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“Science is what we understand well enough to explain to a computer.  

Art is everything else we do.” 

Donald E. Knuth 



RESUMO 

 

Esta tese estuda o papel de processos coevolutivos em interações antagonistas 
na diversificação das espécies. Interações antagonistas se referem a qualquer interação 
entre espécies no qual uma espécie é beneficiada em detrimento da outra, podendo se 
referir a interações parasito-hospedeiro, parasitóide-hospedeiro e herbívoros-planta. É 
utilizada uma abordagem de simulações computacionais e modelos baseados em 
indivíduos de modo a servir como “prova de conceito” de hipóteses teóricas a respeito 
de processos coevolutivos. No capítulo 1, eu faço uma breve introdução a respeito de 
coevolução, interações antagonistas e o Paradigma de Estocolmo, que serve como 
referencial teórico para os modelos desenvolvidos nos próximos capítulos. No capítulo 
2, eu avalio como interações antagonistas em um par de espécies são influenciados por 
estratégias de reprodução sexuada e asexuada. Os resultados deste trabalho 
demonstram que para modelos de fenótipos quantitativos que consideram genomas com 
múltiplos loci de forma explícita, a estratégia reprodutiva resulta em dinâmicas 
coevolutivas distintas. Enquanto modelos com reprodução asexuada podem resultar em 
bifurcações evolutivas ou extinção do consumidor, modelos de reprodução sexuada 
resultam em oscilações e interações persistentes. No capítulo 3, eu estudo como a 
interação com diferentes recursos afetam a evolução do tamanho do repertório de 
hospedeiro e a riqueza de espécies em um modelo espacialmente explícito. É 
demonstrado que ao se considerar aspectos geográficos e a seleção devido ao uso de 
recursos simultaneamente, as linhagens oscilam o seu grau de especialização ao longo 
de múltiplos eventos de especiação, conforme previsto pela Hipótese da Oscilação. Ao 
mesmo tempo, pressões seletivas mais intensas e menor capacidade de dispersão 
atuam conjuntamente para produzir maior riqueza de espécies. Estes trabalhos ilustram 
através de diferentes maneiras em como o estudo de processos coevolutivos pode nos 
ajudar entender melhor dinâmicas de coexistência das espécies à geração da 
biodiversidade. 
 
Palavras-chave: Parasito-hospedeiro. Interações ecológicas. Coevolução. Especiação. 

Diversificação. 
 

  



ABSTRACT 
 

This thesis investigates the role of coevolutive processes in antagonistic 
interactions in the diversification of species. Antagonistic interactions refer to any 
interaction between species in which one species benefits at the expense of another and 
can refer to either parasite-host, parasitoid-host and herbivore-plant interactions. I use an 
approach of computational simulations and individual-based models to apply a “proof of 
concept” on theoretical hypotheses regarding coevolutionary processes. In chapter 1, I 
present a short introduction about coevolution, antagonistic interactions and the 
Stockholm Paradigm, which is the underlying theoretical framework for the models 
developed in the following chapters. In chapter 2, I assess how antagonistic interactions 
in a pair of species are influenced by sexual and asexual reproductive strategies. This 
paper demonstrates that for models of quantitative traits that consider genomes with 
multiple loci explicitly, the reproductive strategy results in distinct coevolutionary 
dynamics. While models with asexual reproduction may result in evolutionary branching 
or consumer extinction, models of sexual reproduction result in oscillations and persistent 
interactions. In chapter 3, I study how the interaction with different resources affects the 
evolution of host range and species richness in a spatially explicit model. I demonstrate 
that when considering geographical aspects and selection on resource use 
simultaneously, the lineages oscillate their degree of specialization throughout multiple 
speciation events, as predicted by the Oscillation Hypothesis. At the same time, stronger 
selective pressures and smaller dispersion capacity act simultaneously resulting in higher 
species richness. This study illustrates through different approaches how investigation on 
coevolutionary processes can help us better comprehend the dynamics of species 
coexistence and generation of biodiversity. 
 
Keywords: Parasite-host. Ecological interactions. Coevolution. Speciation. 

Diversification. 
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CAPÍTULO 1 

INTRODUÇÃO GERAL: INTERAÇÕES RECÍPROCAS EM UM MUNDO EM 
CONSTANTE MUDANÇAS 
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Desde o aparecimento dos primeiros seres vivos no planeta Terra, a evolução e 

persistência das mais diversas formas de vida tem sido fortemente influenciada pela 

interação com outras espécies. Conceitos relacionados à dinâmica esperadas devido à 

interações recíprocas entre as espécies têm se tornado elementos chave no estudo de 

processos evolutivos. Em um clássico trabalho, Erlich & Raven (1964) foram os primeiros 

autores a sugerir que a grande diversidade de espécies de borboleta, um dos grupos de 

insetos mais diversos que existem (Mitter et al., 1988), poderia estar intimamente 

relacionada a uma adaptação ao uso de suas plantas hospedeiras. Ao estudar curvas de 

extinção de táxons, Van Valen (1973) percebeu que estas permaneciam constantes 

independentemente do grupo estudado. Esta observação o levou a propor a ideia de que 

espécies em determinada relação ecológica estão em uma perpétua “corrida 

armamentista”, no qual as espécies desenvolvem adaptações e contra-adaptações sem 

nunca chegarem a um equilíbrio. Ao longo das últimas décadas, diversos novos 

conceitos, modelos e experimentos foram desenvolvidos de modo a detalhar como 

interações recíprocas entre espécies afetam a sua evolução (Thompson, 1994). Tendo 

em vista o papel destas interações ecológicas em processos ecológicos e evolutivos, 

pode-se considerar a coevolução como um fenômeno essencial para se entender a 

organização da biodiversidade atual (Thompson, 1994; Thompson, 2005).  

Em sua definição mais ampla, a coevolução pode ser definida como mudanças 

evolutivas recíprocas entre espécies que interagem e exercem pressões seletivas 

recíprocas entre si (Janzen, 1980). Entretanto, esta definição pode ser detalhada de 

acordo com a escala temporal e magnitude das mudanças causadas pela interação. Em 

especial, Brooks (1979) sugere que se utilize o termo co-acomodação para descrever 

adaptações em características das espécies envolvidas em interações recíprocas, sem 

que ocorra processos de especiação associados a esta interação. Por sua vez, o termo 

co-especiação descreve eventos em que a evolução da especificidade de uma espécie 

em relação à exploração da outra leva a formação de espécies distintas (Brooks, 1979; 

Brooks et al., 2015). Estas distinções se tornam importantes, uma vez que ressaltam que 

a interação entre espécies pode ter consequências tanto a um nível microevolutivo 

quanto macroevolutivo. 

De acordo com a perspectiva adotada por Thompson (2005), podemos considerar 

que boa parte da evolução é de certa forma parte de um processo coevolutivo. A maior 

parte das espécies sobrevive e se reproduz com necessidade de uma outra espécie, seja 

de forma direta ou indireta. Espécies podem evoluir ao cooptar e manipular outras 
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espécies de vida livre, ou adquirir o genoma inteiro de outras espécies através de relaçõe 

simbióticas como mutualismo e parasitismo (Thompson, 2005). Para fins de aplicações 

práticas para o interesse humano, fenômenos coevolutivos se aplicam para áreas de 

epidemiologia, aquicultura, agricultura, biologia da conservação, manejo florestal, entre 

tantos outros (Thompson, 2005).  

Aqui, destaco duas áreas de interesse especial do entendimento de fenômenos 

coevolutivos: mudanças climáticas e o surgimento de doenças infecciosas emergentes 

(Brooks et al., 2019). Mudanças na biosfera através da alteração da paisagem, 

perturbações ecológicas e invasões de espécies podem ser amplamente atribuídas à 

atividade antropogênica (Hoberg & Brooks, 2015). Essas perturbações têm sido 

relacionadas a um aumento no número de doenças emergentes nas últimas décadas 

(Epstein et al., 2003). A introdução de espécies em novas regiões aumenta a 

possibilidade de mistura de organismos que nunca tiveram contato evolutivo prévio 

(Daszak et al., 2000). Um sistema de transporte integrado entre as diversas regiões do 

globo terrestre também favorece o surgimento de novas interações devido a mudanças 

na distribuição das espécies, o que pode levar à disseminação de patógenos que afetam 

a saúde das populações humanas, da vida selvagem e doméstica (Kilpatrick, 2011). 

Além disso, as mudanças climáticas alteram os padrões de movimento e a distribuição 

geográfica das espécies, juntamente com seus patógenos (Dobson & Carper, 1992; 

Daszak et al., 2000; Patz et al., 2008). Por fim, o contato de espécies previamente 

isoladas favorece o surgimento de doenças infecciosas, no que é denominado crise de 

doenças infecciosas emergentes (EID, do inglês emerging infectious diseases) (Brooks 

& Hoberg, 2006; Brooks & Hoberg, 2013). 

O surgimento de doenças infecciosas pode apresentar grandes impactos à saúde, 

políticos e econômicos (Epstein et al., 2003; Newcomb et al., 2003). Eles também alteram 

o funcionamento do ecossistema e ameaçam a biodiversidade com maior risco de 

extinção para espécies vulneráveis (Harvell et al., 1999; Padersen et al., 2007). Desta 

forma, uma melhor compreensão da dinâmica coevolutiva como o de sistemas parasitas-

hospedeiros pode nos ajudar a prever com mais precisão o que esperar durante períodos 

de mudanças climáticas e ambientais e permitir respostas mais eficientes para a 

prevenção ou mitigação dos impactos da EID (Agosta et al., 2010). Uma abordagem 

fundamental para compreender a EID é explorá-la como um fenômeno evolutivo e 

ecológico que ocorre como conseqüência do estabelecimento de novas interações de 

espécies anteriormente isoladas (Brooks & Hoberg, 2013). Por sua vez, o delineamento 
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de políticas e respostas apropriadas para estas questões necessitam de uma base 

teórica forte e bem embasada a respeito de processos coevolutivos. 

Ao mesmo tempo em que se faz necessário um melhor entendimento de 

processos coevolutivos para a compreensão de fenômenos ecológicos e evolutivos, 

assim como para aplicações práticas de interesse humano, tem se percebido que muitos 

das visões tradicionais não se acomodam mais às evidências empíricas de como estes 

processos ocorrem na natureza. Um exemplo disso é o chamado “paradoxo do parasito”. 

O reconhecimento de que a maioria dos parasitas têm um número restrito de hospedeiros 

(Thompson 1994, 2005) levou à visão evolutiva tradicional a considerar os parasitas 

como especialistas em hospedeiros (Bernays, 1989; Agrawal, 2000; Bernays, 2001; Janz 

et al., 2005). Esse padrão de especialização levou à idéia de que a especialização é 

continuamente favorecida ao longo do tempo evolutivo, o que por sua vez leva as 

espécies a um “beco sem saída” evolutivo (Moran, 1988; Wiegmann et al., 1993; Kelley 

& Farrell, 1998). Por outro lado, vários estudos mostraram que linhagens generalistas de 

parasitas são derivadas de linhagens mais especializadas (Scheffer & Wiegmann, 2000; 

Janz et al., 2001, Yotoko et al., 2005). O “paradoxo do parasito”, portanto, descreve a 

contraditória ideia de que a especialização é sempre selecionada em parasitas com as 

grandes evidências mostrando eventos abundantes de troca de hospedeiro (Agosta et 

al., 2010). Ao se reconhecer que a especialização de parasitos é menos estrita do que 

esperado anteriormente, pode se compreender que um número diversificado de surtos 

de doenças infecciosas pode estar relacionado à dispersão de parasitas para novos 

hospedeiros que não tiveram tempo de desenvolver mecanismos de resistência (Brooks 

& Hoberg, 2013). Além disso, é também provável que essa troca de hospedeiro ocorra 

mesmo sem a evolução de novas capacidades de utilização do patógeno (Agosta & 

Klemens, 2008). 

Nesse contexto, o Paradigma de Estocolmo foi proposto como um framework 

teórico que resolve os paradoxos derivados das visões tradicionais da teoria evolutiva 

relacionadas às associações interespecíficas (Hoberg & Brooks, 2015). Ele integra 

quatro conceitos básicos que explicam como as interações evoluem em diferentes 

escalas: ecological fitting, hipótese de oscilação e pulso de táxon (Hoberg & Brooks, 

2015). O ecological fitting refere-se à capacidade do organismo de se adaptar 

rapidamente a novos hospedeiros devido a sua flexibilidade fenotípica e conservantismo 

filogenético, sem a necessidade de novidades evolutivas para que ocorra a troca de 

hospedeiros (Agosta & Klemens, 2008). Essa flexibilidade pode resultar em oscilações 
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no número de hospedeiros usados por um organismo, com especialistas dando origem 

a generalistas, e generalistas se adaptando e diversificando em especialistas, conforme 

previsto pela Hipótese de Oscilação (Janz & Nylin, 2008; Nylin et al., 2014). A Teoria do 

Mosaico Geográfico da Coevolução incorpora os efeitos da distribuição espacial 

heterogênea das diferentes espécies nas dinâmicas coevolutivas (Thompson, 2005). 

Finalmente, a história das mudanças adaptativas ao longo do espaço e tempo 

geográficos de uma linhagem resulta no Pulso de Táxons (Erwin, 1985). 

O Paradigma de Estocolmo é consistente com o conceito de vida como um 

sistema complexo. Uma característica chave que é inerente a qualquer sistema 

complexo é a propriedade de emergência, na qual comportamentos surgem da interação 

de seus componentes de nível inferior e não podem ser detectados por um estudo isolado 

de suas partes (Bar-Yam, 1997). Desta forma, mecanismos que operam em interações 

ecológicas em níveis de escala mais baixos, como o ecological fitting, podem resultar 

nas dinâmicas emergentes observadas em níveis de organização mais altos, como a 

oscilação do uso de hospedeiros ao longo de linhagens evolutivas. 

Devido à complexidade dos fenômenos coevolutivos e às longas escalas 

temporais envolvidas, avanços substanciais no entendimento destes fenômenos podem 

ser alcançados pelo uso de modelos matemáticos e computacionais (Smith & Slaktin, 

1979; Abrams, 2000; Bergelson et al., 2001). Em especial, modelos matemáticos podem 

servir para avaliar a validade do encadeamento lógico de modelos verbais em uma 

abordagem conhecida como “modelos de prova de conceito” (Servedio et al., 2014). 

Estes modelos traduzem pressupostos verbais em princípios matemáticos, e então é 

feita a comparação das predições derivadas dos modelos verbais com a gerada pelos 

modelos matemáticos. Nos artigos apresentados nesta tese, são investigados dois 

problemas teóricos a respeito de fenômenos coevolutivos utilizando-se análises por 

modelagem computacional. 

No segundo capítulo, estudamos a dinâmica coevolutiva entre um par de espécies 

que interagem de forma antagonista ao comparar dois tipos de modos reprodutivos: 

sexuada e assexuada. Embora a reprodução sexuada seja uma estratégia reprodutiva 

bastante prevalente nos organismos (Michod & Levin, 1988), existe um amplo debate a 

respeito de quais mecanismos evolutivos favorecem o seu surgimento e permanência na 

natureza (Smith, 1971; Otto & Lenormand, 2002). A partir deste debate, foi proposta a 

hipótese de que interações entre parasitos e hospedeiros podem ter um papel 

fundamental para explicar a vantagem da reprodução sexuada em relação à assexuada 
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(Jaenike, 1978; Bremermann, 1980; Hamilton, 1980). Embora muitos desses estudos 

abordem quais condições favorecem cada uma dessas estratégias, o impacto dessas 

estratégias reprodutivas na dinâmica coevolutiva de interações parasito-hospedeiro 

ainda é pouco compreendido. Desta forma, neste capítulo investigamos como a forma 

de reprodução influencia a evolução de fenótipos de duas espécies em resposta à 

interação antagonista entre elas. Dado que a resposta evolutiva à interação se dá a partir 

dos fenótipos da espécie exploradora e da vítima, a forma no qual essas características 

são herdadas pelos descendentes pode influenciar o resultado da dinâmica ao longo das 

gerações. Em especial, estudamos as dinâmica esperadas para interações 

determinadas por fenótipos quantitativos em indivíduos com genoma explicitamente 

modelado. Para isso, usamos um modelo baseada em indivíduos, no qual a aptidão se 

dá pelo ajuste fenotípico dos indivíduos e a intensidade de interação tanto para o 

explorador quanto para a vítima. Nossos resultados demonstram que a dinâmica 

coevolutiva resultante é bastante dependente da estratégia reprodutiva utilizada pelas 

espécies. Ao passo em que no modelo de reprodução sexuada resultam em dinâmicas 

centralizadas ou oscilatórias, nos modelos de reprodução assexuada as dinâmicas 

resultam em bifurcações do fenótipo seguidas ou não de extinção da espécie 

exploradora. Este último processo sugere que fenômenos de bifurcação do fenótipo 

podem ser menos comuns do que esperado anteriormente em outros tipos de interações 

ecológicas (Doebeli & Dieckman, 2000). Em contextos evolutivos de interações 

antagonistas mediadas por caracteres quantitativos, a estratégia sexuada também 

apresentar maior probabilidade de persistência em comparação à estratégia de 

reprodução assexuada. Por fim, considerando quão comum a reprodução sexuada 

ocorre na natureza, a conclusão de modelos coevolutivos que estudem a evolução de 

fenótipos devido à interação de espécies pode ser fortemente influenciada pela escolha 

da estratégia de reprodução assumida dentro de seus pressupostos. 

No terceiro capítulo, é investigado como o espaço geográfico interage com a 

pressão seletiva de diferentes hospedeiros e influenciam o processo de diversificação e 

evolução do tamanho do repertório de espécies em linhagens. Este processo se refere 

às consequências macroevolutivas de interações coevolutivas, e busca oferecer 

contribuições para o entendimento do papel da coevolução na diversificação das 

espécies. Em particular, damos continuidade à abordagem desenvolvida por Braga et 

al., (2018) em um modelo espacialmente explícito, de modo a avaliar predições teóricas 

da Hipótese da Oscilação (Janz & Nylin, 2008). Neste trabalho, a reprodução sexuada e 



 21 
 
o uso de um genoma modelado explicitamente são elementos fundamentais do modelo, 

pois permitem avaliar a evolução das linhagens em termos do surgimento de diferentes 

espécies, caracterizadas pelo critério de grupos de indivíduos reprodutivamente isolados 

devido à incompatibilidade genotípica. Utilizando um modelo baseado em indivíduos, 

estudamos a variação do repertório do hospedeiro ao longo de múltiplos eventos de 

especiação para cenários no qual os indivíduos estão sujeitos à diferentes intensidades 

de pressão seletiva e possuem diferentes capacidades de dispersão no espaço. Ao 

medirmos a proporção de eventos de expansão do número de hospedeiros seguido por 

eventos de especialização, encontramos que oscilações no tamanho do repertório de 

hospedeiros ocorreram em todos os cenários avaliados. Além disso, os efeitos do 

aumento da intensidade da intensidade da seleção e diminuição da capacidade de 

dispersão atuaram de forma conjunta de modo a resultar em uma maior riqueza de 

espécies. As variações no tamanho do repertório do hospedeiro são congruentes com 

as expectativas teóricas da Hipótese da Oscilação (Janz & Nylin, 2008): linhagens 

experimentam ao longo de sua história evolutiva diferentes fases de expansão do 

tamanho de seu repertório de hospedeiros, seguidos de redução do tamanho desse 

repertório (especialização). Desta forma, a diversificação de espécies que utilizam outro 

grupo de espécies como recurso é acompanhada por oscilações no uso de seus 

hospedeiros, e não por especialização contínua (Agosta et al., 2010). A demonstração 

da Hipótese da Oscilação em um modelo espacialmente explícito mostra como tanto o 

espaço quanto interações entre espécies são fatores importantes para a compreensão 

de padrões de formação da biodiversidade e evolução do grau de especialização das 

linhagens, atuando de forma não-exclusiva. 

Nesta tese, busquei investigar como interações antagonistas apresentam 

consequências para a evolução das espécies em diferentes escalas de tempo. Em uma 

escala microevolutiva, demonstramos que tanto a persistência da interação quanto a 

evolução dos fenótipos são fortemente influenciados pela estratégia reprodutiva das 

espécies avaliadas. Em uma escala macroevolutiva, as pressões seletivas dadas pela 

interação ecológica junto com aspectos geográficos interagem de modo a influenciar a 

riqueza de espécies, e oscilações no tamanho do repertório de hospedeiros emergem ao 

longo desta dinâmica, conforme previsto pela Hipótese da Oscilação. De forma conjunta, 

estes dois trabalho expandem o nosso conhecimento a respeito das consequências 

evolutivas de interações antagonistas, fundamentais para o entendimento das mudanças 

globais que a humanidade enfrenta neste momento atual (Hoberg & Brooks, 2015). 



 22 
 

REFERÊNCIAS 

 

ABRAMS, Peter A. The evolution of predator-prey interactions: theory and 
evidence. Annual Review of Ecology and Systematics, v. 31, n. 1, p. 79-105, 2000. 

AGOSTA, Salvatore J.; JANZ, Niklas; BROOKS, Daniel R. How specialists can be 
generalists: resolving the" parasite paradox" and implications for emerging infectious 
disease. Zoologia (Curitiba), v. 27, n. 2, p. 151-162, 2010. 

AGOSTA, Salvatore J.; KLEMENS, Jeffrey A. Ecological fitting by phenotypically 
flexible genotypes: implications for species associations, community assembly and 
evolution. Ecology Letters, v. 11, n. 11, p. 1123-1134, 2008. 

AGRAWAL, Anurag A. Host range evolution: adaptation and trade offs in fitness 
of mites on alternative hosts. Ecology, v. 81, n. 2, p. 500-508, 2000. 

BAR-YAM, Yaneer. Dynamics of complex systems. CRC Press, 2019. 

BERGELSON, Joy; DWYER, Greg; EMERSON, J. J. Models and data on plant-
enemy coevolution. Annual review of genetics, v. 35, n. 1, p. 469-499, 2001. 

BERNAYS, E. A. Host range in phytophagous insects: the potential role of 
generalist predators. Evolutionary Ecology, v. 3, n. 4, p. 299-311, 1989. 

BERNAYS, E. A. Neural limitations in phytophagous insects: implications for diet 
breadth and evolution of host affiliation. Annual review of entomology, v. 46, n. 1, p. 
703-727, 2001. 

BRAGA, Mariana P. et al., Host use dynamics in a heterogeneous fitness 
landscape generates oscillations in host range and diversification. Evolution, v. 72, n. 9, 
p. 1773-1783, 2018. 

BROOKS, Daniel R. Testing the context and extent of host-parasite 
coevolution. Systematic Biology, v. 28, n. 3, p. 299-307, 1979. 

BROOKS, Daniel R.; HOBERG, Eric P. 15 The emerging infectious diseases crisis 
and pathogen pollution. The Balance of Nature and Human Impact, p. 215, 2013. 

BROOKS, Daniel R.; HOBERG, Eric P. Systematics and emerging infectious 
diseases: from management to solution. Journal of Parasitology, v. 92, n. 2, p. 426-
429, 2006. 

BROOKS, Daniel R.; HOBERG, Eric P.; BOEGER, Walter A. In the eye of the 
cyclops: the classic case of cospeciation and why paradigms are important. Comparative 
Parasitology, v. 82, n. 1, p. 1-8, 2015. 

BROOKS, Daniel R.; HOBERG, Eric P.; BOEGER, Walter A. The Stockholm 
paradigm: Climate change and emerging disease. University of Chicago Press, 2019. 

DASZAK, Peter; CUNNINGHAM, Andrew A.; HYATT, Alex D. Emerging infectious 
diseases of wildlife--threats to biodiversity and human health. science, v. 287, n. 5452, 
p. 443-449, 2000. 

DOBSON, Andrew; CARPER, Robin. Global warming and potential changes in 
host-parasite and disease-vector relationships. 1992. 



 23 
 

EHRLICH, Paul R.; RAVEN, Peter H. Butterflies and plants: a study in 
coevolution. Evolution, v. 18, n. 4, p. 586-608, 1964. 

EPSTEIN, Paul R.; CHIVIAN, Eric; FRITH, Kathleen. Emerging diseases threaten 
conservation. Environmental Health Perspectives, v. 111, n. 10, p. A506-A507, 2003. 

ERWIN, TERRY L. The taxon pulse: a general pattern of lineage radiation and 
extinction among carabid beetles. Taxonomy, phylogeny and biogeography of 
beetles and ants, p. 437-488, 1985. 

HARVELL, C. D. et al., Emerging marine diseases--climate links and 
anthropogenic factors. Science, v. 285, n. 5433, p. 1505-1510, 1999. 

HOBERG, Eric P.; BROOKS, Daniel R. Evolution in action: climate change, 
biodiversity dynamics and emerging infectious disease. Philosophical Transactions of 
the Royal Society B: Biological Sciences, v. 370, n. 1665, p. 20130553, 2015. 

JANZ, Niklas; BERGSTRÖM, Anders; SJÖGREN, Anna. The role of nectar 
sources for oviposition decisions of the common blue butterfly Polyommatus 
icarus. Oikos, v. 109, n. 3, p. 535-538, 2005. 

JANZ, Niklas; NYBLOM, Klas; NYLIN, Sören. Evolutionary dynamics of host plant 
specialization: a case study of the tribe Nymphalini. Evolution, v. 55, n. 4, p. 783-796, 
2001. 

JANZ, Niklas; NYLIN, Sören. The oscillation hypothesis of host-plant range and 
speciation. Specialization, speciation, and radiation: the evolutionary biology of 
herbivorous insects, v. 2008, p. 203-215, 2008. 

JANZEN, Daniel H. When is it coevolution?. 1980. 

KELLEY, Scott T.; FARRELL, Brian D. Is specialization a dead end? The 
phylogeny of host use in Dendroctonus bark beetles (Scolytidae). Evolution, v. 52, n. 6, 
p. 1731-1743, 1998. 

KILPATRICK, A. Marm. Globalization, land use, and the invasion of West Nile 
virus. Science, v. 334, n. 6054, p. 323-327, 2011. 

MAYNARD SMITH, J.; SLAKTIN, M. Models of coevolution. Q. Rev. Biol, v. 54, p. 
233-263, 1979. 

MITTER, Charles; FARRELL, Brian; WIEGMANN, Brian. The phylogenetic study 
of adaptive zones: has phytophagy promoted insect diversification?. The American 
Naturalist, v. 132, n. 1, p. 107-128, 1988. 

MORAN, Nancy A. The evolution of host-plant alternation in aphids: evidence for 
specialization as a dead end. The American Naturalist, v. 132, n. 5, p. 681-706, 1988. 

NEWCOMB, James. Biology and borders: SARS and the new economics of 
biosecurity. Cambridge, MA: Bio Economic Research Associates, 2003. 

NYLIN, Sören; SLOVE, Jessica; JANZ, Niklas. Host plant utilization, host range 
oscillations and diversification in nymphalid butterflies: a phylogenetic 
investigation. Evolution, v. 68, n. 1, p. 105-124, 2014. 

PATZ, Jonathan A. et al., Disease emergence from global climate and land use 
change. Medical Clinics of North America, v. 92, n. 6, p. 1473-1491, 2008. 



 24 
 

PEDERSEN, Amy B. et al., Infectious diseases and extinction risk in wild 
mammals. Conservation Biology, v. 21, n. 5, p. 1269-1279, 2007. 

SCHEFFER, Sonja J.; WIEGMANN, Brian M. Molecular phylogenetics of the holly 
leafminers (Diptera: Agromyzidae: Phytomyza): species limits, speciation, and dietary 
specialization. Molecular Phylogenetics and Evolution, v. 17, n. 2, p. 244-255, 2000. 

SERVEDIO, Maria R. et al., Not just a theory—the utility of mathematical models 
in evolutionary biology. PLoS biology, v. 12, n. 12, 2014. 

THOMPSON, John N. The coevolutionary process. University of Chicago Press, 
1994. 

THOMPSON, John N. The geographic mosaic of coevolution. University of 
Chicago Press, 2005. 

VAN, Valen; VAN VALEN, L. A new evolutionary law. 1973. 

WIEGMANN, Brian M.; MITTER, Charles; FARRELL, Brian. Diversification of 
carnivorous parasitic insects: extraordinary radiation or specialized dead end?. The 
American Naturalist, v. 142, n. 5, p. 737-754, 1993. 

YOTOKO, Karla SC et al., Testing the trend towards specialization in herbivore–
host plant associations using a molecular phylogeny of Tomoplagia (Diptera: 
Tephritidae). Molecular phylogenetics and evolution, v. 35, n. 3, p. 701-711, 2005. 



 25 
 
  
 

 

 

 

 

 

 

 

 

CAPÍTULO 2 
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COEVOLUTIONARY DYNAMICS OF ANTAGONISTIC INTERACTION 
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ABSTRACT 

The conflict in antagonistic species produces dynamics in which adaptations and 
counter-adaptations evolve continuously and result in different evolutionary scenarios. 
However, predictions on the outcomes of these dynamics can be largely influenced by 
the underpinning genetic details of the interaction, which in turn can be different for sexual 
and asexual reproduction modes. The objective of this paper was to investigate how the 
selection caused by the antagonistic interaction between two species influences the 
evolution of their phenotypes. Using individual-based simulations, each individual was 
characterized by their trophic level (exploiter or victim) and explicit genome composed of 
multiple loci that resulted in a quantitative trait. The interaction of individuals from each 
population resulted in fitness (probability of survival) as a function of the phenotypic 
difference between exploiter and victim and the intensity of the interaction pressure for 
each species. Surviving individuals reproduced, leaving offspring for the next generation. 
We compared the coevolutionary dynamics of sexual and asexual reproductive 
strategies. The simulations varied in different combinations of interaction pressure. For 
sexual reproduction, we observed that the phenotypes evolved in either centralized or 
oscillatory patterns. The asexual reproduction model resulted in the appearance of 
evolutionary branching and extinction of the exploiter population. Our simulations 
demonstrate that assumptions on sexual and asexual reproduction modes can have 
important consequences on determining the evolutionary dynamics of the interaction. We 
conclude that considering how genetic information and phenotypic traits are transmitted 
between generations has great relevance when studying the evolutionary dynamics of 
interacting species. 
 

Keywords: Coevolution. Antagonistic interaction. Reproductive strategy. 
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1 INTRODUCTION 
 

Despite the ubiquity of sexual reproduction in nature (Michod & Levin, 1988), its 

persistence has long intrigued evolutionary biologists in what is defined as the “paradox 

of sex” (Otto & Lenormand, 2002). Compared to asexual reproduction, there are 

substantial disadvantages associated with this reproductive strategy (De Visser & Elena, 

2007). For instance, females that reproduce asexually can produce double the offspring 

when compared to a sexual counterpart (Smith, 1971). Investing in sexual reproduction 

is also energetically costly in terms of finding individuals from the opposite sex (Smith, 

1978) and it is associated with subsidiary costs in the production of reproductive 

structures (Solbrig, 1976). In order to account for its widespread use in nature, 

advantages of sexual reproduction should outweigh its disadvantages (Barton, 1998). 

One of the most prominent hypotheses to explain the persistence of sex proposes that 

the coevolutionary arms-race between parasites and hosts can play a key role in the 

evolution of sexual reproduction (Jaenike, 1978; Bremermann, 1980; Hamilton, 1980). 

This debate was followed by numerous studies and the development of theoretical 

models to understand the contribution of biotic interactions for explaining the evolutionary 

significance of sex (Barton & Charlesworth, 1998; West et al., 1999; Otto & Lenormand, 

2002; Koskella & Lively, 2009). 

The main argument for the role of parasites on the evolution of sexual reproduction 

stands on the idea that sex promotes adaptation to fluctuating environments, as it 

produces more genetic variability than asexual reproduction (Burt, 2000; Otto & Barton, 

2001). In turn, coevolving parasites act as the main driving force that represents this 

changing environment (Bel et al., 1987; Seger & Hamilton, 1988; Hamilton & Axelrod, 

1990). Despite the popularity of this idea, an increasing body of theoretical models 

suggests that the scenarios where this hypothesis applies are more strict than previously 

thought (Kondrashov, 1993; Otto & Feldman, 1997; Otto & Lenormand, 2002), reinforcing 

that embracing complex features of natural systems is essential for a better 

understanding of the relationship between parasite-host interactions and sex (Otto & 

Lenormand, 2002). 

Typically, the genetic models that are used to investigate the performance of 

sexual and asexual reproduction modes and the effects of recombination incorporate only 

one or a few loci (Barton, 1995; Howard & Lively, 1998; Peters & Lively, 1999). The same 

approach has been applied to understand the coevolutionary dynamics in parasite-host 
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interactions (Gavrilets & Hastings, 1998; Bell & Smith, 1987; Seger 1988; Preigel & Korol, 

1990; Kirzhner et al., 1999). Other models disregard or simplify the genetic basis and 

assume that coevolution is mediated by phenotypic interactions. The description of these 

dynamics has already been studied by the use of adaptive dynamics (Abrams 2001; 

Dieckmann & Law, 1996; Doebeli & Dieckmann, 2000; Dercole et al., 2003), game theory 

(Brown & Vincent, 1992), or quantitative genetics (Saloniemi, 1993; Abrams & Matsuda, 

1997; Gavrilets, 1997; Khibnik & Kondrashov, 1997). These models made critical 

contributions to the development of the theoretical foundations on the field of evolutionary 

biology. Nevertheless, it has also been shown that the details of the genetic basis and the 

expressed phenotypic traits can have important consequences for the predicted 

outcomes of evolutionary models (Nagylaki, 1991; Bürger, 2000, Gavrilets & Hastings, 

1995; Bürger, 2002a; Bürger, 2002b; Bürger, 2005). 

Traits that are determined by the interaction of multiple loci or that assume 

quantitative values result in evolutionary dynamics that cannot be inferred by simpler 

models (Kopp & Gavrilets, 2006). At the same time, a range of coevolutionary interactions 

is mediated by quantitative traits, with important implications on the coevolutionary 

process (Thompson, 1999). Some examples include continuous morphological traits such 

as claw strength and shell thickness in crabs and gastropods (West et al., 1991) and bill 

morphologies of North American crossbills and pinecone sizes (Benkman, 1999). Brood 

nest parasites are favored by increasing the similarity of their eggs when compared to 

their hosts, avoiding nest rejection (Soler et al., 2001). The concentration of defensive 

compounds in plants and the activity of detoxifying enzymes in insects determine the plant 

susceptibility to the attack of herbivores (Berenbaum et al., 1986; Berenbaum & Zangerl 

1998; Bergelson et al., 2001). Quantitative variation in traits closely related to 

coevolutionary dynamics has also been reported for aphids and parasitoid wasps (Henter 

1995; Henter & Via, 1995), newts and snakes (Brodie & Brodie, 1999), prey and predators 

(Benkman, 1999; Abrams 2000; Brodie et al., 2002), and pollinators and plants 

(Schemske & Horvitz, 1989; Steiner & Whitehead, 1991; O’Neil, 1999; Galen & Cuba, 

2001; Alexandersson & Johnson, 2002). 

So far, the few models that investigated the coevolutionary dynamics of parasite-

host interactions mediated by quantitative traits assumed either asexual (Frank, 1994) or 

sexual reproduction (Nuismer & Doebeli, 2004, Nuismer et al., 2005; Nuismet et al., 

2007). However, a direct comparison of the effects of reproductive modes for parasite-

host interactions determined by quantitative traits indicates that sexual and asexual 
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species yield distinct effects on populational dynamics and phenotypic variability (Doebeli, 

1996a). Furthermore, on a wide variety of other ecological interactions that incorporate 

explicit genetic models, assumptions on species reproductive strategy had strong 

implications for the evolutionary results of these interactions (Doebeli & Dieckmann, 

2000). In particular, asexual reproduction and assortative mating can result in 

evolutionary branching, while sexual reproduction with random mating precludes the 

emergence of this pattern (Doebeli & Dieckmann, 2000). Despite the potential 

implications of the reproductive strategy on the coevolutionary dynamics of antagonistic 

interactions, theoretical predictions about the effects of sexual and asexual reproduction 

remain largely unexplored. 

In this paper, we address this gap by investigating the effects of reproductive 

strategy on antagonistic interactions that are mediated by quantitative traits on genetic 

explicit models. We used individual-based simulations to investigate the evolutionary 

dynamics of two species with antagonistic interaction subject to sexual and asexual 

strategies of reproduction. The term “antagonist” is used to refer generally to any trophic 

interaction where one species benefits from the interaction at the expense of the other, 

such as parasite-host, parasitoid-host or phytophagous-plant interactions. As existing 

models suggest that explicit multilocus genetics can significantly alter predictions on the 

evolutionary dynamics (Doebeli, 1996; Kopp & Gavrilets, 2006), we developed an explicit 

genetic model composed by multiple loci where the phenotype is composed by the 

additive effect of each locus. Fitness effects of the interaction are mediated by quantitative 

traits and the effectivity of the interaction is set by trait matching. The interaction pressure 

measures how the fitness of one individual is affected by the interaction and is distinct for 

each species. We compared the outcomes for asexual and sexual reproductive strategies 

on the patterns of phenotypic evolution for both species. We demonstrate that the 

coevolutionary dynamics on antagonistic interactions are influenced by the reproductive 

strategy and that explicitly modeling the genetic information of individuals results in 

dynamics that were not predicted by analytical models. 
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2 MATERIAL AND METHODS 
 

2.1 MODEL DESCRIPTION 

 

We simulated the coevolutionary dynamics between two species that interact 

antagonistically using individual-based modeling (IBM). The model is based on the 

concepts of coevolutionary dynamics, in which selective pressures between species with 

antagonistic interactions influence reciprocally the phenotype and genotype of each 

interacting species (de Vienne et al., 2012). The explicit modeling of the genome is based 

on the framework used by Aguiar et al., (2009) and Nagai et al., (2016). We adopt in this 

model a selection based on trait matching, as already reported for parasite-host systems 

(Benkman 1999; Clayton et al., 2003; Soler et al., 2001). We compared the effect of 

reproductive strategies and the intensity of interaction pressure due to the intensity of the 

interaction. The description of the model is based on the ODD protocol to describe 

aspects of individual-based modeling (Grimm et al., 2006; Grimm et al., 2010). The design 

concepts are described in Supplementary Material 1. 

The model consists of two populations from distinct trophic levels that interact 

antagonistically: an exploiter species  and a victim species , where the subscripts 

identify each population individual, respectively. The number of individuals in a population 

is  which represents the carrying capacity of each population. The term exploiter may 

refer to any species that exploit other species in order to feed itself or complete its life 

cycle while potentially causing injuries in this process, and can include examples like 

phytophagous insects, parasites and parasitoids. The term victim may refer to any 

species that is ecologically exploited by others and can encompass plants and hosts. For 

simplicity, the individuals are modeled as haploids and hermaphrodites. Their genome 

consists of strings of size  with binary loci. The phenotypes are determined by the sum 

of all values of the string: 

 

where . All possible phenotype values range from . A population is 

composed of all individuals of each trophic level at a given generation t, and it is 

characterized by the frequency distribution of the phenotype of all individuals. 
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Figure 1. Fluxogram of scheduling process of the model. * Indicates that the process is repeated 
until the carrying capacity is reached. 

 

Each time step represents one generation for both exploiter and victim populations. 

Within each generation, three phases occur in the following order: interaction, selection, 

and reproduction (Fig. 1). In the interaction phase, the first step (victim choice) allows 

each exploiter i to interact with a randomly assigned victim . Fitness calculation assumes 

that the interaction between the antagonistic species exerts selective pressures according 

to the trait matching between individuals. Fitness determines the survival probability for 

each individual. Exploiter’s fitness  is given by: 

where α represents the intensity of the interaction pressure on the exploiter,  the 

phenotype value of exploiter , and  the phenotype of the victim . Thus, the exploiter 

will have maximum fitness when its phenotype is equal to the victim’s phenotype, and its 

fitness will decrease the more distant its phenotype is in relation to the chosen victim (Fig. 

2A). 

The victim’s fitness is calculated after all interaction occurs, as a function of the 

sum of all attacks to each individual: 
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where  is the strength of the interaction pressure on the victim species and is 

the sum of the fitnesses of all the exploiters that interact with the victim  at this 

generation. The victim will have a maximum fitness if it was not attacked, and its fitness 

will decrease according to the number of interactions and the strength of attacks ( ) 

on the victim (Fig. 2B). 

 

 
Figure 2. A: Relationship between exploiter fitness ( ) and phenotypic difference between 
exploiter and victim as a function of different intensities of interaction pressure for the exploiter 
( ). Solid line:  = 0.0005; Dashed line:  = 0.001; Dotted line:  = 0.01. B. Relationship between 
the victim fitness ( ) and sum of attacks from the exploiter as a function of different intensities 
of interaction pressure on the victim ( ). Solid line:  = 0.02; Dashed line:  = 0.07; Dotted line: 

 = 0.5. 
 

At the selection phase, individuals from each population survive according to the 

probability given by its fitness value. Those who survive remain in the population and 

participate in reproduction for the next phase of the model. If no individual survives at this 

phase, we consider that the population is extinct and the simulation ends. The same 

applies if only one individual survives in the model with sexual reproductive strategy (see 

below), as a pair of individuals is necessary to generate new offspring.  

We compared two reproductive strategies: both trophic levels assume either 

asexual reproduction or sexual reproduction. Regardless of the strategy, an individual is 

chosen randomly from the population to reproduce (parent selection). The following steps 

depend on the reproductive strategy. In the asexual reproduction model, the genome 

inherited by the offspring is equal to its parent’s genome. For the model with sexual 

reproduction, a partner is chosen with equal probability among all individuals in the 

population and the offspring’s genome inherits each parent’s loci with a 50% chance. 

Finally, each locus of the offspring has a probability of mutating as specified by a mutation 
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rate . The reproductive process is repeated until the carrying capacity is reached. We 

note that this assumption implies that one individual (in the asexual reproduction model) 

or a pair of individuals (in the sexual reproduction model) are capable of recomposing the 

whole population on the next generation, in case they represent the only survivors after 

the interaction. After reproduction, a new generation starts and the cycle restarts. 

 

Table 1. List of parameters used in the model with explicit genome modeling. Underlined values 
indicate the ones used in the main text.  

Description  Parameter Value 

Carrying capacity  500, 1500 

Genome size  25, 50, 150, 500, 1500 

Total number of generations  5000 

Mutation rate per locus   0.001, 0.0001 

Intensity of the interaction pressure on the 
exploiter 

  0.01, 0.05, 0.1, 0.5, 1.0, 
5.0 

Intensity of the interaction pressure on the 
victim 

  0.01, 0.05, 0.1, 0.5, 1.0, 
5.0 

 

2.2 ANALYSIS OF THE RESULTS AND ROBUSTNESS 

 

We investigated the coevolutionary phenotype dynamics for combinations of the 

intensity of interaction pressure on exploiter and victim (  and , see table 1). The 

coevolutionary dynamics were described by the pattern of phenotype distribution of both 

exploiter and victim through generations. The initial condition of every model considered 

that the population size of both exploiters and victims were equal to their carrying 

capacity, and the phenotype value of each individual was equal to half of the genome 

size. For each combination of parameters, we repeated the simulation 10 times. For the 

same parameter combination, we also recorded the number of simulations that resulted 

in extinction and the number of generations until extinction occurred. 

To access the robustness of our results, we also tested different combinations of 

other parameters of the model: genome size, carrying capacity, and mutation rate. To 

evaluate the assumption of explicitly modeling the genome influenced the dynamics, we 
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built an equivalent version of the model which considered the phenotypes as continuous 

traits and measured as a real finite number. In this version, the binary string that 

characterized the genome was not included. In order to maintain the phenotype values 

within a finite range we included an external stabilizing pressure (Gavrilets, 1997), that 

acts as a selective pressure towards an optimum favored phenotype: 

 

were,  is the intensity of the external stabilizing pressure,  is the phenotype of the 

exploiter or victim,  is the optimum phenotype imposed by the stabilizing pressure, 

and  is the effect of the stabilizing pressure on the fitness of the individual. The final 

fitness of the individual  (  is given by: 

, 

where is the fitness given by the interaction and  is the fitness given by the 

external stabilizing pressure. On the asexual reproduction mode, the offsprings inherit a 

phenotype value equal to its parent plus a variation , a random number that follows a 

normal distribution according to: 

where  is the probability of a variation of value  and standard deviation . To 

simulate the effects of sexual reproduction, we considered that the phenotype of the 

offspring was equal to the mean value between both parents’ phenotypes, plus the 

variation .  

  



 35 
 
3 RESULTS 
 

3.1 COEVOLUTIONARY DYNAMICS 

 

The coevolutionary dynamics for the scenarios with sexual reproduction resulted 

in two different qualitative patterns of phenotype evolution through generations: central 

and oscillatory patterns. For the central pattern, the mean phenotype values of both 

species remained close to each other and showed small variation through generations 

(Fig. 3A). The phenotypic variance of the exploiter remained smaller than the variance of 

the victim, as the exploiters benefit from the most frequent victim phenotypes. In the 

oscillatory pattern, the mean phenotype value of the victim population oscillated along 

with the generations, as the exploiter population exerted a strong negative selection on 

the most frequent phenotypes of the victim population (Fig. 3B). This selective pressure 

on the most abundant phenotypes resulted in a shift of the mean phenotype value in the 

victim, followed by a change in the mean phenotype value of the exploiter. The distribution 

of phenotypes of both species oscillated through generations without reaching 

equilibrium. 

The coevolutionary dynamics for sexual reproduction was sensitive to the selection 

strength of exploiters and victims. A low intensity of interaction pressure on the victim 

resulted in the central pattern, as the victim’s phenotype distribution had small variation 

through generations (Fig. 4, upper panels). Increasing the strength of interaction pressure 

on the exploiter did not change the centralized pattern, but it resulted in a smaller variance 

in the exploiter’s phenotype distribution. However, an increase in the interaction pressure 

on the victim shifted the dynamics to the oscillatory pattern (Fig. 4, middle and lower 

panels). The direction of the oscillations was not regular, and the amplitude of oscillations 

was higher when the intensity of interaction pressure on both victim and exploiter was 

high. The interactions coexisted in every combination of parameters of alpha and beta, 

with no extinction of the populations.  

In the asexual scenario, the evolutionary dynamics were characterized either by 

the central pattern or by the appearance of evolutionary branching. In the latter pattern, 

the interaction pressure on the victim initially affected with greater intensity the 

intermediary values of the victim phenotype, decreasing its abundance while favoring 

phenotype values on the extremes of the distribution. This disruptive selection eventually 

produced two separate branches on the victim phenotype distribution. The frequency of  
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Figure 3. Coevolutionary dynamics between exploiter and victim population phenotypes. A: 
Central pattern; B: Oscillatory pattern. Left panels depict the phenotype evolution along with the 
generations for the victim (above) and the exploiter (below). The panel on the right shows the 
frequency of individuals with each phenotype at one particular generation, indicated by the 
dashed line at the left panel. On the left panels, colors indicate the frequency of individuals 
according to their phenotype, ranging from blue (small frequency of individuals) to green and red 
(highest frequency of individuals). On the right panel, exploiters are represented in red, while 
victims are represented in blue. Parameters were:  = 1500,  = 150,  = 0.0001. A:  = 0.01,  
= 0.01; B:  = 0.1,  = 5.0. 
 
individuals in each branch was strongly affected by the exploiters’ interaction pressure. 

When one of the branches increased its number of individuals, the exploiters with 

phenotype close to this branch were favored and the phenotype distribution started to 

move closer to it. This led to a decrease in the number of exploiters on this branch while 

increasing the frequency of exploiters on the other. In turn, exploiters on the other branch 

A 

B 
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Figure 4. Coevolutionary dynamics for the exploiter (red) and victim (blue) along with generations 
for the model with sexual reproduction. Increasing the intensity of the interaction pressure for the 
exploiter (alpha) and victim (beta) leads to oscillation in the phenotypic dynamics resulting from 
the interaction. Parameters were:  = 1500,  = 150,  = 0.0001,  = 5000.  
 

started to increase their number and favored exploiters phenotype closer to them. 

Consequently, the mean phenotype distribution of the exploiter stayed either close to an 

intermediary position between both branches or oscillating between them. The 

bifurcations were not stable, as eventually one of the branches extinguished due to the 

selective pressure. After that, the exploiter phenotype distribution returned to the center 

of the remaining lineage and the process restarted (Fig. 5A). In most scenarios, eventually 

the exploiter was not able to successfully use the other branch as one of them was 

extinguished, leading to the extinction of the parasite population and the end of the 

interaction (Fig. 5B). We had no cases where the interaction led the victim population to 

be extinct. This can be explained as victims are randomly chosen by the exploiter, and 

more than one victim can choose the same victim. Thus, it is very unlikely that all victims 

are chosen and do not survive in the same generation, even if the interaction pressure is 

high.  
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Figure 5. Coevolutionary outcomes for the antagonistic dynamics when individuals reproduce 
asexually. A) Evolutionary branching. B) Evolutionary branching followed by extinction. The left 
panel depicts the phenotype evolution along with the generations for the victim (above) and the 
exploiter (below). The right panel shows the frequency of individuals with each phenotype for both 
exploiter and victim populations at one particular generation (dotted line at the left panels). On 
the right panels, colors indicate the frequency of individuals according to their phenotype, ranging 
from blue (small frequency of individuals) to green and red (highest frequency of individuals). On 
the left panel, exploiters are represented in red, while victims are represented in blue. A:  = 0.01, 

 = 0.1; B:  = 0.01,  = 0.5. 
 

The persistence or extinction of the interaction was strongly dependent on the strength of 

interaction pressure (Fig. 6A). For the low intensity of interaction pressure on the victim, 

the selective pressure exerted by the exploiter did not cause evolutionary branching and 

the interaction persisted. However, a more intense interaction pressure on the victim 

caused the formation of evolutionary branching, which in turn resulted in the eventual 

A 

B 
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extinction of the exploiter population. The number of generations until the extinction 

occurred was strongly related to the interaction pressure on exploiter and victim (Fig. 6B). 

A low interaction pressure on the exploiter or the victim allowed the interaction to persist 

for many generations until the exploiter went extinct. On the other side, a more intense 

interaction pressure on either species led to the extinction of the interaction in a shorter 

number of generations. 

 

Figure 6. Frequency of extinction and duration of the interaction prior to extinction for each 
parameter combination in the model with asexual reproduction strategy. Left panel: The number 
of simulations with extinction is indicated by the color intensity. The color indicates the number of 
extinctions for a total of 10 repetitions for each parameter combination. Right panel: Average time 
until the first extinction event. White squares indicate that coexistence occurred in all simulations. 
Parameters were:  = 1500,  = 150,  = 0.0001,  = 5000. 
 

     3.2 ROBUSTNESS ANALYSIS 

 

The qualitative patterns were robust to different parameter combinations. The 

patterns observed through replicates were invariable regardless of the parameter 

combinations. On the sexual reproduction model, increasing the carrying capacity did not 

change the coevolutionary dynamics, while increasing values of the mutation rate only 

resulted in a greater amplitude of both phenotype distributions. Oscillation patterns were 

found in all the evaluated genome sizes, however the oscillations were more conspicuous 

for smaller genomes than larger genomes (Supplementary Material 3, Figs. S3-S5). In 
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the asexual reproduction model, the evolutionary branching pattern and extinction were 

also observed for the different genome sizes (Supplementary Material 3, Figs. S6-S8).  

The modeling of the phenotype as a continuous trait resulted in some differences 

when compared to the version that considered explicit genetic modeling. In the sexual 

reproduction model, the effect of decreasing the range of distribution of the exploiter 

phenotype with a higher interaction pressure on the exploiter was not observed 

(Supplementary Material, Fig. S9). In addition, the shift from a centralized to an oscillatory 

pattern was more strongly related to an increase in the interaction pressure on the 

exploiter than an increase in the strength of interaction on the victim. In the asexual model, 

both centralized patterns and evolutionary branching emerged from the interaction 

between exploiter and victim (Supplementary Material 4, Fig. S10). However, unlike the 

genetically explicit model, phenotypic variation in response to coevolutionary pressures 

occurred at a faster pace. While in the genetic model the cycle of branch formation would 

occur over hundreds of generations, in the model using continuous traits this cycle 

repeated itself in the scale of tens of generations. We also observed a coevolutionary 

pattern that was intermediate between the centralized pattern and the evolutionary 

branching (Supplementary Material 4, Fig. S11). In this scenario, the selective pressure 

exerted by the exploiter induced disruptive selection and favored extreme phenotype 

values on the victim, but it was not enough to completely separate its phenotypic 

distribution. 
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     4 DISCUSSION 

 

In this work we investigated coevolutionary patterns of antagonistic interactions 

and how the reproductive strategy and interaction pressure affected these outcomes on 

a genetically explicit model. Our simulations demonstrate that assumptions on sexual and 

asexual reproduction modes have important consequences on determining the 

evolutionary dynamics of the interaction. Specifically, given enough intensity on the 

interaction pressure, when sexual reproduction is assumed the antagonistic interaction 

results in oscillatory patterns of phenotype evolution. On the other side, asexual 

reproduction results in evolutionary branching associated with a high probability of 

extinction of the exploiter species. These results highlight the relevance of considering 

how genetic information and phenotypic traits are transmitted between generations in 

order to understand how ecological interactions can affect the evolutionary dynamics of 

antagonistic species. 

Centralized and oscillatory patterns emerged as the results of the antagonistic 

interaction when individuals reproduce sexually. When the interaction pressure on either 

exploiter or victim was small, the selective pressure given by the interaction was not 

enough to cause changes in the evolutionary phenotypic trajectory of any species. Their 

phenotype distributions thus remained in stable and centralized values. However, a 

stronger interaction pressure on the exploiter imposed a cost on phenotype matching for 

the exploiter. Given that the exploiter phenotype followed a unimodal distribution, 

exploiters with phenotypes closer to the victim’s most abundant phenotypes were favored. 

As a consequence, the phenotypic variance on the victim was reduced. These results 

support the predictions from other models in which coevolution restricts the phenotypic 

diversity of exploiters when they are selected to closely match their victim’s phenotype 

(Frank, 1994; Yoder & Nuismer, 2010). At the same time, if the interaction pressure on 

the exploiter is increased, the coevolutionary patterns change from a centralized pattern 

to an oscillation in both species’ phenotypes. The continuous cycles of increase and 

decrease on phenotypes have already been reported for numerous models of 

coevolutionary interactions in either single locus (Jayakar, 1970; Seger, 1988; Gavrilets 

& Hastings, 1998; Nuismer et al., 2003, Araujo et al., 2020) and multilocus quantitative 

models (Gavrilets, 1997; Nuismer et al., 2005; Kopp & Gavrilets, 2006). An important 

distinction from previous quantitative models, however, is regarding the regularity of the 

oscillations: While on those studies the oscillations were periodic with constant phenotype 
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oscillation amplitude, here the oscillations were irregular, as they are likely to respond to 

stochastic variations in the effects of selection given by the random choice of the victims 

and survival probabilities. 

Changing the reproductive strategy from sexual to asexual resulted in a shift from 

oscillatory dynamics to evolutionary branching. As phenotypic homogenization was no 

longer present due to genetic recombination of the parent’s genome, the selective 

pressure caused by the exploiter on intermediate phenotypes favored individuals on the 

victim population with phenotypes closer to the tails of the distribution. If the interaction 

pressure was strong enough, intermediate phenotypes on the victim were eventually 

excluded and its phenotype split into two branches. Evolutionary branching has already 

been reported for the parasite-host system (Calcagno et al., 2010) and other ecological 

interactions (Doebeli & Dieckman, 2000). In the former model, branches can remain 

stable depending on the mutation rates and interaction pressure on each species, and 

the exploiter and victim bifurcate in two pairs of phenotypically matching lineages. Cyclic 

episodes of phenotype bifurcation like the ones that emerged in our simulations have also 

been observed in this work. The second model presents evolutionary branching with 

either one or both species splitting their phenotypes distributions in two, that occurred 

when individuals reproduce asexually. Doebeli & Dieckman (2000) also demonstrated 

that this pattern can evolve when individuals reproduce via sexual reproduction where 

partner selection is related to positive assortative mating. In a mechanism that produces 

results similar to the ones observed for asexual reproduction, assortative mating favors 

individuals from the extremes of the phenotype distributions. As initially the interaction 

pressure penalizes those in the middle of the distribution, individuals on the tail of the 

distribution that mate with partners of close phenotype have higher fitness than those that 

reproduce with individuals with more distant phenotypes and produce offspring with 

intermediate values (Dieckmann & Doebeli, 2000). Both asexual reproduction and sexual 

reproduction via assortative mating break the homogenization of phenotypes, which 

creates the opportunity for divergent selection and the emergence of character 

bifurcation. It is possible that the inclusion of assortative mating in our model can lead to 

similar patterns, although this hypothesis should be better investigated in future studies. 

A distinct behavior from our model is that while the coexistence of both species 

was persistent if interaction pressure was weak, in most cases the disruptive selection 

that emerged on the asexual model resulted in the extinction of the exploiter. The 

emergence of two distinct phenotypic clusters led the exploiter population to specialize in 
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just one of the branches (Doebeli, 1996b). After one of them was extinguished, the 

exploiter was no longer able to successfully use the other phenotypes. Thus, the 

emergence of branching became deleterious for the exploiter, while allowing the victim to 

escape the interaction. Interestingly, this result parallels a pattern that has been 

documented in Daphnia attacked by the yeast parasite Metschnikowia bicuspidata, where 

both species display asexual reproduction modes (Duffy et al., 2008). The invasion of the 

yeast on this system led to the formation of a bimodal phenotypic distribution of the 

victim’s traits, followed by a disappearance of the parasite species. While the study does 

not explore the reason that led to the local extinction of the parasite population, a possible 

explanation could be the failure of the parasite in coping with the phenotype divergence 

induced by the interaction. 

For both reproductive modes, the frequency-dependent selection was an important 

process regulating the phenotype frequency of each species (Lande, 1976; Sinervo & 

Calsbeek, 2006). Similar to systems in which a parasite’s frequency is strongly selected 

to match the most abundant host genotype (Siemens & Roy, 2005; Koskella & Lively, 

2009), in our model the exploiter’s phenotype was favored when attacking the most 

common phenotypes in the victim population. In turn, this adaptation of the exploiter 

results in an advantage for the less common victim phenotypes and increases their 

frequency (Haldane, 1949; Hamilton, 1980). Such dynamics result in a time-lagged 

variation of the exploiter phenotype that was continuously selected to track the most 

abundant victim phenotypes (Hutson & Law, 1981; Kopp & Gravilets, 2006), an essential 

feature that characterizes parasite-host arms-race (Dybdahl & Lively, 1998). 

The evolutionary outcomes depended on how the offspring receives genetic 

information. On the sexual reproduction strategy, the offspring inherits half of each 

parent’s genotype (Taper & Case, 1985). As a consequence, its phenotype has a greater 

probability of assuming an intermediate value between both parents’ phenotypes, and the 

“reshuffling” of their genomes determines the phenotypic distribution on the next 

generation when mating is random (Doebeli, 1996a; Doebeli & Dieckman, 2000). Also, 

the phenotype frequency usually assumes a normal-like distribution. For the asexual 

reproduction strategy, the phenotype is equal to the parent’s phenotype plus a variation 

caused by a mutation on each locus. As a consequence, phenotypes equal or close to 

the ones that remained on the previous generation have their frequency amplified on the 

next generation. The variation of phenotype between the offspring and its parent’s 

phenotype is smaller when compared to the models where sexual reproduction takes 
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place. At the same time, the phenotype of the populations is not restricted to normal-like 

distribution, and multimodal shapes can emerge depending on the fitness differences that 

occur along the phenotypic space. These differences in the outcomes of each 

reproductive strategy have important evolutionary implications, as detailed below. 

First, sexual reproduction allowed the interaction to persist, while asexual 

reproduction had deleterious results for the exploiter species. In our model, we 

investigated the effects of reproductive strategy (and recombination) for quantitative traits 

that are controlled by additive effects of multiple loci (Lynch & Walsh, 1998). The 

reproductive strategy was a key determinant of phenotype distribution of one generation 

to the next, as a function of the genomes and phenotypes of surviving individuals of the 

previous generation. For the victim, even high levels of interaction pressure did not result 

in the population extinction, so its persistence was maintained for both types of 

reproductive strategy. However, the reproductive strategy of the victim resulted in two 

very distinct coevolutionary patterns, characterized by either presence or absence of 

branching in its phenotype distribution. For the exploiter, the absence of bifurcation 

allowed it to track the victim’s phenotype and persist even in strict conditions of high 

interaction pressure. But if the phenotype distribution bifurcated into two distinct groups, 

specialization on one of the branches resulted in most cases in its extinction due to its 

inability to successfully attack the remaining victims after depleting the individuals on one 

branch. Here, the persistence of the exploiter was highly related to the coevolutionary 

dynamics that emerged within each strategy, including the mechanism of reproduction on 

the exploited species. 

Second, the aspects we observed in our model also have relevant implications for 

studies of sympatric diversification and speciation induced by ecological interactions. 

Models of sympatric speciation assume that speciation can arise when a population 

experiences divergent character selection if that character is directly or indirectly linked 

to mating behavior and reproductive isolation (Dieckmann & Doebeli, 1999). Therefore, 

evolutionary branching is an important component of models that investigate sympatric 

speciation events, and a necessary step that precedes reproductive isolation (Dieckmann 

& Doebeli, 1999; Doebeli & Dieckman, 2000). In our model, we show that stable 

evolutionary branchings are unlikely outcomes of the interactions in either sexual or 

asexual reproductive strategies. As a consequence, pairs of antagonistic interactions are 

not expected to result in speciation in genetically explicit models if the interaction is the 

only source of divergence of the populations. The sexual reproduction prevented the 
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emergence of branching by converging the population's phenotype to a unimodal 

distribution. On the asexual model, evolutionary branching was an unstable pattern that 

resulted in cycles of bifurcation in the victim’s phenotype or extinction of the exploiter’s 

population. Doebeli & Dieckman (2000) found stable patterns of evolutionary branching, 

and Araujo et al., (2020) found scenarios with different periods of persistence of branches. 

Given such distinct outcomes regarding the persistence of evolutionary branches, we 

conclude that long-term persistence of evolutionary branching can be less common than 

previously assumed. 

Finally, explicitly modeling the genetic basis of quantitative traits showed some key 

differences when compared to the alternative model without the explicit modeling of the 

genome. Although we found the same qualitative patterns of coevolutionary dynamics 

when traits were considered as continuous traits, specific aspects of the dynamics were 

not mutually present on both versions. For example, on the alternative model, the 

phenotypic variability on the exploiter was not reduced in comparison to the variability 

found on the victim, even for strong interaction pressure. Also, the asexual reproductive 

strategy was also more stable for weak interaction pressure, as we observed incipient 

branching on the victim phenotypes that allowed the persistence of the exploiter 

population. This pattern was not observed in the genetically explicit model even for small 

interaction pressure on the victim. We believe that these differences can be better 

understood by examining the assumptions that are required for each model and its 

consequences. First, on the alternative model, the effect of variation due to mutation acts 

directly on the phenotype value, and the Gaussian distribution that gives the probability 

of phenotype variation is symmetric for any direction. When the genome is modeled 

explicitly, variations on the phenotype depend on the sum of the variations given by a 

mutation probability in each locus. Thus, the final variation in phenotype values depends 

on the genome size and the ratio between the frequency of each binary value in the 

genome, as there is a greater probability that the sum of all values approaches half of the 

genome size. Second, on the alternative model, the offspring phenotype on the sexual 

reproductive strategy is simplified in order that it is equal to the mean of both parents’ 

phenotype plus the probability of mutation. On the genetically explicit model, 

recombination produces greater variation in the offspring fitness that is linked to the 

number of non-overlapping loci values on each parent (Doebeli, 1996). Finally, modeling 

traits as continuous values presents the problem that coevolution can potentially drive 

traits to unrealistic infinite values (Kopp & Gavrilets, 2006). This was circumvented by 
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including an additional parameter of external stabilizing selection (Gavrilets & Hastings, 

1998), an assumption that is not necessary when modeling multilocus models of 

quantitative traits as the maximum phenotype value is restricted by the length of the 

genome. 

Although we believe that our approach allows us to make general predictions on 

the expected outcomes according to different reproductive strategies, we outline some 

important potential limitations of the model. The selection of the victim was random and 

independent of its trait value, although in nature empirical evidence shows that parasites, 

phytophagous insects and predators can display preference behavior according to its 

victim trait (Nylin et al., 2005; Soler et al., 2014; Jorge et al., 2014; Nagarajan et al., 2015). 

Selection on the victim can produce unexpected coevolutionary patterns on specific 

conditions (Araujo et al., 2020). Another assumption of the model is that generations of 

both exploiter and victim were considered as discrete and their generation time was 

equal. Relative differences in generation time from parasites and hosts can accelerate 

their adaptation to the host (Gandon & Michalakis, 2002, but see Morgan & Buckling, 

2006) and affect coevolutionary dynamics (Calcagno et al., 2010). Sexual mating also did 

not include assortative mating, which has potentially important consequences of the 

results of the coevolutionary dynamics (Doebeli & Dieckman, 2000). Finally, demographic 

variation due to the interaction (Papkou et al., 2016) or variations in growth rates 

according to the reproductive strategy (Smith, 1978; Michod & Levin, 1988; Otto & 

Lenormand, 2002) were not considered. To address the effects of these assumptions on 

the outcomes of the model represents promising avenues of exploration of future studies.  

In summary, our model investigates the expected coevolutionary dynamics when 

finite populations of antagonistic species interact assuming that the interaction is 

mediated by quantitative traits with explicit genomes. The coevolutionary dynamics were 

largely affected by the reproduction mode of the species, leading either to the coexistence 

or extinction of the exploiter species. Given the ubiquity of sexual reproduction strategy 

on nature, our work suggests that explicitly evaluating the effects of sex can have relevant 

impacts on the prediction of coevolutionary dynamics and the maintenance of sexual 

reproduction in natural populations.  
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SUPPLEMENTARY MATERIAL 1 

 

Here a few of the design concepts that were used to build the model, following 

recommendations of the ODD protocol (Grimm et al., 2006; Grimm et al., 2010). 

Emergence: The genome of the offspring and phenotype values emerge from the 

explicit description of the genome. The phenotype of the population along with 

generations changes due to mutation, demographic drift, and individual fitness mediated 

by the interaction pressures. 

Adaptation: it is not explicitly modeled, as the identity of the victim that an exploiter 

interacts with is chosen randomly. Therefore, there is no explicit behavior that maximizes 

the chance of survival of any individual. On the other hand, the phenotypic distribution of 

each population emerges as an outcome of the interactions and survival of the previous 

generation. The offspring inherits phenotypic values that are close to its parents and are 

likely to present phenotype values in ranges that received less selective pressure in the 

last interactions. 

Objectives: Fitness is modeled explicitly as the probability of survival after the 

interactions. Individuals and their phenotype values are selected according to the 

interaction pressure, which depends on the phenotypic difference of the interacting 

individuals. The fitness of the exploiter is higher when its phenotype values are close to 

the phenotype of the exploiter. The fitness of the victim decreases according to the 

number and strength of the interactions that it has received from the exploiter. The 

success of each individual results in its survival and the opportunity to reproduce and 

generate offspring to the next generation. 

Interaction: exploiters interact with their victims by selecting one of them as a 

“host”. This interaction results in the exploiter’s fitness and a decrease in the victim’s 

fitness. If the reproduction is sexual, individuals from the same trophic level also interact 

with mating partners so that the offspring carries 50% of each parent’s genome. 

Stochasticity: the identity of the victim chosen by the exploiter is assigned 

randomly. Also, the identity of the parent and the mating pair is also chosen by chance 

with equal probability. In the sexual selection model, the probability is inversely 

proportional to the phenotypic distance. Each locus inherited by the offspring has a 50% 

chance to be inherited by one of the parents, and the mutation occurs with a probability 

set by a mutation rate. Survival is also a product of chance since each individual survives 

with a survival probability that is given by its fitness value. 
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Collectives: individuals from each trophic level are considered as one population. 

The phenotype distribution in each generation that is used to describe the results of the 

evolutionary dynamic from the frequency of phenotypes in each population. 

Observation: for each 5-time step, it is recorded the phenotype frequency of all 

individuals from both exploiter and victim populations. This data is plotted to depict the 

patterns of phenotype distribution along time. 

  



 57 
 

SUPPLEMENTARY MATERIAL 2 

 

Coevolutionary dynamics for a range of parameter combinations regarding 

interaction pressure for the exploiter (alpha) and victim (beta) species. Parameters were: 

 = 1500,  = 150,  = 0.0001,  = 1500. 

 

 Sexual reproduction 

 
Figure S1. Coevolutionary dynamics for the exploiter (red) and victim (blue) along with 
generations for the model with sexual reproduction. Increasing values of interaction pressure for 
the exploiter (alpha) and victim (beta) leads to more oscillation in the phenotypic dynamics 
resulting from the interaction. For each panel, generations (x-axis) ranges from 0 to 1500, and 
phenotype values (y-axis) from 0 to 150.  
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Asexual reproduction 

 

 
Figure S2. Coevolutionary dynamics for the exploiter (red) and victim (blue) along with 
generations for the model with asexual reproduction. Increasing values of interaction pressure for 
the victim (beta), while the interaction pressure on the exploiter (alpha) is low (first column) results 
in evolutionary branching. Increasing the interaction pressure on the exploiter results in extinction 
of the interaction. For each panel, generations (x-axis) ranges from 0 to 1500, and phenotype 
values (y-axis) from 0 to 150.  
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SUPPLEMENTARY MATERIAL 3 

  
Here it is shown the coevolutionary dynamics for different genome sizes ( ). The 

results indicate that the coevolutionary dynamics follow a similar trend for most of the 

different genome sizes that were evaluated. An exception occurs in the sexual 

reproduction model for the largest genome size (L = 500), where the centralized pattern 

occurs more frequently than the oscillatory pattern. In this scenario, it is possible that the 

effect of phenotypic variation due to mutation in the genome exceeds the effect of 

variation caused by selection due to the interaction. 

  
Sexual reproduction, L = 25 

 
Figure S3. Coevolutionary dynamics for the exploiter (red) and victim (blue) along with 
generations for the model with sexual reproduction. Increasing values of interaction pressure for 
the exploiter (alpha) and victim (beta) leads to more oscillation in the phenotypic dynamics 
resulting from the interaction. For each panel, generations (x-axis) ranges from 0 to 1500, and 
phenotype values (y-axis) from 0 to 25. Parameters were:  = 1500,  = 0.0001,  = 1500. 
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Sexual reproduction, L = 50 

 
Figure S4. Coevolutionary dynamics for the exploiter (red) and victim (blue) along with 
generations for the model with sexual reproduction. Increasing values of interaction pressure for 
the exploiter (alpha) and victim (beta) leads to more oscillation in the phenotypic dynamics 
resulting from the interaction. For each panel, generations (x-axis) ranges from 0 to 1500, and 
phenotype values (y-axis) from 0 to 50. Parameters were:  = 1500,  = 0.0001,  = 1500. 
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Sexual reproduction, L = 500 

 
Figure S5. Coevolutionary dynamics for the exploiter (red) and victim (blue) along with 
generations for the model with sexual reproduction. Increasing values of interaction pressure for 
the exploiter (alpha) and victim (beta) leads to more oscillation in the phenotypic dynamics 
resulting from the interaction. For each panel, generations (x-axis) ranges from 0 to 1500, and 
phenotype values (y-axis) from 0 to 500. Parameters were:  = 1500,  = 0.0001,  = 1500. 
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Asexual reproduction, L = 25 

 
Figure S6. Coevolutionary dynamics for the exploiter (red) and victim (blue) along with 
generations for the model with asexual reproduction. For lower values of interaction pressure for 
the exploiter (alpha) or victim (beta), the phenotype of the victim results in evolutionary branching. 
Increasing the strength of interaction pressure in either species results in extinction of the 
interaction. For each panel, generations (x-axis) ranges from 0 to 1500, and phenotype values (y-
axis) from 0 to 25. Parameters were:  = 1500,  = 0.0001,  = 1500. 
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Asexual reproduction, L = 50 

 
Figure S7. Coevolutionary dynamics for the exploiter (red) and victim (blue) along with 
generations for the model with asexual reproduction. For lower values of interaction pressure for 
the exploiter (alpha) or victim (beta), the phenotype of the victim results in evolutionary branching. 
Increasing the strength of interaction pressure in either species results in extinction of the 
interaction. For each panel, generations (x-axis) ranges from 0 to 1500, and phenotype values (y-
axis) from 0 to 50. Parameters were:  = 1500,  = 0.0001,  = 1500. 
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Asexual reproduction, L = 500

 
Figure S8. Coevolutionary dynamics for the exploiter (red) and victim (blue) along with 
generations for the model with asexual reproduction. For lower values of interaction pressure for 
the exploiter (alpha) or victim (beta), the phenotype of the victim results in evolutionary branching. 
Increasing the strength of interaction pressure in either species results in extinction of the 
interaction. For each panel, generations (x-axis) ranges from 0 to 1500, and phenotype values (y-
axis) from 125 to 375. Parameters were:  = 1500,  = 0.0001,  = 1500. 
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SUPPLEMENTARY MATERIAL 4  
 

Here it is shown the coevolutionary dynamics when the genome is not explicitly 

modeled. Phenotypes are represented by real positive or negative numbers. Since the 

scale of phenotypic variation is different from the model that includes explicit genetic 

modeling of the individuals, the parameters used in these simulations are detailed below. 

 

Table S1. List of parameters used in the model with a short description of their meaning. 

Parameter Description Value 

Carrying capacity 1500 

 Standard deviation for phenotypic variation 
due to reproduction 0.2 

 Phenotype value favored by the stabilizing 
pressure 0 

 Interaction pressure on exploiters 1, 4, 16,64, 256 

 Interaction pressure on victims 1, 4, 16,64, 256 

 External stabilizing pressure 0.1 
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Figure S9. Coevolutionary dynamics for the exploiter (red) and victim (blue) along with 
generations for the model with sexual reproduction without explicitly modeling the genome. Lower 
values of interaction pressure on the exploiter (alpha) resulted in a centralized pattern of 
phenotypic distributions. Oscillations in the phenotypic dynamics were observed only for higher 
intensities in the interaction pressure for the exploiter (alpha). For each panel, generations (x-
axis) ranges from 0 to 1000, and phenotype values (y-axis) from -1.0 to 1.0. Parameters were:  
= 1500,  = 0.1,  = 0.02,  = 1000. 
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Figure S10. Coevolutionary dynamics for the exploiter (red) and victim (blue) along with 
generations for the model with asexual reproduction without explicitly modeling of the genome. It 
is possible to observe the centralized pattern, incipient branching, evolutionary branching and 
evolutionary branching followed by extinction. For each panel, generations (x-axis) ranges from 
0 to 350, and phenotype values (y-axis) from -0.6 to 0.6. Parameters were:  = 1500,  = 0.1,  
= 0.02,  = 350. 
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Figure S11. Incipient evolutionary branching pattern, when individuals reproduce asexually 
without explicitly modeling the genome. The left panel depicts the phenotype evolution throughout 
generations for victim (above) and exploiter (below). The right panel shows the frequency of 
individuals with each phenotype for both exploiter and victim populations at one particular 
generation (dotted line at the left panels). exploiters are represented in blue, while victims are 
represented in red. Parameters were:  = 1500,  = 16,  = 1,  = 0.1,  = 0.02,  = 350. 
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Figure S12. Frequency of extinction and duration of the interaction prior to extinction for each 
parameter combination in the model with asexual reproduction strategy without explicitly modeling 
of the genome. A. The frequency of simulations with extinction is indicated by the color intensity. 
The color indicates the number of extinctions for a total of 10 repetitions for each parameter 
combination. B. Average time until the first extinction event. White squares indicate that 
coexistence occurred in all simulations. Parameters were:  = 1500,  = 0.1,  = 0.02,  = 
5000. 
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CAPITULO 3 

THE ROLE OF SPACE AND SELECTION IN HOST RANGE 
OSCILLATIONS AND DIVERSIFICATIONS 
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The role of space and selection in host range oscillations and diversifications 
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ABSTRACT 
 

The prominent diversity observed in plant-feeding insects and parasites has led to 
the development of several evolutionary hypotheses regarding the processes that drive 
the species richness in these groups. Despite the broad theoretical and empirical support 
of the role of the host in the diversification of herbivorous insects, processes such as 
geographic isolation can contribute concomitantly to the formation of this richness. To 
investigate how geographic isolation interacts with host use in processes of species 
diversification and evolution, we propose an Individual-Based Model of organisms with 
explicit genomes in a spatial context. Individuals reproduce sexually with partners 
restricted by thresholds for genetic differentiation and geographical proximity. The 
individuals’ fitness is given the compatibility of their phenotype with a favored phenotype 
imposed by the host. Species are defined as groups isolated by limited gene flow, and 
their host range is given by the realized interactions in each generation. We analyzed the 
result of the simulations by varying the intensity of the selective pressure and the size of 
the dispersion radius of the individuals. Higher selective pressure and smaller dispersion 
radius interacted to produce greater species richness while decreasing the average host 
repertoire size. Lineages experience phases of expansion of their host range, and 
speciation events resulted in different changes in the level of specialization for each new 
pair of lineages. The dynamics that emerge from the model are compatible with the 
theoretical framework given by the Oscillation Hypothesis and contribute to a better 
understanding of the role of interaction between biotic interactions and spatial distribution 
in diversification processes. 

 
Keywords: Individual-based modeling. Diversification. Interactions. Speciation. Oscillation 

Hypothesis. 
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1 INTRODUCTION 

 

Plant-feeding insects and parasites comprise much of the diversity of life (Mitter 

et al., 1988; Price, 1980). Understanding the different factors that drive the diversity of 

these groups is consequently an important step in elucidating global patterns of 

biodiversity. Both groups are characterized by intimate associations, in which they live at 

the expense of their hosts in at least one stage of their life cycle (De Meeûs & Renaud, 

2002). Most of these associations are presently restricted to just one or a few hosts 

(Forister et al., 2015), and the great number of specialists in these groups suggests that 

ecological specialization can be an important factor related to the observed diversification 

of these organisms. Indeed, evidence suggests that processes related to variation in host 

range play a fundamental role in promoting their diversity, although it is debated how 

different mechanisms can act and influence this process (Erlich & Raven, 1964; 

Thompson, 2005; Janz & Nylin, 2008; Fordyce, 2010; Hardy & Otto, 2014, Edger et al., 

2015). 

For many decades, traditional diversification hypothesis suggested that patterns 

of host specialization were the result of a process of continuous selection on 

specialization along evolutionary time (Moran, 1988; Wiegmann et al., 1993; Kelley & 

Farrell, 1998). This view relies on the assumption that the performance on different hosts 

is ruled by adaptive trade-offs, where specialized organisms increase their performance 

on one resource while decreasing their ability to successfully use others (Joshi & 

Thompson, 1995; Futuyma & Moreno, 1988). The intimacy and persistence of these 

interactions would result in high levels of cospeciation and congruence between 

phylogenies of parasite and their hosts (Hafner & Nadler, 1990; Lauron et al., 2015; 

Cruaud & Rasplus, 2016). With this view, host shift would be a rare or exceptional 

phenomenon (Jaenike, 1990; Via, 1990; Agosta et al., 2010) and the unidirectional 

specialization would drive species towards an evolutionary dead-end (Moran, 1988; 

Wiegmann et al., 1993; Kelley & Farrell, 1998). However, empirical evidence has shown 

that generalist lineages of parasites can be derived from more specialized lineages, and 

that host switching commonly occurs (Scheffer & Wiegmann, 2000; Janz et al., 2001, 

Stireman, 2005; Yotoko et al., 2005). The difficulty of reconciling the idea that 

specialization is always selected with the large evidence showing abundant host shifts is 

called the "parasite paradox" (Agosta et al., 2010). 
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An alternative explanation of how the diversity in host range is related to the 

diversification of organisms is given by the Oscillation Hypothesis (Janz & Nylin, 2008). It 

proposes that host range changes within different lineages throughout its evolutionary 

history, with alternate states of specialization (Nylin et al., 2014). When a specialist is 

exposed to novel resources, it may expand its range to a new host without initial genetic 

change if it has the capacity to successfully use it and complete its life cycle through a 

process known as ecological fitting (Janzen, 1985; Agosta et al., 2010). Following this 

phase of host expansion, the species can subsequently adapt and speciate either in 

sympatry or parapatry (Janz & Nylin, 2008; Nylin et al., 2014). The ability to use additional 

hosts can lead to geographic expansion, since the distribution of the original and novel 

hosts may not be identical. This spatial expansion can eventually lead to local adaptations 

and reduction of the gene flow, which results in events of specialization and speciation 

(Janz & Nylin, 2008). The Oscillation Hypothesis was first proposed to explain the 

pervasive variation in the evolutionary dynamics of the host range in Nymphalidae 

butterflies (Janz et al., 2001). Its prediction has since gained empirical support from 

patterns of host association in several other groups (Sedivy et al., 2008; Nilsson et al., 

2016; Nylin et al., 2018). The strong relationship between host diversity and parasite 

richness is also supported by theoretical models (Winkler & Mitter, 2008; Nyman et al., 

2010; Araujo et al., 2015, Wang et al., 2017; Braga et al., 2018). 

Although the host range can be regarded as a good predictor of species richness 

in a clade, speciation by ecological factors alone cannot account for all the diversity found 

in these groups (Janz et al., 2006). Geographical factors are also likely to play a major 

role in reducing populations’ gene flow and promoting speciation (Hawthorne & Via, 2001; 

Kelley et al., 2000, Servedio, 2015). Hence, diversification processes can hardly be 

untangled from a spatial context (Mayr, 1963; Servedio & Kirkpatrick 1997; Gavrilets 

2004; Kisdi & Prikopil 2011; Rettelbach et al., 2013). Space might influence speciation 

mainly because of two different processes. Differences in dispersal capacities can limit 

gene flow, leading to increasing differentiation between the populations, and eventually 

promoting their reproductive isolation (Wright, 1943; Fitzpatrick et al., 2009) even in the 

absence of natural selection (Hoelzer et al., 2008; Aguiar et al., 2009). The other aspect 

is that the geographical occurrence of a parasite determines the potential hosts it can 

interact with and therefore the set of selective pressures acting on its populations 

(Thompson, 2005), and vice versa (Slove & Janz, 2001). The increase in host use can be 
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related to geographical expansion, which in turn affects the chances of local adaptation 

and new specialization and speciation events (Janz & Nylin, 2008). 

Integrating the evolutionary dynamics of host use in a geographical context can 

thus be an important step in advancing our understanding of how ecological adaptation 

and spatial gene flow interact on outcomes of species diversity and the evolution of 

specialization patterns. In this paper, we propose an Individual-Based Model with evolving 

in silico populations of genetically explicit individuals to investigate how selection due to 

host use and geographic distribution affects speciation dynamics and variation in host 

range. We characterize the variation in host range along time, during and between events 

of speciation. By considering that both phenomena (speciation events and host use) 

emerge from the interaction of lower-level agents, instead of being imposed a priori, we 

aim to test the prediction that oscillations in host range are an expected outcome of the 

evolutionary dynamics in diversification processes associated with ecological adaptation 

in a geographical context. By controlling the influence of these factors, we can evaluate 

their contribution to speciation likelihood and directions in specialization across 

evolutionary time.  
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2 MATERIALS AND METHODS 
 

In this study, we used an Individual-Based Model to investigate the patterns of 

species richness and dynamics in host use when individuals evolve in a spatial landscape 

with different hosts. The model is based on the interacting life cycle and dynamics of 

phytophagous insects and their host plants, but its principles can be extended to other 

parasite-host and antagonistic systems. The agents represent individuals from a higher 

trophic level (consumers) that exploit host species from a lower trophic level (hosts). We 

used the framework developed by Aguiar et al., (2009) to characterize the individuals’ 

genome and the speciation process due to reproductive incompatibility. The model is 

spatially explicit for both consumer and host distributions. The latter also imposes a 

selective pressure on the consumer’s fitness by trait matching, but the host distribution is 

not affected by the consumer. A species host range ( ) is defined by the number of 

different hosts successfully used during each generation. We measured the resulting 

species richness, frequency, and intensity of oscillation events on host range according 

to the individual’s dispersal capacity and intensity of selection. The modeling approach 

and these metrics are detailed below. 

 

2.1 MODEL DESCRIPTION 
 
2.1.1 Consumer and host definitions 

 

The model is composed of consumers and hosts distributed in a spatial grid 

composed of  x  cells (Fig. 1). Each cell can contain a maximum of one consumer. A 

consumer is characterized by its genome, its phenotype and its spatial position in the grid 

. The genome of the individual in position  consists of a binary string of size L 

equal to 100 that assumes values of 0 or 1. The phenotype  is assumed as the sum 

of all values in its genotype: 

, 

where  is a vector that represents its genome, and n the position of each locus. The 

consumers' phenotype can range from 0 to L.  

We modeled  types of hosts, each type of host is defined by its imposed 

favored phenotype, that are separated by equidistant intervals of value . Thus, hosts are 

(1) 



 76 
 
represented by a number  which corresponds to the favored phenotype that is 

imposed for the consumer that occupies the cell . Unlike consumers, hosts are not 

individually modeled in terms of the genome and do not evolve over time nor move over 

space. Then, hosts cover all space, composing a heterogeneous fitness landscape, 

where each grid cell can assume a value , which is constant through time. Moreover, 

we assumed that the favored phenotype distribution presents a partial degree of spatial 

autocorrelation, instead of a random distribution on the landscape (Malanson, 1985). This 

spatial structure implies that neighboring cells have a higher probability of harboring hosts 

of equal or similar values than more distant cells, thus creating patchiness in the resource 

distribution (Cliff & Ord, 1973). The spatial autocorrelation structure was generated by 

adapting a sequential Gaussian simulation algorithm (Goovaerts, 1998; Büchi et al., 2009, 

see details in Supplementary Material 1). 

Space also sets encounters with potential reproductive partners and available 

hosts. Individuals in one location have a list of adjacent cells that defines their spatial 

neighborhood (Fig. 1. ii). This spatial neighborhood is defined by the grids inside a circular 

area with radius , centered at the consumer position. This neighborhood represents the 

dispersal capacity of the consumer during its life cycle, and consequently the likelihood 

of finding a partner and the potential host that it can choose for its offspring. 

 

2.1.2 Dynamics 

 

During each cycle of interactions, each individual chooses a partner to mate with, 

drawn from its spatial neighborhood (see Reproduction subsection). The couple can have 

a maximum of F offspring that disperses to an unoccupied cell of that spatial 

neighborhood (see Dispersion subsection). Each offspring has a chance to die due to the 

selection imposed by the host (see Selection subsection). After all events, the previous 

generation is replaced by the new generation and the cycle restarts. 

 

2.1.2.1 Reproduction 

 

Following Aguiar et al., (2009), consumers only reproduce with partners 

possessing a minimum genetic similarity . The genetic similarity is calculated by 

comparing the number of loci in each individual's genome that has the same values. If 
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individuals have a genetic similarity below the  threshold, they are considered 

incompatible and do not reproduce. When a compatible partner is found, they recombine 

their genomes and the resulting offspring inherits 50% of each parent’s loci (Fig. 1. iii). 

Variability is added to the system as each locus of the genome mutates at a mutation rate 

. A species is defined in this model as the set of all individuals that are connected by the 

genetic possibility of gene flow (Aguiar et al., 2009). Note that this definition of species 

does not require that all individuals are able to reproduce with all other members of the 

group. 

 

2.1.2.2 Dispersion  

 

The offspring is placed at a host within the parent spatial neighborhood and is 

selected according to a preference strategy: The parent randomly probes  potential 

locations within its spatial neighborhood. If all locations are occupied this offspring dies. 

If more than one location is unoccupied, the offspring is placed at the host that maximizes 

its fitness. This host search represents a simplified process of host preference widely 

observed in insect oviposition choice (Thompson, 1988; Nylin et al., 1996), prey choice 

by a predator (Jobin et al., 2000, Araujo et al., 2020) or host nests by bird parasites 

(Moksnes & Oskaft, 1995). This mechanism of host preference strategy ensures that the 

host chosen by the parent is neither random nor necessarily the optimal host for the 

offspring (since the optimal host may not be probed or even available within the spatial 

neighborhood), allowing a chance that it attempts to colonize non-optimal hosts. The 

offspring has a chance to die due to the selection imposed by the host (see Selection 

subsection) and if it does, the cell becomes available for next offsprings. 

 

2.1.2.3 Selection 

 

The survival probability (fitness) for each offspring is calculated according to the 

distance of its phenotype to the favored phenotype imposed by the host (Fig. 1. iv). The 

fitness of the individual , , is given by:  

 

where  and  are respectively the phenotype of the consumer and the favored 

phenotype imposed by the host, and  defines the intensity of the selective pressure. A  

(2) 



 78 
 

 

Figure 1. Fluxogram of events and illustration of the model. i) In each generation, consumers 
chose a compatible mate within its spatial neighborhood of radius  and produce offspring 
according to its fecundity ( ). The parental individual selects a host for its offspring that maximizes 
its survival probability within its dispersal capacity, also given by . A selective pressure of 
intensity  sets the survival probability of each offspring according to its phenotypic fit to the 
chosen host. The surviving individuals are passed to the next generation, and the cycle restarts. 
ii) Illustration of a consumer individual and its spatial neighborhood on the grid, where it can find 
potential mates and hosts for its offspring. iii) Detailed scheme of the reproduction process, in 
which the offspring inherits half of each parent’s genome (P1 and P2) by recombination. Variation 

i) 

iii) 

ii) 

iv) 

v) 
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is then added by a mutation in the genome. iv) Example of three hypothetical hosts and consumer 
fitness according to its phenotype. Each line represents the fitness curve for a different host, which 
peaks at the favored phenotype that it imposes. v) Spatial landscape showing host distribution, 
depicting a partial spatial structure for host values. Each color in a cell represents a host and the 
phenotype value that imposes maximum fitness (survival probability) for the consumer. 

 

high value for the intensity of the selective pressure implies that the consumer’s 

phenotype must closely match the phenotype of the host, while smaller values of selective 

pressure relax the effect of trait matching on the survival probability of the individual. 

 

2.1.3 Initial conditions 

 

We initialized the simulations with a square of 5 x 5 individuals with identical 

genomes placed in the center of the grid, each in a different cell, and all their phenotypes 

equal to , half of the genome size. The limited spatial distribution of the consumers at 

the beginning of the simulations allowed us to evaluate its behavior as if it were equivalent 

to a scenario of initial colonization followed by geographical expansion. 

 

2.2 ROBUSTNESS AND ANALYSIS 

 
For each simulation, we recorded the total number of consumer species (species 

richness) and host range ( ) after 1000 generations. In our model, HR is defined as the 

number of different successfully used hosts by each consumer species in every 

generation. We consider that a host has been successfully used when at least one 

consumer individual that attempts to use it survives after the interaction. We also 

proposed an Oscillation Index to describe the dynamics of variation in host range 

(described below). We repeated the simulations 10 times for each parameter 

combination. 

We conducted a preliminary analysis of the influence of different parameter 

combinations (Table 1) on species richness (Supplementary Material 2) and of how the 

model dynamics depended on the degrees of spatial configuration and number of host 

searches (Supplementary Material 3). Here we present the effect of the dispersal radius 

( ) and strength of the selective pressure ( , Table 1). By varying the dispersal radius, 

we were able to evaluate the role of the spatial distribution of a species in influencing 

gene flow and the local availability of potential hosts it can interact with. This approach 
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allowed us to adjust the geographical connectivity of individuals as levels within a 

continuum, rather than assuming allopatric or sympatric scenarios a priori (Butlin et al., 

2008). By changing the strength of the selective pressure, we were able to evaluate the 

importance of selection due to biotic interactions that can affect the likelihood of 

speciation and variation in host use. This resulted in a total of 42 parameter combinations 

of dispersal radius ( ) and intensity of selection ( ). 

 
Table 1. Parameters combination evaluated for the model. Values in bold were used in the main 
analysis. 

Parameter Description Value 

 Number of generations 1000 

 Grid size 50 

 Genome size 100 

 Fecundity 4 

 Mutation rate 0.001, 0.003, 0.005 

 Intensity of Selective 
pressure 

2x10-1 , 5x10-2 , 1.2x10-2 , 3.1x10-3 , 
7.8x10-4 , 2x10-4 , 4.9x10-5, 0.0 * 

 Dispersal radius 1, 3, 5, 7, 9, 10, 11 

 Genetic threshold 1, 5, 10, 15 

 Number of host probing 1, 5, 10 

 Number of different 
favored phenotypes 15 

 Host’s favored phenotype 
interval 5 

 Spatial autocorrelation of 
hosts 0, 5, 10, 15 

*These values were set by starting the sequence with  = 0.2 and then multiplying each following value by 
0.25 in relation to the previous one. 

 
2.3 THE OSCILLATION INDEX 
 

The Oscillation Index evaluates if the consumer host range evolution follows the 

Oscillation Hypothesis (Janz & Nylin, 2008, Fig. 2) that basically assumes: (i) Host 
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expansion: a consumer species expands its host range over time up to the point that a 

speciation event occurs; (ii) Host specialization: the new pair of young consumer species 

are more specialized (smaller host range) than their common ancestor at the moment just 

before speciation. We propose an Expansion Index (HEI) and the Host specialization 

Index (HSI) and then combine both in an Oscillation Index (OI), detailed below. 

Let us call  the time that a consumer species arises and  the time that a new 

speciation event arises from this species; that is, the times of the two consecutive nodes 

of a phylogenetic tree, respectively (Fig. 2). The Host Expansion Index measures the 

intensity of the host range variation between these two times as: 

 

where  and  means the host range at the time  and , respectively. 

Observe that HEI is positive if the consumer species expands its host range, it is zero if 

it does not change and it is negative if the host range decreases between the two events. 

The index can assume a maximum value of , if the lineage starts with just one host 

and then expands its host range to all hosts in the simulation before speciating. On the 

other hand, in a case of maximum specialization the index will tend to -1, representing a 

case in which a lineage starts using all hosts in the simulation and speciates into a lineage 

that uses just one host. 

The Host Specialization Index (HSI) consider only the speciation time and 

measures the host range variation between the new species and its ancestor species: 

 

where  means the host range of the new species at the moment when this new 

species arises and  the host range of the ancestor species at the moment just 

before speciation (Fig. 3). If the new species keeps the same host range of its ancestor, 

this index is zero, which means no specialization associated with the speciation. If the 

new species reduces its host range, this index is positive, and this value tends towards 1 

as the host range retraction increases (specialization). This index is never negative once 

we consider just host range variation associated with the speciation event; new host 

colonizations can only occur after this event. For each speciation event, we then have 

two HSI values. 

 

(3) 

(4) 
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Figure 2. Changes in host range at different evolutionary moments following the Oscillation 
Hypothesis. The graph above represents the evolutionary history of an ancestral lineage (blue 
line) that originates two daughter lineages (green and purple lines). The graph below represents 
each lineage's corresponding host range (HR). The Host Expansion Index measures the direction 
of changes in host range between a species origin ( ) and its next speciation event ( ). 
Expansion of host range results in a positive HEI, no variation results in HEI = 0, and reduction in 
host range results in a negative HEI. The Host Specialization Index (HSI) for each lineage 
measures the proportion of hosts that remained after the speciation event. The index is calculated 
separately for each new lineage since they can have different levels of reduction in host range 
due to the speciation event. The Oscillation Index summarizes both events (description below). 
Examples of the measures for the Oscillation Index are shown in Figure 5. 

  

The Oscillation Index (OI) is obtained by multiplying HEI and HSI, which 

summarizes the variation in host range between speciation events for each new lineage: 

. 

Positive values indicate situations where variation in host range follows the 

prediction of the Oscillation Hypothesis: events of host expansion of a consumer are 

followed by a speciation event with specialization (reduction in host range). Zero and 

negative values indicate situations where oscillations in host range do not occur as 

predicted by the Oscillation Hypothesis: OI=0 when there is either no host expansion or 

host specialization; OI<0 occurs only when the Host Expansion Index is negative; thus 

(5) 
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when a consumer species reduces its host range through time without speciation. For 

each speciation event, we have two OI values with the same HEI value but two possibly 

different SHI values. The range of values that the OI can assume is very similar to the 

range of values that the HEI can assume. 

In our model, we found a recurring pattern in which the number of individuals in 

each new lineage was unequal. Thus, one of these lineages maintained a greater number 

of individuals when compared to the other lineage. This inequality in the number of 

individuals implied in distinct patterns of variation in host range to each lineage. 

Therefore, the analysis regarding variations in HR at specialization and oscillation events 

was done separately for the larger and smaller lineage. 

The patterns of variation in host range were evaluated by averaging the index 

values and the proportion of index values that were positive, negative (when applicable), 

or equal to zero in each simulation. To describe the overall tendency of the speciation 

events in the simulations to follow the Oscillation Hypothesis, we calculated the proportion 

of events that result in positive values of OI for all speciation events occurring in a 

simulation and also estimated the intensity of oscillations by averaging the OI values 

greater than zero. In order to understand the effects of intensity of selection and dispersal 

radius, we then averaged the simulation’s proportions and index values for all simulations 

that had the same parameter combination. Finally, to describe the overall pattern of 

variation in host range, we calculated the average of proportions and index values for all 

simulations. 

To evaluate how variation in host range is affected by conspicuous geographic 

expansion, we also applied the index measures for the first speciation event. For most 

simulations where speciation events occurred, this represents the interval between the 

initial emergence of a small population and its expansion through most of the spatial 

landscape.  
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3 RESULTS 
 
3.1 MODEL DYNAMICS 

 

The model dynamics showed two phases: a pattern of initial geographical 

expansion of the first species, followed by a second moment consisting of events of 

fragmentation into multiple species. This pattern occurred for all the evaluated parameter 

combinations, although the number of speciation events depended on both the dispersal 

radius and intensity of selection (detailed in the next section). At the beginning of the 

simulations, all individuals belong to a single population of identical individuals that 

survives in just one or a small subset of all available hosts. Reproduction leads to an 

increase in population size and expansion of the geographic distribution (Fig. 3A, upper 

panel). Gradually, this population acquires increasing phenotype diversity due to the 

recombination and mutation events (Fig. 3A, lower panel). The species colonize new 

hosts and expand the range of their host repertoire. A second phase of the model occurs 

after a few hundred generations, in which the original species starts to fragment into 

separated lineages (Fig. 3B, upper panel). The new species either persist in the 

environment and produce new lineages, or they eventually go extinct. After a certain 

number of generations, the rates of speciation and extinction are balanced so that the 

number of species approaches an asymptotic value, with small variations due to 

stochastic fluctuations. The phenotype frequency distribution of each species tends to be 

unimodal and centered around the host it uses more frequently (Fig. 3B, lower panel), 

although its shape can vary over time. On a global scale, the whole community uses most 

of the available host landscape and has a large distribution of global phenotype diversity. 

 

3.2 PATTERNS OF VARIATION IN HOST RANGE AND SPECIES RICHNESS 

 

All scenarios started with the same pattern of variation in host range, regardless 

of the dispersal radius and intensity of the selective pressure. At first, the initial population 

was able to use just a small number of hosts. Its increase in abundance and spatial 

distribution was followed by the inclusion of new hosts, resulting in a significant expansion 

of its host range (Fig. 4, Table 2). Expansion of host range occurred in all cases before 

the first speciation event, for every combination of dispersal radius and intensity of 

selection (Table 2 and Supplementary Material 4). After the first speciation event, the 
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Figure 3. Spatial distribution and phenotype histogram in different generations. For each set, 
upper panels show the consumer’s distribution on the landscape and each dot corresponds to a 
consumer individual. Lower panels indicate the respective phenotype distribution of species at 
the same generation of the above figure. Different colors represent different consumer species. 
Host distribution is not shown but follows A) Phase of geographical expansion of the first species 
along with an increase in its abundance and phenotypic diversity; B) Second phase of the model, 
with the fragmentation of the first species into multiple lineages. Parameters for this simulation 
are:  = 50,  = 100,  = 4,  = 0.001,  = 0.2,  = 5,  = 5, = 5,  = 5. 

A) 

B) 
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initial lineage was split in two. For the lineage with a greater number of individuals, 

reductions in its host range occurred only a relatively small number of times (proportion 

= 0.15, sd = 0.2). The other lineage was composed of a smaller fraction of the individuals 

and suffered a host range reduction in nearly all occasions (proportion = 0.98, sd = 0.04). 

This characterizes the first oscillation event of the simulation, in which expansion in host 

range is followed by a reduction in host range (specialization) at the moment of speciation. 

The second phase of the model had a different dynamic, characterized by 

multiple speciation events associated with patterns of variation in host range (Table 2). 

The Host Expansion Index showed that host expansions between a species origin and its 

next bifurcation occurred almost half of the time (proportion = 0.45, sd = 0.05). The events 

with no variations were less frequent (proportion = 0.33, sd = 0.08), followed by the events 

with reduction in host range (proportion = 0.22, sd = 0.05). Specialization events followed 

the same asymmetrical pattern seen in the first speciation event. The lineage that retained 

most individuals at the moment of speciation had a small likelihood of reducing its host 

range (proportion = 0.30, sd = 0.08), and on average decreased its host range by one 

fifth (  = 0.22, sd = 0.09). On the other hand, the lineage with fewer individuals 

reduced its host range most of the time (proportion = 0.84, sd = 0.11) and reduced its 

host range by one third at the moment of speciation (  = 0.36, sd = 0.06). 

Oscillations in host range emerged along with the speciation events in all scenarios 

of dispersal radius and selection strength. On average, nearly one-third of events of 

speciation had positive values of the Oscillation Index, which characterizes expansions 

followed by specialization (proportion = 0.28, sd = 0.04, Table 2). Events with Oscillation 

Index equal to zero were frequent (proportion = 0.60, sd = 0.08), as they were 

characterized either by the absence of host expansion or absence of specialization at the 

moment of speciation. Events with negative Oscillation Index were less common 

(proportion = 0.11, sd = 0.05). The frequency of oscillations (i.e. the proportion of events 

with positive OI) was about 2.5 times higher for species that retained most individuals 

when compared to the other lineage (proportions = 0.40, sd = 0.06 and 0.16, sd = 0.06 

respectively). The intensity of oscillations, given by the mean of positive values of the 

oscillation index, was also higher for new lineages with fewer individuals ( = 0.21, 

sd = 0.15, OI > 0) than the lineages with most individuals (  = 0.12, sd = 0.12, OI > 

0). 

The intensity of oscillation was dependent on the intensity of selection and 

dispersal radius. At the same time, when oscillations did occur in this scenario of strong 
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selective pressure, they were stronger when compared to simulations with other selection 

intensities. This can be noticed by higher values of the OI when compared to other 

simulations (Fig. 5A and 5B). A combination of large dispersal radius and weak or 

moderate-intensity selection also resulted in higher values for the Oscillation Index for the 

lineage with fewer individuals, while the other lineage had OI close or equal to zero (Fig. 

5A and 5B, the bottom-right region of the graph). 

 
Table 2. Measures for the Expansion, Specialization, and Oscillation indexes. The first three 
columns show the proportion of events with indexes values greater, equal, and smaller than zero, 
respectively. The final column shows the mean values for indexes measures greater than zero. 
Underline values correspond to measures related only to the first speciation event, while the 
values above correspond to the average value when considering all events in the simulations. 
Values represent the average ± standard deviation of all simulations. 

Index 
Proportion 

Mean 
Positive Equal to 

zero Negative 

Expansion 
0.45 ± 0.05 0.34 ± 0.08 0.22 ± 

0.05 0.51 ± 0.26 

1.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.35 ± 0.30 

Specialization – smaler 
lineage 

0.84 ± 0.11 0.15 ± 0.11 - 0.36 ± 0.06 

0.98 ± 0.04 0.01 ± 0.04 - 0.52 ± 0.12 

Specialization – larger 
lineage 

0.30 ± 0.08 0.69 ± 0.08 - 0.22 ± 0.09 

0.15 ± 0.02 0.84 ± 0.20 - 0.12 ± 0.05 

Oscillation - both 
lineages 

0.28 ± 0.04  0.60 ± 0.08 0.11 ± 
0.05 0.19 ± 0.14 

0.57 ± 0.09 0.42 ± 0.09 0.0 ± 0.0 0.68 ± 0.27 

Oscillation – smaller 
lineage 

0.40 ± 0.06 0.42 ± 0.13 0.17 ± 
0.07 0.21 ± 0.15 

0.98 ± 0.04 0.01 ± 0.04 0.0 ± 0.0 0.72 ± 0.26 

Oscillation - larger 
lineage 

0.16 ± 0.06 0.78 ± 0.07 0.05 ± 
0.03 0.12 ± 0.12 

0.15 ± 0.20 0.84 ± 0.20 0.0 ± 0.0 0.16 ± 0.08 
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Figure 4. Illustration of the Oscillation Index and host range variation in a simulation. The larger 
panel shows the variation of host range for different species through time. Each new consumer 
species is represented by a different color. The straight segments indicate the variation in host 
range when comparing a lineage’s host range between its origin and next speciation events. The 
red dashed line indicates the decrease in host range following the speciation event. The light lines 
indicate the host range of each lineage at every generation. Observe that consumers are 
constantly exploring new hosts and not all new colonizations are maintained over time. In the 
above panel, we show the Oscillation Index (OI) corresponding to the time of the speciation event. 
Although each speciation event results in two species, in this illustration, we considered only one 
in order to not overlap the multiple lines of different lineages. Events a, d, e, and f had expansion 
on host range followed by specialization, hence they have positive values for the OI. Events c and 
g had either no specialization or expansion on host range, so their OI is zero. Event b had a 
decrease in host range followed by specialization during speciation, so its OI is negative. Values 
for the OI are a = 0.38; b = -0.05; c = 0.0; d = 0.25; e = 0.16; f = 0.16; g = 0.0. 

 

The species richness of each simulation was strongly related to the length of the 

dispersal radius and strength of the selective pressure (Fig. 5C). Total species richness 

increased with a smaller dispersal radius and stronger selective pressure. An exception 

of this pattern is found for the simulations with the strongest selective pressure that 
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resulted in small richness or extinction of all individuals. As the consumer’s phenotype 

and their host require a strong match for the offspring to survive under this scenario, 

individuals have lower performance and the overall abundance is also smaller. The 

smaller number of individuals in the whole population restricts the potential number of 

species when compared to a scenario where the system is closer to its capacity of 

individuals. 
    

 
 

Figure 5. The dependency of oscillation and species richness on interaction strength and 
dispersion radius. Graphs A and B show the Mean Oscillation Index (OI) for the lineages with 
most and fewer individuals after speciation, respectively. In both cases, the intensity of oscillation 
was stronger in the simulations with the highest intensity of selection (  = 0.2). C. Species 
richness.  
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4 DISCUSSION 

 
In our model, we investigate the expected dynamics for species diversification 

associated with the evolution of the host range in a spatial context. Our main results show 

that oscillations in host range are an inherent process of evolutionary dynamics, as it 

emerged in all scenarios for every dispersal radius and intensity of selection. Throughout 

the diversification process many lineages repeatedly faced phases of expansion and 

reduction on its host range, in accordance with predictions of the Oscillation Hypothesis 

(Janz & Nylin, 2008). Speciation events were preceded by an expansion in host range 

nearly half of the times, while the species bifurcation led to specialization in one or both 

lineages. Speciation occurred when the accumulation of genetic differentiation in a 

population generated groups of reproductively isolated individuals (Aguiar et al., 2009; 

Aguiar et al., 2017). A stronger intensity of selection and smaller dispersal radius favored 

an increase in the resulting species diversity. These results suggest that oscillations in 

host range, rather than ever-increasing specialization, play a fundamental role in species 

diversification. 

At the first stage of the simulations, the initial species expanded its geographical 

distribution, and this expansion was always associated with an expansion of its host 

range. When the selection is weak, the colonization of different hosts happens basically 

as a consequence of the increasing use of space. However, the initial species was able 

to gradually expand its host range even under intense selection pressure on resource 

use. This situation is a typical description of the Parasite Paradox (Agosta et al., 2010): if 

the consumer is suffering high interaction selection and, therefore, needs to specialize on 

its host in order to perform well on it, how can the host range expand? Our simulations 

showed that individuals are constantly exploring the boundaries of their fitness curve, and 

by exposing themselves to selection on marginal hosts they expand their capacity (Fig. 

4). During a lineage lifetime, hosts were continuously being lost and colonized by a 

species. Given enough opportunity and time, new hosts can be incorporated into the 

consumer’s host repertoire (Araujo et al., 2015). This dynamic agrees with the empirical 

evidence that phytophagous insects and parasites can quickly shift to new related hosts 

in observable time (Tabashnik, 1983; Singer et al., 1993; Agrawal, 2000; Magalhães et 

al., 2007). According to Janzen (1985), new hosts can be incorporated into a species 

repertoire without the requirement of evolutionary innovations. This process is called 

“ecological fitting” and occurs when traits already possessed by an organism allow it to 
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survive and persist on resources outside its original range (Agosta & Klemens, 2008; 

Agosta et al., 2010). This region of potential positive fitness represents the “sloppy fitness 

space” (Agosta & Klemens, 2008) that can be successfully used given the opportunity 

(Araujo et al., 2015). In the model, the extent of the “sloppy fitness space” is related to 

the intensity of the selective pressure. With time, recombination and mutation events 

increased the phenotypic diversity of the population, allowing it to constantly expand its 

host range to more distant hosts. Gradually, the increase in the phenotypic variability 

associated with an increase in the host repertoire allowed the initial species to become a 

generalist, as a single species was able to use most of the hosts in the system. This 

phase of geographical and host expansion however represented only a transient state in 

the simulations, as the initial species quickly broke down into multiple species.  

Speciation events were associated with specialization (reduction in host range) 

in a high number of events. This pattern was also found on another spatially explicit model 

that explored variations on diet breath (similar to our host range), although some 

assumptions and results differ (Forister & Jenkins, 2017). The modeling approach of 

Forister & Jenkins (2017) focus on expected levels of specialization on the absence of 

selection, speciation is modeled phenomenologically (Kopp, 2010), and expansion on diet 

breath between speciation events are not investigated. A pattern that was not anticipated 

in our model that emerged from the model was that specialization was uneven and 

associated with the relative abundance of each new lineage. The phenotype distribution 

of a consumer species follows a multimodal distribution where each peak corresponds to 

the favored phenotype imposed by each different host. When the consumer species 

fragmented in two, the lineage that retained most individuals seldom specialized, which 

means that a speciation event generally did not break the phenotype distribution of this 

new species (Fig. 3B). On the other hand, the lineage with fewer individuals frequently 

contracted its host range at the moment of speciation. This host range reduction was a 

direct consequence of population fragmentation, as individuals of this new species 

represent a non-random subset of the incipient species. This division is followed by a loss 

of genetic and phenotypic diversity when compared to the ancestral species. Thus, 

specialization emerged as a consequence of the speciation (Patten, 2008), which resulted 

in asymmetric variation in the host range. Models that consider species as composed of 

a set of individuals with explicit traits also demonstrate that inheritance of quantitative 

traits can be asymmetric (Duchen et al., 2019), and here we extend this pattern to 

asymmetrical variation in host range due to speciation. Asymmetries in host range 
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variation have already been proposed as a component of specialization-by-drift models 

based on empirical findings from scale insects (Hardy et al., 2016), and also on neutral 

models of the evolution of dieth breath (Forister & Jenkins, 2017). Since this pattern 

emerged for all selective pressure intensities, our model suggests asymmetry can be 

produced by speciation driven by either non-adaptive or adaptive forces. 

Following the first speciation event, the system converged to a state where 

multiple species were constantly emerging, along with variation in the host range of these 

lineages. Expansions of the host range between a species origin and its next speciation 

event were common outcomes of this phase. The high frequency of events in which the 

host range expanded suggests a tendency for the lineages to increase its repertoire 

before speciating again. Expansions of the host range were associated with increased 

abundance, which in turn increases the overall genotypic variability within the population. 

The variability in the population associated with dispersal limitation favored the likelihood 

of speciation events. This dynamic aligns with predictions of the Oscillation Hypothesis, 

in which host expansions set the stage for posterior processes of increasing genetic 

differentiation and separation of lineages (Janz & Nylin, 2008). At the same time, about 

one-third of speciation events were not preceded by changes in the host range, which 

shows that speciation also occurred without the requirement of host expansion. It is 

expected that not every speciation event is absolutely associated with host expansion 

(Janz et al., 2006), and previous models show that differentiation can occur solely due to 

assortative mating caused by spatial and genetic differences (Aguiar et al., 2009). The 

second part of our hypothesis predicts that clades that have undergone the oscillations 

outlined above should be more species-rich compared to clades that have remained 

specialized on the same host (Janz et al., 2006), which will be addressed in future 

research. 

When comparing the dynamics of the model between the initial phase of 

geographical expansion to the second phase of the model, the coexistence of multiple 

species resulted in a different dynamics for both diversification and evolution of host 

range. The species diversity evolved to a near-equilibrium stage, where it fluctuated 

around similar values. This equilibrium in diversity emerges in the model as a 

consequence of spatial limits in the number of individuals that can exist at the same time 

(MacArthur, 1969; Rosenzweig, 1975). New species are continually formed at a similar 

rate in which other species became extinct. A large proportion of these newly formed 

species also did not persist many generations, corresponding to a high frequency of 
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ephemeral species (Rosenblum et al., 2012). Also, the possibility of each species to use 

other resources and increase its size was partially limited by competition with the other 

species (Price & Kirkpatrick, 2009). Hence, although host expansions still occurred during 

this phase, it had a lower amplitude when compared to the host expansion of the first 

species. 

Oscillations in host range were a recurrent outcome of variation in host range 

when associated with the diversification process and appeared for all the evaluated levels 

of selection intensity and dispersal capacity. We highlight that oscillations occurred in 

nearly all events associated with the initial geographical expansion for at least one of the 

lineages. This outcome agrees with the expectation from the Oscillation Hypothesis, in 

which the geographic expansion followed by speciation and specialization produces 

oscillations (Janz & Nylin, 2008). In our simulations, the increase in geographic range led 

inevitably to the colonization of new hosts, and the first speciation event led to increased 

specialization (smaller host range) at least in the less abundant lineage. In the second 

phase of the model, given by the coexistence of multiple species and a greater limitation 

of geographical expansion due to the saturation of available space, oscillations still 

emerged with frequency throughout the multiple speciation events. These findings 

contrast with the expectation that increasing diversity must be driven by continuous 

specialization of the lineages (Futuyma & Moreno, 1988; Agosta et al., 2010). In fact, 

continuous specializations, measured by negative Oscillation Index (or negative 

Expansion Index) in our model, were the least frequent event that emerged in simulations. 

It is interesting to note that oscillations occurred even in the scenarios with the highest 

intensity of selection, which indicates the capacity of species to oscillate their host ranges 

even when selection imposes the necessity of high adaptation to a host to allow its 

survival. In order for multiple specialization events to occur along with the speciation 

events, host expansions must keep adding “fuel” for this process to persist (Janz et al., 

2006). Also, the lineages with smaller abundance after speciation, that most frequently 

specialized after the division, had a higher probability of expanding its host range and 

oscillate during its next speciation event than its sister lineage. On the other hand, the 

lineages with most individuals had a smaller chance of either specialize after the division 

or expanding its host range until its next speciation event and thus contributed mostly to 

the great frequency of speciation events with no oscillation.  

Although the proportion of variations in host range was not so strongly affected 

by different combinations of dispersal radius and intensity of selection, they strongly 
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affected the resulting species diversity. Increasing the intensity of selection and 

decreasing the dispersal capacity resulted in a higher number of species. This process 

occurred because of two mechanisms. The wide geographic distribution limits the genetic 

flow even in the absence of barriers, due to limits in the dispersal capacity of organisms. 

Multiple species can arise solely due to spatial restrictions (Aguiar et al., 2009), as the 

whole mixing of a widely distributed population is unstable given dispersal limitations 

(Martins et al., 2013). The second consequence of geographical expansion is related to 

the expansion of host use. Increasing resource variability presents different selective 

pressures on individuals, and induces divergent selection (Via et al., 2000; Hendry et al., 

2002; Hartmann et al., 2018). Selective pressure imposed by different hosts favored the 

formation of distinct phenotypic clusters, and hence genetic differentiation within the 

populations (Rice & Hostert, 1993; Saint Laurent et al., 2003). The genetic diversity 

resulting from the adaptation of individuals to different resources (or fitness peaks) led to 

the reproductive isolation of populations and the formation of distinct species (Dieckmann 

& Doebeli, 1999; Berlocher & Feder, 2002; Drés & Mallet, 2002). Although in our model 

both mechanisms were able to separately induce speciation events, their combined effect 

resulted in increased richness when compared to their effects alone. 

Our modeling approach sought to investigate the patterns of variation in host 

range associated with species diversification that emerge considering both a spatial 

context and selection imposed by a variety of resources. A few important assumptions 

were made in order to minimize the level of complexity of the model. First, the favored 

phenotype imposed by the hosts was unidimensional and equidistantly distributed along 

the fitness landscape. In natural systems, we expect the resource space is given by the 

host to be heterogeneous (Nyman, 2010) and composed of multiple dimensions (Fordyce 

et al., 2016). The hosts’ abundance and spatial distribution can also be affected by the 

interaction with the consumer (Maron & Crone, 2006), and selective pressure exerted by 

the consumer on the host population can shift the favored phenotype as a consequence 

of an arms-race dynamics (Erlich & Raven, 1964; Hiltunen & Becks, 2014). Also, both 

dispersal capacity and selection strength are not equal nor constant within all species 

(Steven et al., 2010; Benkman, 2013; Sweet & Johnson, 2018). Finally, the resource 

landscape can present different levels of resource availability and connectivity (de la 

Penã, 2011). For instance, isolated patches can be used to investigate the relationship 

between allopatric modes of speciation and the evolution of host range (Coyne & Orr, 

2004). By examining the outcomes of the model with the simplifying assumptions, we can 
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have a baseline of expectations for variations in host range and species diversification in 

a geographical context. This general framework can be useful when assessing and 

comparing the results after the inclusion of additional and more particular assumptions. 

In conclusion, our model was able to simultaneously incorporate the effects of 

species dispersal and selective pressure by different hosts on diversification processes 

of species. Although speciation can occur due to each of these processes alone, here we 

show that they interact to produce even higher diversity when acting combined. Also, the 

variation in host use is consistent with the predictions of the Oscillation Hypothesis, as 

events of expansion of host range followed by specialization and speciation represent the 

basic elements predicted by the Oscillation Hypothesis (Niklas & Janz, 2007). In our 

simulations, phases of expansion and contraction of host range emerged from the 

interaction between processes of sexual reproduction of individuals and adaptation to a 

heterogeneous fitness landscape in a spatial context. We hope that by integrating 

different but non-exclusive hypotheses on diversification patterns, we can better recreate 

a more complete picture of how these processes act mutually to explain species 

biodiversity.  
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SUPPLEMENTARY MATERIAL 1 

 

The spatial distribution of hosts was generated by applying a modified sequential 

Gaussian simulation algorithm. Given an autocorrelation range ( ), the algorithm sets the 

above distance between two cells that will have a correlation lower than 0.05. Values 

distribution was implemented with the gstat package (Pebesma, 2004) by the R software 

v.3.5.2 (R Core Team, 2003). Since the algorithm generates continuous values with mean 

zero and standard deviation of one, we transformed them into values that correspond to 

the fitness peaks imposed by the hosts. The mean was adjusted to equal to half of the 

genome size and we set equidistant breaks by a distance of 5 between 0 and 100. The 

continuous values were then rounded to the closest and smaller break, creating a 

distribution of discrete values. 

To evaluate the spatial structure generated by the modified algorithm, we 

measured the spatial autocorrelation range with the input . In spatial statistics, 

semivariance is the degree of spatial dependence of values in a spatial landscape 

(Cressie, 1993). The variogram describes how semivariance changes according to the 

distance between two values, and it is usually described by three parameters. The nugget 

is the first semivariance value at the horizontal axis origin, the sill is the theoretical limit 

of the variogram when tending to infinite distances, and range is the distance in which 

values will show no variation in its spatial dependence (Fig. S1). To analyze the actual 

range produced by our algorithm, we fitted an exponential variogram model. We found 

that although algorithms set with  = 0, 5 and 10 had range values centered around the 

spatial autocorrelation values intended for the distribution, there was significant variation 

around these values. Also, spatial distribution with  = 15 did not increase the range when 

compared to  = 10, showing a limitation in the maximum amount of spatial 

autocorrelation that can be generated by this algorithm (Fig. S2). 
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Figure S1. Example of a variogram fitted with an exponential variogram model. 
 

  
Figure S2. Relationship between range and input autocorrelation ( ) set for the modified 

sequential Gaussian simulation algorithm. 
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SUPPLEMENTARY MATERIAL 2 

 

Robustness analysis on species richness for different parameter combinations of 

, , ,  and . All other parameters for these simulations were:  = 50,  = 100,  

= 4, and Ω = 5. Each figure shows a different value of , while varying the other 

parameters. Note that the overall pattern of species richness is very similar when 

considering = 5 and  = 10. 

 

 
Figure S3. Species richness for different combinations of dispersal radius ( ), mutation rate ( ), 
intensity of selection ( ) and genetic threshold ( ) when the number of host search ( ) = 1. 
Purple line:  = 1; Blue line:  = 5; Green line:  = 10; Yellow line:  = 15. 
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Figure S4. Species richness for different combinations of dispersal radius ( ), mutation rate ( ), 
intensity of selection ( ) and genetic threshold ( ) when the number of host search ( ) = 5. 
Purple line:  = 1; Blue line:  = 5; Green line:  = 10; Yellow line:  = 15. 
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Figure S5. Species richness for different combinations of dispersal radius ( ), mutation rate ( ), 
intensity of selection ( ) and genetic threshold ( ) when the number of host search ( ) = 10. 
Purple line:  = 1; Blue line:  = 5; Green line:  = 10; Yellow line:  = 15. 
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SUPPLEMENTARY MATERIAL 3 

 

The preliminary analysis showed that there was no significant variation in the final 

species richness when varying the number of host searches on host selection or setting 

different values of spatial autocorrelation of hosts when it is not random ( ). Also, 

when more than one species emerged in the simulations, richness increased after a 

transient period and reached relatively stable values for the same parameter 

combinations. 

 

 
Figure. S6. Species richness through time on simulations with different combinations of dispersal 
radius ( ), genetic threshold ( ) on the scenario with random landscape ( ). Black line: 
random host probing; Colored lines: preference on host probing, with the following number of 
search attempts: red line: 3, green line: 5; blue line: 10. Other parameters were:  = 50,  = 100, 

 = 4,  = 0.001,  = 0.2. 
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Figure. S7. Species richness through time on simulations with different combinations of dispersal 
radius ( ), genetic threshold ( ) on the scenario with random landscape ( ). Black line: 
random host probing; Colored lines: preference on host probing, with the following number of 
search attempts: red line: 3, green line: 5; blue line: 10. Other parameters were:  = 50,  = 100, 

 = 4,  = 0.001,  = 0.2. 
 

 
Figure. S8. Species richness through time on simulations with different combinations of dispersal 
radius ( ), genetic threshold ( ) on the scenario with random landscape ( ). Black line: 
random host probing; Colored lines: preference on host probing, with the following number of 
search attempts: red line: 3, green line: 5; blue line: 10. Other parameters were:  = 50,  = 100, 

 = 4,  = 0.001,  = 0.2. 
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Fig. S9. Species richness through time on simulations with different combinations of dispersal 
radius ( ), genetic threshold ( ) on the scenario with random landscape ( ). Black line: 
random host probing; Colored lines: preference on host probing, with the following number of 
search attempts: red line: 3, green line: 5; blue line: 10. Other parameters were:  = 50,  = 100, 

 = 4,  = 0.001,  = 0.2. 
 
  

  
Figure. S10. Species richness through time on simulations with different combinations of dispersal 
radius ( ), genetic threshold ( ) on the scenario with neutral selection ( ). Dark lines 
represent different number of search attempts (  = 1, 3, 5, 10). Other parameters were:  = 
50,  = 100,  = 4,  = 0.001,  = 0.2. 
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Figure. S11. Species richness through time on simulations with different combinations of dispersal 
radius ( ), genetic threshold ( ) on the scenario where all resources had the same value ( = 50). 
Black line: random host probing; Colored lines: preference on host probing, with the following 
number of search attempts: red line: 3, green line: 5; blue line: 10. Other parameters were:  = 
50,  = 100,  = 4,  = 0.001,  = 0.2. 
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SUPPLEMENTARY MATERIAL 4 

 

Here we show the index measures for the first speciation event for different 

parameter combinations of R and alpha. For each parameter combination, we show the 

average measure for 10 repetitions. 

 
 
Figure S12. Host Expansion Index for the first speciation event for different values of dispersal 
radius ( ) and intensity of selection ( ). 

 

 

 

 

Figure S13. Host Specialization Index for the first speciation event for different values of dispersal 
radius ( ) and intensity of selection ( ). Left panel: measures for the lineage that retained most 
individuals at the speciation event; Right panel: measures for the lineages that retained fewer 
individuals at the speciation event. 
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Figure S14. Oscillation Index for the first speciation event for different values of dispersal radius 
( ) and intensity of selection ( ). Left panel: measures for the lineage that retained most 
individuals at the speciation event; Right panel: measures for the lineages that retained fewer 
individuals at the speciation event. 
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SUPPLEMENTARY MATERIAL 5 

 
 

  

 

Figure S15. Proportion of events with Host Expansion Index values greater, equal or small than 
zero for different values of dispersal radius ( ) and intensity of selection ( ). The sign given by 
the HEI indicates the direction of variation on host range between a species origin and its next 
speciation event. A: Proportion of events with increase on host range (HEI > 0, proportion = 0.45 
± 0.05); B: Proportion of events with no variation on host range (HEI = 0, proportion = 0.33 ± 0.08); 
C: Proportion of events with decrease in host range (HEI < 0, proportion = 0.22 ± 0.05). 

B) A) 

C) 
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Figure S16: Mean Host Expansion Index for different values of dispersal radius (R) and intensity 

of selection ( ). 

 

  

 

Figure S17. Proportion of events with specialization after the speciation events (HSI > 0) for 
different values of dispersal radius ( ) and intensity of selection ( ). Left panel: measures for the 
lineage that retained most individuals at the speciation event; Right panel: measures for the 
lineages that retained fewer individuals at the speciation event. 
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Figure S18. Mean Host Specialization Index when HSI > 0 for different values of dispersal radius 
( ) and intensity of selection ( ). The values show the proportion of reduction on host range when 
it occurred after a speciation event. Left panel: measures for the lineage that retained most 
individuals at the speciation event; Right panel: measures for the lineages that retained fewer 
individuals at the speciation event. 
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Figure S19. Proportion of events with Oscillation Index for different values of dispersal radius ( ) 
and intensity of selection ( ) when: A: the Oscillation Index is greater than zero; B: the Oscillation 
Index is equal to zero; C: the Oscillation Index is smaller than zero 

 

B) A) 

C) 


