
 

 

UNIVERSIDADE FEDERAL DO PARANÁ 

 

 

LUCAS ROBERTO FERREIRA 

 

 

 

 

 

 

 

 

HYBRID INTELLIGENT CONTROL FOR SMART GRIDFUNCTIONALITIES 

INTEGRATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CURITIBA 

2020  



 

 

LUCAS ROBERTO FERREIRA 

 

 

 

 

 

 

 

 

 

 

HYBRID INTELLIGENT CONTROL FOR SMART GRID 

FUNCTIONALITIES INTEGRATION 

 

 

Tese apresentada ao curso de Pós-

Graduação em Engenharia Elétrica, Setor 

de Tecnologia, Universidade Federal do 

Paraná, como requisito parcial à obtenção 

do título de Doutor em Engenharia 

Elétrica.  

 

Orientador: Alexandre Rasi Aoki  

 

Coorientador: Germano Lambert-Torres. 

 

 

 

 

 

 

 

CURITIBA 

2020  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 
 



 

 

RESUMO 

 

Ao longo dos anos, as redes de distribuição de energia estão ficando mais 
inteligentes e automatizadas, consequentemente problemas complexos emergem, 
onde estes são os gatilhos para melhorar antigos estudos e iniciar novas linhas de 
pesquisa. A Rede Elétrica Inteligente é o conceito abrangente para entender os 
novos problemas e alterar o comportamento tradicional do sistema para uma nova 
abordagem, partindo para uma rede com mais intercomunicação entre os elementos 
ativos. Para contribuir com avanços, a ideia principal desta tese é iniciar uma nova 
linha de pesquisa para combinar diferentes funcionalidades do Sistema Avançado de 
Gerenciamento da Distribuição (ADMS), a serem resolvidas por apenas um 
algoritmo ao mesmo tempo. Para iniciar os estudos dessa linha de desenvolvimento, 
foram selecionados os problemas mais comuns que causam grande impacto nas 
redes de distribuição, as interrupções inesperadas e as sobrecargas, resolvidas 
pelos algoritmos de Auto-Recuperação e Descarte de Carga, respectivamente. Os 
estudos atuais concentram-se em resolver o problema de Auto-Recuperação 
primeiro e depois, se o sistema iniciar ou manter uma sobrecarga, executar o 
descarte de carga para reduzir a carga e manter o sistema no modo operacional. No 
entanto, em vez de ter as duas funcionalidades trabalhando em um modo 
sequencial, por que não desenvolver um algoritmo exclusivo para processar o 
problema e resolvê-lo ao mesmo tempo, de forma simultânea? Assim, esta tese traz 
exatamente esse novo tipo de abordagem por meio da metodologia de Aprendizado 
por Reforço (um algoritmo de Machine Learning para tomar decisões) através do 
algoritmo Q-Learning. Em que os elementos do Q-Learning foram adaptado para 
reproduzir o ambiente como a rede de distribuição, a recompensa como a 
maximização da carga e as ações como a troca de posição das chaves (Auto-
Recuperação) e a porcentagem de reduções de carga (Descarte da carga), a 
interagir no sistema para determinar o próximo estado (topologia). Para provar o 
algoritmo desenvolvido, foi utilizado um sistema urbano real com cinco 
alimentadores interconectados, onde o sistema foi dividido em um caso de três 
alimentadores, para determinar a escolha da política (a ε-greed foi a selecionada), 
criar alguns casos básicos e ser comparada com outras abordagens sequenciais. O 
caso completo foi usado para sobrecarregar o sistema e analisar os resultados para 
casos complexos. Em todas as simulações, os resultados encontraram uma boa 
solução após o estado de isolamento para maximizar a restauração da carga, e em 
alguns casos em que o sistema foi acionado por uma sobrecarga, o algoritmo pode, 
no mesmo momento, reconfigurar o sistema para evitar a sobrecarga e aplicar a 
redução de carga. Portanto, este trabalho forneceu uma nova linha de estudo e 
contribuir com uma nova linha de pesquisas a ser aprofundado em trabalhos futuros. 

Palavras-chave:  ADMS. Auto-Recuperação. Descarte de Carga. Aprendizado por  
Reforço. Q-Learning. Rede de Distribuição. Abordagem 
Simultânea.  



 

 

ABSTRACT 

 

Along the year, the distribution networks are getting more intelligent and automated, 
consequently complex problems emerge, where these are the triggers to improve old 
studies or start new lines of researches. The Smart Grid is the broad concept to 
understand the new problems and change the traditional system behavior for a new 
approach, where more intelligence and intercommunication is improved to solve the 
several distribution problems. To contribute on the network enhancements, the main 
idea of this thesis is to start a new line of research to combine different Advanced 
Distribution Management System (ADMS) functionalities to be solved by only one 
algorithm at the same time. To start the studies on this line of strategy, it was 
selected the most usual problems that has a big impact in distribution networks, the 
unexpected outages and the overloads, which are solved by Self-Healing and Load 
Shedding algorithms respectively. The current studies focus to solve the Self-Healing 
problem first and after, if the system initiate or maintain an overload, executes the 
Load Shedding to reduce the load and keeps the system in an operative mode. 
However, instead of having both functionalities working in a sequential mode, why 
not developed a unique algorithm to process both problem and solve them at the 
same time? Thus, this thesis brings exactly this new type of approach through the 
Reinforcement Learning methodology (a Machine Learning algorithm to take 
decisions) using the Q-Learning algorithm. The Q-Learning elements were adapted 
to reproduces environment as the distribution network, the reward as the 
maximization of load and the actions as the switch commutation (Self-Healing) and 
percentual of load reductions (Load Shedding) to be selected and interact on the 
system to determine the next state (topology). To prove the algorithm developed, it 
was used a real urban system with five interconnected feeders, where the system 
was divided in a three-feeder case, to determine the policy choice (ε-greed was 
selected), create some basic cases and be compared with other Self-Healing + Load 
Shedding sequential approaches. The complete case was used to overload the 
system and analyze the results for complex cases. In all simulations the results could 
find a good solution after the isolation state to maximizes the load restoration, and 
some cases where the system was trigger by an overload the algorithm could at the 
same moment reconfigure the system to avoid the overload and apply the load 
curtailment. Thus, this work provided a new line of study and contribute for new 
researches on this area to go deeper and improve ADMS algorithms. 

Keyworlds: ADMS. Self-Healing. Load Shedding. Reinforcement Learning.  
Q-Learning. Distribution Network. Simultaneous Approach. 
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1 INTRODUCTION 
 

 

1.1 CONTEXT 

 

The energy is an essential resource in human life that affects directly in 

society, transports, security, life support, and all these points together, having a 

significant economic impact in a nation. Since years ago, researches tried to count 

how much the cost impact of an interruption is for the consumers, industrial, 

commercial, and residential (SULLIVAN et al., 1997; WACKER; BILLINTON, 1989; 

YAMASHITA et al., 2008). With time, the energy is growing in importance, and 

nowadays, how much more power can be distributed, more development occurs, 

factories can keep their production, the commerce can maintain the trading, new 

ideas can emerge from the house garages, and many other uncountable good things 

can happen. 

Over the last decades the networks have become complex, due to the number 

of devices installed, the number of consumers, the environmental laws, new 

regulations, aging of the equipment, among others (MOMOH, 2012). In line to have 

better developments in power system area, a new concept emerged at the beginning 

of 21st century called Smart Grid. This concept was given to invest in new 

technologies to the power system infrastructure to solve the problems occurred in 

U.S.A. after the wave of blackouts around the country. The most important blackout 

was in the late 90’s and the other in the summer of 2003, due to power system 

vulnerability that stated a cascade effect of outages (LIU et al., 2018; MA et al., 

2018). Thus, some researches in this area began to be developed in order to 

become the system secure, agile, robust and capable to adapt in unexpecting 

events, so the idea of Smart Grid arisen. There are many and many definitions for 

Smart Grid, in summary, it is a system based on new technological applications to 

control, monitor and manage all the power system, it should be efficient through 

intelligent techniques to change a passive grid in an active grid, where not only the 

utility but also the consumer can be part of the system (AMIN, 2005; CECATI et al. 

2010; CARVALLO; COOPER, 2011).  
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In an international context and according to International Energy Agency 

(2011), there are countries as China, United States, Italy, Japan, South Korea, Spain, 

Germany, Great Britain and France that already are implementing the system 

automation to Smart Grids, including some functionalities as intelligent metering and 

technologies focused in renewable energy. According to Brown (2008), there are 

other projects in this area, such as, Electric Power Research Institute (EPRI) 

IntelliGrid, EPRI Advanced Distribution Automation, Modern Grid Initiative by U.S. 

Department of Energy (DOE), GridWise by DOE, Advance Grid Application 

Consortium by Concurrent Technologies Corporation, GridWorks by DOE and 

Distribution Vision 2010. In Brazil, there are some pilot projects already in progress 

or in order to be implemented, such as the CEMIG future city, Búzios Intelligent city, 

Smart Grid Light, Eletropaulo Digital Project, InovCity of EDP Bandeirante, Paraná 

Smart Grid and others (PROJETOS PILOTO NO BRASIL, 2015). 

Besides the researches on this area, one possible investment, as a tool to 

work in a Smart Grid environment is the Advanced Distribution Management System 

(ADMS), which is a software platform that includes many functionalities to guide the 

distribution system to be more resilient, in other words, to have the capacity to 

recover from disaster, for instance, overload, outages, less of voltage and increase of 

losses, be reliable and efficient in its operations (ENERGY, 2015; DEVANAND et al., 

2020; PILO et al., 2009). A complete ADMS is composed of algorithms for automated 

fault location, fault isolation, service restoration, conservation voltage reduction, peak 

demand management, volt/var control optimization, microgrid operation, and electric 

vehicle support. 

For each one of these features, there is a unique algorithm that will run 

independently when the correspondent trigger occurs. In general, it is not possible to 

reach an optimal global solution, resolving only a unique systemic problem; because 

the algorithm tries to find the best case to solve an isolated and unique issue. For 

instance, in the self-healing problem, there are some articles showing techniques to 

solve it (SUDHAKAR; SRINIVAS, 2011; TORRES et al., 2018), by centralized, 

decentralized, or distributed systems, using graph theory or artificial intelligence. But, 

in all cases, they solve an issue per time. Furthermore, other ADMS functionalities 

can have independent techniques for Volt/Var (SALLES et al.,2016), microgrid 

(RESENDE et al., 2011), load management (ZHOU et al., 2016), and so on. Beyond 

the self-healing problem, there is another important trigger of outages, which is the 
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overload, as pointed out in Yamashita et al. (2008), so in this case, there are 

techniques to mitigate the issues related to the sudden growth of load in the system 

as showing in (MORTAJI et al., 2017; FERNANDES et al., 2008; XU et al., 2017). A 

combination of self-healing and load shedding can be seen in Ferreira et al. (2014) 

and Lin et al. (2011), where more than one problem occurs to be solved using the 

same technique, but it should address one single trouble first and after another. 

As demonstrated in the paper above, there are a lot of intelligent algorithm 

used to optimize the solution and make the power system better during the operation. 

As punctuated by Venayagamoorthy (2009), the Computational Intelligence is way of 

future, the next step of Artificial Intelligence and will be the most potential to evolve 

the actual network for a Smart Grid solution. Thus, leaded to improve more 

intelligence during the operation decision, this work shows a new way to act through 

different triggers (outages and overloads). 

 

1.2 MOTIVATION 

 

Currently, there are two processes to solve the faults into the distribution grid. 

The first tries a simple service restoration where if a source is available to be used, a 

set of loads might be transferred to this feeder, and the process ends up at this 

moment. The second process considers the ADMS functionalities designed to solve 

each problem per time, i.e., in a sequential way. For example, in a case where the 

self-healing solution does not have an alternative source to transfer the load without 

causing an overload, the service restoration will not be executed a priori. However, a 

second functionality might be triggered to avoid this overload. So, load shedding can 

cut off part of the load, before the self-healing actions. Then, self-healing is enabled 

after load shedding. 

This second process is more complex, and it will require operational 

experience or automatic triggering of functionalities to develop it. So, the motivation 

of this thesis is based on the idea of solving complex problems by several 

functionalities simultaneously. The problem in this approach is that the search space 

is increased exponentially, and simple techniques cannot find a solution or solve in a 

short time. Then, the contribution of this paper is to call on Reinforcement Learning, 

which is prepared to handle complexity environments.  
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1.3 OBJECTIVES 

 

The main goal of this thesis project is to develop an intelligent control 

technique to optimize multiples Smart Grid functionalities, considering, spatial and 

temporal analysis. 

The specific goals include: 

a) To evaluate nonlinear, stochastic and time-variant systems;  

b) To analyze how it is possible to model the electric power network, aiming 

Smart Grid functionalities influence on the grid;  

c) To develop the intelligent control technique to determine the best result 

for the multi Smart Grid Functionalities; 

d) To realize simulations to validate the technique developed and to be used 

on the power system model for the integration of several functionalities. 

 

1.4 ORIGINAL CONTRIBUTIONS 

 

The original contribution in this thesis is related with a new and unique method 

to solve two independent issues that occurs on the distribution network: self-healing 

and load-shedding. Instead of wait the solution of the self-healing to act in some shed 

to put the system in a normal operative scenario, the algorithm can calculate at the 

same time, using one process to find the better solution of reconfiguration and 

shedding on the network. 

The solution for this method lies on the machine learning area, where it’s used 

the Reinforcement Learning (RL) method to create the action (switching and 

shedding) and interact with the environment (distribution system). For each iteration 

it’s verified if the action taken has a good reward (system load, operative constrains 

and no parallelism) to find the better solution for the current problem. 

To work properly the Q-Learning algorithm selected, some adaptations was 

been considered in the standard process, as the value function to be modeled 

according the necessity of the distribution system and the reward function, where the 

reward is guide to minimize the exploration and maximize the exploitation. 
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1.5 DOCUMENT STRUCTURE 

 

This document is divided in six main chapters, where the first chapter presets 

the introduction of thesis with the objectives and motivation that guide the author to 

start the studies to solve the related problem. The second chapter discourse about 

the state of art, bringing the concepts of ADMS, Self-Healing, Load Shedding, 

Machine Learning and Reinforcement Learning. The chapter three talks about the 

bibliographic research, presenting the contribution in Self-Healing, Load Shedding 

and Reinforcement Learning with Self-Healing areas. 

From the chapter four is discussed about the Materials and Methods to 

develop the algorithm and provide the tests to prove the capacity of the new 

approach proposed. The chapter five shows the scenarios and results, besides a 

comparison with other techniques that uses the sequential approach. The last 

chapter presents the conclusion and proposes the new lines of researches from the 

implementation discussed in this work. 
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2 STATE OF THE ART 
 

This chapter brings the initial theoretical concepts about the mainly topics for 

this work, such as, Advanced Distribution Management System, Self-Healing, Load 

Shedding, Machine Learning and Reinforcement Learning. The last topic will be open 

in detail to explain the technique called Q-Learning that was used to conclude the 

objectives. 

 

2.1 ADVANCED DISTRIBUTION MANAGAMENT SYSTEM 

 

Before to discuss about the Advanced Distribution Management System 

(ADMS), should be cleared the difference between the Smart Grid (SG) and ADMS. 

For this work the Smart Grid is a concept to show the problems nowadays in the 

distribution network, and how these problems can be solutioned and what is the 

future to be guided (MOMOH, 2009). For example, today the system is based on 

passive and centralized control, the SG brings the vision to be active and consider a 

mix of centralized and distributed control (DJAPIC et al., 2007). It should happen 

because the number of automated devices (sensors, switches, regulators, 

transformers, capacitor banks), advanced metering infrastructure and more 

renewable resource penetration installed on the network. These actuators contribute 

to optimize the power flow and the costs of losses and generation, regulates the 

voltage, acts on the reactive flows through the capacitor banks, reconfigures the 

distribution network and manage with stores and distributed generation (PILO et al., 

2009). However, the ADMS is the framework to contribute with the SG aims, where, 

in a simple way, it’s composed by algorithms (functionalities) to process the inputs, 

find the best answers for the current problem and acts via the outputs. The Smart 

Grid is ample concept, while the ADMS is one tool to reach the big objective. 

The Advanced Distribution Management System is an integrated platform for 

Supervisory Control and Data Acquisition (SCADA), once the data is inside there are 

many advanced applications to create and take decisions (DEVANAND et al., 2020). 

As shown in FIGURE 1, the ADMS is composed by internal and enterprise bus 

communication, the former is to change information between the applications and the 

latter to communicate with application outside of the ADMS to complement with the 

information provided by the field (e.g., RTUs) and other control centers via Inter-
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Control Center Communications Protocol (ICCP) for instance, where these 

information is processed by the SCADA module to treat and send for the respective 

application. The application might be: 

a) Distribution Management System (DMS): responsible to take the decisions 

in the distribution side in the Self-Healing, volt/var and load management 

area. This application can use power flow and other techniques to support 

better choices; 

b) Energy Management System (EMS): responsible to take the decisions on 

the transmission and generation side. The same way the DMS, they can 

use many other techniques to support the choices as the optimal power 

flow and state estimator; 

c) Outage Management System (OMS): responsible to manage the outages 

opened spontaneously by a consumer or an intelligent electronic device, or 

planned, when the field crew should do any maintenance on the field. This 

module has the importance to calculate the SAIDI, SAIFI and estimated 

time for restoration; 

d) Distributed Energy Resources (DER): as more and more resources came 

from the customer or small generation installed in the medium voltage, new 

techniques should be created to monitor and control these types of 

resources that can be renewable or not; 

e) Battery Energy Storage Solutions (BESSs): responsible to monitor and 

control the energy store system. 

 

Other important modules should be discussed, one is the Geographical 

Information System (GIS), where the geographical information used in old system 

today should be imported in an ADMS for the applications understand the topology. 

Moreover, the GIS is can be converted, usually, in the Common Information Model 

(CIM) that is a standard to model the networks components (distribution and 

transmission) in order to make understandable by programs. The last component to 

be cited is the archive, where all information from the field and processed by the 

application are stored for a pre-defined period (small, medium or long term) to be 

consulted or reprocessed in any study. 
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FIGURE 1 – ADMS STRUCTURE 

 

 
SOURCE: Adapted from SIEMENS INDUSTRY INC (2019). 

 

The integration of all modules that compose the ADMS guides the distribution 

system to be more (U.S. DEPARTMENT OF ENERGY, 2015; BROWN,2008): 

a) resilient: the capacity to recover from any disaster; 

b) renewable: to be possible in implement large amount of distributed energy 

resources; 

c) replacement: to change the old system in a way to keep with the same 

functionality;  

d) regulation: to accept changes that improves reliability and efficiency; 

e) quality improvement: always provide better energy distribution with less 

interruption frequency and duration; 

f) resistant to cyber attacks: the ADMS must communicate with other 

outside applications and other Intelligent Electronic Devices (IEDs), so it 
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has ports opened and possible to be accessed remotely or inserted any 

malware, the ADMS should be prepared to avoid any external interference; 

g) minimizes operations: old control center software depended all the time 

of the operator to take actions, and these should take many “clicks” until 

reach the desire command, so the ADMS provide less “clicks” and more 

intuitive decision to be done. 

 

2.2 SELF-HEALING 

 

Algorithms or techniques to solve an outage on the network automatically can 

have many names, as Self-Healing (SH), Serf-Recovery, Service/System 

Restoration, Fault Detection Identification and Restoration (FDIR), Fault Location 

Isolation and Service Restoration (FLISR), where in this thesis will be most used the 

term Self-Healing. In summary, SH can be determined as a system that consults the 

topology via the GIS data to understand the feeders and adjacencies. Moreover, the 

SH utilizes the information from the field and treated by SCADA to obtain the device 

status and measurements, beside to be triggered when an outage occurs.  

All information is processed in any SH algorithm to determine the fault 

location, which are the switches to isolate the outage and find the switch sequence to 

restore the out-of-service healthy part of the feeder to another one that could sustain 

without exceed any limit of load and voltage. The switches can be manually or 

automatic depending of the strategy determined by the user and the algorithm 

selected, always thinking to maximize the load restoration and minimizing the 

number of switching and losses. To find the better restoration solution, some other 

techniques can be used as the Power Flow to determine what can happen with the 

new feeder, once some load will be transferred. The process should be fast enough 

according the energy quality standards provided in each region (OUALMAKRAN et 

al., 2012; TOUNE et al., 2002). 

The FIGURE 2 shows the steps for Self-Healing problem for two feeders and 

seven switches. In a normal distribution network state, a fault occurs downstream of 

DVC1, so the first step is to locate the fault and determine the switches to be opened 

and to isolate (step 2). The last step is to find a normally open switch (DVC7) to close 

and transfer the de-energized segments to a healthy feeder, noticed that all 

constraints should be respected for a complete service restoration. 
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FIGURE 2 – SELF-HEALING STEP-BY-STEP 

 
SOURCE: The author (2020). 

 

The Self-Healing, as understandable in Smart Grid approach, was initially 

developed as a concept of an intelligent flight control system by the University of 

Washington with the objective of assisting a pilot response in critical situations that 

may occur to the airplane as conditions of failure or sudden damage to the airplane 

(AMIN, 2005). The initial researches for power system was in Amin (1998) through 

Government-Industry Collaborative University Research (GICUR) program that was 

contemplated the union of Electric Power Research Institute (EPRI) and the U.S. 

Department of Defense (DoD) to execute the project. The program aimed to develop 

new tools and techniques that would encompass large infrastructures to "self-

recover" in response to threats, material failures and other destabilizers. Nowadays, 

there are a list of different techniques to solve the Self-Healing problem, as pointed in 

Tang et al. (2014). 

Studies about service restoration came from the blackout occurred in the past, 

which originate researches to avoid other blackouts mainly in the transmission 

network, where it was the first material for studies and sketches of algorithms and 

process, before the focus start on the distribution network, which is more complex 

due to number of switches and instability. However, the complexity was not a 

trammel to start the development in old year, as demonstrated in Aoki et al. (1987, 

1989), Clelland et al. (1987) and Liu et al. (1988), where the authors uses more 
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analytical approaches to find the restoration solution, and today the studies is guided 

by the intelligent algorithms based on the Artificial Intelligence area. 

To solve the service restoration problem the strategies might be considered as 

centralized, decentralized and distributed, according where is executed the logic. The 

centralized approach converges all information from the field in the same point and 

all decisions are taken this centralized controller, here the controller must be robust 

and efficient to support a huge amount of transfer data, for example, ADMS is 

centralized controller. The other way is the descentralized approach, which the 

decision maker is presented in a substation retrieving information of the respective 

devices and changing the information among other substations to determine the 

better reconfiguration, in this case there is less communication data, but it is not 

possible to cover all distribution network. The last approach is the distributed, where 

the logic is presented in the IEDs and take actions based in the communications with 

other IEDs, the Multi-agent system is one method to be applied in this case (ZIDAN 

et al., 2017). 

Thus, development of techniques to solve the Self-Healing problem either in 

transmission or in distribution are important to avoid the final consumers to be de-

energized by a long time, making the network more resilient, reliable, rapid-recovery, 

intelligent, and for the utility, they can minimized the losses and penalties caused by 

an outage. 

 

2.2.1 Brazilian Standards and Quality Index for Self-Healing 

 

Module 8 of the Electricity Distribution Procedures in the Agência Nacional De 

Energia Elétrica (2012) (ANEEL) refers to the Brazilian electric energy quality, which 

was created from the Resolution No. 395 in 2009. As presented in Module 8, the 

verification of the electric energy quality in the distribution network is carried out 

through service continuity index, and are listed below: 

a) Duration of Individual Interruption per Consumer Unit (DIC); 

b) Frequency of individual interruption by Consumer Unit (FIC); 

c) Maximum Continuous Interruption Duration per Consumer Unit (DMIC); 

d) Duration of Individual Interruption Occurred on a Critical Day per Unit 

Consumer (DICRI); 

e) Equivalent Duration of Interruption per Consumer Unit (DEC); 
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f) Equivalent Interruption Frequency per Consumer Unit (FEC). 

 

And the indicators of time to respond to emergency events: 

a) Average Preparation Time (TMP); 

b) Average Displacement Time (TMD); 

c) Average Execution Time (TME); 

d) Average Emergency Response Time (TMAE). 

Another important point to be considered for SH and mentioned in Module 8, 

are the limits of the nominal voltage range, which are established for the voltage 

profiles greater than 1 kV and less than 69 kV, as shown in Table 1. 

 
Table 1 – VOLTAGE RANGE LIMITS DEFINED BY ANEEL 

Service Voltage 
Measure voltage variation range (MV) in reference 

voltage (RV) 

Adequate  

Precarious  

Critic  

SOURCE: Adapted from Agência Nacional De Energia Elétrica (2012). 

 

2.3 LOAD SHEDDING 

 

Another point that can be associated with Smart Grid and also to contribute to 

solve the problem generated by the blackouts is the load shedding technique, where 

in this case, it is the system alleviating part of the power demand to stabilize the load 

and generation balance, so it is possible to avoid a big blackout from the unbalance 

of the system. One of the most common technique used to load shedding is the 

under-frequency verification, once a disbalance happens, a perceptible variation in 

the frequency creates a trigger to shed the load (FARANDA et al., 2007). 

The preoccupation with the blackout made some programs began to be 

implemented around the world, as the Regional Load Mitigation Scheme (ERAC, 

Esquema Regional de Alívio de Carga do Português), which is a standard, in Brazil, 

from the National Electric Energy Agency (ANEEL) to configure the protection relay 

to act in underfrequency and curtail parts of the distribution networks according a 
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pre-defined percentual by National Electric System Operator (ONS) for each utility 

(OPERADOR NACIONAL DO SISTEMA ELÉTRICO, 2009). 

In this work the Load Shedding is applied in a complete final consumer which 

will be curtailed and in cases related with the system restoration, once a simple 

switching sequence cannot restore a complete block of load, the load curtailment 

should be applied to try an energization in part of the out-of-service consumers; 

however, the consumer won’t be always the most affected, there are studies where 

the smart appliances1 can be turned off in some houses to reach the percentual to be 

reduced (SIEBERT et al., 2014). Furthermore, in a worst case should be shed some 

load blocks, which is a cluster of consumers to be out-of-service. 

Depending of the technique to be utilized in the load shedding, the load to shut 

off can be done in three different ways, as shown in FIGURE 3. The first, indicate by 

the number 1, is a segment shed, where a switch should be opened, and all loads 

downstream will be de-energized. The number 2, means a shed on the transformer, 

so a small region will be affected. The last one, number 3, is the case when the 

consumer has intelligent meter and the curtail can be done in the end of the process, 

some case even the smart appliances can be turned off to reduce the load. 

 
FIGURE 3 – TYPES OF LOAD SHEDDING 

 
SOURCE: The author (2020). 

 

 

  

 
1 Intelligent house equipment that can be controlled remotely to be turned on/off when desired. 
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2.4 MACHINE LEARNING 

 

In the past, Artificial Intelligence (AI) was the trend word and it was a term to 

include many methods to solve a problem, for example, problems in areas as 

economics, electrical, robotics, etc., based on an objective optimization. 

The mainstream word is the Machine Learning (ML), which is a branch inside 

of the Artificial Intelligence and tries to create programs to learn based on the 

experience and information provided previously when possible. According to Shalev-

shwartz; Ben-david (2014), a difference between AI and ML is about the learning 

(“intelligence”) process, once the AI is an imitation of the intelligent behavior the other 

seeks for the positive points that a computer can provide to support the human 

intelligence. 

The ML approach is being increasing in electric power area, where many 

techniques is solving complex problems and having a different understanding to help 

the power system be more robust and resilient, once the consumers are more active 

on the network and more information should be analyzed by the utilities to provide a 

better energy quality. According to Cheng; Yu (2019), at this moment the world is in 

the AI 2.0 from the Machine Learning uses in power system, the article provides a 

good discussion among smart energy, electric power system and Machine Learning. 

For this chapter, it was used as basis to describe the Machine Learning 

concepts the research of Mitchell (1997) and Shalev-shwartz; Ben-david (2014) 

works. The former presents the base concepts to understand the Machine Learning, 

such as, statistics, estimation theory, artificial intelligence, information theory and 

computational learning theory. The latter talks about the key concepts bellow the 

Machine Learning theory and it presents some main algorithms to be used in this 

theme. 

Besides the books, there are goods blogs that talk about the Machine 

Learning and can help to introduce some terms, concepts and examples that 

supports the book information. As a huge area and many information bring up every 

time, interesting blogs may be used as a complement for the traditional form of 

reference. In this case, to support the traditional references the website Maini; Sabri 

(2017) and Brownlee (2013) were consulted to describe some concepts introduced in 

this work. 
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Basically, Machine Learning (ML) is not a simple algorithm and is not a unique 

concept, the ML comprehends many other disciplines as showed in FIGURE 4 and 

there are several algorithms used to solve the problem, FIGURE 5. Furthermore, 

each algorithm has the purpose to manipulate the data input to obtain the 

correspondent result. These algorithms are not a set of simple rules, they are 

programmed to take actions and decisions based on the data input, and so they try to 

learn and to work dynamically over the time. 

 
FIGURE 4 - MACHINE LEARNING AND THEIR DISCIPLINES 

 
SOURCE: The author (2020). 

 

In ML the choice of the best algorithm is fundamental for the best results or the 

possible mix of algorithms can solve the problem more efficiently than a simple 

algorithm, this involves in the first moment the data analysis to comprehend the type 

of problem and what is the expected result. In addition, other important part is the 

training because the learning process to obtain a correct answer, considers a set of 

data applied to adjust the algorithm (equations and parameters). 

Machine Learning may be applied in diverse areas and in distinct problems, 

such as, to control robots, autonomous cars and power generation, to classify 

images text and e-mails, to identify credit card violations, weather prediction, to 

analyze the genomic data and to convert medical archives into medical knowledge. 

For control robotics some examples can be seen in Kouppas et al. (2018), 

where the paper brings the comparison for different machine learning techniques to 

control a bipedal robot from the interferences of electric motors and actuators. The 
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author, in Nandi (2018), came with the idea to use the Deep Reinforcement Learning 

(DRL) and Convolutional Neural Network (CNN) to able the robot to grasp objects. 

Another application with the DRL is shown in Taitler; Shimkin (2017) to control a 

robot in the air hockey game. 

 
FIGURE 5 - MACHINE LEARNING ALGORITHMS 

 
SOURCE: Cheng; Yu (2019). 
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About the autonomous vehicle it’s possible to see in Boroujeni et al. (2018), 

Thammachantuek et al. (2018) and Roncancio et al. (2013) use of vector approach to 

see images, like pedestrian, on the road and decide the vehicle position. In Olgun 

(2018), is applied the DRL to control the car to do some tasks as tracking the lanes, 

following vehicle and stop in some abnormal conditions. 

In power system area some article can be seen in forecast generation in 

Akhter et al. (2019)is done a review of machine learning techniques and other 

metaheuristics to compare the forecast of photovoltaic power based on several 

forecast horizon. The other paper Fleming (2019) brings the prediction for seasonal 

water in US West about the arid region, the author shows a comparison with eight 

different methods. For wind generation, three different algorithms based on machine 

learning and also an ensemble with the techniques can be verified in Du (2019). 

Besides the forecast, another case of study in power system with machine 

learning is related with the microgrid. In Alam et al. (2017) is applied the SVM to 

classify the island detection, the same approach is presented in Mishra; Rout (2017), 

where a combination of techniques (Hilbert-Huang transform and Machine Learning) 

to classify the fault events. 

In the subsection is demonstrated how the Machine Learning can be classified 

based on the learning styles: supervised, unsupervised, semi-supervised learning 

and reinforcement learning, this classification is the most common used on the 

literature. According to Shalev-shwartz; Ben-david (2014), in addition to the 

classification cited, they classify the Machine Learning as Active versus Passive 

Learners, Helpfulness of the Teacher or Online versus Batch Learning. 

 

2.4.1 Classification by Learning Styles 

 

In this section is discussed about the existents learning styles inside of 

machine learning. 

 

2.4.1.1 Supervised Learning (SL) 

 

The concept of supervised learning are algorithms that need a set of data to 

training the model and it is based on applied rules. This training improves the 

“intelligence” of the model to determine the correct output, for instance a prediction. 
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Moreover, this data must have a label for each information because this label helps 

to understand what the correct result from the input data. 

To apply this approach a good dataset should be provided in a way to prepare 

a properly training of the algorithm. In some cases, should be necessary to use all 

possible data, “brute-force”, to training (MUHAMMAD; YAN, 2015). As expected, this 

type of data and analysis can have noises or incomplete information, so other 

techniques should be applied to correct and have better results on the model 

(HODGE; AUSTIN, 2004). 

One example to understand the supervised learning is in FIGURE 6 based on 

regression type, where can be defined the better division to split the two model of 

data that is similar between them. 

 
FIGURE 6 – GRAPHIC EXAMPLE OF SUPERVISED LEARNING 

 
SOURCE: The author (2020). 

 

The supervised learning may be divided in classification and regression types, 

and below some algorithms based on this classification: 

 Linear Regression; 

 Ordinary Least Squares Regression; 

 Backpropagation Neural Network; 

 Decision Trees; 

 Support Vector Machines; 

 k-Nearest Neighbors (k-NN); 

 Bayesian. 
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2.4.1.2 Unsupervised Learning (UL) 

 

In unsupervised learning there is no distinction between the training and test 

data, the reason is because the objective is based on a massive data input, which 

helps the algorithm to find an output of subsets that represents one set of data. This 

data should be the same type of information and will represent something more 

useful to be understood, i.e., to find clusters of data in a mix of different information, 

where is not possible to be done by human hand. For this type of learning, there isn’t 

labeled data to comprehend what is the correct output after the training 

(GHAHRAMANI, 2003). The FIGURE 7 is one example of data cluster with similar 

behavior. 

 
FIGURE 7 – GRAPHIC EXAMPLE OF UNSUPERVISED LEARNING 

 
SOURCE: The author (2020). 

 

The unsupervised learning is a descriptive model and can be divided in 

summarization, association and clusterization. Following some algorithms used for 

unsupervised learning: 

 Apriori; 

 k-Means; 

 Hierarchical Clustering; 

 Principal Component Analysis (PCA); 

 Singular Value Decomposition (SVD); 

 Mixtures of Gaussians. 
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2.4.1.3 Semi-supervised Learning 

 

The semi-supervised learning has the same objective of classification, as the 

supervised model. However, in this case, the dataset is a mix of labeled data and 

unlabeled to train and create better models. The unlabeled data has the meaning of 

modify or reprioritize hypotheses earned from the labeled data (ZHU, 2005). As 

explained in FIGURE 8, there is the learner based on the labeled data and the 

unlabeled data influencing the learning to improving the model. 

 
FIGURE 8 – PROCESS EXAMPLE OF SEMI-SUPERVISED LEARNING 

 
SOURCE: Zhou; Li (2010). 

 

In some application the semi-supervised learning is useful because the 

labeled data is expansive, so it is necessary to spend more space to store the 

information instead of the data for unsupervised methods. Possible algorithms that 

works on this mode are (ZHOU; LI, 2010): 

 Generative Methods: Expectation-Maximization; 

 Semi-Supervised Suport Vector Machines (S3VMs); 

 Graph-Based Methods; 

 Disagreement-Based Methods. 

 

2.4.1.4 Reinforcement Learning (RL) 

 

This learning is different from the other learning models because in this case, 

the agent finds the correct output through the trial and error (actions), for each 
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action an interaction is executed in the environment and it is calculated a reward 

that will represent whether the action taken was positive or not. The Reinforcement 

Learning is composed by three important components:  

a) agent: is the decision maker; 

b) environment: is where the agent interacts; 

c) actions: are the possibilities that the agent can do. 

 

In Kaelbling et al. (1996) are listed some important points that can explicit 

separate the Reinforcement Learning and Supervised Learning Methods based on 

their modeling and application. This work brings up some important points as the 

main differences that there is no correlation between the input and output; the on-line 

performance for RL, where is fundamental. The supervised methods have interest in 

having a future predictive accuracy or statistical efficiency applied in its algorithms 

different of the RL and another point is the RL execute a better exploration of the 

environment, where the supervised cannot process in the same way. 

For this work to solve the Self-Healing problem was used the Reinforcement 

Learning, especially the Q-Learning algorithm, to take the decision and find the best 

switching action and load shedding, simultaneously, to restore the distribution system 

with the maximum load possible. A better explanation about the reinforcement 

learning is demonstrated in the next chapters. 

 

2.5 REINFORCEMENT LEARNING 

 

This section provides an introduction about the Reinforcement Learning 

technique and the algorithm used to solve the problem presented in the first part. The 

principal reference to describe RL was Sutton; Barto (1998), which is an introductory 

book to understand how the reinforcement learning born and grow up beyond the 

years. 

A useful survey is Kaelbling et al. (1996), this paper was used to understand 

some approaches in reinforcement learning and also to comprehend some points 

about the history until to reach the final understanding that is known in Reinforcement 

Learning concept. 
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Another important reference used to understand the concepts and other 

references was Khan et al. (2012). This article brings the initial authors about this 

area, complement with applications to enhance the reinforcement learning and 

finishes the article with an application in robotics. 

 

2.5.1 A Briefly History 

 

Reinforcement Learning is a technique which was born around 80s with 

diverse types of research until be called a reinforcement learning. According to 

Kaelbling et al. (1996), Sutton; Barto (1998) and Cheng; Yu (2019) there are some 

important references in the during the RL construction method, such as, Richard 

Bellman with the Dynamic Programming and Markov Decision Process in 1950s 

(BELLMAN, 1953, 1954, 1956, 1957). Howard (1960) worked with the policy iteration 

in 1960, beside this the book brings a compiled about the dynamic programming and 

Markov Decision process. In Werbos (1977), the author demonstrated method called 

Adaptive Dynamic Programming (ADP). Figure 9 easier shows the RL timeline. 

In the 1970s and 1980s, Barto and Sutton contributed with a lot of researches 

on this area to improve the reinforcement learning as known today, one important 

reference is Sutton (1988) about the Temporal Difference algorithm. In the early 90s, 

after the TD algorithm definition, Watkins and Dayan proposed the off-policy Q-

Learning approach (WATKINS; DAYAN, 1992). Some years latter Rummery and 

Niranjan created the on-policy method called State-Action-Reward-State-Action 

(SARSA) Learning (RUMMERY; NIRANJAN, 1994). Keeping in this decade, 

Bertsekas (1995) create the neural dynamic programming to solve optimization in 

control issues through stochastic process. 

In 2000s, Thrun (2000) shown a Monte Carlo Method in a partially observable 

Markov Decision process. The Deep Reinforcement Learning start the studies in 

2006 with Hinton et al. (2006), in the same year Kocsis; Szepesv (2006) developed 

the upper confidence limit tree algorithm. The last relevant studies to be related here 

are Silver et al. (2014) and Li et al. (2017), where the former talk about a 

deterministic policy gradient algorithm and the latter about a parallel RL theoretical 

framework. 

Some main concepts should be understood first for a complete 

comprehension of the Reinforcement Learning, these concepts are presented in the 
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next subsections and comprehend the elements (“the language”) that compose the 

reinforcement learning. After this, there is a discussion about the finite Markov 

Decision Process, which is the base for a RL working, the methods to solve RL, such 

as, Dynamic Programming, Monte Carlo and Temporal Difference. Inside of Dynamic 

Programming there are two important formulation, value and policy iteration, that are 

used to model the Q-Learning algorithm, where this algorithm is the final concept 

explained in this section. 

 
Figure 9 - The Reinforcement Learning evolution diagram 

 
SOURCE: adapted from Cheng; Yu (2019). 
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2.5.2 Fundamental Elements of Reinforcement Learning 

 

To have a better understanding about the Reinforcement Learning (RL) 

technique is there are some fundamentals concepts to be introduced, such as, the 

policy, environment model, value function and reward. As a learning algorithm, it 

should handle with two distinct objectives, the exploration and the exploitation. The 

former would like to explore complete the environment, but this spend time to 

execute. The latter tries to find the minimize the costs, i.e., tries to find the better 

location to take advantage about that was learned to determine the action. The trade-

off between them brings the maximization of the learning effected, where can learn in 

less time with less effort (THRUN, 1992). 

According to Kaelbling et al. (1996) there are two main strategies to solve the 

reinforcement learning problems: explore the search space to find the best result for 

the correspondent environment and the second is to use statistical and dynamic 

programming to estimate which action is the best inside of the complete environment. 

Basically, the Reinforcement Learning is composed by three sets: 

a) A discrete set of environment states, ; 

b) A discrete set of agent actions, ; 

c) A set of scalar reinforcement signals; . 

 

Another important aspect in the Reinforcement Learning, where the algorithm 

can be divided in the number of agents, the single-agent with the traditional methods 

(Q-Learning, SARSA, TD) and the new techniques based on the multi-agents (IGA, 

CEQ, FMQ, OAL) as demonstrated in the FIGURE 10. 
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FIGURE 10 - THE CLASSIFICATION OF REINFORCEMENT LEARNING 

 
SOURCE: Cheng; Yu (2019). 

 

2.5.2.1 Model of Optimal Behavior 

 

When it’s started the algorithms about learning, should understand about the 

models of optimally, where according to Kaelbling et al. (1996) there are three major 

relevant types in this study. The first one is the finite-horizon model. This model (1) 

just cares about the limit ( ) to calculate the reward ( ) optimization in the time ( ), so 

in this case it’s not possible to explore more than its limit. 

The second model, (2), is the infinite-horizon discounted model, where there 

isn’t the time limit and a new factor ( ) is included to geometrically discount the 

reward on the future values. The last model, (3), commented is the average-reward 

model, where the action to take better optimization comes from a long-run average 

reward. As an average, the application of two different policies (explained in the next 

chapter), one applied to find the best result initially and the other for long-run will be 

mixed as a unique result the first policy will be masked at the end. 
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(1) (2) (3) 

 

where: 

 – represents the expected result from the equation described 

inside. 

 – time. 

 – reward. 

 – limit. 

 – discount factor. 

 

2.5.2.2 Policy 

 

The objective of a policy is to maximize the total reward over the process 

iteration. It is comprehended as a mapping of probability transition of states from an 

action selected, . 

There are two classifications for policies, on-policy or off policy. The on-policy 

has dependence between the policy value and the value for control, the same 

estimations for a policy is used to control the system. One example of on-policy is the 

SARSA (State – Action – Reward – Start – Action) algorithm (RUMMERY; 

NIRANJAN, 1994). 

In the meanwhile, the off-policy has the estimation policy and the control value 

separate, and according Sutton; Barto (1998), it comes up with two new concepts: 

the behavior policy, which is to generate the system behavior and can retrieve all 

possible action; while, the other is deterministic and can be called as estimation 

policy, and is not linked with the policy which is evaluated and improved. In the other 

words, the idea is to estimate the value function using hypothetical actions that have 

not been tested. One example of off-policy is the Q-Learning method. 

Comparing the equations below can see the difference between an on-policy 

approach, SARSA equation (4), and an off-policy, Q-Learning equation (5). The 

equation (4) utilizes the future action ( ) to calculate the value function ( ), i.e., the 

policy influences directly the final equation, instead of equation (5) that utilizes the 

action selected in current iteration. 
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 (4) 

 (5) 

 

where: 

 – value function for a pair variable. 

 – reward function. 

 – maximum value of  for the current state when varying the 

actions. 

 – current state, . 

’ – future state, . 

 – current action, . 

’ – future action, . 

 – discount factor, . 

Some policies functions are discussed next, the Greedy technique, equation 

(6), tries to choose the best action based on the best payoff from the value function. 

The idea of the greed algorithm is simple, and its processing is faster than compared 

with other methods. In some cases, the greed algorithm can be scant, i.e., it can find 

in the first moment the best action to follow, but it is not safe because the first choice 

cannot lead to better final solution.  

 
 (6) 

 

A variation of the greed approach is the ε-greedy technique, equation (7), 

which include a random variable ε to improve the learning exploration instead of all 

iteration only the exploit side. In place to retrieve the maximum value of Q-Matrix in 

each iteration (exploit) to go deeper in the action selected, the ε-greed tries to avoid a 

possible wrong decision selected in the past to choose a new action (explore) and 

verify if the new decision is better or not. 

 

 
(7) 
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where, 

 – predefined variable between . 

 – obtain the better action (index) for the current state in the 

Q matrix. 

 – random real values between . 

 – random integer values between . 

 

The randomized technique (simulated annealing), equation (8), picks up an 

action random from a distribution function (8). In this case the objective is to explore 

in a larger area in the initial iteration based on the temperature  and over the time,  

should be decreased to reduce the exploration area. For a better working, the system 

should demonstrate the best action less related with the other options. 

 

 
 

(8) 

 

where: 

 – transition probability. 

 – value function for a pair variable. 

 – current state, . 

 – current action, . 

’ – future action, . 

 – Temperature. 

 

The Interval-based techniques is recommended in empirical trial and aims to 

save a statistical value for each action and after choosing the best action based on 

the highest upper bound according to the equation (9). One example is the 

Kaelbling’s interval estimation algorithm (Kaelbling (1990)). 

 
 (9) 

where: 

 – discount factor. 
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2.5.2.3 Agent and Environment Model 

 

The first two concepts to be understood in RL and very important for the rest 

of the comprehension is the Agent and the Environment. The Agent has the 

objective to find the best policy  to maximize the reward function, it is the learning 

and decision-maker. The Environment is the rest outside of the agent and the aim is 

to answer when the agent interacts through the actions in the environment. 

The interaction between these two elements is demonstrated in FIGURE 11, 

which each action that the agent selects, is interacted through the environment, the 

result is a new state and a new reward value representing as a next time step, so the 

agent process this new input to select a new action and repeat the process, but now 

with the learning from the previous iteration. 

 

 
FIGURE 11 – REINFORCEMENT LEARNING FLOWCHART 

 
SOURCE: Sutton; Barto (1998). 

 

2.5.2.4 Value Function 

 

The value function is a pair composed by the states and action, , or 

just states, . These types of value function are related with the environment 

model, that, when an environment model is known, it is used the simple value 

function. 

Another important notation is the relation between policy and value function, 

where the value function means the return value when starting in  following the 

policy . In this case, the simple value function is , and for the pair is , 



44 

 

the formally equation for each function is presented in equation (10) and (11) 

respectively. 

 

 
 

(10) 

 
 

(11) 

 

where: 

 – value function for a single variable. 

 – value function for a pair variable. 

 – policy applied. 

 – the expected value given when the agent follows the policy. 

 – reward. 

 – current state, . 

 – current action, . 

 – discount factor, . 

 – time step. 

The value function helps to choose the best action to generate a higher reward 

value. Then, how better is possible to estimate the value function, a better action can 

be chosen and consequently a better reward for the final state can be determined. 

 

2.5.2.5 Reward 

 

A reward can be described how the agent is performing when selects its 

actions to be interacted with the environment. This metric forces the agent to learn, 

once the reward is prepared to respond when the agent carries out a task 

successfully or penalizes the reward when the agent executes an action which 

results in a tough situation. 
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2.5.3 Markov Decision Process 

 

Another important definition for RL is about Markov Decision Process (MDP), 

where a RL can be called finite MDP when its states and actions are finites, and this 

definition is very important for the reinforcement learning functionality. 

The MDP was created by Bellman in 1957 and correspond a discrete 

stochastic way to describe the optimal control problem (BELLMAN, 1957). The MDP 

models problems with delayed reward, which represents a sequence of action where 

the reinforcement value is increasing according to this sequence to find the highest 

value of reinforcement. Another key point about MDP is that the environment should 

understand the past without interfering the next steps. 

There are two important equations that defines the dynamics for finite Markov 

Decision Process, the transition probability (12) and next reward value (13): 

 
 (12) 

 (13) 

 

The problem to be solve is to find the best policy that maximize the cumulative 

sum of all rewards calculate in an infinite horizon, the problem equation is presented 

in (14). 

 

 
 

(14) 

 

The algorithm that solves the problem before is divided in two parts, the first 

one is to find the policy for the current state, which represents the best action in the 

moment, equation (15). The equation (16) means the value function and contains the 

discounted sum of the rewards from the result of equation (15). 

 

  
(15) 

  
(16) 
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Where: 

 – is the transition probability when choose in the current time  

an action  in state  that guide to state  in time . 

 – is the expected reward taken when changing the state based 

on the action chosen. 

 – represents the expected result from the equation described 

inside. 

 – current state, , and  is the next state. 

 – current action, , and . 

 – discount factor, . 

 – time step. 

 – value function. 

 – policy. 

 

There are two modes in Dynamic Programming to solve the problem using the 

equations described above, one is the policy iteration and the other is value iteration, 

for more details go to 2.5.4.1 Dynamic Programming chapter. 

 

2.5.4 Methods to solve the Reinforcement Learning 

 

To solve the problems in Reinforcement Learning is briefly presented next 

three possible methods: Dynamic Programming, Monte Carlo and Temporal 

Difference. 

 

2.5.4.1 Dynamic Programming (DP) 

 

The idea of Dynamic Programming (DP), basically, is to solve complex 

problems breaking in smaller problems, easier to solve, to find the final solution for 

the complex equation. Moreover, when the DP is being performed, each solution is 

stored to be used in a future iteration when necessary, so the method can estimate 

the current value using past estimations. 

Bellman develops the introduction for DP in Bellman (1953) and formalized the 

method in Bellman (1954), which brings the Principle of Optimality to solve the 
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problems in DP, “an optimal policy has the property that whatever the initial state and 

initial decisions are, the remaining decisions must constitute an optimal policy with 

the regard to the state resulting from the first decisions”. 

One of the problems for the DP method is the “curse of dimensionality” where 

the number of states can be exponentially bigger and computations process cannot 

execute successfully.  

Below is described two most popular methods in Dynamic Programming, the 

policy iteration and the value iteration. 

 

POLICY ITERATION 
Due to in RL there is the property about finite Markov Decision Process, it is 

possible to converge the policy inside of this constrained space. The idea of policy 

iteration is presented by the pseudocode #1, which presents two parts to solve the 

problem. The first part is the policy evaluation, where is determined in each state the 

value function based on the previous policy, and a new delta is calculated to verify 

whether the new delta is smaller than the pre-defined value . 

Then, the second part is the policy improvement, which correspond the part to 

determine the new policy in the case the problem was not solved. The policy is 

determined using the value function and when the policy is the same that the 

previous solution, the algorithm converged, in other case it is not stable yet and 

another round to find the policy evaluation should be executed. 

One disadvantage of policy iteration is the number of iterations to determine 

the policy evaluation, which depending of the problem, it can be necessary a long 

processing to find the result. 
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Pseudocode #1 Policy Iteration 

1 

 

2 

Initialize:  and  

Policy Evaluation: 
    Repeat  

3 

4 

5 

6 

7 

8 

 

 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

         

        For each : 

             

             

             

    Until  

 
Policy Improvement 
     

    For each  

         

         

        IF  THEN 

             

    IF  THEN 

        stop. 

    ELSE 
        GO TO Policy Evaluation 

SOURCE: Sutton; Barto (1998). 

 

VALUE ITERATION 
The value iteration tries to solve the problem about the policy evaluation, 

where in this case, the idea is to break the policy evaluation after one sweep. The 

new value function equation is demonstrated in (17) and represents a combination of 

policy improvement and truncate the policy evaluation steps the find the value 

function. 

 

 

 

(17) 
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Pseudocode #2 Value Iteration 

1 

2 

Initialize:  arbitrarily 

Repeat  
3 

4 

5 

6 

7 

8 

 

9 

     

    For each : 

         

         

         

Until  

 
  

SOURCE: Sutton; Barto (1998). 

 

The value iteration algorithm is presented in Pseudocode #2, and in one 

sweep can be determined the policy evaluation and policy iteration at the same time, 

according to the equation (17). The algorithm just stops when the variation between 

the initial value function with the new is less than the pre-defined value . 
 

2.5.4.2 Monte Carlo (MC) 

 

Monte Carlo (MC) methods was initially thought in 40s, when the nuclear 

bomb was being created. A formal definition for MC methods is presented in 

Metropolis; Ulam (1949). 

In summary, the Monte Carlo methods is different of the DP methods 

described above, the MC methods don’t learn from a model because it can learn 

using samples to understand the problem, in each iteration, random samples, based 

on a probability distribution, are used to execute a deterministic simulation with the 

inputs to give a final result. 

Furthermore, another significant difference between Dynamic Programming 

is MC doesn’t change the current estimation based in other estimations from 

previously iteration, i.e., it doesn’t bootstrap. 
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2.5.4.3 Temporal Difference Learning (TD) 

 

Temporal Difference Learning (TD) is a model-free2 and the objective is to use 

insights from the value iteration to adjust the estimated value of a state, based on the 

immediate reward and the estimated value of the next state. For a complete 

comprehension about the temporal difference method, in Sutton (1988), brings the 

first formal definition about the theme. 

Basically, TD is a mix of Monte Carlo and Dynamic Programming concepts, 

where the TD retrieves from MC the objective of learning from raw experience, i.e., it 

is not necessary to have an environment model because MC Learning from the 

samples. Moreover, the DP part is important for TD because to approximate the 

current value is necessary to use, in this case, the information from the past. 

 
 (18) 

 

Another key point to understand TD is the  algorithm, which was the 

base for the Q-Learning method. The algorithm is demonstrated in pseudocode #3 

and it is similar with the pseudocode #4 about the Q-Learning. This algorithm is a 

specific case of , but just analyzing one step ahead when estimating the 

equation (18), which is the rule for , notice that the equation just considers one 

position in the future ( ). 

 

 

 

 

 

 

 

 

 

 

 
2  Model-Free means to learn a controller without learning a model (the complete environment) before 
start the learning process. (Kaelbling et al., 1996) 
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Pseudocode #3  algorithm 

1 

2 

Initialize:  arbitrarily,  to the policy to be evaluated 

Repeat for each episode: 

3 

4 

5 

6 

7 

8 

9 

10 

    Initalize  (state) 

    Repeat (for each step of the iteration) 

          action given by  for  

        Take an action  

        Observe reward, , and next state,  

         

           

    until  is terminal 

SOURCE: Sutton; Barto (1998). 

 

2.5.5 Q-Learning 

 

The Q-leaning algorithm was originated in a Ph.D thesis by Christopher J. C. 

H. Watkins, Watkins (1989). The article from Watkins; Dayan (1992) was used for a 

better understanding because this paper brings the mainly points to comprehend the 

Q-leaning and also to prove the method presented in Watkins (1989), it is possible to 

converge. 

In Kaelbling et al. (1996) is presented the definition summed up and with the 

focus on Reinforcement Learning, this paper brings comparison with other similar 

techniques and the essential to understand the Q-Learning definition. 

Q-Learning is classified as model-free and belongs to off-policy Temporal 

Difference Methods which was explained earlier. Before enter in the Q-Learning 

method, should be cited another research based on the adaptive critics that was 

developed by Werbos’ team in Werbos (1992), under the name of Action-Dependent 

Heuristic Dynamic Programming (ADHDP) and has the same objective of estimate 

the output based the inputs of states and action, which for Werbos the states is 

represented by  and the action  in a continuous time domain. 

The Q-Learning idea is to act in the Markovian domains where the agents can 

learn based on their experience when taking actions, so according to equation (19), 

the actual  value is determined in two parts, where the first term means how much 

the value function in position  will be decreased based on the learning factor , 
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and after, in the second term, the value function is increased based on the reward 

and the maximum value for the next better action ( ) from the next state ( ), so the 

result means if this position will be interesting for future states. Notice that the values 

for  are based on the load. As it is possible to see, the Q-Learning definition comes 

from the value iteration concept to solve the problem. 

It is important to highlight some variables that were previously treated, such as 

the learning factor and the discount factor. The former means the amount of 

information the new value will override the old information, and latter represents how 

the future values will change the current reward. Both values impact directly in  

and consequently for the choice of new actions, since the policy uses this value to 

determine future action. 

The formal definition for the Q-Learning function is: 

 
 (19) 

 

where: 

 – is the matrix which represents the value function. 

 – is the current state. 

 – is the future state when taking the action a. 

 – is the current action taking. 

 – is the future action from s’. 

 – is the reward function. 

 – is the learning rate, . 

 – discount factor, . 

 

The Q-Learning algorithm is simple and consists in the first moment initialize 

the value function  arbitrary, and for each episode initialize the state that will 

be used as initial point for the next sweep, which is chosen one action based on the 

policy selected, after should be determined the new state from the action selected to 

calculate the reward. Then, this reward determines the new value for , and in 

the end, the future state  becomes the current state for the next cycle. 

The use of Q-Learning is due to some factors as, simple implementation to 

generate the first analysis of the problem to be solved in thesis, a technique that can 
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be used on-line and it is a method that can be enhanced to be more robust to avoid 

some problems as the dimensionality curse. 

 

Pseudocode #4 Q-Learning algorithm 

1 

2 

Initialize:  according to the problem 

Repeat in each episode: 

3 

4 

5 

6 

7 

8 

9 

10 

11 

    Initalize  (state) 

    Repeat (for each step of the iteration) 

        Choose  (action) from  (state) using the policy derived from  

            e.g., greed policy 

        Take an action  

        Observe ,  

         

           

    until  is terminal 

SOURCE: Sutton; Barto (1998). 

 

2.6 FINAL DISCUSSION 

 

Due to the complexity of the problem related in this thesis, it is hard to find a single 

strategy that can handle different approaches at the same time, so, the idea is to use 

the method inside the Machine Learning area. As pointed in Brown (2008) the ADMS 

should be integrated with a list of functionalities to control and monitor a complete 

distribution system, and not independent methods to solve the network issues 

isolated. Thus, to create more this integration, the idea for the present work is to 

prove, using the usual problems (SH and LS), the development of an unique strategy 

to take care about the cited issues and select the correct action to act on the 

distribution system. Despite of all benefits, to develop an ADMS takes a long time, 

investment and a great hardware due to its complexity of inputs to be analyzed and 

the process to communicate with all algorithms into this framework. Therefore, if it’s 

possible to minimize the number of algorithms and communication process, it’s a 

gain to construct the ADMS in terms of maintenance and understanding of the 

workflow. 

The selected algorithm to be developed is the Reinforcement Learning, 

where it is a viable technique to solve the problem of multi-functionalities. The 
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distribution network can be modeled as the environment, and the switches/shedding 

the actions to be taken by agent to interact with the environment. Furthermore, as 

discussed in Cheng; Yu (2019) the RL has a strong adaptability to handle with 

unexpected issues, and already has many applications in the power system area. 

The algorithm to be utilized will be the Q-Learning where can be possible to 

calculate the rewards based on the distribution network load in each system 

configuration according with the action selected. Moreover, the value function matrix 

( ) can store all the environment information in relation to the changes on the 

network to choose the best option in further iterations. 

The way to model the reward function and the Q-matrix will be introduced in 

chapter 4, as the complete process and adaption to work in line with the distribution 

constrains (feeder voltage and current limitation), in order to avoid any wrong 

configuration (switching position) during the procedure to recovery the system. 
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3 BIBLIOGRAPHIC RESEARCH 
 

This chapter brings the contributions about the mainly areas of this work, the 

first on is demonstrated works about the Self-Healing, the second references about 

the Load Shedding applied on Power System and the last is the Reinforcement 

Learning to solve the Self-Healing problem. 

 

3.1 SELF-HEALING 

 

This chapter presents the most varieties of methodologies to solve the Self-

Healing problem since centralized approaches until decentralized, as integer linear 

programming, meta-heuristics and multi-agent system. Together with the SH some 

others approach might be considered as the Load Shedding and Microgrids. 

In Li et al. (2010) the goal is to execute a self-healing action to avoid the 

disturbances propagation on the grid and the unbalance between generation and 

demand that may occur after an action to minimize the active and reactive power. 

The network topology is represented by a weighted graph to use the partitioning 

graph method, where the idea is to minimize the active and reactive power. The 

article concludes that a load shedding should help the self-healing logic to make the 

method more robust and to minimize the effects of possible failure cascade. Another 

article that brings the Self-Healing approach together with the Load Shedding is 

Cavalcante et al. (2016), which call the centralized method as two-stage procedure. 

The SH is solved using the Mixed Integer Linear Programming (via CPLEX solver), 

and the LS via a Nonlinear Programming (via KNITRO solver) after the first stage 

found the switching action to be executed. 

Another mixed approach between SH and LS can be seen in Ferreira; Siebert; 

Aoki; et al. (2014), where the Self-Healing is solved via the Binary Particle Swarm 

Optimization (BPSO) and, in case there isn’t any possible reconfiguration without 

trigger an overload, the next step is to start the Load Shedding, through the Optimal 

Power Flow technique, to decrease the load and make possible the reconfiguration. 

Using the graph theory, in Kost’álová; Carvalho (2011), the principal objective 

is to facilitate the distribution network radial model through a bipartite graph, where 

the focus is to highlight the switches and abstract the other network elements. 

Making the network simple, the methodology utilized for the reconfiguration is a 
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simple search on the bipartite graph seeking for the better sequence of switching, 

where the better path is based on the less loaded path. In case the solutions are 

overloaded, it is decreased the segment to be restored. 

The article presented by Botea et al. (2012) talks about a distribution system 

based on graph theory to use the A*. The heuristic proposed for the method is the 

load maximization that don’t belongs for the isolation region and that were de-

energized, and the number of switching action to be executed when reconfiguring the 

system. 

The self-healing problem is solved in Zidan; El-saadany (2012) by the multi-

agent method, which are created layers called zone and feeder, to change 

information between them. The first layer is the zone and has the objective to 

monitor, to execute simple equations and control actions. In the second layer, the 

feeder, is the negotiation. The methodology constrains are the voltage and current 

limits and the radial network configuration. Another multi-agent system is 

demonstrated in Liu et al. (2012) for self-healing. In this case the model is based on 

the five operation states (emergency, restorative, alert, insecurity and security) and in 

the four controls (emergency, restorative, corrective and preventive). The agents 

created are separated into three layers of action, the first layer is the response layer, 

the second layer is the coordination layer and the third layer is the organization layer. 

In Leite; Mantovani (2017) came up with the Multi-agent system to execute the 

system restoration, in this case the agents are modeled as the Agent Communication 

Protocol, Switching Local Agent, Analysis Agent for State Estimation and Self-

Healing Coordinator Agent. The Communication Agent is constructed based on the 

IEC61850 standard protocol to be the link between the Switching and SH Agents. 

The Switching Agent is responsible to change information with other agents to obtain 

the network measurement status and for this analysis it’s used a fuzzy controller. To 

obtain a better information from the field the State Estimator Agent has the objective 

to provide reliable data to load forecast, which it is used in the normal, short-circuit 

and restorative operation condition. The SH Agent is responsible by the power flow 

analysis, the shot-circuit simulator and the decision maker for isolation and 

restoration. 

Continuous in the multi-agent topic, the paper Sampaio et al. (2016) presents 

the agents defined as Substation (SA), Feeder (FA), Branch (BA) and Equipment 

(EA). The Equipment Agent is responsible to report the information from the field and 
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communicate with the FA and SA. Then the Feeder Agent is responsible to change 

information with other FA to determine the available power, beside the BA to 

determine the constraints and receive information from SA related with the 

restoration stage. The Branch Agent measures what will happen with the action 

taken and report the FA. At the end, the Substation Agent is owner to process the 

isolation logic and start the restoration process to FA. In the distribution approach, 

but outside of the multi-agent area, the author in Torres et al. (2018) developed a 

new distributed strategy to pass through the location, isolation and service 

restoration. The algorithm brings a new type of approach, based on groups (set of 

one or more switches), to understand the field, communicate among the groups and 

find the best solution according the environment conditions. 

The methodology developed in Arefifar et al. (2013) presents two stages, the 

first stage is the planning, in which is obtained the best network configuration 

creating microgrids in the distribution system. The second stage is the operation, 

where after the configuration should be necessary adequate the microgrids created. 

Moreover, a Tabu Search is included to solve the self-healing problem, some 

constrains were thought to the search, such as, the auto-adequacy for microgrids, 

the loss minimization and the load maximization. The algorithm created also realizes 

the load shedding to support the self-healing action and calculate the better dispatch 

for the generation spread across the grid. Another article that uses the Tabu Search 

for self-healing is Mori; Muroi (2011), where the difference the author applied 

probabilistic samplings into the Tabu Search, where the main idea is to reduce the 

computational processing to find the switching actions. 

In Chen et al. (2015), it is considered for the restoration problem the uncertain 

of load and Distributed Generation installed on the distribution network. The method 

utilized is the Information Fap Decision Theory based on the envelope-bound model. 

The idea behind this methods is to avoid the self-healing solution using the load as a 

constant value, so the methodology is divided in two steps, the first one is called 

Determined Restoration Optimization, which carry out the network constrain analysis 

based on a constant load. After, is executed the Robust Restoration Optimization to 

maximize the solution from the uncertain of load and the distributed generation. 

In Li et al. (2014) is applied the minimum spanning tree method to determine 

the best configuration after a fault on the distribution system; furthermore, this 

algorithm also take in account the microgrid influences. The methodology aims to 
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reduce the number of switching actions and restore the load de-energized without 

any current and voltage violations. 

The next papers present the Self-Healing operation considering microgrids 

and renewable energy. In Wang; Wang (2015) is proposed a self-healing method 

considering dispatchable (micro turbines) and nondispatchable (wind turbines and 

photovoltaic) distributed generators to create microgrids self-supplied. The technique 

comprehends a rolling-horizon optimization to schedule the dispatchable distributed 

generators and a stochastic rolling-horizon for nondispatchable. When the system is 

in normal operation, the objective is to minimize the operation cost and when the fault 

occurs in the system, the objective is to supply the maximum possible of customers 

using the microgrids. 

A distributed Self-Healing and Microgrid logic is modeled in Wang et al. (2016) 

which in the normal operation follows the objective before, where the algorithm 

should schedule dispatchable distributed generator, energy storage system and 

controllable loads to minimize the operational costs and maximize the supply for 

each microgrid. In a case where a fault occurs, each microgrid can communicate with 

the neighborhoods to request for more supply if the current microgrid can’t energized 

all loads. 

A mixed approach of Self-Healing, Microgrid and Load Shedding is presented 

in Wang; Wang (2017). The SH is solved using the Advanced Metering Infrastructure 

(AMI) to determine the outage location and the mixed-integer quadratic programming 

for the service restoration. The method takes in account the distributed generators 

installed on the microgrids and the possibility of load curtailment, where each 

approach is activate when the traditional reconfiguration cannot be performed, so the 

mixed-integer quadratic programming calculates the better solution according to the 

constraints setted. 

The strategy applied in Hosseinnezhad et al. (2018) is to predicted one day 

ahead the system operation considering normal and emergency conditions. In normal 

condition the idea is to minimize the operational costs and in emergency the planned 

the cases to island the segments to supply the maximum load possible and adjust 

the generation to balance the new system. The article also considers the possibility 

to shed when it is not possible to island the load. 

Based on Dynamic Programming (DP) is presented the article Pérez-guerrero 

et al. (2008) and Riahinia et al. (2018). The first article enhanced the DP to reduce 
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the number of states and the optimization starts to find the better path (necessities of 

the feeder to be energized) among the stages of the process. Moreover, in each 

stage it’s optimized the better state to be chose in the end, when the DP scans the 

entire process to determine the final solution. The second article also applied the 

reduced state approach and considers the following topics: uncertain from 

transmission networks, load priority, integration of distributed generation and storage 

units. 

 

3.2 LOAD SHEDDING APPLIED IN POWER SYSTEM 

 

In this subsection is listed some articles that comprehends some techniques 

to shed the load in power system to maintain the generation and load balanced. The 

first article brings a combination of nonlinear mathematical programming and discrete 

differential equation from the system to estimate the optimal value for the load 

shedding, this method also supports the operation to know what it is the better time 

to execute the shedding. The limits used for the methodology are the maximum 

power flow in the cable, voltage, angle and the maximum load shedding (APONTE; 

NELSON, 2006). 

In Lopes et al. (2006) is presented a load shedding algorithm to stabilize the 

micro-grid system when an island occurs. The first step, in this method, is to model 

the load because each load modeled can be verified the frequency range deviation to 

determine the amount of load to be shed and it is also considered a priority for each 

load. Another approach is done in Solanki et al. (2007) which is proposed a multi-

agent system to solve the self-healing problem and the load shedding is applied 

inside of the agent to execute the action when necessary. 

One different consideration is executed by Faranda et al. (2007) that 

considers the load shedding inside of the consumer, where the smart appliances can 

be shed to keep the system in a normal operation. It is helpful when the numbers of 

participants are bigger because the numbers of appliances are less than the program 

has few adopters. Other important paper to discuss is Fernandes et al. (2008), the 

authors utilize the Optimized Power Flow (OPF) with relaxation to determine which 

loads should be shed. The load prioritization is also done in this work to avoid 

possible hospitals, for example. In Ghaleh et al. (2011) is combine one analysis of 

frequency and voltage to apply on the protection curves inside of one relay. The 
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model works in transmission system, which is more often to detect the system 

instabilities. 

One more strategy is demonstrated in Tang et al. (2013), which is developed 

one centralized algorithm to execute an adaptive load shed, based on the low 

frequency and voltage. The differential in this case is to use inside the equations the 

consideration of active and reactive power. Basically, the methodology utilized one 

system of low order of frequency response, together with load models that has 

voltage dependence to determine the total difference between active and reactive 

power to be shed. 

 

3.3 REINFORCEMENT LEARNING ON SELF-HEALING 

 

Based on a mix of techniques, in Ye et al. (2011), Ghorbani et al. (2014) and 

Ghorbani et al. (2016), execute the self-healing by the Multi-Agent System together 

with the Reinforcement Learning algorithm for power system. The first article focuses 

on the transmission system, when occurs loss of generation, so it’s modeled three 

types of agents (Generator, Switch and Load) to communicate among them to find 

the better solution. The Q-Learning algorithm is implemented on Switch Agent, which 

is responsible to receive the information from the Load and Generator agent to 

determine which switches should be turned on/off. 

The second article focuses on the distribution grid and it is composed by Zone 

Agents, Feeder Agents and Substation Agents. The Q-Learning algorithm is located 

in each Feeder Agent and learns the option action individually, based on the Zone 

Agents information and communicate with other Feeders and Substation agents. 

Another point to highlight is the creation of Q-matrix which is modeled in the number 

of zones (comprehend the segment between the switches in a feeder) and the 

adjacent feeders with a tie-switch. The third article is a continuous work of the article 

Ghorbani et al. (2014), and according to the author the contribution is related with the 

Fault Location and Isolation approach in the Feeders agent together with the learning 

methodology. With this approach could reduce the communication messages and 

computational process. 

In Ribeiro et al. (2017) is proposed a tool to simulate the SH problem, where 

it’s used the standard Q-Learning algorithm with ε-greed policy to solve the system 
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reconfiguration, and the constrains are calculated through the Newton-Raphson 

method. 

In Pal et al. (2010) and Das et al. (2013) is applied the Reinforcement 

Learning to solve the Self-Healing problem in a Naval shipboard. The former article 

introduces the problem inside of the shipboard, where it may be related with the 

distribution power system and its necessities as vital load and constrains, such as, 

maximum and minimum of power generation, voltage and current. The algorithm 

used was the Q-Learning, the policy was the ε-greed and the reward function was the 

variation between the previous topology with the actual after the action. The second 

article includes more detail about the test and improves the reward function to 

calculate the time response of the generator when a switch is commuted. In both 

works the problem was solved fast and find the best result after the fault, in addition, 

the algorithm also provides the switch sequence to be executed. 

 

3.4 FINAL DISCUSSION 

 

As demonstrated in this chapter the Self-Healing problem can be solved in 

many ways (multi-agent system, meta-heuristics, integer programming, reinforcement 

learning, etc.) with different strategies, centralized, decentralized or distributed. To 

support the solution for SH problem, another technique can be used in sequence to 

support the final decision selected, as the Load Shedding, where the distribution 

network does not have enough capacity to transfer load, and a partial load reduction 

can be executed to restore many load as possible. 

In the case of the Load Shedding, also has many methodologies to apply and 

where should be executed, as a complete segment delimited by switches, or open a 

transformer with a quantity of consumers, or, when the distribution presents the 

Advanced Meter Infrastructure, the final consumer might be disconnected. 

Furthermore, in any approach the priority selection must be considered because of 

the vital customer that cannot be turned off, for instance hospitals. 

The newest Self-Healing algorithms currently should start to think about new 

technologies and concepts of operation applied in the distribution network, such as, 

distributed generator, storages and microgrids. The microgrids, can be used in an 
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abnormal network state to produce self-sufficient energized cells to mitigate partial or 

complete load curtailment. 

There isn’t a huge amount of papers considering the reinforcement learning in 

SH problems into the distribution area. However, as the idea for naval ship and 

distribution can be similar, some papers in both areas was presented in this chapter, 

where the article Das et al. (2013) was the trigger to understand the method and how 

could be adapted for this thesis.  

As punctuated in Cavalcante et al. (2016) that the LS is solved after the SH, 

the idea here is to walk against the common way to prove that is possible to find the 

switching actions and load curtailment at the same moment, and not firstly define the 

actions sequence and after the amount of load to reduce. Furthermore, even though 

some works are aiming microgrids, the fundamental idea here is to look for a 

methodology where the self-healing and the load shedding can be solved at the 

same time through the same algorithm, which is complex enough to increase with 

more items to be considered. Another important point to highlight is instead of having 

an outage, but an overload the same algorithm can be triggered to determine the 

best system reconfiguration. Thus, the present thesis starts a new area of researches 

about the convergence of ADMS functionalities in a common decision maker. 
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4 MATERIALS AND METHODS 
 

In this chapter, it will be presented the material to validate the algorithm 

developed to solve the problem of integration of ADMS functionalities. After it’s 

presented how the methodology was created. 

 

4.1 MATERIALS 

 

To develop and validate the methodology is presented the materials that are 

composed by the distribution system data, following by the computational platform 

and the respective framework to develop the idea from this thesis. For the tests were 

utilized two difference system, one is the complete system to validate the simulations. 

The second system, it’s a reduced scheme of the first to test the results into the 

limited time of three minutes and which represents most of the cases in Brazil. 

 

4.1.1 Distribution system data: five feeders 

 

To perform all tests and to validate the initial methodology proposed, it was 

used a real distribution system. The called five-feeder system is shown in FIGURE 

12, and it composed by five feeders, 15 normally closed switches and six normally 

opened switches (tie-switches). Each feeder has at the least one or more 

interconnections, where feeder 3 presents connections among the other four feeders. 

To highlight the feeder 1 and feeder 4 are interesting because the tie-switch allocated 

in block2, which provide more resource for the respective feeder and more 

possibilities for restoration. The switches DVC1, DVC4, DVC7, DVC13 and DVC16 

are automatic reclosers that are usually inside the power substation and called as 

Feeder Head. 

Each combination of two switches creates the load concentration which is 

called as block. The first block starts near of the source and the last block is delimited 

by a closed switch and the tie-switches. The power and current for each feeder is 

presented in Table 2, the feeder 2 and feeder 4 are the most loaded and feeder 1 is 

the most available feeder to be used in restorations approaches depending of the 

constrains configured.  
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FIGURE 12 – TEST SYSTEM WITH FIVE FEEDERS 

 
SOURCE: The author (2020). 

 
Table 2 – POWER AND CURRENT SYSTEM CONFIGURATION FOR FIVE-FEEDER 

Feeder 1 Feeder 2 Feeder 3 Feeder 4 Feeder 5 

 
Power 
[MVA] 

Current 
[A] 

Power 
[MVA] 

Current 
[A] 

Power 
[MVA] 

Current 
[A] 

Power 
[MVA] 

Current 
[A] 

Power 
[MVA] 

Current 
[A] 

0.9673 74.4077 1.2930 99.4615 0.6932 53.3231 0.8957 63.9 1.8397 141.5153 Block 
1 

1.0192 78.4000 2.0369 156.6846 1.4355 110.4231 1.5867 122.0538 1.4296 109.9692 Block 
2 

0.9152 70.4000 3.0050 231.1538 3.4961 268.9308 3.9421 303,2384 2.1485 165.2692 Block 
3 

2.9017 223.2077 6.3349 487.3000 5.6248 432.6769 6.4245 489.1922 5.4178 416.7537 Total 

SOURCE: The author (2020). 

 

4.1.2 Distribution system data: three feeders 

 

A subset of the complete topology is created to be used in some special 

cases, besides the normal tests. This topology is comprehended by the feeders 1, 2 

and 3. The one-line diagram is shown in FIGURE 13 and contemplates three distinct 

sources, with three normally closed switches in each feeder and three normally open 

switches that connect one feeder with the others. The feeder head are DVC1, DVC4 

and DVC7. The power and current for each feeder is presented in Table 3, the feeder 

2 and feeder 3 are the most loaded and feeder 1 is the most available feeder to be 

used in restorations approaches depending of the constrains configured. 
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FIGURE 13 – TEST SYSTEM WITH THREE FEEDERS 

 
SOURCE: The author (2020). 

 
Table 3 – POWER AND CURRENT SYSTEM CONFIGURATION FOR THREE-FEEDER 

Feeder 1 Feeder 2 Feeder 3 

 
Power 
[MVA] Current [A] 

Power 
[MVA] Current [A] 

Power 
[MVA] Current [A] 

0,9673 74,4077 1,2930 99,4615 0,6932 53,3231 Block 1 
1,0192 78,4000 2,0369 156,6846 1,4355 110,4231 Block 2 
0,9152 70,4000 3,0050 231,1538 3,4961 268,9308 Block 3 
2,9017 223,2077 6,3349 487,3000 5,6248 432,6769 Total 

SOURCE: The author (2020). 

 

4.1.3 Computational Platform 

 

In this part is presented the computational platform and software used to the 

development of algorithms and to realize the tests. To simulate the tests, it was used 

a desktop with operational system Windows 10 Professional 64 bits, with a hardware 

configuration AMD phenom II of 2.8GHz, 8GB of memory and hard disk of 1TB. 

All methodology was developed in MATLAB (MATrix LABoratory) of 

Mathworks. Furthermore, to calculate the power flow was utilized the OPENDSS of 

EPRI, which is a program of power flow simulation focused on distributed system, 

where there are two methods to calculate: current injection and Newton for iterative 

methods (DUGAN, 2013). For raw data was used the Microsoft Office Excel 

(Office365). 
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4.2 METHODS 

 

The methodology developed in this thesis was motivated from Pal et al. (2010) 

and Das et al. (2013), both article present the same problem, but each one 

complements the method developed to solve the reconfiguration on shipboard after 

an outage occurs. Bringing the main concept that is the application of reinforcement 

learning to solve the SH problem in a distribution network. 

The algorithm proposed, in the FIGURE 14, is divided in two parts, the first is 

called initialization phase and the second is the learning phase. The initialization 

phase is comprehended by the first part of the Self-Healing, identifies and isolate the 

fault, where the logic used is in according to Ferreira (2015) methodology. After the 

isolation, it’s created the list of actions based on the switches that was not isolated 

are selected to be able to interact with the system, together with the preselected 

percentual of load shedding. In a case of an overload, it’s not necessary to identify 

and isolate a fault, so the algorithm can jump to create the list of actions with all 

switches. 

The Q-Learning and policy parameters, as well the number of iterations should 

be setup before the loop start. The QMatrix initialization might be done in two ways, 

starts with zeros and according the iterations are processed the QMatrix is filled, or 

initialize with the total load according the topology (lines) and action (switches) to be 

taken. After this initialization, the algorithm can run and find the best actions to be 

executed and solve the problem. Note that for each new state selected, the limits to 

avoid any new failure in the system is verified. 

Before to introduce the details of the algorithm, it is necessary to understand 

what QMatrix represents and associates some terms about reinforcement learning 

with the system built for this program. 

a) agent: switch or load; 

b) environment: Distribution System and its constraints; 

c) action: Open/Close switch, or Load Shedding [%]; 

d) state: System topology; 

e) reward: delta load; 

f) QMatrix: matrix to save the accumulate knowledge in each iteration. 
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The QMatrix is one of the important points developed in this thesis, where the 

knowledge stored is related with the rows – the index represents the distribution 

topology in decimal that should be converted in binary, and the columns – the actions 

to be performed, each index represents a possible device to commute or a 

perceptual of shed. For a visual detail look in FIGURE 15, that represents a topology 

with four devices and one level of shed. 

 
FIGURE 14 – LOGIC FLOWCHART 

 
SOURCE: The author (2020). 
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FIGURE 15 – UNDERSTANDING THE QMATRIX 

 
SOURCE: The author (2020). 

 

4.2.1 Identify the problem 

 

The algorithm can be triggered by two different problems, the first is an 

overload, where some equipment has a current limit and when the system has an 

increase of load that exceed this limit, the control system should take an action to 

avoid the overload. 

The second trigger is related with the unexpected outages, for example a car 

crashes on a pole, or some storm that de-energized parts of the system, etc. Then, 

the IEDs can process the over current and send to the control center to about the 

problem and the intelligent algorithms (or the operators) must take any action to 

correct the issue on the field. 

 

4.2.2 Identification and Isolation 

 

The fault identification and isolation are based in the same principle as done in 

Ferreira (2015) using the graph theory. The fault is associated with a load block (a 

node in a graph), so all edges (switches) connected with this node should be 

isolated. Notice that the distribution system topology approach used in this thesis is 

different, where the normal representation is the switches as nodes and the loads as 

edges. 
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4.2.3 List of Actions 

 

Once the system found the problem and reduced the search space in the 

cases of unexpected outages, the list of action can be created. The list will impact 

directly in the number of states, i.e., in the number of lines in Q-matrix, once the Q-

matrix size is exponentially based on all possible topological configurations 

(2^<number of switches>). The columns are also affected because the it’s composed 

by the total number of switches to open as an action, plus, the number of switches to 

close as an action, plus, the amount of selected percentual to shed. Moreover, the 

feeder head is removed from the actions, once there isn’t any sense to turn off a 

complete feeder from the beginning. 

To exemplify, a system with 12 switches, three feeders, four different level of 

load shedding and two switches were used to isolate the fault, the QMatrix sizes is 27 

lines x 7+7+4 columns, where the number seven represents the amount of switches 

to be commuted. 

 

4.2.4 Parameterization and Initialization 

 

There are some parameters to be configured before the Q-algorithm starts, the 

number of maximum iterations, this avoid the case when the logic can’t find a final 

solution for the problem presented for itself. The learning rate and discount factor, 

those are used to calculate the value function in each iteration. The last parameter 

related with the learning process is the policy balance between explore and exploit 

from the ε-greed approach. For more details go to chapter two. In the power system 

side, there are the system maximum of capacity and the maximum and minimum of 

voltage in each feeder segment. 

The next step is to initialize the values of Q, as commented before the QMatrix 

can be completed with zeros or using the load equation. The second approach is 

related with the idea of the environment (distribution system), the function proposed 

was based on the load in each state. It is executed the reward idea from 

Reinforcement Learning, where the algorithm will run for each column and row and 

calculate the reward based on the delta variation between the previous state and the 

current state, according to equation (20). 
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4.2.5 Learning Process 

 

The beginning of the learning process considers as input the state of the 

distribution system after the isolation, so the algorithm will find the best action to be 

selected by the ε-greed policy, as explained on the chapter about reinforcement 

learning and demonstrated in equation (7). Then, the topology will change if the 

action is related with a device or will change the feeder load when a shedding action. 

As the algorithm was design to consider the ε-greed policy, so it’s generate a 

random value between [0-1], if less than ε value, the actions to be selected from the 

QMatrix will be random (explore concept); otherwise, it returns the QMatrix column 

index which represents the action array to be taken (exploit concept). In a case 

where the action is a device position, the new state is obtained converting the row 

index minus one (because Matlab doesn’t have index zero) in binary, after updating 

the binary vector with the correspondent action and reconverting in decimal plus one 

to be now the current state (topology) and the row index. However, if the action 

chosen is the load shedding, it is just executed a shed on loads that belongs to the 

transferred feeder. 

Determined the new state (topology), the next step is to verify three 

constraints to avoid any new failure in the system. The first constraint is the 

permanent parallelism, where it is executed a graph search for each feeder and the 

same point (device) cannot appear twice. The second verification is the voltage 

limits, which is used the OPENDSS software to calculate the power flow and obtain 

the voltage profile. The last limit is the maximum capacity of current on the 

equipment, in this case is used a general capacity for the whole distribution system. If 

one of these limits is exceeded the reward for the new state is minus one. Notice, all 

values are normalized considering the total power calculated when the system is in 

normal operation mode. 

 
 (20) 

 

If no limits were exceeded, the reward can be calculated according equation 

(20), which represents the variation between the load from previous state and the 

load for the current state. The values can be positive, that represents an 

improvement or negative, where the new state has less load than the previous and 
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indicating a bad action choice. Therefore, with a reward value for the current state, 

the Q value can be obtained based on the equation (19). 

To determine the best solution the algorithm saves in the end the best state 

when there isn’t limit violation and has a load improvement. The algorithm just stops 

when the number of iterations reach the end or there isn’t more variation for the 

policy choice in 10 consecutive iterations. 

 

4.2.6 A brief example of the application of the RL in the Self-Healing context 

 

To have a better comprehension about the method developed, it is created a 

small system to apply in a few steps the complete idea of the algorithm. FIGURE 16 

shows the small system in a normal (a) and isolated state (b) and the equation (21) is 

the initialization for Q matrix after the isolation, notice that there are three possible 

simple actions, which are Close or Open for DVC1, DVC2 and DVC10. The initial 

state, that is represented in FIGURE 16 (b) comprehends the line four according to 

the Table 4. 

The first step of the algorithm is to determine the action using the greedy 

technique, so the maximum value in line four is 1 (60/60). This action is to close 

DVC10, and this carries for a new state where all devices is closed and represent the 

line eight. 

This new state should be analyzed to verify all limits described above, if there 

aren’t any limit exceed the new value for Q should be calculate based on the reward 

equation (20). The Q-matrix is update, if this state comprehends a better result from 

the previously iteration, the state is saved to be used as a solution at the end of 

process. 

A new iteration starts, now with the new state (all devices closed) and the 

action should be chosen again, in this case the best solution is to open DVC10, but 

the result return in the initial state, so there isn’t better solution than all devices 

closed, in this case the algorithm can stop and show the best solution stored in the 

process. 
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FIGURE 16 – EXAMPLE SYSTEM WITH 5 RECLOSERS. (A) NORMAL SYSTEM AND (B) SYSTEM 

AFTER ISOLATION 

 
                          (a) 

 
                            (b) 

SOURCE: The author (2020). 

 

 

 

 

 

(21) 

 

 
Table 4 – RELATION BETWEEN Q-MATRIX AND SYSTEM TOPOLOGY 

Q-matrix index DVC1 position DVC2 position DVC10 position 

1 0 0 0 

2 1 0 0 

3 0 1 0 

4 1 1 0 

5 0 0 1 

6 1 0 1 

7 0 1 1 

8 1 1 1 

SOURCE: The author (2020). 

 

 

 

 

 

 



73 

 

4.3 FINAL DISCUSSION 

 

The proposed method was based on the same approach for a Self-Healing in 

a naval ship operation. As the environment are different the process was changed 

and included new steps and analysis to be in accord with the distribution system 

standards, together with the load shedding analysis. Furthermore, as it’s not simple 

to understand the process, it was included a specific section to talk about how the RL 

method works and applied in a small network, the idea is to facilitate the 

understanding in the results and conclusion chapter. 

To prove the RL method it was selected a real distribution network system 

with five feeders. The load used to simulate the faults is a snapshot of a determined 

moment of the day, and to simulate the overload in the system, it was proposed to 

decrease the capacity in the switches. The five-feeder system was decreased for a 

three-feeder to analyze some time process and to adjust RL parameter. One of the 

reasons to consider the three-feeder case is that in Brazil, the distribution network 

has not yet a high level of automatism compared with North America and Europe. 

However, there is a specificity that differs Brazil with other countries, as the bigger 

amount of load concentrated and the distance between the remote commanded 

devices. Furthermore, as the idea of this thesis is to begin the discussion between 

the traditional way, where each problem is addressed to one technique, and the new 

approach, the size of the grid does not interfere with demonstrating the real purpose. 

The computer used to simulate the case is old and cannot perform according 

the currently computer, also the MATLAB is not the better framework to have good 

performance results. However, as the objective of this thesis is to prove the concept 

to have two different techniques being solved at the same moment in a single 

algorithm, the computer and the framework demonstrated enough performance. 
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5 RESULTS AND DISCUSSION 
 

In this chapter is presented the results to test the developed algorithm. The 

chapter was divided in five main sections, first the discussion how the policy was 

selected to be used in the simulations for the next sections, where it was divided in 

test with three-feeder topology and the other with the five-feeder topology. 

Furthermore, the fourth section is a comparison with other two different techniques 

and at the end the final discussion of this chapter. 

The parameters for the testes using the three-feeder case were, maximum 

number of iteration equal 1000, and for the five-feeder scenarios depending 

according the complexity of the system, the number variates between 

20000~100000. In both cases the learning rate and discount factor respectively 0.9 

and 0.6. The percentual for load shedding were 5%, 10%, 15% and 20%. 

 

5.1 DEFINING THE POLICY 

 

To define the policy to simulate the scenarios, first it was simulated two 

different cases to select the better policy to take action during the learning process. 

Scenario one is a single fault in DVC1 and the other is a double fault in DVC4 and 

DVC8, both cases using the three-feeder topology. Each case was run 100 times for 

three different policies: Greed, ε-Greed and Randomize. For the first scenario the 

objective is to keep at the least 11.96 MVA after the reconfiguration, and for the 

second scenario a better solution should be more than 3.59 MVA, both cases 

represent the total load after the isolation step. 

The TABLE 5 brings the results for the single fault in a Greed policy, where 

14% reached the global solution with 12.76 MVA. In an overview, 63% keeps the 

topology after the isolation and 35% found a good solution from a mixed 

reconfiguration and load shedding. Moreover, 2% the algorithm found a bad system 

reconfiguration because the final load is less than keep with the final distribution 

topology after the isolation switching. When using the ε -Greed approach, TABLE 6, 

the solution demonstrated 4% of bad solution, where the load is less than the 

isolation topology. For a good service restoration, 48% of the cases could reconfigure 

the topology and apply a load reduction to increase the load. Moreover, 48% keep 

the load system as the same after the isolation, where 22% open a non-necessary 
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switch (DVC3) in the final reconfiguration. Compared with the Greed policy, the ε -

Greed approach has reached in 18% against 14%. 

 
TABLE 5 – GREED POLICY FOR A SIMPLE FAULT 
FAULT DVC1 Greed 
DVC3 1 0 0 1 0 0 
DVC5 1 1 1 1 1 1 
DVC6 1 1 1 1 1 0 
DVC8 1 1 1 1 1 1 
DVC9 1 1 1 1 1 1 
DVC10 0 0 0 0 1 1 
DVC12 0 0 0 0 0 0 
DVC11 0 1 0 1 0 0 

Amount of solution times 34 21 29 14 1 1 
       
Total Power [MVA] 11.96 12.548 11.96 12.76 11.508 8.955 
Shed [%] 0 5 0 15 20 0 

SOURCE: The author (2020). 

 

 

TABLE 6 – Ε-GREED POLICY FOR A SIMPLE FAULT 
FAULT DVC1 ε -Greed 
DVC3 0 0 1 1 0 0 0 1 
DVC5 1 1 1 1 1 1 1 1 
DVC6 1 1 1 1 0 0 1 0 
DVC8 1 1 1 1 1 1 1 1 
DVC9 1 1 1 1 1 1 1 1 
DVC10 0 0 0 0 1 0 1 0 
DVC12 0 0 0 0 0 0 0 0 
DVC11 1 0 0 1 0 1 1 0 

Amount of solution times 30 22 26 18 1 1 1 1 
Total Power [MVA] 12.221 11.96 11.96 12.76 8.955 9.54 11.81 8.955 
Shed [%] 10 0 0 15 0 5 15 0 

SOURCE: The author (2020). 

 

The randomize policy presented 2% of inadequate solution, where 57% 

increase the load in a final solution and the other 41% just keep the load after the 

isolation. Different of the previous cases, the randomize solution cannot find in any 

moment the better configuration of 12.76 MVA, the complete analysis is shown in 

TABLE 7. 
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TABLE 7 – RANDOMIZE POLICY FOR A SIMPLE FAULT 
FAULT DVC1 Randomize 
DVC3 1 1 0 0 0 0 
DVC5 1 1 1 1 1 1 
DVC6 1 1 1 1 0 1 
DVC8 1 1 1 1 1 1 
DVC9 1 1 1 1 1 1 
DVC10 0 0 0 0 1 1 
DVC12 0 0 0 0 0 0 
DVC11 1 0 1 0 1 0 

Amount of solution times 22 24 35 17 1 1 
Total Power [MVA] 12.382 11.96 12.221 11.96 9.543 11.508 
Shed [%] 20 0 10 0 5 20 

SOURCE: The author (2020). 

 

For the double fault scenario, the Greed policy, TABLE 8, found 10 different 

solution, where 1% a bad solution, 1% keeps the isolation state, 23% with 

reasonable result and 75% a good solution when this type of fault occurs. The ε-

Greed approach, TABLE 9, found 1% of inadequate solution, 3% in isolation state, 

8% a reasonable solution and 88% a good solution. The randomize policy, TABLE 

10, with the numbers 0% for a bad solution, 3% in the isolation state, 16% a 

reasonable solution and 81% a good solution. 

 
TABLE 8 – GREED POLICY FOR A DOUBLE FAULT 
FAULT DVC4 and DVC8 Greed 
DVC2 1 1 1 1 1 1 1 0 1 1 
DVC3 1 1 0 0 1 1 0 1 1 0 
DVC5 0 1 0 1 1 0 1 1 1 0 
DVC6 0 1 1 1 0 1 1 1 0 1 
DVC12 0 0 0 0 0 0 0 0 0 0 
DVC11 1 0 1 1 1 0 0 0 0 0 

Amount of solution times 33 2 4 2 42 10 4 1 1 1 
Total Power [MVA] 7.09 7.04 5.68 6.66 7.09 6.59 7.01 1.66 3.50 5.68 
Shed [%] 0 20 0 15 0 0 10 0 5 0 

SOURCE: The author (2020). 
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TABLE 9 – Ε-GREED POLICY FOR A DOUBLE FAULT 
FAULT DVC4 and DVC8 ε-Greed 
DVC2 1 1 1 1 1 0 1 1 
DVC3 1 1 1 1 1 1 0 0 
DVC5 1 0 1 0 1 1 0 1 
DVC6 0 0 0 1 1 0 1 1 
DVC12 0 0 0 0 0 0 0 0 
DVC11 1 1 0 0 0 0 1 0 

Amount of solution times 50 38 3 4 2 1 1 1 
Total Power [MVA] 7.091 7.091 3.5949 6.599 7.048 1.6605 5.6846 7.0187 
Shed [%] 0 0 15 0 20 0 0 10 

SOURCE: The author (2020). 

 

 
TABLE 10 – RANDOMIZE POLICY FOR A DOUBLE FAULT 
FAULT DVC4 and DVC8 Randomize 
DVC2 1 1 1 1 1 1 1 1 1 
DVC3 1 1 1 0 1 0 0 0 1 
DVC5 1 0 0 1 0 1 0 0 1 
DVC6 0 0 0 1 1 1 1 1 0 
DVC12 0 0 1 0 0 0 0 0 0 
DVC11 1 1 0 1 0 0 1 0 0 
Amount of solution 
times 41 40 1 4 3 5 3 1 2 
Total Power [MVA] 7.0911 7.0911 3.595 7.0187 6.5999 6.6673 5.6847 5.6847 3.595 
Shed [%] 0 0 0 10 0 15 0 0 10 

SOURCE: The author (2020). 

 

According the comparison between the simulations, the ε -Greed shown a 

better policy to solve the self-healing and load shedding because in the first case this 

policy could reach more results than the other and the main reason is related with the 

second case, where the number of inadequate solutions was less and the algorithm 

with this policy could reach more times the better system reconfiguration. 

 

5.2 SIMULATION WITH THREE-FEEDER TOPOLOGY 

 

The first step to prove the efficiency of the algorithm developed it to test in a 

topology most common in Brazil with three feeders interconnected, where in this 

case the process time is relevant as the reconfiguration result. To analyze the 
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behavior, it will be shown four different fault cases, in three/four distinct capacity 

configurations according to each scenario, 400 A, 500 A, 560 A, 600 A or 700 A.  

 

5.2.1 CASE1.1: Fault DVC1 – DVC2 

 

In the first test case, it is simulated a fault between the switches DVC1 and 

DVC2, where the loads in front of DVC2, with 1.9344 MVA, is de-energized. It was 

simulated the problem with three levels of maximum capacity on the feeder (500 A / 

560 A / 600 A). The isolation state is demonstrated in FIGURE 17. 

 
FIGURE 17 – CASE1.1: TOPOLOGY AFTER ISOLATION 

 
SOURCE: The author (2020). 

 

When the capacity is 500 A, the algorithm selected the DVC3 to open (load 

shedding via block) and DVC11 to close (service restoration) because the feeder 3 is 

more available (67.32 A) than the feeder 2 (12.7 A). Then, just the block3 (70.4 A) 

from feeder 1 can be restored and a small shed (5%) should be executed to keep the 

current into the limits. For the scenario with 560 A the both healthy feeders are 

available to restore the load blocks from the feeder 1, so to avoid any overload for 

one feeder, the algorithm selects a mode to distribute the load for both feeders, so at 

the end the just a 5% of load reduction in feeder 2 was necessary as Table 12. 

The last case with the system configured for 600 A of capacity, it was just 

necessary to close DVC11 because the feeder 3 had enough capacity to support the 

transfer. As no load shedding was required a single switch action could be 

performed, in other words, the algorithm could consider that in this case increase the 

number of switch action will not change the final load situation. The final topology for 

each capacity scenario can be seen in FIGURE 18. 
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FIGURE 18 – CASE1.1: TOPOLOGY AFTER RECONFIGURATION. (A) 500A, (B) 560A AND (C) 

600A 

 
CAP500A (a) 

 
CAP560A (b) 

 
CAP600A (c) 

SOURCE: The author (2020). 

 

The Table 11 details the process time, as the problem to be solved is the 

same, so the only time difference is related with system capacity, where more 

restrictive is the system more complicate is to find a solution. Based on the capacity 

levels, the Table 12 shows the total load of the system after the final reconfiguration, 

which it was possible to keep 84% of the total load for 500 A, 91% for 560 A and 93% 

for 600 A, where the pos-isolation represents 80% of the total. The final solution 

didn’t extrapolate any current limit that was imposed as a parameter, according to the 

Table 13, and the final solution could avoid also the permanent parallelism and the 

voltage limits.  
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Table 11 – CASE1.1: TIME RESULTS AND NUMBER OF ITERATIONS 

Scenario Learning Time [s] Number of iteration Position found the best 
result 

CAP500 62.0739 1000 1000 

CAP560 47.4579 1000 668 

CAP600 37.0105 1000 511 
SOURCE: The author (2020). 

 
Table 12 – CASE1.1: SHED AND LOAD RESULTS 

Scenario Best Shed [%] Shed Feeder Total power restored 
[MVA] 

Total Power w/ SH 
[MVA] 

CAP500 5 3 12.548 11.96 

CAP560 5 2 13.526 11.96 

CAP600 0 0 13.894 11.96 
SOURCE: The author (2020). 

 
Table 13 – CASE1.1: FINAL CURRENT RESULTS 

Scenario Current Feeder 1 Current Feeder 2 Current Feeder 3 

CAP500 0 487.2990 477.9315 

CAP560 0 537.4126 503.0858 

CAP600 0 487.2990 581.4842 
SOURCE: The author (2020). 

 

5.2.2 CASE1.2: Fault DVC5 – DVC6 

 

The second test case simulates a fault between the switches DVC5 and 

DVC6, where the segment in front of DVC6, with 3.0050 MVA, is de-energized, 

where in this case the most loaded feeder presents a fault. The capacity analysis 

follows the previous scenario (500 A / 560 A / 600 A). The isolation topology is shown 

in FIGURE 19. 

For all capacity limit, the reconfiguration, as demonstrated in FIGURE 20, was 

done closing DVC10 to energize the last block in feeder 2 because the feeder 1 is 

more available (276.79 A) than feeder 3 (67.32 A) for the worst capacity case (500 

A). In this situation, it wasn’t necessary to shed loads to execute a better 

reconfiguration, for all capacity levels feeder 1 could receive the last block of feeder 

2. 
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FIGURE 19 – CASE1.2: TOPOLOGY AFTER ISOLATION 

 
SOURCE: The author (2020). 

 
FIGURE 20 – CASE1.2: TOPOLOGY AFTER RECONFIGURATION 

 
SOURCE: The author (2020). 

 

The Table 14 details the process time, as the feeder 1 has enough capacity for 

all levels, the process time is similar and there isn’t any consideration based on the 

complexity caused by the system restriction. Based on the capacity levels, the Table 

15 shows the total load of the system after the final reconfiguration, which for all 

cases the final load represents 86% of the total load, for comparison the pos-isolation 

represents 66% of the total. The final solution didn’t extrapolate any current limit that 

was imposed as a parameter, according to the Table 16, and the final solution could 

avoid also the permanent parallelism and the voltage limits.  

 

 
Table 14 – CASE1.2: TIME RESULTS AND NUMBER OF ITERATIONS 

Scenario Learning Time [s] Number of iteration Position found the best 
result 

CAP500 26.2447 1000 123 

CAP560 30.7247 1000 147 

CAP600 23.1874 1000 98 
SOURCE: The author (2020). 
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Table 15 – CASE1.2: SHED AND LOAD RESULTS 

Scenario Best Shed [%] Shed Feeder Total power 
restored [MVA] 

Total Power w/ SH 
[MVA] 

CAP500 0 0 12.825 9.819 

CAP560 0 0 12.825 9.819 

CAP600 0 0 12.825 9.819 
SOURCE: The author (2020). 

 
Table 16 – CASE1.2: FINAL CURRENT RESULTS 

Scenario Current Feeder 1 Current Feeder 2 Current Feeder 3 
CAP500 454.36 99.4644 432.6819 

CAP560 454.36 99.4644 432.6819 

CAP600 454.36 99.4644 432.6819 
SOURCE: The author (2020). 

 

5.2.3 CASE1.3: Fault DVC1 – DVC2 and DVC10 – DVC6 – DVC12 

 

The third test case simulates two simultaneous faults between the switches 

DVC1 and DVC2, and the other fault is among DVC6, DVC12 and DVC10. For this 

scenario the capacity constraint was diversified in four different levels, 400 A, 500 A, 

560 A and 600 A. When the capacity is 400 A an overload happens at the same time 

of the fault, so the algorithm should respond from two different problems, unexpected 

outage and overload. The isolation state is shown in FIGURE 21. 

 
FIGURE 21 – CASE1.3: TOPOLOGY AFTER ISOLATION 

 
SOURCE: The author (2020). 
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FIGURE 22 – CASE1.3: TOPOLOGY AFTER RECONFIGURATION. (A) 400A, (B) 500A AND (C) 

560A/600A 

 
CAP400A (a) 

 
CAP500A (a) 

 
CAP560A/600A (a) 

SOURCE: The author (2020). 

 
As expected, for the 400 A case the algorithm kept the topology after the 

isolation and only execute the load shedding of 10% on feeder 3, without consider 

the system losses a shedding of 5% should be enough; however, when analyzed the 

losses together the shed should be increase for 10%. When the capacity is 500 A the 

result closes DVC11 (service restoration) and provides a complete shed in feeder 1 

block 3 (open DVC3), besides a shed of 5% on feeder 3. For 560 A and 600 A the 

final topology was the same, just closing DVC11, the difference is related with the 

load reduction (5% - feeder 3) in 560 A case, and not necessary for the 600 A. All 

final topologies are presented in FIGURE 22 
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The Table 17 details the process time, for this case the number of switches 

was dramatically reduced because the fault position, so all times was small. With a 

difference explanation than the case 1.1, where the worst case was because the 

system becomes more restrictive with less capacity, in this case because the short 

search space in QMatrix the algorithm kept in the same location, repeating the same 

result, the quantity of times to stop the algorithm earlier than the 1000 iterations. 

 
Table 17 – CASE1.3: TIME RESULTS AND NUMBER OF ITERATIONS 

Scenario Learning Time [s] Number of iteration Position found the 
best result 

CAP400 4.4682 1000 18 

CAP500 8.7008 1000 76 

CAP560 10.2041 1000 13 

CAP600 9.3744 1000 51 
SOURCE: The author (2020). 

 

Based on the capacity levels, the Table 18 shows the total load of the system 

after the final reconfiguration, which it was possible to keep 56% of the total load for 

400 A, 64% for 500 A, 71% for 560 A and 73% for 600 A, where the pos-isolation 

represents 47% of the total. The final solution didn’t extrapolate any current limit that 

was imposed as a parameter, according to the Table 19, and the final solution could 

avoid also the permanent parallelism and the voltage limits.  

 
Table 18 – CASE1.3: SHED AND LOAD RESULTS 

Scenario Best Shed [%] Shed Feeder Total power 
restored [MVA] 

Total Power w/ SH 
[MVA] 

CAP400 10 3 8.3923 6.9178 

CAP500 5 3 9.5430 6.9178 

CAP560 5 3 10.5110 6.9178 

CAP600 0 0 10.8890 6.9178 
SOURCE: The author (2020). 

 
Table 19 – CASE1.3: FINAL CURRENT RESULTS 

Scenario Current Feeder 1 [A] Current Feeder 2 [A] Current Feeder 3 [A] 

CAP400 0 256.149 389.4137 

CAP500 0 256.149 477.9315 

CAP560 0 256.149 552.41 

CAP600 0 256.149 581.4842 
SOURCE: The author (2020). 

 



85 

 

5.2.4 CASE1.4: Fault DVC4 – DVC5 and DVC8 – DVC9 

 

The last test case simulates two simultaneous faults between the switches 

DVC4 and DVC5, and the other fault is between DVC8 and DVC9, creating a 

scenario to stress the resources from feeder 1, as there isn’t any load prioritization 

the algorithm is free to select which block of load can be restored. To discuss on the 

results, it was prepared fours cases, but starting in 500 A until 700 A. The fault 

isolation is presented in FIGURE 23. 

 
FIGURE 23 – CASE1.4: TOPOLOGY AFTER ISOLATION 

 
SOURCE: The author (2020). 

 

When the capacity is 500 A, the algorithm selected DVC11 to close (service 

restoration) because the feeder 3 block 3 has more load (3.4961 MVA) than the 

feeder 2 block 3 (3.005 MVA), so as in both cases it’s not necessary a load 

reduction, the algorithm prefers the block with more load. When the capacity is 

increased (to 560 A) the DVC6 should be opened (load shedding) and the DVC10 

and DVC12 should be closed to restore many loads is possible without exceed the 

capacity, and a 15% of load reduction should be applied. For 600 A to avoid a bigger 

shedding connecting the three de-energized feeders, the best choice was to restore 

all load in feeder 2 with a load shedding of 5% through the closing of DVC10. The 

last case with 700 A the DVC3 was opened (load shedding) and DVC10 and DVC12 

was closed to restore the load of the three other blocks from feeder 2 and feeder 3. 

Furthermore, a load shedding should be applied to keep the system in a normative 

operation. All final topologies are demonstrated in FIGURE 24. 
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FIGURE 24 – CASE1.4: TOPOLOGY AFTER RECONFIGURATION. (A) 500A, (B) 560A, (C) 600A 

AND (D) 700A 

 
CAP500A (a) 

 
CAP560A (b) 

 
CAP600A (c) 

 
CAP700A (d) 

SOURCE: The author (2020). 
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The Table 20 details the process time, all values are similar because the 

problem shows the same complexity for each capacity variation. One of the reasons 

that in 600 A case spent more time than the others, it could be because the line of 

search on QMatrix, where take a wrong way at the beginning and according the 

exploration phase the solution could be converged. Based on the capacity levels, the 

Table 21 shows the total load of the system after the final reconfiguration, which it 

was possible to keep 48% of the total load for 500 A, 53% for 560 A, 55% for 600 A 

and 65% for 700 A, where the pos-isolation represents 23% of the total. The final 

solution didn’t extrapolate any current limit that was imposed as a parameter, 

according to the Table 22, and the final solution could avoid also the permanent 

parallelism and the voltage limits.  

 
Table 20 – CASE1.4: TIME RESULTS AND NUMBER OF ITERATIONS 

Scenario Learning Time [s] Number of iteration Position found the 
best result 

CAP500 10.0298 1000 191 

CAP560 10.24 1000 214 

CAP600 16.8714 1000 333 

CAP700 6.4051 1000 134 
SOURCE: The author (2020). 

 
Table 21 – CASE1.4: SHED AND LOAD RESULTS 

Scenario Best Shed [%] Shed Feeder Total power restored 
[MVA] 

Total Power w/ SH 
[MVA] 

CAP500 0 0 7.091 3.5949 

CAP560 15 1 7.9077 3.5949 

CAP600 5 1 8.2396 3.5949 

CAP700 15 1 9.639 3.5949 
SOURCE: The author (2020). 

 
Table 22 – CASE1.4: FINAL CURRENT RESULTS 

Scenario Current Feeder 1 [A] Current Feeder 2 [A] Current Feeder 3 [A] 
CAP500 492.1438 0 53.325 

CAP560 554.9565 0 53.325 

CAP600 580.4924 0 53.325 

CAP700 688.1384 0 53.325 
SOURCE: The author (2020). 
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5.3 SIMULATION WITH FIVE-FEEDER TOPOLOGY 

 

To stress the algorithm in complex scenarios, it’s considered the five-feeder 

topology and the time process is relevant in this case, just the result. To analyze the 

behavior, it will be shown three different fault cases, in two distinct capacity 

configurations, 500 A and 600 A. A special case is created and discussed in the end 

of this section. 

 

5.3.1 CASE2.1: Fault DVC2 – DVC3 – DVC10 

 

The first test case with the five-feeder topology simulates a fault among the 

switches DVC2, DVC3 and DVC10, where the segment in front of DVC6, with 1.9344 

MVA, is de-energized. The idea is to apply a simple fault in the smallest loaded 

feeder and analyze how will be the algorithm behavior to supply the feeder 1 block 3. 

To isolation topology is shown in FIGURE 25. 

 
FIGURE 25 – CASE2.1: TOPOLOGY AFTER ISOLATION 

 
SOURCE: The author (2020). 

 

When the capacity is 500 A, the algorithm selected the DVC11 to close 

(service restoration) because it’s the unique route to be used in the reconfiguration, 

as shown in FIGURE 26. For the scenario with 560 A the same switching operation is 

execute, where the different is that in 500 A scenario should be executed a load 
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shedding of 5% in feeder 3, and in the second case no load reduction was 

necessary. 

The Table 23 details the process time, as the problem to be solved is the 

same, so the only time difference is related with system capacity, where more 

restrictive is the system more complicate is to find a solution, different of the results 

from the three-feeder topology, here the time consuming is much more perceptive. 

The 500 A case was necessary to increase the total number of iterations to find a 

better solution because in 10000 iteration the result was not enough, so it was 

increased the iterations for 50000, where the best configuration found was in position 

19105. 

 
FIGURE 26 – CASE2.1: TOPOLOGY AFTER RECONFIGURATION, WHEN CAPACITY 500A AND 

600A 

 
SOURCE: The author (2020). 

 
Table 23 – CASE2.1: TIME RESULTS AND NUMBER OF ITERATIONS 

Scenario Learning Time [s] Number of iteration Position found the 
best result 

CAP500 2273 50000 19105 

CAP600 791 10000 1357 
SOURCE: The author (2020). 

 

Based on the capacity levels, the Table 24 shows the total load of the system 

after the final reconfiguration, which it was possible to keep 95% of the total load for 

500 A and 96% for 600 A, where the pos-isolation represents 93% of the total. The 

final solution didn’t extrapolate any current limit that was imposed as a parameter, 
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according to the Table 25, and the final solution could avoid also the permanent 

parallelism and the voltage limits.  
Table 24 – CASE2.1: SHED AND LOAD RESULTS 

Scenario Best Shed [%] Shed Feeder Total power 
restored [MVA] 

Total Power w/ SH 
[MVA] 

CAP500 5 3 25.358 24.7693 

CAP600 - - 25.6850 24.7693 
SOURCE: The author (2020). 

 
Table 25 – CASE2.1: FINAL CURRENT RESULTS 

Scenario Current Feeder 
1 [A] 

Current Feeder 
2 [A] 

Current Feeder 
3 [A] 

Current Feeder 
4 [A] 

Current Feeder 
5 [A] 

CAP500 74.0477 487.2990 452.7772 494.2075 416.7613 

CAP600 74.0477 487.2990 503,0858 494.2075 416.7613 
SOURCE: The author (2020). 

 

5.3.2 CASE2.2: Fault DVC4 – DVC5 

 

Different of the case above, now the idea is to prove how the algorithm can 

handle with more possibilities, where the fault (DVC4) in feeder 2 might be supported 

by three other feeders. Possibility one is through feeder 1 (DVC10) which is the most 

available feeder (425.59 A / 525.59 A), second option is the feeder 3 (DVC12) and 

the third is feeder 4 (DVC19), but in the last to options the availability is less than the 

first option (67.32 A / 167.32 A) (5.80 A / 105.80 A). The isolation state is presented 

in FIGURE 27. 

 
FIGURE 27 – CASE2.2: TOPOLOGY AFTER ISOLATION 

 
SOURCE: The author (2020). 
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When the capacity is 500 A, the algorithm selected the DVC6 to open (load 

shedding via block) and DVC10 to close (service restoration) because the feeder 1 is 

more available (276.79 A) than the feeder 3 (67.32 A). Then, just the block3 (231.15 

A) from feeder 2 might be restored without any load shedding. For the scenario with 

600 A to supply all de-energized load a special configuration was executed, where 

the feeder 1 block 3 was transferred to feeder 3 (without any load reduction), so the 

feeder 1 could have enough capacity to supply the two blocks from feeder 2 and also 

without any load shedding. Both reconfiguration topology can be seen in FIGURE 28. 

The Table 26 details the process time, as the problem to be solved is the 

same, so the only time difference is related with system capacity, where more 

restrictive is the system more complicate is to find a solution, the same explanation 

from the previous scenarios is applied in this case, the difference is in the 600 A 

simulation, where the number of iterations to satisfy a good solution could be 

increased for 20000. 

Based on the capacity levels, the Table 27 shows the total load of the system 

after the final reconfiguration, which it was possible to keep 88% of the total load for 

500 A and 95% for 600 A, where the pos-isolation represents 76% of the total. The 

final solution didn’t extrapolate any current limit that was imposed as a parameter, 

according to the Table 28, and the final solution could avoid also the permanent 

parallelism and the voltage limits.  

 
Table 26 – CASE2.2: TIME RESULTS AND NUMBER OF ITERATIONS 

Scenario Learning Time [s] Number of iteration Position found the 
best result 

CAP500 2012 50000 45566 

CAP600 1484 20000 17413 
SOURCE: The author (2020). 

 
Table 27 – CASE2.2: SHED AND LOAD RESULTS 

Scenario Best Shed [%] Shed Feeder Total power restored 
[MVA] 

Total Power w/ SH 
[MVA] 

CAP500 - - 23.3741 20.3688 

CAP600 - - 25.4110 20.3688 
SOURCE: The author (2020). 
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Table 28 – CASE2.2: FINAL CURRENT RESULTS 

Scenario Current Feeder 
1 [A] 

Current Feeder 
2 [A] 

Current Feeder 
3 [A] 

Current Feeder 
4 [A] 

Current Feeder 
5 [A] 

CAP500 454.3600 0 432.6819 494.2075 416.7613 
CAP600 540.6408 0 503.0858 494.2075 416.7613 

SOURCE: The author (2020). 

 

 
FIGURE 28 – CASE2.2: TOPOLOGY AFTER RECONFIGURATION. (A) 500A AND (B) 600A 

 
CAP500A (a) 

 
CAP600A (b) 

SOURCE: The author (2020). 
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5.3.3 CASE2.3: Fault DVC1 – DVC2 AND DVC7 – DVC8 

 

The third test case simulates two simultaneous faults between the switches 

DVC1 and DVC2 (de-energizing a total of 2.9017 MVA), and the other fault is 

between DVC7 and DVC8 (de-energizing a total of 5.6248 MVA). The objective is to 

provide a complexity situation for the algorithm, where the system has less 

possibilities to restore all load, once two feeders are lost. The isolation state is shown 

in FIGURE 29. 

When the capacity is 500 A, the algorithm selected the DVC9 to open (load 

shedding via block) and DVC21 to close (service restoration), losing the most 

available feeder the second feeder if more capacity is the feeder 5 (83.24 A), which 

just have the possibility to support the feeder 3 block 2 (110.42 A) and to avoid the 

overload, a shed of 10% should be applied. For the scenario with 600 A the switching 

action was the most complex than the other cases, where the DVC9 was opened to 

split the load and to create a route between feeder 4 and feeder 1. The second 

switch opened was DVC15 to provide a load reduction in feeder 4, which receive the 

feeder 3 – block 3 and feeder 1 – block 3. The switches closed were, DVC21 to 

supply the feeder 3 – block 2, and DVC20 and DVC11 to supply the last blocks from 

feeder 3 and feeder 1. The final topology for both cases is shown in FIGURE 30. 

The Table 29 details the process time, as cited above this is the worst 

scenario created to test the algorithm, so when the capacity was 500 A, the number 

of iterations to run the process should be increased to 100000 and the position that 

found the best solution was 79556. Otherwise, when the capacity was 600 A the time 

was near by the previous case. 

 
Table 29 – CASE2.3: TIME RESULTS AND NUMBER OF ITERATIONS 

Scenario Learning Time [s] Number of iteration Position found the 
best result 

CAP500 4719 100000 79556 
CAP600 1742 20000 4156 

SOURCE: The author (2020). 
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FIGURE 29 – CASE2.3: TOPOLOGY AFTER ISOLATION 

 
SOURCE: The author (2020). 

 

Based on the capacity levels, the Table 30 shows the total load of the system 

after the final reconfiguration, which it was possible to keep 71% of the total load for 

500 A and 79% for 600 A, where the pos-isolation represents 68% of the total. The 

final solution didn’t extrapolate any current limit that was imposed as a parameter, 

according to the Table 31, and the final solution could avoid also the permanent 

parallelism and the voltage limits.  

 
Table 30 – CASE2.3: SHED AND LOAD RESULTS 

Scenario Best Shed [%] Shed Feeder Total power restored 
[MVA] 

Total Power w/ SH 
[MVA] 

CAP500 10 5 18.9280 18.1772 

CAP600 - - 21.1013 18.1772 
SOURCE: The author (2020). 

 
Table 31 – CASE2.3: FINAL CURRENT RESULTS 

Scenario Current Feeder 
1 [A] 

Current Feeder 
2 [A] 

Current Feeder 
3 [A] 

Current Feeder 
4 [A] 

Current Feeder 
5 [A] 

CAP500 - 487.2990 - 494.2075 474.4660 

CAP600 - 565.6975 - 530.2973 527.1844 
SOURCE: The author (2020). 
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FIGURE 30 – CASE2.3: TOPOLOGY AFTER RECONFIGURATION. (A) 500A AND (B) 600A 

 
CAP500A (a) 

 
CAP600A (b) 

SOURCE: The author (2020). 

 

5.3.4 CASE2.4: Overload on feeder 2 and feeder 4 

 

In a different approach, the case in this sections is related with an overload 

on feeder 2 and feeder 4 instead of an unexpectable outage, where the idea is a 

sudden increase of load on the system for both feeders and the algorithm should 

reconfigure the system or apply the load shedding to avoid the distribution system 

operates out of the normative limits. 

The final topology is presented in FIGURE 31 where the algorithm selects the 

small reconfiguration between feeder 1 and feeder 2, to resolve the overload on 

feeder 2. As the feeder 1 is the most available feeders in this network, the decision 
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maker understood that is preferable to discard the block3 (0.9152 MVA) and restore 

the feeder 2 – block 3 (3.005 MVA). In feeder 4, the idea was a load shedding of 10% 

instead of transferring the load, once the feeder 2 and feeder 3 has not any capacity 

to support the overload in feeder 4. 

 
FIGURE 31 – CASE2.4: TOPOLOGY AFTER OVERLOAD, WHEN CAPACITY 450A 

 
SOURCE: The author (2020). 

 

The Table 32 details the process time, where the QMatrix is considered 

complete, once there isn’t any fault to decrease the search space. The total time was 

not worse than the previous case because of the problem complexity, where two 

faults in restrictive system is more complicated than two overloads. Based on the 

capacity levels, the Table 33 shows the total load of the system after the final 

reconfiguration and load shedding, which decreased 6% of the load to return the 

distribution network operative again. The final solution didn’t extrapolate any current 

limit that was imposed as a parameter, according to the Table 34, and the final 

solution could avoid also the permanent parallelism and the voltage limits.  

 
Table 32 – CASE2.4: TIME RESULTS AND NUMBER OF ITERATIONS 

Scenario Learning Time [s] Number of iteration Position found the 
best result 

CAP450 3781 100000 23489 
SOURCE: The author (2020). 
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Table 33 – CASE2.4: SHED AND LOAD RESULTS 
Scenario Best Shed [%] Shed Feeder Total power restored [MVA] 

CAP450 10 4 25.146 
SOURCE: The author (2020). 

 
Table 34 – CASE2.4: FINAL CURRENT RESULTS 

Scenario Current Feeder 
1 [A] 

Current Feeder 
2 [A] 

Current Feeder 
3 [A] 

Current Feeder 
4 [A] 

Current Feeder 
5 [A] 

CAP450 383.9562 256.1490 432.6819 444.7867 416.7613 
SOURCE: The author (2020). 

 

5.4 COMPARATIVE ANALYSIS 

 

To compare the solution with other techniques developed and already 

publish, the Table 35 shows the results of two different methods: one centralized and 

another distributed. The strategy of the first one is based on a Binary Particle Swarm 

Optimization (BPSO) for service restoration and an Optimum Power Flow (OPF) for 

load shedding, in a sequential way the use of these algorithms (Ferreira; Siebert; 

Aoki, 2014). The second, a decentralized solution, each agent, installed in the 

switches, has operational rules-of-thumb (TORRES et al., 2018). For the analysis 

comparison, it was selected two different cases (1.1 and 1.4) with the three-feeder 

system and the same capacity for both cases (500 A). The first case is applied a 

single fault in DVC1 and the second case a double fault in DVC4 and DVC8 bringing 

on just the feeder1 as resource to transfer the load, a summary of the results can be 

seen Table 35. 

In the first scenario the BPSO+OPF choose the feeder2 as resource, but 

compared with feeder3, the feeder2 has 11% more load, so it’s not a good choice 

once the feeder3 has more capacity and the load reduction could be smaller, against 

the 23% applied. To prove this statement, it’s possible to see the results for 

Distributed and RL method, where both selected the feeder3 as resource and the 

load curtailment was 14% and 15% respectively, resulting an increase of load in 6%. 
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Table 35 – RESULTS OF OTHER METHODS FOR COMPARISON 
 

Case Functionality 
Capacity 

[A] 
Trigger 

Switches 
changed 

Best 
Shed 
[%] 

Feeder 
Selected 
to Shed 

Total 
Final 
Load 
[MVA] 

BPSO + OPF Method 
1.1 Self-Healing 500 DVC1 DVC10 - CLOSED 23 2 11.99 

1.4 Self-Healing 500 
DVC4 and 

DVC8 
DVC11 - CLOSED 
DVC12 - CLOSED 

47 1 6.20 

Distributed Method 
1.1 Self-Healing 500 DVC1 DVC11 - CLOSED 14 3 12.83 

1.4 Self-Healing 500 
DVC4 and 

DVC8 
DVC10 - CLOSED 
DVC11 - CLOSED 

47 1 6.20 

Reinforcement Learning Method 

1.1 Self-Healing 500 DVC1 
DVC11 – CLOSED 
DVC2 - OPENED 

5 3 12.548 

1.4 Self-Healing 500 
DVC4 and 

DVC8 
DVC11 - CLOSED 0 0 7.091 

SOURCE: The author (2020). 

 

The second scenario evidence the benefits to have the Self-Healing and the 

Load Shedding solved at the same moment. As the BPSO+OPF and Distributed 

techniques first find the best switching sequence and after the load to be reduced, 

both tried to restore the maximum load possible with the service restoration, but once 

the system was limited with 500 A a big shed must be executed (47%) to put the 

system in a normal operation. However, with a different perspective, the RL method 

just close one tie-switch (DVC11) because during the process the algorithm 

understood the disadvantage to close DVC10. Thus, closing just one device it was 

not necessary to execute any load reduction and the final system load was 12.5% 

more than the other two methods. 
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5.5 FINAL DISCUSSION 

 

The first discussion is about the result from the policy analysis, to have a 

better comprehension the difference for bad solution between the greed and the 

others is related with the concepts of explore and exploit, the greed solution focus in 

a exploit approach, where selecting the first choice the greed approach will try to 

extract the maximum value all the time for the path selected without see other 

possibilities. However, the other two approaches consider randomize influence, so in 

some iterations the algorithm change the exploit concept for a explore idea, to 

change the direction and try to find another good solution, where in this last case, it’s 

open more possibilities to find solution. 

Considering the articles Ribeiro; et al. (2017), Das et al. (2013) and Pal et al. 

(2010) those applying RL in SH problems, the better approach for the policy was the 

one that balances the explore and exploit search, in other worlds, it was used in the 

development of the algorithm the ε -Greed policy to have 10% of probability in 

explore and 90% to exploit the selected route to find the solution. According to the 

results to select the policy, it is important to highlight that is not in all time a good 

solution could be found. For example, in a single fault the ε -greed reached 4% of 

wrong solution, and for simultaneous fault 1% could not find the better topology that 

could keep or increase the load after the isolation. Furthermore, compared with the 

other two policies, the ε -Greed demonstrated more consistent in its results, even in 

the single fault which it found 3% of worse solutions than the others. 

In general, all simulated cases could be resolve satisfactorily from a solution 

where more load could be restored. Some of the cases as 1.1 (500 A) and 2.3 (600 

A) could not find the global solution, i.e., the final load could be increased if the 

algorithm had selected other actions, but as the algorithm start from a random action 

and learns from the actions chosen, some ways cannot be the best one. Moreover, 

the algorithm could handle in two different scenarios, one related with three feeders, 

which comprehends most of the cases in Brazil, and the second scenario considered 

five feeders to bring more complexity for the algorithm. The five-feeder case is 

considered more complicated because the number of switches and the number of 

possibilities to transfer load between other feeders. For more details the Table 36 

presents a summary of all results to be compared among them.  
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Table 36 – SCENARIO RESULTS IN COMPARISON ANALYSIS 

Case 
Functionality 

Trigger 
Capacity 

[A] 
Device 
Trigger 

Switches changed 
Best 
Shed 
[%] 

Feeder 
Selected to 

Shed 

Final Load 
[MVA] 

1.1 

Self-Healing 500 

DVC1 

DVC3 - OPENED 

DVC11 - CLOSED 
5 3 12.54 

Self-Healing 560 

DVC3 - OPENED 

DVC10 - CLOSED 

DVC11 - CLOSED 

5 2 13.52 

Self-Healing 600 DVC11 - CLOSED --- --- 13.89 

1.2 Self-Healing 
500/560/ 

600 
DVC5 DVC10 - CLOSED --- --- 12.82 

1.3 

Self-Healing +  

Load Shedding 
400 

DVC1 and DVC6 

--- 10 3 8.39 

Self-Healing 500 
DVC3 - OPENED 

DVC11 – CLOSED 
5 3 9.54 

Self-Healing 560 DVC11 - CLOSED 5 3 10.51 

Self-Healing 600 DVC11 - CLOSED --- --- 10.88 

1.4 

Self-Healing 500 

DVC4 and DVC8 

DVC11 – CLOSED --- --- 7.09 

Self-Healing 560 

DVC3 – OPENED 

DVC6 - OPENED 

DVC10 – CLOSED 

DVC12 – CLOSED 

15 1 7.90 

Self-Healing 600 DVC10-CLOSED 5 1 8.23 

Self-Healing 700 

DVC3 – OPENED 

DVC10 – CLOSED 

DVC12 - CLOSED 

15 1 9.63 

2.1 
Self-Healing 500 

DVC2 DVC11 - CLOSED 
5 3 25.35 

Self-Healing 600 --- --- 25.68 

2.2 

Self-Healing 500 

DVC4 

DVC6 – OPENED 

DVC10 - CLOSED 
--- --- 23.37 

Self-Healing 600 

DVC3 – OPENED 

DVC10 – CLOSED 

DVC11 – CLOSED 

--- --- 25.41 

2.3 

Self-Healing 500 

DVC1 and DVC7 

DVC9 – OPENED 

DVC21 – CLOSED 
10 5 18.92 

Self-Healing 600 

DVC15 – OPENED 

DVC9 – OPENED 

DVC21 – CLOSED 

DVC11 – CLOSED 

DVC20 - CLOSED 

--- --- 21.10 

2.4 Load Shedding 450 
Feeder4 and  

Feeder 2 

DVC3 – OPENED 

DVC6 – OPENED 

DVC10 - CLOSED 

10 4 25.14 

SOURCE: The author (2020). 
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To understand about the system complexity, the Table 37 shows all 

simulated cases in the worst capacity scenario (500 A), with the number of possible 

switches to commute, the average total process time for each simulation and the 

QMatrix size, which is responsible for the most of the time process increasing. It’s 

possible to conclude that the problem is exponential based in the number of switches 

to manipulate. Event tough the case 2.4 has a bigger time, but a QMatrix smaller 

than the other five-feeder cases, the reason is because the number of faults applied 

at the same time, where with more fault more restrict the system is. Thus, the number 

of switches is not the unique variable that influences the total time process, the 

number of faults and the interconnections can directly increase the time. 

 
Table 37 – ANALYSIS OF SYSTEM COMPLEXITY FOR EACH CASE 

Case (500A) 
Number of 
switches 

Average 
Process Time [s] 

MQ size 

1.1 8 62.0739 256x20 

1.2 7 26.2447 128x18 

1.3 5 8.7008 32x14 

1.4 6 10.0298 64x16 

2.1 13 2273 8192x30 

2.2 15 2012 32768x34 

2.3 14 4719 16386x32 

SOURCE: The author (2020). 

 

Furthermore, as demonstrated in the articles Ferreira; Siebert; Aoki (2014) 

and Torres et al. (2018) the process to execute first the SH and after the LS cannot 

determine a good solution, once the first algorithm (SH) optimizes the switching 

actions to minimize the reconfiguration losses, and if there isn’t any possibilities 

without trigger an overload, the second algorithm (LS) should be trigger to reduces 

the load and “correct” the reconfiguration from the first algorithm. However, when the 

reconfiguration and the load curtailment is applied at the same moment to take a 

decision, the results shows more consistent the others, it isn’t in all time the proposed 

algorithm could find the better solution, but the results for all comparative tests were 

near for the best result. 
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As a bonus simulation to focus on the overload trigger, the cases 1.3 and 2.4 

presents an exceed capacity limit besides the outage on the distribution system. The 

case 1.3 considers at the same moment on overload and an outage on the network 

to be solved and the 2.4 case only an overload in two different feeders (2 and 4) to 

trigger the process. The algorithm executed the load shedding in both cases, and 

specially for the five-feeder scenario, instead of having a load reduction, the process 

preferred to transfer part of the feeder 2 to feeder 1 to keep with more load. 
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6. FINAL REMARKS 
 

In this chapter is discussed how the objectives were reached, highlighting the 

main results and the comparison with other works. Furthermore, the contributions for 

further studies to improve the beginning of this line of research. 

 

6.1 CONCLUSION 

 

The proposed method successfully solved the main objective proposed for this 

work to develop an intelligent control algorithm to optimize multiples Smart Grid 

functionalities. To satisfy the purpose of this thesis, it was studied initially about the 

Machine Learning area which brings a set of different methods to solve the most 

varied problems. As the problem is related with electric power system, the method 

should comprehend a way to model the distribution network and its constraints, 

consider the inclusion of several functionalities, learn according the actions taken and 

have critical analysis according the results for each iteration. The best method 

selected was the Reinforcement Learning through the Q-Learning algorithm which 

could model the Self-Healing and the Load Shedding problematic in a way to solve at 

the same time both functionalities. 

To reach the results aimed, the Q-Learning algorithm, in special, the QMatrix 

was built in according to recreate a distribution network, where the columns 

represents the switch actions and the load reduction percentual, the lines reproduces 

the system topology. When the algorithm cruces the column with the lines, the result 

is to obtain the current topology being changed by the switching commands or load 

shedding, where these actions are selected by the policy. The policy selected is 

important to lead reinforcement learning to explore (giving more randomness of the 

action selection) or to exploit (forcing the algorithm to go deeper in the same line of 

strategy, with less variation). As explained before, depending of the problem the 

balance of explore or exploit should be analyzed to contributed for good results, in 

other words, using the standard greed approach the objective is to exploit the system 

at your maximum. In the other hand, the ε-greed and randomized technique mixed 

the explore approach to avoid some wrong lines of strategy in the middle of the 

process, so for the algorithm developed the ε-greed approach was chosen. The 

method can be triggered from a fault, overload or a mixed of both. 
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To test the proposed algorithm, it was used a real urban distribution network, 

where it’s composed by five interconnected feeders, two substations, fifteen normally 

closed and six normally opened switches. It was created two types of approach, the 

first is using three feeders interconnected and the second using the complete 

network. The idea for the first approach is to prove the technique in a faster time and 

validate the policy selected. For the second approach is to validate the methodology 

in a bigger system, where the idea is to prove the final solution for Self-Healing and 

Load Shedding and not validate the process time. 

It's important to highlight that the algorithm developed in this thesis has a 

different approach compared with other algorithm to resolve the SH and LS problems 

as cited in Arefifar et al. (2013), Botea et al. (2012), Cavalcante et al. (2016) and 

Sampaio et al. (2016), where there are works based on Multi-agent system and 

others in a optimization approach. Thus, this work shows a decision maker to solve 

the Self-Healing and Load Shedding problems based on influences from environment 

created. The Q-Learning algorithm was adapted to reproduces a distribution network 

with its constraints (voltage, current and parallelism) where the actions selected 

(switching and load reduction) could directly influences the distribution system in a 

way to exploit more the rewards. In contrast with the article Das et al. (2013), the 

QMatrix was modeled different, where in this works the objective is to reproduce the 

topology in each line and the columns are the actions to be taken to change the 

topology behavior (switch configuration and load). 

According to the simulations in all cases was possible to find a solution for 

the system reconfiguration and overload. In some cases, the global solution couldn’t 

be found, but an increase of load was perceived after the pos-isolation state. The 

most interesting cases were 1.3, 1.4, 2.3 and 2.4, where the first one is applied a 

fault and decreased the load capacity (400 A), so the system should handle with two 

different problems at the same time. The result presented was a system in pos-

isolation topology with a load shedding on the feeder three because the overload, in 

line with the previous scenario, the case 2.4 is only applied an overload, so reduction 

was executed just on feeder four which exceeded the current limits. The 1.4 scenario 

brought how the capacity in the system can change the solution in terms of topology 

and load reduction. In four different capacities, the reconfiguration and the shedding 

were different. The last notable scenario is the 2.4 which considers two simultaneous 

faults in the five-feeder topology, so this is the most complexity test and the algorithm 
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could find a good solution to restore the most possible load in the de-energized 

areas. Beside the simulations, the algorithm was tested against two other different 

techniques, one is a BPSO + OPF approach and the other a Distributed method. The 

first comparison scenario, the developed algorithm was not better than the distributed 

approach, but in the second scenario, the proposed algorithm could restore more 

load than the other two methods. 

On the other hand, the proposed method takes some disadvantage, the first is 

that the algorithm needs from the utility a complete information from the distribution 

network through GIS application and a certain field automation level to run the power 

flow. Another point is related when the distribution network is highly interconnected or 

has several telecontroled reclosers installed in the network, which the complexity for 

QMatrix is bigger enough to enter in the “curse of dimensionality”. At the end, the 

three policies testes reached at the least one bad solution (among the 100 tests) that 

leads for a wrong configuration, it means that the final topology has less load then 

the pos-isolation state. 

 

6.2 FUTURE RESEARCH 

 

For future researches there are four possibilities to extend the methodology 

developed. The first is related to include more complexity in the system through the 

inclusion of micro-grids, distributed energy resources, tap controller, etc. The second 

line of research could be based on improvements in the Reinforcement Learning for 

a new algorithm in Machine Learning. The third enhancement is related with the load 

prioritization, and the last is to improve the reward equation to include other analysis 

than the load maximization. 

As demonstrated in this thesis, the actions related on QMatrix are based on 

the switch position (Self-Healing) and load shedding percentual (avoid overload after 

a reconfiguration), so including more variable as actions, for instance, tap position or 

capacitor steps to act on the distribution network, the result could contribute for a 

different perspective as the volt/var control, together with the other two functionalities. 

Moreover, for distributed generation and microgrids could control the injection of 

power or the grid connection when a fault occurs. However, the normal reinforcement 

learning cannot support a big amount of actions to be selected once the system 

becomes more interconnected and automated, so the second line of research is to 
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go deeper in other techniques to avoid the “curse of dimensionality”, which it possible 

to verify from the discussion in Table 37 that compares the number of switches, faults 

and QMatrix size, for further researches the Deep Reinforcement Learning could be 

the next step. Another possibility to include more variable is to include the equipment 

actions into FPO, for example, tap, and keep the RL to take of the other variable to 

find the best solution. 

In terms of load prioritization and as explained in the chapter 2.3, once the 

control system can manipulate small parts of the distribution network (the fuse of 

transformer installed in medium voltage to low voltage) or the final consumers (via 

AMI) the algorithm could be improved to select the transformer or consumers to be 

turned off. This work selects the percentual to be reduced, but it’s not taking in 

account if this percentual is enough based on important consumer, so this might 

impact in the action selected at the end. 

About the reward equation, where in this work considers just the increase of 

load, it should be enhanced to consider the costs to operate a switch determined 

from the equipment life cycle. The algorithm could select the better switch action 

when both solutions was guided for a same load maximization instead of a random 

selection. Moreover, other load analysis could be done, one in terms of the cost of 

load shedding, or the impact (in profit) that the utility is not receiving money from the 

energy not distributed. The second is the losses from the system, once some 

reconfiguration can become the feeder long enough to provide more losses. 
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APPENDIX 1 – THESIS PSEUDOCODE 
 

Pseudocode #5 ADAPTED RL TO SOLVE SH+LS PROBLEM 

 

1 

2 

3 

4 

5 

Import Data 
 normally closed switches 

 normally open switches 

   

 total load for normal topology (state) 

 restriction parameter for each equipment  

 

 

6 

7 

8 

9 

10 

Trigger Selection (Outage/Overload) 
IF  THEN 

     switch that received the fault 

     find adjacent downstream 

     isolation part 

ENDIF 
 

 

 

11 

12 

13 

14 

15 

16 

17 

18 

19 

 

20 

21 

22 

23 

24 

 

 

Adapted Reinforcement Learning 
Initialize:  
 (state) based after the isolation part 

  

  

  

  

 list of actions  

 according to the problem, zero for this thesis 

  

  

 

WHILE  

    Choose  (action) from  (state) using the ε-greed policy 

    Take an action  

    Observe  

    Calculate network constraints (parallelism, overload, over and 

under voltage) based on OPF function,  and  
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25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

    IF constraints exceeded THEN 

        

    ELSE 
         

    ENDIF 
         

           

    SAVE best topology based on the best system load 

    IF  selected more than twice THEN 

         

    ENDIF 
    IF  greater than  OR  THEN 

        EXIT 
    ENDIF 
ENDWHILE 

SOURCE: The author (2020). 
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APPENDIX 2 – USER GUIDE 
 

The main display is shown in FIGURE 32. Where all control is stablished in 

this display, to create the database, selected the fault and the type (simultaneous or 

sequential) and selected the type of technique to resolve the SH problem. 

 

FIGURE 32 – Main Display. 

 

SOURCE: The author (2020). 
 

Legend: 

1) Import distribution network data from excel files and create the database 

for the Matlab program. In case the database was created, it possible just 

to reimport the database (.mat) without any process. 

2) Generate the DSS files for OPENDSS program. 

3) Area to plot the graphics for each topology result (normal, pos-isolation 

and pos-reconfiguration). 
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4) List of possible faults to simulate. Moreover, can select the fault type, 

sequential (will process one fault per time) or simultaneous (will process 

all faults selected at the same time). 

5) List of methods to solve the problem. 

a. Dijkstra Method (FERREIRA, 2015); 

b. BPSO Method (FERREIRA, 2015); 

c. Hybrid Method (distributed method) (TORRES et al., 2018); 

d. Q-Learning Method. 

6) Button to stat the fault analysis and create the pos-isolation scenario. 

7) Button to execute the method to solve the problem. 

8) Text to indicate the program process. 

9) Button to be used in sequential faults, when the first fault was processed 

and should continue for the next one. 

 


