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RESUMO 

Cuba é a maior ilha do Caribe, possuindo as áreas úmidas mais extensas da região. Das ~ 370 
espécies de aves cubanas, 40% são dependentes de zonas úmidas e a maioria é migratória. O 
conhecimento do uso destas áreas por aves é crítico para a conservação regional, 
principalmente no que refere-se à estrutura da paisagem. Além disso, as aves dependentes 
das áreas úmidas são consideradas altamente ameaçadas pelos efeitos das mudanças 
climáticas. No Capítulo 1, nós caracterizamos assembléias de aves aquáticas da costa sul 
cubana, relatamos suas variações espaço-temporais e sugerimos estratégias de conservação. 
Realizamos amostragens em seis zonas úmidas entre 2011-2013. Identificamos diferenças na 
composição das aves aquáticas entre locais e estações, mas não entre anos. Não foram 
encontradas diferenças na variabilidade espacial ou temporal da abundância entre locais, 
estações ou anos. Doze espécies apresentaram abundância superior a 1% da população 
global. Este estudo destaca a importância global da costa sul cubana para a conservação das 
aves aquáticas, particularmente durante a migração no outono. Com estes resultados 
propomos a criação de novos áreas de conservação. No Capítulo 2, testamos o efeito da 
configuração da paisagem na estrutura das comunidades de aves aquáticas em áreas úmidas 
costeiras em um gradiente de conservação no sudoeste de Cuba. Foram realizados 
levantamentos de aves aquáticas em 14 pontos na costa durante o outono de 2016. A estrutura 
da paisagem foi descrita por 11 índices em três escalas espaciais. Nossos resultados mostram 
que na escala de 6 km a área de mangue influenciou negativamente a abundância de aves, 
enquanto que, na escala de 2 km, a porcentagem coberto por lagoas teve um efeito positivo. 
Também na escala de 2 km, a porcentagem de cobertura por manguezais e lagoas influenciou 
positivamente a composição de especies. A porcentagem de área com uso antrópico não 
influencia nenhuma variável da comunidade de aves. Nossos resultados mostram que detectar 
os efeitos de escala dos recursos de paisagem é muito importante para um manejo eficaz das 
aves aquáticas. No Capítulo 3, previmos distribuições atuais e futuras do flamingo 
Phoenicopterus ruber e da garça-vermelha Egretta rufescens usando modelos de distribuição 
de espécies. Para cada espécie, previmos dois cenários de emissões em 2050 e 2070, em 
Cuba. As variáveis bioclimáticas que mais contribuíram para modelar a distribuição do 
flamingo foram a variação média diária e sazonalidade da temperatura. A variação média 
diária da temperatura também contribuiu mais para a modelagem garça-vermelha, seguida 
pela precipitação no quarto mais quente. Nossos resultados mostram que a distribuição atual 
do flamingo deve reduzir 38% no cenário pessimista de 2070, enquanto a área de distribuição 
da garça-vermelha deverá aumentar em 44%. Nossas descobertas sugerem que a modelagem 
da distribuição de espécies pode informar sobre o manejo futuro do flamingo e da garça-
vermelha. É necessária uma estratégia de conservação para proteger o flamingo sob um clima 
em mudança. Os resultados desta tese não apenas destacam a boa saúde de zonas úmidas 
cubanas, mas incentivam seu manejo no nível da paisagem e a previsão dos efeitos de 
mudanças climáticas. 

Palavras-chave: Cenários climáticos futuros, Comunidade de aves aquáticas, Estrutura da 
paisagem, Variação sazonal, Zonas úmidas costeiras 

 

 

 



 

 

ABSTRACT 

Cuba is the largest Caribbean island, presenting the most extensive wetlands in the region. 
From all ~370 bird species in this country, 40% are wetland-dependent and most are 
migratory. Understanding how birds use Cuba’s wetlands and how landscape structure 
affects waterbird distribution is critical for regional conservation. Also, wetland-dependent 
birds are considered to be endangered by climate change effects. In chapter 1, we 
characterized waterbird assemblages in Cuban south coastal wetlands, reported spatio-
temporal variations in waterbirds and suggested conservation strategies. We conducted 
surveys across six wetlands (2011-2013). Differences in waterbird composition were 
identified among sites and seasons but not among years. No differences were found in spatial 
or temporal variability in abundance among sites, seasons or years. Twelve species were at 
abundance levels exceeding 1% of their estimated global population. This study highlights 
the global importance of Cuban south coast to waterbird conservation. Based on our results, 
we encourage the creation of conservation areas. In chapter 2, we aimed to investigate the 
effect of landscape configuration on the structure of waterbird communities in coastal 
wetlands in a conservation gradient in southwestern Cuba. We conducted waterbird surveys 
across 14 points on southwest coast during fall migration of 2016. Landscape structure was 
described using 11 indices at three spatial scales. Our results show that, in 6km, the mean 
patch area of mangrove had a negative influence in waterbird abundance, while at 2km the 
percentage of landscape covered by lagoons have a positive effect. Instead, a higher 
percentage of landscape covered by mangroves and lagoons had a positive effect in waterbird 
composition in 2 km. The percentage of anthropogenic land use does not influence any 
response variable. Our study shows that detecting the scale of effect of important landscape 
resources is very important for the effective management of waterbird. In chapter 3, we 
predicted current and future distributions of American Flamingo Phoenicopterus ruber and 
Reddish Egret Egretta rufescens, two resident species in Cuba, using species distribution 
models with Maxent software. For each species, we predicted two emissions scenarios in 
2050 and 2070, in Cuba. Bioclimatic variables that contributed the most to modeling the 
potential distribution of American Flamingo were mean diurnal temperature range (mean of 
monthly (max temp - min temp)) and temperature seasonality. Mean diurnal range also 
contributed most to the modeling of Reddish Egret followed by precipitation of warmest 
quarter. Our results show that the current distribution of American Flamingo is predicted to 
reduce 38% under a changing future climate, in the pessimistic scenario of 2070, while the 
current distribution size of Reddish Egret is predicted to increase in 44%. Our findings 
suggest that species distribution modeling can inform the current and future management of 
the American Flamingo and Reddish Egret throughout Cuba. A conservation strategy is 
needed to conserve American Flamingo under a changing climate. The results of this thesis 
not only highlights the good health of Cuban wetlands, but encourage their management at 
the landscape level and the prediction of the possible effects of future climate changes. 

Keywords: Coastal wetlands, Future climate scnarios, Landscape structure, Seasonal 
variation, Waterbird community 
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GENERAL INTRODUCTION  

 
 
Waterbirds have been recognized as indicators of wetland health given that their presence 

provides information on this ecosystem functioning (Becker 2003). Waterbirds depend on 

wetlands for survival because these areas are used during all stages of their annual life cycle 

(Mugica et al. 2006). Specifically, coastal wetlands are areas of great importance as they 

harbor fragile ecosystems, which are very sensitive to climate change (Erwin 2009).  

Cuba is the largest Caribbean island which contains the most extensive wetlands in the 

region (CNAP 2013). The Cuban archipelago covers 109,886 km2 and comprises 4,196 

islands and cays. The main island of Cuba has an extension of 1,250 km from East to West 

and is bordered by four group of cays: Sabana Camagüey Archipelago, Canarreos 

Archipelago, Jardines de la Reina Archipelago and Los Colorados Archipelago. Cuba is 

divided into three biogeographic regions: east, central and west (Vales et al. 1998).  

In Cuba, 369 bird species have been recorded (Garrido and Kirckconnell 2010), of which 

150 are wetland-dependent. These waterbirds are grouped into 8 orders and 27 families, being 

Anatidae, Scolopacidae and Laridae the richest ones (Acosta and Mugica 2006). Among all 

species, 123 are migratory, 27 winter residents, 10 summer residents, 16 transients, 43 

accidentals and 27 maintain bimodal populations (Garrido and Kirckconnell 2010). Given its 

biogeographic position, Cuba receives an important flow of migratory birds from North 

America (Frederick et al. 1996). For these reasons, studies of waterbirds in Cuba are 

important not only at the local, but also at the regional level.  

Studies on waterbirds in Cuba focus mostly on ecological aspects related to population 

dinamics, morphology, feeding or reproduction (Denis et al. 1999; Denis et al. 2004; Denis 
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et al. 2006), with ducks and herons being the most studied groups. In recent years, a scientific 

advance has been carried out in Cuba through research addressing the dynamics of waterbird 

populations, such as those in anthropic wetlands (rice fields) in the Sur del Jíbaro, Sancti 

Spiritus (Mugica et al. 2001; Acosta et al. 2002; Mugica et al. 2003), Havana Bay, (González 

2007), La Havana artificial lagoon (Silvera, 2005) and in natural wetlands in Ciénaga de 

Zapata (LLanes 1993, Parada 2000), Río Máximo (Perera 2004), Ciénaga de Birama (Molina 

2007), Playa la Tinaja (Acosta et al. 1992) and Ciénaga de Lanier (Forneiro 2000). In general, 

these studies comprised few and small wetlands, and none included the three biogegraphic 

regions of the island and covered a long-term temporal scale to allow for a robust sampling 

of different periods of the waterbirds’ life cycle.  

 

Wetland and waterbirds conservation 

 

Biodiversity conservation strategies are more efficient when relying upon studies and 

managements at large spatial and temporal scales (Poiani et al. 2000). The spatial and 

temporal scales are of particular interest for wetland conservation since these areas are used 

by high mobile organisms such as waterbirds (Wen et al. 2016). These species normally use 

multiple wetlands on their daily and annual activities, even though this aspect is often ignored 

in species conservation planning (Haig et al. 1998). The coastal wetlands in Cuba have 

differents degrees of degradation, fragmentation and habitat loss due to the anthropic actions 

(Iturralde and Serrano 2015). In this sense, the study of landscape patterns is essential for 

conservation biology in anthropic regions (Bennet 2004). 

In recent years, multiple investigations related to spatial patterns in organisms and 

specifically birds have been carried out, focusing on the effect of patches and heterogeneity, 
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habitat connectivity and the influence of the spatial context in this group (Boscolo et al. 2009; 

Brandolin and Blendinger 2016; Herbert et al. 2018). However, this approach has not been 

studied in the Cuban context. 

Landscape studies are often conducted at a single spatial scale for the studied species 

(Trzcinski et al. 1999; Holland and Fahrig 2000). However, it is likely that different species 

respond to their environments at different spatial scales (Lyra-Jorge et al. 2010; Jackson and 

Fahrig 2015). Usually little is known about the scales at which a species responds to structural 

characteristics of its environment. Furthermore, even though there have been several studies 

on the spatial scale in waterbirds (Perez-Garcia et al. 2014, Webb et al. 2010; Beatty et al. 

2014), this has been little evaluated in coastal wetlands. Understanding issues associated with 

scale is essential in landscape ecology (Turner and Gardner 2015).    

In addition to habitat loss and fragmentation, wetland-dependent birds are considered to 

be at particularly high risk for negative climate change effects (Steen and Powell 2012). 

Global climate warming is projected to be between 0.3 and 4.8°C by 2100 (IPCC 2013), with 

significant consequences for global biodiversity (Thomas et al. 2004). Much of the capacity 

to mitigate against species losses will lie in our ability to anticipate the effects of climate 

change (Heller and Zavaleta 2009). Climate change is identified as one of the greatest threats 

to biodiversity in Cuba (CITMA 2016). However, there are few studies that explore possible 

changes in the distribution of wildlife species in future climate scenarios.  

In this context, species distribution modeling (SDMs) is widely used to address issues in 

biogeography, global climate change, and conservation biology (Engler et al. 2004; Guisan 

et al. 2006). SDMs utilize species presence data and associated ecological variables, e.g. 

physical and environmental conditions, to map areas of suitable habitat for the species in 

question (Guisan and Thuiller 2005). Improving the efficiency of the SDMs, i.e. identifying 
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areas with the highest conservation value, establishment of protected areas, implementation 

of suitable conservation measures and determining the potential impacts of predicted future 

climate change on species’ range shift, is a critical point for conservation biology (Carvalho 

et al. 2010; Bosso et al. 2013). Also, several studies have use SDMs to evaluated the effect 

of climate change specifically in waterbirds (Hu et al. 2010; Steen and Powell 2012; Hu and 

Liu 2014).  

Considering the information gaps and the importance of the topics discussed above for 

bird conservation in Cuba, the general objectives of this thesis are to i) characterize waterbird 

assemblages in Cuban south coastal wetlands, report spatio-temporal variations in waterbird 

diversity and suggest conservation strategies, ii) test the effects of landscape structure on 

waterbird communities in coastal wetlands within a conservation gradient in southwestern 

Cuba and evaluate the relative contribution of the configuration of lagoons, mangrove, rice 

field and anthropogenic land to waterbirds diversity, and iii) evaluate the effect of climate 

change in two key waterbird species in Cuba through SDMs.  
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Abstract   Cuba is the largest Caribbean island, supporting the most extensive wetlands in 

the region. Of the ~370 bird species in this country, approximately 40% are wetland-

dependent and most are migratory. Knowledge of bird use of Cuba’s wetlands is critical for 

regional conservation. This study characterized waterbird assemblages in Cuban south 

coastal wetlands, reports spatio-temporal variations in waterbird diversity and suggests 

conservation strategies. We conducted 543 surveys across six wetlands (2011-2013). We 

recorded 110 species. Blue-winged Teal (Spatula discors) and Least Sandpiper (Calidris 

minutilla) were the dominant species. The site with the highest richness and waterbird 

abundance was Humedal Sur de Los Palacios. Differences in waterbird composition were 

identified among sites and seasons but not among years. No differences were found in spatial 

or temporal variability in abundance among sites, seasons or years. Assemblage composition 

was not spatially dependent on the location of wetlands. Twelve species were at abundance 

levels exceeding 1 % of their estimated global population. This study highlights the global 

importance of the Cuban south coast to waterbird conservation, particularly during fall 

migration and the uniqueness of Humedal Sur de Los Palacios. We encourage creation of 

new Ramsar sites, an Important Bird Area and a new protected area.  

 

Keywords   Diversity. Community structure. Migration. Multivariate analysis. Seasonal 

variation. Waterbird composition 
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1. Introduction 
 

Wetlands are important conservation sites due to their high biodiversity (Malik and Joshi 

2013) and the ecosystem services they provide (Green and Elmberg 2013; Sutton-Grier and 

Sandifer 2018). However, the rapid degradation of these ecosystems globally (Perillo et al. 

2005; Davidson 2014) produces an urgent need for ecological studies to support conservation 

actions (Lee 2017). Coastal wetlands provide suitable habitats and food resources for a 

variety of birds (Ali et al. 2016), including stopover sites for migratory waterbirds (Bamford 

et al. 2008; Webb et al. 2010). Because of their high mobility, waterbirds respond quickly to 

habitat changes (Romano et al. 2005; Cumming et al. 2012; Henry and Cumming 2017), thus 

they are considered good bio-indicators of habitat quality (Bhat et al. 2009; Bai et al. 2015) 

and they provide information on the health of wetland ecosystems (Amat and Green 2010; 

Ogden et al. 2014). 

Studies of bird community structure and function are important for grounding ecological 

theory and conservation practice (Chettri et al. 2001; Hurlbert 2004). Conserving bird 

diversity requires an understanding of bird–environment relationships year-round (Newton 

1998; Russell et al. 2014) and a management of both breeding and wintering habitats of 

migratory birds (Rappole et al. 2003; Kirby et al. 2008). Consequently, a knowledge of the 

processes occurring in winter, as well as the annual and seasonal variations in waterbird 

diversity, are necessary to understand the function and biodiversity values of wetlands 

(Saygili et al. 2011). The worldwide conservation crisis emphasizes the need for a large scale, 

long term and multiple species approach in recent research. This approach is of particular 

interest for the conservation of wetlands that host highly mobile organisms such as 
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waterbirds. The population dynamics of these species depend on multiple wetlands; this 

aspect, however, is often ignored in conservation planning (Haig et al. 1998; Wen et al. 

2016).   

Cuba is the largest Caribbean island (48 % of the region’s emerged land area) and it 

contains the most extensive wetlands in the region (1,366,844.89 ha) covering 12.4 % of the 

country’s surface (CNAP 2013). Given its biogeographical position, Cuba receives a 

significant flow of migratory birds, as shown by recaptures of individuals banded in North 

America (Frederick et al. 1996; Blanco et al. 2014). Two of the six migratory American 

Flyways for migratory birds extend across Cuba: the Mississippi and Atlantic Flyways 

(González et al. 2006).  

Of the 369 bird species reported for Cuba (Garrido and Kirckconnell 2010), 150 are 

wetland-dependent and these are mostly migratory species (82 %) (Acosta et al. 2011). In 

Cuba, several studies have been conducted on waterbird dynamics in both natural (Acosta et 

al. 1992; González et al. 2016b) and anthropogenic wetlands (Mugica et al. 2001; Acosta et 

al. 2002; Mugica et al. 2003; González and Jiménez 2011). To date, most studies have been 

conducted in a single wetland site; none have covered an extensive area of the island, or 

included several years or several periods of avian annual life cycles. 

Historically, Cuban biodiversity has been better studied on the north coast than on the 

south coast (Rodríguez et al. 2014). However, the south coast is lower and swampier, with 

more wetland areas, and it contains the largest wetlands in Cuba and the insular Caribbean 

region, including Zapata Swamp. Many wetlands on the south coast have been recognized as 

Important Bird Areas (Aguilar 2010) and Ramsar sites (CNAP 2013). Nonetheless, only 

general information has until now been available on the diversity and dynamics of waterbirds 

assemblages on the Cuban south coast (Mugica et al. 2014). Here we provide baseline 
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information on waterbird assemblages in a three-year study of the six natural wetlands of this 

region. Our study is of paramount importance for wetland conservation planning and for 

highlighting the Cuban south coast’s value at the national and international level. Our specific 

aims are to (i) characterize the waterbird assemblages in natural wetlands on the Cuban south 

coast; (ii) test the effect of spatial and temporal (annual and seasonal: spring migration, 

summer and fall migration) variation on watebird diversity in the region, and (iii) develop 

recommendations for wetland management to improve waterbirds conservation.   

 

2. Materials and Methods 
 

2.1 Study Area 
 

We carried out the study in six natural wetlands along the southern Cuban coast. About 942 

km of the coast were surveyed (from 83°42'W, 22°11'N to 77°02'W, 20°25'N) from Pinar del 

Río province to Granma province (Table 1, Fig. 1). In a general way, this stretch of coast 

comprises a strip of wetlands with similar landscapes. They are characterized by swampy 

lowland plains, including coastal lagoons, salt marshes, mudflats and estuaries. They are 

covered mainly by mangrove ecosystems (with the exception of Canales del Hanábana, the 

only freshwater wetland included in our study), swamp grasslands and swamp forests, 

flooded or temporarily flooded, with different degrees of salinity. Their differences are 

mainly in the size, configuration, water salinity and diversity of coastal habitats. Specific 

descriptions of each wetland are shown in Supplementary material 1.  We selected these sites 

because they contain the largest number and variety of wetland habitats in the region. All the 

study sites are national protected areas except Humedal Sur de Los Palacios (Table 1). The 
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climate on Cuba’s southern coast is subtropical humid, with two clearly defined seasons, dry 

season (winter) from November to April, and the rainy season (summer) from May to 

October. The average annual temperature is 24 °C. 

 

 

Fig. 1   Location of wetland study sites on the Cuban south coast 

 

Table 1   Natural wetland study sites (2011 to 2013) on the Cuban south coast  

Code Study sites 1Protection 
designation 

Province Habitats Sampled 
area size 

(ha) 

Latitude and 
Longitude 

S1 Punta Caribe FR Pinar del Río Mudflats, temporary salty lagoons, 
mangrove   

300 83°37’44’’W 
22°11’55’’N 

S2 Humedal Sur de Los Palacios IBA Pinar del Río Salty lagoons, mangrove, mudflats. Near 
rice paddies 

140 83°12’01’’W 
22°20’49’’N 

S3 Zapata NP, IBA 
BR, RS  

Matanzas Largest wetland in the Caribbean. Shallow 
salty lagoons, mangroves, swampy 
grasslands 

480 81°13’21’’W 
22°09’23’’N 

S4 Canales del Hanábana FR, IBA 
BR, RS  

Matanzas 
Basin of the Hanábana river. Fresh water 
deep and shallow channels, fresh water 
flooded grasslands 

500 81°02’12’’W 
22°21’29’’N 

S5 Tunas de Zaza FR, IBA Sancti 
Spíritus 

Mudflats, temporary salty lagoons, 
mangrove. Near rice paddies 

200 79°32’14’’W 
21°39’25’’N 

S6 Delta del Cauto FR, IBA, 
RS 

Tunas-
Granma 

Second largest wetland in the Caribbean. 
Mudflats, salty, freshwater and brackish 
lagoons, mangrove, estuarine habitats 
associated with Cauto River. Near rice 
paddies 

560 77°09’08’’W 
20°35’30’’N 

1Protection designation:  
Protected Areas: NP. National Park, FR. Faunal Refuge (CNAP 2013) 
International designation (does not confer protection): BR. Biosphere Reserve, RS. Ramsar Site (CNAP 2013), IBA. Important Bird Area 
(Aguilar 2010) 
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2.2 Waterbird Surveys 
 
 

We conducted bird surveys at each wetland site in three seasons and during three consecutive 

years, from May 2011 to November 2013. The seasons sampled were: spring migration 

(February and March), summer season (May and June) and fall migration (October and 

November), except in 2011 when a spring migration survey was not conducted. This 

approach recorded the most important migration movements in the annual cycle as well as 

resident birds.  Bird counts were carried out during three alternative days (one day out of a 

three-day period), always simultaneously by observers located in each of the six wetland 

sites, in the second half of each month, to standardize and collect comparable data. 

Occasionally, counts were not conducted during poor weather conditions or if a boat was not 

available. 

      In each wetland site, we chose between five and eight sampling locations (in lagoons and 

salt marshes), depending on site characteristics (e.g. size, accessibility, habitat 

heterogeneity). Sampling locations, where counts were conducted, were the most prominent 

waterbird feeding or resting areas in each wetland site. Therefore, they were not selected 

randomly. We conducted fixed point counts (Bibby et al. 2000) at each sampling location. 

During the counts, all individuals of each species seen or heard in a period of time (30 

minutes) were recorded without prefixing a radius and always in the first four hours after 

sunrise. A GPS was used to record geographical coordinates. In total, we conducted 543 

waterbird surveys during this study. 

Each species was identified and classified according to its occurrence (common, rare, 

very rare and vagrant) (Garrido and Kirkconnell 2010) and status (bimodal, summer migrant, 
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permanent resident and winter migrant) (Navarro and Reyes 2017). Bimodal species are those 

characterized by both resident and winter migratory populations. Observations were made 

using 10 x 50 binoculars and 20 x 60 spotting scopes. Bird taxonomy follows the American 

Ornithological Society (AOS) checklist (Chesser et al. 2018). Species conservation status 

was noted according to the Red Lists of González et al. (2012) and IUCN (2017). We 

recorded only aquatic birds and species that depend on wetlands to meet their daily needs. 

As our survey method was diurnal, results may be biased low for secretive birds, (e.g., 

gallinules) and nocturnal birds (e.g., night-herons; whistling ducks). 

 

2.3 Data Analysis 
 

We estimated total abundance of each species per sampling plot, in each season, as well as 

maximum abundance (registered in any one-day observation). Density (bird/ha) was 

calculated for each species, per site, in each season. To derive the density, we used the 

sampled area size (hectares) for each wetland site, shown in Table 1. The sampled area size 

was obtained as the total area covered by all lagoons and salt marches sampled in the wetland 

site. We obtained the estimated extension of lagoons and salt marshes sampled from a Cuban 

wetland shapefile layer (CNAP 2013) using a geographic information system software QGIS 

2.18.14. 

 Frequency of waterbird species was given as the number of samplings where the bird 

was recorded/total number of samplings (N = 543). Relative abundance was determined 

separately for each status category by dividing total maximum abundance for each species 

across the three seasons by the total abundance of all species included in the corresponding 

status category; the outcome was multiplied by 100. The Alpha diversity index, such as 
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species richness, Shannon diversity index (Magurran 1988) and Pielou evenness index 

(Pielou 1969) were also calculated for the six study sites. Total abundance and density were 

summarized for the six sites in each season. Waterbird abundance per month for each season, 

in the six wetlands, was calculated for 2012 and 2013 separately (monthly samplings for 

2011 were not included in this latter calculation because these were incomplete). 

Permutational multivariate analysis of variance (PERMANOVA; Anderson 2001) was 

used to test the effect of wetland site, season and year (2012 and 2013) on waterbird 

composition. We also tested the differences among wetland sites and years (2011 to 2013) 

considering only the fall migration season because most species presented their highest 

abundance and densities in this season. Bird abundance was previously transformed with log 

(x + 1) to ensure normality. Significance testing of the Bray–Curtis similarity measures 

(Legendre and Legendre 1998) and post hoc comparisons (P < 0.05) were made using 999 

permutations.  

Non-metric multidimensional scaling (NMDS; Kruskal 1964) ordination was carried 

out to analyze the degree of similarity in waterbird assemblage structure among the six 

wetlands sites (data log (x + 1) transformed). The analysis was based in the Bray–Curtis 

metric of dissimilarity. We used two-dimensional joint plots to compare spatial patterns and 

species composition similarities of the waterbird communities among sites. A stress value of 

< 0.3 is deemed adequate. Data entities that are closer together in the plot reflect waterbird 

communities that are more similar than those further apart (McCune and Grace 2002). A 

multivariate test for abundance homogeneity of group dispersions (permutation dispersion) 

(BETADISPER; Anderson 2006; Anderson et al. 2006) was conducted among sites, seasons 

and years, using Jaccard distance method. 
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The Mantel test was performed to detect whether assemblage composition of 

waterbirds and presence/ absence of waterbird species were linked to site spatial positions 

in the region (correlation between an Euclidean distance matrix and the Bray–Curtis 

dissimilarity matrix) (Legendre and Legendre 1998). The test was carried out in each 

month evaluated (16 months) for   both   assemblage composition and presense/absence. 

To calculate the linear distance separating the populations sampled, a matrix was constructed 

with the coordinates in decimal degrees of latitude and longitude at each site. All statistical 

analyses were conducted in R software environment version 3.4.4 (R Core Team 2018) using 

vegan (version 2.5-1) (Oksanen et al. 2018) and MASS packages (Venables and Ripley 

2002). 

The conservation importance of the Cuban south coastal wetlands for waterbird 

populations was assessed by comparing the observed abundance for each species with global 

flyway population estimates (Wetland International 2018). A species’ population was 

determined to be globally important to conservation if it regularly met or exceeded the 1% 

global population threshold set by Criterion 6 of the Ramsar Convention (Ramsar Convention 

Secretariat 2010). 

 

3. Results 
 

3.1 Composition of the waterbird assemblage  
 

We recorded a total of 110 species and 367,941 individuals at six Cuban south coastal 

wetlands, representing 72 genera and 23 families (Supplementary material 2). The most 

species-rich families were Scolopacidae (22 species), Anatidae (19 species), Laridae (15 
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species) and Ardeidae (12 species). The order best represented was Charadriiformes with 48 

species. Most species (71 %; 79 species) were considered common birds, while the others 

were rare (20 species), very rare (7 species) or accidental (5 species). The Blue-winged Teal 

Spatula discors was the most abundant species followed by Least Sandpiper Calidris 

minutilla, American Flamingo Phoenicopterus ruber, American Coot Fulica americana and 

Glossy Ibis Plegadis falcinellus.  

The most frequently observed birds were six species of egrets and herons (Great Blue 

Heron Ardea herodias, Great Egret Ardea alba, Snowy Egret Egretta thula, Little Blue Heron 

Egretta caerulea, Green Heron Butorides virescens and Tricolored Heron Egretta tricolor), 

with 70 to 85 % of occurrences, followed by White Ibis Eudocimus albus, Black-necked Stilt 

Himantopus mexicanus and American Flamingo, with 75.7 %, 66.1 % and 64.1 % 

respectively (see Supplementary material 2). Of the species detected, four are categorized as 

threatened; West Indian Whistling-Duck Dendrocygna arborea, Masked Duck Nomonyx 

dominicus, Snowy Plover Charadrius nivosus and Piping Plover Charadrius melodus. Piping 

Plover was recorded for the first time on the southern coast of Cuba (Humedal Sur de Los 

Palacios) with 19 individuals.  

Among the wetland birds observed, 78.2 % (86 species) were winter migrants, 31 of 

which were bimodal, 18.2 % (20 species) were permanent residents and 3.6 % (4 species) 

were summer migrants. These results highlight the importance of the region for North 

American birds during the winter. The results showed that 45 % of bimodal birds were 

observed during fall migration, 38 % during spring migration and 17 % during the summer 

season. Although some species were characterized by resident and migratory populations, it 

is evident that Cuba supports important numbers of birds during fall migration, since 66 % 

of the species presented their highest abundance and densities in this season. 



 

36 
 

In the bimodal group, the American Coot had the highest values of relative abundance 

(22.65) with very high migratory populations. The species with the second highest relative 

abundance was the Glossy Ibis (16.21), with the highest abundance and density during the 

two migratory seasons, also reflecting a strong migratory component. The two bimodal 

species with the largest populations during summer, and apparently the least influenced by 

migratory populations from North America, were Killdeer Charadrius vociferus and 

American Avocet Recurvirostra americana.  The species with highest relative abundance 

within the winter migrant category were Blue-winged Teal (69), Least Sandpiper (11.76) and 

Short-billed Dowitcher Limnodromus griseus (5.39).   

 

3.2 Spatial and temporal patterns in waterbird assemblages 
 

The site with highest species richness and greatest waterbird abundance in all seasons, 

primarily during fall migration, was Humedal Sur de Los Palacios, followed by Delta del 

Cauto (Fig. 2). However, Humedal Sur de Los Palacios had the highest values of species 

richness. These estimates resulted in having a low index of Shannon diversity (H’), as well 

as low evenness (J), indicating a greater dominance of specific species in the waterbird 

assemblage composition (Table 2). In contrast, Canales del Hanábana showed the highest 

diversity and equitability indices.  

Fall migration season showed the highest values of total abundance and density at each 

of the sites evaluated, while the lowest values (Table 2; Fig. 2) were recorded in the summer 

season. Given that the months corresponding to fall migration (October and November), were 

characterized by the highest numbers of waterbirds at all sites during our study (Fig. 3), this 



 

37 
 

season is likely the most important time for the conservation of waterbirds on the south coast 

of Cuba.  

 

 

Fig. 2   Spatio-temporal variation in waterbird abundance (bars), per seasons (SM: Spring Migration, SS: 
Summer Season, FM: Fall Migration) and richness: S (points), in each site during 2012 and 2013, in the Cuban 
south coastal wetlands.  Codes for the sampled sites (S1 to S6) are presented in Table 1 

 

Table 2   Density of waterbirds per sites, in Cuban south coastal wetlands, per season (SM: Spring Migration, SS: Summer Season, FM: 

Fall Migration). Diversity indices of waterbirds per sites, H'´: Shannon-Weaver index, J: Pielou index  

  Total density Diversity indices 

Code Sites SM SS FM H’ J 

S1 Punta Caribe 5.71 6.43 20.14 2.69 0.66 

S2 Humedal Sur de Los Palacios  170.22 44.11 525.84 1.89 0.41 

S3 Zapata  66.53 7.46 153.42 1.41 0.34 

S4 Canales del Hanábana  21.47 7.07 25.83 3.06 0.75 

S5 Tunas de Zaza 9.10 15.96 16.01 2.81 0.67 

S6 Delta del Cauto 62.30 15.05 118.17 2.31 0.53 

 



 

38 
 

Waterbird composition was significantly different (PERMANOVA, P < 0.05) among 

sites (F5,244 = 31.93, P = 0.001, Fig. 4), and seasons (F2,244 = 11.11, P = 0.001, Fig. 3). 

However, there were no differences in the assemblage compositions of waterbirds (P > 0.05) 

among years (F1,244 = 1.79, P = 0.053). Considering only the fall migration season, 

assemblage composition, was significantly different among sites (F5,135 = 15.27, P = 0.050), 

but there was not a significant difference in waterbird assemblage composition among the 

three years for this season (F2,135 = 2.19, P = 0.117). This result indicates that all sites do not 

have the same importance during fall migration and these conditions are relatively stable over 

time.  

 
Fig. 3   Total maximum waterbird abundance per month, in each season (SM: Spring Migration, SS: Summer 
Season, FM: Fall Migration) in 2012 and 2013, in six Cuban south coastal wetlands 

 

When we assessed the spatial pattern and species composition similarities of waterbird 

communities among sites, we identified the following sites as those with the greatest 

similarity in assemblage composition: Humedal Sur de Los Palacios (S2) and Delta del Cauto 
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(S6), followed by Punta Caribe (S1) and Zapata (S3). The site most dissimilar in its 

assemblage composition was Canales del Hanábana (S4) (Fig. 4). 

Fig. 4   Two-dimensional non-metric multidimensional scaling (NMDS) plot (stress = 0.16) of waterbird 
composition (abundance data log (x + 1) transformed) in six Cuban south coastal wetlands (N = 92), based on 
the Bray–Curtis metric of dissimilarity (years 2011-2013). Codes for the sampled sites (S1 to S6) are presented 
in Table 1 

 

The Betadisper test revealed no differences (P > 0.05) in spatial or temporal variability 

in abundances of waterbirds among sites, seasons or years. Therefore, waterbird abundances 

were not more variable among the six wetlands (F5,86 =1.76, P = 0.11, Fig. 5). Also, there 
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were no differences in the temporal variability of the sites among the three seasons (F2,89 = 

2.59, P =0.084, Fig. 6a) and among the three years (F2,89 = 0.07, P = 0.934, Fig. 6b). 

 

Fig. 5   Multivariate dispersion of waterbird abundance among six Cuban south coastal wetlands (2011 to 
2013) based on the Jaccard index method (Betadisper plot). Codes for the sampled sites (S1 to S6) are 
presented in Table 1 

 

Mantel test results indicated no spatial correlation for any of the months sampled (16 

months) among the six wetlands, both for waterbird abundance and presence/absence (P > 

0.05; P values varied between 0.51 and 0.99). Mantel r values for the 16 months varied 

between - 0.06 and - 0.66 (Supplementary material 3). Therefore, neither waterbird 
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assemblage composition nor presence/absence of waterbird species was found to be linked 

to a site’s spatial position on the south coast of Cuba. 

 

 

Fig. 6   Multivariate dispersion of waterbird abundance in each season (SM: Spring Migration, SS: Summer 
Season, FM: Fall Migration) (Fig. 6a) and years (Fig. 6b) among six Cuban south coastal wetlands (2011 to 
2013) based on the Jaccard index method (Betadisper plots) 

 

3.3 Conservation assessment 

 

Twelve waterbird species in the Cuban south coastal region, were found at abundance levels 

exceeding the 1 % criterion of the world’s population in more than one site (Table 3). The 

American Flamingo was recorded with > 1% of the world’s population in the most wetlands 

(5 sites), followed by the Roseate Spoonbill Platalea ajaja with four sites. Notably, the 

Glossy Ibis, American Flamingo and Roseate Spoonbill exceeded the 1 % criterion at 

remarkably high abundance (i.e. 35, 25 and 17 times greater), respectively. This observation 

demonstrates the great importance of Cuba’s south coastal wetlands for the conservation of 
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these species. All six wetlands surveyed supported at least two species that met the 1 % 

criterion for recognition as an internationally important site. Delta del Cauto had the most 

species (6) that met this criterion, followed by Humedal Sur de Los Palacios (5 species). 

 

Table 3   Waterbird species that meet Ramsar 1% criterion (Wetlands International 2018) in Cuban south coastal wetlands from 2011 to 2013. Total 

waterbirds abundance at Cuban south coastal wetlands and maximum abundance of specific sites. Maximum abundance > 1% of the estimated 

global flyway population are shown in bold. Codes for the sampled sites (S1 to S6) are presented in Table 1 

   Sites /Abundance (Maximum) 

Species 

1% of 

world 

population 

Abundance 

in Cuban 

south 

coastal  S1 S2 S3 S4 S5 S6 

West Indian Whistling Duck Dendrocygna arborea 140 534 47 26 10 374 31 46 

White-cheeked Pintail Anas bahamensis 750 1732 0 341 0 1370 0 21 

Blue-winged Teal Spatula discors 89500 113056 3250 53588 22272 3923 50 29973 

American Flamingo Phoenicopterus ruber 400 10277 538 657 1082 0 2390 5610 

Wilson's Plover Charadrius wilsonia 100 652 134 325 11 0 26 156 

Least Sandpiper Calidris minutilla 7000 12073 150 1964 248 317 585 8809 

Short-billed Dowitcher Limnodromus griseus 1100 5989 61 4471 387 348 150 572 

Laughing Gull Leucophaeus atricilla 550 769 83 165 5 0 150 366 

Caspian Tern Hydroprogne caspia 190 541 34 115 272 2 110 8 

Reddish Egret Egretta rufescens 60 370 48 28 54 2 68 170 

Glossy Ibis Plegadis falcinellus 210 7531 0 901 0 503 122 6005 

Roseate Spoonbill Platalea ajaja 45 790 33 232 144 1 210 170 

Number of species per site with more than 

1% of world population 12 2 5 3 3 3 6 

 

4. Discussion 
 

This is the most comprehensive study on waterbird assemblages in Cuban natural wetlands 

to date, consisting of a 3-year assessment of an extensive area of wetlands using standardized 

methods. We identified spatio-temporal patterns of waterbird assemblages characterized in 

three seasons of the avian annual cycle, along a quarter of Cuba’s coastline and in areas 
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representing 40 % of Cuban wetlands. Documentation of the wide occurrence and abundance 

of migrants and species important for conservation affirms the national and international 

importance of wetlands of the Cuban south coast as habitat for waterbirds. Two families, 

Scolopacidae and Anatidae, consisting primarily of migratory species, were the most-highly 

represented families, highlighting the strong migratory component of the bird assemblage of 

this region (Mugica et al. 2006a). Species richness recorded for the southern coast of Cuba 

represents 68 % of the waterbird species reported for Cuba (Acosta et al. 2011), indicating 

that the region provides habitat for most of these species in the country. 

Our results for Blue-winged Teal, consistent with other studies in Cuba, report this 

species as the most abundant of the Cuban anatids (Rodríguez 2004; Acosta and Mugica 

2006; Blanco et al. 2014). The abundance of Least Sandpipers also coincides with reports 

from other studies that identify this species as the most common in its genus to occur in 

Cuban wetlands (Blanco 2006). Both species are winter migrants and species that exceed 1% 

of the world’s population in Cuba’s south coastal wetlands (Table 3). Additionally, several 

other studies report a high frequency of egrets and herons in Cuban wetlands (González et 

al. 2016a; 2018). 

The fact that the Glossy Ibis is one of the most abundant species of the Cuban south 

coast, at a level exceeding 35 times the estimate for 1% of the world’s population, indicates 

the global importance of these wetlands to this species. The Glossy Ibis was formerly 

considered uncommon in Cuba (Garrido and Kirkonnell 2010); however, in the 1980s its 

populations began to increase sharply in close relationship with rice fields (Acosta and 

Mugica 2013). This species feeds on rice during the winter (Acosta et al. 1996). The 

reduction in use of pesticides in Cuba (Mugica et al 2006a) and the increased use of these 

sites for breeding were presumably the biggest factors in the dramatic in the Glossy Ibis 
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populations. Specifically, the largest nesting colony (5,000 individuals) of this species 

reported in Cuba is found in Delta del Cauto (Denis et al. 2005; Mugica et al. 2006b; Acosta 

and Mugica 2013). 

The American Flamingo was one of the most frequent and abundant species in our study, 

with numbers in Cuban south coastal wetlands exceeding by 25 times the estimate of 1% of 

the world’s population. It is distributed mainly in the Caribbean (Blanco et al. 2002), and the 

Cuban population is one of the most important in the region (Ottenwalder 1991), producing 

at least 50% of annual recruitment (Morales 1996). Delta del Cauto supports the second 

largest nesting sites in the Cuban archipelago with 20,000-30,000 reported nests (Denis et al. 

2005). During this study, we discovered several juveniles banded in Yucatan, Mexico 

(HTTZ, HTTV, HTTD, HSBP bands) which documents movement in the Caribbean and use 

of Cuban wetlands during the first years of life (data in accordance with Blanco et al. 2002 

and Galvez et al. 2016). Lack of published studies on flamingo population dynamics in a 

wide region of Cuba emphasizes the important contribution of our study to the understanding 

of spatio-temporal patterns of this species. 

Several factors have been associated with waterbird abundance and richness, such as 

wetland size (Cintra et al. 2007; Sebastian-González and Green 2014), food resources and 

landscape configuration (Amezaga et al. 2002; Taft and Haig 2006; Pérez-García et al. 2014). 

Our finding that the south coastal wetlands with the highest species richness and waterbird 

abundance occurs at Humedal Sur de Los Palacios, followed by Delta del Cauto, may be 

attributable to their landscape structure, proximity to rice fields, large size of water bodies, 

stable (perennial) lagoons of various depths, as well as heterogeneity (mix of wetland types). 

These two areas were the most similar in species composition (Fig. 4) and we recorded the 

largest number of birds exceeding 1% of the world population (Table 3) at these locations. 
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In constrast, Humedal Sur de Los Palacios showed lower equitability, which indicates large 

concentrations of individuals of the same species. Both sites are near to two of the major rice 

paddies in Cuba (Mugica et al. 2006a). Rice cultivation in proximity to refuge areas in the 

coastal wetlands allows birds to use both ecosystems. Waterbirds uses the rice fields mainly 

for resting and feeding; in this way they acquire their daily nutritional needs with relatively 

low energetic cost (Stafford et al. 2010; King et al. 2010; Toral et al. 2011). Multiple studies 

have been carried out on the ecology of bird communities in rice fields of the southern coast 

of Cuba (Mugica et al. 2001; Acosta et al. 2002; Acosta and Mugica 2013), however, the 

functional connectivity with the coastal wetlands of this region has not been well explored. 

Connectivity of complementary wetlands within a mosaic can be a management strategy to 

reduce disturbance and provide the resources required by diverse waterbird assemblages 

(Kelly et al. 2008; Ma et al. 2010). 

     Canales del Hanábana can be considered a unique site, with a species composition dis-

similar to the other wetland sites; it is also the most diverse site of the six sampled (Fig. 4). 

This was an expected result, given the wetland’s specific characteristics. First, it contains 

exclusively fresh water (CNAP 2015), so some species with preference for this habitat type 

(e.g., Anatidae, Rallidae, Podicipedidae) are better represented. The aquatic vegetation is 

very beneficial to wetland birds as it provides food, resting places, shelter and nesting habitat 

for many birds (Mugica et al. 2006b). In addition, it is the farthest site from the coastline of 

the six wetlands studied, therefore its use by marine species (e.g., Laridae, Fregatidae and 

Scolopacidae) is limited. Canales del Hanábana is a protected Faunal Refuge, representing 

an extensive, unique freshwater habitat within the Cuban national protected areas system 

(CNAP 2013); hence, its importance to conservation of this ecosystem and the bird 

community. 
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Fall migration is characterized by the highest waterbird abundances and densities along 

the south coast, consistent with other studies of bird dynamics in other Cuban wetlands 

(Acosta et al. 1992; González et al. 2016b). According to González et al. (2006), bird richness 

and abundance during fall migration is greater than in the winter season. Fall migration is an 

essential period for waterbird conservation in Cuba for several reasons. First, many migratory 

birds arriving in Cuba are transients, and use the archipelago as a stopover site to restore 

energy and continue their movement to other Caribbean islands or South America (Mugica 

et al. 2006b). Also, because migration routes reflect avian ecological requirements, 

waterbirds, for example, require access to coastal and/or inland wetland habitats (CMS 2014). 

Generally, fall migrants to Cuba, come from North America, covering a journey of several 

thousand kilometres between their breeding and non-breeding grounds (Peter 2001). The 

birds arrive with minimum fat reserves, and this vulnerable state is an additional reason why 

protection of these sites is very important. When birds return to their North American 

breeding sites in the spring, we find waterbird composition differs with abundances lower 

than during fall migration. From this observation we suggest that many birds, that use Cuba 

as a stopover in fall migration, do not make the same use during return in spring migration. 

The homogeneity in waterbird abundances among seasons (Fig. 6a) and years (Fig. 6b) 

indicates community stability over time in our study region. Additionally, species 

composition also remained constant over the years. This suggests that both resident and 

migratory bird populations make consisten use of southern Cuba coastal wetlands annually, 

despite the high mobility and abundance variability of these species (Guevara et al. 2012; 

Tomankova et al. 2013). This result indicates that the protected status and management of 

the wetlands, designated as protected areas, may be at an adequate level to support important 
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waterbirds populations. Longer term monitoring is needed to confirm this conclusion, 

however. 

We hypothesized that wetlands in the western region of Cuba are most important in terms 

of richness and abundance of migratory species, given their spatial location, closer to the 

Mississippi Flyway (Mugica et al. 2014), as well as wetlands of the eastern region that is 

traversed by birds following the Atlantic Flyway (Garrido and Kirkconnell 2010). However, 

we did not find any relationship between waterbird assemblage composition nor 

presense/absense of waterbird species based on a site’s location in the western, central or 

eastern region of the island, in any of the sampled months. Waterbirds are highly mobile 

species that easily disperse in search of resources (Wen et al. 2016), and it appears that the 

distance among the studied wetlands does not represent an obstacle for their dispersion. 

 

4.1 Conservation implications 
 

Our study provides quantitative evidence that the southern coast of Cuba, as a whole, is of 

global importance for waterbird conservation, as many of the 350 migrant species that breed 

in North America and winter in the Caribbean and South America are in rapid decline 

(Birdlife International 2018). Also, each wetland individually can be considered of global 

importance (Table 3), according to Ramsar criteria (Ramsar Convention Secretariat 2010). 

Based on data from this study, proposals for three new Ramsar sites (Humedal Sur de Los 

Palacios, Punta Caribe and Tunas de Zaza) and a new Important Bird Area (IBA, Punta 

Caribe), according to Birdlife International criteria (2018), can be made. Additionally, the 

current IBA status of four sites (Humedal Sur de Los Palacios, Zapata, Tunas de Zaza and 

Delta del Cauto), is reaffirmed ten years after their original identification (Aguilar 2010), as 
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well as the status of two Ramsar sites (Zapata and Delta del Cauto), established in 2002 

(CNAP 2009).  

Even though our results indicate stability in waterbird populations in the southern coast 

of Cuba, we recommend the new designations of global importance for four sites, which are 

currently protected areas, because international designations strengthen protection at the 

national level and commit governments and citizens to prioritize these lands for conservation. 

International conservation status and recognition may protect these sites in the long-term, as 

economic demands for infrastructure development, tourism, agriculture and maritime 

transport could threaten these wetlands at a national scale. Additionally, these sites require 

long-term monitoring and management and global recognition may provide greater national 

and international visibility thus increaseing priority for conservation funding. 

We identified Humedal Sur de Los Palacios as the most important site for conservation 

among the wetlands studied as it has the highest species richness and abundance of 

waterbirds. Among the main threats to this site is illegal hunting of waterbirds for food or 

sport, which could affect populations in the near future. However, to date, no legal protection 

is provided for this wetland, which constitutes a large gap in the Cuban national system of 

protected areas. 
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7. Supplementary materials 
 

Supplementary material 1   Description of six wetland sites under study (2011 to 2013) on 

the Cuban south coast 

 

S1. Punta Caribe:  

Punta Caribe is a Faunal Refuge of recent creation (CNAP 2013). It is located on the southern 

coast of Pinar del Rio province, in western Cuba. It is a small wetland with predominance of 

intertidal mudflats, temporary lagoons and mangrove ecosystems. The area includes 2.5 km 

of the Guamá river basin, with an exuberant mangrove forest, reaching up to 6 m in height. 

Mangrove and swamp grass are the predominant plant formations in the area (Novo 2010). 

The wetland has a small extension of swamp forest and about 10 km2 covered by temporary 

lagoons and salt marshes.  It is the smallest wetlands sampled. 

 

S2. Humedal Sur de los Palacios:  

Humedal Sur de Los Palacios is an unprotected wetland, located on the south coast of the 

Pinar del Rio province, in western Cuba. It was recognized as an Important Bird Area (IBA) 

(Aguilar 2010). It is formed by an elongated coastal strip of mangrove forest (main plant 

formation), natural coastal wetlands, coastal salty lagoons, marshes, swamp grass and 

intertidal mudflats. These natural coastal lagoons are among the largest on the southern west 

coast of Cuba (Basal 2014). There are approximately 30 km2 of lagoons and salt marshes in 

this wetland, where Maspoton and Media Casa lagoons are the most remarkable. The area is 

surrounded by extensive rice fields in the north side, that are among the most important in 

the country. 
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S3. Zapata:  

Ciénaga de Zapata is a National Park, located within a Biosphere Reserve, a Ramsar site 

(CNAP 2013) and an IBA (Aguilar 2010). It is located in southern Matanzas province, in 

western Cuba. This area is considered the largest and best-preserved wetland in the insular 

Caribbean, with the largest area of marshes in Cuba and considerable extensions of forests 

(mangrove and semideciduous). It contains the largest and most complex karst drainage 

system in Cuba, Zapata Basin, that produces a unique hydrological phenomenon such as the 

swamp spring vegetation complex and a surface drainage system characterized by the 

existence of several rivers, lagoons, marshes, ditches and channels (Rodríguez et al. 1993). 

Las Salinas is a well-known system at Ciénaga de Zapata including coastal shallow lagoons, 

surrounded by mangroves. The main plant formations are mangroves, flooded savannahs and 

swamp grassland. Lagoons and salt marshes cover about 47 km2 in this wetland.  

 

S4. Canales del Hanábana:  

Canales del Hanábana is a Faunal Refuge, also located in southern Matanzas province, in 

western Cuba. It is part of a Biosphere Reserve, a Ramsar site (CNAP 2013) and IBA 

(Aguilar 2010). The area contains a large system of fresh water channels of 5.7 km² and 

lagoons, combined with fresh water flooded grassland areas. The hydrographic network is 

fed by the Hanábana river, considered as the most important in the area. It is the only Cuban 

protected area that is completely covered by fresh water ecosystems. Swamp grasslands 

predominate in 87% of the area, with swamp forests and freshwater vegetation in a lesser 

extent. Swamp grasslands are composed of herbaceous plants that remain flooded most of 

the year. The swamp forest is characterized has an arboreal stratum of 5-15 m height. These 
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forests grow on peaty soils, temporarily flooded and have the highest floristic species 

richness in the area (CNAP 2015). The site is surrounded by rice fields in the north. 

 

S5. Tunas de Zaza:  

Tunas de Zaza is a Faunal Refuge (CNAP 2013), and an IBA (Aguilar 2010). It is located in 

the Zaza river delta, in Sancti Spiritus province southern coast, central Cuba. It comprises a 

set of natural coastal wetlands, important salty lagoons such as El Basto and La Limeta, and 

huge intertidal mudflats. The presence of the Zaza river, provides an important lagoon 

system, connecting the lagoons, estuaries and the sea. Mangrove is the most abundant plant 

formation in the area and occurs throughout the lower coastline, the lagoon systems and at 

the river mouths of the Tayabacoa and Zaza rivers. They have an arboreal stratum of 5-15 m 

in height and can occupy several kilometers in width. Other plant formations covering this 

wetland, in a lesser extent, are the evergreen microphyll forest, sandy vegetation complex, 

coastal scrub and savanna with Copernicia palms (ENPFF 2009). About 25 km2 of lagoons 

and salt marshes are estimated in the protected area. In the eastern limits of the area, it's found 

the largest rice paddies of the country.  

 

S6. Delta del Cauto:  

Delta del Cauto is a Faunal Refuge, a Ramsar site (CNAP 2013) and an IBA (Aguilar 2010). 

It is located in Las Tunas and Granma provinces in south-eastern Cuba. It is the most 

extensive, complex and best-preserved deltaic system of Cuba and the Caribbean and the 

second wetland in extension, being the final result of the largest Cuban fluvial system, the 

Cauto river. This river is the main source of fresh water in this wetland, connecting 

innumerous lagoons, estuaries and the sea, and resulting the formation of an estuarine system. 
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Towards the interior, it has a system of sweet and salty lagoons of great extension, such as 

Birama, Hoja de Maíz and Leonero (the latter permanently sweet). Further to the coast, there 

are extensive salting ponds, shallow lagoons with saline-hypersaline functioning or 

temporarily sweet (Denis et al. 2005).  Lagoons and salt marshes cover a large area in the 

wetland, about 142 km2. The predominant habitats are mangroves, swamp grasslands and 

savannahs (Guanal with Copernicia giga palm). Mangroves forest are considered the most 

vigorous in the country (approximately 30 m high). Other plant formations covering a less 

extension include swamp forest and aquatic vegetation in fresh water. 
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Supplementary material 3   Mantel test to detect whether presence/ absence and waterbird composition was linked to 

the spatial position (coordinates in decimal degrees of latitude and longitude) of the six sites in the south coast of Cuba 

(correlation between a Euclidean distance matrix and the Bray–Curtis dissimilarity matrix). Test was conducted for each 

month evaluated (16 month) in three seasons (SM. Spring Migration, SS. Summer Season, FM. Fall Migration), from 

2011 to 2013 (P < 0.05) 

   Presence/absence Waterbird composition 

Year Season Month r P r P 

2011 SS May -0.487 
 

0.982 
 

-0.455 
 

0.972 
 

  June -0.618 
 

0.993 
 

-0.599 
 

0.990 
 

 FM October -0.587 
 

0.985 
 

-0.585 
 

0.997 
 

  November -0.668 
 

0.993 
 

-0.635 
 

0.982 
 

2012 SM February -0.065 
 

0.482 
 

-0.111 
 

0.556 
 

  March -0.629 
 

0.985 
 

-0.501 
 

0.925 
 

 SS May -0.089 
 

0.513 
 

-0.118 
 

0.532 
 

  June -0.417 
 

0.942 
 

-0.524 
 

0.974 
 

 FM October -0.454 
 

0.932 
 

-0.522 
 

0.942 
 

  November -0.528 
 

0.970 
 

-0.581 
 

0.983 
 

2013 SM February -0.248 
 

0.746 
 

-0.25 
 

0.721 
 

  March -0.358 
 

0.872 
 

-0.350 
 

0.864 
 

 SS May -0.358 
 

0.872 
 

-0.118 
 

0.532 
 

  June -0.134 
 

0.601 
 

-0.203 0.665 
 

 FM October -0.106 
 

0.586 
 

-0.211 0.675 

  November -0.459 
 

0.922 
 

-0.423 
 

0.922 
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CAPÍTULO II. Effect of landscape structure on waterbirds community in 

a conservation gradient in southwestern wetlands coast of Cuba 
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Abstract  
 

Landscape structure can affect waterbird distribution across wetlands. While forest 

fragmentation effects have been extensively studied in birds, we still lack knowledge about 

how the loss of wetlands might impact waterbird populations. We investigated the effects of 

landscape configuration on waterbird communities in southwestern Cuba and evaluated the 

contribution of the configuration of lagoons, mangrove, rice fields and anthropogenic land 

use to waterbird diversity. Also, we identified the scale at which descriptors of waterbird 

community are most sensitive to landscape variables. We conducted surveys in 14 landscapes 

during fall migration season of 2016. Landscape structure was described with 11 landscape 

variables at three spatial scales. We used Generalised Linear Models to test the effects of 

landscape variables on waterbird community and Akaike's information criterion, for model 

selection. Our results show that, at the scale of 6 km, mangrove mean patch area had a 

negative influence on waterbird abundance, while percentage of landscape covered by 

lagoons had a positive effect at 2 km. However, a higher percentage of mangroves and 

lagoons had a positive effect in waterbird composition at 2 km. The percentage of mangroves 

had a negative effect on waterbird diversity at 4 km. The percentage of anthropogenic land 

use did not influence any response variable at the evaluated scales. Detecting the scales of 

effect of two important landscape resources is very important for the effective management 

of waterbird populations. These features contribute to the adequate planning of reserves on 

the coast of Cuba.  

 

Key words.  Coastal wetlands, Habitat fragmentation, Landscape structure, Multi-scale 

models, Scale of response, Spatial scale  
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1. Introduction  
 

Landscape structure is potentially a crucial factor affecting the distribution of waterbirds in 

wetlands (Chan et al. 2007). Many landscape traits, such as type of surrounding habitat 

(Naugle et al. 2001; Riffell 2001), the amount of a nearby wetland (Fairbairn and Dinsmore 

2001; Naugle et al. 2001; Taft and Haig 2006), and connectivity to other habitat patches 

(Haig et al. 1998; Guadagnin and Maltchik 2007), may affect the population density of 

certain species or the waterbird assemblage composition in wetland habitats. While effects 

of forest loss and fragmentation on terrestrial birds has been extensively studied, the impact 

of wetland loss on waterbird assemblages has not (Fairbairn and Dinsmore 2001; Riffell et 

al. 2001). On the other hand, the influence of landscape structure on waterbirds is an issue 

that has attracted increasing research interest in recent years.   

Several studies relating landscape structure and waterbirds focus on artificial wetlands 

such as rice paddies (Chan et al. 2007; Elphick 2008; King et al. 2010) and artificial ponds 

(Fronemam et al. 2001; Pérez-García 2014; Hsu et al. 2019). Among studies testing the 

landscape configuration effects on waterbird community structure in natural wetlands (Perez-

Garcia 2014; Brandolin and Blendinger 2016; Herbert et al. 2018), little focus has been given 

to coastal wetland habitats (Henry and Cumming 2017), especially in the Caribbean region. 

Nevertheless, these habitats are of great importance for waterbirds (Aguilar et al. 2019) and 

have undergone considerable degradation (Ma et al. 2010; Finlayson et al. 2019). The 

underlying drivers behind the loss of coastal wetland biodiversity include habitat change 

(such as drainage and infilling for agriculture or construction), climate change, pollution, the 

spread of invasive ‘alien’ species and overexploitation of resources (Ramsar Convention 

Secretariat 2011).  
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An important principle of landscape ecology is that the spatial distribution of 

environments can have major effects on a wide variety of ecological processes (Wiens 2002), 

thus determining species and community structure (Knutson et al. 1999; Froneman et al. 

2001; Mazerolle et al. 2005; Thornton et al. 2011; Ekroos and Kuussaari 2012). In fact, the 

lack of knowledge about interactions between communities and landscape complexity are 

barriers for effective species conservation (Lindenmayer et al. 2008; Prugh et al. 2008; 

Ranganathan et al. 2010). Landscape patterns that favor population and community 

connectivity or ecological processes are key elements to conserve natural areas influenced 

by human impacts (Bennet 2004). For example, habitat cover and configuration must be 

considered in landscape planning and management for biodiversity conservation, because 

these are essential factors for many species survival (Williams et al. 2002; Lindenmayer et 

al. 2008), as shown in recent studies for waterbirds and wetland conservation (Kleyheeg et 

al. 2017; Xu et al. 2019; Zhang et al. 2019).  

 The relationship between biological responses and environmental variables also 

depends on the spatial extent (scale) at which they are measured (Wiens 1989; Bellamy et al. 

2013; Jackson and Fahrig 2015). The ‘scale of effect’, i.e. scale that yields the strongest 

relationship (Boscolo et al. 2009; Jackson and Fahrig 2015), is usually not known for a given 

biological system. Consequently, researchers commonly measure landscape variables at 

multiple scales to characterize habitat features adequately and to identify their spatial 

configuration affecting the abundance of populations or their assembly (Moudry and Sımova 

2012; Shirk 2012; Wasserman et al. 2012; Sánchez et al. 2013). Therefore, to understand 

how anthropogenic environmental changes influence organisms it is crucial to evaluate the 

spatial scale at which organisms are mostly responding to changes (Ducci et al. 2015). The 

scale of effect has been evaluated in several research in waterbirds and wetlands landscape 
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(Chan et al. 2007; Elphick 2008, Perez-Garcia et al. 2014, Webb et al. 2010; Beatty et al. 

2014), nevertheless, it has been little explored in coastal wetlands. Detecting the scale of 

effect of landscape features is very important to decide the landscape units that should be 

targeted for effective management (Pearce and Boyce 2006; Mander and Uuemaa 2010).  

In Cuba, several anthropogenic actions have affected ecosystems negatively in coastal 

wetlands for a long time. More than 30% of Cuban mangroves have been affected by different 

types of land use (Menéndez et al. 2003). The southwestern coast of Cuba constitutes a 

continuous habitat of coastal wetlands characterized by swampy plain bordered by 

mangroves, with coastal lagoons, marshes and intertidal mudflats (Iturralde and Serrano 

2015) which are preferred by waterbirds (Aguilar et al. 2019). This region includes the 

coastal strip with the highest degree of anthropic modification of coastal wetlands in Cuba 

(Vega et al. 1990; Moreno et al. 1998; Mitrani et al. 2000; Menéndez and Guzmán 2006) 

including legally hunting areas of six waterfowl species during the migratory season 

(Ministry of Agriculture 2015).  

The southwestern coast of Cuba provides a suitable habitat for waterbirds and it is known 

empirically for waterbird concentrations, mainly in the migratory season. However, very few 

studies have been conducted in the region to foster waterbird conservation strategies. The 

most studied sites regarding waterbird assemblages are the Zapata Peninsula (González et al. 

2016a), which is a national park, a biosphere reserve and a Ramsar site and Humedal Sur de 

los Palacios and their associated rice paddies (Acosta and Mugica 2013, Mugica et al. 2014; 

Aguilar et al. 2019). In the remaining study region, in southwestern coast of Cuba, there are 

few studies focusing on specific watebirds species using these wetlands (Mugica et al. 2002; 

Mugica et al. 2005; Blanco et al. 2014; González et al. 2016b; González et al. 2018). Even 

though this region includes recently proposed protected areas, there are no studies at the 
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landscape level supporting such definitions and effective management, as well as important 

requirements by waterbird diversity.  

In this study, we tested the effects of landscape structure on waterbird communities in 

coastal wetlands within a conservation gradient in southwestern Cuba and evaluated the 

relative contribution of spatial configuration of lagoons, mangrove, rice field and 

anthropogenic land use to waterbirds diversity. Our specific objectives were to (i) identify 

the scale at which different descriptors of waterbird community are most sensitive and (ii) 

identify the landscape factors that may influence richness, abundance, composition and 

diversity of waterbird communities. This information will be useful for waterbirds 

conservation planning and management actions in the study region.  

 

2. Materials and Methods 
 

2.1 Study Area 
 

We sampled fourteen areas in southwestern coastal wetlands of Cuba, in Pinar del Río, 

Artemisa, Mayabeque and Matanzas provinces (Fig 1). These areas are located in a coastal 

region called Ciénaga Litoral del Sur (Núñez 1989), between Cabo Francés and Peninsula de 

Zapata (from 83 ° 58' W, 22 ° 06' N to 81 ° 15' W, 22 ° 07' N), along ~ 456 km and including 

wetlands habitats from 2 to10 km wide of the coastline. This coastal strip is limited to the 

south by the Gulf of Batabanó (León 1996). The main plant formations are mangrove, swamp 

forest and swamp grasslands. It is a cumulative, biogenic plain on turbid swamp deposits 

(Mateo and Acevedo 1989; Menéndez and Guzmán 2006). The whole area is characterized 

by a low, swampy plain, which is waterlogged in almost all its extension, with coastal 
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lagoons, marshes and intertidal mudflats (Iturralde and Serrano 2015). Average temperatures 

range from 24.0 to 26.0 ° C and the average annual rainfall from 800 to 1000 mm (ICCACC 

1989). Five protected areas are included in our study site, one is a Ramsar site and Biosphere 

Reserve (Zapata Peninsula; CNAP 2013) and two are Important Bird Areas (IBAs) (Zapata 

Peninsula and Humedal Sur de los Palacios; Aguilar 2010). 

The study area is subject to different degrees of anthropic influence and degradation, and 

presents different patterns of land use. The highest degree of anthropic modification is within 

the southern coastal strip of Artemisa and Mayabeque provinces, between Playa Majana and 

Ensenada de Vizcaya (~ 129 km long) (Vega et al. 1990; Moreno et al. 1998; Mitrani et al. 

2000, Iturralde and Serrano 2015). Mangroves in this area present one of the lowest 

ecosystem health indices in the Cuba western region (Menéndez and Guzmán 2006). 

Historically, these mangroves have been heavily impacted by timber extraction for railway 

construction and for charcoal production. In the 1950s, the establishment of a series of 

drainage channels led the mangroves and coastal swamps to dry out and farmers to deforest 

the swamps’ landward margin. In order to counteract the effects of marine intrusion and 

groundwater salinization, a 50 km long retention wall (Southern Dike) was built in the 1980s; 

this, however, resulted in higher mangroves mortality due to flooding on its landward side, 

increased wave impact and reduced freshwater inputs on its seaward side (Menendez et al. 

2006). 

On the other hand, the western wetlands on the south coast of Pinar del Río province and 

on part of Artemisa province, from Cabo Francés to Playa Majana (~ 133 km), are less 

degraded. However, they are affected mainly by agricultural activity (rice cultivation), 

damming rivers and extreme weather events such as hurricanes (Menéndez and Guzmán 

2006). The most preserved wetland in the study region is the Zapata National Park in 
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Matanzas province (CNAP 2013). Agriculture is also the main land use in the northern 

wetland strip of these provinces, except in Peninsula de Zapata. 

 

 

Fig. 1   Fourteen sampling areas in four provinces in the western south coast of Cuba. Individual 
maps for each sampling unit (1-14) show landscapes at three spatial extents (2, 4 and 6 km) and seven 
classes of land covers 

 

2.2 Waterbird survey 
 

We conducted waterbird surveys during 2016 fall migration season (October–November), at 

a central sampling point in each sampling area (Fig. 1). We selected fall migration because 

it is when most species have highest abundance and densities (Acosta et al. 1992; González 

et al. 2016b), so it is likely the most important time for the conservation of waterbirds on the 
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south coast of Cuba (Aguilar et al. 2019). Sampling points were separated by at least 12 km 

to avoid data autocorrelation and included three subsampling point counts within a radius of 

about 500 m at lagoons and salt marshes. We did fix point counts (Bibby et al. 2000) at each 

subsampling point by counting all individuals of each species seen or heard in 30-minute 

periods, always in the first four hours after sunrise. Bird counts were carried out during three 

alternate days (one day out of a three-day period). We used 10 x 50 binoculars and 20 x 60 

spotting scopes to detect the birds and a GPS to record geographical coordinates of each 

sampling point. We recorded only aquatic birds and species dependent on wetlands to meet 

their daily needs. As our survey method was diurnal, results may be biased low for secretive 

birds (e.g. gallinules) and nocturnal birds (e.g. night-herons and whistling ducks). Bird 

taxonomy follows the American Ornithological Society (AOS) checklist (Chesser et al. 

2018). Each species was identified and classified according to its occurrence (common, rare, 

very rare and vagrant; Garrido and Kirkconnell 2010) and status (bimodal, summer migrant, 

permanent resident and winter migrant; Navarro and Reyes 2017). Bimodal species are those 

characterized by both resident and winter migratory populations.  

For further analyses for each sampling point, we considered species richness (number of 

species), waterbird abundance (number of individuals) and waterbird composition (matrix of 

abundances by species) by pooling results of the three subsampling counts. Additionally, to 

define abundance, we considered the maximum number of individuals of each species during 

the three days. Frequency of waterbird species was given as the number of samplings where 

the bird was recorded/total number of sampling points (N = 14). For each sampling point, we 

also calculated Shannon diversity index (Magurran 1988).  
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2.3 Landscape structure 
 

We measured 11 landscape variables at three spatial scales in each landscape unit (2, 4 and 

6 km radius buffers around the sampling points, Fig. 1). The total extension in each spatial 

scale was 1,257, 5,026 and 11,309 hectares, respectively. We selected these scales based on 

the current knowledge about the largest waterbird mobility (Cumming et al. 2012; Henry and 

Cumming 2017). To avoid spatial autocorrelation, we limited the extent of the higher scale 

to 6 km. We did not use smaller scales because in these extensions some land cover classes 

did not have enough variation in size when comparing sampling areas (e.g. mangroves).  

Land cover data was obtained from the following shapefile layers: a) Vegetation of 

Cuba, from Landsat ETM 7 (Estrada et al. 2013); b) Forest Cover of Cuba, from Landsat 

ETM 7 (Geocuba 2012); c) soil use (IPF 2007) and d) two layers of road and land use in 

Cuba, from OpenStreetMap (2019) (www.openstreetmap.org). In order to update the 

information, we digitized and rectified eleven classes for this study, from these shapefile 

layers, through Google Maps (2019) images, supported by personal field experience. This 

update was made within the limits of the largest spatial extent (6 km of buffer), in each of 

the 14 sampled landscapes. The final map was obtained through the overlay of all different 

layers.  

The eleven classes updated were aggregated to form seven classes:  anthropogenic land 

use; rice paddies; swamp forest; mangrove; swamp grassland; lagoons, salt marshes and 

rivers and sea (Fig. 1). However, we analyzed only four classes (anthropogenic land use; rice 

paddies; mangrove; lagoons, salt marshes and rivers) because these are the main habitat types 

that are expected to be influencing the structure of the waterbird communities in the region, 

according to their ecological requirements and relevant to our hypotheses (Mugica et al. 
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2006). The anthropogenic land use included several types of land covers, such as villages, 

industries, bare soil, scrub and secondary forests, pastures, crops, canals and roads. Rice 

paddies were excluded from anthropogenic land use cover and were analyzed independently, 

due to its importance for waterbird communities mainly for feeding and resting (King et al. 

2010; Toral et al. 2011). The average percentage of sea cover for the 14 landscape units was 

43 ± 7 %. Considering that there was few variation across units (CV = 16 %), we assumed it 

should not have an effect on landscape metrics and the samples could be compared. We 

converted final shapefile maps in raster files (.tif and .img) with 2-m pixel sizes (resolution) 

for all landscapes (in total 42 landscapes: 14 for each of the three spatial scale). Data was 

processed using the geographical information system QGIS 12.14.18.  

We quantified 11 landscape variables associated with the four land cover classes, inside 

each sampling unit at the three spatial extent, using FRAGSTATS v. 4.2 software (McGarigal 

et al. 2012). We selected indices of landscape composition and configuration that described 

shape, aggregation, size and quantity of the four different environments in the landscape.  We 

chose these variables because they are expected to influence waterbird diversity due to habitat 

requirements of these species (Pérez-García et al. 2014; Brandolin and Blendinger 2016; 

Amira et al. 2018). Landscape variables, at each land cover class, are described in Table 1. 

Due to their multicollinearity, we used only five metrics as predictor variables in statistical 

analyses (see Data Analysis).  
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Table 1   Landscape variables describing the landscape structure of each sampling point for each land cover class. 

In bold, five non-collinear variables included in statistical analyses 

Land cover class Code Variable Unit Description 

Lagoons, salt marshes 

and rivers 

AREMN-lag Mean patch 

area 

m2 Mean area of all lagoons, salt marshes and rivers 

patches in the landscape 

Lagoons, salt marshes 

and rivers 

PLAND-lag Percentage of 

landscape 

% Percentage of landscape covered by lagoons, salt 

marshes and rivers 

Lagoons, salt marshes 

and rivers 

LPI.lag Largest patch 

index 

% Percentage of total landscape area comprised by 

the largest patch of lagoons, salt marshes and 

rivers 

Lagoons, salt marshes 

and rivers 

SHAPEMN.lag Mean shape 

index 

unit Mean shape of all lagoons, salt marshes and 

rivers patches in the landscape 

Lagoons, salt marshes 

and rivers 

NP.lag Number of 

patches 

n Number of lagoons, salt marshes and rivers 

patches 

Mangrove AREMN-mag Mean patch 

area 

m2 Mean area of all mangrove’s patches in the 

landscape 

Mangrove PLAND-mag Percentage of 

landscape 

% Percentage of landscape covered by mangroves 

Mangrove PD.mang Patch density n/m2 Number of mangrove’s patches divided by total 

landscape area 

     

Mangrove ENNMN.mang Mean of 

Euclidean 

nearest-

neighbor 

distance 

m Mean of Euclidean nearest-neighbor distance 

among mangrove patches 

Rice paddies PLAND.rice Percentage of 

landscape 

% Percentage of landscape covered by rice paddies 

     

Anthropogenic land use PLAND-ant Percentage of 

landscape 

% Percentage of landscape covered by 

anthropogenic land use 
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2.4 Data Analysis 
 
 

A Mantel test was performed to detect spatial autocorrelation between the linear distance 

(Euclidean distance matrix) of sampling points and waterbirds composition (Bray–Curtis 

dissimilarity matrix) in the study area (Legendre and Legendre 1998). To calculate the 

linear spatial distance, we build a matrix with coordinates in decimal degrees of latitude 

and longitude at each sampling point. The tests showed no significant spatial correlation 

(r = 0.15; p = 0.156). This analysis was made in R (R Core Team 2018) using vegan version 

2.5-1 (Oksanen et al. 2018). 

We tested the relationship between waterbird community’s variables [species richness, 

waterbird abundance and Shannon diversity index] and landscape variables (Table 1) in three 

steps. First, we selected only landscape variables that were weakly correlated with any other 

using Pearson’s correlation (r < 0.6, Table S1) and indicating no collinearity through variance 

inflation factor (VIF < 3; Kutner et al. 2004). As a result, we selected only five landscape 

variables as predictors for further analyses: mean patch area of lagoons, salt marshes and 

rivers percentage of landscape covered by lagoons, salt marshes and rivers, mean patch area 

of mangroves, percentage of landscape covered by mangroves and percentage of landscape 

covered by anthropogenic land use. Second, we selected the scale of effect using r2 of linear 

regressions between waterbird community’s variables (responses) and the five landscape 

variables (predictors) for each of the three spatial scales. Response variables were 

transformed to ensure normality (richness: root square-transformed; abundance and Shannon 

diversity index: log- transformed). Linear regression was made in R. The landscape variable 

at the spatial scale with the highest r2 (Table S2) were further used in the next step of the 

analyses.  
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The third step was to build one generalized linear model (GLM) for each waterbird 

community variable to relate with landscape variables selected in the previous steps. All 

continuous predictors showed normal distributions, except AREMN-lag, which was log-

transformed to achieve a normal distribution. In GLM, we used negative binomial error 

distribution (log link function) for richness and waterbird abundance data to control for 

overdispersion and Gaussian distribution for Shannon diversity index (Zuur et al. 2009). This 

procedure was made in R using MASS (Venables and Ripley 2002) and car packages (Fox 

and Weisberg 2011). We built single and multi-scale models based on the results of our 

second step of analyses (linear regressions). Single-scale models were those in which 

predictors variables belonged to the same spatial scale, while multi-scale refers to models 

containing landscape variables of distinct scales. We fitted a set of candidate models using 

the following combinations of predictor variables: a) each variable alone, (b) only variables 

of mangroves (AREMN-mang and PLAND-mang), c) only variables of lagoons, salt marshes 

and rivers (AREMN-lag and PLAND-lag, d) combination of two or three variables of 

mangroves and lagoons, salt marshes and rivers, g) all models including (PLAND-ant) as a 

covariate, and (d) an intercept-only model (null model) (88 candidate models in total, 22 

models for each response variable; Table S3).  

As we had multi-models to explain the response variables, we conducted a model 

selection procedure based on maximum likelihood, considering the Akaike's Information 

Criterion corrected for small number of observations (AICc; Burnham and Anderson 2002), 

using the R package AICcmodavg (Mazerolle 2010). Under this approach, the lower the 

AICc, the better the model fits the data. We also calculated the difference between AICc for 

a model i and the lowest observed AICc (i.e. AICc). The relative ranking of models based 

on ΔAICc values also provides an estimate of each model’s relative explanatory value. 
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Models with AICc < 2 are equally plausible to explain the observed pattern as the best 

model (Burnham and Anderson 2002). We also calculated the Akaike's information criterion 

weight (wi), which expresses the relative contribution of the model i to explain the observed 

pattern and the evidence ratios (ER) between the best and a second models (ratio of w of one 

model against the other, Burnham et al. 2011). When Akaike weights of the most plausible 

model was lower than 0.80, we used model averaging to draw inferences about the 

importance of predictors in the most plausible models. With this purpose, we calculated 

weighted averages of estimates for predictors across all the models using model probabilities 

as weight, the unconditional standard errors and 95 % unconditional confidence intervals 

(CI) of each predictor (Burnham and Anderson 2002). Predictors with CI that did not include 

the 0 value were considered as having an influence on the response variable. The final scale 

of effect was considered as the scale at which the predictors had an influence on the response 

variables.  

We performed redundancy analyses (RDA) to test the relationships among waterbirds 

composition and the five landscape variables used in GLMs at each spatial scale (Legendre 

and Legendre 1998). A significance value for the overall RDA solution was determined by 

ANOVA (Analysis of Variance) for each spatial scale. Before the analysis, the five landscape 

variables were standardized, and waterbird composition data was log (x+1) transformed. This 

procedure was made in R using the vegan package (version 2.5-1; Oksanen et al. 2018). All 

statistical analyses were conducted in R software environment version 3.4.4 (R Core Team 

2018).  
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3. Results  
 

3.1 Characterization of the waterbird community structure 
 

In total, we recorded 65 waterbird species during the study, belonging to 45 genera and 21 

families (Table S4). Species richness per sampling plot ranged from 15 to 38. The most 

frequently represented families were Scolopacidae and Ardeidae, with 14 and nine species, 

respectively. A total of 24,432 waterbirds were observed. Most species (86.2 %, 56 species) 

were considered common birds, while the others were rare (eight species) and one species 

(Willson´s Phalarope Phalaropus tricolor; nine individuals in Guanimar, Artemisa province) 

was classified as accidental. Among observed birds, 80 % (52 species) were migrants, 24 of 

which were bimodal and 20 % (13 species) were permanent residents. The most frequently 

observed birds were Double-crested Cormorant Phalacrocorax auritus (92.9 %), Laughing 

Gul Leucophaeus atricilla (78.9 %) and four species of egrets and herons (Great Blue Heron 

Ardea herodias, Great Egret Ardea alba, Snowy Egret Egretta thula and Little Blue Heron 

Egretta caerulea), with 78 to 85 % of occurrences (Table S4). Blue-winged Teal Spatula 

discors was the most abundant species followed by Double-crested Cormorant, American 

Flamingo Phoenicopterus ruber, Snowy Egret Egretta thula and Least Sandpiper Calidris 

minutilla.  

3.2 Landscape configuration correlates with waterbirds community structure 
 

3.2.1   AICc model selection 
 

Species richness was not related to any variable, as shown by model selection uncertainty 

(best model, wi = 0.193) (Table 2), with the null model being the best although showing low 



 

84 
 

probability in comparison to the second model (ER = 1.16). Considering all landscape 

variables, model-averaged estimates were low and with broad confidence intervals (Table 3).  

Four models of waterbird abundance had the best fits (ΔAICc < 2, Table 2). The first 

most plausible model had low probability (wi = 0.212) and low strength of evidence in 

comparison with the two other best models (ER = 1.25 and 2.27, respectively). Considering 

all these models, two variables had the strength of evidence to predict waterbird abundance: 

mean patch area of mangroves at 6 km spatial scale (β AREMN.mang6 = -0.770 ± 0.338, CI = -

1.433, -0.107) and percentage of landscape covered by lagoons, salt marshes and rivers at 2 

km spatial scale (β PLAND.lag2 = 0.814 ± 0.107, CI = 0.078, 1.550). These results indicate that 

waterbird abundance increases in areas with smaller mangrove patches, at 6 km spatial scale 

and larger percentage of lagoons, salt marshes and rivers at 2 km spatial scale.  
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Table 2    Model selection for landscape metrics in relation to richness, abundance, and Shannon diversity index (H') at 

spatial multiscale, on the southwestern coast of Cuba, in fall migration season of 2016. Models with ΔAICc < 4 are omitted  

Response variable Models K AICc ΔAICc wi 
Richness ~1 2 107.71 0 0.192 
  scale(PLAND.lag2) 3 108.02 0.30 0.165 

  scale(AREMN.mang6) 3 108.13 0.41 0.156 
  scale(PLAND.mang4) 3 109.42 1.70 0.082 

  scale(PLAND.lag2)+scale(AREMN.mang6) 4 109.77 2.05 0.069 
  scale(log(AREMN.lag6) 3 110.27 2.55 0.053 

  scale(PLAND.ant4) 3 110.56 2.85 0.046 
  scale(PLAND.mang4)+scale(PLAND.lag2) 4 110.97 3.25 0.037 

  scale(log(AREMN.lag6))+scale(AREMN.mang6) 4 111.09 3.37 0.035 
  scale(PLAND.lag2)+scale(AREMN.mang6)+scale(PLAND.ant4) 5 111.14 3.42 0.034 
            
Abundance scale(PLAND.lag2) 3 237.54 0.00 0.212 
  scale(log(AREMN.lag2) 3 238.00 0.46 0.169 

  scale(PLAND.mang2)+scale(AREMN.mang6)+scale(PLAND.lag2) 5 239.19 1.65 0.093 
  scale(PLAND.mang2)+scale(PLAND.lag2) 4 239.26 1.72 0.090 

  ~1 2 239.64 2.10 0.074 
  scale(PLAND.lag2)+scale(AREMN.mang6) 4 240.06 2.52 0.060 

  scale(log(AREMN.lag2))+scale(AREMN.mang6) 4 240.23 2.69 0.055 
  scale(AREMN.mang6) 3 240.92 3.38 0.039 

  scale(PLAND.lag2)+scale(AREMN.mang6)+scale(PLAND.ant4) 5 240.94 3.40 0.039 
  scale(PLAND.mang2)+scale(log(AREMN.lag2) 4 241.10 3.55 0.036 

  scale(PLAND.lag2)+scale(log(AREMN.lag2)) 4 241.14 3.59 0.035 
            

            
H' scale(PLAND.mang4) 3 16.92 0.00 0.510 

  scale(PLAND.mang4)+scale(log(AREMN.lag2)) 4 20.37 3.45 0.091 
  scale(PLAND.mang4)+scale(AREMN.mang4) 4 20.58 3.66 0.082 

K: number of parameters, AICc: second-order Akaike’s information criteria, wi: Akaike’s weight 
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Table 3   Result of model averaging for landscape metrics related to richness, abundance and 

Shannon diversity index (H') at spatial multiscale on the southwestern coast of Cuba, in fall 

migration season of 2016. In bold are predictor variables with an influence in each response 

variable. For abbreviations of landscape variables see Table 1 

Response 

variable 
Predictor variables 

Model-

averaged 

estimate 

Unconditional SE 
95% Unconditional 

confidence interval 

      
Richness PLAND.mang4 -0.121 0.112 -0.34, 0.09  

 AREMN.mang6 -0.200 0.112 -0.42, 0.02  

 PLAND.lag2 0.160 0.099 -0.03, 0.35  

 AREMN.lag4 0.073 0.115 -0.15, 0.29  

 PLAND.ant4 0.150 0.123 -0.09, 0.39  

      
Abundance PLAND.mang2 0.603 0.450 -0.27, 1.48  

 AREMN.mang6 -0.77 0.338 -1.43, -0.10  

 PLAND.lag2 0.814 0.375 0.07, 1.55  

 AREMN.lag2 0.688 0.385 -0.06, 1.44  

 PLAND.ant4 0.458 0.376 -0.27, 1.19  

      
H' PLAND.mang4 -0.301 0.104 -0.50, -0.09  

 AREMN.mang4 0.039 0.143 -0.24, 0.32  

 PLAND.lag6 -0.014 0.124 -0.25, 0.22  

 AREMN.lag2 -0.081 0.113 -0.30, 0.14  

 PLAND.ant6 -0.178 0.115 -0.40, 0.04   

 

 

 

The first model of waterbird Shannon diversity index showed a higher probability (wi 

= 0.510) and strength of evidence in comparison to the second and third models (ER = 5.60 

and 6.21; Table 2). The percentage of landscape covered by mangroves at 4 km spatial scale 

had a negative effect on the waterbird diversity (β PLAND.mang4 = -0.301 ± 0.104, CI = -0.506, 

-0.096) (Table 3). Percentage of landscape covered by anthropogenic land use did not predict 

richness, abundance, waterbird composition and Shannon diversity.  
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3.2.2 RDA Analysis 
 

RDA analysis for the correlation between landscape variables and waterbird composition 

were not significant at the spatial scale of 6 and 4 km (F= 1.363, p = 0.113; F= 1.473, p = 

0.059; respectively). At the smaller spatial scale (2 km), RDA analyzed was significant (F = 

1.507,   p = 0.044), in which the landscape variable explained 48.5 % of the total waterbird 

community composition variation. Results showed that percentage and mean area covered 

by lagoons, salt marshes and rivers at 2 km (PLAND.lag2 and AREMN.lag2, respectively) 

had the highest positive correlation with the waterbird composition score of the first RDA 

axis (Fig. 2, Table 4). The second RDA axis was determined primarily by the positive 

correlation of percentage of landscape covered by mangroves at 2 km (PLAND.mang2). 

These results indicate that areas with larger percentage and patches of lagoons, salt marches 

and rivers, and larger percentage of mangroves at 2 km spatial scale influence the variation 

of waterbird community composition. Based on RDA results at 2 km, we found a separation 

of the species within the waterbird community (Fig. 2). In this way, shorebirds Calidris, the 

waterfowl Blue-winged Teal Spatula discor and the Reddish Egret Egretta rufescens (sp21, 

sp23, sp2 and sp53 respectively; Fig. 2) tended to be more abundant in areas with large 

percentage of lagoons, salt marshes and rivers (PLAND.lag2) and large patches of lagoons, 

salt marshes and rivers (AREMN.lag2).  
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Fig. 2   Ordination biplot of the first two axes of RDA (RDA1 and RDA2) of waterbird composition constrained 

by landscape variables (in blue) at 2 km spatial scale, in western coast of Cuba, in 2016 fall migration season. 

Sampling areas are indicated in black and waterbird species in red. For abbreviations of landscape variables see 

Table 4 
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Table 4   Correlation between landscape variables at 2 km spatial scale and the first 

two RDA axes of waterbird composition scores 

  Waterbird composition 

Code Variables description RDA1 RDA2 

PLAND.mang2 Percentage of landscape 

covered by mangroves 

-0.05 0.61 

AREMN.mang2 Mean area of all mangrove’s 

patches in the landscape 

-0.33 0.42 

PLAND.lag2    Percentage of landscape 

covered by lagoons, salt 

marshes and rivers 

0.95 -0.16 

AREMN.lag2    Mean area of all lagoons, salt 

marshes and rivers patches in 

the landscape 

0.83 0.08 

PLAND.ant2   Percentage of landscape 

covered by anthropogenic 

land use 

-0.03 -0.57 

 

 

4. Discussion 
 

This study shows that the landscape context of coastal wetlands influence waterbird 

abundance, species composition and diversity. The effects of landscape variables varied 

according to the spatial scale and the sensitivity of the waterbird community descriptor. Our 

results show that variations in the scale at which the landscape structure of coastal wetland 

is measured is a key factor to predict abundance, waterbird composition and diversity.  
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The positive influence of percentage of landscape covered by lagoons, salt marshes and 

rivers on waterbird abundance emphasize the importance of this environmental factor in 

determining habitat use by these species (Froneman et al. 2001; Sebastian-Gonzalez et al. 

2010; Chacon de la Cruz et al. 2017; Kleyheeg et al. 2017; Herbert et al. 2018). We found 

this relationship only at the smallest measured scale (2 km), suggesting that a greater 

abundance of birds is conditioned by a greater coverage of lagoons, salt marshes and rivers 

at a local level. We highlight that this study was conducted during the fall migration season, 

a period with the highest abundance and density of birds in wetlands in the southern coast of 

Cuba (Aguilar et al. 2019), and consequently an increased food demand. Waterbirds depend 

on wetlands (Ramsar 2010) for foraging, and lagoons, salt marshes and rivers offers a great 

diversity of trophic resources (seeds and aquatic plants, aquatic invertebrates and vertebrates, 

like fishes and frogs) (Ma et al. 2010). According to predictions of Miguel et al. (2015), the 

scale of effect is smaller for landscape variables that most strongly influence foraging success 

than for landscape variables that most strongly influence dispersal success. Landscape 

variables that most strongly affect foraging habitat should have smaller scales of effect 

because foraging success mainly depend on interactions between individuals and the 

environment within their home range (i.e. during daily movements).  

On the other hand, the mean patch area of mangroves had a negative influence on 

waterbird abundance at a broader scale (6 km), meaning that smaller fragments of mangrove 

on a wider scale, along with higher percentage of lagoons, salt marches and rivers at local 

scale (2 km), will favor a higher number of individuals. Smaller fragments of mangrove, 

naturally, favor the existence of a larger open water coverage. Waterbirds congregate in large 

groups for feeding in fall migration, demanding larger lagoons, and therefore smaller 

mangrove fragments, surrounding lagoons and interspersed among them are an indication of 
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optimal environment conditions for these birds. Waterbird abundance was the only response 

variable related to a landscape variable within the larger scale of 6 km. This result could be 

explained because a high number of individuals will need to disperse and explore other 

habitats on a larger scale, or to use them as roosts for resting, as is the case of small fragments 

of mangroves. While the metrics related to open water have been widely used to measure the 

influence of landscape context on waterbird richness and abundance, few studies considered 

mangroves to measure landscape wetland configuration and their effect on waterbirds. 

Mangrove habitats’ potential to support waterbirds is poorly understood globally (Sandilyan 

and Kathiresan 2015).  

Several waterbirds, resident species (e.g. herons, egrets and ibis) usually use mangrove 

areas during the reproductive season for nesting, often in large colonies (Mugica et al. 2006).  

However, during our study season, which was not in the reproductive season, their 

dependence on mangrove areas are expected to be smaller. Alternatively, waterbirds may 

need smaller patches of mangroves, even if isolated from the feeding areas, mainly for resting 

and protection against predators. In addition, mangrove patches on a wider scale of 6 km may 

be a source of food for waterbirds feeding in interior lagoons, due to their high productivity 

(Mugica et al. 2006). Fallen mangrove leaves incorporate organic matter between their roots, 

increasing biomass into trophic chains. This helps lagoons, surrounded and interspersed with 

mangroves fragments, to have a constant and reliable source of food (e.g. fish and aquatic 

invertebrates) for these waterbirds (Mugica et al. 2006; Hagy and Kaminsky 2012). Smaller 

mangrove areas also allow more space for more open water, offering a greater amount and 

potentially greater diversity of feeding resources for waterbirds wich may reduce interference 

competition (van Dijk et al. 2012). A balance between these two habitats is thus necessary 

for the survival of waterbirds in these tropical coastal wetlands.  
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The negative effect of percentage of landscape covered by mangroves on waterbird 

diversity index can also be explained by the role of mangroves as a habitat resource for 

waterbirds during the migratory period. However, in this case, this response variable was 

sensitive at a 4 km scale. This result makes sense because this index considers the number of 

species present in the area (species richness), and the relative number of individuals of each 

species (abundance) (Magurran 1988). As it is influenced by two variables with different 

sensitivity, the scale at which it has an effect could tend to be the mean between the scales of 

effect of both variables.  

Waterbird richness was not influenced by any landscape metric at any spatial scale we 

evaluated, even though that contradicts previous studies in wetlands (Fairbairn and Dinsmore 

2001; Webb et al. 2010). Waterbirds usually gather in close aggregations for foraging 

following abundant moving resources (e.g., fish populations), even though this behavior is 

not common when resources are stationary, and prey are not abundant, so they disperse to 

forage (Goodale et al. 2017). However, the same species may be present in both situations, 

so abundance may change in response to the moving prey abundance, but not the species 

richness. It seems that in many cases, just the presence of a few prey items in an area may 

attract a number of different waterbird species.  

Waterbird composition was positively related to the percentage of landscape covered by 

lagoons and mangroves at the smaller spatial scale (2 km). This result may be given by 

different requirements of waterbird species in relation to these two resources. For example, 

areas with larger mangrove coverage may present less congregator species that use 

mangroves for resting and shelter, while in areas with more open water and reduced 

mangrove they will be more propitious for congregating species, such as waterfowls (Beatty 

et al. 2014; Herbert et al. 2018) and shorebirds (Webb et al. 2010). Some not congregating 
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species, as Reddish Egret, also need large open water to foraging displays (Del Hoyo et al. 

1992).  

The degree of anthropogenic land use did not influence species richness, abundance, 

waterbirds composition and waterbird diversity on any spatial scale. However, we emphasize 

some important considerations regarding this result. First, our sampling points presented only 

0.04 to 40% of anthropic areas in the largest scale (6 km), such that half of them have less 

than 15% of impacted areas by humans. Second, anthropic areas in our study include 

environments which were probably not repelling waterbirds in the long-term. One of the most 

impacted areas in our study site include the South dike, built 40 years ago in south Artemisa 

province (Menendez et al. 2006), which initially caused the death of natural mangroves and 

their replacement by swamp grasslands. Since then, an alternative lagoon system has taken 

place, allowing several waterfowl species to congregate during the migratory period. 

Therefore, along the time, both vegetation and bird communities in restored wetlands became 

similar to those of natural wetlands (Galatowitsch and van der Valk 1996; VanRees-Siewert 

and Dinsmore 1996). On the other hand, in highly impacted sampling points, land is used 

mainly for crops (29 to 93%) and pastures, scrub and secondary forests (29 to 100%), a 

typical rural anthropic use. Also, these lands are located towards the northern end of the 

sampling points, farthest from the coast (Fig. 1).   

Since anthropic use in the study region is mainly rural, with minor urbanization, 

industrialization or tourist development, we conclude it does not exert an important pressure 

on waterbird community, at the scales evaluated. However, we advocate that if anthropic 

impacts increase, degrading and reducing lagoons, salt marshes and rivers, which affect 

waterbird communities, as supported in this study, we predict negative consequences to the 

coastal fauna. In addition, the impact of human disturbances may be low because some 
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waterbird species are tolerant to human disturbance (Burton et al. 2002). Our results do not 

mean an increase in anthropic activity has no negative effect upon birds, but that the current 

human land use, considering spatial scales from 2 to 6 km in the south coast of Cuba, provides 

little impact. Several other studies showed that human activities directly or indirectly 

influence waterbird habitat selection and abundance in wetlands (Madsen and Fox 1995; 

Lepczyk et al. 2008; de Boer et al. 2011; Fox and Madsen 2017).  

 

4.1 Conservation implications  
 

Wetland management aiming preserving habitats for waterbirds must be based on specific 

knowledge of regional bird communities (Ma et al. 2010). We suggest that to protect 

waterbird diversity in coastal wetlands of western Cuba, especially during fall migration 

season, it is essential to implement management plans at the local and regional level for 

conserving and recovering a heterogeneous landscape at different spatial scales. As we 

showed here, larger open waters favor increasing waterbird abundance during migration 

congregation, while mangroves may provide resting and shelter. Thus, conservation 

strategies for nomadic wildlife, such as these waterbirds, require both classical models of 

conventional reserves and the establishment of protected areas networks (Margules and 

Pressey 2000). Waterbird requirements extrapolate local scales since they demand a complex 

of wetland landscape, then conservation value of individual wetlands cannot be measured in 

isolation from the wetlands mosaic in which they are inserted (Roshier et al. 2002).  

The management of habitat resources for waterbird should consider the scale at which 

the different descriptors of the community are sensitive. We found a greater influence of 

landscape variables on waterbird community at 2 km, which is the spatial scale that should 
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receive a greater attention to habitat management. However, on the 4 and 6 km scales there 

was also some effect of the landscape configuration. In this way, the protection of patch 

mangrove at 6 km spatial scale is very important to keep waterbird abundance. We 

recommend that boundaries of protected areas should be based on the results of these scales 

of effect, both for new areas and for the re-analysis of the limits of existing reserves. Even if 

our study area includes non-protected areas, biodiversity protection laws, such as the Cuban 

coast law, for example, must be adequately implemented in order to protect lagoons and salt 

marshes and mangroves. The protected areas of the study region should follow similar 

management protocols for these coastal wetland habitats suitable or waterbird, respecting the 

suggested scales of effect. This work could be relevant, not only for waterbird management 

and conservation of waterbird in Cuba, but also at the Caribbean region.  
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Table S2   Results of linear regression (r2) of response variables (richness, 

abundance and Shannon diversity index (H') in relation to five landscape 

metrics at three spatial scales in the southwestern coast of Cuba. In bold 

are predictor variables with the major r2 of the three spatial scale from each 

response variable.  For abbreviations of landscape variables see Table 1 

Spatial scale Response variable Predictor variable r2 

6 km Richness (sqrt) PLAND.mang6 0.055 

    AREMN.mang6 0.182 

    PLAND.lag6 0.087 

    AREMN.lag6 0.052 

    PLAND.ant6 0.001 

        

4 km Richness PLAND.mang4 0.104 

    AREMN.mang4 0.125 

    PLAND.lag4 0.042 

    AREMN.lag4 0.045 

    PLAND.ant4 0.039 

        

2 km Richness PLAND.mang2 0.063 

    AREMN.mang2 0.043 

    PLAND.lag2 0.227 

    AREMN.lag2 0.051 

    PLAND.ant2 0.018 

        

6 km Abundance PLAND.mang6 0.001 

    AREMN.mang6 0.119 

    PLAND.lag6 0.188 

    AREMN.lag6 0.127 

    PLAND.ant6 0.005 

        

4 km Abundance PLAND.mang4 0.001 

    AREMN.mang4 0.051 

    PLAND.lag4 0.193 

    AREMN.lag4 0.003 

    PLAND.ant4 0.062 

        

2 km Abundance PLAND.mang2 0.004 

    AREMN.mang2 0.061 
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    PLAND.lag2 0.371 

    AREMN.lag2 0.203 

    PLAND.ant2 0.006 

        

6 km H' PLAND.mang6 0.305 

    AREMN.mang6 0.003 

    PLAND.lag6 0.017 

    AREMN.lag6 0.014 

    PLAND.ant6 0.238 

        

4 km H' PLAND.mang4 0.430 

    AREMN.mang4 0.063 

    PLAND.lag4 0.009 

    AREMN.lag4 0.034 

    PLAND.ant4 0.149 

        

2 km H PLAND.mang2 0.331 

    AREMN.mang2 0.019 

    PLAND.lag2 0.001 

    AREMN.lag2 0.054 

    PLAND.ant2 0.021 
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Table S3    Candidates models for each response variable. For abbreviations of landscape variables see 
Table 1 
    
Response variable Candidate models 
   

Richness 1 scale(PLAND.lag2)+scale(log(AREMN.lag6) 
 2 scale(PLAND.lag2)+scale(log(AREMN.lag6))+scale(PLAND.ant4) 
 3 scale(PLAND.mang4)+scale(AREMN.mang6) 
 4 scale(PLAND.mang4)+scale(AREMN.mang)+scale(PLAND.ant4) 
 5 scale(PLAND.mang4)+scale(PLAND.lag2) 
 6 scale(PLAND.mang4)+scale(log(AREMN.lag6) 
 7 scale(PLAND.lag2)+scale(AREMN.mang6) 
 8 scale(log(AREMN.lag6))+scale(AREMN.mang) 
 9 scale(log(AREMN.lag6))+scale(PLAND.lag2)+scale(AREMN.mang6) 
 10 scale(log(AREMN.lag6))+scale(PLAND.lag2)+scale(PLAND.mang4) 
 11 scale(PLAND.mang4)+scale(AREMN.mang)+scale(log(AREMN.lag6) 
 12 scale(PLAND.mang4)+scale(AREMN.mang6)+scale(PLAND.lag2) 
 13 scale(PLAND.mang4)+scale(PLAND.lag2)+scale(PLAND.ant4) 
 14 scale(PLAND.mang4)+scale(log(AREMN.lag6))+scale(PLAND.ant4) 
 15 scale(PLAND.lag2)+scale(AREMN.mang6)+scale(PLAND.ant4) 
 16 scale(log(AREMN.lag6))+scale(AREMN.mang)+scale(PLAND.ant4) 
 17 scale(PLAND.mang4) 
 18 scale(AREMN.mang6) 
 19 scale(PLAND.lag2) 
 20 scale(log(AREMN.lag6) 
 21 scale(PLAND.ant4) 
 22 ~1  
    
Abundance 1 scale(PLAND.lag2)+scale(log(AREMN.lag2) 
 2 scale(PLAND.lag2)+scale(log(AREMN.lag2))+scale(PLAND.ant4) 
 3 scale(PLAND.mang2)+scale(AREMN.mang6) 
 4 scale(PLAND.mang2)+scale(AREMN.mang6)+scale(PLAND.ant4) 
 5 scale(PLAND.mang2)+scale(PLAND.lag2) 
 6 scale(PLAND.mang2)+scale(log(AREMN.lag2) 
 7 scale(PLAND.lag2)+scale(AREMN.mang6) 
 8 scale(log(AREMN.lag2))+scale(AREMN.mang) 
 9 scale(log(AREMN.lag2))+scale(PLAND.lag2)+scale(AREMN.mang6) 
 10 scale(log(AREMN.lag2))+scale(PLAND.lag2)+scale(PLAND.mang2) 
 11 scale(PLAND.mang2)+scale(AREMN.mang6)+scale(log(AREMN.lag2) 
 12 scale(PLAND.mang2)+scale(AREMN.mang6)+scale(PLAND.lag2) 
 13 scale(PLAND.mang2)+scale(PLAND.lag2)+scale(PLAND.ant4) 
 14 scale(PLAND.mang2)+scale(log(AREMN.lag2))+scale(PLAND.ant4) 
 15 scale(PLAND.lag2)+scale(AREMN.mang6)+scale(PLAND.ant4) 
 16 scale(log(AREMN.lag2))+scale(AREMN.mang6)+scale(PLAND.ant4) 
 17 scale(PLAND.mang2) 
 18 scale(AREMN.mang6) 
 19 scale(PLAND.lag2) 
 20 scale(log(AREMN.lag2) 
 21 scale(PLAND.ant4) 
 22 ~1  
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 20 scale(log(AREMN.lag2) 
 21 scale(PLAND.ant6) 
 22 ~1  
    
H' 1 scale(PLAND.lag6)+scale(log(AREMN.lag2) 
 2 scale(PLAND.lag6)+scale(log(AREMN.lag2))+scale(PLAND.ant6) 
 3 scale(PLAND.mang4)+scale(AREMN.mang4) 
 4 scale(PLAND.mang4)+scale(AREMN.mang4)+scale(PLAND.ant6) 
 5 scale(PLAND.mang4)+scale(PLAND.lag6) 
 6 scale(PLAND.mang4)+scale(log(AREMN.lag2) 
 7 scale(PLAND.lag6)+scale(AREMN.mang4) 
 8 scale(log(AREMN.lag2))+scale(AREMN.mang4) 
 9 scale(log(AREMN.lag2))+scale(PLAND.lag6)+scale(AREMN.mang4) 
 10 scale(log(AREMN.lag2))+scale(PLAND.lag)+scale(PLAND.mang4) 
 11 scale(PLAND.mang4)+scale(AREMN.mang4)+scale(log(AREMN.lag2) 
 12 scale(PLAND.mang4)+scale(AREMN.mang4)+scale(PLAND.lag6) 
 13 scale(PLAND.mang4)+scale(PLAND.lag6)+scale(PLAND.ant6) 
 14 scale(PLAND.mang4)+scale(log(AREMN.lag2))+scale(PLAND.ant6) 
 15 scale(PLAND.lag6)+scale(AREMN.mang4)+scale(PLAND.ant6) 
 16 scale(log(AREMN.lag2))+scale(AREMN.mang4)+scale(PLAND.ant6) 
 17 scale(PLAND.mang4) 
 18 scale(AREMN.mang4) 
 19 scale(PLAND.lag6) 
 20 scale(log(AREMN.lag2) 
 21 scale(PLAND.ant6) 
 22 ~1  
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Table S4   Waterbird assemblage in the southwestern coastal wetlands of Cuba. Total abundance of waterbirds 

(Total abund), maximum abundance (Max abund) registered in any one-day observation, frequency of waterbirds 

(Fr, number of sampling plots where the bird was seen/total number of sampling plots: N = 14) 

  

Family/Scientific Name English Common Name Status1 Ocurrence2 

Total 

abund 

Max 

abund Fr % 

Anatidae             

Anas bahamensis White-cheeked Pintail PR C 9 9 7.14 

Spatula discors Blue-winged Teal WM C 8,355 3,850 64.29 

Spatula clypeata Northern Shoveler WM C 300 300 7.14 

Aythya affinis Lesser Scaup WM C 18 15 14.29 

Phoenicopteridae             

Phoenicopterus ruber American Flamingo PR C 2,153 1,331 50.00 

Podicipedidae             

Podilymbus podiceps Pied-billed Grebe B C 35 28 28.57 

Rallidae             

Rallus longirostris Mangrove Rail PR C 4 2 21.43 

Gallinula chloropus Common Moorhen B C 94 65 28.57 

Fulica americana American Coot B C 666 585 21.43 

Aramidae             

Aramus guarauna Limpkin PR C 1 1 7.14 

Recurvirostridae             

Himantopus mexicanus Black-necked Stilt B C 191 104 28.57 

Recurvirostra americana American Avocet B R 63 63 7.14 

Charadriidae             

Pluvialis squatarola Black-bellied Plover WM C 153 67 71.43 

Pluvialis dominica American Golden-Plover WM R 3 2 14.29 

Charadrius nivosus Snowy Plover PR R 4 4 7.14 

Charadrius wilsonia Wilson's Plover SM C 101 54 42.86 

Charadrius semipalmatus Semipalmated Plover WR C 91 65 35.71 

Charadrius vociferus Killdeer B C 30 9 57.14 

Jacanidae             

Jacana spinosa Northern Jacana PR C 5 5 7.14 

Scolopacidae             

Arenaria interpres Ruddy Turnstone WM C 34 20 28.57 

Calidris alba Sanderling WM C 34 28 21.43 

Calidris alpina Dunlin WM R 1 1 7.14 

Calidris minutilla Least Sandpiper, WM C 1,592 522 71.43 

Calidris pusilla Semipalmated Sandpiper WM C 17 9 21.43 

Calidris mauri Western Sandpiper WM C 8 6 14.29 

Limnodromus griseus Short-billed Dowitcher WM C 566 228 28.57 
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Limnodromus scolopaceus Long-billed Dowitcher WM R 3 2 14.29 

Gallinago gallinago Common Snipe WM C 607 606 14.29 

Actitis macularius Spotted Sandpiper WM C 49 18 71.43 

Tringa flavipes Lesser Yellowlegs WM C 34 24 28.57 

Tringa semipalmata Willet B C 82 25 50.00 

Tringa melanoleuca Greater Yellowlegs WM C 54 14 42.86 

Phalaropus tricolor Willson´s Phalarope WM A 9 9 7.14 

Laridae             

Leucophaeus atricilla Laughing Gul B C 374 120 78.57 

Sternula antillarum Least Tern SM C 2 2 7.14 

Gelochelidon nilotica Gull-billed Tern WM R 5 3 21.43 

Hydroprogne caspia Caspian Tern WM C 94 68 14.29 

Sterna hirundo Common Tern WM R 2 2 7.14 

Thalasseus maximus Royal Tern B C 303 156 64.29 

Thalasseus sandvicensis Sandwich Tern B C 303 20 64.29 

Ciconiidae             

Mycteria americana Wood Stork PR R 2 2 7.14 

Fregatidae             

Fregata magnificens Magnificent Frigatebird PR C 22 19 28.57 

Phalacrocoracidae             

Phalacrocorax brasilianus Neotropic Cormorant PR C 195 195 7.14 

Phalacrocorax auritus Double-crested Cormorant B C 2,518 1895 92.86 

Anhingidae             

Anhinga anhinga Anhinga PR C 56 36 42.86 

Pelecanidae             

Pelecanus erythrorhynchos American White Pelican WM C 1,148 627 35.71 

Pelecanus occidentalis Brown Pelican B C 102 71 50.00 

Ardeidae             

Ardea herodias Great Blue Heron B C 216 184 78.57 

Ardea alba  Great Egret B C 886 575 78.57 

Egretta thula Snowy Egret B C 1,953 622 85.71 

Egretta caerulea Little Blue Heron B C 143 36 78.57 

Egretta tricolor Tricolored Heron B C 389 220 71.43 

Egretta rufescens Reddish Egret B C 73 44 42.86 

Butorides virescens Green Heron B C 21 4 71.43 

Nycticorax nycticorax Black-crowned Night-Heron B C 10 4 28.57 

Nyctanassa violacea 

Yellow-crowned Night-

Heron B C 32 12 50.00 

Threskiornithidae             

Eudocimus albus White Ibis PR C 348 244 64.29 

Plegadis falcinellus Glossy Ibis B C 10 10 7.14 
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Ajaia ajaja Roseate Spoonbil PR C 40 25 35.71 

Pandionidae             

Pandion haliaetus Osprey B C 22 7 64.29 

Accipitridae             

Circus hudsonius Northern Harrier WR C 1 1 7.14 

Buteogallus gundlachii Cuban Black Hawk PR C 4 4 7.14 

Alcedinidae             

Ceryle alcyon Belted Kingfisher WR C 35 13 57.14 

Falconidae             

Falco sparverius American Kestrel B C 7 3 21.43 

Falco peregrinus Peregrine Falcon WM C 2 2 7.14 

       
 

1Status: B. Bimodal SM. Summer Migrant, PR. Permanent Resident, WM. Winter Migrant (Navarro and Reyes 2017) 
2Occurrence: A. Accidental, C. Common, R. Rare, VR. Very Rare (Garrido and Kirkconnell 2010) 
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Abstract. — Wetland-dependent birds are considered to be at particularly high risk for 

negative climate change effects. Bioclimatic models are widely used tools for assessing 

potential responses of species to climate change. We predicted current and future 

distributions of American Flamingo Phoenicopterus ruber and Reddish Egret Egretta 

rufescens, two resident species in Cuba, using species distribution models in combination 

with climate data in Maxent software. For each species, we predicted four potential future 

distributions for two emissions scenarios in 2050 and 2070, in Cuba, combining three Global 

Circulation Models. Bioclimatic variables that contributed the most to modeling the potential 

distribution of American Flamingo were mean diurnal temperature range (mean of monthly 

(max temp - min temp)) and temperature seasonality. Mean diurnal range also contributed 

most to the modeling of Reddish Egret followed by precipitation of warmest quarter. Our 

results show that the current distribution of American Flamingo is predicted to be reduced 

by 38% under a changing future climate in the most pessimistic scenario of 2070, while the 

current distribution size of Reddish Egret is predicted to increase in 44%. The potential 

suitable habitat of American Flamingo in the most pessimistic scenario of 2070 would have 

51% excluded from the National System of Protected Areas of Cuba. Our findings suggest 

that species distribution modeling can inform the current and future management of the 

American Flamingo and Reddish Egret throughout Cuba. A strong conservation strategy is 

needed to conserve American Flamingo populations under a changing climate.  

 

Key words. American Flamingo, coastal wetlands, future climate scenarios, Maxent, Reddish 

Egret, species distribution modeling 

 

1. Introduction 
 

Waterbirds are one of the biological groups associated with coastal zones most vulnerable to 

the possible impacts of climate change (Planos et al. 2013). In Cuba, a country with a high 

ratio of coastline to overall surface area (5%, 5,746 km versus 109,886 km2), the national 
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report to the Convention on Biological Diversity and the National Environmental Strategy 

identify climate change as one of the greatest threats to biodiversity (CITMA 2014; CITMA 

2016). In recent decades, earth’s climate has undergone a dramatic change, including 

warming and more frequent extreme weather events, and there is strong evidence of 

imminent and profound transformations resulting from human activities (Solomon et al. 

2007). Rapid climate change causes a clear fingerprint on global biodiversity (Gregory et al. 

2009) and is a major issue for conservationists (Peterson et al. 2002; Thomas et al. 2004). 

Evidence is accumulating that climatic change has already altered the distributions of many 

species (Parmesan et al. 1999; Hickling et al. 2005; Guisan and Thuiller 2005; Tingley et al. 

2009) and that more change is inevitable (Maclean et al. 2008; Anderson et al. 2009). In 

Cuba, several current actions have been carried out to address this issue (ODS 2019); 

however, there are few studies that explore wildlife distributions in future climate scenarios, 

and these have focused on reptiles and amphibians, resulting in the decrease of suitable 

habitats (Cobos 2016; Velazco 2017; Gonzales 2018). 

Besides avian distributions, climate change is affecting the timing of breeding and 

migration of birds around the world (Møller et al. 2010; Cox 2010). Also, it has been 

observed that many species have modified their seasonality, abundance and interspecific 

interactions (IPCC 2014). From a Caribbean perspective, only recently have a limited number 

of papers addressed climate change and birds, and these have focused primarily on influences 

of rainfall on habitat quality for overwintering migrants, thereby impacting spring departure 

schedules and breeding success through carryover effects (Sillett et al. 2000; Smith et al. 

2010; Wilson et al. 2011; Studds and Marra 2011). Climate change is expected to affect 

migratory birds through changed weather and environmental conditions, such as 

temperatures, rainfall, sea level rises, and acidification and circulation of oceans (CMS 
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2014). The effects will be direct or indirect through changes in habitat availability, quality 

and food resources, with some of the indirect effects occurring naturally or brought about by 

human reaction to a changing climate (CMS 2014).  

Climate forecasts indicate that the average global surface temperature is likely to 

increase between 0.3 and 4.8 ° C until 2100 (Stocker et al. 2013; IPCC 2013). With respect 

to rainfall, the contrast between wet and dry seasons will be accentuated, although there may 

be regional exceptions. In addition, the phenomena of precipitation and extreme temperatures 

in humid tropical regions will be more intense and frequent (Edenhofer et al. 2014; IPCC 

2014). More specifically in the Caribbean basin, several global climatic models are consistent 

in predicting increased summer droughts over the next 50 years (Neelin et al. 2006). Recent 

rainfall declines in the Bahamas (Martin and Weech 2001), Puerto Rico (Heartsill-Scalley et 

al. 2007) and Jamaica (Studds and Marra 2007) are consistent with the predictions of these 

models. The expected effects of these summer droughts include phenological disruptions, 

declines in food availability, and an increase in fire frequency (Weaver and Gonzalez 2005). 

Models to help evaluate how Caribbean birds might respond to these combined threats are 

needed, as is empirical data about bird condition and population trends (Latta et al. 2012).  

Cuba is moving towards climatic conditions similar to those projected by the IPCC under 

a scenario of intensified greenhouse gas effect. Particularly, there are expected increases in 

sea level, air temperatures, reductions in daily temperature ranges, and increased frequency 

of long and severe droughts (Iturralde and Serrano 2015). Increases in the total amounts of 

rainfall associated with major precipitation events in the wet season are also expected 

(Iturralde and Serrano 2015). Under different IPCC scenarios and levels of climate 

sensitivity, sea levels in Cuba are expected to rise 0.22–0.85m by 2100. Given its long and 

narrow configuration, these increases can have devastating consequences for biodiversity. 
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Cuba lies on one of the most active parts of the Atlantic/Caribbean hurricane region; 

hurricanes and cold fronts are amongst the main causes of destructive flooding along the 

whole coastline length (Pérez et al. 2009). Furthermore, warming is indubitable, according 

to evidence measured by the Cuban Meteorological Institute (Pérez et al. 2009). Since the 

middle of the last century, the median annual temperature has increased by almost 0.9°C, as 

well as there was an increase in temperature in waters around Cuba (Mitrani and Díaz 2008).  

In this sense, species distribution models (SDMs) are fundamental bases for 

understanding the impact of climate change on them. In this way, their geographical 

distribution could be projected relating ecological factors with the presence of the species 

(Elith and Leathwick 2009; Soberón and Nakamura 2009). In the last 20 years, predictive 

SDMs had been generated using algorithms, based on incomplete distribution data (Elith et 

al. 2006; González et al. 2009; Peterson and Soberón 2012; Carmona et al. 2013).  

Despite their limitations (Anderson 2012), SDMs synthesize the relationships between 

species and environmental variables that would be difficult to interpret and appreciate by 

other means (Fuller et al. 2012). On the other hand, a large number of SDMs articles have 

proven useful in multiple fields of biology (Mateo et al. 2011), including ecology, taxonomy 

and biogeography, as well as in species conservation programs, and assessment of climate 

change impact (Jeschke and Strayer 2008; Steen et al. 2012).  

To predict the effects of climate change, and identify conservation strategies that might 

mitigate its undesirable consequences, it is essential to develop models linking species 

distributions to alternative scenarios of climate change (Lawler et al. 2006). In this paper we 

evaluate the effect of climate change on two waterbird species in Cuba, through SDMs.  

Our specific aims are to i) predict the potential impact of climate change on the distribution 

of American Flamingo Phoenicopterus ruber (Family Phoenicopteridae) and Reddish Egret 
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Egretta rufescens (Family Ardeidae) in 2050 and 2070, ii) identify bioclimatic variables that 

most influence their distributions patterns, iii) identify the best climate suitable areas in future 

scenarios for each species and iv) assess the possible coverage of the National System of 

Protected Areas of Cuba for the conservation of these species in the future, in case of negative 

effect due to climate change. This research is a first reference for others studies about climate 

change effect on the distribution of waterbirds species in Cuba and the Caribbean.  

 

2. Material and Methods 
 

2.1 Study species 
 

To assess the effect of climate change, we modeled the ecological niche of two species 

(American Flamingo and Reddish Egret) of Cuban waterbird community to predict their 

potential distribution areas in the future, specifically in Cuba. These two species, are part of 

the 12 waterbird species exceeding the 1 % of the world’s population in Cuba, according 

with the first chapter of this thesis (Aguilar et al. 2019), wich demonstrates the great 

importance of Cuba’s wetlands for the conservation of these species. These species were 

selected within this group because both are i) resident in Cuba, ii) had the most restricted 

distribution and iii) are habitat-specialists, coastal-dependent, inhabiting estuaries and saline 

lagoons. These characteristics could influence the vulnerability of these species to climatic 

changes. Instead, the other species are more habitat generalist and widely distributed. 

The American Flamingo covers the northern shore of South America, most of Caribbean 

Sea shoreline, as well as islands in the Caribbean and Eastern Pacific (Fig. 1a). American 

Flamingo has been seen in southern United States, but they are more abundant in southern 
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latitudes (Fer 2006; Roynesdal 2007). Global estimates range from 260,000 to 330,000 adult 

individuals and an increasing population trend (Birdlife International 2019). Flamingos are 

long-lived colonial waterbirds, oftentimes numbering thousands of individuals. These birds 

tend to occupy large mud flats, at hyper-saline estuaries, where the loose mud can be easily 

formed into the mounds that they use as nests. These large mud flats are usually located near 

a food supply and a fresh water source supply is needed when they are breeding (Rooth 1965; 

Fer 2006). American Flamingo is not globally threatened (Birdlife International 2019).  

The Reddish Egret occurs in Baja California and along the Pacific coast of Mexico, the 

southern coast of the United State USA, through the Caribbean islands and in the Central 

American coast to northern Colombia and Venezuela (Koczur et al. 2019) (Fig. 1b). Reddish 

Egrets are frequent in shallow coastal waters, salt-pans, open marine flats and shorelines. 

They breed in mangroves forest surrounded by shallow lagoons (Gonzales et al. 2016). The 

Reddish Egret is North America’s rarest and least studied ardeid. Populations declined 

greatly in the 1800s due to feather hunting, and the species was nearly extirpated from the 

United States by 1900 (Koczur et al. 2019). Global population estimates range from 7,000 to 

11,000 mature individuals. However, much is unknown regarding abundance and population 

trends in Mexico and throughout the Caribbean and it remains a species of conservation 

concern throughout its range (Koczur et al. 2019). This species is classified as Near 

Threatened because, despite its large range, it occupies a restricted habitat and is patchily 

distributed. For this reason, it is assumed to have a moderately small and declining global 

population (Birdlife International 2019).  
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2.2 Species occurrence data 
 

We compiled 1444 and 1279 occurrence localities all over the distribution range for 

American Flamingo and Reddish Egret, respectively (Fig. 1). The data was obtained from 

primary literature, as well as from the on-line database GBIF (Global Biodiversity 

Information Facility, http://data.gbif.org) using package rgbif version 3.6.1 (Chamberlain et 

al. 2019) in R environment version 3.6.0 (R Core Team 2018). Spatial sampling biases were 

corrected by detecting duplicates data and possible georeferencing errors (e.g. occurrences 

in the sea or in latitudes or longitudes in sites not described for the species) using raster 

version 2.9-5 (Hijman 2019) and maptools packages version 0.9-5 (Bivand and Lewin-Koh 

2019) in R. We also thinned data eliminating data within a radius of 10 km to avoid 

autocorrelation, using spThin package version 0.1.0. (Aiello-Lammens et al. 2019) in R. 

Finally, we used 110 and 185 records for modeling American Flamingo and Reddish Egret 

distributions, respectively.  
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Fig. 1   Occurrences of American Flamingo (a) and Reddish Egret (b) compiled in this study   
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2.3 Environmental variables 
 

Current and future climate data were obtained by 19 standard Bioclim variables (30 arc-sec 

resolutions; Table S1) from worldclim.org (Hijmans et al. 2005). Current climate data are 

derived from monthly precipitation and temperature (between 1950 and 2000) of 

meteorological stations all over the world.  

Due to the high levels of correlations between environmental variables, we filtered our 

initial variable set based on the results of Pearson’s correlation test and Jackknife analysis 

for Maxent modeling of American Flamingo and Reddish Egret (Fig S1). We correlated all 

pairwise combinations of climatic variables for each species (Table S2 and Table S3, 

respectively). We extracted climatic variables from occurrence localities of each species and 

500 random background points, using dismo (Hijmans et al. 2017) and raster package 

(Hijman 2019) in R environment (R Core Team 2018). For highly correlated variable pairs 

(r > 0.8), we retained the variable that gave a higher value in the regularized gain to the 

Maxent model (Phillips et al. 2006). Consequently, six and seven bioclimatic variables were 

used in final distribution models of American Flamingo and Reddish Egret, respectively 

(Table 1).  

Besides the bioclimatic layers, we considered a relevant non-climatic layer, the altitude, 

which is important to waterbird species living in low coastal areas. We got a global altitude 

layer (1 km resolution) from topography dataset of EarthEnv https://www.earthenv.org/ 

(Amatulli et al. 2018).  
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Table 1 Bioclimatic variables used in the species distribution modeling for American Flamingo and 

Reddish Egret  

Bioclimatic variables Species 

American 

Flamingo 

Reddish 

 Egret 

bio2: Mean diurnal temperature range (mean of monthly (max temp - 

min temp) 

x x 

bio4: Temperature seasonality (standard deviation *100) x - 

bio8: Mean temperature of wettest quarter - x 

bio10: Mean temperature of warmest quarter x x 

bio14: Precipitation of driest month x x 

bio15: Precipitation seasonality (coefficient of variation) - x 

bio16: Precipitation of wettest quarter x - 

bio17: Precipitation of driest quarter - x 

bio18: Precipitation of warmest quarter x x 

 
 

2.4 Bioclimatic variables of future climate projections 
 

We used two future climate change scenarios, corresponding to the Representative 

Concentration Pathways, RCP 2.6 and 8.5 W/m² (IPCC 2014). The RCP 2.6 is an “optimistic 

scenario” which predicts low levels of concentration and emissions of greenhouse gas, with 

a maximum emission peak in 2040, and CO2 concentration of 490 ppm, moderate population 

growth, GDP (Gross Domestic Product), carbon storage and capture technologies (IPCC 

2014). At the other extreme, the RCP 8.5, a “pessimistic” scenario, predicts high emissions 

and concentrations of greenhouse gases, since it does not include the implementation of 

climate change mitigation policies, in addition to high population growth coupled with high 

energy demand, as well as a slow increase in GDP and low rates of technological changes 

and energy efficiency (Vuuren et al. 2011; Wayne 2013; Pachauri and Meyer 2014).  
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Data were derived from three general circulation models (GCM): BCC-CSM1-1 (Wu 

2012), CCCM4 (Kim et al. 2003) and GISS-E2-R (Hansen et al. 2000). These models are 

considered the most advanced tools available to simulate the response of the global climate 

system based on the emission and concentration of greenhouse gases (IPCC 2013). The use 

of several GCMs allows simulate changes based on a set of anthropogenic forcing scenarios 

(IPCC 2013) and incorporate the variability observed between the different models (Araujo 

and New 2007; Varela et al. 2015). The selected bioclimatic variables were extracted under 

different climate change scenarios to make projections in years 2050 and 2070. Because no 

scenarios were available for the future development of altitude (Thuiller et al. 2006), this 

variable was assumed constant. All future predicted data was cropped and limited to project 

only in Cuba. To define climatic variation, we extracted the values of bioclimatic variables 

at each species occurrence locality under both, current and future scenarios, using spatial 

analysis functions with raster package version 2.9-5  (Hijman 2019) in R environment version 

3.6.0 (R Core Team 2018).  

 

2.5 Background points  
 

We followed Anderson and Raza (2010) criteria to define the study area or calibration of the 

model. Proper area selection reduces the under or over-adjustment of models to occurrence 

localities and limits the use of background points to areas where the species may have 

actually accessed. In this way, more realistic models of the potential range of the species are 

generated (Barve et al. 2011).  

For selecting these areas, 20 km radius buffers were created at each occurrence locality 

of the two species under study. This radio was selected taking into account the mobility of 
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these species (Cumming et al. 2012; Henry and Cumming 2017). Within these buffers, we 

randomly extracted 10,000 background points for model calibration. This procedure was 

made in R packages dismo version 1.1-4 (Hijmans et al. 2017) and rgeo version 0.4-3 

(Bivand and Rundel 2019) according with Hijmans and Elith (2017).  

 

2.6 Species distribution models  
 

We build SDMs using Maxent version 3.3.3k (Phillips et al. 2006). Maxent is a machine 

learning method specifically designed for presence-only data and has been shown good 

predictive performance across various applications (Elith et al. 2006; Phillips et al. 2008; 

Doko et al. 2011; Virkkala et al. 2013; Bosso et al. 2013).  Maxent uses environmental 

variables to predict environmental suitability for a particular species by assessing different 

combinations of variables and their interactions using the maximum entropy principle 

(Phillips et al. 2006). The complexity of Maxent models can be controlled through choice of 

feature classes and regularization parameters (Elith et al. 2011). This program is among the 

most used in the scientific literature of recent years (Heinamen and Numers 2009; Summer 

et al. 2012; Boria et al. 2014; Wang et al. 2018).   

We mainly used default settings in this study (regularization multiplier = 1, maximum 

iterations = 500, convergence threshold = 10-5, maximum number of background points = 

10,000) and ran models with 30 bootstrap replicates. We assessed model performance using 

the average AUC, the area under the curve, from receiver operating characteristic curve 

(ROC) score by randomly assigning the occurrences records as training and test datasets (75 

and 25 %, respectively). The ROC describes the correct presence identification rate 
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(sensitivity, in y) against the false rate (1-specificity, in x) (Peterson et al. 2008). Sensitivity 

is the probability of classifying as present when the species is really present and 1–specificity 

is the probability of classifying as present when the species is really absent (false positives) 

(Peterson et al. 2008). The AUC measures model ability to discriminate between locations 

where the species is present and where it is absent. AUC values vary between 0 and 1; values 

below 0.5 means that model predictive value is not higher than expected by chance and values 

higher than 0.7 are considered models with good precision (Phillips et al. 2008). We used 

logistic output format, which was easily interpretable with logistic suitability values ranging 

from 0 (lowest suitability) to 1 (highest suitability) (Phillips et al. 2008). The resulting model 

was projected to Cuban archipelago to identify areas of climatic suitability for American 

Flamingo and Reddish Egret.  

 

2.7 Geospatial Analysis of the Impacts of Climate Change 
 

We summarized the output logistic predictions from the three general circulation models 

under two emission scenarios of 2050 and 2070 by calculating the mean suitability within 

each grid-cell for each species. This is an ensemble-forecasting approach to reach a 

consensus scenario (Araujo and New 2007; Marmion et al. 2009). The resulting mean 

suitability maps was reclassified in binary maps (0 = not suitable area, 1 = suitable area), 

using the 10 percentile training presence logistic threshold (Maxent output) as a cutting value 

for each species. The suitable area of future and current models were then subtracted from 

each other, and areas of stability, contraction and expansion were calculated for each species.  

We overlapped and clipped the vectorial map of potencial suitable area of American 

Flamingo in the most pessimistic scenario (RCP 8.5 W/m2) of 2070, with a layer of Cuban 
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National System of Protected Areas (SNAP; CNAP 2013), to estimate the protection 

percentage for this species in this extreme scenario.  

We evaluated specifically the two most important sites for American Flamingo breeding 

in Cuba, Rio Maximo Faunal Refuge and Delta del Cauto Faunal Refuge, located in 

Camaguey and Granma provinces, respectively (Morales 1996; Denis et al. 2005). For these 

analyses, we considered the limits of these protected areas separately and showed models of 

its current range and future climatic scenarios. We used ArcGis 10.3 (ESRI 2011) for all 

post-geospatial processing and calculations.  

 

3. Results 
 

 
3.1   Model performance and environmental variables  
 

American Flamingo model showed reasonable discrimination (AUCtraining = 0.876 ± 0.016; 

AUCtest = 0.803 ± 0.036; Fig S2a), as well as Reddish Egret model (AUCtraining = 0.857 ± 

0.012; AUCtest = 0.811 ± 0.028; Fig. S2b). The standard deviation of AUCs, based on 30 

bootstrap runs, was small for both species, suggesting little over-fitting of model predictions.  

Model outputs clearly identified highly suitable habitat in coastal wetlands for American 

Flamingo and Reddish Egret, in coincidence with known occurrences and typical habitat 

descriptions for these species. Current models showed climatic suitability for American 

Flamingo in ~11,231.2 km2, being more restrictive than Reddish Egret which was ~15,331.2 

km2, representing 10.2 and 14% of the Cuban archipelago surface, respectively (Fig  2 and 

3).  
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For both species, the suitability current values are reached towards areas near the low 

coasts and adjacent islands (Fig. 2 and 3), mainly in five large groups of coastal wetlands 

(Sabana Camagüey Archipelago in north central coast, southwestern coast wetlands, Zapata 

Swamp, south and central coast wetlands and Delta del Cauto in southeast coast), to a greater 

or lesser extent depending on the species. However, there are also small patches with a likely 

occurrence in other coastal areas (Fig. 2 and 3).  

Environmental variables that contributed the most to modeling the potential distribution 

of American Flamingo were mean diurnal temperature range (mean of monthly (max temp - 

min temp)), temperature seasonality and precipitation of wettest quarter. In contrast, mean 

temperature of warmest quarter, precipitation of driest month and precipitation of warmest 

quarter made only small contributions to model development (Table 2). In Reddish Egret 

distribution models, environmental variables that contributed the most were mean diurnal 

range (mean of monthly (max temp - min temp)) and precipitation of warmest quarter. On 

the other hand, precipitation of driest month, mean temperature of warmest quarter and 

precipitation seasonality made only small contributions to model development (Table 2).  
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Table 2 Contribution (%) of environmental variables to the Maxent SDMs of American Flamingo and 

Reddish Egret  

Environmental variables Species 

American 

Flamingo 

Reddish  

Egret 

Altitude 67.2 79.1 

bio2: Mean diurnal temperature range (mean of monthly (max temp - 

min temp)) 

10.1 7.5 

bio4: Temperature seasonality (standard deviation *100) 6.2 - 

bio8: Mean temperature of wettest quarter - 2.6 

bio10: Mean temperature of warmest quarter 2.2 2.1 

bio14: Precipitation of driest month 4.3 1.2 

bio15: Precipitation seasonality (coefficient of variation) - 2.2 

bio16: Precipitation of wettest quarter 5.3 - 

bio17: Precipitation of driest quarter - 1.8 

bio18: Precipitation of warmest quarter 4.2 3.5 

 

 

3.2 Potential effects of climate change 
 

Climate change effects on the predicted distribution were discernible for both species (Fig. 2 

and 3). As the time period increased (2000, 2050 and 2070) the strength of the effects from 

climate change increased for both species.   

Our results predicted that American Flamingo would experience range contractions in 

future climates in Cuba. In the most optimistic scenario (RCP 2.6 W/m2) in 2050, American 

Flamingo distribution was predicted to be practically stable, with only a decrease of 10 % 

(1,123 km2) of its current size (Fig. 2). However, its current distribution would reduce by 

27.8% (3,123 km2) according to the most pessimistic scenario (RCP 8.6 W/m2) in 2050, 

similarly to the contraction of 28.6% (3,213 km2) in 2070 in the most optimistic scenario.  
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Distribution size was predicted to decrease more on the most pessimistic scenario in 2070, 

reaching 38.3% (4,297 km2) of its current Cuban distribution (Fig. 2, Fig. 4a, Table S4).  

The potential suitable area for American Flamingo in the most pessimistic scenario (RCP 

8.5 W/m2) for 2070 had 49% of protection covered by the National System of Protected Areas 

of Cuba, while under this system 51% of this suitable area would be unprotected (Fig. 5). We 

found a prediction of an alarming reduction of American Flamingo in 2070, specifically for 

Delta del Cauto Faunal Refuge (Fig. 6), while for Rio Máximo Faunal Refuge the reduction 

was much smaller (Fig. 7).  

Reddish Egret was predicted to expand its distribution in Cuba in the future. In 2050, 

this species would have an expansion very similar for most optimistic (RCP 2.6 W/m2) and 

pessimistic (RCP 8.6 W/m2) future scenarios, 27.1% (4,158 km2) and 26.6 % (4,081 km2) of 

its current size, respectively. In 2070, the expansion would be greater, 35.5% (5,445 km2) for 

an optimist scenario and 44.3% (6,793 km2) for a pessimistic scenario, being notable the 

increase from one scenario to another (Fig. 3, Fig. 4b, Table S4).  
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Fig. 2   Maps of binary suitable area from 10 percentile training presence logistic threshold (Maxent 

output) in current (2000) and future climate scenarios (RCP 2.6 W/m2 and RCP 8.6 W/m2) for 2050 

and 2070 for American Flamingo in Cuba. Maps were obtained using an ensemble-forecast approach 

across the three general circulation models BCC-CSM1-1, CCCM4 and GISS-E2-R. Gray = not 

suitable area, Pink = suitable area 
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Fig. 3   Maps of binary suitable area from 10 percentile training presence logistic threshold (Maxent 

output) in current (2000) and future climate scenarios (RCP 2.6 W/m2 and RCP 8.6 W/m2) for 2050 

and 2070 for Reddish Egret in Cuba. Maps were obtained using an ensemble-forecast approach across 

the three general circulation models BCC-CSM1-1, CCCM4 and GISS-E2-R. Gray = not suitable 

area, Red = suitable area  
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Fig. 4     Percentage of suitable area in current (2000) and future climate scenarios (RCP 2.6 W/m2 
and RCP 8.5 W/m2) for 2050 and 2070 for American Flamingo (a) and Reddish Egret (b) in Cuba. 
The predicted suitability is estimated based on the average 10 percentile training presence logistic 
threshold.  

 

 

 

 

0
20
40
60
80

100
120
140
160

2000 2050 (2.6) 2050 (8.5) 2070 (2.6) 2070 (8.5)

su
ita

bl
e 

ar
ea

 (%
) 

Year (RCP)

b)  Reddish Egret

Stability Expansion

0

20

40

60

80

100

120

2000 2050 (2.6) 2050 (8.5) 2070 (2.6) 2070 (8.5)

su
ita

bl
e 

ar
ea

 (%
)

Year (RPC)

a)  American Flamingo

Stability Contraction



 

133 
 

 

 

 

 

Fig. 5   National System of Protected Areas (SNAP) of Cuba and suitable area according to the most 

pessimistic future climate scenarios (RCP 8.5 W/m2) in 2070 for American Flamingo. Gray = not 

suitable area, Pink = suitable area 
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Fig. 6 Maps of binary suitable area from 10 percentile training presence logistic threshold (Maxent 

output) in a) current (2000) and future climate scenarios b) RCP 2.6 W/m2 for 2050, c) RCP 8.5 

W/m2 for 2050, d) RCP 2.6 W/m2 for 2070 and e) RCP 8.5 W/m2 for 2070 for American Flamingo 

in Delta del Cauto Faunal Refuge, Cuba. Green = not suitable area, Pink = suitable area 
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Fig. 7   Maps of binary suitable area from 10 percentile training presence logistic threshold (Maxent output) in 

a) current (2000) and future climate scenarios b) RCP 2.6 W/m2 for 2050, c) RCP 8.5 W/m2 for 2050, d) RCP 

2.6 W/m2 for 2070 and e) RCP 8.5 W/m2 for 2070 for American Flamingo in Río Máximo Faunal Refuge, 

Cuba. Green = not suitable area, Pink = suitable area, Blue = sea 

 

4. Discussion 
 

Our models predicted that, by the end of this century, under future scenarios relative to 

current conditions, suitable habitat for two waterbird species will be changed in Cuba, either 

positively or negatively. This study represents the first research to predict the climate change 

effect on waterbirds species distribution in Cuba and the Caribbean.  

4.1   American Flamingo  
 

We demonstrated that the current suitable habitat of American Flamingo in Cuba would 

decrease considerably under the projected climate scenarios for 2050 and 2070. Species with 
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a small geographic range tends to be more vulnerable to climate change than more widely 

distributed species (Thomas et al. 2004; Jetz et al. 2007; Lu et al. 2012). Due to the current 

limited distribution to coastal zone, climate change may substantially affect this species by 

reducing its current suitable range. This situation is most likely to occur due to the high 

intensity of human activities and habitat fragmentation throughout most distribution range of 

American Flamingo, mainly in the north coast of Cuba with the tourism development and the 

construction of hotels and roads over the sea to connect different keys (Archipelago Sabana-

Camaguey) (Rodríguez et al. 2014).  Also is known that this species is very sensitive to 

human disturbance and this factor has been responsible for the disappearance of several 

nesting sites in the Caribbean in the last years (Del Hoyo et al. 1992).  

Our predicted reduction of suitable habitats in American Flamingo is similar to other 

previous studies on the impacts of climate change on waterbirds species. For example, Larson 

(1995) extrapolated from a model relating current climate to future wetland density under a 

drier scenario, and suggested that suitable habitat for waterfowls would be reduced under 

those conditions.  Steen and Powell (2012) predicted the range reduction of 64%, as average 

of the ensemble of five common waterbirds species, using SDMs in a drier future. The studies 

cited above correspond to species of orders Anseriformes, Pelecaniformes, Gruiformes, 

Chradriiformes and Podicipediformes. So far, no other previous study has ever assessed the 

impact of climate change and modeled the distribution of any Phoenicopteriformes as we did 

here with flamingoes.  

We found that the mean diurnal temperature range contributed the most to the American 

Flamingo distribution modeling, meaning that this species is more sensitive to the variation 

of this variable. One of the most important concerns with flamingoes and global warming is 

how it affects their mating season. Flamingoes depend on the rainfall to help them mate, so 
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prolonged periods of drought can adversely affect their survival rates (Johnson and Cézilly 

2007). Global warming can also dry out the lagoons and swampy areas where flamingos live, 

also affecting water alkalinity (del Hoyo 1992). When the water becomes too acid, survival 

is affected and then birds need to relocate. They also rely upon the shallow lagoons to provide 

them with sources of food (del Hoyo 1992). The spatio-temporal distribution of non-breeding 

and breeding flamingos seems to be dependent on food density and climatic variation 

(Arengo and Baldassarre 1995; Baldassarre and Arengo 2000; Tuite 2000).  

Another important aspect on habitat protection for American Flamingo are their breeding 

sites. As the models for future scenarios show, specifically in the most important sites for 

American Flamingo breeding in Cuba, the Delta del Cauto Faunal Refuge expects to have a 

considerable reduction of the suitable area until 2070. Delta del Cauto supports the second 

largest breeding site of the Cuban Archipelago with 20,000-30,000 reported nests (Denis et 

al. 2005). Therefore, it is extremely important for the conservation of the species to take our 

predictions into account. Instead, in Río Máximo Faunal Refuge, the reduction prediction of 

suitable area for this species was not drastic until 2070. However, the influence of sea level 

rise by the end of this century could be fatal for this important nesting site. About 100,000-

120,000 individuals gather to nest each year in Río Máximo (Denis et al. 2002), being the 

largest nesting site in Cuba and the Caribbean. The American Flamingo Cuban population is 

one of the most important in the region (Ottenwalder 1991), producing at least 50% of annual 

recruitment (Morales 1996).  

There are several evidences that breeding of flamingoes is affected by climate variations 

(Bechet and Johnson 2008; Bargas and Balow 2008; Bucher and Curto 2012). Flamingoes 

breeding habitat requires three essential conditions: i) precipitations to ensure its 

permanence, as they need fresh water, ii) maintenance of a water belt around the nests, as a 
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defense against terrestrial predators and iii) supply of sufficient food for adults and juveniles 

(Johnson 1983). Breeding colonies are dependent also of undisturbed places to protect eggs 

and chicks from terrestrial predators (Simmons 1996; Johnson and Cézilly 2007). Flamingoes 

nesting habitats can be considered unstable, since the lagoons are subject to drying out or 

pronounced retractions according to environmental conditions (Mascitti and Nicolossi 1992).  

 

4.2   Reddish Egret  
 

Our results showed that the current suitable habitat for Reddish Egret in Cuba would increase 

under the projected climate scenarios for 2050 and 2070. It seems that under a changing 

climate, some species will benefit by extending ranges into currently unsuitable areas (Jetz 

et al. 2007; Hu et al. 2010; Lu et al. 2012). This means that there is not a conservation concern 

for this species under climate change scenarios for the period of time evaluated in relation to 

the variables analyzed in our predictive model.  

The fact that the suitable habitat increases for Reddish Egret in future climatic scenarios 

could be due to some factors. First, this species has a wider distribution range, with a greater 

latitude and longitude amplitude if we compare with the American Flamingo, which would 

allow a wider range of climate amplitude for this species. Also, even though this species is a 

coastal habitat specialist (Lowther and Paul 2002; Bates et al. 2016), its foraging and 

breeding sites are less specialized than for American Flamingo (del Hoyo 1992). On the other 

hand, there are no previous reports of breeding sites losses for Reddish Egret due to climatic 

variations or extreme droughts. The main factors documented for nesting sites losses in this 

species are human disturbance, coastal development and sea level rise (Hodgson and Paul 

2011), as well as the presence of predators (Cox et al. 2019).  
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Nevertheless, this species can be affected indirectly by other variables associated to 

climate change that were not included in our models.  Among these variables, alterations due 

to sea level rise, subsidence, and increased frequency and intensity of storms and flooding 

(Wilson et al. 2014) may lead to serious habitat losses. The Reddish Egret is completely 

dependent on coastal marine habitats for breeding and foraging, habitats which are vulnerable 

to sea level rise. Most of the current breeding sites used by the species could be permanently 

inundated and these changes may be irreversible (Wilson et al. 2014). 

Although the suitable habitat may increase in future scenarios for the Reddish Egret, and 

could meet the climatic conditions for its survival, these extensions of increased habitat may 

not include other specific conditions for this species, such as shallow coastal waters and salt-

pans (González et al. 2016). There is some belief that foraging habitat might be limiting due 

to the relatively specific physical and hydrologic conditions required by the Reddish Egret to 

forage (Wilson et al. 2014) and this species is rarely record far from the coast. The Reddish 

Egret is the only Ardeid species to be restricted to coastal saline habitats. The critical need 

for this species appears to be proximity to shallow open waters suitable for its unique foraging 

technique (Wilson et al. 2014). Even if this species would increase its range in Cuba in the 

future, we believe it would not have a strong pressure for resource competition due to its 

current small population size. The number of Reddish Egrets using Cuban coastal ecosystems 

is about 500 birds and there are at least 155 breeding pairs, estimated at 13 breeding sites 

(Gonzales et al. 2016). Also, the number of nests at breeding sites of Reddish Egret in Cuba 

is small (ranged from two to 27; Gonzales et al. 2016), compared with others egret species 

in the country.  

Few works have been carried out in species of Ardeidae family evaluating the potential 

impacts of climate change and using SDMs. One of them studied the White-eared Night 
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Heron Gorsachius magnificus, an endangered species of Asia (Hu and Liu 2014). The results 

showed that the extent of suitable habitat range may shrink by more than 35% under a 

predicted changing climate when assuming the most pessimistic condition, contrary to our 

results with Reddish Egret. In the same way, Steen and Powell (2012) projected range loss 

for American Bittern Botaurus lentiginosus close to 29% of their current range. However 

other research on waterbirds has shown also an increase under a changing climate, as is the 

case for Black-faced Spoonbill Platalea minor, endemic to Asia (Hu et al. 2010), so this is 

not an isolated result.  

 

4.4   Modeling approach  
 

There is skepticism about the reliability of predictive models and their application in 

conservation (Wiens et al. 2009; Dawson et al. 2011) because, in general, they do not 

consider all the complexity inherent in nature. For example, evolutionary processes and 

species ability to adapt (Skelly et al. 2007) or biotic relationships (e.g. competition and 

predation) (Anderson et al. 2002; Peterson et al. 2002; Hebblewhite et al. 2005; Gutiérrez et 

al. 2005), which could limit the permanence of the species despite suitable climatic 

environments (Kissling et al. 2012). Other factors impact species and their habitats (e.g., 

sociopolitical factors, invasive species and diseases), but these were not included in our 

models. Even though the complexity of the natural system constrains predictive power of 

models, the bioclimate envelope approach can provide a useful first approximation to the 

potentially dramatic impact of climate change on biodiversity (Pearson and Dawson 2003). 

They provide an effective way of looking into the future for the sake of conservation and 
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resource management (Wiens et al. 2009). Our study outlines an approach to assess 

vulnerability of two waterbird species under climate change scenarios.  

Species detectability can also influence model results (Steen and Powell 2012). 

American Flamingo detectability is much easier than Reddish Egret’s, which can be confused 

with other egret species, especially the white morph. Two types of errors, omission 

(exclusion of areas inhabited) and commission (inclusion of areas not actually inhabited), 

often exist in species distribution models (Fielding and Bell 1997). Commission error seems 

to be more frequent than omission error in many circumstances (Thuiller et al. 2006; Elith et 

al. 2006). This error could have influenced the results of Reddish Egret models, whereby it 

should be interpreted with more caution. Climate models are currently the strongest tools for 

simulating future climate scenarios, however, all climate models are not equally useful and 

contain a variety of uncertainties at all spatial and temporal scales (Beaumont et al. 2008).  

 

4.5   Conservation implications 
 

Results in the present study highlight the importance of incorporating climate change into 

habitat conservation planning of species. Our results show that American Flamingo is a 

highly sensitive species to climate change providing several important implications for 

conservation. First, new protected areas should be established in Cuban coast, specifically 

those including large mud flats and hyper-saline estuaries. Second, management actions 

should be focused on protecting known habitats and nesting sites, as well as raising awareness 

to reduce habitat degradation and human disturbance. Also for the successful breeding of 

American Flamingo in adverse climatic conditions, it is important the management of 

duration and magnitude of flooding flows of fresh and salty waters (Arthur et al. 2012), 
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regulating rivers and wetlands. Successful breeding of waterbirds is one of the most common 

objectives for the management of environmental flows (MDBA 2014). To prepare for these 

contingencies, we suggest that the conservation agencies and local Cuban governments place 

a priority on the establishment and maintenance of targeted wetlands.  

Long-term monitoring of waterbird populations (Kingsford et al. 2013; Hansen et al. 

2015) provides a basis for the identification of trends, patterns of variation, and potential 

change drivers for particular species at specific wetlands (Colloff et al. 2015). Distribution 

modeling contribute to management decisions by determining how habitat availability varies 

between species with different habitat requirements, by highlighting changes in use of 

wetlands that have been historically breeding sites of waterbirds. Such monitoring will give 

a comprehensive assessment of wetland habitat availability, and provide basis for waterbird 

conservation and management in the future. In accordance with the results of the American 

Flamingo about climate change, it is urgent to update the status of this species in Cuba, 

population sizes, current nesting sites and to monitor these variables periodically.  

According to the previous forecasts, it is necessary to develop stronger climate change 

adaptation and conservation strategies, coupled with designing and planning the National 

System of Protected Areas in Cuba. Also, we recommend a management plan aimed at 

wetlands conservation, in order to improve and increase the quality and extent of suitable 

protected habitats. These zones represent critical climatic shelters for the conservation and 

survival of the studied species and an important part of Cuba's and the regional biota. It is 

important to highlight that this work could be a reference and an inspiration to predict the 

climate change effect on other waterbirds species distribution for their future conservation in 

Cuba and the Caribbean.  
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7. Supplementary materials 
 

 Fig. S1   Jackknife results plot for initial MaxEnt model, provided by MaxEnt output for American 

Flamingo Phoenicopterus ruber (a) and Reddish Egret Egretta rufescens (b) 

a 
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Fig. S2   Accuracy assessment of the Maxent models (30 runs) through the receiver operating 

characteristic curve (ROC) and area under curve (AUC) value for American Flamingo (a) and 

Reddish Egret (b)  
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Table S1. Bioclimatic variables extracted from WorldClim (http://www.worldclim.org/) and used 

to test the effects of climate change on the distribution of American Flamingo and Reddish Egret 

bio1 = Annual mean temperature 

bio2 = Mean diurnal temperature range (mean of monthly (max temp - min temp)) 

bio 3 = Isothermality (BIO2/BIO7) (* 100) 

bio 4 = Temperature seasonality (standard deviation *100) 

bio5 = Max temperature of warmest month 

bio6 = Min temperature of coldest month 

bio7 = Temperature annual range (BIO5-BIO6) 

bio8 = Mean temperature of wettest quarter 

bio9 = Mean temperature of driest quarter 

bio10 = Mean temperature of warmest quarter 

bio11 = Mean temperature of coldest quarter 

bio12 = Annual precipitation 

bio13 = Precipitation of wettest month 

bio14 = Precipitation of driest month 

bio15 = Precipitation seasonality (coefficient of variation) 

bio16 = Precipitation of wettest quarter 

bio17 = Precipitation of driest quarter 

bio18 = Precipitation of warmest quarter 

bio19 = Precipitation of coldest quarter 
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Table S4    Extent of suitable area (km2), based on binary maps, in current (2000) and future climate scenarios 

(RCP 2.6 W/m2 and RPC 8.6 W/m2) for 2050 and 2070 for American Flamingo and Reddish Egret in Cuba  

Specie Year (Scenario) Suitable areas  Stability Contraction Expansion 

 RCP W/m2 km2 % (km2) % (km2) % (km2) 

American 

Flamingo 2000 11,231.2    

 2050 (2.6) 10,008.8 90 (10,008.8) 10 (1,123) 0 

 2050 (8.5) 8,108.8 72.2 (8,108.8) 27.8 (3,123) 0 

 2070 (2.6) 8,018.4 71.4 (8,018.4) 28.6 (3,213) 0 

 2070 (8.5) 6,934.4 61.7 (6,934) 38.3 (4,297) 0 

      

 

 

Reddish Egret 2000 15,331.2    

 2050 (2.6) 19,489.6 100 0 27.1 (4,158) 

 2050 (8.5) 19,412.8 100 0 26.6 (4,081) 

 2070 (2.6) 2,0776 100 0 35.5 (5,445) 

 2070 (8.5) 22,124 100 0 44.3 (6,793) 

 

 

 



 

160 
 

FINAL CONSIDERATIONS  
 

The results of this thesis provide key information for future management and conservation 

of waterbirds in Cuba and North America, as most species are winter migrants.  Chapter one 

contains the most comprehensive study on waterbird assemblages in Cuban natural wetlands, 

consisting of a long-term assessment of an extensive area of wetlands using standardized 

methods, in which we registered 110 bird species. The study area covers a fourth of Cuban 

coastal area, representing 40 % of the wetlands in the island. Cuba is the largest of the 

Caribbean islands, encompassing most of the wetlands and receiving, each year, a significant 

flow of migratory waterbirds from North America. Based on our results, we developed 

suggestions for wetlands management in order to enhance waterbirds conservation. Our 

results show the seasonal and interannual stability of waterbirds assemblage, the good level 

of protection of Cuban southern coast, and also highlight the global importance of waterbird 

conservation in this area and its wetlands, mainly in fall migration. We found that 12 species 

exceeded 1 % criterion of world population and we encouraged the creation of two new 

Ramsar sites, a new protected area, and one Important Bird Areas (IBAs), in addition to the 

reaffirmation of the status of several sites within these categories. This work could be also 

relevant because it gives a good information about coastal wetlands of international 

importance in the Caribbean, still unexplored.  

In the second chapter, we present another relevant result relative to the effect of 

landscape configuration at different spatial scales on the structure of waterbird communities 

in coastal wetlands in a conservation gradient in Cuban southwest. This study shows that 

landscape context of coastal wetlands influences waterbird abundance, species composition 

and waterbird diversity. The effects of landscape variables varied according to the scale and 
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the sensitivity of the waterbird community descriptor. Our results show that the scale at which 

the landscape structure of coastal wetland is measured predicts abundance, waterbird 

composition and diversity. In our wider scale of measurement (6 km), the mean patch area 

of mangrove had a negative influence on waterbird abundance, while at the narrower spatial 

scale (2 km) the percentage of landscape covered by lagoons, salt marshes and rivers had a 

positive effect. Instead, a higher percentage of landscape covered by mangroves and a 

percentage of landscape covered by lagoons, salt marshes and rivers had a positive effect in 

waterbird composition at 2 km. The percentage of landscape covered by mangroves had a 

negative effect in waterbird diversity at the 4 km spatial scale. The percentage of 

anthropogenic land use has not influenced in any response variable at the evaluated scales.  

Several recommendations regarding the effective management of waterbirds to 

contribute to adequate protected area planning on Cuban south coast are given, based on these 

results. First, management plans need to be implemented at the regional level addressing 

conservation and restoration of heterogeneous landscapes at different spatial scales. The 

maintenance of larger open water lagoons combined with small mangrove patches would 

favor increasing waterbird abundance during migration congregation. Also, the definition of 

boundaries of protected wetlands should take into account the results of scale of effect, in 

both new and existing reserves. Even non-protected areas should be protected by biodiversity 

protection laws, such as the Cuban coastal law, which must be adequately implemented in 

order to protect lagoons, salt marshes and mangroves. The protected areas of this region 

should follow similar management protocols for all suitable waterbird habitats, respecting 

the suggested scales.  

In chapter 3, current and future distributions of American Flamingo Phoenicopterus 

ruber and Reddish Egret Egretta rufescens were predicted using species distribution models. 
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Our results show that the current distribution of American Flamingo is predicted to reduce 

38 % under a changing future climate, in the most pessimistic scenario of 2070, while the 

current distribution size of Reddish Egret is predicted to increase in 44 %. The suitable 

potential habitat of American Flamingo in the most pessimistic scenario of 2070 would 

distribute 51 % outside the National System of Protected Areas of Cuba. From this study we 

can conclude that American Flamingo is a highly-sensitive species to climate change and we 

discuss several implications for this species conservation. New protected areas should be 

established in Cuban coast and management actions should be focused on protecting known 

habitats and nesting sites, as well as raising awareness to reduce habitat degradation and 

human disturbance. Also, for the successful breeding of American Flamingo in adverse 

climatic conditions, it is important to manage the duration and magnitude of flooding flows 

of fresh and salty waters, coming from nearby rivers and wetlands. We suggest that the 

conservation agencies and local Cuban governments prioritize the establishment and 

maintenance of targeted wetlands. It is necessary to implement a long-term monitoring plan 

to urgently update the status of American Flamingo in Cuba, assess population sizes and 

current nesting sites. Also, it is necessary to design and plan the National System of Protected 

Areas of Cuba in a short term, taking into account conservation strategies adapted to climate 

change., as well as to guide management measures aimed at wetlands conservation and 

fragmentation reduction.  

Birds are very sensitive to threats like habitat loss, habitat fragmentation and 

degradation, pollution, climate change and unregulated harvest.  The results of this thesis not 

only highlights the good health of several Cuban wetlands through high quality waterbirds 

data, but encourage their management at the landscape level to prevent their habitat loss, and 

the prediction of the possible effects of future climate changes upon charismatic species.  
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