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RESUMO 

 

A biometria florestal é baseada em pesquisas que visam descrever o comportamento 
das árvores, com a finalidade de auxiliar o manejo florestal. Nesse contexto, o foco da presente 
pesquisa foi introduzir modelos estatísticos para melhorar o entendimento quanto ao 
comportamento das variáveis florestais, combinado com adequadas habilidades de predições. 
Capítulo I: Modelos lineares generalizados de covariância foram introduzidos para modelagem 
do afilamento do fuste de árvores de Pinus taeda. O componente de média foi baseado em um 
modelo não linear segmentado, enquanto quatro estruturas de covariância foram especificadas 
para uma explícita modelagem da variância e correlação. Os resultados mostraram que uma 
matriz de distância Euclidiana e estruturas de médias móveis de ordem 1 a 3 foram adequadas 
para remover o padrão de variância não constante dos resíduos, bem como a natural 
autocorrelação entre observações mensuradas ao longo do fuste das árvores. Esses modelos 
permitiram incluir de forma adequada uma análise de incertezas por meio de intervalos de 
confiança para a variável resposta. Capítulo II: Os modelos lineares generalizados de 
covariância multivariada foram introduzidos para modelagem conjunta das variáveis respostas 
altura e volume da Araucaria angustifolia, em floresta nativa. As duas variáveis respostas 
compartilharam informações devido a sua correlação significativa obtida no ajuste 
multivariado. A função de variância foi um componente importante para a resposta volume e 
melhorou as estatísticas de ajuste. Capítulo III: Métodos de regularização foram introduzidos 
para selecionar covariáveis correlacionadas em modelos lineares generalizados, para predizer a 
probabilidade de sobrevivência de árvores de Pinus taeda. A função de ligação complemento 
log-log foi a mais adequada na especificação do modelo Bernoulli. Esse resultado evidenciou 
que o comportamento da probabilidade de sobrevivência das árvores é assimétrico em relação 
ao preditor linear. A seleção de covariáveis a partir do procedimento stepwise foi mais 
parcimoniosa, quando comparada com os métodos de regularização baseados na abordagem 
elastic net, bem como os casos especiais de penalização lasso e ridge. Os modelos apresentaram 
ótima habilidade de predição, principalmente para predizer as árvores sobreviventes. 

 

Palavras-chave: Afilamento de fuste. Modelo marginal. Modelo condicional. Sobrevivência. 
Modelos lineares generalizados. 
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ABSTRACT 

 

Forest biometrics is based on research that aims to describe the behavior of trees in 
order to assist the forest management. In this context, our focus was to introduce statistical 
models able to improve the understanding about the behavior of the forest variables, combined 
with suitable predictions ability. Chapter I: Covariance generalized linear models was 
introduced for Pinus taeda stem taper modeling. We define the mean component based on a 
non-linear segmented model, while four covariance structures were specified for an explicitly 
variance and correlation modeling. The results showed that an Euclidean distance matrix and 
moving average structure of order 1 to 3 were suitable for handling with non-constant variance 
pattern of the residuals, besides the natural autocorrelation among observations taken over the 
tree stem. Our models allowed to include a suitable uncertainty analysis based on confidence 
intervals for the response variable. Chapter II: We introduced the multivariate covariance 
generalized linear models for a jointly fitting of the response variables height and volume of 
Araucaria angustifolia, in native forest. Response variables shared information due to the 
significant correlation among them on the multivariate fitting. The variance function was an 
important component for the response volume and have potential to improve the fitting 
statistics. Chapter III: Regularizations methods were introduced for selecting correlated 
covariates in generalized linear models for predicting the Pinus taeda trees survival probability. 
The complementary log-log link function was the most suitable link function on the 
specification of the Bernoulli’s model. Our result evidenced that the behavior of tree survival 
probability is asymmetric in relation to the linear predictor. Stepwise procedure was more 
parsimoniously for selecting covariates, when we compared to the regularization methods based 
on elastic net approach, as well as the special cases lasso and ridge penalization. Our models 
presented a great prediction ability, mainly for predicting the survival trees. 

 

Keywords: Stem taper. Marginal model. Conditional model. Survival. Generalized linear 
models.  
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1. GENERAL ASPECTS OF THE THESIS 

 
1.1.  GENERAL INTRODUCTION 

 

Forest biometric is a part of forest science focused to obtain current and future yield 

predictions of forest resources, especially as regards the timber productions for industrial 

supply. The quantification of individual tree volume and the stem form is a basic procedure for 

obtaining the financial values of a forest. Thus, some information called of random variables 

must be collected from the forests, such as the tree diameter, tree height, site occupancy, and 

many others. These variables are basic components of growth-yield systems, allowing to 

estimate the changes on a forest and the expected production over the time. 

The volume prediction is a fundamental element of the large-scale forest management 

and planning. The most versatile and accurate approach for estimating tree volume are the 

modelling methods (DE-MIGUEL et al., 2012), which include a set of statistical approaches 

with particularly features. The regression methods are largely applied to forest biometric for 

volume predictions at tree-level. In forestry literature, we can find two main strategies for 

volume modeling. The first one is based on volume models that describe the total or partial tree 

stem volume; while the second approach involve the so-called tree stem taper functions. The 

analytical flexibility afforded by stem taper models has been reported in last decades 

(WESTFALL & SCOTT, 2010), and can be observed in many research, such as Arias-Rodil et 

al. (2015), Cao & Wang (2015), Diéguez-Aranda et al. (2006), Fortin et al. (2013), MacFarlane 

& Weiskittel (2016), De-Miguel et al. (2012), and Sabatia & Burkhart (2015). 

Data for the stem taper models usually present interesting features. Due to the natural 

hierarchical structure of the data, an autocorrelation among observations taken within-tree are 

expected. This feature is not always well accommodated in taper functions, and the variance of 

the residuals usually become non-constant over tree stem (LEJEUNE et al., 2009; LI & 

WEISKITTEL, 2009; MACFARLANE & WEISKITTEL, 2016), which can directly influence 

the standard errors of the parameter estimates and increase the prediction variance. In this 

context, we introduce the covariance generalized linear models proposed by Bonat & Jørgensen 

(2016), which is an alternative approach for stem taper modeling and allows to handle with 

correlated data in an easy way, besides the non-constant variance. This class of models is based 

on a marginal model specification and second-moment assumptions, what allows us to obtain 

a flexible specification of the mean and covariance structures. 
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Tree height is also an important variable commonly used in growth-yield systems. The 

diameter at breast height is relatively cheap and can be more accurately measured than the total 

tree height, usually quantified in a subsample. Height-diameter models are then applied for 

predicting the height behavior of the trees (CASTEDO DORADO et al., 2006; MEHTÄTALO 

et al., 2015; TRINCADO et al., 2007). The multivariate case of covariance generalized linear 

models handle with two or more response variables simultaneously (BONAT, 2017; BONAT 

et al., 2017). This feature is very interesting, once that we can obtain a jointly model for volume 

and height predictions and to quantify the correlation between the response variables. 

From the height and volume models developed, the total volume of any individual tree 

is easily obtained in growth-yield systems. However, the natural competition among individuals 

lead to a fundamental process in forest development related to tree mortality or survival process 

(SZMYT et al., 2018). The tree survival in forest stands are associated to a set of potential 

factors (BOSE et al., 2018; ZHANG et al., 2017) that can influence the forest dynamic. The 

quantification of alive trees indicates the forest structure and how many individuals will be 

available for industrial supply. In this context, statistical models must be applied for predicting 

the tree survival probability over the time; and help us to understand how the tree survival 

manifests in a forest. 

Therefore, we present some statistical approaches for handling with correlated data, 

mainly in the context of tree stem taper modeling; jointly modeling of response variables height 

and volume; and for tree survival probability in forest stands. 
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1.2.  GENERAL OBJECTIVE 

 
The main objective of this thesis was to present statistical methods with great potential 

to be applied to forest biometrics. In especial, our focus was to introduce statistical models able 

to improve the understanding about the behavior of the forest variables at individual tree-level, 

combined with suitable predictions ability, once that it is a challenge to find models suitable for 

both description and prediction. 

 

1.3. SPECIFIC OBJECTIVES 

 

We defined the followings specific objectives: 

I. To introduce the covariance generalized linear models for Pinus taeda L. tree stem 

taper modeling; 

II. To introduce the multivariate covariance generalized linear models for a jointly 

modeling of height and volume of Araucaria angustifolia (Bert.) O. Ktze., in native 

forest; 

III. To present a generalized linear model for Pinus taeda L. tree survival modeling. 

 

1.4. THESIS ORGANIZATION 

 

The thesis was structured in three main chapters. 

In the first chapter we presented the paper called “Covariance generalized linear 

models: an approach for quantifying uncertainty in tree stem taper modeling”. In this research, 

our focus was to define a suitable covariance matrix based on covariance generalized linear 

models for tree stem taper modeling. 

The second chapter was called “Joint marginal modeling of height and volume for 

Araucaria angustifolia”. The idea of this paper was to fit a jointly model for tree height and 

volume based on multivariate covariance generalized linear model. 

The third and last chapter was called “Generalized linear models for tree survival in 

loblolly pine plantations”. In this paper, the focus was to select covariates based on stepwise 

procedure and penalizations methods for fitting a Bernoulli generalized linear model for tree 

survival. 
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2. MODELOS LINEARES GENERALIZADOS DE COVARIÂNCIA: UMA 

ABORDAGEM PARA QUANTIFICAR INCERTEZAS NA MODELAGEM DO 

AFILAMENTO DO FUSTE DE ÁRVORES 

 

ABSTRACT 

 

A natural dependence among diameters measured within-tree are expected in taper 
data, and suitable statistical models are fundamental for analyzing the tree stem form. The main 
aim of this paper was to introduce the covariance generalized linear models (CGLM) 
framework in the context of forest biometrics for Pinus taeda stem form modeling. The CGLM 
are based on a marginal specification, which requires a definition of the mean and covariance 
components. The tree stem mean profiles was modeled by using a non-linear segmented model. 
The covariance matrix was built considering four strategies of linear combinations of known 
matrices, which expressed the variance or correlations among observations. Thus, the first 
strategy (VarStr) modeled just the variance of the diameters over the stem as a function of 
covariates; the correlation among observations was modeled in the second strategy (CovStr); 
the third strategy (RwStr) was defined based on a random walk model; the fourth and last 
strategy (MmStr) was based on a structure similar to mixed-effect model, but with a marginal 
specification. The result showed that the four approaches were quite similar for describing the 
predicted mean profile. However, differences in the confidence intervals of response relative 
diameter were quite significant, being directly related to the matrix covariance structures. 
Marginal and conditional predictions were also performed, and the conditional effects tended 
to reduce and stabilize the prediction errors over the tree stem. The CovStr was the most suitable 
strategy for modeling the Pinus taeda stem taper, due to its robust specification, combined with 
a suitable prediction ability. 

 

Keywords: Marginal models. Conditional models. Taper functions. Pinus.  
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COVARIANCE GENERALIZED LINEAR MODELS: AN APPROACH FOR 

QUANTIFYING UNCERTAINTY IN TREE STEM TAPER MODELING 

 

ABSTRACT 
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the third strategy (RwStr) was defined based on a random walk model; the fourth and last 
strategy (MmStr) was based on a structure similar to mixed-effect model, but with a marginal 
specification. The result showed that the four approaches were quite similar for describing the 
predicted mean profile. However, differences in the confidence intervals of response relative 
diameter were quite significant, being directly related to the matrix covariance structures. 
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strategy for modeling the Pinus taeda stem taper, due to its robust specification, combined with 
a suitable prediction ability. 

 

Keywords: Marginal models. Conditional models. Taper functions. Pinus. 
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2.1. INTRODUCTION 

 

Modeling forest variables is one of the most important goals of forest research. 

Variables which are frequently modeled include tree volume (BOSE et al., 2018), tree height-

diameter relationship (MACPHEE et al., 2018), tree diameter growth (SHARMA et al., 2017), 

individual tree basal area increment (TENZIN et al., 2017), tree dominant height growth (SEKI 

& SAKICI, 2017) and tree stem form (ARIAS-RODIL et al., 2015a; GÓMEZ-GARCÍA et al., 

2013; WESTFALL et al., 2016; WESTFALL & SCOTT, 2010). Other interesting research 

involving forest models can be found in Gomat et al. (2011), Mäkinen et al. (2018), Nascimento 

et al. (2014), Riofrío et al. (2017) and Sharma & Reid (2017). 

The tree stem form modeling has special importance in the context of forest 

management for estimating the individual total volume and multiple timber products. The 

changes of the diameter along the bole is a function of the tree diameter and height, being 

generally designated as taper function (BURKHART & TOMÉ, 2012). The flexibility of taper 

functions provides additional indirect estimates such as: I) total stem volume; II) diameter at 

any point along the stem; III) merchantable volume and merchantable height to any top diameter 

and from any stump height; and IV) individual log volumes of any length at any height 

(KOZAK, 2004). 

The stem form modeling requires multiple diameter and height measures within an 

individual tree. As consequence, autocorrelation among observations taken within-tree are 

expected due to the natural hierarchical structure of the data. Lejeune et al. (2009) mentioned 

that over the last decades, the mixed-effects model has become popular in forestry literature for 

analyzing stem taper data. The mixed-effects models have been a statistical approach widely 

used because enables to estimate the between-tree and within-tree variability using fixed-effects 

and random-effects parameters (ARIAS-RODIL et al., 2015b). Besides, the random-effects 

parameters of mixed models are also frequently used for quantifying at least partly of the 

autocorrelation between observations. However, Li & Weiskittel (2009) highlighted that when 

the correlations are not fully eliminated, and heterogeneous variance are observed, covariance 

structures can be included, jointly with variance functions. 

Even the variance and covariance structures play a key role in the models for correlated 

data, these structures have not been widely explored in taper functions. Research in tree stem 

taper indicated that when the random-effects do not fully eliminated the autocorrelation within-

tree, a covariance structure must be included in the model, being frequently restricted to the 

first-order autoregressive or first and second-order continuous autoregressive covariance 
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structure and four-banded toeplitz (ARIAS-RODIL et al., 2015a; DIÉGUEZ-ARANDA et al., 

2006; FORTIN et al., 2013; GÓMEZ-GARCÍA et al., 2013; LEJEUNE et al., 2009; LI & 

WEISKITTEL, 2009; MACFARLANE & WEISKITTEL, 2016; SABATIA, 2016; YANG et 

al., 2009). On the other hand, the residual heteroscedasticity within-tree is commonly modeled 

by the power-of-the-mean variance function, variance power weighting structure, or an 

exponential variance function (LEJEUNE et al., 2009; LI & WEISKITTEL, 2009; 

MACFARLANE & WEISKITTEL, 2016). These modeling approaches also require selecting 

the best combination of random-effects parameters that contributed most to unexplained 

variation of the response variable (MACFARLANE & WEISKITTEL, 2016), what can be a 

laborious and time demanding process. Besides, the short list of prespecified covariance 

structures to handle with taper models in specialized statistical software is a limiting factor. 

The mixed-effect models are based on a conditional specification, which implies that 

the distribution of response variable is conditioned to the random-effects. In some context, as 

the quantitative genetic analysis, Bonat (2017) mentioned that inconvenient features are 

obtained from conditional specification when genetic additive effects are being evaluated in 

hypothesis testing. The marginal distribution of the response variable usually cannot be 

obtained by closed-form from the conditional specification. The author still highlighted that the 

model parameters must be carefully interpreted, once that the covariate effects are conditional 

on the random-effects, while the covariance structure is marginal for the random-effects rather 

than for the outcome. In contrast to the conditional models there are the marginal models, which 

are obtained from a marginal specification of the expected value of response variable. Lee & 

Nelder (2004) explained the main distinction between marginal and conditional models have 

often been related whether the parameters are to describe an individual´s response or the 

marginal mean response to changing covariates. Therefore, the main advantage of marginal 

models is allowing a direct inference for the response variable, such as the evolution of 

population average response and associations (VERBEKE et al., 2014). 

Recently, Bonat & Jørgensen (2016) developed a general modeling framework called 

covariance generalized linear models (CGLM). The CGLM is quite flexible for modeling 

univariate (UCGLM) and multivariate (MCGLM) correlated data, considering response 

variable of mixed types, and allows to define many covariance structures for repeated measures, 

longitudinal, spatial and spatio-temporal data. This modeling approach is based on a marginal 

model specification and second-moment assumptions, what allows to introduce a flexible 

specification of the mean and covariance structures. Besides easily handle with univariate and 

multivariate response variable, the CGLM framework can introduce explicitly a covariance 
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structure using a linear combination of known matrices, such as the moving average model, 

unstructured matrix, inverse of Euclidean distance, and compound symmetry structures 

(BONAT et al., 2017; BONAT & JØRGENSEN, 2016). 

The uncertainty in model predictions has been studied in the last years in a large variety 

of contexts (BERGER et al., 2014; FORTIN et al., 2016; MANSO et al., 2018; OIJEN, 2017). 

McRoberts & Westfall (2014) divided the sources of uncertainty due to the model 

misspecification; uncertainty in observed values of the covariates; residual variability from 

correctly specified models; and the uncertainty in the model parameter estimates. The structure 

of the CGLM allows to quantify the uncertainty related to the predictions of response variables 

considering a flexible covariance matrix. In this research, the focus was to quantify the 

uncertainty related to the natural variability of the response variables by specifying a suitable 

covariance matrix. 

The CGLM approach is quite promising and presents a great potential in forest 

modeling, once that quantitative forest variables usually present correlated data, high and non-

constant variance for the response variable, as can be usually observed in tree stem taper data 

(ARIAS-RODIL et al., 2015a; DIÉGUEZ-ARANDA et al., 2006; YANG et al., 2009). 

Therefore, our research hypothesis is that the covariance generalized linear models will be 

suitable for modeling the behavior of tree stem taper. 

Due to the importance of tree stem form modeling in the forest management, the aim 

of this paper was to introduce the covariance generalized linear model framework in the context 

of forest biometrics. Specific objectives were I) to analyze the fit of a segmented nonlinear 

model for response variable relative diameter using covariance generalized linear models; II) 

to propose a suitable marginal covariance matrix as a linear combination of known matrices to 

take into account the non-constant pattern of variance and correlation among observations of 

the response variable; III) to generate conditional predictions for increasing the prediction 

ability of the marginal models. 

 

2.2. MATERIAL AND METHODS 

 

2.2.1. DATA SET 

 

We obtained a cross-sectional data from loblolly pine (Pinus taeda L.) forest stands 

established in Midwest region of the Santa Catarina State, Brazil. Forest plantation area covers 

about 5,786.75 hectares distributed in 164 stands. The taper data set was obtained by measuring 
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427 samples trees, which were randomly selected in unthinned and thinned stands covering the 

range of ages. 

The random variable diameter at breast height (DBH, in cm) outside bark were directly 

measured on each tree at 1.3 m of height. The trees were felled and the random variable total 

height (H, in m) was also directly measured. We took 16 repeated measures of random variable 

diameter (d, in cm) outside bark at 0%, 0.5%, 1%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 

60%, 70%, 80%, 90% and 100% of total height. Smalian’s method was used to calculate the 

log volume for each section. The tree-top volume was calculated based on cone’s formula. For 

each sample tree, the random variable individual total volume (V, in m³) outside bark was 

obtained by summing the partial volume of each section. 

For a detailed exploratory data analysis, the dataset was split in four age classes 

according to thinning level: C1 was the first age class and the individuals are 4 to 7 years old, 

none thinning was applied; individuals in the C2 age class are 8 to 11 years old, but one thinning 

from below plus systematic (in the seventh line) were apply, by removing 50% of the trees per 

hectare; individuals in the C3 age class are 12 to 19 years old, and two thinning from below 

were applied, by removing 40% of the remaining trees; C4 was the last age class and the 

individuals are 20 to 30 years old, three thinning from below were applied, by removing 30% 

of the remaining trees. 

 

2.2.2. MARGINAL SPECIFICATION OF THE COVARIANCE GENERALIZED 

LINEAR MODEL 

 

In the context of covariance generalized linear model (CGLM), a general formulation 

for expected value and variance for the response variable is given as 

 

 (1) 

  

 (2) 

 

where  is an  response vector, being  the number of total observation;  is a  

design matrix, being  the number of covariates;  is an  regression parameters vector;  

is the differentiable and monotonous link function;  is a diagonal 

matrix whose main entries are given by the variance function  applied elementwise to 
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the vector ;  is a vector of power parameter; ,  with  

are known matrices reflecting the covariance structure; and  is a  

dispersion parameter vector. 

In our approach, different assumptions about the response variable distribution can be 

performed for different choices of the variance function, similar that occurs with the generalized 

linear models. The power variance functions  characterizes the Tweedie family of 

distributions and the most important special cases are covered  Normal ( ), Poisson (

), Gamma ( ) and Inverse Gaussian ( ) distributions. 

The mean structure is called linear or non-linear predictor, and we considered just an 

identity link function. The assumption of independent observations appears in the covariance 

matrix of the equation (2). For introducing some dependence structure between observations, 

we specify the  as a non-diagonal matrix. The dispersion matrix  describes the 

dependence within response variable and does not depend on the mean structure. This approach 

is similar to the idea of a working correlation matrix in the generalized estimation equation. 

The CGLM approach is different because it is proper to model  in terms of a linear 

combination of known matrix (BONAT & JØRGENSEN, 2016). This structure is called as 

matrix linear predictor and it is interpreted analogue of the linear predictor of the mean 

structure. 

The second-order specification requires a non-linear predictor and a linear covariance 

matrix. The CGLM allows us to divide the set of parameters into two subsets . The 

 denote an  vector containing the regression parameters and 

 denote a  vector of dispersion parameters. The quasi-score function 

perform estimates of the regression parameters, while the dispersion parameters are estimated 

by the Pearson estimating function. Inferences about the parameter estimates are based on 

asymptotic distribution of the parameters vector. For more details on the methods see Bonat 

(2018) and Bonat & Jørgensen (2016). 

 The covariance generalized linear models were fitted in the mcglm package (BONAT, 

2018), available on the R software (R CORE TEAM, 2019). Besides fitting the models, many 

auxiliary functions are implemented for building the components of the matrix linear predictor, 

which are detailed in the covariance structure subsection. The package uses the modified chaser 

algorithm for obtaining the estimates of the model parameters. Furthermore, the reciprocal 

likelihood algorithm was implemented with an additional tuning for controlling the step length. 
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2.2.3. MEAN STRUCTURE 

 

Taper models must have the important feature of high flexibility for describing the 

non-linear nature of tree tapering with different degrees of curvature over stem (KUBLIN et 

al., 2013). In this sense, we selected the non-linear segmented model introduced by Max & 

Burkhart (1976) for describing the tree stem taper. The model is composed by three polynomial 

submodels linked by two inflexion points. The flexibility of this segmented model in describing 

complex tree stem form has been previously explored by Arias-Rodil et al. (2017), Cao & Wang 

(2015), Diéguez-Aranda et al., (2006), MacFarlene & Weiskittel (2016) and Sabatia & Burkhart 

(2015). The model is given as  

 

 (4) 

 

where  is a vector of the response variable relative diameter;  is a vector of diameters 

measured over the tree stem;  is a vector of diameters at breast height measured in each tree; 

 is a vector of predictor variable relative height;  is a vector of partial heights 

measured over the tree stem;  is a vector of total heights;  are the inflexion points to be 

estimated ( );  are the parameters to be estimated ( );  = 1 if  and 

0 otherwise, which are a dummy indicator variable vector;  is an identity link function. 

The link functions are a fundamental component of the CGLM, once they link the 

expectation of the response variable with the covariates. The mcglm package has a set of default 

link functions which are suitable for many types of covariates. However, our model is a non-

linear function  of the parameter vector, , and a proper connection 

between the non-linear predictor and the response is required. Thus, we specified a component 

to connect the mean model and the response based on partial derivatives of the parameter vector. 

These functions were implemented in R language and can be easily used on the package. The 

expressions of the partial derivatives are given as  
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2.2.4. COVARIANCE STRUCTURE 

 

The trees in forest stands are usually correlated in some way. Thus, it is expected that 

close individuals in space present higher association degree. This natural feature has potential 

to influence the tree stem form due to the intra-specific competition. In forest literature, many 

research aims to estimate the mean behavior of tree stem profile, which is a stochastic process 

where the observations taken within-tree are not independent. However, the focus of this 

research is understanding how the correlation pattern between relative diameters within-

individuals occurs in Pinus taeda trees. 

The second-moment assumption of the CGLM requires the specification of the 

expectation and a matrix linear predictor. The expectation model was already defined by a non-

linear segmented model. However, the non-constant variance and the higher correlation values 

among diameters taken within-tree motivated us to develop strategies for building the matrix 

linear predictor. In this sense, our main interest was to present four new approaches for 

modeling the covariance matrix in the context of tree stem taper analysis. 

 

Strategy 1 – VarStr: we modeled the variance of response variable only based on 

covariates of easy access. Then, components of the matrix linear predictor were specified 

without incorporating the repeated measures structure. The variance structure was directly 

modeled based on the main effects of the covariates relative height ( ) and age ( ), besides 

their second order terms  and , and interaction effects between  and . Identity 

matrix ( ) was a pre-specified component independent of the others two covariates an its 
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transformations. For clarity, consider a particular group with the first three observations, the 

components of the matrix linear predictor based on the covariates were given as 

 

 

 

 

 

 

 

 

 

 

 

 

 

where  is the j-th relative height of the i-th individual; and  is the j-th age of the i-th 

individual, being , . 

 

Strategy 2 – CovStr: we defined the components of matrix linear predictor considering 

just the correlation structure among observations of response variable. The moving average 

model of order p ( ) was specified, and we tested the order terms ranging from 1 to 10. 

We also build components based on the inverse of Euclidean distance between pairs of relative 

heights ( ) and between pairs of observations ( ). Identity matrix ( ) was pre-specified 

independent of the twelve tested structures. The components of the matrix linear predictor 

associated with , ,  and  structures were given as 
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where  is the Euclidean distance between the j-th and i-th relative height of the same tree; 

 is the Euclidean distance between the j-th and i-th position of relative height of the same 

tree. 

 

Strategy 3 – RwStr: we proposed to model the matrix linear predictor as a random walk 

model. This structure is frequently used for analyzing time series and spatial data; however, it 

was not explored for modeling tree stem data yet. Also called as precision matrix, the model is 

specified by the inverse of the dispersion matrix in the following way  

 

, 

 

where  is a neighborhood matrix, and in the context of stem taper the neighborhoods means 

the pairs of observations that were taken in a sequence;  is a diagonal matrix with the number 

of neighborhoods in the main diagonal;  is a precision parameter; and  is a spatial 

autocorrelation parameter. Different from the other strategies where it were applied just an 

identity covariance link function, we proposed this equation as a linear covariance model using 

the inverse covariance link function (BONAT & JØRGENSEN, 2016). The formulation was 

given as 
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, 

 

where ; and . The components of the matrix linear predictor for the first three 

observations taken within-tree were given as  

 

 

 

 

 

The spatial autocorrelation parameter was still used as an estimate of correlation 

between neighborhoods (relative diameters) and was given as 

 

. 

 

The estimates of variance of the spatial autocorrelation parameter was computed by 

delta method, which is a general method for approximating the variance of a function of random 

variables with normal distribution and known covariance matrix. Confidence intervals for 

spatial autocorrelation parameter was obtained as  

 

, 

 

where  is an estimated parameter of spatial autocorrelation;  is a quantile of normal 

distribution for  confidence level;  is an estimated variance matrix, computed as ;  

is a derivative matrix of dispersion parameters  and ; and  is a covariance matrix of the 

fitted model. 

 

Strategy 4 – MmStr: a common way to fit taper function is based on conditional 

specification of a non-linear mixed-effect model, considering a normal distribution of response 

variable. However, in a similar design of mixed model, we presented the marginal specification 

for taking into account the repeated measures effects within-tree for the covariates  
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. 

 

Thus, the covariance structure of the mixed-effect model is a special case of our approach. 

 

Components of the matrix linear predictor for variance structures based on covariates, 

distance structures, moving average model, random walk structures, marginal model and 

identity matrix were created using the auxiliary functions mc_dglm, mc_dist, mc_ma, mc_rw, 

mc_mixed and mc_id, respectively, obtained from mcglm package (BONAT, 2018) on the R 

statistical software (R CORE TEAM, 2019). 

 

2.2.5. UNCERTAINTY IN THE PREDICTIONS 

 

The uncertainty analysis in tree stem taper models is a fundamental topic for evaluating 

the errors in the statistical models. In this research, our focus was to quantify the uncertainty 

associated to the response variable relative diameter. Thus, confidence intervals for the response 

were computed for each modeling strategy by the expression given as  

 

 

 

where  is an  vector of estimated value;  is a quantile of normal distribution for  

confidence level; and  is an estimated main diagonal of covariance matrix  of the fitted 

values. 

 

2.2.6. MODEL SELECTION 

 

Due to the large number of potential components for the matrix linear predictor in 

VarStr and CovStr strategies, in this section we introduce a variable selection criterion for 

selecting a suitable matrix linear predictor for taper functions. The score information criterion 

(SIC) was initially proposed by Stoklosa et al. (2014) for selecting covariates in linear predictor 

for generalized estimating equations. However, Bonat et al. (2017) extended the SIC for 

selecting components of the matrix linear predictor in the context of MCGLM. These authors 
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highlighted that the main idea behind SIC is to use the generalized score statistics as a quadratic 

approximation to the log-likelihood ratio statistics like an information criterion. The main 

advantage of this approach is once the SIC is a function of the parameters vector , only the 

null model needs to be fitted and the SIC can be computed for all candidate models without 

actually fitting them. 

For selecting a suitable matrix linear predictor, we defined the following steps: 1) to 

define all the candidates components for the matrix linear predictor; 2) to fit the model 

considering just the identity covariance matrix, i.e., to fit a simple intercept model, also called 

as null model; 3) to compute the  for all candidates, and select that one with the lowest value 

for SIC; 4) to update the candidate components, and to fit the model considering the identity 

covariance matrix plus the component selected in previous step; 5) repeat step three and four 

until the chi-square test indicates a non-significance for the components. This procedure was 

performed using the mc_sic_covariance function from the mcglm package (BONAT, 2018) on 

the R statistical software (R CORE TEAM, 2019). 

Due to the different number of estimated parameters in each strategy we developed, 

two information criterions were used as goodness-of-fit statistics to compare the models. 

Initially, we calculated the Gaussian log-likelihood (logLik) measure given by 

 

, 

 

where  is a vector of estimated parameters;  is the total number of observations;  is an  

vector of observed value;  is an  vector of expected value; and  is a covariance matrix 

of the fitted model. Bonat (2018) combined penalty terms with Gaussian log-likelihood to 

obtain the Akaike (AIC) and Bayesian (BIC) information criterion. Thus, the Akaike and 

Bayesian information criterion were respectively given by 

 

 

 

, 

 

where  is the number of parameters; and  is the number of dispersion parameters. Still, we 

calculated the mean squared error of the predictions (MSE) as precision measure given by 
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We also performed a graph analysis about the Pearson’s residual (PR), given by  

 

 

 

2.2.7. CONDITIONAL PREDICTION OF RESPONSE VARIABLE 

 

As we previously mentioned, the covariance generalized linear models are based on 

marginal specification of response variable. Thus, the parameter interpretations are performed 

just over the population mean. This means that the parameters describe the behavior of the mean 

population to a change in a covariate without considering the heterogeneity among subjects. 

However, conditional models account part of total unknown variance among subjects by 

including terms with random-effects, as the mixed-effects models, and usually performed better 

for predicting the response variable. 

In this sub-section, our main objective was increasing the prediction ability to predict 

individual response of our developed models. Thus, conditional predictions of response variable 

relative diameter were obtained from equation (5) when we conditionate the fitted value on the 

th relative height given the fitted value on the th position of the th tree. Due to the 

reason that the observations are not independent within-tree, we considered the covariance 

matrix in the predictions as fallow  

 

 (5) 

 

where  is a vector of conditional predictions of response variable;  is a vector of marginal 

prediction of response variable;  is a vector of observed response variable; and  is a 

covariance matrix of the fitted model. For clarity, suppose that we fitted a value for 50% relative 

height, then we conditionate the prediction to the fitted value at previously measure on the 40% 

relative height. However, we did not perform conditional predictions for fitted values on the 

first (0%) and last (100%) relative height measured on the tree stem. 
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Conditional predictions performed for individuals used for fitting data was compared 

with marginal predictions. The analysis was based on mean squared error and the bias over the 

stem. The VarStr strategy was not considered in this sub-section, once that the model did not 

present any covariance parameter in the specification of the matrix linear predictor. 

 

 

 

The last expression, equation (5), directly depends on observations of diameters taken 

over the tree. However, diameter at breast height usually is the diameter measured in the forest 

inventories. Thus, for practical purpose, conditional predictions were also performed for new 

individuals, where the model was only conditioned to the measures taken at the diameter at 

breast height ( ), independent of which relative height we used for predicting the diameter. 

 

2.3. RESULTS 

 

In this section, we present a brief description about the covariates of the data set and 

the behavior of response variable relative diameter over time. We also specified the non-linear 

predictor and the matrix linear predictor for each modeling approach. Additionally, we applied 

the covariance generalized linear model for a marginal modeling of the stem taper over time. 

Lastly, we performed predictions of relative diameters considering a conditional specification 

of our marginal models. 

 

2.3.1. EXPLORATORY DATA ANALYSIS 

 

For a detailed analysis of Pinus taeda sample trees, we performed the scatterplots 

represented in FIGURE 2.1 for the covariates diameter, height and individual volume, besides 

the boxplots of this variables by age class where we can notice their dynamic over time. A right 

asymmetric distribution with non-constant variance pattern for the response variable was 

empirically observed in FIGURE 2.2. The behavior of relative diameter changed according to 

the variables relative height and age class, indicating a possible interaction between them. 

Furthermore, higher asymmetry and variance were observed for lower relative heights, which 

were more expressive for younger trees (C1 and C2) than older trees (C3 and C4). Still, it was 

clear that trees belonging to C1 and C2 classes had their stem form more conical than trees from 
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C3 and C4 classes. This brief exploratory analysis also suggested that the variable relative 

height and age should be included in taper models as covariates for variance modeling. 

 

FIGURE 2.1 - SCATTERPLOT OF THE DIAMETER, HEIGHT AND VOLUME, AND 
BOXPLOT BY AGE CLASS 
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FIGURE 2.2 - BOXPLOT OF RESPONSE VARIABLE RELATIVE DIAMETER BY 
RELATIVE HEIGHT AND AGE CLASS 

 
 

FIGURE 2.3 allows to visualize the Pearson´s linear correlation between relative 

diameters measured at different relative heights. The correlation intensity and pattern changed 

according with to the age class, but a predominant positive correlation was observed in all age 

classes, independent of which relative diameters we are considering. In general, a strong 

positive correlation was observed in C1 class, which has been smoothly decreasing as the 

distance between relative heights were increased, while for the others classes the changes were 

more abrupt. Higher correlations between relative diameters were observed for intermediate 

and upper portions of the stem for C2, C3 and C4 classes. 
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FIGURE 2.3 - CORRELOGRAM FOR REPEATED MEASURES OF RESPONSE 
VARIABLE RELATIVE DIAMETER BY RELATIVE HEIGHT AND AGE CLASS 

 
 

2.3.2. STEM TAPER MODEL 

 

The covariance generalized linear models (CGLM) framework is based on a second-

moment assumptions. In this sub-section, we specify the non-linear predictor and a matrix linear 

predictor for the response relative diameter. We also present the estimated parameters for the 

components of the model and measures of goodness-of-fit for each modeling strategy. 

A summary of the fitted non-linear predictor and a precision measure for each 

modeling strategy are presented in TABLE 2.1. The non-linear predictor was previously 

specified by the segmented non-linear model proposed by Max & Burkhart (1976). The 

parameter estimates were significant at 5% level, except  for MmStr modeling strategy. 
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Nevertheless, we decided to keep the fitted model, once that the non-significant parameter do 

not complete invalided the inferences, and we maintain the model structure. The parameter  

represented the first inflexion point of the tree stem and was similar for all strategies, ranging 

from 0.08 to 0.10. However, the second inflexion point  ranged from 0.39 to 0.87, suggesting 

that the models can lead us to a different second inflection point. Even the parameter estimates 

being quite different when we compared the modeling strategies, the MSE measure was about 

0.0061, suggesting a similar performance for describing an average profile stem tree. 

 

TABLE 2.1 - PARAMETER ESTIMATES, STANDARD ERRORS (SE), Z-STATISTICS 
AND ROOT MEAN SQUARE ERROR (MSE) BY STRATEGIES 

Parameter Estimates SE Z-statistics MSE 
VarStr 

 1.9593 0.6274 3.1232 

0.00618 

 -1.9762 0.3389 -5.8311 
 19.4995 1.9231 10.1395 
 1.5385 0.3284 4.6837 
 0.1030 0.0053 19.2654 
 0.8215 0.0278 29.5600 

CovStr 
 3.3519 1.3324 2.5157 

0.00622 

 -2.7030 0.7041 -3.8392 
 23.8337 0.8543 27.8976 
 2.2442 0.6941 3.2331 
 0.0900 0.0017 52.0427 
 0.8726 0.0260 33.5535 

RwStr 
 -0.1515 0.0337 -4.4919 

0.00617 

 -0.7929 0.0233 -33.9522 
 23.3802 1.0536 22.1907 
 1.0102 0.0902 11.2048 
 0.0835 0.0023 35.9457 
 0.3918 0.0163 23.9840 

MmStr 
 -0.0444 0.0415 -1.0692 

0.00617 

 -0.8575 0.0284 -30.1678 
 21.9142 1.0635 20.6050 
 0.7932 0.0026 35.3354 
 0.0902 0.0452 17.5588 
 0.4750 0.0192 25.0412 

 

The components of the matrix linear predictor were selected by the score information 

criterion (SIC) using the stepwise procedure. The linear combination of matrices for VarStr 
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modeling strategy was composed by an identity matrix, related to the intercept of the model, 

and the main effect of relative height ( ) and its second-order effect ( ). However, the 

apparently interaction between the covariates height and age observed in FIGURE 2.2 was non-

significant, once that the matrices of interaction effects  or  was not selected for 

composing the covariance model. For CovStr modeling strategy, the matrix linear predictor was 

composed by an identity matrix combined with the Euclidean distance between pairs of 

observations ( ) and moving average model of order 1, 2 and 3. The components for RwStr 

and MmStr strategies were previously defined in the subsection 2.2.4. 

Parameter estimates for matrix linear predictor and measures of goodness-of-fit are 

presented in TABLE 2.2. The parameter estimates were significant at 95% confidence level for 

all modeling strategies. The performance of the fitted models in explaining the tree stem form 

was not similar when we calculated statistics based on plausibility measure. The highest value 

of log-likelihood (logLik), as well the lowest value for Akaike (AIC) and Bayesian (BIC) 

information criterion were obtained in CovStr, followed by RwStr, MmStr and VarStr strategies. 

These results indicated that the CovStr is the most suitable strategy for modeling the covariance 

matrix of the diameters measured at different heights. However, this fact does not invalid the 

application of the models. Moreover, the estimated spatial autocorrelation parameter in RwStr 

strategy was 0.9807, with confidence intervals ranged from 0.9723 to 0.9892, suggesting a high 

correlation between tree diameters. 
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TABLE 2.2 - PARAMETER ESTIMATES, STANDARD ERRORS (SE), Z-STATISTICS (Z-
value), GAUSSIAN LIKELIHOOD (logLik), AKAIKE (AIC) AND BAYESIAN (BIC) 
INFORMATION CRITERION FOR THE MATRIX LINEAR PREDICTOR BY 
STRATEGIES 
Parameter Estimates SE Z-statistics logLik AIC BIC 

VarStr 
 0.00785 0.00041 19.1058 

10281.96 -20545.92 -20484.46  0.00450 0.00155 2.9006 
 -0.01235 0.00121 -10.1782 

CovStr 
 0.00629 0.00027 23.3944 

12100.52 -24179.04 -24103.92 
 0.01273 0.00063 20.2913 
 -0.00728 0.00041 -17.7324 
 -0.00164 0.00012 -13.9066 
 -0.00031 0.00004 -8.7549 

RwStr 
 553.55150 86.80770 6.3768 11953.55 -23891.10 -23836.47  542.89220 87.43253 6.2093 

MmStr 
 0.00140 0.00011 12.7196 

11353.39 -22686.78 -22618.49  0.19378 0.01383 14.0073 
 0.12920 0.00927 13.9333 
 -0.15606 0.01125 -13.8734 

 

Homogeneous residual variance pattern was observed for all strategies, as given in 

FIGURE 2.4. Specially for VarStr modeling, the graphical analysis of Pearson’s residuals 

indicated a constant pattern over the relative height, while more discrepant observations were 

observed for others approaches. Nevertheless, the fitted smoothed curve was constant over the 

relative height for all models, confirming that the models performed well. 
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FIGURE 2.4 - PEARSON’S RESIDUALS BY RELATIVE HEIGHT FOR DIFFERENT 
MODELING STRATEGIES AND FITTED SMOOTH CURVE IN SOLID LINE

 
 

When we evaluated the correlation between residuals in FIGURE 2.5, we noticed that 

both CovStr and RwStr strategies were completely able to account the dependence among 

relative diameters and successfully removed the autocorrelation. In certain way, these results 

were expected, once that we defined a linear combination of matrices for explicitly deal with 

the dependence among observations when we specified the matrix linear predictor. However, 

as we did not include any dependence structure for VarStr strategy, and the variance was 

directly modeled by covariates, an autocorrelation pattern was still observed. Similar pattern 

was obtained for MmStr approach, but in a moderate intensity. 
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FIGURE 2.5 - CORRELATION BETWEEN LAG ONE PEARSON’S RESIDUALS FOR 
RESPONSE VARIABLE RELATIVE DIAMETER FITTED FOR DIFFERENT MODELING 
STRATEGIES 

 
 

The predicted mean stem profile is showed in FIGURE 2.6. Even the modeling 

strategies showing different estimates for the same parameters of the non-linear predictor, the 

predicted relative diameter was similar for all models. These results are according to the values 

of the MSE previously obtained. The uncertainty expressed by 95% confidence intervals for 

response were quite different among strategies, being a directly effect from the choice of the 

matrix linear predictor. However, due to the symmetric confidence interval around the 

predictions, negative lower bound were obtained for all modeling strategies in the top of the 

tree. 
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FIGURE 2.6 - UNCERTAINTY IN THE PREDICTIONS. OBSERVED VALUES (FULL 
CIRCLES), FITTED VALUES (SOLID LINES) AND 95% CONFIDENCE INTERVALS 
(DASHED LINES) FOR RESPONSE VARIABLE RELATIVE DIAMETER FOR 
DIFFERENT MODELING STRATEGIES 

 
 

2.3.3. MARGINAL AND CONDITIONAL PREDICTIONS 

 

FIGURE 2.7 shows conditional relative diameters (A) from a marginal model fitting 

and the conditional effects computed from equation (5) by relative height (B). The modeling 

strategies presented similar behavior for both analyses. An overestimate of the conditional 

effects for relative diameters until 40% of total height and for the top of the tree was observed 

for all modeling strategies, due to the asymmetries on the boxplots. Nevertheless, even no 

assumptions is required in our approach, Shapiro-Wilk test indicated the conditional effects has 

a normal distribution by relative height, for significance level of 5%. 
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Mean squared error (C) and Bias (D) for predictions were also presented in FIGURE 

2.7. As we expected, both error measures suggested that the diameter predictions from 

conditional model specification provides better performance when compared it to the marginal 

specification. Conditional effects were also able to stabilize the errors, being almost constant 

over the stem. In general, higher errors were observed between 30 to 70% of relative height. 

The analysis was not performed for VarStr, once this strategy does not present correlation 

parameters. 

 

FIGURE 2.7 - PREDICTED CONDITIONAL RELATIVE DIAMETERS (A) AND 
PREDICTED CONDITIONAL EFFECTS (B) FOR DIFFERENT MODELING 
STRATEGIES. MEAN SQUARED ERROR (C) AND BIAS (D) FOR MARGINAL 
(DASHED LINES WITH EMPTY CIRCLES) AND CONDITIONAL (SOLID LINES WITH 
FULL CIRCLES) PREDICTIONS OF RESPONSE VARIABLE RELATIVE DIAMETER 
FOR DIFFERENT MODELING STRATEGIES 
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We selected the CovStr strategy as the best fitted model based on the previously 

results. Conditional and marginal predictions for relative diameter were also estimated for new 

individuals. The predictions were performed for trees with 10 cm, 30 cm and 50 cm of diameter, 

but conditioned only to the diameter at breast height. The predicted values were quite similar 

between approaches, with more relevant differences until 25% of relative height, as shown in 

FIGURE 2.8. This means that the diameter at breast height are not highly correlated with 

diameters measured after 25% of the total height. 

 

FIGURE 2.8 - CONDITIONAL AND MARGINAL PREDICTIONS OF RESPONSE 
VARIABLE RELATIVE DIAMETER FOR CovStr MODELING STRATEGIES 
CONSIDERING DIAMETER AT BREAST HEIGHT OF 10, 30 AND 50 CM 

 
 

 

2.4. DISCUSSION 

 

Multiple diameters are measured at regular or irregular distances along tree stem for 

fitting taper functions. Thus, it is reasonable to expect some autocorrelation between diameters 

due to the multiple measurements taken from the same sample tree (KUBLIN et al., 2013). 

Taper functions are frequently composed by polynomial terms and other transformations of the 

same predictor variable, being the relative height the most common covariate. However, this 

procedure can cause high multicollinearity among independent variables (KOZAK, 1997). In 

this context, the fundamental assumptions of independent observations, errors with normal 

distribution and constant variance are usually violated in linear and non-linear regression 
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models. From the statistical point of view, the parameter estimates still remaining unbiased and 

consistent, but the minimum variance property it is not reached, that implies in unreliable 

hypothesis tests and inferences. In this research, our main focus was present a new taper 

function modeling approach based on covariance generalized linear models (CGLM). We 

developed marginal linear covariance models for handling explicitly with non-constant residual 

variance and autocorrelation patterns by including a matrix linear predictor on the model 

specification. 

Parameter estimates in the non-linear predictor changed according to the modeling 

strategies. In general, standard errors associated to RwStr were smaller, while larger values were 

obtained in CovStr. The covariance matrix has special importance for the CGLM approach. 

While this structure has a little influence on the mean parameter estimators, the associated 

standard error directly depends on the correct choice of the covariance structure (BONAT & 

JØRGENSEN, 2016) for a reliable confidence interval and hypothesis tests. This feature of our 

modeling approach explains the similar behavior of the marginal stem profile among different 

strategies.  

Then, whether the segmented polynomial model is changed on the non-linear 

predictor, it is natural to expect a different behavior in diameter predictions. As alternative to 

the traditional models for mean response, flexible semi-parametric taper models have been 

explored to describe the stem profiles and volume predictions (KUBLIN et al., 2013). The 

CGLM framework also allow to incorporate splines and penalized spline in the mean structure 

(BONAT et al., 2017), what is an interesting topic to be explored in future researches. 

The MmStr strategy was formulated to take into account repeated measures effects 

within-tree in a mixed model design. In previous data analysis, our marginal specification of 

the segmented non-linear model was compared to a conditional specification based on mixed-

effect model. The log-likelihood was equal for both approaches, indicating an equivalence 

between the modeling strategies. However, the small differences in the parameter estimates 

were related to the different fitting algorithms used by each statistical framework. In previous 

research, Bonat (2018) studied the efficiency property of a Gaussian linear mixed-effects model 

and its marginal specification fitted in the mcglm package. The author reported that the log-

likelihood was equal in both cases and provided virtually the same estimates for the regression 

and dispersion parameters. However, due to the robust specification of the MCGLM 

framework, and a not fully efficient estimating function for the estimation of the dispersion 

parameters, standard errors associated with the dispersion parameters were larger. 
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The VarStr strategy allowed to model the variability of the relative diameters using the 

covariates tree relative height and age. However, just the diagonal matrices representing the 

positions where the diameter was taken (  and ) captured the non-constant residual patterns, 

indicating a second-order polynomial relationship between the mean response and the variance 

of the relative diameters. In order to investigate the non-significant effect of age, we performed 

a graphical analysis about the variance over relative heights and performed 95% confidence 

intervals by age class, but not shown in this paper. Independent of age class, confidence 

intervals contain almost all the values of variance. Thus, even the variance having an apparent 

differentiated behavior when we changed the age, it was not statistically significant. 

Our study showed that the CovStr strategy performed well for tree stem taper 

modeling. The components of the matrix linear predictor based on Euclidean distance between 

observations and moving average model of order 1, 2, and 3 provided most explanation about 

the autocorrelation of the relative diameters. Euclidean distance matrix has special importance 

because the relative heights were not equally spaced over the stem. FIGURE 2.3 also suggested 

different components for the matrix linear predictor whether fitting the models by age class, 

once that the positive correlation pattern is changing over time. When we performed a 

correlogram matrix for entire data set e not just for age class, not shown in this paper, a negative 

correlation between diameters taken in the relative heights among 0-10% and 60-80% was 

observed. Similar pattern was also reported by Diéguez-Aranda et al. (2006) for Scot Pine in 

northwestern Spain. These authors suggested the autocorrelation within-tree may be also 

explained by effects of forest stands conditions, particularly stand density. 

A very interesting result on the parameter estimates of the matrix linear predictor were 

found. As we mentioned, the CGLM are based on a marginal specification, i.e., they are a class 

of models that require a mean and covariance components specification. In this case, we did 

not test the null hypothesis of the dispersion parameters  on the boundary of the parameter 

space, as did by commonly likelihood ratio, Wald and score test (BONAT, 2017). In this case, 

it is natural to obtain values for the dispersion parameters smaller than zero, caused by sample 

variation. Fiorentin et al. (2020) reported similar results on the dispersion parameters for a 

jointly modeling of height and volume for Araucaria angustifolia. 

Due to the features of each modeling strategy, we combined the components of the 

matrix linear predictor selected for VarStr and CovStr strategies. Our initial expectation was 

simultaneously handling with autocorrelation and non-constant variance pattern in order to 

obtain a more complete model using a general formulation. However, the main effect of relative 

height ( ) and its second-order effect ( ) were jointly non-significant in the combined model, 
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resulting in the CovStr strategy previously formulated. This fact suggested that it is not 

necessary a variance structure whether the correlation patterns is correctly specified in the 

regression model. However, this result can be also affected by the test hypothesis that assume 

a normal distribution for the variance components. Bonat & Jørgensen (2016) reported that the 

misspecification of the covariance structures can conduct to an underestimation and 

overestimation of the standard errors associated with the regression parameters for the linear 

predictor in the CGLM framework. 

A constant standard error of prediction over the stem was observed for CovStr 

modeling strategy. However, the range of standard error showed a quadratic pattern with 

different concavity for RwStr and MmStr, while RwStr presented a cubic trend, what is directly 

related to the selected components of the matrix linear predictor (TABLE 2.2). Thus, these 

results mean that the choice of covariance matrix directly influences the uncertainty analysis 

related to the diameter predictions over the tree stem. The uncertainty analysis also showed that 

the lower limit of the confidence intervals for response were negative for diameters at the top 

of the trees. For overcome these limitations, a link function component can be included in the 

regression model as suggested by Fiorentin et al. (2020). The authors applied a multivariate 

CGLM approach for jointly marginal modeling of the diameter-height relationship and 

individual volume, where identity and logarithm link functions were suitable, respectively. 

The methodology developed for predicting the conditional diameter effects for new 

individuals are quite easy to be applied in practical analysis, being also recommended for non-

forestry data. After fitting the specified model, as the CovStr strategy, a grid of relative height 

for diameter predictions can be defined and a general covariance matrix are easily built by using 

the parameter estimates. Thus, the advantage of our model is to predict the diameter for any 

relative height conditionate to the diameter at breast height. The conditional effects generated 

from a marginal specification increased the predictions from the data set. However, we did not 

observe relevant differences from conditional and marginal predictions for new individuals. In 

this sense, additional diameter measures should be taken over the stem height for generating 

the conditional effects, in a similar idea of model calibration, quite common in the mixed-effects 

models (see CASTEDO-DORADO et al., 2006; LEJEUNE et al., 2009). The disadvantage of 

collecting supplementary diameters is increasing the costs for measuring and the time for 

processing the data. 
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2.5. CONCLUSION 

 

We presented a statistical approach for modeling tree stem taper based on the 

covariance generalized linear models. Our approach allowed a flexible modeling of covariance, 

which is an important part for developing suitable taper function, once that we can choose a 

large set of covariance structures with different correlation patterns. Besides, the common non-

constant residual variance of the taper models was directly modeled by covariates. 

The advantage of our marginal specification of the tree stem taper model is the directly 

interpretation of covariates effects on the population mean for both regression and dispersion 

parameters. In addition to the new methodology for stem taper modeling, another advantage of 

our approach is obtaining a robust taper model, which can be applied with high precision to a 

large variety of forest stands conditions. 

The main advantages of the CovStr approach is the easy formulation of the model. 

Once that we select the linear predictor, the components of matrix linear predictor are selected 

by score information criterion from a set of covariance structures. The results suggest that the 

Euclidean distance matrix is a fundamental component, especially when the relative heights are 

not equally spaced over the stem. The moving average structure of order one to three indicate 

that the correlation among diameters decrease over the stem. 

Conditional predictions from the marginal model specification improve the predictions 

of response variable relative diameter. Besides, the conditional prediction for new individuals 

can be easily generated by using covariance generalized linear models for any relative height. 

We also recommend to include more than one diameter measures over the stem when 

conditionate the model. However, additional measures can introduce higher costs to the forest 

inventories and higher time demand for collecting the data in the field. 

The uncertainty in diameter estimation are easily quantify in covariance generalized 

linear models by the confidence intervals. This procedure is important to ensure a suitable 

forestry management planning. We recommend including a non-parametric bootstrap approach 

as an additional tool for complementing the uncertainty analysis. 

Future topics for research include to extend the analysis of stem taper data using 

covariance generalized linear model for merchantable volume prediction. Besides, to adapt the 

modeling framework presented to model individual tree growth with univariate and multivariate 

response variables. An interesting topic to be researched is to investigate the biomass dynamic 

considering a spatial, temporal or spatial-temporal model with different dependence structures. 

The multivariate case of covariance generalized linear model has great potential to be applied 
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to height-diameter and volume modeling, where link functions and variance functions can be 

easily incorporated in the biometric models.  
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3. MODELAGEM MARGINAL CONJUNTA DE VOLUME E ALTURA PARA 

Araucaria angustifolia 

 

RESUMO 

 

Variáveis mensuradas em florestas normalmente apresentam algum grau de 
correlação. Logo, ajustar modelos para estimar variáveis biométricas de forma independente 
não é a abordagem mais adequada. Assim, modelos multivariados ganham relevância devido à 
capacidade de quantificar associações entre variáveis respostas. Nesse contexto, o objetivo da 
presente pesquisa foi ajustar modelos lineares generalizados de covariância multivariada 
(MCGLMs) no caso univariado e multivariado para estimar altura e volume de árvores. As 
variáveis altura (H), volume (V) e diâmetro (D) foram coletadas da Araucaria angustifolia. em 
floresta nativa, localizada no estado de Santa Catarina, Brasil. Os MCGLMs foram ajustados 
para estimar H e V, em abordagem univariada e multivariada. O preditor linear dos modelos foi 
fixado previamente em função da covariável D, para ambas as variáveis. Devido a um aparente 
padrão de variância não constante das duas respostas, diferentes estruturas do preditor linear de 
matriz foram testadas, com efeito da covariável D variando até um polinômio de grau três. 
Ainda, um parâmetro de potência foi estimado nas duas abordagens, com a finalidade de obter 
uma função de variância para cada variável. Os parâmetros estimados nas abordagens 
univariadas e multivariadas foram similares. Em geral, o erro padrão dos parâmetros foi menor 
para os modelos multivariados, sendo consequência da correlação entre as variáveis respostas. 
Os resultados também sugeriram que uma função de variância Poisson-Gama composta é 
adequada para variável V, bem como uma função constante para variável H. O modelo mais 
adequado foi obtido com preditor linear matricial somente em função de um parâmetro de 
dispersão associado a uma matriz identidade. 
 

Palavras-chave: Distribuição Tweedie. Floresta Ombrófila Mista. Regressão multivariada. 
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JOINT MARGINAL MODELING OF HEIGHT AND VOLUME FOR 

Araucaria angustifolia 

 

ABSTRACT 

 

Variables measured in a forest usually present correlation between them. Fitting 
models for estimating biometric variables in an independent way is not the most suitable 
approach. Thus, multivariate models become interesting due to the ability of quantifying 
associations between response variables. In this context, the main objective of this research was 
to fit univariate and multivariate regression models based on multivariate covariance 
generalized linear models (MCGLM) for estimating the trees height and volume. The variables 
height (H), volume (V) and diameter (D) were obtained from Araucaria angustifolia, in native 
forest, located at Santa Catarina state, Brazil. The MCGLM were fitted for estimating H and V 
in univariate and multivariate approach. The linear predictor of the models was previously fixed 
as a function of covariate D for both responses. Due to the apparently non-constant covariance 
pattern for both variables, we tested different structures for the matrix linear predictor, where 
the effect of covariate D changing until a third-degree polynomial model. Still, a power 
parameter was estimated in both approaches where the aim was to obtain a variance function 
for each covariate. The estimated parameters of the univariate and multivariate approaches were 
similar for some models. In general, the standard error of the parameters was lower for 
multivariate models, what is a consequence of the correlation between responses variables. The 
results also suggested that a composed Poisson-Gama variance function is suitable for V and a 
constant function is required for H. The most suitable model was obtained with matrix linear 
predictor as a function of a dispersion parameter associated to an identity matrix. 
 

Keywords: Tweedie distribution. Mixed Ombrophilous Forest. Multivariate regression.  
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3.1. INTRODUCTION 

 

Araucaria angustifolia (Bert.) O. Ktze. is a native specie from Brazil and belongs to 

Araucariaceae family, being the unique representative specie of this family in Brazilian flora 

(MARCHIORI, 2005). Araucaria angustifolia occurs in diversified associations, which 

compromise cluster with their own characteristics, forming distinct successional stages 

(WEBER et al., 2017). Despite the great importance of this species for the native forests, 

especially that one in Southern Brazil, it is currently threatened of extinction due to the over 

exploration without an appropriate replacement (SCHEEREN et al., 1999). 

Due to the higher economic values of Araucaria angustifolia timber, it is fundamental 

to quantify the wood stocks in forestry ecosystems. The volume is one of the most important 

information for evaluating the potential of a forest, since tree individual volume provides 

subsidies for the assessment of wood stock; and for analyzing the productive forest potential 

(THOMAS et al., 2006). Still, variables such as diameter at breast height and total height are 

fundamental attributes at tree level for many aspects of the forest management. However, tree 

volume and height quantification in native forest is a costly activity and time demand for 

collecting the data, while the diameter mensuration is a relatively simple procedure with lower 

costs. In this context, it is common to fit statistical models for describing the behavior of 

variables that are hard to obtain in the field as a function of variables, such as the tree diameter. 

The most common approach for characterizing the tree height and volume in native 

forests or forest stands is to apply generalized linear models (FU et al., 2017), non-linear models 

(LAM et al., 2017) and mixed-effects models (MEHTÄTALO et al., 2015). Thus, the modeling 

process is usually performed in individual way, where the response variables are considered as 

non-correlated variables, i.e., we assume that they are independent. However, it is expected that 

the variables measured on the same individual present some correlation degree because the trees 

are biological organisms. Therefore, modeling tree height and volume independently is not the 

most appropriate approach. 

The multivariate regression models are generalizations of the univariate models and 

allows to study more than two response variables simultaneously. However, applications of this 

class of models is quite restrict in forest research (see LAPPI, 2006). Recently, BONAT & 

JØRGENSEN (2016) develop the so-called multivariate covariance generalized linear models 

(MCGLM). The MCGLM is a class of multivariate statistical models that allow to model 

response variables from distinct nature simultaneously. Thereby, within the MCGLM it is 

possible to describe the behavior of continuous data, such as diameter at breast height, total 
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height and individual volume; as well as discrete data, usually obtained from count data, as the 

number of trees attacked by pest, and the abundance of forest species. 

The main advantage of the MCGLM it is your flexibility in modeling a set of response 

variables from different natures simultaneously, besides quantifying the association among 

them by using correlation parameters. Another advantage is related to the covariance matrix, 

which is specified on the matrix linear predictor. This structure is quite flexible and allows to 

model temporal and spatial correlated data by a linear combination of known matrices, which 

can describe many behaviors and kind of associations. Thus, a set of correlations structures 

among observations can be included, besides variance functions for different type of response 

variables, and to model in a suitable way the natural data variability (BONAT & JØRGENSEN, 

2016; BONAT et al., 2017; BONAT, 2018). 

In this study, univariate and multivariate models were fitted for response variables tree 

total height and individual volume as a function of the covariate diameter at breast height. Still, 

we tested some variance structures, as well as the inclusion of variance functions. The research 

hypothesis is that the correlation between response variables influence the estimates and 

inference of the multivariate regression models. Therefore, the main goal of this paper was to 

analyze the fitting of univariate and multivariate regression models for describing the behavior 

of height and volume of Araucaria angustifolia, in native forest. 

In the material and methods section are described the data set used as motivation and 

a brief introduction about the MCGLM. In that follows, we highlighted the main results and 

discussions about the fitted univariate and multivariate regression models. Finally, we present 

the conclusion of this research. 

 

3.2. MATERIAL AND METHODS 

 

3.2.1. DATA SET 

 

The data set used in our analysis were collected at Xanxerê municipality, Santa 

Catarina, Brazil. The study region belongs to Atlantic Forest, under domain of Mixed 

Ombrophilous Forest (MOF). The native forest has about 400 hectares of total area. The forest 

fragment is currently being enriched with Ilex paraguariensis A. St.-Hill specie for the purpose 

of yielding Erva-mate. 
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The trees were randomly selected on the forest fragment. The data set were composed 

by 169 independent sample trees. The individuals presented a large variation on their 

dimensions. The variables diameter at breast height (D, in centimeters – cm), total height (H, 

in meters – m) and individual volume with bark (V, in cubic meters – m3) were measured in 

each sample tree. The tree volume in each section was calculated by Huber’s method. The total 

volume with bark was obtained by summing the partial volumes with the tree top volume 

(MACHADO & FIGUEIREDO FILHO, 2009). 

The tree circumference was measured with measuring tape at the basal portion of the 

tree, and later converted to a diameter. These sections had shorter length with range of 0.1 – 0.3 

m; 0.3 – 0.5 m; 0.5 – 0.7 m; 0.7 – 0.9 m; and 0.9 – 1.3 m. After, the sections had length of 2 m, 

where the Bitterlich’s Spiegel-Relaskop (narrow band) was used for measuring in an indirectly 

way the diameters on the upper portion of the tree stem. Thus, the measures were taken at the 

height of 0.2 m; 0.4 m; 0.6 m; 0.8 m; 1.1 m; 2.3 m; and each 2 m until the tree total height. 

 

3.2.2. MULTIVARIATE COVARIANCE GENERALIZED LINEAR MODEL 

 

The modeling process of forest variables by multivariate regression models is not a 

common approach in forestry research. Therefore, this subsection aimed to present the 

multivariate covariance generalized linear model structure (MCGLM). This class of models 

require a specification of the expected value and variance of the response variables (BONAT 

& JØRGENSEN, 2016). Thus, a generic formulation for the multivariate case is given as  

 

 

 

 

 

where:  is a matrix of response, being  the number of observations and  

the number of response variables;  is a matrix of expected values;  is 

an  design matrix, being  the number of covariates;  is a  matrix of regression 

vectors;  is a twice differentiable and monotonous link function; 

 is the generalized Kronecker product;  is an 

 covariance matrix within response ;  is an  correlation matrix among 

response variables;  is a lower triangular matrix of Cholesky decomposition of ; operator 
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 represent a diagonal block matrix; and  is an  identity matrix. 

The covariance matrix  for each response is given as  

 

 

 

where:  is a diagonal matrix, whose main entries denote the 

variance functions  applied elementwise to the response vector ;  is a power 

parameter vector;  is a dispersion parameter vector; ;  is a 

covariance link function;  are known matrices that describe the covariance structure with 

; and  is a  parameter vector. The structure that specify the mean, , 

is called linear or non-linear predictor, while the structure that specify the covariance, , 

is known as matrix linear predictor. 

The  link function connect the linear prediction with the expected values of response 

variable. Appropriated choices of link functions allow to ensure suitable values for the mean. 

In a similar way, the covariance link function  connect the matrix linear predictor with the 

covariance of response variable. 

The variance function is a fundamental component of the MCGLM. Different 

assumptions about the distribution of response variable can be performed for different values 

of variance function (BONAT & JØRGENSEN, 2016). The power parameter of the variance 

function  characterize the Tweedie distribution family, and the most important 

special cases are Normal ( ), Poisson ( ), composed Poisson-Gamma ( ), 

Gamma ( ) e Inverse Normal ( ) distributions. 

 

3.2.3. STATISTICAL ANALYSIS OF THE DATA 

 

MCGLM were used for modeling the variables measured on the Araucaria 

angustifolia. The response variables were tree height (H) and volume (V), which both are 

continuous. The diameter was used as the only covariate, also continuous, and its effect varied 

until third degree. 

At the beginning, we fit just univariate regression models. This means that both 

responses H and V were considered as independent and the models were treated in a separately 

way. Then, our models were jointly fitted in a multivariate approach. In this context, the focus 

was to analyze the influence of correlation between response variables on the point estimates 
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and standard errors of the fitted models. 

Both response variables have an apparently non-constant variance over time. This 

feature is related to the natural process of tree growth. Thus, it is expected that the variance of 

the observations increases according to the dimensions of the individuals. For modeling the 

non-constant variance pattern, we tested two approaches: I) the variance modeling was 

performed directly on the matrix linear predictor as a linear function of covariate , and the 

effects were represented by a third-degree polynomial; II) a variance function  was 

specified on the matrix linear predictor, which allowed a directly modeling of mean and 

variance of the response variable. 

The performance of the models was compared by a gaussian pseudo likelihood (PL), 

and a pseudo Bayesian’s information criterion (PBIC). The PV is a similar measure to the log-

likelihood value from the maximum likelihood estimation context. Therefore, the highest value 

of PV suggests the best fitted model. The PBIC has an advantage to penalize the models with 

higher number of parameters, and lowest value suggest the best fit (BONAT, 2018). 

The fit of the univariate and multivariate regression models was performed on the R 

statistical software (R CORE TEAM, 2019) by using the mcglm package, version 0.5.0 

(BONAT, 2018). The package has an intuitive interface and many functions are available for 

building the components of the matrix linear predictor and fitting the regression models. The 

ggplot2 package was also used for building the graphics (WICKHAM, 2016). 

 

3.3. RESULTS AND DISCUSSION 

 

3.3.1. EXPLORATORY DATA ANALYSIS 

 

Exploratory data analysis was performed in order to understand the behavior of the 

response variables height and volume, and their relationship with the covariate diameter. 

Histograms presented in FIGURE 3.1 suggested that the response variables did not have the 

same probability distribution. Variable volume V presented a strongly asymmetric distribution, 

what suggested to include a logarithmic link function on the linear predictor of the regression 

models. Still, we can note that the relationship between tree average volume and variance was 

not constant for different diameters, and a tendency to increase the variability for larger trees 

was empirically observed. 

 
 



59 
 

 
 
FIGURE 3.1 – HISTOGRAMS OF RESPONSE VARIABLES HEIGHT ( ) AND VOLUME 
( ) AND SCATTER PLOT BETWEEN RESPONSE VARIABLES AND COVARIATE 
DIAMETER ( ). SOLID LINE IN BLACK COLOR IS A KERNEL DENSITY ESTIMATE. 
DASHED LINE IN BLACK COLOR IS A LOCALLY ESTIMATED SCATTERPLOT 
SMOOTHING WITH 95% CONFIDENCE INTERVALS 

 
 

These initial results suggested the inclusion of a Tweedie variance function and a 

logarithmic link function, once that characterize many continuous asymmetric distributions, 

and allows to model mean and variance relationship of response variable V in a suitable way. 

By the other side, the response variable H presented an apparently symmetric distribution, 

indicating an identity link function on the linear predictor, besides a constant variance function, 

what is an assumed assumption for variables with normal distribution. 

In this research, our main interest was to model the components of the matrix linear 

predictor. Therefore, linear prediction was specified in a preliminary data analysis, and the same 

structure was used for univariate and multivariate fitting. The expected value of observation i 

of response Hi was specified from the cubic effect of covariate Di, while the expected value of 

Vi was specified based on quadratic effect of Di. Thus, the linear predictor with a link function 

for both responses were given as  
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In addition to the variance function used for modeling the mean and variance 

relationship of response variable, which was estimated from a power parameter, four structure 

were tested for variance modeling on the matrix linear predictor. Thus, the linear combination 

of known matrices applied for both response was given as  

 

 

 

 

 

 

 

 

 

where:  is an  identity matrix, being  the number of observations;  is an  diagonal 

matrix whose main entries are constituted by tree diameters ( ), where its effects varied until 

third degree. 

The main results from univariate and multivariate fitting for response variables height 

and volume are given on the next topics. 

 

3.3.2. UNIVARIATE MODELS 

 

Parameter estimates and standard errors of the univariate models for response H and 

V are presented in TABLES 3.1 e 3.2, respectively. In general, the intercepts of the linear 

predictors were not significant for H at 5% level (fixed in all analyzes), while the other 

estimated parameters were significant. Dispersion parameters were significant, but negative 

effects were observed for  of the M3 model and  of the M4 model for the response variable 

. 

Parameter estimates of the linear predictor were significant for response V, while 

dispersion parameters  and  did not for M2 model. When we considered the response V, 
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estimated power parameter did not differ from 1.5 for the M1 model. This value characterizes 

a composed Poisson-Gama distribution from Tweedie family, indicating the variance of the 

data increased faster than mean values. 

The non-significance of the power parameter of the M2 model indicated a Normal 

distribution ( ), what suggested that the variance is always constant. Finally, the 

confidence intervals of power parameter from the M3 model suggested a Poisson distribution 

( ), indicating the variance increase proportional to mean values. Still, the M4 model did 

not present a convergency, even when the estimation algorithm was relaxed in order to facilitate 

the fitting. 

 

TABLE 3.1 – POINT ESTIMATES AND STANDARD ERRORS OF THE UNIVARIATE 
MODELS FOR RESPONSE VARIABLE HEIGHT (H) 

Model Parameter Estimates Standard error 
M1  0.3776 1.7087 

  0.8937 0.1114 
  -0.0131 0.0021 
  0.00007 0.00001 
  8.7814 1.1021 

M2  0.1853 1.4851 
  0.9082 0.1019 
  -0.0133 0.0020 
  0.00007 0.00001 
  5.0865 1.8687 
  0.0600 0.0340 

M3  0.0205 1.6592 
  0.9235 0.1095 
  -1.3679 0.002077 
  0.00007 0.00001 
  9.3133 2.6558 
  -0.1236 0.1174 
  0.0015 0.0011 

M4  0.3125 1.3065 
  0.9053 0.0962 
  -1.1340 0.0019 
  0.00007 0.00001 
  -2.4738 2.3795 
  0.7560 0.2815 
  -0.0164 0.0065 
  0.0001 0.00004 
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TABLE 3.2 – POINT ESTIMATES AND STANDARD ERRORS OF THE UNIVARIATE 
MODELS FOR RESPONSE VARIABLE VOLUME (V) 

Model Parameter Estimates Standard error 
M1  -3.1707 0.1108 

  0.0988 0.0036 
  -0.0004 0.00003 
  0.0830 0.0102 
  1.6350 0.0829 

M2  -3.1614 0.1110 
  0.0986 0.0036 
  -0.0004 0.00003 
  0.0465 0.3032 
  0.0009 0.0083 
  1.4389 1.5765 

M3  -2.9687 0.1131 
  0.0939 0.0037 
  -0.0004 0.00003 
  0.0742 0.0264 
  -0.0036 0.0017 
  0.00008 0.00005 
  0.9376 0.3377 

 

 

3.3.3. MULTIVARIATE MODELS 

 

Parameter estimates and standard errors of the univariate models for responses H and 

V are presented in TABLES 3.3 e 3.4, respectively. Just M1 model for response H presented 

significance in all parameters at 5% confidence level. However, M1 and M3 model for response 

V presented all parameters significant; and the power parameters were similar to that ones from 

univariate fitting. We also observed negative effects for dispersion parameter  of the M3 

model for response V. The M4 model did not converge in a similar way that the univariate case. 
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As we previously mentioned, MCGLM are based on a marginal specification, i.e., the 

models require a specification of the mean and variance components. The marginal 

specification of our models has the advantage of not testing the null hypothesis of the dispersion 

parameters  on the border of parametric space, such as the likelihood ratio, Wald and 

score tests (BONAT, 2017). Thus, it is common to observe negative effects from dispersion 

parameters for the variance components, like that ones we observed in this research. 

 

TABLE 3.3 – POINT ESTIMATES AND STANDARD ERRORS OF THE MULTIVARIATE 
MODELS FOR RESPONSE VARIABLE VOLUME (H) 

Model Parameter Estimates Standard error 
M1  5.7281 1.5568 

  0.5201 0.0994 
  -0.0061 0.0018 
  0.00003 0.00001 
  9.3747 1.1124 

M2  5.1783 1.4466 
  0.5543 0.09526 
  -0.0067 0.0018 
  0.00003 0.00001 
  7.0741 2.0709 
  0.0353 0.0366 

M3  4.4628 1.4632 
  0.6141 0.0968 
  -0.0079 0.0018 
  0.00004 0.00001 
  7.6747 1.6314 
  -0.0036 0.0867 
  0.0003 0.0010 

 

  



64 
 

TABLE 3.4 – POINT ESTIMATES AND STANDARD ERRORS OF THE MULTIVARIATE 
MODELS FOR RESPONSE VARIABLE VOLUME (V) 

Model Parameter Estimates Standard error 
M1  -3.1528 0.1122 

  0.0982 0.0036 
  -0.0004 0.00003 
  0.0843 0.0095 
  1.6152 0.0781 

M2  -3.1541 01116 
  0.0984 0.0036 
  -0.0004 0.00003 
  0.0426 0.2130 
  0.0010 0.0059 
  1.4080 1.0991 

M3  -3.0332 0.1113 
  0.0953 0.0036 
  -0.0004 0.00003 
  0.0527 0.0063 
  -0.0034 0.0014 
  0.0001 0.00004 
  0.7738 0.2631 

 

 

Univariate and multivariate models present the same interpretations about the 

estimated effects of the linear predictor and matrix linear predictor. Differences observed on 

the parameter estimates and standard errors from univariate and multivariate approaches were 

due to the correlation between both response variables, as showed in TABLE 3.5. Correlations 

( ) between response variables H and V was significant for all models, but in a moderate 

intensity with values close to 0.5, indicating that these variables share information. As 

consequence, standard errors from multivariate model was smaller than univariate models for 

almost all estimated parameters. 

 

TABLE 3.5 – ESTIMATED CORRELATION ( ) BETWEEN RESPONSE VARIABLES 
HEIGHT (H) AND VOLUME (V) FOR THE MULTIVARIATE FITTING 

Model Estimate Standard error 
M1 0.5075 0.0595 
M2 0.4945 0.0604 
M3 0.4715 0.0619 
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3.3.4. PERFORMANCE OF THE FITTED MODELS 

 

The performance of the univariate and multivariate models for response variables H 

and V are presented at Table 3.6. To make the performance measure comparable, we sum the 

values from univariate fitting for the same response. Pseudo likelihood (PV) values tended to 

increase due to the inclusion of news parameters on the matrix linear predictor, suggesting best 

performance for the most parametrized models. However, pseudo Bayesian’s information 

criterion (PBIC) penalized models as a function of the number of parameters. 

The best fitted models were obtained from the simplest models, where the matrix linear 

predictor was composed of only an identity matrix, with an estimated dispersion parameter 

common for all observations. However, we highlighted that the variance function estimated 

from jointly modeling for response variable V suggested a composed Poisson-Gama 

distribution. These results indicated that it is important to include components for variance 

modeling for the response V, since it was not constant and tended to increase faster than the 

mean values. Still, we can note that the variance function was able to handle with the natural 

variability of the data, avoiding the need to model the variance as function of covariate diameter 

(D) and to specify a more complex model, as we performed on models 2 to 4. 

The M1 specification was the most suitable for modeling the behavior of response 

variables for both univariate and multivariate approaches, mainly due to its simplified 

formulation combined to the lower values of PBIC. From this model specification, 95% 

confidence intervals were built for response variables at FIGURE 3.2. We can note that the 

confidence intervals were symmetric for response H, while larger confidence intervals were 

observed for response V for larger trees, due to the variance function, being slightly lower for 

multivariate fitting.  
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TABLE 3.6 – PSEUDO LIKELIHOOD (PV) AND PSEUDO BAYESIAN’S INFORMATION 
CRITERION (PBIC) FROM UNIVARIATE AND MULTIVARIATE MODELS FOR 
RESPONSE VARIABLE HEIGHT (H) AND VOLUME (V) 

Model PV PBIC 
Model for H and V: univariate case 
M1 -570.57 1199.31 
M2 -567.80 1205.41 
M3 -564.70 1210.84 
Model for H and V: multivariate case 
M1 -550.98 1165.95 
M2 -549.95 1175.52 
M3 -548.09 1183.44 

 

 

FIGURE 3.2 – 95% CONFIDENCE INTERVALS FROM UNIVARIATE AND 
MULTIVARIATE MODELS FOR RESPONSE VARIABLES HEIGHT (H) AND VOLUME 
(V) 
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3.4. CONCLUSION 

 

Univariate and multivariate regression models fitted for describing the response 

variables height and volume of Araucaria angustifolia specie were suitable. The correlation 

between response variables can influence the parameter estimates and standard errors of the 

fitted models. The variance function has potential to improve the performance of the models 

for both approaches and allows a suitable variance modeling of the response variables. Thus, 

multivariate covariance generalized linear models are a class of models with great potential to 

be applied to forest biometric for estimating tree-level variables. 
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4. MODELOS LINEARES GENERALIZADOS PARA SOBREVIVÊNCIA DE Pinus 

taeda EM PLANTIOS FLORESTAIS 

 

RESUMO 

 

Quantificar a sobrevivência de árvores em povoamentos florestais e estimar a 
probabilidade uma árvore sobreviver são questões fundamentais no planejamento do manejo 
florestal. Portanto, o principal objetivo da pesquisa é estimar a probabilidade de sobrevivência 
de árvores em plantios de Pinus taeda baseado nos modelos lineares generalizados (GLM). O 
conjunto de dados foi obtido em inventários florestais realizados na região Meio-Oeste do 
estado de Santa Catarina, Brasil. A análise dos dados combinou estratégias para seleção de 
covariáveis e diferentes especificações de funções de ligação no modelo GLM Bernoulli. As 
estratégias para seleção de covariáveis a nível de parcela foram o procedimento Stepwise 
tradicional, além da abordagem elastic net, bem como os seus casos particulares de penalização 
lasso e ridge. A análise mostrou que o procedimento stepwise, combinado com a função de 
ligação complemento log-log proporcionou o melhor ajuste. As variáveis que mais 
contribuíram para predizer a sobrevivência das árvores foram área basal, número de indivíduos, 
diâmetro máximo, diâmetro médio da área transversal média e o coeficiente de variação dos 
diâmetros por parcela. Esse modelo apresentou 81,5% de acurácia, conforme a curva ROC. Por 
fim, o modelo ajustado também foi avaliado pelo gráfico half-Normal plots e os resíduos 
quantílicos aleatorizados, os quais indicam um ajuste adequado do modelo. O procedimento 
Stepwise é recomendado para selecionar covariáveis para predizer a probabilidade de 
sobrevivência de árvores, juntamente com uma função de ligação complemento log-log. 
 

Palavras-chave: Elastic net. Função de ligação, Regressão logística. Regressão ridge. Método 
stepwise.  



71 
 

GENERALIZED LINEAR MODELS FOR TREE SURVIVAL IN LOBLOLLY 

PINE PLANTATIONS 

 

ABSTRACT 

 

To quantify the surviving trees in a forest stand and estimate the probability of an 
individual tree to survival are a fundamental task in forest management planning. Therefore, 
the main goal of this paper was to estimate the tree survival probability in loblolly pine (Pinus 
taeda L.) plantations based on generalized linear models (GLM). The data set was obtained 
from forest inventories carried out in the Midwest of Santa Catarina State, Brazil. The data 
analysis combined strategies for selecting covariates and different specifications of link 
functions in a Bernoulli GLM. We performed strategies for covariate selection at plot-level 
along with the standard stepwise procedure, where we considered the elastic net approach, as 
well as its special cases the lasso and ridge penalization. Our analyses showed that the stepwise 
procedure combined with the complementary log-log link function provide the best fit. The 
variables that most contributed to assess tree survival were basal area, number of individuals, 
maximum diameter, diameter of the average cross-sectional area and the diameter coefficient 
of variation per plots. This model presents 81.5% of accuracy given by ROC curve. Finally, we 
evaluated the fitted model by means of the half-Normal plots and randomized quantile residuals, 
whose results showed evidence of a suitable fit. We suggest the stepwise procedure for selecting 
covariates for a tree survival probability model, besides a complementary log-log link function. 
 

Keywords: Elastic net. Link function. Logistic regression. Ridge regression. Stepwise method. 
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4.1. INTRODUCTION 

 

Species of Pinus genus are cultivated in large-scale in the Southern region of Brazil, 

especially in Paraná and Santa Catarina States, mainly due to great adaptation to climatic 

conditions and their high timber economic potential. According to IBÁ - Indústria Brasileira de 

Árvores (2017), Pinus taeda L. and Pinus elliottii Engelm planted area covered more than 1.6 

million of hectares in the base year of 2016, which represent 20.4% of the total planted area in 

the country. 

The extensive Pinus planted area in Brazil implies that the trees are submitted to a 

wide range of environmental conditions and forest management systems, which results in a 

large range of timber productions. Therefore, statistical models able to express the forest 

developing in different conditions has become an important tool on the growth and yield 

planning. Despite important in individual tree growth simulators, tree survival is still few 

explored, probably because it is a rare phenomenon of high variability (AVILA & 

BURKHART, 1992). 

The tree survival and mortality in both planted and natural forest stands is a 

phenomenon associated to many factors (ADAME et al., 2010) which include the competition 

among individuals; forest management practices, such as thinnings; climatic conditions 

(DIÉGUEZ-ARANDA et al., 2005; DAS & STEPHENSON, 2015; THAPA & BURKHART, 

2015, MIRANDA et al., 2017; TÉO, 2017); as well as the species genetic diversity. Thus, it is 

not completely clear how the tree mortality or survival occurs in a forest, once that individuals 

with similar features may present different outcomes. 

To quantify the number of surviving trees over time is important in forest plantations. 

This information indicates the number of trees expected in the silvicultural rotation; and the 

potential timber assortments for being explored on the industry. Based on this, the tree survival 

probability at different site conditions and management systems can be obtained by statistical 

tools. Furthermore, regression models are essential on forest planning because can assist to 

identify factor associated to high or low survival probabilities. 

One of these tools is logistic regression, a statistical approach widely used for 

estimating the tree survival probability in forest plantations (YAO et al., 2001; DIÉGUEZ-

ARANDA et al., 2005; THAPA & BURKHART, 2015; TÉO, 2017). This model allows to 

express the survival probability through a linear predictor, which is usually composed by a set 

of tree and plot-level covariates. The linear predictor is connected to the expectation of the 
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survival probability by a link function, frequently specified by a logit or probit functions (TÉO, 

2017; VANCLAY, 1991; YANG et al., 2003; YAO et al., 2001). 

Although their popularity, both logit, probit and Cauchit link functions share a 

limitation for the reason they are symmetric (McCULLAGH & NELDER, 1989). In practice, 

this feature can be a limitation depending of the data sets. Thus, complementary log-log 

asymmetric link functions are available in the statistical literature as alternative approaches. 

However, the suitability of these link functions is not well-known in the context of forest 

management research, doing this subject quite relevant. 

The specification of a statistical model for modeling tree survival has at least two 

crucial choices: a suitable link function and which covariates will compose the linear predictor. 

In general, forest researchers have been used forward, backward, or stepwise selection 

procedures, where satisfactory results have been reported (TÉO, 2017; ZHANG et al., 2017). 

In this paper, we introduce an alternative approach for selecting covariates at plot-level based 

on regularization methods. The main idea of these methods is to fit a regression model whose 

parameter estimates are penalized or shrunken toward to zero. In this approach, the goal is to 

obtain estimates with lower variance at the cost of introducing some bias in the parameter 

estimates. This feature of the regularization methods can be used for selecting covariates 

measured in forest plantations, once that they present high value of correlation among them, 

which implies in large standard errors. 

Lasso (Least Absolute Shrinkage and Selection Operator) and Ridge regression are a 

frequently applied regularization technique (TIBISHIRANI, 1996). An extension of these 

strategies is the Elastic Net approach which is a combination of Lasso and Ridge penalizations 

(ZOU & HASTIE, 2005). These techniques penalize the covariates by shrinking the parameter 

estimates and enabling the removal of the covariates whose estimated effects approach zero. 

Thus, our research hypothesis is that the regularization methods are appropriated for selecting 

uncorrelated covariates or non-redundant, once this approach can reduce the variance of the 

parameter estimates. 

The aim of this paper was to estimate the probability of loblolly pine (Pinus taeda) 

survival in forest plantations; and to identify which factors are associated to the tree survival. 

Therefore, we obtained data from forest inventories carried out in the Midwest of Santa Catarina 

State, Brazil. Our data was composed by a set of covariates usually measured at plot-level. The 

response variable was a binary value that indicated whether the tree is alive or not. We 

investigated and compared Bernoulli’s regression models fitted by the link functions logit, 

probit, Cauchit and complementary log-log. Furthermore, we performed the covariates 
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selection based on the standard stepwise procedure, as well as the methods based on 

regularization as the Lasso, ridge and elastic net approaches. 

We present the data set, a brief description about the study area and the modeling 

strategies in the material and methods section. The results section describes an exploratory data 

analysis and the application of the models to the data. We also present a discussion section 

about the main results. Finally, concluding remarks are presented in the conclusion section. 

 

4.2. MATERIAL AND METHODS 

 

4.2.1. STUDY AREA 

 

The study area corresponds to loblolly pine (Pinus taeda) plantations, located at 

Midwest region of Santa Catarina state, Brazil. The plantations are distributed on the 

municipalities of Caçador, Lebon Régis, Macieira, Rio das Antas, Santa Cecília, and Timbó 

Grande. According to IBGE - Instituto Brasileiro de Geografia e Estatística (2012), the region 

presents original vegetation belonging to Mixed Ombrophilous Forest (MOF), under the 

Montane Mixed Ombrophilous Forest. Based on the Köppen classification, the study region 

presents a Cfb climate type, that is, a wet subtropical zone, oceanic climate, without a dry season 

and with summers temperate. The average temperature of the warmest month is 19.7 °C and 

the coldest month is 11.5 °C, and the annual precipitation is 1,736 mm (ALVARES et al., 2013). 

The forest plantations were planted with an average initial spacing of 2.5 x 2.5 m 

(1,600 trees per hectare). The ideal rotation age is 25 years, with three commercial thinnings 

usually performed at 10, 15, and 20 years old. In the first thinning, 50% of the trees per hectare 

were removed; while 40% of the remaining trees were removed in the second thinning; in the 

third and last thinning were removed 30% of the remaining trees. 

 

4.2.2. DATA SET 

 

The data set was obtained from forest inventory performed in two occasions carried 

out at 2009 and 2015. The age ranged from 5.5 to 35.2 years old. In addition, due to the 

difference of six years between both forest inventories and because we re-sampling a few 

sample units, we assume that there is no correlation between measures. 

The plots had dimensions from 497,93 to 739,68 m2, which were randomly allocated 

(simple random sampling) in the study area, by using a stratified sampling process. The stratum 
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represented administrative divisions of the company (projects and stands). The diameter at 

breast height (DBH) was measured at 1.30 m of height in all trees inside each sub-sample. The 

total height of 20% of the trees in each plot was indirectly taken by using a hypsometer Vertex 

III. The trees dominant height was measured in individuals without bifurcation or defects over 

the stem and crown, and it was defined proportionally as the 100 trees with largest diameter at 

breast height per hectare. 

The data set we used for modeling was composed by 13 random variables measured 

at plot-level. The number of trees selected was 40,556 trees. The description of each variable is 

given as follow: 

• survival: binary variable – takes value 1 if the tree is alive or 0 otherwise. The 

classification of alive tree was performed when the data was collected in the forest 

inventory. The tree was considered a dead individual when green branches were not 

observed on the field. In our approach, both regular and irregular mortality were 

combined. The regular mortality was due to the natural competition among trees and 

the senescence process. The irregular mortality was caused by irregular factors, as 

monkey attacks, which are quite common at the study area. 

• age: continuous variable – age of the tree (years); 

• gsample: continuous variable – sum of cross-section areas (m²) of the trees inside plot. 

• nsample: discrete variable – number of trees inside plot; 

• daverage: continuous variable – average diameter (cm) of the trees inside plot; 

• dcv: continuous variable – coefficient of variation (%) of the diameters inside plot; 

• dg: continuous variable – quadratic average diameter (cm) of the trees inside plot; 

• dmax: continuous variable – maximum diameter (cm) of the trees inside plot; 

• ddom: continuous variable – dominant diameter (cm) of the trees inside plot. This 

variable was computed based on the average diameter of the one hundred largest trees 

per hectare, but proportionally to the size of each plot; 

• hdom: continuous variable – dominant height (m) of the plot. This variable was 

computed based on the height average of the one hundred largest trees by hectare, but 

proportionally to the size of each plot; 

• thinsample: binary variable – takes value 1 whether were performed thinnings on the 

plot or 0 otherwise; 

• gthin: continuous variable – sum of removed cross-sectional area on the plot during 

the thinnings; 

• nthin: discrete variable – number of trees removed during the thinnings on the plot. 
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4.2.3. THE GENERALIZED LINEAR MODEL 

 

Tree survival (survival) was the response variable, which takes a binary value, i.e., the 

response variable take value 1 whether the tree is alive and 0 otherwise. Therefore, we applied 

a Bernoulli’s regression model due to the nature of response variable (McCULLAGH & 

NELDER, 1989). The systematic component was formulated by a linear combination of a set 

of predictor variables, besides a link function selected according to the behavior of response 

variable. The specification of the model is given as 

 

 and 

 

, 

 

where  is the random variable, whose observed values are denoted by , ; 

 are vectors of the predictor variables ;  is the probability of success, i.e., is the 

survival probability;  is a differentiable and monotone link function;  is the linear predictor; 

and  are parameters to be estimated. 

 

4.2.4. LINEAR PREDICTOR AND LINK FUNCTION SELECTION 

 

For composing the linear predictor, 12 covariates were available. We applied two 

strategies for selecting the covariates: 

I) Stepwise: covariate selection was based on the minimization of the Bayesian 

Information Criterion (BIC), given by the following expression 

 

, 

 

where  is the maximized log-likelihood value;  is the number of observations; and  is the 

number of parameters of the model. This algorithm is a combination of backward and forward 

procedure, where the covariates are added or removed in successive iterations until obtaining 

the smallest BIC. Thus, we assumed that this methodology is the standard approach in forest 

modeling due to its large applications. 
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II) Regularization: covariates selection was performed with regularization methods. 

This procedure is based on penalizations controlled by the parameter ; while the penalization 

intensity was quantified by parameter . The general formulation is given by 

 

. 

 

For the especial case where , we obtained a first order penalization, also called 

as lasso regularization method. A second order penalization was defined when , and the 

method is called as ridge regression. The Elastic Net is an intermediate penalization when 

, and we tested a large grid (one hundred points) of penalization intensity. The optimum 

 was determined by cross-validation, using the cv.glmnet function of the glmnet package 

(FRIEDMAN et al., 2010) on the R software (R CORE TEAM, 2019). In this approach, our 

main goal was to identify the smallest loss for a sequence of . Still, we tested the loss function 

based on Mean Squared Error (MSE), Mean Absolute Error (MAE) and Deviance (DEV). Once 

that the , the penalization term has no effect when , and the parameter estimates are 

equal to the maximum likelihood estimates. However, when  the penalization is strong 

and the parameter estimates tend to zero (TIBSHIRANI, 1996). The covariates have different 

nature, what can influence on the selection procedure; thus, we standardized them for 

minimizing their scale effects. 

After defining the best  and  parameters and the covariates selected on the 

regularized model, we specified four link functions. The Cauchit (1), complement log-log (2), 

logit (3) and probit (4) link functions were tested for verifying their influence on the selection 

of covariates for the stepwise approach. The most suitable link function was based on the 

smallest value of Bayesian Information Criterion (BIC), once that the models can present 

different number of covariates. The generalized linear model specification for each link 

function on linear predictor scale is given by 

 

 

 

(1) 

 

 

(2) 

 (3) 
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 (4) 

 

where  is the tangent function;  is the natural logarithm; and  is the inverse of 

probability density function of the standard normal distribution. 

Investigating the violation of the assumptions of non-normal models usually cannot be 

done by traditional residual analysis. Therefore, for evaluating the assumptions of the fitted 

models, we performed a diagnostic analysis based on half-Normal plots (HNP) with simulated 

envelope, built by hnp function of the hnp package (MORAL et al., 2017) on the R software. 

The idea behind HNP is to verify whether the error distribution was specified in an 

appropriately way. Thus, for a well-fitted model, the simulated envelope is such that the model 

diagnostics measures are likely to fall within it. The main purpose of the envelope is to serve 

as an indicative of what we expect about the residuals under a well-fitted model (MORAL et 

al., 2017). Still, we computed the randomized quantile residuals (RQR) as a complementary 

analysis. In this case, whether our model is correctly specified, we expect the residuals follow 

a normal distribution (DUNN & SMYTH, 1996). 

 

4.2.5. PREDICTIVE PERFORMANCE 

 

The predictive performance of the models was compared by standard methods. The 

data set was randomly split in two subsets. The fitting data was composed by approximately 

90% of the observations and was used to fit the models, where the marginal proportion of alive 

trees was about 97.82%. The validation data set presented 97.80% of alive trees and was applied 

for evaluating the prediction performance of them models by Receiver Operating Characteristic 

curve (ROC) of the ROCR package (SING et al., 2005) on the R software. The sensibility (Sens) 

and specificity (Esp) of each model was estimated for 0.75; 0.85; 0.90 and 0.95 probability cut 

points. These measures indicate the performance of the models for classifying individuals in 

survival or non-survival, in which the more suitable cut point was obtained based on Youden 

( ) and Closest Topleft rules ( , UNAL, 2017), whose expression are given 

respectively as  

 

 

 

. 
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The sensitivity was expressed by the proportion of trees predicted as survivor given the total of 

alive trees, and allows to quantify the ability of the models in identifying correctly the survival trees; 

the ability in identifying correctly the dead trees is obtained by the specificity, which it was calculated 

by the proportion of trees predicted as non-survivor given the total of dead trees. Thus, sensitivity and 

specificity are measures conditionate to the alive and dead trees observed on the sample, respectively, 

and both directly depends of the probability cut point. We also computed the positive predictive value 

(PPV) and negative predictive value (NPV) measures because also depends of the incidence of survival 

on the forest stands, and both measures are conditionate to the predicted alive and dead trees, 

respectively (GIOLO, 2017). 

 

4.3. RESULTS 

 

In this section, we presented an exploratory analysis of the variables and how they are 

related which others. We also showed the effect of the link functions in selecting covariates for 

composing the linear predictor of the generalized linear model, besides the main results 

obtained on the covariates selection procedure. Finally, we applied the best models in the 

validation data set for assessing their prediction performance. 

 

4.3.1. EXPLORATORY DATA ANALYSIS 

 

Boxplots presented in FIGURE 4.1 suggested an asymmetric distribution of the 

covariates according to the response variable levels and a possible significant effect of the 

covariates based on diameters measures and age. FIGURE 4.2 presents a correlogram based on 

Spearman´s rank correlation coefficient, where the covariates were clustered by the centroid 

method (MINGOTI, 2005). Three groups with high correlation values stand out, which suggest 

that multicollinearity can be a concerning problem for this data set and highlights the need of a 

covariate selection. The nsample covariate had a negative relationship with other covariates that 

directly express tree dimensions. This indicates that as the number of trees in the sample 

increase, the tree individual dimensions tend to decrease. Moreover, thinnings covariates 

showed high positive correlation among them, but negative correlation with almost all the other 

covariates. High positive correlation values were also observed for covariates directly 

computed based on tree-level measures, such as diameter and height. 
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FIGURE 4.1 - BOXPLOTS (A TO K) AND BARCHART (L) OF THE COVARIATES BY 
SURVIVAL INDEX 

 
 

 

 
FIGURE 4.2 - CORRELOGRAM BETWEEN VARIABLES CLUSTERED BY CENTROID 
METHOD 
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4.3.2. FITTING THE MODELS 

 

The stepwise procedure selected the covariates gsample, nsample, dcv, dg and dmax 

for composing the linear predictor. On the other hand, all covariates were selected by the 

regularization methods. The best  value obtained by cross-validation was 0 for all sequences 

of  that perform the Lasso, Ridge, and Elastic Net procedures, regardless of loss 

measure tested (MSE, MAE or DEV), indicating that the penalization term had no effect on the 

parameter estimates, being recommended to remove them. However, even when we fitted the 

model with all covariates, only gsample, nsample, dcv, dmax, gthin, and nthin were significant 

(TABLE 4.2). Thus, we decided to continue the data analysis considering these covariates in 

their natural scale. So, we could easily interpret their effects on tree survival. 

Bayesian information criterion (BIC) and residual deviance (RD) indicated that the 

complementary log-log link function provided the best fit in both modeling approaches 

(TABLE 4.1). However, when BIC values were compared between covariate selection 

approaches, the stepwise procedure provided the best fit for all link functions. This result is 

related to the largest penalty on the log-likelihood function of the model based on the 

regularization approach due to the largest number of parameters. Furthermore, complement log-

log and probit link functions had the same covariates selected by the stepwise procedure. For 

logit link function, this method also selected the covariates related to thinnings, such as gthin 

and nthin, while Cauchit selected ddom and daverage. 

We performed a graphical analysis for evaluating the assumptions of the fitted models. 

Our models were based on a Bernoulli specification of the binary response variable survival. 

Thus, the assumptions usually assumed for normal data are no longer demanded. The half-

Normal plot presented in FIGURE 4.3 suggested that the models were properly specified, once 

the residuals do not exceed the simulated envelope. However, both models presented similar 

behavior, indicating a good fit and a suitable probability distribution of response variable. As a 

feature of the randomly quantile residuals, when the model is suitable to the data it should be 

expected a normal distribution of the residuals, regardless of the distribution of the response 

variable and selected covariates. In our case, sample and theoretical residual quantile had a 

linear association (FIGURE 4.3), confirming a good performance of the fitted models and a 

normal distribution of the residuals. 
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Some preliminary analyses indicated that only the main effects of covariates were 

suitable for modeling the response variable survival, in which interaction terms are not required 

to be included in the linear predictor. Parameter estimates and standard errors for both covariate 

selection procedures are presented in TABLE 4.2. Point estimates of the fitted model based on 

stepwise selection suggested that the response variable has negative relation to gsample and 

dcv, since the associated parameters had a negative sign, as can be observed in FIGURE 4.4. In 

practice, larger cross-sectional area and higher diameter variability in the sample are associated 

with a lower individual survival probability. On the other side, nsample, dg, and dmax 

covariates are associated with higher values of survival probability (FIGURE 4.4). 

 

TABLE 4.1 - BAYESIAN INFORMATION CRITERION (BIC) AND RESIDUAL DEVIANCE 
(RD) BY LINK FUNCTIONS AND COVARIATE SELECTION METHODS 

Link function 
BIC (Number of 
variables) Residual deviance 

Stepwise Regularization Stepwise Regularization 
Cauchit 7,068.31 (9) 7,094.78 (12) 6,963.30 6,958.20 

C. log-log 6,847.46 (5) 6,904.20 (12) 6,784.40 6,768.30 
Logit 6,874.73 (7) 6,910.75 (12) 6,790.70 6,774.20 
Probit 6,851.50 (5) 6,906.84 (12) 6,788.50 6,769.30 

 

 
TABLE 4.2 - PARAMETER ESTIMATES, STANDARD ERRORS (SE) AND P-VALUE OF 
THE FITTED MODELS WITH COMPLEMENT LOG-LOG LINK FUNCTION ON THE 
LINEAR PREDICTOR SCALE 

Parameter Estimate SE p-value Estimate SE p-value 
 Regularization Stepwise 

intercept -0.2940 0.3917 p > 0.05 -0.3973 0.2305 p ≤ 0.10 
age -0.0097 0.0128 p > 0.05 - - - 

gsample -0.0404 0.0034 p ≤ 0.05 -0.0413 0.0024 p ≤ 0.05 
nsample 0.0017 0.0001 p ≤ 0.05 0.0017 0.0001 p ≤ 0.05 
daverage -0.4005 0.3486 p > 0.05 - - - 

dcv -0.0484 0.0146 p ≤ 0.05 -0.0411 0.0047 p ≤ 0.05 
dg 0.4891 0.3469 p > 0.05 0.0575 0.0118 p ≤ 0.05 

dmax 0.0451 0.0093 p ≤ 0.05 0.0312 0.0069 p ≤ 0.05 
ddom -0.0426 0.0224 p > 0.05 - - - 
hdom 0.0028 0.0102 p > 0.05 - - - 

thinsample -0.0238 0.1884 p > 0.05 - - - 
gthin 0.0230 0.0098 p ≤ 0.05 - - - 
nthin -0.0008 0.0003 p ≤ 0.05 - - - 



83 
 

FIGURE 4.3 - HALF-NORMAL PLOT (LEFT) AND RANDOMLY QUANTILE 
RESIDUALS (RIGHT) FOR DIAGNOSING THE FITTED MODELS 

 
 

 
  



84 
 

FIGURE 4.4 - PREDICTION OF SURVIVAL PROBABILITY FOR THE COVARIATES 
nsample AND gsample OF THE FITTED MODELS. COVARIATES WERE FIXED AT THE 
MEAN VALUES. 

 
 

 

 

4.3.3. PREDICTIVITY PERFORMANCE 

 

A validation data set was used for comparing the performance of the fitted models in 

predicting the response variable, once the forest planning directly depends on the estimated 

number of alive trees in a forest stand. The ROC curves were similar for both models (FIGURE 

4.5). However, the area under the curve was 0.805 for the model selected by stepwise procedure, 

and 0.814 for the model chosen by regularization method, indicating a slightly better predictions 

for the model with more parameters. 

When we changed the cut point for defining a suitable probability value for classifying 

trees in survivors or non-survivors, the best result was obtained with a 0.95 probability cut 

point. This result was observed for both models, once that in this probability cut point was 

obtained the highest value in Younden´s rule and the lowest value in Closest Topleft´s rule 

(TABLE 4.3). We also noticed that the model based on the regularization procedure presented 

slightly higher values in the decision rules than the stepwise procedure, resulting in a better 

performance for classifying the individuals. 

The estimated sensitivity and specificity values for a 0.95 probability cut point are 

presented in Table 4.4. The results suggested that the models have great capacity to identify 

alive trees, due to the high sensitivity value; while low values were observed for specificity, 

which implies in difficult to identify dead trees. Still, negative predictive value (NPV) 

suggested that the probability of a tree to be dead given that the model predicted as a non-
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survival tree was about 0.08 for both models, which is directly related to the low incidence of 

mortality in forest stands. However, the probability of a tree to be alive given that the model 

predicted as a survival tree was 0.99, as observed on the positive predictive value (PPV). 

 

FIGURE 4.5 - ROC CURVE OF THE MODELS APPLIED TO THE VALIDATION DATA 
SET 

 
 

TABLE 4.3 - YOUDEN AND CLOSEST TOPLEFT DECISION RULES FOR DIFFERENT 
PROBABILITY CUT POINTS OF THE MODELS APPLIED TO THE VALIDATION DATA 
SET 

Model Cut point Youden Closest Topleft 

Stepwise 

0.75 1.000 1.000 
0.85 1.010 0.977 
0.90 1.049 0.890 
0.95 1.300 0.372 

Regularization 

0.75 1.000 1.000 
0.85 1.000 1.000 
0.90 1.049 0.890 
0.95 1.315 0.347 

 

 

TABLE 4.4 – SENSITIVITY, SPECIFICITY, POSITIVE PREDICTIVE VALUE (PPV) AND 
NEGATIVE PREDICTIVE VALUE (NPP) BY SELECTED MODELS APPLIED TO THE 
VALIDATION DATA SET FOR 0.95 PROBABILITY CUT POINT 

Model Sensitivity Specificity PPV NPP 
Stepwise 0.902 0.398 0.985 0.084 

Regularization 0.895 0.420 0.986 0.083 
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4.4. DISCUSSION 

 

The main goal of this paper was to specify and fit a generalized linear model for 

estimating the tree survival probability in loblolly pine plantations. We tested four strategies of 

covariate selections based on stepwise and regularization procedures, such as ridge regression, 

lasso and elastic net method. We were also interested in analyzing the influence of link 

functions when selecting covariates for composing the linear predictor. Initially, we expected 

that the regularization method would be more appropriate for selecting correlated covariates, 

which are common in forest variables, because this approach can include some bias in 

parameter estimates in contrast to reduce their variance. Since the covariates are correlated and 

standard errors are larger, regularization procedures are quite promising in forest modeling. 

However, the penalization term had no effect in our model. As consequence, the stepwise 

procedure performed best due to the fewer selected covariates, making this a more 

parsimoniously procedure. 

A different number of selected covariates for composing the linear predictor of the 

model can be obtained when we consider different link functions, what suggests that the link 

function must be appropriated for a specified data set. Despite preference by Logit link function 

on the tree survival probability modeling in forest plantations (TÉO, 2017; YANG et al., 2003; 

YAO et al., 2001), better results on BIC were obtained for complementary log-log and probit 

link functions, which provided models with a few parameters. The performance of the 

complementary log-log link function showed evidence that the behavior of tree survival 

probability is asymmetric when related to the linear predictor, once that the individual tree 

survival probability approaches to zero and one in different rate. Thus, considering a symmetric 

link function may not be a reasonable assumption in tree survival modeling (JIANG et al., 

2013). These results became relevant because the probability of success presented values quite 

near of one, where the link functions show more discrepancy. 

Our models performed well for fitting and predicting the survival probabilities. 

However, better results can be obtained whether more covariates are considered for composing 

the linear predictor, such as environmental variables, mainly whether the model is applied to 

large areas. Zhang et al. (2017) modeled the mortality of forest plantations located at China 

using climatic covariates, besides initial planting density and competitions indexes. The authors 

suggested the inclusion of climatic variables in mortality models can facilitate the projection of 



87 
 

tree mortality under future climate change conditions. Thapa & Burkhart (2015) tested climatic 

and soil effects on tree mortality, and the predictions performed best when they included these 

covariates. However, climatic variables were significant just when the model was fitted for 

large areas, which suggests that only climatic effects play a minor role in small areas. 

In forest research involving tree mortality or survival, tree competition indices are 

commonly used as predictor variables (MIRANDA et al., 2017; TÉO, 2017, ZHANG et al., 

2017). However, these indexes are computed in function of covariates usually included in the 

linear predictor. As an example, basal area larger index (BAL) is obtained by summing the 

cross-sectional area of all trees with larger diameter than the object tree (EID & TUHUS, 2001), 

then being a function of the diameter at breast height. This procedure can induce a correlation 

between both variables (MIRANDA, 2016; SCHRÖDER & GADOW, 1999). Consequence of 

correlated covariates is a larger standard error of the parameters estimates, that can compromise 

the hypothesis tests and inferences. In our preliminary analysis, changes in the parameters sign 

and standard error of the stepwise model were observed when we removed the covariates dg or 

dmax. This result is explained by the high correlation value (0.95) between them. 

We tested thinsample, gthin and nthin covariates for accounting possible thinning 

effects on tree survival probability. However, similar to what was found by Avila & Burkhart 

(1992), no improvement was obtained in the predictions when those variables were added to 

the model. A possible reason is that the mortality is a quite rare phenomenon, and after thinning 

we also do not expect a relevant regular mortality. According to Bose et al. (2018), commercial 

thinning treatment replaced self-thinning of suppressed trees; thus, decreasing tree mortality in 

loblolly pine and Douglas-fir plantations in North America. The authors also highlighted that 

the thinning was effective for reducing long-term tree mortality in red spruce and balsam fir, 

confirming the significance of thinning intensity and basal area as relevant predictor covariates. 

Our tree survival probability models presented a great ability to predict alive trees, as 

suggested by the sensitivity statistic (Table 5). Téo (2017) used logistic regression combined 

with logit link function for modeling Pinus taeda tree survival probability in Midwest of Santa 

Catarina. The sensitivity of his model was 98.9% and the specificity was 43.1% for irregular 

mortality, being similar that one obtained in this paper. When the author considered only regular 

mortality, sensitivity and specificity were 99.1% and 52.3%, respectively. These results suggest 

that the natural mortality is more regular than that one caused by external factors.  

A possible reason for the discrepancy observed for sensitivity and specificity of the 

model was the different number of survived and non-survived trees. These imbalance between 

alive and dead trees classes have influence on the effectiveness of the model. In general, tree 
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survival probability models usually do not present high values of specificity (ADAME et al., 

2010; TÉO, 2017), what may be related to the few dead trees in a forest plantation when 

compared to the number of alive trees. As alternative, Kuhn & Johnson (2013) suggested that 

a balanced training set may help to deal with this class imbalance. However, this approach still 

requires detailed researches in forest modeling. Another possible reason for lower values of 

specificity is related to the lack of ability of the covariates usually measured at forest inventories 

in identifying the dead individuals. Thus, we recommend testing more covariates for increase 

the specificity of the survival models. 

Finally, futures topics to be explored in survival modeling are related to the inclusion 

of forest inventories performed in several occasions, with several occasions of sample units 

measurements, defining a longitudinal study, due to the temporal dependency among 

observations. Applications of spatial statistics should be considered for improving the analysis 

of tree survival in forest stands, since the environmental gradient can influence the tree 

individual mortality. 

 

4.5. CONCLUSION 

 

In this study, we specify and fit a generalized linear model for estimating the 

probability of loblolly pine tree survival in forest plantations, considering covariates usually 

measured in forest inventories. The plot-level variables that most contributed to assess tree 

survival were basal area, number of trees, maximum diameter, diameter of the average cross-

sectional area and the diameter coefficient of variation. 

The stepwise procedure for selecting covariates was more parsimonious than the 

regularization procedures tested; and combined with complementary log-log link function was 

the procedure provided the most suitable model. The model presented a great prediction ability, 

mainly due to the high number of survival trees. Additional researches related to regularization 

techniques are recommended in forest modeling, mainly regarding survival and individual 

growth models. 
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5. GENERAL CONCLUSIONS AND RECOMMENDATIONS 

 

We introduced new statistical methods with potential to be applied to forest biometrics 

in this thesis. In general, the methods presented great performance to handle with common 

problems in forest modeling. We highlighted the ability of the models for handling in a 

relatively easy way with non-independent observations and the correlated forest variables. 

The covariance generalized linear models was suitable for Pinus taeda stem taper 

modeling. This class of models increased the knowledge about the behavior of stem taper and 

how the correlation patter is over the tree stem. The response variable predictions were 

improved when conditionate predictions were performed for relative diameters. 

The multivariate covariance generalized linear models showed that a jointly modeling 

is recommended for estimating the Araucaria angustifolia height and volume, due to the 

correlation between them. Variance functions must be used for explaining the relationship 

between mean and variance of variable volume. Regular behavior was observed for the variable 

height and the variance function was not required. 

The univariate and multivariate cases of covariance generalized linear models has 

large applications to forest biometrics. The uncertainties related to the response variable are 

easily quantified in confidence intervals; and a more robust predictions can be performed due 

to the covariance matrix. Additional research is recommended to biomass and carbon modeling 

using the methodologies presented in this thesis. We also recommended additional studies 

involving linear and non-linear models for growth-yield systems at individual and non-

individual tree level. 

The Bernoulli generalized linear model presented a great prediction ability. The 

covariate selection based on penalization procedures require more research. Applications of this 

methodology for covariate selection is also recommended for growth-yield modeling, due to 

the high correlation among independent variables. 
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APPENDIX 

 

Scripts of each chapter and a digital version of the thesis is available on the following page 
https://github.com/luanfiorentin/thesis 
 
 


