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RESUMO

Soluções baseadas em aprendizagem profunda evoluíram rapidamente e superaram abordagens

clássicas no âmbito da Visão Computacional (VC). Metodologias baseadas em processamento

de textura (também chamadas de 2D), são tecnologias maduras com eficiência comprovada em

diversos cenários de aplicação. Trabalhar com aprendizagem profunda em aplicações de VC

e computação gráfica no contexto 3D não é trivial. Alguns fatores podem ser considerados:

encontrar uma representação confiável para os dados; rotular amostras positivas e negativas para

situações de aprendizagem supervisionada; e, obter invariância à rotação, induzida durante o

treinamento. Processamento em tempo real para aplicações de reconhecimento de objetos e

estimativa da pose também são desafiadoras, e métodos tradicionais focam principalmente na

acurácia e não provêm tal propriedade. Nesta tese de doutorado, são apresentadas estratégias para

lidar com tais situações, e para tal, duas partes principais são apresentadas: a primeira focada

no desenvolvimento de técnicas efetivas para aplicações de VC baseadas em características de

forma geral, e a segunda, que propõe estratégias para melhorar métodos de reconhecimento de

objetos. O descritor LEAD é apresentado, sendo este o primeiro descritor de características

local, equivariante à rotação, baseado em aprendizagem não supervisionada a partir de nuvens

de pontos. Além disso, esta tese apresenta Compass, o primeiro método para definir e extrair

a orientação canônica de formas tridimensionais, utilizando somente aprendizagem profunda.

Com a união das duas propostas anteriores, também é apresentado o primeiro descritor local

3D invariante à rotação, baseado em aprendizagem não supervisionada, denominado SOUND.

A eficácia das propostas foi avaliada experimentalmente em conjuntos de dados de referência

para registro de superfícies 3D, e os resultados demonstram que as propostas deste documento

superam outras técnicas não supervisionadas, além de manter-se competitivas com relação

às supervisionadas. Relacionado às melhorias nos métodos de reconhecimento de objetos e

estimativa da pose, neste trabalho foi proposta uma abordagem que utiliza detecção de objetos

salientes, a qual provê melhorias consideráveis em relação a técnicas tradicionais. Resultados

confirmam que o método impulsionado pelo uso da saliência, pode acelerar substancialmente o

reconhecimento, impactando muito pouco ou até melhorando na acurácia. Também foi conduzido

um extensivo estudo relacionado ao uso de arquiteturas baseadas em aprendizagem profunda,

como extratores de características independentes, bem como seu desempenho no reconhecimento

de objetos tridimensionais. Por fim, um método para detecção de objetos em estimativa da

pose com seis graus de liberdade é apresentado. Tal proposta, identifica objetos em imagens

RGB-D, extraindo características visuais e estimando a pose de objetos de forma precisa, por

meio de descritores locais, e possibilita o processamento em tempo real em aplicações de

estimativa da pose. Acredita-se que os avanços apresentados nesta tese, auxiliarão pesquisadores

no desenvolvimento de aplicações de VC 3D, em áreas como robótica, direção autônoma e

tecnologias assistivas.

Palavras-chave: Visão Computacional 3D. Aprendizagem não-supervisionada. Transferência de

conhecimento. Modelos computacionais. Redes neurais convolucionais esféricas. Descritores

locais. Reconhecimento de objetos em tempo real.



ABSTRACT

Deep-learning-based solutions are rapidly evolving and outperforming classical hand-crafted

approaches in the Computer Vision (CV) field. Texture-based methodologies (a.k.a 2D) are

mature technologies with proven efficiency in several application scenarios. To work with deep

learning for 3D CV and graphics applications is not straightforward. Some factors could be

considered: finding a reliable representation from data; annotating data with true and false

examples in a supervised fashion training; and achieving invariance to rotation induced during

training. Real-time processing for 3D object recognition (3DOR) and pose estimation applications

is also untrivial, and standard pipelines focus on the accuracy and do not provide such property.

In this doctoral thesis, we present some strategies to tackle these issues. We split this dissertation

into two main topics: first focusing on developing reliable techniques for generic feature-based CV

applications and the second which proposes strategies to improve object recognition methods. We

introduce LEAD, the first unsupervised rotation-equivariant 3D local feature descriptor learned

from raw point cloud data. We also realize the first end-to-end learning approach to define and

extract the canonical orientation of 3D shapes, which we named Compass. With the achievements

of both previous methods, we merge them and propose, the first unsupervised rotation-invariant 3D

descriptor, called SOUND. We evaluate our proposal’s impact experimentally, which outperform

existing unsupervised methods and achieve competitive results against the supervised approaches

through extensive experiments on standard surface registration datasets. To update the traditional

pipeline for object recognition and pose estimation, we propose a boosted pipeline that uses

saliency detection algorithms, and we found considerable improvement in such methodology.

Results confirm that the boosted pipeline can substantially speed up processing time with limited

impacts or even recognition accuracy benefits. We conducted a comprehensive study regarding

2D deep networks as off-the-shelf feature extractors and evaluated their 3DOR’s performance.

Finally, we propose a novel pipeline to detect objects and estimate their 6DoF pose. To do so, we

identify objects in RGB-D images applying visual features and estimate a fine-adjusted object’s

pose with 3D local descriptors. Our proposal unlocks real-time processing for pose estimation

applications. We trust our achievements will help researchers develop 3D CV applications in the

robotics, autonomous driving, and assistive technology fields.

Keywords: 3D Computer Vision. Unsupervised learning. Transfer learning. Computational

models. Spherical CNNs. Local descriptors. Real-time object recognition.
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1 INTRODUCTION

Deep learning is a well-established field regarding 2D Computer Vision (CV) problems, attracting

considerable attention in the last few years. Deep methods have outperformed high engineered

methods by merely learning from data. Accurate deep-learning-based methods rely on a high

amount of data. When we deal with supervised learning approaches, despite their success,

another hindrance is found: such data must be labeled with positive and negative examples. On

the other hand, unsupervised techniques act mimicking humans and mammals, i.e., learning by

observation, not necessarily with supervision.

3D data allow understanding better the surrounding environment and act as comple-

mentary information regarding 2D images (Guo et al., 2020). However, when we stand on 3D

applications, including autonomous driving, robotics, remote sensing, and medical treatment

(Chen et al., 2017), we realize that processing 3D data is not straightforward (Guo et al., 2020).

The first barrier we find is a standard representation, including depth images, point clouds,

meshes, and volumetric grids. Luckily, recent advancements encourage adopting point clouds,

mainly by achievements with the PointNets (Qi et al., 2017a,b). Additionally, the point cloud

representation preserves the original geometric information in 3D space without any discretization

and is intimately related to RGB-D images.

Several application situations are related to point cloud processing, including surface

registration, shape classification and retrieval, object recognition, and 6DoF1 pose estimation

(Su et al., 2015; Elbaz et al., 2017; Zeng et al., 2017b; Manhardt et al., 2019; Gojcic et al.,

2019; Choy et al., 2020). Most of these applications rely on the local features’ use to identify

similarities between shapes. Effective pipelines leveraging the feature-matching paradigm hinge

upon compact representations of the local geometry referred to as descriptors. Descriptors should

be invariant and robust to the nuisances encountered in 3D CV scenarios, such as viewpoint

changes, sensor noise, point density variations, occlusions and clutter.

Conceiving hand-crafted functions to extract robust and distinctive features from 3D

data has a relatively long history in CV (Johnson and Hebert, 1999; Rusu et al., 2009; Tombari

et al., 2010; Guo et al., 2013a; Salti et al., 2014). Nevertheless, due to the challenging settings

mentioned earlier, designing an effective local descriptor turns out a rather complex effort. Taking

advantage of the emerging deep networks in processing 2D visual data, and working on such

challenges, the attention was shifted toward learning deep local descriptors from 3D data (Zeng

et al., 2017a; Deng et al., 2018b,a; Khoury et al., 2017; Gojcic et al., 2019; Spezialetti et al.,

2019; Choy et al., 2019b; Bai et al., 2020). Deep strategies have outperformed conventional

hand-crafted techniques by far, achieving the state-of-the-art in most benchmarking scenarios.

Despite the importance of achieving invariance to viewpoint changes to 3D descriptors,

learned approaches exhibit a performance drop when the training and testing sets are on different

viewpoints or imposed random rotations (Zeng et al., 2017a; Deng et al., 2018b; Esteves et al.,

2018). This reduction is probably because 3D data under rotations induce distinct network

features, as demonstrated in 3D object classification problems (Sedaghat et al., 2016). A popular

strategy to provide rotation invariance is to express the 3D coordinates of the cloud’s points w.r.t.

a coordinate system, defining a Local Reference Frame (LRF) (Khoury et al., 2017; Gojcic et al.,

2019) or a Reference Axis (RA) (Deng et al., 2018a). Several hand-crafted proposals aim to

define a reliable canonical orientation for 3D surfaces (Petrelli and Di Stefano, 2012; Salti et al.,

1Six degrees of freedom refers to the geometrical transformation representing a rigid body’s movement in a 3D

space. We use a 4×4 matrix to represent the composition between the estimated rotation R̃ and translation T̃ .
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2014; Yang et al., 2017; Melzi et al., 2019; Zhu et al., 2020), however, hand-crafted choices may

inject imprecisions on the process. A data-driven approach could surpass such issues, but none

of the previous works has yielded such estimative without some pre-assumption from the data.

This thesis introduces the first end-to-end, entirely data-driven, feasible way of learning a robust

canonical orientation for point clouds. Based on the observation that a canonical pose’s inherent

property is equivariance to 3D rotations, we propose to employ Spherical CNNs (Cohen et al.,

2018; Esteves et al., 2018), which are equivariant by design.

When we deal with object recognition applications, the standardized protocol for local

descriptors (Aldoma et al., 2012b) could be an obstacle to real-time processing. The term

real-time may cause uncertainty and depends on the application. In this thesis’s context, we

consider real-time applications those with a frame-rate of at least 30 frames per second (FPS),

but a lower rate could also be compliant to a wide range of systems. Some strategies, such as

keypoint extraction, segmentation, and highlighting specific areas (Tombari et al., 2013; Gomes

et al., 2013), are widely used to speed up the whole process, but eventually, they face accuracy

underperformance. As a result of this doctoral thesis, we propose a method that boosts object

recognition accuracy and time processing on the object recognition task, published in Marcon

et al. (2019). One of our thesis’ claim is that we can take advantage of 2D CV deep learning

proposals to improve 3D object recognition.

Despite improvements in the 3D object recognition and pose estimation pipeline, real-

time applications are still defying (Hodan et al., 2018). Otherwise, 2D-based proposals deal

effortlessly with efficient real-time object detection (Redmon et al., 2016; Liu et al., 2016), and

color feature extractors may assist on such application scenarios (He et al., 2016a; Sandler et al.,

2018; Xie et al., 2017; Tan and Le, 2019). It is fundamental to apply such prior efforts allied to

3D-focused routines in application conditions. Agrawal et al. (2014) and Huh et al. (2016) have

verified that models trained on the ImageNet dataset present a high transferring capacity and

offer efficient solutions for different contexts.

Based on the previously disclosed, this thesis aims to provide novel deep-learning-based

local descriptors, evaluate and validate them on feature-based registration benchmarks. We

adopt an unsupervised procedure to capture nuisances from no labeled data. We yield rotation

invariance by leveraging Spherical CNNs (Cohen et al., 2018), and develop the first end-to-end

learned LRF, named Compass. We also extend an equivariant local descriptor (Spezialetti et al.,

2019) and combine it with Compass, providing the first self-orienting (a.k.a. invariant) local

descriptor. In the 3D object recognition task, we propose combining 2D deep techniques with

traditional 3D feature-based methods. We speed-up and improve the standard local descriptors

pipeline’s accuracy, adding a process named saliency boost. We also combine off-the-shelf

deep-based color and shape features, provide competitive object descriptors, and propose an

efficient real-time pose estimation pipeline.

1.1 MOTIVATION

The first part of this thesis lies basically on exploring unsupervised approaches to learn 3D surface

embeddings. Despite the availability of a high amount of data, to employ a deep-learning-based

supervised approach demands a previous human-made annotation on it, becoming an expensive

and laborious task. Unsupervised or even self-supervised methods are next to humans and

mammals’ way of learning, mimicking our instinct of learning by environmental observation

and comprehension without an explicit tutor. According to LeCun et al. (2015), unsupervised

approaches have the potential of attracting more attention in a few years, concerning the supervised

ones.
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About 3D local descriptors, Esteves et al. (2018) observed a considerable drop in

performance when inducing random rotations in a deep model trained in a canonical orientation

form. So, it is crucial to develop rotation invariant methods or to find a way to estimate the

surface’s orientation and then impose a canonical form at test time. Existent methods tend to

extract the correct orientation from training data, but results of Gojcic et al. (2019) and (Li et al.,

2020a) show a significant performance decrease from models trained on an indoor dataset and

tested in an outdoor environment.

The availability of low-cost RGB-D sensors, which deliver in real-time color and depth

information, has propitiated the emergence of datasets that simulate real world environments.

Such sets enable a fairly benchmarking of state-of-the-art methods, providing real situations,

e. g., clutter, occlusions, and a significant degree of noise inherent in their images. Robust 3D

CV techniques must deal with such problems efficiently. To do so, it is required to employ

state-of-the-art CV algorithms, provided by libraries such as OpenCV (Bradski and Kaehler,

2008), PCL (Rusu and Cousins, 2011), and Open3D (Zhou et al., 2018).

Compared to 3D applications, deep learning for 2D CV is a more stated field, with

several successful strategies that outperform classical ones. Problems like object detection

(Redmon et al., 2016; Liu et al., 2016), segmentation (Hou et al., 2017; Liu et al., 2019a), and

feature extraction (Krizhevsky et al., 2012; He et al., 2016a; Xie et al., 2017; Tan and Le, 2019)

are well established tasks for 2D. The efforts on the 3D methods’ development focus on describing

shape representation of surfaces and only a few studies, still hand-crafted, focus on exploring

textured point clouds (Rusu et al., 2008; Salti et al., 2014).

Object recognition and 6DoF pose estimation in real-time is an open CV problem.

The pipeline involved in this process demands a high computational power to execute its steps.

Improving this pipeline is fundamental to speed-up the whole method and apply it in a real-time

situation. The second part of this doctoral thesis explores the combination of the best of 2D and

3D and proposes a method to move a step forward to improve 3D-based applications.

A wide range of application scenarios can be addressed with 3D modeling and Object

recognition and pose estimation. In robotics, applications include manipulation of household

objects (Murali et al., 2020), bin-picking (Yan et al., 2020), and intelligent assembly in industrial

lines (Li et al., 2020b). Another field attracting huge attention in the last few years, autonomous

driving, consumes methods regarding 3D modeling and pose estimation (Chen et al., 2017;

Arnold et al., 2019). For welfare and healthcare applications, assistive technology systems rely on

object localization and recognition, scene understanding, and pose estimation (Leo et al., 2018).

This thesis relies on feature-based methods applied to registration, object recognition,

and pose estimation. Figure 1.1 depicts a basic block diagram of such applications. Given

two point clouds as input, such systems aim to estimate a transformation between them. In

a registration scenario, the resulting transformation matrix will put both clouds in the same

coordinate system, thus aligning them. In a pose estimation scenario, the position and orientation

of an object on the scene, i.e., the 6DoF pose, is sought. Pose estimation and registration pipelines

involve three typical stages: pre-processing, feature-based estimation, and post-processing. The

pre-processing is responsible for prepare the ground for the description step, i.e., detecting

keypoints or objects, segmenting the cloud, and applying filtering methods. The second stage is

the core of such applications. It executes a sequence of steps: the description, feature-matching,

filtering the correspondences, and finally estimating a coarse pose between the input clouds.

In the end, the post-processing stage performs, if desired, a pose refinement and hypothesis

verification. Throughout this dissertation, we explore in a certain way most of the presented

steps, excepting Noise filtering and Hypothesis verification. For more details on the pipelines,

please refer to Chapter 2.
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Figure 1.1: Block diagram of feature-based applications explored in this dissertation. Numbers inside each box refer

to the chapters that address each step.

1.2 OBJECTIVES

This doctoral thesis foundation lies in developing unsupervised strategies to describe 3D patches,

dealing with nuisances of 3D data based on the previously presented. We also propose combining

2D deep learning techniques with 3D methods, evaluating them in feature-based application

tasks. To this end, this doctoral thesis’s main objective is to provide strategies to improve
feature-based applications on 3D point clouds.

Among all the possible feature-based problems addressable through 3D CV techniques,

we will focus our efforts on 3D registration, 3D object detection, and 6DoF pose estimation

scenarios. Due to the main objective’s coverage, we refine and explicitly point which strategies

will be tackled, by presenting the following specific objectives:

• To propose, evaluate, and validate an end-to-end rotation invariant local descriptor from

unlabeled data for feature-based applications.

• To evaluate the proposed techniques in a feature-based registration scenario, and on a

rotation-invariant full shape object recognition problem;

• To evaluate 2D visual features applied to the object recognition scenario on RGB-D

images;

• To propose and evaluate improvements on the standard object recognition pipeline,

based on 2D visual features from pre-trained deep networks;
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• To propose and evaluate a generic pipeline of object recognition and 6DoF pose

estimation in uncontrolled indoor environments.

1.3 CONTRIBUTIONS

To achieve our objectives, several contributions have been made during the doctoral study:

• We have significantly improved an existing efficient equivariant local descriptor, proposed

by Spezialetti et al. (2019), in terms of accuracy as well as in description time, and

introduced the LEAD descriptor;

• At the best of our knowledge, we have proposed the first full-data-driven LRF, named

Compass. As assessed by the results, we outperform the state-of-the-art competitors, in

standard registration datasets;

• The canonical orientation provided by Compass, when associated with a PointNet

architecture, outperformed state-of-the-art methods in a full-shape object recognition

scenario, with imposed random rotations to test data;

• Our equivariant local descriptor LEAD is the runner-up on the standard 3D registration

benchmark. Additionally, LEAD presents by far the best performance in transfer learning

in an extremely challenging outdoor dataset. Considering only unsupervised approaches,

we beat all the competitors, and most of them by a large margin.

• This thesis presents, at the best of our knowledge, the first self-orienting local descriptor,

named SOUND. By leveraging the equivariance property of Spherical CNNs, we

can extract discriminant embeddings and orientation from 3D patches. Results put

SOUND at the same level as the most efficient descriptors, in an indoor fashion, or even

transferring to outdoor data. As an SO(3) manifold-living solution, the LRF or the

descriptor can be unplugged and replaced by any other technique on the same conceptual

basis.

• We propose an initial step on the standard object recognition pipeline based on local

descriptors, named Saliency Boost. This process employs a salient object detection step

that speeds up the whole process by almost five times and improves tested methods’

accuracy on different datasets.

• We perform an extensive evaluation of traditional state-of-the-art networks on the

RGB-D object recognition scenario. We compared pre-trained models learned from

the ImageNet dataset as off-the-shelf feature extractors and performed a comprehensive

evaluation regarding category and instance recognition in a standard dataset.

• We present and evaluate an efficient pipeline for object detection and 6DoF pose

estimation that enables real-time processing for point clouds. Our pipeline is composed

of modules that combine visual features extracted by pre-trained networks, feature-based

registration methods, and fine-tuning dense registration methods. Performance results

show a potential to use on real-time systems, in a scheduled operation.
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Figure 1.2: Graphical outline of this thesis. Red shaded parts refer to background concepts, Blue are related to

registration and Green to object recognition developments.

1.4 OUTLINE

Part of this doctoral thesis’ development includes an internship period, fulfilled under the

supervision of Prof. Luigi Di Stefano from CVLab, University of Bologna, Italy. Researches

regarding the local descriptors and the learned LRF were conceived during the period covering

from 02-2019 to 02-2020, explicitly related to Chapters 3 and 4.

We perform an article-oriented document from Chapter 3 to 7, presenting self-content

chapters with a brief related works section, methodology, and results. Figure 1.2 depicts a

graphical outline and lists our main contributions per chapter and their relationship throughout

this thesis. Following we present this document structure:

• Chapter 2 presents some fundamentals regarding deep learning and 3D CV applications,

presenting from the basics to state-of-the-art solutions employed in this work;

• In Chapter 3, we introduce our proposed LRF network, named Compass, presenting

an extensive evaluation of LRF repeatability and rotation-invariant shape classification

scenarios. This chapter is related to a paper accepted as poster on the Conference on
Neural Information Processing Systems (NeurIPS), and the results were extracted from

it;

• After, in Chapter 4, we explore the improvements made on the equivariant descriptors

proposed by Spezialetti et al. (2019) and published on the main track of the International
Conference on Computer Vision (ICCV), and present a novel proposal named as SOUND,

being the first self-orienting local descriptor. Part of this chapter, regarding the LEAD
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descriptor, was submitted to the IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), and the results and figures were extracted from it;

• Chapter 5 is related to the Saliency Boost step we proposed to speed-up and improve

accuracy on the standard local descriptors pipeline for object recognition. This chapter

was partially published in the International Conference on Image Analysis and Processing
(ICIAP), and the results regarding the Kinect dataset are extracted from Marcon et al.

(2019);

• Chapter 6 presents an evaluation of the visual feature extractors based on deep learning

architectures. We also present and evaluate a proposal of combining color and shape

features in the object recognition scenario;

• Chapter 7 introduces our proposed pipeline for object detection and 6DoF pose

estimation on point clouds. This chapter was submitted to the International Conference
on Computer Vision Theory and Applications (VISAPP), together with some results

presented in Chapter 6;

• Chapter 8 concludes our thesis, presents our findings, future directions, and final

remarks.
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2 FUNDAMENTALS

This thesis is founded in two main interconnected areas of Artificial Intelligence: CV and ML.

This chapter presents some basics about both, starting with a basic overview of ML and aspects

regarding the construction of 2D and 3D deep learning methods (Section 2.1), followed by more

applied concepts regarding CV algorithms, specifically for a 3D context (Section 2.2).

2.1 DEEP LEARNING

Deep learning models unlock to computers the ability to learn representations from data with

different levels of abstraction (Murphy, 2012). Unlike former hand-crafted techniques that use a

"human" comprehension of a problem to represent a set of features, deep learning models learn

these features using statistical models, aiming at finding the most likable answer to the data used

as input.

Deep learning methods have consistently improved the state-of-the-art in many applica-

tions, such as speech recognition and CV (Goodfellow et al., 2016). Tasks that are natural for

human beings, such as recognizing a specific object and saying who its owner is, or understanding

the main subject of a speech or a lecture, are still untrivial for computers. With deep learning

models, we can go much faster toward solving challenging problems. These methods’ remarkable

results have a price: to have good models, we must have useful high-level labeled data or

high-engineered methods that could learn from raw data.

To understand deep learning, one must know some basic concepts about it as a subfield

of Machine Learning (ML). To make this thesis self-contained, this chapter starts with a brief

introduction to ML concepts. It is essential to understand all of the deep learning methods

employed in this study. After that, we explain deep networks more thoroughly, focusing on CV

applications. Finally, we present some aspects regarding the usage of deep learning methods

applied to 3D CV applications.

Figure 2.1: Traditional ML vs. Deep Learning pipelines. Steps of feature extraction (in both pipelines) represent

generical boxes in the process that could have many sub-steps to be executed. Source: Adapted from Goodfellow

et al. (2016)

2.1.1 Machine Learning Basics

Nowadays ML technology fills up many trivial tasks in a modern world: web search filtering,

recommendation systems on streaming platforms or e-commerce websites, machine translation,
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fraud detection on financial activities, and others (LeCun et al., 2015). According to Murphy

(2012), ML is a set of methods that can automatically detect patterns in data and then use unseen

patterns to predict future data or perform decisions under uncertainty.

An ML system must be fed by features to detect patterns in data, represented as sequences

of information (called feature vectors). Conventional ML systems cannot correctly process

raw natural data (for example, the pixel values of an image) and transform into a suitable

representation. As an alternative, these systems require a hand-crafted transformation in the

input data (LeCun et al., 2015).

The input dataset employed to find this representation is called the training set. To verify

if this learned representation is generalizable enough, a test set, not seen in training, must be used.

We could categorize ML algorithms into two main groups, the supervised and unsupervised
approaches. The term supervised comes from an instructor showing a student (or a computer)

what to do. There is no instructor in unsupervised learning, and the system has to learn without

any guidance (Goodfellow et al., 2016).

2.1.1.1 Supervised Learning

In this trend of ML methods, we feed the algorithm with examples of input and output, and learn
a high-level function that maps the input (x) into the output (y). Given a training set containing N
samples, paired as (x1,y1), (x2,y2), ...,(xn,yn), where each yi was generated from an unknown

function y = f (x), the objective is to find a function h that approximates the real function f
(Russell and Norvig, 2013).

The function h is a hypothesis. The learning process consists in finding the more suitable

solution on the whole space of possible hypotheses, the one that will have an optimal (or nearly)

scenario even for unknown samples. Usually, we employ a test set with labeled samples never

seen by the system to measure this generalization capacity. Based on a (good) test set, we can

verify if a learned hypothesis could predict in a real world scenario (Russell and Norvig, 2013).

To search in the hypotheses space, we usually use the Stochastic Gradient Descent

(SGD) algorithm. This procedure consists of computing the errors between the output predicted

at training time and the expected (labels), compute the average gradient or commonly called loss
and adjust the model according to it (LeCun et al., 2015). This operation continues processing

small sets of training samples until the average of the objective function stops decreasing.

If the output y represents a finite set of values (classes), the learning problem is called

classification, as an example, we have an image of a handwritten digit, and the output is the

digit itself. When the output is a real number, we face a regression problem, and an example

of it is estimate a house price based on the number of rooms, neighborhood, and building area.

Following we have some examples of popular supervised machine learning techniques:

K-Nearest Neighbor (KNN) is a classifier that outputs the k nearest values from the

training set in Euclidean space;

Linear and polynomial regression techniques output a function that approximated the

training set’s behavior by using a continuous function;

Naïve Bayes classifiers are a family of probabilistic algorithms based on applying Bayes’

theorem, assuming that the features are independent;

Support-vector machines (SVM) are machine learning models utilized for classification

rather than regression analysis (Boser et al., 1992; Cortes and Vapnik, 1995). This
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method is one of the most prominent in ML and can explore linear or non-linear problems

efficiently.

Decision tree is another group of learning algorithm which breaks the input space into

regions and has separate parameters for each region. A more accurate method based on

it is the random forest. It combines many decision trees fitting each sub-samples of

the dataset, presenting a significant improvement in predictive accuracy (Goodfellow

et al., 2016).

2.1.1.2 Unsupervised Learning

In unsupervised learning algorithms, the goal is to find patterns on the input without any specific

feedback. This type of algorithm divides the dataset into similar patches in a clustering process in

traditional ML systems. Unsupervised approaches help to extract information from distribution

without requiring human labor to generate the output targets by annotating examples. In the

context of deep approaches, unsupervised algorithms play an essential role with autoencoders.

We could also learn the entire probability distribution of a dataset, whether explicitly as in density

estimation or implicitly for tasks like denoising (Goodfellow et al., 2016).

As the main conventional unsupervised techniques, we have the k-means algorithm that

divides the training set into k different clusters near each other, and the Principal Component

Analysis (PCA), which learns a representation with a lower dimension concerning the input.

Dimensionality reduction is useful to bring linear independence to data, but also for visualization

purposes. For a more detailed explanation of both algorithms, please refer to Goodfellow et al.

(2016)

Despite the success of supervised approaches, LeCun et al. (2015) believe that unsu-

pervised methods would become far more relevant in a few years. Humans and animals tend to

learn in an unsupervised way, e.g., discovering the world surrounding and observing it, and the

machines could also explore such evolutionary features.

2.1.1.3 Neural Networks

Artificial Neural Networks (ANN), or just Neural Networks (NN), are computational models that

mimic the structure and functions of biological neural networks of many mammals. The main

component of an ANN is the artificial neuron, first introduced by McCulloch and Pitts (1943).

This artificial neuron maps the behavior and structure of its biological inspiration mathematically.

Dendrites are formalized as the multiplication wixi between the axon x, and the synapse w,

respectively, called input and weight. The dendrites carry out the signals to the body cell, that

process all the inputs plus a bias b by a summation. A function called activation (ϕ) models the

resultant output. The most common activation functions are the sigmoid, hyperbolic tangent

(tanh), and rectified linear unit (ReLU). A NN can dynamically learn by combining many neurons

and changing their weights and bias to control the influence of the neural units.

The simplest type of ANN is the feed-forward NN. The information goes from input to

output always forward in this type of network, i.e., without cycles. The arrangement of neurons is

made in layers. The first layer’s output is connected to the second one’s input, going through the

layers until the last one, called the output layer. The intermediate layers are named hidden and

play an essential role. They can find features within the data and allow the following segments to

operate on those features rather than the noisy and large raw data from the input layer. The typical

layer on these networks is the fully-connected, in which every neuron is connected pairwisely
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between two adjacent layers (Hornik et al., 1989). Figure 2.2 shows a graphical representation of

an artificial neuron and an ANN.

Figure 2.2: Neural Network model. Left: Artificial neuron with inputs (xiwi) for i = 0..n, the summation, the

activation units, and the output y. Right: A scheme of a feed-forward neural network with two hidden layers and

distribution of [4,5,4,2] neurons.

2.1.1.4 Why use deep learning?

Most standard ML algorithms work very well on a wide variety of significant problems. However,

problems such as recognizing speech or objects are not straightforward. The development of

deep learning was, in part, motivated by the failure of conventional algorithms to generalize well

on such tasks.

Data availability has grown considerably in the latest years, but standard techniques’

performance has not accompanied this growth. Figure 2.3 shows that as the volume of training

data increases, deep networks tend to improve the model’s performance, and because of that, we

tend to associate deep learning with large datasets (Rosebrock, 2017).

Figure 2.3: Performance vs. amount of data in ML systems. Source: Adapted from (Ng, 2020)

Another challenge lies in generalizing to new examples, that becomes exponentially

more complex when working with high-dimensional data. The mechanisms used in traditional

machine learning are inadequate to learn complex functions in high-dimensional spaces. Such

spaces also frequently impose high computational costs, and the design of deep learning methods

tends to overcome these and other obstacles (Goodfellow et al., 2016).
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2.1.2 Deep Networks

The main deep-learning-based approaches lie on the Convolutional Neural Networks (CNN)

(LeCun et al., 2015). A CNN is a specific type of feed-forward neural network that performs

convolutions, exploits, and takes advantage of a grid-like input structure. Examples could be 1D

grids, for time series, 2D for pixels of an image, or 3D for point clouds (Goodfellow et al., 2016).

Fully-connected deep neural networks demand a massive number of parameters that would most

likely drive to overfit or be a computational wasting. Therefore, to overtake this situation, CNNs

use convolutional layers that rely on ideas like local receptive fields and shared weights.

A CNN is usually built with two main building blocks, convolutional and pooling layers.

These building blocks represent data in terms of features by weighting and modifying smaller

patches’ identifiable characteristics within each layer’s inputs. The overall idea behind using

these building blocks is that the input representation is gradually increased in abstraction as it

progresses through the layers. Earlier layers contain more specific structural information such as

borders, while later layers contain more complex information about how specific objects look.

2.1.2.1 Convolutions

Convolutional networks are as any ANN, i.e., composed of neurons with learnable weights and

biases. Each neuron in a convolutional layer receives some inputs and calculates their outputs by

learning such parameters. However, there is a significant difference concerning the traditional

architectures: the sharing of weights between neurons, known as filters. The convolutional

operation consists of sliding a filter over the input. An element-wise multiplication is performed

at every location and summed together, yielding the corresponding result in the output feature

map. In Equation 2.1 the convolution operation S is expressed for a point (i, j) of a 2D Image (I)

and a kernel filter (K) in a discrete domain.

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m,j +n)K(m,n). (2.1)

It is worth noting that the layers in a CNN share their parameters, and thus, all the

neurons are capable of detecting the same feature (e.g., a corner), despite the location on input,

resulting in a feature map. For example, using a filter of 3×3 and input of 32×32, each neuron

on the next convolutional layer will have only 9 weights for that filter instead of 1024 in a fully

connected layer.

Each layer detects many features, and this number corresponds to the depth of the

feature maps. In general, controlling the output volume involves three hyperparameters: the

depth mentioned earlier; the stride, that is the step of the sliding operation on the convolution;

and the zero-padding that adds a zero-valued border on the input, to maintain the original input

size, if desired. The following formula return the output feature map volume (Wout), based on

the hyperparameters:

Wout = (Win −F +2P )
S +1 (2.2)

where Win is the input volume size, F represents the filter size of the convolutional layer, S, and

P are the stride and the amount of zero-padding, respectively.
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2.1.2.2 Pooling

According to Goodfellow et al. (2016), the processing of a typical convolutional layer in a network

consists of three stages:

1. Performing convolutions to produce a set of linear activations;

2. Executing a non-linear activation function, such as the ReLU;

3. Applying a pooling function to modify the output of the layer.

A pooling function replaces the net’s output at a particular location with a summary

statistic of the nearby outputs. For example, the max-pooling (Zhou and Chellappa, 1988)

operation reports the maximum output inside a rectangular neighborhood. Other pooling

functions include the average, the L2 norm of a rectangular region, and a weighted average based

on the central pixel’s distance. Figure 2.4 presents an example of the above-cited convolution

and max-pooling operations on a convolutional layer.

Figure 2.4: Convolution and max-pooling operations. Given an image I and a kernel filter K, the I ∗K represents

the resultant feature map of a convolution. The rightmost image presents a grid outputted by a 2×2 max-pooling

operation.

2.1.2.3 Training a Deep Network

Training a Deep Network is not a straightforward task. Indeed, besides the data availability

and architecture’s setup, some factors must be considered. The loss function and optimization

algorithms are the first to pick. Moreover, learning rate and decay, weight initialization and

decay, and dropout layers are also significant. For more information about these hyperparameters,

please refer to Goodfellow et al. (2016).

Despite the high demand for data, and eventually laborious effort in training deep

learning architectures, sometimes we do not have enough data to do it. Thus, it is fundamental

to find a way to use previously trained weights. We call this process transfer learning, which

consists of extracting features from the network by forwarding examples, i.e., without training.

Another essential process, known as fine-tuning, performs an adaptation of a pre-trained network

to the context of a different (and potentially smaller) dataset.
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2.1.2.4 Invariance and Equivariance

One of the main facts on CNNs success and robustness is learning invariant features from (a

sufficient amount of) data. The term invariance refers to the ability of, under a transformation

on input, the output remains unchanged. Another relevant property is the equivariance, which

means that the object’s position does not need to be fixed to be detected by CNN. To clarify, if

we have a function f(x) that is equivariant to a function g, so f(g(x)) = g(f(x)).
The translation invariance is an inherent ability of convolutional and fully-connected

layers. It is provided by parameter sharing, but also by combining pooling layers and striding. It

can be an advantageous property if we care more about whether some feature is present than

exactly where it is.

Convolution is not naturally equivariant to other transformations, such as changes in

scale or rotation. The only strategy to learn rotation and scale invariance is to augment the

input dataset and provide more examples of the same objects with distinct sizes and orientations.

Some recent studies have shown that a framework named Spherical CNNs unlocks the rotation

equivariance “natively” on CNNs (Cohen et al., 2018, 2019; Esteves et al., 2018, 2020).

2.1.3 3D Deep Learning

This section explores some concepts regarding the most prominent technologies to work on 3D

data. We start with a brief overview about data representation for deep learning systems, and

the following subsections explore some architectures for dealing directly on point clouds with

PointNets (Qi et al., 2017a,b), to achieve rotation invariance with Spherical CNNs (Cohen et al.,

2018; Esteves et al., 2018), and to describe 3D surfaces by a folding-based strategy (Groueix

et al., 2018; Yang et al., 2018b).

2.1.3.1 3D data representation

Different from images that have a dominant representation as a 2D array of pixels, 3D has no

direct representation. A point cloud is a set of points in space sampled from object surfaces,

usually acquired by 3D sensors such as LiDARs or depth cameras. A polygon mesh is a collection

of interconnected surfaces broadly used in computer graphics in 3D modeling and rendering

algorithms. Volumetric representation quantifies the space into small voxels, in a regular 3D grid.

Finally, we also represent 3D as multiple projected depth views, frequently used for visualizations.

Figure 2.5 depicts the above-cited representations on a 3D Model.

Figure 2.5: 3D data representation. Model Bunny extracted from the Stanford Views dataset (Curless and Levoy,

1996).
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2.1.3.2 PointNets

Point clouds are irregular data structures, and feed neural networks with them is not an obvious

task. Most methods tend to convert to alternative representations such as binary occupancy

3D grid, i.e., one if has a point and zero if it is empty. After that, apply this transformed data

to a CNN that works on a volumetric grid, such as 3D ShapeNet (Wu et al., 2015), VoxNet

(Maturana and Scherer, 2015), and Volumetric and Multi-view CNNs (Qi et al., 2016). Another

characteristic of the point clouds is that they are very sparse structures, thus work with 3D grids

may imply a large space and computational cost. Qi et al. (2017a) propose a framework that

deals directly with point clouds, called PointNet.

PointNet is a unified architecture that consumes raw point clouds as input, i.e., each

point is a 3D coordinate. The output can be either a class label for the entire input or per point

segment/part labels for each input point. The authors also propose a variant called PointNet++

(Qi et al., 2017b) that works with the surface normals associated with the points. This network

architecture (Figure 2.6) has two main parts: the classification network for object recognition

tasks and the segmentation network for per point semantic assignment. PointNet also provides

two transform networks (T-Net) to deal with the object’s pose and to transform the features.

Figure 2.6: PointNet Architecture.

Source: Qi et al. (2017a)

2.1.3.3 Spherical CNNs

Previously, we pointed that despite achieving translation equivariance on traditional CNNs,

transformations on rotation and scale are essential matters on the 2D CV. 3D information tends to

solve scaling obstacles, being rotation invariance achieved by augmenting the input. However, it

is hard to impose synthetic transformations on data that reflect real-world situations, ensuring that

every rotation will be acknowledged on training. In this section, we present a recent technology

called Spherical CNNs, that is rotation-equivariant by nature, and the basis for the developments

presented in Chapters 3 and 4. For more in-depth knowledge and mathematical proofing, please

refer to Cohen et al. (2018).

Architectures which employ spherical signals and perform spherical convolutions

achieve equivariance to rotations, as demonstrated by Cohen et al. (2018). They proposed a

framework that, differently from consuming data based on the cartesian space (2D or 3D), uses

the Special Orthogonal Group, or SO(3) for short. The SO(3) is a 3D manifold comprising

rotations about the origin of a 3D Euclidean space R3 under the operation of composition.
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There are several distinct forms to represent rotations in the 3D space. In the context of

this work, we consider the approach proposed by Euler. Since rotations in the 3D space have

3 degrees of freedom, only three parameters are necessary to characterize a rotation. These

parameters are known as the Euler angles α, β, and γ. Consequently, a full rotation will be the

composition of the correspondent transformations (XYZ), presented by Equation 2.3. In this

context, we consider the ZYZ-Euler angles, meaning that both the first and the last angles will

refer to rotations around the Z axis.

R = Rx(α)Ry(β)Rz(γ) (2.3)

where:

Rx(α) =

⎡
⎢⎣
1 0 0
0 cosα −sinα
0 sinα cosα

⎤
⎥⎦ (2.4)

Ry(β) =

⎡
⎢⎣

cosβ 0 sinβ
0 1 0

−sinβ 0 cosβ

⎤
⎥⎦ (2.5)

Rz(γ) =

⎡
⎢⎣
cosγ −sinγ 0
sinγ cosγ 0

0 0 1

⎤
⎥⎦ (2.6)

The Spherical CNNs’ architecture performs convolutions on the SO(3) space and

produces rotation-equivariant feature maps also in these representations. As the resultant signal

on the maps lives in SO(3), the Euler angles can also rotate the feature maps. This process is

fundamental in developing rotation-equivariant descriptors, as described in Chapters 3 and 4.

2.1.3.4 Folding-based Networks

Folding-based strategies focus on the use of unsupervised learning algorithms for point clouds.

They propose to surpass issues on the point cloud representations using a 2D grid structure and

reconstruct the clouds through a plane-folding operation. Assuming that any 3D surface can

be transformed into a 2D plane, by cutting, squeezing, and stretching operations, the inverse

operation could also be conceivable.

Two seminal works propose similar strategies simultaneously: Fold-Net (Yang et al.,

2018b) and AtlasNet (Groueix et al., 2018). Both use an auto-encoder network, producing a

bottleneck layer that learns to fit the 2D surface into the 3D data. The produced bottleneck

layer’s feature map serves as codeword (a.k.a. descriptor) and works as a high-dimensional

embedding of an input point cloud. They demonstrate that the folding operations can build an

arbitrary surface when provided a correct codeword. At training time, a fully connected decoder

network is responsible for updating the codeword weights and reconstruct the input cloud. The

reconstructed point cloud outputted by the decoder is then confronted with the input, using the

Chamfer Loss. In this thesis, we adopt the AtlasNet (Groueix et al., 2018) as the decoder of our

learned descriptor.

The Chamfer distance can assess the similarity between the two sets of samples.

Particularly, during the train, we minimize the average of the Euclidean distances between 3D

clouds, considering for each input’s point the nearest neighbor in the reconstructed one, and vice
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versa. Let S be the set of 3D input points belonging to the neighborhood of p and S� the set of

points generated by the decoder. The Chamfer distance can be formulated as

L(S,S�)θ = 1
|S|

∑
x∈S

min
x�∈S�

‖x −x�‖2+

1
|S�|

∑
x�∈S�

min
x∈S

‖x� −x‖2.
(2.7)

The term minx∈S ‖x� − x‖2 estimates the precision of the predicted point cloud by

measuring the average distance between the predicted points and the closest ground truth one,

while minx�∈S� ‖x −x�‖2 quantify how well the predicted point cloud covers the ground truth

by measuring the average distance between a ground truth point and the closest predicted one. To

enforce that the distance from S to S� and the distance vice versa have to be small simultaneously,

the two terms are summed together.

2.2 3D COMPUTER VISION

With the development of autonomous driving cars, virtual and augmented reality applications,

3D vision problems become more relevant since they provide much richer information than

2D. Applications such as 3D object detection and recognition, 3D pose estimation, and 3D

reconstruction rely on feature descriptors. In this chapter, we explore such structures that play

a fundamental role in this thesis’ proposals. We start exploring acquisition aspects regarding

3D vision systems. We then discourse specifically on the descriptors and present general and

specific issues regarding local and global features. This thesis focuses on object recognition

and reconstruction using descriptors, addressed in Sections 2.2.3 and 2.2.4. Finally, we present

datasets used throughout the thesis to test the proposed approaches.

2.2.1 Acquisition

RGB-D cameras capture color and depth information in real-time. Despite their well-known

use on CV applications, they have attracted attention from the delivery of low-cost sensors, like

Microsoft Kinect, Intel RealSense, Structure Sensor, and Asus Xtion.

This kind of low-cost sensor presents some limitations that may include the maximum

depth capture (from 0.2 to 4.5m), low depth resolution (about 0.3 MP), or even low-quality

scannings when capturing information in reflexive and transparent surfaces (Kadambi et al.,

2014). In Figure 2.7, we present an example of a scene captured by the Kinect sensor, with

significant nuisances of this kind of image.

In the context of this work, we consider mostly images captured by RGB-D sensors and

LiDAR. However, other kinds of sensors or techniques can obtain or estimate depth information

from the “real world”. Among them, one could consider the Structure from Motion (SfM) and

Stereoscopy. Both use color information to detect the disparity between images and estimate

depth. As they use color-only information, they are more sensitive to illumination changes (Pan

et al., 2016).

2.2.2 Descriptors

Descriptors play a fundamental role in CV applications, especially involving 3D processing. They

are data structures that describe objects or scenes fully or partially. An efficient 3D descriptor
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must be highly discriminative and robust under noise, occlusion, and illumination variation.

Tombari et al. (2012) cite three kinds of descriptors based on the specificity when working on

RGB-D data:

Point descriptors: use position and color information of a 3D point as its descriptor.

This approach is simplistic and sensitive to noise and thus rarely used.

Local descriptors: describe the neighborhood of a point considering a specific radius.

Deal with geometrical and textural information about a portion of a scene/object

Global descriptors: process a patch pre-segmented, which is likely an object and

generates a description based on its structure.

In the context of this thesis, we explore mostly Local Descriptors. However, in Chapter

6, we apply global features in the object recognition task and present an approach to combine

Global and Local features in a hybrid pipeline that detects objects by using global features and

estimate the object’s pose with locals (Chapter 7). Notwithstanding, we perform a more profound

review of the 3D local features, with a more focused review on the globals in Chapter 6.

2.2.2.1 3D Local descriptors

A local 3D descriptor processes a keypoint neighborhood to produce a feature vector discriminative

to clutter and robust to noise. In this section, we review the literature concerning such proposals.

As the local descriptors are closely related to the keypoint detection algorithms, we start scratching

those techniques we considered in this dissertation. Then, we show some approaches regarding

the hand-crafted descriptors, and finally, move to modern data-driven methods. To handle

the viewpoint variations and attain the invariance to rotation, the descriptors mentioned above

rely either on an LRF or RA. Hence, we present also a review concerning the LRF estimators

considered in this thesis.

2.2.2.2 Keypoint Extraction

This step concerns selecting some surface points, either from images or point clouds. According

to Tombari et al. (2013), keypoint extraction must reduce data dimensionality without losing

Figure 2.7: Example of scene captured by the Kinect sensor. We could see some nuisances present in an image

captured by such a low cost sensor: self oclusion, reflexive and transparent surfaces, noisy depth map. On the

left, we have the color image and on the right, the depth signal. Black parts represent failures in depth estimation .

Source: Images extracted from the Washington RGB-D Scenes dataset (Lai et al., 2014)
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Figure 2.8: Keypoint extraction techniques applied on point clouds. From left to right: Original 2.5D model of

Mario (extracted from the Bologna Kinect dataset (Salti et al., 2014)), Uniform Sampling with a 1cm and 3cm of

radius, and ISS.

discriminative capability. In this work, we explore techniques which work in 3D, as Uniform

sampling and Intrinsic Shape Signatures (ISS) (Zhong, 2009), and 2D alike, as SIFT (Lowe,

1999) and FAST (Rosten and Drummond, 2006).

Uniform sampling downsamples point clouds by segmenting it in voxels based on

specific leaf size, and selects as keypoint each nearest neighbor point to a voxel centroid (Rusu

and Cousins, 2011). ISS (Zhong, 2009) selects keypoints based on a local surface saliency

criterion, extracting 3D points that have a considerable surface variation in their neighborhood.

The keypoint detector proposed in SIFT (Lowe, 1999) is arguably the prominent

proposal for RGB images. It is based on detecting blob-like and high contrast local features

amenable to compute highly distinctive features and similarity invariant image descriptors. The

FAST keypoint extractor (Rosten and Drummond, 2006) is a 2D corner detector based on a

machine learning approach, widely adopted in real-time CV applications due to its remarkable

computational efficiency. Figure 2.8 presents examples of 3D keypoints extractors applied on

point clouds.

2.2.2.3 Hand-crafted 3D Local Descriptors

Before the deep learning revolution, scholars have designed hand-crafted functions to abstract

the structural information of the 3D keypoints neighborhood, i. e. features, into high-dimensional

representations. To this end, the distribution of the features is discretized according to a

quantization domain and approximated through histograms. The main proposals differ for the

geometric or topological measurements employed (Guo et al., 2016). A local 3D descriptor

processes a keypoint neighborhood to produce a feature vector discriminative concerning clutter

and robustness to noise. Many descriptors have been proposed in recent years and several works,

e.g., Guo et al. (2014b), have investigated their relative merits and limitations. In this thesis, we

explore both descriptors which process only depth, or depth and color information, and some of

them are briefly explained as follows.

Introduced by Salti et al. (2014), Signatures of Histogram OrienTation (SHOT) describes

a keypoint based on spatial and geometric information. To calculate the descriptor, we establish

an LRF around the keypoint. Then, a canonical spherical grid is divided into 32 segments. Each

segment produces a histogram that describes the angles between normals at the keypoint and
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normals at the neighboring points. The authors also proposed a variation to work with color

at the points, called CSHOT. The color value is encoded according to the CIELab color space

and added to SHOT’s angular information. This descriptor is known to yield better results than

SHOT when applied to colored point clouds.

PFHRGB (Rusu et al., 2008) is based on the Point Feature Histogram (PFH) and stores

geometrical information by analyzing the angular variation of the normal between each pair of

combinations in a set composed by the keypoint and all its k-neighbors. PFHRGB works on

RGB and stores the color ratio between the keypoint and its neighbors, increasing its efficiency

on RGB-D data (Alexandre, 2012). To speed-up, the descriptor calculation, Rusu et al. (2009)

proposed a simplified solution, called FPFH (Fast PFH), which considers only the differences

between the keypoint and its k-neighbors. An influence weight is also stored, resulting in a

descriptor that can be calculated faster while maintaining its discriminative capacity.

2.2.2.4 Learned 3D Local Descriptors

The deep learning paradigm has proven to be the holy grail to elaborate 2D visual data. This

success has shifted more attention in designing learned 3D local descriptors (Zeng et al., 2017a;

Deng et al., 2018b,a; Khoury et al., 2017; Spezialetti et al., 2019). The typical supervised

workflow foresees the adoption of a siamese-style convolutional network (Chopra et al., 2005)

and a metric loss (Schultz and Joachims, 2004; Weinberger and Saul, 2009) to teach the network

how to pull similar features together, i. e., descriptors for the same 3D point acquired under

different viewpoints, while pushing unique features apart. Some studies based on this paradigm

are 3DMatch (Zeng et al., 2017a), CGF (Khoury et al., 2017), 3DSmoothNet (Gojcic et al.,

2019), and Li et al. (2020a). Unsupervised approaches, instead, propose to employ the latent

codeword of an encoder-decoder architecture as a 3D feature descriptor. As examples we have,

PPF-FoldNet (Deng et al., 2018a), 3D-PointCapsNet (Zhao et al., 2019), and Spezialetti et al.

(2019).

On the other hand, the most recent proposals employ fully convolutional networks (Long

et al., 2015) and purely data augmentation to learn a rotation-invariant local feature descriptor

for point cloud with a supervised approach. The work of Choy et al. (2019b), named Fully

convolutional geometric feature (FCGF), represents the first work in this direction. It adopts

sparse convolutions (Choy et al., 2019a) to manage the unorganized structure of point clouds and

densely extract a compact local feature embedding. Similarly, D3Feat (Bai et al., 2020) leverages

KPConv (Thomas et al., 2019) to perform convolution on raw 3D coordinates and proposes a

strategy to predict both a detection score and a feature descriptor at each 3D location in the input

point cloud. These methods can extract dense features in just one forward pass. Despite being

highly efficient in terms of computation time, they poorly generalize when trained and tested on

data containing geometries of different natures, as we show in Chapter 4.

In this thesis, we present three new unsupervised 3D Local descriptors. Two of them,

LEAD and SOUND, rely on the Spherical CNNs and provide rotation equivariant approaches. The

third proposal, named LEAD-PN, is based on PointNet architecture trained in an invariant fashion.

Despite the lower performance concerning the previous, it outperforms most unsupervised

approaches on registration applications. Chapter 4 states more details regarding these descriptors.

Table 2.1 summarizes the above-cited methods, showing their main characteristics.
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Table 2.1: Comparison between 3D local descriptors. *Means that depends on an external hand-crafted LRF

Descriptor hand-crafted learned supervised unsupervised

SI (Johnson and Hebert, 1999) �
PFH (Rusu et al., 2008) �
FPFH (Rusu et al., 2009) �
USC (Tombari et al., 2010) �
RoPs (Guo et al., 2013b) �
SHOT (Salti et al., 2014) �
CGF (Khoury et al., 2017) � �
3DMatch (Zeng et al., 2017a) � �
PPFNet (Deng et al., 2018b) � �
PPF-FoldNet (Deng et al., 2018a) � �
PointCaps3D (Zhao et al., 2019) � �
3DSmoothNet (Gojcic et al., 2019) � �
Spezialetti et al. (2019) � �*

FCGF (Choy et al., 2019b) � �
D3Feat (Bai et al., 2020) � �
Li et al. (2020a) � �
LEAD (Ours) � �*

LEAD-PN (Ours) � �*

SOUND (Ours) � �

2.2.2.5 Local Reference Frame

The definition of a canonical pose of a point cloud has been studied mainly in the field of local

feature descriptors (Johnson and Hebert, 1999; Rusu et al., 2009; Guo et al., 2013b; Salti et al.,

2014). Indeed, the definition of a robust LRF is:

R(p) = {x̂(p), ŷ(p), ẑ(p) | ŷ = ẑ× x̂} (2.8)

The LRF estimation of the local neighborhood of a keypoint p is crucial to create

rotation-invariant local features. An LRF works efficiently if, and only if, is perfectly equivariant

to rotations of a keypoint. Hence, repeatability refers to the ability of an LRF in aligning the same

keypoint under different viewpoints. Figure 2.9 presents an example of an LRF being extracted

from different views of the same object. Note that we may face different nuisances in both views,

such as self-occlusion.

Several works define the local canonical system’s axes as eigenvectors of the 3D

covariance matrix between points within a spherical region of radius r centered at p. As the

signs of the eigenvectors are not repeatable, some works focus on the disambiguation of the

axes: Mian et al. (2010), RoPS (Guo et al., 2013b), and SHOT-lrf (Salti et al., 2014). Another

family of methods leverages the normal to the surface at p, i.e., n̂(p), fix the ẑ axis, and then

exploit geometric attributes of the shape to identify a reference direction on the tangent plane

to define the x̂ axis: Point signatures (Chua and Jarvis, 1997), Board (Petrelli and Di Stefano,

2011), FLARE (Petrelli and Di Stefano, 2012), TOLDI (Yang et al., 2017), and GFrames (Melzi

et al., 2019).

All the methods previously pointed extract hand-crafted information to estimate the

LRF. At the best of our knowledge, just one method, named LRf-net (Zhu et al., 2020), proposes

to extract orientation from data, but by using hand-crafted preprocessing of the input. In Chapter
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Figure 2.9: LRF repeatability example. Both images show a LRF estimated for a keypoint with a fixed search

radius (lighter points). Green, blue, and red arrows represent respectively the x, y and z axis. Source: Petrelli and

Di Stefano (2012)

3, we present Compass, a method that differs sharply from previous methods because it learns

the cues necessary to canonically orient a surface without making a priori assumptions on

which details of the underlying geometry may be effective to define a repeatable canonical pose.

Table 2.2 present state-of-the-art methods and the respective classification.

Table 2.2: Comparison between LRF estimation methods. CA refers to Covariance Analysis-based approaches, and

GA refers to Geometric Attributes. *Uses hand-crafted preprocessing

Method CA GA hand-crafted learned

Point signatures (Chua and Jarvis, 1997) � �
EM (Novatnack and Nishino, 2008) � �
Mian (Mian et al., 2010) � �
Board (Petrelli and Di Stefano, 2011) � �
FLARE (Petrelli and Di Stefano, 2012) � �
RoPS (Guo et al., 2013b) � �
SHOT-lrf (Salti et al., 2014) � �
TOLDI (Yang et al., 2017) � �
GFrames (Melzi et al., 2019) � �
LRF-net (Zhu et al., 2020) �*

Compass (Ours) �

2.2.3 3D Object Recognition

Recognition systems work with objects, which are digital representations of tangible real-world

items that exist physically in a scene. This kind of system is unavoidably an ML-based approach.

Thus there are two main big stages to be fulfilled: training and testing. We can see this division

in Figure 2.10, which represents a generic scheme of such systems.

In the training phase, we build a database of objects representing our system’s knowledge

base, which will serve as a reference to the classification process. Models are stored as complete

structures of objects (Full-3D) or partial views (2.5D) and described following their geometric

and texture features. In the test phase, we extract scene elements and search for corresponding

objects that we have previously got in training. The recognition of an object occurs when the

database features are compatible with those extracted on the scene, called feature matching. It

may be necessary to perform some post-processing and verification steps to refine the results.
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Figure 2.10: Block diagram of a generic pipeline for object recognition systems. The blue-shaded part refers to the

training stage (offline), and the green refers to the test stage (online)

Real-time RGB-D based applications can face an enormous amount of processing data.

These sensors capture 30 fps1 RGB and Depth information at 640 × 480 pixels, generating a

bandwidth of more than 30 MB/s2. Reducing this data volume is crucial in such applications, and

strategies attempt to mitigate it. Sections 2.2.3.1 and 2.2.3.2 report more deeply such strategies

that could work with local or global descriptors.

The employment of local or global descriptors in object recognition systems requires

different steps on the respective pipeline. Figure 2.11 depicts each of them, and Sections 2.2.3.1

and 2.2.3.2 describe their steps in detail. These pipelines correspond to instances of the test

phase on the generic pipeline presented in Figure 2.10

Figure 2.11: Object recognition pipeline based on 3D Local (blue-shaded parts) and Global (orange-shaded parts)

features. Source: Adapted from Aldoma et al. (2012a)

2.2.3.1 Local descriptors pipeline

Local descriptors are representations of the neighborhood of a keypoint, producing a feature

vector associated. These descriptors are well-known by the capability of dealing excellently

with some nuisances, such as noise and occlusions. An object recognition system demands

a sufficient number of described keypoints to be effective. Thus, one main drawback of this

approach lies in the high computational power and memory consumption required. The object

1Frames per second

2Considering 30fps and 300k points of RGB-D information (4 bytes). Point clouds may use 16 bytes per point,

increasing this number considerably, to more than 140MB/s.
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recognition pipeline, proposed by Aldoma et al. (2012a) and depicted in Figure 2.11, shows a

series of execution steps, starting from an input point cloud, and described as follows.

The Keypoint extraction step selects sample points of an object or scene, intending

a dimensionality reduction. The detected keypoints must be robust to the viewpoint, noise,

and scale variations. The main characteristics of a keypoint detector are repeatability and

distinctiveness. The former can detect the same keypoints under pose/viewpoint variation, and

the latter concerns the capacity to discriminate and group objects (Tombari et al., 2013). The

most prominent algorithm is the ISS (Zhong, 2009), but more straightforward approaches, as

Uniform and Random Sampling, are often used in object recognition applications.

The Description stage consists of generating a feature vector (also called descriptor)

representing the neighborhood of a keypoint. A good descriptor must extract topological

information, considering different point densities, noise levels, and occlusion (Tombari et al.,

2013).

After calculating the descriptors in the scene and object’s points, the Matching is

responsible for finding the corresponding object’s points in the scene. Commonly this process

is done by similarity, selecting the NN in a high-dimensional feature space. This task is very

computationally costly, and optimized procedures like FLANN (Fast Library for Approximate

Nearest Neighbor), proposed by Muja and Lowe (2009), provide excellent results (Aldoma et al.,

2012a).

The matching process results in a set of all point-to-point correspondences between

objects and scenes. Assuming that a rigid transformation exists, the Correspondence grouping
rejects every correspondence that is not geometrically consistent between the object and the

scene (Aldoma et al., 2012a). The main approaches are the Geometric consistency grouping

(CGF), in Chen and Bhanu (2007) and Hough Voting (Tombari and Di Stefano, 2010).

Despite the correspondence grouping stage’s efficiency, some groups are eventually not

consistent with a unique 6DoF pose. Therefore, in the Absolute orientation, we perform an

additional step, based on the RANSAC (RANdom SAmple Consensus) algorithm, to eliminate

those correspondences not consistent with the same pose (Aldoma et al., 2012a).

In short, the whole process (Figure 2.11) consists of giving an object and a scene. The

pipeline will return the most likely 6DoF transformation that localizes and aligns the referred

object on the scene.

2.2.3.2 Global descriptors pipeline

Analogously to the local, the global descriptors also describe the topography of objects to

recognize them in a scene. However, instead of keypoints, they represent a whole object or cluster

of points that are likely to be objects. In terms of the amount of memory and processing, they are

very friendly. Simultaneously, this kind of descriptor is more sensitive to occluded objects and

more dependent on a reliable segmentation.

The pipeline concerning global descriptors is slightly different from the local alternative.

In the following, we present the steps, according to the classification proposed by Aldoma et al.

(2012a), and depicted in Figure 2.11.

As explained first, global descriptors demand the use of complete objects. Hence, the

scene Segmentation process is a critical step in it. Simple but sometimes efficient algorithms

segment a scene into clusters, which then will be classified as objects. According to Aldoma

et al. (2012a), the grouping of points based on a specific distance threshold is a useful approach

but lies on parameter choice. Other initiatives include the use of sliding window (Redmon et al.,

2016; Liu et al., 2016) for images or sliding shapes (Song and Xiao, 2014, 2016) for point clouds.
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Due to the advances of these methods, we can segment objects efficiently in real-time using these

technologies.

The Description stage is similar to the local alternative and returns a feature vector that

describes the geometry and texture of point clusters. After getting the descriptor, differently

from local descriptors, which lies on similarity approaches, the Matching phase for global

descriptors can be done using more robust machine learning techniques, such as those presented

in subsubsection 2.1.1.1.

Most of the global methods are invariant to rotation, so an additional process is required.

The Alignment step consists of adding a process called camera roll histogram (Aldoma et al.,

2012a). Despite this approach’s efficiency, the pose estimation presents a lower performance

concerning the local descriptors pipeline.

2.2.4 3D Scene Registration

Registration is a fundamental building block in 3D point cloud-based applications. The use

of point cloud registration includes computer graphics, robotics, cultural heritage modeling,

digital archaeology, architecture, and several CV applications. Such applications include object

modeling, tracking, and simultaneous localization and mapping (SLAM).

3D registration consists in aligning two or more point clouds, and it is fundamental for

3D modeling. The main task is to find the relative pose between views, acquired from different

viewpoints. After the alignment, the objective is to fuse them into a single point cloud so that

subsequent processing steps, such as segmentation and object reconstruction, can be applied

(Holz et al., 2015).

In this thesis, we exploit pairwise registration, which consists of finding a global

transformation between two overlapped views, i.e., with common areas. Pairwise registration

relies on approaches based on the Iterative Closest Point (ICP) algorithm (Besl and McKay, 1992;

Chen and Medioni, 1992).

As an optimization algorithm, the effectivity of the ICP depends on its initialization.

The ICP delivers a reliable alignment between the views, and a well-selected initial hypothesis

transformation speeds its convergence and considerably improves its effectivity. There are

two main approaches to obtaining a transformation between two point clouds: feature-based

registration or dense registration. Figure 2.12 presents a pipeline that coverage both situations.

Figure 2.12: Registration pipeline. First path involves an optional pre-alignment step (the green-shaded area),

and second path (orange-shaded steps) corresponds to the dense registration phase., which could input a coarse

registration from the 1st step or execute independently. Source: Adapted from Holz et al. (2015)

The pipeline execution starts from a pair of views, yet in memory, and the Preprocessing
stage seeks to enhance the input clouds, remove acquisition noise, or extract information about

the surface, such as normals. The first path (colored in green) is optional and involves processing

local descriptors to estimate a coarse initial transformation. In this pathway, we face similar steps
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to the object recognition pipeline. Processing steps like Keypoint extraction, Description, and

Matching are indistinguishable in both pipelines. Geometric feature descriptors are computed

and matched in a high-dimensional space. The more descriptive, unique, and persistent these

descriptors are, the higher the likelihood that the resultant Pose estimation closely aligns both

views.

The second path is responsible for the dense registration via ICP and considers the

closest corresponding points in the Cartesian space. Initial pose information, yielded by the first

path, could be used as input to ICP, or it can estimate the transformation at its own. However,

executing only the second path could be computationally expensive, depending on the input

clouds’ size.

The Correspondence estimation consists of determining corresponding points in both

clouds, and computing the transformation that aligns them, in a process iteratively repeated

following a convergence criterion. Following the pipeline, the next level is responsible for

Correspondence rejection. This step consists of filtering the point pairs matched in the previous

stage to help the Transformation estimation algorithm toward convergence to a global minimum.

Several approaches are suitable for this step, and the most prominent are those based on distances

(Rusinkiewicz and Levoy, 2001) and RANSAC (Fischler and Bolles, 1981). Finally, the last stage

aims to find a transformation estimation that minimizes the Euclidean distance between found

pairs of closest points using least-squares error (Besl and McKay, 1992). Another approach,

proposed by Chen and Medioni (1992) uses a similar intuition, but, minimizing the distance

between points using a point-to-plane metric.

In short, the whole process consists of given two point clouds with a degree of overlap

between them, estimate a global transformation that put both views in the same global reference

system, and thus align them. In a perfect overlap scenario, the presented pipeline converges to

the global minimum. However, partially overlapped clouds or a weak initialization may imply

in getting a local minimum. Hence, we can see the importance of developing effective local

descriptors.

2.2.5 Datasets

To measure the accuracy of distinct techniques is fundamental to have standard sets of data

and metrics. The scientific community provides datasets for this purpose with ground-truth

annotations. In this section, we present the datasets used in this thesis to evaluate our proposals

for Object Recognition and Registration applications using 3D data.

2.2.5.1 Object Recognition

In this section, we present the datasets employed in this thesis in object recognition evaluations.

We consider datasets of real data, with the Washington RGB-D and Bologna Kinect and hand-made

CAD models, with ModelNet and ShapeNet.

Washington RGB-D Object and Scenes: proposed by Lai et al. (2011a) from the University

of Washington, the RGB-D Object contains a collection of 300 instances of household objects,

grouped in 51 distinct categories. Each object includes a set of views, captured from different

viewpoints with a Kinect sensor. A collection of 3 images, including RGB, depth, and mask,

is presented for each view. In total, this dataset has about 250 thousand distinct images. The

authors also provide a dataset of scenes, named RGB-D Scenes. This evaluation dataset has eight

video sequences of every-day environments. A Kinect sensor positioned at a human eye-level

height acquires all the images at a 640×480 resolution. This dataset is related to the first one,



42

composed of 13 of the 51 object categories on the Object dataset. These objects are positioned

over tables, desks, and kitchen surfaces, in a cluttered fashion with viewpoints and occlusion

variation, and have annotation at category and instance levels. A bidimensional bounding box

represents the ground-truth of each object’s position. Figure 2.13 presents examples of both

datasets.

Figure 2.13: Examples of models and scenes from the Washington RGB-D Scenes dataset (top row), and objects

from the RGB-D Object dataset (bottom row). Source: Adapted from Lai et al. (2011a).

Bologna: another object recognition dataset employed in our tests is the Kinect dataset from the

University of Bologna, proposed by Tombari et al. (2010). This dataset has sixteen scenes and

six models with pose annotation. Each model is represented as a set of 2.5D views from different

angles and has from thirteen to twenty samples. Figure 2.14 depicts some examples of models

and scenes in this dataset.

Figure 2.14: Examples of models and scenes from the Kinect dataset (Salti et al., 2014). Models of Rabbit, Frog,

Mario, and Doll (center), and scenes.

ModelNet e ShapeNet: the ModelNet40 (Wu et al., 2015) is a shape classification benchmark.

This dataset has 12,311 CAD models from 40 human-made object categories, and it is splitted

into 9,843 for training and 2,468 for testing. In our trials, we use point clouds sampled from the

original CAD models provided by the authors of PointNet (Qi et al., 2017a). ShapeNet (Chang

et al., 2015) is also a collection of CAD models. The dataset presented in Figure 2.15, has 55

annotated categories, but in this thesis, we use only to provide qualitative results of three of them

by orienting clouds with our LRF proposal Compass, in Chapter 3.
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Figure 2.15: Examples of models from the ShapeNet dataset. From left to right: Models of airplane, lamp, and chair.

2.2.5.2 Registration

In this section, we present the datasets that we utilize to test our proposals for registration. We

consider, for indoor scenarios, the 3DMatch, and outdoor, the ETH datasets. Both datasets

provide a collection of scenes, composed by a set of 2.5D scans where a single scan depicts a

small area of the whole environment and therefore is called fragment. Figures 2.16 and 2.17

present some examples of fragments of these datasets.

3DMatch: this dataset (Zeng et al., 2017a) is a collection of a large part of the publicly available

datasets such as Analysis-by-Synthesis (Valentin et al., 2016), 7-Scenes (Shotton et al., 2013),

SUN3D (Xiao et al., 2013), RGB-D Scenes v.2 (Lai et al., 2014) and BundleFusion (Dai et al.,

2017), which contains 62 scenes. Following the standard protocol for learned descriptors we

train and validate on 54 scenes while running comparison at test time only on the remaining 8.

The fragments used for training and testing, are derived from the fusion of 50 consecutive depth

frames of an RGB-D sensor (Deng et al., 2018a). Similarly, the Rotated 3DMatch benchmark

is generated by rotating all the fragments of the test split around randomly sampled axes and

angles over the entire space of rotations (Deng et al., 2018a). Both datasets provide accurate

ground-truth transformations for performance evaluation purposes. This dataset is the de-facto
standard for the evaluation of learned 3D descriptors, together with its Rotated variation, to

assess the invariance to the rotation of learned methods.

Figure 2.16: Examples of fragments from the 3DMatch Benchmark dataset. From left to right: Scenes extracted

from the 7-scenes, BundleFusion, RGB-D Scenes, SUN3D, and Analysis-by-synthesis.

ETH: this dataset (Pomerleau et al., 2012) is a challenging outdoor dataset, which presents 8

sequences of sparse and dense vegetation (e. g., trees and bushes) acquired with a laser scanner
sensor under different seasonal changes. This dataset does not have an explicit train/test splits.

In this thesis we compare our methods likewise Gojcic et al. (2019), i.e., considering only on a

subset of 4 scenes named: Gazebo-Summer, Gazebo-Winter, Wood-Autumn, and Wood-Summer
in a transfer learning approach. This dataset, presented in Figure 2.17, was introduced by Gojcic

et al. (2019) to evaluate the robustness of the generalization of learned descriptors on outdoor

scenarios.
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Figure 2.17: Examples of fragments from the ETH dataset. The two leftmost images represent the wood_summer
scenes, and the rightmost the gazebo_winter. Reading the point clouds is not an easy task, but we can see in the

wood scene the path at the center, and in the gazebo scene, there are the gazebo pillars and the background trees.

Stanford Views: This dataset contains 252 real scans of 4 objects (Armadillo, Bunny, Buddha,

Dragon), from the Stanford 3D Scanning Repository (Curless and Levoy, 1996), acquired with a

Cyberware 3030 MS scanner. It is a variation on the original dataset, created by the CV Lab at

the University of Bologna (Petrelli and Di Stefano, 2012). This dataset is composed of meshed

models, so in our experiments, we preserve only the original model’s vertices, obtaining a point

cloud representation of them. Figure 2.18 shows the models of this dataset. Since there is no

training-test split, we could neither proceed to unsupervised learning nor weakly supervised

learning. Ground-truth transformations are available for all the scans.

Figure 2.18: Examples of models from the Stanford Views dataset. From left to right: Armadillo, Bunny, Dragon,

and Buddha.

2.3 FINAL REMARKS AND OVERVIEW

We start this chapter, presenting a basic overview of the deep learning aspects employed in

this thesis. We started scratching on the ML concepts, such as supervised and unsupervised

approaches, and why these techniques are in a continuous update for deep learning alternatives.

Secondly, we have explored ideas about deep learning methods and the hyperparameters involved

in the training process. Finally, we have shown more specifically, strategies on processing

3D point clouds in deep architectures, particularly on the PointNets, Spherical CNNs, and

Folding-based approaches.

After, we explored more focused aspects of CV related to 3D applications, starting

from the acquisition process of RGB-D images. This work will focus on object recognition

and reconstruction applications, intimately related to feature matching. Therefore, we present

concepts and relevant techniques on the local and global descriptors and the generic and specific

pipelines regarding their use on real applications. Furthermore, regarding the descriptors, we

presented the registration pipeline we use in this thesis. Finally, we have given the datasets we

will use to demonstrate our proposed methods’ effectiveness in this thesis.



45

3 LEARNING TO ORIENT SURFACES

Humans naturally develop the ability to mentally portray and reason about objects in what we

perceive as their neutral, canonical pose, and this ability is critical for correctly recognizing

and manipulating objects as well as reasoning about the environment. Indeed, mental rotation

abilities have been extensively studied and linked with motor and spatial visualization abilities

since the 70s in the experimental psychology literature (Shepard and Metzler, 1971; Vandenberg

and Kuse, 1978; Jansen and Kellner, 2015).

Robotic and CV systems similarly require neutralizing pose variations when processing

3D data and images in many vital applications such as grasping, navigation, surface matching,

augmented reality, shape classification, and detection. In these domains, two main approaches

have been pursued to define pose-invariant methods to process 3D data: pose-invariant operators

and canonical pose estimation. Pioneering work applying deep learning to point clouds, such as

PointNet (Qi et al., 2017a,b), achieved invariance by sampling the range of all possible poses at

training time through data augmentation. This approach, however, does not generalize to poses

not seen during training. Hence, invariant operators like rotation-invariant convolutions were

introduced, allowing to train on a reduced set of poses (ideally one, the real data) and test on the

full spectrum of rotations (Masci et al., 2015; Esteves et al., 2018; You et al., 2018; Zhang et al.,

2019b; Rao et al., 2019; Zhang et al., 2019a).

Instead, canonical pose estimation follows the human path to invariance more closely

and exploits the geometry of the surface to estimate an intrinsic 3D reference frame that rotates

with the surface.

Transforming the input data by the inverse of the 3D orientation of such a reference

frame brings the surface in a pose-neutral, canonical coordinate system wherein pose invariant

processing and reasoning can happen. While humans have a preference for a canonical pose

matching one of the usual poses in which they encounter an object in everyday life, in machines

this paradigm does not need to favor any actual reference pose over others: as illustrated in

Figure 3.1, an arbitrary one is fine as long as it can be repeatably estimated from the input data.

Figure 3.1: Canonical poses in humans and machines. Randomly rotated mugs are depicted in (a). To achieve

rotation-invariant processing, e. g.to check if they are the same mug, humans mentally neutralize pose variations

preferring an upright canonical pose, as illustrated in (b). A machine may instead use any canonical reference pose,

even unnatural to humans, e. g.like in (c).

Despite mental rotation tasks being solved by a set of unconscious abilities that humans

learn through experience, and the huge successes achieved by deep neural networks in addressing

analogous unconscious tasks in vision and robotics, the problem of estimating a canonical pose
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is still solved solely by hand-crafted proposals (Salti et al., 2014; Petrelli and Di Stefano, 2011;

Melzi et al., 2019; Guo et al., 2013b; Yang et al., 2017; Gojcic et al., 2019; Aldoma et al., 2012c).

This may be due to convolutional networks, the standard architectures for vision

applications, reliance on the convolution operator in Euclidean domains, which possesses only

the property of equivariance to translations of the input signal. However, the essential property

of a canonical pose estimation algorithm is equivariance with respect to 3D rotations because,

upon a 3D rotation, the 3D reference frame, which establishes the canonical pose of an object,

should undergo the same rotation as the object. We also point out that, although, in principle,

estimation of a canonical reference frame is suitable to pursue pose neutralization for whole

shapes, in past literature it has been intensively studied mainly to achieve a rotation-invariant

description of local surface patches.

In this chapter, we explore the feasibility of using deep neural networks to learn to

pursue rotation-invariance by estimating the canonical pose of a 3D surface, be it either a whole

shape or a local patch.

Purposely, we propose to leverage Spherical CNNs (Cohen et al., 2018; Esteves et al.,

2018), a recently introduced variant of convolutional networks that possess the property of

equivariance w.r.t. 3D rotations by design, in order to build Compass. This self-supervised

methodology learns to orient 3D shapes.

As the proposed method computes feature maps living in SO(3), i. e., feature map

coordinates define 3D rotations, and does so by rotation-equivariant operators, any salient element

in a feature map, e. g., its arg-max, may readily be used to bring the input point cloud into a

canonical reference frame.

However, due to discretization artifacts, Spherical CNNs turn out to be not perfectly

rotation-equivariant (Cohen et al., 2018). Moreover, the input data may be noisy and, in the case

of 2.5D views sensed from 3D scenes, affected by self-occlusion and missing parts. To overcome

these issues, we propose a robust end-to-end training pipeline that mimics sensor nuisances by

data augmentation and allows gradients’ calculation with respect to feature maps coordinates.

We evaluate Compass on two challenging tasks. The first one is estimating a canonical

pose of local surface patches, a key step in creating rotation-invariant local 3D descriptors (Salti

et al., 2014; Gojcic et al., 2019; Yang et al., 2017). In the second task, the canonical pose provided

by Compass is instead used to perform highly effective rotation-invariant shape classification by

leveraging a simple PointNet classifier.

3.1 PROPOSED APPROACH

Our problem can be formalized as follows. Given the set of 3D point clouds, P , and two point

clouds V ,T ∈ P , with V = {pVi
∈ R

3 | pVi
= (x,y,z)T } and T = {pTi

∈ R
3 | pTi

= (x,y,z)T },

we indicate by T = RV the application of the 3D rotation matrix R ∈ SO(3) to all the points of

V . We then aim at learning a function, g : P → SO(3), such that:

Vc = g(V)−1 · V (3.1)

g(T ) = R ·g(V). (3.2)

We define the rotated cloud, Vc, in (3.1) to be the canonical, pose-neutral version of V ,

i. e., the function g outputs the inverse of the 3D rotation matrix that brings the points in V into

their canonical reference frame. (3.2) states the equivariance property of g: if the input cloud is
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rotated, the output of the function should undergo the same rotation. As a result, two rotated

versions of the same cloud are brought into the same canonical reference frame by (3.1).

Due to the equivariance property of Spherical CNNs layers, upon rotation of the input

signal, each feature map does rotate accordingly. This means that one could track any distinctive

feature map value to establish a canonical orientation satisfying (3.1) and (3.2). Indeed, defining

as Φ the composition of S2 and SO(3) correlation layers in our network, if the last layer produces

the feature map [Φ(fV)] when processing the spherical signal fV for the cloud V , the same

network will compute the feature map [LRΦ(fV)] = [Φ(LRfV)] = [Φ(fT )] when processing the

rotated cloud T = RV , with spherical signal fT = LRfV .

Hence, if for instance we select the maximum value of the feature map as the distinctive

value to track, and the location of the maximum is at Qmax
V ∈ SO(3) in Φ(fV), the maximum

will be found at Qmax
T = RQmax

V in the rotated feature map. Then, by letting g(V) = Qmax
V , we

get g(T ) = RQmax
V , which satisfies (3.1) and (3.2).

Therefore, we realize function g by a Spherical CNN and we utilize the argmax operator

on the feature map computed by the last correlation layer to define its output. In principle,

equivariance alone would guarantee to satisfy (3.1) and (3.2). Unfortunately, while for continuous

functions the network is exactly equivariant, this does not hold for its discretized version,

mainly due to feature map rotation, which is exact only for bandlimited functions (Cohen et al.,

2018). Moreover, equivariance to rotations does not hold for altered versions of the same cloud,

e. g., when a part of it is occluded due to viewpoint changes. We tackle these issues using a

self-supervised loss computed on the extracted rotations when aligning a pair of point clouds to

guide the learning, and an ad-hoc augmentation to increase the robustness to occlusions. Using a

soft-argmax layer, we can back-propagate the loss gradient from the estimated rotations to the

positions of the maxima we extract from the feature maps and to the filters, which overall lets the

network learn a robust g function.

3.1.1 Learning from Spherical Signals

The spherical correlation operator is defined for signals living on the unit sphere, S2. Thus,

before sending it through the network, the geometry around a feature point must be converted

into a spherical representation. A possible solution adopted in Cohen et al. (2018) and Esteves

et al. (2018) is to project a 3D mesh onto an enclosing discretized sphere using a raycasting

scheme. However, in our particular case, the input data is not a regular watertight mesh, but a

point cloud that corresponds to the neighborhood of the point we wish to describe, i. e. a keypoint.
Similarly to You et al. (2018), we first convert the 3D points into a spherical coordinate system

and then construct a quantized grid in this new coordinate system. The i-th cell in the resulting

grid is identified with three spherical coordinates (α[i],β[i],d[i]) ∈ S2 ×D where α[i] and β[i]
represent the azimuth and inclination angles of its center and d[i] is the distance from the sphere

center. The K-valued spherical signal f : S2 → R
K is then composed by K concentric spheres

corresponding to the number of subdivisions along the distance axis, each sphere encodes the

density of the points within each cell (α[i],β[i]) at a distance d[k] from the feature point. To

consider the non-uniform spacing in the spherical space, cells near the south or north pole are

wider in spherical coordinates, as discussed in You et al. (2018). The above-described process

is applied to every keypoint of the surface we choose to describe. Starting from the spherical

signal, an equivariant bottleneck is learned by forwarding the signal to the network to encode the

information about the local geometry around each keypoint.
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3.1.2 Training pipeline

An illustration of the Compass training pipeline is shown in Figure 3.2. Our objective is to

strengthen the equivariance property of the Spherical CNN during training, such that the locations

selected on the feature maps by the argmax function vary consistently between rotated versions

of the same point cloud. To this end, we train our network with two streams in a Siamese fashion

(Chopra et al., 2005). In particular, given V , T ∈ P , with T = RV and R a known random

rotation matrix, the first branch of the network computes the aligning rotation matrix for V ,

RV = g−1(V), while the second branch the aligning rotation matrix for T , RT = g−1(T ). As

the feature maps on which the two maxima are extracted should be perfectly equivariant, it would

follow that RT = RRV = R�
T .

Figure 3.2: Training pipeline of Compass. We illustrate the pipeline for local patches, but the same apply for point

clouds representing full shapes. During training we apply the network on a randomly extracted 3D patch, V , and on

its augmented version, T , in order to extract the aligning rotation RV and RT , respectively. At test time only one

branch is involved. The numbers below the spherical signal indicate the number of cells along α, β and d, while the

triplets under the layers indicate input bandwidth, output bandwidth and number of channels.

For that reason, the degree of misalignment of the maxima locations can be assessed by

comparing the actual rotation matrix predicted by the second branch, RT , to the ideal rotation

matrix that should be predicted, R�
T . Thus, we can cast our learning objective to minimize a loss

measuring the distance between these two rotations.

A natural geodesic metric on the SO(3) manifold is given by the angular distance

between two rotations (Hartley et al., 2013). Indeed, any element in SO(3) can be parametrized

as a rotation angle around an axis. The angular distance between two rotations parametrized

as rotation matrices R and S is defined as the angle that parametrizes the rotation SRT and

corresponds to the length along the shortest path from R to S on the SO(3) manifold (Hartley

et al., 2013; Huynh, 2009; Mahendran et al., 2017; Zhou et al., 2019). Thus, our loss is given by

the angular distance between RT and R�
T :

L(RT ,R�
T ) := cos−1

(
tr(RT T R�

T )−1
2

)
. (3.3)

where tr refers to trace, i. e., the sum of the diagonal elements of the rotation matrix.
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3.1.3 Network Architecture

The network architecture comprises an S2 layer followed by three SO(3) layers, with bandwidth

B = 24, and the respective number of output channels are set to 40, 20, 10, 1. The spherical

input signal is computed with K = 4 channels.

3.1.4 Soft-argmax

The result of the argmax operation on a discrete SO(3) feature map returns the location i, j,k
along the α,β,γ dimensions corresponding to the ZYZ Euler angles, where the maximum

correlation value occurs. To optimize the loss in (3.3), the gradients w.r.t. the i, j,k locations of

the feature map where the maxima are detected have to be computed. To render the argmaxx
operation differentiable we add a soft-argmax operator (Honari et al., 2018; Chapelle and Wu,

2010) following the last SO(3) layer of the network. Let us denote as Φ(fV) the last SO(3) feature

map computed by the network for a given input point cloud V . A straightforward implementation

of a soft-argmax layer to get the coordinates CR = (i, j,k) of the maximum in Φ(fV) is given by

CR(V) = soft-argmax(τΦ(fV)) =
∑
i,j,k

softmax(τΦ(fV))i,j,k(i, j,k), (3.4)

where softmax(·) is a 3D spatial softmax. The parameter τ controls the temperature of the

resulting probability map and (i, j,k) iterates over the SO(3) coordinates. A soft-argmax operator

computes the location CR = (i, j,k) as a weighted sum of all the coordinates (i, j,k) where the

weights are given by a softmax of a SO(3) map Φ. Experimentally, this proved not to be useful.

As a more robust solution, we scale the softmax output according to the distance of each (i, j,k)
bin from the feature map argmax. To let the bins near the argmax contribute more in the final

result, we smooth the distances by a Parzen function (Parzen, 1962) yielding a maximum value

in the bin corresponding to the argmax and decreasing monotonically to 0 .

3.1.5 Learning to handle occlusions

In real-world settings, rotation of an object or scene (i. e., a viewpoint change) naturally produces

occlusions to the viewer. Recalling that the second branch of the network operates on T , a

randomly rotated version of V , it is possible to improve the robustness of the network to real-world

occlusions and missing parts by augmenting T . A simple way to handle this problem is to

randomly select a point from T and delete some of its surrounding points. In our implementation,

this augmentation happens with an assigned probability. T is divided in concentric spherical

shells, with the probability for the random point to be selected in a shell increasing with its

distance from the center of T . Additionally, the number of removed points around the selected

point is a bounded random percentage of the cloud’s total points. An example can be seen in

Figure 3.3.
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Figure 3.3: Example of the augmentation proposed to handle occlusions. Local support of a keypoint depicting the

corner of a table, divided in 3 shells. Randomly selected point in black; removed points in red.

3.2 CANONICAL POSE OF LOCAL SURFACE PATCHES

On local surface patches, we evaluate Compass through the LRF’s repeatability (Petrelli and

Di Stefano, 2011; Melzi et al., 2019), by estimating at corresponding keypoints in different views

of the same scene. All the datasets provide several 2.5D scans, i. e., fragments, representing

the same model, i. e., an object or a scene depending on the dataset, acquired from different

viewpoints.

All N fragments belonging to a test model can be grouped into pairs, where each pair

(Fs,Ft), Fs = {psi ∈ R
3} and Ft = {pti ∈ R

3}, has an area of overlap. A set of correspondences,

Cs,t, can be computed for each pair (Fs,Ft) by applying the known rigid ground-truth transfor-

mation, Gt,s =
[
Rt,s|tt,s

]
∈ SE(3), which aligns Ft to Fs into a common reference frame. Cs,t

is obtained by uniformly sampling points in the overlapping area between Fs and Ft. Finally, the

percentage of repeatable LRFs, Reps,t, for (Fs,Ft), can be calculated as follows:

Reps,t = 1
|Cs,t|

|Cs,t|∑
k=1

I

((
x̂(psk

) ·Rt,sx̂(ptk
) ≥ ρ

)
∧

(
ẑ(psk

) ·Rt,sẑ(ptk
) ≥ ρ

))
, (3.5)

where I(·) is an indicator function, (·) denotes the dot product between two vectors, and ρ is

a threshold on the angle between the corresponding axes, 0.97 radians in our experiments, as

proposed in (Petrelli and Di Stefano, 2012) . Rep measures the percentage of reference frames

which are aligned, i. e., differ only by a small angle along all axes, between the two views. The

final value of Rep for a given model is computed by averaging on all the pairs.

3.2.1 Test-time adaptation

Due to the self-supervised nature of Compass, it is possible to use the test set to train the network

without incurring in data snooping, since there is no external ground-truth information involved.

This test-time training can be carried out very quickly, right before the test, to adapt the network

to unseen data and increase its performance, especially in transfer learning scenarios. This is

common practice with self-supervised approaches (Luo et al., 2020).
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3.2.2 Experimental setup

We train Compass on 3DMatch following the standard procedure of the benchmark, with 48

scenes for training and 6 for validation. From each point cloud, we uniformly pick a keypoint

every 10 cm, the points within 30 cm are used as a local surface patch and fed to the network.

Once trained, the network is tested on the test split of 3DMatch. The network learned

on 3DMatch is also tested on ETH and Stanford Views, using different radii for accounting for

the different sizes of the models in these datasets: respectively 100 cm and 1.5 cm. We also apply

test-time adaptation on ETH and Stanford Views: the test set is used for a quick 2-epoch training

with a 20% validation split, right before being used to assess the performance of the network. We

use Adam (Kingma and Ba, 2014) as the optimizer, with 0.001 as the learning rate when training

on 3DMatch and for test-time adaptation on Stanford Views, and 0.0005 for adaptation on ETH.

We compare our method with recent and established LRFs proposals: GFrames (Melzi et al.,

2019), TOLDI (Yang et al., 2017), a variant of TOLDI recently proposed in Gojcic et al. (2019)

that we refer to here as 3DSN, FLARE (Petrelli and Di Stefano, 2012), and SHOT (Salti et al.,

2014). For all methods, we use publicly available implementations. However, the implementation

provided for GFrames could not process the large point clouds of 3DMatch and ETH due to

memory limits, and we can show results for GFrames only on Stanford Views.

3.2.3 Results

Table 3.1 reports repeatability on the 3DMatch test set. Compass outperforms the most competitive

baseline FLARE, with larger gains over the other baselines. Results reported in Table 3.2 for

Stanford Views and Table 3.3 for ETH confirm the advantage of a data-driven model like

Compass over hand-crafted proposals: while the relative rank of the baselines changes according

to which of the assumptions behind their design fits better the traits of the dataset under test, with

SHOT taking the lead on ETH and the recently introduced GFrames on Stanford Views, Compass

consistently outperforms them. Remarkably, this already happens when using pure transfer

learning for Compass, i. e., the network trained on 3DMatch: despite of the large differences in

acquisition modalities and shapes of the models between training and test time, Compass has

learned a robust and general notion of canonical pose for a local patch. This is also confirmed by

the slight improvement achieved with test-time augmentation, which sets the new state of the art

on these datasets.

Results for 3DMatch are shown in Table 3.1: the performance gain achieved by Compass

when deploying the proposed data augmentation validates its importance. Indeed, without the

proposed augmentation, FLARE performs better than Compass on this dataset.

Table 3.1: LRF repeatability on the 3DMatch dataset. Best result for each row in bold.

LRF Repeatability (Rep ↑)

SHOT FLARE TOLDI 3DSN Compass (w/o aug) Compass

Kitchen 0.189 0.330 0.171 0.181 0.274 0.315

Home 1 0.251 0.354 0.243 0.236 0.370 0.397
Home 2 0.226 0.339 0.213 0.214 0.353 0.365
Hotel 1 0.194 0.385 0.213 0.216 0.347 0.370

Hotel 2 0.193 0.405 0.223 0.226 0.349 0.393

Hotel 3 0.240 0.407 0.261 0.276 0.406 0.446
Study 0.186 0.351 0.195 0.192 0.307 0.356
Lab 0.220 0.310 0.198 0.223 0.360 0.361
Mean 0.212 0.360 0.215 0.220 0.346 0.375
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Differently, when tested in transfer learning on Stanford Views, Compass achieves

state-of-the-art performance even when not using data augmentation in training, as reported

in Table 3.2. The positive effect of augmentation is confirmed, as deploying it significantly

improves the overall repeatability even on this dataset.

Table 3.2: LRF repeatability on the Stanford Views dataset. Best result for each row in bold.

LRF Repeatability (Rep ↑)

SHOT FLARE TOLDI 3DSN GFrames Compass(w/o aug) Compass Compass(adapted)

Armadillo 0.127 0.185 0.156 0.141 0.168 0.311 0.340 0.359
Buddha 0.134 0.194 0.202 0.192 0.181 0.295 0.312 0.344
Bunny 0.106 0.379 0.232 0.172 0.426 0.358 0.440 0.463
Dragon 0.161 0.207 0.201 0.188 0.251 0.343 0.352 0.384
Mean 0.132 0.241 0.197 0.173 0.256 0.326 0.361 0.388

The same observations of Stanford Views can be made on the ETH dataset, Table 3.3,

where, however, the gain provided by the augmentation is smaller on average. By analyzing the

single scenes, we can see that augmentation is beneficial on the Gazebo fragments (both winter

and summer), while detrimental on Wood scenes.

Table 3.3: LRF repeatability on the ETH dataset. Best result for each row in bold.

LRF Repeatability (Rep ↑)

SHOT FLARE TOLDI 3DSN Compass (w/o aug) Compass Compass (adapted)

Gazebo Summer 0.293 0.345 0.241 0.241 0.291 0.337 0.330

Gazebo Winter 0.266 0.268 0.170 0.196 0.286 0.292 0.303
Wood Autumn 0.253 0.210 0.157 0.174 0.304 0.288 0.307
Wood Summer 0.279 0.236 0.171 0.198 0.329 0.314 0.329
Mean 0.273 0.264 0.185 0.202 0.303 0.308 0.317

3DMatch rotated is a synthetically rotated version of the 3DMatch dataset. This dataset

has been specifically proposed to verify the invariance to rotations of the learned 3D descriptors

(Deng et al., 2018a) and contains only a test split. In Table 3.4, we show a comparison between

the repeatability obtained with Compass on 3DMatch and 3DMatch rotated. Thanks to the

equivariance property of the Spherical CNNs, we can achieve similar performance on both

datasets.

Table 3.4: LRF repeatability of Compass on 3DMatch and 3DMatch rotated.

LRF Repeatability (Rep ↑)

Compass (3DMatch rotated) Compass (3DMatch)

Kitchen 0.312 0.315

Home 1 0.391 0.397

Home 2 0.359 0.365

Hotel 1 0.361 0.370

Hotel 2 0.383 0.393

Hotel 3 0.447 0.446

Study 0.348 0.356

Lab 0.355 0.361

Mean 0.369 0.375
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3.2.4 Qualitative results dealing with orienting local surface patches

This section provides qualitative results to show the effectiveness of Compass at computing

the canonical pose for local surface patches. Given a pair of fragments, we visualize in both

fragments at each point, the accuracy of the estimated LRF using two different metrics. In

particular, in Figure 3.4, we show the repeatability of the estimated LRFs (as defined in the main

paper), in Figure 3.5 the angular distance between two rotations used as the loss to train our

network. In both figures, we visualize the results yielded by Compass alongside FLARE, which

offers high performance across all datasets and is the runner-up on 3DMatch

We can observe how Compass tends to yield larger areas in which the LRFs are accurately

estimated, i. e., either green or blue ones, depending on the considered metric. It is worth pointing

out how this is particularly evident across those challenging fragment areas affected by large

missing parts in one of the two views, like, e. g. the left ear of the bunny in the fragments taken

from the Stanford Views dataset.

(a) Compass (b) FLARE

Figure 3.4: Qualitative results on the repeatability of Compass and FLARE. Visualization of repeatability at

corresponding points of two fragments, with repeatable LRFs in green, non-repeatable ones in red and non-

overlapping areas in gray. First row: a pair of fragments from Stanford Views, second row: a pair of fragments from

3DMatch. (a) and (b): results yielded by Compass and FLARE, respectively.

We also provide in Figure 3.6, examples of how Compass orient fragment’s patches. We

can see that our proposal performs in canonicalize randomly rotated clouds of different portions

of a fragment extracted from 3DMatch.
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(a) Compass (b) FLARE

Figure 3.5: Qualitative results on the angular error of Compass and FLARE. Visualization of the angular error

between the LRFs estimated at corresponding points of two fragments, with lower errors in blue, higher errors in

red and non-overlapping areas in gray. First row: a pair of fragments from Stanford Views. Second row: a pair of

fragments from 3DMatch. (a) and (b): results yielded by Compass and FLARE, respectively.

Figure 3.6: Qualitative results of Compass on the 3DMatch benchmark. Examples of patches extracted from the red
kitchen scene. Black lines show the region on extraction of the patches (green clouds). Yellow clouds represent

randomly rotated versions of the original patches and light blue, these clouds oriented by Compass
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3.3 ROTATION-INVARIANT SHAPE CLASSIFICATION

Object classification is a central task in CV applications, and the main nuisance that methods

processing 3D point clouds have to withstand is rotation. To show our proposal’s general

applicability and further assess its performance, we wrap Compass in a shape classification

pipeline. Hence, in this experiment, Compass is used to orient full shapes rather than local

patches. To stress the importance of correct pose neutralization, as shape classifier we rely on

a simple PointNet (Qi et al., 2017a), and Compass is employed at the training and the testing

phases to canonically orient shapes before sending them through the network.

3.3.1 Experimental setup

We train Compass on ModelNet40 using 8,192 samples for training and 1,648 for validation.

Once Compass is trained, we train PointNet following the settings in (Qi et al., 2017a), disabling

t-nets, and rotating the input point clouds to reach the canonical pose learned by Compass. We

followed the protocol described in (You et al., 2018) to assess rotation-invariance of the selected

methods: we do not augment the dataset with rotated versions of the input cloud when training

PointNet; we then test it with the original test clouds, i. e., in the canonical pose provided by the

dataset, and by arbitrary rotating them. We use Adam (Kingma and Ba, 2014) as the optimizer,

with 0.001 as the learning rate.

Table 3.5: Classification accuracy on the ModelNet40 dataset when training with no rotation augmentation. NR

column reports the accuracy attained when testing on the cloud in the canonical pose provided by the dataset and

AR column when testing under arbitrary rotations. Best result for each column in bold.

Classification Accuracy (Acc. %)

Method NR AR

PointNet (Qi et al., 2017a) 88.45 12.47

PointNet++ (Qi et al., 2017b) 89.82 21.35

Point2Sequence (Liu et al., 2019b) 92.60 10.53

Kd-Network (Klokov and Lempitsky, 2017) 86.20 8.49

Spherical CNN (Cohen et al., 2018) 81.73 55.62

DeepSets (Zaheer et al., 2017) 88.73 9.72

LDGCNN (Zhang et al., 2019a) 92.91 17.82

SO-Net (Li et al., 2018a) 94.44 9.64

PRIN (You et al., 2018) 80.13 70.35

Compass + PointNet 80.51 72.20

3.3.2 Results

Our results are reported in Table 3.5. Results for all the baselines come from (You et al., 2018).

PointNet fails when trained without augmenting the training data with random rotations and tested

with shapes under arbitrary rotations. Similarly, in these conditions, most of the state-of-the-art

methods cannot generalize to unseen rotations. If, however, we first neutralize the object’s pose

by Compass and then run PointNet, it gains almost 60 points and achieves 72.20 of accuracy,

outperforming the state-of-the-art on an arbitrarily rotated test set. This shows the feasibility and

effectiveness of pursuing rotation-invariant processing by canonical pose estimation.



56

In Figure 3.7, we present some models from ModelNet40, randomly rotated, and then

oriented by Compass. The models estimate a very consistent canonical pose for each object class,

despite the classes’ large shape variations.

Figure 3.7: Qualitative results on ModelNet40 and ShapeNet in transfer learning. Top row: randomly rotated input

cloud. Bottom row: cloud oriented by Compass.

Finally, to assess Compass’s generalization abilities for full shapes, we performed

qualitative transfer learning tests on the ShapeNet dataset, reported in Figure 3.7. Even if there

are different classes, e. g. the lamp, the model trained on ModelNet40 can generalize to an unseen

dataset and recovers similar canonical poses for the same object.

We stress the generalization capability of our model by adopting three different config-

urations to generate the training data. For this experiment, we consider only three categories:

airplane, chair, and lamp. The results of this study are shown in Figure 3.8. In the first column,

(a), we present results for a category-specific training, i. e., learning to orient only one category.

Thus, we train one network for each category, and then we test on the test split of the same

category. In (b), we present results for a category-agnostic network, i. e., a single model trained

on samples from the three categories. Finally, in (c), we show the model’s orientation results

trained according to the protocol defined in the main paper, i. e., transferring to ShapeNet a model

trained on the ModelNet40 dataset. From these results, we observe how the canonical pose can

often be correctly recovered under random rotations. For each triplet of rotated objects (colored

in yellow), the estimated canonical pose (in blue) is consistent, even in a transfer learning strategy.

Interestingly, looking at the fourth and sixth row of the (b) and (c) cases, where the model has to

define a canonical orientation for more than one category at once, the canonical pose learned by

the network seems to be similar across the chair and lamp categories, which have as the first

principal direction the direction of gravity. This suggests that our network may generalize the

concept of canonical pose across objects of different categories that share a similar geometric

structure.
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(a) Category-specific training (b) Category-agnostic training (c) Transfer learning

Figure 3.8: Qualitative results on ShapeNet dataset under different training strategies. Clouds in yellow represent

randomly rotated input clouds and the blue ones represent those oriented by Compass. In (a), we present orientation

results after training Compass with examples belonging only to a specific category from ShapeNet; in (b), the

orientation results after training Compass with a training set comprising airplanes, chairs and lamps together; and,

in (c) the orientation results from the model trained on the ModelNet40 dataset and tested on the ShapeNet dataset.

3.4 FINAL REMARKS AND OVERVIEW

In this chapter, we have presented Compass, a novel method to canonically orient 3D shapes.

Compass is, at the best of our knowledge, the first fully learned LRF. By using the Spherical

CNNs and its inherent equivariant property, we let the network define the best-suited pose for the

surfaces’ underlying geometry. Our approach robustly handles occlusions thanks to effective data

augmentation.

Experimental results demonstrate our approach’s benefits in defining a canonical pose

for local surface patches and rotation-invariant shape classification. Compass outperforms all

existing hand-crafted methods in three benchmarking datasets. Compass outperforms traditional

and consistent methods such as FLARE (Petrelli and Di Stefano, 2012), and also the most recent

GFrames (Melzi et al., 2019), published as oral in CVPR’19. Our learned LRF can also serve as a

transformation network attached to PointNet, achieving state-of-the-art on object classification in

a non-rotated training setup and evaluation with rotation augmentation, with accuracy of 72.20%.
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4 UNSUPERVISED LEARNING OF LOCAL DESCRIPTORS FOR POINT CLOUDS

Invariance to viewpoint changes is paramount to 3D descriptors. Unfortunately, learned

approaches exhibit a performance drop when trained and tested on different 3D rotations (Zeng

et al., 2017a; Deng et al., 2018b; Esteves et al., 2018). This drop is probably because 3D data

under rotations induce different network features, as demonstrated in 3D Object Classification in

(Sedaghat et al., 2016).

As a consequence, a popular strategy to endow a learned 3D descriptor with rotation

invariance consists in expressing the 3D coordinates of the points belonging to the input patch

w.r.t. a coordinate system centered at the feature point and defined according to an LRF (Khoury

et al., 2017; Gojcic et al., 2019) or RA (Deng et al., 2018a). For instance, CGF (Khoury et al.,

2017) and 3DSmoothNet (Gojcic et al., 2019) rely on the LRFs proposed by (Salti et al., 2014)

and (Yang et al., 2017), respectively. However, again, hand-crafted choices may inject noisy

orientation signals into the training process due to the non-ideal repeatability of the actual

algorithm deployed to compute the LRF. As a matter of fact, and similarly to descriptors, the

literature on LRFs vouches for the lack of a golden standard, with different algorithms behaving

differently across datasets.

With the advent of new point convolution operators (Thomas et al., 2019; Choy et al.,

2019a), some of the most recent approaches in the field (Choy et al., 2019b; Bai et al., 2020)

employ fully-convolutional architectures (Long et al., 2015) to densely learn descriptors across

the input cloud in one forward pass instead of considering as a single sample, the local neighbors

of a 3D keypoint. By augmenting the training data by a random set of rotations, we achieve

invariance to rotations, but they fail to generalize when trained and tested on different datasets

(Yang et al., 2018a).

This chapter proposes a novel unsupervised framework to learn a rotation-equivariant
local surface descriptor directly from the raw input data. To do so, we combine Spherical CNNs

(Cohen et al., 2018; Esteves et al., 2018), a recently introduced deep learning machinery which

extends the correlation operator to signals living in S2 and SO(3), together with folding operators

(Groueix et al., 2018; Yang et al., 2018b). In our training architecture, a spherical encoder

learns to compress the input 3D patch’s geometric traits into a low-dimensional latent space.

Simultaneously, a plane folding decoder (Groueix et al., 2018) warps a 2D grid to reconstruct

the input patch. As usual, in unsupervised learning through encoder-decoder architectures, the

decoder is unused at inference time, and the low-dimensional representation computed by the

encoder provides the patch descriptor. Due to its unsupervised nature, our learning framework

does not require ground-truth annotations or complex non-matching pairs sampling strategies to

supervise the network (Hermans et al., 2017; Wu et al., 2017). The latter is key to many feature

learning algorithms (Gojcic et al., 2019; Choy et al., 2019b; Bai et al., 2020), but not trivial to

design.

While the encoder-decoder architecture proposed in Deng et al. (2018a) compresses

and reconstructs pose-invariant Point Pair Features (Drost et al., 2010), ours does so for raw

3D coordinates under arbitrary poses. As shown in Section 4.1, pose information is needed to

correctly reconstruct a patch of 3D points by a plane folding decoder under an arbitrary pose.

To encode pose into the latent space, we rely on the peculiar rotation-equivariance property of

Spherical CNNs. The spherical encoder consists of layers that compute feature maps defined on

SO(3) that are equivariant to a 3D rotation of the raw input data. Thus, we do not need to rely on

any hand-crafted, and possibly fragile choice to either express the input 3D patch in a canonical



59

pose or remap it into a pose-invariant representation. Rather, we learn a rotation-equivariant

bottleneck from the raw training data. To pursue pose-invariance on the proposed descriptor, we

employ two different approaches:

• To learn a spherical bottleneck, used as a descriptor, we canonicalize it by applying a 3D

rotation provided by an off-the-shelf LRF algorithm. We introduce LEAD: Learned
EquivariAnt Descriptor in Section 4.1, the first rotation-equivariant learned descriptor

for 3D keypoint. We also propose an approach based on the PointNet (Qi et al., 2017a)

architecture, named LEAD-PN.

• To learn an end-to-end self-orienting descriptor that extracts discriminant embeddings

and, using the findings previously faced in Chapter 3, also the orientation of patches. This

strategy, named as SOUND: Self-Orienting UNsupervised Descriptor, is proposed

in Section 4.2, and merges LEAD and Compass, two state-of-the-art approaches in a

single method.

4.1 LEAD: A ROTATION-EQUIVARIANT DESCRIPTOR

The LEAD training workflow, depicted in Figure 4.1, includes the following steps: (i) a radius

search for the neighboring points surrounding a feature point p is performed; (ii) the resulting

support is then converted into a spherical signal discretized along the azimuth, elevation and

radial dimensions; (iii) the descriptor is inferred by feeding the spherical encoder with the input

spherical signal; (iv) an ensemble of random points forming a 2D grid is concatenated with the

learned latent space; (v) through a plane folding decoder (Groueix et al., 2018), the 2D grid is

warped according to the learned descriptor in order to reconstruct the input 3D patch; (vi) Finally,

the calculus of the Chamfer distance between the original input patch and its reconstructed

version is adopted to train the network. Spherical CNNs require spherical signals as input. To do

so, we adopt the same preprocessing stage previously described in subsection 3.1.1.

Figure 4.1: Architecture of the LEAD network

The points within the local support of a given feature point p are converted into a

spherical signal representation and then sent through the spherical encoder to get an equivariant
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descriptor. The numbers below the spherical signal indicate the value of cells along the α, β
and d dimensions. Operations in the encoder are implemented through the Generalized Fourier

Transform with signals discretized according to a bandwidth parameter (Cohen et al., 2018).

Thus, the triplets below the encoder layers indicate the input bandwidth, output bandwidth, and

channels. Starting from the information stored in the descriptor, the decoder reconstructs the

original point cloud deforming the 2D grid. The numbers under each MLP layer denote the value

of input and output channels, respectively.

Thanks to the equivariance property, we do not need to feed the network with invariant

representations at training time, such as in Deng et al. (2018a), Khoury et al. (2017), and Gojcic

et al. (2019), and delay this choice at test time, providing two essential benefits to the resulting

embedding. First, we can train the network from less preprocessed input data than existing

proposals, since we do not have to choose a specific LRF, secondly with an LRF-agnostic train
approach, we can avoid some intrinsic errors on the chosen LRF, which can inject noise in

the training process. Not being tied to a specific LRF enables us to choose the best way to

define a canonical representation at a test time without retraining the network from scratch. The

domain shift problem is particularly critical for 3D data because of the heterogeneous acquisition

techniques and the different sensing modalities. Consequently, the same LRF estimator can

behave very differently across datasets resulting in not stable performance. Being invariant to

rotation only at test time makes our approach flexible and prone to generalization. Offering this

property is almost impossible for all the other standard representations, e. g. the output of an MLP

as used in PointNet, which cannot be rotated after having its computation. Only a descriptor that

lives in SO(3) can be rotated at test time, i. e., only the output of a Spherical CNN to date.

We can alternatively employ a standard PointNet as an encoder to learn a local 3D

feature descriptor from raw point cloud data and explore two possible ways to attain invariance to

rotation: trough data-augmentation or rely on an LRF to provide canonically oriented patches to

the network. To highlight the benefits of learning an equivariant descriptor, which can be turned

into an invariant one only a test time, in the following, we explore both of the ways as mentioned

earlier, validating the advantages of our design choice trough dedicate experiments. We replace

the Spherical encoder in the architecture illustrated in Figure 4.1 with a standard PointNet. As

the first demonstration, we force the network to learn a rotation-invariant embedding without

applying a canonical orientation to the input data, hoping the network learns it through data

augmentation by observing randomly rotated versions of the same neighborhood during training

without direct supervision. To verify if the learned descriptor achieved invariance to rotation, we

measure the distance between descriptors belonging to the same keypoint but under different

poses. In Figure 4.2, we show a comparison between a PointNet encoder trained on the 3DMatch

Benchmark presented in Section 4.3.1, and a spherical encoder with randomly initialized weights.

Since that equivariance is a theoretical property of a Spherical CNN, it is not necessary to train

it for this study. Given a neighborhood, we rotate it around a random axis by a growing angle,

whose value is reported along the chart’s horizontal axis. For every rotation, we forward the

rotated neighborhood through a Spherical CNN encoder and a PointNet encoder. Then, we rotate

the output of the Spherical CNN by the inverse of the applied rotation (simulating the availability

of a perfect LRF) and plot the distance between the descriptor obtained from the rotated and the

un-rotated neighborhood. PointNet cannot learn an invariant descriptor in our setup, while the

equivariant representation provided by a Spherical CNN can achieve almost perfect invariance

when properly rotated. Alternatively, the invariance to rotation can be forced by computing

and applying a canonical orientation to the 3D patches before sending them to the encoder at

training and testing time. This is the standard procedure adopted both by hand-crafted (Salti

et al., 2014; Guo et al., 2013a; Tombari et al., 2010) and by the learned approaches (Gojcic et al.,
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2019; Khoury et al., 2017). In this experiment, the PointNet encoder is trained in neighborhoods

oriented according to an external LRF (Petrelli and Di Stefano, 2011). The results presented in

Tables 4.1 and 4.2, show that canonically orient an equivariant descriptor at test time, instead of

learning an invariant one yields better performance in a surface registration pipeline, and, again,

confirms the strength of our proposal.
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Figure 4.2: Comparison between PointNet and Spherical CNN used as encoders in our framework.

Spherical CNNs have been successfully exploited in Cohen et al. (2018), Esteves et al.

(2018), and You et al. (2018) to learn an invariant global shape embedding for 3D Object

Classification under random rotations. To this end, a max-pool layer is inserted between a chain

of S2-SO(3) correlation layers and the last fully-connected layer performing the classification, to

select the most distinctive features regardless the pose under which the object may appear.

4.1.1 Test-Time Invariant Feature Descriptor

At test time, before matching the computed feature descriptors, we need to rotate them w.r.t. a

canonical orientation to deliver rotation invariant feature descriptors that can be matched across

poses. Differently from the state-of-the-art methods that transform the 3D input patches, we,

instead, apply the rotation to the descriptors, i. e., SO(3) feature maps obtained from the unrotated

inputs. Signals in the SO(3) domain can be rotated by remodulating the spherical harmonics

functions resulting from their Fourier transform. A thorough treatment of the topic and the

mathematical details of this procedure can be found in Risbo (1996). To canonicalize our learned

descriptors, we follow the same setup of Spezialetti et al. (2019), in this case, by adopting the

LRF proposed in Petrelli and Di Stefano (2012), named FLARE.

4.1.2 Architecture

The methodology newly outlined is implemented through an architecture made up of two basic

parts, a spherical encoder and a multi-layer perceptron decoder. While the last layer of the

encoder outputs a codeword, which we employ as an equivariant descriptor, the decoder is

responsible for the reconstructions. As a consequence, the decoder is used only at training time.

These two components are presented in a more detailed way in the next sections. The training

loss is calculated using the Chamfer Loss (Equation 2.7).
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4.1.2.1 Encoder

The procedure described in subsection 3.1.1 converts a set of 3D points into a signal defined on

the S2 sphere. Thus, we need a S2 correlation layer as the first layer of our spherical encoder.

Unlike the standard definition of spherical convolution (Driscoll and Healy, 1994), which gives

as output a function on the sphere S2, we adopt an implementation of Cohen et al. (2018), which

yields a signal on SO(3). The use of a conventional convolution definition would limit the

network’s expressive capacity due to the symmetry along the axis Z of the learned filters. To

further process the resulting SO(3) feature map, we stack an ensemble of SO(3) correlation

layers, where the last one outputs the equivariant feature descriptor.

4.1.2.2 Decoder

The encoder learns to compress the most meaningful information about the local neighborhood

of the input keypoint p in the descriptor, to produce a descriptive representation. The best way

to verify it is to employ an MLP decoder to reconstruct the entire set of points, making up the

support of p starting from the descriptor. A key tool to accomplish this goal in an unsupervised

fashion way, is the plane folding operator proposed by Groueix et al. (2018) and Yang et al.

(2018b). Following Groueix et al. (2018), our decoder tries to deform points in R
2 to surface

points in R
3 according to the learned descriptor. Given a feature representation d for a 3D

surface, let A be a set of points sampled in the unit square [0,1]2, we concatenate the descriptor

d with the sampled point coordinates (ax,ay) ∈ A and then forward them through the decoder

composed by MLP layers, as shown in Figure 4.1.

4.1.2.3 Hyper and training parameters

The spherical encoder has a first S2 convolution layer and more four SO(3) convolution layers

with a constant number of channels, 40. The input bandwidths of these five layers are 24, 16, 12,

8, and 6. The selection of the network’s design is according to the ablation study presented in

subsubsection 4.3.3.1. After each layer we apply a BatchNorm step and ReLU non-linearities.

The last layer of the encoder outputs the descriptor, with 512 entries. On the other hand, the

MLP decoder has four fully-connected layers, with BatchNorm and ReLU after the first three

layers and tanh on the last output layer. We trained the network with mini-batches of size 100 by

using Adam (Kingma and Ba, 2014) and a fixed learning rate of 0.001.

4.2 SOUND: SELF-ORIENTING UNSUPERVISED DESCRIPTOR

The SOUND training workflow is presented in Figure 4.3. As previously pointed, this pipeline

combines the LEAD and Compass architectures in a single network. The training process follows:

(i) perform a radius search for the neighboring points surrounding a feature point p; (ii) convert

the resulting support into a spherical signal (according to subsection 3.1.1); (iii) this signal passes

through the S2 layer, shared between the encoder and the LRF Estimator networks; (iv) on the

descriptor network, the spherical encoder outputs the codework bottleneck (v) deforms a 2D grid

of random points by a plane folding decoder (Groueix et al., 2018); (vi) at the end of de descriptor

branch, we calculate the Chamfer distance between the original input patch and its reconstructed

version is adopted to train the network; (vii) given the input patch we apply a random rotation

to it, and pass through the LRF estimator in a siamese fashion; (viii) we apply a soft argmax

3D to extract a single triplet (α,β,γ) from last layer the feature map; (ix) at the end of the LRF
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estimator network, we calculate the geodesic distance between rotations; (x) we calculate the

network loss by combining Chamfer and geodesic distances.

Figure 4.3: Architecture of the SOUND network

The points within the local support of a given feature point p are converted into a

spherical signal representation and then sent through the spherical encoder to get an equivariant

descriptor. The numbers below the spherical signal indicate the value of cells along the α,β,

and d dimensions. Operations in the encoder are implemented through the Generalized Fourier

Transform with signals discretized according to a bandwidth parameter (Cohen et al., 2018).

Thus, the triplets below the encoder layers indicate the input bandwidth, output bandwidth, and

channels. Starting from the information stored in the descriptor, the decoder reconstructs the

original point cloud deforming the 2D grid. The numbers under each MLP layer denote the value

of input and output channels, respectively. On the LRF estimator network, we apply a random

rotation on the input 3D patch, feeding the network with the original and augmented version to

extract the aligning rotation between them. At test time, only one branch is involved.

4.2.1 Architecture

To understand the SOUND architecture, we split it into four subnets, as depicted in Figure 4.3:

The S2 layer, that produces shared weights between the branches of the network; the encoder,

responsible by learning discriminative features of the descriptor; the decoder, used only at
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training time to reconstruct the patches and aid the encoder on the learning process; and finally,

LRF estimator, that extracts the orientation of patches. The Encoder and Decoder follow the

same principles addressed on the LEAD descriptors, and the LRF estimator follows the Compass

network.

4.2.1.1 Hyperparameters

The layer’s structure remains unchanged concerning the individualized architectures, i.e, channels,

spherical signal, descriptor size, and LRF Estimator and Decoder. However, we had to change the

encoder, synchronizing the inputs of both networks and the output of S2 layer. Despite outputting

a bandwidth of 16 filters on the S2 layer, we changed it to 24, consequently, the following

input/output configuration. Hence, the input bandwidths considering only the descriptor’s part

are 24, 24, 16, 12, and 8.

In consonance with the ablation study presented in subsubsection 4.3.3.1, we employ a

near-identity grid convolution. The last layer of the encoder outputs the descriptor, with 512 bins.

We trained the network with mini-batches of size 8 by using Adam (Kingma and Ba, 2014) and a

fixed learning rate of 0.001.

4.2.2 Loss

The overall loss of SOUND network is given by (4.1), and considers the Chamfer distance,

presented by the Equation (2.7), and the angular distance, from the Equation (3.3):

Lfull = 100×Lchamfer +Langular (4.1)

We choose this weighting by 100 empirically, based on some previous observations

and studies we made that showed that the LRF network tends to converge and overfit more

rapidly compared to the descriptor network. Thus, to hinder this development, we first force

the descriptor convergence by overweighting the chamfer loss. Only when the chamfer loss is

relatively little, after some epochs, the LRF estimator converges more efficiently.

4.3 EXPERIMENTAL RESULTS

4.3.1 Experimental setup

In this section, we test LEAD and SOUND in a pairwise surface registration scenario considering

indoor and outdoor datasets. For indoor we use the 3DMatch benchmark (Zeng et al., 2017a),

together with the Rotated, and for outdoor environments, we adopt the ETH dataset (Pomerleau

et al., 2012). We adopt the same setup proposed in Deng et al. (2018a): each fragment is

downsampled by a voxel grid filter with a leaf of 2 cm and the the surface normals are estimated

using a 17-point neighborhood (Hoppe et al., 1992). Regarding the radius for the descriptors,

to take into account the different scales of the represented geometries, similar to Gojcic et al.

(2019), and Deng et al. (2018a), we consider 0.3 m for 3DMatch and 1.0 m on the ETH.

4.3.2 Evaluation protocol

We evaluate both descriptors in a pairwise registration pipeline following the standard protocol

(Deng et al., 2018a; Gojcic et al., 2019; Li et al., 2020a; Bai et al., 2020). For each scene,

we consider all the pairs of fragments with at least 30% of overlap between them, and we

describe each fragment 5000 uniformly sampled keypoints made available by the authors of the
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benchmark (Zeng et al., 2017a). Each couple of fragments’ correspondences are established by

performing the reciprocal nearest neighbor in the descriptor space (Zeng et al., 2017a). Once the

correspondences are created, we use standard metrics to measure their correctness. We employ

two kinds of measurements: direct measures aimed at verifying the percentage of correctly

matched keypoints such as Feature-match recall and the average number of correct matched

keypoints, and indirect measures designed to inspect the rigid motion matrix derived by matching

local descriptors, such as the Relative Rotation Error (RRE) and Relative Translation Error

(RTE).

As for the comparison against the state-of-the-art methods, we adopt the commonly

hand-crafted descriptors FPFH (Rusu et al., 2009), Spin Images (Johnson and Hebert, 1999),

SHOT (Salti et al., 2014) and USC (Tombari et al., 2010). Moreover, we compare against the

current state-of-the-art in learned 3D feature descriptors considering: 3DMatch (Zeng et al.,

2017a), CGF (Khoury et al., 2017), PPFNet (Deng et al., 2018b), 3DSmoothNet (Gojcic et al.,

2019), FCGF (Choy et al., 2019b), D3Feat (Bai et al., 2020) and Li et al. (Li et al., 2020a) as

supervised methods, while PPFFoldNet (Deng et al., 2018a), 3DPointCaps (Zhao et al., 2019)

and the previous version of LEAD (Spezialetti et al., 2019), as unsupervised ones. We take the

implementations of the hand-crafted methods from the PCL library (Rusu and Cousins, 2011),

while for learned descriptors, we grab the results from the original papers, except for the FCGF

results on the ETH dataset (Table 4.6), not provided by the authors, but generated using their

original code.

4.3.2.1 Feature-match recall

The feature-match recall (Deng et al., 2018a) assesses the percentage of fragment pairs that can

recover the pose with high confidence. According to this metric, a pair of fragments is correctly

registered when the number of matched keypoints is greater than the τ2 threshold, set to 5% of

the extracted keypoints. We consider a correct match between two keypoints if the distance l2
between them, after being aligned with the ground truth transformation, is below a threshold

τ1 = 10 cm.

4.3.2.2 RRE and RTE

The relative rotation and translation errors measure the quality of the estimated rigid motion

after applying RANSAC on the set of correspondences established by matching local 3D feature

descriptors, compared to the ground-truth one. Given, the translation (T̂ ) and rotation (R̂) output

of RANSAC, and the respective ground-truth T ∗ and R∗, we calculate the RRE and RTE by Eqs.

(4.2) and (4.3):

RRE = arccos
(

(tr(R̂T R∗)−1)
2

)
(4.2)

RTE =
∣∣∣T̂ −T ∗

∣∣∣ (4.3)

4.3.3 Results on the 3DMatch Benchmark dataset

We report the experimental evaluation results on the 3D Match benchmark in terms of feature-

match recall in Table 4.1. The first outcome of our experiments is that LEAD improves over the

previous proposal (Spezialetti et al., 2019). Moreover, the average recall of 95.84% outperforms

all state-of-the-art 3D local descriptors on the standard registration benchmark, except for Li et al.
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(2020a), which achieves the best performance. However, it is worth noting that the work proposed

by Li et al. (2020a) employs a neural render to parameterize the local neighborhood of a 3D

keypoint into a collection of depth images to perform multi-view reasoning. Regarding SOUND,

the results are also inspiring and demonstrate the feasibility of such integrated approaches, being

outperformed only by very recent, and supervised approaches like Li et al. (2020a), D3Feat (Bai

et al., 2020), and LEAD.

The second outcome which magnifies even more our work, is that with unsupervised

methods we outperform most of the supervised approaches, i. e., FCGF (Choy et al., 2019b) and

3DSmoothNet (Gojcic et al., 2019). We also perform consistently well against the unsupervised

proposals such as PointCaps3D (Zhao et al., 2019), PPF-FoldNet (Deng et al., 2018a) with a gain

of 0.17 over the top performer PointCaps3D, in this regard we run the benchmark using only

2000 keypoints, i. e., LEAD 2K, since the authors in (Zhao et al., 2019) provided results for a

limited number of keypoints. The hand-crafted proposals, leaded by SHOT (Salti et al., 2014)

and USC (Tombari et al., 2010) are able to compete and, sometimes outperform the learning

approaches such as PPFFoldNet (Deng et al., 2018a) and PointCaps3D (Zhao et al., 2019).

Table 4.1: Results on the 3DMatch benchmark in terms of feature-match recall. Test data are from SUN3D (Xiao

et al., 2013), except for Kitchen data which is from 7-scenes (Shotton et al., 2013). Best result on each column is in

bold.

Kitchen Home 1 Home 2 Hotel 1 Hotel 2 Hotel 3 Study MIT Lab Average

PPFFoldNet (2K) 0.7352 0.7564 0.6250 0.6593 0.6058 0.8889 0.5753 0.5974 0.6804

PointCaps3D (2K) 0.8518 0.8333 0.7740 0.7699 0.7308 0.9444 0.7397 0.6494 0.7867

LEAD (2K) 0.9822 0.9679 0.9087 0.9956 0.9519 0.9815 0.9281 0.8961 0.9515

FPFH 0.7391 0.7885 0.6442 0.8142 0.7115 0.8889 0.7432 0.7013 0.7539

Spin Images 0.6561 0.7564 0.6731 0.6770 0.6346 0.7407 0.4692 0.4545 0.6327

SHOT 0.8893 0.8974 0.8221 0.9336 0.8750 0.8889 0.8630 0.8312 0.8751

USC 0.9308 0.9103 0.7788 0.9204 0.8462 0.8889 0.8664 0.8052 0.8684

3DMatch 0.5810 0.7244 0.6154 0.5442 0.4808 0.6111 0.5171 0.5065 0.5726

CGF 0.4605 0.6154 0.5625 0.4469 0.3846 0.5926 0.4075 0.3506 0.4776

PPFNet 0.8972 0.5577 0.5913 0.5796 0.5769 0.6111 0.5342 0.6364 0.6231

PPFFoldNet 0.7866 0.7628 0.6154 0.6814 0.7115 0.9444 0.6199 0.6234 0.7182

Spezialetti et al. (2019) 0.9802 0.9615 0.8942 0.9823 0.9519 0.9815 0.9144 0.8701 0.9420

3DSmoothNet 0.9700 0.9550 0.8940 0.9650 0.9330 0.9820 0.9450 0.9350 0.9474

FCGF 0.9860 0.9620 0.9330 0.9780 0.9420 0.9820 0.9350 0.8960 0.9518

D3Feat - - - - - - - - 0.9580

Li et al. (2020a) 0.9940 0.9870 0.9470 0.9960 1.0000 1.0000 0.9550 0.9220 0.9750
LEAD-PN 0.9348 0.9167 0.8269 0.9115 0.8269 0.9259 0.8219 0.7792 0.8680

LEAD 0,9901 0.9808 0.9135 0.9956 0.9808 0.9815 0.9418 0.8831 0.9584

SOUND 0,9862 0.9679 0.9183 0.9956 0.9615 0.9815 0.9315 0.8831 0.9532

In Figure 4.4, we report results when varying the threshold τ2 on the percentage of

correct matches to establish a pair of fragment correctly aligned (Deng et al., 2018a). LEAD

and SOUND outperform the others competitors for almost all thresholds, and this difference is

more prominent when the value of the threshold is increased, giving a difference of almost 10%

regarding 3DSmoothNet (Gojcic et al., 2019) and FCGF (Choy et al., 2019b) at τ2 = 0.2.

Finally, in Table 4.2 we report the results for the rotated 3DMatch benchmark (Deng

et al., 2018a). As expected, all the rotation-invariant methods get performance similar to the

results reported in 4.1, and our equivariant descriptor oriented at test time with FLARE (Petrelli

and Di Stefano, 2012) still delivers competitive performance against Li et al. (2020a).

To get a thorough evaluation, we investigated on the quality of the found correspondences,

recalling that we consider two keypoints a match when the l2 distance between a keypoint on the

first fragment and its correspondent on the second one after the alignment with the ground-truth
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Figure 4.4: Results of different methods under varying inlier ratio threshold τ2.

Table 4.2: Results on the rotated 3DMatch benchmark in terms of feature-match recall. Test data are from SUN3D

(Xiao et al., 2013), except for Kitchen data which is from 7-scenes (Shotton et al., 2013). Best result on each column

is in bold.

Kitchen Home 1 Home 2 Hotel 1 Hotel 2 Hotel 3 Study MIT Lab Average

PointCaps3D (2K) 0.8498 0.8525 0.7692 0.8141 0.7596 0.9259 0.7602 0.7272 0.8073

PPFFoldNet (2K) 0.7352 0.7692 0.6202 0.6637 0.6058 0.9259 0.5616 0.6104 0.6865

LEAD (2K) 0.9862 0.9744 0.8942 0.9956 0.9615 0.9815 0.9315 0.8571 0.9478

FPFH 0.7451 0.7949 0.6587 0.8142 0.7212 0.9259 0.7260 0.7530 0.7674

Spin Images 0.6502 0.7628 0.6635 0.6903 0.6635 0.7222 0.4692 0.4935 0.6394

SHOT 0.8794 0.8910 0.8317 0.9425 0.8654 0.9074 0.8493 0.8312 0.8747

USC 0.9170 0.9103 0.7548 0.9292 0.8558 0.9074 0.8836 0.8571 0.8769

3DMatch 0.0040 0.0128 0.0337 0.0044 0.0000 0.0096 0.0000 0.0260 0.0113

CGF 0.4466 0.6667 0.5288 0.4425 0.4423 0.6296 0.4178 0.4156 0.4987

PPFNet 0.0020 0.0000 0.0144 0.0044 0.0000 0.0000 0.0000 0.0000 0.0026

PPFFoldNet 0.7885 0.7821 0.6442 0.6770 0.6923 0.9630 0.6267 0.6753 0.7311

Spezialetti et al. (2019) 0.9763 0.9679 0.8894 0.9779 0.9615 0.9815 0.9110 0.8442 0.9387

3DSmoothNet 0.9720 0.9620 0.9090 0.9650 0.9230 0.9820 0.9450 0.9350 0.9491

FCGF 0.9783 0.9744 0.9183 0.9735 0.9712 0.9815 0.9452 0.8831 0.9532

D3Feat - - - - - - - - 0.9550

Li et al. (2020a) - - - - - - - - 0.9690
LEAD-PN 0.9328 0.9295 0.8462 0.9204 0.8462 0.9259 0.8253 0.7662 0.8741

LEAD 0.9921 0.9744 0.8990 0.9956 0.9712 0.9815 0.9452 0.9221 0.9601

is smaller than τ1 = 10cm. The results reported in Table 4.3 show dominance on the benchmark’s

scenes and the average by the multi-view approach of Li et al. (2020a) against the pure 3D based

approaches. However, SOUND is the second-best method, followed by LEAD, both with a

significant gain over 3DSmoothNet.

Additionally, we adopt a more application-oriented metric to verify the quality of

the alignment carried out by our descriptor in a full pairwise registration pipeline. Thus, we

also evaluate our proposal in terms of the RRE and RTE presented in subsubsection 4.3.2.2

after applying RANSAC. From the results exhibited in Table 4.4, we can claim that SOUND

outperforms the other competitors, and LEAD performs at the same level with Gojcic et al.

(2019), with a slightly better performance in RTE on average. It is valuable to recall how

RANSAC operates, at least 3 matches are necessary to correctly estimate a rigid motion between

two fragments, this justify why the gain in performance of our methods seem modest against

3DSmoothNet (Gojcic et al., 2019), even if the number of correctly matched keypoint is larger as

we showed in Table 4.3.
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Table 4.3: Average number of correct correspondences on the 3DMatch Benchmark. Best result on each column is

in bold.

Kitchen Home 1 Home 2 Hotel 1 Hotel 2 Hotel 3 Study MIT Lab Average

FPFH 89 142 125 86 94 119 56 74 98

SHOT 154 206 182 131 124 159 84 121 145

SI 120 145 152 102 91 111 51 71 105

USC 150 216 175 147 120 159 97 161 153

3DMatch 103 134 125 73 64 64 64 84 88

CGF 125 156 142 90 94 130 55 78 108

Spezialetti et al. (2019) 265 333 304 296 261 293 223 292 283

3DSmoothNet 274 324 318 272 238 276 171 246 264

Li et al. (2020a) 380 438 395 457 407 446 299 366 398
LEAD-PN 205 255 246 194 182 212 152 185 204

LEAD 273 336 314 307 277 310 226 290 292

SOUND 276 338 316 313 279 310 229 292 294

Table 4.4: Results on the 3DMatchBenchmark in terms of RRE and RTE after RANSAC. Best result on each column

is in bold.

Kitchen Home 1 Home 2 Hotel 1 Hotel 2 Hotel 3 Study MIT Lab Average

RRE RTE RRE RTE RRE RTE RRE RTE RRE RTE RRE RTE RRE RTE RRE RTE RRE RTE

FPFH 11.58 0.31 13.77 0.48 30.51 0.78 8.02 0.25 18.26 0.44 15.60 0.27 18.40 0.54 14.43 0.51 16.32 0.45

SHOT 5.42 0.14 9.59 0.29 14.40 0.44 4.65 0.17 14.86 0.33 10.82 0.14 13.16 0.39 9.34 0.33 10.28 0.28

SI 9.86 0.27 16.37 0.47 20.04 0.60 10.00 0.32 20.14 0.53 16.64 0.29 23.57 0.72 23.73 0.54 17.55 0.47

USC 9.85 0.25 13.38 0.43 30.77 0.82 10.06 0.33 27.33 0.64 16.55 0.25 13.39 0.42 16.87 0.50 17.27 0.46

3DMatch 9.37 0.29 9.31 0.29 16.64 0.58 13.97 0.53 29.21 0.80 23.47 0.41 16.09 0.51 20.63 0.79 17.34 0.52

Spezialetti et al. (2019) 4.00 0.10 7.04 0.22 13.64 0.34 2.53 0.10 7.09 0.18 8.51 0.11 7.87 0.25 9.50 0.29 7.52 0.20

3DSmoothNet 3.88 0.10 8.62 0.27 10.36 0.29 2.23 0.07 8.40 0.29 8.01 0.10 8.68 0.27 8.54 0.34 7.34 0.22

Li et al. 2.33 0.06 2.99 0.10 6.11 0.23 2.20 0.07 4.31 0.12 4.98 0.08 5.97 0.21 4.20 0.17 4.14 0.13
LEAD 3.68 0.10 6.72 0.19 12.46 0.34 2.44 0.08 7.83 0.22 6.77 0.11 8.00 0.26 10.81 0.32 7.34 0.20

SOUND 3.56 0.10 7.01 0.20 10.96 0.31 2.85 0.09 7.81 0.21 6.90 0.10 8.06 0.26 10.52 0.30 7.21 0.20

4.3.3.1 Ablation study: Near Identity versus Equatorial Grid

As design choice of Spherical CNNs (Cohen et al., 2018) architecture, two distinct types of

spherical grids and hyper-parameters are available to perform both S2 and SO(3) correlations:

the near identity and equatorial grids. The former defines spatially localized kernels, initialized

on the north pole, and rotated over the sphere via the action of SO(3), the latter one, defines a

ring-like kernel around the equator. Choosing the more appropriate grid and hyper-parameters

to use in the architecture is key to our framework’s performance. Thus, we conduct thorough

ablative experiments on 3DMatch dataset aimed at improving the performance of the descriptor

regarding the original architecture proposed in Spezialetti et al. (2019), in terms of feature-match

recall and description time as well.

We build up different architectures by varying the type of spherical grid, the number of

SO(3) layers, the channels, and the layers’ bandwidth. We train a different network for all the

configurations presented in Table 4.5 and execute the trials for the learned descriptors on the test

split of 3DMatch Benchmark (Zeng et al., 2017a) considering a reduced number of keypoints,

500 instead of 5000. To select the best architecture, we examine the feature-match recall and the

time required to forward-pass a constant mini-batch of 25 samples. As a unit of measure for the

computation time, we adopt the percentage of speed-up relative to the original architecture (A)

(Spezialetti et al., 2019).

Finally, the best trade-off configuration is selected according to the Pareto analysis

presented in Figure 4.5. It turns out that the version N (Table 4.5) represents the best feature-match

recall performance on the Pareto frontier, with a significant reduction on the time processing.
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Table 4.5: Ablation study results on the 3DMatch benchmark. With Time we refer a time relative to the base network

architecture (A). Networks on the Pareto frontier on the column Network, best values on recall and Normalized time

in bold. Tests are performed for a subset of 500 keypoints

Network
Grid SO(3)

layers

Input

Bandwidths
Channels Recall Time

Equatorial Near Identity

A � 3 [24, 24, 4] 40 0.924 1.000

B � 3 [24, 24, 4] 40 0.922 1.025

C � 3 [24, 24, 24] 40 0.922 1.238

D � 3 [24, 24, 24] 40 0.929 1.253

E � 2 [24, 24] 40 0.919 1.025

F � 3 [12, 8, 6] 40 0.922 0.636

G � 3 [16, 12, 8] 60 0.899 0.679

H � 3 [16, 12, 8] 40 0.915 0.632

I � 3 [16, 12, 8] 40 0.924 0.634

J � 3 [16, 12, 8] 30 0.902 0.611

K � 3 [16, 12, 8] 20 0.916 0.587
L � 2 [16, 8] 40 0.920 0.604

M � 4 [16, 12, 8, 6] 40 0.908 0.637

N � 4 [16, 12, 8, 6] 40 0.929 0.632
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Figure 4.5: Ablation study comparing the different configurations in terms of feature-match recall and speed up.

Each configuration is detailed on the Table 4.5. The light gray area shows the Pareto frontier of the test.

4.3.3.2 Ablation study: Rotation Invariant versus Rotation Equivariant Descriptor

To better analyze the importance of our major claim about learning a rotation equivariant

embedding than an invariant one, we train a network replacing the Spherical encoder with a

three-layer PointNet (Qi et al., 2017a). As we stated in section 4.1, the PointNet encoder cannot

learn the invariance to the object’s pose, so we feed the network with raw point cloud patches

rotated according to the canonical orientation extracted by an LRF, at training and testing time as

well. For a fair comparison with the LEAD descriptor, we rely on the same LRF, i. e., FLARE

(Petrelli and Di Stefano, 2012), and learn a descriptor of the same size, 512 bins. Both networks

are trained with the same procedure on the same train split with a local radius of 0.30 m. Please

notice, that for LEAD, the LRF is only used a test time to rotate the descriptor. In Tables 4.1 and

4.2, we present the comparison between LEAD descriptor and the invariant one, LEAD-PN for

the 3DMatch and 3DMatch Rotated datasets. These results corroborate with our claim showing

a significant improvement margin of almost 10% of the equivariant descriptor, LEAD, on the

invariant learned with PointNet. This experiment validates that if we want to depart from the need

to feed a specific invariant input representation to the network, we have to learn an equivariant

representation, and Spherical CNN is the proper tool to achieve this goal.
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4.3.4 Results on the ETH dataset

To evaluate how our proposal performs in an outdoor scenario and how it generalizes to new

environments, we tested LEAD and SOUND on the ETH dataset. We get the models trained

on the 3DMatch and perform a transfer learning on this dataset. We present the results for

feature-match recall in Table 4.6. Our descriptors achieve by far the best performances on this

very challenging dataset, recording 97.5% for LEAD, and 97.1% for SOUND on average recall,

and outperforming all the state-of-the-art techniques by almost 20%. Surprisingly, FCGF, which

remarkably performs on the 3DMatch, does not transfer very well on outdoor conditions resulting

in poor scores. The same problem arises both for Li et al. (2020a) and D3Feat, the latter in

particular achieves acceptable performance only when coupled with the keypoint detector jointly

learned with the descriptor, i. e., D3Feat (pred), while when used to describe the set of keypoints

provided for the benchmark, i. e., D3Feat (rand), exhibits a drop in performance. However, these

results show that our unsupervised approach is adaptable and could present remarkable results

on a very challenging dataset, such as ETH, without being trained on it. It is worth noting that

SOUND’s performance is compromised due to the gazebo summer scene performance. For two

of the scenes, SOUND performs perfectly on this metric.

Table 4.6: Results on the ETH data set in terms of feature-match recall. Best result on each column is in bold.

Method
Gazebo Wood

Average
Summer Winter Summer Autumn

FPFH 0.3860 0.1420 0.1480 0.2080 0.2210

SHOT 0.7450 0.4530 0.6320 0.6170 0.6118

SI 0.6957 0.3979 0.5520 0.5043 0.5375

USC 0.7065 0.2872 0.6160 0.6348 0.5611

CGF 0.3750 0.1380 0.1920 0.1040 0.2023

3DMatch 0.2280 0.0830 0.2240 0.1390 0.1685

Spezialetti et al. (2019) 0.6739 0.4844 0.5920 0.5304 0.5702

3DSmoothNet 0.9130 0.8410 0.7280 0.6780 0.7900

FCGF 0.2554 0.1661 0.2348 0.3040 0.2410

D3Feat (rand) 0.4570 0.2390 0.1300 0.2240 0.2620

D3Feat (pred) 0.8590 0.6300 0.4960 0.4800 0.6160

Li et al. 0.8530 0.7200 0.8400 0.7830 0.7990

LEAD 0.9239 0.9862 0.9913 1.0000 0.9753
SOUND 0.8967 0.9862 1.0000 1.0000 0.9707

Table 4.7: Average number of correct correspondences on the ETH dataset. Best result on each row is in bold.

Method
Gazebo Wood

Average
Summer Winter Summer Autumn

FPFH 69 33 32 26 40

SHOT 132 85 100 81 100

SI 106 59 64 53 71

USC 72 22 32 24 37

CGF 73 36 37 32 44

3DMatch 40 16 47 29 33

Spezialetti et al. (2019) 124 94 111 90 105

3DSmoothNet 182 139 157 127 151

Li et al. 160 117 160 121 139

LEAD 149 142 168 139 149

SOUND 149 157 200 172 170

Similar to the 3DMatch, in Table 4.7 we report the results for the matched descriptors

and in Table 4.8 for the RRE (degrees) and RTE (meters).



71

Table 4.8: Results on the ETH dataset (Pomerleau et al., 2012) in terms of RRE and RTE . Best result on each

column is in bold.

Method

Gazebo Wood
Average

Summer Winter Autumn Summer

RRE RTE RRE RTE RRE RTE RRE RTE RRE RTE

FPFH 27.31 0.74 55.69 1.76 34.18 1.10 38.62 1.07 38.95 1.17

SHOT 14.96 0.37 54.90 1.58 4.04 0.48 3.73 0.32 19.41 0.69

SI 8.35 0.20 39.80 1.17 7.23 0.66 14.68 0.55 17.51 0.65

USC 38.62 0.92 76.88 2.21 14.59 0.96 23.98 0.94 38.52 1.26

CGF 29.04 0.69 70.87 2.00 30.62 1.35 41.91 1.26 43.11 1.32

3DMatch 60.03 1.40 78.88 2.28 31.34 1.07 42.76 1.33 53.25 1.52

Spezialetti et al. (2019) 6.98 0.24 41.62 1.20 4.81 0.40 5.62 0.34 14.76 0.55

3DSmoothNet 1.52 0.07 30.82 0.86 1.38 0.38 1.06 0.20 8.70 0.38

Li et al. 20.49 0.50 43.12 1.19 0.88 0.05 1.06 0.09 16.39 0.46

LEAD 1.29 0.05 35.00 0.99 0.74 0.10 0.90 0.08 9.48 0.31

SOUND 6.56 0.14 16.77 0.46 0.64 0.07 0.71 0.11 6.17 0.20

When we consider the RRE and RTE errors, SOUND presents the best performance

over the competitors, with significant relative error improvements. Compared to LEAD, a similar

descriptor, pushed by a very efficient LRF such FLARE, these results show how this approach

is promising. Two scenes deserve attention: the first is the gazebo summer, where SOUND

performs relatively worst than LEAD and 3DSmoothNet, corroborating with the results from

Table 4.6. The second shows considerable improvement on the RRE on the gazebo winter scene,

where SOUND presents an error of 16.8◦, while in the other competitors when the error is

higher than 30◦. Regarding the RTE metric, the overall results of SOUND also demonstrate this

method’s robustness by presenting a translational error 10cm lower than the other competitors on

average.

Table 4.7 presents the same tendency of the previous table, i.e., on the Gazebo Summer
SOUND and LEAD present discrepant results regarding the others, also contributing to the

average value. Again, SOUND outperforms by far the other tested methods on average.

4.3.5 Computation time

We run our algorithm on a system with a CPU i7 3.2 GHz, a GPU RTX 2080Ti, and 64 GB of

RAM. On this hardware, each keypoint description time is about 5.98 ms on average, with an

inference time on the GPU of 0.08 ms. This time is comparable to the results got by 3DMatch

(Zeng et al., 2017a) and 3DSmoothNet (Gojcic et al., 2019), of 5.0 and 4.6 ms respectively.

Comparing to other proposals such as PPF-FoldNet (Deng et al., 2018a) (0.794ms), PointCaps3D

(Zhao et al., 2019) (1.208 ms) and FCGF (Choy et al., 2019b) (0.009 ms). From the first one, the

low performance of PPFFoldNet compared to our method does not encourage its use despite

the time performance. FCGF presents a swift description time but does not perform well in

transfer learning for the ETH dataset, and it is also important to point out it demands a higher

number of keypoints, to get the results presented on Tables 4.1, 4.2 and 4.6, as explained in Choy

et al. (2019b). One way to improve our inference processing time is by leveraging the recent

improvements on the Spherical CNNs, called Icosahedral CNNs (Cohen et al., 2019), which,

according to the authors, can unlock a substantial boost on the time performance. In this stage,

we do the conversion from the point coordinates of the 3D patch to the CPU’s spherical signal,

and indeed it can reduce this processing time when performing on the GPU.
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4.3.6 Qualitative results

To verify the quality of registering a pair of fragments, we present qualitative results after aligning

the point clouds with the estimated rigid motion matrix. We present them in Figure 4.6 for the

3DMatch dataset and in Figure 4.7 for the ETH dataset. We compare our descriptor’s registration

results with the 3DMatch descriptor (Zeng et al., 2017a) as the baseline method for this dataset

and with 3DSmoothNet (Gojcic et al., 2019), both supervised approaches. The examples show

that LEAD produces correct alignments and sometimes present results even better than the

ground truth ones, as we can see on the Home 2 and Hotel 2 scenes.
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Figure 4.6: Registration results on the 3DMatch Benchmark after RANSAC.
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Figure 4.7: Registration results on the ETH Benchmark after RANSAC.

4.4 FINAL REMARKS AND OVERVIEW

In this chapter, we presented LEAD, an unsupervised approach to learning an equivariant

descriptor. This descriptor offers outstanding innovation. It is the first orientable descriptor at

test time, thanks to the Spherical CNNs framework employed on its development. The results

reported show that despite the high accuracy of the standard 3DMatch benchmark, LEAD

outperforms the other competitors in transfer learning, featuring state-of-the-art on the ETH

dataset. LEAD, extends the proposal of Spezialetti et al. (2019), with significant improvements on

the performance of both datasets and the computation and training time. Among the upgrades: An

ablation study on the architecture of the network; The use of the ETH dataset on the experiments;

The proposal of an invariant descriptor based on the PointNet framework; and a speedup of 37%

on the description time, 2% for 3DMatch and 71% for ETH on the feature-match recall.

We also presented, to the best of our knowledge, the first self-orienting descriptor,

leveraged by the Spherical CNN framework, which combines two architectures proposed by

ours: the LEAD, to learn an embedding discriminant feature vector; and Compass, to extract

the orientation of the patches. This proposal presents significant improvements in a transfer

learning scenario, on the ETH dataset, on metrics such as RRE, RTE, and the number of matched

descriptors. SOUND is the first end-to-end descriptor that achieves invariancy by learning

discriminative features from data and its orientation without needing any pre-labeled data.
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5 BOOSTING OBJECT RECOGNITION IN POINT CLOUDS BY SALIENCY DETEC-
TION

The application of CV techniques aimed at object recognition is gathering increasing attention in

industrial applications. Among others, prominent applications in this space include robot picking

in assembly lines and surface inspection. To address such tasks, the vision system must estimate

the 6DoF pose of the sought objects, which calls for a 3D object recognition approach. Moreover,

in industrial settings, robustness, accuracy, as well as run-time performance are particularly

important.

Reliance on RGB-D sensors providing both depth and color information is conducive to

3D object recognition. Nevertheless, typical nuisances to be dealt with in 3D object recognition

applications include clutter, occlusions, and the significant degree of noise, which affects most

RGB-D cameras. Many studies, such as Johnson and Hebert (1999), Guo et al. (2014b), have

investigated these problems and highlighted how local 3D descriptors could effectively withstand

clutter, occlusions, and noise in 3D object recognition.

The local descriptors pipeline for 3D object recognition is, however, relatively slow.

Indeed, RGB-D cameras generate a high amount of data (over 30MB/s), and, as this may hinder

performance in embedded and real-time applications, sampling strategies are needed. In order to

reduce processing time, keypoint extraction techniques are widely used. Besides, some solutions

propose to assign higher priority to specific image areas, like, for example, in the foveation

technique (Gomes et al., 2013). Another approach, inspired by human perception and widely

explored for 2D image segmentation, consists of saliency detection, which identifies the most

prominent points within an image (Aytekin et al., 2018). Unlike the foveation, which processes

arbitrary regions, saliency allows for highlighting image regions that are known to be more

important.

This chapter proposes a solution to improve the standard local descriptors pipeline’s

performance for 3D object recognition from point clouds. The idea consists of adding a

preliminary step, referred to as Saliency Boost, which filters the point clouds using a saliency

mask to reduce the number of processed points and, consequently, the whole processing time.

Besides, by selecting only salient regions, our approach may yield a reduction in the number of

false positives, thereby often also enhancing object recognition accuracy.

5.1 FUNDAMENTALS

3D object recognition systems based on local descriptors typically deploy two stages, one carried

out offline and the other online, referred to as training and testing, respectively. The training

stage builds the database of objects, storing their features for later use. In the testing stage, then,

features are extracted from scene images. Given a scene, the typical pipeline, depicted in Figure

5.1 and described, e.g., in Chen and Bhanu (2007), consists of the following steps 1) Keypoints

extraction; 2) Local descriptors calculation; 3) Matching; 4) Grouping correspondences; and

5) Absolute orientation estimation (also presented in Figure 2.11). The first two, described in

more detail below, are those that distinguish the various approaches and impact performance

most directly.
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5.1.1 Saliency Detection

Salient object detection is a topic inspired by human perception, which affirms that human

beings tend to select visual information based on attention mechanisms in the brain (Kastner and

Ungerleider, 2000). Its objective is to emphasize regions of interest in a scene (Aytekin et al.,

2018). Many applications benefit from saliency, such as object tracking and recognition, image

retrieval, restoring, and segmentation.

The majority of recent works perform saliency detection using either RGB (Hou et al.,

2017; Aytekin et al., 2018; Liu et al., 2019a) or RGB-D (Li et al., 2018b; Chen et al., 2019)

images and are based on Deep Learning algorithms.

5.2 PROPOSED APPROACH

We present a way to significantly improve the time performance and the memory efficiency of the

standard pipeline described above by adding a step to the original pipeline. We refer to this step

as Saliency Boost. It leverages the RGB scene image by detecting salient regions within it, which

are then used to filter the point cloud and execute the local descriptors’ pipeline only on salient

regions. In particular, we use the saliency mask to reduce the search space for 3D keypoints by

letting them run on the part of the point cloud, which corresponds to the salient regions of the

image. To project saliency information from the 2D domain of the RGB image to the point cloud,

we leverage RGB-D cameras’ registration information. Figure 5.1 presents a graphical overview

of the approach. In the case of 2D keypoint detectors, instead, we run them on the full RGB

image, and we then filter out keypoints not belonging to the salient regions: we do not filter

the image before the keypoint extraction step because 2D detectors also exploit pixels from the

background to define blobs and edges/corners to detect keypoints. In the 3D case, instead, points

from the background are usually far away, and outside the sphere used to define the keypoint

neighborhood, so it is possible to filter them before without affecting the detector performance.

Our approach is not dependent on a specific saliency detection technique. In this work,

we choose the DSS algorithm (Hou et al., 2017), and we detect salient areas by running the

trained model provided by the authors.

Figure 5.1: Local descriptor pipeline with saliency boost.
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5.3 EXPERIMENTAL RESULTS

5.3.1 Local Descriptors Pipeline

In the local feature pipeline for object recognition, the choice of the keypoint extraction and

description methods is key. It depends on the type of application, the kind of 3D representation

available and resolution, or the inherent sensor noise. To evaluate the performance of the proposed

approach in an application-agnostic scenario, we test combinations of several descriptors and

detectors. The selected descriptors are: SHOT and CSHOT (Salti et al., 2014), FPFH (Rusu

et al., 2009) and PFHRGB (Rusu et al., 2008). The keypoint detectors working on 3D data are

Uniform sampling (US), with leaf sizes ranging from 2 to 5 cm with a step of 1 cm, and ISS

(Zhong, 2009), while on images we test SIFT (Lowe, 1999) and FAST (Rosten and Drummond,

2006), run on the RGB image and projected on the point cloud, as discussed.

The matching step is performed by the NN search implemented by the FLANN library,

integrated into the PCL (Rusu and Cousins, 2011). A KdTree is built for each view of each model

in the database, and each keypoint on the scene is matched to only one point of one view of one

model in the database by selecting the closest descriptor among views and models. After this

process, all matches pointing to a view of a model are processed by the GCG algorithm (Chen

and Bhanu, 2007), which selects all the subsets of geometrically consistent matches between the

view and the scene, and estimates the aligning transformation. The transformation obtained from

the largest correspondence group among all the object’s views is considered the best estimation

of the aligning transformation for that object. If an object fails to have a geometrically consistent

subset with at least three matches among all its views, it is estimated as being not present in the

considered scene.

The experiments were carried out on the Kinect dataset from the University of Bologna,

presented in (Salti et al., 2014) and on the Washington RGB-D Object/Scenes datasets (Lai et al.,

2011a).

5.3.2 Evaluation Protocol

To evaluate the performance of the proposed object detection pipeline, the correctness of

predictions both of object presence and pose are evaluated. We adopt the Intersection over Union

(IoU) metric (Equation 5.1), also known as the Jaccard index, and defined as the ratio between the

intersection and the union of the estimated bounding box (BBEst) and the ground truth bounding

box (BBGT ).

IoU = BBGT ∩BBEst

BBGT ∪BBEst
(5.1)

A detection is evaluated as correct if its IoU with the ground truth is greater than 0.25,

as in Song and Xiao (2016). Given detections and ground truth boxes, we calculate precision

and recall (Equations 5.2 and 5.3) by considering a correct estimation as True Positive (TP ),

i.e., IoU ≥ 0.25, an estimation of an absent object as False Positive (FP ), and misdetections or

detections with IoU < 0.25 as False Negative (FN ).

precision = TP

(TP +FP ) (5.2)

recall = TP

(TP +FN) (5.3)
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To calculate precision-recall curves (PRC), we varied the threshold on the number of

geometrically consistent correspondences to declare a detection, increasing it from the minimum

value of 3 up to when no more detections are found in a scene. The area under the PRC curve

(AUC) is then computed for each combination detector/descriptor and used to compare and rank

the pipelines.

5.3.3 Implementation Details

Tests were performed on a Linux Ubuntu 16.04 LTS machine, using PCL version 1.8.1, OpenCV

3.4.1, and the VTK 6.2 library. For comparison purposes, all trials were performed on the same

computer, equipped with an Intel Core i7-3632QM processor and 8GB of RAM. When available

in PCL, the parallel version of each descriptor was used, e.g., for SHOT, CSHOT, and FPFH.

As for detectors’ parameters, the ISS Non-Maxima Suppression radius was set to 0.6
cm, and the neighborhood radius to 1 cm, while for SIFT and FAST, we used the default values

provided in OpenCV. As for descriptors, to estimate the normals, we used the first ten neighbors

of each point while the description radius was set to 5 cm for all the considered.

5.3.4 Results

In this section, we present the results obtained in the experiments. All trials were performed

on Bologna Kinect and Washington RGB-D Scenes datasets, comparing the original pipeline

(blue part in Figure 5.1) with the proposed pipeline with saliency boosting. We tested seven

keypoint extractors for each descriptor and each pipeline, totaling 56 trials for Bologna, and

52 for Washington. We chose to let the pairs PFHRGB and US at 2 and 3 cm away due

to the high computational time of these configurations. The scene processing time, which

comprises the saliency detection (only for the boosted pipeline), keypoint extraction, description,

matching correspondences, clustering, and pose estimation, was measured to verify the proposed

modification’s impact on processing time.

Results in terms of the number of keypoints extracted are presented in Table 5.1. The

saliency filtering significantly reduces the average number of keypoints extracted by each detector.

Evaluating the Bologna dataset, the reduction using saliency boost ranges from 24.58% to almost

80% with an average of 56%. For Washington RGB-D Scenes, this result is even better when the

reduction is from 51.27% to more than 88% for most detectors, and 77.51% on average.

Table 5.1: Average number of keypoints extracted from scenes in the trials with the traditional local pipeline (LP)

and boosted by saliency (Boost). The column “%” represents the reduction between LP w.r.t. Boost. Best value in

bold.

Keypoints Bologna Washington
LP Boost % LP Boost %

FAST 489.71 369.36 24.58 806.77 393.17 51.27

ISS 4201.16 846.75 79.84 6405.17 1347.68 78.96

SIFT 282.79 199.79 29.35 373.56 179.22 52.02

US0.02 4559.80 1457.86 68.03 10174.89 1171.85 88.48

US0.03 2144.07 731.36 65.89 5340.91 613.74 88.51
US0.04 1266.00 446.29 64.75 3368.94 394.41 88.29

US0.05 820.57 303.71 62.99 2343.36 280.44 88.03

Average - - 56.49 - - 76.51

The number of keypoints extracted directly impacts the pipeline’s running time, mainly

by two factors: the number of descriptors that have to be computed and the time it takes to match

them. The SHOT and CSHOT descriptors are calculated relatively fast, but due to their length
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(352 and 1344 bins respectively), the matching phase is slower, accounting for 97 and 99% of the

processing time. The PFHRGB and FPFH are shorter descriptors (250 and 33 bins, respectively),

but the description is slower and requires 94 and 89% of the overall time.

As shown in Tables 5.2 and 5.3, the extraction of keypoints only in salient regions

reduces the processing time for both kinds of descriptors drastically. In the best case, processing

time reduction is as high as 80%, i.e., the boosted pipeline is five times faster due to the proposed

saliency boosting. For all the considered detector/descriptor combinations, deployment of the

saliency boosting step always reduces the processing time significantly. For the Bologna dataset,

these reductions are from 22% for FAST/SHOT to 83% for ISS and US0.05 with FPFH. In

Washington RGB-D Scenes, the improvement is even better, ranging from 51% on FAST/CSHOT

pair to 88%, with a consistent reduction of more than 70% on average for all descriptors.

Despite the results consonant with faster processing time, we observe that SIFT and

FAST keypoint extractors present the lowest improvements concerning the other detectors. These

results are expected due to their 2D nature, as well as the saliency detection. In the case of 3D

extractors, this decrease is more consistent. A reason for that could be the presence of areas with

higher 3D roughness and lower 2D texture variance (naturally non-salient), or even the high

amount of detected points on more distant background areas.

Table 5.2: Average scene processing time (s) on the Bologna Kinect dataset in the trials with the traditional Local

Pipeline (LP) and boosted by saliency (Boost). The column “%” represents the reduction between LP w.r.t. Boost.

Best value in each column in bold.

Bologna Kinect dataset

Keypoints CSHOT SHOT PFHRGB FPFH
LP Boost % LP Boost % LP Boost % LP Boost %

FAST 244.0 174.8 28.36 59.1 45.9 22.31 351.4 238.8 32.06 46.6 19.0 59.14

ISS 226.1 47.7 78.90 72.4 17.1 76.45 2580.4 489.1 81.05 141.9 24.3 82.92

SIFT 132.2 94.5 28.50 34.3 25.7 25.29 195.3 138.2 29.24 31.3 17.7 43.39

US0.02 2167.9 668.8 69.15 505.7 174.5 65.50 2100.9 455.5 78.32 150.6 29.6 80.32

US0.03 988.0 335.6 66.04 238.8 88.0 63.16 913.2 191.5 79.03 137.4 24.1 82.47

US0.04 583.4 205.2 64.83 139.7 54.1 61.29 506.1 103.5 79.56 130.9 22.2 83.08

US0.05 378.1 139.9 63.01 90.7 37.2 58.99 304.3 62.1 79.61 128.7 20.9 83.76
Average 56.97 53.29 65.55 73.58

Table 5.3: Average scene processing time (s) on the Washington RGB-D Scenes dataset in the trials with the

traditional Local Pipeline (LP) and boosted by saliency (Boost). The column “%” represents the reduction between

LP w.r.t. Boost. Best value in each column in bold.

Washington RGB-D Scenes dataset

Keypoints CSHOT SHOT PFHRGB FPFH
LP Boost % LP Boost % LP Boost % LP Boost %

FAST 514.5 250.5 51.31 129.8 62.1 52.12 707.0 294.7 58.32 63.5 16.5 73.97

ISS 1424.8 306.6 78.48 369.0 250.5 32.12 3719.4 761.8 79.52 146.2 27.7 81.05

SIFT 238.6 114.4 52.05 60.7 28.6 52.99 324.7 139.9 56.90 49.2 13.0 73.58

US0.02 1043.5 119.5 88.55 281.6 32.6 88.41 - - - 129.9 19.8 84.80
US0.03 558.5 64.6 88.43 147.6 17.1 88,44 - - - 113.4 17.8 84.31

US0.04 344.7 40.7 88.19 92.8 11.0 88.20 486.7 80.8 83.40 106.9 17.2 83.91

US0.05 235.9 28.5 87.93 64.4 7.8 87.86 311.7 52.7 83.10 103.4 17.0 83.56

Average 76.42 70.02 72.25 80.74

Reducing processing time is only beneficial if it does not harm recognition and

localization performance. Interestingly, deployment of the saliency boosting step very often
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improve AUC concerning the traditional pipeline, as shown in Table 5.4 for Bologna Kinect, and

Table 5.5 for Washington RGB-D Scenes datasets.

Table 5.4: AUC results in the trials for Bologna dataset with the traditional Local Pipeline (LP) and boosted by

saliency (Boost). The column “%” represents the variation between them and negative values represent an accuracy

performance lost. Best value in each column in bold.

Bologna Kinect dataset
CSHOT SHOT PFHRGB FPFH

Keypoints LP Boost % LP Boost % LP Boost % LP Boost %
FAST 0.946 0.874 -7.61 0.915 0.892 -2.45 0.743 0.761 2.43 0.631 0.668 5.89

ISS 0.868 0.881 1.52 0.866 0.912 5.30 0.745 0.900 20.68 0.491 0.752 53.04
SIFT 0.864 0.889 2.83 0.903 0.820 -9.15 0.472 0.549 16.41 0.529 0.476 -10.13

US0.02 0.949 0.948 -0.07 0.941 0.938 -0.31 0.739 0.807 9.19 0.641 0.728 13.48

US0.03 0.861 0.905 5.08 0.875 0.843 -3.58 0.731 0.814 11.37 0.488 0.621 27.26

US0.04 0.832 0.875 5.23 0.824 0.817 -0.92 0.564 0.700 24.22 0.289 0.368 27.14

US0.05 0.582 0.619 6.19 0.682 0.644 -5.64 0.373 0.599 60.76 0.145 0.162 11.77

Average 1.88 -2.39 20.72 18.35

Analyzing first, the results from the Bologna Kinect dataset, particularly for 19 of the 28

trials, which included the saliency boosting step, the pipeline boosted by saliency performed better

on AUC, with significant improvements by more than 50% for PFHRGB and FPFH. Viceversa,

when the AUC decreases due to the saliency boost’s deployment, it usually does it marginally, by

1 or 2%, with the worst decrease in AUC being more significant than 10% only once when using

the SIFT detector. While the AUC generally increases with the boosted pipeline, it does not do

so on average when deployed with the SHOT descriptor. However, it does increase by 5% in the

very relevant case of combining SHOT with the ISS detector, the combination that delivers the

fastest running time among all the tested variants (as shown in Table 5.2).

Table 5.5: AUC results in the trials for the Washington RGB-D Scenes dataset with the traditional Local Pipeline

(LP) and boosted by saliency (Boost). Best value in each column in bold.

Washington RGB-D Scenes dataset

Keypoints CSHOT SHOT PFHRGB FPFH
LP Boost LP Boost LP Boost LP Boost

FAST 0.0406 0.1062 0.0227 0.0558 0.0351 0.0544 0.0014 0.0053

ISS 0.0568 0.1329 0.0930 0.1708 0.0082 0.0621 0.0047 0.0237
SIFT 0.0241 0.0736 0.0078 0.0220 0.0063 0.0159 0.0002 0.0010

US0.02 0.0963 0.1957 0.0998 0.1706 - - 0.0006 0.0017

US0.03 0.0346 0.1069 0.0407 0.1043 - - 0.0002 0.0048

US0.04 0.0078 0.0525 0.0186 0.0604 0.0020 0.0017 0.0000 0.0001

US0.05 0.0003 0.0166 0.0037 0.0197 0.0000 0.0021 0.0000 0.0019

Based on the evaluations, we encounter an extremely challenging dataset on the

Washington RGB-D Scenes on the proposed methodology. We face an accuracy lower than 20%

in the best case (US0.02/CSHOT) considering the AUC results. Furthermore, in many situations,

we get AUC lower than 1%, particularly concerning the FPFH and PFHRGB descriptors.

The proposed boosting represents an undeniable gain regarding the improvement in

accuracy, performing better for every trial, except the US0.04/PFHRGB pair. Despite that, we do

not report this % improvement w.r.t. the traditional pipeline as in Table 5.4. The reason is that as

the performances are too low in some cases, reporting such improvement could not reflect a fair

comparison, e.g., for the US0.05/CSHOT pair, the AUC of the boosted is 61× higher than the

traditional pipeline, but still around 1%. Performing a more rational analysis and considering
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only the best cases of each pipeline, we see a massive improvement of nearly 100% for all the

descriptors.

Figure 5.2: AUC × Time Results for the descriptors on the Bologna dataset. Boosted pipeline denoted by an asterisk

(*) next of the keypoint name and a filled marker.

Finally, in Figure 5.2, we report a Pareto analysis of the data for all descriptors,

considering the Bologna Kinect dataset. We can see how the boosted pipeline’s execution obtains

points, i.e., detector/descriptor pairs closer to the ideal position (that is AUC = 1 and time as low

as possible). In this analysis, the CSHOT, SHOT, and FPFH obtained the best performance when

paired with the boosted ISS (ISS∗), while PFHRGB when paired with the Boosted US at r = 3cm
(US∗

0.03). Hence, the boosting pipeline outperforms the traditional one for all tested descriptors

when considering the combined effect of processing time and recognition performance.
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For the Washington RGB-D Scenes dataset, the Pareto analysis is not required because it

clear that the boosted pipeline outperforms the traditional one. As reported in Tables 5.3 and 5.5,

we can see a substantial improvement in the processing time as well the accuracy, represented by

the AUC, for almost all pairs detector/descriptor of the executed trials.

5.4 FINAL REMARKS AND OVERVIEW

This chapter presented an approach based on saliency detection to boost the traditional local

descriptor pipeline in terms of processing time and eventually on accuracy. Results regarding the

application of the boosted pipeline on the Bologna Kinect dataset were previously published in

Marcon et al. (2019).

We evaluated our proposal in two object recognition datasets and verified that all the

tested cases had a significant processing time reduction, from 22 to 88%. Interestingly, the

processing time reduction did not generally decrease the object recognition performance, as

measured by the AUC of the precision-recall curves. Regarding the Bologna Kinect dataset,

we found consistent improvements in the performance recognition for all descriptors in at least

one pairing, up to 5% for SHOT and CSHOT, and more than 50% for FPFH and PFHRGB.

Considering the Washington RGB-D Scenes dataset, the improvements are even better, with

more than a 70% reduction in time processing and the double accuracy performance achieved by

our proposal. However, this particular dataset presents challenging situations, and the results are

coarse, but still endorses the benefits of employing our approach on object recognition tasks.

Despite the improvements in processing time, the whole processing time is not suitable

for real-time applications yet. However, the proposed approach offers a considerable speed-up

without impacting recognition performance negatively, which brings us a step closer to creating a

compelling and real-time local feature pipeline for 3D object recognition.
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6 THE COLOR AND THE SHAPE

Deep learning strategies for object recognition and classification problems have been extensively

studied for RGB images. As the demand for good quality labeled data increases, large datasets

are becoming available, serving not only as a significant benchmark of methods (deep or not)

but also as training data for real applications. ImageNet (Deng et al., 2009) is, undoubtedly, the

most studied dataset, and the de-facto standard on such recognition tasks. This dataset presents

more than 20,000 categories, but a subset with 1,000 categories, known as ImageNet Large Scale

Visual Recognition Challenge (ILSVRC), is mostly used.

Training a model on ImageNet is quite a challenging task in terms of computational

resources and time consumption. Fortunately, transferring its models offer efficient solutions

in different contexts, acting as a blackbox feature extractor. Agrawal et al. (2014) and Huh

et al. (2016) explore and corroborate with this high capacity of transferring models trained on

ImageNet.

In consonance with the results attained on RGB images only, many works have

explored pre-trained models on ImageNet on RGB-D images, achieving state-of-the-art results

on challenging object recognition datasets. Bui et al. (2016) by using AlexNet, Zia et al. (2017)

with VGG, (Caglayan and Burak Can, 2018), and finally, Caglayan et al. (2020) performed

a comparison with several architectures associated with Recursive Neural Networks (RNN).

Despite the performance of pre-trained descriptors on RGB images, exploring depth information

is also valuable (Lai et al., 2011a), and studying learning shape1 feature-extractors on object

recognition is crucial to evolve such applications.

Based on the above-mentioned, the contribution of this chapter is threefold. First, we

evaluate traditional to modern architectures of deep-learning-based networks applied in the

Washington RGB-D Object dataset. We evaluate these architectures in terms of category detection

and instance recognition. Furthermore, we explore the capability of local learned descriptors,

acting in a global context. Finally, we propose using the RGB pre-trained models associated with

global descriptors of the shape. To extract shape features, we employ unsupervised approaches

and consider models trained from scratch and fine-tuned. Results show that this association is

beneficial, increasing the accuracy concerning color-only features.

6.1 RELATED WORKS

6.1.1 Color feature extraction

As a mark on the deep learning history, Krizhevsky et al. (2012) presented the first deep

convolutional architecture employed on the ILSVRC, an 8-layer architecture dubbed AlexNet.

This network was the first to prove that deep learning could beat hand-crafted methods when

trained on a large scale. After that, convolutional networks (ConvNets for short) became more

accurate, deeper, and bigger in terms of parameters. (Simonyan and Zisserman, 2015) propose

VGG, a network that doubled the depth of AlexNet, but exploring tiny filters (3×3), and became

the runner-up on the ILSVRC, one step back the GoogLeNet (Szegedy et al., 2015), with 22

layers. GoogLeNet relies on the Inception architecture, and for this reason, it is also named

1Throughout this chapter, we adopt the term shape referring to geometrical information regarding 3D models.

We do not perform shape feature extraction on RGB images.
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Inception v1. After GoogLeNet come the Inception v2 and v3 (Szegedy et al., 2016), and v4

(Szegedy et al., 2017) architectures, always deeper and bigger.

Another type of ConvNets, called ResNets, uses the concept of residual blocks that use

skip-connection blocks that learn residual functions regarding the input. Given an input x and a

block output F (x) the output of a block that uses skip-connections will be F (x) + x. In practice,

the residual mapping facilitates the optimization process and extracts more high-level features,

exploring deeper architectures. Based on these findings, many architectures have been proposed,

such as ResNet with 50, 101, 152 (He et al., 2016a), and 200 layers (He et al., 2016b). Also,

based on developments regarding the residual blocks, Xie et al. (2017) developed the ResNeXt

architecture. The basis upon ResNeXt blocks resides on the use of parallel ResNet-like blocks

that have the output summed before the residual calculation. Another characteristic of such blocks

is to reduce the bottleneck of each sub-block to a size of d. ResNeXt architectures nomenclature

refers to the number of layers, number of concurrent ResNet blocks, and bottleneck output. For

instance, the best accurate network of this family reported on the ImageNet leaderboard2 is the

ResNeXt-101 32×48d with 101 layers. Each ResNeXt block in such architecture has 32 ResNet

concurrent blocks and a bottleneck of size 48, totaling 829M parameters.

Some architectures propose using deep learning features on resource-limited devices,

such as smartphones and embedded systems. The most prominent architecture is the MobileNet,

with the v1 (Howard et al., 2017), v2 (Sandler et al., 2018), and v3 (Howard et al., 2019).

Another family of leading networks is the EfficientNet (Tan and Le, 2019). Relying on the use

of these lighter architectures, EfficientNet proposes profound networks without compromise

resource efficiency. The authors propose eight architectures starting from 237 to 813 layers

(EfficientNet-B0 and B7, respectively). Table 6.1 presents a comparison between some ConvNets

regarding the depth (number of layers), amount of parameters, and accuracy on the ImageNet

benchmark.

Table 6.1: Deep architectures performance on ImageNet. The column Accuracy refers to the ILSVRC. Year refers to

the oficial availability of the referred publication.

Architecture Layers Accuracy (%) Parameters Year

AlexNet (Krizhevsky et al., 2012) 8 63.3 60M 2012

GoogLeNet (Szegedy et al., 2015) 22 69.8 5M 2014

VGG16 (Simonyan and Zisserman, 2015) 16 74.4 138M 2014

ResNet 50 (He et al., 2016a) 50 77.15 25.6M 2015

ResNet 101 (He et al., 2016a) 101 78.3 40M 2015

ResNet 200 (He et al., 2016b) 200 79.9 63M 2016

Inception v2 (Szegedy et al., 2016) 22 74.8 11.2M 2016

Inception v3 (Szegedy et al., 2016) 48 78.8 24M 2016

ResNeXt-101 32×8d (Xie et al., 2017) 101 82.2 88M 2017

ResNeXt-101 32×48d (Mahajan et al., 2018) 101 85.4 829M 2018

MobileNet v1 (Howard et al., 2017) 28 70.6 4.2M 2017

MobileNet v2 (Sandler et al., 2018) 53 74.7 6.9M 2018

MobileNet v3 (Howard et al., 2019) 53 75.2 5.4M 2019

EfficientNet B0 (Tan and Le, 2019) 237 76.3 5.3M 2019

EfficientNet B7 (Tan and Le, 2019) 813 84.4 66M 2019

2Available on https://paperswithcode.com/sota/image-classification-on-imagenet
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6.1.2 RGB-D object recognition

Many works address the problem of object recognition in RGB-D images. State-of-the-art

methods explore two main trends: based on pre-trained CNNs and using covariance descriptors.

This section explores both families of methods, pointing to the most successful techniques

used for object classification and instance recognition. Starting from the pivotal work of Lai

et al. (2011a) that proposes the RGB-D Object and Scenes dataset, providing as the baseline,

recognition results using descriptors for color, based on the use of SIFT (Lowe, 1999), and for

shape information, by using the Spin Image (Johnson and Hebert, 1999) descriptor.

Methods that explore covariance descriptors provide compact feature vectors for visual

and geometric information, found in point clouds. One may consider the approaches of Fehr et al.

(2014), Beksi and Papanikolopoulos (2015), and Zhang et al. (2017) on the object recognition task.

Despite efficiency, these methods introduce hand-crafted approaches and depend on arbitrary

assumptions, not directly related to the data.

We present some approaches applied to the object categorization task on the RGB-D

Object Dataset, regarding the use of pre-trained CNN models attained from the ImageNet dataset.

Some approaches handle the object recognition task by a multi-modal strategy based on the

combination of RNN and explore high-level features from pre-trained CNNs. As example we

have Bui et al. (2016) that combine RNN and AlexNet, Caglayan and Burak Can (2018) with

VGG pre-trained models, and Caglayan et al. (2020) that perform an evaluation on several popular

architectures, such as AlexNet, VGG, ResNet, and DenseNet. Zia et al. (2017) propose a new

CNN architecture, which is an RGB-D extension of the VGG16 network, based on the projection

of the features maps 2D on the 3D domain.

6.2 PROPOSED APPROACH

As previously pointed, this work proposes a joint adoption of color and shape feature extractors.

For color descriptors, we explore the following networks: AlexNet, VGG16, ResNet101, Inception

v3, MobileNet v2, ResNeXt101 32×8d, and EfficientNet B7. We extracted only the bottleneck

feature map for all these architectures, which corresponds to 1000 bins descriptors. For shape

descriptors, we consider three approaches based on plane folding: the LEAD and LEAD-PN,

presented in Chapter 4 and a fine-tuning on the model presented by Spezialetti et al. (2019), all

of them 512 bins long. Despite these approaches being originally conceived to describe local

features, they were adapted to a global context in this work.

As depicted in Figure 6.1, this work proposes concatenating color and shape descriptors

and verifying if this joint adoption is beneficial to the object recognition task. Before passing

through the classifier, we preprocess both features to perform scaling on the training set by

subtracting the mean and scaling to unit variance, following Equation 6.1. The obtained scaler for

training is then used on the test set, i.e., using the training set’s mean and variance. We employed

in the context of this work, the Gaussian Naïve Bayes (GNB), Support-Vector Classifier (SVC),

Random-Forest (RF), Logistic Regression (LR), and a Multi-layer perceptron (MLP) classifiers.

X̂ = X−μ

σ
(6.1)

The training process of shape descriptors for the LEAD descriptor followed the methods

presented in Chapter 4. For LEAD-PN, we adopted a training process proposed by Groueix et al.

(2018), and for the fine-tuned descriptor, we follow Spezialetti et al. (2019). However, as these

approaches are designed for local patches, we had to globalize the local patches fed as input. We

searched the centroid’s nearest point on the object surface to emulate the keypoint, the whole
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Figure 6.1: Combination of color and shape descriptors scheme for proposed approach.

cloud as the patch, and the full-cloud radius as support. We perform this computation process

individually, and trained in a canonical representation, transforming the input by the inverse of the

LRF transformation, extracted from the patches, using FLARE (Petrelli and Di Stefano, 2012).

6.2.1 Evaluation protocol

We evaluate the proposed method on the Washington RGB-D Object dataset (Lai et al., 2011a), a

dataset containing around 45,000 RGB-D images of 300 object instances of 51 different household

categories objects. Instances are stored as three sequences of contiguous frames captured from a

rotating table at 30◦, 45◦, and 60◦ concerning the camera and the object. We evaluate object

recognition performance on the category (e.g., soda can or coffee mug) and instance (e.g., Pepsi

can or Mountain Dew can) levels. To do so, we follow the standard protocol presented by the

authors (Lai et al., 2011a).

In the category level, we trained the system using the ten splits provided by the authors.

On each split, for each category, one instance is randomly selected to compound the test set, and

the others are for training. At the instance level, the protocol considers two distinct scenarios:

alternating contiguous frames (ACF) and leave-sequence-out (LSO). In the former, we divide

each sequence into three subparts of equal length, totalizing nine sequences, so we randomly

select seven of them for training and two for testing. The latter consists of using the sequences

captured at 30◦ and 60◦ for training and 45◦ for testing. After running the trials, we compute the

average accuracy for category level and instance recognition with ACF. There is no randomness

on the LSO scenario, so we report a single trial accuracy. All the RGB inputs are resized to

224×224 pixels, and normalized by a mean of (0.485,0.456,0.406) and standard deviation of

(0.229,0.224,0.225), following the expected values on the torchvision pre-trained models3. To

preprocess depth input, we cropped the object’s background, applying the provided masks, and

after that, we convert it to a point cloud representation.

6.2.2 Implementation details

We used a Linux Ubuntu 18.04 LTS machine to perform tests, with a CPU Ryzen 7 2700X

eight-core processor, 32GB of RAM, and a GPU RTX 2070 Super. We performed all the

implementations regarding deep architectures on the Pytorch framework and acquired the pre-

trained models from the Torchvision library. We use the FLARE (Petrelli and Di Stefano, 2012)

3Available on https://pytorch.org/docs/stable/torchvision/models.html
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implementation from PCL library 1.8.1, using default parameters, and the ML classifiers are

from the Scikit-learn library.

6.3 EXPERIMENTAL RESULTS

In this section, we show the results achieved in our experiments. We carried out all trials on

the Washington RGB-D Object dataset, regarding category and instance recognition. Firstly

we tested the accuracy performance of features extracted by CNN pre-trained models. We also

compared these features by variating the ML classifier. For this particular trial, the LR classifier

has outperformed the others for all architectures. Hence, we report only the best results in

Table 6.2, and a complete comparison is provided in Appendix A, highlighting the six classifiers

analyzed.

Table 6.2: Comparison of color features from CNN architectures on the Washington RGB-D Object dataset. The

best result reported in blue, the second best in green, and the third in red.

Method Category Instance (LSO) Instance (ACF)

Lai et al. (2011a) 74.7 ± 3.6 60.7 91.0 ± 0.5

AlexNet 73.0 ± 2.6 89.8 93.9 ± 0.4

ResNet101 83.4 ± 2.3 94.1 95.3 ± 0.3

VGG16 77.5 ± 2.6 88.8 91.0 ± 0.6

Inception v3 81.0 ± 2.4 88.1 90.3 ± 0.4

MobileNet v2 82.4 ± 2.4 93.8 95.8 ± 0.3
ResNeXt101 32×8d 85.0 ± 2.1 93.9 95.7 ± 0.4
EfficientNet B7 86.3 ± 3.1 93.8 95.6 ± 0.5

According to Table 6.2, we have four architectures that present at least one result on

the top three. Regarding category recognition, the best model is the EfficientNet-B7 (Tan and

Le, 2019) architecture, which presents 86.3% accuracy. Attending the instance recognition task,

we have the ResNet101 (He et al., 2016a) leading when considering the LSO with 94.1%, and

MobileNet v2 (Sandler et al., 2018), with 95.8% accuracy on the ACF scenario. The ResNext101

(Xie et al., 2017) architecture deserves attention, starring as runner-up on the three recognition

situations.

We also report the performance of the global version of the proposed descriptors

(Chapter 4) and the fine-tuned version of Spezialetti et al. (2019). The results shown in Table 6.3

demonstrate that this approach may not be so useful the way it is, performing worst than the

baseline proposal of Lai et al. (2011a). Among our proposals, Spezialetti et al. (2019) reaches

the best results by its global fine-tuned version, for all experimented scenarios.

Table 6.3: Comparison of shape features on the Washington RGB-D Object dataset. Best result of each column in

bold.

Method Category Instance (LSO) Instance (ACF)

Lai et al. (2011a) 66.8 ± 2.5 46.5 52.7 ± 1.0
LEAD-PN 36.1 ± 1.2 13.0 17.5 ± 0.5

LEAD 50.4 ± 1.0 23.4 30.3 ± 0.6

Spezialetti et al. (2019) 51.2 ± 1.4 25.3 31.7 ± 0.8
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Table 6.4: Category recognition on the Washington RGB-D Object dataset. The best result reported in blue, the

second best in green, and the third in red.

Category
Method Color Shape Color + Shape

Lai et al. (2011a) (RF) 74.7 ± 3.6 66.8 ± 2.5 79.6 ± 4.0

Lai et al. (2011a) (kSVC) 74.5 ± 3.1 64.7 ± 2.2 83.8 ± 3.5

Subset-RNN (Bai et al., 2015) 82.8 ± 3.4 81.8 ± 2.6 88.5 ± 3.1

Fusion 2D/3D CNNs (Zia et al., 2017) 89.0 ± 2.1 89.0 ± 2.1 91.8 ± 0.9

MM-LRF-ELM (Liu et al., 2018) 84.3 ± 3.2 82.9 ± 2.5 89.6 ± 2.5

VGG f-RNN (Caglayan and Burak Can, 2018) 89.9 ± 1.6 84.0 ± 1.8 92.5 ± 1.2

MDSI-CNN (Asif et al., 2017) 89.9 ± 1.8 84.9 ± 1.7 92.8 ± 1.2
HP-CNN (Zaki et al., 2019) 87.6 ± 2.2 85.0 ± 2.1 91.1 ± 1.4

RCFusion (Loghmani et al., 2019) 89.6 ± 2.2 85.9 ± 2.7 94.4 ± 1.4
ResNet101-RNN (Caglayan et al., 2020) 92.3 ± 1.0 87.2 ± 2.5 94.1 ± 1.0
ResNet101 + LEAD (Ours) 83.3 ± 2.3

50.4 ± 1.0

86.4 ± 1.8

MobileNet v2 + LEAD (Ours) 83.4 ± 2.4 85.4 ± 2.2

ResNeXt101 32× 8d + LEAD (Ours) 85.0 ± 2.1 88.2 ± 1.9

EfficientNet B7 + LEAD (Ours) 86.3 ± 3.1 88.7 ± 2.1

Notwithstanding the results of shape-only approaches on the recognition task, we

evaluate if the proposed scheme, as in Figure 6.1, presents a valid method in such applications,

i.e., concatenate color and shape features. Tables 6.4, 6.5, and 6.6 summarize performance

results regarding category and instance recognition (LSO and ACF scenarios). We compare

accuracies considering color features (obtained by the CNN pre-trained networks), shape features

(global versions of proposed methods), and the joint approach (concatenation of color and shape

features). Considering the four best color feature extractors previously selected, three shape

feature extractors, and six machine learning classifiers, we have performed a combination of them,

resulting in 72 trials for each recognition scenario. However, we report the best combination of

each color descriptor. We present a complete evaluation in Appendix A.

Table 6.4 reports a comparison of our proposal with state-of-the-art methods concerning

category detection. We observe that despite achieving a combined performance (Column Color
+ Shape) of over 85% in all situations, our proposals are insufficient compared to state-of-the-art

approaches. However, we must point out that the jointly introduced method presented slightly

better results regarding color-only strategies (Column Color), with improvements from 1.4 to

3.1%. Finally, we point that the LEAD descriptor provided the best improvements for the category

recognition task when associated with the color feature extractors.

Next, we evaluate the recognition task when considering an instance detection circum-

stance. In Tables 6.5 and 6.6, we report such results regarding the LSO and ACF methodologies

(Lai et al., 2011a). First, we observe that differently from the category scenario, for recognition

of instances, Spezialetti et al. (2019) fine-tuned descriptor is better suitable to our approach

combination in most situations, with an exception on the ResNet101 for LSO.

In an LSO evaluation scenario, our proposal becomes more competitive with state-

of-the-art approaches. We observe that ResNet101 and LEAD’s combination brings us in the

top-three considering color-only approaches, and in the fourth position, only 0.1% behind the

third best.
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Table 6.5: Instance recognition on the Washington RGB-D Object dataset (Leave-sequence-out). The best result

reported in blue, the second best in green, and the third in red.

Instance (leave-sequence-out)
Method Color Shape Color + Shape

Lai et al. (2011a) (RF) 59.9 45.5 73.1

Lai et al. (2011a) (kSVC) 60.7 46.2 74.8

Kernel descriptor (Bo et al., 2011) 90.8 54.7 91.2

SP+HMP (Bo et al., 2013) 92.1 51.7 92.8

Multi-Modal (Schwarz et al., 2015) 92.0 - 94.1

CDDL (Beksi and Papanikolopoulos, 2015) - - 93.7

PCC Desc. (Zhang et al., 2017) 92.9 53.7 94.6
MDSI-CNN (Asif et al., 2017) 97.7 57.6 97.9
MM-LRF-ELM (Liu et al., 2018) 91.0 50.9 92.5

HP-CNN (Zaki et al., 2019) 95.5 50.2 97.2
ResNet101 + LEAD (Ours) 94.1 23.4 94.5

MobileNet v2 + Spezialetti (Ours) 93.8

25.3

93.8

ResNeXt101 32× 8d + Spezialetti (Ours) 93.9 93.9

EfficientNet B7 + Spezialetti (Ours) 93.8 93.8

When we analyze the ACF scenario (Table 6.6), we face a predominance of our proposed

techniques. Considering a color-only feature vector, the pre-trained CNN models outperform the

state-of-the-art methods, featuring the first four positions among the competitors. Surprisingly,

the best accuracy was attained by the MobileNet v2 (Sandler et al., 2018), which is an architecture

focused on limited resources devices. Such results encourage more studies on real-time instance

recognition applications. Considering the joint proposal, again, the MobileNet v2 network

combined with Spezialetti et al. (2019) descriptor, reaches the third position in a joint feature

condition.

To examine more deeply our results, we plot the confusion matrices of our best networks

regarding category and instance recognition scenarios. We depict such products in Figures 6.2

and 6.4.

From the category perspective, we observe a highly apparent principal diagonal.

However, two categories have discrepant performance. We see that our proposal fails to predict

the mushroom and food_jar categories, returning the garlic and shampoo classes, respectively.

As we can catch in Figure 6.3, these misclassifications are plausible. First, when we observe

samples of the garlic category, some are easily confounded with mushrooms, including by a

human being. The second example is more related to the preprocessing step we perform on data.

Food_jar and shampoo containers are very different in terms of height and width. However,

the networks trained on ImageNet expect a squared image (224 × 224 pixels), and when we

prepare them to apply to the system, this resizing process does not maintain the aspect ratio. In

Figure 6.3, we present all the examples after performing this cited resizing step, and it is clear the

similarity between them. Another detail that could complicate the features’ discriminability is the

background similarity between them, affecting especially the food_jar and shampoo categories.
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Table 6.6: Instance recognition on the Washington RGB-D Object dataset (Alternating Contiguous Frame). The best

result reported in blue, the second best in green, and the third in red. *Standard deviation doesn’t reported by the

authors.

Instance (alternating contiguous frames)
Method Color Shape Color + Shape

Lai et al. (2011a) (RF) 90.1 ± 0.8 52.7 ± 1.0 90.5 ± 0.4

Lai et al. (2011a) (kSVC) 91.0 ± 0.5 51.2 ± 0.8 90.6 ± 0.6

IDL (Lai et al., 2011b) 54.8 ± 0.6 89.8 ± 0.2 91.3 ± 0.3

CKM Desc. (Blum et al., 2012) - - 92.1 ± 0.4

CDSVM (Fehr et al., 2014) - - 94.4 ± 2.0

CDDL (Beksi and Papanikolopoulos, 2015) - - 96.9 ± 0.5
PCC Desc. (Zhang et al., 2017)* 92.9 53.7 97.1 ± 1.8
ResNet101 + Spezialetti (Ours) 95.3 ± 0.3

30.3 ± 0.7

95.6 ± 0.4

MobileNet v2 + Spezialetti (Ours) 95.9 ± 0.3 95.9 ± 0.2
ResNeXt101 32× 8d + Spezialetti (Ours) 95.7 ± 0.4 95.7 ± 0.2

EfficientNet B7 + Spezialetti (Ours) 95.6 ± 0.5 95.0 ± 0.4

Figure 6.3: Examples of misclassified categories of our proposed method. Our method infer wrongly the garlic

category as being mushroom, and the food jar as being shampoo.

Now, looking at instance recognition results, we face a different kind of problem. The

main diagonal is almost a straight line on the confusion matrix in our method. However, focusing

on the details, we observe some intraclass misclassifications that impact the final accuracy results.

We depict some of them that are most obvious in Figure 6.4. At the beginning of the diagonal line,

we face an intraclass problem case by the banana category. Going further, near the middle of the

line, we have the most visible problems, regarding the lemon and lime classes, and, almost at the

end of the diagonal, we face issues caused by the staples category. In Figure 6.5, we perceive

that these particular cases are very challenging, and mainly on the lemon and lime samples, the

discriminability is impaired.
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Figure 6.2: Confusion matrix of category recognition of the proposed method. This matrix corresponds to the

EfficientNet-B7+LEAD method, trained on the Split 2, according to Lai et al. (2011a).

Figure 6.5: Examples of misclassified instances of our proposed method. We see that there is a high intra-class

similarity in some categories of the dataset. Our method fails in discriminate such instances, as presented in

Figure 6.4
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Figure 6.4: Confusion matrix of instance recognition of the proposed method. This matrix corresponds to the

ResNet101-B7+LEAD method, that presented our best results on the leave-sequence-out scenario. For a high-quality

image please visit: http://bit.ly/cm-resnet101

6.4 FINAL REMARKS AND OVERVIEW

In this chapter, we have presented a simple approach to combining off-the-shelf pre-trained

models. We apply the weights of state-of-the-art architectures proposed and trained for the

ImageNet dataset. We then merge them with the global versions of unsupervised descriptors for

point cloud applications. The results show that this approach, despite the simplicity, is efficient

principally in instance recognition applications, achieving over 95% accuracy for such task.

Shape features have shown a low performance but do not compromise the efficiencies, on instance

recognition, inclusively, their joint use has improved category recognition accuracy, from 1.4 to

3.1%. Following most state-of-the-art studies, maybe working directly on the depth information

could bring more useful results, instead of processing point clouds, as our proposal. Another

hint could be to use ensembles of local descriptors as performed by Lai et al. (2011a) with Spin

Images.

The results we faced in our trials give us support to exploit more applied approaches in

real-world environments. The next section offers a way to level up the comprehension of using

pre-trained models in real-time (or nearly) object recognition applications.
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7 TOWARDS REAL-TIME OBJECT RECOGNITION AND POSE ESTIMATION IN
POINT CLOUDS

Object recognition and pose estimation represent a central role in a broad spectrum of applications,

such as object grasping and manipulation, bin picking tasks, and verification of industrial

assemblies (Wang et al., 2013; Vock et al., 2019). Successful object recognition, highly reliable

pose estimation, and near real-time operation are essential capabilities and operational challenges

for robot perception systems.

A methodology usually employed to estimate rigid transformations between scenes

and objects is centered on a template matching approach. Starting from a known item or a

part of an object, this technique involves searching all the occurrences in a larger, and usually,

cluttered scene (Vock et al., 2019). However, due to natural occlusions, such occurrences may be

represented only by a partial view of an object. The template is often another point cloud, and

the main challenge of the template matching approach is to maintain the runtime feasibility and

preserve the robustness.

Template matching approaches rely on RANSAC-based feature-matching algorithms,

following the pipeline previously presented in Figure 2.11. RANSAC has proven to be one of

the most versatile and robust to a wide range of applications. Unfortunately, for large or dense

point clouds, its runtime becomes a significant limitation in several of the example applications

mentioned above (Vock et al., 2019).

Very recent works propose to work on RGB images to estimate the 3D pose of objects

in real-time for particular kinds of items, such as shoes (Hou et al., 2020) and human poses

(Silva et al., 2019). When we seek a 6DoF estimation pose, performing in real-time is a more

challenging task. Hodan et al. (2018) present an extensive benchmark of full cloud object

detection and pose estimation and found a runtime of about a second per test target on average.

In this chapter, we introduce a novel pipeline to deal with point cloud pose estimation

on uncontrolled environments and cluttered scenes. Our proposed pipeline recognizes the object

using color feature descriptors, crops the selected bounding-box, reduces the search surface of

the scene point cloud, and finally estimates the object’s pose in a traditional local feature-based

approach.

7.1 BACKGROUND

As presented in Figure 2.12, a comprehensive registration process usually consists of two

steps: coarse and fine registrations (Guo et al., 2014a). We can produce a coarse registration

transformation by performing a manual alignment, motion tracking, or the most common,

using the local feature-matching (Mian et al., 2006). Local feature-matching-based algorithms

automatically obtain corresponding points from two or multiple point clouds, coarsely registering

by minimizing the distance between them. These methods have been extensively studied and

have confirmed to be compliant and computer efficient (Johnson and Hebert, 1999; Tombari

et al., 2010; Guo et al., 2013b; Salti et al., 2014). After coarsely register the point clouds, a

fine-registration algorithm is applied to refine the initial coarse registration iteratively. Examples

of fine-registration algorithms include the ICP algorithm that perform point-to-point alignment

(Besl and McKay, 1992), or point-to-plane (Chen and Medioni, 1992). These algorithms are

suitable to perform matching between point clouds of isolated scenes (3D registration) or between

a scene and a model (3D object recognition). This proposal adopted two approaches to generate
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the initial alignment: a traditional feature-based RANSAC and the Fast Global Registration

(FGR).

Initially introduced by Fischler and Bolles (1981), RANSAC is an iterative and very

versatile algorithm. Several applications enjoy this characteristic. To cite a few, we have outlier

detection, approximate functions in a noisy set of points, and of course, for estimating a projection

of a group of points into another group, and thus, estimate this projection’s transformation.

In a feature-based strategy, RANSAC selects n random points from the source in each

iteration and their corresponding points on the target. The algorithm rejects false matches,

computes a transformation, and validates on the entire point cloud. This process is executed until

satisfying some criteria or the maximum number of iterations. RANSAC and also ICP have some

drawbacks regarding the iterations and the NN search to find matches. FGR algorithm (Zhou

et al., 2016) proposes a feature-based approach that saves processing time by optimizing a global

objective. Results shown that this technique provides accuracy comparable to ICP at a lower

computational cost.

Despite the possibility of adopting only a Fast registration, in an application scenario, as

we have only partial views of the objects, we must select the best-suited view between them. The

feature-matching-based approach outputs a coarse transformation between each model’s view

and the scene. So, we choose the view with the highest number of inlier correspondences and

submit it to an ICP fine alignment.

7.2 PROPOSED APPROACH

In this section, we explain in detail our proposed approach. We start from an RGB image and its

corresponding point cloud, generated from RGB and depth images. These inputs are submitted to

our pipeline, composed of three main steps: color feature classification, feature-based registration,

and fine adjustment. We depict our proposal in Figure 7.1 and present these steps in the next

sections.

7.2.1 Color feature classification

Our proposal starts with the detection of the desired object and bounding box estimation of it.

After this detection, we can crop and preprocess the image and finally submit to a deep-learning-

based color feature extractor. The preprocessing step includes image resizing to adjust to the

network input dimensions. The deep network architecture outputs a feature vector, used to predict

the object’s instance, by a pre-trained ML classifier.

In our trials, we explored the achievements of Chapter 6, and employed models of

networks, pre-trained on ImageNet, which presented satisfactory results on the Washington

RGB-D Object dataset, as previously pointed. We tested the networks most accurate on the trials,

according to Table 6.2, to name: ResNet101 (He et al., 2016a), MobileNet v2 (Sandler et al.,

2018), ResNeXt101 32×8d (Xie et al., 2017), and EfficientNet-B7 (Tan and Le, 2019). These

networks input a 224×244 pixels image and output a 1000 bins feature vector. We employed the

LR classifier, with two variants: a pre-trained on the Object dataset’s full set, and a distinct model

trained on the subset of objects annotated on the Scenes dataset. To verify the best accurate

classifier, we do not perform object detection. Instead, we get the ground-truth bounding boxes,

hence verifying for each ML system, which is the best feasible performance.
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Figure 7.1: Pipeline of the proposed approach to pose estimation. To estimate the pre-segmented object’s instance,

we extract its features by a deep learning color-based extractor and a pre-trained ML classifier. After we select from

the objects dataset, the view with the highest number of correspondences resulting from a feature-based registration

algorithm. Finally, we apply an ICP dense registration algorithm to estimate the position and pose of the object.

7.2.2 Feature-based registration

Before scene processing, we extract and store information about the objects. The database is

composed of information concerning each item, as well as the extracted features of them. We

choose a local-descriptors-based approach to estimate the object’s pose. For each instance of an

object, we store several partial views of it. Between these views, our method will select the most

likely to the correspondent object on the scene.

Based on the predicted objects’ classes, we can select a set of described views from

the model database. We then perform a feature-based registration between these views and the

point cloud of the scene’s object (previously cropped based on the detected bounding box). This

method will estimate a transformation based on the correspondences between a scene and a

partial view of an object. Then, the view with the highest number of inliers, and at least three

correspondences is selected. The estimated affine transformation will input to the ICP algorithm,

performing a dense registration.

We detect keypoint from each cloud with a uniform sampling, using a leaf size of 1

cm after we describe each keypoint using the FPFH (Rusu et al., 2009) descriptor with a radius

of 5 cm. We choose this descriptor due to its processing time and size (33 bins) well-suited

for real-time applications. To perform the coarse registration step, we evaluate two methods,

previously presented: The RANSAC and FGR. We considered for both techniques an inlier

correspondence distance lower than 1 cm between scene and models. We set the convergence

criteria for RANSAC to 4M iterations and 500 validation steps, and for FGR to 100 iterations,

following Choi et al. (2015) and Zhou et al. (2016).
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7.2.3 Fine-adjustment

The previous step outputs an affine transformation that could be used as a final pose of the object

concerning the scene. However, to guarantee a fine-adjustment, we employ an additional step

to the process. We adopt the ICP algorithm to perform a dense registration, using as input the

transformation resultant from the registration step, the scene, and best-fitted view clouds. We

adopt an ICP based on the Point-to-plane approach (Chen and Medioni, 1992), with a max

correspondence distance set to 1 cm.

7.3 EXPERIMENTAL RESULTS

7.3.1 Evaluation Protocol

We evaluate our proposal quantitative and qualitatively on the Washington RGB-D Scenes (Lai

et al., 2011a), a challenging dataset, as pointed in Chapter 5 in our tests. First, we consider CNN

feature extraction and classification accuracy based on the models trained in Chapter 6. We also

verify the entire dataset’s processing time, looking at the frame processing rate in classification

and pose estimation scenarios.

The Scenes dataset does not provide ground-truth annotations concerning the objects’

pose, so we had to find a plausible metric to evaluate the registration results. We adopted two

different metrics: the Root mean squared error (RMSE) and an inlier ratio measurement. The

latter represents the overlapping area between the source (model) and the target (scene). It is

calculated based on the ratio between inlier correspondences and the number of points on the

target.

7.3.2 Implementation details

Tests were performed on a Linux Ubuntu 18.04 LTS machine, equipped with a CPU Ryzen 7

2700X, 32GB of RAM, and a GPU Geforce RTX 2070 Super. To process the point clouds,

perform keypoint extraction, description with FPFH, and registration with RANSAC and FGR, we

used the Open3D Library, Version 0.4.0. We preprocess images using pillow 5.3.0 and OpenCV

3.4.2. The deep learning models implementations are from PyTorch 1.6.0, and the pre-trained

networks are from Torchvision 0.7.0. To run the tests, we used GPU processing, powered by

Cuda 10.1 and CudNN 7.6.3 libraries. The ML classifiers employed are from Scikit-learn 0.23.0.

7.3.3 Dataset

We validate our proposal on the Washington RGB-D Scenes, which has proved to be such a

challenging dataset, as observed in Chapter 5 employing the proposed boosted pipeline. This

dataset presents eight indoor sequences of scenes in household environments. The objects placed

in such locations are related to the Washington RGB-D Objects dataset (Lai et al., 2011a), with

categories and instances annotated by a bidimensional bounding box circumscribing each item.

Table 7.1 gives some details regarding the size of the sequences and their average number of

objects.
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Table 7.1: Details regarding the RGB-D Scenes datasets

Scene Number of frames Models per frame
desk_1 98 1.89

desk_2 190 1.85

desk_3 228 2.56

kitchen_small_1 180 3.55

meeting_small_1 180 8.79

table_1 125 5.92

table_small_1 199 3.68

table_small_2 234 2.89

Average 179.25 3.89

7.3.4 Results

We summarize the experimental evaluation results on the Washington RGB-D Scenes in terms of

accuracy and processing time. We opposed the selected CNN architectures examining only a

classification based on the RGB information, taking the annotated bounding box, and submitting

to the Color Feature Classification stage of our pipeline (as in Section 7.2.1). Table 7.2 relates to

category and Table 7.3 to an instance-level recognition.

Table 7.2: Category classification performance on the RGB-D Scenes datasets.

MobileNet v2 Resnet101 ResNeXt101 32x8d EfficientNet-B7
Scene Acc FPS Acc FPS Acc FPS Acc FPS

desk_1 85.95% 17.80 85.41% 13.53 94.05% 10.35 90.27% 7.74

desk_2 51.42% 18.86 56.25% 13.90 64.77% 10.72 82.67% 7.82

desk_3 92.12% 14.73 79.79% 10.93 63.70% 7.90 97.09% 5.65

kitchen_small_1 53.68% 10.54 59.94% 7.90 59.62% 5.76 78.25% 4.26

meeting_small_1 59.92% 4.68 53.41% 3.38 49.75% 2.42 65.87% 1.75

table_1 71.35% 6.76 61.22% 5.02 53.38% 3.50 73.11% 2.51

table_small_1 91.95% 10.20 84.45% 7.77 67.39% 5.46 79.13% 4.10

table_small_2 63.37% 12.37 72.38% 9.82 56.72% 6.82 77.10% 5.16

Average 71.22% 9.85 69.11% 7.34 63.67% 5.27 80.44% 3.85

Table 7.3: Instance classification performance on the RGB-D Scenes datasets.

MobileNet v2 Resnet101 ResNeXt101 32x8d EfficientNet-B7
Scene Acc FPS Acc FPS Acc FPS Acc FPS

desk_1 42.70% 13.03 51.89% 9.66 48.11% 7.63 49.73% 6.55

desk_2 41.76% 12.95 38.92% 9.31 55.40% 7.93 76.42% 6.35

desk_3 72.77% 9.84 52.57% 7.09 52.91% 5.78 90.58% 4.60

kitchen_small_1 36.31% 7.97 34.74% 5.29 48.20% 4.12 56.81% 3.25

meeting_small_1 41.40% 3.29 38.05% 2.35 42.92% 1.74 50.63% 1.33

table_1 56.76% 4.62 38.11% 3.43 31.08% 2.49 61.49% 2.00

table_small_1 75.03% 7.50 63.30% 5.33 65.35% 3.89 83.36% 3.16

table_small_2 55.39% 9.13 45.35% 6.88 49.34% 5.04 65.88% 4.10

Average 52.77% 6.99 45.37% 5.03 49.16% 3.80 66.86% 3.02

The first outcome of this evaluation is the dominance of two networks over the

other competitors considering different aspects. EfficientNet (Tan and Le, 2019) architecture
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outperforms in terms of accuracy, and MobileNet v2 (Sandler et al., 2018) in processing time

w.r.t. the others in almost all scenes, for category and instance.

Considering a category recognition scenario, EfficientNet reaches an average accuracy

of more than 80%, followed by MobileNet v2. For instance recognition, the performance is

almost 67%. However, when we aim a processing time efficiency, EfficientNet does not perform

so well, being the slowest network with a frame-rate of 3.85 per second. On the other hand, the

MobileNet v2 fulfills the network’s main proposal to be time-efficient and light for embedded

applications, and present the second-best accuracy and the best frame-rate, with almost 10 FPS

for the category and 7 FPS for instance.

The full-set of the Object dataset contains 51 categories and 300 distinct instances.

Concerning the Scenes dataset, this number drops to 6 categories and 22 instances. When we use

a model trained on the full-set, most categories or instances will never be detected. Thus, we

learned a lighter classifier that considers only achievable classes/instances. We show such results

in Table 7.4.

Table 7.4: Performance comparison between a full and a specific training set. Best result for each column in bold

DeepNet

Category Instance

Full Scenes Full Scenes

Acc FPS Acc FPS Acc FPS Acc FPS

MobileNet v2 71.22% 9.85 90.65% 25.02 52.77% 6.99 67.35% 24.62
Resnet101 69.11% 7.34 88.82% 14.59 45.37% 5.03 61.41% 13.94

ResNeXt101 32x8d 63.67% 5.27 83.71% 9.20 49.16% 3.80 59.04% 8.86

EfficientNet-B7 80.44% 3.85 92.79% 6.17 66.86% 3.02 82.94% 5.88

After this change on the model specificity, we distinguish a noticeable improvement

in accuracy and the processing time, achieving MobileNet v2 a near real-time performance

regarding an average scenario. A significant accuracy gain was established, with over 12% for

categories and 10% for instances, pulling the best results to respectively 92% and 83%.

Regarding frame processing rate, it is essential to notice that the average number of

models varies from 1.85 to 8.79 over the scenes (Table 7.1), with almost four objects per frame

on average. Thus, we can infer that our proposal can deliver a near-real-time FPS, inclusive in a

multi-classification problem. When we consider only a single target, the performance is almost

four times faster, as presented in Table 7.6, on the Color only column.

7.3.4.1 Pose estimation results

Based on the assumption that we mapped the objects we aim, and we could detect in a real-world

scenario, we adopted those models trained on the subset of the RGB-D Object dataset. We also

considered only an instance detection situation. The reason for working only on the instance-level

is that we could have intra-class misclassifications, which could corrupt the pose alignment step.

For each instance detected by the color feature classification stage, we take ten views of the

referred object from the models’ database.

In Table 7.5 we report an evaluation concerning the Feature-based registration and

Fine-adjustment stages of our pipeline. Getting a set of ten views of the same object, we perform a

coarse estimation by using RANSAC or FGR. We evaluate quantitatively such methods concerning

the inlier ratio, RMSE, and execution time. We apply the resulting affine transformation as

the input of an ICP dense registration and evaluate if this input can imply differences in the

processing time.
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Table 7.5: Comparison between feature-based registration methods. The times reported for the feature-based

methods consider the whole execution for ten views of the same object and select the best one. Processing time

listed in seconds. Best result for each column in bold

Methods
Feature-based

registration time (↓)
ICP time (↓) Inlier ratio (↑) RMSE (↓)

RANSAC 0.7688 0.0061 0.2689 0.0055
Fast Global Registration 0.0580 0.0075 0.1895 0.0059

Indeed, the FGR method is much faster than RANSAC. However, we observe that for

both metrics, RANSAC outperforms it. The Inlier ratio presented by the latter is around 50%

higher than the faster method, and also show an RMSE more consistent. The transformation

generated by the coarse alignment algorithm also impacts the ICP execution, and we see that a

better estimation can speed up the fine-adjustment process. To evaluate more deeply if the ICP,

after the feature-matching application, can surpass problems like a more rough estimation, we

must assess an annotated pose. Unfortunately, the adopted dataset does not offer such data, and

further studies may verify such affirmation on a pose-annotated dataset.

Now we report the processing rate regarding executing all the stages of our proposed

pipeline. Table 7.6 presents the frame processing rate based on a single target object scenario.

We evaluate referring to the first stage execution (Color only), the early two stages (Columns

RANSAC, and FGR), and a pipeline’ full execution (+ICP).

Table 7.6: Frame processing rate based on a single target pose estimation. Color only refers to object classification

only, other columns refer to the pose aligment step, coarse (RANSAC and FGR) or fine (by adding ICP).

Color only RANSAC FGR RANSAC + ICP FGR + ICP

MobileNet v2 89.49 1.89 13.89 1.82 13.57

ResNet101 52.45 1.96 13.83 1.81 13.39

ResNeXt101 32x8d 33.73 2.03 14.18 2.09 13.32

EfficientNet-B7 22.51 1.43 8.94 1.40 8.55

At first sight, one can conjecture that a RANSAC-based approach is unpromising

when presenting around 2 FPS. However, considering an FGR-based process, the results are

encouraging, with 8 FPS for the best accurate method, and more than 13 for the others. For

many applications that deal with real-time, a frame rate around eight or more is acceptable. We

agree that the facto standard for real-time is to process at least 30 FPS, however, due to the

modularity of our proposed pipeline, the stages are independent, and we could let a full execution

to indispensable situations.

An application situation may include a target object’s location and recovery of the pose,

for instance, by a robot. The system could execute a scheduled procedure, firstly, localizing this

object by using only the first stage of the pipeline, in real-time. Then, as the subject approaches

the objective, we could execute the second stage, estimating a rough transformation, e.g., once

a second. Finally, when the object is next to the user, we can run the full pipeline, with the

fine-adjustment stage.

To investigate more deeply the processing time of a successfully detected object of

our pipeline, we summarize how much time takes each substep in Figure 7.2. We can infer

two main steps that negatively impact the time processing: classification and feature-based

estimation. Regarding the former, the correct selection of the network to extract color features

is fundamental to speed-up the whole process, presenting a significant difference between the

faster, i.e., MobileNet v2 (Sandler et al., 2018), and the slower, i.e., EfficientNet-B7 (Tan and Le,
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(a) FGR

(b) RANSAC

Figure 7.2: Processing time of each step on the proposed approach. We consider only succesfully detected objects

on this comparison. (a) presents times referring to the Fast Global Registration (Zhou et al., 2016) method, and (b)

to RANSAC. Times are given in seconds

2019). We perceive a considerable impact on the time processing when using RANSAC for the

feature-based stage, despite having better results than FGR. In this implementation, we do not

use any concurrent processing, which could significantly improve such time for both coarse pose

estimation methods. Our pipeline is highly flexible, and the use of recent proposals may enhance

our results, for instance, Deep Global Registration (Choy et al., 2020) to coarse estimation, and

the ColoredICP (Park et al., 2017) to fine-adjustment.

7.3.4.2 Qualitative results

We provide qualitative visualizations of our proposed method (RANSAC + ICP) regarding pose

estimation in Figure 7.3. Our method succeeds in aligning several different shaped models, such

as planes (cereal box), cylinders (soda can, coffee mugs, and flashlights), and free form models

(caps). As we perform a rigid transformation to align objects and scenes, it is fundamental

to the model choice. Examples like the red cap that present a crumple on top, harming the

alignment estimation. Otherwise, we confirm the robustness of the combination of coarse and

fine alignments on the bowl object, that despite being partially cropped on the scene cloud, still

has inferred the pose correctly.
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Figure 7.3: Qualitative visualizations of successful pose alignment

In Figure 7.4, we present some wrong alignments of our proposals. We can observe

that the main shape of the object weights a lot on the alignment. For instance, the mugs had the

body (cylinder) well aligned but a misalignment on the handle. We also perceive a flip on the

cereal box due to the large plane at the front. The bowl in the rightmost example fails in aligning,

though, differently from the previous figure, where the method robustly handled a partial view of

a bowl, in this case, we have about 50% only of the object visible. Despite the misalignments

verified, as we reduce the surface search on the scene cloud, we always have an estimation next

or even inside the 3D projection of the 2D bounding box outputted by the detection stage.

Figure 7.4: Qualitative visualizations of wrong pose alignment. From left to right: two examples of coffee mugs

with a misoriented handles, flipped cereal box, and a rotated bowl

7.4 FINAL REMARKS AND OVERVIEW

3D pose estimation is a challenging task, mainly for real-time applications. Sometimes developers

must surrender on the precision, aiming response time. This chapter introduced a novel pipeline

that combines the power of deep-learning-based color features extractors with a local descriptors

pipeline to pose estimation in point clouds. We evaluated detection of objects and achieved

almost 93% accuracy on a category recognition scenario, and 83% on an instance situation, in

the best case. This precision is also accompanied by a high frame processing rate, arriving up to
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90 FPS. The pose estimation rate is plausible for some applications, and by scheduling the stages

of our pipeline, we can reach standard real-time processing.

Parallelization strategies can improve even more time results, and also, different local

descriptors and keypoint extractors could support this. Further studies include evaluating our

proposal in a pose-annotated dataset to verify the estimation precision. Additionally, these

findings on the deep-learning-based architectures can help develop an integrated region proposal

and object detection algorithm based on them. State-of-the-art deep learning methods such as

SSD (Liu et al., 2016) and YOLO (Redmon et al., 2016) enable such potentiality.
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8 CONCLUSIONS AND FUTURE DIRECTIONS

This work’s main objective was to propose, evaluate, and validate strategies to optimize feature-

based applications on 3D point clouds. Our main contributions are two-folded and include

the development of local descriptors based on the deep learning paradigm and the proposal of

improvements’ strategies of existing object recognition and pose estimation standards in 3D-based

applications.

We proposed some novel findings on this doctoral thesis. We presented an efficient

equivariant local descriptor, named LEAD, that presents state-of-the-art accuracy performance on

standard benchmarks. It is the best method by far when considering a transfer learning scenario.

At the best of our knowledge, we also introduced the first fully-data-driven approach to extract

orientation from 3D patches, an LRF named Compass. We compared our proposed LRF with

state-of-the-art hand-crafted methods, and the results show the supremacy of our proposal over

the competitors in three different standard datasets. We also validate Compass in a full-object

orientation condition using it as a transformation network attached to a Pointnet in classification

mode. The results again show the robustness of this LRF in distinct evaluation plots.

Based on the findings of LEAD and Compass, we also bestowed SOUND, the first

end-to-end self-orienting 3D local descriptor learned strictly from data. SOUND network,

leveraged by the Spherical CNNs framework, extracts discriminative features and orientation

from 3D patches in a single forward pass. Evaluation results have proven the proposal’s efficiency

regarding relative rotation and translation errors, presenting very competing results in the studied

datasets.

On the object recognition and pose estimation scenarios, we started developing an

update on the standard pipeline proposed by Aldoma et al. (2012b). We found that, by adding

a simple prior segmentation step, the whole pipeline processing time, and surprisingly the

overall accuracy, are significantly improved. This previous step, called Saliency Boost, utilizes a

saliency object detection method. We reach an accuracy gain of up to 60% and a processing

time five times faster through this modified pipeline. Continuing in the same line of combining

visual and shape features, we assessed deep-architecture-based feature extractors on the object

recognition task. The discriminative capacity of produced color features pulls such networks

in state-of-the-art regarding instance recognition. We also verified a noteworthy improvement

on category recognition, when color and shape features are combined, concerning color-only

approaches.

Despite the improvements in the proposed boosted pipeline, we verified an underper-

formance in real-world scenes environments. Such results incited us to propose an even more

valuable methodology to detect and estimate objects’ 6DoF pose. Results from the comprehensive

evaluation of color feature extractors also supported our choices. Our proposed pipeline uses a 2D

object recognition stage, then collects a set of partial views (2.5D) of objects, submits to a coarse

alignment, and finally fine-estimates the object’s pose using an ICP dense registration stage. We

found that this pipeline is suitable for real-time applications, as discussed, and competitive with

prior literature results regarding the processing frame rate.
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8.1 SUMMARY OF CONTRIBUTIONS

This section summarizes the contributions considered in the introduction of this doctoral thesis.

At this point, we realize the contributions of the proposed approaches we made throughout this

document.

• Our LEAD descriptor presents a progression of the previous work of Spezialetti

et al. (2019), regarding accuracy in terms of feature match recall (1.64%) and in time

performance (37%).

• LEAD features as runner-up in the 3DMatch Benchmark dataset and performs in the

first place on the challenging ETH dataset, with a significant margin of more than 17%

about the other methods.

• We introduced Compass, the first full-data-driven LRF. Despite the novelty, our proposal

outperforms the existing hand-crafted techniques in three different datasets in terms of

repeatability, which is the standard metric for such judgment.

• Feeding a PointNet architecture with a canonical orientation provided by Compass, we

achieve state-of-the-art performance on a rotation-invariant shape classification problem.

• We present, at the best of our knowledge, the first self-orienting local descriptors, named

SOUND. On direct measurement errors, SOUND outperforms the other compared

techniques presenting significative reductions regarding RRE and RTE.

• About object recognition tasks, we propose an update on the standard local descriptors

pipeline, named Saliency Boost. This method not only speeds up the whole process by

almost 5× but confer an accuracy gain of the tested methods.

• We performed a comprehensive evaluation of established state-of-the-art networks,

evaluating models trained on the ImageNet and transferred to the RGB-D object

recognition’s context.

• A combination of color and shape features was proposed, and despite the simplicity,

presented convincing results in category and instance recognition tasks.

• We presented and evaluated an effective pipeline for object detection and 6DoF pose

estimation that enables real-time processing for point clouds.

8.2 FUTURE WORKS

This dissertation enabled the identification of some future directions based on our observations.

This section presents and discusses some efforts that could bring valuable results, as emerging

studies of those granted on this document.

• Based on our thesis’ findings, one future direction could be toward the proposition of an

end-to-end pose estimation network, by using a SOUND-like architecture for RGB-D.

A similar preceding work of the Frustum Networks, presented by Qi et al. (2018), relies

on the estimation of amodal bounding cubes from lidar-like data, not properly 6DoF

estimation.
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• The Saliency Boost pipeline results encourage an investigation of the reliance on

applying a similar approach to the registration pipeline.

• We explored the combination of color and shape features, considering the global objects’

embedding. One future direction could test the use of local descriptors’ ensembles

associated with color features, as performed by Lai et al. (2011a) with Spin Images.

• Spherical CNNs (Cohen et al., 2018) architecture presents limitations regarding process-

ing time. The calculation of the discrete Fourier transform on the framework is quite

heavy in terms of computational cost. Some newer initiatives can better handle computer

resources, such as the Icosahedral CNNs (Cohen et al., 2019) and Spin-Weighted

Spherical CNNs (Esteves et al., 2020) should be considered.

8.3 FINAL REMARKS

As stated in the objectives, this doctoral thesis has presented strategies to deal better with 3D

information. As always in science, our achieved results are only the iceberg’s tip, and much more

could be done. We expect that our studies instigate and inspire other researches in working in 3D

CV applications, a challenging but at the same time rewarding field.
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A.1 CATEGORY RECOGNITION DATA
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A.2 INSTANCE RECOGNITION LSO

Table A.4: Results on instance recognition (LSO) combining feature extractors and ML classifiers

Color

Classifier RF SVC GNB MLP LR kSVC

AlexNet 0.8173 0.8955 0.7522 0.8499 0.8977 0.8565

Resnet101 0.8865 0.9383 0.8716 0.9011 0.9414 0.9180

VGG_16 0.7869 0.8766 0.7280 0.8349 0.8875 0.8413

Inception v3 0.7582 0.8690 0.7772 0.8698 0.8806 0.8664

MobileNet v2 0.8848 0.9341 0.8721 0.9098 0.9381 0.9235

ResNext-101 32x8d 0.8965 0.9376 0.8776 0.9197 0.9393 0.9242

EfficientNet-B7 0.8739 0.9370 0.8366 0.9285 0.9383 0.9234

Shape

Classifier RF SVC GNB MLP LR kSVC

LEAD-PN 0.1267 0.1226 0.0488 0.1302 0.1060 0.0863

LEAD 0.2201 0.1728 0.1715 0.2341 0.1107 0.2176

Spezialetti et al. 0.2410 0.1784 0.1750 0.2527 0.1036 0.2304

Color + Shape

Classifier RF SVC GNB MLP LR kSVC

ResNet101 + LEAD-PN 0.8901 0.9358 0.6705 0.9244 0.9408 0.9230

ResNet101 + Spezialetti et al. 0.8910 0.9420 0.8699 0.9155 0.9370 0.9283

ResNet101 + LEAD 0.8922 0.9445 0.8686 0.9268 0.9415 0.9254

MobileNet v2 + LEAD-PN 0.8853 0.9243 0.6535 0.9274 0.9359 0.9252

MobileNet v2 + Spezialetti et al. 0.8949 0.9363 0.8696 0.9285 0.9384 0.9298

MobileNet v2 + LEAD 0.8893 0.9296 0.8662 0.9207 0.9329 0.9328

ResNeXt101 32x8d + LEAD-PN 0.8979 0.9277 0.6712 0.9175 0.9371 0.9228

ResNeXt101 32x8d + Spezialetti et al. 0.8997 0.9378 0.8732 0.9277 0.9393 0.9282

ResNeXt101 32x8d + LEAD 0.8950 0.9350 0.8716 0.9202 0.9337 0.9290

EfficientNet-B7 + LEAD-PN 0.8724 0.9256 0.6318 0.9174 0.9300 0.9143

EfficientNet-B7 + Spezialetti et al. 0.8824 0.9315 0.8367 0.8972 0.9376 0.9215

EfficientNet-B7 + LEAD 0.8748 0.9311 0.8320 0.9210 0.9301 0.9199

A.3 INSTANCE RECOGNITION ACF
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