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RESUMO

Regiões cerebrais e neurônios precisam se comunicar eficientemente e coordenar as
suas respectivas atividades. Para conseguir isso, dois fenômenos importantes são a sincronização
de fase, relevante para comunicação neural, e a metastabilidade, relevante para atividade neural.
Nessa dissertação, estudamos ambas em uma rede de neurônios bursting acoplados quimicamente
sob uma topologia aleatória. A temperatura desses neurônios influencia seu modo de disparo,
que pode ser bursting ou caótico ou periódico. O bursting caótico leva a uma transição não-
monotônica comum, enquanto o periódico leva a transições não-monotônicas mais incomuns. Em
todos os casos, observamos que as diferenças de fase entre neurônios mudam intermitentemente
ao longo do tempo, mesmo em redes fortemente sincronizadas em fase. Chamamos esse
fenômeno promiscuidade, e o medimos diretamente calculando como os tempos de burst dos
neurônios flutuam entre si ao longo do tempo. Então, agrupando neurônios de acordo com suas
fases, exploramos como a promiscuidade afeta a composição desses clusters, e obtemos detalhes
aprofundados sobre a sincronização de fase dessa rede. Também calculamos duas variabilidades
neurais, medindo como os tempos de disparo se dispersam ao longo do tempo ou da rede, e
encontramos que os dois possuem valores similares e estão fortemente correlacionados com o
grau de sincronização de fase da rede para acoplamento fraco. Em seguida, expandimos nosso
foco para metastabilidade como vista em neurociência, considerando promiscuidade um tipo de
comportamento metastável. Nós fazemos uma mini-revisão das diferentes definições do termo,
e discutimos elas. Com isso, categorizamos brevemente os mecanismos dinâmicos levando
à metastabilidade. Finalmente, usando o conhecimento obtido no estudo de promiscuidade,
investigamos novamente a rede promíscua para discutir como metastabilidade pode diferir
dependendo das múltiplas escalas do sistema. Palavras-chave: Metastabilidade. Sincronização

de Fase. Redes Neurais.



ABSTRACT

Brain regions and neurons need to communicate effectively and coordinate their
respective activities. To manage this, two important phenomena are phase synchronization,
relevant for neural communication, and metastability, relevant for neural activity. In this
dissertation, we aim to study both in a network of chemically coupled Hodgkin-Huxley-type
bursting neurons under a random topology. The temperature of these neurons influences their
firing mode, which can be either chaotic or periodic bursting. The firing mode in turn influences
the transitions from desynchronization to phase synchronization when neurons are coupled in
networks. Chaotic bursting leads to a common monotonic transition, while periodic bursting leads
to rarer nonmonotonic transitions. In all these cases, we observe that phase differences between
neurons change intermittently throughout time, even in strongly phase-synchronized networks.
We call this promiscuity, and measure it directly by calculating how neuron’s burst times drift
from each other across time. Then, grouping neurons according to their phases, we explore
how promiscuity affects the composition of these clusters, and obtain detailed knowledge of the
network’s phase synchronization. We also calculate two neuronal variabilities, measuring how
the neuronal firing times disperse over time or over the network, and find that the two have very
similar values and are strongly correlated to the network’s degree of PS for weak coupling. Next,
we expand our focus to metastability as viewed in neuroscience, regarding promiscuity as a type
of metastable behavior. We provide a mini-review of the different definitions of metastability, and
discuss them. With this, we categorize briefly the dynamical mechanisms leading to metastability.
Finally, using the insights gained from studying promiscuity, we investigate the promiscuous
network again to discuss how metastability can differ depending on the multiple scales of a
system. Keywords: Metastability. Phase synchronization. Neural networks.
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Introduction

The brain is a complex system with a huge number of cells connected in intricate ways
leading to complicated behaviors on several scales. A common approach to study it is to take
a localized look, and focus on networks of neurons. In this dissertation, we do this through
simulations and the use of dynamical systems theory on a network of bursting neurons chemically
coupled in a random topology.

This network, and similar ones, are already known to have very rich dynamics, such as
nonmonotonic transitions to phase synchronization (Boaretto et al., 2018a,c, 2019), nonstationarity
(Budzinski et al., 2017), intermittency (Budzinski et al., 2019a) and complex spatiotemporal
patterns such as chimeras (Glaze et al., 2016). Phase synchronization is a particularly important
phenomenon, due to its role as a mechanism for neuronal communication (Fries, 2005; Fell
and Axmacher, 2011). Studying it, we notice that even when the networks are strongly phase-
synchronized, neurons still tend to intermittently change the phase differences between themselves.
We call this tendency promiscuity, characterize it, analyze its influence on cluster formation, and
relate it to the variability of neuronal firing.

The understanding gained from these studies then leads us to discuss an important
dynamical regime in neuroscience called metastability. Metastability is seen as the dynamical
regime underlying cognitive processes in the brain (Tognoli and Kelso, 2014; La Camera et al.,
2019), in part as it naturally solves the organ’s need to integrate its functional areas while also
keeping their functions segregated (Fingelkurts and Fingelkurts, 2004; Kelso and Tognoli, 2007).
It is also more generally seen as a regime of brain dynamics, characterized by sequences of
transient (metastable) states (Friston, 1997, 2000). Despite the large amount of works studying
it in neuroscience, a few theoretical issues are still open in the literature. In particular, the
definition of the term is not well established, and commonly used loosely. In the second part of
this dissertation, we provide a mini-review of the different definitions of metastability, discuss
them and what a general definition could be. We also categorize the dynamical mechanisms
that can lead to it. Finally, we discuss how the observation of metastability, following a specific
definition, may differ depending on the scales being studied.

To fully comprehend these results and discussions, we first need to understand the
theoretical framework surrounding them. This is done in Part I. We begin in Chapter 1 focusing
on the biology of neuronal networks, beginning with the fundamental units of neural networks:
the neurons. We talk briefly about their electrophysiology, the mathematical formalism of
Hodgkin and Huxley to model them, how their connections work and how they behave. Then, we
move to networks themselves and review some important subjects regarding brain functioning,
such as synchronization, brain scales, and the formation of neuronal groups. This biological
knowledge then serves as motivator for the concepts in subsequent chapters.

In Chapter 2 we study the theory of dynamical systems and nonlinear dynamics, which
forms the basis of our study. We talk about the stability of systems, calculation of Lyapunov
exponents, characterization of attractors, bifurcations and some important dynamical behaviors.

With this theory, we in Chapter 3 look at specific models of neurons using the formalism
already presented. We discuss the Nobel-winning Hodgkin-Huxley model, its dynamics, and
the modifications made to it that lead to the Huber-Braun model, used in this dissertation. This
model’s dynamics is explored, and its biological relevance discussed.
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Next, the focus goes to the theory of Complex Networks in Chapter 4. We present some
aspects of this theory needed to model the connections in the network, introducing graph theory
and some important connection schemes like the small-world network.

Chapter 5 contains the methods used for simulations and analysis, including the network
we use, softwares for simulation, and quantifiers for characterizing the network.

Finally, in Chapter 6 we provide the theoretical discussions on metastability in neuro-
science mini-review of the definitions in the literature, discussions, and categorization of the
mechanisms for generating metastability.

This leaves us ready for the results, in Part II. Starting in Chapter 7 we study the phase
synchronization of the network, its relation to the network variabilities and the phenomenon
of promiscuity. In Chapter 8, we provide further details characterizing the network behavior,
supporting our study in the previous chapter. Finally, in Chapter 9, we focus again on metastability,
following a specific definition, and explore how the behavior varies depending on the scale of
observation.

With all of this, we then summarize our results, present our conclusions and future
works in Part III.
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Part I

Theoretical framework
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1 BIOLOGY OF NEURONAL NETWORKS

The animal nervous system is composed of neurons and glial cells (Kandel et al., 2000)
interconnected in a nontrivial way, forming a network. It is generally considered that neurons
perform the computations, processing relevant information (Koch and Segev, 2000), while glia
are considered to play mostly a supportive role (Chouard and Gray, 2010) (though this view is
changing (Chouard and Gray, 2010; Fields et al., 2014; Fields and Stevens-Graham, 2002) as
evidence for the role of glial in information processing is increasing). Following this general
view, neurons are the seen as the cells responsible for the wide range of behaviors presented by
the nervous system, justifying the interest in studying networks of neurons.

This chapter therefore concerns itself with the biology of both individual neurons,
interactions they make, and a bit with the behavior of brain networks.

1.1 NEURONAL COMPOSITION

Neurons are remarkable due to their ability to generate and propagate electrochemical
signals (Dayan and Abbott, 2005), which serve to communicate with other cells (Kandel et al.,
2000). These signals come in the form of spikes or trains of spikes (bursts). Spikes are fast,
transient changes in the membrane potentials of the neuron and are the focus in the start of this
chapter.

The neuronal anatomy is very important for the transmission of signals (Kandel et al.,
2000), so this section aims at introducing its basic elements. Neurons receive input signals in
their dendrites, which, if transmitted, go through their bodies (also called soma) and then through
their axons. The signal eventually reaches the end of the neuron at the synaptic terminal, where it
has a chance of being transmitted to subsequent neurons. This basic anatomy is shown in Fig 1.1.

Neurons also have embedded in their membrane specialized proteins, called ion channels
and receptors, which regulate the flow of ions through the cell. These have aqueous pores which
allow the passage of specific ions (in the case of ion channels), and neurotransmitters (in the case
of receptors).

1.2 NEURONAL ELECTROPHYSIOLOGY

The basic ions are sodium (Na+), potassium (K+), calcium (Ca2+) and chloride (Cl−)
(Izhikevich, 2007). Outside the cell, in the intercellular medium, the concentration of Na+,
Cl− and Ca2+ is higher than inside, where the concentration of K+ and negatively charged
molecules, denoted as A−, is higher (cf. Fig 1.2). The differences in these concentrations lead
to electrochemical gradients which generate a difference in electrical potential across the cell
membrane, commonly called the membrane potential V .

At rest, meaning without any stimuli external to the neuron, this difference V is generally
of about −70 mV, which is achieved through cell pumps that regulate the concentration of the
ions (Kandel et al., 2000).



18

Figure 1.1: Basic anatomy of a neuron, represented by a generalized neuron (left) and various types real of

neurons. Figure taken from (Brown, 1991).

1.2.1 Nernst potential

Each ionic species tends to follow its concentration gradient. For example, K+, whose
concentration is bigger inside the cell, tends to diffuse out. Imagining momentarily a cell with
only this ionic species, equilibrium would be reached when the inside and outside were equal. If,
instead, we wanted to reach an equilibrium before and stop this diffusion midway, we could apply
an electric potential V to balance this concentration force. This potential V that stops the ionic
flow is called the Nernst Potential Eion of the ion, given by

Eion =
RT

zF
ln

[Ionout]
[Ionin]

, (1.1)

where R is universal gas constant, T is the temperature, z is the ionic charge, F is the Faraday
constant and [Ion] is the ionic concentration, measured inside or outside the cell. For reference,
in monovalent ions (z = 1) and in body temperature (T = 310 K = 37 ◦C), the equation becomes

Eion ≈ 62 log10
[Ionout]
[Ionin]

(mV), (1.2)

where we changed the logarithmic basis to 10, following (Izhikevich, 2007).

1.2.2 Ionic currents

In a real cell, there are various ionic species, each with their own Nernst potentials,
in general different from the membrane voltage. This means that, even at rest, there are ionic
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Figure 1.2: Representation of the main ionic species in a typical mammalian neuron. The figure contains their
concentrations inside and outside the patch of cell membrane, a representation of a closed and an open channel, and
the Sodium-Potassium pump. Figure inspired by (Izhikevich, 2007), and made using BioRender.

currents flowing through the membrane. We can describe the ionic current density Jion as
proportional to the difference between the membrane voltage V and the Nernst potential Eion:

Jion = gion(V − Eion), (1.3)

where gion is the conductance per unit area associated with each ionic species. We remark that
this conductance is not constant, so the current is not Ohmic. In fact, the time dependence of
these conductances is essential for spike generation (Izhikevich, 2007).

1.2.3 Equivalent circuit

Now, we aim to model the neuronal membrane as an electric circuit. This is the basis of
the Hodgkin-Huxley model, which is discussed in detail in chapter 3.

Due to their resemblances, the membrane is considered as a capacitor with capacitance
CM, the ionic conductances are seen as conductors with conductance g and the ionic potentials
are seen as electromotive forces Eion (Johnston, 1995; Izhikevich, 2007). This is represented in
Fig 1.3. Applying Kirchhoff’s current law, according to which the sum of the currents at a point
is zero:

J = JC + JNa + JCa + JK + JCl, (1.4)

where JC = CM ÛV = CMdV/dt is the capacitive current density and JNa, JCa, JK, and JCl the total
current densities for Sodium, Calcium, Potassium, and Chloride, respectively. Now, substituting
the capacitive current and the description for ionic currents in 1.3, we can write

CM ÛV = J − gNa(V − ENa) − gCa(V − ECa) − gK(V − EK) − gCl(V − ECl). (1.5)
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Figure 1.3: The equivalent circuit of a patch of neuronal membrane. The ion channels (Na, Cl, K, Ca) are
represented by variable resistors; the leak current by an ohmic resistor; the electrochemical gradients for both ion
and leak channels by voltage sources; Na+ and K+ pumps by current sources; and the membrane capacitance by a
capacitor.

where CM denotes the membrane capacitance per unit area, and the conductances g are taken
over a unit area. Equation 1.5 is the basis for our modelling of the neuronal dynamics. With
the description of the ionic conductances, in Section 1.2.4, we have the ingredients for the
Hodgkin-Huxley model, which is presented in Chapter 3.

In a resting state without external currents (J = 0), the membrane potential is constant,
therefore ÛV = 0 and so we arrive at the following expression for the membrane potential:

Vrest =
gNaENa + gCaECa + gKEK + gClECl

gNa + gCa + gK + gCl
. (1.6)

In this way, we see that the membrane voltage is the weighted arithmetic mean of the Nernst
potentials with the respective conductances serving as weights.

We remark that the chosen convention is that the difference in electric potentials are
taken as the potential inside minus the potential outside (Kandel et al., 2000). For example,
membrane voltage is V = Vin − Vout. Following this, a positive current J > 0 corresponds to
positive charge going out of the cell. Table 1.1 shows values of Nernst potentials for the main ionic
species, according to (Izhikevich, 2007) (these values can of course vary in different neurons).
We see that negative, also called inward, currents are due to Sodium (Na+) and Calcium (Ca2

+),
while positive, outward, currents are due to Potassium (K+) and Chloride (Cl– ). Therefore,
inward currents make the membrane potential more positive, and outward currents make it more
negative. In other terms, inward currents depolarize the membrane (increase V), while outward
currents hyperpolarize it (decrease V).

Ionic species Nernst potential
Na+ 61 mV to 90 mV
K+ −90 mV
Cl– −89 mV
Ca2

+ 136 mV to 146 mV

Table 1.1: Nernst potentials for the main ionic species of neurons (Izhikevich, 2007).
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1.2.4 Conductances

Both ion channels and receptors can be in an open (allowing passage of ions) or closed
(not allowing) state, with the transitions between open and closed states being stochastic in nature,
owing to thermal agitation (O’Donnell and van Rossum, 2014). These states are controlled by
gating particles for some ion channels, which are in part dependent on the membrane voltage. In
these voltage-gated channels the transition probabilities are dependent on the membrane potential.

However, despite this stochasticity between individual channels, the current in a large
population can be described with some accuracy by the equation

J = gp(V − E), (1.7)

where g is the maximal conductance of the whole population of channels, p is the average
proportion of open channels, and E is the Nernst potential of the current.

There are two types of gating particles: (i) activation gates, which activate (open) the
channel; (ii) inactivation gates, which inactivate (close) the channel. These gates can also be in
open or close states. The probabilities of the activation and inactivation gates to be in an open
position are, respectively, m and h. We have 4 important combinations, which lead to open or
close channels:

• open activation gates (m = 1), open inactivation gates (h = 1): open channel;

• open activation gates (m = 1), close inactivation gates (h = 0): close channel;

• close activation gates (m = 0), open inactivation gates (h = 1): close channel;

• close activation gates (m = 0), close inactivation gates (h = 0): close channel.

For channels types with a activation gates and b inactivation gates, the proportion of
channels in open states can be written as (Izhikevich, 2007)

p = mahb. (1.8)

Therefore, m and h determine p and, as a result, the conductance g. Continuing our
modelling, we define αm(V) and βm(V) as the rates of the gate transitions from closed to open
and from open to closed, respectively, for the variable m. Then, the rate at which the probability
of the channel being open changes is:

Ûm = αm(V)(1 − m) + βm(V)m. (1.9)

This is the difference between the probability of the gate opening minus the probability
of it closing. The probability that the gate opens in a short interval of time is equal to the
probability of the gate being closed (1−m) times the opening rate (αm); conversely, the probability
that the gate closes in a short interval is equal to the probability of it being open (m) times the
closing rate (βm).

As a remark, we note that with a change of variables the previous equation can be
written as

τm(V) Ûm = m∞(V) − m, (1.10)

where τm(V) is the characteristic time of variable m and m∞(V) is the limiting value of
m.
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The rates αm and βm can then be found experimentally. The same idea can be applied to
the inactivation variable h. Therefore, we finish the description of the ion channel conductance
and have all the ingredients for the Hodgkin-Huxley model, the nobel-winning description of a
neuron (Hodgkin and Huxley, 1952), which is described in chapter 3.

1.3 SPIKE GENERATION

In the previous section we studied the electrochemical properties of the neuron, which
allow for its mathematical description. In this section, we describe a simple mechanism for
generating a spike, also called an action potential, which is a fast transient change in the membrane
voltage V of the neuron.

At rest, also called the neuron’s quiescent period, the membrane potential is constant
and the fluxes of the ions balance each other. In this case, the conductances are such that the
membrane potential is at the rest value Vrest, described in Eq. 1.6.

For an action potential to be initiated, the membrane potential has to increase (i.e. the
neuron has to be depolarized) beyond a threshold (Kandel et al., 2000). With this increase, the
conductance of Na+ increases rapidly, which leads to an increase in the inward Na+ current,
which further depolarizes the neuron. While the potential goes up, Na+ inactivation gates start to
close, decreasing the inward Na+ current and also K+ activation gates start to open, increasing
outward K+ current. In this case, the membrane potential reaches a maximum at a value close to
V ≈ 55 mV. At this point, Na+ current is very small, since the channel is closed, but K+ is still
significant, decreasing V . The process up to now is called depolarization of the membrane.

After this, K+ channel continues open, and K+ closed, driving the membrane potential
below the rest potential. This is called a hyperpolarization. Around this time, Na+ channels start
to reopen, leading to inward currents which start to lead the voltage up to the rest potential.

We therefore see that spike generation is due to the temporal changes in the conductances
of, mainly, Na+ and K+ channels (corresponding to the opening and closing of activation and
inactivation channels).

The experimental observations reveal the action potential is a all-or-none process,
meaning that initially the membrane depolarization has to go above a certain threshold in order
for the whole process to happen. If the depolarization does not pass the threshold, the neuron
simply repolarizes back to the rest potential. But, if it does pass the threshold, the amplitude and
duration of the action potential changes very little with stimulus intensity.

Also, neurons pass through two types of refractory periods after the action potential.
During hyperpolarization, even a very strong stimulus is incapable of generating a spike in the
neuron, because the Na+ current is still inactivated and the initial positive feedback process cannot
happen. This is called an absolute refractory period. However, a bit after hyperpolarization,
spikes can be generated, but the stimulus strength is higher than initially, because Na+ currents
are not still at their former level. This is called a relative refractory period (Izhikevich, 2007).

1.4 SYNAPSES

In this section we now describe briefly the main mechanisms involving neuronal
connections. In general, neurons may be connected either electrically - via gap junctions -,
or chemically - via special molecules called neurotransmitters. In both cases, the structure
connecting the two neurons is called a synapse (Kandel et al., 2000; Brown, 1991). In the
chemical synapse (Fig 1.4), neurons are separated in space by a synaptic cleft, with the sending
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neuron being called a presynaptic neuron ("before synapse") and the receiving one being the
postsynaptic ("after synapse") neuron.

The action potential in the presynaptic neurons activates voltage-gated calcium channels,
which may lead to the release of neurotransmitters into the synaptic cleft. Neurons have a
probability of release that is not necessarily 1. The release probability is an important factor in
determining the synaptic strength.

The released molecules are then diffused until they reach receptors in the postsynaptic
neurons. In a common type of receptor, neurotransmitters bind to the receptors, causing changes
in ion channel conductances, leading to ionic currents (Kandel et al., 2000). These generate
postsynaptic potentials, which are excitatory (EPSP, for Excitatory Postsynaptic Potential) if
they increase probability of action potential generation, or inhibitory (IPSP, for Inhibitory
Postsynaptic Potential), if they decrease the probability. These effects depend on the receptor and
neurotransmitter types. An EPSP may then lead to an action potential, if its effect is sufficiently
strong (Kandel et al., 2000; Brown, 1991).

Figure 1.4: A chemical synaptic connection between two generic neurons. The presynaptic neuron (left) releases
neurotransmitters (cyan circles) to the synaptic cleft (space between the two neurons), which then diffuse until
reaching the postsynaptic neuron (right) and binding to its receptors embedded in the membrane.

1.5 BURSTING NEURON

There is another mode of firing called burst, characterized by a fast sequence of spikes
followed by a long period of silence, as shown in Figure 1.5. Most neurons are capable
of firing bursts, if stimulated appropriately (Izhikevich, 2006), but, also, many neurons fire
bursts intrinsically. Examples are ubiquitous in the nervous system (Fox et al., 2015), like
endocrine cells, respiratory pacemaker neurons, thalamic relay cells, pyramidal neurons in the
neocortex (Coombes and Bressloff, 2005) and neurons in the Botzinger complex (involved with
the respiratory rhythm) (Butera et al., 1999).
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1.5.1 Importance

Bursts are hypothesized to have various advantages (compared to single spikes) for
neural computation (Izhikevich, 2006; Swadlow and Gusev, 2001) due to their higher capability
of generating responses on postsynaptic neurons (Swadlow and Gusev, 2001; Csicsvari et al.,
1998). For example, they are more reliably transmitted to postsynaptic neurons (Lisman, 1997),
have more informational content (Reinagel et al., 1999), and have higher signal-to-noise ratio
(generation of bursts require stronger stimulation) (Sherman, 2001). Bursting is also the most
common mode of firing in central pattern generators, networks that generate rhythmic motor
activity (Fox et al., 2015; Kandel et al., 2000).

1.5.2 Physiological mechanisms

Bursting is composed of oscillations at two time scales: a fast spiking oscillation that is
modulated by a slow oscillation. One can think of bursting as repetitive spiking that is periodically
terminated by the slow oscillations (Izhikevich, 2007): while the neuron fires, some processes
start to occur that reduce its excitability until it no longer fires. Then, during quiescence, the
neuron recovers and regains its excitability. The processes can be (i) slow increase of an outward
(hyperpolarizing) current or (ii) slow decrease of an inward current needed for spiking (Izhikevich,
2007). Moreover, these currents can be (i) voltage-gated or (ii) Ca2+-gated. These 4 types of
currents are described in (Izhikevich, 2007), but we focus here on the voltage-gated slow increase
(activation) of an outward current since that is the case of the Huber-Braun model we use in this
dissertation.

In this case, the repetitive firing activates the outward current, which hyperpolarizes the
neuron and reduces its excitability until it can no longer fire. This current then deactivates during
rest, allowing another burst. An example of such a current is a persistent (non-inactivating) K+

current like the M-current (Izhikevich, 2007). Also, example of neurons with these voltage-gated
activation of outward currents are neocortical chattering neurons (Wang, 1999) and neurons in
the pre-Botzinger complex (Butera et al., 1999).
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Figure 1.5: Examples of intrinsically bursting neurons. Figure is taken from (Izhikevich, 2007), with panels (a)
and (b) showing recordings from neurons in the cat primary visual cortex taken by (Nowak et al., 2003), panel (c)
showing neurons in the cortex of an anesthetized cat made (Timofeev et al., 2000), (d) from the reticular thalamic
nucleus (Steriade, 2003); (e) a cat thalamocortical relay neuron (McCormick and Pape, 1990); (f) a CA1 pyramidal
neuron (Su et al., 2001); (g) neuron in the pre-Botzinger complex (Butera et al., 1999); (h) trigeminal interneuron
from brainstem of rats (Del Negro et al., 1998).

1.6 NEURONAL VARIABILITY

The neuronal responses may be highly variable across time and trials. This variability
is observed in all types of electrophysiological recordings across the central nervous system
(Nawrot et al., 2008; Shadlen and Newsome, 1994), with different degrees in different areas and
levels. For example, variability of single neurons increases at higher stages of sensory processing
(Kara et al., 2000) and is higher in the motor cortex if compared to the periphery (Prut and
Perlmutter, 2003). This suggests a role for it in information processing. Indeed, since neural
codes usually depend on firing rates or spike timing (Stein et al., 2005; Quiroga and Panzeri,
2013; Rieke et al., 1999), variability is a very important phenomenon, and may be either noise
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or a part of the signal (Stein et al., 2005). Therefore, understanding variability is crucial for
understanding the neural code (Nawrot et al., 2008; Stein et al., 2005; Movshon, 2000).

Neuronal variability may be divided roughly in two types: neuron-intrinsic and neuron-
extrinsic (Nawrot, 2010; Deweese and Zador, 2004), meaning variability generated internally
in the neuron or externally by its connections. In the former, it may for example be due to
synaptic failures, to noise in the dendritic integration while, in the latter, it is generated by the
spatiotemporal patterns of inputs to the neuron, coming from external connections.

1.7 PHASE SYNCHRONIZATION

Neurons can be regarded as (nonlinear, complex) oscillators. As such, we can ascribe a
phase φ to their oscillation, measuring where in the oscillation the current state of the neuron is.
Thinking of the phase as an angle (Pikovsky et al., 2002), we can imagine that, for example, just
after a spike (or burst), the phase is φ = 0 and it starts increasing with time to φ = π between this
first spike and the second and φ = 2π just after the second spike (the precise definition is given in
Section 5.6). At the network level, phases can also be defined for the network oscillations.

In biological systems, phases are often correlated between neurons or even between
networks of neurons, with the phase differences being constant for periods of time (Fell and
Axmacher, 2011) in what is known as phase-locking (Pikovsky et al., 2002). In some works,
this is usually considered to be the same as phase synchronization (PS) (Lachaux et al., 1999;
Aydore et al., 2013). However, in works focused on nonlinear dynamics, and in this dissertation,
this is not the case. We refer to PS as the phenomenon in which there is phase-locking with the
additional restriction of equal phases.

The phenomena of phase-locking and phase synchronization are crucial widespread
mechanisms for the functioning of the nervous system (Fell and Axmacher, 2011; Lowet et al.,
2016; Buschman and Miller, 2007; Colgin et al., 2009). They are observed in healthy systems in
various cognitive processes (Engel et al., 2001; Fries et al., 2007; Cavanagh et al., 2009), such as
memory (Fell and Axmacher, 2011), consciousness (Gaillard et al., 2009; Dehaene et al., 2014;
Melloni et al., 2007), visual-motor behavior (Roelfsema et al., 1997) and perception (Rodriguez
et al., 1999). Moreover, their disruption (lack or excess) is also observed in unhealthy systems
(Uhlhaas and Singer, 2006; Uhlhaas et al., 2009), such as in epileptic episodes (Mormann et al.,
2000), Parkinson’s disease (Galvan and Wichmann, 2008) and autism (Dinstein et al., 2011).

The putative importance of PS for neural communication has theoretical reasons,
explained for example in the influential ideas of binding-by-synchrony (Singer, 1999) and
communication-through-coherence (CNC) (Fries, 2005, 2015).

To understand the first idea, imagine two neural assemblies (e.g. brain areas), each with
its own representation of a certain piece of information (defined by the spatiotemporal pattern of
activation) (Fries, 2015). For these two areas to communicate (i.e. transfer their representation),
they can simply synchronize their oscillations in phase. For example, thinking about sensory
information, PS can establish transient associations between different brain regions that represent
certain attributes of a stimulus (Fell and Axmacher, 2011). In this way, PS has a binding function,
linking different representations being processed in different areas (Fell and Axmacher, 2011;
Fries, 2015; Singer, 1999). This binding may be very important, for example, in consciousness
(Engel et al., 1999).

The second idea is based on the observation that the spike probability of neurons is
dependent on the phase of the network oscillation (Buzsáki and Draguhn, 2004; Fries et al.,
2007): during an oscillation cycle, some periods facilitate neuronal spiking (enhancing neuronal
excitability), while others hinder it (reducing excitability). This makes it so that, in order
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for two networks to communicate (exchange information) effectively, their oscillation phases
have to be aligned (i.e. coherent). This is the idea of the communication-through-coherence
hypothesis (Fries, 2005, 2015). A very interesting example of CNC is in (Womelsdorf and Fries,
2007), where attention is shown to regulate which neuronal groups phase synchronize and thus,
communicate more effectively. The authors argue that selective PS may be a general mechanism
for dynamically controlling which neurons communicate effectively.

Another example of the importance of synchronization is in (Gonzalez et al., 2019). The
authors studied how neuronal representations change in time and with damage in the hippocampus
and showed that information stored in individual neurons is labile, but information in networks
of synchronized neurons is much more reliable.

1.8 BRAIN SCALES

The brain, like many other complex systems, has multiple scales of behavior and anatomy.
Following (Betzel and Bassett, 2017), we identify three types of scales: (i) spatial; (ii) temporal;
(iii) topological. For each scale, we describe possible observations and measurements to illustrate
how they can be put in different depth levels.

1.8.1 Spatial scale

This refers to the ”granularity at which its [the network’s] nodes and edges are defined"
(Betzel and Bassett, 2017). Can range from a micro level, with individual cells and synapse or
voxels (in MRI studies); to meso, with neuronal populations or clusters; to macro, like brain
regions and large-scale fiber tracts.

1.8.2 Temporal scale

This scale refers to the time duration and characteristic times for the processes in the
networks. Both functional and structural networks are not static, but fluctuate over time. One
can identify the following timescales, for example: (i) cellular (micro): 10 − 100 ms; (ii) meso:
large-scale integration of neural areas - 100− 300 ms; (iii) macro: long-range integration, (1 > s).
In a "supermacro" scale, one could also identify life-long processes and even evolutionary ones
(Betzel and Bassett, 2017).

1.8.3 Topological scale

This refers to the views of the network (also called graph, cf. Chapter 4). The different
levels can be identified as (i) micro: individual nodes (e.g. node’s degree) or a few nodes (e.g.
pairwise interactions); (ii) meso: several nodes (e.g. community structures, cores, peripheries,
rich clubs); (iii) macro: whole network properties (e.g. characteristic path length, global
properties of the network).

An important step in understanding the whole system is to understand these different
scales, and levels, and the interactions between them. Specifically, for example, how properties
at one scale are related to properties at another scale (Betzel and Bassett, 2017). One important
point in this dissertation goes in this vein, by studying the metastable behavior (cf. Chapter 6) at
different scales and levels.

Figure 1.6, taken from (Betzel and Bassett, 2017), illustrates the three scales, along with
examples of the different levels for each case.
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Figure 1.6: Brain scales. Three axes representing the three brain scales: spatial, temporal and topological. Image
taken from (Betzel and Bassett, 2017). Spatial scale ranges from molecules to cells to neural populations and to
brain areas; temporal scale range from almost millisecond to hundreds of milliseconds to seconds and even lifetimes;
topological scale ranges from individual nodes to clusters to the whole network.

1.9 FORMATION OF NEURONAL GROUPS

In the brain, neurons tend to organize themselves: from the macroscopic brain regions
(Kandel et al., 2000; Ding et al., 2016), to anatomical clusters in microcircuits (Perin et al.,
2011; Klinshov et al., 2014). In this latter, for example, research in the neocortex shows that the
probability of any two neurons being connected increases the more neighbors in common they
have (Perin et al., 2013), accounting for the small-world properties observed throughout the brain
(cf. Section 4.2.3). Small-world topology is another example, for one of its defining features
is high clustering (Watts and Strogatz, 1998). These anatomical properties are also subject to
change, as several mechanisms for brain plasticity exist (Abbott and Nelson, 2000; Kandel et al.,
2000; Dayan and Abbott, 2005; Schaefer et al., 2017; Watt and Desai, 2010), making anatomy
dependent on dynamics.

Dynamics of course also depends on anatomy (Sporns, 2013; Klinshov et al., 2014).
In the dynamics, neurons can organize themselves functionally, meaning the activity of neural
populations can be organized into clusters too (Berry and Tkačik, 2020; Dombeck et al., 2009;
Tononi et al., 1998a) (as a curious remark, this organization into clusters is so robust it has been
proposed as a way the brain can code information (Berry and Tkačik, 2020)). These clusters,
or neural assemblies, emerge and disband constantly and much more quickly than the anatomy
changes. They are said (Shine et al., 2016) to form the basis for complex cognitive functions
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(Bassett et al., 2015), learning (Bassett et al., 2011, 2015) and even consciousness (Barttfeld
et al., 2015).

Another important example on the importance of neural clusters is captured by the idea
that "For every cognitive act, there is a singular and specific large cell assembly that underlies its
emergence and operation" (Le Van Quyen, 2003). This is related to the Dynamic Core Hypothesis
(Tononi et al., 1998a), according to which each conscious experience is associated to a transient
assembly of neurons (the dynamic core) (Cavanna et al., 2018). Neurons in the dynamic core
can be interacting intensely between themselves, while still being separated from the rest of the
network as these processes, though influenced, are not restricted by the anatomy (Werner, 2007b).
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2 DYNAMICAL SYSTEMS

In Chapter 1, we have encountered two very important systems: neurons, with their
nonlinear, spike-generating behavior, and networks of neurons, with their complex, emergent
phenomena that are in part the object of study of neuroscience. The behaviors of both systems
can be better understood and described using the framework of dynamical systems theory, the
object of study in this chapter. With the knowledge acquired here, we are then able to describe the
mathematical models for neurons in Chapter 3, and better describe the behaviors of the networks
we study in this dissertation, such as the mechanisms for metastability in Chapter 6.

2.1 DEFINITION AND INITIAL CONCEPTS

A dynamical system has two important components: (i) variables that describe its state
and (ii) a law governing how these variables change in time (Izhikevich, 2007; Strogatz, 2018).
The important example is the Hodgkin-Huxley neuron whose (i) variables are V, n,m, h and (ii)
laws are the equations 3.1, presented in Chapter 3. The laws can be either differential equations
(where the system is said to be a flow) or difference equations (where it is said to be a map). The
cases studied in this dissertation are of the first type so, for completeness, we show the general
formula of these laws:

Ûx1 = f1(x1, x2, . . . , xn)
Ûx2 = f2(x1, x2, . . . , xn)
...

Ûxn = fn(x1, x2, . . . , xn).

(2.1)

Alternatively, the dynamical system can also be put in vector form, for convenience:

Ûx = f(x, t). (2.2)

This system is said to be n-dimensional (and so is the vector x). We can define an
abstract space with coordinates {x1, x2, . . . , xn}, called phase space, where the solutions of the
system can be visualized as trajectories (also called orbits) (Ott and Edward, 2002).

These orbits can be characterized according to their behavior under a small perturbation.
If the perturbed orbit (which can also be viewed simply as a nearby orbit) returns (or tends to)
the original orbit as it evolves, the original orbit is said to be stable; otherwise, it is unstable
(Alligood et al., 1997).

2.2 LINEAR STABILITY ANALYSIS

Typically, the study of stability is done with infinitesimal perturbations δx from an
original trajectory x. In this case, the perturbation follows the linearized system of equations (Ott
and Edward, 2002; Pikovsky, 2016), also called variational system of equations (Barreira, 2017):

Ûδx = ∂f
∂x
δx(t) = J(x, t)δx(t), (2.3)
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where ∂f
∂x

≡ J(x, t) is the system’s Jacobian. Explicitly,

Ji j ≡
∂ fi

∂x j

. (2.4)

Equation 2.3 can be obtained by writing the Taylor series expansion of the functions
f and keeping only first order (linear) terms (Ott and Edward, 2002; Strogatz, 2018). One can
obtain an analytic solution to the linear system by integrating it, obtaining the solution for the
initial condition δx(0)

δx(t) = H(x0, t)δx(0), (2.5)

where H(x0, t) = exp
(

∫ t

0
dt′J(x(t′), t′)

)

is the generator of the evolution of the linear system, and,

importantly, depends on the trajectory of the original system. Though we write it explicitly here,
in practice it is obtained by numerical integration of the linear differential equations (Pikovsky,
2016).

For fixed-point solutions (where f(x) = 0), stability can be assessed through the
eigenvalues of the Jacobian. In general, for non-periodic trajectories, the stability can be studied
through the Lyapunov exponents, which are described next.

2.3 LYAPUNOV EXPONENTS

2.3.1 Introduction and definition

As a rough introduction, the Lyapunov exponents (LE) measure the rate of divergence
(or convergence) of the nearby perturbations. The number of LEs is the dimension of the system
and the set of all exponents is the Lyapunov spectrum. A characteristic of chaotic systems, in
which nearby trajectories diverge exponentially, is that the maximum Lyapunov exponent is
positive.

We are interested in how the amplitude of the perturbation δx changes. We can write it
as

|δx(t)|2 = |Hδx(0)|2 = δxT (0)HT (t)H(t)δx(0), (2.6)

where (·)T denotes the transpose of either a vector or a matrix. Therefore, the amplitude of the
perturbation is dependent only on the properties of the matrix

M(t) = HT (t)H(t), (2.7)

which is real and symmetric. A very important property is given by Osedelets theorem (Pikovsky,
2016), according to which if the process x is ergodic, then the limit

P ≡ lim
t→∞

(M(t)) 1
2t (2.8)

exists and is a N-dimensional matrix with positive eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µN . As we see
next, the N Lyapunov exponents are defined as

λk = log µk . (2.9)
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As a side note, an equivalent definition for the Lyapunov exponents (Pikovsky, 2016) is
given in terms of the linear evolution of the perturbations. In this case, the growth rate of any
initial perturbation δx is one of the Lyapunov exponents

λk ≡ lim
t→∞

1

t
ln

|δx(t)|
|δx(0)| = lim

t→∞
1

t
ln

|H(t)δx(0)|
|δx(0)| . (2.10)

To which of the Lyapunov exponents this equation corresponds depends on the original
perturbation δx(0).

2.3.2 Volume contraction

To understand the first definition, we need to first study how volumes in phase space
typically behave. First, define m orthogonal vectors vi, i = 1, . . .m, defining a parallelepiped
with volume V(0). These vectors correspond to perturbations δx. As they evolve, under the
linearized system, through Eq. 2.5, the volume V(t) at each time t is

Vm(t) = Vm(0) |det H| , (2.11)

where H is the generator of the evolution

H = exp

∫ t

0
dt′J(x(t′), t′). (2.12)

Therefore, the growth rate Sm can be written as

Sm ≡ lim
t→∞

1

t
ln

Vm(t)
Vm(0)

= lim
t→∞

1

t
ln |det H| . (2.13)

Also, from Eq. 2.8, using properties of determinants

ln det P = lim
t→∞

ln det (M)(1/2t) (2.14)

= lim
t→∞

ln
(�

�

�det H1/t
�

�

�

)

(2.15)

= lim
t→∞

1

t
ln |det H| . (2.16)

From Linear Algebra we know that the determinant of a matrix is equal to the product
of its eigenvalues:

ln det P =

m
∑

i=1

ln νi =
∑

i=1

λi, (2.17)

where the last equality comes from the definition of the Lyapunov exponents as λi ≡ ln νi.
Therefore, we have

Sm =

m
∑

i=1

λi . (2.18)

This relation is the key for the numerical estimation of Lyapunov exponents, as we see
next.
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2.3.3 Numerical estimation

To obtain the full spectrum of Lyapunov exponents we can estimate the growth rate Sm

of the volume Vm of an m-dimensional parallelepiped. To do this, we define m N-dimensional
orthogonal vectors living in the tangent space, which are treated as perturbations δx. These
vectors form an N × m orthogonal matrix Q0 and define the parallelepiped. After some time t,
these vectors evolve according to the solution of the linearized system, so the matrix Q0 turns
into P according to:

P(t) = H(t)Q0, (2.19)

and the volume of the parallelepiped changes following Eq. 2.18. Now, the matrix P

can be uniquely decomposed into
P(t) = QR, (2.20)

following the QR-decomposition from Linear Algebra, where Q is an N × m orthogonal matrix
and R is an m ×m upper triangular matrix whose diagonal elements are positive. It can be shown
(Pikovsky, 2016; Barreira, 2017) that the volume depends only on the determinant of R, which,
being a triangular matrix, leads to

Vm(t) = Vm(0)
m
∏

i=1

Rii . (2.21)

Substituting this into 2.18 we arrive at

λi = lim
t→∞

1

t
ln Rii i = 1, . . . ,m. (2.22)

This is the basis of the QR-decomposition method for numerical calculations of the
Lyapunov spectrum, with more details provided in (Pikovsky, 2016). We remark that the common
way to implement the QR-decomposition is through the Gram-Schmidt orthogonalisation.

2.4 CHARACTERIZING ATTRACTORS

Now we move our focus from linear stability of trajectories to their long-time behavior:
we study attractors of trajectories. Attractors are very important in the theory of dynamical
systems, and have various different definitions. The general idea, however, is always similar:
they are regions (sets of points) in phase space to which trajectories tend as they evolve. In other
words, given some initial trajectories, their evolution tend to the attractor as time goes on. This is
represented in Fig 2.1, where the blue points represent points in the attractor, and red points are
the ones evolving on the attractor. Each panel corresponds to different instants in time, starting
from a very small initial region. This attractor is the one for the Lorentz system (Strogatz, 2018),
which for the parameters used here has divergence of nearby trajectories, which can also be seen
in the figure.
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Figure 2.1: Trajectories (red points) evolving on the Lorentz attractor (blue points). Different panels correspond to
different times, and the divergence of nearby trajectories can be easily seen. Figure is taken from (Strogatz, 2018).

We now focus on a robust definition of attractor, but first need to first introduce basins
of attraction.

2.4.1 Basin of attraction

Roughly, the basin of attraction B(A) of an attractor A is the set of points which go to
the attractor in the long term. A very intuitive mathematical definition, which depends on the
concept of the omega limit set w(x) of a point x, is present in (Milnor, 1985) and also given here.
We define the ω-limit set of a point x0 as the set

ω(x0) = {x : ∀T ∀ǫ > 0 there exists t > T such that | f (x0, t) − x| < ǫ}. (2.23)

This means, for example, that for a point x in the set of x0 (x ∈ ω(x0)), the trajectory
passing through x0 passes arbitrarily close to x infinitely often as t increases. Also, ω(x) can be,
as the name says, a set of points, not just one point.

Then, Milnor defines the realm of attraction ρ(A) as all points x for which ω(x) ⊂ A.
Note that this means only the long-term behavior of orbits is observed, and the transient could be
anything (that is, points in the realm of attraction could go very far from A, as long as they go
back to it and stay there eventually). Finally, if the realm of attraction ρ(A) is an open set, then
it is called the basin of attraction of A, denoted B(A). If ρ(A) is a lower dimensional smooth
manifold, then it is called the stable manifold of A (Milnor, 1985).
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2.4.2 Milnor attractor

A weaker version of the concept of attractor. A set A is a Milnor attractor (sometimes
called an attracting set simply) if:

1. The basin of attraction B(A) has strictly positive measure (i.e., if m(B(A)) > 0 ). This
condition says that there is some probability that a randomly chosen point will be
attracted to A (Milnor, 1985).

2. For any closed proper subset A′ ⊂ A, the set difference B(A) \ B(A′) also has strictly
positive measure. This condition ensures that any part of A plays an essential role (that
is, you cannot choose a subset of A to which all points go to, leaving other parts of A

unimportant) (Milnor, 1985; Taylor, 2011).

As a note, a set is said to be close if it contains all of its limit points (Milnor, 2006),
and it is said to be proper if its size is not zero. The measure m is a measure equivalent to the
Lebesgue measure (Milnor, 1985).

A Milnor attractor can also be proven to be invariant (i.e. f (A, t) = A) (Cao, 2004).
Also, a Milnor attractor can be connected to unstable orbits that are repelled from the attractor
(Érdi et al., 2004; Kaneko and Tsuda, 2003). In this case, it is unstable by arbitrarily small
perturbations, though still globally attracting typical orbital points (Kaneko and Tsuda, 2003).
Furthermore, the Milnor attractor does not have to attract all the points in its neighborhood, and
there can also be orbits transiently go very far from the attractor, even if initially close, before
eventually getting close to it.

Finally, a minimal Milnor attractor is one in which no proper subset of it is also an
attractor. That is, a Milnor attractor is minimal if there is no strictly smaller closed set A′ ⊂ A for
which ρ(A′) has positive measure (Milnor, 1985).

An important property is that, if A is a minimal attractor, then ω(x) is precisely equal to
A for almost every point x in ρ(A) (Milnor, 1985).

2.4.3 Attractor

An attractor is a Milnor attractor with an additional condition (Milnor, 2006; Taylor,
2011): we say that an attractor follows the conditions

1. Is a Milnor attractor.

2. Contains a dense orbit.

A dense orbit x in A is such that, for every point a in A there is a subsequence of x that
converges to a. Roughly, this means that the orbit is dense in A if its points pass close to every
point in A. This condition ensures that the attractor is not the union of two smaller attracting sets
(Milnor, 2006; Taylor, 2011).

2.4.4 Quasi-attractor or attractor-ruin

It is also useful for later to define here quasi-attractors, also called attractor-ruins
(Kaneko and Tsuda, 2003; Tsuda and Umemura, 2003). These are attracting regions from which
orbits can escape. They can be Milnor attractors, or conventional attractors (like previously
defined) that lost stability, for example.
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2.5 TYPES OF ATTRATORS

We can study now a brief over overview of different types of attractors.

2.5.1 Fixed points and equilibria

Fixed points (used for maps) and equilibria (for flows) are constant solutions. Mathe-
matically, they are

xn+1 = xn (maps) (2.24)

Ûx = 0 (flows). (2.25)

For a neuron, this corresponds to the resting state. For further reference, an equilibrium
with at least one unstable direction is called a saddle. Also, an orbit connecting a saddle to itself
is called a homoclinic orbit.

2.5.1.1 Stability of equilibria

There are many definitions of equilibria. Here we present a simple one that is sufficient
for getting the intuition behind the concept. Namely, this is the Lyapunov stability, that, simply
defined, says that a point x (or an equilibrium) is stable if nearby orbits stay near. That is, if and
only if for all ǫ > 0 there exists a δ > 0 such that if |x − y| < δ then | f (x, t) − f (y, t)| < ǫ for all
t ≥ 0 (Glendinning, 1994).

2.5.2 Periodic orbits

Periodic orbits are attractors that repeats in time. Mathematically, a non-constant
solution x(t) is such that, for T > 0

x(t + T) = x(t), (2.26)

where the minimal T is called the period of the solution. A periodic orbit is, then, the set of points
that are mapped during the interval [0,T] (it is the image of the interval under x) (Glendinning,
1994). A two-dimensional periodic orbit is a limit cycle. For a neuron, this corresponds to
periodic firing.

2.5.3 Stability of periodic orbits

Again, a simple view of stability of periodic orbits comes from taking their Poincaré
surface of sections. Taking the periodic orbit, a surface transversal to the flow is defined (the
Poincaré section) and we register the intersections of the orbit with the surface, generating the
Poincaré map (Strogatz, 2018). The periodic orbit is a fixed point in this map, so the stability
analysis is the same in this case.

2.5.4 Chaotic attractors

Nonlinear systems can have solutions that are not periodic, but are still bounded in space.
In this case, nearby trajectories diverge (separate) rapidly in time. In other words, the system
is very sensitive to the initial conditions. These solutions are called chaotic, forming chaotic
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attractors, and are very important for the understanding of nonlinear dynamical systems. The
geometric structure of the solutions is very complicated, so proper rigorous analysis are often too
difficult to perform. One important result, following the Poincaré-Bendixon Theorem, is that
chaos is only possible in flows of dimension 3 upwards (for maps, dimension 1 already suffices)
(Glendinning, 1994; Strogatz, 2018). In neurons, this naturally corresponds to chaotic firing.

2.6 BIFURCATIONS

Depending on the parameters, a dynamical system may have all three of the above
attractors, stable or not, simultaneously or not. When the system changes drastically its qualitative
behavior as one parameter is changed, we say a bifurcation has taken place. This can lead, for
example, from an equilibrium to a periodic orbit.

As we have seen from the linear stability analysis, if the stationary point is hyperbolic,
then the local behavior is determined by the linearized flow. Following from this is that small
perturbations from this point are also hyperbolic. Therefore, we have bifurcations only for
non-hyperbolic points (i.e. points with at least one eigenvalue that is zero or purely imaginary).

Now we describe some bifurcations that are relevant for this dissertation. This is done
for equilibria (fixed points), but the general considerations also apply for periodic orbits.

2.6.1 Saddle-node (fold) bifurcation

In a saddle-node bifurcation two equilibria (one stable and the other unstable) coalesce
and annihilate each other. Therefore, this bifurcation deals with the creation (and destruction) of
stable and unstable equilibria. In this case, one equilibrium had a negative eigenvalue and the
other has a positive eigenvalue before bifurcation. At the bifurcation, these values reach 0 and
later the points are destroyed (Strogatz, 2018). This scenario also occurs for periodic orbits (e.g.
limit cycles).

Neurons passing through this bifurcation are of type II excitability (cf. Chapter 3), the
exception being if the bifurcation occurs on an invariant circle (a saddle-node on invariant circle
bifurcation), where the neuron has type I excitability (Izhikevich, 2007).

2.6.2 Andronov-Hopf

In an Andronov-Hopf bifurcation, a small-amplitude limit cycle is born from an
equilibrium: it appears when the equilibrium disappears. In a supercritical bifurcation, the limit
cycle is born stable (and the equilibrium loses its previous stability). In a subcritical, the inverse
happens: the limit cycle is born unstable and the equilibrium gains stability. In this case, the
Jacobian has a pair of complex eigenvalues whose real part becomes zero at the bifurcation.

Neurons passing through this bifurcation are of type II excitability (Izhikevich, 2007).

2.6.3 Homoclinic bifurcations

The homoclinic bifurcations also describe the appearance (or disappearance) of limit
cycles (two-dimensional periodic orbits). The bifurcation is supercritical if the limit cycle is stable
and supercritical if unstable. In the supercritical case, before the bifurcation there is a saddle and
a stable limit cycle. At the bifurcation, these two touch each other, thereby making a homoclinic
orbit (connecting the saddle to itself). After the bifurcation, the homoclinic orbit disappears
(and the limit cycle already disappeared) and only the saddle remains. In the subcritical case the
behavior is similar, but the limit cycle is unstable.
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An important point is that the homoclinic orbit has infinite period (or zero frequency),
so neurons passing through this bifurcation are of type I excitability (Izhikevich, 2007).

2.6.4 Period-doubling (or flip) bifurcation

This bifurcation deals with the destruction of a periodic orbit of period T and appearance
of another of period 2T . A cascade of period-doublings often occurs, leading to chaotic behavior
(Ott and Edward, 2002). The inverse can also happen, leading from chaos to periodic behavior.

2.7 IMPORTANT DYNAMICAL PHENOMENA

Now, we talk briefly about dynamical phenomena which can lead to metastable dynamics,
as later discussed in Section 6.3.2.

2.7.1 Chaotic itinerancy

Chaotic itinerancy is a trajectory in phase space connecting several quasi-attractors
(also called attractor-ruins cf. Section 2.4.4). These are attractors in the sense that they attract
trajectories, but "quasi" because the trajectories can escape them (Tsuda, 2013). Attractors can
become quasi-attractors due to noise (Ansmann et al., 2016) or other mechanisms (Kaneko and
Tsuda, 2003). In the chaotic itinerancy, then, a trajectory spends some time in one quasi-attractor,
then leaves it to go to another one.

2.7.2 Unstable attractors

One possible strange phenomenon is that a Milnor attractor can be enclosed by the
basins of attraction of other attractors, and also be remote from its own basin. In this case,
arbitrarily small noise leads to trajectories switching attractors (Timme et al., 2002). Therefore,
these attractors are called unstable attractors (Timme et al., 2002).

2.7.3 Heteroclinic cycles

A heteroclinic cycle is a sequence of several saddles linked to each other by their
unstable manifolds (forming heteroclinic orbits) (Rabinovich et al., 2008; Afraimovich et al.,
2008). Though each saddle is separately unstable, the cycle as a whole can be stable and attracting:
trajectories initially are attracted to the cycle through the stable manifolds of the saddles and,
once inside they hop from each saddle by their unstable manifolds. Each time the trajectory
passes near a saddle, it gets closer to it, meaning passage times increase monotonically (beim
Graben et al., 2019). A heteroclinic cycle can be considered an attractor, in the sense defined in
Section 2.4.3.

2.7.4 Intermittency

There are several kinds of intermittency. We now describe some of them, following (Ott
and Edward, 2002; Ott, 2006).

Pomeau-Maneville

Pomeu-Maneville intermittencies occur for no attractor, and are classified according to the
bifurcation leading to them:
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1. Type I: A saddle-node bifurcation (creation/destruction of periodic orbits, like fixed-
points);

2. Type II: A subcritical Hopf bifurcation (creation/destruction of limit cycle);

3. Type III: Inverse period-doubling bifurcation (chaotic attractor turns into a period one
and then into nothing).

On-off intermittency

On-off intermittency is an aperiodic switching between static, or laminar (i.e. periodic-like),
behavior and chaotic bursts of oscillation. A before-stable attractor loses transverse stability, so
the trajectory escapes from the attractor and returns later.

Crisis-induced

Interior-crisis: The chaotic attractor collides with an unstable periodic orbit that is
contained within the interior of its basin of attraction. With this, the attractor increases its size.
Therefore, the behavior is as follows: before the crisis, the system has a normal chaotic dynamics.
After the crisis, it appears to have the same chaotic dynamics, but with occasional bursts outside
the "normal-chaos" region. These bursts occur intermittently.

Symmetry-induced: In this type of crisis, at appropriate parameter values, due to a
system symmetry, there are several distinct chaotic attractors that transform, one to the other,
under a suitable symmetry transformation. As the crisis is approached, each of the symmetrically
disposed attractors moves toward the basin boundary separating its basin from the basins of its
symmetric neighbors. At the crisis, the attractors all simultaneously collide with an unstable
periodic orbit on their respective basin boundaries. Just past the crisis, an orbit on the large,
merged attractor spends long epochs on what appears to be one of the pre-crisis attractors, but
then abruptly jumps to the state-space region of one of its neighboring pre-crisis attractors,
spending another long epoch there, jumping, and so on, ad infinitum.
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3 MODELLING NEURONS

With the biophysical and modelling knowledge acquired in Chapter 1 and 2 we plan
now to present important concrete models for neurons. We start with the Hodgkin-Huxley
model, whose formalism we already presented in part previously and which is the most accepted
model for neuronal behavior (Izhikevich, 2007). Then, we present the Huber-Braun model, a
modification of the Hodgkin-Huxley model, used in the dissertation.

3.1 HODGKIN-HUXLEY MODEL

At around 1950, Hodgkin and Huxley did experiments on neurons with very large axons
in squids. These enabled them to observe that the axon had three major currents, which we already
described: a voltage-gated inward Sodium JNa current, a voltage-gated outward Potassium JK

and an Ohmic leak current Jl (carried out mostly by Cl− ions). They also saw that the Sodium
channel had three activation gates (variable m) and one inactivation gates (variable h), while the
Potassium channel had four activation gates (variable n). With this knowledge, we can use the
formalism previously described in chapter 1 to arrive at the Hodgkin-Huxley equations:

CM ÛV = Jext − gKn4(V − EK) − gNam3h(V − ENa) − gl(V − El) (3.1)

Ûn = αn(V)(1 − n) − nβn(V) (3.2)

Ûm = αm(V)(1 − m) − mβm(V) (3.3)

Ûh = αh(V)(1 − h) − hβh(V) , (3.4)

where the variables represent the same quantities as defined previously, with CM =

1 µF/cm2 and Jext is an externally applied current density. The transition rates are also
experimentally determined:

αn(V) = 0.01
10 − V

exp (10 − V)/V − 1
(3.5)

βn(V) = 0.125 exp (−V/80) (3.6)

αm(V) = 0.1
25 − V

exp (25 − V)/10 − 1
(3.7)

βm(V) = 4 exp (−V/18) (3.8)

αh(V) = 0.07 exp (−V/20) (3.9)

βh(V) = 1

exp (30 − V)/10 + 1
, (3.10)

and the reversal potentials are EK = −12 mV, ENa = 120 mV, and El = 10.6 mV, and maximal
conductances are gK = 36 mS/cm2, gNa = 120 mS/cm2, and gl = 0.3 mS/cm2.
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These are the original equations, in which parameters are changed such that the resting
potential is at around 0 mV. As previously, a change of variables leads to the following equations

CM ÛV = J − gKn4(V − EK) − gNam3h(V − ENa) − gl(V − El) (3.11)

Ûn = (n∞(V) − n)/τn(V) (3.12)

Ûm = (m∞(V) − m)/τm(V) (3.13)

Ûh = (h∞(V) − h)/τh(V), (3.14)

where p∞, for p = {n,m, h}, are steady-state activation functions given by the equations

p∞(V) = αp/(αp + βp), (3.15)

which can be approximated by Boltzmann functions (Izhikevich, 2007):

p∞(V) = 1

1 + exp (V1/2 − V)/k
, (3.16)

where V1/2 is called a half-activation potential, such that m∞(V1/2) = 0.5, and k is the half-
activation slope.

Also, characteristic times are

τp = 1/(αp + βp), p = {n,m, h}. (3.17)

The response of the state variables due to application of a step current are shown in Fig
3.1. For times before t = 40 ms, the injected current is Jext = 0 µA/cm2 and the neuron is at
rest. From 40 ms < t < 42.5 ms, the current jumps to Jext = 3 µA/cm2 and the neuron is slightly
depolarized, but does not fire. At 50 ms < t < 52.5 ms, a current of Jext = 10 µA/cm2 is injected
and the neuron fires an action potential. We therefore see that the current has to be sufficiently
strong for an action potential to happen. Leaving the current constant at 10 µA/cm2 would make
the neuron fire periodically. We can explore this further by studying the gain function of the HH
model, displayed in Fig 3.2, in which the neuron’s firing frequency is calculated as a function of
the injected current.

The sudden jump from zero frequency (resting behavior) to spiking with non-zero
frequency shows that the HH neuron is of type II excitability, as defined in (Hodgkin, 1948;
Prescott, 2013).

3.2 HUBER-BRAUN MODEL

The formalism introduced by Hodgkin and Huxley can be applied to various other cell
types to obtain different neuronal models. This was done by Huber and Braun (Braun et al., 1998)
studying mammalian cold receptors, neurons who encode environmental temperature information
in their firing trains, exhibiting therefore a wide of firing patterns. This Huber-Braun (HB) model
captures their rich dynamics by making modifications to the HH model, simplifying it in some
aspects, and also adding subthreshold oscillation currents and two temperature-dependent factors
to the ionic currents, which made it agree very well with the experimental data (Braun et al.,
1998, 2011).

The model has a rich variety of different firing regimes that can be accessed by changing
a physiological parameter (the temperature). For instance, it has two different transitions from
tonic-to-bursting transitions, going from tonic spiking to chaotic bursting and then to regular
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Figure 3.1: State variables of the Hodgkin-Huxley model as a response to the application of square pulses.

Panel (a) displays the membrane voltage and panel (b) displays the activation and inactivation variables. The injected
current is shown in panel (c). We see that the action potential, happening at t ≈ 52.5 ms, only occurs for sufficiently
strong currents.

Figure 3.2: The current-firing rate relation, also called gain function, of the Hodgkin-Huxley neuron. The
discontinuous jump in the firing rate characterizes it as of type II excitability.

bursting with an increase in the temperature. The bursting regime is made possible by the
subthreshold currents, the physiological mechanism being similar to the one in neocortical
chattering neurons and respiratory neurons, as already mentioned in section Section 1.5.2.

Despite having been first proposed to study cold receptors, who don’t form networks
(Feudel et al., 2000), the physiological similarities with other neurons that do form justify its use
in networks. Furthermore, the model is very convenient for a study of neural networks’ dynamics,
since it is able to switch between different firing modes with a single change in a parameter.
Finally, this model’s rich dynamics have proven to be very useful in a variety of studies (Feudel
et al., 2000; Finke et al., 2010; Postnova et al., 2007a,b; Du et al., 2010).
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3.2.1 Model equations

The main equation for the model is

CM
dVi(t)

dt
= −Jd − Jr − Jsd − Jsr − Jl − Jext, (3.18)

where CM is the membrane capacitance; V is the membrane potential;
Jk (k = {d, r, sd, sr, l}) are ionic currents and Jext is an external current. The capacitance
and the ionic currents are taken over a unit area. The leakage current Jl, generated by the natural
permeability of the neuronal membrane, is

Jl = ḡl(V − El). (3.19)

The other ionic currents can be divided into two groups: (i) the fast, spike-generating
depolarizing Jd and repolarizing Jr currents and (ii) the slow, oscillation-generating slow
depolarizing Jsd and slow repolarizing Jsr currents (Feudel et al., 2000; Finke et al., 2010).
Depolarizing currents tend to increase the membrane potential V , while repolarizing currents
tend to decrease it. The fast group corresponds to the ionic currents JNa and JK in the HH model,
but the Sodium inactivation gate is disregarded for simplicity. The slow group is an addition to
the model, and has significantly slower activations. These currents are activated for potentials
V below the firing threshold of the model (reason why they are called subthreshold currents).
The interplay between fast and slow variables is essential for bursting behavior (Rinzel, 1987;
Postnova et al., 2007a), which is the motivator for introducing the subthreshold currents in this
model. Physiologically, Jd usually corresponds to a Sodium current, Jr to a Potassium current,
Jsd to a persistent (non-inactivating) Sodium current (and also to a few calcium ions (Feudel
et al., 2000)) and Jsr to a Calcium-dependent Potassium current. The equations for d, r, sd, sr are

Jk = ρḡkak(V − Ek), k = {d, r, sd, sr}, (3.20)

where ρ is a temperature-dependent factor, ḡk is the maximal conductance, ak is the activation
variable and Ek is the reversal potential of the ionic current k.

The activation variables follow

dak

dt
=

φ

τk
(ak,∞ − ak), k = {d, r, sd}, (3.21)

where φ is the second temperature-dependent factor, τk is a characteristic time and ak,∞
is the steady-state activation variable, given by

ak,∞ =
1

1 + exp[−sk(V − V0k)]
, k = {d, r, sd}. (3.22)

In this case, s are half-activation slopes and V0k are the half-activation potentials.
The sr current activation variable is

dasr

dt
=

φ

τsr
(−ηJsd − γasr), (3.23)

where η is a constant for the coupling between Jsd and Jsr (physiologically mediated by
Calcium (Postnova et al., 2007a)) and γ is a tuning factor for the time constant.
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Table 3.1: Parameter values of the constants for the Huber-Braun neuron model (Braun et al., 1998).

Membrane capacitance Cm = 1.0 µF/cm2

Maximum conductances (mS/cm2) gNa = 1.5 gK = 2.0 gsd = 0.25 gsr = 0.4
gl = 0.1 gc ≡ 1.0

Characteristic times (ms): τNa = 0.05 τK = 2.0 τsd = 10 τsr = 20
τr = 0.5 τd = 8.0

Reversal potentials (mV): ENa = 50 EK = −90 Esd = 50 Esr = −90
El = −60 V0Na = −25 V0K = −25 V0sd = −40
Esyn = 20

Other parameters: ρ0 = 1.3 φ0 = 3.0
T0 = 50 ◦C T0 = 10 ◦C sNa = 0.25 mV−1 η = 0.012 cm2/µA
ssd = 0.09 mV−1 γ = 0.17 sK = 0.25 mV−1 s0 = 1.0 mV−1

The scaling factors, introducing the temperature dependence, are

φ = φ
(T−T0)/T0

0 (3.24)

ρ = ρ
(T−T0)/T0

0 . (3.25)

Finally, Jext represents either an external current injected to the neuron or a synaptic
current. This is the coupling term used in the network. Parameter values are displayed in Table
3.1. These are taken from the original papers (Braun et al., 1998). The reference temperature T0

was changed originally (Prado et al., 2014) to 50 ◦C so that the temperature T could lie in the
range of mammalian temperatures. This is for convenience only.

3.2.2 Dynamics

Figure 3.3 depicts the state variables of the model for T = 31 ◦C, 37 ◦C, 38 ◦C, 40 ◦C.
For T = 31 ◦C, the neuron is firing periodically and constantly (tonic spiking). At T = 37 ◦C, the
neuron is bursting chaotically. For T = 38 ◦C and T = 40 ◦C, the neuron is bursting periodically.
Therefore, we see that changing the temperature leads to different firing modes.

A careful analysis reveals that ad and ar behave very much like what we expect from
Na+ and K+, respectively: activation of ad depolarizes the membrane (upstroke), while the later
activation of ar repolarizes the membrane (downstroke). We also see that, during the burst, the sr
current builds up until, when it reaches a maximum, the neuron terminates bursting and starts the
quiescent phase. During this phase, the sr current deactivates, allowing another burst to start
(Finke et al., 2010). Therefore, the bursting mechanism is based on the activation of the outward
sr current, which puts the HB neuron close to neocortical chattering neurons. There is also the
deactivation of the inward sd current, which puts the HB closer to pre-Botzinger (respiratory
rhythm) neurons (Izhikevich, 2007).

A more complete analysis of the bursting mechanism has been done in (Finke et al.,
2010), where the authors separated the system into two subsystems, the fast and the slow ones.
They showed that the fast subsystem is always at rest, though still excitable, and the slow subsystem
is oscillatory. The idea then is that the slow subsystem could then drive the fast subsystem to
spiking or to resting behavior. This is roughly the case, but not complete so, due to a nonlinear
coupling between the two systems that complicates matters. Still, various characteristics of the
system can be explained in this way. Increasing the temperature, the oscillations in the slow
subsystem (i) have smaller wavelength and (ii) have higher amplitude. The authors show that the
reduction of the wavelength decreases the number of spikes per burst. Also, they showed that the
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Figure 3.3: The variables of the Huber-Braun model for different firing modes, in T = 31 ◦C (gray), T = 37 ◦C
(green), T = 38 ◦C (brown) and T = 40 ◦C (blue). An increase in the temperature takes the neuron from tonic spiking
to chaotic bursting, to periodically firing. A transient time (roughly 45 500 ms) was taken from the simulations.

changes in the amplitude governs the changes in the firing modes (from resting to spiking) and
the different spiking patterns during bursting (Finke et al., 2010).

3.2.3 Bifurcations

Given the voltage trace, we can calculate the times between bursts (inter-burst times
IBI) or between spikes (inter-spike times ISI), as described in Section 5.3. Then, we can plot
these values as a function of the temperature T , obtaining a bifurcation diagram, depicted in Fig
3.4, which shows qualitative changes in the system’s behavior (represented by the ISI) as the
parameters change. These changes are called bifurcations in dynamical systems theory and are
very important in order to understand the behavior of the system. These were studied in the HB
model with and without noise in some works (Finke et al., 2010, 2011; Braun et al., 2011; Feudel
et al., 2000; Braun et al., 2000).

For temperatures T / 31.09 ◦C, the neuron has a single ISI value, indicating, as we
already saw, a periodic spiking. At that temperature, a period doubling cascade begins, leading
to chaotic bursting. The bursting behavior is indicated by the clear separation of two ISI groups:
one with low values, indicating times between spikes inside a burst and one with higher values,
for the times between spikes of adjacent bursts. Further increasing the temperature leads to
periodic windows, opened by a saddle-node bifurcation and closed by an interior crisis, very
much like the behavior for the logistic map (Feudel et al., 2000). At T ≈ 35.02 ◦C, the ISI values
grow very fast (tending to infinity). This occurs due to a homoclinic bifurcation (Feudel et al.,
2000).

At T ≈ 37.7 ◦C we see a transition from chaotic bursting to periodic, via an inverse
period doubling cascade.
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Figure 3.4: Bifurcation diagram of the ISIs versus temperature for an uncoupled Huber-Braun neuron. The
color scheme corresponds to the logarithm of the frequency λ of appearance of each value of ISI. Parameters are
given in Table 3.1.

Instead of using temperature, we may also use the external current Jext. This is displayed
in Fig 3.5 for T = 38 ◦C. We see that the external current destabilizes the periodic orbit and a
chaotic behavior emerges. Furthermore, we note that external inputs can significantly increase
the range of IBI in the HB neuron. This is also observed in the coupling currents for the coupled
networks.

Figure 3.5: Bifurcation diagram for the external current Jext at T = 38 ◦C. The current has negative value, so
that its influence on the neuron is excitatory (cf. (3.18)), mirroring the influence of excitatory neurons. A complex
bifurcation diagram emerges, with bifurcations happening even for relatively small current amplitudes. The color
scheme corresponds to the logarithm of the frequency λ of appearance of each value of ISI. Parameters are given in
Table 3.1.

To summarize, and for reference, in Fig 3.6 we show representative membrane potentials
for the three temperatures we focus on this dissertation (T = {37, 38, 40}◦C) along with the
bifurcation diagram.
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Figure 3.6: Huber-Braun neurons’ dynamics. In the first row (panels (a), (b), (c)) the representative membrane
potentials for the uncoupled neuron are displayed in green, brown and blue for 37 ◦C, 38 ◦C, 40 ◦C, respectively. The
chaotic bursting in 37 ◦C suffers an inverse period doubling bifurcation and at 38 ◦C it becomes regular bursting
with two IBIs, until a final bifurcation leads to regular bursting with one IBI in 40 ◦C.

We can also verify the periodicity or chaoticity of the uncoupled HB neuron through its
Lyapunov Spectrum. This is shown in Fig 3.7 for various temperatures. The figure shows that
T = 37 ◦C has positive maximum Lyapunov exponent, indicative of chaotic behavior, and that
T = 38 ◦C and T = 40 ◦C have null maximum exponent, showing periodic behavior.
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Figure 3.7: Lyapunov spectrum for the HB neuron. Panel (a) shows the inter-burst intervals for the Huber-Braun
neuron for various temperatures. Panels (b)-(f) then depict the neuron’s lyapunov spectrum. We can see that the
maximum lyapunov exponent λ1 goes to 0 at the periodic windows and, specially important, at T = 38 ◦C and
T = 40 ◦C. For T = 37 ◦C it is positive, indicating chaotic behavior. Calculation is made through the algorithm by
Benettin (?), but could also be made with the algorithm described in Section 2.3.3.
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4 COMPLEX NETWORKS

In this chapter we describe how to model the structure of connections between neurons
by making use of graph theory. The structural organization (also called topology, or connection
scheme) of the brain is known to be very complicated (Bullmore and Sporns, 2009; Sciences,
2002) and to be very important to support the relevant dynamics (Marconi et al., 2012). Despite
all its intricacy, the field of complex networks has revealed, using largely graph theory, important
features of the brain topology. Some of these features are small-worldness (roughly, high
clustering while maintaining low mean distance between neurons), modularity (brain has a
functionally hierarchical structure) and the presence of hubs (neurons with very high connectivity)
(Bullmore and Sporns, 2009). The first feature is indeed ubiquitous in a wide range of networks,
not just neural ones, and is described in more detail subsequently. Before that, we introduce some
fundamental concepts of graph theory.

4.1 ELEMENTS OF GRAPH THEORY

A graph is simply a set of nodes (also called vertices) linked by connections (also called
edges). These connections may be directed (one-way) or undirected (two-way), unweighted or
weighted. In a neural network, the nodes may be neurons, brain areas, or even electrodes, with
the connections being synapses, fibers or some association measure, respectively (Bullmore
and Sporns, 2009; Fornito et al., 2013; De Vico Fallani et al., 2014). For networks of chemical
synapses, the graph is directed (since neuron A being connected to B doesn’t imply in the inverse
being true), while for electrical synapses (gap junctions) the graph is undirected. We denote the
number of nodes, also called the network size, as N and the number of connections as N .

4.1.1 Adjacency matrix

A useful way to represent a graph is by the adjacency matrix A. For unweighted graphs,
this is a binary matrix, with element Ai j = 1 if j is connected to i (i.e. i receives a connection
from j) and Ai j = 0 otherwise. For weighted graphs, Ai j denotes the weight of the connection
from j to i. Naturally, for undirected graphs Ai j = w =⇒ A ji = w (w = 0, 1 for unweighted
graphs), therefore the adjacency matrix is symmetric.

As a note, these matrices tend to be sparse, so a computationally more effective way
is to define an adjacency vector. For unweighted graphs, this vector contains the indices of the
nonzero connections.

4.1.2 Average path length and Global efficiency

We define the distance di j between any two nodes i and j as the total number of edges
connecting them through the shortest route (Chen et al., 2014). The average path length, or
characteristic path length of a graph is then the average of all distances:

L =
1

N(N − 1)
∑

i, j

di j . (4.1)
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A short L indicates high global efficiency for sequential transfer of information (Latora
and Marchiori, 2001). A way to measure efficiency for parallel transfer of information is given in
(Latora and Marchiori, 2001). First, the average efficiency of the graph can be defined as

E =
1

N(N − 1)
∑

i, j

1

di j

. (4.2)

Then, "ideal" efficiency Eid is defined as E in the case of a fully connected network (it
is 1 for unweighted graphs). At last, the global efficiency, measuring how close to the "ideal"
case the graph is, is:

Eglob =
E

Eid
. (4.3)

Besides the convenient meaning and interpretability of this measure, it is also useful as
a replacement of L because it still has meaning for disconnected graphs (graphs with at least one
node without connections) (Latora and Marchiori, 2001; Bullmore and Sporns, 2009).

4.1.3 Neighborhood

We define the neighborhood Ωi of a node i as the set of nodes immediately connected to
it. Denoting a possible edge between nodes i and j as ei j and the set of all edges as E , we have
the definition:

Ωi ≡
{

j : ei j ∈ E ∨ e ji ∈ E
}

. (4.4)

4.1.4 Clustering coefficient

If the neighbors of a node are also directly connected between themselves, we say they
form a cluster (in a graph-theoretical sense) (Bullmore and Sporns, 2009). To quantify the
degree of clustering in a network, we define the clustering coefficient of a node as the number
of connections existing between its neighbors relative to the maximum possible number of
connections (Watts and Strogatz, 1998).

For a given node i, with ki neighbors, the maximum number is ki(ki − 1) (for directed).
Denoting Ni as the number of actual connections between the neighbors, then

Ci =
|
{

e j k : j, k ∈ Ωi, e j k ∈ E
}

|
ki(ki − 1) =

Ni

ki(ki − 1) . (4.5)

The clustering coefficient for the network is then the average taken over all nodes (Watts
and Strogatz, 1998; Chen et al., 2014)

C =
1

N

N
∑

i=1

Ci . (4.6)

A high clustering is associated with a high local efficiency of information transfer
(Bullmore and Sporns, 2009). A way to quantify this is also given in (Latora and Marchiori,
2001), where the local efficiency is defined as the average efficiency of all neighborhoods in the
graph:

Eloc =
1

N

∑

i

E(Ωi). (4.7)
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4.1.5 Degree distribution

The degree k of a node is defined as the total number of connections it makes and
receives. For a directed graph, we may also define an out-degree to be the number of edges
leaving the node (number of connections it makes with other nodes) and in in-degree to be the
number of edges entering the node (number connections it receives from other nodes). The
distribution of degrees is defined by a probability distribution and is an important characteristic
of a graph (Chen et al., 2014).

4.2 GRAPH TOPOLOGIES

In this section, we describe some common and important topologies.

4.2.1 Regular graphs

A regular graph is one in which all nodes have the same number of connections (same
degree). An important regular graph is the ring graph, which contains a periodic boundary
condition and in which each node is connected to the 2k neighbors that are closest (in the indices).
The ring network therefore has high L, but big C: low global efficiency, but high local efficiency.
Another important graph is the global one, in which all pairs of neurons are connected, leads to
the minimum possible L and maximum C (maximum local and global efficiencies).

4.2.2 Random graphs

On the other extreme of regular networks are the random ones, in which, generally, the
number N of nodes and N of connections is fixed, but the topology itself is chosen at random.
An important algorithm for random graphs was proposed by Erdős and Renyi (Erdos and Rényi,
2011):

1. Generate N nodes

2. For each of all possible pairs (i, j) j , i of nodes, connect j to i with probability p.

Thus, the expected number of connections is pN(N − 1) (Chen et al., 2014). This results
in a directed graph with no self-loops. These networks start completely disconnected por p = 0
and become denser as it is increased until they form a global network at p = 1. For most networks
generated in this manner, the minimum probability p required for them to be connected (no
isolated nodes) is p ∼ ln N/N . The average degree is 〈k〉 = p(N − 1) ≈ pN . Consequently, it
can be shown that average path length of these networks is

LER ∼ ln N

ln〈k〉 , (4.8)

and the clustering coefficient is

CER ∼ 〈k〉
N
= p. (4.9)

This is the opposite case from regular networks: both L and C are small: Erdős-Renyi
(ER) graphs have high global efficiency, but low local efficiency. As a note, we remark that the
degree distribution of these networks is Poissonian.
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4.2.3 Small-world graphs

Ring networks, with their local structure, have high average path length and clustering,
while random ones, without local structures, are the opposite. It turns out that intermediate
networks, with some local structure and some long-range connections, are ubiquitous in various
areas, like in neural networks, power grids, social networks (Watts and Strogatz, 1998) and even
protein structure (Barabasi and Albert, 1999). These graphs, called small-world (SW) graphs, are
characterized by their low average path length (close to random), but high clustering coefficient
(much bigger than random). In other words, they are efficient both locally and globally (Latora
and Marchiori, 2001).

There are two important algorithms for generating SW graphs. The first is the original,
due to Watts and Strogatz (Watts and Strogatz, 1998), and the second is due to Watts and Newman
(Newman and Watts, 1999).

4.2.4 Watts-Strogatz algorithms

To generate a WS graph, the procedure is

1. Start with a ring network with N nodes and each neuron having 2K neighbors.

2. For pair (i, j) of connected nodes in the ring, rewire the edge with probability p. This
rewiring is as follows: keep i, but change j to another random node in the network.

This generates a directed graph with no self-loops and 2KN connections. The graphs
start being ring-shaped at p = 0, but receive long-range connections as p is increased until, at
p = 1, a random graph is obtained. The probability p serves therefore as a transition parameter.

This algorithm has the advantage of a fixed number of connections and being able to
transition from regular to small-world to random, but has the disadvantage of possibly generating
disconnected networks (with isolated neurons).

Figure 4.1 depicts the average path length and clustering coefficient for graphs generated
by the Watts-Strogatz route with N = 1000 and K = 10 averaged over 20 initializations. The
small-world phenomenon occurs roughly in the range [10−3, 2 × 10−2], where C is still big, close
to the regular network, but L has dropped significantly, tending to the random network. This is
depicted in Fig 4.2(a).

4.2.5 Newman-Watts algorithm

To solve the disconnection problem with the WS model, Newman and Watts (Newman
and Watts, 1999) proposed to add connections, instead of changing them. They followed the
procedure:

1. Start with a ring network with N nodes and each neuron having 2K neighbors.

2. For every pair of originally unconnected nodes and add a connection with a probability
p.

Again, this graph has no self-loops. It starts with a regular graph at p = 0 and ends with
a global (fully-connected) one at p = 1. The probability serves then as a transition parameter
from a sparse regular network to a dense one. This is depicted in Fig 4.2(b).
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Figure 4.1: Average path length L(p) and clustering coefficient C(p) for networks following the Watts-Strogatz

route. The parameters are N = 1000 and k = 10, with the results averaged over 20 random realizations of the
network.

Figure 4.2: The small-world networks generated through the Watts-Strogatz algorithm (panel (a)) and the

Newman-Watts one (panel (b)). Figure is taken from (Chen et al., 2014).
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5 METHODS AND ANALYSIS

5.1 NETWORK IN THIS DISSERTATION

In chapters 3 and 4 we studied how to model neurons and their connections. We are
now ready to unite these concepts and detail the construction of the neural network used in this
dissertation.

The neurons are all identical, point-like, with dynamics described by the Huber-Braun
model in Section 3.2. A neuron i is influenced by the others through the external current Ji,ext it
receives, henceforth called coupling current Ji,coup. For this synaptic current, we follow (Dayan
and Abbott, 2005; Destexhe et al., 1994) and describe it using the Hodgkin-Huxley formalism:

Ji,coup = ḡP(Vi − Esyn), (5.1)

where ḡ is the maximum conductance of the postsynaptic membrane; P is the fraction
of bound postsynaptic receptors; Esyn is the synaptic reversal potential. For convenience, we
write the maximum conductance as

ḡ = gcǫ, (5.2)

where gc ≡ 1 mS/cm2, introduced to carry the units, ǫ is the control parameter used for
the synaptic conductance, henceforth called the coupling strength. The fraction P is considered a
summation over the fraction of bound receptors due to each connected neuron:

P =
∑

j∈Γi
r j(t), (5.3)

where Γi is the neighborhood of the i-th neuron and r j is the coupling variable due to a neighbor
j, whose temporal dynamics is (Destexhe et al., 1994)

dr j

dt
=

(

1

τr
− 1

τd

)

1 − r j

1 + exp[−s0(Vj − V0)]
−

r j

τd
. (5.4)

In this equation, τr and τd are characteristic times controlling the rise and decay times, and
s0 ≡ 1 mV−1.

Putting all the equations together, the synaptic current arriving at neuron i is:

Ji,coup = gc

ǫ

ν
(Vi − Esyn)

∑

j∈Γi
r j(t). (5.5)

Coupling current: gc ≡ 1.0 mS/cm2 Esyn = 20 mV τr = 0.5 ms τd = 8.0 ms
Network parameters: N = 1000 N = 4000 K = 4

Table 5.1: Parameter values related to the coupling and network.

In Table 5.1 we show the previously defined constants. The synaptic reversal potential
was chosen at Esyn = 20 mV to ensure that all synapses are excitatory.

We used a ring-shaped random network topology, generated with the Watts-Strogatz
algorithm for p = 1, directed and with no self-loops. The size N , number of neighbors K and
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number of connections N are displayed in Table 5.1. The average path length and clustering
coefficients for the random network were L = 4.857 and C = 0.0045. This is similar to the
values obtained for K = 10, shown in Fig 4.1.

The degree distribution, along with a representation of the network, is displayed in Fig
5.1.

Figure 5.1: Degree distribution for the network topology used. Histogram of the degree distribution for the
Watts-Strogatz network with p = 1.0, k = 4, N = 1000, along with a representation of the nodes (red circles) and
their connections (yellow lines).

5.2 SOFTWARES

5.2.1 Numerical Integration

The solution of the various differential equations we mentioned previously is generally
obtained using numerical integration. For all the simulations, unless otherwise stated, the
CVODE solver (Hindmarsh et al., 2005) was used. It implements a 12-th order Adams-Moulton
predictor-corrector method (Butcher, 2016). The time-step is adaptative, with a maximum of
h = 0.1 ms. Absolute and relative tolerances were set at 10−6. Tests were made with tolerances
up to 1012 and h = 0.01 ms, and results were very similar.

5.2.2 Analysis and plotting

The data analysis was done both in Python (Van Rossum and Drake Jr, 1995), with help
of the NumPy module (Oliphant, 2006) and in Julia (Bezanson et al., 2017). Plotting was done
with Python using MatPlotLib (Hunter, 2007).
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5.3 CALCULATING SPIKING AND BURSTING TIMES

Spike times are registered when the membrane potential V crosses the threshold
Vth = −10 mV with positive first derivative. In dynamical systems theory this is known as a
Poincaré surface of section (Feudel et al., 2000).

Bursts are then seen as sequences of any number (bigger than 1) of rapid spikes, followed
a long quiescent period. With this, an algorithm can also determine the bursting times, defined
as the time of the first spike in each burst.

Figure 5.2 shows a typical time series for the membrane potential of the Huber-Braun
neuron for T = 38 ◦C, with the spike and burst times shown in orange and blue circles, respectively.

Figure 5.2: Membrane potential V (black line), spike and burst times (orange and blue circles, respectively)

for an isolated HB neuron with T = 38 ◦C. A transient of t = 100 300 ms was disconsidered.

We remark that this definition works for all parameter values studied in this work. For
coupling strengths higher than the ones used, single spikes start appearing isolated from the
bursts, and then it becomes ambiguous whether it is a mixed-mode oscillation or they are part of
the burst. In the cases we studied, however, this is not significant because these events are rare
and the distances are small, so the isolated spikes, if they occur, are considered to belong to the
previous burst.

5.4 INTER-SPIKE AND INTER-BURST INTERVALS (ISI AND IBI)

An Inter-spike intervals ISI is the difference between subsequent spike times. Therefore,
the kth ISI of the ith neuron in a network is difference between its kth and (k + 1)th spike times:

ISIi,k = ti,k+1 − ti,k . (5.6)

Similarly for Inter-burst intervals IBI:

IBIi,k = ti,k+1 − ti,k . (5.7)
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5.5 VARIABILITY

We regard neuronal variability as the range of possible responses (in the ISI or IBI)
a neuron displays. The variability of one neuron i can be measured using the coefficient of
variability CVi, defined as the normalized standard deviation (Softky and Koch, 1993; Stevens
and Zador, 1998):

CVi =
σ
(

IBIi,k

)

k

〈IBIi,k〉
, (5.8)

where IBIi,k is the sequence of IBIs of neuron i, σ
(

IBIi,k

)

k
is the standard deviation of these

IBIs over time (indexed by k) and 〈IBIi,k〉 is the average of the IBIs over time.
For a network, we define two types of variability: (i) temporal variability CVt , the

average, taken over all neurons, of each individual neuron’s variability; (ii) CVs ensemble
variability is the average, taken over time, of the variability between the neurons. Ensemble
variability gives a notion of how IBI are dispersed in the network. The formula for these
variabilities is similar to (5.8):

CVt = CVi, (5.9)

CVe =
1

kmax

kmax
∑

k=1

σ
(

IBIi,k

)

i

IBIi,k

, (5.10)

where we use (·) to denote an average over neurons (the ensemble), σ(·)i to denote (again)
standard deviation over neural indexes i, kmax to denote the total number of IBIs analyzed.

Thus, the temporal variability is the network average of the normalized dispersions in
the IBIs of each individual neuron across time, and the ensemble variability measures the time
average of the normalized dispersions in the IBIs across the network. The two are in principle
different, each giving important information about the network.

5.6 PHASE SYNCHRONIZATION

To quantify phase synchronization (PS) we must first define a phase θ. Since we are
generally interested in studying burst PS, we describe the method using burst times, but the same
can be done for spike times. The phase is defined such that it starts at θ = 0 and increases by 2θ
for each new burst. In between bursts, it is a linear interpolation of the two extremes (Ivanchenko
et al., 2004). Mathematically,

θi(t) = 2πki + 2π
t − tk,i

tk+1,i − tk,i

, (tk < t < tk+1), (5.11)

where tk,i is the time at which the k-th burst of the i-th neuron ocurred, called the burst time,
whose calculation is described in Section 5.3.

Then, the degree of PS is measured via the Kuramoto order parameter (Kuramoto, 1984)

R(t) = 1

N

�

�

�

�

�

N
∑

i=1

e jθi(t)

�

�

�

�

�

, (5.12)

where j =
√
−1 is the imaginary unit here. If R = 1, all neurons have the same phase, so the

network is completely phase synchronized. If R = 0, a lot of different scenarios are possible, in
which the network has groups of neurons that are completely out-of-phase. These groups may be
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just one neuron (i.e. for each neuron there is another one that is completely out-of-phase), in
which case we say the network is completely dessynchronized; they may also even be half of
the network, in which case we say the network has anti-phase synchronization. The distinction
between these cases can be done using other methods (e.g. raster plots).

We may take the time average of R(t) to obtain the mean Kuramoto order parameter,

〈R〉 = 1

n

t f
∑

t=t0

R(t), (5.13)

where t0 is the transient time, t f is the total simulation time and n = (t f − t0)/h is the number of
steps, with h being the time step.

We can also calculate the degree of synchronization between two oscillators as the
Kuramoto order parameter between only the two of them:

Rik(t) =
1

2

�

�

�e
jφi(t)
+ e jφk (t)

�

�

� , (5.14)

where j =
√
−1 is the imaginary unit here.

5.7 AVERAGE TEMPORAL DRIFT

In this section we define a quantity to measure if neurons are phase-locked. Specifically,
we assess the if the differences between firing times (either spike or burst) of different neurons
stay constant in time. In the literature, there is a quantifier called the phase-locking value (PLV)
(Lachaux et al., 1999), based on the Kuramoto parameter, which could do this. However, in
this section we define a simpler quantifier that works well for our networks. In our network,
neurons are tonically bursting and with similar periods. Due to this, we can align the burst times
of all neurons in the network in bursting events, indexed here by k. For each pair (i, j), we then
calculate the distance between their burst times for each event k:

δk
i j = |ti,k − t j,k |. (5.15)

Then, we see if this distance changes in the next bursting event, calculating the absolute
difference of this distance between successive events for each pair (i, j),

∆
l
i j = |δk

i j − δk−1
i j |. (5.16)

If ∆l
i j

is zero, then neurons stayed phase locked (guaranteed by the way we calculate phases 5.6),
otherwise they did not. The temporal average of ∆i j , 〈∆i j〉, measures the tendency of the pair
(i, j) to drift away from each other across time. We average the result over all pairs of neurons,
resulting in

∆ =
1

N(N − 1)

N
∑

i, j,i, j

〈∆i j〉 ≡ 〈∆i j〉, (5.17)

which is termed the average drift of the network. This average drift tendency ∆ measures how
much, on average, the temporal distances between neurons’ firings change. If it is low, neurons
are locked together, the difference between their burst start times remaining fixed. If it is high,
neurons are not phase-locked. The drift ∆ therefore serves as a measure of promiscuity, a
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phenomenon discussed in the results section characterized by intermittent changes in the phase
differences between neurons.

5.8 CLUSTERING ANALYSIS

Groups of neurons that are functionally related (clusters) are ubiquitous in the brain, and
the emergence of transient clusters is thought to form the basis for complex cognition (Bassett
et al., 2015) and more (Shine et al., 2016) (for more details, see Section 1.9). In the metastable
brain, these groups are constantly being formed and disbanded (Cavanna et al., 2018), which
leads us to the idea of measuring promiscuity by the rate of change in cluster formation. To
do that, we must first define algorithms for cluster identification. This is a very complex task,
with no definite solution. There are various proposal in the literature (Tononi et al., 1998b;
Zemanová et al., 2006), varying in levels of complexity. For this dissertation, we want to study
rate of change of cluster compositions, and not focus on the clusters themselves, so we used a
simple algorithm. In accord with other methods we use, we consider the functional relations as
either degree of phase synchronization or of phase difference. These two considerations lead
to two similar algorithms: one proposed by Bhowmik (Bhowmik and Shanahan, 2013) and a
modification of Bhowmik’s.

5.8.1 First cluster algorithm

This algorithm, proposed in (Bhowmik and Shanahan, 2013), uses the degree of PS as a
criterion for clustering, using a synchronization threshold Rth. The algorithm can be applied for
each time t and is as follows:

Algorithm 1: First clustering algorithm.
Result: Clusters.
Calculate the pairwise Kuramoto order parameter Ri j (5.14) between all neurons in
the network ;

Select the pair with the maximum degree Ri j ;
if Rmax ≥ Rth then

put the two neurons in the cluster.;
else

return null ;
end

while size(cluster) < size(network) do
For each neuron i outside the cluster, calculate the Kuramoto order parameter Ri

(5.12) as if the neuron were in the cluster. Select the maximum Ri to obtain
Rmax.;

if Rmax ≥ Rth then

add the neuron to the cluster;
else

return cluster;
end

end

return cluster;

The cluster returned by this algorithm is guaranteed to have R ≥ Rth. Depending on the
threshold, the cluster can therefore be considered a group of phase-synchronized neurons.
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5.8.2 Second cluster algorithm

This second algorithm is very similar, but the clustering criterion is the phase difference
between neurons, instead of the Kuramoto order parameter. To use it, we must first define a
transformation in the phases.

5.8.2.1 Phase transformation

Suppose a neuron has phase φ1 = 0 and another has phase φ2 = 2π. Their phase
difference is nonzero, even though they are in phase. To resolve this issue, we transform the
phases according to

Φ(φ) = |mod(φ, 2π) − π |
π

. (5.18)

With these transformations, the phases in the previous examples would be Φ1 = Φ2 = 0,
so their difference would correctly indicate that they are synchronized.

5.8.2.2 Algorithm

For this algorithm we define a phase difference threshold ∆Φth. Then, for each time t:

Algorithm 2: Second clustering algorithm.
Result: Clusters
Calculate the histogram of the transformed phases with a number nbin of bins ;
Identify the mode of the binned phases and select the neuron whose phase is closest
to the mode. ;

Put it in the cluster
while size(cluster) < size(network) do

Calculate the average phase of the cluster: Φc;
For each neuron i, calculate the difference between the average cluster phase Φc

and its phase Φi ;
Select the neuron with the smallest phase difference, denoted as ∆Φmin

if ∆Φmin ≤ ∆Φth then

add the neuron to the cluster;
else

return cluster;
end

end

return cluster;

This algorithm is returns a cluster that groups neurons with similar phases together.
Figure 5.3 shows examples of clusters generated by the second algorithm. The algorithm is very
successful, and less ambiguous than others we tested, so it was chosen for the analysis.

5.8.3 Additional parameters and details

For both algorithms, we can apply them to all neurons outside the first cluster, potentially
obtaining a second. This can be repeated a number N of trials, or until all neurons are in clusters.
With this, we end up with a sequence of clusters Ct,i for each time t.

Furthermore, the algorithms can be applied for any time t, but this is unnecessary. In this
dissertation, we only apply the algorithm once every ∆tcluster. Therefore, clusters are calculated
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Figure 5.3: Example of clustering result. Histogram of the transformed phases Φ for all clusters for coupling
strengths ǫ = {0, 0.00084, 0.008} (for relevance, see results Part II) along the columns and cluster thresholds
Φth = {0.01, 0.1, 0.2} along the rows. Histogram for each cluster has a color, specified in the legend, and neurons
outside any cluster, called outliers, are painted in gray. The size of each bin is equal to threshold Φth used in each
case.

times at {tk}; k = 1, 2, . . . ,K , with K here denoting the maximum number of applications,
tk+1 − tk = ∆tcluster ∀k, and with t1 being the first burst time after the transients.

Through the dissertation, we use N = 8 and ∆tcluster = 1000 ms. It is very easy to verify
the robustness of the results to the former since it is enough to increase it and verify that no more
clusters are found (in fact, even 8 clusters is already very rare identify.). The latter parameter
was chosen that way because that is around one inter-burst interval. Robustness was tested by
decreasing the parameter until ∆tcluster = 100, and results were very similar.

5.8.4 Cluster set notation

Clusters are sets containing their neurons’ indices. A cluster Ci is said to be of size |Ci |,
meaning the number of neurons inside it. Furthermore, the intersection between two clusters Ci

and Cj is denoted Ci ∩ Cj and contains all neurons inside Ci and Cj simultaneously.

5.8.5 Time evolution of clusters

An important remark is that the previous algorithms do not establish an a priori
relationship between clusters identified at different times. That is, clusters calculated at some
time tk (the k-th application of the algorithm) can be completely independent of clusters at tk+1.
This is not the case, as we see in the results Section 8.2.
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5.8.5.1 Biggest cluster intersections

One way to verify the previous statement is to focus only on the biggest cluster (BC): at
each time tk , only the cluster with biggest size is selected for analysis. Then, we study how the
composition of the BC changes with time by looking at which neurons stay in the BC across
time. To do this, we calculate cluster intersections. Starting at a time tk , we define the cluster
intersections Ci,T (tk) as T intersections of subsequent clusters, starting at CBC(tk):

CBC,T (tk) ≡ CBC(tk) ∩ CBC(tk+1) ∩ · · · ∩ CBC(tk+T ). (5.19)

If the cluster composition does not change with time, then Ci,T (tk) = Ci(tk) for any
T . If, however, it changes, then the size |CBC,T (tk)| decays with T and the decay rate gives a
quantitative measure of rate of change of the cluster composition. In the results Section 7.2.2 we
show these results, which indicate clusters at different times are related.

5.8.5.2 Analytical consideration

Now we describe a simple analytical result which useful for later. Suppose that, from
one time tk to the next tk+1, the probability of neurons staying in a cluster Ci (for example, the
BC) is the same pi. Then,

|Ci(tk) ∩ Ci(tk+1)| ≡ |Ci,1(tk)| = pi |Ci(tk)|, (5.20)

and, therefore, for T intersections we have

|Ci,T (tk)|
|Ci(tk)|

= pTi . (5.21)

5.8.6 Measure of Promiscuity

Now we describe how to measure promiscuity indirectly as the rate of change in cluster
compositions. The idea is to first measure the proportion of neurons that stay in the cluster as
time passes, which we see can be interpreted as the probability of neurons staying in the cluster.
The inverse of this probability then leads to the probability of neurons leaving the cluster, which
is our measure of promiscuity. We start, for simplicity, analyzing only the biggest cluster, and
then show the generalization and analysis considering all clusters.

5.8.6.1 Biggest cluster

To start, we define the proportion (probability) of neurons staying in the biggest cluster
as

pBC(tk) ≡
|CBC(tk) ∩ CBC(tk+1)|

|CBCtk)|
. (5.22)

This can be done for all times {tk}; k = 1, 2, ...,K − 1 and then averaged to give pBC . Our
measure of promiscuity is then

PBC = 1 − pBC . (5.23)

In the results Section 7.2.2, we see that the biggest cluster intersections CBC,T decay
exponentially. This fits with the description given in Section 5.8.5.2 (for cluster i = BC), with the
cluster size decaying according to (5.21). Given this exponential decay, another way to measure p

is to use a log×linear plot (like in panel (b) of Fig 7.3), in which then CBC,T forms a line y = ax
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where y = log |CBC,T (tk )|
|CBC (tk )| , x = T and a = log(p). A linear regression on this plot then gives us p.

Though in the results we followed (5.22), we also tried this method, and results were very similar.

5.8.6.2 All clusters

In several cases, the network can have more than one cluster. The BC analysis gives
good results and is a good first approach, but a more complete description has to consider all
the clusters. In this case, we to calculate the proportion (probability) of neurons staying in each
cluster, and average over the clusters. One possible problem arises when doing so if the clusters
in the network have similar sizes. This can occur in desynchronized networks or for very small
cluster thresholds (eg Φth = 0.01). To describe this problem, consider an example: imagine a
network of N = 10 neurons, in which we apply the algorithm two times (times t1 and t2). It
is possible that for t1, clusters are C1(t1) = {1, 2, 3, 4, 5} and C2(t1) = {6, 7, 8} (and {9, 10} are
not in any clusters). Then, for t2, let us imagine that neurons 9 and 10 get in-phase with 6, 7, 8,
and 4 and 5 get out of clusters, so that the clusters then become C1(t2) = {6, 7, 8, 9, 10} and
C2(t2) = {1, 2, 3}. If one were to naively analyze how cluster compositions change according to
the cluster indexes (which, in our case, are obtained by sorting according to the cluster size), one
would get intersections of null size for both C1 and C2, indicating that both clusters disbanded
completely. However, that is not the case: as we have seen, only neurons {4, 5} changed their
behavior. To deal with this problem, we consider the maximum intersections to calculate the
probability p. That is, instead of applying the equivalent of (5.22), calculating intersections of
clusters with the same index, we do:

pi(tk) =
max

(
�

�Ci,tk ∩ Cj,tk+1

�

�

)

|Ci,tk |
. (5.24)

In the previous example, we would calculate the intersections C1(t1) ∩ C2(t2) and C2(t1) ∩ C1(t2).
By averaging this over time and then over clusters, we have an average probability of

neurons staying in clusters p. We then define the measure

P ≡ 1 − p (5.25)

to quantify how much, on average, the clusters’ compositions change in time, thus serving as a
measure of promiscuity.

An alternative way to define p in this case is to calculate the proportion of neurons
staying in clusters globally. That is, we calculate the number of neurons staying in their respective
clusters (also applying the rule of maximum intersection) and then divide this number by the
total number of neurons in clusters, obtaining the second measure p2:

p2(tk) =
∑N

i=1 max
(
�

�Ci,tk ∩ Cj,tk+1

�

�

)

∑N
i=1 |Ci |

. (5.26)

Both methods give very similar results, and we choose to use p to have a more individual
look at each cluster.
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6 METASTABILITY IN NEUROSCIENCE

The brain follows two opposing tendencies: specialization of regions and their integration.
It has specialized processing regions, operating in parallel and segregated from each other in
their activities, and it needs to integrate and globally coordinate some of these regions (Tognoli
and Kelso, 2014; Sporns, 2013). Activity in the cortex thus changes continuously, with cortical
regions integrating (functionally coupling) and segregating (functionally decoupling) across
multiple scales (Stratton and Wiles, 2015). This is important for a variety of behaviors, such as
cognition: "the emergence of a unified cognitive moment relies on the coordination of scattered
mosaics of functionally specialized brain regions" (Varela et al., 2001). A dynamical regime
capable of accounting for these phenomena is metastability (Tognoli and Kelso, 2014).

In this chapter, we provide a mini-review about the different definitions of metastability
in neuroscience, and discuss them. Metastability is often used loosely in the field, so we believe
this is an important step towards trying to unify the definitions.

We then proceed to briefly categorize different dynamical mechanisms that can lead to
metastability. Most of these mechanisms have already been suggested throughout the literature,
but are scattered among several works. We thus believe a compilation in a single work is also an
important step in the study of this dynamical regime.

Though this is part of the work done in this dissertation, it is also part of the theoretical
framework used for later, and so we decided to put this still in Part I.

6.1 DEFINITIONS IN THE LITERATURE

We can extract some categories from definitions of metastability, either explicit or
implicit, in the literature of neuroscience. In the case of multiple definitions within one single
work, we refer to them independently.

6.1.1 Definition 1a - Variability of states

Metastability here denotes the regime with a successive expression of the system’s states
over time. A state can be concretely given as a set of observables representing the system, like
neuronal firing rates (La Camera et al., 2019). It can also be just an abstract concept (Váša et al.,
2015; Alderson et al., 2020; Lee and Frangou, 2017; Werner, 2007b).

Since each of these states is successively replaced by another, none of them are equilibria.
They are either transiently stable (were stable, but a change of parameters made them unstable), or
are simply unstable states. In either case, they are generally called metastable states (metastates).

(La Camera et al., 2019) requires that the transitions between states be abrupt, "jump-
like".

6.1.2 Definition 1b - Variability of activity patterns

Metastability here denotes the regime with a successive expression of activity patterns
over time (Friston, 1997, 2000; Varela et al., 2001). Karl Friston says these patterns are "distinct,
self-limiting and stereotyped" (Friston, 1997).

The patterns can be temporal or even spatial. In (Roberts et al., 2019), successive waves
of electric potential are identified in whole-brain models, each denoting a spatial pattern, and
their succession denoting metastability.
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Each pattern could naturally reflect the system’s state, so that definitions 1a and 1b could
be equivalent. This view, however, can be more concrete, relying on the identification of patterns
in the observations (activity) of the system, not on a potentially abstract state.

6.1.3 Definition 1c - Variability of synchronization or phase configurations

Metastability here refers directly to degrees of synchronization, or to oscillation phases.
It can denote a (i) variability of the global degree of phase synchronization (Cabral et al., 2011;
Deco et al., 2017) in time; (ii) variability of the states of phase configurations (Deco et al., 2017)
in time; (iii) variability of synchronization between different node (Deco et al., 2017) in time;
(iv) variability in the relative phases of nodes (Ponce-Alvarez et al., 2015) in time; (v) variability
in the synchrony of each individual community in the network in time (Shanahan, 2010; Wildie
and Shanahan, 2012). Promiscuity, which we define later, can be regarded here as a type of
metastability.

On a topological scale, these definitions vary from a microscopic level (comparing
nodes), to mesoscopic level (communities), to a macroscopic level (global).

If the degree of synchronization, or the configuration of phases, is considered to define
a system state, then this definition is a specific case of 1a. If synchronization is considered an
activity pattern, then this is a case of 1b also.

6.1.4 Definition 1d - Variability of regions in phase-space

Metastability here refers to a regime with transitions between regions in phase space
(Hudson, 2017; beim Graben et al., 2019; Rabinovich et al., 2008; Cavanna et al., 2018).
The trajectory of the system spends time in certain regions, and then moves to other regions.
Mechanisms describing these are plentiful in dynamical systems theory (cf. Section 6.3.2).

The dynamical variables of the system, represented by a point in phase-space, represent
its state (Cavanna et al., 2018; beim Graben et al., 2019). Thus, this definition is a phase-space
view of definition 1a.

For example, (Rabinovich et al., 2008) considers the specific case where a state is a
saddle, and metastability occurs due to a heteroclinic cycle.

6.1.5 Definition 1e - Variability of regions in energy landscape

Metastability here refers to a regime with transitions between local minima of energy, in
an energy landscape. This is the definition in neuroscience closest to the one in physics. In this
case, the system transitions from one state to another due to either external perturbations or to
another dimension in the landscape (Shankar Gupta et al., 2018; Cavanna et al., 2018).

If each state or activity pattern has a value of energy, then this definition can be
considered a specific case of the others.

6.1.6 Definition 2 - Regime for integration and segregation of neural assemblies

Metastability is often viewed as a dynamic regime that naturally implements the dual
need for integration and segregation in the brain. The most common approach is to define
metastability through one of the previous definitions, and consider integration-segregation as a
consequence. However, (Fingelkurts and Fingelkurts, 2001, 2004) define metastability directly as
the regime with this tendency of integration-segregation. According to their theory of Operational
Architectonics, this tendency produces the cognitive or behavioral processes in the brain and,
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therefore, metastability the regime behind them. These processes are constituted by a succession
of different acts, each of which can is called a metastable state.

6.2 DISCUSSIONS

It is clear that most definitions (in number and frequency of occurrence) follow the
common theme of variability in time of some concept, or, equivalently, the succession in time of
aspects of this concept. This similarity allows us to equiparate them, or consider one a specific
case of the other.

We can see that definitions 1a and 1b are the stronger candidates for a general definition.
They include the other definitions, and are operational, as they rely on observations of the system,
not on detailed knowledge of its phase space. In particular, 1b would be our preferred, as an
activity pattern seems a more concrete idea than simply a state.

With these general definitions, the views on energy or synchronization are specific
cases, dependent on the activity being measured and on the pattern that is found. The scale of
observation and analysis is also important for the specific, practical view of metastability in each
study. As seen in definition 1c, even considering synchronization, different views can be found
in each scale. This relation between metastability and scales is further exemplified in Section
6.2.1 and in Chapter 9. In the former, we briefly view quantifiers for each scale. In the latter, we
explore this metastability on the different levels of the topological scale.

6.2.1 Examples of metastability at different topological levels

We now offer some examples of metastability viewed at different levels of the topological
scale.

6.2.1.1 Topological - macro level

The analysis in this case considers the whole network (all of its nodes). A common
view of metastability follows definition 1c, as the variability in the degree of phase synchrony
of the network. This is usually measured as the standard deviation σ(R(t)) in the Kuramoto
order parameter R(t) in time (cf. (5.12)) (Lee and Frangou, 2017; Alderson et al., 2020; Cabral
et al., 2011; Deco et al., 2017; Kringelbach et al., 2015; Váša et al., 2015). Again, it is worth
noting that some works may define metastability in a more general form, and then measure it in a
specific way.

6.2.1.2 Topological - meso level

The analysis in this case considers a part of the nodes in the network, which are generally
grouped in neural assemblies (also called clusters, or groups). As discussed in Section 1.9,
neurons very commonly can be organized into assemblies, either anatomically or functionally,
and these assemblies are quite important in several biological processes, which explain the
ubiquity of this view.

One specific example of a neural assembly is the dynamic core (DC), defined as a
"constantly evolving and transiently stable set of coordinated neurons" (Cavanna et al., 2018)
(cf. Section 1.9). In the Dynamic Core Hypothesis, suggested by Tononi and Edelman, each
conscious experience is associated with a DC. Metastability is seen as a mechanism leading to
a "repertoire of dynamic core states" (Cavanna et al., 2018). This notion of metastable neural
assemblies as "building blocks of brain organization" (Aguilera et al., 2016) is widespread in
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neuroscience studies, like (Werner, 2007a; Buzsáki, 2010; Bassett et al., 2015; Cavanna et al.,
2018; Werner, 2007b; Tognoli and Kelso, 2014).

Metastability is also seen to underlie the transient formation of clusters in (Ponce-Alvarez
et al., 2015; Tognoli and Kelso, 2014; Kringelbach et al., 2015).

In (Shanahan, 2010; Wildie and Shanahan, 2012; Bhowmik and Shanahan, 2013),
metastability is measured as the standard deviation of the Kuramoto order parameter calculated
in clusters (or communities). The result is then an average over clusters, which characterizes a
meso level analysis.

6.2.1.3 Topological - micro level

This analysis considers a few nodes of the network, only. In this case, one possibility
is that the whole possible network is not being studied, only each node separately. In (Hudson,
2017), for example, the local field potential of regions of interest (macro level in a spatial scale) is
taken and their spectral signatures are analyzed. The analysis is done for each region separately,
constituting a micro level in a topological scale.

Another possibility is by studying only a few nodes at a time. In both (Tognoli and
Kelso, 2014; Ponce-Alvarez et al., 2015), metastability is illustrated as changes in the relative
phases between nodes of the network.

In each case, the view of metastability can follow from a general definition, as discussed.

6.3 MECHANISMS OF METASTABILITY

Considering for now a general definition, such as 1a or 1b, we can discuss and categorize
some of the many mechanisms (Alderson et al., 2020; Deco et al., 2017; beim Graben et al.,
2019) leading to a metastable regime. First, we need to distinguish between two cases:

1. Variation of system parameters

2. Intrinsic dynamics of the system

In the first, metastability occurs simply because the variation in the parameters caused
the behavior of the system to also change; the second has many possible causes.

6.3.1 Variation of system parameters

One typical approach in the study of dynamical systems is to consider the long-term,
asymptotic, behavior of a system, and to ignore its initial, transient, activity. This is generally
done by studying the system’s attractors, with the belief that the important dynamics lies in these
regions, and not on the transition to them. This works extremely well for a variety of systems
whose parameters can be kept constant, and the systems have time to settle.

As can be expected, this is not the case for the brain: both internally, with changes in
neural conductances, strength of synaptic connections, neurotransmitter concentrations, etc.,
and externally, with changing hormone levels, varying inputs from the environment, etc. As a
consequence, structures within the brain’s phase space are perpetually changing (Friston, 1997).
If the changes occur sufficiently fast, then the brain is also in a perpetual transient state (Friston,
1997).

These changes can lead to changes in the system’s state (as defined before), in which
case metastability arises due to variation of the system’s parameters (be they slow or fast). One
example of a drastic change in behavior due to changing parameters is a phase transition, a topic



68

of much study in neuroscience (Werner, 2007b; Fontenele et al., 2019; Ross, 2010). Another two
are the phenomena of malleability and susceptibility, in which, roughly, small changes (even
changes in a pair of neurons) in a neural network are able to radically change the network’s
behavior (like its synchronization properties) (Budzinski et al., 2020; Medeiros et al., 2019;
Santos et al., 2018; Manik et al., 2017).

6.3.2 Intrinsic dynamics

The other possibility for generating metastability is due to the intrinsic dynamics of
the system, happening even for constant parameters. We now provide examples of mechanisms
leading to metastable behavior. These were introduced in Section 2.7.

6.3.2.1 Multistable quasi-attractors

The first possibility is chaotic itinerancy (cf. Section 2.7), also called attractor hopping
(Kraut and Feudel, 2002). In this case, the system has several quasi-attractors (attractor-ruins)
and it transitions between them (i.e. it hops between different quasi-attractors).

If each quasi-attractor is associated with a distinct state or activity pattern, then the
system is metastable, as proposed in (Hudson, 2017; Shanahan, 2010).

6.3.2.2 Multiple unstable attractors

The second possibility is unstable attractors (cf. Section 2.7). In this case, the system
does have Milnor attractors, but these are surrounded by the basins of attraction of other attractors,
not theirs, so arbitrarily small perturbations can induce hopping between attractors (Timme et al.,
2002). If each unstable attractor is associated with a distinct state or activity pattern, then the
system is metastable.

6.3.2.3 One attractor

In this case, the system has one global attractor (it could actually have more, but one is
enough). This attractor then has a very inhomogeneous measure, so that the attractor manifold
can be divided in various submanifolds. The system spends some time in each submanifold, and
transitions naturally between them (Friston, 1997). Thus, the submanifolds are analogous to the
quasi-attractors in the first case, but here the trajectory does not leave the attractor.

Again, if each submanifold is associated with a distinct state or activity pattern, then the
system is metastable. This mechanism is proposed by Friston (Friston, 1997).

An additional possibility is that the submanifolds can be further subdivided into
subsubmanifolds, leading to a hierarchical metastability. This has been proposed in (Cavanna
et al., 2018) as a possibility reflecting hierarchical relations in the system’s scales.

An example of the above case is a heteroclinic cycle (a sequence of saddles connected
to each other) (cf. Section 2.7.3). If each saddle corresponds to a different state, then the system
is metastable, as proposed in (Rabinovich et al., 2008).

6.3.2.4 No attractor

In this case, the system has no global attractor, only a quasi-attractor (or attractor-ruin).
This attractor-ruin attracts the trajectory temporarily, before it escapes and wanders in phase
space until eventually approaching the ruin again and repeating the process. This is the case,
for example, of type I Pomeau-Maneville intermittency, in which the trajectory is temporarily
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attracted to the region where the saddle and node collided. It can also be the case of on-off
intermittency, in which a before-stable attractor loses transversal stability, and orbits can escape.

If each region of phase space is associated with a distinct state or activity pattern, then
the system is metastable (as it traverses the phase space, it changes states). This mechanism is
defended mainly be Kelso and Tognoli (Tognoli and Kelso, 2014), who state that the system has
"no attractors, only attracting tendencies" (Tognoli and Kelso, 2014).
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Part II

Results
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In the first part of this dissertation, we discuss the theoretical framework needed to
understand and analyze the networks of bursting neurons we use. The interest in these networks
is twofold: from a dynamical systems point of view, their rich dynamics is very interesting; from
a neuroscience point of view, they serve to illustrate the discussions we made about metastability
in Chapter 6 and the importance of studying different scales of the system.

In the first part of the results (chapters 7, 8), we focus on the dynamics of the network.
We start analyzing its degree of phase synchronization (PS) and variabilities. The former gives
us the general behavior of the network, with transition to phase synchronization as the coupling
strength increases. The latter quantifies how neurons in the network differ dynamically and
suggests promiscuity, defined as the intermittent changes in the phase differences between neurons.
It is named this way because neurons may stay together with fixed phase differences for some
time, but this inevitably changes after a while. Promiscuity is directly measured by the average
drift. Then, its effects on cluster formation are studied. The analysis of clusters then gives us
in-depth detail on the PS of the network, and lets us see promiscuity leading to changes in the
composition of clusters in the network. We also take advantage of this model and study the
network behavior at three different firing modes. At temperature 37 ◦C, an uncoupled neuron
has a chaotic bursting mode, while for 38 ◦C and 40 ◦C a neuron has regular bursting, with 38 ◦C
having two inter-burst intervals and 40 ◦C having just one (cf. Fig 3.6).

In Chapter 9 we explore the network’s synchronization behavior in more detail. Adopting
a specific definition of metastability, we use this study to illustrate how quantifiers of metastability
for different scales can behave differently. We study the pairwise synchronization in the network
Ri j (micro level), the cluster behavior P (meso) and the average synchronization 〈R〉 (macro
level). We also briefly characterize the statistical properties of both the pairwise and network
synchronization.

In all cases, a transient time of t0 = 300 s was disconsidered, and a total execution time
of t f = 1300 s was used for analysis, unless otherwise stated. This is enough to overcome the
transient behavior in all cases.
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7 PHASE SYNCHRONIZATION, VARIABILITY AND PROMISCUITY

7.1 DEGREE OF PHASE SYNCHRONIZATION AND VARIABILITY

We start our analysis by looking at the average degree of phase synchronization (PS) of
the network, calculated through the time-averaged Kuramoto order parameter 〈R〉 (5.13), as a
function of the coupling strength. This is shown in the first row of Fig 7.1, for ǫ ∈ [0, 0.008].
Panel (a) (37 ◦C) exhibits a monotonic transition to PS, common in several other models like
Kuramoto oscillators (Kuramoto, 1984; Boccaletti et al., 2002; Arenas et al., 2008). In panel (b)
(38 ◦C), there is a local maximum of synchronization for weak coupling, and a second transition
for stronger coupling. This has also been observed in small-world topologies (Xu et al., 2018;
Boaretto et al., 2018b; Budzinski et al., 2019c). In panel (c) (40 ◦C), the previous local maximum
is replaced by a global maximum, which spans a wider interval of ǫ and in which even the
spikes within bursts can be synchronized (Budzinski et al., 2019c). We see therefore that the
networks have very different behaviors for weak coupling, ranging from desynchronization to
burst synchronization and then to almost complete synchronization depending on the temperature
(firing mode). However, for strong coupling, the behavior is similar across temperatures, with
phase-synchronized networks.

Next, we study the coefficients of variability CVt and CVe (cf. Section 5.5), measuring
the average dispersion of inter-burst intervals IBIs across time and across the network, respectively.
These are in the second row, where we can first see that both have very similar values in all cases.
For very weak coupling (ǫ < 1× 10−3), variabilities are very similar to the uncoupled case, as the
coupling is not strong enough yet to change the neurons’ dynamics. In 37 ◦C, variabilities start
high (following the highly variable chaotic dynamics), start to decrease as the network transitions
to PS and then increase again at very strong coupling (ǫ > 7 × 10−3). For 38 ◦C, variability also
goes down as the system transitions to the first PS states, reaching a minimum as 〈R〉 is maximal.
These states are highly phase-synchronized with relatively low variability. Then, as the network
desynchronizes the variabilities also increase, reaching a maximum as the 〈R〉 is minimum. The
second transition to PS is then similar to the transition in 37 ◦C. For 40 ◦C, variabilities start very
close to zero (following the uncoupled neuron, with zero variability), and the network is very
strongly synchronized. As coupling increases, desynchronization happens, similar to 38 ◦C, with
maximum variabilities at minimum 〈R〉. The second transition is then also similar to 37 ◦C and
40 ◦C. Variabilities appear to be equal here due to the neurons being identical, as making the
neurons non-identical makes it so that the two variabilities differ.

In the third row we show the IBIs of the neurons in the network, color-coded according
to the logarithmic frequency log(λ) in which they are observed in the simulations. Due to this
log scale, one has to be careful when trying to assess the variabilities from these plots. Again,
for all temperatures, the uncoupled dynamics can be seen to continue to influence the network
behavior, as the IBIs for the uncoupled case remain highly visited, especially for weaker coupling
(ǫ < 3 × 10−3). These results, along with return maps IBIk × IBIk+1 (Section 8.1) show also
that for 38 ◦C and 40 ◦C the first phase synchronized states have more periodic characteristics
than the final PS states, whose chaotic dynamics is more irregular. For all temperatures, this
increase in chaoticity (reflected in the increase of IBIs) for strong coupling is an indication of the
stronger role of the coupling term, which starts dictating the dynamics, explaining why that final
transition is similar for the three temperatures.
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These results therefore show a clear negative correlation between the degree of PS
and the coefficients of variability for weak coupling, where we see that the influence of the
individual, uncoupled dynamics is highest, as reported in similar networks (Budzinski et al.,
2019b). Behavior at strong coupling is then similar for the three temperatures, as the coupling
dominates the dynamics.

Figure 7.1: Synchronization and variabilities in the network. Each row corresponds respectively to the average
degree of phase synchronization 〈R〉, the two variabilities CVe and CVt, and the inter-burst intervals (color-coded
by their frequency in the simulations). In the three cases (in each column), a transition from desynchronization
to phase synchronization is observed. In the first column (37 ◦C), the transition is a common monotonic one; in
the second and third columns (38 ◦C, 40) the transition is nonmotonic: a first phase-synchronized state appears at
weak coupling, followed by desynchronization and later synchronization at strong coupling. For 40 ◦C the first
PS state is very phase-synchronized. The two variabilities are also seen to be anti-correlated with the degree of
phase synchronization for weak coupling. Results are given by an average over 5 initial conditions, with errorbars
containing the standard deviation over them.

7.2 PROMISCUITY

The nonzero temporal variability shows that, for any neuron, different IBIs occur
throughout time from the pool of possible IBIs. The way IBIs occur is of course dictated by the
equations of the system, and may be so complicated as to seem random. This is corroborated by
the return maps Fig 8.1.

The nonzero ensemble variability CVe then shows that, for each burst, different IBIs
occur for different neurons. This means the neurons are dynamically asymmetrical over short
windows (e.g. across a few bursts). This is due to two effects: (i) different in-degrees (number of
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received connections) (cf. Fig 5.1) and (ii) the neurons’ intrinsic, uncoupled, dynamics. Even
if the network were symmetrical, and degrees were homogenous, the asymmetry would still
be observed: neurons would be identical, so over a (sufficiently) long time window, the same
set of IBIs would occur, but, for short windows, IBIs would still be generally different, as each
neurons’ trajectory differs in phase space. This dynamical asymmetry also means that phase
relations between neurons must change in time, as different IBIs are chosen. In this case, even
highly phase-synchronized states do not have permanently phase-locked neurons if the ensemble
variability is nonzero. In other words, ensemble variability indicates promiscuity.

7.2.1 Drift

To verify the previous affirmation, we calculated the average drift ∆ (cf. section 5.7),
measuring how much, on average, the differences in burst times change between neurons. A
null drift ∆ means relative phases (i.e. phase differences) between neurons in the network are
constant throughout time, while higher drifts mean higher rates of change in the relative phases.

We show the results in Fig 7.2, with the drift ∆ as a function of the coupling strength
ǫ for the three temperatures: 37 ◦C (green), 38 ◦C (brown) and 40 ◦C (blue). Our predictions
are confirmed: the drift ∆ follows the ensemble variability CVe (cf. 7.1), showing that phase
relations within the network are labile. This is promiscuity, with higher ∆ indicating neurons
are, on average, more promiscuous. An interesting observation for 40 ◦C is that ∆ is very nearly

Figure 7.2: First measure of promiscuity. The average drift∆, measuring average rate of change in neurons’ relative
burst times of the network is shown as a function of the coupling strength ǫ for temperatures T = 37 ◦C, 38 ◦C, 40 ◦C.
The degree of promiscuity is seen to follow the ensemble variability CVe (cf. Fig 7.1 panels (d),(e),(f)) and is
relatively high even for strongly synchronized states. Results are given by an average over 5 initial conditions, with
errorbars containing the standard deviation over them.

0 until ǫ = 1 × 10−3, when it starts to increase. The average degree of PS remains high until
ǫ = 2.3 × 10−3 (cf. Fig 7.1), so we see that this first phase synchronized state can be subdivided
into a region with no promiscuity and one with some promiscuity. This is again similar to 38 ◦C,
with the difference that 〈R〉 does not decrease.
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For all temperatures, the strongly coupled regime, though highly phase-synchronized,
is considerably promiscuous. Also, in both 38 ◦C and 40 ◦C the first PS states have smaller
promiscuity than for strong coupling. This is an interesting behavior: stronger coupling makes
neurons less phase-locked in this case.

7.2.2 Clustering

To further understand this behavior, we analyze clustering in the network. Our algorithm
groups neurons according to their phases (cf. Section 5.8). In this way, neurons with similar
phases are put in the same cluster, so promiscuity should reflect in more frequent changes of
cluster composition (i.e. more neurons leaving and entering the clusters).

We start by examining only the biggest cluster (BC, cf. Section 5.8.5.1). That is, for all
times {tk}, separated by 1000 ms, we identify the clusters, select the biggest in each time, and
analyse its behavior. We start by showing the time-averaged size of the BC 〈|CBC(tk)|〉k in the first
row of Fig 7.3 as a function of the coupling strength. Each panel corresponds to a temperature,
and in any panel each curve corresponds to a different threshold Φth. The average cluster size
follows the average degree of phase synchronization (cf. Fig 7.1), as more synchronized networks
have more neurons with similar phases. By changing the thresholdΦth we can control how similar
neurons in the cluster have to be, with smaller thresholds meaning more similar. This explains
why smaller thresholds lead to smaller clusters. The important observation is that the cluster size
does not decrease at the same rate for every coupling strength (as the threshold is decreased). For
37 ◦C, the desynchronized region (ǫ < 1.2 × 10−3) decays faster than the synchronized region, as
could be expected. For 38 ◦C, the previous observation is still true, as the two desynchronized
regions (before and after the local maximum) decay faster. The interesting behavior is that the
first phase synchronized states (around the local maximum) decay more slowly than for the
second phase synchronized states (strong coupling). In fact, the first phase-synchronized states
start, at Φth = 0.3, with smaller clusters compared to the second states. As the threshold is
decreased this starts to reverse, and the first PS states have bigger clusters. This indicates that the
first PS states have more neurons very out-of-phase (explaining the start), but also more neurons
very in-phase compared to the second PS states (explaining the reversion). This is a difficult
level of analysis to obtain with other tools we used, or by visually inspecting raster plots, but is
possible through this analysis.

For 40 ◦C, results are similar: desynchronized regions decay faster than the rest, and
first PS states decay more slowly than the second PS states. A local maximum of the cluster size
is visible for weak coupling (ǫ ≈ 1 × 10−3), the same region observed for 38 ◦C, but not visible
through 〈R〉.

The previous analysis provided details about the PS of the neurons in the networks. Now
we want to measure more directly how the cluster composition changes. To do this, we take a
number T of intersections between clusters subsequent in time (cf. Section 5.8). Starting from a
cluster at time tk , we denote the intersections CBC,T (tk) ≡ CBC(tk) ∩ CBC(tk+1) ∩ · · ·CBC(tk+T ).
With this, we can examine how the average size of the intersections CBC,T decreases with the
number of intersections T . If this size remains constant, the composition does not change. If it
does, then the rate of decrease gives the rate of composition change. The second row of Fig 7.3
shows this analysis done for threshold Φth = 0.1 (a representative case, which captures all the
relevant behaviors). Each line represents a coupling strength ǫ , with the color chosen according
to the colormap in the figure.

Several coupling strengths have a linear decay in the figure. Since the y-axis is
in logarithmic scale, this means the cluster intersections decay exponentially. This can be
explained with the simple model described in Section 5.8.5.2: assuming probability pBC of
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Figure 7.3: Analyses of the biggest cluster. The first row contains the average size 〈|CBC(tk)|〉k of the biggest
cluster as a function of coupling strength ǫ for different clustering thresholds Φth . Second row shows the normalized
size of the cluster intersections in log scale as a function of the number of intersections T for a fixed threshold
Φth = 0.1 and various coupling strengths. The cluster size follows the profile of the degree of phase synchronization,
and shows differences in the PS characteristics of different ǫ . The linear decay in (b) means the normalized cluster
intersections follows an exponential decay. Results in the first row are an average over 5 initial conditions with
errorbars containing the standard deviation over them; the second row is an representative example for one initial
condition only.

staying in the cluster (CBC) from one time tk to another tk+1 is the same for all times {tk}, then
CBC,T (tk) = pBC CBC,T−1(tk) = · · · = pT

BC
CBC(tk). The linear decay is not present (thus, the

model does not work), for some couplings strengths. In Fig 9.2, we will see that these cases are
where the network’s degree of synchronization R(t) is intermittent.

From the figure, we can see that, for example, for 38 ◦C the first PS states have much
smaller decays compared to the second PS states. Thus, the former are less promiscuous than the
latter. This analysis could be done for other cases but, instead of relying on this visual inspection,
we can quantify the average rate of decay (i.e. of cluster composition change). Following Section
5.8.6, we can calculate the average proportion (probability) PBC of neurons leaving the cluster.
This rate of change in cluster composition can be seen as an indirect measure of promiscuity.
This result is displayed in Fig 7.4 as a function of coupling strength and the three temperatures.

Promiscuity measured as rate of change in cluster composition agrees with the promis-
cuity measured by the mean drift ∆, and both agree with the ensemble variability CVe. This
analysis, however, brings additional details. First, smaller thresholds (i.e. higher similarity
between neurons in the cluster) lead to higher promiscuity PBC , indicating that more in-phase
neurons tend to stay that way for less time or, in other words, more exclusive clusters change their
members more frequently. This observation is in line with the previously mentioned idea that,
each time neurons burst, different IBIs occur, thereby making the neurons’ relative phases evolve
intermittently.
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Figure 7.4: Promiscuity measured as rate of change in the biggest cluster’s composition. The average proportion
PBC (cf. Section 5.8.6) of neurons leaving the BC is plotted as a function of the coupling strength ǫ for the three
temperatures 37 ◦C, 38 ◦C, and 40 ◦C for different cluster thresholds Φth. 37 ◦C follows a more common behavior,
with promiscuity decreasing (though not vanishing) as ǫ increases. Both 38 ◦C and 40 ◦C have nonmonotonic
changes in the promiscuity. In all cases, this analysis fits well with the analysis via Drift ∆ and ensemble variability
CVe. Results are given by an average over 5 initial conditions, with errorbars containing the standard deviation over
them.

Also, again changes in the quantifier as the threshold Φth varies do not occur homoge-
neously for all ǫ . Taking as an example 38 ◦C, for high threshold Φth both the first synchronized
states (local maximum at Fig 7.1(b), ǫ ≈ 1× 10−3) and the second synchronized states (after final
transition, at ǫ > 4 × 10−3) have very similar, close-to-zero promiscuity. This result is trivial for
the second PS states since the cluster sizes are very close to network size, but not so for the first
PS states. We see that, decreasing Φth, the first PS are clearly less promiscuous than the second
PS states (and, in fact, all other ǫ).

For 40 ◦C, a similar behavior occurs, but with enhanced contrast: promiscuity is much
smaller in the first PS states. In fact, as seen in the drift ∆ (cf. Fig 7.2), the first PS states
(ǫ < 2.5 × 10−3) can be subdivided in two states: one with near zero promiscuity (and maximum
cluster size in Fig 7.5), at 0 < ǫ ≤ 1 × 10−3 (very near to the first maximum for 38 ◦C), and a
second part with higher promiscuity (though still lower than other ǫ) at 1×10−3 < ǫ < 2.8×10−3.
These two parts have different characteristics, even though the average degree of PS 〈R〉 is almost
the same. For 37 ◦C, behavior is more uneventful: higher coupling is less promiscuous for all
thresholds. In all temperatures, maximum promiscuity occurs at the desynchronized states, either
before or after the transition to the first PS states in the case for 38 ◦C and 40 ◦C.

Until now, we have only analyzed the biggest cluster, but for some coupling strengths
there are other clusters. Figure 7.5 shows the size of the clusters for coupling strengths and
temperatures at a fixed threshold of Φth = 0.1.

We see that more clusters emerge when the average PS of the network is lower. Our
main discussion so far focused on synchronized states, for which only one cluster (the biggest) is
found on this threshold. Higher thresholds have even fewer clusters, as one cluster is generally
large, and lower thresholds have more clusters, all with similar sizes. This is discussed in Chapter
8 in Fig 8.2. In any case, we have to consider all clusters to be more accurate.

To do this, the idea is to calculate the probability of neurons leaving each cluster and
average over all clusters to obtain P. The procedure is similar to the biggest cluster case, but
with additional details explained in Section 5.8 and discussed further in Section 8.2. After these
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Figure 7.5: Sizes of clusters. The average size of each cluster found in the network is shown as a function of coupling
strength ǫ and for the three temperatures 37 ◦C, 38 ◦C and 40 ◦C for a fixed threshold Φth. This is a representative
case to illustrate how the sizes and number of these clusters vary in each case. For more thresholds, refer to Fig 8.2.
We see that more desynchronized regions tend to have more clusters, with more similar sizes. Errorbars depict the
standard deviation over 5 initial conditions, and each point is an average over time and over the initial conditions.

considerations, we plot the resulting average probability of neurons leaving clusters in Fig 7.6.
Results show that the biggest cluster case under-estimated the probability by not considering the
other clusters, but the behavior is nonetheless similar. Again, promiscuity follows the average
drift ∆ (cf. Fig 7.2) and the ensemble variability CVe (cf. Fig 7.1) and smaller thresholds Φth,
leading to stricter clusters, are associated with higher promiscuity. For 37 ◦C, strong coupling
reduces promiscuity. For 38 ◦C, the second synchronized states have smaller P for Φth = 0.3,
as the cluster encompasses the whole network, but have bigger P (are more promiscuous) for
smaller Φth. This again shows that strong coupling brings neurons closer together (e.g. bigger
cluster sizes) but is unable to keep their phase relations. The most promiscuous regions are the
desynchronized ones, both before and after the local maximum. 40 ◦C is similar to 38 ◦C, and the
main difference to the biggest cluster case is that P is not very near zero for Φth = 0.01 in the
first part of the first synchronized states (0.5 × 10−3 < ǫ ≤ 1 × 10−3).
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Figure 7.6: Promiscuity measured as rate of change in the clusters’ composition, averaged over all clusters.

The average probability P of neurons leaving the clusters is plotted as a function of of the coupling strength ǫ for the
three temperatures 37 ◦C, 38 ◦C, and 40 ◦C for different cluster thresholds Φth. The result and conclusions are very
similar to the analysis made with the biggest cluster (cf. Fig 7.4). Results are given by an average over 5 initial
conditions, with errorbars containing the standard deviation over them.
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8 ADDITIONAL SUPPORTING RESULTS

8.1 RETURN MAPS

As mentioned in the previous chapter, the return maps IBIk × IBIk+1 provide some
information regarding the periodicity behavior in the network. In Fig 8.1, we show the return maps
for the network as a function of the coupling strength ǫ for the three temperatures 37 ◦C, 38 ◦C,
40 ◦C (colored green, brown and blue, respectively). Starting at the uncoupled dynamics, we
again see that 37 ◦C has chaotic behavior, and 38 ◦C and 40 ◦C are regular with two and one IBIs,
respectively. Coupling is then increased to ǫ = 0.00084, the local maximum of synchronization
for 38 ◦C (cf. Fig 7.1). We see the increase of irregularity in all cases, with 38 ◦C having similar
dynamics to the chaotic 37 ◦C, and 40 ◦C slightly nonperiodic. For ǫ = 0.008, a further increase
of irregularity occurs, with the dynamics becoming very different to the previous two cases, but
also similar across the temperatures. One can see, however, that the more periodic case (40 ◦C)
has the less spread in IBIs in this case, which can lead to the prediction that the network in this
case is less promiscuous and more phase-synchronized (indeed observed in figures 7.1 and 7.6).

Figure 8.1: Changes in the regularity of the network behavior. The return maps of the IBIs for all neurons
IBIk × IBIk+1 are shown for the three temperatures 37 ◦C, 38 ◦C, 40 ◦C and three coupling strengths ǫ = 0 (uncoupled)
ǫ = 0.00084 (local maximum of 〈R〉 at 38 ◦C) and ǫ = 0.008 (strongest coupling strength). We see a clear increase
in irregularity, and decrease in similarity to the uncoupled case, as ǫ increases.
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8.2 CLUSTERS

We now complete the discussion about clusters started in the results section, getting to
more details. First, we show the sizes of all 8 clusters for the three temperatures T = {37, 38, 40}◦C
(along columns) and three cluster thresholds Φth = {0.01, 0.1, 0.3} (along rows) averaged over 5
initial conditions and with standard deviation in the errorbars. First, we would like to remember
(cf. Section 5.8) that, for each time, clusters are indexed according to their sizes. In the first row
(Φth = 0.01), we see that cluster sizes are similar for most coupling strengths. The exception is
for 40 ◦C in the first part of the first phase-synchronized states (ǫ around [0.0001, 0.001]), where
the network is very synchronized and the biggest cluster dominates. The similarity in cluster
sizes could lead to ambiguity in determining which cluster is which through time. As an example,
say a group of neurons is in one cluster (say, cluster 1) at some time tk . At the next time tk+1, this
group could be in another cluster (say, cluster 2). This would happen if, for example, another
cluster increased in size, dislocating cluster 1 at tk to cluster 2 at tk+1. This is much more likely
to occur with similarly sized clusters, which mainly happens for Φth = 0.01.

For Φth = 0.1 (shown also in the results section), we see that clusters are similarly sized
only for the most desynchronized regions of coupling strengths, and even fewer clusters are
present (generally 1, 2, 3, 4). For higher threshold Φth = 0.3, only one cluster is found, and no
problem of similar sizes occurs.

Figure 8.2: Clusters’ sizes. The average size of all clusters is plotted for the three temperatures 37 ◦C, 38 ◦C, 40 ◦C
and three cluster thresholds Φmrth = 0.01, Φth = 0.1, Φth = 0.3 as a function of the coupling strength ǫ . Each
cluster is colored according to the legend shown in the last panel. Average is taken over time and over 5 initial
conditions, with the errorbars showing the standard deviation over them. Results are given by an average over 5
initial conditions, with errorbars containing the standard deviation over them.

As discussed in the cluster analysis section of the Theoretical Framework part (Section
5.8), we reduce significantly the problem of similar sizes by analyzing the maximum intersections
between clusters. Returning to the previous example, we would identify that cluster 1 in time tk
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became cluster 2 at tk+1 because the intersection between these two would be bigger than the
intersection with cluster 1 at tk+1. To verify if this eliminates ambiguity (i.e. not knowing how to
compare clusters at different times), we look at the transition proportions

pi j ≡
|Ci(tk) ∩ Cj(tk+1)|

|Ci(tk)|
(8.1)

between each cluster. In Fig 8.3, we plot these proportions for 10 times, with the maximum
proportion for each cluster (i.e. max(pi j)i) in bigger sizes. Each panel illustrates the typical case
that the maximum intersections are generally significantly bigger than the others for each cluster
(i.e. for each color, bigger markers are significantly above smaller markers). This happens even
in regions where cluster sizes are similar, indicating that there is no ambiguity in the calculation
of the promiscuity measure P.

Figure 8.3: Example of transition probabilities between clusters. Probabilities pi j of transitions between neurons
from cluster i to cluster j from times tk to the next tk+1 are shown for 10 times for T = 38 ◦C. Columns correspond
to Φth = 0.01 and Φth = 0.1, respectively and lines to ǫ = 0.0, ǫ = 0.00084, ǫ = 0.0014, ǫ = 0.008. We see that
the maximum probabilities of transitions for each cluster i are generally well above the others, meaning there is no
ambiguity in calculating the probabilities of neurons staying in each cluster.

We remark also that the reliability of the cluster analysis results is further enhanced by
noting that they fit with independent measures, like ensemble variability CVe, drift ∆, cluster
measures without similarity in clusters sizes, and with other cluster analysis measures not shown
in this dissertation.

The next part of our analysis is to examine differences between each neuron in their
probabilities of staying in clusters. Neurons are parametrically identical in the network, but
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the in-degrees differ (cf. Fig 5.1), so some asymmetry can be expected. For each neuron, we
calculate the number of times in which they stayed in the biggest cluster. Then, we calculate
their probability of staying in the BC as the number of times they stayed in the cluster divided
by the number of times in which they were in the BC and average over all times. In Fig 8.4,
we plot the histogram of the probabilities of each neuron for a few cases. For T = 37 ◦C, with
uncoupled chaotic neurons, the distribution appears similar to Gaussian. For the first three
coupling strengths ǫ , in which the network is desynchronized (cf. Fig 7.1), the distribution does
not change much. For strong coupling at ǫ = 0.008, for which the network is synchronized, the
distribution shifts to the right, and neurons’s probabilities become more similar. For T = 38 ◦C, in
which uncoupled neurons are periodic, the probability distribution indicates most neurons never
stay in the cluster, while some do, and for differing times. This is for reference, and is a result of
the periodicity of the neurons. Increasing coupling to ǫ = 0.00084 (peak of the local maximum
of synchronization), the probability distribution becomes similar to T = 37 ◦C. For ǫ = 0.0014
the distribution shifts to the right, with neurons spreading farther apart in their probabilities, and
then to ǫ = 0.008 the distribution gets very similar to the one in T = 37 ◦C, but the average is
slightly higher. For T = 40 ◦C the same strange behavior seen in T = 38 ◦C happens, due to the
periodicity. We see that some neurons stay permanently in the cluster, and some never stay. This
is a result of neurons being periodic (or very close to, cf. Fig 8.1). We again see that behavior at
strong coupling is very similar for all temperatures, with T = 40 ◦C being the less promiscuous.

Now we take the individual time-averaged probability of each neuron staying in the
cluster and average over the network. This resulting probability is similar to the probability of
neurons staying in clusters p, used previously, but is not necessarily the same. We confirm in
Fig 8.5 that this is indeed the case: the behavior is very similar to P (Fig 7.6), but not the same,
especially for the less synchronized cases.

Figure 8.5: Measure of promiscuity using the average probability of each neuron staying in the biggest cluster.
The average over time and initial conditions is shown for the three temperatures 37 ◦C, 38 ◦C, 40 ◦C as a function of
the coupling strength ǫ and for different cluster thresholds Φth. Result is very similar to the measure P (cf. Fig 7.6),
but not the same, as the probabilities for each neuron are not identical.

There are thus several different ways of measuring the rate of cluster composition change,
but the results are similar. This analysis of clusters in the network constitute a powerful tool to
characterize the behavior of a network.
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Figure 8.4: Stay probability for each neuron in the biggest cluster. For each neuron in the network, we calculate
individually the probability that they remain in the BC from each time tk to the next tk+1 and average over time. The
figure shows the histogram of these probabilities, showing that neurons are not identical: some are more likely to
stay in a cluster than others. Results are shown for the three temperatures 37 ◦C, 38 ◦C, 40 ◦C and coupling strengths
ǫ = 0.0, ǫ = 0.00084, ǫ = 0.0014, ǫ = 0.008.
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9 METASTABILITY AT DIFFERENT SCALES

On the previous chapters, we have characterized the behaviors of our network, seen that
the neural variability reflects in network variabilities which lead to the phenomenon we have
called promiscuity. Promiscuity refers to the intermittent phase-locking between neurons. It
evidently deals with the phase configurations between neurons, but can also be seen leading to
changes in cluster composition. Promiscuity can be regarded as a type of metastability, definition
1c (cf. Section 6.1.3). We adopt this definition of metastability here, which can also be seen as a
specific case of the more general definition as variability in activity patterns (cf. Section 6.2).

We thus intend to explore metastability in the network in more detail here, looking at
the network’s behavior on different levels of the topological scale. These levels can be seen as
different specific views of metastability (cf. Section 6.2.1). The macroscopic measure σ(R)
quantifies the variability in the whole network’s degree of phase synchronization, and is very
common in the literature; the mesoscopic measure P quantifies the rate of change in the clusters’
composition and, though proposed by us, reflects a common view of metastability affecting
cluster formation; the microscopic measure σ(Ri j) quantifies the variability in the pairwise phase
synchronization between neurons, and though also proposed by us, reflects a view of metastability
as changing the phase relations between neurons.

With this study, we aim at deepening our understanding of metastability in the network,
and also at illustrating how quantifiers of metastability for different scales can have different
behaviors.

We start with the average degree of phase synchronization, measured via the Kuramoto
order parameter (cf. Eq. 5.13) and already shown in Fig 7.1 for the three temperatures (T = 37 ◦C,
T = 38 ◦C, T = 40 ◦C) as a function of the coupling strength ǫ . This behavior is already known,
and is here to serve as reference for the next measures. The second row contains the standard
deviation of the Kuramoto order parameter (σ(R(t))); the third row contains the standard deviation
over the pairwise Kuramoto order parameters, averaged over all pairs (σ(Ri j)); the fourth row
contains the average probability of neurons staying in clusters (P), already shown before in Fig
7.6. These measures correspond to different levels of analysis on a topological scale: respectively,
macro, micro and meso. The macro measure, σ(R), peaks at the transitions to and from phase
synchronization. Intermittency in transitions has already been observed in very similar networks
(Budzinski et al., 2019b) and in Kuramoto oscillator networks (Cabral et al., 2011). In T = 37 ◦C,
only one transition happens, and thus there is only one peak. For T = 38 ◦C, three transitions
happen (from desynchronization to the local maximum, from there to desynchronization and
then again to synchronization at strong coupling), and there are three corresponding peaks in the
σ(R). For T = 40 ◦C, the first transition occurs for very small ǫ and can be seen only for one
point (right after ǫ = 0), the second transition occurs to desynchronization, with a corresponding
peak, the third transition is the only exception, without a clear peak.

Therefore, in a macro topological view, the regions of transition are very metastable.
In a micro and meso view, however, these regions are on a plateau, and have similar degrees
of metastability as in other coupling strengths. This is very clear for T = 37 ◦C and T = 38 ◦C.
For T = 40 ◦C, the plateaus are still seen, but not as clearly. Our focus is on T = 38 ◦C, so this
curious behavior has to be examined in future works.

Focusing on T = 38 ◦C, we now look at the points around the local maximum of
synchronization (also called the first synchronized states, ǫ ≈ 1 × 10−3), and compare to the
other points with similar degrees of synchronization, at strong coupling (also called the second
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Figure 9.1: Measures of metastability at different levels of the topological scale. The first row shows the average
degree of phase synchronization, for reference. Then, the second, third and fourth rows depict the macro measure, in
the variability of global PS (σ(R)), the micro measure in the variability of individual PS (σ(Ri j)) and the meso
measure in the rate of change of clusters’ composition (P).

PS states, ǫ ≥ 4 × 10−3). For the macro level, metastability is slightly larger in the first than
the second, and for the micro level it is considerably larger. For the meso level, the behavior
depends on the cluster threshold Φth: for Φth, the behavior is the same as in the macro and micro.
As the threshold is decreased, the situation reverses and the first PS states are measured as less
metastable than the second PS states.

To better understand what is happening, and why these measures differ so much, we plot
in Fig 9.2 representative time series of the Kuramoto order parameter (R(t)) and the pairwise
Kuramoto order parameter (Ri j(t) for pair (i, j) = (1, 2)). In the local maximum (ǫ = 0.00085)
the average degree of network PS varies a bit more than for strong coupling (ǫ = 0.008), in line
with the measure of σ(R). For the pairwise Kuramoto we see several dips from R12 close to
1 in both cases, but with an important distinction: the local maximum has large dips, but the
dips are rarer; strong coupling has very frequent dips, but they are generally small. This may
be difficult to see in this figure, but is observed in subsequent figures. Taking this to be true
now, we see that strong coupling makes neurons have smaller phase differences on average, but
these phase differences change more frequently. This is in line with the local maximum having
smaller variabilities CVe and CVt and smaller drift ∆. It also happens in such a way that the rarer,
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larger dips in the local maximum outweigh the more frequent, smaller dips in the strong coupling
leading to the larger σ(R12). Also, with a large clustering threshold, the cluster is more inclusive
and neurons inside can have relatively large phase differences. This means the smaller dips in the
strong coupling do not affect the cluster composition, but the larger dips in the local maximum
do, making clusters in this case change composition more frequently. However, for smaller Φth,
neurons in the cluster have smaller phase differences and the more frequent dips in R12 become
relevant, so clusters change composition more frequently for strong coupling in this case.

This figure is also interesting as it clearly shows that, for both ǫ = 0.00085 and ǫ = 0.008,
the macro level indicates little or no metastability (constant R(t)), but the micro level has the
opposite (very intermittent R12(t)).

All these results are consistent, as the system is the same, but we can clearly see that
conclusions can be different depending on the level of analysis. It is therefore important to
analyze several levels to understand the system’s behavior as a whole.

Analyzing now ǫ = 0.000703 (first transition to PS), we see that for t / 900 s the
average PS degree increases, until finally stabilizing. This means the first transition does not
have large intermittency, and the large standard deviation observed is due to the initial (though
long in experimental terms (≈ 900 s)) growth of R(t). The pairwise synchronization in this case
does not cease when R(t) stabilizes. For ǫ = 0.00206 (second transition to PS), we see a clear
intermittency in R(t), and also extremely frequent and large dips in R12(t). This also happens
for ǫ = 0.0013 (not shown), which corresponds to the transition from the local maximum to
desynchronization.

We can also see here that the temporal scale is important: for short timescales, one
could fail to observe the intermittencies, and conclude no metastability is present (for either the
topological macro or micro levels), and only observe the metastability for larger timescales.

To corroborate and better characterize the observations regarding the previous time
series, we now analyze their distributions. The first row of Fig 9.3 contains the histograms
of R(t), shown in Fig 9.2, with the y-axis in logarithmic scale. For ǫ = 0.000703 there is a
distribution around R = 0.5, corresponding to the initial growth of R(t), and the peak around
R = 0.7 corresponds to the final state, which stabilizes around that value, still with a relatively
large dispersion. Comparing ǫ = 0.00085 and ǫ = 0.008, we see that the latter has a higher
average and a smaller dispersion around it. ǫ = 0.00206 has a large dispersion, consistent with
the large intermittency in R. In the second row, the average of the histogram of Ri j(t) over all
pairs is shown in the solid brown line, with the standard deviation over them shown also above
and below. Again, we see the pairs spend a lot of time synchronized, but also a significant amount
of time desynchronized for all coupling strengths, and the more synchronized the whole network
is the more time the pairs spend synchronized. Specifically comparing ǫ = 0.00085 to ǫ = 0.008,
we again see that the former has more large dips (number of bins with Ri j / 0.75 is bigger), but
has less small dips.

In Fig 9.2 we see that R12(t) has a laminar period, close to 1, with several dips, escaping
this period. To further characterize this intermittency, we calculate the distribution of durations τ
in the laminar period, defined as the region above a threshold Ri j,th. In Fig 9.4 we show these
distributions for thresholds 0.9, 0.95, 0.99, 0.999 for the same coupling strengths analyzed in the
previous two figures. In all cases, we see that higher thresholds lead to shorter laminar periods:
they start with higher values at small τ and decay faster for greater τ. Also, the profile of the
decay changes: for Ri j,th = {0.9, 0.95}, the distribution follows a power-law (line in a log× log),
while for Ri j,th the distribution is more similar to an exponential (line in a log×linear plot, not
shown). Also, we see that ǫ = 0.008 has the maximum laminar period duration for smaller
threshold Ri j,th = 0.9, but loses to the first maximum (ǫ = 0.00085) for the higher thresholds
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Figure 9.2: Representative time series for network and pairwise synchronizations in T = 38 ◦C. The first row
contains the time series of the network’s degree of phase synchronization R(t), and the second row contains the
degree of phase synchronization for the neuron pair (1, 2). Simulations in these specific cases were run from t = 300 s
to t = 3500 s. This figure illustrates how different scales and levels of analysis can lead to different conclusions
regarding metastability.

Ri j,th = 0.95, 0.99, 0.999. This again shows that the former has frequent small dips, while the
latter has rare big dips in Ri j(t).

Figure 9.4: Distributions of duration in the laminar period of Ri j . For each pair (i, j), the laminar period is
defined as the region above a threshold Ri j,th. Results shown are an average of the histogram of the laminar period
duration τ taken over all pairs, with the standard deviation in the filled area for the four thresholds 0.9, 0.95, 0.99, 0.999
(blue, orange, green, red lines, respectively) and for coupling strengths ǫ = 0.000703 (first transition to phase
synchronization), ǫ = 0.00085 (local maximum), ǫ = 0.00206 (second transition to PS) and ǫ = 0.008 (strong
coupling). Both axis are in logarithmic scale. Higher thresholds are seen to lead to shorter laminar periods, and we
again see that strong coupling has frequent, small dips, while the local maximum has rare, large dips.
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Figure 9.3: Distributions of R(t) and Ri j(t) for T = 38 ◦C. First row depicts the histogram of R(t) and the second
depicts the histogram of Ri j(t) average over all pairs, with the standard deviation shown in the filled areas. These are
performed for ǫ = 0.000703 (first transition to phase synchronization), ǫ = 0.00085 (local maximum), ǫ = 0.00206
(second transition to PS) and ǫ = 0.008 (strong coupling). This figure corroborates the analysis in Fig 9.2.
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Part III

Summary, Conclusions and Future

Perspectives
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This dissertation has aimed to study the phase synchronization properties of a simple
network of bursting neurons coupled with a random topology, and use it as an example to illustrate
points regarding the study of metastability. This network has several simplifications compared
to real biological networks, such as identical neurons, few connections, and no noise. This is
important here, as we can isolate important behaviors of the network to specific origins. In
this case, we see that promiscuity, which we relate to metastability, arises from a dynamical
heterogeneity in the model, not from other sources like noise or differing parameters. This
heterogeneity is captured by the firing variabilities that we measure.

First, by changing the neurons’ temperature, we were able to do the study for three
different uncoupled bursting modes: chaotic bursts and periodic bursts (with two and one
inter-burst intervals IBIs). We have seen that each mode leads to different transitions to phase
synchronization (PS) due to an increase in the coupling strength: a monotonic transition, common
in the literature, and two nonmonotonic transitions, with a region of high PS for weak coupling, a
subsequent desynchronization and later resynchronization.

We have also studied two types of variability in the neuronal firing: average over neurons
of their individual dispersion of IBIs in time (temporal variability) and average over time of
the dispersion of IBIs in the network for each bursting event (ensemble variability). The two
measures quantify different behaviors, but in all cases they have the same value, likely due to the
system being ergodic.

For relatively weak coupling, there is a strong correlation between the degree of PS
and the variabilities, as we have shown that in this region the neurons’ dynamics is largely
influenced by their uncoupled dynamics: uncoupled chaotic neurons have higher variability,
which remains high when they are uncoupled, and can be interpreted as hindering the PS of the
network; uncoupled periodic neurons have very low variability, which increases due to coupling
(they become chaotic) but not as much, so PS is not as hindered and the network synchronizes to
a higher degree. Though very tentative, we remark that the relation between variability and phase
synchronization in this case was only shown to be correlative, not causal. Other results, even for
other models, have established the causal relation for some cases, but are not shown here. The
influence of the uncoupled dynamics was further seen in the IBI bifurcation diagram and in the
return maps of the IBIs. For stronger coupling, we have seen that the dynamics becomes similar
in all cases, as the impact of the coupling current increases, the neurons become more chaotic
(more irregular) and the phase synchronization properties become more similar. In all cases,
the ensemble variability has very similar values to the temporal variability. This seems to be a
reflection of the neurons being identical: in other results, not shown here, where neurons were
made non-identical, variabilities are different between themselves.

The ensemble variability predicts a behavior we have called promiscuity: the intermittent
changes in the neurons’ phase differences. By measuring the average drift of burst times, we
confirmed this behavior. We have further characterized it through an analysis of clustering of the
neurons’ phases. This provided further details about the PS of the networks, and also allowed us
to observe promiscuity in the changes of the clusters’ composition in time. With this, we have
seen that strong coupling is able to bring neurons’ phases close, but unable to maintain their
phase relations fixed. This is not the standard behavior observed for networks, where usually
stronger coupling leads to phase locking (Cabral et al., 2011).

We have also discussed metastability in neuroscience, a highly studied phenomenon
due to its putative importance to brain functioning. We provided a mini-review of the different
definitions in the literature, and discussed them, in a first step to unifying the term’s definition.
Possible mechanisms leading to metastable behavior were also reviewed and categorized. We
also exemplified how the specific definitions or quantifiers of metastability can depend on the
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scales of activity being studied or analyzed. We illustrated this in our promiscuous network,
where we studied metastability, for a specific definition, on different scales. Using the insights
gained from the study of promiscuity, which can be regarded as a type of metastable behavior,
we explored how quantifiers for metastability can differ on the different scales.

With these studies, we can also point out that metastability in this system seems to
occur due to a dynamical (not parametrical) heterogeneity between neurons, captured by the
ensemble and temporal variabilities. The dynamical heterogeneity here arises from the neuron’s
complex dynamics in phase-space and also in part due to their differing in-degrees (though it
can be observed in regular networks). This is a counter-example of an idea in the literature that
metastability arises from broken symmetry in the form of unidentical oscillators (Tognoli and
Kelso, 2014; Bressler and Kelso, 2016).

With these studies, we therefore managed to characterize in detail the behavior of the
network. We also hope to have provided a first step toward unifying the definitions of metastability
in the literature, and identifying the mechanisms in the brain generating the observed metastable
behavior. For the future, we intend on suggesting a general encompassing definition of
metastability and, with this, on exploring the consequences of the different mechanisms for
metastability to a system’s behavior, and how they would reflect in experimental data. We can
then look at experimental data and simulated data from biologically realistic models to study
their metastable behavior at different scales. These works, stemming from this dissertation, can
potentially have a significant positive impact in the field of neuroscience.
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