMO with fewer monkeys per group has resulted in a less spread population during the

optimization process.
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Figure 4.9: Convergence and diversity graphics of a composition function with dimension equals to 50 (function

number 27 of the IEEE-CEC2017).
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4.7 CHAPTER DISCUSSION

According to the analysis provided in this chapter, the proposed algorithms have

presented competitive or better performance when compared to other state-of-the-art NiMs. The

different performance metrics and classes of problems employed provided a complete view of

the best cases for the algorithms. The high dimensional and multimodal problems have been

included, which are the two more explored classes in the global optimization research area.

Considering the IEEE-CEC 2017 performance analysis, the COA variants have achieved

the best performance in most cases. The COA10 has found the best solutions in almost a quarter

of the cases tested, with the significant 37.9% of first place for the problems with dimension

equals to 100 and 24.1% for multimodal ones. For hybrid functions, it has won a quarter of the

cases, which is an important contribution considering that the proposed algorithms have not

performed well for this class. It has also achieved low average rankings overall, which means

that it could be employed for any desired problem class.

Moreover, the COA5 has presented good performance mainly for composition functions,

which has won in 27.5% of the cases and it has achieved a lower average ranking. Although it

has not been the best winner for high dimensional and multimodal problems, it has presented the

lowest average ranking for both classes. It means that it could be reliably employed for these

classes too.

Regarding the WfCMO variants, the main result is the performance gap between the

WfCMO20 compared to the other variants. This one could not perform well for most cases tested

and it could easily be replaced by the WfCMO5 of the WfCMO10, which has achieved better

performance for the percentage of first place and average ranking. Even though it has presented

higher diversity values during the optimization process, it could no converge better than the other

variants.

On the other hand, the WfCMO5 and the WfCMO10 have presented competitive

performance. Both have outperformed the BA, the FA, the GWO, and the PSO with a statistical

confidence of 95%, while the ABC and the SOS have not been outperformed. The WfCMO10

has achieved the lowest overall average ranking and for unimodal problems, which is a class that

the proposed algorithms have not shown expressive performance. It is more likely to be applied

for unimodal and composition problems, not for hybrid functions though. The WfCMO10 has

also achieved the best score among the WfCMO variants according to the IEEE-CEC competition

criteria.

Nevertheless, the WfCMO5 has shown good performance in terms of victories mainly

for composition, unimodal, and D=50 problems, in which it has won in a quarter or more of the
cases tested. Overall, where it has won in 20.7% of the problems, it has only been outperformed

by the COA10. It also appears as a good option for multimodal problems, while it is not the right

choice for hybrid functions. Although it is not in the top rank of the final scores, it has achieved

the best average ranking at all for composition functions and very good values for D=30 and
D=50 problems. There might exist a correlation between the population size and the problem
dimension not only for the WfCMO5 but for all WfCMO variants.

Considering the convergence and diversity graphics exposed, which are the best examples

of the general behavior of the algorithms, the COA10 has shown a better ability to keep high

diversity and convergence simultaneously. Although the WfCMO variants have presented small

diversity values in the optimization process, the results presented have not been significantly worst

than the COA variants. Hence, it is not possible to affirm that the balance between exploration

and exploitation has not been achieved because of the low diversity presented.
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5 IMPROVED COA FOR A GAS TURBINE OPTIMIZATION

Because of the promising results presented by the COA for IEEE CEC 2017 benchmarks,

this algorithm has been chosen to be further explored. An improved version of the COA based

on cultural algorithms is proposed and applied to the constrained optimization of a heavy-duty

gas turbine operation. The results for five variations of the optimization problem are presented.

It is important to highlight that part of the content presented in this chapter has been

published in the "Energy Conversion and Management" journal in the article entitled "Cultural

coyote optimization algorithm applied to a heavy-duty gas turbine operation".

5.1 PROPOSED CULTURAL COA

The cultural algorithm is a methodology responsible for gathering knowledge to any

optimization method based on populations(Ribeiro and Aguiar, 2011). According to (Peng

et al., 2003; Ali et al., 2018) there are five types of knowledge sources: normative, situational,

topographic, domain, and historical. Though the authors indicated that not all of them must be

applied to all situations. Thus, once COA has good exploratory behavior, as mentioned in the

previous chapter, the normative space is included, as it has the potential to restrict the search

space when it is suitable.

The normative belief constrains the search space to a promising region, which is defined

by the minimum (𝑙) and maximum (𝑢) values. The minimum and maximum costs, 𝐿 and 𝑈,
respectively, are also defined. These values are set from a subgroup (𝑥) from the total population

formed by 𝑛𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑 best individuals. The number of individuals accepted is defined by the
parameter 𝜓, which represents a percentage of the population, and the belief space of the 𝑡𝑡ℎ

iteration is updated as follows:

𝑙𝑡𝑗 =

{
𝑥𝑖, 𝑗 𝑥𝑖, 𝑗 ≤ 𝑙𝑡−1𝑗 or 𝑓 (𝑥𝑖) < 𝐿𝑡−1𝑗
𝑙𝑡−1𝑗 otherwise

(5.1)

𝐿𝑡𝑗 =

{
𝑓 (𝑥𝑖) 𝑥𝑖, 𝑗 ≤ 𝑙𝑡−1𝑗 or 𝑓 (𝑥𝑖) < 𝐿𝑡−1𝑗
𝐿𝑡−1𝑗 otherwise

(5.2)

𝑢𝑡𝑗 =

{
𝑥𝑖, 𝑗 𝑥𝑖, 𝑗 ≥ 𝑢𝑡−1𝑗 or 𝑓 (𝑥𝑖) < 𝑈𝑡−1

𝑗

𝑢𝑡−1𝑗 otherwise
(5.3)

𝑈𝑡
𝑗 =

{
𝑓 (𝑥𝑖) 𝑥𝑖, 𝑗 ≥ 𝑢𝑡−1𝑗 or 𝑓 (𝑥𝑖) < 𝑈𝑡−1

𝑗

𝑈𝑡−1
𝑗 otherwise

(5.4)

for 𝑖 = {1, 2, ..., 𝑛𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑} and 𝑗 = {1, 2, ..., 𝐷}.
In the CCOA, the normative knowledge is employed in the coyote’s social condition

update. The mechanism is inspired by the suggestions of (Ma et al., 2008; Yan et al., 2012), and

can be written as follows:

𝑛𝑒𝑤_𝑠𝑜𝑐
𝑝,𝑡
𝑐, 𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑠𝑜𝑐

𝑝,𝑡
𝑐, 𝑗 + 𝛾 × |𝑟 × (𝑢 𝑗 − 𝑙 𝑗 ) |, 𝑠𝑜𝑐

𝑝,𝑡
𝑐, 𝑗 < 𝑙 𝑗

𝑠𝑜𝑐
𝑝,𝑡
𝑐, 𝑗 − 𝛾 × |𝑟 × (𝑢 𝑗 − 𝑙 𝑗 ) |, 𝑠𝑜𝑐

𝑝,𝑡
𝑐, 𝑗 > 𝑢 𝑗

𝑐𝑡
𝑝,𝑡
𝑗 + 𝛾 × 𝑟 × (𝑢 𝑗 − 𝑙 𝑗 ), otherwise

(5.5)
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for 𝑝 = 1, 2, ..., 𝑁𝑝, 𝑐 = 1, 2, ..., 𝑁𝑐 and 𝑗 = 1, 2, ..., 𝐷, where 𝑟 represents a random number

generated by normal distribution of probability with average and variance equal to 0 and 1,

respectively, and 𝛾 is the step weight, which can be initially defined in the range ]0,1]. The 𝛾
setup is discussed in the next sections.

It means that when outside, the coyotes are conducted to the cultural promising region

defined by the normative belief among all population members. On the other hand, when inside,

the coyotes are influenced by the social tendency of the respective pack. The pseudocode of the

proposed CCOA is shown in the Algorithm 12, where 𝑟 is a random number inside the range

[0,1] generated by a uniform distribution of probability.

Algorithm 12 Pseudo code of the CCOA
1: Define the control parameters 𝑁𝑝, 𝑁𝑐, 𝜓, 𝑃𝑛 and 𝛾
2: Initialize 𝑁𝑝 packs with 𝑁𝑐 coyotes each (Eq. 4.2)
3: Verify the coyote’s adaptation (Eq. 4.3)

4: while stopping criterion is not achieved do
5: Update normative knowledge (Eqs. 5.1, 5.2, 5.3 and 5.4)

6: for each 𝑝 pack do
7: Define the alpha coyote of the pack (Eq. 4.5)

8: Compute the social tendency of the pack (Eq. 4.6)

9: for each 𝑐 coyotes of the 𝑝 pack do
10: if 𝑟 < 𝑃𝑛 then
11: Update the social condition (Eq. 5.5)

12: else
13: Update the social condition (Eq. 4.12)

14: end if
15: Evaluate the new social condition (Eq. 4.13)

16: Adaptation (Eq. 4.14)

17: end for
18: Birth and death (Eq.4.7 and Alg. 8)

19: end for
20: Transition between packs (Eq. 4.4)

21: Update the coyotes’ ages

22: end while
23: Select the best adapted coyote

5.2 PROBLEM FORMULATION

The heavy-duty GT studied in this research is the Siemens Westinghouse W501FD, as

illustrated in Fig. 5.1. This equipment performs the Brayton cycle, the technical specifications of

the system are written in Tab. 5.1 and the six subsystems of the heavy-duty GT are:

1. Admission system. The air intake system provides clean and cool atmospheric air to the

compressor through the use of filters and an air cooling system, and it is composed of a

weather protection cover, double barrier air filter, evaporative cooler, muffler, ducts, and

vane control of intake air.
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2. Compression system. The compressor has sixteen stages, or set of vanes mounted on

a single shaft and is of the axial type, which guarantees a virtually constant flow at

pressures variables.

3. Combustion system. The combustion system consists of sixteen low-emission Nitrogen

Oxides (NO𝑥) in a circular arrangement, each combustion consisting of a combustion

chamber cylindrical. Each set of combustors is composed of four subsets that have

independent firing nozzles. The central nozzle is denoted the Pilot stage. It is surrounded

by eight nozzles, which are four of stage A and four of stage B. There is also stage

C, called the dispersion ring, which calibrates holes that disperse the gas inside the

chamber.

4. Turbine system. The turbine of this equipment is a simple flow and internal combustion

machine. It is a reaction type, it has four stages and is assembled with curved discs,

which are responsible for transforming the flow of the working fluid (air) into torque.

5. Exhaust system. The temperature of the hot gases generated by the fuel burning in the

primary section is cooled in the secondary section. The spaces along the combustion

chamber allow cool air to pass and refrigerate its walls.

6. Fuel manifold system. It is a chamber that has a number of outlets for distributing the

resulting gases to the outside.

The Pilot differs from the other stages since it injects an air-gas mixture instead of only

gas. The power generated by the turbine relies on the combination of the gas inputs through

those injection stages, and as they have different positions in the combustor design, the right

combination of gas in the injectors can produce more power and emit fewer pollutants (Yamao

et al., 2017a). Once pollutant emissions from combustion processes is a major public concern

because of their impact on health and the environment (Lefebvre and Ballal, 2010), the set

of values to the fuel injectors must be less than a predefined value. In concern to Brazilian

regulations, the most critical pollutant in GT operations are the NO𝑥 , which cannot exceed the

value of 25 ppm (Brasil, 2018).

Nominal load 173 MW

Heat Rate (single cycle) 9360 Btu/kWh

Heat Rate (combined cycle) 5595 Btu/kWh

Air flow mass 449 kg/s

Efficiency using Natural Gas (NG) 36 %

Nominal speed 3600 rpm

Number of burners 16

Compressor stages (axial flow) 16

Turbine stages (reaction type) 04

Compression ratio 15:1

Turbine inlet temperature 2350 ºF / 1288 ºC
Exhaust temperature 1076 ºF / 580 ºC

Table 5.1: W501F technical specifications.

The GT has also two main operation restrictions due to its physical characteristics.

The first is the maximum exhaust temperature, chosen in order to avoid damaging the chimney
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Figure 5.1: Heavy-duty gas turbine Siemens Westinghouse W501FD

materials, the highest allowed exhaust temperature (𝐸𝑇) is 600 𝑜𝐶. And the second critical
restriction is the maximum value of Pressure Oscillations (𝑃𝑂) inside the combustion chamber,
caused by the flame instability in combustor stages (Pierezan et al., 2017b; Iurashev et al., 2017).

The maximum value of 𝑃𝑂 is related to the frequency range, thus there are different

threshold values to each frequency band. These constraints have been defined according to the

equipment technical specifications and values allowed are exposed on Tab. 5.2.

Table 5.2: Frequency ranges and maximum pressure oscillations.

Ranges setup 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝑓9
From (KHz) 0 0.015 0.05 0.1 0.16 0.3 0.5 1 3

To (KHz) 0.015 0.05 0.1 0.16 0.3 0.5 1 3 4.2

Limit (PSI) 0.3 0.6 1.6 1.6 1.0 0.3 0.2 0.1 0.1

5.2.1 The simulation model

To simulate the GT, two different black-box modeling methods were employed using

real data collected during the GT tuning procedure. At the tuning, a technician manually varies

the gas inputs, called stages, until finding a sub-optimal adjustment to a given power range, thus

generating a wide range of data to system identification.

As seen in the block diagram of Fig. 5.3, the ambient temperature and the gas flow in

the fuel injectors 𝐴, 𝐵, 𝐶 and 𝑃𝑖𝑙𝑜𝑡 are common inputs to all the four modeled phenomena: the
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GT power output, the estimated power output (𝑃𝑜𝑡), the NO𝑥 emission, the pressure oscillations

in the combustion chamber, and the Exhaust temperature. The gas flow has been measured by

the original gas turbine sensors at the combustion chamber stages entries. However, to the last

three mentioned models, the output of the power model is also used as an input, in a cascade

arrangement.

The values to the GT power output (𝑃𝑜𝑡), the NO𝑥 emission, and the 𝐸𝑇 are predicted

through Radial Basis Function (RBF) feed-forward ANNs previously developed for this specific

turbine in (Yamao et al., 2017a,b). Meanwhile, multilinear regression models are used to predict

the maximum value of the pressure oscillations to each frequency range, in the same means of

the model studied in (Pierezan et al., 2017b).

The models’ accuracies are shown in Table 5.3, where the symmetric Mean Absolute

Percentage Error (sMAPE) values, the Coefficient of Determination (𝑅2) and the Pearson’s 𝑟
(both indicators of the identification quality) to the validation data are presented. The validation

set is composed of 16000 samples, corresponding to 50% of total samples. High correlation

values are shown in the table, with a small percentage error. The NO𝑥 model has shown the

highest error, although it is within an acceptable value to assist in coping with the optimization

problem treated in this work.

The real and predicted values to the 𝑃𝑜𝑡, NO𝑥 , and 𝐸𝑇 are illustrated in Fig. 5.2, where

it’s possible to verify small errors and well-correlated models. The pressure oscillations model’s

accuracy is not shown once they are processed in a special method to guarantee a small error

at the oscillation’s peak, therefore this method is well detailed in (Pierezan et al., 2017b). All

simulations mentioned in this research have been performed in the Mathworks Matlab 2015a

platform.
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Figure 5.2: Comparison of the real data with the simulation of the identified data-driven models.

Table 5.3: Models errors evaluation.

Model sMAPE 𝑅2 𝑟
𝑃𝑜𝑡 0.5396% 0.9997 0.9999

𝑁𝑂𝑥 2.3070% 0.9760 0.9879

𝐸𝑇 0.2935% 0.9947 0.9973
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5.2.2 Objective Function Design

Once the gas consumption is the highest operational cost in gas-Potered energy generation,

the optimization problem aims to minimize the sum of stage’s gas demands, also denoted the

total gas demand (𝐺𝐷), to produce the desired power output (𝑑𝑃𝑜𝑤) while coping with the
constraints regarding the GT operation, such that:

minimize 𝐹 (𝐺) = 𝐺𝐴 + 𝐺𝐵 + 𝐺𝐶 + 𝐺𝑃

subject to 𝑃𝑜𝑡 = 𝑑𝑃𝑜𝑤,

NO𝑥 ≤ 𝑁𝑂𝑥𝑙𝑖𝑚𝑖𝑡,

𝐸𝑇 ≤ 𝐸𝑇𝑚𝑎𝑥,

𝑃𝑂 ≤ 𝑃𝑂𝑚𝑎𝑥,

(5.6)

where 𝐺𝐴, 𝐺𝐵, 𝐺𝐶 , and 𝐺𝑃 are the gas flow in Kg/s in the inlet stages A, B, C, and Pilot,

respectively. And its values are restricted to the following range:

1.125 ≤ 𝐺𝐴 ≤ 4.389,

1.125 ≤ 𝐺𝐵 ≤ 4.389,

0 ≤ 𝐺𝐶 ≤ 0.385,

0.432 ≤ 𝐺𝑃 ≤ 1.822,

(5.7)

which are the minimum and maximum value from the data set used to train the models, and

present the measured flow range in each valve.

In the optimization procedure, only the values to 𝐺𝐴, 𝐺𝐶 , and 𝐺𝑃 are manipulated,

once 𝐺𝐵 must be equal to 𝐺𝐴 to avoid pressure instability inside the combustion chamber due to

their geometrical positioning.

As mentioned, the operational constraints are the 𝑁𝑂𝑥 limit, the maximum exhaust

temperature, 𝐸𝑇𝑚𝑎𝑥 , and the maximum pressure oscillation at each 𝑖𝑡ℎ frequency range, 𝑃𝑂𝑚𝑎𝑥,𝑖.

However, carbon monoxide (CO) emissions are not included as a constraint once it is an issue

only in low power generation of the heavy-duty GT, in a range below the studied in this work and

which is not often used in practice.

Hence, the minimization objective functions 𝐽 used as a metric to guide the optimizers
is:

𝐽 = 𝐹 (𝐺) + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦,

where 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 1000 ∗ (|𝑃𝑜𝑡 − 𝑑𝑃𝑜𝑤 | +
𝑁∑
𝑛=1

𝐶𝑛),

such that 𝐶𝑛 =

{ |𝑐𝑛 − 𝑐𝑛,𝑙𝑖𝑚𝑖𝑡 |, if 𝑐𝑛 > 𝑐𝑛,𝑙𝑖𝑚𝑖𝑡
0, otherwise

.

(5.8)

Thus, 𝐶𝑛 is the value of the violation in the 𝑛
𝑡ℎ constraint (𝑐𝑛) over the limit 𝑐𝑛,𝑙𝑖𝑚𝑖𝑡 and

the penalization constant equals to 1000 has been chosen arbitrarily without any previous study.

There are twelve constraints, nine limit values to the nine different 𝑃𝑂 frequency ranges, the

values to NO𝑥 , 𝐸𝑇 , and 𝑑𝑃𝑜𝑤.
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5.3 EXPERIMENTAL SETUP

The case studies tested in this work are a combination of an ambient temperature and

the desired power output, which are independent variables in the simulation model. It means that

these variables are treated as inputs that can be separately handled to obtain the desired outputs,

which are the gas consumption, pressure oscillations, and pollutant emissions.

The values adopted have been selected from the available data set, as described in

Tab. 5.4, to ease the process of comparison with the current GT setup. Further, five different

combinations of parameters have been selected to analyze the CCOA’s performance repeatability.

These combinations have been chosen to cover differently values of each parameter (Because of

the lack of data - only one day of operation - the temperature range could still be enlarged).

Table 5.4: Definition of the case studies in terms of power output and ambience temperature.

Independent Variables Case 1 Case 2 Case 3 Case 4 Case 5

Power Output (MW) 130.020469 140.007642 145.012707 150.000516 149.979658

Ambient Temperature (oC) 25.078574 21.910850 21.900713 21.985192 24.009801

The CCOA has been applied to the five case studies aforementioned and its performance

has been compared to the original COA and also to the ABC (Karaboga and Basturk, 2007),

the Backtracking Search Optimization Algorithm (BSA) (Civicioglu, 2013), the Self-adaptive

Differential Evolution (SaDE) (Qin et al., 2009), the GWO (Mirjalili et al., 2014), the PSO

(Kennedy and Eberhart, 1995) and the SOS (Cheng and Prayogo, 2014). The CCOA parameters

𝛾, 𝜓 and 𝑃𝑛 have been arbitrarily defined as 0.3, 0.3 and 0.8, respectively.
The ABC, the GWO, the PSO, and the SOS have been selected because of the competitive

results presented in Chapter 4. The BA and the FA have not been tested due to the performance

demonstrated. The BSA and the SaDE have been selected considering the diffusion and relevance

in this research area and the use of general industrial applications.

The BSA has presented a strong potential for solving numerical optimization and

competitive performance toward several types of optimization problems (Hassan and Rashid,

2020). Besides, it has been successfully applied to many numerous industrial and energy-related

research, including power dispatch, home energy management, wind speed forecasting, thermal

power systems, hydroelectric generation, photovoltaic systems, and others (Chaib et al., 2016;

Zhang et al., 2017; Bhattacharjee et al., 2015; Ahmed et al., 2017; Vitayasak et al., 2017; Madasu

et al., 2017; Islam et al., 2017; Modiri-Delshad et al., 2016; Yan et al., 2018; Zhang et al.,

2020b,c,a; Tsai, 2019; Kartite and Cherkaoui, 2017).

The SaDE is an adaptive version of the original Differential Evolution proposed in the

’90s by Rainer Storn and Kenneth Price (Storn and Price, 1995, 1997). It has been designed to

self-adapt to any optimization problem and a variety of researches have presented successful

results for industrial and energy-related applications (Pierezan et al., 2017a; Acharjee, 2013;

Ghimire et al., 2018; Beirami et al., 2015; Costa and Fichera, 2017; Fan and Zhang, 2016;

Sivananaithaperumal et al., 2011; Moussa and Awotunde, 2018).

For comparison purposes, the population size (i.e. number of food sources (𝑆) for ABC,
population size (𝑁𝑝) for BA and FA, number of wolves (𝑁) for GWO, swarm size for PSO (𝑁𝑝),

and ecosystem size (𝑁) for SOS) has been set as 30 (ten times the number of decision variables).
Equivalently, the total population of COA and CCOA has been set as 30 by two combinations:

six-packs with five coyotes each (denoted COA5 and CCOA5) and three packs with ten coyotes

each (denoted COA10 and CCOA10).
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The remaining parameters have been chosen from literature, as follows. The ABC

parameters limit, number of employed bees (𝑁𝑒), number of onlooker bees (𝑁𝑜) and number of
scouts (𝑁𝑠) have been set respectively as 𝐷 ×𝑆, 15, 15 and 1 (Karaboga and Akay, 2009). The
GWO’s parameter 𝑎 has been set as linearly decreasing from 2 to 0 (Mirjalili et al., 2014). The

PSO parameters cognitive constant 𝑐1 and social constant 𝑐2 have been both set 2, while the
inertia weight 𝑤 has been setup from 0.9 to 0.4 with linear decreasing (Poli et al., 2007). The

SaDE parameters learning period (𝐿𝑃) and crossover rate medians (𝐶𝑅𝑚𝑘) have been defined as
50 and 0.5, respectively (Qin et al., 2009). The only SOS’s parameter is the ecosystem size (𝑁),
as well as the population size (𝑁𝑝) for the BSA. The level of statistical significance considered in

this research is 95% (i.e., the 𝛼 has been defined as 0.05 and any 𝑝-value smaller than 𝛼 indicates

that exists significant difference with 95% of statistical confidence).

5.4 CHAPTER RESULTS

The results achieved by the algorithm are shown in Tabs. 5.5 to 5.9 considering the

case studies 1 to 5, respectively. In these tables are presented the minimum, average, median,

maximum, and standard deviation of the objective function, total gas demand obtained by CCOA.

Moreover, the Wilcoxon-Mann-Whitney nonparametric statistical significance test combined

with the post-hoc Bonferroni-Holm’s method has been applied with 𝛼=0.05 using the CCOA5
and CCOA10 as the control method. In these cases, the null hypothesis 𝐻0 states that the median

error of the control method sample is equal or greater than the other algorithms compared. In

contrast, the 𝐻1 means that the median error of the control method is smaller than the other

algorithms.

The proposed CCOA10 has found the smallest gas demand for all case studies, while

the CCOA5 has not been found only for the case study 1. Considering the average objective

function values, both algorithms have found the best values for 80% of the cases, while the other

algorithms could not find as good results for this criterion. Moreover, the smallest maximum

values have also been found by these algorithms, which reinforce the robustness of the proposed

algorithm for the objective problem studied.

In addition, there is a significant difference between the CCOA versions and the

other algorithms performances. Considering case study 4, the CCOA10 has outperformed all

algorithms, including CCOA5, COA5, and COA10.

In order to improve the view, the results of the case study 1, 2, 3, 4, and 5 are drawn

in Fig. 5.4 a), b), c), d) and e), respectively, where the percentiles are 25% and 75% and the

whisker length is 1.5. The CCOA5 and CCOA10 have found the smallest gas demands with lower

spreads after all experiments, for all case studies.

As a result of the experiments, the solutions that presented the smallest gas demands

found by each algorithm have been selected for comparison. These solutions and the current

power plant operation setup are all compared side by side in terms of power output, NOx

emissions, exhaust temperature, and pressure oscillations, as shown in Tabs. 5.10 to 5.14. The

constraints in the limit allowed are written in boldface.
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Figure 5.4: Boxplot of the best results achieved after a set of 30 independent experiments for all case studies.
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5.5 CONVERGENCE AND DIVERSITY ANALYSIS

In this section, the convergence and diversity curves of CCOA are analyzed and compared

to the other algorithms tested. The resulting curves are drawn in Figs. 5.5 - 5.9 for all case

studies, where the set of box plots represent the average values among all experiments inside

each interval indicated in the 𝑥-axis. This view is focused on the beginning of the optimization

process, where it is possible to evaluate the algorithms’ ability to avoid premature convergence.

In general, the proposed algorithms demonstrated a similar behavior, mainly for case

studies 1, 2, and 3. Regarding the convergence curves, the COA and the CCOA variants have

presented slow convergence at the beginning of the process, with medians and boxes higher than

PSO, SOS, ABS, and GWO. It indicates that these methods have not converged prematurely, as

well as the BSA and the SaDE that have presented similar characteristics of median and boxes

sizes. However, the median and the boxes sizes of the proposed algorithms have decreased

significantly along the optimization process. The CCOA has demonstrated a promising ability to

improve the search in the second half of the optimization process, mainly when compared to the

COA. For case studies 4 and 5, this ability is evident in the convergence curve, where the most

significant difference is in the last interval.

Considering the diversity curves, the initial values of median and boxes sizes presented

by the CCOA variants are smaller than most of the algorithms. Along the process, these values

decrease slower than PSO, faster than COA, SOS, ABC, GWO, and SaDE, and quite similar to

the BSA. From 3% to 25% of the process, the median and the boxes sizes seem to be maintained

and at the end of the process, these values have decreased.
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5.6 CHAPTER DISCUSSION

In this chapter, a new metaheuristic combining the normative knowledge from cultural

algorithms with COA has been proposed to optimize the operation of a heavy-duty GT. The

objective function is composed of the stages of the GT as optimized variables and the pressure

oscillations in the combustion can, the NO𝑥 emissions, and the Power Output error as constraints.

A set of experiments has been executed for five different operation points to evaluate the

repeatability of results.

First, all algorithms have found better setups than the current one regarding the GD, with

improvements up to 3.13%, 3.29%, 3.6%, 3.52%, and 3.26% for study cases 1 to 5, respectively.

It might impact a considerable financial saving in the operations of the power plant. As a result

of this improvement, the emissions and the pressure oscillations reached values close to the limits

specified. The NOx constraint is most likely to achieve the limits, as it has happened in some

cases, as well as the pressure oscillation in the 𝑓3 range (which is the range 100Hz to 160Hz).
This is a result of the valves setups, where stage C is handled to reduce the total GD. It

directly influences the amount of gas burnt, generating more/fewer NOx emissions. Similarly,

it balances (or the opposite) the natural gas injection and influences the pressure oscillations.

On the other hand, the exhaust temperature seems not to be as affected as the emissions and

oscillations for different valves setup. The resulting values are even smaller considering the

solutions achieved by the algorithms.

In general, the oscillations in the remaining frequency ranges seem a little bit higher

than the current setup, except for 𝑓1, 𝑓2 and/or 𝑓5 (in some cases). However, the differences seem
not to be relevant considering the physical constraints defined by the manufacturer. Regarding

the Power Output, which has been treated as an equality constraint, the results appeared very

precise when compared to the real data. It proves that the penalization strategy was worth it and

it reinforces the reliability of the identified data-driven mathematical models.

Regarding the performance achieved by the proposed CCOA, it has outperformed the

BSA, the PSO, the SOS, the ABS, the GWO, and the SaDE in all case studies. It has been

observed a small variance in the results achieved, it means solid repeatability of performance. It

has also outperformed the original COA in some cases and the CCOA10 variant has presented

better performance than the CCOA5 in all cases.

Besides, it has been noticed that the CCOA does not converge prematurely and it takes

around 25% of the optimization process to find a promising region. After that, the CCOA variants

have performed well for refining the solutions. It indicates a good versatility for a local search at

the end of the process. Moreover, the CCOA spread of the population along the optimization

process seems to be smaller than the COA. As a consequence of the cultural mechanism, it shows

that the normative knowledge has reduced the search space to a promising region (comparing to

the results achieved by all algorithms).
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6 GENERAL CONCLUSION

In this thesis, two NiM have been proposed for global optimization. The first one is

inspired in the Canis latrans species, while the second one is based on the behavior of the Cebus
capucinus species. Both metaheuristics can be classified as swarm intelligence and evolutionary

heuristic, once both are population-based and the animals that best adapt to the environment

survive along with the iterations. These metaheuristics have been validated and under a set

of 116 continuous benchmark functions with features as multimodality, high dimension, and

non-separability, and the performances have been compared to the other six state-of-the-art NiM.

Besides, an optimization problem has been designed to improve the efficiency of a

heavy-duty gas turbine of 173 MW of nominal load considering the maximum NO𝑥 emissions
allowed and the pressure oscillations in the combustion chamber. A cultural version of the COA

denoted CCOA has been applied to solve the designed problem. The performance achieved has

been compared to the original COA and other state-of-the-art algorithms for five operation points

described in terms of power output and ambient temperature.

6.1 PROPOSED METAHEURISTICS

The proposed COA and WfCMO have achieved a promising performance for a set

of benchmark functions with different features as multimodality and dimension. Both COA

and WfCMO have outperformed other state-of-the-art metaheuristics considering statistical

confidence of 95%. On the other hand, neither the COA nor the WfCMO has presented superior

performance when compared to each other. In addition, both COA and WfCMO have presented

suitable computational complexity when increasing the dimension of the optimization problem

and satisfactory convergence behavior. Because of the algorithmic structure, both COA and

WfCMO are flexible and ready to be adapted to different applications. Both have few parameters

to be adjusted and original social mechanisms when compared to other NiM.

Moreover, both are composed by original approaches inspired on nature. The fighting

behavior between the same species developed in WfCMO has never been implemented in other

NiM before. The death mechanisms as proposed is also an original contribution, considering the

age of the animals according to the iterations. The birth mechanisms are also slightly different

from the approaches found in literature.

Furthermore, both algorithms are ready to be combined with a local search method.

Similarly to the NiM from literature, the output of these algorithms is a single-solution with

the best objective function cost that can be further improved. The COA variants have achieved

relevant scores (IEEE-CEC 2017 analysis) even without specific local search mechanisms. It

highlights the COA’s ability to refine the solutions (exploitation) after finding a suitable region

(exploration).

6.2 THE ENGINEERING APPLICATION

The methodology used to design the constrained optimization problem has fulfilled the

need of estimating the pollutant emissions, the pressure oscillations, and the exhaust temperature

for each operation point. Thus, the exploration of different setups has been possible considering

the system’s constraints. This design and simulation would have probably not been viable using
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white-box tools and simulation software, once part of the information needed was not even

known, as the air-fuel ratio.

The results achieved with NiM presented a small improvement in the natural gas

demand by exploring the limits of the constraints. It has been achieved by setting up the stages

accordingly and observing the outputs from the models. Considering the dimension of the system,

this improvement represents savings of thousands of hundreds of dollars a year, which is an

outstanding achievement from a business perspective. However, the optimization methodology

has been designed to explore the operation constraints limits, which does not necessarily mean

that extra maintenance costs would not appear. To optimize the power plant costs, it would be

necessary to expand the approach and to include the whole combined cycle and its costs.

Furthermore, there are two important attention points considering the methodology

used in this research. The first one is that the black-box models have been designed from a very

limited data set, which does not answer how much the simulation model generalizes the real

system. The second one is that the black-box models identified present validation errors, which

influence the optimization results. It means that part of the improvement presented could be a

consequence of the black-box models (especially the constraints). Therefore, the setups found

in this research should be reviewed by the expert engineers from the power plant before it is

carefully and supervised tested in the real system.
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lion approach based on Lozi map for multiobjective transformer design optimization.

International Symposium on Power Electronics, Electrical Drives, Automation and
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Robust identification of pressure oscillations in the combustion chamber of a heavy-duty

turbine. 24th ABCM International Congress of Mechanical Engineering (COBEM),

Curitiba, Brazil, Dec. 2017.
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XXIV Seminário Nacional de Produção e Transmissão de Energia Elétrica (SNPTEE),

Curitiba, Brazil, Oct. 2017.

10. P. G. Inça, F. Chiesa, E. M. Yamao, J. Pierezan, F. T. R. Tovar and T. L. Peruscello.
Simulação da emissão de NO𝑥 de uma turbina a gás do tipo heavy duty utilizando redes

neurais (in portuguese). Workshop de Pesquisa em Computação dos Campos Gerais
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Coelho. Identificação caixa preta de uma turbina a gás usando redes neurais artificiais
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6.4 FUTURE RESEARCH

During the development of the present work, a set of future research fronts has been

discovered to improve the COA and the WfCMO performances and to use the mechanisms

proposed in other NiM. Therefore, the topics for future research regarding the COA, the WfCMO,

and other NiM are:

1. To test the COA and the WfCMO for other real-world engineering problems;

2. To implement and test adaptive versions of the COA and the WfCMO regarding the

total population size, from the initial values to the dynamic flow along the optimization

process (Morales-Castañeda et al., 2020);

3. To implement and test the multi and many-objective versions of the COA and the

WfCMO;

4. To explore improvements on the COA and the WfCMO using quantum inspiration (Yu

et al., 2020; Sun et al., 2012; Talbi and Draa, 2017);

5. To propose the binary (Thom de Souza et al., 2020) and chaotic (Pierezan et al., 2021)

versions of the WfCMO;

6. To propose a hybrid NiM combining the COA and the WfCMO populations and

mechanisms.

Regarding the heavy-duty gas turbine application scope, the following topics can be

explored in future research:

1. To improve the black-box models using new acquired data to increase the reliability of

the optimization results;

2. To explore a multiobjective optimization approach considering the gas consumption,

the pressure oscillations, and the NO𝑥 emissions as objectives to be minimized;

3. To design the other elements from the combined-cycle power plant to obtain and

complete the operation model and optimize the Heat Rate.
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APPENDIX A – DEFINITIONS OF THE BENCHMARK FUNCTIONS

This appendix is based on the definitions of the IEEE-CEC 2017 competition of single-

objective optimization (Suganthan et al., 2016). A general description of the benchmark functions

and the evaluation criteria are provided.

A.1 BENCHMARKS DESCRIPTION

A set of 30 benchmark functions has been proposed in the IEEE-CEC 2017 competition

of single-objective real-parameter optimization. However, one function has presented technical

issues and it has been removed from the set (the function 2). The remaining benchmark functions

are presented in Tab. A.1, where an identification (𝐹) assigned and main the features are

presented, including the base functions and the global optima.

As it can be seen, the benchmark functions can be pure or a combination of more

functions, called Base Functions. As consequence, the benchmark problems are labeled according

to the resulting features. The features notations are:

• C: Composition;

• H: Hybrid;

• M: Multimodal;

• N-s: Non-separable;

• S: Separable;

• U: Unimodal.

By definition, the composition functions are written as:

𝐹 (
𝑥) =
𝑛∑
𝑖=1

{𝜔𝑖 · [𝜆𝑖𝑔𝑖 (𝑥) + 𝑏𝑖𝑎𝑠𝑖]} + 𝐹∗, (A.1)

where 𝑔𝑖 (𝑥) is the 𝑖𝑡ℎ basic function used to construct the composition function, 𝑛 is the number
of basic functions, 𝜔𝑖 and 𝜆𝑖 are used to normalize and to weight the composition, 𝑏𝑖𝑎𝑠𝑖 is used
to define the global optima position and 𝐹∗ defines the optimal cost of the benchmark.

On the other hand, the hybrid functions are defined as:

𝐹 (
𝑥) =
𝑛∑
𝑖=1

{𝑔𝑖 (𝑀𝑖𝑧𝑖)} + 𝐹∗, (A.2)

where 𝑀𝑖 is a component used to rotate the global optima and 𝑧𝑖 is used to shift the global optima
of 𝑔𝑖. Finally, the multimodal functions are those that present numerous local optima, while
unimodal functions present only one region of convergence.

The search space of all benchmarks is defined as [−100, 100]𝐷 , where𝐷 is the dimension

of the function or, in other words, the number of design variables. The stopping criteria is the

number of function evaluations, denoted 𝑁𝑚𝑎𝑥 , set to 10000 × 𝐷.
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𝐹𝐶𝐸𝐶 Base Functions Features 𝐹∗ = 𝐹 (
𝑥∗)
1 Bent Cigar U, S 100

3 Zakharov U, S 300

4 Rosenbrock M, N-s 400

5 Rastrigin M, N-s 500

6 Scaffer M, N-s 600

7 Lunacek Bi-Rastrigin M, N-s 700

8 Non-Continuous Rastrigin M, N-s 800

9 Levy M, N-s 900

10 Schwefel M, N-s 1000

11 Zakharov, Rosenbrock, Rastrigin M, H, N-s 1100

12 High Conditioned Elliptic, Modified Schwefel, Bent Cigar M, H, N-s 1200

13 Bent Cigar, Rosenbrock, Lunache Bi-Rastrigin M, H, N-s 1300

14 High Conditioned Elliptic, Ackley, Schaffer, Rastrigin M, H, N-s 1400

15 Bent Cigar, HGBat, Rastrigin, Rosenbrock M, H, N-s 1500

16 Expanded Schaffer, HGBat, Rocenbrock, Modified Schwefel M, H, N-s 1600

17 Katsuura, Ackley, Expanded Griewank plus Rosenbrock, M, H, N-s 1700

Modified Schwefel, Rastrigin

18 High Conditioned Elliptic, Ackley, Rastrigin, HGBat, Discus M, H, N-s 1800

19 Bent Cigar, Rastrigin, Expanded Griewank plus Rocenbrock, M, H, N-s 1900

Weiertrass, Expanded Schaffer

20 Happycat, Katsuura, Ackley, Rastrigin, M, H, N-s 2000

Modified Schwefel, Schaffer

21 Rosenbrock, High Conditioned Elliptic, Rastrigin M, C, N-s 2100

22 Rastrigin, Griewank, Modified Schwefel M, C, N-s 2200

23 Rosenbrock, Ackley, Modified Schwefel, Rastrigin M, C, N-s 2300

24 Ackley, High Conditioned Elliptic, Griewank, Rastrigin M, C, N-s 2400

25 Rastrigin, Happycat, Ackley, Discus, Rosenbrock M, C, N-s 2500

26 Expanded Scaffer, Modified Schwefel, Griewank, M, C, N-s 2600

Rosenbrock, Rastrigin

27 HGBat, Rastrigin, Modified Schwefel, Bent-Cigar, M, C, N-s 2700

High Conditioned Elliptic, Expanded Scaffer

28 Ackley, Griewank, Discus, Rocwnbrock, M, C, N-s 2800

Happycat, Expanded Scaffer

29 F15, F16, F17 M, C, N-s 2900

30 F15, F18, F19 M, C, N-s 3000

Table A.1: Benchmarks definition from IEEE-CEC2017

To improve the readers understanding, some of the benchmark functions are drawn in

Figs. A.1 and A.2, which contain the shape and the level plots for 𝐷 = 2 and 50 points in each

input axis.

A.2 EVALUATION CRITERIA

The evaluation criteria presented in this section is a tool for comparing the performance

of a set of optimization algorithms, denoted Ψ. It is divided into two analyses: score evaluation
and computational complexity.
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a) F1 b) F4

c) F5 d) F6

e) F7 f) F8

g) F9 h) F10

Figure A.1: 3D-view of some benchmark functions considering 2D - Part I
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a) F21 b) F22

c) F23 d) F24

e) F25 f) F26

g) F27 h) F28

Figure A.2: 3D-view of some benchmark functions considering 2D - Part II
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The score evaluation is an index with values from 0 to 100 that equally considers two

criteria. The first one is the sum of the errors between the optimal and the achieved cost (𝑆𝐸) for
all dimensions, such that:

𝑆𝐸𝑎 =
29∑
𝑖=1

[(0.1 × 𝑒10𝐷𝑎 ) + (0.2 × 𝑒30𝐷𝑎 ) + (0.3 × 𝑒50𝐷𝑎 ) + (0.4 × 𝑒100𝐷𝑎 )] (A.3)

for all 𝑎 ∈ Ψ, where 𝑒10𝐷𝑎 , 𝑒30𝐷𝑎 , 𝑒50𝐷𝑎 and 𝑒100𝐷𝑎 contains the error values for the algorithm 𝑎 and
functions with dimensions 10, 30, 50 and 100, respectively. This sum is transformed into the first

score 𝑆1, which is defined as:

𝑆1,𝑎 = (1 − 𝑆𝐸𝑎 − 𝑆𝐸𝑀𝑖𝑛

𝑆𝐸𝑎
) × 50 (A.4)

for all 𝑎 ∈ Ψ, where 𝑆𝐸𝑀𝑖𝑛 represents the minimum of the errors sum among all algorithms.

The second one considers the sum of ranks achieved by the algorithms for each

benchmark function dimension, such that:

𝑆𝑅𝑎 =
29∑
𝑖=1

[(0.1 × 𝑟𝑎𝑛𝑘10𝐷𝑎 ) + (0.2 × 𝑟𝑎𝑛𝑘30𝐷𝑎 ) + (0.3 × 𝑟𝑎𝑛𝑘50𝐷𝑎 ) + (0.4 × 𝑟𝑎𝑛𝑘100𝐷𝑎 )] (A.5)

for all 𝑎 ∈ Ψ, which results in the second score (𝑆2), defined as:

𝑆2,𝑎 = (1 − 𝑆𝑅𝑎 − 𝑆𝑅𝑀𝑖𝑛
𝑆𝑅𝑎

) × 50 (A.6)

for all 𝑎 ∈ Ψ, where 𝑆𝑅𝑀𝑖𝑛 represents the minimum of the rank sum among all algorithms. The

final score of each algorithm is the combination of those two criteria, such that:

𝑆𝑐𝑜𝑟𝑒𝑎 = 𝑆1,𝑎 + 𝑆2,𝑎 (A.7)

for all 𝑎 ∈ Ψ.
The computational complexity is calculated according to the time spent to execute the

optimization, mitigating the influence of the benchmark function itself and the computer features.

The complexity of the 𝑎𝑡ℎ algorithm regarding the dimension 𝐷 is defined by the following

equation:

𝐶𝐷
𝑎 =

(𝑇𝐷
2,𝑎 − 𝑇𝐷1 )
𝑇0

, (A.8)

where 𝑇0 is the computer time calculated according to Alg. 13, 𝑇
𝐷
1
is a specific function time

considering 𝐷 and 𝑇𝐷
2,𝑎 is the time spent by the 𝑎

𝑡ℎ algorithm to run the function for 𝐷.

According to the IEEE-CEC 2017 definitions, the time 𝑇𝐷
1
is calculated based on one

time run with 𝑁𝑒 evaluations of the specific function for 𝐷. To mitigate possible oscillations
in the Computer Processor Units (CPU) or even in the Random Access Memory (RAM), the

time 𝑇𝐷
1
is obtained through the average of 𝑁𝑡 runs of 𝑁𝑒 evaluations. Finally, the time 𝑇

𝐷
2,𝑎 is

obtained as the average time among 𝑁𝑡 optimizations with 𝑁𝑒 evaluations of the specific function
with dimension 𝐷.
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Algorithm 13 Computation of time T0
1: Initialize the time counter T0 and 𝑥 = 0.55
2: for 𝑖 from 1 to 1000000 do
3: 𝑥 = 𝑥 + 𝑥
4: 𝑥 = 𝑥

2

5: 𝑥 = 𝑥 · 𝑥
6: 𝑥 =

√
𝑥

7: 𝑥 = ln 𝑥
8: 𝑥 = exp 𝑥
9: 𝑥 = 𝑥

(𝑥+2)
10: Stop the time counter 𝑇0 and store the resulting time.
11: end for
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APPENDIX B – COMPLEMENTAR RESULTS

This appendix presents the complementary results from the IEEE-CEC 2017 116

benchmark functions. The descriptive statistic of the errors is presented in terms of minimum,

average, median, maximum, and standard deviation values from Tabs. B.1 to B.29.
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