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EXTRATO DE ATA 1 

 2 

Ata da 252ª Reunião do Colegiado do Programa de Pós-Graduação em Engenharia de Recursos Hídricos e 3 
Ambiental, com início às onze horas e trinta minutos do dia dezessete de julho de dois mil e vinte, por 4 
videoconferência, pela plataforma Jitsi. Presentes: Coordenação do PPGERHA: Cristovão Vicente Scapulatempo 5 
Fernandes e Daniel Costa dos Santos; Representante do Departamento Hidráulica e Saneamento: André Luiz Tonso 6 
Fabiani;  Representantes da área de Engenharia Ambiental Heloise Garcia Knapik , Regina Kishi; Representantes da 7 
área de Recursos Hídricos e Ambiental: Daniel Detzel ;  Representante Discente do Mestrado:  Henrique Degraf e 8 
Arthur H. R. Ferreira, os convidados e demais interessados. Aberta a sessão, passou-se para a Ordem do dia:... 9 

2) Alteração de Título da Tese de Kénedy Cipriano Silvério:  Foi aprovado, por unanimidade,  a alteração de título 10 
da Tese de Doutorado do aluno Kénedy Cipriano Silvério. Esta passa de “Variabilidade climática em  Moçambique: 11 
impactos na chuva, avaliação de modelos e previsão” para “Climate variability over Mozambique: impacts on rainfall, 12 
assessment of models and forecast “,  pois a mesma foi escrita em  inglês...Nada mais havendo para tratar, o Professor 13 
Cristovão Vicente S. Fernandes, deu por encerrada a sessão, da qual, para constar, eu Thalita Nishimoto, lavrei a 14 
presente ata. 15 
Curitiba, 17 de julho de 2020 16 
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RESUMO 

 

As chuvas de monção, que na África Austral (SAF) geralmente ocorrem durante  o  verão austral 
(dezembro–fevereiro, DJF) variam em diferentes escalas de tempo. Neste estudo, a ênfase foi 
dada à sua variabilidade intrassazonal (ISV), que é de grande importância para a produção 
agrícola, gerenciamento de recursos hídricos e previsão subssazonal. O estudo foi dividido em 
duas partes: observacional e avaliação de modelos, cujos resultados foram baseados em dados 
diários de precipitação observada (1979–2005) e  previsões retrospectivas semanais de modelos 
do subseasonal to seasonal (S2S) prediction Project (1999–2010), respectivamente. Na primeira 
parte, modos rotacionados de ISV foram determinados sobre leste da SAF. Verificou-se que um 
destes modos exibe forte distribuição espacial na região com precipitação mais intensa de 
monção sobre o interior do subcontinente, além deste estar associado a variações na circulação 
de monção. Suas oscilações mais significativas em diferentes bandas de frequência da ISV 
exibiram períodos em torno de 12, 22–24 e 50 dias, também encontradas anteriormente na ISV 
de chuvas de monção sobre América do Sul (SA). A oscilação de 12 dias pareceu estar associada 
à oscilação quase-bissemanal, originada das ondas de Rossby no cinturão extratropical de ventos 
de oeste e se propagando para a SAF. As anomalias compostas para as defasagens positivas e 
negativas associadas às fases positiva e negativa do modo em alusão na faixa de 20 e 90 dias 
confirmaram um modo de 24 dias e a influência da oscilação de Madden-Julian (OMJ). Além 
disso, indicaram a influência de anomalias convectivas sobre a SA através da propagação de 
ondas atmosféricas deste continente (SA) para a SAF. Um índice de precipitação de monção 
(MPI), bem como alguns índices de circulação de monção, calculados como anomalias diárias 
padronizadas sobre uma determinada área, foram propostos para ajudar a caracterizar, monitorar 
e prever a ISV de monção (períodos ativo e inativos). Ambos índices de precipitação e circulação 
de monção se mostraram refletir adequadamente a variabilidade da precipitação na região núcleo 
de monção sobre o subcontinente (20°S–13,75°S; 32°E–38°E), onde sua previsão apresenta 
grande utilidade. Na segunda parte, usando o MPI e um dos índices de circulação de monção 
sugeridos, foi avaliada a habilidade preditiva de todos os 11 modelos do projetos S2S em simular 
períodos ativos e inativos de monção sobre a SAF. Embora os modelos prevejam as anomalias 
locais de vento zonal em larga escala para antecedências superiores a 3 semanas, a habilidade 
preditiva de anomalias de precipitação de monção parece se limitar à uma única semana. A 
classificação dos modelos mostrou ECMWF, JMA, UKMO, CNRM, KMA e NCEP como sendo 
os melhores modelos pra prever a monção da SAF. Os períodos ativos observados de monção 
foram verificados estarem associados a um trem de ondas se propagando para a SAF, que parece 
ser produzido por convecção anômala sobre a SA e o Oceano Atlântico. Todos os modelos 
selecionados mostraram uma tendência em reproduzir as anomalias convectivas associadas aos 
períodos ativos observados de monção, embora nem todos estes modelos reproduzem as 
anomalias de circulação associadas a esses períodos ativos observados de monção. Isto parece 
estar provavelmente associado a erros relacionados a deficiências dos modelos em representar as 
teleconexões. 
 
 
Palavras–chave: Chuvas de monção na África Austral, Variabilidade Intrassazonal, Oscilação 
de Madden–Julian (MJO), modelos do projeto S2S, Teleconexão entre América do Sul e África 
Austral  
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ABSTRACT 

 

Southern African monsoon rainfall that usually occurs during December-January-February (DJF) 
season varies over a range of timescales. Here the emphasis was placed on its intraseasonal 
variability (ISV), which is of great importance for agricultural production, water resources 
management, and subseasonal prediction. The study was divided into two parts: diagnosing 
analysis and modeling assessment, whose results were based on daily rainfall gauge data (1979–
2005) and weekly subseasonal to seasonal (S2S) prediction project models reforecast data 
(1999–2010), respectively. In first part, rotated modes of ISV were determined over eastern 
southern Africa (SAF). One of the leading modes was found to exhibit strongest factor loadings 
over the region with most intense monsoon precipitation over land and be associated with 
variations in the monsoon circulation. Its most significant oscillations in different ISV frequency 
bands were found to exhibit periods around 12, 22–24 and 50 days, also found previously in ISV 
of monsoon rainfall over South America (SA). The 12-day oscillation appeared to be associated 
with the quasi-biweekly oscillation originated from Rossby waves in the extratropical westerly 
belt propagating into SAF. The lead-lag composite anomalies keyed to positive and negative 
phases of the mode in the 20–90 day band confirmed a 24 day mode and the influence of the 
Madden Julian Oscillation (MJO). Besides, they indicated the influence of convective anomalies 
over SA through propagation of atmospheric waves from this continent (SA) to SAF. A monsoon 
precipitation index (MPI) as well as some monsoon circulation indices, computed as area 
averaged daily standardized anomalies, were proposed to help characterizing, monitoring and 
predicting monsoon ISV (active and break periods). Both MPI and monsoon circulation indices 
were found to reflect adequately the variability of the precipitation in the SAF core monsoon 
region over land (20°S–13.75°S; 32°E–38°E) where its prediction is more useful. In second part, 
using the MPI and one of the suggested monsoon circulation indices, the predictive skill of all 11 
S2S project models in simulating monsoon active and break periods over SAF were assessed. 
Although the models appeared to predict the local large-scale zonal wind anomalies for lead 
times beyond 3 weeks, predictive skill of monsoon precipitation anomalies was found to be 
limited to a week. The model’s rank showed ECMWF, JMA, UKMO, CNRM, KMA and NCEP 
as the top scoring ones for predicting monsoon in SAF. The observed monsoon active periods 
were found to be associated with an eastward propagating wave train that seems to be produced 
by convection over South America and the Atlantic Ocean. All selected models showed a 
tendency to reproduce the convective anomalies associated with observed monsoon active 
periods, although not all reproduce their associated circulation anomalies. This was found to be 
likely associated with errors related with model deficiencies in representing teleconnections.  
 
 
Key-words: Southern Africa Monsoon Rainfall, Intraseasonal Variability, MJO, S2S project 
Models, Teleconnections between South America and southern Africa.
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List of symbols 

 

 Standard deviation 

 Firrst-order autocorrelation 

π Mathematical constant (3.14159) 

Δt Temporal interval between one term and other in time series 

υ Degree of freedom 

χ Chi square   
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1 Introduction 

 
1.1 Background  

 

Climate variability, defined as the variations in the mean state of climate, is one of the 

most important climate system features. It can strongly impact the lives and economy of any 

world region. Southern Africa (SAF), defined here as the Africa subcontinent poleward of 10°S 

(Fig. 1a), where Mozambique is located (Fig. 1a), is not an exception.  

SAF, with exception of its southwest and southcoastal portions (where it rains more in 

winter or all year round), experiences generally maximum rainfall during summer months 

(October-March) with a peak occurring between December and February (DJF) months (Fig. 

1b).  

 

 
Figure 1 – (a) Southern Africa (SAF; the land area south of 10°S) domain and its topography (in 

meters) at 0.5° grid resolution, obtained from the International Centre for Theoretical Physics 

topographic data (ICTP; http://clima-dods.ictp.it/regcm4/). (b) The annual rainfall cycles over 

SAF obtained from the Global Precipitation Climatology Centre (GPCC) data (SCHNEIDER et 

al. 2016) for the period 1979–2005.  
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Although this seasonal peak in summer is a typical monsoon feature, most of SAF was 

for a long time not considered a monsoon region. This is because Ramage (1971) considered a 

monsoon regime only that characterized by a seasonal reversal of prevailing low-level winds. 

This definition, although accepted by the meteorological community worldwide for almost 3 

decades, was contested by Zhou and Lau (1998) and Webster et al. (1998), who qualified the 

Americas as monsoon regions in terms of rainfall. The contemporaneous monsoon definition 

suggested by Zhou and Lau (1998) and Webster et al. (1998) characterized by a seasonal contrast 

in multiple meteorological variables (e.g., precipitation, wind’s components, etc) lead recently 

Wang and Ding (2008) and Yim et al. (2014) to consider most of SAF as one of the eight world 

monsoon domains (Fig. 2). 

 

 
 
Figure 2 – Regional monsoon precipitation domains (shaded, green) defined by the regions in 
which the (a) annual range (AR) of precipitation rates exceeds 2  (or 300 mm per 
season) and (b) the local summer precipitation exceeds 55 % of the total annual rainfall. Here 
the AR is defined as May through September (MJJAS) precipitation minus November through 
March (NDJFM) precipitation in the Northern Hemisphere (NH) and NDJFM minus MJJAS 
precipitation in the Southern Hemisphere (SH). Also shown are the approximate rectangular 
domains of regional monsoons and their names. The threshold values used here distinguish the 
monsoon climate from the adjacent dry regions where the local summer precipitation is less 
than 1  (stippled, yellow). The Climate prediction center Merged Analysis of 
Precipitation–Global Precipitation Climatology Project (GPCP) data were used. Figure 
extracted from Yim et al. (2014). 
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Currently, these eight regional monsoon domains (Fig. 2) contain more than 70% of the 

world’s population (WANG et al., 2012; ZHISHENG et al., 2015). The economies and 

livelihood of most people in these regions highly depend on rain-fed activities, such as 

agricultural and hydropower productions, just to name a few. The success of these activities 

relies on water resources whose availability mostly depends on occurance of monsoon rainfall. 

However, monsoon rainfall by nature exhibits significant variability on wide range of time 

scales, which sometimes results in extreme events (either floods or droughts) with tremendous 

negative impacts in the regions where the monsoon rainfall occurs and even in non-monsoon 

regions as the monsoon rainfall through its latent heat release can influence atmospheric general 

circulation over the globe (ZHANG and WANG, 2008). A good example of the impacts of 

monsoon variability includes the devastating floods occurred over Mozambique during February 

2000 (REASON and KEIBEL, 2004), January 2013 (MANHIQUE et al., 2015), January-

February 2015 (OCHA, 2015), and March 2019 (INAM, 2019; INGC, 2019), which together 

claimed aproximately 1750 deaths and an accumulated property damages exceeding 3 billion 

USD. Other example includes the long-lasting droughts observed in most SAF during 2014–

2016 years (ARCHER et al., 2017).  

Although results of a number of climate projection studies differ from one study to 

another regarding the occurrence and frequency of extreme events under the warming climate in 

the near future over SAF, there are converging evidences suggesting that,their intensity is likely 

to be greater (LI et al., 2015; PINTO et al., 2016). In this perspective, and given the high 

vulnerability of SAF to extreme events (REASON et al., 2006), an investigation of regional 

climate variability, especially that related with summer monsoon rainfall is needed not only for 

the purpose of understanding its causes, but also to be able to predict its occurrence. 

In the literature review presented in section 2 there are evidences of considerable number 

of studies carried out during the most recent 3–4 decades, which have helped disclosing many 

important mechanisms associated with regional seasonal rainfall. However, most of those have 

focused on processes responsible for variability at synoptic (1–10 days) and interannual (2–8 

years) to longer (>8–10 years) timescales, with less attention to subseasonal (intraseasonal) 

variability, despite its highly relevance for decision making, as actions to support water resource 

allocations, disaster risk reduction, and crop management often take place on this time horizon.  
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In an attempt to fill this gap, this study investigates (1) the intraseasonal variability (ISV) 

of regional summer rainfall with focus on Mozambique and (2) the prediction of this variability 

by Subseasonal to Seasonal (S2S) prediction Project models (VITART et al., 2017).  

S2S project is a 5-year international collaborative research initiave launched jointly by 

the World Weather Research Program (WWRP) and the World Climate Research Program 

(WCRP) in 2013 (VITART and ROBERTSON 2018), which in 2019 was extended for an 

additional 5 years. The main goal of this initiative is to improve forecast skill and understanding 

of the predictability sources at this time range, and to promote its uptake by operational centers 

and exploitation by the applications communities (http://www.s2sprediction.net/).  

Predictive skill of operational global state-of-the-art models participating in this project 

has been assessed for different meteorological variables at different spatial scales. The results 

derived from these assessments appear overall encouraging as it has been shown that the onset, 

evolution and decay of some large-scale extreme events that occurred in the past might have 

been predicted several weeks ahead, possibly associated with Madden-Julian Oscillation (MJO) 

teleconnections (VITART and ROBERTSON 2018; ROBERTSON et al. 2018).  

Since these results document the prediction quality at sub-seasonal lead time, they can 

help to put together forecasting scheme of extremes events, to which SAF is highly prone, and 

hence minimize their impacts on the region.  

This thesis builds upon the hypothesis that the subseasonal monsoon precipitation 

anomalies over SAF, particularly Mozambique are in part modulated by the MJO, the primary 

source for subseasonal predictability. Therefore, it is valid to test the subseasonal predictions 

generated by S2S models in order to verify their performance and possibly increasing the 

forecasts lead time of the extreme events over Mozambique, including neighbouring countries in 

the region, by selecting most skilful models.  

The present thesis is divided into seven chapters. Chapter 2 is a background summary on 

SAF climate variability. The first two sections describe features that influence the the day-to-day 

weather and rainfall annual cycle over the region, while the last two sections discuss notable 

fators influencing regional rainfall on scales from submonthly to seasonal and interannual to 

decadal or longer. The description of the data and methods used in this study is given in Chapter 

3.  
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Chapters 4 and 5 present the results of this study in the form of two manuscripts which 

together address the proposed research objectives as outlined in section 1.3. Before each paper a 

synopsis and text are presented to provide the cohesive storyline of the work. 

Chapter 4 (paper01) focuses on diagnosing the intraseasonal leading modes in the 

Mozambique gauge monsoon rainfall and their associated circulation patterns. A monsoon 

precipitation index (MPI) defined over SAFM core region located over central Mozambique and 

several circulation indices associated with the MPI are proposed to facilitate the prediction and 

monitoring of rainfall ISV, characterized by active and break monsoon episodes. 

In Chapter 5 (paper02), the ability of the S2S prediction project models in reproducing 

the observed subseasonal SAFM precipitation anomalies using the monsoon indices derived in 

Chapter 4 is assessed. This assessment is made at multiweek lead times, out to 4 weeks, using 

retrospective forecast (called also hindcasts) data over the S2S models commom period (1999–

2010). 

In Chapter 6 the summary and concluding remarks of overall research are outlined, while 

the caveats and recommendations for the future works are presented in Chapter 7.  

As a result, we hope that the findings of this thesis have not only helped improving our 

knowledge about the country's climate variability at intraseasonal timescales, but also that it has 

helped identifying strengths and weaknesses of the S2S models and, consequently, their 

adequacy for operational forecasting over Mozambique and other countries in the SAF region.  

 

1.2 Statement of the problem  

 

Due in part to the predominantly rain-dependent economies in the region, and the high 

degree of variability, the nature of SAFM rainfall has long been the subject of studies on wide 

range of timescales (TODD et al., 2004). Most of those studies have, however, emphasized the 

variability at synoptic and interannual to longer scales ignoring largely the subseasonal one.  

Although those studies have yielded invaluable knowledge that culminated with the 

development of seasonal forecasts for the region (MASON et al., 1996), resulting in increased 

preparedness with significant economic savings and societal benefits, there are some 

fundamental problems that call for additional studies. The forecast end users (e.g., regional 

farmers) are actually more interested in knowing the onset, duration and intensity of either active 
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(wet) or break (dry) periods during the rain season instead of having just a forecast of seasonal 

average conditions. This information is, however, only possible if the national operational 

meteorological services across SAF turn to development of predictions at subseasonal timescale. 

Although the predictions at this timescale are at a relatively early stage of development, they 

actually are routinely issued experimentally/operationally by at least eleven international 

meteorological centres across the globe (WHITE et al., 2015), and the results derived from them 

(forecasts) appear overall encouraging, since they have shown, for specific case studies, that the 

onset, evolution and decay of some large-scale extreme events occurred in the past might have 

been predicted several weeks ahead, possibly associated with the MJO teleconnections 

(ROBERTSON et al., 2018; VITART and ROBERTSON, 2018). As it does not mean that 

similar results will be obtained for SAF, it is worth evaluating the applicability of these 

predictions for this region.  

This study is, thus, proposed to advance our understanding on observed subseasonal 

SAFM anomalies and, their prediction by the S2S project models.  

In doing so, it is hoped that the results derived from this research will (1) add some 

knowledge to existing one on SAFM variability and, (2) contribute to the S2S Monsoon 

Prediction Subproject, for which a comparison of monsoon prediction skill across several models 

is undergoing (http://www.s2sprediction.net/) and (3) stimulate similar works across the 

countries in the region. Our models evaluation results are also hoped to assist the modeling 

developer communities with information about the strengths and weaknesses of their models, 

which can help them to further improve these models in future.  

 

1.3 Aims and objectives of the study 
 

1.3.1 Aims 
 

1. To investigate rainfall intraseasonal variability (ISV) over southern Africa and the 

mechanisms behind this variability; 

2. To assess the ability of the Sub-seasonal to Seasonal (S2S) Prediction Project models 

(VITART et al., 2017) in reproducing this variability. 
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1.3.2 Objectives  
 

In order to consistently achieve these aims, the following objectives have been addressed: 

1. Document the leading patterns of observed rainfall ISV over Mozambique and their 

associated physical mechanisms, giving particular emphasis on unexplored questions such 

as atmospheric teleconnection patterns at this time scale; 

2. Propose monsoon indices for characterization, monitoring, and prediction in an easier way 

of the broad-scale SAF monsoon rainfall variability and its associated circulation; 

3. Evaluate the ability of the S2S project models in reproducing the observed monsoon 

variability over Mozambique using the defined monsoon indices. 
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2 Climate variability in southern Africa: literature review  

 

2.1 Study region and its topographical features  
 

Topographically, SAF is characterized by complex features that affect the climate of the 

region. These features include the costal plains and mountains, Zambezi River, Niassa Lake 

(between Malawi and Mozambique and Tanzania), and other water bodies, and the neighboring 

oceanic regions (Figs. 1a, 3a). The highlands regions play localized role in generating upslope 

circulation that triggers convection, responsible for high amounts of rainfall where these 

mountains occur. A good example is the Niassa plateau in northern Mozambique, where the 

mean annual rainfall exceeds 2000 mm (GAVRILOV et al., 1986). The presence of large water 

bodies in the region (e.g., Niassa Lake) and their associated circulations also alter the local 

rainfall amounts (DIALLO et al., 2018; NICHOLSON et al., 2014).  

 

 
Figure 3 – (a) Most prominent river basins over SAF (from Mabhaudhi et al. (2016)). (b) 
Administrative divisions of Mozambique. The triangles represent the country’s meteostations 
whose data are used in the analysis described in section 4. Shading in gray indicates grid points 
in which the meteostations have less than 30% of missing data (see the description in section 3). 
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The present research study focuses on Mozambique (801,537 km2), a country in eastern 

SAF (Fig. 1a), with aproximatelly 28 million inhabitants in 2018, 65% of whom living in rural 

areas and whose subsistence heavily relies on agriculture (INE, 2019). The country is bounded 

by Swaziland to the south, South Africa to the southwest, Zimbabwe to the west, Zambia and 

Malawi to the northwest, Tanzania to the north and Indian Ocean to the east (Fig. 1a). 

Mozambique is divided into 11 states (provinces), namely, Niassa, Cabo Delgado, Nampula, 

Zambezia, Tete, Manica, Sofa, Inhambane, Gaza, Maputo Province and Maputo City (Fig. 3b). 

 

2.2 The main factors affecting the day-to-day regional rainfall variability 

 

Since the climatological mean pattern of regional seasonal rainfall and its associated 

circulation in terms of the main air flows is described in section 4, referred to as the paper01, 

here the description of other atmospheric factors influencing the day-to-day weather is presented 

to avoid the duplication of information. These include the existence of high pressure systems 

(anticyclones) on both sides of the subcontinent, with seasonally varying positions and 

intensities. These anticyclones (South Atlantic and South Indian Oceans Subtropical Highs) play 

an important role in moisture transport onto the interior, which may lead to ascending 

movements and hence rainfall in the region. Over the region also occur heavy rains associated 

sometimes with the passage of tropical cyclones across the coastal margins of Mozambique and 

eastern South Africa (MASON and JURY, 1997). The westerly waves and associated incursions 

of extra-tropical cyclones, easterly waves, and frontal systems (particularly cold) play an 

important role in the formation of tropical temperate troughs (TTTs), which are considered as the 

main summer synoptic rain-producing systems in the region (HARRISON, 1984; 

WASHINGTON and TODD, 1999). The TTT systems form when a tropical low (Angola Low, 

AL) is coupled to a temperate westerly (Rossby) wave via a subtropical through (Fig. 4a), 

forming the short-lived (typically 3–7 days), northwest–southeast (NW–SE) tilted convective 

cloudbands along the leading edge of the westerly throughs which link the mid-latitudes 

disturbunces to the tropical convergence zone (HARRISON, 1984; HART et al., 2010; 

MACRON et al., 2014). In absence of midlatitude influence, the TTTs are just simple throughs 

rather than elongated ones (JURY, 1997). The total rainfall associated with an individual TTT 

event depends upon the availability of atmospheric moisture and stability, the strength of upper-
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level divergence and the speed of the movement of the through (e.g., HARRISON, 1984).  

 

 

 

 

 
 
Figure 4 – Synoptic chart for (a) 23 January 1981, showing the formation of a TTT; (b) and (c) 
show TTT satellite images and its associated cloudbands over SAF on 2nd and 7th December 
2005, respectively. (d) 27 August 1970, showing the formation of cut-off low; and (e) 9 
September 1981, showing the formation of a cut-off low and ridging anticyclone. In the panels a, 
d and e, light lines show isobars at mean sea level (hPa) over the oceans and contours of the 850 
hPa surface (gpm) over the land; heavy lines show contours of the 500 hPa surface (gpm). Areas 
receiving precipitation are stippled. The letters H and L in these panels denote centers of High 
and Low pressure, respectively. Panels (b) and (c) were courtesy of Mozambique National 
Institute of Meteorology (INAM). Figures a, d and e were extracted from Mason and Jury 
(1997), whereas. b-c have been extracted from Manhique (2008) 

 

a 

b 

c 

d 

e 
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The TTT events are usually responsible for floodings during the second half of the 

suumer (February–March months; e.g., LINDESAY and JURY, 1991; WALKER and 

LINDESAY, 1989), whereas during early summer (November–December months) they are 

generally associated with shorter lived light rainfall because of enhanced baroclinic westerly 

shear from the upper troposphere of the tropical Atlantic Ocean, whereas low-level moisture is 

advected from the central Indian Ocean (BARCLAY et al., 1993; MAKARAU and JURY, 

1997).  

Acoording to Cook (2000), the TTTs and their associated cloudbands collectively form 

the South Indian Ocean convergence zone (SICZ), an austral summer land-based convergence 

zone (Fig. 4b-c) whose position and intensity acoording to that author is partially determined by 

surface conditions over SAF and the neighboring southwestern Indian Ocean. 

Although subtropical throughs through SICZ contribute to widespride summer monsoon 

rainfall over much of the region, the heaviest falls are usually associated with cut-off lows 

(MASON and JURY, 1997), which usually form in conjuction with an anticyclonic ridge to the 

south of the subcontinent during the transition seasons when meridional temperature and 

pressure gradients are strongest (Fig.4d-e; Van LOON, 1971). Cut-off lows are more important 

in early and late-season rainfall, i.e, transition seasons (TALJAARD, 1986).  

More regionally, in northeastern South Africa, southern Mozambique, and Botswana, 

mesoscale convective complexes can contribute up to 20% of summer rainfall during the late 

summer (BLAMEY and REASON, 2013). 

As the nature of occurrence of these factors changes throughout the year, their influence 

on regional rainfall also varies over the year. Furthermore, the influence of these factors can also 

be modulated by the occurrence of longer scale climate variability modes (e.g., El Niño Southern 

Oscillation, ENSO) by either amplifying or supressing the impacts of these factors on regional 

rainfall variability. For fuller details on description of these (day-to-day) mechanisms, we refer 

the readers to Jackson (1951), Mason and Jury (1997), Silvério and Grimm (2020), Taljaard 

(1986), Torrance (1972), Tyson and Preston-Whyte (2000), just to name a few.  
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2.3 Impacts of intraseasonal variability modes on regional rainfall 

 

Intraseasonal variability (ISV) refers to cycles operating between time scales beyond 

synoptic weather (>10 days) and shorter than a season (<90 days).  

As the total (10–90 days) ISV involves fluctuation operating on both higher (10–30 days) 

and lower (30–90 days) frequencies, there is need to get deeper into the processes governing 

different frequencies, and hence, rainfall ISV. 

Variability at timescale between 30 and 90 days is attributed to the Madden-Julian 

Oscillation (MJO), a well-known intraseasonal leading mode of tropical atmospheric variability 

(MADDEN and JULIAN, 1971). It involves significant variations in the tropical convective 

activity and tropospheric large-scale circulation with coherent signals in many other variables, all 

propagating eastward across the equatorial Indian and Pacific Oceans, which alter rain every 30–

90 days in the tropics and other parts of the globe throughout the year (Fig. 5).  

The MJO impacts on various weather/climate phenomena across the globe have been 

reported in numerous studies, and those studies have also shown that it plays an important role in 

the coupled atmosphere-ocean system (ZHANG, 2005, 2013). 

Although the MJO strongest activity coincides with austral summer season (DJF), 

suggesting a potential chance for skillful subseasonal prediction of SAFM rainfall anomalies, its 

impact on rainfall over the region (SAF) is thought to be of lesser importance (e.g., MACRON et 

al., 2016; OETTLI et al., 2014; POHL et al., 2007; ZAITCHIK, 2017). This can be explained in 

part by the smaller number of strong statistical significant spectral peaks at MJO time band (30–

90 days) compared to those at 10–30-days band, as reported in most studies on regional rainfall 

ISV (e.g., LEVEY and JURY, 1996; MAKARAU, 1995; SILVÉRIO and GRIMM, 2020). This 

corroborates the results reported in a comprehensive study on MJO impacts across the region by 

Pohl et al. (2007), who found relatively weak MJO influence on regional rainfall, explained by 

35–40% of all intra-seasonal variance in the outgoing long-wave radiation (OLR), used often as 

a proxy for convective activity. Furthermore, in the subsequent study by Pohl et al. (2009) the 

TTTs have been found equally likely occurring during any MJO phase, suggesting that they are 

an independent mode of variability at MJO timescale (ZAITCHIK, 2017). Other factors 

supporting these findings include the impacts of local features (e.g., topography, water bodies 



33 

 
 

 
 
 

and valleys) associated with rainfall variability in the region on the influence of large-scale 

systems including MJO (e.g., MACRON et al., 2016). 

Although the MJO influence on SAFM rainfall anomalies appear weaker compared to 

those at 10–30-days band as suggested in many previous studies including that by Silvério and 

Grimm (2020; hereafter referred to as SG20), one can affirm that it does affect regional rainfall 

via the teleconnection mechanisms associated in part with MJO-related convective activity over 

South America (SA) and neighbouring Atlantic Ocean, as reported by Grimm (2019). According 

to Silvério and Grimm (2020), the pattern of rainfall anomalies few days before they hit 

northeast SAF resemble the anomalies associated with MJO phase 1, suggesting that 

teleconnection mechanisms between SA and SAF favor MJO impacts on monsoon anomalies 

over the latter subcontinent. This implies that a better understanding of the mechanisms 

involving MJO impacts on regional rainfall depends in part on desclosing fairly well the 

processes governing the variability of SA monsoon system that seems to be of high importance 

for some climate processes occurring over SAF. This issue although interesting is not a matter of 

this thesis as it is being done fairly well by the SA research community. 

On the order hand, the 10–30-days fluctuations which have been found in many 

intraseasonal regional studies appear as a major contributor to the total 10–90-day intraseasonal 

variability in regional rainfall (e.g., LEVEY and JURY, 1996; MAKARAU, 1995; SG20). For 

instance, Makarau (1995) found in SAF observed rainfall cycles operating at 10–25 days and 40–

50 days using spectral analysis. According to that author, wet spells associated with those cycles 

were related to troughs extending from Angola in the northwest to the Mozambique Channel in 

the southeast. Similarly, Levey and Jury (1996) found a combination of 20–30- and 40–60-day 

oscillations in SAFM rainfall. These authors found the MJO prevalent in wet years, while the 

20–30-day ISV seemed more dominant in dry years. About one-third of the rainfall oscillations 

according to Levey and Jury (1996) were found to arise locally from stationary modes linked to 

TTTs, with two fast intraseasonal fluctuations ‘‘inside’’ a slower MJO. Another one-third of 

intraseasonal fluctuations were found to propagate eastward in sympathy with midlatitude and 

equatorial waves.  

A combination of 10–30- and 40–60-day oscillations was also reported recently in SG20 

who found enhanced rainfall in the region to be associated with eastward propagating wave  
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Figure 5 – Composite anomalies of (left panel) precipitation and 850 hPa zonally asymmetric 
streamfunction (PSIZA850) and (right panel) outgoing long-wave radiation (OLR) and 
PSIZA200 in each phase of the MJO for DJF season over the 1979–2005. Contour interval is 1.0 
x 10-6 m2 s-1, and zero contour is omitted. Dark yellow (purple) contours represent positive 
(negative) values, with stippled areas indicating anomalies significant with confidence level 
above 95%. Rainfall (OLR) anomalies are indicated in the bottom colour bar. Only anomalies 
with confidence level above 95% are shown. The eastward propagating MJO activity as 
representd by dipole of enhanced (negative OLR) and supressed (positive OLR) convection is 
illustrated by dotted black line with arrow at end  
 
 
trains which passing over southeastern SA and the neighbouring Atlantic Ocean and are 

modulated by convective activity there whereby creating favorable condictions for an enhanced 

rainfall over SAF days later. Obviously, the MJO impacts on SAF countries are not as extensive 

as over SA due to the different local features over each SAF country. A good example of that is 

Mozambique, a country whose rainfall variability mechanisms have been reported to be a little 

bit different to most of SAF countries, given its coastal location, facing always the warm Indian 

Ocean, and its long latitudinal extension that makes the country to be affected by both tropical 

and subtropical weather systems or the interaction of both systems (MANHIQUE, 2008).  

 

2.4 Oceanic factors affecting the variability of regional rainfall  

 

SAFM rainfall has marked variability on timescales ranging from daily (synoptic) to 

intraseasonal and interannual to interdecadal and longer scales. Many important physical 

mechanisms associated with the variability on each aforementioned timescale have been 

disclosed in a number of studies carried out during the most recent 3–4 decades or so.  

As the variability of SAFM at interannual scale is currently deemed to be fairly well 

understood (e.g., MAKARAU, 1995; MANHIQUE, 2008), we here provide only a brief 

description of it to give the readers some idea of how low-frequency modes can affect the high-

frequency ones.  

On interannual timescale, SAFM rainfall variability has been attributed to a number of 

factors, chief among them being ENSO, especially since the late 1970s (RICHARD et al., 2000). 

During the positive (negative) ENSO phases, referred to as an El Niño (La Niña) episodes, 

seasonal SAF rainfall tends to be below (above) normal. The dry conditions over the region 

during an El Niño event is associated with an eastward shift in the SICZ (where preferentially 
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develop the TTTs) in response to warm sea surface temperature (SST) anomalies over the 

western Indian Ocean (NICHOLSON and KIM, 1997) or to atmospheric Rossby waves (COOK, 

2001), that modifies the regional mid-tropospheric vertical motions and hence precipitation 

anomalies over SAF (HOELL et al., 2017). El Niño events also lead to northward shift of the 

subtropical highs which is associated with anticyclonic anomalies over the subcontinent, 

restricting wind inflows toward SAF, and hence suppression of convection or decrease in 

precipitation relative to the average in the region (HOELL et al., 2015; REASON and 

JAGADHEESHA, 2005). Despite the connection between ENSO and SAF rainfall, it is 

important mentioning that not all El Niño events lead to dryness in SAF (FAUCHEREAU et al., 

2009; LYON and MASON, 2007). A good example of such nonlinearity is the 1997–1998 super 

El Niño, whose expected widespread drought conditions over SAF failed to materialize, as the 

seasonal rainfall in some SAF regions have been observed to be near or above average 

(RICHARD et al., 2001). This calls for further investigations in order to better understand the 

causes by which, in the recent years, some El Niño episodes have not been accompanied by 

droughts over SAF. Although interesting, this is not the issue of the present thesis. 

(Multi)decadal variability, such as the interdecadal Dyer–Tyson cycle (18 years; DYER 

and TYSON, 1977) and the quasi-decadal cycle (10 years; TYSON, 1981) have also been 

identified in SAF seasonal rainfall, and those have been interpreted as a chaotic resonance of 

interannual variability (MASON, 1990; REASON and ROUAULT, 2002), implying that decadal 

forcing may appear similar to that driven by ENSO at the interannual scale. 

More recently, using the Climate Reasearch Unit time series data version 3.23 (HARRIS 

et al., 2014), Dieppois et al. (2016) have revisited the long scale variability leading modes in 

SAF rainfall. Those authors have identified through the wavelet analysis three significant 

timescales of variability during both austral summer and winter seasons: interannual variability 

(2–8 years), quasi-decadal variability (QDV; 8–13 years), and interdecadal variability (IDV; 15–

28 years), the two latter are similar to Dyer–Tyson cycles mentioned above. While the first time 

scale confirms the predominant influence of ENSO (e.g., REASON et al., 2000), QDV and IDV 

were found to exhibit ENSO-like patterns interpreted as the signature of the interdecadal Pacific 

oscillation (IPO) and the Pacific decadal oscillation (PDO), respectively. The large-scale 

forcings associated with the aforementioned variability modes act to shift the SICZ in an 
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abnormally eastward location under warm conditions in the Pacific, and hence modifying the 

TTTs preferential location (DIEPPOIS et al., 2016).  

In addition to the remote influence of these large-scale climate variability modes, SAFM 

rainfall is also influenced by variability modes located in the Atlantic and Indian Oceans 

(NICHOLSON and KIM, 1997). In the Atlantic Ocean, off Angola and northern Namibia, the so-

called Benguela Niños, which seem to be forced in response to an anomalous convection over 

SA (GRIMM and REASON, 2011), can influence regional seasonal rainfall (HERMES and 

REASON, 2009; REASON and SMART (2015). In the Indian Ocean, the subtropical Indian 

Ocean dipole (SIOD; BEHERA and YAMAGATA, 2001) is also related to SAF rainfall 

(HOELL et al., 2017; REASON, 2001, 2002). The Indian Ocean on its own can also modulate 

SAF rainfall (WASHINGTON and PRESTON, 2006), especially the nearby southwest Indian 

Ocean (SWIO; REASON, 1998; REASON and MULENGA, 1999). The SST anomalies over the 

Indian and Atlantic Oceans, acting individually or in concert can be affected by ENSO episodes, 

which in turn modulate the effects of the former on regional seasonal rainfall (e.g., HOELL et 

al., 2017; NICHOLSON and KIM, 1997; REASON et al., 2006). For instance, Hoell et al. (2017) 

argued that when the SIOD and ENSO are in opposite phases, the SIOD complements the 

ENSO-related atmospheric response over SAF by strengthening the regional equivalent 

barotropic Rossby wave, anomalous mid-tropospheric vertical motions and anomalous 

precipitation. The opposite is true when the SIOD and ENSO are in the same phase. Similarly, 

Nicholson and Kim (1997) have early reported that atmospheric teleconnections during La Niña 

(El Niño) are more sensitive to SST forcing over the Atlantic (Indian) Ocean. 

The impacts of these low-frequency variability modes on high-frequency ones are now 

undogoing rigorous scrutiny and some important and encouraging results are just emerging. 

These include the findings suggesting modulation of ENSO impacts on TTTs and its associated 

cloudbands by (multi)decadal climate variability modes (DIEPPOIS et al., 2016; DYER and 

TYSON, 1977; MASON and JURY, 1997; POHL et al., 2018).  This knowledge is likely to 

improve that at subseasonal through the categorization of the number of dry/wet days within the 

season that can be used as indicators of monsoon dry/wet episodes.  
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3 Data and methods used in this study 

  

3.1 Data 

 
As stated in the introduction chapter, the results of this thesis are organized in form of 

two papers which together address the proposed research objectives as outlined in sections 1.3. 

In this context, some datasets used in the first paper are not used in the second paper and vice-

versa. To put it clear, the description of overall datasets used in this thesis is presented into two 

subsections, one for the first paper, on intraseasonal variability of southern Africa monsoon 

rainfall and monsoon indices (subsection 3.1.1), and the other one for the second paper, on 

subseasonal prediction skill assessment of SAFM anomalies (subsection 3.1.2). 

 

3.1.1 Data used in first paper (hereafter referred to as paper01) 

 

The gauge daily rainfall (closed blue triangles in Fig. 3b), provided by Mozambique 

National Institute of Meteorology (INAM), is used as the basic data for determining 

intraseasonal variability modes for the period 1979–2005. These data were initially submitted to 

quality control process for identification and removal of spurious values, following the 

procedures described in Grimm and Saboia (2015) and Liebman and Allured (2005). One of 

these procedures includes identifying in each station series the days with either blanks or 

negative values, which are replaced by the missing data code (777.7). After that, these data were 

then interpolated on a 1° x 1° grid resolution, in the center of which were located the average 

daily rainfall time series, obtained from all available stations with at least 70% of nonmissing 

data within the considered grid box. Notwithstanding a slight spatial smoothness introduced in 

the data by the interpolation, this method produces a dataset, distributed more evenly over the 

study area.  

In the composite analysis whose definition is given in the method section (2.3), the daily 

Climate Prediction Center (CPC) unified gauge-based precipitation dataset at 0.5° grid resolution 

(CHEN et al., 2008) is used to provide a larger scale picture and the origin of the rainfall 

anomalies before they reach their maximum values in Mozambique, since the INAM data do not 

cover all SAF. The CPC dataset is a blended product, composed of daily summary files from the 
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Global Telecommunication System, and the CPC unified daily station data across the globe. 

Since the CPC data do not cover oceans regions from where rainfall anomalies may also 

originate, additionally, the OLR retrieved from the National Oceanic and Atmospheric 

Administration (NOAA) polar-orbiting series of satellites with daily temporal resolution and 2.5° 

horizontal resolution (LIEBMANN and SMITH, 1996) is used.  

Seasonal mean summer rainfall over the SAF is obtained with 0.5° grid resolution 

monthly Global Precipitation Climatology Center (GPCC) data, extending from 1891 to 2016 

(SCHNEIDER et al., 2016). This dataset is based on data over 75,000 stations globally and 

includes extensive quality control and weather-dependent corrections for gauge undercatch. The 

use of GPCC instead of CPC precipitation in SAF summer climatology description is due the 

fact that the former exhibits a realistic maximum over Mozambique monsoon core region, 

corroborating that shown in Mchugh and Rogers (2001) and the pattern of annual mean rainfall, 

displayed in Nicholson (2000).  

For circulation analysis we use 2.5° gridded daily zonal (U) and meridional (V) wind 

components at lower (850–hPa) and upper (200–hPa) levels, both derived from the National 

Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research 

(NCAR) Reanalysis products (KALNAY et al., 1996).  

Additionaly, the stream function (PSI), which is computed from both U and V is also 

considered here for assessment of the global rotational circulation response to anomalous heat 

sources in the atmosphere. Here we display only the zonally asymmetric part of PSI (PSIZA), 

which is obtained by removing the zonal mean (averaged on each latitude). The PSIZA enhances 

the wave-like structures in propagating Rossby waves (Hsu and Lin 1992; Held et al. 2002). The 

PSIZA considered here is that at 200 hPa (PSIZA200), the level in which the wave-like patterns 

are clearer and more intense.  

The data just described and those presented in next subsection (3.1.2) are used in the form 

of anomalies in all analyses presented, except in that of mean climatology pattern.  

The daily anomalies at each grid point are calculated following similar procedures used in 

Grimm (2019) and SG20. The procedures consist in calculating at each grid point, the average 

daily values for January 1st through December 31st, which are then smoothed with a 31-day 

moving average to produce the smoothed climatological annual cycle, since there is much 

spurious variance in nonsmoothed annual cycle of average daily values due to the relatively short 
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sample. It is worthy mentioning here that in climatological annual cycle the smoothness of the 

first (last) 15 days in January (December) is made using partly the days from December 

(January). Then, the smoothed climatological annual cycle at each grid point is subtracted from 

the daily raw values in the corresponding grid box, to obtain the anomalies. 

 

3.1.2 Data used in second paper (hereafter referred to as paper02) 

 

In this paper, the period used for the S2S models reforecast and observed (reference) data 

is their common period 1999–2010 of reforecasts.  

To avoid repeating information, the description of these data is presented in the paper02 

(Chapter 5). However, it is worthy mentioning here that due to the need to make the S2S analysis 

for a larger sample (1999–2010), rather than a smaller one (1999–2005), and hence, increase the 

reliability of the study in paper02, the 0.5° grid resolution CPC daily rainfall is considered as 

observed precipitation due to unavailability of Mozambique gauge precipitation after 2005 to the 

authors. The use of CPC among all other alternative gridded datasets is due the fact that it shows 

a relatively good correspondence with Mozambique gauge precipitation (SG20). 

 In Fig. 6 the illustration of the location of contributing centers to S2S database and the 

main features of this project data is provided, whereas the summary of the data described in 

sections 3.1.1 and 3.1.2 is given in Table 1.  
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Figure 6 –  Map illustrating the location of the contributing centers to S2S database  

Source: Vitart (2016, personal communication, https://slideplayer.com/slide/13038775/) 

 

Table 1 A summary of data used in the present thesis 

Data Variables 
Spatial 

resolution 
Temporal 
resolution Period Origin/source 

Papers 
01 02 

Gauge P 1° x 1° daily 1979–2005 INAM  x  

GPCC P 0.5° x 0.5° monthly 1979–2005 
Schneider et al. 

(2016) x  

CPC P 0.5° x 0.5° daily 1979–2010 
Chen et al. 

(2008) x x 

NOAA OLR 2.5° x 2.5° daily 1979–2010 
Liebmann; 

Smith (1996) x x 

NCEP/NCAR V(u,v) 2.5° x 2.5° daily 1979–2010 
Kalnay et al. 

(1996) x x 

S2S outputs 
V(u,v), 
OLR, P 1.5° x 1.5° daily 1999–2010 

Vitart et al. 
(2017)  x 

P denotes precipitation. It is given in  for INAM, CPC, and S2S data, whereas for GPCC 

in . V(u,v) and OLR are given in  and , respectively. The letter “x” 

indicates that the data was used either in paper01 (1979–2010) or paper02 (1999–2010) or in 

both papers. 
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3.2 Methods 

 

Although the datasets used in both papers are not identical, the methods applied for the 

analyses are almost similar. Some of these methods include Lanczos band-pass filter, principal 

component analysis (PCA), power spectral density (PSD), Pearson correlation coefficient (PCC 

or r) analysis and composite analysis (CA). The both latter were applied in both papers, while the 

formers in paper01. 

 

3.2.1 Lanczos band-pass filter 

 
As this study focuses on ISV, the extraction of different intraseasonal bands in rainfall 

anomalies (see their description in section 3.1.1) was made using the Lanczos band-pass filter 

(DUCHON, 1979). The main goal of the Lanczos filter is to transform an input data sequence  

(where t is time) into newer (an output) data sequence  using a linear relationship (1): 

 

                                                                 ∑                                                  (1) 

in which the  indicates suitably chosen weights or the weight function. 

 

The relationship between the input (X(f)) and output data (Y(f)), where f is frequency, is 

obtained by taking the Fourier transform of (1). As a result, we get the following relationship (2): 

 

                                                                   Y(f) = R(f).X(f)                                                          (2) 

in which R(f) denotes the frequency response. 

The and R(f) comprises a Fourier series transform pair such that: 

 

                                                    ∑                                             (3) 

 

                                         ∫ ( )                                     (4) 

Where k = -n, …, 0, …., n; Δ is the sampling interval and  the Nyquist frequency with value 

0.5 cycle per data interval.  
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For band-pass filter,  is given by relationship (5), whereas the R(f) is the same as in 

(3): 

                                                                                                       (5) 

where  and  are the cutoff frequencies in the chosen band, which in this study are 10 and 90 

days, besides 10 and 25 days and  20 and 90 days.  

The minimum number of weights required for Lanczos band-pass filter is given by (6): 

 

                                                                                                                                    (6) 

 

Selecting a time scale for filtering requires a good choice of number of weights 

(MACAMBACO, 2016). As in Macambaco (2016) we used in this study 211 weights.  

The advantage of the Lanczos filter is its ability to be easily adjusted to the band of 

interest by adjusting the cutoff frequencies  and . 

 

3.2.2 Principal component analysis (PCA) 

 
Large datasets are increasingly common and are often difficult to interpret (JOLLIFFE 

and CADIMA, 2016). This is particularly true for weather/climate datasets.  

In order to reduce the dimensionality of such datasets, increasing interpretability but at 

the same time preserving as much ‘variability’ (i.e. statistical information) as possible, Empirical 

Orthogonal Function (EOF) analysis, also referred to as principal component analysis (PCA) 

which was firstly introduced by Pearson (1901) and, developed independently by Hotelling 

(1933) is among the most widely and extensively used methods in atmospheric science. This 

method became popular for analysis of atmospheric data following the paper by Lorenz (1956), 

who called the technique EOF analysis. 

The central idea of PCA consists mainly in decomposing a larger possibly correlated set 

of datasets (the set of gridpoints in our case) into a smaller, linearly uncorrelated and orthogonal 

ones termed variability modes (which are the function of the spatial domain and the time period 

being used), while losing only a small amount of original information (JOLLIFFE and 

CADIMA, 2016; WILKS, 2011).  
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The computation of PCA can be specified in at least six basic operational modes (O, P, Q, 

R, S), depending on which parameters are chosen as variables, individuals and fixed entities 

(RICHMAN, 1986). These six modes will result in a unique clustering of variables when simple 

structure rotation (e.g., varimax, RICHMAN, 1986) is applied. In studies of meteorological fields 

which are given in space and time, there are three entities: a meteorological field (rainfall in our 

case), time and a location or space (grid points). In this perspective, a PCA of a meteorological 

field can therefore be performed by varying any two of these three entities and holding the third 

fixed. PCA calculated by fixing space (time) is said to be computed in S-mode (T-mode).  

In S mode, which was used in this study, grid points are represented by columns and time 

by rows, the inverse is true for T mode. Furthermore, in S mode, rotation (e.g., varimax) which is 

needed to make the modes physically more interpretable tends to isolate subgroups of gridpoints 

which covary similarly, so that their results are used for identification of homogeneous regions 

with respect to time variability. Conversaly, in T mode, rotation isolates subsets of observations 

with similar spatial patterns and, thereby, simplify the time series (RICHMAN, 1986).  

As PCA can be performed using either the covariance or the correlation matrices, here we 

use the latter one, which accounts for different standard deviations in the data, although the 

covariance matrix showed similar results in term of absolute values.  

Based uppon the explanation above, we applied the S-mode PCA using correlation matrix 

(7) applied to each intraseasonal band data described in section 3.2.1 to identify the variability 

modes (EOFs) of precipitation in the respective intraseasonal time bands over Mozambique. 

 

                                                                                                                                (7) 

Where R denotes correlation matrix (symmetric matrix), Z indicates the matrix of standardized 

anomalies, while  denotes transposed matrix of Z. All matrixes have n rows representing the 

number of time data samples and k columns representing the number of grid points. 

From this matrix we get through an eigenanalysis the k eigenvalues ( ) and their 

corresponding eigenvectors ( ) (Equations (8) and (9), respectively): 

 

                                                                                                          (8) 

                                                                                                  (9) 

Where m = 1,2,3,…,k. 



45 

 
 

 
 
 

The eigenvalues and eigenvectors describe respectively the variance and direction of the 

variability modes. Recall that the set of eigenvectors, and associated eigenvalues, represent a 

coordinate transformation into a coordinate space where the matrix R becomes diagonal. 

The principal components (PC, also termed factor scores) which is the new time series is 

obtained by projecting a single eigenvector onto the original data to get an amplitude of this 

eigenvector at each time. As the eigenvalues represent the variance explained by each variability 

mode, the PCs are thus ordered by the fraction of the variance they explain, i.e. the first principal 

component (PC1) accounts for the largest variance in the dataset, then, the second one (PC2) 

accounts for most of the remaining variability in the dataset, and so on, under the constraint that 

succeeding PC is uncorrelated and orthogonal to the preceding ones. For each variability mode in 

each frequency band, the spatial pattern (factor loadings or EOFs) associated with the PCs is 

obtained by correlating the PC with rainfall anomalies in the corresponding band over the 

domain grid points. Thus, in so doing, PCA yields information describing both spatial patterns 

(EOFs) and temporal variations (PCs) of variance experienced in the original dataset.  

One of the most important decisions to be taken during the PCA implementation is the 

number of PCs to be retained (e.g., RICHMAN, 1986), since inadequate PC's extraction makes it 

impossible to interpret appropriately the results (e.g., EHRENDORFER, 1987; MANATSA et 

al., 2011). Note that, there is no theoretical grounds for or any general agreement on the cut-off 

hypothesis, but experience suggests that it is reasonable to consider a number that fix the amount 

of represented variance as much as possible (e.g. 80%; HANNACHI et al., 2007; HARRISON, 

1984b). With this in mind in the present study, the first 5 PCs explaining over 60% of the 

original variance, were retained using the Kaiser criterion of cutting-off PCs with eigenvalue 

greater or equal to one (KAISER, 1958).  

Since unrotated modes may be nonphysical or spurious ones, the varimax orthogonal 

rotation (Equation 10), the most well-known and used rotation algorithm was applied, which 

maximizes the local variance within the domain, and makes the modes physically more 

interpretable (RICHMAN, 1986). 

                                                       
∑ ∑

                         (10) 

Where n is the number of variables (gridpoints in our cases), r is the number of PCs retained for 

rotation, and the are the eigenvectors.  
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The EOFs obtained after rotation are termed REOFs (rotated EOFs). For a more detailed 

description on the PCA including its application to meteorological and climatological variables 

we refer the readers to Ehrendorfer (1987), Hannachi et al. (2007),  Wilks (2011), among others. 

  

3.2.3 Power sprectral density (PSD) 

 
In climatic variability studies, besides knowing the leading patterns in the dataset, it is 

also important to check which cycles are present in the data. This information is of practical 

importance in water resources, since by detecting the approximate periodicity of a precipitation 

pattern, it is possible more precisely to plan and operate a hydroelectric system. If in a given 

region, it is known that there is a strong oscillation in precipitation with a period for example of 

60 years or so, it is possible to prepare in advance for three drier decades and other wetter 

(SABOIA, 2010). 

 There are several methods used to detect the presence of cycles and their frequencies in a 

time series. One of this, and used in the present study, is power spectral density (PSD) whose 

computation follows the Blackman-Tukey approach that estimates the spectral power through the 

Fourier Transform of the autocorrelation function (e.g., MITCHELL et al., 1966). 

To apply this method, it is desirable that the series be periodic. This condiction is 

satisfied by applying a cosine temporal window as shown in Equations (11) and (12).  

 

                                ( )                           (11) 

                               ( )                          (12) 

where N is the number of terms in the series, i is an individual sample point index, x the original 

series and x′ the series after the application of the window. 

The autocorrelation function is the correlation coefficient of a time series with itself, 

shifted in time by a lag. In discrete variables, it is defined by Equation (13), as follows: 

 

                                                                  ∑                                         (13) 

where  is autocorrelation for lag l, n is the number of terms in the series, i is an individual 

sample points index and,  is a time series with null mean. 
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PSD or  is accordingly estimated by Equation (14) as follows: 

 

                                              ∑                          (14) 

 
where  is the PSD estimator (hereafter referred to as PSD) corresponding to the harmonic h, ∆t 

is the timporal interval between one term and other in the time series and, m is the maximum lag. 

The maximum lag in which the spectrum is essentially constant must be chosen. The 

maximum lag ( ) is the maximum width of the time window to be evaluated, which corresponds 

to the lowest frequency at which the spectral density is estimated, and must not be greater than 

half of the time series function (MITCHELL et al., 1966).  

The maximum lag defines the amount of harmonics (h) analyzed, which in turn are 

associated with periods ( ) and frequencies ( ) as shown in (15). The smaller the maximum lag, 

the smaller the width of the base of the temporal window (and the greater the width of the base 

of the corresponding spectral window). The narrowing of the base of the temporal window 

causes an ever greater distortion between the estimated value of the spectral density and the true 

value. Therefore, it is necessary to seek a balance between the variance of the estimator and the 

real spectrum and fidelity (or resolving power) (MITCHELL et al., 1966). 

  

                                                                                                                                     (15) 

To determine the statistical significance of spectral estimates, a null hypothesis which is 

theoretical spectrum of a stochastic process is adjusted to the estimated spectrum as described in 

Mitchell et al. (1966). The white noise spectrum can be used for instance as a null hypothesis, if 

the first order autocorrelation is not significantly different from zero. Otherwise, the spectrum of 

red noise can be considered (WILKS, 2011).  

In this thesis as in Silva (2018), the theoretical spectrum of a first-order autoregressive process, 

as described by (16), is considered: 

                                                  ̅                                   (16) 

where h = 0,…,m are the harmonics and m the maximum lag.  is the first-order autocorrelation 

of the series, ̅ is the average of the spectral estimates and corresponds to the ratio of the 



48 

 
 

 
 
 

magnitude of the spectral estimate (PSD) to the local magnitude of the theoretical spectrum of 

white noise. 

It is important to note that if the first-order autocorrelation of the series is very small, the 

(16) tends to the theoretical spectrum of white noise (the straight line). The confidence limits of 

the results are the product of the value of the null hypothesis in any harmonic h by the test 

statistic, which corresponds to the ratio of the magnitude of the spectral estimate to the local 

magnitude of the continuum (MITCHELL et al., 1966). This ratio has been found to be 

distributed as chi-square devided by degrees of freedom ( 2/ ), where .                                 

Recall that PSD analysis in this study was applied to REOFs time series to determine the 

prevailing period in the modes of each time band (see text in sections 3.2.1 and 3.2.2). The total 

length N of the REOFs time series, composed of the sequence of DJF days over the 1979–2005 

period (with leap days excluded), was extended by a 5*N padding applied to each end of the 

series and the maximum lag used was 1/5 of the resulting series, consistent with Silva (2018).  

The 0.05 and 0.01 significance levels were computed to determine the significance of the 

most prevailing periods.  

 

3.2.4 Pearson correlation and composites analyses  

 

While a correlation analysis can help identifying relationships between two variables that 

can indicate areas where research should be taken to show further results, composite analysis can 

properly tell a powerful story about how that meteorological phenomenon (either wet or dry 

periods) is affected by the variables used in the composite stratification. 

A brief explanation of the implamentation of both methods follows below: 

The Pearson correlation coefficient (PCC or r; Equation 17) is the ratio of the sample covariance 

of the two variables (x and y) to the product of their standard deviations (WILKS, 2011): 

 ∑ ̅∑ ̅ ∑                                       (17) 

where  and  denote the individual sample points indexed with i; n indicates the sample size; ̅ and  – the means of variable x and y, respectively; Cov – the covariance, whereas  and  – 

the standard deviation of variable x and y, respectively. 
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The correlation coefficient ranges from −1 to 1. A value of 1 implies that the equation 

(17) describes the relationship between x and y perfectly, with all data points lying on a line for 

which y increases as x increases. On the other hand, a value of −1 implies that all data points lie 

on a line for which y decreases as x increases, whereas a value of 0 implies that there is no linear 

relationshp between the x and y variables.  

In essence, the PCC measures the linear relationship degree between x and y variables. 

The significance of computed PCC is assessed using the Student’s t test, in which the underlying 

null hypothesis is that the PCC between x and y variables is null. 

Composite analysis (CA), also referred to as conditional sampling analysis was originally 

developed by Chree (1913, 1914) in space science, and now it is widely-used in various fields of 

earth science including Meteorology. CA is a useful tool to help understand the relationships 

among different phenomena (XIE et al., 2017) occuring over time that are difficult to observe in 

totality. In studying climate, CA adequately helps exploring the large scale impacts for example 

of the well known teleconnection patterns (e.g., El Niño) on the weather/climate over a given 

geographical area. 

 The computation of composite is implemented as follows: supposing that we want to 

investigate the large scale circulation anomalies associated with intraseasonal rainfall variability 

represented by an area averaged standardized daily rainfall anomaly index I (Fig. 7), at first, we 

set to the index I timeserie a threshold say of +(–) 0.7 standard deviation (green line) above 

(below) which the events or days are regarded being in a positive (negative) phase, whereas 

those in between –0.7 and +0.7 standard deviation are considered being in neutral or 

climatological phase. Similar threshold has been applied for example in Grimm and Saboia 

(2015) and SG20, and that showed to be effective in revealing the extremes years in almost all 

known climate variability modes (e.g., ENSO years), apart from warranting the retention of a 

reasonable number of events for composite analysis.  

Then, we compute the composites for days in each phase by averaging separately the 

anomalies of a selected meteorological field (e.g., either OLR or PSIZA200) at each grid cell. 

Finally, to determine the statistical significance of composited anomalies at each grid point, the 

Student’s t test (Equation 18) applied to the data following normal distribution is considered as 

the DJF rainfall over SAF is assumed to show near-normal distribution (D’ABRETON, 1992).  
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                                              (18) 

Where  and  denote the means of sample 1 (say positive phase days) and sample 2 (say 

negative phase days), respectively;  and  denote the size of sample 1 and sample 2, 

respectively;  and  represent the standard deviation of sample 1 and sample 2, respectively. 

The term  indicates the number of degrees of freedom ( ) defined broadly in 

statistics as the number of “observations or pieces of information” in the data that are free to vary 

when estimating statistical parameters (the mean and the standard deviation in our case). 

 

 
Figure 7 – Example of time series used for definition of positive and negative phases for index I. 
The positive (negative) phases include days with values above (bellow) the threshold of +(–)0.7 
standard deviation represented in figure by solid horizontal green lines. In between the positive 
and negative phases are neutral (climatological) phases or situation. 
 

The underlying null hypothesis of the test considered in the composite is that there is no 

difference either between composited anomalies for positive (negative) phases and neutral ones 

or between composited anomalies for positive phases and negative ones.  

For above described Student’s t test, a key assumption is that the individual observations 

composing each of the samples are independent, meaning that a first-order autocorrelation is 

null, it is to say that is assumed that all the x (or ) values are mutually independent and that the 
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y (or ) values are mutually independent, whether or not the data values are paired. However, 

the atmospheric data often do not satisfy this assumption (WILKS, 2011). To overcome this 

issue, the effective sample size ( ), equivalent to the number of independent samples has been 

considered in both correlation and composite analyses using the Equation 19 (WILKS, 2011): 

 

                                                               (19) 

Where n and  denote the original sample size and the lag-1 autocorrelation, respectively. 

It is worthy mentioning here that in Equation 18,  and  has been separately 

calculated for  and  as described in Equation 19. 

We also calculate normalized root mean square error (NRMSE) by dividing root mean 

square error (RMSE, Equation 20) by the standard deviation of observed data, where n in (20) 

denotes the sample size. NRMSE is calculated to see average magnitude of the forecast errors. 

            
∑

                                (20) 

 

All the methods used in the present thesis are summarized in table 2. 

 

Table 2 A summary of methods used in the present thesis  

Sequency Methods Source 
Papers 
01 02 

1 Linear interpolation 
Meijering 
(2002) x x 

2 
Descriptive statistic measures (e.g., average, 
variance and standard deviation) Wilks (2011) x x 

3 Lanczos band-pass filter Duchon (1979) x  
4 Empirical orthogonal functions (EOFs) Wilks (2011) x  
5 Pearson correlation coefficient (PCC) Wilks (2011) x x 

6 Normalized root mean square error (NRMSE) 
Kim et al. 
(2016)  x 

7 Power spectral density analysis (PSD) 
Mitchell et al. 
(1966) x  

8 Compositing analysis 
Xie et al. 
(2017) x x 

For fuller details on each method, the reader is refered to the text in this section (3.2), and in 

chapters 4 and 5. The letter “x” indicates that the method was used either in paper01 or paper02 

or in both papers. 
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4. Intraseasonal variability of southern Africa summer monsoon rainfall 

 

As was stated in the introduction section, the results of this thesis are presented in the 

form of two manuscripts, which together address the proposed research objectives. In the present 

chapter, is attached the first manuscript that focuses on: (1) determination of the leading modes 

of rainfall intraseasonal variability (ISV) from 1979–2005 Mozambique gauge gridded 

precipitation anomalies, filtered in three frequency bands (10–25, 10–90 and 20–90 days), which 

were shosen to give an idea on how these different bands contribute to rainfall ISV over 

Mozambique; (2) selection of the mode whose spatial pattern is stronger in the monsoon core 

region (20°S–13.75°S; 32°E–38°E) and whose associated anomalous circulation appears to be 

more related to variations in monsoon flows; (3) definition of monsoon precipitation index (MPI) 

calculated over the selected monsoon core region and several low-level monsoon circulation 

indices, associated whith the MPI, all to characterize the monsoon active (wet) and break (dry) 

episodes within the rain season. Both the MPI and monsoon circulation indices are calculated 

separately as area averaged standardized daily anomalies over a previously selected area. The 

monsoon circulation indices are useful for subseasonal prediction, since models tend to show 

better performance in predicting circulation than precipitation (MARSHALL and HENDON, 

2015). In this part of the research the emphasis was given to large-scale forcing of regional 

rainfall at the subseasonal timescale, specifically, the teleconnection patterns between SA and 

SAF, in order to use it as a potential predictor for intraseasonal rainfall anomalies over the latter 

subcontinent. The results from this paper extend the SAF ISV existing knowledge that is of great 

importance for agricultural production, water resources management, and subseasonal prediction. 
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Abstract 29 

Southern African summer monsoon rainfall varies over a range of timescales. Here the emphasis is 30 
placed on its intraseasonal variability (ISV), which is of great importance for agricultural production, 31 
water resources management, and subseasonal prediction. Rotated modes of ISV are determined based on 32 

daily rainfall gauge data (1979–2005) in eastern southern Africa (SAF). One of the leading modes 33 
exhibits strongest factor loadings over the region with most intense monsoon precipitation over land and 34 
is associated with variations in the monsoon circulation. Its most significant oscillations in different ISV 35 
frequency bands exhibit periods around 12, 22-24 and 50 days, also found previously in ISV of monsoon 36 
rainfall over South America (SA). The 12-day oscillation is associated with the quasi-biweekly oscillation 37 
originated from Rossby waves in the extratropical westerly belt propagating into SAF. The lead-lag 38 
composite anomalies keyed to positive and negative phases of the mode in the 20-90 day band confirm a 39 
24 day mode and the influence of the Madden Julian Oscillation. Besides, they indicate the influence of 40 
convective anomalies over SA through propagation of atmospheric waves from this continent to SAF. A 41 
monsoon precipitation index (MPI) is proposed to help characterizing, monitoring and predicting active 42 
and break monsoon spells. It is based on the average standardized precipitation anomaly over a selected 43 
area in northeast SAF, where the variability of the precipitation in the core monsoon region over land is 44 
strongest not only on intraseasonal but also on synoptic and int erannual time scales. Therefore, the MPI 45 
reflects the monsoon precipitation variability where its prediction is more useful. Furthermore, monsoon 46 
circulation indices are defined based on circulation features most associated with the MPI, since models 47 
show better skill in predicting circulation than precipitation. 48 

 49 
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1 Introduction  54 
 55 

Most of southern Africa (SAF) experiences a seasonal peak of rainfall occurring between December 56 
and February (DJF), with the exception of the southwest and south coastal regions (Fig. 1). Although this 57 
seasonal peak in summer is a typical monsoon feature, most of SAF was for a long time not considered a 58 
monsoon region. According to Ramage (1971), a monsoon regime is characterized by a seasonal reversal 59 
of prevailing low-level winds. Although this definition has been accepted by the meteorological 60 
community for almost 3 decades, it was contested by Zhou and Lau (1998) and Webster et al. (1998), 61 
who qualified monsoon regions in the Americas in terms of rainfall. These works modified the Ramage's 62 
monsoon definition to a more general one, by considering seasonal changes in multiple  meteorological 63 
variables such as rainfall and wind’s components, among others. New monsoon definitions characterized 64 
recently most of SAF as monsoon region (Wang and Ding 2008; Yim et al. 2014).  65 

Similar to other monsoon regions, the rainfall in southern African monsoon (SAFM) region exhibits 66 
significant variability on wide range of time scales (Pohl et al. 2018). This variability results sometimes in 67 
extreme events (either floods or droughts) with tremendous impacts on the economies and societies of the 68 
region. A good example of these impacts is Mozambique (801,537 km2), a country in eastern SAF (Fig. 69 
1a). In this country, as in most SAF, rainfall is the life-blood for agricultural and hydropower sectors, 70 
known as the backbone for most economies in the region. Mozambique has undergone devastating floods 71 
as well as droughts. For instance, the precipitation over 400 mm in 24 hours associated with a set of 72 
cyclones, especially the Eline, which occurred over Mozambique, South Africa and parts of Zimbabwe in 73 
February 2000 (Reason and Keibel 2004), caused approximately 700 deaths in Mozambique and 74 
hundreds of thousands of people displaced. The accumulated property damages resulting from this flood 75 
exceeded 600 million USD (Wiles et al. 2005). After these floods, a system of early warning was 76 
implemented in the country and several efforts were made at local and regional leve ls in order to improve 77 
the knowledge on climate variability and the forecast skill of such events (Wiles et al. 2005). However, 78 
several years later, challenges still remain in accurately predicting such events, as shown by the floods in 79 
Mozambique during January 2013 (Manhique et al. 2015), January-February 2015 (OCHA 2015), and 80 
March 2019 (INAM 2019; INGC 2019). 81 

Thus, understanding the variations of the SAFM has a great socio-economic importance. In view of 82 
that, this study seeks to advance the knowledge on SAFM variability on intraseasonal time scales , in 83 
which many risk reduction and disaster preparedness actions for a range of sectors can be taken to 84 
minimize the impacts of extreme events. The study is more focused on Mozambique, although the 85 
variability disclosed extends to other SAF countries. 86 

One of the sources of rainfall variability at this time-scale is the Madden-Julian Oscillation (MJO), 87 
known as the dominant mode of tropical intraseasonal variability (ISV; Madden and Julian 1971). It 88 
involves significant variations in tropical convective activity and tropospheric large -scale circulation, 89 
with coherent signals in many other variables, propagating eastward around the globe with characteristic 90 
period of 30–90 days. Many studies have demonstrated that the MJO influences  weather/climate 91 
phenomena worldwide and it plays an important role in the coupled atmosphere-ocean system (Zhang 92 
2005, 2013). It is also known that the MJO strongest activity coincides with austral summer season, 93 



suggesting its potential influence, for instance, on SAFM rainfall variability (Zaitchik 2017). Therefore, 94 
there is enhanced chance for skilful global subseasonal prediction, especially in the global tropics , when it 95 
is active.  96 

However, relatively few studies linking the MJO to SAFM rainfall variability have been performed to 97 
date (e.g., Levey and Jury 1996; Pohl et al. 2007; Macambaco 2016; Macron et al. 2016). This is probably 98 
associated with the fact that the most comprehensive study on the MJO across the region (Pohl et al. 99 
2007) has reported its relatively weak influence on regional rainfall, explaining 35–40% of all intra-100 
seasonal variance in the outgoing long-wave radiation (OLR), used often as a proxy for convective 101 
activity. The relatively weak MJO influence on SAFM rainfall was confirmed in the subsequent study by 102 
Pohl et al. (2009). These authors also found that synoptic-scale tropical-temperate-troughs (TTTs; 103 
Harrison 1984) have equally likely occurrence during any MJO phase, suggesting that the MJO is only 104 
one of the many factors influencing rainfall variability in the region at subseasonal scales. Similar results 105 
have been recently reported by Macron et al. (2016) for Madagascar including whole SAF. However, 106 
these authors suggested that the relatively weak MJO’s influence on SAFM may be related to modulation 107 
of its signal by some local features (e.g., topography, surface properties, among others).  108 

Although the present study has found relatively weaker peaks of power spectral density (PSD) at 109 
MJO’s timescales compared with those in the 10–30 day range, composite analysis associated with an 110 
important mode of ISV showed that the structure of rainfall and circulation anomalies over SA F is 111 
reminiscent of the structure of the MJO in certain phases. This indicates that the existing teleconnection 112 
between South America (SA) and SAF, caused by eastward propagating wave trains, is likely modulated 113 
by MJO related convective activity over tropical SA, consistent with finding s in Grimm and Reason 114 
(2015) and Macambaco (2016). Grimm (2019) indicated that the MJO-related anomalies over SA in 115 
austral summer can contribute to the initiation of the MJO in the Indian Ocean through equatorial 116 
teleconnection and extratropical wave trains in both hemispheres linking SA and the Indian Ocean. The 117 
wave train in the Southern Hemisphere passing over SAF is able to impact the rainfall in this region. 118 
Therefore, we assume that the MJO influences the regional rainfall. The reason by which the MJO-related 119 
influence on SAFM was found weak in a number of previous studies may be the fact that it does not 120 
influence the SAFM rainfall directly, but via the teleconnection mechanisms just described. This implies 121 
that understanding the processes governing the variability of the SA monsoon system is not only 122 
important for SA, but also for SAF. This issue, although interesting, is not the scope of the present study, 123 
and those interested are referred to Grimm (2019).  124 

The first goal of this study is to analyse the space-time structures of intraseasonal summer 125 
monsoon rainfall leading modes  (Empirical Orthogonal Functions, EOFs) over SAF, based on rainfall 126 
gauge data from eastern SAF, as well as the circulation anomalies  behind this variability, and compare 127 
them to modes of outgoing longwave radiation (OLR) over a larger domain in SAF found in previous 128 
work. To the best of our knowledge, this is the first study to take such approach to the ISV in the region, 129 
since previous studies used satellite products. The second goal is to propose precipitation and circulation 130 
indices to represent the variability of SAF monsoon, on the basis of climatological information and the 131 
ISV. These indices are intended to help characterizing, monitoring and predicting active and break 132 



monsoon spells  in subseasonal time scale, using models participating in the Subseasonal to Seasonal 133 
(S2S) Project (Vitart et al. 2017; Vitart and Robertson 2018). 134 

The data and methods used in this study are described in section 2, whereas the seasonal rainfall 135 
climatology and its associated circulation are described in section 3. The rainfall intrasesonal leading 136 
modes over eastern SAF, their prevailing periods and physical mechanisms associated with each mode are 137 
presented in section 4. Section 5 discusses the proposed monsoon indices, based on anomalous 138 
precipitation and associated circulation. Summary and concluding remarks are given in section 6.  139 
 140 
2 Data and methods  141 
 142 
2.1 Data 143 

 144 
The gauge daily rainfall data for the period 1979–2005 (blue triangles in Fig. 1a), provided by 145 

Mozambique National Institute of Meteorology (INAM), are used as basic data for determining 146 
variability modes. Additionally, the Climate Prediction Center (CPC) unified gauge-based daily 147 
precipitation dataset with 0.5° grid resolution (Chen et al. 2008), and daily OLR at 2.5° grid resolution 148 
(Liebmann and Smith 1996) are used in a composite analysis to give a larger scale picture of the 149 
precipitation (convection) anomalies associated with the temporal evolution of a selected ISV mode and 150 
the monsoon precipitation index, since the INAM data do not cover all SAF. The CPC dataset is the only 151 
gauge-based daily dataset available from 1979. CPC data are also used in the analysis of the relationship 152 
between monsoon indices and summer rainfall over SAF. Seasonal mean climatological rainfall pattern 153 
over the SAF is obtained with monthly data from Global Precipitation Climatology Center (GPCC) 154 
version v2018 with 2.5° horizontal resolution (Schneider et al. 2016). The use of GPCC instead of CPC 155 
precipitation in SAF climatology description is due the fact that the former exhibits a more realistic 156 
maximum over the Mozambican monsoon core region, consistent with that shown in McHugh and Rogers 157 
(2001) and with the pattern of annual mean rainfall, displayed in Nicholson (2000). 158 

For circulation analysis we use 2.5° gridded daily zonal and meridional wind’s components  at lower 159 
(850–hPa) and upper (200–hPa) levels, both derived from the National Centers for Environmental 160 
Prediction (NCEP)/National Center for Atmospheric Research (NCAR) Reanalysis products (Kalnay et 161 
al. 1996). This reanalysis has been used for calculating the MJO phases (Wheeler and Hendon 2004) and 162 
the MJO impacts on Australia and SA with coherent results (e.g., Wheeler et al. 2009; Grimm 2019).  163 

This study concentrates on the DJF season, which is the peak monsoon season over the region with 164 
highest monsoon rainfall over SAF (cf. Figs. 1b, 2a), and during which the influence of global variability 165 
modes such as the El–Niño Southern Oscillation (ENSO) and MJO, among others, is  stronger (Mason and 166 
Jury 1997; Zaitchik 2017). The period 1979–2005 was chosen for providing good data coverage over 167 
eastern SAF, and because CPC and reliable OLR data are available only after 1978.  168 
 169 
2.2 Methods 170 

 171 
The gauge data over SAF (Fig. 1a) are verified for spurious values, following the procedures 172 



described in Grimm and Saboia (2015) for SA data. These data are interpolated to a 1° grid, using the 173 
stations with at least 70% of the daily data in the period 1979–2005. In this way the rainfall data are 174 
distributed more evenly over the study area. After that, daily anomalies at each grid point are calculated 175 
following similar procedures used in Grimm (2019). For each grid point, the average daily values for 176 
January 1st through December 31st are calculated and then smoothed with a 31-day moving average to 177 
produce the climatological annual cycle, since there is much spurious variance in the annual cycle of 178 
average daily values due to the relatively short sample. The climatological annual cycle at each grid point 179 
is then subtracted from the daily values in the corresponding grid box, to obtain the anomalies. The same 180 
procedure for calculating anomalies is applied to CPC, OLR and NCEP/NCAR data. These anomaly time 181 
series at each grid point are submitted to a Lanczos band-pass filter with 211 weights (Duchon 1979), to 182 
retain intraseasonal fluctuations in three selected frequency bands (10–25 day, 10–90 day and 20–90 day), 183 
and to analyse their contribution to ISV over the study domain. Only the DJF season is separated from the 184 
filtered data and used in the analyses. 185 

In order to identify the variability modes of precipitation in each time band, principal component 186 
analysis (PCA, e.g., Jolliffe 2002; Wilks 2011) is performed in S-mode using correlation matrix, which 187 
accounts for different standard deviations in the data,  although the covariance matrix showed similar 188 
results. For each variability mode in each frequency band, the spatial pattern (factor loadings) associated 189 
with the principal component (PC, also termed factor scores) is obtained by correlating the PC with 190 
rainfall anomalies in the corresponding band over the domain grid points. Since unrotated modes may be 191 
nonphysical or spurious modes, the varimax orthogonal rotation is applied, which maximizes the local 192 
variance within the domain, and makes the modes physically more interpretable (Richman 1986). The 193 
first 5 PCs, explaining over 60% of the original variance, were retained for rotation, using the Kaiser 194 
criterion of retaining  PCs with eigenvalue greater or equal to one (Kaiser 1958). 195 

To determine the prevailing period in the modes of each time band, PSD analysis is applied. The 196 
computation of PSD follows the Blackman-Tukey approach, as described in Mitchell et al. (1966). The 197 
total length N of the REOFs time series, composed of the sequence of DJF days over the 1979–2005 198 
period (with leap days excluded), is extended by a 5*N padding applied to each end of the series and the 199 
maximum lag used is 1/5 of the resulting series. A chi square test variant, as described in Mitchell et al. 200 
(1966), is used to determine whether a PSD is significantly different from the null hypothesis  of red noise. 201 
The 0.05 and 0.01 significance levels were computed to determine the significance of the most prevailing 202 
periods.  203 

 In order to understand the time-evolution of rainfall and circulation anomalies associated with the 204 
modes, anomaly composites of rainfall, OLR, and circulation fields at lower (850 hPa) and upper (200 205 
hPa) levels are prepared for the positive and negative phases of the modes (and their difference) as well as 206 
for the days preceding and following these phases. The positive (negative) phase comprises days in which 207 
the factor scores are equal or above (below) +0.7 (–0.7) standard deviation. The significance of the 208 
anomalies (and their difference) is assessed using Student’s t test, in which the effective sample size at 209 
each grid cell is reduced by considering the autocorrelation introduced in the series by the filter (Wilks 210 
2011). 211 

To facilitate the prediction and monitoring of active and break monsoon episodes, a monsoon 212 



precipitation index (MPI) and associated large-scale circulation indices are proposed. The MPI is defined 213 
as the averaged standardized rainfall anomaly over the region shown in Fig. 1b, selected for its high 214 
monsoon precipitation and variability associated with variations in the main features of the SAF monsoon 215 
circulation. The computation of the daily values of these indices follows the same procedure as described 216 
above, added by the calculation of the annual cycle of the daily standard deviations for each of the 365 217 
days in the same way as the annual cycle of daily precipitation, in order to standardize the daily 218 
anomalies. Active (break) monsoon episodes are defined whenever the MPI values are equal or above 219 
(below) to +(–) 0.7 standard deviation. The circulation indices are defined according to the correlation of 220 
MPI with meridional and zonal components of the low level wind. 221 
 222 
3 Climatology analysis 223 
 224 
 The SAFM rainfall structure and its circulation system is discussed in several studies  (e.g., 225 
Taljaard 1986; Mason and Jury 1997; Nicholson 2000; Reason et al. 2006; Silverio and Kulikova 2011, 226 
among others). Therefore, only background information needed for this study is reviewed. Figure 2a 227 
shows the DJF seasonal mean rainfall. For the same period are displayed circulation fields, illustrated by 228 
streamlines at lower (Fig. 2a) and upper (Fig. 2b) levels, derived from NCEP-NCAR daily reanalysis 229 
products. It is evident that seasonal mean distribution of rainfall over SAF is extremely uneven, 230 
increasing from south to north and from the western to the eastern coast. An elongated area of maximum 231 
rainfall along the northwest–southeast (NW–SE) direction is evident in central-east SAF, extending over 232 
Madagascar (Fig. 2a), and seems to be associated with the interaction of three low-level air flows: (1) the 233 
northeasterly monsoon (NEM), originating in the Indian subcontinent, (2) westerly or northwesterly 234 
monsoon (NWM), formed by recurved air flows from the eastern flank of the South Atlantic High  (SAH) 235 
and from the eastern equatorial Atlantic, and (3) the southeast trade winds  (SETW), originating from the 236 
South Indian Ocean High (SIH). The NWM is conducted by the Angola Low (AL) into the interior, where 237 
it meets the NEM, forming the Congo Air Boundary (CAB). Besides the AL, another important 238 
circulation feature is the Mozambique Channel Trough (MCT), off the east coast of central Mozambique, 239 
which is probably associated with warm sea surface temperatures in the Mozambique Channel. It 240 
conducts most of the NEM from the eastern coast of SAF towards Madagascar and the Mozambique 241 
Channel. The monsoonal flows NEM and NWM meet the SETW in the south, forming the SAF 242 
Intertropical Convergence zone (ITCZ). The commonly accepted definition of ITCZ, which is the 243 
location where the trades meet the northerly monsoonal flow, is used here. In SAF, the ITCZ influences 244 
rainfall patterns particularly over the eastern portion of the subcontinent, comprising central Mozambique 245 
(around 20°S), and Madagascar (Fig. 2a). Apart from northern Madagascar, where the strong rainfall 246 
maximum may be influenced also by orography, the maximum summer rainfall is not coincident with the 247 
ITCZ. This agrees with the view that the ITCZ may not explain the rainfall distribution over continental 248 
Africa and its seasonal variations, although it can have important contribution. Other factors, such as the 249 
role of topography in the development of rain-bearing systems, as well as thermodynamic and dynamic 250 
conditions for ascent and rainfall, favoured by the climatological summer conditions, may be more 251 
important than the low level convergence associated with the ITCZ (e.g., Nicholson 2018).  252 



 The convergence along the northern CAB may influence the precipitation maximum over central 253 
SAF, although in this region the role of orography may also be determinant, since the regions of 254 
interaction between the monsoonal flows with the mountains in southern Democratic Republic of Congo 255 
(DRC) and in northeastern Zambia are co-located with rainfall maxima. The southern CAB does not 256 
coincide with a maximum rainfall band.  257 
 The three airflows converging on SAF can be affected by the progression of pressure systems at 258 
higher latitudes, and by tropical cyclones. Therefore, climate variability that affects these factors can 259 
affect monsoon rainfall in SAF 260 
 The regional upper-level climatological circulation seems to be dominated by the Botswana High 261 
(BH), a prominent mid-tropospheric regional circulation system (Driver and Reason 2017) (Fig. 2b), 262 
consistent with a response to the enhanced monsoon convection (Fig. 2a).  263 
 Although the maximum rainfall band encompasses several countries in SAF, the variability 264 
analysis will be centered on eastern SAF, in the region over Mozambique (where daily gauge data are 265 
available), which is consistent with the region of maximum summer rainfall over central-east SAF shown 266 
in McHugh and Rogers (2001, their Fig. 2a). Comparison with variability modes of OLR obtained on a 267 
larger domain shows consistency with the variability at this region, which also shows connection with 268 
variations in the monsoon circulation. 269 
 270 
4 Intraseasonal rainfall leading modes and their associated circulation anomalies  271 
 272 
4.1 The leading modes and their prevailing periods 273 

 274 
The factor loadings of four rotated empirical orthogonal functions (REOF) of daily precipitation, 275 

present in the three considered intraseasonal bands, are shown in Fig. 3, besides the factor scores of the 276 
20–90 day band REOF3. The last of these modes (REOF5 in the 10–25 day band and REOF4 in the other 277 
two bands) is slightly different in the 20–90 day band, while REOF1, REOF2 and REOF3 are very 278 
similar in all intraseasonal frequency bands, even in non-filtered data (not shown), indicating that these 279 
modes are present in all these time scales. Although in this analysis we use filtered daily data, it is 280 
noticeable that the factor scores of the 20–90 day band REOF3 displayed in the last row of Fig. 3 capture 281 
well the floods that occurred over central Mozambique during the 2000/2001 summer monsoon season, 282 
demonstrating their robustness in adequately describing this important event present in the original data. 283 
The variance explained by the rotated modes (shown on top of each REOF, Fig. 3) is calculated with 284 
respect to the variability explained by the non-rotated modes retained.  285 

The prevailing low-level anomalous circulation associated with each mode is shown in Fig. 4 through 286 
maps of correlation coefficients between the factor scores of each 20–90 day band REOF and the 287 
components of 850 hPa wind at each grid point over the SAF. Similar analysis giving similar results (not 288 
shown) was performed for the other two bands (10–25 days and 10–90 days). This figure shows that 289 
enhanced precipitation in all modes is associated with an anomalous cyclonic circulation centered around 290 
different positions. It is evident that the anomalous precipitation and circulation related with REOF3 and 291 
REOF4 appear to be more associated with variations in monsoon precipitation and circulation (enhanced 292 



NWM, NEM, and even the SETW, besides the MCT), favourable for enhanced monsoon rainfall in the 293 
core monsoon region. It is also worth mentioning that for the 30-60 day band (not shown, only focused on 294 
MJO), the REOF3 mode changes to REOF1. Visual inspection of Figs. 1b, 2a, 3, shows that the monsoon 295 
core region over SAF (particularly Mozambique) encompasses regions with strong factor loadings of 296 
REOF3 and also REOF4, although REOF3 alone represents most of the variability in the box of the MPI. 297 
The strong connection between REOF3 and MPI is also shown in section 5. Moreover, the region with 298 
highest factor loadings of this mode at each intraseasonal frequency band seems also consistent with that 299 
of the first summer mode on interannual time scales for Yim et al. (2014, their Fig. 3d), suggesting that 300 
besides undergoing monsoon precipitation ISV, it also experiences significant variability at longer 301 
timescales. 302 

The PSD of REOF3 in the 10–90-day band (all the ISV), shown in Fig. 5, indicates that the strongest 303 
signals in the intervals 10-20, 20-30, and 30-90 days have periods respectively around 12, 24, and 50 304 
days. The first one is associated with the quasi-biweekly oscillation (QBW, Kikuchi and Wang 2009), 305 
with wavelike features propagating into the SAF region from the extratropical westerly belt of the 306 
Southern Hemisphere. The origin of the second one is still unclear, but it also appears in the South 307 
American monsoon precipitation and seems to be linked to the Tropics  (Nogués-Paegle et al. 2000). This 308 
peak is also present in REOF1 and REOF2 (not shown). It is probably the variability mentioned by Levey 309 
and Jury (1996) and Jury (1999), who reported that summer convection over southern Africa is “pulsed” 310 
at cycles of 20–35 days, associated with the passage of wave trains in the subtropical westerly flow whose 311 
influence spreads into the tropical belt over Africa. The third one is associated with MJO. All these three 312 
time scales are also present in the South American ISV, especially in the South Atlantic Convergence 313 
Zone (SACZ) (Nogués-Paegle et al. 2000; Kikuchi and Wang 2009; Grimm 2019). The MJO-related peak 314 
is weaker in Fig. 5 compared with those in the interval of 20–30 days or 10–20 days, suggesting that the 315 
latter ones likely contribute more significantly to rainfall ISV over SAF. The MJO contribution (temporal 316 
band 30–60 day) is a little stronger for REOF4 (not shown) than for REOF3, which is expected, since the 317 
former has stronger factor loadings nearer to the equator than the latter. It is weaker for REOF2 and 318 
REOF3, whose strongest factor loadings are more to the south. 319 

Although these ISV modes of observed precipitation in southeast SAF are not exactly comparable 320 
with those obtained with different variables (e.g., OLR), domains (e.g., including the Indian Ocean), or 321 
methods (e.g., using daily PCA for each summer separately, as in Jury (1999), PCA of daily OLR, as in 322 
Pohl et al. (2009), or Canonical Correlation Analysis, as in Puaud et al. (2017), the last two for a domain 323 
including the Indian Ocean), it is interesting to verify if those modes describe approximately the same 324 
ISV of the monsoon precipitation in the SAF core monsoon region represented by our REOF3 and 325 
REOF4. 326 

Jury (1999) calculated ISV modes of pentad OLR over SAF for each summer in the period 1976–327 
1994. The results indicate that the cumulative % variance explained is largest for the tropical NE mode, 328 
with largest loadings in the same region as REOF3, over northern Mozambique and Malawi (e.g., their 329 
Fig. 3a), which is influenced by the line of confluence established by the cross-hemispheric NEM. 330 

Puaud et al. (2017) reported covariability between SA and SAF with about 10–day lag in the ISV 331 
band 25-75 days. As most of the highest frequency ISV is filtered out in this band (periods around 12 and 332 



22-24 days), the frequencies at which the co-variability was analysed is strongly reminiscent of MJO. 333 
Their canonical correlation analysis first co-variability mode in summer over SAF has largest components 334 
in the NE part of SAF (their Fig. 5a), similar to the mode REOF3 (and REOF4) of the present study (Fig. 335 
3). Since Puaud et al. (2017) filtered in the band 25–75, while here the band is 20-90 and the band 10–25 336 
is the one with highest PSD in ISV (Fig. 5), their analysis retained mainly the MJO-related variability. 337 
Therefore, a straight comparison is not possible, but it is worth pointing out that their intraseasonal mode 338 
with co-variability with SA has spatial distribution similar to REOF3 (and REOF4), concentrating on NE 339 
SAF. 340 

Pohl et al. (2009) calculated modes of daily summer OLR variability. The factor loadings and the 341 
associated vertical wind anomalies show that all the five first modes contribute to the rainfall variability 342 
of the MPI region in northeast (NE) SAF, especially the first one. The two first modes are those that 343 
represent most the synoptic variability associated with tropical–temperate troughs (TTT) that propagate 344 
north-eastward, but they also contain ISV. In this time scale, they interact significantly at the period 345 
around 12 days. The next three ones display more power in the intraseasonal time scales , both in the 346 
higher frequency band (10–30 day) and the MJO band (30–70 day). They represent the propagation of the 347 
large-scale convective clusters  over SAF in intraseasonal time scales, and have common variance with the 348 
first two modes and between themselves. Therefore, even if the first two modes do not seem strongly 349 
modulated by MJO, they undergo its influence through association with the other modes in the 350 
intraseasonal time scales. Therefore, the ISV with periods around 12, 24 days and the MJO band seem to 351 
explain complementary parts of the subseasonal atmospheric and rainfall variability over SAF, which is 352 
of importance for the subseasonal forecasting. 353 

 354 
4.2 The space-time evolution of rainfall and circulation anomalies related to 10–25 day mode 3 355 

 356 
Although most of the subseasonal predictability comes  probably from ISV modes with longer periods, 357 

it is interesting to see how the highest frequency ISV influences precipitation in NE SAF, and therefore, 358 
MPI. As mentioned before, this frequency band, which displays a peak with period around 12 days (Fig. 359 
5), is associated with the QBW oscillation (Kikuchi and Wang 2009). 360 

Fig. 6 displays the difference between lead-lag composite anomalies keyed to positive and negative 361 
phases of the 10–25 day band REOF3 for 200 hPa eddy streamfunction and OLR. Before calculating the 362 
composites, anomalies are filtered to retain the 10–25 day band. Streamfunction is used because the 363 
response of the rotational component of atmospheric circulation to the anomalous heat sources at lower 364 
latitudes is more evident in this field rather than in geopotential height. The lower right panel of Fig. 6 365 
shows an approximate scheme for the temporal evolution of the oscillation revealed in this composite. 366 
The days are keyed to the first days of the positive phases (factor scores equal or above 0.7 standard 367 
deviation), named ‒ 0, and to the last days of the positive phases, named +0. The entire sequence of Fig. 6 368 
represents 1.5 cycles of a 12-day oscillation. Between days ‒ 6 and ‒ 4 there is negative phase, with 369 
below normal precipitation over NE SAF (and negative MPI over the small green rectangle). In day ‒ 4 370 
begins the transition from a negative phase to neutral conditions. At this time, OLR (rainfall) anomalies 371 
are still positive (negative) over the MPI region. A wave train extends over the southern extratropical 372 



Atlantic, with weak cyclonic anomalies east of the southern coast of SA. As negative OLR anomalies 373 
develop over southeast SA, this cyclonic center strengthens, as well as the streamfunction centers 374 
downstream. Over SAF, northwest-southeast bands of enhanced convection and subsidence extend to the 375 
east of respectively the cyclonic and anticyclonic centers over the region and move northeastward. These 376 
features represent tropical–temperate interactions and occurrences of synoptic scale TTT systems. They 377 
are represented by the first two modes of daily OLR in Pohl et al. (2009), which concentrate most of the 378 
variability in the 5-20 day band (synoptic and higher frequency ISV), and have strong interaction or 379 
common variance for periods around 12 days. As the wave train moves eastward, at day ‒ 0 the 380 
anomalous convection is centered over the MPI region, from where it moves eastward at day +0, and 381 
vanishes at day +2, when opposite anomalies start. An entire cycle takes place, for example, between days 382 
-4 and +6, with opposite phases of precipitation over NE SAF (or of MPI) on days ‒ 0 to +0 and +4 to +6. 383 

Convective activity associated with the QBW is significant in the subtropical regions along 10°–30° 384 
latitudinal bands in both hemispheres , and are connected with upstream extratropical Rossby wave trains 385 
propagating primarily eastward and equatorward. The positive (negative) convective anomalies caused by 386 
those circulation anomalies  are associated with low-level northerly (southerly) wind anomalies in the 387 
Southern Hemisphere. Barotropic Rossby wave trains (with slight westward tilt with height below 700 388 
hPa when entering subtropics) are essential in controlling initiation, development, and propagation of the 389 
eastward QBW mode in the subtropics, as well as  in maintaining QBW convection in some regions 390 
(Kikuchi and Wang 2009). Besides being triggered by extratropical Rossby wave trains, the QBW 391 
subtropical convective activity can also produce or influence the extratropical Rossby wave that is 392 
responsible for eastward propagating the convective anomaly. In the Southern Hemisphere during the 393 
austral summer it can happen, for example, with anomalous convection in the central-eastern subtropical 394 
South Pacific and over SA, where anomalous convection can influence the extratropical Rossby wave that 395 
will produce convection respectively in SA (SACZ and subtropical plains to the southwest) and in SAF. 396 
Indications about this influence are visible in Fig. 6 (see, for instance, days ‒ 0 and +4), as well as in 397 
maps of QBW teleconnectivity and austral summer QBW life cycle over SA and SAF (Kikuchi and Wang 398 
2009). 399 
 400 
4.3 The space-time evolution of rainfall and circulation anomalies related to 20–90 day mode 3  401 

  402 
The PSD analysis of REOF3 in the 20-90 day band shows the highest significant peaks with periods 403 

around 22-24 days and 50 days (Fig. 5). Figures 7 and 8 display the difference between lead-lag 404 
composite anomalies keyed to positive and negative phases of this mode for 850 and 200 hPa eddy 405 
streamfunction, CPC rainfall and OLR. Before calculating the composites, anomalies are filtered to retain 406 
the 20–90 day band, and this can account for weaker anomalies than displayed by other studies .  407 

Since the PSD peak for period around 24 days is much higher than that for 50 days (MJO time scale), 408 
that shorter period will be more reflected in the composite, contrary to Puaud et al. (2017), in which the 409 
period around 24 days was filtered out before the analysis, this emphasizing the MJO-related period 410 
around 50 days (they used the 25-75 day intraseasonal band). In the present composite this  MJO period is 411 
superimposed on the approximate 24-day period, modulating it, but is  less clearly visible than the 24-day 412 



period. The lower right panel of Figs. 7 and 8 shows an approximate scheme for the temporal evolution of 413 
the anomaly composite oscillation, with the days keyed to the first days of the positive phases (‒ 0), and 414 
to the last days of the positive phases (+0). Although the figures were produced from day ‒ 16 through 415 
+16 in order to construct this scheme, the composite is displayed only from day ‒ 8 (8 days before -0) to 416 
day +8 (8 days after +0), covering an interval of around 20 days. This corresponds to a little more than 417 
three MJO phases of around 6 days each (Wheeler and Hendon 2004). When the effects of the two 418 
variabilities are in phase the anomalies have highest intensity. 419 

While Fig. 7 shows anomalies of 850 hPa circulation and continental CPC precipitation, Fig. 8 420 
displays anomalies for 200 hPa and OLR. Day ‒ 8 represents the beginning of the transition from a 421 
negative phase to neutral conditions (see scheme). At this time, rainfall (OLR) anomalies are still negative 422 
(positive) over the PMI region in NE SAF, and positive (negative) over central-east Brazil, especially the 423 
southern part of it, over the SACZ (Figs. 7a, 8a). These anomalies are probably connected with a wave-424 
train from the enhanced convection on the subtropical South Pacific, east of the Date Line, towards SA, 425 
which can influence rainfall over SA (Grimm 2019) through a Pacific-SA (PSA)-like pattern comprising 426 
an upper-level anticyclone in the extratropics and a cyclone in the subtropics  of SA (Mo and Nogués-427 
Paegle 2001) (Fig. 8a). Over the southeastern Pacific Ocean and SA there are signals of this Rossby 428 
wavetrain connecting the anomalous convection over the subtropical South Pacific (visible in Fig. 8a) to 429 
the enhanced SACZ convection, as described in Grimm (2019) in connection with the MJO impacts , and 430 
visible in the composites of day ‒ 8 (Figs. 7 and 8). Since convective anomalies in the Pacific Ocean and 431 
its associated anomalies over SA can exist in both time scales, around 22-24 days and in the MJO time 432 
frame (Nogués-Paegle et al. 2000), the connection between the Pacific Ocean and SA may happen in both 433 
time scales of the ISV, as well as the connection from SA to SAF described in Grimm and Reason (2015).  434 

The extratropical circulation anomalies some days before day ‒ 0 are favourable to the formation of 435 
TTTs over SAF (Grimm and Reason 2015). This is confirmed by the OLR anomalies from day ‒ 8 to day 436 ‒ 0, which show the familiar southwest-northeast oriented dipole pattern of significantly enhanced and 437 
suppressed rainfall (convection) over SAF (Washington and Todd 1999) moving northeastward before 438 
day -0 (Figs. 7a-e, 8a-e). During this period, convection increases over Central-East SA and western 439 
tropical South Atlantic and decreases over the subtropics. The anomalous convection over SA is able to 440 
influence the tropical and extratropical circulation over the Atlantic, producing an anticyclone over the  441 
extratropical South Atlantic and a cyclone south of Africa by day ‒ 0, both of barotropic structure (Figs. 442 
7d,e, 8d,e). The circulation anomalies averaged just before and over days of positive phase (between days 443 ‒ 4 and 0) show clearly an extratropical Rossby wave train from SA towards SAF, favouring rainfall in 444 
the target region by the subtropical combination cyclone-anticyclone at upper-level (and cyclone at low-445 
level) over SAF and by also producing low-level convergence and upper-level divergence via the tropical 446 
circulation in the tropical teleconnection between SA and SAF (Figs. 7f, 8f). At low levels (Fig. 7), the 447 
circulation anomalies at days ‒ 0 and 0 enhance the monsoon-related circulation, such as the NWM, the 448 
NEM, as well as the SIH (Fig. 2a). When the 10-20, 20-30 and 30-90 day variability bands are in phase at 449 
day 0 (between ‒ 0 and +0), the lower frequency anomalies favour the enhancement and persistency of 450 
the higher frequency anomalies associated with enhanced rainfall in NE SAF (cf. Figs. 6 and 8).  451 

It is worth mentioning that the composite corresponding to day -0 presents the same circulation 452 



anomalies as the corresponding composite in Puaud et al. (2017) for similar OLR anomalies over SAF 453 
(their Fig. 7, Day D+15). A wave train similar to that in our Fig. 8d-e also emerges from SA, with an 454 
anticyclone over the extratropical South Atlantic and a cyclonic anomaly southwest of the enhanced 455 
convection over NE SAF. The other days are not very comparable, since their composites do not contain 456 
the 24-day oscillation, although their composite for D+20 reminds our Fig 8f (days 0 All). Our composite 457 
for day ‒ 2 is also comparable with the corresponding composite in Nogués-Paegle et al. (2000, their Fig. 458 
2c), for the maximum convection over Central-East SA.  459 

The tropical convection during the neutral conditions between a negative and a positive phase (days ‒460 
8 through ‒ 0, Figs. 8a-e)  is enhanced in Central-East SA (negative OLR anomalies) and with less 461 
intensity extends from Northeast Brazil towards tropical Africa over the equatorial Atlantic, as is typical 462 
for MJO phase 1 (Grimm 2019). During the days of positive phase (day ‒ 0 through 0+) the convection 463 
over SA withdraws to Northeast Brazil and weakens, while over Africa it shifts to the subtropics of NE 464 
SAF, which is typical of MJO phase 2 and 3 (Grimm 2019).  465 

In the last day of REOF3 positive phase (day 0+, Fig. 8g) the pattern of enhanced precipitation moves 466 
a little north-eastward and a band of suppressed convection appears southwest of it. In the next two and 467 
four days (+2, +4) these two bands forming a southwest-northeast oriented dipole pattern of significantly 468 
suppressed and enhanced rainfall (convection) over SAF continue to move north-eastward and the 469 
REOF3 pattern will enter its negative phase in day +8 (Fig. 8k). The changes associated with the 470 
beginning of opposite phases can be seen by comparing composites for day ‒ 0 (beginning of a positive 471 
phase) and day +8 (beginning of a negative phase), which are separated by 12 days or approximately half 472 
period of the oscillation (see scheme). Therefore, it is expected that the anomalies are approximately of 473 
opposite signs. In fact, comparing Fig. 8e with 8k it is possible to see that the OLR anomalies changed 474 
from negative to positive over Northeast Brazil and the MPI region, while over the Maritime Continent 475 
they changed from positive to negative, and the same change happened to the predominant OLR anomaly  476 
in the subtropical South Pacific, east of the Date Line. The streamfunction patterns also change sign. 477 

The changes associated with the end of opposite phases can be seen by comparing composites for day 478 ‒ 8 (end of a negative phase) and day +0 (end of a positive phase), which are also separated by 12 days or 479 
half period, and also display patterns of opposite signs  (Figs. 8a and 8g). As this same interval separates 480 
day ‒ 0 (beginning of a positive phase) and day +8 (beginning of a negative phase), with composites from 481 
day ‒ 16 though day +16, it was possible to determine the dominant period of 24 days for REOF3 in the 482 
band 20-90 day. 483 

It is worth mentioning that the enhanced convection associated with this mode comprises the entire 484 
core monsoon region with maximum summer rainfall in SAF (cf. Figs. 8f and 2a). Therefore, a rainfall 485 
index based on a region with highest factor loadings of this mode would represent well the ISV of the 486 
SAF monsoon. 487 

Although the analysis in Figs. 7 and 8 indicates that convection anomalies prevalent in these 488 
composites are in the 20–30 band variability, the anomalies observed during few days before the first day 489 
of the positive phase of REOF3 resemble the MJO phase 1, consistent with Fig. 3 in Grimm (2019). This 490 
suggests that the existing teleconnection between SA and SAF may happen via tropics–tropics and 491 
tropics-extratropics, in the 20–30 day band and in the MJO time frame (Grimm and Reason 2015; Grimm 492 



2019), with the related convection anomalies over tropical SA / Atlantic Ocean playing an important role 493 
in modulating eastward propagating anomalies. These anomalies over SA exist in both time scales  494 
(Nogués-Paegle et al. 2000), as they also exist in the subtropical South Pacific, east of the Date Line, 495 
where they seem to be connected with production of convective anomalies over SA (Grimm 2019). An 496 
anomaly composite similar to that in Fig. 8, but using anomalies filtered in the 30–90 day band (not 497 
shown), confirms that there is also variability within the 30–60 day band, and that precursor anomalies 498 
are consistent with the MJO phase 1.  499 

The composite anomalies for REOF4 (not shown) also indicate the role of convective anomalies  500 
associate with MJO phase 1, but emphasizes  a tropics-tropics teleconnection between SA and SAF, while 501 
for REOF3 teleconnection between SA and SAF may happen via t ropics–tropics and tropics-extratropics 502 
in the SH. 503 

Convection variability on intraseasonal time scales in the 20–90 day band over NE SAF (the region 504 
under focus) results from a complex interaction of time as well as spatial scales. In addition to the MJO, 505 
there is a sub monthly mode with highest peaks around 22–24 days, as in SA (Nogués-Paegle et al. 2000). 506 
According to Nogués-Paegle et al. (2000) both modes are linked to the tropics. In their study of the SACZ 507 
variability, they found that the two modes reinforce each other over SA to enhance or suppress the SACZ. 508 
Over SA, these two modes are in phase with each other, but they tend to cancel out over certain regions of 509 
the Pacific Ocean. Therefore, the MJO signal does not appear clearly in the composites, as it also does not 510 
appear in the composites of Nogués-Paegle et al. (2000) when considering both modes included in the 511 
data. 512 

Figures 7 and 8 indicate that teleconnections exist between the South Pacific and SA and this 513 
continent and SAF, through the tropics and via extratropical Rossby wave trains, generated by anomalous 514 
convection over SA and the neighbouring Atlantic (Grimm and Reason 2015). Indeed, an area of 515 
enhanced convection, for instance, over central-east Brazil is evident before the positive phase which 516 
likely modulates a tropics-tropics teleconnection towards SAF. The propagating extratropical 517 
teleconnection, which influences the extratropical wave trains with its migratory cyclones circling the 518 
globe, is probably originated from anomalous convection over SACZ. The wave train excited from SA 519 
interacts with SAF regional circulation, creating favourable conditions to enhance the monsoon 520 
circulation. For instance, in Fig. 7e, at the beginning of the REOF3 positive phase, the low-level westerly 521 
and northerly flows are s trengthened over NR SAF. This circulation structure is responsible for enhanced 522 
convective activity over the monsoon region of SAF. At higher levels, the enhanced convection over SAF 523 
produces anticyclonic anomalies which reinforce the climatological Botswana High (Figs 8f and 2b). 524 
 525 
5 Monsoon indices for southern Africa 526 

 527 
5.1 Monsoon precipitation index (MPI) 528 

 529 
The proposed MPI is intended to help characterizing, predicting and monitoring active and break 530 

monsoon spells, in the SAF monsoon domain predominantly over land, where this knowledge is of great 531 
importance for the regional economies and livelihood of millions of people . It is constructed based on the 532 



understanding gained from the climatology (section 3) and the ISV leading modes (section 4). It is the 533 
average standardized precipitation anomaly (obtained from gauge data) in a region that satisfies two 534 
criteria: i) its rainfall variability represents fairly well the variability over the region of strongest monsoon 535 
rainfall over land (the northwest-southeast band over SAF and Madagascar in Fig. 2a), and ii) exhibits 536 
strong ISV. This region (20°S–13.75°S; 32°E–38°E) is approximately at the geographical centre of the 537 
highest monsoon rainfall band, which also comprises the South Indian Convergence Zone (SICZ).  538 

Figure 9a, which represents the correlation of MPI with daily rainfall over land, shows that this index 539 
satisfies the first criterion, representing the variability of the northwest-southeast band of maximum 540 
monsoon rainfall extending from SAF to Madagascar (Fig. 2a), since the region of maximum correlation 541 
reproduces this rainfall band (cf. Figs. 2a and 9a). Another correlation map using the CPC Merged 542 
Analysis of pentad Precipitation (CMAP; Xie and Arkin 1997) data interpolated to daily resolution (not 543 
shown) extends the highest correlation band also over the ocean, between Mozambique and Madagascar. 544 
This result implies that the proposed index is suitable to measure the monsoon rainfall variability over 545 
SAF, including Mozambique and neighbouring regions  most affected by the monsoon. Figure 9a also 546 
shows that there is correspondence between gauge and CPC precipitation, confirmed by the correla tion 547 
coefficient between the MPI calculated with each of these data sets, which is 0.57 and statistically 548 
significant at 99 % confidence level. This suggests that CPC rainfall can be used as a proxy to observed 549 
gauge data, albeit with caution.  550 

To ensure that the second criterion is met, meaning that MPI variability reflects the ISV leading 551 
modes more associated with the SAF monsoon over land, correlation between the MPI and the REOFs 552 
factor scores was calculated and informed in Fig. 3, in the lower right corner of the panels . Since the 553 
modes are obtained from filtered data, the index was also submitted to Duchon’s filter to retain ISV in the 554 
corresponding bands of the modes, although for predicting and monitoring purposes  it is advisable using 555 
unfiltered indices (Marshall and Hendon 2015). It is evident that the MPI has strongest correlations  with 556 
mode 3, although it also significantly correlates with mode 4. As the circulation anomalies associated 557 
with these modes (Figs. 4c,d) reflect the variability of the monsoon circulation (NWM, NEM, SETW), it 558 
is expected that this index adequately depicts the variations of the core monsoon precipitation over 559 
continental SAF (and Madagascar) and reflects the rainfall ISV most directly associated with the 560 
variability of the monsoon circulation that affects this region (Fig. 2).  561 

As already mentioned in section 4.1, besides representing well the ISV of the monsoon precipitation, 562 
which is important for subseasonal prediction, MPI also represents well the synoptic and interannual 563 
variability since, within the region of largest monsoon-related precipitation, the MPI area in NE SAF 564 
contains the highest factor loadings of the first modes in each of these time scales, as has been shown by 565 
other authors as well (e.g., Jury 1999; Pohl et al. 2009; Yim et al. 2014; Puaud et al. 2017) and the 566 
strongest negative OLR anomalies associated with the synoptic convective regime that most affects the 567 
monsoon region in SAF (Pohl et al. 2018). 568 

 569 
5.2 Monsoon circulation indices 570 

  571 
Since circulation is better simulated than precipitation by models, it is also convenient to define one or 572 



more circulation indices related with the precipitation index. To this end, the MPI is correlated with 850 573 
hPa zonal (Fig. 9b) and meridional (Fig. 9c) wind over SAF. Figure 9b indicates two zonally elongated 574 
regions for definition of area-averaged monsoon circulation indices: one to the north of the MPI region 575 
(gray box) and another to its south (pink box), henceforth referred to as  zonal westerly and zonal easterly 576 
wind indices (ZWWI and ZEWI, respectively). Visual inspection suggests that these indices are part of 577 
the cyclonic circulation displayed in Figs. 4c, d. On the other hand, Figure 9c indicates regions for 578 
definition of meridional wind indices: the meridional northerly wind index to the northeast of the MPI 579 
region (MNWI, in the pink box), and the meridional southerly wind indexes 1 and 2, to the 580 
west/southwest of this region (MSWI1 and MSWI2, in the dark blue and light blue boxes , respectively). 581 
All these indices are consistent with variations in the monsoon circulation of Fig. 2a and with the 582 
anomalies in Figs. 4c, d. 583 

This analysis of the correlation between MPI and the zonal and meridional wind indices  confirms that 584 
the enhanced precipitation in the MPI region is indeed associated with a low-level cyclonic circulation 585 
anomaly near this region (as can be seen in Figs. 4c, d). Therefore, it is possible to combine indices based 586 
on just one element (zonal or meridional wind averaged over selected region) into indices containing 587 
more than one element, which represent better this cyclonic anomaly and therefore follow more closely 588 
MPI. Many possible combinations have been carried out with 2 to 4 elements (Table 1). One of the 589 
simplest combination (with just two elements) is the zonal wind vorticity index (ZWVI), defined as the 590 
difference between ZWWI and ZEWI, following a procedure used in Yim et al. (2014).  591 

The combined indices usually present higher correlation with the MPI than those indices of which 592 
they are formed, but there are interesting exceptions, generally involving the use of the ZWWI or ZEWI, 593 
which alone present respectively the lowest and the highest correlation of one-element index with MPMI 594 
(0.153 and -0.297, Table 1). For instance, the zonal and meridional wind vorticity indexes (ZWVI and 595 
MWVI1 or 2), each composed by two elements, present similar correlation with MPI (0.315 and 0.317, 596 
Table 1). Combining these indices gives a vorticity index with four elements (ZMVort1 or 2) whose 597 
correlation with MPI is higher (0.372 or 0.376, Table 1). However, when combining MWVI1 or 2 with 598 
just the ZEWI, creating a three-element index (MV1ZE or MV2ZE), the correlation increases to 0.392, 599 
while the combination with just the ZWWI (creating MV1ZW or MV2ZW) decreases the correlation to 600 
0.291 or 0.298. Another example of strong difference when using the ZWWI to the north or the ZEWI to 601 
the south appears when combining two elements in one index. The combined index with two elements 602 
that shows highest correlation with MPI joins ZEWI with MNWI, forming ZEMN, which presents a 603 
correlation coefficient of -0.381 with MPI, while joining ZWWI with MNWI, forming ZWMN, gives a 604 
correlation of only 0.205 (Table 1). The highest correlation is obtained with an index of averaged 605 
vorticity over a region in eastern SAF. 606 

Looking at Figs. 4c, d, it seems that the zonal westerly wind index to the north wou ld have more 607 
connection with MPI (which is related to REOF3 and REOF4) than the zonal easterly wind index to the 608 
south. However, it is important to remember that Fig. 4 shows correlation between modes  of precipitation 609 
variability and 850 hPa wind in the 20-90 day band. In this time scale, the westerly zonal wind near the 610 
equator is more important for the rainfall variability in REOF3 (and MPI). On the other hand, the 611 
circulation indices and MPI were not filtered to calculate the correlations in Table 1, and thus they 612 



contain all the synoptic variability produced by the passage of the extratropical patterns of atmospheric 613 
circulation that travel around the globe and penetrate s outhern Africa, influencing much more the 614 
subtropical rather than the equatorial circulation. Therefore, this synoptic component, which is stronger in 615 
ZEWI than in ZWWI tends to strengthen the correlation of MPI with indices containing ZEWI rather than 616 
ZWWI, when MPI and the circulation indices are not filtered. For weather prediction this synoptic 617 
component is important and this is why in Table 1 it is not removed. However, in subseasonal prediction, 618 
when using weekly averages, the subseasonal component of the variability becomes more important.  619 

 620 
5.3 Relationship between the monsoon circulation indices and monsoon rainfall variability 621 

 622 
While Figure 9a shows how the MPI represents the variability of the monsoon rainfall over land in 623 

SAF and Madagascar, Fig. 10 shows the results of the correlation between some of the monsoon 624 
circulation indices and CPC daily precipitation, to show how they represent the monsoon rainfall 625 
variability over SAF. Similar analysis was performed using gauge data, and gave qualitatively similar 626 
results over where gauge data available. The correlation maps are shown for indices : i) based on one 627 
element, in order to show the relationship with isolated components of the circulation  (Figs. 10a-d) 628 
(except for MSWI2, for which the correlation patterns are similar to MSWI1, but a little more limited to 629 
the eastern part of SAF); ii) based on two elements, which represent vorticity based on zonal wind and on 630 
meridional wind (ZWVI and MWVI1, Figs. 10e-f), besides the combination of two elements which 631 
presents the higher correlation with MPI (ZEMN, Fig. 10g); iii) based on three elements with ZWVI 632 
combined with each meridional wind index (ZVMN and ZVMS1, Figs. 10h-i), besides the combination 633 
of three elements which presents the highest correlation with MPI (MV1ZE, Fig. 10j); iv) based on four 634 
elements (ZMVORT1, Fig. 10k), and v) of averaged vorticity over a selected region (VORT, Fig. 10l).  635 

The correlation maps in Fig. 10 are compared with that one in Fig. 9a. Figures 10a-b show that 636 
enhanced monsoon rainfall over SAF (and not just MPI) is associated with westerly and easterly wind 637 
anomalies averaged over the boxes of Fig. 9b, which is consistent with enhancement of the climatological 638 
monsoon circulation of Fig. 2a. Both correlation maps indicate s ignificant values over the MPI region and 639 
neighbouring regions with monsoon rainfall, as in Fig. 9a.  However, the ZWWI shows also influence on 640 
the rainfall in the equatorial part of SAF (Fig. 10a), while the ZEWI is also correlated with rainfall over 641 
the region in western SAF (Fig. 10b). The meridional northerly wind index MNWI also displays a pattern 642 
of significant correlation similar to Fig. 9a, with the exception of minor features in southeastern and 643 
western SAF (Fig. 10c). The correlation of southerly wind index MSWI1 with rainfall (Figs. 10d), 644 
although showing high values in the region of MPI, also presents significant values over extensive region 645 
in southern SAF and a little to northeast of the main monsoon rainfall band (correlation with MSWI2, not 646 
shown, is similar, but significant positive correlation in the northern SAF is  a little more limited to the 647 
eastern part of SAF). These results show that indices that represent circulation features more to the 648 
subtropics and that are more affected by extratropical variability, such as ZEWI and MSWI1 and 2, 649 
although influencing the monsoon rainfall variability, also influence rainfall in non -monsoonal regions, 650 
such as southern and western SAF.  651 

The adequate combination of these one-element indices into two-element indices, in order to more 652 



accurately represent the vorticity anomaly associated with the precipitation anomaly, generally improves 653 
their correlation with MPI, and their correlation patterns with rainfall become more similar to the 654 
distribution of higher monsoon rainfall (and to Fig. 9a). This happens, for instance, with ZWVI and 655 
MWVI1 (Figs. 10e-f) and ZEMN (Fig. 10g). It is convenient to point out that, although the correlation of 656 
MPI with ZEWI is higher than with ZWWI, the correlation with the vorticity index combining them 657 
(ZWVI) is even stronger than for each one of them (Table 1). This emphasizes the importance of the 658 
cyclonic circulation to the west of the precipitation index region for the enhancement of the monsoon 659 
rainfall (Fig. 4c). As mentioned in the previous section, the variability of the zonal westerly wind 660 
(ZWWI) is important in intraseasonal time scales (clear in Fig. 4c), although it is lower than the synoptic 661 
variability of the zonal easterly wind index to the south (ZEWI), but the combination of the two gives a 662 
much better representation of the vorticity anomaly that produces enhanced rainfall.   663 

Combination to produce three elements indices further improves their representation of the vorticity 664 
anomaly and their correlation with MPI and the relationship with variability of the highest monsoon 665 
precipitation, as exemplified by two indices based on the zonal wind vorticity  combined with a 666 
meridional wind index, ZVMN (Fig. 10h) and ZVMS1 (Fig. 10i), and by one meridional vorticity index 667 
combined with ZEWI, (MV1ZE, Fig. 10j). When adding to a three-element index the ZWWI as fourth 668 
element (creating ZMVort1 or 2) the correlation with MPI does not improve (Table 1), but the 669 
relationship with monsoon rainfall is improved (Fig. 10k). The index VORT, the average of vorticity in a 670 
region covering MPI, but with its center a little displaced to southwest of MPI’s center (Fig. 9c), displays 671 
the best correlation with MPI. 672 

The results in Table 1 and Fig. 10 demonstrate that the enhanced (supressed) rainfall over the 673 
monsoon core region (represented by positive (negative) MPI) is accompanied by westerly (easterly) 674 
wind anomalies in the region marked ZWWI (ZEWI) in Fig. 9b, as well as northerly (southerly) wind 675 
anomalies in the region marked MNWI (MSWI1 or MSWI2) in Fig. 9c, suggesting the potential of these 676 
indices for prediction of active monsoon spells  over the region (opposite anomalies would indicate break 677 
monsoon spells). These wind components are climatologically associated with the monsoon circulation 678 
(Fig. 2a) and their strengthening (weakening) would be expected to strengthen (weaken) monsoon 679 
precipitation. The combination of these indices to more completely reproduce the cyclonic anomaly 680 
associated with enhanced rainfall in the MPI region and surroundings improves the relationship of the 681 
resulting circulation index with the rainfall index or with the highest monsoon precipitation variability.  682 

The more subtropical indices, such as ZEWI and MSWI1 and 2 are more affected by the synoptic 683 
variability, whereas the ISV is more present in the more tropical indices, such as ZWWI and MNWI, as 684 
can be seen in the correlation of filtered anomalies with the ISV modes in Figs 4c, d. 685 

The monsoon circulation indices and their correlation with the precipitation (Fig. 9) give an idea of 686 
how the variation of the different monsoon-related flows in Fig. 2a contributes to the variation of the 687 
monsoon precipitation. Their intensification increases the monsoon precipitation, including the 688 
intensification of NEM (represented by the index MNWI) and SETW (represented by the index MSWI1 689 
or MSWI2), although Nicholson (1996) stated that the NEM and the SETW are thermal stable flows and, 690 
hence, associated with subsiding air or dry conditions . However, according to Torrance (1972), the NEM 691 
flow is dry when it originates over the eastern Sahara, and does not traverse the northwestern Indian 692 



Ocean. This could be expanded to say that the SETW are dry, when they do not traverse the warm and 693 
moist southern Mozambique Channel. 694 

Figure 11 shows further comparison between rainfall as defined by MPI calculated with gauge data 695 
(solid black line) and CPC data (dotted black line) for two summers with strong rainfall anomalies in SAF 696 
(1996-1997 and 1999-2000), besides two circulation indices: MV1ZE and VORT, which display the best 697 
correlation with MPI (Table 1). The figure shows that gauge MPI and CPC MPI exhibit frequent 698 
discrepancies, although the main variations are coherent. However, the highest gauge MPI values (around 699 
4 standard deviations) were underrepresented by the CPC MPI, while some modest gauge MPI values 700 
were very exaggerated by the CPC MPI (as in December 1996). The circulation index MV1ZE based on 701 
three elements, two of them more subtropical (MSWI1 and ZEWI), and one more tropical (MNWI), 702 
presents a much higher variability than MPI, perhaps due to its higher synoptic variability, while the 703 
variability of VORT is comparable to that of MPI. The ZVMN, based on three elements predominantly 704 
tropical (not shown), exhibits less variability than MV1ZE. 705 

Some of the monsoon circulation indices are compared with the vorticity circulation index of Yim et 706 
al. (2014), calculated considering a SAF monsoon domain very extended over the Indian Ocean, east of 707 
Madagascar, with more than half its area over the ocean. The correlation of their index with ZWWI, 708 
ZEWI, ZWVI, and ZVMN is, respectively, 0.66, -0.44, 0.75, and 0.57, significant at 99% confidence 709 
level. It is not significantly correlated with MNWI, which is somehow expected, since the Yim et al’s 710 
index is based solely on U850 index, over two regions much more longitudinally elongated than the ones 711 
used here, extending up to 50°E over the Indian Ocean. On the other hand, its strong correlation with 712 
ZWVI demonstrates that the latter may adequately be used for a domain more extended over the ocean. It 713 
is not possible to compare the monsoon precipitation index used here with that of Yim et al’s, since the 714 
INAM (and CPC) data do not cover oceanic regions, included in their rainfall index. Notwithstanding, 715 
there is probably a correspondence, although their index does not represent variability of the monsoon 716 
rainfall in the central-eastern tropical continental SAF, since their index reference region is displaced 717 
eastward, extending much over the ocean.  718 
 719 
6 Summary and Conclusions  720 
 721 

Regional climate in SAF varies over a range of timescale. In this study the emphasis is placed on ISV 722 
affecting the monsoon region, which is of great importance for agricultural production, water resources 723 
management, and subseasonal prediction. Notwithstanding the contribution of synoptic variability is also 724 
taken into account. The space-time structures of intraseasonal summer rainfall leading modes of 725 
variability over SAF are determined based on rainfall gauge data in eastern SAF. The study reveals four 726 
dominant patterns of ISV. Among these modes, the third one (REOF3) displays strongest factor loadings 727 
over the region with most intense monsoon precipitation and is associated with variations in the monsoon 728 
circulation. Furthermore, the spatial pattern of this mode resembles that obtained by Yim et al. (2014) as 729 
the leading interannual variability mode of summer precipitation over a SAF monsoon domain that 730 
extends over the Indian Ocean. A similar mode in this region appears in previous studies on OLR ISV 731 
over a larger domain in SAF including part of the Indian Ocean. Since there is not a perfect 732 



correspondence between OLR and gauge data, it is important to make such comparison . 733 
In the intraseasonal 10–90 day band this mode displays the strongest oscillations at periods around 12, 734 

22-24 and 50 days. The 12-day oscillation is associated with the QBW oscillation (Kikuchi and Wang 735 
2009) produced by Rossby wave trains propagating into the SAF region from the extratropical westerly 736 
belt of the Southern Hemisphere. The 22-24 day oscillation is  consistent with the one found by Nogués-737 
Paegle et al. (2000) for the ISV in central-east SA and SACZ, probably linked to tropical convection 738 
variability. The 50 day oscillation is associated with the MJO. The lead-lag composite difference between 739 
positive and negative phases of this mode in the 20-90 day band, for convection and circulation 740 
anomalies, confirms that a 24 day variability mode and the MJO influence are associated with these 741 
oscillations. Besides, the temporal lags indicate the influence of convective anomalies over SA and 742 
propagation of atmospheric waves (tropical and extratropical) from SA to SAF. This lower frequency ISV 743 
displays larger spatial scale (lower wave number) than the 12-day oscillation. These teleconnections  744 
create favourable conditions for enhanced convective activity for few days over SAF, and consequently 745 
more rainfall in the monsoon region. Indeed, the convection anomalies observed over SA and SAF few 746 
days before the beginning of the REOF3 positive phases are reminiscent of the composites by Nogués-747 
Paegle et al. (2000) and of MJO related OLR anomalies in the phase 8 and 1, as shown in Grimm (2019). 748 
They are also coherent with the intraseasonal summer teleconnection between SA and SAF shown in 749 
Grimm and Reason (2015). 750 

A monsoon MPI is proposed, on the basis of the monsoon climatology and variability, to represent the 751 
variability of SAF monsoon and facilitate the evaluation of climate models’ performance in reproducing 752 
this variability. This index is intended to help characterizing, monitoring and predicting active and break 753 
monsoon spells in the SAF monsoon domain predominantly over land using models participating in the 754 
S2S Project. It is based on the average standardized precipitation anomaly over a selected area in NE 755 
SAF, where the variability of the precipitation in the core monsoon region over land is strongest not only 756 
on intraseasonal but also on synoptic and interannual time scales . Accordingly, the MPI reflects 757 
adequately the variability of the monsoon precipitation over the region where this precipitation is 758 
strongest over SAF, since the map of strongest correlations of the unfiltered MPI based on daily gauge 759 
data with the unfiltered daily CPC rainfall data over the entire SAF reproduces well th e SAF core 760 
monsoon region. 761 

Besides the precipitation index (MPI), also monsoon circulation indices are defined based on 762 
circulation features most associated with the precipitation index. These indices may be useful for 763 
subseasonal prediction, since they can be associated with rainfall and the models show better skill in 764 
predicting circulation than precipitation. They represent components  of the monsoonal circulation and 765 
their variation is connected to the variation of the monsoon precipitation. They are based on one 766 
circulation element (zonal or meridional wind averaged over selected region) or a combination of 2 to 4 767 
elements. The highest correlation with MPI is obtained for an index of averaged vorticity over a region in 768 
eastern SAF. 769 

While the synoptic and higher frequency ISV is best represented by the subtropical circulation indices, 770 
the tropical indices are important in the 20–90 day band. Combinations of both types produce indices with 771 
higher correlation with MPI. Indices that represent circulation features more to the subtropics and that are 772 



more affected by extratropical variability, such as ZEWI and MSWI1 and MSWI2, although influencing 773 
the monsoon rainfall variability, also influence rainfall in non-monsoonal regions, such as southern and 774 
western SAF. Therefore, indices that adequately combine other tropical and subtropical indices, in order 775 
to more accurately represent the vorticity anomaly associated with the precipitation anomaly, generally 776 
exhibit higher correlation with MPI, and their correlation patterns with rainfall are more similar to the 777 
distribution of the highest monsoon rainfall. 778 
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Figure captions 923 
 924 
Fig. 1 (a) Southern Africa (SAF) topography (in meters) at 0.5° grid resolution, obtained from the 925 
International Centre for Theoretical Physics (ICTP; http://clima-dods.ictp.it/regcm 4/). Meteostations in 926 
Mozambique are represented by triangles. (b) Annual rainfall cycles over SAF ob tained from the Global 927 
Precipitation Climatology Centre (GPCC) data for the period 1979–2005. The red box indicates the 928 
region selected for definition of the monsoon precipitation index (MPI), described in the text (section 5) 929 
 930 
Fig. 2 Summer (DJF) seasonal mean streamlines at (a) 850 hPa and (b) 200 hPa. In (a) AL and MCT 931 
denote Angola Low and Mozambique Channel Trough, while SAH and SIH indicate subtropical South 932 
Atlantic High and South Indian High. Blue lines indicate northeasterly (NEM) and westerly or 933 
northwesterly (NWM) monsoon flows, as well as southeast trade winds (SETW). Green solid line denotes 934 
Congo Air Boundary (CAB) and green dashed line the Intertropical Convergence Zone (ITCZ). In (b) BH 935 
indicates Botswana High and the rectangle indicates the region selected for the monsoon precipitation 936 
index. The colour bar denotes the values of seasonal mean monthly rainfall, according to GPCC data 937 
averaged over 1979–2005 938 
 939 
Fig. 3 Rotated empirical orthogonal functions (REOFs) of the summer daily precipitation over eastern 940 
SAF in the 10–25 day (top row), 10–90 day (2nd row), and 20–90 day (3rd row) bands. From left to right 941 
are REOF1, REOF2, REOF3, and REOF4 (or REOF5, for 10–25 day band). The purple box indicates the 942 
region of the monsoon precipitation index (MPI, defined in section 5). The number in the lower-right 943 
corner of each panel is the correlation coefficient between the factor scores and MPI, with bold (italic) 944 
values statistically significant at the 99 (95) % confidence level. The bottom panel shows the factor scores 945 
series of the 20–90 day band REOF3 946 
 947 
Fig. 4 Simultaneous correlation coefficient maps between the components of the 850 hPa wind anomalies 948 
and the factor scores of the 20–90 day band (a) REOF1, (b) REOF2, (c) REOF3, (d) REOF4. Only 949 
vectors with at least one component with confidence level better than 95% are shown  950 
 951 
Fig. 5 Power spectral density of REOF3 time series in the 10–90 day band. Solid lines indicate calculated 952 
spectrum (green), red noise (black) and curves of 95% and 99 % confidence limits (blue and red) 953 
 954 
Fig. 6 Difference between anomaly composites in the 10–25 day band for REOF3 positive and negative 955 
phases, showing 200 hPa eddy streamfunction (contours) and OLR (shades). Negative numbers in the top 956 
right corner are days before the first day of positive phase (‒ 0), while the positive numbers are days after 957 
the last day of positive phase (+0), and (0 All) is the average over all days  of positive phase. Contour 958 
interval is 0.5 x 10-6 m2 s-1, and zero contour is omitted. Dark yellow (purple) contours represent positive 959 
(negative) values, and stippled areas have confidence level above 95%. OLR anomalies are indicated in 960 
the bottom color bar, and only those with confidence level above 95% are shown. The bottom right panel 961 
is an approximate scheme for the temporal evolution of the anomaly composite oscillation  962 
 963 
Fig. 7 Difference between anomaly composites in the 20–90 day band for REOF3 positive and negative 964 
phases, showing 850 hPa eddy streamfunction (contours) and CPC rainfall (shades). Negative numbers in 965 
the top right corner are days before the first day of positive phase (‒ 0), while the positive numbers are 966 
days after the last day of positive phase (+0), and (0 All) is the average over all days  of positive phase. 967 
Contour interval is 0.5 x 10-6 m2 s-1, and zero contour is omitted. Dark yellow (purple) contours represent 968 
positive (negative) values, and stippled areas have confidence level above 95%. OLR anomalies are 969 
indicated in the bottom color bar, and only those with confidence level above 95% are shown. The bottom 970 
right panel is an approximate scheme for the temporal evolution of the anomaly composite oscillation  971 
 972 
Fig. 8 Same as Fig. 7, but for 200 hPa eddy streamfunction and OLR anomalies. Contour interval is 1.0 x 973 
10-6 m2 s-1 and zero contour is omitted 974 
 975 
Fig. 9 Simultaneous correlation maps between the gauge daily summer monsoon  MPI and (a) daily 976 
rainfall from CPC data, (b) zonal and (c) meridional winds at 850 hPa. The color bar indicates levels of 977 
significance for positive and negative correlations. The rectangles indicate the regions over which the 978 
circulation variables are averaged to define the monsoon circulation indices. See Table 1 for definition of 979 
the indices 980 
 981 



Fig. 10 Simultaneous correlation maps between the CPC summer mons oon rainfall and each of the 982 
monsoon indices named at the lower right corner of each panel. The number indicates the correlation 983 
coefficient between the MPI gauge data and each of the indices. The color bar indicates levels of 984 
significance for positive and negative correlations. See Table 1 for definition of the indices  985 
 986 
Fig. 11 Standardized anomalies of daily monsoon indices for DJF seasons in (a) 1996–1997 and (b) 987 
1999–2000. MPMI calculated with gauge and CPC data is indicated respectively by the black so lid and 988 
black dotted lines, whereas MV1ZE and VORT are represented by the solid blue and red lines, 989 
respectively. The positive ZWVI or CI values indicate westerly (cyclonic) wind anomalies accompanied 990 
with enhanced rainfall as described by positive MPMI. The inverse is true for suppressed rainfall. Green 991 
lines indicate the ± 0.7 standardized anomalies, above or below which the monsoon is in an active or 992 
break phase  993 



Table 1 Correlation coefficients between daily non-filtered MPI and monsoon circulation indices. All are 994 
statistical significant at 99 % confidence level. The correlation coefficient between MPI calculated with  995 
gauge and CPC data is 0.57. In bold are the highest correlation coefficients between MPI and indices 996 
composed of one, two, three and four elements (see text), besides the highest value, obtained with an 997 
index of averaged vorticity. 998 

999 

Indices Acronyms  Domains  
(or formulae)   

Correl.with 
MPI gauge 
data 

Correl.with 
MPI CPC 
data 

Zonal westerly wind index ZWWI 7.5°S–14°S, 
19.5°E–36.5°E  0.153  0.195 

Zonal easterly wind index ZEWI 19.5°S–25°S, 
25°E–41°E -0.297 -0.272 

Meridional northerly wind index,  
over area northeast of MPMI area MNWI 7.5°S–18.5°S, 

36.5°E–44.5°E -0.199 -0.211 

Meridional southerly wind index 1,  
over elongated area west of MPMI area MSWI1 15°S–20°S, 

15.5°E–33.5°E  0.244  0.256 

Meridional southerly wind index 2,  
over area west of MPMI area MSWI2 15°S–25°S, 

26.75°E–33.5°E  0.237  0.252 

Zonal wind vorticity index ZWVI ZWWI–ZEWI  0.315  0.327 
Meridional wind vorticity index 1 MWVI1 MSWI1–MNWI  0.309  0.327 
Meridional wind vorticity index 2 MWVI2 MSWI2–MNWI   0.317   0.337 
Zonal westerly wind index minus  
Meridional northerly wind index  ZWMN ZWWI-MNWI  0.205  0.237 

Zonal westerly wind index plus  
Meridional southerly wind index 1  ZWMS1 ZWWI+MSWI1  0.266  0.303 

Zonal westerly wind index plus  
Meridional southerly wind index 2  ZWMS2 ZWWI+MSWI2  0.269  0.309 

Zonal easterly wind index plus  
Meridional northerly wind index ZEMN ZEWI+MNWI -0.381 -0.371 

Zonal easterly wind index minus  
Meridional southerly wind index 1   ZEMS1 ZEWI-MSWI1 -0.322  -0.315 

Zonal easterly wind index minus  
Meridional southerly wind index 2  ZEMS2 ZEWI-MSWI2 -0.313 -0.307 

Zonal wind vorticity index  minus  
Meridional northerly wind index ZVMN ZWVI–MNWI  0.339   0.355 

Zonal wind vorticity index plus  
Meridional southerly wind index 1 ZVMS1 ZWVI+MSWI1  0.343  0.358 

Zonal wind vorticity index plus  
Meridional southerly wind index 2 ZVMS2 ZWVI+MSWI2  0.341  0.356 

Meridional wind vorticity index 1 
plus zonal westerly wind index  MV1ZW MWVI1+ZWWI  0.291  0.324 

Meridional wind vorticity index 2  
plus zonal westerly wind index MV2ZW MWVI2+ZWWI  0.298  0.333 

Meridional wind vorticity index 1  
minus zonal easterly wind index MV1ZE MWVI1–ZEWI  0.392 0.392 

Meridional wind vorticity index 2  
minus zonal easterly wind index MV2ZE MWVI2–ZEWI  0.392 0.393 

Zonal wind vorticity index   
plus Meridional wind vorticity index 1  ZMVort1 ZWVI+MWVI1  0.372  0.389 

Zonal wind vorticity index  
plus Meridional wind vorticity index 2 ZMVort2 ZWVI+MWVI2  0.376  0.395 

Vorticity index (averaged vorticity) VORT 11.75°S–22°S, 
30°E–39°E -0.395 -0.393 
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 1001 
Fig. 1 (a) Southern Africa (SAF) topography (in meters) at 0.5° grid resolution, obtained from the 1002 
International Centre for Theoretical Physics (ICTP; http://clima-dods.ictp.it/regcm 4/). Meteostations in 1003 
Mozambique are represented by triangles. (b) Annual rainfall cycles over SAF obtained from the Global 1004 
Precipitation Climatology Centre (GPCC) data for the period 1979–2005. The red box indicates the 1005 
region selected for definition of the monsoon precipitation index (MPI), described in the text (section 5) 1006 
 1007 
 1008 
 1009 

 1010 
 1011 
Fig. 2 Summer (DJF) seasonal mean streamlines at (a) 850 hPa and (b) 200 hPa. In (a) AL and MCT 1012 
denote Angola Low and Mozambique Channel Trough, while SAH and SIH indicate subtropical South 1013 
Atlantic High and South Indian High. Blue lines indicate northeasterly (NEM) and westerly or 1014 
northwesterly (NWM) monsoon flows, as well as southeast trade winds (SETW). Green solid line denotes 1015 
Congo Air Boundary (CAB) and green dashed line the Intertropical Convergence Zone (ITCZ). In (b) BH 1016 
indicates Botswana High and the rectangle indicates the region selected for the monsoon precipitation 1017 
index. The colour bar denotes the values of seasonal mean monthly rainfall, according to GPCC data 1018 
averaged over 1979–2005 1019 
 1020 



 1021 
Fig. 3 Rotated empirical orthogonal functions (REOFs) of the summer daily precipitation over eastern 1022 
SAF in the 10–25 day (top row), 10–90 day (2nd row), and 20–90 day (3rd row) bands. From left to right 1023 
are REOF1, REOF2, REOF3, and REOF4 (or REOF5, for 10–25 day band). The purple box indicates the 1024 
region of the monsoon precipitation index (MPI, defined in section 5). The number in the lower-right 1025 
corner of each panel is the correlation coefficient between the factor scores and MPI, with bold (italic) 1026 
values statistically significant at the 99 (95) % confidence level. The bottom panel shows the factor scores 1027 
series of the 20–90 day band REOF3 1028 
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 1032 
 1033 
Fig. 4 Simultaneous correlation coefficient maps between the components of the 850 hPa wind anomalies 1034 
and the factor scores of the 20–90 day band (a) REOF1, (b) REOF2, (c) REOF3, (d) REOF4. Only 1035 
vectors with at least one component with confidence level better than 95% are shown 1036 
 1037 
 1038 
 1039 
 1040 
 1041 

 1042 
 1043 
Fig. 5 Power spectral density of REOF3 time series in the 10–90 day band. Solid lines indicate calculated 1044 
spectrum (green), red noise (black) and curves of 95% and 99 % confidence limits (blue and red) 1045 
 1046 
 1047 
  1048 
 1049 



 1050 
Fig. 6 Difference between anomaly composites  in the 10–25 day band for REOF3 positive and negative 1051 
phases, showing 200 hPa eddy streamfunction (contours) and OLR (shades). Negative numbers in the top 1052 
right corner are days before the first day of positive phase (‒ 0), while the positive numbers are days after 1053 
the last day of positive phase (+0), and (0 All) is the average over all days  of positive phase. Contour 1054 
interval is 0.5 x 10-6 m2 s-1, and zero contour is omitted. Dark yellow (purple) contours represent positive 1055 
(negative) values, and stippled areas have confidence level above 95%. OLR anomalies are indicated in 1056 
the bottom color bar, and only those with confidence level above 95% are shown. The bottom right panel 1057 
is an approximate scheme for the temporal evolution of the anomaly composite oscillation 1058 



 1059 
Fig. 7 Difference between anomaly composites in the 20–90 day band for REOF3 positive and negative 1060 
phases, showing 850 hPa eddy streamfunction (contours) and CPC rainfall (shades). Negative numbers in 1061 
the top right corner are days before the first day of positive phase (‒ 0), while the positive numbers are 1062 
days after the last day of positive phase (+0), and (0 All) is the average over all days  of positive phase. 1063 
Contour interval is 0.5 x 10-6 m2 s-1, and zero contour is omitted. Dark yellow (purple) contours represent 1064 
positive (negative) values, and stippled areas have confidence level above 95%. OLR anomalies are 1065 
indicated in the bottom color bar, and only those with confidence level above 95% are shown. The bottom 1066 
right panel is an approximate scheme for the temporal evolution of the anomaly composite oscillation  1067 



 1068 
 1069 
Fig. 8 Same as Fig. 7, but for 200 hPa eddy streamfunction and OLR anomalies. Contour interval is 1.0 x 1070 
10-6 m2 s-1 and zero contour is omitted 1071 
 1072 
                                     1073 
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 1075 
Fig. 9 Simultaneous correlation maps between the gauge daily summer monsoon  MPI and (a) daily 1076 
rainfall from CPC data, (b) zonal and (c) meridional winds at 850 hPa. The color bar indicates levels of 1077 
significance for positive and negative correlations. The rectangles indicate the regions over which the 1078 
circulation variables are averaged to define the monsoon circulation indices . See Table 1 for definition of 1079 
the indices 1080 
 1081 
 1082 
 1083 



 1084 
 1085 
Fig. 10 Simultaneous correlation maps between the CPC summer monsoon rainfall and each of the 1086 
monsoon indices named at the lower right corner of each panel. The number indicates the correlation 1087 
coefficient between the MPI gauge data and each of the indices. The color bar indicates levels of 1088 
significance for positive and negative correlations. See Table 1 for definition of the indices  1089 
 1090 
 1091 



1092 
  1093 
Fig. 11 Standardized anomalies of daily monsoon indices for DJF seasons in (a) 1996–1997 and (b) 1094 
1999–2000. MPMI calculated with gauge and CPC data is indicated respectively by the black solid and 1095 
black dotted lines, whereas MV1ZE and VORT are represented by the solid blue and red lines, 1096 
respectively. The positive ZWVI or CI values indicate westerly (cyclonic) wind anomalies accompanied 1097 
with enhanced rainfall as described by positive MPMI. The inverse is true for suppressed rainfall. Green 1098 
lines indicate the ± 0.7 standardized anomalies, above or below which the monsoon is in an active or 1099 
break phase 1100 
 1101 
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5. Subseasonal prediction skill of southern Africa monsoon anomalies  

 

Situated in eastern SAF, the southern Africa monsoon region is an area with 

approximately 100 million inhabitants, most of whom living in rural areas and whose subsistence 

heavily relies on agriculture. Besides that, most of the energy consumed in this region comes 

from hydropower generation. The success of both agricultural production and hydropower 

generation, the key sectors to the development of the countries in the region, strongly depends on 

availability of water resources, supplied in the region mainly by the monsoon rainfall, which 

usually occurs during DJF months. However, the monsoon rainfall, besides undergoing year-to-

year variation in its distribution, also shows significant ISV, characterized by active and break 

periods. Thus, besides the prediction of the overall strength of monsoon rainfall in a particular 

year, it is also important predicting its monsoon active and break episodes, as their knowledge is 

of great societal and economical value in the highly populated Mozambique provinces, 

especially during the monsoon season, when frequent extreme rainfall occur, associated 

sometimes with tropical cyclones incursions. In this line, this study assesses the ability of all 11 

S2S project models in reproducing the SAFM subseasonal anomalies through the monsoon 

indices derived in Chapter 4. This assessment is made at multiweek lead times out to 4 weeks 

using retrospective forecast (hindcasts) data over the S2S models commom period (1999–2010). 

For countries like Mozambique historically vulnerable to extreme events (droughts, floods, and 

tropical cyclones), this type of forecast will improve preventive action when and where it is 

needed, as it does have neither adequate telecommunication infractructure nor financial and 

technological capacity. 
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Abstract 

 
Previous work on intraseasonal variability of southern Africa monsoon,proposed a monsoon precipitation index (MPI) 

as well as some monsoon circulation indices , in order to help characterizing, monitoring, and predicting the monsoon 

intraseasonal variability (active and break periods). Here, using this MPI and one of the suggested monsoon circulation 

indices, we assess the predictive ability of all 11 subseasonal to seasonal (S2S) project models in simulating monsoon 

active and break periods over southern Africa for the period 1999–2010. Although the models can predict the local 

large-scale zonal wind anomalies for lead times beyond 3 weeks, predictive ability of monsoon precipitation anomalies 

is limited to a week. The model’s rank showed ECMWF, JMA, UKMO, CNRM, KMA and NCEP as the top scoring 

ones. The observed monsoon active periods are associated with an eastward propagating wave train that seems to be 

produced by convection over South America and the Atlantic Ocean. All selected models tend to reproduce the 

convective anomalies associated with observed monsoon active periods, although not all reproduce their associated 

circulation anomalies. This is likely due to the errors associated with model deficiencies in representing teleconnections.  

 

KEY WORD: Southern Africa Monsoon Rainfall, Intraseasonal Variability, MJO, S2S Models, Teleconnections 
between South America and southern Africa.  
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1 Introduction  

 

Prediction of the impending meteorological conditions at lead-times of short (1–5 days) to medium-range (7–

15 days) and long or climate scale (>30 days) are routinely issued by national weather services around the globe.  

The longest lead time at which currently a weather forecast is skillful is, on average, about one week, which is 

a good lead time compared to that of six decades ago when it was approximately a day (Lin et al. 2008; Bauer et al. 

2015). Beyond a week, due to the chaotic nature of the atmosphere, growth of initial errors and imperfections of the 

models, weather forecast errors become so large that a prediction contains little useful information (Lin et al. 2008). On 

the other hand, seasonal (climate) prediction that is based on the premise that there is long-range forecasting memory 

residing in underlying boundary conditions (e.g., surface temperature, soil moisture, sea ice, etc.) has also significantly 

improved during the last 3–4 decades or so thanks to the coordinated efforts under the World Climate Research 

Program (WCRP), being now possible predicting for example sea surface temperature (SST) anomalies associated with 

the El Niño Southern Oscillation (ENSO) at least 6 months ahead (Mariotti et al. 2018). This improvement of climate 

forecasts, as of weather predictions, has resulted in an increased preparedness  with significant economic savings and 

societal benefits in many countries across the globe. 

Nonetheless, there remain some fundamental problems that limit the use of these forecasts. Firstly, the short-

to-medium-range weather scales appear too short for meaningful mitigating action to be taken  (Olaniyan et al. 2018). 

Secondly, in between the short-to-medium and climate ranges (seasonal outlooks), there is effectively a predictive 

temporal gap, referred to as the subseasonal to seasonal (S2S) or extended time range (from 15- to 30-day).  

Although forecasts at S2S timescale have the potential to bridge the gap between the more mature medium-

range and seasonal predictions by providing the weekly updated forecast information of intermediate specificity about 

the risks of extreme events  up to several weeks ahead, they have so far received much less attention than the predictions 

on other scales (Vitart et al. 2012; White et al. 2017; Robertson et al. 2018). This is why the S2S time-range has been 

seen until recently as a “predictability desert”. It is remarkably influenced by both (1) the initial conditions of the 

atmosphere, which are the primary predictability source for the short-to-medium-range weather forecast (Lorenz 1963, 

1969) and (2) the more slowly evolving boundary conditions (forcings) such as soil moisture, snow cover, sea-ice 

components, and SSTs, all upon which depends the predictability of long-range forecasts (Palmer and Anderson 1994; 

Shukla 1998). These different aspects and time scales associated make the S2S forecasting an especially challenging 

task (Doblas-Reyes et al. 2013). However, recent research on sources of predictability at subseasonal timescale, such as 

the Madden–Julian oscillation (MJO; Madden and Julian 1971), stratosphere–troposphere interactions, tropical–

extratropical teleconnections , along with their interaction with the boundary forcings, which evolve more slowly over 

timescales of weeks to years have changed that picture (Vitart et al. 2012; Robertson et al. 2018). Via interactions with 

the atmosphere, the slowly evolving Earth system components provide boundary conditions to guide with increased 

degree of reliability the atmospheric predictability beyond two weeks (Mariotti et al. 2018). Obviously, the skill of a 

particular forecast will strongly depend on how active some phenomena (e.g., MJO, ENSO) are during the forecast 

period, and how strongly they impact the study domain (Vigaud et al. 2017b). For a comprehensive review on a full 

assessment of these and other S2S predictability sources together with the recent advances , the readers are referred to, 

among others, National Research Council (2010) and Vitart et al. (2015) and references therein. 

To sustain the current successful efforts and foster the scientific researches on continuing the evolution toward 

seamless approach to the weather–climate prediction continuum, the World Weather Research Program (WWRP) 

jointly with the WCRP launched in 2013 a 5-year international research collaborative initiative called the S2S project 

(Vitart and Robertson 2018), which was extended in 2019 for an additional 5 years (http://www.s2sprediction.net/). The 



main goal of this project is to improve forecast skill and understanding the predictability sources at subseasonal time 

range, and to promote its uptake by operational centers and exploitation by the applications communities  

(http://www.s2sprediction.net/). An important outcome of this initiative has been the establishment of an extensive 

database containing near-real-time (3 weeks behind) and retrospective forecasts with lead-times up to approximately 

30–60 days (Vitart et al. 2017). This database which is sourced by 11 operational and research meteorological centers 

represents an unprecedented resource for researchers, and other interested parties to better exploit, understand, and 

ultimately improve the S2S predictions (Robertson et al. 2018).  

The predictive skill of the global operational state-of-the-art S2S project models in simulating the different 

meteorological variables  has been assessed at different spatial scales, including global (Liu et al. 2015; Bombardi et al. 

2017; de Andrade et al. 2019), regional (e.g., Liu et al. 2015, 2017; Ardilouze et al. 2017; Lee et al. 2017, 2018; Jie et 

al. 2017; Vigaud et al. 2017a,b; Osman and Alvarez 2018; Lin 2018), and local (e.g., Marshall and Hendon 2015; 

Baggett et al. 2017; Wang et al. 2017; Vitart and Robertson 2018; Olaniyan et al. 2018; Hirata and Grimm 2018; Wang 

and Robertson 2018; Vuillaume et al. 2018; Lin et al. 2018). The results derived from these studies appear overall 

encouraging, as the prediction, for example, of the onset, evolution and decay of some large-scale extreme events 

occurred in the past have been shown that might be predicted several weeks ahead, possibly associated with MJO 

teleconnections (Vitart and Robertson 2018; Robertson et al. 2018).  

Notwithstanding these encouraging results , none of those studies to our knowledge have attempted to address 

specifically on southern Africa monsoon (SAFM) characteristics (e.g., rainfall), despite the potential benefits of these 

forecasts for this region, given its high vulnerability to extreme events (Reason et al. 2006; White et al. 2017). 

Furthermore, studies performed for greater domain, such as those by Liu et al. (2015) and de Andrade et al. (2019) may 

fail capturing the response of the regional/local features to the impact of large-scale circulation, associated, for example, 

with rainfall variability in the region. This issue provides the impetus for this study, in which the performance of all 11 

S2S models in predicting the active and break monsoon episodes and its associated circulation patterns at multiweek 

lead times (up to 4 weeks) over southern Africa (“SAF”, Africa subcontinent south of 10°S) is assessed following a 

similar methodology applied by Marshall and Hendon (2015; hereafter referred to as MH15). As the MJO is considered 

to be the primary source for subseasonal predictability (Neena et al. 2014), an additional assessment of  the capability of 

these models in simulating the MJO impacts on predictability of active and break monsoon episodes over the study 

domain is carried out. To define active and break monsoon episodes, the same monsoon indices defined in Silvério and 

Grimm (2020; hereafter referred to as SG20) are used as will be shown in subsection 2.3.  

This study concentrates on SAF monsoon region (see section 3.1 and SG20 for its definition), a region with 

approximately 100 million inhabitants, most of whom living in rural areas and whose subsistence heavily relies on 

agriculture. Besides that, most of the energy consumed in this  region comes from hydropower generation. The success 

of both agriculture and hydropower generation, the key sectors for the development of the countries in the region, 

strongly depends on availability of water resources, supplied mainly by the monsoon rainfall, which usually occurs 

during December-January-February (DJF). This suggests that skillful forecasts can have a great societal and economical 

value for countries in this region, especially during the monsoon season, when the extreme events, such as persistent 

heavy rainfalls, sometimes associated with tropical cyclones incursion over eastern SAF, may produce major economic 

and human life losses. 

The present study considers the 1999–2010 period in which are available data from all 11 S2S project models, 

and it concentrates on DJF season, during which the monsoon highest rainfall occurs in most SAF, and during which the 

influence of global variability modes such as the MJO, ENSO, among others, are stronger (Mason and Jury 1997; 

Zaitchik 2017). Such an assessment provides an opportunity for identifying the strengths and weaknesses of each S2S 



project model, which can be improved in their future versions. In Section 2, the models outputs and verification data, 

along with the methodology used to assess the quality of the forecasts are outlined. The results are presented and 

discussed in Section 3. Finally, the summary and concluding remarks  are provided in Section 4.  

 

2 Data and methods 

  

2.1 Subseasonal to seasonal (S2S) project database 

 

This study is based on the retrospective forecasts (also called reforecasts/hindcasts) retrieved from one of the 

S2S project database web-mirrors (https://apps.ecmwf.int/datasets/data/s2s/levtype=sfc/type=cf/ ). The host centers of 

these models include the Australian Bureau of Meteorology (BoM), the China Meteorological Administration (CMA), 

the Institute of Atmospheric Sciences and Climate of the National Research Council of Italy (CNR–ISAC), the Centre 

National de Recherches Météorologiques (CNRM) of Météo-France, the Environment and Climate Change Canada 

(ECCC), the European Centre for Medium-Range Weather Forecasts (ECMWF), the Hydrometeorological Centre of 

Russia (HMCR), the Japan Meteorological Agency (JMA), the Korea Meteorological Administration (KMA), the 

National Centers for Environmental Prediction (NCEP), and the United Kingdom’s Met Office (UKMO).  

Since the S2S database is a data of “opportunity,” which means that the forecasts have not been produced 

specifically for the S2S project following an agreed-upon protocol as in Coupled Model Intercomparison Project 

(CMIP), the models of these centers have different prediction time range, spatial resolution, ensemble size, hindcast 

frequency and period (Vitart et al. 2017). Some models have the atmospheric component coupled to an ocean and active 

sea-ice model, while others use pers isted SSTs and sea ice. The reforecasts of these models consist of one control run 

(using a single non-perturbed initial condition) and a number of perturbed members produced for sampling uncertainty 

in the initial conditions. Some hindcasts have been or are produced with a fixed model version (e.g., NCEP), whilst 

others with an on the fly model version (e.g., ECMWF) produce reforecasts with the most up to date model version at 

the time of forecast issuance. Due to the different reforecast frequencies, the hindcasts start dates are not identical in 

most models (Jie et al. 2017). For instance, the ECMWF is initialized twice weekly from January 3; NCEP and CMA 

daily from January 1; BoM and CNR-ISAC every five days from January 1; HMCR and ECCC weekly from January 3; 

CNRM weekly from January 1; KMA and UKMO every eight daily from January 1; JMA three times a month from 

January 10. Despite these differences, there are enough commonalities between these models  to make intercomparisons 

or multimodel combinations possible. For instance, almost all of the S2S models produce real-time ensemble forecasts 

every Thursday and have reforecasts covering the common period (1999–2010). Thus, it is possible to create a 

multimodel combination of these models every Thursday, calibrated using their common period (Vitart et al. 2017). It is 

worth mentioning here that for those models with on the fly production cycles (version), the present study considers 

those hindcasts produced by the models version used only from June 2018 to June 2019, except the UKMO, for which 

were considered the hindcasts produced by the models version used up to April 1, 2019, the date after which the UKMO 

model migrated to newer version. For fuller details on each S2S project model characteristics, the readers are referred to 

either table 1 or S2S official webpage (https://confluence.ecmwf.int/display/S2S/Description or Vitart et al. (2017).  

The variables analyzed in this study include daily values of precipitation ( ), outgoing long-wave 

radiation (OLR, ) used often as a proxy for atmospheric tropical heating (convection), zonal (U, ) and 

meridional (V, ) wind components at both 850- and 200-hPa levels. The KMA is the one of S2S model which at 

the moment of describing the results for this paper did not provide OLR data, therefore, for this model we did not 

perform MJO impacts assessment. Furthermore, in composite analysis (sections 2.5 and 3.1), we used for this model 



rainfall data instead of OLR. The stream function (PSI, ), which is computed from both U and V is also 

considered here for assessment of the global rotational circulation response to anomalous heat sources in the 

atmosphere. Here we display only the zonally asymmetric part of PSI (PSIZA, ), which is obtained by removing 

the zonal mean (latitudinally averaged). PSIZA better reveals the wave-like structures in propagating Rossby waves 

(Hsu and Lin 1992; Held et al. 2002). The PSIZA considered here is that at 200 hPa (PSIZA200), the level in which the 

wave-like patterns are more clear and intense.  

The analysis for each variable is performed with the ensemble mean, calculated from all hindcast perturbed 

members including the control run. It is worth mentioning here that the terms ensemble mean and forecast are 

interchangeable in this study. 

Since the subseasonal time range is beyond deterministic weather prediction, here the weekly time frame that 

adequately removes part of the weather noise (Li and Robertson 2015) is considered. To this end, the forecasts issued 

on day d with lead times d+1–d+7, d+8–d+14, d+15–d+21, and d+22–d+28 are averaged in weekly means named 

respectively week 1, week 2, week 3, and week 4 leads, respectively. Each of these means is  placed in the central day of 

the target week, forming series of week 1, week 2, week 3, and week 4 of forecasts with different lead times. As a 

result, for each lead time, the value of each day in each year over the study period is obtained from weekly means as 

described. Similar weekly means have been used in studies by Li and Robertson (2015), Marshall and Hendon (2015), 

Liang and Lin (2018), and de Andrade et al. (2019).  

At a given lead, the weekly anomalies relative to their respective model climatology (calculated over the period 

1999–2010) have been computed, and then included in the analysis if the dates pertaining to a given lead occur within 

DJF season. The running weekly model climatology has been smoothed with a 31-day moving average, to avoid 

spurious variance due to short period (1999–2010). 

 

2.2 Verification data 

 

To validate the models’ rainfall, the 0.5° grid resolution Climate Prediction Center (CPC) unified gauge-based 

precipitation dataset (Chen et al. 2008) is used due to the unavailability of Mozambique gauge data after 2005 to the 

authors. This dataset is a blended product, composed of daily summary files from the Global Telecommunication 

System, and the CPC unified daily station data across the globe. The use of CPC among all other alternative gridded 

datasets is due to the fact that it shows a relatively good correspondence with Mozambique gauge precipitation (SG20). 

Furthermore, there was a need to make the S2S analysis for a large sample (1999–2010), rather than a small one (1999–

2005), and hence, increase the reliability of the study.  

For verification of atmospheric circulation of each model, wind components (U and V at both 850- and 200-

hPa levels) derived from the NCEP/NCAR (National Center for Atmospheric Research) reanalysis version R1 (Kalnay 

et al. 1996) are used as in MH15.  Sensitivity test for choosing a specific reanalysis has been performed here and the 

results have shown that it may only influence the magnitude of the performance metrics without changing the pattern of 

considered metrics, consistent with de Andrade et al. (2019). The OLR of each model is verified with 2.5° gridded daily 

averaged OLR from the National Oceanic and Atmospheric Administration (NOAA) polar-orbiting series of satellites 

(Liebmann and Smith 1996). For comparison purposes, all the observed including reanalysis data were regridded into a 

1.5° S2S models common grid resolution through a bilinear interpolation method before using them in calculation of 

weekly (7-day) means. For comparison purposes, observed and reanalysis data series are computed as 7-day running 

means, so that these data can be compared to the reforecast data, in which, as already explained, each day represents an 

average over 7 consecutive days within a selected lead time interval (series of week 1, week 2, week 3, week 4 



reforecasts). For these weekly means, we also created weekly anomalies relative to their climatology calculated for the 

1999–2010 period and smoothed with a 31-day moving average, so as to be compatible with the models anomalies. 

 

2.3 Definition of monsoon indices 

 

As mentioned in Section 1, the analysis in this paper follows similar methodology used by MH15, who applied 

monsoon indices to evaluate the models prediction performance. These indices are generally calculated over the 

monsoon core region to help characterizing, monitoring, and predicting in an easier way the broad-scale monsoon 

rainfall variability and its associated circulation. To this end, SG20 have defined over SAF one index for rainfall 

(hereafter referred to as monsoon precipitation index, MPI) within the box (20°S–13.5°S, 32.5°E–38°E), and several 

monsoon circulation indices to complement the description captured by MPI or even to replace it, since the models 

show more skill in predicting circulation than precipitation (MH15). Among the circulation indices defined in SG20, we 

decided here to assess the performance of the models in simulating the one that is more associated with variations in 

monsoon circulation over the study region. This is the low-level zonal westerly wind index (ZWWI) defined over the 

box (7.5°S–14°S, 19.5°E–36.5°E). In SG20, both the MPI and ZWWI are calculated separately as area averaged 

standardized daily anomalies over the boxes just mentioned. Here the same indices are computed for both observations 

and model data. Since here the raw data are weekly means instead of daily means used in SG20, the indices are 

computed as area averaged standardized weekly anomalies. Although we use the weekly means, the same threshold of 

+(–) 0.7 standard deviation used in SG20 is considered in this study to define monsoon active (break) episodes. The 

mean standard deviation of observed daily MPI and ZWWI for DJF season over the period 1999–2010 is, respectively, 

6.11  and 2.23 .  

  
2.4 MJO index definition  

 

To describe the MJO signal in terms of the strength (amplitude) and location (phase) of the convective center 

of action, the Real-time Multivariate MJO (RMM) index of Wheeler and Hendon (2004; hereafter referred to as WH04) 

is used. This index is defined using the first (RMM1) and second (RMM2) leading modes of the combined empirical 

orthogonal functions (EOFs) of weekly latitudinally-averaged (15°N–15°S) OLR, U850 and U200 anomalies after the 

removal of seasonal cycle and long-term variability of each field and normalization by its own individual zonal 

averaged standard deviation. The MJO is identified in its active state whenever the RMM index amplitude (√ ) is larger than 1. The eight phases of the MJO cycle are defined, as in WH04, according to the 

phase angle ( [ ]). This is performed for both observed data and models reforecasts. The RMM indices 

for the hindcast ensemble mean data series for each lead time (Wweek 1, week 2, week 3, week 4 data series), are 

computed by projecting the predicted weekly near-equatorially averaged anomalies of combined fields onto the 

observed EOF pair. The above procedures are almost the same as in Lin et al. (2008), except that here the OLR as in 

WH04 is used instead of rainfall to represent the tropical convection. The other difference is that here we use weekly 

anomalies instead of daily, as the analysis in the present study is in the weekly time frame. 

  

2.5 Forecast assessment metrics 

 



A variety of statistical verification metrics exists to evaluate the quality of a forecast. Two are used in this 

paper. One is the Pearson correlation coefficient (PCC) which measures the strength of the linear relationship between 

observed and predicted anomalies. Its significance is assessed using the Student’s t test, in which the underlying null 

hypothesis is that the PCC between the observed and predicted anomalies is null. 

Although this index assesses the synchrony between the variation of observed and predicted values , it gives no 

indication about the difference between observed and predicted values. Therefore, a second metric, the root-mean-

squared error (RMSE) has been also used. Since the accuracy of models is verified for variables with different units  

(e.g., rainfall and wind), the normalized RMSE (NRMSE) that is scale-free is used. It is expressed in terms of the 

observed standard deviation.  

The above hindcast quality measures were computed for all lead times analyzed, and applied separately to each 

grid point or selected area (in case of monsoon indices), considering weekly means whose midweek target date occurs 

during DJF season over the study period (1999–2010). 

To understand the circulation anomalies associated with active (break) phases, defined as days in which the 

MPI weekly mean values are greater (less) than +(–) 0.7 standard deviation, an anomaly composite has been computed. 

To assess the significance of composited anomalies , the Student’s t test is used with null hypothesis that there is no 

difference either between composited anomalies for positive (negative) phases and neutral ones or between composited 

anomalies for positive phases and negative ones.  

In all analyses, the effective sample size has been estimated by considering the autocorrelation properties of 

time series (Wilks 2011). 

 

3 Results 

  

3.1 Selection of the best models for SAF monsoon prediction 

 

 A first idea about the performance of the S2S models in predicting summer precipitation over SAF is available 

in Figs. 1 and 2. Figure 1 shows the PCC between observed and predicted weekly rainfall anomalies (calculated without 

leaving any year out from the sample) over each SAF grid point for four different weekly lead times , while Fig. 2 shows 

results for NRMSE.  

 Relatively high PCC values result for week 1 and, as expected, they decrease as lead time increases. The region 

that exhibits more consistently a significant positive signal across the models from week 3 on is the equatorial eastern 

region. This signal is more evident after week 2, when the weather prediction limit is reached, and is possibly associated 

with either MJO or SST over tropical Indian Ocean. NRMSE in Fig. 2 shows generally higher values in northwest SAF, 

where the PCC displays the lowest values. In this region the two used metrics generally show consistent results for the 

performance. However, this is not always true, s ince sometimes high NRMSE follow high PCC pattern, as, for instance 

in HCMR and UKMO models over southwest SAF (Fig. 2), making it difficult to choose the best models in SAF. 

In order to limit the number of models used in the SAF monsoon prediction, the evaluation is restricted to the 

performance in simulating the monsoon precipitation in the region of SAF most affected by the monsoon. This 

precipitation is represented by a Monsoon Precipitation Index (MPI) defined in SG20 as the standardized precipitation 

anomaly in the region delimited in purple over Fig. 3a. The SAF monsoon region is  therefore defined here as the grid 

points in Fig. 3a whose precipitation is correlated with MPI with confidence level  90%. The result of this definition 

agrees with the region where the SAF monsoon precipitation is highest, as shown in SG20. Therefore, the selected 

models should meet the following criteria: (1) highest (lowest) average value of PCC (NRMSE) over the SAF monsoon 



region, between observed and predicted precipitation (Figs. 3b, 3c); (2) highest (lowest) values of PCC (NRMSE) 

between observed and predicted MPI and ZWWI (Figs. 3f, 3g); (3) good reproduction of the correlation pattern between 

the observed MPI and precipitation over all SAF grid points  (cf. Fig. 4 and Fig.3a).  

All these criteria are evaluated for each lead time. Some of these criteria have objective evaluation, others more 

qualitative assessment. Each model was assigned order numbers regarding its classification in meeting each criterion. 

The sum of all these numbers for each model classifies the models : the lower the sum, the better the model in 

reproducing the monsoon precipitation in SAF. The first 6 models selected by criterion (1) are, regarding PCC, 

ECMWF, UKMO, JMA, KMA, NCEP, and ECCC (Fig. 3b), whereas with respect to NRMSE, are ECMWF, HMCR, 

CNRM, BoM, UKMO, JMA (Fig. 3c).  

The analysis according to criterion (2) regarding PCC between observed and predicted MPI, indicates as first 6 

models ECMWF, UKMO, JMA, KMA, CNRM, NCEP (Fig. 3d), while regarding NRMSE between observed and 

predicted MPI they are ECMWF, UKMO, JMA, KMA, ISAC, and CNRM (Fig. 3e). Still according to criterion (2), but 

now regarding PCC between observed and predicted ZWWI, the 6 first models are ECMWF, CNRM, JMA, NCEP, 

UKMO, and KMA (Fig. 3f), while regarding NRMSE between observed and predicted ZWWI they are ECMWF, 

CNRM, JMA, NCEP, UKMO, and ECCC (Fig. 3g)  

Finally, the analysis according to criterion (3) requires the models to reproduce fairly well the observed pattern 

of relationship between MPI and rainfall over all SAF grid points (Fig. 3a). Results of PCC between observed MPI and 

predicted rainfall anomalies over all SAF grid points as a function of lead time are shown in  Fig. 4. Comparison 

between Fig. 4 and Fig. 3a indicates ECMWF, CNRM, JMA, KMA, NCEP, and UKMO as the first six best models. It 

is worth mentioning here that in all three criteria adopted here, the selected models are listed according to the degree of 

their performance (e.g., best, god, normal, below normal, etc), ranked in descending order.  

Analysis of Fig. 3 shows that for most of the models the PCC between observed and predicted MPI is larger 

than 0.5 in week 1, falling below 0.5 after this lead time (Fig. 3d). On the other hand, the PCC between observed and 

predicted ZWWI (Fig. 3f) appears larger than 0.5 up to week 2 for most models (and near 0.5 up to week 3 for ECMWF 

model). The NRMSE between observed and predicted MPI is  below 1 in week 1 for most of the models, but exceeds 

this value after this lead time for all models except ECMWF, which stays below this value even in week 2 (Fig. 3e). On 

the other hand, the NRMSE between observed and predicted ZWWI (Fig. 3g) for almost all the models stays below 1 

till week 2 (and near 1 up to week 3 for ECMWF model). Higher performance in predicting ZWWI is expected since 

rainfall is inherently noisier and more difficult to predict than large-scale circulation (MH15). 

Summarizing the results of all three criteria for models selection, the first six best models are ECMWF, JMA, 

UKMO, CNRM, KMA, and NCEP, and these are retained for further analysis in the following sections. Interestingly, 

the ECMWF is the one that consistently appears as the top scoring model in all criteria consistent with previous studies 

(e.g., de Andrade et al. 2019). This is probably associated with its atmospheric component high horizontal resolution  

(15–32 km) that is the highest among all the S2S models.  

 

3.2 Monsoon prediction and its modulation by MJO 

 

The correlation assessment for predicting the weekly mean monsoon precipitation index (MPI) and U850 index 

(ZWWI) (described in section 2.3 and shown in Figs. 3d,f) is displayed in Fig. 5 for lead times out to 4 weeks, using the 

ensemble mean from all forecasts (green bars, the same shown in Figs. 3d,f), and also for forecasts initialized only on 

monsoon active days (red bars) and forecasts initialized only on monsoon break days (blue bars).  



For stratification of forecasts into groups of ones initialized only on active days and others initialized only on 

break days, we have additionally computed the MPI using observed daily rainfall means instead of weekly ones as 

described in section 2.3. Then, for each weekly lead we separate lists of forecasts initialized only on monsoon break 

(active) days all weekly MPI values whose forecasts have been initialized on days in which the computed daily MPI is 

smaller (larger) than – (+) 0.7 daily standard deviation. The same stratification has been applied for ZWWI based also 

on daily MPI. Since the correlation using the ensemble mean from all forecasts for both MPI and ZWWI has been 

discussed in section 3.1 (Figs. 3d,f), here we discuss only the correlation for stratified forecasts.  

Analysis of Fig. 5 suggests that there is an apparent consistent prediction skill improvement for both indices 

(MPI and ZWWI) in week 2 when the forecasts are initialized on monsoon active days  and in week 3 when the forecasts 

are initialized on monsoon break days. This better performance of forecasts initialized during break periods in week 3 

could be associated to the fact that this week could coincide with an active  monsoon phase produced after half MJO 

cycle since the initialization on a break monsoon phas e. 

As the MJO is considered the primary source for subseasonal predictability (Neena et al. 2014), we analyze 

further the modulation of monsoon active and break episodes by this important intraseasonal mode.  

To analyze this modulation, we firstly compute the proportion of days in each phase of MJO and in its neutral 

one with respect to the total days in the sample to get an idea of the most frequent (rare) MJO phases as the frequency 

and extension of specific MJO phase may strongly impact the number of monsoon active (break) days in a given phase. 

The results for observed data over the S2S common period (1999–2010) (Fig. 6a) show that during the 1999–2010 

period the MJO phase 2 followed by phases 3, 4 and 6 appeared to occur more frequently, while phases 1 and 8, seemed 

to occur more rarely. It is worth mentioning that the MJO is thought to impact regional rainfall by increasing 

(decreasing) it when it is in its phases 8-1-2 (5-6-7) (Pohl et al. 2007, 2009; Macambaco 2016). However, this impact is 

not spatially homogeneous over SAF (Pohl et al. 2009). This is particularly true for the MPI region, over which the 

rainfall anomalies seem to be modulated mostly by MJO phase 1 convective activity possibly associated with 

teleconnections between South America (SA) and SAF subcontinent (Grimm and Reason 2015; Macambaco 2016; 

Grimm 2019; Silvério and Grimm 2020). 

Following the MH15 methodology we assess the MJO influence on observed monsoon rainfall by calculating 

the proportion of monsoon active (break) days in each MJO phase and in neutral one with respect to the total monsoon 

active (break) days in the sample. The results for the monsoon active days are shown in Fig. 6b, which indicates the 

occurrence of higher number of monsoon active days in phase 2 followed by phase 4 of MJO. While the reason of 

occurrence of great number of monsoon active days in MJO phase 4 is likely associated with tropical-temperate troughs 

(TTT), the SAF main synoptic summer rain-producing system (Harrison 1984; Vigaud et al. 2012), which equally likely 

occur during any MJO phase (Pohl et al. 2009), the reason for higher proportion of monsoon active days in MJO phase 

2 is likely associated with the fact that this phase occurs most frequently, as shown in Fig. 6a.  This demonstrates that 

the number of monsoon active (break) days in each phase of MJO may depend on the number of days in which a 

specific MJO phase occurs, and not necessarily on the preference of monsoon active (break) days for a given MJO 

phase (Grimm et al. 2020; manuscript under compillation). To overcome this issue, we additionally applied a 

methodology proposed by Grimm et al. (2020) who assess the MJO influence on observed monsoon rainfall by 

calculating the proportion of active (break) monsoon days in a given MJO phase with respect to the number of days in 

that phase. The results for observed monsoon active days are shown in Fig. 6c, which shows that the Grimm’s method 

adequately captures the expected MJO phase 1 influence on rainfall over the MPI region as reported before. It is worth 

pointing out that 30% of the monsoon active days occurs during neutral MJO period (letter “N”, Fig. 6b), suggesting 

that non-MJO forcing also strongly impacts on rainfall over MPI region.  



Figure 7 show the proportion of days in each phase of MJO and in its neutral one with respect to the total days 

in the sample for 5 retained models (see section 3.1) except KMA, which at the moment of obtaining the results for this 

paper did not provide the OLR data, one of variables used for extraction of MJO signal. Comparison of Fig. 7 with Fig. 

6a suggests that most models fairly well depict the pattern shown in Fig. 6a out to week 3 although sometimes the 

highest proportion of days in the MJO phase 2 is moved to another phase. NCEP is one model that fairly well depicts 

the observed proportion of days in MJO phase 2 out to week 4 lead.  

Figure 8 displays the proportion of monsoon active days in each MJO phase and in neutral one with respect to 

the total monsoon active days in the sample for the 5 models shown in Fig. 7. Consistent with Fig. 6b, most models , 

with exception of JMA, fairly well depict the observed higher proportion in MJO phase 2 out to week 2 lead. Again, 

NCEP outscores other models as it fairly well depicts the observed higher proportion in MJO phase 2 out to week 4 

lead. It fails, however, in showing the second highest proportion in phase 4.  

Finally, in Fig. 9, as in Fig. 6c, we show the proportion of active monsoon days in each MJO phase with 

respect to the number of days in each phase. For this type of analysis, all models fail reproducing the observed 

proportion presented in Fig. 6c. This can be attributed to the models’ deficiencies in representing teleconnections , the 

most important mechanism by which the MJO impact modulates SA influences on SAF precipitation. 

 

3.3 The space-time evolution of rainfall and circulation anomalies associated with MPI 

 

Figure 10 shows the differences between anomaly composites for the monsoon active (positive) and brea k 

(negative) episodes using observed data and model reforecasts for week 1. Only the first (-0) and last (+0) days of active 

and break episodes are used, in order to show the evolution of these episodes  (Fig. 10a and Fig. 10b) with OLR 

(shading) and PSIZA200 (contours) anomalies, from their beginning to their demise over the SAF monsoon region.  

Analysis of Fig. 10a with observed data (first row) suggests that the rainfall anomalies development over SAF 

monsoon area is associated with a cloud band, consistent with the formation of TTT. This band of enhanced convection 

is followed by enhanced subsidence to the southwest, forming a familiar southwest–northeast oriented dipole pattern of 

suppressed and enhanced convection (Washington and Todd 1999; Silvério and Grimm, 2020), which seems to move 

north-eastward (Fig. 10b). The associated circulation anomalies, as represented by PSIZA200, are coherent with a TTT, 

being part of a wave train originating in subtropical South Pacific Ocean and which by moving into SAF seems to be 

modulated by convective anomalies  over South America and the Atlantic Ocean, consistent with Grimm and Reason 

(2015) and Silvério and Grimm (2020). As the anomalous OLR southwest-northeast oriented dipole pattern moves 

northeastward, the precipitation starts decreasing in the MPI region . In the subsequent days (not shown), the dissipation 

of convection along with its associated circulation is observed.  

Models that are able to simulate the described observed teleconnection patterns will have preference for 

operational forecast in the region, as they can adequately help SAF National Meteorological Services in predicting the 

occurrence of extreme weather events associated for example with anomalous convection likely associated with MJO 

convective activity over SA (Grimm and Reason 2015; Silvério and Grimm 2020). The next rows of Fig. 10 show the 

corresponding results obtained using the ensemble means of reforecasts for week 1 of each selected models (see section 

3.1). We present the results for week 1 lead since for longer lead times the results get worse. Figure 10 shows the  results 

for five of the six selected models (CNRM, ECMWF, JMA, KMA, and UKMO), while the NCEP model will undergo a 

more detailed analysis regarding the evolution of the active (break) monsoon periods. All the models tend to reproduce 

the observed OLR southwest-northeast oriented dipole pattern, while some of them also reproduce reasonably the 



observed circulation anomalies associated with active monsoon periods (e.g., ECMWF, UKMO). In most models the 

anomalies of both convection and circulation tend to be stronger than those of observed results. 

 Figures 11 and 12 present differences between lead-lag composites for active and break monsoon days from 

day -4 with respect to the first day of the active period (-0) to day +4 after the last day of the active period. The results 

in Fig. 11 are for observations, while in Fig. 12 are for the week 1 reforecasts of NCEP model. The reason for creating 

composites from day -4 to day +4 for this model is due the fact that it fairly well reproduces the MJO influence (see 

section 3.2), and provides forecasts daily.  

Analysis of Fig. 11 confirms the structure of eastward propagating wave trains . This wave train passing over 

South Atlantic seems to be modulated by convective activity extending from South Atlantic Convergence Zone (SACZ) 

to neighbouring Atlantic Ocean along northwest-southeast direction. Over SAF, the excited wave train interacts with 

SAF regional circulation, creating favourable conditions to enhance the monsoon circulation there (SG20). In the 

subsequent days (from day +0 to day +4, Fig. 11f-j), the convection moves and dissipates, and the circulation anomalies 

weaken changing to conditions favorable for supressed rainfall. The analysis of NCEP composites for week 1 lead (Fig. 

12), suggests that the model simulates fairly well the observed pattern shown in Fig. 11, although it locates no OLR 

over SACZ and Atlantic Ocean which seems to be the reason for weaker wave train simulation by the model. This 

probably explains the slower tendency of the OLR anomalies dissipation over the SAF monsoon region in the model.  

 

4 Summary and conclusions 

 

The performance of global operational state-of-the-art S2S project models in simulating SAF monsoon 

subseasonal anomalies  was evaluated. This unprecedented comparative analysis provides a unique opportunity for 

improving the current knowledge about the ability of these models in representing the weekly precipitation anomalies 

and their associated circulation over SAF, indicating possible shortcomings in the models. Two deterministic forecast 

quality metrics (linear correlation, and normalized root mean square error) are employed for verifying the hindcasts 

quality for different forecast lead times (weeks 1–4) during the austral summer (DJF) season over the S2S common 

period (1999–2010). All models showed higher performance in week 1, with rapid scores decrease in the following 

weeks, and maintaining meaningful signal mainly in the tropics (Figs. 1,2), which  can be attributed to MJO or sea 

surface temperature over tropical Indian and equatorial eastern Pacific Oceans. Broad-scale weekly monsoon rainfall 

over SAF is predictable to about a week ahead (for correlation values exceeding 0.5), while its associated circulation is 

predictable to about 3 weeks lead time. This discrepancy in lead time suggests the potential for extending the useful 

prediction of monsoon rainfall to longer lead time if model errors associated with the prediction of the MJO and the 

local influence of the MJO in the monsoon could be alleviated (Marshall and Hendon 2015).  

Since some of the S2S models simulate poorly the observed monsoon subseasonal variability, some criteria are 

applied to select some models for further analysis. According to these criteria (see section  3.1) the ECMWF, JMA, 

UKMO, CNRM, KMA, and NCEP (ranked in descending order) were selected as the best ones for subseasonal 

prediction of the SAF monsoon. Although most of the retained models fairly well reproduce the proportion of active 

monsoon days in each MJO phase and its modulation by MJO out to week 3 lead, not all reproduce the teleconnection 

patterns between South America and SAF, an important mechanism through which convective anomalies and MJO 

impacts over South America influence the SAF subcontinent. This is likely due to errors associated with model 

deficiencies in representing teleconnections  (de Andrade et al. 2019). This produces deficiencies of the models  in 

simulating regional or local responses to MJO impacts on rainfall.  



The assessment of model performance provided here is a first step in extending the current forecast guidance to 

include probabilistic forecasts for the subseasonal timescale. The knowledge derived from this study can be used in the 

formation of a multimodel ensemble approach. The improved forecast capability would be of great benefit for 

agriculture and water resource management, upon which largely depend SAF economies .  
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Fig. 1 Correlation between each S2S model (rows) weekly ensemble mean and observed (CPC) weekly 

precipitation anomalies  as function of lead time for hindcasts initialized during December-January-

February months over the 1999–2010 period. From left to right are: (a) week 1, (b) week 2, (c) week 3, 

and (d) week 4. The color bar in the bottom denotes the correlation coefficients . Only statistically 

significant values with confidence level better than 95 % according to Student’s t test are represented 



 
Fig. 2 Similar to Fig. 1, but for normalized root mean square error (NRMSE) 



 
Fig. 3 (a) Pearson correlation coefficient (PCC) between weekly MPI (within the purple rectangle) and 

weekly observed (CPC) rainfall anomalies in SAF grid points . Solid (dashed) contours denote positive 

(negative) PCC, with zero contour omitted and interval 0.1. The color bar in the bottom denotes the PCC 

confidence levels calculated according to Student’s t test . (b) and (c) show, respectively, area-averaged 

PCC and NRMSE between observed and predicted weekly precipitation during DJF over the SAF 

monsoon region. (d) and (e) display, respectively, PCC and NRMSE between observed and predicted 

weekly MPI. (f) and (g) same as (d) and (e), but for ZWWI 



 
Fig. 4 Pearson correlation coefficient (PCC) between weekly observed MPI and weekly predicted rainfall 

anomalies over SAF grid points. From left to right are forecasts for: (a) week 1, (b) week 2, (c) week 3, 

and (d) week 4. Shading as represented by the color bar in the bottom denotes the PCC confidence levels 

calculated according to Student’s t test. Solid (dashed) contours whose interval is 0.1 denote positive 

(negative) PCC with zero contour omitted.  



 
Fig. 5 Correlation assessment for predicting weekly mean monsoon rainfall (PMI, left) and monsoon 

U850 (ZWWI, right) indices for lead times out to 4 weeks, using the ensemble mean from all forecasts 

(green bars), forecasts initialized only on monsoon active days (red), and forecasts initialized only on 

monsoon break days (blue). Values above the bars represent the correlation confidence levels  



 
Fig. 6 (a) Proportion of days in each phase of MJO and in its neutral one with respect to the days in the 

sample. (b) Proportion of monsoon active days in each phase of MJO and neutral one with respect to the 

total monsoon active days in the sample. (c) Proportion of monsoon active days in a specific phase of 

MJO with respect to the days in that phase. Values above the bars denote the proportion. The letter “N” in 

(a) and (b) indicate proportion of days and monsoon active days in non MJO days, respectively. All 

proportions presented in this figure were obtained using observed data for 1999–2010 

 

 
Fig. 7 Same as Fig. 6a, but for models. From left to right are: (a) week 1, (b) week 2, (c) week 3, and (d) 

week 4. The models are represented in each row 



 
Fig. 8 Same as Fig. 6b, but for models. From left to right are: (a) week 1, (b) week 2, (c) week 3, and (d) 
week 4. The models are represented in each row 
 

 

 
Fig. 9 Same as Fig. 6c, but for models. From left to right are: (a) week 1, (b) week 2, (c) week 3, and (d) 

week 4. The models are represented in each row 



 
Fig. 10 Difference between anomaly composites for the MPI positive and negative phases for observed 
data (first row) and models’ forecasts for week 1. Contours show 200 hPa eddy streamfunction  and 
shades show either rainfall for KMA model or OLR for other models. The symbol (-0) in the top right 
corner of each panel (a) indicates the first day of positive phase, while the symbol (+0) indicates the last 
day of positive phase. Contour interval is 1.0 x 10-6 m2 s-1, and zero contour is omitted. Dark yellow 
(purple) contours represent positive (negative) values, with stippled areas indicating anomalies significant 
with confidence level above 95%. Rainfall (OLR) anomalies are indicated in the bottom colour bar. Only 
anomalies with confidence level above 95% are shown. In the first row we show the composites for 
observed data, while in the subsequent rows are the models composites for week 1 lead  



 
 

 
Fig. 11 Differences between observed anomaly composites for the MPI positive and negative phases, 
showing 200 hPa eddy streamfunction (contours) and OLR (shades). Negative numbers in the top right 
corner of each panel indicate the number of days before the first day of positive phase (represented by -0), 
while the positive numbers indicate the number of days after the last day of positive phase (represented by 
+0), and (0 All) represents the average over all days with positive phase. Contour interval is 1.0 x 10-6 m2 
s-1, and zero contour is omitted. Dark yellow (purple) contours represent positive (negative) values, with 
stippled areas indicating anomalies significant with confidence level above 95%. OLR anomalies are 
indicated in the bottom colour bar. Only anomalies with confidence level above 95% are shown. 
 



 
Fig. 12 Same as Fig. 11, but for NCEP model week 1 forecasts. 
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6. Summary and concluding remarks  

 

Climate variability, defined as the variations around the mean state of climate (either 

droughts or floods), can strongly impact the lives and economy of any world region including 

Southern Africa (SAF). Here we examined the variability in SAFM rainfall at intraseasonal 

timescale as this timescale is of great importance for agricultural production, water resources 

management, and subseasonal prediction (SG20).  

The study was divided in two parts: diagnostic analysis and model assessment, whose 

results were based on observed (gauge) and models output, respectively. In the first part, gridded 

gauge daily rainfall anomalies for the period 1979–2005 were used as basic data, while in second 

part the S2S project models reforecasts for the S2S commom period (1999–2010) were 

considered as basic data. In both parts, the study concentrated on DJF season, when highest 

rainfall occurs in SAF. 

As our emphasis is on subseasonal (intraseasonal) timescale, in the first part, the rainfall 

anomalies were submitted to Lanczos band pass filter to retain oscilations in three selected 

intraseasonal frequency bands (10–25, 10–90 and 20–90 days), for which were separately 

calculated S-mode Empirical Orthogonal Functions (EOFs) with varimax rotation option, in 

order to identify the variability modes of precipitation in each frequency band. Different 

frequency bands were used to analyse the contribution to intraseasonal variability over the study 

domain.  

The EOF analysis revealed 4 most important and similar modes of variability at 

intraseasonal timescales in all selected bands.  

Correlation analysis between timeseries of each retained rotated EOF (REOF) in all three 

bands and both low-level zonal and meridional wind’s components at all SAF grid points shows 

that enhanced precipitation in all modes (REOFs) is associated with an anomalous cyclonic 

circulation near the maximum rainfall center.  The anomalous circulation related with REOF3 

and REOF4 appears to be more associated with variations in monsoon circulation (enhanced 

NWM, NEM, and even the SETW, besides the MCT), favourable for enhanced monsoon rainfall 

in the core monsoon region. Furthermore, the spatial patterns (factor loadings) of these two 

modes together encompass the monsoon core region over SAF (particularly Mozambique). 

Nonethless, the REOF3 was retained for further analysis, as it represents alone most of 
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variability in the core monsoon region (MPI box).  

As this thesis builds upon the hypothesis that the subseasonal monsoon rainfall anomalies 

over SAF, particularly, Mozambique are in part modulated by the MJO, a well-known 

intraseasonal leading mode of tropical variability and the main source for subseasonal 

predictability, power spectral density (PSD) analysis was applied to 10–90 days (the total ISV) 

REOF3 time series in order to determine the prevailing periods in this mode, and if there exist 

periods at MJO frequency band. Results of PSD confirmed the existence of statistically 

significant MJO related peaks, although they appeared weaker compared to those within the 10–

30-days band, suggesting that the latter ones likely contribute more significantly to SAFM 

rainfall ISV. The most significant oscillations in different ISV frequency bands exhibit periods 

around 12, 22–24 and 50 days, also found previously in ISV of monsoon rainfall over South 

America (SA). The 12-day oscillation is associated with the quasi-biweekly oscillation originated 

from Rossby waves in the extratropical westerly belt propagating into SAF. Lead-lag composite 

anomalies keyed to positive and negative phases of the 20–90 days REOF3 confirm that a 22–24 

days variability mode and the MJO are associated with these oscillations, besides indicating the 

influence of convective activity over SA on eastward propagating atmospheric waves (tropical 

and extratropical) to SAF or on waves that originate from subtropical South Pacific that reach 

SAF. This suggests that the MJO impacts are likely propagated into SAF via teleconnections just 

described instead being directly produced in the region.  

Based on the understanding gained from the climatology and the ISV leading modes, a 

monsoon precipitation index (MPI) was proposed to help characterizing, monitoring and 

predicting active and break monsoon days in southern African monsoon domain predominantly 

over land. Since circulation is better simulated than precipitation by models (MARSHALL and 

HENDON, 2015), several circulation indices related with MPI was also proposed. Analysis of 

convection and circulation anaomalies associated with MPI showed that it reflects adequately the 

monsoon precipitation variability in the core monsoon region over SAF. 

In the second part of this study, using the MPI and one of the suggested monsoon 

circulation indices, the predictive ability of all 11 S2S project models in simulating monsoon 

active and break periods over SAF for the commom S2S period (1999–2010) is assessed. 

Although the models can forecast the local large-scale zonal wind anomalies for lead times up to 

3 weeks, predictive ability of monsoon rainfall anomalies was found to be limited to a week. The 
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model’s rank showed ECMWF, JMA, UKMO, CNRM, KMA, and NCEP, as the top scoring 

ones, although they fail in reproducing the MJO impacts on monsoon active periods. It was 

found that the observed monsoon active periods in the S2S project models are associated with an 

eastward propagating wave train originating from convective activity over subtropical South 

Pacific (around 130°E, 35°E) that seems to be modulated by convection over SA and the Atlantic 

Ocean. All retained models tended to reproduce the convective anomalies associated with 

observed monsoon active periods, although most of these models failed in reproducing their 

associated circulation anomalies. This was found to be likely associated with the inherent 

unpredictability of the extratropical variability and errors related with model deficiencies in 

representing teleconnections. 

Overall, the results derived from this study respond properly the proposed goal of the 

research, as it not only helped improving our knowledge about the country's intraseasonal 

climate variability including the neighbouring ones, but it also helped identifying strengths and 

weaknesses of the S2S models and, consequently, their adequacy for operational forecasting over 

Mozambique, and other countries in the SAF region, wich can consequently help to minimize the 

impacts of recurrent weather-climate events in the region. 
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7. Caveats and recommendations for future studies  

 

The present study was proposed to advance our understanding on variability of regional 

rainfall at intraseasonal timescale, and assess its prediction by the S2S project models. The 

emphasis was placed on intraseasonal variability because it is of great importance for agricultural 

production, water resources management, and subseasonal prediction.  

The results revealed four patterns of variability modes at this time scale. The pattern of 

one of them (20–90 day-band mode) was found to represent well the variability of SAFM, which 

allowed thus to propose an index (monsoon precipitation index, MPI) to help characterizing, 

monitoring and predicting active and break monsoon days in southern African monsoon domain 

predominantly over land. To complement the information represented by MPI, several monsoon 

circulation indices have been also proposed. Although the models can predict the local large-

scale zonal wind anomalies (as represented by circulation index) for lead times up to 3 weeks, 

predictive ability of monsoon rainfall anomalies was found to be limited to a week. 

Nonethless, identifying and acknowledging the study’s limitations and making a proposal 

for further study is an essential part of a research work. In this regard, some limitations of this 

research study have been identified and recommendations for further research are made. 

One limitation to our work was the unavailability of Mozambique gauge data after 2005, 

as it prevented the extension of the analysis to the most recent period, forcing us to use CPC data 

as observed data for models verification.  

Some recommendations can be made regarding the extension of this work, as follows 

i. With respect to the paper01 in which the rainfall intraseasonal leading modes of variability 

were obtained using observed (gauge) data for the period 1979–2005, it would be interesting to 

extend this analysis for all SAF subcontinent using gauge data in order to get a realistic picture 

of rainfall variability patterns in the region. We are aware of how difficult it is getting data in 

SAF countries, but the job of colleting them should be initiated. The same is applied for paper02, 

for which grided data (CPC) for S2S commom period (1999–2010) were used due to 

unavailability of Mozambique gauge data after 2005 to the authors. Thus, it is recommended to 

verify in future the possibility of using gauge data for results obtained in paper02. 

ii. Although the region of definition of the MPI also display great synoptic and interannual 

variability, it would be interesting to verify if this index also represents well the variability for 
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longer time scales (for example interannual, interdecadal), using preferentially observed (gauge) 

data. In this case, the index may become more useful, as it will show versatility.   

iii. Regarding the retained models, we recommend to verify their performance by considering 

a multimodel ensemble aproach. This can provide guidance about using either the multimodel 

ensemble results or the forecast of the best model (e.g., ECMWF).  

  

Finally, we recommend to performe all points above (i, ii, and iii) for all other seasons, 

particularly, September-November (SON) and March-May (MAM) as the wet season extends 

from September/October through March/April. 
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