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RESUMO

Neste trabalho são estudados os problemas de classificação binária, nos quais há um

número m de observações em um espaço de n dimensões e n ≥ m ou n ≫ m. No

último caso o problema é denominado Amostras de Tamanho Pequeno (SSS, do inglês

Small Sample Size). Nesse caso, o problema de classificação se torna mais dif́ıcil, pois os

algoritimos podem sofrer de um fenômeno chamado de maldição da dimensionalidade. Tal

fenômeno faz com que o classificador tenha um baixo número de acertos. Também pode

ocorrer um problema chamado de sobreajuste, isto é, quando o classificador consegue

classificar bem os dados que foram utilizados para constrúı-lo, no entanto, não apresenta

uma boa taxa de acertos para novos dados. Uma técnica utilizada para espaços com

muitas caracteŕısticas é a seleção de caracteŕısticas, que pode melhorar a taxa de acertos

de um classificador, além de fornecer um melhor entendimento dos dados que estão sendo

classificados. O modelo estudado neste trabalho é uma variante de Least Squares Support

Vector Machine (LS-SVM) com o Kernel linear, chamado de Lq-norm Least Squares

Support Vector Machine (Lq-norm LS-SVM), que constrói um classificador capaz de

realizar a seleção de caracteŕısticas e predição de dados simultaneamente, mesmo no caso

SSS.

Palavras-chave: Aprendizagem supervisionada. Classificação. Lq-norm Least Squares

Support Vector Machine. Seleção de Caracteŕısticas



ABSTRACT

In this work we study the binary classification problems, in which we have a number m of

data observations in a space with dimension n and we have that n ≥ m or n ≫ m. In the

last case the problem is called Small Sample Size (SSS). In this case, the classification

problem becomes more difficult, since the algorithms can suffer from a phenomenon

called the curse of dimensionality. This makes the classifier have a low number of correct

answers, also can occur a problem called overfitting, that is, when the classifier is able

to classify correctly the data that were used to build it, however, it does not present a

good rate of correct predictions for new data. A technique used for spaces with many

characteristics is known as feature selection, which can improve the ability of a classifier

to predict correctly new data, avoid overfitting and also provide us a better understanding

of the data. The model that we study in this work is a variant of Least Squares Support

Vector Machine (LS-SVM) with linear Kernel, called Lq-norm Least Squares Support

Vector Machine (Lq-norm LS-SVM), which builds a classifier able to perform feature

selection and prediction, even in SSS case.

Keywords: Supervised learning. Classification. Lq-norm Least Squares Support Vector

Machine. Feature selection.
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INTRODUCTION

In Machine Learning, there is a well known class of problems called supervised learning prob-

lems [3, 19, 25]. In these problems, given a data set S = {(xk, yk)}
m
k=1, called training data, in which

xk ∈ X ⊂ R
n is called instance or input vector and yk ∈ Y ⊂ R is respective label, (also called output

value), the goal is to determine the function f : X → Y which is able to predict correctly the label of

a new instance. The set X ⊂ R
n is called domain, meanwhile Y ⊂ R is the label set, which is the set

of possible labels, each pair (xk, yk) is called observation, each component xk
i ∈ R of xk ∈ R

n is called

feature, and the function f : X → Y is called predictor.

The supervised learning problems have two main branches: Regression problems and Classi-

fication problems.

When y takes continuous values, we have a regression problem. The goal is to understand the

data pattern to construct a predictor that we can use to predict a quantity. For example, we want to

predict the price of a house in a neighborhood based on house area and number of the rooms. Note

that the domain set X is in R
2 and the label set Y ⊂ R.

When y takes only discrete values, we have a classification problem. The aim is to define a

predictor which we use to predict a label/class. For example, suppose that we have a data set composed

by clinical measurements (e.g. weight, blood pressure, height, age, family history of disease) for a number

of patients, as well as information about whether each patient has diabetes. Based on this data, we can

train/build a predictor to predict the risk of diabetes that can be low, moderate or high. The domain

set here is X, a subset of R5 and the label set Y is a categorical set given by {low,moderate, high},

we can replace for the discrete set {1, 2, 3}. In general, in multiclass classification problems the set Y

is defined as Y = {1, . . . , p} where p ∈ N, is the number of classes, however, in binary classification

problems for convenience we consider Y = {−1,+1}.

There are several techniques to determine a classifier such as, Logistic Regression, Linear

Discriminant Analysis, Tree Based Methods for classification, etc [3, 7, 10]. The models that we study in

this dissertation generate classifiers based on hyperplanes, due this fact they are called Linear Classifiers,

(see [7]).

In some applications the number of observations m is much smaller than the number of feature

n, i.e., m ≪ n. We mention for example the data collected from gene-expression microarrays [18] that

consists of thousands of genes expressions that constitute features with a limited number of observations;

Satellite Imagery [24] captures high quality hyperspectral images used for natural resources. In these

situations many classification models do not work well [7, 10, 22, 30]. For example, the model can suffers

of a phenomenon called the Curse of dimensionality [22, 30]. In practice, it implies that for every data
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set, there exists a number N ∈ N, such that, if we use K ∈ N features of the data set to build a classifier

the number of correct predictions will be small for all K > N . Also the classifier can suffers from

overfitting, that is, when the model yields a classifier which has an excellent ability to predict correctly

the training data, however, the model is not good to predict unseen data called test data or validation

data.

In [22], we see that a common way to deal with classification problems in spaces with many

features is to use a technique called Feature Selection, which aims to select a small subset of features

which are relevant to the model. This technique improve the number of correct predictions for some

models as mentioned in [22], reduces the computational complexity to generate a classifier. And lastly

help us to understand better the data that we use to build the classifier, in other words, what features

are really important to classification.

The main contributions of this dissertation is to present a detailed study about the main

properties of Lq-norm Least Squares Support Vector Machine (Lq-norm LS-SVM) with feature selection,

proposed in [26]. We reformulated some theorems and proofs in order to make them clearer and more

understandable, correct some wrong affirmations and reproduce the numerical experiments present in

original study.

Our work is organized as follows: In Chapter 1 We will study Support Vector Machine (SVM).

Our main references for SVM are [3, 5, 13, 16, 23]. We will also cover some key definitions and theorems,

and will lastly examine Least Squares Support Vector Machine (LS-SVM). Our references are [1, 29].

In Chapter 2, we will present the main topic of this work, that is, our study about Lq−norm

Least Squares Support Vector Machine with feature selection proposed in [26]. We will start by explain-

ing how to perform feature selection, then we will describe the Lq−norm LS-SVM algorithm and at last

we will study its convergence results.

Finally, in Chapter 3, we will present our empirical study where we will describe our method-

ology to test the models that we will study in this dissertation, also we present the data sets which we

divides into two groups Artificial and Real World data sets. At the end we will show our numerical

experiments that consists in comparisons among SVM based models and next we show our Lq-norm

LS-SVM numerical tests, with respect to accuracy, features selection, convergence and sparsity.
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Chapter 1

SUPPORT VECTOR MACHINES AND LEAST SQUARES

SUPPORT VECTOR MACHINES

In this chapter we will review some basic concepts about Support Vector Machine (SVM) and

Least Square Support Vector Machine (LS-SVM).

Both models construct classifiers based on hyperplanes. In binary classification problem, by

using the observed data, such models seek for a hyperplane (by some criteria that we will outline later)

and with this hyperplane, we define a classifier. To make our approach clear, suppose that the method

provides a hyperplane of the form

H = {x ∈ R
n |wTx+ b = 0}, for w 6= 0

Note that the hyperplane H separates the space R
n into two sets, H− = {x ∈ R

n |wTx + b ≤ 0} and

H+ = {x ∈ R
n |wTx+ b ≥ 0}. We will use this observation to determine a classifier.

Suppose for a moment that H separates the observed data correctly, that is, every point in

the observed data belonging to the class {+1} is in the interior of H+, and {−1} is in the interior of

H−. Thus, for a new input data x ∈ R
n, we define a classifier y(x) as follows

y(x) = sign(wTx+ b), (1.1)

where sign is the signal function, sign(a) = 1 if a > 0 and sign(a) = −1 if a < 0.

Note that y(x) classifies correctly the previously observed data, since by definition of y(x), we

see that y(x) = 1 for every x ∈ int(H+) and y(x) = −1 for every x ∈ int(H−).

When x belongs to the hyperplane H, we cannot decide (by using y(x)) the class associated

to the new input data x. The set in the input space, where we are not able to associate a corresponding

class is called of Decision Boundary. In this case, note that the Decision Boundary is the hyperplane

H which is defined by an affine transformation. This is the reason why we say that y(x) is a linear

classifier although y(x) is not linear.

1.1 Support Vector Machines (SVMs)

Support Vector Machine (SVM) is a model used to generate a hyperplane in order to separate

the data into two distinct classes. We separate our discussion about SVMs into two cases: SVM with
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hard margin and SVM with soft margin.

1.1.1 Support Vector Machines - Hard Margin

In this subsection we explain the SVM Hard Margin approach that generates a classifier for

linearly separable data, but first we need some basic definitions.

Definition 1.1. We say that two sets X1, X2 ⊂ R
n are linearly separable when there exists w ∈ R

n\{0}

and b ∈ R, such that, wTx+ b > 0 for every x ∈ X1 and wTx+ b < 0 for every x ∈ X2. The hyperplane

H = {x |wTx+ b = 0} is called separating hyperplane.

Observe that every separating hyperplane defines a classifier as follows

y(x) =







+1, if wTx+ b > 0.

−1, if wTx+ b < 0,

which is equivalent to

y(x) = sign(wTx+ b).

Now the task is how to determine a separating hyperplane since it might exist an infinity

quantity of hyperplanes, as the next figure shows.

Figure 1.1: Two linearly separable sets in R
2. We observe that might exists an infinity quantity of

separating hyperplanes.

From Figure 1.1, we note the existence of infinite hyperplanes that separate correctly the

data. Thus, we need some criterion to choose an adequate hyperplane. Here, we consider a geometric

approach based on the idea of margin.
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Definition 1.2. Given two linearly separable finite sets X1 , X2 ⊂ R
n, the margin M of a separating

hyperplane H = {x ∈ R
n |wTx+ b = 0} is the value defined by

M := min d(z,H) where z ∈ X1 ∪X2 ⊂ R
n.

We say that a point x ∈ R
n is on margin if M = d(x,H).

Proposition 1.1. Let X1, X2 ⊂ R
n two linearly separable finite sets defined as in Definition 1.1,

such that, H = {x |wTx + b = 0} is the separating hyperplane. Then there exists w̃, b̃ such that

H = {x | w̃Tx+ b̃ = 0}, w̃Tx+ b̃ ≥ 1 for x ∈ X1, and w̃Tx+ b̃ ≤ −1 for x ∈ X2.

In this case, we say that w̃ and b̃ normalize H or H is normalized by (w̃, b̃).

Proof: Since X1 ∪ X2 is a finite set we can define ζ := min
x∈X1∪X2

|wTx + b|, then we have that, for

x ∈ X1 ∪X2, ζ ≤ |wTx + b| and since X is linearly separable we get ζ > 0, otherwise H would not be

the separating hyperplane. Thus,
|wTx+ b|

ζ
≥ 1, therefore, for x ∈ X1 we obtain

wTx+ b

ζ
=

|wTx+ b|

ζ
≥ 1

and for x ∈ X2 we get

−
wTx+ b

ζ
=

|wTx+ b|

ζ
≥ 1.

Now if we take w̃ =
w

ζ
and b̃ =

b

ζ
, then we have equality H = {x |wTx+ b = 0} = {x | w̃Tx+ b̃ = 0}. �

It is not difficult to see that the distance of a point x in R
n to the hyperplane H is given by

the expression(see [14]).

d(x,H) =
|wTx+ b|

‖w‖
,

Now by Proposition 1.1, assuming that H = {x ∈ R
n |wTx+ b = 0} is normalized, then

d(x,H) =
|wTx+ b|

‖w‖
=

1

‖w‖
. (1.2)

for every x on the margin.
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Figure 1.2: Geometrical interpretation of a linearly separable set and its optimal separating hyperplane

H = {x ∈ R
2 |wTx+ b = 0}.

From Definition 1.2 and the equation (1.2), the separating hyperplane margin is given by
1

‖w‖
.

The SVM model looks for the separating hyperplane H which has the maximal margin, that is, we want

to maximize 1/‖w‖ over the all vectors w such that there exists b > 0 with (w, b) defining a separating

hyperplane as the statement of Proposition 1.1. Note that we can write the inequalities wTx + b ≥ 1

for x ∈ X1, and wTx+ b ≤ −1 for x ∈ X2, in a compact form,

y(wTx+ b) ≥ 1,

where y = sign(wTx+ b). Therefore the problem to find the optimal hyperplane is given by

min
w,b

1

2
‖w‖2

s.t yk(w
Txk + b) ≥ 1, k = 1, . . . ,m

(1.3)

in which w ∈ R
n, b ∈ R and yk is the known output for xk.

The associated Lagrangian function is defined as

L(w, b, α) =
1

2
‖w‖2 −

m
∑

k=1

αk(yk(w
Txk + b)− 1).

Now we will determine the dual optimization problem associated to (1.3) which can be useful

to determine the classifier. The dual form of (1.3) is given the following problem

max
α

inf
w,b

L(w, b, α)

s.t α ≥ 0.
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For more information about the dual problem, see the books [2, 21].

To evaluate infw,b L(w, b, α) we consider two cases: If
∑

αkyk = 0 and if
∑

αkyk 6= 0. Note

that, if
m
∑

k=1

αkyk = 0 take w̄ =
m
∑

k=1

αkykx
k and b̄ ∈ R, then by (1.5) we have

inf
w,b

L(w, b, α) = L(w̄, b̄, α)

=
1

2

m
∑

k,j=1

αkαjykyj
(

xk
)T

xj −

m
∑

k=1

αkyk





m
∑

j=1

αjy
jxj





T

xk −

m
∑

k=1

αkyk b̄+

m
∑

k=1

αk

= −
1

2

m
∑

k,j=1

αkαjykyj
(

xk
)T

xj +

m
∑

k=1

αk.

(1.4)

Now observe that for α fixed, the function L(w, b, α) is convex, then the minimizers (w̄, b̄) of

L(w, b, α) with respect to w and b satisfies

∇(w,b)L(w̄, b̄, α) = 0,

which is equivalent to






















∂L

∂w
= 0 ⇒ w̄ =

m
∑

k=1

αkykx
k

∂L

∂b
= 0 ⇒

m
∑

k=1

αkyk = 0

. (1.5)

Lets analyze the case when
m
∑

k=1

αkyk 6= 0, take bi = i

(

m
∑

k=1

αkyk

)

, i ∈ N, we have

L (0, bi, α) =

m
∑

k=1

(αk − αkykbi) =

m
∑

k=1

αk − i

(

m
∑

k=1

αkyk

)2

,

then, we get

inf
w,b

L(w, b, α) = −∞. (1.6)

From equations (1.4) and (1.6), we have that the dual problem is given by

max
α

−
1

2

m
∑

k,j=1

αkαjyiyj
(

xk
)T

xj +
m
∑

k=1

αk

s.t
m
∑

k=1

αkyk = 0,

αk ≥ 0, k = 1, . . . ,m.

(1.7)

Now, observe that function in (1.3) is convex and the constraints are linear, then the Karush-

Kuhn-Tucker (KKT) conditions hold for the problem (1.3). In order to determine the classifier (1.1),

we can solve (1.7). In fact, if α∗ a solution of (1.7), we can obtain w∗ solution of (1.3) from system

(1.5), that is, w∗ =
m
∑

k=1

α∗
kykx

k and in order to obtain b∗ we can use KKT complementarity condition

α∗
k[yk((w

∗)Txk + b∗)− 1] = 0. (1.8)
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Indeed, consider S = {k |α∗
k > 0}, then for each k ∈ S, after multiply (1.8) by yk (note that

y2k), we see that

b∗ = yk − (w∗)Txk = yk −
∑

j∈S

α∗
jyj(x

j)Txk.

Thus, the linear classifier (1.1) is given by

y(x) =
∑

k∈S

α∗
kykx

k + b∗.

Observe that only positive components of solution α∗ ∈ R
m are relevant to define the classifier.

Definition 1.3. A vector xk ∈ X ⊂ R
n is called a Support Vector when α∗

k > 0, where α∗ ∈ R
m is a

solution of dual problem (1.7).

Remark 1.1. Observe that if xk is a support vector, then yk((w)
Txk + b) = 1, thus we have that,

xk ∈ H1 = {x ∈ R
n |wTx + b = +1} or xk ∈ H2 = {x ∈ R

n |wTx + b = −1}. The Figure 1.2 gives us

the intuition that a small number of points will belong to H1 and H2. Then, we should expect a sparse

solution α∗ of problem (1.7).

1.1.2 Support Vector Machines - Soft Margin

In many real applications, the data is not linearly separable. For example, consider the

following image recognition problem. Given a set of handwriting letters and we want to define a

classifier that predicts if a new handwriting letter is the character “A” or not. The training data was

constructed by a person who saw every letter and then labeled it as letter “A” (positive class +1) and

not “A” (negative class −1). In this case probably there will be mislabeled data, due bad calligraphy

or inattention. Therefore, the data set will probably not be linearly separable, since there will be some

characters “A” classified as not ”A” and vice versa. Therefore we cannot apply the SVM hard margin

theory to determine the classifier.

The next figure illustrates two sets in R
2 which are not linearly separable.
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Figure 1.3: Two data sets in R
2 which are not linearly separable.

Now we study the SVM Soft Margin, that generates a classifier by relaxing the constraints in

(1.3). Consider the following optimization problem

min
w,b,ξ

1

2
‖w‖2 + C

m
∑

k=1

ξk

s.t yk(w
Txk + b) ≥ 1− ξk, k = 1, . . . ,m

ξk ≥ 0, k = 1, . . . ,m

, (1.9)

where w ∈ R
n, ξk is a slack variable introduced in order to allow some missclassifications and C > 0 real

positive parameter, predetermined by the user. Note that when the parameter C increases we expect

that the sum
m
∑

k=1

ξk decreases since we are minimizing the objective function which depends on w, b

and ξ. Then, we tolerate less missclassfications for large values of C, however, when C is small the sum
m
∑

k=1

ξk can be a large value, and thus, potentially, we tolerate more missclassifications.

Remark 1.2. In contrast to SVM Hard Margin, the constraints in (1.9) are always satisfied indepen-

dently if the data is linearly separable or not. Indeed, for every k ∈ {1, . . . ,m}, consider the slack

variable ξk, associated to xk. For any w ∈ R
n and b ∈ R

ξk =







max
{

0, 1− wTxk − b
}

, if yk = +1,

max
{

0, 1 + wTxk + b
}

, if yk = −1.

�

In next figure, we take xk, xj and xi in the positive class, that is, yk, yj , yi = +1, our goal

is to illustrate when xk is correctly classified then (ξk = 0), when xj is between the margin we have

(ξj ∈ (0, 1)), and when xi is missclassified we have (ξi > 1).
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Figure 1.4: Geometrical interpretation of slack variables role in SVM Soft Margin.

The associated Lagrangian to (1.9) is given by

L(w, b, ξ, α, β) =
1

2
‖w‖2 + C

m
∑

k=1

ξk −

m
∑

k=1

αk(yi(w
Txk + b)− 1 + ξk)−

m
∑

k=1

βkξk.

In order to determine the dual form we need solve the following problem

max
α,β

inf
w,b

L(w, b, ξ, α, β)

s.t α ≥ 0,

β ≥ 0.

Now we proceed to solve the minimization problem inf
w,b

L(w, b, ξ, α, β). Observe that for fixed

α, β the function L(w, b, ξ, α, β) is convex, then the minimizer (w̄, b̄, ξ̄) with respect to w, b and ξ must

satisfies

∇(w,b,ξ)L(w̄, b̄, ξ̄) = 0,

which is equivalent to


























∂L

∂w
= 0 ⇒ w̄ =

m
∑

k=1

αkykx
k

∂L

∂b
= 0 ⇒

m
∑

k=1

αkyk = 0

∂L

∂ξk
= 0 ⇒ αk + βk = C, k = 1, . . . ,m

,

by a similar analysis of Subsection 1.1.1, we obtain the dual problem

max
α

−
1

2

m
∑

k,l=1

ykyl
(

xk
)T

xlαkαl +
m
∑

k=1

αk

s.t
m
∑

k=1

αkyk = 0

0 ≤ αk ≤ C, k = 1, . . . ,m.

(1.10)
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Our goal is to determine the classifier (1.1), for this purpose we need to find the solution

(w∗, b∗) of (1.9), we can obtain this solution by solving the the dual (1.10). In fact, let α∗ ∈ R
m be a

solution of problem (1.10). Since the objective function in (1.9) is convex and the constraints are linear,

the KKT conditions hold for the problem (1.9), that is, there exists (w∗, b∗, ξ∗) such that



































































































∂L

∂w
= 0 ⇒ w =

m
∑

k=1

αkykx
k

∂L

∂b
= 0 ⇒

m
∑

k=1

αkyk = 0

∂L

∂ξk
= 0 ⇒ αk + βk = C k = 1, . . . ,m

αk

[

yk
(

wTxk + b
)

− 1 + ξk
]

= 0, k = 1, . . . ,m

βkξk = 0, k = 1, . . . ,m

αk ≥ 0, k = 1, . . . ,m

βk ≥ 0, k = 1, . . . ,m

(1.11)

Immediately, w∗ =
m
∑

k=1

α∗
kykx

k, in order to obtain b∗ observe that, for 0 < α∗
k < C, we have,

βk = C−αk > 0 and then ξk = 0. Therefore we can determine b∗ by the equation yk
(

(w∗)Txk + b∗
)

−1 =

0.

Now we are able to determine the classifier

y(x) = sign

(

m
∑

k=1

α∗
kyk(x

k)Tx+ b∗

)

.

where α∗, b∗ follow from the linear system (1.11).

1.2 Least Squares Support Vector Machines (LS-SVMs)

The Least Squares Support Vector Machine (LS-SVM) model [1, 29], arises from two modifi-

cations in the optimization problem of SVM soft margin (1.1)

min
w,b,ξ

1

2
‖w‖2 +

γ

2

m
∑

k=1

ξ2k

s.t yk(w
Txk + b) = 1− ξk, k = 1, . . . ,m,

ξk ∈ R, k = 1, . . . ,m.

(1.12)

where γ > 0 is a parameter and ξk is an error variable which plays a similar role as slack variable in

SVM but it is not necessarily positive.

Observe that the first modification lies on the objective function, where we add the L2-norm

of ξ instead of the L1-norm. The second one is on the constraints, instead inequalities constraints we
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have an equality one. These two modifications will simplify the way that we solve the optimization

problem. Indeed, different to SVM, we have to solve a linear system instead of a linear optimization

problem. Regrettably, we lost some geometrical intuition but still maintain some nice interpretation

(see Remark 1.4).

Now, we proceed by showing why solve LS-SVM is equivalent to solve linear system. Indeed,

consider the Lagrangian function associated to LS-SVM, defined as

L(w, b, ξ, α) =
1

2
‖w‖2 +

m
∑

k=1

γ

2
ξ2k − αk(yk(w

Txk + b)− 1 + ξk).

Since the constraints are linear, the KKT conditions hold, that is, the minimizer (w∗, b∗, ξ∗) satisfies

the relations:










































∂L

∂w
= 0 ⇐⇒ w∗ =

m
∑

k=1

αkykx
k

∂L

∂b
= 0 ⇐⇒

m
∑

k=1

αkyk = 0

∂L

∂ξ
= 0 ⇐⇒ αk = γξ∗k k = 1, . . . ,m,

∂L

∂α
= 0 ⇐⇒ yk((w

∗)Txk + b∗)− 1 + ξ∗k = 0, k = 1, . . . ,m

, (1.13)

Furthermore, since the involved functions are convex, every solution of (1.13) is also a global minimizer

of LS-SVM, see [1]. Thus, we will simplify (1.13) by using some adequate matrices. In fact, it is not

difficult to see that (1.13) is equivalent to the linear system:

















In 0 0 −ZT

0 0 0 −yT

0 0 γIm −Im

Z y Im 0

































w∗

b∗

ξ∗

α

















=

















0

0

0

e

















, (1.14)

where ZT =
(

x1y1, . . . , x
mym

)

∈ R
n×m, Ik ∈ R

k×k is the identity matrix, and y, e, ξ∗, α are column

vectors in R
m defined as:

y = (y1, . . . , ym)T , e = (1, . . . , 1)T , ξ∗ = (ξ∗1 , . . . , ξ
∗
m)T and α = (α1, . . . , αm)T ∈ R

m.

Moreover, since w∗ and ξ∗ depend on α and b∗ (see (1.13)), we can simplify (1.14) and obtain

a more compact linear system:




yT 0

Ω + 1
γ I y









α

b∗



 =





0

e



 , (1.15)

where Ω = ZZT . Note that if the matrix in (1.15) is full rank then, we have an unique solution (α∗, b∗),

see [1].

From equations (1.13), we have w∗ =
m
∑

k=1

α∗
kykx

k, thus the linear classifier (1.1) takes the form
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y(x) = sign

[

m
∑

k=1

ykα
∗
k(x

k)Tx+ b∗

]

. (1.16)

Remark 1.3. From equation (1.16) we that the classifier will depends on solution α∗ and from system

(1.13) we have

α∗
k = γξk, k = 1, . . . ,m.

Thus, α∗
k = 0 only when ξk = 0 which implies that wTxk + b = yk, that is, x

k is on the margin, because

from the system (1.13), we have that, yk(w
Txk + b)− 1 + ξk = 0. This can be a disadvantage, because

α∗ = 0 only when the input vector x is on the margin. If we consider the example in Figure 1.4 just

two input vectors are on the margin. Therefore, when m is a large number we expect that α∗
k 6= 0 for

many k, thus the classifier will have to perform many calculations to predict a new input vector. �

Remark 1.4. As we just described, to find a solution of the optimization problem associated to LS-

SVM, we just need to solve a linear system. Thus, from the numerical point of view, solutions associated

to LS-SVM are more easy to compute, and hence we avoid the use of more complex numerical methods

for solving constrained optimization problems as Interior Point Methods(IPMs), Sequential Minimal

Optimization (SMO), etc [5, 23]. On the other hand, we lose the nice geometrical interpretation of

the classical SVM, where the hyperplane is chosen such that it maximizes the margins related to the

data. Beside this observation, we can associate to the solutions of LS-SVM, a different interpretation,

roughly, LS-SVM try to find a hyperplane that maximizes the margin, meanwhile the least square error
m
∑

i=1

((wTxk + b)− yk)
2 is the less possible. To make the statement clear, observe that the optimization

problem (1.12) can be written as:

min
w,b

1

2
‖w‖2 +

γ

2

m
∑

i=1

((wTxk + b)− yk)
2. (1.17)

In fact, since y2k = 1 and by (1.1), we see that

m
∑

k=1

ξ2k =

m
∑

k=1

(yk(w
Txk + b)− 1)2 =

m
∑

k=1

(yk(w
Txk + b)− y2k)

2 =

m
∑

k=1

(yk((w
Txk + b)− yk))

2

=

m
∑

k=1

((wTxk + b)− yk)
2.

�

Remark 1.5. Observe that solving (1.15), when m ≪ n, it is more advantageous to solve than (1.17).

The reason of this is that we will look for a solution in R
m+1 instead of a solution in R

n+1 which is the

case of (1.17). On the other hand, m ≫ n, it is more advantageous to solve (1.17). However, in the

next chapter we will study the case that m ≪ n and we look for solutions of (1.17). The reason for this

approach will be explained at beginning of the next chapter. �
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Chapter 2

Lq-NORM LEAST SQUARES SUPPORT VECTOR

MACHINE

In this chapter we will study a model called Lq-norm Least Squares Support Vector Machine

(Lq-norm LS-SVM) proposed in [26]. The idea is to find a sparse solution for the problem (2.1), to

perform feature selection and classification simultaneously. For convenience sake, we will organize our

training data set {(xk, yk)}
m
k=1, x

k ∈ R
n and yk ∈ {−1, 1} as follows. Let X ⊂ R

m×n be a matrix, where

the k-th row is the input vector xk, and Y ⊂ R
m×m a diagonal matrix which element Yk,k corresponds

to yk, thus we can rewrite (1.12) as the following

min
w,b,ξ

f(w, b) =
1

2
‖w‖2 +

γ

2
ξT ξ

s.t Y (Xw + eb) + ξ = e

ξ ∈ R
m

(2.1)

where e = (1, . . . , 1)T ∈ R
m.

As we mentioned in Remark 1.3, LS-SVM model has a drawback. When we choose to solve

the dual problem (1.15), the dual solution α∗ suffers of lack of sparseness when the classifier is given

by (1.16) which can increases the computational complexity to calculate the classifier, furthermore the

classifier can have a bad performance with respect to the number of correct predictions.

An approach to handling this LS-SVM issue is to solve the primal problem (2.1) and perform

feature selection on the data set. An effective way is to conduct feature selection and classification

simultaneously, and we do this in LS-SVM by finding sparse solution (w∗, b∗) ∈ R
n+1 of (2.1). The next

figure illustrates how classification and features selection can be conduct at same time.
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Figure 2.1: Indeed features associated to null components of w can be eliminated without affecting the

performance of the classifier

We note that in the bibliography, there are studies that aim to solve the lack of sparseness

of LS-SVM, for example [11, 15, 28]. All of these works are interested in solve (1.15), specifically, they

are looking for a sparser solution (α∗, b∗) ∈ R
m+1 of (1.15), and then it is not possible to implement

feature selection and classification simultaneously, because a sparse solution α∗ cannot perform feature

selection. The Figure 2.2 illustrates this fact.

Figure 2.2: A sparse solution α decreases the computational complexity however, it cannot perform

feature selection, therefore a sparse α does not help us to understand better the problem.
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2.1 Sparse Approximation of LS-SVM with Lq-norm

Observe that (2.1) is equivalent to

min
w,b

f(w, b) =
1

2
‖w‖2 +

γ

2
‖Y (Xw + eb)− e‖2.

This is a convex problem, therefore we will search for stationary points by setting gradient of f equals

to zero,






















∂f

∂w
(w, b) = 0 ⇔ w + γXTY T (Y (Xw + eb)− e) = 0,

∂f

∂b
(w, b) = 0 ⇔ γeTY T (Y (Xw + eb)− e) = 0.

(2.2)

Arranging the system (2.2) in a matrix form, we have





XTX + 1
γ I XT e

eTX eT e









w

b



 =





XT

eT



Y e. (2.3)

Let us define

H := H(γ) =





XTX + 1
γ I XT e

eTX eT e



 , (2.4)

and

d =





XT

eT



Y, u =





w

b



 (2.5)

observe that H = H(γ) ∈ R
(n+1)×(n+1) is a symmetric matrix, u ∈ R

n+1 and d ∈ R
n+1. Therefore (2.3)

can be written as the linear system

Hu = d. (2.6)

Remark 2.1. When the number of input datam is much smaller than the number of attributes/features

n, i.e., m ≪ n the solution of (2.6) may not be unique. To illustrate this fact, since m ≪ n, we can

suppose that the rows of the data matrix X ∈ R
m×n are orthonormal





XTX + 1
γ I XT e

eTX eT e









w

b



 =





0

0



 ,

then










XTXw +
1

γ
Iw +XT eb = 0

eTXw + bm = 0 ⇒ b =
−eTXw

m

,

substituting b into first equation, as result, we get the following equation

XTXw +
1

γ
Iw −

XT eeTXw

m
= 0.
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Now, by multiplying X and since XXT = I, we see that

Xw +
1

γ
Xw −

eeTXw

m
= 0,

and putting Xw on evidence, it implies that

(

I +
1

γ
I −

eeT

m

)

Xw = 0. (2.7)

Note that the matrix

(

1 +
1

γ

)

I −
eeT

m
is definite positive. In fact, by Cauchy’s inequality, given a, b in

Rm, we have
(

m
∑

i=1

aibi

)2

≤

(

m
∑

i=1

a2i

)(

m
∑

i=1

b2i

)

.

For Cauchy’s inequality with a ∈ R
m and b = e we get

(

m
∑

i=1

ai

)2

≤

(

m
∑

i=1

a2i

)

m.

Thus for a = x,

xT

[(

1 +
1

γ

)

I −
eeT

m

]

x = (1 +
1

γ
)‖x‖2 −

(x1 + . . .+ xm)2

m
≥

1

γ
‖x‖2 > 0

therefore we conclude

(

1 +
1

γ

)

I −
eeT

m
is definite positive, as consequence, we have that the equation

(2.7) is equivalent to Xw = 0, which has nontrivial kernel since m ≪ n. Thus the solution of (2.7) is

not unique. �

Since the problem (2.6) might have multiple solutions and we are interested to perform feature

selection and classification simultaneously using a linear classifier (1.1) with a sparse w, thus we look for

a sparse solution u of (2.6) and consequently a sparse vector w. One strategy to find a sparse acceptable

solution for the problem is by introducing the L0-norm, then the new problem is given by

min
u

‖u‖0

s.t. ‖Hu− d‖2 ≤ δ
(2.8)

where δ > 0 is a tolerance measure, and

‖u‖0 = |{i |ui 6= 0}|,

that is, ‖u‖0 is the number of nonzero components of u.

In order to get a simpler problem, we consider a penalised version of (2.8), see [2, 21], that is

min
u

‖u‖0 +
1

2ρ
‖Hu− d‖2 (2.9)

where ρ > 0 is a parameter.
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From the theory of the classical penalty method, the sequence of solutions of (2.9) converges

to solution of (2.8) as ρ → 0+. It was proved in [20] this problem is NP-Hard 1.

There are studies as pointed in [17, 26] that show the effectiveness of L1-norm to find sparse

solutions, that is the problem (2.9) is replaced by

min
u

‖u‖1 +
1

2ρ
‖Hu− d‖2. (2.10)

However in this work we study another approach to find sparse solutions of (2.6) which consists in to

replace L0-norm by Lq-norm with 0 < q < 1, that is,

min
u

‖u‖qq +
1

2ρ
‖Hu− d‖2 (2.11)

where ‖u‖qq =
∑n+1

i=1 |ui|
q
. As mentioned in [17] the motivation of this approach is the fact

lim
q→0+

‖u‖qq = ‖u‖0, ∀u ∈ R
n+1.

and the property illustrated in the next figure [26]. The next figure illustrates the Lq norm ability to

find sparse solutions of Hu = d (2.6).

Figure 2.3: Intersection between Lq-balls and the subset of Hu = d. For the L0.5-norm we can see that

solutions will be sparser, since the intersection is over the axis. However, we observe that L1-norm will

find a sparse solution.

1There is no known method that solves the problem in a polynomial time, under the P 6= NP hypothese. See [9].
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However, it was proved in [9] that (2.11) is also a NP-Hard problem when 0 < q < 1. In order

to avoid nondifferentiable of the problem (2.11), it is introduced a new parameter ǫ > 0 and thus we

have a smoothed version of (2.11) which is given by

min
u

fq(ǫ, u) = ‖u‖qq,ǫ +
1

2ρ
‖Hu− d‖2 (2.12)

where ‖u‖qq,ǫ =
∑n+1

j=1

(

ǫ+ u2
j

)q/2
, H, d and u are defined in (2.4) and (2.5) respectively.

Proposition 2.1. The problem (2.12) admits a solution.

Proof: As consequence of Weierstrass’s Theorem (see [2]), the problem (2.12) will admit a solution,

if the objective function of (2.12) is coercive. Hence, our goal is to show that fq(ǫ, x) = ||x||qq,ǫ +
1

2ρ
‖Hx− b‖

2
2 is coercive. We recall that a function f : Rn → R is called coercive when lim

‖x‖→∞
f(x) = ∞.

In fact, let ||x|| → ∞ then ||x||2 =
∑n+1

j=1 x2
j → ∞, we can see that there exists at least one j ∈ {1, . . . , n}

such that x2
j → ∞ otherwise ||x||2 is bounded, then x2

j + ǫ → ∞, thus (x2
j + ǫ)q/2 → ∞ as xj → ∞,

therefore ||x||qq,ǫ → ∞ as ||x|| → ∞ and we have our result because ‖Hx− b‖
2
2 ≥ 0 for every x ∈ R

n+1.�

The following figure illustrates effect of parameter ǫ on ‖ · ‖qq,ǫ.

Figure 2.4: The behavior of ‖x‖
1/2
1/2,ǫ = (x2 + ǫ)

1
4 , x ∈ [−1, 1], for different values of ǫ. The function

‖x‖
1/2
1/2,ǫ is a smooth approximation of

√

|x|.
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2.2 Lq-norm LS-SVM algorithm and its convergence analysis

In this subsection we present the algorithm proposed in [26] to find a solution of (2.12), also

we show its convergence and the relation among the problems (2.12), (2.11), (2.9) and (2.8).

2.2.1 Lq-norm LS-SVM Algorithm

A critical point of the problem (2.12) satisfies the following equation

∇ufq(ǫ, u
ǫ,q) = 0,

that is, uǫ,q satisfies the equation:







quǫ,q
j

(

ǫ+
(

uǫ,q
j

)2
)1−q/2







1≤j≤n+1

+
1

ρ
HT (Huǫ,q − d) = 0. (2.13)

This is a necessary condition for minimizers. Note that equation (2.13) is nonlinear then can be hard

to solve it. In order to overcome this difficulty an iterative method is proposed in [17, 26]. The method

consists in starting with initial u(0) ∈ R
n+1, for a given u(k) we solve the following linear system for

u(k+1)










qu
(k+1)
j

(

ǫ+
(

u
(k)
j

)2
)1−q/2











1≤j≤n+1

+
1

ρ
HT

(

Hu(k+1) − d
)

= 0, (2.14)

or equivalently












diag











qρ
(

ǫ+
(

u
(k)
j

)2
)1−q/2











1≤j≤n+1

+HTH













u(k+1) = HT d, (2.15)

where u
(k)
j is the j -th component of u(k) and u

(k+1)
j is the j -th component of u(k+1).

The method stops when u(k+1) = u(k). We can see that the matrix at right side of (2.15) is

positive-definite for every u(k) and thus invertible, therefore, the method is well defined. Now we outline

Lq-norm LS-SVM algorithm
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Algorithm 1 Lq-norm LS-SVM

1: Input: The training input matrix X ∈ R
m×n, the output matrix Y ∈ R

m×m and parameters γ, ρ,

ǫ and q

2: Process:

3: Compute matrix H and vector d as in (2.4) and (2.5) respectively

4: Take any u(0) ∈ R
n+1 as initial point and set k = 0

5: For k = 0, 1, 2, . . .

6: Find u(k+1) by solving (2.15) using u(k);

7: Stop when u(k+1) = u(k);

8: Output: u(k+1)

9: end process

More details about implementation of Algorithm 1 is in the Chapter 3, and in Appendix A

we present our Matlab implementation.

2.2.2 Lq-norm LS-SVM convergence analysis for ǫ, q and γ fixed

Observe that for each choice of parameters ǫ > 0, q ∈ (0, 1), ρ > 0 and γ > 0, we get a different

optimization problem of the form (2.12). In this subsection, for each result (Lemmas/Theorems) we

first choose the parameters and fixed them, except for Theorem 3 where ρ will depends on the others

parameters.

The goal of this subsection is to show that the sequence {u(k)}k generated by Algorithm 1

has subsequence {u(ki)}i which converges to the solution of (2.13). For this purpose, we will need some

auxiliary results.

Proposition 2.2. For ǫ > 0, q ∈ (0, 1) and arbitrary α, β ∈ R the following inequality holds

(

ǫ+ α2
)q/2

−
(

ǫ+ β2
)q/2

−
qβ(α− β)

(ǫ+ α2)
1−q/2

≥ 0. (2.16)

Proof: In order to obtain (2.16), we will show that

(

ǫ+ α2
)

−
(

ǫ+ α2
)1−q/2 (

ǫ+ β2
)q/2

− qβ(α− β) ≥ 0. (2.17)

We will use Young’s inequality which says that for a, b > 0 and u, v > 0 such that
1

u
+

1

v
= 1, the

following inequality holds

ab ≤
1

u
au +

1

v
bv. (2.18)



30

Take a =
(

ǫ+ α2
)1−q/2

, b =
(

ǫ+ β2
)q/2

and u = 1
1−q/2 , v = 1

q/2 . Note that
1

u
+

1

v
= 1 −

q

2
+

q

2
= 1,

then by (2.18)

(

ǫ+ α2
)1−q/2 (

ǫ+ β2
)q/2

≤(1− q/2)
[

(

ǫ+ α2
)1−q/2

]
1

(1−q/2)

+ (q/2)
[

(

ǫ+ β2
)q/2

]2/q

=
(

ǫ+ α2
)

+ q/2
((

ǫ+ β2
)

−
(

ǫ+ α2
))

=
(

ǫ+ α2
)

+ q/2
(

β2 − α2
)

.

(2.19)

Using the previous inequality (2.19), we get

(

ǫ+ α2
)

−
(

ǫ+ α2
)1−q/2 (

ǫ+ β2
)q/2

+ q/2
(

β2 − α2
)

≥ 0.

Now, observe that β2 − 2αβ + α2 ≥ 0, and then β2 − 2αβ ≥ −α2, thus q(β2 − 2αβ) ≥ (q/2)(β2 − α2)

for q > 0, hence we have

0 ≤
(

ǫ+ α2
)

−
(

ǫ+ α2
)1−q/2 (

ǫ+ β2
)q/2

+ q/2
(

β2 − α2
)

≤

≤
(

ǫ+ α2
)

−
(

ǫ+ α2
)1−q/2 (

ǫ+ β2
)q/2

− qβ(α− β).

Therefore, we proved (2.17) and consequently we get (2.16). �

Lemma 2.1. Let ǫ > 0 and {u(k)}k be the sequence generated by Algorithm 1, then

fq

(

ǫ, u(k)
)

− fq

(

ǫ, u(k+1)
)

≥
1

2ρ

∥

∥

∥Hu(k) −Hu(k+1)
∥

∥

∥

2

, ∀k ∈ N (2.20)

Proof: Computing the right side of (2.20),

fq(ǫ, u
(k))− fq(ǫ, u

(k+1)) =

n+1
∑

j=1

(

ǫ+ (u
(k)
j )2

)q/2

−

n+1
∑

j=1

(

ǫ+ (u
(k+1)
j )2

)q/2

+
1

2ρ

(

∥

∥

∥
Hu(k) − d

∥

∥

∥

2

−
∥

∥

∥
Hu(k+1) − d

∥

∥

∥

2
)

,

and, then

fq(ǫ, u
(k))− fq(ǫ, u

(k+1)) =

n+1
∑

j=1

(

ǫ+
(

u
(k)
j

)2
)q/2

−

n+1
∑

j=1

(

ǫ+
(

u
(k+1)
j

)2
)q/2

+
1

2ρ

(

∥

∥

∥Hu(k) −Hu(k+1)
∥

∥

∥

2
)

+
1

ρ

(

Hu(k+1) − d
)T (

Hu(k) −Hu(k+1)
)

.

(2.21)

By (2.14), we get

HTHu(k+1) = HT d−











qρu
(k+1)
j

(

ǫ+
(

u
(k)
j

)2
)1−q/2











1≤j≤n+1

.
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The last term of (2.21) can be computed as

1

ρ

(

Hu(k+1) − d
)T (

Hu(k) −Hu(k+1)
)

=
1

ρ

[

(

u(k+1)
)T

HTHu(k) −
(

u(k+1)
)T

HTHu(k+1)

]

−
1

ρ

[

dTHu(k) − dTHu(k+1)
]

=
1

ρ













dTHu(k) −











qρu
(k+1)
j

(

ǫ+
(

u
(k)
j

)2
)1−q/2











T

1≤j≤n+1

u(k)













−
1

ρ













dTHu(k+1) −











qρu
(k+1)
j

(

ǫ+
(

u
(k)
j

)2
)1−q/2











T

1≤j≤n+1

u(k+1)













−
1

ρ

[

dTHu(k) − dTHu(k+1)
]

.

Thus,

1

ρ

(

Hu(k+1) − d
)T (

Hu(k) −Hu(k+1)
)

= −

n
∑

j=1

qu
(k+1)
j

(

u
(k)
j − u

(k+1)
j

)

(

ǫ+
(

u
(k)
j

)2
)1−q/2

.

Hence, by inequality (2.16) of Proposition 2.2, and the equations (2.21), (2.2.2), we have

fq(ǫ, u
(k))− fq(ǫ, u

(k+1)) =

n+1
∑

j=1











(

ǫ+
∣

∣

∣
u
(k)
j

∣

∣

∣

2
)q/2

−

(

ǫ+
∣

∣

∣u
(k+1)
j

∣

∣

∣

2
)q/2

−
qu

(k+1)
j

(

u
(k)
j − u

(k+1)
j

)

(

ǫ+
(

u
(k)
j

)2
)1−q/2











+
1

2ρ

∥

∥

∥Hu(k) −Hu(k+1)
∥

∥

∥

2

≥
1

2ρ

∥

∥

∥Hu(k) −Hu(k+1)
∥

∥

∥

2

≥ 0

(2.22)

�

The next theorem show us that every limit point of the sequence of vectors generated by

Algorithm 1 is a stationary point of (2.12) and this a necessary optmality condition.

Theorem 1. Let {u(k)}k a sequence generated by the Algorithm 1. Then every limit point uǫ,q of

{u(k)}k, is a stationary point of (2.12) and the sequence is bounded.

Proof: We begin by proving that {u(k)}k has a convergent subsequence {u(ki)}i such that

u(ki) → u = (u1, . . . , un+1)
T
, u(ki+1) → v = (v1, . . . , vn+1)

T
.

To prove this, we will show that {u(k)}k is bounded. In fact, by Lemma 2.1, we have

fq

(

ǫ, u(k)
)

≥ fq

(

ǫ, u(k+1)
)

(2.23)
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that is, {fq
(

ǫ, u(k)
)

}k is decreasing. Also this sequence is bounded, because fq
(

ǫ, u(k)
)

≥ 0, then there

exists M ≥ 0 such that lim
k→∞

fq(ǫ, u
(k)) = M . We can see that for k large enough the following inequality

holds
∥

∥

∥u(k)
∥

∥

∥

q

q
≤
∥

∥

∥u(k)
∥

∥

∥

q

q,ǫ
≤ fq

(

ǫ, u(k)
)

≤ M + 1.

Then
∥

∥u(k)
∥

∥

q

q
is bounded and consequently the sequence {u(k)}k is bounded, thus it has a convergent

subsequence {u(ki)}i lets say u(ki) → u ∈ R
n+1. Also by equation (2.15) we have that the subsequence

{u(ki+1)}i is convergent, i.e., u
(ki+1) → v for some v ∈ R

n+1.

Now, we will prove that u = v. From the facts that u(ki) → u, u(ki+1) → v and {fq
(

ǫ, u(k)
)

}k

is a convergent sequence, we get

fq (ǫ, u) = fq (ǫ, v) . (2.24)

By Lemma 2.1,

‖Hu−Hv‖2 ≤ 2ρ (fq(ǫ, u)− fq(ǫ, v)) = 0

which implies

Hu = Hv. (2.25)

Therefore, by equations (2.24) and (2.25), we obtain

‖u‖
q
q,ǫ = ‖v‖

q
q,ǫ .

Now, computing the inner product between u− v and left side of (2.14), we obtain























qu
(k+1)
j

(

ǫ+
(

u
(k)
j

)2
)1−q/2











1≤j≤n+1

+
1

ρ
HT

(

Hu(k+1) − d
)













T

(u− v) = 0,

or equivalently,

n+1
∑

j=1

qu
(k+1)
j (uj − vj)

(

ǫ+
(

u
(k)
j

)2
)1−q/2

+
1

ρ
(Hu(k+1) − d)TH(u− v) = 0, ∀k ∈ N.

Setting k = ki and letting i → +∞ we have

n+1
∑

j=1

qvj(uj − vj)
(

ǫ+ (uj)
2
)1−q/2

+
1

ρ
(Hu−Hv)T (Hv − d) = 0.

Due to Hu = Hv, we get
n+1
∑

j=1

qvj(uj − vj)
(

ǫ+ (uj)
2
)1−q/2

= 0
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and since ‖u‖
q
q,ǫ = ‖v‖

q
q,ǫ we have the following expression:

‖u‖
q
q,ǫ − ‖v‖

q
q,ǫ −

n+1
∑

j=1

qvj(uj − vj)
(

ǫ+ (uj)
2
)1−q/2

=

n+1
∑

j=1







(

ǫ+ u2
j

)q/2
−
(

ǫ+ v2j
)q/2

−
qvj (uj − vj)

(

ǫ+ (uj)
2
)1−q/2






= 0.

(2.26)

By Proposition 2.2, we can see that each term of the sum at right side of equation (2.26) is equal to

zero. Furthermore, each term can be written as

(

ǫ+ u2
j

)q/2
−
(

ǫ+ v2j
)q/2

−
qvj (uj − vj)

(

ǫ+ (uj)
2
)1−q/2

=

=
2
(

ǫ+ (uj)
2
)1−q/2

(

ǫ+ u2
j

)q/2
− 2

(

ǫ+ (uj)
2
)1−q/2

(

ǫ+ v2j
)q/2

− 2qvj (uj − vj)

2
(

ǫ+ (uj)
2
)1−q/2

=
2
(

ǫ+ u2
j

)

− 2
(

ǫ+ (uj)
2
)1−q/2

(

ǫ+ v2j
)q/2

− 2qvj (uj − vj)

2
(

ǫ+ (uj)
2
)1−q/2

=

[

2ǫ+ qu2
j + (2− q)u2

j

]

− 2
(

ǫ+ (uj)
2
)1−q/2

(

ǫ+ v2j
)q/2

−
[

2qvjuj − 2qv2j
]

2
(

ǫ+ (uj)
2
)1−q/2

,

(2.27)

then we have that (2.27) is equal to

qu2
j − 2qujvj + qv2j

2
(

ǫ+ (uj)
2
)1−q/2

+
2ǫ+ (2− q)u2

j + qv2j − 2
(

ǫ+ u2
j

)1−q/2 (
ǫ+ v2j

)q/2

2
(

ǫ+ (uj)
2
)1−q/2

= 0. (2.28)

We can see that the first term of the sum at right part of equation (2.28) is nonnegative.

In order to prove u = v, it remains to prove that second term of the sum is nonnegative. Note that

(1− q
2 ) +

q
2 = 1, then by Young’s inequality we have

2
(

ǫ+ u2
j

)1−q/2 (
ǫ+ v2j

)q/2
≤ 2







(

(

ǫ+ u2
j

)1−q/2
)2/2−q

1/(1− q/2)
+

(

(

ǫ+ v2j
)q/2

)2/q

2/q






=

= 2
[

(1− q/2)
(

ǫ+ u2
j

)

+ q/2
(

ǫ+ v2j
)]

= (2− q)ǫ+ (2− q)u2
j + qv2j ≤

≤ 2ǫ+ (2− q)u2
j + qv2j ,

we can see that second term of the last equation (2.27) is nonnegative, then we get

q(uj − vj)
2

2
(

ǫ+ (uj)
2
)1−q/2

=
qu2

j − 2qujvj + qv2j

2
(

ǫ+ (uj)
2
)1−q/2

= 0,

which implies uj = vj . Then we proved that uj = vj for every j ∈ {1, 2, . . . , n+ 1} consequently u = v.

We can conclude that u satisfies (2.13), therefore u is a critical point of (2.12). �
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Remark 2.2. In Theorem 1 we can also prove that the subsequences {u(ki)}i, {u
(ki+1)}i, {u

(ki+2)}i,

. . . , {u(ki+p)}i, p ∈ N of {u(k)}k, converges to the same point u, in order to show this we can repeat

the same steps to prove that {u(ki)}i, {u
(ki+1)}i converges to the same point u, and repeat it for

{u(ki+1)}i, {u
(ki+2)}i, then for {u(ki+2)}i, {u

(ki+3)}i and so on. However, unlike stated in [26], this fact

does not imply that all subsequences of {u(k)}k converges to same point u.

Indeed, consider the next counter-example. Let {uk}k ⊂ R be a sequence defined as follows

uk =







1, if k = 2i − 1, i ∈ N

0, otherwise
,

Clearly, the sequence {uk}k does not converge. Let us show that there is a subsequence {uki}i converging

to some point, such that for every p ∈ N, the subsequences {u(ki)}i, {u
(ki+1)}i, {u

(ki+2)}i, . . . , {u
(ki+p)}i

converges to the same limit point. For such purpose, take the subsequence {u(ki)}i with ki := 2i, ∀i ∈ N.

It is not difficult to see that lim
i→∞

uki = 0. Let p ∈ N be a fixed natural number and i0 ∈ N be a scalar

such that p < 2i0 − 1. Note that p < 2i0 − 1 ≤ 2i − 1 then 2i + p < 2i+1 − 1 for i ≥ i0, also observe that

2i − 1 < 2i + p then we have

2i − 1 < ki + p = 2i + p < 2i+1 − 1, for all i ≥ i0.

Thus, uki+p = 0, ∀i ≥ i0 and hence lim
i→∞

uki+p = 0 . �

Our goal now is to show that under sparsity assumptions on the critical point obtained from

Algorithm 1. This critical point will be global minimizer of (2.12).

Lemma 2.2. Let u, y ∈ R
n+1. If both have sparsity ‖u‖0 ≤ n/2, ‖y‖0 ≤ n/2, then there exists a

constant C > 0, which does not depend on u and y, such that

‖u− y‖ ≤
1

C
‖Hu−Hy‖,

where H is given by (2.4).

Proof: Let us define the matrix G ∈ R
(2n+2)×(2n+2) as

H =





H0 α

αT m



 , G =





H 0n+1

In+1 In+1





where H is given in (2.4), H0 = XTX +
1

ρ
I ∈ R

n×n, α = XT e ∈ R
n×1, m ∈ R, 0n+1 is the zero matrix

in R
(n+1)×(n+1) and In+1 ∈ R

(n+1)×(n+1) is the identity matrix.

We can see that ‖u− y‖0 ≤ n. Without loss of generality, we can assume that u−y = (β, 0)
T
,

where β ∈ R
n. Then we get

‖u− y‖ = ‖β‖ . (2.29)
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Let z ∈ R
2n+2 be the vector defined by

z =
(

(u− y)T ,−(u− y)T
)T

=
(

βT .0,−βT , 0
)T

Hence, we obtain

Gz =





H(u− y)T

0



 =





H
(

βT , 0
)T

0



 =











H0β

αTβ

0











,

note that H0 = XTX + 1
ρI is positive definite, then it admits an inverse matrix, then











H−1
0

0

0











Gz =











H−1
0

0

0





















H0β

αTβ

0











=











β

0

0











. (2.30)

Therefore by (2.29) and (2.30), we have

‖u− y‖ = ‖β‖ ≤
∥

∥H−1
0

∥

∥ · ‖Gz‖ =
∥

∥H−1
0

∥

∥ · ‖Hu−Hy‖.

Now, we can take C =
∥

∥H−1
0

∥

∥

−1
. �

Theorem 2. Given ǫ > 0, q ∈ (0, 1), define ρǫ,q :=
Cǫ1−q/2

q(2− q)
where C is given by Lemma 2.2. Then for

every ρ < ρǫ,q, we have that

fq(ǫ, y)− fq(ǫ, y) ≥
C

4ρ
‖y − uǫ,q‖2 (2.31)

whenever ‖y‖0, ‖u
ǫ,q‖0 ≤ n/2.

Proof: We first calculate fq(ǫ, y)− fq (ǫ, u
ǫ,q) as the following

fq(ǫ, y)− fq (ǫ, u
ǫ,q) = ‖y‖qq,ǫ +

1

2ρ
‖Hy − d‖2 −

[

‖uǫ,q‖
q
q,ǫ +

1

2ρ
‖Huǫ,q − d‖

2

]

,

then, we have that

fq(ǫ, y)− fq (ǫ, u
ǫ,q) =

[

‖y‖qq,ǫ − ‖uǫ,q‖
q
q,ǫ

]

+

[

1

2ρ
‖Hy − d‖2 −

1

2ρ
‖Huǫ,q − d‖

2

]

=

=
n+1
∑

j=1

[

(

ǫ+ y2j
)q/2

−
(

ǫ+
(

uǫ,q
j

)2
)q/2

]

+
1

ρ
(Huǫ,q − d)

T
(Hy −Huǫ,q) +

1

2ρ
‖Hy −Huǫ,q‖

2
.

(2.32)

Now, computing the inner product between (2.13) and (y − uǫ,q) we obtain

1

ρ
(Huǫ,q − d)

T
(Hy −Huǫ,q) = −

n+1
∑

j=1

quǫ,q
j (yj − uǫ,q

j )
(

ǫ+
(

uǫ,q
j

)2
)1−q/2

, (2.33)
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substituting (2.33) into (2.32), and by inequality from Lemma 2.2, we have

fq(ǫ, y)− fq (ǫ, u
ǫ,q) =

=
n+1
∑

j=1







(

ǫ+ y2j
)q/2

−
(

ǫ+
(

uǫ,q
j

)2
)q/2

−
quǫ,q

j (yj − uǫ,q
j )

(

ǫ+
(

uǫ,q
j

)2
)1−q/2






+

1

2ρ
‖Hy −Huǫ,q‖

2
≥

≥

n+1
∑

j=1







(

ǫ+ y2j
)q/2

−
(

ǫ+
(

uǫ,q
j

)2
)q/2

−
quǫ,q

j (yj − uǫ,q
j )

(

ǫ+
(

uǫ,q
j

)2
)1−q/2






+

C

2ρ
‖y − uǫ,q‖

2

=

n+1
∑

j=1







(

ǫ+ y2j
)q/2

−
(

ǫ+
(

uǫ,q
j

)2
)q/2

−
quǫ,q

j (yj − uǫ,q
j )

(

ǫ+
(

uǫ,q
j

)2
)1−q/2

+
C/2

2ρ

(

yj − uǫ,q
j

)






+

C/2

2ρ
‖y − uǫ,q‖

2
.

(2.34)

Next, we will show that for a small enough ρ, each term in the sum of (2.34) is nonnegative.

For this purpose, we define a function which corresponds to a term of the sum, and then we show that

this function is nonnegative.

For a fixed a ∈ R define

g(x) =
(

ǫ+ x2
)q/2

− (ǫ+ a)
q/2

−
qa(x− a)

(ǫ+ a2)
1−q/2

+
C

2ρ
(x− a)2.

We will prove that g has global minimizer at a and g(a) = 0. In fact, note that

g′(x) = qx
(

ǫ+ x2
)q/2−1

−
qa

(ǫ+ a2)
1−q/2

+
C

ρ
(x− a),

hence

g′(a) = qa
(

ǫ+ a2
)q/2−1

−
qa

(ǫ+ a2)
1−q/2

+
C

ρ
(a− a) = 0.

Also

g′′(x) =q
(

ǫ+ x2
)q/2−1

+ 2qx2(
q

2
− 1)

(

ǫ+ x2
)q/2−2

+
C

ρ

=q
(

ǫ+ x2
)q/2−1

+ q(q − 2)x2
(

ǫ+ x2
)q/2−2

+
C

ρ
.

(2.35)

Observe that q
(

ǫ+ x2
)q/2−1

≥ 0 for every x ∈ R and

0 ≤ x2
(

ǫ+ x2
)q/2−2

=
x2

(ǫ+ x2)
2−q/2

≤
x2 + ǫ

(ǫ+ x2)
2−q/2

=
1

(ǫ+ x2)
1−q/2

≤
1

ǫ1−q/2

then, the second term from the equation of (2.35) is bounded below, that is

0 ≥ q(q − 2)x2
(

ǫ+ x2
)q/2−2

≥
q(q − 2)

ǫ1−q/2
,

for every x ∈ R. Thus, g′′(x) ≥ −
q(2− q)

ǫ1−q/2
+

C

ρ
, then g′′(x) > 0 for every x ∈ R and ρ > 0 with

ρ <
Cǫ1−q/2

q(2− q)
. Hence g(x) is a convex function and since g(a) = 0, g′(a) = 0, then a ∈ R is a global

minimizer of g. Therefore, we conclude g(x) ≥ 0 for every x ∈ R. �
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Corolary 2.1. Consider the parameter ρǫ,q defined in Theorem 2. If fq(ǫ, ·) admits a global solution v

with ‖v‖0 ≤
n

2
and uǫ,q is a limit point of a sequence generated by Algorithm 1, such that, ‖uǫ,q‖0 ≤

n

2
.

Then, uǫ,q is also a global minimizer of fq(ǫ, x).

Proof: In Theorem 2 we proved that for ρ < ρǫ,q and y with sparsity ‖y‖0 ≤ n/2, we have

fq(ǫ, y)− fq (ǫ, u
ǫ,q) ≥

C

4ρ
‖y − uǫ,q‖

2
≥ 0.

Take y equals to the global minimizer of fq(ǫ, ·), i.e., y = v. By the previous inequality we get fq(ǫ, v) ≥

fq (ǫ, u
ǫ,q), that is, uǫ,q = v is a global minimizer. �

2.2.3 Lq-norm LS-SVM analysis when ǫ → 0+ and q → 0+

Our goal in this subsection is to study the behavior of the problem (2.12) as ǫ → 0+ and

q → 0+. Also we present how the problems (2.12) and (2.9) are related.

For the purpose of this subsection we will need to use the concept of Γ−convergence [17].

Definition 2.1. Let (X, d) be a metric space with metric d. We say that a sequence of functionals

Ek : X → [−∞,∞] is Γ−convergent to a functional E : X → [−∞,∞] as k → ∞, if for all u ∈ X, the

following holds

1. For each sequence {uk}k ⊂ X converging to u,

E(u) ≤ lim inf
k

Ek

(

uk
)

.

2. There exists a sequence {uk}k ⊂ X converging to u such that

E(u) ≥ lim sup
k

Ek

(

uk
)

.

Lemma 2.3. If a sequence of functionals {Ek}k is Γ−convergent to a functional E on X as k → ∞,

then for any subsequence {Ekj}j of {Ek}k, we have

lim sup
kj→∞

inf
u∈X

Ekj
(u) ≤ inf

v∈X
E(v).

Proof: For any vector v ∈ X, by definition of Γ− convergence, there exists {uk}k converging to v

such that

lim sup
k→∞

Ek

(

uk
)

≤ E(v).

Note that inf
u∈X

Ekj
(u) ≤ Ekj

(ukj ), therefore

lim sup
kj→∞

inf
u∈X

Ekj
(u) ≤ lim sup

kj→∞
Ekj

(

ukj
)

≤ lim sup
k→∞

Ek

(

uk
)

≤ E(v).
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Since v is arbitrary, we obtain that

lim sup
kj→∞

inf
u∈X

Ekj
(u) ≤ inf

v∈X
E(v).

�

An important consequence of a Γ−convergent of functionals is the following

Lemma 2.4. Suppose that a sequence of functionals {Ek}k is Γ−convergent to a functional E on X as

k → ∞. Let {Ekj}j be a subsequence of {Ek}k and ukj be a minimizer of Ekj . If the sequence {ukj}j

converges to u on X, then u is a minimizer of E.

Proof: By definition of Γ−convergence

E(u) ≤ lim inf
kj→∞

Ekj

(

ukj
)

≤ lim sup
kj→∞

Ekj

(

ukj
)

= lim sup
kj→∞

inf
v∈X

Ekj (v) ≤ inf
v∈X

E(v)

The first inequality follows from definition Γ−convergence and the last one follows from Lemma 2.3 �

The next two lemmas will help us to prove that a minimizer of the problem (2.11) can be

approximate by a sequence of critical points of (2.12) generated by Algorithm 1.

Lemma 2.5. Let El : R
n → R defined by El(u) := fq(ǫl, u) = ‖u‖q,ǫlq + 1

2ρ‖Hu − d‖2 be a sequence of

functionals. If ǫl → 0, then El is Γ−convergent to the functional E where E := fq(0, u).

Proof: Let u ∈ X and suppose that {ul}l is a sequence converging to u ∈ R
n+1. By definition

E(u) := fq(0, u) =
1

2ρ
‖Hu− d‖2 + ‖u‖qq

and

El(u) := fq(ǫl, u) =
1

2ρ
‖Hu− d‖2 + ‖u‖q,ǫlq

We can see that El is Γ−convergent to E as l → ∞. Indeed,

fq(ǫl, u) ≥
1

2ρ
‖Hu− d‖2 + ‖u‖qq,

it follows that

lim inf
l→∞

fq(ǫl, u
(l)) ≥ fq(0, u).

Thus, item 1 of the definition of Γ−convergence 2.1 is satisfied.

On other hand, for any u, take u(l) = u for l ∈ N, then

lim sup
l→∞

El(u
l) = lim sup

l→∞
fq

(

ǫl, u
(l)
)

= lim sup
l→∞

fq (ǫl, u) = fq(0, u) = E(u)

and therefore item 2 of definition of Γ−convergence 2.1 holds and El is Γ-convergent to E. �

Now consider the problem (2.11) and let uǫl,q be a critical point of (2.11), with ‖uǫl,q‖0 ≤ n/2,

obtained through Algorithm 1, and a random initialization u(0), that is, u(kj) → uǫl,q, where {u(kj)}j is

a subsequence of a sequence generated by Algorithm 1.
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Lemma 2.6. Consider {ǫl}l a sequence with ǫl → 0. Suppose that for every ǫl, l ∈ N, the problem

(2.12) has a global minimizer v with sparsity ‖v‖0 ≤ n/2. If {uǫl,q}l is a sequence of critical points of

(2.11) with ‖uǫl,q‖0 ≤ n/2, then {uǫl,q}l is bounded and consequently has a convergent subsequence.

Proof: To prove the result is enough to show that {uǫl,q}l is bounded, with respect to ǫl. Take

z ∈ R
n+1 fixed. Since (2.12) has a global minimizer v with sparsity ‖v‖0 ≤ n/2 for every ǫl and

‖uǫl,q‖0 ≤ n/2, then by Theorem 2, we get

‖uǫl,q‖
q
q ≤

n+1
∑

j=1

(

ǫl +
(

uǫ1,q
j

)2
)q/2

≤ fq (ǫl, u
ǫl,q) ≤ fq (ǫl, z) . (2.36)

Hence we proved that the sequence {uǫl,q}l is bounded, consequently there exists a convergent subse-

quence {uǫlj ,q}j ⊂ {uǫl,q}l, therefore lim
j→∞

uǫlj ,q = u �

Theorem 3. Let ρ > 0 and q ∈ (0, 1). Suppose that there exists a sequence {ǫl}l with ǫl → 0, such

that, for every ǫl:

1. The problem (2.12) admits a global minimizer v ∈ R
n+1 with ‖v‖0 ≤ n/2;

2. The Algorithm 1 generates a critical point uǫl,q, with ‖uǫl,q‖0 ≤ n/2.

Then, every limit point of {uǫl,q}l is a minimizer of (2.11).

Proof: Since the hypothesis of Lemma 2.6 are satisfied, the sequence {uǫl,q}l is bounded. Thus,

this sequence has a limit point uq. Now, we will show that uq is a minimizer of (2.11). By Lemma

2.5, fq(ǫl, u) is Γ−convergent to fq(0, u). By Lemma 2.4, uq will be a minimizer of (2.11), if uǫl,q is a

minimizer of fq(ǫl, u), but this is a consequence of the sparsity of uǫl,q and Theorem 2. �

Now, let {uq}q be a sequence of minimizers of (2.11) with 0 < q < 1. We next show that

every limit point of {uq}q is a minimizer of (2.9).

Theorem 4. For every q ∈ (0, 1), suppose that there exists a sequence {ǫql }l with ǫql → 0, such that,

for every ǫql , l ∈ N, the problem (2.12) has a global minimizer v with sparsity ‖v‖0 ≤ n/2. Denote by

uq a limit point of {uǫql ,q}l. Then, {uq}q is bounded and every limit point is a minimizer of the problem

(2.9).

Proof: Let ǫql → 0 in (2.36), as result we have that {uq}q is bounded for 0 < q < 1, hence {uq}q

has a convergent subsequence. Thus, in order to prove the result, by Lemma 2.4, we have to prove that

fq(0, u), 0 < q < 1 is Γ−convergent to f0(0, u) as q → 0+. Suppose that {uq}q is the sequence that

converges to u(∗), then ‖Hu− d‖
2
converges to

∥

∥Hu(∗) − d
∥

∥

2
. Let u(∗) = (u

(∗)
1 , u

(∗)
2 , . . . , u

(∗)
n+1) and

δ = min{|u
(∗)
j | > 0}, then for a small enough q we get

fq (0, u
q) ≥

∑

∣

∣

∣
u
(s)
j

∣

∣

∣
>0

∣

∣uq
j

∣

∣

q
+

1

2ρ
‖Huq − d‖

2
≥

∑

∣

∣

∣
u
(s)
j

∣

∣

∣
>0

∣

∣

∣

∣

1

2
δ

∣

∣

∣

∣

q

+
1

2ρ
‖Huq − d‖

2
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Since uq → u(0) as q → 0+, it follows

lim inf
q→0+

fq (0, u
q) ≥

∑

∣

∣

∣
u
(∗)
j

∣

∣

∣
>0

1 +
1

2ρ
‖Hu(∗) − d‖2 = fq

(

0, u(∗)
)

On other hand, for any u(∗), we can take uq = u(∗) for 0 < q < 1, hence

lim sup
q→0+

fq (0, u
q) = f0

(

0, u(∗)
)

.

Therefore, we proved that fq(0, u) is Γ−convergent to f0(0, u), then by Lemma 2.4 we have the claimed

result. �

The previously results show us that sparsity is a key point, e.g., in Theorem 3 requires that

the vector uǫl,q must satisfy ‖uǫl,q‖0 ≤ n/2. Hence, it is important to outline a practical way to set an

attribute of the critical point uǫ,q as being equals to zero or not. The following theorem shows how ǫ

may be used to determine nonzero elements of uǫ,q.

Theorem 5. Let us define

Q = max
1≤j≤n+1

2‖hj‖
2
2fq

(

1, u(0)
)

, (2.37)

where H = (h1, h2, . . . , hn+1) is defined in (2.4), (hj , j ∈ {1, . . . , n + 1} are the columns of H) and

u(0) ∈ R
n+1 is the initial vector in Algorithm 1. Also let

B =

(

22−qQ

q

)
1

1−q

> 0. (2.38)

If Bǫ < 1, then for j = 1, 2, . . . , n+1 the j-th element of the critical point uǫ,q = (uǫ,q
1 , . . . , uǫ,q

n+1)

of problem (2.12) generated by Algorithm 1 satisfies

∣

∣uǫ,q
j

∣

∣

2
>

1

B
=

1

Bǫ
ǫ > ǫ or

∣

∣uǫ,q
j

∣

∣

2
< (Bǫ)1−qǫ < ǫ.

Proof: Considering the j-th element of the vector in (2.13), we have

q







uǫ,q
j

(

ǫ+
(

uǫ,q
j

)2
)1−q/2







2

≤
1

ρ
‖hj‖

2
2 ‖Huǫ,q − d‖

2
2 ≤ 2‖hj

∥

∥

2
2fq (ǫ, u

ǫ,q) ≤ 2 ‖hj |
∥

∥

2

2
fq

(

ǫ, u(0)
)

≤ Q

(2.39)

where j = 1, 2, . . . , n+1. The last inequality (2.39) comes from (2.37). Now we will prove the conclusion

by two cases.

Case 1: If |uǫ,q
j |2 > ǫ, then by (2.39), we have

q

22−q
·

1
∣

∣uǫ,q
j

∣

∣

2(1−q)
=

q
∣

∣uǫ,q
j

∣

∣

2

(

2
∣

∣uǫ,q
j

∣

∣

2
)2−q <

q
∣

∣uǫ,q
j

∣

∣

2

(

ǫ+
∣

∣uǫ,q
j

∣

∣

2
)2−q < Q

It follows by (2.38) that |uǫ,q
j |2 > (q/22−qQ)

1
1−q =

1

B
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Case 2: If |uǫ,q
j |2 ≤ ǫ, then by (2.39), we have

q
∣

∣uǫ,q
j

∣

∣

2

(2ǫ)2−q
≤

q
∣

∣uǫ,q
j

∣

∣

2

(ǫ+
∣

∣uǫ,q
j

∣

∣)(2−q)
< Q.

It follows by (2.38) that
∣

∣uǫ,q
j

∣

∣

2
<
(

22−qQ
q

)

ǫ2−q = (Bǫ)1−qǫ �

Remark 2.3. From Theorem 5, we can see that parameter ǫ > 0 can be used as estimator of nonzero

entries of critical point uǫ,q. Indeed suppose that ǫ > 0 is small enough such that 1/Bǫ is much larger

than 1, we have two cases

1. From Theorem 5, we get that
∣

∣uǫ,q
j

∣

∣

2
>

1

Bǫ
ǫ ≫ ǫ since

1

Bǫ
≫ 1, thus,

∣

∣uǫ,q
j

∣

∣

2
is much larger than

ǫ.

2. If
∣

∣uǫ,q
j

∣

∣

2
< ǫ, by Theorem 5,

∣

∣uǫ,q
j

∣

∣

2
< (Bǫ)1−qǫ, since Bǫ ≪ 1. Thus

∣

∣uǫ,q
j

∣

∣

2
< (Bǫ)1−qǫ <

(Bǫ)ǫ ≪ ǫ therefore
∣

∣uǫ,q
j

∣

∣

2
is much smaller than ǫ.

We can conclude that there exists a gap between ǫ and
1

Bǫ
ǫ, that is, ǫ help us to determine if an entry

is zero or nonzero. In our implementation, we consider uǫ,q
j = 0, if

∣

∣uǫ,q
j

∣

∣

2
< ǫ. See Chapter 3, Section

3.4 (Numerical experiments).
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Chapter 3

EMPIRICAL STUDY

In this chapter we will present our numerical experiments. We start describing our method-

ology and data sets that we use to perform numerical experiments, next we present an overview of

comparisons models and finally we introduce our numerical experiments.

3.1 Methodology

Given a data set S = {(xk, yk)}
n
k=1, we define the error rate or empirical error of a classifica-

tion model by

Err(S) =
1

n

n
∑

k=1

i(ŷk, yk),

where ŷk is the predicted label using the classifier at xk and i : R× R → {0, 1} is defined as follows

i(z, t) =







0, if z = t

1, otherwise
, for z, t ∈ R.

Our goal is to test the Lq-norm LS-SVM feature selection ability and classification accuracy, which is

defined as the percentage of correctly classified data, i.e.,

Accuracy = 1− Err(S).

Now, observe that if the model has a small error rate, then it has a large accuracy, however, we only

know the error rate on the training data and there is no guarantee that a model which has a small

error rate on training data also has a small error rate on unseen data (test data). In fact, it is hard to

estimate the error rate on test data (test error rate), however the following two techniques can help us

to calculate a more accurate test error rate estimation as pointed in [7, 10, 12].

The Holdout method consists in divide the data into two subsets, a training set and a validation

set. The accuracy is estimate as following: First, we determine the classifier using the training data,

second the classifier is used to predict the labels of the validation set. The percentage of correctly

classified validation data is taken to be the estimate accuracy on unseen data.
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Figure 3.1: An illustration of Holdout method.

The K-fold Cross-Validation method, [10, 12], consists in randomly divide the data into K ∈ N

groups or folds with approximately same size, then it takes the first fold to be the validation set and

the remaining K−1 folds to be training set, then it uses the validation set to compute and evaluate the

accuracy as Holdout method. This procedure is repeated K times, thus it will generates K accuracies.

The estimated accuracy of the classifier on unseen is estimated as being the average of K generated

accuracies during the process.

Figure 3.2: An illustration of 10-fold Cross-Validation method.

Observe that techniques (Holdout and K-fold Cross-Validation) do not depend on each other,

that is, we can use only K-fold cross-validation as well as only Holdout method.

Now, we will outline our methodology, which was inspired in [1, 8, 10, 12, 26].

1. We separate the data set S randomly into two disjoint sets T and V where

T = trainning data and V = validation data.

The set T contains 80% of the original data S, meanwhile V contains 20% of the original data S;

2. We set a discrete interval for each parameter, as described detailed in Section 3.4;
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3. We build a grid where each node corresponds to a combination of parameters;

4. Now, we perform a grid search, that is, for each node of the grid, we perform 10-fold cross validation

using the set T , next we take the mean of accuracies as being the model accuracy associated to

each combination of parameters;

5. We select the node of the grid which correspond to a combination of parameters which yielded

the highest 10-fold cross validation on the data set T ;

6. We build the classifier using the selected parameters and the whole set T ;

7. We test the model in validation data set V and then we take the resulting accuracy as being the

model accuracy on the data set S.

3.2 Data Sets

In order to test and compare Lq-norm LS-SVM, we use artificial data sets which were generated

following [26], describe in detail in Subsection 3.2.1, also for the same purpose we use real world data

sets from [6]. In this section we will give a brief description of all data sets that we use in our numerical

experiments.

3.2.1 Artificial Data Sets

We build 5 artificial data sets which are compound by 100 observations and the number

of features are 100, 300, 500, 700, 1000. All data sets are balanced, that is, we have 50 observations

in positive class and 50 in negative class. For each data set, the first two features of positive class

is uniformly distributed in the interval [0, 1), for negative class the first two features are uniformly

distributed in the interval (1, 2], both we add 50% Gauss random noise as following: Consider the

matrix A ∈ R
m×2 where the first column contains the points of the positive class and second column

contains the points of the negative class. Then, we generate1 a matrix G ∈ R
m×2, such that, the

columns are normal random variables with mean 0 and matrix covariance equal to I. Next, we consider

Ā = A+0.5 ·G as being the new first two features of the data set. Observe that, if we consider just the

first two features of positive and negative class, the data set is almost linear separable, see Figure 3.3.

The remaining features are uniformly distributed in interval [0, 2] with 50% Gauss random noise.

1We use the Matlab method rand(m,n)
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Figure 3.3: The artificial data set is almost separable when we consider just the first two features.

3.2.2 Real World Data Sets

• Cleveland Heart: It is a medical data set which contains information about patients, the goal is

to determine the presence or absence of a predetermined heart disease. Thus we have a binary

classification problem. The data set has 87 observations and 13 attributes.

• Ionosphere: It is a radar data collected by a system, the targets are free electrons found in the

Ionosphere. It is a binary classification problem, the radar returns a presence or absence of some

structure in Ionosphere . The data set has 351 observation and 34 attributes.

• LSVT Voice Rehabilitation: LSVT is a treatment for people with Parkinson’s disease. This data

set was collected from 14 participants. The goal is assess whether voice rehabilitation treatment

lead to phonations considered ”acceptable” or ”unacceptable, that is, a binary class classification

problem. The data set has 126 observations and 310 attributes.

More information about the data sets is available on UCI machine learning repository [6].

3.3 Overview of comparison models

In this section, we outline the models that we use to compare to the Lq-norm LS-SVM.

Specifically, for each model we state the associated optimization problem. For all optimization problems

we adopt the same notation introduced at beginning of Section 2.1
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Remark 3.1. For SVMs models, a very well-known technique is the Kernel Trick [1, 3, 5, 23], which

consists into map the set X to a space of larger dimension where the mapping set is linearly separable.

However, we noticed that technique does not perform feature selection with a sparse vector w, since the

classifier will not use the original features to classify.

3.3.1 Support Vector Machine (SVM)

The version that we use in our comparisons is that one studied at Chapter 1, Section 1.1. The

SVM Soft Margin optimization problem (1.9) can be write as following

min
w,b,ξ

1
2‖w‖

2 + CeT ξ

s.t Y (Xw + eb) ≥ e− ξ

ξ ≥ 0.

For our comparisons, we use the implementation of [4].

3.3.2 Least Squares Support Vector Machine (LS-SVM)

The version that we use in our comparisons is that one studied at Chapter 1 Section 1.2. The

LS-SVM optimization problem (1.9) can be write as following

min
w,b,ξ

1
2‖w‖

2 + γ
2 ξ

T ξ

s.t. Y (Xw + eb) + ξ = e

ξ ∈ R
m.

For our comparisons we use the implementation from [27].

3.3.3 Newton Method for Linear Programming Support Vector Machines

(NLPSVM)

The Newton Method for Linear Programming Support Vector Machines (NLPSVM) intro-

duced in [8], transform the quadratic optimization problem (1.9) into a linear minimization one. The

motivation is that there exists an empirical evidence that this modification yields sparse classifiers than

classical SVM as we study in Chapter 1.

We proceed by analyzing the main modification of (1.9). First, they replace the term ‖w‖2

by ‖w‖1, and in order to transform the problem into a linear one, it is employed a trick by replacing w

and ‖w‖1 as follows

w = p− q
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where the components pi, qi ∈ R of p, q ∈ R
n are defined as pi = max(0, wi), qi = |min(0, wi)|, that is,

p is the positive part of w and q is the negative one. Then, we have

‖w‖1 = eT (p+ q)

where p, q ≥ 0. Thus, we obtain the linear optimization problem

min
(p,q,b,ξ)

eT (p+ q) + CeT ξ

s.t. Y (X(p− q)− eb) + ξ ≥ e,

p, q, ξ ≥ 0.

where the dual optimization problem is given by

max
u∈Rm

eTu

s.t. −e ≤ XTY u ≤ e

−eTY u = 0

u ≤ Ce

u ≥ 0.

Instead of solving the dual/primal optimization problem, it is considered the next unconstrained opti-

mization problem

min
u

f(u) =− ρeTu+
1

2

∥

∥

∥

(

XTY u− e
)

+

∥

∥

∥

2

+
1

2

∥

∥

∥

(

−XTY u− e
)

+

∥

∥

∥

2

+
1

2

∥

∥eTY u
∥

∥

2

+
1

2
‖(u− Ce)+‖

2
+

σ

2
‖(−u)+‖

2
,

(3.1)

where ρ and σ are positive penalty parameters. The NLPSVM uses the Newton’s method to solve (3.1).

More details of the algorithm as well as Matlab’s code can be found in [8].

3.4 Numerical Experiments

In this section we present our numerical experiments. We divided this section into two subsec-

tions. Results for artificial data sets and results for real world data sets. All the classification methods

are implemented in Matlab 9.4 on a PC with Intel I7 processor (2.6 GHz) and with 8 GB RAM.

As we mentioned in Section 3.1, for each comparison model we have to determine a grid of

parameters. In our experiments we use the following intervals

• For SVM, we consider the parameter C ∈ {10i | i ∈ {−8,−7, . . . , 7, 8}};

• For LS-SVM we consider the parameter γ
2 ∈ {10i | i ∈ {−8,−7, . . . , 7, 8}};

• For NLPSVM, we follow [8] and consider the parameters C ∈ {2i | i ∈ {−12,−11, . . . , 11, 12}},

ρ = 4 · 10−4, σ = 103 and δ ∈ {10i | i ∈ {−3,−2, . . . , 2, 3}} where δ is used to calculate a modified

Newton direction (See [8]);
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• For Lq-norm LS-SVM, we follow [26] and consider the parameters γ, ρ ∈ {10i | i ∈ {−8,−7, . . . , 7, 8}},

ǫ ∈ {10i | i ∈ {−6,−5,−4,−3,−2,−1}} and q ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

3.4.1 Results in Artificial Data Sets

Data sets

m× n

SVM LS-SVM NLPSVM Lq−norm LS-SVM

Accuracy(%) Accuracy(%) Accuracy(%) Accuracy(%)

Features Features Features Features

Train Time(sec) Train Time(sec) Train Time(sec) Train Time(sec)

100× 100

80 75 90 93

100 100 9 7

0.01 0.04 0.01 0.02

100× 300

75 65 90 85

300 300 18 36

0.02 0.02 0.02 0.02

100× 500

80 75 82 85

500 500 17 36

0.04 0.02 0.02 0.9

100× 700

70 65 92 95

700 700 10 50

0.06 0.02 0.06 1.1

100× 1000

65 60 87 70

1000 1000 20 754

0.09 0.06 0.06 1.5

Table 3.1: Comparison among the models at same artificial sets. Accuracy is the percentage of the right

classified data, Features is the number of selected features and train time is the CPU-time to determine

the classifier.

In Table 3.1, we can see that Lq−norm LS-SVM has a good feature selection ability, as well

as NLPSVM, it also reaches a good accuracy in most data sets, however the train time (the time to

determine the classifier) increases fast as the number of features increases and all the others classfiers

have a smaller train time than Lq−norm LS-SVM. The reason for this is that the system (2.15) depends

on the number of features then it increases as number of features, increases and the complexity to solve

the system also increases. The SVM and LS-SVM models select all the features, in sense that, the

vector w does not have zero components, they have similar performance for accuracy and train time.
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The NLPSVM shows a good feature selection ability and a high accuracy in all data sets, also it takes

a small time to compute its classifier.

(a) The influence of parameter ǫ on accuracy. (b) The influence of parameter ǫ on selected features.

Figure 3.4: In both graphics we consider Lq-norm LS-SVM model. For a given parameter ǫ on the x-axis

in the Figure (a) the accuracy associated to ǫ is the highest accuracy (y-axis) related to the parameters

(ǫ, q, γ, ρ) in the grid. In Figure (b) the percentage of selected features, which correspond to the set of

parameters (ǫ, q, γ, ρ) with highest accuracy.

(a) The influence of parameter q on accuracy. (b) The influence of parameter q on selected features.

Figure 3.5: In both graphics we consider Lq-norm LS-SVM model. For a given parameter q on the x-axis

in the Figure (a) the accuracy associated to q is the highest accuracy (y-axis) related to the parameters

(ǫ, q, γ, ρ) in the grid. In Figure (b) the percentage of selected features, which correspond to the set of

parameters (ǫ, q, γ, ρ) with highest accuracy.

In Figure 3.4, we can see as ǫ increases, for the most of data sets, the number of selected
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features decreases. This behavior is expected since in our implementation we set ǫ as a threshold for

zero components of vector w, that is, we set the i -th component of w to be zero if (wi)
2 < ǫ, see Remark

2.3. Observe that when we have the number of selected features is small, the accuracy also is small.

For example in Figure 3.4, when ǫ = 10−2 or ǫ = 10−1, the number of selected features is about 0, and

in the most cases the accuracy is smaller than for other values of ǫ, that means that the model needs

more features for a better classification.

In Figure 3.5, we expected that for a small q the number of selected features is small, and this

number increases as q increases, this occurs for the data sets 100× 300 and 100× 700, also we note that

for q = 0.9 the models select more features than others values of q, except for data sets 100× 500 and

100× 1000 that have some peaks. Observe that for a small number of selected features, the accuracy is

not affected, this means that the model has selected useful features for classification.

Figure 3.6: We consider the set of parameters (ǫ, q, γ, ρ) which yields the highest accuracy for each data

set, then for k ∈ {0, 1 . . . , 20} we calculate u(k) using Algorithm 1, next we define fval = ‖u(k)‖qq,ǫ.

In Figure 3.6, we consider the parameters combination which yields the highest accuracy for

each data set. We can see as the increasing of iteration k the value of ‖u(k)‖qq,ǫ gradually converges, this

illustrates the convergence of Theorem 1.

Now we illustrate the described gap in Theorem 5. Consider uǫ,q ∈ R
n+1 a critical point of
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(2.12) obtained by Algorithm 1, and we recall from (2.5) that w = (uǫ,q
1 , . . . , uǫ,q

n ) ∈ R
n. Let us define

M = min
j∈{1,...,n}

{|wj |
2 ; |wj |

2 > ǫ} and m = max
j∈{1,...,n}

{|wj |
2 ; |wj |

2 ≤ ǫ} (3.2)

(a) 100× 100 (b) 100× 300

(c) 100× 500 (d) 100× 700

(e) 100× 1000

Figure 3.7: The gap among m, M and ǫ as we pointed out in Remark 2.3, for each artificial data set.
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In Figure 3.7 for each fixed parameter ǫ ∈ {10−6, 10−5, 10−4, 10−3, 10−2, 10−1} we pick q, γ

and ρ, such that, the classifier determined using the critical point uǫ,q obtained by Algorithm 1 has the

highest accuracy for the fixed ǫ. As mentioned in Remark 2.3, under hypotheses of Theorem 5 the gaps

among nonzero w components, the parameter ǫ and zero w components must be large, that occurs for

some cases. In Figure 3.7 (a), for ǫ = 10−6 the nonzero component is about 10000 times larger than ǫ

and the zero component is about 100 times smaller than ǫ. Observe that in Figures 3.7(b), (c), (d) and

(e), for ǫ = 10−1 there is no a nonzero component, it occurs when no features were selected.

3.4.2 Results in Real World Data Sets

Data sets

m× n

SVM LS-SVM NLPSVM Lq−norm LS-SVM

Accuracy(%) Accuracy(%) Accuracy(%) Accuracy(%)

Features Features Features Features

Train Time(sec) Train Time(sec) Train Time(sec) Train Time(sec)

Cleveland

Heart

87× 13

88.23 87.5 88.24 88.46

13 13 8 7

0.01 0.02 0.01 0.01

Ionosphere

351× 34

84.71 85.57 88.43 84.76

33 33 21 26

0.02 0.02 0.06 0.05

LSVT Voice

Rehabilitation

126× 310

85.6 85.67 86.80 81.08

310 310 23 23

0.4 0.3 0.02 0.3

Table 3.2: Comparison among the models at same real data sets. Accuracy is the percentage of the right

classified data, Features is the number of selected features and train time is the CPU-time to determine

the classifier.

In Table 3.2, we see that Lq−norm LS-SVM perform well in real world data sets with respect to

feature selection and accuracy. However, we cannot use these data sets with a huge number of features,

for example Arcene, Db World Mail [6, 26], they have 10000 and 4702 features respectively, because

our implementation (see Appendix A) took a long time to calculate a classifier (about 10 minutes),

specifically it requires a large computation effort to evaluate HTH ∈ R
(n+1)×(n+1) that we need to solve

the system (2.15), and then it would take a long time perform K-Fold cross-validation.

Remark 3.2. In our experiments we defined the Train Time used in Tables 3.1 and 3.2, as being the

time to calculate the classifier, that is, we do not consider the time to find the best combination of
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parameters. We do this because we just want to compare the time that the algorithms take to compute

the classifiers.

(a) The influence of parameter ǫ on accuracy (b) The influence of parameter ǫ on selected features

Figure 3.8: In both graphics we consider Lq-norm LS-SVM model. For a given parameter ǫ on the x-axis

in the Figure (a) the accuracy associated to ǫ is the highest accuracy (y-axis) related to the parameters

(ǫ, q, γ, ρ) in the grid. In Figure (b) the percentage of selected features, which correspond to the set of

parameters (ǫ, q, γ, ρ) with highest accuracy.

(a) The influence of parameter q on accuracy. (b) The influence of parameter q on selected features.

Figure 3.9: In both graphics we consider Lq-norm LS-SVM model. For a given parameter q on the x-axis

in the Figure (a) the accuracy associated to q is the highest accuracy (y-axis) related to the parameters

(ǫ, q, γ, ρ) in the grid. In Figure (b) the percentage of selected features, which correspond to the set of

parameters (ǫ, q, γ, ρ) with highest accuracy.

In Figure 3.8 (a) for all data sets we have the worst accuracy when ǫ = 10−1. In Figure 3.8
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(b) for Cleveland data set we see that as ǫ increases the number of selected features decreases, also we

see that when the number of selected features is small we do not have a good accuracy, it indicates that

the number of selected features is not enough to describe the problem, that is, the classifier needs more

features to produces a more accurate prediction. However we do not have that same pattern for LSVT

Voice Rehabilitation and Ionosphere data sets.

In Figure 3.9 (a) we do not see a pattern that describes the accuracy. In Figure 3.9 (b) we

can see clearly that the number of features increases as q increases for LSVT Voice Rehabilitation and

Ionosphere, observe that when we have a small number of selected features we still have a good accuracy,

for example in LSVT Voice Rehabilitation data set for q = 0.2 we have about 20 selected features and

the accuracy about 80%, and for q = 0.9 we have about 100 selected features and the accuracy is about

80%, that means for q = 0.2 useful features were selected.

Figure 3.10: We consider the set of parameters (ǫ, q, γ, ρ) which yields the highest accuracy for each

data set, then for k ∈ {0, 1 . . . , 20} we calculate u(k) using Algorithm 1, next we define fval = ‖u(k)‖qq,ǫ.

In Figure 3.10, we illustrate the same idea than Figure 3.6, that is, for each real world data

set we take the parameter combination which yield the highest accuracy. We can see that the value of

‖uk‖qq,ǫ decreases fast and get stable as well as for artificial data sets.

Consider M and m as defined in (3.2)
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(a) Cleveland Heart (b) Ionosphere

(c) LSVT Voice Rehabilitation

Figure 3.11: Gap among m, M and ǫ as we pointed out in Remark 2.3, for each real world data set

We took the parameters ǫ, q, ρ, γ as in Figure 3.7. We can see that for the most cases there is a

clear gap between the smallest nonzero squared w component M and the greatest squared w component

that we set to be zero m, that is, M , m are taken as defined in (3.2). For example, in Figure 3.11 (b)

for ǫ = 10−6 we have that M is about 105 times greater than m. However, we cannot see a relationship

between the value ǫ and the gaps size.
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CONCLUSION

Our focus in this dissertation was to study the model Lq−norm Least Squares Support Vector

Machine (Lq−norm LS-SVM) with feature selection [26] for classification problems, which is based on

Least Squares Support Vector Machine (LS-SVM) [29], a variant of Support Vector Machine (SVM) [5].

In Chapter 1, we reviewed important concepts of SVM and LS-SVM theory. We started

with the SVM simplest case: the SVM Hard Margin, which generates a linear classifier in a linearly

separable data set, then we studied SVM Soft Margin, which generates a linear classifier for nonlinearly

separable data sets. Lastly we studied LS-SVM which arose from some modifications of SVM Soft

Margin optimization problem.

In Chapter 2, we presented our study over Lq−norm LS-SVM with feature selection. We

showed that if we consider the linear classifier y(x) = sign(wTx + b), when w is a sparse vector, the

classifier perform feature selection and classification simultaneously. Next, we studied the Lq−norm

LS-SVM method which uses the Lq−norm with 0 < q < 1 to find a sparse approximated solution of

the LS-SVM optimization problem. We proved in Proposition 2.1 that a smooth version of Lq−norm

optimization problem (2.12) admits solution. Then, we presented our study over the convergence results

of Lq−norm LS-SVM method. In this part we made an important remark about Theorem 1.

In Chapter 3, we presented our empirical study. We started by describing our methodology

that we used to test our implementation and compare to the others models as well as the data sets

that we divide into two groups: Artificial and Real World data sets. Next, we briefly described the

comparisons models and finally we presented our numerical experiments where we showed comparison

table and some Lq-norm LS-SVM tests with respect to accuracy, features selection, convergence and

sparsity.

We concluded that Lq−norm LS-SVM has a well structured theory, in sense that, an algorithm

was proposed which searches an approximate sparse solution of LS-SVM also it was provided results

with respect to method convergence. However, our numerical results were different from those presented

in [26] with respect to training time, accuracy and the number of selected features. In most cases, the

number of selected features of our algorithm were greater than the provided algorithm. The accuracy

is not too good as presented in the article. The reason is because we have to use a different Matlab

implementation than the one available in [26] and the reason of this is that the provided implementation

does not follow the Algorithm 1. The matrix H used in the algorithm is not defined as in theory, also

we used a different methodology because the one described in [26] was not clear for tests.

In our comparison, Tables 3.1 and 3.2, we noted that the model NLPSVM performs better than

Lq−norm LS-SVM in almost all data sets, with respect to the number of selected features, accuracy and
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train time. However, this fact does not invalidate Lq−norm LS-SVM. Since we observed in bibliography

that there is no a best classification model for every data set, then might there exists data sets where

Lq−norm LS-SVM perform better than NLPSVM and others, with respect accuracy and number of

selected features.

Finally, we observed that determining the parameters of a model through grid search can be an

expensive task, especially, when the algorithm expend a long time to determine a classifier. Therefore,

the study of a less expensive technique it is an interesting topic for a future work. Also, we noted that

the weakness of the Algorithm 1 is to calculate the matrix multiplication HTH ∈ R
n+1×n+1 needed

to solve system (2.15). Thus, we would consider an interesting topic for a future work the study of an

approximated and less expensive computation technique for HTH ∈ R
n+1×n+1.
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2003.

[17] MING-JUN, L.; JINGYUE, W. An unconstrained ℓq minimization with 0 ≤ q ≤ 1 for sparse

solution of underdetermined linear systems. SIAM Journal on Optimization, v. 21, n. 1, p. 82–101,

2011.

[18] MOLLA, M.; WADDELL, M.; PAGE, D.; SHAVLIK, J. Using machine learning to design and

interpret gene-expression microarrays. AI Magazine, v. 25, n. 1, p. 23–23, 2004.

[19] MURPHY, K. P. Machine learning: a probabilistic perspective. Massachusetts: MIT press, 2012.

[20] NATARAJAN, B. K. Sparse approximate solutions to linear systems. SIAM journal on computing,

v. 24, n. 2, p. 227–234, 1995.

[21] NOCEDAL, J.; WRIGHT, S. Numerical optimization. New York: Springer, 2006.

[22] PAPPU, V.; PARDALOS, P. M. High dimensional data classification. New York: Springer, 2014.

[23] SCHOLKOPF, B.; SMOLA, A. J. Learning with kernels: support vector machines, regularization,

optimization, and beyond. Massachusetts: MIT press, 2001.

[24] SHAFAEY, M. A. et al. Deep learning for satellite image classification. International Conference

on Advanced Intelligent Systems and Informatics, p. 383–391, 2018.

[25] SHALEV-SHWARTZ, SHAI; BEN-DAVID, S. Understanding machine learning: From theory to

algorithms. Cambridge: Cambridge university press, 2014.

[26] SHAO, Y.-H. et al. Sparse Lq-norm least squares support vector machine with feature selection.

Pattern Recognition, v. 78, n. 1, p. 167–181, 2018.

[27] SUYKENS, J. et al. Ls-svmlab toolbox user’s guide: Version 1.8, 2011. LS-SVMlab, 2011. Available

online: https://www. esat. kuleuven. be/sista/lssvmlab/ (accessed on 24 February 2020).

[28] SUYKENS, J. A.; LUKAS, L.; VANDEWALLE, J. Sparse least squares support vector machine

classifiers. ESANN, p. 37–42, 2000.

[29] SUYKENS, J. A.; VANDEWALLE, J. Least squares support vector machine classifiers. Neural

processing letters, v. 9, n. 3, p. 293–300, 1999.



60

[30] WAINWRIGHT, M. J. High-dimensional statistics: A non-asymptotic viewpoint. Cambridge:

Cambridge university press, 2019.



61

Appendix A

LQ-NORM LS-SVM MATLAB IMPLEMENTATION

We present our Matlab implementation that we use in our comparisons and tests.

function [Predict_Y,w,b, wor] = mylqls(TestX,X,Y,FunPara)

% [Predict_Y,w,b]=mylqls(TestX,DataTrain,FunPara);

% Input:

% TestX - Test data matrix which each row represents an input vector.

% X - the input train data matrix.

% Y - the train output/label vectors, the components should be +1 and -1.

%

% FunPara - Struct value in Matlab. The fields in options that can be set:

% FunPara.epsilon: small value the parameter in the Lq-norm LS-SVM.

% FunPara.q: (0,1) the parameter in the Lq-norm LS-SVM.

% FunPara.rho: [0,inf) the parameter in the Lq-norm LS-SVM.

% FunPara.gamma: [0,inf) the parameter in the Lq-norm LS-SVM.

%

% Output:

% Predict_Y - Predict value of the TestX.

% w - weight vector.

% b - bias.

[m,n] = size(X);

I= eye(n);

e = ones(m,1);

XTe = sum(X)’; % It is equivalent to X^T*e

H=[X’*X+1/FunPara.gamma*I, XTe ; XTe’, m];

d = [X’ ;e’]*Y;

H1 = sparse(H);

HTH = H1’*H1;
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y = H’*d;

uk = rand(n+1,1); % Initial guess u0

u = ones(n+1,1);

t = 1;

while t < 1000

dn = (FunPara.epsilon + uk.^2).^(1 - FunPara.q/2);

A = sparse(diag(nt./dn));

M = A + sparse(HTH);

u = uk;

uk = M\ y;

if norm(uk - u) < 1e-10 % tolerancy

break

end

t = t+1;

end

w = uk(1:n);

wor = w; % original w

b = uk(end);

% Remark at end of Chapter 2

for i=1:n

if abs(w(i))<sqrt(FunPara.epsilon)

w(i)=0;

end

end

Predict_Y = sign(TestX*w + b);

end
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