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RESUMO

Dependências de dados (ou, simplesmente, dependências) têm um papel fundamental 

em  muitos aspectos do gerenciamento de dados. Em  consequência, pesquisas recentes têm 

desenvolvido contribuições para importante problemas relacionados à dependências. Esta tese 

traz contribuições que abrangem dois desses problemas.

O primeiro problem a diz respeito à descoberta de dependências com  alto poder de 

expressividade. O objetivo é substituir o projeto manual de dependências, o qual é sujeito a 

erros, por um algoritmo capaz de descobrir dependências a partir de dados apenas. Nesta tese, 

estudamos a descoberta de restrições de negação, um tipo de dependência que contorna muitos 

problemas relacionados ao poder de expressividade de depêndencias. As restrições de negação 

têm poder de expressividade suficiente para generalizar outros tipos importantes de dependências, 

e expressar complexas regras de negócios. No entanto, sua descoberta é computacionalm ente 

difícil, pois possui um espaço de busca maior do que o espaço de busca visto na descoberta de 

dependências mais simples. Esta tese apresenta novas técnicas na forma de um algoritmo para a 

descoberta de restrições de negação. Avaliamos o projeto de nosso algoritmo em uma variedade 

de cenários: conjuntos de dados reais e sintéticos; e números variáveis de registros e colunas. 

Nossa avaliação mostra que, em comparação com soluções do estado da arte, nosso algoritmo 

melhora significativamente a eficiência da descoberta de restrição de negação em termos de 

tempo de execução.

O segundo problem a diz respeito à aplicação de dependências no gerenciamento de 

dados. Primeiro, estudamos a aplicação de dependências na melhoraria da consistência de dados, 

um aspecto crítico da qualidade dos dados. Uma maneira comum de modelar inconsistências é 

identificando violações de dependências. Nesse contexto, esta tese apresenta um  método que 

estende nosso algoritmo para a descoberta de restrições de negação de form a que ele possa 

retornar resultados confiáveis, mesmo que o algoritmo execute sobre dados contendo alguns 

registros inconsistentes. M ostramos que é possível extrair evidências dos conjuntos de dados 

para descobrir restrições de negação que se mantêm aproximadamente. Nossa avaliação mostra 

que nosso método retorna dependências de negação que podem identificar, com boa precisão e 

recuperação, inconsistências no conjunto de dados de entrada.

Esta tese traz mais um a contribuição no que diz respeito à aplicação de dependências 

para melhorar a consistência de dados. Ela apresenta um  sistema para detectar violações de 

dependências de form a eficiente. Realizamos uma extensa avaliação de nosso sistema usando



comparações com várias abordagens; dados do mundo real e sintéticos; e vários tipos de restrições 

de negação. Mostramos que os sistemas de gerenciamento de banco de dados comerciais testados 

com eçam  a apresentar baixo desempenho para conjuntos de dados relativamente pequenos e 

alguns tipos de restrições de negação. Nosso sistema, por sua vez, apresenta execuções até três 

ordens de magnitude mais rápidas do que as de outras soluções relacionadas, especialmente para 

conjuntos de dados maiores e um grande número de violações identificadas.

Nossa contribuição final diz respeito à aplicação de dependências na otimização de 

consultas. Em particular, esta tese apresenta um sistema para a descoberta automática e seleção de 

dependências funcionais que potencialmente melhoram a execução de consultas. Nosso sistema 

com bina representações das dependências funcionais descobertas em  um  conjunto de dados 

com representações extraídas de cargas de trabalho de consulta. Essa combinação direciona a 

seleção de dependências funcionais que podem produzir reescritas de consulta para as consultas 

de entrada. Nossa avaliação experimental m ostra que nosso sistema seleciona dependências 

funcionais relevantes que podem ajudar na redução do tempo de resposta geral de consultas.

Palavras-chave: Perfilamento de dados. Qualidade de dados. Limpeza de dados. Depenência de 

dados. Execução de consulta.



ABSTRACT

Data dependencies (or dependencies, for short) have a fundamental role in many facets 

of data management. As a result, recent research has been continually driving contributions to 

central problems in connection with dependencies. This thesis makes contributions that reach 

two of these problems.

The first problem regards the discovery of dependencies of high expressive power. The 

goal is to replace the error-prone process of manual design of dependencies with an algorithm 

capable of discovering dependencies using only data. In this thesis, we study the discovery of 

denial constraints, a type of dependency that circumvents many expressiveness drawbacks. Denial 

constraints have enough expressive power to generalize other important types of dependencies 

and to express complex business rules. However, their discovery is com putationally hard 

since it regards a search space that is bigger than the search space seen in the discovery of 

simpler dependencies. This thesis introduces novel algorithmic techniques in the form  of an 

algorithm for the discovery of denial constraints. We evaluate the design of our algorithm in a 

variety of scenarios: real and synthetic datasets; and a varying number of records and columns. 

Our evaluation shows that, compared to state-of-the-art solutions, our algorithm significantly 

improves the efficiency of denial constraint discovery in terms of runtime.

The second problem  concerns the application of dependencies in data management. 

We first study the application of dependencies for improving data consistency, a critical aspect 

of data quality. A common way to model data inconsistencies is by identifying violations of 

dependencies. in  that context, this thesis presents a method that extends our algorithm for 

the discovery of denial constraints such that it can return reliable results even if the algorithm 

runs on data containing some inconsistent records. A central insight is that it is possible to 

extract evidence from  datasets to discover denial constraints that almost hold in the dataset. 

Our evaluation shows that our method returns denial dependencies that can identify, with good 

precision and recall, inconsistencies in the input dataset.

This thesis makes one more contribution regarding the application of dependencies 

for improving data consistency. it presents a system for detecting violations of dependencies 

efficiently. We perform an extensive evaluation of our system that includes comparisons with sev­

eral different approaches; real-world and synthetic data; and various kinds of denial constraints. 

We show that the tested commercial database management systems start underperforming for 

relatively small datasets and production dependencies in the form  of denial constraints. Our



system, in turn, is up to three orders-of-magnitude faster than related solutions, especially for 

larger datasets and massive numbers of identified violations.

Our final contribution regards the application of dependencies in query optimization. In 

particular, this thesis presents a system for the automatic discovery and selection of functional 

dependencies that potentially improve query executions. Our system combines representations 

from the functional dependencies discovered in a dataset with representations of the query work­

loads that run for that dataset. This combination guides the selection of functional dependencies 

that can produce query rewritings for the incoming queries. Our experimental evaluation shows 

that our system selects relevant functional dependencies, which can help in reducing the overall 

query response time.

Keywords: D ata profiling. Data quality. D ata cleaning. Data dependencies. Query execution.
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Chapter 1 

Dependencies in databases

Database management systems have becom e ubiquitous in com puter systems, from  

personal computers to enterprise computing platforms. As a consequence, they have been 

evolving to meet the requirements of a variety of applications from  various segments. For 

example, modern applications often require a fast response to queries and assume that database 

management systems can guarantee a certain degree of reliability or quality for their query 

answers. This evolution has been fostering the development of a large body of concepts and 

techniques in data management in general.

One of the many essential aspects of relational database management systems regards 

their capability of enforcement of constraints on database objects. Constraints represent knowl­

edge about the application domain and define restrictions on the actual values of database 

instances. An important category of constraints is data dependencies (or dependencies for short), 

because they describe the semantics of databases. Dependencies are necessary because the 

relational model, by itself, lacks artifacts that guide the semantic interpretation of tables. The 

tuples in a table represent collections of related data values, which, in turn, represent facts on 

entities or relationships in the real world. A lthough the names of tables and columns can help 

us to grasp preliminary meanings of the values in each tuple, they do not specify how these 

values are related to each other or how we would characterize invalid values. Dependencies can 

incorporate such semantics into the relational model. In turn, relational database management 

systems can enforce some types of dependencies as constraints to restrict data inconsistencies 

and enhance data quality. In the following, we outline a few fundamentals about dependencies 

that give context for the main contributions of this thesis.

A critical dimension in data quality is data  consistency. Fan [1] gives a concise 

definition: “Data consistency refers to the validity and integrity of data representing real-world 

entities” . By restricting inconsistencies, database management systems guarantee access to 

higher quality data, which is essential in supporting reliable query answers.

Preventing the storage of invalid or inconsistent data is a battle on many fronts, for 

instance, users with a lack of application knowledge, machine-to-machine data inputs with errors, 

data evolution, or data integration scenarios, to name but a few. This battle attracts broad interest.
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The development of mechanisms to improve the integrity of data has long been a vivid topic in 

both academic research and industry-based projects [2, 3, 4, 5].

Commercial database management systems support a few types of dependencies known 

as integrity constraints. Once the database designers or users have a database project ready, they 

can create and maintain integrity constraints using the structured query language (SQL). The 

database management system then needs to maintain data integrity by restricting those database 

updates that do not adhere to the database’s integrity constraints. M ost database management 

systems im plem ent only traditional integrity constraints: domain constraints, key constraints, 

and foreign key constraints. Unfortunately, these types of dependencies cannot identify many 

critical data inconsistencies, as we show with the following examples.

Consider the salesReps schema and the sales reps tuples in Table 1.1; and assume 

column ID as the prim ary key, and column SID as a foreign key referencing salesReps on ID. 

Also, assume that there are no issues with the domain in column values. The data conform to 

traditional integrity constraints. However, a database designer with experience in the application 

domain would still spot critical inconsistencies. For example, if  any two tuples have the same 

value combination in address, city, and state (ST), then they should have the same value in 

zip code (Zip). Tuples t 1 and t 2 are inconsistent with this statement. Also, zip code uniquely 

determines state (and city), thus, tuples t 1 and t3 are inconsistent. As another example, assume 

that sales reps cannot earn higher salaries than their supervisors— again, tuples t 1 and t 3 are 

inconsistent with this business rule. The database designer might spot even more complex 

business rules. For example, if two sales reps sell the same product and have the same target, the 

one who has higher sales should not receive a lower bonus than the other. In Table 1.1, tuples t5 

and t 7 have the same value in columns Product and Target. Between those two, tuple t 5 has the 

highest value in Sales, so it should not have the lowest value in Bonus.

Table 1.1: A salesReps table that satisfies (traditional) integrity constraints.

ID Name Address City ST Zip Product Target Sales Salary Bonus SID

t] 11 Ann Lee 8 Cornell Palo Alto CA 94306 Beer $50000 $60000 $5000 $600 11
t2 12 Dee Lee 8 Cornell Palo Alto CA 9430 Beer $30000 $20000 $3000 $40 11
t3 13 Elle Gray 2 Yale St Palo Alto CO 94306 Beer $30000 $10000 $9000 $20 11
t4 14 Ben Hill 3 Bowery New York NY 10012 Wine $40000 $48000 $4000 $240 14
t5 15 Amy King 8 3rd Ave New York NY 10003 Wine $30000 $20000 $3000 $5 14
t6 16 Ben King 8 3rd Ave New York NY 10003 Wine $30000 $20000 $3000 $10 14
t7 17 Abe Gray 2 8th Ave New York NY 10018 Wine $30000 $10000 $3000 $10 14

No matter how fast a database management system can process queries, it is likely to 

return incorrect answers if the database contains inconsistencies. Here is an example of an SQL 

query that finds the sum of sales of the sales reps living in the state of California (CA):

1 s e l e c t  sum (Sales)

2 f r o m  salesReps

3 w h e re  ST =  ' CA '
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This query returns $80000 because the w h e re  clause selects only tuples t 1 and t 2, but 

it should return $90000 since tuple t3 should also be selected, assuming that the values of city 

and zip code in tuple t 3 are correct and determine the value California (CA) for state. Now 

consider another query that finds the total amount of salaries paid to all sales reps:

1 s e l e c t  sum (Salary)

2 f r o m  salesReps

This query returns $30000. However, we should not trust this result either because 

of the inconsistency between the salaries in tuples t 1 and t 3. As we can see, even in small 

tables, there can be numerous data inconsistencies that lead to unreliable results. O f course, 

the level of inconsistency (and other data quality issues) in enterprise data can reach critical 

dimensions [6 , 7].

Traditional integrity constraints— domain constraints, keys, and foreign keys— cannot 

identify the inconsistencies we saw in Table 1.1, which leads to the question of how to define and 

enforce dependencies o f higher expressive power. The database textbook answer to this question 

is the concept of assertions; and triggers (or active rules) in active databases [8 , 9, 10, 11]. 

M any major com mercial database management systems do not support assertions, a piece of 

SQL that ensures a condition to be true. On the other hand, a couple of com mercial database 

management systems provide some support for triggers, which is useful because triggers can 

check conditions, and thus, they generalize assertions.

The primary use of triggers is handling dependencies that cannot be expressed as the 

traditional integrity constraints: triggers signalize and rollback transactions having violations 

of integrity constraints [10, 12]. However, the injudicious use of triggers may lead to critical 

issues, other than the lack of data integrity. For years, experienced database researchers and 

practitioners have been expressing many concerns about triggers [10, 13, 12, 11, 14]. The lack 

of uniformity between database vendors, high maintainability costs, and low performance are 

among the most concerning pitfalls. The general advice is to use constraint mechanisms instead 

of triggers whenever possible [8 , 10, 13, 12, 11, 14, 15].

1.1 p e r s p e c t i v e s  o n  d e p e n d e n c i e s

Constraints and dependencies are central concepts in relational database management 

systems as they concern the semantic integrity of relational data. The practical significance of 

these concepts has led all major database vendors to support built-in integrity constraints in their 

products. Besides, the formal foundation of dependencies is already quite solid, although less 

well-developed theories drive new efforts in theoretical research now and then [4, 16, 17, 18, 19].

The term constraint often refers to properties tied to database designs and requires en­

forcement, whereas the term dependency relates to properties of particular database instances that 

not necessarily require enforcement. For instance, the values in the column Name of salesReps
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are all unique, thus, Name is a type of dependency known as unique column combination, or 

simply a unique. Notice, however, that defining Name as a primary key is a poor choice in 

database design since duplicate names are likely to happen. Although some dependencies might 

not require enforcement, dependencies, in general, are the primary vehicle for incorporating se­

mantic properties into the relational model. Nevertheless, the terms constraints and dependencies 

widely appear as synonyms in the database literature [20, 4].

Dependencies started being a vivid topic in database research, as well as industry-based 

projects, soon after the proposal of the relational data model itself [2, 3]. Since then, the research 

on dependencies has produced numerous contributions that expand to multiple database contexts; 

naturally, since dependencies concern a broad topic. Recently the increasing demand for data of 

higher quality has motivated even further research on many types of dependencies.

We continue to discuss multiple perspectives on dependencies in the following.

1.1.1 Expressive power of dependencies

Different types of dependencies have different levels of expressive power, which means 

that some of them  can restrict inconsistencies that others cannot. The higher the expressive 

power, the higher the complexity and, thus, the challenge in practical use. Som e types of 

dependencies are computationally hard to handle. That is why the native support for dependencies 

in database management systems is somewhat limited— it is a trade-off between feasibility and 

expressiveness.

D ependencies. In this work, we focus on dependencies on single tables, sometimes called intra­

relation dependencies. O ther than unique column combinations, one of the most well-known 

examples of intra-relation dependencies is functional dependencies. Consider a relation schema 

R having instances r and two sets of columns of R, for instance, X c  R and Y C R. We denote 

R : X ^  Y a functional dependency in a relation R, or simply X ^  Y. This dependency states 

that the values of a tuple in X must uniquely, or functionally, determine the values of that tuple 

in Y. The following functional dependencies should hold in the salesReps instance in Table 1.1:

salesReps: Address, City, ST ^  Zip, 

salesReps: Zip ^  City, ST.

The instance in Table 1.1 is inconsistent with the dependencies above because of tuples t 1,t2 

and t 3 . As a result, any database maintaining this relation instance is also inconsistent since it is 

likely to produce incorrect answers. As we can see, data consistency is a concept related to sets 

of dependencies.

D ue to historical and practical reasons, functional dependencies are one of the most 

well-studied dependencies in databases. Besides, there are various studies on generalizations 

of functional dependencies [21, 22, 23]. We review such generalizations, and other types of 

dependencies, in Chapter 2 .
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R elaxed dependencies. Production data is likely to contain errors and exceptions, even if it is in 

small numbers. A large table might contain only a few inconsistent tuples. A dependency might 

hold in part of the data alone. Besides, entities might appear multiple times in the database in 

various forms, for instance, “Ann Lee” and “Lee, Ann” as the same entity.

The general definitions of dependencies do not admit errors or exceptions in data. 

Dependencies following these strict definitions are sometimes called exact dependencies. The use 

of only exact dependencies can be impractical in many scenarios; thus, there are many studies on 

different forms to relax the canonical definitions of dependencies [23]. For example, conditional 

functional dependencies are a generalization of functional dependencies that specify conditions 

in which the dependencies hold; they are well-known in the data cleaning context [24, 25]. 

When we define a functional dependency, we expect that all tuples in the relation instance satisfy 

that dependency. On the other hand, when we define a conditional functional dependency, we 

assume that dependency to hold in a subset of tuples only, which are those tuples having the 

same (constant) pattern of values for some columns.

The following statement is an example of conditional functional dependency for 

salesReps:

salesReps: ([Product =  'Wine', Target] ^  [Salary]).

This dependency specifies that all sales reps selling 'Wine' have their salaries determined by their 

targets. Table 1.1 is consistent with this dependency, although it would be inconsistent for the 

functional dependency counterpart salesReps: Product, Target ^  Salary.

Conditional functional dependencies are just one of the examples of relaxed dependen­

cies; there are many others [23], which we discuss in Chapter 2.

D enial constrain ts. The reader might have noticed that the dependencies presented so far still 

cannot identify all inconsistencies in salesReps, even if we consider all of them together. That 

is because these various dependencies fall short of adequate expressive power. To directly 

address this sort of shortcomings, a large part of this thesis regards denial constraints, a type of 

dependency of high expressive power that can also incorporate relaxation definitions.

Denial constraints use relationships between predicates to specify inconsistent states 

of column values. We give formal definitions in subsequent chapters, but for now we express a 

denial constraint <p as follows:

: Vtx, ty e  r , - ( p 1 A . . .  A pm),

where tx and ty are tuples of table r; and p; are predicates drawn from  the schema R of r. A 

predicate p has one of the forms tx.A o ty.B or tx.A o c, where A,B are columns of R (A and B 

can refer to the same column); o is an operator in O =  {= , =  ,< ,  < , > , > } ; and c is a constant 

drawn from the domain of column A. A denial constraint <p in the above form states that there
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cannot exist a pair of tuples tx, ty in table r satisfying all predicates of © simultaneously; if there 

exists such a tx, ty , then r is inconsistent with the denial constraint ©.

Table 1.2 shows the denial constraints that model the dependencies discussed so far 

(the tuple identifiers are omitted). For example, the denial constraint ©1 states that if  any 

two sales reps have the same values in {Address, City, ST}, then they must have the same 

value in {Zip}. In other words, if  a pair of tuples tx, ty of salesReps satisfies the predicates 

tx.Address =  ty.Address, tx.City =  ty.City and tx.ST =  ty.ST simultaneously, then it cannot 

satisfy the predicate tx.Zip =  ty.Zip. Similar interpretations goes for the remaining denial 

constraints.

Table 1.2: Denial constraints that capture the data inconsistencies in salesReps.

Semantics Denial constraint

. , ,  . , , . ©1 : — (tx.Address =  ty.Address A tx.City =  ty.City
Address, city, and state determine zip. A-r \J y  Atx.ST =  ty.ST A tx. Zip =  ty.Zip)

Zip determines state. ©2 : — (tx.Zip =  ty. Zip A tx.State =  ty.State)

Sales reps cannot earn higher salaries \, . . 6 ©3 : —(tx.SID =  ty.ID A tx.Salary >  ty.Salary)
than their supervisors. J J

Targets determine the salaries o f  ©4 : — (tx.Product =  ty. Product A tx.Product =  'Wine'
all sales reps selling 'Wine'. Atx.Target =  ty.Target A tx .Salary =  ty.Salary)

I f  two sales reps sell the same product
and have the same target, the one who ©5 : — (tx .Product =  ty.Product A tx.Target =  ty.Target 
has higher sales should not receive a Atx.Sales >  ty.Sales A tx.Bonus <  ty.Bonus)
lower bonus than the other.

The research questions on types of dependencies of higher expressive power, such 

as denial constraints, are challenging. Nonetheless, the answers to such questions pursue 

the development of adequate support for dependencies that can cover a broad range of data 

inconsistencies.

1.1.2 Discovery of dependencies

Relational database design and maintenance is a complex process that requires, among 

other tasks, defining sets of dependencies. One option is to delegate the task to database designers 

with adequate expertise in the domain of the application. A lthough this option may work for 

small databases and simple types of dependencies, it may become infeasible in other scenarios. 

Database designers with enough expertise might not be conveniently available. Even when 

experts are around, the manual design of dependencies is time-consuming as experts must keep 

the dependencies up-to-date with the semantics of data and application, which is continually 

evolving. Besides, the higher the expressive power of a dependency language, the higher the
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complexity in the design of dependencies. Finally, the number of possible dependency candidates 

is usually too large for manual validation, even in small datasets.

The alternative to the manual design of constrains is the automatic discovery of depen­

dencies using data [21]. In a nutshell, the dependency discovery problem  is to find the set of 

dependencies, in a particular language, that holds in a specific table. The problem comes under 

the umbrella of data profiling: the set of activities to gather statistical and structural properties, 

i.e., m etadata, about datasets [22]. In general, the challenges in the discovery problem  are as 

following:

Enum eration  and  checking  of dependency candidates. In theory, the num ber of possible 

dependencies in a table is exponential in the number of columns in the schema. As a consequence, 

discovery algorithms regard combinatorial problems having, in the worst case, exponential time 

complexity. The higher the expressive power of a dependency language, the higher the number 

of candidates and, thus, the harder the enumeration and checking of dependency candidates in an 

efficient manner.

Use of inconsistent d a ta  to discover consistent dependencies. The discovery of dependencies 

from data might return non-reliable results because the available data might be inconsistent. Even 

if the discovery relies on data having only a small amount of inconsistency, the dependencies 

identified are likely inconsistent themselves. The inclusion of relaxation definitions into the 

discovery problem is a well-known way to circumvent the problem. However, the discovery of 

relaxed dependencies is harder than the discovery of exact dependencies because the former 

problem cannot use many optimizations that drastically reduce search spaces.

U nreliable results. The results of dependency discovery algorithms might hold only accidentally. 

W hether the discovery relies on consistent data or not, the num ber of results is usually huge, 

and, in all likelihood, not all results are equally useful. A large part of the results might be only 

residuals of overfitting, and only a few may support the im provement of data integrity or any 

other data management task.

The discovery of basic types of dependencies has long been studied [26]. In [27], the 

authors compare implementation details and experimental evaluation of seven algorithms for the 

discovery of functional dependencies. Since this publication, several additional papers focusing 

on functional dependency discovery were published [28, 29, 30, 31]. In contrast, the discovery 

of more complex types of dependencies is in the early stages of development, still with a limited 

num ber of contributions. For example, by the time we started this research project, there was 

only one publication on the discovery of denial constraints, called Fa s t DC [32].

One of the contributions in this thesis is D C F INDER [41], an efficient algorithm to 

discover both exact and relaxed denial constraints. D C F i n d e r  is designed to overcome many of 

the pitfalls observed in previous solutions for the discovery of denial constraints. Also, this thesis 

presents a novel technique to help D C F i n d e r  avoid returning unreliable results [42]. The main 

goal of this technique is to select denial constraints that can identify errors in datasets. This thesis
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also investigates the problem of discovering functional dependencies for query optimization and 

presents FD Se l  [44]. The tool selects a set of functional dependencies from data profiles, which 

can be used in query rewritings and benefit query executions.

1.1.3 Violations of dependencies

A dependency violation is a tuple (or set of tuples) having values that do not agree with 

the semantics of the dependency. That way, data inconsistencies emerge as violations of the 

dependencies defined for the database.

Databases may become inconsistent due to different reasons. For example, a poorly 

designed database is likely to store inconsistent data. A database management system and its 

applications may not have enough mechanisms to ensure adequate data consistency. Besides, 

in data integration scenarios, multiple different databases have various perspectives on data 

consistency. Choosing a global definition of consistency is already hard, and so is matching all 

the various data to this definition [33]. In general, many production databases are subject to data 

inconsistencies at some point.

D etection of dependency violations. Knowing to which extend inconsistencies permeates a 

database is the first step towards producing better-quality query answers; therefore, the detection 

of dependency violations is vital. In data cleaning pipelines, nothing can be done before the 

detection step. Even if fixing inconsistencies is not possible, users surely need to be aware of the 

inconsistencies so they can avoid poor decision-making.

The most straightforward way to detect a dependency violation is to enum erate the 

necessary combination of tuples, and then check whether each combination complies with the 

dependency or not. For example, a naive approach for detecting the violations of the denial 

constraints in Table 1.2 would enumerate and check every pair of tuples in the table against all 

predicates of each denial constraint. O f course, this approach is im practical for large datasets 

since it has a quadratic time complexity in the number of tuples.

An alternative to the naive approach is to translate dependencies into SQL queries and 

then ask a database management system to find the violations. A lthough the use of database 

management systems is practical, it has two critical performance drawbacks. The performance 

varies significantly from system to system, and, worst yet, it is usually not robust against different 

types of dependencies. For the same dataset, a database management system may perform well 

for a given dependency but perform poorly for another (we investigate this issue in Chapter 5 ).

Most of the recently presented data cleaning systems use database management systems 

to detect violations of data dependencies. Still, their experimental evaluations are quite limited, as 

they explore mostly simple dependencies (e.g., functional dependencies) and small datasets [34, 

35, 36, 24]. In many real-world scenarios, however, data cleaning (and other data management 

tasks) has to deal with large datasets and complex dependencies such as denial constraints. Thus, 

there is a need for efficient techniques to detect violations of dependencies of various types.
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This thesis also presents V i o F i n d e r  [43], a system for efficient detection of violations 

of data dependencies. V i o F i n d e r  includes many novel concepts and algorithms that enable the 

tool to outperform three commercial data management systems and another dependency-based 

tool in several scenarios.

H andling  of dependency violations. There are two primary courses of action for handling 

data inconsistencies. The first, consistent query answer, allows both consistent (clean) and 

inconsistent (dirty) data to coexist in the database [37]. When applications submit queries to the 

database, a solution for consistent query answering must compute consistent views of the data at 

runtime— these views are called repairs. Then, from these repairs, it needs to determine which 

ones are the best to retrieve the (consistent) answers to the initial query. The second course of 

action is data repairing [38]. The idea is to com bine the inconsistent database with a series of 

data updates to produce a new database (also called repair) that satisfies the constraints in the 

database, and therefore, is free from  inconsistencies. The changes to the inconsistent database 

must be as minimal as possible.

1.1.4 Applications of dependencies

Dependencies incorporate semantics into the relational model that enable the support or 

improvement of data quality, query performance, and database design.

D ata  quality. Data consistency is a central dimension of data quality [39, 40]. Due to the 

increase in interest for high-quality data, the most investigated use of dependencies in the last 

years has been data cleaning, or related subjects aiming at increasing data quality. As discussed 

earlier, database management systems automatically check update operations for compliance with 

types of integrity constraints of limited expressive power. Unfortunately, that is not enough to 

ensure data with high standards of quality. Nonetheless, some techniques can help in improving 

data consistency, and thus, data quality in general. We review many of them in Chapter 2. This 

thesis makes contributions on two dimensions of data consistency: discovery of dependencies; 

and detection of dependency violations.

Q uery  perform ance. Databases that satisfy specific dependencies, for example, functional 

dependencies, may benefit from  an extended search space of possible query execution plans. 

Query optimizers can leverage dependencies to determine better query execution plans or rewrite 

queries into semantically equivalent ones that result in better performance. This thesis makes a 

contribution that combines results from an automatic discovery of functional dependencies with 

the application of dependencies in query optimization.

D atabase design. Dependencies are the fundamentals of relational database design. Good 

quality designs avoid table schemas that allow data anomalies to persist in the database. The data 

normalization process is to decompose a poorly design table schemas into well-defined ones that 

satisfy normal forms, which are based on dependencies (in general, functional dependencies and 

a few variants). We provide further references on this topic in Chapter 2.
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1.2 SUMMARY OF CONTRIBUTIONS

The research on data dependencies is vibrant, but at the same time, challenging. Con­

tributions on the field have numerous applications in various data management aspects. The 

contributions of this thesis cover four primary dimensions, summarized as follows.

A novel a lgorithm  for the  discovery of denial constra in ts [41]. The alternative to designing 

denial constraints by hand is automatically discovering denial constraints from  data. Unfortu­

nately, this alternative is computationally expensive due to the vast search space derived from 

the num ber of predicates that can form  denial constraints. To tackle this challenging task, we 

present a novel algorithm, D C F i n d e r . It combines data structures called position list indexes, 

bitwise operations, and optimizations based on predicate selectivity to validate denial constraint 

candidates efficiently. Because the available data often contain errors, the design of D C F i n d e r  

algorithm focuses on the discovery of relaxed denial constraints. O ur experimental evalua­

tion uses real and synthetic datasets and shows that D C F i n d e r  outperforms previous existing 

algorithms for the discovery of relaxed denial constraints.

A novel technique to focus the dependency discovery in  denial constra in ts useful for d a ta  

cleaning [42]. In the traditional approach to the discovery of dependencies, the results are as 

reliable as the data used to produce them. Having problem atic data is often involuntary; thus, 

the discovery should be able to accommodate potential data errors. Besides, the number of 

discovered results grows exponentially with the number of columns in the table. Even if we 

discover dependencies from correct data, many results may hold only by chance, i.e., they are 

spurious. We propose a method that uses statistical evidence of the tuples of a dataset to focus 

the discovery of denial constraints in dependencies of interest. Our method sets D C F i n d e r  

so that it can find denial constraints appropriate for data cleaning, even if the dataset contains 

errors. Our experiments with real data show that the identified denial constraints point, with high 

precision and recall, to inconsistencies in the input data.

A novel system  to  detect violations of denial constra in ts [43]. Dependencies and their viola­

tions can reveal errors in data. Several data cleaning systems use database management systems 

to detect violations of data dependencies. While this approach is efficient for some kinds of data 

dependencies (e.g., key dependencies), it is likely to fall short of satisfactory performance for 

more complex ones, such as some forms of denial constraints. We propose a novel system to de­

tect violations of denial constraints efficiently. We describe its execution model, which operates 

on compressed blocks of tuples at-a-time, and we present various algorithms that take advantage 

of the predicate form in denial constraints to provide efficient code patterns. Our experimental 

evaluation includes comparisons with different approaches; real-world and synthetic data; and 

various kinds of denial constraints. It shows that our system is up to three orders-of-magnitude 

faster than the other solutions, especially for datasets with a large number of tuples and denial 

constraints that identify a large number of violations.
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Novel techniques to detect functional dependencies ap p ro p ria te  for query  optim iza­

tion [44]. We present a system for automatic query optimization based on data dependencies. 

By formulating query transformations, it can revise the number of processed rows, with a direct 

im pact on performance. The goal is to optimize query execution in cases where the database 

is denormalized or have lost dependencies in the design. We rely on the automatic discovery 

of dependencies, but to avoid optimizing for spurious dependencies, we focus on dependencies 

matching the current queries in the pipe (i.e., the workload). Initially, we use a state-of-the-art 

algorithm to discover the set of functional dependencies holding in the datasets. Then, our 

focused dependency selector uses the available workload information to choose exemplars from 

the set of the discovered functional dependencies that are appropriate for query optimization. 

That eliminates any manual interaction. The selected dependencies exhibit statistical properties 

that resemble those of the initial set of dependencies; therefore, they serve as a semantical 

summary of the dependencies. We use well-known techniques for query optimization with the 

selected dependencies. In the best-case scenario of our experimental evaluation, our system can 

reduce query response time by more than one order of magnitude using join elimination for a 

real-world database.

1.3 THESIS OUTLINE

The outline of the remainder of this thesis is as follows. Chapter 2 provides background 

on dependencies; and discusses many works related to our primary contributions. The next 

four chapters are based on the works we published during the development of this thesis 

(see Appendix A ). Chapter 3 presents our algorithm for the discovery of denial constraints: 

D C F i n d e r . Then, Chapter 4 proceeds and presents our solution to detect denial constraints 

appropriate for data cleaning. Chapter 5 describes a novel system for the detection of violations of 

denial constraints. Chapter 6  presents our tool for detecting functional dependencies appropriate 

for query optimization. Finally, Chapter 7 concludes this study with a discussion on closing 

thoughts and topics for future work.
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Chapter 2 

Background

In this chapter, we present the necessary notations and describe numerous concepts 

associated with this thesis. Besides, we discuss several research problems and works related to 

the primary contributions of this thesis.

2.1 BASIC NOTATIONS AND CONVENTIONS

We consider relation instances r, or tables r for short, of relation schemas R(A1, An). 

The possible values of each column (or attribute) A; e  R are drawn from  its domain dom(A;). 

Each tuple t  of r is an element of the Cartesian product dom(A1) x . . .  x dom(An). W hen 

referencing the tuples in tables, we consider the position of tuples within the table as tuple 

identifiers (also called offset); see Table 1.1. We use X and Y to denote sets of columns, and we 

use A to reference each column in X , and B to reference each column in Y, that is, A e  X and 

B e  Y. We denote the projection of a tuple on a set of columns (or single column) using brackets, 

for example, t  [X] or t  [A].

Let O =  {= , = , < , < , > , > }  be a set of built-in operators of the database. Predicates 

p are comparison expressions of the form  tx. A; o ty.Aj or tx.A; o c, where columns Ai; Aj e  R; 

tuples tx, ty e  r; operator o e  O; and c is a constant drawn from dom(A;). Predicates can compare 

two tuples for the same column, so the two columns in a predicate can be the same (i =  j). 

For convenience, we sometimes also use A and B to refer to the columns in predicates. The 

above predicate notation is useful in expressing denial constraints (as we can see in Table 1.1). 

Besides, it is close to statements often seen in the where clauses of standard SQL queries. Given 

a predicate p, we denote p. A; the column in its left-hand-side; p.Aj the column in its right-hand- 

side; and p.o its operator. Given any two predicates p1 and p2 , we write p1 ~  p2 to say that the 

columns pi.A; =  p2 .A; and pi.A j =  p2 .A j, and p1 f  p2 to say otherwise.

Figure 2.1 shows the implication of each operator o e  O. A predicate p1 : A; o Aj implies 

every predicate p2 : A; o' A j, where o' e  o ^ .  If predicate p1 is true, then every implication p2 

is true. We denote imp(p) the set of predicates implied by p. Figure 2.1 also shows the logical 

complement o of each operator. The complement of a predicate p : tx.A; o ty.Aj is the predicate
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p : tx.A; o ty.A j, where o is the logical complement (or negation) of operator o. If predicate p is 

true, then p is false.

Operator (o) = < < > >

Implication (o ^ ) = , < , > < , < , = < > , > , = >
Negation (o) = > > < <

Figure 2.1: Implication and complement of built-in operators of the database.

2.2 DEPENDENCIES

Database constraints are commonly expressed as dependencies that define a semantic 

property on a column or group of columns. Once defined, database constraints must be satisfied 

by any database instance. We can explicitly express some types of dependencies as constraints 

at the schema level using a data definition language— these constraints are sometimes called 

schema-based constraints or explicit constraints.

As we saw in Chapter 1, the basic integrity constraint framework of most commercial 

database management systems cannot express many critical types of semantic properties. The 

alternative then is to use dependencies of adequate expressive power to capture such properties. 

Dependencies have a less strict definition than constraints. A dependency is a property on a 

column or group of columns that apply to particular instances of the database. We can choose a 

dependency to be enforced as a constraint. If the database management system cannot implement 

this constraint, then we need to implement it using other means.

The initial studies on dependencies started shortly after the proposal of the relational 

model. Their primary motivation was mainly database design, but nowadays, dependencies are a 

fundamental part of various data management contexts. The research on dependencies contributed 

to a variety of dependency languages for defining the semantics of relational databases [45, 

46, 47, 4 ]. M ost dependency languages can be expressed using first-order logic sentences, 

naturally, as dependencies can be seen as semantic sentences about relations. In practice, 

however, dependency languages are restricted to find a balance between expressive power and 

language complexity [20, 48]. For a general perspective on dependency theory, we refer the 

reader to the following comprehensive study [20], and books [49, 50, 4].

S tatic analysis. There are essential theoretical problems regarding the dependency theory. Of 

course, the results for these problems vary according to dependency languages. The higher the 

expressive power of a dependency language, the harder its complexity results [20, 4, 1]. We 

describe two of these essential problems, also referred to as static analysis of a dependency 

language, as they are central in developing practical solutions based on dependencies [48].

The first problem is about satisfiability. Given a set E of dependencies, expressed in a 

dependency language L  and defined on a relation schema R, the satisfiability problem for L  is
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about w hether there exists a nonempty relation instance r of R that satisfies every dependency 

© in E. We write r =  © to say that r satisfies ©, and r =  © to say otherwise. The satisfiability 

problem regards the consistency of the dependencies themselves. If the set E cannot be satisfied 

by any relation instance, then using E to validate data becomes pointless.

The second problem  is about implication. Consider a set E of dependencies and a 

dependency ©, expressed in a dependency language L  and defined on a relation schema R. 

The implication problem  for L  is about deciding whether E implies ©. This implication is 

true if r |= E, then r |= ©, for every relation instance r of R. We write E =  © to say that E 

implies ©, and E =  © to say otherwise. Notice that the dependency © is redundant if E =  ©. 

Avoiding such redundancies helps in several practical problems. For example, in the detection of 

dependency violations, if we have E =  ©, then the violations for © are contained in the violations 

for E. Therefore, there is a great interest in the development of algorithms for determining the 

implication of dependencies.

A nother perspective on the implication problem  is the study of inference rules as a 

mechanism to determine logical implication— a well-known example is Armstrong’s Axioms for 

functional dependencies. An important property from inference rules is that if there exists a finite 

set of inference rules for a dependency language, then there exists an algorithm for determining 

the logical implication [4].

D ependencies considered in this w ork. We consider state (or static) dependencies. Those are 

dependencies that define properties for the states of a database. Another type of dependency is 

dynamic (or transition) dependencies, which defines properties for database value changes: for 

example, “the age of a person can only increase.” Dynamic dependencies are out of the scope of 

this work, but the reader can find pointers on the subject in [51]. Also, we restrict this study to 

dependencies involving only single tables, sometimes called intra-relation dependencies. The 

study of dependencies involving multiple tables at a time is out of the scope of this work— the 

reader can find material on the subject in [52, 53, 4].

In the following, we present the fundamentals and notations for denial constraints and 

functional dependencies, as they are related to our main contributions. Also, we discuss some 

other types of dependencies related to this work. For examples, we consider the relation instance 

salesReps once more— Table 1.1 in Chapter 1.

2.2.1 Denial constraints

D enial constraints are one of the most general types of intra-relation dependencies 

discussed in database literature since they have high expressive power and generalize several 

different types of dependencies [32, 54, 1]. They are a universally quantified first-order logic 

formalism. Each denial constraint expresses a set of relational predicates that specify constraints 

for inconsistent combinations of column values. Any tuple, or set of tuples, that disagrees with 

these constraints is a denial constraint violation that reflects inconsistencies in the database.
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A  denial constraint can involve multiple tuples; however, denial constraints involving 

more than two tuples are less likely to represent useful business rules. Considering an unlimited 

num ber of tuples in each constraint leads to serious complexity and feasibility issues, at the 

cost of controversial gains in expressive power. In general, denial constraints involving at most 

two tuples suffice to represent most of the constraints required in practice. Besides, this class 

of denial constraints can already generalize many other essential types of dependencies and 

represent a vast range of complex business rules. Therefore, in this work, we consider denial 

constraints involving at most two tuples— related work apply the same restriction [32, 55, 34]. 

We express the universal quantifiers for denial constraints involving at most two tuples as Vtx, ty, 

and we express denial constraints using sets of predicates of the form defined in Section 2.1.

D efinition 1 (Denial Constraint). A denial constraint 9  over a relation instance r is a statement 

of the form

9 : Vtx, ty e  r , - ( p 1 A . . .  A pm)

where 9  is satisfied by r if and only if for any tuple pair tx, ty e  r at least one of the predicates 

p1, . . . ,  pm is false. In other words, the denial constraint 9  does not hold if there exists any tuple 

pair in r that satisfies all the predicates of 9 .

We write tx, ty =  9  to say that a tuple pair tx, ty satisfies 9 , and tx, ty =  9  to say 

otherwise. We say that a denial constraint 9 1 implies another denial constraint 9 2 , written as 

9 1 =  9 2 , if for every relation instance r, the statement r =  9 1 implies r =  9 2.

A denial constraint 9  is called trivial if it is satisfied by any relation instance. For 

example, the denial constraint:

9 6 : Vtx, ty e  salesReps,—(tx.Name =  ty.Name A tx .Name =  ty.Name)

is trivial, since it is valid in any instance of salesReps— no pair of tuples can have equal names 

and different names at the same time. The symmetric denial constraint 9 2 of a denial constraint 

9 1 is given by swapping the tuple identifiers tx and ty in the predicates of 9 1. For example, the 

denial constraint:

9 7 : Vtx, ty e  salesReps,—(tx.ID =  ty.SID A tx.Salary <  ty.Salary)

is symmetric to the denial constraint 9 3 in Table 1.2. Notice that if denial constraints 9 1 and 9 2 

are symmetric, then 9 1 =  9 2 , and vice versa.

A denial constraint 9 1 is minimal if there does not exist a 9 2 such that both 9 1 and 9 2 

are satisfied by r and the predicates of 9 2 are a subset of 9 1. In other words, a denial constraint 

9 1 is not minimal if it is a generalization of another denial constraint 9 2. For example, the denial 

constraint:

9 8 : Vtx, ty e  salesReps, —I (tx.Zip =  ty .Zip A tx .City =  ty. City A tx. State =  ty. State)
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is not minimal in the relation instance salesReps, since the set of predicates of the denial 

constraint <p2 in Table 1.2 is a subset of the predicates of denial constraint <p8— the predicate 

tx.City =  ty.City in (p8 is not necessary.

We can form  predicates by combining the columns of a relation schema: with each 

other, or with the values in their domains. Besides, we can use different built-in operators and 

derive predicates of various forms. Then, we can com bine these predicates in many different 

ways to represent numerous types of denial constraints. This great variety of possibilities 

illustrates the high expressive power of denial constraints. The denial constraints in Table 1.2 are 

simple examples of how we can use the form alism  to express complex business rules (denial 

constraints <p3 and <p5), or other types of dependencies (denial constraints ^ 1 and <p2 as functional 

dependencies, and denial constraint <p4 as a conditional functional dependency).

S tatic analysis. The satisfiability problem for denial constraints has not been established yet [1]. 

However, it has already been shown that the problem is NP-complete for some types of dependen­

cies subsumed into denial constraints, for example, conditional functional dependencies [24, 1]. 

The implication problem for denial constraints is coNP-complete [56]. In this matter, a sound, 

but not complete, inference system for denial constraints is presented in [32]. The soundness is in 

the sense that every denial constraint inferred from a set of denial constraints using the inference 

system is indeed a denial constraint implied by that set of denial constraints. The completeness 

is in the sense that there might exist denial constraints derived from a set of denial constraints 

that cannot be inferred using the inference system. Still, the proposed inference system helps 

in the discovery of denial constraints as it enables pruning of the search space. Also, because 

implied and trivial denial constraints are removed, the system m ay promote a reduction in the 

number of discovered results. The inference system for denial constraints includes three rules 

(here, we also use q and s to refer to predicates, for convenience) [32]:

(Triviality). Vpi, pj if pi e  im p(pj), then —I (p; a  p j) is a trivial denial constraint.

(Augmentation). If — (p; A . . .  A pn) is a valid denial constraint, then —(p; A . . .  A pn A q) is also a 

valid denial constraint.

(Transitivity). If — (p; A ...  A pn A q 1) and — (s; A . . .  A sm A q2) are valid denial constraints, and 

q2 e  im p(q1), then —(p; A . . .  A pn As; A . . .  Asm) is also a valid denial constraint.

The triviality rule specifies that if a denial constraint is trivial if it contains two predicates 

that cannot be true at the same time. The Augmentation rule concerns the addition of unnecessary 

predicates to a denial constraint: if  a denial constraint is already valid, then adding another 

predicate to it results in another valid denial constraint. Finally, the transitivity rule concerns two 

denial constraints and two predicates (one predicate in each denial constraint) and assumes that 

these two predicates cannot be true simultaneously. Then, the combination of these two denial 

constraints having those two predicates removed results in a valid denial constraint.
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2 .2 .2  Functional dependencies

O ne of the most common dependencies in database literature is arguably functional 

dependencies. We briefly discussed them in Chapter 1. In the follow, we give their definition.

D efinition 2 (Functional dependency). A functional dependency f : X  ^  Y  states that the values 

of a tuple in X  must uniquely or functionally determine the values of that tuple in Y . A relation 

instance r satisfies f  if for all pair of tuples, tx, ty, in r the following condition holds:

Vtx, ty e  r : tx [X] =  ty [X] = ^  tx [Y] =  ty [Y] .

The right-hand side Y  of f  is functionally determined by the left-hand side X . We 

denote f  .lhs the left-hand side, and f  .rhs the right-hand side of a functional dependency f . A 

functional dependency is non-trivial if it does not have any redundant attribute (i.e., X  ^  Y ), and 

it is minimal if there exists no set Z  such that (X — Z ) ^  Y  is also a valid functional dependency. 

We can decompose a functional dependency f  into multiple functional dependencies using each 

column in the right-hand side of f . For example, consider a functional dependency X  ^  Y  where 

Y  =  {B1, B2}. The two functional dependencies X  ^  B1 and X  ^  B2 are equivalent to the single 

functional dependency X  ^  Y .

We can express functional dependencies using denial constraint notation because func­

tional dependencies are subsumed into denial constraints. To do so, we can transform  the 

implication in the definition of functional dependencies into conjunctions. Consider a functional 

dependency X  ^  B; then we have the following implication:

Vtx, ty e  r : tx [X] =  ty [X] = ^  tx [B] =  ty [B].

First, we can write the projections as predicates, as follows:

Vtx, ty e  r : f  tx.A =  ty.A = ^  tx.B =  ty.B.
AeX

We have, from  De M organ’s laws, that the negation of a conjunction / \  tx.A =  ty.A is the
AeX

disjunction of negations V tx.A =  ty.A. Thus, we can apply the material implication rule to
AeX

replace the above implication with the following disjunctions:

Vtx,ty e  r : y  tx.A =  ty.A Vtx.B =  ty.B.
AeX

Still considering De M organ’s laws, we can transform  the formula above into an equivalent 

denial by negating the complement of the above sentence as follows:

Vtx, ty e  r : — i f  tx.A =  ty .A A tx.B =  ty.B
AeX
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This is a valid denial constraint representation of the functional dependency X ^  B.

S tatic analysis. Any set of functional dependencies is satisfiable, and the implication problem 

for denial constraints is in linear time [4, 57]. The inference rules for functional dependencies, 

known as Armstrong’s Axioms, are covered in most database textbooks, and they have inspired 

the inference system for denial constraints we saw before. For convenience, we reproduce the 

Axioms here:

(Reflexivity). If X C Y, then X ^  Y

(Augmentation). If X C Y, then XZ ^  YZ, where Z is also a set of columns. Here, XZ and YZ 

represent unions of sets of columns.

(Transitivity). If X C Y, and Y C Z then X ^  Z

2.2.3 Unique column combinations

A unique column combination is a set of columns for which every tuple in a relation 

instance has unique values. In other words, a set of columns X is a unique in r if Vtx, ty e  r and 

x =  y, then tx [X] =  ty [X]. Unique column combination are sometimes called uniques, uniqueness 

constraints, candidate keys, o r key dependencies. Notice that uniques are a particular case of 

functional dependencies, as the set of column X determines all columns of the relation, that 

is, X ^  R. As two examples, column Name and column ID are valid uniques in salesReps—  

however, common sense says that the column ID works better as a primary key than Name.

We can apply a few transformation rules, in a similar way we did for functional 

dependencies, to convert a unique into logically equivalent expressions that represent a denial 

constraint. Thus, we can represent a unique X as a denial constraint as follows:

Static analysis. Unique column combinations are subsumed into functional dependencies; thus, 

it is possible to use the results of the static analysis of functional dependencies.

2.2.4 Order dependencies

O rder dependencies specify relationships of order (sort) between the columns of a 

relation schema. The definition of order dependencies is based on the semantic adopted to order 

tuples; there are two variants: pointwise ordering and lexicographical ordering [58]. Consider 

a tuple tx, having values (tx [A1] , . . . ,  tx [An]), and a tuple ty, having values (ty [A1] , . . . ,  ty [An]). 

The pointwise ordering specifies that for (tx [A1] , . . . ,  tx [An]) <  (ty [A1] , . . . ,  ty [An]) to be true, 

then tx [A;] <  ty [A;], for all 1 <  i <  n. On the other hand, the lexicographical ordering specifies

Vtx,ty e  r : — tx.A =  ty.A
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that (tx [A1] , . . . ,  tx [An]) <  (ty [A1] , . . . ,  ty [An]) is true if there exists some i >  1 such that tx [A;] <  

ty [A;] and, for each j  <  i, tx [A j =  ty [A j].

Pointwise order dependencies strictly generalize lexicographical order dependencies. 

Thus, there exists a mapping of any lexicographical order dependency into a set of pointwise 

order dependencies, as it is proven in [59]. The definition of pointwise order dependency, 

as it is given in [59], is based on order conditions, which are marked columns Ao in which 

o e  { = , < ,  <,  >,  > } — mind that the operator =  is not included here, differently than the operators 

in denial constraints. For this definition, let us consider that the sets X and Y are sets of order 

conditions instead of sets of standard columns. A pointwise order dependency X ^  Y is valid if 

the value order in each marked column of X implies a value order in each column of Y. That 

is to say, a relation instance r satisfies an order dependency X ^  Y if, for any pair of tuples tx 

and ty in r, the following holds: for each order condition Ao e  X , tx [A] o ty [A], then, for each 

order condition Bo e  Y, tx [B] o ty [B]. As an example, consider the salesReps in Table 1.1 having 

tuple t 3 removed. If salesReps is sorted on column Target, it is also sorted on column Salary. In 

this case, we can say for example that the pointwise order dependency {Target>} ^  {Salary>} 

holds. For more material on order dependencies, including lexicographical order dependencies, 

we refer the reader to [58, 60, 59].

Order dependencies generalize functional dependencies, and denial constraints, in turn, 

generalize order dependencies. Again, we can apply a few transformation rules and rewrite every 

order dependency into a set of logically equivalent expressions in denial constraint format [59]. 

For example, consider a pointwise order dependency X ^  B, where every order condition has 

the same operator o. We can write a denial constraint representation for such order dependency 

as follows:

Vtx,ty e  r : — i / \  tx.Aoty.A A tx.Boty.B
\AeX

Static analysis. The satisfiability problem for order dependencies is studied in [61]. The authors 

show that satisfaction is independent of the set of columns. In regards to implication, the authors 

in [60] present a set of inference rules, and the authors in [59] present inference procedures [59]. 

The inference problem for order dependencies is in coNP-complete [59].

2.2.5 Relaxed dependencies

Relaxed dependencies incorporate extensions in the canonical definition of dependencies 

so that they can handle certain kinds of errors and exceptions in data. The review study by 

Caruccio et al. provides a taxonomy of relaxed functional dependencies [23]. For results on the 

static analysis of relaxed dependencies, we refer the reader to [62, 63] In general, the relaxation 

concepts for functional dependencies can be extrapolated to other types of dependencies, such as 

denial constraints.
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There are two variants in the relaxation criteria of dependencies; one is relative to the 

satisfiability criteria (or extent), and the other is relative to column comparisons [23].

R elaxations relative to satisfiability c rite ria  (or extent). Dependencies might be specific to a 

part of the data. For example, many countries have different policies across different states, so 

records having different states might obey different rules, hence different dependencies. Besides, 

some dependencies might not hold entirely in the data due to errors, for example, missing values, 

typos, or outliers.

Conditional functional dependencies are a well-known example of dependencies that 

relaxes on the satisfiability criteria. They can express constant patterns that specify those subsets 

of tuples that satisfy a given functional dependency. Similarly, conditional denial constraints 

such as ©4 in Table 1.2, can include constants in their predicates to specify subsets of tuples that 

satisfy a given denial constraint. The subsets of tuples identified by conditional dependencies 

indicate the part of the data that follows particular dependencies.

A nother prim ary example of dependencies that relax on the satisfiability criteria is 

approximate dependencies— sometimes called partial dependencies 1. Here, the satisfiability 

criteria are relative to the number of violations in a table that does not satisfy a dependency. If 

that number is below a certain threshold, the approximate functional dependency is valid in that 

instance. As we discuss later, the approximation  concept is key in discovering dependencies 

using possibly inconsistent data. The functional dependencies Address, City, ST ^  Zip and 

Zip ^  City, ST are approximate functional dependencies if we consider a threshold of one tuple 

violation, because there is at most one tuple violating each dependency. Similarly, the denial 

constraints ©1 and ©2 in Table 1.2 are approximate denial constraints.

An approximate dependency is a dependency satisfied by almost the entire table [26]. 

Kivinen and M annila present various measures to define the meaning of “almost” . That is, the 

authors suggest error measures that characterize and quantify dependency errors [62]. Although 

the work of Kivinen and M annila focuses on functional dependencies, the proposed error 

measures can be generalized for other types of dependencies, such as denial constraints.

R elaxations relative to colum n com parisons The second form  of dependency relaxation is 

relative to the comparison of column values. The idea here is to relax dependencies so that they 

identify semantic relationships between columns using similarity measures rather than standard 

relational operators, e.g., equality. The use of similarity measures is useful in production data as 

they may contain non-uniform representations for the same entity. For example, the same name 

may occur as “Ben King” or “B. K ing” in the same column, or related columns. Besides, the 

similarity concept is useful in handling small variations in numerical domains.

An example of dependency relaxing on column comparison is metric functional depen­

dencies, which allow small variations in the dependent (or right-hand side) columns of functional 

dependencies [64]. This dependency specifies that if two tuples have the same values in columns

iWe stick to the term approximate dependencies to avoid confusion between partial and conditional dependencies.
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X , then their similarity values in columns Y  should agree with a specific similarity function on Y , 

for instance, the edit distance function. In salesReps, the dependency Address, City, ST ^ 8=1 Zip 

is a valid metric functional dependency if we consider the edit distance function and a similarity 

threshold of 8  =  1; observe that tuples t 1 and t 2 are consistent with this dependency. As an­

other example, we refer to a generalization of metric functional dependencies called differentia/ 

dependencies: if two tuples have similar values of X , then their values of Y should also be 

similar [65]. For example, assuming absolute differences as the distance metric on numerical 

attributes, a differential dependency in salesReps could be [Salary(< 1000)] ^  [Bonus(< 1000)]. 

This dependency states that the bonus difference between any two employees within a $1000 

salary difference should be no higher than $ 1 0 0 0 .

One approach to relax denial constraints relative to the comparison of column values is 

to extend the set of built-in operators considered in their predicates. For example, the authors 

in [54] consider a set of operators O =  {= , = , < , < , > , > , —  their focus is handling violations

of denial constraints. They implement the operator «  as the edit distance between two strings A 

predicate is true if this distance is above a certain threshold. A similar approach is considered in 

a data cleaning system that uses denial constraints, H OLOCLEAN [34]. In this work, we only 

consider denial constraints relaxing on the extend.

2.2.6 Other types of dependencies

Some data entities might have a variety of syntactically different representations. On­

tology functional dependencies introduce levels of abstractions in functional dependencies to 

capture these differences [6 6 ] . In a few words, they use synonym and hierarchy relationships to 

represent and validate the dependencies. A synonym ontology functional dependency, X ^ syn Y, 

states that for each set of tuples with equal values in X , should exist a domain specification 

for which the values in Y of that set of tuples are synonyms (e.g., “U FPR” is synonymous 

with “Universidade Federal do Paraná”). On the other hand, an inheritance ontology functional 

dependency, X ^ inh Y, states that for each set of tuples with equal values in X , should exist a 

domain specification for which the values in Y of that set of tuples are descendants of a least 

common ancestor (e.g., both “lions” and “tigers” are cats).

M aster data management provides methods to define and manage trustful views of 

data [67, 6 8 ]. It is possible to use master data in the definition of dynamic dependencies [69, 70]. 

This type of dependencies determine not only which column values are incorrect, but how to 

fix them. For example, editing rules are defined using relation schemes R and Rm, where the 

latter is a relation referencing master data [69]. An editing rule states that if there exists a tuple t  

in relation instance r and a tuple tm in relation instance rm such that t[X] =  tm[X], then t  should 

be updated on columns Y using t[Y] := tm[Y]. Fixing rules is a another example of dynamic 

dependency. They combine evidence patterns and negative patterns to expose errors, and express 

facts to fix them [70]. For example, a fixing rule can combine an evidence pattern “Brasil” for a 

column Country with a negative pattern {“Rio de Janeiro” , “São Paulo” } for a column Capital to
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identify common mistakes on pair of columns Country, Capital. If a tuple matches these patterns, 

then the rule uses the fact “Brasília” to correct the error in Capital. Fixing rules help in repairing 

ambiguous errors, for example, (“Brasil” , “Buenos Aires”). This error could be fixed either 

as (“Brasil”, “Brasília”) or as (“Argentina”, “Buenos Aires”). The main drawback of dynamic 

dependencies is the high cost to maintain a solid point of reference for master data.

There has been an increase in interest in revisiting the dependency theory to improve 

the handling and interpretation of incomplete information in databases. For a comprehensive 

study on the subject, we refer the reader to [71]— this line of research is orthogonal to the 

one in this thesis. As a brief example, we mention embedded functional dependencies, an 

extension for functional dependency, which aims at integrating data completeness requirements 

with the standard requirements of dependencies. Given that X , Y  Ç E , an embedded functional 

dependency E : X ^  Y extends the notion of functional dependencies because it defines a subset 

of tuples rE Ç r having no missing data (e.g., null values) in the columns in E  [72]. The authors 

study how to apply embedded functional dependencies to identify redundant data values under 

different interpretations of missing information. Besides, they study the problem of implication 

in their context and present an inference system for embedded functional dependencies. In [73], 

the authors study embedded uniqueness constraints; their motivation is similar to [72].

2.3 DISCOVERY OF DEPENDENCIES

D esigning dependencies by hand can be burdensome, and it is likely to fail if we 

consider the dynamic changes in data and applications. A compelling alternative is the automatic 

discovery of dependencies, a problem that is commonly classified as a data profiling problem. In 

a nutshell, data profiling is a set of complex tasks that helps in discovering relevant metadata for 

datasets [22]. Typical examples of metadata include basic statistics (e.g., value distributions), 

patterns of data values, and dependencies. D ata profiling is connected, at least indirectly, to 

many data management tasks. Thus, it is natural that there has been an extensive number of 

work addressing data profiling issues. A comprehensive presentation of data profiling tasks and a 

review of primary contributions on the topic can be found in the survey [22], and the book [74]— 

a great deal of this material is dedicated to the discovery of dependencies. Besides, a study on 

the discovery of many types of dependencies can be found in [2 1 ] .

The problem of dependency discovery is to detect the set of dependencies— expressed 

in the desired dependency language— that hold on a given relation instance. The number of 

dependency candidates, that is, dependencies that might potentially hold, in each relation in­

stance is exponential in the number of columns in the relation schema— or even worst depending 

on the dependency type. Thus, to achieve satisfactory performance, the different dependency 

discovery solutions employ a variety of different approaches to enumerate and validate depen­

dency candidates. These approaches vary in performance depending on the characteristics of the 

datasets.
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As mentioned earlier, several types of dependencies have been repurposed to handle 

data inconsistencies. As a result, many discovery algorithms have been developed for these types 

of dependencies. In the following, we discuss some of the main algorithmic issues and solutions 

to the dependency discovery problem.

2.3.1 Discovery of functional dependencies, uniques and order dependencies

The approaches for functional dependency discovery can be generally classified 

into column-based  or row-based approaches [75, 27].

Colum n-based approaches combine lattice traversals of column combinations and 

intensive pruning strategies. The intuition in these approaches is that supersets of the functional 

dependencies, or subsets of non-functional dependencies, discovered previously do not require 

validation, i.e., they can be pruned. These approaches are known to perform well regarding the 

size of the relation instance. However, they are sensitive to the size of the schema (i.e., number 

of columns), so they might provide poor perform ance for datasets having many columns [27]. 

Examples of algorithms based on column approaches are Ta n e  [26] and Fu n  [76].

On the other hand, row-based approaches use cross-comparisons of tuples to find sets 

of columns sharing the same values. Then, the com plement of these sets can be manipulated 

to produce the set of functional dependencies satisfied by the relation instance. Row-based 

approaches usually perform  better with an increasing num ber of columns than top-down ap­

proaches. However, they perform worst with an increasing number of tuples because of the large 

number of pair-wise comparisons. Examples of row-based approaches are D e p -M i n e r [77] and 

Fa s t FD [78] algorithms.

A hybrid of column-based and row-based approaches have been proposed as a solution 

that better scales with increasing numbers of tuples and columns [29]. The H y FD  algorithm 

combines row-based and column-based optimizations, such as sampling and compression, which 

enable H y FD to scale for larger datasets.

Some of the approaches or techniques in the discovery of functional dependencies are 

commonplace in dependency discovery; thus, they can be used similarly in the discovery of other 

types of dependencies.

The discovery of unique column combinations has also been extensively studied [79, 

80, 81, 75]. Giannela and Wyss study the problem under the perspective of the Apriori approach 

for frequent item set mining [79]. The authors investigate bottom-up, top-down, and hybrid 

approaches to traverse the powerset lattice of columns. Their bottom-up approach was improved 

with additional pruning strategies in [80]. A different approach can be seen in G o r d i a n  

algorithm, an example of a row-based approach for unique column combination discovery [81]. 

The algorithm compresses the dataset into an in-memory prefix tree representation; performs a 

depth-first traversal of the prefix tree to find collections of non-keys, and finally, complement this 

collection to produce the set of uniques. A yet alternative approach is modeling the discovery of 

uniques as a graph processing problem, as in [75]. Finally, a hybrid approach is presented in the
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form  of the H y U C C  algorithm [82]. The algorithm operates in a very similar way that of the 

H y FD algorithm for functional dependency discovery, so its main advantage is to scale well 

with both the number of columns and records.

The first algorithm for the discovery of order dependencies, O RDER, came out only a 

few years back [83]. O r d e r  is based on traversals of a lattice representing order dependency 

candidates— the traversal approach is somewhat similar to that in Ta n e  algorithm for functional 

dependency discovery [26]. Each candidate is a list of columns, so the lattice contains all 

possible lists of columns and; thus, the algorithm incurs a factorial time in the num ber of 

columns. The authors in [84] show that O RDER might prune potentially valid order dependencies 

from the search space, which leads to incomplete results. Besides, they show that it is possible 

to map a list-based order dependency into set-based order dependencies in polynom ial time 

and, therefore, it is also possible to design algorithms having exponential worst-case complexity. 

Their algorithm, FASTO D , is also based on lattice traversals and generally performs better than 

O r d e r .

The O C D D ISCOVER algorithm considers that each order dependency can be divided 

into a functional dependency and an order compatibility dependency: a property on two lists of 

columns that order each other [85]. The search strategy of the algorithm is a breadth-first search, 

that can run in parallel, where short order dependencies are discovered first. The authors in [ 86 ] 

show that some assumptions in [85] are incorrect, and that O C D D ISCOVER might produce 

incom plete results. Recently, a hybrid approach called F i n d U O D  has been considered [87], 

which is deeply inspired by HYDRA algorithm (discussed later) for denial constraint discovery. 

It uses data sampling and correction of preliminary order dependencies that were discovered 

using the sample to produce the final results.

2.3.2 Discovery of denial constraints

There are two critical limitations concerning the algorithms described in Section 2.3.1. 

We would need to execute several different algorithms to discover the several different types 

of dependencies that a dataset might hold. Because the results of each execution is logically 

independent of each other, we would still need to devise methods to process these results and 

merge them into a single set of logically valid dependencies. The second limitation regards those 

dependencies that unique column combinations, functional dependencies, or order dependencies 

cannot express. We might miss meaningful dependencies, such as complex business rules. The 

discovery of denial constraint is a natural solution for these two limitations. The results from  

a single algorithm for the discovery of denial constraints subsume the results from  multiple 

algorithms for the discovery of other types of dependencies. Besides, these results might include 

many more dependencies due to the higher expressive power of denial constraints.

The problem of denial constraint discovery is to detect all minimal denial constraints 

that a given a relation instance holds. Denial constraints have a high expressive power because 

they can express a variety of predicates. However, this very same fact results in a huge search
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space for their discovery. The problem  is even more challenging than the discovery of other 

types of dependencies. For example, the number of functional dependencies that potentially 

hold in a relation instance r with schema R and n columns is 2n ■ (^) [21]. On the other hand, 

the number of denial constraints that potentially hold in r is 2 1P 1, where P is what we call the 

predicate space of R [32]. The number of predicates in the predicate space, | P |, is a function of 

the number n of columns. A lthough we can restrict some predicate types in P without losing 

much expressive power, the number of predicates is still large. We can use any pair of columns 

with any of operator in O. Assuming we only express predicates using a quantifier tx, ty and 

operators in O =  {= , = , < , < , > , > } , we already have 6  ■ n ■ (n — 1) predicates in P.

All the available algorithms for the discovery of denial constraints follow a similar 

principle. First, they compare the tuples in the dataset using a variety of mechanisms to compute 

an evidence set. This structure provides enough inform ation to guide the search for denial 

constraints and to validate denial constraint candidates. An essential question is how to compute 

evidence sets efficiently, and how to perform the denial constraint search from the evidence set. 

We postpone the discussion on these questions until Chapter 3, where we present our algorithm 

and discuss the related work on the discovery of exact and relaxed denial constraints.

2.3.3 Discovery of relaxed dependencies

Generally speaking, discovering relaxed dependencies is harder than discovering their 

traditional (non-relaxed) counterparts.

Fan et al. present three discovery algorithms for discovering conditional functional 

dependencies [25]. The first one, C FD M i n e r , leverages itemset mining techniques (as in [8 8 ]) 

to discover conditional functional dependencies that have only constant patterns. The other two 

algorithms, CTANE and FASTCFD , focus on general conditional functional dependencies. As 

their names give away, they are extensions of TANE and FASTFD algorithms. The scalability of 

CTa n e  and Fa s t CFD  follows closely their non-conditional counterparts. CTa n e  scales well 

in the number of tuples, but it scales poorly in the number of columns of the relation. FASTCFD 

scales better than CTANE with the num ber of columns in the relation but requires additional 

optimizations to better scale with the number of tuples in the relation instance. The problem of 

discovering conditional functional dependencies has also been studied under the perspective of 

association rules mining [89].

M ost solutions for the discovery of approximate dependencies are adaptations of solu­

tions for the discovery of exact dependencies. For example, Ta n e  algorithm can be modified 

to discover approximate functional dependencies [26]. The difference between the exact and 

approxim ate versions of the algorithm  lies in how they validate a candidate dependency: the 

form er validates candidates containing no error; the latter may validate candidates containing 

errors, given that the error is below a certain threshold. TANE uses data structures called stripped 

partitions (also known as position list indexes) to validate candidates. Such structures have useful 

properties that enable Ta n e  to estimate the number of tuples that do not satisfy a candidate
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(error) efficiently. Another adaptation for the discovery of approximate functional dependencies 

using striped partitions is described in [90].

Som e pruning strategies that work in the discovery of the exact dependency scenario 

do not work for the discovery of approximate dependencies. For example, approaches such as 

the hybrid algorithms H y FD, H y UCC, F i n d UOD, and Hy d r a  aggressively prune the search 

space. They can discard dependency candidates as soon as they find any single violation for 

them. Besides, these discarded candidates can be further used to prune other parts of the search 

space. This principle helps to save a lot of computations; however, it cannot be applied in the 

discovery of approximate dependencies. This former type of discovery considers the dependency 

candidate together with the estimation of the dependency error.

P YRO algorithm is currently one of the fastest solutions for the discovery of unique 

column combinations and functional dependencies [91]. It uses a sampling-based approach 

to detect promising approximate dependency candidates, which enable the algorithm to prune 

considerable parts of the search space. Besides, the algorithm proposes the use of a cache 

system to retrieve some of the position list indexes used to validate the dependency candidates 

quickly. These two techniques combined result in great performance advantage compared to 

other algorithms for the discovery of uniques and functional dependencies.

M ost of the order dependency discovery algorithms we described have not considered 

relaxed order dependencies. The authors in [92] give a brief outline of how it would be possible 

to adapt FA ST O D  algorithm for the approximate discovery problem, but provide no further 

evaluation.

Song and Chen present a method for discovering differential dependencies[65]. Their 

method uses the proportion of tuples matching similarities criteria to estimate support and 

confidence measures that guide the candidate generation. The authors also describe pruning 

strategies and an approximated version of their algorithm. Song et al. study the problem  of 

determining distance thresholds for differential dependencies [93]. The idea is to find distance 

thresholds that maximize the support and confidence of the dependencies with regards to the data. 

Kwashie et al. present solutions for the discovery of differential dependencies that are based 

on association rules techniques [94]. They use a measure of interestingness for the candidate 

dependencies, which helps to reduce the search space.

2.3.4 Discovery of other types of dependencies.

An algorithm for the discovery of synonym and inheritance ontology functional depen­

dencies has been described in [6 6 ]. Fa s t OFD algorithm works for the discovery of both exact 

and approximate dependencies, and it uses an Apriori-like approach [95] to traverse a lattice of 

attribute sets until all dependencies are discovered. Besides, the authors present a set of inference 

rules that help to prune the search space.

Diallo et al. present a solution for discovering editing rules from  sample and master 

data [96]. Their method first discovers attribute mappings between sample and master relations
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using an approximate discovery of inclusion dependencies (a type of dependency between two 

tables). Then, it discovers traditional conditional functional dependencies from master data that 

propagate to sample data through the discovered mappings.

The discovery of embedded functional dependencies is studied in [97]. A naive approach 

would combine the results from running an algorithm for the discovery of traditional functional 

dependencies for each subset of tuples of the dataset that satisfy the completeness requirement of 

embedded functional dependencies. However, such an approach would result in a search space 

that is much larger than the (already large) search space for traditional functional dependencies. 

The alternative, and more efficient solution, uses a tree-based data structure to store many correct 

embedded functional dependencies in each path of the tree [97]. The traversal is inspired by the 

hybrid approaches for the discovery of traditional dependency. Also, the authors use an inference 

system to reduce the costs with implied dependencies. Following similar lines of [97], hybrid 

algorithms for the discovery of embedded unique column combinations is studied in [98].

2.3.5 Dependency ranking

The number of dependencies discovered in a dataset radically increases as the number 

of columns in the dataset goes up. Even if  we rely on static analysis to discard redundant and 

trivial dependencies, the size of data profiles remains large. Unfortunately, a considerable portion 

of the discovered profiles is merely spurious or accidental. That is, they are not relevant to the 

application domain. A dependency is relevant if it can reliably support well-defined applications. 

For example, a dependency is relevant if  it can guide database design, foster data cleaning, or 

improve query performance.

Database designers can judiciously inspect the relevance of the discovered dependencies 

and select those dependencies that are pertinent to their target tasks. Such an inspection is likely 

to be extensive and burdensome; thus, dependency ranking may simplify the whole process. 

There are various criteria to rank a set of dependencies; we outline some com mon ones in the 

following.

Chu et al. propose ranking denial constraints using the weighted average of their 

succinctness and coverage [32]. The succinctness concerns the number of distinct symbols 

(columns and operators) in the predicates of the constraint, and the coverage regards data support 

based on the proportion of pair of tuples that satisfy subsets of predicates of the constraint. We 

study these measures in more detail in Chapter 3. A  coverage measure is also proposed to rank 

order dependencies, which is somewhat similar to the one used in denial constraints [84].

Piatetsky-Shapiro and Matheus study a probabilistic generalization of functional depen­

dencies called probabilistic dependencies [99]. Their probabilistic analysis and formulas can 

serve as a measure of the statistical significance of dependencies between two column sets, such 

as functional dependencies. Sanchez et al. study approximate dependencies under the perspective 

of association rules [100]. The authors present a correspondence between dependencies and
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associations rules and show how to derive support and confidence measures to assess the quality 

of dependencies.

Ranking dependencies have been used to guide database design. For example, measures 

based on the redundancy identified in a relation instance can be used to score dependencies [1 0 1 , 

28]. The intuition is that higher-ranked dependencies should produce better schema designs than 

low-ranked ones. In [102], the authors rank potential primary keys based on their number of 

columns, the length of column values in their columns, and the position of their columns within 

the schema.

2.4 DEPENDENCIES IN DATA QUALITY

There has been an increase in concern with low-quality data in decision-making in 

recent years. This fact has strongly driven research on dependencies, as they are fundamental 

in data consistency, which in turn, is a key dimension in data quality [6 , 7, 103]. Fan gives 

an overview of dependencies from  the perspective of data quality in [48]. A more recent and 

extensive discussion on the same perspective is presented in [104].

2.4.1 Violations of dependencies

As we discussed in Chapter 1, database management systems may not be able to 

guarantee database consistency for many types of dependencies natively. Thus, databases might 

eventually become inconsistent. While some users may not even require automatic fixing of the 

inconsistencies, they would probably want to know what and where the inconsistencies are, so 

they could work on data fixes or take those errors into account during decision-making.

Consider a dependency <p and a relation instance r. The violations of the dependency 

<p is the subset of column values (also called database cells) that cannot coexist in r for (p to 

hold [104]. We can also refer to dependency violations as the problematic tuples or problematic 

combination of tuples, rather than the problematic database cells—  we use this latter assumption 

in Chapter 5 . In this case, the problem  of dependency violation detection becomes finding the 

tuples (or combinations of tuples) having values that do not agree with the semantics of <p.

The underlying violation detection mechanism of several data cleaning tools is a 

traditional database management system [35, 105, 34]. The database might underperform in 

different scenarios, for example, for denial constraints containing complex range predicates. The 

data cleaning tools inherit the perform ance issues of database management systems. Besides, 

their evaluation experiments used small datasets or only simple dependencies, such as functional 

dependencies. Implementing a dedicated violation module is an alternative. For instance, Chu et 

al. implement a denial constraint violation detection module based on pairwise comparisons [54]. 

However, their experimental evaluation also used only a small number of records (i.e., up to 

100K  tuples).
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Fan et al. develop a series of SQL-based techniques for detecting violations of condi­

tional functional dependencies [24]. In their method, checking a single conditional functional 

dependency consists of executing two SQL queries against two tables: the relation instance table 

and a table containing the pattern tableau of constants and the variable fields of the dependency. 

The first query is a jo in  between the two tables, and it returns the single-tuple violations that 

do not follow the specification in the pattern tableau. The second query is also a join between 

these two tables that uses a group by clause to identify the set of tuples that, despite matching 

the pattern tableau in the left-hand side of the dependency, they fail to match the variable portion 

in the right-hand side the dependency. The authors extend their techniques to check multiple 

conditional functional dependencies at a time and evaluate their methods using a commercial 

database management system.

The issue of scalability in data cleaning is studied by Khayyat et al. [106]. The authors 

introduce a framework to perform  violation detection and database repairing in distributed 

settings. The core idea is to translate data cleaning rules (expressed in UDF-based form) into 

jobs that are executed on top of parallel data processing frameworks. Although the approach we 

describe in Chapter 5 focuses on centralized environments, it is able to detect violations for very 

large datasets efficiently. Nonetheless, extending our approach for distributed data processing 

environments is an exciting topic for future work.

H y d r a  algorithm, for the denial constraint discovery, contains a specialized violation 

detection com ponent [55]. Efficient detection of denial constraint violations is critical for the 

algorithm, so the authors have proposed novel techniques to handle the problem. There are two 

main ideas in this component: The use of specialized data structures; and the customization of 

algorithms for different predicate types. We give further details on this component in Chapter 5.

2.4.2 Repairing violations of dependencies

Given an inconsistent database D  and a set E of dependencies, how to obtain data 

consistent with the set E from database D  ? The seminal work of Arenas et al. has introduced two 

concepts that help to answer such a question: consistent query answering and data repairing [37]. 

Both concepts are based on database repairs.

Consider a database D ' with the same schema of D , and a function co st(D , D ') that 

measures the cost to transform D  into D ' using database inserts, deletes, and updates. A database 

D ' is a repair of D  if it ensures that cost (D , D ') is minimal among the possible instances D ' that 

satisfies the set of dependencies E [107]. In other words, the difference between D  and D ' is 

minimal among all possible D '. The definition of minimality depends on the adopted repairing 

model; there are a variety of them [104].

Consistent (clean) and inconsistent (dirty) data can coexist in the database in the context 

of consistent query answering. Whenever applications submit queries to the database, the goal of 

a consistent query answering approach is to retrieve consistent data at the query answering stages. 

The consistent data and thus, consistent answers, derive from  the space of possible repairs of
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the database. Many approximation approaches have been studied to cope with the complexity 

results in consistent answer processes. We refer to [108, 109, 110, 111] for recent views on the 

complexity and implementations issues of consistent query answering; and we refer to Bertossi 

for a comprehensive survey on the subject [107].

D ata cleaning based on data repairing seeks to correct the violations of the set E of 

dependencies in the database D  by computing another database D ' that is consistent with E and 

minimally differs from the database D  [1]. In other words, it finds a minimal repair for D . The 

problem is naturally related to consistent query answering, and it is also quite challenging. The 

recent advances in the field have helped the development of automatic data repairing tools, for 

example, [36, 34].

The number of possible repairs for an inconsistent database is exponential; hence the 

challenge is also to efficiently find good repair candidates [112]. We describe briefly four repair 

models commonly found in the literature [37, 112]. These definitions restrict the repairing to 

only column value modifications, also referred to as cell modifications.

A repair D ' is a cardinality-minimal repair if it ensures that there exists no repair 

D '' of D  with less modified cells than D ', where D '' refers to all repairs of D  [113]. A 

repair D ' is a cost-minimal repair if it ensures that there exists no repair D '' of D  such that 

cost(D , D '') <  cost(D , D ') [113]. Let C  denote the subset of the modified cells in a repair D '. 

The repair D ' is considered a set-minimal repair if no subset C  can be converted to its original 

value in D  without violating any dependency in E. The authors of [112] introduce the notion of 

cardinality-set-minimal repair. Similar to set-minimal repairs, a cardinality-set-minimal repair is 

a repair D ' of D  for which there exist no subset C  that can be transformed back to its original 

value in D  without violating any dependency in E. However, this type of repair allows the 

remaining cells in D ' to be modified to other values.

Consider a finite set E of dependencies, D  and D ' two database instances, and a repair 

model. The repair checking problem  is to decide whether D ' is a repair of D  with regards 

to E and a cost bound [1]. Studies have shown intractability results for this and other related 

problems involving different dependency languages and repair models [ 1]. The critical problem 

is that repairing a given dependency may break others. For example, Bohannon et al. [113] 

have shown that deciding if there exists a repair D ' of D  is NP-complete for a constant number 

of functional dependencies, repair models based on value modifications, and a limited number 

of modifications in D '. Thus, data repairing is highly nontrivial, and repairing algorithms are 

mostly heuristics [1] .

Bohannon et al. present greedy approaches to discover data repairs regarding functional 

dependencies and inclusion dependencies [113]. Their algorithms employ equivalence classes, 

that is, groups of cells that should have the same value. First, all the database cells are assigned 

to their respective equivalence classes. The intuition behind the algorithm is to isolate the 

procedures that choose which cells should have the same value from the procedures that choose 

which cells should be assigned to the same equivalent set. By doing so, the algorithm mitigates
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poor quality local modifications, for example, a name that was misspelled in one place may have 

its correct version at other views of the domain. The greedy approach keeps merging equivalence 

classes until all dependencies are satisfied. The algorithm has inspired other extensions, such as 

an algorithm for repairing data based on conditional functional dependencies [114].

Chu et al. present a data repairing algorithm that repairs violations of different types of 

dependencies holistically [54]. Denial constraints serve as their data quality dependency language 

because, as mentioned earlier, denial constraints subsume many other types of dependencies. 

First, the algorithm builds a conflict hypergraph from  the database cells and the violations of 

denial constraints. Each cell in the database becomes a node in the conflict hypergraph, and 

each violation is encoded as a hyperedge of the conflict hypergraph. The database cells that 

participate in multiple violations are those that are more likely to contain errors. The algorithm 

finds a minimum vertex cover for the hypergraph, which represent the problematic cells. Then, it 

uses an auxiliary data structure called repair context to collect the information required to repair 

the erroneous cells. Two procedures can generate possible repairs according to the content of the 

repair contexts: value frequency mapping and quadratic programming. The database is clean 

when the conflict hypergraph is empty or when some termination criteria is met. NADEEF [35] 

is an open-source data cleaning tool that uses the techniques presented in [54].

Dynamic dependencies (e.g., fixing rules and editing rules) provide means to fix the 

errors directly. The authors of [69] propose editing rules to repair data based on master data. The 

solution finds certain fixes based on certain regions and editing rules. Certain fixes are updates 

for which is guaranteed to exist the information needed for correcting an erroneous tuple. Certain 

regions are sets of columns for which users assure their correctness.

H o l o C l e a n  brings together denial constraints, master data, and statistical analysis of 

data to form a probabilistic model for data repairing [34]. The main intuition of H o l o C l e a n  

is that the probabilistic model is a natural solution to integrate different signals for a particular 

task; in this case, data cleaning. The first step in H o l o C l e a n  is to separate database cells into 

erroneous or clean cells. The tool can use any error detection solution as long as the output 

represents identifiers for the erroneous and clean cells of the database. H o l o C l e a n  assigns a 

random variable to each cell of the database and then compile a graphical model that describes 

the distribution of these variables. The tool uses a declarative probabilistic inference framework 

called DeepDive [115]. It enables the statistical learning and inference of the models. The 

random  variables associated with the clean cells are used as labeled examples for learning the 

parameters of the model. Finally, the value of the random variables associated with the erroneous 

cells is inferred using approximate inference.

2.4.3 Repairing dependencies

The solutions we described so far assume that the input set of dependencies is correct. 

W hat if this set, or any of its subsets, is wrong? An alternative is to trust the data but update or
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discard the erroneous dependencies. The intuition here is that if data are ever-evolving, then the 

semantics of data might be evolving as well [116].

Intuitively, the semantics of the application domain and data updates may suggest natural 

dependency evolutions, for example, a conditional functional dependency pattern [Country =  

'Brazil'] ^  [FuelTaxes =  30.0] evolving into a new pattern [Country =  'Brazil'] ^  [/ue/Taxes =  

50.0]. Golab et al. describe an approach to discover the conditional parts, or pattern tableaux, 

of conditional functional dependencies [117]. The goal is to generate good pattern tableaux by 

maximizing the number of tuples matching the pattern while minimizing the number of violating 

tuples. The authors show that the problem of generating such parsimonious tableaux is NP-hard 

and propose an approxim ate solution. Their greedy algorithm enumerates all possible tuple 

patterns from the active domain, and then compute the support (quantity of matching tuples) and 

confidence (quantity of violations) for these patterns. The algorithm iteratively picks a pattern 

tableaux, estimate the support for the remaining tuple patterns, and validates the chosen tableau 

against given thresholds.

Chiang and Miller consider both data and functional dependency repairings [118]. Their 

principle for dependency repairing is to add columns to the body of the violated dependencies so 

that these new dependencies become consistent with the data. The authors describe a cost model 

for repairing data and dependencies that quantifies the trade-off between repairing data errors 

and evolving constraints. Their cost model is based on the minimum description length. Given a 

database instance D  and a set E of functional dependencies such that E is inconsistent in D , the 

goal is to find repairs D ' and E ' at a minimal cost. Beskales et al. [119] follow a close motivation 

to [118], and they incorporate the notion of relative trust between the two types of repairings. 

The idea is to limit the number of data changes with a threshold and generate multiple possible 

repairs for user validation.

Mazuran et al. also present a method to support evolving functional dependencies [120]. 

The method repairs dependency violations by adding more columns to the left-hand side X of the 

dependency. It is based on the confidence of a functional dependency /  : X ^  Y, given by the 

ratio between the number of distinct values for the set of columns X , and the number of distinct 

values for the set of columns XY. A dependency /  having a confidence value lower than one 

means that /  has been violated and needs repairing. The proposed method first sorts the set of 

functional dependencies according to the average of two metrics: the degree of inconsistency, 

which is based on the confidence value, and the conflict score, which is based on the common 

columns a functional dependency has among the set of all dependencies. The dependency 

repairing follows the order in this sorting step. Consider A a column candidate to extend the 

column set X of / .  The method computes the confidence of dependencies / '  : XA ^  Y and 

returns an ordered list of candidate columns sorted in descending order of confidence. In case 

the dependencies / ' produce the same confidence, the method can further estimate a goodness 

measure (the modular difference between the projection of XA and Y) to decide which column 

to choose.
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2.5 DEPENDENCIES IN QUERY OPTIMIZATION

The benefits of using dependencies for query optimization have been studied for 

decades [121]. The correlation detection via sampling (CORDS) recommends sets of attributes 

for which query optimizers should maintain additional statistics [122]. To do so, CORDS discov­

ers approximate functional dependencies with a sample based approach which refines sets of 

candidate attribute pairs, chosen from the catalog statistics and the sampled attribute values.

EXORD is a three-phase framework for exploiting attribute correlations in big data 

query optimization [123]. It considers source-to-target attribute mappings as correlations. The 

first phase of EXORD is responsible for validating an initial user-defined set of correlations. 

It works on simple statistics (e.g, the num ber of records violating a correlation) to only keep 

correlations that fall under user-defined thresholds. The second phase uses a cost model to select 

correlations for deployment. The authors look into an interesting optimization problem: how to 

select a subset of correlations with the objective of maximizing the total benefit (i.e, correlation 

applicability). The exploitation phase is responsible for rewriting the queries so that they exploit 

more efficient access plans.

In Chapter 6, we consider semantic query optimizations, particularly, how to use 

functional dependencies to modify queries so that perform ance is enhanced but semantics 

preserved. Some commercial optimizers (e.g, [124]) incorporate rewriting strategies into the 

planning phases. In [59], the authors investigate the use of order dependencies (a variant of 

functional dependencies) for order optimization. [125] study variations of join elimination and 

predicate introduction. Unfortunately, most of the studies on semantic query optimization require 

the user to specify a set of constraints. In contrast, we present a tool that eliminates this manual 

interaction by employing automatic discovery and selection of dependencies.

2.6 DEPENDENCIES IN DATABASE DESIGN

Poorly design databases, and in particular, poorly design relation schemas, can lead 

databases to face information redundancies and update anomalies. Dependencies— primary 

functional dependencies and some of their variations— serve as a formal mechanism for analysis 

of relation schemas. They enable us to identify low-quality relation schemas, and they provide 

means to transform such schemas into better-quality ones.

M ost database textbooks cover the fundamentals of dependencies applied in database 

design, for example, [9, 8, 15]. They describe some well-known normalization  processes that 

guide the design of good-quality relation schemas. In a few words, a normalization process relies 

on a set of dependencies and their implications to identify flaws in a relation schema. Then, 

it decomposes the flawed schemas into other schemas that meet properties for good relation 

schema design. Normal fo rm s  express these properties. For example, Boyce-Codd normal 

form (or BCNF for short) states that a relation schema R satisfies BCNF if for every functional 

dependency X  ^  A defined for R, the left-hand side X  is a superkey— a set of columns that
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contains a key [46]. The ultimate goal of normalization processes is to replace a problem atic 

relation schema with other relation schemas that do not lead to redundancies or anomalies.

N o r m a l iz e  is an algorithm for automating the normalization process [102]. It takes a 

relation instance along with its relation schema as input and produces a set of relation schemas that 

is compliant with BCNF as output. The algorithm first discovers the set of all minimal functional 

dependencies holding in the relation instance given as input. Then, it extends the discovered 

dependencies to maximize their right-hand side; the authors describe efficient algorithms for this 

step. The maximization helps the algorithm to identify keys and BCNF violations. N ORMALIZE 

then identifies the functional dependencies violating BCNF, rank them, and select the top-scored 

dependency for normalization (a user might interact with the algorithm in this phase). Finally, 

the algorithm runs a few strategies to select keys for every (decomposed) relation in the output 

(users might also be involved).

The normalization process has been rethought into the context of embedded functional 

dependencies [126]. The framework can capture data redundancies regardless of the different 

interpretations of missing data. In addition to establishing an inference system, the authors 

present a generalization of BCNF.
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Chapter 3

Discovery of Denial Constraints

Defining dependencies by hand requires judging the structure and content of a database. 

The task requires expertise and time, and it is error-prone considering how complex and dynamic 

production datasets can be. As discussed in Section 2.3, the profiling of datasets to discover 

dependencies has emerged as a promising alternative to the manual design of dependencies [22]. 

The discovery of denial constraints discovery is particularly helpful for the complex datasets 

emerging from extracted data, e.g., knowledge graph construction or web tables repositories.

A single denial constraint discovery algorithm can replace the several algorithms 

required to discover the various types of dependencies a dataset might hold. Besides, because 

denial constraints have high expressive power, they can capture business rules that could not be 

expressed by more restrict types of dependencies. Discovering denial constraints helps to capture 

non-obvious complex business rules. Recent approaches related to data cleaning have used denial 

constraints as the d e /ac to  integrity constraint language [34, 127, 128]. The discovered denial 

constraints naturally can serve as the input of such approaches.

The com putational complexity of discovering dependencies regards the num ber of 

tuples and columns of a relation [22]. The complexity of discovering denial constraints, in turn, 

regards additional challenges because each denial constraint is expressed as a set of predicates 

rather than a set of columns. The denial constraint search space consists of any subset of the 

predicates drawn for a relation. Each column adds many denial constraint candidates to the 

search space because each additional column can generate predicates of various types: Equalities, 

inequalities, and comparisons across columns. Therefore, discovering denial constraints requires 

efficient techniques to traverse the search space and validate denial constraint candidates.

Discovering approximate denial constraints is even more challenging than discovering 

exact denial constraints because the former task requires an algorithm to keep track of the number 

of tuple pairs that violate each candidate. This requirement prohibits the use of aggressive pruning 

techniques, which uses the fact that a single violation is enough to invalidate a candidate—  that 

is not true for approximate dependencies.

In this chapter, we present a novel algorithm, D C f in d e r , to discover both approximate 

and exact denial constraints efficiently. D C f in d e r  first iterates over the data to build auxiliary



50

data structures that summarize column values and tuples containing those values. Then, the 

algorithm uses these auxiliary structures to build compact representations of tuple pairs and their 

satisfied predicates. This step uses information on predicate selectivity for performance. With 

the compact tuple pair representation, D C FINDER can directly generate and validate exact and 

approximate denial constraint candidates. The output of the algorithm is the set of all minimal 

denial constraints holding in the input dataset.

The capability of measuring the interestingness of discovered denial constraints is 

essential since it helps users decide which denial constraints are relevant for their application. 

The design of D C FINDER enables the algorithm to calculate and output different measures of 

interestingness for the discovered denial constraints. We can use this additional information to 

rank the discovered results and provide users with different perspectives on the interestingness 

of denial constraints.

In summary, our contributions in this chapter are as following:

• We present the novel D C FINDER algorithm for the discovery of approximate and exact 

denial constraints.

• We provide an experimental comparison of D C FINDER to all previously existing denial 

constraint discovery algorithms, showing that D C FINDER is the most efficient algorithm 

for the discovery of approximate denial constraints and, at times, better than state of the 

art even for the discovery of exact denial constraints.

• We provide a study on different interestingness measures of discovered denial con­

straints and their efficient calculation to enable denial constraint selection.

The rest of the chapter is organized as follows: In Section 3.1, we discuss previous 

solutions for denial constraint discovery. In Section 3.2, we present key definitions and notations. 

In Section 3.3 we present an overview of D C F i n d e r . We split the description of our algorithm 

into preprocessing (Section 3.4); evidence set building (Section 3.5); and denial constraint 

search, followed by denial constraint interestingness (Section 3.6). In Section 3.7 we present our 

experimental evaluation. Finally, in Section 3.8 we present a summary of this chapter.

3.1 p r e v i o u s  a l g o r i t h m s  f o r  d e n i a l  c o n s t r a i n t  d i s c o v e r y

D iscovery of exact denial constrain ts. Fa s t D C was the first algorithm for denial constraint 

discovery [32]. By the time we started this research project, it was the only algorithm on the 

subject. FASTD C compares every tuple pair of the input dataset to com pute evidence, that is, 

what are the predicates each tuple pair satisfies. The result of this computation is called evidence 

set. The authors of FASTD C have shown how to transform  the problem  of denial constraint 

discovery into the problem of discovering covers for an evidence set. Fa s t DC uses the predicate 

distribution in the evidence set to guide a depth-first search and discover these covers. The
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approach based on the evidence sets in FASTDC has inspired all the other algorithms for the 

discovery of denial constraints.

The reason why approaches based on evidence set are suitable for denial constraint 

discovery is that they scale relatively well in the number of columns of datasets. An alternative 

approach would be based on lattice traversals, which would arrange all possible denial constraint 

candidates in a lattice of column combinations and then use the data instance to validate the 

candidates, similar to what some functional dependency discovery algorithms do [26, 129]. 

Extensive experimental evaluation has shown how lattice-based algorithms, like [26, 129], 

quickly run into memory or perform ance issues for datasets with a relatively large number of 

columns [27]. The search space is even larger for denial constraint discovery than it is for 

functional dependency discovery because a single column may add many predicates into the 

search space. Thus, building lattices of predicate combinations might be prohibitive.

Instead of building huge lattices, the algorithms for the discovery of denial constraints 

follow the evidence set approach proposed in Fa s t D C [55, 130, 41]. Evidence sets are com ­

parable to the difference-sets used in the discovery of functional dependencies [77, 78]. These 

structures help us to define the search space based on instance observations rather than exhaus­

tive candidate enumeration. As observed in [27], the algorithms based on difference-sets can 

keep reasonable memory footprints in generating and validating candidates. With this in mind, 

building evidence sets efficiently plays a significant role in denial constraint discovery.

During the building of evidence sets, FASTD C algorithm suffers from  performance 

issues due to the quadratic computation in the number of tuples. This fact drove us to design a 

faster algorithm called B f a s t DC [130]. B f a s t DC improves the building of evidence sets based 

on two key principles. It combines tuple identifiers from related column values and avoids testing 

every pair of tuples for every predicate. Besides, it exploits the implication relation between 

predicates to operate at a bit level.

Despite the considerable perform ance im provement over Fa s t D C, B f a s t D C algo­

rithm still requires many logical operations to calculate which predicates are satisfied by tuple 

pairs, which hinders performance. This fact led us to design a second algorithm, which is 

described in this chapter. D C f in d e r  also uses column value indexing to avoid the expensive 

tuple pair comparison of FASTDC. To drive efficiency even further, it uses predicate selectivity 

to avoid the unnecessarily large num ber of logical operations required by B FASTDC. In this 

thesis, we describe only D C f in d e r  in detail for the following reasons. The key insights of 

BFa s t DC are also present in D C F i n d e r ; thus, the description of D C f in d e r  also enlightens 

the central aspects of B F a s t DC. Besides, the experimental evaluation of D C f in d e r  is more 

exhaustive, since it includes all algorithms for the discovery of denial constraints that were 

available previously to its proposal. The full description of B f a s t DC can be found in [130].

Other algorithmic insights for the discovery of denial constraints can be seen in the 

H y d r a  algorithm [55]. It employs sampling of tuple pairs in order to save a considerable amount 

of time when calculating the evidence set. From  the sample, H y d r a  builds an intermediary
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evidence set and derives an intermediary set of denial constraints. Then, from  this set of 

constraints, the algorithm corrects the tuple pair sample and determines the complete evidence 

set. In an approach comparable to Fa s t D C, the algorithm extracts the final denial constraints 

from the complete evidence set.

D iscovery of relaxed denial constrain ts. Having error-free data to derive denial constraints is 

unrealistic, so it is reasonable to relax their satisfiability criteria. The discovery of conditional 

dependencies uses the values in the domain of columns (called constants, for short) to specify 

the parts of the data a dependency holds. In the case of the discovery of conditional denial 

constraints, this specification is through predicates involving constants, i.e., predicates of the 

form  tx.A; o c for constants c in dom(A;). The authors of Fa s t D C present a modification to 

their algorithm that can discover conditional denial constraints, called C -F a s t DC.

The number of constants can be quite large, hence, a large multiplication in the number 

of possible predicates to form conditional denial constraints. The complexity of denial constraint 

discovery is greatly affected by the number of predicates, so it becomes infeasible for a discovery 

approach to consider extensive sets of predicates. The main idea of C -F a s t D C is to filter out 

those predicates involving constants which are not frequent, or in other words, predicates having 

a low support. A predicate has high support if  the number of tuples that satisfy it is above 

a given threshold. C -F ASTD C uses an an Apriori approach [131] to search for high-support 

sets of predicates. For each set of predicates and the subset of tuples satisfying its predicates, 

C-FASTDC calls the regular FASTDC algorithm to discover non-conditional denial constraints 

holding in that subset. The result is a combination between the high-support predicates and the 

non-conditional denial constraints discovered.

We can substitute the call to FASTDC in C-FASTD C algorithm by a call to any other 

denial constraint discover algorithm. BFASTD C implements this conditional denial constraint 

discovery approach [130]. The improvements in runtim e com e from  the discovery of the non­

conditional parts of denial constraints. However, B FASTD C presents no further techniques or 

optimizations for discovering conditional denial constraints, so we do not include this results in 

this thesis.

In our study, we consider the possibility that a few tuple pairs may not satisfy a 

valid denial constraint due to im perfect data. Still, the discovery algorithm should be able to 

find that valid (but approximate) denial constraint. It turns out that discovering approximate 

denial constraints is even more challenging than discovering exact denial constraints. For every 

approxim ate denial constraint discovered, the algorithm must guarantee that the number of 

violations for that denial constraint is no greater than a given threshold. To do so, it needs to 

know how many tuple pairs may still violate a candidate denial constraint. It is possible to 

obtain this inform ation from  the evidence sets, as long as the algorithm keeps information on 

evidence set multiplicity. Fa s t DC, B f a s t DC and D C f in d e r  can integrate a few modifications 

in their operation to provide such information and discover approximate denial constraints.
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H YDRA algorithm, however, works under different assumptions; and it is yet to be shown how 

the algorithm can be adapted to discover approximate denial constraints.

H YDRA algorithm assumes that a denial constraint is valid if  there does not exist one 

single tuple pair violating that denial constraint. Such an assumption does not hold for approx­

im ate denial constraints. H y d r a  leaps over the evidence search space to save computations 

on duplicate pieces of evidence. The technique may reduce computation time, but loses the 

evidence set multiplicity. We observed that the number of evidence produced by H y d r a  is only 

a fraction of the evidence required to discover approximate denial constraints (more details in 

Section 3.7). An adaptation of H y d r a  algorithm to discover approxim ate denial constraints 

would require significant changes in the algorithm, which is beyond the scope of this thesis. 

In our experiments, however, we use the algorithm as a baseline to evaluate how D C f in d e r  

compares to a specialized exact denial constraint discovery solution.

3.2 BACKGROUND

Let us walk through the semantics of the employees relation in Table 3.1, which we 

use as the running example in this chapter. M ind that we now use new identifiers for each new 

denial constraint. Any two employees that have the same {Name, Phone} values have the same 

{Position} value. This statement is a functional dependency, which is translated into a denial 

constraint as follows: If a tuple pair tx, ty of employees satisfies the predicates tx.Name =  ty .Name 

and tx. Phone =  ty. Phone, it cannot satisfy the predicate tx. Position =  ty. Position. The following 

denial constraint expresses this dependency:

<p1: - ( t x.Name =  ty.Name A tx.Phone =  ty.Phone A tx.Position =  ty.Position)

Table 3.1: An instance of the relation employees.

Name Phone Position Salary Hired

to W. Jones 202-222 Developer $2.000 2012
tl B .Jones 202-222 Developer $3.000 2010
t2 J. Miller 202-333 Developer $4.000 2010
t3 D. Miller 202-333 DBA $8.000 2010
t4 W. Jones 202-555 DBA $7.000 2010
t 5 W. Jones 202-222 Developer $1.000 2012

The relationship between the columns Position, Salary and Hired shows that for any 

two employees with the same position, the longer-standing employee always earns the highest 

salary. If a tuple pair tx, ty of employees has the same position, then the predicate tx. Position =
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ty.Position is true. If that is the case and tx.Hired <  ty. Hired is true, then tx.Salary <  ty.Salary is 

false. This business rule is expressed as a denial constraint as follows:

<P2 : — (tx.Position =  ty.Position A tx.Hired <  ty.Hired A tx.Salary <  ty.Salary)

The denial constraints in the previous examples are fully satisfied by the data in Table 3.1. 

Recall that a denial constraints with this feature is usually called exact denial constraints. In 

ideal settings, data is error-free, and the constraints are fully satisfied. In reality, data all too 

often present inconsistencies. The root cause of inconsistencies vary greatly, for instance, from 

schema evolution to erroneous data imputation not caught by the (un)defined constraints.

One of the workarounds for potential data errors is to relax the constraints so that they 

admit a certain degree of inconsistency, but still hold for most of the data [23]. Denial constraints 

with this relaxation feature are called relaxed or, here, approximate denial constraints. In the 

employees relation, we can see that there are two (non-reflexive) tuple pairs that satisfy the 

predicates tx.Name =  ty.Name and tx.Phone =  ty.Phone simultaneously, t0, t 5 and t5, t 0. Those 

two predicates define an approxim ate denial constraint, which reads: there cannot exist any 

two employees with the same values of {Name, Phone}. This constraint seems a reasonable 

key candidate for the employees instance and reveals the potential inconsistency between tuples 

t 0 and t 5 as duplicates. This dependency is expressed as an approxim ate denial constraint as 

follows:

<p3 : —(tx.Name =  ty.Name A tx.Phone =  ty.Phone)

The above example shows how meaningful denial constraints may be “hidden” amid 

inconsistent data. In this work, we are also interested in relaxing the denial constraint satisfiability 

constraint so that if a denial constraint has ju st a small number of violations, it still can be 

considered valid. An approximate denial constraint allows a limited number of violations to exist 

in a table r before it is considered invalid in r.

We follow related work and use the proportion between the number of violating tuple 

pairs and the total number of tuple pairs in a table as a denial constraint error measure [32, 91]. 

This measure quantifies the degree of approximation of a denial constraint <p in r, and it is 

calculated as follows [62]:

g 1(P , r) =
{ (tx ,ty) e  r 1 (tx ,ty) =  y } |

I r | ■ ( | r | -  1)

We use the degree of approximation above to relax the satisfiability criteria of denial constraints, 

and define approximate denial constraints in the following.

D efinition 3 (Approximate Denial Constraint). Given an error threshold £, 0 <  £ <  1, a denial 

constraint <p is £-approximate in r if and only if its degree of approximation g 1 ( ^ , r) is below £.
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Evidence set. Let etv.tv be the set of predicates that tuple pair tA-.tv satisfies, that is, etv.tv =  {p | 

p G P.tA . t v |= p}. We refer to these subsets as tuple pairs evidence e (or simply evidence e when 

the context is clear) [32], Given a relation instance r and a predicate space P, the evidence set Er 

is the set of evidence w.r.t. r and P, that is, Er =  {etv.tv | Vty .tv e  r}. The authors in [32] have 

shown that it is possible to obtain the set of minimal denial constraints from the evidence set Er. 

Besides, the evidence set can be used to efficiently calculate the degree of approximation of each 

candidate denial constraint.

Problem definition. Given a relation instance r, and an error threshold e, the problem  of 

approximate denial constraint discovery is to find all e-approximate minimal denial constraints 

that hold on r. The discovery of exact denial constraints is a particular case of this problem, 

where the error threshold is set to zero. Besides, this discovery problem can be viewed as 

enumerating minimal covers (also known as minimal hitting sets) for the evidence set.

3.3 OVERVIEW OF DCFINDER

Figure 3.1 depicts the building blocks of our denial constraint discovery algorithm. 

From the dataset schema, D C f in d e r  defines a predicate space; and from the dataset records, the 

algorithm assembles data structures called position list indexes (P u s). Some types of predicates 

are most likely to have low selectivity (i.e., when a predicate is satisfied by many tuple pairs). 

D C f in d e r  takes this into account to divide the predicate space into likely/unlikely predicate sets. 

The idea is to presume that a piece of evidence satisfies the least selective predicates. D C f in d e r  

then allocates arrays of evidence where every element holds the set of “most likely satisfied” 

predicates. The algorithm uses P l is  to compute references to tuple pairs that do satisfy the 

“unlikely satisfied” predicates. Performing simple logical operations for each of these references 

brings the arrays of evidence to their consistent state. Finally, the algorithm uses a simple hash 

table to map the elements of these arrays into the final evidence set.

Figure 3.f: Building blocks of DCfinder .

The evidence set is a compact representation of tuple pairs and their satisfied predicate 

sets. It enables efficient validation of denial contraint candidates. To discover all minimal denial 

contraints, D C f in d e r  uses a depth-first search (DFS) strategy based on evidence set coverage 

of denial contraint candidates. The last, optional, step is to rank denial contraints based on 

interestingness measures to help users filter the discovered results.
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3.4 DATASET TRANSFORMATION

D C f in d e r  transforms a relational dataset into a predicate space and P l i index struc­

tures, as described next.

3.4.1 From schema into predicate space

Any subset of the predicate space P is a denial constraint candidate, and the denial 

constraint search space is of size 2 |P|. We follow related work and apply some restrictions to 

our predicate space [32, 55]. As showed in [32], restricting the predicate space helps prune 

meaningless results and reduces computational costs. We distinguish the attribute types whether 

they are character strings, longs, or doubles, and we use the set of built-in operators O =  {=

, = , < , < , > , >}. For numeric attributes, we define predicates with all operators o e  O; for 

non-numeric attributes, we define only predicates with operators o e  {= , = } . Predicates across 

two different attributes are regarded only as long as their attributes have the same type and share 

at least 30% of common values [32]. Figure 3.2 illustrates the predicate space defined for the 

relation employees in Section 3.2.

pi t x.Name =  t y.Name pio tx.Salary <  t y.Salary

p2 t x.Name =  t y.Name pi i t x.Salary >  t y.Salary

p3 t x.Phone =  ty.Phone p 12 t x.Salary >  t y.Salary

p4 t x.Phone =  ty.Phone p 13 t x.Hired =  ty.Hired

p5 t x. Position =  t y. Position pi4 t x.Hired =  ty.Hired

p6 t x. Position =  t y. Position p 15 t x.Hired <  ty.Hired

p7 t x.Salary =  t y.Salary p i6 t x.Hired <  ty.Hired

p8 t x.Salary =  t y.Salary p 17 t x.Hired >  ty.Hired

p9 t x.Salary <  t y.Salary p i8 t x.Hired >  ty.Hired

Figure 3.2: Predicate space for the employees relation.

3.4.2 From tuples into PLIs

P lis represent the unique values of a dataset [27]. Consider the attribute A; e  R. A 

cluster is an entry c =  (k, l ), where key k is a value from  the projection operation n(A;) and 

value l is a list of tuple identifiers of the relation instance having the same value k, i.e., Vx e  l 

then ix[A;j =  k. The list l maintains its elements in ascending order. A P l i n (A ;) is the set of 

all cluster entries of A;- in r. The numeric P lis are sorted by the entry keys in descending order. 

Figure 3.3 shows the P lis of the employees relation.

P lis are commonly used in attribute dependency discovery, and are also known as 

stripped partitions [26]. In these works, intersecting the values of P lis helps to validate 

dependency candidates. In our context, P lis are used as an intermediate data structure that helps 

generating evidence sets. With P lis , we can efficiently answer the question: which tuple pairs



57

Name Position Salary
k l k  l k l

W. Jones {0,4, 5}
B. Jones {1}
J. M iller {2}
D. M iller {3}

D eveloper {0, 1, 2, 5} 
DBA {3, 4}DBA

8.000 {3}
7.000 {4} 
4, 000 {2}
3.000 {1} 
2, 000 {0}
1.000 {5}

Phone Hired
k l k l
202-222 {0,1, 5}
202-333 {2,3}
202-555 {4}

2012 {0,5}
2010 {1, 2,3,4}

Figure 3.3: Transformation of the records of employees into PLls.

satisfy a given predicate p? D C f in d e r  simply iterates over cluster combinations to generate 

these tuple pairs; the details are given in Section 3.5.

Building P L Is takes linear time as it requires only projection operations to collect the 

distinct attribute values and their associated tuple identifiers. P L ls are used to look clusters up. 

Non-numeric clusters are stored in hash tables so looking them up takes constant time. Numeric 

clusters are stored as sorted arrays so that it is possible to look keys up using binary search. The 

binary search is required for looking up inequalities. For instance, given a key k , we can ask 

what is the next cluster whose key is greater than k .

3.5 EVIDENCE SET GENERATION

One may think that storing evidence sets requires significant resources, because they 

represent all tuple pairs. However, different tuple pairs may draw redundant evidence, i.e., 

they may satisfy the very same set of predicates. As a matter of fact, the num ber of distinct 

pieces of evidence was just a fraction of the total number of tuple pairs of the datasets in our 

experiments. As a result, keeping only the distinct evidence saves a huge amount of space. But 

the computational costs of materializing tuple pair evidences may still be high. To significantly 

reduce also these costs, D C f in d e r  uses attribute indexing and predicate selectivity with a novel 

approach.

Let us first assume that the pieces of evidence of r are stored into a virtual array B. Each 

tuple pair is assigned an identifier tpid to index B as in Equation 3.1.

tpid(tx, ty, r) =  | r | x +  y (3.1)

Our goal is to put B into a consistent state. Every elem ent B[tpid] must hold only the 

predicates satisfied by tpid. The naive approach would fill each evidence of B by evaluating
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every tuple pair for every predicate. This approach performs poorly due to the high number of 

tuple pair accesses and predicate evaluations. D C f in d e r  avoids directly comparing every tuple 

pair by benefiting from two main insights: First, some predicates may have low selectivity, and if 

so, are satisfied by many tuple pairs. Second, we can efficiently build attribute value associations 

between tuple pairs and their satisfied predicates using PLIs. D C f in d e r  is designed based 

on these two insights to minimize the number of operations within the evidence array B . This 

drastically reduces the performance penalties from the quadratic tuple pair space, thus helping 

the efficiency of D C F in d e r .

D C fin d er  builds evidence sets, in the three stages: Evidence initialization, reconstruc­

tion, and counting.

3.5.1 Evidence initialization

D C f in d e r  initializes an array B so that many of the elements of B are close to their 

consistent state. Consider an evidence e to be stored in B[tpid]. The probability of a predicate 

p to occur in e is simply the probability of tpid to satisfy p, i.e., the selectivity of predicate 

p. Tuple pairs are more likely to satisfy the least selective predicates. U nder this assumption, 

D C f in d e r  fills in a piece of general evidence eahead with some of the least selective predicates, 

and then instantiates every elem ent of B  as a copy of eahead. The chances are high that many 

elements of B are already consistent for some eahead predicates. For instance, all the tuple pairs 

of the employees relation satisfy the predicate tx.Salary =  ty.Salary. This form of evidence ahead 

initialization is what differs D C f in d e r  from B F as tD C . The latter algorithm initializes the array 

B with empty elements; as a consequence, it is required to use many more logical operations to 

fill each evidence correctly.

Recall Figure 2.1 and predicate implication that tells us that each predicate p1 : Ai o Aj 

implies every predicate p2 : Ai o' A j, where o' e  o ^ .  Therefore, D C f in d e r  also includes the 

implications im p l(p) of p into eahead, for every p it has included into eahead.

The selectivities of both < , <  and > , >  predicates are equivalent. For each tuple pair 

tx, ty that satisfies the predicates p1 : tx.Ai <  ty.Aj  (and its implied predicates p1̂ ) ,  there is 

the tuple pair ty, tx that satisfies the predicates p2 : tx.Ai >  ty.Aj (and its implied predicates 

p2^ ) .  The selectivity of a predicate p is given simply by subtracting the selectivity of p from  

the total number of tuple pairs. Out of the 30 tuple pairs in the employees instance, only 6  tuple 

pairs satisfy the predicate tx.Name =  ty.Name, but 30 — 6  =  24 tuple pairs satisfy the predicate 

tx.Name =  ty.Name.

Let us assume uniform distribution of attribute values and high attribute cardinality (i.e., 

num ber of distinct values). The predicates with operators ( = ,< ,  < ,> ,  > ) have low selectivity 

compared to equality predicates (= ). Framing eahead to hold inequality predicates (= ) minimizes 

the number of inconsistent evidence, and therefore, the number of evidence reconstruction 

required. We can choose whether eahead should hold < , <  or > , >  predicates without increasing 

the number of reconstructions. The evidence eahead, however, should not include both < , <
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and > , >  predicates because that would only increase the number of inconsistent evidence. If 

eahead holds < , <  predicates, then array B must be reconstructed for the correspondent > , >  

predicates, or vice versa. Reconstructing single evidence requires accessing the array of evidence 

B and performing simple set operations. Because array B reflects the quadratic tuple pair space, 

minimizing the number of evidence reconstruction considerably reduces the overall runtime.

Evidence ahead  initialization. For ease of exposition, let eahead denote a general 

evidence that includes every predicate p e  P such that p.o e  {= , < , < } . D C fin d e r  initializes 

an evidence array B of size |r| ■ |r|, and instantiate every elem ent of B as a copy of eahead. We 

next describe how the algorithm reconstructs the array B for predicates with operators {= , > , >} , 

so that B represents a consistent state with regard to the predicate space and dataset tuple pairs. 

These procedures can be straightforwardly adjusted to use other settings of the evidence eahead.

3.5.2 Evidence reconstruction

D C f in d e r  uses P lis to find the inconsistent tpid's of B, and then iterates over those 

elements to perform evidence reconstructions. We can find inconsistent tpid's from combinations 

of ordered pairs (l1, l2) . The procedures to define and combine pairs of tuple identifiers (l1, l2) 

are based on the types of each predicate.

Consider the case for predicates of the form p : tx. A;- =  ty. A;-. Recall that P lis are sets 

of clusters c =  (k, l ), and each cluster c keeps track of all tuples identifiers l with the same value 

k. From each cluster c =  (k, l) e  n (A j), D C fin d er  builds ordered pairs (l1, l2), where l1 =  l and 

l2 =  l. The tuple pairs with tx e  l1, ty e  l2, and tx =  ty are precisely those tuple pairs that satisfy the 

equality predicate p. Each of these tuple pairs is assigned a tpid (Equation 3.1), which is stored 

in an ordered set T. Consider the cluster (DBA, {3,4}) of n(Position) for instance. It gives 

us the ordered pair ({3,4}, {3,4}), and therefore, tuple pairs t 3, t 4 and t 4, t3. These are exactly 

some of the tuple pairs that satisfy the predicate p5 : tx. Position =  ty. Position. From Equation 

3.1, and tuple pairs t 3, t 4 and t 4, t 3, we get tpid's 22 and 27. These tpid's point to evidence in 

the array B that are incorrectly holding the predicate p6 : tx. Position =  ty. Position, so we must 

reconstruct these pieces of evidence to hold p5 instead. Following the above procedures for every 

cluster of n(Position) gives us every piece of evidence we must reconstruct for predicate p5.

Finding tuple pairs that satisfy other types of predicates follows a similar principle, but 

with a slight change on how ordered pairs (l1, l2) are arranged. The procedure for predicates on 

different attributes, p : tx.Ai =  ty.Aj where i =  j ,  is as follows: For each cluster c =  (k, l ) e  

n(A ;), D C fin d e r  probes n (A j) for a cluster c' =  (k', l') e  n (A j) such that k =  k'. If there 

is a match, D C f in d e r  builds an ordered pair (l1,l2), where l1 =  l and l2 =  l'. Building the 

tuple pair representation from  (l1, l2) follows the same principle described before. Finally, 

the procedure for greater-than predicates with the form  tx.Ai >  ty.Aj is as follows. For each 

cluster c =  (k, l) e  n (A j), D C f in d e r  looks up every cluster c' =  (k', l') e  n (A j) such that 

k >  k'. For each match, a new ordered pair (l1, l2) is built. D C fin d e r  transforms these tuple
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pair representations into the tpid's, just as described before. The algorithm keeps a map T  of 

associations between a predicate p and the ordered set of tuple pair identifiers that satisfy p.

Algorithm 1 shows the steps to find all the tuple pair identifiers that point to inconsistent 

evidence in array B, given a predicate space and relation instance. D C f in d e r  calculates tuple 

pair identifiers only for {= , >}  predicates. By minding the implication property, the algorithm 

reconstructs B for {> }  predicates as well.

A lgorithm  1: Find the identifiers of inconsistent tuple pairs 
D ata: Relation instance r, and predicate space P 
R esult: A mapping T  from predicates to tuple pair identifiers

1 fo r A; e  R do
2 build P l i  n (A f)
3 if  A; is numeric then
4 | sort n (A f) in descending order of keys k
5 T  ^  0
6 foreach p e  P where p.o e  { = ,> }  do
7 Use P lis to compute T of p
8 T { p }  ^  T
9 re tu rn  T

Algorithm 2 shows how D C f in d e r  materializes and reconstructs tuple pairs evidence. 

Evidence array B is initialized with copies of eahead. For each pair (p, T) in the mapping T , 

D C f in d e r  performs a sequence of reconstructions. Given a tpid set T, the algorithm updates 

B[tpid] for each tpid e  T. The operations slightly differ from each other depending on the type 

of the predicate.

A lgorithm  2: Materialization and reconstruction of evidence 
D ata: Mapping T , relation instance r, and predicate space P 
R esult: Evidence array B

1 eahead ^  every p e  P where p.o e  {= , < , <}
2 initialize array B, each element is a copy of eahead
3 foreach p e  P where p.o e  { = ,> }  do
4 fix ^  build predicate mask of p
5 foreach tpid e  T { p }  do
6 | B[tpid] ^  B[tpid] ® fix
7 re tu rn  B

For now, let p be a non-num eric equality (= ) predicate, and B[tpid] an evidence we 

need to reconstruct for p. A t this stage, B[tpid] holds the inequality com plement (= ) p of 

p. But we want B[tpid] to hold p, not p. Let fix denote a predicate set that includes both p 

and p, that is, fix ^  {p, p}. The symmetric difference 1 between B[tpid] and fix, denoted as

iThe symmetric difference is implemented as a simple exclusive or operation (XOR).
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B[tpid] ^  B[tpid] © fix, gives us a consistent B[tpid] with regard to p. If p is a numeric equality 

(= ) predicate, fix must also include the correspondent < , >  predicates of p. Once the symmetric 

difference has been applied, B[tpid] satisfies p and its correspondents < , > . That fulfills the 

implication requirement for p.

Finally, let p be a greater than (> ) predicate, and an evidence B[tpid] be inconsistent 

for p. B[tpid] holds the correspondent { = ,< ,  < }  predicates of p, but should hold {= , > , > }  

predicates, instead. To reconstruct B[tpid], we need to set fix to hold {< , < ,> ,  > }  and calculate 

the symmetric difference B[tpid] ^  B[tpid] © fix. This operation removes the correspondent 

{< , < }  predicates of p , but includes the correspondent {> , > }  ones. Figure 3.4 illustrates part 

of the reconstruction for the evidence of employees w ith regard to the inequalities predicates 

on attribute Hired. The cluster (2012, {0,5}) pairs with cluster (2010, {1 ,2 ,3 ,4}) to form  

tpids 1 ,2 ,3 ,4 ,3 1 ,3 2 ,3 3 ,3 4 . These elements initially hold p 15 and p 16, but are reconstructed to 

correctly hold p 17 and p 18.

tpids: 1 2 3 4 15______ 6 . . .
P2 P10

P4 P14 

P6 P15 

P8 P16

P9

P2 P10

P4 P14 

P6 P15 

P8 P16

P9

P2 P10
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Figure 3.4: Part of the reconstruction for the evidence of employees and predicates p17 : tx.Hired > ty . Hired and 
P18 : tx.Hired >  ty.Hired .

3.5.3 How to scale up to large datasets

Storing arrays of evidence B incurs a quadratic space overhead in the number of tuples 

because each array B represents evidence of all tuple pairs. Also of quadratic space are the sets 

of tuple pair identifier T used to reconstruct B because they grow as a function of the number of 

tuple pairs. Storing all the data of B and T at once may be infeasible as it can sooner or later 

exhaust any memory limit. It turns out that slightly modifying how these structures are built 

enables D C f in d e r  to scale up for larger datasets. D C f in d e r  uses a multi-level partitioning 

scheme based on the range of tuple pair identifiers. The idea is to create a partial evidence set for 

each range, and then merge these sets into the final and correct evidence set. The scheme enables 

D C f in d e r  to: (i) handle larger relation instances, and (ii) use multiple parallel threads.
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Figure 3.5 illustrates the partitioning scheme. Instead of materializing whole sets of 

tuple pair identifiers T, D C FINDER processes only fractions of T at a time. Virtual sets of tuple 

pair identifiers T are partitioned into chunks T =  (To, T i, . . . ,  . ..} , s G N. Partitioning is

based on the disjoint ranges of tp id  values. Assuming a maximum chunk length ®, chunk T0 can 

store any tp id  G [0,ffl), tp id  G N. Chunk Ts can store any tp id  G [low ,high), where low =  s ■ ®, 

and high =  (s +  1) ■ ®. In a similar fashion, D C f in d e r  processes all the evidence of B using 

small evidence fragments. Each fragment stores at most A evidence elements. This two-tier 

partitioning scheme benefits from data locality, as we show in our experimental evaluation.

S • W (s +  1) ■ W (s + 2) ■ w

1. Build chunks

2. Build
fragments

Chunks Ts

3. Build partial : 
evidence sets

E s

4. Merge partial evidence sets

Chunks Ts+i

P 1 P2 P2 P l  . P1 P 2 P2 P 3  .
P4 P 6 P 4 P 6  ■ P 5 P6 P6 P 5  ■
P 7 P7 P7 P 9  ' P 9 P 9 P9 P 7  :

P l l P l U P 1 2 P 12 P l l P l 2 P l l P l l

E s + 1

E

Figure 3.5: Evidence set building: Partitioning of tuple pair identifiers into chunks, and splitting of tuple pair 
evidence into evidence fragments.

A

Let us consider the s-th run. We build tuple pair identifier sets Ts for every predicate 

required to materialize the evidence set. We want each chunk Ts to hold every tp id  associated 

to T such that low <  tp id  <  high . Recall that tuple pair identifiers tp id s are drawn from ordered 

pairs (l, /'). D C f in d e r  shrinks pairs (l, /') so they yield tp id s within the range of chunk Ts. 

From  Equation 3.1, we see that any tuple pair tx, t y such that tx G l, and t x >  high /  |r | yields a 

tp id  that is greater or equal to high , and therefore t x, t y falls outside the range of Ts. Depending 

on the size of chunks and relation instances, other t x, ty settings may also yield tp id s outside 

the range of Ts. D C f in d e r  removes such tuple settings from  ordered pairs (l, /'). Any tpid 

from (l, /') is guaranteed to fall within the range of Ts after ( l, /') has been shrunk. D C f in d e r  

proceeds to reconstruct evidence after all chunks Ts are created.

D C f in d e r  follows Algorithm 2, but reconstructs small evidence fragments instead of 

the potentially huge evidence array B. The algorithm initializes a fragment using eahead. Then 

it iteratively consumes tp id s from  chunks to perform  the reconstructions. It stops consuming 

tp id s if a tp id  is no longer within the fragment range. The current fragment is consistent after all 

chunks within the same range have been processed. D C f in d e r  then iterates over the evidence of 

the current fragment to retain two information: (i) distinct evidence, and (ii) evidence multiplicity. 

Evidence of reflexive tuple pairs, i.e., ( tx, t x}, are skipped. The evidence set produced at that 

point is partial, because it regards only tuple pairs within a given range. D C f in d e r  requires an 

additional step to merge all partial evidence sets. As discussed before, the number of distinct
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evidence is very small compared to the number of total tuple pairs. Thus, merging partial 

evidence sets does not incur significant overhead.

The primary computational pattern for evidence reconstruction is the sequential read of 

chunks followed by symmetric difference computations. if  the chunk is too small, the number of 

runs increases. On the other hand, if the chunk is too large, memory may end up exhausted. The 

symmetric difference operation is implemented as an XOR operation, which is usually optimized 

in modern CPU architectures. Because D C f in d e r  needs to perform many of these operations, 

improving data locality helps reducing cache miss penalty. We performed micro-benchmarks to 

verify the influence of chunk size a  and fragment size X parameters in runtime. Our experiments 

(Section 3.7) show that using relatively small evidence fragments decreases cache misses, and 

thus improve runtime. We observed that settings where the fragment size is just a fraction of the 

chunk size yields better runtime than the settings where the size of chunks and fragments are the 

same.

Keeping a simple counter for each distinct evidence suffices, so we are able to accom­

modate the cover search (Section 3.6) to discover approximate denial constraints. The final 

evidence set E is a simple hash map with evidence as keys, and evidence frequency as values. We 

use counter to denote a function E ^  N such that counter(e) returns the frequency of evidence e.

D C f in d e r  can build partial evidence sets independently of each other, because chunks 

{T0, T1, . . . ,  Ts, ...}  are disjoint. It picks up available threads from  a thread pool to serve as 

workers. The only data shared across workers is the data from PLis, and from the final evidence 

set. Multiple workers can safely read PLIs because they never change once built. Each worker 

operates on its own chunks and fragments to generate its partial evidence set. The concurrent 

access to the final evidence set is synchronized via latches. This last operation does not impose 

significant overhead: most time is spent finding the inconsistent tpids and fixing pieces of 

evidence. As we show in Section 3.7, the evidence set building phase of D C f in d e r  scales 

(almost) linearly in the number of CPU cores.

3.6 DENIAL CONSTRAINT SEARCH

This section describes how D C f in d e r  uses the evidence set to discover minimal approx­

imate (and exact) denial constraints. It also describes three measures to score the interestingness 

of the discovered denial constraints.

3.6.1 Minimal covers

A denial constraint can be any subset of the predicate space P, so entirely traversing 

the search space with 2 |P| candidates is infeasible. Discovering attribute dependencies is likely 

an intractable problem [132, 133]. For example, the authors of [133] have recently shown that 

detecting functional dependencies is a W [2]-complete problem. The result directly impacts 

the computational hardness of denial constraint discovery, because denial constraints subsume
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functional dependencies. Despite their computational complexity, data profiling algorithms have 

managed to perform quite well on various real-world datasets [29, 91, 92].

The problem of discovering all minimal denial constraints can be transformed into the 

problem  of finding all minimal covers of the evidence set [32]. The latter problem  is cognate 

with other problem s, such as enumerating hitting sets or hypergraph traversals [134]. These 

problem s have been studied under a variety of domains for their wide range of applications 

[134, 135]. We make use of the approach of [32], because it easily accommodates the search of 

approximate (partial) covers, and therefore, approximate denial constraints. The approach works 

well in practice, as discussed in Section 3.7.

An evidence e e  Er cannot hold predicates {p1, . . . ,  pm} and {p1, . . . ,  pm} simultaneously. 

If e holds {p1, . . . ,  pm}, any denial constraint <p containing at least one predicate of {p1, . . . ,  pm} 

could not be violated by the tuple pairs that yield evidence e. For (p to be exact, that intuition 

must apply for every evidence e e  Er. That is why we find covers of the full evidence set Er. A 

cover Q1 is a set of predicates that intersects with every evidence of Er, i.e., Ve e  Er, Q1 n  e =  0. 

The cover Q1 is minimal if there does not exist a Q2 that is a strict subset of Q1 and intersects 

with the same elements of Q1, i.e., ^IQ2 C Q1 such that Ve e  Er, Q2 n  e =  0. The following 

theorem holds for discovering denial constraints (see [32] for proof).

T heorem  1. A denial constraint <p: -  (p1 A . . .  A pm) holds in relational instance r if the set 

Q : {p1, . . . ,  pm} is a cover of the evidence set Er. The denial constraint <p is minimal if Q is 

minimal.

In addition, we must be able to discover approximate denial constraints. Recall that the 

degree of approximation e of a denial constraint <p is based on the number of tuple pairs that do 

not satisfy <p. The multiplicity of an evidence set is given by || E|| =  L eeE counter(e), that is, how 

many tuple pairs yielded all evidence of E. The multiplicity || E|| is equal to |r|- ( | r | -  1) if E =  Er. 

Consider again the set Q : {p1, . . . ,  pm}, but assume that E is only a subset of the full evidence 

set E C Er such that Ve e  E, Q n  e =  0. The set Q approximately covers the full evidence set 

Er if ||E|| <  e ■ |r| ■ (|r| — 1). If so, the predicate set Q is an e-approxim ate cover of Er, and it is 

minimal if there does not exist a strict subset of Q that is also an e-approximate cover of Er.

Algorithm 3 presents the minimal cover search. It is a heuristic-based depth-first search 

for which nodes are recursively formed based on evidence set coverage. Each node maintains a 

path of the search tree Q C P, the set of evidence not covered by the current path Epath C E, the 

set of predicates that can be included in further branches Ppath C P, and all minimal covers MC 

found in prior branches. Every path is a cover candidate. At first Q =  0, Epath =  Er, Ppath =  P, 

and MC =  (0 . To unfold a new branch, the algorithm adds a predicate p add to the new path and 

updates the information for the child node. The child evidence set Enew is the result of removing 

all evidence that contain p add from the parent evidence set Epath. The child predicate set Pnew is 

every predicate p  e  Ppath such that p ^  padd.
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A lgorithm  3: Find Minimal Covers [32]
D ata: Evidence set Er, Predicate space P, Error threshold e 
R esult: Set of minimal covers MC

1 MC ^  0
2 f i n d C o v e r  (0, Er, P, MC)

3 Function  f in d C o v e r ( Q ,  Epath, Ppath, MC)
4 if  \\Epath\\ <  e ■ |r| ■ (|r| — 1) then
5 if  no subset o f  size |Q| — 1 o fQ  e -covers Er then
6 | M C ^ M C U Q
7 re tu rn
8 e s e  if  Ppath =  0 then
9 | re tu rn

10 else
11 sort Ppath based on tuple pair coverage of Epath
12 fo r padd e  Ppath do
13 Q ^  Q U padd
14 if Q is implied by MC then
15 Q ^  Q \  padd
16 continue
17 Enew  ̂ {e 1 e e  Epath an d  Padd e  Epath\

P new ̂  {p | p e  Ppath an d  p f  padd}
f i n d C o v e r  (Q, Enew, Pnew, MC)

Two base cases stop the recursion. First, the algorithm finds an approximate cover if the 

path Q removes large pieces of evidence of Er such that \\ Epath \| <  e ■ |r| ■ (|r| — 1). Consequently, 

the corresponding denial constraint of Q could be violated by no more than \\ Epath\\ tuple pairs. 

If Epath =  0, Q is an exact cover. To ensure minimality, the algorithm tests whether there exists 

an immediate subset of Q that also (approximately) covers Er . If it does not find such a subset, 

the predicate set Q is added to the result MC as a minimal cover. Second, if the search reaches a 

node for which there are still enough evidence to cover, but there are no predicates to form new 

branches, then there is no valid cover in that branch.

The tuple pair coverage of a predicate p is the multiplicity of the evidence set in which 

all evidence contain p, that is, || E|| such that e e  E and p e  e. The heuristic to unfold new paths 

is to include predicates in dynamic ordering of tuple pair coverage. The search adds predicates 

satisfied by most tuple pairs first, i.e., those predicates that reduce the evidence set size the most. 

Removing predicates from Enew changes the tuple pair coverage distribution for the remaining 

candidate predicates Pnew, so the algorithm needs to compute a new predicate ordering for each 

new branch. The sooner the evidence set becomes small enough, the sooner the algorithm finds 

minimal covers. The algorithm uses these covers MC to reduce the number of searches. Before 

updating the information for a new path (Enew and Pnew), the algorithm checks if that path is 

already in the cover. If  so, there is no need to unfold that branch.
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Once Algorithm 3 is finished, each minimal cover in MC is translated into a minim al 

denial constraint by inverting its predicates (Theorem  1). The output may contain implied 

denial constraints, so we need to test w hether each denial constraint is implied by the rem ain­

ing discovered denial constraints. This implication testing is known to be a coNP-complete 

problem  [56]. The authors of [32] introduced an inference system for denial constraints and 

describe an algorithm to test denial constraint implication with it. We use this algorithm to 

remove implied denial constraints from the output of all denial constraint algorithms. Although 

not complete, the implication testing algorithm is correct and helps to remove many implied 

denial constraints from the output, which helps with user verification. More details on the static 

analyses of denial constraints and other constraints can be found in [56, 1].

3.6.2 Interestingness measures for denial constraint

D C f in d e r  discovers all minimal denial constraints in a dataset. But in all likelihood, 

not all of them are equally useful. D C f in d e r  optionally estimates three interestingness measures: 

succinctness, coverage, and degree of approximation. We use these measures to: (i) pruning 

denial constraint candidates that fall beneath interestingness thresholds, and (ii) ranking denial 

constraints to help users selecting relevant ones.

Succinctness has been used to rank denial constraints in [32]. It is inversely proportional 

to the number of distinct symbols (attributes and operators) in the predicates of a denial constraint: 

the fewer symbols a denial constraint has, the more succinct it is. The measure is based on 

the minimum description length principle: data representations with fewer symbols are more 

succinct. D C f in d e r  can use succinctness to prune denial constraints during cover search. To do 

so, it simply counts how many symbols a candidate denial constraint expresses before checking 

it. If the quantity is greater than a given threshold, there is no need to check further paths from 

that candidate denial constraint— the succinctness can only decrease.

Coverage is described in [32] as the statistical significance of a denial constraint based 

on the proportion of tuple pairs that satisfy a given set of predicates. It is given by a weighted 

sum of tuple pairs scores. Given a denial constraint <p with |p | predicates, each tuple pair scores 

the denial constraint <p based on how many predicates that tuple pair satisfies. The larger the 

amount of tuple pairs satisfying a number of predicates close to |p  | — 1 , the higher the coverage 

of <p. There is no guarantee that coverage always decreases for a given path, so we used this 

measure only during post-processing to rank denial constraints according to their coverage 

scores. Estimating the coverage of a denial constraint requires iterating over the evidence set and 

evidence frequency counters. Because many denial constraints have predicates in com mon to 

each other, this estimation can be performed in a depth-first tree traversal to save computation 

for denial constraints sharing a common prefix.

We can additionally use the degree of approximation, defined in Section 3.2, to measure 

the interestingness of approximate denial constraints. It follows from  Definition 3 that the 

number of tuple pairs allowed to violate an approximate denial constraint is always bounded by
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the error threshold. But the number of actual violations varies between the discovered denial 

constraints. The degree of approximation simply shows how many tuple pairs are inconsistent 

with regard to an approximate denial constraint. After a minimal (approximate) cover is found, 

the degree of approximation is simply the multiplicity of the remainder evidence set.

3.7 EXPERIMENTAL EVALUATION

We present an experimental evaluation of D C F i n d e r . We used all denial constraint 

algorithms known to date as baselines: Fa s t DC [32] and B f a s t DC [130] for the discovery 

of approximate and exact denial constraints; and H y d r a  [55] for the discovery of exact denial 

constraints.

3.7.1 Experimental setup

We used the code provided by the authors of [55] for H y d r a  and Fa s t DC. The code 

of BFa s t DC was provided by the authors of [130]. We implemented D C f in d e r  from scratch. 

All im plementations were written in Java and run in main memory after dataset loading. We 

integrated all implementations with the data profiling framework Metanome [136] to guarantee a 

unified testing environment. To keep consistent comparisons, we set all algorithms to replace 

NULL values with default values (i.e., empty strings for non-numeric attributes, or —̂  for 

numeric attributes). This approach has been used also in the implementations of [55].

The strategies that Fa s t DC, BFa s t DC and D C f in d e r  use to build evidence sets are 

designed to run over multiple threads. Therefore, unless stated otherwise, the reports for these 

algorithms are from multi-thread executions. The authors of [55] do not present a parallel version 

of H y d r a , so we use the implementation of the algorithm just as it is described in the paper. In 

addition, we im plem ented a new version of H y d r a , namely H y d r a +, so the algorithm can 

benefit from parallel execution in its systematic tuple pair sampling phase. This parallel step is 

implemented in similar fashion to the grid scheme used in Fa s t DC.

The experiments were run on an Intel Core i7-7700HQ machine (2.8 GHz, 4 physical 

cores/8 logical cores, 32 KB for L1, 256 KB for L2, and 6 MB for shared L3); 16 GB RAM; 

256GB SSD; Ubuntu 16.04; and Java 1.8 with the JVM heap space limited to 8 GB. The runtime 

reports are the average measurement of three independent runs.

Table 3.2 shows the main characteristics of the datasets used in our experiments. The 

majority of these datasets have been used in related work. The H ospital and Tax datasets have 

been used to evaluate denial constraint discovery algorithms in [32, 55]. The Adult, Flight, and 

NCVoter datasets have been used to evaluate FD discovery algorithms in [91]. The Inspection 

dataset has been used to evaluate data cleaning systems in [34]. We additionally used the Airport
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dataset, which contains a list of airport codes and locations. The following page provides the 

implementation of our algorithm and pointers to all datasets2.

Table 3.2: Datasets used to evaluate the denial constraint discovery algorithms.

Name Type #tuples #attributes #predicates

Adult real-world 32,561 15 54
Airport real-world 55,113 18 48
Flight real-world 500,000 20 88
Hospital real-world 114,919 15 44
Inspection real-world 170,000 19 74
NCVoter real-world 938,085 22 60
Tax synthetic 1 0 0 ,0 0 0 15 58

3.7.2 Discover of approximate denial constraints

We ran D C f in d e r  , Fa s t DC, and BFa s t DC for all datasets shown in Table 3.2. We 

used degrees of approximation e  =  0.01 and e  =  0.05; these values have been previously used to 

evaluate the discovery of approximate dependencies [91]. We set the chunk and fragment lengths 

of D C f in d e r  to 5 x 106 and 5 x 103, respectively. We evaluate varying chunk and fragment 

lengths in Section 3.7.6, and varying degrees of approximation in Section 3.7.7.

The results in Figure 3.6 show that D C f in d e r  is the fastest algorithm among the 

competitors. For Tax and Hospital, D C f in d e r  is at least 2 x  as fast as BFa s t DC, and at least 

1 3x  times faster than FASTDC. The performance gains of our algorithm is higher for larger 

datasets. Using a degree of approximation e  =  0.01, for instance, D C f in d e r  took approximately 

228 minutes to process Flight, BFa s t DC took nearly 715 minutes, but Fa s t DC could not finish 

within the time lim it of 12 hours. D C f in d e r  was the only algorithm able to process NCVoter 

within the time limit. The three algorithms use the same minimal cover search strategy; thus, 

the difference in their performance is a reflection of how efficiently they build evidence sets. 

Here, a good efficiency indicator is tuple pair throughput; i.e., how many tuple pairs an algorithm 

processes in a fixed amount of time. D C f in d e r  achieved better throughput than the competitors, 

especially for large datasets. This shows that, in terms of performance, D C f in d e r  improves the 

state of the art for the discovery of approximate denial constraints.

The algorithms discovered the largest sets of denial constraints in Inspection and Adult, 

respectively. Interestingly, the evidence sets for these two datasets were also the largest among 

all. With bigger evidence sets, the algorithms iterate over more evidence in each path of the cover 

search, which hinders runtime. For Adult and Inspection, a major part of the runtime was spent 

searching for minimal covers. The cover search for Flight, for example, was m uch faster than

2h t t p : / / h p i . d e / n a u m a n n / p r o j e c t s / r e p e a t a b i l i t y / d a t a - p r o f i l i n g /
m e t a n o m e - d c - a l g o r i t h m s . h t m l

http://hpi.de/naumann/projects/repeatability/data-profiling/metanome-dc-algorithms.html
http://hpi.de/naumann/projects/repeatability/data-profiling/metanome-dc-algorithms.html
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Figure 3.6: Runtime of approximate denial constraint discovery. The crossed bars indicate that an algorithm did not 
terminate within the time limit (TL) of 12 hours. The Y-axes are in log-scale.

the cover search for Inspection. The Flight dataset has a bigger predicate space, but draws an 

evidence set that is only a fraction (nearly a thirtieth) of the evidence set drawn from Inspection.

3.7.3 Discover of exact denial constraints

The next experiment focuses on the discovery of exact denial constraints; therefore, our 

comparisons additionally include the specialized algorithms, H y d r a  and H y d r a +.

From  Figure 3.7 we see that D C f in d e r  is faster than Fa s t D C and BFa s t D C in 

every scenario. The algorithm even outperforms H y d r a  and H y d r a + in four out of seven 

datasets. For instance, D C f in d e r  was approximately 4.5 x faster than H y d r a  in Airport. But 

the sampling approach helped H y d r a  to process some datasets faster than D C f in d e r  : For 

instance, H y d r a  processed NCVoter approximately 3.5 x faster than D C f in d e r  did.

D C f in d e r  materializes every tuple pair evidence to output evidence multiplicity, 

whereas H y d r a  processes a fraction of tuple pairs to find only the distinct evidence. In a more 

detailed investigation, we found that H y d r a  processed less than 0.1% of the total tuple pairs of 

each dataset. That is why H y d r a  cannot produce the evidence multiplicity of the full dataset, 

which is required for discovering approximate covers, or calculating denial constraint coverage. 

H y d r a  spent a significant amount of time correcting tuple pair samples to complete the evidence 

set -  similar observations were made in the experimental evaluation of H y d r a . The correction 

was particularly efficient for datasets that draw a small evidence set, e.g., Hospital. However, it 

performed poorly for datasets with large evidence sets. H y d r a + improved the sampling phase 

of H y d r a , but had minor influence on the overall runtime.
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H y d r a  iterates over each evidence to dynamically update the set of candidate de­

nial constraints, so they no longer violate such evidence. The depth-first search of Fa s t D C, 

B Fa s t D C and D C fin d e r  starts from  denial constraint candidates, and then updates the evi­

dence set. Such a strategy is also penalized by large evidence sets; however, it uses the minimal 

covers to prune the search space as soon as they are discovered. For Adult and Inspection, the 

depth-first search was faster than the equivalent strategy of H y d r a . For the remaining datasets, 

all algorithms took less than two minutes to com plete the search. This indicates that, in many 

cases, being able to build the evidence set in an efficient manner is crucial for the performance 

of the evaluated denial constraint discovery algorithms.

Figure 3.7: Runtime of exact denial constraint discovery. The crossed bars indicate that an algorithm did not 
terminate within the time limit (TL) of 12 hours. The Y-axis is in log-scale.

3.7.4 Scalability

To evaluate the scalability in the num ber of tuples, we started at the beginning of a 

dataset and incrementally added more tuples to each execution. Figure 3.8 depicts the scaling 

behavior for Tax and F light datasets. All algorithms are sensitive to the num ber of tuples. 

D C fin d er  , however, seems to suffer less than Fa s t DC and BFa s tDC. The algorithm has an 

advantage over Fa s t DC because it avoids the tuple pair comparison overhead. The evidence 

set building strategy of D C f in d e r  is faster than the one of B Fa s t DC for two reasons. First, 

it does not need to calculate tpids for the inverse and implied predicates, as B Fa s t D C does. 

Second, it reduces the number of accesses to the evidence elements due to the ahead evidence 

allocation. For small numbers of tuples, D C fin d e r  may be faster than H y d r a  (e.g., as in Tax 

dataset). As the number of tuples increases, Hydra starts benefiting from  tuple pair sampling 

(e.g., when we consider more than two hundred thousand tuples for F light dataset). There is 

an im portant trade-off from  this improvement though: H y d r a  could not be tested if we had 

set the degree of approximation to a value other than e =  0.0. D C fin d e r  , on the other hand, 

materializes all pieces of evidence to calculate the evidence counters. That is necessary not only 

for discovering approximate denial constraints, but measuring the interestingness of the results 

based on coverage and degree of approximation.

To check scalability in the number of attributes, we began with the five initial attributes 

in the dataset schema. Then we incrementally added more attributes, using schema order, until 

every attribute of the dataset had been added. Figure 3.9 depicts the scaling behavior we obtained
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Figure 3.8: Runtime scalability in the number of rows.

for Tax and Flight datasets. We used only the first 20,000 tuples of each dataset to avoid expensive 

computations in the number of tuples. The runtime of all algorithms increases exponentially in 

the number of attributes: as the predicate space grows, so does the number of denial constraint 

candidates and the evidence set. Since D C f in d e r  , Fa s t D C and B F a s t D C share the same 

cover search, the difference in their scalability is from how efficiently they build evidence sets 

for bigger predicate spaces. Out of these three algorithms, D C f in d e r  shows a slightly smoother 

scalability. On the other hand, Fa s t DC seems to have the worst performance degradation. The 

results in Figure 3.9 show that the perform ance of H YDRA is abruptly penalized when more 

attributes are added to its executions.
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Figure 3.9: Runtime scalability in the number of attributes.

Hydra+

We evaluate predicate scalability using the first 20,000 tuples of A dult. The experi­

ment chose different combinations of attributes at random. The goal is to check, for different 

combinations of predicates, how long denial constraint discovery takes and how many denial 

constraints are discovered. We executed the experiment twenty times and report the average 

values in Figure 3.10. As expected, the predicate scaling of all algorithms behaves in a similar 

way to their attribute scaling. Just as there is exponential growth in runtime, there is exponential 

growth in the number of denial constraints.

3.7.5 Memory consumption

The next experiment measures how much memory is required by the different denial 

constraint discovery algorithms. For the largest datasets, Flight and NCVoter, we executed
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Figure 3.10: Runtime scalability in the number of predicates.

each algorithm using a maximum heap size of 64MB. Then, we repeatedly doubled this value 

until the respective algorithm was able to actually process that dataset (up to the time lim it for 

slower algorithms). All algorithms had similar memory footprints. To process Flight, BFa s t DC 

required 2048MB, whereas the other algorithms required 1024MB. All algorithms required 4GB 

to process NCVoter.

The main reason for this high demand is that our implementations load the full dataset 

into main memory to provide a fair comparison of the in-memory processing of the algorithms. 

This full loading incurs the overhead of encoding many attribute values as string objects. The 

main data structures used by D C fin d er  are P lis , chunks of tuple pair identifiers, and evidence 

fragments. P lis are integer-based compact representations of datasets, and their sizes grow as 

a function of the number of distinct attribute values. Chunks and fragments have constant size 

defined by the parameters ® and A, respectively. While these structures can be set to be as high 

as the available memory, we performed micro-benchmarking and found D C fin d e r  to perform 

better with relatively small values of ® and A (as discussed in the next section).

3.7.6 DCFinder in-depth experiments

Figure 3.11 illustrates the runtime breakdown on each phase of D C f in d e r  . A large 

part of the runtime is shared between finding tpids and correcting evidence, which is expected as 

these phases are the core of producing accountable evidence sets. Initializing and accumulating 

evidence also takes a considerable amount of the runtime: This is a reflection of the quadratic 

complexity that the problem has in the number of tuples. For Adult and Inspection, D C fin d e r  

spent a major part of the runtime in cover search, as explained in Section 3.7.2. The overhead 

from the remaining phases is relatively small compared to the overall runtime.

The next experiment focuses on the evidence set building phase of D C f in d e r  (Sec­

tion 3.5) to highlight the scalability of D C f in d e r  in the number of threads. Such scaling is 

possible because the algorithm splits the tuple pair space into chunks, which can be processed 

independently of each other. The measurements are over the first 100,000 tuples of each dataset, 

or over the total number of tuples for Adult and Airport. Figure 3.12 shows the scalability of 

D C fin d e r  in the number of threads. The algorithm scales (almost) linearly up to the number
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searching for minimal covers.

of physical cores (4); from there, it scales narrowly up to the number of logical cores (8 ). That 

behavior is expected as the cache resources are shared among the hyper-threads. Increasing the 

number of threads for more than the available logical cores does not improve runtime. Doing so 

is likely to increase the complexity of coordinating competing accesses to data, which may even 

hinder performance.
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Figure 3.12: Relative runtime speedup in the number of threads (evidence set building only).

How D C f in d e r  splits the tuple pair space influences its efficiency. Figure 3.13 

compares the behavior of the algorithm for varying sizes of chunks and fragments. We use 

Tax dataset to show this behavior, but the same trend was observed across all the evaluated 

datasets. The metrics of interest are runtim e and cache misses (both L1 and LLC): the arrows 

in Figure 3.13 indicate the lowest measurements. The smaller the chunks, the more often 

D C f in d e r  iterates over PLIs to generate tpids, and the lower the tuple pair throughput (i.e., how 

many tuple pairs the algorithm processes in a fixed amount of time). The left plot in Figure 3.13 

shows that D C f in d e r  runs faster as we increase chunk lengths, up until it nearly stabilizes 

its performance. From  there, the fragment lengths at the edge (i.e., 102 and 105 ) negatively 

influenced runtime. This shows that D C f in d e r  is robust to the two parameters, for sizable 

ranges. For all datasets, D C f in d e r  was stable with chunk lengths around 106 <  a  < 107 and 

fragments lengths at the few thousands region. After runtime inflection, the algorithm obtained 

no performance improvement, but increased its memory requirement.

We observed that the cache miss ratio of the settings for which D C f in d e r  had the 

best runtime was at the same level of the best cache miss ratio we measured. Recall that
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D C fin d er  operates on two pieces of data, tpids and evidence fragments, and that it implements 

the correction operation as an XOR, which is directly supported by the CPU. The runtime 

inflection reflects a sweet-spot where D C fin d er  benefits from cache locality and achieves high 

tuple pair throughput without exhausting main memory. We observed very small variations in the 

runtime inflections of the evaluated datasets. In our experiments, setting chunk length to 5 x 106 

and fragm ent length 5 x 103 worked very well across the evaluated datasets. B F a s t D C also 

required us to set these two param eters, so we also tried different values to tune its execution. 

We observed that BFa s t DC works best with chunks that are slightly smaller than the chunks of 

D C fin d er  , because BFa s t DC stores tpids of all predicates of the predicate space in memory.

3.7.7 Denial constraint interestingness

The following experiment shows how different degrees of approximation impact denial 

constraint discovery. The approximation parameter has no influence on the evidence set building 

phase (for all algorithms), so we analyze only the minimal cover search behavior. We gradually 

increased the param eter for different executions of D C fin d e r  to measure how many denial 

constraints the algorithm returns, and how much time is spent in the minimal cover search. 

Figure 3.14 shows the results of these executions. The number of discovered denial constraints 

varies greatly between datasets. The predominant behavior is that for larger degrees of approxi­

mation the minimal cover search runs faster. The search may find approximate denial constraints 

sooner for larger degrees of approximation, even when there are still many evidence to cover. 

The number of discovered denial constraints decreases, in most cases, with larger degrees of 

approximation. But the num ber of denial constraints may also increase because discovering 

specializations of more general denial constraints may change the general paths followed by the 

cover search.

Figure 3.15 shows how D C fin d er  behaves with different succinctness thresholds. We 

restricted the discovery to denial constraints with up to a varying number of symbols (attributes 

and operators). As expected, there are fewer short denial constraints— with predicates involving a 

few attributes and operators. This result is reflected in the cover search runtime since there are far 

fewer short denial constraint candidates to check. M ost of the denial constraints discovered for
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Hospital are functional dependencies with a few attributes, therefore, increasing the succinctness 

threshold for this dataset did not affect the result.
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Figure 3.15: Influence of different succinctness thresholds in the number of discovered denial constraints (left) and 
cover search time (right). The Y axis is in log scale.
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The evaluated datasets have no gold standard with a complete set of “interesting” denial 

constraints, so reporting the recall of the discovered denial constraints would be subjective. In 

an approach similar to [137], we report the precision of the top-k denial constraints. For this 

experiment, we used the first 50,000 tuples of each dataset. We rank all denial constraints by 

either coverage or succinctness, in ascending order; or degree of approximation, in descending 

order. Then, we empirically verify each of the top-k denial constraints to mark it as meaningful 

or not. The precision of each interestingness measure at k  is given by the num ber of relevant 

denial constraints found in the top-k divided by k . We inspected approximate denial constraints 

of Flight and Inspection; and exact denial constraints of Tax, because of its synthetic nature. As 

seen in Table 3.3, the interestingness measures generally achieved good precision rates. The 

exception was the succinctness measure for Inspection , because some rules were under-fitted 

due to the approximate cover search.

Table 3.4 reports a sample of the discovered denial constraints. Both coverage and 

succinctness put the entry (p4 at the top. The denial constraint <p4 has no violations, and it 

expresses an order relationship between attributes originairportid and originairportseqid. Such a 

relationship is a good opportunity for query optimization. The entry (p5 is an approximate denial 

constraint with relatively low succinctness, and low coverage. But because it has a small number
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Table 3.3: Precision of the interestingness measures at k = 10.

Dataset £ Coverage Succinctness
Degree of 

approximation

Flight 0 .0 0 0 1 1.0 1.0 1.0
Inspection 0 .0 0 0 1 0.7 0.5 0 .8
Tax 0 .0 0 .8 0 .8 -

of violations (i.e., low degree of approximation), it was straightforward to verify its correctness. 

The rule has a potential use for data cleaning, because it reveals problem s with regard to the 

operating names of a company and their facility type. The denial constraint <p6 is a meaningful 

business rule that did not show up at the top ranked denial constraints of Tax, which shows that 

the interestingness measures are sometimes imperfect. The denial constraint has predicates with 

many different symbols and, therefore, low succinctness. The more predicates a denial constraint 

has, the less likely a tuple pair is to add high coverage scores to that denial constraint.

Table 3.4: A sample of the discovered denial constraints.

Dataset Denial constraint

Flight <p4 : — (tx.originairportid >  ty.originairportidA
tx.originairportseqid <  ty.originairportseqid)

Inspection <p5 : —(tx.dbaname =  ty.akaname A tx.address =  ty. address 
tx.facilitytype =  ty. facilitytype)

Tax <p6 : —(tx.state =  ty.state A tx.singleexemp <  ty.childexemp 
tx.childexemp >  ty.childexemp)

Overall, it is possible to find relevant denial constraints by using measures of interest­

ingness quickly. Coverage and degree of approximation are particularly useful to spot records 

that do not follow constraints satisfied by m ost of the data. The degrees of approximation and 

succinctness has a high impact on the runtime of cover search and in the number of discovered 

denial constraints. O f course, this brief analysis only scratches the surface of the problem  of 

ranking discovered denial constraints for further use. It does show the potential, though, and the 

ability of D C f in d e r  to incorporate relevance measures to speed up execution.

3.8 SUMMARY

M otivated by the need for maintaining the consistency of data, we investigated the 

problem  of discovering consistency rules expressed as denial constraints. We presented the 

D C f in d e r  algorithm for discovering all minimal, approximate, or exact, denial constraints of 

relational datasets. In D C F i n d e r , building a complete, but compact, evidence set is broken 

down into (i) creating PLIs; (ii) partitioning tuple pairs based on their ranges; (iii) preparing 

evidence based on predicate selectivity; and (iv) completing evidence based on PLI relationships.
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D C f in d e r  uses evidence distribution to efficiently explore the large denial constraint search 

space, and to calculate two measures: the number of violations of approximate denial constraints, 

and the statistical significance of denial constraints based on data coverage. Our performance 

evaluation shows that D C f in d e r  is faster than all prior state-of-the-art for the discovery of 

approxim ate denial constraints. The algorithm is, at times, even faster than the algorithms 

specialized in discovering exact denial constraints only. O ur brief study on denial constraint 

interestingness indicates that it is possible to quickly spot interesting denial constraints out of the 

many denial constraints discovered.
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Chapter 4

Automatic Discovery of Reliable Denial
Constraints

Data errors may appear as data outliers, duplicate records, violations of patterns (e.g., 

regular expressions), and violations of dependencies, i.e., data inconsistencies [138]. This 

chapter focuses on tackling the latter class of errors by presenting a method that helps users to 

choose which denial constraints they are to apply in their datasets to identify denial constraints 

violations.

As we discussed in Chapter 3, the automatic discovery of denial constraints from  

datasets is the natural alternative to designing denial constraints manually. However, there are 

still some barriers that limit the use of discovery algorithms in real scenarios. First, the denial 

constraints are as reliable as the data we use to discover them. Because obtaining 100% correct 

data might be infeasible, denial constraint discovery must additionally accommodate potential 

data errors. Second, the number of discovered denial constraints grows exponentially with the 

number of columns in the relation. Even if we use correct data to discover denial constraints, a 

great deal of the results may hold only by chance.

We introduce a method for guiding the discovery of denial constraints so that it returns 

results that potentially helps in data cleaning. In summary, the contributions in this chapter are 

the following:

• We show that the set of denial constraints discovered from clean (consistent) data typi­

cally differs from the set of denial constraints discovered from erroneous (inconsistent) 

data.

• We present a method to discover denial constraints that uses potentially inconsistent data 

to approximate the denial constraints that would be discovered in case the equivalent 

correct data were available. Our method selects denial constraints based on their 

statistical significance with regards to data distribution. We call the dependencies in 

such a set as reliable denial constraints.
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• We present an experimental evaluation that shows that the set of reliable denial con­

straints can detect data inconsistencies with high precision and recall.

4.1 PROBLEM DEFINITION

We consider two possible versions for a relation instance r. The instance rclean is 

com plete and correct, whereas the instance rdirty is any version of rciean that is incomplete or 

incorrect. Naturally, instance rdirty may contain errors and inconsistencies that are not present 

in instance rclean. Let E rclean be the set of minimal denial constraints that hold in instance rclean. 

By checking the records of rdirty with the constraints in Erclean, we find potential inconsistencies 

of rdirty, which are detectable using the denial constraint formalism. In practice, this approach 

is infeasible for two reasons. First, obtaining rclean is expensive, or even unrealistic. If  the 

instance rclean is not available, neither is the set E rclean. Second, even if it is possible to obtain 

the gold instance rclean, many denial constraints of E rclean may hold only by chance, therefore, 

not expressing any meaningful constraint. We still need to filter Erclean for meaningful denial 

constraints.

Our hypothesis is that it is possible to discover a set of denial constraints Errel;able that 

is close to the meaningful denial constraints of E rclean. Nonetheless, our goal is to only use the 

instance rdirty to do so. In particular, the denial constraints of E rrel;able are expected to find real 

inconsistencies of instance rdirty.

4.2 APPROXIMATE (BUT RELIABLE) DENIAL CONSTRAINTS

Denial constraint discovery algorithms use evidence from  tuple pairs to find valid 

(approximate and exact) dependencies. Recall that each piece of evidence etx ,ty is the predicate 

set satisfied by the pair of tuples tx, ty, i.e., etx ,ty =  {p | p e  P, tx, ty |= p}. Different pairs of 

tuples may satisfy the same predicate set. In practice, the number of distinct pieces of evidence 

is only a fraction of the total pair of tuples of a dataset.

The evidence set Er is the set of all evidence in r. We use counter(e) to denote the 

multiplicity of each piece of evidence e in E. The multiplicity of an evidence set is given by 

II E|| =  LeeE counter(e). Each piece of evidence represents a relationship between predicates of P 

and the set of pair of tuples that have the same signature with regards to P. If an evidence e satisfy 

the predicates {p1, . . . ,  pm}, any denial constraint having at least one predicate of {p1, . . . ,  pm} 

cannot be violated by the pair of tuples that have produced the evidence e. Denial constraint 

discovery algorithms calculate the evidence set Er of a dataset, then search for minimal covers of 

Er. The negation of a minimal cover is a minimal denial constraint constraint.

An approxim ate denial constraint is the negation of a partial, minimal cover, i.e., a 

cover for which there still exist violating evidence. The available denial constraint discovery 

algorithms require a user to define the parameter e that limits the number of violating evidence
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allowed in the minimal search cover. We propose a method to set such a parameter automatically 

based on evidence distribution.

4.2.1 Evidence distortion

The pieces of evidence from pairs of tuples with errors are different from the equivalent 

pieces the equivalent pieces of evidence from the equivalent pairs of tuples having their errors 

fixed. Data errors degenerate the correct evidence set and the multiplicity of its elements. To 

illustrate this behavior, we calculate two evidence sets for a dataset called Hospital: EHospitaiclean 

and EHospitaidir . The details on the two versions of Hospital dataset are given in Section 4.3.

Figure 4.1 shows a relationship between the evidence in EHospitaiclean and EHospitaidirty • 

For each evidence e e  EHospitaiclean we plotted the multiplicity of the evidence e with regards 

EHospitaiclean, and the multiplicity of the evidence e with regards EHospitaidirty (if e e  EHospitaidirty). 
First, most pieces of evidence in EHospitaiclean intersect with the pieces of evidence in EHospitaid i . 

Second, there are only slight variations on evidence multiplicity. Smaller differences can be seen 

for the evidence with larger multiplicity, whereas more pronounced differences appear towards 

the tail of the plot. A few pieces of evidence from  EHospitaiclean are not present in EHospitaid i , 

and a few pieces of evidence from EHospitaidi have a considerably higher multiplicity (mainly at 

the tail of the plot). Besides, the set EHospitaidi also have hundreds of spurious evidence which 

are not present in EHospitaiclean. For example, one-third of the evidence of EHospitaidi have a 

multiplicity of one. Nevertheless, the central tendencies of both evidence sets are significantly 

similar.
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Figure 4.1: Evidence multiplicity of EHospitalclean, and respective EHospitaldirty. X-axis is a function of the piecies of
evidence Of E Hospitalclgan - "

The degradation in tuple pair evidence directly impacts the quality and quantity of 

discovered denial constraints. From the definition of approximate denial constraints (Definition 

3), we observe the following.

Consider a minimal denial constraint <p1 : Vtx, ty e  r, —(p1 A p2) of £ rlimpa. Without loss 

of generality, we have two scenarios by checking a dirty instance rdirty with <p1. The first one is 

if rdirty has no violations with regards to <p1; therefore, denial constraint <p1 is an exact denial 

constraint in rdirty. The second scenario is if rdirty violates <p1; therefore, the denial constraint <p1 

is an approximate denial constraint in rdirty.

In the latter scenario, discovering exact denial constraints of rdirty would return a 

specialization of <p1, say for example ^  : Vtx, ty e  r, —(p1 A p2 A . ..) .  W hen the search for
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minimal covers of evidence EHospita|d; hits the candidate with the predicates of <pi, there is still 

evidence to cover. Hence, the cover search algorithm adds predicates to this candidate so it can 

cover the remaining evidence. Doing so masks the pairs of tuples that violate denial constraint <p1 

because its specialization <p1 cannot find the violations anymore. Because the search is likely to 

cover more evidence, it is likely to reach longer paths, which increases the number of candidate 

denial constraints.

The number of integrity constraints a database must hold is relatively small, but the 

number of denial constraints discovered in production datasets can easily reach the thousands. 

This number comes from the denial constraint search space that exponentially grows as a function 

of the number of predicates in P. As we saw in Chapter 3, we can measure the semantic value of 

denial constraints based on a measure called coverage. It expresses the statistical significance 

of a denial constraint based on the weighted sum of tuple pairs scores. For a given a denial 

constraint <p with |p  | predicates, each tuple pair scores the denial constraint <p based on how 

many predicates that tuple pair satisfies. The larger the num ber of tuple pairs satisfying some 

predicates close to |p  | — 1, the higher the coverage of <p.

The degeneration on evidence impacts both the number of discovered denial constraints 

and the distribution of coverage values. Figure 4.2 shows the coverages scores of the denial 

constraints in EHospita|c1ean and EHospita|d; , in descending order. The number of denial constraints 

in EHospita|d; is order of magnitude larger than the number of denial constraints in EHospita|c1ean. 

A single denial constraint of EHospita|c1ean may have multiple specializations in EHospita|d; . The 

scores for these specializations reach different coverage values because the coverage estimation 

is based on spurious and incorrect evidence. The set EHospita|d; also produces many new denial 

constraints; most of them  with many predicates, coverage close to zero, and without a clear 

meaningful semantic.

The distribution of coverage scores can be numerically seen as a set of stationary parts. 

The shaded areas of Figure 4.2 illustrate points of abrupt change in coverage. The number of

changes is smaller and smoother in the set of denial constraints E eHospitalciea„ In addition, the

set E eu , produces a larger number of abrupt changes, consequently, a larger number osHospitalc/ean

stationary parts. The coverage classification of EEHospltal; is numerically better because it shows 

coverages scores that are evenly distributed, with a clear separation range.

Coverage
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Figure 4.2: Coverage of the denial constraints in £HospitaicfcaB (left) and EHospitaidirty (right).
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4.2.2 Setting the discovery of approximate denial constraints

Our goal is to discover a set of denial constraints Yconf  that is close to a subset of Yclean 

whose denial constraints have high coverage.

We first estimate the evidence set Erdirty, as the only data available is rdirty. While using 

dirty data to produce knowledge is a challenge, it is usually safe to assume that a large percentage 

of data is, in fact, correct. In that case, even though data errors cause some correct evidence to 

fade away slowly, the central tendency is preserved. Because the variance of evidence multiplicity 

is high, we use the median value of evidence multiplicity as a measure for a central tendency.

Let md be the median value of the multiplicity of Er. We estimate an evidence set 

Emd such that Emd =  {e | e e  Er A counter(e) >  md}. If we consider only the evidence in 

Emd to discover denial constraints, we discard evidence that may be consistent with regards 

to predicates that are not involved in errors. For example, some tuples may contain errors 

in column A;, but not in column A j. We instead use the following formula to estimate an 

error threshold: e =  1 — JjE q - 1) . We use this estimation with a traditional approximate denial 

constraint discovery algorithm to guarantee that each discovered denial constraint is violated by 

at most e • |r| • (|r| — 1) tuple pairs. The denial constraint search is performed based on an error 

expectancy derived from the data itself.

The next steps are sorting the result set of denial constraints by coverage, calculating 

the abrupt changes in coverage scores of these denial constraints, and then returning as Yconf  

every denial constraint that appears before the first abrupt change.

We use a technique called change point detection to identify the abrupt changes [139]. 

Because all the coverage scores are known before-hand, we can use offline change point detection. 

We can think of the sorted coverage scores as a finite signal u =  {u1, . . . ,  u ^ |}. The change point 

detection is to detect instants z1 <  z2 <  . . .  <  where there are abrupt changes in u. We assume 

the number K of changes to be unknown. O ur im plementation uses a dynamic programming 

algorithm called pruned exact linear time (PELT) method [140]. The method does not incur 

any major runtime penalties, as the num ber of denial constraints is usually in the thousands. 

The method has been shown to achieve a high proportion of true changepoints, and fewer false 

changepoints [140, 139].

4.3 PRELIMINARY EVALUATION

We used DCfinder algorithm  with the method described in Section 4.2 to discover a 

set of denial constraints Yconf . We measured the precision and recall of this set in finding real 

inconsistencies of datasets. Our prototype is a Java client connected to a PostgreSQL database. 

We used two datasets that have been extensively used to evaluate data cleaning systems: Hospital 

and Flights. The authors of [34] gently provided both clean and dirty versions of these datasets. 

All inconsistencies in the dirty versions are known. H ospital dataset has 1000 records, 20 

attributes, and error rate of 0.03; Flights has 2376 records, 6 attributes, and error rate of 0.30.



As baselines, we use DCfinder algorithm set with error thresholds used in related work e =  0.01, 

e e =  0.05.

Table 4.1: Comparison in terms of detection of inconsistent tuple pairs.
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Method Hospital Flights
Prec. Rec. Prec. Rec.

Method of Section 4.2 0.93 1.0 0.70 1.0
D C F in d e r  with e = 0.01 0.08 1.0 0.06 0.52
D C F in d e r  with e = 0.05 0.03 1.0 0.06 0.99

Table 4.1 shows the precision and recall each method achieved. Our method is consis­

tently better than the competitors and achieves good levels of precision and recall. Even if the 

error rate of a dataset is high (i.e., Flight), it is still able to find all the inconsistencies in the 

dataset. With the baseline approaches, many consistent tuple pairs are marked as incorrect, which 

causes the precision to decrease. Furthermore, the baseline recall is sensitive to the parameter e , 

which shows that the measure must be chosen carefully. O ur method uses data distribution to 

choose correct parameters without human intervention. Compared to the baselines, our method 

does not significantly increase execution times neither memory consumption. That is expected 

because our method only adds simple calculations on evidence multiplicity, and the change 

detection algorithm has linear costs.

4.4 DISCUSSION

The promising results of Section 4.3 show that it is possible to discover reliable denial 

constraints from  inconsistent data. However, experiments need to be performed in larger 

scenarios: more records, attributes, and varying rates of error. Obtaining 100% correct data is a 

challenge, so future works shall include synthetic data to test the boundaries of our method.
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Chapter 5 

Efficient Detection of Data Dependency 
Violations

A fundamental aspect of data quality is data consistency. Recall the definition given 

by Fan: “D ata consistency refers to the validity and integrity of data representing real-world 

entities” [1]. A natural way to capture data inconsistencies is to detect violations of data 

dependencies [1, 22]. A dependency violation is a combination of values from  one or more 

records in the database that do not satisfy the value relationship imposed by that dependency. A 

database is consistent if it holds no violation of the dependencies defined for it.

As we already discussed, there has been much research on reasoning, discovery, and use 

of data dependencies [1, 24, 54, 22]. An important question is whether a dependency formalism 

is able to capture the inconsistencies commonly found in production data, i.e., its expressiveness. 

Early work has proposed to capture inconsistencies of traditional dependencies, such as functional 

dependencies and inclusion dependencies [113]; and extensions of such dependencies have been 

presented to overcome their expressiveness limitations [24]. Recent work has proposed to detect 

(and possibly repair) violations of different types of dependencies at once [54, 34]. As we saw in 

the previous chapters, denial constraints naturally align with such a holistic view. The formalism 

is one of the most general forms of dependency discussed in the database literature since it 

generalizes several different types of dependencies [32, 54, 34, 1]. A denial constraint expresses 

a set of relational predicates that specify constraints on the combination of column values. Any 

tuple, or set of tuples, that disagrees with these constraints is a denial constraint violation that 

reflects inconsistencies in the database.

The detection of denial constraint violations is an expensive operation [54, 34]. Data 

cleaning systems based on the formalism either rely on database management systems [34] or 

implement a module [54] for this task. As many legitimate denial constraints express constraints 

on pairs of tuples, detecting their violations exhibits a quadratic time complexity in the number 

of tuples [54]. This complexity is perhaps the reason the experimental evaluations of systems 

based on denial constraints are limited to simple dependencies (mainly functional dependencies)
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or small datasets. In many real-world scenarios, however, data cleaning has to deal with large 

datasets and complex denial constraints.

We present V i o F i n d e r  as our denial constraint violation detector. In summary, the 

contributions in this chapter are the following:

• We describe the specialized data structures that V i o F i n d e r  uses to reduce memory 

overheads and enable its algorithms to perform fast operations.

• We present a custom izable operator that lets us use effective algorithms to deal with 

complex denial constraints.

• We present an execution model that avoids materialization of large intermediates and 

enable optimizations inter operators.

• We provide an experimental evaluation showing that the design choices in V i o F in d e r  

enable the algorithm to perform efficiently for several kinds of denial constraints.

The remainder of this chapter is as follows. In Section 5.1, we discuss the background 

and previous solutions for data dependency detection. In Section 5.2, we introduce the design 

of V i o F i n d e r  and in Section 5.3 its several algorithms. Then, in Section 5.4, we present our 

experimental results: We compare V i o F in d e r  with a tool based on denial constraints and 

several database management systems and demonstrate that V i o F in d e r  is orders of magnitude 

faster than the competitors in many cases. In Section 5.5, we present our conclusion.

5.1 BACKGROUND AND PREVIOUS SOLUTIONS

In this section, we first present the fundamentals to represent data dependencies and data 

inconsistencies. Then, we review baseline approaches for the detection of data inconsistencies.

5.1.1 Denial constraints in violation detection

Denial constraints use relationships between predicates to specify inconsistent states 

of column values. In this chapter, we focus on denial constraints using predicates without 

constants, as they are computationally expensive and thus a more interesting type. We also focus 

on predicates over two distinct tuples, because they can express those data dependencies that 

are more common in practice. Nonetheless, we present an architecture and operator that can be 

extended to support denial constraints with other predicate forms.

Recall that for a relation to be consistent with a denial constraint <p, there cannot exist 

any pair of tuples such that the conjunction of the predicates of <p is true. Consider the relation 

hours in Table 5.1 and the following constraint: For any two employees with the same role, 

the one who has worked more hours should not receive a lower bonus than the other. This
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constraint is expressed as a denial constraint as follows (we use new identifiers for each new 

denial constraint as they now refer to the relation hours):

91 : —i ( tx .Role =  ty.Role A tx.Hours >  ty. Hours A tx. Bonus <  ty. Bonus)

In Table 5.1, tuples t 1 and t 2 share the same value of Role. Between those two, tuple t 1 has the 

highest value of Hours, so it should not have the lowest value of Bonus. This means that the pair 

of tuples ( t1; t 2) is a violation of <p1, and hence Table 5.1 is inconsistent.

Table 5.1: An instance of the relation hours.

EmpID ProjID Role Hours Bonus

tl E l P1 Developer 4 $2000
t2 E2 P1 Developer 2 $3000
t 3 E3 P1 Developer 4 $4000
t4 E l P2 DBA 4 $4000

5.1.2 Detection of denial constraint violations

A naive approach to detect the violations of a denial constraint is to evaluate its con­

junction of predicates for each pair of tuples. If the evaluation is true, then we add that pair of 

tuples to the result. This approach exhibits a quadratic time complexity in the number of records, 

which can be computationally prohibitive for large relations. A straightforward alternative is to 

use SQL with the query processing capabilities of database management systems. However, this 

might not eliminate the quadratic complexity either, as we discuss next.

The predicates of denial constraints compare the values of columns between two tuples 

of the same table. Therefore, a simple self-join query using the predicates of the denial constraint 

in the where clause exposes the violations. The following example shows a SQL query that finds 

the EmplD’s of tuple pairs that violate the denial constraint <p1:

1 s e l e c t tx . EmpID, ty . EmpID

2 fro m h o u r s  tx , h o u r s  ty

3 w h e re tx . Role = ty . Role

4 a n d tx . Hours > ty . Hours

5 a n d tx . Bonus < ty .B onus;

Related work has reported that self-joins (and mainly inequality self-joins) have received 

little attention in commercial database management systems [141]. Indeed, our experiments with 

three different database management systems exposed two main issues: (i) excessive memory 

requirements; and (ii) use of ineffective join algorithms. Some database management systems



87

run out of memory or took more than one hour to execute queries for com mon functional 

dependencies on samples with 200K tuples. In addition, most database management systems rely 

on nested-loop approaches for self-joins with range predicates, which may result in extremely 

long runtimes.

Indices might not help either: the conditions to detect violations often require validating 

all the records with table scans. The database management system may not use the indices in 

the query plans, and the few cases that indices are chosen do not pay off for the costs of index 

creation. One of the reasons for the poor performance of database management systems is the 

expected cost to materialize self-joins, which is quadratic in the number of records in the worst 

case [142]. This cost is evident when denial constraints require high-cardinality predicates, such 

as a range predicate for an order dependency with many qualifying tuples.

5.1.3 Previous solutions for detection of denial constraint violations

Most of the recently presented data cleaning tools use traditional database management 

systems as their mechanism for detection of denial constraint violations [35, 105, 34]. These 

tools inherit the performance issues discussed earlier, and their evaluation experiments use only 

small datasets or only simple dependencies, such as functional dependencies. Implementing 

a dedicated denial constraint violation module is an alternative, for instance, Chu et al. do so 

using pairwise comparisons [54]. However, their experimental evaluation also uses only a small 

number of records (i.e., up to 100K tuples).

Closer to our work is the denial constraint violation detection com ponent of H YDRA 

-  a state-of-the-art algorithm for denial constraint discovery [55]. Efficient detection of denial 

constraint violations is a central part of the algorithm, so the authors have proposed novel 

techniques to handle the problem. There are two main ideas in this component: The use of 

specialized data structures; and the customization of algorithms for different predicate types. 

W hile these ideas have inspired our project, the way VIOFINDER organizes and operates on its 

data structures is different from H YDRA. For example, HYDRA uses the IE JOIN algorithm, which 

has been shown to deliver efficient performance for self-joins based on range predicates [141]. 

Our system, in turn, uses a novel sort-merge approach that can be even faster than IE Jo i n . We 

also use different approaches for other types of predicate, as discussed later in this chapter. We 

use HYDRA and IEJOIN as the main baselines in our experimental evaluation.

5.2 THE VIOFINDER SYSTEM

V IOF INDER is designed to deliver robust perform ance for different types of data 

dependencies. In this section, we introduce key ideas that enable V IOF INDER to avoid the 

issues outlined in Section 5.1.2, e.g., nested-loop joins and materialization overhead. We 

describe specialized data structures in Sections 5.2.1 and 5.2.3; key operations in 5.2.2; and the 

architecture of VIOFINDER in Section 5.2.4.
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5.2.1 Cluster, cluster pairs, and partitions

We use specialized data structures to represent enumerations of pairs of tuples in a 

compact manner. A c lu s te r  c  is a set of tuple identifiers (the tuple position within the table). A 

c lu s te r  p a i r  is an ordered pair (c1, c2) that represents the set of all pairs of tuples (tx, ty), such 

that tx e  c1, t y e  c2 and tx =  t y. For instance, the cluster pair ({ t1}, | t 1; t 2, t3}) represents the 

set of pairs of tuples ( t1; t 2), ( t1, t3). A p a r ti t io n  L is any set of cluster pairs.

Clearly, partitions consume much less memory than exhaustive enumerations of pairs 

of tuples. For a relation r with n  tuples, the cluster pair ({ t1, . . . ,  tn}, { t1, . . . ,  tn}) represents the 

whole Cartesian product r x r using only 2n integers, whereas the equivalent enum eration of 

pairs of tuples requires n(n — 1) pairs of integers to do so.

5.2.2 Refinement of columns and partitions

The first key operation of V i o F i n d e r  is the re fin e m e n t o f  c o lu m n s . A c o lu m n  re fin e r  

takes as input one predicate and returns partitions containing cluster pairs that represent every 

pair of tuples that is true for the input predicate. As an example, consider the refinement of 

columns for the predicate tx.Role =  ty.Role and the records in Table 5.1. The refinement gives 

us a partition with a single cluster pair: [({t1; t 2, t 3}, { t1; t 2, t 3})] -  the cluster pair ({t4}, { t4}) 

is discarded since it does not produce any pair of distinct tuples. The main primitive here is a 

full table scan for each column of the predicate. How to use these scans depends on the type 

of comparison operator in each predicate. In Section 5.3, we describe how to im plem ent the 

refinement of columns for the different comparison operators. For now, we assume column 

refiners to be “black-boxes” . Besides, we assume a random  sequence of refinements—  we 

discuss how to order refinements for better performance in Section 5.2.5.

The second key operation of V i o F i n d e r  is the re fin em en t o f  p a r t i t io n s . Each p a r tit io n  

re fin e r  takes as input a predicate and a partition and produces new partitions containing cluster 

pairs with every pair of tuples that is true for the input predicate, and of course, true for the 

predicates in the past refinements that produced the input partition. As an example, consider 

again the partition from predicate tx.Role =  ty.Role described earlier: [({t1;t 2, t 3}, { t1;t 2, t 3})]. 

Pushing this partition into the refinement of partitions for the predicate tx.Hours >  ty.Hours 

produces the partition: [({t1; t 3}, { t2})]. If we push this last partition further into the refinement 

of partitions for the predicate tx .Bonus <  ty.Bonus, we obtain the partition [({t1}, { t2})]. This 

partition represents the violations of the denial constraint ç 1. The refinement of partitions is 

similar to the refinement of columns. However, the former requires fetching only the values of 

columns of the tuples in the partitions, instead of entire columns as the latter requires. Another 

difference is in the type of optimizations we can use in each type of refinement, which are 

described in Section 5.3.



89

5.2.3 Cluster indexes

A common step in the refinement of columns is the creation of cluster indexes on the 

columns of predicates. Let V be the set of values in the domain of column A. For every value 

v e  V, we assign a cluster c with all tuples having v as the value in column A. The cluster index 

HA is a hash map where each entry maps a value v e  V into its cluster c. For instance, the 

cluster index H Roie is: [(“Developer” , { t1, t 2, t3}), (“DBA” , | t 4})]. Similarly, the refinement of 

partitions requires the creation of conditioned cluster indexes HA,c. We fetch column values 

of the tuples in the cluster then create a hash map such that each distinct value fetched is 

mapped into a cluster with all tuples having that value. For example, the conditioned cluster

index H Hours,{t1 ,t2,t3} is: [(2, { t2}) , (4, { t1, t3 })].
We considered three facts to choose an implementation for clusters, which are essentially 

sets of integers. First, the size of cluster indexes grows linearly with the number of distinct values 

of a column since these values are mapped to one cluster each. Second, refinement algorithms 

produce partitions containing many cluster pairs. Third, these algorithms have to compute 

unions or differences of clusters. These facts led us to employ Roaring (compressed) bitmaps, 

a hybrid data structure that combines bitmaps with sorted arrays to achieve good compression 

rates [143]. As a result, we can store large numbers of clusters with many integers using less 

memory. Besides, Roaring bitmaps perform fast unions and differences as bitwise OR and AND 

NOT operations which are, in many cases, even faster than non-compressed counterparts. For 

algorithmic details on Roaring bitmaps, we refer the reader to [143].

5.2.4 System overview

V i o F in d e r  assigns a refiner to each denial constraint predicate, based on the predicate’s 

form, and refiners connect with each other through a partition pipeline. Each column of the 

dataset is kept as an in-memory array so that refiners can fetch the values of the columns in their 

predicates. Partition pipelines work as push-based iterations. Figure 5.1 illustrates a pipeline with 

three refiners. Each partition is linked to either a next refiner or to the output. In the former case, 

the current refiner produces a new partition and pushes it to the next refiner, which immediately 

starts consuming the cluster pairs one by one. In the latter case, no more refinement is necessary, 

so partitions are pushed to the output. At this point, the concrete violations are materialized.

The partition pipeline has the following properties:

Custom izable refinem ent. Conceptually, refiners im plem ent a produce/consum e interface so 

that different refinement implementations and optimizations can be used at different stages of the 

pipeline. Instead of using a general-purpose refinement strategy (e.g., nested loop), V i o F in d e r  

uses different refinement strategies depending on the form of the predicate.

C ontro lled  in term ediates. Som e refinements might produce large intermediates. To avoid 

excessive resource utilization, our refinement algorithms check the size of current partitions
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Figure 5.1: Example of a partition pipeline.

before pushing new tuples into the pipeline. As a result, refinements can use logical optimizations 

that work for multiple tuples at a time, while avoiding materializing large intermediates.

Late materialization. V i o F in d e r  does not fully materialize tuples until after the last refinement 

in the pipeline has been processed. As a result, refiners need to fetch only the values of the 

columns of its predicates— partition refiners in particular- do so only for tuples from  previous 

refinements. Such a scheme maximizes the use of memory bandwidth: only the necessary parts 

of relevant tuples are fetched in each stage of the pipeline.

Cluster pair processing. The actual refinement is computed at the level of cluster pairs with 

four primary steps:

1. Iteration over the tuples in each cluster— a tight loop suffices to iterate entire clusters 

fast because they usually have far fewer tuples than the relation.

2. Fetch of column values— as already mentioned, only the column values that are relevant 

for a refinement are fetched.

3. Build of auxiliary data structures— the auxiliary data structures in refinements usually 

have a low memory footprint since they grow with the clusters.

4. Refinement logic— some forms of partitions allow refinements to skip tuple fetches, 

which improves performance.

These properties also apply to column refiners, with the difference that entire columns are fetched 

in Steps 1 and 2.
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5.2.5 Order of refinements

The order of the denial constraint predicates (and, therefore, refinements) has a sig­

nificant im pact on performance. Choosing a poor predicate order might produce very large 

intermediate partitions, causing significant overhead in intermediate refinements. We choose the 

order of predicates based on predicate selectivity. The selectivity of a predicate is the fraction of 

pairs of tuples in a relation that satisfy that predicate. We estimate approximate selectivities using 

a small random  sample of pairs of tuples (without replacement), then we order the predicates 

from most selective to least selective. This technique is also used in H y d r a  [55]; however, the 

algorithm uses a larger sample. For every tuple in the dataset, HYDRA samples a small number 

of other tuples to form pair of tuples. We found that using a fixed small sample bounded to 1M 

elements produce the same predicate order, and it is faster to estimate. We refer to [144] for a 

deeper discussion on selectivity estimation; such a discussion is beyond the scope of this thesis.

5.3 REFINEMENT ALGORITHMS

Denial constraints support predicates of several different forms for backing a wide 

range of data dependencies. These predicates include comparison using different operators 

within a single column or across two different columns. In this section, we present refinement 

algorithms that take the predicate form into account for efficiency. For convenience, we divide 

the presentation of these algorithms into equijoins with the equal to operator {= } , antijoins with 

the not equal to operator {= } , and non-equijoins with range operators {< , < , > ,  > } . M ost of 

the algorithms operate for a single predicate at a time. There is one particular case in which the 

refinement combines multiple predicates for better performance.

5.3.1 Equijoins

The most basic form of refinement is the refinement of columns for equality predicates 

on a single column, such as tx.A =  ty.A. The first step is to build a cluster index HA. Each 

cluster c of HA is precisely a set of tuples having the same value v, so we can use cluster pairs in 

the form of reflexive relations (c, c) to represent all pairs of tuples that have the same value v in 

column A. Clusters with only one tuple are ignored, because they cannot produce pairs of distinct 

tuples. We insert each valid cluster pair (c, c) into the output partition L and check its size. If the 

number of cluster pairs in the partition L exceeds a threshold, we stop iterating the clusters in the 

cluster index HA, and push the partition L into the next level of the pipeline. O f course, the next 

call to the refiner skips the clusters pairs of HA that have already been processed.

Some refinements might produce large intermediate results. After all, refinements are 

equivalent to the self-joins in the predicates of a denial constraint, which often join non-key 

columns. Nonetheless, we can avoid the full materialization of large intermediates by controlling 

the size of partitions currently being processed, as in our first refinement algorithm. Refinements
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stop producing new cluster pairs as soon as the num ber of cluster pairs in a partition exceeds 

a threshold, or when it has no more pairs of tuples to compute. In the former case, the state of 

the refinement is saved so that a next call to it starts producing new cluster pairs from  where 

it stopped earlier. For simplicity, we do not elaborate on these procedures for the remainder 

refinement algorithms.

Equality predicates on single columns are very com mon in denial constraints. For 

instance, denial constraints use them  to represent unique constraints or the left hand side 

of functional dependencies. Refinements of this type of predicate are related to a concept 

in dependency discovery known as equivalence classes [22]. Compared to other forms of 

predicates, equality predicates have lower selectivity so that ordering the refinements put them 

first in the pipeline. In addition, we observe that partitions can only reduce in size as they go 

through the pipeline stages for sets of predicates with this form. For instance, the partition for 

predicate tx.Role =  ty.Role is [({t1, t 2, t3}, { t1, t 2, t3})], and the partition for the conjunction of 

predicates tx.Role =  ty.Role A tx.Hours =  ty.Hours is [({t1, t 3}, { t1, t3})]. We take advantage of 

this fact with a code pattern that reduces clusters as fast as possible and, therefore, reduces the 

materialization of intermediate partitions.

A lgorithm  4 is a special case of refinement that handles multiple predicates at once, 

namely multiple equality predicates on single columns. In the initial call r e f i n e C l u s t e r ( c r,

A1, L) in Line 12 we build a cluster index with every tuple in the table. W hen we

call r e f i n e C l u s t e r ( c ,  A;, L) for i >  1, every tuple in c have the same com bination of 

values in columns A1, . . . ,  Ai-1 . As a consequence, the tuples in the clusters c! of the conditioned 

cluster index HA i,c (Line 2) have the same combination of values in columns A1, . . . ,  A;-. The 

base case occurs when there are no further predicates to check, in which case we insert cluster 

pair (c, c) into the output partition L (Line 9).

A lgorithm  4: Refinement of columns for predicate sequence of the
form p1 : tx.Ai =  ty.Ai , . . . ,  pi : tx A  =  ty.Ai

1 Function  r e f i n e C l u s t e r ( c ,  Ai, L)
2 let HAi,c be a conditioned cluster index
3 let C  be the set of clusters in H a; ,c
4 foreach c' e  C  do
5 if  c'.size >  1 then
6 if there exists a  predicate pi+1 then
7 | r e f i n e C l u s t e r ( c ' , A i + 1,L)
8 else
9 | Insert cluster pair (c', c') into L

10 initialize an empty partition L
11 initialize a cluster cr with every tuple of table r
12 r e f i n e C l u s t e r ( c r, A1, L)
13 re tu rn  L
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The refinement of columns for equality predicates on two different columns, tx . A =  ty . B, 

is similar to traditional hash joins. We first build cluster indexes HA and HB. The cluster index 

HA acts as the “build input” , whereas cluster index HB acts as the “probe input”— we assume 

column A to produce fewer entries than column B . We iterate the values v in the cluster index 

HA and, for each of those, we probe cluster index HB. If cluster index HB contains the value v,

then we combine the cluster assigned to the value v in HA, denoted c a , with the cluster assigned

to the value v in H B, denoted cb. The cluster pair (ca, cb) indicates that every tuple t  e  ca have 

the same value in column A , which is equal to the value of every tuple t y e  cb in column B .

The refinement of partitions for an equality predicate on two (not necessarily different) 

columns is shown in A lgorithm  5 . We iterate each cluster pair (c1, c2) in the input partition, 

for which we retrieve two conditioned cluster indexes: HA,c1 and HB,c2. The remainder of the 

algorithm is analogous to the refinement of columns for equality predicates on two different 

columns. The difference is that build-inputs are conditioned cluster indexes HA,c1, whereas 

probe-inputs are conditioned cluster indexes HB,c2.

A lgorithm  5: Refinement of partition Lin for predicates of the form tx .A =  t y.B (A 
and B can be equal)

1 initialize an empty partition Lout
2 foreach cluster pa ir  (c1, c2) e  Lin do
3 let HA,c1 and HB,c2 be conditioned cluster indexes
4 let V  be the set of values in HA,c1
5 foreach v e  V  do
6 cB ^  H B(v)
7 if  cb is no t null then
8 ca ^  HA(v)
9 Insert cluster pair (ca, cb) into Lout

10 re tu rn  Lout

The algorithms we have presented so far take linear time in the num ber of tuples. In 

short, we fetch column values, build cluster indexes using hashing, and iterate the entries in these 

clusters to emit partitions.

5.3.2 Antijoins

The following refinement of columns detects pairs of tuples having different values of 

a single column, i.e., predicates of the form  tx.A =  ty.A . We need to insert cluster pairs (c, c') 

into the result partition: Cluster c is each cluster of the cluster index HA; and cluster c' is the 

relative com plement of cluster c in a cluster with all tuples in the table cr —  also termed set 

difference c' ^  cr \  c. We do as follows to detect pairs of tuples having different values for two 

different columns, t x.A =  t y.B . Given an entry (v, ca) in the cluster index HA, we check whether 

there exists an entry (v, cb) in the cluster index HB. If so, we insert a cluster pair (ca, c') into 

the result partition, where c' ^  cr \  cb. Otherwise, the value in column A of the tuples in ca is
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different from the values in column B of every tuple in the table; then we insert a cluster (ca, cr) 

into the result.

The refinement of partitions for antijoin predicates is given as Algorithm 6 . For each 

cluster pair (c i, c2) in the the input partition Lin, we retrieve the conditioned cluster indexes 

HA,C1 and H b,C2. Then, for each value v (with assigned cluster ca) of cluster index HA,Cl we 

search for a cluster cb in the cluster index H b,C2. In a successful search, we use the relative 

com plement of cluster cb in the cluster c2 to form the result cluster pair with ca (Lines 8 -1 0 ). 

Otherwise, cluster c2 has no tuple whose value in B is v, so it can be directly combined with 

cluster ca in Line 12.

A lgorithm  6: Refinement of partition Lin for predicates of the form tx.A =  ty.B (A 
and B can be equal)

1 initialize an empty partition Lout
2 foreach d u s te r p a ir  (c1 , c2) e  Lin do
3 let HA,C1 and H b,C2 be conditioned cluster indexes
4 let V be the set of values in HA,C1
5 foreach v e  V do
6 CA ^  H A(v)
7 CB ^  H B(v)
8 if  cb is no t null then
9 C/ i C2 \  CB

10 Insert cluster pair (ca, c/) into Lout
11 e se
12 Insert cluster pair (ca, c2) into Lout
13 re tu rn  L

With regard to time complexity, building and probing cluster indexes takes linear time 

in the number of tuples. In addition, the algorithms for antijoin predicates have the additional 

cost of set difference operations (e.g., Line 9 in A lgorithm  6). The selectivities of these types 

of predicates are usually high, so their respective refinements might produce large intermediate 

partitions. In practice, these type of refinement come last in the pipeline, at a point where most 

pair of tuples have already been filtered out.

5.3.3 Non-equijoins with range operators

Let us next consider the refinement of columns for range predicates of the form tx.A >  

ty.A. We build the cluster index HA and sort its entries in ascending order according to the keys 

(the distinct values of the column). For clarity, we denote such sorted maps with H A . For the 

sorted entries (v1, c1 ) , . . . ,  (v^ c )  e  H a  we have the following: Every tuple in the cluster a  has a 

value vi that is greater than the values Vj in the tuples of clusters Cj, for all j  <  i. For each cluster 

C /, we form  a cluster pair ( a , c /)  such that c /  =  (Jj=1 Cj. A t each iteration i, we com pute the 

cluster Ci/ using a copy of the last cluster ci-1 / and only one union operation. Finally, we insert
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each cluster pair (c;, c ') into the output partition L. For predicates of the form tx. A > =  ty. A we 

must include c; into the right hand side of the cluster pair, so we compute clusters c ' =  (Jij-=1 cy. 

The algorithm is symmetric for predicates of the form  t x.A <  ty.A and t x.A <  t y . A with the 

entries of the cluster index HA in descending order according to the keys. In the worst case, the 

values of column A are all distinct, thus, cluster indexes have n entries. In this case, the time 

complexity is dominated by the time spent to sort these n entries plus the time to perform n union 

operations.

The remaining of the refinement algorithms are based on the sort-merge paradigm. The 

general idea is to iterate sorted cluster indexes to incrementally find and build matching cluster 

pairs from  previous iterations. A lgorithm 7 shows the refinement of columns for a predicate 

on two different columns, such as tx.A >  t y.B . After building sorted cluster indexes HA and 

H b  in Line 2, we filter their values out for those entries that cannot form  cluster pairs that 

satisfy the predicate. That is, we remove from cluster index H a  the entries with values that are 

smaller than the smallest value of cluster index H b , and from H b  the entries with values that 

are greater than the greatest value of H a . If the cluster indexes H a  and H b  are empty at this 

point, there are no matching cluster pairs so the algorithm returns an empty partition. Otherwise, 

the first entry (vhigh, chigh) of cluster index H a  has a value that is strictly greater than the value 

of the first entry (viow, ciow) of cluster index H b  , so we form the first cluster pair that satisfy the 

predicate (Lines 4 -  7 ). Such cluster pairs are kept in variables p a ir  that are updated as we find 

new matching clusters.

The merge part of the algorithm begins in Line 9 . We use the value vhigh used to form 

the current p a ir  and find matching entries (viow, ciow) in the cluster index H b that also satisfy 

the predicate. Then, we update the right hand side of p a ir  to include the tuples of clusters ciow 

(Lines 9-12). W henever we find a non-matching entry, we update the left hand side of p a ir  

(Lines 14-17). That is because there might be entries in H a with values vhigh that, despite being 

smaller than the current viow, are greater than the values viow previously used in Lines 9-12. By 

doing this, we keep as much tuples as possible within the the same cluster pair. We find the 

starting point of a new matching cluster pair whenever we find a new entry (vhigh, chigh) in H a 

with a value vhigh greater than the current viow (the else clause in Line 18). At this point, the left 

hand side of the new cluster pair is chigh and its right hand side is the union of the tuples in the 

current ciow with all tuples in the ciow from  previous iterations. In other words, the right hand 

side of p a ir  can only expand. We repeat the while loop in Line 9 until there is no entry in H b to 

visit. Finally, we perform a last update in the left hand side of the last p a ir  with any left entry of 

cluster index HA (Lines 24-26).

The time complexity for Algorithm 7 is given by the time spent to build and sort cluster 

indexes, plus the time spent in merging these clusters. W hile the merge loop runs in O(2n) 

(assuming n entries in each cluster index), performing cluster unions and copies depends on the 

internal states of their bitmaps.
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A lgorithm  7: Refinement of columns for predicate of the form tx.A >  ty.B

1 initialize an empty partition L
2 let JHa and J b  be sorted cluster indexes
3 remove from HA and JHb those entries that do not produce cluster pairs

for tx.A >  ty.B

4 (vhigh, chigh)  ̂ . n e x t o
5 (viow, c lo w )^  J . n e x t ( )
6 pa ir  ^  (chigh, clow )
7 Insert pair  into L

8 if  JH A .h a sN e x t()  o r J J b.h a s N e x t ( )  then 
while J J b.h a s N e x t ( )  do

(viow, ciow) ^  J . n e x t ( )  
if  vhigh >  viow then 

| pa ir .r h s  ^  pa ir .r h s  U c|ow 
else

while JH A .h a sN e x t()  do

(vhigh, chigh)  ̂ J .n e x t ( )
if  vhigh < =  viow then  

| p a ir .l h s  ^  p a ir .l h s  U chigh 
else
ctemp ^  a copy of pair..rhs
ciow  ̂ ctemp U ciow 
pa ir  ^  (chigh, ciow)
Insert pa ir  into L 
b reak

while J J A .h a s N e x t( )  do
(vhigh, chigh)  ̂ ^ A .n e x t ( )
p a ir .l h s  ^  p a ir .l h s  U chigh

9
10
11
12
13
14
15
16
17
18
19
20 
21 
22
23
24
25
26
27 re tu rn  L

Algorithm 7 requires minor changes to work with operator > , and it is symmetric for 

operators in {< , < } , with cluster indexes and sorted in descending order of keys. The 

refinement of partitions for predicates with operators in {> , > ,< ,  < }  and two (not necessarily 

different) columns also follows Algorithm 7 with minor changes. The starting point is building 

conditioned cluster indexes for each cluster pair in the input partition. The rem ainder of the 

algorithm is the same as described above.

5.3.4 Cached cluster indexes

The partitions produced by refinements of range predicates, with operators in {>

, > , < , < } , have a great deal of redundancy across the right hand sides of their cluster pairs. 

As an example, observe the output of the refinement of columns for predicate t x .B onus < 

t y.B onus: [({t 2}, {t i} ), ({t 3, t 4}, {t i, t 2})]. If we were to com pute conditioned cluster indexes
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for cluster { t1} and | t 1; t 2} from  scratch, we would require to fetch tuple t 1 twice instead of 

just once. For larger clusters, the waste would be high, and the running time would increase 

dramatically. To avoid unnecessary tuple fetches, V i o F in d e r  employs a simple, but efficient, 

cache mechanism.

The cache works for the refinement of partitions holding incremental redundancy on 

the right hand side of their cluster pairs. Such partitions derive from  refinements (of both 

columns or partitions) that use predicates with operators in {> , > , < , < } . V i o F i n d e r  maintains 

a conditioned cluster index H A ,Ccache, where cluster ccache is a set of tuples that had its values of 

column A already fetched. Assume we are about to build a conditioned cluster index H A ,C. We 

compute the relative difference of ccache in c, that is, cd/ /  =  c \  Ccache. If this result is non-empty, 

then we already have a portion of the cluster index H a ,c as the cluster index H A ,Ccache. In this 

case, we fetch the remaining values of column A we need, that is, the tuples of cd//. We use these 

values to update HA C , . At this point, the cluster index HA C ,, holds the entries required* 'v^cache r  ' v 1- cache 1
for H a ,c, so we can proceed with the remaining parts of the refinement. On the other hand, an 

empty result of the relative difference means that the sequence of redundant tuple has stopped, so 

we can no longer use the previous H A ,Ccache. In this case, we must build the a new cluster index 

HA C ,, from scratch.a ,c cache

5.4 EXPERIMENTAL EVALUATION

We ran several experiments with V i o F i n d e r , three database management systems, and 

a system tailored for denial constraints. In this section, we compare the perform ance of these 

systems and analyze the design choices of V i o F i n d e r .

5.4.1 Experimental setup

D atasets an d  denial constrain ts. We used three datasets and eight denial constraints, as shown 

in Table 5.2. The T ax dataset is a synthetic compilation of tax-records of US individuals. We 

generated various T ax  instances (with up to 100M records) using the data generator from [24]. 

The denial constraints $3- $ 5 are defined for the single table of the T ax  dataset. The TPC-H 

dataset is extracted from  the synthetic TPC-H benchmark. We used a scale factor of ten to 

produce TPC-H instances with up to 60M records. The denial constraint $ 6 is defined for the 

denormalization of tables /ineitem and orders, and the denial constraints $7 and $ 8 are defined 

for the /ineitem table alone. The IMDB dataset is extracted from  the real-world movie dataset 

described in [145]. The denial constraint $ 9 is defined for the denormalization (with up to

2.5M records) of tables tit/e and fcind_fype, and the denial constraint $ 10 is defined for the 

denormalization (with up to 5.8M records) of tables cast_in/o, tit/e, aka_name, name, ro/e_type, 

and char_name. These denial constraints were designed to cover various types of dependencies: 

Unique constraints ($3 , and $ 10), functional dependencies ($ 2 and $9 ), order dependencies ($7), 

and other dependencies with complex relationships ($ 5 , $ 6 , and $ 8). Even though some of
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them  may not hold in production, they have complex predicate structures that challenge the 

performance of the evaluated systems.

Table 5.2: Datasets and denial constraints for experiments.

Dataset Denial constraint

At.C hildE xem p =  t'.C h ildE xem p)

i( t .S ta te  =  t '.S ta te  A t.S a la ry  >  t '.S a la ry  
At. R ate <  t '.R a te )

i( t.C u s to m er =  t '.S u p p lie r A t.S u p p lier =  t '.C u s to m er)

i(t.E x ten d ed _ p rice  >  t'.E x ten d ed _ p rice  
At .D isco u n t <  t '.D isc o u n t)

A t.R ece ip td a te  >  t '.S h ip d a te  A t .S h ip d a te  <  t '.R e c e ip td a te

A t.T itle  =  t '.T it le  A t.P ro d u c tio n Y ear =  t '.P ro d u c tio n Y ear 
At.K ind  =  t'.K in d )

- ( t.T itle  =  t '.T it le  A t.R o le  =  t '.R o le  
At.N am e  =  t '.N a m e  A t .C h arN am e =  t '.C h arN am e)

T ax ^ 3:

T ax ^ 4 :

T ax 0 5 :

TPC-H 0 6 :

TPC-H ^ 7 :

TPC-H 0 8 :

IMDB 0 9:

IMDB 0 10

I

Baselines. We com pare V i o F i n d e r  with the com ponent for detection of denial constraint 

violations described in [55], referred to here as H y d r a - I E J o in . In addition, we compared our 

system with three database management systems: PostgreSQL (v.12.1), MonetDB (v.11.35.3), 

and SQLServer (v.2019 CU3). These systems have different query processing models, with 

different impact on the materialization of intermediate data. PostgreSQL implements the tuple- 

at-a-time model that moves entire tuples around the memory hierarchy. In contrast, the column- 

at-a-time processing model of M onetD B fetches only the columns in the SQL statement, but 

keeps the interm ediate data in memory along the entire processing. SQLServer implements a 

middle ground with a vector-at-a-time model.

Im plem entation . We implemented V i o F in d e r  as a standalone tool in Java, that runs in main- 

memory after dataset loading. We used the Roaring bitmap library to im plem ent clusters 1. 

H y d r a - I E J o in  is also a standalone tool that runs in main-memory. We used the Java im ple­

mentation provided by the authors. To use the database management systems, we translated each 

denial constraint in Table 5.2 into a SQL query and executed it using the vanilla version of the 

three database management systems. We created indexes on all predicate columns to investigate 

if and when the database management systems improve their execution plans. We checked all 

implementations separately and they all return the same result. We did not need to materialize 

the violations, so we used a s e l e c t  c o u n t (  *) projection in each query to return only the

1h t t p s : / / g i t h u b . c o m / R o a r i n g B i t m a p / R o a r i n g B i t m a p

https://github.com/RoaringBitmap/RoaringBitmap
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number of violations. By the same token, we set the standalone tools to return a count with the 

number of violations in their output.

In fra s tru c tu re  an d  execution. We used a server running Debian 10 (buster) as the experimen­

tation platform. The server is equipped with twelve sockets, each with an Intel(R) Xeon(R) 

CPU E7-8837 octa-core processor running at 2.67GHz, 756GB of RAM, and 2TB of disk. All 

executions were single-threaded. V i o F i n d e r  and H y d r a - I E J o in  run on a O racle’s JDK 

64-Bit Server VM 1.8.0 with maximum heap size set to 32GB. The numbers in the reports are 

the average measurement of three independent runs. We used a default threshold of ten cluster 

pairs for V i o F i n d e r .

5.4.2 Performance evaluation

C om parison  w ith baselines. We measured the runtime of all denial constraint violation detec­

tors on different datasets and denial constraints. To be able to run the SQL queries within a time 

limit of 3 hours, we used a sample with 200K records of each dataset. Runtimes are broken down 

into loading, preprocessing, and querying. For the database management systems, these measures 

are, respectively, the time spent to load the raw files into the database management system, create 

indexes, and execute the query. For H y d r a -IE Jo i n , these measures are, respectively, the time 

spent to load the raw files into memory, map the input into integer domains plus the time to 

decide predicate order, and execute the algorithm. V io F i n d e r ’s runtime composition is similar 

to H y d r a -IE Jo i n ’s, except that it does not include the input mapping time.

Figure 5.2 depicts the measured runtimes of all five systems for all datasets and denial 

constraints of Table 5.2. In summary, the results in this experiment demonstrate that V i o F i n d e r  

performs best in every scenario and that it can be at times orders of magnitude faster than the 

database management system approaches. For denial constraints $7  and $8 , V i o F i n d e r  finished 

in a matter of few seconds, PostgreSQL and SQLServer in a matter of few hours, and MonetDB 

did not finished due to memory limit exceptions. We can see speedups of 1625 x , for example, 

when V i o F i n d e r  is compared to SQLServer for denial constraint $ 8 . Moreover, V i o F i n d e r  

delivered between 3x  and 17.5 x faster executions than H y d r a -IE Jo i n .
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The execution plans and perform ance among the evaluated database management 

systems varied considerably. For the keys in denial constraints Ç3 and Ç10 and the functional 

dependency in denial constraint Ç9 , PostgreSQL used a Sort-M erge Join approach slower 

than the HashJoins in SQLServer and M onetDB— we can see the perform ance im pact from  

algorithm choice in the querying time. All systems used HashJoins for the relationship of 

mutual inclusion in denial constraint Ç6 and reported fast querying. In contrast, we measured 

the w orst runtimes for denial constraints that express relationships of order between columns 

(i.e., denial constraints Ç5 , Ç7 and Çg). MonetDB threw memory lim it exceptions for denial 

constraints Ç7 and and reported the slowest runtime for denial constraint ç 5. The system used

a thetajoin im plementation based on Cartesian product that produced large intermediates and 

impaired performance. PostgreSQL and SQLServer relied on nested loops for those three denial 

constraints and performed poorly considering the small num ber of tuples in the experiment. 

With regards to index usage, the database management systems used table scans for most of the 

executions due to the selectivity of the predicates. M onetDB and SQLServer used no indices, 

whereas PostgreSQL used index scans on column Extended_price for the denial constraint Ç7 

and on column Shipdate for the denial constraint Çg. The order of predicate evaluation also 

influenced performance. For denial constraint ç 4, SQLServer used HashJoins to evaluate the 

equijoin predicates, then checked the non-equijoin as a residual predicate. The two other database 

management systems also used HashJoins, but they evaluated the non-equijoin filter first, which 

yielded in worst runtime. For denial constraint ç 5, all systems evaluated the equijoin predicate 

first, which helped reducing intermediates and improved performance.

The differences in the executions of the database management systems were expected: 

after all, they differ from  each other internally. These results support our design decisions 

with V i o F i n d e r , though. By processing partitions of limited size at-a-time, V i o F i n d e r  

bounds the materialization of intermediates. Choosing the order of denial constraint predicates 

based on predicate selectivity leads V i o F i n d e r  to process predicates that produce smaller 

intermediates first. In addition, V i o F i n d e r  carefully selects refinement algorithms. Notice 

that the best results reported by the database management systems uses hash-based approaches. 

V i o F in d e r  mirrors this observation and uses hash-like approaches whenever possible. For range 

predicates, V i o F in d e r  uses algorithms that are more effective than the nested loop solutions in 

the database management systems. We observe similar concerns with H y d r a -IE Jo in . However, 

V i o F in d e r  spends much less time than H y d r a -IE Jo in  in preprocessing.

Scalability in the n um ber of tuples. This experiment considers only querying times (i.e., 

execution times without loading, index creation, or preprocessing times) because it focuses on 

the algorithmic efficiency of each system. The previous experiment is a baseline comparison 

so we used H y d r a -IE J o in  as it was originally conceived by its authors. However, H y d r a - 

IE J o in  has to map the input into a integer domain, because its im plem entation is based on 

integer comparisons. V i o F i n d e r  does not need this step, and also uses a faster approach to
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decide predicate order. Thus, to eliminate the additional costs of H y d r a -IE Jo in , we integrated 

H y d r a -IE J o i n ’s algorithms into V i o F i n d e r ’s platform for this experiment.

Figure 5.3 shows the runtimes (only querying times) measured for the datasets with in­

creasing number of rows— note that some plots have different scales. The plots show SQLServer 

as the only database management system approach, over only denial constraints without range 

predicates: None of the database management systems finished execution for denial constraints 

with range predicates in less than twenty-four hours or without throwing a memory exception. 

MonetDB faced the same issue executing functional dependencies, and, in the cases PostgresSQL 

finished, the observed runtimes were orders of magnitude higher than the other database manage­

ment systems. In practice, SQLServer was the fastest among the database management systems 

for most denial constraints and datasets. The database management system approach scaled 

better than V i o F in d e r  for denial constraint <p6. The columns in this denial constraint are keys, 

which database management systems are well-optimized for. In this case, V i o F in d e r  has less 

opportunity to use its optimizations (e.g., it does not use Algorithm 4).
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Figure 5.3: Scalability of V i o F i n d e r , Hy d r a -IEJo i n  and SQLServer for increasing number of rows.

Although both V i o F i n d e r  and H y d r a -IE Jo i n  show characteristics of linear growth 

for denial constraints £ 3 , £ 4 , £ 9 and £ 10, the relative performance difference consistently

grows as the number of records grows. Both systems use hash-based approaches with such 

denial constraints, but differ in key im plementation details. V i o F i n d e r  deals with multiple 

equality predicates on single columns at once (with Algorithm 4), whereas H y d r a -IE Jo in  does 

so one predicate at a time. As a result, H y d r a -IE J o in  requires larger partitions (with larger 

cluster pairs) to be moved through the pipeline, which may decrease performance. Moreover, 

V i o F in d e r  uses bitmaps with sorted arrays to implement set operations (e.g., set difference in 

different than predicates), whereas H y d r a -IE J o in  uses hash sets. The former approach has 

been shown to be consistently faster [143].

The performance of V i o F i n d e r  and H y d r a -IE Jo i n  was roughly similar for denial 

constraint £ 5 , but greatly differed for denial constraints <£7 and £ g . For instance, V i o F i n d e r  

was on average 307 x  faster than H y d r a -IE Jo i n  for denial constraint £ 8 on 10M rows. Notice 

that denial constraints £ 5 , £7 and £ 8 are those with range predicates. V i o F i n d e r  uses our 

proposed sort-merge approaches to process range predicates, whereas H y d r a -IE J o i n  uses 

the IE Jo i n  algorithm [141]. Broadly speaking, both approaches include a phase that builds

1

1
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auxiliary data structures, and a phase that uses those data structures to produce the results. The 

costs of the initial phase in the V i o F i n d e r ’s sort-merge algorithms consists of building cluster 

indexes and sorting its entries, and the costs to produce results consists basically of a merge loop 

that triggers logical operations and copying of bitmaps. In contrast, the IE  J OIN algorithm in 

H y d r a -IE Jo in  evaluates two range predicates in a single pass. The initial costs of the algorithm 

involves computing auxiliary arrays based on sorted versions of column values. As for its second 

part, the basic idea is to iterate the relative positions of the auxiliary arrays; operate on a bitmap 

to mark positions of tuples that satisfy the first predicate; then find tuples that also satisfy the 

second predicate by iterating another auxiliary array and the marked bitmap. The primitives in 

the second phase of both approaches have a great impact on performance.

We broke down the executions and observed the following. For denial constraint 0 5 the 

first phase occupied m ost of the execution time in both approaches, that is, they spent most of 

the time in sorting. In addition, the refinement of the equality predicate of denial constraint 0 5 

occupied only a small fraction of the execution time for both approaches. For denial constraints 

0 7 and 0 8 , however, both approaches spent most of the time in their second phase. IE  Jo i n  has 

to iterate auxiliary arrays to find and collect qualifying tuples. For denial constraints with a 

larger number of violations, as it is the case of denial constraints 0 7 and 0 8 , this primitive is 

heavily penalized because many tuples qualify. In contrast, the sort-merge approach builds the 

results incrementally from previous iterations with copying of bitmaps. W hile the approach is 

also penalized for denial constraints with a large number of violations, its incremental processing 

saves a great deal of computations and yields lower runtimes.

5.4.3 Additional evaluation of V i o F in d e r

The next set of experiments focuses on V i o F i n d e r . We evaluated the effects that the 

cache mechanism has on runtime, m aximum memory usage, and number of tuple fetches (for 

refinements that enable caching). We used denial constraint 0 8 because its execution exemplifies 

how caching can benefit performance. Figure 5.4 shows the measurements using a cache-disabled 

version of V i o F i n d e r  relative to the measurements using the original— the Y-axis is in log scale. 

The cache-disabled version has to perform dramatically more tuple fetches and runs considerably 

slower than its cache-enabled counterpart. The larger the number of tuples in the input, the greater 

the relative differences in tuple fetches and runtime. A lthough V i o F i n d e r  consumed more 

memory using the cache mechanism for fewer tuples (i.e., less than 400K), it stably consumed 

about the same amount of memory for larger inputs. This interesting effect happened because 

the larger inputs produced clusters with higher density that took better advantage of bitmap 

compression.

Next, we evaluated the impact of varying cluster pair thresholds on runtime and maxi­

mum memory usage. We observed that perform ance and memory usage was relatively stable 

for small thresholds (i.e., less than 100). Partitions with more than one cluster pair benefited 

the perform ance of refinements dealing with a few of tuples at-a-time, because there was less
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Figure 5.4: Relative impact of caching cluster indexes on denial constraint p8.

interpretation overhead. We used a default threshold of 10, because it is the median value of those 

thresholds that produced the best runtimes for each denial constraint. However, memory usage 

increased with larger thresholds as partitions are more likely to store more cluster pairs. Large 

partitions create long-living data objects in the heap that persist for long portions of the pipeline. 

This effect degrades runtime, because garbage collection needs to perform additional tracing and 

marking of long-living objects, consuming additional CPU time. Figure 5.5 illustrates such a 

behavior, for denial constraint 0 8, by showing the memory usage and runtime with increasing 

tuple pair thresholds relative to these measures with the default threshold.
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1

For this last experiment, we measured the size of the in memory data structures storing 

the datasets, and the maximum memory used by V i o F in d e r  during each execution. Figure 5.6 

shows the results for four denial constraints— the plots include also the number of violations
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detected. For m ost denial constraints, the contributing factor to the linear increase in memory 

usage is the number of tuples. Notice, however, that denial constraint has a huge number of 

violations. In that case, handling the large intermediates used to produce output consumed much 

more memory than the in memory datasets. Nonetheless, these results shows that V i o F in d e r  is 

not expensive in terms of memory usage.

5.5 SUMMARY

In this chapter, we introduced a system for the detection of denial constraint violations 

that handle a wide range of data dependencies, from unique constraints to other dependencies 

that express complex relationships between columns. V i o F in d e r  shows efficient performance 

through partition pipelines and effective refinement strategies. Even for larger inputs, or denial 

constraints that produce sizeable intermediates and results, the performance of our system 

degrades much more gracefully than the performance of baselines.
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Chapter 6 

Mind your Dependencies for Semantic 
Query Optimization

One of the most important data profiling task is dependency discovery, particularly the 

discovery of the functional dependencies. While functional dependencies are defined as integrity 

constraints in database design phases, manually updating them as the application and data evolve 

becomes an error-prone task which may even be left behind in denormalized databases (e.g., 

data warehouses). In turn, automatic dependency discovery does not rely exclusively on schema 

information but considers the data tuples of the database as well.

The number of functional dependencies radically increases with the number of columns 

in the dataset. This number may increase drastically as the number of columns goes up, e.g., 

in the region of millions for datasets with hundreds of columns and thousands of records [27]. 

The main problem is that selecting which of the dependencies are most relevant for a given task 

is left for human analysis. It is particularly challenging to understand the relationships among 

hundreds, or even thousands, of dependencies spread across multiple relations. Therefore, the 

selection process should regard the use-case for dependencies. This process should not only 

prune the unnecessarily large number of results, but it should also provide more meaningfulness 

to the selected dependencies.

Interestingness measures have been proposed to score functional dependencies and other 

types of constraints. These measures are primarily based on the statistical properties of the data 

and have shown good potential to filter dependencies for tasks such as functional dependency 

evolution [120], data cleansing [137] and normalization [102]. However, those measures may 

produce inconclusive recom mendations to be explored by semantic query optimization [122]. 

As observed in [146], data dependencies should be exploited with caution. They may im pose 

additional performance penalties in planning phases as the number of dependencies increases.

We present the focused dependency selector (FD S e l ), a data-driven, query-aware tool 

to select relevant functional dependencies for semantic query optimization. We hypothesize that 

the information from the workload of the application (e.g., selection filters in SQL statements) is 

a powerful asset to narrow the large number of functional dependencies discovered in the datasets.
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First, FD S e l  associates summaries of application workloads with the set of discovered functional 

dependencies in application data. Then, it can use different strategies to recom mend sets of 

functional dependencies that offer the best trade-off between a reduced number of functional 

dependencies and best gains in query execution time with semantic query optimization. We refer 

to these sets of functional dependencies as exemplar functional dependencies. The F D S e l  is 

also responsible for setting and triggering query optimizations based on query rewritings. The 

tool acts as a middle-ware between the user applications and the database.

The contributions in this chapter are as follows.

• We present a novel mechanism to combine the semantic information found in functional 

dependencies and query workload to help in query optimization.

• We formulate effective procedures to select exemplar functional dependencies from the 

large sets of functional dependencies returned by automatic discovery algorithms.

• We present two schemes in which the exem plar functional dependencies can help in 

semantic query optimization, namely, join elimination and order optimization.

• We provide an experimental evaluation of our tool, using real and synthetic datasets, 

which shows that our tool is able to effectively select exemplars with adequate statistical 

properties, and improve query performance without any human interaction.

The rest of the chapter is organized as follows. Section 6.1 gives an overview of the 

F D S e l  use-case scenario. Section 6.2 details F D S e l . Section 6.3 presents our experimental 

evaluation of F D S e l . Finally, Section 6.4 concludes the chapter and presents future directions.

6.1 OVERVIEW

In this section, we present a high-level description of F D S EL . Given the high number 

of functional dependencies discovered in real-world data, the main question we seek to answer is 

how can we use the semantic information in these dependencies to help in query optimization 

scenarios effectively. Thus, we design F D S e l  as a data-driven, query-aware mediating tool 

that autonomously leverages semantic query optimizations by exploiting patterns in the data 

(functional dependencies) and applications (query workload).

Figure 6.1 illustrates the control flow between the components of F D S e l . The input 

of F D S e l  is a database along with its catalog, and a representative query workload. The 

first com ponent of F D S e l  is the functional dependency extractor, which uses an efficient 

algorithm to discover all functional dependencies in the database tables ©. These functional 

dependencies determine relationships between groups of attributes and can provide valuable 

semantic information from the data. F D S e l  stores all discovered functional dependencies in a 

buffer for further analysis.
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Figure 6.1: FDSe l  workflow.

The second component of FD S e l  is the query mediator, which progressively intercepts 

the database queries to form  a batch ©. Besides, the query mediator might perform  query 

optimizations for each query, if any optimization is available. These optimizations are set by the 

core component, described later. FD S e l  considers the application workload to be lists of queries 

that are expected to be executed by the application. Once the query mediator has processed 

sufficient queries, it calls the core component of F D S e l  for updates.

The core component receives the workload characterization from the query mediator ©, 

scans the functional dependencies buffer, and selects functional dependencies for semantic query 

optimization ©. This component counts attribute frequencies from functional dependencies and 

queries. Then, it combines this frequency information to build a data structure called occurrence 

matrices, which forms the input for the selection procedures. The core component can use three 

strategies for the selection task. In two of these strategies, w e use occurrence matrices to sort 

functional dependencies. This sorting is based on their structures and their proximity to the query 

workload. The structure of a functional dependency is defined by which set of attributes define 

each other, and the proximity of a functional dependency measures how many attributes it has in 

common with the workload characterization.

The strategies based on ranking are based on two different interest metrics: distrust, 

which considers the redundancy of attribute values, and Mahalanobis distance, which considers 

correlations found in the occurrence matrices. The core com ponent iterates the set of ranked 

functional dependencies to find functional dependencies with appropriate values for these interest 

metrics. Finally, the third strategy is an adaptation of the affinity propagation clustering algorithm

[147], which works with the occurrence matrices.

The core component is also responsible for setting the rewriting strategies in the query 

mediator @. The component considers only optimizations that preserve semantics; that is, there 

is no change in the output of the rewritten queries. The F D S e l  sits between user applications 

and data processing platforms, and it is completely decoupled from the internals of any specific 

database management system.
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6.2 FOCUSED DEPENDENCY SELECTOR

In this section, we detail the operation of F D S e l . We describe data structures to com­

bine functional dependencies and workloads, and we present the procedures to select functional 

dependencies. Finally, we describe how to employ the selected functional dependencies in query 

optimization.

6.2.1 Discovery of functional dependencies

F D S EL discovers all the non-trivial and minimal functional dependencies holding in 

the database tables. Several algorithms for functional dependency discovery have been proposed, 

and many of them  have evolved over different versions in the literature. We refer to [21] and

[27] for further details on functional dependencies discovery. In practice, FD S EL could use any 

functional dependency discovery algorithm that, given an instance r, returns the set of non-trivial 

and minimal functional dependencies over r. FD S EL uses the algorithm H y FD [29], described in 

Chapter 2. At the time of writing, H y FD was the most efficient functional dependency discovery 

algorithm as it shows good performance results in terms of runtime and scalability.

6.2.2 Attribute occurrence matrices

Query workloads provide valuable information to support query optimization. In 

general, a query workload presents strong access patterns, which either in horizontal level 

(individual tuples) or vertical level (individual attributes), points out to specific database areas 

that are accessed more frequently than others. In turn, functional dependencies express semantic 

consistency requirements for data through sets of dependent attributes. F D S e l  leverage this 

characteristic of functional dependencies to reduce the number of sets of attributes that a query 

optimization should address. Thus, the combination of appropriate semantic information and 

query workload information is a potential asset to help to find alternative execution strategies 

and, therefore, improve query processing.

F D S e l  measures the binary relationship between a relation’s attributes and how often 

the incoming queries are touching those attributes. This binary relationship is also applied to 

functional dependencies by only considering their left-hand side and right-hand side attributes. 

The information about the occurrence of attributes in the queries or functional dependencies is 

initially stored in a m x n binary matrix O, called the attribute occurrence matrix (AOM). As a 

first step, the operations for AOMs regarding queries or functional dependencies are the same; 

thus, we define all the operations in a single AOM. Throughout the definitions, we distinguish 

how to adjust each AOM to functional dependencies or queries.

Consider a set of queries Q =  {q1, qm}, which we expect to run on the database. For 

simplicity, we assume there is only one relation in the database. For each query q;-, F D S EL 

collects the attributes in the operators of qi. That is, it collects the attributes in the projection
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and selection of the query to com pose a set of attributes s. Furthermore, for each functional 

dependency f  : X ^  Y , F D S e l  composes two attribute sets s, one for each side of f .

Consider a relation and its attributes R(A1,...,A n), and a collection of sets S =  

{s1, . . . , sm} such that s; C R. For each s; e  S, and for each Aj  e  R, F D S e l  assigns a binary 

occurrence value for AOM, as in Function 6.1:

oij =
1 if s; has attribute A j , 

0 othewise.
(6.1)

Each entry o -̂ indicates whether or not an attribute of R is touched by one of the elements of s;.

FD S e l  estimates three AOMs. The first one is for a set of queries, denoted by Oq. Also, 

for a given a set of functional dependencies, it estimates an AOM Olhs for their left-hand side; 

and an AOM Orhs for their right-hand side.

Let E  =  {A ^  B, BC ^  D} be the set of functional dependencies discovered in a 

relation instance r of relation R(A, B, C, D ) . Besides, consider a set of queries in standard 

relational algebra Q =  { n (A,D)( tfB=10(R ) ) ; n (A,B,C)( ^ c=20(R ) ) ; n (A,D)( o D>1(R ))} . The AOMs 
Oq, Olhs, and Orhs are respectively defined as follows:

Oq =

A B C D

q1 1 1 0 1 '

q2 1 1 1 0

q3 1 0 0 1

Olhs =  f 1 . lhs 

f2.lhs

A B C D

1 0 0 0

0 1 1 0

Orhs =  f 1.rhs 

fz.rhs

A B C D

0 1 0 0

0 0 0 1

The row sum vector of AOM O is given by L jO i'j, and is denoted by p  (O). Furthermore, 

let y(O) denote the column sum vector of AOM O, which is given by '^ .O ij.

F D S e l  requires some additional operations on AOMs O. Notice that each AOM can 

also be represented as a sequence of rows O =  [o1, .. . ,om]. We use a function elems(O) that 

returns the set of elements from O, such that for any o; and ok of elem s(O), then o; =  ok. Besides, 

we use a function count(O , o;) that returns how often an element o; occurs in the sequence O. 

Finally, we use a function le n g th ^ )  that returns the number of o^ such that o^ =  0.
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Considering two AOMs, O , and O ', FD S e l  incorporates the number of accesses to the 

attributes of R of AOM O ' into AOM O with a weighted AOM O given by Equation 6.2.

It is possible to integrate the attribute weights from the workload into the AOMs of functional 

dependencies, and vice-versa. However, F D S e l  requires only the former type of integration 

because its goal is to enhance the semantic information of the discovered functional dependencies 

using workload information.

Consider a weighted AOM O estimated with Equation 6.2, either O =  O/hs or O =  Orhs, 

and O' =  Oq. We use a function skew ed_sort(O ) to return a sorted version of elem s(O) that 

satisfies the following:

for any o, and oi+1 from elem s(O ) then Yi(O)count(O, o;) <  Y +i(O )count(O , o,-+ i). (6.3)

The result of skew ed_sort(O ) is a sequence of rows sorted according to their frequencies in O 

times the weight of their target attributes. Each entry o^ of skew ed_sort(O ) can be converted 

into the attributes of functional dependencies, left-hand side or right-hand side, by mapping the 

equivalent attributes A- of R for each element of o^- other than zero.

6.2.3 Quality measures for functional dependencies

A variety of quality measures have been proposed to measure dimensions of data 

dependencies [137, 32, 120]. A standard metric for functional dependencies is redundancy; 

that is, how often sets of equal values for the left-hand side or right-hand side of functional 

dependencies jointly appear in the dataset. based on related work [122, 32, 120], We also use 

data redundancy to measure the distrust of a functional dependency f  : X ^  Y  in r, as Equation

6.4 shows.

The difference in d is minimal when the projections over left-hand side and right-hand 

side approximate in the number of duplicates. In this case, a functional dependency / is less 

likely to have been discovered by chance, which reduces the level of distrust of / .

As an example, consider the relation in Table 6.1, and two functional dependencies, 

/1  : AB ^  C and / 2 : D ^  E, satisfied by the data. The distrust level of / 1 is given by d ( / 1) =  

J (4 /6  — 3 /6 )2 =  0.16, and the distrust level of / 2 is given by d ( /2) =  J ( 5 / 6  — 1 /6 )2 =  0.66.

Notice that the distrust of a functional dependency / does not consider any workload 

characteristic. The studies on workload characterization typically investigate many parameters, 

such as I/O throughput, temporal locality, and data variance aspects. A comprehensive report

m
O  =  £  O ( i)p  (O ') (6.2)
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Table 6.1: A simple relation.

A B C D E

b g 5 1 y
b g 5 2 y
b g 5 3 y
b m 6 4 y
b q 7 5 y
c g 7 5 y

on the subject can be seen in [148]. FD S e l  uses a second quality measure called M a h a la n o b is  

distance to combine data instances and workload characterization [149].

Mahalanobis distance works as a similarity measure between the attribute access pattern 

in the workload and the structure of attributes in the functional dependencies (i.e., left-hand side 

and right-hand side). We have chosen Mahalanobis distance rather than classical measures, such 

as Pearson correlation or Euclidean distance because M ahalanobis distance is suitable for side 

comparisons. For example, Mahalanobis distance agrees with the intuition that “A ^  B is closer 

to A ^  C” than “A ^  B is to C ^  D”, disjointly. The same applies to comparisons between 

functional dependencies and query workload because they account for the same set of attributes.

Mahalanobis distance uses multi-dimensional analyses of unequal variances and corre­

lations between the weighted attributes of AOMs to adjust the geom etrical distribution. Thus, 

FD Se l  can estimate Mahalanobis distances from AOMs. Assume u =  p (O q) and v  to be any o;- 

from Olhs, weighted over another Oq. FD S e l  estimates the Mahalanobis distance as in Equation

6.5: _________________

m d  ( u , v) =  \ J  (u — v ) V -1 (u — v ) T (6.5)

where V —1 is the inverse of the covariance matrix. By using Mahalanobis distances, the difference 

between query patterns (p (O q)) and weighted functional dependencies ( Olhs) can be considered 

in terms of the difference between the vectors of u  and v  relative to their variance.

6.2.4 Selecting functional dependencies

Instead of using all possible rewrite strategies from  the large set of functional depen­

dencies, F D S EL uses the properties previously described to focus on meaningful functional 

dependencies, which we call exemplar functional dependencies. Because FD S e l  uses functional 

dependencies for semantic query optimization, F D S EL focus on exemplars that integrate as 

much coalescence of attributes as possible while producing the best gains in query optimization. 

We formulate three different strategies for selecting exemplars, described next.

Selecting functional dependencies based  on th e ir  ran k . F D S e l  first sorts the set of dis­

covered functional dependencies E using A lgorithm 8. The algorithm requires as input a 

set of functional dependencies, and two weighted AOMs: Olhs and Orhs. The entries o^ of
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skew ed_sort(O ) are converted into the attributes of functional dependencies by mapping the 

attributes A- of R for each element of o -̂ other than zero. In other words, the entries o^- represent 

valid left-hand side and right-hand side in E.

For each distinct left-hand side in E, the algorithm iterates each distinct right-hand side 

to find a combination that builds a valid /  in E. The combination left-hand side ^  right-hand 

side is appended to the ranked sequence of functional dependencies E ' only if such combination 

is a valid functional dependency in E. The iteration over E is based on the weighted AOMs with 

the skew ed_sort function. The first functional dependencies to be appended in the result E ' are 

those in which the target attributes are the most accessed by the application query workload.

A lgorithm  8: Ranking functional dependencies

D ata: Set of functional dependencies E, weighted AOMs O /hs and O rhs
R esult: Ranked functional dependencies E'

1 E ' ^  { }
2 foreach /hs e  skew ed_sort(O /hs) do
3 foreach rhs e  skew ed_sort(O rhs) do
4 if (/hs, rhs) bui/d a  va/id/unctiona/ dependency /  in E then
5 /  =  /hs ^  rhs
6 E '^ { E '}  +  /

A lgorithm  8  returns the same num ber of functional dependencies as in the initial set 

E. Because the result E ' is a sorted sequence, FD S e l  can iterate through E ' until the functional 

dependencies / in E' stop meeting some desired criteria. We noticed that the quality measures 

of functional dependencies degrade as this iteration occurs. F D S e l  estimates the distrust and 

Mahalanobis distance against the current workload of each functional dependency / ,  and builds 

two sets of exemplar functional dependencies. F D S e l  outputs the first set of exemplars by 

considering the following criterion: (1) iterate through E ' until there is a harsh increase in distrust. 

The second set of FD SEL is built with the following criterion: (2) iterate through E ' until there is 

a harsh increase in Mahalanobis distance against the current query workload. We consider that 

there is harshness when an element in E' shows a quality measure that is higher than the double 

of the median of previous elements seen in the iteration up to that point. FD S e l  extends the set 

of exemplars using inference rules before applying them in query optimization.

C lustering  functional dependencies w ith affinity p ropagation  algorithm . FD S e l  uses clus­

tering in the third strategy to select functional dependencies. To this purpose, we adapted the 

affinity propagation clustering algorithm to work with AOMs, and cluster functional dependen­

cies based on their weighted structures [147]. Unlike other clustering algorithms (e.g., k-means), 

affinity propagation does not require the number of clusters to be specified a priori. Besides, 

affinity propagation clustering algorithm can be applied for data that does not lie in a continuous 

space or data with non-symmetric similarities. The affinity propagation clustering algorithm 

identifies the most representative elements in a set by recursively transmitting messages between
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pairs of elements until convergence. An acceptable set of exemplar functional dependencies (cor­

responding clusters) is selected when the message-passing procedure is finished. The procedure 

finishes in two situations: after a fixed num ber of iterations, or after the message changes fall 

below a threshold or remain constant for some iterations.

The inputs of the affinity propagation algorithm are measures of similarity between 

pairs of data points, which FD S e l  extracts from the weighted AOMs. Consider two elements o; 

and Oj, o; =  Oj, of AOM Olhs. F D S e l uses Mahalanobis distance as the similarity measure for 

affinity propagation inputs and estimates the M ahalanobis distance between the left-hand side 

structures of pairs of functional dependencies. There are two categories of messages exchanged 

between pairs [o;,Oj]. The first message is called responsibility r(O;-,Oj), which measures the 

accumulated evidence that Oj should be the exemplar for o;. Formally, the responsibility is given 

as in Equation 6.6.

The availability a  of an element Oj to be the exemplar of o; is given as in Equation 6.7.

Responsibility r and availability a  are initially zero, and all o;, Oj equally represent a 

potential exemplar FD. At any time of affinity propagation, measures r and a  can be combined to 

identify exemplars functional dependencies. Responsibility iteration lets all elements o; compete 

for ownership of another Oj, and availability iterations choose evidence for every other element 

o; as to whether each candidate exemplar would make a satisfying exemplar FD.

F D S e l  iterate the input E to find the corresponding right-hand side of the affinity 

propagation output. This set of exemplars functional dependencies is also extended with inference 

rules.

6.2.5 Semantic Query Optimization

We present a scenario in which the selected functional dependencies can improve the 

overall query performance. We use the approach presented in [150] and [151], nevertheless, our 

tool can be extended to work with others dependency-aware optimization schemes like [152] 

and [153]. Each optimization rewrites the incoming queries into syntactically different, yet 

semantically equivalent queries. The rewritten queries are semantically equivalent if and only if 

their results are the same as the original query, regardless of the state of the database [151]. The 

rewritten queries are expected to produce a more efficient execution plan.

Rewritings could be blocked for particular queries according to the trade-off between 

optimization time and the quality of the execution strategies. As noted by [154], semantic

(6.6)

(6.7)
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optimization increases the search space of possible plans and, as a result, relies on efficient 

searching techniques to keep optimization costs within reasonable bounds. FD S e l  is decoupled 

from  any database management systems query optimizer, and its first and foremost goal is 

to select suitable functional dependencies for optimization. Thus, the incoming queries are 

only rewritten when they fall into two distinct classes. F D S e l  uses the exemplars functional 

dependencies to carry out two classes of semantic query optimization commonly discussed in 

the literature [150, 151, 152, 153]: join elimination and order optimization.

The join elimination technique iterates over the set of functional dependencies to find 

residual clauses in the query. In this case, residuals clauses are joins for which the result is known 

a priori (empty or redundant joins) and, therefore, could be removed from the query. Consider 

a relation R =  {A, B, C }, and a functional dependency f  : A ^  B holding in an instance r of R . 

The relation R can be decomposed as R' =  n ^ B )  (R), and R'' =  n (A,C) ( R). This lossless-join 

decomposition is used to target queries where no attributes are selected or projected from the R'' 

relation. The join elimination optimization is already implemented in some commercial database 

management systems [125]. However, these implementations require the users to declare the set 

of constraints explicitly. Thus, automating this task may be beneficial in environments where 

users access views defined over a large number of joins (e.g., a star schema in a data warehouse). 

Further details and more complex join elimination optimizations can be found in [151] and [125].

The goal of order optimization is to find optimal sorting orders, that is, the best sequence 

of the attributes in the order specification. Sorting orders usually emerge when tables are joined; 

or when tuples are ordered, grouped, or distinguished. The algorithm presented in [150] takes as 

input a set of functional dependencies, a set of predicates, and sorting orders specifications to 

return an optimized sorting order specification. Consider a functional dependency f  : X  ^  Y  

holding on relation instance r , and a query q =  TX ,Y (fl(X Y) (R) ) . The query q can be rewritten as 

q ' =  TX (% x Y) (R)) because there is only one value of Y  for each X . More examples and details 

on order optimization can be found in [150] and [59].

6.3 EXPERIMENTAL STUDY

In this section, we present an experimental study to evaluate the effectiveness of FD S e l .

6.3.1 Scenario

The use of functional dependencies for semantic query optimization can provide com­

pelling gains in environments where relations are vertically partitioned (e.g., column-stores in 

data warehouses). In practice, there are many reasons why partitioning may be required. For ex­

ample, database administrators might fragment a relation into a set of smaller relations to reduce 

maintenance costs, or to cope with distributed designs where applications use some fragments 

more frequently than others (e.g., invisible joins in column-stores [155]). A nother example 

is normalization (e.g., to Boyce-Codd Normal Form), which uses functional dependencies to
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eliminate redundancies and anomalies introduced as the dataset grow [102]. Regardless of the 

reasons for table partitioning, a typical mechanism to reconstitute information from partitions is 

views. Views can be defined using arbitrarily complex queries that blindly join partitions in order 

to present the user with a representation of the original table, with potential restrictions. The 

users’ access may be limited to the defined views (maybe through a query manager interface); 

therefore, redundant joins or residual sorting order operations are likely to occur. We use the 

scenario based on views to present our experimental evaluation.

6.3.2 Datasets and implementation details

D atasets. We use both synthetic and real-world datasets, which come from different domains. 

Table 6.2 lists these datasets with their number of attributes, number of records, num ber of 

discovered functional dependencies, and number of exemplars selected according to the three 

selection strategies of F D S e l . The datasets Abalone and Adults have been used for functional 

dependency discovery evaluation in [27]. The Adults dataset is based on census data for US 

citizen salaries. The Abalone dataset consists of clinical data about patients and diseases. In 

addition, we use a 2-week snapshot of data extracted by SIMMC, a brazilian project from  the 

Ministry of Communications [156] 1. SIMMC dataset has about 2M records with a total size of 

nearly 300MB. Finally, we use the lineitem relation of the business-oriented synthetic TPC-H 

dataset, set for a 1GB scale.

Im plem entation  details. We executed our experiments on a single machine with a 2.60 GHz 

Quad Core i7-3720QM  processor, 8GB of RAM, 500GB 7200rpm SATA II disk, and Java 1.8. 

The machine runs Ubuntu 16.04. Our prototype is a Java client that connects to a PostgreSQL 

server via JDBC.

FD S e l  discovers the set of functional dependencies holding on each dataset and stores 

the results in a buffer. After the discovery, we use a tool called Normalize to decompose the 

original dataset into a set of tables that is BCNF-conformed [102] . We supervise the results of 

Normalize to avoid semantically incorrect partitions. During our experiments, this partitioning 

step generated between three and six tables for each dataset. These tables are joined at random 

to build the set of views in which queries run.

We execute select-project-join queries and select-project-join with group by queries 

over the views, which are chosen at random. To choose the range of filter predicates, we equally 

divide the domain of each attribute according to the number of queries N to be executed. If the 

number of distinct values in the attribute domain is less than N , we assume the sequence of the 

closest pairs of values in the domain. For these cases, overlapping query predicates is required. 

Predicate ranges are chosen using a Zipfian distribution on the number of queries N  [157]. We 

also follow a Zipfian distribution to choose attributes for selections, projections, and grouping. 

We vary the number of attributes in each operation according to the number of attributes in the

1http://simmc.c3sl.ufpr.br/

http://simmc.c3sl.ufpr.br/
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Table 6.2: Description of the datasets, number of functional dependencies (FDs), and number of exemplars functional 
dependencies with FDSe l .

Dataset #Columns #Records #FDs #FDs with 
FDSe l  - Criterion 1

#FDs with 
FDSe l  - Criterion 2

#FDs with FDSe l  - 
affinity propagation

Abalone 9 4,177 137 6 6 10
Adults 14 48,842 78 9 3 5
SIMMC 12 2m 32 5 3 8
Lineitem 16 6m 4k 8 101 23

view. Finally, we use the same distribution configuration to generate a thousand queries for 

the training workload and a hundred queries for perform ance evaluation with semantic query 

optimization. We use the above procedures to run FD S e l  set for either join elimination or order 

optimization, and we report their performance results separately.

The training workload and functional dependency buffer comprise the input of F D S e l . 

The core com ponent selects the exemplars of functional dependencies and prepares the query 

mediator for optimizations. The query mediator is conditioned to the semantics of each query. If 

the set of operations and attributes required to evaluate the query fall into rules conforming to 

join elimination or order optimization (based on the set of exemplars functional dependencies), 

it rewrites the query; otherwise, it bypasses the rewriting process.

6.3.3 Effectiveness

Selecting functional dependencies is subjective to a combination of factors (e.g., appli­

cation, schema-level structures, and instance-level information). Also, the number of discovered 

functional dependencies are usually too large for manual inspection. For the following results, 

we evaluate the quality of the exemplar functional dependencies based on their quality according 

to the measures described in Section 6.2, and their suitability for semantic query optimization.

We estimated quality measures for the sets of exemplars functional dependencies 

returned by Algorithm 8, pruned with Criterion 1 (increase in distrust); Algorithm 8, pruned with 

Criterion 2 (increase in M ahalanobis distance); and affinity propagation clustering algorithm. 

We refer to these results as F D S e l  - Criterion 1, F D S e l  - Criterion 2, and F D S e l  - affinity 

propagation, respectively. In addition, we estimated the quality measures for the initial set of 

discovered functional dependencies to form  a baseline. For each Denial constraint discovery 

algorithms, we estimated its dis/rwsi level and its Mahalanobis distance from the query workload. 

Figure 6.2 shows the distributional characteristics of the quality measures in a box-and-whisker 

plot. Each box divides the measures estimated for a set of functional dependencies into quartiles 

to illustrate their degree of concentration and range. The bottom boxes and whiskers (we refer to 

them as bases) show the concentration and range of the measures for the set of initial functional 

dependencies and serve as the reference point for assessing which way the results from FD S e l  

sway.
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(a) Levels o f distrust

(b) M ahalanobis  distances between functional dependencies and workload

Figure 6.2: Quality of exemplar functional dependencies. The bottom boxes represent the distributional trends for 
the initial set of functional dependencies. The remaining boxes represent the distributional trends of the exemplar 
functional dependencies returned by FDSe l .
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In general, the results from  F D S e l  procedures were fairly close to that of the bases 

for distrust (Figure 6.2(a)). F D S e l  - Criterion 1 presented more pronounced gains only for 

Abalone, where distribution measures are thicker and closer to the lowest values. For other 

datasets and strategies, FD S e l  causes slight alterations at the center quartiles. In a more in-depth 

analysis, we have found that many functional dependencies exhibit similar levels of distrust. 

These functional dependencies form groups that are easily distinguished by their attributes (e.g., 

functional dependencies with many attributes in common at their left-hand side). Because we 

rank the set of functional dependencies regarding structural frequencies (left-hand side and 

right-hand side) weighted over the workload, similar functional dependencies are likely to be 

sorted into close spots at the sequence. However, the lack of a single attribute at their structure 

may cause distrust to change dramatically.

As can be seen in Figure 6.2(b), the distributions for Mahalanobis distance reveal much 

more pronounced variations. That is because the initial set of functional dependencies present 

different levels of correlation to the query workload, and because FD S e l  uses different strategies 

to select exemplars functional dependencies. For Criterion 1, F D S e l  may start discarding 

relevant functional dependencies sooner than other procedures (e.g, contrast between distrust 

and Mahalanobis distance in Abalone).

F D S e l  - Criterion 2 produced the best M ahalanobis distance distributions. It softens 

the distrust barrier from  F D S e l  - Criterion 1 and focus on the M ahalanobis distance of each 

functional dependency. F D S e l  - Criterion 2 was able to produce distance measures that 

concentrate towards lower values (all quartile groups spread themselves to the first half of 

the distribution). Notably, it was the most effective procedure when the number of original 

functional dependencies was relatively small. For SIMMC, all exemplars exhibit distance 

measures that are close to the lower tail of the distribution. Nevertheless, if the num ber of 

functional dependencies is high, the distances for the set of original functional dependencies 

approximate normal distributions (e.g., Lineitem). F D S e l  - Criterion 2 selects exemplars that 

are more likely to fall closer to minimum values for M ahalanobis distance. As a result, it may 

disregard groups of functional dependencies with higher distances but also higher semantics 

(e.g., a high number of correlated attributes at the left-hand side). That might occur if functional 

dependencies have a higher number of attributes. Because of their weighted equivalence, 

functional dependencies with more attributes may increase the likelihood of larger Mahalanobis 

distances.

Criterion 1 and 2 may become over-judicious for some base distributions and discard 

relevant functional dependencies. The selection task should achieve parsim ony between the 

number of exemplars and the semantics they expose because such characteristic is compelling 

in the optimization phase. The distributions for F D S EL - affinity propagation suggests that the 

exemplars have proper levels of agreement with the workload, leaning reach, and distributions 

toward the first half of the base (except by SIMMC dataset). Interestingly, the exemplars for the 

SIM M C produced more uniform distributions if compared to the base. Though the original set
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Number of exemplars: 23

Figure 6.3: Behavior of FDSe l  - Affinity Propagation over Lineitem dataset. Dimensions were reduced with 
Principal Component Analysis for better visualization.

of functional dependencies had just a few distance measures concentrated at the fourth quartile, 

F D S e l  - affinity propagation was able to select exemplars from  it. That was only possible 

because of the intrinsic characteristic of the affinity propagation algorithm in combination with 

the M ahalanobis distance. As described in Section 6.2, the affinity propagation algorithm 

simultaneously considers any functional dependency in the original set as a possible exemplar. 

Because affinity propagation refines this large set by exchanging similarity messages between 

its elements (functional dependencies), it was crucial to choose a distance measure that could 

capture the semantic aspects of an functional dependency along with the workload closeness. 

W ith M ahalanobis distance, the similarities between pairs of functional dependencies in the 

space are defined by the weighted attributes.

Because Mahalanobis distance accounts for unequal variances and correlations between 

the weighted attributes, it estimates the distances by assigning different influence factors to the 

attributes in each functional dependency. Differently from Criterion 2, the selection with affinity 

propagation not only considers distance values but also considers how many sets of attributes are 

correlated.

Figure 6.3 represents the overall behavior of affinity propagation applied over the 

functional dependencies of lineitem  relation. Notice that exemplars can be responsible for 

representing distant data points. That is why affinity propagation was able to select exemplars 

from spread locations in the distribution but, at the same time, shortening the range of distances 

with the workload.

Table 6.2 reports the number of all discovered functional dependencies and the number 

of exemplars selected by F D S e l . As we shall see in the next experiment, a high number of
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Q u e ry  se q u e n c e

(a) Join Elimination

Q u e ry  s e q u e n c e

(b) Order Optimization 

Figure 6.4: Example of improvements in query execution time with FDSEL over lineitem.

exemplars does not necessarily mean better optimizations and, therefore, does not guarantee 

higher gains in query performance.

6.3.4 Performance improvement with semantic query optimization

In this experiment, we investigate the performance improvements of using F D S EL 

for semantic query optimization. Figures 6.4(a) and 6.4(b) illustrate the implication of join 

elimination and order optimization optimizations for queries running over /ineitem. The execution 

time remains unchanged for some queries because F D S EL could not find any rewrite strategy 

for them. However, improvements of more than an order of magnitude can be viewed for many 

queries.

As expected, join elimination showed the most significant reductions in execution time 

for best-cases. For example, a particular query over /ineitem reached a 12-fold improvement with 

F D S e l  - affinity propagation. F D S e l  - affinity propagation presented bigger improvements 

for larger datasets (SIM M C and Lineitem) because, for some predicates, the queries produced 

intermediary results that do not fit in main memory. A lthough order optimization produced 

moderate improvements, the number of queries that benefited from rewriting was more consistent. 

For example, there were many queries in SIMMC that reached 4 to 6-fold improvements. Tables
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6.3 and 6.4 details the average improvements with jo in  elimination and order optimization, 

respectively. On average, approximately one-third of the workload (for all datasets) was able to 

take advantage of some rewriting rules. F D S e l  was able to reduce the average execution time 

by nearly half in many cases.

Some of the best improvements occurred when the number of exemplars available was 

among the smallest (SIMMC and F D S e l  - Criterion 2). This fact confirms our hypothesis that 

focusing on the information implied by the context usage (e.g., query workload) is more effective 

than necessarily considering a large number of functional dependencies. For example, FD S e l  - 

affinity propagation over the queries in lineitem presented the best performance even though it 

relied on less than a quarter of the number of exemplars of F D S e l  - Criterion 2.

Table 6.3: Performance improvements with FDSe l  in join elimination.

Dataset Normal F D S e l - F D S e l - F D S e l  -
Execution (Avg) Criterion 1 (Avg) Criterion 2 (Avg) affinity propagation (Avg)

Abalone 22ms 18ms 17ms 15ms
Adults 209ms 152ms 136ms 123ms
SIMMC 22.90s 15.79s 12.03s 13.44s
Lineitem 531.33s 383.51s 344.75s 297.10s

6.4 SUMMARY

Dependencies among data permeate databases, and, whenever possible, should be 

exploited in data management tasks. A lthough several com mercial solutions present facilities 

to unite not enforced constraints (such as functional dependencies) into planning phases, we 

cannot expect them to be exploited in query plans without human supervision. In this chapter, we 

present FD S EL , an automatic tool for selecting functional dependencies in relational databases. 

F D S e l  is based on the idea of matching functional dependencies with the current workload 

to boost query optimization. First, we model attribute occurrence matrices (AOMs) with the 

functional dependencies and the workload information. We provide operations over the AOMs 

to estimate weights over each matching. Then, we present strategies to investigate this matching:

(1) ranking functional dependencies that match most of the projections/selections in the query

Table 6.4: Performance improvements with FDSEL in order optimization.

Dataset
Normal 

Execution (Avg)
F D S e l - 

Criterion 1 (Avg)
F D S e l - 

Criterion 2 (Avg)
F D S e l  - 

affinity propagation (Avg)

Abalone 4Gms 38ms 24ms 24ms
Adults 367ms 32Gms 22Gms 237ms
SIMMC 62s 54s 35s 29s
Lineitem 571s 487s 387s 36Gs
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stream  (i.e., w o rk lo ad ); and  (2 ) c lu ste rin g  fu n c tio n a l d ep en d en c ies  on  th e ir  lh s  s truc tu re , w ith  

only  the m ost represen ta tive m atching  elem ents set as exem plars. N ext, w e com pute the d istance 

b e tw een  b in ary  re la tio n sh ip s  o f  fu n c tio n a l dep en d en cies and  w o rk lo ad  to  focus on w ell-ranked  

fu n c tio n a l d ep en d en c ies  (by th e  ran k in g  s tra tegy ) o r s im ila r o n es (by th e  c lu s te rin g  strategy). 

F inally , w e ind ica te  the  fo cu sed  exem plars in  han d  to  help  w ith  sem antic  query  op tim iza tions.

T h e  re su lts  fro m  b o th  ran k in g  and  c lu s te rin g  s tra teg ies show ed  th a t F D S e l  can  find 

sets o f  fu n c tio n a l dep en d en cies w ith  d is tr u s t  d istribu tions reaso n ab ly  sim ilar to  those  p roduced  

b y  the  exhaustive func tiona l dependencies d iscovery  approaches. T h e  resu lts also  dem onstra ted  

the  effectiveness o f  F D S E L  at d iscovering  func tiona l dependencies on  d ifferen t datasets (o n e  o f 

them  runn ing  in  p roduction ) fo r query  op tim iza tion , frequen tly  reducing  query  response  tim e is 

up  to 1 o rd e r o f  m ag n itu d e  in  jo in  e lim ination .
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Chapter 7 

Conclusions

This thesis presents a novel data profiling algorithm for denial constraints, introduces 

diverse approaches that help in applying denial constraints for the improvement of data quality, 

and describes a system for the application of functional dependencies in query optimization. 

The list of publications we contributed during the development of this thesis is available in 

Appendix A.

The challenges in discovering approximate denial constraints drove us to design 

D C F INDER algorithm. We can take several algorithmic insights from  it. The combination 

of position list indexes, logical operations, and predicate selectivity results in a time-efficient 

building of evidence sets. This building step is critical in denial constraint discovery since the 

algorithms for the task explore the search space and validate candidates using evidence sets. Also, 

D C FINDER was designed to maintain com plete inform ation on evidence multiplicity, which 

is required in discovering approximate denial constraints. In our experimental evaluation, the 

design decisions in D C FINDER showed to improve the runtime of denial constraint discovery 

considerably.

This thesis also shows that the evidence distribution taken from  a given consistent 

dataset differs from the evidence distribution taken from an equivalent dataset containing some 

inconsistencies. In that context, this thesis presents a method based on evidence multiplicity that 

extends D C f in d e r  to discover reliable approximate denial constraints from inconsistent data. 

The approach is promising because the access to 100% consistent data is often infeasible. Our 

evaluation showed that our method discovers approximate denial constraints that identify many 

inconsistencies in the input dataset.

We saw that current commercial database management systems might take too long in 

detecting violations of denial constraints commonly seen in production. This thesis introduces 

V i o F in d e r  to handle this detection problem efficiently. We learned that combining pipelines of 

tuple partitions with refinement implementation based on predicate type bring a fast execution 

of violation detection, at a relatively low memory footprint. Being the fastest option in our 

experimental evaluation, V i o F in d e r  can be a compelling com ponent for any data cleaning 

pipeline or tool based on denial constraints.
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Finally, this thesis describes a system that uses functional dependencies discovered 

from datasets to improve query optimization. F D S EL explores query workload information to 

narrow a large number of functional dependencies to those that can benefit the most from query 

rewritings based on jo in  elimination or order optimization. In our experimental analysis, we 

found that F D S e l  can frequently apply query rewritings to reduce overall query response time.

7.1 FINAL THOUGHTS AND FUTURE WORKS

We start this section with a brief discussion on the scalability of data profiling algorithms 

for the discovery of dependencies. The evaluation of D C FINDER and other related algorithms 

shows that discovering approximate denial constraints may take hours for relatively small datasets 

(with around one million of records and two dozen columns). Such long runtime appears even if 

we consider the discovery of exact denial constraints, which enables a series of optimizations in 

its algorithms. A long runtim e also appears in the discovery of dependencies that are simpler 

than denial constraints; see, for example, the experimental evaluation on functional dependency 

discovery in [29]. These performance results are somehow expected, as they only reflect the 

computational complexity of the dependency discovery problems.

One approach that can reduce runtime for dependency discovery is sampling [158, 159, 

160]. For example, in [160], the authors adapt D C f in d e r  to work with data samples and show 

that it is possible to reduce the discovery of denial constraints runtime at small completeness 

sacrifices. W hen considering sampling, the problem  becomes that of designing methods that 

can guarantee some completeness bounds. Even though this line of research is orthogonal 

to the one presented in this thesis, we believe it is a promising approach that can help with 

several scalability issues in profiling dependencies. Unfortunately, even the use of sampling in 

dependency discovery might be undermined because the output can be quite large due to the 

exponential nature of the discovery problem. This fact, however, does not indicate that we have 

reach a dead end.

Production applications would hardly require a large number of dependencies, such as 

the number of dependencies in dependency discovery output, in their operation. Besides, we 

saw that the number of denial constraints with high coverage and succinctness is relatively small. 

Also, we noticed that the number of functional dependencies that benefit query optimization the 

most is relatively small as well. Based on these facts, focusing the dependency discovery on 

the subset of results that are eventually applied in applications might be explored to enable the 

profiling of more massive datasets.

An exciting line for future research regards dynamic data. Datasets receive data updates 

continually, and as a result, their data profiles change regularly. Solutions that can discover 

dependencies or detect dependency violations while datasets are changing are quite helpful 

because it would avoid the re-execution of the long-running processes in the entire data. There 

has been recent research around these lines [161, 30, 162]. As static solutions have inspired
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these methods, we believe the static approaches we describe in this thesis can be a starting point 

for discovering denial constraints and detecting violations on dynamic data.
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