
UNIVERSIDADE FEDERAL DO PARANÁ

EDUARDO HENRIQUE MONTEIRO PENA

DISCOVERY AND APPLICATION OF DATA DEPENDENCIES

CURITIBA

2 0 2 0

EDUARDO HENRIQUE MONTEIRO PENA

DISCOVERY AND APPLICATION OF DATA DEPENDENCIES

Tese apresentada como requisito parcial à obtenção do
grau de Doutor em Ciência da Computação no Programa
de Pós-Graduação em Informática, Setor de Ciências Ex­
atas, da Universidade Federal do Paraná.

Área de concentração: Ciência da Computação.

Orientador: Prof. Dr. Eduardo Cunha de Almeida.

CURITIBA

2 0 2 0

Catalogação na Fonte: Sistema de Bibliotecas, UFPR
________ Biblioteca de Ciência e Tecnologia________

P397d Pena, Eduardo Henrique Monteiro
Discovery and application of data dependencies [recurso eletrônico]

/ Eduardo Henrique Monteiro Pena - Curitiba, 2020.

Tese - Universidade Federal do Paraná, Setor de Ciências Exatas,
Programa de Pós-graduação em Informática.

Orientador: Prof. Dr. Eduardo Cunha de Almeida

1. Banco de dados. 2. Qualidade de dados. 3. Perfilamento de dados.
I. Universidade Federal do Paraná. II. Almeida, Eduardo Cunha de. III.
Título.

CDD: 005.74

Bibliotecária: Roseny Rivelini Morciani CRB-9/1585

MINISTÉRIO DA EDUCAÇÃO

SETOR DE CIENCIAS EXATAS

UNIVERSIDADE FEDERAL DO PARANÁ

PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO INFORMÁTICA -

40001016034P5

TERMO DE APROVAÇÃO

Os membros da Banca Examinadora designada pelo Colegiado do Programa de Pós-Graduação em INFORMÁTICA da

Universidade Federal do Paraná foram convocados para realizar a arguição da tese de Doutorado de EDUARDO HENRIQUE

MONTEIRO PENA intitulada: Discovery and Application o f Data Dependencies, sob orientação do Prof. Dr. EDUARDO CUNHA

DE ALMEIDA, que após terem inquirido o aluno e realizada a avaliação do trabalho, são de parecer pela sua APROVAÇÃO no rito

de defesa.

A outorga do título de doutor está sujeita à homologação pelo colegiado, ao atendimento de todas as indicações e correções

solicitadas pela banca e ao pleno atendimento das demandas regimentais do Programa de Pós-Graduação.

CURITIBA, 08 de Setembro de 2020.

Assinatura Eletrônica

09/09/2020 09:35:38.0

EDUARDO CUNHA DE ALMEIDA

Presidente da Banca Examinadora

Assinatura Eletrônica

09/09/2020 09:32:29.0

ALTIGRAN SOARES DA SILVA

Avaliador Externo (UNIVERSIDADE FEDERAL DO AMAZONAS)

Assinatura Eletrônica

09/09/2020 09:55:04.0

WAGNER HUGO BONAT

Avaliador Interno (UNIVERSIDADE FEDERAL DO PARANÁ)

Assinatura Eletrônica

10/09/2020 10:31:14.0

HELENA GALHARDAS

Avaliador Externo (UNIVERSIDADE DE LISBOA)

Assinatura Eletrônica

15/09/2020 22:01:00.0

JULIANA FREIRE

Avaliador Externo (NEW YORK UNIVERSITY)

Rua Cel. Francisco H. dos Santos, 100 - Centro Politécnico da UFPR - CURITIBA - Paraná - Brasil
CEP 81531-980 - Tel: (41) 3361-3101 - E-mail: ppginf@inf.ufpr.br

Documento assinado eletronicamente de acordo com o disposto na legislação federal Decreto 8539 de 08 de outubro de 2015.
Gerado e autenticado pelo SIGA-UFPR, com a seguinte identificação única: 52059

Para autenticar este documento/assinatura, acesse https://www.prppg.ufpr.br/siga/visitante/autenticacaoassinaturas.jsp
e insira o codigo 52059

mailto:ppginf@inf.ufpr.br
https://www.prppg.ufpr.br/siga/visitante/autenticacaoassinaturas.jsp

To my fam ily

ACKNOWLEDGEMENTS

This thesis would have been impossible if it had not been for all the kind people I met

along with its development. First, I would like to express my deepest appreciation to my advisor,

Professor Eduardo Cunha de Almeida, who introduced me to the field of database systems

research in such an inspirational form. I am especially grateful for Eduardo’s support, patience,

and guidance while allowing me freedom during my graduate experience. I hope to advise any

future student who chooses to work with me similarly.

I also want to express my deepest gratitude to Professor Felix Naumann, who was my

advisor during my internship at the Hasso Plattner Institut (HPI) in Potsdam-Germany. For

someone who must deal with the many stresses of a major research institution daily, I cannot

im agine someone being more selfless and caring more for his student’ interests. I am deeply

inspired by his interpersonal intelligence, wisdom, and dedication to his work.

I am deeply grateful to my thesis com mittee members: Professor Altigran Soares da

Silva, Professor Helena Galhardas, Professor Juliana Freire, and Professor Wagner Hugo Bonat,

for taking the time to read and to offer valuable suggestions to improve this thesis.

I would also like to thank all colleagues of the Database Lab at the Federal University

of Paraná, all the colleagues of the Information System Group at HPI, and all the co-workers at

the Federal University of Technology - Paraná. I feel fortunate to have overlapped with such

wonderful people during my doctoral time.

I am deeply grateful for the support and encouragement from my friends from Brazil,

and all the international friends I made in Germany.

Finally, this thesis would not have been possible without the support and love of my

family. You have always been there for me. To you all, I dedicate this work.

RESUMO

Dependências de dados (ou, simplesmente, dependências) têm um papel fundamental

em muitos aspectos do gerenciamento de dados. Em consequência, pesquisas recentes têm

desenvolvido contribuições para importante problemas relacionados à dependências. Esta tese

traz contribuições que abrangem dois desses problemas.

O primeiro problem a diz respeito à descoberta de dependências com alto poder de

expressividade. O objetivo é substituir o projeto manual de dependências, o qual é sujeito a

erros, por um algoritmo capaz de descobrir dependências a partir de dados apenas. Nesta tese,

estudamos a descoberta de restrições de negação, um tipo de dependência que contorna muitos

problemas relacionados ao poder de expressividade de depêndencias. As restrições de negação

têm poder de expressividade suficiente para generalizar outros tipos importantes de dependências,

e expressar complexas regras de negócios. No entanto, sua descoberta é computacionalm ente

difícil, pois possui um espaço de busca maior do que o espaço de busca visto na descoberta de

dependências mais simples. Esta tese apresenta novas técnicas na forma de um algoritmo para a

descoberta de restrições de negação. Avaliamos o projeto de nosso algoritmo em uma variedade

de cenários: conjuntos de dados reais e sintéticos; e números variáveis de registros e colunas.

Nossa avaliação mostra que, em comparação com soluções do estado da arte, nosso algoritmo

melhora significativamente a eficiência da descoberta de restrição de negação em termos de

tempo de execução.

O segundo problem a diz respeito à aplicação de dependências no gerenciamento de

dados. Primeiro, estudamos a aplicação de dependências na melhoraria da consistência de dados,

um aspecto crítico da qualidade dos dados. Uma maneira comum de modelar inconsistências é

identificando violações de dependências. Nesse contexto, esta tese apresenta um método que

estende nosso algoritmo para a descoberta de restrições de negação de form a que ele possa

retornar resultados confiáveis, mesmo que o algoritmo execute sobre dados contendo alguns

registros inconsistentes. M ostramos que é possível extrair evidências dos conjuntos de dados

para descobrir restrições de negação que se mantêm aproximadamente. Nossa avaliação mostra

que nosso método retorna dependências de negação que podem identificar, com boa precisão e

recuperação, inconsistências no conjunto de dados de entrada.

Esta tese traz mais um a contribuição no que diz respeito à aplicação de dependências

para melhorar a consistência de dados. Ela apresenta um sistema para detectar violações de

dependências de form a eficiente. Realizamos uma extensa avaliação de nosso sistema usando

comparações com várias abordagens; dados do mundo real e sintéticos; e vários tipos de restrições

de negação. Mostramos que os sistemas de gerenciamento de banco de dados comerciais testados

com eçam a apresentar baixo desempenho para conjuntos de dados relativamente pequenos e

alguns tipos de restrições de negação. Nosso sistema, por sua vez, apresenta execuções até três

ordens de magnitude mais rápidas do que as de outras soluções relacionadas, especialmente para

conjuntos de dados maiores e um grande número de violações identificadas.

Nossa contribuição final diz respeito à aplicação de dependências na otimização de

consultas. Em particular, esta tese apresenta um sistema para a descoberta automática e seleção de

dependências funcionais que potencialmente melhoram a execução de consultas. Nosso sistema

com bina representações das dependências funcionais descobertas em um conjunto de dados

com representações extraídas de cargas de trabalho de consulta. Essa combinação direciona a

seleção de dependências funcionais que podem produzir reescritas de consulta para as consultas

de entrada. Nossa avaliação experimental m ostra que nosso sistema seleciona dependências

funcionais relevantes que podem ajudar na redução do tempo de resposta geral de consultas.

Palavras-chave: Perfilamento de dados. Qualidade de dados. Limpeza de dados. Depenência de

dados. Execução de consulta.

ABSTRACT

Data dependencies (or dependencies, for short) have a fundamental role in many facets

of data management. As a result, recent research has been continually driving contributions to

central problems in connection with dependencies. This thesis makes contributions that reach

two of these problems.

The first problem regards the discovery of dependencies of high expressive power. The

goal is to replace the error-prone process of manual design of dependencies with an algorithm

capable of discovering dependencies using only data. In this thesis, we study the discovery of

denial constraints, a type of dependency that circumvents many expressiveness drawbacks. Denial

constraints have enough expressive power to generalize other important types of dependencies

and to express complex business rules. However, their discovery is com putationally hard

since it regards a search space that is bigger than the search space seen in the discovery of

simpler dependencies. This thesis introduces novel algorithmic techniques in the form of an

algorithm for the discovery of denial constraints. We evaluate the design of our algorithm in a

variety of scenarios: real and synthetic datasets; and a varying number of records and columns.

Our evaluation shows that, compared to state-of-the-art solutions, our algorithm significantly

improves the efficiency of denial constraint discovery in terms of runtime.

The second problem concerns the application of dependencies in data management.

We first study the application of dependencies for improving data consistency, a critical aspect

of data quality. A common way to model data inconsistencies is by identifying violations of

dependencies. in that context, this thesis presents a method that extends our algorithm for

the discovery of denial constraints such that it can return reliable results even if the algorithm

runs on data containing some inconsistent records. A central insight is that it is possible to

extract evidence from datasets to discover denial constraints that almost hold in the dataset.

Our evaluation shows that our method returns denial dependencies that can identify, with good

precision and recall, inconsistencies in the input dataset.

This thesis makes one more contribution regarding the application of dependencies

for improving data consistency. it presents a system for detecting violations of dependencies

efficiently. We perform an extensive evaluation of our system that includes comparisons with sev­

eral different approaches; real-world and synthetic data; and various kinds of denial constraints.

We show that the tested commercial database management systems start underperforming for

relatively small datasets and production dependencies in the form of denial constraints. Our

system, in turn, is up to three orders-of-magnitude faster than related solutions, especially for

larger datasets and massive numbers of identified violations.

Our final contribution regards the application of dependencies in query optimization. In

particular, this thesis presents a system for the automatic discovery and selection of functional

dependencies that potentially improve query executions. Our system combines representations

from the functional dependencies discovered in a dataset with representations of the query work­

loads that run for that dataset. This combination guides the selection of functional dependencies

that can produce query rewritings for the incoming queries. Our experimental evaluation shows

that our system selects relevant functional dependencies, which can help in reducing the overall

query response time.

Keywords: D ata profiling. Data quality. D ata cleaning. Data dependencies. Query execution.

LIST OF FIGURES

2.1 Implication and complement of built-in operators of the database................................... 27

3.1 Building blocks of D C f i n d e r .. 55

3.2 Predicate space for the employees relation... 56

3.3 Transformation of the records of employees into P l i s... 57

3.4 Part of the reconstruction for the evidence of employees and predicates p17 :

tx.Hired > ty.Hired and p18 : tx.Hired > ty.Hired... 61

3.5 Evidence set building: Partitioning of tuple pair identifiers into chunks, and splitting

of tuple pair evidence into evidence fragments... 62

3.6 Runtime of approximate denial constraint discovery. The crossed bars indicate that

an algorithm did not terminate within the time limit (TL) of 12 hours. The Y-axes

are in log-scale... 69

3.7 Runtime of exact denial constraint discovery. The crossed bars indicate that an

algorithm did not terminate within the time limit (TL) of 12 hours. The Y-axis is in

log-scale... 70

3.8 Runtime scalability in the number of rows... 71

3.9 Runtime scalability in the number of attributes... 71

3.10 Runtime scalability in the number of predicates... 72

3.11 Runtime breakdown of D C f i n d e r (e = 0.01): relative time the algorithm spent on

loading datasets, building PLIs, initializing evidence, calculating tpids, correcting

evidence, accumulating (hashing) evidence, and searching for minimal covers. . . . 73

3.12 Relative runtime speedup in the number of threads (evidence set building only).. . . 73

3.13 Influence of chunk and fragment length on D C f i n d e r runtim e and cache misses.

The axes are in log scale... 74

3.14 Influence of different degrees of approximation in the number of discovered denial

constraints (left) and cover search time (right). The axes are in log scale..........................75

3.15 Influence of different succinctness thresholds in the number of discovered denial

constraints (left) and cover search time (right). The Y axis is in log scale.................... 75

4.1 Evidence multiplicity of EHospitalc1ean, and respective EHospital^. X-axis is a function

of the piecies of evidence of EHospitaic1ean... 80

4.2 Coverage of the denial constraints in EHospitaic1ean (left) and EHospitaidiny (right). . . . 81

5.1 Example of a partition pipeline.. 90

5.2 Runtime comparison between V i o F i n d e r (VF), H y d r a -IE J o i n (HI), Post-

gresSQL (DB1), MonetDB (DB2) and SQLServer (DB3). The datasets are table

samples with 200K records each.. 99

5.3 Scalability of V i o F i n d e r , H y d r a -IE Jo i n and SQLServer for increasing number

of rows...101

5.4 Relative impact of caching cluster indexes on denial constraint ç8.....................................103

5.5 Relative impact of increasing cluster pair thresholds on denial constraint ç8...................103

5.6 Maximum memory usage...103

6.1 F D S e l w o rk flo w ...107

6.2 Quality of exemplar functional dependencies. The bottom boxes represent the

distributional trends for the initial set of functional dependencies. The remaining

boxes represent the distributional trends of the exemplar functional dependencies

returned by F D S e l .. 117

6.3 Behavior of FD S e l - Affinity Propagation over Lineitem dataset. Dimensions were

reduced with Principal Component Analysis for better visualization................................ 119

6.4 Example of improvements in query execution time with F D S e l over lineitem. . . . 120

LIST OF TABLES

1.1 A salesReps table that satisfies (traditional) integrity constraints...................................... 16

1.2 Denial constraints that capture the data inconsistencies in salesReps.............................. 20

3.1 An instance of the relation employees... 53

3.2 Datasets used to evaluate the denial constraint discovery algorithms.............................. 68

3.3 Precision of the interestingness measures at k = 10... 76

3.4 A sample of the discovered denial constraints... 76

4.1 Comparison in terms of detection of inconsistent tuple pairs.. 83

5.1 An instance of the relation hours.. 86

5.2 Datasets and denial constraints for experiments... 98

6.1 A simple relation... 111

6.2 Description of the datasets, number of functional dependencies (FDs), and number

of exemplars functional dependencies with FD S e l .. 116

6.3 Performance improvements with FD S e l in join elimination...121

6.4 Performance improvements with FD S e l in order optimization..121

CONTENTS

1 Dependencies in databases 15

1.1 Perspectives on dependencies ... 17

1.1.1 Expressive power of dependencies... 18

1.1.2 Discovery of dependencies .. 20

1.1.3 Violations of dependencies .. 22

1.1.4 Applications of dependencies .. 23

1.2 Summary of contributions ... 24

1.3 Thesis outline ... 25

2 B ackground 26

2.1 Basic notations and conventions .. 26

2.2 Dependencies ... 27

2.2.1 Denial constraints .. 28

2.2.2 Functional d ep en d en c ies ... 31

2.2.3 Unique column combinations .. 32

2.2.4 Order dependencies ... 32

2.2.5 Relaxed dependencies .. 33

2.2.6 Other types of d ep e n d e n c ie s .. 35

2.3 Discovery of d e p e n d e n c ie s .. 36

2.3.1 Discovery of functional dependencies, uniques and order dependencies 37

2.3.2 Discovery of denial constrain ts... 38

2.3.3 Discovery of relaxed dependencies.. 39

2.3.4 Discovery of other types of dependencies.. 40

2.3.5 Dependency ranking .. 41

2.4 Dependencies in data quality ... 42

2.4.1 Violations of dependencies... 42

2.4.2 Repairing violations of dependencies .. 43

2.4.3 Repairing dependencies ... 45

2.5 Dependencies in query optimization ... 47

2.6 Dependencies in database design .. 47

3 Discovery of Denial C onstra in ts 49

3.1 Previous algorithms for denial constraint discovery .. 50

3.2 Background .. 53

3.3 Overview of DCfinder .. 55

3.4 Dataset tra n s fo rm a tio n .. 56

3.4.1 From schema into predicate space ... 56

3.4.2 From tuples into PLIs ... 56

3.5 Evidence set generation .. 57

3.5.1 Evidence initialization ... 58

3.5.2 Evidence reconstruction .. 59

3.5.3 How to scale up to large d a ta se ts .. 61

3.6 Denial constraint search ... 63

3.6.1 Minimal c o v e r s ... 63

3.6.2 Interestingness measures for denial constraint .. 66

3.7 Experimental evaluation ... 67

3.7.1 Experimental setup .. 67

3.7.2 Discover of approximate denial c o n s tr a in ts .. 68

3.7.3 Discover of exact denial c o n s tra in ts ... 69

3.7.4 Scalability .. 70

3.7.5 M emory consumption ... 71

3.7.6 DCFinder in-depth e x p e r im e n ts .. 72

3.7.7 Denial constraint in terestingness.. 74

3.8 Summary .. 76

4 A utom atic Discovery of Reliable D enial C onstra in ts 78

4.1 Problem definition ... 79

4.2 Approximate (but reliable) denial constraints ... 79

4.2.1 Evidence distortion .. 80

4.2.2 Setting the discovery of approximate denial co n s tra in ts 82

4.3 Preliminary Evaluation .. 82

4.4 D iscussion .. 83

5 Efficient D etection of D ata D ependency Violations 84

5.1 Background and previous solutions ... 85

5.1.1 Denial constraints in violation d e te c tio n .. 85

5.1.2 Detection of denial constraint v io la tio n s .. 86

5.1.3 Previous solutions for detection of denial constraint v io la t io n s 87

5.2 The VioFinder sy stem ... 87

5.2.1 Cluster, cluster pairs, and p a r t i t io n s ... 88

5.2.2 Refinement of columns and p a r t i t io n s .. 88

5.2.3 Cluster in d e x e s .. 89

5.2.4 System o v e rv ie w .. 89

5.2.5 Order of re fin e m e n ts ... 91

5.3 Refinement a lg o r i th m s ... 91

5.3.1 E q u i jo in s .. 91

5.3.2 A n t i jo in s .. 93

5.3.3 Non-equijoins with range o p e r a to r s .. 94

5.3.4 Cached cluster in d e x e s .. 96

5.4 Experimental E v a lu a tio n ... 97

5.4.1 Experimental s e tu p ... 97

5.4.2 Performance evaluation.. 99

5.4.3 Additional evaluation of V i o F i n d e r .. 102

5.5 S u m m a ry ... 104

6 M ind your D ependencies for Sem antic Q uery O ptim ization 105

6.1 O v e rv ie w ...106

6.2 Focused dependency s e le c to r .. 108

6.2.1 Discovery of functional d e p e n d e n c ie s .. 108

6.2.2 Attribute occurrence matrices ..108

6.2.3 Quality measures for functional dependencies.. 110

6.2.4 Selecting functional dependencies ... 111

6.2.5 Semantic Query O p tim iz a tio n .. 113

6.3 Experimental S tu d y ..114

6.3.1 S cenario ..114

6.3.2 Datasets and implementation d e ta i ls ..115

6.3.3 E ffec tiv en e ss ...116

6.3.4 Performance improvement with semantic query op tim ization120

6.4 S u m m a ry ... 121

7 Conclusions 123

7.1 Final thoughts and future works ... 124

R E FE R E N C E S 126

A PPEN D IX A - PU BLICA TIO N S 141

15

Chapter 1

Dependencies in databases

Database management systems have becom e ubiquitous in com puter systems, from

personal computers to enterprise computing platforms. As a consequence, they have been

evolving to meet the requirements of a variety of applications from various segments. For

example, modern applications often require a fast response to queries and assume that database

management systems can guarantee a certain degree of reliability or quality for their query

answers. This evolution has been fostering the development of a large body of concepts and

techniques in data management in general.

One of the many essential aspects of relational database management systems regards

their capability of enforcement of constraints on database objects. Constraints represent knowl­

edge about the application domain and define restrictions on the actual values of database

instances. An important category of constraints is data dependencies (or dependencies for short),

because they describe the semantics of databases. Dependencies are necessary because the

relational model, by itself, lacks artifacts that guide the semantic interpretation of tables. The

tuples in a table represent collections of related data values, which, in turn, represent facts on

entities or relationships in the real world. A lthough the names of tables and columns can help

us to grasp preliminary meanings of the values in each tuple, they do not specify how these

values are related to each other or how we would characterize invalid values. Dependencies can

incorporate such semantics into the relational model. In turn, relational database management

systems can enforce some types of dependencies as constraints to restrict data inconsistencies

and enhance data quality. In the following, we outline a few fundamentals about dependencies

that give context for the main contributions of this thesis.

A critical dimension in data quality is data consistency. Fan [1] gives a concise

definition: “Data consistency refers to the validity and integrity of data representing real-world

entities” . By restricting inconsistencies, database management systems guarantee access to

higher quality data, which is essential in supporting reliable query answers.

Preventing the storage of invalid or inconsistent data is a battle on many fronts, for

instance, users with a lack of application knowledge, machine-to-machine data inputs with errors,

data evolution, or data integration scenarios, to name but a few. This battle attracts broad interest.

16

The development of mechanisms to improve the integrity of data has long been a vivid topic in

both academic research and industry-based projects [2, 3, 4, 5].

Commercial database management systems support a few types of dependencies known

as integrity constraints. Once the database designers or users have a database project ready, they

can create and maintain integrity constraints using the structured query language (SQL). The

database management system then needs to maintain data integrity by restricting those database

updates that do not adhere to the database’s integrity constraints. M ost database management

systems im plem ent only traditional integrity constraints: domain constraints, key constraints,

and foreign key constraints. Unfortunately, these types of dependencies cannot identify many

critical data inconsistencies, as we show with the following examples.

Consider the salesReps schema and the sales reps tuples in Table 1.1; and assume

column ID as the prim ary key, and column SID as a foreign key referencing salesReps on ID.

Also, assume that there are no issues with the domain in column values. The data conform to

traditional integrity constraints. However, a database designer with experience in the application

domain would still spot critical inconsistencies. For example, if any two tuples have the same

value combination in address, city, and state (ST), then they should have the same value in

zip code (Zip). Tuples t 1 and t 2 are inconsistent with this statement. Also, zip code uniquely

determines state (and city), thus, tuples t 1 and t3 are inconsistent. As another example, assume

that sales reps cannot earn higher salaries than their supervisors— again, tuples t 1 and t 3 are

inconsistent with this business rule. The database designer might spot even more complex

business rules. For example, if two sales reps sell the same product and have the same target, the

one who has higher sales should not receive a lower bonus than the other. In Table 1.1, tuples t5

and t 7 have the same value in columns Product and Target. Between those two, tuple t 5 has the

highest value in Sales, so it should not have the lowest value in Bonus.

Table 1.1: A salesReps table that satisfies (traditional) integrity constraints.

ID Name Address City ST Zip Product Target Sales Salary Bonus SID

t] 11 Ann Lee 8 Cornell Palo Alto CA 94306 Beer $50000 $60000 $5000 $600 11
t2 12 Dee Lee 8 Cornell Palo Alto CA 9430 Beer $30000 $20000 $3000 $40 11
t3 13 Elle Gray 2 Yale St Palo Alto CO 94306 Beer $30000 $10000 $9000 $20 11
t4 14 Ben Hill 3 Bowery New York NY 10012 Wine $40000 $48000 $4000 $240 14
t5 15 Amy King 8 3rd Ave New York NY 10003 Wine $30000 $20000 $3000 $5 14
t6 16 Ben King 8 3rd Ave New York NY 10003 Wine $30000 $20000 $3000 $10 14
t7 17 Abe Gray 2 8th Ave New York NY 10018 Wine $30000 $10000 $3000 $10 14

No matter how fast a database management system can process queries, it is likely to

return incorrect answers if the database contains inconsistencies. Here is an example of an SQL

query that finds the sum of sales of the sales reps living in the state of California (CA):

1 s e l e c t sum (Sales)

2 f r o m salesReps

3 w h e re ST = ' CA '

17

This query returns $80000 because the w h e re clause selects only tuples t 1 and t 2, but

it should return $90000 since tuple t3 should also be selected, assuming that the values of city

and zip code in tuple t 3 are correct and determine the value California (CA) for state. Now

consider another query that finds the total amount of salaries paid to all sales reps:

1 s e l e c t sum (Salary)

2 f r o m salesReps

This query returns $30000. However, we should not trust this result either because

of the inconsistency between the salaries in tuples t 1 and t 3. As we can see, even in small

tables, there can be numerous data inconsistencies that lead to unreliable results. O f course,

the level of inconsistency (and other data quality issues) in enterprise data can reach critical

dimensions [6 , 7].

Traditional integrity constraints— domain constraints, keys, and foreign keys— cannot

identify the inconsistencies we saw in Table 1.1, which leads to the question of how to define and

enforce dependencies o f higher expressive power. The database textbook answer to this question

is the concept of assertions; and triggers (or active rules) in active databases [8 , 9, 10, 11].

M any major com mercial database management systems do not support assertions, a piece of

SQL that ensures a condition to be true. On the other hand, a couple of com mercial database

management systems provide some support for triggers, which is useful because triggers can

check conditions, and thus, they generalize assertions.

The primary use of triggers is handling dependencies that cannot be expressed as the

traditional integrity constraints: triggers signalize and rollback transactions having violations

of integrity constraints [10, 12]. However, the injudicious use of triggers may lead to critical

issues, other than the lack of data integrity. For years, experienced database researchers and

practitioners have been expressing many concerns about triggers [10, 13, 12, 11, 14]. The lack

of uniformity between database vendors, high maintainability costs, and low performance are

among the most concerning pitfalls. The general advice is to use constraint mechanisms instead

of triggers whenever possible [8 , 10, 13, 12, 11, 14, 15].

1.1 p e r s p e c t i v e s o n d e p e n d e n c i e s

Constraints and dependencies are central concepts in relational database management

systems as they concern the semantic integrity of relational data. The practical significance of

these concepts has led all major database vendors to support built-in integrity constraints in their

products. Besides, the formal foundation of dependencies is already quite solid, although less

well-developed theories drive new efforts in theoretical research now and then [4, 16, 17, 18, 19].

The term constraint often refers to properties tied to database designs and requires en­

forcement, whereas the term dependency relates to properties of particular database instances that

not necessarily require enforcement. For instance, the values in the column Name of salesReps

18

are all unique, thus, Name is a type of dependency known as unique column combination, or

simply a unique. Notice, however, that defining Name as a primary key is a poor choice in

database design since duplicate names are likely to happen. Although some dependencies might

not require enforcement, dependencies, in general, are the primary vehicle for incorporating se­

mantic properties into the relational model. Nevertheless, the terms constraints and dependencies

widely appear as synonyms in the database literature [20, 4].

Dependencies started being a vivid topic in database research, as well as industry-based

projects, soon after the proposal of the relational data model itself [2, 3]. Since then, the research

on dependencies has produced numerous contributions that expand to multiple database contexts;

naturally, since dependencies concern a broad topic. Recently the increasing demand for data of

higher quality has motivated even further research on many types of dependencies.

We continue to discuss multiple perspectives on dependencies in the following.

1.1.1 Expressive power of dependencies

Different types of dependencies have different levels of expressive power, which means

that some of them can restrict inconsistencies that others cannot. The higher the expressive

power, the higher the complexity and, thus, the challenge in practical use. Som e types of

dependencies are computationally hard to handle. That is why the native support for dependencies

in database management systems is somewhat limited— it is a trade-off between feasibility and

expressiveness.

D ependencies. In this work, we focus on dependencies on single tables, sometimes called intra­

relation dependencies. O ther than unique column combinations, one of the most well-known

examples of intra-relation dependencies is functional dependencies. Consider a relation schema

R having instances r and two sets of columns of R, for instance, X c R and Y C R. We denote

R : X ^ Y a functional dependency in a relation R, or simply X ^ Y. This dependency states

that the values of a tuple in X must uniquely, or functionally, determine the values of that tuple

in Y. The following functional dependencies should hold in the salesReps instance in Table 1.1:

salesReps: Address, City, ST ^ Zip,

salesReps: Zip ^ City, ST.

The instance in Table 1.1 is inconsistent with the dependencies above because of tuples t 1,t2

and t 3 . As a result, any database maintaining this relation instance is also inconsistent since it is

likely to produce incorrect answers. As we can see, data consistency is a concept related to sets

of dependencies.

D ue to historical and practical reasons, functional dependencies are one of the most

well-studied dependencies in databases. Besides, there are various studies on generalizations

of functional dependencies [21, 22, 23]. We review such generalizations, and other types of

dependencies, in Chapter 2 .

19

R elaxed dependencies. Production data is likely to contain errors and exceptions, even if it is in

small numbers. A large table might contain only a few inconsistent tuples. A dependency might

hold in part of the data alone. Besides, entities might appear multiple times in the database in

various forms, for instance, “Ann Lee” and “Lee, Ann” as the same entity.

The general definitions of dependencies do not admit errors or exceptions in data.

Dependencies following these strict definitions are sometimes called exact dependencies. The use

of only exact dependencies can be impractical in many scenarios; thus, there are many studies on

different forms to relax the canonical definitions of dependencies [23]. For example, conditional

functional dependencies are a generalization of functional dependencies that specify conditions

in which the dependencies hold; they are well-known in the data cleaning context [24, 25].

When we define a functional dependency, we expect that all tuples in the relation instance satisfy

that dependency. On the other hand, when we define a conditional functional dependency, we

assume that dependency to hold in a subset of tuples only, which are those tuples having the

same (constant) pattern of values for some columns.

The following statement is an example of conditional functional dependency for

salesReps:

salesReps: ([Product = 'Wine', Target] ^ [Salary]).

This dependency specifies that all sales reps selling 'Wine' have their salaries determined by their

targets. Table 1.1 is consistent with this dependency, although it would be inconsistent for the

functional dependency counterpart salesReps: Product, Target ^ Salary.

Conditional functional dependencies are just one of the examples of relaxed dependen­

cies; there are many others [23], which we discuss in Chapter 2.

D enial constrain ts. The reader might have noticed that the dependencies presented so far still

cannot identify all inconsistencies in salesReps, even if we consider all of them together. That

is because these various dependencies fall short of adequate expressive power. To directly

address this sort of shortcomings, a large part of this thesis regards denial constraints, a type of

dependency of high expressive power that can also incorporate relaxation definitions.

Denial constraints use relationships between predicates to specify inconsistent states

of column values. We give formal definitions in subsequent chapters, but for now we express a

denial constraint <p as follows:

: Vtx, ty e r , - (p 1 A . . . A pm),

where tx and ty are tuples of table r; and p; are predicates drawn from the schema R of r. A

predicate p has one of the forms tx.A o ty.B or tx.A o c, where A,B are columns of R (A and B

can refer to the same column); o is an operator in O = {= , = ,< , < , > , > } ; and c is a constant

drawn from the domain of column A. A denial constraint <p in the above form states that there

20

cannot exist a pair of tuples tx, ty in table r satisfying all predicates of © simultaneously; if there

exists such a tx, ty , then r is inconsistent with the denial constraint ©.

Table 1.2 shows the denial constraints that model the dependencies discussed so far

(the tuple identifiers are omitted). For example, the denial constraint ©1 states that if any

two sales reps have the same values in {Address, City, ST}, then they must have the same

value in {Zip}. In other words, if a pair of tuples tx, ty of salesReps satisfies the predicates

tx.Address = ty.Address, tx.City = ty.City and tx.ST = ty.ST simultaneously, then it cannot

satisfy the predicate tx.Zip = ty.Zip. Similar interpretations goes for the remaining denial

constraints.

Table 1.2: Denial constraints that capture the data inconsistencies in salesReps.

Semantics Denial constraint

. , , . , , . ©1 : — (tx.Address = ty.Address A tx.City = ty.City
Address, city, and state determine zip. A-r \J y Atx.ST = ty.ST A tx. Zip = ty.Zip)

Zip determines state. ©2 : — (tx.Zip = ty. Zip A tx.State = ty.State)

Sales reps cannot earn higher salaries \, . . 6 ©3 : —(tx.SID = ty.ID A tx.Salary > ty.Salary)
than their supervisors. J J

Targets determine the salaries o f ©4 : — (tx.Product = ty. Product A tx.Product = 'Wine'
all sales reps selling 'Wine'. Atx.Target = ty.Target A tx .Salary = ty.Salary)

I f two sales reps sell the same product
and have the same target, the one who ©5 : — (tx .Product = ty.Product A tx.Target = ty.Target
has higher sales should not receive a Atx.Sales > ty.Sales A tx.Bonus < ty.Bonus)
lower bonus than the other.

The research questions on types of dependencies of higher expressive power, such

as denial constraints, are challenging. Nonetheless, the answers to such questions pursue

the development of adequate support for dependencies that can cover a broad range of data

inconsistencies.

1.1.2 Discovery of dependencies

Relational database design and maintenance is a complex process that requires, among

other tasks, defining sets of dependencies. One option is to delegate the task to database designers

with adequate expertise in the domain of the application. A lthough this option may work for

small databases and simple types of dependencies, it may become infeasible in other scenarios.

Database designers with enough expertise might not be conveniently available. Even when

experts are around, the manual design of dependencies is time-consuming as experts must keep

the dependencies up-to-date with the semantics of data and application, which is continually

evolving. Besides, the higher the expressive power of a dependency language, the higher the

21

complexity in the design of dependencies. Finally, the number of possible dependency candidates

is usually too large for manual validation, even in small datasets.

The alternative to the manual design of constrains is the automatic discovery of depen­

dencies using data [21]. In a nutshell, the dependency discovery problem is to find the set of

dependencies, in a particular language, that holds in a specific table. The problem comes under

the umbrella of data profiling: the set of activities to gather statistical and structural properties,

i.e., m etadata, about datasets [22]. In general, the challenges in the discovery problem are as

following:

Enum eration and checking of dependency candidates. In theory, the num ber of possible

dependencies in a table is exponential in the number of columns in the schema. As a consequence,

discovery algorithms regard combinatorial problems having, in the worst case, exponential time

complexity. The higher the expressive power of a dependency language, the higher the number

of candidates and, thus, the harder the enumeration and checking of dependency candidates in an

efficient manner.

Use of inconsistent d a ta to discover consistent dependencies. The discovery of dependencies

from data might return non-reliable results because the available data might be inconsistent. Even

if the discovery relies on data having only a small amount of inconsistency, the dependencies

identified are likely inconsistent themselves. The inclusion of relaxation definitions into the

discovery problem is a well-known way to circumvent the problem. However, the discovery of

relaxed dependencies is harder than the discovery of exact dependencies because the former

problem cannot use many optimizations that drastically reduce search spaces.

U nreliable results. The results of dependency discovery algorithms might hold only accidentally.

W hether the discovery relies on consistent data or not, the num ber of results is usually huge,

and, in all likelihood, not all results are equally useful. A large part of the results might be only

residuals of overfitting, and only a few may support the im provement of data integrity or any

other data management task.

The discovery of basic types of dependencies has long been studied [26]. In [27], the

authors compare implementation details and experimental evaluation of seven algorithms for the

discovery of functional dependencies. Since this publication, several additional papers focusing

on functional dependency discovery were published [28, 29, 30, 31]. In contrast, the discovery

of more complex types of dependencies is in the early stages of development, still with a limited

num ber of contributions. For example, by the time we started this research project, there was

only one publication on the discovery of denial constraints, called Fa s t DC [32].

One of the contributions in this thesis is D C F INDER [41], an efficient algorithm to

discover both exact and relaxed denial constraints. D C F i n d e r is designed to overcome many of

the pitfalls observed in previous solutions for the discovery of denial constraints. Also, this thesis

presents a novel technique to help D C F i n d e r avoid returning unreliable results [42]. The main

goal of this technique is to select denial constraints that can identify errors in datasets. This thesis

22

also investigates the problem of discovering functional dependencies for query optimization and

presents FD Se l [44]. The tool selects a set of functional dependencies from data profiles, which

can be used in query rewritings and benefit query executions.

1.1.3 Violations of dependencies

A dependency violation is a tuple (or set of tuples) having values that do not agree with

the semantics of the dependency. That way, data inconsistencies emerge as violations of the

dependencies defined for the database.

Databases may become inconsistent due to different reasons. For example, a poorly

designed database is likely to store inconsistent data. A database management system and its

applications may not have enough mechanisms to ensure adequate data consistency. Besides,

in data integration scenarios, multiple different databases have various perspectives on data

consistency. Choosing a global definition of consistency is already hard, and so is matching all

the various data to this definition [33]. In general, many production databases are subject to data

inconsistencies at some point.

D etection of dependency violations. Knowing to which extend inconsistencies permeates a

database is the first step towards producing better-quality query answers; therefore, the detection

of dependency violations is vital. In data cleaning pipelines, nothing can be done before the

detection step. Even if fixing inconsistencies is not possible, users surely need to be aware of the

inconsistencies so they can avoid poor decision-making.

The most straightforward way to detect a dependency violation is to enum erate the

necessary combination of tuples, and then check whether each combination complies with the

dependency or not. For example, a naive approach for detecting the violations of the denial

constraints in Table 1.2 would enumerate and check every pair of tuples in the table against all

predicates of each denial constraint. O f course, this approach is im practical for large datasets

since it has a quadratic time complexity in the number of tuples.

An alternative to the naive approach is to translate dependencies into SQL queries and

then ask a database management system to find the violations. A lthough the use of database

management systems is practical, it has two critical performance drawbacks. The performance

varies significantly from system to system, and, worst yet, it is usually not robust against different

types of dependencies. For the same dataset, a database management system may perform well

for a given dependency but perform poorly for another (we investigate this issue in Chapter 5).

Most of the recently presented data cleaning systems use database management systems

to detect violations of data dependencies. Still, their experimental evaluations are quite limited, as

they explore mostly simple dependencies (e.g., functional dependencies) and small datasets [34,

35, 36, 24]. In many real-world scenarios, however, data cleaning (and other data management

tasks) has to deal with large datasets and complex dependencies such as denial constraints. Thus,

there is a need for efficient techniques to detect violations of dependencies of various types.

23

This thesis also presents V i o F i n d e r [43], a system for efficient detection of violations

of data dependencies. V i o F i n d e r includes many novel concepts and algorithms that enable the

tool to outperform three commercial data management systems and another dependency-based

tool in several scenarios.

H andling of dependency violations. There are two primary courses of action for handling

data inconsistencies. The first, consistent query answer, allows both consistent (clean) and

inconsistent (dirty) data to coexist in the database [37]. When applications submit queries to the

database, a solution for consistent query answering must compute consistent views of the data at

runtime— these views are called repairs. Then, from these repairs, it needs to determine which

ones are the best to retrieve the (consistent) answers to the initial query. The second course of

action is data repairing [38]. The idea is to com bine the inconsistent database with a series of

data updates to produce a new database (also called repair) that satisfies the constraints in the

database, and therefore, is free from inconsistencies. The changes to the inconsistent database

must be as minimal as possible.

1.1.4 Applications of dependencies

Dependencies incorporate semantics into the relational model that enable the support or

improvement of data quality, query performance, and database design.

D ata quality. Data consistency is a central dimension of data quality [39, 40]. Due to the

increase in interest for high-quality data, the most investigated use of dependencies in the last

years has been data cleaning, or related subjects aiming at increasing data quality. As discussed

earlier, database management systems automatically check update operations for compliance with

types of integrity constraints of limited expressive power. Unfortunately, that is not enough to

ensure data with high standards of quality. Nonetheless, some techniques can help in improving

data consistency, and thus, data quality in general. We review many of them in Chapter 2. This

thesis makes contributions on two dimensions of data consistency: discovery of dependencies;

and detection of dependency violations.

Q uery perform ance. Databases that satisfy specific dependencies, for example, functional

dependencies, may benefit from an extended search space of possible query execution plans.

Query optimizers can leverage dependencies to determine better query execution plans or rewrite

queries into semantically equivalent ones that result in better performance. This thesis makes a

contribution that combines results from an automatic discovery of functional dependencies with

the application of dependencies in query optimization.

D atabase design. Dependencies are the fundamentals of relational database design. Good

quality designs avoid table schemas that allow data anomalies to persist in the database. The data

normalization process is to decompose a poorly design table schemas into well-defined ones that

satisfy normal forms, which are based on dependencies (in general, functional dependencies and

a few variants). We provide further references on this topic in Chapter 2.

24

1.2 SUMMARY OF CONTRIBUTIONS

The research on data dependencies is vibrant, but at the same time, challenging. Con­

tributions on the field have numerous applications in various data management aspects. The

contributions of this thesis cover four primary dimensions, summarized as follows.

A novel a lgorithm for the discovery of denial constra in ts [41]. The alternative to designing

denial constraints by hand is automatically discovering denial constraints from data. Unfortu­

nately, this alternative is computationally expensive due to the vast search space derived from

the num ber of predicates that can form denial constraints. To tackle this challenging task, we

present a novel algorithm, D C F i n d e r . It combines data structures called position list indexes,

bitwise operations, and optimizations based on predicate selectivity to validate denial constraint

candidates efficiently. Because the available data often contain errors, the design of D C F i n d e r

algorithm focuses on the discovery of relaxed denial constraints. O ur experimental evalua­

tion uses real and synthetic datasets and shows that D C F i n d e r outperforms previous existing

algorithms for the discovery of relaxed denial constraints.

A novel technique to focus the dependency discovery in denial constra in ts useful for d a ta

cleaning [42]. In the traditional approach to the discovery of dependencies, the results are as

reliable as the data used to produce them. Having problem atic data is often involuntary; thus,

the discovery should be able to accommodate potential data errors. Besides, the number of

discovered results grows exponentially with the number of columns in the table. Even if we

discover dependencies from correct data, many results may hold only by chance, i.e., they are

spurious. We propose a method that uses statistical evidence of the tuples of a dataset to focus

the discovery of denial constraints in dependencies of interest. Our method sets D C F i n d e r

so that it can find denial constraints appropriate for data cleaning, even if the dataset contains

errors. Our experiments with real data show that the identified denial constraints point, with high

precision and recall, to inconsistencies in the input data.

A novel system to detect violations of denial constra in ts [43]. Dependencies and their viola­

tions can reveal errors in data. Several data cleaning systems use database management systems

to detect violations of data dependencies. While this approach is efficient for some kinds of data

dependencies (e.g., key dependencies), it is likely to fall short of satisfactory performance for

more complex ones, such as some forms of denial constraints. We propose a novel system to de­

tect violations of denial constraints efficiently. We describe its execution model, which operates

on compressed blocks of tuples at-a-time, and we present various algorithms that take advantage

of the predicate form in denial constraints to provide efficient code patterns. Our experimental

evaluation includes comparisons with different approaches; real-world and synthetic data; and

various kinds of denial constraints. It shows that our system is up to three orders-of-magnitude

faster than the other solutions, especially for datasets with a large number of tuples and denial

constraints that identify a large number of violations.

25

Novel techniques to detect functional dependencies ap p ro p ria te for query optim iza­

tion [44]. We present a system for automatic query optimization based on data dependencies.

By formulating query transformations, it can revise the number of processed rows, with a direct

im pact on performance. The goal is to optimize query execution in cases where the database

is denormalized or have lost dependencies in the design. We rely on the automatic discovery

of dependencies, but to avoid optimizing for spurious dependencies, we focus on dependencies

matching the current queries in the pipe (i.e., the workload). Initially, we use a state-of-the-art

algorithm to discover the set of functional dependencies holding in the datasets. Then, our

focused dependency selector uses the available workload information to choose exemplars from

the set of the discovered functional dependencies that are appropriate for query optimization.

That eliminates any manual interaction. The selected dependencies exhibit statistical properties

that resemble those of the initial set of dependencies; therefore, they serve as a semantical

summary of the dependencies. We use well-known techniques for query optimization with the

selected dependencies. In the best-case scenario of our experimental evaluation, our system can

reduce query response time by more than one order of magnitude using join elimination for a

real-world database.

1.3 THESIS OUTLINE

The outline of the remainder of this thesis is as follows. Chapter 2 provides background

on dependencies; and discusses many works related to our primary contributions. The next

four chapters are based on the works we published during the development of this thesis

(see Appendix A). Chapter 3 presents our algorithm for the discovery of denial constraints:

D C F i n d e r . Then, Chapter 4 proceeds and presents our solution to detect denial constraints

appropriate for data cleaning. Chapter 5 describes a novel system for the detection of violations of

denial constraints. Chapter 6 presents our tool for detecting functional dependencies appropriate

for query optimization. Finally, Chapter 7 concludes this study with a discussion on closing

thoughts and topics for future work.

26

Chapter 2

Background

In this chapter, we present the necessary notations and describe numerous concepts

associated with this thesis. Besides, we discuss several research problems and works related to

the primary contributions of this thesis.

2.1 BASIC NOTATIONS AND CONVENTIONS

We consider relation instances r, or tables r for short, of relation schemas R(A1, An).

The possible values of each column (or attribute) A; e R are drawn from its domain dom(A;).

Each tuple t of r is an element of the Cartesian product dom(A1) x . . . x dom(An). W hen

referencing the tuples in tables, we consider the position of tuples within the table as tuple

identifiers (also called offset); see Table 1.1. We use X and Y to denote sets of columns, and we

use A to reference each column in X , and B to reference each column in Y, that is, A e X and

B e Y. We denote the projection of a tuple on a set of columns (or single column) using brackets,

for example, t [X] or t [A].

Let O = {= , = , < , < , > , > } be a set of built-in operators of the database. Predicates

p are comparison expressions of the form tx. A; o ty.Aj or tx.A; o c, where columns Ai; Aj e R;

tuples tx, ty e r; operator o e O; and c is a constant drawn from dom(A;). Predicates can compare

two tuples for the same column, so the two columns in a predicate can be the same (i = j).

For convenience, we sometimes also use A and B to refer to the columns in predicates. The

above predicate notation is useful in expressing denial constraints (as we can see in Table 1.1).

Besides, it is close to statements often seen in the where clauses of standard SQL queries. Given

a predicate p, we denote p. A; the column in its left-hand-side; p.Aj the column in its right-hand-

side; and p.o its operator. Given any two predicates p1 and p2 , we write p1 ~ p2 to say that the

columns pi.A; = p2 .A; and pi.A j = p2 .A j, and p1 f p2 to say otherwise.

Figure 2.1 shows the implication of each operator o e O. A predicate p1 : A; o Aj implies

every predicate p2 : A; o' A j, where o' e o ^ . If predicate p1 is true, then every implication p2

is true. We denote imp(p) the set of predicates implied by p. Figure 2.1 also shows the logical

complement o of each operator. The complement of a predicate p : tx.A; o ty.Aj is the predicate

27

p : tx.A; o ty.A j, where o is the logical complement (or negation) of operator o. If predicate p is

true, then p is false.

Operator (o) = < < > >

Implication (o ^) = , < , > < , < , = < > , > , = >
Negation (o) = > > < <

Figure 2.1: Implication and complement of built-in operators of the database.

2.2 DEPENDENCIES

Database constraints are commonly expressed as dependencies that define a semantic

property on a column or group of columns. Once defined, database constraints must be satisfied

by any database instance. We can explicitly express some types of dependencies as constraints

at the schema level using a data definition language— these constraints are sometimes called

schema-based constraints or explicit constraints.

As we saw in Chapter 1, the basic integrity constraint framework of most commercial

database management systems cannot express many critical types of semantic properties. The

alternative then is to use dependencies of adequate expressive power to capture such properties.

Dependencies have a less strict definition than constraints. A dependency is a property on a

column or group of columns that apply to particular instances of the database. We can choose a

dependency to be enforced as a constraint. If the database management system cannot implement

this constraint, then we need to implement it using other means.

The initial studies on dependencies started shortly after the proposal of the relational

model. Their primary motivation was mainly database design, but nowadays, dependencies are a

fundamental part of various data management contexts. The research on dependencies contributed

to a variety of dependency languages for defining the semantics of relational databases [45,

46, 47, 4]. M ost dependency languages can be expressed using first-order logic sentences,

naturally, as dependencies can be seen as semantic sentences about relations. In practice,

however, dependency languages are restricted to find a balance between expressive power and

language complexity [20, 48]. For a general perspective on dependency theory, we refer the

reader to the following comprehensive study [20], and books [49, 50, 4].

S tatic analysis. There are essential theoretical problems regarding the dependency theory. Of

course, the results for these problems vary according to dependency languages. The higher the

expressive power of a dependency language, the harder its complexity results [20, 4, 1]. We

describe two of these essential problems, also referred to as static analysis of a dependency

language, as they are central in developing practical solutions based on dependencies [48].

The first problem is about satisfiability. Given a set E of dependencies, expressed in a

dependency language L and defined on a relation schema R, the satisfiability problem for L is

28

about w hether there exists a nonempty relation instance r of R that satisfies every dependency

© in E. We write r = © to say that r satisfies ©, and r = © to say otherwise. The satisfiability

problem regards the consistency of the dependencies themselves. If the set E cannot be satisfied

by any relation instance, then using E to validate data becomes pointless.

The second problem is about implication. Consider a set E of dependencies and a

dependency ©, expressed in a dependency language L and defined on a relation schema R.

The implication problem for L is about deciding whether E implies ©. This implication is

true if r |= E, then r |= ©, for every relation instance r of R. We write E = © to say that E

implies ©, and E = © to say otherwise. Notice that the dependency © is redundant if E = ©.

Avoiding such redundancies helps in several practical problems. For example, in the detection of

dependency violations, if we have E = ©, then the violations for © are contained in the violations

for E. Therefore, there is a great interest in the development of algorithms for determining the

implication of dependencies.

A nother perspective on the implication problem is the study of inference rules as a

mechanism to determine logical implication— a well-known example is Armstrong’s Axioms for

functional dependencies. An important property from inference rules is that if there exists a finite

set of inference rules for a dependency language, then there exists an algorithm for determining

the logical implication [4].

D ependencies considered in this w ork. We consider state (or static) dependencies. Those are

dependencies that define properties for the states of a database. Another type of dependency is

dynamic (or transition) dependencies, which defines properties for database value changes: for

example, “the age of a person can only increase.” Dynamic dependencies are out of the scope of

this work, but the reader can find pointers on the subject in [51]. Also, we restrict this study to

dependencies involving only single tables, sometimes called intra-relation dependencies. The

study of dependencies involving multiple tables at a time is out of the scope of this work— the

reader can find material on the subject in [52, 53, 4].

In the following, we present the fundamentals and notations for denial constraints and

functional dependencies, as they are related to our main contributions. Also, we discuss some

other types of dependencies related to this work. For examples, we consider the relation instance

salesReps once more— Table 1.1 in Chapter 1.

2.2.1 Denial constraints

D enial constraints are one of the most general types of intra-relation dependencies

discussed in database literature since they have high expressive power and generalize several

different types of dependencies [32, 54, 1]. They are a universally quantified first-order logic

formalism. Each denial constraint expresses a set of relational predicates that specify constraints

for inconsistent combinations of column values. Any tuple, or set of tuples, that disagrees with

these constraints is a denial constraint violation that reflects inconsistencies in the database.

29

A denial constraint can involve multiple tuples; however, denial constraints involving

more than two tuples are less likely to represent useful business rules. Considering an unlimited

num ber of tuples in each constraint leads to serious complexity and feasibility issues, at the

cost of controversial gains in expressive power. In general, denial constraints involving at most

two tuples suffice to represent most of the constraints required in practice. Besides, this class

of denial constraints can already generalize many other essential types of dependencies and

represent a vast range of complex business rules. Therefore, in this work, we consider denial

constraints involving at most two tuples— related work apply the same restriction [32, 55, 34].

We express the universal quantifiers for denial constraints involving at most two tuples as Vtx, ty,

and we express denial constraints using sets of predicates of the form defined in Section 2.1.

D efinition 1 (Denial Constraint). A denial constraint 9 over a relation instance r is a statement

of the form

9 : Vtx, ty e r , - (p 1 A . . . A pm)

where 9 is satisfied by r if and only if for any tuple pair tx, ty e r at least one of the predicates

p1, . . . , pm is false. In other words, the denial constraint 9 does not hold if there exists any tuple

pair in r that satisfies all the predicates of 9 .

We write tx, ty = 9 to say that a tuple pair tx, ty satisfies 9 , and tx, ty = 9 to say

otherwise. We say that a denial constraint 9 1 implies another denial constraint 9 2 , written as

9 1 = 9 2 , if for every relation instance r, the statement r = 9 1 implies r = 9 2.

A denial constraint 9 is called trivial if it is satisfied by any relation instance. For

example, the denial constraint:

9 6 : Vtx, ty e salesReps,—(tx.Name = ty.Name A tx .Name = ty.Name)

is trivial, since it is valid in any instance of salesReps— no pair of tuples can have equal names

and different names at the same time. The symmetric denial constraint 9 2 of a denial constraint

9 1 is given by swapping the tuple identifiers tx and ty in the predicates of 9 1. For example, the

denial constraint:

9 7 : Vtx, ty e salesReps,—(tx.ID = ty.SID A tx.Salary < ty.Salary)

is symmetric to the denial constraint 9 3 in Table 1.2. Notice that if denial constraints 9 1 and 9 2

are symmetric, then 9 1 = 9 2 , and vice versa.

A denial constraint 9 1 is minimal if there does not exist a 9 2 such that both 9 1 and 9 2

are satisfied by r and the predicates of 9 2 are a subset of 9 1. In other words, a denial constraint

9 1 is not minimal if it is a generalization of another denial constraint 9 2. For example, the denial

constraint:

9 8 : Vtx, ty e salesReps, —I (tx.Zip = ty .Zip A tx .City = ty. City A tx. State = ty. State)

30

is not minimal in the relation instance salesReps, since the set of predicates of the denial

constraint <p2 in Table 1.2 is a subset of the predicates of denial constraint <p8— the predicate

tx.City = ty.City in (p8 is not necessary.

We can form predicates by combining the columns of a relation schema: with each

other, or with the values in their domains. Besides, we can use different built-in operators and

derive predicates of various forms. Then, we can com bine these predicates in many different

ways to represent numerous types of denial constraints. This great variety of possibilities

illustrates the high expressive power of denial constraints. The denial constraints in Table 1.2 are

simple examples of how we can use the form alism to express complex business rules (denial

constraints <p3 and <p5), or other types of dependencies (denial constraints ^ 1 and <p2 as functional

dependencies, and denial constraint <p4 as a conditional functional dependency).

S tatic analysis. The satisfiability problem for denial constraints has not been established yet [1].

However, it has already been shown that the problem is NP-complete for some types of dependen­

cies subsumed into denial constraints, for example, conditional functional dependencies [24, 1].

The implication problem for denial constraints is coNP-complete [56]. In this matter, a sound,

but not complete, inference system for denial constraints is presented in [32]. The soundness is in

the sense that every denial constraint inferred from a set of denial constraints using the inference

system is indeed a denial constraint implied by that set of denial constraints. The completeness

is in the sense that there might exist denial constraints derived from a set of denial constraints

that cannot be inferred using the inference system. Still, the proposed inference system helps

in the discovery of denial constraints as it enables pruning of the search space. Also, because

implied and trivial denial constraints are removed, the system m ay promote a reduction in the

number of discovered results. The inference system for denial constraints includes three rules

(here, we also use q and s to refer to predicates, for convenience) [32]:

(Triviality). Vpi, pj if pi e im p(pj), then —I (p; a p j) is a trivial denial constraint.

(Augmentation). If — (p; A . . . A pn) is a valid denial constraint, then —(p; A . . . A pn A q) is also a

valid denial constraint.

(Transitivity). If — (p; A ... A pn A q 1) and — (s; A . . . A sm A q2) are valid denial constraints, and

q2 e im p(q1), then —(p; A . . . A pn As; A . . . Asm) is also a valid denial constraint.

The triviality rule specifies that if a denial constraint is trivial if it contains two predicates

that cannot be true at the same time. The Augmentation rule concerns the addition of unnecessary

predicates to a denial constraint: if a denial constraint is already valid, then adding another

predicate to it results in another valid denial constraint. Finally, the transitivity rule concerns two

denial constraints and two predicates (one predicate in each denial constraint) and assumes that

these two predicates cannot be true simultaneously. Then, the combination of these two denial

constraints having those two predicates removed results in a valid denial constraint.

31

2 .2 .2 Functional dependencies

O ne of the most common dependencies in database literature is arguably functional

dependencies. We briefly discussed them in Chapter 1. In the follow, we give their definition.

D efinition 2 (Functional dependency). A functional dependency f : X ^ Y states that the values

of a tuple in X must uniquely or functionally determine the values of that tuple in Y . A relation

instance r satisfies f if for all pair of tuples, tx, ty, in r the following condition holds:

Vtx, ty e r : tx [X] = ty [X] = ^ tx [Y] = ty [Y] .

The right-hand side Y of f is functionally determined by the left-hand side X . We

denote f .lhs the left-hand side, and f .rhs the right-hand side of a functional dependency f . A

functional dependency is non-trivial if it does not have any redundant attribute (i.e., X ^ Y), and

it is minimal if there exists no set Z such that (X — Z) ^ Y is also a valid functional dependency.

We can decompose a functional dependency f into multiple functional dependencies using each

column in the right-hand side of f . For example, consider a functional dependency X ^ Y where

Y = {B1, B2}. The two functional dependencies X ^ B1 and X ^ B2 are equivalent to the single

functional dependency X ^ Y .

We can express functional dependencies using denial constraint notation because func­

tional dependencies are subsumed into denial constraints. To do so, we can transform the

implication in the definition of functional dependencies into conjunctions. Consider a functional

dependency X ^ B; then we have the following implication:

Vtx, ty e r : tx [X] = ty [X] = ^ tx [B] = ty [B].

First, we can write the projections as predicates, as follows:

Vtx, ty e r : f tx.A = ty.A = ^ tx.B = ty.B.
AeX

We have, from De M organ’s laws, that the negation of a conjunction / \ tx.A = ty.A is the
AeX

disjunction of negations V tx.A = ty.A. Thus, we can apply the material implication rule to
AeX

replace the above implication with the following disjunctions:

Vtx,ty e r : y tx.A = ty.A Vtx.B = ty.B.
AeX

Still considering De M organ’s laws, we can transform the formula above into an equivalent

denial by negating the complement of the above sentence as follows:

Vtx, ty e r : — i f tx.A = ty .A A tx.B = ty.B
AeX

32

This is a valid denial constraint representation of the functional dependency X ^ B.

S tatic analysis. Any set of functional dependencies is satisfiable, and the implication problem

for denial constraints is in linear time [4, 57]. The inference rules for functional dependencies,

known as Armstrong’s Axioms, are covered in most database textbooks, and they have inspired

the inference system for denial constraints we saw before. For convenience, we reproduce the

Axioms here:

(Reflexivity). If X C Y, then X ^ Y

(Augmentation). If X C Y, then XZ ^ YZ, where Z is also a set of columns. Here, XZ and YZ

represent unions of sets of columns.

(Transitivity). If X C Y, and Y C Z then X ^ Z

2.2.3 Unique column combinations

A unique column combination is a set of columns for which every tuple in a relation

instance has unique values. In other words, a set of columns X is a unique in r if Vtx, ty e r and

x = y, then tx [X] = ty [X]. Unique column combination are sometimes called uniques, uniqueness

constraints, candidate keys, o r key dependencies. Notice that uniques are a particular case of

functional dependencies, as the set of column X determines all columns of the relation, that

is, X ^ R. As two examples, column Name and column ID are valid uniques in salesReps—

however, common sense says that the column ID works better as a primary key than Name.

We can apply a few transformation rules, in a similar way we did for functional

dependencies, to convert a unique into logically equivalent expressions that represent a denial

constraint. Thus, we can represent a unique X as a denial constraint as follows:

Static analysis. Unique column combinations are subsumed into functional dependencies; thus,

it is possible to use the results of the static analysis of functional dependencies.

2.2.4 Order dependencies

O rder dependencies specify relationships of order (sort) between the columns of a

relation schema. The definition of order dependencies is based on the semantic adopted to order

tuples; there are two variants: pointwise ordering and lexicographical ordering [58]. Consider

a tuple tx, having values (tx [A1] , . . . , tx [An]), and a tuple ty, having values (ty [A1] , . . . , ty [An]).

The pointwise ordering specifies that for (tx [A1] , . . . , tx [An]) < (ty [A1] , . . . , ty [An]) to be true,

then tx [A;] < ty [A;], for all 1 < i < n. On the other hand, the lexicographical ordering specifies

Vtx,ty e r : — tx.A = ty.A

33

that (tx [A1] , . . . , tx [An]) < (ty [A1] , . . . , ty [An]) is true if there exists some i > 1 such that tx [A;] <

ty [A;] and, for each j < i, tx [A j = ty [A j].

Pointwise order dependencies strictly generalize lexicographical order dependencies.

Thus, there exists a mapping of any lexicographical order dependency into a set of pointwise

order dependencies, as it is proven in [59]. The definition of pointwise order dependency,

as it is given in [59], is based on order conditions, which are marked columns Ao in which

o e { = , < , <, >, > } — mind that the operator = is not included here, differently than the operators

in denial constraints. For this definition, let us consider that the sets X and Y are sets of order

conditions instead of sets of standard columns. A pointwise order dependency X ^ Y is valid if

the value order in each marked column of X implies a value order in each column of Y. That

is to say, a relation instance r satisfies an order dependency X ^ Y if, for any pair of tuples tx

and ty in r, the following holds: for each order condition Ao e X , tx [A] o ty [A], then, for each

order condition Bo e Y, tx [B] o ty [B]. As an example, consider the salesReps in Table 1.1 having

tuple t 3 removed. If salesReps is sorted on column Target, it is also sorted on column Salary. In

this case, we can say for example that the pointwise order dependency {Target>} ^ {Salary>}

holds. For more material on order dependencies, including lexicographical order dependencies,

we refer the reader to [58, 60, 59].

Order dependencies generalize functional dependencies, and denial constraints, in turn,

generalize order dependencies. Again, we can apply a few transformation rules and rewrite every

order dependency into a set of logically equivalent expressions in denial constraint format [59].

For example, consider a pointwise order dependency X ^ B, where every order condition has

the same operator o. We can write a denial constraint representation for such order dependency

as follows:

Vtx,ty e r : — i / \ tx.Aoty.A A tx.Boty.B
\AeX

Static analysis. The satisfiability problem for order dependencies is studied in [61]. The authors

show that satisfaction is independent of the set of columns. In regards to implication, the authors

in [60] present a set of inference rules, and the authors in [59] present inference procedures [59].

The inference problem for order dependencies is in coNP-complete [59].

2.2.5 Relaxed dependencies

Relaxed dependencies incorporate extensions in the canonical definition of dependencies

so that they can handle certain kinds of errors and exceptions in data. The review study by

Caruccio et al. provides a taxonomy of relaxed functional dependencies [23]. For results on the

static analysis of relaxed dependencies, we refer the reader to [62, 63] In general, the relaxation

concepts for functional dependencies can be extrapolated to other types of dependencies, such as

denial constraints.

34

There are two variants in the relaxation criteria of dependencies; one is relative to the

satisfiability criteria (or extent), and the other is relative to column comparisons [23].

R elaxations relative to satisfiability c rite ria (or extent). Dependencies might be specific to a

part of the data. For example, many countries have different policies across different states, so

records having different states might obey different rules, hence different dependencies. Besides,

some dependencies might not hold entirely in the data due to errors, for example, missing values,

typos, or outliers.

Conditional functional dependencies are a well-known example of dependencies that

relaxes on the satisfiability criteria. They can express constant patterns that specify those subsets

of tuples that satisfy a given functional dependency. Similarly, conditional denial constraints

such as ©4 in Table 1.2, can include constants in their predicates to specify subsets of tuples that

satisfy a given denial constraint. The subsets of tuples identified by conditional dependencies

indicate the part of the data that follows particular dependencies.

A nother prim ary example of dependencies that relax on the satisfiability criteria is

approximate dependencies— sometimes called partial dependencies 1. Here, the satisfiability

criteria are relative to the number of violations in a table that does not satisfy a dependency. If

that number is below a certain threshold, the approximate functional dependency is valid in that

instance. As we discuss later, the approximation concept is key in discovering dependencies

using possibly inconsistent data. The functional dependencies Address, City, ST ^ Zip and

Zip ^ City, ST are approximate functional dependencies if we consider a threshold of one tuple

violation, because there is at most one tuple violating each dependency. Similarly, the denial

constraints ©1 and ©2 in Table 1.2 are approximate denial constraints.

An approximate dependency is a dependency satisfied by almost the entire table [26].

Kivinen and M annila present various measures to define the meaning of “almost” . That is, the

authors suggest error measures that characterize and quantify dependency errors [62]. Although

the work of Kivinen and M annila focuses on functional dependencies, the proposed error

measures can be generalized for other types of dependencies, such as denial constraints.

R elaxations relative to colum n com parisons The second form of dependency relaxation is

relative to the comparison of column values. The idea here is to relax dependencies so that they

identify semantic relationships between columns using similarity measures rather than standard

relational operators, e.g., equality. The use of similarity measures is useful in production data as

they may contain non-uniform representations for the same entity. For example, the same name

may occur as “Ben King” or “B. K ing” in the same column, or related columns. Besides, the

similarity concept is useful in handling small variations in numerical domains.

An example of dependency relaxing on column comparison is metric functional depen­

dencies, which allow small variations in the dependent (or right-hand side) columns of functional

dependencies [64]. This dependency specifies that if two tuples have the same values in columns

iWe stick to the term approximate dependencies to avoid confusion between partial and conditional dependencies.

35

X , then their similarity values in columns Y should agree with a specific similarity function on Y ,

for instance, the edit distance function. In salesReps, the dependency Address, City, ST ^ 8=1 Zip

is a valid metric functional dependency if we consider the edit distance function and a similarity

threshold of 8 = 1; observe that tuples t 1 and t 2 are consistent with this dependency. As an­

other example, we refer to a generalization of metric functional dependencies called differentia/

dependencies: if two tuples have similar values of X , then their values of Y should also be

similar [65]. For example, assuming absolute differences as the distance metric on numerical

attributes, a differential dependency in salesReps could be [Salary(< 1000)] ^ [Bonus(< 1000)].

This dependency states that the bonus difference between any two employees within a $1000

salary difference should be no higher than $ 1 0 0 0 .

One approach to relax denial constraints relative to the comparison of column values is

to extend the set of built-in operators considered in their predicates. For example, the authors

in [54] consider a set of operators O = {= , = , < , < , > , > , — their focus is handling violations

of denial constraints. They implement the operator « as the edit distance between two strings A

predicate is true if this distance is above a certain threshold. A similar approach is considered in

a data cleaning system that uses denial constraints, H OLOCLEAN [34]. In this work, we only

consider denial constraints relaxing on the extend.

2.2.6 Other types of dependencies

Some data entities might have a variety of syntactically different representations. On­

tology functional dependencies introduce levels of abstractions in functional dependencies to

capture these differences [6 6] . In a few words, they use synonym and hierarchy relationships to

represent and validate the dependencies. A synonym ontology functional dependency, X ^ syn Y,

states that for each set of tuples with equal values in X , should exist a domain specification

for which the values in Y of that set of tuples are synonyms (e.g., “U FPR” is synonymous

with “Universidade Federal do Paraná”). On the other hand, an inheritance ontology functional

dependency, X ^ inh Y, states that for each set of tuples with equal values in X , should exist a

domain specification for which the values in Y of that set of tuples are descendants of a least

common ancestor (e.g., both “lions” and “tigers” are cats).

M aster data management provides methods to define and manage trustful views of

data [67, 6 8]. It is possible to use master data in the definition of dynamic dependencies [69, 70].

This type of dependencies determine not only which column values are incorrect, but how to

fix them. For example, editing rules are defined using relation schemes R and Rm, where the

latter is a relation referencing master data [69]. An editing rule states that if there exists a tuple t

in relation instance r and a tuple tm in relation instance rm such that t[X] = tm[X], then t should

be updated on columns Y using t[Y] := tm[Y]. Fixing rules is a another example of dynamic

dependency. They combine evidence patterns and negative patterns to expose errors, and express

facts to fix them [70]. For example, a fixing rule can combine an evidence pattern “Brasil” for a

column Country with a negative pattern {“Rio de Janeiro” , “São Paulo” } for a column Capital to

36

identify common mistakes on pair of columns Country, Capital. If a tuple matches these patterns,

then the rule uses the fact “Brasília” to correct the error in Capital. Fixing rules help in repairing

ambiguous errors, for example, (“Brasil” , “Buenos Aires”). This error could be fixed either

as (“Brasil”, “Brasília”) or as (“Argentina”, “Buenos Aires”). The main drawback of dynamic

dependencies is the high cost to maintain a solid point of reference for master data.

There has been an increase in interest in revisiting the dependency theory to improve

the handling and interpretation of incomplete information in databases. For a comprehensive

study on the subject, we refer the reader to [71]— this line of research is orthogonal to the

one in this thesis. As a brief example, we mention embedded functional dependencies, an

extension for functional dependency, which aims at integrating data completeness requirements

with the standard requirements of dependencies. Given that X , Y Ç E , an embedded functional

dependency E : X ^ Y extends the notion of functional dependencies because it defines a subset

of tuples rE Ç r having no missing data (e.g., null values) in the columns in E [72]. The authors

study how to apply embedded functional dependencies to identify redundant data values under

different interpretations of missing information. Besides, they study the problem of implication

in their context and present an inference system for embedded functional dependencies. In [73],

the authors study embedded uniqueness constraints; their motivation is similar to [72].

2.3 DISCOVERY OF DEPENDENCIES

D esigning dependencies by hand can be burdensome, and it is likely to fail if we

consider the dynamic changes in data and applications. A compelling alternative is the automatic

discovery of dependencies, a problem that is commonly classified as a data profiling problem. In

a nutshell, data profiling is a set of complex tasks that helps in discovering relevant metadata for

datasets [22]. Typical examples of metadata include basic statistics (e.g., value distributions),

patterns of data values, and dependencies. D ata profiling is connected, at least indirectly, to

many data management tasks. Thus, it is natural that there has been an extensive number of

work addressing data profiling issues. A comprehensive presentation of data profiling tasks and a

review of primary contributions on the topic can be found in the survey [22], and the book [74]—

a great deal of this material is dedicated to the discovery of dependencies. Besides, a study on

the discovery of many types of dependencies can be found in [2 1] .

The problem of dependency discovery is to detect the set of dependencies— expressed

in the desired dependency language— that hold on a given relation instance. The number of

dependency candidates, that is, dependencies that might potentially hold, in each relation in­

stance is exponential in the number of columns in the relation schema— or even worst depending

on the dependency type. Thus, to achieve satisfactory performance, the different dependency

discovery solutions employ a variety of different approaches to enumerate and validate depen­

dency candidates. These approaches vary in performance depending on the characteristics of the

datasets.

37

As mentioned earlier, several types of dependencies have been repurposed to handle

data inconsistencies. As a result, many discovery algorithms have been developed for these types

of dependencies. In the following, we discuss some of the main algorithmic issues and solutions

to the dependency discovery problem.

2.3.1 Discovery of functional dependencies, uniques and order dependencies

The approaches for functional dependency discovery can be generally classified

into column-based or row-based approaches [75, 27].

Colum n-based approaches combine lattice traversals of column combinations and

intensive pruning strategies. The intuition in these approaches is that supersets of the functional

dependencies, or subsets of non-functional dependencies, discovered previously do not require

validation, i.e., they can be pruned. These approaches are known to perform well regarding the

size of the relation instance. However, they are sensitive to the size of the schema (i.e., number

of columns), so they might provide poor perform ance for datasets having many columns [27].

Examples of algorithms based on column approaches are Ta n e [26] and Fu n [76].

On the other hand, row-based approaches use cross-comparisons of tuples to find sets

of columns sharing the same values. Then, the com plement of these sets can be manipulated

to produce the set of functional dependencies satisfied by the relation instance. Row-based

approaches usually perform better with an increasing num ber of columns than top-down ap­

proaches. However, they perform worst with an increasing number of tuples because of the large

number of pair-wise comparisons. Examples of row-based approaches are D e p -M i n e r [77] and

Fa s t FD [78] algorithms.

A hybrid of column-based and row-based approaches have been proposed as a solution

that better scales with increasing numbers of tuples and columns [29]. The H y FD algorithm

combines row-based and column-based optimizations, such as sampling and compression, which

enable H y FD to scale for larger datasets.

Some of the approaches or techniques in the discovery of functional dependencies are

commonplace in dependency discovery; thus, they can be used similarly in the discovery of other

types of dependencies.

The discovery of unique column combinations has also been extensively studied [79,

80, 81, 75]. Giannela and Wyss study the problem under the perspective of the Apriori approach

for frequent item set mining [79]. The authors investigate bottom-up, top-down, and hybrid

approaches to traverse the powerset lattice of columns. Their bottom-up approach was improved

with additional pruning strategies in [80]. A different approach can be seen in G o r d i a n

algorithm, an example of a row-based approach for unique column combination discovery [81].

The algorithm compresses the dataset into an in-memory prefix tree representation; performs a

depth-first traversal of the prefix tree to find collections of non-keys, and finally, complement this

collection to produce the set of uniques. A yet alternative approach is modeling the discovery of

uniques as a graph processing problem, as in [75]. Finally, a hybrid approach is presented in the

38

form of the H y U C C algorithm [82]. The algorithm operates in a very similar way that of the

H y FD algorithm for functional dependency discovery, so its main advantage is to scale well

with both the number of columns and records.

The first algorithm for the discovery of order dependencies, O RDER, came out only a

few years back [83]. O r d e r is based on traversals of a lattice representing order dependency

candidates— the traversal approach is somewhat similar to that in Ta n e algorithm for functional

dependency discovery [26]. Each candidate is a list of columns, so the lattice contains all

possible lists of columns and; thus, the algorithm incurs a factorial time in the num ber of

columns. The authors in [84] show that O RDER might prune potentially valid order dependencies

from the search space, which leads to incomplete results. Besides, they show that it is possible

to map a list-based order dependency into set-based order dependencies in polynom ial time

and, therefore, it is also possible to design algorithms having exponential worst-case complexity.

Their algorithm, FASTO D , is also based on lattice traversals and generally performs better than

O r d e r .

The O C D D ISCOVER algorithm considers that each order dependency can be divided

into a functional dependency and an order compatibility dependency: a property on two lists of

columns that order each other [85]. The search strategy of the algorithm is a breadth-first search,

that can run in parallel, where short order dependencies are discovered first. The authors in [86]

show that some assumptions in [85] are incorrect, and that O C D D ISCOVER might produce

incom plete results. Recently, a hybrid approach called F i n d U O D has been considered [87],

which is deeply inspired by HYDRA algorithm (discussed later) for denial constraint discovery.

It uses data sampling and correction of preliminary order dependencies that were discovered

using the sample to produce the final results.

2.3.2 Discovery of denial constraints

There are two critical limitations concerning the algorithms described in Section 2.3.1.

We would need to execute several different algorithms to discover the several different types

of dependencies that a dataset might hold. Because the results of each execution is logically

independent of each other, we would still need to devise methods to process these results and

merge them into a single set of logically valid dependencies. The second limitation regards those

dependencies that unique column combinations, functional dependencies, or order dependencies

cannot express. We might miss meaningful dependencies, such as complex business rules. The

discovery of denial constraint is a natural solution for these two limitations. The results from

a single algorithm for the discovery of denial constraints subsume the results from multiple

algorithms for the discovery of other types of dependencies. Besides, these results might include

many more dependencies due to the higher expressive power of denial constraints.

The problem of denial constraint discovery is to detect all minimal denial constraints

that a given a relation instance holds. Denial constraints have a high expressive power because

they can express a variety of predicates. However, this very same fact results in a huge search

39

space for their discovery. The problem is even more challenging than the discovery of other

types of dependencies. For example, the number of functional dependencies that potentially

hold in a relation instance r with schema R and n columns is 2n ■ (^) [21]. On the other hand,

the number of denial constraints that potentially hold in r is 2 1P 1, where P is what we call the

predicate space of R [32]. The number of predicates in the predicate space, | P |, is a function of

the number n of columns. A lthough we can restrict some predicate types in P without losing

much expressive power, the number of predicates is still large. We can use any pair of columns

with any of operator in O. Assuming we only express predicates using a quantifier tx, ty and

operators in O = {= , = , < , < , > , > } , we already have 6 ■ n ■ (n — 1) predicates in P.

All the available algorithms for the discovery of denial constraints follow a similar

principle. First, they compare the tuples in the dataset using a variety of mechanisms to compute

an evidence set. This structure provides enough inform ation to guide the search for denial

constraints and to validate denial constraint candidates. An essential question is how to compute

evidence sets efficiently, and how to perform the denial constraint search from the evidence set.

We postpone the discussion on these questions until Chapter 3, where we present our algorithm

and discuss the related work on the discovery of exact and relaxed denial constraints.

2.3.3 Discovery of relaxed dependencies

Generally speaking, discovering relaxed dependencies is harder than discovering their

traditional (non-relaxed) counterparts.

Fan et al. present three discovery algorithms for discovering conditional functional

dependencies [25]. The first one, C FD M i n e r , leverages itemset mining techniques (as in [8 8])

to discover conditional functional dependencies that have only constant patterns. The other two

algorithms, CTANE and FASTCFD , focus on general conditional functional dependencies. As

their names give away, they are extensions of TANE and FASTFD algorithms. The scalability of

CTa n e and Fa s t CFD follows closely their non-conditional counterparts. CTa n e scales well

in the number of tuples, but it scales poorly in the number of columns of the relation. FASTCFD

scales better than CTANE with the num ber of columns in the relation but requires additional

optimizations to better scale with the number of tuples in the relation instance. The problem of

discovering conditional functional dependencies has also been studied under the perspective of

association rules mining [89].

M ost solutions for the discovery of approximate dependencies are adaptations of solu­

tions for the discovery of exact dependencies. For example, Ta n e algorithm can be modified

to discover approximate functional dependencies [26]. The difference between the exact and

approxim ate versions of the algorithm lies in how they validate a candidate dependency: the

form er validates candidates containing no error; the latter may validate candidates containing

errors, given that the error is below a certain threshold. TANE uses data structures called stripped

partitions (also known as position list indexes) to validate candidates. Such structures have useful

properties that enable Ta n e to estimate the number of tuples that do not satisfy a candidate

40

(error) efficiently. Another adaptation for the discovery of approximate functional dependencies

using striped partitions is described in [90].

Som e pruning strategies that work in the discovery of the exact dependency scenario

do not work for the discovery of approximate dependencies. For example, approaches such as

the hybrid algorithms H y FD, H y UCC, F i n d UOD, and Hy d r a aggressively prune the search

space. They can discard dependency candidates as soon as they find any single violation for

them. Besides, these discarded candidates can be further used to prune other parts of the search

space. This principle helps to save a lot of computations; however, it cannot be applied in the

discovery of approximate dependencies. This former type of discovery considers the dependency

candidate together with the estimation of the dependency error.

P YRO algorithm is currently one of the fastest solutions for the discovery of unique

column combinations and functional dependencies [91]. It uses a sampling-based approach

to detect promising approximate dependency candidates, which enable the algorithm to prune

considerable parts of the search space. Besides, the algorithm proposes the use of a cache

system to retrieve some of the position list indexes used to validate the dependency candidates

quickly. These two techniques combined result in great performance advantage compared to

other algorithms for the discovery of uniques and functional dependencies.

M ost of the order dependency discovery algorithms we described have not considered

relaxed order dependencies. The authors in [92] give a brief outline of how it would be possible

to adapt FA ST O D algorithm for the approximate discovery problem, but provide no further

evaluation.

Song and Chen present a method for discovering differential dependencies[65]. Their

method uses the proportion of tuples matching similarities criteria to estimate support and

confidence measures that guide the candidate generation. The authors also describe pruning

strategies and an approximated version of their algorithm. Song et al. study the problem of

determining distance thresholds for differential dependencies [93]. The idea is to find distance

thresholds that maximize the support and confidence of the dependencies with regards to the data.

Kwashie et al. present solutions for the discovery of differential dependencies that are based

on association rules techniques [94]. They use a measure of interestingness for the candidate

dependencies, which helps to reduce the search space.

2.3.4 Discovery of other types of dependencies.

An algorithm for the discovery of synonym and inheritance ontology functional depen­

dencies has been described in [6 6]. Fa s t OFD algorithm works for the discovery of both exact

and approximate dependencies, and it uses an Apriori-like approach [95] to traverse a lattice of

attribute sets until all dependencies are discovered. Besides, the authors present a set of inference

rules that help to prune the search space.

Diallo et al. present a solution for discovering editing rules from sample and master

data [96]. Their method first discovers attribute mappings between sample and master relations

41

using an approximate discovery of inclusion dependencies (a type of dependency between two

tables). Then, it discovers traditional conditional functional dependencies from master data that

propagate to sample data through the discovered mappings.

The discovery of embedded functional dependencies is studied in [97]. A naive approach

would combine the results from running an algorithm for the discovery of traditional functional

dependencies for each subset of tuples of the dataset that satisfy the completeness requirement of

embedded functional dependencies. However, such an approach would result in a search space

that is much larger than the (already large) search space for traditional functional dependencies.

The alternative, and more efficient solution, uses a tree-based data structure to store many correct

embedded functional dependencies in each path of the tree [97]. The traversal is inspired by the

hybrid approaches for the discovery of traditional dependency. Also, the authors use an inference

system to reduce the costs with implied dependencies. Following similar lines of [97], hybrid

algorithms for the discovery of embedded unique column combinations is studied in [98].

2.3.5 Dependency ranking

The number of dependencies discovered in a dataset radically increases as the number

of columns in the dataset goes up. Even if we rely on static analysis to discard redundant and

trivial dependencies, the size of data profiles remains large. Unfortunately, a considerable portion

of the discovered profiles is merely spurious or accidental. That is, they are not relevant to the

application domain. A dependency is relevant if it can reliably support well-defined applications.

For example, a dependency is relevant if it can guide database design, foster data cleaning, or

improve query performance.

Database designers can judiciously inspect the relevance of the discovered dependencies

and select those dependencies that are pertinent to their target tasks. Such an inspection is likely

to be extensive and burdensome; thus, dependency ranking may simplify the whole process.

There are various criteria to rank a set of dependencies; we outline some com mon ones in the

following.

Chu et al. propose ranking denial constraints using the weighted average of their

succinctness and coverage [32]. The succinctness concerns the number of distinct symbols

(columns and operators) in the predicates of the constraint, and the coverage regards data support

based on the proportion of pair of tuples that satisfy subsets of predicates of the constraint. We

study these measures in more detail in Chapter 3. A coverage measure is also proposed to rank

order dependencies, which is somewhat similar to the one used in denial constraints [84].

Piatetsky-Shapiro and Matheus study a probabilistic generalization of functional depen­

dencies called probabilistic dependencies [99]. Their probabilistic analysis and formulas can

serve as a measure of the statistical significance of dependencies between two column sets, such

as functional dependencies. Sanchez et al. study approximate dependencies under the perspective

of association rules [100]. The authors present a correspondence between dependencies and

42

associations rules and show how to derive support and confidence measures to assess the quality

of dependencies.

Ranking dependencies have been used to guide database design. For example, measures

based on the redundancy identified in a relation instance can be used to score dependencies [1 0 1 ,

28]. The intuition is that higher-ranked dependencies should produce better schema designs than

low-ranked ones. In [102], the authors rank potential primary keys based on their number of

columns, the length of column values in their columns, and the position of their columns within

the schema.

2.4 DEPENDENCIES IN DATA QUALITY

There has been an increase in concern with low-quality data in decision-making in

recent years. This fact has strongly driven research on dependencies, as they are fundamental

in data consistency, which in turn, is a key dimension in data quality [6 , 7, 103]. Fan gives

an overview of dependencies from the perspective of data quality in [48]. A more recent and

extensive discussion on the same perspective is presented in [104].

2.4.1 Violations of dependencies

As we discussed in Chapter 1, database management systems may not be able to

guarantee database consistency for many types of dependencies natively. Thus, databases might

eventually become inconsistent. While some users may not even require automatic fixing of the

inconsistencies, they would probably want to know what and where the inconsistencies are, so

they could work on data fixes or take those errors into account during decision-making.

Consider a dependency <p and a relation instance r. The violations of the dependency

<p is the subset of column values (also called database cells) that cannot coexist in r for (p to

hold [104]. We can also refer to dependency violations as the problematic tuples or problematic

combination of tuples, rather than the problematic database cells— we use this latter assumption

in Chapter 5 . In this case, the problem of dependency violation detection becomes finding the

tuples (or combinations of tuples) having values that do not agree with the semantics of <p.

The underlying violation detection mechanism of several data cleaning tools is a

traditional database management system [35, 105, 34]. The database might underperform in

different scenarios, for example, for denial constraints containing complex range predicates. The

data cleaning tools inherit the perform ance issues of database management systems. Besides,

their evaluation experiments used small datasets or only simple dependencies, such as functional

dependencies. Implementing a dedicated violation module is an alternative. For instance, Chu et

al. implement a denial constraint violation detection module based on pairwise comparisons [54].

However, their experimental evaluation also used only a small number of records (i.e., up to

100K tuples).

43

Fan et al. develop a series of SQL-based techniques for detecting violations of condi­

tional functional dependencies [24]. In their method, checking a single conditional functional

dependency consists of executing two SQL queries against two tables: the relation instance table

and a table containing the pattern tableau of constants and the variable fields of the dependency.

The first query is a jo in between the two tables, and it returns the single-tuple violations that

do not follow the specification in the pattern tableau. The second query is also a join between

these two tables that uses a group by clause to identify the set of tuples that, despite matching

the pattern tableau in the left-hand side of the dependency, they fail to match the variable portion

in the right-hand side the dependency. The authors extend their techniques to check multiple

conditional functional dependencies at a time and evaluate their methods using a commercial

database management system.

The issue of scalability in data cleaning is studied by Khayyat et al. [106]. The authors

introduce a framework to perform violation detection and database repairing in distributed

settings. The core idea is to translate data cleaning rules (expressed in UDF-based form) into

jobs that are executed on top of parallel data processing frameworks. Although the approach we

describe in Chapter 5 focuses on centralized environments, it is able to detect violations for very

large datasets efficiently. Nonetheless, extending our approach for distributed data processing

environments is an exciting topic for future work.

H y d r a algorithm, for the denial constraint discovery, contains a specialized violation

detection com ponent [55]. Efficient detection of denial constraint violations is critical for the

algorithm, so the authors have proposed novel techniques to handle the problem. There are two

main ideas in this component: The use of specialized data structures; and the customization of

algorithms for different predicate types. We give further details on this component in Chapter 5.

2.4.2 Repairing violations of dependencies

Given an inconsistent database D and a set E of dependencies, how to obtain data

consistent with the set E from database D ? The seminal work of Arenas et al. has introduced two

concepts that help to answer such a question: consistent query answering and data repairing [37].

Both concepts are based on database repairs.

Consider a database D ' with the same schema of D , and a function co st(D , D ') that

measures the cost to transform D into D ' using database inserts, deletes, and updates. A database

D ' is a repair of D if it ensures that cost (D , D ') is minimal among the possible instances D ' that

satisfies the set of dependencies E [107]. In other words, the difference between D and D ' is

minimal among all possible D '. The definition of minimality depends on the adopted repairing

model; there are a variety of them [104].

Consistent (clean) and inconsistent (dirty) data can coexist in the database in the context

of consistent query answering. Whenever applications submit queries to the database, the goal of

a consistent query answering approach is to retrieve consistent data at the query answering stages.

The consistent data and thus, consistent answers, derive from the space of possible repairs of

44

the database. Many approximation approaches have been studied to cope with the complexity

results in consistent answer processes. We refer to [108, 109, 110, 111] for recent views on the

complexity and implementations issues of consistent query answering; and we refer to Bertossi

for a comprehensive survey on the subject [107].

D ata cleaning based on data repairing seeks to correct the violations of the set E of

dependencies in the database D by computing another database D ' that is consistent with E and

minimally differs from the database D [1]. In other words, it finds a minimal repair for D . The

problem is naturally related to consistent query answering, and it is also quite challenging. The

recent advances in the field have helped the development of automatic data repairing tools, for

example, [36, 34].

The number of possible repairs for an inconsistent database is exponential; hence the

challenge is also to efficiently find good repair candidates [112]. We describe briefly four repair

models commonly found in the literature [37, 112]. These definitions restrict the repairing to

only column value modifications, also referred to as cell modifications.

A repair D ' is a cardinality-minimal repair if it ensures that there exists no repair

D '' of D with less modified cells than D ', where D '' refers to all repairs of D [113]. A

repair D ' is a cost-minimal repair if it ensures that there exists no repair D '' of D such that

cost(D , D '') < cost(D , D ') [113]. Let C denote the subset of the modified cells in a repair D '.

The repair D ' is considered a set-minimal repair if no subset C can be converted to its original

value in D without violating any dependency in E. The authors of [112] introduce the notion of

cardinality-set-minimal repair. Similar to set-minimal repairs, a cardinality-set-minimal repair is

a repair D ' of D for which there exist no subset C that can be transformed back to its original

value in D without violating any dependency in E. However, this type of repair allows the

remaining cells in D ' to be modified to other values.

Consider a finite set E of dependencies, D and D ' two database instances, and a repair

model. The repair checking problem is to decide whether D ' is a repair of D with regards

to E and a cost bound [1]. Studies have shown intractability results for this and other related

problems involving different dependency languages and repair models [1]. The critical problem

is that repairing a given dependency may break others. For example, Bohannon et al. [113]

have shown that deciding if there exists a repair D ' of D is NP-complete for a constant number

of functional dependencies, repair models based on value modifications, and a limited number

of modifications in D '. Thus, data repairing is highly nontrivial, and repairing algorithms are

mostly heuristics [1] .

Bohannon et al. present greedy approaches to discover data repairs regarding functional

dependencies and inclusion dependencies [113]. Their algorithms employ equivalence classes,

that is, groups of cells that should have the same value. First, all the database cells are assigned

to their respective equivalence classes. The intuition behind the algorithm is to isolate the

procedures that choose which cells should have the same value from the procedures that choose

which cells should be assigned to the same equivalent set. By doing so, the algorithm mitigates

45

poor quality local modifications, for example, a name that was misspelled in one place may have

its correct version at other views of the domain. The greedy approach keeps merging equivalence

classes until all dependencies are satisfied. The algorithm has inspired other extensions, such as

an algorithm for repairing data based on conditional functional dependencies [114].

Chu et al. present a data repairing algorithm that repairs violations of different types of

dependencies holistically [54]. Denial constraints serve as their data quality dependency language

because, as mentioned earlier, denial constraints subsume many other types of dependencies.

First, the algorithm builds a conflict hypergraph from the database cells and the violations of

denial constraints. Each cell in the database becomes a node in the conflict hypergraph, and

each violation is encoded as a hyperedge of the conflict hypergraph. The database cells that

participate in multiple violations are those that are more likely to contain errors. The algorithm

finds a minimum vertex cover for the hypergraph, which represent the problematic cells. Then, it

uses an auxiliary data structure called repair context to collect the information required to repair

the erroneous cells. Two procedures can generate possible repairs according to the content of the

repair contexts: value frequency mapping and quadratic programming. The database is clean

when the conflict hypergraph is empty or when some termination criteria is met. NADEEF [35]

is an open-source data cleaning tool that uses the techniques presented in [54].

Dynamic dependencies (e.g., fixing rules and editing rules) provide means to fix the

errors directly. The authors of [69] propose editing rules to repair data based on master data. The

solution finds certain fixes based on certain regions and editing rules. Certain fixes are updates

for which is guaranteed to exist the information needed for correcting an erroneous tuple. Certain

regions are sets of columns for which users assure their correctness.

H o l o C l e a n brings together denial constraints, master data, and statistical analysis of

data to form a probabilistic model for data repairing [34]. The main intuition of H o l o C l e a n

is that the probabilistic model is a natural solution to integrate different signals for a particular

task; in this case, data cleaning. The first step in H o l o C l e a n is to separate database cells into

erroneous or clean cells. The tool can use any error detection solution as long as the output

represents identifiers for the erroneous and clean cells of the database. H o l o C l e a n assigns a

random variable to each cell of the database and then compile a graphical model that describes

the distribution of these variables. The tool uses a declarative probabilistic inference framework

called DeepDive [115]. It enables the statistical learning and inference of the models. The

random variables associated with the clean cells are used as labeled examples for learning the

parameters of the model. Finally, the value of the random variables associated with the erroneous

cells is inferred using approximate inference.

2.4.3 Repairing dependencies

The solutions we described so far assume that the input set of dependencies is correct.

W hat if this set, or any of its subsets, is wrong? An alternative is to trust the data but update or

46

discard the erroneous dependencies. The intuition here is that if data are ever-evolving, then the

semantics of data might be evolving as well [116].

Intuitively, the semantics of the application domain and data updates may suggest natural

dependency evolutions, for example, a conditional functional dependency pattern [Country =

'Brazil'] ^ [FuelTaxes = 30.0] evolving into a new pattern [Country = 'Brazil'] ^ [/ue/Taxes =

50.0]. Golab et al. describe an approach to discover the conditional parts, or pattern tableaux,

of conditional functional dependencies [117]. The goal is to generate good pattern tableaux by

maximizing the number of tuples matching the pattern while minimizing the number of violating

tuples. The authors show that the problem of generating such parsimonious tableaux is NP-hard

and propose an approxim ate solution. Their greedy algorithm enumerates all possible tuple

patterns from the active domain, and then compute the support (quantity of matching tuples) and

confidence (quantity of violations) for these patterns. The algorithm iteratively picks a pattern

tableaux, estimate the support for the remaining tuple patterns, and validates the chosen tableau

against given thresholds.

Chiang and Miller consider both data and functional dependency repairings [118]. Their

principle for dependency repairing is to add columns to the body of the violated dependencies so

that these new dependencies become consistent with the data. The authors describe a cost model

for repairing data and dependencies that quantifies the trade-off between repairing data errors

and evolving constraints. Their cost model is based on the minimum description length. Given a

database instance D and a set E of functional dependencies such that E is inconsistent in D , the

goal is to find repairs D ' and E ' at a minimal cost. Beskales et al. [119] follow a close motivation

to [118], and they incorporate the notion of relative trust between the two types of repairings.

The idea is to limit the number of data changes with a threshold and generate multiple possible

repairs for user validation.

Mazuran et al. also present a method to support evolving functional dependencies [120].

The method repairs dependency violations by adding more columns to the left-hand side X of the

dependency. It is based on the confidence of a functional dependency / : X ^ Y, given by the

ratio between the number of distinct values for the set of columns X , and the number of distinct

values for the set of columns XY. A dependency / having a confidence value lower than one

means that / has been violated and needs repairing. The proposed method first sorts the set of

functional dependencies according to the average of two metrics: the degree of inconsistency,

which is based on the confidence value, and the conflict score, which is based on the common

columns a functional dependency has among the set of all dependencies. The dependency

repairing follows the order in this sorting step. Consider A a column candidate to extend the

column set X of / . The method computes the confidence of dependencies / ' : XA ^ Y and

returns an ordered list of candidate columns sorted in descending order of confidence. In case

the dependencies / ' produce the same confidence, the method can further estimate a goodness

measure (the modular difference between the projection of XA and Y) to decide which column

to choose.

47

2.5 DEPENDENCIES IN QUERY OPTIMIZATION

The benefits of using dependencies for query optimization have been studied for

decades [121]. The correlation detection via sampling (CORDS) recommends sets of attributes

for which query optimizers should maintain additional statistics [122]. To do so, CORDS discov­

ers approximate functional dependencies with a sample based approach which refines sets of

candidate attribute pairs, chosen from the catalog statistics and the sampled attribute values.

EXORD is a three-phase framework for exploiting attribute correlations in big data

query optimization [123]. It considers source-to-target attribute mappings as correlations. The

first phase of EXORD is responsible for validating an initial user-defined set of correlations.

It works on simple statistics (e.g, the num ber of records violating a correlation) to only keep

correlations that fall under user-defined thresholds. The second phase uses a cost model to select

correlations for deployment. The authors look into an interesting optimization problem: how to

select a subset of correlations with the objective of maximizing the total benefit (i.e, correlation

applicability). The exploitation phase is responsible for rewriting the queries so that they exploit

more efficient access plans.

In Chapter 6, we consider semantic query optimizations, particularly, how to use

functional dependencies to modify queries so that perform ance is enhanced but semantics

preserved. Some commercial optimizers (e.g, [124]) incorporate rewriting strategies into the

planning phases. In [59], the authors investigate the use of order dependencies (a variant of

functional dependencies) for order optimization. [125] study variations of join elimination and

predicate introduction. Unfortunately, most of the studies on semantic query optimization require

the user to specify a set of constraints. In contrast, we present a tool that eliminates this manual

interaction by employing automatic discovery and selection of dependencies.

2.6 DEPENDENCIES IN DATABASE DESIGN

Poorly design databases, and in particular, poorly design relation schemas, can lead

databases to face information redundancies and update anomalies. Dependencies— primary

functional dependencies and some of their variations— serve as a formal mechanism for analysis

of relation schemas. They enable us to identify low-quality relation schemas, and they provide

means to transform such schemas into better-quality ones.

M ost database textbooks cover the fundamentals of dependencies applied in database

design, for example, [9, 8, 15]. They describe some well-known normalization processes that

guide the design of good-quality relation schemas. In a few words, a normalization process relies

on a set of dependencies and their implications to identify flaws in a relation schema. Then,

it decomposes the flawed schemas into other schemas that meet properties for good relation

schema design. Normal fo rm s express these properties. For example, Boyce-Codd normal

form (or BCNF for short) states that a relation schema R satisfies BCNF if for every functional

dependency X ^ A defined for R, the left-hand side X is a superkey— a set of columns that

48

contains a key [46]. The ultimate goal of normalization processes is to replace a problem atic

relation schema with other relation schemas that do not lead to redundancies or anomalies.

N o r m a l iz e is an algorithm for automating the normalization process [102]. It takes a

relation instance along with its relation schema as input and produces a set of relation schemas that

is compliant with BCNF as output. The algorithm first discovers the set of all minimal functional

dependencies holding in the relation instance given as input. Then, it extends the discovered

dependencies to maximize their right-hand side; the authors describe efficient algorithms for this

step. The maximization helps the algorithm to identify keys and BCNF violations. N ORMALIZE

then identifies the functional dependencies violating BCNF, rank them, and select the top-scored

dependency for normalization (a user might interact with the algorithm in this phase). Finally,

the algorithm runs a few strategies to select keys for every (decomposed) relation in the output

(users might also be involved).

The normalization process has been rethought into the context of embedded functional

dependencies [126]. The framework can capture data redundancies regardless of the different

interpretations of missing data. In addition to establishing an inference system, the authors

present a generalization of BCNF.

49

Chapter 3

Discovery of Denial Constraints

Defining dependencies by hand requires judging the structure and content of a database.

The task requires expertise and time, and it is error-prone considering how complex and dynamic

production datasets can be. As discussed in Section 2.3, the profiling of datasets to discover

dependencies has emerged as a promising alternative to the manual design of dependencies [22].

The discovery of denial constraints discovery is particularly helpful for the complex datasets

emerging from extracted data, e.g., knowledge graph construction or web tables repositories.

A single denial constraint discovery algorithm can replace the several algorithms

required to discover the various types of dependencies a dataset might hold. Besides, because

denial constraints have high expressive power, they can capture business rules that could not be

expressed by more restrict types of dependencies. Discovering denial constraints helps to capture

non-obvious complex business rules. Recent approaches related to data cleaning have used denial

constraints as the d e /ac to integrity constraint language [34, 127, 128]. The discovered denial

constraints naturally can serve as the input of such approaches.

The com putational complexity of discovering dependencies regards the num ber of

tuples and columns of a relation [22]. The complexity of discovering denial constraints, in turn,

regards additional challenges because each denial constraint is expressed as a set of predicates

rather than a set of columns. The denial constraint search space consists of any subset of the

predicates drawn for a relation. Each column adds many denial constraint candidates to the

search space because each additional column can generate predicates of various types: Equalities,

inequalities, and comparisons across columns. Therefore, discovering denial constraints requires

efficient techniques to traverse the search space and validate denial constraint candidates.

Discovering approximate denial constraints is even more challenging than discovering

exact denial constraints because the former task requires an algorithm to keep track of the number

of tuple pairs that violate each candidate. This requirement prohibits the use of aggressive pruning

techniques, which uses the fact that a single violation is enough to invalidate a candidate— that

is not true for approximate dependencies.

In this chapter, we present a novel algorithm, D C f in d e r , to discover both approximate

and exact denial constraints efficiently. D C f in d e r first iterates over the data to build auxiliary

50

data structures that summarize column values and tuples containing those values. Then, the

algorithm uses these auxiliary structures to build compact representations of tuple pairs and their

satisfied predicates. This step uses information on predicate selectivity for performance. With

the compact tuple pair representation, D C FINDER can directly generate and validate exact and

approximate denial constraint candidates. The output of the algorithm is the set of all minimal

denial constraints holding in the input dataset.

The capability of measuring the interestingness of discovered denial constraints is

essential since it helps users decide which denial constraints are relevant for their application.

The design of D C FINDER enables the algorithm to calculate and output different measures of

interestingness for the discovered denial constraints. We can use this additional information to

rank the discovered results and provide users with different perspectives on the interestingness

of denial constraints.

In summary, our contributions in this chapter are as following:

• We present the novel D C FINDER algorithm for the discovery of approximate and exact

denial constraints.

• We provide an experimental comparison of D C FINDER to all previously existing denial

constraint discovery algorithms, showing that D C FINDER is the most efficient algorithm

for the discovery of approximate denial constraints and, at times, better than state of the

art even for the discovery of exact denial constraints.

• We provide a study on different interestingness measures of discovered denial con­

straints and their efficient calculation to enable denial constraint selection.

The rest of the chapter is organized as follows: In Section 3.1, we discuss previous

solutions for denial constraint discovery. In Section 3.2, we present key definitions and notations.

In Section 3.3 we present an overview of D C F i n d e r . We split the description of our algorithm

into preprocessing (Section 3.4); evidence set building (Section 3.5); and denial constraint

search, followed by denial constraint interestingness (Section 3.6). In Section 3.7 we present our

experimental evaluation. Finally, in Section 3.8 we present a summary of this chapter.

3.1 p r e v i o u s a l g o r i t h m s f o r d e n i a l c o n s t r a i n t d i s c o v e r y

D iscovery of exact denial constrain ts. Fa s t D C was the first algorithm for denial constraint

discovery [32]. By the time we started this research project, it was the only algorithm on the

subject. FASTD C compares every tuple pair of the input dataset to com pute evidence, that is,

what are the predicates each tuple pair satisfies. The result of this computation is called evidence

set. The authors of FASTD C have shown how to transform the problem of denial constraint

discovery into the problem of discovering covers for an evidence set. Fa s t DC uses the predicate

distribution in the evidence set to guide a depth-first search and discover these covers. The

51

approach based on the evidence sets in FASTDC has inspired all the other algorithms for the

discovery of denial constraints.

The reason why approaches based on evidence set are suitable for denial constraint

discovery is that they scale relatively well in the number of columns of datasets. An alternative

approach would be based on lattice traversals, which would arrange all possible denial constraint

candidates in a lattice of column combinations and then use the data instance to validate the

candidates, similar to what some functional dependency discovery algorithms do [26, 129].

Extensive experimental evaluation has shown how lattice-based algorithms, like [26, 129],

quickly run into memory or perform ance issues for datasets with a relatively large number of

columns [27]. The search space is even larger for denial constraint discovery than it is for

functional dependency discovery because a single column may add many predicates into the

search space. Thus, building lattices of predicate combinations might be prohibitive.

Instead of building huge lattices, the algorithms for the discovery of denial constraints

follow the evidence set approach proposed in Fa s t D C [55, 130, 41]. Evidence sets are com ­

parable to the difference-sets used in the discovery of functional dependencies [77, 78]. These

structures help us to define the search space based on instance observations rather than exhaus­

tive candidate enumeration. As observed in [27], the algorithms based on difference-sets can

keep reasonable memory footprints in generating and validating candidates. With this in mind,

building evidence sets efficiently plays a significant role in denial constraint discovery.

During the building of evidence sets, FASTD C algorithm suffers from performance

issues due to the quadratic computation in the number of tuples. This fact drove us to design a

faster algorithm called B f a s t DC [130]. B f a s t DC improves the building of evidence sets based

on two key principles. It combines tuple identifiers from related column values and avoids testing

every pair of tuples for every predicate. Besides, it exploits the implication relation between

predicates to operate at a bit level.

Despite the considerable perform ance im provement over Fa s t D C, B f a s t D C algo­

rithm still requires many logical operations to calculate which predicates are satisfied by tuple

pairs, which hinders performance. This fact led us to design a second algorithm, which is

described in this chapter. D C f in d e r also uses column value indexing to avoid the expensive

tuple pair comparison of FASTDC. To drive efficiency even further, it uses predicate selectivity

to avoid the unnecessarily large num ber of logical operations required by B FASTDC. In this

thesis, we describe only D C f in d e r in detail for the following reasons. The key insights of

BFa s t DC are also present in D C F i n d e r ; thus, the description of D C f in d e r also enlightens

the central aspects of B F a s t DC. Besides, the experimental evaluation of D C f in d e r is more

exhaustive, since it includes all algorithms for the discovery of denial constraints that were

available previously to its proposal. The full description of B f a s t DC can be found in [130].

Other algorithmic insights for the discovery of denial constraints can be seen in the

H y d r a algorithm [55]. It employs sampling of tuple pairs in order to save a considerable amount

of time when calculating the evidence set. From the sample, H y d r a builds an intermediary

52

evidence set and derives an intermediary set of denial constraints. Then, from this set of

constraints, the algorithm corrects the tuple pair sample and determines the complete evidence

set. In an approach comparable to Fa s t D C, the algorithm extracts the final denial constraints

from the complete evidence set.

D iscovery of relaxed denial constrain ts. Having error-free data to derive denial constraints is

unrealistic, so it is reasonable to relax their satisfiability criteria. The discovery of conditional

dependencies uses the values in the domain of columns (called constants, for short) to specify

the parts of the data a dependency holds. In the case of the discovery of conditional denial

constraints, this specification is through predicates involving constants, i.e., predicates of the

form tx.A; o c for constants c in dom(A;). The authors of Fa s t D C present a modification to

their algorithm that can discover conditional denial constraints, called C -F a s t DC.

The number of constants can be quite large, hence, a large multiplication in the number

of possible predicates to form conditional denial constraints. The complexity of denial constraint

discovery is greatly affected by the number of predicates, so it becomes infeasible for a discovery

approach to consider extensive sets of predicates. The main idea of C -F a s t D C is to filter out

those predicates involving constants which are not frequent, or in other words, predicates having

a low support. A predicate has high support if the number of tuples that satisfy it is above

a given threshold. C -F ASTD C uses an an Apriori approach [131] to search for high-support

sets of predicates. For each set of predicates and the subset of tuples satisfying its predicates,

C-FASTDC calls the regular FASTDC algorithm to discover non-conditional denial constraints

holding in that subset. The result is a combination between the high-support predicates and the

non-conditional denial constraints discovered.

We can substitute the call to FASTDC in C-FASTD C algorithm by a call to any other

denial constraint discover algorithm. BFASTD C implements this conditional denial constraint

discovery approach [130]. The improvements in runtim e com e from the discovery of the non­

conditional parts of denial constraints. However, B FASTD C presents no further techniques or

optimizations for discovering conditional denial constraints, so we do not include this results in

this thesis.

In our study, we consider the possibility that a few tuple pairs may not satisfy a

valid denial constraint due to im perfect data. Still, the discovery algorithm should be able to

find that valid (but approximate) denial constraint. It turns out that discovering approximate

denial constraints is even more challenging than discovering exact denial constraints. For every

approxim ate denial constraint discovered, the algorithm must guarantee that the number of

violations for that denial constraint is no greater than a given threshold. To do so, it needs to

know how many tuple pairs may still violate a candidate denial constraint. It is possible to

obtain this inform ation from the evidence sets, as long as the algorithm keeps information on

evidence set multiplicity. Fa s t DC, B f a s t DC and D C f in d e r can integrate a few modifications

in their operation to provide such information and discover approximate denial constraints.

53

H YDRA algorithm, however, works under different assumptions; and it is yet to be shown how

the algorithm can be adapted to discover approximate denial constraints.

H YDRA algorithm assumes that a denial constraint is valid if there does not exist one

single tuple pair violating that denial constraint. Such an assumption does not hold for approx­

im ate denial constraints. H y d r a leaps over the evidence search space to save computations

on duplicate pieces of evidence. The technique may reduce computation time, but loses the

evidence set multiplicity. We observed that the number of evidence produced by H y d r a is only

a fraction of the evidence required to discover approximate denial constraints (more details in

Section 3.7). An adaptation of H y d r a algorithm to discover approxim ate denial constraints

would require significant changes in the algorithm, which is beyond the scope of this thesis.

In our experiments, however, we use the algorithm as a baseline to evaluate how D C f in d e r

compares to a specialized exact denial constraint discovery solution.

3.2 BACKGROUND

Let us walk through the semantics of the employees relation in Table 3.1, which we

use as the running example in this chapter. M ind that we now use new identifiers for each new

denial constraint. Any two employees that have the same {Name, Phone} values have the same

{Position} value. This statement is a functional dependency, which is translated into a denial

constraint as follows: If a tuple pair tx, ty of employees satisfies the predicates tx.Name = ty .Name

and tx. Phone = ty. Phone, it cannot satisfy the predicate tx. Position = ty. Position. The following

denial constraint expresses this dependency:

<p1: - (t x.Name = ty.Name A tx.Phone = ty.Phone A tx.Position = ty.Position)

Table 3.1: An instance of the relation employees.

Name Phone Position Salary Hired

to W. Jones 202-222 Developer $2.000 2012
tl B .Jones 202-222 Developer $3.000 2010
t2 J. Miller 202-333 Developer $4.000 2010
t3 D. Miller 202-333 DBA $8.000 2010
t4 W. Jones 202-555 DBA $7.000 2010
t 5 W. Jones 202-222 Developer $1.000 2012

The relationship between the columns Position, Salary and Hired shows that for any

two employees with the same position, the longer-standing employee always earns the highest

salary. If a tuple pair tx, ty of employees has the same position, then the predicate tx. Position =

54

ty.Position is true. If that is the case and tx.Hired < ty. Hired is true, then tx.Salary < ty.Salary is

false. This business rule is expressed as a denial constraint as follows:

<P2 : — (tx.Position = ty.Position A tx.Hired < ty.Hired A tx.Salary < ty.Salary)

The denial constraints in the previous examples are fully satisfied by the data in Table 3.1.

Recall that a denial constraints with this feature is usually called exact denial constraints. In

ideal settings, data is error-free, and the constraints are fully satisfied. In reality, data all too

often present inconsistencies. The root cause of inconsistencies vary greatly, for instance, from

schema evolution to erroneous data imputation not caught by the (un)defined constraints.

One of the workarounds for potential data errors is to relax the constraints so that they

admit a certain degree of inconsistency, but still hold for most of the data [23]. Denial constraints

with this relaxation feature are called relaxed or, here, approximate denial constraints. In the

employees relation, we can see that there are two (non-reflexive) tuple pairs that satisfy the

predicates tx.Name = ty.Name and tx.Phone = ty.Phone simultaneously, t0, t 5 and t5, t 0. Those

two predicates define an approxim ate denial constraint, which reads: there cannot exist any

two employees with the same values of {Name, Phone}. This constraint seems a reasonable

key candidate for the employees instance and reveals the potential inconsistency between tuples

t 0 and t 5 as duplicates. This dependency is expressed as an approxim ate denial constraint as

follows:

<p3 : —(tx.Name = ty.Name A tx.Phone = ty.Phone)

The above example shows how meaningful denial constraints may be “hidden” amid

inconsistent data. In this work, we are also interested in relaxing the denial constraint satisfiability

constraint so that if a denial constraint has ju st a small number of violations, it still can be

considered valid. An approximate denial constraint allows a limited number of violations to exist

in a table r before it is considered invalid in r.

We follow related work and use the proportion between the number of violating tuple

pairs and the total number of tuple pairs in a table as a denial constraint error measure [32, 91].

This measure quantifies the degree of approximation of a denial constraint <p in r, and it is

calculated as follows [62]:

g 1(P , r) =
{ (tx ,ty) e r 1 (tx ,ty) = y } |

I r | ■ (| r | - 1)

We use the degree of approximation above to relax the satisfiability criteria of denial constraints,

and define approximate denial constraints in the following.

D efinition 3 (Approximate Denial Constraint). Given an error threshold £, 0 < £ < 1, a denial

constraint <p is £-approximate in r if and only if its degree of approximation g 1 (^ , r) is below £.

55

Evidence set. Let etv.tv be the set of predicates that tuple pair tA-.tv satisfies, that is, etv.tv = {p |

p G P.tA . t v |= p}. We refer to these subsets as tuple pairs evidence e (or simply evidence e when

the context is clear) [32], Given a relation instance r and a predicate space P, the evidence set Er

is the set of evidence w.r.t. r and P, that is, Er = {etv.tv | Vty .tv e r}. The authors in [32] have

shown that it is possible to obtain the set of minimal denial constraints from the evidence set Er.

Besides, the evidence set can be used to efficiently calculate the degree of approximation of each

candidate denial constraint.

Problem definition. Given a relation instance r, and an error threshold e, the problem of

approximate denial constraint discovery is to find all e-approximate minimal denial constraints

that hold on r. The discovery of exact denial constraints is a particular case of this problem,

where the error threshold is set to zero. Besides, this discovery problem can be viewed as

enumerating minimal covers (also known as minimal hitting sets) for the evidence set.

3.3 OVERVIEW OF DCFINDER

Figure 3.1 depicts the building blocks of our denial constraint discovery algorithm.

From the dataset schema, D C f in d e r defines a predicate space; and from the dataset records, the

algorithm assembles data structures called position list indexes (P u s). Some types of predicates

are most likely to have low selectivity (i.e., when a predicate is satisfied by many tuple pairs).

D C f in d e r takes this into account to divide the predicate space into likely/unlikely predicate sets.

The idea is to presume that a piece of evidence satisfies the least selective predicates. D C f in d e r

then allocates arrays of evidence where every element holds the set of “most likely satisfied”

predicates. The algorithm uses P l is to compute references to tuple pairs that do satisfy the

“unlikely satisfied” predicates. Performing simple logical operations for each of these references

brings the arrays of evidence to their consistent state. Finally, the algorithm uses a simple hash

table to map the elements of these arrays into the final evidence set.

Figure 3.f: Building blocks of DCfinder .

The evidence set is a compact representation of tuple pairs and their satisfied predicate

sets. It enables efficient validation of denial contraint candidates. To discover all minimal denial

contraints, D C f in d e r uses a depth-first search (DFS) strategy based on evidence set coverage

of denial contraint candidates. The last, optional, step is to rank denial contraints based on

interestingness measures to help users filter the discovered results.

56

3.4 DATASET TRANSFORMATION

D C f in d e r transforms a relational dataset into a predicate space and P l i index struc­

tures, as described next.

3.4.1 From schema into predicate space

Any subset of the predicate space P is a denial constraint candidate, and the denial

constraint search space is of size 2 |P|. We follow related work and apply some restrictions to

our predicate space [32, 55]. As showed in [32], restricting the predicate space helps prune

meaningless results and reduces computational costs. We distinguish the attribute types whether

they are character strings, longs, or doubles, and we use the set of built-in operators O = {=

, = , < , < , > , >}. For numeric attributes, we define predicates with all operators o e O; for

non-numeric attributes, we define only predicates with operators o e {= , = } . Predicates across

two different attributes are regarded only as long as their attributes have the same type and share

at least 30% of common values [32]. Figure 3.2 illustrates the predicate space defined for the

relation employees in Section 3.2.

pi t x.Name = t y.Name pio tx.Salary < t y.Salary

p2 t x.Name = t y.Name pi i t x.Salary > t y.Salary

p3 t x.Phone = ty.Phone p 12 t x.Salary > t y.Salary

p4 t x.Phone = ty.Phone p 13 t x.Hired = ty.Hired

p5 t x. Position = t y. Position pi4 t x.Hired = ty.Hired

p6 t x. Position = t y. Position p 15 t x.Hired < ty.Hired

p7 t x.Salary = t y.Salary p i6 t x.Hired < ty.Hired

p8 t x.Salary = t y.Salary p 17 t x.Hired > ty.Hired

p9 t x.Salary < t y.Salary p i8 t x.Hired > ty.Hired

Figure 3.2: Predicate space for the employees relation.

3.4.2 From tuples into PLIs

P lis represent the unique values of a dataset [27]. Consider the attribute A; e R. A

cluster is an entry c = (k, l), where key k is a value from the projection operation n(A;) and

value l is a list of tuple identifiers of the relation instance having the same value k, i.e., Vx e l

then ix[A;j = k. The list l maintains its elements in ascending order. A P l i n (A ;) is the set of

all cluster entries of A;- in r. The numeric P lis are sorted by the entry keys in descending order.

Figure 3.3 shows the P lis of the employees relation.

P lis are commonly used in attribute dependency discovery, and are also known as

stripped partitions [26]. In these works, intersecting the values of P lis helps to validate

dependency candidates. In our context, P lis are used as an intermediate data structure that helps

generating evidence sets. With P lis , we can efficiently answer the question: which tuple pairs

57

Name Position Salary
k l k l k l

W. Jones {0,4, 5}
B. Jones {1}
J. M iller {2}
D. M iller {3}

D eveloper {0, 1, 2, 5}
DBA {3, 4}DBA

8.000 {3}
7.000 {4}
4, 000 {2}
3.000 {1}
2, 000 {0}
1.000 {5}

Phone Hired
k l k l
202-222 {0,1, 5}
202-333 {2,3}
202-555 {4}

2012 {0,5}
2010 {1, 2,3,4}

Figure 3.3: Transformation of the records of employees into PLls.

satisfy a given predicate p? D C f in d e r simply iterates over cluster combinations to generate

these tuple pairs; the details are given in Section 3.5.

Building P L Is takes linear time as it requires only projection operations to collect the

distinct attribute values and their associated tuple identifiers. P L ls are used to look clusters up.

Non-numeric clusters are stored in hash tables so looking them up takes constant time. Numeric

clusters are stored as sorted arrays so that it is possible to look keys up using binary search. The

binary search is required for looking up inequalities. For instance, given a key k , we can ask

what is the next cluster whose key is greater than k .

3.5 EVIDENCE SET GENERATION

One may think that storing evidence sets requires significant resources, because they

represent all tuple pairs. However, different tuple pairs may draw redundant evidence, i.e.,

they may satisfy the very same set of predicates. As a matter of fact, the num ber of distinct

pieces of evidence was just a fraction of the total number of tuple pairs of the datasets in our

experiments. As a result, keeping only the distinct evidence saves a huge amount of space. But

the computational costs of materializing tuple pair evidences may still be high. To significantly

reduce also these costs, D C f in d e r uses attribute indexing and predicate selectivity with a novel

approach.

Let us first assume that the pieces of evidence of r are stored into a virtual array B. Each

tuple pair is assigned an identifier tpid to index B as in Equation 3.1.

tpid(tx, ty, r) = | r | x + y (3.1)

Our goal is to put B into a consistent state. Every elem ent B[tpid] must hold only the

predicates satisfied by tpid. The naive approach would fill each evidence of B by evaluating

58

every tuple pair for every predicate. This approach performs poorly due to the high number of

tuple pair accesses and predicate evaluations. D C f in d e r avoids directly comparing every tuple

pair by benefiting from two main insights: First, some predicates may have low selectivity, and if

so, are satisfied by many tuple pairs. Second, we can efficiently build attribute value associations

between tuple pairs and their satisfied predicates using PLIs. D C f in d e r is designed based

on these two insights to minimize the number of operations within the evidence array B . This

drastically reduces the performance penalties from the quadratic tuple pair space, thus helping

the efficiency of D C F in d e r .

D C fin d er builds evidence sets, in the three stages: Evidence initialization, reconstruc­

tion, and counting.

3.5.1 Evidence initialization

D C f in d e r initializes an array B so that many of the elements of B are close to their

consistent state. Consider an evidence e to be stored in B[tpid]. The probability of a predicate

p to occur in e is simply the probability of tpid to satisfy p, i.e., the selectivity of predicate

p. Tuple pairs are more likely to satisfy the least selective predicates. U nder this assumption,

D C f in d e r fills in a piece of general evidence eahead with some of the least selective predicates,

and then instantiates every elem ent of B as a copy of eahead. The chances are high that many

elements of B are already consistent for some eahead predicates. For instance, all the tuple pairs

of the employees relation satisfy the predicate tx.Salary = ty.Salary. This form of evidence ahead

initialization is what differs D C f in d e r from B F as tD C . The latter algorithm initializes the array

B with empty elements; as a consequence, it is required to use many more logical operations to

fill each evidence correctly.

Recall Figure 2.1 and predicate implication that tells us that each predicate p1 : Ai o Aj

implies every predicate p2 : Ai o' A j, where o' e o ^ . Therefore, D C f in d e r also includes the

implications im p l(p) of p into eahead, for every p it has included into eahead.

The selectivities of both < , < and > , > predicates are equivalent. For each tuple pair

tx, ty that satisfies the predicates p1 : tx.Ai < ty.Aj (and its implied predicates p1̂) , there is

the tuple pair ty, tx that satisfies the predicates p2 : tx.Ai > ty.Aj (and its implied predicates

p2^) . The selectivity of a predicate p is given simply by subtracting the selectivity of p from

the total number of tuple pairs. Out of the 30 tuple pairs in the employees instance, only 6 tuple

pairs satisfy the predicate tx.Name = ty.Name, but 30 — 6 = 24 tuple pairs satisfy the predicate

tx.Name = ty.Name.

Let us assume uniform distribution of attribute values and high attribute cardinality (i.e.,

num ber of distinct values). The predicates with operators (= ,< , < ,> , >) have low selectivity

compared to equality predicates (=). Framing eahead to hold inequality predicates (=) minimizes

the number of inconsistent evidence, and therefore, the number of evidence reconstruction

required. We can choose whether eahead should hold < , < or > , > predicates without increasing

the number of reconstructions. The evidence eahead, however, should not include both < , <

59

and > , > predicates because that would only increase the number of inconsistent evidence. If

eahead holds < , < predicates, then array B must be reconstructed for the correspondent > , >

predicates, or vice versa. Reconstructing single evidence requires accessing the array of evidence

B and performing simple set operations. Because array B reflects the quadratic tuple pair space,

minimizing the number of evidence reconstruction considerably reduces the overall runtime.

Evidence ahead initialization. For ease of exposition, let eahead denote a general

evidence that includes every predicate p e P such that p.o e {= , < , < } . D C fin d e r initializes

an evidence array B of size |r| ■ |r|, and instantiate every elem ent of B as a copy of eahead. We

next describe how the algorithm reconstructs the array B for predicates with operators {= , > , >} ,

so that B represents a consistent state with regard to the predicate space and dataset tuple pairs.

These procedures can be straightforwardly adjusted to use other settings of the evidence eahead.

3.5.2 Evidence reconstruction

D C f in d e r uses P lis to find the inconsistent tpid's of B, and then iterates over those

elements to perform evidence reconstructions. We can find inconsistent tpid's from combinations

of ordered pairs (l1, l2) . The procedures to define and combine pairs of tuple identifiers (l1, l2)

are based on the types of each predicate.

Consider the case for predicates of the form p : tx. A;- = ty. A;-. Recall that P lis are sets

of clusters c = (k, l), and each cluster c keeps track of all tuples identifiers l with the same value

k. From each cluster c = (k, l) e n (A j), D C fin d er builds ordered pairs (l1, l2), where l1 = l and

l2 = l. The tuple pairs with tx e l1, ty e l2, and tx = ty are precisely those tuple pairs that satisfy the

equality predicate p. Each of these tuple pairs is assigned a tpid (Equation 3.1), which is stored

in an ordered set T. Consider the cluster (DBA, {3,4}) of n(Position) for instance. It gives

us the ordered pair ({3,4}, {3,4}), and therefore, tuple pairs t 3, t 4 and t 4, t3. These are exactly

some of the tuple pairs that satisfy the predicate p5 : tx. Position = ty. Position. From Equation

3.1, and tuple pairs t 3, t 4 and t 4, t 3, we get tpid's 22 and 27. These tpid's point to evidence in

the array B that are incorrectly holding the predicate p6 : tx. Position = ty. Position, so we must

reconstruct these pieces of evidence to hold p5 instead. Following the above procedures for every

cluster of n(Position) gives us every piece of evidence we must reconstruct for predicate p5.

Finding tuple pairs that satisfy other types of predicates follows a similar principle, but

with a slight change on how ordered pairs (l1, l2) are arranged. The procedure for predicates on

different attributes, p : tx.Ai = ty.Aj where i = j , is as follows: For each cluster c = (k, l) e

n(A ;), D C fin d e r probes n (A j) for a cluster c' = (k', l') e n (A j) such that k = k'. If there

is a match, D C f in d e r builds an ordered pair (l1,l2), where l1 = l and l2 = l'. Building the

tuple pair representation from (l1, l2) follows the same principle described before. Finally,

the procedure for greater-than predicates with the form tx.Ai > ty.Aj is as follows. For each

cluster c = (k, l) e n (A j), D C f in d e r looks up every cluster c' = (k', l') e n (A j) such that

k > k'. For each match, a new ordered pair (l1, l2) is built. D C fin d e r transforms these tuple

60

pair representations into the tpid's, just as described before. The algorithm keeps a map T of

associations between a predicate p and the ordered set of tuple pair identifiers that satisfy p.

Algorithm 1 shows the steps to find all the tuple pair identifiers that point to inconsistent

evidence in array B, given a predicate space and relation instance. D C f in d e r calculates tuple

pair identifiers only for {= , >} predicates. By minding the implication property, the algorithm

reconstructs B for {> } predicates as well.

A lgorithm 1: Find the identifiers of inconsistent tuple pairs
D ata: Relation instance r, and predicate space P
R esult: A mapping T from predicates to tuple pair identifiers

1 fo r A; e R do
2 build P l i n (A f)
3 if A; is numeric then
4 | sort n (A f) in descending order of keys k
5 T ^ 0
6 foreach p e P where p.o e { = ,> } do
7 Use P lis to compute T of p
8 T { p } ^ T
9 re tu rn T

Algorithm 2 shows how D C f in d e r materializes and reconstructs tuple pairs evidence.

Evidence array B is initialized with copies of eahead. For each pair (p, T) in the mapping T ,

D C f in d e r performs a sequence of reconstructions. Given a tpid set T, the algorithm updates

B[tpid] for each tpid e T. The operations slightly differ from each other depending on the type

of the predicate.

A lgorithm 2: Materialization and reconstruction of evidence
D ata: Mapping T , relation instance r, and predicate space P
R esult: Evidence array B

1 eahead ^ every p e P where p.o e {= , < , <}
2 initialize array B, each element is a copy of eahead
3 foreach p e P where p.o e { = ,> } do
4 fix ^ build predicate mask of p
5 foreach tpid e T { p } do
6 | B[tpid] ^ B[tpid] ® fix
7 re tu rn B

For now, let p be a non-num eric equality (=) predicate, and B[tpid] an evidence we

need to reconstruct for p. A t this stage, B[tpid] holds the inequality com plement (=) p of

p. But we want B[tpid] to hold p, not p. Let fix denote a predicate set that includes both p

and p, that is, fix ^ {p, p}. The symmetric difference 1 between B[tpid] and fix, denoted as

iThe symmetric difference is implemented as a simple exclusive or operation (XOR).

61

B[tpid] ^ B[tpid] © fix, gives us a consistent B[tpid] with regard to p. If p is a numeric equality

(=) predicate, fix must also include the correspondent < , > predicates of p. Once the symmetric

difference has been applied, B[tpid] satisfies p and its correspondents < , > . That fulfills the

implication requirement for p.

Finally, let p be a greater than (>) predicate, and an evidence B[tpid] be inconsistent

for p. B[tpid] holds the correspondent { = ,< , < } predicates of p, but should hold {= , > , > }

predicates, instead. To reconstruct B[tpid], we need to set fix to hold {< , < ,> , > } and calculate

the symmetric difference B[tpid] ^ B[tpid] © fix. This operation removes the correspondent

{< , < } predicates of p , but includes the correspondent {> , > } ones. Figure 3.4 illustrates part

of the reconstruction for the evidence of employees w ith regard to the inequalities predicates

on attribute Hired. The cluster (2012, {0,5}) pairs with cluster (2010, {1 ,2 ,3 ,4}) to form

tpids 1 ,2 ,3 ,4 ,3 1 ,3 2 ,3 3 ,3 4 . These elements initially hold p 15 and p 16, but are reconstructed to

correctly hold p 17 and p 18.

tpids: 1 2 3 4 15______ 6 . . .
P2 P10

P4 P14

P6 P15

P8 P16

P9

P2 P10

P4 P14

P6 P15

P8 P16

P9

P2 P10

P4 P14

P6 P15

P8 P16

P9

P2 P10

P4 P14

P6 P15

P8 P16

P9

P2 P10

P4 P14

P6 P15

P8 P16

P9

P2 P10

P4 P14

P6 P15

P8 P16

P9

0 0

P15 P16

P17 P18

P15 P16

P17 P18

P15 P16

P17 P18

P15 P16

P17 P18

P2 P10

P4 P14

P6 P17

P8 P18

P9

P2 P10

P4 P14

P6 P17

P8 P18

P9

P2 P10

P4 P14

P6 P17

P8 P18

P9

P2 P10

P4 P14

P6 P17

P8 P18

P9

P 2 P 10

P 4 P 14

P 6 P 15

P 8 P 16

P 9

P 2 P 10

P 4 P 14

P 6 P 15

P 8 P 16

P 9

O O O

Figure 3.4: Part of the reconstruction for the evidence of employees and predicates p17 : tx.Hired > ty . Hired and
P18 : tx.Hired > ty.Hired .

3.5.3 How to scale up to large datasets

Storing arrays of evidence B incurs a quadratic space overhead in the number of tuples

because each array B represents evidence of all tuple pairs. Also of quadratic space are the sets

of tuple pair identifier T used to reconstruct B because they grow as a function of the number of

tuple pairs. Storing all the data of B and T at once may be infeasible as it can sooner or later

exhaust any memory limit. It turns out that slightly modifying how these structures are built

enables D C f in d e r to scale up for larger datasets. D C f in d e r uses a multi-level partitioning

scheme based on the range of tuple pair identifiers. The idea is to create a partial evidence set for

each range, and then merge these sets into the final and correct evidence set. The scheme enables

D C f in d e r to: (i) handle larger relation instances, and (ii) use multiple parallel threads.

62

Figure 3.5 illustrates the partitioning scheme. Instead of materializing whole sets of

tuple pair identifiers T, D C FINDER processes only fractions of T at a time. Virtual sets of tuple

pair identifiers T are partitioned into chunks T = (To, T i, . . . , . ..} , s G N. Partitioning is

based on the disjoint ranges of tp id values. Assuming a maximum chunk length ®, chunk T0 can

store any tp id G [0,ffl), tp id G N. Chunk Ts can store any tp id G [low ,high), where low = s ■ ®,

and high = (s + 1) ■ ®. In a similar fashion, D C f in d e r processes all the evidence of B using

small evidence fragments. Each fragment stores at most A evidence elements. This two-tier

partitioning scheme benefits from data locality, as we show in our experimental evaluation.

S • W (s + 1) ■ W (s + 2) ■ w

1. Build chunks

2. Build
fragments

Chunks Ts

3. Build partial :
evidence sets

E s

4. Merge partial evidence sets

Chunks Ts+i

P 1 P2 P2 P l . P1 P 2 P2 P 3 .
P4 P 6 P 4 P 6 ■ P 5 P6 P6 P 5 ■
P 7 P7 P7 P 9 ' P 9 P 9 P9 P 7 :

P l l P l U P 1 2 P 12 P l l P l 2 P l l P l l

E s + 1

E

Figure 3.5: Evidence set building: Partitioning of tuple pair identifiers into chunks, and splitting of tuple pair
evidence into evidence fragments.

A

Let us consider the s-th run. We build tuple pair identifier sets Ts for every predicate

required to materialize the evidence set. We want each chunk Ts to hold every tp id associated

to T such that low < tp id < high . Recall that tuple pair identifiers tp id s are drawn from ordered

pairs (l, /'). D C f in d e r shrinks pairs (l, /') so they yield tp id s within the range of chunk Ts.

From Equation 3.1, we see that any tuple pair tx, t y such that tx G l, and t x > high / |r | yields a

tp id that is greater or equal to high , and therefore t x, t y falls outside the range of Ts. Depending

on the size of chunks and relation instances, other t x, ty settings may also yield tp id s outside

the range of Ts. D C f in d e r removes such tuple settings from ordered pairs (l, /'). Any tpid

from (l, /') is guaranteed to fall within the range of Ts after (l, /') has been shrunk. D C f in d e r

proceeds to reconstruct evidence after all chunks Ts are created.

D C f in d e r follows Algorithm 2, but reconstructs small evidence fragments instead of

the potentially huge evidence array B. The algorithm initializes a fragment using eahead. Then

it iteratively consumes tp id s from chunks to perform the reconstructions. It stops consuming

tp id s if a tp id is no longer within the fragment range. The current fragment is consistent after all

chunks within the same range have been processed. D C f in d e r then iterates over the evidence of

the current fragment to retain two information: (i) distinct evidence, and (ii) evidence multiplicity.

Evidence of reflexive tuple pairs, i.e., (tx, t x}, are skipped. The evidence set produced at that

point is partial, because it regards only tuple pairs within a given range. D C f in d e r requires an

additional step to merge all partial evidence sets. As discussed before, the number of distinct

63

evidence is very small compared to the number of total tuple pairs. Thus, merging partial

evidence sets does not incur significant overhead.

The primary computational pattern for evidence reconstruction is the sequential read of

chunks followed by symmetric difference computations. if the chunk is too small, the number of

runs increases. On the other hand, if the chunk is too large, memory may end up exhausted. The

symmetric difference operation is implemented as an XOR operation, which is usually optimized

in modern CPU architectures. Because D C f in d e r needs to perform many of these operations,

improving data locality helps reducing cache miss penalty. We performed micro-benchmarks to

verify the influence of chunk size a and fragment size X parameters in runtime. Our experiments

(Section 3.7) show that using relatively small evidence fragments decreases cache misses, and

thus improve runtime. We observed that settings where the fragment size is just a fraction of the

chunk size yields better runtime than the settings where the size of chunks and fragments are the

same.

Keeping a simple counter for each distinct evidence suffices, so we are able to accom­

modate the cover search (Section 3.6) to discover approximate denial constraints. The final

evidence set E is a simple hash map with evidence as keys, and evidence frequency as values. We

use counter to denote a function E ^ N such that counter(e) returns the frequency of evidence e.

D C f in d e r can build partial evidence sets independently of each other, because chunks

{T0, T1, . . . , Ts, ...} are disjoint. It picks up available threads from a thread pool to serve as

workers. The only data shared across workers is the data from PLis, and from the final evidence

set. Multiple workers can safely read PLIs because they never change once built. Each worker

operates on its own chunks and fragments to generate its partial evidence set. The concurrent

access to the final evidence set is synchronized via latches. This last operation does not impose

significant overhead: most time is spent finding the inconsistent tpids and fixing pieces of

evidence. As we show in Section 3.7, the evidence set building phase of D C f in d e r scales

(almost) linearly in the number of CPU cores.

3.6 DENIAL CONSTRAINT SEARCH

This section describes how D C f in d e r uses the evidence set to discover minimal approx­

imate (and exact) denial constraints. It also describes three measures to score the interestingness

of the discovered denial constraints.

3.6.1 Minimal covers

A denial constraint can be any subset of the predicate space P, so entirely traversing

the search space with 2 |P| candidates is infeasible. Discovering attribute dependencies is likely

an intractable problem [132, 133]. For example, the authors of [133] have recently shown that

detecting functional dependencies is a W [2]-complete problem. The result directly impacts

the computational hardness of denial constraint discovery, because denial constraints subsume

64

functional dependencies. Despite their computational complexity, data profiling algorithms have

managed to perform quite well on various real-world datasets [29, 91, 92].

The problem of discovering all minimal denial constraints can be transformed into the

problem of finding all minimal covers of the evidence set [32]. The latter problem is cognate

with other problem s, such as enumerating hitting sets or hypergraph traversals [134]. These

problem s have been studied under a variety of domains for their wide range of applications

[134, 135]. We make use of the approach of [32], because it easily accommodates the search of

approximate (partial) covers, and therefore, approximate denial constraints. The approach works

well in practice, as discussed in Section 3.7.

An evidence e e Er cannot hold predicates {p1, . . . , pm} and {p1, . . . , pm} simultaneously.

If e holds {p1, . . . , pm}, any denial constraint <p containing at least one predicate of {p1, . . . , pm}

could not be violated by the tuple pairs that yield evidence e. For (p to be exact, that intuition

must apply for every evidence e e Er. That is why we find covers of the full evidence set Er. A

cover Q1 is a set of predicates that intersects with every evidence of Er, i.e., Ve e Er, Q1 n e = 0.

The cover Q1 is minimal if there does not exist a Q2 that is a strict subset of Q1 and intersects

with the same elements of Q1, i.e., ^IQ2 C Q1 such that Ve e Er, Q2 n e = 0. The following

theorem holds for discovering denial constraints (see [32] for proof).

T heorem 1. A denial constraint <p: - (p1 A . . . A pm) holds in relational instance r if the set

Q : {p1, . . . , pm} is a cover of the evidence set Er. The denial constraint <p is minimal if Q is

minimal.

In addition, we must be able to discover approximate denial constraints. Recall that the

degree of approximation e of a denial constraint <p is based on the number of tuple pairs that do

not satisfy <p. The multiplicity of an evidence set is given by || E|| = L eeE counter(e), that is, how

many tuple pairs yielded all evidence of E. The multiplicity || E|| is equal to |r|- (| r | - 1) if E = Er.

Consider again the set Q : {p1, . . . , pm}, but assume that E is only a subset of the full evidence

set E C Er such that Ve e E, Q n e = 0. The set Q approximately covers the full evidence set

Er if ||E|| < e ■ |r| ■ (|r| — 1). If so, the predicate set Q is an e-approxim ate cover of Er, and it is

minimal if there does not exist a strict subset of Q that is also an e-approximate cover of Er.

Algorithm 3 presents the minimal cover search. It is a heuristic-based depth-first search

for which nodes are recursively formed based on evidence set coverage. Each node maintains a

path of the search tree Q C P, the set of evidence not covered by the current path Epath C E, the

set of predicates that can be included in further branches Ppath C P, and all minimal covers MC

found in prior branches. Every path is a cover candidate. At first Q = 0, Epath = Er, Ppath = P,

and MC = (0 . To unfold a new branch, the algorithm adds a predicate p add to the new path and

updates the information for the child node. The child evidence set Enew is the result of removing

all evidence that contain p add from the parent evidence set Epath. The child predicate set Pnew is

every predicate p e Ppath such that p ^ padd.

65

A lgorithm 3: Find Minimal Covers [32]
D ata: Evidence set Er, Predicate space P, Error threshold e
R esult: Set of minimal covers MC

1 MC ^ 0
2 f i n d C o v e r (0, Er, P, MC)

3 Function f in d C o v e r (Q , Epath, Ppath, MC)
4 if \\Epath\\ < e ■ |r| ■ (|r| — 1) then
5 if no subset o f size |Q| — 1 o fQ e -covers Er then
6 | M C ^ M C U Q
7 re tu rn
8 e s e if Ppath = 0 then
9 | re tu rn

10 else
11 sort Ppath based on tuple pair coverage of Epath
12 fo r padd e Ppath do
13 Q ^ Q U padd
14 if Q is implied by MC then
15 Q ^ Q \ padd
16 continue
17 Enew ̂ {e 1 e e Epath an d Padd e Epath\

P new ̂ {p | p e Ppath an d p f padd}
f i n d C o v e r (Q, Enew, Pnew, MC)

Two base cases stop the recursion. First, the algorithm finds an approximate cover if the

path Q removes large pieces of evidence of Er such that \\ Epath \| < e ■ |r| ■ (|r| — 1). Consequently,

the corresponding denial constraint of Q could be violated by no more than \\ Epath\\ tuple pairs.

If Epath = 0, Q is an exact cover. To ensure minimality, the algorithm tests whether there exists

an immediate subset of Q that also (approximately) covers Er . If it does not find such a subset,

the predicate set Q is added to the result MC as a minimal cover. Second, if the search reaches a

node for which there are still enough evidence to cover, but there are no predicates to form new

branches, then there is no valid cover in that branch.

The tuple pair coverage of a predicate p is the multiplicity of the evidence set in which

all evidence contain p, that is, || E|| such that e e E and p e e. The heuristic to unfold new paths

is to include predicates in dynamic ordering of tuple pair coverage. The search adds predicates

satisfied by most tuple pairs first, i.e., those predicates that reduce the evidence set size the most.

Removing predicates from Enew changes the tuple pair coverage distribution for the remaining

candidate predicates Pnew, so the algorithm needs to compute a new predicate ordering for each

new branch. The sooner the evidence set becomes small enough, the sooner the algorithm finds

minimal covers. The algorithm uses these covers MC to reduce the number of searches. Before

updating the information for a new path (Enew and Pnew), the algorithm checks if that path is

already in the cover. If so, there is no need to unfold that branch.

66

Once Algorithm 3 is finished, each minimal cover in MC is translated into a minim al

denial constraint by inverting its predicates (Theorem 1). The output may contain implied

denial constraints, so we need to test w hether each denial constraint is implied by the rem ain­

ing discovered denial constraints. This implication testing is known to be a coNP-complete

problem [56]. The authors of [32] introduced an inference system for denial constraints and

describe an algorithm to test denial constraint implication with it. We use this algorithm to

remove implied denial constraints from the output of all denial constraint algorithms. Although

not complete, the implication testing algorithm is correct and helps to remove many implied

denial constraints from the output, which helps with user verification. More details on the static

analyses of denial constraints and other constraints can be found in [56, 1].

3.6.2 Interestingness measures for denial constraint

D C f in d e r discovers all minimal denial constraints in a dataset. But in all likelihood,

not all of them are equally useful. D C f in d e r optionally estimates three interestingness measures:

succinctness, coverage, and degree of approximation. We use these measures to: (i) pruning

denial constraint candidates that fall beneath interestingness thresholds, and (ii) ranking denial

constraints to help users selecting relevant ones.

Succinctness has been used to rank denial constraints in [32]. It is inversely proportional

to the number of distinct symbols (attributes and operators) in the predicates of a denial constraint:

the fewer symbols a denial constraint has, the more succinct it is. The measure is based on

the minimum description length principle: data representations with fewer symbols are more

succinct. D C f in d e r can use succinctness to prune denial constraints during cover search. To do

so, it simply counts how many symbols a candidate denial constraint expresses before checking

it. If the quantity is greater than a given threshold, there is no need to check further paths from

that candidate denial constraint— the succinctness can only decrease.

Coverage is described in [32] as the statistical significance of a denial constraint based

on the proportion of tuple pairs that satisfy a given set of predicates. It is given by a weighted

sum of tuple pairs scores. Given a denial constraint <p with |p | predicates, each tuple pair scores

the denial constraint <p based on how many predicates that tuple pair satisfies. The larger the

amount of tuple pairs satisfying a number of predicates close to |p | — 1 , the higher the coverage

of <p. There is no guarantee that coverage always decreases for a given path, so we used this

measure only during post-processing to rank denial constraints according to their coverage

scores. Estimating the coverage of a denial constraint requires iterating over the evidence set and

evidence frequency counters. Because many denial constraints have predicates in com mon to

each other, this estimation can be performed in a depth-first tree traversal to save computation

for denial constraints sharing a common prefix.

We can additionally use the degree of approximation, defined in Section 3.2, to measure

the interestingness of approximate denial constraints. It follows from Definition 3 that the

number of tuple pairs allowed to violate an approximate denial constraint is always bounded by

67

the error threshold. But the number of actual violations varies between the discovered denial

constraints. The degree of approximation simply shows how many tuple pairs are inconsistent

with regard to an approximate denial constraint. After a minimal (approximate) cover is found,

the degree of approximation is simply the multiplicity of the remainder evidence set.

3.7 EXPERIMENTAL EVALUATION

We present an experimental evaluation of D C F i n d e r . We used all denial constraint

algorithms known to date as baselines: Fa s t DC [32] and B f a s t DC [130] for the discovery

of approximate and exact denial constraints; and H y d r a [55] for the discovery of exact denial

constraints.

3.7.1 Experimental setup

We used the code provided by the authors of [55] for H y d r a and Fa s t DC. The code

of BFa s t DC was provided by the authors of [130]. We implemented D C f in d e r from scratch.

All im plementations were written in Java and run in main memory after dataset loading. We

integrated all implementations with the data profiling framework Metanome [136] to guarantee a

unified testing environment. To keep consistent comparisons, we set all algorithms to replace

NULL values with default values (i.e., empty strings for non-numeric attributes, or —̂ for

numeric attributes). This approach has been used also in the implementations of [55].

The strategies that Fa s t DC, BFa s t DC and D C f in d e r use to build evidence sets are

designed to run over multiple threads. Therefore, unless stated otherwise, the reports for these

algorithms are from multi-thread executions. The authors of [55] do not present a parallel version

of H y d r a , so we use the implementation of the algorithm just as it is described in the paper. In

addition, we im plem ented a new version of H y d r a , namely H y d r a +, so the algorithm can

benefit from parallel execution in its systematic tuple pair sampling phase. This parallel step is

implemented in similar fashion to the grid scheme used in Fa s t DC.

The experiments were run on an Intel Core i7-7700HQ machine (2.8 GHz, 4 physical

cores/8 logical cores, 32 KB for L1, 256 KB for L2, and 6 MB for shared L3); 16 GB RAM;

256GB SSD; Ubuntu 16.04; and Java 1.8 with the JVM heap space limited to 8 GB. The runtime

reports are the average measurement of three independent runs.

Table 3.2 shows the main characteristics of the datasets used in our experiments. The

majority of these datasets have been used in related work. The H ospital and Tax datasets have

been used to evaluate denial constraint discovery algorithms in [32, 55]. The Adult, Flight, and

NCVoter datasets have been used to evaluate FD discovery algorithms in [91]. The Inspection

dataset has been used to evaluate data cleaning systems in [34]. We additionally used the Airport

68

dataset, which contains a list of airport codes and locations. The following page provides the

implementation of our algorithm and pointers to all datasets2.

Table 3.2: Datasets used to evaluate the denial constraint discovery algorithms.

Name Type #tuples #attributes #predicates

Adult real-world 32,561 15 54
Airport real-world 55,113 18 48
Flight real-world 500,000 20 88
Hospital real-world 114,919 15 44
Inspection real-world 170,000 19 74
NCVoter real-world 938,085 22 60
Tax synthetic 1 0 0 ,0 0 0 15 58

3.7.2 Discover of approximate denial constraints

We ran D C f in d e r , Fa s t DC, and BFa s t DC for all datasets shown in Table 3.2. We

used degrees of approximation e = 0.01 and e = 0.05; these values have been previously used to

evaluate the discovery of approximate dependencies [91]. We set the chunk and fragment lengths

of D C f in d e r to 5 x 106 and 5 x 103, respectively. We evaluate varying chunk and fragment

lengths in Section 3.7.6, and varying degrees of approximation in Section 3.7.7.

The results in Figure 3.6 show that D C f in d e r is the fastest algorithm among the

competitors. For Tax and Hospital, D C f in d e r is at least 2 x as fast as BFa s t DC, and at least

1 3x times faster than FASTDC. The performance gains of our algorithm is higher for larger

datasets. Using a degree of approximation e = 0.01, for instance, D C f in d e r took approximately

228 minutes to process Flight, BFa s t DC took nearly 715 minutes, but Fa s t DC could not finish

within the time lim it of 12 hours. D C f in d e r was the only algorithm able to process NCVoter

within the time limit. The three algorithms use the same minimal cover search strategy; thus,

the difference in their performance is a reflection of how efficiently they build evidence sets.

Here, a good efficiency indicator is tuple pair throughput; i.e., how many tuple pairs an algorithm

processes in a fixed amount of time. D C f in d e r achieved better throughput than the competitors,

especially for large datasets. This shows that, in terms of performance, D C f in d e r improves the

state of the art for the discovery of approximate denial constraints.

The algorithms discovered the largest sets of denial constraints in Inspection and Adult,

respectively. Interestingly, the evidence sets for these two datasets were also the largest among

all. With bigger evidence sets, the algorithms iterate over more evidence in each path of the cover

search, which hinders runtime. For Adult and Inspection, a major part of the runtime was spent

searching for minimal covers. The cover search for Flight, for example, was m uch faster than

2h t t p : / / h p i . d e / n a u m a n n / p r o j e c t s / r e p e a t a b i l i t y / d a t a - p r o f i l i n g /
m e t a n o m e - d c - a l g o r i t h m s . h t m l

http://hpi.de/naumann/projects/repeatability/data-profiling/metanome-dc-algorithms.html
http://hpi.de/naumann/projects/repeatability/data-profiling/metanome-dc-algorithms.html

69

1000
U1
CD

a>
|
fl
(§

100

10

1
0

1000
WV

0
I
fl
f§

100

10

1
0

Adult Airport Flight Hosp. Inspec. NCVoter Tax

(a) Degree o f approximation g 1 = 0.01.
TL TLTL

Adult Airport Flight Hosp. Inspec. NCVoter Tax

(b) Degree o f approximation g 1 = 0.05.

Figure 3.6: Runtime of approximate denial constraint discovery. The crossed bars indicate that an algorithm did not
terminate within the time limit (TL) of 12 hours. The Y-axes are in log-scale.

the cover search for Inspection. The Flight dataset has a bigger predicate space, but draws an

evidence set that is only a fraction (nearly a thirtieth) of the evidence set drawn from Inspection.

3.7.3 Discover of exact denial constraints

The next experiment focuses on the discovery of exact denial constraints; therefore, our

comparisons additionally include the specialized algorithms, H y d r a and H y d r a +.

From Figure 3.7 we see that D C f in d e r is faster than Fa s t D C and BFa s t D C in

every scenario. The algorithm even outperforms H y d r a and H y d r a + in four out of seven

datasets. For instance, D C f in d e r was approximately 4.5 x faster than H y d r a in Airport. But

the sampling approach helped H y d r a to process some datasets faster than D C f in d e r : For

instance, H y d r a processed NCVoter approximately 3.5 x faster than D C f in d e r did.

D C f in d e r materializes every tuple pair evidence to output evidence multiplicity,

whereas H y d r a processes a fraction of tuple pairs to find only the distinct evidence. In a more

detailed investigation, we found that H y d r a processed less than 0.1% of the total tuple pairs of

each dataset. That is why H y d r a cannot produce the evidence multiplicity of the full dataset,

which is required for discovering approximate covers, or calculating denial constraint coverage.

H y d r a spent a significant amount of time correcting tuple pair samples to complete the evidence

set - similar observations were made in the experimental evaluation of H y d r a . The correction

was particularly efficient for datasets that draw a small evidence set, e.g., Hospital. However, it

performed poorly for datasets with large evidence sets. H y d r a + improved the sampling phase

of H y d r a , but had minor influence on the overall runtime.

70

H y d r a iterates over each evidence to dynamically update the set of candidate de­

nial constraints, so they no longer violate such evidence. The depth-first search of Fa s t D C,

B Fa s t D C and D C fin d e r starts from denial constraint candidates, and then updates the evi­

dence set. Such a strategy is also penalized by large evidence sets; however, it uses the minimal

covers to prune the search space as soon as they are discovered. For Adult and Inspection, the

depth-first search was faster than the equivalent strategy of H y d r a . For the remaining datasets,

all algorithms took less than two minutes to com plete the search. This indicates that, in many

cases, being able to build the evidence set in an efficient manner is crucial for the performance

of the evaluated denial constraint discovery algorithms.

Figure 3.7: Runtime of exact denial constraint discovery. The crossed bars indicate that an algorithm did not
terminate within the time limit (TL) of 12 hours. The Y-axis is in log-scale.

3.7.4 Scalability

To evaluate the scalability in the num ber of tuples, we started at the beginning of a

dataset and incrementally added more tuples to each execution. Figure 3.8 depicts the scaling

behavior for Tax and F light datasets. All algorithms are sensitive to the num ber of tuples.

D C fin d er , however, seems to suffer less than Fa s t DC and BFa s tDC. The algorithm has an

advantage over Fa s t DC because it avoids the tuple pair comparison overhead. The evidence

set building strategy of D C f in d e r is faster than the one of B Fa s t DC for two reasons. First,

it does not need to calculate tpids for the inverse and implied predicates, as B Fa s t D C does.

Second, it reduces the number of accesses to the evidence elements due to the ahead evidence

allocation. For small numbers of tuples, D C fin d e r may be faster than H y d r a (e.g., as in Tax

dataset). As the number of tuples increases, Hydra starts benefiting from tuple pair sampling

(e.g., when we consider more than two hundred thousand tuples for F light dataset). There is

an im portant trade-off from this improvement though: H y d r a could not be tested if we had

set the degree of approximation to a value other than e = 0.0. D C fin d e r , on the other hand,

materializes all pieces of evidence to calculate the evidence counters. That is necessary not only

for discovering approximate denial constraints, but measuring the interestingness of the results

based on coverage and degree of approximation.

To check scalability in the number of attributes, we began with the five initial attributes

in the dataset schema. Then we incrementally added more attributes, using schema order, until

every attribute of the dataset had been added. Figure 3.9 depicts the scaling behavior we obtained

71

18000

03
G'■MÖ
(§

12000 -

6000

0
50100 200 300 400 500

N um ber of tup les (x 1000) N um ber of tup les (x 1000)
DCFinder - e- - BFastDC - * - FastDC - ® - Hydra - * ■ Hydra+

Figure 3.8: Runtime scalability in the number of rows.

for Tax and Flight datasets. We used only the first 20,000 tuples of each dataset to avoid expensive

computations in the number of tuples. The runtime of all algorithms increases exponentially in

the number of attributes: as the predicate space grows, so does the number of denial constraint

candidates and the evidence set. Since D C f in d e r , Fa s t D C and B F a s t D C share the same

cover search, the difference in their scalability is from how efficiently they build evidence sets

for bigger predicate spaces. Out of these three algorithms, D C f in d e r shows a slightly smoother

scalability. On the other hand, Fa s t DC seems to have the worst performance degradation. The

results in Figure 3.9 show that the perform ance of H YDRA is abruptly penalized when more

attributes are added to its executions.

140
_ 120
~ 100

G 8 0

Tax

ö
60
40
20

0

s- - . - X - - X -

ï -e t - a - r r

250

£ 200

2 150 Ë
ö

5 6 7 8 9 10 11 12 13 14 15
N u m b er of a t tr ib u te s

100

50

0
5 10 15

N u m b er o f a ttr ib u te s
20

DCFinder - ® - BFastDC - * - FastDC - ® - Hydra

Figure 3.9: Runtime scalability in the number of attributes.

Hydra+

We evaluate predicate scalability using the first 20,000 tuples of A dult. The experi­

ment chose different combinations of attributes at random. The goal is to check, for different

combinations of predicates, how long denial constraint discovery takes and how many denial

constraints are discovered. We executed the experiment twenty times and report the average

values in Figure 3.10. As expected, the predicate scaling of all algorithms behaves in a similar

way to their attribute scaling. Just as there is exponential growth in runtime, there is exponential

growth in the number of denial constraints.

3.7.5 Memory consumption

The next experiment measures how much memory is required by the different denial

constraint discovery algorithms. For the largest datasets, Flight and NCVoter, we executed

72

Number of predicates

30000
25000 -
20000 -

15000 -
10000 -

5000 -
0 L

10 20 30 40 50
Number of predicates

Adult

□ DCFinder - e- - BFastDC - * - FastDC - ® - Hydra - * ■ Hydra+

Figure 3.10: Runtime scalability in the number of predicates.

each algorithm using a maximum heap size of 64MB. Then, we repeatedly doubled this value

until the respective algorithm was able to actually process that dataset (up to the time lim it for

slower algorithms). All algorithms had similar memory footprints. To process Flight, BFa s t DC

required 2048MB, whereas the other algorithms required 1024MB. All algorithms required 4GB

to process NCVoter.

The main reason for this high demand is that our implementations load the full dataset

into main memory to provide a fair comparison of the in-memory processing of the algorithms.

This full loading incurs the overhead of encoding many attribute values as string objects. The

main data structures used by D C fin d er are P lis , chunks of tuple pair identifiers, and evidence

fragments. P lis are integer-based compact representations of datasets, and their sizes grow as

a function of the number of distinct attribute values. Chunks and fragments have constant size

defined by the parameters ® and A, respectively. While these structures can be set to be as high

as the available memory, we performed micro-benchmarking and found D C fin d e r to perform

better with relatively small values of ® and A (as discussed in the next section).

3.7.6 DCFinder in-depth experiments

Figure 3.11 illustrates the runtime breakdown on each phase of D C f in d e r . A large

part of the runtime is shared between finding tpids and correcting evidence, which is expected as

these phases are the core of producing accountable evidence sets. Initializing and accumulating

evidence also takes a considerable amount of the runtime: This is a reflection of the quadratic

complexity that the problem has in the number of tuples. For Adult and Inspection, D C fin d e r

spent a major part of the runtime in cover search, as explained in Section 3.7.2. The overhead

from the remaining phases is relatively small compared to the overall runtime.

The next experiment focuses on the evidence set building phase of D C f in d e r (Sec­

tion 3.5) to highlight the scalability of D C f in d e r in the number of threads. Such scaling is

possible because the algorithm splits the tuple pair space into chunks, which can be processed

independently of each other. The measurements are over the first 100,000 tuples of each dataset,

or over the total number of tuples for Adult and Airport. Figure 3.12 shows the scalability of

D C fin d e r in the number of threads. The algorithm scales (almost) linearly up to the number

73

CD
S
•.d
a3!h

M-hO

100%

80%

60%

40%

20%

0%

I 1

Adult Airport Flight Hosp. Inspec. NCVoter Tax

Cover Search
Accumulation
Correction
Finding tpids
Initialization
PLIs
Loading

Figure 3.11: Runtime breakdown of DC f i n d e r (e = 0.01): relative time the algorithm spent on loading datasets,
building PLIs, initializing evidence, calculating tpids, correcting evidence, accumulating (hashing) evidence, and
searching for minimal covers.

of physical cores (4); from there, it scales narrowly up to the number of logical cores (8). That

behavior is expected as the cache resources are shared among the hyper-threads. Increasing the

number of threads for more than the available logical cores does not improve runtime. Doing so

is likely to increase the complexity of coordinating competing accesses to data, which may even

hinder performance.

4.5
4.0

a 3.5
-3 3.0
CD
cd 2.5 a
c/i 2 .0

1.5
1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of threads

Figure 3.12: Relative runtime speedup in the number of threads (evidence set building only).

How D C f in d e r splits the tuple pair space influences its efficiency. Figure 3.13

compares the behavior of the algorithm for varying sizes of chunks and fragments. We use

Tax dataset to show this behavior, but the same trend was observed across all the evaluated

datasets. The metrics of interest are runtim e and cache misses (both L1 and LLC): the arrows

in Figure 3.13 indicate the lowest measurements. The smaller the chunks, the more often

D C f in d e r iterates over PLIs to generate tpids, and the lower the tuple pair throughput (i.e., how

many tuple pairs the algorithm processes in a fixed amount of time). The left plot in Figure 3.13

shows that D C f in d e r runs faster as we increase chunk lengths, up until it nearly stabilizes

its performance. From there, the fragment lengths at the edge (i.e., 102 and 105) negatively

influenced runtime. This shows that D C f in d e r is robust to the two parameters, for sizable

ranges. For all datasets, D C f in d e r was stable with chunk lengths around 106 < a < 107 and

fragments lengths at the few thousands region. After runtime inflection, the algorithm obtained

no performance improvement, but increased its memory requirement.

We observed that the cache miss ratio of the settings for which D C f in d e r had the

best runtime was at the same level of the best cache miss ratio we measured. Recall that

74

104

0
6 io3J3
fl

102 „
104

Ca
ch

e
m

is
s

H4
h-4

o
o

to
O

\ ' n Cache inflection Runtime inflection — /
k , / -"

V Cache inflection ̂ / „ -

Runtime inflection . 1011 1 1 1
108 IO4

----- 100

105 106 107
Chunk length

Fragment length
- 1000 5000 ------

105 106 107
Chunk length

10000 100000

108

Figure 3.13: Influence of chunk and fragment length on DC f i n d e r runtime and cache misses. The axes are in log
scale.

D C fin d er operates on two pieces of data, tpids and evidence fragments, and that it implements

the correction operation as an XOR, which is directly supported by the CPU. The runtime

inflection reflects a sweet-spot where D C fin d er benefits from cache locality and achieves high

tuple pair throughput without exhausting main memory. We observed very small variations in the

runtime inflections of the evaluated datasets. In our experiments, setting chunk length to 5 x 106

and fragm ent length 5 x 103 worked very well across the evaluated datasets. B F a s t D C also

required us to set these two param eters, so we also tried different values to tune its execution.

We observed that BFa s t DC works best with chunks that are slightly smaller than the chunks of

D C fin d er , because BFa s t DC stores tpids of all predicates of the predicate space in memory.

3.7.7 Denial constraint interestingness

The following experiment shows how different degrees of approximation impact denial

constraint discovery. The approximation parameter has no influence on the evidence set building

phase (for all algorithms), so we analyze only the minimal cover search behavior. We gradually

increased the param eter for different executions of D C fin d e r to measure how many denial

constraints the algorithm returns, and how much time is spent in the minimal cover search.

Figure 3.14 shows the results of these executions. The number of discovered denial constraints

varies greatly between datasets. The predominant behavior is that for larger degrees of approxi­

mation the minimal cover search runs faster. The search may find approximate denial constraints

sooner for larger degrees of approximation, even when there are still many evidence to cover.

The number of discovered denial constraints decreases, in most cases, with larger degrees of

approximation. But the num ber of denial constraints may also increase because discovering

specializations of more general denial constraints may change the general paths followed by the

cover search.

Figure 3.15 shows how D C fin d er behaves with different succinctness thresholds. We

restricted the discovery to denial constraints with up to a varying number of symbols (attributes

and operators). As expected, there are fewer short denial constraints— with predicates involving a

few attributes and operators. This result is reflected in the cover search runtime since there are far

fewer short denial constraint candidates to check. M ost of the denial constraints discovered for

75

610

105
104
103
102
10 1

10 7

to
B

Sifd <D to ÏHI
10'6 10'5 10-4 10'3 10'2 1 0 1
Degree of approximation

 Adults Flights
 Airports Hospital

Degree of approximation
Inspection Tax

 NCVoter

Figure 3.14: Influence of different degrees of approximation in the number of discovered denial constraints (left)
and cover search time (right). The axes are in log scale.

Hospital are functional dependencies with a few attributes, therefore, increasing the succinctness

threshold for this dataset did not affect the result.

2 3 4 5 6 7 8 9 10 11
Symbols
Adults
Airports

'B i o4id® m3
<j> 102
è i o '

2 3 4 5 6 7 8 9 10 11

Flights
Hospital

Symbols
Inspection

- NCVoter
Tax

Figure 3.15: Influence of different succinctness thresholds in the number of discovered denial constraints (left) and
cover search time (right). The Y axis is in log scale.

6

5

The evaluated datasets have no gold standard with a complete set of “interesting” denial

constraints, so reporting the recall of the discovered denial constraints would be subjective. In

an approach similar to [137], we report the precision of the top-k denial constraints. For this

experiment, we used the first 50,000 tuples of each dataset. We rank all denial constraints by

either coverage or succinctness, in ascending order; or degree of approximation, in descending

order. Then, we empirically verify each of the top-k denial constraints to mark it as meaningful

or not. The precision of each interestingness measure at k is given by the num ber of relevant

denial constraints found in the top-k divided by k . We inspected approximate denial constraints

of Flight and Inspection; and exact denial constraints of Tax, because of its synthetic nature. As

seen in Table 3.3, the interestingness measures generally achieved good precision rates. The

exception was the succinctness measure for Inspection , because some rules were under-fitted

due to the approximate cover search.

Table 3.4 reports a sample of the discovered denial constraints. Both coverage and

succinctness put the entry (p4 at the top. The denial constraint <p4 has no violations, and it

expresses an order relationship between attributes originairportid and originairportseqid. Such a

relationship is a good opportunity for query optimization. The entry (p5 is an approximate denial

constraint with relatively low succinctness, and low coverage. But because it has a small number

76

Table 3.3: Precision of the interestingness measures at k = 10.

Dataset £ Coverage Succinctness
Degree of

approximation

Flight 0 .0 0 0 1 1.0 1.0 1.0
Inspection 0 .0 0 0 1 0.7 0.5 0 .8
Tax 0 .0 0 .8 0 .8 -

of violations (i.e., low degree of approximation), it was straightforward to verify its correctness.

The rule has a potential use for data cleaning, because it reveals problem s with regard to the

operating names of a company and their facility type. The denial constraint <p6 is a meaningful

business rule that did not show up at the top ranked denial constraints of Tax, which shows that

the interestingness measures are sometimes imperfect. The denial constraint has predicates with

many different symbols and, therefore, low succinctness. The more predicates a denial constraint

has, the less likely a tuple pair is to add high coverage scores to that denial constraint.

Table 3.4: A sample of the discovered denial constraints.

Dataset Denial constraint

Flight <p4 : — (tx.originairportid > ty.originairportidA
tx.originairportseqid < ty.originairportseqid)

Inspection <p5 : —(tx.dbaname = ty.akaname A tx.address = ty. address
tx.facilitytype = ty. facilitytype)

Tax <p6 : —(tx.state = ty.state A tx.singleexemp < ty.childexemp
tx.childexemp > ty.childexemp)

Overall, it is possible to find relevant denial constraints by using measures of interest­

ingness quickly. Coverage and degree of approximation are particularly useful to spot records

that do not follow constraints satisfied by m ost of the data. The degrees of approximation and

succinctness has a high impact on the runtime of cover search and in the number of discovered

denial constraints. O f course, this brief analysis only scratches the surface of the problem of

ranking discovered denial constraints for further use. It does show the potential, though, and the

ability of D C f in d e r to incorporate relevance measures to speed up execution.

3.8 SUMMARY

M otivated by the need for maintaining the consistency of data, we investigated the

problem of discovering consistency rules expressed as denial constraints. We presented the

D C f in d e r algorithm for discovering all minimal, approximate, or exact, denial constraints of

relational datasets. In D C F i n d e r , building a complete, but compact, evidence set is broken

down into (i) creating PLIs; (ii) partitioning tuple pairs based on their ranges; (iii) preparing

evidence based on predicate selectivity; and (iv) completing evidence based on PLI relationships.

77

D C f in d e r uses evidence distribution to efficiently explore the large denial constraint search

space, and to calculate two measures: the number of violations of approximate denial constraints,

and the statistical significance of denial constraints based on data coverage. Our performance

evaluation shows that D C f in d e r is faster than all prior state-of-the-art for the discovery of

approxim ate denial constraints. The algorithm is, at times, even faster than the algorithms

specialized in discovering exact denial constraints only. O ur brief study on denial constraint

interestingness indicates that it is possible to quickly spot interesting denial constraints out of the

many denial constraints discovered.

78

Chapter 4

Automatic Discovery of Reliable Denial
Constraints

Data errors may appear as data outliers, duplicate records, violations of patterns (e.g.,

regular expressions), and violations of dependencies, i.e., data inconsistencies [138]. This

chapter focuses on tackling the latter class of errors by presenting a method that helps users to

choose which denial constraints they are to apply in their datasets to identify denial constraints

violations.

As we discussed in Chapter 3, the automatic discovery of denial constraints from

datasets is the natural alternative to designing denial constraints manually. However, there are

still some barriers that limit the use of discovery algorithms in real scenarios. First, the denial

constraints are as reliable as the data we use to discover them. Because obtaining 100% correct

data might be infeasible, denial constraint discovery must additionally accommodate potential

data errors. Second, the number of discovered denial constraints grows exponentially with the

number of columns in the relation. Even if we use correct data to discover denial constraints, a

great deal of the results may hold only by chance.

We introduce a method for guiding the discovery of denial constraints so that it returns

results that potentially helps in data cleaning. In summary, the contributions in this chapter are

the following:

• We show that the set of denial constraints discovered from clean (consistent) data typi­

cally differs from the set of denial constraints discovered from erroneous (inconsistent)

data.

• We present a method to discover denial constraints that uses potentially inconsistent data

to approximate the denial constraints that would be discovered in case the equivalent

correct data were available. Our method selects denial constraints based on their

statistical significance with regards to data distribution. We call the dependencies in

such a set as reliable denial constraints.

79

• We present an experimental evaluation that shows that the set of reliable denial con­

straints can detect data inconsistencies with high precision and recall.

4.1 PROBLEM DEFINITION

We consider two possible versions for a relation instance r. The instance rclean is

com plete and correct, whereas the instance rdirty is any version of rciean that is incomplete or

incorrect. Naturally, instance rdirty may contain errors and inconsistencies that are not present

in instance rclean. Let E rclean be the set of minimal denial constraints that hold in instance rclean.

By checking the records of rdirty with the constraints in Erclean, we find potential inconsistencies

of rdirty, which are detectable using the denial constraint formalism. In practice, this approach

is infeasible for two reasons. First, obtaining rclean is expensive, or even unrealistic. If the

instance rclean is not available, neither is the set E rclean. Second, even if it is possible to obtain

the gold instance rclean, many denial constraints of E rclean may hold only by chance, therefore,

not expressing any meaningful constraint. We still need to filter Erclean for meaningful denial

constraints.

Our hypothesis is that it is possible to discover a set of denial constraints Errel;able that

is close to the meaningful denial constraints of E rclean. Nonetheless, our goal is to only use the

instance rdirty to do so. In particular, the denial constraints of E rrel;able are expected to find real

inconsistencies of instance rdirty.

4.2 APPROXIMATE (BUT RELIABLE) DENIAL CONSTRAINTS

Denial constraint discovery algorithms use evidence from tuple pairs to find valid

(approximate and exact) dependencies. Recall that each piece of evidence etx ,ty is the predicate

set satisfied by the pair of tuples tx, ty, i.e., etx ,ty = {p | p e P, tx, ty |= p}. Different pairs of

tuples may satisfy the same predicate set. In practice, the number of distinct pieces of evidence

is only a fraction of the total pair of tuples of a dataset.

The evidence set Er is the set of all evidence in r. We use counter(e) to denote the

multiplicity of each piece of evidence e in E. The multiplicity of an evidence set is given by

II E|| = LeeE counter(e). Each piece of evidence represents a relationship between predicates of P

and the set of pair of tuples that have the same signature with regards to P. If an evidence e satisfy

the predicates {p1, . . . , pm}, any denial constraint having at least one predicate of {p1, . . . , pm}

cannot be violated by the pair of tuples that have produced the evidence e. Denial constraint

discovery algorithms calculate the evidence set Er of a dataset, then search for minimal covers of

Er. The negation of a minimal cover is a minimal denial constraint constraint.

An approxim ate denial constraint is the negation of a partial, minimal cover, i.e., a

cover for which there still exist violating evidence. The available denial constraint discovery

algorithms require a user to define the parameter e that limits the number of violating evidence

80

allowed in the minimal search cover. We propose a method to set such a parameter automatically

based on evidence distribution.

4.2.1 Evidence distortion

The pieces of evidence from pairs of tuples with errors are different from the equivalent

pieces the equivalent pieces of evidence from the equivalent pairs of tuples having their errors

fixed. Data errors degenerate the correct evidence set and the multiplicity of its elements. To

illustrate this behavior, we calculate two evidence sets for a dataset called Hospital: EHospitaiclean

and EHospitaidir . The details on the two versions of Hospital dataset are given in Section 4.3.

Figure 4.1 shows a relationship between the evidence in EHospitaiclean and EHospitaidirty •

For each evidence e e EHospitaiclean we plotted the multiplicity of the evidence e with regards

EHospitaiclean, and the multiplicity of the evidence e with regards EHospitaidirty (if e e EHospitaidirty).
First, most pieces of evidence in EHospitaiclean intersect with the pieces of evidence in EHospitaid i .

Second, there are only slight variations on evidence multiplicity. Smaller differences can be seen

for the evidence with larger multiplicity, whereas more pronounced differences appear towards

the tail of the plot. A few pieces of evidence from EHospitaiclean are not present in EHospitaid i ,

and a few pieces of evidence from EHospitaidi have a considerably higher multiplicity (mainly at

the tail of the plot). Besides, the set EHospitaidi also have hundreds of spurious evidence which

are not present in EHospitaiclean. For example, one-third of the evidence of EHospitaidi have a

multiplicity of one. Nevertheless, the central tendencies of both evidence sets are significantly

similar.

1 0 51 1 0 4
a 1 0 3
ï3 102
i— I 1

5 10
2 1 0 °

-N Over clean data
Over dirty data

-

Evidence set
Figure 4.1: Evidence multiplicity of EHospitalclean, and respective EHospitaldirty. X-axis is a function of the piecies of
evidence Of E Hospitalclgan - "

The degradation in tuple pair evidence directly impacts the quality and quantity of

discovered denial constraints. From the definition of approximate denial constraints (Definition

3), we observe the following.

Consider a minimal denial constraint <p1 : Vtx, ty e r, —(p1 A p2) of £ rlimpa. Without loss

of generality, we have two scenarios by checking a dirty instance rdirty with <p1. The first one is

if rdirty has no violations with regards to <p1; therefore, denial constraint <p1 is an exact denial

constraint in rdirty. The second scenario is if rdirty violates <p1; therefore, the denial constraint <p1

is an approximate denial constraint in rdirty.

In the latter scenario, discovering exact denial constraints of rdirty would return a

specialization of <p1, say for example ^ : Vtx, ty e r, —(p1 A p2 A . ..) . W hen the search for

81

minimal covers of evidence EHospita|d; hits the candidate with the predicates of <pi, there is still

evidence to cover. Hence, the cover search algorithm adds predicates to this candidate so it can

cover the remaining evidence. Doing so masks the pairs of tuples that violate denial constraint <p1

because its specialization <p1 cannot find the violations anymore. Because the search is likely to

cover more evidence, it is likely to reach longer paths, which increases the number of candidate

denial constraints.

The number of integrity constraints a database must hold is relatively small, but the

number of denial constraints discovered in production datasets can easily reach the thousands.

This number comes from the denial constraint search space that exponentially grows as a function

of the number of predicates in P. As we saw in Chapter 3, we can measure the semantic value of

denial constraints based on a measure called coverage. It expresses the statistical significance

of a denial constraint based on the weighted sum of tuple pairs scores. For a given a denial

constraint <p with |p | predicates, each tuple pair scores the denial constraint <p based on how

many predicates that tuple pair satisfies. The larger the num ber of tuple pairs satisfying some

predicates close to |p | — 1, the higher the coverage of <p.

The degeneration on evidence impacts both the number of discovered denial constraints

and the distribution of coverage values. Figure 4.2 shows the coverages scores of the denial

constraints in EHospita|c1ean and EHospita|d; , in descending order. The number of denial constraints

in EHospita|d; is order of magnitude larger than the number of denial constraints in EHospita|c1ean.

A single denial constraint of EHospita|c1ean may have multiple specializations in EHospita|d; . The

scores for these specializations reach different coverage values because the coverage estimation

is based on spurious and incorrect evidence. The set EHospita|d; also produces many new denial

constraints; most of them with many predicates, coverage close to zero, and without a clear

meaningful semantic.

The distribution of coverage scores can be numerically seen as a set of stationary parts.

The shaded areas of Figure 4.2 illustrate points of abrupt change in coverage. The number of

changes is smaller and smoother in the set of denial constraints E eHospitalciea„ In addition, the

set E eu , produces a larger number of abrupt changes, consequently, a larger number osHospitalc/ean

stationary parts. The coverage classification of EEHospltal; is numerically better because it shows

coverages scores that are evenly distributed, with a clear separation range.

Coverage

0 50 100 150 200 250 300
Set of DCs discovered from clean data

Change pointChange point
O)& a]
a! 0.5
5
u 0.0

0 1000 2000 3000 4000 5000 6000
Set of DCs discovered from dirty data

Figure 4.2: Coverage of the denial constraints in £HospitaicfcaB (left) and EHospitaidirty (right).

82

4.2.2 Setting the discovery of approximate denial constraints

Our goal is to discover a set of denial constraints Yconf that is close to a subset of Yclean

whose denial constraints have high coverage.

We first estimate the evidence set Erdirty, as the only data available is rdirty. While using

dirty data to produce knowledge is a challenge, it is usually safe to assume that a large percentage

of data is, in fact, correct. In that case, even though data errors cause some correct evidence to

fade away slowly, the central tendency is preserved. Because the variance of evidence multiplicity

is high, we use the median value of evidence multiplicity as a measure for a central tendency.

Let md be the median value of the multiplicity of Er. We estimate an evidence set

Emd such that Emd = {e | e e Er A counter(e) > md}. If we consider only the evidence in

Emd to discover denial constraints, we discard evidence that may be consistent with regards

to predicates that are not involved in errors. For example, some tuples may contain errors

in column A;, but not in column A j. We instead use the following formula to estimate an

error threshold: e = 1 — JjE q - 1) . We use this estimation with a traditional approximate denial

constraint discovery algorithm to guarantee that each discovered denial constraint is violated by

at most e • |r| • (|r| — 1) tuple pairs. The denial constraint search is performed based on an error

expectancy derived from the data itself.

The next steps are sorting the result set of denial constraints by coverage, calculating

the abrupt changes in coverage scores of these denial constraints, and then returning as Yconf

every denial constraint that appears before the first abrupt change.

We use a technique called change point detection to identify the abrupt changes [139].

Because all the coverage scores are known before-hand, we can use offline change point detection.

We can think of the sorted coverage scores as a finite signal u = {u1, . . . , u ^ |}. The change point

detection is to detect instants z1 < z2 < . . . < where there are abrupt changes in u. We assume

the number K of changes to be unknown. O ur im plementation uses a dynamic programming

algorithm called pruned exact linear time (PELT) method [140]. The method does not incur

any major runtime penalties, as the num ber of denial constraints is usually in the thousands.

The method has been shown to achieve a high proportion of true changepoints, and fewer false

changepoints [140, 139].

4.3 PRELIMINARY EVALUATION

We used DCfinder algorithm with the method described in Section 4.2 to discover a

set of denial constraints Yconf . We measured the precision and recall of this set in finding real

inconsistencies of datasets. Our prototype is a Java client connected to a PostgreSQL database.

We used two datasets that have been extensively used to evaluate data cleaning systems: Hospital

and Flights. The authors of [34] gently provided both clean and dirty versions of these datasets.

All inconsistencies in the dirty versions are known. H ospital dataset has 1000 records, 20

attributes, and error rate of 0.03; Flights has 2376 records, 6 attributes, and error rate of 0.30.

As baselines, we use DCfinder algorithm set with error thresholds used in related work e = 0.01,

e e = 0.05.

Table 4.1: Comparison in terms of detection of inconsistent tuple pairs.

83

Method Hospital Flights
Prec. Rec. Prec. Rec.

Method of Section 4.2 0.93 1.0 0.70 1.0
D C F in d e r with e = 0.01 0.08 1.0 0.06 0.52
D C F in d e r with e = 0.05 0.03 1.0 0.06 0.99

Table 4.1 shows the precision and recall each method achieved. Our method is consis­

tently better than the competitors and achieves good levels of precision and recall. Even if the

error rate of a dataset is high (i.e., Flight), it is still able to find all the inconsistencies in the

dataset. With the baseline approaches, many consistent tuple pairs are marked as incorrect, which

causes the precision to decrease. Furthermore, the baseline recall is sensitive to the parameter e ,

which shows that the measure must be chosen carefully. O ur method uses data distribution to

choose correct parameters without human intervention. Compared to the baselines, our method

does not significantly increase execution times neither memory consumption. That is expected

because our method only adds simple calculations on evidence multiplicity, and the change

detection algorithm has linear costs.

4.4 DISCUSSION

The promising results of Section 4.3 show that it is possible to discover reliable denial

constraints from inconsistent data. However, experiments need to be performed in larger

scenarios: more records, attributes, and varying rates of error. Obtaining 100% correct data is a

challenge, so future works shall include synthetic data to test the boundaries of our method.

84

Chapter 5

Efficient Detection of Data Dependency
Violations

A fundamental aspect of data quality is data consistency. Recall the definition given

by Fan: “D ata consistency refers to the validity and integrity of data representing real-world

entities” [1]. A natural way to capture data inconsistencies is to detect violations of data

dependencies [1, 22]. A dependency violation is a combination of values from one or more

records in the database that do not satisfy the value relationship imposed by that dependency. A

database is consistent if it holds no violation of the dependencies defined for it.

As we already discussed, there has been much research on reasoning, discovery, and use

of data dependencies [1, 24, 54, 22]. An important question is whether a dependency formalism

is able to capture the inconsistencies commonly found in production data, i.e., its expressiveness.

Early work has proposed to capture inconsistencies of traditional dependencies, such as functional

dependencies and inclusion dependencies [113]; and extensions of such dependencies have been

presented to overcome their expressiveness limitations [24]. Recent work has proposed to detect

(and possibly repair) violations of different types of dependencies at once [54, 34]. As we saw in

the previous chapters, denial constraints naturally align with such a holistic view. The formalism

is one of the most general forms of dependency discussed in the database literature since it

generalizes several different types of dependencies [32, 54, 34, 1]. A denial constraint expresses

a set of relational predicates that specify constraints on the combination of column values. Any

tuple, or set of tuples, that disagrees with these constraints is a denial constraint violation that

reflects inconsistencies in the database.

The detection of denial constraint violations is an expensive operation [54, 34]. Data

cleaning systems based on the formalism either rely on database management systems [34] or

implement a module [54] for this task. As many legitimate denial constraints express constraints

on pairs of tuples, detecting their violations exhibits a quadratic time complexity in the number

of tuples [54]. This complexity is perhaps the reason the experimental evaluations of systems

based on denial constraints are limited to simple dependencies (mainly functional dependencies)

85

or small datasets. In many real-world scenarios, however, data cleaning has to deal with large

datasets and complex denial constraints.

We present V i o F i n d e r as our denial constraint violation detector. In summary, the

contributions in this chapter are the following:

• We describe the specialized data structures that V i o F i n d e r uses to reduce memory

overheads and enable its algorithms to perform fast operations.

• We present a custom izable operator that lets us use effective algorithms to deal with

complex denial constraints.

• We present an execution model that avoids materialization of large intermediates and

enable optimizations inter operators.

• We provide an experimental evaluation showing that the design choices in V i o F in d e r

enable the algorithm to perform efficiently for several kinds of denial constraints.

The remainder of this chapter is as follows. In Section 5.1, we discuss the background

and previous solutions for data dependency detection. In Section 5.2, we introduce the design

of V i o F i n d e r and in Section 5.3 its several algorithms. Then, in Section 5.4, we present our

experimental results: We compare V i o F in d e r with a tool based on denial constraints and

several database management systems and demonstrate that V i o F in d e r is orders of magnitude

faster than the competitors in many cases. In Section 5.5, we present our conclusion.

5.1 BACKGROUND AND PREVIOUS SOLUTIONS

In this section, we first present the fundamentals to represent data dependencies and data

inconsistencies. Then, we review baseline approaches for the detection of data inconsistencies.

5.1.1 Denial constraints in violation detection

Denial constraints use relationships between predicates to specify inconsistent states

of column values. In this chapter, we focus on denial constraints using predicates without

constants, as they are computationally expensive and thus a more interesting type. We also focus

on predicates over two distinct tuples, because they can express those data dependencies that

are more common in practice. Nonetheless, we present an architecture and operator that can be

extended to support denial constraints with other predicate forms.

Recall that for a relation to be consistent with a denial constraint <p, there cannot exist

any pair of tuples such that the conjunction of the predicates of <p is true. Consider the relation

hours in Table 5.1 and the following constraint: For any two employees with the same role,

the one who has worked more hours should not receive a lower bonus than the other. This

86

constraint is expressed as a denial constraint as follows (we use new identifiers for each new

denial constraint as they now refer to the relation hours):

91 : —i (tx .Role = ty.Role A tx.Hours > ty. Hours A tx. Bonus < ty. Bonus)

In Table 5.1, tuples t 1 and t 2 share the same value of Role. Between those two, tuple t 1 has the

highest value of Hours, so it should not have the lowest value of Bonus. This means that the pair

of tuples (t1; t 2) is a violation of <p1, and hence Table 5.1 is inconsistent.

Table 5.1: An instance of the relation hours.

EmpID ProjID Role Hours Bonus

tl E l P1 Developer 4 $2000
t2 E2 P1 Developer 2 $3000
t 3 E3 P1 Developer 4 $4000
t4 E l P2 DBA 4 $4000

5.1.2 Detection of denial constraint violations

A naive approach to detect the violations of a denial constraint is to evaluate its con­

junction of predicates for each pair of tuples. If the evaluation is true, then we add that pair of

tuples to the result. This approach exhibits a quadratic time complexity in the number of records,

which can be computationally prohibitive for large relations. A straightforward alternative is to

use SQL with the query processing capabilities of database management systems. However, this

might not eliminate the quadratic complexity either, as we discuss next.

The predicates of denial constraints compare the values of columns between two tuples

of the same table. Therefore, a simple self-join query using the predicates of the denial constraint

in the where clause exposes the violations. The following example shows a SQL query that finds

the EmplD’s of tuple pairs that violate the denial constraint <p1:

1 s e l e c t tx . EmpID, ty . EmpID

2 fro m h o u r s tx , h o u r s ty

3 w h e re tx . Role = ty . Role

4 a n d tx . Hours > ty . Hours

5 a n d tx . Bonus < ty .B onus;

Related work has reported that self-joins (and mainly inequality self-joins) have received

little attention in commercial database management systems [141]. Indeed, our experiments with

three different database management systems exposed two main issues: (i) excessive memory

requirements; and (ii) use of ineffective join algorithms. Some database management systems

87

run out of memory or took more than one hour to execute queries for com mon functional

dependencies on samples with 200K tuples. In addition, most database management systems rely

on nested-loop approaches for self-joins with range predicates, which may result in extremely

long runtimes.

Indices might not help either: the conditions to detect violations often require validating

all the records with table scans. The database management system may not use the indices in

the query plans, and the few cases that indices are chosen do not pay off for the costs of index

creation. One of the reasons for the poor performance of database management systems is the

expected cost to materialize self-joins, which is quadratic in the number of records in the worst

case [142]. This cost is evident when denial constraints require high-cardinality predicates, such

as a range predicate for an order dependency with many qualifying tuples.

5.1.3 Previous solutions for detection of denial constraint violations

Most of the recently presented data cleaning tools use traditional database management

systems as their mechanism for detection of denial constraint violations [35, 105, 34]. These

tools inherit the performance issues discussed earlier, and their evaluation experiments use only

small datasets or only simple dependencies, such as functional dependencies. Implementing

a dedicated denial constraint violation module is an alternative, for instance, Chu et al. do so

using pairwise comparisons [54]. However, their experimental evaluation also uses only a small

number of records (i.e., up to 100K tuples).

Closer to our work is the denial constraint violation detection com ponent of H YDRA

- a state-of-the-art algorithm for denial constraint discovery [55]. Efficient detection of denial

constraint violations is a central part of the algorithm, so the authors have proposed novel

techniques to handle the problem. There are two main ideas in this component: The use of

specialized data structures; and the customization of algorithms for different predicate types.

W hile these ideas have inspired our project, the way VIOFINDER organizes and operates on its

data structures is different from H YDRA. For example, HYDRA uses the IE JOIN algorithm, which

has been shown to deliver efficient performance for self-joins based on range predicates [141].

Our system, in turn, uses a novel sort-merge approach that can be even faster than IE Jo i n . We

also use different approaches for other types of predicate, as discussed later in this chapter. We

use HYDRA and IEJOIN as the main baselines in our experimental evaluation.

5.2 THE VIOFINDER SYSTEM

V IOF INDER is designed to deliver robust perform ance for different types of data

dependencies. In this section, we introduce key ideas that enable V IOF INDER to avoid the

issues outlined in Section 5.1.2, e.g., nested-loop joins and materialization overhead. We

describe specialized data structures in Sections 5.2.1 and 5.2.3; key operations in 5.2.2; and the

architecture of VIOFINDER in Section 5.2.4.

88

5.2.1 Cluster, cluster pairs, and partitions

We use specialized data structures to represent enumerations of pairs of tuples in a

compact manner. A c lu s te r c is a set of tuple identifiers (the tuple position within the table). A

c lu s te r p a i r is an ordered pair (c1, c2) that represents the set of all pairs of tuples (tx, ty), such

that tx e c1, t y e c2 and tx = t y. For instance, the cluster pair ({ t1}, | t 1; t 2, t3}) represents the

set of pairs of tuples (t1; t 2), (t1, t3). A p a r ti t io n L is any set of cluster pairs.

Clearly, partitions consume much less memory than exhaustive enumerations of pairs

of tuples. For a relation r with n tuples, the cluster pair ({ t1, . . . , tn}, { t1, . . . , tn}) represents the

whole Cartesian product r x r using only 2n integers, whereas the equivalent enum eration of

pairs of tuples requires n(n — 1) pairs of integers to do so.

5.2.2 Refinement of columns and partitions

The first key operation of V i o F i n d e r is the re fin e m e n t o f c o lu m n s . A c o lu m n re fin e r

takes as input one predicate and returns partitions containing cluster pairs that represent every

pair of tuples that is true for the input predicate. As an example, consider the refinement of

columns for the predicate tx.Role = ty.Role and the records in Table 5.1. The refinement gives

us a partition with a single cluster pair: [({t1; t 2, t 3}, { t1; t 2, t 3})] - the cluster pair ({t4}, { t4})

is discarded since it does not produce any pair of distinct tuples. The main primitive here is a

full table scan for each column of the predicate. How to use these scans depends on the type

of comparison operator in each predicate. In Section 5.3, we describe how to im plem ent the

refinement of columns for the different comparison operators. For now, we assume column

refiners to be “black-boxes” . Besides, we assume a random sequence of refinements— we

discuss how to order refinements for better performance in Section 5.2.5.

The second key operation of V i o F i n d e r is the re fin em en t o f p a r t i t io n s . Each p a r tit io n

re fin e r takes as input a predicate and a partition and produces new partitions containing cluster

pairs with every pair of tuples that is true for the input predicate, and of course, true for the

predicates in the past refinements that produced the input partition. As an example, consider

again the partition from predicate tx.Role = ty.Role described earlier: [({t1;t 2, t 3}, { t1;t 2, t 3})].

Pushing this partition into the refinement of partitions for the predicate tx.Hours > ty.Hours

produces the partition: [({t1; t 3}, { t2})]. If we push this last partition further into the refinement

of partitions for the predicate tx .Bonus < ty.Bonus, we obtain the partition [({t1}, { t2})]. This

partition represents the violations of the denial constraint ç 1. The refinement of partitions is

similar to the refinement of columns. However, the former requires fetching only the values of

columns of the tuples in the partitions, instead of entire columns as the latter requires. Another

difference is in the type of optimizations we can use in each type of refinement, which are

described in Section 5.3.

89

5.2.3 Cluster indexes

A common step in the refinement of columns is the creation of cluster indexes on the

columns of predicates. Let V be the set of values in the domain of column A. For every value

v e V, we assign a cluster c with all tuples having v as the value in column A. The cluster index

HA is a hash map where each entry maps a value v e V into its cluster c. For instance, the

cluster index H Roie is: [(“Developer” , { t1, t 2, t3}), (“DBA” , | t 4})]. Similarly, the refinement of

partitions requires the creation of conditioned cluster indexes HA,c. We fetch column values

of the tuples in the cluster then create a hash map such that each distinct value fetched is

mapped into a cluster with all tuples having that value. For example, the conditioned cluster

index H Hours,{t1 ,t2,t3} is: [(2, { t2}) , (4, { t1, t3 })].
We considered three facts to choose an implementation for clusters, which are essentially

sets of integers. First, the size of cluster indexes grows linearly with the number of distinct values

of a column since these values are mapped to one cluster each. Second, refinement algorithms

produce partitions containing many cluster pairs. Third, these algorithms have to compute

unions or differences of clusters. These facts led us to employ Roaring (compressed) bitmaps,

a hybrid data structure that combines bitmaps with sorted arrays to achieve good compression

rates [143]. As a result, we can store large numbers of clusters with many integers using less

memory. Besides, Roaring bitmaps perform fast unions and differences as bitwise OR and AND

NOT operations which are, in many cases, even faster than non-compressed counterparts. For

algorithmic details on Roaring bitmaps, we refer the reader to [143].

5.2.4 System overview

V i o F in d e r assigns a refiner to each denial constraint predicate, based on the predicate’s

form, and refiners connect with each other through a partition pipeline. Each column of the

dataset is kept as an in-memory array so that refiners can fetch the values of the columns in their

predicates. Partition pipelines work as push-based iterations. Figure 5.1 illustrates a pipeline with

three refiners. Each partition is linked to either a next refiner or to the output. In the former case,

the current refiner produces a new partition and pushes it to the next refiner, which immediately

starts consuming the cluster pairs one by one. In the latter case, no more refinement is necessary,

so partitions are pushed to the output. At this point, the concrete violations are materialized.

The partition pipeline has the following properties:

Custom izable refinem ent. Conceptually, refiners im plem ent a produce/consum e interface so

that different refinement implementations and optimizations can be used at different stages of the

pipeline. Instead of using a general-purpose refinement strategy (e.g., nested loop), V i o F in d e r

uses different refinement strategies depending on the form of the predicate.

C ontro lled in term ediates. Som e refinements might produce large intermediates. To avoid

excessive resource utilization, our refinement algorithms check the size of current partitions

90

Figure 5.1: Example of a partition pipeline.

before pushing new tuples into the pipeline. As a result, refinements can use logical optimizations

that work for multiple tuples at a time, while avoiding materializing large intermediates.

Late materialization. V i o F in d e r does not fully materialize tuples until after the last refinement

in the pipeline has been processed. As a result, refiners need to fetch only the values of the

columns of its predicates— partition refiners in particular- do so only for tuples from previous

refinements. Such a scheme maximizes the use of memory bandwidth: only the necessary parts

of relevant tuples are fetched in each stage of the pipeline.

Cluster pair processing. The actual refinement is computed at the level of cluster pairs with

four primary steps:

1. Iteration over the tuples in each cluster— a tight loop suffices to iterate entire clusters

fast because they usually have far fewer tuples than the relation.

2. Fetch of column values— as already mentioned, only the column values that are relevant

for a refinement are fetched.

3. Build of auxiliary data structures— the auxiliary data structures in refinements usually

have a low memory footprint since they grow with the clusters.

4. Refinement logic— some forms of partitions allow refinements to skip tuple fetches,

which improves performance.

These properties also apply to column refiners, with the difference that entire columns are fetched

in Steps 1 and 2.

91

5.2.5 Order of refinements

The order of the denial constraint predicates (and, therefore, refinements) has a sig­

nificant im pact on performance. Choosing a poor predicate order might produce very large

intermediate partitions, causing significant overhead in intermediate refinements. We choose the

order of predicates based on predicate selectivity. The selectivity of a predicate is the fraction of

pairs of tuples in a relation that satisfy that predicate. We estimate approximate selectivities using

a small random sample of pairs of tuples (without replacement), then we order the predicates

from most selective to least selective. This technique is also used in H y d r a [55]; however, the

algorithm uses a larger sample. For every tuple in the dataset, HYDRA samples a small number

of other tuples to form pair of tuples. We found that using a fixed small sample bounded to 1M

elements produce the same predicate order, and it is faster to estimate. We refer to [144] for a

deeper discussion on selectivity estimation; such a discussion is beyond the scope of this thesis.

5.3 REFINEMENT ALGORITHMS

Denial constraints support predicates of several different forms for backing a wide

range of data dependencies. These predicates include comparison using different operators

within a single column or across two different columns. In this section, we present refinement

algorithms that take the predicate form into account for efficiency. For convenience, we divide

the presentation of these algorithms into equijoins with the equal to operator {= } , antijoins with

the not equal to operator {= } , and non-equijoins with range operators {< , < , > , > } . M ost of

the algorithms operate for a single predicate at a time. There is one particular case in which the

refinement combines multiple predicates for better performance.

5.3.1 Equijoins

The most basic form of refinement is the refinement of columns for equality predicates

on a single column, such as tx.A = ty.A. The first step is to build a cluster index HA. Each

cluster c of HA is precisely a set of tuples having the same value v, so we can use cluster pairs in

the form of reflexive relations (c, c) to represent all pairs of tuples that have the same value v in

column A. Clusters with only one tuple are ignored, because they cannot produce pairs of distinct

tuples. We insert each valid cluster pair (c, c) into the output partition L and check its size. If the

number of cluster pairs in the partition L exceeds a threshold, we stop iterating the clusters in the

cluster index HA, and push the partition L into the next level of the pipeline. O f course, the next

call to the refiner skips the clusters pairs of HA that have already been processed.

Some refinements might produce large intermediate results. After all, refinements are

equivalent to the self-joins in the predicates of a denial constraint, which often join non-key

columns. Nonetheless, we can avoid the full materialization of large intermediates by controlling

the size of partitions currently being processed, as in our first refinement algorithm. Refinements

92

stop producing new cluster pairs as soon as the num ber of cluster pairs in a partition exceeds

a threshold, or when it has no more pairs of tuples to compute. In the former case, the state of

the refinement is saved so that a next call to it starts producing new cluster pairs from where

it stopped earlier. For simplicity, we do not elaborate on these procedures for the remainder

refinement algorithms.

Equality predicates on single columns are very com mon in denial constraints. For

instance, denial constraints use them to represent unique constraints or the left hand side

of functional dependencies. Refinements of this type of predicate are related to a concept

in dependency discovery known as equivalence classes [22]. Compared to other forms of

predicates, equality predicates have lower selectivity so that ordering the refinements put them

first in the pipeline. In addition, we observe that partitions can only reduce in size as they go

through the pipeline stages for sets of predicates with this form. For instance, the partition for

predicate tx.Role = ty.Role is [({t1, t 2, t3}, { t1, t 2, t3})], and the partition for the conjunction of

predicates tx.Role = ty.Role A tx.Hours = ty.Hours is [({t1, t 3}, { t1, t3})]. We take advantage of

this fact with a code pattern that reduces clusters as fast as possible and, therefore, reduces the

materialization of intermediate partitions.

A lgorithm 4 is a special case of refinement that handles multiple predicates at once,

namely multiple equality predicates on single columns. In the initial call r e f i n e C l u s t e r (c r,

A1, L) in Line 12 we build a cluster index with every tuple in the table. W hen we

call r e f i n e C l u s t e r (c , A;, L) for i > 1, every tuple in c have the same com bination of

values in columns A1, . . . , Ai-1 . As a consequence, the tuples in the clusters c! of the conditioned

cluster index HA i,c (Line 2) have the same combination of values in columns A1, . . . , A;-. The

base case occurs when there are no further predicates to check, in which case we insert cluster

pair (c, c) into the output partition L (Line 9).

A lgorithm 4: Refinement of columns for predicate sequence of the
form p1 : tx.Ai = ty.Ai , . . . , pi : tx A = ty.Ai

1 Function r e f i n e C l u s t e r (c , Ai, L)
2 let HAi,c be a conditioned cluster index
3 let C be the set of clusters in H a; ,c
4 foreach c' e C do
5 if c'.size > 1 then
6 if there exists a predicate pi+1 then
7 | r e f i n e C l u s t e r (c ' , A i + 1,L)
8 else
9 | Insert cluster pair (c', c') into L

10 initialize an empty partition L
11 initialize a cluster cr with every tuple of table r
12 r e f i n e C l u s t e r (c r, A1, L)
13 re tu rn L

93

The refinement of columns for equality predicates on two different columns, tx . A = ty . B,

is similar to traditional hash joins. We first build cluster indexes HA and HB. The cluster index

HA acts as the “build input” , whereas cluster index HB acts as the “probe input”— we assume

column A to produce fewer entries than column B . We iterate the values v in the cluster index

HA and, for each of those, we probe cluster index HB. If cluster index HB contains the value v,

then we combine the cluster assigned to the value v in HA, denoted c a , with the cluster assigned

to the value v in H B, denoted cb. The cluster pair (ca, cb) indicates that every tuple t e ca have

the same value in column A , which is equal to the value of every tuple t y e cb in column B .

The refinement of partitions for an equality predicate on two (not necessarily different)

columns is shown in A lgorithm 5 . We iterate each cluster pair (c1, c2) in the input partition,

for which we retrieve two conditioned cluster indexes: HA,c1 and HB,c2. The remainder of the

algorithm is analogous to the refinement of columns for equality predicates on two different

columns. The difference is that build-inputs are conditioned cluster indexes HA,c1, whereas

probe-inputs are conditioned cluster indexes HB,c2.

A lgorithm 5: Refinement of partition Lin for predicates of the form tx .A = t y.B (A
and B can be equal)

1 initialize an empty partition Lout
2 foreach cluster pa ir (c1, c2) e Lin do
3 let HA,c1 and HB,c2 be conditioned cluster indexes
4 let V be the set of values in HA,c1
5 foreach v e V do
6 cB ^ H B(v)
7 if cb is no t null then
8 ca ^ HA(v)
9 Insert cluster pair (ca, cb) into Lout

10 re tu rn Lout

The algorithms we have presented so far take linear time in the num ber of tuples. In

short, we fetch column values, build cluster indexes using hashing, and iterate the entries in these

clusters to emit partitions.

5.3.2 Antijoins

The following refinement of columns detects pairs of tuples having different values of

a single column, i.e., predicates of the form tx.A = ty.A . We need to insert cluster pairs (c, c')

into the result partition: Cluster c is each cluster of the cluster index HA; and cluster c' is the

relative com plement of cluster c in a cluster with all tuples in the table cr — also termed set

difference c' ^ cr \ c. We do as follows to detect pairs of tuples having different values for two

different columns, t x.A = t y.B . Given an entry (v, ca) in the cluster index HA, we check whether

there exists an entry (v, cb) in the cluster index HB. If so, we insert a cluster pair (ca, c') into

the result partition, where c' ^ cr \ cb. Otherwise, the value in column A of the tuples in ca is

94

different from the values in column B of every tuple in the table; then we insert a cluster (ca, cr)

into the result.

The refinement of partitions for antijoin predicates is given as Algorithm 6 . For each

cluster pair (c i, c2) in the the input partition Lin, we retrieve the conditioned cluster indexes

HA,C1 and H b,C2. Then, for each value v (with assigned cluster ca) of cluster index HA,Cl we

search for a cluster cb in the cluster index H b,C2. In a successful search, we use the relative

com plement of cluster cb in the cluster c2 to form the result cluster pair with ca (Lines 8 -1 0).

Otherwise, cluster c2 has no tuple whose value in B is v, so it can be directly combined with

cluster ca in Line 12.

A lgorithm 6: Refinement of partition Lin for predicates of the form tx.A = ty.B (A
and B can be equal)

1 initialize an empty partition Lout
2 foreach d u s te r p a ir (c1 , c2) e Lin do
3 let HA,C1 and H b,C2 be conditioned cluster indexes
4 let V be the set of values in HA,C1
5 foreach v e V do
6 CA ^ H A(v)
7 CB ^ H B(v)
8 if cb is no t null then
9 C/ i C2 \ CB

10 Insert cluster pair (ca, c/) into Lout
11 e se
12 Insert cluster pair (ca, c2) into Lout
13 re tu rn L

With regard to time complexity, building and probing cluster indexes takes linear time

in the number of tuples. In addition, the algorithms for antijoin predicates have the additional

cost of set difference operations (e.g., Line 9 in A lgorithm 6). The selectivities of these types

of predicates are usually high, so their respective refinements might produce large intermediate

partitions. In practice, these type of refinement come last in the pipeline, at a point where most

pair of tuples have already been filtered out.

5.3.3 Non-equijoins with range operators

Let us next consider the refinement of columns for range predicates of the form tx.A >

ty.A. We build the cluster index HA and sort its entries in ascending order according to the keys

(the distinct values of the column). For clarity, we denote such sorted maps with H A . For the

sorted entries (v1, c1) , . . . , (v^ c) e H a we have the following: Every tuple in the cluster a has a

value vi that is greater than the values Vj in the tuples of clusters Cj, for all j < i. For each cluster

C /, we form a cluster pair (a , c /) such that c / = (Jj=1 Cj. A t each iteration i, we com pute the

cluster Ci/ using a copy of the last cluster ci-1 / and only one union operation. Finally, we insert

95

each cluster pair (c;, c ') into the output partition L. For predicates of the form tx. A > = ty. A we

must include c; into the right hand side of the cluster pair, so we compute clusters c ' = (Jij-=1 cy.

The algorithm is symmetric for predicates of the form t x.A < ty.A and t x.A < t y . A with the

entries of the cluster index HA in descending order according to the keys. In the worst case, the

values of column A are all distinct, thus, cluster indexes have n entries. In this case, the time

complexity is dominated by the time spent to sort these n entries plus the time to perform n union

operations.

The remaining of the refinement algorithms are based on the sort-merge paradigm. The

general idea is to iterate sorted cluster indexes to incrementally find and build matching cluster

pairs from previous iterations. A lgorithm 7 shows the refinement of columns for a predicate

on two different columns, such as tx.A > t y.B . After building sorted cluster indexes HA and

H b in Line 2, we filter their values out for those entries that cannot form cluster pairs that

satisfy the predicate. That is, we remove from cluster index H a the entries with values that are

smaller than the smallest value of cluster index H b , and from H b the entries with values that

are greater than the greatest value of H a . If the cluster indexes H a and H b are empty at this

point, there are no matching cluster pairs so the algorithm returns an empty partition. Otherwise,

the first entry (vhigh, chigh) of cluster index H a has a value that is strictly greater than the value

of the first entry (viow, ciow) of cluster index H b , so we form the first cluster pair that satisfy the

predicate (Lines 4 - 7). Such cluster pairs are kept in variables p a ir that are updated as we find

new matching clusters.

The merge part of the algorithm begins in Line 9 . We use the value vhigh used to form

the current p a ir and find matching entries (viow, ciow) in the cluster index H b that also satisfy

the predicate. Then, we update the right hand side of p a ir to include the tuples of clusters ciow

(Lines 9-12). W henever we find a non-matching entry, we update the left hand side of p a ir

(Lines 14-17). That is because there might be entries in H a with values vhigh that, despite being

smaller than the current viow, are greater than the values viow previously used in Lines 9-12. By

doing this, we keep as much tuples as possible within the the same cluster pair. We find the

starting point of a new matching cluster pair whenever we find a new entry (vhigh, chigh) in H a

with a value vhigh greater than the current viow (the else clause in Line 18). At this point, the left

hand side of the new cluster pair is chigh and its right hand side is the union of the tuples in the

current ciow with all tuples in the ciow from previous iterations. In other words, the right hand

side of p a ir can only expand. We repeat the while loop in Line 9 until there is no entry in H b to

visit. Finally, we perform a last update in the left hand side of the last p a ir with any left entry of

cluster index HA (Lines 24-26).

The time complexity for Algorithm 7 is given by the time spent to build and sort cluster

indexes, plus the time spent in merging these clusters. W hile the merge loop runs in O(2n)

(assuming n entries in each cluster index), performing cluster unions and copies depends on the

internal states of their bitmaps.

96

A lgorithm 7: Refinement of columns for predicate of the form tx.A > ty.B

1 initialize an empty partition L
2 let JHa and J b be sorted cluster indexes
3 remove from HA and JHb those entries that do not produce cluster pairs

for tx.A > ty.B

4 (vhigh, chigh) ̂ . n e x t o
5 (viow, c lo w)^ J . n e x t ()
6 pa ir ^ (chigh, clow)
7 Insert pair into L

8 if JH A .h a sN e x t() o r J J b.h a s N e x t () then
while J J b.h a s N e x t () do

(viow, ciow) ^ J . n e x t ()
if vhigh > viow then

| pa ir .r h s ^ pa ir .r h s U c|ow
else

while JH A .h a sN e x t() do

(vhigh, chigh) ̂ J .n e x t ()
if vhigh < = viow then

| p a ir .l h s ^ p a ir .l h s U chigh
else
ctemp ^ a copy of pair..rhs
ciow ̂ ctemp U ciow
pa ir ^ (chigh, ciow)
Insert pa ir into L
b reak

while J J A .h a s N e x t() do
(vhigh, chigh) ̂ ^ A .n e x t ()
p a ir .l h s ^ p a ir .l h s U chigh

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 re tu rn L

Algorithm 7 requires minor changes to work with operator > , and it is symmetric for

operators in {< , < } , with cluster indexes and sorted in descending order of keys. The

refinement of partitions for predicates with operators in {> , > ,< , < } and two (not necessarily

different) columns also follows Algorithm 7 with minor changes. The starting point is building

conditioned cluster indexes for each cluster pair in the input partition. The rem ainder of the

algorithm is the same as described above.

5.3.4 Cached cluster indexes

The partitions produced by refinements of range predicates, with operators in {>

, > , < , < } , have a great deal of redundancy across the right hand sides of their cluster pairs.

As an example, observe the output of the refinement of columns for predicate t x .B onus <

t y.B onus: [({t 2}, {t i}), ({t 3, t 4}, {t i, t 2})]. If we were to com pute conditioned cluster indexes

97

for cluster { t1} and | t 1; t 2} from scratch, we would require to fetch tuple t 1 twice instead of

just once. For larger clusters, the waste would be high, and the running time would increase

dramatically. To avoid unnecessary tuple fetches, V i o F in d e r employs a simple, but efficient,

cache mechanism.

The cache works for the refinement of partitions holding incremental redundancy on

the right hand side of their cluster pairs. Such partitions derive from refinements (of both

columns or partitions) that use predicates with operators in {> , > , < , < } . V i o F i n d e r maintains

a conditioned cluster index H A ,Ccache, where cluster ccache is a set of tuples that had its values of

column A already fetched. Assume we are about to build a conditioned cluster index H A ,C. We

compute the relative difference of ccache in c, that is, cd/ / = c \ Ccache. If this result is non-empty,

then we already have a portion of the cluster index H a ,c as the cluster index H A ,Ccache. In this

case, we fetch the remaining values of column A we need, that is, the tuples of cd//. We use these

values to update HA C , . At this point, the cluster index HA C ,, holds the entries required* 'v^cache r ' v 1- cache 1
for H a ,c, so we can proceed with the remaining parts of the refinement. On the other hand, an

empty result of the relative difference means that the sequence of redundant tuple has stopped, so

we can no longer use the previous H A ,Ccache. In this case, we must build the a new cluster index

HA C ,, from scratch.a ,c cache

5.4 EXPERIMENTAL EVALUATION

We ran several experiments with V i o F i n d e r , three database management systems, and

a system tailored for denial constraints. In this section, we compare the perform ance of these

systems and analyze the design choices of V i o F i n d e r .

5.4.1 Experimental setup

D atasets an d denial constrain ts. We used three datasets and eight denial constraints, as shown

in Table 5.2. The T ax dataset is a synthetic compilation of tax-records of US individuals. We

generated various T ax instances (with up to 100M records) using the data generator from [24].

The denial constraints $3- $ 5 are defined for the single table of the T ax dataset. The TPC-H

dataset is extracted from the synthetic TPC-H benchmark. We used a scale factor of ten to

produce TPC-H instances with up to 60M records. The denial constraint $ 6 is defined for the

denormalization of tables /ineitem and orders, and the denial constraints $7 and $ 8 are defined

for the /ineitem table alone. The IMDB dataset is extracted from the real-world movie dataset

described in [145]. The denial constraint $ 9 is defined for the denormalization (with up to

2.5M records) of tables tit/e and fcind_fype, and the denial constraint $ 10 is defined for the

denormalization (with up to 5.8M records) of tables cast_in/o, tit/e, aka_name, name, ro/e_type,

and char_name. These denial constraints were designed to cover various types of dependencies:

Unique constraints ($3 , and $ 10), functional dependencies ($ 2 and $9), order dependencies ($7),

and other dependencies with complex relationships ($ 5 , $ 6 , and $ 8). Even though some of

98

them may not hold in production, they have complex predicate structures that challenge the

performance of the evaluated systems.

Table 5.2: Datasets and denial constraints for experiments.

Dataset Denial constraint

At.C hildE xem p = t'.C h ildE xem p)

i(t .S ta te = t '.S ta te A t.S a la ry > t '.S a la ry
At. R ate < t '.R a te)

i(t.C u s to m er = t '.S u p p lie r A t.S u p p lier = t '.C u s to m er)

i(t.E x ten d ed _ p rice > t'.E x ten d ed _ p rice
At .D isco u n t < t '.D isc o u n t)

A t.R ece ip td a te > t '.S h ip d a te A t .S h ip d a te < t '.R e c e ip td a te

A t.T itle = t '.T it le A t.P ro d u c tio n Y ear = t '.P ro d u c tio n Y ear
At.K ind = t'.K in d)

- (t.T itle = t '.T it le A t.R o le = t '.R o le
At.N am e = t '.N a m e A t .C h arN am e = t '.C h arN am e)

T ax ^ 3:

T ax ^ 4 :

T ax 0 5 :

TPC-H 0 6 :

TPC-H ^ 7 :

TPC-H 0 8 :

IMDB 0 9:

IMDB 0 10

I

Baselines. We com pare V i o F i n d e r with the com ponent for detection of denial constraint

violations described in [55], referred to here as H y d r a - I E J o in . In addition, we compared our

system with three database management systems: PostgreSQL (v.12.1), MonetDB (v.11.35.3),

and SQLServer (v.2019 CU3). These systems have different query processing models, with

different impact on the materialization of intermediate data. PostgreSQL implements the tuple-

at-a-time model that moves entire tuples around the memory hierarchy. In contrast, the column-

at-a-time processing model of M onetD B fetches only the columns in the SQL statement, but

keeps the interm ediate data in memory along the entire processing. SQLServer implements a

middle ground with a vector-at-a-time model.

Im plem entation . We implemented V i o F in d e r as a standalone tool in Java, that runs in main-

memory after dataset loading. We used the Roaring bitmap library to im plem ent clusters 1.

H y d r a - I E J o in is also a standalone tool that runs in main-memory. We used the Java im ple­

mentation provided by the authors. To use the database management systems, we translated each

denial constraint in Table 5.2 into a SQL query and executed it using the vanilla version of the

three database management systems. We created indexes on all predicate columns to investigate

if and when the database management systems improve their execution plans. We checked all

implementations separately and they all return the same result. We did not need to materialize

the violations, so we used a s e l e c t c o u n t (*) projection in each query to return only the

1h t t p s : / / g i t h u b . c o m / R o a r i n g B i t m a p / R o a r i n g B i t m a p

https://github.com/RoaringBitmap/RoaringBitmap

99

number of violations. By the same token, we set the standalone tools to return a count with the

number of violations in their output.

In fra s tru c tu re an d execution. We used a server running Debian 10 (buster) as the experimen­

tation platform. The server is equipped with twelve sockets, each with an Intel(R) Xeon(R)

CPU E7-8837 octa-core processor running at 2.67GHz, 756GB of RAM, and 2TB of disk. All

executions were single-threaded. V i o F i n d e r and H y d r a - I E J o in run on a O racle’s JDK

64-Bit Server VM 1.8.0 with maximum heap size set to 32GB. The numbers in the reports are

the average measurement of three independent runs. We used a default threshold of ten cluster

pairs for V i o F i n d e r .

5.4.2 Performance evaluation

C om parison w ith baselines. We measured the runtime of all denial constraint violation detec­

tors on different datasets and denial constraints. To be able to run the SQL queries within a time

limit of 3 hours, we used a sample with 200K records of each dataset. Runtimes are broken down

into loading, preprocessing, and querying. For the database management systems, these measures

are, respectively, the time spent to load the raw files into the database management system, create

indexes, and execute the query. For H y d r a -IE Jo i n , these measures are, respectively, the time

spent to load the raw files into memory, map the input into integer domains plus the time to

decide predicate order, and execute the algorithm. V io F i n d e r ’s runtime composition is similar

to H y d r a -IE Jo i n ’s, except that it does not include the input mapping time.

Figure 5.2 depicts the measured runtimes of all five systems for all datasets and denial

constraints of Table 5.2. In summary, the results in this experiment demonstrate that V i o F i n d e r

performs best in every scenario and that it can be at times orders of magnitude faster than the

database management system approaches. For denial constraints $7 and $8 , V i o F i n d e r finished

in a matter of few seconds, PostgreSQL and SQLServer in a matter of few hours, and MonetDB

did not finished due to memory limit exceptions. We can see speedups of 1625 x , for example,

when V i o F i n d e r is compared to SQLServer for denial constraint $ 8 . Moreover, V i o F i n d e r

delivered between 3x and 17.5 x faster executions than H y d r a -IE Jo i n .

©
C/5

r 0.9

m

q> 3 (Tax)
3.8

2 . 6

1 . 0

s 100 -

.

1—~ ~ —n— I
VF H I DB1 DB2 DB3

<p7 (TPC-H)
1 7 2 .8 1 6 7 .5

? 4 (Tax)

VF H I DB1 DB2 DB3

© 100 -

i .

0 .9 4 .3-i— r 2 .9~~r
VF HI DB1 DB2 DB3

<p8 (TPC-H)
150 .5 4 S 2 - 5

<p5 (Tax)

VF HI DB1 DB2 DB3
I I Loading I I

©
C/5

" o 200

I
s 0

“ 5 ­
©
I
Í 0

1,3 ^ 1 , II , l ^ 4
VF HI DB1 DB2 DB3

<p9 (IMDB)
J2JL

1.3m
ASL

5.0
3.7

VF HI DB1 DB2 DB3
Preprocessing I I Querying

(06 (TPC-H)

I 2I
3 .6

3 .4

0.9M
1 T 1.0

P R

r
i °

VF HI DB1 DB2 DB3
q>10 (IMDB)

ML2
A 3. Ö

VF HI DB1 DB2 DB3

Figure 5.2: Runtime comparison between Vi o Fi n d e r (VF), Hy d r a -IEJo i n (HI), PostgresSQL (DB1), MonetDB
(DB2) and SQLServer (DB3). The datasets are table samples with 200K records each.

1 00

x x

100

The execution plans and perform ance among the evaluated database management

systems varied considerably. For the keys in denial constraints Ç3 and Ç10 and the functional

dependency in denial constraint Ç9 , PostgreSQL used a Sort-M erge Join approach slower

than the HashJoins in SQLServer and M onetDB— we can see the perform ance im pact from

algorithm choice in the querying time. All systems used HashJoins for the relationship of

mutual inclusion in denial constraint Ç6 and reported fast querying. In contrast, we measured

the w orst runtimes for denial constraints that express relationships of order between columns

(i.e., denial constraints Ç5 , Ç7 and Çg). MonetDB threw memory lim it exceptions for denial

constraints Ç7 and and reported the slowest runtime for denial constraint ç 5. The system used

a thetajoin im plementation based on Cartesian product that produced large intermediates and

impaired performance. PostgreSQL and SQLServer relied on nested loops for those three denial

constraints and performed poorly considering the small num ber of tuples in the experiment.

With regards to index usage, the database management systems used table scans for most of the

executions due to the selectivity of the predicates. M onetDB and SQLServer used no indices,

whereas PostgreSQL used index scans on column Extended_price for the denial constraint Ç7

and on column Shipdate for the denial constraint Çg. The order of predicate evaluation also

influenced performance. For denial constraint ç 4, SQLServer used HashJoins to evaluate the

equijoin predicates, then checked the non-equijoin as a residual predicate. The two other database

management systems also used HashJoins, but they evaluated the non-equijoin filter first, which

yielded in worst runtime. For denial constraint ç 5, all systems evaluated the equijoin predicate

first, which helped reducing intermediates and improved performance.

The differences in the executions of the database management systems were expected:

after all, they differ from each other internally. These results support our design decisions

with V i o F i n d e r , though. By processing partitions of limited size at-a-time, V i o F i n d e r

bounds the materialization of intermediates. Choosing the order of denial constraint predicates

based on predicate selectivity leads V i o F i n d e r to process predicates that produce smaller

intermediates first. In addition, V i o F i n d e r carefully selects refinement algorithms. Notice

that the best results reported by the database management systems uses hash-based approaches.

V i o F in d e r mirrors this observation and uses hash-like approaches whenever possible. For range

predicates, V i o F in d e r uses algorithms that are more effective than the nested loop solutions in

the database management systems. We observe similar concerns with H y d r a -IE Jo in . However,

V i o F in d e r spends much less time than H y d r a -IE Jo in in preprocessing.

Scalability in the n um ber of tuples. This experiment considers only querying times (i.e.,

execution times without loading, index creation, or preprocessing times) because it focuses on

the algorithmic efficiency of each system. The previous experiment is a baseline comparison

so we used H y d r a -IE J o in as it was originally conceived by its authors. However, H y d r a -

IE J o in has to map the input into a integer domain, because its im plem entation is based on

integer comparisons. V i o F i n d e r does not need this step, and also uses a faster approach to

101

decide predicate order. Thus, to eliminate the additional costs of H y d r a -IE Jo in , we integrated

H y d r a -IE J o i n ’s algorithms into V i o F i n d e r ’s platform for this experiment.

Figure 5.3 shows the runtimes (only querying times) measured for the datasets with in­

creasing number of rows— note that some plots have different scales. The plots show SQLServer

as the only database management system approach, over only denial constraints without range

predicates: None of the database management systems finished execution for denial constraints

with range predicates in less than twenty-four hours or without throwing a memory exception.

MonetDB faced the same issue executing functional dependencies, and, in the cases PostgresSQL

finished, the observed runtimes were orders of magnitude higher than the other database manage­

ment systems. In practice, SQLServer was the fastest among the database management systems

for most denial constraints and datasets. The database management system approach scaled

better than V i o F in d e r for denial constraint <p6. The columns in this denial constraint are keys,

which database management systems are well-optimized for. In this case, V i o F in d e r has less

opportunity to use its optimizations (e.g., it does not use Algorithm 4).

Ö 150«
^ 100

B 50

1

“ 200
a

I 0

1 2 3 4 5 6 7 8 9 10
r o w s (x lO M)

P <fn (T P C -H)

n i m

Ä 75

ã 5 0
B 25

1

P4 (T ax)

500

1 2 3 4 5 6 7 8 9 10
r o w s (x lO M)

<p8 (T P C -H)

1 2 3 4 5 6 7 8 9 10
r o w s (x l M)

fl

I
,ßi

1 2 3 4 5 6 7 8 9 10
r o w s (X lM)

£ 200 I-

S 100■43
1

— 10<13a
?
ê 0

1 2 3 4 5 6 7 8 9 10
r o w s (X lO M)

q>g (IM D B)

5 10 15 20 25
r o w s (x lO O K)

03 100a■43
I °

— 10 03a
?
ã 0

p 6 (T P C -H) ,..-o
.-O''

2 3 4 5 6
r o w s (x lO M)

<p10 (IM D B) M

1 10 20 30 40 50 60
r o w s (x lO O K)

V ioF in d er Hydra-IEJoin X S Q L S erv er

Figure 5.3: Scalability of V i o F i n d e r , Hy d r a -IEJo i n and SQLServer for increasing number of rows.

Although both V i o F i n d e r and H y d r a -IE Jo i n show characteristics of linear growth

for denial constraints £ 3 , £ 4 , £ 9 and £ 10, the relative performance difference consistently

grows as the number of records grows. Both systems use hash-based approaches with such

denial constraints, but differ in key im plementation details. V i o F i n d e r deals with multiple

equality predicates on single columns at once (with Algorithm 4), whereas H y d r a -IE Jo in does

so one predicate at a time. As a result, H y d r a -IE J o in requires larger partitions (with larger

cluster pairs) to be moved through the pipeline, which may decrease performance. Moreover,

V i o F in d e r uses bitmaps with sorted arrays to implement set operations (e.g., set difference in

different than predicates), whereas H y d r a -IE J o in uses hash sets. The former approach has

been shown to be consistently faster [143].

The performance of V i o F i n d e r and H y d r a -IE Jo i n was roughly similar for denial

constraint £ 5 , but greatly differed for denial constraints <£7 and £ g . For instance, V i o F i n d e r

was on average 307 x faster than H y d r a -IE Jo i n for denial constraint £ 8 on 10M rows. Notice

that denial constraints £ 5 , £7 and £ 8 are those with range predicates. V i o F i n d e r uses our

proposed sort-merge approaches to process range predicates, whereas H y d r a -IE J o i n uses

the IE Jo i n algorithm [141]. Broadly speaking, both approaches include a phase that builds

1

1

102

auxiliary data structures, and a phase that uses those data structures to produce the results. The

costs of the initial phase in the V i o F i n d e r ’s sort-merge algorithms consists of building cluster

indexes and sorting its entries, and the costs to produce results consists basically of a merge loop

that triggers logical operations and copying of bitmaps. In contrast, the IE J OIN algorithm in

H y d r a -IE Jo in evaluates two range predicates in a single pass. The initial costs of the algorithm

involves computing auxiliary arrays based on sorted versions of column values. As for its second

part, the basic idea is to iterate the relative positions of the auxiliary arrays; operate on a bitmap

to mark positions of tuples that satisfy the first predicate; then find tuples that also satisfy the

second predicate by iterating another auxiliary array and the marked bitmap. The primitives in

the second phase of both approaches have a great impact on performance.

We broke down the executions and observed the following. For denial constraint 0 5 the

first phase occupied m ost of the execution time in both approaches, that is, they spent most of

the time in sorting. In addition, the refinement of the equality predicate of denial constraint 0 5

occupied only a small fraction of the execution time for both approaches. For denial constraints

0 7 and 0 8 , however, both approaches spent most of the time in their second phase. IE Jo i n has

to iterate auxiliary arrays to find and collect qualifying tuples. For denial constraints with a

larger number of violations, as it is the case of denial constraints 0 7 and 0 8 , this primitive is

heavily penalized because many tuples qualify. In contrast, the sort-merge approach builds the

results incrementally from previous iterations with copying of bitmaps. W hile the approach is

also penalized for denial constraints with a large number of violations, its incremental processing

saves a great deal of computations and yields lower runtimes.

5.4.3 Additional evaluation of V i o F in d e r

The next set of experiments focuses on V i o F i n d e r . We evaluated the effects that the

cache mechanism has on runtime, m aximum memory usage, and number of tuple fetches (for

refinements that enable caching). We used denial constraint 0 8 because its execution exemplifies

how caching can benefit performance. Figure 5.4 shows the measurements using a cache-disabled

version of V i o F i n d e r relative to the measurements using the original— the Y-axis is in log scale.

The cache-disabled version has to perform dramatically more tuple fetches and runs considerably

slower than its cache-enabled counterpart. The larger the number of tuples in the input, the greater

the relative differences in tuple fetches and runtime. A lthough V i o F i n d e r consumed more

memory using the cache mechanism for fewer tuples (i.e., less than 400K), it stably consumed

about the same amount of memory for larger inputs. This interesting effect happened because

the larger inputs produced clusters with higher density that took better advantage of bitmap

compression.

Next, we evaluated the impact of varying cluster pair thresholds on runtime and maxi­

mum memory usage. We observed that perform ance and memory usage was relatively stable

for small thresholds (i.e., less than 100). Partitions with more than one cluster pair benefited

the perform ance of refinements dealing with a few of tuples at-a-time, because there was less

103

c /3

fl 104§103 S io2
3 îo 1
% 10°
CD

■........................ Fetches
'________________ "Runtime

_L
Memory

_ i __________L
2 4 6 8 10
Number of records xlOO/C

Figure 5.4: Relative impact of caching cluster indexes on denial constraint p8.

interpretation overhead. We used a default threshold of 10, because it is the median value of those

thresholds that produced the best runtimes for each denial constraint. However, memory usage

increased with larger thresholds as partitions are more likely to store more cluster pairs. Large

partitions create long-living data objects in the heap that persist for long portions of the pipeline.

This effect degrades runtime, because garbage collection needs to perform additional tracing and

marking of long-living objects, consuming additional CPU time. Figure 5.5 illustrates such a

behavior, for denial constraint 0 8, by showing the memory usage and runtime with increasing

tuple pair thresholds relative to these measures with the default threshold.

a
CD

h3
C/3Cti
CD <j

S 1
l=Ü_

Memory usage
 Runtime

 I__________ I_____
2000 4000

Cluster pair threshold

Figure 5.5: Relative impact of increasing cluster pair thresholds on denial constraint p8.

0

CQ
a 5

0
B1 0

g io

o
B
CD

s 0

04 (TAX)

2 3 4 5 6 7 8 9 1
#records (xlOM)

08 (TPC-H)

2 3 4 5 6 7 8 9 1
#records (xlM)

C /3ao
0 '■§

I—HO
i>

CQI—I
100 ï

14

CQ
U

o
B
CD

s

10 h

0

06 (TPC-H) 1500

500

cd
I—HO
£

CQ
U

ï 1o
B
a n
S 0

1 2 3 4 5
#records (xlOM)

010 (IMDB)

6

o
o °2 .H

X
C /3
14o

0 iS
10 20 30 40 50 60 g
#records (x l0 0 /0

C /3
14O

• I—I
■4—3
cd

I—Ho
£

Dataset VioFinder Number of Violations
Figure 5.6: Maximum memory usage.

1

For this last experiment, we measured the size of the in memory data structures storing

the datasets, and the maximum memory used by V i o F in d e r during each execution. Figure 5.6

shows the results for four denial constraints— the plots include also the number of violations

104

detected. For m ost denial constraints, the contributing factor to the linear increase in memory

usage is the number of tuples. Notice, however, that denial constraint has a huge number of

violations. In that case, handling the large intermediates used to produce output consumed much

more memory than the in memory datasets. Nonetheless, these results shows that V i o F in d e r is

not expensive in terms of memory usage.

5.5 SUMMARY

In this chapter, we introduced a system for the detection of denial constraint violations

that handle a wide range of data dependencies, from unique constraints to other dependencies

that express complex relationships between columns. V i o F in d e r shows efficient performance

through partition pipelines and effective refinement strategies. Even for larger inputs, or denial

constraints that produce sizeable intermediates and results, the performance of our system

degrades much more gracefully than the performance of baselines.

105

Chapter 6

Mind your Dependencies for Semantic
Query Optimization

One of the most important data profiling task is dependency discovery, particularly the

discovery of the functional dependencies. While functional dependencies are defined as integrity

constraints in database design phases, manually updating them as the application and data evolve

becomes an error-prone task which may even be left behind in denormalized databases (e.g.,

data warehouses). In turn, automatic dependency discovery does not rely exclusively on schema

information but considers the data tuples of the database as well.

The number of functional dependencies radically increases with the number of columns

in the dataset. This number may increase drastically as the number of columns goes up, e.g.,

in the region of millions for datasets with hundreds of columns and thousands of records [27].

The main problem is that selecting which of the dependencies are most relevant for a given task

is left for human analysis. It is particularly challenging to understand the relationships among

hundreds, or even thousands, of dependencies spread across multiple relations. Therefore, the

selection process should regard the use-case for dependencies. This process should not only

prune the unnecessarily large number of results, but it should also provide more meaningfulness

to the selected dependencies.

Interestingness measures have been proposed to score functional dependencies and other

types of constraints. These measures are primarily based on the statistical properties of the data

and have shown good potential to filter dependencies for tasks such as functional dependency

evolution [120], data cleansing [137] and normalization [102]. However, those measures may

produce inconclusive recom mendations to be explored by semantic query optimization [122].

As observed in [146], data dependencies should be exploited with caution. They may im pose

additional performance penalties in planning phases as the number of dependencies increases.

We present the focused dependency selector (FD S e l), a data-driven, query-aware tool

to select relevant functional dependencies for semantic query optimization. We hypothesize that

the information from the workload of the application (e.g., selection filters in SQL statements) is

a powerful asset to narrow the large number of functional dependencies discovered in the datasets.

106

First, FD S e l associates summaries of application workloads with the set of discovered functional

dependencies in application data. Then, it can use different strategies to recom mend sets of

functional dependencies that offer the best trade-off between a reduced number of functional

dependencies and best gains in query execution time with semantic query optimization. We refer

to these sets of functional dependencies as exemplar functional dependencies. The F D S e l is

also responsible for setting and triggering query optimizations based on query rewritings. The

tool acts as a middle-ware between the user applications and the database.

The contributions in this chapter are as follows.

• We present a novel mechanism to combine the semantic information found in functional

dependencies and query workload to help in query optimization.

• We formulate effective procedures to select exemplar functional dependencies from the

large sets of functional dependencies returned by automatic discovery algorithms.

• We present two schemes in which the exem plar functional dependencies can help in

semantic query optimization, namely, join elimination and order optimization.

• We provide an experimental evaluation of our tool, using real and synthetic datasets,

which shows that our tool is able to effectively select exemplars with adequate statistical

properties, and improve query performance without any human interaction.

The rest of the chapter is organized as follows. Section 6.1 gives an overview of the

F D S e l use-case scenario. Section 6.2 details F D S e l . Section 6.3 presents our experimental

evaluation of F D S e l . Finally, Section 6.4 concludes the chapter and presents future directions.

6.1 OVERVIEW

In this section, we present a high-level description of F D S EL . Given the high number

of functional dependencies discovered in real-world data, the main question we seek to answer is

how can we use the semantic information in these dependencies to help in query optimization

scenarios effectively. Thus, we design F D S e l as a data-driven, query-aware mediating tool

that autonomously leverages semantic query optimizations by exploiting patterns in the data

(functional dependencies) and applications (query workload).

Figure 6.1 illustrates the control flow between the components of F D S e l . The input

of F D S e l is a database along with its catalog, and a representative query workload. The

first com ponent of F D S e l is the functional dependency extractor, which uses an efficient

algorithm to discover all functional dependencies in the database tables ©. These functional

dependencies determine relationships between groups of attributes and can provide valuable

semantic information from the data. F D S e l stores all discovered functional dependencies in a

buffer for further analysis.

107

Figure 6.1: FDSe l workflow.

The second component of FD S e l is the query mediator, which progressively intercepts

the database queries to form a batch ©. Besides, the query mediator might perform query

optimizations for each query, if any optimization is available. These optimizations are set by the

core component, described later. FD S e l considers the application workload to be lists of queries

that are expected to be executed by the application. Once the query mediator has processed

sufficient queries, it calls the core component of F D S e l for updates.

The core component receives the workload characterization from the query mediator ©,

scans the functional dependencies buffer, and selects functional dependencies for semantic query

optimization ©. This component counts attribute frequencies from functional dependencies and

queries. Then, it combines this frequency information to build a data structure called occurrence

matrices, which forms the input for the selection procedures. The core component can use three

strategies for the selection task. In two of these strategies, w e use occurrence matrices to sort

functional dependencies. This sorting is based on their structures and their proximity to the query

workload. The structure of a functional dependency is defined by which set of attributes define

each other, and the proximity of a functional dependency measures how many attributes it has in

common with the workload characterization.

The strategies based on ranking are based on two different interest metrics: distrust,

which considers the redundancy of attribute values, and Mahalanobis distance, which considers

correlations found in the occurrence matrices. The core com ponent iterates the set of ranked

functional dependencies to find functional dependencies with appropriate values for these interest

metrics. Finally, the third strategy is an adaptation of the affinity propagation clustering algorithm

[147], which works with the occurrence matrices.

The core component is also responsible for setting the rewriting strategies in the query

mediator @. The component considers only optimizations that preserve semantics; that is, there

is no change in the output of the rewritten queries. The F D S e l sits between user applications

and data processing platforms, and it is completely decoupled from the internals of any specific

database management system.

108

6.2 FOCUSED DEPENDENCY SELECTOR

In this section, we detail the operation of F D S e l . We describe data structures to com­

bine functional dependencies and workloads, and we present the procedures to select functional

dependencies. Finally, we describe how to employ the selected functional dependencies in query

optimization.

6.2.1 Discovery of functional dependencies

F D S EL discovers all the non-trivial and minimal functional dependencies holding in

the database tables. Several algorithms for functional dependency discovery have been proposed,

and many of them have evolved over different versions in the literature. We refer to [21] and

[27] for further details on functional dependencies discovery. In practice, FD S EL could use any

functional dependency discovery algorithm that, given an instance r, returns the set of non-trivial

and minimal functional dependencies over r. FD S EL uses the algorithm H y FD [29], described in

Chapter 2. At the time of writing, H y FD was the most efficient functional dependency discovery

algorithm as it shows good performance results in terms of runtime and scalability.

6.2.2 Attribute occurrence matrices

Query workloads provide valuable information to support query optimization. In

general, a query workload presents strong access patterns, which either in horizontal level

(individual tuples) or vertical level (individual attributes), points out to specific database areas

that are accessed more frequently than others. In turn, functional dependencies express semantic

consistency requirements for data through sets of dependent attributes. F D S e l leverage this

characteristic of functional dependencies to reduce the number of sets of attributes that a query

optimization should address. Thus, the combination of appropriate semantic information and

query workload information is a potential asset to help to find alternative execution strategies

and, therefore, improve query processing.

F D S e l measures the binary relationship between a relation’s attributes and how often

the incoming queries are touching those attributes. This binary relationship is also applied to

functional dependencies by only considering their left-hand side and right-hand side attributes.

The information about the occurrence of attributes in the queries or functional dependencies is

initially stored in a m x n binary matrix O, called the attribute occurrence matrix (AOM). As a

first step, the operations for AOMs regarding queries or functional dependencies are the same;

thus, we define all the operations in a single AOM. Throughout the definitions, we distinguish

how to adjust each AOM to functional dependencies or queries.

Consider a set of queries Q = {q1, qm}, which we expect to run on the database. For

simplicity, we assume there is only one relation in the database. For each query q;-, F D S EL

collects the attributes in the operators of qi. That is, it collects the attributes in the projection

109

and selection of the query to com pose a set of attributes s. Furthermore, for each functional

dependency f : X ^ Y , F D S e l composes two attribute sets s, one for each side of f .

Consider a relation and its attributes R(A1,...,A n), and a collection of sets S =

{s1, . . . , sm} such that s; C R. For each s; e S, and for each Aj e R, F D S e l assigns a binary

occurrence value for AOM, as in Function 6.1:

oij =
1 if s; has attribute A j ,

0 othewise.
(6.1)

Each entry o -̂ indicates whether or not an attribute of R is touched by one of the elements of s;.

FD S e l estimates three AOMs. The first one is for a set of queries, denoted by Oq. Also,

for a given a set of functional dependencies, it estimates an AOM Olhs for their left-hand side;

and an AOM Orhs for their right-hand side.

Let E = {A ^ B, BC ^ D} be the set of functional dependencies discovered in a

relation instance r of relation R(A, B, C, D) . Besides, consider a set of queries in standard

relational algebra Q = { n (A,D)(tfB=10(R)) ; n (A,B,C)(^ c=20(R)) ; n (A,D)(o D>1(R))} . The AOMs
Oq, Olhs, and Orhs are respectively defined as follows:

Oq =

A B C D

q1 1 1 0 1 '

q2 1 1 1 0

q3 1 0 0 1

Olhs = f 1 . lhs

f2.lhs

A B C D

1 0 0 0

0 1 1 0

Orhs = f 1.rhs

fz.rhs

A B C D

0 1 0 0

0 0 0 1

The row sum vector of AOM O is given by L jO i'j, and is denoted by p (O). Furthermore,

let y(O) denote the column sum vector of AOM O, which is given by '^ .O ij.

F D S e l requires some additional operations on AOMs O. Notice that each AOM can

also be represented as a sequence of rows O = [o1, .. . ,om]. We use a function elems(O) that

returns the set of elements from O, such that for any o; and ok of elem s(O), then o; = ok. Besides,

we use a function count(O , o;) that returns how often an element o; occurs in the sequence O.

Finally, we use a function le n g th ^) that returns the number of o^ such that o^ = 0.

110

Considering two AOMs, O , and O ', FD S e l incorporates the number of accesses to the

attributes of R of AOM O ' into AOM O with a weighted AOM O given by Equation 6.2.

It is possible to integrate the attribute weights from the workload into the AOMs of functional

dependencies, and vice-versa. However, F D S e l requires only the former type of integration

because its goal is to enhance the semantic information of the discovered functional dependencies

using workload information.

Consider a weighted AOM O estimated with Equation 6.2, either O = O/hs or O = Orhs,

and O' = Oq. We use a function skew ed_sort(O) to return a sorted version of elem s(O) that

satisfies the following:

for any o, and oi+1 from elem s(O) then Yi(O)count(O, o;) < Y +i(O)count(O , o,-+ i). (6.3)

The result of skew ed_sort(O) is a sequence of rows sorted according to their frequencies in O

times the weight of their target attributes. Each entry o^ of skew ed_sort(O) can be converted

into the attributes of functional dependencies, left-hand side or right-hand side, by mapping the

equivalent attributes A- of R for each element of o^- other than zero.

6.2.3 Quality measures for functional dependencies

A variety of quality measures have been proposed to measure dimensions of data

dependencies [137, 32, 120]. A standard metric for functional dependencies is redundancy;

that is, how often sets of equal values for the left-hand side or right-hand side of functional

dependencies jointly appear in the dataset. based on related work [122, 32, 120], We also use

data redundancy to measure the distrust of a functional dependency f : X ^ Y in r, as Equation

6.4 shows.

The difference in d is minimal when the projections over left-hand side and right-hand

side approximate in the number of duplicates. In this case, a functional dependency / is less

likely to have been discovered by chance, which reduces the level of distrust of / .

As an example, consider the relation in Table 6.1, and two functional dependencies,

/1 : AB ^ C and / 2 : D ^ E, satisfied by the data. The distrust level of / 1 is given by d (/ 1) =

J (4 /6 — 3 /6)2 = 0.16, and the distrust level of / 2 is given by d (/2) = J (5 / 6 — 1 /6)2 = 0.66.

Notice that the distrust of a functional dependency / does not consider any workload

characteristic. The studies on workload characterization typically investigate many parameters,

such as I/O throughput, temporal locality, and data variance aspects. A comprehensive report

m
O = £ O (i)p (O ') (6.2)

111

Table 6.1: A simple relation.

A B C D E

b g 5 1 y
b g 5 2 y
b g 5 3 y
b m 6 4 y
b q 7 5 y
c g 7 5 y

on the subject can be seen in [148]. FD S e l uses a second quality measure called M a h a la n o b is

distance to combine data instances and workload characterization [149].

Mahalanobis distance works as a similarity measure between the attribute access pattern

in the workload and the structure of attributes in the functional dependencies (i.e., left-hand side

and right-hand side). We have chosen Mahalanobis distance rather than classical measures, such

as Pearson correlation or Euclidean distance because M ahalanobis distance is suitable for side

comparisons. For example, Mahalanobis distance agrees with the intuition that “A ^ B is closer

to A ^ C” than “A ^ B is to C ^ D”, disjointly. The same applies to comparisons between

functional dependencies and query workload because they account for the same set of attributes.

Mahalanobis distance uses multi-dimensional analyses of unequal variances and corre­

lations between the weighted attributes of AOMs to adjust the geom etrical distribution. Thus,

FD Se l can estimate Mahalanobis distances from AOMs. Assume u = p (O q) and v to be any o;-

from Olhs, weighted over another Oq. FD S e l estimates the Mahalanobis distance as in Equation

6.5: _________________

m d (u , v) = \ J (u — v) V -1 (u — v) T (6.5)

where V —1 is the inverse of the covariance matrix. By using Mahalanobis distances, the difference

between query patterns (p (O q)) and weighted functional dependencies (Olhs) can be considered

in terms of the difference between the vectors of u and v relative to their variance.

6.2.4 Selecting functional dependencies

Instead of using all possible rewrite strategies from the large set of functional depen­

dencies, F D S EL uses the properties previously described to focus on meaningful functional

dependencies, which we call exemplar functional dependencies. Because FD S e l uses functional

dependencies for semantic query optimization, F D S EL focus on exemplars that integrate as

much coalescence of attributes as possible while producing the best gains in query optimization.

We formulate three different strategies for selecting exemplars, described next.

Selecting functional dependencies based on th e ir ran k . F D S e l first sorts the set of dis­

covered functional dependencies E using A lgorithm 8. The algorithm requires as input a

set of functional dependencies, and two weighted AOMs: Olhs and Orhs. The entries o^ of

112

skew ed_sort(O) are converted into the attributes of functional dependencies by mapping the

attributes A- of R for each element of o -̂ other than zero. In other words, the entries o^- represent

valid left-hand side and right-hand side in E.

For each distinct left-hand side in E, the algorithm iterates each distinct right-hand side

to find a combination that builds a valid / in E. The combination left-hand side ^ right-hand

side is appended to the ranked sequence of functional dependencies E ' only if such combination

is a valid functional dependency in E. The iteration over E is based on the weighted AOMs with

the skew ed_sort function. The first functional dependencies to be appended in the result E ' are

those in which the target attributes are the most accessed by the application query workload.

A lgorithm 8: Ranking functional dependencies

D ata: Set of functional dependencies E, weighted AOMs O /hs and O rhs
R esult: Ranked functional dependencies E'

1 E ' ^ { }
2 foreach /hs e skew ed_sort(O /hs) do
3 foreach rhs e skew ed_sort(O rhs) do
4 if (/hs, rhs) bui/d a va/id/unctiona/ dependency / in E then
5 / = /hs ^ rhs
6 E '^ { E '} + /

A lgorithm 8 returns the same num ber of functional dependencies as in the initial set

E. Because the result E ' is a sorted sequence, FD S e l can iterate through E ' until the functional

dependencies / in E' stop meeting some desired criteria. We noticed that the quality measures

of functional dependencies degrade as this iteration occurs. F D S e l estimates the distrust and

Mahalanobis distance against the current workload of each functional dependency / , and builds

two sets of exemplar functional dependencies. F D S e l outputs the first set of exemplars by

considering the following criterion: (1) iterate through E ' until there is a harsh increase in distrust.

The second set of FD SEL is built with the following criterion: (2) iterate through E ' until there is

a harsh increase in Mahalanobis distance against the current query workload. We consider that

there is harshness when an element in E' shows a quality measure that is higher than the double

of the median of previous elements seen in the iteration up to that point. FD S e l extends the set

of exemplars using inference rules before applying them in query optimization.

C lustering functional dependencies w ith affinity p ropagation algorithm . FD S e l uses clus­

tering in the third strategy to select functional dependencies. To this purpose, we adapted the

affinity propagation clustering algorithm to work with AOMs, and cluster functional dependen­

cies based on their weighted structures [147]. Unlike other clustering algorithms (e.g., k-means),

affinity propagation does not require the number of clusters to be specified a priori. Besides,

affinity propagation clustering algorithm can be applied for data that does not lie in a continuous

space or data with non-symmetric similarities. The affinity propagation clustering algorithm

identifies the most representative elements in a set by recursively transmitting messages between

113

pairs of elements until convergence. An acceptable set of exemplar functional dependencies (cor­

responding clusters) is selected when the message-passing procedure is finished. The procedure

finishes in two situations: after a fixed num ber of iterations, or after the message changes fall

below a threshold or remain constant for some iterations.

The inputs of the affinity propagation algorithm are measures of similarity between

pairs of data points, which FD S e l extracts from the weighted AOMs. Consider two elements o;

and Oj, o; = Oj, of AOM Olhs. F D S e l uses Mahalanobis distance as the similarity measure for

affinity propagation inputs and estimates the M ahalanobis distance between the left-hand side

structures of pairs of functional dependencies. There are two categories of messages exchanged

between pairs [o;,Oj]. The first message is called responsibility r(O;-,Oj), which measures the

accumulated evidence that Oj should be the exemplar for o;. Formally, the responsibility is given

as in Equation 6.6.

The availability a of an element Oj to be the exemplar of o; is given as in Equation 6.7.

Responsibility r and availability a are initially zero, and all o;, Oj equally represent a

potential exemplar FD. At any time of affinity propagation, measures r and a can be combined to

identify exemplars functional dependencies. Responsibility iteration lets all elements o; compete

for ownership of another Oj, and availability iterations choose evidence for every other element

o; as to whether each candidate exemplar would make a satisfying exemplar FD.

F D S e l iterate the input E to find the corresponding right-hand side of the affinity

propagation output. This set of exemplars functional dependencies is also extended with inference

rules.

6.2.5 Semantic Query Optimization

We present a scenario in which the selected functional dependencies can improve the

overall query performance. We use the approach presented in [150] and [151], nevertheless, our

tool can be extended to work with others dependency-aware optimization schemes like [152]

and [153]. Each optimization rewrites the incoming queries into syntactically different, yet

semantically equivalent queries. The rewritten queries are semantically equivalent if and only if

their results are the same as the original query, regardless of the state of the database [151]. The

rewritten queries are expected to produce a more efficient execution plan.

Rewritings could be blocked for particular queries according to the trade-off between

optimization time and the quality of the execution strategies. As noted by [154], semantic

(6.6)

(6.7)

114

optimization increases the search space of possible plans and, as a result, relies on efficient

searching techniques to keep optimization costs within reasonable bounds. FD S e l is decoupled

from any database management systems query optimizer, and its first and foremost goal is

to select suitable functional dependencies for optimization. Thus, the incoming queries are

only rewritten when they fall into two distinct classes. F D S e l uses the exemplars functional

dependencies to carry out two classes of semantic query optimization commonly discussed in

the literature [150, 151, 152, 153]: join elimination and order optimization.

The join elimination technique iterates over the set of functional dependencies to find

residual clauses in the query. In this case, residuals clauses are joins for which the result is known

a priori (empty or redundant joins) and, therefore, could be removed from the query. Consider

a relation R = {A, B, C }, and a functional dependency f : A ^ B holding in an instance r of R .

The relation R can be decomposed as R' = n ^ B) (R), and R'' = n (A,C) (R). This lossless-join

decomposition is used to target queries where no attributes are selected or projected from the R''

relation. The join elimination optimization is already implemented in some commercial database

management systems [125]. However, these implementations require the users to declare the set

of constraints explicitly. Thus, automating this task may be beneficial in environments where

users access views defined over a large number of joins (e.g., a star schema in a data warehouse).

Further details and more complex join elimination optimizations can be found in [151] and [125].

The goal of order optimization is to find optimal sorting orders, that is, the best sequence

of the attributes in the order specification. Sorting orders usually emerge when tables are joined;

or when tuples are ordered, grouped, or distinguished. The algorithm presented in [150] takes as

input a set of functional dependencies, a set of predicates, and sorting orders specifications to

return an optimized sorting order specification. Consider a functional dependency f : X ^ Y

holding on relation instance r , and a query q = TX ,Y (fl(X Y) (R)) . The query q can be rewritten as

q ' = TX (% x Y) (R)) because there is only one value of Y for each X . More examples and details

on order optimization can be found in [150] and [59].

6.3 EXPERIMENTAL STUDY

In this section, we present an experimental study to evaluate the effectiveness of FD S e l .

6.3.1 Scenario

The use of functional dependencies for semantic query optimization can provide com­

pelling gains in environments where relations are vertically partitioned (e.g., column-stores in

data warehouses). In practice, there are many reasons why partitioning may be required. For ex­

ample, database administrators might fragment a relation into a set of smaller relations to reduce

maintenance costs, or to cope with distributed designs where applications use some fragments

more frequently than others (e.g., invisible joins in column-stores [155]). A nother example

is normalization (e.g., to Boyce-Codd Normal Form), which uses functional dependencies to

115

eliminate redundancies and anomalies introduced as the dataset grow [102]. Regardless of the

reasons for table partitioning, a typical mechanism to reconstitute information from partitions is

views. Views can be defined using arbitrarily complex queries that blindly join partitions in order

to present the user with a representation of the original table, with potential restrictions. The

users’ access may be limited to the defined views (maybe through a query manager interface);

therefore, redundant joins or residual sorting order operations are likely to occur. We use the

scenario based on views to present our experimental evaluation.

6.3.2 Datasets and implementation details

D atasets. We use both synthetic and real-world datasets, which come from different domains.

Table 6.2 lists these datasets with their number of attributes, number of records, num ber of

discovered functional dependencies, and number of exemplars selected according to the three

selection strategies of F D S e l . The datasets Abalone and Adults have been used for functional

dependency discovery evaluation in [27]. The Adults dataset is based on census data for US

citizen salaries. The Abalone dataset consists of clinical data about patients and diseases. In

addition, we use a 2-week snapshot of data extracted by SIMMC, a brazilian project from the

Ministry of Communications [156] 1. SIMMC dataset has about 2M records with a total size of

nearly 300MB. Finally, we use the lineitem relation of the business-oriented synthetic TPC-H

dataset, set for a 1GB scale.

Im plem entation details. We executed our experiments on a single machine with a 2.60 GHz

Quad Core i7-3720QM processor, 8GB of RAM, 500GB 7200rpm SATA II disk, and Java 1.8.

The machine runs Ubuntu 16.04. Our prototype is a Java client that connects to a PostgreSQL

server via JDBC.

FD S e l discovers the set of functional dependencies holding on each dataset and stores

the results in a buffer. After the discovery, we use a tool called Normalize to decompose the

original dataset into a set of tables that is BCNF-conformed [102] . We supervise the results of

Normalize to avoid semantically incorrect partitions. During our experiments, this partitioning

step generated between three and six tables for each dataset. These tables are joined at random

to build the set of views in which queries run.

We execute select-project-join queries and select-project-join with group by queries

over the views, which are chosen at random. To choose the range of filter predicates, we equally

divide the domain of each attribute according to the number of queries N to be executed. If the

number of distinct values in the attribute domain is less than N , we assume the sequence of the

closest pairs of values in the domain. For these cases, overlapping query predicates is required.

Predicate ranges are chosen using a Zipfian distribution on the number of queries N [157]. We

also follow a Zipfian distribution to choose attributes for selections, projections, and grouping.

We vary the number of attributes in each operation according to the number of attributes in the

1http://simmc.c3sl.ufpr.br/

http://simmc.c3sl.ufpr.br/

116

Table 6.2: Description of the datasets, number of functional dependencies (FDs), and number of exemplars functional
dependencies with FDSe l .

Dataset #Columns #Records #FDs #FDs with
FDSe l - Criterion 1

#FDs with
FDSe l - Criterion 2

#FDs with FDSe l -
affinity propagation

Abalone 9 4,177 137 6 6 10
Adults 14 48,842 78 9 3 5
SIMMC 12 2m 32 5 3 8
Lineitem 16 6m 4k 8 101 23

view. Finally, we use the same distribution configuration to generate a thousand queries for

the training workload and a hundred queries for perform ance evaluation with semantic query

optimization. We use the above procedures to run FD S e l set for either join elimination or order

optimization, and we report their performance results separately.

The training workload and functional dependency buffer comprise the input of F D S e l .

The core com ponent selects the exemplars of functional dependencies and prepares the query

mediator for optimizations. The query mediator is conditioned to the semantics of each query. If

the set of operations and attributes required to evaluate the query fall into rules conforming to

join elimination or order optimization (based on the set of exemplars functional dependencies),

it rewrites the query; otherwise, it bypasses the rewriting process.

6.3.3 Effectiveness

Selecting functional dependencies is subjective to a combination of factors (e.g., appli­

cation, schema-level structures, and instance-level information). Also, the number of discovered

functional dependencies are usually too large for manual inspection. For the following results,

we evaluate the quality of the exemplar functional dependencies based on their quality according

to the measures described in Section 6.2, and their suitability for semantic query optimization.

We estimated quality measures for the sets of exemplars functional dependencies

returned by Algorithm 8, pruned with Criterion 1 (increase in distrust); Algorithm 8, pruned with

Criterion 2 (increase in M ahalanobis distance); and affinity propagation clustering algorithm.

We refer to these results as F D S e l - Criterion 1, F D S e l - Criterion 2, and F D S e l - affinity

propagation, respectively. In addition, we estimated the quality measures for the initial set of

discovered functional dependencies to form a baseline. For each Denial constraint discovery

algorithms, we estimated its dis/rwsi level and its Mahalanobis distance from the query workload.

Figure 6.2 shows the distributional characteristics of the quality measures in a box-and-whisker

plot. Each box divides the measures estimated for a set of functional dependencies into quartiles

to illustrate their degree of concentration and range. The bottom boxes and whiskers (we refer to

them as bases) show the concentration and range of the measures for the set of initial functional

dependencies and serve as the reference point for assessing which way the results from FD S e l

sway.

117

(a) Levels o f distrust

(b) M ahalanobis distances between functional dependencies and workload

Figure 6.2: Quality of exemplar functional dependencies. The bottom boxes represent the distributional trends for
the initial set of functional dependencies. The remaining boxes represent the distributional trends of the exemplar
functional dependencies returned by FDSe l .

118

In general, the results from F D S e l procedures were fairly close to that of the bases

for distrust (Figure 6.2(a)). F D S e l - Criterion 1 presented more pronounced gains only for

Abalone, where distribution measures are thicker and closer to the lowest values. For other

datasets and strategies, FD S e l causes slight alterations at the center quartiles. In a more in-depth

analysis, we have found that many functional dependencies exhibit similar levels of distrust.

These functional dependencies form groups that are easily distinguished by their attributes (e.g.,

functional dependencies with many attributes in common at their left-hand side). Because we

rank the set of functional dependencies regarding structural frequencies (left-hand side and

right-hand side) weighted over the workload, similar functional dependencies are likely to be

sorted into close spots at the sequence. However, the lack of a single attribute at their structure

may cause distrust to change dramatically.

As can be seen in Figure 6.2(b), the distributions for Mahalanobis distance reveal much

more pronounced variations. That is because the initial set of functional dependencies present

different levels of correlation to the query workload, and because FD S e l uses different strategies

to select exemplars functional dependencies. For Criterion 1, F D S e l may start discarding

relevant functional dependencies sooner than other procedures (e.g, contrast between distrust

and Mahalanobis distance in Abalone).

F D S e l - Criterion 2 produced the best M ahalanobis distance distributions. It softens

the distrust barrier from F D S e l - Criterion 1 and focus on the M ahalanobis distance of each

functional dependency. F D S e l - Criterion 2 was able to produce distance measures that

concentrate towards lower values (all quartile groups spread themselves to the first half of

the distribution). Notably, it was the most effective procedure when the number of original

functional dependencies was relatively small. For SIMMC, all exemplars exhibit distance

measures that are close to the lower tail of the distribution. Nevertheless, if the num ber of

functional dependencies is high, the distances for the set of original functional dependencies

approximate normal distributions (e.g., Lineitem). F D S e l - Criterion 2 selects exemplars that

are more likely to fall closer to minimum values for M ahalanobis distance. As a result, it may

disregard groups of functional dependencies with higher distances but also higher semantics

(e.g., a high number of correlated attributes at the left-hand side). That might occur if functional

dependencies have a higher number of attributes. Because of their weighted equivalence,

functional dependencies with more attributes may increase the likelihood of larger Mahalanobis

distances.

Criterion 1 and 2 may become over-judicious for some base distributions and discard

relevant functional dependencies. The selection task should achieve parsim ony between the

number of exemplars and the semantics they expose because such characteristic is compelling

in the optimization phase. The distributions for F D S EL - affinity propagation suggests that the

exemplars have proper levels of agreement with the workload, leaning reach, and distributions

toward the first half of the base (except by SIMMC dataset). Interestingly, the exemplars for the

SIM M C produced more uniform distributions if compared to the base. Though the original set

119

Number of exemplars: 23

Figure 6.3: Behavior of FDSe l - Affinity Propagation over Lineitem dataset. Dimensions were reduced with
Principal Component Analysis for better visualization.

of functional dependencies had just a few distance measures concentrated at the fourth quartile,

F D S e l - affinity propagation was able to select exemplars from it. That was only possible

because of the intrinsic characteristic of the affinity propagation algorithm in combination with

the M ahalanobis distance. As described in Section 6.2, the affinity propagation algorithm

simultaneously considers any functional dependency in the original set as a possible exemplar.

Because affinity propagation refines this large set by exchanging similarity messages between

its elements (functional dependencies), it was crucial to choose a distance measure that could

capture the semantic aspects of an functional dependency along with the workload closeness.

W ith M ahalanobis distance, the similarities between pairs of functional dependencies in the

space are defined by the weighted attributes.

Because Mahalanobis distance accounts for unequal variances and correlations between

the weighted attributes, it estimates the distances by assigning different influence factors to the

attributes in each functional dependency. Differently from Criterion 2, the selection with affinity

propagation not only considers distance values but also considers how many sets of attributes are

correlated.

Figure 6.3 represents the overall behavior of affinity propagation applied over the

functional dependencies of lineitem relation. Notice that exemplars can be responsible for

representing distant data points. That is why affinity propagation was able to select exemplars

from spread locations in the distribution but, at the same time, shortening the range of distances

with the workload.

Table 6.2 reports the number of all discovered functional dependencies and the number

of exemplars selected by F D S e l . As we shall see in the next experiment, a high number of

120

Q u e ry se q u e n c e

(a) Join Elimination

Q u e ry s e q u e n c e

(b) Order Optimization

Figure 6.4: Example of improvements in query execution time with FDSEL over lineitem.

exemplars does not necessarily mean better optimizations and, therefore, does not guarantee

higher gains in query performance.

6.3.4 Performance improvement with semantic query optimization

In this experiment, we investigate the performance improvements of using F D S EL

for semantic query optimization. Figures 6.4(a) and 6.4(b) illustrate the implication of join

elimination and order optimization optimizations for queries running over /ineitem. The execution

time remains unchanged for some queries because F D S EL could not find any rewrite strategy

for them. However, improvements of more than an order of magnitude can be viewed for many

queries.

As expected, join elimination showed the most significant reductions in execution time

for best-cases. For example, a particular query over /ineitem reached a 12-fold improvement with

F D S e l - affinity propagation. F D S e l - affinity propagation presented bigger improvements

for larger datasets (SIM M C and Lineitem) because, for some predicates, the queries produced

intermediary results that do not fit in main memory. A lthough order optimization produced

moderate improvements, the number of queries that benefited from rewriting was more consistent.

For example, there were many queries in SIMMC that reached 4 to 6-fold improvements. Tables

121

6.3 and 6.4 details the average improvements with jo in elimination and order optimization,

respectively. On average, approximately one-third of the workload (for all datasets) was able to

take advantage of some rewriting rules. F D S e l was able to reduce the average execution time

by nearly half in many cases.

Some of the best improvements occurred when the number of exemplars available was

among the smallest (SIMMC and F D S e l - Criterion 2). This fact confirms our hypothesis that

focusing on the information implied by the context usage (e.g., query workload) is more effective

than necessarily considering a large number of functional dependencies. For example, FD S e l -

affinity propagation over the queries in lineitem presented the best performance even though it

relied on less than a quarter of the number of exemplars of F D S e l - Criterion 2.

Table 6.3: Performance improvements with FDSe l in join elimination.

Dataset Normal F D S e l - F D S e l - F D S e l -
Execution (Avg) Criterion 1 (Avg) Criterion 2 (Avg) affinity propagation (Avg)

Abalone 22ms 18ms 17ms 15ms
Adults 209ms 152ms 136ms 123ms
SIMMC 22.90s 15.79s 12.03s 13.44s
Lineitem 531.33s 383.51s 344.75s 297.10s

6.4 SUMMARY

Dependencies among data permeate databases, and, whenever possible, should be

exploited in data management tasks. A lthough several com mercial solutions present facilities

to unite not enforced constraints (such as functional dependencies) into planning phases, we

cannot expect them to be exploited in query plans without human supervision. In this chapter, we

present FD S EL , an automatic tool for selecting functional dependencies in relational databases.

F D S e l is based on the idea of matching functional dependencies with the current workload

to boost query optimization. First, we model attribute occurrence matrices (AOMs) with the

functional dependencies and the workload information. We provide operations over the AOMs

to estimate weights over each matching. Then, we present strategies to investigate this matching:

(1) ranking functional dependencies that match most of the projections/selections in the query

Table 6.4: Performance improvements with FDSEL in order optimization.

Dataset
Normal

Execution (Avg)
F D S e l -

Criterion 1 (Avg)
F D S e l -

Criterion 2 (Avg)
F D S e l -

affinity propagation (Avg)

Abalone 4Gms 38ms 24ms 24ms
Adults 367ms 32Gms 22Gms 237ms
SIMMC 62s 54s 35s 29s
Lineitem 571s 487s 387s 36Gs

122

stream (i.e., w o rk lo ad); and (2) c lu ste rin g fu n c tio n a l d ep en d en c ies on th e ir lh s s truc tu re , w ith

only the m ost represen ta tive m atching elem ents set as exem plars. N ext, w e com pute the d istance

b e tw een b in ary re la tio n sh ip s o f fu n c tio n a l dep en d en cies and w o rk lo ad to focus on w ell-ranked

fu n c tio n a l d ep en d en c ies (by th e ran k in g s tra tegy) o r s im ila r o n es (by th e c lu s te rin g strategy).

F inally , w e ind ica te the fo cu sed exem plars in han d to help w ith sem antic query op tim iza tions.

T h e re su lts fro m b o th ran k in g and c lu s te rin g s tra teg ies show ed th a t F D S e l can find

sets o f fu n c tio n a l dep en d en cies w ith d is tr u s t d istribu tions reaso n ab ly sim ilar to those p roduced

b y the exhaustive func tiona l dependencies d iscovery approaches. T h e resu lts also dem onstra ted

the effectiveness o f F D S E L at d iscovering func tiona l dependencies on d ifferen t datasets (o n e o f

them runn ing in p roduction) fo r query op tim iza tion , frequen tly reducing query response tim e is

up to 1 o rd e r o f m ag n itu d e in jo in e lim ination .

123

Chapter 7

Conclusions

This thesis presents a novel data profiling algorithm for denial constraints, introduces

diverse approaches that help in applying denial constraints for the improvement of data quality,

and describes a system for the application of functional dependencies in query optimization.

The list of publications we contributed during the development of this thesis is available in

Appendix A.

The challenges in discovering approximate denial constraints drove us to design

D C F INDER algorithm. We can take several algorithmic insights from it. The combination

of position list indexes, logical operations, and predicate selectivity results in a time-efficient

building of evidence sets. This building step is critical in denial constraint discovery since the

algorithms for the task explore the search space and validate candidates using evidence sets. Also,

D C FINDER was designed to maintain com plete inform ation on evidence multiplicity, which

is required in discovering approximate denial constraints. In our experimental evaluation, the

design decisions in D C FINDER showed to improve the runtime of denial constraint discovery

considerably.

This thesis also shows that the evidence distribution taken from a given consistent

dataset differs from the evidence distribution taken from an equivalent dataset containing some

inconsistencies. In that context, this thesis presents a method based on evidence multiplicity that

extends D C f in d e r to discover reliable approximate denial constraints from inconsistent data.

The approach is promising because the access to 100% consistent data is often infeasible. Our

evaluation showed that our method discovers approximate denial constraints that identify many

inconsistencies in the input dataset.

We saw that current commercial database management systems might take too long in

detecting violations of denial constraints commonly seen in production. This thesis introduces

V i o F in d e r to handle this detection problem efficiently. We learned that combining pipelines of

tuple partitions with refinement implementation based on predicate type bring a fast execution

of violation detection, at a relatively low memory footprint. Being the fastest option in our

experimental evaluation, V i o F in d e r can be a compelling com ponent for any data cleaning

pipeline or tool based on denial constraints.

124

Finally, this thesis describes a system that uses functional dependencies discovered

from datasets to improve query optimization. F D S EL explores query workload information to

narrow a large number of functional dependencies to those that can benefit the most from query

rewritings based on jo in elimination or order optimization. In our experimental analysis, we

found that F D S e l can frequently apply query rewritings to reduce overall query response time.

7.1 FINAL THOUGHTS AND FUTURE WORKS

We start this section with a brief discussion on the scalability of data profiling algorithms

for the discovery of dependencies. The evaluation of D C FINDER and other related algorithms

shows that discovering approximate denial constraints may take hours for relatively small datasets

(with around one million of records and two dozen columns). Such long runtime appears even if

we consider the discovery of exact denial constraints, which enables a series of optimizations in

its algorithms. A long runtim e also appears in the discovery of dependencies that are simpler

than denial constraints; see, for example, the experimental evaluation on functional dependency

discovery in [29]. These performance results are somehow expected, as they only reflect the

computational complexity of the dependency discovery problems.

One approach that can reduce runtime for dependency discovery is sampling [158, 159,

160]. For example, in [160], the authors adapt D C f in d e r to work with data samples and show

that it is possible to reduce the discovery of denial constraints runtime at small completeness

sacrifices. W hen considering sampling, the problem becomes that of designing methods that

can guarantee some completeness bounds. Even though this line of research is orthogonal

to the one presented in this thesis, we believe it is a promising approach that can help with

several scalability issues in profiling dependencies. Unfortunately, even the use of sampling in

dependency discovery might be undermined because the output can be quite large due to the

exponential nature of the discovery problem. This fact, however, does not indicate that we have

reach a dead end.

Production applications would hardly require a large number of dependencies, such as

the number of dependencies in dependency discovery output, in their operation. Besides, we

saw that the number of denial constraints with high coverage and succinctness is relatively small.

Also, we noticed that the number of functional dependencies that benefit query optimization the

most is relatively small as well. Based on these facts, focusing the dependency discovery on

the subset of results that are eventually applied in applications might be explored to enable the

profiling of more massive datasets.

An exciting line for future research regards dynamic data. Datasets receive data updates

continually, and as a result, their data profiles change regularly. Solutions that can discover

dependencies or detect dependency violations while datasets are changing are quite helpful

because it would avoid the re-execution of the long-running processes in the entire data. There

has been recent research around these lines [161, 30, 162]. As static solutions have inspired

125

these methods, we believe the static approaches we describe in this thesis can be a starting point

for discovering denial constraints and detecting violations on dynamic data.

126

REFERENCES

[1] W enfeiFan. Data quality: From theory to practice. S IG M O D R e c ., 44(3):7-18, December

2015.

[2] M ichael M. Hamm er and Dennis J. McLeod. Semantic integrity in a relational data

base system. In P r o c e e d in g s o f th e 1 s t I n te r n a t io n a l C o n fe re n c e o n V ery L a r g e D a ta

B a s e s , VLDB ’75, page 25-47, New York, NY, USA, 1975. Association for Computing

Machinery.

[3] Michael Stonebraker. Implementation of integrity constraints and views by query modifica­

tion. In P ro c e e d in g s o f the 1 9 7 5 A C M S IG M O D In te rn a tio n a l C o n fe ren ce on M a n a g e m e n t

o f D a ta , SIGMOD ’75, page 65-78, New York, NY, USA, 1975. Association for Comput­

ing Machinery.

[4] Serge Abiteboul, Richard Hull, and Victor Vianu. F o u n d a tio n s o f D a ta b a s e s . Addison-

Wesley, 1995.

[5] M aurizio Lenzerini. Data integration: A theoretical perspective. In P r o c e e d in g s o f th e

T w e n ty - fir s t A C M S IG M O D -S IG A C T -S IG A R T S y m p o s iu m o n P r in c ip le s o f D a ta b a s e

S y s te m s , PODS ’02, pages 233-246, New York, NY, USA, 2002. ACM.

[6] W. W. Eckerson. Data quality and the bottom line: achieving business success through a

commitment to high quality data. Technical report, Data Warehousing Institute, 2002.

[7] S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer. Enterprise data analysis and

visualization: An interview study. IE E E T V C G , 18(12), Dec 2012.

[8] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. D a ta b a s e S y s te m s: T he

C o m p le te B o o k . Prentice Hall Press, USA, 2 edition, 2008.

[9] Ramez Elmasri and Shamkant B. Navathe. F u n d a m e n ta ls o f D a ta b a se S y s te m s . Pearson,

7th edition, 2015.

[10] Umeshwar Dayal, Jennifer Widom, and Stefano Ceri. A c tiv e D a ta b a se S ys tem s: T riggers

a n d R u le s f o r A d v a n c e d D a ta b a s e P r o c e s s in g . Morgan Kaufmann, San Francisco, CA,

USA, 1994.

127

[11] Norman W. Paton and Oscar Díaz. Active database systems. ACM Computing Surveys,

31(1):63-103, March 1999.

[12] Roberta Cochrane, Hamid Pirahesh, and Nelson M endonça Mattos. Integrating triggers

and declarative constraints in sql database sytems. In Proceedings o f the 22th International

Conference on Very Large D ata Bases, VLDB ’96, page 567-578, San Francisco, CA,

USA, 1996. Morgan Kaufmann Publishers Inc.

[13] Eric Simon and Angelika Kotz Dittrich. Promises and realities of active database systems.

In Proceedings o f the 21th International Conference on Very Large D ata Bases, VLDB

’95, page 642-653, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

[14] Stefano Ceri, Roberta Cochrane, and Jennifer Widom. Practical applications of triggers

and constraints: Success and lingering issues (10-year award). In Proceedings o f the

26th International Conference on Very Large D ata Bases, VLDB ’00, page 254-262, San

Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[15] Raghu Ramakrishnan and Johannes Gehrke. D atabase M anagem ent Systems. McGraw-

Hill, Inc., USA, 3 edition, 2002.

[16] V. W iktor Marek and Miroslaw Truszczynski. Revision programming, database updates

and integrity constraints. In Georg Gottlob and Moshe Y. Vardi, editors, D atabase Theory

- IC D T’95, 5th International Conference, Prague, Czech Republic, January I I - I3 , 1995,

Proceedings, volume 893 of Lecture Notes in Computer Science, pages 368-382. Springer,

1995.

[17] W ojciech Czerwinski, Claire David, Filip M urlak, and Pawel Parys. Reasoning about

integrity constraints for tree-structured data. In Wim Martens and Thomas Zeume, editors,

I9 th International Conference on Database Theory, ICDT 20I6, Bordeaux, France, March

I5-I8 , 20I6, volume 48 of LIPIcs, pages 20:1-20:18. Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 2016.

[18] Nishita Balamuralikrishna, Yingnan Jiang, Henning Koehler, Uwe Leck, Sebastian Link,

and Henri Prade. Possibilistic keys. Fuzzy Sets and Systems, 376:1 - 36, 2019. Theme:

Computer Science.

[19] Batya Kenig and Dan Suciu. Integrity constraints revisited: From exact to approximate im­

plication. In Carsten Lutz and Jean Christoph Jung, editors, 23rd International Conference

on D atabase Theory, ICDT 2020, March 30-April 2, 2020, Copenhagen, Denmark, volume

155 of LIPIcs, pages 18:1-18:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

2020.

128

[20] Ronald Fagin and M oshe Y. Vardi. The theory of data dependencies — an overview.

In Jan Paredaens, editor, Automata, Languages and Programm ing, pages 1-22, Berlin,

Heidelberg, 1984. Springer Berlin Heidelberg.

[21] Jixue Liu, Jiuyong Li, Chengfei Liu, and Yongfeng Chen. Discover dependencies from

data - a review. /L EE TKDE, 24(2):251-264, February 2012.

[22] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. Profiling relational data: A survey.

The VLDB Journal, 24(4):557-581, August 2015.

[23] L. Caruccio, V. Deufemia, and G. Polese. Relaxed functional dependencies - a survey of

approaches. IEEE TKDE, 28(1):147-165, Jan 2016.

[24] Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. Conditional func­

tional dependencies for capturing data inconsistencies. ACM Trans. D atabase Syst.,

33(2):6:1-6:48, June 2008.

[25] W enfei Fan, Floris Geerts, Jianzhong Li, and Ming Xiong. Discovering conditional

functional dependencies. IEEE TKDE, 23(5):683-698, May 2011.

[26] Y ka Huhtala, Juha Karkkainen, Pasi Porkka, and Hannu Toivonen. Tane: An efficient

algorithm for discovering functional and approximate dependencies. The Computer

Journal, 42(2):100, 1999.

[27] Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert, Jan-Peer Rudolph,

Martin Schönberg, Jakob Zwiener, and Felix Naumann. Functional dependency discovery:

An experimental evaluation of seven algorithms. PVLDB., 8(10):1082-1093, June 2015.

[28] Z. Wei and S. Link. Discovery and ranking of functional dependencies. In 2019 IEEE

35th International Conference on D ata Engineering (/CDE), pages 1526-1537, 2019.

[29] Thorsten Papenbrock and Felix Naumann. A hybrid approach to functional dependency

discovery. In Proceedings o f the 2016 International Conference on Management o f Data,

SIGMOD ’16, pages 821-833, New York, NY, USA, 2016. ACM.

[30] Philipp Schirmer, Thorsten Papenbrock, Sebastian Kruse, Felix Naumann, Dennis Hempf-

ing, Torben Mayer, and Daniel Neuschäfer-Rube. Dynfd: Functional dependency discov­

ery in dynamic datasets. In Melanie Herschel, Helena Galhardas, Berthold Reinwald, Irini

Fundulaki, Carsten Binnig, and Zoi Kaoudi, editors, Advances in D atabase Technology -

22nd International Conference on Extending D atabase Technology, EDBT 2019, Lisbon,

Portugal, March 26-29, 2019, pages 253-264. OpenProceedings.org, 2019.

[31] Laure Berti-Équille, Hazar Harmouch, Felix Naumann, Noël Novelli, and Saravanan

Thirumuruganathan. Discovery of genuine functional dependencies from relational data

with missing values. Proc. VLDB Endow., 11(8):880-892, April 2018.

129

[32] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. Discovering denial constraints. P ro c . V L D B

E n d o w ., 6(13):1498-1509, August 2013.

[33] M atteo M agnani and Danilo Montesi. A survey on uncertainty management in data

integration. J. D a ta a n d In fo r m a tio n Q u a li ty , 2(1):5:1-5:33, July 2010.

[34] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. Holoclean: Holistic

data repairs with probabilistic inference. P V L D B E n d o w . , 10(11):1190-1201, August

2017.

[35] M ichele Dallachiesa, Amr Ebaid, Ahmed Eldawy, Ahmed Elmagarmid, Ihab F. Ilyas,

M ourad Ouzzani, and Nan Tang. Nadeef: A commodity data cleaning system. In

P r o c e e d in g s o f th e 2 0 1 3 A C M S IG M O D I n te r n a t io n a l C o n fe r e n c e o n M a n a g e m e n t o f

D a ta , SIGMOD ’13, pages 541-552, New York, NY, USA, 2013. ACM.

[36] Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro. The llunatic

data-cleaning framework. P ro c . V L D B E n d o w ., 6(9):625-636, July 2013.

[37] M arcelo Arenas, Leopoldo Bertossi, and Jan Chomicki. Consistent query answers in

inconsistent databases. In P ro c e e d in g s o f the E ig h te e n th A C M S IG M O D -S IG A C T -S IG A R T

S y m p o s iu m o n P r in c ip le s o f D a ta b a se S y s te m s , PODS ’99, pages 68-79, New York, NY,

USA, 1999. ACM.

[38] W enfei Fan, Floris Geerts, and Xibei Jia. A revival of integrity constraints for data

cleaning. P ro c . V L D B E n d o w ., 1(2):1522-1523, August 2008.

[39] Erhard Rahm and Hong Hai Do. Data cleaning: Problems and current approaches. IE E E

D a ta E n g in e e r in g B u l le t in , 23:2000, 2000.

[40] Leo L. Pipino, Yang W. Lee, and Richard Y. Wang. Data quality assessment. C o m m u n .

A C M , 45(4):211-218, April 2002.

[41] Eduardo H. M. Pena, Eduardo C. de Almeida, and Felix Naumann. Discovery of approx­

imate (and exact) denial constraints. P ro c . V L D B E n d o w ., 13(3):266-278, November

2019.

[42] Eduardo H. M. Pena and Eduardo Cunha de Almeida. Short paper: Descoberta automática

de restrições de negação confiáveis. In X X X I V S im p ó s io B r a s ile ir o d e B a n c o d e D a d o s ,

S B B D 2 0 1 9 , F o rta leza , C E , B ra zil, O c to b e r 7 -10 , 2 0 1 9 , pages 187-192. SBC, 2019.

[43] Eduardo H. M. Pena, Edson R. Lucas Filho, Eduardo C. de Almeida, and Felix Naumann.

Efficient detection of data dependency violations. to appear in Proceedings of the 29th

ACM International Conference on Information and Knowledge Management, 2020.

130

[44] Eduardo H. M. Pena, Erik Falk, Jorge Augusto Meira, and Eduardo Cunha de Almeida.

Mind your dependencies for semantic query optimization. JIDM, 9(1):3-19, 2018.

[45] E. F. Codd. A relational model of data for large shared data banks. Commun. ACM,

13(6):377-387, June 1970.

[46] E. F. Codd. Further normalization of the data base relational model. Research R ep o rt/R J

/ IB M /S an Jose, California, RJ909, 1971.

[47] E. F. Codd. Relational completeness of data base sublanguages. Research R e p o r t /R J /

IB M /S an Jose, California, RJ987, 1972.

[48] W enfei Fan. Dependencies revisited for improving data quality. In Proceedings o f the

Twenty-Seventh ACM SIGMOD-SIGACT-SIGART Symposium on Principles o f D atabase

Systems, PODS ’08, page 159-170, New York, NY, USA, 2008. Association for Comput­

ing Machinery.

[49] Thomas J. Watson IBM Research Center and M.Y. Vardi. Fundamentals o f Dependency

Theory. Research report. IBM Research Division, 1985.

[50] Paolo Atzeni and Valeria De Antonellis. Relational database theory. Benjamin-Cummings

Publishing Co., Inc., 1993.

[51] E.O. [de Brock]. A general treatment of dynamic integrity constraints. D ata and Knowl­

edge Engineering, 32(3):223 - 246, 2000.

[52] Marco A. Casanova, Ronald Fagin, and Christos H. Papadimitriou. Inclusion dependencies

and their interaction with functional dependencies. In Proceedings o f the 1st ACM SIGACT-

SIGMOD Symposium on Principles o f D atabase Systems, PODS ’82, page 171-176, New

York, NY, USA, 1982. Association for Computing Machinery.

[53] Guido Geerts. Semantic modelling of an accounting universe of discourse: The usefulness

of inter-relation constraints. In Toby J. Teorey, editor, Proceedings o f the 10th In terna­

tional Conference on Entity-Relationship Approach (ER ’91), 23-25 October 1991, San

Mateo, California, USA, pages 263-283. ER Institute, 1991.

[54] X. Chu, I. F. Ilyas, and P. Papotti. Holistic data cleaning: Putting violations into context.

pages 458-469, 2013.

[55] Tobias Bleifuß, Sebastian Kruse, and Felix Naumann. Efficient denial constraint discovery

with hydra. Proc. VLDB Endow., 11(3):311-323, November 2017.

[56] Marianne Baudineta, Jan Chomicki, and Pierre Wolper. Constraint-generating dependen­

cies. Journal o f Computer and System Sciences, 5 9 (1):9 4 - 115, 1999.

131

[57] Wenfei Fan and Floris Geerts. Foundations o f D ata Quality M anagement. Morgan and

Claypool Publishers, 2012.

[58] Wilfred Ng. Ordered functional dependencies in relational databases. Information Systems,

24(7):535 - 554, 1999.

[59] Jaroslaw Szlichta, Parke Godfrey, Jarek Gryz, and Calisto Zuzarte. Expressiveness and

complexity of order dependencies. Proc. VLDB Endow., 6(14):1858-1869, September

2013.

[60] Jaroslaw Szlichta, Parke Godfrey, and Jarek Gryz. Fundamentals of order dependencies.

Proc. VLDB Endow , 5(11):1220-1231, July 2012.

[61] Seymour Ginsburg and Richard Hull. Order dependency in the relational model. Theoreti­

cal Computer Science, 26(1):149 - 195, 1983.

[62] Jyrki Kivinen and Heikki Mannila. Approximate inference of functional dependencies

from relations. Theoretical Computer Science, 149(1):129- 149, 1995.

[63] Batya Kenig and Dan Suciu. Integrity Constraints Revisited: From Exact to A pproxi­

mate Implication. In Carsten Lutz and Jean Christoph Jung, editors, 23rd International

Conference on D atabase Theory (ICDT 2020), volume 155 of Leibniz International P ro­

ceedings in Informatics (LIPIcs), pages 18:1-18:20, Dagstuhl, Germany, 2020. Schloss

Dagstuhl-Leibniz-Zentrum für Informatik.

[64] Nick Koudas, Avishek Saha, Divesh Srivastava, and Suresh Venkatasubramanian. Metric

functional dependencies. In Proceedings o f the 2009 IEEE International Conference on

D ata Engineering, ICDE ’09, pages 1275-1278, W ashington, DC, USA, 2009. IEEE

Computer Society.

[65] Shaoxu Song and Lei Chen. Differential dependencies: Reasoning and discovery. ACM

Trans. D atabase Syst., 36(3):16:1-16:41, August 2011.

[66] Sridevi Baskaran, Alexander Keller, Fei Chiang, Lukasz Golab, and Jaroslaw Szlichta.

Efficient discovery of ontology functional dependencies. In Proceedings o f the 2017

ACM on Conference on Information and Knowledge M anagement, CIKM ’17, pages

1847-1856, New York, NY, USA, 2017. ACM.

[67] Xiaoyuan Wang, Xingzhi Sun, Feng Cao, Li Ma, Nick Kanellos, Kang Zhang, Yue Pan,

and Yong Yu. Smdm: Enhancing enterprise-wide master data management using semantic

web technologies. Proc. VLDB Endow., 2(2):1594-1597, August 2009.

[68] Karin Murthy, Prasad M. Deshpande, Atreyee Dey, Ram anujam Halasipuram, M ukesh

M ohania, P. Deepak, Jennifer Reed, and Scott Schumacher. Exploiting evidence from

132

unstructured data to enhance master data management. P roc. V L D B E n d o w ., 5(12):1862-

1873, August 2012.

[69] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, and Wenyuan Yu. Towards certain fixes

with editing rules and master data. T h e V L D B J o u r n a l , 21(2):213—238, April 2012.

[70] Jiannan Wang and Nan Tang. Dependable data repairing with fixing rules. J. D a ta a n d

In fo r m a tio n Q u a lity , 8(3-4):16:1-16:34, June 2017.

[71] Sergio Greco, Cristian M olinaro, and Francesca Spezzano. In c o m p le te D a ta a n d D a ta

D e p e n d e n c ie s in R e la tio n a l D a ta b a s e s . Synthesis Lectures on Data Management. Morgan

& Claypool Publishers, 2012.

[72] Ziheng Wei and Sebastian Link. Em bedded functional dependencies and data-

completeness tailored database design. P ro c . V L D B E n d o w . , 12(11):1458-1470, July

2019.

[73] Z. Wei, U. Leck, and S. Link. Entity integrity, referential integrity, and query optimization

with embedded uniqueness constraints. In 2 0 1 9 I E E E 3 5 th In te r n a tio n a l C o n fe re n c e o n

D a ta E n g in e e r in g (IC D E) , pages 1694-1697, 2019.

[74] Ziawasch Abedjan, Lukasz Golab, Felix Naumann, and Thorsten Papenbrock. D a ta

P ro filin g . Morgan and Claypool Publishers, 2018.

[75] Arvid Heise, Jorge-Arnulfo Quiané-Ruiz, Ziawasch Abedjan, A nja Jentzsch, and Felix

Naumann. Scalable discovery of unique column combinations. 7(4):301-312, 2013.

[76] Noel Novelli and Rosine Cicchetti. Fun: An efficient algorithm for mining functional and

embedded dependencies. In P ro c e e d in g s o f the 8 th In te rn a tio n a l C o n feren ce o n D a ta b a se

T h e o r y , ICDT ’01, pages 189-203, London, UK, UK, 2001. Springer-Verlag.

[77] Stéphane Lopes, Jean-M arc Petit, and Lotfi Lakhal. Efficient discovery of functional

dependencies and armstrong relations. In P ro c e e d in g s o f the 7 th In te rn a tio n a l C o n feren ce

o n E x te n d in g D a ta b a se T echno logy: A d v a n c e s in D a ta b a se T ech n o lo g y , EDBT ’00, pages

350-364, London, UK, UK, 2000. Springer-Verlag.

[78] Catharine Wyss, Chris Giannella, and Edward L. Robertson. Fastfds: A heuristic-driven,

depth-first algorithm for mining functional dependencies from relation instances - extended

abstract. In P ro c e e d in g s o f the T h ird In te rn a tio n a l C o n fe ren ce o n D a ta W a reh o u sin g a n d

K n o w le d g e D is c o v e r y , DaWaK ’01, pages 101-110, London, UK, UK, 2001. Springer­

Verlag.

[79] C. Giannella and C.M. Wyss. Finding minimal keys in a relation instance, 1999.

133

[80] Ziawasch Abedjan and Felix Naumann. Advancing the discovery of unique column

combinations. In P ro c e e d in g s o f the 2 0 th A C M In te r n a tio n a l C o n fe re n c e o n In fo rm a tio n

a n d K n o w le d g e M a n a g e m e n t , CIKM ’11, page 1565-1570, New York, NY, USA, 2011.

Association for Computing Machinery.

[81] Yannis Sismanis, Paul Brown, Peter J. Haas, and Berthold Reinwald. Gordian: Efficient

and scalable discovery of composite keys. pages 691-702. ACM, 2006.

[82] Thorsten Papenbrock and Felix Naumann. A hybrid approach for efficient unique column

combination discovery. D a te n b a n k s y s te m e f ü r B u s in e s s , T e c h n o lo g ie u n d W eb (B T W

2 0 1 7) , 2017.

[83] Philipp Langer and Felix Naumann. Efficient order dependency detection. T h e V L D B

J o u r n a l , 25(2):223-241, April 2016.

[84] Jaroslaw Szlichta, Parke Godfrey, Lukasz Golab, M ehdi Kargar, and Divesh Srivastava.

Effective and com plete discovery of order dependencies via set-based axiomatization.

P roc. V L D B E n d o w ., 10(7):721-732, March 2017.

[85] Cristian Consonni, Paolo Sottovia, Alberto Montresor, and Yannis Velegrakis. Discovering

order dependencies through order compatibility. pages 409-420, 2019.

[86] Jaroslaw Szlichta, Parke Godfrey, Lukasz Golab, M ehdi Kargar, and Divesh Srivastava.

Erratum for discovering order dependencies through order compatibility (EDBT 2019).

In Angela Bonifati, Yongluan Zhou, Marcos Antonio Vaz Salles, Alexander Böhm, Dan

Olteanu, George H. L. Fletcher, Arijit Khan, and Bin Yang, editors, P r o c e e d in g s o f

th e 2 3 n d I n te r n a t io n a l C o n fe r e n c e o n E x te n d in g D a ta b a s e T ech n o lo g y , E D B T 2 0 2 0 ,

C o p en h a g en , D en m a rk , M a rch 3 0 - A p r il 02, 2 0 2 0 , pages 659-663. OpenProceedings.org,

2020.

[87] Y. Jin, L. Zhu, and Z. Tan. Efficient bidirectional order dependency discovery. In 2 0 2 0

IE E E 3 6 th In te r n a tio n a l C o n fe re n c e o n D a ta E n g in e e r in g (IC D E) , pages 61-72, 2020.

[88] Mohammed J. Zaki. Mining non-redundant association rules. D a ta M in . K n o w l. D isco v .,

9(3):223-248, November 2004.

[89] Joeri Rammelaere and Floris Geerts. Revisiting conditional functional dependency dis­

covery: Splitting the “C ” from the “FD ” . In P r o c e e d in g s o f th e E u r o p e a n C o n fe re n c e

o n M a c h in e L e a r n in g a n d K n o w le d g e D is c o v e r y in D a ta b a s e s (E C M L /P K D D) , pages

552-568, 2019.

[90] Stéphane Lopes, Jean-M arc Petit, and Lotfi Lakhal. Functional and approximate depen­

dency mining: Database and fca points of view. J. E x p . Theor. A r ti f . I n te l l . , 14:93-114,

04 2002.

134

[91] Sebastian Kruse and Felix Naumann. Efficient discovery of approximate dependencies.

11(7):759-772, 2018.

[92] Jaroslaw Szlichta, Parke Godfrey, Lukasz Golab, M ehdi Kargar, and Divesh Srivastava.

Effective and complete discovery of bidirectional order dependencies via set-based axioms.

27(4):573-591, 2018.

[93] S. Song, L. Chen, and H. Cheng. Efficient determination of distance thresholds for

differential dependencies. IEEE Transactions on Knowledge and D ata Engineering,

26(9):2179-2192, 2014.

[94] Selasi Kwashie, Jixue Liu, Jiuyong Li, and Feiyue Ye. Efficient discovery of differential de­

pendencies through association rules mining. In Mohamed A. Sharaf, Muhammad Aamir

Cheema, and Jianzhong Qi, editors, D atabases Theory and Applications, pages 3-15,

Cham, 2015. Springer International Publishing.

[95] Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivonen, and A. Inkeri

Verkamo. Advances in knowledge discovery and data mining. chapter Fast Discovery

of Association Rules, pages 307-328. American Association for Artificial Intelligence,

Menlo Park, CA, USA, 1996.

[96] Thierno Diallo, Jean-Marc Petit, and Sylvie Servigne. Discovering Editing Rules for Data

Cleaning. In 10th International Workshop on Quality in D atabases In conjunction with

VLDB (Very Large D atabases) 2012, pages 1-8, Istanbul, Turkey, August 2012.

[97] Ziheng Wei, Sven Hartmann, and Sebastian Link. Discovery algorithms for embedded

functional dependencies. In Proceedings o f the 2020 ACM SIGMOD International

Conference on Management o f D ata, SIGMOD ’20, page 833-843, New York, NY, USA,

2020. Association for Computing Machinery.

[98] Ziheng Wei, Uwe Leck, and Sebastian Link. Discovery and ranking of embedded unique­

ness constraints. Proc. VLDB Endow., 12(13):2339-2352, September 2019.

[99] Gregory Piatetsky-Shapiro and Christopher J. M atheus. M easuring data dependencies

in large databases. In Proceedings o f the 2nd International Conference on Knowledge

Discovery in D atabases, AAAIW S’93, page 162-173. AAAI Press, 1993.

[100] Daniel Sanchez, José-M aria Serrano, Ignacio J. Blanco, M aría J. M artin-Bautista, and

M aría Amparo Vila M iranda. Using association rules to mine for strong approximate

dependencies. D ata Min. Knowl. Discov., 16(3):313-348, 2008.

[101] Periklis Andritsos, Renée J. Miller, and Panayiotis Tsaparas. Information-theoretic

tools for mining database structure from large data sets. In Proceedings o f the 2004

135

ACM S1GMOD 1nternational Conference on M anagem ent o f D ata, SIGMOD ’04, page

731-742, New York, NY, USA, 2004. Association for Computing Machinery.

[102] Thorsten Papenbrock and Felix Naumann. Data-driven schema normalization. pages

342-353, 2017.

[103] B. Saha and D. Srivastava. Data quality: The other face of big data. In 2 0 1 4 1EEE 30th

International Conference on D ata Engineering, pages 1294-1297, March 2014.

[104] Ihab F. Ilyas and Xu Chu. Trends in cleaning relational data: Consistency and deduplica­

tion. Foundations and Trends in D atabases, 5(4):281-393, 2015.

[105] Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro. That’s all

folks!: Llunatic goes open source. pages 1565-1568, 2014.

[106] Zuhair Khayyat, Ihab F. Ilyas, Alekh Jindal, Samuel Madden, M ourad Ouzzani, Paolo

Papotti, Jorge-Arnulfo Quiané-Ruiz, Nan Tang, and Si Yin. Bigdansing: A system for big

data cleansing. In S1GMOD, page 1215-1230, 2015.

[107] Leopoldo Bertossi. Consistent query answering in databases. S1GMOD Rec., 35(2):68-76,

June 2006.

[108] Balder ten Cate, Gaëlle Fontaine, and Phokion G. Kolaitis. On the data complexity of

consistent query answering. Theory o f Computing Systems, 57(4):843-891, Nov 2015.

[109] Marco Calautti, Leonid Libkin, and Andreas Pieris. An operational approach to consistent

query answering. In Proceedings o f the 35th ACM S1GMOD-S1GACT-S1GA1 Symposium

on Principles o f Database Systems, SIGMOD/PODS ’18, pages 239-251, New York, NY,

USA, 2018. ACM.

[110] Sebastian Arming, Reinhard Pichler, and Emanuel Sallinger. Complexity of Repair

Checking and Consistent Query Answering. In Wim Martens and Thomas Zeume, editors,

19th 1nternational Conference on D atabase Theory (1CDT 2016), volume 48 of Leibniz

1nternational Proceedings in 1nformatics (L1P1cs), pages 21:1-21:18, Dagstuhl, Germany,

2016. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[111] Gaëlle Fontaine. W hy is it hard to obtain a dichotomy for consistent query answering?

ACM Trans. Comput. Logic, 16(1):7:1-7:24, March 2015.

[112] George Beskales, Ihab F. Ilyas, and Lukasz Golab. Sampling the repairs of functional

dependency violations under hard constraints. Proc. VLDB Endow., 3(1-2):197-207,

September 2010.

136

[113] Philip Bohannon, Wenfei Fan, Michael Flaster, and Rajeev Rastogi. A cost-based model

and effective heuristic for repairing constraints by value modification. In P ro c e e d in g s o f

th e 2GG5 A C M S IG M O D In te r n a t io n a l C o n fe r e n c e o n M a n a g e m e n t o f D a ta , SIGMOD

’05, pages 143-154, New York, NY, USA, 2005. ACM.

[114] Gao Cong, Wenfei Fan, Floris Geerts, Xibei Jia, and Shuai Ma. Improving data quality:

Consistency and accuracy. In P ro c e e d in g s o f th e 3 3 rd In te r n a tio n a l C o n fe re n c e o n Very

L a rg e D a ta B a s e s , VLDB ’07, pages 315-326. VLDB Endowment, 2007.

[115] Jaeho Shin, Sen Wu, Feiran Wang, Christopher De Sa, Ce Zhang, and Christopher

Ré. Incremental knowledge base construction using deepdive. P ro c . V L D B E n d o w .,

8(11):1310-1321, July 2015.

[116] Carlo A. Curino, Hyun J. Moon, and Carlo Zaniolo. Graceful database schema evolution:

The prism workbench. P roc. V L D B E n d o w ., 1(1):761-772, August 2008.

[117] Lukasz Golab, Howard Karloff, Flip Korn, Divesh Srivastava, and Bei Yu. On generating

near-optimal tableaux for conditional functional dependencies. P ro c . V L D B E n d o w .,

1(1):376-390, August 2008.

[118] F. Chiang and R. J. Miller. A unified model for data and constraint repair. In 2G11 IE E E

2 7 th In te r n a tio n a l C o n fe re n c e o n D a ta E n g in e e r in g , pages 446-457, April 2011.

[119] George Beskales, Ihab F. Ilyas, Lukasz Golab, and Artur Galiullin. On the relative

trust between inconsistent data and inaccurate constraints. In 2 9 th I E E E In te r n a t io n a l

C o n fe r e n c e o n D a ta E n g in e e r in g , I C D E 2G13, B r isb a n e , A u s tr a lia , A p r i l S -1 2 , 2 G 13 ,

pages 541-552,2013.

[120] Mirjana Mazuran, Elisa Quintarelli, Letizia Tanca, and Stefania Ugolini. Semi-automatic

support for evolving functional dependencies. In E D B T 2G 16 ., pages 293-304, 2016.

[121] M ichael Hamm er and Stanley B. Zdonik. Knowledge-based query processing. In P r o ­

c e e d in g s o f th e S ix th I n te r n a t io n a l C o n fe r e n c e o n V ery L a rg e D a ta B a s e s - V o lu m e 6 ,

VLDB ’80, pages 137-147. VLDB Endowment, 1980.

[122] Ihab F. Ilyas, Volker Markl, Peter Haas, Paul Brown, and A shraf Aboulnaga. Cords:

Automatic discovery of correlations and soft functional dependencies. In S IG M O D ,

SIGMOD ’04, pages 647-658, New York, NY, USA, 2004. ACM.

[123] Yuchen Liu, Hai Liu, Dongqing Xiao, and M ohamed Y. Eltabakh. Adaptive correlation

exploitation in big data query optimization. T h e V L D B J o u r n a l , 27(6):873-898, Dec

2018.

137

[124] M arkos Zaharioudakis, Roberta Cochrane, George Lapis, Hamid Pirahesh, and M onica

Urata. Answering complex sql queries using automatic summary tables. SIGMOD Rec.,

29(2):105-116, May 2000.

[125] Qi Cheng, Jarek Gryz, Fred Koo, T. Y. C liff Leung, Linqi Liu, Xiaoyan Qian, and

K. Bernhard Schiefer. Implementation of two semantic query optimization techniques in

db2 universal database. In 25th VLDB, VLDB ’99, pages 687-698, 1999.

[126] Ziheng Wei and Sebastian Link. Em bedded functional dependencies and data-

completeness tailored database design. PVLDB, 12(11):1458-1470, 2019.

[127] Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and Stijn Vansummeren. Cleaning

inconsistencies in information extraction via prioritized repairs. pages 164-175, 2014.

[128] W enfei Fan, Floris Geerts, and Jef Wijsen. Determining the currency of data. ACM

Transactions on D atabase Systems, 37(4):25:1-25:46, 2012.

[129] Noël Novelli and Rosine Cicchetti. FUN: An efficient algorithm for mining functional

and embedded dependencies. pages 189-203, 2001.

[130] Eduardo H. M. Pena and Eduardo Cunha de Almeida. BFASTDC: A bitwise algorithm

for mining denial constraints. pages 53-68, 2018.

[131] Rakesh Agrawal and Ram akrishnan Srikant. Fast algorithms for mining association

rules in large databases. In Proceedings of the 20th International Conference on Very

Large D ata Bases, VLDB ’94, page 487-499, San Francisco, CA, USA, 1994. Morgan

Kaufmann Publishers Inc.

[132] Dimitrios Gunopulos, Roni Khardon, Heikki Mannila, Sanjeev Saluja, Hannu Toivonen,

and Ram Sewak Sharma. Discovering all most specific sentences. ACM Transactions on

D atabase Systems, 28(2):140-174, 2003.

[133] Thomas Bläsius, Tobias Friedrich, and M artin Schirneck. The param eterized com plex­

ity of dependency detection in relational databases. In International Symposium on

Parameterized and Exact Computation (IPEC), pages 6:1-6:13, 2016.

[134] Li Lin and Yunfei Jiang. The computation of hitting sets: Review and new algorithms.

Information Processing Letters, 86(4):177 - 184, 2003.

[135] J. Bailey, T. Manoukian, and Kotagiri Ramamohanarao. A fast algorithm for computing

hypergraph transversals and its application in mining emerging patterns. pages 485-488,

2003.

[136] Thorsten Papenbrock, Tanja Bergmann, Moritz Finke, Jakob Zwiener, and Felix Naumann.

Data profiling with Metanome. PVLDB, 8(12):1860-1863, 2015.

138

[137] Fei Chiang and Renée J. Miller. Discovering data quality rules. Proc. VLDB Endow.,

1(1):1166-1177, August 2008.

[138] Ziawasch Abedjan, Xu Chu, Dong Deng, Raul Castro Fernandez, Ihab F. Ilyas, Mourad

Ouzzani, Paolo Papotti, Michael Stonebraker, and Nan Tang. Detecting data errors: Where

are we and what needs to be done? Proc. VLDB Endow., 9(12):993-1004, August 2016.

[139] Charles Truong, Laurent Oudre, and Nicolas Vayatis. Selective review of offline change

point detection methods. Signal Processing, 167:107299, 2020.

[140] R. Killick, P. Fearnhead, and I. A. Eckley. Optimal detection of changepoints with a linear

computational cost. Journal o f the American Statistical Association, 107(500):1590-1598,

2012.

[141] Zuhair Khayyat, W illiam Lucia, M eghna Singh, M ourad Ouzzani, Paolo Papotti, Jorge-

Arnulfo Quiané-Ruiz, Nan Tang, and Panos Kalnis. Lightning fast and space efficient

inequality joins. 8(13):2074-2085, 2015.

[142] Noga Alon, Phillip B. Gibbons, Yossi M atias, and M ario Szegedy. Tracking join and

self-join sizes in limited storage. page 10-20, 1999.

[143] Daniel Lemire, Gregory Ssi-Yan-Kai, and Owen Kaser. Consistently faster and smaller

compressed bitmaps with roaring. Softw. Pract. Exper., 46(11):1547-1569, 2016.

[144] Joseph M. Hellerstein and Michael Stonebraker. Predicate migration: Optimizing queries

with expensive predicates. S1GMODRec., 22(2):267-276, 1993.

[145] Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons

Kemper, and Thomas Neumann. Query optimization through the looking glass, and what

we found running the join order benchmark. 27(5):643-668, 2018.

[146] Hideaki Kimura, George Huo, Alexander Rasin, Samuel Madden, and Stanley B. Zdonik.

Correlation maps: A compressed access method for exploiting soft functional dependen­

cies. Proc. VLDB Endow., 2(1):1222-1233, August 2009.

[147] Brendan J. Frey and Delbert Dueck. Clustering by passing messages between data points.

Science, 315:972-976, 2007.

[148] Jayanta Basak, Kushal Wadhwani, and Kaladhar Voruganti. Storage workload identifica­

tion. Trans. Storage, 12(3):14:1-14:30, May 2016.

[149] M. Hazewinkel. Encyclopaedia o f M athematics (1). Springer, 1987.

[150] David Simmen, Eugene Shekita, and Timothy M alkemus. Fundamental techniques for

order optimization. S1GMODRec., 25(2):57-67, June 1996.

139

[151] Upen S. Chakravarthy, John Grant, and Jack Minker. Logic-based approach to semantic

query optimization. A C M Trans. D a ta b a s e S y s t . , 15(2):162-207, June 1990.

[152] D. Laurent and N. Spyratos. Rewriting aggregate queries using functional dependencies.

In In te r n a t io n a l C o n fe r e n c e o n M a n a g e m e n t o f E m e r g e n t D ig i ta l E c o S y s te m s , pages

40-47, New York, NY, USA, 2011. ACM.

[153] G. N. Paulley and Per-Ake Larson. Exploiting uniqueness in query optimization. In

C A S C O N F irs t D e c a d e H ig h Im p a c t P a p ers , CASCON ’10, pages 127-145, Riverton, NJ,

USA, 2010. IBM Corp.

[154] Shashi Shekhar, Jaideep Srivastava, and Soumitra Dutta. A formal model of trade-off

between optimization and execution costs in semantic query optimization. In 1 4 th V L D B ,

VLDB ’88, pages 457-467, San Francisco, CA, USA, 1988.

[155] Daniel J. Abadi, Samuel Madden, and Nabil Hachem. Column-stores vs. row-stores: how

different are they really? In S IG M O D 2 0 0 8 , V ancouver, B C , C a n a d a , pages 967-980,

2008.

[156] Cleide L. B. Possamai, Diego Pasqualin, Daniel Weingaertner, Eduardo Todt, Marcos A.

Castilho, Luis C. E. de Bona, and Eduardo Cunha de Almeida. Proinfodata: Monitoring a

large park of computational laboratories. In Luis Corral, Alberto Sillitti, Giancarlo Succi,

Jelena Vlasenko, and Anthony I. W asserman, editors, O p e n S o u rc e S o ftw a re : M o b ile

O p e n S o u r c e T e c h n o lo g ie s , pages 226-229, Berlin, Heidelberg, 2014. Springer Berlin

Heidelberg.

[157] Sumita Barahmand and Shahram Ghandeharizadeh. D-zipfian: A decentralized implemen­

tation of zipfian. In P ro c e e d in g s o f the S ix th In te rn a tio n a l W o rkshop o n Testing D a ta b a se

S y s te m s , DBTest ’13, pages 6:1-6:6, New York, NY, USA, 2013. ACM.

[158] Tobias Bleifuß, Susanne Bülow, Johannes Frohnhofen, Julian Risch, Georg Wiese, Se­

bastian Kruse, Thorsten Papenbrock, and Felix Naumann. Approximate discovery of

functional dependencies for large datasets. In P ro c e e d in g s o f the 2 5 th A C M In te rn a tio n a l

o n C o n fe ren ce o n In fo rm a tio n a n d K n o w le d g e M a n a g e m e n t , CIKM ’16, page 1803-1812,

New York, NY, USA, 2016. Association for Computing Machinery.

[159] Sebastian Kruse, Thorsten Papenbrock, Christian Dullweber, M oritz Finke, M anuel

Hegner, Martin Zabel, Christian Zoollner, and Felix Naumann. Fast approximate discovery

of inclusion dependencies. In D a te n b a n k sy s te m e f u r B u s in ess , T ech n o lo g ie u n d W eb (B T W

2 0 1 7) , pages 207-226. Gesellschaft fur Informatik, Bonn, 2017.

[160] Ester Livshits, Alireza Heidari, Ihab F. Ilyas, and Benny Kimelfeld. Approximate denial

constraints. P ro c . V L D B E n d o w ., 13(10):1682-1695, 2020.

140

[161] Ziawasch Abedjan, Jorge-Arnulfo Quiané-Ruiz, and Felix Naumann. Detecting unique

column combinations on dynamic data. In Isabel F. Cruz, Elena Ferrari, Yufei Tao, Elisa

Bertino, and Goce Trajcevski, editors, IEEE 30th In ternational Conference on D ata

Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014, pages 1036-1047.

IEEE Computer Society, 2014.

[162] Loredana Caruccio and Stefano Cirillo. Incremental discovery of im precise functional

dependencies. J. D ata and Information Quality, 0(ja).

141

APPENDIX A - PUBLICATIONS

1. E d u ard o H. M. Pena and Eduardo Cunha de Almeida. Short paper: Uso de instâncias

de dados e carga de trabalho para mineração de restrições de integridade. Brazilian

Symposium on Databases (SBBD), pages 312-317, 2017.

2. E d u ard o H. M. Pena. W orkload-Aware Discovery of Integrity Constraints for Data

Cleaning. PhD W orkshop co-located with the 44th International Conference on Very

Large Databases (VLDB), 2018.

3. E d u ard o H. M. Pena, Erik Falk, Jorge Augusto Meira, and Eduardo Cunha de Almeida.

M ind Your Dependencies for Semantic Query Optimization. Journal of Information

and Data M anagement (JIDM), pages 3-19, 2018.

4. E d u ard o H. M. Pena and Eduardo Cunha de Almeida. BFASTDC: A Bitwise A l­

gorithm for M ining Denial Constraints. Database and Expert Systems Applications

(DEXA), pages 53-68, 2018.

5. E d u ard o H. M . P ena and Eduardo Cunha de Almeida. Short paper: Descoberta

autom ática de restrições de negação confiáveis. Brazilian Symposium on Databases

(SBBD), pages 187-192, 2019.

6. E d u ard o H. M. Pena, Eduardo Cunha de Almeida, and Felix Naumann. Discovery of

Approximate (and Exact) Denial Constraints. Proc. VLDB Endow. (PVLDB), pages

266-278, 2019.

7. E d u ard o H. M. Pena, Edson R. Lucas Filho, Eduardo Cunha de Almeida, and Felix

Naumann. Efficient Detection of Data Dependency Violations. To appear in Proceed­

ings of the 29th ACM International on Conference on Information and Knowledge

M anagement (CIKM), 2020.

8. Fabiola Santore, Eduardo Cunha De Almeida, Wagner H. Bonat, E d u ard o H. M. Pena,

Luiz Eduardo S. Oliveira. A Framework for Analyzing the Impact of M issing Data

in Predictive Models. To appear in Proceedings of the 29th ACM International on

Conference on Information and Knowledge M anagement (CIKM), 2020.

