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RESUMO 

 

Mudanças climáticas afetam o ciclo hidrológico e influenciam significativamente o uso dos 
recursos hídricos. O grande número de eventos extremos e a prolongada extensão destes são 
indicativos de que as mudanças climáticas estão se intensificando nas últimas décadas. Uma 
forma de avaliar os extremos de seca consiste em utilizar os índices de seca acumulados em 
diversos períodos e ajustar modelos estatísticos. Há vários índices de seca na literatura e os 
mais utilizados mundialmente são o Índice Padronizado de Precipitação (SPI, acrônimo em 
inglês), Índice de Reconhecimento de Seca (RDI, acrônimo em inglês) e o Índice Padronizado 
de Evapotranspiração e Precipitação (SPEI, acrônimo em inglês). O cálculo da 
evapotranspiração potencial, quando necessário foi realizado utilizando o método de 
Thornthwaite e foi usada a distribuição de probabilidade gama ajustada aos índices de seca. 
Estes índices se baseiam na premissa de modelos estacionários, onde os parâmetros (média, 
desvio-padrão, etc.) e a distribuição das variáveis meteorológicas não variam com o tempo. Nas 
projeções de mudanças climáticas para o sul do Brasil, os parâmetros estatísticos das séries 
meteorológicas (média, variância, entre outras) variam no tempo e tal fato torna a análise de 
seca pobre utilizando as atuais abordagens estacionárias. Portanto, esta tese propõe uma análise 
não-estacionária no RDI, ajustando os tradicionais modelos estacionários nas séries históricas 
observadas e futuras simuladas (usando cenários de Modelos Climáticos Regionais), 
comparando os resultados com as séries de seca não-estacionárias acumuladas em diferentes 
períodos, em termos de tendência e ponto de quebra. Quando ambos (série histórica mensal de 
precipitação e/ou temperatura e a série acumulada do RDI) apresentaram não-estacionariedade, 
o método divide as séries de seca no ponto de quebra e ajusta modelos estatísticos separados 
em ambas as partes, comparando as diferenças entre o método estacionário (único ajuste na 
análise de secas) e o método não-estacionário (dois ajustes na análise de secas). A análise das 
principais estatísticas de secas avaliou o desempenho de ambos os métodos, e a aplicação da 
análise adicional com uma janela móvel de 30 períodos verifica a evolução temporal dos 
parâmetros. Comparando as análises estacionária e não-estacionária, os resultados mostraram 
em geral uma subestimação na severidade das secas quando o modelo estacionário é adotado. 
A análise das principais estatísticas de seca, como magnitude máxima, duração, número de 
eventos, frequência de ocorrência e intensidade mostrou subestimação dos eventos de seca, 
quando utilizada a abordagem estacionária em comparação à abordagem não-estacionária. Os 
resultados da análise complementar de janela móvel de 30 períodos apresentaram uma 
tendência decrescente no parâmetro de forma da distribuição, enquanto que os parâmetros de 
localização e escala, assim como os valores mínimos apresentaram uma tendência crescente, 
indicando uma seca mais severa ao final do período histórico. A análise de seca no Estado do 
Paraná mostrou uma intensificação de secas para o futuro quanto às principais estatísticas de 
seca, independentemente do cenário climático adotado (RCP 4.5 e RCP 8.5). Os resultados na 
maioria mostram a importância de aplicar modelos não-estacionários para análise de secas e 
apontam que as secas podem se intensificar até 2100 em severidade, magnitude e duração. 

 

Palavras-chave: mudanças climáticas, Índice de Reconhecimento de Seca, análise estacionária, 
análise não-estacionária, Modelos Climáticos Regionais. 

  



 
 

 
 

ABSTRACT 

 

Climate changes affect the hydrological cycle and influence significantly the use of water 
resources. The great number and prolonged extension of drought events are indicative that 
climate changes are intensifying in the last decades. A way to evaluate the drought extremes is 
using the drought indices accumulated in several periods and fitting statistical distribution 
models. There are several drought indices in the literature and the most used worldwide are the 
Standardized Precipitation Index (SPI), Reconnaissance Drought Index (RDI), and the 
Standardized Precipitation Evapotranspiration Index (SPEI). The computation of potential 
evapotranspiration, when necessary was performed using the Thornthwaite method and the 
gamma probability distribution was used and fitted to the drought indices. These indices are 
based on the assumption of stationary models, where both meteorological variable distribution 
and parameters (mean, variance, among others) do not vary in time. In climate change 
projections for Southern Brazil, the meteorological series statistical parameters (mean, 
variance, among others) vary in time and this fact makes the drought analysis poor using the 
current stationary approaches. For this reason, this dissertation proposes a non-stationary 
analysis in the RDI, fitting the traditional stationary models in both observed historical and 
future simulated series (using Regional Climate Model scenarios), and comparing results with 
the non-stationary drought series accumulated in different periods, in terms of trend and 
changing point. When both (historical observed monthly precipitation and/or temperature series 
and accumulated RDI series) present non-stationarity, the method splits the drought series at 
the changing point and fits separated statistical distribution models in both parts, comparing the 
differences between the stationary (one fit for drought analysis) and the non-stationary (two fit 
for drought analysis). The drought statistics analysis evaluated the performance of both 
methods, and the application of an additional 30-period moving window analysis verified the 
parameter temporal evolution. Comparing the stationary and non-stationary analyses, results 
showed a general underestimation in the drought severity when the stationary model is adopted. 
The main drought statistics, such as maximum magnitude, duration, number of events, 
occurrence frequency and intensity showed drought events underestimation when used the 
stationary approach, in comparison with the non-stationary approach. Results of the 
complementary 30-period moving window analysis presented a decreasing trend in the shape 
parameter of the distribution, while both location and scale parameters and, the minimum values 
presented a slight increase trend, meaning more severe droughts at the end of the historical 
period. The drought analysis in Parana State showed a drought intensification in the future in 
relation to the main drought statistics, independently of the climatic scenario adopted (RCP 4.5 
and RCP 8.5). General results show the importance in applying the non-stationary models for 
drought analysis and point that droughts may intensify up to 2100 in severity, magnitude and 
duration. 

 

Keywords: climate change, Reconnaissance Drought Index, stationary analysis, non-stationary 
analysis, Regional Climate Models. 
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SIN National Interconnected System (in Portuguese) 
SPEI Standardized Precipitation Evapotranspiration Index 
SPERI Standardized Precipitation Evapotranspiration Runoff Index 
SPI Standardized Precipitation Index 
SRI Standardized Runoff Index 
SSI Standardized Soil moisture Index 
SSI Standardized Streamflow Index 
SSS Strict Sense Stationarity 
STD Standard Deviation 
UK United Kingdom 
US United States 



 
 

 
 

USDM United States Domestic Market 
VARI Variance Scaling 
WMO World Meteorological Organization 
WSS Wide Sense Stationarity 
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INTRODUCTION 
 

Climate change and its related impacts in the environment are a common debate in 

several countries, organizations, universities, non-governmental institutes and researchers from 

all over the world, mainly in the last decades. 

The high levels of Greenhouse Gases (GHG) emission rates combined with the intense 

deforestation and substitution of the forests by agriculture, pasture and urban areas change the 

hydrological cycle. The land changes in cover/use affect the evapotranspiration levels 

regionally and consequently the formation of clouds. More clouds in the troposphere as well as 

GHG emissions change the temperature, and alter the rainfall patterns, affecting the climate 

significantly. 

Impermeability is another indicator of the anthropic influence in the Earth. The main 

problem arises because the water that should infiltrate in some region will flow and infiltrate in 

another region. In this scenario, the occurrence of extreme events becomes frequent, like floods 

and droughts. Both affect the planet and population in general. 

Hydropower generation systems are some of the most affected due to climate change 

impacts. The concentration of GHG in the atmosphere increases due to the industrialization and 

combustion engines, as well as thermal power plants. 

Among the climate change impacts, drought events are very harmful for the affected 

populations. Some droughts can last months or decades (e.g. Federation Drought, Australia). 

Some researchers consider the drought events as the most hazardous natural events of the globe. 

They cause starvation, flora and fauna unbalance, affecting socioeconomically the countries. 

It is important to study droughts in order to take mitigation measures for governments 

and populations. To study drought events, drought indices are used. These indices reveal the 

intensity, duration and persistence of the drought events. Researchers have been applying them 

worldwide since the second half of the twentieth century. 

The most applied drought indices in the world are based on precipitation. Some of them 

combine other variables like potential evapotranspiration i.e., include the temperature effects. 

These indices provide drought scenarios. Climate scientists accumulate drought series in 

periods (3, 6, 12, 24, 36, 48 and 60 months). 
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In the last years, researchers published several studies relating the drought phenomena 

to climate change impacts as the consequence of the anthropic influence. These publications 

worldwide performed, evidenced the importance of extreme event prediction in the future. Few 

of them, take into account the non-stationarity issue. 

Non-stationarity is present in most hydro-meteorological variables series in subtropical 

regions. In other words, it may indicate the presence of trends or changes in the statistical 

parameters of the series. There are few studies worldwide considering the non-stationarity in 

drought series. 

Therefore, one of the innovations of this dissertation is the non-stationary approach 

for analysing droughts. It is based on results of the trend and changing point tests to verify the 

point where the meteorological series changed. Then, the series at this changing point are split, 

and separate probability distributions are fitted in each segment. The traditional drought 

analysis performed fits only one distribution in the drought series. 

The hypothesis is that drought statistics vary under a non-stationary approach. To 

perform the drought analysis it is necessary to compare the stationary and non-stationary 

methods first. This research verifies the consequences of adopting the stationary approach to 

model non-stationary drought series. 

Droughts occur in many regions of the planet, including regions with well-defined 

pluviometry. It is important to analyse both dry and wet regions. In the future both dry and wet 

regions may suffer from some type of drought unbalance. Thus, it is necessary to study these 

characteristics for a better socioeconomic planning. 

Droughts may be a consequence of the climate change impacts due to anthropic action 

on the Earth surface. It is important to study droughts because some regions of the planet are 

becoming drier, affecting populations and economy. 

Some authors state that changes in the rainfall and temperature patterns occur due to the 

natural climate variability. Despite that, changes in the soil cover/use and the GHG increased 

significantly since the nineteenth century due to the second industry revolution. These changes 

may affect the modern human civilization in the future. 

The evaluation of these changes consists in analysing the drought indices applied to 

future projections, i.e., using the downscaled outputs of the Global Climate Models (GCM) to 

the Regional Climate Models (RCM). Thus, despite presenting some errors in the simulations 
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of these models due to difficulty in representing the complex processes within the troposphere, 

these scenarios are useful tools to predict and forecast the Earth’s climate. 

For this reason, this dissertation has the main objective of performing a non-

stationary drought analysis in climate change scenarios. The specific objectives of this 

dissertation are: 

 

1. Evaluate the potential key stations in Parana State to evaluate the historical 

scenarios. 

2. Evaluate the RCM simulations for drought analysis and compare their statistics with 

the historical series. 

3. Apply the non-stationary analysis in the historical series and compare with the 

stationary analysis. 

4. Apply the non-stationary analysis in the simulated future scenarios and compare 

with the stationary analysis. 

5. Evaluate the parameters of the gamma probability distribution in the 30-period 

moving window analysis in both historical and future series. 

6. Develop the drought analysis using the non-stationary approach in the past and 

future series. 

 

A non-stationary drought analysis can improve drought analysis in Brazil and in the 

world. It can evaluate the potential impacts on the climate change in drought analysis. Despite 

it is not possible to avoid these hazardous events, researchers and policy makers can take 

mitigation measures in water resources planning and management, as well as in hydropower 

generation. 

This dissertation is organized as follows: the first chapter is the literature review 

presenting a general overview about the climate change impacts. It also presents the evaluation 

methods using RCM simulations, as well as the drought phenomenon and manners of 

evaluating them. The trend tests and the non-stationary analysis approach with studies 

performed worldwide are presented in the last subchapters of the first chapter. The second 

chapter presents the flowchart of this dissertation and the description of all methods applied. 

The third chapter provides a general overview of the study area and data used. The fourth 
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chapter presents the results achieved with the proposed method. The fifth chapter presents the 

drought analysis considering the non-stationary approach, followed by conclusions and 

recommendations. 
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1. LITERATURE REVIEW 
 

In a climate change scenario affecting the hydrological cycle, researchers believe these 

changes are the main drivers of the drought phenomena. The literature review aims at 

understanding the climate change impacts and gives a brief overview of the techniques currently 

applied and possible scenarios to analyse the future climate on Earth. 

It also presents a general overview of the past drought events and the most applied 

indices around the world, as well as a summary of methods to detect non-stationarity in the 

hydro-meteorological series and the non-stationary analysis studies performed. Through these 

concepts presented in the following subsections, it is possible to evaluate the climate change 

impacts in droughts. 

 

1.1. Climate change impacts 
 

A great number of researches aims at investigating the effects of the global warming 

and/or climate change in the planet. Researchers highlight that changes in the precipitation and 

temperature patterns relate to the anthropic influence in the globe (IPCC, 2013; NAM et al., 

2015). Changes in the atmosphere alter the temperature, precipitation and other water balance 

variables. This cause to some areas the extreme event occurrence, such as hurricanes, twisters, 

typhoons, extreme rainfall or droughts. 

In one hand, there is a natural disasters intensification. In another hand, other variables 

may relate to anthropic influence. They are: population growth, high deforestation rates, land-

use cover change, waterproofing, pasture, agriculture, human needs of drinking water and other 

uses, increasing urbanization and industrialization, and high Greenhouse Gases (GHG) 

emission rates (SALAS et al., 2012; NAM et al., 2015). These changes alter significantly the 

Earth’s climate, changing the flora, fauna and all living beings consequently (TUCCI, 2002). 

AZEVEDO et al. (2006a) explain how waterproofing and deforestation increase the flooding 

risks causing socioeconomic damages. 

Researchers from all around the world discuss the climate change impacts on Earth. 

They relate them to the variation of precipitation patterns and the increase in temperature rates. 

According to TRENBERTH et al. (2007), global temperature increased around 0.8°C in the last 
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century and they believe most of this change relates to the anthropic cause. In an assessment, 

IPCC (2013) found increases in temperature rates of approximately 0.3°C in the Mediterranean 

region in one decade. In the same report, researchers point to the last half of the twentieth 

century as the warmest period in the entire history of the European continent. VICENTE-

SERRANO et al. (2010) studied meteorological variables (precipitation and temperature) and 

found increases in monthly mean temperature from 2°C to 4°C in the period 1910 to 2007 in 

the Albuquerque weather station, US. 

Increases in temperature can generate heatwaves. CHATTOPADHYAY et al. (2017) 

and DIFFENBAUGH & ASHFAQ (2010) state that heatwaves will be common in a close future 

in the continental US in the period 2010 to 2039. MISHRA & SINGH (2010) highlight the 

warmest period of the twentieth century started in 1970s with an increase in temperature of 

approximately 0.6°C. They found that the temperature increase between 1910s and 1940s was 

milder with an increase of around 0.4°C, when compared to the warmest period (after 1970). 

According to CLARK et al. (1999) and MISHRA & SINGH (2010), the temperature on 

Earth increased in 21,000 years after the last glacial period, leading to changes in runoff, 

evapotranspiration and precipitation patterns. In several localities of the planet, like Western 

Australia, central Africa and parts of Russia, HAO & AGHAKOUCHAK (2013) and HAO et 

al. (2018) highlight the dry extremes allied to warm temperatures increased relatively since 

1978 until 2004. 

Increases in dry and warm seasons were found in Indonesian and Amazonian regions 

comparing the baseline period (using the Coupled Model Intercomparison Project Phase 5 

(CMIP5) climate scenarios) with the historical records (HAO et al., 2018; ZSCHEISCHLER & 

SENEVIRATNE, 2017). AMENGUAL et al. (2012) concluded that daily temperature might 

increase, while other variables (relative humidity, precipitation, and wind speed) might 

decrease until 2100. They also found precipitation and temperature extremes during the twenty-

first century in Mallorca Island, Spain. 

Although there is an increase in the temperature rates, climate scientists also studied 

changes in the precipitation patterns worldwide in the last century. CISLAGHI et al. (2005) 

assessed daily precipitation series in Italy and found changes in the rainfall intensity. Their 

results showed that the South suffered a decrease in the rainfall rates, while the North presented 

an increase in the rainfall rates. The most industrialized part of the country situates in the North, 

making the authors believe these changes in the precipitation rates relate to the industrialization. 
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Still in Italy and years later, COSCARELLI & CALOIERO (2012) concluded that daily 

and monthly precipitation series in the Calabria region were more intense in the last century. 

They found differences between the West (more intense) and East (milder events). These events 

lead to soils instability and high flood rates. In another study, changes in precipitation patterns 

(decreasing trends) occurred in Mediterranean, North and Northeast Brazil, Southwest US and 

Southwest Australia and in some locations in Africa (JONG et al., 2019). 

FU et al. (2013) studied the inter-annual and interdecadal variations aiming at detecting 

changes in the rainfall patterns. They related these changes to global warming effects, 

monsoons and wind circulations. BARROS et al. (2000) noticed more abundant rainfall events 

in the Southern Brazilian region in the summer season. MARENGO (2001) observed 

perturbations in the ocean currents, relating these events to alterations in the rainfall extreme 

events. 

Still in Brazil, AZEVEDO et al. (2006a) examined the rainfall patterns concluding that 

there is more intense rainfall in the South, when compared to the Southeast. In Southeast, the 

driest months comprise the winter (June to September), while the wettest months the summer 

(December to March). They concluded that there might be more intense rainfall rates in the 

winter under the El-Niño Southern Oscillation (ENSO) phenomena, leading to hazardous 

floods. 

The IPCC (2013) stated that the extreme rainfall rates would intensify in the wet regions, 

while the dry regions tend to become drier in the close future. AHMADALIPOUR et al. (2017) 

highlight the Northeast Pacific, US, will suffer from increases in the annual precipitation rates 

due to the climate change impacts. 

According to VICENTE-SERRANO et al. (2010), precipitation rates reduce in some 

regions of the planet as consequence of the climate change impacts. This reduction generates 

more effects in the North Hemisphere, increasing the temperature and evapotranspiration rates 

and intensifying the lack of precipitation and consequently, the drought phenomena. For 

example, in the Mediterranean, AMENGUAL et al. (2012) found rainfall decrease from 5% to 

20% between 1901 and 2005. 

The global climate change relates to an ensemble of variations in the Earth surface. 

These changes increased when fossil fuels started being used, since the industrial revolution. 

Consequently, it started the high GHG emission rates in the atmosphere, changing the climate 



38 
 

 
 

because they interfere on temperature and clouds formation nuclei. LUCENA et al. (2018) 

highlights: “the magnitude of climate change depends on the carbon intensity of global 

development pathways. On the other hand, the systems affected by climate change are 

influenced by the same development pathway”. MISHRA & SINGH (2010) highlight the 

climate change is “one of the major threats” of the current century. 

According to MOHOR et al. (2015), the GHG emission rates and land-use changes are 

higher in the last decades. These events attributed to anthropic origin alter the regional level of 

evapotranspiration. The substitution of forests by agricultural and pasture areas change the 

evapotranspiration rates and consequently, alter the hydrological cycle. The waterproofing 

(present mainly in urban areas) also changes the water cycle, because the precipitation that 

should infiltrate in the soil is deviated to another region. Only these two changes (in 

evapotranspiration and waterproofing) in the Earth surface can generate flood hazards in some 

regions, while others tend to desertification. 

Some changes can be irreversible in the global climate as pointed by LIANG et al. 

(2011). They highlight the changes in the water levels; snow melting, rainfall regimes and 

evapotranspiration affect the globe dramatically. 

NAM et al. (2015) highlight the extreme events (e.g. droughts) which tend to increase 

in the future due to the global warming. According to MISHRA & SINGH (2010), the increase 

of extreme events relates to global warming. More rainfall occurs when there are increasing 

temperature rates, which increase the evapotranspiration rates, altering the hydrological 

balance. The impacts of the climate change are unavoidable, but forecasting their magnitude 

turn possible to mitigate them (CHATTOPADHYAY et al., 2017). 

Climate change impacts intensify the drought events leading to desertification of some 

areas. Drought impacts become more intense under a climate change scenario, such as extreme 

low precipitation and high temperature. These impacts affect the environment, societies and 

their economies. It is important to forecast droughts related to climate change impacts in order 

to establish innovative strategies and propose appropriate preparedness and mitigation 

measures, reducing the vulnerability to drought events (NAM et al., 2015). 

Under this premise, MISHRA & SINGH (2009) studied the Kansabati River basin in 

India and compared the historical droughts with the climate change scenarios. They noticed 

changes in droughts in terms of frequency, severity, and affected area. They point that droughts 
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will cause severe impacts on the crop production in the future. TODD et al. (2013) found low 

rainfall rates and high temperature in the UK droughts, during the periods 2004 to 2006 and 

2010 to 2012. In the other side of the world, Southern Korea experienced a historical huge 

drought in the recent years (NAM et al., 2015). 

Researchers generally analyse the climate on Earth considering the hydro-

meteorological series stationary. If their statistics (mean, variance, among others) vary on time, 

they are non-stationary and it may be a change in the series. This can relate to the anthropic 

influence. 

Planners and system operators commonly assume that the climatic variables are 

stationary. Climate change and climate variability could affect seriously the energy 

consumption and production. Renewable energy systems are more sensitive to climate 

variations, than that based on fossil fuels. Great amounts of GHG emissions are related to 

human activities (LUCENA et al., 2018). The development of new technologies depend on 

human decisions aiming at the sustainable human progress (there is no progress under a 

scenario of environment degradation). 

PEEL & BLÖSCHL (2011) discuss the climate change representation in modelling. 

They defend the incorporation of the non-stationarity of the hydro-meteorological series for a 

better representation of the extreme indices. 

The presence of monotonic trends along the series indicate the non-stationary pattern of 

the hydro-meteorological series. Most of the hydrological variables present the non-stationary 

pattern (MATALAS, 1997). ALEXANDRE et al. (2010) discuss that most projections of the 

water resource systems are based on the assumption that hydrological variables follow the 

stationary pattern. In other words, the water resources operational management relies in a 

stationary scenario. 

 

1.2. Climate models and scenarios 
 

Despite some authors not agreeing about the climate change impacts or the natural 

climate variability on Earth, there are several methods and data to study whether there are 

changes or not. A way of analysing the Earth’s climate consists in using the Global Climate 

Models (GCM) outputs. 
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The GCM produce outputs of precipitation, temperature, air pressure, wind speed, solar 

radiation and other important variables to study the climate at a grid size of about 200 km. To 

represent the climate change impacts at lower scales (20 to 50 km), it is necessary to downscale 

the GCM outputs into the Regional Climate Models (RCM). The GCM provide estimates of 

the climate at large scales of the future climate (KIRONO et al., 2011; IPCC, 2013), despite of 

significant differences among particular models. 

CHATTOPADHYAY et al. (2017) highlight the difficulty in determining the climate 

with precision due to the large spatial resolution of the GCM grids (2° latitude and 2° longitude) 

and the representation of atmospheric variables. The GCM are a way to determine the long-

term temperature and precipitation under different GHG emission scenarios (NAM et al., 2015). 

According to both KIRONO et al. (2011) and IPCC (2013) studies, at a continental scale, the 

GCM can provide significant estimates for drought projections. 

The RCM scenarios perform a preliminary analysis of the regional climate at grid scales 

of 20 to 50 km. They allow governments to take strategies and prevent society from the climate 

change effects and their consequences to water resources (CHATTOPADHYAY et al., 2017). 

The RCM provide a better assessment to perform climate change studies in a regional scale. A 

way of analysing the climate change impacts using the RCM is the evaluation of the climate 

change projections, the Representative Concentration Pathways (RPC). 

The RCP are the representation of the GHG in the atmosphere adopted in 2014 on the 

fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) held 

by the World Meteorological Organization (WMO). The future scenarios (labelled RCP 2.6, 

RCP 4.5, RCP 6.0 and RCP 8.5) represent the radiative forcing values (W/m²) possible to occur 

until 2100. In the RCP 2.6, there is a peak in the global GHG emissions between 2010 and 

2020, while in the RCP 4.5 and RCP 6.0 the peak is around 2040 and 2080, respectively. Thus, 

the GHG concentration of the three RCP scenarios will decline until 2100. The RCP 8.5 differs 

because it considers the GHG emissions will continue rising in the twenty-first century. The 

scenarios RCP 4.5 and RCP 8.5 are available in the PROJETA CPTEC platform. In general, 

climate change studies consider mostly the RCP 4.5 and RCP 8.5 in their projections (NAM et 

al., 2015; CHATTOPADHYAY et al., 2017; PARK et al., 2018; LUCENA et al., 2018). The 

RCP 4.5 scenario is a scenario with a CO2 reduction in the middle of the twenty-first century 

and the RCP 8.5 considers the CO2 rates constantly increasing until 2100. 
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There are several studies applying the GCM and RCM aiming at evaluating the climate 

change impacts on Earth. LUCENA et al. (2018) used 16 GCM data and concluded that the 

high GHG scenario (RCP 8.5) affects severely the hydropower generation, when compared to 

the RCP 4.5 scenario. They analysed the impact of implementation of alternative energy 

generation and concluded these are cheaper than using coal as an alternative for Brazil. 

In the work of PARK et al. (2018), they analysed the RCP 8.5 scenario and found an 

increase of 2°C in the global mean temperature. MEINSHAUSEN et al. (2011) evaluated the 

four RCP scenarios and concluded that temperature will increase of around 4.5°C in the worst 

scenario (RCP 8.5) and considering the RCP 2.6 scenario (less probable), temperature will 

increase approximately 1.5°C. 

Analysis of the climate change impacts were performed by CHATTOPADHYAY et al. 

(2017) across the Kentucky River Basin, US. They compared the baseline period with the 

observed series and found increases in both precipitation and temperature series. They also 

found a decrease in the evapotranspiration series in the summer, while found an increase in the 

winter in the future series, as pointed by the RCP 4.5 and RCP 8.5 scenarios. 

Researchers apply the RCM ETA in Brazilian projections of climate change impacts. 

DERECZYNSKI et al. (2010) applied it in seven hydro-meteorological stations located in Serra 

do Mar, Sao Paulo State. They found overestimation in the frequency of precipitation events 

and in the 10-m wind speed. They also found a good estimation in the 2-m temperature. 

Compared to other models, the HADGEM2-ES/ETA preserved the series median (JONG et al., 

2019). Generally, there are some inconsistencies in the downscaling process that turns 

necessary to apply bias correction methods to minimize these errors. The GCM scales cover 

big areas (ROCHA, 2015). 

Researchers recommend the application of bias correction methods in the RCM data in 

order to minimize the downscaling errors. JOHNSON & SHARMA (2015) evaluated the 

performance between two bias correction methods: Nested Bias Correction and Quantile 

Mapping (QM). Results showed differences between both bias correction methods and the raw 

GCM data. 

Some authors prefer using the Quantile-Quantile (QQ) bias correction method, as 

performed SAURRAL & BARROS (2010) and AMENGUAL et al. (2012). In both studies, 

they observed a good agreement between the observed series and the baseline period (control 
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run), except for the extreme rainfalls. The QQ corrects the RCM data classifying and splitting 

them in frequency intervals, computing the difference (bias) for each interval. 

FILL et al. (2013) used RCM PROMES and RCA1 simulations. They applied them for 

the major hydropower plants located in the Brazilian part of the La Plata River Basin. They 

aimed at evaluating the climate change impacts during the twenty-first century. They applied 

the Quantile-Quantile (QQ) method and found a dependable energy decrease of the hydropower 

plants during the twenty-first century. 

Some studies performed in different localities like China, Spain, India, Germany and 

others used other bias correction methods. FANG et al. (2015) compared the Linear Scaling 

(LS) and the Distribution Mapping (DM) for temperature and precipitation series in China. 

They also applied only for precipitation the Quantile Mapping (QM), Power Transformation 

(PT) and the Local Intensity Scaling (LOCI); and only for temperature, the Variance Scaling 

(VARI). The LOCI method improved the correlation of Nash-Sutcliffe (NS) coefficients and 

the QM and PT methods performed well to correct the percentile values and the standard 

deviation of the precipitation series. 

RAJCZAK et al. (2016) compared the Quantile Mapping (QM) bias correction method 

to the simulated raw RCM series. Results presented a good performance of the QM method for 

the precipitation series. SMITHA et al. (2018) observe that generally the bias correction 

methods apply on monthly scale, generating errors when the application occurs on daily scale. 

SMITHA et al. (2018) applied the LS, LOCI, PT, Modified Power Transformation 

(MPT) and DM bias correction methods for the Indian rainfall. Results showed the DM, LS and 

PT performed better than LOCI and MPT in terms of adjusting the wet daily frequencies. 

In a different work, TEUTSCHBEIN & SEIBERT (2012) applied the LS, DM and the 

Delta Change (DT) for temperature and precipitation series. They applied the LOCI and PT 

only for precipitation, and the VARI only for temperature. Results also showed the DM and PT 

reproduced well the percentiles and the standard deviation of the baseline period. They 

highlight the DM is the most appropriate method in terms of representing the means. 

WILLKOFER et al. (2018) applied the LOCI, QM and LS bias correction methods in 

the Mindel River catchment, Germany. Results showed the QM method is the most 

representative to perform climate change impacts. All methods failed in representing the flow 

extremes. 
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Another approach in the bias correction scene was applied by GU et al. (2019). They 

applied the Empirical Quantile Mapping (EQM) for both precipitation and temperature in the 

RCM simulations across China. Results pointed that the bias correction method reduce both 

standard deviation and mean errors in about 5%. 

Analysing this briefly presentation of the climate change scenarios and bias correction 

methods, the most used among these are the Linear Scaling (LS), Power Transformation (PT), 

Variance Scaling (VARI) and the Empirical Quantile Mapping (EQM). For climate change 

studies, both future scenarios RCP 4.5 and RCP 8.5 are most used in order to forecast the future 

behaviour of the hydro-meteorological variables. 

Bias correction methods may not being based on applying the stationary or non-

stationary features in the future series, i.e., they do not correct the non-stationarity in the 

historical series and consequently, do not correct in the future series. The same process occurs 

with the stationarity feature in a time series. In this sense, it is important to apply bias correction 

in order to minimize the downscaling inherent errors of climate model data. 

 

1.3. Droughts 
 

Droughts are a complex phenomenon that originate from the lack of precipitation over 

a prolonged period and rely in an extended area (WILHITE, 2000; TSAKIRIS & VANGELIS, 

2005; ZARCH et al., 2015; TU et al., 2018). The rise of temperature combined with lack of 

precipitation can generate the drought phenomenon. The land use/cover leads to changes in the 

regional and global hydrological cycle and consequently, can increase the occurrence of 

extreme events (HAO & SINGH, 2015). 

Some authors state that this natural hazard (drought phenomenon) leads to difficulties 

for agriculture, drinking water, environmental and ecological imbalance, socioeconomic and 

livestock damages (TU et al., 2018). According to PAULO & PEREIRA (2006) and MOREIRA 

et al. (2013), drought is a persistent event with a temporary water shortage, and it is difficult to 

predict its duration, severity and frequency. Droughts can be treated as stochastic events since 

their main variables may present random behaviour (SANTOS, 1983; CEBRIÁN & 

ABAURREA, 2012). 
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Researchers from all around the world study the impacts of climate changes and their 

contributions to the drought events. Researchers believe that the rainfall pattern changes 

together with other human interventions (e.g. increasing GHG emission rates, deforestation and 

substitution to agriculture areas) reflect in the droughts increase. SHEFFIELD & WOOD 

(2008), DAI (2011) and HAO & SINGH (2015) suggest a drought intensification under a 

climate change scenario, causing several economic, environmental and agricultural damages. 

Several damages related to droughts occurred worldwide. According to COMEC 

(2007), TIGKAS et al. (2012) and VANGELIS et al. (2013), 100 billion euros is the estimated 

cost of droughts in the last 30 years in Europe. In East Hungary, the soil moisture was drier in 

the last century when compared to the North Hemisphere changes (SZÉP et al., 2005; MISHRA 

& SINGH, 2010). 

Economic losses related to droughts in the US costed annually 6 to 8 billion dollars 

between 1980 and 2014 (WILHITE, 2000; HAO & AGHAKOUCHAK, 2013; RAJSEKHAR 

et al., 2015; YANG et al., 2018). The central part of the country suffered an extreme drought 

in 2012 and the Texas, in 2011. Both drought events affected ecosystems, agriculture, energy 

production and recreation (HAO et al., 2016b). 

According to RAJSEKHAR et al. (2015), droughts impact severily more people when 

compared to any other natural disaster. This turns necessary to study them as well as improve 

the prediction methods (MISHRA & SINGH, 2011). YANG et al. (2018) affirm that 

meteorological disasters provoke fewer losses when compared to droughts. In general, there are 

several studies predicting droughts in short-term scale, as well as focused in drought frequency 

analysis and monitoring, using several types of variables and different drought indices (NAM 

et al., 2015). 

MISHRA & SINGH (2010) pointed that the Southeast and central Asia suffered a severe 

drought between 1998 and 2001 affecting more than 60 million people. According to GUPTA 

& JAIN (2018), since 1974 droughts affected more than one million people globally. Around 

33% of damages to people and 22% of the economic losses, relate to droughts in the world. 

These events persist from months, years and in some extreme cases, until decades (WILHITE, 

2000; KHADR, 2016). 

Some researchers consider droughts in Australia as a “normal” feature of the national 

climate (MCKERNAN, 2005). The most extended droughts occurred: between (1) 1895 and 
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1902 (known as the Federation drought), (2) between 1937 and 1945 (known as the World War 

Second drought) and (3) the post-1995 drought. The (3) event shrank in 3% the agricultural 

Gross Domestic Product (GDP), while the (2) event killed 30 million sheep’s (ABARE, 2008; 

KIRONO et al., 2011). 

Drought risk and drought quantification evaluate the: (1) impacted area, (2) frequency, 

(3) duration and (4) intensity (NAM et al., 2012; SPINONI et al., 2014; NAM et al., 2015; HAO 

& SINGH, 2015). It is difficult to determine the onset and end of a drought period. Generally, 

researchers evaluate droughts using single or bivariate indices due to the lack of hydro-

meteorological data (HAO et al., 2016). Indices are series of variables such as temperature, 

precipitation and streamflow, while indicators are single numbers (HAO & SINGH, 2015). 

There is a difference between aridity and water scarcity. The first consists in a low ratio 

between precipitation and evapotranspiration and is a climatic feature of a region. The second 

means that demand of water is higher than water availability and represents the water bodies 

overexploitation (TSAKIRIS & VANGELIS, 2005; VAN LOON & VAN LANEN, 2013; 

PEDRO-MONZONÍS et al., 2015). 

There is a drought classification according to the percentiles of the run theory in the 

work of SVOBODA (2002) and HAO et al. (2016), based on USDM (United States Domestic 

Market). There are five drought types: (1) abnormally dry (D0) (20 to 30th percentiles), (2) 

moderate (D1) (10th to 20th percentiles), (3) severe (D2) (5 to 10th percentiles), (4) extreme (D3) 

(2 to 5th percentiles), and (5) exceptional (D4) (less or equal to the second percentile). A way 

of analysing the drought percentiles consists in plotting the variables and applying the run 

theory (see section 2.10). 

The Run Theory evaluates droughts as runs of deficits (below an established threshold) 

(MARCOS-GARCIA et al., 2017). Drought is an extended period in which an index is below 

a predefined threshold, like the drought percentiles (truncation level) according to the run 

theory (YEVJEVICH, 1967). Drought duration is a period between the onset and end, while 

the magnitude is the accumulated standardized index, i.e., the area duration versus intensity 

(WU et al., 2018). 

Determining the threshold is the challenge for drought researchers; since it depends on 

the study area, (e.g. a severe drought in Sao Paulo is equivalent to a moderate drought in Iran 

in terms of drought severity thresholds). It is important to determine the number of drought 
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events as well as their duration and magnitude. The drought analysis is based on the cumulative 

probability of droughts under a pre-specified threshold. 

NAM et al. (2015) and GU et al. (2019) used the run theory and drought indices. Both 

works evaluated droughts under a specified threshold of a significant drought (below -1.0). This 

threshold change from region to region, being less significant for arid and semiarid regions, 

while more significant in normal conditions for humid regions. 

 

1.4. Types of droughts 
 

Independent on the threshold adopted in the run theory, droughts can be classified in 

different types: meteorological, agricultural, hydrological, and socioeconomic (KOGAN, 1997; 

WILHITE, 2000; HEIM, 2002; SIVAKUMAR et al., 2005; MISHRA & SINGH, 2010; HAO 

& SINGH, 2015; RAJSEKHAR et al., 2015; MAITY et al., 2016; LI et al., 2016; GUO et al., 

2019). PEDRO-MONZONÍS et al. (2015) include the operational drought in this classification. 

Meteorological droughts characterize by a prolonged deficit of precipitation (below an 

average threshold) and is the 1st type of drought, that develops quickly (HEIM, 2002; HAO & 

SINGH, 2015; RAJSEKHAR et al., 2015; WU et al., 2018; GUO et al. (2019). Meteorological 

drought can generate the other types of droughts, due to the hydrological balance on Earth and 

in the atmosphere (MAITY et al., 2016). 

The agricultural droughts are the lag of the meteorological droughts and characterize by 

a deficit of the soil moisture leading to insufficient water to agriculture (HEIM, 2002; HAO & 

SINGH, 2015; WU et al., 2018; GUO et al., 2019). High evaporation loss and extended 

meteorological droughts cause agricultural droughts (MAITY et al., 2016). 

Hydrological droughts characterize by a deficit in groundwater as well as the reduction 

of streamflow and reservoirs level. This type of drought occurs after a prolonged period without 

rainfall (HAO & SINGH, 2015; WU et al., 2018; GUO et al., 2019). Society and economy 

depend on catchment stores (e.g. aquifers, rivers, and lakes). Hydrological droughts occur due 

to the direct impact of other droughts (meteorological and agricultural) that lead to a deficit in 

drinking water as well as consequences for industry and energy generation (VAN LOON & 

LAAHA, 2015; HAO et al., 2016; MAITY et al., 2016; WU et al., 2018). 
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According to WU et al. (2018), reservoir and dams construction, land-cover/use, 

irrigation and other acceleration actions due to the anthropic scene may cause hydrological 

droughts worldwide. Geographical, climatological and topographical features affect the 

correlation of the droughts transition (the passage from one state to another, i.e., from 

agricultural to hydrological droughts). 

In a water exploitation system, PEDRO-MONZONÍS et al. (2015) define the period 

under an extreme supply failure of the water demand as the operational drought. This happens 

due to an inadequate design of the operating and water exploitation systems, and the demand 

excess. It is an extension of the hydrological droughts and water scarcity, generating 

environmental and posterior socioeconomic impacts. 

The combination of the other three types of drought characterize socioeconomic 

droughts, for instance when the water supply is insufficient for the demand (MISHRA & 

SINGH, 2010; HAO & SINGH, 2015; GUO et al., 2019) or affects other sectors of the economy 

such as livestock. According to GUO et al. (2019), this type of drought tend to intensify 

(become more frequent) in the future. In order to analyse them, some authors (HUANG et al., 

2016a; GUO et al., 2019) proposed several multivariate approaches that consider the outflow 

of a reservoir as the water demand to compute the socioeconomic droughts. 

Analysing droughts in different accumulation periods turns possible the identification 

of distinct types of droughts. In a general overview, researchers point the short accumulation 

periods as ideal to analyse the meteorological and agricultural droughts, while the long-term 

accumulation periods as ideal to analyse the hydrological, operational and socioeconomic 

droughts. 

It is important to evaluate and identify different types of drought for a better water 

resources management, because the type of drought gives the information of the respective 

phenomenon occurring in a region and its duration (given by the timescale). 

According to SIMS et al. (2002) and VICENTE-SERRANO (2006), the short timescales 

represent the water availability for agriculture and vegetation, since they represent the soil 

moisture variations. The authors applied a drought index accumulated in short periods (3 and 6 

months) to evaluate the agricultural droughts. AHMADALIPOUR et al. (2017) highlight that 

distinct timelags allow the analysis of different types of droughts. 
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VICENTE-SERRANO (2006) applied different accumulation periods (1 to 48 months) 

to identify the response of different types of drought. The author highlights the importance of 

the timescale to characterize a hydrological drought. The annual scale (12-month accumulation 

period) is ideal for hydrological drought studies (CHANGNON AND EASTERLING, 1989). 

The longer timescales (24 months or longer) can evaluate the operational droughts. 

The operational and socioeconomic droughts happen after the occurrence of the three 

types of drought presented previously. They are difficult to analyse since they depend on 

operational and/or socioeconomic factors. 

It is important to study all drought types, since they are dependent on each other, i.e., 

the hydrological drought happens after the development of the meteorological drought and 

consequently the agricultural drought. The water deficit in the atmosphere (meteorological) and 

in the upper soil layer (agricultural) leads, after a time, to streamflow and groundwater deficits 

(hydrological drought). Altogether, the hydrological drought affects aquifers and reservoir 

levels, which leads to operational droughts and after some time, they affect both society and 

economy (socioeconomic droughts). 

 

1.5. Drought indices 
 

Climate scientists developed several drought indices all over the recent history (post 

1950s). They are univariate and bivariate indices, and combine hydro-meteorological variables, 

as occur in the water balance and latent (hidden) variable drought indices, respectively. 

Some authors developed multiple drought indices based on the water balance model, 

like the Palmer Drought Severity Index (PDSI) (PALMER, 1965). The PDSI uses precipitation, 

temperature, as well as water content in the upper soil layers. 

The latent variable indices consist in a mathematical transformation (e.g. ratio or 

difference) of some meteorological variables that relate to each other physically. The difference 

between evapotranspiration and precipitation is the water deficit and is a hidden or latent 

variable. 

The computation of these indices consist in fitting a probability distribution to the series, 

followed by standardization. It is important to fit a probability distribution to compute and 

evaluate the “magnitude, occurrence and/or frequency of the phenomenon in a certain 
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interval”. GUTTMAN (1998) discuss several probability distributions to fit the hydro-

meteorological data and to compute quantiles of the drought indices, like the Generalized 

Extreme Value (GEV), beta distribution and Generalized Logistic Distribution (GLD) 

(MCKEE et al., 1993; SHEFFIELD & WOOD, 2008; VICENTE-SERRANO et al., 2010; 

STAGGE et al., 2015). 

TSAKIRIS & VANGELIS (2005), VANGELIS et al. (2013), HAO & SINGH (2015) 

and AMIN et al. (2015) propose the Gamma distribution as the most suitable for drought 

analysis, followed by the 2-parameter Lognormal (LN2) distribution. They suggest that both 

distributions are suitable for small timescales (monthly to quarter) and suggest the application 

of a procedure in the gamma distribution (described in chapter 2 – Methods) to overcome the 

“zeros issue”. Other authors like STAGGE et al. (2015) fitted the Gamma, Gumbel, Logistic, 

Log-Logistic, Lognormal, Normal and Weibull probability distributions. Results showed the 2-

parameter Gamma and the Generalized Extreme Value (GEV) as the most suitable for drought 

analysis in Europe. 

Despite the probability distribution adopted, there are several drought indices applied 

around the world in the univariate and bivariate approaches. The most applied drought indices 

description and application are presented in the next subsections. They are the Palmer Drought 

Severity Index (PDSI), the Standardized Precipitation Index (SPI), the Reconnaissance Drought 

Index (RDI) and the Standardized Precipitation Evapotranspiration Index (SPEI). 

 

1.5.1. Palmer Drought Severity Index (PDSI) 
 

The Palmer Drought Severity Index (PDSI) was the first and most used drought index 

in the second half of the twentieth century. It is a pioneer in drought analysis (GUTTMAN, 

1998; DUBROVSKY et al., 2009; DAI, 2011; HOERLING, 2012; NAM et al., 2015). 

PALMER (1965) created the PDSI and applied it across US. The computation of the 

PDSI involves the water balance equation and it is necessary to determine the Climatically 

Appropriate Factor for Existing Conditions (CAFEC) coefficient, to obtain the moisture 

anomaly index (referred as Z index). The CAFEC is an empirical weighting factor (parameter) 

determined for each location in the US and it consists in the moisture amount during “normal” 

weather. 



50 
 

 
 

The combination of evapotranspiration, precipitation, runoff, and temperature is one of 

the main advantages of using the PDSI (WELLS et al., 2004), since it can represent the 

processes of the Earth’ surface related to drought events. 

One of the disadvantages is the non-representativeness of groundwater in its formulation 

(HAO & SINGH, 2015). ZHAO et al. (2017) point that the PDSI is more suitable to assess long 

time scale droughts but it has shortcomings like complex computation and high input data 

requirements (LLOYD-HUGHES & SAUNDERS, 2002; MISHRA & SINGH, 2010; WU et 

al., 2018). 

Another disadvantage of the PDSI is the necessity to compute the CAFEC coefficient, 

since in developing countries there are not sufficient data to determine it. ALLEY (1984) 

criticizes the use of the PDSI because of the CAFEC limitation that generates extensive number 

of water balance equations to perform a drought analysis for each region. The author highlights 

the PDSI is a useful tool for analysing droughts when comparing to the observed time series 

and is largely applicable for drought analysis in a country with a large amount of hydro-

meteorological data. It is a robust method to perform drought analysis in a region, when 

compared to other methods. 

In order to overcome the CAFEC issue, WELLS et al. (2004) proposed the self-

calibrated Palmer Drought Severity Index (sc-PDSI) using the data for each location, 

“replacing empirical constants with dynamically calculated values” (VAN DER SCHRIER et 

al., 2013; NAM et al., 2015). TODD et al. (2013) applied the sc-PDSI to generate drought series 

in three locations in Southeast UK and observed differences in duration among the analysed 

sites. 

 

1.5.2. Standardized Precipitation Index (SPI) 
 

The Standardized Precipitation Index (SPI) is the standardization of the precipitation 

widely applied to determine meteorological droughts. The SPI relies on the premise that a 

deficit in precipitation is the sufficient variable to determine droughts (MCKEE et al., 1993). 

According to SOBRAL et al. (2019), the SPI is the most applied drought index worldwide and 

the World Meteorological Organization (WMO) recommends its application in drought studies. 
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Topographical or geographical differences do not affect the SPI and researchers compare it in 

space and time (LANA et al., 2001; VICENTE-SERRANO, 2006). 

There are several studies applying the SPI throughout the world due to its simplicity in 

application and evaluation, generating significant results. SPINONI et al. (2014) applied the 

SPI and results showed a global increase in severity, duration and intensity of droughts. They 

found an exception in the Northern Hemisphere, where the frequency decreased in the baseline 

period of observed series. JOHNSON & SHARMA (2015) evaluated the impact of bias 

correction methods in drought assessment using a multi-year scale and the SPI. They found 

significant differences in all SPI computed statistics. 

 

1.5.3. Reconnaissance Drought Index (RDI) 
 

The authors TSAKIRIS & VANGELIS (2005) state that the SPI is not sufficient to 

evaluate droughts, since it uses only precipitation in its formulation. For this reason, TSAKIRIS 

& VANGELIS (2005) developed the Reconnaissance Drought Index (RDI) computed as the 

ratio between precipitation and potential evapotranspiration, both accumulated in predefined 

periods. According to HAO & SINGH (2015), the potential evapotranspiration is the key 

variable, because it represents the water return to the atmosphere. 

TSAKIRIS & VANGELIS (2005) and TSAKIRIS et al. (2007) point some advantages 

in applying the RDI: (1) calculus of aggregated deficit between input variables 

(evapotranspiration and precipitation) in the atmosphere, (2) similar way of calculation as in 

SPI and (3) it is associated to agricultural drought, due to the temperature consideration (HAO 

& SINGH, 2015). VICENTE-SERRANO et al. (2010) point some disadvantages of using RDI, 

such as: (1) unknown definition when the variable ratio is zero (no rainfall) and (2) the same 

ratio reduces the variability range. 

To determine the Potential Evapotranspiration (PET), VANGELIS et al. (2013) suggest 

applying several methods such: Penman-Monteith, Thornthwaite, Blaney-Criddle, and 

Hargreaves. MOHAMMED & SCHOLZ (2017) applied these four methods to compute the 

PET and results showed differences among them in drought severity, presenting the Hargreaves 

as the best model. They pointed the Hargreaves as the best method to compute PET for climate 

change studies. It has the advantage of considering the solar radiation in its formulation, 
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improving the accuracy of results in arid and semiarid regions. However, the authors 

TSAKIRIS et al. (2007) and VANGELIS et al. (2013) suggest applying the Thornthwaite or 

Blaney-Criddle methods to compute PET in order to minimize the data requirements. 

KOPSIAFTIS et al. (2017) evaluated the drought severity in a coastal aquifer flow and 

applied the RDI, since the potential evapotranspiration affects the recharge processes. They also 

evaluated the effect of the multi-year drought and results showed that the RDI is a good index 

to achieve their goals. MOHAMMED & SCHOLZ (2017b) applied the RDI in different time 

scales and compared to original precipitation and temperature data. Results showed that the 

RDI normalized form better represents drought events in the region, instead of using only 

original precipitation series. 

 

1.5.4. Standardized Precipitation Evapotranspiration Index (SPEI) 
 

The authors VICENTE-SERRANO et al. (2010) created the Standardized Precipitation 

Evapotranspiration Index (SPEI) to include the potential evapotranspiration in climate change 

studies, turning it a suitable tool to study global warming effects (NAM et al., 2015). The SPEI 

and RDI differ because the SPEI is the difference between precipitation and potential 

evapotranspiration, while the RDI is the ratio between both variables. The SPEI is a good index 

to represent the dynamical balance between water and energy (LIU et al., 2019). 

Due to its multi-scalar nature, it assesses different types of droughts (VICENTE-

SERRANO et al., 2012). VICENTE-SERRANO et al. (2010) fitted a log-logistic distribution 

and accumulated the deficits in several SPEI timescales. They applied the SPEI worldwide 

under different climate conditions and observed a general increase of severe droughts related 

to higher water demand, result of evapotranspiration. 

TONG et al. (2018) applied the SPEI to evaluate drought events in the Mongolian 

Plateau, China. Results showed an annual decreasing trend rate of drought and found changes 

of drought into wet periods and vice-versa. WANG et al. (2019) applied the SPEI to evaluate 

the drought intensity variation in distinct time intervals. They performed the non-stationary 

analysis in Inner Mongolia and results showed drought trend from 1945 onwards. They also 

found an increasing drought trend in the Northeast Inner Mongolia, where the most intense 

drought occurred between 1960 and 1970. 
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LU et al. (2019) applied the SPEI globally and results showed significant trends of 

drought severity in America, Africa and Oceania in all future scenarios. The African continent 

presented severe droughts in both South and North in all scenarios and three decades, also 

pointing to the Southern American continent as another most affected region by droughts. The 

most affected countries due to the increase of PET are Canada, Turkey, Russia and Ukraine. 

 

1.5.5. Other indices and combined application 
 

Around the world, researchers compared drought indices and analysed their 

performances under different climatic conditions and timescales. ZHAO et al. (2017) compared 

the performance of the self-calibrated Palmer Drought Severity Index (sc-PDSI) and the SPEI. 

Results in the Chinese stations showed the SPEI underestimates the dry periods in shorter time 

scales (3 and 6 months), while in longer time scales (12 to 48 months) dry periods of both 

indices remained the same. General results showed the SPEI performing better for short-term 

droughts, while the sc-PDSI for long-term droughts. 

A modified version of the PDSI (MPDSI) proposed by KANG & SRIDHAR (2017) 

was applied in Virginia State, US. They compared the MPDSI performance with the 

Standardized Soil moisture Index (SSI) and the Multivariate Standardized Drought Index 

(MSDI). Results showed increase in agricultural droughts due to high evapotranspiration rates, 

groundwater and surface flow. 

A comparison between the SPI and PDI (a modified version of the PDSI to apply in 

water supply monitoring) was made by GUTTMAN (1998). Results of the spectral analysis 

showed the PDI lags behind the SPI in shorter time scales (less than 1 year), while in longer 

time scales both present the same drought behaviour. Results also showed a spatial variation 

between both indices and the author arguments that this happens due to the variation in both 

potential evapotranspiration and groundwater flow, since both depend on the soil use of each 

region. 

The temperature influences the evapotranspiration rates and TOUMA et al. (2015) 

applied the SPEI, SPI, SRI, and the Supply-Demand Drought Index (SDDI) worldwide to 

evaluate the drought magnitude due to changes in precipitation, temperature and soil moisture. 

Results showed increasing exceptional droughts in terms of duration, spatial extent and 
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occurrence in tropical and subtropical regions. They found higher changes in the SPEI and 

SDDI, concluding that temperature influences the results, when compared to changes in the SPI 

and SRI. 

Other authors performed a study concentrating their research area in the countries 

United Kingdom (UK), Germany, Slovenia, Bulgaria and Norway (STAGGE et al., 2015). 

They combined the SPEI and SPI aiming at establishing a link between drought and its impact 

on society (energy, livestock, freshwater, public water supply, industry and agriculture). They 

compared the drought indices analysis with drought impact reports of the European Drought 

Impact Inventory (EDII). In each report category, there is a typical drought period (accumulated 

months). Two to 12 months anomalies explain the agricultural impacts, while the 6 to 12 months 

explain the energy and hydropower deficits. One to 3 months anomalies relate to freshwater 

and public water supply. They observed anomalies between the report predictions and observed 

series, as well as the feasibility in applying these reports (models) combined to meteorological 

drought indices. 

WANG et al. (2019) proposed a modification in the SPEI, combining it with the runoff 

series and used a two-dimensional copula function. The Standardized Precipitation 

Evapotranspiration Runoff Index (SPERI) used the Penman-Monteith to compute the PET. 

Results showed similar relationships between SPEI and SPI applications and presented a good 

performance for the 3-month SPERI, when compared to the SPEI and SPI. 

MARCOS-GARCIA et al. (2017) made a comparison between the SPI and SPEI and 

applied the Thornthwaite method for a better intra-annual representation of the PET in the 

Spanish Jucar River basin. Results showed an increase in magnitude and intensity of drought 

events in climate change scenarios, in both meteorological and hydrological droughts. They 

suggest these increases occurred due to both increasing evapotranspiration rates and rainfall 

reduction. The SPI may underestimate drought severity since it neglects the temperature in its 

formulation. 

In the work of SPINONI et al. (2017), the Hargreaves-Samani method was applied in 

the SPEI. The authors compared the SPEI results with the SPI and studied the short-term 

droughts (3-months) in the European continent. General results showed more severe and 

frequent dry events since 1980s in Mediterranean, Central Europe and Eastern Europe in the 

summer, spring and autumn, respectively. BYAKATONDA et al. (2018) concluded the SPI 

overestimates the winter season and the SPEI better represents the drought spatial coverage. 
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Other researchers compared the SPI with other indices, like the Standardized 

Streamflow Index (SSI). WU et al. (2018) compared both indices aiming at evaluating the 

operational rules impacts in reservoirs in different timescales (e.g. 1, 3, 6, 12, and 24 months). 

They correlated the pre- and post-reservoir levels with both indices results. They found changes 

in linear correlation between meteorological and hydrological droughts, comparing the post- 

and pre-reservoir levels. For 1 to 3-month (short-term) droughts, both indices alleviated the 

drought magnitude and duration. 

Some researchers compared the SPI with other indices, like the RDI. TSAKIRIS et al. 

(2007) compared both indices with the deciles method to evaluate drought events in the Greek 

Nestos and Mornos River basins. They concluded the RDI performs better when compared to 

both SPI and deciles method to represent drought severities. 

ZARCH et al. (2011) applied the SPI and RDI across Iran and found slight differences 

between them. They relate these differences to potential evapotranspiration, which was 

computed using the Penman-Monteith method. They also found significant correlations 

between both indices in short-term accumulation periods (3, 6, and 9 months). 

In another study, ZARCH et al. (2015) evaluated the effect of considering the potential 

evapotranspiration in drought analysis. They applied both SPI and RDI worldwide and 

concluded that there is no significant trend across meteorological stations in the world, except 

in arid regions, which presented upward and downward trends. They highlight the importance 

of considering the potential evapotranspiration to compute these indices in climate change 

studies. They showed differences in both indices results in different climate types, i.e., hyper-

arid to humid zones (RDI tends to become drier in humid zones). 

In Kentucky River Basin, US, CHATTOPADHYAY et al. (2017) evaluated climate 

change impacts applying the RDI. According to them, meteorological droughts show a slight 

decrease in intensity but duration may remain the same, when comparing the baseline period 

with the projected future of RCMs. The hydrological drought durations may increase in the 

future, while the intensity may decrease. They also applied the Streamflow Drought Index (SDI) 

to evaluate hydrological droughts. 

HUANG et al. (2017) applied both Standardized Streamflow Index (SSI) and SPI to 

evaluate streamflow series. They aimed at analysing the change of meteorological to 

hydrological droughts using also, the cross-wavelet analysis to compare correlations between 
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these two types of droughts. Results showed that both winter and autumn presented long 

duration, while summer and spring presented short duration, as well as positive statistical 

linkages were found in short and long-time scales. 

 

1.6. Drought analysis in Brazil and Southern America 
 

Usually, researchers perform drought analysis studies in regions where there is a 

constant lack of precipitation, like in deserts, arid and semiarid areas. The Northeast Brazil 

(NEB) is a semiarid region. MARENGO et al. (2017) show rising temperature trends and 

precipitation reduction in NEB along the future. According to them, between 2012 and 2015, 

NEB suffered severe drought impacts that affected farming and pasture, and consequently, both 

society and economy. 

SILVA et al. (2016) evaluated the space-time variability in NEB of both streamflow 

and precipitation applying the Shannon entropy principle, which evaluates the random process 

uncertainty. Spatial patterns generated by Shannon entropy led the authors to understand the 

NEB streamflow and rainfall characteristics. They also found that rainy season and annual 

features affected the total relative entropy of both series. VAN OEL et al. (2018) evaluated 

droughts due to the reservoir network impacts, applying both SPI and Standardized Streamflow 

Index (SSI). They showed the reservoir stored water volume during a drought period. 

One of drought impacts in water resources relies in hydropower generation, and Brazil 

is a largely affected country (LIMA, 2014). In a country highly dependent on hydropower 

generation, it is necessary to evaluate and forecast drought events in order to reduce their 

socioeconomic impacts. According to JONG et al. (2019), more than 80% of the Brazilian 

electricity comes from renewable sources and the hydropower plants generate around 64% of 

the national electricity demand (ANEEL, 2018). In Brazil, low-level reservoirs imply thermal 

power generation and thus increase electricity cost. 

According to JONG et al. (2019), high temperatures and reduced precipitation patterns 

occurred over the end of the last century in NEB. They observed this behaviour in the Sao 

Francisco River basin and they believe these effects occur in response of the climate change 

impacts. They also found the 3.6% radiation increase in NEB might be a consequence of climate 

changes. They compared the past (1970s) to the future (2080s) scenarios. BARBOSA & 
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KUMAR (2016) identified patterns between rainfall and vegetation dynamics in a 

spatiotemporal analysis in Brazil. Results showed a higher correlation between SPI and 

Standardized Difference Vegetation Index (SDVI) in the 3-month analysis. 

Droughts also occur in regions where there are high rainfall rates during the year, like 

the Southern Brazil. CARVALHO et al. (2013) studied the drought phenomena in the South, 

Southeast and Midwest of Brazil and determined the return period as well as dry spell 

occurrence. Results showed that increasing drought trends occur due to the irregular rainfall 

distribution in the Midwest region. In South and Southeast, results pointed rainfall decrease 

leading to dry spell reduction. In Midwest, a damage to agriculture leads to losses in grain 

filling and flowering phases. Results also showed the South region is the most vulnerable in 

terms of dry spell intensity. 

The city of Sao Paulo suffered an intense drought between 2014 and 2015. This drought 

is the worst in 100 years, where the Cantareira storage (main water supply of the city) was 

around 6% of its capacity in February of 2015. SORIANO et al. (2016) attribute the Sao Paulo 

longest drought to irregular occupation of the banks allied to a poor planning in distribution and 

supply. The Sao Paulo government declared this drought as a public calamity and applied bonus 

payments for water consumption decreases. 

SOBRAL et al. (2019) evaluated the relationship between the annual SPI and ENSO as 

well as drought trends. They applied the SPI in hydrological stations located across Rio de 

Janeiro State, Brazil. They found decreasing trends in the Centre and South regions, while found 

increasing trends in the North region. 

In the Upper Sao Francisco River catchment, SANTOS et al. (2019) applied the SPI and 

wavelet analysis to characterize drought events. They applied the continuous wavelet transform 

to investigate the teleconnections with the ENSO and Pacific Decadal Oscillation (PDO), in 

terms of time frequency information. When both PDO and ENSO cold phase coincides, the 

climate indices result in severe droughts in the wavelet analysis. For large-scale anomalies, 

researchers must investigate climate variations. 

VICENTE-SERRANO et al. (2015) found average decadal variations in Bolivian 

stations and differences in terms of spatiotemporal variability in the Amazonian region. They 

believe these differences relate to high atmospheric water content due to intense 

evapotranspiration rates of the forest. They applied both SPEI and SPI, and found drought 
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trends in the Bolivian Altiplano. They showed the temperature effect intensified drought 

severity and increased both duration and magnitude of drought events. 

Finally, MARENGO et al. (1998) applied the Mann-Kendall coupled with t-test and 

linear regression. They found negative and positive trends in the summer, with the first applying 

to the Sao Francisco River and to the Peruvian territory, while the last applies to the Parnaiba 

River basin. 

 

1.7. Tests and trend analysis 
 

It is important to analyse drought impacts and intensities in the future, as well as 

evaluate their relations with climate changes, analysing the simulated scenarios of temperature, 

precipitation and other variables, and identify possible trends of the drought events (KANG & 

SRIDHAR, 2017). 

According to ROUGÉ et al. (2013), the hydrological series (precipitation and 

streamflow) presented more trends due to anthropic and/or natural changes. It is important to 

detect these changes and eventual shifts in the series (gradual or abrupt) for a better water 

resources management and planning. 

A way to evaluate the extreme events consists in applying trend and changing point tests 

like Mann-Kendall (MK) and Pettitt (PT), respectively. The MK is a worldwide applied test to 

detect trends in the series and the World Meteorological Organization (WMO) recommends it 

for climate change studies (BACK, 2001; BARROS et al., 2011). According to COSCARELLI 

& CALOIERO (2012), the MK presented increasing trends in Italian rainfall patterns. 

In the work of WANG et al. (2008), they found changes in both rainfall and runoff in 

the Dongjiang River basin, China. They applied the MK, Kolmogorov-Smirnov (KS) and the 

quantiles test to verify changes in the probability distributions. A small variation in the annual 

extreme rainfall let them establish a relationship with climate changes. 

ROMANO et al. (2011) and SAYEMUZZAMAN & JHA (2014) applied the MK in 

precipitation and runoff series. The first authors found a decrease in the winter rainfalls and in 

the annual flows, concluding that the annual precipitation decrease relates to runoff decrease. 

SAYEMUZZAMAN & JHA (2014) analysed the historical period (last 50 years) of North 
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Carolina stations, US, and observed increasing trends in the winter at the same time they 

observed decreasing trends in the summer. 

GOCIC & TRAJKOVIC (2013) applied the MK combined with Spearman’s Rho test, 

and linear regression in Serbian stations. They found between October and January an 

increasing trend, while in February to September a decreasing trend in the monthly analysis. 

Results also showed no significant trends in the seasonal analysis, except in the winter and 

autumn. They also applied the SPI, where two stations presented decreasing trend in the SPI 

annual analysis, while the other ten presented increasing trends. 

GÜÇLÜ (2018) applied the Linear Regression (LR), Spearman’s Rho, partial Mann-

Kendall, and the Sen’s slope to identify possible trends in temperature, runoff and precipitation 

series. They applied all methods in different stations located sparsely in Turkey and results 

showed improvement in trend analysis, when comparing all methods. 

It is possible to combine the Mann-Kendall (MK) and Sen’s slope estimator, as 

performed SHIRU et al. (2019) across Nigeria. They applied the Sen’s slope to quantify 

droughts combined with the MK to evaluate trends. They evaluated temperature and 

precipitation trends using a 10-year time step and a 50-year moving window to evaluate 

temporal drought variations. Results showed increasing drought severity in all cropping of 

Nigerian seasons. They found the precipitation in tropical savannah and monsoon areas, and 

the temperature in semiarid areas, were the main drivers of the increasing trends. They suggest 

the global warming alters the temperature rates, increasing both frequency and severity of 

droughts. 

AHMED et al. (2018) applied both 10-year time step and 50-year moving window as 

evaluation methods for analysing drought temporal variations. They analysed climate change 

impacts and climate variability across Pakistan. They found increasing drought frequencies due 

to the increasing temperature in crop seasons. Results indicate increasing drought frequency 

and severity related to global warming mainly in arid areas. 

The Mann-Kendall test and Pre-Whitening Trend (PWT) method were applied by 

MODARRES et al. (2016). They aimed at verifying trends and serial correlation in the 

magnitude of droughts and floods in Iran. They found significant increasing trends after the 

PWT application, and found decreasing trends in flood magnitude and increasing trends in 
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drought severity. They relate both decreasing and increasing trends with the land use changes, 

and the increasing trends with the annual precipitation. 

In the works performed by GROPPO et al. (2001), MESCHIATTI et al. (2012) and 

ROUGÉ et al. (2013), they applied both MK and Pettitt tests and found increasing trends in the 

precipitation series. The temperature series presented increasing trends in the works of 

MESCHIATTI et al. (2012) and ROUGÉ et al. (2013). MESCHIATTI et al. (2012) also 

analysed the streamflow series that presented positive trends in the major studied rivers, and 

just one presented a negative trend. 

The Pettitt test is widely applied to detect changing point in the series. ROUGÉ et al. 

(2013) combined both MK and Pettitt tests to evaluate abrupt or gradual shifts in the series 

across US. Results showed a decrease in temperature in Southeast US, while in other areas a 

linear increase. According to ENGSTRÖM & WAYLEN (2017), there is a limited long-term 

information in the water resources series. 

In the same work, ENGSTRÖM & WAYLEN (2017) analysed long-term changes using 

streamflow and precipitation data and applied the Pettitt test to detect the changing point in the 

series of the Southeast US. Results showed a strong relationship between the Atlantic 

Multidecadal Oscillation (AMO) and hurricanes precipitation with long-term and seasonal 

changes in the precipitation-runoff after 1990. 

General studies applied the MK test combined with many other methods, as did 

ZHANG et al. (2018) using the Kling-Gupta efficiency method. Results showed precipitation 

occurrence increase, and that potential evapotranspiration increases the drought peak value. 

They suggest the increases in duration, peak value and severity of hydrological droughts may 

relate to human activities in the middle Yangtze River, China. According to them, human 

activities and climate variation are the main drivers to alter the drought severity. 

CARVALHO et al. (2013) evaluated the non-stationarity by Dickey-Fuller test and 

applied the MK test to verify the significance of the positive drought trend. They applied the 

percentile-percentile (PP) plots and the Kolmogorov-Smirnov (KS) test to verify the goodness-

of-fit of the Generalized Extreme Value (GEV) probability distribution. They used the 

maximum likelihood method for parameters estimation. 

Given the application of both trend and changing point tests around the world, it is 

useful to perform drought analysis using these tests. The traditional drought indices are based 
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on fitting a stationary probability distribution, at the same time several meteorological stations 

present non-stationarity. For this reason, it is recommendable to apply the non-stationary 

drought analysis in drought series, using trend and changing point tests for non-stationarity 

detection. 

It is important to highlight that both MK and Pettitt tests results may have impacts due 

to the series length in each study, i.e., both tests results may change under the time period 

considered. In this sense, KOUTSOYIANNIS (2006) states “the longer is the observation 

period, the more truthful is the picture of the runoff variation through time”. In the same paper, 

KOUTSOYIANNIS (2006) discussed about the scaling approach and according to the author, 

a time series piece can result non-stationary behaviour after the non-stationary tests application. 

However, considering the entire series, this non-stationarity does not exist and the series is 

stationary, according to MK and Pettitt tests results. This is the main advantage in using non-

stationary tests detection to evaluate the time series non-stationarity, since it can change 

depending on the time series length. 

 

1.8. Non-stationary Frequency Analysis (NFA) 
 

The Non-stationary Frequency Analysis (NFA) is a possible solution to deal with 

fluctuations, trends and changing points in the meteorological series statistics. Before applying 

the NFA, it is useful the application of specific tests to verify the stationarity in the series. Under 

a non-stationarity verification, some researchers perform the NFA fitting probability 

distributions varying in time. They perform it varying one or more parameters of the probability 

distributions and verifying possible trends in the estimated parameters. 

Researchers that analyse droughts first establish a relationship between variables 

(drought indices formulation) and then fit a probability distribution to them in order to obtain 

information about duration, intensity and magnitude. A probability distribution fitting relies on 

a stationarity premise, and most of hydrological variables are non-stationary. In this way, there 

is a conceptual inconsistency in fitting stationary distributions to non-stationary series. 

Stationarity is the statistical balance of a stochastic process (DETZEL, 2015), in other 

words, when the mean of the time series remains constant over time. This behaviour does not 

happen in mostly of the time and the non-stationary pattern expects to become more frequent 
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in hydro-climatological variables due to climate change impacts. Signs of non-stationary 

pattern in time series are the presence of random walks, cycles, trends, changing points, or the 

combination of two or more. However, the stationary pattern in time series indicate that there 

are not variations in variance, covariance and/or mean. A stochastic process balance when their 

statistical properties does not depend on time means a stationary pattern. Changes in hydro-

meteorological stations like relocation, as well as changes in hydro-meteorological variables 

and soil use can reflect in non-stationarity (NAGHETTINI & PINTO, 2007). 

There are two stationarity types: (1) Strict Sense Stationarity (SSS) and (2) Wide Sense 

Stationarity (WSS). The first is defined by  

where the term  is the variable  joint density function. The second relies 

in the weak or wide sense, where  and 

, being  the  variables mean and  the covariance of  

and  (PAPOULIS, 1965; PEDROZO, 2017). In the work of CHENG & 

AGHAKOUCHAK (2014), results showed low differences between stationary and non-

stationary modelling. 

There are many works in the literature using the non-stationary frequency analysis to 

analyse rainfall extremes, as well as drought series fitting a stationary probability distribution. 

Recently, few researchers have studied the non-stationary approach for droughts and this is the 

main contribution of this dissertation. 

Some authors attribute the non-stationarity within hydrological series (mainly 

precipitation) to climate change and/or climate variability (ZHANG et al., 2010). Some 

researchers performed the NFA in extreme rainfall series in different countries around the 

world. YILMAZ & PERERA (2014) fitted the Generalized Extreme Value (GEV) and 

identified the changing point year (1967), and split the series in 1925 to 1966 and 1967 to 2010. 

They did not find significant difference in extreme rainfall trends, comparing the stationary and 

non-stationary GEV models. 

The authors VU & MISHRA (2019) also evaluated the rainfall extremes and applied 

the non-stationary GEV, where they varied both location and scale parameter over time. They 

used the time-covariate as well as other time-varying covariates, such as mean and maximum 

temperature, and the ENSO cycle. Results showed that different combinations and type of 
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covariates could result in increased precipitation events. Results also showed the return periods 

of the stationary method are higher, when compared to the non-stationary method. 

Other researchers apply different methods to evaluate rainfall extremes, such did 

SUGAHARA et al. (2009) applying the Peaks over Threshold (POT) method and the 

Generalized Pareto Distribution (GPD) in Sao Paulo, Brazil. They maintained the shape 

parameter constant and varied the scale parameter. In the fitted models, results showed the scale 

parameter presented positive trend. 

CHENG & AGHAKOUCHAK (2014) evaluated trends in the hydro-meteorological 

variables applying the NFA. They used the non-stationary Intensity-Duration-Frequency (IDF) 

curves, occurrence of extremes and uncertainties using the Generalized Extreme Value (GEV) 

distribution and the Bayesian inference (for uncertainty analysis). They concluded after 

applying the Mann-Kendall (MK) test that there are underestimation of extreme rainfall in the 

IDF curves of around 60%. 

AGILAN & UMAMAHESH (2017) fitted the non-stationary GEV distribution using 

time as covariate in the analysis in the Hyderabad city, India. They applied the corrected Akaike 

Information Criterion (AICc) value to evaluate the duration of rainfall series and modelled the 

physical covariates in two sections: (1) the location parameter is non-stationary and (2) the 

location and scale parameter are non-stationary. They found underestimation in the extreme 

events, comparing the stationary and the non-stationary models. 

Some authors applied the variation of parameters on time, as did LI et al. (2019), who 

developed a non-stationary model to analyse the frequency of the intensity and rainfall volume 

of daily precipitation. They applied a 30-period moving window to investigate the temporal and 

dependence evolution of the linear regression analysis in the parameters series. They fitted the 

GEV distribution to model the marginal distribution and results showed an increase in both 

rainfall intensity and volume for the study region. They highlight the importance of developing 

non-stationary analysis in rainfall series. 

The Generalized Addictive Models for Location, Scale and Shape (GAMLSS) are 

another tool to perform the NFA. OSORIO & GALIANO (2012) applied them combined with 

a bootstrap technique. They aimed at fitting Probability Density Functions (PDF) to the 

maximum dry spells in annual monsoon series in the Senegal River Basin. Results showed an 
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increase in both variance and mean of the annual drought spells, along with an increase of dry 

spell lengths. 

Another application of the GAMLSS occurred in the work of GU et al. (2016). They 

modelled the flood occurrences and frequencies using the Peak over Threshold (POT) and 

GAMLSS methods, respectively. They found non-stationarity in the floods and observed an 

increase in the flood magnitude and frequency in the 1990s. They found two periods of 

increasing floods occurrence and some fluctuations. The non-stationary models represented 

well the floods occurrence and its fluctuations. 

SUN et al. (2018) applied the GAMLSS combined with the Pettitt method to evaluate 

the monthly flood frequency across Huai River basin, China. Results showed six stationary and 

three non-stationary flow series. They fitted both 2-parameter Lognormal (LN2) and Weibull 

distributions to the flow series, suggesting the Weibull as the most appropriate. This analysis 

let them conclude that fitting the Pearson Type III and considering the stationary premise when 

it is non-stationary, produced biased flood frequencies. 

Finally, RASHID & BEECHAM (2019) applied the GAMLSS in the Southern 

Australia. They developed the Non-stationary Standardized Precipitation Index (NSPI) and 

incorporated climate indices as external covariates. They showed that a non-stationary model 

better reproduces droughts. Results showed that drought duration and severity are significantly 

different, when comparing the NSPI to the stationary SPI. 

 

1.9. Chapter summary 
 

A general overview about research of climate change impacts in hydro-meteorological 

series and correlated studies performed around the world was presented. Researchers believe 

these impacts alter significantly the drought event occurrences and consequently affect the 

world climate. 

The climate model scenarios as well as the bias correction methods, in order to perform 

the drought analysis of the future drought series were also briefly presented. According to the 

subsection 1.2, the most used bias correction methods are: Linear Scaling (LS), Power 

Transformation (PT), Variance Scaling (VARI) and Empirical Quantile Mapping (EQM). 
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Subsections 1.3 until 1.6 provided a general overview of the drought phenomena, 

including the worldwide division of the drought types in meteorological, hydrological, 

agricultural, operational and socioeconomic. In this dissertation, the focus is on meteorological 

droughts only. 

The following subsections provided the most applied drought indices all over the world 

to assess meteorological droughts, and the Reconnaissance Drought Index (RDI) is the chosen 

model to apply in this research. 

Hence, the drought analysis in Brazil was presented, showing the need in study droughts 

not only in semiarid regions, but also in humid areas with a non-stationary pattern, like the 

Southern Brazil. These regions usually present drought events and it is important to evaluate 

them for water resources management and planning, in both domestic and industrial water 

supply, as well as in the hydropower generation sector. 

Finally, it was briefly presented the application in literature of both trend and changing 

point tests to verify the hydro-meteorological series stationarity or non-stationarity. These 

recent studies in rainfall and floods provide the premise to perform the NFA in droughts. Hence, 

the general NFA performed around the world was presented, indicating that it is feasible to 

apply simple probabilistic models for a local drought analysis. 
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2. METHODS 
 

This chapter describes the methods applied to investigate the hypothesis of this 

dissertation that drought statistics vary under a non-stationary approach. The literature review 

presented some aspects of the drought analysis analysing both past and future series of 

meteorological variables. The present work used both monthly mean precipitation and 

temperature series to perform the drought analysis. The implementation of all methods occurred 

in Python environment. The first subsection of this chapter is the flowchart, which introduces 

the steps of the analysis. The detail of all applied methods is described in the next subsections 

to achieve this dissertation main goal of performing a non-stationary drought analysis in climate 

change scenarios. 

 

2.1. Dissertation’s flowchart 
 

The dissertation follows the flowchart presented in the Figure 1. Step 1 is the acquisition 

of historical monthly mean precipitation and temperature data from governmental institutions, 

as explained in the subsection 3.2. Step 2 is the application of the simple linear regression filling 

in missing observations in the series, using the closest (neighbour) meteorological stations. If 

data are missing in some of the closest stations, the arithmetic mean between the four closest 

values was computed for the respective month (e.g. four months above in the end of the series, 

four months below in the beginning of the series or two months “previous and after” in the 

middle of the series). 

Step 3 is the acquisition of the baseline series (for comparison with the historical series) 

and the future series. Step 4 is the application of bias correction methods to regionalize the data, 

according to the observed series. The bias correction methods applied are Linear Scaling (LS), 

Empirical Quantile Mapping (EQM) for precipitation and temperature and the Power 

Transformation (PT) for precipitation only and the Variance scaling (VARI) for temperature 

only. Analysing the descriptive statistics (mean, standard deviation, minimum, maximum, 

kurtosis, skewness, and percentiles at 5%, 10%, 25%, 50%, 75%, 90% and 95%), the best 

regionalization performance among the bias correction methods was applied. The Mean 

Absolute Error (MAE) coefficient was also computed to evaluate the bias correction methods. 
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Step 5 is the computation of potential evapotranspiration using the Thornthwaite 

method in both historical and future series. Along with the temperature, in order to perform the 

computation, it is necessary to include the daylight length as an input data, downloaded via a 

public domain website, as explained in detail in the chapter Study Area and Data. 

 

Figure 1 – Dissertations’ flowchart. 

 

Font: Author.1 

 

Step 6 is the computation of the Reconnaissance Drought Index (RDI), considering 

precipitation and potential evapotranspiration series. The  values correspond to the respective 

drought index. This step also contemplates the computation of the drought indices in different 

accumulation periods (3, 6, 12, 24, 36, 48 and 60 months), which is proposed worldwide by 

drought researchers. The Palmer Drought Severity Index (PDSI) was not used in this 

dissertation due to the large amount of data required for computation. Both Standardized 

Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) 

applications occurred, being discarded due to the great amount of computed data. 

                                                           
1 Note: P is the precipitation monthly series; T is the temperature monthly series, PET is the potential 
evapotranspiration and  are the indices series (SPI, RDI and SPEI). MK is the Mann-Kendall test application, 
PT is the Pettitt test application and CP relates to the changing point. STAT refers to stationary approach, while 
NONSTAT refers to the non-stationary approach. 
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There are few studies in the literature review incorporating the non-stationary analysis 

in drought indices, as presented in the previous chapter. This dissertation proposes the 

development of a different approach for drought analysis, splitting the original series in the 

point where the change occurs and then fitting a probability distribution in the split series. In 

order to test the hypothesis of this research, it is necessary to apply tests for trend and changing 

point. This research used the Mann Kendall (MK) and Pettitt (PT) tests to verify trend and 

changing point, respectively. The application occurs in both original (monthly precipitation and 

temperature series) and accumulated (3- to 60-month accumulation series) to verify differences 

(in terms of trend and changing point) between them. 

If some series presented trend and/or changing point in both monthly and accumulated 

series, these series were split in the changing point. Thus, a probability distribution was fitted 

from the beginning to the changing point, and from the changing point to the end of the series; 

resulting in two gamma fits. Then, the original and split series comparison using drought 

statistics such as magnitude, frequency, duration, minimum values (intensity), provide the best 

performance among the fitted models. The maximum values analysis are unnecessary since the 

focus is the drought analysis, i.e., minimum values only. The maximum likelihood estimator 

was used to estimate the parameters of the gamma probability distribution. 

In the work of PLOSZAI et al. (2019), the authors evaluated four probability 

distributions applied in the Reconnaissance Drought Index (RDI) in the Parana State. They 

fitted the 2-parameter Gamma, 2-parameter Lognormal, Generalized Extreme Value type I and 

Weibull. They evaluated the distributions performance using both Kolmogorov-Smirnov and 

Anderson Darling adherence tests. They found that gamma distribution presented the best fit, 

among them. For this reason, the gamma distribution was chosen in this work. 

Since droughts are persistent events, different of floods that are determined by a specific 

event, the drought analysis generally are based on drought indices computation, instead of the 

return period computation, that occurs for flood analysis. The gamma probability distribution 

fitting is an auxiliary method to the drought indices computation. 

Step 7 is the computation of both Mann-Kendall and Pettitt tests in the drought indices 

and monthly series for a later comparison. Step 8 is the non-stationary analysis application 

(fitting gamma distributions to the split series). Step 9 is the comparison of the original  

series (before split or stationary approach) and the  split series (split in the changing point or 

non-stationary approach). 
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Step 10 is the application of typical drought statistics, like the drought magnitude (run 

theory), frequency, intensity and duration. The number of differences under a given threshold 

(e.g., -1.0 and -1.5) compares the performance of both stationary and non-stationary 

approaches. The drought magnitude analysis provided the mean, median and maximum 

magnitudes that were used in order to choose between the stationary and non-stationary 

approaches. 

Step 11 is the application of the 30-period moving window analysis to verify the 

evolution of the gamma fit parameters (shape, location and scale) and the minimum values in 

all split meteorological stations. It was necessary to fit a linear regression line in the parameters 

series to analyse their temporal evolution. This step helps analysing the parameters temporal 

variation in a non-stationary approach. See sections 2.2 Non-stationary Frequency Analysis 

(NFA) and 4.7 Moving window for more details. 

Steps 12 and 13 are the non-stationary analysis to choose which approach is the most 

suitable to perform the drought analysis, when comparing drought statistics and visual graphs 

(run theory and moving window analysis). Both steps 12 and 13 are the application of this 

dissertation hypothesis that drought statistics vary under a non-stationary approach, achieving 

the main goal of performing a non-stationary drought analysis in climate change scenarios. Step 

14 is the drought analysis in both past and future series for the study region. 

According to FILL et al. (2013) in the CLARIS LPB project, the most suitable models 

for Southern America are the RCA1, PROMES and ETA (LPB, 2012). PLOSZAI & MINE 

(2016) pointed the most suitable for the study region is the RCM ETA and it was used in this 

dissertation. 

 

2.2. Non-stationary Frequency Analysis (NFA) 
 

In the Non-stationary Frequency Analysis (NFA), YILMAZ & PERERA (2014) and 

BEGUERIA et al. (2011) point that samples with lower sizes (e.g. short data record) affect the 

GEV parameters estimation. They fitted the GEV distribution to the rainfall series, as presented 

in the literature review. KOUTSOYIANNIS (2006) defends the 30-year window is the 

minimum length of series to perform any statistical analysis. According to him, in climatology 

this time window is “sufficient to smooth out transient characteristics of a time series and yield 
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a value representative of the climate”. VAN LOON (2015) applied a moving window of 30 

days to characterize drought events. 

Although some authors state that both Generalized Pareto Distribution (GPD) and GEV 

distributions are the best to perform non-stationary frequency analysis (YILMAZ & PERERA, 

2014; COOLEY 2009; BEGUEIRA ET AL. 2011), this dissertation considers the application 

of the gamma distribution for the drought series, because the gamma distribution is the most 

used for drought analysis (TSAKIRIS, 2005; KOUSARI et al., 2014). The gamma distribution 

presented the best fit in application of the RDI in the Parana State (PLOSZAI et al., 2019). The 

application of the non-stationary approach for drought analysis is the main innovation of this 

dissertation. 

The non-stationary analysis applied to the drought indices came up looking at the 

behaviour of meteorological variables in the referred region (Parana State). Since there is non-

stationarity in the Parana series, applying the proposed method helps in identifying which of 

them present non-stationarity and fit a gamma distribution in the first and second parts 

separately. Hence, it is necessary to split the RDI series. In case of non-exact split when 

accumulating the RDI series, they were split in the closest position that returned an integer 

number for posterior RDI accumulation. 

The moving window is a correlated analysis, characterized by the selection of a time 

window (30 accumulation periods), fitting the gamma probability distribution in every time 

step, and moving the time window until the end of the series, obtaining a set of parameters of 

the gamma distribution. Through parameters graphs, it is possible to evaluate trend in each one 

of these sets of parameters. The algorithm applied the 30-period moving window analysis in 

this dissertation. 

 

2.3. Linear regression for gaps filling in 
 

The Simple Linear Regression (SLR) method is used for filling in the gaps in both 

precipitation and temperature series. The minimum correlation coefficient  may be 

considered a SLR good performance (VITART et al., 2001; PEÑA-GALLARDO et al., 2019) 

between pairs of meteorological stations. The Equation (1) represents the SLR method. 
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 (1) 

 

where  is the variable (precipitation or temperature) to fill in ;  is the variable of 

the neighbouring station used to fill in the gaps;  is the angular coefficient;  is the linear 

coefficient (intercept) and  is the SLR error (SHARMA et al., 2000). 

 

2.4. Bias correction methods 
 

Precipitation and temperature data generated from Global Climate Models (GCM) 

simulations are downscaled to the Regional Climate Models (RCM), producing bias in the 

series. There are several bias correction methods to remove these inconsistencies before 

applying the RCM outputs in any study. According to the literature review, the most applied 

bias correction methods are the Linear Scaling (LS), Empirical Quantile Mapping (EQM) for 

both precipitation and temperature, and the Power Transformation (PT) for precipitation only 

and the Variance scaling (VARI) for temperature only. 

 

2.4.1. Linear scaling 
 

The Linear Scaling (LS) method corrects the bias of meteorological variables in 

monthly scale, as presented by Equation (2). 

 

 (2) 

 

where  is the simulated RCM variable at time ;  is the simulated variable with 

corrected bias at time ;  is the mean of the observed variables and  is the mean 

of the simulated variables (LENDERINK et al., 2007; TEUTSCHBEIN e SEIBERT, 2012). 
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2.4.2. Power transformation 
 

The Power Transformation (PT) method corrects only the precipitation bias and before 

applying it, according to FANG et al. (2015) and TEUTSCHBEIN & SEIBERT (2012), it is 

necessary to apply the Local Intensity Scale (LOCI) method, as presented by Equations (3) and 

(4). 

 

 (3) 

 (4) 

 

Before applying the PT method, we estimate the  as presented by Equation (5). 

 

 (5) 

 

where  is the m-month,  is the standard deviation,  is the mean and  is the corrected 

variable of the m-month by the LOCI method. The  is the exceedance threshold for wet-

day observation frequency for the m-month. The series construction occurs after determining 

the , as presented by Equation (6) (FANG et al., 2015). 

 

 (6) 

 

where  is the simulated RCM variable at time ;  is the simulated variable with 

corrected bias at time :  is the mean of the observed variables;  is the mean of 

the simulated variables;  is the mean of values. The variable  is the difference between 

observed and LOCI variation coefficients in the m-month;  is the standard deviation;  

is the corrected variable of the m-month by the LOCI method;  is the bias corrected series; 
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 is the m-month simulated precipitation;  is the m-month precipitation limit for raw 

(observed) series and  is the m-month observed precipitation. 

 

2.4.3. Variance Scaling 
 

The Variance Scaling (VARI) method is a good tool to correct the bias of the 

temperature series, correcting both variance and mean of the simulated series (CHEN et al., 

2011). According to TEUTSCHBEIN & SEIBERT (2012), the first step is the adjust of RCM 

variables, using the LS equation and then using both scenario runs  and mean-

corrected control , shifting to a monthly zero mean basis, as presented by 

Equations (7) and (8). 

 

 (7) 

 (8) 

 

Hence, the standard deviation scaling bases on the ratio below, as presented by 

Equations (9) and (10). 

 

 (9) 

 (10) 

 

Follow the computation of the sigma-corrected series and shift back using the corrected 

mean, as presented by Equations (11) and (12) (TEUTSCHBEIN & SEIBERT, 2012). 

 

 (11) 

 (12) 
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where  is the first step of scenario runs;  is the first step of mean-corrected 

control run (simulated);  is the second step of mean-corrected control run 

(simulated);  is the mean of the RCM-simulated series;  is the second step of 

scenario runs and  is the standard deviation of the corrected time series. The variable  

is the observed variable;  is the third step of mean-corrected control run (simulated) 

and  is the third step of scenario runs. The authors TEUTSCHBEIN & SEIBERT 

(2012) affirm that this method guarantees the same variance between control run (baseline) 

period and observed values (historical). 

 

2.4.4. Empirical Quantile Mapping 
 

The Empirical Quantile Mapping (EQM) corrects the bias simulation of both 

temperature and precipitation series at monthly scale using the Equation (13). According to 

FANG et al. (2015), the EQM application is expressed by both empirical CDF  

and its inverse  for all distributions fitted, as presented by Equation (13). The 

variable  represents the bias corrected variable through the EQM method and the  

represents the simulated variable at m-month. 

 

 (13) 

 

2.4.5. Mean Absolute Error 

 

The Mean Absolute Error (MAE) computes the difference between observed and 

modelled data. It consists in the average of the absolute errors (LI et al., 2017). Equation (14) 

represents the MAE. 

 

 (14) 
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where  is the number of observations or simulations in monthly scale,  is the modelled data 

at time , and  is the observed or simulated data at time . The MAE uses the same scale as 

the values (observed and simulated) and it is a useful measure for time series analysis and as a 

forecasting measure. 

 

2.5. Drought indices 
 

Researchers from all over the world evaluate droughts using drought indices. In general, 

under different approaches of drought analysis, there is an agreement between indices and 

accumulation periods in terms of drought intervals. The Drought Interval (DI) is the measure 

of the standardized drought indices, such the Reconnaissance Drought Index (RDI). 

 

Table 1 – Drought classification and the respective intervals. 

Indices classification Drought Interval (DI) 
Extreme drought DI ≥ -2 
Severe drought -1,99 ≤ DI ≤ -1,50 

Moderate drought -1,49 ≤ DI ≤ -1,00 
Normal -0,99 ≤ DI ≤ 0,99 

Moderate wet 1,00 ≤ DI ≤ 1,49 
Severe wet 1,50 ≤ DI ≤ 1,90 

Extreme wet DI ≥ 2 
Font: adapted from Mohammed & Scholz (2017). 

 

In the indices, positive values indicate the wet season, while the negative values indicate 

the drought season. The negative values indicate the drought intensity and the Table 1 presents 

the drought intervals. Following the literature review, a drought below the (-1.0) threshold is a 

moderate drought and below the (-1.5) threshold is a severe drought. 

 

2.5.1. Standardized Precipitation Index 
 

The Standardized Precipitation Index (SPI) consists in the standardized form of the 

precipitation, as proposed by Equations (15) and (16). The SPI computation occurs in different 

timescales, accumulating (summing) the standardized precipitation (MCKEE et al., 1993). 



76 
 

 
 

 

 (15) 

 (16) 

 

where  is the monthly precipitation accumulated in  months;  is the total number of 

observations or simulations,  is the standardized SPI accumulated in  months;  is 

the SPI accumulated in  months;  is the mean of SPI accumulated in  months and  is the 

standard deviation of SPI accumulated in  months. 

 

2.5.2. Reconnaissance Drought Index 
 

The Reconnaissance Drought Index (RDI) initially proposed by TSAKIRIS & 

VANGELIS (2005) is the ratio between precipitation and potential evapotranspiration, 

represented by  in the Equation (17). 

 

 (17) 

 

where  is the monthly precipitation of month  and year  and  is the monthly potential 

evapotranspiration of month  and year  and  is the total number of observations or 

simulations. Both  and  computations occur at 3, 6, 12, 24, 36, 48 and 60 months 

accumulation periods. 

TSAKIRIS et al. (2008) and ZARCH et al. (2011) suggest the quarter scale (3-month) 

as the minimum in order to overcome the zeros in the series to fit the gamma or the 2-parameter 

lognormal (LN2) distributions. They state that gamma is the most suitable probability 

distribution to apply in drought indices. Equation (18) represents the standardized RDI 

. 
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 (18) 

 

where  is the arithmetic mean of the  series and  is the respective standard deviation. 

 

2.5.3. Standardized Precipitation Evapotranspiration Index 
 

The Standardized Precipitation Evapotranspiration Index (SPEI) consists in the 

standardized difference between precipitation and potential evapotranspiration, as proposed by 

Equation (19) and (20). The SPEI computation occurs in different timescales, accumulating  the 

difference of precipitation and potential evapotranspiration (VICENTE-SERRANO et al., 

2010). 

 

 (19) 

 (20) 

 

where  is the SPEI accumulated (summed) in  months;  is the monthly precipitation of 

month  and year  and  is the monthly potential evapotranspiration of month  and year  

and  is the total number of observations or simulations.  is the standardized SPEI 

accumulated in  months;  is the SPEI accumulated in  months;  is the SPEI arithmetic 

mean accumulated in  months and  is the SPEI standard deviation accumulated in  months. 

 

2.6. Potential evapotranspiration 
 

The Potential Evapotranspiration (PET) is the water amount transferred to the 

atmosphere by soil evaporation plus plants transpiration in a region, when the soil is saturated. 

This dissertation presents only the Thornthwaite method and results, since the comparison of 

performance among PET computation methods is beyond of this work scope. 
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2.6.1. Thornthwaite 
 

The Thornthwaite method considers only the temperature data and the average daylight 

length in its computation. Equations (21), (22) and (23) represent the method. 

 

 (21) 

 (22) 

 (23) 

 

where  is average day length (hours),  is the number of days in a month,  is the average 

temperature in monthly scale,  is the potential evapotranspiration in mm/month,  is the 

heat index. 

The authors TSAKIRIS et al. (2007) and VANGELIS et al. (2013) suggest applying the 

Thornthwaite and Blaney-Criddle method to compute the PET to perform drought studies. The 

Blaney-Criddle method requires the determination of the crop coefficient for both past and 

future drought series, causing difficulties in its determination in the future scenarios. The 

Thornthwaite considers only temperature in its computation and is ideal for regions where there 

are not sufficient data, like the interior of Brazil. The Hargraves, Priestley and Taylor, and 

Penman-Monteith methods require more data that are not available in most part of Brazil for 

their computation (data scarcity in Brazil). 

 

2.7. Gamma distribution 
 

The gamma distribution is widely applied in drought studies, according to the literature 

review. The gamma distribution presented the best fit in application of the RDI (PLOSZAI et 

al., 2019). The majority of authors point the gamma as the most used distribution for drought 

analysis, and the second is the LN2. TSAKIRIS & VANGELIS (2005), VANGELIS et al. 

(2013), HAO & SINGH (2015) and AMIN et al. (2015) point these two distributions are 

suitable for monthly or quarter (3-month) timescales and to overcome the “zeros issue” after 
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the procedure described below. The Equation (24) represents the Probability Density Function 

(PDF) of the gamma probability distribution. 

 

 (24) 

 

where  is the shape factor;  is the scale factor and  is the variable 

(precipitation or temperature). Equation (25) represents the gamma function. If  is a 

positive integer,  and . The location parameter in Python 

environment , means it is the inverse of the shape parameter. 

 

 (25) 

 

Equation (26) represents the Cumulative Density Function (CDF) of the gamma 

distribution (KOUSARI et al., 2014). 

 

 (26) 

 

To fit the gamma distribution to the sample, it requires the estimation of the  and 

 parameters, according to Equations (27), (28) e (29) (KOUSARI et al., 2014). The gamma 

distribution parameters were estimated applying the maximum likelihood estimator. 

 

 (27) 

 (28) 
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 (29) 

 

Substituting the  variable by , it returns the incomplete gamma function, 

represented by Equation (30). The gamma function is undefined for  and precipitation 

distributions may contain zeros (no rainfall), hence Equation (31) represents a modified 

cumulative probability distribution. 

 

 (30) 

 (31) 

 

where  is the zero precipitation probability;  the incomplete cumulative gamma function, 

 is the number of zeros of the  series of the gamma probability distribution;  is the total 

number of records or simulations and . Hence, the standardization of the cumulative 

probability  is the  (standardized RDI) (TSAKIRIS et al., 2008, KOUSARI et al., 

2014). The procedure described in this paragraph allows fitting the gamma probability 

distribution in the presence of zeros in the RDI series. 

 

2.8. Mann Kendall test 
 

The Mann Kendall (MK) test is a non-parametric test widely applied to detect 

monotonic trends in the hydro-meteorological series, initially proposed by MANN (1945) and 

KENDALL & STUART (1963). Some authors state the MK is the most suitable test for climate 

change studies, since it can detect a long-term monotonic trend (MÜLLER et al., 1998; BACK, 

2001; BARROS et al., 2011; BUCHIR, 2013). 

It consists in comparing each value of the series in temporal order with another series 

in ascending order. Hence, it computes the number of times that the remaining terms are higher 

than the analysed. Equation (32) represents the  statistics. 
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 (32) 

 

where  is the number of observations;  is the ith observation in chronological series;  is 

the jth observation in the ordered series (rank). 

ROUGÉ et al. (2013) state the null hypothesis  that there is no change in the 

sequence of observations from both series. For a temporal series of  observations, the MK 

statistic uses the difference signal between two distinct observations (  e ), as represented by 

Equation (33). 

 

 (33) 

 

where  is the number of observations;  is the ith observation in chronological series;  is 

the jth observation in the ordered series (rank),  and . 

Under the null hypothesis,  is normally distributed and Equations (34), (35) and (36) 

provide the MK test statistic . 

 

 (34) 

 (35) 

 (36) 

 

To apply the test, the authors suggest 30 or more observations. The p-value is compared 

with the significance level . YILMAZ & PERERA (2014) point over the necessity 

to remove autocorrelation (pre-whitening) of hydrological data before applying the MK test. 

The MK test applies to all probability distributions (ZARCH et al., 2015). 
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2.9. Pettitt test 

 

The Pettitt test is a non-parametric test widely used to detect changing point in the series. 

ROUGÉ et al. (2013) affirm that the Pettitt test shows no alteration in the mean, when split 

arbitrarily the series. It produces a comparison based on the rank of observations before and 

after the date  through the Pettitt test statistics , as presented by Equation (37). 

 

 (37) 

 

where  is the number of observations;  is an observation before ;  is an observation 

after ;  is the ranking coefficient (arbitrary point of the sample split). 

For a temporal series of  observations, the Pettitt statistic uses the difference signal 

between two distinct observations (  e ), as presented by Equation (38). 

 

 (38) 

 

Equations (39) and (40) represent the changing point and the Pettitt test statistics, 

respectively. The variable  represents the maximum values along an axis of the Pettitt 

test and the  represents the maximum value of the Pettitt test. 

 

 (39) 

 (40) 
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Equation (41) represents the significance probability associated to the null hypothesis 

 rejection. 

 

 (41) 

 

2.10. Run Theory 
 

The drought indices applied in this dissertation are based on the run theory. According 

to PAULO & PEREIRA (2006), a set of observations succeeded or preceded by other 

observations, is a run. In other words, drought events are characterized by a sequence of 

negative values of the standardized precipitation in time, considering the zero as the critic value 

to separate droughts and floods. 

YEVJEVICH (1967) proposed a method to determine flow periods below a threshold 

level, as droughts. It is based on run theory, a statistical method to analyse sequential time 

series. The drought index distributions are based on the magnitude  (deficit volume or 

severity), intensity  and drought duration  as presented by Equation (42). Intensity 

computation follows the Equation (43) and drought duration characterizes by the onset and end 

of a drought period in the Run Theory (NAM et al., 2015). 

 

 (42) 

 (43) 

 

Both drought magnitude and duration are measured in months, while drought intensity 

is dimensionless. Since the final step of the indices computation is their standardization, it 

results in the dimensionless intensity. Different indices can have different recommendations of 

threshold levels (e.g. -0.5 for the SPI/SPEI and -1.0 for the PDSI) (NAM et al., 2015). Figure 

2 presents the run theory and the drought statistics, such duration, magnitude and severity. 
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Figure 2 – Run theory scheme. 

 

Font: YEVJEVICH (1967) apud NAM et al. (2015). 

 

Drought events are characterized below 0 threshold. Moderate droughts are 

characterized below -1.0 threshold and severe droughts are characterized below -1.5 threshold 

in the Run Theory. A more robust definition of the Run Theory thresholds is in the Table 1, 

subchapter 2.5 Drought indices. 

 

2.11. Chapter summary 

 

This chapter presented all methods to develop both stationary and non-stationary 

drought analysis, for analysing both past and future scenarios. It introduced the flowchart and 

each step description, and then presented all applied methods. 

It presented the Linear Regression for filling in the gaps in the historical series and the 

bias correction methods to apply in the RCM series. It presented the potential 

evapotranspiration computation and the three most applied drought indices: Standardized 

Precipitation Index, Reconnaissance Drought Index (RDI) and Standardized Precipitation 

Evapotranspiration Index (SPEI). 

The application of the stationary gamma distribution in non-stationary series can 

generate inconsistencies in the gamma distribution fitting. For this reason, this dissertation 

adopts the non-stationary analysis, splitting the series in the changing point given by the Pettitt 

test. This chapter also presented both Mann-Kendall and Pettitt tests. The gamma probability 
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distribution was chosen in accordance with previous works, as highlighted in the subsection 

2.2. Non-stationary Frequency Analysis. 

Finally, this chapter presented the non-stationary analysis, performed by splitting the 

series at the changing point and using the moving-window analysis to verify the temporal 

parameters variation. The drought analysis of the drought indices is based on run theory and 

the computation of drought statistics (magnitude, intensity and duration), events occurrence 

frequencies, number of drought events, among others. 

 

  



86 
 

 
 

3. STUDY AREA AND DATA 
 

This chapter presents the study area and data. The Parana State, Brazil, has historical 

records in the meteorological stations that present variations in the main statistics (e.g. mean, 

variance, among others), i.e., the region have a non-stationary profile. Usually, the drought 

indices are based on a stationary approach. In Parana State, there are few drought studies and 

no study considering the non-stationary approach. In this research, precipitation and 

temperature data were collected from 34 meteorological stations located along the Parana State 

to perform the non-stationary drought analysis in climate change scenarios. 

 

3.1. Study area 
 

The Parana State is one of the 27 Brazilian States and is located in the Southern Region. 

The Parana State has 399 municipalities and the most important include Foz do Iguassu, 

Curitiba, Sao Jose dos Pinhais, Cascavel, Londrina, Ponta Grossa, Maringa and Guarapuava 

(SEMA, 2015). 

The Parana State locates between 48° 05′ 37″W and 54° 37′ 08″W longitude and 

22° 30′ 58″S and 26° 43′ 00″S latitude. The boundaries of the Parana State include the Santa 

Catarina State in the South, the Mato Grosso do Sul State in the Northwest and the Sao Paulo 

State in the Northeast. The Atlantic Ocean is the Eastern boundary, while Paraguay is the 

Western boundary. The Parana State has an area of approximately 200 km² (IBGE, 2019) and 

the Tropic of Capricorn crosses the State in the North. It has a coast of only 98 km. 

In the history of Parana State, diverse economy cycles characterized its formation, 

mixing both political and economic history under four distinct occupation phases. They are: (1) 

the discovery of gold at the seaside and in the first plateau (seventeenth century) and (2) 

seventeenth century also characterizes by the beginning of the mate herb cycle. The (3) coffee 

growing which moved from Sao Paulo to the Northern Parana territory (end of the nineteenth 

century), and the (4) migration coming from Santa Catarina and Rio Grande do Sul States 

(beginning of the twentieth century), occupying the South-West and growing corn and soy 

beans. The Parana population concentrated in rural areas until the 1950s and between 1970 and 

2000, the Parana suffered a rural exodus due to the agriculture technological boom, 

characterized by mechanization mainly in the South-West region (SEMA, 2015). 
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The mate herb phase in the Parana State started in the eighteenth century but only in the 

nineteenth century; began the mate herb industrialization in the Parana State. The mate herb 

has its importance in the Parana State history because it is a native herb widely used among the 

native tribes present in Latin America. The mate herb was widely used by both Spanish and 

Portuguese colonizers and it was important to insert the Parana State in the international trade 

(BONDARIK et al., 2006). 

According to SEMA (2015), the Parana State has 16 hydrographic basins: Ivai, Iguassu, 

Paranapanema, Ribeira, Litoranea, Cinzas, Itarare, Tibagi, Pirapo and Piquiri. All of them 

except the Litoranea are converging to the Parana River. The aquifer units in the Parana are the 

Karst, Guarani, Palaeozoic (inferior, superior and medium-superior), Pre-Cambrian, Caiua, 

Costeira, Guabirotuba and Serra Geral Norte and Sul. 

The Iguassu River Basin is the most important basin in Parana State and its source is 

located in the Curitiba Metropolitan Region (CMR). It is one of the tributaries of the Parana 

River, contributing to the La Plata River Basin, the second major hydrographic basin of the 

Latin America, besides the Amazonian River Basin. According to SAURRAL & BARROS 

(2010), the La Plata River Basin is the fifth more important hydrographic basin in the world. 

The Iguassu River basin drains approximately 70,800 km² of area and 81% situates in the 

Parana State and the other 19% in the Santa Catarina State (MAACK, 2002). A small portion 

of the basin is in Argentina and has only around 1,830 km² of area. The Iguassu River basin 

occupies a 28% of the total area of Parana State and has a population of about 4.400.000 

inhabitants (SEMA, 2015; IBGE, 2019). 

Besides the Iguassu River, located in the South of Parana State, there are other important 

hydrographic basins located in the North (Paranapanema River), West (Parana River) and East 

(Ribeira River). The largest are the Paranapanema River and the Iguassu River, which cross the 

State from East to West. The majority of the Parana population lives in these basins. The basin 

exutory of the Iguassu River Basin is in the triple boundary between Brazil, Paraguay and 

Argentina. The Parana River is a natural boundary between Parana State and Paraguay in the 

West and Mato Grosso do Sul State in the Northwest. 

The Parana State has four different climatic types (Figure 3) according to Köppen, as: 

(1) tropical wet-dry climate (Aw), (2) wet subtropical (Cwa), (3) humid subtropical climate 

(Cfa) and (4) marine west coast climate (Cfb). The Köppen classification is one of the climate 

classification systems more used all over the world (ALVARES et al., 2013). The natural 
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vegetation is an expression of the regional climate and each vegetation influences areas using 

the Köppen classification. 

 

Figure 3 – Köppen climate classification for the Parana State. 

 

Font: APARECIDO et al. (2016). The corresponding climates: Aw is the tropical wet-dry climate, Cwa is the wet 
subtropical, Cfa is the humid subtropical climate, and Cfb is the marine west coast climate. 

 

The savannah climate occurs in the Northwest, with an average annual temperature of 

20°C and pluviometry around 1,300 mm/year. This region’s main characteristic is a reduction 

of the rainfall patterns in the winter, generating drought periods, and presenting, in the summer, 

high temperatures. In the Central and Southeast of the Parana State, as well as in the littoral 

plain and the less elevated plateaus (West), the classification is the oceanic climate. This climate 

type presents 1,500 mm/year of pluviometry and average annual temperature around 19°C. 

Besides these, Parana presents the wet subtropical in the Central and West of the State and a 

portion in the North, presenting 1,200 mm/year of pluviometry and an average annual 

temperature of 17°C. This climate presents mild summers and rainfalls well distributed along 

the year (MAACK, 2002). Figure 3 represents the Köppen climate classification for the Parana 

State. 
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The Parana State suffered from a strong climate phenomenon called black frost in both 

South and North regions. The black frost was responsible for a migratory inhabitants flow from 

rural to urban areas in 1975, since it damaged the coffee agricultural culture. It estimates that 

around 13% of rural inhabitants moved from Parana State to Mato Grosso do Sul State after the 

black frost event. The temperature in the fields was around -9°C during the black frost, 

provoking permanent damage in the coffee culture (RODRIGUES & PELEGRINI, 2017). In 

the same year (1975), it snowed in Curitiba. 

Conifers and broadleaved firstly marked the vegetation. It estimates the Mata Atlantica 

covered the State around 46% of Parana State before urbanization and now this forest situates 

only in the Serra do Mar. The typical specie of the Parana State is the Pinheiro do Parana 

(Araucaria Augustifolia) and other species like mate herb, cedar, and imbuia are other typical 

trees from the Parana State (MMA, 2016). 

The Parana State has the sixth major Brazilian population (around 5.5% of the national 

population). It has the fifth major Gross Domestic Product (GDP); besides of Rio Grande do 

Sul, Minas Gerais, Rio de Janeiro and Sao Paulo States. Around 40% of the Parana GDP relates 

to industry, 45% to commerce and services and only 15% to agriculture. The population is 

11,433,957 inhabitants and the demographic density is around 52.40 inhabitants/km² (IBGE, 

2019). 

The Parana State exports poultry meat, soybean, corn, wheat, sugar, coffee, tomato, 

manioc and tea, besides it is one of the Brazilian automotive poles, located in Sao Jose dos 

Pinhais city. The agroindustry, paper and cellulose industries are significant in the country and 

many locate in Parana State. The plant extractivism, mate herb and wood contribute 

significantly for the Parana State economy. The logger and food are the most important poles 

in the secondary sector of the Parana State (IPARDES, 2019). 

The Parana State has a great hydropower potential and contributes significantly within 

the National Interconnected System (SIN, acronym in Portuguese). Besides other important 

hydropower plants, in Parana State, the Binational Itaipu Hydropower Plant, on the Parana 

River is the largest of the country. The Itaipu reservoir lies in the boundary between Mato 

Grosso do Sul and Parana and it is the international boundary between Parana State and 

Paraguay. 
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Itaipu has an installed capacity of 14,000 MW. Other important hydropower plants are 

Foz do Areia, Segredo, Salto Santiago, Salto Osorio and Salto Caxias, all with more than 1,000 

MW of installed capacity each, besides other important hydro plants located across the State. 

The Iguassu hydropower plants represent around 8.5% of the installed capacity from all 

hydropower plants of the SIN (ANEEL, 2014). 

 

3.2. Data 
 

In order to perform the drought study, precipitation and temperature data were acquired 

from 34 meteorological stations located across the Parana State. These meteorological stations 

are considered representative of the region, since these stations have few gaps and extensive 

observation periods. Figure 4 presents the 34 meteorological stations in the Parana. 

 

Figure 4 – Location of the meteorological stations along the Parana State. 

 
Font: Author. 
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Table 2 – General information of the meteorological stations along Parana State. 

# Code Name City Latitude (°) Longitude (°) Altitude (m) Institute 
1 83844 Paranagua Paranagua -25.53 -48.51 4.50 INMET 
2 02548038 Morretes Morretes -25.30 -48.49 59.00 IAPAR 
3 02548039 Guaraquecaba Guaraquecaba -25.16 -48.32 40.00 IAPAR 
4 83842 Curitiba Curitiba -25.43 -49.26 923.50 INMET 
5 02449013 Cerro Azul Cerro Azul -24.49 -49.15 360.00 IAPAR 
6 02549091 Lapa Lapa -25.47 -49.46 910.00 IAPAR 
7 02349030 Joaquim Tavora Joaquim Tavora -23.30 -49.57 512.00 IAPAR 
8 02550024 Ponta Grossa Ponta Grossa -25.13 -50.01 880.00 IAPAR 
9 02350017 Cambara Cambara -23.00 -50.02 450.00 IAPAR 

10 02350018 Bandeirantes Bandeirantes -23.06 -50.21 440.00 IAPAR 
11 83813 Castro Castro -24.78 -50.00 1008.80 INMET 
12 02550025 Fernandes Pinheiro Fernandes Pinheiro -25.27 -50.35 893.00 IAPAR 
13 02450011 Telemaco Borba Telemaco Borba -24.20 -50.37 768.00 IAPAR 
14 02351011 Ibipora Ibipora -23.16 -51.01 484.00 IAPAR 
15 02251027 Bela Vista do Paraiso Bela Vista do Paraiso -22.57 -51.12 600.00 IAPAR 
16 02351063 Maua da Serra Maua da Serra -23.54 -51.13 1020.00 IAPAR 
17 02551010 Guarapuava Guarapuava -25.21 -51.30 1058.00 IAPAR 
18 02351008 Apucarana Apucarana -23.30 -51.32 746.00 IAPAR 
19 02651043 Palmas Palmas -26.29 -51.59 1100.00 IAPAR 
20 02652003 Clevelandia Clevelandia -26.25 -52.21 930.00 IAPAR 
21 02552009 Laranjeiras do Sul Laranjeiras do Sul -25.25 -52.25 880.00 IAPAR 
22 83766 Londrina Londrina -23.31 -51.13 566.00 INMET 
23 83767 Maringa Maringa -23.40 -51.91 542.00 INMET 
24 02352017 Paranavai Paranavai -23.05 -52.26 480.00 IAPAR 
25 02452050 Nova Cantu Nova Cantu -24.40 -52.34 540.00 IAPAR 
26 83783 Campo Mourao Campo Mourao -24.05 -52.36 616.40 INMET 
27 02352019 Cianorte Cianorte -23.40 -52.35 530.00 IAPAR 
28 02652035 Pato Branco Pato Branco -26.07 -52.41 700.00 IAPAR 
29 02553018 Quedas do Iguaçu Quedas do Iguaçu -25.31 -53.01 513.00 IAPAR 
30 02653012 Francisco Beltrao Francisco Beltrao -26.05 -53.04 650.00 IAPAR 
31 02353008 Umuarama Umuarama -23.44 -53.17 480.00 IAPAR 
32 02453023 Cascavel Cascavel -24.53 -53.33 660.00 IAPAR 
33 02553015 Planalto Planalto -25.42 -53.47 400.00 IAPAR 
34 02453003 Palotina Palotina -24.18 -53.55 310.00 IAPAR 

Font: Author. 

 

Observed historical series were collected in the Weather Database for Teaching and 

Research (BDMEP, acronym in Portuguese) held by the National Institute of Meteorology 

(INMET, acronym in Portuguese) and in the Parana Agronomic Institute (IAPAR, acronym in 
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Portuguese). The downloaded data in the Hidroweb platform held by the National Water 

Agency (ANA, acronym in Portuguese), was used for filling in the gaps of the historical series. 

Table 2 presents the local information such the code used by governmental institutes 

(INMET and IAPAR), name and city of the 34 meteorological stations located along the Parana 

State used in this dissertation. It shows the geographic coordinates (latitude and longitude), 

altitude and the respective Brazilian operating agency. These meteorological stations provide 

precipitation, temperature, solar radiation, among other variables series. 

The daylight length data were acquired from the TIME AND DATE (2019) website for 

available stations (Curitiba and Londrina), for January to December of 1961. In this website, 

there are only daylight length data for these two sites. 

The acquisition of simulated data from the GCM HADGEM2-ES and the regionalized 

simulations of the RCM ETA in the PROJETA platform occurred in the website of Weather 

Forecast and Climatic Studies Centre (CPTEC, acronym in Portuguese) held by the National 

Institute for Spatial Research (INPE, acronym in Portuguese). The past RCM ETA simulations 

relate to the baseline (control run) period, while the future simulations relate to two distinct 

scenarios: RCP 4.5 and RCP 8.5. These two scenarios are available in the PROJETA website 

for climate change studies and are the most used in climate change studies (NAM et al., 2015; 

CHATTOPADHYAY et al., 2017; PARK et al., 2018; LUCENA et al., 2018). 

The period from January of 1961 to December of 2005 comprises the baseline (control 

run) period that is similar to the observed historical series. The period from January of 2006 to 

December of 2099 comprises the future period with RCP 4.5 and RCP 8.5 scenarios. According 

to FILL et al. (2013) in the CLARIS LPB project, the most suitable models for Southern 

America are the RCA1, PROMES and ETA (LPB, 2012). PLOSZAI & MINE (2016) pointed 

that the most suitable for the study region is the RCM ETA. 

In order to fill in the gaps in the meteorological series, the stations 11 (Castro) and 22 

(Londrina) were also selected because both regions present a distinct climate according to the 

Köppen classification (Figure 3) (ALVARES et al., 2013). Londrina comprises the Cfa (humid 

subtropical climate) and Castro comprises the Cfb (marine west coast climate). The Londrina 

station has high temperature rates and a well-defined seasonal behaviour. Londrina is the 

second largest city of the Parana. However, the Castro station has a cold climate and non-

stationary behaviour. 
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The meteorological series normally present gaps. In order to use both precipitation and 

temperature series for a posterior drought analysis, the gaps evaluation was performed in these 

series. Table 3 presents the gaps found in both series, where the series comprises the period 

between January of 1961 and December of 2005, totalizing 540 months. According to the Table 

3, for temperature series the maximum gaps percentage is at the Maringa station (27%), while 

there are several stations with only 1% of gaps. For the precipitation series, the maximum gaps 

percentage is also at the Maringa station (26%), while the minimum (1%) is at several stations. 

In order to perform the drought analysis (Chapter 5), the main statistics of the historical 

and simulated series (RCP 4.5 and RCP 8.5), were computed. Table 4, Table 5 and Table 6 

present the monthly descriptive statistics of both precipitation and temperature series in the 

historical observed, simulated RCP 4.5 and RCP 8.5 scenarios, respectively. 

In the historical series (Table 4), the monthly mean precipitation of the 34 stations 

covering the Parana State is 144.88 mm. The maximum monthly mean precipitation occurs in 

the station 3 (Guaraquecaba) (199.05 mm) and the minimum (114.88 mm) in the station 5 

(Cerro Azul). The minimum values are generally the same (0 means no rainfall). The maximum 

monthly precipitation (840.60 mm, January of 1995) occurred in the station 1 (Paranagua). 

Station 3 (Guaraquecaba) presents the maximum standard deviation (131.98 mm) in 

precipitation. 

Table 4 presents the minimum standard deviation in the precipitation historical series 

(70.45 mm) in the station 5 (Cerro Azul). Table 4 also presents the descriptive statistics of the 

temperature of the historical series. The minimum monthly mean temperature (16.30°C) 

occurred in the station 19 (Palmas), while the maximum (22.12°C) occurred in the station 24 

(Paranavai). The minimum monthly records (8.65°C, July of 2000) are in the station 19 

(Palmas) and the maximum values present oscillations along the Parana State, pointing the 

station 9 (Cambara) as the warmest (27.68°C, March of 1969) in the State. 

In the future simulated scenario (RCP 4.5 and Table 5), the monthly mean precipitation 

of the 34 stations covering the Parana State is 133.20 mm. The maximum monthly mean 

precipitation occurs in the station 19 (Palmas) (198.46 mm) and the minimum (93.89 mm) in 

the station 9 (Cambara). The minimum values are generally the same (0 means no rainfall in 

the month). The maximum monthly precipitation (806.19 mm) occurred in the station 19 

(Palmas). The station 19 (Palmas) also presents the maximum standard deviation (119.93 mm) 

in the precipitation data, highlighting the maximum data dispersion or high variability. The 
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minimum standard deviation in the precipitation simulations (68.59 mm) of the RCP 4.5 

scenario occurred in the station 9 (Cambara). 

 

Table 3 – Gaps found in the historical monthly precipitation and temperature series. 

            Monthly temperature Monthly precipitation 
# Station Code Start End Years Gaps Total months % Gaps Gaps Total months % Gaps 

1Paranagua 83844 1961 2005 44 85 540 16% 44 540 8% 
2Morretes 2548038 1966 2005 39 0 480 0% 0 480 0% 
3Guaraquecaba 2548039 1977 2005 28 10 348 3% 11 348 3% 
4Curitiba 83842 1961 2005 44 16 540 3% 8 540 1% 
5Cerro Azul 2449013 1972 1998 26 11 324 3% 11 324 3% 
6Lapa 2549091 1988 2005 17 8 216 4% 8 216 4% 
7Joaquim Tavora 2349030 1971 2005 34 9 420 2% 9 420 2% 
8Ponta Grossa 2550024 1961 2002 41 6 504 1% 6 504 1% 
9Cambara 2350017 1961 2005 44 2 540 0% 2 540 0% 

10Bandeirantes 2350018 1974 2005 31 15 384 4% 15 384 4% 
11Castro 83813 1961 2005 44 93 540 17% 49 540 9% 
12Fernandes Pinheiro 2550025 1963 2005 42 0 516 0% 0 516 0% 
13Telemaco Borba 2450011 1971 2005 34 51 420 12% 15 420 4% 
14Ibipora 2351011 1973 2005 32 2 396 1% 2 396 1% 
15Bela Vista do Paraiso 2251027 1973 2005 32 2 396 1% 2 396 1% 
16Maua da Serra 2351063 1978 1992 14 7 180 4% 7 180 4% 
17Guarapuava 2551010 1972 2005 33 38 408 9% 38 408 9% 
18Apucarana 2351008 1964 2003 39 23 480 5% 23 480 5% 
19Palmas 2651043 1979 2005 26 0 324 0% 0 324 0% 
20Clevelandia 2652003 1973 2005 32 0 396 0% 0 396 0% 
21Laranjeiras do Sul 2552009 1973 2005 32 9 396 2% 9 396 2% 
22Londrina 83766 1961 2005 44 73 540 14% 49 540 9% 
23Maringa 83767 1961 2005 44 144 540 27% 138 540 26% 
24Paranavai 2352017 1974 2005 31 5 384 1% 5 384 1% 
25Nova Cantu 2452050 1976 2005 29 1 360 0% 1 360 0% 
26Campo Mourao 83783 1961 2005 44 60 540 11% 40 540 7% 
27Cianorte 2352019 1971 2002 31 19 384 5% 19 384 5% 
28Pato Branco 2652035 1979 2005 26 0 324 0% 0 324 0% 
29Quedas do Iguaçu 2553018 1972 1999 27 10 336 3% 10 336 3% 
30Francisco Beltrao 2653012 1973 2005 32 4 396 1% 4 396 1% 
31Umuarama 2353008 1971 2005 34 20 420 5% 20 420 5% 
32Cascavel 2453023 1972 1999 27 20 336 6% 20 336 6% 
33Planalto 2553015 1973 2005 32 12 396 3% 12 396 3% 
34Palotina 2453003 1972 2005 33 8 408 2% 8 408 2% 

Font: Author. 
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Table 4 – Monthly descriptive statistics of the observed precipitation (mm) and temperature (°C) series. 

P HIST Mean STD Min Max T HIST Mean STD Min Max 
1 172.38 116.34 1.10 840.60 1 21.35 3.01 15.07 27.29 
2 161.42 99.46 3.60 604.80 2 20.63 3.08 14.22 26.48 
3 199.05 131.98 8.10 739.60 3 20.91 3.17 14.45 26.66 
4 119.61 78.22 0.10 473.80 4 17.04 2.91 10.62 23.18 
5 114.88 70.45 0.10 369.00 5 20.23 3.52 12.37 26.50 
6 134.09 76.24 1.10 445.40 6 16.97 3.02 10.10 22.06 
7 117.20 79.70 0.00 414.30 7 20.94 3.00 14.02 26.52 
8 129.53 82.78 0.00 565.00 8 17.71 2.95 10.85 23.22 
9 116.36 86.76 0.00 542.70 9 21.23 3.00 13.53 27.68 

10 120.22 85.45 0.00 436.70 10 21.83 2.80 15.45 26.61 
11 124.18 84.02 0.00 497.20 11 16.89 3.10 9.91 22.33 
12 133.04 81.97 0.00 461.10 12 17.29 3.09 10.47 22.95 
13 133.93 81.56 0.00 479.30 13 18.46 3.32 10.88 23.97 
14 127.14 89.39 0.00 448.50 14 21.85 2.73 15.36 27.09 
15 126.95 92.25 0.00 461.90 15 21.34 2.63 14.86 26.00 
16 153.57 95.51 0.10 431.90 16 18.64 2.53 12.25 23.33 
17 158.51 88.17 0.60 518.00 17 16.99 3.09 9.64 22.38 
18 137.52 87.80 0.00 433.10 18 20.52 2.43 14.18 25.05 
19 176.85 101.36 11.60 805.30 19 16.30 3.26 8.65 21.47 
20 170.31 97.01 7.20 775.40 20 17.25 3.18 9.66 22.33 
21 167.40 98.54 0.20 533.80 21 18.81 2.97 11.22 23.69 
22 124.27 91.90 0.00 467.90 22 21.15 2.89 13.42 26.55 
23 129.35 85.01 0.00 426.00 23 21.88 2.68 14.82 26.87 
24 124.94 83.07 0.00 378.30 24 22.12 2.84 14.94 27.16 
25 164.76 97.94 0.80 614.60 25 21.05 2.99 13.53 25.97 
26 134.08 89.66 0.00 441.10 26 20.35 3.05 12.55 25.94 
27 138.31 92.53 0.00 466.40 27 21.58 2.89 14.41 26.96 
28 176.67 107.76 6.80 723.40 28 18.77 3.18 11.02 23.59 
29 172.06 100.75 2.20 642.10 29 20.16 3.33 12.68 25.75 
30 169.83 102.47 0.50 668.20 30 19.18 3.60 10.72 24.70 
31 135.24 86.12 0.00 493.50 31 21.99 2.89 14.56 27.49 
32 164.07 95.45 1.10 509.30 32 19.54 3.11 11.88 25.05 
33 160.66 100.87 1.30 645.00 33 21.31 3.33 12.84 27.66 
34 137.46 87.45 0.10 536.70 34 21.23 3.53 12.03 26.84 

Mean P 144.88 91.94 1.37 537.94 Mean T 19.81 3.03 12.56 25.22 
Max P 199.05 131.98 11.60 840.60 Max T 22.12 3.60 15.45 27.68 
Min P 114.88 70.45 0.00 369.00 Min T 16.30 2.43 8.65 21.47 

Font: Author. 
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Table 5 – Monthly descriptive statistics of the simulated RCP 4.5 precipitation (mm) and temperature (°C) series. 

P RCP 4.5 Mean STD Min Max T RCP 4.5 Mean STD Min Max 
1 149.48 81.08 1.10 665.16 1 23.47 2.94 16.85 30.96 
2 136.84 79.44 1.36 658.51 2 23.05 2.93 15.94 30.47 
3 169.57 100.32 0.65 792.16 3 23.40 3.04 16.32 31.04 
4 111.28 74.52 0.13 477.93 4 19.44 2.98 12.33 26.88 
5 106.89 69.66 0.05 425.11 5 23.22 3.35 14.68 31.62 
6 138.36 92.65 0.16 594.21 6 19.32 2.85 12.28 26.35 
7 94.47 69.81 0.01 446.68 7 23.69 2.87 16.14 31.59 
8 120.81 79.05 0.01 544.72 8 20.08 2.93 12.81 27.64 
9 93.89 68.59 0.00 442.44 9 23.89 2.82 15.90 31.85 

10 99.78 72.13 0.00 458.55 10 24.39 2.70 16.92 32.27 
11 119.83 77.64 0.01 523.12 11 19.54 3.10 11.69 27.75 
12 124.24 83.01 0.00 560.47 12 19.80 3.23 12.15 28.05 
13 117.14 81.27 0.00 501.50 13 21.25 3.28 13.24 29.44 
14 106.78 75.03 0.00 480.34 14 24.30 2.73 16.93 32.04 
15 105.27 72.61 0.00 469.36 15 23.82 2.67 16.58 31.49 
16 148.61 102.74 0.00 607.72 16 20.78 2.41 14.04 27.87 
17 153.35 99.72 0.00 656.82 17 19.56 3.21 11.97 28.01 
18 114.04 78.84 0.00 466.33 18 22.85 2.58 16.12 30.38 
19 198.46 119.93 0.07 806.19 19 18.77 3.37 10.63 27.65 
20 179.65 110.60 0.00 761.04 20 19.83 3.42 11.70 29.53 
21 163.29 105.45 0.00 682.52 21 21.32 3.07 13.58 30.14 
22 105.55 72.97 0.00 431.61 22 23.68 2.89 16.16 31.47 
23 114.63 75.72 0.00 420.81 23 24.22 2.74 17.10 31.61 
24 109.78 73.43 0.00 407.94 24 24.64 2.90 17.02 32.11 
25 153.40 103.07 0.00 695.70 25 23.55 3.07 15.26 31.99 
26 121.25 82.09 0.00 560.50 26 22.83 3.15 14.77 31.18 
27 121.52 82.01 0.00 472.50 27 24.07 3.03 16.37 31.74 
28 175.99 114.20 0.00 752.54 28 21.22 3.34 12.92 30.95 
29 166.16 108.81 0.00 679.57 29 22.78 3.49 13.73 32.25 
30 163.04 107.79 0.00 727.60 30 21.88 3.80 12.71 32.18 
31 119.41 79.01 0.00 506.09 31 24.61 3.20 16.25 32.95 
32 153.87 103.14 0.00 641.47 32 21.97 3.30 13.20 30.98 
33 151.83 101.31 0.00 629.72 33 23.89 3.56 14.98 33.94 
34 120.25 84.10 0.00 566.74 34 23.90 3.69 14.05 32.76 

Mean P 133.20 87.70 0.10 573.93 Mean T 22.32 3.08 14.51 30.56 
Max P 198.46 119.93 1.36 806.19 Max T 24.64 3.80 17.10 33.94 
Min P 93.89 68.59 0.00 407.94 Min T 18.77 2.41 10.63 26.35 

Font: Author. 
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Table 6 – Monthly descriptive statistics of the simulated RCP 8.5 precipitation (mm) and temperature (°C) series. 

P RCP 8.5 Mean STD Min Max T RCP 8.5 Mean STD Min Max 
1 142.83 81.76 0.02 454.12 1 24.42 2.76 16.78 30.39 
2 132.15 75.94 0.13 483.01 2 24.06 2.79 15.80 30.34 
3 160.86 98.78 0.27 554.96 3 24.40 2.84 16.28 30.28 
4 110.15 79.01 0.21 576.95 4 20.68 3.12 11.72 28.53 
5 106.16 77.49 0.09 681.68 5 24.67 3.43 14.00 33.22 
6 136.95 98.23 0.26 717.33 6 20.48 2.92 11.83 27.99 
7 92.07 74.87 0.00 481.93 7 25.10 3.13 15.47 34.50 
8 119.50 85.32 0.02 739.54 8 21.34 3.11 12.21 29.72 
9 89.45 71.64 0.00 433.97 9 25.34 3.15 15.26 34.44 

10 94.98 75.29 0.00 439.03 10 25.81 3.08 16.21 34.78 
11 121.54 85.26 0.03 736.83 11 20.92 3.29 11.27 29.63 
12 122.11 88.97 0.03 749.64 12 21.18 3.45 11.66 30.12 
13 114.31 86.64 0.00 618.87 13 22.76 3.49 12.60 32.37 
14 101.90 80.10 0.00 531.52 14 25.72 3.16 16.26 34.83 
15 99.46 77.11 0.00 494.37 15 25.27 3.16 15.92 34.32 
16 144.73 111.73 0.00 747.17 16 22.05 2.81 13.74 30.79 
17 153.34 107.63 0.01 892.39 17 20.93 3.44 11.54 29.93 
18 111.06 85.73 0.00 573.34 18 24.22 3.05 15.56 33.30 
19 206.97 134.11 0.04 924.34 19 20.04 3.54 10.51 28.47 
20 181.05 119.47 0.00 776.22 20 21.18 3.72 11.70 30.15 
21 161.51 113.34 0.00 776.99 21 22.70 3.44 13.43 32.05 
22 102.79 79.35 0.00 530.65 22 25.15 3.26 15.19 34.39 
23 112.88 82.75 0.00 545.57 23 25.62 3.16 16.19 34.71 
24 104.87 77.52 0.00 553.59 24 26.13 3.38 16.64 35.52 
25 151.22 110.95 0.11 681.75 25 24.99 3.47 15.19 34.48 
26 120.47 88.66 0.00 586.33 26 24.33 3.54 14.52 33.71 
27 116.24 87.39 0.00 651.23 27 25.57 3.50 15.82 35.15 
28 168.28 116.23 0.00 718.66 28 22.58 3.66 12.99 31.79 
29 161.22 115.80 0.00 738.21 29 24.24 3.82 14.01 34.11 
30 155.87 109.85 0.00 691.55 30 23.34 4.07 13.12 33.30 
31 114.14 83.22 0.00 594.18 31 26.17 3.72 16.50 35.98 
32 150.83 107.98 0.00 680.05 32 23.41 3.71 13.52 32.82 
33 145.68 106.34 0.00 710.19 33 25.29 3.92 15.54 35.70 
34 113.38 85.61 0.00 573.79 34 25.46 4.07 14.70 35.56 

Mean P 130.03 92.94 0.04 636.47 Mean T 23.69 3.36 14.23 32.57 
Max P 206.97 134.11 0.27 924.34 Max T 26.17 4.07 16.78 35.98 
Min P 89.45 71.64 0.00 433.97 Min T 20.04 2.76 10.51 27.99 

Font: Author. 

 

Table 5 also presents the descriptive statistics of the temperature in the RCP 4.5 

scenarios. The minimum monthly mean temperature (18.77°C) occurred in the station 19 
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(Palmas), while the maximum (24.64°C) occurred in the station 24 (Paranavai). The minimum 

monthly records (10.63°C) are in the station 19 (Palmas) and the maximum values present 

oscillations along the Parana State, pointing the station 33 (Planalto) as the warmest location 

(33.94°C). 

In the future simulated scenario (RCP 8.5 and Table 6), the monthly mean precipitation 

of the 34 stations covering the Parana State is 130.03 mm. The maximum monthly mean 

precipitation occurred in the station 19 (Palmas) (206.97 mm) and the minimum (89.45 mm) 

occurred in the station 9 (Cambara). The minimum values are generally the same (0 means no 

rainfall in the month). The maximum monthly precipitation (924.34 mm) occurred in the station 

19 (Palmas). The station 19 (Palmas) also presents the maximum standard deviation (134.11 

mm) in the precipitation data, highlighting the maximum data dispersion or high variability. 

The minimum standard deviation occurred in the precipitation simulations (71.64 mm) of the 

RCP 8.5 scenario in the station 9 (Cambara). 

Table 6 also presents the descriptive statistics of the temperature in the RCP 8.5 

scenarios. The minimum monthly mean temperature (20.04°C) occurred in the station 19 

(Palmas), while the maximum (26.17°C) occurred in the station 31 (Umuarama). The minimum 

monthly records (10.51°C) are in the station 19 (Palmas) and the maximum values present 

oscillations along the Parana State, pointing the station 31 (Umuarama) as the warmest location 

(35.98°C). 

Figure 5 presents the number of months with lower than 5 mm precipitation 

accumulated in a month in the historical (HIST) and simulated (RCP 4.5 and RCP 8.5) series. 

According to these maps, in the historical series the predominant drought events are in the 

Northwest, Centre-North and Northeast regions, characterized by the highest amount of 

precipitation events lower than 5 mm. The highest amounts are in blue, while the lowest events 

are in red. The highest values occurred in the stations 7 (Joaquim Tavora), 9 (Cambara), 10 

(Bandeirantes), 14 (Ibipora), 15 (Bela Vista do Paraiso), 18 (Apucarana), 22 (Londrina), and 

26 (Campo Mourao) with more than 16 events between January of 1961 and December of 2005 

(some stations start after 1961 and/or end before 2005). 

In both RCP 4.5 and RCP 8.5 scenarios, the main difference when comparing to the 

historical scenario, is the Northwest does not comprise the highest number of precipitation 

events lower than 5 mm. The North and Northeast regions concentrate the highest amounts of 

low precipitations and this means that both North and Northeast are susceptible to have more 
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droughts in the future (up to 2100). The highest values occur in the stations 7 (Joaquim Tavora), 

9 (Cambara) and 10 (Bandeirantes) for both scenarios (RCP 4.5 and RCP 8.5), with more than 

25 events in both regions. 

 

Figure 5 – Number of months with precipitation lower than 5 mm in the historical (HIST) and simulated (RCP 4.5 
and RCP 8.5) series. 

 

 

Font: Author. 

 

3.3. Chapter summary 

 

This chapter presented the study area and its characteristics related to general 

information, geography, hydrography, climate, economy and hydropower generation, 

highlighting the importance of the Parana State in the Brazilian economy. For the drought study, 

34 meteorological stations were selected in the BDMEP and IAPAR websites, containing both 

precipitation and temperature data. 

This chapter also presented some characteristics of the historical and future series (RCP 

4.5 and RCP 8.5 scenarios), such as gaps and length of the series, main statistics (mean, standard 

deviation, minimum and maximum values) of the series, and maps containing the number of 

months with precipitation amounts below 5 mm.  
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4. RESULTS AND DISCUSSION 
 

This chapter presents the dissertation results. All applications performed occurred to 

analyse the drought series in both stationary and non-stationary approaches, using the methods 

described in chapter 2. 

The linear regression was used for filling in the gaps in the historical series along with 

the bias correction methods applied to correct the RCM ETA simulations. The Thornthwaite 

method was used to compute the potential evapotranspiration using the daylight hours 

combined with the monthly temperature series. Then, the Reconnaissance Drought Index (RDI) 

was computed. 

It occurred the application of both trend and changing point tests to verify which 

historical series present non-stationary pattern, and the non-stationary series were split in the 

changing point. Then, the differences between the traditional stationary and the non-stationary 

approaches were computed. This computation analysed the main drought statistics (frequency, 

severity, duration and magnitude) to perform the drought analysis. 

 

4.1. Filling in the gaps 
 

The Simple Linear Regression (SLR) model filled the gaps in both historical 

precipitation and temperature monthly series. The dependent variable is the “y – Code” and the 

independent variable is the “x – Code”. Table 7 and Table 8 show the equations of the SLR 

method, as well as the determination coefficient (R²), distance between both stations and the 

climate according to the Köppen classification (ALVARES et al., 2013). 

In both tables, the five digits code refers to the INMET meteorological stations while 

the eight digits code refers to the ANA hydrological stations. There are some meteorological 

stations with the same name in the “x – Code” and “y – Code” columns, held by different 

institutions. In general, the SLR presented significant correlations evidenced by the 

determination coefficient (R²). In the Table 7, 0.649 was the minimum R² in both SLR 5 and 

10, and the maximum length between a pair of stations in straight line was 80.35 km for the 

SLR 5. All pairs of precipitation series present the same Köppen classification. 
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Table 7 – SLR equations to fill in the gaps for historical precipitation series. 

 y – Code Name x – Code  Name Equation R² Distance (km) Climate (Köppen) 

1 83813 Castro 02450010  Castro y = 8.3177 + 0.9151x 0.8565 0.00 Cfb / Cfb 

2 83842 Curitiba 02549006  Curitiba y = 0.0369 + 0.9626x 0.891 0.00 Cfb / Cfb 

3 83766 Londrina 02351010  Londrina y = 5.8987 + 0.9299x 0.911 0.00 Cfa / Cfa 

4 83844 Paranagua 02548021  Paranagua - SE y = 21.6684 + 0.8993x 0.832 0.00 Cfa / Cfa 

5 83767 Maringa 02351003  Londrina (Est. Agroclimatologica) y = 26.6716 + 0.7684x 0.649 80.35 Cfa / Cfa 

6 83783 Campo Mourao 02452005  PHC Mourao 1 Barramento 2 y = 10.0876 + 0.8974x 0.8409 0.00 Cfa / Cfa 

7 83767 Maringa 02351008  Apucarana (Faz. Ubatuba) y = 14.1027 + 0.8435x 0.722 50.30 Cfa / Cfa 

8 83783 Campo Mourao 02452010  Janiopolis y = 20.7748 + 0.816x 0.6851 42.30 Cfa / Cfa 

9 83766 Londrina 02351003  Londrina (Est. Agroclimatologica) y = 6.3861 + 0.8651x 0.799 0.00 Cfa / Cfa 

10 83844 Paranagua 02548038  Morretes (Est. Exp. Frutas Trop.) y = 18.7403 + 0.9596x 0.649 31.20 Cfa / Cfa 

y – Code: INMET series 

x – Code: ANA series 

Font: Author. 

 

Table 8 – SLR equations to fill in the gaps for historical temperature series. 

 y – Code Name x – Code Name Equation R² Distance (km) Climate (Köppen) 

1 83783 Campo Mourao 83767 Maringa y = -3.7488 + 1.1013x 0.952 82.30 Cfa / Cfa 

2 83784 Campo Mourao 83766 Londrina y = -1.5187 + 1.0346x 0.961 80.00 Cfa / Cfa 

3 83813 Castro 83842 Curitiba y = -0.8344 + 1.04x 0.951 103.40 Cfb / Cfb 

4 83842 Curitiba 83844 Paranagua y = -2.6874 + 0.9244x 0.923 75.80 Cfb / Cfa 

5 83766 Londrina 83716 Presidente Prudente y = -4.42 + 1.1143x 0.958 133.70 Cfa / Aw 

6 83767 Londrina 83784 Campo Mourao y = 2.23 + 0.9291x 0.961 80.00 Cfa / Cfa 

7 83767 Maringa 83767 Londrina y = 2.481 + 0.9175x 0.972 79.30 Cfa / Cfa 

8 83767 Maringa 83784 Campo Mourao y = 4.2942 + 0.864x 0.952 82.30 Cfa / Cfa 

9 83844 Paranagua 83842 Curitiba y = 4.3321 + 0.9986x 0.923 75.80 Cfa / Cfb 

y – Code: INMET series 

x – Code: INMET series 

Font: Author. 

 

Table 8 shows larger distances between pairs of stations and showed higher 

determination coefficients (R²). The minimum R² refers to the stations Curitiba and Paranagua 

in the SLR 4 (0.923). Different climates occur also in the SLR 5 for the pair of stations Londrina 

and Presidente Prudente. Other simulations performed with closer stations were discarded 

because the determination coefficients resulted lower than 0.60. The SLR analysis was 

significant for filling in the gaps in the series due to the determination coefficient analysis, in 

both variables (precipitation and temperature). Different institutions in the same city were used 

for filling in the gaps in the precipitation series, since there is a significant distance between 
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them. Most of meteorological stations presented few gaps in the series. They were filled in 

using the four closest months mean, as described in the Chapter 2, Methods. 

 

4.2. Bias correction 
 

At the same time of the SLR analysis, the bias correction methods were applied in order 

to correct the RCM ETA series by the historical data for each meteorological station. The most 

applied indices are Linear Scaling (LS), Power Transformation (PT), Variance Scaling (VAR) 

and Empirical Quantile Mapping (EQM). These four bias correction were applied and the most 

suitable for the region was chosen. The Quantile-Quantile (QQ) and Delta Change (DT) 

methods resulted in non-significant improvements in the corrected series, and were discarded 

for the posterior analyses. 

The four bias correction methods (LS, PT, VAR, and EQM) were computed for the 34 

meteorological stations. Table 9 presents the Mean Absolute Error (MAE) of all bias correction 

methods for both temperature and precipitation series. The PT application refers only to the 

precipitation series, while the VAR refers only to the temperature series (TEUTSCHBEIN & 

SEIBERT, 2012). 

Analysing all MAE values of the temperature series, 100% of the minimum MAE 

pointed the EQM the most significant bias correction method for the temperature series. A quite 

similar behaviour occurred in the precipitation series, but it shows the LS method as the best 

for the precipitation series, except at station 8. 

Other statistics computed include the mean, standard deviation, minimum, maximum, 

kurtosis, skewness, and percentiles 5%, 10%, 25%, 50%, 75%, 90% and 95%, confirming the 

EQM as the best method for the temperature series and the LS for the precipitation series. 

Results for other statistics (mean, standard deviation, minimum, maximum, kurtosis, skewness, 

and percentiles at 5%, 10%, 25%, 50%, 75%, 90% and 95%) were not shown. 
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Table 9 – Mean Absolute Error (MAE) of all temperature and precipitation series. 

Temperature Precipitation 
Station MAE LS MAE EQM MAE VAR Station MAE LS MAE EQM MAE PT 

1 1.31 1.23 1.29 1 92.19 106.69 105.84 
2 1.55 1.40 1.50 2 78.68 82.43 81.95 
3 1.52 1.49 1.57 3 79.33 87.02 86.45 
4 1.41 1.39 1.44 4 80.63 86.27 86.30 
5 1.42 1.35 1.46 5 82.60 83.22 83.43 
6 1.44 1.28 1.34 6 83.84 89.26 87.41 
7 1.55 1.35 1.41 7 81.21 86.72 85.09 
8 1.63 1.34 1.37 8 102.98 102.23 101.58 
9 1.38 1.34 1.39 9 90.77 92.20 92.31 
10 1.55 1.35 1.38 10 89.08 91.33 91.20 
11 1.40 1.38 1.42 11 94.99 101.25 99.86 
12 0.90 0.04 0.26 12 84.91 93.75 93.08 
13 1.39 1.32 1.36 13 96.49 101.43 100.33 
14 1.44 1.35 1.37 14 101.45 106.94 105.92 
15 1.46 1.36 1.44 15 85.55 91.88 91.55 
16 1.55 1.36 1.44 16 83.21 87.50 87.70 
17 1.64 1.41 1.46 17 77.60 81.91 81.03 
18 1.56 1.44 1.49 18 106.68 108.36 108.48 
19 1.53 1.37 1.47 19 87.96 94.19 94.13 
20 1.62 1.37 1.43 20 93.34 99.11 98.86 
21 1.47 1.36 1.40 21 102.62 108.32 108.36 
22 1.46 1.39 1.42 22 100.83 104.71 104.93 
23 1.42 1.30 1.36 23 103.92 114.30 112.23 
24 1.41 1.36 1.41 24 107.23 111.70 111.98 
25 1.68 1.42 1.46 25 87.72 92.86 93.77 
26 1.58 1.39 1.43 26 106.89 108.82 108.27 
27 1.57 1.40 1.44 27 103.58 109.27 109.97 
28 1.59 1.43 1.51 28 91.92 96.62 96.24 
29 1.47 1.46 1.51 29 74.06 81.44 80.46 
30 1.57 1.50 1.58 30 63.73 67.64 67.29 
31 1.44 1.40 1.47 31 76.40 76.56 77.19 
32 1.40 1.35 1.43 32 77.18 78.65 78.74 
33 1.42 1.39 1.45 33 75.90 83.46 83.13 
34 1.49 1.42 1.52 34 75.28 78.71 78.98 

Font: Author. 
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4.3. Daylight hours and RDI preparation 
 

The next step is the computation of the Potential Evapotranspiration (PET) and the 

drought indices. To compute them, it is necessary to compute PET using daylight length per 

each month, presented in Table 10 for all 34 meteorological stations. 

 

Table 10 – Daylight length hours according to latitude for all meteorological stations. 

# City / Station JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

1 Paranagua 13.52 12.95 12.23 11.48 10.87 10.57 10.72 11.24 11.94 12.69 13.36 13.70 

2 Morretes 13.51 12.94 12.23 11.49 10.89 10.59 10.73 11.25 11.95 12.69 13.35 13.69 

3 Guaraquecaba 13.50 12.94 12.22 11.49 10.89 10.60 10.74 11.26 11.95 12.68 13.34 13.68 

4 Curitiba 13.51 12.95 12.23 11.49 10.88 10.58 10.72 11.25 11.95 12.69 13.35 13.70 

5 Cerro Azul 13.45 12.91 12.22 11.51 10.93 10.64 10.78 11.28 11.95 12.67 13.30 13.63 

6 Lapa 13.52 12.95 12.23 11.48 10.88 10.58 10.72 11.24 11.95 12.69 13.35 13.70 

7 Joaquim Tavora 13.38 12.87 12.21 11.54 10.99 10.72 10.85 11.33 11.96 12.64 13.23 13.54 

8 Ponta Grossa 13.49 12.94 12.22 11.49 10.89 10.60 10.74 11.26 11.95 12.68 13.34 13.67 

9 Cambara 13.36 12.86 12.21 11.55 11.01 10.74 10.87 11.34 11.96 12.63 13.22 13.52 

10 Bandeirantes 13.37 12.86 12.21 11.55 11.01 10.74 10.87 11.34 11.96 12.63 13.22 13.53 

11 Castro 13.47 12.92 12.22 11.50 10.91 10.62 10.76 11.27 11.95 12.67 13.32 13.65 

12 Fernandes Pinheiro 13.50 12.94 12.23 11.49 10.89 10.59 10.73 11.25 11.95 12.69 13.34 13.68 

13 Telemaco Borba 13.44 12.90 12.22 11.52 10.95 10.66 10.80 11.29 11.95 12.66 13.28 13.61 

14 Ibipora 13.37 12.86 12.21 11.55 11.00 10.73 10.86 11.33 11.96 12.63 13.23 13.53 

15 Bela Vista do Paraiso 13.33 12.84 12.21 11.56 11.03 10.77 10.90 11.35 11.96 12.62 13.19 13.49 

16 Maua da Serra 13.40 12.88 12.22 11.54 10.98 10.71 10.84 11.32 11.96 12.64 13.25 13.56 

17 Guarapuava 13.50 12.94 12.22 11.49 10.89 10.59 10.74 11.25 11.95 12.69 13.34 13.68 

18 Apucarana 13.38 12.87 12.21 11.54 10.99 10.72 10.85 11.33 11.96 12.64 13.23 13.54 

19 Palmas 13.57 12.98 12.23 11.46 10.83 10.52 10.67 11.21 11.94 12.71 13.40 13.76 

20 Clevelandia 13.56 12.98 12.23 11.46 10.83 10.52 10.67 11.21 11.94 12.71 13.40 13.75 

21 Laranjeiras do Sul 13.50 12.94 12.23 11.49 10.89 10.59 10.73 11.25 11.95 12.69 13.34 13.68 

22 Londrina 13.38 12.87 12.21 11.54 10.99 10.72 10.85 11.33 11.96 12.64 13.23 13.54 

23 Maringa 13.39 12.87 12.21 11.54 10.99 10.72 10.85 11.32 11.96 12.64 13.24 13.55 

24 Paranavai 13.36 12.86 12.21 11.55 11.01 10.74 10.87 11.34 11.96 12.63 13.22 13.53 

25 Nova Cantu 13.45 12.91 12.22 11.51 10.93 10.65 10.79 11.28 11.95 12.66 13.30 13.62 

26 Campo Mourao 13.43 12.89 12.22 11.52 10.95 10.67 10.81 11.30 11.95 12.66 13.28 13.60 

27 Cianorte 13.39 12.87 12.21 11.54 10.99 10.72 10.85 11.32 11.96 12.64 13.24 13.55 

28 Pato Branco 13.55 12.97 12.23 11.47 10.84 10.53 10.68 11.22 11.94 12.71 13.39 13.74 

29 Quedas do Iguaçu 13.51 12.94 12.23 11.49 10.88 10.59 10.73 11.25 11.95 12.69 13.35 13.69 

30 Francisco Beltrao 13.55 12.97 12.23 11.47 10.84 10.54 10.68 11.22 11.94 12.71 13.39 13.74 

31 Umuarama 13.39 12.87 12.21 11.54 10.99 10.71 10.85 11.32 11.96 12.64 13.24 13.55 

32 Cascavel 13.46 12.91 12.22 11.51 10.93 10.64 10.78 11.28 11.95 12.67 13.30 13.63 

33 Planalto 13.51 12.95 12.23 11.49 10.88 10.58 10.72 11.25 11.95 12.69 13.35 13.69 

34 Palotina 13.44 12.90 12.22 11.52 10.95 10.66 10.80 11.29 11.95 12.66 13.28 13.61 
Font: adapted from TIME AND DATE (2019). 
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The PET computation requires two inputs, the daylight length (in hours) and the 

monthly temperature. The daylight length does not change significantly through time and 

depends on both Earth’s axial tilt and latitude. Thus, the daylight length for each meteorological 

station is needed and is presented in Table 10. The daylight length (in hours) was collected in 

the TIME AND DATE (2019) website for the main cities (Curitiba and Londrina) from January 

to December of 1961. The daylight length in the other 32 meteorological stations, was derived 

from the Curitiba and Londrina values by linear interpolation. 

Data from Table 10 were used to compute the monthly PET, using also the monthly 

temperature. All data were computed in the accumulation periods (3, 6, 12, 24, 36, 48, and 60 

months) to obtain the  of the RDI drought indices, according to equations in the section 2.5.2 

Reconnaissance Drought Index. Several drought indices accumulated in distinct periods were 

generated, comparing their p-values with the p-values of both Mann Kendall and Pettitt tests 

for the historical monthly series (precipitation and temperature). This comparison enabled the 

analysis of each series to compare stationary and non-stationary patterns. 

 

4.4. Indices versus historical series trend analysis 
 

As explained in chapter 2, the application of both Mann Kendall (MK) and Pettitt (PT) 

tests occurred in both monthly precipitation and temperature series and in distinct accumulation 

periods to verify trend or changing point in both historical and drought indices series. Under a 

hypothesis of non-stationary series, it was necessary to split them and fit distinct probability 

distributions before and after the changing point. The MK and PT tests were computed for both 

precipitation and temperature series of all meteorological stations and drought indices. 

If both precipitation or/and temperature series of the original and each accumulated 

period present p-values lower than 0.05, it turns necessary to split the RDI series in the changing 

point. Then, one gamma distribution is fitted from the beginning to the Changing point (CP), 

and another, from the changing point to the end of the series (e.g. 1961 to CP, CP to 2005). 

This application occurred only in the computation of the RDI series . Both Standardized 

Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) 

computations were not considered in the following analyses. All drought indices computation 
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rely in the assumption of fitting a probability distribution and gamma was adopted, according 

to the work of PLOSZAI et al. (2019). 

The p-value is the probability threshold for the null hypothesis rejection, i.e., the 

smallest significance level to verify trends and/or changing points in time series, assuming the 

null hypothesis is true (DEVORE, 2010). The p-value of a statistical test is the probability of 

type I error when  is rejected. 

 

Table 11 – Trend and changing point tests results for RDI in the historical observed series. 

HIST P T ak       HIST P T ak       
Station 1 1 3 6 12 24 36 48 60 Station 1 1 3 6 12 24 36 48 60 

1          18          
2          19          
3          20          
4          21          
5          22          
6          23          
7          24          
8          25          
9          26          
10          27          
11          28          
12          29          
13          30          
14          31          
15          32          
16          33          
17          34          

P: monthly precipitation series 
T: monthly temperature series 
ak: RDI series accumulated in 3, 6, 12, 24, 36, 48, and 60 months 

 Trend and 
changing point  Only changing 

point  Only trend  No trend, nor 
changing point 

Font: Author. 

 

The MK and PT tests were applied to verify the stationarity or non-stationarity in the 

RDI series for all accumulation periods (3, 6, 12, 24, 36, 48, and 60 months). Table 11 presents 

the stations that presented only trend (blue), trend and changing point (green), or only changing 

point (orange) in both monthly series and accumulation periods for the RDI series. Table 11 
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presents the comparison of monthly precipitation and temperature series with all RDI 

accumulation periods in the historical observed series. The blanks indicate neither trend nor 

change point and hence stationarity. 

Analysing Table 11, few stations presented trend and changing point (coloured green) 

or only changing point (orange) in both monthly historical precipitation or temperature series 

and accumulation periods of the RDI series . The station 1 (Paranagua) presented trend 

and changing point (green) in the monthly precipitation series and also in the 3, 6, 12 and 48 

months RDI accumulation periods. The station 8 (Ponta Grossa) presented trend and changing 

point (green) in the monthly precipitation series and also in the 3, 6, and 12 months RDI 

accumulation periods. 

The station 11 (Castro) presented only changing point (orange) in the monthly 

precipitation series as well as in the 3 month accumulation period. It presents trend and 

changing point (green) in the 6 and 12 months RDI accumulation periods. The station 21 

(Laranjeiras do Sul) presented trend and changing point (green) in the monthly precipitation 

series and also in the 6 month accumulation period. Station 22 (Londrina) presented only 

changing point (orange) in the monthly precipitation series. However, it also presented both 

trend and changing point (green) in the monthly temperature series and in the 3-, 6- and 12-

month accumulation periods. 

Station 8 (Ponta Grossa) presented only trend (blue) in the historical series, for 

accumulation periods of 24, 36, 48 and 60 months. Station 22 (Londrina) also presented only 

trend (blue) in the 36 month accumulation periods. 

Table 12 presents the comparison of monthly precipitation and temperature series and 

all RDI accumulation periods for RCP 4.5 scenarios. Practically all precipitation series of the 

Parana State presented only changing point (orange) in the simulated series, except the station 

20 (Clevelandia) which presented trend and changing point (green) in the series. 

The accumulation periods that presented only changing points (orange) in the 3 month 

RDI accumulation periods are the stations 2 (Morretes), 3 (Guaraquecaba), 7 (Joaquim Tavora), 

9 (Cambara), 10 (Bandeirantes), 11 (Castro), 14 (Ibipora), 15 (Bela Vista do Paraiso), 16 (Maua 

da Serra), 22 (Londrina) and 23 (Maringa). The accumulation periods that presented only 

changing point (orange) in the 6 month RDI accumulation periods are the stations 1 
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(Paranagua), 2 (Morretes), 3 (Guaraquecaba), 9 (Cambara), 10 (Bandeirantes), 14 (Ibipora), 15 

(Bela Vista do Paraiso) and 34 (Palotina). 

 

Table 12 – Trend and changing point tests results for RDI in the simulated RCP 4.5 scenarios. 

RCP 4.5 P T ak       RCP 4.5 P T ak       
Station 1 1 3 6 12 24 36 48 60 Station 1 1 3 6 12 24 36 48 60 

1          18          
2          19          
3          20          
4          21          
5          22          
6          23          
7          24          
8          25          
9          26          
10          27          
11          28          
12          29          
13          30          
14          31          
15          32          
16          33          
17          34          

P: monthly precipitation series 
T: monthly temperature series 
ak: RDI series accumulated in 3, 6, 12, 24, 36, 48, and 60 months 

 Trend and 
changing point  Only changing 

point  Only trend  No trend, nor 
changing point 

Font: Author. 

 

Table 13 presents the comparison of monthly precipitation and temperature series and 

all RDI accumulation periods for RCP 8.5 scenarios. All 34 monthly temperature series 

presented trend and changing point (green) and some stations presented only changing point in 

the precipitation series. 

Practically all 34 stations presented trend and changing point (green) in the 3-, 6-, and 

12-month RDI accumulation periods, except the stations 19 (Palmas), which presented neither 

trend nor changing point in the accumulation periods, and 20 (Clevelandia), which presented 

only changing point (orange) in the 12-month accumulation period. For larger accumulation 
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periods (e.g. 24, 36, 48 and 60 months), some stations present both trend and changing point 

(green), while others present only trend (blue). 

General stations varied in the presentation of trend and changing point (green) or only 

trend (blue) in the higher. The only trend (blue) was unconsidered in this method as explained 

in previous paragraph. 

 

Table 13 – Trend and changing point tests results for RDI in the simulated RCP 8.5 scenarios. 

RCP 8.5 P T ak       RCP 8.5 P T ak       
Station 1 1 3 6 12 24 36 48 60 Station 1 1 3 6 12 24 36 48 60 

1          18          
2          19          
3          20          
4          21          
5          22          
6          23          
7          24          
8          25          
9          26          
10          27          
11          28          
12          29          
13          30          
14          31          
15          32          
16          33          
17          34          

P: monthly precipitation series 
T: monthly temperature series 
ak: RDI series accumulated in 3, 6, 12, 24, 36, 48, and 60 months 

 Trend and 
changing point  Only changing 

point  Only trend  No trend, nor 
changing point 

Font: Author. 

 

ZARCH et al. (2015) compared the performance of both RDI and SPI in humid areas. 

They also found some differences in the middle of both indices. According to them, the RDI is 

a better drought index to perform global warming analysis, since it considers the effects of 

potential evapotranspiration. In a general analysis, they found the SPI presents more increasing 

drought trends (becoming wet) than RDI in the humid areas, according to MK and PT tests. 
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Other authors defend the use of the SPI, like KHADR (2016). According to him, the main 

advantage of the SPI is the use of only standardized precipitation in its computation. 

Topography and other variables do not affect its performance. 

The MK and PT tests application showed which accumulation periods presented trend 

and/or changing point in the meteorological stations of the RDI series. This analysis showed 

differences between the three RDI scenarios (historical, RCP 4.5 and RCP 8.5) as well as 

presented which stations, it is necessary to split the RDI series in the changing point to perform 

the non-stationary drought analysis. 

 

4.5. Differences in the drought indices statistics 
 

The previous section pointed the stations and their respective accumulation periods to 

apply the non-stationary analysis. From the analysis of the Table 11, Table 12 and Table 13, in 

a general overview the most significant non-stationary scenarios occurred in the 3, 6 and 12 

month accumulation periods. 

 

Table 14 - Non-stationary scenarios in Parana State in the 3-, 6-, and 12-month accumulation periods in the 
historical and both future (RCP 4.5 and RCP 8.5) scenarios. 

Accum. Historical period stations 
3 1 8 11 22              
6 1 8 11 21 22             

12 1 8 11 22              
Accum. Future RCP 4.5 scenario stations 

3 2 3 7 9 10 11 14 15 16 22 23       
6 1 2 3 9 10 14 15 34          

12                  
Accum. Future RCP 8.5 scenario stations 

3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
18 21 22 23 24 25 26 27 28 29 30 31 32 33 34   

6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
18 21 22 23 24 25 26 27 28 29 30 31 32 33 34   

12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
18 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34  

Font: Author. 
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Table 14 presents the non-stationary stations in the Parana State for both historical 

period (HIST) and simulated future (RCP 4.5 and RCP 8.5) scenarios. According to the Table 

14, in the historical period for the 3-month accumulation period, the stations 1 (Paranagua), 8 

(Ponta Grossa), 11 (Castro), and 22 (Londrina) presented non-stationarity in the RDI series. 

The Changing point (CP) presented in the Pettitt test application in the RDI series will split 

these series. In the 6-month accumulation period, the station 21 (Laranjeiras do Sul) includes 

among the previous in the non-stationary stations. The 12-month accumulation period presented 

non-stationarity in the same stations that the 3-month accumulation period. 

Following in the Table 14, the RCP 4.5 scenarios presented non-stationarity in the 3-

month accumulation period in the stations 2 (Morretes), 3 (Guaraquecaba), 7 (Joaquim Tavora), 

9 (Cambara), 10 (Bandeirantes), and 11 (Castro). The stations 14 (Ibipora), 15 (Bela vista do 

Paraiso), 16 (Maua da Serra), 22 (Londrina), and 23(Maringa) also presented non-stationarity 

in the RDI series. The CP presented in the Pettitt test application in the RDI series will split 

these series. In the 6-month accumulation period of the RCP 4.5 scenarios, the stations 1 

(Paranagua), 2 (Morretes), 3 (Guaraquecaba), 9 (Cambara), 10 (Bandeirantes), 14 (Ibipora), 15 

(Bela Vista do Paraiso), and 34 (Palotina) presented non-stationarity in the RDI series. The CP 

presented in the Pettitt test application in the RDI series will split these series. There is not any 

station that presented non-stationarity in the 12-month accumulation period in the RCP 4.5 

scenario. 

The RCP 8.5 scenarios in the 3- and 6-month accumulation periods presented non-

stationarity in almost all 34 stations, except the stations 19 (Palmas) and 20 (Clevelandia) which 

presented stationarity. In the 12-month accumulation period, almost all 34 stations presented 

non-stationarity, except the station 19 (Palmas). 

 

Table 15 – General non-stationary scenarios and the method border conditions. 

For HIST 12 scenarios, stations with less than 30 periods length 
Stations 3 5 6 16 19 25 28 29 32          

For HIST scenarios, stations with min length (30 periods) to fit the gamma 
Stations 1 4 8 9 11 12 18 21 22 23 30 31       

ak 6 6 3 6 6 3 3 3 6 6 3 6       
Font: Author. 

 



112 
 

 
 

The differences between stationary and non-stationary approaches presented in the text 

refer only to the 3-month accumulation periods. The other accumulation periods (6- and 12-

months) are in the Appendix. A limitation of the proposed method consists in the determination 

of the minimum length to fit a probability distribution (30-period length) (KOUTSOYIANNIS, 

2006). 

For this reason, the selection of the HIST scenarios in the 12-month accumulation period 

with less than 30 period length, was performed. The stations 3 (Guaraquecaba), 5 (Cerro Azul), 

6 (Lapa), 16 (Maua da Serra), 19 (Palmas), 25 (Nova Cantu), 28 (Pato Branco), 29 (Quedas do 

Iguacu), and 32 (Cascavel) presented less than 30 periods when accumulated in 12-months. 

These stations cannot be accumulated in 12-months and then fit a probability distribution due 

to a small sample after clustering (less than 30-periods) (KOUTSOYIANNIS, 2006). 

In the next lines of the Table 15, only for the historical observed series analysis, the 

stations 1 (Paranagua), 4 (Curitiba), 9 (Cambara), 11 (Castro), 22 (Londrina), 23 (Maringa), 

and 31 (Umuarama), can accumulate only the 3 and 6 months in order to fit probability 

distributions larger than 30-periods and reduce the errors of the small sampling fitting. The 

stations 8 (Ponta Grossa), 12 (Fernandes Pinheiro), 18 (Apucarana), 21 (Laranjeiras do Sul), 

and 30 (Francisco Beltrao) can accumulate only the 3 months in order to satisfy this condition 

also. 

 

Table 16 – Non-stationary scenarios in Parana State in the 3-, 6-, and 12-month accumulation periods in the 
historical and both future (RCP 4.5 and RCP 8.5) scenarios, after applying the border conditions correction. 

Accum. Historical period stations 
3 1 8 11 22              
6 1 11 22               

Accum. Future RCP 4.5 scenario stations 
3 2 3 7 9 10 11 14 15 16 22 23       
6 1 2 3 9 10 14 15 34          

Accum. Future RCP 8.5 scenario stations 

3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
18 21 22 23 24 25 26 27 28 29 30 31 32 33 34   

6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
18 21 22 23 24 25 26 27 28 29 30 31 32 33 34   

12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
 18 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34  

Font: Author. 



113 
 

 
 

 

All these combined information resulted in the Table 16, where there are only stations 

suitable for the non-stationary approach. From the previous analysis, in the historical observed 

scenarios, the stations 1 (Paranagua), 8 (Ponta Grossa), 11 (Castro), and 22 (Londrina) 

presented non-stationarity in the RDI series in the 3-month accumulation period. In the 6-month 

accumulation period, the stations 1 (Paranagua), 11 (Castro), and 22 (Londrina) presented non-

stationarity in the RDI series. The respective CP presented in the Pettitt test application in the 

RDI series split these stations in both accumulation periods (3- and 6-month). In this analysis 

the 12-month accumulation period turned into stationary due to the minimum 30-period length 

requirement to fit a probability distribution (KOUTSOYIANNIS, 2006). Both simulated (RCP 

4.5 and RCP 8.5) scenarios remained equal, because the series are extended (January of 2006 

to December of 2099, resulting in 1128 months), when compared to the historical series (540 

months). The 12-month accumulation period is the minimum to satisfy the 30-period length in 

both future simulated scenarios. 

Using the Table 16 information, the algorithm performed the drought analysis 

computing the main drought statistics, like duration, frequencies (thresholds 0, -1.0 and -1.5, 

which represent mild, moderate and severe droughts, respectively). The algorithm computed 

also the magnitude (mean, median and maximum), minimum value, and number of differences 

(between stationary and non-stationary approaches). 

In order to verify the non-stationary analysis performance to evaluate droughts, the 

algorithm computed differences in these drought statistics and elaborated colour maps, as 

follow in the Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, Figure 12, Figure 13, 

Figure 14, and Figure 15. It is important to highlight that these maps generation in the QGIS 

free software used the Inverse Distance Weighting (IDW) interpolation technique. Its name 

attributes to a weighted average, resulting in the proximity of each point, in terms of the 

distance’s inverse. The IDW consists in a multivariate deterministic interpolation method using 

known set points. The other values were obtained from the set points using this weighting 

average of the known points (ACHILLEOS, 2011). In all maps (Figure 6, Figure 7, Figure 8, 

Figure 9, Figure 10, Figure 11, Figure 12, Figure 13, Figure 14, and Figure 15) there are only 

the non-stationary stations. These maps show the percentage difference between the stationary 

and non-stationary approaches. 
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Figure 6 presents the percentage difference between stationary and non-stationary 

approaches in the maximum drought duration of both historical (HIST) and simulated (RCP 4.5 

and RCP 8.5) series. According to it, in the historical RDI series, most of Parana area presented 

differences of around 10.64% in drought duration, between stationary and non-stationary 

approaches. Exceptions occurred in the stations 8 (Ponta Grossa) and 11 (Castro), presenting 

lower values (1.14%). However, the station 22 (Londrina with 29.64%) and station 1 

(Paranagua with 39.14%) presented higher values. 

The simulated (RCP 4.5) series presented more non-stationary stations and the 

difference in drought duration is between 2.00% and -13.23%. Positive difference values 

indicate the stationary approach generates a larger value when compared to the non-stationary 

approach, while negative difference values indicate the non-stationary approach generates a 

larger value when compared to the stationary approach. It means that positive differences result 

in drought duration overestimation whether adopting the stationary approach, while the 

negative differences result in drought duration underestimation whether adopting the 

stationary approach. In a general scenario, there is a general drought duration 

underestimation, except for the Northeast and East (coast side) of the Parana State. 

 

Figure 6 – Difference (%) between stationary and non-stationary approaches in the maximum drought duration of 
the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 

 

Font: Author. 
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In the RCP 8.5 scenario, there is a general drought duration overestimation in terms of 

area, with few stations located in the Southwest presenting great underestimation (highest 

underestimation in the station 33 – Planalto, with -76.84%). Some areas between stations across 

the Parana State presented a slight drought duration underestimation, when adopting the non-

stationary scenario. It means the non-stationary approach indicates a drought with larger 

duration than the traditional stationary approaches do, highlighting the importance of 

considering the non-stationarity in drought analysis. The stations 29 (Quedas do Iguassu), 

followed by the stations 8 (Ponta Grossa) and 2 (Morretes) presented significant drought 

duration underestimation up to -50.34%. 

Figure 7 presents the percentage difference between stationary and non-stationary 

approaches in the zero threshold frequency of droughts of the historical (HIST) and simulated 

(RCP 4.5 and RCP 8.5) series. The statistic drought frequency of zero threshold means the 

occurrence of droughts, where all RDI values below zero are considered droughts, according to 

the Run Theory (see subchapter 2.10 Run Theory). According to it, in the historical observed 

RDI series, the general Parana State presented differences of around 0.64% in the frequency of 

droughts under a zero threshold, when comparing the stationary and non-stationary scenarios. 

The stations 11 (Castro) and 22 (Londrina) presented 2.63% variation. In the littoral area, the 

station 1 (Paranagua) presented -5.32% variation. 

The simulated (RCP 4.5) series presented less percentage variation than the historical 

series. However, the RCP 4.5 has more stations with a non-stationary approach, resulting in a 

different behaviour. The highest differences (red) in the zero threshold frequency of droughts 

are in the stations 3 (Guaraquecaba), 10 (Bandeirantes), 11 (Castro), 14 (Ibipora) and 22 

(Londrina), while the lowest differences are in the stations 7 (Joaquim Tavora), 9 (Cambara), 

15 (Bela Vista do Paraiso) and 23 (Maringa). Even in this scenario occurred only 

underestimation in the frequency of droughts (zero threshold) and it occurred few variations in 

absolute value. This means that using the traditional stationary models, occurs an 

underestimation in the frequency of droughts. This fact highlights the importance of adopting 

non-stationary models for drought analysis. 

The RCP 8.5 scenario presented differences in the variation of drought frequencies in 

the entire Parana State. There is an overestimation of drought frequency in the Central-North, 

North, Northwest and West, except for the station 34 (Palotina with -2.46%), which presented 
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an underestimation of the drought frequency of zero threshold. This means that half of the 

Parana State, when adopting the stationary models, has a variation between -1.11% and 1.59%, 

meaning underestimation and overestimation, respectively. In the Centre-South, Southeast and 

East, the map showed a general underestimation from Centre-South to East of around -2.47%, 

and few stations in these subareas presented -1.11% variation (e.g. station 12 – Fernandes 

Pinheiro). The historical scenario presented more drought frequency differences when 

compared to both future scenarios. 

 

Figure 7 – Difference (%) between stationary and non-stationary approaches in the zero threshold frequency of 
the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 

 

Font: Author. 

 

Figure 8 presents the percentage difference between stationary and non-stationary 

approaches in the -1.0 threshold frequency of droughts of the historical (HIST) and simulated 

(RCP 4.5 and RCP 8.5) series. According to it, in the historical observed RDI series, Parana 

State presented generally differences of around -2.35% in the frequency of droughts under a -

1.0 threshold, comparing the stationary and non-stationary scenarios. The station 11 (Castro) 

presented -8.40% variation, while the neighbour station (8 – Ponta Grossa) presented 3.71% 

variation. The station 8 presented overestimation, while the station 22 presented 

underestimation between non-stationary and stationary approaches. At the coast occurred a 
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different behaviour since the station 1 (Paranagua) presented 15.82% positive variation. This 

means that close to the coast-side, there is drought overestimation when using the stationary 

approach. 

The simulated (RCP 4.5) series presented less percentage variation than the historical 

series (percentage differences range from -2.08% to 2.43%). The stations 7 (Joaquim Tavora), 

9 (Cambara) and 16 (Maua da Serra) presented the highest positive percentage (overestimation), 

while the stations 3 (Guaraquecaba), 11(Castro) and 22 (Londrina) presented the lowest 

percentage (underestimation). Negative values mean that in these areas occurred 

underestimation of the drought frequencies when using the traditional stationary models. In 

other areas of the country (light blue and blue), there is a slight overestimation of drought 

frequencies between 0.17% and 1.30%. In the light red areas, there is a mild underestimation 

of moderate drought occurrence of about -0.96% difference. 

 

Figure 8 – Difference (%) between stationary and non-stationary approaches in the -1.0 threshold frequency of the 
historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 
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The RCP 8.5 scenario presented more variation in the drought frequencies than the RCP 

4.5 scenario. The RCP 8.5 presented a general overestimation of the drought frequencies when 

adopting the stationary models, evidenced by the range of positive values (between 2.93% and 
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9.20%) in almost the entire Parana State. In the light red areas, represented by stations 5 (Cerro 

Azul), 12 (Fernandes Pinheiro), 28 (Pato Branco) and 29 (Quedas do Iguassu), and in the 

Southwest (mild variation in the moderate drought occurrence frequency) occurred -0.20% 

variation. The stations 21 (Laranjeiras do Sul), 30 (Francisco Beltrao) and 33 (Planalto) 

presented the highest negative variations (-3.33%), meaning in both red and light red areas 

occur a slight underestimation of the drought frequencies. This happens when the stationary 

model is adopted and highlights the importance of considering the non-stationary models in 

drought analysis. The -1.0 threshold relates to the occurrence of moderate droughts, according 

to the droughts classification presented in the subsection 2.5 Drought indices. 

Figure 9 presents the percentage difference between stationary and non-stationary 

approaches in the -1.5 threshold frequency of droughts of the historical (HIST) and simulated 

(RCP 4.5 and RCP 8.5) series. According to it, in the historical scenario occurred 

underestimation of the severe droughts, pointed by the negative differences between stationary 

and non-stationary approaches. The -1.5 threshold (severe droughts) is an important statistic to 

evaluate the drought phenomena, since it reveals a severe drought. 

 

Figure 9 – Difference (%) between stationary and non-stationary approaches in the -1.5 threshold frequency of the 
historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 

 

Font: Author. 
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In the historical scenario, the highest variations occurred in the seaside (East), South 

and Southeast, in a range between -23.22% and -40.06%, represented by white and red. In the 

North, Northwest and West, occurred the milder differences (between -6.38% and -14.80%) 

represented by light blue and blue, respectively. The lowest severe drought occurrence 

differences occurred in the station 22 (Londrina) with -6.38% difference between stationary 

and non-stationary approaches, meaning the stationary approach underestimates the non-

stationary approach. 

The simulated (RCP 4.5) series presented more variation in both stations 11 (Castro) 

and 22 (Londrina) with -11.91% variation. The second highest variation occurred at the station 

16 (Maua da Serra) with -7.44% variation. In other Parana areas, occurred differences between 

-2.98% and 5.95%, represented by blue to white gradual transition. There is a general 

overestimation in the differences of severe drought occurrence frequencies, represented by light 

blue and blue in the map (positive signal). 

The RCP 8.5 presented a clear pattern in the differences between stationary and non-

stationary approaches. There is a white line splitting the Parana State in two areas. The red to 

light red areas represent the higher differences (between -25.67% and -36.29%) and the light 

blue (-4.44%) to blue (6.18%) represent the lower differences. In the RCP 8.5 scenario, there 

was a slight drought overestimation (6.18% variation represented by blue circles) in the stations 

5 (Cerro Azul), 13 (Telemaco Borba), 17 (Guarapuava), and 21 (Laranjeiras do Sul), among 

others. There is an increase in the frequency of severe droughts, when compared to the RCP 4.5 

scenario and a mild decrease, when compared to the historical scenario. 

Figure 10 presents the percentage difference between stationary and non-stationary 

approaches in the maximum drought magnitude of both historical (HIST) and simulated (RCP 

4.5 and RCP 8.5) series. In the historical series occurred a general overestimation of the 

maximum drought magnitude, meaning the stationary approach results in a larger maximum 

magnitude, when compared to the non-stationary analysis. This means more severe droughts 

than actually are. Lower variations occur in the North, where the station 22 (Londrina) 

presented 1.02% difference (red). Higher variations occur close to the seaside and the station 1 

(Paranagua) resulted in the maximum drought magnitude difference in the entire State (21.34% 

in blue). 

A different behaviour happens in the simulated future series (RCP 4.5 and RCP 8.5). In 

the RCP 4.5 scenario, there is a general overestimation of the maximum drought magnitudes in 
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almost the entire State, mainly in the North region. Exceptions are the red areas regarding the 

stations 11 (Castro) with -16.90% difference and 2 (Morretes) between -10.80% and -16.90%, 

both indicating underestimation of maximum drought magnitude. In the light red area between 

station 2 and 11 occurred a -10.80% difference, meaning an underestimation of the maximum 

drought magnitude, when adopting the stationary approach. 

 

Figure 10 – Difference (%) between stationary and non-stationary approaches in the maximum drought magnitude 
of the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 
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In the RCP 8.5 scenario, more stations presented non-stationary behaviour and Parana 

State presented an overestimation of the maximum drought magnitudes, being the maximum 

value 31.49% in various localities. An exception in this scenario occurred in the Central region, 

where occurred underestimation of the maximum drought magnitudes reaching -45.26% in the 

locations 8 (Ponta Grossa), 12 (Fernandes Pinheiro), and 17 (Guarapuava). Analysing all 

scenarios simultaneously (historical and future), there is a general overestimation of the 

maximum drought severities in a great part of the Parana State. 

Figure 11 presents the percentage difference between stationary and non-stationary 

approaches in the mean drought magnitude of both historical (HIST) and simulated (RCP 4.5 

and RCP 8.5) series. In the historical series occurred an overestimation of the mean drought 



121 
 

 
 

magnitudes in the Parana area. The less significant difference in the mean drought magnitude 

occurred at the station 1 (Paranagua) with 5.04% variation, while the most significant occurred 

at the station 22 (Londrina) with 12.50% variation, both positive, indicating overestimation in 

the mean drought magnitudes. This means that by the traditional stationary analysis there is an 

overestimation of the mean drought magnitudes, evidencing more intense droughts than 

actually they are. 

 

Figure 11 – Difference (%) between stationary and non-stationary approaches in the mean drought magnitude of 
the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 
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In the RCP 4.5 scenario occurred a similar behaviour in the mean values than that 

observed in the historical series. The higher variations occurred in the North (reaching 3.84% 

difference in blue) and the lower variations in the Centre as presented by station 11 (Castro 

with -0.49%). In the RCP 8.5 scenario, a general overestimation occurred from Northwest to 

Northeast, represented by blue (8.73%) and light blue (6.24%). The underestimation occurred 

in the Central-South region, represented by red (-1.25%). The light red (-0.47%) present in the 

majority of Parana State represent a slight overestimation of the mean drought magnitude. 

Except the red regions, there is a general overestimation of the mean drought magnitude, 
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meaning the current drought analysis shows more intense droughts than actually they are. A 

white line clearly separates both regions (underestimation and overestimation). 

Figure 12 presents the percentage difference between stationary and non-stationary 

approaches in the median drought magnitude of both historical (HIST) and simulated (RCP 4.5 

and RCP 8.5) series. In the historical series occurred overestimation of the median drought 

magnitudes in the Central, North, and West Parana (in blue). A different behaviour 

(underestimation) occurred in the coastal region (East), reaching a -9.66% difference (in red) 

between stationary and non-stationary approaches. In the Southwest occurred a milder 

underestimation reaching -1.18% difference between both approaches. 

 

Figure 12 – Difference (%) between stationary and non-stationary approaches in the median drought magnitude 
of the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 
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In the RCP 4.5 scenario, stations 3 (Guaraquecaba), 16 (Maua da Serra) and 23 

(Maringa) presented a slight overestimation in the median drought magnitudes. From light blue 

to red areas, there is underestimation of the mean drought magnitudes, reaching -7.84% 

difference at stations 14 (Ibipora), 15 (Bela Vista do Paraiso) and 22 (Londrina). Most part of 

Parana State presented underestimation of mean drought magnitudes. 
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In the RCP 8.5 scenario occurred underestimation of the median drought magnitude in 

most part of the Parana State, except for the Northwest, West and East, which presented 

overestimation. Some stations in the North reached -8.30% difference, while others in the 

Northwest reached 9.01%. The most significant differences in the median drought magnitudes 

are in the positive values (overestimation) at the stations 27 (Cianorte) and 31 (Umuarama). At 

the same time, important negative values (underestimation), were found in the stations 9 

(Cambara), 10 (Bandeirantes), 14 (Ibipora), 16 (Maua da Serra), and 23 (Maringa). 

 

Figure 13 – Difference (%) between stationary and non-stationary approaches in the minimum values of the 
historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 
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Figure 13 presents the percentage difference between stationary and non-stationary 

approaches in the minimum values of both historical (HIST) and simulated (RCP 4.5 and RCP 

8.5) series. According to it, in all scenarios (HIST, RCP 4.5 and RCP 8.5) occurred 

underestimation of the minimum values. This implies that applying the traditional stationary 

analysis shows drought intensities less severe, when compared to the non-stationary analysis. 

This fact also highlights the importance of considering the non-stationary analysis in regions 

where weather scientists affirm they are non-stationary. A drought analysis considering less 
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intense droughts when actually they are more intense, can fail in forecasting studies and a worse 

phenomenon can happen. 

 

Figure 14 – Total number of drought events difference (%) between stationary and non-stationary approaches of 
the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 
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In the historical scenario, the higher differences occurred around the station 8 (Ponta 

Grossa) with -2.23% difference in the minimum values. Smaller differences occurred at stations 

1 (Paranagua) and 11 (Castro), with both reaching up to -1.57% difference. In the remaining 

Parana area occurred differences between -1.73% and -2.06%, coloured light blue to light red, 

respectively. The difference is concentrated in the white strip covering a transition area of the 

Parana and reaching -1.90% difference in the minimum values. 

In the RCP 4.5 scenario, the difference in the minimum values are lower, when 

compared to the historical scenario. It varies from -0.60% to -1.27%, coloured in blue and red, 

respectively. The higher differences situate in the Northeast region, represented by stations 7 

(Joaquim Tavora) and 11 (Castro), both in red. Lower variations occurred in the station 23 

(Maringa) with -0.60%. 
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In the RCP 8.5 scenario, differences situate between -0.74% and -4.95% in almost the 

entire Parana area. An exception occurs in the North region, where the highest difference relates 

to station 15 (Bela Vista do Paraiso with -6.36% difference) and the neighbouring stations 

situate in the range between -3.55% (white) and -4.95% (light red). 

Figure 14 presents the percentage difference of the total number of drought events 

between stationary and non-stationary approaches. Sometimes an event considered drought in 

the stationary analysis is flood in the non-stationary analysis and vice-versa. These differences 

highlight the importance in performing the non-stationary drought analysis, in regions, which 

present non-stationary behaviour. 

In the historical series, the major differences (in absolute value) occurred in the station 

22 (Londrina with -14.06% difference), while the lower in absolute value occurred in the station 

8 (Ponta Grossa with 3.99% difference). The historical series presents higher differences in 

drought events in the Northwest, North and Northeast regions, when compared to the Centre, 

South and East regions. These differences show that the stationary analysis underestimates 

drought events, turning important to perform the non-stationary drought analysis. In the 

historical scenarios, there are only drought events underestimation. 

In the RCP 4.5 scenario occurred the same pattern as observed in the historical scenario. 

Generally, negative differences were found in the RCP 4.5 scenario, meaning an 

underestimation of drought events when using the stationary approach. The maximum absolute 

differences were found in the Northeast and East regions (-3.87%), while the minimum 

differences were found at station 11 (Castro). 

In the RCP 8.5 scenario, there is an underestimation in almost all Parana area, except in 

some stations in the South and Centre-South, which presented a slight overestimation of 

droughts (positive percentage difference, 0.45%). The underestimation/overestimation in 

drought events compares the percentage difference between stationary and non-stationary 

analyses. The negative signal represents the underestimation, while the positive signal the 

overestimation in the number of drought events, when compared the non-stationary to the 

stationary analysis. In the Northwest and Northeast regions, there are some sites, which 

presented higher underestimation of drought events (-9.76%). In almost all Parana area, 

differences in drought events are between -7.71% and -2.10%. 
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Figure 15 presents the percentage difference between stationary and non-stationary 

approaches in the number of times there are difference in droughts of both historical (HIST), 

and simulated (RCP 4.5 and RCP 8.5) series. In the historical scenario, higher differences relate 

to the stations 8 (Ponta Grossa) and 11 (Castro) with 57.14% and lower differences in the station 

22 (Londrina) with 55.64%. It means that in Parana State, at least 50% difference occurred 

when adopting the stationary model. 

 

Figure 15 – Difference (%) between stationary and non-stationary approaches in the number of times there are 
difference in droughts in the stationary and non-stationary approaches of the historical (HIST), and simulated 
(RCP 4.5 and RCP 8.5) series. 
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In the RCP 4.5 scenario occurs a similar behaviour in the simulated series in terms of 

the minimum differences found between the two approaches. The lower differences occur at 

the coast (East) (red), increasing gradually to the West and North, where there are higher 

differences, as presented by stations 14 (Ibipora), 15 (Bela Vista do Paraiso) and 22 (Londrina) 

in blue. 

In the RCP 8.5 scenario, the lower differences (red) occur in the Southwest, South and 

Southeast and they gradually increase toward the North (blue). There is a white strip splitting 

the Parana and showing that higher differences occur in the South, while smaller differences 
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occur in the North. Together the three scenarios (historical and both future) show an agreement 

between the drought characterization in both stationary and non-stationary approaches. 

 

Figure 16 – Stationary versus non-stationary (split) RDI for the meteorological station 1 (Paranagua) and 12-month 
accumulation period. 
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Figure 17 – Stationary versus non-stationary (split) RDI for the meteorological station 8 (Ponta Grossa) and 12-
month accumulation period. 

 

Font: Author. 
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Figure 18 – Stationary versus non-stationary (split) RDI for the meteorological station 11 (Castro) and 12-month 
accumulation period. 

 

Font: Author. 

 

Figure 19 – Stationary versus non-stationary (split) RDI for the meteorological station 22 (Londrina) and 12-month 
accumulation period. 
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ZARCH et al. (2015) recommend the RDI for application in climate change studies 

since the RDI incorporates the potential evapotranspiration and consequently, the temperature 

in its computation, returning a more realistic drought evaluation. There were performed RDI 

graphs showing the visual differences between stationary and non-stationary analyses. 

Figure 16 represents the station 1 (Paranagua) RDI graph for the 12-month 

accumulation period. STAT Gamma means stationary approach and NONSTAT Gamma 1 and 

2 mean non-stationary approach. According to Figure 16, there is a general underestimation of 

the non-stationary analysis for the first split. However, in the non-stationary analysis of the 

second split, there is a slight overestimation in comparison with the stationary analysis. 

Figure 17 represents the station 8 (Ponta Grossa) RDI graph for the 12-month 

accumulation period. STAT Gamma means stationary approach and NONSTAT Gamma 1 and 

2 mean non-stationary approach. According to Figure 17, there is a general underestimation of 

the non-stationary analysis for the first split. However, in the non-stationary analysis for the 

second split, there is a slight overestimation in comparison with the stationary analysis. 

Figure 18 represents the station 11 (Castro) RDI graph for the 12-month accumulation 

period. There is a general underestimation of the non-stationary analysis for the first split. 

However, the non-stationary analysis in the second split presented a slight overestimation in 

comparison with the stationary analysis. 

Figure 19 represents the station 22 (Londrina) RDI graph for the 12-month 

accumulation period. There is a general underestimation of the non-stationary analysis for the 

first split, but for the second split, there is a slight overestimation in comparison with the 

stationary analysis. 

At the four stations presented in the graphs, it occurs the same behaviour when 

comparing the stationary and the non-stationary analyses, a general underestimation in the first 

split, while in the second split there is an overestimation of the non-stationary analysis. 

 

4.6. Positive and negative times 
 

Some differences between the stationary and non-stationary approaches resulted in 

positive, while others resulted in negative number of elements (NEL), i.e. number of times that 

indices presented positive or negative differences between the stationary and non-stationary 
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analysis in the 3-, 6- and 12-month accumulation periods. For this reason, these occurrences 

were computed in order to see a decreasing and/or increasing trend in most part of the statistics. 

Table 17, Table 18 and Table 19 present the number of times that indices presented 

positive or negative differences, between stationary and non-stationary analyses in the 3-, 6- 

and 12-month accumulation period, respectively. 

In the 3-month accumulation period (Table 17), there are 4 non-stationary stations 

(NEL) in the historical series and some differences in statistics resulted in positive NEL, i.e., 

they increased when using the non-stationary analysis, meaning the traditional stationary 

approach overestimates the drought statistics. The predominance in negative NEL indicates the 

underestimation of these statistics when the stationary approach is used. 

Table 17 shows the stations that presented only positive NEL in the statistics. They are 

mean drought magnitude (diff mean), maximum drought magnitude (diff max), and maximum 

drought duration (diff max dur). They indicate the overestimation pattern if the stationary 

analysis is used. The entire negative (NEL equal 4) occurred in the minimum (diff min), severe 

drought occurrence frequency (diff FR15) and number of drought events (diff nev). The 

remained statistics presented both underestimation and overestimation pattern, when adopted 

the stationary approach. 

 

Table 17 – Number of times (NEL) that indices presented positive or negative differences between the stationary 
and non-stationary analysis in the 3-month accumulation period. 

 NEL 4  NEL 11  NEL 32 
03 HIST (-) (+) 03 RCP45 (-) (+) 03 RCP85 (-) (+) 
Diff mean 0 4 Diff mean 1 10 Diff mean 7 25 
Diff med 2 2 Diff med 8 3 Diff med 14 18 
Diff max 0 4 Diff max 3 8 Diff max 13 19 
Diff FR0 2 2 Diff FR0 7 4 Diff FR0 15 17 
Diff min 4 0 Diff min 11 0 Diff min 32 0 

Diff FR10 2 2 Diff FR10 4 7 Diff FR10 5 27 
Diff FR15 4 0 Diff FR15 6 5 Diff FR15 22 10 

Diff max dur 0 4 Diff max dur 2 9 Diff max dur 7 25 
Diff n. ev. 4 0 Diff n. ev. 9 2 Diff n. ev. 24 8 
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In the future RCP 4.5 scenario, there are 11 stations under a non-stationary approach 

(NEL equal 11) and the most significant positive differences are in the mean drought magnitude 

(diff mean with 10), maximum drought duration (diff max dur with 9) and maximum drought 

magnitude (diff max with 8). The negative significant differences occurred in the minimum 

NEL (diff mean with 11) and number of drought events (diff nev with 9). Remaining differences 

presented both increase in some stations and decrease in others. 

In the RCP 8.5 scenario, 32 stations presented non-stationary approach (NEL 32) and 

the most significant positive pattern occurred in the moderate drought occurrence frequency 

(diff FR10 with 27), mean drought magnitude (diff mean) and maximum drought duration (diff 

max dur), both with 25 events presenting positive differences. However, significant negative 

pattern was observed in the minimum NEL (diff min) where 32 of the 32 events presented lower 

minimum NEL. It means that adopting the stationary analysis, droughts can be less severe than 

actually are (minimum underestimation). 

Table 18 presents the number of times that indices presented positive or negative 

differences between the stationary and non-stationary analysis in the 6-month accumulation 

period. In the historical period, there are more positive NEL (overestimation in relation to the 

stationary approach), in the maximum drought magnitude (diff max). However, more negative 

NEL occurred in the mild and moderate drought occurrence frequency (diff FR0 and diff FR10), 

respectively. There are only 3 stations in the historical series that presented non-stationarity in 

the RDI series (diff nev 3). 

 

Table 18 – Number of times (NEL) that indices presented positive or negative differences between the stationary 
and non-stationary analysis in the 6-month accumulation period. 

 NEL 3  NEL 8  NEL 32 
06 HIST (-) (+) 06 RCP45 (-) (+) 06 RCP85 (-) (+) 
Diff mean 2 1 Diff mean 1 7 Diff mean 7 25 
Diff med 2 1 Diff med 3 5 Diff med 9 23 
Diff max 0 3 Diff max 8 0 Diff max 25 7 
Diff FR0 3 0 Diff FR0 6 2 Diff FR0 22 10 
Diff min 1 2 Diff min 8 0 Diff min 32 0 

Diff FR10 3 0 Diff FR10 1 7 Diff FR10 6 26 
Diff FR15 1 2 Diff FR15 6 2 Diff FR15 13 19 

Diff max dur 2 1 Diff max dur 1 7 Diff max dur 26 6 
Diff n. ev. 1 2 Diff n. ev. 5 3 Diff n. ev. 24 8 
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In the RCP 4.5 scenario, there are 8 stations that presented non-stationarity (NEL 8) and 

the most significant positive differences occurred in the mean drought magnitude (diff mean), 

moderate drought occurrence frequency (diff FR10) and maximum drought duration (diff max 

dur), with 7 stations presenting positive difference (overestimation increase in comparison to 

the stationary approach). However, the most significant negative differences were found in the 

maximum drought magnitude (diff max) and in the minimum NEL (diff min), both with 8 

stations presenting negative differences. 

In the RCP 8.5 scenario, the line (NEL 32) shows the number of stations who presented 

non-stationarity in the RDI series. The most significant positive differences occurred in the 

moderate drought occurrence frequency (diff FR10 with 26 times), mean drought magnitude 

(diff mean with 25 times) and median drought magnitude (diff med with 23 times). However, 

the most significant negative differences occurred in the RCP 8.5 scenario in the minimum NEL 

(diff min with 32 events), maximum drought duration (diff max dur with 26 events), and 

maximum drought magnitude (diff max with 25 events). Other statistics showed both positive 

and negative differences. 

 

Table 19 – Number of times (NEL) that indices presented positive or negative differences between the stationary 
and non-stationary analysis in the 12-month accumulation period. 

 NEL 33 
12 RCP85 (-) (+) 
Diff mean 7 26 
Diff med 7 26 
Diff max 24 9 
Diff FR0 12 21 
Diff min 9 24 

Diff FR10 25 8 
Diff FR15 21 12 

Diff max dur 4 29 
Diff n. ev. 25 8 

Font: Author. 

 

Table 19 present the number of times that indices presented positive or negative 

differences between the stationary and non-stationary analysis in the 12-month accumulation 

period. Only the RCP 8.5 scenario presented 33 stations (NEL 33) with non-stationary pattern 
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in the 12-month accumulation period. In both historical and RCP 4.5 scenarios, all 34 stations 

presented stationarity in the 12-month accumulation period. The most significant positive 

statistics are the maximum drought duration (diff max dur with 29 events), mean and median 

drought magnitudes (diff mean and diff med, both with 26 events). However, the most 

significant negative statistics are moderate drought occurrence frequency (diff FR10 with 25 

events), number of drought events (diff nev also with 25 events) and maximum drought 

magnitude (diff max with 24 events). Positive NEL indicate statistics increase when adopting 

the stationary approach, while negative NEL indicate decrease. In other words, overestimation 

and underestimation, respectively. Other statistics remained both positive and negative in all 

stations. 

 

4.7. Moving window 
 

The previous sections highlighted the non-stationary stations and then, the comparison 

of the non-stationary approach with the stationary approach, was performed. In order to verify 

the parameters temporal evolution, the next drought evaluation is the moving window analysis. 

 

Figure 20 – Shape parameter  in the 30-period moving window analysis of the RDI station 11 (Castro) and 
6-month accumulation period. 

 

Font: Author. 
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LI et al. (2019) applied the 30-year moving window in the series of both maximum 

annual rainfall intensity and rainfall volume and fitted the time-dependent marginal distribution 

Generalized Extreme Value (GEV) for both variables. CHENG & AGHAKOUCHAK (2014) 

suggest the application of non-stationary frequency analysis in hydrological data (rainfall), 

varying in time and maintaining the other parameters stationary. Meanwhile, other authors 

YILMAZ & PERERA (2014) applied statistical and graphical tests to verify whether these 

trends correspond to the series non-stationarity. 

 

Figure 21 – Location parameter  in the 30-period moving window analysis of the RDI station 11 (Castro) and 
6-month accumulation period. 

 

Font: Author. 

 

According to KHADR (2016), it is necessary to fill in the gaps before applying the SPI 

and use a 30-year series as the minimum length for drought studies. The authors MCKEE et al. 

(1993) suggested the maximum likelihood method to estimate the parameters of the gamma 

distribution. This dissertation follows the same method that LI et al. (2019) applied, using the 

gamma distribution instead of the GEV for the drought series in order to verify the temporal 
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parameters evolution. Hence, the computation of the 30-period moving window analysis 

occurred in the non-stationary scenarios, pointed by results of the Mann-Kendall and/or Pettitt 

tests, in the subsection 4.4. 

Among the 26 stations/accumulation periods analysed, the parameters evolution of the 

RDI at the station 11 (Castro) in the 6-month accumulation period was selected. The RDI 

presented well the drought phenomenon in the region in the previous analyses, as shown in the 

Figure 16, Figure 17, Figure 18 and Figure 19. 

 

Figure 22 – Scale parameter  in the 30-period moving window analysis of the RDI station 11 (Castro) and 
6-month accumulation period. 

 

Font: Author. 

 

Figure 20 illustrates the shape parameter  evolution in the 30-period moving 

window analysis of the RDI station 11 (Castro) in the 6-month accumulation period. Results 

show an abrupt increase of the shape parameter in 1964, maintaining oscillations until 1979 and 

an abrupt decrease until the end of the series. In 1969, there is an abrupt decrease followed by 

an abrupt increase in the shape parameter. This also may be a random variation of the parameter. 

Results also show in the mean a decrease in the shape parameter along time (SLR line analysis). 
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Figure 21 illustrates the location parameter  evolution in the 30-period moving 

window analysis of the RDI at station 11 (Castro) and 6-month accumulation period. Results 

showed an abrupt decrease of the location parameter in 1964, followed by oscillations until 

1979. In this year, the location parameter suffered an abrupt increase and followed increasing 

until 1979. In the year 1969, it happened a more pronounced variation in the location parameter. 

After the peak of 1987, it decreases again until the end of the series (1992). Results also showed 

on average an increase in the location parameter along time (SLR line analysis). 

Figure 22 illustrates the scale parameter  evolution in the 30-period moving 

window analysis of the RDI at station 11 (Castro) in the 6-month accumulation period. Results 

showed small oscillations of the scale parameter from 1964 to 1979, where it started to increase 

abruptly until 1987 and then decreased until the end of the series. Results also show an average 

increase in the location parameter along time (SLR line analysis). 

 

Figure 23 – Minimum values in the 30-period moving window analysis of the RDI station 11 (Castro) and 6-month 
accumulation period. 

 

Font: Author. 

 

Figure 23 illustrates the minimum values evolution in the 30-period moving window 

analysis of the RDI at station 11 (Castro) and 6-month accumulation period. Results showed an 
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abrupt decrease of the minimum values in 1964, followed by oscillations until 1973. After this 

year, the minimum values suffered a gradual increase until 1980, followed by an also gradual 

decrease until the end of the series. All the period 1964-1971 presents smooth decreasing 

oscillations probably of random nature. Results also showed an average increase in the 

minimum values along time (SLR line analysis), meaning that drought severities tend to 

intensify in the end of the historical series. 

In the 30-period moving window analysis, the parameter temporal variation presented 

a decrease in the shape parameter only. Both location and scale parameters, including also the 

minimum values suffered an increase along most of the time. This increase is concentrated over 

relatively short period. The increasing trend in the minimum values highlighted the importance 

of performing the non-stationary drought analysis using the climate change scenarios, projected 

by the RCM ETA. It is important to highlight that in this section, the linear regression 

computation occurred just to show the parameters temporal evolution in the historical series. 

 

4.8. Chapter summary 
 

In this chapter, all results obtained in the applied methods were presented. The linear 

regression methods used for filling in the gaps in the meteorological series, performed well with 

a determination coefficient higher than 0.64 in both precipitation and temperature series. 

At the same time, the algorithm applied the bias correction methods: Linear Scaling 

(LS), Power Transformation (PT), Variance Scaling (VARI) and Empirical Quantile Mapping 

(EQM). The best method to correct the RCM ETA simulations, for the temperature series is the 

Empirical Quantile Mapping (EQM), while the best method for the historical precipitation 

series is the Linear Scaling (LS). 

Hence, the algorithm computed the Reconnaissance Drought Index (RDI), using the 

Thornthwaite method to compute the potential evapotranspiration (PET). The RDI computation 

occurred in the 3-, 6-, 12-, 24-, 36-, 48-, and 60-month accumulation periods. 

It was necessary to test the original precipitation and temperature series for trend and/or 

changing point to verify the stationarity/non-stationarity in the series and for the accumulated 

series of the drought indices. When the historical monthly series presented trend and/or 

changing point in the accumulation period, the algorithm split the series in the given changing 
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point. Then, it computed the drought indices again fitting two gamma probability distributions: 

one from the beginning until the changing point and other from the changing point until the end 

of the drought series. 

Therefore, an analysis was necessary to perform the drought indices statistics due to the 

minimum values of the drought indices. This analysis led to a better evaluation of the minimum 

values and showed a different behaviour before and after the split. Overestimation or 

underestimation of the minimum values, depending on each case, was observed. 

Some statistics presented droughts overestimation and/or underestimation along the 

future in both future scenarios. The most significant statistics differences occurred in the 

maximum drought magnitude, drought duration and number of drought events. 

The algorithm computed the number of differences between the stationary and the non-

stationary approaches, as well as differences between the occurrence frequencies for the given 

thresholds. The computation or the main statistics of the drought analysis (duration, severity 

and magnitude), was performed. The mean, median and maximum drought magnitude, were 

computed. Results pointed a general underestimation of the maximum drought magnitude in 

the stations 1 (Paranagua), 11 (Castro) and 22 (Londrina). It means that the stationary approach 

underestimates the magnitude of droughts. The same behaviour (drought underestimation) 

occurred in the minimum values, meaning that the traditional stationary approach 

underestimates droughts. 

Finally, the 30-period moving window analysis evaluated the parameter temporal 

variation. Results of the shape parameter showed a decreasing trend, while both scale and 

location parameters presented a slight increasing trend, according to a linear regression line 

fitted to the data. The minimum values presented an increasing trend, leading to the conclusion 

that droughts tend to intensify in the end of the series, evidencing the importance in performing 

drought analysis in climate change scenarios. 
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5. DROUGHT ANALYSIS 
 

This chapter presents the drought analysis applying the methods of this dissertation. Part 

of the drought analysis is the evaluation of the drought indices statistics, mixing the stationary 

approach for stationary stations and the non-stationary approach for non-stationary stations. 

There are 34 stations and three scenarios (historical, RCP 4.5 and RCP 8.5), returning a large 

amount of data. 

 

5.1. Analysing stations separately 
 

In a first analysis, the stations were analysed separately. The stations that presented non-

stationarity in the historical series, are the stations 1 (Paranagua), 8 (Ponta Grossa), 11 (Castro) 

and 22 (Londrina). WU et al. (2018) propose a drought classification related to the 

accumulation periods. The 3-month refers to a short-term drought, while the 6-month refers to 

a mid-term drought. The most common drought analysis occurs in the 12-month accumulation 

period and it relates to a long-term drought. Thus, the 3-, 6-, and 12-month accumulation 

periods are analysed in this subchapter to evaluate short-, mid- and long-term droughts. 

 

5.1.1. Station 1 (Paranagua) 
 

Figure 24 presents both historical (HIST) and future simulated (RCP 4.5 and RCP 8.5) 

RDI series of the station 1 accumulated in 3, 6, and 12 months, respectively. In the 3-month 

accumulation period (first graph named severity 3), there are several periods of moderate to 

severe droughts (from -1.0 to -2.0) in both historical series (blue line) and future series (RCP 

4.5 and RCP 8.5). 

The major droughts seem to have their peaks around 1973, 1977, 1982, 1994 in the 

historical scenario. The major droughts in the future series (2024 and 2084) occur in the same 

period in both RCP 4.5 and RCP 8.5 scenarios. These drought events were confirmed analysing 

both scenarios severity 6 and severity 12, corresponding to the 6- and 12-month accumulation 

periods (second and third graphs, respectively). 
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Differences in moderate to severe droughts occur analysing the RCP 4.5 and the RCP 

8.5 separately. Looking at the 12-month accumulation period (third graph), the RCP 4.5 

scenario (red line) presented lower than -1.0 values in 2059 and 2067, while the RCP 8.5 

scenario (purple line) presented drought in 2072. There is a delay in the red line when compared 

to the purple line between 2080 and 2085, meaning that moderate to severe droughts start before 

in the RCP 8.5 scenario, when compared to the RCP 4.5 scenario. Both future scenarios 

presented a general cycle of droughts and wet periods (positive values). 

Table 20, Table 21 and Table 22 present the main drought statistics of both historical 

(HIST) and future simulated (RCP 4.5 and RCP 8.5) series of the station 1 accumulated in 3-, 

6- and 12-months, respectively. Table 20 (3-month) presents the differences (%) between 

historical and RCP 4.5 scenarios (diff % 1/2) and the highest difference occurred in drought 

duration (duration with 100.00%), maximum drought magnitude (max DM with 76.09%) and 

severe drought occurrence frequency (FR15 with -55.07%). The positive signal indicates the 

drought statistics are lower in the historical period, when compared to the future scenario. 

General differences situate lower/equal 25% (positive), as mean drought magnitude (mean 

DM); meaning in the future scenario it may occur more severe droughts when compared to the 

historical period. The relative number of drought events difference (rel num D with -16.96%) 

means that in the future RCP 4.5 scenario may have a decrease in quantity of drought events, 

when compared to the historical scenario. 

 

Table 20 – Drought statistics of the historical (HIST) and future simulated (RCP 4.5 and RCP 8.5) series of the 
station 1 accumulated in 3 months. 

3 1 2 3   
Station 1 HIST RCP45 RCP85 diff % 1/2 diff % 1/3 
mean DM -4.69 -5.82 -5.31 24.15 13.29 
med DM -4.58 -5.15 -4.43 12.50 -3.40 
max DM -16.54 -29.13 -25.69 76.09 55.31 

FR0 51.97 48.77 49.26 -6.17 -5.23 
min -1.78 -1.71 -1.75 -3.99 -1.80 

FR10 19.29 20.67 19.84 7.18 2.89 
FR15 8.55 3.84 6.93 -55.07 -18.95 

duration 5.00 10.00 7.00 100.00 40.00 
rel num D % 0.27 0.23 0.24 -16.96 -11.09 

Font: Author. 
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Still in the Table 20, the major difference between historical and RCP 8.5 scenarios (diff 

% 1/3) are lower than (55.31%) in the maximum drought magnitude (max DM); meaning that 

in the RCP 8.5 scenario may occur more severe droughts, when compared to the historical 

scenario. Five statistics resulted in a negative difference, meaning that the future simulated RCP 

8.5 scenario produced milder droughts, when compared to the historical scenario. According to 

these statistics (med DM, FR0, min, FR15, and rel num D), droughts may turn milder along the 

twenty-first century. 

In the Table 21 (6-month), there are similarities in the percentages among differences 

between historical and RCP 4.5 scenario (diff % 1/2) and between historical and RCP 8.5 

scenario (diff % 1/3), i.e. they slightly differ from each other. Exceptions were found in the 

FR15, duration and max DM, where there are significant differences between them. 

 

Table 21 – Drought statistics of the historical (HIST) and future simulated (RCP 4.5 and RCP 8.5) series of the 
station 1 accumulated in 6 months. 

6 1 2 3   
Station 1 HIST RCP45 RCP85 diff % 1/2 diff % 1/3 
mean DM -10.13 -10.92 -10.29 7.80 1.60 
med DM -7.87 -6.00 -6.67 -23.82 -15.31 
max DM -32.04 -72.25 -57.15 125.53 78.38 

FR0 49.85 51.08 49.22 2.47 -1.28 
min -1.65 -1.72 -1.72 4.54 4.74 

FR10 24.36 21.69 21.88 -10.96 -10.19 
FR15 7.88 6.06 6.72 -23.09 -14.74 

duration 7.00 10.00 9.00 42.86 28.57 
rel num D % 0.26 0.24 0.25 -6.34 -2.17 

Font: Author. 

 

The highest differences found between historical and RCP 4.5 scenario are maximum 

drought magnitude (max DM equal to 125.53%) and drought events duration (duration with 

42.86%). These two statistics reveal that in the future simulated RCP 4.5 scenario, droughts 

may become more severe when compared to the historical period in terms of magnitude 

(severity) and duration (more extended). 

Comparing the differences between both historical and RCP 8.5 series (diff % 1/3), the 

major differences occurred in maximum drought magnitude (max DM with 78.38%) and 

drought duration (duration with 28.57%). This means that droughts may become more severe 
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along the twenty-first century, analysing the 6-month accumulation period and the RCP 8.5 

scenario. It may also have more extended droughts in months. 

In the Table 22 (12-month), the highest differences between the historical and RCP 4.5 

scenario (diff % 1/2) are in drought duration (duration with 175%) and maximum drought 

magnitude (max DM with 115.82%). These two statistics (duration and max DM) mean that 

droughts may become more severe and extended in the future (up to 2100). Other statistics 

indicate a slight drought increase or decrease in the future scenario. 

 

Table 22 – Drought statistics of the historical (HIST) and future simulated (RCP 4.5 and RCP 8.5) series of the 
station 1 accumulated in 12 months. 

12 1 2 3   
Station 1 HIST RCP45 RCP85 diff % 1/2 diff % 1/3 
mean DM -23.32 -29.18 -32.95 25.10 41.27 
med DM -18.59 -10.70 -19.37 -42.44 4.17 
max DM -56.74 -122.45 -168.23 115.82 196.51 

FR0 42.93 50.64 51.94 17.95 20.98 
min -1.69 -1.68 -1.66 -0.74 -1.56 

FR10 23.09 19.50 23.25 -15.54 0.68 
FR15 8.37 6.54 6.16 -21.79 -26.34 

duration 4.00 11.00 11.00 175.00 175.00 
rel num D % 0.22 0.18 0.16 -18.62 -28.19 

Font: Author. 

 

Meanwhile, analysing the differences between historical and RCP 8.5 scenario (diff % 

1/3), the highest differences occurred in maximum drought magnitude (max DM with 

196.51%), drought duration (175%) and mean drought magnitude (mean DM with 41.27%). 

These three statistics (max DM, duration and mean DM) presented an increase of drought 

severity along the future (up to 2100). They may become more severe and extended in damages 

to population. The relative number of drought events (rel num D with -28.19%) presented a 

significant decrease in the future RCP 8.5 scenario, when compared to the historical scenario, 

meaning less quantity of drought events. 
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5.1.2. Station 8 (Ponta Grossa) 
 

Figure 25 presents both historical (HIST) and future simulated (RCP 4.5 and RCP 8.5) 

RDI series of the station 8 accumulated in 3, 6, and 12 months, respectively. There is a lack 

between the end of the historical series and the beginning of both simulated series. It happened 

because there is no data between January 2003 and December 2005. 

Analysing all images simultaneously (3-, 6- and 12-month), there is a significant 

drought peak between 1966 and 1968 and other valleys in 1977, 1982 and 1985. The station 8 

did not present so much severe droughts, except for these valleys. The images represent 

droughts evolution along time. 

Both simulated series presented a similar cycle pattern mainly until 2045 and the most 

significant drought occurred between 2020 and 2025 in the RCP 8.5 scenario and between 2015 

to 2020 and 2025 to 2029 in the RCP 4.5 scenario. Around 2058 and 2070, there are droughts 

pointed by both scenarios, and the most severe for the RCP 4.5 scenario occurred in 1968, 1971, 

and 2067. The RCP 8.5 presented a severe drought in the period 2080 and 2083, and the RCP 

4.5 a slight delay in 2084, when compared to the RCP 8.5 scenario. 

Table 23, Table 24 and Table 25 present the drought statistics of both historical (HIST) 

and future simulated (RCP 4.5 and RCP 8.5) series of station 8 accumulated in 3-, 6- and 12- 

months, respectively. 

Table 23 presents differences between historical and simulated scenarios in the two last 

columns. The highest differences are maximum drought magnitude (max DM with 68.34%) 

and drought duration (62.50%). The positive signal indicates an overestimation of these 

statistics in the future scenario, when compared to the historical series. However, the relative 

number of drought events (rel num D with -11.68%) presented a decrease in the RCP 4.5 future 

scenario, when compared to the historical series, meaning in the future may have less quantity 

of drought events. The other statistics differed less than 11% (moderate drought occurrence 

frequency, FR10). 

 

  



14
5 

 

 
 

Fi
gu

re
 2

5 
– 

H
is

to
ric

al
 (H

IS
T)

 a
nd

 fu
tu

re
 si

m
ul

at
ed

 (R
C

P 
4.

5 
an

d 
R

C
P 

8.
5)

 R
D

I s
er

ie
s o

f t
he

 st
at

io
n 

8 
ac

cu
m

ul
at

ed
 in

 3
, 6

, a
nd

 1
2 

m
on

th
s, 

re
sp

ec
tiv

el
y.

 

 

Fo
nt

: A
ut

ho
r. 

 



146 
 

 
 

The last column comprises the differences between historical and RCP 8.5 series (diff 

% 1/3), and the highest differences are median drought magnitude (med DM with 16.02%) and 

moderate drought occurrence frequency (FR10, droughts lower than -1.5 threshold with 

13.16%). General differences are below 12.50% in absolute value, as occurred in drought 

duration (duration with -12.50%), meaning in the RCP 8.5 scenario may have milder droughts 

in terms of duration, when compared to the historical scenario. The RCP 8.5 presented milder 

variations in relation to the historical scenario, analysing the remaining statistics difference. 

 

Table 23 – Drought statistics of the historical (HIST) and future simulated (RCP 4.5 and RCP 8.5) series of the 
station 8 accumulated in 3 months. 

3 1 2 3   
Station 8 HIST RCP45 RCP85 diff % 1/2 diff % 1/3 
mean DM -5.00 -5.57 -5.61 11.30 12.14 
med DM -3.99 -3.95 -4.63 -0.98 16.02 
max DM -24.15 -40.66 -24.99 68.34 3.48 

FR0 54.04 50.32 51.12 -6.89 -5.42 
min -1.78 -1.76 -1.75 -1.24 -1.45 

FR10 18.03 19.98 20.41 10.78 13.16 
FR15 5.78 5.88 6.51 1.61 12.47 

duration 8.00 13.00 7.00 62.50 -12.50 
rel num D % 0.26 0.23 0.23 -11.68 -10.64 

Font: Author. 

 

Table 24 presents the drought statistics of both historical (HIST) and future simulated 

(RCP 4.5 and RCP 8.5) series of the station 8 accumulated in 6 months. The two last columns 

present the main drought statistics differences: (1) diff % ½ comprises the difference between 

historical and RCP 4.5 series and (2) diff % 1/3 comprises the difference between historical and 

RCP 8.5 series. The highest differences found in (1) are maximum drought magnitude (max 

DM with 75.48%) and drought duration (duration with 40.00%). Higher differences in these 

statistics (positive signal) indicate there are more severe droughts in the future series (RCP 4.5), 

when compared to the historical series. Other statistics indicate lower than 33.66% variation in 

absolute value (median drought magnitude, med DM). Negative signal variations indicate there 

is a decrease in the statistics from the past period, to the future period, indicating less severe 

drought scenario in the future. 
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In the RCP 8.5 scenario (last column, diff % 1/3), the highest differences are drought 

duration (duration with 80.00%) and maximum drought magnitude (max DM with 67.89%), 

meaning that magnitude and duration of droughts may become more severe in the future. Other 

statistics are lower than 24% in absolute value. 

 

Table 24 – Drought statistics of the historical (HIST) and future simulated (RCP 4.5 and RCP 8.5) series of the 
station 8 accumulated in 6 months. 

6 1 2 3   
Station 8 HIST RCP45 RCP85 diff % 1/2 diff % 1/3 
mean DM -9.45 -8.84 -9.34 -6.45 -1.21 
med DM -8.01 -5.32 -6.13 -33.66 -23.57 
max DM -30.44 -53.42 -51.11 75.48 67.89 

FR0 49.90 49.16 51.99 -1.48 4.19 
min -1.73 -1.69 -1.71 -2.53 -1.37 

FR10 20.45 22.26 19.85 8.88 -2.92 
FR15 6.81 7.84 5.53 15.16 -18.82 

duration 5.00 7.00 9.00 40.00 80.00 
rel num D % 0.27 0.29 0.28 6.85 1.02 

Font: Author. 

 

Table 25 presents the drought statistics of both historical (HIST) and future simulated 

(RCP 4.5 and RCP 8.5) series of the station 8 accumulated in 12 months (annual scale and long-

term drought) (WU et al., 2018). The main drought statistics differences computed between the 

historical scenario and both future scenarios are in the last columns (diff % 1/2, comprising 

differences between historical and RCP 4.5 scenario, and diff % 1/3 comprising differences 

between historical and RCP 8.5 scenario). 

There are higher differences in the main statistics in this accumulation period, when 

compared to the previous (3-month in Table 23 and 6-month in Table 24). All statistics 

presented more variations in this accumulation period. In the annual scale (Table 25), the higher 

differences are drought duration (duration with 275%) and maximum drought magnitude (max 

DM with 250.02%). This means an intensification of the main drought statistics in the future 

series (RCP 4.5 scenario) and an intensification in the annual scale, when compared to the 

quarter and semester accumulation periods (Table 23 and Table 24, respectively). The severe 

drought occurrence frequency (FR15 with -63.76%) also presented significant variation 

between historical and RCP 4.5 scenarios. This statistic analysis means a decrease in the severe 
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drought occurrence frequency in the RCP 4.5 future scenario, when compared to the historical 

scenario. 

 

Table 25 – Drought statistics of the historical (HIST) and future simulated (RCP 4.5 and RCP 8.5) series of the 
station 8 accumulated in 12 months. 

12 1 2 3   
Station 8 HIST RCP45 RCP85 diff % 1/2 diff % 1/3 
mean DM -23.29 -26.72 -28.88 14.71 23.99 
med DM -19.29 -15.56 -14.75 -19.30 -23.50 
max DM -54.38 -190.34 -161.52 250.02 197.03 

FR0 47.45 49.34 49.85 3.98 5.05 
min -1.79 -1.57 -1.69 -12.59 -5.85 

FR10 19.24 24.15 23.66 25.51 22.96 
FR15 12.29 4.45 7.69 -63.76 -37.42 

duration 4.00 15.00 11.00 275.00 175.00 
rel num D % 0.21 0.20 0.18 -5.67 -15.60 

Font: Author. 

 

Analysing the last column (diff % 1/3), the highest differences between the historical 

and the RCP 8.5 scenario are maximum drought magnitude (max DM with 197.03%) and 

drought duration (duration with 175.00%). These two main statistics presented an 

intensification of the drought events along the future. Other statistics presented absolute values 

lower than 37.42% (FR15, occurrence frequency of severe droughts). 

 

5.1.3. Station 11 (Castro) 
 

Figure 26 presents both historical (HIST) and future simulated (RCP 4.5 and RCP 8.5) 

RDI series of the station 11 accumulated in 3, 6, and 12 months, respectively. From the 3-month 

to the 12-month accumulation period analysis, there are significant historical droughts between 

1978 and 1982, in 1985 and around 1992. 

Both future series presented a similar pattern (cycle) analysing the lines continuity, 

when one goes up, the other follows the same pattern. It means that both scenarios have the 

same statistical oscillations in the same period, with some delays between each other. In the 

RCP 4.5 scenario (red line), the most significant droughts occurred between 2015 and 2020, 

2025 to 2030, 2058 to 2062, 2066 to 2068, and 2084 and 2085. In the RCP 8.5 scenario, the 
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major droughts occurred between 2015 and 2025 with a small increase around 2027. Others 

happened between 2079 and 2084 with an abrupt valley in 2095. As highlighted, there are 

similarities between both time-series; despite the purple line (RCP 8.5) presented less 

significant drought events, when compared to the red line (RCP 4.5). 

Table 26, Table 27 and Table 28 present the drought statistics of both historical (HIST) 

and future simulated (RCP 4.5 and RCP 8.5) series of the station 11 accumulated in 3-, 6- and 

12-months, respectively. 

Table 26 presents the differences between historical and simulated series of the 3-month 

accumulation period. Comparing the differences between the historical and the RCP 4.5 

scenario (diff % ½ column), the higher differences are maximum drought magnitude (max DM 

and 76.23%) and drought duration (duration with 30.00%). This means droughts may become 

more severe in the future and last more (become longer). The other statistics differences are 

lower than 20% in absolute value, meaning lower increase/reduction of drought statistics along 

the future. The relative number of drought events (rel num D with -18.52%) presented a 

decrease in quantity of drought events in the future RCP 4.5 scenario, when compared to the 

historical scenario. 

Comparing the differences between the historical and the RCP 8.5 scenario (diff % 1/3), 

the higher differences occurred in drought duration (duration with -30%) and median drought 

magnitude (med DM with 24.44%). Except for drought duration, which presented a decrease 

in the future scenario when compared to the historical, the median drought magnitude (med 

DM) presented drought severity increase along the future. It is important to highlight that the 

RCP 4.5 scenario presented a more hazardous scenario than the RCP 8.5 and shows 

inconsistencies with the GHG emission rates premises, since the RCP 4.5 is a more optimistic 

scenario (CO2 levels reduction along the twenty-first century). The RCP 8.5 is a more 

pessimistic (or realistic), because it assumes constant CO2 emission rates until 2100. 
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Table 26 – Drought statistics of the historical (HIST) and future simulated (RCP 4.5 and RCP 8.5) series 
of the station 11 accumulated in 3 months. 

3 1 2 3   
Station 11 HIST RCP45 RCP85 diff % 1/2 diff % 1/3 
mean DM -5.02 -5.93 -5.48 18.15 9.07 
med DM -3.62 -4.03 -4.51 11.34 24.44 
max DM -24.47 -43.12 -25.99 76.23 6.21 

FR0 51.22 51.03 51.06 -0.36 -0.30 
min -1.76 -1.77 -1.77 0.60 0.37 

FR10 20.75 20.93 18.47 0.86 -10.99 
FR15 7.03 6.38 6.48 -9.18 -7.81 

duration 10.00 13.00 7.00 30.00 -30.00 
rel num D % 0.26 0.21 0.23 -18.52 -10.37 

Font: Author. 

 

Table 27 presents differences between historical and simulated series of the 6-

month accumulation period. The last columns comprise the differences between (1) 

historical and RCP 4.5 scenario (diff % ½), and (2) historical and RCP 8.5 scenario (diff 

% 1/3). The highest differences found in the column diff % ½ are median drought 

magnitude (med DM with -29.39%) and severe drought occurrence frequency (FR15 with 

-18.20%). In relation to these statistics, droughts may become less severe and frequent in 

the future. General statistics differed less than 18% in absolute value. 

 

Table 27 – Drought statistics of the historical (HIST) and future simulated (RCP 4.5 and RCP 8.5) series 
of the station 11 accumulated in 6 months. 

6 1 2 3   
Station 11 HIST RCP45 RCP85 diff % 1/2 diff % 1/3 
mean DM -11.17 -9.18 -9.52 -17.84 -14.74 
med DM -7.63 -5.39 -6.59 -29.39 -13.66 
max DM -72.95 -75.99 -50.57 4.17 -30.68 

FR0 49.74 48.57 51.42 -2.35 3.39 
min -1.71 -1.70 -1.72 -0.78 0.44 

FR10 22.64 23.08 20.93 1.90 -7.55 
FR15 7.33 5.99 5.39 -18.20 -26.43 

duration 12.00 11.00 9.00 -8.33 -25.00 
rel num D % 0.24 0.28 0.27 15.33 10.98 

Font: Author. 
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In the column diff % 1/3, the highest differences are maximum drought magnitude 

(max DM with -30.68%) and severe drought occurrence frequency (FR15 with -26.43%). 

Negative differences between historical and RCP 8.5 scenarios indicate decrease, as 

occurred in both max DM and FR15. General differences are below -25% (drought 

duration). It is important to highlight that in the station 11 (Castro) accumulated in 6-

months occurred differences between both RCP 4.5 and RCP 8.5 scenarios, as well as 

between the 3- and 6-month accumulation periods, whose presented differences in other 

statistics. 

 

Table 28 – Drought statistics of the historical (HIST) and future simulated (RCP 4.5 and RCP 8.5) series 
of the station 11 accumulated in 12 months. 

12 1 2 3   
Station 11 HIST RCP45 RCP85 diff % 1/2 diff % 1/3 
mean DM -24.72 -31.47 -28.96 27.30 17.14 
med DM -16.82 -15.79 -15.76 -6.08 -6.29 
max DM -88.13 -189.35 -166.72 114.85 89.17 

FR0 50.17 48.57 48.56 -3.20 -3.21 
min -1.81 -1.62 -1.67 -10.54 -7.39 

FR10 24.45 23.24 20.95 -4.93 -14.30 
FR15 9.59 6.96 7.47 -27.42 -22.09 

duration 6.00 15.00 11.00 150.00 83.33 
rel num D % 0.20 0.17 0.18 -14.89 -9.57 

Font: Author. 

 

Table 28 presents differences between both historical and simulated series of the 

12-month accumulation period. There are differences between historical and RCP 4.5 

scenario (diff % ½) and between historical and RCP 8.5 scenario (diff % 1/3). The diff % 

½ column presented the major differences in drought duration (duration with 150.00%) 

and maximum drought magnitude (max DM with 114.85%). The two statistics presented 

an increase (intensification) in the drought characteristics along the future, whose may 

become more extended and more severe. Other absolute value statistics presented lower 

than 28% reduction or increase in the statistics, when compared to the historical series. 

The diff % 1/3 column (differences between historical and RCP 8.5 scenario) 

presented the highest percentage variation in maximum drought magnitude (max DM 

with 89.17%) and drought duration (duration with 83.33%), all increasing in the future 
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when compared to the historical series. The other statistics remained below 23% in 

absolute value. 

 

5.1.4. Station 22 (Londrina) 
 

Figure 27 presents both historical (HIST) and future simulated (RCP 4.5 and RCP 

8.5) RDI series of the station 22 accumulated in 3-, 6-, and 12-months, respectively. 

Looking at the droughts evolution and observing the 3-, 6-, and 12-month graphs 

simultaneously, there is a mild drought in 1967, a severe valley in 1989 and other drought 

from 1990 to 1993. Other droughts below -1.0 threshold found in both 3- and 6-month 

graphs do not present evolution along time and are not much severe. A same pattern was 

observed in the previous analyses of the stations 1 (Paranagua), 8 (Ponta Grossa) and 11 

(Castro) in the Figure 24, Figure 25 and Figure 26, respectively. 

Both future series (RCP 4.5 and RCP 8.5) reproduced the same behaviour (cycles) 

and upward and downward RDI movement along time. Moderate to severe droughts 

pointed in the RCP 4.5 series (red line) occur between 2015 and 2019, 2025 and 2027, 

2059 and 2062, 2066 and 2069, and from 2082 to 2084. In the RCP 8.5 series (purple 

line), moderate to severe droughts (below -1.0 threshold in the RDI series), occur between 

2020 and 2026 and from 2079 to 2084 with an abrupt peak of wet period in the middle 

(around 2081). Analysing both series, it indicates the RCP 4.5 is the worst scenario in 

terms of droughts, when compared to the RCP 8.5. Despite both scenarios (red and purple 

lines) presented a similar behaviour in terms of cycles and movement along time, the RCP 

8.5 scenario presented more variables above the -1.0 threshold, indicating milder 

droughts when compared to the RCP 4.5 scenario. 

MARCOS-GARCIA et al. (2017) applied the Standardized Precipitation Index 

(SPI) and evaluated future (RCP 8.5) droughts in the 12-month accumulation period. The 

authors found severe droughts between the periods 2051 and 2052, 2062 and 2063, and 

in 2068 in the Jucar River Basin, East Spain. Despite the Parana State and the East Spain, 

have different climates, both regions present drought indices increase in 2062 in the RCP 

8.5 scenario, suggesting a global drought increase in the twenty-first century. 

In Southern India, GUPTA & JAIN (2018) applied both SPI and SPEI in the 

historical series and both future scenarios (RCP 4.5 and RCP 8.5). In the RCP 4.5 
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scenario, the authors found moderate to severe droughts from 2060 to 2061 in both 

indices; and the SPI produced milder droughts when compared to the SPEI. The SPEI 

produced also more intense droughts between 2082 and 2084. In the RCP 8.5 scenario, 

the authors found moderate to severe droughts from 2078 to 2100 in the SPEI. These 

results show both Parana State and Southern India present increasing drought severities 

in similar periods. The SPEI has the contribution of the potential evapotranspiration, as 

does the RDI. This indicates the importance of considering the potential 

evapotranspiration in drought indices computation, even for wet/rainy regions (Parana 

State and Southern India). 

Table 29, Table 30 and Table 31 present the drought statistics of both historical 

(HIST) and future simulated (RCP 4.5 and RCP 8.5) series of the station 22 accumulated 

in 3-, 6- and 12-months, respectively. 

Table 29 presents the main drought statistics and comparisons with the historical 

series and the RCP 4.5 scenario (diff % ½) and with the historical series and the RCP 8.5 

scenario (diff % 1/3). The higher differences in the column diff % ½ are maximum 

drought magnitude (max DM with 99.23%) and drought duration (duration with 62.50%). 

These two statistics indicate that droughts may become more severe in the future series; 

despite the severe drought frequency presented a negative variation (FR15 with -51.88%, 

meaning a decrease in the future). Other differences are lower than 37% (mean DM) in 

absolute values. 

The higher differences in the column diff % 1/3 are severe drought occurrence 

frequency (FR15 with -39.82%), mean drought magnitude (mean DM with 22.11%) and 

maximum drought magnitude (max DM with 21.59%). Comparing the historical and the 

RCP 8.5 scenario, there is an increase in both median and maximum drought magnitude 

in the future, while there is a decrease in the severe drought occurrence frequency. Other 

statistics are below 18% difference in absolute value. The relative number of drought 

events (rel num D with -17.50%) indicate a decrease in the RCP 8.5 future scenario, when 

compared to the historical scenario. 
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Table 29 – Drought statistics of the historical (HIST) and future simulated (RCP 4.5 and RCP 8.5) series of the 
station 22 accumulated in 3 months. 

3 1 2 3   
Station 22 HIST RCP45 RCP85 diff % 1/2 diff % 1/3 
mean DM -4.85 -6.63 -5.93 36.54 22.11 
med DM -3.83 -4.54 -4.35 18.50 13.55 
max DM -21.49 -42.81 -26.12 99.23 21.59 

FR0 48.15 53.01 52.19 10.10 8.40 
min -1.78 -1.74 -1.80 -2.41 0.93 

FR10 19.87 21.83 17.74 9.87 -10.71 
FR15 9.22 4.43 5.55 -51.88 -39.82 

duration 8.00 13.00 9.00 62.50 12.50 
rel num D % 0.26 0.19 0.22 -25.65 -17.50 

Font: Author. 

 

Table 30 presents the main drought statistics and comparisons with the historical series 

and the RCP 4.5 scenario (diff % ½) and with the historical series and the RCP 8.5 scenario 

(diff % 1/3). The higher differences in the column diff % ½ are maximum drought magnitude 

(max DM with 103.50%) and drought duration (duration with 57.14%). These positive signals 

indicate more intense (severe) droughts in the RCP 4.5 scenario, when compared to the 

historical series in terms of magnitude and duration. Other differences are below 23% in 

absolute value. 

 

Table 30 – Drought statistics of the historical (HIST) and future simulated (RCP 4.5 and RCP 8.5) series of the 
station 22 accumulated in 6 months. 

6 1 2 3   
Station 22 HIST RCP45 RCP85 diff % 1/2 diff % 1/3 
mean DM -10.90 -13.40 -11.97 23.03 9.87 
med DM -9.20 -6.67 -6.11 -27.46 -33.60 
max DM -33.81 -68.79 -51.20 103.50 51.45 

FR0 50.72 50.79 52.06 0.15 2.64 
min -1.83 -1.70 -1.75 -7.04 -4.56 

FR10 22.12 23.28 17.42 5.23 -21.27 
FR15 8.56 6.94 6.23 -18.97 -27.25 

duration 7.00 11.00 11.00 57.14 57.14 
rel num D % 0.24 0.20 0.21 -19.49 -12.96 

Font: Author. 
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In the column (diff % 1/3), the higher differences between historical and future RCP 8.5 

scenario are drought duration (duration with 57.14%) and maximum drought magnitude (max 

DM with 51.45%). These two statistics indicate more severe droughts along the twenty-first 

century. The median drought magnitude (med DM with -33.60%) presented a contrary pattern, 

indicating a decrease up to 2100. Other statistics presented differences lower than 28% (severe 

drought occurrence frequency, FR15), in absolute value. 

 

Table 31 – Drought statistics of the historical (HIST) and future simulated (RCP 4.5 and RCP 8.5) series of the 
station 22 accumulated in 12 months. 

12 1 2 3   
Station 22 HIST RCP45 RCP85 diff % 1/2 diff % 1/3 
mean DM -33.66 -31.08 -28.51 -7.66 -15.30 
med DM -26.06 -18.21 -15.88 -30.14 -39.08 
max DM -80.87 -92.82 -152.86 14.77 89.01 

FR0 56.78 47.41 51.79 -16.50 -8.78 
min -1.70 -1.70 -1.73 0.22 1.99 

FR10 19.80 21.62 22.61 9.20 14.19 
FR15 11.22 6.97 4.83 -37.85 -56.99 

duration 7.00 10.00 11.00 42.86 57.14 
rel num D % 0.16 0.17 0.18 9.42 16.26 

Font: Author. 

 

Table 31 presents the main drought statistics and comparisons in the 12-month 

accumulation period with the historical series and the RCP 4.5 scenario (diff % ½) and with the 

historical series and the RCP 8.5 scenario (diff % 1/3). The higher positive differences in the 

column diff % ½ are drought duration (duration with 42.86%) and maximum drought 

magnitude (max DM with 14.77%). These two statistics presented droughts increase along the 

future. However, the severe drought occurrence frequency (FR15 with -37.85%) and median 

drought magnitude (med DM with -30.14%) presented a decrease up to 2100. Other statistics 

presented lower than 17% in absolute value, when compared to the historical series. 

In the column (diff % 1/3), the higher differences between historical and future RCP 8.5 

scenario are maximum drought magnitude (max DM with 89.01%) and drought duration 

(duration with 57.14%). The severe drought occurrence frequency (FR15) presented -56.99% 

variation between historical and RCP 8.5 scenarios. The statistics max DM and duration 
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presented a drought increase along the twenty-first century, while the FR15 presented a 

decrease in the same period. 

 

5.2. Overall analysis 
 

After analysing some stations separately, an overall analysis was performed of all 

drought statistics comprising the entire Parana State. Figure 28 presents the maximum drought 

duration of both historical (HIST) and simulated (RCP 4.5 and RCP 8.5) series for zero 

threshold. The statistic drought frequency of zero threshold means the occurrence of droughts, 

where all RDI values below zero are considered droughts, according to Run Theory (see 

subchapter 2.10 Run Theory). 

In the historical series, droughts have a maximum duration (blue) of 8.44 months and 

minimum (red) of 5.20 months. These values (maximum and minimum) occur in some stations 

and the intermediate drought duration values occur in almost entire Parana State (colour 

transitions from red to blue). In the future simulated RCP 4.5 scenario, the maximum drought 

duration (blue) is 12.85 months and the minimum (red) 6.95 months. These figures have higher 

drought duration when compared to the historical series. The minimum values occur in the 

South and West of the Parana, while the maximum values occur in the Centre, North and East. 

There is a clear division (white line) in the drought duration values in the maps from the South-

Centre to the Northwest. 

In the future simulated RCP 8.5 scenario, values occurred between historical and RCP 

4.5 scenarios. This is unusual, since the RCP 8.5 produces worst scenarios (more pessimistic) 

in terms of highest increase in GHG emissions, when compared to the RCP 4.5 scenario. The 

maximum drought duration (blue) of 10.07 months occurs at some stations in Southwest and 

Northeast. Some sites presented maximum drought duration of 10.07 months, while others 

presented minimum drought duration of 5.41 months. Few locations presented the minimum 

drought duration, mainly in the Curitiba region (station 4). 

In the Parana State, other droughts occurred in the historical scenario before 1961. 

According to CANAMBRA (1967), CANAMBRA (1969) and DETZEL et al. (2019), the dry 

periods found in the South Region are between 1944 and 1945 and the series used for study had 

the begins in the 1930. 
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CHATTOPADHYAY et al. (2017) evaluated the maximum drought duration in the 

Kentucky River basin, Centre-East US. The authors found maximum drought length in the 

range of 6 to 11 months in both future scenarios (RCP 4.5 and RCP 8.5). These results are in 

the same range as those obtained in Parana State, despite both regions present different climates. 

It is important to highlight that in the work of CHATTOPADHYAY et al. (2017), the authors 

found that the RCP 4.5 scenario is more severe in maximum drought length, when compared to 

the RCP 8.5 scenario. 

SPINONI et al. (2014b) performed a global drought evaluation using the SPI and found 

total drought durations from 24 to more than 72 months in Parana for the period 1971 to 2010. 

Their results show significant differences with this work, which presented drought durations 

from 5 to 8 months in the historical scenario. This significant difference may relate to details in 

the computation, where SPINONI et al. (2014b) applied reanalysis data and did not consider 

the non-stationary approach. 

 

Figure 28 – Maximum drought duration of the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 

 

Font: Author. 

 

AWANGE et al. (2016) evaluated the maximum drought duration in the entire Brazilian 

country using the SPI in the 3-month accumulation period. The authors found 5 to 15 month 

droughts in Parana State for the historical period. AWANGE et al. (2016) results show the SPI 

values are in accordance with what was presented in Figure 4 (from 5 to 8 months). However, 
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the South presented higher drought duration in the work of AWANGE et al. (2016) (up to 15 

months), when compared to this work (around 6 months). 

Some studies evaluate the mean drought duration, as performed by LLOYD-HUGHES 

& SAUNDERS (2002) in European continent. They found in Germany 10 to 30 month drought 

duration and in France 20 to 50 months, using the SPI accumulated in 12-months. Both 

countries present non-stationarity in the meteorological data, as happen in the Parana State. 

They used gridded temperature and precipitation data. 

TOUMA et al. (2015) performed a drought analysis worldwide and found 2-month 

drought duration using the SPI in the period 2010 to 2099, at the same time the SPEI presented 

8-month drought duration, both in Parana State. These results indicate the importance of 

considering the potential evapotranspiration effects. Both SPEI and RDI considers the potential 

evapotranspiration effects in their computation. Results using SPEI in TOUMA et al. (2015) 

(up to 8 months) are in accordance with the maximum drought duration presented in Figure 28 

(from 5 to 8 months). 

 

Figure 29 – Zero threshold frequency of the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 

 

Font: Author. 

 

Figure 29 presents the zero threshold frequency of both historical (HIST) and simulated 

(RCP 4.5 and RCP 8.5) series. The historical period presented the higher drought occurrence 
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frequencies in the Southwest region and the lower occurred in the North. The stations 25 (Nova 

Cantu), 28 (Pato Branco), 29 (Quedas do Iguacu), 30 (Francisco Beltrao) and 33 (Planalto) 

presented the highest occurrence frequency (54.91%), while some stations located in the North 

(e.g. 16 (Maua da Serra), 18 (Apucarana), 22 (Londrina), and others) presented the lowest 

occurrence frequency (49.12%). 

The range (49.12% to 54.91%) means that in the entire Parana State, the drought 

occurrence (lower than 0 threshold) exceed 49% minimum, showing the importance in studying 

droughts in the Parana State, even it is a rainy region. 

 

Figure 30 – The -1.0 threshold frequency of the historical (HIST) and simulated (RCP 4.5 and RCP 8.5) series. 

 

Font: Author. 

 

In the future series (RCP 4.5 and RCP 8.5), there are few differences in terms of drought 

occurrences (frequency). Small increases in drought frequencies occurred in both North and 

Centre regions. In the RCP 4.5, the lower frequencies occurred in Northwest and East, while 

the higher occurred in the blue area starting in Southwest to Northeast. In the RCP 8.5 scenario, 

the blue areas show the higher frequency regions (Centre to North), while the red areas show 

the lower frequency regions (West, East and South). There is an agreement in the moderate to 

severe drought frequencies between the historical and both future scenarios, when compared 

the frequencies range among them. 
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SPINONI et al. (2014b) performed a global drought evaluation using the SPI and found 

drought frequency from 3% to more than 6% in Parana in the period 1971 to 1990. They also 

found in the period 1991 to 2010, drought occurrence frequency from 2% to 6%. Results are in 

accordance with this work, which presented for the historical scenario, moderate to severe 

drought occurrence frequency from 4% to 8%. 

Figure 30 presents the -1.0 threshold drought frequencies of both historical (HIST) and 

simulated (RCP 4.5 and RCP 8.5) series. The historical period presented lower drought 

frequencies in almost the entire Parana State, except locally in the blue regions (high 

frequencies). The same pattern occurred in the simulated (RCP 4.5 and RCP 8.5) scenarios, 

with few variations in drought frequencies. The higher frequency found in the three scenarios 

is 22.12% (RCP 4.5 in blue) and the lower, 18.00% (RCP 8.5 in red). 

Figure 31 presents the -1.5 threshold drought frequencies of both historical (HIST) and 

simulated (RCP 4.5 and RCP 8.5) series. The historical period presented a heterogeneous 

distribution in drought frequencies looking at the colours map. The lowest value corresponds 

to 4.31% (red), while the highest corresponds to 8.01% (blue). The light red, white and light 

blue colours cover practically the entire map. A general synthesis of the Parana State in severe 

drought frequency (lower than -1.50 threshold), means that almost the entire Parana State 

presented a mean 6.16% (white) severe drought frequency. 

The RCP 4.5 scenario presented a different distribution of both lowest and highest 

values, when compared to the historical scenario, despite it presented low frequency variations 

(comparing absolute values in the range of the colour legend). The highest frequency is 6.31% 

(blue), while the lowest is 3.90% (red). The lower frequencies are predominant in Parana State, 

except in the Southwest region and some random localities, represented by stations 2 

(Morretes), 3 (Guaraquecaba), 8 (Ponta Grossa), 11 (Castro), 12 (Fernandes Pinheiro) and 31 

(Umuarama). 

The RCP 8.5 scenario presented similar drought frequencies when compared to the 

historical scenario, differing in spatial distribution of these values, which is similar to the RCP 

4.5 scenario. The RCP 8.5 scenario considers no reduction in GHG emission rates, i.e., it means 

the emission will continue increasing until the end of the century (2100). Considering this, the 

drought frequency statistics remain the same in the future period for the Parana State and is 

coherent with the historical period representation. However, the maps represent a different 

frequency distribution. The lowest values (4.86% in red) prevail in the West, North and Centre 



163 
 

 
 

of the Parana, while the highest (6.91% in blue) in east. The lowest frequency occurred in the 

station 19 (Palmas). 

AWANGE et al. (2016) performed a drought analysis in the entire Brazilian country 

using the SPI accumulated in 3-, 6- and 12-month. They found from 20% to 24% drought 

frequency and from 2% to 6% severe drought frequency (FR15), in the 3-month accumulation 

period for the historical series of the Parana State. Results show similarities between the FR15 

values obtained in this research (from 4% to 8%), when compared to AWANGE et al. (2016). 

 

Figure 31 – The -1.5 threshold frequency of the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 

 

Font: Author. 

 

Figure 32 presents the maximum drought magnitude of both historical (HIST) and 

simulated (RCP 4.5 and RCP 8.5) series. There is a different pattern of maximum drought 

magnitude among the three scenarios. The RCP 4.5 presented the worst maximum drought 

magnitude (-45.25) and the RCP 8.5 presented an increase in the maximum drought magnitude, 

when compared to the historical period (historical with -24.45 and RCP 8.5 with -30.12). The 

negative signal in all drought magnitude maps (Figure 32, Figure 33 and Figure 34) means the 

computation of the drought intensity (minimum values or RDI in negative scale) by drought 

duration, according to the Run Theory (see subsection 2.10 Run Theory). Since the drought 

intensity is negative, the multiplication results in a negative also. The module of drought 

magnitude (DM) comparison occurs with other studies performed worldwide. 
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In all analysis neglecting the drought magnitude signal, the historical scenario presented 

the worst maximum drought magnitude (in module) in the Centre-East region and in stations 4 

(Curitiba), 8 (Ponta Grossa) and 11 (Castro). The station 26 (Campo Mourao) also presented 

worse maximum drought magnitude (-24.45 in red). General stations (from light red to blue) 

cover the Parana State area with lower maximum drought magnitude. The general area 

presented from -14.31 to -16.85 maximum drought magnitude. 

A different spatial behaviour occurred in the RCP 4.5 scenario. The highest maximum 

drought magnitudes (-45.25) occurred in Centre-Northeast, represented by stations 11 (Castro) 

and 13 (Telemaco Borba) and in both North and Northeast, represented by stations 7 (Joaquim 

Tavora), 9 (Cambara), 10 (Bandeirantes), 14 (Ibipora), 15 (Bela Vista do Paraiso), 16 (Maua 

da Serra), 18 (Apucarana) and 22 (Londrina). Lower maximum drought magnitude are observed 

in the East (seaside), Southwest, Centre and South (light red to blue). The lowest maximum 

drought magnitudes occurred in the Southwest region, represented by stations 19 (Palmas), 20 

(Clevelandia), 28 (Pato Branco) and 30 (Francisco Beltrao). 

 

Figure 32 – Maximum drought magnitude of the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 

 

Font: Author. 

 

The RCP 8.5 scenario presented the highest maximum drought magnitudes only at 

stations 14 (Ibipora) and 15 (Bela Vista do Paraiso) located in the North and in the station 2 

(Morretes) in the East, each reaching -30.12 maximum drought magnitude. Other stations 
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(coloured light red to blue) present lower maximum drought magnitude. The minimum values 

were at the same sites as in the RCP 4.5 scenario, namely stations 19 (Palmas), 20 (Clevelandia), 

28 (Pato Branco) and 30 (Francisco Beltrao). The lower maximum drought magnitude values 

are up to -14.75. 

SPINONI et al. (2014b) performed a global drought evaluation using the SPI and found 

total drought severity from 25 to around 100 in the Parana region in the period 1971 to 2010. 

Results are superior of this work, which presented maximum drought magnitude (max DM) in 

module between 14 and 24 in the historical period. This can happen due to the use of reanalysis 

data and the non-consideration of the non-stationary drought analysis approach. 

Figure 33 presents the mean drought magnitude of both historical (HIST) and simulated 

(RCP 4.5 and RCP 8.5) series. In the historical period, the mean drought magnitudes situate 

between the range -4.43 (blue) and -5.32 (red), indicating a slight variation. The same pattern 

occurred in both future simulated scenarios (RCP 4.5 and RCP 8.5), where the ranges situate 

between -5.49 (blue) and -6.63 (red) in the RCP 4.5, and -5.37 (blue) and -6.02 (red) in the RCP 

8.5. 

 

Figure 33 – Mean drought magnitude of the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 

 

Font: Author. 
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The historical scenario presented few stations with highest drought magnitude means, 

as occurred in stations 5 (Cerro Azul), 18 (Apucarana), 19 (Palmas), 20 (Clevelandia) and 30 

(Francisco Beltrao). The lowest mean drought magnitudes occurred in stations 3 

(Guaraquecaba), 24 (Paranavai) and 31 (Umuarama). Differences in Parana State situate around 

-4.88 mean drought magnitude (in white). 

In the RCP 4.5 scenario, despite of the small difference between the minimum (-5.49) 

and the maximum (-6.63) values, there is an evident separation between the highest (red) and 

the lowest (blue) values. The highest occurred in North and Northeast, while the lowest 

occurred in South, Centre-South and East. This analysis highlights that both North and 

Northeast (red) have more severe droughts, when compared to the other regions. 

 

Figure 34 – Median drought magnitude of the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 

 

Font: Author. 

 

In the RCP 8.5 scenario, the mean drought magnitudes show a similar behaviour, when 

compared to the RCP 4.5 scenario. Practically the entire Parana State presented the highest 

values (red) in North and Northeast. The lowest values (blue) occurred in East and South. The 

highest mean drought magnitude occurred in the red areas with up to -6.02 and the minimum 

occurred with -5.37. Both West and North of Parana State characterize by agriculture and 

pasture and these areas tend to become drier due to deforestation and posterior substitution by 
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monoculture. It means the mean drought magnitude scenario in the RCP 8.5 projection is 

coherent with the climate change impacts due to the anthropogenic interferences. 

Figure 34 presents the median drought magnitude of both historical (HIST) and 

simulated (RCP 4.5 and RCP 8.5) series. The three scenarios present no significant variations 

in both the lowest and the highest median drought magnitudes. The historical period presented 

the highest values in some stations in Northeast and East. The RCP 4.5 presented a blue belt 

from the North to the South. The Parana State presents the highest values in Northwest, West, 

Centre-west, South and East (only at the seaside). The RCP 8.5 presented the highest median 

drought magnitudes in stations 32 (Cascavel) and 34 (Palotina), reaching -5.18 median drought 

magnitude. The highest values occur in West and there is a slight transition to the lowest values 

in the East. The median drought magnitudes do not vary significantly, when compared to the 

maximum drought magnitude (Figure 32). 

 

Figure 35 – Minimum values of the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 

 

Font: Author. 

 

Figure 35 presents the minimum values of both historical (HIST), and simulated (RCP 

4.5 and RCP 8.5) series. The minimum values presented variations from one scenario to 

another. The historical period presented the lowest minimum value (-1.79) in most part of the 

Parana State and the highest minimum value (-1.72) in stations 3 (Guaraquecaba), 27 



168 
 

 
 

(Cianorte), and in the Southwest region. The minimum value means that there are intense 

droughts in the historical series in practically the entire Parana State (in red). 

The RCP 4.5 presented the lowest values (-1.76 in red) in Centre-East and the highest 

values in West (-1.69 in blue). Comparing the RCP 4.5 scenario with the historical series, it 

means that until 2100, some areas with severe droughts may become less severe and others may 

continue to be severe. The RCP 8.5 scenario presented the lowest minimum (-1.84) value only 

in the North, more precisely at the station 15 (Bela Vista do Paraiso). The Parana State presented 

minimum values varying from -1.81 (lowest) to -1.72 (highest). It means that comparing the 

historical scenario with the RCP 8.5 future projection, some areas may become drier (e.g. 

station 15 (Bela Vista do Paraiso) from blue (-1.72 in historical) to red (-1.84 in RCP 8.5)). 

However, other stations maintain the minimum drought values. 

ZARCH et al. (2015) evaluated droughts around the world and applied the RDI in order 

to identify drought patterns in both historical and future periods. They analysed the minimum 

values and found in Parana State, that the historical series presented normal to near normal 

drought severities (between 0 and -1.0 in RDI scale), while the future RCP 8.5 series presented 

an increase in near normal droughts (around -1.0). Results in this work also presented a slight 

increase in the minimum values (-1.79 in the historical series to -1.84 in the RCP 8.5 scenario). 

However, there may be severe droughts in both historical and RCP 8.5 scenarios, showing 

differences in comparison with the ZARCH et al. (2015) work. This can happen since the author 

used reanalysis data and did not consider the non-stationary drought analysis, as performed in 

this work. 

AWANGE et al. (2016) evaluated the SPI minimum values in the entire Brazilian 

country using the SPI accumulated in 3-months. They found that most of the Parana area 

presented -3 in SPI scale, while the West and small portion in the North region presented up to 

-4.4 in the historical period. AWANGE et al. (2016) results show the SPI values are higher 

when compared to this work and this can happen due to each method formulation, since the 

RDI considers the potential evapotranspiration effects. 

Figure 36 presents the total number of drought events between stationary and non-

stationary approaches of both historical (HIST) and simulated (RCP 4.5 and RCP 8.5) series. 

The number of drought events computation occurred using the zero threshold for drought 

characterization. The total number of droughts in the historical series vary in the range from 29 

to 44, due to differences in the historical series length. In the RCP 4.5, the range varied from 
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74 to 90 and in the RCP 8.5, from 80 to 91, respectively. In both simulated scenarios (RCP 4.5 

and RCP 8.5), the series length is 1128 months (January 2006 to December 2099). 

The historical scenario presents heterogeneity in the number of drought events across 

the Parana State. The lower number of events occurred in West, Southwest and in stations 5 

(Cerro Azul), 6 (Lapa), 16 (Maua da Serra) and 19 (Palmas), presenting the minimum of 29 

drought events (in red). The remaining Parana area presented more drought events in the 

historical series (regardless the series length). The blue areas presented 44 drought events in 

several locations all around the area. 

 

Figure 36 – Total number of drought events between stationary and non-stationary approaches of the historical 
(HIST), and simulated (RCP 4.5 and RCP 8.5) series. 

 

Font: Author. 

 

In the RCP 4.5 scenario, there is a clear division between the North and the South. The 

North presented the lower (74 in red) number of drought events, while the South presented the 

higher (90 in blue). A division also occurs in the RCP 8.5 scenario, presenting both East and 

South regions with the higher number of drought events (91) and the remaining Parana State 

with the lower number of drought events (80). There is an increase in the number of drought 

events, when comparing the number of drought events classification (respective legends) of 

both RCP 4.5 and RCP 8.5 scenarios. It highlights that in the RCP 8.5 scenario occurred more 

droughts than in the RCP 4.5 scenario. 
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Figure 37 presents the boxplots of maximum drought duration (months) and mean 

drought magnitude (severity) of both historical (HIST) and simulated (RCP 4.5 and RCP 8.5) 

series. In the boxplots are the monthly maximum duration of all 34 stations of the Parana State 

in the left and the mean drought magnitude (severity) in the right. In the duration analysis, the 

median (orange line) of the historical and both future scenarios are significantly different, 

pointing that both future drought duration may increase. Both RCP 4.5 and RCP 8.5 scenarios 

presented an abrupt increase in general values (box, whiskers and outliers), when compared to 

the historical scenario. Despite of the increase in the maximum drought magnitude, the size of 

the boxes remained almost the same, meaning that there is a small data dispersion in the three 

scenarios. Droughts may last more in the future as evidenced by both RCP 4.5 and RCP 8.5 

scenarios. 

 

Figure 37 – Boxplots of drought duration (months) and mean drought magnitude (severity) of the historical (HIST), 
and simulated (RCP 4.5 and RCP 8.5) series. 
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In the right, there is a general decrease (increase in absolute value) in the mean values 

of drought severity in both future simulated scenarios (RCP 4.5 and RCP 8.5). Both scenarios 

presented almost the same median of all 34 stations and differed in terms of the box size 

(interquartile values range) and both whiskers and outliers. The RCP 4.5 presented more severe 

droughts (highest magnitude ranges), while the RCP 8.5 presented less severe droughts, when 

compared to each other. The historical scenario presented milder drought severities, when 
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compared to both future scenarios, meaning that droughts may become more severe in the 

future, according to these projections. 

Figure 38 presents the median and maximum drought magnitude (severity) boxplots of 

both historical (HIST) and simulated (RCP 4.5 and RCP 8.5) series. In the left boxplot (median 

drought magnitude), the historical ensemble presented the lower absolute values. These may 

become more severe in the RCP 4.5 scenario and even more severe in the RCP 8.5 scenario. 

These results mean the RCP 4.5 scenario is a milder drought increase scenario, while the RCP 

8.5 is the worst scenario, looking at the medians. The median line (orange) suffered a decrease 

from historical to both simulated (RCP 4.5 and RCP 8.5) scenarios, as well as the box, whiskers 

and outliers, shifted to a more severe scenario. In the historical scenario, there is a great 

dispersion of the median drought severity statistics, when compared to the RCP 8.5 scenario. 

 

Figure 38 – Boxplots of the median and maximum drought magnitude (severity) of the historical (HIST), and 
simulated (RCP 4.5 and RCP 8.5) series. 

 
Font: Author. 

 

In the right, the maximum drought severity boxplots presented a similar behaviour, 

when compared to the mean drought severity (Figure 37), where the worst scenario (more 

severe droughts) occurs in the RCP 4.5 series and the milder scenario in the RCP 8.5. In the 

maximum drought magnitude analysis, the difference is considerable when compared to the 

mean drought magnitude analysis. In the historical series, the box size is smaller than in both 

future (RCP 4.5 and RCP 8.5) scenarios, differing slightly in the size of boxes (interquartile 
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values range). There is a great decrease in the median values (orange line) in the RCP 4.5 

scenario and the RCP 8.5 presented lower maximum drought magnitude. This analysis 

highlights that the RCP 4.5 scenario is the worst in terms of maximum drought severity. The 

RCP 4.5 scenario presented a different maximum drought severity behaviour and means that in 

the future (up to 2100) it may occur more severe droughts (according to the size of box), 

reaching up to 45 severity in some period of the future time series. 

Figure 39 presents the drought frequency boxplots for both 0 (zero) and -1.0 (moderate 

drought) threshold of both historical (HIST) and simulated (RCP 4.5 and RCP 8.5) series. 

Comparing the three boxplots in the left figure, the historical scenario presented the larger range 

of drought frequencies in the zero threshold, i.e., for any drought occurrence. The median 

(orange line) remains between 50% and 52% in the three scenarios (historical, RCP 4.5 and 

RCP 8.5). There are differences in the size of boxes, presenting the historical scenario as the 

worst in terms of drought occurrences. The RCP 8.5 scenario is the worst between both future 

scenarios. The RCP 4.5 scenario is the less hazardous in terms of drought frequencies and 

presents the low data dispersion. 

 

Figure 39 – Boxplots of the drought frequency of both 0 (zero) and -1.0 (moderate drought) threshold of the 
historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 

 
Font: Author. 

 

The size of boxes vary from historical and future scenarios, and in both future scenarios, 

there is a decrease in the drought occurrence. The historical series presented the larger whiskers 
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meaning a wider variation of drought occurrence frequency. In the right figure are the moderate 

to severe drought occurrence frequencies (below -1.0 threshold). There is an increase in the 

moderate drought frequencies in the RCP 4.5 scenario and a slight increase in the RCP 8.5 

scenario, when compared to the historical scenario. The median values (orange lines), box size 

and the whiskers highlight this increase. The larger whiskers are in the historical scenario. There 

are two outliers in the RCP 8.5 scenario and the RCP 4.5 is the worst scenario, when compared 

to both historical and RCP 8.5 scenarios. This means the moderate to severe drought 

occurrences may become more frequent in the future, considering both future projections. 

 

Figure 40 – Boxplots of the minimum values and the number of drought events of the historical (HIST), and 
simulated (RCP 4.5 and RCP 8.5) series. 

 
Font: Author. 

 

Figure 40 presents the boxplots of the minimum values and the number of drought 

events of both historical (HIST) and simulated (RCP 4.5 and RCP 8.5) series. The minimum 

values (left image) situate between -1.7 and -1.8 and the RCP 8.5 scenario presented an outlier 

(between -2.4 and -2.5), represented by a circle. The median values (orange lines) remain in the 

same range (-1.7 and -1.8). Both boxes and whiskers are almost in the same range; despite there 

are variations in the whiskers length and the size of boxes among the three scenarios. This 

means the minimum values remain practically in the same range in the three scenarios, i.e., 

minimum values may remain constant along both future scenarios. 
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In the right image there is the representation of the number of drought events and 

according to it, there is an increase in the number of drought events in the RCP 4.5 scenario. 

Considering that both future series length are approximately the double size of the historical 

series, there are variations in the number of drought events. The simulated RCP 8.5 series 

presented a slight box size variation, meaning a lower interquartile values variation (between 

25% and 75%). However, the RCP 4.5 presented an increase in the number of drought events, 

when compared to both historical and RCP 8.5 scenarios. 

The superior whisker limits remained up to 23 drought events in all scenarios and the 

inferior whiskers differed between both future scenarios. Both median values (orange lines) are 

between 19 and 21 drought events in all scenarios and the median in the historical scenario is 

around 20 drought events. There is an increase in the number of drought events in the RCP 4.5 

scenario, which presented 21 events. The RCP 8.5 presented a slight decrease in the median 

values (orange line), when compared to the historical scenario. If adopted the RCP 4.5 scenario, 

there may have more drought events along the twenty-first century. 

 

Figure 41 – Boxplots of the drought frequency of -1.5 threshold (severe droughts) of the historical (HIST), and 
simulated (RCP 4.5 and RCP 8.5) series. 

 
Font: Author. 

 

Figure 41 represents the boxplots of drought frequency for -1.5 threshold (severe 

droughts) of both historical (HIST) and simulated (RCP 4.5 and RCP 8.5) series. The historical 

period presented a similar box size, when compared to the RCP 4.5 scenario. The RCP 8.5 
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presented a decrease, when compared to both historical and RCP 4.5 scenarios. The severe 

drought occurrence frequency is higher in the historical scenario than in both future scenarios, 

perhaps because of the length of the record. The occurrence median reduced in both future (RCP 

4.5 and RCP 8.5) scenarios, dropping from around 6.2% to around 4.7% in the RCP 4.5 

scenario. This means a reduction in the frequency of severe or extreme droughts in the future. 

In the RCP 8.5 scenario, there is a small reduction in the medians (orange lines), from 6.2% to 

5.7%, approximately. There are two outliers in the RCP 8.5 scenario and in the historical series; 

the whiskers are larger when compared to both future scenarios, meaning the severe drought 

frequency is larger in the historical series. 

 

5.3. Chapter summary 
 

This chapter presented the drought analysis results of this study for Parana State. The 

drought analysis occurred in two sections: (1) single meteorological non-stationary analysis and 

(2) Parana State overall analysis. In the first analysis, there were applied the drought indices 

evolution along time scales, i.e., the RDI accumulated in quarter, semester and annual scales in 

order to verify the drought temporal evolution and persistence. There were also applied the 

difference found between the historical period and both RCP 4.5 and RCP 8.5 future scenarios, 

in the main drought statistics, to verify whether there is drought increase or decrease in both 

future scenarios. 

In the second analysis, the main statistics in the entire Parana State were computed using 

the Inverse Distance Weighting (IDW) interpolation technique, to perform the colours map. 

Also in the second analyses, all statistics were represented in boxplots for a latter comparison 

between the past and both future scenarios. In both analyses, there were found significant 

differences in the main statistics, such a general increase in both maximum and median drought 

magnitude and maximum drought duration in both future scenarios. 

According to results presented in the first analysis, the most significant drought statistics 

in the stations 1 (Paranagua), 8 (Ponta Grossa), 11 (Castro) and 22 (Londrina) are number of 

drought events in the series, drought duration (months), maximum drought magnitude 

(severity), as well as occurrence frequencies and minimum values. 
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The RCP 4.5 series presented the worst scenario when compared to the RCP 8.5, i.e., 

the RCP 4.5 presented more intense drought statistics. This is a strange phenomenon because 

the RCP 4.5 is a moderate GHG emissions rate scenario with a decline along the twenty-first 

century according to the IPCC, while the RCP 8.5 is the worst scenario, where the GHG 

emission rates may increase until 2100. 

Analyses of maps corroborate with the single station analyses, because they pointed to 

the same more significant drought statistics to evaluate droughts. The boxplots also highlighted 

that the minimum values are an important statistic for droughts evaluation in Parana State. 

Results showed that maximum drought duration, maximum drought magnitude and number of 

drought events might intensify in both future scenarios. 
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CONCLUSIONS 
 

Both RDI stationary and non-stationary analyses evidenced that no extreme droughts 

occurred in the historical observed series and there is no projection to occur extreme droughts 

in the future. There are mild, moderate and severe droughts in the entire Parana State at some 

periods of both historical and future (RCP 4.5 and RCP 8.5) scenarios. 

Droughts may become more intense along the future and the RCP 4.5 scenario may be 

the worst future scenario, when compared to the RCP 8.5 scenario. This is contradictory with 

the literature and common sense, since the worst scenario should be the RCP 8.5 and the RCP 

4.5 should be a milder scenario. The RCP 4.5 considers a Greenhouse Gases (GHG) reduction 

after 2050, while the RCP 8.5 considers a constant increase in the GHG emission rates since 

2000 until 2100. This fact highlights the importance in evaluating these Regional Climate 

Models scenarios (RCP 4.5 and RCP 8.5), before applying them in any research. 

Drought statistics pointed to worse droughts in the RCP 4.5 scenario, when compared 

to the historical scenario, as shown by variation in maximum drought magnitude, drought 

duration and moderate to severe drought occurrence frequencies. Other statistics reproduced 

well the drought phenomena, like the minimum values, drought occurrence frequency and both 

mean and median drought magnitude. The minimum values did not present large differences in 

the future scenarios. The overall statistics mean that droughts may become worse in terms of 

duration and magnitude. 

Paranagua, Ponta Grossa, Castro and Londrina stations pointed to non-stationarity in 

the historical series, being analysed in the non-stationary drought analysis approach. These 

historical series presented non-stationarity only in the 3- and/or 6-month accumulation periods. 

The non-stationary drought analysis pointed to significant differences mainly in the 

minimum values viewed in the ordinate axis of the RDI graph, when compared to the stationary 

traditional drought analysis. Most stations produced droughts underestimation in the first split 

and droughts overestimation in the second split using the proposed method. The non-stationary 

approach improved the drought analysis because it also presented differences in drought 

occurrences (e.g. in the stationary approach there was no drought, while in the non-stationary 

approach there was drought, and vice-versa). The proposed method also produced differences 

in drought duration, and consequently, in drought magnitude. 
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These differences highlight the importance in performing the non-stationary drought 

analysis since droughts may be worse or milder, if adopting the traditional stationary gamma 

fitting. 

The future simulated RCP 4.5 scenario presented non-stationarity in some stations in 

the 3-month and/or 6-month accumulation periods. For these stations, in the 12-, 24-, 36-, 48- 

and 60-month accumulation periods, the stationarity hypothesis could not be rejected. However, 

the RCP 8.5 scenario presented non-stationarity in practically all 34 stations in the 3-, 6-, 12-

month accumulation periods, except the stations Palmas and Clevelandia, which are stationary. 

The remaining 24-, 36-, 48- and 60-month accumulation periods presented either stationarity 

or non-stationarity in the series. 

The monthly precipitation and temperature series presented non-stationarity in some 

stations in the historical period. However, both future RCP 4.5 and RCP 8.5 scenarios presented 

non-stationarity for the temperature series and for a great number of the precipitation series. 

Some series presented only changing point, while others presented both trend and changing 

point. When changing point was observed in some accumulation period, the non-stationary 

statistic models were split at the changing point. 

In the 30-period moving window analysis, the parameter temporal variation presented 

a decrease in the shape parameter. However, both location and scale parameters presented a 

significant increase. The minimum values presented an increasing trend leading to the 

conclusion that droughts tend to intensify at the end of the series. 

The RDI is the most suitable index to apply in the study region (Parana State) due to its 

performance in representing the drought phenomena and best fittings of the gamma distribution 

(stationary and non-stationary). Both Standardized Precipitation Index (SPI) and Standardized 

Precipitation Evapotranspiration Index (SPEI) were applied in this research, and due to the great 

data amount generated, they were discarded. For this reason, only the RDI graphs and analyses 

are shown in this dissertation. 

Some methods applied in this research and not considered in the final version were both 

Quantile-Quantile (QQ) and Delta Change (DT) bias correction, Multiple Linear Regression 

(MLR) for filling in the gaps, and Blaney-Criddle for potential evapotranspiration computation. 

Both QQ and DT generated the worst Mean Absolute Error (MAE) coefficients. The MLR 

computation generated no significant correlation between the neighbouring stations and the 
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Blaney-Criddle method was discarded due to its difficulty in adequately represent the future 

crop coefficient. The Hargreaves method was not considered because it relies on the assumption 

of one more variable, radiation and the Thornthwaite requires only both temperature and 

daylight length, being widely applied in drought studies worldwide. There is no record of the 

use of the Priestley and Taylor evapotranspiration method for drought analysis. 

Other potential evapotranspiration widely applied methods such Penman-Monteith 

require many data, which are not available for all station in Parana State, and were discarded. 

The application of other methods to estimate the gamma distribution parameters did not 

improve the results. The methods investigated were the L-Moments and the Method of 

Moments. The GEV distribution presented the worst fit for monthly and the seven accumulation 

periods (3, 6, 12, 24, 36, 48, and 60 months) and was discarded from further analysis. 

There is only one outlier of the extreme drought in the Parana State (RDI lower than -

2.0 in the standardized form) in the RCP 8.5 scenario (minimum values boxplot). The general 

results showed a minimum of about -1.85 in all stations and scenarios (past and future). A very 

close -2.0 value occurred in the 30-period moving window analysis. 

Another important aspect is the non-stationarity may have several origins, such land use 

change. There is not a climate model that considers this variable in the moment for future 

climate projections to study climate change impacts. Due to this current restriction, it is difficult 

to analyse the stationarity in some historical series, since it is expected that global climate 

change impacts generate non-stationarity in historical series. This is a complex discussion and 

may be treated in a close future. 

This dissertation focused in analysing droughts in a non-stationary premise and the 

application of this method in climate change scenarios for the future. It is important do predict 

and forecast the climate on Earth in order to take mitigation measures, as well as for a better 

planning and management of the water resources, even in the close future, all predictions and 

forecasts prove the contrary. The error is an inherent premise in both prediction and forecasting 

studies. Both prediction and forecasting model results can be affected by socioeconomic crises. 

It was shown that for general drought analysis, there is a need to perform the non-

stationary analysis. The right choice in drought modelling allows the knowledge and 

understanding the potential impacts of droughts for a better planning and management of water 

resources, minimizing the risk and shortcoming for economy and society from droughts. 
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RECOMMENDATIONS 
 

In order to improve this study, some methods and analyses as well as more data 

collection recommendations for further development are described, for future studies about 

droughts. 

Other methods to compute the Potential Evapotranspiration (PET) may be used for 

comparison with the Thornthwaite method, to check the effect of the solar radiation and other 

weather variables in the PET series. It is also recommended to perform the non-stationary 

drought analysis using both Standardized Precipitation Index (SPI) and Standardized 

Precipitation Evapotranspiration Index (SPEI), as well as the Palmer Drought Severity Index 

(PDSI), and other drought indices to compare with the results obtained in this study. 

Another recommendation is to apply the methods of this study in the Northeast Brazilian 

(NEB) region, performing the non-stationary drought analysis, improving several stationary 

drought studies in that region. Non-stationary drought analysis focusing on developing drought 

indices for streamflow and runoff records, as well as for low flow indices is another 

recommendation for future studies. 

Other possible improvements in this study are the application of other methods for 

filling in the gaps in the historical series, like the average pondering by inverse distance 

weighting. Application of the Mann-Whitney (Wilcoxon) test to both historical and simulated 

series, to verify stationarity is another recommendation. Also alternative estimators for the 

probability distributions parameters such as the Probability Weighted Moments (PWM) should 

be tested and confronted with the method used in this dissertation (Maximum Likelihood 

method), is another suggestion. 

Future drought periods may be classified per decade in order to compare these scenarios 

with meteorological phenomena (e.g. ENSO, PDO, AMO, and others) and perform a more 

robust drought analysis. 

Due to the significant impact related to drought events, as described in the first chapter 

of this dissertation, it is also important to predict and forecast droughts. To do this, 

forecasting/prediction models for filling in the gaps or forecasting analyses using 

Autoregressive Conditional Heteroscedasticity (ARCH) and Generalized Autoregressive 

Conditional Heteroscedasticity (GARCH), are other future application. 
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In the future series, it is suggested to split the simulated scenarios (RCP 4.5 and RCP 

8.5) in past/present (January of 2006 to December of 2040), mid future (January of 2041 to 

December of 2070) and far future (January of 2071 to December of 2099). This can provide 

more severe drought evaluation per periods and perform a posterior comparison with the IPCC 

reports. Also testing different Global Climate Models (GCM) or Regional Climate Models 

(RCM) to forecast precipitation and/or temperature and their later comparison would be useful 

and may give some guess about the precision of these models. 

Another suggestion for future studies is related to the simulated scenarios uncertainties, 

since different RCM scenarios can generate different results in the same study region. It is 

recommendable to apply this dissertation method with other RCM or GCM scenarios and 

analyse the uncertainties inherent to each model application. 

This dissertation method focused in detecting the changing point using the Pettitt test in 

the accumulated Reconnaissance Drought Index (RDI) series to perform the non-stationary 

approach. The non-stationarity detection can occur using only the Mann-Kendall test. In this 

way, another suggestion for future studies is to perform a non-stationary analysis using the non-

significant changing point of the Pettitt test application, i.e., use the changing point even when 

the p-value is above the 0.05 (5% probability significance to reject the null hypothesis and 

accept there is non-stationarity in the series). 

In relation to the gamma parameter series resulted of the 30-period moving window 

analysis, another suggestion for future studies is the application of both trend and changing 

point tests in the gamma parameter series to detect abrupt changes and trends in these series. It 

is also recommendable to compute the statistical quality of trust intervals of these series and 

also in both two non-stationary gamma fits and stationary approach. 

It is important to highlight that the main goal of this dissertation is performing a non-

stationary drought analysis in climate change scenarios. For this reason, it was applied the 

Simple Linear Regression (SLR) for filling in the gaps as a parsimonious method and hence, 

compute the non-stationary RDI approach. It might be interesting to apply other methods for 

filling in the gaps, such machine learning methods in future studies. 

Another future studies recommendation is the discussion of this dissertation results with 

the drought reports in the hydroelectricity. 
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Finally, a comparison of this dissertation results with a Generalized Addictive Models 

for Location, Scale and Shape (GAMLSS) model to verify its performance is another 

recommendation for future study. 
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APPENDIX 
 

Differences in the drought indices statistics of 6 months 
 

Figure 42 – Difference (%) between stationary and non-stationary approaches in maximum drought duration of 
the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 

 

Font: Author. 

 

Figure 43 – Difference (%) between stationary and non-stationary approaches in the zero threshold frequency of 
the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 

 

Font: Author. 
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Figure 44 – Difference (%) between stationary and non-stationary approaches in the -1.0 threshold frequency of 
the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 

 

Font: Author. 

 

Figure 45 – Difference (%) between stationary and non-stationary approaches in the -1.5 threshold frequency of 
the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 

 

Font: Author. 
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Figure 46 – Difference (%) between stationary and non-stationary approaches in the maximum drought magnitude 
of the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 

 

Font: Author. 

 

Figure 47 – Difference (%) between stationary and non-stationary approaches in the mean drought magnitude of 
the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 

 

Font: Author. 
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Figure 48 – Difference (%) between stationary and non-stationary approaches in the median drought magnitude 
of the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 

 
Font: Author. 

 

Figure 49 – Difference (%) between stationary and non-stationary approaches in the minimum values of the 
historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 

 

Font: Author. 
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Figure 50 – Number of drought events difference (%) between stationary and non-stationary approaches of the 
historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 

 

Font: Author. 

 

Figure 51 – Difference (%) between stationary and non-stationary approaches in the drought characterization in 
the stationary and non-stationary approaches of the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 

 

Font: Author. 
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Drought analysis of 6 months 
 

Figure 52 – Maximum drought duration of the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 

 

Font: Author. 

 

Figure 53 – Zero threshold frequency of the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 

 

Font: Author. 
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Figure 54 – The -1.0 threshold frequency of the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 

 

Font: Author. 

 

Figure 55 – The -1.5 threshold frequency of the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 
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Figure 56 – Maximum drought magnitude of the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 

 

Font: Author. 

 

Figure 57 – Mean drought magnitude of the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 

 

Font: Author. 
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Figure 58 – Median drought magnitude of the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 
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Figure 59 – Minimum values of the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 
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Figure 60 – Total number of drought events between stationary and non-stationary approaches of the historical 
(HIST), and simulated (RCP 4.5 and RCP 8.5) series. 
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Drought analysis of 12 months 
 

Figure 61 – Maximum drought duration of the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 
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Figure 62 – Zero threshold frequency of the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 
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Figure 63 – The -1.0 threshold frequency of the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 
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Figure 64 – The -1.5 threshold frequency of the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 
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Figure 65 – Maximum drought magnitude of the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 
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Figure 66 – Mean drought magnitude of the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 
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Figure 67 – Median drought magnitude of the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 
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Figure 68 – Minimum values of the historical (HIST), and simulated (RCP 4.5 and RCP 8.5) series. 
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Figure 69 – Total number of drought events between stationary and non-stationary approaches of the historical 
(HIST), and simulated (RCP 4.5 and RCP 8.5) series. 
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