

UNIVERSIDADE FEDERAL DO PARANÁ

ELTON EIJI SASAKI

USE OF BLOCKCHAIN TIMESTAMPING AND DIGITAL CERTIFICATES BASED

ON ICP-BRASIL STANDARDS TO PROVIDE AUTHENTICITY OF DOCUMENTS

CURITIBA

2020

ELTON EIJI SASAKI

USE OF BLOCKCHAIN TIMESTAMPING AND DIGITAL CERTIFICATES BASED

ON ICP-BRASIL STANDARDS TO PROVIDE AUTHENTICITY OF DOCUMENTS

Dissertação apresentada ao curso de Pós-

Graduação em Gestão da Informação, Setor de

Ciências Sociais Aplicadas, Universidade Federal do

Paraná, como requisito parcial à obtenção do título

de Mestre em Gestão da Informação.

Orientador: Prof. Dr. Egon Walter Wildauer

CURITIBA

2020

AGRADECIMENTOS

Agradeço ao meu orientador Professor Egon Walter Wildauer pela mentoria e

direcionamento na realização deste trabalho.

Agradeço aos Professores, Professor Egon Walter Wildauer, Professor José

Simão de Paula Pinto e Professora Helena de Fátima Nunes Silva, pelas aulas

ministradas durante o curso de mestrado que me fortaleceram academicamente e

profissionalmente.

Agradeço aos membros das bancas de qualificação e defesa, Professor Egon

Walter Wildauer, Professor José Simão de Paula Pinto, Professora Ana Cristina

Barreiras Kochem Vendramin, Professora Taiane Ritta Coelho e Professor Carlos

Henrique Kuretzki, pelas considerações e correções apontadas para o

desenvolvimento deste trabalho.

ACKNOWLEDGMENTS

I would like to thank my supervisor Professor Egon Walter Wildauer for

mentoring and directing this work.

 I would like to thank Professors, Professor Egon Walter Wildauer, Professor

José Simão de Paula Pinto and Professor Helena de Fátima Nunes Silva, for the

classes given during the master's course that strengthened me academically and

professionally.

 I would like to thank the members of the qualification and defense boards,

Professor Egon Walter Wildauer, Professor José Simão de Paula Pinto, Professor

Ana Cristina Barreiras Kochem Vendramin, Professor Taiane Ritta Coelho and

Professor Carlos Henrique Kuretzki, for the considerations and corrections pointed

out for the development of this work.

RESUMO

Este projeto de pesquisa tem como objetivo implementar a integração de carimbo de

tempo de blockchain e assinaturas digitais baseadas em certificados digitais ICP-

Brasil para fornecer um serviço ubíquo de autenticação digital de documentos por

meio de um protótipo de aplicativo para dispositivos Android. Este projeto de

pesquisa tem três objetivos específicos: a) identificar como a integração de carimbo

de tempo de blockchain e assinaturas digitais baseadas em certificados digitais ICP-

Brasil garante a segurança da informação; b) identificar requisitos de sistema para

desenvolver o protótipo do aplicativo para dispositivos Android que integre carimbo

de tempo de blockchain e assinaturas digitais baseadas em certificados digitais ICP-

Brasil; e c) desenvolver o protótipo do aplicativo para dispositivos Android seguindo

os requisitos de sistema identificados no item b. A integração das tecnologias

blockchain e certificados digitais ICP-Brasil (Infraestrutura de Chaves Públicas

Brasileira) simplifica o desenvolvimento de um serviço de autenticação digital de

documentos. A ICP-Brasil fornece um serviço terceirizado de KYC (Know Your

Customer - Conheça o seu cliente), verificando a identidade e o comprovante de

residência do usuário, antes de emitir um certificado digital para o usuário. E o

blockchain fornece um serviço terceirizado de registro de carimbos de tempo à prova

de violações.

Palavras-chave: Blockchain. Infraestrutura de Chaves Públicas. ICP-Brasil.

Certificados Digitais. Assinaturas Digitais. Autenticação Digital de Documentos.

ABSTRACT

This paper aims to integrate blockchain timestamping and digital signatures based on

ICP-Brasil digital certificates to provide a ubiquitous digital document authentication

service through an application prototype for mobile Android devices. This paper has

three specific objectvies: a) identify how integration of blockchain timestamping and

digital signatures based on ICP-Brasil digital certificates assures information security;

b) identify system requirements to develop the application prototype for mobile

Android devices that integrates blockchain timestamping and digital signatures based

on ICP-Brasil; and c) follow system requirements identified in item b in order to

develop the application prototype for mobile Android devices. Integration of

blockchain and ICP-Brasil (Infraestrutura de Chaves Públicas Brasileira - Brazilian

Public Key Infrastructure) simplifies the development of a digital document

authentication service. ICP-Brasil provides an outsourced KYC (Know Your

Customer) service by verifying through a Registration Authority the user’s identity and

proof of address, prior to issuing a digital certificate to the user. And blockchain

provides an outsourced tamper-proofing timestamp data.

Keywords: Blockchain. Public Key Infrastructure. ICP-Brasil. Digital Certificates.

Digital Signatures. Digital Document Authentication.

LIST OF FIGURES

FIGURE 1 – CRYPTOCURRENCY EXCHANGES BY COUNTRIES 23

FIGURE 2 – COUNTRIES WITH MOST CRYPTOCURRENCY USERS 24

FIGURE 3 – DATA OF INTERNET USE IN BRAZIL ... 24

FIGURE 4 – FLOWCHART OF THESIS STAGES .. 27

FIGURE 5 – CHAIN OF DIGITAL SIGNATURES .. 29

FIGURE 6 – BLOCKS LINKED IN A CHAIN TO THE PREVIOUS BLOCK HEADER

HASH ... 32

FIGURE 7 – BITCOIN HIGHEST AVERAGE NUMBER OF TRANSACTIONS PER

BLOCK ... 34

FIGURE 8 – BITCOIN AVERAGE NUMBER OF TRANSACTIONS PER BLOCK ON

MARCH 11, 2020 ... 35

FIGURE 9 – CALCULATING NODES IN A MERKLE TREE 38

FIGURE 10 – BRAZILIAN PUBLIC KEY INFRASTRUCTURE 41

FIGURE 11 – METHODOLOGY MAP ... 50

FIGURE 12 – APPLICATION PROTOTYPE USE CASE DIAGRAM 53

FIGURE 13 – PROCESS FLOWCHART OF APPLICATION PROTOTYPE 54

FIGURE 14 – APPLICATION PROTOTYPE ENTITY-RELATIONSHIP DIAGRAM .. 55

FIGURE 15 – IMPORT DIGITAL CERTIFICATE USE CASE DIAGRAM 57

FIGURE 16 – ANDROID APP IMPORT DIGITAL CERTIFICATE CLASS DIAGRAM

 ... 58

FIGURE 17 – IMPORT DIGITAL CERTIFICATE SEQUENCE DIAGRAM 60

FIGURE 18 – FUNCTIONALITIES MENU ON ANDROID APP 61

FIGURE 19 – “SIGNATURES” FUNCTIONALITY ON ANDROID APP 62

FIGURE 20 – FILE MANAGER TO SELECT CERTIFICATE 63

FIGURE 21 – DIGITAL CERTIFICATE PASSWORD VALIDATOR 64

FIGURE 22 – DOCUMENT SIGNING USE CASE DIAGRAM 65

FIGURE 23 - ANDROID APP DOCUMENT SIGNING CLASS DIAGRAM 66

FIGURE 24 – DOCUMENT SIGNING SEQUENCE DIAGRAM 68

FIGURE 25 – FUNCTIONALITIES MENU ON ANDROID APP 69

FIGURE 26 – “SIGNATURES” FUNCTIONALITY ON ANDROID APP 70

FIGURE 27 – FILE MANAGER TO SELECT SIGNED DOCUMENT 71

FIGURE 28 – DIGITAL CERTIFICATE PASSWORD VALIDATOR 72

FIGURE 29 – DOCUMENT AUTHENTICATION USE CASE DIAGRAM 73

FIGURE 30 – ANDROID APP DOCUMENT AUTHENTICATION CLASS DIAGRAM

 ... 75

FIGURE 31 – CLASS DIAGRAM OF DOCUMENT AUTHENTICATION 77

FIGURE 32 – DOCUMENT AUTHENTICATION SEQUENCE DIAGRAM 79

FIGURE 33 – FUNCTIONALITIES MENU ON ANDROID APP 80

FIGURE 34 – “NOTARIZATIONS” FUNCTIONALITY ON ANDROID APP 81

FIGURE 35 – FILE MANAGER TO SELECT SIGNED DOCUMENT FOR

NOTARIZATION .. 82

FIGURE 36 – BITCOIN WALLET .. 83

FIGURE 37 – SUCCESS AUTHENTICATION MESSAGE 84

FIGURE 38 – VERIFICATION OF DOCUMENT AUTHENTICATION USE CASE

DIAGRAM .. 85

FIGURE 39 – ANDROID APP VERIFICATION OF DOCUMENT AUTHENTICATION

CLASS DIAGRAM .. 87

FIGURE 40 –VERIFICATION OF DOCUMENT AUTHENTICATION CLASS

DIAGRAM .. 88

FIGURE 41 – DOCUMENT AUTHENTICATION VERIFICATION SEQUENCE

DIAGRAM .. 90

FIGURE 42 – FUNCTIONALITIES MENU ON ANDROID APP 91

FIGURE 43 – TRANSACTION ID VERIFICATION .. 92

FIGURE 44 – FILE MANAGER TO SELECT SIGNED DOCUMENT FOR

VERIFICATION OF AUTHENTICATION .. 93

FIGURE 45 – VERIFIED DOCUMENT INFORMATION .. 94

FIGURE 46 – BITCOIN - ETHEREUM – ETHEREUM CLASSIC AVERAGE

HASHRATE PER DAY ... 107

FIGURE 47 – BITCOIN - ETHEREUM – ETHEREUM CLASSIC AVERAGE BLOCK

TIMESTAMP INTERVALS IN MINUTES .. 108

Figure 48 – BITCOIN – ETHEREUM - ETHEREUM CLASSIC AVERAGE

TRANSACTION FEE PER DAY A ... 109

Figure 49 – BITCOIN – ETHEREUM - ETHEREUM CLASSIC AVERAGE

TRANSACTION FEE PER DAY B ... 109

LIST OF TABLES

TABLE 1 – COMPARISON BETWEEN TOTAL ISSUED DIGITAL CERTIFICATES

AND TOTAL INCOME TAX COLLECTION .. 22

TABLE 2 – PROPERTIES OF SHA HASH ALGORITHMS 37

TABLE 3 – RELATED WORKS FEATURES ... 49

TABLE 4 – COST OF ISSUING DIGITAL CERTIFICATES ON CERTISIGN AS OF

MAY 23, 2020 .. 105

LIST OF CHARTS

CHART 1 – DIGITAL CERTIFICATES ISSUED YEAR BY YEAR 19

CHART 2 – TOTAL LEGAL ENTITY INCOME TAX COLLECTION – IPCA INDEX .. 21

LIST OF CODE EXCERPTS

CODE EXCERPT 1 - IMPORT DIGITAL CERTIFICATE OPERATION 96

CODE EXCERPT 2 – DOCUMENT SIGNING OPERATION 98

CODE EXCERPT 3 – MAINNET AND TESTNET BLOCKCHAINS 100

CODE EXCERPT 4 – PAYMENTS LISTENER ... 101

CODE EXCERPT 5 – TIMESTAMP DATA .. 102

CODE EXCERPT 6 – VERIFICATION OF DOCUMENT AUTHENTICATION 103

LIST OF ABBREVIATIONS AND ACRONYMS

API - Application Programming Interface

CA - Certification Authority

CRL - Certificate Revocation List

ER - Entity-Relationship

IaaS - Infrastructure as a Service

FIPS - Federal Information Processing Standards

GUI - Graphical User Interface

ICP-BRASIL - Infraestrutura de Chaves Públicas Brasileira (Brazilian Public

Key Infrastructure)

ITI - Instituto Nacional de Tecnologia da Informação

JSON - JavaScript Object Notation

KYC - Know Your Customer

MEI - Micro Empreendedor Individual

MTE - Ministério do Trabalho e Emprego

NIST - National Institute of Standards and Technology

NGO - Non-Governmental Organization

PKI - Public Key Infrastructure

RA - Registration Authority

RL - Revocation List

TA - Timestamp Authority

UML - Unified Modeling Language

VM - Virtual Machine

SUMMARY

1 INTRODUCTION .. 17

1.1 CONTEXT ... 18

1.1.1 PESTLE .. 18

1.2 JUSTIFICATION .. 25

1.3 OBJECTIVES .. 26

1.3.1 GENERAL OBJECTIVE ... 26

1.3.2 SPECIFIC OBJECTIVES .. 26

1.4 THESIS STRUCTURE .. 26

2 LITERATURE REVIEW.. 28

2.1 BITCOIN CRYPTOCURRENCY .. 28

2.1.1 BLOCKCHAIN .. 28

2.1.2 TRANSACTIONS ... 29

2.1.3 DOUBLE-SPENDING ... 30

2.1.4 PROOF-OF-WORK .. 30

2.1.5 BLOCK HEADER ... 33

2.1.6 TIMESTAMPING IN THE BLOCKCHAIN ... 33

2.2 SHA 256 ALGORITHM .. 36

2.3 PRIVATE-KEY OR SYMMETRIC-KEY ENCRYPTION 38

2.4 PUBLIC-KEY OR ASYMMETRIC-KEY ENCRYPTION 39

2.5 PUBLIC-KEY INFRASTRUCTURE ... 40

2.6 BRAZILIAN PUBLIC KEY INFRASTRUCTURE (ICP-BRASIL) 41

2.7 INFORMATION SECURITY .. 43

2.8 SMART CONTRACTS... 46

2.9 RELATED WORKS ... 47

3 METHODOLOGY ... 50

3.1 RESEARCH CHARACTERIZATION ... 51

3.2 DELIMITATION ... 51

3.3 REQUIREMENTS OF APPLICATION PROTOTYPE .. 52

3.3.1 USE CASE DIAGRAMS ... 52

3.3.2 PROCESS FLOWCHART .. 53

3.3.3 DATABASE .. 55

3.3.4 IMPORT DIGITAL CERTIFICATE .. 57

3.3.4.1 USE CASE DIAGRAM OF IMPORT DIGITAL CERTIFICATE 57

3.3.4.2 CLASS DIAGRAM OF IMPORT DIGITAL CERTIFICATE 57

3.3.4.3 SEQUENCE DIAGRAM OF IMPORT DIGITAL CERTIFICATE 59

3.3.5 DOCUMENT SIGNING ... 65

3.3.5.1 USE CASE DIAGRAM OF DOCUMENT SIGNING 65

3.3.5.2 CLASS DIAGRAM OF DOCUMENT SIGNING .. 65

3.3.5.3 SEQUENCE DIAGRAM OF DOCUMENT SIGNING 67

3.3.6 DOCUMENT AUTHENTICATION .. 73

3.3.6.1 USE CASE DIAGRAM OF DOCUMENT AUTHENTICATION 73

3.3.6.2 CLASS DIAGRAMS OF DOCUMENT AUTHENTICATION 73

3.3.6.3 SEQUENCE DIAGRAM OF DOCUMENT AUTHENTICATION 78

3.3.7 VERIFICATION OF DOCUMENT AUTHENTICATION 85

3.3.7.1 USE CASE DIAGRAM OF VERIFICATION OF DOCUMENT

AUTHENTICATION ... 85

3.3.7.2 CLASS DIAGRAMS OF VERIFICATION OF DOCUMENT

AUTHENTICATION ... 86

3.3.7.3 SEQUENCE DIAGRAM OF VERIFICATION OF DOCUMENT

AUTHENTICATION ... 89

3.4 DEVELOPMENT OF APPLICATION PROTOTYPE .. 95

3.4.1 IMPORT DIGITAL CERTIFICATE CODIFICATION ... 96

3.4.2 DOCUMENT SIGNING CODIFICATION .. 98

3.4.3 DOCUMENT AUTHENTICATION CODIFICATION .. 99

3.4.4 VERIFICATION OF DOCUMENT AUTHENTICATION CODIFICATION 102

4 RESULTS AND DISCUSSIONS .. 104

4.1 IDENTITY ASSOCIATION ... 104

4.1.1 ADVANTAGE OF DIGITAL CERTIFICATES .. 104

4.1.2 DISADVANTAGE OF DIGITAL CERTIFICATES .. 104

4.2 REVOCATION LIST (RL) .. 105

4.2.1 ISSUE WITH DIGITAL IDENTITIES ... 106

4.3 BLOCKCHAIN TIMESTAMP PERFORMANCE .. 106

4.3.1 AVERAGE HASHRATE PER DAY ... 107

4.3.2 AVERAGE BLOCK TIMESTAMP INTERVALS .. 108

4.3.3 AVERAGE TRANSACTION FEE ... 108

5 CONCLUSIONS ... 111

5.1 REGARDING RESEARCH OBJECTIVES ... 111

5.2 FINAL CONSIDERATIONS ... 113

5.3 RECOMMENDATIONS FOR FUTURE WORK ... 114

REFERENCES .. 116

APPENDIX 1 – MAINACTIVITY OF ANDROID APP .. 124

APPENDIX 2 – SIGNERASYNCTASK OF ANDROID APP 136

APPENDIX 3 – OPRETURNMAIN OF JAVA WEB APPLICATION SERVER 139

APPENDIX 4 – VERIFYNOTARIZATIONASYNCTASK OF ANDROID APP 145

17

1 INTRODUCTION

The emergence of the bitcoin system, result of the convergence of twenty

years of research in distributed systems and currencies, has brought a revolutionary

technology (ANTONOPOULOS, 2014, p. 219): “A purely peer-to-peer version of

electronic cash would allow online payments to be sent directly from one party to

another without going through a financial institution” (NAKAMOTO, 2008, p. 1).

The bitcoin system brought a concept called decentralized trust, which differs

from the traditional banking and payment system (ANTONOPOULOS, 2014, p. 15).

In Brazil, for example, trust is centralized on the authority of the Brazilian Central

Bank. In bitcoin, there is no central authority or point of control (ANTONOPOULOS,

2014, p. 3). The “central authority is replaced by consensus algorithms established

among users participating in a network” (DINIZ, 2018, p. 51), so trust is achieved

through the peer-to-peer network of the decentralized bitcoin system.

Sharing of computer hardware resources such as computational processing,

hard disk storage and internet connection constitutes the architecture of peer-to-peer

network, where each computer simultaneously provides and consumes resource-

sharing services without the existence of central entities. Currently, the peer-to-peer

network is mostly used to provide file and music file sharing services

(SCHOLLMEIER, 2001, p. 101).

In the peer-to-peer network of the bitcoin system, each participating

computer in the network shares a copy of a ledger database called blockchain. The

blockchain concept emerged from a timestamp data structure that evidences the

occurrence of payment transactions at a date and time in the past in the bitcoin

system.

Although blockchain was primarily intended to record bitcoin transactions,

public and private institutions are using it as a technology to provide services in

sectors, such as health, real estate registration and government entrepreneurship.

In healthcare, Factom startup is using the blockchain technology to provide a

cataloging system for medical records where personal health information is

encrypted and then registered in the blockchain, protecting the confidentiality of

patients (STRAY, 2019).

In real estate registration, a bitcoin company called BitFury in partnership

with the government of the Republic of Georgia developed a real estate registration

18

system using blockchain to increase property ownership transparency and reduce

the prevalence of fraud (HIGGINS, 2018). By April 2016, more than 100,000

properties in the Republic of Georgia had been registered in the blockchain, making it

impossible for property records to be manipulated (SMERKIS, 2019).

In government entrepreneurship, World Economic Forum’s Center for the

Fourth Industrial Revolution, which is an international non-profit public-private hub for

global impact, is developing projects to verify the potential of blockchain technology

in "Interoperability, integrity, and inclusion: Blockchain for supply chains; Central

banks in the age of blockchain; Unlocking transparency; Re-imagining data

ownership and economic models in the token economy" (WORLD ECONOMIC

FORUM, 2017, p. 13).

1.1 CONTEXT

There is a lot of interest in using blockchain technology to provide services in

different sectors. In Brazil, blockchain can provide a document timestamping service

for documents signed with Brazilian-Public Key Infrastructure (ICP-Brasil) certificates.

Currently, there are two notarial systems in Brazil. The first notarial system is

the traditional model which is exercised by notary officers, who enter the notarial

activity through public tender issued by a government procuring authority (BRASIL,

1988).

The second notarial system is the digital certification model implemented by

ICP-Brasil Standards, which is exercised by Certification Authorities (CA),

Registration Authorities (RA) and Timestamp Authorities (TA) (ITI. Entes da ICP-

Brasil, 2019).

The ICP-Brasil was initiated in 2001 through Provisional Measure 2.200-

2/2001, and is subordinated to the Instituto Nacional de Tecnologia da Informação

(ITI), which is a federal autarchy, associated with the Civil House of the Presidency of

the Republic that maintains and implements the ICP-Brasil policies (ITI, 2020g).

1.1.1 PESTLE

A PESTLE (Political, Economic, Social, Technological, Legal, and

Environmental) analysis on ICP-Brasil certification points out the growing volume of

19

issued digital certificates (CHART 1) in Brazil is due to federal regulations that require

the use of digital certificates in various public services.

CHART 1 – DIGITAL CERTIFICATES ISSUED YEAR BY YEAR

SOURCE: ITI (2020h).

There are three examples of mandatory provisional measures that have

increased the use of digital certificates:

1. the provisional measure that came into force on 7/1/2018 requires

“companies with employees and annual turnover below R$ 78 million,

including Micro Empreendedores Individuais (MEIs - individual

microentrepreneurs)” to “declare their payroll information via e-

Social1, using the digital certificate ... It is estimated that around 20

million companies will be subject to this obligation” (ITI, 2020c);

2. the provisional measure that came into force on 10/01/2018 requires

companies with annual turnover above R$ 78 million to provide

information to the government about their employees through the

1 eSocial is an online system that “employers communicate to the Government information

related to workers, such as bonds, social security contributions, payroll, work accident

communications …” (eSocial. Conheça o eSocial, 2019).

20

eSocial system, which requires the use of a digital certificate to access

the system (ID SEGURO, 2019);

3. the provisional measure that came into force on 01/04/2015 requires

all employers to use a digital certificate to access the Empregador

(Employer) Web system, in order to inform “the Ministry of Labor and

Employment (Ministério do Trabalho e Emprego) of employee

dismissal for the purpose of receiving Unemployment Insurance" (ITI,

Pedido de Seguro-Desemprego, 2019).

In August 2018, there was a historical record of 504,000 issued digital

certificates. This record was driven mainly by the provisional measure that came into

force on 7/1/2018, requiring " companies with employees and annual turnover below

R$ 78 million to declare their payroll information via eSocial, with use of the digital

certificate" to access the system (ITI, 2020c).

In January 2018, a provisional measure came into force that "requires

companies with annual turnover above R$ 78 million to provide information to the

government about their employees through the eSocial system" (ID SEGURO, 2019).

In that month there were 331,000 issued digital certificates. And in the months that

followed up, there were continued increases in the volume of issued digital

certificates that culminated in the historical record of 504,000 issued digital

certificates in August 2018.

This month-by-month sequence in the volume of issued digital certificates in

2018 was the result of a combination of the two provisional measures mentioned

above that required companies to use a digital certificate to access the eSocial

system in order to provide employee information.

In June 2015, there were 450,000 issued digital certificates. This volume only

lags behind to the historical record of 504,000 issued digital certificates in August

2018. This high volume of issued digital certificates in June 2015 was influenced by

the provisional measure that came into force in April 2015, requiring all employers to

use a digital certificate to access the Empregador Web system to inform “the Ministry

of Labor and Employment of employee dismissal for the purpose of receiving

Unemployment Insurance" (ITI, Pedido de Seguro-Desemprego, 2019).

By analyzing CHART 1, it is clear there was a year-by-year increase in the

volume of issued ICP-Brasil digital certificates. Nevertheless, this year-by-year

21

increase has occurred concurrently with continued years of economic instability.

Between 2010 and 2017, the lowest level of income tax revenues of legal entities

occurred in 2017 as indicated by the Consumer Price Index (IPCA), with R$ 122

billion in income tax revenues. However, in 2017, there was a historical record of 3.5

million issued ICP-Brasil digital certificates up until 2017 (CHART 2).

CHART 2 – TOTAL LEGAL ENTITY INCOME TAX COLLECTION – IPCA INDEX

SOURCE: RECEITA FEDERAL (2018).

It is possible to notice that there is a contrast between the increase in the

volume of issued ICP-Brasil digital certificates and the decrease in income tax

revenues of legal entities (TABLE 1). A simple linear regression analysis was

performed in order to verify if there was any impact on the use of ICP-Brasil digital

certificates in order to increase income tax revenues of legal entities between 2010

and 2017.

22

TABLE 1 – COMPARISON BETWEEN TOTAL ISSUED DIGITAL CERTIFICATES AND TOTAL
INCOME TAX COLLECTION

Source: ITI (2020h); RECEITA FEDERAL (2018).

At 5% significance level, it was verified that the use of ICP-Brasil digital

certificates did not impact on the increase of income tax revenues of legal entities

between 2010 and 2017 since the analysis indicated an impact of only 20% on the

use of ICP-Brasil digital certificates on the increase of income tax revenues of legal

entities.

The increase in the use of ICP-Brasil digital certificates is due to federal

government provisional measures that require companies to use ICP-Brasil digital

certificates to provide information about their employees through systems such as

eSocial. This year-on-year increase in emissions of ICP-Brasil digital certificates

occurs in a scenario of economic instability with the low levels of income tax

collections in recent years.

In regards to cryptocurrency adoption in Brazil, a “Report on International

Bitcoin Flows 2013 – 2019” (CRYSTAL, 2019) compiled by Crystal, a blockchain

analytics platform, Brazil is ranked 9th among countries with the most

cryptocurrency exchanges, currently having 7 active exchanges: MercadoBitcoin,

FoxBit, BitcoinToYou, NegocieCoins.com.br, CoinBene, Braziliex, FlowBTC. The

country with the most exchanges is the European Union with 49 cryptocurrency

exchanges, followed by the United Kingdom (43 exchanges) (FIGURE 1).

23

FIGURE 1 – CRYPTOCURRENCY EXCHANGES BY COUNTRIES

SOURCE: CRYSTAL (2019).

According to Statista (2019), a market and consumer data provider, Latin

America is the world region with the most cryptocurrency users, with Brazil and

Colombia leading the region. Worldwide, Brazil is the second country with most

cryptocurrency users, behind Turkey (FIGURE 2).

24

FIGURE 2 – COUNTRIES WITH MOST CRYPTOCURRENCY USERS

SOURCE: STATISTA (2019).

The increase in the use of ICP-Brasil certificates and cryptocurrencies in

Brazil is also coupled with an increase in internet access among the Brazilian

population. According to G1 (2019), 70% of the Brazilian population (126.9 million

people) used the internet regularly in 2018. 97% of the 126.9 million access the

internet through cell phones (FIGURE 3) .

FIGURE 3 – DATA OF INTERNET USE IN BRAZIL

SOURCE: G1 (2019).

25

1.2 JUSTIFICATION

This research project aligns with the Information Management Postgraduate

Programme of the Universidade Federal do Paraná in regards to its Information and

Technology line of research that studies “techniques and tools with a view to

transforming data and information as an input for the development and improvement

of technological processes and products” (UNIVERSIDADE FEDERAL DO PARANÁ,

2020). This project proposes the use of blockchain timestamping and digital

signatures based on ICP-Brasil digital certificates to provide a ubiquitous digital

document authentication service through an application prototype for mobile Android

devices.

It is intended to solve the problem of increased demand to digitalize the

notarial system in Brazil since mobile cellular devices introduced digital ubiquity in

Brazil, especially now that 97% of Brazilian internet users access the internet through

cell phones (G1, 2019). A recent example of this increased demand is due to the

COVID-19 pandemic that has spread in Brazil, which has prompted the Health

Ministry through Government Ordinance 467/20 (MINISTÉRIO DA SAÚDE, 2020) to

allow doctors to make medical appointments via online videoconferencing and issue

digital medical prescriptions signed with ICP-Brasil digital certificates for “special

control drugs and prescriptions for antimicrobials” (ANVISA, 2020).

Documents signed with ICP-Brasil digital certificates have legal validity

equivalent to a document signed on paper (ITI, 2020b). Additionally, any form of

electronic document admitted by the parties also has legal validity equivalent to a

document signed on paper according to paragraph 2 of Provisional Measure 2.200-

2/2001:

Paragraph 2. The provisions of this Provisional Measure do not preclude the
use of any other means of proving the authorship and integrity of documents
in electronic form, including those that use certificates not issued by ICP-
Brasil, as long as admitted by the parties as valid or accepted (BRASIL,
2001).

Additionally, blockchain can timestamp documents signed with ICP-Brasil

digital certificates in order to add attributes of date and time to a signed document

(ITI, 2019) and provide data integrity “due the existence of a long chain of blocks

[that] makes blockchain’s deep history immutable, [which is] a key feature of bitcoin’s

26

security” (ANTONOPOULOS, 2014, p. 164) and its decentralized peer-to-peer

network distributed worldwide.

1.3 OBJECTIVES

The objectives of this research project are divided in general and specific

objectives.

1.3.1 GENERAL OBJECTIVE

This research aims to integrate blockchain timestamping and digital

signatures based on ICP-Brasil digital certificates to provide a digital document

authentication service.

1.3.2 SPECIFIC OBJECTIVES

a) Identify how integration of blockchain timestamping and digital signatures

based on ICP-Brasil digital certificates assures information security

considering concepts of authenticity, availability, confidentiality, identity,

immutability, integrity, legality and non-repudiation.

b) Identify system requirements to develop an application prototype for mobile

Android devices that blockchain timestamping and digital signatures based on

ICP-Brasil digital certificates to provide a digital document authentication

service.

c) Develop an application prototype for mobile Android devices that integrates

blockchain timestamping and digital signatures based on ICP-Brasil

standards.

1.4 THESIS STRUCTURE

This thesis is structured in five chapters (FIGURE 4). Chapter 1 presents the

context, justification, and objectives (general and specific). Chapter 2 begins with the

introduction of the bitcoin cryptocurrency, and its operation as “an electronic payment

system based on cryptographic proof” (NAKAMOTO, 2008, p. 1). It is followed by a

27

conceptualization of blockchain’s data structure, which includes the application of the

SHA 256 algorithm and the use of Merkle Tree. Chapter 3 presents the research

characterization, research geographical delimitation, application prototype

requirements, and application prototype development. Chapter 4 presents results

and discussions regarding achieving the general and specific objectives proposed in

this research project. Chapter 5 presents conclusions regarding this research

project’s application prototype.

FIGURE 4 – FLOWCHART OF THESIS STAGES

SOURCE: AUTHOR (2019).

28

2 LITERATURE REVIEW

This literature review aims to present the topics that form the basis of the

research.

2.1 BITCOIN CRYPTOCURRENCY

“With the publication of the Bitcoin white paper in 2008, and the subsequent

delivery of a first prototype implementation of Bitcoin two months later, the individual

or group behind the alias “Satoshi Nakamoto” was able to forge a new class of

decentralized currency […] relying on basic cryptographic constructs, such as hash

functions and digital signatures” (KARAME; ANDROULAKI, 2016, p. 1).

In the book titled “Bitcoin and Blockchain Security”, Karame et al. present the

concept of the bitcoin cryptocurrency system:

The design of Bitcoin offered the world a promise for a low-cost
decentralized and anonymous currency. The core idea of Bitcoin is simple.
The system allows two or more parties to exchange financial transactions
without passing through intermediaries (such as banks or payment
processors). These transactions are validated collectively in a peer-to-peer
network by all users. This not only eliminates the need for centralized control
(e.g., by banks), but also reduces the cost of making transactions (at the
national and international levels). [...] Bitcoin does not require users to
register their identity/credentials nor does it require them to fill out endless
forms in order to set up an account (KARAME; ANDROULAKI, 2016, p. 1).

2.1.1 BLOCKCHAIN

A blockchain or timestamp server evidences that a transaction occurred in a

particular date and time in the past (ITI, 2020d). In the blockchain data structure,

each block stores accounting information for a certain amount of bitcoin transactions.

A chain of blocks is formed by identifying each block in the blockchain by an identifier

(ANTONOPOULOS, 2014, p.163).

In the bitcoin cryptocurrency system, a node is a computer participating in the

peer-to-peer network. Each node shares a copy of a timestamp server, known as

blockchain. Thus, simultaneously each participating computer node tracks a single

bitcoin transaction, and watches that transaction become trusted and accepted by

the bitcoin distributed consensus mechanism until it is registered in the bitcoin

blockchain (ANTONOPOULOS, 2014, p. 15). Nodes are “aware of all transactions

29

that happened in the past. […] So, the nodes that would validate the transactions

should definitely be accessible to the whole blockchain data since the genesis block”

(SINGHAL; DHAMEJA; PANDA, 2018, p. 126).

2.1.2 TRANSACTIONS

Bitcoin transactions are “a chain of digital signatures” (NAKAMOTO, 2008, p.

2) (FIGURE 5). According to Karame et al. a single bitcoin transaction is:

formed by digitally signing a hash of the previous transaction where this coin
was last spent along with the public key of the future owner and
incorporating this signature in the coin. Transactions take as input the
reference to an output of another transaction that spends the same coins
and output the list of addresses that can collect the transferred coins. A
transaction output can only be redeemed once, after which the output is no
longer available to other transactions. Once ready, the transaction is signed
by the user and broadcast in the P2P network. Any peer can verify the
authenticity of a BTC by checking the chain of signatures (KARAME;
ANDROULAKI, 2016, p. 34).

FIGURE 5 – CHAIN OF DIGITAL SIGNATURES

SOURCE: SINGHAL et al. (2018, p. 180).

Authors of book “Blockchain: A Beginner’s Guide to Building Blockchain

Solutions”, Singhal et al. (2018) detail how a bitcoin transaction works:

30

Notice only the highlighted Owner-2 section in diagram (FIGURE 5). Since
Owner-1 is initiating this transaction, he is using his private key for signing
the hash of two items: one is the previous transaction where he himself
received the amount and the second is Owner-2’s public key. This signature
can be easily verified using the public key of Owner-1 to ensure that it is a
legitimate transaction. Similarly, when Owner-2 will initiate a transfer to
Owner-3, he will use his private key to sign the hash of the previous
transaction (the one he received from Owner-1) along with the public key of
Owner-3. Such a transaction can be, and will be, verified by anyone who is a
part of the network. Obviously because every transaction is broadcast, most
of the nodes will have the entire history of transactions to be able to prevent
double-spend attempts. (SINGHAL; DHAMEJA; PANDA, 2018, p. 180-181).

2.1.3 DOUBLE-SPENDING

To exemplify a double-spending attack in the blockchain, Tschorsch et al.

(2016) describe the following scenario:

(i) broadcast a regular transaction (e. g., paying for a product), (ii) secretly
mine on a fork which builds on the last block and includes a conflicting
transaction which uses the same outputs as in step (1), but pays the attacker
instead of the seller, (iii) wait until the seller is confident (i.e., receives
enough confirmations) and hands the product over, (iv) as soon as the
secret fork is longer than the public chain, broadcast the respective blocks.
Because the secret branch is longer, the network will consider it as the valid
main block chain. The regular transaction becomes invalid and cannot (even
when broadcast by the seller) be included in a block anymore
(TSCHORSCH; SCHEUERMANN, 2016, p. 9).

Double-spending prevention is possible through the creation of a blockchain

along with a system of proof-of-work.

2.1.4 PROOF-OF-WORK

Through a system of proof-of-work, it is possible to “achieve consensus

without a central trusted authority” (ANTONOPOULOS, 2014, p. 4).

In a decentralized network, someone has to be selected to record the
transactions. The easiest way is random selection. However, random
selection is vulnerable to attacks. So if a node wants to publish a block of
transactions, a lot of work has to be done to prove that the node is not likely
to attack the network. Generally the work means computer calculations
(ZHENG, Z. et al., 2017, p. 559).

31

 “Proof-of-work is essentially one-CPU-one-vote. The majority decision is

represented by the longest chain, which has the greatest proof-of-work effort

invested in it” (NAKAMOTO, 2008, p. 2). Growth of the blockchain is based on

majority of CPU processing power, which “will grow the fastest and outpace any

competing chains. To modify a past block, an attacker would have to redo the proof-

of-work of the block and all blocks after it and then catch up with and surpass the

work of the honest nodes” (NAKAMOTO, 2008, p. 2).

The theory behind proof-of-work is that representation by majority of CPU

processing power is more secure than representation by “one-IP-address-one-vote”

since anyone could allocate IP addresses to control the blockchain, corrupting it with

double-spending (NAKAMOTO, 2008, p. 2) (TSCHORSCH; SCHEUERMANN, 2016,

p. 3).

To increase the growth of the blockchain participating nodes having the

highest CPU processing power compete to timestamp blocks to be added to the

blockchain by solving a cryptographic puzzle that consists of repeatedly calculating

by trial and error a block header’s SHA 256 Hash.

For every calculation attempt, a 4-byte metadata called Nonce located in the

block header is randomly modified by trial and error until the resulting calculation of

the block header is lower or equal a pre-determined target value (TSCHORSCH;

SCHEUERMANN, 2016, p. 3) (ANTONOPOULOS, 2014, p. 27).

The process of competing to timestamp blocks to be added to the blockchain

is called mining. Nodes competing to mine blocks receive new minted coins as

reward for securing the blockchain (TSCHORSCH; SCHEUERMANN, 2016, p. 3).

In the bitcoin blockchain data structure (FIGURE 6):

each block within the blockchain is identified by a hash, generated using the
SHA256 cryptographic hash algorithm on the header of the block. Each
block also references a previous block, known as the parent block, through
the “previous block hash” field in the block header. In other words, each
block contains the hash of its parent inside its own header. The sequence of
hashes linking each block to its parent creates a chain going back all the way
to the first block ever created, known as the genesis block
(ANTONOPOULOS, 2014, p. 163).

32

FIGURE 6 – BLOCKS LINKED IN A CHAIN TO THE PREVIOUS BLOCK HEADER HASH

SOURCE: ANTONOPOULOS (2010, p. 169).

33

2.1.5 BLOCK HEADER

The block header is composed of three sets of metadata (FIGURE 6). The

first set is the Previous Block Hash, which connects a block to a previously created

block in the blockchain. The second set refers to a block’s Timestamp, Difficulty and

Nonce. The third is the Merkle Tree Root, which is a 32-byte hash obtained from a

double calculation of the Merkle Tree using the SHA 256 algorithm

(ANTONOPOULOS, 2014, p. 165).

There are two ways to identify a block, the primary identifier is obtained by

calculating a “block header twice through the SHA 256 algorithm”

(ANTONOPOULOS, 2014, p. 165). For example:

 BlockHash = SHA256 (SHA256 (Header))

which results in a 32-byte hash, called a block header hash. As an example,

the “first block ever created” or genesis block is

000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f

(ANTONOPOULOS, 2014, p. 165).

The second way to identify a block is through its height. “The first block ever

created is at block height 0 (zero)” (ANTONOPOULOS, 2014, p. 165).

2.1.6 TIMESTAMPING IN THE BLOCKCHAIN

 “Bitcoin’s blocks [that] are generated every 10 minutes, on average”

(ANTONOPOULOS, 2014, p. 199). Each newly generated block registers a

timestamp in its the block header (SECTION 2.1.5; FIGURE 6) in Unix time format

(SINGHAL; DHAMEJA; PANDA, 2018, p.126), which tracks time in number of

seconds between a particular date and the Unix Epoch that started counting on

January 1st, 1970 at Coordinated Universal Time – UTC (UNIX TIMESTAMP, 2020).

 Bitcoin blocks size are of 1 MB (SINGHAL; DHAMEJA; PANDA, 2018, p.161).

The highest average number of transactions per block ever recorded occurred on

March 25, 2019 with a total of 2,671 transactions per block (FIGURE 7).

34

FIGURE 7 – BITCOIN HIGHEST AVERAGE NUMBER OF TRANSACTIONS PER BLOCK

SOURCE: BLOCKCHAIN. Average Number of Transactions per Block (2020).

35

 On March 11, 2020, the average of number of transactions per block was

2,318 (FIGURE 8).

FIGURE 8 – BITCOIN AVERAGE NUMBER OF TRANSACTIONS PER BLOCK ON MARCH 11, 2020

SOURCE: BLOCKCHAIN. Average Number of Transactions per Block (2020).

36

2.2 SHA 256 ALGORITHM

The SHA 256 algorithm has important application in the bitcoin system’s

operations. Therefore, it is presented specifications that define the standard of a

secure SHA 256 algorithm.

How do you prove that a document was not modified? By calculating the

SHA 256 algorithm from a file, it results in a type of a “DNA” of the file

(ORIGINALMY, 2020), called message digest, which is a condensed representation

of electronic data (FIPS PUB 180-4, 2018, p. 3) of “fixed-size result” (FERGUSON;

SCHNEIER, 2003, p. 83). To prove it was not modified, a message digest is

recalculated from the file. Then, the message digests are compared to detect

whether the file was changed (FIPS PUB 180-4, 2018, p. iii).

This action of generating a message digest from a file is analogous to an

authentication of a document, which in the Brazilian notarial system “consists of the

notary's recognition of a document as being authentic or true” (DICIO, 2018).

 The document “FIPS PUB 180-4” was written by the US National Institute of

Standards and Technology (NIST), who publishes standardization documents, called

Federal Information Processing Standards (FIPS). FIPS describes “document

processing, encryption algorithms and other information technology standards for use

within non-military government agencies and by government contractors and vendors

who work with the agencies” (FIPS. What is FIPS, 2019).

Additionally, the “FIPS PUB 180-4” specifies several functions of secure hash

algorithms, such as: “SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224,

and SHA-512/256” (FIPS PUB 180-4, 2018, p. 3). “The message digests range in

length from 160 to 512 bits, depending on the algorithm” (FIPS PUB 180-4, 2018, p.

iv). In SHA 256 algorithm, the length of message digests is 256 bits.

 The several SHA algorithm functions differ mostly in security strengths (FIPS

PUB 180-4, 2018, p. 3). Larger SHA algorithms result in larger block sizes and lager

size of message digests (FIPS PUB 180-4, 2018, p. 3).

For each SHA algorithm there are two stages: “preprocessing and hash

computation. Preprocessing involves padding a message, parsing the padded

message into m-bit blocks, and setting initialization values to be used in the hash

computation. […] The final hash value generated by the hash computation is used to

determine the message digest” (FIPS PUB 180-4, 2018, p. 3).

37

As mentioned earlier, the message digest length in each m-bit block in the

SHA 256 algorithm is 512 bits, which is represented by a sequence of sixteen 32-bit

words.

Any SHA algorithm listed in TABLE 2 is considered safe as it is computationally

unfeasible:

to find a message that corresponds to a given message digest, or 2) to find
two different messages that produce the same message digest. Any change
to a message will, with a very high probability, result in a different message
digest (FIPS, 2018, p. iv).

TABLE 2 – PROPERTIES OF SHA HASH ALGORITHMS

 SOURCE: FIPS (2018, p.3).

In the bitcoin system, the calculation of the SHA 256 algorithm, besides being

applied to mining for proof-of-work, k is applied to the creation of Merkle Trees, which

is a binary tree that contains cryptographic calculations of the SHA 256 algorithm,

and is also known as Binary Hash Tree.

A Merkle Tree is a structure used to summarize and verify the integrity of

large amounts of data (FIGURE 9). In the blockchain, the Merkle Tree is used to

represent a digital fingerprint of all transactions in each block (ANTONOPOULOS,

2014, p. 170). It is constructed by recursively calculating the pairs of nodes in the

merkle tree through the SHA 256 algorithm until there is only one hash, called root,

or merkle root (ANTONOPOULOS, 2014, p. 170).

38

FIGURE 9 – CALCULATING NODES IN A MERKLE TREE

SOURCE: ANTONOPOULOS (2010, p. 171).

2.3 PRIVATE-KEY OR SYMMETRIC-KEY ENCRYPTION

In private-key or symmetric-key encryption, also known as classical

cryptography, according to Jonathan et al. (2015, p. 4), the objective is to enable two

parties to communicate secretly in the presence of an eavesdropper. A message

sender encrypts plaintext using a secret key and sends the resulting ciphertext to a

message receiver, who also knows the secret key and can decrypt the ciphertext

back into plaintext. Decryption is identical to encryption in private-key cryptography

since both message sender and message receiver share a common secret key. The

only difference is that the key schedule is reversed (STINSON, 1995, p. 114).

According to Jonathan et al. (2015, p. 7), the cryptographic method is not

required to be secret, but security should only rely on the confidentiality of the secret

key. The drawback of a private-key cryptosystem is that it renders the system

insecure since it requires prior communication of a secret key between message

sender and message receiver (STINSON, 1995, p. 114). To circumvent this security

issue, communication of a secret key can be performed through confidentiality and

authentication schemes implementations of public-key or asymmetric-key encryption

(STALLINGS, 2014, p. 430), which are described in section 2.4.

39

2.4 PUBLIC-KEY OR ASYMMETRIC-KEY ENCRYPTION

In public-key or asymmetric-key encryption, each user in the system

generates locally on a computer a pair of related keys – a public-key and a private-

key (secret-key). Only the public-key is published to all participants in the system.

And the private-key (secret-key) is kept private, never distributed and remains

protected (STALLINGS, 2014, p. 258).

“The idea behind a public-key system is that it might be possible to find a

cryptosystem where it is computationally infeasible to determine” a private-key

(secret-key) given a public-key (STINSON, 1995, p. 114). Or, in other words, “it

should not be possible to compute the secret key from the corresponding public key”

(FERGUSON; SCHNEIER, 2003, p. 27).

According to Stallings (2014, p. 256), public-key encryption was created to

solve two problems: private-key (secret-key) distribution and digital signatures.
Additionally, the use of public-key and private-key (secret-key) has important

consequences in the areas of confidentiality and authentication (STALLINGS, 2014,

p. 254).

The pair of related keys is used “to perform complementary operations, such

as encryption and decryption or signature generation and signature verification”

(STALLINGS, 2014, p. 255). A private-key (secret-key) can encrypt a message and a

public-key is used to decrypt a message previously encrypted by the private-key

(secret-key); equally, a public-key can encrypt a message and a private-key (secret-

key) is used to decrypt a message previously encrypted by the public-key (DAVIES,

2011, p. 157).

It doesn’t matter which one of the pair of related keys (public-key or private-

key) is used to encrypt a message, i.e., if a message is encrypted with A-key, the

message should be decrypted with related B-key, and vice-versa (DAVIES, 2011, p.

157). But encrypting a message with either public-key or private-key (secret-key)

enables different cryptographic scheme implementations (STALLINGS, 2014, p.

260).

A cryptographic scheme implementation where A encrypts a message using

a private-key (secret-key) and B decrypts the message with a related public-key

serves as a digital signature and provides authentication since “only A could have

prepared the message … [and] it is impossible to alter the message without access

40

to A’s private key, so the message is authenticated both in terms of source and in

terms of data integrity” (STALLINGS, 2014, p. 260). The problem with this scheme is

that it does not provide confidentiality because anyone with access to A’s public-key

can decrypt the message (STALLINGS, 2014, p. 261).

On the other hand, a cryptographic scheme implementation where A

encrypts a message using a public-key and B decrypts the message with a related

private-key (secret-key), this cryptographic scheme provides confidentiality because

no other recipient can decrypt the message except B who is the only one who knows

the private-key (secret-key) (STALLINGS, 2014, p. 258).

2.5 PUBLIC-KEY INFRASTRUCTURE

Even though “public-key cryptography makes the problem of distinguishing

keys a lot simpler” (FERGUSON; SCHNEIER, 2003, p. 27) through the use of a pair

of related keys – public-key and a private-key (secret-key), “the procedures involved

are not simpler nor any more efficient than those required for [private-key or]

symmetric encryption” (STALLINGS, 2014, p. 255), which renders the system

insecure since it requires prior communication of a secret key between message

sender and message receiver.

As a result, a key distribution protocol in the form of a public-key

infrastructure (PKI) is needed to act as a central agent to allow users to “recognize

which key belongs to whom” (FERGUSON; SCHNEIER, 2003, p. 315). A central

agent prevents an impostor from impersonating another user since C can create a

pair of related keys – a public-key and a private-key (secret-key) – and publish the

public-key while impersonating B, so that A will think B’s public-key belongs to B

(FERGUSON; SCHNEIER, 2003, p. 29).

The central agent in a public-key infrastructure is called Certification Authority

(CA). Through the public-key infrastructure, user A presents its own public-key to

identify itself to the Certificate Authority, who, in turn, uses its private-key to sign a

certificate that guarantees A’s public-key belongs to A (FERGUSON; SCHNEIER,

2003, p. 29).

“In a PKI, each participant only has to have the CA certify his public key, and

know the CA’s public key so that he can verify the certificates of other participants”

(FERGUSON; SCHNEIER, 2003, p. 29).

41

With the Certificate Authority’s public-key, B verifies that the Certificate

Authority has signed the public-key on A’s certificate assuring that A’s public-key

belongs to A (FERGUSON; SCHNEIER, 2003, p. 316).

The problem in public-key infrastructure is that every user must be online in

order to check for certificate revocation. A certificate revocation list (CRL) database

operates to register a certificate that needs to be revoked when a user’s private-key

is compromised in case, for example, the user’s computer gets hacked or stolen.

Thus, besides verifying that a Certificate Authority has signed a certificate, a user

must be online to also check the certificate revocation list database to verify if a

certificate has been revoked (FERGUSON; SCHNEIER, 2003, p. 334).

2.6 BRAZILIAN PUBLIC KEY INFRASTRUCTURE (ICP-BRASIL)

There are two notarial systems in Brazil. The first system is the traditional

model which is exercised by notary officers, who enter the notarial activity through

public tender issued by a government procuring authority (BRASIL, 1988).

The second notarial system is the digital certification model implemented by

ICP-Brasil Standards, which was initiated in 2001 through Provisional Measure

2.200-2/2001, and is subordinated to the Instituto Nacional de Tecnologia da

Informação (ITI), which is a federal autarchy, associated with the Civil House of the

Presidency of the Republic that maintains and implements the ICP-Brasil policies

(ITI, 2020g).

FIGURE 10 – BRAZILIAN PUBLIC KEY INFRASTRUCTURE

SOURCE: AUTHOR (2019).

42

The ICP-Brasil Standards (FIGURE 10) is exercised by Certification

Authorities (CA), Registration Authorities (RA) and Timestamp Authorities (TA). “ICP-

Brasil’s Root Certification Authority (CA-Root) is the first authority in the certification

chain” (ITI, 2020e). In the hierarchical chain, Certification Authorities (CA) are

subordinated to the CA-Root. Under CAs are Registration Authorities (RA) and

Timestamp Authorities (TA) (ITI, 2020e). Each entity in the hierarchical chain is

described below as described in ITI’s official website:

Certification Authority (CA):

is an entity, public or private, [...] responsible for issuing, distributing,
renewing, revoking and managing digital certificates. The Certification
Authority (CA) is responsible for verifying that the certificate holder has the
private key that corresponds to the public key that is part of the certificate.
Creates and digitally signs a signer’s certificate, where the certificate issued
by the CA represents an attestation of the holder's identity, which has a
unique key pair (public/private) (ITI, 2020e). Examples of CAs: Serpro, Caixa
Econômica Federal, Caixa Econômica Federal, Serasa Experian, Receita
Federal do Brasil, Certisign.

Registration Authority (RA):

is responsible for the interface between the user and the Certification
Authority. A Registration Authority (RA) is tied to a Certification Authority. Its
purpose is to receive, validate, forward requests for issuance or revocation
of digital certificates and identify, in person, claimant requests. It is the RA's
responsibility to keep records of its operations. An RA may be physically
located on a CA or it may be a remote registry entity (ITI, 2020e). Example
of RA: Digital Sign RA.

Timestamp Authority (TA):

is an entity that users trust a Timestamp Authority (TA) to issue Timestamps.
Timestamp Authorities are responsible for providing Timestamping services,
which is a set of attributes provided by a TA that, when associated with a
digital signature, proves its existence within a certain period of time. In
practice, a document is created and its content is encrypted. Then it receives
the attributes of year, month, day, hour, minute and second, attested in the
form of a signature issued with a digital certificate thus serving to prove its
authenticity. A TA attests not only the timestamp of a transaction, but also its
content (ITI. Entes da ICP- Brasil, 2019). Example of TA: AC Caixa
Timestamping.

43

2.7 INFORMATION SECURITY

There are three key principles of information security known as

“confidentiality, integrity, and availability (CIA) triad” (ANDRESS, 2014, p. 5) that has

been “the industry standard for computer security since the development of the

mainframe” (WHITMAN; MATTORD, 2009, p. xviii). “But the C.I.A. triangle model is

generally viewed as no longer adequate in addressing the constantly changing

environment” (WHITMAN; MATTORD, 2009, p. 11). This security issue is caused by

“increasing number of attacks — which are often able to bypass firewalls, intrusion

prevention systems, and antivirus software — are aimed directly at web, mobile, and

related applications” (BEAVER, 2016, p. 20). Therefore, other principles of

information security such as authenticity, immutability, legality and non-repudiation

also need to be addressed.

Each of the aforementioned principles of information security is analyzed in

context to the service provided by the application for mobile Android devices that

integrates blockchain timestamping and digital signatures based on ICP-Brasil

standards.

Andress (2016, p. 29) refers to confidentiality as the ability to protect “data

from those who are not authorized to view it”. In the context of the application

prototype, confidentiality is provided by signing a document using an ICP-Brasil

digital certificate, generating a message digest of the signed document and

timestamping the message digest in the blockchain.

A message digest results from calculating the SHA 256 algorithm of the

document, and it is a condensed representation of the document (FIPS PUB 180-4,

2018, p. 3), of 64 digits in fixed-size. Additionally, it represents the “DNA” of the

document (ORIGINALMY, 2020).

Andress (2016, p. 29) refers to integrity as preventing “data from being

changed in an unauthorized or undesirable manner”. In the context of the application

prototype, a SHA 256 algorithm is used for proof of integrity since “a change to any

bit or bits in M results, with high probability, in a change to the hash code”

(STALLINGS, 2014, p. 314).

Through the SHA 256 algorithm, in order to prove the integrity of a document,

a message digest of a document signed with an ICP-Brasil digital certificate is

recalculated using the SHA 256 algorithm and compared to the message digest that

44

was timestamped in the blockchain to detect whether the document was changed

(FIPS PUB 180-4, 2018, p. iii).

Whitman and Mattord (2016, p. 14) refer to authenticity as “an attribute of

information that describes how data is genuine or original rather than reproduced or

fabricated.” In the context of the application prototype, there is a two-step process to

prove the authenticity of a document.

The first step verifies the integrity of a document, which is described in

section 2.7.2: a message digest of a document signed with an ICP-Brasil digital

certificate is recalculated using SHA 256 algorithm and compared to the message

digest that was timestamped in the blockchain in order to detect whether the

document has been changed (FIPS PUB 180-4, 2018, p. iii).

The second step verifies the identity of the person or entity that signed the

document through implementation of a digital signature validator defined by the ICP-

Brasil Standards (DEMOISELLE SIGNER, 2019).

This two-step process proves the authenticity of a document both in terms of

data integrity and identity of the digital signature (STALLINGS, 2014, p. 260).

Andress (2016, p. 29) refers to availability as the ability to access “data when

we need it”. In the context of the application prototype, the user must be online in

order to check for certificate revocation and timestamp a signed document in the

blockchain.

Prior to signing a document, every user of the application prototype must be

online to check if the digital certificate has been added to the ICP-Brasil Certificate

Revocation List (CRL), which registers digital certificates that need to be revoked

when the user’s private-key is compromised in case, for example, the user’s

computer gets hacked or stolen (FERGUSON; SCHNEIER, 2003, p. 334).

Additionally, the user of the application prototype must be online to

timestamp a signed document in the blockchain since the bitcoin system “is

structured as a peer-to-peer network architecture on top of the Internet”

(ANTONOPOULOS, 2014, p. 139).

Andress (2016, p. 24) refers to identity as “simply an assertion of who we are.

This may include who we claim to be as a person, who a computer system claims to

be over the network, who the originating party of an e-mail claims to be, what

authority we claim to have, or similar transactions”.

45

In the context of the application prototype, an ICP-Brasil certificate is

equivalent to a digital identity. This enables unambiguous identification of a natural

person or legal entity that signs a digital document (SAFEWEB, 2019).

In regards to the principle of legality, a document signed with an ICP-Brasil

certificate has legal validity equivalent to a document signed on paper (ITI, 2020b).

Additionally, any form of electronic document admitted by the parties recognizing a

document also has legal validity equivalent to a document signed on paper according

to paragraph 2 of Provisional Measure 2.200-2/2001:

Paragraph 2. The provisions of this Provisional Measure do not preclude the
use of any other means of proving the authorship and integrity of documents
in electronic form, including those that use certificates not issued by ICP-
Brasil, as long as admitted by the parties as valid or accepted (BRASIL.
Medida Provisória, 2001).

In this regard, a proof of authenticity service provided through the use of

blockchain timestamping and digital signatures based on ICP-Brasil Standards has

legal validity equivalent to a document signed on paper.

Stallings (2011, p. 19) refers to the principle of non-repudiation as preventing

either sender or receiver from denying a transmitted message. Thus, when a
message is sent, the receiver can prove that the alleged sender in fact sent
the message. Similarly, when a message is received, the sender can prove
that the alleged receiver in fact received the message (STALLINGS, 2011, p.
19).

In the context of the application prototype, a user cannot deny having signed

the document using an ICP-Brasil certificate because every user goes through a

process of identifying itself in person to a Registration Authority (RA), assuring that

the user owns the digital certificate (FERGUSON; SCHNEIER, 2003, p. 29).

Bashir (2017, p. 23) refers to the principle of immutability as

key feature of blockchain: records once added onto the blockchain are
immutable. There is the possibility of rolling back the changes but this is
considered almost impossible to do as it will require an unaffordable amount
of computing resources. For example, in much desirable case of bitcoin if a
malicious user wants to alter the previous blocks then it would require
computing the PoW (Proof of Work) again for all those blocks that have
already been added to the blockchain. This difficulty makes the records on a
blockchain practically immutable (BASHIR, 2017, p. 23).

46

Even though, the ICP-Brasil standard has regulated a Timestamp Authority

(TA) protocol (ITI, 2020d), it does not provide the principle of immutability of peer-to-

peer network of the decentralized bitcoin system.

In the context of the application prototype, immutability is provided to a

document signed with an ICP-Brasil digital certificate that is timestamped in the

blockchain “due the existence of a long chain of blocks makes the blockchain’s deep

history immutable, a key feature of bitcoin’s security” (ANTONOPOULOS, 2014, p.

164).

2.8 SMART CONTRACTS

 According to Singh et al. (2018, p.1) smart contracts:

are self-executing contracts where users can codify their agreements and
trust relations, which are then stored on a hosting blockchain. Smart
contracts can facilitate safe and trusted business activities by providing
automated transactions without the supervision of an external financial
system such as banks, courts, or notaries. These transactions are traceable,
transparent, and irreversible (SINGH, 2018, p. 1).

 Furthermore, “smart contracts refer to binding contracts between two or more

parties and are enforced in a decentralized manner by the blockchain without the

need for a centralized enforcer” (KARAME; ANDROULAKI, 2016, p. 172). Therefore,

a smart contract’s “platform is decentralized, which means there is no possible single

point of failure. Hence, all the apps will always stay online and never switch off”

(COINTELEGRAPH. What is Ethereum, 2020). Smart contracts can “be used to

control the ownership of properties. These properties might be tangible (e.g., houses,

automobiles) or intangible (e.g., shares, access rights)” (NOFER, M. et al., 2017, p.

185).

 The bitcoin cryptocurrency system allows for constrained usage of smart

contracts because of its “limited set of variables, transaction types, and data storage

[that] seemed to limit the types of applications that could run on top, as second layer

solutions” (ANTONOPOULOS; WOOD, 2018, p. 18).

 In the bitcoin system, multisignature transactions are used to construct smart

contracts in order to achieve the following types of contracts (KARAME;

ANDROULAKI, 2016, p. 172):

47

- Making a Deposit:

there are a number of application scenarios where users need to make
deposits (e.g., when using a service which requires assurance in case of
damage or misuse). Bitcoin can plan for this case by enabling the creation of
deposits to potentially untrusted entities (KARAME; ANDROULAKI, 2016, p.
172).

- Dispute Mediation:

the aforementioned process of making deposits can be inherently extended
to deal with dispute mediation. For instance, A and B can agree on a neutral
dispute meditator M. Here, all transactions issued by A can be constructed
so that they can be spent using the signatures of any two out of the three
parties: A, B, and M (KARAME; ANDROULAKI, 2016, p. 172).

- Managing Multiuser Funds:

bitcoin additionally enables different users to collaboratively raise funds for
any given project without the need for an external arbiter, for example, to
handle disputes. For instance, assume that different entities A1,…, An
decide to collaboratively raise funds of v BTCs in order to support a project.
In this case, it is required that if v BTCs could not be jointly raised, then the
funds committed by each entity should be reimbursed (KARAME;
ANDROULAKI, 2016, p. 172).

 Even though, this research project’s application prototype uses blockchain to

timestamp document signed with an ICP-Brasil digital certificate, the prototype does

not use smart contracts since its application is not deployed in the blockchain.

Instead, it is deployed on a Linux-based Virtual Machine (VM) through an

implementation of the Bitcoin protocol developed in the Java programming language,

called bitcoinJ (BITCOINJ, 2017).

2.9 RELATED WORKS

ICP-Brasil’s CA Valid Certificadora provides a service called VALIDChain

that uses smart contracts deployed on the Ethereum cryptocurrency to allow

“blockchain users to use timestamps to perform digital signatures according to the

standards defined by ICP-Brasil” (VALID CERTIFICADORA BLOG, 2020). The

Ethereum cryptocurrency “is a Turing-complete [smart] contract processing and

48

execution platform based on a blockchain ledger. It is not a clone of bitcoin, but a

completely independent design and implementation. Ethereum has a built-in

currency, called ether, which is required in order to pay for [smart] contract execution”

(ANTONOPOULOS, 2014, p. 232).

The company OriginalMy utilizes blockchain IDs as digital identities to sign

and timestamp documents in the blockchain. A blockchain ID is purely a bitcoin

address that can send/receive coins. Additionally, it is used to timestamp documents

in the blockchain. A blockchain ID or bitcoin address is formed by a pair of related

keys – a public-key and a private-key (secret-key) – of a public-key or asymmetric-

key encryption (section 2.4) method. The private-key is kept private and the public-

key is an address consisted “of a string of letters and numbers […]. Just like you ask

others to send an email to your email address, you would ask others to send you

bitcoin to your bitcoin address” (ANTONOPOULOS, 2014, p. 18). (STINSON, 1995,

p. 114). Identity association to a blockchain ID is done through a Know Your

Customer (KYC) process of verifying a natural person’s national ID or passport.

Another related service that integrates blockchain timestamping and digital

identities is called Blockcerts (FIGURE 9), which “is an open standard for building

apps that issue and verify blockchain-based official records. These may include

certificates for civic records, academic credentials, professional licenses, workforce

development, and more” (BLOCKCERTS, 2020a).

Like OriginalMy’s blockchain ID, Blockcerts uses bitcoin addresses for

identity association. But Blockcerts allows flexible design of identity association

since:

separation of identity is desirable from an architectural layering perspective.
For a certification system, it’s reasonable that adopters will want to establish
identity in different ways, and we want to give them this flexibility. At the
same time, our design doesn’t preclude identity association. Since the
Bitcoin addresses can be any address, recipients and issuers can choose
ones associated with a curated profile (BLOCKCERTS, 2020b).

Thus, identity association designs such as OriginalMy’s blockchain IDs or

ICP-Brasil’s digital certificates can be applied to bitcoin addresses in Blockcerts open

standard.

This research project is intended to solve the problem of increased demand

to digitalize the notarial system in Brazil by contributing with development of tools

49

that can facilitate authentication of documents in digital forms, as a result, it proposes

integration of blockchain timestamping and digital signatures based on ICP-Brasil

digital certificates to authenticate digital documents. This research project’s

application prototype utilizes a different combination of technologies to integrate

blockchain and digital identities in comparison with the related works presented

above (TABLE 3).

TABLE 3 – RELATED WORKS FEATURES

SOURCE: AUTHOR (2020).

This research’s application prototype utilizes ICP-Brasil for identity

association and certificate revocation list (CRL), and it utilizes bitcoin blockchain to

timestamp documents. For development of the application prototype, ICP-Brasil

digital identities and CRL were utilized because it is a standard overseen by Brazilian

federal government’s Instituto Nacional de Tecnologia da Informação (ITI). It

provides principles of information security such as identity, legality and non-

repudiation (SECTION 2.7 and 5.1). And bitcoin blockchain was utilized for

development of the application prototype because it is the most secure network in

terms providing principles of authentication, availability, confidentiality, integrity, and

immutability (SECTION 2.7) since bitcoin generates the highest hashrate for double-

spending prevention through proof of work consensus (SECTION 2.1 and 5.1). In

SECTION 4, a comparative analysis between this research project’s application

prototype and its related works is presented.

50

3 METHODOLOGY

 This research aims to develop an application prototype for mobile Android

devices that integrates blockchain timestamping and digital signatures based on ICP-

Brasil digital certificates to provide a digital document authentication service. The

methodology structure of this research is shown in FIGURE 11.

FIGURE 11 – METHODOLOGY MAP

SOURCE: AUTHOR (2019).

51

 The following methodologies are used to explain this research in this chapter:

research characterization, delimitation, prototype engineering requirements and

prototype development.

3.1 RESEARCH CHARACTERIZATION

This research is defined as exploratory and descriptive. An exploratory

research is conducted to investigate the technical-theoretical procedures (JÚNIOR;

PEREIRA; FILHO, 2007, p. 80) regarding the integration of blockchain timestamping

and digital signatures based on ICP-Brasil digital certificates. And a descriptive

research is conducted to search for relationships between elements of (JÚNIOR;

PEREIRA, FILHO, 2007, p. 81) blockchain and ICP-Brasil.

Regarding the outline, a non-experimental research is conducted utilizing

documental analysis to understand the integration of blockchain timestamping and

digital signatures based on ICP-Brasil digital certificates. The documental analysis is

based on books and academic articles about bitcoin and blockchain technology,

cryptography and information security. Additionally, analysis is based on website

platforms of digital certificate and blockchain companies such as Instituto Nacional

de Tecnologia da Informação, Valid Certificadora, OriginalMY, and Proof of

Existence, and open source code of technologies such as bitcoinJ, Demoiselle

Signer and Blockcerts.

As for the nature, a qualitative research is conducted to explore and describe

blockchain and ICP-Brasil digital certificates, seeking integration between the

technologies. Additionally, it involves collecting statistical data that justifies

integrating blockchain and digital certificates from sources such as Instituto Nacional

de Tecnologia da Informação, Receita Federal, and online news platforms.

3.2 DELIMITATION

Even though blockchain’s peer-to-peer network “has the potential ability to

circumvent the current limitations of geographic jurisdictions” (SWAN, 2015, p. 30),

this research’s geographic delimitation is set on the region of Brazil because the

digital certification based on the ICP-Brasil Standards is maintained and audited by

the Brazilian federal government’s Instituto Nacional de Tecnologia da Informação

52

(ITI), and is regulated by Provisional Measure 2.200-2/2001 that has initiated the

implementation of ICP-Brasil’s national system of digital certification (ITI, 2020g).

In the near future, ICP-Brasil’s signed documents will also be accepted within

countries of the Mercosul bloc. On December 5th, 2019, during the LV summit of

heads of Mercosul states (ITI, 2020f), it was signed a mutual recognition agreement

for digital signatures within the scope of Mercosul [which] will enable the exchange of

electronic documents between governments, companies and citizens of the countries

of the bloc” (ITI, 2020a).

3.3 REQUIREMENTS OF APPLICATION PROTOTYPE

 Use case diagrams, sequence diagrams, class diagrams and entity-

relationship diagrams of the Unified Modeling Language (UML) were used in order to

“specify, visualize and document” (OBJECT MANAGEMENT GROUP, 2019) the

application prototype.

3.3.1 USE CASE DIAGRAMS

The application prototype has four use cases that are described in FIGURE

12: import digital certificate, document signing, document authentication, and

document authentication verification. The user described in FIGURE 12 represents a

natural person or legal entity that performs each use case operation in the Android

app prototype.

The user communicates with each use case (import digital certificate, sign

document, authenticate document, and verify document authentication). According to

the UML notation, a solid line connects each interaction between the user and the

use cases “sign document”, “authenticate document, and verify document

authentication” to emphasize a communication between them (FURLAN, 1998, p.

175).

The use case “select document” has a common interaction between the use

cases (import digital certificate, sign document, authenticate document, and verify

document authentication). In the UML notation, a dotted line with an “include”

description connects the use case “select document” to the use cases “sign

53

document”, “authenticate document, and ”verify document authentication” to

emphasize common interaction between them (BEZERRA, 2015, p. 62).

FIGURE 12 – APPLICATION PROTOTYPE USE CASE DIAGRAM

SOURCE: AUTHOR (2019).

3.3.2 PROCESS FLOWCHART

Each use case is an operation in the Android app that is executed following

the order of operations described in FIGURE 13.

 IMPORT DIGITAL CERTIFICATE:
1) User selects option to import digital certificate

2) System presents option to select a digital certificate to import

3) User selects a digital certificate

4) System imports digital certificate

 DOCUMENT SIGNING:

1) User selects option to sign a document

2) System presents option to select a document

54

3) User selects a document

4) System signs the document

FIGURE 13 – PROCESS FLOWCHART OF APPLICATION PROTOTYPE

SOURCE: AUTHOR (2019).

 DOCUMENT AUTHENTICATION:

1) User selects option to sign a document

2) System presents option to select a document

3) User selects a document

4) System signs the document

 DOCUMENT AUTHENTICATION VERIFICATION:

1) User selects option to verify document authentication

2) User informs “Transaction ID” used to retrieve a document that was

timestamped in the blockchain

55

3) System presents option to select a document

4) User selects a document

5) System shows information of document authentication

3.3.3 DATABASE

 The application prototype database has two entities (FIGURE 14): “login” and

“op_return”. Entity “login” registers user’s data for login authentication into the

application. And entity “op_return” registers data of blockchain timestamps.

FIGURE 14 – APPLICATION PROTOTYPE ENTITY-RELATIONSHIP DIAGRAM

SOURCE: AUTHOR (2019).

 The relationship between entity ”login” and “op_return” is “One-to-Many” since

a user registered in entity “login” can have several records of signed document

timestamps in entity “op_return”.

 Attributes of entity “login” have the following designations in the system:

 “id”: primary key of entity “login”. It registers a unique integer value for

every new user signed up in the system;

 “username”: an identification chosen by the user;

 “email”: user email used to access the app along with a password

combination;

56

 “pass_word”: user password used to access the app along with a user

email combination.

 Attributes of entity “op_return” have the following designations in the system:

 “login_id”: foreign key that references attribute “id” of entity “login”.

 “address”: registers bitcoin wallet addresses that receive payment fees

from users who timestamp documents signed with an ICP-Brasil digital

certificate through the app.

 “text”: registers a SHA 256 message digest of a document signed with

an ICP-Brasil digital certificate.

 “tx_id”: registers a transaction ID that is used to retrieve a SHA 256

message digest of a document signed with an ICP-Brasil digital certificate in

the blockchain. It is used to verify the integrity of the document by comparing it

to the SHA 256 message digest of the user’s a document signed with an ICP-

Brasil digital certificate to detect whether the document was changed.

 “status”: registers the status of a timestamp process. And it has three

status:

1. Status "INVALID_DATA": refers to attribute “address”, which

represents an empty bitcoin address that has not yet received a

transaction of a signed document timestamp.

2. Status "WAITING_TX": refers to attribute “address”, which

represents a bitcoin address that has received a transaction of

a signed document timestamp, but has not yet been confirmed in

the blockchain.

3. Status “REGISTERED”: refers to attribute “address”, which

represents a bitcoin address that has received confirmation of

a signed document timestamp transaction in the blockchain.

57

3.3.4 IMPORT DIGITAL CERTIFICATE

Import digital certificate operation is described in next sections through the

following UML diagrams: use case diagram, class diagram and sequence diagram.

3.3.4.1 USE CASE DIAGRAM OF IMPORT DIGITAL CERTIFICATE

In the FIGURE 15, the user communicates with the import digital certificate

use case through the following steps:

FIGURE 15 – IMPORT DIGITAL CERTIFICATE USE CASE DIAGRAM

SOURCE: AUTHOR (2019).

1) User selects option to import digital certificate

2) System presents option to select a digital certificate to import

3) User selects a digital certificate

4) System imports digital certificate

3.3.4.2 CLASS DIAGRAM OF IMPORT DIGITAL CERTIFICATE

The class diagram in FIGURE 16 shows association of classes that are used

when importing an ICP-Brasil certificate in the Android app of the application

prototype. Classes in this diagram represent a static state of operation “Import Digital

Certificate”.

58

FIGURE 16 – ANDROID APP IMPORT DIGITAL CERTIFICATE CLASS DIAGRAM

SOURCE: AUTHOR (2019)2.

Class “MainActivity” is associated directly with all classes in the above

diagram. An instance of class “MainActivity” is always active during the lifecycle of

the Android app. This class is represents the main window interface for interaction

with the user on the Android app.

Class “MainActivity” has an association relationship with class

“KeyStorePKCS12”. Class “KeyStorePKCS12” executes the “Import Digital

2 A full size image of the FIGURE 16 can be accessed in:

https://github.com/apekato/serv/blob/master/src/main/resources/diagrams/CLASS_DIAGRAM_ANDROID_APP_I

MPORT_DIGITAL_CERTIFICATE.png

59

Certificate” operation through implementation of Demoiselle Signer (DEMOISELLE

SIGNER, 2019), a Java open source code that provides functionalities for generating

and validating ICP-Brasil digital signatures. There is connectivity of “one-to-one” from

class “MainActivity” to class “KeyStorePKCS12”, i.e., for every “Import Digital

Certificate” operation, there is only one call from class “MainActivity” to a method that

imports a digital certificate in class “KeyStorePKCS12”.

Class “MainActivity” has an association relationship with class “DigCert”. An

object of class “DigCert” saves an ICP-Brasil certificate in bytes array format, and

saves metadata from the ICP-Brasil certificate, such as filename, name, ID number

and certificate expiration date. There is connectivity “one-to-many” from class

“MainActivity” to class “DigCert”, i.e., a user can select one ICP-Brasil certificate from

a list of one or more ICP-Brasil certificates.

Class “MainActivity” has an association relationship with class

“ItemFragment”. An instance of class “ItemFragment” represents a portion of class

“MainActivity” window interface. It presents information obtained from an imported

ICP-Brasil certificate through an object of class “DigCert”, such as name, ID number

and certificate expiration date. There is connectivity “one-to-one” from class

“MainActivity” to class “ItemFragment”.

3.3.4.3 SEQUENCE DIAGRAM OF IMPORT DIGITAL CERTIFICATE

The “import digital certificate” operation of the application prototype is

described through a sequence diagram. FIGURE 17 presents a sequence diagram

that describes the operations to import an ICP-Brasil digital certificate to the Android

app. The interactions between the objects are described using screenshots of the

prototype's Android app.

60

FIGURE 17 – IMPORT DIGITAL CERTIFICATE SEQUENCE DIAGRAM

SOURCE: AUTHOR (2019).

61

FIGURE 18 illustrates part A (select operation) of the import digital certificate

sequence diagram (FIGURE 17). This figure presents a menu of operations to the

user, such as “Signatures”, “Digital Certificates”, “Notarizations”, and “Verify

Notarization”. To initiate the document signing operation the user taps on “Digital

Certificates” on the menu of operations.

FIGURE 18 – FUNCTIONALITIES MENU ON ANDROID APP

SOURCE: AUTHOR (2019).

62

 FIGURE 19 illustrates part B (import digital certificate) of the import digital

certificate sequence diagram (FIGURE17). This figure presents information of an

imported ICP-Brasil digital certificate. The “IMPORT” button opens a File Manager to

select an ICP-Brasil digital certificate the user wants to import.

FIGURE 19 – “SIGNATURES” FUNCTIONALITY ON ANDROID APP

SOURCE: AUTHOR (2019).

63

 FIGURE 20 illustrates part C (select digital certificate) of the import digital

certificate sequence diagram (FIGURE 17). This figure presents a File Manager to

select ICP-Brasil digital certificate the user wants to import. The thumbnails list shows

a list of files the user can select for importing an ICP-Brasil digital certificate. By

tapping on an ICP-Brasil digital certificate, the certificate is selected and the app

automatically opens a message box to validate the user’s digital certificate password

to import it into the app.

FIGURE 20 – FILE MANAGER TO SELECT CERTIFICATE

SOURCE: AUTHOR (2019).

64

 FIGURE 21 illustrates part D (import digital certificate) of the import digital

certificate sequence diagram (FIGURE 17). This figure presents a message box

requesting the user to enter the ICP-Brasil certificate password. If the password is

authenticated, the certificate is imported into the app and returns to FIGURE 19,

presenting information of the imported ICP-Brasil digital certificate. If it isn’t

authenticated, the user is requested to reenter the ICP-Brasil certificate password.

FIGURE 21 – DIGITAL CERTIFICATE PASSWORD VALIDATOR

SOURCE: AUTHOR (2019).

65

3.3.5 DOCUMENT SIGNING

Document signing operation is described in next sections through the

following UML diagrams: use case diagram, class diagram and sequence diagram.

3.3.5.1 USE CASE DIAGRAM OF DOCUMENT SIGNING

In FIGURE 22, the user communicates with the document signing use case

through the following steps:

1) User selects option to sign a document

2) System presents option to select a document

3) User selects a document

4) System signs the document

FIGURE 22 – DOCUMENT SIGNING USE CASE DIAGRAM

SOURCE: AUTHOR (2019).

3.3.5.2 CLASS DIAGRAM OF DOCUMENT SIGNING

The class diagram in FIGURE 23 shows association of classes that are used

when signing a document using an ICP-Brasil certificate.

66

FIGURE 23 - ANDROID APP DOCUMENT SIGNING CLASS DIAGRAM

SOURCE: AUTHOR (2019)3.

Classes in this diagram represent a static state of a “Document Signing”

operation that implements the ICP-Brasil policies of digital signatures.

Class “MainActivity” has an association relationship with class

“SignerAsyncTask. An instance of class “MainActivity” is always active during the

lifecycle of the Android app. And it represents the main interface for user interaction

with the Android app. There is connectivity “one-to-one” from class “MainActivity” to

class “SignerAsyncTask”, i.e., for every “Document Signing” operation, there is one

instantiation of class “SignerAsyncTask” from class “MainActivity”.

3 A full size image of FIGURE 23 can be accessed in:

https://github.com/apekato/serv/blob/master/src/main/resources/diagrams/CLASS_DIAGRAM_ANDROID_APP_D

OCUMENT_SIGNING.png

67

Class “SignerAsyncTask” has an association relationship with class “DigCert.

An object of class “DigCert” saves an ICP-Brasil certificate in bytes array format, and

saves metadata from the ICP-Brasil certificate, such as filename, name, ID number

and certificate expiration date. Class “DigCert” is used for loading a digital certificate

that is internally stored in the Android app, and then it is used for signing a document

through class “KeyStorePKCS12”. There is connectivity “one-to-many” from class

“SignerAsyncTask” to class “DigCert”, i.e., a user can select one ICP-Brasil certificate

from a list of one or more ICP-Brasil certificates.

Class “SignerAsyncTask” has an association relationship with class

“KeyStorePKCS12. Class “KeyStorePKCS12” executes the “Document Signing”

operation through implementation of Demoiselle Signer (DEMOISELLE SIGNER,

2019), a Java open source code that provides functionalities for generating and

validating ICP-Brasil digital signatures. There is connectivity of “one-to-one” from

class “SignerAsyncTask” to class “KeyStorePKCS12”, i.e., for every “Document

Signing” operation, there is only one call from class “SignerAsyncTask” to a method

that signs a document in class “KeyStorePKCS12”.

3.3.5.3 SEQUENCE DIAGRAM OF DOCUMENT SIGNING

The “Document Signing” operation of the application prototype is described

through a sequence diagram. FIGURE 24 presents a sequence diagram that

describes the operations to sign a document using an ICP-Brasil certificate. The

interactions between the objects are described using screenshots of the prototype's

Android app.

68

FIGURE 24 – DOCUMENT SIGNING SEQUENCE DIAGRAM

SOURCE: AUTHOR (2019).

69

FIGURE 25 illustrates part A (select operation) of the “Document Signing” sequence

diagram (FIGURE 24). This figure presents a menu of operations to the user, such as

“Signatures”, “Digital Certificates”, “Notarizations”, and “Verify Notarization”. To

initiate the “Document Signing” operation the user taps on “Signatures” on the menu

of operations.

FIGURE 25 – FUNCTIONALITIES MENU ON ANDROID APP

SOURCE: AUTHOR (2019).

70

 FIGURE 26 illustrates part B (add document signature) of the “Document

Signing” sequence diagram (FIGURE 24). This figure presents a list of documents

signed with an ICP-Brasil digital certificate. The “ADD” button opens a File Manager

to select a document the user wants to sign.

FIGURE 26 – “SIGNATURES” FUNCTIONALITY ON ANDROID APP

SOURCE: AUTHOR (2019).

71

 FIGURE 27 illustrates part C (select document) of the “Document Signing”

sequence diagram (FIGURE 24). This figure presents a File Manager to select a

document the user wants to sign. The thumbnails list shows a list of documents the

user can select for document signing. By tapping on a document, the document is

selected and the app automatically opens a message box to validate the user’s

digital certificate password to sign the document.

FIGURE 27 – FILE MANAGER TO SELECT SIGNED DOCUMENT

SOURCE: AUTHOR (2019).

72

 FIGURE 28 illustrates part D (sign document) of the “Document Signing”

sequence diagram (FIGURE 24). This figure presents a message box requesting the

user to enter the ICP-Brasil certificate password. If the password is authenticated, the

document gets signed and returns to FIGURE 26, presenting an updated list of

documents signed with an ICP-Brasil digital certificate. If it isn’t authenticated, the

user is requested to reenter the ICP-Brasil certificate password.

FIGURE 28 – DIGITAL CERTIFICATE PASSWORD VALIDATOR

SOURCE: AUTHOR (2019).

73

3.3.6 DOCUMENT AUTHENTICATION

“Document Authentication” operation is described in next sections through

the following UML diagrams: use case diagram, class diagram and sequence

diagram.

3.3.6.1 USE CASE DIAGRAM OF DOCUMENT AUTHENTICATION

In the Figure 29, the user communicates with the document authentication

use case through the following steps:

FIGURE 29 – DOCUMENT AUTHENTICATION USE CASE DIAGRAM

SOURCE: AUTHOR (2019).

1) User selects option to sign a document

2) System presents option to select a document

3) User selects a document

4) System signs the document

3.3.6.2 CLASS DIAGRAMS OF DOCUMENT AUTHENTICATION

 Class diagrams for “Document Authentication” operation is comprised of an

Android app class diagram and a server application class diagram.

3.3.6.2.1 CLASS DIAGRAM OF DOCUMENT AUTHENTICATION OPERATION ON
ANDROID APP

The class diagram in FIGURE 30 shows association of classes that are used

when authenticating a document using an ICP-Brasil certificate on the Android app of

74

the application prototype. Classes in this diagram represent a static state of operation

“Document Authentication”.

Class “MainActivity” is associated directly with all classes in the diagram. An

instance of class “MainActivity” is always active during the lifecycle of the Android

app. This class is represents the main window interface for interaction with the user

on the Android app.

Class “MainActivity” has an association relationship with class

“ItemFragment”. An instance of class “ItemFragment” represents a portion of class

“MainActivity” window interface. It presents transaction information, retrieved from the

server database, of documents that the user authenticated in the blockchain. There is

connectivity “one-to-one” from class “MainActivity” to class “ItemFragment”.

75

FIGURE 30 – ANDROID APP DOCUMENT AUTHENTICATION CLASS DIAGRAM

SOURCE: AUTHOR (2019)4.

4 A full size image of FIGURE 30 can be accessed in:

https://github.com/apekato/serv/blob/master/src/main/resources/diagrams/CLASS_DIAGRAM_ANDROID_APP_D

OCUMENT_AUTHENTICATION.png

76

Through a “one-to-one” connectivity from class “MainActivity” to class

“ItemFragment”, http requests made are using an instance of a web service called

“opReturnList” on the prototype application server. In the “Document Authentication”

operation, it requests a list of “OpReturn” objects from the application server

database.

Class “ItemFragment” has an association relationship with class “OpReturn”.

An object of class “OpReturn” has the same attributes as entity “op_return” of the

application prototype database. The SHA 256 Hash of an authenticated document is

stored variable/attribute “text” of an object of class “OpReturn”. The value stored in

variable/attribute “text” is presented to the user on the Android app in a list format in

order to show document authentications performed by the user. There is connectivity

“one-to-many” from class “MainActivity” to class “OpReturn”, i.e., a user can retrieve

a list of one or more objects of class “OpReturn”.

Class “MainActivity” has an association relationship with class

“OpReturnAsyncTask”. An instance of class “OpReturnAsyncTask” opens a third

party bitcoin wallet app installed on Android to initiate a bitcoin fee payment

transaction that timestamps a SHA 256 Hash of a document in the blockchain.

Additionally, it also loads data of this transaction into an object of class “OpReturn”.

This object is saved on entity “op_return” of the application server database through

an http request of a web service called “opReturnRequest”. Data saved on entity

“op_return” of the application server database keeps track of the status of a

timestamp process of a document being authenticated in the blockchain. There is

connectivity “one-to-one” from class “MainActivity” to class “OpReturnAsyncTask”.

3.3.6.2.2 CLASS DIAGRAM OF DOCUMENT AUTHENTICATION OPERATION ON
SERVER APPLICATION

The class diagram in FIGURE 31 shows association of classes that are used

in timestamping data on the bitcoin blockchain. This class diagram is an

implementation of a Java open source code of the Bitcoin protocol, called bitcoinJ,

which can “maintain a wallet, send/receive transactions without needing a local copy

of Bitcoin Core” (BITCOINJ, 2017).

77

FIGURE 31 – CLASS DIAGRAM OF DOCUMENT AUTHENTICATION

SOURCE: AUTHOR (2019)5.

Classes in this diagram represent a static state of a bitcoin transaction that

timestamps data in the blockchain. Class “OpReturnMain” is associated directly or

indirectly with all classes in the above diagram. This class processes blockchain

timestamp transactions by using a script operation code called OP_RETURN that

invalidates a transaction output making it unspendable (BITCOIN WIKI, 2019), but

“allows a small amount of data to be inserted, which in our case is the document's

5 A full size image of FIGURE 31 can be accessed in:

https://github.com/apekato/serv/blob/master/src/main/resources/diagrams/CLASS_DIAGRAM_DOCU

MENT_AUTHENTICATION.png

78

[SHA 256] hash” (PROOF OF EXISTENCE, 2019) that is used in timestamping data

in the blockchain.

Class “OpReturnMain” has an aggregation association with class

“Transaction”, i.e., class “Transaction” is part of class “OpReturnMain”. There is

connectivity of “one-to-one” from class “OpReturnMain” to class “Transaction”, i.e.,

there is only one blockchain timestamp transaction for each instance of class

“OpReturnMain”.

Class “Transaction” has an aggregation association with class

“TransactionOutput”, i.e., class “TransactionOutput” is part of class “Transaction”.

There is connectivity of “one-to-many” from class “Transaction” to class

“TransactionOutput”, i.e., a single transaction may be associated with one or several

transaction outputs; in other words, a single transaction may send bitcoins to one or

more addresses.

Class “Address” has association of one-to-one with class “Transaction

output” since each transaction output is only associated with one bitcoin address.

 Class “OpReturn” has an aggregation association with class “OpReturnMain”,

i.e., class “OpReturn” is part of class “OpReturnMain”. There is connectivity of “one-

to-many” from class “OpReturnMain” to class “OpReturn”. Class “OpReturn” is an

object model of database entity “op_return”. It is used persist records of this object on

a database.

3.3.6.3 SEQUENCE DIAGRAM OF DOCUMENT AUTHENTICATION

The “Document Authentication” operation of the application prototype is

described through a sequence diagram. FIGURE 32 presents a sequence diagram

that describes the operations to authenticate a document signed with an ICP-Brasil

digital certificate by timestamping it in the blockchain. The interactions between the

objects are described using screenshots of the prototype's Android app.

79

FIGURE 32 – DOCUMENT AUTHENTICATION SEQUENCE DIAGRAM

SOURCE: AUTHOR (2019).

80

FIGURE 33 illustrates part A (select operation) of the “Document

Authentication” sequence diagram (FIGURE 32). This figure presents a menu of

operations to the user, such as “Signatures”, “Digital Certificates”, “Notarizations”,

and “Verify Notarization”. To initiate the “Document Authentication” operation the

user taps on “Notarizations” on the menu of operations.

FIGURE 33 – FUNCTIONALITIES MENU ON ANDROID APP

SOURCE: AUTHOR (2019).

81

FIGURE 34 illustrates part B (add authentication of documents) of the

“Document Authentication” sequence diagram (FIGURE 32). This figure presents a

list of authenticated documents, i.e., list documents signed with an ICP-Brasil digital

certificate timestamped in the blockchain. The “ADD” button opens a File Manager to

select a document signed with an ICP-Brasil digital certificate the user wants to

authenticate by timestamping it in the blockchain.

FIGURE 34 – “NOTARIZATIONS” FUNCTIONALITY ON ANDROID APP

SOURCE: AUTHOR (2019).

82

 FIGURE 35 illustrates part C (select document) of the “Document

Authentication” sequence diagram (FIGURE 32). This figure presents a File Manager

to select a document signed with an ICP-Brasil digital certificate the user wants to

authenticate by timestamping it in the blockchain. The thumbnails list shows a list of

documents signed with an ICP-Brasil digital certificate the user can select for

document authentication. By tapping on a document signed with an ICP-Brasil digital

certificate, the document is selected and the app automatically opens a bitcoin wallet.

FIGURE 35 – FILE MANAGER TO SELECT SIGNED DOCUMENT FOR NOTARIZATION

SOURCE: AUTHOR (2019).

83

 FIGURE 36 illustrates part D (pay transaction fee) of the “Document

Authentication” sequence diagram (FIGURE 32). This figure presents a bitcoin wallet

used to pay for a transaction fee to authenticate the document signed with an ICP-

Brasil digital certificate with a timestamp in the blockchain. The “Pay to” field

indicates the address to send the transaction fee that will process the “Document

Authentication”. The “Amount to pay”, informs the cost of the transaction fee of

₿0.00015. By tapping on “Send” button, the user sends the transaction fee to

authenticate the signed document with a timestamp in the blockchain.

FIGURE 36 – BITCOIN WALLET

SOURCE: AUTHOR (2019).

84

 FIGURE 37 presents a message informing that the document is only

authenticated in the blockchain if the bitcoin transaction fee was sent successfully.

FIGURE 37 – SUCCESS AUTHENTICATION MESSAGE

SOURCE: AUTHOR (2019).

85

3.3.7 VERIFICATION OF DOCUMENT AUTHENTICATION

Verification of “Document Signing” operation is described in next sections

through the following UML diagrams: use case diagram, class diagram and sequence

diagram.

3.3.7.1 USE CASE DIAGRAM OF VERIFICATION OF DOCUMENT
AUTHENTICATION

In FIGURE 38, the user communicates with the verification of document

authentication use case through the following steps:

FIGURE 38 – VERIFICATION OF DOCUMENT AUTHENTICATION USE CASE DIAGRAM

SOURCE: AUTHOR (2019).

1) User selects option to verify document authentication

2) User informs “Transaction ID” used to retrieve a document that was

timestamped in the blockchain

3) System presents option to select a document

4) User selects a document

5) System shows information of document authentication

 This figure presents the field “Transaction ID” the user needs to fill out to retrieve

the document that was authenticated in the blockchain.

 By tapping on “ADD” button, the app retrieves the transaction ID in the blockchain.

If the transaction ID is successfully retrieved, it opens a File Manager to select a

document the user wants to verify authentication. If it isn’t retrieved, the user is

requested to reenter a valid transaction ID.

86

3.3.7.2 CLASS DIAGRAMS OF VERIFICATION OF DOCUMENT
AUTHENTICATION

 Class diagrams for “Verification of Document Authentication” operation is

comprised of an Android app class diagram and a server application class diagram.

3.3.7.2.1 CLASS DIAGRAM OF VERIFICATION OF DOCUMENT

AUTHENTICATION ON ANDROID APP

The class diagram in FIGURE 39 shows association of classes that are used

when verifying document authentication on the Android app of the application

prototype. Classes in this diagram represent a static state of operation “verification of

document authentication”.

Class “MainActivity” is associated directly with all classes in the diagram. An

instance of class “MainActivity” is always active during the lifecycle of the Android

app. This class is represents the main window interface for interaction with the user

on the Android app.

Class “MainActivity” has an association relationship with class

“VerifyNotarizationFragment”. An instance of class “VerifyNotarizationFragment”

represents a portion of class “MainActivity” window interface. It presents field called

“Transaction ID” where the user pastes a transaction ID of document that was

timestamped on the bitcoin blockchain. There is connectivity “one-to-one” from class

“MainActivity” to class “VerifyNotarizationFragment”.

Class “MainActivity” has an association relationship with class

“VerifyNotarizationAsyncTask”. An instance of class “VerifyNotarizationAsyncTask” is

created when the user taps on “ADD” button on the window interface of an instance

of class “VerifyNotarizationFragment”. It retrieves the transaction ID in the

blockchain. If the transaction ID is successfully retrieved, it opens a File Manager to

select a document the user wants to verify authentication. If it isn’t retrieved, the user

is requested to reenter a valid transaction ID.

Class “VerifyNotarizationAsyncTask” has an association relationship with

class “VerifyNotarizationActivity”. An object of class “VerifyNotarizationActivity”

presents a window interface that informs the user if a document signed with an ICP-

Brasil digital certificate was timestamped/authenticated in the blockchain.

87

FIGURE 39 – ANDROID APP VERIFICATION OF DOCUMENT AUTHENTICATION CLASS
DIAGRAM

SOURCE: AUTHOR (2019)6.

3.3.7.2.2 CLASS DIAGRAM OF VERIFICATION OF DOCUMENT

AUTHENTICATION OPERATION ON SERVER APPLICATION

The class diagram in FIGURE 40 shows association of classes that are used

in the process of verifying authentication of a signed document timestamped in the

6 A full size image of FIGURE 39 can be accessed in:

https://github.com/apekato/serv/blob/master/src/main/resources/diagrams/CLASS_DIAGRAM_ANDROID_APP_V

ERIFICATION_OF_DOCUMENT_AUTHENTICATION.png

88

blockchain. This class diagram reads data from a database to get a transaction ID

that is used to retrieve a signed document timestamped in the blockchain.

FIGURE 40 –VERIFICATION OF DOCUMENT AUTHENTICATION CLASS DIAGRAM

SOURCE: AUTHOR (2019)7.

Classes in the diagram of FIGURE 40 represent a static state of

authentication verification of a signed document timestamped in the blockchain.

7 A full size image of FIGURE 40 can be accessed in:

https://github.com/apekato/serv/blob/master/src/main/resources/diagrams/CLASS_DIAGRAM_VERIFICATION_O

F_DOCUMENT_AUTHENTICATION.png

89

Class “OpReturnListWS” is associated directly and indirectly with all classes in the

above diagram. This class makes method calls to read data from the database.

Class “OpReturnListWS” has an aggregation association with class

“ListTxOpReturnJson”, i.e., class “ListTxOpReturnJson” is part of class

“OpReturnListWS”. There is connectivity “one-to-many” from class “OpReturnListWS”

to class “ListTxOpReturnJson”, i.e., class “ListTxOpReturnJson” returns a list of data

of a user’s signed documents timestamped in the blockchain.

Class “ListTxOpReturnJson” has an aggregation association with class

“TxOpReturn”, i.e., class “TxOpReturn” is part of class “ListTxOpReturnJson”. Class

“TxOpReturn” is an exact model of database entity “tx_opreturn”, as it has the same

attributes/variables as database entity “tx_opreturn”. There is connectivity “one-to-

many” from class “ListTxOpReturnJson” to class “TxOpReturn”, i.e., class

“TxOpReturn” returns a list of data of a user’s signed documents timestamped in the

blockchain in form that are then translated into a JSON (JavaScript Object Notation)

list of objects in class “ListTxOpReturnJson”.

3.3.7.3 SEQUENCE DIAGRAM OF VERIFICATION OF DOCUMENT
AUTHENTICATION

The “Verification of Document Authentication” operation of the application

prototype is described through a sequence diagram. FIGURE 41 presents a

sequence diagram that describes the operations to verify authentication of a

document signed with an ICP-Brasil digital certificate that was timestamped in the

blockchain. The interactions between the objects are described using screenshots of

the prototype's Android app.

90

FIGURE 41 – DOCUMENT AUTHENTICATION VERIFICATION SEQUENCE DIAGRAM

SOURCE: AUTHOR (2019).

91

FIGURE 42 illustrates part A (select operation) of the “Verification of

Document Authentication” sequence diagram (FIGURE 41). This figure presents a

menu of operations to the user, such as “Signatures”, “Digital Certificates”,

“Notarizations”, and “Verify Notarization”. To initiate the operation of “Verification of

Document Authentication”, the user taps on “Verify Notarization” on the menu of

operations.

FIGURE 42 – FUNCTIONALITIES MENU ON ANDROID APP

SOURCE: AUTHOR (2019).

92

 FIGURE 43 illustrates part B (inform blockchain transaction id) of the

“Verification of Document Authentication” sequence diagram (FIGURE 41). This

figure presents the field “Transaction ID” the user needs to fill out to retrieve the

document that was authenticated in the blockchain.

 By tapping on “ADD” button, the app retrieves the transaction ID in the

blockchain. If the transaction ID is successfully retrieved, it opens a File Manager to

select a document the user wants to verify authentication. If it isn’t retrieved, the user

is requested to reenter a valid transaction ID.

FIGURE 43 – TRANSACTION ID VERIFICATION

 SOURCE: AUTHOR (2019).

93

 FIGURE 44 illustrates part C (verify document authentication on blockchain) of

the “Verification of Document Authentication” sequence diagram (FIGURE 41). This

figure presents a File Manager to select a document signed with an ICP-Brasil digital

certificate the user wants to verify authentication of a document signed with an ICP-

Brasil digital certificate that was timestamped in the blockchain. The thumbnails list

shows a list of documents signed with an ICP-Brasil digital certificate the user can

select for verification of document authentication.

 By tapping on a document signed with an ICP-Brasil digital certificate, the

document is selected and the app automatically generates a SHA 256 Hash of the

selected document. This SHA 256 Hash is compared to the SHA 256 Hash that was

timestamped on the retrieved transaction ID which was informed on part B above.

FIGURE 44 – FILE MANAGER TO SELECT SIGNED DOCUMENT FOR VERIFICATION OF
AUTHENTICATION

SOURCE: AUTHOR (2019).

94

Finally, if the compared SHA 256 Hashes match each other, user gets

information of the authenticated signed document (FIGURE 45). If the compared

SHA 256 Hashes don’t match each other, user gets information that the document

was not found in the blockchain.

FIGURE 45 – VERIFIED DOCUMENT INFORMATION

SOURCE: AUTHOR (2019).

95

3.4 DEVELOPMENT OF APPLICATION PROTOTYPE

The application prototype was developed in the Java Programming

Language. It is composed of an Android App, a Java Web Application Server. To

develop the application prototype, the following open source codes were utilized:

application server for Java Enterprise Edition platform called Glassfish (GLASSFISH,

2020), Java implementation of the Bitcoin protocol called bitcoinJ (BITCOINJ, 2017),

Java implementation of digital signatures in the ICP-Brasil Standards called

Demoseille Signer (DEMOISELLE SIGNER, 2019), and Android app implementation

of blockchain timestamping utilizing Eternity Wall’s Android client app (ETERNITY

WALL, 2016).

The Java Web Application Server was built on a Glassfish Application

Server, which was deployed on a Digital Ocean’s Linux-based Virtual Machine (VM)

(DIGITALOCEAN. Droplets, 2019). Digital Ocean “is a cloud computing vendor that

offers an Infrastructure as a Service (IaaS) platform for software developers”

(SEARCHCLOUDCOMPUTING. DigitalOcean, 2019).

BitcoinJ’s implementation of the Bitcoin protocol can “maintain a wallet,

send/receive transactions without needing a local copy of Bitcoin Core” (BITCOINJ,

2017), and it was deployed on a DigitalOcean’s Linux-based VM.

Demoiselle Signer provides functionalities for generating and validating ICP-

Brasil digital signatures (DEMOISELLE SIGNER, 2019). The Demoseille Signer

library is integrated into the Android app.

Eternity Wall’s Android client app (ETERNITY WALL, 2016) provides

services to register messages and timestamp files in the blockchain. Two of its

implementation features were utilized in the Android App prototype: 1. Select and

open internal storage files; 2. and send the user to other bitcoin wallet apps in order

to pay for the service of timestamping files in the blockchain.

The Android app is the Graphical User Interface (GUI) for user interaction

with the app’s operations. Codification of each these operations are described next

sections: import digital certificate (SECTION 3.4.1), document signing (SECTION

3.4.2), document authentication (SECTION 3.4.3), and verification of document

authentication (SECTION 3.4.4).

96

3.4.1 IMPORT DIGITAL CERTIFICATE CODIFICATION

 Importing a digital certificate into the Android app is executed in class

“MainActivity” (APPENDIX 1), which is always active during the lifecycle of the

Android app and represents the main interface for interaction with the app user.

Execution of “Import Digital Certificate” operation is shown in CODE EXCERPT 1

from class “MainActivity”. Line 631 locates a digital certificate in the Android device’s

storage and loads the digital certificate into an inputstream variable. In line 634, the

digital certificate is authenticated with the owner’s password and it becomes a

KeyStore instance. In line 677, the KeyStore instance of the digital certificate is

privately saved in the Android app’s internal storage, making it inaccessible to the

user.

CODE EXCERPT 1 - IMPORT DIGITAL CERTIFICATE OPERATION
578 // import digital certificate
579 if (requestCode == StaticVars.OPEN_DOCUMENT_DIGITAL_CERTIFICATE_ACTIVITY_RESULT) {
580 if (data != null && data.getData() != null) {
581 // get digital certificate path
582 uri = data.getData(); // (ETERNITY WALL, 2016)
583
584 // loads user interface
585 FrameLayout frameView = new FrameLayout(activity);
586 LayoutInflater inflater = activity.getLayoutInflater();
587 View dialoglayout = inflater.inflate(R.layout.layout_password,
588 frameView);
589 mPwdView = (TextView) dialoglayout
590 .findViewById(R.id.password);
591
592 // set flag to false for digital certificate format x-pkcs12
593 boolean isPfx = false;
594
595 // Retrieve a file's MIME type
596 String mimeType = UtilsService.retrieveMimeType(activity, uri);
597 // set flag to true if uri location points to a digital certificate format x-pkcs12
598 if (mimeType.endsWith("x-pkcs12")){
599 isPfx = true;
600 }
601
602 // import digital certificate and save to internal storage
603 if (isPfx) {
604
605 // show an alert dialog requiring the user to type a password in order to import the digital certificate
606 new AlertDialog.Builder(activity)
607 .setTitle(
608 R.string.alertdialog_import_digital_certificate_title)
609 .setMessage(
610 R.string.alertdialog_import_digital_certificate)
611 .setView(frameView)
612 .setPositiveButton(getText(R.string.ok).toString(),
613 new DialogInterface.OnClickListener() {
614 public void onClick(DialogInterface dialog,
615 int whichButton) {
616 // get password informed by the user
617 pwd = mPwdView.getText().toString();
618 try {
619
620 // get list of digital certificate objects stored in internal storage where imported
621 // digital certificate may be stored

97

622 File certFile = UtilsService.openFileInternalStorage(activity, StaticVars.DIGCERTLIST);
623 // load a digital certificates objects that may be stored in internal storage to a
624 // digital certificate object list
625 List<DigCert> digCertList = (List<DigCert>) UtilsService.getObjectFromFile(certFile);
626
627 // retrieve file name from uri path
628 String certName = UtilsService.retrieveFileName(activity, uri);
629
630 // open InputStream to load digital certificate
631 InputStream digCertLoadKeystoreStream =
activity.getContentResolver().openInputStream(uri);
632
633 // get digital certificate keystore if password is correct; otherwise, throw exception
634 KeyStore keyStore = KeyStorePKCS12.loadKeystore(activity, digCertLoadKeystoreStream,
pwd);
635 //
636 // open InputStream to convert it to bytes
637 InputStream digCertStream = activity.getContentResolver().openInputStream(uri);
638 byte[] digCertBytes = UtilsService.convertInputStreamToBytes(digCertStream);
639
640 // for verification of existing certificate in internal storage
641 boolean existDigCert = false;
642
643 // initialize digital certificate object list if empty
644 if (digCertList == null) {
645 digCertList = new ArrayList<>();
646 // if digital certificate object list is not empty, check digCertBytes sha256 hash matches
647 // an existing digCert
648 } else {
649
650 // load digital certificate from uri path into inputStream
651 InputStream digCertStreamSha256 = activity.getContentResolver().openInputStream(uri);
652 // get SHA 256 hash from digital certificate inputStream that was converted into bytes
653 // in method UtilsService.sha256Doc(activity, digCertStreamSha256)
654 String digCertSha256 = UtilsService.sha256Doc(activity, digCertStreamSha256);
655
656 // iterator to obtain a SHA 256 hash from each digital certificate in the list to compare
657 // with a SHA 256 hash from the digital certificate loaded in uri path
658 Iterator iterator = digCertList.iterator();
659 int index = 0;
660 while (iterator.hasNext()) {
661 DigCert digCertIt = (DigCert) iterator.next();
662 InputStream digCertItStream =
UtilsService.convertBytesToInputStream(digCertIt.getDigCertBytes());
663 String digCertSha256Iterator = UtilsService.sha256Doc(activity, digCertItStream);
664 if (digCertSha256.equals(digCertSha256Iterator)) {
665 existDigCert = true;
666 }
667 }
668 }
669 // save digital cetificate from uri path in internal storage if verified that
670 // was not yet stored in internal storage
671 if (!existDigCert) {
672
673 DigCert digCert = KeyStorePKCS12.certInfo(KeyStorePKCS12.certicateChain(keyStore));
674 digCert.setFileName(certName);
675 digCert.setDigCertBytes(digCertBytes);
676 digCertList.add(digCert);
677 UtilsService.saveObjectInternalStorage(activity, digCertList, StaticVars.DIGCERTLIST);
678 }
679 initItemFragment(StaticVars.TITLE_SECTION_DIGITAL_CERTIFICATE - 1);
680 uri = null;
681 } catch (FileNotFoundException e) {
682 e.printStackTrace();
683 uri = null;
684 } catch (IOException e) {
685 e.printStackTrace();
686 uri = null;
687 } catch (Exception e) {
688 e.printStackTrace();
689 uri = null;
690 }
691 }
692 })
693 .setNegativeButton(getText(R.string.action_cancel).toString(),
694 new DialogInterface.OnClickListener() {

98

695 public void onClick(DialogInterface dialog,
696 int whichButton) {
697 dialog.dismiss();
698 }
699 }).show();
700
701 } else {
702 Toast toast = Toast.makeText(activity, activity.getString(R.string.toast_file_invalid), Toast.LENGTH_LONG);
703 toast.setGravity(Gravity.BOTTOM, 0, 0);
704 toast.show();
705 }
706
707 }
708 }

SOURCE: AUTHOR (2019).

3.4.2 DOCUMENT SIGNING CODIFICATION

Signing a document using a digital certificate is executed in the Android app

through class “SignerAsyncTask” (APPENDIX 2). Execution of “Document Signing”

operation is shown in CODE EXCERPT 2 from class “SignerAsyncTask”. Lines 61-

71, loads the digital certificate into an inputstream variable from the Android app’s

internal storage. In line 74, digital certificate is authenticated with the owner’s

password and it becomes a KeyStore instance. The certificate private key is loaded

from the KeyStore instance (line 77). A PKCS7Signer instance is created from the

private key, which is utilized to sign a document (80). The document is loaded into a

bytes array (lines 83-86) and it is signed in line 89. Finally, it is saved in the Android

app’s public storage (lines 92-101).

CODE EXCERPT 2 – DOCUMENT SIGNING OPERATION
57 protected Boolean doInBackground(Void... voids) {
58
59 try {
60 // get list of digital certificates from internal storage
61 List<DigCert> digCertList = UtilsService.getDigCertList(mainActivity);
62
63 // get digital certificate in first position in the list, because as of now
64 // the app is coded to deal with only one digital certificate when signing documents
65 DigCert digCert = digCertList.get(0);
66
67 // get bytes format of digital certificate
68 byte[] digCertBytes = digCert.getDigCertBytes();
69
70 // convert bytes format of digital certificate into inputStream
71 InputStream digCertInputStream = UtilsService.convertBytesToInputStream(digCertBytes);
72
73 // get digital certificate keystore if password is correct; otherwise, throw exception
74 KeyStore keyStore = KeyStorePKCS12.loadKeystore(mainActivity, digCertInputStream, pwd);
75
76 // load private key from digital certificate
77 PrivateKey privateKey = KeyStorePKCS12.loadPrivKey(keyStore);
78
79 // get PKCS7 format for implementation of digital signatures
80 PKCS7Signer signer = KeyStorePKCS12.signer(keyStore, privateKey);
81

99

82 // load document from uri path into InputStream
83 InputStream inputStream = mainActivity.getContentResolver().openInputStream(uri);
84
85 // convert InputStream of document into bytes
86 byte[] fileBytes = UtilsService.convertInputStreamToBytes(inputStream);
87
88 // sign document and get bytes format of signed document
89 byte[] fileSignedBytes = signer.doDetachedSign(fileBytes);
90
91 // get name of signed document
92 String fileName = UtilsService.retrieveFileName(mainActivity, uri);
93
94 // create directory before attempting to a save file in a new directory
95 File directory = new File(Environment.getExternalStorageDirectory() + File.separator +
mainActivity.getString(R.string.app_name));
96 directory.mkdirs();
97
98 // save signed file to directory
99 String fileDirectorySignedPath = Environment.getExternalStorageDirectory() +
100 File.separator + mainActivity.getString(R.string.app_name) + File.separator + fileName +
"signedDettached_" + ".p7s";
101 UtilsService.savefileExternalStorage(fileSignedBytes, fileDirectorySignedPath);
102
103 } catch (ConnectException exception) {
104
105 glassfishDown = true;
106 return false;
107
108 }catch (CursorIndexOutOfBoundsException e) {
109 e.getMessage();
110 }
111 catch (Exception e) {
112 e.getMessage();
113 glassfishDown = true;
114 return false;
115 }

SOURCE: AUTHOR (2019).

3.4.3 DOCUMENT AUTHENTICATION CODIFICATION

Authentication of a signed document is executed in the main() method of

class “OpReturnMain” (APPENDIX 3). This class utilizes an open source Java

implementation of the Bitcoin protocol called bitcoinJ to process blockchain

timestamp transactions through a script operation code called OP_RETURN.

OP_RETURN script invalidates a transaction output making it unspendable,

but “allows a small amount of data to be inserted, which in our case is the

document's [SHA 256] hash” (PROOF OF EXISTENCE, 2019).

CODE EXCERPT 3 of class “OpReturnMain” sets up the bitcoin wallet´s

configurations. The implementation of the bitcoin wallet in the main() method of class

“OpReturnMain” can use two distinct bitcoin blockchains: MainNet and TestNet.

MainNet is used for real bitcoin transactions and TestNet is used for testing purposes

by developers. For this project’s application prototype, only TestNet is used (line 55).

100

CODE EXCERPT 3 – MAINNET AND TESTNET BLOCKCHAINS
 65 public static void main(String[] args) {
 66
 67 //
 68 setupWalletKit();
 69
 70 // start a runnable thread process that runs the wallet’s event listeners.
 71 // It is constantly listening for events that occur to bitcoin addresses that belong to the wallet
 72 bitcoin.addListener(new Service.Listener() {
 73 @Override
 74 public void starting() {
 75 super.starting();
 76 System.out.println("starting");
 77 }
 78
 79 @Override
 80 public void running() {
 81 super.running();
 82 System.out.println("running: " + bitcoin.wallet().currentChangeAddress().toString());
 83 }
 84
 85 @Override
 86 public void stopping(Service.State from) {
 87 super.stopping(from);
 88 System.out.println("stopping");
 89 }
 90
 91 @Override
 92 public void terminated(Service.State from) {
 93 super.terminated(from);
 94 System.out.println("terminated");
 95 }
 96
 97 @Override
 98 public void failed(Service.State from, Throwable failure) {
 99 super.failed(from, failure);
100 System.out.println("failed");
101 }
102
103 }, Runnable::run);
104 bitcoin.addListener(new Service.Listener() {
105 }, OpReturnRunnable::runLater);
106 bitcoin.startAsync();
107
108 }
109
110 public static void setupWalletKit() {
111
112 // create new SPV (Simplified Payment Verification) bitcoinj app or
113 // if seed wallet is non-null it means we are restoring from backup.
114 bitcoin = new WalletAppKit(params, new File("."), TWININGS) {
115 @Override
116 protected void onSetupCompleted() {
117 // Don't make the user wait for confirmations for now, as the intention is they're sending it
118 // their own money!
119 bitcoin.wallet().allowSpendingUnconfirmedTransactions();
120 System.out.println("WalletAppKit onSetupCompleted: " + bitcoin.wallet().currentChangeAddress().toString());
121 System.out.println("port: " + params.getPort());
122 System.out.println("wallet current balance: " + bitcoin.wallet().getBalance().toString());
123
124 // Java Persistence API instance for application database
125 EntityManagerFactory emf = Persistence.createEntityManagerFactory("apekato");
126 EntityManager em = emf.createEntityManager();
127
128 try {
129 // register invalid data when wallet is initialized and when wallet is changed
130 registerInvalidData(em);
131 } catch (Exception ex) {
132 Logger.getLogger(OpReturnMain.class.getName()).log(Level.SEVERE, null, ex);
133 }
134 em.close(); emf.close();
135
136 // start wallet event listeners
137 walletListener();
138 }

101

139 };
140 // bitcoin.setBlockingStartup(false);
141 }

SOURCE: AUTHOR (2019).

The WalletAppKit instance in line 114 manages the bitcoin wallet. Through

this wallet, bitcoin addresses are created, transactions are sent/received, and

document timestamp transactions via OP_RETURN script are executed. Lines 72-

106 start a runnable thread process that runs the wallet’s event listeners. It is

constantly listening for events that occur to bitcoin addresses that belong to the

wallet.

CODE EXCERPT 4 from class “OpReturnMain” shows an event listener

(lines 368 - 388) that is triggered when a wallet address receives bitcoins from a user

who requests a signed document authentication service through the Android app by

paying a transaction fee of ₿0.00015.

CODE EXCERPT 4 – PAYMENTS LISTENER
368 bitcoin.wallet().addCoinsReceivedEventListener(new WalletCoinsReceivedEventListener() {
369 @Override
370 public void onCoinsReceived(Wallet wallet, Transaction tx, Coin prevBalance, Coin newBalance) {
371 System.out.println("onCoinsReceived");
372
373 EntityManagerFactory emf = Persistence.createEntityManagerFactory("apekato");
374 EntityManager em = emf.createEntityManager();
375
376 try {
377 registerOpReturnData(em, tx);
378 // register invalid data when wallet is initialized and when wallet is changed
379 registerInvalidData(em);
380 } catch (Exception ex) {
381 Logger.getLogger(OpReturnMain.class.getName()).log(Level.SEVERE, null, ex);
382 }
383
384 em.close();
385 emf.close(); }
386 });
387 }
388 }

SOURCE: AUTHOR (2019).

Line 377 calls a method that retrieves a wallet address that has received a

bitcoin payment which was registered on the application database. Next, it calls

another method, shown in CODE EXCERPT 5, that timestamps a signed document’s

SHA 256 Hash through the OP_RETURN script operation code (lines 240 -252), and

updates the status of a signed document’s timestamp process to “REGISTERED” on

the application database (277-281).

102

CODE EXCERPT 5 – TIMESTAMP DATA
225 public static void timestampData(EntityManager em, OpReturn opReturn) throws IOException,
InsufficientMoneyException, Exception {
226
227 // create a byte variable to convert a SHA 256 hash of a signed document into bytes
228 byte[] opReturnBytes = null;
229
230 // timestamp any text message in the blockchain
231 if (opReturn.getType().endsWith(OpReturn.OpReturnType.OP_RETURN_TYPE_TEXT)){
232 opReturnBytes = opReturn.getText().getBytes("UTF-8");
233
234 // timestamp an ICP-Brasil signed document in the blockchain
235 } else if (opReturn.getType().endsWith(OpReturn.OpReturnType.OP_RETURN_TYPE_NOTARIZATION)){
236 opReturnBytes = Hex.decode(opReturn.getText());
237 }
238
239 // Create a tx with an OP_RETURN output
240 Transaction tx = new Transaction(params);
241 tx.addOutput(Coin.ZERO, ScriptBuilder.createOpReturnScript(opReturnBytes));
242
243 System.out.println("wallet before tx: " + bitcoin.wallet().getBalance().toString());
244
245 // send wallet information regarding timestamping data.
246 SendRequest req = SendRequest.forTx(tx);
247
248 // set timestamp trasaction fee (0.00015 BTC)
249 BigDecimal sendfee = opReturn.getFee().setScale(5, RoundingMode.HALF_EVEN);
250
251 // send timestamp transaction
252 req.feePerKb = Coin.parseCoin(sendfee.toString());
253
254 // Coin c = req.feePerKb;
255 // if (c.value < 15000) {
256 // long add = 15000 - c.value;
257 // req.feePerKb.add(Coin.valueOf(add));
258 // } else if (c.value > 15000) {
259 // long subtract = c.value - 15000;
260 // req.feePerKb.add(Coin.valueOf(subtract));
261 // }
262 // Coin c2 = req.feePerKb;
263 // Send it to the Bitcoin network
264
265 // get result information of timestamp transaction
266 Wallet.SendResult sendResult = bitcoin.wallet().sendCoins(req);
267
268 // long fee = sendResult.tx.getFee().longValue();
269
270 System.out.println("getHashAsString: " + sendResult.tx.getHashAsString());
271
272 // checks if timestamp transaction was successful
273 if (sendResult.tx.getHashAsString() != null){
274
275 // set timestamp opReturn object for persistence in application database
276 // change timestamp opReturn object status to REGISTERED
277 opReturn.setStatus(OpReturn.OpReturnStatus.OP_RETURN_STATUS_REGISTERED);
278 // set timestamp transaction ID into timestamp opReturn object
279 opReturn.setTxId(sendResult.tx.getHashAsString());
280 // persist timestamp opReturn object in application database
281 String ok = GenericDaoJpa.updateWithoutTx(em, OpReturn.class, opReturn);

SOURCE: AUTHOR (2019).

3.4.4 VERIFICATION OF DOCUMENT AUTHENTICATION CODIFICATION

Verifying authentication of a signed document is executed in the Android app

through class “VerifyNotarizationAsyncTask” (APPENDIX 4). Execution of

“Verification of Document Authentication” operation is shown in CODE EXCERPT 6

103

from class “VerifyNotarizationAsyncTask”. Line 84 makes an http request utilizing

BlockCypher’s API (BLOCKCYPHER, 2019) to retrieve information of a timestamp

transaction on bitcoin’s blockchain. On the Android app, the user informs the

“Transaction ID” of the timestamped document, which is passed as parameter along

with the http request.

If the timestamp transaction is successfully retrieved, the SHA 256 Hash that

was timestamped in the blockchain is compared to the SHA 256 Hash calculated

from the signed document. Finally, if the compared SHA 256 Hashes match each

other, user receives information of the authenticated signed document.

CODE EXCERPT 6 – VERIFICATION OF DOCUMENT AUTHENTICATION
78 protected Boolean doInBackground(String... params) {
79
80 try {
81
82 // url to retrieve a transaction id of a document timestamped
83 // on bitcoin’s blockchain using BlockCypher’s API
84 String url_ = ProjService.BLOCK_CYPHER_ENDPOINT + "txs/" + txId + "?token=" +
ProjService.BLOCK_CYPHER_TOKEN;
85
86 // get a pointer to a "resource" on the World Wide Web
87 URL url = new URL(url_);
88
89 // send request to BlockCypher’s API
90 HttpsURLConnection urlConnection = (HttpsURLConnection)url.openConnection();
91
92 // load into InputStream data of timestamp transaction on bitcoin’s blockchain
93 InputStream in = urlConnection.getInputStream();
94
95 // convert InputStream to InputStreamReader
96 InputStreamReader reader =
97 new InputStreamReader(in);
98
99 // load Tx (transaction) object that has detailed information of transaction id of
100 // a document timestamped on bitcoin’s blockchain using BlockCypher’s API
101 tx = new Gson().fromJson(reader, Tx.class);
102
103 } catch (FileNotFoundException exception) {
104 fileNotFoundException = true;
105 return false;
106 } catch (IOException exception) {
107 iOExceptionWrongFormat = true;
108 return false;
109 }catch (Exception exception) {
110 exception.printStackTrace(); // show exception details
111 return false;
112 }
113
114 return true;
115 }

SOURCE: AUTHOR (2019).

104

4 RESULTS AND DISCUSSIONS

In comparison with related works presented in SECTION 2.9, this section

analyses implementations of each related work (TABLE 3) in regards to the following

features: identity association, Certificate Revocation List (CRL) and blockchain

timestamp. This section presents advantages, disadvantages and issues related to

the application prototype’s use of bitcoin blockchain and ICP-Brasil digital certificates

in comparison with the use of other technologies used by related works.

4.1 IDENTITY ASSOCIATION

Identity association among related works shown in TABLE 3 has two

implementation methods: digital certificate and blockchain ID. The digital certificate

method was implemented by this research project’s application prototype and the

company VALIDChain. The blockchain ID method was implemented by the company

OriginalMy. And the open standard Blockcerts allows implementation of either digital

certificate or blockchain ID methods due to its flexible design.

4.1.1 ADVANTAGE OF DIGITAL CERTIFICATES

The advantage of digital certificates over blockchain IDs is related to security

of Know Your Customer (KYC) process. The digital certificate method is more secure

than the blockchain ID method because this application prototype and VALIDChain’s

digital certificates are implementations of the Brazilian Public Key Infrastructure (ICP-

Brasil), which requires in-person identification and physical proofs of identity and

address documents to ICP-Brasil’s Registration Authorities (RA) officials. On the

other hand, OriginalMY’s blockchain ID implementation requires online submission of

proof of identity through its mobile app.

4.1.2 DISADVANTAGE OF DIGITAL CERTIFICATES

The disadvantage of ICP-Brasil’s digital certificates over blockchain IDs is

related to geographic delimitation restricted on the region of Brazil and costs of

issuing digital certificates. ICP-Brasil’s digital certificates are issued only to Brazilian

105

citizens and digital documents signed with ICP-Brasil’s certificates are only valid in

Brazil through regulatory Provisional Measure 2.200-2/2001 that created ICP-Brasil’s

digital certification. On the other hand, OriginalMY’s blockchain IDs do not have

jurisdictional geographic delimitation regarding associating identities to blockchain

IDs. This allows issuance of blockchain IDs to citizens of any nationality; and it allows

worldwide acceptance of digital documents signed with blockchain IDs as long as

admitted by countries as valid/legal.

The costs of issuing ICP-Brasil digital certificates in file format, excluding

token, card, mobile and cloud types of digital certificates, on a popular Certification

Authority in Brazil called Certisign are presented in TABLE 4:

TABLE 4 – COST OF ISSUING DIGITAL CERTIFICATES ON CERTISIGN AS OF MAY 23, 2020

SOURCE: CERTISIGN (2020).

The high costs of issuing digital certificates may hinder its adoption and

usage to digitally sign documents among the Brazilian population. As a result, digital

certificates might end up being used mostly to access government online systems,

such as eSocial and Empregador (Employer) Web for employers to report work

related information on their employees, eCAC for companies and individuals to file

income tax return, and digitally sign medical prescriptions during the COVID-19

pandemic.

4.2 REVOCATION LIST (RL)

Revocation List (RL) among related works shown in TABLE 3 has two

implementation methods: Certificate Revocation List (CRL) and “blockchain ID

unsubscription”. ICP-Brasil’s CRL is implemented by this research project’s

application prototype though the open source Java implementation of digital

signatures in the ICP-Brasil Standards called Demoseille Signer. And it is assumed

106

that the company VALIDChain implements ICP-Brasil’s CRL since it is a Certification

Authority (CA) which provides digital signatures according to ICP-Brasil’s standards.

The company OriginalMy provides a method similar to a CRL in order to

revoke blockchain IDs. If a blockchain ID password is lost or stolen, it can be

unsubscribed and a new blockchain ID can be obtained through OrignalMY’s mobile

app. The open standard Blockcerts allows flexible implementation to RLs.

4.2.1 ISSUE WITH DIGITAL IDENTITIES

Including a hacked or stolen digital identity in a Revocation List (RL) does not

block it from signing documents since execution of digital signatures works

independently from RLs.

In the ICP-Brasil system, a revoked digital certificate is still able to perform

valid signatures on documents without the need to verify online inclusion of the digital

certificate in ICP-Brasil’s Certificate Revocation List (CRL), as long as the digital

signature implementation follows ICP-Brasil Standards. Additionally, a revoked

blockchain ID, included in a RL, is also able to perform valid signatures on

documents (and send/receive coins) without the need to verify online inclusion of the

blockchain ID in a RL.

A proper implementation of digital signatures can be ensured by verifying

online if a digital identity was included in a RL database prior to signing a document.

If it is confirmed that a digital identity has been revoked, a digital signature should not

be performed on a document.

4.3 BLOCKCHAIN TIMESTAMP PERFORMANCE

An analysis on blockchain timestamp performance compares blockchains

utilized in related services shown in TABLE 3: bitcoin, ethereum and ethereum

classic. Three factors are analyzed for performance comparison:

- average hashrate per day (FIGURE 47): measures network security;

- average block timestamp intervals (FIGURE 46): measures transaction

timestamp speeds;

107

- average transaction fee per day (FIGURE 48 and FIGURE 49): measures

cost of timestamp transactions.

4.3.1 AVERAGE HASHRATE PER DAY

FIGURE 46 – BITCOIN - ETHEREUM – ETHEREUM CLASSIC AVERAGE HASHRATE PER DAY

SOURCE: BITINFOCHARTS (2020a).

A advantage of bitcoin over ethereum and ethereum classic is related to its

higher average hashrate that makes it more secure in preventing double-spending

attacks (SECTION 2.1.3) on the bitcoin network through proof-of-work (SECTION

2.1.4), since the average hashrate of 108.0615E is 594 times higher than ethereum

and 10,095,526 times higher than ethereum classic’s average hashrate measured, all

measured on March 12, 2020 FIGURE (46).

Bitcoin’s average hashrate per day on March 12, 2020 was 108.0615E

(108.0615 quintillion hashes or exahashes per second), i.e.,

108,061,500,000,000,000,000 hashes per second. Ethereum’s average hashrate per

day on March 12, 2020 was 181.8861T (181.8861 trillion hashes or terahashes per

second), i.e., 181,886,100,000,000,000 hashes per second. Ethereum Classic’s

average hashrate per day on March 12, 2020 was 10.7039T (10.7039 trillion hashes

or terahashes per second), i.e., 10,703,900,000,000 hashes per second (FIGURE

46).

108

4.3.2 AVERAGE BLOCK TIMESTAMP INTERVALS

FIGURE 47 – BITCOIN - ETHEREUM – ETHEREUM CLASSIC AVERAGE BLOCK TIMESTAMP
INTERVALS IN MINUTES

SOURCE: BITINFOCHARTS (2020b).

A disadvantage in utilizing bitcoin blockchain is related to its longer average

block timestamp intervals. FIGURE 47 shows that in order to obtain a bitcoin

timestamp it takes approximately 21.23 times longer that ethereum and ethereum

classic, according to the average block timestamp interval in minutes measured on

March 12, 2020.

Bitcoin’s average block timestamp interval in minutes on March 12, 2020 was

9.536 minutes. Ethereum’s average block timestamp interval in minutes on March 12,

2020 was 0.223 minutes. Ethereum classic’s average block timestamp interval in

minutes on March 12, 2020 was 0.226 minutes (FIGURE 47).

4.3.3 AVERAGE TRANSACTION FEE

Another disadvantage with bitcoin blockchain is related to its volatile average

transaction fee, which greatly increases when the bitcoin price and volume of

transactions are high. Transaction fees are paid to miners, who can prioritize

transactions included in a block based on higher transaction fees. If the average

transaction fee is high, it increases the time to obtain a bitcoin timestamp

(authentication) on a document signed with an ICP-Brasil digital certificate using the

application prototype since the transaction fee is set to ₿0.00015.

109

Figure 48 – BITCOIN – ETHEREUM - ETHEREUM CLASSIC AVERAGE TRANSACTION FEE PER
DAY A

SOURCE: BITINFOCHARTS (2020c).

On May 20, 2020 (FIGURE 48), the average transaction fee of bitcoin was

US$ 6.64, of ethereum was US$ 0.513, and of ethereum classic was US$ 0.0016,

whereas, in comparison, the average transaction fee on December 22, 2017

(FIGURE 49) was approximately eight times higher on bitcoin at US$ 55.16,

approximately twice as higher on ethereum at US$ 1.013, and approximately twelve

times higher on ethereum classic at US$ 0.0207.

Figure 49 – BITCOIN – ETHEREUM - ETHEREUM CLASSIC AVERAGE TRANSACTION FEE PER
DAY B

SOURCE: BITINFOCHARTS (2020c).

110

On May 20, 2020, with the price of one bitcoin at US$ 9,677.00

(BITINFOCHARTS, 2020d), the application prototype transaction fee of ₿0.00015 in

US dollars was US$ 1.45, which was approximately 5 times lower than the bitcoin

average transaction fee at US$ 6.64.

On December 22, 2017, with the price of one bitcoin at US$ 14,030.00

(BITINFOCHARTS, 2020d), the application prototype transaction fee of ₿0.00015 in

US dollars was US$ 2.1, which was approximately 26 times lower than the bitcoin

average transaction fee at US$ 55.16.

Comparing average transaction fees between blockchains, the chart on

FIGURE 48 shows that average transaction fee of bitcoin at US$ 6.64 was

approximately thirteen times higher than ethereum’s at US$ 0.513, approximately 4

thousand times higher than ethereum classic’s at US$ 0.0016.

111

5 CONCLUSIONS

This chapter presents research considerations related to its objectives, final

considerations and recommendations for future work regarding the research study.

5.1 REGARDING RESEARCH OBJECTIVES

Regarding this research project’s general objective (SECTION 1.3.1), it

integrated the dichotomy between a centralized ICP-Brasil versus a decentralized

blockchain. Integration of both technologies simplifies the development of a digital

document authentication service since both are outsourced services.

ICP-Brasil provides an outsourced KYC (Know Your Customer) service by

verifying through a Registration Authority the user’s identity and address, prior to

issuing a digital certificate to the user. And bitcoin’s blockchain provides an

outsourced tamper-proofing timestamp data since it is a peer-to-peer network built on

the internet that surpasses geographic boundaries.

Regarding this research project’s specific objectives (SECTION 1.3.2), three

specific objectives were analyzed for this research project (SECTION 1.3.2):

information security, application prototype system requirements, and application

prototype development.

 This research identified how integration of blockchain timestamping and digital

signatures based on ICP-Brasil digital certificates provides a digital document

authentication service that assures information security through analysis of the

following concepts: authenticity, availability, confidentiality, identity, immutability,

integrity, legality and non-repudiation.

 It was observed that blockchain timestamping by itself is able to provide proof

of existence of documents since it guarantees data integrity and immutability.

Through the principle of data integrity, a hashed document timestamped in the

blockchain is prevented from being changed. This is due to the principle of

immutability, which prevents a hashed document timestamped in the blockchain from

being corrupted due to the proof of work that requires unaffordable CPU processing

resources to roll back the blockchain records.

112

ICP-Brasil provides additional principles of information security such as

identity, legality, and non-repudiation. The principle of identity is provided through

ICP-Brasil digital certificates that are equivalent to a digital identity. The principle of

legality is provided through regulatory Provisional Measure 2.200-2/2001 which

institutes that ICP-Brasil digital signatures have legal validity equivalent to a

document signed on paper. And ICP-Brasil digital signatures provide the principle of

non-repudiation since it prevents a user from denying having signed a document

because identity association is processed by identifying a user to an ICP-Brasil

Certification Authority, who, in turn, assures that the user owns the digital certificate.

Authenticity of a document is proven in terms of data integrity through

blockchain timestamping, and in terms of identity through digital signatures based on

ICP-Brasil digital certificates. In regards to the principle of availability, blockchain’s

distributed peer-to-peer system assures availability of its data structure that allows

registration and verification of timestamping documents. ICP-Brasil assures

availability of its Certificate Revocation List (CRL), which should always be verified

online if an ICP-Brasil digital certificate has been revoked prior to signing a

document. In regards to the principle of confidentiality, only a SHA 256 message

digest of a document signed with an ICP-Brasil digital certificate is registered in the

blockchain to obtain a timestamp.

 This research identified system requirements (SECTION 3.3) to develop an

application prototype for mobile Android devices that integrates of blockchain

timestamping and digital signatures based on ICP-Brasil digital certificates.

 Four operations were analyzed for proper operation of the prototype: import

digital certificate, document signing, document authentication, and document

authentication verification. For each of these operations, the Unified Modeling

Language (UML) was utilized to specify case diagrams, sequence diagrams, class

diagrams.

Additionally, UML entity-relationship diagrams were utilized in order to

specify a database for the application prototype. This database registers user’s data

for login authentication into the application, registers bitcoin wallet addresses that

receive payment fees from users who timestamp documents signed with an ICP-

Brasil digital certificate through the app, and registers transaction IDs that are used to

retrieve a SHA 256 message digest of a document signed with an ICP-Brasil digital

certificate in the blockchain.

113

This research followed system requirements identified in the previous specific

objective (SECTION 5.2.2) in order to develop an application prototype for mobile

Android devices that integrates blockchain timestamping and digital signatures based

on ICP-Brasil digital certificates. The following operations were built into application

prototype: import ICP-Brasil digital certificates in the mobile Android device; digital

signature of documents using digital certificates issued by an ICP-Brasil Certification

Authority; blockchain timestamping of documents that were digitally signed with ICP-

Brasil certificates; blockchain timestamp verification of documents for proof of

authenticity.

The application prototype is comprised of and Android app and server

application developed in the Java programming language. The source code of the

application prototype was published on GitHub under the open source MIT License,

and can be accessed on:

- Android app: https://github.com/apekato/app

- Server application: https://github.com/apekato/serv

5.2 FINAL CONSIDERATIONS

This research project develops a prototype for a digital document

authentication service by developing an application prototype for mobile Android

devices that integrates blockchain timestamping and digital signatures based on ICP-

Brasil digital certificates. Recently, because of the COVID-19 pandemic that has

spread in Brazil, doctors are now allowed by the Health Ministry to issue medical

prescriptions signed with ICP-Brasil digital certificates (SECTION 1.2), which shows

increased demand to digitalize the notarial system in Brazil. It also points out the

relevance developing apps for mobile devices that provide digital document

authentication services.

The literature reviewed in this project gives an overview of how bitcoin

blockchain and ICP-Brasil certificates technologies function and how both can be

integrated to provide a digital document authentication service. It was observed that

information security is assured considering concepts of authenticity, availability,

confidentiality, identity, immutability, integrity, legality and non-repudiation. In

comparison with related works (SECTION 2.9) that provide services similar to the this

114

project’s research, it was analyzed in the results (SECTION 4) advantages,

disadvantages and issues related to integration of digital certificates and blockchain

timestamping.

In regards to advantages of utilizing both technologies, identity association

with digital certificates presented a secure method of identity verification through

KYC (Know Your Customer) which requires in-person identification and physical

proofs of identity and address documents to ICP-Brasil’s Registration Authorities

(RA) officials. Bitcoin’s higher hashrate than ethereum and ethereum classic makes

its blockchain more secure in preventing double-spending attacks. On the other

hand, disadvantages regarding integration of both technologies have been presented

that are indicated as recommendations for future work in SECTION 5.3.

5.3 RECOMMENDATIONS FOR FUTURE WORK

Recommendations for future work are divided as:

 Future research topics regarding disadvantages that have been presented

in integrating digital certificates and blockchain to provide a digital

document authentication service;

 Tools to increment functionalities of the application prototype for mobile

Android devices that integrates blockchain timestamping and digital

signatures based on ICP-Brasil digital certificates.

In regards to disadvantages in integrating digital certificates and blockchain,

the following recommendations for future research are presented:

 Due to geographic delimitation restricted on the region of Brazil and high

cost of issuing ICP-Brasil digital certificates, extended research may be

conducted in utilizing blockchain IDs as substitute to digital certificates in

order to associate identities of citizens and legal entities of any

nationalities. Similar work is already being done utilizing blockchain IDs by

company OriginalMY;

 Due to bitcoin’s longer average block timestamp intervals and higher

transaction fees, extended research may be conducted in utilizing

115

blockchains that have shorter average block timestamp intervals and lower

transaction fees, taking into consideration a blockchain’s network security:

high hashrate, proof-of-work consensus and decentralization, i.e.,

worldwide adoption of the network.

In regards to tools to increment functionalities, the following

recommendations for future work are presented:

 Tool to import more than one digital certificate into the Android app.

This would allow a user to import its natural person and legal entities

ICP- Brasil digital certificates into the app;

 Tool to allow multiple signatures on a single document, so that a

contract with two or more parties, represented by natural persons or

legal entities, can sign a single document with ICP-Brasil digital

certificates;

 Tool to allow blockchain timestamping of multiple digital signatures in

a single transaction, utilizing merkle trees which recursively

summarizes N elements (digital signatures) into a single hash to be

timestamped in the blockchain with a single transaction;

 Tool applied to supply chain processes to record, transmit, and share

data authentication securely.

 Tool to allow users to prioritize confirmation of document timestamps

in the bitcoin blockchain by choosing between Priority fee, Normal fee

and Economic fee, instead of the current fixed fee of ₿0.00015 the

application prototype.

116

REFERENCES

ANDRESS, J. The Basics of Information Security: Understanding the

Fundamentals of Infosec in Theory and Practice. Waltham, MA, USA: Elsevier, 2014.

___________. The bitcoin and open blockchain expert: About. Available in:

<https://aantonop.com/bio/>. Accessed on: 22 May. 2020.

ANTONOPOULOS, A. Mastering Bitcoin: Unlocking Digital Crypto-Currencies.

California, USA: O'Reilly Media, 2014.

ANTONOPOULOS, A.; WOOD, G. Mastering Ethereum: Building Smart Contracts

and DApps. California, USA: O'Reilly Media, 2018.

ANVISA. COVID-19 - Medicamentos controlados: receitas com assinatura digital.

Available in: <http://portal.anvisa.gov.br/noticias/-

/asset_publisher/FXrpx9qY7FbU/content/medicamentos-controlados-receitas-com-

assinatura-

digital/219201/pop_up?inheritRedirect=false&redirect=http%3A%2F%2Fportal.anvisa

.gov.br%2Fnoticias%3Fp_p_id%3D101_INSTANCE_FXrpx9qY7FbU%26p_p_lifecycl

e%3D0%26p_p_state%3Dpop_up%26p_p_mode%3Dview%26p_r_p_564233524_ta

g%3Dcovid-19>. Accessed on: 21 May. 2020.

BASHIR, I. Mastering Blockchain: Distributed ledgers, decentralization and smart

contracts explained. Birmingham, United Kingdom: Packt Publishing, 2017.

BEAVER, K; Hacking For Dummies. Hoboken, New Jersey, USA: John Wiley &

Sons, 2016.

BEZERRA, E. Princípios de Análise e Projeto de Sistemas com UML. São Paulo,

SP, Brazil: Elsevier, 2015.

117

BITCOINJ. A library for working with Bitcoin. Version 0.14.4 [S.l.]: bitcoinj, Feb.

07, 2017. Available in: <https://github.com/bitcoinj/bitcoinj/tree/v0.14.4>. Accessed

on: 07 Jul. 2020.

BITINFOCHARTS. Bitcoin, Ethereum, Ethereum Classic Hashrate historical
chart. 2020a. Available in: <https://bitinfocharts.com/comparison/hashrate-btc-eth-

etc.html#3m>. Accessed on: 13 Mar. 2020.

_______________. Bitcoin, Ethereum, Ethereum Classic Block Time historical
chart. 2020b. Available in: <https://bitinfocharts.com/comparison/confirmationtime-

btc-eth-etc.html#3m>. Accessed on: 13 Mar. 2020.

_______________. Bitcoin, Ethereum, Ethereum Classic Avg. Transaction Fee
historical chart. 2020c. Available in:

<https://bitinfocharts.com/comparison/transactionfees-btc-eth-etc.html#3m>.

Accessed on: 25 May. 2020.

_______________. Bitcoin (BTC) price stats and information. 2020d. Available in:

<https://bitinfocharts.com/bitcoin/>. Accessed on: 07 Jul. 2020.

BLOCKCERTS. Introduction. 2020a. Available in:

<https://www.blockcerts.org/guide/>. Accessed on: 14 Jan. 2020.

_____________. FAQ. 2020b. Available in:

<https://www.blockcerts.org/guide/faq.html>. Accessed on: 16 Jan. 2020.

BLOCKCHAIN. Average Number of Transactions Per Block. Available in:

<https://www.blockchain.com/charts/n-transactions-per-block?timespan=all>.

Accessed on: 13 Mar. 2020.

BLOCKCYPHER. BlockCypher's API documentation. Available in:

<https://www.blockcypher.com/dev/bitcoin/#introduction>. Accessed on: 04 Dec.

2019.

118

BRASIL. Constituição: República Federativa do Brasil. Brasília, DF: Senado

Federal. 1988. Available in:

<http://www.planalto.gov.br/ccivil_03/constituicao/constituicao.htm>. Accessed on:

15 Sep. 2019.

_______. Medida Provisória No 2.200-2. Brasília, DF: Senado Federal. 2001.

Available in: <http://www.planalto.gov.br/ccivil_03/mpv/antigas_2001/2200-2.htm>.

Accessed on: 15 Sep. 2019.

CERTISIGN. Loja. Available in: <https://loja.certisign.com.br/home>. Accessed on:

23 May. 2020.

COINTELEGRAPH. What is Ethereum. Available in:

<https://cointelegraph.com/ethereum-for-beginners/what-is-ethereum>. Accessed on:

22 Jan. 2020.

CRYSTAL. Report On International Bitcoin Flows 2013 – 2019. Available in:

<https://crystalblockchain.com/assets/reports/International%20Bitcoin%20Flows%20

Report%20for%202013-2019%20-

%20by%20Crystal%20Blockchain,%20Bitfury.pdf>. Accessed on: 18 Oct. 2019.

DAVIES, J. Implementing SSL/TLS Using Cryptography and PKI. Indianapolis,

Indiana, USA: Wiley Publishing, 2011.

DEMOISELLE SIGNER. Objetivos. Available in:

<https://www.frameworkdemoiselle.gov.br/v3/signer/>. Accessed on: 13 Sep. 2019.

DIGITALOCEAN. Droplets. Available in:

<https://www.digitalocean.com/docs/droplets/>. Accessed on: 17 Sep. 2019.

DINIZ, E. O blockchain veio para ficar. GV-executivo, v. 17, n. 3, maio-junho, p.51,

2018. Available in: <https://rae.fgv.br/sites/rae.fgv.br/files/gv_v17n3_cl4.pdf>.

Accessed on: 31 May. 2020.

119

eSOCIAL. Conheça o eSocial. Available in:

<http://portal.esocial.gov.br/institucional/conheca-o>. Accessed on: 19 Jul. 2019.

ETERNITY WALL. Eternity Wall Android client. Version 1.0.28 [S.l.]: Eternity Wall, 04

Feb. 2016. Available in: <https://github.com/RCasatta/EternityWallAndroid>.

Accessed on: 29 Jun. 2020.

FERGUSON, N., SCHNEIER, B. Practical Cryptography. Indianapolis, Indiana,

USA: Wiley Publishing, 2003.

FIPS. What is FIPS. Available in: <https://whatis.techtarget.com/definition/FIPS-

Federal-Information-Processing-Standards>. Accessed on: 27 Aug. 2019.

FIPS PUB 180-4. Secure Hash Standard (SHS). Available in:

<https://ws680.nist.gov/publication/get_pdf.cfm?pub_id=910977>. Accessed on: 27

Aug. 2019.

FURLAN, J. D. Modelagem de Objetos Através da UML. Campos Elíseos, São

Paulo, Brazil: Makron Books, 1998.

G1. Uso da Internet no Brasil Cresce, e 70% da População está Conectada.
Available in: <https://g1.globo.com/economia/tecnologia/noticia/2019/08/28/uso-da-

internet-no-brasil-cresce-e-70percent-da-populacao-esta-conectada.ghtml>.

Accessed on: 18 Oct. 2019.

GIL, A. C. Como Elaborar Projetos de Pesquisa. Campos Elíseos, São Paulo,

Brazil: Atlas, 2017.

GLASSFISH. The Open Source Java EE Reference Implementation. Available in:

<https://javaee.github.io/glassfish/download>. Accessed on: 29 Jun. 2020.

120

HIGGINS, S. Republic of Georgia to Develop Blockchain Land Registry.
Available in: <http://www.coindesk.com/bitfury-working-with-georgian-government-

on- blockchain-land-registry/>. Accessed on: 30 Jun. 2017

ID SEGURO. e-Social: certificado digital será obrigatório a partir de 1º de julho.

Available in: <https://www.idseguro.com.br/calendario-e-social-certificado-digital-

sera-obrigatorio-a-partir-de-1o-de-julho/>. Accessed on: 19 Jul. 2019.

ITI. Acordo de Reconhecimento Mútuo de Assinaturas Digitais no Mercosul.
2020a. Available in: <https://www.iti.gov.br/artigos/110-artigos-iti/4060-acordo-de-

reconhecimento-mutuo-de-assinaturas-digitais-no-mercosul>. Accessed on: 12 May.

2020.

___. Benefícios. 2020b. Available in: <https://www.iti.gov.br/certificado-digital/2-

uncategorised/95-beneficios>. Accessed on: 12 May. 2020.

___. Calendário e-Social: certificado digital será obrigatório a partir de 1º de julho.

2020c. Available in: <https://www.iti.gov.br/noticias/indice-de-noticias/2340-

calendario-e-social-certificado-digital-sera-obrigatorio-a-partir-de-1-de-julho>.

Accessed on: 12 May. 2020.

___. Carimbo de Tempo. 2020d. Available in: <https://www.iti.gov.br/acesso-a-

informacao/41-perguntas-frequentes/131-carimbo-do-tempo>. Accessed on: 12 May.

2020.

___. Entes da ICP-Brasil. 2020e. Available in: <https://www.iti.gov.br/icp-brasil/57-

icp-%20brasil/76-como-funciona/>. Accessed on: 12 May. 2020.

___. Mercosul Avança na Digitalização e Países Reconhecerão Assinaturas
Digitais Mutuamente. 2020f. Available in: <https://www.iti.gov.br/noticias-iti/4059-

mercosul-avanca-na-digitalizacao-e-paises-reconhecerao-assinaturas-digitais-

mutuamente>. Accessed on: 12 May. 2020.

121

___. O ITI. 2020g. Available in: <http://www.iti.gov.br/institucional/o-iti>. Accessed

on: 12 May. 2020.

___. Ranking de Emissões. 2020h. Available in: <https://www.iti.gov.br/icp-

brasil/100-ranking-de-emissoes>. Accessed on: 12 May. 2020.

JONATHAN, K; YEHUDA, L. Introduction to Modern Cryptography. Boca Raton,

Florida, USA: CHAPMAN & HALL CRC, 2015.

JÚNIOR, W. P; PEREIRA, V. L. D. V; FILHO, H. V. P. Pesquisa Científica Sem
Tropeços: Abordagem Sistêmica. São Paulo, São Paulo, Brazil: Atlas, 2007.

KARAME, G.; ANDROULAKI, E. Bitcoin and Blockchain Security. Norwood,

Massachusetts, USA: ARTECH HOUSE, 2016.

MINISTÉRIO DA SAÚDE. Portaria Nº 467, de 20 de MARÇO de 2020. Available in:

<http://www.planalto.gov.br/CCIVIL_03/Portaria/PRT/Portaria%20n%C2%BA%20467

-20-ms.htm>. Accessed on: 21 May. 2020.

NAKAMOTO, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available in:

<https://nakamotoinstitute.org/bitcoin>. Accessed on: 23 Sep. 2019.

NOFER, M. et al. Blockchain. Bus Inf Syst Eng, vol. 59, n.3, p.183–187, 2017.

OBJECT MANAGEMENT GROUP. What is UML. Available in:

<https://www.uml.org/what-is-uml.htm>. Accessed on: 17 Sep. 2019.

ORIGINALMY. Blockchains e Verificação de Registros. Available in:

<https://originalmy.readthedocs.io/pt_BR/latest/60-blockchains.html>. Accessed on:

04 Feb. 2020

PROOF OF EXISTENCE. What is proof of existence? Accessed on:

<https://poex.io/about>. Accessed on: 25 Oct. 2017.

122

RECEITA FEDERAL. Relatórios do Resultado da Arrecadação. Available in:

<http://idg.receita.fazenda.gov.br/dados/receitadata/arrecadacao/relatorios-do-

resultado-da-arrecadacao>. Accessed on: 14 Oct. 2019.

SAFEWEB. Certificado Digital. Available in:

<https://www2.safeweb.com.br/certificacao/certificacao.aspx>. Accessed on: 16 Jan.

2019.

SCHOLLMEIER, R. A definition of peer-to-peer networking for the classification
of peer-to-peer architectures and applications. Proceedings First International

Conference on Peer-to-Peer Computing, Linkoping, Sweden, 2001, pp. 101-102.

SEARCHCLOUDCOMPUTING. DigitalOcean. Available in:

<https://searchcloudcomputing.techtarget.com/definition/DigitalOcean>. Accessed

on: 18 Sep. 2019.

SINGHAL, B.; DHAMEJA, G.; PANDA, P. S. Beginning Blockchain: A Beginner’s
Guide to Building Blockchain Solutions. New York, New York, USA: Apress

Media, 2018.

SMERKIS, V. Georgia Records 100,000 Land Titles on Bitcoin Blockchain:
BitFury. Available in: <https://cointelegraph.com/news/georgia-records-100000-land-

titles-on-bitcoin-blockchain-bitfury>. Accessed on: 13 Jul. 2018.

STALLINGS, W. Cryptography and network security. Boston, Massachusetts,

USA: Prentice Hall, 2011.

STATISTA. How Common is Crypto? Available in:

<https://www.statista.com/chart/18345/crypto-currency-adoption/>. Accessed on: 18

Oct. 2018.

STINSON, D. Cryptography: Theory and Practice. Boca Banton, Florida, USA: CRC

Press, 1995.

123

STRAY, K. Non-Financial Blockchains - Where to Find Them. Available in:

<https://cointelegraph.com/news/non-financial-blockchains-where-to-find-them>.

Accessed on: 13 Jul. 2019.

SWAN, M. Blockchain: Blueprint for a New Economy. Sebastopol, CA, USA:

O’Reilly Media, 2015.

TSCHORSCH, F.; SCHEUERMANN , B. Bitcoin and Beyond: A Technical Survey

on Decentralized Digital Currencies. IEEE Communications Surveys & Tutorials, [s.

l.], ano 3, v. 18, p. 2084 - 2123, 2016. DOI 10.1109/COMST.2016.2535718. Available

in: <https://ieeexplore.ieee.org/document/7423672> . Accessed on: 28 Nov. 2019.

UNIVERSIDADE FEDERAL DO PARANÁ. Gestão da Informação: Áreas de

Concentração e Linhas de Pesquisa. Available in:

<http://www.prppg.ufpr.br/site/ppggi/pb/linhas-de-pesquisa/>. Accessed on: 22 May.

2020.

UNIX TIMESTAMP. Timestamp Converter. Available in:

<https://www.unixtimestamp.com/>. Accessed on: 12 Mar. 2020.

VALID CERTIFICADORA BLOG. VALID Certificadora lança assinatura digital
para usuários de Blockchain. Available in:

<https://blog.validcertificadora.com.br/valid-certificadora-lanca-assinatura-digital-

para-usuarios-de-blockchain/>. Accessed on: 17 Feb. 2020.

WHITMAN, M. E; MATTORD, H. J. Principles of Information Security. Boston, MA,

USA: Cengage Learning, 2016.

WORLD ECONOMIC FORUM. Center for the Fourth Industrial Revolution.
Available in: <https://www.weforum.org/centre-for-the-fourth-industrial-

revolution/areas-of-focus>. Accessed on: 24 Oct. 2017.

124

ZHENG, Z. et al. An Overview of Blockchain Technology: Architecture,

Consensus, and Future Trends. In: proceeding of IEEE 6th International Congress on

Big Data, 2017.

APPENDIX 1 – MAINACTIVITY OF ANDROID APP

1 package a.apkt;
2
3 import android.app.Activity;
4 import android.app.AlertDialog;
5 import android.app.Fragment;
6 import android.app.FragmentTransaction;
7 import android.content.DialogInterface;
8 import android.content.Intent;
9 import android.database.Cursor;
10 import android.graphics.drawable.ColorDrawable;
11 import android.net.Uri;
12 import android.os.Bundle;
13 import android.provider.OpenableColumns;
14 import android.support.v4.widget.DrawerLayout;
15 import android.support.v7.app.ActionBar;
16 import android.support.v7.app.AppCompatActivity;
17 import android.view.Gravity;
18 import android.view.LayoutInflater;
19 import android.view.Menu;
20 import android.view.MenuItem;
21 import android.view.View;
22 import android.widget.FrameLayout;
23 import android.widget.Spinner;
24 import android.widget.TextView;
25 import android.widget.Toast;
26
27 import com.google.gson.Gson;
28
29 import org.apache.log4j.chainsaw.Main;
30
31 import java.io.File;
32 import java.io.FileNotFoundException;
33 import java.io.IOException;
34 import java.io.InputStream;
35 import java.security.Key;
36 import java.security.KeyStore;
37 import java.security.PrivateKey;
38 import java.util.ArrayList;
39 import java.util.Iterator;
40 import java.util.List;
41
42 import a.apkt.asynctask.OpReturnAsyncTask;
43 //import a.apkt.asynctask.SignerAsyncTask;
44 import a.apkt.asynctask.SignerAsyncTask;
45 import a.apkt.asynctask.VerifyNotarizationAsyncTask;
46 import a.apkt.backingbean.LoginBB;
47 import a.apkt.json.ListDigCertJson;
48 import a.apkt.json.ListOpReturnJson;
49 import a.apkt.json.LoginJson;
50 import a.apkt.model.DigCert;
51 import a.apkt.model.OpReturn.OpReturnType;
52 import a.apkt.model.OpReturn;
53 import a.apkt.model.Tx;
54 import a.apkt.model.TxOutput;
55 import a.apkt.service.CheckConnectivity;
56 import a.apkt.service.StaticVars;
57 import a.apkt.service.UserMsgService;
58 import a.apkt.service.UtilsService;
59 import a.apkt.signer.KeyStorePKCS12;
60 import a.apkt.sqlite.LoginSqlite;
61
62 public class MainActivity extends AppCompatActivity

125

63 implements NavigationDrawerFragment.NavigationDrawerCallbacks,
64 ItemFragment.OnItemFragmentInteractionListener{
65
66 /**
67 * Fragment managing the behaviors, interactions and presentation of the navigation drawer.
68 */
69 private NavigationDrawerFragment mNavigationDrawerFragment;
70
71 /**
72 * Used to store the last screen title. For use in {@link #restoreActionBar()}.
73 */
74 private CharSequence mTitle;
75
76 private ActionBar actionBar;
77 private MenuItem actionAddItem;
78 private MenuItem actionImportItem;
79 private MenuItem actionPostItem;
80 private MenuItem actionWriteItem;
81 private MenuItem actionVerifyItem;
82
83 private long paramLoginId;
84 private Activity activity;
85 private String loginStringJson;
86 private LoginJson loginJson;
87 private ListOpReturnJson listOpReturnJson= new ListOpReturnJson();
88 private boolean isLoggedin; //PUBLIC LIST CODE
89
90 private String selectedEmailAccount = null;
91 private Tx verifyNotarizationTx;
92 private TextView mEmailView;
93
94 private TextView mPwdView;
95 private String pwd = null;
96 private Uri uri;
97
98 private Fragment newFragment;
99
100 @Override
101 protected void onCreate(Bundle savedInstanceState) {
102 super.onCreate(savedInstanceState);
103 setContentView(R.layout.activity_main);
104 activity = this;
105
106 mNavigationDrawerFragment = (NavigationDrawerFragment)
107 getSupportFragmentManager().findFragmentById(R.id.navigation_drawer);
108 mTitle = getTitle();
109
110 // Set up the drawer.
111 mNavigationDrawerFragment.setUp(
112 R.id.navigation_drawer,
113 (DrawerLayout) findViewById(R.id.drawer_layout));
114 }
115
116 public void loadLoginJson() {
117 if (loginJson != null){
118 paramLoginId = loginJson.getId();
119 LoginBB loginBB = new LoginBB(loginJson);
120 loginStringJson = new Gson().toJson(loginBB.getLoginAux());
121 isLoggedin = true;
122 }
123 }
124
125 @Override
126 public void onNavigationDrawerItemSelected(int position) {
127 // update the main content by replacing fragments
128 /*FragmentTransaction transaction = getFragmentManager().beginTransaction();
129 FragmentManager fragmentManager = getSupportFragmentManager();
130 fragmentManager.beginTransaction()
131 .replace(R.id.container, PlaceholderFragment.newInstance(position + 1))
132 .commit();*/
133 if (isLoggedin){
134 if (
135 position == StaticVars.TITLE_SECTION_WALL - 1
136 || position == StaticVars.TITLE_SECTION_NOTARIZE - 1
137 || position == StaticVars.TITLE_SECTION_DIGITAL_SIGNATURE - 1
138 || position == StaticVars.TITLE_SECTION_DIGITAL_CERTIFICATE - 1

126

139) {
140 initItemFragment(position);
141 } else if (
142 position == StaticVars.TITLE_SECTION_VERIFY_NOTARIZATION - 1
143) {
144 initVerifyNotarizationFragment(position);
145 } else if (
146 position == StaticVars.TITLE_SECTION_EXIT -1 /*Identification*/
147) {
148 exit();
149 }
150
151 } else if (!isLoggedin) {
152 if (
153 position == StaticVars.TITLE_SECTION_WALL_PUBLIC - 1
154 || position == StaticVars.TITLE_SECTION_NOTARIZE_PUBLIC - 1
155 // || position == StaticVars.TITLE_SECTION_DIGITAL_SIGNATURE_PUBLIC - 1
156 // || position == StaticVars.TITLE_SECTION_DIGITAL_CERTIFICATE_PUBLIC - 1
157) {
158 initItemFragment(position);
159 } else if (
160 position == StaticVars.TITLE_SECTION_VERIFY_NOTARIZATION_PUBLIC - 1
161) {
162 initVerifyNotarizationFragment(position);
163 }
164 // To activate Login search keyword ACTIVATELOGIN: uncomment code section containing
TITLE_SECTION_LOGIN
165 else if (
166 position == StaticVars.TITLE_SECTION_LOGIN - 1
167) {
168 Intent it = new Intent(activity, LoginActivity.class);
169 Bundle params = new Bundle();
170 params.putBoolean("isLogin", true);
171 it.putExtras(params);
172 startActivity(it);
173 finish();
174 }
175 }
176 }
177
178 public void initItemFragment(int position) {
179 // Create new fragment and transaction
180 newFragment = new ItemFragment();
181
182 initFragment(position, newFragment);
183 }
184
185 public void initVerifyNotarizationFragment(int position) {
186 // Create new fragment and transaction
187 Fragment newFragment = new VerifyNotarizationFragment();
188
189 initFragment(position, newFragment);
190 }
191
192 public void initFragment(int position, Fragment newFragment) {
193 Intent itLogin = getIntent();
194 if (itLogin != null) {
195 Bundle params = itLogin.getExtras();
196 if (params != null && loginJson == null) {
197 loginJson = new Gson().fromJson(params.getString("loginStringJson"), LoginJson.class);
198 }
199 }
200
201 loadLoginJson();
202
203 Bundle args = new Bundle();
204 args.putInt("section_number", position + 1);
205 if (loginStringJson != null){
206 args.putString("loginStringJson", loginStringJson);
207 }
208
209 newFragment.setArguments(args);
210 FragmentTransaction transaction = getFragmentManager().beginTransaction();
211
212 // Replace whatever is in the fragment_container view with this fragment,
213 // and add the transaction to the back stack

127

214 transaction.replace(R.id.container, newFragment);
215
216 // Commit the transaction
217 transaction.commit();
218 }
219
220 public void exit(){
221 LoginSqlite loginSqlite = new LoginSqlite(this);
222 loginSqlite.deleteUserLogin();
223 finish();
224 }
225
226 public void onSectionAttached(int number) {
227 if (isLoggedin){
228 switch (number) {
229 case StaticVars.TITLE_SECTION_DIGITAL_SIGNATURE:
230 mTitle = getString(R.string.title_section_digital_signatures);
231 break;
232 case StaticVars.TITLE_SECTION_DIGITAL_CERTIFICATE:
233 mTitle = getString(R.string.title_section_digital_certificates);
234 break;
235 case StaticVars.TITLE_SECTION_WALL:
236 mTitle = getString(R.string.title_section_wall);
237 break;
238 case StaticVars.TITLE_SECTION_NOTARIZE:
239 mTitle = getString(R.string.title_section_notarizations);
240 break;
241 case StaticVars.TITLE_SECTION_VERIFY_NOTARIZATION:
242 mTitle = getString(R.string.title_section_verify_notarization);
243 break;
244 }
245 } else if (!isLoggedin) {
246 switch (number) {
247 // case StaticVars.TITLE_SECTION_DIGITAL_SIGNATURE_PUBLIC:
248 // mTitle = getString(R.string.title_section_digital_signatures);
249 // break;
250 // case StaticVars.TITLE_SECTION_DIGITAL_CERTIFICATE_PUBLIC:
251 // mTitle = getString(R.string.title_section_digital_certificates);
252 // break;
253 case StaticVars.TITLE_SECTION_WALL_PUBLIC:
254 mTitle = getString(R.string.title_section_wall);
255 break;
256 case StaticVars.TITLE_SECTION_NOTARIZE_PUBLIC:
257 mTitle = getString(R.string.title_section_notarizations);
258 break;
259 case StaticVars.TITLE_SECTION_VERIFY_NOTARIZATION_PUBLIC:
260 mTitle = getString(R.string.title_section_verify_notarization);
261 break;
262 // To activate Login search keyword ACTIVATELOGIN: uncomment code section containing
TITLE_SECTION_LOGIN
263 case StaticVars.TITLE_SECTION_LOGIN:
264 mTitle = getString(R.string.title_section_login);
265 break;
266 }
267 }
268 }
269
270 public void restoreActionBar() {
271 actionBar = getSupportActionBar();
272 actionBar.setNavigationMode(ActionBar.NAVIGATION_MODE_STANDARD);
273 actionBar.setDisplayShowTitleEnabled(true);
274 actionBar.setTitle(mTitle);
275
276 // code block to setup ic_drawer
277 actionBar.setHomeButtonEnabled(true);
278 actionBar.setDisplayHomeAsUpEnabled(true);
279 actionBar.setHomeAsUpIndicator(R.drawable.ic_drawer_white);
280 // end of code block to setup ic_drawer
281 }
282
283 @Override
284 public boolean onCreateOptionsMenu(Menu menu) {
285 if (!mNavigationDrawerFragment.isDrawerOpen()) {
286 // Only show items in the action bar relevant to this screen
287 // if the drawer is not showing. Otherwise, let the drawer
288 // decide what to show in the action bar.

128

289 getMenuInflater().inflate(R.menu.main, menu);
290 actionAddItem = menu.findItem(R.id.action_add);
291 actionImportItem = menu.findItem(R.id.action_import);
292 actionPostItem = menu.findItem(R.id.action_post);
293 actionWriteItem = menu.findItem(R.id.action_write);
294 actionVerifyItem = menu.findItem(R.id.action_verify);
295 restoreActionBar();
296 setActionItemVisible();
297 return true;
298 }
299 return super.onCreateOptionsMenu(menu);
300 }
301
302 public void setActionItemVisible() {
303 if (
304 mTitle.equals(getString(R.string.title_section_digital_signatures))
305) {
306 actionBar.setBackgroundDrawable(new ColorDrawable(getResources().getColor(R.color.blue_actionbar)));
307 actionAddItem.setVisible(true);
308 actionImportItem.setVisible(false);
309 actionPostItem.setVisible(false);
310 actionWriteItem.setVisible(false);
311 actionVerifyItem.setVisible(false);
312 } else if (
313 mTitle.equals(getString(R.string.title_section_digital_certificates))
314) {
315 actionBar.setBackgroundDrawable(new ColorDrawable(getResources().getColor(R.color.blue_actionbar)));
316 actionAddItem.setVisible(false);
317 actionImportItem.setVisible(true);
318 actionPostItem.setVisible(false);
319 actionWriteItem.setVisible(false);
320 actionVerifyItem.setVisible(false);
321 } else if (
322 mTitle.equals(getString(R.string.title_section_wall))
323) {
324 actionBar.setBackgroundDrawable(new ColorDrawable(getResources().getColor(R.color.blue_actionbar)));
325 actionAddItem.setVisible(false);
326 actionImportItem.setVisible(false);
327 actionPostItem.setVisible(false);
328 actionWriteItem.setVisible(true);
329 actionVerifyItem.setVisible(false);
330 } else if (
331 mTitle.equals(getString(R.string.title_section_notarizations))
332) {
333 actionBar.setBackgroundDrawable(new ColorDrawable(getResources().getColor(R.color.blue_actionbar)));
334 actionAddItem.setVisible(true);
335 actionImportItem.setVisible(false);
336 actionPostItem.setVisible(false);
337 actionWriteItem.setVisible(false);
338 actionVerifyItem.setVisible(false);
339 } else if (
340 mTitle.equals(getString(R.string.title_section_verify_notarization))
341) {
342 actionBar.setBackgroundDrawable(new ColorDrawable(getResources().getColor(R.color.blue_actionbar)));
343 actionAddItem.setVisible(true);
344 actionImportItem.setVisible(false);
345 actionPostItem.setVisible(false);
346 actionWriteItem.setVisible(false);
347 actionVerifyItem.setVisible(false);
348 }
349 }
350
351 @Override
352 public boolean onOptionsItemSelected(MenuItem item) {
353 // Handle action bar item clicks here. The action bar will
354 // automatically handle clicks on the Home/Up button, so long
355 // as you specify a parent activity in AndroidManifest.xml.
356 int id = item.getItemId();
357
358 if (actionAddItem != null && id == actionAddItem.getItemId()) {
359 if (mTitle.toString().equals(getString(R.string.title_section_digital_signatures))) {
360 Intent intent = new Intent(Intent.ACTION_GET_CONTENT);
361 intent.setType("*/*");
362 startActivityForResult(intent, StaticVars.OPEN_DOCUMENT_SIGNATURE_ACTIVITY_RESULT);
363 return true;
364 } else

129

365 if (mTitle.toString().equals(getString(R.string.title_section_notarizations))) {
366
367 // add a view to AlertDialog
368 FrameLayout frameView = new FrameLayout(activity);
369 LayoutInflater inflater = activity.getLayoutInflater();
370 View dialoglayout = inflater.inflate(R.layout.layout_email,
371 frameView);
372
373 mEmailView = (TextView) dialoglayout
374 .findViewById(R.id.email);
375 Spinner mEmailSpinner = (Spinner) dialoglayout
376 .findViewById(R.id.email_spinner);
377
378 mEmailSpinner.setVisibility(View.GONE);
379
380 // keyword search to undo this conde change: GET_EMAIL_WITH_SPINNER. email spinner not used because
AndroidManifest permission GET_ACCOUNTS requires privacy policy in order to publish on Google Play
381 // emailAccounts = UtilsService.getRegisteredEmailAddresses(activity);
382 // if (emailAccounts == null) {
383 // mEmailSpinner.setVisibility(View.GONE);
384 // mEmailView.setEnabled(false);
385 // UserMsgService.showDialog(activity,
386 // R.string.error_email_nonexistent_title,
387 // R.string.error_email_nonexistent);
388 // } else if (emailAccounts.size() == 1) {
389 // mEmailSpinner.setVisibility(View.GONE);
390 //
391 // selectedEmailAccount = emailAccounts.get(0);
392 //
393 // mEmailView.setText(selectedEmailAccount);
394 //
395 // } else if (emailAccounts.size() >= 2) {
396 //
397 // mEmailView.setVisibility(View.GONE);
398 //
399 // // Create an ArrayAdapter using the string array and a default
400 // // spinner layout
401 // ArrayAdapter<String> adapter = new ArrayAdapter<>(
402 // activity, R.layout.spinner_text_black_color,
403 // emailAccounts);
404 // // Specify the layout to use when the list of choices appears
405 // adapter.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item);
406 // // Apply the adapter to the spinner
407 // mEmailSpinner.setAdapter(adapter);
408 // mEmailSpinner
409 // .setOnItemSelectedListener(new AdapterView.OnItemSelectedListener() {
410 //
411 // @Override
412 // public void onItemSelected(AdapterView<?> arg0,
413 // View arg1, int positon, long arg3) {
414 // selectedEmailAccount = emailAccounts
415 // .get(positon);
416 // }
417 //
418 // @Override
419 // public void onNothingSelected(AdapterView<?> arg0) {
420 // // TODO Auto-generated method stub
421 // }
422 // });
423 // }
424
425 // new AlertDialog.Builder(activity)
426 // .setTitle(
427 // R.string.alertdialog_email_address_title)
428 // .setMessage(
429 // R.string.alertdialog_email_address)
430 // .setView(frameView)
431 // .setPositiveButton(getText(R.string.ok).toString(),
432 // new DialogInterface.OnClickListener() {
433 // public void onClick(DialogInterface dialog,
434 // int whichButton) {
435 Intent intent = new Intent(Intent.ACTION_OPEN_DOCUMENT); // (ETERNITY WALL, 2016)
436 intent.setType("*/*");// (ETERNITY WALL, 2016)
437 startActivityForResult(intent, StaticVars.OPEN_DOCUMENT_NOTARIZE_ACTIVITY_RESULT);
438

130

439
440 // }
441 // })
442 // .setNegativeButton(getText(R.string.action_cancel).toString(),
443 // new DialogInterface.OnClickListener() {
444 // public void onClick(DialogInterface dialog,
445 // int whichButton) {
446 // dialog.dismiss();
447 // }
448 // }).show();
449 return true;
450 } else if (mTitle.toString().equals(getString(R.string.title_section_verify_notarization))) {
451 VerifyNotarizationFragment verifyNotarizationFragment =
452 (VerifyNotarizationFragment) getFragmentManager().findFragmentById((R.id.container));
453
454 String txId = verifyNotarizationFragment.getTxIdFromVerifyNotarizationFragment();
455 if (CheckConnectivity.checkNow(this)) {
456 VerifyNotarizationAsyncTask verifyNotarizationAsyncTask = new VerifyNotarizationAsyncTask(activity,
actionAddItem, txId);
457 verifyNotarizationAsyncTask.execute();
458 }else {
459 UserMsgService.showDialog(this, R.string.alertdialog_no_connectivity_title,
460 R.string.alertdialog_no_connectivity);
461 }
462 return true;
463 }
464 } else if (actionImportItem!= null && id == actionImportItem.getItemId()) {
465 Intent intent = new Intent(Intent.ACTION_OPEN_DOCUMENT); // (ETERNITY WALL, 2016)
466 intent.setType("*/*"); // (ETERNITY WALL, 2016)
467 startActivityForResult(intent, StaticVars.OPEN_DOCUMENT_DIGITAL_CERTIFICATE_ACTIVITY_RESULT);
468 return true;
469 } else if (actionWriteItem != null && id == actionWriteItem.getItemId()){
470
471 // add a view to AlertDialog
472 FrameLayout frameView = new FrameLayout(activity);
473 LayoutInflater inflater = activity.getLayoutInflater();
474 View dialoglayout = inflater.inflate(R.layout.layout_email,
475 frameView);
476
477 mEmailView = (TextView) dialoglayout
478 .findViewById(R.id.email);
479 Spinner mEmailSpinner = (Spinner) dialoglayout
480 .findViewById(R.id.email_spinner);
481
482 mEmailSpinner.setVisibility(View.GONE);
483
484 new AlertDialog.Builder(activity)
485 .setTitle(
486 R.string.alertdialog_email_address_title)
487 .setMessage(
488 R.string.alertdialog_email_address)
489 .setView(frameView)
490 .setPositiveButton(getText(R.string.ok).toString(),
491 new DialogInterface.OnClickListener() {
492 public void onClick(DialogInterface dialog,
493 int whichButton) {
494 Intent intent = new Intent(activity, OpReturnActivity.class);
495 Bundle params = new Bundle();
496
497 if (loginJson == null){
498 loginJson = new LoginJson();
499 }
500
501 // keyword search to undo this code change: GET_EMAIL_WITH_SPINNER.
502 // Get selectedEmailAccount from EmailView because email spinner is not used since
AndroidManifest permission GET_ACCOUNTS requires privacy policy in order to publish on Google Play
503 // delete or comment code below when email spinner is used
504 selectedEmailAccount = mEmailView.getText().toString();
505 loginJson.setEmail(selectedEmailAccount);
506 LoginBB loginBB = new LoginBB(loginJson);
507 loginStringJson = new Gson().toJson(loginBB.getLoginAux());
508 loginJson = null;
509 params.putString("loginStringJson", loginStringJson);
510 intent.putExtras(params);
511 if (isLoggedin){

131

512 startActivityForResult(intent, StaticVars.OP_RETURN_ACTIVITY_RESULT);
513 } else {
514 startActivityForResult(intent, StaticVars.OP_RETURN_ACTIVITY_PUBLIC_RESULT);
515 }
516 }
517 })
518 .setNegativeButton(getText(R.string.action_cancel).toString(),
519 new DialogInterface.OnClickListener() {
520 public void onClick(DialogInterface dialog,
521 int whichButton) {
522 dialog.dismiss();
523 }
524 }).show();
525 return true;
526 }
527 // else if (id == R.id.action_settings) {
528 // return true;
529 // }
530
531 return super.onOptionsItemSelected(item);
532 }
533
534 @Override
535 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
536 super.onActivityResult(requestCode, resultCode, data);
537
538 if (requestCode == StaticVars.OPEN_DOCUMENT_SIGNATURE_ACTIVITY_RESULT) {
539 if (data != null && data.getData() != null) {
540 uri = data.getData(); // (ETERNITY WALL, 2016)
541
542 // add a view to AlertDialog
543 FrameLayout frameView = new FrameLayout(activity);
544 LayoutInflater inflater = activity.getLayoutInflater();
545 View dialoglayout = inflater.inflate(R.layout.layout_password,
546 frameView);
547
548 mPwdView = (TextView) dialoglayout
549 .findViewById(R.id.password);
550
551 new AlertDialog.Builder(activity)
552 .setTitle(
553 R.string.alertdialog_import_digital_certificate_title)
554 .setMessage(
555 R.string.alertdialog_import_digital_certificate)
556 .setView(frameView)
557 .setPositiveButton(getText(R.string.ok).toString(),
558 new DialogInterface.OnClickListener() {
559 public void onClick(DialogInterface dialog,
560 int whichButton) {
561 MainActivity mainActivity = (MainActivity) activity;
562 pwd = mPwdView.getText().toString();
563 SignerAsyncTask signerAsyncTask = new SignerAsyncTask(null, null, mainActivity, uri, pwd);
564 signerAsyncTask.execute();
565 uri = null;
566 }
567 })
568 .setNegativeButton(getText(R.string.action_cancel).toString(),
569 new DialogInterface.OnClickListener() {
570 public void onClick(DialogInterface dialog,
571 int whichButton) {
572 dialog.dismiss();
573 }
574 }).show();
575
576 }
577 }else
578 // import digital certificate
579 if (requestCode == StaticVars.OPEN_DOCUMENT_DIGITAL_CERTIFICATE_ACTIVITY_RESULT) {
580 if (data != null && data.getData() != null) {
581 // get digital certificate path
582 uri = data.getData(); // (ETERNITY WALL, 2016)
583
584 // loads user interface
585 FrameLayout frameView = new FrameLayout(activity);
586 LayoutInflater inflater = activity.getLayoutInflater();

132

587 View dialoglayout = inflater.inflate(R.layout.layout_password,
588 frameView);
589 mPwdView = (TextView) dialoglayout
590 .findViewById(R.id.password);
591
592 // set flag to false for digital certificate format x-pkcs12
593 boolean isPfx = false;
594
595 // Retrieve a file's MIME type
596 String mimeType = UtilsService.retrieveMimeType(activity, uri);
597 // set flag to true if uri location points to a digital certificate format x-pkcs12
598 if (mimeType.endsWith("x-pkcs12")){
599 isPfx = true;
600 }
601
602 // import digital certificate and save to internal storage
603 if (isPfx) {
604
605 // show an alert dialog requiring the user to type a password in order to import the digital certificate
606 new AlertDialog.Builder(activity)
607 .setTitle(
608 R.string.alertdialog_import_digital_certificate_title)
609 .setMessage(
610 R.string.alertdialog_import_digital_certificate)
611 .setView(frameView)
612 .setPositiveButton(getText(R.string.ok).toString(),
613 new DialogInterface.OnClickListener() {
614 public void onClick(DialogInterface dialog,
615 int whichButton) {
616 // get password informed by the user
617 pwd = mPwdView.getText().toString();
618 try {
619
620 // get list of digital certificate objects stored in internal storage where imported
621 // digital certificate may be stored
622 File certFile = UtilsService.openFileInternalStorage(activity, StaticVars.DIGCERTLIST);
623 // load a digital certificates objects that may be stored in internal storage to a
624 // digital certificate object list
625 List<DigCert> digCertList = (List<DigCert>) UtilsService.getObjectFromFile(certFile);
626
627 // retrieve file name from uri path
628 String certName = UtilsService.retrieveFileName(activity, uri);
629
630 // open InputStream to load digital certificate
631 InputStream digCertLoadKeystoreStream =
activity.getContentResolver().openInputStream(uri);
632
633 // get digital certificate keystore if password is correct; otherwise, throw exception
634 KeyStore keyStore = KeyStorePKCS12.loadKeystore(activity, digCertLoadKeystoreStream,
pwd);
635 //
636 // open InputStream to convert it to bytes
637 InputStream digCertStream = activity.getContentResolver().openInputStream(uri);
638 byte[] digCertBytes = UtilsService.convertInputStreamToBytes(digCertStream);
639
640 // for verification of existing certificate in internal storage
641 boolean existDigCert = false;
642
643 // initialize digital certificate object list if empty
644 if (digCertList == null) {
645 digCertList = new ArrayList<>();
646 // if digital certificate object list is not empty, check digCertBytes sha256 hash matches
647 // an existing digCert
648 } else {
649
650 // load digital certificate from uri path into inputStream
651 InputStream digCertStreamSha256 = activity.getContentResolver().openInputStream(uri);
652 // get SHA 256 hash from digital certificate inputStream that was converted into bytes
653 // in method UtilsService.sha256Doc(activity, digCertStreamSha256)
654 String digCertSha256 = UtilsService.sha256Doc(activity, digCertStreamSha256);
655
656 // iterator to obtain a SHA 256 hash from each digital certificate in the list to compare
657 // with a SHA 256 hash from the digital certificate loaded in uri path
658 Iterator iterator = digCertList.iterator();
659 int index = 0;
660 while (iterator.hasNext()) {

133

661 DigCert digCertIt = (DigCert) iterator.next();
662 InputStream digCertItStream =
UtilsService.convertBytesToInputStream(digCertIt.getDigCertBytes());
663 String digCertSha256Iterator = UtilsService.sha256Doc(activity, digCertItStream);
664 if (digCertSha256.equals(digCertSha256Iterator)) {
665 existDigCert = true;
666 }
667 }
668 }
669 // save digital cetificate from uri path in internal storage if verified that
670 // was not yet stored in internal storage
671 if (!existDigCert) {
672
673 DigCert digCert = KeyStorePKCS12.certInfo(KeyStorePKCS12.certicateChain(keyStore));
674 digCert.setFileName(certName);
675 digCert.setDigCertBytes(digCertBytes);
676 digCertList.add(digCert);
677 UtilsService.saveObjectInternalStorage(activity, digCertList, StaticVars.DIGCERTLIST);
678 }
679 initItemFragment(StaticVars.TITLE_SECTION_DIGITAL_CERTIFICATE - 1);
680 uri = null;
681 } catch (FileNotFoundException e) {
682 e.printStackTrace();
683 uri = null;
684 } catch (IOException e) {
685 e.printStackTrace();
686 uri = null;
687 } catch (Exception e) {
688 e.printStackTrace();
689 uri = null;
690 }
691 }
692 })
693 .setNegativeButton(getText(R.string.action_cancel).toString(),
694 new DialogInterface.OnClickListener() {
695 public void onClick(DialogInterface dialog,
696 int whichButton) {
697 dialog.dismiss();
698 }
699 }).show();
700
701 } else {
702 Toast toast = Toast.makeText(activity, activity.getString(R.string.toast_file_invalid), Toast.LENGTH_LONG);
703 toast.setGravity(Gravity.BOTTOM, 0, 0);
704 toast.show();
705 }
706
707 }
708 }
709 else if (requestCode == StaticVars.OP_RETURN_ACTIVITY_RESULT) {
710 // Make sure the request was successful
711 if (resultCode == RESULT_OK) {
712
713 initItemFragment(StaticVars.TITLE_SECTION_WALL - 1);
714 }
715 }
716 else if (requestCode == StaticVars.OP_RETURN_ACTIVITY_PUBLIC_RESULT) {
717 // Make sure the request was successful
718 if (resultCode == RESULT_OK) {
719
720 initItemFragment(StaticVars.TITLE_SECTION_WALL_PUBLIC - 1);
721 }
722 }
723 else if (requestCode == StaticVars.NOTARIZE_RESULT) {
724 // Make sure the request was successful
725 if (resultCode == RESULT_OK) {
726
727 initItemFragment(StaticVars.TITLE_SECTION_NOTARIZE - 1);
728 }
729 }
730 else if (requestCode == StaticVars.NOTARIZE_PUBLIC_RESULT) {
731 // Make sure the request was successful
732 if (resultCode == RESULT_OK) {
733
734 initItemFragment(StaticVars.TITLE_SECTION_NOTARIZE_PUBLIC - 1);
735 }

134

736 }
737 else if (requestCode == StaticVars.OPEN_DOCUMENT_NOTARIZE_ACTIVITY_RESULT) {
738 if (data != null && data.getData() != null) {
739 Uri uri = data.getData(); // (ETERNITY WALL, 2016)
740 String path =uri.toString();
741 InputStream is = null;
742 try {
743 is = activity.getContentResolver().openInputStream(uri);
744 } catch (FileNotFoundException e) {
745 e.printStackTrace();
746 }
747 String dataHexHashString = UtilsService.sha256Doc(activity, is);
748
749 // run
750 if(path!=null && dataHexHashString!=null){
751 Boolean conn = CheckConnectivity.checkNow(activity);
752 if (conn) {
753
754 // keyword search to undo this code change: GET_EMAIL_WITH_SPINNER.
755 // Get selectedEmailAccount from EmailView because email spinner is not used since AndroidManifest
permission GET_ACCOUNTS requires privacy policy in order to publish on Google Play
756 // delete or comment code below when email spinner is used
757 selectedEmailAccount = mEmailView.getText().toString();
758
759 OpReturnAsyncTask opReturnAsyncTask = new OpReturnAsyncTask(
760 null, // View
761 null, // ScrollView
762 activity,
763 loginJson,
764 dataHexHashString,
765 selectedEmailAccount,
766 OpReturnType.OP_RETURN_TYPE_NOTARIZATION);
767 opReturnAsyncTask.execute();
768
769 }else {
770 UserMsgService.showDialog(activity, R.string.alertdialog_no_connectivity_title,
771 R.string.alertdialog_no_connectivity);
772 }
773 }
774 }
775 } else if (requestCode == StaticVars.OPEN_DOCUMENT_VERIFY_NOTARIZATION_ACTIVITY_RESULT) {
776 if (data != null && data.getData() != null) {
777 Uri uri = data.getData(); // (ETERNITY WALL, 2016)
778 InputStream is = null;
779 try {
780 is = activity.getContentResolver().openInputStream(uri);
781 } catch (FileNotFoundException e) {
782 e.printStackTrace();
783 }
784 String dataHexHashString = UtilsService.sha256Doc(activity, is);
785
786 if (dataHexHashString != null){
787 VerifyNotarizationFragment verifyNotarizationFragment =
788 (VerifyNotarizationFragment) getFragmentManager().findFragmentById((R.id.container));
789 // set EditText et_tx_id to null, so that when user returns to fragment the editText will be empty
790 verifyNotarizationFragment.setTxIdFromVerifyNotarizationFragment();
791 boolean isDataHexEqual = false;
792 for (TxOutput to : verifyNotarizationTx.getOutputs()){
793 String dataHex= to.getDataHex();
794 if (dataHexHashString.equals(dataHex)){
795 isDataHexEqual = true;
796 }
797 }
798
799 Intent intent = new Intent(activity, VerifyNotarizationActivity.class);
800 Bundle args = new Bundle();
801 String verifyNotarizationTxJson = new Gson().toJson(verifyNotarizationTx);
802 args.putString("verifyNotarizationTxJson", verifyNotarizationTxJson);
803 args.putString("dataHexHashString", dataHexHashString);
804 args.putBoolean("isDataHexEqual", isDataHexEqual);
805 intent.putExtras(args);
806 activity.startActivity(intent);
807 }
808 }
809 } else if (requestCode == StaticVars.SELECT_BITCOIN_WALLET_ACTIVITY_RESULT) {

135

810 // Make sure the request was successful
811 if (resultCode == RESULT_OK // RESULT_CANCELED works with testnet wallet on testnet network
812 || resultCode == RESULT_CANCELED // RESULT_CANCELED works with AirBitz wallet and other wallets on
main network
813) {
814
815 Intent it = new Intent(activity, OpReturnRqstdActivity.class);
816 Bundle args = new Bundle();
817 args.putString("titleSection", getResources().getText(R.string.title_section_notarizations).toString());
818 it.putExtras(args);
819 if (isLoggedin){
820 startActivityForResult(it, StaticVars.NOTARIZE_RESULT);
821 } else {
822 startActivityForResult(it, StaticVars.NOTARIZE_PUBLIC_RESULT);
823 }
824
825 }
826 } else if (requestCode == StaticVars.DIG_CERT_ACTIVITY_RESULT) {
827 // Make sure the request was successful
828 if (resultCode == RESULT_OK) {
829
830 initItemFragment(StaticVars.TITLE_SECTION_DIGITAL_CERTIFICATE- 1);
831 }
832 }
833 }
834
835 @Override
836 public List<OpReturn> onOpReturnItemFragmentInteraction() {
837 return listOpReturnJson.getOpReturnList();
838 }
839
840 @Override
841 public void onSetOpReturnItemFragmentInteraction(List<OpReturn> opReturnList) {
842 listOpReturnJson.setOpReturnList(opReturnList);
843 }
844
845 @Override
846 public String onActionBarSetTitle() {
847 if (loginJson != null){
848 return loginJson.getUsername();
849 } else {
850 return null;
851 }
852 }
853
854 //PUBLIC LIST CODE
855 @Override
856 public boolean onLogin() {
857 return isLoggedin;
858 }
859
860 public void setVerifyNotarizationTx(Tx verifyNotarizationTx){
861 this.verifyNotarizationTx = verifyNotarizationTx;
862 }
863
864 }

136

APPENDIX 2 – SIGNERASYNCTASK OF ANDROID APP

1 package a.apkt.asynctask;
2
3 import android.animation.Animator;
4 import android.animation.AnimatorListenerAdapter;
5 import android.annotation.TargetApi;
6 import android.app.Activity;
7 import android.database.CursorIndexOutOfBoundsException;
8 import android.net.Uri;
9 import android.os.AsyncTask;
10 import android.os.Build;
11 import android.os.Environment;
12 import android.view.View;
13 import android.widget.ScrollView;
14
15 import org.demoiselle.signer.policy.impl.cades.pkcs7.PKCS7Signer;
16
17 import java.io.File;
18 import java.io.FileNotFoundException;
19 import java.io.FileOutputStream;
20 import java.io.IOException;
21 import java.io.InputStream;
22 import java.io.OutputStream;
23 import java.io.PrintWriter;
24 import java.net.ConnectException;
25 import java.security.KeyStore;
26 import java.security.PrivateKey;
27 import java.util.List;
28
29 import a.apkt.MainActivity;
30 import a.apkt.R;
31 import a.apkt.model.DigCert;
32 import a.apkt.service.StaticVars;
33 import a.apkt.service.UserMsgService;
34 import a.apkt.service.UtilsService;
35 import a.apkt.signer.KeyStorePKCS12;
36
37 public class SignerAsyncTask extends AsyncTask<Void, Void, Boolean> {
38 private boolean glassfishDown = false;
39 private MainActivity mainActivity;
40 private Uri uri;
41 private String pwd;
42 private View mProgressView;
43 private ScrollView scrollView;
44
45 public SignerAsyncTask (
46 View mProgressView,
47 ScrollView scrollView,
48 MainActivity mainActivity,
49 Uri uri,
50 String pwd){
51 this.mainActivity = mainActivity;
52 this.uri = uri;
53 this.pwd = pwd;
54 }
55
56 @Override
57 protected Boolean doInBackground(Void... voids) {
58

137

59 try {
60 // get list of digital certificates from internal storage
61 List<DigCert> digCertList = UtilsService.getDigCertList(mainActivity);
62
63 // get digital certificate in first position in the list, because as of now
64 // the app is coded to deal with only one digital certificate when signing documents
65 DigCert digCert = digCertList.get(0);
66
67 // get bytes format of digital certificate
68 byte[] digCertBytes = digCert.getDigCertBytes();
69
70 // convert bytes format of digital certificate into inputStream
71 InputStream digCertInputStream = UtilsService.convertBytesToInputStream(digCertBytes);
72
73 // get digital certificate keystore if password is correct; otherwise, throw exception
74 KeyStore keyStore = KeyStorePKCS12.loadKeystore(mainActivity, digCertInputStream, pwd);
75
76 // load private key from digital certificate
77 PrivateKey privateKey = KeyStorePKCS12.loadPrivKey(keyStore);
78
79 // get PKCS7 format for implementation of digital signatures
80 PKCS7Signer signer = KeyStorePKCS12.signer(keyStore, privateKey);
81
82 // load document from uri path into InputStream
83 InputStream inputStream = mainActivity.getContentResolver().openInputStream(uri);
84
85 // convert InputStream of document into bytes
86 byte[] fileBytes = UtilsService.convertInputStreamToBytes(inputStream);
87
88 // sign document and get bytes format of signed document
89 byte[] fileSignedBytes = signer.doDetachedSign(fileBytes);
90
91 // get name of signed document
92 String fileName = UtilsService.retrieveFileName(mainActivity, uri);
93
94 // create directory before attempting to a save file in a new directory
95 File directory = new File(Environment.getExternalStorageDirectory() + File.separator +
mainActivity.getString(R.string.app_name));
96 directory.mkdirs();
97
98 // save signed file to directory
99 String fileDirectorySignedPath = Environment.getExternalStorageDirectory() +
100 File.separator + mainActivity.getString(R.string.app_name) + File.separator + fileName +
"signedDettached_" + ".p7s";
101 UtilsService.savefileExternalStorage(fileSignedBytes, fileDirectorySignedPath);
102
103 } catch (ConnectException exception) {
104
105 glassfishDown = true;
106 return false;
107
108 }catch (CursorIndexOutOfBoundsException e) {
109 e.getMessage();
110 }
111 catch (Exception e) {
112 e.getMessage();
113 glassfishDown = true;
114 return false;
115 }
116
117 // List<String> certInfoList = KeyStorePKCS12.certInfo(KeyStorePKCS12.certicateChain(keyStore));
118 //
119 // PrivateKey chavePrivada = KeyStorePKCS12.loadPrivKey(keyStore);
120 //
121 // PKCS7Signer signer = KeyStorePKCS12.signer(keyStore, chavePrivada);
122 //
123 // // code block for signing docs
124 // //***
125 // try {
126 //
127 // File fileSign = new File(Environment.getExternalStorageDirectory() +
128 // File.separator + Environment.DIRECTORY_DOWNLOADS + File.separator + "encryption.jpg");
129 // Uri uriFileSign = Uri.fromFile(fileSign);
130 // InputStream is = activity.getContentResolver().openInputStream(uriFileSign);
131 // int fileSize = is.available();
132 // byte[] resultFileSign = new byte[fileSize];

138

133 // is.read(resultFileSign);
134 // is.close();
135 //
136 // // line of code needed in asynctask
137 // byte[] signature = signer.doDetachedSign(resultFileSign);
138 //
139 // OutputStream outFileSign = new FileOutputStream(Environment.getExternalStorageDirectory() +
140 // File.separator + activity.getString(R.string.app_name) + File.separator + "DIRECTORY_DOWNLOADS.p7s");
141 //
142 // outFileSign.write(signature);
143 // outFileSign.close();
144 //
145 // } catch (FileNotFoundException e) {
146 // e.printStackTrace();
147 // } catch (IOException e) {
148 // e.printStackTrace();
149 // }
150 //**
151
152 return true;
153 }
154
155 @Override
156 protected void onPostExecute(final Boolean success) {
157
158 if (success) {
159 mainActivity.initItemFragment(StaticVars.TITLE_SECTION_DIGITAL_SIGNATURE - 1);
160 }
161 else if (!success) {
162 if (glassfishDown) {
163 UserMsgService.showDialogPositButtonMail(mainActivity,
164 mainActivity, R.string.alertdialog_internal_problem_title,
165 R.string.alertdialog_internal_problem_msg);
166 }
167 }
168 }
169
170 /**
171 * Shows the progress UI and hides the login form.
172 */
173 @TargetApi(Build.VERSION_CODES.HONEYCOMB_MR2)
174 public void showProgress(final boolean show) {
175
176 // On Honeycomb MR2 we have the ViewPropertyAnimator APIs, which allow
177 // for very easy animations. If available, use these APIs to fade-in
178 // the progress spinner.
179 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB_MR2) {
180 int shortAnimTime = mainActivity.getResources().getInteger(android.R.integer.config_shortAnimTime);
181
182 // mActivityFormView.setVisibility(show ? View.GONE : View.VISIBLE);
183 // mActivityFormView.animate().setDuration(shortAnimTime).alpha(
184 // show ? 0 : 1).setListener(new AnimatorListenerAdapter() {
185 // @Override
186 // public void onAnimationEnd(Animator animation) {
187 // mActivityFormView.setVisibility(show ? View.GONE : View.VISIBLE);
188 // }
189 // });
190
191 scrollView.setVisibility(show ? View.GONE : View.VISIBLE);
192 mProgressView.setVisibility(show ? View.VISIBLE : View.GONE);
193 mProgressView.animate().setDuration(shortAnimTime).alpha(
194 show ? 1 : 0).setListener(new AnimatorListenerAdapter() {
195 @Override
196 public void onAnimationEnd(Animator animation) {
197 mProgressView.setVisibility(show ? View.VISIBLE : View.GONE);
198 scrollView.setVisibility(show ? View.GONE : View.VISIBLE);
199 }
200 });
201 } else {
202 // The ViewPropertyAnimator APIs are not available, so simply show
203 // and hide the relevant UI components.
204 mProgressView.setVisibility(show ? View.VISIBLE : View.GONE);
205 scrollView.setVisibility(show ? View.GONE : View.VISIBLE);
206
207 }
208 }

139

209
210 }

APPENDIX 3 – OPRETURNMAIN OF JAVA WEB APPLICATION SERVER

 1 /*
 2 * To change this license header, choose License Headers in Project Properties.
 3 * To change this template file, choose Tools | Templates
 4 * and open the template in the editor.
 5 */
 6 package apkt.opreturn;
 7
 8 import apkt.dao.jpa.GenericDaoJpa;
 9 import apkt.mail.JavaMailThread;
 10 import apkt.model.OpReturn;
 11 import apkt.model.OpReturn.OpReturnType;
 12 import apkt.model.TxOpReturn;
 13 import apkt.service.ProjService;
 14 import com.google.common.util.concurrent.Service;
 15 import java.io.File;
 16 import java.io.IOException;
 17 import java.math.BigDecimal;
 18 import java.math.RoundingMode;
 19 import java.net.URL;
 20 import java.net.URLClassLoader;
 21 import java.util.Date;
 22 import java.util.Iterator;
 23 import java.util.List;
 24 import java.util.Locale;
 25 import java.util.ResourceBundle;
 26 import java.util.Set;
 27 import java.util.concurrent.ExecutorService;
 28 import java.util.concurrent.Executors;
 29 import java.util.logging.Level;
 30 import java.util.logging.Logger;
 31 import javax.persistence.EntityManager;
 32 import javax.persistence.EntityManagerFactory;
 33 import javax.persistence.Persistence;
 34 import org.bitcoinj.core.Address;
 35 import org.bitcoinj.core.Coin;
 36 import org.bitcoinj.core.InsufficientMoneyException;
 37 import org.bitcoinj.core.NetworkParameters;
 38 import org.bitcoinj.core.Transaction;
 39 import org.bitcoinj.core.TransactionOutput;
 40 import org.bitcoinj.kits.WalletAppKit;
 41 import org.bitcoinj.params.MainNetParams;
 42 import org.bitcoinj.params.TestNet3Params;
 43 import org.bitcoinj.script.ScriptBuilder;
 44 import org.bitcoinj.wallet.SendRequest;
 45 import org.bitcoinj.wallet.Wallet;
 46 import org.bitcoinj.wallet.listeners.WalletChangeEventListener;
 47 import org.bitcoinj.wallet.listeners.WalletCoinsReceivedEventListener;
 48 import org.spongycastle.util.encoders.Hex;
 49
 50
 51 public class OpReturnMain { // (BITCOINJ, 2017)
 52
 53 // set bitcoin wallet to either MainNet (main network where bitcoin have economic value)
 54 // or TestNet (used for testing purposes and bicoins do not have any value)
 55 public static NetworkParameters params = TestNet3Params.get();
 56 // public static NetworkParameters params = MainNetParams.get();
 57

140

 58 // set wallet name
 59 public static final String APP_NAME = "Twinings";
 60 private static final String TWININGS = APP_NAME.replaceAll("[^a-zA-Z0-9.-]", "_") + "-" +
params.getPaymentProtocolId();
 61
 62 // declare new SPV (Simplified Payment Verification) bitcoinj app
 63 public static WalletAppKit bitcoin;
 64
 65 public static void main(String[] args) {
 66
 67 //
 68 setupWalletKit();
 69
 70 // start a runnable thread process that runs the wallet’s event listeners.
 71 // It is constantly listening for events that occur to bitcoin addresses that belong to the wallet
 72 bitcoin.addListener(new Service.Listener() {
 73 @Override
 74 public void starting() {
 75 super.starting();
 76 System.out.println("starting");
 77 }
 78
 79 @Override
 80 public void running() {
 81 super.running();
 82 System.out.println("running: " + bitcoin.wallet().currentChangeAddress().toString());
 83 }
 84
 85 @Override
 86 public void stopping(Service.State from) {
 87 super.stopping(from);
 88 System.out.println("stopping");
 89 }
 90
 91 @Override
 92 public void terminated(Service.State from) {
 93 super.terminated(from);
 94 System.out.println("terminated");
 95 }
 96
 97 @Override
 98 public void failed(Service.State from, Throwable failure) {
 99 super.failed(from, failure);
100 System.out.println("failed");
101 }
102
103 }, Runnable::run);
104 bitcoin.addListener(new Service.Listener() {
105 }, OpReturnRunnable::runLater);
106 bitcoin.startAsync();
107
108 }
109
110 public static void setupWalletKit() {
111
112 // create new SPV (Simplified Payment Verification) bitcoinj app or
113 // if seed wallet is non-null it means we are restoring from backup.
114 bitcoin = new WalletAppKit(params, new File("."), TWININGS) {
115 @Override
116 protected void onSetupCompleted() {
117 // Don't make the user wait for confirmations for now, as the intention is they're sending it
118 // their own money!
119 bitcoin.wallet().allowSpendingUnconfirmedTransactions();
120 System.out.println("WalletAppKit onSetupCompleted: " + bitcoin.wallet().currentChangeAddress().toString());
121 System.out.println("port: " + params.getPort());
122 System.out.println("wallet current balance: " + bitcoin.wallet().getBalance().toString());
123
124 // Java Persistence API instance for application database
125 EntityManagerFactory emf = Persistence.createEntityManagerFactory("apekato");
126 EntityManager em = emf.createEntityManager();
127
128 try {
129 // register invalid data when wallet is initialized and when wallet is changed
130 registerInvalidData(em);
131 } catch (Exception ex) {
132 Logger.getLogger(OpReturnMain.class.getName()).log(Level.SEVERE, null, ex);

141

133 }
134 em.close(); emf.close();
135
136 // start wallet event listeners
137 walletListener();
138 }
139 };
140 // bitcoin.setBlockingStartup(false);
141 }
142
143 public static void registerInvalidData(EntityManager em) throws Exception{
144 List<OpReturn> opReturnList = GenericDaoJpa.findListByAttribute(
145 em,
146 OpReturn.class,
147 "status",
148 OpReturn.OpReturnStatus.OP_RETURN_STATUS_INVALID_DATA);
149 if (opReturnList.size() < OpReturn.OpReturnInvalidDataList.SIZE) {
150 int newInvalidDataNum = OpReturn.OpReturnInvalidDataList.SIZE - opReturnList.size();
151 if (newInvalidDataNum != 0){
152 for (int i = 0; i < newInvalidDataNum; i ++){
153 String freshReceiveAddress = bitcoin.wallet().freshReceiveAddress().toString();
154 System.out.println("freshReceiveAddress: " + freshReceiveAddress);
155 OpReturn opReturn = new OpReturn(
156 "",
157 freshReceiveAddress,
158 OpReturn.OpReturnStatus.OP_RETURN_STATUS_INVALID_DATA,
159 new Date());
160 GenericDaoJpa.insert(em, opReturn);
161 }
162 }
163 }
164 }
165
166 public static void registerOpReturnData(EntityManager em) throws Exception{
167
168 List<OpReturn> opReturnList = GenericDaoJpa.findListByAttribute(
169 em,
170 OpReturn.class,
171 "status",
172 OpReturn.OpReturnStatus.OP_RETURN_STATUS_WAITING_TX);
173
174 for (OpReturn opReturn : opReturnList){
175 Set<Transaction> transactionSet = bitcoin.wallet().getTransactions(false);
176 Iterator<Transaction> iterator = transactionSet.iterator();
177 while(iterator.hasNext()) {
178 Transaction transaction = iterator.next();
179 List<TransactionOutput> transactionOutputs = transaction.getOutputs();
180 for (TransactionOutput to : transactionOutputs){
181 Address addressFromP2PKHScript = to.getAddressFromP2PKHScript(params);
182 if (addressFromP2PKHScript != null){
183 if (addressFromP2PKHScript.toString().equals(opReturn.getAddress())){
184 System.out.println("getAddressFromP2PKHScript: " + addressFromP2PKHScript.toString());
185 timestampData(em, opReturn);
186 }
187 }
188
189 // Address addressFromP2SH = to.getAddressFromP2SH(params);
190 // if (addressFromP2SH != null){
191 // if (addressFromP2SH.toString().equals(opReturn.getAddress())){
192 // System.out.println("getAddressFromP2SH: " + addressFromP2SH.toString());
193 // timestampData(em, opReturn);
194 // }
195 // }
196 }
197 }
198 }
199 }
200
201 public static void registerOpReturnData(EntityManager em, Transaction tx) throws Exception{
202
203 List<OpReturn> opReturnList = GenericDaoJpa.findListByAttribute(
204 em,
205 OpReturn.class,
206 "status",
207 OpReturn.OpReturnStatus.OP_RETURN_STATUS_WAITING_TX);
208

142

209 for (OpReturn opReturn : opReturnList){
210
211 for (TransactionOutput to : tx.getOutputs()){
212 Address addressFromP2PKHScript = to.getAddressFromP2PKHScript(params);
213 if (addressFromP2PKHScript != null){
214 if (addressFromP2PKHScript.toString().equals(opReturn.getAddress())){
215 System.out.println("getAddressFromP2PKHScript: " + addressFromP2PKHScript.toString());
216 timestampData(em, opReturn);
217 }
218 }
219 }
220 }
221 }
222
223
224 // timestamp data in the blockchain
225 public static void timestampData(EntityManager em, OpReturn opReturn) throws IOException,
InsufficientMoneyException, Exception {
226
227 // create a byte variable to convert a SHA 256 hash of a signed document into bytes
228 byte[] opReturnBytes = null;
229
230 // timestamp any text message in the blockchain
231 if (opReturn.getType().endsWith(OpReturn.OpReturnType.OP_RETURN_TYPE_TEXT)){
232 opReturnBytes = opReturn.getText().getBytes("UTF-8");
233
234 // timestamp an ICP-Brasil signed document in the blockchain
235 } else if (opReturn.getType().endsWith(OpReturn.OpReturnType.OP_RETURN_TYPE_NOTARIZATION)){
236 opReturnBytes = Hex.decode(opReturn.getText());
237 }
238
239 // Create a tx with an OP_RETURN output
240 Transaction tx = new Transaction(params);
241 tx.addOutput(Coin.ZERO, ScriptBuilder.createOpReturnScript(opReturnBytes));
242
243 System.out.println("wallet before tx: " + bitcoin.wallet().getBalance().toString());
244
245 // send wallet information regarding timestamping data.
246 SendRequest req = SendRequest.forTx(tx);
247
248 // set timestamp trasaction fee (0.00015 BTC)
249 BigDecimal sendfee = opReturn.getFee().setScale(5, RoundingMode.HALF_EVEN);
250
251 // send timestamp transaction
252 req.feePerKb = Coin.parseCoin(sendfee.toString());
253
254 // Coin c = req.feePerKb;
255 // if (c.value < 15000) {
256 // long add = 15000 - c.value;
257 // req.feePerKb.add(Coin.valueOf(add));
258 // } else if (c.value > 15000) {
259 // long subtract = c.value - 15000;
260 // req.feePerKb.add(Coin.valueOf(subtract));
261 // }
262 // Coin c2 = req.feePerKb;
263 // Send it to the Bitcoin network
264
265 // get result information of timestamp transaction
266 Wallet.SendResult sendResult = bitcoin.wallet().sendCoins(req);
267
268 // long fee = sendResult.tx.getFee().longValue();
269
270 System.out.println("getHashAsString: " + sendResult.tx.getHashAsString());
271
272 // checks if timestamp transaction was successful
273 if (sendResult.tx.getHashAsString() != null){
274
275 // set timestamp opReturn object for persistence in application database
276 // change timestamp opReturn object status to REGISTERED
277 opReturn.setStatus(OpReturn.OpReturnStatus.OP_RETURN_STATUS_REGISTERED);
278 // set timestamp transaction ID into timestamp opReturn object
279 opReturn.setTxId(sendResult.tx.getHashAsString());
280 // persist timestamp opReturn object in application database
281 String ok = GenericDaoJpa.updateWithoutTx(em, OpReturn.class, opReturn);
282
283 // TxOpReturn txOpReturn = new TxOpReturn(

143

284 // opReturn.getText(),
285 // opReturn.getAddress(),
286 // opReturn.getStatus(),
287 // opReturn.getType(),
288 // opReturn.getEmail(),
289 // new Date(),
290 // sendResult.tx.getHashAsString(),
291 // opReturn.getFee(),
292 // opReturn.getLoginId());
293 // GenericDaoJpa.insert(em, txOpReturn);
294
295 // send email to user with information regarding timestamp transation
296 if (opReturn.getType().equals(OpReturnType.OP_RETURN_TYPE_NOTARIZATION)){
297 File file = new File(ProjService.RBPATH);
298 URL[] urls = {file.toURI().toURL()};
299 ClassLoader loader = new URLClassLoader(urls);
300
301 ResourceBundle rb;
302 String language = opReturn.getLang();
303 if (language.equals("pt")){
304 rb = ResourceBundle.getBundle("SystemMessages", Locale.forLanguageTag("pt"), loader);
305 } else {
306 rb = ResourceBundle.getBundle("SystemMessages", Locale.forLanguageTag("en"), loader);
307 }
308 String emailSubject = rb.getString("email_body_op_return_subject_notarize");
309 StringBuilder emailBodyOpReturn = new StringBuilder();
310 emailBodyOpReturn.append(rb.getString("email_body_hi"));
311 emailBodyOpReturn.append(",");
312 emailBodyOpReturn.append("
</br>
</br>");
313 emailBodyOpReturn.append(rb.getString("email_body_op_return_subject_notarize"));
314 emailBodyOpReturn.append(": ");
315 emailBodyOpReturn.append("
</br>
</br>");
316 emailBodyOpReturn.append(rb.getString("email_body_op_return_transaction_id"));
317 emailBodyOpReturn.append(" ");
318 emailBodyOpReturn.append(opReturn.getTxId());
319 emailBodyOpReturn.append("
</br>
</br>");
320 emailBodyOpReturn.append(rb.getString("email_body_op_return_search"));
321 emailBodyOpReturn.append(" ");
322
323 if (ProjService.ADDRESS == ProjService.AddressType.MAIN){
324 emailBodyOpReturn.append("https://chain.so/tx/BTC/");
325 }else if (ProjService.ADDRESS == ProjService.AddressType.TESTNET){
326 emailBodyOpReturn.append("https://chain.so/tx/BTCTEST/");
327 }
328 emailBodyOpReturn.append(opReturn.getTxId());
329
330 emailBodyOpReturn.append("
</br>
</br>");
331 emailBodyOpReturn.append(rb.getString("email_body_end"));
332
333 JavaMailThread javaMailThread_1 = new JavaMailThread(opReturn.getEmail(), emailSubject,
emailBodyOpReturn.toString());
334 ExecutorService threadExecutor = Executors.newCachedThreadPool();
335 threadExecutor.execute(javaMailThread_1);
336 threadExecutor.shutdown();
337 }else if (opReturn.getType().equals(OpReturnType.OP_RETURN_TYPE_TEXT)){
338 File file = new File(ProjService.RBPATH);
339 URL[] urls = {file.toURI().toURL()};
340 ClassLoader loader = new URLClassLoader(urls);
341
342 ResourceBundle rb;
343 String language = opReturn.getLang();
344 if (language.equals("pt")){
345 rb = ResourceBundle.getBundle("SystemMessages", Locale.forLanguageTag("pt"), loader);
346 } else {
347 rb = ResourceBundle.getBundle("SystemMessages", Locale.forLanguageTag("en"), loader);
348 }
349 String emailSubject = rb.getString("email_body_op_return_subject_message");
350 StringBuilder emailBodyOpReturn = new StringBuilder();
351 emailBodyOpReturn.append(rb.getString("email_body_hi"));
352 emailBodyOpReturn.append(",");
353 emailBodyOpReturn.append("
</br>
</br>");
354 emailBodyOpReturn.append(rb.getString("email_body_op_return_subject_message"));
355 emailBodyOpReturn.append(": ");
356 emailBodyOpReturn.append("
</br>
</br>");
357 emailBodyOpReturn.append(rb.getString("email_body_op_return_transaction_id"));
358 emailBodyOpReturn.append(" ");

144

359 emailBodyOpReturn.append(opReturn.getTxId());
360 emailBodyOpReturn.append("
</br>
</br>");
361 emailBodyOpReturn.append(rb.getString("email_body_op_return_search"));
362 emailBodyOpReturn.append(" ");
363
364 if (ProjService.ADDRESS == ProjService.AddressType.MAIN){
365 emailBodyOpReturn.append("https://chain.so/tx/BTC/");
366 }else if (ProjService.ADDRESS == ProjService.AddressType.TESTNET){
367 emailBodyOpReturn.append("https://chain.so/tx/BTCTEST/");
368 }
369 emailBodyOpReturn.append(opReturn.getTxId());
370
371 emailBodyOpReturn.append("
</br>
</br>");
372 emailBodyOpReturn.append(rb.getString("email_body_end"));
373
374 JavaMailThread javaMailThread_1 = new JavaMailThread(opReturn.getEmail(), emailSubject,
emailBodyOpReturn.toString());
375 ExecutorService threadExecutor = Executors.newCachedThreadPool();
376 threadExecutor.execute(javaMailThread_1);
377 threadExecutor.shutdown();
378 }
379
380 }
381
382 System.out.println("wallet after tx: " + bitcoin.wallet().getBalance().toString());
383
384 }
385
386 public static void walletListener() {
387 // bitcoin.wallet().addChangeEventListener(new WalletChangeEventListener() {
388 // @Override
389 // public void onWalletChanged(Wallet wallet) {
390 // System.out.println("onWalletChanged");
391 //
392 // EntityManagerFactory emf = Persistence.createEntityManagerFactory("apekato");
393 // EntityManager em = emf.createEntityManager();
394 //
395 // try {
396 // registerOpReturnData(em);
397 // // register invalid data when wallet is initialized and when wallet is changed
398 // registerInvalidData(em);
399 // } catch (Exception ex) {
400 // Logger.getLogger(OpReturnMain.class.getName()).log(Level.SEVERE, null, ex);
401 // }
402 //
403 // em.close();
404 // emf.close();
405 // }
406 // });
407
408 // shows an event listener
409 // that is triggered when a wallet address receives bitcoins from a user
410 // who requests a signed document authentication service
411 bitcoin.wallet().addCoinsReceivedEventListener(new WalletCoinsReceivedEventListener() {
412 @Override
413
414
415 public void onCoinsReceived(Wallet wallet, Transaction tx, Coin prevBalance, Coin newBalance) {
416 System.out.println("onCoinsReceived");
417
418 EntityManagerFactory emf = Persistence.createEntityManagerFactory("apekato");
419 EntityManager em = emf.createEntityManager();
420
421 try {
422
423 // retrieve in application database a wallet address that has received a
424 // bitcoin payment and timestamps a signed document’s SHA 256 Hash
425 // through the OP_RETURN script operation code and updates the
426 // status of a signed document’s timestamp process to "REGISTERED" database
427 registerOpReturnData(em, tx);
428
429 // register invalid data (i.e. new wallet addresses)
430 // when wallet is initialized or when a wallet status changes to "REGISTERED"
431 registerInvalidData(em);
432 } catch (Exception ex) {
433 Logger.getLogger(OpReturnMain.class.getName()).log(Level.SEVERE, null, ex);

145

434 }
435
436 em.close();
437 emf.close(); }
438 });
439 }
440 }
441

APPENDIX 4 – VERIFYNOTARIZATIONASYNCTASK OF ANDROID APP

1 package a.apkt.asynctask;
2
3 import android.animation.Animator;
4 import android.animation.AnimatorListenerAdapter;
5 import android.app.Activity;
6 import android.content.Intent;
7 import android.os.AsyncTask;
8 import android.os.Bundle;
9 import android.view.Gravity;
10 import android.view.MenuItem;
11 import android.view.View;
12 import android.widget.LinearLayout;
13 import android.widget.ScrollView;
14 import android.widget.Toast;
15
16 import com.google.gson.Gson;
17
18 import java.io.FileNotFoundException;
19 import java.io.IOException;
20 import java.io.InputStream;
21 import java.io.InputStreamReader;
22 import java.net.URL;
23
24 import javax.net.ssl.HttpsURLConnection;
25
26 import a.apkt.ItemFragment;
27 import a.apkt.MainActivity;
28 import a.apkt.OpReturnEditActivity;
29 import a.apkt.R;
30 import a.apkt.VerifyNotarizationActivity;
31 import a.apkt.model.Tx;
32 import a.apkt.model.OpReturn;
33 import a.apkt.service.ProjService;
34 import a.apkt.service.StaticVars;
35
36 public class VerifyNotarizationAsyncTask extends AsyncTask<String, Void, Boolean> {
37
38 private Activity activity;
39 private View mProgressView;
40 private ScrollView scrollView;
41 private LinearLayout linearLayout;
42 private MenuItem actionAddItem;
43 private Tx tx;
44 private String txId;
45 private boolean iOExceptionWrongFormat = false;
46 private boolean fileNotFoundException = false;
47 private ItemFragment itemFragment;
48 private OpReturn opReturn;
49
50 public VerifyNotarizationAsyncTask(Activity activity, MenuItem actionAddItem, String txId){
51 this.activity = activity;
52 this.actionAddItem = actionAddItem;
53 this.txId = txId;
54 }
55
56 public VerifyNotarizationAsyncTask(Activity activity, ItemFragment itemFragment, OpReturn opReturn){
57 this.activity = activity;
58 this.itemFragment = itemFragment;
59 this.opReturn = opReturn;

146

60 txId = opReturn.getTxId();
61 }
62
63
64 protected void onPreExecute() {
65 if (activity.getClass() == MainActivity.class){
66 mProgressView = activity.findViewById(R.id.activity_progress);
67 if (itemFragment != null){
68 linearLayout = (LinearLayout) activity.findViewById(R.id.linear_layout);
69 } else {
70 scrollView = (ScrollView) activity.findViewById(R.id.scroll_view);
71 }
72 showProgress(true);
73 }
74
75 }
76
77 @Override
78 protected Boolean doInBackground(String... params) {
79
80 try {
81
82 // url to retrieve a transaction id of a document timestamped
83 // on bitcoin’s blockchain using BlockCypher’s API
84 String url_ = ProjService.BLOCK_CYPHER_ENDPOINT + "txs/" + txId + "?token=" +
ProjService.BLOCK_CYPHER_TOKEN;
85
86 // get a pointer to a "resource" on the World Wide Web
87 URL url = new URL(url_);
88
89 // send request to BlockCypher’s API
90 HttpsURLConnection urlConnection = (HttpsURLConnection)url.openConnection();
91
92 // load into InputStream data of timestamp transaction on bitcoin’s blockchain
93 InputStream in = urlConnection.getInputStream();
94
95 // convert InputStream to InputStreamReader
96 InputStreamReader reader =
97 new InputStreamReader(in);
98
99 // load Tx (transaction) object that has detailed information of transaction id of
100 // a document timestamped on bitcoin’s blockchain using BlockCypher’s API
101 tx = new Gson().fromJson(reader, Tx.class);
102
103 } catch (FileNotFoundException exception) {
104 fileNotFoundException = true;
105 return false;
106 } catch (IOException exception) {
107 iOExceptionWrongFormat = true;
108 return false;
109 }catch (Exception exception) {
110 exception.printStackTrace(); // show exception details
111 return false;
112 }
113
114 return true;
115 }
116
117 @Override
118 protected void onPostExecute(final Boolean success) {
119
120
121 if (success) {
122
123 if (activity.getClass() == MainActivity.class && itemFragment == null){
124 showProgress(false);
125 MainActivity mainActivity = (MainActivity) activity;
126 mainActivity.setVerifyNotarizationTx(tx);
127 Intent intent = new Intent(Intent.ACTION_OPEN_DOCUMENT); // (ETERNITY WALL, 2016)
128 intent.setType("*/*"); // (ETERNITY WALL, 2016)
129 activity.startActivityForResult(intent,
StaticVars.OPEN_DOCUMENT_VERIFY_NOTARIZATION_ACTIVITY_RESULT);
130 } else if (activity.getClass() == MainActivity.class && itemFragment != null) {
131 showProgress(false);
132 String txBlockCypherJson = new Gson().toJson(tx);

147

133 String opReturnJson = new Gson().toJson(opReturn);
134 Intent intent = new Intent(activity, OpReturnEditActivity.class);
135 Bundle args = new Bundle();
136 args.putString("opReturnJson", opReturnJson);
137 args.putString("txBlockCypherJson", txBlockCypherJson);
138 // args.putString("loginStringJson", loginStringJson);
139 intent.putExtras(args);
140 activity.startActivity(intent);
141 } else if (activity.getClass() == VerifyNotarizationActivity.class) { // doesn't use showProgress() because it uses
SwipeRefreshLayout
142 VerifyNotarizationActivity verifyNotarizationActivity = (VerifyNotarizationActivity) activity;
143 verifyNotarizationActivity.setTx(tx);
144 } else if (activity.getClass() == OpReturnEditActivity.class) { // doesn't use showProgress() because it uses
SwipeRefreshLayout
145 OpReturnEditActivity OpReturnEditActivity = (OpReturnEditActivity) activity;
146 OpReturnEditActivity.setTx(tx);
147 }
148 }
149 else if (!success) {
150 showProgress(false);
151 if (fileNotFoundException) {
152 Toast toast = Toast.makeText(activity, activity.getString(R.string.toast_tx_id_invalid), Toast.LENGTH_LONG);
153 toast.setGravity(Gravity.TOP, 0, 0);
154 toast.show();
155 } else if (iOExceptionWrongFormat){
156 Toast toast = Toast.makeText(activity, activity.getString(R.string.toast_tx_id_wrong_format),
Toast.LENGTH_LONG);
157 toast.setGravity(Gravity.TOP, 0, 0);
158 toast.show();
159 }
160 }
161 }
162
163 public void showProgress(final boolean show) {
164 int shortAnimTime = activity.getResources().getInteger(android.R.integer.config_shortAnimTime);
165 mProgressView.setVisibility(show ? View.VISIBLE : View.GONE);
166 if (itemFragment != null){
167 linearLayout.setVisibility(show ? View.GONE : View.VISIBLE);
168 }else {
169 scrollView.setVisibility(show ? View.GONE : View.VISIBLE); // scrollView from VerifyNotarizationFragment
170 actionAddItem.setEnabled(show ? false : true); // actionAddItem from VerifyNotarizationFragment
171 }
172 mProgressView.animate().setDuration(shortAnimTime).alpha(
173 show ? 1 : 0).setListener(new AnimatorListenerAdapter() {
174 @Override
175 public void onAnimationEnd(Animator animation) {
176 mProgressView.setVisibility(show ? View.VISIBLE : View.GONE);
177 }
178 });
179 }
180 }
181

