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em Matemática, Setor de Ciências Exatas, Univer-
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valer cada vez mais a pena.

Vida saudável e longa a todos. Deus vôs abençõe.



RESUMO

Nesta tese, consideramos três problemas de estabilidade para sistemas elásticos

acoplados. Cada sistema possui um mecanismo dissipativo atuando indireta-

mente. Os principais resultados sobre esses problemas são: a boa colocação do

problema, comportamento assintótico com taxas explı́citas (decaimento polino-

mial ou decaimento exponencial) e a otimalidade das taxas de decaimento. A

prova dos resultados é baseada na teoria de semigrupos e caracterizações espec-

trais para estabilidade assintótica (caracterização de Pruss e Borichev-Tomilov).

Palavras-chave: sistema acoplado, amortecimento indireto, estabilidade

assintótica, decaimento exponencial, decaimento polinomial, otimalidade.



ABSTRACT

In this thesis, we consider three problems in stability for coupled elastic sys-

tems. Each system has one dissipative mechanism acting indirectly. The main

results about these problems are: the well-posed, the asymptotic behavior with

explicit rates (polynomial decay or exponential decay) and the optimality of the

decay rates. The proof of the results are based on semigroup theory and spectral

characterizations for asymptotic stability (Pruss and Borichev-Tomilov charac-

terization).

Keywords: coupled system, indirect damping, asymptotic stability, exponential

decay, polynomial decay, optimality.
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Introduction

In this work, we propose to study the stability of three coupled systems that present partial

dissipative mechanisms. More precisely, we studied coupled systems that involve vibrations

of membranes or plates which will be placed in an abstract context. In this sense, we have

concentrated our efforts on those problems where the dissipation is caused by frictional type

damping or by having a memory type viscoelastic structure. To use semigroup theory, these

systems will be placed in an abstract format, establishing the operators that define them in an

appropriate Hilbert space, in this way it is possible to guarantee the existence of solutions.

Having resolved the problem about existence of solution, we direct all our efforts in the

study of asymptotic behavior. In this sense, we have some characterizations that allow us to have

decay results looking only at the behavior of the operator’s spectrum associated with the system.

These characterizations due to Pruss (exponential decay) and Borichev-Tomilov (polynomial

decay) play a fundamental role in the development of this work.

Concerning the results obtained about the asymptotic behavior of the solutions, we observed

that certain relations between the structural coefficients of the system cause the decay to become

faster or slower. These relations are generally linked to wave propagation speeds or a compari-

son between the coefficients of the dissipative term and those of the oscillating structure of the

system. The decay speed will also be affected by the fractional exponents of the memory effect

and we will see that these play a fundamental role in determining the optimal decay rates.

Many problems with dissipative effects have been widely studied in recent years, especially

with frictional and memory damping. See, for example, the impressive list of authors who

have published articles addressing these subjects: [57], [16], [23], [29], [31], [26], [34], [59],

[61], [63], [49], [4], and references therein. Even in the case of one equation (like wave or

plate), the investigations of properties in this field are a challenging problem that still have open

questions to be considered because it is possible to consider in different ways and with different

dissipative effects. In a coupled system, also there exist asks when these systems have some
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dissipative effects in the following context: if we have one dissipative equation coupled with

another conservative one then what will happen? Is it possible to consider any relationship

between all coefficient of this system in the asymptotic behavior? If there exist some decay

rates these decay are the best? Some research in this way are: [1], [12], [16], [31], [37], [9],

[76], [36] and [45].

Finally, this thesis is organized as follows: in Chapter 1 we introduce briefly the notations

and preliminary results concerning the Sobolev spaces, some inequalities, spectral properties

and semigroup theory. In Chapter 2 we study the coupled system with two waves whose one

equation is conservative and the other has a frictional dissipation and delay term. In Chapter 3

we study a class of equations that generalize wave or plate equations with fractional memory.

In Chapter 4 we present a study of a coupled system with wave and plate equation endowed

with fractional memory dissipation in both equations. We study these effects in many ways.

In all chapters, for each coupled system we have shown the well-posed, results of asymptotic

behavior with explicit rates and optimal decay rates.



Chapter 1

Preliminaries

At this moment we will introduce some important results to help us understand all the de-

velopment of this work. For more details about proof or comments of all results presented here,

we advise the references [14], [21], [22] and [64].

1.1 Sobolev spaces and inequalities

Initially, let Ω be a bounded domain of Rn with smooth boundary denoted by ∂Ω. We define

a multi-index α = {α1, α2, · · · , αn} ∈ Nn, with |α| = α1 + · · ·+ αn and

Dαu =
∂α1+···+αnu

∂xα1

1 + · · · ∂xαn
n

.

Definition 1.1. Let’s consider f : Ω → C a measurable function. If

‖f‖Lp(Ω) =

(∫

Ω

|f(x)|p
) 1

p

<∞,

where p ∈ [1,∞) then f ∈ Lp(Ω). For m ∈ N, we define the space Wm,p(Ω) as

Wm,p(Ω) = {u ∈ Lp(Ω);Dαu ∈ Lp(Ω), for each multi-index |α| ≤ m}.

It is possible to prove that Wm,p(Ω) is a Banach space with the norm

‖u‖Wm.p(Ω) =





∑

|α|≤m

‖Dαu‖pLp(Ω)





1

p

.

When p = 2, we denote the space Wm,p(Ω) by Hm(Ω) (or eventually just Hm) where this is

a Hilbert space. Note that H0(Ω) = L2(Ω). Moreover, Ck(Ω) (1 ≤ k ≤ ∞) will denote the

space of k times continuously differentiable functions on Ω.

3
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In addiction, if we consider Ck
0 (Ω) =

{

u ∈ Ck(Ω)| supp u ⊂ Ω
}

, we define Wm,p
0 (Ω) as

the closure of this space in the space Wm,p(Ω). In short, we see the space Wm,p
0 (Ω) as all

functions u ∈ Wm,p(Ω) such that “Dαu = 0 on ∂Ω”, for |α| ≤ m − 1, however this idea is

more general because involve traces theory. For a careful analysis, some relevant references

are [14] and [22].

The next theorems are about inequalities that we will use a lot on development of this thesis.

Theorem 1. (Hölder inequality) Let u ∈ Lp(Ω) and v ∈ Lq(Ω), where 1 < p <∞, 1 < q <∞
with

1

p
+

1

q
= 1. We have uv ∈ L1(Ω) and also

∫

Ω

|uv|dx ≤ ‖u‖Lp(Ω)‖v‖Lq(Ω).

Proof. See [22].

Theorem 2. (Young inequality) Let a and b nonnegative real numbers with 1 < p < ∞ and

1 < q <∞ such that
1

p
+

1

q
= 1. For ε > 0 there exists C(ε) > 0 such that

ab ≤ εap + C(ε)bq.

Proof. See [22].

Theorem 3. (Poincaré inequality) If Ω is a bounded domain in Rn and u ∈ H1
0 (Ω), then there

exists a positive constant C > 0, depending only on Ω, such that

‖u‖L2(Ω) ≤ C‖∇u‖L2(Ω), ∀u ∈ H1
0 (Ω).

Proof. See [22].

Definition 1.2. (Sesquilinear form) Let H a complex vector space. A map a : H ×H → C is

a sesquilinear form if for all x, y, z, w ∈ H and ∀ λ1, λ2 ∈ C,

i) a(x+ y, z + w) = a(x, z) + a(x, w) + a(y, z) + a(y, w);

ii) a(λ1x, λ2y) = λ1λ̄2a(x, y).

Moreover, we say:

iii) the map is called bounded if there exists L1 ≥ 0 such that

|a(x, y)| ≤ L1‖x‖H‖y‖H , ∀ x, y ∈ H;
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iv) the map a is coercive if there exists L2 > 0 such that

Re a(u, u) ≥ L2‖u‖2H , ∀ u ∈ H.

Theorem 4. (Lax-Milgram) LetH be a complex Hilbert space and a : H×H → C a sesquilin-

ear form, bounded and coercive. If f ∈ H
′

, where H
′

denote the dual space of H , then there

exists a unique v ∈ H such that

a(u, v) = f(u), ∀ u ∈ H.

Proof. See [40].

1.2 Some definitions about Semigroups Theory and Spectral

Properties

In this section, we present some definitions about semigroup theory of operators. These

properties are important to develop the well-posed and asymptotic behavior of all problems in

this thesis.

Definition 1.3. Let X be a Banach space with norm ‖ · ‖. A family {T (t)}t≥0 of bounded linear

operators in X is called a strong continuous semigroup (or C0 − semigroup) if:

(i) T (0) = I , where I is the identity operator in the set of all bounded linear operator in X;

(ii) T (t+ s) = T (t)T (s), ∀ t, s ∈ R+;

(iii) For each x ∈ X , limt→0+ ‖T (t)x− x‖ = 0.

Theorem 5. If {T (t)}t≥0 is a C0 − semigroup then there exists M ≥ 1 and ω ≥ 0 such that

‖T (t)‖ ≤Meωt, ∀t ≥ 0.

Proof. See [64].

Remark 1. If M = 1 and ω = 0 in Theorem 5, then the semigroup is called semigroup

of contractions. This remark is important because the semigroups that are generated by our

operators, in this thesis, always will be of contractions. Moreover, the semigroup is said to be

exponentially stable if there exist positive constant ω and M ≥ 1 such that

‖T (t)‖ ≤Me−ωt, ∀t ≥ 0.
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Theorem 6. If x ∈ X and {T (t)} is a C0 − semigroup, then the function t 7→ T (t)x is

continuous on [0,+∞).

Proof. See [64].

From Theorem 6 it is possible to define:

Definition 1.4. LetX be a Banach space and {T (t)}t≥0 aC0−semigroup. The linear operator

A : D(A) ⊂ X → X defined by

D(A) =

{

x ∈ X such that ∃ lim
t→0+

T (t)x− x

t

}

,

and

Ax := lim
t→0+

T (t)x− x

t
, ∀ x ∈ D(A),

is called the infinitesimal generator of the semigroup {T (t)}t≥0.

The next theorem gives us the answer to how it is possible to solve the abstract problem



















d

dt
U(t) = AU(t)

U(0) = U0,

(1.1)

when A is the infinitesimal generator of the C0 − semigroup.

Theorem 7. If {T (t)}t≥0 is a C0 − semigroup and A is the infinitesimal generator, then given

x ∈ D(A), we have T (t)x ∈ D(A), ∀ t ≥ 0, and

d

dt
T (t)x = AT (t)x = T (t)Ax. (1.2)

In particular, if we take the function u(t) = T (t)x then it satisfies
d

dt
u(t) = Au(t). So, from

Theorem 7 is possible to solve the abstract problem (1.1) if we show that operator A is the

infinitesimal generator of the C0 − semigroup.

Proof. See [64].

The next results can be found at [14], [22] and [44].

Definition 1.5. Let A be a linear operator in a Hilbert space H . It is called the resolvent set of

operator A the set

ρ(A) =
{

λ ∈ C;λI − A is injective; Im(λI − A) = H; (λI − A)−1 is bounded
}

Moreover, the set σ(A) = C \ ρ(A) is called spectrum of A.
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Definition 1.6. Let A : D(A) ⊂ H → H a densely defined linear operator in a Hilbert space

H. The adjoint operator is given by A∗ : D(A∗) ⊂ H → H, where

D(A∗) = {v ∈ H; ∃v∗ ∈ H such that ∀u ∈ D(A), 〈Au, v〉H = 〈u, v∗〉H} ,

and A∗v = v∗. When A∗ = A we say that this operator is a self-adjoint.

Definition 1.7. We say that a operator A : D(A) ⊂ H → H is positive if

〈Au, u〉H ≥ 0, ∀u ∈ D(A).

Definition 1.8. Let A a linear operator with ρ(A) 6= ∅. We say that A has compact resolvent if

for one λ0 ∈ ρ(A) we have that (λ0I − A)−1 is a compact operator.

From this definition we can enunciate the next result.

Theorem 8 (Spectral Properties). Let’s consider A a positive and self-adjoint operator with

compact resolvent on a complex Hilbert space with dimH = ∞. We have that H has an

orthonormal basis of eigenvectors of A where the eigenvalues are a positive real sequence

(λn)n∈N satisfying lim
n→∞

λn = ∞.

Proof. See [69].

Theorem 9. If A is a positive self-adjoint operator on H , then there is unique positive self-

adjoint operator B on H such that B2 = A.

Proof. See [69].

Supported by [11], [15],[21] and [69], we will define fractional powersAα of a positive self-

adjoint operatorA on a Hilbert space. For this, let’s consider the spectral theorem of unbounded

self-adjoint operators.

Theorem 10. Let A be a self-adjoint operator on a Hilbert space H . Then there exists a unique

spectral measure E = EA on the Borel σ−algebra B(R) such that

A =

∫

R
λdEA(λ),

in particular, the fractional power Aα, for any α of a positive self-adjoint operator A is defined

by

Aα =

∫ ∞

0

λαdEA(λ),

which is also a positive self-adjoint operator.
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Proof. See [69]

Furthermore, due to [39] we have for any α ≥ β:

(i) D(Aα) ⊂ D(Aβ),

(ii) D(Aα) is dense in D(Aβ),

(iii) the continuous embedding D(Aα) →֒ D(Aβ),

(iii) and the fundamental property of powers

AαAβx = AβAαx = Aα+βx,

for x ∈ D(Aγ), with γ = max {α, β, α + β} .

The next result is about an important inequality for fractional operators. This result is im-

portant to conclude the estimate in the polynomial decay rates.

Theorem 11 (Interpolation Inequality). If α < β < γ, then there exists a constant L :=

L(α, β, γ) such that

‖Aβx‖ ≤ L‖Aαx‖
γ−β
γ−α‖Aγx‖

β−α
γ−α ,

for every x ∈ D(Aγ).

Proof. See [21] for the proof and more details about fractional operators.

In order to obtain that A is the infinitesimal generator of the C0 − semigroup we need to

the next results.

Definition 1.9. Let H be a Hilbert space. The operator A is called dissipative operator when

for all x ∈ D(A),

Re 〈Ax, x〉X ≤ 0.

Theorem 12. (Lumer-Phillips’s Theorem) LetA be a linear operator in a Hilbert spaceH with

dense domain D(A) in H. If A is dissipative and there exists λ0 > 0 such that Im(λ0I −A) =

X, then A is the infinitesimal generator of the C0 − semigroup of contractions on X.

Proof. See [64].

Normally, the Theorem 12 is used to show the well-posed of partial differential equations.

In this case we will use a variant of this theorem.
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Lemma 13. Let S : H → H be a continuous linear operator with continuous inverse. If

B ∈ L(H) and

‖B‖ < 1

‖S−1‖ ,

then S +B is a continuous linear operator with continuous inverse.

Proof. See [14].

The following theorem can be found at [44].

Theorem 14. (Variant of Lumer-Phillips’s Theorem) Let A be a linear operator with domain

D(A) dense in a Hilbert space H . If A is dissipative and 0 ∈ ρ(A), then A is the generator of

a C0-semigroup of contractions on H.

Proof. By hypothesis we have A invertible. Furthermore λI − A = A(λA−1 − I). Taking

S = −I and B = λA−1 we have

‖B‖ = ‖λA−1‖ = |λ|‖A−1‖ < 1

‖S−1‖ ,

for |λ| < 1
‖A−1‖

. From Lemma 13 we have that λA−1 − I is invertible. Moreover, we can

assert that λI −A is also invertible because is the composition between two invertible operator.

As a conclusion, from Theorem 12 follows that A is the infinitesimal generator of the C0 −
semigroup of contractions on X .

Finally, we will present some results about asymptotic behavior.

Theorem 15 (Exponentially stable). Let A be the generator of a bounded C0-semigroup of

contractions on a Hilbert space H denoted by etA. Then etA is exponentially stable if and only

if

iR ⊂ ρ(A) and lim sup
|λ|→∞

‖(iλI − A)−1‖ <∞.

Proof. See [35].

Theorem 16 (Borichev and Tomilov’s Theorem). Let A be the generator of a bounded C0-

semigroup on a Hilbert space H such that iR ⊂ ρ(A). We have that

‖etAU0‖ ≤ Ct−1/θ‖U0‖D(A), ∀ t > 0, U0 ∈ D(A),

if and only if,

lim sup
|λ|→∞

|λ|−θ‖(iλI − A)−1‖ <∞.

Proof. See [13].



Chapter 2

Stability and instability results for coupled

waves with delay term

In this chapter, we will study a coupled system of two wave equations. One of these equa-

tions is conservative and the other has damping and delay terms. If the damping acts with more

force than the delay term, we show polynomial stability for strong solutions to the system. Ex-

plicit decay rates are found and the optimality of those are discussed. On the other hand, if

the damping acts with the same or less force than the delay term, then we obtain a result of

asymptotic instability by constructing a sequence of time delays and initial data such that the

solutions are not asymptotically stable.

2.1 Motivation

Nowadays, questions about the asymptotic behavior of solutions for PDEs with time de-

lay effects have become interesting for many authors, mainly because this effect appears in

many areas of sciences as biology, electrical engineering systems, mechanical applications, and

medicine (see [33]). Furthermore, is known that this effect may destroy the stabilizing prop-

erties of a well-behaved system. In the literature, several examples illustrate how time delays

destabilize some internal or boundary control system. We are going to mention some of them:

Nicaise et al. [53] considered the damped wave equation

utt −∆u+ a(x)[µ1ut(t) + µ2ut(t− τ)] = 0 in Ω× R+,

satisfying Dirichlet and Neumann conditions on complementary parts of the boundary ∂Ω. The

nonnegative coefficient a is strictly positive in a part of Ω ⊂ Rn satisfying the geometric control

10
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conditions. They showed that if µ1, µ2 are positive numbers such that

µ1 > µ2, (2.1)

then, the solutions decay exponentially to zero with the energy norm. When the condition (2.1)

does not hold, that is, µ1 ≤ µ2, they found an explicit sequence of time delays that destabilize

the system.

Following this way, the authors [4] and [30] studied the wave equation with memory and

delay term

utt −∆u+

∫ ∞

0

µ(s)∆u(t− s) ds+ κut(t− τ) = 0 in Ω× R+,

satisfying Dirichlet conditions on the boundary ∂Ω. They showed that if the kernel µ of the

memory is exponentially decreasing and the coefficient κ is small, then the solutions of this

equation decrease exponentially. Instability results for large coefficients κ were not considered.

The asymptotic stability for other damped equations with delay term acting in the interior

of Ω was studied by other authors. Some of them can be found in [7, 38, 42, 54, 55, 74, 75, 78].

They all obtained the same result: exponential decay for the solutions of the studied problem.

In some problems, a time delay occurs on the boundary. For example, Xu et al. [77]

considered the unidimensional wave equation

utt − uxx = 0, (x, t) ∈ (0, 1)× R+,

with following boundary conditions

u(0, t) = 0, ux(1, t) = −κµut(1, t)− κ(1− µ)ut(1, t− τ),

were κ > 0, µ ∈ (0, 1). They showed that this system is exponentially stable if µ > 1/2 and

unstable if µ < 1/2. For the critical case µ = 1/2 they considered τ ∈ (0, 1) obtaining the

following results: the system is unstable when τ is rational and asymptotically stable when τ

is irrational. The n-dimensional case was studied by Nicaise et al. [53] obtaining the same

result when µ > 1/2. For µ ≤ 1/2, they showed that the system is unstable for a sequence

of time delays τn. Other problems with delay term acting on the boundary can be found in

[19, 20, 25, 54, 56, 65].

Other researchers have focused their efforts on studying the asymptotic stability of problems

whose damping mechanisms act indirectly. This kind of problem was introduced by Russell in

[66]. In these problems, the conservative part of the material absorbs the dissipative properties
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of indirect damping leading to the possibility of a global stabilization. But the technical difficul-

ties for getting appropriate estimates for the conservative part are not simple; they are difficult

and challenging.

In this chapter, we are interested in study the asymptotic behavior of a coupled system with

indirect damping and delay time. The system is given by










ρ1utt − β1∆u+ αv + µ1ut(t) + µ2ut(t− τ) = 0 in Ω× R+,

ρ2vtt − β2∆v + αu = 0 in Ω× R+,

(2.2)

satisfying the boundary conditions

u = 0, v = 0 on ∂Ω× R+, (2.3)

and initial data

u(0) = u0, v(0) = v0, ut(0) = u1, vt(0) = v1, ut(−s) = φ(s), s ∈ (0, τ), φ(0) = u1.(2.4)

Here Ω is a bounded open set of Rn with smooth boundary ∂Ω. The coefficients ρ1, ρ2, β1, β2,

µ1, µ2 are positive, the coupling coefficient satisfies the condition

0 < |α| < γ1
√

β1β2, (2.5)

where γ1 is the first eigenvalue of the operator −∆ : H2(Ω) ∩H1
0 (Ω) ⊂ L2(Ω) → L2(Ω).

Alabau et al. [1] studied the coupled system (2.2)-(2.4) for the case µ2 = 0 and ρ1 = ρ2 =

β1 = β2 = 1. This means that the system does not have delay and the equations have the same

wave propagation speeds (define in equation (2.6)). In this case, the coefficient

χ0 :=
β1
ρ1

− β2
ρ2

(2.6)

is zero. They showed that the semigroup cannot be exponentially stable but it decays polynomi-

ally with the rate t−1/2 for strong solutions. The optimality of this decay rate was not provided.

When the equations have different wave propagation speeds, the situation is completely differ-

ent, the semigroup decays slower. This study was done by Oquendo et al. [61], who showed

that the semigroup decay polynomially with the optimal rate t−1/4 for strong solutions. We will

see that the relations χ0 = 0 and χ0 6= 0 also play an important role in the stabilization of the

system with time delay (2.2)-(2.4). Studies about stabilization of other coupled systems and

wave propagation speeds can be found in [2, 12, 24, 60] and [52] respectively.

Our main results are on the asymptotic behavior of the strong solution of system (2.2)-(2.4).

We summarize our results in the following items:
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• If (2.1) holds, that is, if the damping acts with more force than the delay term, then the

solution decay polynomially with the following rates: t−1/2 if χ0 = 0 and t−1/4 if χ0 6= 0

(see Theorem 18).

• The decay rates in the previous item are the best (see Theorem 21).

• If (2.1) does not hold, that is, µ1 ≤ µ2, for suitable time delays, the solutions can oscillate.

Consequently, the solutions do not decay to zero. This result is independent of the value

that χ0 assumes (see Theorem 22).

2.2 Well-Posedness

In this section, we will prove that system (2.2)-(2.4) is well-posed by using the semigroup

theory. To put this system in an abstract framework, we introduce the function

z(x, t, s) = ut(x, t− s), s ∈ [0, τ ], x ∈ Ω.

From this definition we see that z satisfies zt = −∂sz. Therefore, if we consider the vector

U(t) = (u(t), v(t), ut(t), vt(t), z(t, ·)), the coupled system (2.2)-(2.4) can be written as

d

dt
U(t) = BU(t), U(0) = U0, (2.7)

where U0 = (u0, v0, u1, v1, φ) and the operator B is given by

BU =
(

u̇, v̇, ρ−1
1 {β1∆u− αv − µ1u̇− µ2z(τ)} , ρ−1

2 {β2∆v − αu} , −∂sz
)

,

for U = (u, v, u̇, v̇, z). Here the point on top of this terms is just a notation, it does not mean

the time derivative. We will define this operator in an appropriate subspace of the Hilbert space

X = H1
0 (Ω)×H1

0 (Ω)× L2(Ω)× L2(Ω)× L2(0, τ ;L2(Ω)),

provided with inner product

〈U1, U2〉 = ρ1〈u̇1, u̇2〉+ ρ2〈v̇1, v̇2〉+ β1〈∇u1,∇u2〉+ β2〈∇v1,∇v2〉

+α〈u1, v2〉+ α〈v1, u2〉+ µ1

∫ τ

0

〈z1(s), z2(s)〉 ds.

Here 〈·, ·〉 denotes the inner product in L2(Ω). With these considerations, the natural domain of

the operator B is defined by

D(B) =
{

U ∈ X : u̇, v̇ ∈ H1
0 (Ω), u, v ∈ H2(Ω) ∩H1

0 (Ω),

∂sz ∈ L2(0, τ ;L2(Ω)), z(0) = u̇
}

.
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To show the well-posedness of the Cauchy problem (2.7) it suffices to prove that the operator

B is the generator of a C0- semigroup. For this, we will use a variant of Lumer-Phillips’s

Theorem enunciated in Theorem 14 to conclude the following result.

Theorem 17. Assume (2.1) and (2.5). For initial data U0 in D(B) there exists one solution of

problem (2.7) in the following space

U ∈ C([0,+∞[;D(B)) ∩ C1([0,+∞[;X).

Proof. We are going to verify that B satisfies the conditions of Theorem 14. First, let us see that

D(B) is dense in X . Let U = (u, v, u̇, v̇, z) ∈ X, then there exists a sequence

(un, vn, u̇n, v̇n, ηn) ∈ (H2(Ω) ∩H1
0 (Ω))

2 × (H1
0 (Ω))

2 × C1
0(0, τ ;H

1
0 (Ω))

such that (un, vn, u̇n, v̇n, ηn) → (u, v, u̇, v̇, z) in X. Let us take φn ∈ C1[0, τ ] satisfying the

conditions φn(0) = 1 and φn → 0 in L2(0, τ), then considering the sequence zn := φnu̇n + ηn

we have zn(0) = u̇n and zn → z in L2(0, τ ;L2(Ω)). Therefore, (un, vn, u̇n, v̇n, zn) ∈ D(B) and

(un, vn, u̇n, v̇n, zn) → (u, v, u̇, v̇, z) in X. Consequently, D(B) is dense in X.

On the other hand, considering U = (u, v, u̇, v̇, z) ∈ D(B), performing a simple computa-

tion gives

Re〈BU,U〉 = −µ1

2

∫

Ω

|u̇|2dx− µ1

2

∫

Ω

|z(τ)|2dx− µ2Re

∫

Ω

z(τ)u̇dx.

Applying Hölder and Young inequalities we get

Re〈BU,U〉 ≤ (µ2 − µ1)

2

(∫

Ω

|u̇|2dx+
∫

Ω

|z(τ)|2dx
)

, (2.8)

which is non-positive because µ2 < µ1. Therefore, the operator B is dissipative.

Remains to show 0 ∈ ρ(B). Let F = (f1, f2, f3, f4, f5) ∈ X. The vector U = (u, v, u̇, v̇, z)

is solution of system BU = F if and only if

u̇ = f1 in H1
0 (Ω), (2.9)

v̇ = f2 in H1
0 (Ω), (2.10)

ρ−1
1 (β1∆u− αv − µ1u̇− µ2z(τ)) = f3 in L2(Ω), (2.11)

ρ−1
2 (β2∆v − αu) = f4 in L2(Ω), (2.12)

−∂sz = f5 in L2(0, τ ;L2(Ω)). (2.13)
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Taking the expression

z(s) = u̇−
∫ s

0

f5(r)dr, s ∈ [0, τ ], (2.14)

it is solution of (2.13) and moreover we have z(0) = u̇. Consequently, by Poincaré and Hölder

inequalities, there exists C > 0 such that

‖z(τ)‖2L2(Ω) ≤ C‖F‖2 and

∫ τ

0

‖z(s)‖2L2(Ω)ds ≤ C‖F‖2. (2.15)

Now, using (2.9) and (2.10), the equations (2.11)-(2.12) can be written as











β1∆u− αv = g1,

β2∆v − αu = g2,

(2.16)

where g1 = ρ1f3 + µ1f1 + µ2z(τ) and g2 = ρ2f4. Denoting with W = (u, v), this system can

be placed in a variational problem

a(W,Φ) = 〈G,Φ〉, ∀ Φ = (ϕ, ψ) ∈
(

H1
0 (Ω)

)2
,

where the sesquilinear form a(·, ·) and G are defined by

a(W,Φ) = β1

∫

Ω

∇u∇ϕ̄dx+ α

∫

Ω

vϕ̄dx+ β2

∫

Ω

∇v∇ψ̄dx+ α

∫

Ω

uψ̄dx,

〈G,Φ〉 = −
∫

Ω

g1ϕ̄dx−
∫

Ω

g2ψ̄dx.

From this definition we have that a(·, ·) is continuous and G ∈ (L2(Ω))
2
. Therefore, if we

verify that a(·, ·) is coercive, by Lax-Milgram’s Theorem and elliptic regularity we have the

existence of strong solutions for (2.16). Consequently, we have a unique solution U ∈ D(B) of

system (2.9)-(2.13).

Coercivity of a(·, ·): condition (2.5) implies there exists θ ∈ (0, 1) such that |α| < θγ1
√
β1β2.

Thus, applying Hölder, Poincaré and Young inequalities, we obtain

2|α|
∫

Ω

|uv|dx ≤ 2|α|
(∫

Ω

|u|2dx
) 1

2
(∫

Ω

|v|2dx
) 1

2

≤ 2|α| 1
γ1

(∫

Ω

|∇u|2dx
) 1

2
(∫

Ω

|∇v|2dx
) 1

2

< 2θ

(

β1

∫

Ω

|∇u|2dx
) 1

2
(

β2

∫

Ω

|∇v|2dx
) 1

2

≤ θβ1

(∫

Ω

|∇u|2dx
)

+ θβ2

(∫

Ω

|∇v|2dx
)

. (2.17)
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Using the above estimate we get

a(W,W ) = β1

∫

Ω

|∇u|2dx+ β2

∫

Ω

|∇v|2dx+ 2αRe

∫

Ω

uv̄dx

≥ (1− θ)β1

∫

Ω

|∇u|2dx+ (1− θ)β2

∫

Ω

|∇v|2dx, (2.18)

that is, a(·, ·) is coercive.

On the other hand, applying Young and Poincaré inequalities we have

|〈G,W 〉| ≤ ǫ

{∫

Ω

|∇u|2dx+
∫

Ω

|∇v|2dx
}

+ C(ǫ)

{∫

Ω

|g1|2dx+
∫

Ω

|g2|2dx
}

≤ ǫ

{∫

Ω

|∇u|2dx+
∫

Ω

|∇v|2dx
}

+ C(ǫ)‖F‖2.

Since a(W,W ) = 〈G,W 〉, computing ǫ sufficiently small in the above estimate and using

inequality (2.18) we get

∫

Ω

|∇u|2dx+
∫

Ω

|∇v|2dx ≤ C‖F‖2.

From estimates (2.9), (2.10), and (2.15) imply that

‖U‖ ≤ C‖F‖,

that is, 0 ∈ ρ(B). Therefore, by Theorem 14, the operator B is the generator of a semigroup of

contractions and therefore we say that the solution of abstract system (2.7) is given by U(t) =

etBU0, t ≥ 0.

Remark 2. For µ1 ≤ µ2 also there exists solution using an argument by perturbation on oper-

ator.

2.3 Polynomial decay

In this section, we will see that the semigroup of system (2.2)-(2.4) for initial strong data

decays polynomially when the time tends to infinity. The results will be obtained using a spec-

tral characterization for polynomial decay due to Borichev and Tomilov enunciated in Theorem

16.

The main result of this section makes the relations between all coefficients of the system

(2.2)-(2.4) and under certain conditions, it shows the decay rates.

Theorem 18. Let α, χ0 satisfying (2.5)-(2.6). If the coefficients µ1, µ2 satisfy (2.1), then the

semigroup etB of the system (2.2)-(2.4) has the following asymptotic behavior:
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1. If χ0 = 0, the semigroup decays polynomially with decay rate t−1/2, that is, there exists

C > 0 such that

‖etBU0‖ ≤ C

t1/2
‖U0‖D(B), ∀ t > 0, U0 ∈ D(B).

2. If χ0 6= 0, the semigroup decays polynomially with decay rate t−1/4, that is, there exists

C > 0 such that

‖etBU0‖ ≤ C

t1/4
‖U0‖D(B), ∀ t > 0, U0 ∈ D(B).

To prove this theorem, we need some prior estimates. In this sense, we will first show some

lemmas.

Lemma 19. Assume the hypothesis of Theorem 18. Suppose that for every λ ∈ R and F ∈ X

there exists a solution U = (u, v, u̇, v̇, z) ∈ D(B) of (iλI − B)U = F . Then, there exists a

positive constant C such that

∫

Ω

|v|2dx ≤ C

[

|χ0|
(∫

Ω

|u̇|2dx
)1/2(∫

Ω

|v̇|2dx
)1/2

+

∫

Ω

|u|2dx+ ‖F‖‖U‖
]

.

Proof. First, note that if F = (f1, f2, f3, f4, f5), then the components of the system (iλI −
B)U = F satisfy

iλu− u̇ = f1, (2.19)

iλv − v̇ = f2, (2.20)

iρ1λu̇− β1∆u+ αv + µ1u̇+ µ2z(τ) = ρ1f3, (2.21)

iρ2λv̇ − β2∆v + αu = ρ2f4, (2.22)

iλz(s) + ∂sz = f5. (2.23)

In the remainder of this thesis, we will make some estimates for the solutions of this system

using several constants. In this sense, C will denote a positive constant independent of the

solutions and it assumes different values in different places at all times.

First, note that inequality (2.8) implies

(

µ1 − µ2

2

)[∫

Ω

|u̇|2dx+
∫

Ω

|z(τ)|2dx
]

≤ CRe〈(iλI − B)U,U〉 ≤ C‖F‖‖U‖. (2.24)

Using this estimate together with (2.19), we get

∫

Ω

|λu|2dx ≤ C
(

‖F‖‖U‖+ ‖F‖2
)

. (2.25)
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Multiplying the equation (2.21) by v̄, using (2.20), integrating by parts and taking the real part

we obtain

α

∫

Ω

|v|2dx = Re

{

ρ1

∫

Ω

u̇¯̇vdx+ ρ1

∫

Ω

u̇f̄2dx− β1

∫

Ω

∇u∇v̄dx− µ1

∫

Ω

u̇v̄dx

−µ2

∫

Ω

z(τ)v̄dx+ ρ1

∫

Ω

f3v̄dx

}

. (2.26)

In a similar way, multiplying equation (2.22) by ū, using (2.19), integrating by parts and taking

the real part we have

α

∫

Ω

|u|2dx = Re

{

ρ2

∫

Ω

v̇ ¯̇udx+ ρ2

∫

Ω

v̇f̄1dx− β2

∫

Ω

∇v∇ūdx+ ρ2

∫

Ω

f4ūdx

}

. (2.27)

Dividing equation (2.26) by β1, equation (2.27) by β2 and performing the subtraction, we obtain

α

β1

∫

Ω

|v|2dx =
α

β2

∫

Ω

|u|2dx− Re

{

ρ2
β2

∫

Ω

v̇ ¯̇udx+
ρ2
β2

∫

Ω

v̇f̄1dx−
∫

Ω

∇v∇ūdx

+
ρ2
β2

∫

Ω

f4ūdx−
ρ1
β1

∫

Ω

u̇¯̇vdx− ρ1
β1

∫

Ω

u̇f̄2dx+

∫

Ω

∇u∇v̄dx

+
µ1

β1

∫

Ω

u̇v̄dx+
µ2

β1

∫

Ω

z(τ)v̄dx− ρ1
β1

∫

Ω

f3v̄dx

}

.

Applying Cauchy-Schwarz inequality, we get

α

β1

∫

Ω

|v|2dx ≤ α

β2

∫

Ω

|u|2dx+ ρ1ρ2|χ0|
β1β2

∫

Ω

|u̇v̇|dx+ C‖F‖‖U‖

+
µ1

β1

∫

Ω

|u̇v̄|dx+ µ2

β1

∫

Ω

|z(τ)v̄|dx,

where χ0 is given by (2.6). Applying Young inequality and using (2.24), we have the inequality

of this lemma, that is

∫

Ω

|v|2dx ≤ C

[

|χ0|
(∫

Ω

|u̇|2dx
)1/2(∫

Ω

|v̇|2dx
)1/2

+

∫

Ω

|u|2dx+ ‖F‖‖U‖
]

.

Lemma 20. Assume the conditions of lemma 19. Then, there exists a positive constant C such

that
∫

Ω

|v̇|2dx ≤ C
{(

χ2
0λ

4 + λ2 + 1
)

‖F‖‖U‖+ ‖F‖2
}

.

Proof. Multiplying the inequality of Lemma 19 by λ2 and using the estimate (2.25), we get

∫

Ω

|λv|2dx ≤ C

[

|χ0|λ2
(∫

Ω

|u̇|2dx
)1/2(∫

Ω

|v̇|2dx
)1/2

+ (λ2 + 1)‖F‖‖U‖+ ‖F‖2
]

.(2.28)
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On the other hand, from equation (2.20) we have

∫

Ω

|v̇|2dx ≤ 2

∫

Ω

|λv|2dx+ 2

∫

Ω

|f2|2dx.

Using this inequality, the estimate (2.28) and applying Young inequality we obtain

∫

Ω

|v̇|2dx ≤ C

(

|χ0|λ2
(∫

Ω

|u̇|2dx
)1/2(∫

Ω

|v̇|2dx
)1/2

+ (λ2 + 1)‖F‖‖U‖+ ‖F‖2
)

≤ Cε

(

χ2
0λ

4

∫

Ω

|u̇|2dx+ (λ2 + 1)‖F‖‖U‖+ ‖F‖2
)

+ ε

(∫

Ω

|v̇|2dx
)

.

Computing ε small enough and using estimate (2.24) we have the result of this lemma.

Proof of Theorem 18. We are going to use Theorem 16 to show this result. Let us see that

iR ⊂ ρ(B). As 0 ∈ ρ(B), we consider the highest positive number λ0 such that ] − iλ0, iλ0[⊂
ρ(B). Then, iλ0 ∈ σ(B) or −iλ0 ∈ σ(B). Suppose that iλ0 ∈ σ(B) (similary if −iλ0 ∈ σ(B)).

Thus, there exists a sequence of positive real numbers (λn) such that λn < λ0, with λn → λ0,

and a sequence Un = (un, vn, u̇n, v̇n, zn) ∈ D(B) with ‖Un‖ = 1 such that

‖(iλn − B)Un‖ = ‖Fn‖ → 0, as n→ ∞.

That is, if Fn = (f1n, f2n, f3n, f4n, f5n), then

iλnun − u̇n = f1n → 0 in H1
0 (Ω), (2.29)

iλnvn − v̇n = f2n → 0 in H1
0 (Ω), (2.30)

iρ1λnu̇n − β1∆un + αvn + µ1u̇n + µ2zn(τ) = ρ1f3n → 0 in L2(Ω), (2.31)

iρ2λnv̇n − β2∆vn + αun = ρ2f4n → 0 in L2(Ω), (2.32)

iλnzn(s) + ∂szn = f5n → 0 in L2(0, τ ;L2(Ω)). (2.33)

Now, multiplying the equations (2.31) and (2.32) by ūn and v̄n respectively, integrating by parts

and summing the results, we obtain

β1

∫

Ω

|∇un|2dx+ β2

∫

Ω

|∇vn|2dx ≤ 2|α||〈un, vn〉|+ ρ1

∫

Ω

|u̇n|2dx+ ρ1

∫

Ω

|u̇nf̄1n|dx

+ µ1

∫

Ω

|u̇nv̄n|dx+ µ2

∫

Ω

|zn(τ)ūn|dx

+ ρ2

∫

Ω

|v̇n|2dx+ ρ2

∫

Ω

|v̇nf̄2n|dx

+ ρ1

∫

Ω

|f3nūn|dx+ ρ2

∫

Ω

|f4nv̄n|dx,
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and, by a similar argument used in (2.17), we have

(1− θ)β1

∫

Ω

|∇un|2dx+ (1− θ)β2

∫

Ω

|∇vn|2dx ≤ ρ1

∫

Ω

|u̇n|2dx+ µ1

∫

Ω

|u̇nūn|dx

+µ2

∫

Ω

|zn(τ)ūn|dx+ ρ2

∫

Ω

|v̇n|2dx+ C‖Fn‖‖Un‖.

Applying Young and Poincaré inequalities, we get

(1− θ − ǫCp)

{

β1

∫

Ω

|∇un|2dx+ β2

∫

Ω

|∇vn|2dx
}

≤C(ǫ)
{∫

Ω

|u̇n|2dx+
∫

Ω

|zn(τ)|2dx+
∫

Ω

|v̇n|2dx+ ‖Fn‖‖Un‖
}

, (2.34)

where Cp is the Poincaré constant and ǫ is positive small number. Here, we fix ǫ such that

(1− θ − ǫCp) > 0.

On the other hand, the inequality (2.24) implies that

[∫

Ω

|u̇n|2dx+
∫

Ω

|zn(τ)|2dx
]

≤ C‖Fn‖‖Un‖ → 0, (2.35)

and from Lemma 20, we obtain

∫

Ω

|v̇n|2dx ≤ C
{(

χ2
0λ

4
n + λ2n + 1

)

‖Fn‖‖Un‖+ ‖Fn‖2
}

→ 0. (2.36)

Thus, using (2.35) and (2.36) in (2.34), follows that

β1

∫

Ω

|∇un|2dx+ β2

∫

Ω

|∇vn|2dx→ 0. (2.37)

Finally, solving (2.33) and taking into account zn(0) = u̇n, we have

zn(s) = u̇ne
−iλns +

∫ s

0

f5n(σ)e
iλn(σ−s)dσ,

which implies

∫ τ

0

‖zn(s)‖2L2(Ω) ds ≤ C

(∫

Ω

|u̇n|2dx+ ‖f5n‖2L2(0,τ ;L2(Ω))

)

→ 0. (2.38)

Therefore, from estimates (2.35)-(2.38) imply that ‖Un‖ → 0, but this is absurd because

‖Un‖ = 1 for all n ∈ N. Consequently, iR ⊂ ρ(B).

Now, consider U = (u, v, u̇, v̇, z) the solution of the system (iλ − B)U = F. According to

Theorem 16, to show the polynomial decay of the semigroup etB it is sufficient to prove that

‖U‖ ≤ Cλθ‖F‖ for |λ| ≥ 1, where θ = 2 if χ0 = 0, and θ = 4 if χ0 6= 0.

Proof of item 1: Assume that χ0 = 0. The inequality in Lemma 20 becomes

∫

Ω

|v̇|2dx ≤ C
{(

λ2 + 1
)

‖F‖‖U‖+ ‖F‖2
}

. (2.39)
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Using this estimate, estimate (2.24) and proceeding as in (2.34) we have the inequality

β1

∫

Ω

|∇u|2dx+ β2

∫

Ω

|∇v|2dx ≤ C
{(

λ2 + 1
)

‖F‖‖U‖+ ‖F‖2
}

. (2.40)

And also, proceeding as in (2.38) and using (2.24), we obtain

∫ τ

0

‖z(s)‖2L2(Ω) ds ≤ C

(∫

Ω

|u̇|2dx+ ‖f5‖2L2(0,τ ;L2(Ω))

)

≤ C
(

‖F‖‖U‖+ ‖F‖2
)

. (2.41)

Thus, from estimates (2.24), (2.39), (2.40) and (2.41), we get

‖U‖2 ≤ C
{

λ2‖F‖‖U‖+ ‖F‖2
}

,

for |λ| ≥ 1. Applying Young inequality to the first term on the right side of this inequality, we

obtain

‖U‖ ≤ Cλ2‖F‖,

that means, λ−2‖(iλI − B)−1‖ is bounded. Then, by Theorem 16 the semigroup etB decays

polynomially with the rate t−1/2.

Proof of item 2: Assume that χ0 6= 0. From Lemma 20, we have

∫

Ω

|v̇|2dx ≤ C
{(

χ2
0λ

4 + λ2 + 1
)

‖F‖‖U‖+ ‖F‖2
}

. (2.42)

Using this inequality instead (2.39), similarly to the previous case, we obtain

‖U‖ ≤ Cλ4‖F‖, (2.43)

for |λ| ≥ 1. Therefore, λ−4‖(iλI − B)−1‖ is bounded. Then, by Theorem 16 implies that

the semigroup etB decays polynomially with the rate t−1/4. This completes the proof of this

Theorem.

2.4 Optimality of the decay rates

We will see that the polynomial decay rates found in previous section are the best. The main

result is given in the following theorem:

Theorem 21. The polynomial decay rates found in Theorem 18 are optimal, that is:

1. If χ0 = 0, the semigroup does not decay with the rate t−σ, for σ > 1/2.
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2. If χ0 6= 0, the semigroup does not decay with the rate t−σ, for σ > 1/4.

Proof. Since −∆ : H2(Ω) ∩H1
0 (Ω) ⊂ L2(Ω) → L2(Ω) is a positive self-adjoint operator with

compact resolvent, its spectrum is constituted by positive eigenvalues γn, n ∈ N, with γn → ∞.

Let us denote by (en) the corresponding unitary eigenvectors, that is

−∆en = γnen, ‖en‖ = 1, n ∈ N. (2.44)

If we take Fn = (0, 0, 0, ρ−1
2 en, 0), the solution of system (iλ− B)U = Fn satisfies

iλu− u̇ = 0,

iλv − v̇ = 0,

iρ1λu̇− β1∆u+ αv + µ1u̇+ µ2z(τ) = 0,

iρ2λv̇ − β2∆v + αu = −en,

iλz(s) + ∂sz = 0.

We look for solutions of the form: u = κ1en, v = κ2en and z(s) = η(s)en with κ1, κ2 complex

numbers and η a complex function defined in [0, τ ]. Then, replacing these terms in the above

equations gives

ρ1λ
2κ1 − β1γnκ1 − ακ2 − iµ1λκ1 − µ2η(τ) = 0, (2.45)

ρ2λ
2κ2 − β2γnκ2 − ακ1 = 1, (2.46)

iλη(s) + η′(s) = 0. (2.47)

Solving the ordinary differential equation (2.47) and taking into account η(0) = iλκ1, we have

η(s) = iλκ1e
−iλs.

Replacing this term in (2.45), the algebraic system (2.45)-(2.46) become

ρ1λ
2κ1 − β1γnκ1 − ακ2 − iµ1λκ1 − iµ2λκ1e

−iλτ = 0,

ρ2λ
2κ2 − β2γnκ2 − ακ1 = 1.

Solving this system in κ2 gives

κ2 =
G1(λ

2)− iλ(µ1 + µ2e
−iλτ )

G1(λ2)G2(λ2)− α2 − iλG2(λ2)(µ1 + µ2e−iλτ )
, (2.48)

where G1 and G2 are polynomials given by

G1(y) = ρ1y − β1γn, G2(y) = ρ2y − β2γn.
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Proof of item 1: Assume that χ0 = 0. We consider the numbers

λn =

√

β2γn
ρ2

, n ∈ N.

Then, we have G1(λ
2
n) = G2(λ

2
n) = 0. With this conditions, taking λ = λn in (2.48) the term

κ2 = κ2(n) becomes

κ2(n) =
iλn(µ1 + µ2e

−iλnτ )

α2
.

Therefore,

|κ2(n)| ≥ Im
(

κ2(n)
)

≥ µ1 − µ2

α2
λn.

Consequently, if we denote by Un = (un, vn, u̇n, v̇n, zn) the solution of system (iλnI − B)U =

Fn satisfies

‖Un‖ ≥ √
ρ2

(∫

Ω

|v̇n|2dx
) 1

2

=
√
ρ2

(∫

Ω

|λnvn|2dx
) 1

2

=
√
ρ2λn|κ2(n)| ≥

√
ρ2
µ1 − µ2

α2
λ2n.

Now, if we suppose that the semigroup decays with the rate t−σ for σ > 1
2
, from Theorem 16

we have λ
− 1

σ
n ‖Un‖ is bounded. However, from the above inequality we obtain

λ
− 1

σ
n ‖Un‖ ≥ µ1 − µ2

α2

√
ρ2λ

2− 1

σ
n −→ ∞ when n→ ∞,

which is absurd. This proves the first part of this theorem.

Proof of item 2: Assume that χ0 6= 0. Note that the coefficient (2.48) can be written as

κ2 =
G1(λ

2)− iλ(µ1 + µ2e
−iλτ )

G0(λ2)− iλG2(λ2)(µ1 + µ2e−iλτ )
, (2.49)

where G0 is given by

G0(y) := G1(y)G2(y)− α2.

The roots of this polynomial are

y±n :=
βMγn
2

±
√

(χ0γn
2

)2

+ α1α2,

where

βM :=
β1
ρ1

+
β2
ρ2
, α1 :=

α

ρ1
, α2 :=

α

ρ2
.
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In view of χ0 6= 0, we firstly consider χ0 > 0. In this case we computing the numbers λn =
√

y−n , n ∈ N, then

λ2n =
βMγn
2

−
√

(χ0γn
2

)2

+ α1α2. (2.50)

Consequently, G0(λ
2
n) = 0 and G2(λ

2
n) = α2/G1(λ

2
n). Taking λ = λn in (2.49), the coefficient

κ2 = κ2(n) becomes

κ2(n) =
G1(λ

2
n)− iλn(µ1 + µ2e

−iλnτ )

−iλnG2(λ2n)(µ1 + µ2e−iλnτ )

=
G1(λ

2
n)

α2
+ i

G2
1(λ

2
n)

λnα2(µ1 + µ2e−iλnτ)
. (2.51)

Moreover, from the definition of G1 and χ0, we have

1

ρ1
G1(λ

2
n) =

−χ0γn −
√

(χ0γn)
2 + 4α1α2

2
.

In what follows, the notation an ≈ bn will mean that lim
n→+∞

|an|
|bn|

is a positive real number. Thus,

from (2.50) and above equality we have λn ≈ γ
1/2
n and G1(λ

2
n) ≈ γn ≈ λ2n. Then, using these

estimates in (2.51), we obtain

|κ2(n)| ≥ Im
(

κ2(n)
)

≥ δλ3n, (2.52)

for some δ > 0 small and for n large.

Therefore, if we denote by Un = (un, vn, u̇n, v̇n, zn) the solution of the system (iλnI −
B)U = Fn we get

‖Un‖ ≥ δ
√
ρ2λ

4
n,

for n large. Consequently, if we suppose that the semigroup decays with rate t−σ with σ > 1
4
,

from Theorem 16 we have that λ
− 1

σ
n ‖Un‖ is bounded. However, using the above estimate, we

get

λ
− 1

σ
n ‖Un‖ ≥ δρ2λ

4− 1

σ
n → ∞ when n→ ∞,

which is absurd. Therefore, the decay rate t−1/4 is optimal.

If we consider χ0 < 0 instead of χ0 > 0 is suffices to consider the sequence λn =
√

y+n

instead of
√

y−n . With this sequence, we similarly obtain estimates: λn ≈ γ
1/2
n , G1(λ

2
n) ≈ λ2n

and (2.52). Therefore, we obtain the same result for this case. This completes the proof of this

theorem.
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2.5 Asymptotic Instability

In this section, we will see that if the condition (2.1) does not hold, then the system (2.2)-

(2.4), for suitable time delays, have solutions that do not decay to zero. This result is enunciated

as follows:

Theorem 22. If µ1 ≤ µ2, then there exists a sequence of time delays (arbitrarily small or large)

and a sequence of initial data such that the solutions of abstract system do not tend to zero.

Proof. Let us see that there exist suitable real numbers λ such that iλ is eigenvalue of the

operator B. In fact, the vector U = (u, v, u̇, v̇, z) is a solution of (iλI − B)U = 0 if it satisfies

iλu− u̇ = 0,

iλv − v̇ = 0,

iρ1λu̇− β1∆u+ αv + µ1u̇+ µ2z(τ) = 0,

iρ2λv̇ − β2∆v + αu = 0,

iλz(s) + ∂sz = 0,

Solving the last equation we have z(τ) = u̇e−iλτ . Substituting this term and using the first two

equations, the third and fourth equations become

ρ1λ
2u+ β1∆u− αv − iλµ1u− iλµ2e

−iλτu = 0,

ρ2λ
2v + β2∆v − αu = 0.

In this point, let us see what conditions we must impose on the complex numbers κ1, κ2 so that

u = κ1en and v = κ2en are solutions of this system. Here en, n ∈ N, are the eigenvectors

(2.44). Thus, κ1, κ2 must satisfy the algebraic linear system





ρ1λ
2 − β1γn − iλ(µ1 + µ2e

−iλτ ) −α
−α ρ2λ

2 − β2γn









κ1

κ2



 =





0

0



 . (2.53)

This system admits no null solutions if the determinant of the above matrix is zero, that is

[

ρ1λ
2 − β1γn − iλ(µ1 + µ2e

−iλτ )
] (

ρ2λ
2 − β2γn

)

− α2 = 0.

Separating the real and the imaginary parts of this equation, we have

−λ (µ1 + µ2 cos(λτ))
(

ρ2λ
2 − β2γn

)

= 0, (2.54)

(

ρ1λ
2 − β1γn − λµ2 sin(λτ)

) (

ρ2λ
2 − β2γn

)

= α2. (2.55)
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Now, our objective is to ensure the existence of suitable real numbers λ and time delays τ such

that these equations are satisfied. At this point, we choose these numbers so that

cos(λτ) = −µ1

µ2

. (2.56)

Note that equation (2.56) is possible because 0 < µ1 ≤ µ2. In this case the equation (2.54) is

satisfied. This condition also implies that sin(λτ) is one of the following numbers

±
√

1−
(

µ1

µ2

)2

.

Replacing this term in equation (2.55), it becomes






ρ1λ
2 − β1γn − λµ2



±
√

1−
(

µ1

µ2

)2










(

ρ2λ
2 − β2γn

)

= α2.

Note that

h(λ) :=







ρ1λ
2 − β1γn − λµ2



±
√

1−
(

µ1

µ2

)2










(

ρ2λ
2 − β2γn

)

is a continuous function satisfying h
(√

β2γn/ρ2
)

= 0 and lim
λ→∞

h(λ) = ∞. Therefore, there

exists λn ∈ (
√

β2γn/ρ2,∞), such that h(λn) = α2.

Finally, computing λ = λn in equation (2.56) we have for τ = τn,ℓ

τn,l =
arccos

(

−µ1

µ2

)

+ 2lπ

λn
, n, l ∈ N. (2.57)

Denoting with k1(n, ℓ), k2(n, ℓ) any nontrivial solution of (2.53) when λ = λn and τ = τn,ℓ, the

vectors Un,l = (un,l, vn,l, u̇n,l, v̇n,l, zn,l) with components

un,l = k1(n, ℓ)en, vn,l = k2(n, ℓ)en, u̇n,l = iλnk1(n, ℓ)en,

v̇n,l = iλnk2(n, ℓ)en, zn,l(s) = iλne
−iλsk1(n, ℓ)en,

are solutions of the system (iλnI − B)U = 0. Therefore, the functions Un,l(t) := eiλntUn,l

satisfy

d

dt
U(t) = BU(t), U(0) = Un,l.

On the other hand, since

‖Un,l(t)‖ = ‖eiλntUn,l‖ = ‖Un,l‖, ∀ t ≥ 0,

we conclude that ‖Un,l(t)‖ 6→ 0 when t → ∞. Moreover, since λn → ∞ when n → ∞, the

previous expression for τn,l will be arbitrarily small. However, if l → ∞ then we have τn,l will

be arbitrarily large.



Chapter 3

Decay rates for a weakly coupled system

with indirect damping given by fractional

memory effects

This chapter deals with the asymptotic behavior of a weakly coupled system of two equa-

tions which one of them has a dissipative mechanism given by a memory term. This term

depends on the fractional operator with exponent θ ∈ [0, 1]. We show that strong solutions of

the system decay polynomially with a rate that depends on both the exponent θ and wave prop-

agation speeds. Optimal decay rates are found and the results show a surprising aspect: more

regular damping does not necessarily imply a faster decay.

3.1 Motivation

In the last decades, a variety of viscoelastic systems have caught the attention of many

researchers. These systems model the evolution of various problems in applied sciences and

studies on the existence of solutions and their asymptotic behavior have been published.

Some of those systems model vibrations of viscoelastic materials that, when placed in an

abstract way, they are formulated by the following equation

utt + Au−
∫ ∞

0

g(s)Bu(t− s)ds = 0. (3.1)

Here A and B are unbounded operators. Dafermos [18] was one of the first researchers that

studied the stabilizing properties of this equation. He considered A a linear positive self-adjoint

27
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operator in a separable Hilbert space and B an operator with less or equal regularity than A. He

showed that the solutions to this problem are asymptotically stable provided the kernel g in the

memory term is a positive non increasing continuous function.

Since then, many researchers have focused on establishing the best decay rates of solutions

for this problem. When both operatorsA andB coincide, the decay rates depend on how fast the

kernel decays, for example, kernels exponentially decreasing (or polynomially decreasing) lead

to an exponential (or polynomial) decay of solutions. These results, for example, can be found

in the following papers [17, 23, 46, 49, 50, 63]. How is the asymptotic behavior of solutions if

the operators B has less regularity than A?

Rivera and Naso [51] studied the equation (3.1) for B = Aθ where A is a positive self-

adjoint operator and the exponent θ stands in interval [0, 1). For kernels g exponentially de-

creasing, they proved that the semigroup does not decay exponentially. However, they showed

that it decays polynomially with almost optimal rate ln(t)[ln(t)/t]1/(2−2θ). A similar problem

of this system applied to plate equations with rotational inertia term was studied in [62]. Here,

an optimal polynomial decay rate was obtained. Recently, Hao and Wei [34] studied the system

considered by Rivera and Naso but with short memory instead the long memory. For kernels

satisfying the condition g′(t) ≤ −H(g(t)), whereH is a C1 positive increasing convex function

and H(0) = 0, they showed that the energy of this system decay with the rate s(t) where s is

the solution of the ODE st+c0H(c1s
1

γ ) = 0; c0, c1 are positive constants and γ ∈]0, 1] (see also

[41]).

Inspired by the research of Rivera and Naso mentioned above in the scope of the problems

with indirect damping, we are interested in study the asymptotic behavior of solutions for the

following abstract system

ρ1utt + β1Au−
∫ ∞

0

g(s)Aθu(t− s)ds+ α(u− v) = 0, (3.2)

ρ2vtt + β2Av + α(v − u) = 0, (3.3)

subjected to initial conditions

u(0) = u0, v(0) = v0, ut(0) = u1, vt(0) = v1, u(−s) = φ(s), s > 0, φ(0) = u1. (3.4)

Here the coefficients ρ1, ρ2, β1, β2 and α are positive constants, the parameter θ is considered

in the interval [0, 1] and A is a positive self-adjoint operator with compact inverse on a complex

Hilbert space H.
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This kind of problem was introduced by Russell in [66] which he called “Problems with

indirect damping”. In this case, the memory damping of the first equation of (3.2)-(3.3) acts

indirectly in the second through the coupling term. Thus, the vibrations of the conservative part

absorb the dissipative properties of the damped equation leading to the possibility of a global

stabilization. But the technical difficulties for getting appropriate estimates for this system are

not simple; they can be difficult and exhausting.

Doing a search in the literature, we found some studies on the asymptotic behavior of this

type of systems which we mention below.

In [45], Matos, Almeida and Santos considered the general abstract system










utt + A1u−
∫ ∞

0

g(s)A2u(t− s)ds+Bv = 0,

vtt + A3v +Bu = 0,

(3.5)

with the operator A2 and A3 less regular than A1 and B = αI . Considering A1 a positive self-

adjoint operator and the kernel g with exponential decrease, they showed that the solutions can

not decay exponentially. However, they exhibited a polynomial decay of the energy with the rate

t−1 for initial data with additional regularity. The optimality of this result was not discussed.

In [31], Guesmia studied the above system considering A3 = A1, A2 less regular than A1,

andB being a bounded linear operator. Considering a boundedness condition on the past history

data was found decay rates for kernels that decrease slower than the exponential or polynomial

ones. These decay rates depend on the growth of the kernel at infinity, the regularity of the

initial data, and some relations between the involved operators.

In 2019, Jin et al [37] studied the above system considering A3 equal or more regular than

A1 and A2 with the same regularity than A1. They showed that the energy of system decays to

zero at least with the rate t−1 provided the kernel is non-increasing, integrable, and satisfy some

conditions linked to the initial data.

In [16], Cavalcanti et al. considered the above system adding a frictional damping Dut to

the first equation. Thus, computing advantage of the two dissipative terms, in a local way, they

obtained a result of “weak” stability where the decay rate is given in terms of the general growth

of the kernel at infinity and the regularity of the initial data.

Other works about the stability of solutions for similar systems can be found in [5, 29, 36,

76], and for nonlinear systems with memory terms in both equations can be found in [9, 43, 67].

Our main goal here is not only to find some decay rate for the solutions of the system

(3.2)-(3.4), but also to find the best checking if possible their optimality. The decay rates will
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must certainly depend on the parameters ρ1, ρ2, β1, β2, α and θ. The motivation to consider

these parameters in the abstract system is because we want this system to represent vibrations

of membranes or plates. This is the case when we consider for example A = −∆ defined

in D(A) = H2(Ω) ∩ H1
0 (Ω), or A = ∆2 defined in D(A) = H4(Ω) ∩ H2

0 (Ω). When A is

the Laplacian operator −∆, the system (3.2)-(3.4) models a system of two elastic waves with

propagation speeds
√

β1

ρ1
and

√

β2

ρ2
. Thus, the difference of wave propagation speeds given by

χ0 =
β1
ρ1

− β2
ρ2
, (3.6)

as in chapter 2, that will play an important role in this process. This term has been decisive in

the type of decay rates in other dissipative systems, some of the researches that show these facts

can be seen in [61, 47, 70, 52].

In order to obtain exact decay rates for the system (3.2)-(3.4) we will assume, as in [51], the

following conditions for the memory kernel











































g ∈ C1(R+) ∩ L1(R+),

g(s) > 0, g′(s) < 0, ∀s ∈ R+,

∃ c1 ∈ R+
∗ ; g

′(s) ≤ −c1g(s), ∀s ∈ R+,

0 < κ :=

∫ ∞

0

g(s)ds < β1α
1−θ
1 ,

(3.7)

where α1 is the first eigenvalue of operator A.

The main result of this chapter is related to asymptotic behavior of solutions of system (3.2)-

(3.4). The results that we find are enunciated in Theorems 24-25 and 38 which synthesizing say:

• For strong initial data and χ0 = 0 we have the polynomial decay with rate t−
1

2−2θ for

0 ≤ θ ≤ 1
2
;

• For strong initial data and χ0 = 0 we have the polynomial decay with rate t−
1

2θ for

1
2
≤ θ ≤ 1;

• For strong initial data and χ0 6= 0 we have the polynomial decay with rate t−
1

6−2θ ;

• The decay rates in the previous items are the best.

Note that if we compare this results with the uncoupled equation studied in [51] where was

obtained the rate t−
1

2−2θ , we have a loss of speed in the decay of solutions, but these rates are

optimal. This loss is due to weak coupling of the system.
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In what follows, our results are organized in the following way: in section 3.2, we prove

well-posedness of problem (3.2)-(3.4) by semigroup theory. In section 3.3, we show polynomial

stability of this problem. Explicit decay rates are found. Finally, in section 3.4, we prove the

optimality of decay rates that were found in the previous section.

3.2 Well-Posedness

In this section, we will prove that system (3.2)-(3.4) is well-posed using semigroup theory.

As mentioned in introduction we consider A a positive self-adjoint operator with compact in-

verse on a complex Hilbert space H. The domain of this operator is denoted by D(A) and the

spaces D(Aθ), θ ≤ 1, are endowed with usual inner product

〈u, v〉D(Aθ) = 〈Aθu,Aθv〉,

where 〈·, ·〉 on the right denotes the inner product in H. Besides, we have the continuous em-

bedding

D(Aθ1) →֒ D(Aθ2), for θ1 ≥ θ2.

To consider the system (3.2)-(3.4) in an abstract framework, we introduce the function η :=

ηt(s) defined as

ηt(s) = u(t)− u(t− s),

originally used by Dafermos in [18]. Thus, the system (3.2)-(3.3) turn into



























ρ1utt + A0u+

∫ ∞

0

g(s)Aθηt(s)ds+ α(u− v) = 0,

ρ2vtt + β2Av + α(v − u) = 0,

ηtt(s) + ηts(s)− ut = 0,

(3.8)

where A0 := β1A− κAθ for θ ∈ [0, 1] and κ is defined in (3.7). From (3.4), the initial data for

this system are

u(0) = u0, v(0) = v0, ut(0) = u1, vt(0) = v1, η
0(s) = η0(s) := u0 − φ(s), s > 0. (3.9)
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Note that, as α1 is the first eigenvalue of A, follows that αγ
1 is the first eigenvalue of Aγ , and

consequently, ‖A γ
2 u‖2 ≥ αγ

1‖u‖2. For this, using this estimate we obtain, for u ∈ D(A
1

2 ):

‖A
1

2

0 u‖2 = β1‖A
1

2u‖2 − κ‖A θ
2u‖2

≥ β1‖A
1

2u‖2 − κα1−θ
1 ‖A 1−θ

2 (A
θ
2u)‖2

= (β1 − καθ−1
1 )‖A 1

2u‖2. (3.10)

The condition (3.7) and the above estimate implies that the norms ‖A
1

2

0 u‖ and ‖A 1

2u‖ are

equivalents in the space D(A
1

2 ). With these considerations, if we consider the vector U(t) =

(u(t), v(t), ut(t), vt(t), η), the coupled system (3.8)-(3.9) can be written as

d

dt
U(t) = BU(t), U(0) = U0, (3.11)

where U0 = (u0, v0, u1, v1, η0) and operator B is defined by

BU =
(

u̇, v̇, −ρ−1
1 {A0u+ Dη + α(u− v)} , −ρ−1

2 {β2Av + α(v − u)} , u̇− ∂sη
)

,

for U = (u, v, u̇, v̇, η) and Dη =

∫ ∞

0

g(s)Aθη(s) ds, where D : Mθ → D(A− θ
2 ). Here the

point on top of this terms is just a notation, it does not mean the time derivative. Considering

the weighted Sobolev space Mθ := L2
g(R

+;D(A
θ
2 )) with the inner product

〈η1, η2〉Mθ
=

∫ ∞

0

g(s)〈A θ
2η1, A

θ
2η2〉 ds,

the operator B will be defined in a suitable subspace of the phase space

X = D(A
1

2 )×D(A
1

2 )×H×H×Mθ.

This Hilbert space is endowed with inner product

〈U1, U2〉X = 〈A
1

2

0 u1, A
1

2

0 u2〉+ β2〈A
1

2v1, A
1

2v2〉+ ρ1〈u̇1, u̇2〉+ ρ2〈v̇1, v̇2〉

+ α〈u1 − v1, u2 − v2〉+ 〈η1, η2〉Mθ
,

for U1 = (u1, v1, u̇1, v̇1, η1) and U2 = (u2, v2, u̇2.v̇2, η2). The inner product 〈·, ·〉 on the right is

considered in H. With these considerations, the natural domain for operator B is defined by

D(B) = {U ∈ X : BU ∈ X} =
{

U ∈ X : u̇, v̇ ∈ D(A
1

2 ), A0u+ Dη ∈ H, v ∈ D(A), η ∈ D(∂s)
}

,

where

D(∂s) = {η ∈ Mθ; ∂sη ∈ Mθ and η(0) = 0} .

The well-posedness of Cauchy problem (3.11) is given by the following Theorem.
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Theorem 23. For initial data U0 in D(B) there exists only one solution of problem (3.11) in

following space

U ∈ C([0,∞[;D(B)) ∩ C1([0,∞[;X).

Proof. To show this Theorem we will prove that the B is the generator of a C0 - semigroup of

contractions. We will use a variant of Lumer-Phillips’s Theorem enunciated in preliminaries,

that is, just verify that the linear operator B is dissipative, its domain D(B) is dense in the phase

space X and 0 ∈ ρ(B).

The density of D(B) follows from the density of set D(A) × D(A) × D(A
1

2 ) × D(A
1

2 ) ×
C1

c (R
+,D(Aθ)) in X and this set is contained in it. On the other hand, considering U =

(u, v, u̇, v̇, η) ∈ D(B) we compute the inner product between BU and U to obtain

Re〈BU,U〉X = −Re

∫ ∞

0

g(s)〈∂sη, η〉
D(A

θ
2 )
ds. (3.12)

Performing an integration by parts on the right side of this equation and taking into account that

η(0) = 0 and lim
s→∞

g(s) = 0, we get

Re〈BU,U〉X =
1

2

∫ ∞

0

g′(s)‖A θ
2η‖2ds. (3.13)

From the condition (3.7), the right side of this equality is non-positive. Therefore, B is a dissi-

pative operator.

Finally, we are going to verify that 0 ∈ ρ(B). For this, let F = (f1, f2, f3, f4, f5) ∈ X. The

system BU = F has solution if and only if the components of U = (u, v, u̇, v̇, η) satisfy the

following equations

u̇ = f1 in D(A
1

2 ), (3.14)

v̇ = f2 in D(A
1

2 ), (3.15)

−ρ−1
1 (A0u+ Dη + α(u− v)) = f3 in H, (3.16)

−ρ−1
2 (β2Av + α(v − u)) = f4 in H, (3.17)

u̇− ∂sη = f5 in Mθ. (3.18)

If we consider the following expression for η:

η(s) = sf1 −
∫ s

0

f5(τ)dτ,

we have η(0) = 0 and moreover, we conclude that it is a solution for equation (3.18).
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To show that η ∈ Mθ we use the hypothesis (3.7) to obtain

∫ ∞

0

g(s)‖A θ
2η(s)‖2ds ≤ − 1

c1

∫ ∞

0

g′(s)‖A θ
2η(s)‖2ds,

and in view of (3.12) and (3.13) we have

∫ ∞

0

g(s)‖A θ
2η(s)‖2 ≤ 2

c1

∫ ∞

0

g(s)|〈A θ
2∂sη, A

θ
2η〉|ds.

Applying Cauchy-Schwarz and Young inequalities we obtain the following estimate

∫ ∞

0

g(s)‖A θ
2η(s)‖2 ≤ 4

c21

∫ ∞

0

g(s)‖A θ
2∂sη‖2ds. (3.19)

From (3.18) we have that ∂sη ∈ Mθ, and then the above inequality implies that η ∈ Mθ.

Consequently η ∈ D(∂s).

Furthermore, from equations (3.16) and (3.17) we can be rewritten as follow











A0u+ α(u− v) = −ρ1f3 − Dη,

β2Av + α(v − u) = −ρ2f4.
(3.20)

Denoting by W = (u, v), the system (3.20) can be placed in a variational problem

a(Φ,W ) = 〈G,Φ〉, ∀ Φ = (ϕ, ψ) ∈ D(A
1

2 )×D(A
1

2 ),

where the sesquilinear form a(·, ·) and G are defined by

a(Φ,W ) = 〈A
1

2

0 ϕ,A
1

2

0 u〉+ β2〈A
1

2ψ,A
1

2v〉+ α〈ϕ− ψ, u− v〉,

〈G,Φ〉 = 〈g1, ϕ〉D(A−
1
2 )×D(A

1
2 )
+ 〈g2, ψ〉D(A−

1
2 )×D(A

1
2 )
,

with g1 = −ρ1f3−Dη and g2 = −ρ2f4. From this definition we obtain that a(·, ·) is continuous

and G ∈ D(A− 1

2 )×D(A− 1

2 ). Moreover, taking into account that

a(W,W ) = ‖A
1

2

0 u‖2 + β2‖A
1

2v‖2 + α‖u− v‖2,

we have from estimate (3.10)

a(W,W ) ≥ (β1 − καθ−1
1 )‖A 1

2u‖2 + β2‖A
1

2v‖2,

that is, the sesquilinear form a(·, ·) is coercive. Therefore, by Lax-Milgram Theorem, there

exists an unique solution (u, v) ∈ D(A
1

2 )×D(A
1

2 ) for system (3.20) in a weak sense. Moreover,

from second equation of (3.20) implies that v ∈ D(A). Similarly, from first equation we have

A0u+ Dη ∈ H. Consequently, U ∈ D(B).
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To finish, note that

‖U‖2 = ‖A
1

2

0 u‖2 + β2‖A
1

2v‖2 + ρ1‖u̇‖2 + ρ2‖v̇‖2 + α‖u− v‖2 + ‖η‖2Mθ

= a(W,W ) + ρ1‖u̇‖2 + ρ2‖v̇‖2 + ‖η‖2Mθ

= 〈G,W 〉+ ρ1‖u̇‖2 + ρ2‖v̇‖2 + ‖η‖2Mθ
. (3.21)

From equations (3.14) and (3.15) we have

ρ1‖u̇‖2 + ρ2‖v̇‖2 ≤ C‖F‖2. (3.22)

The estimate (3.19) and the equation (3.18) imply that

‖η‖2Mθ
≤ 4

c21

∫ ∞

0

g(s)‖A θ
2∂sη‖2ds ≤ C‖F‖2. (3.23)

Using the definition of the functional G and the self-adjointness of the operator A we get

|〈G,W 〉| ≤
∣

∣〈g1, u〉D(A−
1
2 )×D(A

1
2 )

∣

∣+
∣

∣〈g2, v〉D(A−
1
2 )×D(A

1
2 )

∣

∣

≤ |〈ρ1f3, u〉D(A−
1
2 )×D(A

1
2 )
|+ |〈ρ2f4, v〉D(A−

1
2 )×D(A

1
2 )
|+
∣

∣〈Dη, u〉
D(A−

1
2 )×D(A

1
2 )

∣

∣

≤ C‖F‖‖U‖+
∫ ∞

0

g(s)
∣

∣〈A θ
2η(s), A

θ
2u〉
∣

∣ds.

Applying Young inequality we have

|〈G,W 〉| ≤ ε‖U‖2 + Cε

{

‖F‖2 + ‖η‖2Mθ

}

, (3.24)

for ε positive. Using estimates (3.22), (3.23) and (3.24) in (3.21) and computing ε small enough,

we conclude that

‖U‖ ≤ C‖F‖,

that is, 0 ∈ ρ(B) and then it completes the proof.

3.3 Polynomial decay

In this section, we will show the main results of this chapter. For that, it is necessary to

invoke an important Theorem about polynomial decay due to Borichev and Tomilov (enunciated

in preliminaries). The main purpose of these results is to relate the different types of decay rates

of the solution to the system coefficients, in this way, the main difference between both is about

the speed propagation that plays an important role.
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Theorem 24. Let χ0 = 0 satisfying the previous conditions. The semigroup etB associated with

system (3.2)-(3.4) has the following asymptotic behavior:

(i) If 0 ≤ θ ≤ 1
2
, the semigroup decays polynomially with decay rate t−1/(2−2θ), that is, there

exists C > 0 such that

‖etBU0‖ ≤ C

t1/(2−2θ)
‖U0‖D(B), ∀ t > 0, U0 ∈ D(B).

(ii) If 1
2
≤ θ ≤ 1, the semigroup decays polynomially with decay rate t−1/2θ, that is, there

exists C > 0 such that

‖etBU0‖ ≤ C

t1/2θ
‖U0‖D(B), ∀ t > 0, U0 ∈ D(B).

Theorem 25. Let χ0 6= 0 satisfying the previous conditions. The semigroup etB associated with

system (3.2)-(3.4) decays polynomially with decay rate t−1/(6−2θ), that is, there exists C > 0

such that

‖etBU0‖ ≤ C

t1/(6−2θ)
‖U0‖D(B), ∀ t > 0, U0 ∈ D(B).

The proof of these Theorems will be divided into some Lemmas. In view of this, to show

these lemmas it is considered many times the stationary problem (iλI−B)U = F,where λ ∈ R

and F = (f1, f2, f3, f4, f5). Note that for U = (u, v, u̇, v̇, η) solution of this problem, we have

that are satisfied:

iλu− u̇ = f1, (3.25)

iλv − v̇ = f2, (3.26)

iρ1λu̇+ A0u+ Dη + α(u− v) = ρ1f3, (3.27)

iρ2λv̇ + β2Av + α(v − u) = ρ2f4, (3.28)

iλη + ∂sη − u̇ = f5. (3.29)

Initially, from set of hypothesis (3.7) and equality (3.13) we have

‖η‖2Mθ
≤ C

∫ ∞

0

−g′(s)‖A θ
2η‖2ds ≤ CRe〈(iλI − B)U,U〉X ≤ C‖F‖‖U‖. (3.30)

Lemma 26. Consider θ ∈ [0, 1] and F ∈ X. Suppose that for every λ ∈ R such that 0 < δ ≤ |λ|
there exists a solution U ∈ D(B) of stationary system (iλI − B)U = F. Then, there exists a

positive constant Cδ such that:
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(i) ‖A θ
2 u̇‖2 ≤ Cδλ

2 (‖F‖‖U‖+ ‖F‖2) ,

(ii) ‖A θ
2u‖2 ≤ Cδ (‖F‖‖U‖+ ‖F‖2) .

Proof. Note that using equation (3.29) we have
(∫ ∞

0

g(s)ds

)

‖A θ
2 u̇‖2 =

∫ ∞

0

g(s)〈A θ
2 (iλη(s) + ∂sη(s)− f5(s)), A

θ
2 u̇〉ds

=

∫ ∞

0

g(s)〈iλA θ
2η(s), A

θ
2 u̇〉ds+

∫ ∞

0

g(s)〈∂sA
θ
2η(s), A

θ
2 u̇〉ds

−
∫ ∞

0

g(s)〈A θ
2 f5(s), A

θ
2 u̇〉ds.

Thus, integrating by parts and using Cauchy-Schwarz inequality follows that

(∫ ∞

0

g(s)ds

)

‖A θ
2 u̇‖2 ≤ C|λ|‖A θ

2 u̇‖
(∫ ∞

0

g(s)‖A θ
2η(s)‖2ds

) 1

2

+ C‖A θ
2 u̇‖

(

−
∫ ∞

0

g′(s)‖A θ
2η(s)‖2ds

) 1

2

+ C‖A θ
2 u̇‖

(∫ ∞

0

g(s)‖A θ
2 f5(s)‖2ds

) 1

2

.

Furthermore, applying Young’s inequality we obtain

‖A θ
2 u̇‖2 ≤C

(

λ2
∫ ∞

0

g(s)‖A θ
2η(s)‖2ds−

∫ ∞

0

g′(s)‖A θ
2η(s)‖2ds

+

∫ ∞

0

g(s)‖A θ
2 f5(s)‖2ds

)

,

where C is a positive constant that not depends of λ.

From estimate (3.30) follows that

‖A θ
2 u̇‖2 ≤ C

(

λ2‖F‖‖U‖+ ‖F‖‖U‖+ ‖F‖2
)

,

then recalling that |λ| ≥ δ, item (i) is obtained. Moreover, computing inner product with iλAθu

(note that operator Aθ is self-adjoint), we get

λ2‖A θ
2u‖2 = −〈iλA θ

2u,A
θ
2 f1〉 − 〈iλA θ

2u,A
θ
2 u̇〉.

Using Cauchy-Schwarz and Young’s inequality follows that

λ2‖A θ
2u‖2 ≤ C(‖A θ

2 f1‖2 + ‖A θ
2 u̇‖2).

Moreover, by the continuous embedding D(A
1

2 ) →֒ D(A
θ
2 ) (in view of θ ∈ [0, 1]) and estimate

obtained in item (i), we have

λ2‖A θ
2u‖2 ≤ Cδ(λ

2‖F‖‖U‖+ ‖F‖2),
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then using that |λ| > δ the result follows.

The next lemma is important to understand what is the main term that we need to know the

decay rates.

Theorem 27. The solutions of equations (4.27)-(4.32) satisfy the following result

‖U‖2 ≤ Cδ

(

‖u̇‖2 + ‖v̇‖2 + ‖F‖‖U‖+ ‖F‖2
)

.

Proof. Initially, let’s compute the inner product of equation (3.27) with u and equation (3.28)

with v; using equations (3.25) and (3.26) respectively we have

‖A
1

2

0 u‖2 + α‖u‖2 − α〈v, u〉 = ρ1‖u̇‖2 −
∫ ∞

0

g(s)〈A θ
2η, A

θ
2u〉ds

+ ρ1〈u̇, f1〉+ ρ1〈f3, u〉,

and

β2‖A
1

2v‖2 + α‖v‖2 − α〈u, v〉 = ρ2‖v̇‖2 + ρ2〈v̇, f2〉+ ρ2〈f4, v〉.

Performing the sum with both these equations we have

‖A
1

2

0 u‖2 + β2‖A
1

2v‖2 + α‖u− v‖2 = ρ1‖u̇‖2 −
∫ ∞

0

g(s)〈A θ
2η, A

θ
2u〉ds+ ρ1〈u̇, f1〉

+ ρ1〈f3, u〉+ ρ2‖v̇‖2 + ρ2〈v̇, f2〉+ ρ2〈f4, v〉.

Using Young inequality, estimate (3.30) and Lemma 26 we obtain

‖A
1

2

0 u‖2 + β2‖Av‖2 + α‖u− v‖2 ≤ Cδ

(

‖u̇‖2 + ‖v̇‖2 + ‖F‖‖U‖+ ‖F‖2
)

.

Furthermore, from inequality (3.30) we can conclude

‖η‖2Mθ
≤ C‖F‖‖U‖.

In view of previous estimates, it may be concluded that

‖U‖2 ≤ Cδ

(

‖u̇‖2 + ‖v̇‖2 + ‖F‖‖U‖+ ‖F‖2
)

.

Lemma 28. From the same hypothesis of Lemma 26 with χ0 = 0 we have

‖Aσ
2 v‖2 ≤ ε‖λ−1Aσ+ θ

2 v‖2 + C‖Aσ
2 u‖2 + Cε(‖U‖‖F‖+ ‖F‖2),

where σ ≤ 1
2
.
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Proof. From equation (3.27), computing inner product with Aσv, using the equation (3.26),

definition of A0 and the fact that the operator is self-adjoint we obtain

−ρ1〈A
σ
2 u̇, A

σ
2 f2〉 − ρ1〈A

σ
2 u̇, A

σ
2 v̇〉+ β1〈A

σ+1

2 u,A
σ+1

2 v〉 −
∫ ∞

0

g(s)〈Aθu,Aσv〉ds

+

∫ ∞

0

g(s)〈Aθη(s), Aσv〉ds+ α〈Aσ
2 u,A

σ
2 v〉 − α‖Aσ

2 v‖2 = ρ1〈f3, Aσv〉.

In the same way, from equation (3.28), computing the inner product with Aσu and using the

equation (3.25), we have

−ρ2〈A
σ
2 v̇, A

σ
2 f1〉 − ρ2〈A

σ
2 v̇, A

σ
2 u̇〉+ β2〈A

σ+1

2 v, A
σ+1

2 u〉+ α〈Aσ
2 v, A

σ
2 u〉

−α‖Aσ
2 u‖2 = ρ2〈f4, Aσu〉.

Divide by β1 the first equation, by β2 the second equation and performing the sum between both

we get

α

β1
‖Aσ

2 v‖2 = −ρ1
β1

〈f3, Aσv〉 − ρ1
β1

〈Aσ
2 u̇, A

σ
2 f2〉 −

ρ1
β1

〈Aσ
2 u̇, A

σ
2 v̇〉+ 〈Aσ+1

2 u,A
σ+1

2 v〉

− 1

β1

∫ ∞

0

g(s)〈Aθu,Aσv〉ds+ 1

β1

∫ ∞

0

g(s)〈Aθη(s), Aσv〉ds+ α

β1
〈Aσ

2 u,A
σ
2 v〉

+
ρ2
β2

〈Aσ
2 v̇, A

σ
2 f1〉+

ρ2
β2

〈Aσ
2 v̇, A

σ
2 u̇〉 − 〈Aσ+1

2 v, A
σ+1

2 u〉 − α

β2
〈Aσ

2 v, A
σ
2 u〉

+
α

β2
‖Aσ

2 u‖2 + ρ2
β2

〈f4, Aσu〉.

computing the real part and using (3.6) we have

α

β1
‖Aσ

2 v‖2 = α

β2
‖Aσ

2 u‖2 + ρ1ρ2
β1β2

χ0Re〈Aσ
2 u̇, A

σ
2 v̇〉+ 1

β1
Re

∫ ∞

0

g(s)〈A θ
2 (η − u), Aσ+ θ

2 v〉ds

+
α

β1
Re〈Aσ

2 u,A
σ
2 v〉 − α

β2
Re〈Aσ

2 v, A
σ
2 u〉 − ρ1

β1
Re〈f3, Aσv〉 − ρ1

β1
Re〈u̇, Aσf2〉

+
ρ2
β2

Re〈v̇, Aσf1〉+
ρ2
β2

Re〈f4, Aσu〉. (3.31)

Note that, in view of equation (3.25), we can write (3.29) as

(η(s)− u) =
−∂sη(s)− f1 + f5(s)

iλ
,
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that is

∫ ∞

0

g(s)〈A θ
2 (η(s)− u), Aσ+ θ

2 v〉ds =
∫ ∞

0

g(s)〈A θ
2∂sη(s), iλ

−1Aσ+ θ
2 v〉ds

+

∫ ∞

0

g(s)〈A θ
2 f1, iλ

−1Aσ+ θ
2 v〉ds

−
∫ ∞

0

g(s)〈A θ
2 f5(s), iλ

−1Aσ+ θ
2 v〉ds

= −
∫ ∞

0

g′(s)〈A θ
2η(s), iλ−1Aσ+ θ

2 v〉ds

+

∫ ∞

0

g(s)〈A θ
2 (f1 − f5(s)), iλ

−1Aσ+ θ
2 v〉ds. (3.32)

Substituting equation (3.32) in (3.31) and using the hypothesis χ0 = 0 we have

α

β1
‖Aσ

2 v‖2 = α

β2
‖Aσ

2 u‖2 − 1

β1

∫ ∞

0

g′(s)〈A θ
2η(s), iλ−1Aσ+ θ

2 v〉ds

+
1

β1

∫ ∞

0

g(s)〈A θ
2 (f1 − f5(s)), iλ

−1Aσ+ θ
2 v〉ds− ρ1

β1
Re〈u̇, Aσf2〉

+
α

β1
Re〈Aσ

2 u,A
σ
2 v〉 − α

β2
Re〈Aσ

2 v, A
σ
2 u〉 − ρ1

β1
Re〈f3, Aσv〉

+
ρ2
β2

Re〈v̇, Aσf1〉+
ρ2
β2

Re〈f4, Aσu〉.

From Young inequality and estimate (3.30) we can conclude

‖Aσ
2 v‖2 ≤ ε‖λ−1Aσ+ θ

2 v‖2 + C‖Aσ
2 u‖2 + Cε(‖F‖‖U‖+ ‖F‖2).

Lemma 29. In the same hypothesis of Lemma 26, we have the following estimates for σ ≤ 1

(i) ‖Aσ+1

2 v‖2 ≤ Cδ

(

‖Aσ
2 v̇‖2 + ‖F‖‖U‖+ ‖F‖2

)

,

(ii) ‖λ−1A
σ+1

2 v‖2 ≤ Cδ

(

‖Aσ
2 v‖2 + ‖F‖‖U‖+ ‖F‖2

)

.

Proof. Item (i): Computing the inner product between (3.28) and Aσv we have

β2‖A
σ+1

2 v‖2 = ρ2〈v̇, Aσ(iλv)〉 − α‖Aσ
2 v‖2 + α〈Aσ

2
− 1

2u,A
σ
2
+ 1

2v〉+ ρ2〈f4, Aσv〉.

Substituting the equation (3.26) in above equation we obtain

β2‖A
σ+1

2 v‖2 = ρ2‖A
σ
2 v̇‖2 − α‖Aσ

2 v‖2 + α〈Aσ
2
− 1

2u,A
σ
2
+ 1

2v〉

+ ρ2〈v̇, Aσf2〉+ ρ2〈f4, Aσv〉.



41

Applying Young inequality and using Lemma 26 we have

‖Aσ+1

2 v‖2 ≤ C
(

‖Aσ
2 v̇‖2 + ‖Aσ−1

2 u‖2 + ‖F‖‖U‖
)

≤ Cδ

(

‖Aσ
2 v̇‖2 + ‖F‖‖U‖+ ‖F‖2

)

.

Item (ii): Multiplying by λ−2 item (i) from this Lemma we have

‖λ−1A
σ+1

2 v‖2 ≤ Cδ

(

‖λ−1A
σ
2 v̇‖2 + ‖F‖‖U‖+ ‖F‖2

)

,

however, from equation (3.26) follows that

‖λ−1A
σ+1

2 v‖2 ≤ Cδ

(

‖Aσ
2 v‖2 + ‖F‖‖U‖+ ‖F‖2

)

.

Lemma 30. In the same hypothesis of Lemma 26, we have the following estimates for χ0 = 0

(i) ‖A θ−1

2 u̇‖2 ≤ Cδ (‖F‖‖U‖+ ‖F‖2) , 0 ≤ θ ≤ 1
2
;

(ii) ‖A− θ
2 u̇‖2 ≤ Cδ (‖F‖‖U‖+ ‖F‖2) , 1

2
≤ θ ≤ 1;

(iii) ‖A 1−θ
2 u̇‖2 ≤ Cδλ

2 (‖F‖‖U‖+ ‖F‖2) , 1
2
≤ θ ≤ 1.

Proof. Item (i): Performing the inner product with equation (3.27) and iλAθ−1u̇ we have

ρ1‖λA
θ−1

2 u̇‖2 =β1‖A
θ
2 u̇‖2 − κ‖A 2θ−1

2 u̇‖2 +
∫ ∞

0

g(s)〈iλA θ
2η(s), A

3θ−2

2 u̇〉ds

− α〈A θ−1

2 u, iλA
θ−1

2 u̇〉+ α〈A θ−1

2 v, iλA
θ−1

2 u̇〉 − 〈A0f1, A
θ−1u̇〉.

Using Young inequality, the continuous embedding D(A
θ
2 ) →֒ D(A

3θ−2

2 ) and Lemma 26 (item

(i)) we have

‖λA θ−1

2 u̇‖2 ≤C
(

‖A θ−1

2 v‖2 + ‖A θ
2 u̇‖2 + λ2

(

‖F‖‖U‖+ ‖F‖2
)

)

≤C
(

‖A θ−1

2 v‖2 + λ2
(

‖F‖‖U‖+ ‖F‖2
)

)

. (3.33)

From Lemma 28, using σ = θ − 1 we obtain

‖A θ−1

2 v‖2 ≤ ε‖λ−1A
3θ
2
−1v‖2 + C‖A θ−1

2 u‖2 + Cε(‖U‖‖F‖+ ‖F‖2). (3.34)

Furthermore, from Lemma 29 (item (ii)), using σ = 3θ − 3 we obtain

‖λ−1A
3θ
2
−1v‖2 ≤ Cδ

(

‖A 3θ−3

2 v‖2 + ‖F‖‖U‖+ ‖F‖2
)

. (3.35)
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Therefore, from estimates (3.34)-(3.35), Lemma 26 and ε small enough we can conclude that

‖A θ−1

2 v‖2 ≤ Cδ

(

‖F‖‖U‖+ ‖F‖2
)

.

To finish, from (3.33) we have

‖A θ−1

2 u̇‖2 ≤ Cδ

(

‖F‖‖U‖+ ‖F‖2
)

.

Item (ii): In this item, we proceed computing the inner product with equation (3.27) and

iλA−θu̇ (similarly to the previous item). For this we get

ρ1‖λA
−θ
2 u̇‖2 =β1‖A

1−θ
2 u̇‖2 − κ‖u̇‖2 +

∫ ∞

0

g(s)〈iλA θ
2η(s), A

−θ
2 u̇〉ds

− α〈A−θ
2 u, iλA

−θ
2 u̇〉+ α〈A−θ

2 v, iλA
−θ
2 u̇〉 − 〈A0f1, A

−θu̇〉.

The result follows using a similar step to the one performed in item (i).

Item (iii): As 1
2
≤ θ ≤ 1 we have the continuous embedding D(A

θ
2 ) →֒ D(A

1−θ
2 ). There-

fore, from Lemma 26 we obtain the result.

Lemma 31. In the same hypothesis of Lemma 26, we have the following estimates for χ0 = 0

(i) ‖A θ
2 v̇‖2 ≤ Cδλ

2 (‖F‖‖U‖+ ‖F‖2) , 0 ≤ θ ≤ 1
2
;

(ii) ‖A θ−1

2 v̇‖2 ≤ Cδ (‖F‖‖U‖+ ‖F‖2) , 0 ≤ θ ≤ 1
2
;

(iii) ‖A 1−θ
2 v̇‖2 ≤ Cδλ

2 (‖F‖‖U‖+ ‖F‖2) , 1
2
≤ θ ≤ 1;

(iv) ‖A− θ
2 v̇‖2 ≤ Cδ (‖F‖‖U‖+ ‖F‖2) , 1

2
≤ θ ≤ 1.

Proof. Item (i): From Lemma 28 for σ = θ we have

‖A θ
2 v‖2 ≤ ε‖λ−1A

3θ
2 v‖2 + Cε(‖F‖‖U‖+ ‖F‖2).

Moreover, from Lemma 29 (item (ii)) for σ = 3θ − 1 we obtain

‖λ−1A
3θ
2 v‖2 ≤ Cδ(‖A

3θ−1

2 v‖2 + ‖F‖‖U‖+ ‖F‖2).

Applying the continuous embedding D(A
θ
2 ) →֒ D(A

3θ−1

2 ) (because θ ≤ 1
2

) and computing ε

small enough we have

‖A θ
2 v‖2 ≤ Cδ(‖U‖‖F‖+ ‖F‖2).
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Therefore, from equation (3.26) we conclude the result.

Item (ii): Using equation (3.28) to compute the inner product with iλAθ−1v̇ and substituting

equation (3.26) in this result we have

ρ2‖λA
θ−1

2 v̇‖2 =β2〈A
θ
2f2, A

θ
2 v̇〉+ β2‖A

θ
2 v̇‖2 + α〈A θ−1

2 f2, A
θ−1

2 v̇〉

+ α‖A θ−1

2 v̇‖ − α〈A θ−1

2 u, iλA
θ−1

2 v̇〉+ ρ2〈f4, Aθ−1v̇〉 (3.36)

To conclude, using Young inequality, Lemma 26 (item (ii)) with D(A
θ
2 ) →֒ D(A

θ−1

2 ) and

previous item (i).

Item (iii): In the same way, from Lemma 28 for σ = 1− θ we have

‖A 1−θ
2 v‖2 ≤ ε‖λ−1A

2−θ
2 v‖2 + Cε(‖U‖‖F‖+ ‖F‖2).

Moreover, from Lemma 29 for σ = 1− θ we obtain

‖λ−1A
2−θ
2 v‖2 ≤ Cδ(‖A

1−θ
2 v‖2 + ‖F‖‖U‖+ ‖F‖2),

considering ε small enough we have

‖A 1−θ
2 v‖2 ≤ Cδ(‖U‖‖F‖+ ‖F‖2).

Using the equation (3.26) we conclude the result.

Item (iv): To show this item we use the same way from Item (ii) in this Lemma with equation

(3.28) and iλA−θv̇.

The next results are about the case χ0 6= 0.

Lemma 32. Consider θ ∈ [0, 1] and F ∈ X. Suppose that for every λ ∈ R such that 0 < δ ≤ |λ|
there exists a solution U ∈ D(B) of the stationary system (iλI − B)U = F. Then, there exists

a positive constant Cδ such that

Re

∫ ∞

0

g(s)〈A 2θ−1

2 (η(s)− u), A
2θ−1

2 v〉ds ≤ Cδ

ε

(

‖F‖‖U‖+ ‖F‖2
)

+
ε

λ2
‖A θ

2 v‖2,

where ε is a positive constant that not depends of δ and λ.

Proof. In view of equations (3.25) and 3.29 we have

η(s)− u =
f5(s)− ∂sη(s)− f1

iλ
,

therefore

Re

∫ ∞

0

g(s)〈A 2θ−1

2 (η(s)− u), A
2θ−1

2 v〉ds = I1 + I2 + I3,
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where

I1 =
1

λ
Im

∫ ∞

0

g(s)〈A 2θ−1

2 f5(s), A
2θ−1

2 v〉ds,

I2 = −1

λ
Im

∫ ∞

0

g(s)〈A 2θ−1

2 ∂sη(s), A
2θ−1

2 v〉ds,

I3 = −1

λ
Im

∫ ∞

0

g(s)〈A 2θ−1

2 f1, A
2θ−1

2 v〉ds.

We will estimate I1, I2 and I3. Using the continuous embedding D(A
θ
2 ) →֒ D(A

2θ−1

2 ) we

conclude that

I1 ≤
1

4ε1

∫ ∞

0

g(s)‖A 2θ−1

2 f5(s)‖2ds+
κε1
λ2

‖A 2θ−1

2 v‖2

≤ C

4ε1

∫ ∞

0

g(s)‖A θ
2f5(s)‖2ds+

κK1ε1
λ2

‖A θ
2 v‖2,

furthermore, integrating I2 by parts and making some calculus we have

I2 ≤
1

λ
‖A 2θ−1

2 v‖
(∫ ∞

0

−g′(s)‖A 2θ−1

2 η(s)‖ds
)

≤ ε1
λ2

‖A 2θ−1

2 v‖2 + 1

4ε1

(∫ ∞

0

−g′(s)‖A 2θ−1

2 η(s)‖ds
)2

≤ ε1K1

λ2
‖A θ

2 v‖2 + g(0)K1

4ε1

∫ ∞

0

−g′(s)‖A θ
2η(s)‖2ds,

and finally

I3 ≤
κ2

4ε1
‖A 2θ−1

2 f1‖2 +
ε1K1

λ2
‖A θ

2 v‖2.

In I2 estimate we used the hypothesis from (3.7), in all estimates above K1 > 0 is just

the constant that appear on continuous embedding D(A
θ
2 ) →֒ D(A

2θ−1

2 ) and ε1 is a positive

constant that we will choose later

From (3.30) and estimates above we obtain that

Re

∫ ∞

0

g(s)〈A 2θ−1

2 (η(s)− u), A
2θ−1

2 v〉ds ≤C
ε1

(

‖F‖‖U‖+ ‖F‖2
)

+
ε1K1

λ2
(κ+ 2)‖A θ

2 v‖2.

Computing ε1K1(κ+ 2) = ε we obtain the result.

Lemma 33. The solution (u, v) of system (3.25)-(3.29) obtained in Theorem 23 satisfy the

following inequality:

‖A θ−1

2 v‖2 ≤C|χ0|‖A
θ
2u‖‖A θ

2 v‖+ 2ε

λ2
‖A θ

2 v‖2 + Cδ

ε

(

‖F‖‖U‖+ ‖F‖2
)

.

where ε is as in Lemma 32.
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Proof. Computing inner product of equation (3.27) with Aσv, using equation (3.25) and con-

sidering the fact of Aσ is self-adjoint we obtain

β1〈A
σ+1

2 u,A
σ+1

2 v〉 − ρ1λ
2〈Aσ

2 u,A
σ
2 v〉 − iρ1λ〈A

σ
2 f1, A

σ
2 v〉 −

∫ ∞

0

g(s)〈Aθu,Aσv〉ds

+

∫ ∞

0

g(s)〈Aθη(s), Aσv〉ds+ α〈Aσ
2 u,A

σ
2 v〉 − α‖Aσ

2 v‖2 = ρ1〈f3, Aσv〉. (3.37)

Similarly, from equation (3.28), computing inner product with Aσu and using equation (3.26),

we have

β2〈A
σ+1

2 v, A
σ+1

2 u〉 − ρ2λ
2〈Aσ

2 v, A
σ
2 u〉 − iρ2λ〈A

σ
2 f2, A

σ
2 u〉+ α〈Aσ

2 v, A
σ
2 u〉

−α‖Aσ
2 u‖2 = ρ2〈f4, Aσu〉. (3.38)

Dividing equations (3.37) and (3.38) by ρ1 and ρ2 respectively and computing the difference of

results, we obtain

α

ρ1
‖Aσ

2 v‖2 = α

ρ2
‖Aσ

2 u‖2 + β1
ρ1

〈Aσ+1

2 u,A
σ+1

2 v〉 − β2
ρ2

〈Aσ+1

2 v, A
σ+1

2 u〉+ α

ρ1
〈Aσ

2 u,A
σ
2 v〉

− α

ρ2
〈Aσ

2 v, A
σ
2 u〉 − λ2〈Aσ

2 u,A
σ
2 v〉+ λ2〈Aσ

2 v, A
σ
2 u〉

+
1

ρ1

∫ ∞

0

g(s)〈Aθ(η(s)− u), Aσv〉ds+ iλ〈Aσ
2 f2, A

σ
2 u〉

− iλ〈Aσ
2 f1, A

σ
2 v〉+ 〈f4, Aσu〉 − 〈f3, Aσv〉.

Computing real part of above equality and using definition presented in (3.6) follows that

α

ρ1
‖Aσ

2 v‖2 = α

ρ2
‖Aσ

2 u‖2 + χ0Re〈Aσ+1

2 u,A
σ+1

2 v〉+
(

α

ρ1
− α

ρ2

)

Re〈Aσ
2 u,A

σ
2 v〉

+
1

ρ1
Re

∫ ∞

0

g(s)〈Aθ(η(s)− u), Aσv〉ds− λIm〈Aσ
2 f2, A

σ
2 u〉

+ λIm〈Aσ
2 f1, A

σ
2 v〉 − Re〈f3, Aσv〉+ Re〈f4, Aσu〉.

Choosing σ = θ − 1 we obtain the identity

‖A θ−1

2 v‖2 = ρ1
ρ2

‖A θ−1

2 u‖2 + χ0
ρ1
α

Re〈A θ
2u,A

θ
2 v〉+

(

1− ρ1
ρ2

)

Re〈A θ−1

2 u,A
θ−1

2 v〉

+
1

α
Re

∫ ∞

0

g(s)〈A 2θ−1

2 (η(s)− u), A
2θ−1

2 v〉ds− ρ1
α

Im〈A θ−1

2 f2, A
θ−1

2 (λu)〉

+
ρ1
α

Im〈A θ−1

2 f1, A
θ−1

2 (λv)〉 − ρ1
α

Re〈f3, Aθ−1v〉+ ρ1
α

Re〈f4, Aθ−1u〉. (3.39)

From Cauchy-Schwarz inequality, continuous embedding D(A
θ
2 ) →֒ D(A

θ−1

2 ), Lemma 26 and

Lemma 32 we can conclude the following estimates

‖A θ−1

2 v‖2 ≤C|χ0|‖A
θ
2u‖‖A θ

2 v‖+ 2ε

λ2
‖A θ

2 v‖2 + Cδ

ε

(

‖F‖‖U‖+ ‖F‖2
)

.
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Lemma 34. The solution (u, v) of system (3.25)-(3.29) obtained in theorem 23 satisfy the fol-

lowing inequality for χ0 6= 0

(i) ‖A θ
2 v‖2 ≤ Cδλ

4 (‖F‖‖U‖+ ‖F‖2);

(ii) ‖A θ
2 v̇‖2 ≤ Cδλ

6 (‖F‖‖U‖+ ‖F‖2) ;

(iii) ‖A θ−1

2 v̇‖2 ≤ Cδλ
4 (‖F‖‖U‖+ ‖F‖2) .

Proof. Item (i): Computing σ = θ − 1 on Lemma 29 and using equation (3.26) we have

‖A θ
2 v‖2 ≤ Cδ

(

λ2‖A θ−1

2 v‖2 + ‖F‖‖U‖+ ‖F‖2
)

(3.40)

From Lemma 33 we have

λ2‖A θ−1

2 v‖2 ≤Cδλ
2|χ0|‖A

θ
2u‖‖A θ

2 v‖+ Cδε‖A
θ
2 v‖2 + Cδ

ε
λ2
(

‖F‖‖U‖+ ‖F‖2
)

(3.41)

Substituting (3.41) in (3.40), using Young inequality and choosing ε small enough we obtain

‖A θ
2 v‖2 ≤ Cδλ

4|χ0|2‖A
θ
2u‖2 + Cδλ

2
(

‖F‖‖U‖+ ‖F‖2
)

.

Finally, using Lemma 26 (item (ii)) it may be concluded that

‖A θ
2 v‖2 ≤ Cδλ

4
(

‖F‖‖U‖+ ‖F‖2
)

.

Item (ii): From equation (3.26) we have

‖A θ
2 v̇‖2 ≤ Cλ2‖A θ

2 v‖2 + C‖F‖2.

Therefore, the result follows from last item.

Item (iii): Computing the inner product between equation (3.28) and iλAθ−1v̇ we have

ρ2‖λA
θ−1

2 v̇‖2 =β2‖A
θ
2 v̇‖2 + β2〈A

θ
2f2, A

θ
2 v̇〉+ α〈A θ−1

2 (iλv), A
θ−1

2 v̇〉

+ α〈A θ−1

2 u, iλA
θ−1

2 v̇〉+ ρ2〈f4, iλAθ−1v̇〉.

Thus, using equation (3.26) and Young inequality we have

‖λA θ−1

2 v̇‖2 ≤ C
{

‖A θ
2 v̇‖2 + ‖A θ−1

2 u‖2 + ‖F‖‖U‖+ ‖F‖2
}

We obtain the result using Lemma 26 and item (ii).
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Lemma 35. In the same hypothesis of lemma 26 with χ0 = 0, the solution of system (3.25)-

(3.29) satisfy the following estimates

(i) ‖v̇‖2 ≤ Cδ|λ|2−2θ(‖F‖‖U‖+ ‖F‖2), for 0 ≤ θ ≤ 1
2
;

(ii) ‖u̇‖2 ≤ Cδ|λ|2−2θ(‖F‖‖U‖+ ‖F‖2), for 0 ≤ θ ≤ 1
2
;

(iii) ‖v̇‖2 ≤ Cδ|λ|2θ(‖F‖‖U‖+ ‖F‖2), for 1
2
≤ θ ≤ 1;

(iv) ‖u̇‖2 ≤ Cδ|λ|2θ(‖F‖‖U‖+ ‖F‖2), for 1
2
≤ θ ≤ 1.

Proof. For items (i) and (ii) we use

0 = θ

(

θ − 1

2

)

+ (1− θ)

(

θ

2

)

.

Item (i) : From interpolation inequality and Lemma 31 (items (i)-(ii)) we obtain

‖v̇‖ ≤ C‖A θ−1

2 v̇‖θ‖A θ
2 v̇‖1−θ

≤ Cδ

(

√

‖F‖‖U‖+ ‖F‖2
)θ

λ(1−θ)
(

√

‖F‖‖U‖+ ‖F‖2
)1−θ

≤ Cδλ
1−θ
√

‖F‖‖U‖+ ‖F‖2.

Item (ii) : We use the same interpolation of item (i), Lemma 26 and Lemma 30.

For items (iii) and (iv) we use

0 = (1− θ)

(

−θ
2

)

+ θ

(

1− θ

2

)

.

Item (iii) : From interpolation inequality and Lemma 31 (items (iii)-(iv)) we have

‖v̇‖ ≤ C‖A− θ
2 v̇‖1−θ‖A 1−θ

2 v̇‖θ

≤ Cδ

(

√

‖F‖‖U‖+ ‖F‖2
)1−θ

λθ
(

√

‖F‖‖U‖+ ‖F‖2
)θ

≤ Cδλ
θ
√

‖F‖‖U‖+ ‖F‖2.

Item (iv) : We use the same interpolation of item (iii) and estimates from Lemma 30.

Lemma 36. In the same hypothesis of Lemma 26, the solutions of system (3.25)-(3.29) satisfy

following estimates

(i) ‖v̇‖2 ≤ Cδ|λ|6−2θ(‖F‖‖U‖+ ‖F‖2), for χ0 6= 0,

(ii) ‖u̇‖2 ≤ Cδ|λ|2(‖F‖‖U‖+ ‖F‖2), for χ0 ∈ R.
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Proof. Item (i) : We use

0 = θ

(

θ − 1

2

)

+ (1− θ)
θ

2
.

Therefore, from interpolation inequality and Lemma 34 we obtain

‖v̇‖ ≤ C‖A θ−1

2 v̇‖θ‖A θ
2 v̇‖(1−θ)

≤ Cδλ
2θ
(

√

‖F‖‖U‖+ ‖F‖2
)θ

λ3(1−θ)
(

√

‖F‖‖U‖+ ‖F‖2
)1−θ

≤ Cδλ
3−θ
√

‖F‖‖U‖+ ‖F‖2.

Item (ii) : Using Lemma (26) we have

‖u̇‖2 ≤ C‖A θ
2 u̇‖2 ≤ Cδλ

2
(

‖F‖‖U‖+ ‖F‖2
)

.

As mentioned earlier we will use Theorem 16 to show Theorem 24 and 25. To proof these

theorems we need to show that iR ⊂ ρ(B).

Theorem 37. The operator B associated with Cauchy problem 3.11 has the property that iR ⊂
ρ(B) for χ0 as (3.6) (considering χ0 = 0 and χ0 6= 0).

Proof. It will be considered that iR * ρ(B) and then it will be absurd. As 0 ∈ ρ(B) let’s suppose

the highest positive number λ0 such that ]−iλ0, iλ0[⊂ ρ(B). Then, iλ0 ∈ σ(B) or −iλ0 ∈ σ(B).

Supposing that iλ0 ∈ σ(B) (similarly if −iλ0 ∈ σ(B)) and fixing a constant δ > 0 with δ < λ0

there exists a sequence of positive real numbers (λn)n∈N such that δ ≤ λn < λ0, with λn → λ0,

and a sequence Un = (un, vn, u̇n, v̇n, ηn) ∈ D(B) with ‖Un‖ = 1 such that

‖(iλn − B)Un‖ = ‖Fn‖ → 0, as n→ ∞.

That is, if Fn = (f1n, f2n, f3n, f4n, f5n) then

iλnun − u̇n = f1n → 0 in D(A
1

2 ),

iλnvn − v̇n = f2n → 0 in D(A
1

2 ),

iρ1λnu̇n + A0un + Dηn + α(un − vn) = ρ1f3n → 0 in H,

iρ2λnv̇n + β2Avn + α(vn − un) = ρ2f4n → 0 in H,

iλnηn − u̇n + ∂sηn = f5n → 0 in Mθ.
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From Lemma 27 we have

‖Un‖2 ≤ Cδ

(

‖u̇n‖2 + ‖v̇n‖2 + ‖Fn‖‖Un‖+ ‖Fn‖2
)

.

Furthermore, from estimates given by Lemma 36 we conclude

‖Un‖2 ≤ Cδλ
6−2θ
n

(

‖Fn‖‖Un‖+ ‖Fn‖2
)

.

Thus, since λn < λ0 and ‖Un‖ = 1 follows that

1 = ‖Un‖2 ≤ Cδλ
6−2θ
0

(

‖Fn‖+ ‖Fn‖2
)

→ 0,when n→ ∞,

that is, absurd. For the case χ0 = 0 it is necessary just to identify correct decay rates obtained in

Lemma 35 and then the result follows for the same argument. So, we conclude iR ⊂ ρ(B), ∀θ ∈
[0, 1].

Proof of Theorem 24: Now, consider U = (u, v, u̇, v̇, η) solution of system (iλ − B)U = F.

According for Theorem 16, to show the polynomial decay of semigroup etB it is sufficient to

prove that ‖U‖ ≤ Cλσ‖F‖ for |λ| ≥ 1.

Proof of item 1: From Lemma 27 and Lemma 35 (items (i) and (ii)) follows that

‖U‖2 ≤ Cδ|λ|2−2θ
(

‖F‖‖U‖+ ‖F‖2
)

,

the result follows applying Young inequality to first term on right side of this inequality, that

means λ−(2−2θ)‖(iλI − B)−1‖ is bounded. Then, for Theorem 16 the semigroup etB decays

polynomially with rate t−
1

2−2θ .

Proof of item 2: We use Lemma 27 and items (iii) and (iv) of Lemma 35.

Proof of Theorem 25: Using a similar way to that done in the previous proof with Lemma 36

we obtain the result.

3.4 Optimality of the decay rates

In this section we will see that the decay rates obtained in Theorem 18 are the best. Our

main result is given by the following theorem:

Theorem 38. Consider g(t) = g(0)e−δt, δ > 0 and θ ∈ [0, 1]. The polynomial decay rates

found in Theorem 24 and 25 are optimal in the following sense:

1. If χ0 = 0 and θ ≥ 1/2, then the semigroup does not decay with the rate t−σ for σ >

1/(2θ).
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2. If χ0 = 0 and θ ≤ 1/2, then the semigroup does not decay with the rate t−σ for σ >

1/(2− 2θ).

3. If χ0 6= 0 and θ is any in the interval [0, 1], then the semigroup does not decay with the

rate t−σ for σ > 1/(6− 2θ).

Proof. We will use the Borichev and Tomilov’s theorem to prove these results. The main idea is

to find a sequence of forces (Fn) and a sequence of real numbers (λn) tending to infinite in such

a way that the solution Un of the system (iλnI − B)U = Fn has the same asymptotic behavior

as λkn where the exponent k is one of the rates 2θ, 2− 2θ or 6− 2θ.

For this, we will use the spectrum of the operator A. Since it is a positive self-adjoint op-

erator with compact resolvent, the spectrum of this operator is given by a sequence of positive

eigenvalues (γn) such that γn → ∞. The corresponding unit eigenvectors are denoted by (en),

thus

Aen = γnen, ‖en‖ = 1, n ∈ N.

We introduce the sequence Fn = (0, 0, 0,−ρ−1
2 en, 0). The solution U = (u, v, u̇, v̇, η) of the

system (iλI − B)U = Fn, in components reads

iλu− u̇ = 0, (3.42)

iλv − v̇ = 0, (3.43)

iρ1λu̇+ A0u+ Dη + α(u− v) = 0, (3.44)

iρ2λv̇ + β2Av + α(v − u) = −en, (3.45)

iλη(s) + ∂sη(s) = u̇. (3.46)

We substitute u̇ from equation (3.42) in (3.46). Solving the resultant equation and using η(0) =

0, we obtain

η(s) = u(1− e−iλs).

Substituting this function in (3.44) and taking into account that A0 = β1A− κAθ we get

iρ1λu̇+ β1Au−
(∫ ∞

0

g(s)e−iλsds

)

Aθu+ α(u− v) = 0.

Now, we use (3.42) in the above equation, and (3.43) in equation (3.45) to obtain the following
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system

ρ1λ
2u− β1Au+

(∫ ∞

0

g(s)e−iλsds

)

Aθu− α(u− v) = 0, (3.47)

ρ2λ
2v − β2Av − α(v − u) = en. (3.48)

In this point, we will look for solutions projected in a one-dimensional space, that is







u = κ1en

v = κ2en
; κ1, κ2 ∈ C.

The substitution of these terms in the system (3.47)-(3.48) gives

(

ρ1λ
2 − β1γn − α + γθn

∫ ∞

0

g(s)e−iλsds

)

κ1 + ακ2 = 0,

(

ρ2λ
2 − β2γn − α

)

κ2 + ακ1 = 1.

Solving this algebraic system, the solution of the second component is

κ2 =
P1(λ

2) + Iλγ
θ
n

P1(λ2)P2(λ2) + IλγθnP2(λ2)− α2
. (3.49)

where the polynomials P1, P2 are given by

P1(s) = ρ1s− β1γn − α, P2(s) = ρ2s− β2γn − α, (3.50)

and the integral term

Iλ =

∫ ∞

0

g(s)e−iλs ds =

∫ ∞

0

g(0)e−(δ+iλ)s ds =
g(0)

δ + iλ
. (3.51)

Proof of item 1. Consider χ0 = 0 and θ ≥ 1/2. We define

λn :=

√

β2γn + α

ρ2
.

In what follows, the notation an ≈ bn will mean that lim
n→∞

|an|
|bn|

is a positive real number. With

this notation we have

λn ≈ γ1/2n .

Also, from the definitions of the polynomials P1, P2 in (3.50) we obtain

P2(λ
2
n) = 0 and P1(λ

2
n) =

α(ρ1 − ρ2)

ρ2
.
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Considering λ = λn in (3.49) and taking into account (3.51) we get

κ2,n = −α(ρ1 − ρ2)

α2ρ2
− Iλn

γθn
α2

= −α(ρ1 − ρ2)

α2ρ2
− g(0)(δ − iλn)γ

θ
n

α2(δ2 + λ2n)

whose imaginary part is given by

Im(κ2,n) =
g(0)λnγ

θ
n

α2(δ2 + λ2n)
≈ λ2θ−1

n .

Therefore, if Un = (un, vn, u̇n, v̇n, ηn) is the solution of system (iλnI − B)U = Fn we obtain

‖Un‖ ≥ ρ2‖v̇n‖ = ρ2λn|κ2,n|‖en‖ ≥ ρ2λn|Im(κ2,n)| ≥ ελ2θn , (3.52)

for some ε > 0 and n large enough. In this point, if the semigroup of the system decays

polynomially with rate t−σ, σ > 1/(2θ), we have

ελ2θn ≤ ‖Un‖ ≤ Cλ1/σn ‖Fn‖ ⇒ ελ2θ−1/σ
n ≤ C (3.53)

which is contradictory because λ
2θ−1/σ
n → ∞ when n → ∞. Therefore the decay rate t−1/(2θ)

is optimal.

Proof of item 2 and 3. We start rewriting the polynomial that appears in the formula (3.49):

P1(s)P2(s)− α2

= ρ1ρ2

{

s2 +

(

β0γn +
α(ρ1 + ρ2)

ρ1ρ2

)

s+
(β1γn + α)

ρ1

(β2γn + α)

ρ2
− α2

ρ1ρ2

}

,

where β0 =
β1

ρ1
+ β2

ρ2
. The roots of this polynomial are

s±n =
β0γn +

α(ρ1+ρ2)
ρ1ρ2

±
√

(

χ0γn +
α(ρ2−ρ1)

ρ1ρ2

)2

+ 4α2

ρ1ρ2

2
. (3.54)

We define λn :=
√

s+n . As s+n ≈ γn we have

λn ≈ γ1/2n . (3.55)

Evaluating polynomial P1 in λ2n gives

2

ρ1
P1(λ

2
n) = −χ0γn −

α(ρ2 − ρ1)

ρ1ρ2
+

√

(

χ0γn +
α(ρ2 − ρ1)

ρ1ρ2

)2

+
4α2

ρ1ρ2
. (3.56)

From this formula and using estimate (3.55) we get







P1(λ
2
n) ≈ 1 for χ0 = 0,

P1(λ
2
n) ≈ λ2n for χ0 < 0.

(3.57)
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Since P1(λ
2
n)P2(λ

2
n) − α2 = 0 we have P2(λ

2
n) = α2

P1(λ2
n)

. Therefore, considering λ = λn in

(3.49) we obtain

κ2,n =

(

P1(λ
2
n) + Iλn

γθn
Iλn

γθn

)

P1(λ
2
n)

α2
. (3.58)

Considering the imaginary part of this term and taking into account the estimates (3.55) and

(3.57), we conclude that

Im(κ2) =
λnP

2
1 (λ

2
n)

g(0)γθnα
2
≈







λ1−2θ
n for χ0 = 0,

λ5−2θ
n for χ0 < 0.

Therefore, performing the same accounts as in (3.52)-(3.53) we can conclude that under the

hypothesis of item 2 of this theorem (χ0 = 0 and θ ≤ 1/2) the polynomial decay rate t−1/(2−2θ)

is optimal. On the other hand, if χ0 < 0 (partial condition in the item 3), then the polynomial

decay rate t−1/(6−2θ) is optimal.

To complete the proof of item 3 we will address the case χ0 > 0. For this case we define

λn =:
√

s−n . Since

s+n s
−
n =

(β1γn + α)

ρ1

(β2γn + α)

ρ2
− α2

ρ1ρ2

and s+n ≈ γn we have s−n ≈ γn. Consequently,

λn ≈ γ1/2n .

This time, evaluating polynomial P1 in λ2n = s−n gives

2

ρ1
P1(λ

2
n) = −χ0γn −

α(ρ2 − ρ1)

ρ1ρ2
−
√

(

χ0γn +
α(ρ2 − ρ1)

ρ1ρ2

)2

+
4α2

ρ1ρ2
.

Since χ0 > 0 we obtain

P1(λ
2
n) ≈ γn ≈ λ2n.

As the above estimates coincide with (3.55) and (3.57) (case χ0 < 0), we have again

Im(κ2) =
λnP

2
1 (λ

2
n)

g(0)γθnα
2
≈ λ5−2θ

n

Therefore, under the hypothesis of item 3 (χ0 6= 0)), t−1/(6−2θ) is the optimal decay rate.



Chapter 4

Asymptotic behavior for a coupled

wave/plate system with fractional memory

dissipation

In this chapter, we consider a coupled system of two equations with different characteristics.

This wave-plate system has indirect damping acting in one equation, first in the wave equation,

second in the plate equation and we also study what happens when it is considered the damping

in two equations. In summary, this research presents asymptotic behavior (exponential and

polynomial decay) for the solutions of this system. When it is possible, optimal decay rates are

found.

4.1 Motivation

Coupled systems of two or more elastic materials have been studied by many researchers

over time. The asymptotic behavior of these systems has aroused special interest mainly when

part of it has minimal dissipative properties, or when the components of the system have char-

acteristics of different nature. In the literature, we find several results on the asymptotic be-

havior where a component of the system transfers its dissipative properties to the other ones,

for example, in Timoshenko beams, Bresse systems, thermoelastic systems, coupled systems of

wave-wave, plate-plate, or wave-plate interactions, and more. Part of the components of these

systems can have conservative or dissipative characteristics, but the important thing in stability

studies is that the conservative part can absorb the properties of the dissipative part to stabilize

54
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the system. Some of these works can be found in [3, 5, 12, 36, 28, 37, 48, 67, 72].

When the components of a conservative-dissipative system are of the same nature, some

studies show that for the system to stabilize or to have a faster stabilization, it is necessary to

have a good relationship between the structural coefficients. This feature was first noticed by

Soufyane [70] who studied the Timoshenko system

ρ1utt −K(uxx − vx) = 0,

ρ2vtt − bvxx +K(ux − v) + a(x)vt = 0.

He showed that the solutions of this system decay exponentially if and only if the condition

K

ρ1
=

b

ρ2
,

is satisfied. When no relationship is established between the coefficients in a Timoshenko sys-

tem, depending on the dissipation, the system simply does not decay. This was noted by Bassam

et al. [10] who considered this problem with boundary dissipation. They showed that for certain

relations between the structural coefficients, the system does not stabilize, but with complemen-

tary relations, the system is polynomially stable. This type of behavior has also been observed

in couplings between membranes and also between plates. Some of these results have been

shown in [1, 8, 57, 61, 62, 58, 48]

Our interest in this work is to study coupled systems where the components are of a different

nature and establish whether the decay depends on some relationships between their structural

coefficients. For this reason, we consider a weakly coupled system of wave-plate equations with

memory damping. For Ω a bounded open set of Rn the coupled system is given by














ρ1utt − β1∆u−
∫ ∞

0

g1(s)(−∆)θ1u(t− s)ds+ α(u− v) = 0, in Ω× R+,

ρ2vtt + β2∆
2v −

∫ ∞

0

g2(s)∆
2θ2v(t− s)ds+ α(v − u) = 0, in Ω× R+,

(4.1)

subjected to initial conditions

u(0) = u0, v(0) = v0, ut(0) = u1, vt(0) = v1, (4.2)

u(−s) = φ1(s), v(−s) = φ2(s), s > 0, φ1(0) = u1, φ2(0) = u2 (4.3)

and satisfying the boundary condition

u = 0, v = 0, ∆v = 0, on ∂Ω× R+. (4.4)
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For this system we will try to answer several questions: if there is decay, does it depend on

any relationships between the structural coefficients? Which dissipative part is dominant, the

dissipation of the wave or the plate? what role do the exponents θ1 and θ2 play in the decay? If

we remove one of the dissipations, what kind of decay do we get?

In the literature we find some studies for similar systems of this problem, we will mention

some of them: Tebou [71] considered a plate-wave system with frictional damping

ytt +∆2y + αz + κ1yt = 0,

ztt −∆z + αy + κ2zt = 0,

with clamped boundary conditions for the plate displacement and Dirichlet boundary conditions

for the wave displacement. He considered the cases (κ1, κ2) = (1, 0) and (0, 1) and showed that

the system cannot decay exponentially. However, he was able to prove that the strong solutions

decay polynomially with rates t−1/8 and t−1/4 respectively.

A coupled plate-wave system with memory damping was considered by Matos et al. [45].

The system they studied was formulated in an abstract way:

utt + A1u−
∫ ∞

0

g(s)A2u(t− s)ds+ βv = 0,

vtt + A3v + βu = 0,

where the abstract differential operator A1 is more strong than A2 and A3, A2 = o(Aα
1 ), A2 =

o(Aγ
1), and the kernel is an exponentially decreasing function. They showed that the solution

of this system does not decay exponentially, but they showed a polynomial decay for the initial

date with appropriate regularity. The decay rates found are not necessarily optimal because the

results do not show the α, γ dependence. Also, Guesmia [31] studied this problem considering

kernels that decrease in a broader sense than those with exponential or polynomial decay. He

found decay rates according to the decay of the kernel. Other results about the stabilization in

plate-wave interactions can be view in [6, 16, 27, 32, 68, 72, 73].

We will study the system (4.1)-(4.4) in an abstract format. We consider an unbounded

positive self-adjoint operator A with domain D(A) in the Hilbert space H, and we assume that

A has a compact inverse. Note that A = −∆, D(A) = H2(Ω) ∩ H1
0 (Ω) satisfy this condition

in the Hilbert space H = L2(Ω). Then the system we study is given by














ρ1utt + β1Au−
∫ ∞

0

g1(s)A
θ1u(t− s)ds+ α(u− v) = 0,

ρ2vtt + β2A
2v −

∫ ∞

0

g2(s)A
2θ2v(t− s)ds+ α(v − u) = 0,

(4.5)



57

satisfying the initial data











u(0) = u0, v(0) = v0, ut(0) = u1, vt(0) = v1,

u(−s) = φ1(s), v(−s) = φ2(s) s > 0.

(4.6)

Here, the density and the elasticity coefficients ρ1, ρ2, β1, β2 are positive constants and the

exponents θi are considered in the interval [0, 1]. Moreover, the coupling coefficient α is a

positive number.

Furthermore, the kernel of Volterra equations gi(t), i = 1, 2, must have exponential decay

in a similar way as [48], that is, gi(t) satisfy the following set of hypotheses










































gi ∈ C1(R+) ∩ L1(R+),

gi(s) > 0, g′i(s) < 0, ∀s ∈ R+,

∃ ci ∈ R+; g′i(s) ≤ −cigi(s), ∀s ∈ R+,

0 < κi :=

∫ +∞

0

gi(s)ds < βiα
i(1−θi)
1 ,

(4.7)

where α1 is the first eigenvalue of −∆.

The main result of this chapter is related to asymptotic behavior of solutions of system (4.5)-

(4.6). The results that we found are enunciated in Theorems 40 and 53 which can be synthesized

as follow:

• For strong initial data and θ1 = θ2 = 1 we have exponential decay;

• For strong initial data and θ1 < 1 or θ2 < 1 we have polynomial decay with rate t
− 1

2−2θ0 ,

where θ0 = min{θ1, θ2};

• For strong initial data and if we remove the memory term from the second equation of

(4.5)-(4.6) then we have polynomial decay with the rate t
− 1

6−θ1 ;

• For strong initial data and if we remove the memory term from the first equation of (4.5)-

(4.6) then we have polynomial decay with the rate t
− 1

10−4θ2 ;

• The decay rates in the previous items are the best.

The results are presented as follows: in section 2, we prove the well-posedness of problem

(4.5)-(4.6) by semigroup theory. In section 3, we show asymptotic behavior to the problem

where it depends on the exponent θi and what the types of memory are considered. Furthermore,

in the last section we fount optimal decay rates.
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4.2 Well-Posedness

In this section we will show the well-posed of system (4.5)-(4.6). For this, to put this system

in an abstract framework, we will use the functions η := ηt(s) and ϑ := ϑt(s), originally used

by [18], such that:

ηt(s) = u(t)− u(t− s), (4.8)

ϑt(s) = v(t)− v(t− s), (4.9)

Thus, the system (4.5)-(4.6) turn into










































ρ1utt + β1Au− κ1A
θ1u+

∫ +∞

0

g1(s)A
θ1η(s)ds+ α(u− v) = 0,

ρ2vtt + β2A
2v − κ2A

2θ2v +

∫ +∞

0

g2(s)A
2θ2ϑ(s)ds+ α(v − u) = 0,

ηt(s) + ηs(s)− ut = 0,

ϑt(s) + ϑs(s)− vt = 0,

therefore, taking A1 = β1A− κ1A
θ1 and A2

2 = β2A
2 − κ2A

2θ2 we have










































ρ1utt + A1u+

∫ +∞

0

g1(s)A
θ1η(s)ds+ α(u− v) = 0,

ρ2vtt + A2
2 +

∫ +∞

0

g2(s)A
2θ2ϑ(s)ds+ α(v − u) = 0,

ηt(s) + ηs(s)− ut = 0,

ϑt(s) + ϑs(s)− vt = 0.

Finally, If we denote by U(t) = (u(t), v(t), ut(t), vt(t), η, ϑ), we can put this system in an

equivalent Cauchy problem given by

d

dt
U(t) = BU(t), U(0) = U0, (4.10)

where the initial data is U0 = (u0, v0, u1, v1, η0, ϑ0) and the operator B is given by

BU =
(

u̇, v̇, −ρ−1
1 {A1u+ D1η + α(u− v)} ,

−ρ−1
2

{

A2
2v + D2ϑ+ α(v − u)

}

, u̇− ∂sη, v̇ − ∂sϑ
)

,

for U = (u, v, u̇, v̇, η, ϑ). Here the point on top of this terms is just a notation, it does not mean

the time derivative. Furthermore, we have D1η =

∫ +∞

0

g1(s)A
θ1η(s)ds in which D1 : M1 →

D(A−
θ1
2 ); M1 := L2

g1
(R+;D(A

θ1
2 )); and it is endowed with inner product

〈η1, η2〉M1
=

∫ +∞

0

g1(s)〈A
θ1
2 η1, A

θ1
2 η2〉ds, ∀η1, η2 ∈ M1,
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in the same way we have that D2ϑ =

∫ +∞

0

g2(s)A
2θ2ϑ(s)ds in which D2 : M2 → D(A−θ2)

with M2 := L2
g2
(R+;D(Aθ2)) and it is provided with inner product

〈ϑ1, ϑ2〉M2
=

∫ +∞

0

g2(s)〈Aθ2ϑ1, A
θ2ϑ2〉ds, ∀ϑ1, ϑ2 ∈ M2.

We will define this operator in an appropriate subspace of Hilbert space

X = D(A
1

2 )×D(A)×H×H×M1 ×M2,

where it is provided with inner product

〈U1, U2〉X =〈A
1

2

1 u1, A
1

2

1 u2〉+ 〈A2v1, A2v2〉+ ρ1〈u̇1, u̇2〉+ ρ2〈v̇1, v̇2〉

+ α〈u1 − v1, u2 − v2〉+ 〈η1, η2〉M1
+ 〈ϑ1, ϑ2〉M2

,

for U1 = (u1, v1, u̇1, v̇1, η1, ϑ1) and U2 = (u2, v2, u̇2.v̇2, η2, ϑ2) in X. With these considerations,

the natural domain of operator B is defined by

D(B) =
{

U ∈ X : u̇ ∈ D(A
1

2 ), v̇ ∈ D(A), A1u+ D1η ∈ H,

A2
2v + D2ϑ ∈ H, η ∈ D(Γ1), ϑ ∈ D(Γ2)

}

,

where

D(Γ1) = {η ∈ M1; ∂sη ∈ M1 and η(0) = 0} ,

and

D(Γ2) = {ϑ ∈ M2; ∂sϑ ∈ M2 and ϑ(0) = 0} .

Remark 3. It is important to know that when the first or second equation is in the absence of

memory we have different types to the above features developed, that is, when we have g1 = 0 or

g2 = 0 it will imply different result for A1, A2,D1 and D2. For example, if the second equation

of the system (4.5)-(4.6) is in the absence of memory term, then since the beginning of the text,

we won’t need to use change variable (4.9). Consequently, all development would be different,

since the start definition of operator B, phases space, abstract system (4.10) and domain.

The next result focus on show the well-posedness of Cauchy problem (4.10).

Theorem 39. Considering U0 in X, there exists only one solution U of problem (4.10) such that

U ∈ C([0,+∞[;X). Moreover, if U0 in D(B), we have

U ∈ C([0,+∞[;D(B)) ∩ C1([0,+∞[;X).
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Proof. To get the result we need to show that the operator B is the generator of a C0-semigroup.

In view of that, we will invoke a consequence of Lummer-Phillips’s Theorem (enunciated in

preliminaries). Note that from definition of D(B) we can conclude that this domain is dense in

X. Furthermore, if we consider U ∈ D(A) we have

〈BU,U〉X =〈A
1

2

1 u̇, A
1

2

1 u〉+ 〈A2v̇, A2v〉 − 〈A1u+ D1η + α(u− v), u̇〉

− 〈A2
2v + D2ϑ+ α(v − u), v̇〉+ α〈u̇− v̇, u− v〉

+ 〈u̇− ∂sη, η〉M1
+ 〈v̇ − ∂sϑ, ϑ〉M2

, (4.11)

and then

Re〈BU,U〉X = −Re

∫ ∞

0

g1(s)〈∂sη, η〉
D(A

θ1
2 )
ds− Re

∫ ∞

0

g2(s)〈∂sϑ, ϑ〉D(Aθ2 )ds. (4.12)

Integrating the first term by parts, we obtain

−Re

∫ ∞

0

g1(s)〈∂sη, η〉
D(A

θ1
2 )
ds =

1

2

∫ ∞

0

g′1(s)‖A
θ1
2 η‖2ds. (4.13)

In the same way to the second term of equation (4.12) we obtain

−Re

∫ ∞

0

g2(s)〈∂sϑ, ϑ〉D(Aθ2 )ds =
1

2

∫ ∞

0

g′2(s)‖Aθ2ϑ‖2ds. (4.14)

As a conclusion, from estimates (4.12), (4.13) and (4.14) we have Re〈BU,U〉X is non-positive

by condition (4.7). Therefore, the operator B is dissipative.

Let’s show that 0 ∈ ρ(B). Firstly, we need to check that Im(B) = X. To this, let F =

(f1, f2, f3, f4, f5, f6) ∈ X and we will prove that U ∈ D(B) where U = (u, v, u̇, v̇, η, ϑ) is

solution of system BU = F . The vector U = (u, v, u̇, v̇, η, ϑ) is solution of system BU = F if

and only if

u̇ = f1 in D(A
1

2 ), (4.15)

v̇ = f2 in D(A), (4.16)

A1u+ D1η + α(u− v) = −ρ1f3 in H, (4.17)

A2
2v + D2ϑ+ α(v − u) = −ρ2f4 in H, (4.18)

u̇− ∂sη = f5 in M1, (4.19)

v̇ − ∂sϑ = f6 in M2. (4.20)

Note that, in view of equation (4.19) (and using (4.15)) we can assert that

η(s) = sf1 −
∫ s

0

f5(τ)dτ (4.21)
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is a solution of this equation that satisfies η(0) = 0. On the other hand, by hypothesis (4.7) we

have

∫ +∞

0

g1(s)‖A
θ1
2 η(s)‖2ds ≤ − 1

c1

∫ +∞

0

g′1(s)‖A
θ1
2 η(s)‖2ds,

and then, from (4.13), we get

∫ +∞

0

g1(s)‖A
θ1
2 η(s)‖2 ≤ 2

c1

∫ +∞

0

g1(s)|〈A
θ1
2 ∂sη, A

θ1
2 η〉|ds,

therefore, using Cauchy-Schwarz and Young’s inequalities follows that

∫ +∞

0

g1(s)‖A
θ1
2 η(s)‖2 ≤ 4

c21

∫ +∞

0

g1(s)‖A
θ1
2 ∂sη‖2ds. (4.22)

However by (4.19) follows that ∂sη ∈ M1, consequently by (4.22) we conclude η ∈ D(Γ1).

Following this same way we conclude that ϑ ∈ D(Γ2). Furthermore, considering equations

(4.17) and (4.18) we have that











A1u+ α(u− v) = −ρ1f3 − D1η,

A2
2v + α(v − u) = −ρ2f4 − D2ϑ.

(4.23)

Let W = (u, v) and consider the variational problem

a(W,Φ) = 〈G,Φ〉, ∀ Φ = (ϕ, ψ) ∈ D(A
1

2 )×D(A),

where the sesquilinear form a(·, ·) : [D(A
1

2 )×D(A)]2 → C and G : D(A
1

2 )×D(A) → C are

defined by

a(W,Φ) = 〈A
1

2

1 u,A
1

2

1 ϕ〉+ 〈A2v, A2ψ〉+ α〈u− v, ϕ− ψ〉,

〈G,Φ〉 = 〈g1, ϕ〉+ 〈g2, ψ〉.

with g1 = −ρ1f3 − D1η and g2 = −ρ2f4 − D2ϑ. From this definition we obtain that a(·, ·) is

continuous and G = (g1, g2) ∈ D(A− 1

2 )×D(A−1). Furthermore, follows that the sesquilinear

form is coercivity. Indeed, we have

a(W,W ) = ‖A
1

2

1 u‖2 + ‖A2v‖2 + α‖u− v‖2

≥ ‖A
1

2

1 u‖2 + ‖A2v‖2,

therefore using the following equivalent norm

‖A
1

2

1 u‖2 ≥ (β1 − κ1α
θ1−1
1 )‖A 1

2u‖2, (4.24)
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and

‖A2v‖2 ≥ (β2 − κ2α
2(θ2−1)
1 )‖Av‖2, (4.25)

we obtain

a(W,W ) ≥ (β1 − κ1α
θ1−1
1 )‖A 1

2u‖2 + (β2 − κ2α
2(θ2−1)
1 )‖Av‖2,

then we conclude that a(·, ·) is coercive. From Lax-Milgram Theorem there exists an unique

solution (u, v) ∈ D(A
1

2 ) × D(A) in a weak sense to system (4.23). From the first equation we

have A1u+D1η ∈ H and from the second equation of this system we conclude (A2
2v+D2ϑ) ∈

H. As a conclusion we can affirm that U ∈ D(B).

Remark 1: The equivalent norm in (4.24) is due to follows calculus: note that for u ∈
D(A

1

2 ) and A1 = β1A− κ1A
θ1 we have

‖A
1

2

1 u‖2 = β1‖A
1

2u‖2 − κ1‖A
θ1
2 u‖2.

Furthermore,

‖A 1

2u‖2 = 〈A 1

2u,A
1

2u〉 = 〈A1−θ1(A
θ1
2 u), A

θ1
2 u〉 = 〈A

1−θ1
2 (A

θ1
2 u), A

1−θ1
2 (A

θ1
2 u)〉

= ‖A
1−θ1

2 (A
θ1
2 u)‖2 ≥ α1−θ1

1 ‖A
θ1
2 u‖2. (4.26)

In the last inequality we are using that ‖A γ
2 u‖2 ≥ αγ

1‖u‖2, ∀u ∈ D(A
γ
2 ) where α1 is the first

eigenvalue of operator A. The result follows immediately from (4.26) and the hypothesis on κ1

given in 4.7. To obtain the equivalent norm in (4.25) just to follows the same way of remark

1. Finally, let’s see that 0 ∈ ρ(B). For this, it suffices to check that B−1 is a bounded operator.

From inner product definition we have

‖U‖2 =‖A
1

2

1 u‖2 + ‖A2v‖2 + ρ1‖u̇‖2 + ρ2‖v̇‖2

+ α‖u− v‖2 + ‖η‖2M1
+ ‖ϑ‖2M2

≤a(W,W ) + C‖F‖‖U‖+ C‖F‖2.

Furthermore,

|〈G,W 〉| ≤ρ1|〈f3, u〉D(A−
1
2 )×D(A

1
2 )
|+ |〈D1η, u〉D(A−

1
2 )×D(A

1
2 )
|+ ρ2|〈f4, v〉D(A−

1
2 )×D(A)

|

+ |〈D2ϑ, v〉D(A−
1
2 )×D(A)

|

≤C‖F‖‖U‖+ C‖F‖2 + ε1‖A
θ1
2 u‖2 + ε2‖Aθ2v‖2.
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From continuous embedding D(A
1

2 ) →֒ D(A
θ1
2 ) and D(A) →֒ D(Aθ2) we have

|〈G,W 〉| ≤C‖F‖‖U‖+ C‖F‖2 + ε1‖A
1

2u‖2 + ε2‖Av‖2.

Furthermore, since a(W,W ) = 〈G,W 〉 follows from above inequality that

‖U‖2 ≤C‖F‖‖U‖+ C‖F‖2 + ε1‖A
1

2u‖2 + ε2‖Av‖2.

computing ε1 and ε2 small enough we have

‖U‖2 ≤C‖F‖‖U‖+ C‖F‖2.

Therefore, using Young’s inequality we obtain that ‖U‖ ≤ C‖F‖. This conclude the proof that

0 ∈ ρ(B).

Note that in this section we developed the existence of solution when we have g1 6= 0 and

g2 6= 0 but, for other cases as g1 6= 0 and g2 = 0 or g1 = 0 and g2 6= 0 the development is the

same.

4.3 Asymptotic behavior

In this section, we will see the asymptotic behavior of solution, for that, let’s enunciate our

main theorems about exponential and polynomial decay.

Theorem 40. The semigroup etB of system (4.10) has the following asymptotic behavior:

1. If both memory terms are present in the system (4.5)-(4.6) and θ1 = θ2 = 1, then the

semigroup decays exponentially, that is, there exists C > 0 and µ > 0 such that

‖etB‖ ≤ Ce−µt.

2. If both memory terms are present in the system (4.5)-(4.6) and at least one of the expo-

nents θ1, θ2 is strictly less than 1, then the semigroup decays polynomially with decay rate

t−1/(2−2θ0) for θ0 := min{θ1, θ2}. That is, there exists C > 0 such that

‖etBU0‖ ≤ C

t1/(2−2θ0)
‖U0‖D(B), ∀ t > 0, U0 ∈ D(B).

3. If we remove the memory term from the second equation of (4.5)-(4.6), then the semigroup

decays polynomially with decay rate t−1/(6−θ1), that is, there exists C > 0 such that

‖etBU0‖ ≤ C

t1/(6−θ1)
‖U0‖D(B), ∀ t > 0, U0 ∈ D(B).



64

4. If we remove the memory term from the first equation of (4.5)-(4.6), then the semigroup

decays polynomially with decay rate t−1/(10−4θ2), that is, there exists C > 0 such that

‖etBU0‖ ≤ C

t1/(10−4θ2)
‖U0‖D(B), ∀ t > 0, U0 ∈ D(B).

The proof of these theorems will be divided into some lemmas. In view of this, to show these

lemmas it is considered many times the stationary problem (iλI − B)U = F, where λ ∈ R and

F = (f1, f2, f3, f4, f5, f6). Note that for U = (u, v, u̇, v̇, η, ϑ) solution of this problem, we have

that are satisfied follows equations:

iλu− u̇ = f1, (4.27)

iλv − v̇ = f2, (4.28)

iρ1λu̇+ A1u+ D1η + α(u− v) = ρ1f3, (4.29)

iρ2λv̇ + A2
2v + D2ϑ+ α(v − u) = ρ2f4, (4.30)

iλη + ∂sη − u̇ = f5, (4.31)

iλϑ+ ∂sϑ− v̇ = f6. (4.32)

Initially, we can conclude from (4.12), (4.13), (4.14) and the current stationary problem















‖η‖2M1
≤ −

∫ ∞

0

g′1(s)‖A
θ1
2 η‖2ds ≤ CRe〈(iλI − B)U,U〉X ≤ C‖F‖‖U‖,

‖ϑ‖2M2
≤ −

∫ ∞

0

g′2(s)‖Aθ2ϑ‖2ds ≤ CRe〈(iλI − B)U,U〉X ≤ C‖F‖‖U‖.
(4.33)

To make better organize, we will divide this section into other subsections with each result,

where we will explore different cases for g1 and g2.

To solve these cases we will start with two lemmas. These results will be used simultane-

ously when g1 6= 0 and g2 6= 0 otherwise, it will be used separately.

Lemma 41. Consider θ1 ∈ [0, 1] and F ∈ X. Suppose that for every λ ∈ R such that 0 < δ ≤
|λ| there exists a solution U ∈ D(B) of stationary system (iλI − B)U = F . Then there exists a

positive constant Cδ such that:

(i) ‖A θ1
2 u̇‖2 ≤ Cδλ

2 (‖F‖‖U‖+ ‖F‖2) ,

(ii) ‖A θ1
2 u‖2 ≤ Cδ (‖F‖‖U‖+ ‖F‖2) .
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Proof. Note that using equation (4.31) we have

(∫ ∞

0

g1(s)ds

)

‖A
θ1
2 u̇‖2 =

∫ ∞

0

g1(s)〈A
θ1
2 (iλη(s) + ∂sη(s)− f5(s)), A

θ1
2 u̇〉ds

=

∫ ∞

0

g1(s)〈iλA
θ1
2 η(s), A

θ1
2 u̇〉ds+

∫ ∞

0

g1(s)〈∂sA
θ1
2 η(s), A

θ1
2 u̇〉ds

−
∫ ∞

0

g1(s)〈A
θ1
2 f5(s), A

θ1
2 u̇〉ds.

Thus, integrating by parts, using the hypothesis of function g and Cauchy-Schwarz inequal-

ity follows that

(∫ ∞

0

g1(s)ds

)

‖A
θ1
2 u̇‖2 ≤ C|λ|‖A

θ1
2 u̇‖

(∫ ∞

0

g1(s)‖A
θ1
2 η(s)‖2ds

) 1

2

+ C‖A
θ1
2 u̇‖

(

−
∫ ∞

0

g′1(s)‖A
θ1
2 η(s)‖2ds

) 1

2

+ C‖A
θ1
2 u̇‖

(∫ ∞

0

g1(s)‖A
θ1
2 f5(s)‖2ds

) 1

2

.

Now, applying Young’s inequality we obtain

‖A
θ1
2 u̇‖2 ≤C

(

λ2
∫ ∞

0

g1(s)‖A
θ1
2 η(s)‖2ds−

∫ ∞

0

g′1(s)‖A
θ1
2 η(s)‖2ds

+

∫ ∞

0

g1(s)‖A
θ1
2 f5(s)‖2ds

)

,

where C is a positive constant that not depends of λ. From estimate (4.33) follows that

‖A
θ1
2 u̇‖2 ≤ C

(

λ2‖F‖‖U‖+ ‖F‖‖U‖+ ‖F‖2
)

,

then recalling that |λ| ≥ δ, item (i) is obtained. Furthermore, computing inner product with

iλAθu (note that operator Aθ is self-adjoint), we get

λ2‖A
θ1
2 u‖2 = −〈iλA

θ1
2 u,A

θ1
2 f1〉 − 〈iλA

θ1
2 u,A

θ1
2 u̇〉.

Using Cauchy-Schwartz and Young’s inequality follows that

λ2‖A
θ1
2 u‖2 ≤ C(‖A

θ1
2 f1‖2 + ‖A

θ1
2 u̇‖2).

Furthermore, by the continuous embedding D(A
1

2 ) →֒ D(A
θ1
2 ) (in view of θ1 ∈ [0, 1]) and the

estimate obtained in item (i), we have

λ2‖A
θ1
2 u‖2 ≤ Cδ(λ

2‖F‖‖U‖+ ‖F‖2),

then using that |λ| > δ the result follows.
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Lemma 42. Consider θ2 ∈ [0, 1] and F ∈ X. Suppose that for every λ ∈ R such that 0 < δ ≤
|λ| there exists a solution U ∈ D(B) of stationary system (iλI −B)U = F. Then, there exists a

positive constant Cδ such that:

(i) ‖Aθ2 v̇‖2 ≤ Cδλ
2 (‖F‖‖U‖+ ‖F‖2) ,

(ii) ‖Aθ2v‖2 ≤ Cδ (‖F‖‖U‖+ ‖F‖2) .

Proof. The proof follows using a similar way from the last Lemma with equations (4.28) and

(4.32).

The next theorem will be used in all result from Theorem 40.

Lemma 43. The solutions of equations (4.27)-(4.32) satisfy the following result

‖U‖2 ≤ Cδ

(

‖u̇‖2 + ‖v̇‖2 + ‖F‖‖U‖+ ‖F‖2
)

.

Proof. Initially, let’s compute the inner product of equation (4.29) with u and equation (4.30)

with v; using equations (4.27) and (4.28) respectively we have

‖A
1

2

1 u‖2 + α‖u‖2 − α〈v, u〉 = ρ1‖u̇‖2 −
∫ ∞

0

g1(s)〈A
θ1
2 η, A

θ1
2 u〉ds

+ ρ1〈u̇, f1〉+ 〈f3, u〉

and

‖A2v‖2 + α‖v‖2 − α〈u, v〉 = ρ2‖v̇‖2 −
∫ ∞

0

g2(s)〈Aθ2ϑ,Aθ2v〉ds

+ ρ2〈v̇, f2〉+ 〈f4, v〉.

Performing the sum with both these equations we have

‖A
1

2

1 u‖2 + ‖A2v‖2 + α‖u− v‖2 = −
∫ ∞

0

g1(s)〈A
θ1
2 η, A

θ1
2 u〉ds+ ρ1‖u̇‖2 + ρ2‖v̇‖2

−
∫ ∞

0

g2(s)〈Aθ2ϑ,Aθ2v〉ds+ ρ1〈u̇, f1〉

+ ρ2〈v̇, f2〉+ 〈f3, u〉+ 〈f4, v〉.

Using Young’s inequality, estimate (4.33), Lemma 41 and Lemma 42 we obtain

‖A
1

2

1 u‖2 + ‖A2v‖2 + α‖u− v‖2 ≤ Cδ

(

‖u̇‖2 + ‖v̇‖2 + ‖F‖‖U‖+ ‖F‖2
)

.

Furthermore, from inequality (4.33) we have

‖η‖2M1
≤ C‖F‖‖U‖ and ‖ϑ‖2M2

≤ C‖F‖‖U‖, (4.34)
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finally, it may be concluded that

‖U‖2 ≤ Cδ

(

‖u̇‖2 + ‖v̇‖2 + ‖F‖‖U‖+ ‖F‖2
)

.

4.3.1 Two memory term acting simultaneously

Lemma 44. Let θ0 = min{θ1, θ2}. From the same hypothesis of Lemma 41 and 42 we have

(i) ‖A θ0
2 u̇‖2 ≤ Cδλ

2 (‖F‖‖U‖+ ‖F‖2) ,

(ii) ‖A θ0−1

2 u̇‖2 ≤ Cδ (‖F‖‖U‖+ ‖F‖2) ,

(iii) ‖Aθ0 v̇‖2 ≤ Cδλ
2 (‖F‖‖U‖+ ‖F‖2) ,

(iv) ‖Aθ0−1v̇‖2 ≤ Cδ (‖F‖‖U‖+ ‖F‖2) .

Proof. Using Lemma 41 (item(i)); the continuous embedding D(A
θ1
2 ) →֒ D(A

θ0
2 ) we obtain

item (i). In the same way from D(Aθ1) →֒ D(Aθ0) and Lemma 42 we have item (iii).

For item (ii), performing the inner product with 4.29 and iλAθ0−1u̇; using equation (4.27);

we have

ρ1‖λA
θ0−1

2 u̇‖2 =β1〈iλA
θ0
2 u,A

θ0
2 u̇〉+ κ1〈iλA

θ1
2 u,Aθ0−1+

θ1
2 u̇〉 − α〈A

θ0−1

2 u, iλA
θ0−1

2 u̇〉

+

∫ ∞

0

g1(s)〈iλA
θ1
2 η(s), Aθ0−1+

θ1
2 u̇〉ds

+ α〈A
θ0−1

2 v, iλA
θ0−1

2 u̇〉 − ρ1〈iλf3, Aθ0−1u̇〉.

Using Young’s inequality; suitable continuous embedding; item (i) of this Lemma, estimate

(4.33), Lemma 41 and 42 we conclude

‖λA
θ0−1

2 u̇‖2 ≤ Cδλ
2
(

‖F‖‖U‖+ ‖F‖2
)

.

On the other hand, for item (iv), computing the inner product with equation (4.30) and

iλA2θ0−2 we have

ρ2‖λAθ0−1v̇‖2 =β2〈iλAθ0v, Aθ0 v̇〉 − κ2〈iλAθ2v, A2θ0−2+θ2 v̇〉

+

∫ ∞

0

g2(s)〈iλAθ2ϑ,A2θ0−2+θ2 v̇〉ds− α〈Aθ0−1v, iλAθ0−1v̇〉

α〈Aθ0−1u, iλAθ0−1v̇〉 − ρ2〈iλf4, A2θ0−2v̇〉.
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Using Young’s inequality; suitable continuous embedding; item (iii) of this Lemma, estimate

(4.33), Lemma 41 and 42 we obtain

‖λAθ0−1v̇‖2 ≤ Cδλ
2
(

‖F‖‖U‖+ ‖F‖2
)

.

Lemma 45. In the same hypothesis of last lemmas, the solution of system (4.27)-(4.32) satisfy

the following estimates

(i) ‖u̇‖2 ≤ Cδ|λ|2−2θ0(‖F‖‖U‖+ ‖F‖2),

(ii) ‖v̇‖2 ≤ Cδ|λ|2−2θ0(‖F‖‖U‖+ ‖F‖2).

In particular,

‖U‖2 ≤ Cδ|λ|2−2θ0(‖F‖‖U‖+ ‖F‖2).

Proof. For item (i), we use

0 = θ0

(

θ0 − 1

2

)

+ (1− θ0)

(

θ0
2

)

.

Then, from interpolation inequality and Lemma 44 (items (i) and (ii)) we obtain

‖u̇‖ ≤ C‖A
θ0−1

2 u̇‖θ0‖A
θ0
2 u̇‖1−θ0

≤ Cδ

(

√

‖F‖‖U‖+ ‖F‖2
)θ0

λ(1−θ0)
(

√

‖F‖‖U‖+ ‖F‖2
)1−θ0

≤ Cδλ
1−θ0

√

‖F‖‖U‖+ ‖F‖2.

For item (ii), we use

0 = θ0 (θ0 − 1) + (1− θ0) (θ0) .

Then, from interpolation inequality and Lemma 44 (items (iii) and (iv)) we have

‖v̇‖ ≤ C‖Aθ0−1v̇‖θ0‖Aθ0u̇‖1−θ0

≤ Cδ

(

√

‖F‖‖U‖+ ‖F‖2
)θ0

λ(1−θ0)
(

√

‖F‖‖U‖+ ‖F‖2
)1−θ0

≤ Cδλ
1−θ0

√

‖F‖‖U‖+ ‖F‖2.

Therefore, from Lemma 43 we have

‖U‖2 ≤ Cδ|λ|2−2θ0(‖F‖‖U‖+ ‖F‖2).
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4.3.2 Plate equation in the absence of memory term

In this subsection, we will consider the second equation of (4.5)-(4.6) in absence of the

memory term. For this, we have g2 = 0 and naturally, all definitions regarding this case will be

adjusted as mentioned before.

Lemma 46. For σ ≤ 1 we have the follow result

(i) ‖Aσ+1v‖2 ≤ Cδ (‖Aσv̇‖2 + ‖F‖‖U‖+ ‖F‖2) ,

(ii) ‖λ−1Aσ+1v‖2 ≤ Cδ (‖λAσ−1v‖2 + ‖F‖‖U‖+ ‖F‖2) .

Proof. From equation (4.30), computing inner product with A2σv and using equation (4.28) we

have

β2‖Aσ+1v‖2 = ρ2‖Aσv̇‖2 − α‖Aσv‖2 + α〈Aσ−1u,Aσ+1v〉+ ρ2〈v̇, A2σf2〉+ ρ2〈f4, A2σv〉

then, using Young’s inequality follows that

‖Aσ+1v‖2 ≤ C
(

‖Aσv̇‖2 + ‖Aσ−1u‖2 + ‖F‖‖U‖
)

, (4.35)

therefore, from Lemma 41 we get the result (item (i)).

On the other hand, multiplying (4.35) by λ−2 and using equation (4.28), that is, λ−1v̇ =

iv − λ−1f2, then we conclude

‖λ−1Aσ+1v‖2 ≤ Cδ

(

‖λ−1Aσv̇‖2 + ‖F‖‖U‖+ ‖F‖2
)

≤ Cδ

(

‖Aσv‖2 + ‖F‖‖U‖+ ‖F‖2
)

.

Using item (i) of this Lemma, we get

‖λ−1Aσ+1v‖2 ≤ Cδ

(

‖Aσ−1v̇‖2 + ‖F‖‖U‖+ ‖F‖2
)

.

Therefore, from equation (3.26) we can conclude

‖λ−1Aσ+1v‖2 ≤ Cδ

(

‖λAσ−1v‖2 + ‖F‖‖U‖+ ‖F‖2
)

.

Lemma 47. If we consider the second equation is in the absence of memory, then it is possible

to consider equations (4.27)-(4.31). Furthermore, from the same hypothesis of Lemma 41 we

have the follows result
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(i) ‖A θ1
2 v̇‖2 ≤ Cδλ

6 (‖F‖‖U‖+ ‖F‖2) ,

(ii) ‖A θ1
2
−1v̇‖2 ≤ Cδλ

4 (‖F‖‖U‖+ ‖F‖2) .

Proof. From equation (4.29), computing the inner product with λ2Aθ1v, using equation (4.28),

definition of A1 and the fact that the operator is self-adjoint we obtain

− ρ1λ
2〈A

θ1
2 u̇, A

θ1
2 f2〉 − ρ1〈λ2A

θ1
2 u̇, A

θ1
2 v̇〉+ λ2β1〈A

θ1+1

2 u,A
θ1+1

2 v〉 − λ2
∫ ∞

0

g1(s)〈Aθ1u,Aθ1v〉ds

+ λ2
∫ ∞

0

g1(s)〈Aθ1η(s), Aθ1v〉ds+ α〈λA
θ1
2 u, λA

θ1
2 v〉 − α‖λA

θ1
2 v‖2 = λ2ρ1〈f3, Aθ1v〉.

In the same way, from equation (4.30), computing the inner product with λ2Aθ1−1u and using

equation (4.27), we have

−ρ2λ2〈A
θ1−1

2 v̇, A
θ1−1

2 f1〉 − ρ2〈A
θ1−1

2 v̇, λ2A
θ1−1

2 u̇〉+ λ2β2〈A
θ1+1

2 v, A
θ1+1

2 u〉

+α〈λA
θ1−1

2 v, λA
θ1−1

2 u〉 − αλ2‖A
θ1−1

2 u‖2 = λ2ρ2〈f4, Aθ1−1u〉.

Divide by β1 the first equation, by β2 the second equation and performing the sum between both

we get

α

β1
‖λA

θ1
2 v‖2 = +

α

β2
λ2‖A

θ1−1

2 u‖2 − ρ1
β1
λ2〈f3, Aθ1v〉 − ρ1

β1
λ2〈A

θ1
2 u̇, A

θ1
2 f2〉 −

ρ1
β1
λ2〈A

θ1
2 u̇, A

θ1
2 v̇〉

+
1

β1

∫ ∞

0

g1(s)〈λ2Aθ1 (η(s)− u), Aθ1v〉ds+ α

β1
〈λA

θ1
2 u, λA

θ1
2 v〉

+
ρ2
β2
λ2〈A

θ1−1

2 v̇, A
θ1−1

2 f1〉+
ρ2
β2

〈A
θ1−1

2 v̇, λ2A
θ1−1

2 u̇〉 − λ2〈A
θ1+1

2 v, A
θ1+1

2 u〉

− α

β2
〈λA

θ1−1

2 v, λA
θ1−1

2 u〉+ ρ2
β2
λ2〈f4, Aθ1−1u〉+ λ2〈A

θ1+1

2 u,A
θ1+1

2 v〉.

(4.36)

Note that, in view of the equation (4.27) and (4.31), we can write it as

η(s)− u =
−∂sη(s)− f1 + f5(s)

iλ
,

and then, integrating by parts we obtain
∫ ∞

0

g1(s)〈A
θ1
2 (η(s)− u), A

3θ1
2 v〉ds =

∫ ∞

0

g1(s)〈A
θ1
2 ∂sη(s), iλ

−1A
3θ1
2 v〉ds

+

∫ ∞

0

g1(s)〈A
θ1
2 f1, iλ

−1A
3θ1
2 v〉ds

−
∫ ∞

0

g1(s)〈A
θ1
2 f5(s), iλ

−1A
3θ1
2 v〉ds

= −
∫ ∞

0

g′1(s)〈A
θ1
2 η(s), iλ−1A

3θ1
2 v〉ds

+

∫ ∞

0

g1(s)〈A
θ1
2 (f1 − f5(s)), iλ

−1A
3θ1
2 v〉ds. (4.37)
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Substituting equations (4.37) in (4.36) we have

α

β1
‖λA

θ1
2 v‖2 = −ρ1

β1
λ2〈f3, Aθ1v〉 − ρ1

β1
λ2〈A

θ1
2 u̇, A

θ1
2 f2〉 −

ρ1
β1
λ2〈A

θ1
2 u̇, A

θ1
2 v̇〉

+
1

β1

∫ ∞

0

g1(s)〈λ2A
θ1
2 (f1 − f5(s)), iλ

−1A
3θ1
2 v〉ds+ λ2〈A

θ1+1

2 u,A
θ1+1

2 v〉

− 1

β1

∫ ∞

0

g′1(s)〈λ2A
θ1
2 η(s), iλ−1A

3θ1
2 v〉ds+ α

β1
〈λA

θ1
2 u, λA

θ1
2 v〉

+
ρ2
β2
λ2〈A

θ1−1

2 v̇, A
θ1−1

2 f1〉+
ρ2
β2

〈A
θ1−1

2 v̇, λ2A
θ1−1

2 u̇〉 − λ2〈A
θ1+1

2 v, A
θ1+1

2 u〉

− α

β2
〈λA

θ1−1

2 v, λA
θ1−1

2 u〉+ α

β2
λ2‖A

θ1−1

2 u‖2 + ρ2
β2
λ2〈f4, Aθ1−1u〉.

Computing the real part we obtain

α

β1
‖λA

θ1
2 v‖2 = −λ2 ρ1

β1
Re〈f3, Aθ1v〉 − λ2

ρ1
β1
Re〈u̇, Aθ1f2〉 −

ρ1
β1
Re〈λ2A

θ1
2 u̇, A

θ1
2 v̇〉

− 1

β1
Re

∫ ∞

0

g′1(s)〈λ2A
θ1
2 η(s), iλ−1A

3θ1
2 v〉ds+ α

β1
Re〈λA

θ1
2 u, λA

θ1
2 v〉

+
1

β1
Re

∫ ∞

0

g1(s)〈λ2A
θ1
2 (f1 − f5(s)), iλ

−1A
3θ1
2 v〉ds+ λ2

α

β2
‖A

θ1
2
− 1

2u‖2

+ λ2
ρ2
β2
Re〈A

θ1
2
− 1

2 v̇, A
θ1
2
− 1

2f1〉+
ρ2
β2
Re〈A

θ1
2
− 1

2 v̇, λ2A
θ1
2
− 1

2 u̇〉

− α

β2
Re〈λA

θ1
2
− 1

2v, λA
θ1
2
− 1

2u〉+ λ2
ρ2
β2
Re〈f4, Aθ1−1u〉.

In order to estimate these terms we will use: Young’s inequality, Lemma 41, estimate (4.33)

and some continuous embedding D(Ar1) →֒ D(Ar2), r1 ≥ r2 we have

‖λA
θ1
2 v‖2 ≤ C

(

‖λ2A
θ1
2 u̇‖‖A

θ1
2 v̇‖+ ε‖λ−1A

3θ1
2 v‖2

)

+ λ4Cε

(

‖F‖‖U‖+ ‖F‖2
)

(4.38)

From Lemma 46 (item (ii)), computing the estimate using σ + 1 = 3θ1
2

we have

‖λ−1A
3θ1
2 v‖2 ≤ C

(

‖λA
3θ1
2

−2v‖2 + ‖F‖‖U‖+ ‖F‖2
)

(4.39)

Substituting estimates (4.39) in (4.38) we conclude that

‖λA
θ1
2 v‖2 ≤ C

(

‖λ2A
θ1
2 u̇‖‖A

θ1
2 v̇‖+ ε‖λA

3θ1
2

−2v‖2
)

+ λ4Cε

(

‖F‖‖U‖+ ‖F‖2
)

,

therefore, computing ε small enough we get

‖λA
θ1
2 v‖2 ≤ C‖λ2A

θ1
2 u̇‖‖A

θ1
2 v̇‖+ λ4C

(

‖F‖‖U‖+ ‖F‖2
)

.

However, from equation (4.28)

‖A
θ1
2 v̇‖2 ≤ ‖λA

θ1
2 v‖2 + ‖F‖2

≤ C
(

‖λ2A
θ1
2 u̇‖‖A

θ1
2 v̇‖+ λ4

(

‖F‖‖U‖+ ‖F‖2
)

)

.
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By Young’s inequality we have

‖A
θ1
2 v̇‖2 ≤ C

(

λ4‖A
θ1
2 u̇‖2 + λ4

(

‖F‖‖U‖+ ‖F‖2
)

)

Therefore, from Lemma (41) we get

‖A
θ1
2 v̇‖2 ≤ λ6Cδ

(

‖F‖‖U‖+ ‖F‖2
)

.

For item (ii), computing the inner product between equation (4.30) and iλAθ1−2v̇; equation

(4.28); we have

ρ2‖λA
θ1
2
−1v̇‖2 = β2‖A

θ1
2 v̇‖2 + β2〈Aθ1f2, v̇〉+ α‖A

θ1
2
−1v̇‖2 + α〈f2, Aθ1−2v̇〉

+ α〈A
θ1
2 u, iλA

θ1
2
−1v̇〉+ ρ2〈f4, iλAθ1−2v̇〉.

Using Young’s inequality, suitable continuous embedding and Lemma (41) we have

‖λA
θ1
2
−1v̇‖2 ≤ C

(

‖A
θ1
2 v̇‖2 + ‖F‖‖U‖+ ‖F‖2

)

.

Therefore, we conclude this Lemma from item (i), that is

‖λA
θ1
2
−1v̇‖2 ≤ Cδλ

6
(

‖F‖‖U‖+ ‖F‖2
)

,

and then

‖A
θ1
2
−1v̇‖2 ≤ Cδλ

4
(

‖F‖‖U‖+ ‖F‖2
)

.

Lemma 48. In the same hypothesis of last lemmas, the solution of system (4.27)-(4.32) satisfy

the following estimates

(i) ‖v̇‖2 ≤ Cδ|λ|6−θ1(‖F‖‖U‖+ ‖F‖2);

(ii) ‖u̇‖2 ≤ Cδ|λ|6−θ1(‖F‖‖U‖+ ‖F‖2).

In particular, from Theorem 43 we have

‖U‖ ≤ Cδλ
6−θ1‖F‖.

Proof. For items (i) and (ii) we use

0 =
θ1
2

(

θ1
2
− 1

)

+

(

1− θ1
2

)(

θ1
2

)

.
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Item (i) : Using Lemma 47, we obtain from interpolation inequality

‖v̇‖ ≤ C‖A
θ1
2
−1v̇‖

θ1
2 ‖A

θ1
2 v̇‖1−

θ1
2

≤ Cδ|λ|θ1
(

√

‖F‖‖U‖+ ‖F‖2
)

θ1
2 |λ|3(1−

θ1
2
)
(

√

‖F‖‖U‖+ ‖F‖2
)1−

θ1
2

≤ Cδ|λ|3−
θ1
2

√

‖F‖‖U‖+ ‖F‖2.

Item (ii) : From Lemma (41) we have

‖u̇‖2 ≤ C‖A
θ1
2 u̇‖2 ≤ Cδ|λ|2

(

‖F‖‖U‖+ ‖F‖2
)

≤ Cδ|λ|6−θ1
(

‖F‖‖U‖+ ‖F‖2
)

.

In particular, from Lemma 43 we have

‖U‖2 ≤ Cδλ
6−θ1‖F‖.

4.3.3 Wave equation in the absence of memory term

In this subsection, we will consider the first equation of (4.5)-(4.6) in absence of the memory

term. For this, we have g1 = 0 and then, the definitions about this case will be modified.

Lemma 49. From σ ≤ 1 we have

(i) ‖Aσ+1

2 u‖2 ≤ Cδ

(

‖Aσ
2 u̇‖+ ‖F‖‖U‖+ ‖F‖2

)

,

(ii) ‖λ−1A
σ+1

2 u‖2 ≤ Cδ

(

‖Aσ−1

2 u̇‖2 + ‖F‖‖U‖+ ‖F‖2
)

.

Proof. From equation (4.29), computing the inner product with Aσu and using equation (4.27)

we have

β1‖A
σ+1

2 u‖2 = C
(

‖Aσ
2 u̇‖2 − α‖Aσ

2 u‖2 + α〈Aσ− 1

2v, A
σ+1

2 u〉+ ρ1〈u̇, Aσf2〉+ ρ1〈f3, Aσu〉
)

therefore, using Young’s inequality follows that

‖Aσ+1

2 u‖2 ≤ C
(

‖Aσ
2 u̇‖2 + ‖Aσ− 1

2v‖2 + ‖F‖‖U‖+ ‖F‖2
)

,

from Lemma 42 it is possible to conclude item (i).

Furthermore, multiplying by λ−2 the above inequality and using equation (4.28) we con-

clude

‖λ−1A
σ+1

2 u‖2 ≤ Cδ

(

‖λ−1A
σ
2 u̇‖2 + ‖F‖‖U‖+ ‖F‖2

)

(4.40)

≤ Cδ

(

‖Aσ
2 u‖2 + ‖F‖‖U‖+ ‖F‖2

)

. (4.41)
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Applying item (i) we obtain

‖λ−1A
σ+1

2 u‖2 ≤ Cδ

(

‖Aσ−1

2 u̇‖2 + ‖F‖‖U‖+ ‖F‖2
)

. (4.42)

Lemma 50. If we consider the first equation in the absence of memory then from the same

hypothesis of Lemma 42 we have the follows result

(i) ‖Aθ2−1u̇‖2 ≤ Cδλ
6 (‖F‖‖U‖+ ‖F‖2) ,

(ii) ‖Aθ2u̇‖2 ≤ Cδλ
10 (‖F‖‖U‖+ ‖F‖2) .

Proof. From equation (4.29), computing the inner product with λ2A2θ2−1v, using equation

(4.28), definition of A1 and the fact that operator is self-adjoint we obtain

−ρ1λ2〈A
2θ2−1

2 u̇, A
2θ2−1

2 f2〉 − ρ1〈A
2θ2−1

2 u̇, λ2A
2θ2−1

2 v̇〉+ β1〈λAθ2u, λAθ2v〉

+α〈A
2θ2−1

2 u, λ2A
2θ2−1

2 v〉 − αλ2‖A
2θ2−1

2 v‖2 = λ2ρ1〈f3, A2θ2−1v〉.

In the same way, from equation (4.30), computing the inner product with λ2A2θ2−2u, definition

of A2 and using equation (4.27), we have

− ρ2λ
2〈Aθ2−1v̇, Aθ2−1f1〉 − ρ2〈λ2Aθ2−1v̇, Aθ2−1u̇〉+ β2λ

2〈Aθ2v, Aθ2u〉

− λ2
∫ ∞

0

g2(s)〈A2θ2v, A2θ2−2u〉ds+ λ2
∫ ∞

0

g2〈A2θ2ϑ(s), A2θ2−2u〉ds

+ α〈λAθ2−1v, λAθ2−1u〉 − αλ2‖Aθ2−1u‖2 = λ2ρ2〈f4, A2θ2−2u〉.

Divide by β1 the first equation, by β2 the second equation and performing the sum between both

we get

α

β2
‖λAθ2−1u‖2 = α

β1
‖λA

2θ2−1

2 v‖2 + ρ1
β1

〈f3, λ2A2θ2−1v〉+ ρ1
β1

〈Aθ2−1u̇, λ2Aθ2f2〉

+
ρ1
β1

〈A
2θ2−1

2 u̇, λ2A
2θ2−1

2 v̇〉 − λ2〈Aθ2u,Aθ2v〉 − α

β1
〈λA

2θ2−1

2 u, λA
2θ2−1

2 v〉

− ρ2
β2
λ2〈Aθ2−1v̇, Aθ2−1f1〉 − λ2

ρ2
β2

〈Aθ2−1v̇, Aθ2−1u̇〉+ λ2〈Aθ2v, Aθ2u〉

+
α

β2
〈λAθ2−1v, λAθ2−1u〉 − ρ2

β2
λ2〈f4, A2θ2−2u〉

− 1

β2

∫ ∞

0

g2(s)〈λ2Aθ2 (ϑ(s)− v), A3θ2−2u〉ds. (4.43)

Note that from equation (4.28) and (4.32), we obtain

ϑ(s)− v =
−∂sϑ− f2 + f6(s)

iλ
,
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and therefore, integrating by parts we have

∫ ∞

0

g2(s)〈Aθ2(ϑ(s)− v), A3θ2−2u〉ds = −
∫ ∞

0

g′2(s)〈Aθ2ϑ(s), iλ−1A3θ2−2u〉ds

+

∫ ∞

0

g2(s)〈Aθ2(f2 − f6(s)), iλ
−1A3θ2−2u〉ds.

(4.44)

Substituting equation (4.44) in (4.43) and computing the real part we have

α

β2
‖λAθ2−1u‖2 = α

β1
‖λA

2θ2−1

2 v‖2 + ρ1
β1
Re〈f3, λ2A2θ2−1v〉+ ρ1

β1
Re〈Aθ2−1u̇, λ2Aθ2f2〉

+
ρ1
β1
Re〈Aθ2−1u̇, λ2Aθ2 v̇〉 − α

β1
Re〈λAθ2−1u, λAθ2v〉 − ρ2

β2
λ2Re〈Aθ2−1v̇, Aθ2−1f1〉

− ρ2
β2
Re〈λ2Aθ2−1v̇, Aθ2−1u̇〉 − 1

β2
Re

∫ ∞

0

g′2(s)〈λ2Aθ2ϑ(s), iλ−1A3θ2−2u〉ds

+
α

β2
Re〈λAθ2−1v, λAθ2−1u〉 − ρ2

β2
λ2Re〈f4, A2θ2−2u〉

+
1

β2
Re

∫ ∞

0

g′2(s)〈λ2Aθ2 (f2 − f6(s)), iλ
−1A3θ2−2u〉ds.

Using Young’s inequality, suitable continuous embedding and estimates from Lemma 42 we

conclude

‖λAθ2−1u‖2 ≤ C
(

‖Aθ2−1u̇‖‖λ2Aθ2 v̇‖+ ε‖λ−1A3θ2−2u‖2
)

+ Cελ
4
(

‖F‖‖U‖+ ‖F‖2
)

(4.45)

On the other hand, from Lemma (49) item (ii), for σ+1
2

= 3θ2 − 2 we have

‖λ−1A3θ2−2u‖2 ≤ C
(

‖A3θ2−3u̇‖2 + ‖F‖‖U‖+ ‖F‖2
)

, (4.46)

and then, using equation (4.27) we conclude

‖λ−1A3θ2−2u‖2 ≤ C
(

‖λA3θ2−3u‖2 + ‖F‖‖U‖+ ‖F‖2
)

, (4.47)

therefore, combine (4.47) with the continuous embedding D(Aθ2−1) →֒ D(A3θ2−3), computing

ε small enough, we have for estimate (4.45)

‖λAθ2−1u‖2 ≤ Cδ

(

‖Aθ2−1u̇‖‖λ2Aθ2 v̇‖+ λ4‖F‖‖U‖+ λ4‖F‖2
)

(4.48)

Furthermore, from equation (4.27) we can write using estimate (4.48):

‖Aθ2−1u̇‖2 ≤ ‖λAθ2−1u‖2 + ‖F‖2

≤ Cδ

(

‖Aθ2−1u̇‖‖λ2Aθ2 v̇‖+ λ4‖F‖‖U‖+ λ4‖F‖2
)
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therefore, using Lemma 42 we have

‖Aθ2−1u̇‖2 ≤ Cδ

(

‖λ2Aθ2 v̇‖2 + λ4‖F‖‖U‖+ λ4‖F‖2
)

≤ λ4Cδ

(

‖Aθ2 v̇‖2 + ‖F‖‖U‖+ ‖F‖2
)

≤ λ6Cδ

(

‖F‖‖U‖+ ‖F‖2
)

.

Item (ii): Furthermore, using Lemma 49 with σ+1
2

= θ2 − 1
2

and applying item (i) from this

Lemma we conclude

‖Aθ2−
1

2u‖2 ≤ Cδ

(

‖Aθ2−1u̇‖2 + ‖F‖‖U‖+ ‖F‖2
)

≤ λ6Cδ

(

‖F‖‖U‖+ ‖F‖2
)

.

On the other hand, from equation (4.27) we have

‖Aθ2−
1

2 u̇‖2 ≤ Cδλ
8
(

‖F‖‖U‖+ ‖F‖2
)

. (4.49)

Applying again in the same way Lemma 49 with σ+1
2

= θ and estimate 4.49 we have

‖Aθ2u‖2 ≤ Cδ

(

‖Aθ2−
1

2 u̇‖2 + ‖F‖‖U‖+ ‖F‖2
)

≤ Cδλ
8
(

‖F‖‖U‖+ ‖F‖2
)

.

Therefore, we can conclude from equation (4.27)

‖Aθ2u̇‖2 ≤ λ10Cδ

(

‖F‖‖U‖+ ‖F‖2
)

.

Lemma 51. In the same hypothesis of last lemmas, the solution of system (4.27)-(4.32) satisfy

the following estimates

(i) ‖u̇‖2 ≤ Cδ|λ|10−4θ2(‖F‖‖U‖+ ‖F‖2),

(ii) ‖v̇‖2 ≤ Cδ|λ|10−4θ2(‖F‖‖U‖+ ‖F‖2);

In particular, from Theorem 43 we have

‖U‖ ≤ Cδλ
10−4θ2‖F‖.

Proof. For items (i) and (ii) we will use

0 = θ2 (θ2 − 1) + (1− θ2) θ2 :
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Item (i) : From interpolation inequality and Lemma 50 we obtain

‖u̇‖ ≤ C‖Aθ2−1u̇‖θ2‖Aθ2u̇‖1−θ2

≤ Cδλ
3θ2
(

√

‖F‖‖U‖+ ‖F‖2
)θ2

λ5(1−θ2)
(

√

‖F‖‖U‖+ ‖F‖2
)1−θ2

≤ Cδλ
5−2θ2

√

‖F‖‖U‖+ ‖F‖2.

Item (ii) : From continuous embedding we have

‖v̇‖2 ≤ C‖Aθ2 v̇‖2 ≤ C|λ|2‖F‖‖U‖ ≤ C|λ|10−4θ2‖F‖‖U‖.

In particular, from Lemma 43 we have

‖U‖2 ≤ Cδλ
10−4θ2‖F‖.

As mentioned, we are using the Theorem 16 to show our main result, Theorem 40. To finish,

let’s prove that iR ⊂ ρ(B).

Theorem 52. The operator B associated with Cauchy problem 4.10 has the property that iR ⊂
ρ(B).

Proof. Let’s suppose that iR * ρ(B). Previously, we show that 0 ∈ ρ(B), for this, if we consider

the highest positive number λ0 such that ]− iλ0, iλ0[⊂ ρ(B), then iλ0 ∈ σ(B) or −iλ0 ∈ σ(B).

Firstly, let’s consider iλ0 ∈ σ(B) (in the same way for −iλ0 ∈ σ(B)) and fixing a constant δ > 0

with δ < λ0 there exists a sequence of positive real numbers (λn)n∈N such that δ ≤ λn < λ0,

with λn → λ0, and a sequence Un = (un, vn, u̇n, v̇n, ηn, ϑn) ∈ D(B) with ‖Un‖ = 1 such that

‖(iλn − B)Un‖ = ‖Fn‖ → 0, as n→ ∞.

That is, if Fn = (f1n, f2n, f3n, f4n, f5n, f6n) then

iλnun − u̇n = f1n → 0 in D(A
1

2 ),

iλnvn − v̇n = f2n → 0 in D(A
1

2 ),

iρ1λnu̇n + A1un + D1ηn + α(un − vn) = ρ1f3n → 0 in H,

iρ2λnv̇n + A2
2vn + D2ϑn + α(vn − un) = ρ2f4n → 0 in H,

iλnηn − u̇n + ∂sηn = f5n → 0 in M1,

iλnϑn − v̇n + ∂sϑn = f6n → 0 in M2.
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finally, it may be concluded from Lemma 43 and Lemma 51

‖Un‖2 ≤ Cδ|λn|10−4θ2(‖Fn‖‖Un‖+ ‖Fn‖2). (4.50)

Thus, since λn < λ0 and ‖Un‖ = 1 follows that

1 = ‖Un‖2 ≤ Cδλ
10−4θ2
0

(

‖Fn‖+ ‖Fn‖2
)

→ 0,

as n → ∞, that is, absurd. So, we conclude iR ⊂ ρ(B). Following this way we have similarly

the same result for the other cases.

4.4 Optimality of decay rates

Theorem 53. If we consider memory kernels exponentially decreasing in (4.5) then all the

polynomial decay rates found in Theorem 40 are optimal in the following sense:

(i) If both memory terms appear in the system (4.5) and at least one of the exponents θ1,

θ2 is strictly less than 1, then the semigroup does not decay with the rate t−σ for σ >

1/(2− 2θ0), θ0 = min{θ1, θ2}.

(ii) If we remove the memory term from the second equation of (4.5), then the semigroup does

not decay with the rate t−σ for σ > 1/(6− θ1).

(iii) If we remove the memory term from the first equation of (4.5), then the semigroup does

not decay with the rate t−σ for σ > 1/(10− 4θ2).

Proof. We are considering memory kernels exponentially decreasing, that is

g1(t) = ν1e
−µ1t, g2(t) = ν2e

−µ2t, ν1, ν2 ≥ 0, µ1, µ2 > 0. (4.51)

Thus, the first equation (respectively, the second one) of the system does not have memory term

when ν1 = 0 (respectively, ν2 = 0).

On the other hand, we have that A is a positive self-adjoint operator with compact resolvent,

its spectrum is formed by positive eigenvalues that it is denoted by γn, n ∈ N, with γn → ∞
and the corresponding unitary eigenvectors are (en) that satisfies the following equality

Aen = γnen, ‖en‖ = 1, n ∈ N.
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Let’s consider the family vectors given by Fn = (0, 0, c1en, c2en, 0, 0) where the constants

c1, c2 ∈ R will be chosen later. The solution U = (u, v, u̇, v̇, η, ϑ) of the system (iλI − B)U =

Fn can be consider in the follows way

iλu− u̇ = 0, (4.52)

iλv − v̇ = 0, (4.53)

iλu̇+ ρ−1
1 {A1u+ D1η + α(u− v)} = c1en, (4.54)

iλv̇ + ρ−1
2

{

A2
2v + D2ϑ+ α(v − u)

}

= c2en, (4.55)

iλη(s) + ∂sη(s) = u̇, (4.56)

iλϑ(s) + ∂sϑ(s) = v̇. (4.57)

Note that, using the equations (4.52),(4.53), (4.56) and (4.57) we obtain

η(s) = u(1− e−iλs),

and

ϑ(s) = v(1− e−iλs).

Substituting these equations in (4.54) and (4.55) and using the definition of operator A1 and A2

we have















ρ1λ
2u− β1Au+

(∫ ∞

0

g1(s)e
−iλsds

)

Aθ1u− α(u− v) = ρ1c1en,

ρ2λ
2v − β2A

2v +

(∫ ∞

0

g2(s)e
−iλsds

)

A2θ2v − α(v − u) = ρ2c2en.

At this point we just are going to look for solutions of form











u = κ1en

v = κ2en

, κ1, κ2 ∈ C.

In this situation we will have the system

{

ρ1λ
2 − β1γn − α +

(∫ ∞

0

g1(s)e
−iλsds

)

γθ1n

}

κ1 + ακ2 = ρ1c1,

{

ρ2λ
2 − β2γ

2
n − α +

(∫ ∞

0

g2(s)e
−iλsds

)

γ2θ2n

}

κ2 + ακ1 = ρ2c2.
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and therefore




p1(λ
2) + I1(λ)γ

θ1
n α

α p2(λ
2) + I2(λ)γ

2θ2
n









κ1

κ2



 =





ρ1c1

ρ2c2



 , (4.58)

where we are considering



























p1(s) = ρ1s− β1γn − α,

p2(s) = ρ2s− β2γn − α,

Ij =

∫ ∞

0

gj(s)e
−iλsds for j = 1, 2.

(4.59)

Furthermore, choosing c1 = 0 and c2 = ρ−1
2 the solution of the second component (from (4.58))

is

κ2 =
p1(λ

2) + I1(λ)γ
θ1
n

p1(λ2)p2(λ2)− α2 + p1(λ2)I2(λ)γ
2θ2
n + p2(λ2)I1(λ)γ

θ1
n + I1(λ)I2(λ)γ

θ1+2θ2
n

, (4.60)

where we will assign

J1(λ) = p1(λ
2)I2(λ)γ

2θ2
n , J2(λ) = p2(λ

2)I1(λ)γ
θ1
n , J3(λ) = I1(λ)I2(λ)γ

θ1+2θ2
n .

The polynomial p1(s)p2(s)− α2 that appears in (4.60) can be rewritten by

ρ1ρ2

{

s2 −
(

β2γ
2
n

ρ2
+
β1γn
ρ1

+
α(ρ1 + ρ2)

ρ1ρ2

)

s+

(

β1γn
ρ1

+
α

ρ1

)(

β2γ
2
n

ρ2
+
α

ρ2

)

− α2

ρ1ρ2

}

,

whose roots are

s±n =

β2γ2
n

ρ2
+ β1γn

ρ1
+ α(ρ1+ρ2)

ρ1ρ2
±
√

(

β2γ2
n

ρ2
− β1γn

ρ1
+ α(ρ1−ρ2)

ρ1ρ2

)2

+ 4α2

ρ1ρ2

2
. (4.61)

In this point we consider λ := λn =
√

s+n so the formula in (4.60) becomes

κ2,n =
p1(λ

2
n) + I1(λn)γ

θ1
n

J1(λn) + J2(λn) + J3(λn)
. (4.62)

Introducing the notation an ≈ bn when the limn→∞
|an|
|bn|

is a positive real number, we check that

s+n ≈ γ2n and consequently λn ≈ γn. We will apply this notation to obtain the next results.

On the other hand, note that (from definition of p1 and λn)

2

ρ1
p1(λ

2
n) =

β2γ
2
n

ρ2
− β1γn

ρ1
+
α(ρ1 − ρ2)

ρ1ρ2
+

√

(

β2γ2n
ρ2

− β1γn
ρ1

+
α(ρ1 − ρ2)

ρ1ρ2

)2

+
4α2

ρ1ρ2
,

however as p1(λ
2
n)p2(λ

2
n) = α2 we get

p1(λ
2
n) ≈ γ2n and p2(λ

2
n) ≈ γ−2

n . (4.63)



81

Furthermore, using the expressions from (4.51) in Ij, j = 1, 2 we have

Ij(λ) =

∫ ∞

0

νje
−(µj+iλn)tdt =

νj
µj + iλn

≈ νiλ
−1
n , j = 1, 2.

Therefore

J1(λn) ≈ ν2λ
1+2θ2
n , J2(λn) ≈ ν1λ

−3+θ1
n , J3(λn) ≈ ν1ν2λ

−2+θ1+2θ2
n . (4.64)

If the two memory terms appear in the system we have ν1 > 0 and ν2 > 0. In view of

definition of J1, J2, J3, I1, I2 and p1(λ
2)p2(λ

2) = α2 we can conclude that

lim
n→∞

|Jj(λn)|
|J1(λn)|

= 0, j = 2, 3, and lim
n→∞

|I1(λn)γθ1n |
|p1(λ2n)|

= 0, (4.65)

as a conclusion we have from (4.62)

κ2,n ≈ p1(λ
2
n)

J1(λn)
≈ λ1−2θ2

n .

Now if we assume that θ2 ≤ θ1 (the complementary case θ1 ≤ θ2 will be addressed later), then

we have θ0 = min{θ1, θ2} = θ2 and κ2,n ≈ λ1−2θ0
n . Therefore, if Un = (un, vn, u̇n, v̇n, ηn, ϑn)

is the solution of system (iλnI − B)U = Fn then we obtain

‖Un‖ ≥ ρ
1/2
2 ‖v̇n‖ = ρ

1/2
2 λn‖vn‖ = ρ

1/2
2 λnκ2,n ≥ ε0λ

2−2θ0
n ,

for some ε0 > 0 and n large enough. In this moment if the semigroup of the system decays

polynomially with the rate t−σ with σ > 1/(2− 2θ0), we have

ε0λ
2−2θ0
n ≤ ‖Un‖ ≤ Cλ1/σn ‖Fn‖ ⇒ ε0λ

2−2θ0−1/σ
n ≤ C,

which is contradictory because λ
2−2θ0−1/σ
n → ∞ when n→ ∞.

On the other hand, in the absence of the second memory term we have that ν1 > 0 and

ν2 = 0. In this way from (4.62) (using the second result from (4.65) with (4.63) and (4.64)) we

get

κ2,n =
p1(λ

2
n) + I1(λn)γ

θ1
n

J2(λn)
≈ p1(λ

2
n)

J2(λn)
≈ λ5−θ1

n . (4.66)

In this point, we can conclude for Un = (un, vn, u̇n, v̇n, ηn) solution of system (iλnI −
B)U = Fn the follows result

‖Un‖ ≥ ρ
1/2
2 ‖v̇n‖ = ρ

1/2
2 λn‖vn‖ = ρ

1/2
2 λnκ2,n ≥ ε1λ

6−θ1
n ,
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for some ε1 > 0 and n large enough. Furthermore, if the semigroup of the system decays

polynomially with the rate t−σ with σ > 1/(6− θ1) then we have

ε1λ
6−θ1
n ≤ ‖Un‖ ≤ Cλ1/σn ‖Fn‖ ⇒ ε1λ

6−θ1−1/σ
n ≤ C,

which is contradictory to the outcome of the λ
6−θ1−1/σ
n → ∞ when n→ ∞.

Furthermore, choosing c1 = ρ−1
1 , c2 = 0 and using λ := λn =

√

s−n (from (4.61)) the

solution of the first component of the system (4.58) is

κ1,n =
p2(λ

2
n) + I2(λn)γ

2θ2
n

J1(λn) + J2(λn) + J3(λn)
. (4.67)

Since

s+n s
−
n =

(

β1γn
ρ1

+
α

ρ1

)(

β2γ
2
n

ρ2
+
α

ρ2

)

− α2

ρ1ρ2
,

we have that s−n ≈ γn and therefore λn ≈ γ
1/2
n . On the other hand we have

4

ρ21
p1(s

−
n )p1(s

+
n ) =

−4α2

ρ1ρ2
, (4.68)

therefore

2

ρ1
p1(λ

2
n) =

β2γ
2
n

ρ2
− β1γn

ρ1
+
α(ρ1 − ρ2)

ρ1ρ2
−
√

(

β2γ2n
ρ2

− β1γn
ρ1

+
α(ρ1 − ρ2)

ρ1ρ2

)2

+
4α2

ρ1ρ2

=
−4α2/(ρ1ρ2)

β2γ
2
n

ρ2
− β1γn

ρ1
+
α(ρ1 − ρ2)

ρ1ρ2
+

√

(

β2γ2n
ρ2

− β1γn
ρ1

+
α(ρ1 − ρ2)

ρ1ρ2

)2

+
4α2

ρ1ρ2

,

and then we conclude that p1(λ
2
n) ≈ γ−2

n ≈ λ−4
n . Furthermore, in view of p1(λ

2
n)p2(λ

2
n) = α2

we get p2(λ
2
n) ≈ λ4n. With this considerations we have

J1(λn) ≈ ν2λ
−5+4θ2
n , J2(λn) ≈ ν1λ

3+2θ1
n , J3(λn) ≈ ν1ν2λ

−2+2θ1+4θ2
n .

If the two memory terms appear in the system we have ν1 > 0 and ν2 > 0. Taking into account

that

lim
n→∞

|Jj(λn)|
|J2(λn)|

= 0, j = 1, 3 and lim
n→∞

|I2(λn)γ2θ2n |
|p2(λ2n)|

= 0,

we conclude from (4.67)

κ1,n ≈ p1(λ
2
n)

J1(λn)
≈ λ1−2θ1

n .
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In this case, if we assume that θ1 ≤ θ2 then we have θ0 = min{θ1, θ2} = θ1 and κ1,n ≈ λ1−2θ0
n .

Therefore, if Un = (un, vn, u̇n, v̇n, ηn, ϑn) is the solution of system (iλnI − B)U = Fn then we

obtain

‖Un‖ ≥ ρ
1/2
1 ‖u̇n‖ = ρ

1/2
1 λn‖un‖ = ρ

1/2
1 λnκ1,n ≥ ε2λ

2−2θ0
n ,

for some ε2 > 0 and n large enough. In this moment if the semigroup of the system decays

polynomially with the rate t−σ with σ > 1/(2− 2θ0) then we have

ε2λ
2−2θ0
n ≤ ‖Un‖ ≤ Cλ1/σn ‖Fn‖ ⇒ ε2λ

2−2θ0−1/σ
n ≤ C,

which is contradictory because λ
2−2θ0−1/σ
n → ∞ when n→ ∞.

On the other hand, in the absence of the first memory term we have ν1 = 0 and ν2 > 0 and

therefore from (4.67) we get

κ1,n =
p2(λ

2
n) + I2(λn)γ

2θ2
n

J1(λn)
≈ p2(λ

2
n)

J1(λn)
≈ λ9−4θ2

n . (4.69)

In this case we are using ν1 = 0 and therefore if Un = (un, vn, u̇n, v̇n, ϑn) is solution of system

(iλnI − B)U = Fn then we obtain from (4.66)

‖Un‖ ≥ ρ
1/2
1 ‖u̇n‖ = ρ

1/2
1 λn‖un‖ = ρ

1/2
1 λnκ1,n ≥ ε3λ

10−4θ2
n ,

for some ε3 > 0 and n large enough. Furthermore, if the semigroup of the system decays

polynomially with the rate t−σ with σ > 1/(10− 4θ2), we have

ε3λ
10−4θ2
n ≤ ‖Un‖ ≤ Cλ1/σn ‖Fn‖ ⇒ ε3λ

10−4θ2−1/σ
n ≤ C,

which is contradictory to the outcome of the λ
10−4θ2−1/σ
n → ∞ when n→ ∞.

Remark 4. We can summarize all result in the following table:

Table 4.1: Wave-Plate equations results

memory dissipation Optimal decay rate θ1 θ2

just on wave t−1/(6−θ1) [0, 1] -

just on plate t−1/(10−4θ2) - [0, 1]

on wave and plate exponential decay θ1 = 1 θ2 = 1

on wave and plate t−1/(2−2θ0), θ0 = min{θ1, θ2} θ1 < 1 and θ2 ≤ 1 θ1 ≤ 1 and θ2 < 1
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