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RESUMO

O mirtileiro é uma espécie frutífera perene e seus frutos apresentam 
propriedades antioxidantes e anti-inflamatórias. É convencionalmente propagado 
vegetativamente, o que pode trazer muitos problemas fitossanitários. Uma 
alternativa seria o uso da propagação in vitro. Há muitos estudos em propagação e 
regeneração in vitro em espécies de mirtileiro, entretanto, a maioria está 
concentrada nas cultivares highbush e lowbush, e pouco nas cultivares rabbiteye, 
mais adaptadas ao clima subtropical. Portanto, há a necessidade de se pesquisar 
protocolos in vitro para este grupo de cultivares. O objetivo desta pesquisa foi 
estudar vários aspectos da micropropagação e da organogênese de novo de brotos 
in vitro na cultivar ‘Delite’ do grupo rabbiteye de mirtilo. Nossos estudos foram 
organizados em três capítulos (i, ii e iii). Em cada um destes capítulos nosso objetivo 
foi: i) definir um protocolo de estabelecimento in vitro; ii) otim izar um protocolo de 
micropropagação, definindo os estágios de estabelecimento, multiplicação e 
enraizamento; iii) aperfeiçoar um método de regeneração adventícia de brotos in 
vitro e estudar o processo de desenvolvimento destes brotos. De acordo com os 
nossos resultados: i) no estabelecimento in vitro os tratamentos com zeatina foram 
superiores nas menores concentrações testadas (2,5 ^M); não houve diferenças nas 
combinações de sais com o meio WPM (Woody Plant Medium) modificado; e no 
meio WPM original, um aumento ou diminuição nas concentrações de NH4 NO3 e 
Ca(NO3)2 não levou ao aumento da eficiência no estabelecimento, e, em alguns 
casos, houve uma menor taxa de sobrevivência, formação de brotos, ou tamanho 
dos brotos; ii) na micropropagação, o estabelecimento com imersão em hipoclorito 
de sódio por 5 min foi eficiente (96.7% explantes não contaminados) e o meio WPM 
com 2,5 ^M zeatina levou a uma taxa de 84.5% explantes com indução de brotação; 
a multiplicação com 2,5 ^M zeatina levou a uma taxa de 70% dos explantes 
proliferando novos brotos, e a posição dos explantes na vertical teve 100% de 
sobrevivência e 100% dos explantes proliferando novos brotos); o enraizamento in 
vitro com 500 mg L-1 IBA (ácido indolbutírico) levou a 100% sobrevivência e 100% de 
manutenção das folhas, com 37,5% de enraizamento; ou ainda, o enraizamento ex 
vitro em vermiculita com sais minerais do meio WPM, alcançando 88% de 
sobrevivência dos explantes, 86% dos explantes com a manutenção das folhas, 50% 
de indução de brotações e 68% de enraizamento. iii) uma alta taxa de regeneração 
(100% dos explantes, com 57 brotos/explante) no tratamento 0,5 ^M TDZ 
(thidiazuron); o uso da superfície adaxial do explante foliar em contato com o meio, 
com porções basal ou apical, mostrou boa regeneração (97%) e maior número de 
brotos/explante (47.5). Foi observada a organogênese direta e indireta, com novos 
brotos formando primórdios foliares com tecidos bem desenvolvidos, observados em 
microscopia óptica e eletrônica de varredura. Em conclusão, este estudo define um 
protocolo de micropropagação in vitro e regeneração adventícia de brotos em 
mirtileiro ‘Delite’ do grupo rabbiteye. Além disso, estes estudos podem ser usados 
para futuras pesquisas de cultura de tecidos in vitro, biotecnologia, conservação de 
germoplasma e micropropagação mirtileiro.

Palavras-chave: Ericaceae. Vaccinium virgatum. Micropropagação. Microscopia 
Eletrônica de Varredura. Microscopia Óptica.



ABSTRACT

Blueberry is a perennial fruit crop with antioxidant and anti-inflammatory 
benefits, being recognized as a nutraceutical product. It is mainly vegetatively 
propagated, which can lead to phytosanitary issues. Therefore, an alternative method 
for traditional clonal propagation is in vitro culture. Although we found research on in 
vitro tissue culture in blueberry, most of this research focuses on highbush and 
lowbush groups. There are few works with rabbiteye cultivars, which are more 
suitable for subtropical climates. Therefore, there is a need to research in vitro 
protocols for this group of cultivars. The objective of this research was to study 
various aspects of micropropagation and de novo shoot organogenesis in vitro for 
‘Delite’ rabbiteye blueberry. Our studies were organized into three distinct chapters (i, 
ii, and iii). In each of these chapters, we aimed to: i) develop an in vitro establishment 
protocol; ii) optimize a micropropagation protocol, defining the establishment, 
multiplication, and rooting stages; iii) improve an adventitious shoot regeneration 
method and study the development process of these de novo shoots formed. 
According to the results: i) at in vitro establishment, zeatin was superior at the lowest 
(2.5 ^M) concentration tested. In the combinations of salts with modified WPM 
(Woody Plant Medium) culture medium, no differences were reported. And an 
increase or decrease in NH4NO3 and Ca(NO3)2 concentration in WPM did not 
improve the establishment efficiency, and, in some treatments, led to lower survival 
and shoot formation rates compared to the original WPM. ii) optimizing the 
micropropagation, the establishment with 5 min immersion in sodium hypochlorite 
revealed a good rate of uncontaminated explants (96.7%) and survival rate of the 
explants (96.7%), and WPM medium with 2.5 ^M zeatin led to high rates of survival 
(92.3%) and explants with axillary shoot growth (84.5%). Multiplication in the 
presence of 2.5 ^M zeatin led to a high percentage of explants proliferating new 
shoots (70%), and explants in the vertical orientation were efficient (100% survival, 
100% explants with shoot proliferation, 1.8 new shoots formed/explant, with 5.1 cm 
and with 12.7 leaves/shoot). In vitro rooting with 500 mg L-1 IBA (indole-3-butyric 
acid) (100% survival and leaf maintenance, and 37.5% rooting), or ex vitro rooting in 
vermiculite with WPM (88% survival, 86% leaf maintenance, 50% bud induction, and 
68% rooting) were the most efficient treatments. iii) A high rate of explants 
regenerating shoots (100%) was achieved at 0.5 ^M TDZ (thidiazuron), with 57 new 
shoots formed/explant. The use of adaxial surface touching the medium with apical 
or basal portion of the leaf showed good regeneration rates (97% explants 
regenerating shoots) and a high number of shoots formed (47.5 shoots/explant). 
Direct and indirect organogenesis were observed, and new shoots forming leaf 
primordia with well-developed tissues were described in light and scanning electron 
microscopy. In conclusion, this study defines protocols of micropropagation and in 
vitro adventitious shoot regeneration in ‘Delite’ rabbiteye blueberry. Beyond that, 
these findings can be used in further in vitro studies, as well as to improve 
biotechnological applications, germplasm conservation, and micropropagation in 
blueberry.

Keywords: Ericaceae. Vaccinium virgatum. Micropropagation. Scanning Electron 
Microscopy (SEM). Light Microscopy.
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1 GENERAL INTRODUCTION

Blueberry is a woody perennial species of the family Ericaceae and the 

genus Vaccinium. This genus is composed by shrubs or small trees, including 

cranberries, lingonberries and bilberries (VANDER KLOET, 1988). The fruit is a true 

berry, with light blue to black color and numerous seeds (RETAMALES; HANCOCK, 

2012).

Blueberries have high nutraceutical benefits, with antioxidant and anti

inflammatory properties (MICHALSKA; LYSIAK, 2015). They are rich in polyphenol 

compounds that have been shown to induce neurogenesis in adults (POULOSE et 

al., 2017) and showed to modulate the balances of pro-inflammatory cytokinins 

(CHENG et al., 2014). Blueberry fruits contain anthocyanidins in high concentrations: 

cyanidin, delphinidin, malvidin, peonidin, and petunidin (ROUTRAY; ORSAT, 2011; 

AQIL et al., 2014), with health benefits and effects against a diversity of chronic 

diseases —  cancer, diabetes, neurodegenerative and cardiovascular disorders 

(ROUTRAY; ORSAT, 2011). It was shown the chemo-preventive and therapeutic 

potential of blueberry in breast cancer (JEYABALAN et al., 2014) and potential 

preventing Alzheimer's disease, showing a neuroprotective activity (BUSINARO et 

al., 2018). Some findings show that the consumption of blueberry by older adults can 

improve some aspects of cognition and can be a strategy for combating the age- 

related neurodegenerative process (MILLER et al., 2018).

Because of the high concentrations of many beneficial bioactive compounds 

and to the attractiveness of their rich flavor and texture, blueberries have been 

gaining attention from consumers. Then the production has been facing an increase, 

offering fresh fruits as much as processed products, including juices, and frozen and 

dried products (MICHALSKA; LYSIAK, 2015). The production of this crop is 

increasing worldwide, including South American countries (RETAMALES, 2011; 

RETAMALES et al., 2015).

Blueberries have become a major crop worldwide (STRIK; YARBOROUGH, 

2005) with and increasing production over the last two decades, achieving 545,000 

tons in 2014 (IIZUKA; GEBREEYESUS, 2017). The production and commerce have 

expanded widely in the last 20 years through different regions and a diversity of 

environments. The most cultivated species are Vaccinium corymbosum  L. 

(highbush), Vaccinium angustifolium  Ait. (lowbush), and Vaccinium virgatum  (syn.
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Vaccinium ashei Reade) (rabbiteye). Highbush cultivars are subdivided in northern, 

southern or intermediate types, according to their chilling requirement and w inter cold 

hardiness (RETAMALES; HANCOCK, 2012). Rabbiteye cultivars are the least 

demanding in chilling hours for normal floral development and their floral buds do not 

tolerate temperatures much below freezing (RETAMALES; HANCOCK, 2012). These 

cultivars represent a possibility of expanding the production beyond the traditional 

producing regions and are already being produced in many countries with subtropical 

climates, since they need low chilling hours to develop and produce appropriately 

(FACHINELLO, 2008; MEDEIROS et al., 2017; SCHUCH; TOMAZ, 2019).

Blueberry production was originally concentrated in Northern Hemisphere 

regions, mainly the USA, Canada and European countries. But because of the great 

increase in demand and the high nutritional fruit quality, many countries are now 

producing it, such as Australia, New Zealand, China, Japan and South America 

countries (RETAMALES; HANCOCK, 2012). Chile, Argentina and Uruguay are the 

main producers in South America. Brazil first cultivated blueberries in the 1990’s, with 

an estimated area of 400 ha in 2014. Mainly in the Southern and Southeastern 

regions, some cultivars with low chilling requirements (150 a 400 h) can be 

cultivated. Most of the cultivated blueberries in Brazil are rabbiteye and recently 

some southern highbush cultivars (CANTUARIAS-AVILÉS et al., 2014). The ‘Delite’ 

rabbiteye cultivar was among the first rabbiteye cultivars introduced in Brazil 

(BANADOS, 2006). In a study comparing ten cultivars (eight rabbiteye and two 

highbush) under humid subtropical conditions in Southern Brazil (Cerro Azul/Paraná), 

the authors found that the highest fruit set, with best productive performance was 

observed in Bluegem, Climax, Delite, and Powderblue (MEDEIROS et al., 2018). In 

another research in a mild w inter region in Southern Brazil (Pinhais/Paraná), 

comparing ten cultivars, the authors described that the same four rabbiteye cultivars 

above mentioned showed the highest productivity (MEDEIROS et al., 2017).

Besides local market, blueberries grown in Brazil can reach international 

markets, since its production is concentrated in the off season of the countries of the 

Northern hemisphere (COUTINHO et al., 2007).

Traditionally, blueberries can be propagated by softwood, semihardwood, 

hardwood (MARINO et al., 2014a), and rhizome cuttings (DEBNATH, 2009b). 

However, these propagation methods in general have low rooting rates and a long 

duration of the whole process (MEINERS; SCHWAB; SZANKOWSKI, 2007; MARINO
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et al., 2014a), besides many phytosanitary problems. Micropropagation can be 

presented as a faster growing alternative (DEBNATH, 2017), throughout the year and 

with higher phytosanitary quality (GOYALI; IGAMBERDIEV; DEBNATH, 2015b). In 

vitro culture techniques, furthermore, are important for their diversity of applications, 

such as clonal mass propagation, cryopreservation, germplasm conservation, and 

other biotechnological researches. The use of these techniques is dependent on the 

efficiency of the whole process.

In vitro blueberry research has focused more on the highbush and lowbush 

cultivars of Vaccinium  (BRISSETTE; TREMBLAY; LORD, 1990; ABDELNOUR- 

ESQUIVEL, 1991; ISUTSA; PRITTS; MUDGE, 1994; NOE; BONINI, 1996; CAO; 

HAMMERSCHLAG; DOUGLASS, 2002; CAO et al., 2003; LITWINCZUK; 

SZCZERBA; WRONA, 2005; CAPPELLETTI; DEBNATH, 2007, 2009a, 2009b, 2011, 

2017; MEINERS; SCHWAB; SZANKOWSKI, 2007; LITWINCZUK; WADAS, 2008; 

TETSUMURA et al., 2008; LIU et al., 2010; REED; RUZIC et al., 2012; HINE- 

GOMEZ; ABDELNOUR-ESQUIVEL, 2013; IGAMBERDIEV; DEBNATH, 2013, 2015a, 

2015b; MARINO et al., 2014b; PIZZOLATO et al., 2014; CAPPELLETTI; 

SABBADINI; MEZZETTI, 2016; HUNG et al., 2016b; MEZZETTI, 2016; FAN et al., 

2017; GAO et al., 2018; GHOSH; IGAMBERDIEV; DEBNATH, 2018; QIU et al., 

2018; GOYALI; GUO et al., 2019; SANTIAGO; SMAGULA, 2013; BERAUD; ULLOA, 

2015; WELANDER et al., 2017; WANG et al., 2019). However, these in vitro 

protocols are specific to the genotype studied (CAPPELLETTI; SABBADINI; 

MEZZETTI, 2016). Only few researches in V. virgatum  (rabbiteye cultivars, more 

adapted to warm winter regions, such as Brazilian Southern regions) have been 

reported, and not including all the steps of in vitro propagation and regeneration, 

usually referring to one of the stages only (ERIG; SCHUCH, 2005; SILVA et al., 

2006, 2008; DAMIANI; SCHUCH et al., 2008; SCHUCH, 2008, 2009; SOUZA et al., 

2011; PELIZZA et al., 2012; FARIAS et al., 2014; HUNG et al., 2016a; FAN et al., 

2017; QIU et al., 2018; SCHUCHOVSKI; BIASI, 2019). Therefore, there is a need to 

increase the research on in vitro protocols for this specific group of cultivars.

The main objective of this research was to develop efficient micropropagation 

and in vitro de novo shoot organogenesis protocols for ‘Delite’ rabbiteye blueberry. 

The whole research was divided in three chapters, with specific objectives: i) to 

define a suitable establishment protocol in vitro with different concentrations of 

different growth regulators and balances of nitrogen salts in two different culture
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media; ii) to optimize a micropropagation protocol, developing an efficient surface 

sterilization for in vitro establishment, testing the initial culture with different 

concentrations of zeatin and 2iP, the multiplication stage with different zeatin 

concentrations and different orientations of the explant in the medium, and finally, 

test in vitro and ex vitro rooting, with IBA concentrations and different substrates and 

mineral salts; iii) to define an adventitious shoot organogenesis protocol from leaf 

explants, testing TDZ concentrations, explant orientations and explant portions and 

developing morphoanatomical studies in in vitro organogenesis.
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2 CHAPTER I
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ABSTRACT

Abstract: Micropropagation is an important technique for clonal mass propagation 

and a tool for in vitro studies. One of the first steps to overcome in this process is the 

establishment of new explants in vitro. ‘Delite’ rabbiteye blueberry was cultured in 

vitro with four cytokinins (zeatin (ZEA), 6-(y-y-dimethylallylamino)-purine (2iP), 6- 

benzylaminopurine (BAP), and kinetin (KIN)) at eight concentrations (0, 2.5, 5, 10, 

20, 30, 40, and 50 ^M). Additionally, nine combinations of nitrogen salts were tested, 

using Woody Plant Medium (WPM) and a modified WPM as the basic medium. ZEA 

and 2iP showed better responses, but ZEA was superior at lower (2.5 ^M) 

concentrations (89.7% survival, 81.3% shoot formation, 1.3 shoots, 13.8 mm shoot 

length, 10.0 leaves). BAP and KIN showed very low responses. In the combinations 

of salts with modified WPM, no differences were observed. However, the original 

WPM with treatments of 0.5 x NH4 NO3 and 1 x Ca(NO3)2, 0.5 x NH4 NO3 and 0.5 x 

Ca(NO3)2, and the modified WPM alone showed the lowest rates of survival and 

shoot formation and the shortest shoot lengths. The highest shoot lengths were 

observed in treatments with the original WPM, 1.5 x NH4 NO3 and 0.5 x Ca(NO3)2 ,

1 This manuscript is published at the journal Horticulturae. 2019; 5(1):24
Special issue “Innovation in Propagation of Fruit, Vegetable and Ornamental Plants”.
Available at: https://doi.org/10.3390/horticulturae5010024

mailto:carolina.sschu@gmail.com
mailto:biasi@ufpr.br
mailto:biasi@ufpr.br
https://doi.org/10.3390/horticulturae5010024
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and 1.5 x NH4NO3 and 1.5 x Ca(NO3)2 . This initial study with ‘Delite’ can be the basis 

for further experiments with different combinations of salts, 2iP, and ZEA.

KEYWORDS

Ericaceae ; Vaccinium virgatum ; micropropagation; in vitro culture; cytokinins; zeatin; 

2iP; BAP; kinetin; WPM.

ABBREVIATIONS

BAP, 6-Benzylaminopurine; CV, coefficient of variation; DF, degrees of freedom; KIN, 

kinetin: 6-furfurylaminopurine; MS, mean squares; SS, sum of squares; WPM, Woody 

Plant Medium; ZEA, zeatin: 6-(4-Hydroxy-3-methylbut-2-enylamino)purine; 2iP, 6-(g- 

g -dimethylallylamino)-purine.

INTRODUCTION

Blueberry is a woody perennial species in the family Ericaceae and genus 

Vaccinium. The fruit is a true berry with many seeds, with color ranging from light 

blue to black and a waxy cuticle layer [1]. Blueberry has been gaining great 

importance in fruit production, especially because of its recognized taste properties 

and its nutraceutical qualities as an anti-inflammatory and anti-oxidant, being a health 

promoting food [2]. Blueberry fruits are rich in polyphenols [3]. These blueberry 

polyphenols show anti-inflammation activity, related to the balances in pro- 

inflammatory cytokines, and they could be used as anti-inflammatory medicine [4]. 

Among these phenolic compounds that appear at high levels in blueberries are 

anthocyanins [5], flavonols, and phenolic acids [6]. The anthocyanin found in high 

amounts in blueberries contributes to preventing several chronic diseases, such as 

neurodegenerative diseases, cardiovascular disorders, cancer, and diabetes [7].

Much research has been developed related to the propagation of blueberries. 

Traditionally, blueberry is propagated by softwood, semi-hardwood, and hardwood 

cuttings [8] or even rhizome cuttings of selected clones [6]. Some challenges in this 

production are a very low rooting percentage in many genotypes, the amount of time 

required to propagate and commercialize newly released cultivars for mass
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propagation [8,9] and phytosanitary problems. In vitro culture (micropropagation) can 

overcome the limitations of traditional cutting, presenting an alternative for faster 

growth [10 ] throughout the year (with no seasonal effects) without pathogens [1 1 ]. 

There are some studies on the in vitro propagation of Vaccinium  species, but only 

some research has been done in V. virgatum  Ait. (syn. V. ashei Reade), specifically 

for the ‘Delite’ rabbiteye cultivar that is suitable for and adapted to regions of 

southern Brazil. In this specific cultivar, some research concerning in vitro protocol is 

still required to give more information on the optimal conditions for the development 

of this technique.

One crucial point in tissue culture techniques is the appropriate use, type and 

concentration of growth regulators and the combination of culture medium salts that 

would allow fast, efficient development of the initial explants. Understanding the 

interference of factors can lead to the development of further regeneration protocols 

that could be useful either for micropropagation or for developing regeneration 

techniques necessary for plant recovery after cell transformation. There is some 

research showing that the lack of new shoot growth can make initiation the limiting 

step in establishing Vaccinium  cultures in vitro [12]. Studies also show that in vitro 

new growth is difficult to achieve in Vaccinium , especially when using plant material 

from the field [13].

For the initial phase of in vitro culture, usually a combination of cytokinins can 

be used. In the initial in vitro culture, for nodal segments from softwood cuttings in 

‘Ozarkblue’ blueberry (V. corymbosum), ZEA and 2iP were tested in the initial culture 

medium in different combinations (18 ^M of ZEA, 25 ^M of 2-iP, and 9.1 ^M ZEA 

combined with 25 ^M 2iP) using WPM as the basal medium. On medium with ZEA 

present, shoots developed with green and red leaves. However, on medium 

containing only 2iP, shoots had light red leaves and callus at the base with stunted 

growth [9].

In lowbush blueberry (V. angustifolium  Ait.) cultivated in the initiation phase 

medium containing 5 ^M ZEA or 10 ^M 2iP, the explants produced elongated shoots 

with both growth regulators. However, ZEA treatments showed a higher percentage 

of new shoot growth compared to 2iP in all three cultivars [6].

Wild bilberry (V. myrtillus L.) and lingonberry (V. vitis-idaea L.) were tested 

using buds and shoot tips on a modified MS medium supplemented with 2iP 

variations from 9.8 to 78.4 ^M. For bilberry, the best results were with 49.2 ^M and
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for lingonberry, 24.6 ^M. More brownish explants were observed with increasing 2iP 

concentration [13]. In ‘Berkeley’, ‘Bluecrop’ and ‘Earliblue’, highbush blueberry (V. 

corymbosum) and ‘O ’Neal’ southern highbush blueberry, medium containing 20 ^M 

ZEA was used in initiation of cultures [14].

Concerning the type of basal culture medium, many researchers have been 

using WPM as the basic medium for blueberry [14]. However, some authors tried to 

optimize this medium by doing some modifications, such as combining MS and WPM 

media, creating an MW medium [14], or by proposing some changes in the 

components [15], leading to a modified WPM. A well-balanced medium is important 

to prevent stunted growth and physiological disorders [16]. Some authors discuss the 

importance of the balance between nitrogen forms used in tissue culture (NO3- and 

NH4+) as much as the total amount of nitrogen in the culture medium [17].

The objective of this work was to determine an efficient growth regulator and 

balance of nitrogen salts for the establishment of ‘Delite’ microcuttings in in vitro 

culture.

MATERIALS AND METHODS

In this work, three experiments in initial in vitro culture were designed. In the 

first one, four different cytokinins (ZEA, 2iP, BAP and KIN) were tested in eight 

different concentrations. The second experiment tested nine different combinations of 

nitrogen salts: (NH4 )2SO4 , KNO3 and Ca(NO3)2 .4 H2O using the modified WPM [15] as 

the basic medium. The third experiment tested nine different combinations of two 

nitrogen salts, NH4 NO3 and Ca(NO3)2 .4 H2O, using the original WPM [18] as the basic 

medium and compared with treatment 10 (modified Woody Plant Medium [15]).

P lant m ateria l

One-year-old hardwood cuttings were collected during winter from field- 

grown rabbiteye blueberry ‘Delite’ (V. virgatum) mother plants at the Experimental 

Station of Universidade Federal do Paraná, Pinhais/PR. They were treated with an 

immersion in fungicide solution for 5 minutes (Cercobin® 0.2%) and stored at 4°C 

temperature at the Micropropagation Laboratory -  UFPR, Curitiba/PR for 1-2 months 

in plastic bags. Cuttings were placed in glass containers with water in the culture
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room at 25°C ± 2°C under cool day light at 40 ^mol m-2 s-1 with a 16-hour 

photoperiod. Newly formed shoots were collected and used as explants for the 

establishment of cultures.

Two-node segments (0.8 - 2 cm in length, discarded the apical portion of the 

donor-explant) were collected and surface sterilized with 70% (v/v) ethanol for 30 s, 

followed by immersion in 0.5% sodium hypochlorite solution containing 0.1% (v/v) 

Tween 20 for 5 minutes. They were washed with sterile deionized water three times 

inside the laminar flow chamber.

C u ltu re  m edium  and g row ing  con d itio n s

Explants were isolated in culture tubes (150 x 30 mm) each containing 6 ml 

of modified culture medium, differing in each of the three experiments. In all 

experiments, the medium was supplemented with Murashige and Skoog (MS) [19] 

vitamins, 30 g L-1 sucrose, 0.1 g L-1 myo-inositol and 6 g L-1 agar (Vetec®). The pH of 

all media was adjusted to 5.2 before autoclaving at 120°C and 1.5 atm.

E xperim ent 1: C y tok in ins

Microcuttings were isolated in the modified Woody Plant Medium (modified 

WPM) [2] (Table 1), supplemented as described above. Eight different concentrations 

(0, 2.5, 5, 10, 20, 30, 40 and 50 ^M) of each of four cytokinin growth regulators, ZEA, 

2iP, BAP, and KIN, were tested, for a total of 32 treatments. ZEA and 2iP, when 

used, were sterilized through 0.22 ^m filters and added to the cooled media. BAP 

and KIN were added to media before autoclaving.
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Table 1. Modified Woody Plant Medium (modified WPM) [15] and original Woody Plant Medium 

(original WPM) [18] culture medium compositions.

Components Modified WPM Original WPM

Macronutrients Final concentration in the culture medium (mg L-1)

(NH4)2SO4 119.00

NH4 NO3 400.00

KNO3 893.00

K2SO4 990.00

KH2PO4 170.00 170.00

Ca(NO3)2 .4H2O 278.00 556.00

CaCl2 .2H2O 96.00

MgSO4 .7H2O 370.00 370.00

Micronutrients

FeSO4 .7H2O 55.60 27.80

Na2-EDTA 74.60 37.30

H3BO3 6.20 6.20

MnSO4 .H2O 22.30 22.30

ZnSO4 .7H2O 8.60 8.60

KI 0.415

Na2MoO4 .2H2O 0.25 0.25

CuSO4 .5H2O 0.025 0.25

E xperim ent 2: C om b ina tions o f (NH4)2SO4, KNO3 and Ca(NO3)2.4H2O us ing  the 

m od ified  WPM [15] as the bas ic  m edium

Explants were isolated using nine different treatments as described in Table 

2, with different amounts (1x, 0.5x or 1.5x) of (NH4 )2SO4 , KNO3 and Ca(NO3)2 .4H2O 

(Table 2), using the modified Woody Plant Medium (modified WPM) [2] (Table 1) as 

the basic medium. Media were supplemented as described above with the addition of 

cytokinin ZEA (5 ^M).
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Table 2. Experiment 2 with treatments 1 to 9 on the modified Woody Plant Medium (modified WPM) 

[15] with different amounts of (NH4)2SO4 (x), KNO3 and Ca(NO3)2.4H2O (x)..

Treatments

1

(mod.

WPM)

2 3 4 5 6 7 8 9

NH4 :

(NH4)2SO4

1x 1x 1x 0.5x 0.5x 0.5x 1.5x 1.5x 1.5x

NO3 :

KNO3 and Ca(NO3)2 .4H2O
1x 0.5x 1.5x 1x 0.5x 1.5x 1x 0.5x 1.5x

Components Final concentration in the culture medium (mg L-1)

(NH4 )2SO4 119.0 119.0 119.0 59.5 59.5 59.5 178.5 178.5 178.5

KNO3 893.0 446.5 1,339.5 893.0 446.5 1,339.5 893.0 446.5 1,339.5

Ca(NO3)2 .4H2O 278.0 139.0 417.0 278.0 139.0 417.0 278.0 139.0 417.0

E xperim ent 3: C om b ina tions  o f NH4 NO3 and Ca(NO3)2 .4H2O using  the o rig ina l 

WPM [18] as the  bas ic  m edium

In this third experiment, explants were isolated in 10 different treatments 

described in Table 3. Nine treatments were used with different amounts (1x, 0.5x or

1.5x) of NH4NO3 and Ca(NO3)2 .4H2O, using the original WPM [18] as the basic 

medium, and one treatment used the modified WPM [15] (Table 1). Media were 

supplemented as described above with the addition of cytokinin ZEA (5 ^M).

Table 3. Experiment 3 with 10 treatments. Treatments 1 to 9 with the original Woody Plant Medium 

(WPM) [18] with different amounts of NH4 NO3 (x) and Ca(NO3 )2 .4H2O (x) and treatment 10 with the 

modified Woody Plant Medium [15] .

1 10

Treatments (orig. 2 3 4 5 6 7 8 9 (mod.

WPM) WPM)

NH4 NO3 (x) 1x 1x 1x 1.5x 1.5x 1.5x 0.5x 0.5x 0.5x

Ca(NO3)2.4H2O (x) 1x 0.5x 1.5x 1x 0.5x 1.5x 1x 0.5x 1.5x

Components Final concentration in the culture medium (mg L-1)

NH4 NO3 400.0 400.0 400.0 600.0 600.0 600.0 200.0 200.0 200.0

Ca(NO3)2 .4H2O 556.0 278.0 834.0 556.0 278.0 834.0 556.0 278.0 834.0 278.0
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G row ing  co n d itio n s

After isolation, cultures were transferred to a culture room and grown at 25°C 

± 2°C in the dark for eight initial days and then transferred to a 16-hour photoperiod 

with light intensity of 40 ^mol m-2 s-1 provided by cool-day fluorescent lamps.

Experim enta l design, data co lle c tion  and s ta tis tica l ana lys is

The experiments were conducted in a completely randomized design. In 

experiment 1, a two-factor experiment (4x8) design was used, with four different 

cytokinins (ZEA, 2iP, BAP and KIN) in eight different concentrations (0, 2.5, 5, 10, 20, 

30, 40 and 50 ^M). There were 32 treatments in total. Each treatment had four 

replicates of 10 tubes each (one plant per tube), e.g., 40 plants per treatment, 

resulting in a total of 1,280 plants.

In experiment 2, a completely randomized design was used, with nine 

treatments, according to Table 2. Each treatment had three replicates of seven tubes 

each (one plant per tube), e.g., 21 plants per treatment, resulting in 189 plants.

In experiment 3, a completely randomized design was used, with 10 

treatments (Table 3). Each treatment had four replicates of 10 tubes each (one plant 

per tube), e.g., 40 plants per treatment, in a total of 400 plants.

Plants were evaluated based on many aspects two months (Experiment 1) or 

three months (Experiments 2 and 3) after initial culture. Contaminated cultures were 

discarded and not included in the data analysis. Contamination rates ranged from 0 

to 7.5% in experiment 1. The final number of explants evaluated are presented at 

Table S1. In experiment 2, contamination rates ranged from 0 to 14%; and 0 to 35% 

in experiment 3. Survival rate (%) and new shoot growth (%) were recorded. The 

number of new shoots formed per explant was counted (n°), the length of the longest 

shoot (millimeters from base to shoot tip) was measured, and the number of leaves of 

the longest shoot was counted (n°). All the plants were evaluated and had the mean 

estimated from the plants in each replication, and subsequently, the mean of the 

three or four replications in each treatment.

In experiment 1, ANOVA, Tukey and regression analyses did not include 

values for the zero concentration treatments, since it was clear that zero 

concentration did not show any influence in the explant development and it is not a
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concentration that labs would apply in practice. In the zero concentrations there was 

no shoot formation in any of the explants evaluated. Since there was no shoot 

formation, there was no valid evaluation of number of shoots formed, length of shoot 

or number of leaves per shoot. Hence, 28 treatments were statistically analyzed 

using a two-factor experiment (4x7), with four different cytokinins (ZEA, 2iP, BAP and 

KIN) in seven different concentrations (2.5, 5, 10, 20, 30, 40 and 50 ^M). The results 

were first transformed to the square root scale and then two-way ANOVA was 

performed (Table S2) to detect any interaction between the two factors and to check 

for any statistically significant difference between treatments at levels 1 and 5%. In 

the case of interaction between factors, in the variable analyzed, two tests were 

performed. First, Tukey’s test (p < 0.05) was performed for each of the cytokinins 

with each of the concentrations. For factor 2 (different concentrations), regression 

analysis was performed for each cytokinin with the original data. The best-fitting 

regression model was obtained and the R2 value was recorded. In experiments 2 and 

3, original data were used, and one-way ANOVA was performed to check for any 

statistically significant difference between treatments (p < 0.01). Then, Scott-Knott’s 

test (p < 0.05) was performed. For these analyses, the software Assistat® was used.

RESULTS 

E xperim ent 1: C y tok in ins

In all the dependent variables analyzed (survival, shoot formation, number of 

shoots, length of shoot and number of leaves) there was a significant interaction (at 

least p < 0.01) between the two factors (growth regulator and concentrations) tested, 

indicating that their effects are not independent. In addition, there was a significant 

difference between the different kinds of cytokinin tested for all the variables 

evaluated. F values were significant (at least (p < 0.01)) concerning factor 1 (different 

cytokinins) and concerning the interaction of factor 1 (different cytokinins) with factor 

2 (different concentrations). Tukey’s test results are shown in Table 4. The overall 

development of the explants in different cytokinin concentrations can be observed in 

Figure 1. The use of kinetin in the culture medium did not lead to any response in 

new shoots formed.
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The e ffec ts  o f  c y to k in in s  on  s u rv iv a l

ZEA was superior to the other cytokinins in the concentrations of 2.5 and 5 

^M. In all concentrations, kinetin had the worst performance for survival rate. Finally, 

in the concentrations of 10 -  50 ^M, ZEA, 2iP and BAP had all the same effect on 

survival. The regression analyses can be observed in Figure 2.

The e ffec ts  o f  c y to k in in s  on  s h o o t fo rm a tion

Shoot formation from the initial explant was highly influenced by different 

cytokinins. According to the quadratic polynomial regression analysis in ZEA 

concentrations (Figure 2), the maximum shoot formation of 100% would be acquired 

at a concentration of 40.6 ^M.

The evaluation of different means can be observed in Table 4, where in 

almost all the concentrations tested (except 50 ^M), ZEA was superior to all the other 

treatments, varying from 81.3 to 100% shoot formation. At concentrations of 2.5 and 

5 ^M, 2iP, BAP and KIN did not show any response. 2iP showed responses from 10 

to 50 ^M only, presenting a rate varying from 30.6 to 95.0% in those concentrations. 

In concentrations of 10, 20, 30 and 40 ^M, 2iP was the second cytokinin to form 

shoots. At a concentration of 50 ^M, 2iP was equivalent to ZEA, and both were 

superior to BAP and KIN in this concentration. BAP did not show any response in the 

explants growing in the lowest concentrations of 2.5, 5, 10 and 20 ^M. The first 

response for BAP appeared only at the concentrations of 30, 40 and 50 ^M, showing 

a rate of shoot formation of only 5.0 to 7.8% of explants showing new shoot 

formation. BAP had lower shoot formation than ZEA and 2iP at all the concentrations 

tested.

The e ffec ts  o f  c y to k in in s  on  the n u m be r o f  sh o o ts  p e r  exp lan t

Regarding the number of new shoots formed and observing the regression 

analysis (Figure 2), we can observe that ZEA showed a linear equation and calculate 

that a concentration of 22.0 ^M would be required to reach 1.4 shoots per explant. In 

2iP behavior, the maximum point in the curve reached 1.4 shoots per explant, which 

would be acquired at the concentration of 37.37 ^M 2iP.
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At the concentrations of 2.5 and 5 ^M (Table 4), ZEA was superior to all the 

other cytokinins, showing 1.3 and 1.4 shoots per explant. At concentrations of 10, 20, 

30, 40 and 50 ^M, ZEA and 2iP had the same performance and were superior to 

BAP and kinetin. BAP only showed some shoot formation at concentrations of 30, 40 

and 50 ^M, showing an average of only 0.5 to 0.8 new shoots per explant.

The e ffec ts  o f  c y to k in in s  on  the s h o o t leng th

Type of cytokinin had a significant influence on shoot length. Regression 

analysis (Figure 2) shows that ZEA follows a quadratic polynomial equation, with the 

concavity upward, showing initial higher shoot length in the lowest concentrations 

(11.1 mm calculated at 2.5 ^M), decreasing to the lowest point (3.6 mm)at 34.8 ^M 

ZEA, and then starting to increase again. 2iP had a quadratic polynomial regression 

with the concavity downward. The maximum point in this curve was 4.56 mm of shoot 

length at 38.2 ^M 2iP.

At the lowest concentrations of growth regulators, 2.5 and 5 ^M, ZEA was 

superior to all the other treatments, showing shoots with 13.8 and 8.4 mm, 

respectively (Table 4). In these two concentrations, 2iP, BAP and KIN did not show 

any new shoots. At the other concentrations tested, 10, 20, 30, 40 and 50 ^M, 2iP 

showed new shoots. At concentrations of 10, 30, 40 and 50 ^M, 2iP treatments 

presented shoot lengths that did not differ from those of ZEA; ZEA and 2iP showed 

equal performance. BAP showed smaller shoots compared to 2iP and ZEA at all the 

concentrations except 40 ^M. BAP only showed new shoots at the concentrations of 

30 ^M (1.3 mm), 40 ^M (2.5 mm) and 50 ^M (1.8 mm). Kinetin was inferior to all the 

others, in all the concentrations tested.
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Table 4. Experiment 1, treatments with four cytokinins at different concentrations, showing mean 

values of survival (%), shoot formation (%), number of shoots (n°), length of shoot (mm) and number 

of leaves (n) in initial in vitro shoot culture of 'Delite' rabbiteye blueberry. Data presented are the 

means of four replicates ± standard deviation (SD). Means followed by the same lowercase letter 

within the column are not significantly different according to Tukey's test (p<0.05).

Survival (%)

Cytokinin 2.5 pM 5 pM 10 pM 20 pM 30 pM 40 pM 50 pM

ZEA 89.7 ± 14.2a 96.4 ± 7.1a 92.2 ± 5.2a 94.7 ± 6.1a 100.0 ± 0.8a 100.0 ± 0.8a 100.0 ± 0.8a

2iP 36.9 ± 14.4b 60.0 ± 20.0b 78.1 ± 11.4a 78.6 ± 16.0a 94.7 ± 6.1a 100.0 ± 0.8a 100.0 ± 0.8a

BAP 24.2 ± 11.6b 52.5 ± 6.8b 59.3 ± 8.3a 82.2 ± 16.9a 71.9 ± 14.7a 68.9 ± 10.1a 73.6 ± 21.6a

KIN 2.8 ± 5.6c 0.0 ± 0.1c 5.0 ± 5.8b 5.3 ± 6.1b 0.0 ± 0.1b 8.3 ± 5.6b 7.8 ± 6.1b

Mean 38.4 52.2 58.7 65.2 66.7 69.3 70.4

Shoot Formation (%)

Cytokinin 2.5 pM 5 pM 10 pM 20 pM 30 pM 40 pM 50 pM

ZEA 81.3 ± 9.2a 88.2 ± 1.8a 90.0 ± 0.1a 94.7 ± 6.1a 100.0 ± 0.0 a 100.0 ± 0.0a 100.0 ± 0.0a

2iP 0.0 ± 0.0b 0.0 ± 0.0b 30.6 ± 22.4b 42.2 ± 8.6b 53.3 ± 14.4b 70.0 ± 12.4b 95.0 ± 5.8a

BAP 0.0 ± 0.0b 0.0 ± 0.0b 0.0 ± 0.0c 0.0 ± 0.0c 5.0 ± 5.8c 7.8 ± 5.8c 7.5 ± 5.0b

KIN 0.0 ± 0.0b 0.0 ± 0.0b 0.0 ± 0.0c 0.0 ± 0.0c 0.0 ± 0.0d 0.0 ± 0.0d 0.0 ± 0.0c

Mean 20.3 22.1 30.2 34.2 39.6 44.4 50.6

Number of shoots per explant (n°)

Cytokinin 2.5 pM 5 pM 10 pM 20 pM 30 pM 40 pM 50 pM

ZEA 1.3 ± 0.1a 1.4 ± 0.1a 1.3 ± 0.1a 1.5 ± 0.1a 1.3 ± 0.1a 1.5 ± 0.1a 1.6 ± 0.1a

2iP 0.0 ± 0.0b 0.0 ± 0.0b 1.0 ± 0.0a 1.1 ± 0.1a 1.0 ± 0.0a 1.5 ± 0.1a 1.2 ± 0.1ab

BAP 0.0 ± 0.0b 0.0 ± 0.0b 0.0 ± 0.0b 0.0 ± 0.0b 0.5 ± 0.6b 0.8 ± 0.5b 0.8 ± 0.5b

KIN 0.0 ± 0.0b 0.0 ± 0.0b 0.0 ± 0.0b 0.0 ± 0.0b 0.0 ± 0.0c 0.0 ± 0.0c 0.0 ± 0.0c

Mean 0.3 0.3 0.6 0.7 0.7 0.9 0.9

Shoot length (mm)

Cytokinin 2.5 pM 5 pM 10 pM 20 pM 30 pM 40 pM 50 pM

ZEA 13.8 ± 3.4a 8.4 ± 1.1a 5.6 ± 1.8a 6.7 ± 3.4a 4.1 ± 0.3a 3.9 ± 0.6ab 5.0 ± 0.8a

2iP 0.0 ± 0.0b 0.0 ± 0.0b 3.0 ± 0.8a 3.3 ± 0.3b 3.9 ± 0.4a 4.7 ± 0.6a 4.2 ± 0.4a

BAP 0.0 ± 0.0b 0.0 ± 0.0b 0.0 ± 0.0b 0.0 ± 0.0c 1.3 ± 1.5b 2.5 ± 2.1b 1.8 ± 1.3b

KIN 0.0 ± 0.0b 0.0 ± 0.0b 0.0 ± 0.0b 0.0 ± 0.0c 0.0 ± 0.0c 0.0 ± 0.0c 0.0 ± 0.0c

Mean 3.4 2.1 2.1 2.5 2.3 2.8 2.7

Number of leaves (n°)

Cytokinin 2.5 pM 5 pM 10 pM 20 pM 30 pM 40 pM 50 pM

ZEA 10.0 ± 1.3a 8.8 ± 1.3a 6.3 ± 2.3a 8.0 ± 3.2a 6.0 ± 0.9a 6.1 ± 1.5a 7.9 ± 1.1a

2iP 0.0 ± 0.0b 0.0 ± 0.0b 2.4 ± 1.1b 3.0 ± 1.3b 3.2 ± 0.3b 5.7 ± 1.0a 5.8 ± 0.7a

BAP 0.0 ± 0.0b 0.0 ± 0.0b 0.0 ± 0.0c 0.0 ± 0.0c 0.8 ± 0.0c 1.0 ± b 0.5 ± b

KIN 0.0 ± 0.0b 0.0 ± 0.0b 0.0 ± 0.0c 0.0 ± 0.0c 0.0 ± 0.0c 0.0 ± 0.0c 0.0 ± 0.0b

Mean 2.5 2.2 2.2 2.7 2.5 3.2 3.6
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Figure 1. Initial in vitro shoot culture of 'Delite' rabbiteye blueberry in eight different concentrations (0, 

2.5, 10, 20, 30, 40 and 50 gM) of four different cytokinins: (a) Zea, (b) 2iP, (c) BAP and (d) KIN. Bars 

represent 2 cm. Abbreviations: BAP, 6-Benzylaminopurine; KIN, kinetin; Zea, zeatin; 2iP, 6-(y-y- 

dimethylallylamino)-purine.
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Figure 2. Regression analysis related to different cytokinin (Zea, 2iP, BAP and KIN) concentrations 

(2.5, 5, 10, 20, 30, 40 and 50 pM) effects on in vitro establishment of 'Delite' rabbiteye blueberry, (a) 

Survival (%), (b) Shoot formation (%); (c) Number of shoots (n°); (d) Shoot length (mm); (e) Number of 

leaves (n°). Abbreviations: BAP, 6-Benzylaminopurine; KIN, kinetin; Zea, zeatin; 2iP, 6-(y-y- 

dimethylallylamino)-purine.
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The e ffec ts  o f  c y to k in in s  on  n u m b e r o f  leaves

The number of leaves was significantly influenced by different cytokinins. The 

ZEA regression curve was a quadratic polynomial with concavity upward (Figure 2), 

similar to the curve observed in the influence of ZEA concentrations on shoot length. 

The minimum value in this curve was 6.2 leaves, reached at the concentration of 

30.7 ^M ZEA. 2iP behaved in a linear model, showing a maximum of 5.8 leaves at a 

concentration of 50 ^M. BAP was also represented by a linear regression, reaching a 

maximum of 0.8 leaves calculated at the highest concentration of 50 ^M.

At concentrations of 2.5, 5, 10, 20 and 30 ^M, ZEA was superior to all the 

other cytokinins, showing 10.0, 8.8, 6.3, 8.0 and 6.0 leaves per shoot (Table 4). 2iP 

was inferior to ZEA in all concentrations but the highest concentrations of 40 and 50 

^M, where both cytokinins were equivalent. BAP was always inferior to ZEA. At 

concentrations of 10, 20, 30, 40 and 50 ^M, BAP was also inferior 2iP. BAP showed 

some leaves only at concentrations of 30 ^M (0.8 leaves), 40 ^M (1.0 leaf) and 50 

^M (0.5 leaves). At all the concentrations, KIN did not show any response.

E xperim ent 2: C om b ina tions  o f (NH4)2SO4, KNO3 and Ca(NO3)2.4 H2O using  the 

m od ified  WPM [15] as basic  m edium

There were no statistically significant differences among the nine treatments 

tested for any of the variables analyzed. Survival and shoot formation rates ranged 

from 43.7 to 76.2%, the number of shoots formed were from 1.1 to 1.4, with shoot 

lengths of 7.5 to 25.0 mm, and the number of leaves was 9.4 to 19.7 (Table 5).
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Table 5. Experiment 2 with treatments 1 to 9 on the modified Woody Plant Medium (modified WPM) 

showing the number of explants evaluated (n°), survival rate (%), shoot formation (%) number of 

shoots (n°), shoot length (mm) and number of leaves (n°) in ‘Delite' rabbiteye blueberry in vitro 

establishment. Data presented are the means of three replicates ± standard deviation (SD). Means 

followed by the same lowercase letter within the column are not significantly different according to 

Scott-Knott's test (p<0.05). Abbreviations: CV, coefficient of variation; n°, number

Treatment
Sol.

(NH4)2SO4

(x)

Sol. KNO3 and 

Ca(NOs)2 .4H2O

(x)

n° Survival

%

Shoot

formation

%

Number of 

shoots

n°

Shoot

length

mm

Number of 

leaves

n°

1-modif. WPM 1x 1x 19 48.4 ± 19.1a 48.4 ± 19.1a 1.4 ± 0.1a 13.9 ± 6.7a 11.1 ± 3.4a

2 1x 0.5x 19 62.7 ± 11.3a 62.7 ± 11.3a 1.3 ± 0.2a 24.9 ± 7.4a 19.7 ± 3.1a

3 1x 1.5x 20 43.7 ± 23.4a 43.7 ± 23.4a 1.3 ± 0.3a 17.7 ± 16.9a 13.7 ± 7.6a

4 0.5x 1x 18 73.0 ± 35.1a 73.0 ± 35.1a 1.1 ± 0.2a 9.1 ± 5.5a 10.9 ± 5.6a

5 0.5x 0.5x 19 69.5 ± 11.5a 69.5 ± 11.5a 1.1 ± 0.1a 10.7 ± 3.2a 11.8 ± 1.5a

6 0.5x 1.5x 20 45.2 ± 4.1a 45.2 ± 4.1a 1.2 ± 0.2a 25.0 ± 14.3a 18.0 ± 6.0a

7 1.5x 1x 21 76.2 ± 8.2a 76.2 ± 8.2a 1.2 ± 0.0a 7.5 ± 2.7a 9.4 ± 3.3a

8 1.5x 0.5x 20 56.3 ± 23.4a 56.3 ± 23.4a 1.1 ± 0.2a 17.2 ± 9.7a 12.7 ± 1.9a

9 1.5x 1.5x 20 54.0 ± 19.2a 54.0 ± 19.2a 1.4 ± 0.4a 21.2 ± 7.7a 16.8 ± 5.0a

Mean 58.8 58.8 1.2 16.4 13.8

CV% 33.1 33.1 16.5 57.4 33.1

E xperim ent 3: C om b ina tions  o f NH4 NO3 and Ca(NO3)2 .4H2O using  the o rig ina l 

WPM [18] as the  bas ic  m edium

In this experiment it was possible to verify that treatments 7 (0.5x NH4NO3 

and 1x Ca(NO3)2), 8 (0.5x NH4NO3 and 0.5x Ca(NO3)2), and 10 (modified WPM) 

showed the lowest rates of survival and shoot formation and shortest shoot length 

(Table 6).

The number of shoots was similar in all the treatments tested. In addition, 

concerning the number of leaves, the lowest number was with treatments 7 and 8. 

Observing survival, shoot formation and shoot length, treatment 1 (original WPM) 

was superior to treatment 10 (modified WPM) (Figure 3).
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Table 6. Experiment 3 with treatments 1 to 9 on Woody Plant Medium (WPM) with different ranges of 

NH4NO3 (x) and Ca(NO3)2.4H2O (x) and treatment 10 on modified Woody Plant Medium, showing 

number of explants evaluated (n°), survival rate (%), shoot formation (%), number of shoots (n°), shoot 

length (mm) and number of leaves (n°) in ‘Delite' rabbiteye blueberry in vitro establishment. Data are 

presented as the means of four replicates ± standard deviation (SD). Means followed by the same 

lowercase letter within the column are not significantly different according to Scott-Knott's Test 

(p<0.05). Abbreviations: CV, coefficient of variation; n°, number.

Treat.

Sol.

NH4

NO3

Sol.

Ca(NO3)2
n° Survival

Shoot

formation

Number 

of shoots

Shoot

length

Number of 

leaves

% % n° mm n°

1-original WPM 1x 1x 38 79.4 ± 16.4a 79.4 ± 16.4a 1.2 ± 0.3a 33.3 ± 7.6a 15.3 ± 2.1a

2 1x 0.5x 40 95.0 ± 5.8a 95.0 ± 5.8a 1.1 ± 0.1a 23.5 ± 3.9b 12.2 ± 1.5a

3 1x 1.5x 38 97.5 ± 5.0a 97.5 ± 5.0a 1.2 ± 0.1a 21.0 ± 1.9b 11.4 ± 1.7a

4 1.5x 1x 27 86.8 ± 10.5a 83.7 ± 15.7a 1.1 ± 0.1a 25.4 ± 8.9b 12.1 ± 2.9a

5 1.5x 0.5x 40 92.5 ± 5.0a 90.0 ± 8.2a 1.1 ± 0.2a 32.3 ± 7.3a 14.4 ± 1.1a

6 1.5x 1.5x 40 90.0 ± 8.2a 90.0 ± 8.2a 1.1 ± 0.1a 30.7 ± 6.6a 14.1 ± 1.2a

7 0.5x 1x 39 64.4 ± 16.7b 64.4 ± 16.7b 1.1 ± 0.1a 5.0 ± 0.7d 6.6 ± 1.2c

8 0.5x 0.5x 35 55.1 ± 5.6b 55.1 ± 5.6b 1.1 ± 0.1a 18.2 ± 10.5c 10.4 ± 3.6b

9 0.5x 1.5x 26 85.4 ± 17.2a 85.4 ± 17.2a 1.0 ± 0.0a 24.2 ± 3.8b 14.9 ± 1.6a

10-modified WPM 32 55.7 ± 21.4b 55.7 ± 21.4b 1.2 ± 0.2a 15.7 ± 1.3c 12.9 ± 2.2a

Mean 80.2 79.6 1.1 22.9 12.4

CV% 16.4 7.4 15.0 26.9 16.6

Figure 3. Initial in vitro shoot culture of 'Delite' rabbiteye blueberry with 10 treatments. Treatments 1 to 

9 with the original Woody Plant Medium (WPM) with different ranges of NH4 NO3 (x) and 

Ca(NO3 )2 .4H2 O (x), compared to treatment 10 (modified Woody Plant Medium).
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DISCUSSION

In vitro establishment is an important step in tissue culture. It is a critical point 

where explants come from a different environment and have to adapt to in vitro 

conditions. One of the key steps in this process is the use of adequate growth 

regulators and a balance of mineral salts in a suitable concentration. Our results 

show a screening comparison of four different cytokinins in eight different 

concentrations and different balances of nitrogen salts in ‘Delite’ rabbiteye blueberry, 

presenting an efficient technique for in vitro plant propagation in this species.

The species and cultivars of Vaccinium  genus show natural variation in in 

vitro responses among their species and cultivars. There is high genetic variation in 

growth regulator responses/needs. Our results, based on linear and quadratic 

polynomial regression analysis, display the effects of cytokinin concentrations and 

their great impact on survival of explants, new shoot formation, number of new 

shoots formed, length of shoots formed and number of leaves in the shoots.

ZEA and 2iP resulted in better responses to in vitro establishment. At the 

lowest concentrations tested of 2.5 and 5 ^M, ZEA was superior to all the other 

cytokinins tested, in all the variables analyzed, presenting in the following 

concentrations: 89.7 and 96.4% explant survival, 81.3 and 88.2% of explants forming 

new shoots, 1.3 and 1.4 new shoots formed, 13.8 and 8.4 mm of shoot length and

10.0 and 8.8 leaves per shoot. Similar results were observed in highbush blueberry 

‘Polaris’ and half-high blueberry ‘St. C loud’ where ZEA was used at a concentration 

of 9.1 ^M in the shoot establishment in vitro. ZEA was also efficient in inducing shoot 

proliferation in a liquid medium at 4.6 ^ M [10], instead of at higher concentrations. 

For V. corymbosum  ‘Oskar’, V. angustifolium  ‘Emil’ and ‘Putte’, and V. corymbosum  x 

V. angustifolium  ‘Northblue’ establishment, 2 mg L-1 (9.12 ^M) ZEA was used [20]. In 

highbush blueberry ‘Duke’ propagation, ZEA at 2 mg L-1 (9.12 ^M) was superior to 

2iP or TDZ [21].

For in vitro shoot proliferation in cranberry (V. macrocarpon Ait.) cultivars, 

ZEA in very low concentrations (2 -4  ^M) showed a good performance [22]. In V. 

ashei at the multiplication stage, ZEA increased shoot formation, compared to 2iP. 

However, 2iP showed longer shoots with a higher number of nodes [23]. For initial 

culture in highbush blueberry, 1 mg L-1 (2.85 ^M) zeatin riboside was used [24]. In
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lowbush blueberry the authors tested 0, 2.3, 4.6, or 9.10 ^M ZEA on elongation of 

shoots, and concentrations of 2.3 and 4.6 ^M gave the best response [25].

Another aspect to be mentioned is the growth habit of ‘Delite’ rabbiteye 

blueberry cultivar in this study. In particular, in the presence of ZEA and 2iP, it 

showed a low number of new shoots per explant but longer shoots, which means that 

new subculture could be performed using the nodal segments of the long shoot 

instead of using new axillary or adventitious shoots formed.

At the lowest concentrations (2.5 and 5 ^M), 2iP treatments did not show any 

response. Treatments with 2iP started to form shoots only in the concentrations of 

10, 20, 30, 40 and 50 ^M. Concerning the percentage of explants forming new 

shoots, 2iP was inferior to ZEA in all the concentrations, except in 50 ^M, where both 

had the same shoot formation rate. This shows that ZEA triggered a response in the 

explants even in inferior concentrations (2.5 and 5 ^M) and that 2iP was able to lead 

to some shoot formation only at higher concentrations (10 ^M and above). 

Concerning shoot length, in the concentrations where 2iP started showing new 

shoots (10-50 ^M), the shoots formed were equivalent in length to the shoots formed 

in ZEA. At concentrations of 10, 20, 30 and 50 ^M, both were superior to BAP and 

KIN. However, when analyzing the number of leaves, ZEA was superior to 2iP at 

almost all the concentrations, except 40 and 50 ^M, showing again the need for 

higher concentrations of 2iP to show a higher number of leaves formed. In 'Brightwell' 

blueberry, authors found that different concentrations of 2iP (5, 10, 15, or 20 m g L -1) 

and TDZ were inferior to 2 mg L-1 (9.12 ^M) ZEA in shoot proliferation [26]. ZEA at 4 

m g L -1 (18.24 ^M) was more successful than 2iP at 10 or 15 m g L -1 (49.2 or 73.8 ^M) 

in establishing V. corymbosum  blueberry cultivars [12].

BAP did not show any response at the lowest concentrations of 2.5, 5, 10 

and 20 ^M. BAP started showing a low response only in 30, 40 and 50 ^M (5.0% - 

7.8% of shoot formation). BAP was always highly inferior to ZEA at all concentrations 

tested, in all the variables analyzed, except the shoot length at 40 ^M. Additionally, 

BAP was inferior to 2iP from 10-50 ^M concerning shoot formation, number of 

shoots, shoot length and number of leaves. In the same way, in ‘Bluejay’ and ‘Pink 

Lemonade’ blueberry, the authors found that BAP induced fewer axillary shoots than 

ZEA, as well as smaller shoots [27].
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Kinetin showed no response concerning shoot formation and had almost no 

survival explants (maximum of 8.3% of survival), showing clearly that it was not 

suitable for ‘Delite’ rabbiteye blueberry initiation culture.

In this study, different balances of nitrogen salts were tested. Using the 

modified WPM medium, no differences were observed among all combinations of 

nitrogen salts: (NH4 )2SO4 , KNO3 and Ca(NO3)2.4 H2O. ‘Delite’ blueberry showed lower 

survival (55.7%), shoot formation (55.7%), and shoot length (15.7 mm) in the 

modified WPM compared with original WPM (79.4%, 79.4% and 33.3 mm, 

respectively).

Using the original WPM, it was possible to observe that treatments containing 

higher amounts of NH4NO3 (1x or 1 .5x, instead of 0.5x) as well as the treatment with 

higher amount of Ca(NO3)2 (1.5x), even with lower amount of NH4NO3 (0.5x), showed 

the same performance as in WPM without modification. Similarly, in red raspberries, 

it was found that combinations of intermediate to high NO3- and intermediate to high 

NH4+ developed the best growth in most cultivars [28].

However, changing the ranges of Ca(NO3)2 , in addition to increasing or 

decreasing the total amount of nitrogen and its nitrate form, would also change the 

Ca+2 ion. Therefore, the result seen in the treatment Ca(NO3)2 (1.5x) could be related 

to either nitrogen or calcium in higher amounts, or even both.

This study in a rabbiteye blueberry cultivar represents a basic framework to 

understand initial in vitro establishment. It can be useful to describe this process in 

other Vaccinium  cultivars regarding the necessary adjustments to adapt the process 

to different genotypes.

CONCLUSIONS

The research shows a description of the effects of different cytokinins in 

different concentrations and different nitrogen salt ranges in ‘Delite’ rabbiteye 

blueberry in vitro establishment, and it provides basic knowledge for further 

experiments in rabbiteye blueberry tissue culture.

In conclusion, focusing on an efficient strategy for in vitro establishment in 

‘Delite’ rabbiteye blueberry, we recommend the lowest concentration tested, 2.5 ^M 

ZEA, which promoted a high survival rate (89.7%), as well as a good response on 

explants forming new shoots (81.3%). This concentration yielded a number of new
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shoots of 1.3, with a high shoot length (13.8 mm) and 10.0 leaves per shoot. 

Concerning salt composition, we recommend the original WPM. An increase or 

decrease in the NH4 NO3 and Ca(NO3)2 concentration did not promote better growth 

results than the original medium.

This work is of interest for evaluating different cytokinin and salt composition 

in the culture medium for in vitro establishment, and it can contribute to developing 

deeper knowledge of large-scale propagation, germplasm conservation, and 

development of other biotechnology techniques in other research fields, such as 

morphology, plant breeding and physiology.

Future studies could be developed beyond the research presented here, 

focusing on fine-tuning the salts composition and concentrations of the growth 

regulator needed for an efficient response, as well as combining of the two most 

successful cytokinins tested, ZEA and 2iP.

SUPPLEMENTARY MATERIALS

The following are available online at http://www.mdpi.com/2311- 

7524/5/1/24/s1, Table S1: Results of the two-way ANOVA of experiment 1 studying 

the influence of cytokinin type and concentration on survival (%), shoot formation 

(%), number of shoots (n°), length of shoot (mm), and nmber of leaves (n°) on initial 

in vitro shoot culture of ‘Delite’ rabbiteye blueberry, Table S2: Number of explants 

evaluated after contamination in experiment 1 in each of the treatments (cytokinin 

type by concentration) on initial in vitro shoot culture of ‘Delite’ rabbiteye blueberry.
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SUPPLEMENTARY MATERIALS

Table S1. Number of explants evaluated after contamination in experiment 1 in each of the treatments 

(cytokinin type by concentration) on initial in vitro shoot culture of 'Delite' rabbiteye blueberry. 

Abbreviation: n° (number).

Number of explants evaluated in each treatment (n°)

Concentration

Cytokinin 2.5 pM 5 pM 10 pM 20 pM 30 pM 40 pM 50 pM

ZEA 37 35 39 39 39 39 40

2iP 38 38 38 38 37 36 40

BAP 37 38 37 39 39 39 39

KIN 38 38 40 39 40 37 39
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Table S2. Results of the two-way ANOVA of experiment 1 studying the influence of cytokinin type and 

concentration on survival (%), shoot formation (%), number of shoots (n°), length of shoot (mm) and 

number of leaves (n°) on initial in vitro shoot culture of 'Delite' rabbiteye blueberry. Abbreviations: CV: 

coefficient of variation; DF, degrees of freedom; SS, sum of squares; MS, mean squares.

Evaluation Source DF SS MS F ratio p-value

Survival Cytokinin type 3 1,255.B0 41B.60 343.45 < 0.0001

Cytokinin concentration 6 77.44 12.91 10.59

Interaction (type X concentration) 1B 57.01 3.17 2.60 0.001B

Error B4 102.3B 1.22

CV (%): 16.2% Total 111 1,492.63

Shoot formation Cytokinin type 3 1,634.B3 544.94 956.6B < 0.0001

Cytokinin concentration 6 157.B9 26.32 46.20

Interaction (type X concentration) 1B 230.77 12.B2 22.51 < 0.0001

Error B4 47.B5 0.57

CV (%): 18.9% Total 111 2,071.34

Number of shoots Cytokinin type 3 20.13 6.71 150.13 < 0.0001

Cytokinin concentration 6 3.54 0.59 13.19

Interaction (type X concentration) 1B 4.B1 0.27 5.9B < 0.0001

Error B4 3.76 0.04

CV (%): 35.5% Total 111 32.24

Shoot length Cytokinin type 3 97.97 32.66 250.76 < 0.0001

Cytokinin concentration 6 4.50 0.75 5.76

Interaction (type X concentration) 1B 32.14 1.79 13.71 < 0.0001

Error B4 10.94 0.13

CV (%): 31.9% Total 111 145.56

Number of leaves Cytokinin type 3 122.B6 40.95 424.B0 < 0.0001

Cytokinin concentration 6 6.49 1.0B 11.22

Interaction (type X concentration) 1B 20.75 1.15 11.95 < 0.0001

Error B4 B.10 0.10

CV (%): 27.3% Total 111 15B.20
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ABSTRACT

Blueberry is an important fruit crop, with antioxidant and anti-inflammatory health 

benefits. The conventional propagation method is vegetative, through cuttings, which 

can lead to pathogen infection. An alternative method is in vitro propagation. Most 

studies on in vitro culture of blueberries focus on highbush and lowbush cultivars, 

and only a few studies on rabbiteye cultivars —  more adapted to mild w inter regions. 

Thus, it is necessary to develop a micropropagation protocol for this group of
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cultivars. Our objective was to develop a suitable in vitro establishment, 

multiplication, and rooting using ‘Delite’ rabbiteye blueberry. The most promising 

results were: surface sterilization of nodal segments with 5 min immersion in sodium 

hypochlorite (96.7% of uncontaminated explants and 96.7% survival rate ); in vitro 

establishment in Woody Plant Medium (WPM) with 2.5 ^M zeatin (92.3% survival 

and 84.5% explants with axillary shoot growth); multiplication of two-node stem 

segments in WPM with 2.5 ^M zeatin (100% survival, 70% explants with shoot 

proliferation, one new shoot/explant, with 3.6 cm and 11.7 leaves), and five-node 

stem segments in the vertical orientation (100% survival, 100% explants with shoot 

proliferation, 1.8 new shoots/explant, 5.1 cm long with 12.7 leaves); in vitro rooting 

with immersion in 500 mg L-1 IBA (100% survival, 100% microcuttings with 

maintenance of leaves and 37.5% rooting), or ex vitro rooting in vermiculite with 

WPM mineral salts (88% survival, 86% of microcuttings with leaf maintenance, 50% 

of microcuttings with new buds induction, and 68% rooting). In conclusion, this study 

provides techniques for in vitro propagation of ‘Delite’ rabbiteye blueberry using nodal 

segments, concerning the steps of establishment, multiplication, and rooting of the 

plants.

KEY MESSAGE

Our study developed an in vitro shoot micropropagation procedure using 

nodal segments of ‘Delite’ rabbiteye blueberry using WPM culture medium 

supplemented with zeatin in initial and multiplication stages, and in vitro rooting using 

IBA, or ex vitro rooting in vermiculite and WPM mineral salts.

KEYWORDS

Ericaceae, rooting, shoot proliferation, Vaccinium virgatum.
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INTRODUCTION

Blueberry is known for its high nutraceutical properties, with many health 

benefits. The true berries are an important source of antioxidants and anti

inflammatory compounds (Michalska and tys ia k  2015). Its bio compounds include 

polyphenols and anthocyanins, having effects against cancer, diabetes, and 

cardiovascular and neurodegenerative diseases (Routray and Orsat 2011). The 

consumption of blueberry by adults improved cognition (Miller et al. 2018), having a 

neuroprotective activity (Businaro et al. 2018). Besides its nutritive characteristics, 

blueberries are appreciated for their rich flavor and texture, with a high demand by 

consumers, for fresh and processed products, generating a recent increase in 

production in many parts of the world (Michalska and tys ia k  2015), including in 

South American countries (Retamales 2011; Retamales et al. 2015).

Blueberry is a fruit crop in the family Ericaceae and the genus Vaccinium  

(Vander Kloet 1988). There are many blueberry cultivars, belonging to three major 

species: Vaccinium corymbosum L., the highbush group and its hybrids, with most of 

the fruit production; Vaccinium angustifolium  Ait., the lowbush group, with about one- 

third of the world production; and Vaccinium virgatum  Ait., the rabbiteye group, 

produced in smaller quantities (Rowland et al. 2010). Rabbiteye cultivars can grow in 

warmer w inter climates and are high-yielding with a vigorous habit, relatively large 

fruits, and seeds (Ehlenfeldt et al. 2007). These cultivars represent a possibility of 

expanding the production beyond the traditional producing regions and are already 

being produced in many countries with sub-tropical climates, since they need low 

chilling hours to develop and produce appropriately (Fachinello 2008; Medeiros et al. 

2017; Schuch and Tomaz 2019).

Commercial propagation of this crop by seeds is not common, as it presents 

a high heterozygosity rate (Hung et al. 2016a). The conventional propagation method 

is vegetative, using softwood, semi-hardwood or hardwood cuttings (Marino et al. 

2014), which can represent a low level of phytosanitary standards, a low rate of 

rooting, and a time-consuming method, especially if the objective is to commercialize 

newly released cultivars (Meiners et al. 2007; Marino et al. 2014). To overcome these 

challenges, in vitro propagation is an interesting alternative for blueberry clonal 

propagation, with the possibility of producing a large number of plants, throughout the
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year (Debnath 2017; Schuch and Tomaz 2019). Furthermore, in vitro techniques are 

the basis for further development in biotechnology (Debnath 2009a).

Blueberries have been micropropagated, with most of the research 

concentrated in highbush and lowbush cultivars (Brissette et al. 1990; Reed and 

Abdelnour-Esquivel 1991; Isutsa et al. 1994; Noé and Bonini 1996; Cao et al. 2002, 

2003; Litwinczuk et al. 2005; Debnath 2007, 2009a, b, 2011, 2017; Meiners et al. 

2007; Litwinczuk and Wadas 2008; Tetsumura et al. 2008; Ruzic et al. 2012; Goyali 

et al. 2013, 2015a, b; Santiago and Smagula 2013; Hine-Gómez and Abdelnour- 

Esquivel 2013; Marino et al. 2014; Beraud and Ulloa 2015; Cappelletti and Mezzetti 

2016; Hung et al. 2016b; Welander et al. 2017; Fan et al. 2017; Gao et al. 2018; Guo 

et al. 2019; Wang et al. 2019). However, these in vitro protocols are specific to the 

genotype studied (Cappelletti et al. 2016). Only some researches in V. virgatum  

(rabbiteye cultivars) have been reported, not including all the steps of in vitro 

propagation, usually referring to one of the stages only (Erig and Schuch 2005; Silva 

et al. 2008, 2006; Damiani and Schuch 2008, 2009; Schuch et al. 2008; Souza et al. 

2011; Pelizza et al. 2012; Farias et al. 2014; Hung et al. 2016a; Fan et al. 2017; 

Schuchovski and Biasi 2019). Therefore, there is a need to develop a complete and 

efficient micropropagation protocol for the rabbiteye group cultivars.

The main objective of this work was to develop a micropropagation 

procedure for ‘Delite’ rabbiteye blueberry using in vitro techniques that can be used 

for clonal propagation, conservation of plant biodiversity in vitro, and other 

biotechnological researches.

MATERIAL AND METHODS 

P lant m ateria l and in itia l cu ltu re

Hardwood cuttings (one-year-old) were collected from field-grown ‘Delite’ 

rabbiteye blueberry (V. virgatum) mother plants during the winter. All the cuttings 

were treated by immersion in a thiophanate-methyl fungicide solution (0 .2% 

Cercobin™ (Iharabras, São Paulo, Brazil)) for 5 min and stored at 4 °C. About 30 

days later, these cuttings were placed in the culture room to start bud growth. The 

newly grown shoots were collected and surface sterilized. They were washed with 

water for 10 min and immersed in 70% (v/v) ethanol solution for 30 s, then in 0.5%
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sodium hypochlorite solution containing 0.1% (v/v) Tween 20 for 5 min (except in 

experiment 1, related to surface sterilization). All the shoots were washed three times 

with sterile deionized water, and they were used in the establishment of in vitro 

cultures. Shoots were placed in test tubes (160 *  23 mm), containing 6 mL of Woody 

Plant Medium (WPM) culture medium (Lloyd and McCown 1980) supplemented with 

Murashige and Skoog (MS) organic compounds (Murashige and Skoog 1962), 2.5 

^M zeatin (6-(4-hydroxy-3-methylbut-2-enylamino)purine) (unless otherwise noted), 

and 30 g.L-1 sucrose. The pH of the media was adjusted to 5.2 and solidified with 7 g 

L-1 agar (Vetec™, Rio de Janeiro/Brazil). After that, the media were autoclaved at 

120 °C and 1.0 atm for 20 min, and zeatin was sterilized through 0.22 ^m filters and 

added to the cooled media. The cultures were periodically transferred to fresh 

medium in jars (6.5 cm x 8.0 cm) containing 30 mL of medium, with five shoots per 

ja r and maintained at 25 ± 2 °C under cool daylight at 40 ^mol m-2 s-1 with a 16-h 

photoperiod.

E xperim ent 1: Surface s te riliza tio n  o f the exp lan ts

This experiment in the establishment stage tested the surface sterilization of 

the explants. It was conducted in a completely randomized design, with three 

immersion times (5, 10, and 15 minutes) in 0.5% sodium hypochlorite solution 

containing 0.1% (v/v) Tween 20 and a control w ithout treatment. The explants were 

nodal segments containing two buds (leaves removed), 0.5-1.0 cm long, originated 

from the new shoots formed, as previously described. The culture medium was 

prepared according to the previous description, but the growth regulators used were:

10.0 ^M zeatin, 1.0 ^M NAA (a-naphthaleneacetic acid), and 0.5 ^M GA3 (gibberellic 

acid). Cultures were initially placed in the culture room in the dark. Seven days later, 

they were moved to the light room as previously described. Each treatment consisted 

o f three replications (ten explants in each replication), giving a total o f 30 explants 

per treatment, in a total of 120 leaf explants in the experiment. After 60 days of the 

establishment, cultures were evaluated according to the percentage of 

uncontaminated explants (%), the survival rate o f the explants (%), and percentage 

o f explants with axillary shoot growth (%).
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E xperim ent 2: D iffe rent cy to k in in s  in the e s tab lishm en t o f the exp lan ts  in  v itro

To evaluate the initial establishment of the nodal segments in vitro, a two- 

factor (3 x 2) arrangement and a completely randomized design were used, with 

factor 1 being the different concentrations of zeatin (0, 2.5 and 5.0 ^M) and factor 2 

being the concentrations of 2iP (2-isopentenyladenine) (6-(y-y-dimethylallylamino)- 

purine) (0 and 20 ^M), in a total of six treatments. The medium was prepared as 

previously described but supplemented with a combination of the two cytokinins. 

Both zeatin and 2iP were sterilized through 0.22 ^m filters and added to the cooled 

media. The medium was placed in test tubes (160 x 23 mm), each containing 6 mL. 

The nodal segments were surface sterilized as previously described and placed in 

the tubes. Each treatment consisted of four replications (ten explants in each 

replication), giving a total of 40 explants per treatment, in a total of 240 explants in 

the experiment. Cultures were initially placed in the culture room in the dark and, 

seven days later, they were moved to the light room as previously described. They 

were evaluated seven weeks later, according to the survival rate of the explants (%), 

percentage of explants with axillary shoot growth (%), number of new shoots formed 

per explant (n), mean length of the new shoots formed (cm), and mean number of 

leaves per new shoot formed. The contamination rate in this experiment ranged from

23.1 to 34.9%.

E xperim ent 3: M u ltip lica tion  w ith  d iffe re n t zeatin concen tra tion s

This experiment was conducted in a completely randomized design, with five 

treatments: different concentrations of zeatin (0, 2.5, 5.0, 7.5, and 10.0 ^M). The 

initial explants (two-node stem segments) were originated from in vitro cultures 

maintained as described in “Plant material and initial culture” . The explants were 0.5 

to 2.0 cm long, with two leaves. The culture medium was prepared according to the 

previous description, but the growth regulators were used according to the five 

treatments described here. Cultures were placed in the culture room, as previously 

described. Each treatment consisted of four replications (five explants in each 

replication, in one jar (6.5 cm x 8.0 cm, with 30 mL of medium)), giving a total of 20 

explants per treatment, and 100 explants in the experiment. After twelve weeks, 

cultures were evaluated according to the survival rate of the explants (%),
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percentage of explants with shoot proliferation (%), number of new shoots formed per 

explant (n), mean length of the longest shoot (cm), and mean number of leaves of 

the longest shoot (n). The contamination rate varied from 0.0 to 25.0% in this 

experiment.

E xperim ent 4: M u ltip lica tion  w ith  d iffe re n t exp lan t po s itio n s

This multiplication experiment was conducted in a completely randomized 

design, with three treatments: different explant orientations in the culture medium 

(vertical, 45° inclined, and horizontal). The initial explants were originated from in 

vitro cultures, as described in “Plant material and initial culture” . These in vitro stems 

had the apical bud removed and the nodal segments were prepared with five buds 

each and 1.5 to 2.5 cm long. The two basal leaves were removed, and the three 

most apical leaves were kept in the explant. The culture medium was prepared as 

previously described, using 2.5 pM zeatin, and cultures were placed in the culture 

room. Each treatment consisted of seven replications (five explants in each 

replication, one explant per ja r (6.5 cm x 8.0 cm, with 30 mL of medium)), giving a 

total of 35 explants per treatment, in a total of 105 explants in the experiment.

After twelve weeks, cultures were evaluated according to the survival rate of 

the explants (%), percentage of explants with shoot proliferation (%), number of new 

shoots formed per explant (n), mean length of the new shoots formed (cm), mean 

number of leaves per new shoot formed (n), shoot induction rate in the most basal 

bud (%), and shoot induction rate in the most apical bud (%). The whole experiment 

was repeated, with the difference that in the second experiment, the initial explants 

had all the five leaves removed. After twelve weeks, cultures were evaluated 

according to the same variables previously described. The contamination rate in this 

experiment varied from 0.0 to 20.0%.

E xperim ent 5: In v itro  and ex v itro  roo ting  w ith  d iffe re n t IBA (indo le -3 -bu tyric  

acid) concen tra tions

To evaluate rooting of in vitro micropropagated microcuttings, a two-factor (2 

x 3) arrangement and a completely randomized design were used, with factor 1 being 

the two different environments: in vitro (at the culture room), and ex vitro (at the
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greenhouse) and factor 2 being the IBA concentrations (0, 250, and 500 mg L-1), in a 

total of six treatments. For the three treatments in vitro, the medium used was as 

previously described, with no growth regulators. For the three treatments ex vitro, 

vermiculite was used as substrate. The IBA was diluted according to the proper 

concentration, using a solution of deionized water and 99% ethanol (9:1, v/v). The 

IBA solutions were autoclaved and microcuttings (2.5 to 4.0 cm long) had their bases 

immersed in the IBA solution for 5 s and then placed either in the jars (5 

microcuttings per jar) containing the culture medium with 30 mL per jar, or in the 128 

cells-tray in the moisture vermiculite substrate. Each treatment consisted o f four 

replications (ten microcuttings in each replication), giving a total of 40 microcuttings 

per treatment, and 240 microcuttings in the experiment.

Cultures were maintained in the culture room, as previously described; or in 

the greenhouse, with intermittent mist (for 15 s at every 30 min). Manual sprinkling 

irrigation was done every week in the greenhouse. All the microcuttings were 

evaluated seven weeks later, according to the survival rate o f the microcuttings (%), 

leaf maintenance rate (%), callus formation rate (%), rooting rate (%), number of 

roots per microcutting (n), and length o f the longest root (mm). The contamination 

rate in this experiment ranged from 0.0 to 25.0%.

E xperim ent 6 : E x v itro  roo ting  w ith  d iffe re n t subs tra tes  and m inera l sa lts

In this experiment, the ex vitro rooting of micropropagated microcuttings was 

tested, in a two-factor (2 x 2) arrangement and a completely randomized design, with 

factor 1 being two different substrates: Plantmax™ (a commercial substrate, Brazil) 

and vermiculite; and factor 2 being the mineral salt formulation: mineral salts of WPM 

culture medium and Basacote™ Plus 3M NPK 15-08-12 (a commercial fertilizer, 

Compo, Germany), in a total of four treatments. All the substrates were placed in 

plastic boxes, with semi-opened lids. The substrates treated with liquid WPM culture 

medium received 200 mL/box. Those treated with Basacote™ received 3 kg m3 of 

substrate and received 200 mL per box o f sterilized deionized water. All 

microcuttings were originated from in vitro culture, as previously described, 3.0-3.5 

cm long. The base of the microcuttings was immersed in 1000 mg L-1 IBA in a 

solution of deionized water and 99% ethanol (9:1, v/v) for 10 s.
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Each treatment consisted of five replications (ten microcuttings in each 

replication, in one box), giving a total of 50 microcuttings per treatment, and 200 

microcuttings in the experiment. Cultures were maintained in the culture room, as 

previously described and watered every three days. All the explants were evaluated 

ten weeks later, according to the survival rate of the microcuttings (%), leaf 

maintenance rate (%), bud induction rate (%), callus formation rate (%), rooting rate 

(%), number of roots per microcutting (n), and length of the longest root (mm). The 

contamination rate in this experiment ranged from 0.0 to 4.0%.

Experim enta l Design and S ta tis tica l A n a lys is

All experiments were designed completely randomized. The contaminated 

cultures were excluded (except in the experiments in the establishment of nodal 

segments, where contamination was a variable measured). Thereafter, all the 

explants were individually evaluated, and the mean was estimated for each 

replication. After that, the mean of the three, four, five, or seven replications in each 

treatment was calculated. Levene’s test was performed to confirm the homogeneity 

of the variance among treatments. Then, analysis of variance (ANOVA) (Sup. Table 

S1, S2, S2, S3, S4, S5, and S6) was performed to detect statistical differences 

between treatments, followed by Tukey’s multiple range test (p<0.05) to identify the 

superior treatments. Results are presented as mean ± standard error in the tables.

In the experiment 3, in multiplication with different zeatin concentrations, 

linear regression analyses were performed with the variable that confirmed to have a 

statistical significance in the analysis of variance of the regression. This variable was 

“shoot length” . For the other variables analyzed, it was not possible to adjust a 

statistically significant equation with a biological explanation.

All the statistical analyses were performed using R software (R Core Team

2020).

RESULTS AND DISCUSSION

In this study, a complete protocol for micropropagation in ‘Delite’ rabbiteye 

blueberry is described.
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E xperim ent 1: Surface s te riliza tio n  o f the exp lan ts

The results of this experiment can be seen in Table 1. The percentage of 

uncontaminated explants varied from 93.3 to 96.7%, and there was no significant 

difference among the treatments (Table S1). Related to the survival rate of the 

explants and percentage of explants with axillary shoot growth, the treatments did not 

show any significant difference, with general means of 91.7 and 77.5, respectively.

In Fig. 1a-1d, it is possible to observe the four treatments (0, 5, 10, and 15 

min). The contaminated explants showed only bacterial contamination and no fungus 

at all. All the treatments showed a good development of shoots, and most of the 

explants had an intense callus formation on the base of the explants.

The surface sterilization process before in vitro establishment can sometimes 

be demanding, especially in woody species (HUH et al., 2015). Some authors used 

more toxic products, such as mercuric chloride (HgCb) for this process in highbush 

blueberry cultivars (SEDLAK; PAPRSTEIN, 2009), or biocide agents in the culture 

medium (HUH et al., 2015). In this study, only ethanol or ethanol combined with 

sodium hypochlorite proved to be efficient to surface sterilize nodal segments for in 

vitro culture. Part of the low rates of contamination found here could be explained by 

the process used of collecting stems from mother plants and letting them sprout in 

the culture rooms, so these new shoots formed were less prone to bring 

microorganisms for the in vitro environment, compared to shoots collected directly 

from field-conditions.

E xperim ent 2: D iffe rent cy to k in in s  in the e s tab lishm en t o f the exp lan ts  in  v itro

In this experiment (Table 2) combining zeatin and 2iP, when evaluating the 

survival rate of the explants, there was no interaction between the two factors (zeatin 

concentrations and 2iP concentrations) (Table S2). However, there was a difference 

between control and zeatin treatments, showing that the concentrations of 2.5 and

5.0 pM gave results superior to those obtained on the medium without zeatin, with 

89.9%, 80.4%, and 39.2% survival rate, respectively. And 20 pM of 2iP showed the 

same survival rate than the control (72.5 and 67.2% respectively).

Observing the percentage of explants with axillary shoot growth (Table 2), 

there was an interaction among the two factors (p<0.05). In the absence of 2iP, shoot
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formation was induced only in the presence o f zeatin, where the treatments with 5 

and 2.5 ^M zeatin did not differ significantly among each other, but both were 

superior to the medium without zeatin (57.6, 84.5, and 0.0% explants with axillary 

shoot growth, respectively). In the treatments with 20 ^M 2iP, the concentrations of

5.0 and 2.5 ^M zeatin had similar results to each other, and both were superior to 0 

^M (81.7, 60.5, and 8.1%, respectively). In the treatments with 2.5 ^M zeatin, the 

treatment with no 2iP showed a higher percentage of explants with axillary shoot 

growth than the treatment with 20 ^M 2iP. In Fig. 2 a -2 f it is possible to observe 

explants in the six treatments.

For the variable number o f new shoots formed, there was no interaction 

among the two factors (p<0.05). None of the means differ, and for all the six 

treatments one new shoot was formed per explant (Table 2). This number could 

seem a low rate compared to other species, however, the behavior found in rabbiteye 

blueberries in this study was the habit o f sprouting the pre-existent bud in the nodal 

segment. All the shoots were formed from the sprout and growth o f the axillary bud 

existent in the original nodal segment explant. Since we departed from a nodal 

segment with only 2 buds, and in most cases one o f the buds got immersed in the 

culture medium, we observed the sprouting of only one bud, forming one long shoot. 

This shoot can be further cut into smaller nodal segments to continue the process of 

subculturing and multiplication in vitro.

Observing the variable mean length of shoots, there was an interaction 

(p<0.05) between the two factors. But since one of the treatments resulted not 

available, the factors were evaluated as not interacting. Treatments without 2iP 

resulted superior to 20 m.M 2iP (1.0 and 0.4 cm long, respectively). And 2.5 ^M zeatin 

was superior to 0 and 5 m.M zeatin (1.0, 0.4 and 0.4 cm long, respectively).

Considering the variable number of leaves per shoot, there was no 

interaction between the two factors. Treatments 0 ^M and 20 ^M 2iP showed no 

difference, with 8.5 and 7.6 leaves/shoot. Observing the treatments with zeatin, the 

concentration 2.5 ^M zeatin did not differ statistically from 5 ^M zeatin (10.2 and 6.9 

leaves/shoot, respectively). But 2.5 ^M zeatin was superior to 0 m.M zeatin.

From the observations in this experiment, it is possible to consider that for 

many variables observed (survival rate, number o f new shoots formed, and number 

of leaves per shoot), the addition of 2iP in the medium (20 ^M) did not give better
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results than the medium without 2iP. And in some cases, it interfered negatively 

(decreasing the mean length of shoots, for example). Some authors observe that 

zeatin is less phytotoxic to the blueberry explant than 2iP (REED; ABDELNOUR- 

ESQUIVEL, 1991). In a research in cranberry (Vaccinium macrocarpon) propagation 

(DEBNATH, 2008), the author argues that zeatin in the culture medium could induce 

the juvenile branching characteristics in tissue culture shoots, leading to more 

vegetative growth, compared to conventionally propagated plants.

Zeatin treatments (2.5 and/or 5.0 p,M), on the other hand, showed to be 

superior to the treatment with no zeatin in many variables (survival, shoot induction, 

mean length of shoots, and number of leaves per shoot). Comparing the two 

treatments containing zeatin (2.5 and 5.0 p,M) among each other, the treatment 2.5 

p,M proved to be similar or even better than 5.0 p,M. Concerning the overall 

performance and the cost, the treatment 2.5 p,M zeatin with no 2iP proved to be the 

best option for this establishment in vitro, showing 92.3% survival rate, 84.5% shoot 

induction rate, 1.0 new shoot formed per explant, and shoots 1.5 cm long with 10.8 

leaves per shoot, after seven weeks in culture.

Some authors discuss the use of 2iP on in vitro establishment of blueberries, 

such as the work with ‘Avonblue’ cultivar (V. corymbosum), where 2iP in the culture 

medium induced the greatest length of shoots (HINE-GOMEZ; ABDELNOUR- 

ESQUIVEL, 2013). Another research in lowbush blueberry (V. angustifolium) used 59 

|jM 2iP for the establishment (BRISSETTE; TREMBLAY; LORD, 1990).

Evaluating ‘Florida’ rabbiteye cultivar (ERIG; SCHUCH, 2005), the authors 

compared 2iP alone or in combination with NAA and GA3 in the medium and found 

that the concentration 24,6 jM  2iP alone showed the highest establishment rate.

In the establishment of microcuttings of ‘Berkeley’, ‘Blue Heaven’, ‘Collins’, 

‘Darrow’, ‘Early Blue’, ‘Jersey’ and ‘Late Blue’ blueberry cultivars (V. corymbosum) 

(ECCHER et al., 1986), the authors found that in BAP (6-benzylaminopurine) 

treatments there was no growth of the shoots, and only on 2iP treatments the axillary 

shoots developed. The percentage of sprouted explants increased with 2iP 

concentrations, up to 15 mg L-1 (73.8 jM ).

Evaluating the initial growth in other Vaccinium  species (JAAKOLA et al., 

2001), the research described an optimum concentration of 49.2 jM  2iP for bilberry 

(Vaccinium myrtillus L.) and for 24.6 jM  for lingonberry (Vaccinium vitis-idaea L.). In
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a study with ‘Delite’ rabbiteye blueberry (V. virgatum) (SCHUCHOVSKI; BIASI, 2019) 

testing different cytokinins, zeatin, 2iP, BAP, and kinetin, in eight concentrations, it 

was found that zeatin and 2iP were superior to BAP and kinetin for the initial 

establishment of nodal segments. However, the authors observed that zeatin was 

superior to all the other cytokinins tested using the lowest concentrations (2.5 ^M and 

5 ^M). In another study in bilberry (NIN et al., 2019), the nodal segments were 

established in vitro in a medium containing either zeatin (9.1 and 18.2 ^M) or 2iP 

(24.6 and 49.2 ^M), however, media with zeatin allowed higher initiation rates and 

more shoots per explant. These results are in accordance to our findings.

Studying V. corybosum  cultivars (REED; ABDELNOUR-ESQUIVEL, 1991) 

and comparing the effects of zeatin at 4 m g L -1 (18.24 ^M) and 2iP at 10 m g L -1 (49.2 

^M) or 15 m g L -1 (73.8 ^M) on initiation growth of single-node pieces, the authors

found that the medium with 4 mg L-1 (18.24 ^M) zeatin showed the highest rates of

new shoot growth. Although our research focused on lower concentrations of 2iP, we

also found it to be less efficient than zeatin.

Our findings are in accordance to a study with lowbush blueberry (V. 

angustifolium) (DEBNATH, 2009b), where the authors compared zeatin (5 ^M) and 

2iP (10 ^M) in the establishment of nodal segments and found that, although both 

treatments produced elongated shoots, the better initiation rates occurred on zeatin 

medium. The same behavior was reported in a study in ‘Delite’ rabbiteye cultivar 

(SILVA et al., 2006), demonstrating the differences among 2iP (25 ^M ) and zeatin 

(18 ^M) in the establishment of nodal segments, showing that zeatin improved the 

survival, establishment rate, and decreased oxidation.

We could observe in our study that a low concentration of zeatin (2.5 ^M) in 

the medium was effective to induce shoot growth and initiate the culture. This is an 

important observation, considering the high cost of zeatin, that in low concentrations 

could be more viable for use in research and commercial laboratories.

E xperim ent 3: M u ltip lica tion  w ith  d iffe re n t zeatin concen tra tion s

Observing the experiment of multiplication with different zeatin 

concentrations, all the treatments showed 100% survival rate of the explants. New
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shoot formation did not occur in the control without zeatin. And it varied from 70.0 to 

85.0% among the media containing zeatin, not differing among each other (Table 3).

The number of new shoots formed per explant did not differ among the 

treatments with zeatin, and so did not the number of leaves per shoot (9.0 to 12.2 

leaves per explant) (Table 3).

In Fig. 3a it is possible to observe the five treatments (0, 2.5, 5.0, 7.5, and 10 

pM) compared. The regression graphic (Fig. 3b) shows a quadratic simple linear 

regression explaining how shoot length starts higher in the concentration of 2.5 pM 

and there is a decrease in the shoot length along the concentrations, until the 

concentration of 8.1 pM zeatin.

According to these results, it is possible to choose 2.5 pM as the most 

indicated concentration, considering it was as efficient as the other treatments 

concerning survival rate of the explants, the percentage of explants with shoot 

proliferation, number of shoots per explant and number of leaves of the longest 

shoot, and beyond that, it showed a higher mean length of the longest shoot than the 

other treatments, yet having a more reduced-cost compared to the higher 

concentrations.

Our findings are similar to a work testing shoot proliferation in cranberry (V. 

macrocarpon) cultivars, where the authors studied four zeatin concentrations (1.0,

2.0, 4.0, and 6.0 pM) in the medium and found that the best proliferation occurred in 

the media with 2 -4  pM concentration of zeatin (DEBNATH, 2008).

Zeatin is one of the most used cytokinins in blueberry micropropagation 

(CAPPELLETTI; MEZZETTI, 2016). These authors tested shoots of ‘Duke’ highbush 

blueberry (V. corymbosum) with different cytokinins, zeatin (alone) and TDZ (alone or 

combined with 2iP), and found that the highest axillary bud proliferation occurred on 

media with zeatin.

In a study with stationary and temporary immersion bioreactor (DEBNATH, 

2017), testing the multiplication of nodal explants of half-high blueberry cultivar ‘St. 

C loud’ in liquid medium with 0, 2.3, 4.6, or 9.1 pM zeatin, the authors found that the 

best shoot proliferation occurred in the medium containing 4.6 pM zeatin in both 

bioreactors tested. This system was not tested in our work, but it represents an 

efficient system for mass clonal propagation.
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In a study with ‘Bluejay’ (V. corymbosum) and ‘Pink Lemonade’ blueberries 

(Vaccinium ashei) (FAN et al., 2017), the authors tested combinations of 4.56, 9.12, 

and 13.67 ^M zeatin and 0.05, 0.27, and 1.34 ^M NAA. The most appropriate 

medium was 13.68 ^M zeatin and 0.27 ^M NAA for ‘Bluejay’ multiplication, whereas 

in ‘Pink Lemonade’ 9.12 ^M zeatin with 0.05 ^M NAA showed the highest 

proliferation. For both cultivars tested by the authors, the efficient concentrations of 

zeatin were higher than the optimum concentration found in our work.

The concentrations of zeatin tested in our study during the multiplication step 

could be expanded to other cytokinins or even combinations with auxins and GA3 , 

trying to reduce the amount of zeatin and the whole cost of the process.

E xperim ent 4: M u ltip lica tion  w ith  d iffe re n t exp lan t po s itio n s

This experiment was performed two times. In the first experiment, the 

survival rate of the explants was not statistically different among treatments, varying 

from 90.7 to 100% (Table 4 and Sup. Table S4). The percentage of explants with 

shoot proliferation rate was higher in the vertical treatment (100.0%), compared to 

the horizontal treatment (83.6%). And the treatment 45° (94.3%) was similar to both 

vertical and horizontal treatments regarding survival rate. The number of new shoots 

formed per explant in the horizontal orientation (2.2 new shoots) was higher than at 

45° (1.7 new shoots); and the number obtained in the vertical position (1.8 new 

shoots) was similar to both 45° and horizontal positions. The mean length of the new 

shoots formed, was not statistically different among the three treatments, varying 

from 4.8 to 5.7 cm. The mean number of leaves per shoot was 14.2 in the treatment 

horizontal and was superior to the treatment 45° (10.9 leaves). The shoot induction 

rate in the most basal bud was not statistically different among the treatments. It 

varied from 46.4 to 59.3%. On the other hand, the shoot induction rate in the most 

apical bud was 69.1% in the treatment horizontal, being superior to the treatment 

vertical (17.9%). In the treatment 45°, it was 37.9%, and it did not differ statistically 

from the other treatments.

In the second experiment, in six of the variables evaluated, the treatments 

were not statistically different. However, in the last variable, shoot induction rate in 

the most apical bud, the behavior of the treatments was similar to the previous 

experiment. The horizontal treatment showed more shoot induction (76.7%) than the
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vertical treatment (21.7%). And the treatment 45° was 37.9, not differing statistically 

from the other treatments.

The experiment is seen in Fig. 4a-4o. The beginning o f the experiments is 

shown in Fig. 4a-4f, with the three orientations: vertical (Fig. 4a and Fig. 4d), inclined 

at 45° (Fig. 4b and Fig. 4e), and horizontal (Fig. 4c and Fig. 4f). The results of the 

vertical orientation are shown in Fig. 4g, Fig. 4j, and Fig. 4m. The 45° treatments are 

in Fig. 4h, Fig. 4k, and Fig. 4n. And horizontal treatments are demonstrated in Fig. 4i, 

4l, and 4o.

In Fig. 5, there is a diagrammatic representation of the differences between 

the explant orientations on shoot induction rate in the most apical bud (%) and shoot 

induction rate in the most basal bud (%). It is possible to evaluate that there is an 

increase in the shoot induction rate of the most apical bud when the explant 

orientation goes from the vertical to the horizontal treatment. This situation occurred 

in both experiments (the first and the second).

Considering only the horizontal and the vertical orientations, we did not 

observe differences among these two treatments, related to the survival o f explants, 

number o f shoots per explant, shoot length, and number of leaves per shoot, in both 

first and second experiment. We can notice, however, a significant difference 

occurring in the percentage o f explants with shoot proliferation, where the vertical 

orientation was superior (100% explants forming shoots) compared to the horizontal 

orientation (83.6% explants forming shoots) in the first experiment. Based on our 

results, we could recommend the use of the explants in the vertical position.

However, studying five woody species Amelanchier, Acer, Forsythia, Malus, 

and Betula, using vertical or horizontally placed explants in the culture medium 

(MCCLELLAND; SMITH, 1990), the authors found that explants in the horizontal 

orientation produced more shoots per explant, and favored the shoot initiation rates, 

compared to the vertical.

Also, in a study with lingonberry (V. vitis-idaea) nodal explants placed 

vertically or horizontally in the medium (DEBNATH, 2005), the cuttings placed 

horizontally had an increased shoot number per explant, with smaller shoots and 

lower number of leaves per shoot.

A study in ‘Troyer’ citrange (Citrus sinensis [L.] Osbeck x Poncirus trifoliata L. 

Raf.), observed the adventitious bud formation in epicotyl segments with different 

orientations in the culture medium. The explants placed horizontally had higher
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adventitious bud formation in the apical end of the explant, compared to the vertically 

upright position. And observing the adventitious bud formation of the basal end of the 

explant, the vertical position showed the highest number of new shoots formed, 

compared to the horizontal treatment (GARCÍA-LUIS et al., 1999). This study in 

citrange develops a possibility, not fully supported by their study, that the highest 

formation of shoots in the apical end of the explant positioned horizontally in the 

medium, compared to the vertical position, could be explained by the readily 

availability of cytokinins from the culture medium to this most apical bud, touching the 

medium when placed horizontally.

The blueberry is a shrub, composed of shoots that start emerging from buds 

located in the crown, and grow in two or more flushes during the growing season 

(RETAMALES; HANCOCK, 2012). These growth flushes are due to apical abortion, 

called ‘black tip ’. And then, growth restarts after an axillary bud is released from 

dormancy (BARKER; COLLINS, 1963; RETAMALES; HANCOCK, 2012). So, the fact 

that shoots emerge from the base of the plant is a natural habit in the species. 

Besides, when we prepared the explants, and the apical bud was removed, part of 

the apical dominance was lost, and the following more basal axillary buds were more 

prone to sprout. The shoot emergence in the most apical bud was the lowest in the 

vertical position of the explant and increased when the explant was inclined. Finally, 

the sprouting of the most apical bud in the explants positioned horizontally was 

higher than the other explant positions. The changes in the sprouting of the most 

apical buds in the horizontal position could be explained by a difference in the 

balance between auxins and cytokinins already available in the stems. Or else, we 

could explain these results considering that the horizontally positioned explants had a 

better contact (and especially, the most apical bud) with the medium containing 

cytokinin, favoring the sprouting of the most apical bud.

E xperim ent 5: R ooting  in d iffe re n t env ironm ents  (in  v itro  and ex v itro ) 

com b ined  w ith  d iffe re n t IBA  (indo le -3 -bu ty ric  acid) concen tra tions  (0, 250, and 

500 mg L-1).

In this rooting experiment, there was an interaction between the two factors 

(environment x IBA concentrations) only in the variable analyzed callus formation 

rate (Sup. Table S5). Observing the survival rate of the microcuttings, in vitro
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treatments were superior (99.2%) to ex vitro treatments (88.3%). And treatments with 

(250 and 500 mg L-1) or without IBA immersion did not interfere in the survival rate of 

the explants.

Observing leaf maintenance rate, the results obtained with in vitro treatments 

(99.2%) were also superior to those of ex vitro treatments (86.7%). But they were not 

affected by IBA concentrations.

Evaluating the variable callus formation rate, looking at the level in vitro 

treatments, the IBA concentrations did affect callus formation, where 500 mg L-1 was 

superior to 0 mg L-1. Whereas looking at level ex vitro treatments, the IBA 

concentrations did not show differences.

The rooting rate was higher in the in vitro treatments (22.1%) than ex vitro 

treatments (9.2%). And 500 mg L-1 showed higher rooting rate (25.0%) than 0 mg L-1 

(4.4%). But did not differ from 250 mg L-1 (17.5%). Fig.6 shows the differences 

between the six treatments (Fig. 6a -  6f). More detailed rooting is observed in Fig. 6g 

and Fig. 6h.

The number of roots formed per microcutting did not differ among treatments 

and vary from 1.0 to 1.9 roots. The length of the longest root was higher in the in vitro 

treatments (16.5 mm) compared to the ex vitro treatments (5.6 mm). And there was 

no difference among the IBA treatments.

Plants in the greenhouse, after acclimatization, can be observed in Fig. 6i.

Observing in vitro and ex vitro rooting methods in wild bilberry (NIN et al., 

2019), the authors found that both methods led to successful rooting. Based on the 

results of our work, it is possible to consider that in vitro treatments were more 

favorable to rooting explants, being superior to ex vitro treatments in four variables 

evaluated (survival, leaf maintenance, rooting rate, and length of the longest shoot). 

Considering the number of roots per explant, both treatments were equivalent. 

However, considering that ex vitro treatments already accomplish the rooting 

combined with part of the acclimatization stage, and they showed slightly lower 

efficiency in the survival rate of the microcuttings and the leaf maintenance rate, 

compared to the in vitro treatments, we suggest that ex vitro rooting could be further 

analyzed, trying different substrates, or longer immersion time in IBA, in an attempt to 

achieve higher rooting rates.

The IBA treatments were very similar in many variables evaluated; however, 

the rooting rate obtained with 500 mg L-1 IBA was higher than the result obtained
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without IBA treatment. Despite the rooting rate obtained with 250 mg L-1 did not differ 

statistically from that obtained with 500 mg L-1, we could choose the treatment 500 

mg L-1 as the best option, since the rooting rate in treatment 250 mg L-1 did not differ 

itself from the rooting rate in the treatment without IBA.

Evaluating in vitro and ex vitro rooting of ‘Bluetta’ blueberry cultivar (V. 

corymbosum) (ECCHER et al., 1986), the authors tested two IBA concentrations in a 

quick basal dip (500 and 1000 mg L-1), and a control using agar medium or peat-

perlite mixtures. Similar to our work, they found that 1000 mg L-1 IBA resulted in the

highest percentage of rooting.

E xperim ent 6 : E x v itro  roo ting  w ith  d iffe re n t subs tra tes  and m inera l sa lts

In this ex vitro rooting experiment, it was possible to identify interaction

among the two factors studied (substrate and mineral salts) only in two observed

variables (bud induction rate and callus formation rate) (Sup. Table S6). Observing 

survival rate, there was no difference among the treatments Plantmax™ (54.3%) and 

vermiculite (60.0%). However, observing the mineral salts, WPM was superior 

(84.0%) to Basacote™ (30.3%) (Table 6). This low survival rate in this treatment 

could be explained by a phytotoxic effect over the explants due to the high 

concentration of Basacote™ in this study (3 kg m-3). This concentration is commonly 

used in plant propagation substrates in open systems, with frequent irrigation, where 

part of the nutrients ends up lixiviated. However, in our closed system, nutrients 

could have been gradually released, but would have probably accumulated in the 

boxes.

The leaf maintenance rate was similar to the observations in survival rate, 

Plantmax and vermiculite did not differ statistically (54.3 and 59.0 respectively). WPM 

was superior (83.0%) than Basacote™ (30.3%).

Observing bud induction rate, looking at the treatments with Plantmax™, 

WPM treatment was similar to Basacote™. However, observing the treatments with 

vermiculite, WPM treatment (50.0%) was superior than Basacote™ (12.0%). The 

callus formation rate was similar in the treatments WPM and Basacote™, observing 

the treatments with Plantmax™. Although, there is a difference when the two 

treatments are compared inside the treatments with vermiculite (76.0% callus 

induction in the treatment WPM and 8.0% in the treatment Basacote™).
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The rooting rate was superior in vermiculite (44.0%) compared to Plantmax™ 

(13.0%) and was also superior in WPM (47.0%) than Basacote™ (10.0%). In the 

treatment combining Plantmax™ and Basacote™, there was no rooting at all.

The other three treatments, where roots were produced, did not differ 

statistically from each other, varying from 2.8 to 4.9 roots/explant. Vermiculite 

showed a longer length of the root (35.0 mm) than Plantmax™ (9.0 mm). WPM (25.0 

mm) and Basacote™ (35.7 mm) did not differ statistically.

The differences among the four treatments can be seen in Fig. 7a -  Fig. 7h. 

Detail in rooting after 28 days in vermiculite is seen in Fig. 7i. Plants acclimatized in 

the greenhouse can be observed in Fig. 7j and Fig. 7k.

It was possible to conclude that the best option was vermiculite combined 

with WPM mineral salts, both promoting higher rooting rates than Plantmax™ and 

Basacote™.

CONCLUSIONS

This study contributed to establish an in vitro shoot culture protocol for 

‘Delite’ rabbiteye blueberry (V. virgatum). It proposes the establishment of cultures 

using nodal segments, with surface sterilization as the first step, with ethanol (30 min 

at 70% solution) and sodium hypochlorite (immersion for 5 min in 0.5% solution). In 

sequence, initial in vitro establishment of nodal segments using WPM culture 

medium supplemented with zeatin, followed by the multiplication stages using zeatin, 

and explants in the vertical orientation. The rooting step can be done in vitro using 

IBA, or ex vitro in vermiculite and WPM mineral salts. The results can help better 

understand the in vitro techniques in 'Delite' rabbiteye blueberry contributing to 

further development of in vitro plant propagation, biotechnology, and in vitro 

germplasm conservation.
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SUPPLEMENTAL TABLE S1. Analysis of variance (ANOVA) of experiment 1, of 

surface sterilization evaluating the effect of different immersion times in 0.5% sodium 

hypochlorite solution containing 0.1% (v/v) Tween 20, using nodal segments on in 

vitro shoot culture in ‘Delite’ rabbiteye blueberry, with WPM culture medium. 

Abbreviations: DF, degrees of freedom; MS, mean squares, ns, non-significant; 

WPM, Woody Plant Medium.

SUPPLEMENTAL TABLE S2. Analysis of variance (two-way ANOVA) of the 

experiment 2, evaluating the effect of different combinations of two cytokinins, zeatin 

(0, 2.5, and 5.0 pM) and 2iP (0, 2.5, and 5.0 pM), on in vitro nodal segments 

establishment in ‘Delite’ rabbiteye blueberry. Abbreviations: 2iP, 2-

isopentenyladenine; DF, degrees of freedom; MS, mean squares.

SUPPLEMENTAL TABLE S3. Analysis of variance (ANOVA) of the experiment 3, 

evaluating the effect of different concentrations of zeatin (0, 2.5, 5.0, 7.5, and 10 pM) 

in the multiplication in vitro of shoots in ‘Delite’ rabbiteye blueberry, using WPM 

culture medium. Abbreviations: DF, degrees of freedom; MS, mean square; WPM, 

Woody Plant Medium.

SUPPLEMENTAL TABLE S4. Analysis of variance (ANOVA) of the experiment 4, 

evaluating the effect of different explant orientations (vertical, 45°, and horizontal) in 

the multiplication of shoots in vitro of ‘Delite’ rabbiteye blueberry, using WPM culture
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medium. Abbreviations: DF, degrees of freedom; MS, mean square; WPM, Woody 

Plant Medium.

SUPPLEMENTAL TABLE S5. Analysis of variance (two-way ANOVA) of the

experiment 5, evaluating the effect of different rooting environments (In vitro and ex 

vitro) combined with different IBA (indole-3-butyric acid) concentrations (0, 250, and 

500 mg L-1) on the rooting of micropropagated shoots of ‘Delite’ rabbiteye blueberry. 

Abbreviations: DF, degrees of freedom; IBA, indole-3-butyric acid; MS, mean square.

SUPPLEMENTAL TABLE S6. Analysis of variance (two-way ANOVA) of the

experiment 6, evaluating the effect o f different ex vitro rooting substrates 

(Plantmax™ and vermiculite) combined with different mineral salts (WPM culture 

medium salts and Basacote™) on the rooting of micropropagated shoots of ‘Delite’ 

rabbiteye blueberry. Abbreviations: DF, degrees of freedom; MS, mean square; 

WPM, Woody Plant Medium.
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TABLES

Table 1. Effect of different immersion times in 0.5% sodium hypochlorite solution containing 0.1% (v/v) 

Tween 20, on surface sterilization of nodal segments on in vitro shoot culture in ‘Delite' rabbiteye 

blueberry, using WPM culture medium.

Treatment
Percentage of uncontaminated 

explants
Survival rate of the explants

Percentage of explants with 

axillary shoot growth

% % %

0 min 96.7 ± 3.3 a 90.0 ± 5.8 a 83.3 ± 3.3 a

5 min 96.7 ± 3.3 a 96.7 ± 3.3 a 83.3 ± 3.3 a

10 min 96.7 ± 3.3 a 86.7 ± 6.7 a 70.0 ± 11.5 a

20 min 93.3 ± 6.7 a 93.3 ± 6.7 a 73.3 ± 3.3 a

Mean 95.8 91.7 77.5

CV% 8.0 10.9 14.4

Results are presented as mean ± standard error (SE). Means in each column followed by the same 

letters do not differ significantly at 5% according to Tukey's multiple range test. Abbreviation: CV, 

coefficient of variation; WPM, Woody Plant Medium.
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Table 2. Effect of different combinations of two cytokinins, zeatin (0, 2.5, and 5.0 |aM) and 2iP (0 and

20.0 |aM), in the establishment of nodal segments in vitro of ‘Delite' rabbiteye blueberry, using WPM

culture medium.

Zeatin 2iP

0 |iM 20 |iM mean

Survival rate of the explants (%)

0 |iM zeatin 37.2 ± 11.6 43.1± 9.0 39.2 b

2.5 |iM zeatin 92.3 ± 4.5 87.6 ± 5.9 89.9 a

5 |iM zeatin 74.1 + 10.3 86.7 ± 8.2 80.4 a

mean 67.2 A 72.5 A 69.8

CV%: 24.6

Percentage of explants with axillary shoot growth (%)

0 |iM zeatin 0.0 ± 0.0 bA 8.1 ± 4.9 bA 4.1

2.5 |iM zeatin 84.5 ± 6.8 aA 60.5 ± 8.4 aB 72.5

5 |iM zeatin 57.6 ± 10.2 aB 81.7 ± 10.7 aA 69.6

mean 47.4 50.1 48.7

CV%: 31.7

Number of new shoots formed/explant (n.)

0 |iM zeatin NA 1.0 ± 0.0 1.0 a

2.5 |iM zeatin 1.0 ± 0.0 1.0 ± 0.0 1.0 a

5 |iM zeatin 1.0 ± 0.0 1.0 ± 0.0 1.0 a

Mean 1.0 A 1.0 A 1.0

CV%: 0.0

Mean length of shoots (cm)

0 |iM zeatin NA 0.4 ± 0.1 0.4 b

2.5 |iM zeatin 1.5 ± 0.32 0.5 ± 0.04 1.0 a

5 |iM zeatin 0.5 ± 0.06 0.33 ± 0.03 0.4 b

mean 1.0 A 0.4 B 0.7

CV%: 47.2

Number of leaves/shoot (n.)

0 |iM zeatin NA 4.0 ± 2.0 4.0 b

2.5 |iM zeatin 10.8 ± 1.4 9.6 ± 0.7 10.2 a

5 |iM zeatin 6.3 ± 0.6 7.5 ± 1.0 6.9 ab

mean 8.5 A 7.6 A 8.0

CV%: 25

Results are presented as mean ± standard error (SE). Means in each column followed by the same 

lowercase letters and means in each horizontal line followed by the same uppercase letters do not 

differ significantly at 5% according to Tukey's multiple range test. Abbreviation: 2iP, 2- 

isopentenyladenine; CV, coefficient of variation; NA, not available; WPM, Woody Plant Medium.
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Table 3. Effect of different concentrations of zeatin (0, 2.5, 5.0, 7.5, and 10 pM) in the multiplication of

shoots in vitro of ‘Delite' rabbiteye blueberry, using WPM culture medium.

Treatment
Percentage of explants with 

shoot proliferation

%

Number of new shoots 

formed/explant 

n

Number of leaves of the 

longest shoot 

n

0 |iM zeatin 0.0 ± 0.0 b NA NA

2.5 |iM zeatin 70.0 ± 5.7 a 1.0 ± 0.0 a 11.7 ± 0.4 a

5 |iM zeatin 85.0 ± 5.0 a 1.0 ± 0.0 a 9.0 ± 0.5 a

7.5 |iM zeatin 80.0 ± 0.0 a 1.0 ± 0.0 a 12.2 ± 1.6 a

10 |iM zeatin 80.0 ± 0.0 a 1.0 ± 0.0 a 9.9 ± 1.0 a

Mean 69.40 1.00 10.70

CV% 11.00 0.00 18.10

Results are presented as mean ± standard error (SE). Means in each column followed by the same 

letters do not differ significantly at 5% according to Tukey's multiple range test. Abbreviation: CV, 

coefficient of variation; WPM, Woody Plant Medium.
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Table 4. Effect of different explant orientations (vertical, 45°, and horizontal) in the multiplication of

shoots in vitro of ‘Delite' rabbiteye blueberry, using WPM culture medium.

Treatment
Survival of 

the explants

Percentage of 

explants with 

shoot 

proliferation

Number of 

new shoots 

formed/ 

explant

Mean 

length of 

new 

shoots 

formed

Mean number 

of leaves/ 

shoot formed

Shoot 

induction rate 

in the most 

basal bud (%)

Shoot induction 

rate in the most 

apical bud (%)

% % n cm n % %

1st- Experiment replication

Vertical 100.0 ± 0.0 a 100.0 ± 0.0 a 1.8 ± 0.1 ab 5.1 ± 0.3 a 12.7 ± 0.5 ab 46.4 ± 12.7 a 17.9 ± 7.1 b

45° 94.3 ± 3.7 a 94.3 ± 3.7 ab 1.7 ± 0.1 b 5.7 ± 0.6 a 10.9 ± 0.4 b 59.3 ± 5.7 a 37.9 ± 9.1 ab

Horizontal 90.7 ± 4.4 a 83.6 ± 4.3 b 2.2 ± 0.2 a 4.8 ± 0.6 a 14.2 ± 1.3 a 50.0 ± 12.7 a 69.1 ± 14.6 a

Mean 95.0 92.6 1.9 5.2 12.6 51.9 41.6

CV% 9.3 9.4 20.5 25.1 17.2 55.6 68.4

2nd- Experiment replication

Vertical 96.4 ± 3.6 a 81.0 ± 7.4 a 1.6 ± 0.2 a 5.7 ± 0.5 a 13.1 ± 1.3 a 42.1 ± 9.9 a 21.7 ± 11.3 b

45° 90.7 ± 4.4 a 87.9 ± 6.2 a 1.6 ± 0.1 a 4.3 ± 0.5 a 11.9 ± 1.0 a 29.3 ±9.0 a 37.9 ± 12.1 ab

Horizontal 88.8 ± 5.5 a 86.0 ± 5.2 a 2.1 ± 0.2 a 5.1 ± 1.0 a 13.3 ± 1.6 a 26.4 ±6.8 a 76.7 ± 9.5 a

Mean 92.0 84.9 1.8 5.0 12.8 32.6 45.4

CV% 13.1 19.8 25.2 35.4 26.8 70.3 64.3

Results are presented as mean ± standard error (SE). Means in each column followed by the same 

letters do not differ significantly at 5% according to Tukey's multiple range test. Abbreviation: CV, 

coefficient of variation; WPM, Woody Plant Medium.
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Table 5. Effect of different rooting environments (In vitro and ex vitro) combined with different IBA 

(indole-3-butyric acid) concentrations (0, 250, and 500 mg L-1) on the rooting of micropropagated 

shoots of ‘Delite' rabbiteye blueberry.

Environment IBA

0 mg L-1 250 mg L-1 500 mg L-1 mean

Survival rate (%)

In vitro 97.5 ± 2.5 100.0 ± 0.0 100.0 ± 0.0 99.2 a

Ex vitro 95.0 ± 2.9 92.5 ± 4.8 77.5 ± 9.5 88.3 b

mean 96.3 A 96.3 A 88.8 A 93 .8

CV%: 9.8

Leaf maintenance rate (%)

In vitro 97.5 ± 2.5 100.0 ± 0.0 100 ± 0.0 99.2 a

Ex vitro 95.0 ± 2.9 87.5 ± 7.5 77.5 ± 9.5 86.7 b

mean 96.3 A 93.8 A 88.8 A 92.9

CV%: 11.1

Callus formation rate (%)

In vitro 31.3 ± 17.1 aB 45.0 ± 6.5 aAB 77.5 ± 13.2 aA 51.3

Ex vitro 17.5 ± 2.5 aA 25.0 ± 6.5 aA 12.5 ± 6.3 bA 18.3

mean 24.4 35.0 45.0 34.8

CV%: 57.3

Rooting rate (%)

In vitro 8.8 ± 5.9 20.0 ± 7.1 37.5 ± 10.3 22.1 a

Ex vitro 0.0 ± 0.0 15.0 ± 2.9 12.5 ± 6.3 9.2 b

mean 4.4 B 17.5 AB 25.0 A 15.6

CV%: 80.1

Number of roots/explant (n)

In vitro 1.0 ± 0.0 1.6 ± 0.1 2.1 ± 0.7 1.8 a

Ex vitro NA 2.1 ± 0.7 1.4 ± 0.4 1.7 a

mean 1.0 A 1.9 A 1.8 A 1.7

CV%: 59.6

Length of the longest root (mm)

In vitro 7.5 ± 5.5 16.2 ± 4.5 21.3 ± 2.7 16.5 a

Ex vitro NA 6.0 ± 2.2 5.1 ± 1.8 5.6 b

mean 7.5 A 10.4 A 14.3 A 11 .8

CV%: 44.6

Results are presented as mean ± standard error (SE). Means in each column followed by the same 

lowercase letters and means in each horizontal line followed by the same uppercase letters do not 

differ significantly at 5% according to Tukey's multiple range test. Abbreviation: CV, coefficient of 

variation; IBA, indole-3-butyric acid; NA, not available.
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Table 6. Effect of different ex vitro rooting substrates (Plantmax™ and vermiculite) combined with 

different mineral salts (WPM culture medium salts and Basacote™) on the rooting of micropropagated 

shoots of ‘Delite' rabbiteye blueberry.

Substrate Mineral salts

WPM culture medium Basacote™ mean

Survival rate (%)
Plantmax™ 80.0 ± 7.1 28.7 ± 11.6 54.3 a

vermiculite 88.0 ± 5.8 32.0 ± 16.9 60.0 a

mean 84.0 A 30.3 B 57.2

CV%: 43.9

Leaf maintenance rate (%)
Plantmax™ 80.0 ± 7.1 28.7 ± 11.6 54.33 a

vermiculite 86.0 ± 5.1 32.0 ± 16.9 59.0 a

mean 83.0 A 30.3 B 56.7

CV%: 43.9

Bud induction rate (%)
Plantmax™ 10.0 ± 4.5 bA 2.2 ± 2.2 aA 6.1

vermiculite 50.0 ± 8.9 aA 12.0 ± 9.7 aB 31.0

mean 30.0 7.1 18.6

CV%: 85.0

Callus formation rate (%)
Plantmax™ 4.0 ± 4.0 bA 0.0 ± 0.0 aA 2.0

vermiculite 76.0 ± 4.0 aA 8.0 ± 8.0 aB 42.0

mean 40.0 4.0 22.0

CV%: 49.8

Rooting rate (%)
Plantmax™ 26.0 ± 11.2 0.0 ± 0.0 13.0 b

vermiculite 68.0 ± 8.0 20.0 ± 13.0 44.0 a

mean 47.0 A 10.0 B 28.5

CV%: 74.4

Number of roots/explant (n)
Plantmax™ 2.8 ± 1.2 NA 2.8 a

vermiculite 4.9 ± 0.4 3.5 ± 1.6 4.4 a

mean 4.1 A 3.5 A 4.0

CV%: 46.1

Length of the longest root (mm)
Plantmax™ 9.0 ± 3.3 NA 9.0 b

vermiculite 34.6 ± 5.6 35.7 ± 8.8 35.0 a

mean 25.0 A 35.7 A 28.0

CV%: 43.3

Results are presented as mean ± standard error (SE). Means in each column followed by the same

lowercase letters and means in each horizontal line followed by the same uppercase letters do not 

differ significantly at 5% according to Tukey's multiple range test. Abbreviation: CV, coefficient of 

variation; NA, not available, WPM, Woody plant medium.
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LEGENDS TO FIGURES

Fig. 1. Initial establishment of nodal segments on in vitro shoot culture in ‘Delite’ 

rabbiteye blueberry, using WPM culture medium. (a -d) Effect of different immersion 

times in 0.5% sodium hypochlorite solution containing 0.1% (v/v) Tween 20, on 

surface sterilization of nodal segments. (a) 0 min. (b) 5 min. (c) 10 min. (d) 15 min. 

Abbreviations WPM, Woody Plant Medium. Scale bars = 1.0 cm.

Fig. 2. Initial establishment of nodal segments on in vitro shoot culture in ‘Delite’ 

rabbiteye blueberry, using WPM culture medium. (a -f) Effect of different 

combinations of two cytokinins, zeatin (0, 2.5, and 5.0 ^M) and 2iP (0 and 20.0 ^M), 

in the establishment of nodal segments in vitro. (a) Treatment 0 ^M zeatin and 0 ^M 

2iP. (b) Treatment 2.5 ^M zeatin and 0 ^M 2iP. (c) Treatment 5.0 ^M zeatin and 0 

^M 2iP. (d) Treatment 0 ^M zeatin and 20.0 ^M 2iP. (e) Treatment 2.5 ^M zeatin and

20.0 ^M 2iP. (f) Treatment 5.0 ^M zeatin and 20.0 ^M 2iP. Abbreviations 2iP, 2- 

isopentenyladenine; WPM, Woody Plant Medium. Scale bars = 1.0 cm.

Fig. 3. Effect of different concentrations of zeatin (0, 2.5, 5.0, 7.5, and 10 ^M) in the

multiplication of in vitro shoots of ‘Delite’ rabbiteye blueberry, using WPM culture

medium. (a) The differences among the five treatments in multiplication. (b) Simple 

linear regression graphic showing the effect of different zeatin concentrations (0, 2.5,

5.0, 7.5, and 10 ^M) on the dependent variable shoot length (cm). ** statistically 

significant with p-value <=0.01. Abbreviations: WPM, Woody Plant Medium. Scale 

bar = 1.0 cm.

Fig. 4. Effect of different explant orientations (vertical, 45°, and horizontal) in the 

multiplication of shoots in vitro of ‘Delite’ rabbiteye blueberry, using WPM culture

medium. Scale bars = 1.0 cm. (a, d, g, j, k) Vertical treatments. (b, e, h, l, m) 45°

treatments. (c, f, i, n, o) Horizontal treatments. Abbreviations: WPM, Woody Plant 

Medium. Scale bars = 1.0 cm.
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Fig. 5. Diagrammatic representation of the effect of different explant orientations 

(vertical, 45°, and horizontal) in the shoot induction rate (%) in the most apical bud 

and in the most basal bud, using in vitro shoots of ‘Delite’ rabbiteye blueberry, using 

WPM culture medium. The graphic on the left represents the 1st experiment and the 

graphic on the right represents the 2nd experiment. Means followed by the arrow with 

the same letters do not differ significantly at 5% according to Tukey’s multiple range 

test. Abbreviations: WPM, Woody Plant Medium.

Fig. 6. Effect of different rooting environments (In vitro and ex vitro) combined with 

different IBA (indole-3-butyric acid) concentrations (0, 250, and 500 mg L-1) on the 

rooting of micropropagated shoots of ‘Delite’ rabbiteye blueberry. (a, b, c) In vitro 

treatments (d, e, f) Ex vitro treatments. (a, d) 0 mg L-1 IBA. (b, e) 250 mg L-1 IBA. (c, 

f) 500 mg L-1 IBA. (g) Details on in vitro rooting. (h) Root details (i) Acclimatized 

plants in the greenhouse. Abbreviations: IBA, indole-3-butyric acid. Scale bars = 1.0 

cm.

Fig. 7. Effect of different ex vitro rooting substrates (Plantmax™ and vermiculite) 

combined with different mineral salts (WPM culture medium salts and Basacote™) on 

the rooting of micropropagated shoots of ‘Delite’ rabbiteye blueberry. (a, b) 

Plantmax™ and WPM. (c, d) Plantmax™ and Basacote™. (e, f) Vermiculite and 

WPM. (g, h) Vermiculite and Basacote™. (i, j) Details on rooting. (i) Acclimatized 

plant in the greenhouse. Abbreviations: WPM, Woody Plant Medium. Scale bars =

1.0 cm.
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SUPPLEMENTAL TABLES

SUPPLEMENTAL TABLE S1. Analysis of variance (ANOVA) of experiment 1, of surface sterilization 

evaluating the effect of different immersion times in 0.5% sodium hypochlorite solution containing 

0.1% (v/v) Tween 20, using nodal segments on in vitro shoot culture in ‘Delite' rabbiteye blueberry, 

with WPM culture medium. Abbreviations: DF, degrees of freedom; ms, mean squares, WPM, Woody 

Plant Medium

Percentage of 

uncontaminated explants
Survival rate of the explants

Percentage of explants with 

axillary shoot growth

DF ms ms ms

Treatment 3 8.3 55.600 141.70

Residuals 8 58.3 100.000 125.00

Total 11

p-value 0.9314 ns 0.6588 ns 0.3922 ns

* significant different with 0.05 > p-value > 0.01

** significant different with p-value <=0.01 

ns, non-significant, p-value >= 0.05
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SUPPLEMENTAL TABLE S2. Analysis of variance (two-way ANOVA) of the experiment 2, evaluating 

the effect of different combinations of two cytokinins, zeatin (0, 2.5, and 5.0 |aM) and 2iP (0 and 20.0 

^iM), on in vitro nodal segments establishment in ‘Delite' rabbiteye blueberry. Abbreviations: 2iP, 2- 

isopentenyladenine; DF, degrees of freedom; ms, mean squares, WPM, Woody Plant Medium.

Source DF ms p value

Survival rate of the explants (%) Zeatin concentrations 2 5824.000 0.00003 **

2iP concentrations 1 167.000 0.4600 ns

Interaction (zeatin x 2iP) 2 159.000 0.5910 ns

Error 18 294.000

Total 23

Percentage of explants with axillary shoot

growth (%) Zeatin concentrations 2 11992.000 0.00000004 **

2iP concentrations 1 45.000 0.6694 ns

Interaction (zeatin x 2iP) 2 1200.000 0.0186 *

Error 18 239.000

Total 23

Number of new shoots formed/explant (n.) Zeatin concentrations 2 0.000000 0.562 ns

2iP concentrations 1 0.000000 0.317 ns

Interaction (zeatin x 2iP) 1 0.000000 0.317 ns

Error 13 0.000000

Total 17

Mean length of shoots (cm) Zeatin concentrations 2 0.774 0.0063 **

2iP concentrations 1 1.381 0.0026 **

Interaction (zeatin x 2iP) 1 0.681 0.0220 *

Error 13 0.101

Total 17

Number of leaves/shoot (n.) Zeatin concentrations 2 39.770 0.0025 **

2iP concentrations 1 0.010 0.9707 ns

Interaction (zeatin x 2iP) 1 5.640 0.2575 ns

Error 13 4.020

Total 17

* significant different with 0.05 > p-value > 0.01

** significant different with p-value <=0.01 

ns, non-significant, p-value >= 0.05
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SUPPLEMENTAL TABLE S3. Analysis of variance (ANOVA) of the experiment 3, evaluating the effect 

of different concentrations of zeatin (0, 2.5, 5.0, 7.5, and 10 ^iM) in the multiplication in vitro of 

microshoots in ‘Delite' rabbiteye blueberry, using WPM culture medium. Abbreviations: DF, degrees of 

freedom; ms, mean square.

Survival

rate

Shoot 

proliferation rate

Number of new shoots 

formed/explant

Shoot

length

Number of 

leaves/shoot

DF ms ms DF ms ms ms

Treatment 4 0.00 2848.50 3 0.00 2.30 8.81

Residuals 12 0.00 58.30 11 0.00 0.47 3.78

Total 16 14

p-value 0.5681 ns 0.0000003 ** 0.47367 ns 0.021309 * 0.13045 ns

* significant different with 0.05 > p-value > 0.01 

** significant different with p-value <=0.01 

ns, non-significant, p-value >= 0.05

SUPPLEMENTAL TABLE S4. Analysis of variance (ANOVA) of the experiment 4, evaluating the effect 

of different explant orientations (vertical, 45°, and horizontal) in the multiplication of microshoots in 

vitro of ‘Delite' rabbiteye blueberry, using WPM culture medium. Abbreviations: DF, degrees of 

freedom; ms, mean square.

Shoot

Treatment
Survival

rate

proliferation 

rate 

(percentage 

of explants 

forming 

new shoots)

Number of 

new shoots 

formed/ 

explant

Mean 

length of 

new shoots 

formed

Mean 

number of 

leaves/ 

shoot 

formed

Shoot 

induction 

rate in the 

most basal 

bud (%)

Shoot 

induction 

rate in the 

most apical 

bud (%)

DF ms ms ms ms ms ms ms

1st. experiment replication

Treatment 2 153.571 486.900 0.629 1.247 19.985 308.330 4657.900

Residuals 18 77.381 75.400 0.150 1.696 4.721 831.380 809.800

Total 20

p-value 0.1664 ns 0.0077 ** 0.0320 * 0.4932 ns 03112 * 0.695 ns 0.0117 *

2nd. experiment replication

Treatment 2 110.040 89.011 0.586 3.444 4.112 490.480 5592.200

Residuals 18 145.360 281.601 0.196 3.182 11.773 525.640 851.800

Total 20

p-value 0.4834 ns 0.733 ns 0.075 ns 0.3599 ns 0.7099 ns 0.412 ns 0.0072 **

* significant different with 0.05 > p-value > 0.01

** significant different with p-value <=0.01

ns, non-significant, p-value >= 0.05
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SUPPLEMENTAL TABLE S5. Analysis of variance (two-way ANOVA) of the experiment 5, evaluating 

the effect of different rooting environments (In vitro and ex vitro) combined with different IBA (indole-3- 

butyric acid) concentrations (0, 250, and 500 mg L-1) on the rooting of micropropagated shoots of 

‘Delite' rabbiteye blueberry. Abbreviations: DF, degrees of freedom; IBA, indole-3-butyric acid; ms, 

mean square.

Source DF ms p-value

Survival rate (%) Environment (in vitro or ex vitro) 1 704.200 0.0099 **

IBA concentration 2 150.000 0.1986 ns

Environment x IBA 2 216.700 0.1053 ns

Residuals 18 84.700

Total 23

Survival rate (%) Environment (in vitro or ex vitro) 1 937.500 0.0084 **

IBA concentration 2 116.700 0.3571 ns

Environment x IBA 2 200.000 0.1828 ns

Residuals 18 106.900

Total 23

Callus formation rate (%) Environment (in vitro or ex vitro) 1 6501.000 0.0008 ***

IBA concentration 2 851.000 0.1461 ns

Environment x IBA 2 1564.000 0.0381 *

Residuals 18 397.000

Total 23

Rooting rate (%) Environment (in vitro or ex vitro) 1 1001.000 0.0220 *

IBA concentration 2 871.900 0.0139 *

Environment x IBA 2 226.000 0.2679 ns

Residuals 18 159.400

Total 23

Number of roots/explant (n) Environment (in vitro or ex vitro) 1 0.103 0.762 ns

IBA concentration 2 0.586 0.594 ns

Environment x IBA 1 1.234 0.307 ns

Residuals 11 1.074

Total 15

Length of the longest root (mm) Environment (in vitro or ex vitro) 1 471.600 0.0016 **

IBA concentration 2 112.500 0.0471 *

Environment x IBA 1 30.900 0.3123 ns

Residuals 11 27.500

Total 15

* significant different with 0.05 > p-value > 0.01

** significant different with p-value <=0.01

ns, non-significant, p-value >= 0.05
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SUPPLEMENTAL TABLE S6. Analysis of variance (two-way ANOVA) of the experiment 6, evaluating 

the effect of different ex vitro rooting substrates (Plantmax™ and vermiculite) combined with different 

mineral salts (WPM culture medium salts and Basacote™) on the rooting of micropropagated shoots 

of ‘Delite' rabbiteye blueberry. Abbreviations: DF, degrees of freedom; ms, mean square.

Source DF ms p-value

Survival rate (%) Substrate (Plantmax™ x vermiculite) 1 161.000 0.620047 ns

Mineral salts (WPM x Basacote™) 1 14402.000 0.000202 ***

Substrate x mineral salts 1 27.000 0.838038 ns

Residuals 16 629.000

Total 19

Leaf maintenance rate (%) Substrate (Plantmax™ x vermiculite) 1 109.000 0.680242 ns

Mineral salts (WPM x Basacote™) 1 13871.000 0.000225 **

Substrate x mineral salts 1 9.000 0.906331 ns

Residuals 16 619.000

Total 19

Bud induction rate (%) Substrate (Plantmax™ x vermiculite) 1 3097.600 0.00278 **

Mineral salts (WPM x Basacote™) 1 2619.800 0.00507 **

Substrate x mineral salts 1 1141.600 0.04787 *

Residuals 16 248.700

Total 19

Callus formation rate (%) Substrate (Plantmax™ x vermiculite) 1 8000.000 0.0000004 **

Mineral salts (WPM x Basacote™) 1 6480.000 0.000002 **

Substrate x mineral salts 1 5120.000 0.000007 **

Residuals 16 120.000

Total 19

Rooting rate (%) Substrate (Plantmax™ x vermiculite) 1 4805.000 0.00484 **

Mineral salts (WPM x Basacote™) 1 6845.000 0.00127 **

Substrate x mineral salts 1 605.000 0.26326 ns

Residuals 16 450.000

Total 19

Number of roots/explant (n) Substrate (Plantmax™ x vermiculite) 1 5.499 0.234 ns

Mineral salts (WPM x Basacote™) 1 4.070 0.301 ns

Substrate x mineral salts

Residuals 8 3.325

Total 10

Length of the longest root (mm) Substrate (Plantmax™ x vermiculite) 1 1475.400 0.0131 *

Mineral salts (WPM x Basacote™) 1 2.100 0.907 ns

Substrate x mineral salts

Residuals 8 146.300

Total 10

* significant different with 0.05 > p-value > 0.01

** significant different with p-value <=0.01

ns, non-significant, p-value >= 0.05



96

4 CHAPTER III

M orpho log ica l and anatom ica l ins ig h ts  in to  de novo  sh o o t o rganogenes is  o f in  

v itro  ‘D elite ’ rabb iteye  b lueberries  3

Carolina Schuchovski1*, Bruno Francisco Sant'Anna-Santos2, Raquel Cristina Marra3, 

Luiz Antonio Biasi4

1 Pós-graduação em Produção Vegetal, Universidade Federal do Paraná, Rua dos 

Funcionários, 1540, 80035-050, Curitiba, PR, Brazil. E-mail: 

carolina.sschu@ gmail.com. ORCID: 0000-0002-6328-8991

2 Laboratório de Anatomia e Biomecânica Vegetal, Departamento de Botânica, Setor 

de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco 

H. dos Santos, 100, Centro Politécnico, Jardim das Américas, C.P. 19031, 81531

980, Curitiba, PR, Brazil. E-mail: brunofrancisco@ ufpr.br. ORCID: 0000-0002-8327

2081

3 Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do 

Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico, Jardim 

das Américas, C.P. 19031, 81531-980, Curitiba, PR, Brazil. E-mail: 

rc.marra23@ gmail.com. ORCID: 0000-0003-2621-8107

4 Departamento de Fitotecnia e Fitossanidade, Universidade Federal do Paraná, Rua 

dos Funcionários, 1540, 80035-050, Curitiba, PR, Brazil, E-mail: biasi@ ufpr.br. 

ORCID: 0000-0002-3479-8925

C o rre s p o n d in g  au thor:

E-mail address: carolina.sschu@ gmail.com (Carolina Schuchovski).

3 This manuscript is published at the Journal Heliyon, volume 6, issue 11, E05468, 2020.
Available at https://doi.org/10.1016/j.heliyon.2020.e05468
Received 28 August 2020; Received in revised form 30 October 2020; Accepted 5 November 2020 
2405-8440/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:carolina.sschu@gmail.com
mailto:brunofrancisco@ufpr.br
mailto:rc.marra23@gmail.com
mailto:biasi@ufpr.br
mailto:carolina.sschu@gmail.com
https://doi.org/10.1016/j.heliyon.2020.e05468
http://creativecommons.org/licenses/by/4.0/


97

Blueberries are valued for their taste and their high nutritional benefits, including their 

antioxidant and anti-inflammatory properties. In vitro culturing is an alternative 

method for clonal propagation, and has been used in many biotechnological studies. 

Most blueberry research is concentrated on highbush and lowbush taxa (Vaccinium  

corymbosum  and Vaccinium angustifolium  respectively), with only limited 

investigations of rabbiteye cultivars (Vaccinium virgatum) that are more suitable for 

subtropical climates and regions with warmer winters as a result of climate change. 

There is therefore a need to determine in vitro protocols for that species and group of 

cultivars. We examined here adventitious shoot regeneration in the ‘Delite’ rabbiteye 

blueberry cultivar. Leaf explants were cultured in vitro in Woody Plant Medium 

(WPM), and the effects of different thidiazuron (TDZ) concentrations, the orientation 

of the leaf (adaxial or abaxial surface in contact with the medium), and two portions 

of the leaf segment (basal or apical) were examined. De novo shoot development 

was studied using light and scanning electron microscopy. All concentrations of TDZ 

used showed similar survival and regeneration rates; 0.5 ^M TDZ showed high 

efficiency in regenerating adventitious shoots (100%, with 57 adventitious 

shoots/explant), as did the adaxial surface in contact with the medium using either 

the apical or the basal portion of the leaf (97% shoot regeneration, 47.5 adventitious 

shoots/explant). Anatomical analyses showed direct and indirect organogenesis. The 

shoots developed leaf primordia with stomata, trichomes, and well-developed 

vascular tissues, with further elongation and rooting of the plants. We therefore 

describe here a high-efficiency regeneration method through de novo shoot 

organogenesis using TDZ in foliar explants of rabbiteye blueberry, with direct and 

indirect organogenesis.

KEYWORDS

Ericaceae, scanning electron microscopy (SEM), light microscopy, 

organogenesis, in vitro regeneration, Vaccinium virgatum.

ABSTRACT



98

2iP, 2-isopentenyladenine, 6-(y-y-dimethylallylamino)-purine); Ab, abaxial; 

Ad, adaxial; Ca, callus; CV, coefficient of variation; DF: degrees of freedom; Ex, 

explant; GC; guard cell; IAA, indole-3-acetic acid; IBA, indole-3-butyric acid; LP, leaf 

primordium; ms, mean squares; MS, Murashige and Skoog Medium; NA, not 

available; NAA, a  -naphthaleneacetic acid; ns, non-significant; Os, ostiole; Pc, 

procambium; R, roots; SAM, shoot apical meristem; SE, standard error; SEM, 

scanning electron microscopy; Sh, shoot; TDZ, thidiazuron; Tr, trichome; VT, 

vascular tissue; WPM, woody plant medium.

INTRODUCTION

Blueberry is a perennial fruit crop of the Ericaceae family and genus 

Vaccinium. The fruits offer high nutraceutical benefits, and show antioxidant and anti

inflammatory properties [1]. Blueberries are rich in polyphenol compounds that can 

induce neurogenesis in adults [2] with anti-inflammatory activity [3]. Additionally, 

blueberries have high concentrations of anthocyanins, with beneficial effects against 

chronic diseases such as cancer, diabetes, neurodegenerative diseases, and 

cardiovascular disorders [4], and have high concentrations of vitamin C [5].

The fact that blueberries have several bioactive compounds related to health 

benefits, in addition to their good taste makes them attractive to consumers -  and 

production has been steadily increasing, with the commercialization of fresh fruits as 

well as juices, and frozen and dried processed products [1].

Multiple species are involved in the commercial production of blueberries, 

with the vast majority composed of Vaccinium corymbosum  L. (tetraploid highbush 

blueberry) and its hybrids and Vaccinium angustifolium  Ait. (tetraploid lowbush 

blueberry), with lesser quantities of Vaccinium virgatum  Ait. (hexaploid rabbiteye 

blueberry) [6]. Increased demand has led to increases in blueberry production in 

different regions beyond its native origin -  demanding new cultivars adapted to 

different environments. In warmer regions, rabbiteye blueberries have been shown to 

be a noteworthy alternative, with lower demands for cold and chilling hours to grow 

and produce.

ABBREVIATIONS
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Blueberry crops are mainly propagated vegetatively through cuttings, which 

can lead to pathogenic infections. Therefore, for best blueberry production, 

vegetative propagation should employ methods that assure phytosanitary standards. 

In vitro culture therefore represents an important method for blueberry clonal 

propagation, as it can potentially produce large numbers of plants and propagate 

newly released cultivars [7]. There has been a good deal of previous research on in 

vitro blueberry culturing, although much of it has been related to cultivars adapted to 

temperate climates. Numerous studies have focused on highbush and lowbush 

cultivars [8-17], but only a few studies have focused on rabbiteye in vitro 

regeneration techniques [10].

The protocols already developed are specific to each genotype, and depend 

on suitable concentrations of growth regulators in the culture medium [8], indicating 

the importance of research into specific protocols for different genotypes. Therefore, 

specific techniques need to be developed for rabbiteye blueberry cultivars that are 

better adapted to warmer winter regions, with efficient in vitro regeneration protocols 

that could be used for mass propagation as well as for the development of other 

studies in biotechnology.

Different growth regulators used in culture media will elicit distinct 

morphogenic responses [8,18], and adventitious bud regeneration protocols for 

blueberries have employed cytokinins and auxins, such as IAA (indole-3-acetic acid), 

2iP [2-isopentenyladenine; 6-(y-y-dimethylallylamino)-purine], TDZ (thidiazuron), NAA 

(a-naphthaleneacetic acid), zeatin [as reviewed in 18], and IBA (indole-3-butyric acid) 

[10].

Thidiazuron (TDZ) has been used in many in vitro culture protocols, and 

elicits effects similar to auxins and cytokinins [16]. It has been tested in the in vitro 

regeneration of some Vaccinium  species [11,13,15,16,19-22], as well as other 

genera, such as Billbergia [23], Melastoma [24], Brassica [25], Cucumis [26], Populus 

[27], Arachis [28], Ficus [29-33], Morus [34], Chenopodium  [35] and Lotus [36].

TDZ has been widely employed in many in vitro techniques, such as 

micropropagation, and has been found to induce axillary proliferation at low 

concentrations. It can also be used at high concentrations (greater than 1 ^M) for 

callus formation, organogenesis, and somatic embryogenesis. The high activity of 

TDZ can be explained by its lower susceptibility to enzymatic degradation as 

compared to natural cytokinins, and it can be useful with genotypes that are
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otherwise difficult to propagate, including woody species. Its use in high 

concentrations can lead to undesirable effects, however, such as reduced shoot 

elongation, hyperhydricity, and shoot fasciation. It is of significant importance to 

determine the optimal TDZ concentration (or combinations of TDZ with other growth 

regulators) required for efficient in vitro regeneration process [37].

We therefore sought to develop an efficient in vitro regeneration technique for 

‘Delite’ rabbiteye blueberry through shoot organogenesis from leaf explants, to study 

the developmental process of the de novo formed shoots, and to address a number 

of questions: what TDZ medium concentration is most suitable for inducing 

adventitious shoot formation from leaf explants? Will leaf explant orientation and 

portions affect the results? Is organogenesis direct or indirect? Are de novo shoots 

well-formed?

MATERIAL AND METHODS 

P lant m ateria l

Leaf explants of the ‘Delite’ rabbiteye blueberry cultivar were collected from 

in vitro plants growing on WPM [38] supplemented with Murashige and Skoog (MS) 

organic compounds [39], 2.5 ^M zeatin, and 30 g L-1 sucrose. All media were jellified 

with 7 g L-1 agar (Vetec, Rio de Janeiro/Brazil) after the pH was adjusted to 5.2. The 

media were then autoclaved at 120 °C and 1.0 atm for 20 min; the zeatin was 

sterilized through 0.22 ^m filters and added to the cooled media. Cultures were 

maintained at 25 ± 2 °C under cool daylight at 40 ^mol m-2 s-1 with a 16-h 

photoperiod.

E xperim ent w ith  d iffe re n t TDZ concen tra tions  in WPM cu ltu re  m edium

This organogenesis experiment was conducted using a completely 

randomized design, with six treatments representing different TDZ concentrations (0, 

0.5, 1.0, 1.5, 2.0 and 2.5 ^M). The medium was prepared using WPM culture 

medium supplemented with MS organic compounds, 30 g L-1 sucrose, and different 

TDZ concentrations. All media were jellified with 7 g L-1 agar (Vetec) after the pH was 

adjusted to 5.2. The media were then autoclaved at 120 °C and 1.0 atm and poured
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into sterilized Petri dishes (15 mL/dish). Leaf explants were collected from in vitro 

plants and placed in the Petri dishes with their adaxial surfaces in contact with the 

medium. Cultures were maintained in the culture room as described above. Each 

treatment used four replications (ten leaf explants in each replicate, placed in one 

Petri dish), for a total of 40 explants per treatment and a total of 240 leaf explants. 

Leaf explants were evaluated under a stereomicroscope ten weeks later, and scored 

according to their survival rate (%), shoot regeneration rate (%) (percentage of 

explants showing adventitious shoots), number of new shoots formed per explant 

(total number), and number of new shoots formed per explant considering their sizes 

(large, medium, or small). The shoot sizes were classified as: large, if longer than 1 

mm and held leaves; medium, if shorter than 1 mm and held leaves; or small, if less 

than 1 mm long and did not bear any leaves. Contaminated cultures (0-30% of the 

explants) were not included in the statistical analyses. After the first evaluation, the 

explants were placed in fresh media (as previously described), with no TDZ, and 

supplemented with 2.5 ^M zeatin.

E xperim ent w ith  tw o  exp lan t o rie n ta tions  (adaxial o r abaxial), and tw o  leaf 

po rtion s  (basal o r ap ica l)

In this experiment, a two-factor (2 x 2) arrangement and a completely 

randomized design were used, with factor 1 being the different explant orientations 

(adaxial or abaxial surface in contact with the medium) and factor 2 being the leaf 

portion (basal or apical), in a total of four treatments. The medium used was WPM 

supplemented with MS organic compounds, 30 g.L-1 sucrose, and 1 ^M TDZ. All 

media were jellified with 7 g L-1 agar (Vetec) after the pH was adjusted to 5.2. The 

medium was then autoclaved at 120 °C and 1.0 atm and placed in sterilized Petri 

dishes (15 mL/dish). Leaf explants were collected from in vitro plants and placed in 

the Petri dishes according to the arrangement of the different treatments: adaxial or 

abaxial surface in contact with the medium, and using the basal or apical portion of 

the leaf. The cultures were maintained in a culture room as previously described. 

Each treatment consisted of five replicates (ten leaf explants in each replication, 

placed in one Petri dish), for a total of 50 explants per treatment, and 200 total leaf 

explants. Ten weeks later the leaf explants were evaluated using a 

stereomicroscope, according to the same criteria mentioned earlier. There was no
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contamination in this experiment. After the first evaluation, explants were placed in 

fresh media as previously described, with no TDZ and supplemented with 2.5 ^M 

zeatin.

Experim enta l Design and S ta tis tica l A n a lys is

All of the experiments were conducted according to a completely randomized 

design. First, the means of the explants in each replication were calculated 

(evaluating all of the explants), and then the means of the four or five replicates in 

each treatment were calculated. Levene’s test was performed to confirm the 

homogeneity of the variances among the treatments, and then analysis of variance 

(ANOVA) was performed to detect significant differences between treatments, and 

Tukey’s multiple range test (p<0.05) was used to identify the superior treatments. 

The results are presented as the mean ± standard error in the tables. In the 

experiment with different TDZ concentrations, linear regression analyses were 

performed with the variables confirmed to have statistical significance in the analysis 

of variance of the regression. Those variables were “number of new shoots formed 

per explant (total number)” and “number of new shoots formed per explant (small 

sized)” . All statistical analyses were performed using R software [40].

M orphoanatom ica l analyses

In these evaluations, the WPM culture medium was supplemented with MS 

organic compounds, 30 g.L-1 sucrose, and 1.0 ^M TDZ. All media were jellified with 

7 g L-1 agar (Vetec) after the pH was adjusted to 5.2. Subsequently, the media was 

autoclaved at 120 °C and 1.0 atm, and cultures were maintained at 25 ± 2 °C under 

cool daylight at 40 ^mol m-2 s-1 with a 16-h photoperiod. Leaf explants were excised 

from in vitro plants and placed in Petri dishes containing 15 mL of culture medium. 

Each Petri dish contained ten leaf explants positioned with their adaxial surfaces in 

contact with the medium.

Ten leaf explants were collected at every stage weekly (from three- to seven- 

week-old culture), for a total of 70 explants. The developmental processes of de novo 

shoot organogenesis were observed using both light and scanning electron 

microscopy (SEM).
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The aforementioned explants were observed, and photodocumentation was 

performed using a stereomicroscope. Samples were fixed in modified Karnovsky 

solution (2.5% glutaraldehyde and 10% paraformaldehyde in 0.1 M phosphate buffer, 

pH 7.2) [41].

For SEM, the fixed samples (as previously described) were dehydrated in an 

ethylic series. Critical point drying was obtained using a Bal-Tec CPD 030 Critical 

Point Dryer. Samples were fixed onto aluminum stubs and gold coated. The images 

were obtained using a JEOL JSM 6360-LV scanning electron microscope.

In the light microscopy analyses, after fixation, the samples were dehydrated 

in an ethylic series and embedded in methacrylate (Historesin, Leica Microsystems, 

Nussloch/Germany). The solidified blocks were sectioned (8 ^m thick) in a rotary 

microtome (Olympus CUT 4055), the slides stained with 5% (w/v) toluidine blue [42], 

and subsequently photographed under a light microscope (Olympus BX51).

RESULTS

De novo shoot organogenesis was achieved from blueberry leaf explants in 

WPM culture medium containing TDZ.

E xperim ent w ith  d iffe re n t TDZ concen tra tions  in WPM cu ltu re  m edium

In this experiment, the explant survival rates were higher than 93%. The 

treatments with TDZ showed 100% explant survival, superior to the treatment with no 

TDZ. All the treatments containing TDZ showed 100% of the explants with shoot 

regeneration (Table 1), while the treatment without TDZ showed no regeneration 

(Fig. 1). The analysis of variance is detailed in Table 2.

The numbers of new shoots formed per explant (total) were different between 

the treatments containing TDZ. A simple linear regression equation for that variable 

was statistically significant (Fig. 2), and describes that for each 1 ^M increase in TDZ 

concentration in the medium, there was a decrease of 12.0 shoots per explant. 

Estimated values varied from 57 to 33 new shoots formed per explant increasing 

concentrations of TDZ, from 0.5 to 2.5 ^M.

If we separate the results concerning the number of new shoots formed into 

large, medium, and small sized classes (as previously described), a similar pattern
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can be recognized with small shoots. In this case, there was a decrease of 15.0 

shoots at each increase of 1 ^M of TDZ concentration (Fig. 2), with estimated values 

ranging from 50.1 to 20.2 small shoots per explant with increasing TDZ 

concentrations (from 0.5 to 2.5 ^M).

However, observing the newly formed large and medium sized shoots, there 

were no differences between the TDZ treatments (Table 2), with values ranging from

1.3 to 4.3 (large sized) and 5.0 to 7.1 (medium sized), with means of 2.7 and 5.9 new 

shoots per explant (large and medium sized respectively) (Table 1).

In Fig. 1, de novo shoot formation through organogenesis can be observed in 

the six different treatments with TDZ (a to f) ten weeks after the initiation of culturing. 

Figure 1a shows an oxidized leaf explant and no shoot regeneration in the control 

treatment (without TDZ). Figures 1b -1 f show the effects of different TDZ 

concentrations on leaf explants, regenerating small, medium, and large sized shoots.

Further shoot growth in fresh culture medium with 2.5 ^M zeatin was 

observed 20 weeks after the first evaluations (Figs. 1g-1j), with subsequent in vitro 

rooting of the explants (Figs. 1h, 1j).

E xperim ent w ith  tw o  exp lan t o rie n ta tions  (adaxial o r abaxial), and tw o  leaf 

po rtion s  (basal o r ap ica l)

Analysis of variance showed that there were interactions between the factors 

of explant orientation and leaf portion only for the variables of number of new shoots 

formed per explant (total) and number of new shoots formed per explant (small 

sized); there were no interactions between the factors in terms of the variables 

survival rate, shoot regeneration rate, number of new shoots formed per explant 

(large sized), and number of new shoots formed per explant (medium sized), (Tables 

3 and 4).

The basal or apical leaf portion treatments showed no differences in their 

survival rate, with 91.0 and 97.0% of explants surviving respectively (Table 3). A 

difference was observed, however, between the adaxial and abaxial sides of the 

explant in contact with the medium, with the adaxial orientation achieving 100% 

survival, and the abaxial orientation only 88%.

The highest shoot regeneration rate occurred when the explant orientation 

was adaxial (97.0%), and the leaf portion apical (97.0%).
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When the basal portion of the leaf was cultured, the variables of number of 

shoots formed per explant (total) and number of shoots formed per explant (small 

sized), using an adaxial placement, were found to be superior (59.2 total shoots, and 

46.1 small shoots) to an abaxial orientation (22.8 total shoots, and 16.2 small 

shoots). When the apical portion was used, no differences were observed between 

the adaxial or abaxial orientations in terms of the variables of: number of shoots 

formed per explant (total number) and number of shoots formed per explant (small 

sized) (Table 3). In the treatments using the adaxial side in contact with the medium, 

there was no difference between apical and basal portions in terms of the total

number of shoots and the number of small shoots per explant.

The adaxial positioning of the leaf on the medium resulted in larger numbers 

of large shoots formed per explant (4.3 shoots) than the abaxial orientation (1.8 

shoots), although no differences were observed between the basal and apical leaf 

portions.

No differences were observed between the numbers of new medium sized 

shoots formed per explant, with an overall mean of 6.4 (Table 3).

In Fig. 3, regenerating shoots can be seen forming over the leaf explant in

the four treatments (Figs. 3a-3d), and, ten weeks later, the shoots can be seen 

growing in the WPM medium supplemented with 2.5 ^M zeatin but without TDZ 

(Figs. 3e, 3f).

M orphoanatom ica l analyses

De novo shoot organogenesis can be observed in Figs. 4, 5, and 6 after 

three to seven weeks of culture. Three-week-old cultures show leaf explants with 

shoots (Figs. 4a-4c), followed by four-week-old cultures (Figs. 4d-4f), five-week 

cultures (Figs. 4g-4i), six-week cultures (Figs. 5a-5c), and seven-week cultures 

(Figs. 5d-5f).

The adaxial surface of the leaf explant can be seen with many adventitious 

small, medium, and large shoots in Figs. 4a, 4d, 4g, 5a, 5d. The de novo shoots 

formed appear green when observed under a stereomicroscope, a feature indicative 

of the presence of chloroplasts in the epidermal cells.

Shoot organogenesis can be observed on the leaf explants, with 

recognizable leaf primordia -  many of them already bearing glandular trichomes
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(Figs. 4b, 4e, 4h, 5b, 5e). Figure 5e presents a top view of a forming shoot with many 

leaf primordia. The oldest leaf primordia are located along the outermost region of 

the shoot, while the youngest leaf primordia formed are located along the inner 

region of the shoot.

The development of adventitious shoots with leaf primordia can be observed 

in Figs. 4c, 4f, 4I, 5c, 5f. Figure 4 c shows an adventitious shoot with leaf primordium 

being formed, and those shoots already show vascular tissue. Figures 4 f and 4i 

highlight the dome-shaped shoot apical meristem with meristematic characteristics. 

That region could be recognized in histological observations by its small isodiametric 

cells with dense cytoplasm and large nuclei (Figs. 4f, 4i, 6g, 6h, 6i, 6l)

Indirect organogenesis is evidenced by shoot formation from callus cells (Fig. 

5c), with disorganized aspects and green staining by toluidine blue. In Figure 5f, on 

the other hand, direct organogenesis is confirmed by the observation of shoot 

formation directly from the explant, with no callus cells. Additionally, the connections 

between the vascular tissue of the leaf explant with the adventitious shoot indicate 

direct organogenesis (Fig. 5f).

Details of SEM images show (Figs. 6a-6 f) of three- to seven-week-old leaf 

explant cultures, with newly formed adventitious shoots easily visible (Figs. 6a, 6b). 

Fig. 6b shows the abaxial surface of the leaf primordia. More advanced stages are 

shown of the adaxial and abaxial surfaces of the leaf primordia, with numerous 

stomata on the abaxial surface and well-formed trichomes (Fig. 6c). Detailed views of 

the stomata formed on the abaxial surface of the leaf primordium (Fig. 6d) show 

opened ostioles surrounded by guard cells. The absence of stomata on the adaxial 

surface of the leaf primordium indicated that blueberry leaves are hypostomatic (Fig. 

6e). Glandular trichomes on blueberry leaves with evident secretory heads can be 

seen in Fig. 6f.

Adventitious shoots, with details such as the shoot apical meristem and leaf 

primordium formation can be seen after three weeks of culturing (Fig. 6g), with 

recognizable callus. Fig. 6h shows details of the adventitious shoot with leaf 

primordium, evidence of a shoot apical meristem at four weeks of culturing, and 

tissue arrangements.

Figure 6i shows an adventitious shoot with leaf primordia, shoot apical 

meristem, procambium, vascular tissue, and trichomes on the leaf primordia. Figure 

6j shows a shoot with leaf primordia. Fig. 6k sows an adventitious shoot with the
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formation of vascular tissue after four weeks of culture. Fig. 6l shows an adventitious 

shoot with an apical meristem, procambium, vascular tissue, and leaf primordia with 

protoderm, after four weeks of culture.

DISCUSSION

This study describes de novo in vitro shoot formation from leaf explants of 

‘Delite’ rabbiteye blueberry, in the development of an important in vitro culture 

technique (Fig. 7). We described the morphological and anatomical aspects of the 

developing shoots of blueberry based on light microscopy and SEM images. De novo 

shoot organogenesis is an example of a dedifferentiation process, where mature 

plant cells are capable of undergoing a reversible process from a mature and 

differentiated state to a meristematic stage [43].

Adjusting plant growth regulators in culture media is one of the most common 

approaches used in developing regeneration protocols such as somatic 

embryogenesis [44,45] and shoot proliferation [46,47]. TDZ is a potent cytokinin-like 

growth regulator that also shows auxin-like activity [16], and is a powerful plant 

growth regulator for establishing regeneration protocols.

We were able to regenerate shoots by incorporating TDZ into the culture 

medium, and found that the low concentration of 0.5 ^M proved to be effective in 

adventitious shoot formation in ‘Delite’ blueberry. Other studies of Vaccinium  

reported that concentrations higher than 0.5 ^M TDZ were more effective, with 0.5 

mg L-1 (2.27 ^M) TDZ inducing the highest number of shoots in the blueberry cultivar 

‘Duke’ as compared to the lowest concentrations tested [0.1 mg L-1 (0.45 ^M) and 0.2 

mg L-1 (0.91 ^M)] [8]. In another study with lowbush blueberry (V. angustifolium), the 

use of 2.3 to 4.5 ^M TDZ allowed adventitious bud differentiation and shoot formation

[13].

Some authors have examined organogenesis in blueberries using 

combinations of TDZ and other growth regulators (zeatin, zeatin riboside, and NAA), 

or even without TDZ, in studies of adventitious regeneration in different blueberry 

cultivars [15], and concluded that the optimum combinations of growth regulators 

were cultivar-dependent. In a study [10] with ‘Bluejay’ (highbush, V. corymbosum), 

‘Pink Lemonade’ (rabbiteye derivative hybrid, V. virgatum), ‘Sunshine Blue’ 

(highbush, V. corymbosum), and ‘Top Hat’ (highbush x lowbush cross) cultivars,
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adventitious shoots were regenerated in culture media supplemented with different 

combinations of zeatin and IBA. A study with cranberry (Vaccinium macrocarpon) 

reported maximum regeneration rates in medium containing 10.0 ^M TDZ with 1.0 

^M NAA [19]. Another study with cranberry (V. macrocarpon) found that 10.0 ^M 

TDZ with 5.0 ^M 2iP was effective in initial adventitious regeneration [20].

The use of TDZ whenever possible as an alternative growth regulator to 

substitute the more commonly used zeatin will have the benefit of lowering the costs 

of in vitro blueberry culture [8].

We observed that de novo shoot cultures formed with TDZ in ‘Delite’ did not 

continue growing unless they were transferred to fresh medium supplemented with 

zeatin. It is known that TDZ can inhibit shoot elongation [19,37], so in order to assure 

shoot regeneration in lowbush blueberry (V. angustifolium), cultures initiated in TDZ 

must be transferred to a new medium containing zeatin (2.3 to 4.6 ^M) to allow shoot 

elongation [13].

Leaf orientation, and the portion of it that is used, have been studied in in 

vitro organogenesis. A study with lowbush blueberry (V. angustifolium) found that 

basal leaves with their adaxial surface in contact with the medium proved to be most 

effective [12], and shoot apices were likewise found to form from the adaxial surfaces 

of leaf explants of ‘Aurora’ highbush V. corymbosum  [11].

We found that both the apical and basal portions of the leaves generated 

high numbers of shoots per explant, but that the adaxial surface in contact with the 

medium resulted in higher survival and shoot regeneration rates, and great numbers 

of large shoots formed per explant. In evaluating the differences between adaxial and 

abaxial surfaces, considering the use of the basal leaf portion and the variable 

numbers of new shoots formed (total number and small sized shoots), higher yields 

were observed with the adaxial leaf surface in contact with the medium as compared 

to the abaxial surface. The observation that the adaxial surface in contact with the 

medium produced more shoots could be related to the fact that the abaxial side does 

not settle and completely enter in contact with the medium (as much as the adaxial 

treatments), due to its concave curvature.

Most of the shoots formed in our work appeared on the adaxial surface of the 

leaf explant, as was also reported with ‘Aurora’ (V. corymbosum) [11] and cranberry 

(V. macrocarpon) adventitious regeneration [20].
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Both direct and indirect organogenesis were observed in this study, as 

shoots could originate directly from the leaf tissue of the explant with no apparent or 

histological evidence of callus formation, giving rise to direct organogenesis (Fig. 5f), 

with connections between the vascular tissue of the new shoot with that of the leaf 

explant with no callus tissue being observed. The shoot formed in Fig. 5c, on the 

other hand, originated from callus tissue, in a process of indirect organogenesis.

Callus proliferation is a process of unstructured cell division and 

enlargement, usually initiated from parenchymatous cells, and the cell walls typically 

contain secondary metabolites such as suberin, lignin, or phenolics [43]. In work with 

‘Troyer’ citrange shoot regeneration, callus cells were found to evidence some 

lignification in cases of either direct or indirect organogenesis [48].

Callus tissue could be recognized in our work by its disorganized aspect, with 

a certain disaggregation and green staining with toluidine blue, generally indicating 

phenolic compounds in the cells [49]. Feder and O ’Brien (1968) reported that 

toluidine blue will stain polyphenol containing cells a green color [50]; two studies 

with Spondias dulcis likewise reported that accumulations of phenolic compounds in 

the cells were stained green by toluidine blue [51,52], and the same staining was 

observed in a study with Brassica oleracea [53].

Various studies of Vaccinium  adventitious shoot regeneration have reported 

either direct and/or indirect organogenesis; shoot apices of ‘Aurora’ highbush (V. 

corymbosum), were observed to form directly from parenchyma cells on the surface 

of leaf explants [11], and histological studies showed organogenesis without callus 

formation that initiated in sub-epidermal cells in highbush blueberry (V. corymbosum)

[54].

Indirect organogenesis has been observed in ‘Bluejay’ (highbush, V. 

corymbosum), ‘Pink Lemonade’ (rabbiteye derivative hybrid, V. virgatum), ‘Sunshine 

Blue’ (highbush, V. corymbosum), and ‘Top Hat’ (highbush x lowbush cross) 

cultivars, with callus being induced from the explants, followed by adventitious shoot 

regeneration [10]. Callus formation was also observed in a somatic embryogenesis 

study with blueberry cultivars (V. corymbosum  x V. angustifolium ), with embryo 

development without the callus phase in a culture medium containing TDZ [16].

Similar to what we observed with the ‘Delite’ cultivar, direct and indirect 

organogenesis was obtained from leaf explants using ‘Duke’ highbush blueberry [8].
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Additionally, in a study with lowbush blueberry (V. angustifolium), adventitious bud 

and shoot formation was observed with or without an intermediary callus phase [13].

Among other morphoanatomical characteristics, we identified dome-shaped 

shoot apical meristems under light microscopy with diameters varying from 120 to 

200 ^m, similar to the description of the shapes and sizes of shoot apical meristems 

in highbush field-grown blueberry (approximately 120 ^m) [55].

Additional meristematic characteristics observed here, such as protoplasts 

strongly stained by toluidine blue, are in accordance with the literature [50].

We observed that leaf primordia were initiated along the flanks of the shoot 

meristem, which is in agreement with other studies [43]. Blueberries have simple 

leaves that are arranged alternately along the stem [55,56]. SEM images provided 

here show some details of leaf primordia formation (Fig. 5e).

A study of the leaf anatomy of field-grown V. corymbosum  showed their 

leaves to be bifacial, with all the stomata on the abaxial side of the leaf 

(hypoestomatic) [57]. An anatomical study of highbush blueberry leaves (V. 

corymbosum, cv. 'Bluetta') reported that stomata were present only on the abaxial 

surfaces of field-grown leaves, but they were observed on both surfaces of in vitro 

leaves [58] -  differing from our findings with rabbiteye ‘Delite’ in vitro organogenesis, 

where only the abaxial surfaces of the leaf primordia held stomata. Therefore, the 

leaves of the shoots formed in our work demonstrated characteristics similar to those 

of field-grown plants, with their stomata restricted only to the abaxial surface -  a 

common feature in blueberry plants.

We did not observe any signs of tissue hyperhidricity, which represents an 

essential achievement of our tissue culture work. Hyperhidricity is always a concern 

in in vitro culture, as it can limit subculturing and acclimatization survival, and 

represents a serious problem for tissue culturing, including for propagation, 

germplasm conservation, and plant breeding [59]. Hyperhidricity represents an 

alteration of the plant’s normal morphophysiological state, with high water 

accumulation in the tissues and the formation of abnormal organs with water-soaked 

appearances [60]. Hyperhydric plants show discontinuous epidermal development, 

irregular stomatal formation, decreased stomatal density, intercellular spaces in the 

mesophyll, and reduced chlorophyll contents [59]. Blueberry cultivars (Vaccinium  

spp.) cultivated in vitro and showing hyperhydricity have a glassy aspect with 

translucent stems and leaves that are shortened and brittle, with deformed glandular
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trichomes, rough and crinkly epidermal, damaged stomata guard cells, enlarged 

mesophyll, disintegrated cell contours, deformed nuclei, and more intercellular 

spaces [59].

Morphological and anatomical analyses of the de novo shoots produced here 

showed them to be well-developed and with indicators of high viability, such as the 

green color of their shoots, well-developed and un-deformed stomata, glandular 

trichomes, shoot apical meristems, and leaf primordia, and cells with regular contours 

and well-delimited intercellular spaces. During the processes of sample preparation 

for microscopic examination the cells did not hardly dehydrate (the opposite of what 

would be expected with hyperhydric tissues), and the shoots were not glassy or 

translucent. Additionally, when the shoots were transferred to fresh medium with 

zeatin and without TDZ, they were able to survive, elongate, and form roots.

It is important to note that the morphogenic pathway observed here was of de 

novo shoot organogenesis from somatic cells in the leaf explant, developing a 

unipolar structure, and somatic embryogenesis (bipolar structure) was not observed. 

According to a study in Passiflora [61], changes of the auxin/cytokinin ratios can 

trigger those different developmental pathways; the authors observed both routes, 

but concluded that de novo shoot organogenesis generally occurred with exposure to 

a high cytokinin-to-low auxin ratio, or with cytokinin alone. Our study used only the 

cytokinin TDZ in the culture medium (although that growth regulator possibly have 

auxinic activity).

Adventitious shoot development stages are described here, showing that 

‘Delite’ blueberry can demonstrate either direct or indirect organogenesis, with well- 

developed shoot apical meristems and leaf primordia. The leaf primordia of de novo 

shoots showed laminar shapes and a green color, with well-developed stomata and 

trichomes; adventitious shoots, and epidermal, parenchymatic, and vascular tissues 

were observed, with eventual shoot elongation, root formation, and the development 

of the whole plants.

CONCLUSION

The results presented here contribute to a better understanding of the in vitro 

organogenesis process in 'Delite' rabbiteye blueberry, and indicated a TDZ 

concentration of 0.5 ^M in the WPM medium, using either the apical or the basal
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portions of the leaf and its adaxial surface orientation in contact with the medium. 

Both direct and indirect organogenesis were observed in that cultivar. The 

adventitious shoots showed the development of normal leaf tissues, and they grew 

and developed into rooted plants. Due to the high rate of regenerating explants and 

high numbers of shoots formed per explant, the techniques we describe here could 

be used for in vitro clonal propagation once genetic stability is confirmed. 

Additionally, it is expected that this research can help elucidate in vitro 

organogenesis regeneration process of ‘Delite’ rabbiteye blueberry plants, and 

contribute to further developing the biotechnology of blueberry cultivation.
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TABLES

Table 1. Effects of different TDZ concentrations on in vitro shoot organogenesis in ‘Delite' rabbiteye 

blueberry, using WPM culture medium.

Treatment Survival rate
Shoot regeneration 

rate

Number of new shoots 

formed/explant

Number of new shoots 

formed/explant

(large sized) (medium sized)

% % n. n.

TDZ 0 |jM 93.3 ± 3.3 b 0.0 ± 0.0 b NA NA

TDZ 0.5 j M 100.0 ± 0.0 a 100.0 ± 0.0 a 1.3 ± 0.6 a 5.4 ± 1.9 a

TDZ 1 j M 100.0 ± 0.0 a 100.0 ± 0.0 a 3.0 ± 0.2 a 5.0 ± 0.7 a

TDZ 1.5 j M 100.0 ± 0.0 a 100.0 ± 0.0 a 2.4 ± 1.1 a 5.4 ± 1.4 a

TDZ 2 j M 100.0 ± 0.0 a 100.0 ± 0.0 a 2.4 ± 1.0 a 7.1 ± 1.5 a

TDZ 2.5 j M 100.0 ± 0.0 a 100.0 ± 0.0 a 4.3 ± 1.5 a 6.9 ± 1.8 a

Mean 99.1 85.7 2.7 5.9

CV% 2.1 0.0 70.8 50.6

The results are presented as mean ± standard error (SE). Means followed by different letters in the 

same column differ statistically at 5% of the Tukey's multiple range tests. Abbreviation: CV, coefficient 

of variation; NA, not available; TDZ, thidiazuron; WPM, woody plant medium.

Table 2. Analysis of variance (ANOVA) of the experiment evaluating the effect of different thidiazuron 

(TDZ) concentrations on in vitro shoot organogenesis in ‘Delite' rabbiteye blueberry. Abbreviations: 

DF, degrees of freedom; ms, mean squares, ns, non-significant; TDZ, thidiazuron.

Number of 

Number of new shoots Number of

Number of new shoots formed/ new shoots

Shoot new shoots formed/ explant formed/

regeneration formed/ explant (large (medium explant (small

Survival rate rate n explant (total) sized) sized) sized)

DF ms ms DF ms ms ms ms

Treatment 5 22.8 5142.9 4 572.5 4.8 3.239 697.7

Residuals 15 4.4 0.000 13 127.3 3.6 8.947 105.7

Total 20 17

p-value 0.0060 ** < 2.2e-16 ** 0.0169 * 0.3190 ns 0.8313 ns 0.0040 **

* significant different with 0.05 > p-value > 0.01

** significant different with p-value < 0.01

ns, non-significant, p-value > 0.05
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Table 3. Effects of two explant orientations (adaxial or abaxial side in contact with the medium) and

two leaf portions (basal or apical) on in vitro shoot organogenesis in ‘Delite' rabbiteye blueberry, using

WPM culture medium supplemented with TDZ.

Explant orientation Leaf portion

Survival rate (%) basal apical mean

adaxial 100.0 ± 0.0 100.0 ± 0.0 100.0 a

abaxial 82.0 ± 10.3 94.0 ± 4.5 88.0 b

mean 91.0 A 97.0 A 94.0

Shoot regeneration rate (%)

adaxial 94.0 ± 4.5 100.0 ± 0.0 97.0 a

abaxial 74.0 ± 12.0 94.0 ± 4.5 84.0 b

mean 84.0 B 97.0 A 90.5

Number of shoots formed/explant (total)

adaxial 59.2 ± 15.4 aA 35.8 ± 3.8 aA 47.5

abaxial 22.8 ± 3.1 bA 41.3 ± 9.6 aA 32.0

mean 41.0 38.6 39.8

Number of shoots formed/explant (large sized)

adaxial 4.1 ± 0.7 4.5 ± 1.5 4.3 a

abaxial 2.5 ± 0.5 1.1 ± 0.2 1.8 b

mean 3.3 A 2.8 A 3.1

Number of shoots formed/explant (medium sized)

adaxial 9.0 ± 1.1 6.4 ± 1.1 7.7 a

abaxial 4.0 ± 0.6 6.1 ± 1.8 5.1 a

mean 6.5 A 6.3 A 6.4

Number of shoots formed/explant (small sized)

adaxial 46.1 ± 15.3 aA 24.9 ± 4.3 aA 35.5

abaxial 16.2 ± 3.0 bA 39.5 ± 7.6 aA 27.9

mean 31.2 32.2 31.7

The results are presented as mean ± standard error (SE). Means followed by different lowercase 

letters in the same column and by different uppercase letters in the same horizontal line differ 

statistically at 5% of the Tukey's multiple range tests. Abbreviation: TDZ, thidiazuron; WPM, woody 

plant medium.
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Table 4. Analysis of variance (two-way ANOVA) of the experiments evaluating the effect of explant 

orientation (adaxial or abaxial side in contact with the medium) and the leaf portion (basal or apical) on 

in vitro shoot organogenesis in ‘Delite' rabbiteye blueberry. Abbreviations: CV, coefficient of variation; 

DF, degrees of freedom; ms, mean squares.

Source DF ms p value

Survival rate (%) Explant orientation 1 720.00 0.0289 *

Leaf portion 1 180.00 0.2476 ns

Interaction (explant orientation x leaf portion) 1 180.00 0.2476 ns

Residuals 16 125.00

CV: 11.9% Total 19

Shoot regeneration rate (%) Explant orientation 1 845.00 0.0484 *

Leaf portion 1 845.00 0.0484 *

Interaction (explant orientation x leaf portion) 1 245.00 0.2667ns

Residuals 16 185.00

CV: 15.0% Total 19

Number of shoots

formed/explant (total) Explant orientation 1 1196.60 0.0844 ns

Leaf portion 1 29.40 0.7766 ns

Interaction (explant orientation x leaf portion) 1 2199.10 0.0239 *

Residuals 16 353.40

CV: 47.3% Total 19

Number of shoots

formed/explant (large sized) Explant orientation 1 31.25 0.0053 **

Leaf portion 1 1.36 0.5100 ns

Interaction (explant orientation x leaf portion) 1 3.93 0.2696 ns

Residuals 16 3.00

CV: 56.5% Total 19

Number of shoots

formed/explant (medium

sized) Explant orientation 1 34.45 0.0312 *

Leaf portion 1 0.26 0.8407 ns

Interaction (explant orientation x leaf portion) 1 27.31 0.0516 ns

Residuals 16 6.17

CV: 39.9% Total 19

Number of shoots

formed/explant (small sized) Explant orientation 1 289.18 0.3561 ns

Leaf portion 1 5.63 0.8962 ns

Interaction (explant orientation x leaf portion) 1 2478.21 0.0133 *

Residuals 16 320.16

CV: 56.5% Total 19

* significant different with 0.05 > p-value > 0.01

** significant different with p-value < 0.01

ns, non-significant, p-value > 0.05
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FIGURES

Fig. 1. Effects of different TDZ concentrations on in vitro shoot organogenesis in ‘Delite’ rabbiteye 

blueberry using WPM culture medium. Different views of explants and shoots under a 

stereomicroscope (a-f) and digital camera (g-j). (a) TDZ 0 pM, showing an oxidized leaf explant, (b) 

TDZ 0.5 pM with many small (black arrow), medium (gray arrow), and large (white arrow) shoots, (c) 

TDZ 1.0 pM, with small (black arrow), medium (gray arrow), and large (white arrow) shoots, (d) TDZ 

1.5 pM, with small (black arrow), medium (gray arrow), and large (white arrow) shoots, (e) TDZ 2.0 

pM, with small (black arrow), medium (gray arrow), and large (white arrow) shoots. (f) TDZ 2.5 pM, 

with small (black arrow), medium (gray arrow), and large (white arrow) shoots. (g-j) Development of 

the shoots at 20 weeks after the first evaluation in fresh culture medium with 2.5 pM zeatin. Details of 

in vitro rooting in (h) and (j). Abbreviations: Ex, explant; R, roots; TDZ, thidiazuron; WPM, woody plant 

medium.
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Fig. 2. Effects of different TDZ concentrations on in vitro shoot organogenesis in ‘Delite' rabbiteye 

blueberry using WPM culture medium. Simple linear regression graphics showing the dependent 

variables number of new shoots formed/explant (total) on the left, and the number of new shoots 

formed/explant (small size) on the right. ** statistically significant with p-value <0.01. Abbreviations: 

TDZ, thidiazuron; WPM, woody plant medium.
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Fig. 3. Effects of two explant orientations (adaxial or abaxial side in contact with the medium) and two 

leaf portions (basal or apical) on in vitro shoot organogenesis in ‘Delite' rabbiteye blueberry using 

WPM culture medium supplemented with TDZ. Different views of explants and shoots under a 

stereomicroscope (a-d) and digital image capturing (e-f). (a) Adaxial x Basal, with many small (black 

arrow), medium (gray arrow), and large (white arrow) shoots. (b) Adaxial x Apical, with many small 

(black arrow), medium (gray arrow), and large (white arrow) shoots: (a, b) Those two adaxial 

treatments showed the best efficiency in regenerating shoots. (c) Abaxial x Basal with small (black 

arrow) and large (white arrow) shoots. (d) Abaxial x Apical, with small (black arrow) and medium (gray 

arrow) shoots. (e) Regenerated shoots after adventitious organogenesis. (f) In vitro regenerated 

shoots after adventitious organogenesis, subcultured into WPM culture medium supplemented with 

2.5 ^iM zeatin, pictured ten weeks later. Abbreviations: TDZ, thidiazuron; WPM, woody plant medium.
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3 weeks

Fig. 4. In vitro shoot organogenesis in ‘Delite’ rabbiteye blueberry using WPM culture medium 

supplemented with TDZ at different times (three- to five-week culture). Different views of explants and 

shoots under a stereomicroscope (a, d, and g), scanning electron microscope-SEM (b, e, and h), and 

light microscope (c, f, and i). (a) Three weeks of culture, leaf explant with small (black arrow), medium 

(gray arrow), and large (white arrow) shoots. (b) Three weeks of culture, leaf explant with small (black 

arrow), and medium (gray arrow) shoots, showing leaf primordia with trichomes (white circle). (c) 

Three weeks of culture, leaf explant with shoot, leaf primordium, vascular tissue (in detail), and callus 

formation. (d) Four weeks of culture, leaf explant with small (black arrow), medium (gray arrow), and 

large (white arrow) shoots. (e) Four weeks of culture, leaf explant with small (black arrow), and 

medium (gray arrow) shoots, showing leaf primordia with trichomes (white circle). (f) Four weeks of 

culture, shoots with leaf primordia, and shoot apical meristem. (g) Five weeks of culture, leaf explant
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with small (black arrow), medium (gray arrow), and large (white arrow) shoots. (h) Five weeks of 

culture, leaf explant with small (black arrow), and medium (gray arrow) shoots, showing leaf primordia 

with trichomes (white circle). (i) Five weeks of culture, shoots with shoot apical meristem and leaf 

primordia. Abbreviations: Ca, callus; Ex, explant; LP, leaf primordium; SAM, shoot apical meristem; 

Sh, shoot; TDZ, thidiazuron; VT, vascular tissue; WPM, woody plant medium.
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6 weeks

Fig. 5. In vitro shoot organogenesis in ‘Delite' rabbiteye blueberry using WPM culture medium 

supplemented with TDZ at different times (six and seven-week-old cultures). Different views of 

explants and shoots under a stereomicroscope (a and d), scanning electron microscope-SEM (b and 

e), and light microscope (c and f). (a, b, and c) Six-week-old culture. (d, e, and f) Seven-week-old 

culture. (a) Adaxial surface of the explant with small (black arrow), medium (gray arrow), and large 

(white arrow) shoots. (b) Explant with small (black arrow), medium (gray arrow), and large (white 

arrow) shoots, and leaf primordia with trichomes (white circle). (c) Shoot with leaf primordium, in 

indirect organogenesis: shoot formation originated from callus. (d) Adaxial surface of the explant with 

small (black arrow) and medium (gray arrow) shoots. (e) Shoot with several leaf primordia, showing 

trichomes (white circle). (f) Transversal view of the explant, with longitudinal view of the shoot 

formation through direct organogenesis, connecting to the explant vascular tissue. Abbreviations: Ca, 

callus; Ex, explant; LP, leaf primordium; Sh, shoot; TDZ, thidiazuron; VT, vascular tissue; WPM, 

woody plant medium.
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Fig. 6. Details of in vitro shoot organogenesis in ‘Delite’ rabbiteye blueberry using WPM culture 

medium supplemented with TDZ. Different views of shoots and details under scanning electron 

microscopy-SEM (a-f) and light microscopy (g-l). (a) Newly formed adventitious small shoots (black 

arrow) on the surface of the three-week-old leaf explant culture. (b) Adventitious shoot (gray arrow) on 

a four-week-old leaf explant culture, showing leaf primordia (abaxial side visible). (c) Adventitious 

shoot (white arrow) on a four-week-old leaf explant culture, showing foliar primordia with stomata 

(black circle) and trichomes (white circle). Abaxial and adaxial surfaces of the leaf primordia visible. (d) 

Stomata on the abaxial surface of the leaf primordium: ostiole surrounded by guard cells. (e) Adaxial
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surface of the leaf primordium showing no stomata. (f) Trichomes on the leaf primordium (stars). (g) 

Adventitious shoots at three weeks of culture: shoot apical meristem (in detail), leaf primordium, and 

callus. (h) Adventitious shoot with leaf primordium and shoot apical meristem at four weeks of culture. 

(i) Detail of the adventitious shoot, showing shoot apical meristem, leaf primordium, procambium 

(detail), vascular tissue (detail), and trichomes (white circles) at four weeks of culture. (j) Leaf 

primordium formation at four weeks of culture. (k) Adventitious shoot showing the formation of 

vascular tissue (white arrowhead) at four weeks of culture (l) Adventitious shoot with shoot apical 

meristem, leaf primordia with protoderm (detail), procambium (black arrowhead), vascular tissue 

(detail) at 4 weeks of culture, and callus tissue. Abbreviations: Ab, abaxial; Ad, adaxial; Ca, callus; Ex, 

explant; GC, guard cell; LP, leaf primordium; Os, ostiole; Pc, procambium; Pd, protoderm; SAM, shoot 

apical meristem; Sh, shoot; TDZ, thidiazuron; Tr, trichome; VT, vascular tissue; WPM, woody plant 

medium.
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Fig. 7. Diagrammatic representation of de novo shoot organogenesis in in vitro rabbiteye blueberry 

from leaf explants.
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The results presented in this study contribute for establishing protocols of in 

vitro propagation and organogenesis and providing a better understanding of these in 

vitro process in 'Delite' rabbiteye blueberry (V. virgatum).

The first part of the research (chapter I) is a study of the effects of different 

cytokinins in different concentrations and different nitrogen salt ranges on in vitro 

establishment. This initial step is a critical stage in blueberry in vitro, usually with low 

rates of establishment. We could overcome these problems and presented an 

efficient technique for in vitro plant establishment in this species. One of the most 

important variables is the use of adequate growth regulators and a balance of 

mineral salts in a suitable concentration. Focusing on an efficient strategy for in vitro 

establishment in ‘Delite’ rabbiteye blueberry, we recommend the lowest 

concentration of zeatin tested, 2.5 ^M, which promoted a high survival rate (89.7%), 

as well as a good response on explants forming new shoots (81.3%). This 

concentration yielded a number of new shoots of 1.3, with a high shoot length (13.8 

mm) and 10.0 leaves per shoot. Concerning salt composition, we recommend the 

original WPM. An increase or decrease in the NH4 NO3 and Ca(NO3)2 concentration 

did not promote better growth results than the original medium. This initial study with 

‘Delite’ can be the basis for further experiments with different combinations of salts, 

2iP, and ZEA.

In chapter II we propose a micropropagation protocol of a rabbiteye cultivar 

‘Delite’ (V. virgatum) testing in vitro establishment multiplication, rooting, and 

achieving well-developed and acclimatized plants. The establishment of cultures was 

achieved using nodal segments with surface sterilization in ethanol (30 min at 70% 

solution) and sodium hypochlorite (immersion of 5 min in 0.5% solution). Initial 

cultures can be supplemented with 2.5 ^M zeatin in the WPM culture medium, as 

well as the multiplication stages, also with 2.5 ^M zeatin, using nodal segments in the 

vertical position. Moving to the rooting stage, in vitro rooting can be achieved with 

explants immersion in 500 mg L-1 IBA solution, or else, choosing direct ex vitro 

rooting in vermiculite, and irrigation with a solution of WPM mineral salts. This would 

result in 96.7% of uncontaminated explants with the surface sterilization procedure, 

92.3% survival rate in the initial establishment and 84.5% of explants with axillary 

shoot growth. In the multiplication stage the survival rate was 100%, and 70% of

3 GENERAL CONCLUSIONS
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explants with shoot proliferation, forming one new shoot per explant, with 3.6 cm and

11.7 leaves. Assuming this multiplication rate, this new shoot formed could be 

divided in 6 new two-node segments, at every 3 months. In one year, a two-node 

segment would multiply in 1296 new two-node segments. Opting for in vitro rooting, 

we obtained 100% survival of microcuttings, with 100% of maintenance of leaves and 

37.5% rooting rate. Or else, opting for ex vitro rooting, 88% survival, 86% of 

microcuttings with leaf maintenance, 50% of microcuttings with new buds induction, 

but with a higher rooting rate (68%).

The results presented in chapter III contribute to a better understanding of 

the in vitro organogenesis process in 'Delite' rabbiteye blueberry, and developed a 

high-frequency regeneration method through de novo shoot organogenesis, using 

the addition of 0.5 ^M TDZ in WPM medium as an efficient concentration (100% 

explants with shoot regeneration and 57 adventitious shoots formed per explant); and 

using the apical or the basal portion of the leaf and the adaxial surface orientation of 

the leaf touching the medium (97% explants with shoot regeneration and 47.5 

adventitious shoots formed per explant). Anatomical analyses showed direct and 

indirect organogenesis in this cultivar. The adventitious shoots were green and 

showed the development of shoot apical meristem, vascular tissue, procambium, and 

leaf primordium with protoderm, glandular trichomes and well-developed stomata. 

These shoots were well-formed, with organized tissues and cells, with no signs of 

hyperhydricity. They elongated, grew and developed into rooted plants. Due to the 

high rate of regenerating explants and to the high number of shoots formed per 

explant, these results could also be applied to in vitro clonal propagation, once the 

genetic stability is confirmed.

All these results can help to better understand the in vitro culture of 'Delite' 

rabbiteye blueberry, providing basic knowledge for further experiments in rabbiteye 

blueberry tissue culture, and contributing to the development of in vitro plant 

propagation, germplasm conservation, and other biotechnological studies in 

blueberries.
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Future studies could be developed aiming to advance and expand the 

research presented here. In the establishment, the salts composition in the culture 

medium could be expanded to the multiplication stage.

Some other concentrations of zeatin (lower than 2.5 ^M) could be tested 

during multiplication step, and even other approaches combining zeatin to other 

cytokinins, auxins and gibberellins, aiming to develop more shoots per explant in the 

multiplication stage, as well as longer shoots, and trying to reduce the concentrations 

of zeatin to a minimum and decreasing the costs of the process.

Other studies in bioreactors using ‘Delite’ blueberry or either rabbiteye 

cultivars would also be interesting for mass propagation.

Observing the rooting process, we would suggest that the explants were 

immersed for a longer time in the auxin solution. We used only 10 seconds, and this 

seemed to be a reduced amount of time for the explant get in contact with the auxin. 

Or even, we could suggest the use of auxin in powder, instead of the solution, to 

assure the explant will have the necessary amount of auxin for rooting.

For adventitious regeneration studies, other cytokinins could be tested, to 

improve the length of shoots. We suggest less time in TDZ medium, moving the 

explants faster to a fresh medium with different growth regulators, or no growth 

regulators at all. Other explants could also be tested, such as internodal segments 

and roots. The morphological and anatomical evaluations could start earlier than 

three weeks, to investigate the earlier process of organogenesis, including day zero.

The process of organogenesis could have a further investigation on the 

genetic stability of the new shoots formed, once this uniformity is confirmed, the 

organogenesis could become an important technique in clonal propagation in this 

cultivar.

We suggest another study comparing more blueberry cultivars investigating 

the differences in the organogenesis process, structuring the eventual differences 

among the cultivars. Some of the research in organogenesis in blueberry is not 

complete, and only some of them present morphoanatomical evaluations. In some 

cases, the pictures presented do not show the process in detail.

Also, based on these results in blueberry organogenesis we suggest further 

evaluation on the somatic embryogenesis pathway of morphogenic development. At

4 RECOMMENDATIONS FOR FUTURE RESEARCH
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the best of our knowledge, only one research was published evaluating this process 

in blueberries, and these investigations could offer a variety of options for clonal 

propagation.

To conclude, a review article could be organized with all the tissue culture 

research and biotechnological techniques related to in vitro culture in blueberries.
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