
UNIVERSIDADE FEDERAL DO PARANÁ

ANDRESSA MENDES CARDOSO

MODELO MATEMÁTICO PARA A GESTÃO DE ESCALAS DE SERVIÇO PARA CONTROLADORES DE TRÁFEGO AÉREO

Dissertação apresentada ao curso de Pós-Graduação em Engenharia de Produção Setor de Tecnologia, Universidade Federal do Paraná, como requisito parcial à obtenção do título de Mestre em Engenharia de Produção.

Orientador: Prof. Dr. José Eduardo Pécora Junior

Coorientador: Prof. Dr. Cassius Tadeu Scarpin

CURITIBA 2020

Catalogação na Fonte: Sistema de Bibliotecas, UFPR Biblioteca de Ciência e Tecnologia

C268m

Cardoso, Andressa Mendes

Modelo matemático para a gestão de escalas de serviço para controladores de tráfego aéreo [recurso eletrônico] /Andressa Mendes Cardoso. – Curitiba, 2020

Dissertação - Universidade Federal do Paraná, Setor de Tecnologia, Programa de Pós-Graduação em Engenharia de Produção, 2020.

Orientador: José Eduardo Pécora Junior. Coorientador: Cassius Tadeu Scarpin.

1. Controle de Tráfego Aéreo. 2. Aeroportos. 3. Modelos matemáticos. 4. Qualidade de Vida no Trabalho. I. Universidade Federal do Paraná. II. Pécora Junior, José Eduardo. III. Scarpin, Cassius Tadeu. IV. Título.

CDD: 387.740426

Bibliotecária: Vanusa Maciel CRB- 9/1928

MINISTÉRIO DA EDUCAÇÃO
SETOR DE TECNOLOGIA
UNIVERSIDADE FEDERAL DO PARANÁ
PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO
PROGRAMA DE PÓS-GRADUAÇÃO ENGENHARIA DE
PRODUÇÃO - 40001016070P1

TERMO DE APROVAÇÃO

Os membros da Banca Examinadora designada pelo Colegiado do Programa de Pós-Graduação em ENGENHARIA DE PRODUÇÃO da Universidade Federal do Paraná foram convocados para realizar a arguição da dissertação de Mestrado de ANDRESSA MENDES CARDOSO intitulada: MODELO MATEMÁTICO PARA A GESTÃO DE ESCALAS DE SERVIÇO PARA CONTROLADORES DE TRÁFEGO AÉREO, que após terem inquirido a aluna e realizada a avaliação do trabalho, são de parecer pela sua ARROVA CAO no rito de defesa.

A outorga do título de mestre está sujeita à homologação pelo colegiado, ao atendimento de todas as indicações e correções solicitadas pela banca e ao pleno atendimento das demandas regimentais do Programa de Pós-Graduação.

CURITIBA, 28 de Fevereiro de 2020.

CASSIUS TADEU SCARPIN

Presidente da Banca Examinadora (UNIVERSIDADE FEDERAL DO PARANÁ)

EDUARDO ALVES PORTELA SANTOS

Avaliador Externo (PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ)

GUSTAVO VALENTIM LOCH

Availador Interno (UNIVERSIDADE FEDERAL DO PARANA)

ARINEI CARLOS LINDBECK DA SILVA

C. C.

Avaliador Interno (UNIVERSIDADE FEDERAL DO PARANÁ)

AGRADECIMENTOS

Aproveito esta oportunidade para refletir e agradecer a todos que colaboraram para que eu chegasse até aqui.

Agradeço a Deus pela vida e saúde;

ao Professor Cassius por acreditar no meu trabalho não me deixando desistir, me orientando com muita dedicação e zelo;

ao Professor Pécora pela orientação;

aos meus pais, meus irmãos e meu cunhado Jean pelo incentivo e por jamais me deixarem desistir;

ao meu companheiro Renan, minha sogra Sueli e minha cunhada Eloise pela compreensão e ajuda com minha pequena Julia nos momentos em que precisei estar distante;

a todos os meus amigos, por entenderem todas as vezes em que eu não pude estar presente;

aos colegas do Grupo de Tecnologia Aplicada à Otimização (GTAO), especialmente ao meu amigo Vinícius por compartilhar as angústias dessa vida de mestrando e por me ajudar sempre que precisei;

ao Instituto Tecnológico de Transportes e Infraestrutura (ITTI) e à Fundação de Pesquisas Florestais do Paraná (FUPEF PR) pelo apoio financeiro.

RESUMO

O espaço aéreo sob responsabilidade brasileira passa dos 20.000.000 km² (vinte milhões de km²) e para garantir a segurança de todas as aeronaves no espaço aéreo durantes as diversas fases do voo, os Serviços de Tráfego Aéreo funcionam ininterruptamente, sendo necessário que os profissionais desta área trabalhem em regime de escalas. Estudos indicam que profissionais sujeitos a esse regime de trabalho sofrem efeitos em decorrência de fatores relacionados aos horários irregulares, incluindo trabalhos noturnos. Este trabalho apresenta um modelo matemático de programação linear inteira misto desenvolvido para a designação de escalas de serviço para operadores de um Centro de Controle de Área, onde se realiza o controle de tráfego aéreo. A proposição deste modelo objetiva a maximização das preferências declaradas pelos Controladores e a redução dos custos, considerando restrições opcionais ou de qualidade (restrições soft) e restrições obrigatórias (restrições hard). As declarações de preferências dos operadores pelas designações foram alvo de um estudo buscando identificar qual a melhor composição das declarações para uma boa gestão das escalas em questões de satisfação com o trabalho e qualidade de vida dos profissionais. Foram definidos os cenários para análise e as instâncias para testes em tamanho real, com 120 trabalhadores e considerando um horizonte de planejamento de um mês. O modelo demonstrou capacidade de utilização e encontrou soluções ótimas em grande parte das instâncias em tempos computacionais considerados baixos em média. Dois cenários foram escolhidos como os melhores para a gestão das escalas de serviço, a partir da análise das soluções encontradas, identificou-se que o modelo é capaz de atender 83% das preferências indicadas pelos profissionais, proporcionando aumento na satisfação com o trabalho. O modelo também possibilita que os profissionais tenham mais liberdade na gestão dos horários de trabalho, uma vez que é possível indicar combinações de suas preferências para folgas, tendo em vista que essas indicações foram atendidas em mais de 99% dos casos. Estes resultados demonstram que o modelo é uma ferramenta adequada para a gestão das escalas de serviço para Controladores de Tráfego Aéreo minimizando os efeitos negativos relacionados ao regime de trabalho por escalas, como a redução dos níveis de fadiga, melhora na qualidade do sono e no bem-estar no trabalho, melhores condições para participar de atividades de lazer, entre outros.

Palavras-chave: Escala de Serviço. Controle de Tráfego Aéreo. Programação Linear Inteira Mista. Qualidade de Vida no Trabalho.

ABSTRACT

The airspace under Brazilian responsibility goes from 20,000,000 km² (twenty million km²) and to guarantee the safety of all aircraft in the airspace during the various phases of the flight, the Air Traffic Services operate around the clock, being necessary that the professionals work in scales. Studies indicate that professionals subject to this work regime suffer effects due to factors related to irregular hours, including night work. This work presents a mathematical model of mixed integer linear programming developed for the designation of shifts work for Air Traffic Controllers in a center control, which aims to maximize the preferences declared by workers and reduce costs, considering optional or quality restrictions (soft constraints) and mandatory restrictions (hard constraints). The operators' declarations of preference for the designations were the subject of a study seeking to identify the best composition of the declarations for a good management of the shifts in matters of satisfaction with the work and quality of life of the professionals. Scenarios for analysis and instances for life-size tests were defined, with 120 workers and considering a planning horizon of one month. The model demonstrated usability and found optimal solutions in most instances in computational times considered low on average. Two scenarios were chosen as the best ones for the management of shifts schedules, from the analysis of the results found. It was identified that the model is capable of meeting 83% of the preferences indicated by the professionals, providing an increase in job satisfaction. The model also allows professionals to have more freedom in the management of working hours, since it is possible to indicate combinations of their preferences for time off, given that these indications were met in more than 99% of cases. These results demonstrate that the model is an adequate tool for the management of shift scheduling for Air Traffic Controllers, minimizing the negative effects related to the work regime by scales, such as the reduction of fatigue levels, improvement in the quality of sleep and well-being at work, better conditions to participate in leisure activities, among others.

Keywords: Shift Scheduling. Air Traffic Control. Mixed Integer Linear Programming. Quality of Life at Work.

LISTA DE FIGURAS

FIGURA 1 – ETAPAS DA PESQUISA	28
FIGURA 2 – DESENHO PARCIAL DA SOLUÇÃO DA INSTÂNCIA 205030_0	57
FIGURA 3 – DESENHO PARCIAL DA SOLUÇÃO DA INSTÂNCIA 206020_0	58

LISTA DE GRÁFICOS

GRÁFICO 1 -	- MÉDIAS DE TEMPO E GAP (%) COM 45 CENÁRIOS POR	
	PREFERÊNCIAS	44
GRÁFICO 2 –	- MÉDIAS DE TEMPO E GAP (%) COM 100 CENÁRIOS POR	
	PREFERÊNCIAS	45
GRÁFICO 3 -	- MÉDIAS DE TEMPO E GAP (%) COM 160 CENÁRIOS POR	
	PREFERÊNCIAS	47

LISTA DE TABELAS

TABELA 1 – CENÁRIOS DEFINIDOS PARA ANÁLISE DE VIABILIDADE DO	
MODELO	31
TABELA 2 – EXEMPLO DE INDICAÇÃO DE PREFERÊNCIAS	32
TABELA 3 – RELAÇÃO DE TURNOS E ESPECIFICAÇÕES	34
TABELA 4 – NOTAÇÕES UTILIZADAS NO MODELO MATEMÁTICO	35
TABELA 5 – VALORES ATRIBUÍDOS AOS PARÂMETROS EM FUNÇÃO DA	
DIPONIBILIDADE	38
TABELA 6 – CENÁRIOS DEFINIDOS PARA INVESTIGAR DISCREPÂNCIAS	
ENCONTRADAS	44
TABELA 7 – 160 CENÁRIOS FINAIS GERADOS PARA TESTES	46
TABELA 8 – RESULTADO DA SELEÇÃO 1 – PRIMEIRA TENTATIVA	48
TABELA 9 – RESULTADO DA SELEÇÃO 2 – PRIMEIRA TENTATIVA	49
TABELA 10 – CENÁRIOS POR PREFERÊNCIAS APÓS CRITÉRIOS DE	
EXCLUSÃO	50
TABELA 11 – RESULTADO DA SELEÇÃO 1 – SEGUNDA TENTATIVA	51
TABELA 12 – RESULTADO DA SELEÇÃO 2 – SEGUNDA TENTATIVA	51
TABELA 13 – RESULTADOS DE TODAS AS INSTÂNCIAS DOS MELHORES	
CENÁRIOS	52

SUMÁRIO

1	INTRODUÇÃO	. 13
1.1	OBJETIVOS	. 16
1.1.1	Objetivo Geral	. 16
1.1.2	Objetivos Específicos	. 16
1.2	JUSTIFICATIVA	. 16
1.3	LIMITAÇÕES DO ESTUDO	. 17
1.4	ESTRUTURA DO TRABALHO	. 17
2	FUNDAMENTAÇÃO TEÓRICA	. 19
2.1	EFEITOS DO TRABALHO POR TURNOS	. 19
2.2	ALOCAÇÃO DE HORÁRIO DE TRABALHO	. 22
3	MATERIAIS E MÉTODOS	. 27
3.1	CLASSIFICAÇÃO METODOLÓGICA DA PESQUISA	. 27
3.2	ETAPAS DA PESQUISA	. 28
3.2.1	Modelo de Programação Linear Inteira Mista	. 28
3.2.2	Definição de Cenários	. 30
3.2.3	Geração de Instâncias	. 32
3.2.4	Análise dos Resultados	. 33
4	DESCRIÇÃO DO PROBLEMA E O MODELO	34
5	RESULTADOS E DISCUSSÃO	43
6	CONCLUSÃO	. 60
	REFERÊNCIAS	. 62
	APÊNDICE 1 – TABELA RESUMO DE RESULTADOS ENCONTRADOS	65

1 INTRODUÇÃO

O Brasil, com aproximadamente 8,51 milhões de km², é o quinto maior país em extensão territorial do mundo, perdendo apenas para Rússia, Canadá, China e Estados Unidos. Devido a essa realidade, o transporte aéreo vem ganhando destaque dentre as alternativas de mobilidade, pois, além de ser o mais rápido, tem expandido sua área de atuação, tornando-se possível viajar para cidades antes não atendidas por este modal (IATA, 2019).

Além disso, devido a sua popularidade, os custos de operação estão sendo diluídos e o preço das passagens está consideravelmente mais acessível à população, visto que a tarifa aérea média doméstica real (atualizada pela inflação) referente ao ano de 2017 foi a mais baixa da série histórica desde 2011, no valor de R\$ 357,16 e que a taxa de ocupação das aeronaves e a procura por voos domésticos aumentaram naquele ano (ANAC, 2018). Em 2018 a tarifa aérea média real sofreu um aumento de 1% em comparação ao ano anterior devido ao aumento dos custos atrelados ao combustível de aviação e às despesas operacionais dos serviços de transporte aéreo (ANAC, 2019a).

Além da velocidade e do preço mais atrativo, o transporte aéreo também tem vantagens em relação ao modal rodoviário na questão segurança. Segundo o Relatório Anual de Segurança Operacional (RASO) de 2018, publicado pela ANAC, a aviação regular, segmento da aviação civil que envolve o transporte de passageiros e/ou carga por meio de companhias aéreas, não apresentou, nos últimos 5 anos, nenhum acidente com fatalidades, sendo assim, "um dos modais de transporte mais seguro da atualidade" (ANAC, 2019b).

Para garantir e manter a segurança do transporte aéreo, porém, é fundamental a atuação dos profissionais de Controle de Tráfego Aéreo. Eles são encarregados de manter seguro, ordenado e rápido o tráfego de aeronaves no espaço aéreo e nos aeroportos, passando instruções e informações aos pilotos com o intuito de evitar colisões entre as aeronaves e entre aeronaves e obstáculos.

De acordo com a Instrução do Comando da Aeronáutica 100-12 (2016), a Torre de Controle de Aeródromo (TWR), o Controle de Aproximação (APP) e o Centro de Controle de Área (ACC) são os órgãos de Serviços de Tráfego Aéreo (ATS) que têm como finalidade: (a) prevenir colisões e (b) acelerar e manter ordenado o fluxo de tráfego aéreo, controlando as aeronaves nas diversas fases do voo.

O serviço de controle de área é exercido em quatro Centros Integrados de Defesa Aérea e Controle de Tráfego Aéreo (CINDACTA) localizados em Brasília, Curitiba, Recife e Manaus. Juntos, são responsáveis pelo controle de todo espaço aéreo brasileiro que ultrapassa as fronteiras territoriais e se estende por parte significativa do Oceano Atlântico, perfazendo um total de 22 milhões de km² sobre terra e mar (DECEA, 2018).

Um Controlador de Tráfego Aéreo (ATCO) consegue controlar uma quantidade limitada de aeronaves ao mesmo tempo. Devido a isso, o espaço aéreo sob jurisdição de cada ACC é dividido em setores. Tais setores podem ser agrupados na medida em que a quantidade de tráfego diminui ou separados quando essa quantidade aumenta e atinge o número "N".

O número (ou fator) "N" é o número máximo de aeronaves que podem ser controladas simultaneamente em um setor em um determinado período de tempo sem que haja sobrecarga de trabalho para o ATCO. O cálculo desse fator leva em consideração o tempo médio de permanência da aeronave no setor, o tempo médio de comunicação com a aeronave, o tempo médio despendido pelo controlador com outras tarefas, dentre outros fatores relevantes (DECEA, 2014).

Como o serviço de controle de tráfego aéreo em ACC é ininterrupto, torna-se inevitável o trabalho em regime de escala, distribuídos em turnos. Frequentemente os operadores são designados em turnos alternados durante a semana, não tendo uma rotina fixa de horário de trabalho. Ao serem submetidos a esse sistema de horários, de acordo com Marcolino, Siqueira e Barroso (2015, p. 400), Controladores de Tráfego Aéreo podem sofrer alterações referente à "qualidade do sono, sonolência durante o turno, fadiga, estresse, alterações de humor e diminuição no estado de alerta e vigilância", sintomas associados à alteração no ritmo circadiano, ou seja, ritmos endógenos de aproximadamente 24 horas (24 ± 4h) que regulam a maioria, se não todos, os principais sistemas fisiológicos em mamíferos (TOUITOU; REINBERG; TOUITOU, 2017).

Inúmeros fatores precisam ser considerados para a confecção de uma escala de serviço, de modo que ela garanta o atendimento de todas regras trabalhistas, distribua de maneira equilibrada a carga de trabalho, possibilite períodos de descanso e de folgas adequados para a recuperação após os turnos de trabalho e, além de tudo, seja capaz de atender às preferências dos trabalhadores pelas designações. A complexidade da atividade de designação de escalas de trabalho fica

maior conforme aumenta a quantidade de profissionais e de turnos envolvidos, fazendo com que seja inviável, ou até mesmo impossível, que esse serviço seja feito manualmente.

Assim, esse estudo reconhece a importância daqueles que vigiam permanentemente o espaço aéreo brasileiro e entende que as escalas de serviço dos controladores de tráfego aéreo, se aprimoradas, podem melhorar as condições de trabalho e de vida desses profissionais. Para atender a tal propósito, esse trabalho propõe um modelo matemático de programação linear inteira mista para otimizar a determinação das escalas de serviço dos Controladores de Tráfego Aéreo, respeitando as restrições operacionais, as indisponibilidades regulamentares e buscando atender às preferências declaradas pelos operadores pelos turnos de trabalho.

O modelo é composto por uma variável binária, que representa a designação dos operadores nos diversos turnos de serviços existentes no mês de referência, e uma variável de folga no conjunto de restrições (20). A formulação matemática possui 24 conjuntos de restrições, sendo que destes, 21 são restrições do tipo *hard*, isto é, devem ser satisfeitas obrigatoriamente e três restrições, inseridas na Função Objetivo, são do tipo *soft*, devendo ser atendidas na medida do possível (atendimento das preferências declaradas pelos operadores, minimização das designações nos turnos com jornadas estendidas e minimização no uso da variável de folga).

No melhor do nosso conhecimento, esse modelo apresentado é uma alternativa aos modelos apresentados por Stojadinovic (2014) e Stojadinovic (2015), cujos requisitos para a confecção das escalas são semelhantes aos deste trabalho. No entanto, em se tratando das análises de gestão propostas, não foi encontrado nenhum trabalho com este foco na designação das escalas de serviço para Controladores de Tráfego Aéreo.

Assim, tem-se como contribuição para a literatura, a abordagem de solução e um modelo de gestão propostos neste trabalho para este problema que é importante em qualquer país do mundo que apresente disponibilidade de serviços de Controle de Tráfego Aéreo.

1.1 OBJETIVOS

Nesta seção são apresentados os objetivos que guiaram o desenvolvimento deste estudo.

1.1.1 Objetivo Geral

Apresentar um modelo de gestão das escalas de serviço para Controladores de Tráfego Aéreo por meio de um modelo de Programação Linear Inteira Mista e da análise do comportamento de diversos cenários de políticas de declaração de preferências permitidas aos operadores.

1.1.2 Objetivos Específicos

- Propor um modelo matemático para a determinação das escalas de serviço para Controladores de Tráfego Aéreo maximizando o atendimento das preferências declaradas pelos operadores e minimizando os custos extras com jornadas estendidas;
- Analisar o comportamento das soluções do modelo em diversos cenários de políticas de declarações de preferências;
- ldentificar os cenários mais adequados para uma boa gestão das escalas de serviço, no que diz respeito ao tempo de processamento e à qualidade da solução, ou seja, aqueles que apresentam maior atendimento de "preferências", menor violação de "não preferências", bem como, caso atingido o tempo limite de processamento, menor *gap* na Função Objetivo.

1.2 JUSTIFICATIVA

O serviço de Controle de Tráfego Aéreo é indispensável para a garantir e manter a segurança do transporte aéreo. Para tanto, é imprescindível que profissionais capacitados sejam designados nas quantidades necessárias para o atendimento da demanda existente.

Nesse sentido, esse trabalho busca, por meio de programação matemática, a otimização na designação das escalas de serviço de ATCO respeitando as

indisponibilidades regulamentares e atendendo, dentro do possível, às preferências declaradas. Ademais, o estudo pretende apresentar, como ferramenta de apoio à tomada de decisão e à gestão das equipes de profissionais de controle de tráfego aéreo, uma análise da dinâmica das escalas quando a declaração de preferências é limitada a diversas combinações de "preferências" e de "não preferências" dos operadores pelos turnos a serem designados.

1.3 LIMITAÇÕES DO ESTUDO

A pesquisa para a determinação das escalas de serviço para Controladores de Tráfego Aéreo foi iniciada a partir de uma oportunidade de acesso às informações de um Centro de Controle de Área. Diversas informações e dados importantes foram coletados para que fosse possível o desenvolvimento do modelo, tais como duração dos turnos e interstícios, folgas e demandas, dentre outros, entretanto, os dados pessoais relativos às preferências da equipe de Controladores de Tráfego Aéreo não puderam ser acessados tendo em vista serem de caráter sigiloso, passando a ser um fator limitador do estudo. Para superar este ponto limitante, optou-se por fazer um código em C# para a geração dos dados referente disponibilidades e às preferências dos operadores distribuindo os valores aleatoriamente dentro dos parâmetros definidos.

No entanto, como as preferências humanas por horários de trabalho podem ter um padrão característico (por exemplo, pode-se preferir não trabalhar uma noite específica por semana em decorrência de um curso), a aleatoriedade programada no código gerador das instâncias não conseguiu reproduzir tal comportamento. Para superar dada limitação, cada cenário foi testado em uma amostra de 10 instâncias para que fosse possível verificar o comportamento de cada combinação.

1.4 ESTRUTURA DO TRABALHO

Este trabalho é composto por 6 capítulos, incluindo esta Introdução. No segundo capítulo, é feita a Fundamentação Teórica, identificando os principais conceitos e abordagens sobre o tema; no terceiro capítulo, são abordados materiais e métodos da pesquisa, desde a classificação até a determinação dos procedimentos metodológicos do estudo; no Capítulo 4, é apresentado o problema da designação de

escalas e o modelo matemático. O Capítulo 5 apresenta os resultados obtidos e, por fim, no último capítulo, é apresentada a conclusão e as sugestões para estudos futuros.

2 FUNDAMENTAÇÃO TEÓRICA

Nas últimas décadas, vem crescendo o número de pesquisas com o intuito de melhorar a alocação de profissionais em horários de trabalho conforme a demanda, tendo em vista os altos custos de mão-de-obra em grande parte das empresas. Dessa forma, qualquer redução, por menor que seja em termos percentuais, pode significar uma grande economia para os empregadores (BERGH et al., 2012). Nesse capítulo, são apresentados alguns conceitos relativos à alocação de horários a profissionais, seus efeitos na qualidade de vida dos trabalhadores e quais métodos têm sido utilizados para a resolução desse tipo de problema.

2.1 EFEITOS DO TRABALHO POR TURNOS

Trabalhadores das áreas da saúde, da segurança pública, de transportes e industriais convivem com a realidade de trabalho noturno ou por turnos, alternados ou não. Esta também tem se tornado a realidade de outros tipos serviços, principalmente em grandes centros urbanos, tal como restaurantes, postos de combustíveis, farmácias. Por essa razão, o efeito causado por estes sistemas de horários tem sido tema de diversos estudos em busca da melhoria da qualidade de vida da força de trabalho.

Inúmeros estudos também buscam identificar os efeitos do trabalho específico em Controle de Tráfego Aéreo na saúde física e mental dos operadores, considerando além do sistema de trabalho a qual são submetidos, a carga de trabalho em termos de concentração, foco e velocidade na tomada de decisão.

O Controle de Tráfego Aéreo frequentemente é apontado como uma das ocupações mais estressantes, podendo apresentar reações nos profissionais como o aumento da frequência cardíaca, aumento da pressão arterial, alterações no sistema imunológico (LESIUK, 2008). A fim de identificar possíveis fatores redutores de estresse, Lesiuk (2008) examinou a influência da música nos períodos de descanso para recuperação em termos de redução dos níveis de estresse e dos sintomas da ansiedade em um grupo de controle e em 4 grupos em condição experimental (amostras estratificadas aleatórias com características de introversão-extroversão e de traços altos e baixos de ansiedade). Os participantes do grupo de controle, nos períodos de descanso, ficaram sentados em silêncio, enquanto os participantes dos

grupos experimentais ouviram músicas do seu estilo preferido. Os resultados encontrados demonstraram que descansar sentado em silêncio ou ouvindo a música favorita não resulta em diferença significativa na queda da frequência cardíaca e da pressão arterial. Também foi constatado que o estado de ansiedade de todos os participantes da pesquisa diminuiu durante os períodos de descanso, independentemente de estar no grupo experimental ou no de controle. Por fim, a única diferença significativa entre as análises do estudo refere-se ao nível de ansiedade que não sofreu queda significativamente apenas no grupo experimental de Introversão-Traços Altos de Ansiedade, sendo esta uma combinação propensa para efeitos adversos do estresse.

Hakola, Paukkonen e Pohjonen (2010) estudaram hospitais municipais na Finlândia, onde o sistema de escala de trabalho é de rotação rápida para trás, ou seja, um profissional designado para trabalhar no turno da tarde, termina seu trabalho à noite e já está designado para trabalhar na manhã do dia seguinte, tendo, neste intervalo, pouco tempo para recuperação. A alteração deste sistema foi proposta, permitindo maior tempo para recuperação entre os turnos e os resultados encontrados incluíram melhorias significativas para os participantes, tal como mais tempo para dormir, melhoria do bem-estar no trabalho, melhoria da saúde geral e, inclusive, melhores condições para participar de atividades de lazer. Entretanto, esta alteração também apresentou consequências negativas, tendo em vista que os dias de folga diminuíram para que fosse possível o cumprimento da carga horária de trabalho semanal, o que trouxe um novo desafio para o planejamento de escalas.

Noce (2010, p. 63) estudou a influência dos turnos de trabalho e o momento do turno (início ou final) no processo decisório do Controladores de Tráfego Aéreo e identificou que tanto o componente circadiano (expresso pela hora do dia) quanto o componente homeostático (expresso pelo tempo acordado) influenciam nas tomadas de decisão. Ainda em decorrência do seu estudo, afirma que "escalas de trabalho bem planejadas podem minimizar a fadiga e manter o trabalhador com níveis de alerta satisfatórios durante a jornada de trabalho, minimizando a probabilidade de acidentes e incidentes".

Ribas *et al.* (2011) estudaram a ocorrência de sintomas de sonolência excessiva em Controladores de Tráfego Aéreo e estes apresentaram aumento subjetivos de sonolência na Escala Sonolência de Epworth, bem como tiveram, no Teste de Manutenção de Vigília, maior porcentagem de latência do sono em menos

de 20 minutos do que outros profissionais de proteção ao voo analisados para comparação, demonstrando, desta forma, ocorrência de sintomas de sonolência excessiva dentre os profissionais avaliados.

Jou, Kuo e Tang (2013) estudaram a insatisfação no trabalho e as intenções de *turnover* entre Controladores de Tráfego Aéreo em Taiwan e sua análise indicou que há redução na tendência de *turnover*, quando ocorre melhoria da satisfação no trabalho, redução da carga de trabalho para um nível aceitável e suporte por meio da família, sendo a carga de trabalho a que mais influencia neste comportamento, podendo esta agir de forma direta ou indireta por meio da satisfação no trabalho. Como sugestão, indicaram a necessidade de implementar ações para redução na carga de trabalho por meio do aumento do efetivo de Controladores de Tráfego Aéreo e a adoção de escalas de trabalho flexíveis que permitam aos empregados a equilibrar as demandas de trabalho e a vida familiar, melhorando a capacidade de lidar com altas cargas de trabalho.

Freitas et. al. (2017) avaliaram a ocorrência de sintomas de estresse e sonolência diurna excessiva (SDE) nos Controladores de Tráfego Aéreo de 3 órgãos distintos e identificaram que 84,6% dos profissionais que apresentaram SDE trabalham no único órgão de controle que opera ininterruptamente e tem o maior tráfego de aeronaves.

Lee et al. (2018) investigaram os efeitos do trabalho por turno no sono, humor e qualidade de vida dos profissionais comparando dois grupos de trabalhadores, sendo um deles submetido ao sistema tradicional de horário de trabalho e o outro, ao sistema de turnos. Verificou-se que aqueles que trabalham por turnos apresentaram sintomas mais severos de fadiga, depressão, ansiedade e insônia do que os demais, sendo necessária uma estratégia para ajustes adequados nos horários de trabalho a fim de evitar os efeitos adversos do trabalho por turnos.

Park, Suh e Lee (2019) compararam nível de vitamina D, qualidade do sono e sintomas de depressão entre trabalhadores com horários tradicionais e com horário por turnos e os estudos indicaram que trabalhadores por turno apresentam maiores sintomas de depressão, têm pior qualidade do sono e possuem níveis mais baixos de vitamina D do que os trabalhadores em horários tradicionais.

Chang, Yang e Hsu (2019) buscaram identificar a relação entre o trabalho por turnos e os níveis de fadiga de Controladores de Tráfego Aéreo e perceberam que: o nível de fadiga após um período de trabalho noturno é significativamente maior do

que após um diurno; os níveis de fadiga variam durante o turno, diminuindo após os períodos de descanso e aumentando no decorrer do tempo de trabalho; a duração e o horário dos períodos de descanso para dormir durante os períodos de trabalho noturno são os fatores que mais afetam os níveis de fadiga, em decorrência da alteração do ciclo circadiano dos operadores; e trabalhar sucessivamente durante o dia ou durante a noite, bem como o volume de tráfego não afetam o nível de fadiga dos trabalhadores. Neste sentido, indicam que a gestão efetiva do horário de descanso e o tempo em atividade de controle são fatores de grande importância para definição da dinâmica de trabalho durante cada turno, principalmente os noturnos. Ademais, ressaltaram a importância de um ambiente adequado para descanso, tendo em vista que instalações inapropriadas e frequentes situações de emergência podem afetar negativamente a qualidade do sono de restauração.

2.2 ALOCAÇÃO DE HORÁRIO DE TRABALHO

O problema de alocação de horários de trabalho, também chamado de *rostering*, busca a construção de cronograma de trabalho para os profissionais disponíveis, de modo a atender a demanda da organização. Além da obrigatoriedade de atender a todas as regulamentações laborais, é extremamente difícil encontrar, segundo Ernst *et al.* (2004), boas soluções para este problema que minimizem os custos, atendam as preferências dos trabalhadores e façam uma distribuição equilibrada dos turnos de trabalho entre os membros da equipe.

Para a alocação da força de trabalho, Baker (1976) propõe uma classificação, sendo essa de 3 tipos: (a) *shift scheduling* ou *time-of-day scheduling*, quando a escala dos profissionais deve ser distribuída entre os turnos de operação da organização que não se sobrepõe, como ocorre em indústrias; (b) *days-off* ou *day-of-week scheduling*, quando o período de operação do serviço não coincide com a quantidade de dias de trabalho dos empregados (por exemplo uma empresa com 7 dias de operação por semana e regime de trabalho de 5 dias por semana); e (c) *tour scheduling*, quando há uma combinação dos outros dois tipos, que é o caso do controle de tráfego aéreo em Centros de Controle de Área, cujo funcionamento é ininterrupto e a determinação do horário de trabalho acontece por meio de turnos e a designação, além de indicar os dias de trabalho, deve especificar os horários de trabalho em cada um dos dias.

Tão importante quanto à alocação eficiente dos recursos, Bergh *et al.* (2012) constatam que, nas últimas décadas, as empresas estão considerando cada vez mais as preferências e as necessidades dos seus empregados em vários aspectos relacionados ao trabalho, de maneira a satisfazer sua vontade e permitir que eles gerenciem sua vida pessoal de maneira mais flexível — o que vai ao encontro do proposto por este trabalho, em que a designação dos ATCO busca atender, dentro das possibilidades, às preferências declaradas pelos profissionais.

Ernst *et al.* (2004) realizaram uma revisão sobre o tema e relacionaram setores de trabalho que lidam com o problema de alocação da força de trabalho. A relação contempla profissionais de sistemas de transporte (companhias aéreas, ferrovias, transporte público e transporte rodoviário), cuja preocupação, além de definir horário de trabalho, deve considerar a variação da localização entre o começo e o término do turno de trabalho; profissionais de *call centers*, cuja especificidade se dá não em razão da geolocalização, mas sim em razão de a demanda ser bastante variável durante o horizonte de planejamento; profissionais de saúde, principalmente enfermeiros, tendo em vista a grande quantidade de restrições envolvidas no processo de alocação desses profissionais; profissionais de serviços de proteção e de emergência como policiais, bombeiros, ambulâncias; profissionais de serviços e utilidades civis, como correios, pedágios, bem como serviços de fornecimento de água e energia; entre outros.

De acordo com Burke, Kingston e Werra (2004), o problema de *timetabling* consiste na alocação de uma quantidade limitada de recursos a um conjunto de eventos em intervalos de horários, sujeitos a certas restrições. No contexto estudado, objetiva-se a gestão dos recursos humanos disponíveis, alocando-os aos diversos turnos de trabalho existentes, sujeito a restrições laborais e operacionais pertinentes.

O problema de *timetabling* pode ser aplicado em diversas situações, como por exemplo para a determinação da grade de horários de escolas e universidades (SAVINIEC; SANTOS; COSTA, 2018), dos horários de linhas de transportes (CHU et al., 2019), da tabela em competições esportivas (BULCK et al., 2020), para a alocação da força de trabalho dos mais variados setores, tais como em serviços de saúde (RAHIMIAN; AKARTUNALI; LEVINE, 2019), em serviços de *callcenter* (ROBBINS e HARRISON, 2010; AVRAMIDIS et al., 2010), para tripulações de voo (KASIRZADEH, SADDOUNE e SOUMIS, 2017), para o controle de tráfego aéreo (STOJADINOVIC,

2014; STOJADINOVIC, 2015; JOSEFSSON et al., 2017; TELLO et al., 2018, CONNISS, 2018).

Rangel e Évora (2007) apresentam um *software* para a elaboração da escala periódica de trabalho de enfermeiros que tem como base um modelo matemático o qual considera os requisitos funcionais, tais como a Consolidação das Leis Trabalhistas e as necessidades de cada funcionário. Para facilitar a utilização por parte da equipe de enfermagem, o *software* gera um arquivo com as restrições do problema. O arquivo serve de *input* para resolução do problema no *software* LINGO e a identificação da melhor solução. O resultado é importado novamente ao *software* desenvolvido para a leitura tradicional da escala por parte da equipe de enfermagem.

Fressato et al. (2017) propõem um modelo matemático para a alocação de médicos anestesistas em um hospital público do Paraná. No modelo, os autores consideram as preferências dos profissionais e buscam criar uma repetição semanal dos procedimentos. São consideradas restrições hard, referentes às legislações trabalhistas; e restrições soft, visando a adequar-se às decisões operacionais do hospital e a melhorar a qualidade da solução. As restrições soft referentes aos custos de alocação de profissionais e às preferências individuais de alocação são inseridas na função objetivo do modelo com pesos distintos referentes à importância de cada uma delas. A solução obtida pelo modelo reduz os custos de operação e o tempo gasto com o planejamento da escala de trabalho.

Poucos trabalhos focados nas escalas de trabalho de Controladores de Tráfego Aéreo foram encontrados na literatura, sendo que alguns buscam designar controladores nos diversos turnos de trabalho e outros, com foco mais delimitado, buscam fazer o agendamento do trabalho dos controladores dentro de cada turno, determinando momentos trabalhando e momentos descansando no decorrer do turno de trabalho.

Stojadinovic (2014) introduziu o ATCoSSP – Air Traffic Controller Shift Scheduling Problem que consiste na designação de turnos aos ATCO disponíveis dentro de um certo período, e na definição de qual posição deve ser designada para cada operador em cada hora do horizonte de planejamento, levando em consideração que o conjunto de "posições" engloba posições de efetivo trabalho (TWR e APP) e "posições" fictícias de descanso, folgas e férias. Diferentemente do modelo proposto neste trabalho, Stojadinovic (2014) considera que as preferências pelas designações são de livre quantidade e atribui pesos distintos aos profissionais em decorrência da

quantidade de preferências definidas para o período, determinando maiores pesos àqueles com menores quantidades de preferências. O problema foi resolvido utilizando abordagens SAT (Problema de Satisfação Proporcional), CSP (Problema de Satisfação de Restrições) e outros métodos relacionados ao SAT. Os resultados obtidos demonstram que as abordagens relacionadas ao SAT superam outros métodos de solução de problemas, reduzindo o tempo de confecção da escala de 3 horas (manualmente) para 11 minutos, entretanto o autor não menciona o tamanho da instância, não sendo, portanto, um parâmetro adequado para comparação.

Posteriormente, Stojadinovic (2015) utiliza para o mesmo problema com as mesmas características uma metaheurística híbrida para o ATCoSSP em que, inicialmente aplica-se uma redução ao SAT para gerar uma solução inicial e, posteriormente, uma "Hill climbing" é aplicada na tentativa de encontrar soluções melhores. Como resultado, a abordagem utilizada foi capaz de encontrar soluções boas em pouco tempo de processamento, entretanto, novamente, não está explícito qual instância de referência para comparações.

Josefsson et al. (2017) utilizam Programação Linear Inteira Mista para a designação de ATCO em uma torre remota de controle (RTC) na Suécia. Considerando diversas restrições de operação (quantidades máximas de aeroportos e de movimentos atendidos por controlador, o tempo máximo "na posição", dentre outros) e utilizando como dado de entrada do modelo o número de "movimentos" (pousos e decolagens) realizados nos aeroportos atendidos pela RTC, buscam obter a designação ótima de operadores por hora na RTC, no caso em que se supõe que a designação dos turnos de trabalho já está definida previamente. Com o intuito de criar um modelo ajustável às necessidades de Torres Remotas de Controle, criam algumas alternativas de objetivos para o modelo, quais sejam: (a) minimizar o número de controladores por RTC; (b) minimizar o número médio de ATCO por aeroporto; (c) minimizar alterações nas designações de aeroportos para controladores. O modelo foi testado para a operação de 5 aeroportos simultaneamente pela RTC com os três tipos de objetivos criados em dois dias do ano, o de maior e o de menor quantidade de movimentos registrados. Como resultado, no dia de maior número de movimentos, foi observada a possibilidade de economia de pessoal de 42 a 55%, a depender do objetivo utilizado.

Tello *et al.* (2018) também apresentam uma metodologia para a determinação dos horários de atividade e de descanso dos ATCO no decorrer dos turnos de trabalho

em um Centro de Controle de Área na Espanha através de uma abordagem de três fases, na qual, primeiramente, uma heurística é utilizada para gerar soluções iniciais infactíveis, tendo em vista a utilização de mais operadores do que os disponíveis e a violação de algumas restrições referentes a condições de trabalho. Na sequência, um multiple independent run (MIR), algoritmo baseado em simulated annealing (SA), é aplicado nas soluções iniciais, de modo a torná-las soluções factíveis. Para tanto, é aplicada uma fitness function para reduzir o número de operadores até que se atinja a quantidade disponível, ao passo em que as condições de trabalho violadas são penalizadas. Por fim, a terceira fase conta com uma nova aplicação do MIR baseado em SA.

Por fim, Conniss (2018) apresenta um algoritmo de busca em profundidade para a alocação de ATCO durante o turno de trabalho. O objetivo do modelo é evitar que um ATCO perca sua habilitação de trabalho, tendo em vista que, após 30 dias sem efetivamente trabalhar na atividade de ATC, os profissionais precisam passar novamente por um período de treinamento e de habilitação para aquela posição de trabalho.

3 MATERIAIS E MÉTODOS

Este capítulo aborda os aspectos metodológicos deste estudo, sendo divididos em classificação metodológica, seguido da descrição das etapas de pesquisa.

3.1 CLASSIFICAÇÃO METODOLÓGICA DA PESQUISA

Este estudo pode ser dividido em duas fases e, consequentemente, ter duas possibilidades de classificações metodológicas, de acordo com as classificações apresentadas por Miguel (2012) para estudos específicos em Engenharia de Produção e Gestão de Operações.

Inicialmente tem-se a proposição de um modelo matemático que se ajuste às individualidades (disponibilidades e preferências) dos agentes pertencentes ao sistema estudado. Nesta fase, a pesquisa pode ser classificada como "Modelagem Quantitativa", onde a realidade pode ser representada por um modelo abstrato como forma de auxiliar no seu tratamento de uma maneira sistemática (MIGUEL, 2012). O modelo também permite "compreender melhor o ambiente em questão, identificar problemas, formular estratégias e oportunidades e apoiar e sistematizar o processo de tomada de decisão", devendo ser "suficientemente detalhado para captar elementos essenciais e representar o sistema real" e "suficientemente simplificado (abstraído) para ser tratável por métodos de análise e resolução conhecidos" (MIGUEL, 2012).

Ainda, em se tratando de Modelagem Quantitativa, é possível aprofundar a classificação desta fase como um estudo "Empírico Normativo", pois há interesse em "criar modelos que se adequem bem às relações causais existentes no problema real" e "prescrevem uma decisão para o problema", visando "ao desenvolvimento de políticas, estratégias e ações que melhorem a situação corrente" (MIGUEL, 2012).

A segunda fase desta pesquisa, em que se tem o estudo dos cenários de políticas de declarações de preferências, pode ser classificada como uma "Survey" ou uma pesquisa de avaliação, pois buscam-se fazer inferências a respeito do comportamento de uma população (cenário) a partir da análise dos dados obtidos com o estudo de amostras (instâncias de testes). Finalmente, esta fase pode ser

classificada como em "Survey Descritiva", pois "descreve a distribuição do fenômeno na amostra" (MIGUEL, 2012).

3.2 ETAPAS DA PESQUISA

Com a finalidade de atendimento dos objetivos propostos, este trabalho seguiu as etapas ilustradas na FIGURA 1 e descritas na sequência.

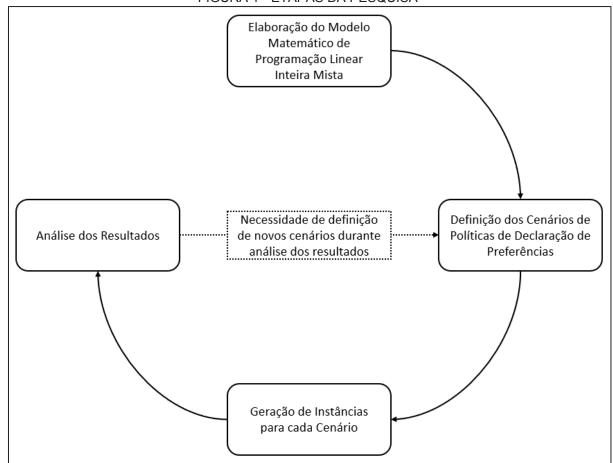


FIGURA 1 - ETAPAS DA PESQUISA

FONTE: A autora (2020).

3.2.1 Modelo de Programação Linear Inteira Mista

Foi desenvolvido um modelo de Programação Linear Inteira Mista para a designação de Controladores de Tráfego Aéreo nas escalas de serviço que contempla as seguintes restrições:

- a) todos os operadores possuem as mesmas qualificações técnicas para o desempenho das atribuições do controle de tráfego aéreo;
- b) nenhum operador pode ser designado durante seus períodos de indisponibilidade, nem nos turnos noturnos do dia anterior para o qual estiver indisponível, uma vez que os turnos noturnos terminam na manhã do dia seguinte;
 - c) cada turno de serviço possui uma demanda por operadores;
- d) as designações em cada turno devem atender exatamente à demanda prevista para o período;
- e) há um limite mínimo e máximo para a quantidade de designações por operador ao longo do período de planejamento;
- f) há uma carga horária mínima e máxima a ser cumprida por operador ao longo do período de planejamento;
 - g) devem ser respeitadas folgas mínimas e máximas semanais;
- h) deve haver uma equalização entre as designações, por operador, para o serviço de controle de tráfego aéreo nos turnos da manhã e da tarde;
- i) nenhum operador pode ser designado para mais de 1 serviço do tipo administrativo por mês;
- j) após cada designação, deve ser observado um período de descanso mínimo:
- k) há um limite máximo por operador para designações em turnos pelas quais são devidos pagamentos extras em decorrência da sua duração estendida;
- I) as designações nos turnos mencionados na alínea anterior devem ser equilibradas, sendo permitida uma pequena variação entre a quantidade de designações entre os operadores;
- m) todos os operadores possuem um peso que os diferencia dos demais em razão do tempo de serviço e outros critérios específicos da profissão; e
- n) os operadores de maior peso devem ser designados para quantidades iguais ou menores de serviços que os de menor peso;

A Função Objetivo do modelo busca maximizar o atendimento das preferências declaradas pelos operadores pelos turnos de trabalho levando em consideração o peso de cada operador, priorizando, caso necessário, o atendimento das preferências dos operadores de maior peso na equipe. A fim de minimizar o custo com pagamentos extras pelas designações em turnos com jornada estendida de trabalho, tendo em vista haver a possibilidade de compensar a demanda designando

para outro turno com horário sobreposto, aquelas designações são penalizadas na FO do modelo. Por fim, em decorrência de o modelo aceitar diferentes disponibilidades entre os operadores, fez-se necessária a criação de uma variável de folga para flexibilizar, quando necessário, a restrição que beneficia operadores de maior peso quanto ao número de designações.

O modelo desenvolvido foi implementado computacionalmente com limite de tempo de processamento de 3.600 segundos e *gap* de solução limitado a 0,01%. A linguagem de programação escolhida para a implementação foi C#, na IDE *Visual Studio Community* com sua solução obtida por meio do *solver* GUROBI 8.1.0. O computador utilizado para os testes computacionais possui as seguintes configurações: Intel ® Core ™ i7-7500U Notebook com 8,00 GB de memória RAM.

Para validação do modelo, foram rodados 378 testes preliminares, sendo 6 instâncias de cada um dos 63 cenários inicialmente definidos, conforme apresentados na próxima etapa, resultando na confirmação da efetividade da solução, tendo em vista o atendimento de todas as restrições.

3.2.2 Definição de Cenários

Para a definição dos cenários, foram definidos 3 (três) parâmetros referentes às possibilidades de escolha pelos operadores quanto à designação, sendo eles "preferência", "indiferença" e "não preferência". Cada parâmetro indica qual a porcentagem daquele tipo de escolha os operadores devem atribuir aos turnos existentes dentro do período para o qual a escala será confeccionada.

Para atender aos objetivos propostos deste estudo, foram definidos 63 (sessenta e três) cenários de políticas de declaração de preferências, com a todas as combinações de dezenas possíveis dos parâmetros, variando de 0 (zero) a 90 (noventa), em que a primeira dezena do cenário indica a porcentagem de "preferências"; a segunda, a porcentagem de "indiferenças"; e a última, a porcentagem de "não preferências. A TABELA 1 apresenta todos os cenários definidos inicialmente nesta etapa.

TABELA 1 - CENÁRIOS DEFINIDOS PARA ANÁLISE DE VIABILIDADE DO MODELO

-	001090	100090	109000	208000	400060	502030	700030
	002080	101080	200080	300070	401050	503020	701020
	003070	102070	201070	301060	402040	504010	702010
	004060	103060	202060	302050	403030	505000	703000
	005050	104050	203050	303040	404020	600040	800020
	006040	105040	204040	304030	405010	601030	801010
	007030	106030	205030	305020	406000	602020	802000
	008020	107020	206020	306010	500050	603010	900010
	009010	108010	207010	307000	501040	604000	901000

FONTE: A autora (2020).

No cenário "107020", destacado em negrito na TABELA 1, por exemplo, considerando um mês de 30 dias e 7 turnos por dia, um operador que esteja de férias durante 10 dias, deve indicar em 14 (quatorze) turnos que quer trabalhar (10% dos 140 turnos que estiver disponível) colocando na célula correspondente àquele turno o valor 1; em 28 (vinte e oito) turnos que não quer trabalhar (20% dos turnos disponíveis), colocando o valor -1; e nos demais não deve fazer nenhuma indicação (70% dos turnos disponíveis), colocando ou mantendo, portanto, o número 0.

Após a definição de todos os cenários, percebeu-se que aqueles que impossibilitariam que os operadores declarassem em quais turnos gostariam de trabalhar ou em quais não gostariam (destacados em vermelho) foram descartados, tendo em vista este trabalho apresentar um modelo que busca maximizar o atendimento das "preferências" e minimizar a violação das "não preferências". Após este filtro, restaram então 45 cenários.

A TABELA 2 exemplifica como são indicadas as preferências pelos operadores. O operador 2 indicou que no dia 1 gostaria de trabalhar nos turnos 1 ou 2, não gostaria de trabalhar nos turnos 3, 4 ou 5 e é indiferente quanto a ser ou não designado nos turnos 6 e 7. A ausência de indicação, como ocorre com o operador 3 no dia 2 indica que este está indisponível e, portanto, não pode trabalhar naquele dia, não podendo ser designado nos turnos noturnos do dia anterior, bem como em qualquer turno do dia da indisponibilidade.

Cada cenário definido nesta etapa foi processado computacionalmente em 10 instâncias de cada cenário e, a partir dos parâmetros de tempo de solução e de atendimento de preferências, seria calculado o tamanho amostral da quantidade de instâncias necessárias para que fosse possível identificar um padrão de solução. Entretanto, por ter havido a necessidade de complementar os testes com novos

cenários intermediários, optou-se por restringir o tamanho amostral a estas 10 instâncias por cenário.

TABELA 2 - EXEMPLO DE INDICAÇÃO DE PREFERÊNCIAS

OPERADOR				DIA 1							DIA 2			
OFERADOR	T1	T2	T3	T4	T5	T6	T7	T1	T2	Т3	T4	T5	T6	T7
1	1	0	1	0	1	-1	-1	0	0	0	0	1	1	1
2	1	1	-1	-1	-1	0	0	0	0	1	1	1	-1	-1
3	-1	-1	-1	-1	-1	1	1							
4	0	1	1	1	1	-1	-1	0	0	0	1	0	-1	-1
5	-1	-1	1	0	0	0	0	-1	-1	1	0	1	1	0

FONTE: A autora (2020).

3.2.3 Geração de Instâncias

Um código gerador de instâncias foi programado em C#. A geração ocorreu em 4 fases, conforme descrito a seguir:

1ª fase: Inicialmente define-se se cada um dos operadores tem ou não indisponibilidades durante o mês. Cada operador tem 0,85 de probabilidade de não ter nenhuma indisponibilidade e 0,05 de probabilidade de ter 1, 2 ou 3 períodos de indisponibilidade.

2ª fase: Nesta fase definem-se as durações dos eventuais períodos de indisponibilidade. Caso um operador tenha somente período de indisponibilidade, sua duração pode ser de até 14 dias; para dois períodos, as durações não devem ultrapassar 6 dias cada; e, por fim, quando há três períodos, suas durações são de até de 4 dias cada.

3ª fase: Tendo as durações das indisponibilidades sido definidas, determina-se a data de início de cada período de indisponibilidade, de modo que, caso haja mais de um período, exista pelo menos um dia disponível entre eles; e que todos os períodos de indisponibilidade comecem e terminem dentro do mês de referência.

4ª fase: Por fim, na última fase da geração de instâncias, são distribuídos aleatoriamente, dentro dos percentuais de cada cenário, as "preferências", "indiferenças" e "não preferências", devendo considerar para cálculo apenas o total de turnos para o qual cada operador está disponível.

3.2.4 Análise dos Resultados

Com os resultados dos testes computacionais, foram analisados os tempos de solução, *gaps* de solução e capacidades de atendimento das "preferências" e/ou de não violação das "não preferências" de cada cenário, conforme critérios amplos estabelecidos nos objetivos específicos deste estudo, buscando identificar a existência de um cenário mais adequado para a gestão da equipe de Controladores.

4 DESCRIÇÃO DO PROBLEMA E O MODELO

O problema estudado busca designar profissionais de Controle de Tráfego Aéreo nas escalas de trabalho, de modo que um controlador não pode ser designado para mais de um turno ao mesmo tempo; deve-se respeitar um período mínimo de descanso após cada tipo de turno; há um limite mínimo e máximo tanto de quantidade de designações, quanto de carga horária mensal; para cada turno deve ser atendida a demanda por profissionais; proíbe-se desequilíbrio entre as designações em turnos matutinos e turnos vespertinos; há limite de designações em turnos noturnos; são determinadas as folgas mínimas e máximas semanais; e não é permitida a designação em mais de um serviço administrativo por mês.

O órgão de controle estudado possui em torno de 120 profissionais disponíveis para suprir as demandas nos diversos turnos de trabalho que, além de serviços operacionais de controle de tráfego aéreo, contemplam também turnos de atividades administrativas, conforme pode-se verificar na TABELA 3.

TABELA 3 - RELAÇÃO DE TURNOS E ESPECIFICAÇÕES

	TURNO	CARGA HORÁRIA	CARACTERÍSTICA	DEMANDA DIÁRIA
(1)	Controle Manhã	7h	Controle de Tráfego Aéreo	25
(2)	Manhã Adm.	8h	Serviço Administrativo	01
(3)	Controle Tarde	7h	Controle de Tráfego Aéreo	30
(4)	Tarde Adm.	8h	Serviço Administrativo	01
(5)	Reforço Tarde	8h30	Controle de Tráfego Aéreo	-
(6)	Controle Pernoite	10h	Controle de Tráfego Aéreo	13
(7)	Pernoite Adm.	8h	Serviço Administrativo	01

FONTE: A autora (2020).

Em função da atividade desenvolvida pelo órgão que é de controle de área, seu funcionamento é ininterrupto. Desta forma, em um mês com 30 dias, por exemplo, há 210 turnos de trabalho. Cada turno, entretanto, tem uma demanda distinta por operadores, o que eleva a conta para um total de 2130 alocações a serem definidas (as demandas variam em função dos turnos, por exemplo, apenas 1 operador é necessário para cada um dos turnos 2, 4 e 7, todavia, para o turno 1 são necessários 25 operadores). O turno 5 não tem uma demanda específica pois se trata de um turno de reforço para o qual são designados operadores em conjunto com o turno 3. Apesar de este padrão de demandas ser determinado, a escala não é fixa, nem rotativa, havendo a necessidade de confeccionar mensalmente uma nova tabela de

designações considerando as restrições operacionais e as eventuais indisponibilidades dos operadores. Esta atividade é bastante complexa, demorada e exige dedicação de uma equipe de profissionais com experiência e conhecimento empírico. Neste sentido, o modelo desenvolvido neste trabalho almeja tornar a atividade de designação um trabalho mais assertivo, simples, rápido e automatizado.

A definição de conjuntos, índices, parâmetros e variáveis do modelo é apresentada na TABELA 4.

TABELA 4 - NOTAÇÕES UTILIZADAS NO MODELO MATEMÁTICO

Conjun	tos e Índices
Ι	conjunto de operadores; $i, i' = 1 I $;
D	conjunto de dias do mês; $d = 1 D $;
$\Delta_i \subset D$	conjunto de dias que o operador i está indisponível; $\delta_i = \delta_i^1 \ \delta_i^{ \Delta_i }$
T	conjunto de turnos de serviço; $t = 1 T $;
Parâme	tros
$ ho_{idt}$	preferência do operador i pelo turno t do dia d
α_i	peso do operador i
β	peso de correção
ψ	peso da variável de folga restrição 21
$ \Delta_i $	quantidade de dias em que o operador i está disponível
γ_t	demanda de operadores no turno t
μ_t	duração em horas do turno $\it t$
S_i	mínimo de serviços do operador i
$\overline{\varsigma_\iota}$	máximo de serviços do operador i
ε_i	máximo de designações em turnos com jornada estendida do operador i
arepsilon'	diferença aceitável entre as proporções de designações em turnos com jornadas estendidas pelas disponibilidades
κ_i	carga horária mínima mensal do operador i
$\overline{K_l}$	carga horária máxima mensal do operador i
Λ	máximo de serviços administrativos
θ	diferença permitida entre o somatório de turnos manhã e tarde por operador
/ariáve	is de Decisão
x_{idt}	variável binária que indica designação do operador \emph{i} para o turno \emph{t} do dia \emph{d}
η_i	variável de folga da restrição 21 do operador i

FONTE: A autora (2020).

O modelo utilizado neste trabalho é descrito a seguir.

$$MaxZ = \sum_{i=1}^{|I|} \sum_{d=1}^{|D|} \left[\left(\sum_{t=1}^{|T|} \alpha_i \cdot \rho_{idt} \cdot x_{idt} \right) - \beta \cdot x_{id5} + \psi \cdot \eta_i \right]$$
 (01)

sujeito a:

$$\sum_{d=\delta_{1}^{1}}^{\delta_{i}^{|D|}} \sum_{t=1}^{|T|} x_{idt} = 0 \,\forall i \tag{02}$$

$$\sum_{d=\delta_{i}^{1}}^{\delta_{i}^{|D|}} \sum_{t=6}^{|T|} x_{i(d-1)t} = 0 \,\forall i, \forall d \neq 1$$
(03)

$$\sum_{d=1}^{|D|} \sum_{t=1}^{|T|} x_{idt} \ge \underline{\varsigma_i} \,\forall i \tag{04}$$

$$\sum_{d=1}^{|D|} \sum_{t=1}^{|T|} x_{idt} \le \overline{\zeta_i} \,\forall i \tag{05}$$

$$\sum_{d=1}^{|D|} \sum_{t=1}^{|T|} \mu_t \cdot x_{idt} \ge \underline{\kappa_i} \,\forall i \tag{06}$$

$$\sum_{d=1}^{|D|} \sum_{t=1}^{|T|} \mu_t \cdot x_{idt} \le \overline{\kappa}_i \,\forall i \tag{07}$$

$$\sum_{d=1}^{|D|} x_{id1} - x_{id3} \le \theta \,\forall i \tag{08}$$

$$\sum_{d=1}^{|D|} x_{id3} - x_{id1} \le \theta \,\forall i \tag{09}$$

$$\sum_{d=1}^{|D|} x_{id2} + x_{id4} + x_{id7} \le \Lambda \,\forall i \tag{10}$$

$$\sum_{e=d}^{d+6} \sum_{t=1}^{|T|} x_{i,e,t} \ge 1 \,\forall i, \forall d \in \delta_i$$

$$\tag{11}$$

$$\sum_{e=d}^{d+6} \sum_{t=1}^{|T|} x_{i,e,t} \le 6 \ \forall i, \forall d$$
 (12)

$$\sum_{t=1}^{5} x_{idt} \le 1 \,\forall i, \forall d \tag{13}$$

$$\sum_{t=2}^{7} x_{idt} \le 1 \,\forall i, \forall d \tag{14}$$

$$\sum_{t=4}^{7} x_{id-1t} + \sum_{t=1}^{2} x_{idt} \le 1 \,\forall i, \forall d, d \neq 1$$
 (15)

$$\sum_{t=6}^{7} x_{id-1t} + \sum_{t=1}^{5} x_{idt} \le 1 \,\forall i, \forall d, d \neq 1$$
 (16)

$$\sum_{t=6}^{7} x_{id-1t} + x_{idt} \le 1 \,\forall i, \forall d, d \ne 1$$
 (17)

$$\sum_{d=1}^{|D|} \sum_{t=5}^{6} x_{idt} \le \varepsilon_i \,\forall i \tag{18}$$

$$\frac{\sum_{d}^{|D|} \sum_{t=5}^{6} x_{idt}}{\varepsilon_{i}} - \frac{\sum_{d}^{|D|} \sum_{t=5}^{6} x_{i'dt}}{\varepsilon_{i'}} \le \varepsilon' \,\forall i, \forall i', \qquad i \neq i'$$

$$\tag{19}$$

$$\frac{\sum_{d}^{|D|} \sum_{t=5}^{6} x_{idt}}{\varepsilon_{i}} - \frac{\sum_{d}^{|D|} \sum_{t=5}^{6} x_{i'dt}}{\varepsilon_{i'}} \ge -\varepsilon' \,\forall i, \forall i', \qquad i \neq i'$$
(20)

$$\frac{\sum_{d}^{|D|} \sum_{t}^{|T|} x_{idt}}{|\Delta_{i}|} - \frac{\sum_{d}^{|D|} \sum_{t}^{|T|} x_{(i-1)dt}}{|\Delta_{i-1}|} \le 0 + \eta_{i} \,\forall i, i \neq 1$$
(21)

$$\sum_{i=1}^{|I|} x_{idt} = \gamma_t \,\forall d, \forall t, t \neq \{3,5\}$$

$$(22)$$

$$\sum_{i=1}^{|I|} x_{id3} + x_{id5} = \gamma_3 \,\forall d \tag{23}$$

$$x_{idt} = \{0,1\}$$
 $i, i' = 1, 2, ..., I,$ $d = 1, 2, ..., D,$ $t = 1, 2, ..., I$ (24)

Este modelo de Programação Inteira tem como Função Objetivo a expressão (1) que busca (a) maximizar a preferência dos operadores pelos turnos designados levando em consideração o peso que o operador tem perante os demais, de forma a atender, prioritariamente, às preferências dos operadores de maior peso em detrimento dos demais; (b) minimizar o custo de designações no turno 5 (tendo em vista ter duração superior a 8 horas e requerer pagamento de vantagem financeira adicional; e não possuir uma demanda específica, podendo haver compensação no

turno 3); e (c) penalizar o não atendimento da restrição (21). Cada operador pode atribuir à preferência os valores 1 quando tem "preferência" pela designação, -1 quando tem "não preferência" por aquele turno e 0 em caso de "indiferença" pela designação.

As restrições (2) e (3) garantem que durante períodos de indisponibilidade os operadores não podem ser designados para o serviço, incluindo para os turnos do tipo pernoite (turnos 6 e 7) do dia interior, tendo em vista que estes turnos começam numa noite e terminam apenas na manhã do dia seguinte.

O conjunto de restrições (4) e (5) determinam que cada operador será designado para uma quantidade mínima de serviços por mês, não podendo ultrapassar, porém, uma quantidade máxima. Estes limites são definidos por meio dos parâmetros $\underline{\varsigma_i}$ e $\overline{\varsigma_i}$ em função da disponibilidade de cada operador considerando eventuais impedimentos para designações em mesma quantidade que os demais. Os valores atribuídos aos parâmetros $\underline{\varsigma_i}$ e $\overline{\varsigma_i}$ são definidos na TABELA 5 em função da disponibilidade dos operadores.

TABELA 5 - VALORES ATRIBUÍDOS AOS PARÂMETROS EM FUNÇÃO DA DIPONIBILIDADE

$ D_i $	<u>Si</u>	$\overline{\varsigma_{\iota}}$	κ_i	$\overline{\kappa_l}$	ε_i	$ D_i $	<u>Si</u>	$\overline{\varsigma_{\iota}}$	κ_i	$\overline{\kappa_{\iota}}$	ε_i
30	18	20	126	160	10	15	9	10	63	80	5
29	17	20	119	160	10	14	8	10	56	80	5
28	16	19	112	152	10	13	7	9	49	72	5
27	16	18	112	144	9	12	7	8	49	64	4
26	15	18	105	144	9	11	6	8	42	64	4
25	15	17	105	136	9	10	6	7	42	56	4
24	14	16	98	128	8	9	5	6	35	48	3
23	13	16	91	128	8	8	4	6	28	48	3
22	13	15	91	120	8	7	4	5	28	40	3
21	12	14	84	112	7	6	0	4	0	32	2
20	12	14	84	112	7	5	0	4	0	32	2
19	11	13	77	104	7	4	0	3	0	24	1
18	10	12	70	96	6	3	0	2	0	16	1
17	10	12	70	96	6	2	0	2	0	16	1
16	9	11	63	88	6	1	0	1	0	8,5	1

FONTE: A autora (2020).

As restrições (6) e (7) restringem a carga horária total trabalhada por operadores a uma faixa entre $\underline{\kappa_i}$ e $\overline{\kappa_l}$. O limite de horas trabalhadas para

Controladores de Tráfego Aéreo em cada tipo de ATS é definido e regulamentado em Instrução do Comando da Aeronáutica. Esses parâmetros também são ajustados em decorrência da disponibilidade dos operadores nas mesmas condições do conjunto de restrições anteriores. Os valores atribuídos aos parâmetros $\underline{\kappa_i}$ e $\overline{\kappa_l}$ são definidos na TABELA 5 em função da disponibilidade de cada operador.

As expressões (8) e (9) servem para que haja um equilíbrio entre a quantidade total de turnos 1 (Controle Manhã) e a quantidade total de turnos 3 (Controle Tarde), de modo que a diferença entre eles seja de no máximo o valor estipulado para o parâmetro θ . O parâmetro θ possui valor de referência 4, similar ao praticado nos órgãos de Controle de Tráfego Aéreo.

A restrição (10) garante que cada operador seja designado para no máximo uma quantidade Λ de serviços administrativos por mês, tendo em vista que as escalas de Controle de Tráfego Aéreo são as atribuições fundamentais dos operadores. Ao parâmetro Λ é atribuído o valor 1.

As indisponibilidades ao longo de todo o período de planejamento são consideradas na construção das restrições e as restrições somente são elaboradas para os períodos em que os operadores estão disponíveis, sendo adaptadas em momentos em que não há disponibilidades deles devido a férias ou afastamentos de qualquer outra ordem. Neste sentido, o conjunto de restrições (11) e (12) determinam que, em um período de 7 dias corridos, cada operador trabalhe em, no mínimo, um turno e, no máximo, em 6, garantindo folgas mínimas e máximas regulamentares.

As restrições (13) a (16) garantem um descanso obrigatório para operadores designados para cada tipo de turno. Para aqueles designados para o turno 1 fica proibido trabalhar no mesmo dia, exceto nos dois últimos turnos — restrição (13). Aqueles designados para o turno 2 somente podem ser designados novamente para algum turno a partir do dia seguinte — restrição (14). O turno 4, por terminar às 22 horas, indisponibiliza o operador para o trabalho noturno e para a manhã do dia seguinte — restrição (15) — e, por fim, aqueles designados para o sexto turno devem ter um dia inteiro de folga, somente podendo trabalhar novamente na manhã do dia seguinte àquele em que saíram de serviço — restrição (16). As restrições para o turno 3 estão incluídas na restrição (14); para o turno 5, na restrição (15) e para o turno 7, na restrição (16). A expressão (17) complementa a restrição (16), determinando que

não é permitido trabalhar dois dias consecutivos em pernoite, independentemente de ser no turno 6 ou 7.

Após turnos de trabalho noturno, especificamente, são garantidos períodos maiores de descanso pelas restrições (16) e (17), pois, de acordo com Chang, Yang e Hsu (2019) são os turnos que contribuem de forma mais significativa para o aumento no nível de fadiga, desta forma, o modelo garante ao trabalhador maior tempo para recomposição antes de retornar para o trabalho.

As restrições (13) a (17) garantem intervalo mínimo necessário para o descanso entre dois turnos de trabalho e, paralelo a isso, o modelo permite que os profissionais indiquem suas preferências, sendo possível que, ao invés de cumprirem apenas a folga mínima, tenham maior período para recuperação, o que, de acordo com Hakola, Paukkonen e Pohjonen (2010), possibilita mais tempo para dormir, melhoria do bem-estar no trabalho e da saúde geral, bem como melhores condições para participar de atividades de lazer.

Para aqueles operadores designados para os turnos 5 e 6 (Reforço Tarde e Controle Pernoite), em decorrência do trabalho em turno com jornada estendida (maior do que 8 horas), é pago um adicional. Com o intuito de reduzir a quantidade de turnos deste tipo por operador, a restrição (18) limita esta designação a uma quantidade ε_i proporcional à disponibilidade de cada operador. Os valores atribuídos aos parâmetros ε_i são definidos na TABELA 4 em função da disponibilidade de cada operador. Além da questão financeira, o conjunto de restrições (18) foi criado de modo a garantir que haja um equilíbrio para os trabalhadores, não sendo designados em muitos turnos longos, uma vez que, os estudos Chang, Yang e Hsu (2019) indicam que os níveis de fadiga variam durante o turno, aumentando no decorrer do tempo de trabalho.

Espera-se que todos os operadores sejam designados para uma mesma quantidade de turno quando estiverem disponíveis durante o mês inteiro. Esta restrição, entretanto, não se aplica quando existem indisponibilidades dos operadores. Neste caso, o conjunto de restrições (19) e (20), que determina que o número total de designações de turnos deste tipo para cada operador aceita uma variação em proporção referente ao parâmetro ε' , cujos valores são definidos na TABELA 4.

Para que haja a devida diferenciação em função do tempo de serviço entre os profissionais, a expressão (21) garante que os operadores com maior peso na escala sejam designados, em proporção às disponibilidades, para quantidade igual ou menor do que aqueles com menor peso.

Por fim, há o conjunto de restrições (22) e (23) que definem a demanda por operadores em cada tipo de turno. A expressão (23), em especial, serve para distribuir entre os turnos 3 (Controle Tarde) e 5 (Reforço Tarde) os operadores designados para suprir a demanda de Controladores de Tráfego Aéreo no período da tarde, não havendo, porém, uma demanda específica para o quinto turno. As demandas são definidas para cada turno em função do volume de tráfego estimado para cada período do dia, permitindo que não haja sobrecarga de trabalho para os profissionais, o que, em conjunto com as políticas de atendimento de preferências pelas designações, pode contribuir para que sejam reduzidas as intenções de *turnover* dentre os Controladores de tráfego Aéreo (JOU, KUO e TANG, 2013).

Diante do exposto, tem-se que, dos 23 conjuntos de restrições, ao menos 8 deles demostram os aspectos qualitativos obtidos por meio da solução do modelo matemático proposto, buscando minimizar os efeitos do trabalho por turnos na qualidade de vida dos profissionais.

Este modelo foi elaborado com base em legislações trabalhistas específicas do Controle de Tráfego Aéreo brasileiro e mundial, considerando também aspectos financeiros e senso de justiça entre os profissionais e tem bastante similaridade com o modelo conceitual apresentado por Stojadinovic (2014), entretanto apresenta algumas distinções.

Diferentemente do modelo apresentado, Stojadinovic (2014) efetua as designações por períodos fracionados do dia, aparentemente intervalos de uma hora, indicando, em cada fracionamento, se o trabalhador estará em intervalo para recuperação entre turnos, se estará em férias, ou em qual posição de controle estará trabalhando, devendo as férias serem previamente autorizadas pelos superiores. Seu trabalho também se diferencia deste no que diz respeito às competências entre os profissionais que são consideradas para a composição das equipes nos turnos de trabalho.

O autor considera também a carga horária de trabalho total estabelecendo limites mínimos e máximos (similar às restrições (06) e (07)); as folgas mínimas e máximas (similar às restrições (11) e (12), porém indica que é permitido trabalhar 2 a

3 dias consecutivos com 2 a 3 dias de descanso); entretanto não apresenta indícios de que busca equalização entre os turnos e/ou entre os profissionais (atendidos pelas expressões (08) e (09) – no que diz respeito à equalização entre turnos – e pelas expressões (19), (20) e (21) – para a equalização entre profissionais), bem como não indica levar em consideração qualquer aspecto financeiro (atendidos pelo modelo proposto por meio do segundo fator da expressão (01) e da expressão (18)).

Neste sentido, verifica-se que o modelo proposto atende condições importante não encontradas nos estudos de Stojanovic (2014), sendo, desta forma, uma alternativa para o trabalho de designação de trabalho a profissionais de Controle de Tráfego Aéreo.

5 RESULTADOS E DISCUSSÃO

A análise dos resultados foi iniciada antes mesmo do processamento das instâncias. O primeiro parâmetro de análise foi a Taxa de Disponibilidade Total por Instância (TDTI), calculada pela equação TDTI = tdisp/(to*td), onde tdisp equivale ao total de dias disponíveis na instância, independente de operador; to é o total de operadores na escala; e td é o total de dias no mês de referência.

A *TDTI* foi calculada para verificar se alguma instância teria menor disponibilidade do que a necessária para que o modelo encontre uma solução factível. Com os parâmetros utilizados para a resolução do modelo, em um mês são feitas 2130 designações, portanto é preciso que a *TDTI* seja de pelo menos 0,59 e, como todas as instâncias tiveram *TDTI* superior a 0,93, decidiu-se aceitar as instâncias geradas para testes.

Mesmo com *TDTI* aceitável, porém, existe possibilidade de infactibilidade da instância caso as indisponibilidades estejam concentradas num mesmo período, mas esta conferência não foi realizada, uma vez que se julgou mais racional rodar os testes do que efetuar a conferência prévia.

Após aceite das instâncias e processamento dos testes computacionais, identificou-se que 70% das instâncias com "preferência" de 30% (300070, 301060, ...) atingiram o limite de tempo de 3.600 segundos, tendo uma média tempo de 3.000 segundos e um *gap* médio de 0,05%. Em contrapartida, os demais cenários apresentaram soluções ótimas em 98% das instâncias, configurando, até então uma discrepância a ser estudada e entendida. O GRÁFICO 1 mostra as médias de tempo no eixo principal e de *gap* da FO (em %) no eixo secundário por conjunto de cenários agrupados por "preferência".

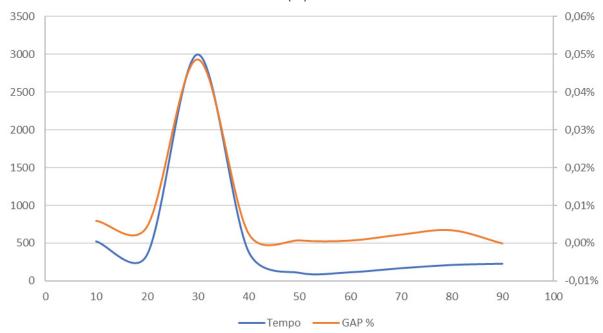


GRÁFICO 1 - MÉDIAS DE TEMPO E GAP (%) COM 45 CENÁRIOS POR PREFERÊNCIAS

FONTE: A autora (2020).

A fim de investigar uma possível causa para este aumento significativo no tempo de solução de um conjunto de cenários específicos, foram gerados 55 novos cenários com os parâmetros "preferência" e "não preferência" variando de 05 a 95, intercalados entre os cenários inicialmente propostos, conforme TABELA 6. Os cenários intercalados foram pensados para que fosse possível verificar se o comportamento seria similar ao dos seus "vizinhos" ou se o que havia acontecido era alguma anomalia na geração das instâncias.

TABELA 6 - CENÁRIOS DEFINIDOS PARA INVESTIGAR DISCREPÂNCIAS ENCONTRADAS

050095	057025	154045	252055	351055	451045	552025	750025
051085	058015	155035	253045	352045	452035	553015	751015
052075	059005	156025	254035	353035	453025	554005	752005
053065	150085	157015	255025	354025	454015	650035	850015
054055	151075	158005	256015	355015	455005	651025	851005
055045	152065	250075	257005	356005	550045	652015	950005
056035	153055	251065	350065	450055	551035	653005	

FONTE: A autora (2020).

Novamente, após a geração das instâncias, o *TDTI* foi conferido e todas as instâncias apresentaram condições de factibilidade, podendo, desta forma, serem processadas pelo programa.

Com resultados para os 550 novos testes, verificou-se que o comportamento dos cenários intercalados em "preferência" com os demais apresentou parâmetros de tempo de solução e *gap* (%) compatíveis com a curva verificada no GRÁFICO 1.

Os dados foram compilados e, conforme pode ser verificado no GRÁFICO 2, os novos cenários criados para investigação apresentaram resultados semelhantes aos dos cenários "vizinhos", especialmente os cenários com "preferência" de 25% e 35% que apresentaram valores aumentados de tempo em comparação com os demais cenários

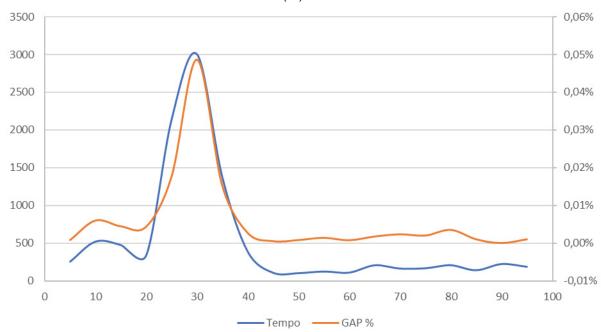


GRÁFICO 2 - MÉDIAS DE TEMPO E GAP (%) COM 100 CENÁRIOS POR PREFERÊNCIAS

FONTE: A autora (2020).

Mediante este resultado, observou-se que há possibilidade de ter ocorrido o fenômeno de "ciclagem" em que, segundo Murty (1983, p. 281), quando da resolução do método Simplex, há um empate no teste para a escolha da variável a entrar na base, fazendo com que esta escolha seja arbitrária entre as variáveis elegíveis. Entretanto, este processo faz com que o algoritmo continue indefinidamente num ciclo de bases factíveis, não conseguindo, porém, provar sua otimalidade; tendo, consequentemente, tempo de solução bastante elevado. Entretanto, como foi utilizado um *software* comercial de otimização, não se sabe quais métodos de solução são utilizados, não sendo possível afirmar a causa da anomalia encontrada nos cenários com "preferências" em valores próximos dos 30%.

Por se tratar de um fenômeno raro em programação linear, novamente foram definidos outros cenários, a fim de completar os dados faltantes no intervalo entre os cenários de 25% e 35% para facilitar a visualização do ocorrido.

Ao término das 3 fases de testes, contabiliza-se um total de 160 cenários, conforme TABELA 7 e 1.600 instâncias que levaram um total de aproximadamente 26 dias e meio de processamento computacional. O resumo dos resultados encontrados em termos de tempo de solução, valor da Função Objetivo e *gap* (%) de solução encontram-se no Apêndice 1.

TABELA 7 – 160 CENÁRIOS FINAIS GERADOS PARA TESTES

				<u> </u>				
050	095	151075	254035	286012	333037	324028	402040	600040
051	1085	152065	255025	290071	335017	343036	403030	601030
052	2075	153055	256015	273043	340066	325018	404020	602020
053	3065	154045	257005	291061	313039	326008	405010	603010
054	1055	155035	260074	293041	321058	331057	450055	650035
055	045	156025	261064	294031	297001	332047	451045	651025
056	035	157015	262054	274033	300070	344026	452035	652015
057	7025	158005	263044	295021	301060	345016	453025	653005
058	3015	200080	264034	296011	302050	336007	454015	700030
059	9005	201070	265024	330067	303040	341056	455005	701020
100	090	202060	266014	275023	304030	346006	500050	702010
101	080	203050	281062	334027	305020	350065	501040	750025
102	2070	204040	282052	276013	306010	351055	502030	751015
103	3060	205030	283042	277003	311059	352045	503020	752005
104	1050	206020	284032	280072	342046	353035	504010	800020
105	5040	207010	267004	315019	322048	354025	550045	801010
106	8030	250075	270073	292051	314029	355015	551035	850015
107	7020	251065	285022	310069	316009	356005	552025	851005
108	3010	252055	271063	312049	320068	400060	553015	900010
150	0085	253045	272053	287002	323038	401050	554005	950005

FONTE: A autora (2020).

Por fim, no que diz respeito a esta verificação quanto ao fenômeno de ciclagem ocorrido próximo aos cenários de 30% de preferência, o GRÁFICO 3 apresenta as médias de tempos e de *gap* (%) de todos os cenários testados neste estudo e, como pode ser observado, os cenários que foram gerados para última verificação apresentaram comportamento semelhante aos demais, mantendo a curva inicialmente apresentada no GRÁFICO 1.

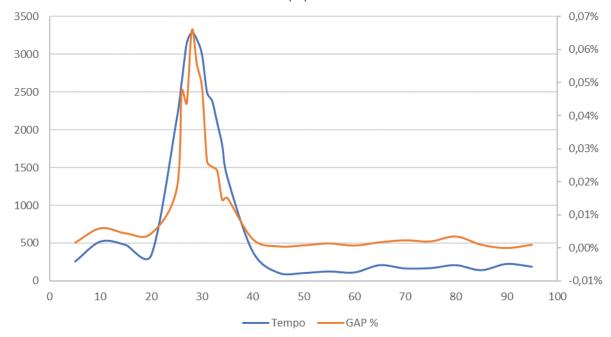


GRÁFICO 3 - MÉDIAS DE TEMPO E GAP (%) COM 160 CENÁRIOS POR PREFERÊNCIAS

FONTE: A autora (2020).

Tendo em vista que tempo de processamento, atendimento de "preferências" e/ou não violação de "não preferências" e menor *gap* da FO (%) terem sidos estabelecidos como critérios para a identificação dos melhores cenários para a gestão das escalas de serviço para Controladores de Tráfego Aéreo, poder-se-ia pensar na exclusão dos cenários com preferências entre 25% e 35% dos elegíveis como melhores. Entretanto, considerando que o horizonte de planejamento para as escalas é de um mês e que o *gap* (%) encontrado para aqueles cenários foi relativamente baixo, optou-se por mantê-los na amostra.

Dentre os 3 critérios para escolha, considera-se que o atendimento das "preferências" e/ou não violação de "não preferências" é o mais importante, tendo em vista que o objetivo do modelo é a designação das escalas atendendo as preferências declaradas pelos trabalhadores.

Para a efetiva identificação dos melhores cenários, inicialmente foram calculados as médias de tempo e gap (%); os atendimentos de preferências; e as violações de "não preferências" por cenários tendo em vista que há 10 instâncias para cada cenário. Em seguida, foram feitas duas seleções prévias, cujos resultados são apresentados na TABELA 8 e na TABELA 9.

SELEÇÃO 1:

- a) filtrar os cenários com gap entre 0% a 0,01% (91 cenários restantes na amostra);
- b) selecionar dentre os cenários filtrados, os 10 com menor tempo de processamento.

TABELA 8 – RESULTADO DA SELEÇÃO 1 – PRIMEIRA TENTATIVA

CENÁRIOS	MÉDIA TEMPO	MÉDIA <i>GAP</i>	MÉDIA ATEND. "PREF."	MÉDIA VIOLAÇ. "Ñ PREF"
057025	73,80	0%	633	0,1
059005	79,63	0%	638	0
150085	58,01	0%	1550	576,7
451045	84,59	0%	2129,5	0
453025	92,92	0%	2129,5	0
455005	75,85	0%	2129,1	0
502030	89,74	0%	2128,5	0
504010	86,55	0%	2125,6	0
554005	91,94	0%	2129,5	0
850015	89,89	0%	2129,8	0

FONTE: A autora (2020).

SELEÇÃO 2:

- a) filtrar os cenários com nenhuma violação de "não preferência" (61 cenários restantes na amostra) para este critério, foram considerados os valores arredondados, em que até 0,4 violações em média no cenário foram consideradas como nenhuma violação, tendo em vista que violação média de 0,4 equivale a 4 violações em 10 instância com 2130 designações cada, sendo este um valor muito pequeno e que não prejudica a performance do cenário de maneira geral.
- b) selecionar dentre estes, os cenários com as 10 maiores quantidades de preferências atendidas (21 cenários restantes na amostra);
- c) selecionar dentre estes, os 10 cenários com menor tempo de processamento.

TABELA 9 - RESULTADO DA SELEÇÃO 2 – PRIMEIRA TENTATIVA

CENÁRIOS	MÉDIA TEMPO	MÉDIA <i>GAP</i>	MÉDIA ATEND. "PREF."	MÉDIA VIOLAÇ. "Ñ PREF"
451045	84,59	0%	2129,5	0
453025	92,92	0%	2129,5	0
455005	75,85	0%	2129,1	0
551035	131,77	0%	2129	0
552025	118,77	0%	2129,2	0
553015	116,74	0%	2129,3	0
554005	91,94	0%	2129,5	0
602020	112,66	0%	2129	0
603010	94,25	0%	2130	0
850015	89,89	0%	2129,8	0

FONTE: A autora (2020).

Os cenários 451045, 453025, 455005, 554005 e 850015 estão presentes em ambas as amostras e serão analisados como candidatos aos melhores cenários do estudo.

Primeiramente, os cenários 455005 e 554005 foram considerados não adequados, pois cada operador poderia indicar, dentre as 210 possibilidades de designações no horizonte de planejamento de um mês, entre 10 e 11 turnos em que prefere não trabalhar. Esta quantidade é insuficiente e torna muito fácil a não violação, não demonstrando a qualidade da solução.

Por outro lado, não parece razoável que um trabalhador que será designado para até 20 turnos de serviço no mês indique entre 94 e 95 (45% de 210) turnos em que deseja trabalhar. É como se cada trabalhador precisasse indicar quase 5 opções de preferência para cada turno para o qual deve ser designado. Neste caso, parece que indicar tantas opções deixa de configurar preferência e aproxima-se dos conceitos de indiferença pelas designações, o que pode resultar menor satisfação pessoal pelos atendimentos das preferências. Essa suposição pode ser sustentada pelos estudos de psicologia relacionados ao Paradoxo da Escolha (SCHWARTZ, 2004) e ao Paradoxo da Maximização (DAR-NIMROD *et al.*, 2009) que indicam que a satisfação pela escolha tende a ser menor quando a quantidade de opções é maior.

Generalizando, a determinação para que se indique mais do que 3 opções para cada designação já pode ser considerada inadequada. Desta forma, foram eliminados todos os cenários com preferências maiores do que 28%.

Neste sentido, dos 5 cenários inicialmente selecionados como possíveis melhores, nenhum demostra condições de aplicabilidade real. Assim, é preciso uma nova abordagem para a escolha dos melhores cenários de gestão.

O melhor seria que cada operador indicasse como preferência apenas os 20 turnos para os quais deve ser designado, de modo que a escala ideal correspondesse às suas reais e exatas preferências. Entretanto, os cenários correspondentes a essa situação ideal (com preferências de 10%) tiveram um atendimento de preferência considerado baixo (52% em média) e, portanto, não serão selecionados.

Uma alternativa aceitável é estabelecer que cada trabalhador deva indicar entre 30 a 60 opções de preferência por mês, o que equivale a 1,5 a 3 opções para cada designação. Assim, restaram para análise 49 cenários com preferências entre 15% e 28%, conforme a TABELA 10.

TABELA 10 - CENÁRIOS POR PREFERÊNCIAS APÓS CRITÉRIOS DE EXCLUSÃO

CENÁRIOS AGRUPADOS POR PREFERÊNCIA	QUANTIDADE DE INDICAÇÃO POR OPERADOR	MÉDIA DE ATENDIMENTO DE PREFÊNCIAS
15	32	69%
20	42	83%
25	53	93%
26	55	94%
27	57	94%
28	59	95%

FONTE: A autora (2020).

Dos cenários restantes, ainda é necessário excluir aqueles em que são indicadas poucas ou muitas "não preferências". Decidiu-se excluir cenários em que os operadores indicam quantidade inferior a 10% ou superior a 50% de turnos para os quais não querem ser designados. Essa decisão fundamenta-se nas razões já apontadas anteriormente. Restam, portanto, 25 cenários para análise.

Como novos critérios, mais razoáveis em termos práticos, foram estabelecidos, deve-se refazer o processo de seleção já descrito.

Nesta Seleção 1, ao filtrar os cenários por *gap* menores ou iguais a 0,01%, restaram apenas 10 cenários, não sendo necessário fazer a seleção por tempo, conforme TABELA 11.

TABELA 11 - RESULTADO DA SELEÇÃO 1 – SEGUNDA TENTATIVA

CENÁRIOS	MÉDIA TEMPO	MÉDIA <i>GAP</i>	MÉDIA ATEND. "PREF."	MÉDIA VIOLAÇ. "Ñ PREF"
154045	294,64	0,00%	1.432	0
155035	209,60	0,00%	1.435	1
156025	134,24	0,00%	1.455	1
157015	198,53	0,00%	1.461	0
203050	304,38	0,00%	1.759	0
204040	191,99	0,00%	1.765	0
205030	180,17	0,00%	1.768	2
206020	299,98	0,00%	1.769	0
207010	333,23	0,01%	1.764	0
255025	2.297,92	0,01%	1.979	0

FONTE: A autora (2020).

Na Seleção 2, aplicando o filtro por cenário com média de violação de "não preferência" igual a 0 restaram 13 cenários; e após a seleção dos cenários com os 10 melhores atendimentos de preferências, restaram apenas 10 cenários, sendo desnecessário, também, fazer a seleção por tempo, de acordo com a TABELA 12.

TABELA 12 - RESULTADO DA SELEÇÃO 2 – SEGUNDA TENTATIVA

CENÁRIOS	MÉDIA TEMPO	MÉDIA <i>GAP</i>	MÉDIA ATEND. "PREF."	MÉDIA VIOLAÇ. "Ñ PREF"
205030	180,17	0,00%	1.768	0
206020	299,98	0,00%	1.769	0
255025	2297,92	0,01%	1.979	0
256015	1562,43	0,02%	1.974	0
265024	2737,02	0,06%	1.988	0
266014	2404,97	0,02%	2.000	0
275023	3088,93	0,05%	2.002	0
276013	3472,99	0,03%	1.996	0
285022	3584,72	0,03%	2.034	0
286012	3101,00	0,05%	2.032	0

FONTE: A autora (2020).

Apenas os cenários 205030 e 206020 estão presentes no resultado das duas seleções, de modo que foram os escolhidos como os melhores cenários para a gestão das escalas de serviços para Controladores de Tráfego Aéreo.

Os resultados de todas as instâncias dos dois melhores cenários são apresentados na TABELA 13.

TABELA 13 – RESULTA	ADO	S D	E T					ÂNC				1ELI	HOF				RIOS	}		
INSTÂNCIA	205030_0	205030_1	205030_2	205030_3	205030_4	205030_5	205030_6	205030_7	205030_8	205030_9	206020_0	206020_1	206020_2	206020_3	206020_4	206020_5	206020_6	206020_7	206020_8	206020_9
FUNÇÃO OBJETIVO	102218,87	104935,71	103436,12	102414,28	103293,68	100334,33	101999,57	104913,48	103462,95	103784,52	100035,48	102117,38	102271,88	104945,78	103320,97	98137,14	104824,18	102702,88	103735,95	207,38 101774,66 206020_9
TEMPO	107,29	412,54	130,83	213,80	228,40	314,49	124,74	31,17	123,35	115,13	164,45	150,85	700,95	150,86	101,58	485,42	197,34	701,56	139,42	207,38
GAP	%00'0	0,01%	%00'0	0,01%	0,01%	%00'0	%00'0	%00'0	0,00%	0,01%	%00'0	0,01%	0,01%	0,01%	%00'0	%00'0	%00'0	0,01%	0,00%	%00'0
TOTAL DE INDISPONIBILIDADE NO MÊS	118	134	159	126	148	109	141	09	136	109	181	131	173	11	101	172	117	169	112	119
TOTAL DE DESIGNAÇÃO EM "PREFERÊNCIA"	1740	1778	1786	1767	1747	1732	1759	1826	1760	1787	1730	1780	1770	1799	1820	1714	1769	1756	1786	1762
OPERADOR COM MAIOR ATENDIMENTO DE PREFERÊNCIA	19	19	19	18	19	18	19	18	19	19	19	19	20	19	19	20	19	19	19	20
OPERADOR COM MENOR ATENDIMENTO DE PREFERÊNCIA	5	6	7	8	4	7	4	7	7	6	2	2	9	6	6	9	7	6	8	8
TOTAL DE DESIGNAÇÃO EM "INDIFERENÇA"	388	351	344	363	383	356	371	294	370	343	399	350	352	331	310	416	361	374	344	368
OPERADOR COM MAIOR DESIGNAÇÃO EM "INDIFERENÇA"	10	11	11	6	6	8	6	6	10	10	11	6	6	6	8	10	6	10	11	10
OPERADOR COM MENOR DESIGNAÇÃO EM "INDIFERENÇA"	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL DE DESIGNAÇÃO EM "NÃO PREFERÊNCIA"	2	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0
OPERADOR COM MAIOR VIOLAÇÃO DE NÃO PREFERÊNCIA	-	_	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0
OPERADOR COM MENOR VIOLAÇÃO DE NÃO PREFERÊNCIA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

FONTE: A autora (2020).

Nos dois cenários escolhidos, os operadores devem indicar 42 opções de turnos em que preferem trabalhar no mês, o que equivale a aproximadamente 2

indicações de turno para cada designação em média. O que difere os dois cenários é a indicação de turnos em que gostariam de não trabalhar. No primeiro cenário, os controladores devem indicar 63 turnos nos quais não querem trabalhar; enquanto que no segundo cenário, esta indicação se restringe a 42 turnos. Com essas quantidades de "não preferências" é possível, por exemplo, que o operador escolha de 6 a 9 dias inteiros, de 21 a 31 manhãs ou noites, ou de 14 a 21 tardes livres no mês, bem como qualquer outra combinação que julgar adequada às suas preferências.

A média de tempo para processamento das instâncias referentes aos cenários escolhidos varia de 3 a 5 minutos, tempo considerado muito bom, levandose em consideração a complexidade e o tamanho do modelo.

Com relação ao critério de atendimento de "preferências" e/ou não violação de "não preferências", os dois cenários obtiveram resultados praticamente iguais, com média de atendimento de 1.768,2 e 1.768,6 e média de designação de 0,4 e 0,1 em desconformidade com indicações de "não preferência". Isso quer dizer que 83% das designações nestes cenários atendem às preferências dos trabalhadores, fazendo com que o nível de satisfação com relação ao horário de trabalho se eleve. Em contrapartida, as violações significam que de todas as 10 instâncias do cenário 205030, apenas 4 designações, de um total de 2130, violaram a "não preferência" (menos de 0,02% das designações), enquanto que das 10 instâncias do outro cenário, houve apenas uma designação em turno para o qual um operador preferia não trabalhar (menos de 0,005% das alocações).

Tendo em vista que todas as instâncias de ambos os cenários encontraram a solução ótima, consequentemente, não apresentaram *gap* na FO.

Mediante os resultados das 20 instâncias dos melhores cenários, pode-se perceber que as 5 violações de "não preferências" aconteceram sempre em dia anterior a um período de indisponibilidade superior a 6 dias. Isto se deu em decorrência da combinação de dois fatores: primeiramente, o conjunto de restrição (11) determina que em um período de 7 dias corridos, o operador deve ser designado para pelo menos um turno; e, como no dia anterior a um período de indisponibilidade o operador pode ser designado apenas para os 5 primeiros turnos, coincidentemente nos casos analisados, os operadores não indicaram nenhum destes turnos como preferência para trabalhar, cabendo ao modelo designar entre "não preferências" ou "indiferenças".

As "indiferenças" indicadas pelos operadores nestes casos se deram em turnos de serviços administrativos, cuja demanda é por apenas um operador por turno e a designação de cada operador deve se restringir a uma por mês; ou no turno de "Reforço Tarde", cuja designação é penalizada na FO por ser devida vantagem financeira, restando assim poucas opções para o modelo cumprir com a restrição de folga máxima, sendo, portanto, mais interessante para o modelo violar a "não preferência".

Violações em decorrência desta combinação de fatores podem ser evitadas por meio de ajustes, tal como a determinação para o operador indicar um turno de preferência no dia anterior a períodos de indisponibilidade superior a 6 dias ou de flexibilizar a restrição (11) nos dias que antecedem tais indisponibilidades.

Com a finalidade de verificar a qualidade de solução do modelo, fez-se uma análise mais aprofundada na solução de uma instância de cada cenário, sendo escolhido para tal as instâncias 205030_0 e 206020_0.

Os resultados encontrados demonstram a similaridade dos cenários, conforme a seguir:

a) a instância 205030 0 apresentou folga média de 12,38 dias livres por mês, sendo que a folga mínima foi de 8 dias (especialmente para operadores com indisponibilidades no período) e a folga máxima foi de 15 dias, sendo necessário, para tanto, designar de 3 a 4 vezes o operador para as jornadas duplas permitida ("Controle Manhã" e "Controle Pernoite" ou ("Controle Manhã" e "Pernoite Administrativo"), o que pode ser uma estratégia escolhida pelo profissional para que aumente a quantidade de dias livres no mês. A instância 206020 0 apresentou folga média pouco menor, no valor de 11,8 dias livres por mês, e folga mínima de 6 dias, enquanto que a folga máxima foi também de 15 dias. Considera-se, de maneira geral, que uma média de 12 dias de folga por mês é bastante adequada, sendo este valor superior à folga média de trabalhadores com horários fixos de trabalho que varia de 4 a 10 dias por mês, dependendo do regime de trabalho e da quantidade de finais de semana existentes no mês de referência. A folga média aumentada contribui para que haja maior tempo para dormir, melhoria do bem-estar no trabalho, melhoria da saúde geral e melhores condições para participar de atividades de lazer, segundo Hakola, Paukkonen e Pohjonen (2010);

- b) os profissionais têm a possibilidade de programar até 6 dias corridos de folga no mês, caso a combinação de dias indicados como "não preferência" não viole nenhuma restrição que contrarie essa programação. Entretanto, para que isto aconteça, as folgas entre os demais dias de trabalho têm de ser reduzidas para que sejam atendidas as restrições de quantidades mínimas de serviço no mês. Cabe ao operador verificar se prefere folgas mais bem distribuídas para descansos periódicos ou períodos maiores de folga para programar atividades que demandem de mais tempo, por exemplo uma viagem. Nas instâncias em análise, o maior período consecutivo de folga foi de 5 dias (5 ocorrências em cada instância) seguindo de 32 ocorrências de 4 dias livres consecutivos na instância 205030 0 e de 21 ocorrências do mesmo tipo na instância 206020_0. Considerando que escalas de trabalho bem elaboradas podem minimizar a ocorrência de falhas durante a jornada e que os períodos de descanso entre os turnos são adequados para uma boa recuperação do profissional, a gestão individual sobre os dias de folga entre os turnos pode permitir aos empregados equilibrar as demandas de trabalho e tempo com a família melhorando a capacidade de lidar com altas cargas de trabalho (JOU, KUO e TANG, 2013);
- c) na instância 205030_0, a menor porcentagem de atendimento de preferências por tipo de turno foi de 77% para turnos de "Controle Tarde" e "Reforço Tarde". Os turnos "Controle Manhã" e "Controle Pernoite" apresentaram, respectivamente, atendimentos de 81% e 90%; na outra instância analisada, o menor atendimento de preferência foi para o turno "Controle Manhã" com 78%, enquanto que os turnos da tarde apresentaram atendimento de 80% e o turnos "Controle Pernoite" teve um atendimento de 86%. Em ambas as instâncias o atendimento de preferências por turnos de serviços administrativos foi de 100%. Esse resultado demonstra que quanto maior a demanda por profissionais, menores são as chances de atendimento de preferências em comparação com os turnos com demandas inferiores turnos de serviços administrativos têm demanda por 1 profissional por turno e turnos de "Controle Pernoite" precisam de 13 profissionais, enquanto que "Controle Manhã tem demanda por 25 Controladores e os turnos de controle da

tarde, por 30. Isto pode ter ocorrido em decorrência de o programa gerador de instâncias não conseguir reproduzir as preferências humanas, uma vez que se o profissional sabe que só pode ser designado para um turno do tipo administrativo por mês, esse profissional indica poucos turnos deste tipo como preferência e usa a maior parte de suas possibilidades com turnos que efetivamente têm mais chance de haver a designação. Esta especificidade não foi considerada na programação para geração de instâncias e, em decorrência disto, as "preferências" foram dispostas proporcionalmente entre os turnos existentes. Desta forma, imagina-se que os atendimentos de preferências com dados coletados em situações reais sejam maiores nestes turnos, aumentando, consequentemente, o atendimento geral de preferências;

d) considerando os intervalos de descanso entre dois turnos consecutivos, as piores combinações permitidas pelo modelo são as designações em um mesmo dia para "Controle Manhã" e "Controle Pernoite" (MP) ou "Pernoite Adm" (MPa), com intervalo de apenas 7 a 8,5 horas, seguido da combinação "Controle Tarde" e "Controle Manhã" (TM) ou "Manhã Adm" (TMa) do dia seguinte, com intervalos de 9,5 a 10 horas. As combinações MP e MPa acontecem num total de 118 vezes em uma instância e de 116 vezes na outra, tendo em média 4 operadores designados para essa sequência de serviços por dia. As combinações TM e TMa ocorrem em maior quantidade, porém não em valor significativo, havendo em média 5,4 e 5,7 operadores com esta sequência de designação por dia. Consequentemente, combinações de sequência com menores intervalos para descanso ocorreram, nestas instâncias, em menos de 10 operadores por dia, equivalente a menos de 8% da equipe de trabalho. Neste sentido, esta pode ser considerada uma escala com carga e intervalos bem administrados, sendo possível minimizar a ocorrência de falhas durante a jornada de trabalho (NOCE, 2010).

Por fim, como exemplo do resultado operacional do modelo de designação, tem-se a FIGURA 2 e a FIGURA 3 com os desenhos parciais das soluções das instâncias 205030_0 e 206020_0, respectivamente.

FIGURA 2 - DESENHO PARCIAL DA SOLUÇÃO DA INSTÂNCIA 205030_0

				_								_	7	က	4	2	9	7	œ	6	0
DIA	OPERADOR 1	OPERADOR 2	OPERADOR 3	OPERADOR 4	OPERADOR 5	OPERADOR 6	OPERADOR 7	OPERADOR 8	OPERADOR 9	OPERADOR 10	()	OPERADOR 111	OPERADOR 112	OPERADOR 113	OPERADOR 114	OPERADOR 115	OPERADOR 116	OPERADOR 117	OPERADOR 118	OPERADOR 119	OPERADOR 120
1			3	3	3			6		6		3				1	1/6		3		3
2	3	6	3				3		1				3	3		1/6		1		3	
3	3				3		1/6	3	1/6	6		1	1		3		3	1/6			
4	6	1/6	1		3	3						1		5	1	3	5		6	1	3
5			3		3				3					3	3			3		1	
6				1/6	6			3					3	3		1	3	1	1		3
7		6	1			3	6	3	1	3			1		5		3		3	6	
8	6					1		3	6			3	3		3	1/6		3	1		5
9		3		1	1	1	3	3						1	6		1/6			3	3
10		1	3	1	3	3	1												1/6	3	4
11	1	3	6	1			1/6			1		3	3	3	1			3		3	
12	1	3				1			3	3		5		5	3	1	1	3		6	1
13	1	3	1/6	3			6	1	1	1/6			1	3			6	7	1		
14	3				6	1/6		6	1/6			1	3	4					1	3	
15		3	3	1						6		3	3	6	6	3	1	1/6			1
16		3			3	6	3	3				3	1/6						6		
17	1		6	6			3	1	3	3		5			1	6	1/7	3		3	
18	1	1			1	3	3	1		3				3	3			5		6	5
19		3			1/6	1		3	1/6	3		6	1			4	3	5			3
20	1/6	1	3	3		3	1	3		3					3				3	1	6
21			1	3	1	6	3					3	1	3	5	3	3	3	3		
22	6			3								5		3	3	3			1/7	3	
23		1	1	1	3	3	3	3	3	3		3	1	1	3	1				3	1
24	3	1/6		6	6	3	3	6				1	3	3		5	1	3			5
25	3		1			6			3	1		4	5	6	2		1		1		
26			1	1	3					3		3				3	6		1	2	5
27	3		6			1	1	1/6	3	1			6	1					6	5	3
28	3			1/6					3	3					1	3	3			6	1
29	1	3	3		3	1	3		3				5	1	1	3			3		3
30	3			3	1			1		1		1/6	4	1	6	1				1	1

Legenda:

*Numeração indica o turno de trabalho, conforme TABELA 3.

	Turno(s) indicado(s) pelo operador como "Preferência" por trabalhar
	Um turno indicado como "Preferência" e outro como "Indiferença"
	Turno(s) indicado(s) pelo operador como "Indiferença" por trabalhar
	Indisponibilidade para o serviço

FONTE: A autora (2020).

FIGURA 3 - DESENHO PARCIAL DA SOLUÇÃO DA INSTÂNCIA 206020_0

DIA	OPERADOR 1	OPERADOR 2	OPERADOR 3	OPERADOR 4	OPERADOR 5	OPERADOR 6	OPERADOR 7	OPERADOR 8	OPERADOR 9	OPERADOR 10	()	OPERADOR 111	OPERADOR 112	OPERADOR 113	OPERADOR 114	OPERADOR 115	OPERADOR 116	OPERADOR 117	OPERADOR 118	OPERADOR 119	OPERADOR 120
	OPE	OPE	3 dO	3 dO	J dO	3 dO	ЭО	3 dO	OPE	ІЗОО		OPER	OPER	OPER	OPER	OPER	OPER	SPER	OPEF	OPEF	OPER
1		3	3		1	1		3	1	1			1	3	3		3				6
2	1			3	3		3	3	6	3		6		3	3	1		1	1		
3		1	3			1	1			3			3	3	3	3	1/6		3		
4		6	1/6	1	6		1	1	6	3		1	1					1	3	1	5
5	3			3				3		6			3				3	1	7	6	
6		6		1/6		3	1	6	3			3	6	1		1		1			
7	3		3		1	1/6	3		1			1				1	3		6	1	5
8	3	1			3		1	6	1	3				3			7				3
9	3		1	3	3				1/6	3		1		1		3		6	1	1	7
10		1	3	1	1	3	6	1		1		1	3		3					1/7	
11	1	6		3	3	1		1	3	3		3		3		6	3		3		
12	3		1			3	1			3		1		5			1	1		5	1
13	6	3		3		1	6	6	1	1		3	4		5		5	3		3	3
14		3	1	6	1/6				1			6				1	3		1/6		
15	1/6		1			6		1		6			3		3	1		6		1	
16			3	1			1/6	1	3			1	1				3		1/6	3	1
17	3	3	1	3		3		1	1	1		3	6	3	4	5	1			3	3
18		3	1	3		1								6	3	3	3		1		6
19		3	6	3				1	1	1/6		1	1		6	3		3		5	
20	3	1			3	3		1				6	3	5			1	3	3		1
21		3	3	3	1/6	1			1	6			6		5		5	5	1	1	3
22	1					1						5					6	3		1/6	3
23	1		1	3	3	6	3	3	3			3						1			6
24	6	1/6	6	1/6	3				3	3		7	1/6				3	6			
25						1		1	3						1	4			1	3	3
26	1		1		3	1		3				6	1	1/7		3		2	1		3
27	1/6	3			3	6		6	6									1	3		
28		1	1/6	1/6	1/6					1		3	1					3	6	3	1
29	3	1				3	3	1		3			3			6				6	1
30	1	3			1		1	3	1	1			3		1/6		6	3			

Legenda:

*Numeração indica o turno de trabalho, conforme TABELA 3.

	Turno(s) indicado(s) pelo operador como "Preferência" por trabalhar
	Um turno indicado como "Preferência" e outro como "Indiferença"
	Turno(s) indicado(s) pelo operador como "Indiferença" por trabalhar
	Indisponibilidade para o serviço

FONTE: A autora (2020).

Nota-se que, em ambas as instâncias, os operadores de menor peso (quanto menor o índice do operador, menor o seu peso em relação aos demais) têm mais designações em turnos para os quais indicaram ser indiferentes quanto à designação, enquanto que os trabalhadores com maior peso foram designados em mais turnos para os quais indicaram preferir trabalhar, sendo exatamente esse o comportamento esperado do modelo quando se definiu na FO, expressão (01) do modelo, que as designações devem atender as preferências dos operadores, considerando seu peso em relação aos demais, havendo prioridade para os mais experientes e com maior tempo de serviço.

Os resultados apresentados demonstram a efetividade do modelo em propor uma designação adequada das escalas de serviço para Controladores de Tráfego Aéreo, bem como características encontradas em dois cenários de políticas de declaração de preferências, que foram considerados os melhores dentre os avaliados, que podem ser adotados pelos órgãos de controle a fim de que haja um aumento na satisfação com o trabalho e uma melhoria na qualidade de vida dos profissionais.

6 CONCLUSÃO

Este trabalho propôs um modelo matemático de programação inteira e mista para a designação de Controladores de Tráfego Aéreo buscando maximizar o atendimento das preferências declaradas pelos profissionais ao mesmo tempo em que, atendendo a todas as condições laborais relativas a esta atividade, minimiza o custo extra com designações em um turno com jornada estendida. Por meio das soluções encontradas pelo modelo, foi possível analisar 160 cenários de gestão com diversas combinações entre declarações de "preferências, de "não preferências" e de "indiferenças" pelas designações nos inúmeros turnos possíveis dentro do horizonte de planejamento.

Dentre os cenários analisados, por meio da definição de critérios de exclusão e de escolha, foi possível definir os dois melhores cenários para a gestão desse tipo de escala e diversas constatações foram feitas mediante uma avaliação mais aprofundada nas soluções destes cenários, tal como a identificação de causas para padrões de soluções encontrados e possíveis alternativas para aperfeiçoar o modelo, fazendo com que as soluções sejam melhores dos que as já encontradas. Os cenários escolhidos como melhores foram o 205030 e o 206020 que possibilitam que os profissionais indiquem, dentre as possibilidades, 20% de preferências e 20 ou 30% de "não preferências", estando ambos bastante adequados para casos de designações reais de trabalho.

Também se constatou que o modelo proposto tem a capacidade de gerar boas soluções para melhorar a qualidade de vida dos trabalhadores em vários aspectos relacionados à saúde mental e física; apresentando potencial para minimizar a fadiga do trabalhador por meio de designações mais equilibradas, permitindo maior tempo de recuperação entre os turnos; permitindo que o trabalhador gerencie períodos de folga quando julgar necessário para equilibrar as demandas do trabalho com atividades de lazer; e, por fim, atendendo grande parte das preferências indicadas pelos trabalhadores, aumentando a satisfação do profissional com o horário de trabalho.

Embora com pequenas diferenças em comparação com os trabalhos de Stojadinovic (2014) e Stojadinovic (2015), este trabalho apresentou soluções ótimas ou quase ótimas para instâncias maiores do que as mencionadas naqueles.

Durante as fases de testes computacionais, observou-se em um conjunto de cenários que, provavelmente devido ao fenômeno de ciclagem, o tempo limite foi atingido na maioria das instâncias. Como sugestão para trabalhos futuros, cabem estudos buscando identificar neste modelo porque este comportamento existiu.

O problema de designação de escalas de serviço pode ser abordado por meio do problema tradicional de Máquinas Paralelas, uma vez que os operadores podem ser considerados máquinas dispostas em paralelo (por possuírem as mesmas capacidades técnicas) que devem processar as tarefas de Controle de Tráfego Aéreo. A verificação da efetividade desta abordagem de solução fica também como sugestão para trabalhos futuros.

REFERÊNCIAS

AGÊNCIA NACIONAL DE AVIAÇÃO CIVIL (ANAC). **NOTÍCIAS**, 2018. Disponível em: http://www.anac.gov.br/noticias/tarifa-aerea-media-cai-para-r-357-em-2017-menor-valor-da-serie-historica-desde-2011. Acesso em: 01 ago. 2018.

AGÊNCIA NACIONAL DE AVIAÇÃO CIVIL (ANAC). **NOTÍCIAS**, 2019a. Disponível em: < https://www.anac.gov.br/noticias/2019/tarifa-aerea-domestica-sobe-1-em-2018-na-comparacao-com-ano-anterior>. Acesso em: 06 nov. 2019.

AGÊNCIA NACIONAL DE AVIAÇÃO CIVIL (ANAC). **Relatório Anual de Segurança Operacional**, 2019b. Disponível em: < https://www.anac.gov.br/assuntos/paginastematicas/gerenciamento-da-seguranca-operacional/arquivos/RASO_2018_v4.pdf>. Acesso em: 06 nov. 2019.

AVRAMIDIS, A.N.; CHAN, W.; GENDREAU, M.; ECUYER, P.; PISACANE, O. Optimizing daily agent scheduling in a multiskill call center. **European Journal of Operational Research**, v. 200, p. 822-832, 2010.

BERGH, J.V., BELIEN, J., BRUECKER, P., DEMEULEMEESTER, E., BOECK, L. Personnel Scheduling: A Literature Review. **European Journal of Operational Research**, v. 226, p. 367-385, 2013.

BRASIL. Lei nº 11.320, de 06 de julho de 2006. Fixa os efetivos do Comando da Aeronáutica em tempo de paz e dá outras providências. **Diário Oficial da União**, Brasília, DF, 22 nov. 2013.

BAKER, K.R. Workforce allocation in cyclical scheduling problems: a survey. **Operational Research Quarterly**, v. 27, p. 155-167, 1976.

BULCK, D.V.; GOOSSENS, D.; SCHONBERGER, J.; GUAJARDO, M. RobinX: A three-field classification and unified data format for round-robin sports timetabling. **European Journal of Operational Research**, v. 280, p. 568-580, 2020.

BURKE, E.K.; KINGSTON, J.H.; WERRA, D. Applications to timetabling. In: GROSS, J.; YELLEN, J (Ed.). **The handbook of graph theory.** Londres: Chapman Hall/CRC, 2004, p. 445-474.

CHANG, Y.-H.; YANG, H.-H.; HSU, W.-J. Effects of work shifts on fatigue levels of air traffic controllers. **Journal of Air Transport Management**, v. 76, p. 1-9, 2019.

CHU, J.C.; KORSESTHAKARN, K.; HSU, Y.-T.; WU, H.-Y. Models and a solution algorithm for planning transfer synchronization of bus timetables. **Transportation Research Part E: Logistics and Transportation Review**, v. 131, p. 247-266, 2019.

CONFEDERAÇÃO NACIONAL DO TRANSPORTE (CNT). **ANAC divulga levantamento do preço das passagens aéreas**. Disponível em: http://www.cnt.org.br/imprensa/noticia/anac-levantamento-passagens-aereas Acesso em: 01 ago. 2018.

CONNISS, R., Rostering Air Traffic Controllers. **Electronic Notes in Discrete Mathematics**, v. 67, p. 57-62, 2018.

DAR-NIMROD, I.; RAWN, C.D.; LEHMAN, D.; SCHWARTZ, B. **The Maximization Paradox: The costs of seeking alternatives.** Personality and Individual Differences, v. 46, p. 631-635, 2009.

DEPARTAMENTO DE CONTROLE DO ESPAÇO AÉREO (DECEA). Capacidade de Setor ATC. **Manual do Comando da Aeronáutica (MCA) 100-17**, Rio de Janeiro, 2014.

DEPARTAMENTO DE CONTROLE DO ESPAÇO AÉREO (DECEA). Quem Somos: Espaço Aéreo Brasileiro. Disponível em: https://www.decea.gov.br/?i=quem-somos&p=espaco-aereo-brasileiro. Acesso em: 29 mar. 2018.

DEPARTAMENTO DE CONTROLE DO ESPAÇO AÉREO (DECEA). Regras do Ar. **Instrução do Comando da Aeronáutica (ICA) 100-12**, Rio de Janeiro, 2016.

ERNST, A.T.; JIANG, H.; KRISHNAMOORTHY, M.; SIER, D. Staff scheduling and rostering: A review of applications, methods and models. **European Journal of Operational Research**, v. 153, p. 3-27; 2004.

FREITAS, A.M.; PORTUGUEZ, M.W.; RUSSOMANO, T.; FREITAS, M.; SILVELLO, S.L.S.; COSTA, J.C. Effects of an alternating work shift on air traffic controllers and the relationship with excessive daytime sleepiness and stress. **Arquivos de Neuro-Psiquiatria**, v. 75, p. 711-717, 2017.

FRESSATO, A.A., LOCH, G.V., SOUZA, A.S., PÉCORA, J.E.J. Modelo Matemático para a escala de trabalho de anestesistas do Hospital Universitário da UFPR. **XXXVIII Congresso Ibero-Latino-Americano de Métodos Computacionais em Engenharia**, Florianópolis, 5-8 de novembro, 2017.

HAKOLA, T., PAUKKONEN, M., POHJONEN, T. Less Quick Returns — Greater Well-being. **Industrial Health**, v. 48, p. 390-394, 2010.

INTERNATIONAL AIR TRANSPORT ASSOCIATION (IATA). **IATA Annual Review 2019**, 2019. Disponível em: https://www.iata.org/contentassets/c81222d96c9a4e0bb4ff6ced0126f0bb/iata-annual-review-2019.pdf Acesso em: 06 nov. 2019.

JOSEFSSON, B., POLISHCHUK, T., POLISHCHUK, V., SCHMIDT, C. Scheduling Air Traffic Controllers at a Remote Tower Center. **36th Digital Avionics Systems Conference**, 2017.

JOU, R.-C.; KUO, C.-W.; TANG, M.-L. A study of job stress and turnover tendency among air traffic controllers: The mediating effects of job satisfaction. **Transportation Research Part E**, v. 57, p. 95-104, 2013.

KASIRZADEH, A.; SADDOUNE, M.; SOUMIS, F. Airline crew scheduling: models, algorithms and data sets. **EURO Journal on Transportation and Logistics**, v. 6, p. 111-137, 2017.

LEE, H.J., SON, K.-L., BANG, Y.R., JEON, H.J., LEE, K., & YOON, I.-Y. The association between shift work-related sleep complaints and shift work intolerance. **Sleep and Biological Rhythms**, v. 17, p. 3-10, 2018.

LESIUK, T. The effect of preferred music listening on stress levels of air traffic controllers. **The Arts in Psychotherapy**, v. 35, p. 1-10, 2008.

MARCOLINO, A.V., SIQUEIRA, J.C.F., BARROSO, B.I.L. Efeitos do trabalho em turnos nos controladores de tráfego aéreo: uma revisão sistemática baseada no método PRISMA. **Cadernos de Terapia Ocupacional da UFSCar**, v. 23, n. 2, p. 393-402, 2015.

MIGUEL, P.A.C. (coord.) **Metodologia de Pesquisa em Engenharia de Produção e Gestão de Operações**. Rio de Janeiro: Elsevier: ABEPRO, 2012

MURTY, K.G. Linear Programming. John Wiley & Sons, New York, 1983, 482 p.

NOCE, F.A. A influência dos turnos de trabalho na tomada de decisão dos militares controladores de tráfego aéreo. 107 f. (Doutorado em Ciências). Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, 2010.

PARK, H.A., SUH, B.A., LEE, S.-J. Shift work and depressive symptoms: the mediating effect of vitamin D and sleep quality. **Chronobiology International**, v. 36, p. 689-697, 2019.

RANGEL, A.L., ÉVORA, Y.D.M. Elaboração automática da escala periódica de trabalho dos profissionais de enfermagem por meio de um software específico. **Revista Eletrônica de Enfermagem**, v. 9, n. 1, p. 17-30, 2007.

RAHIMIAN, E.; AKARTUNALI, K.; LEVINE, J. A hybrid integer and constraint programming approach to solve nurse rostering problems. **Computers & Operations Research**, v. 82, p. 83-94, 2017.

RIBAS, V.R.; ALMEIDA, C.A.V; MARTINS, H.A.L.; ALVES, C.F.O.; ALVES, M.J.P.C.; CARNEIRO, S.M.O.; RIBAS, V.R.; VASCONCELOS, C.A.C.; SOUGEY, E.B.; CASTRO, R.M. Brazilian air traffic controllers exhibit excessive sleepiness. **Dementia & Neuropsychologia**, v. 5, p. 209-215, 2011.

ROBBINS, T.R.; HARRISON, T.P. A stochastic programming model for scheduling call center with global Service Level Agreements. **European Journal of Operational Research**, v. 207, p. 1608-1619, 2010.

SAVINIEC, L.; SANTOS, M.O.; COSTA, A.M. Parallel local search algorithms for high school timetabling problems. **European Journal of Operational Research**, v. 265, p. 81-98, 2018.

SCHWARTZ, B. **The paradox of Choice:** why more is less. New York: Harper Perennial, 2004.

STOJADINOVIC, M. Air Traffic Controller Shift Scheduling by Reduction to CSP, SAT and SAT-Related Problems. In: SULLIVAN, B. (Ed.). **Principles and Practice of Constraint Programming: 20th International Conference.** Lyon, 8-12 September, 2014.

STOJADINOVIC, M. Hybrid of Hill Climbing and SAT Solving for Air Traffic Controller Shift Scheduling. **Journal of Information Technology and Applications**, v. 5, p. 81-87, 2015.

TELLO, F., MATEOS, A., JIMÉNEZ-MARTÍNS, A., SUÁREZ, A. The Air Traffic Controller work-shift scheduling problem in Spain form a Multiobjective Perspective: a Metaheuristic and regular Expression-based approach. **Mathematical Problems in Engineering**, v. 2018, p. 1-15, 2018

TOUITOU, Y., REINBERG, A., TOUITOU, D. Association between light and night, melatonin secretion, sleep deprivation, and the internal clock: Health impacts and mechanisms of circadian disruption. **Life Sciences**, v. 173, p. 94-106 mar. 2017.

APÊNDICE 1 – TABELA RESUMO DE RESULTADOS ENCONTRADOS

INSTÂNCIA	FUNÇÃO OBJETIVO	TEMPO (s)	<i>GAP</i> (%)	INSTÂN	CIA	FUNÇÃO OBJETIVO	TEMPO (s)	<i>GAP</i> (%)
050095_0	-51.823,02	54,48	0,00%	054055	3_	36.005,70	102,89	0,00%
050095_1	-45.306,69	42,43	0,01%	054055	4	34.765,44	292,75	0,00%
050095_2	-51.570,86	33,79	0,01%	054055	5_5	37.560,48	85,72	0,00%
050095_3	-52.144,64	213,43	0,00%	054055	6_	34.358,81	126,95	0,00%
_050095_4	-47.550,26	96,52	0,00%	054055	7_	34.825,16	100,53	0,00%
050095_5	-50.949,42	72,63	0,00%	054055	8_8	34.434,68	34,18	0,00%
050095_6	-47.354,12	175,03	0,00%	054055	9_	33.751,65	183,95	0,00%
050095_7	-48.524,75	189,40	0,00%	055045	0_	36.048,99	71,12	0,00%
050095_8	-49.923,14	50,26	0,01%	055045	<u>1</u>	35.216,68	79,80	0,00%
050095_9	-48.695,25	126,60	0,00%	055045	2_	37.491,56	103,70	0,00%
051085_0	-7.960,33	205,42	0,00%	055045	3	34.263,58	213,49	0,00%
051085_1	-7.802,88	325,73	0,00%	055045	4	34.860,20	96,37	0,00%
051085_2	-5.945,85	276,74	0,01%	055045	5_5	32.904,46	137,46	0,00%
051085_3	-6.849,03	198,51	0,00%	055045	6_	36.396,02	90,38	0,00%
051085_4	-4.866,69	176,76	0,00%	055045	7	33.960,39	58,52	0,00%
051085_5	-6.779,23	129,78	0,00%	055045	8_8	33.363,01	74,84	0,00%
051085_6	-8.368,99	457,20	0,00%	055045	9	33.176,21	73,12	0,00%
051085_7	-7.610,84	176,92	0,00%	056035	0_0	32.460,38	117,91	0,00%
051085_8	-11.395,57	288,16	0,00%	056035	<u>_1</u>	35.423,09	39,43	0,00%
051085_9	-132,15	117,87	0,00%	056035	_2	35.147,66	183,73	0,00%
052075_0	21.204,75	256,98	0,01%	056035	3_3	34.603,70	545,93	0,00%
052075_1	22.282,81	67,11	0,00%	056035	4	35.780,35	54,21	0,00%
052075_2	22.025,50	97,19	0,01%	056035	5_5	36.290,92	76,65	0,00%
052075_3	28.057,72	34,83	0,00%	056035	6_	34.026,04	111,92	0,00%
052075_4	21.966,45	87,65	0,00%	056035	7_	35.634,67	89,01	0,00%
052075_5	25.836,76	88,98	0,00%	056035	8_8	34.960,75	112,80	0,00%
052075_6	21.421,38	189,10	0,01%	056035	9	35.166,36	59,43	0,00%
052075_7	25.411,68	338,14	0,01%	057025	0_0	35.161,92	72,67	0,00%
052075_8	23.241,01	3.600,54	0,04%	057025	<u>1</u>	36.023,00	72,77	0,00%
052075_9	18.661,24	1.914,87	0,01%	057025	2	35.536,28	70,40	0,00%
053065_0	32.572,46	360,53	0,00%	057025	3_	34.487,70	60,15	0,00%
053065_1	34.984,63	329,17	0,01%	057025	4	35.102,27	66,90	0,00%
053065_2	32.569,19	228,53	0,00%	057025	5_5	34.824,23	71,61	0,00%
053065_3	34.147,08	709,53	0,00%	057025	6_	33.602,73	85,25	0,00%
053065_4	34.842,21	2.042,67	0,00%	057025	7	36.037,80	79,58	0,00%
053065_5	34.586,54	1.162,00	0,01%	057025	8_8	34.724,11	82,05	0,00%
053065_6	32.726,93	2.526,07	0,00%	057025	9_	34.957,35	76,64	0,00%
053065_7	33.145,73	241,45	0,00%	058015	0_0	35.288,94	118,63	0,00%
053065_8	34.664,27	1.091,16	0,01%	058015	<u> </u>	32.358,70	102,51	0,00%
053065_9	33.913,20	490,18	0,00%	058015	2	38.562,27	81,01	0,00%
054055_0	35.272,90	157,83	0,00%	058015	3_	36.530,94	110,60	0,00%
054055_1	34.402,01	89,72	0,00%	· ———		36.085,97	55,60	0,00%
054055_2	36.265,77	84,45	0,00%	058015	5_5	34.160,83	81,84	0,00%

INSTÂNCIA	FUNÇÃO OBJETIVO	TEMPO (s)	<i>GAP</i> (%)	ĺ
058015_6	34.039,15	209,53	0,00%	
058015_7	34.039,15	208,73	0,00%	
058015_8	33.833,31	94,32	0,00%	-
058015_9	35.612,86	91,27	0,00%	
059005_0	34.680,81	116,03	0,00%	
059005_1	35.394,54	67,25	0,00%	
059005_2	38.105,84	75,76	0,00%	
059005_3	34.860,01	69,19	0,00%	
059005_4	35.676,39	103,28	0,00%	
059005_5	34.574,86	71,94	0,00%	
059005_6	34.982,65	49,05	0,00%	
059005_7	34.779,16	84,02	0,00%	
059005_8	36.500,79	58,39	0,00%	
059005_9	36.609,02	101,35	0,00%	
100090_0	4.310,37	87,65	0,00%	
100090_1	8.816,49	337,95	0,00%	
100090_2	9.966,06	135,13	0,00%	
100090_3	5.235,29	229,11	0,00%	
100090_4	6.881,43	912,55	0,00%	
100090_5	7.142,67	207,03	0,00%	
100090_6	7.942,80	175,98	0,00%	
100090_7	8.189,03	315,47	0,00%	
100090_8	10.042,75	147,26	0,00%	
100090_9	2.542,89	173,42	0,00%	
101080_0	42.965,93	160,46	0,01%	
101080_1	41.489,27	90,30	0,01%	
101080_2	47.757,19	136,34	0,00%	
101080_3	44.760,53	94,85	0,01%	
101080_4	39.421,26	50,93	0,00%	
101080_5	37.901,05	134,54	0,01%	
101080_6	44.501,34	161,95	0,01%	_
101080_7	44.768,93	69,75	0,00%	
101080_8	43.551,55	102,66	0,00%	_
101080_9	43.739,92	137,89	0,00%	
102070_0	59.820,59	325,70	0,01%	_
102070_1	60.432,97	1.337,20	0,01%	
102070_2	55.729,57	791,38	0,01%	_
102070_3	58.989,60	673,70	0,01%	
102070_4	55.107,13	3.600,24	0,07%	_
102070_5	57.644,58	1.472,18	0,01%	
102070_6	58.266,38	3.600,18	0,04%	_
102070_7	58.504,12	99,92	0,01%	
102070_8	55.293,30	3.600,18	0,13%	_
102070_9	61.090,70	3.600,17	0,01%	
103060_0	63.639,16	225,06	0,00%	_
103060_1	63.161,54	42,22	0,00%	

INSTÂNCIA	FUNÇÃO OBJETIVO	TEMPO (s)	<i>GAP</i> (%)
103060_2	66.198,64	272,30	0,01%
103060_3	63.159,00	883,04	0,01%
103060_4	62.334,26	414,43	0,00%
103060_5	63.292,18	164,71	0,00%
103060_6	63.656,17	169,33	0,00%
103060_7	61.833,64	372,13	0,01%
103060_8	62.342,85	70,46	0,00%
103060_9	64.309,50	392,30	0,00%
104050_0	61.572,40	206,97	0,00%
104050_1	64.343,80	108,87	0,01%
104050_2	62.608,76	129,10	0,00%
104050_3	63.410,39	316,40	0,00%
104050_4	61.954,51	133,72	0,00%
104050_5	62.160,52	229,49	0,00%
104050_6	61.240,83	63,56	0,00%
104050_7	62.222,70	116,39	0,01%
<u> 104050_8</u>	62.230,42	3.447,44	0,00%
104050_9	63.592,85	216,86	0,00%
105040 <u>0</u>	62.702,97	148,31	0,00%
105040_1	59.829,47	300,77	0,00%
105040_2	62.760,92	655,29	0,00%
105040_3	63.683,11	107,83	0,00%
<u> 105040_4</u>	64.434,73	3.600,48	0,02%
105040_5	62.120,04	102,59	0,00%
<u> 105040_6</u>	63.457,43	166,93	0,00%
105040_7	61.348,03	232,99	0,00%
105040 <u>8</u>	60.652,74	180,70	0,00%
105040 <u>9</u>	62.111,65	267,37	0,01%
106030_0	62.441,99	514,80	0,00%
106030_1	62.795,28	194,81	0,00%
106030_2	63.200,18	110,33	0,01%
106030_3	62.501,07	292,53	0,00%
106030_4	65.432,38	185,64	0,00%
106030_5	61.178,29	176,52	0,00%
106030_6	60.650,30	923,20	0,01%
106030_7	65.621,10	239,96	0,00%
106030_8	61.703,08	90,81	0,01%
106030_9	65.087,75	32,65	0,00%
107020_0	63.171,11	237,10	0,00%
107020_1	65.271,20	131,82	0,00%
107020_2	61.712,41	922,45	0,00%
107020_3	66.800,44	140,92	0,00%
107020_4	63.567,15	88,59	0,00%
107020_5	63.021,07	99,78	0,00%
107020_6	65.711,86	86,64	0,00%
107020_7	58.761,45	122,16	0,00%

INSTÂNCIA	FUNÇÃO OBJETIVO	TEMPO (s)	<i>GAP</i> (%)
107020 8	60.317,40	183,34	0,00%
107020_0	64.090,88	132,91	0,00%
108010_0	60.970,69	162,15	0,00%
108010_0	61.862,81	81,69	0,01%
108010 2	61.949,89	192,40	0,01%
108010 3	61.433,02	340,96	0,00%
108010 4	67.375,70	88,87	0,01%
108010 5	60.678,58	156,62	0,00%
108010 6	58.639,26	456,63	0,00%
108010 7	68.659,58	142,60	0,01%
108010_8	62.953,21	112,04	0,00%
108010_9	63.907,87	3.600,43	0,03%
150085_0	53.581,69	127,97	0,00%
150085_1	52.245,23	80,47	0,00%
150085_2	52.376,18	30,79	0,01%
150085_3	46.867,69	50,64	0,00%
150085_4	51.929,09	48,16	0,00%
150085_5	54.768,36	29,49	0,00%
150085_6	53.422,21	22,53	0,00%
150085_7	53.493,02	33,50	0,00%
150085_8	50.318,83	54,86	0,00%
<u> 150085_9</u>	46.232,70	101,73	0,00%
151075_0	73.357,22	362,14	0,00%
151075_1	75.391,28	838,72	0,00%
151075_2	77.333,69	2.529,37	0,01%
<u> 151075_3</u>	78.550,89	800,05	0,01%
<u> 151075_4</u>	77.153,79	103,22	0,00%
<u> 151075_5</u>	78.941,28	1.842,53	0,01%
<u> 151075_6</u>	76.830,55	911,80	0,00%
<u> 151075_7</u>	73.251,06	930,46	0,00%
<u> 151075_8</u>	74.646,84	108,44	0,00%
<u> 151075_9</u>	71.815,58	942,12	0,01%
152065_0	83.724,75	778,27	0,01%
152065_1	82.591,82	3.600,60	0,01%
152065_2	82.234,62	165,45	0,01%
152065_3	80.035,99	181,77	0,00%
152065_4	84.741,05	531,00	0,00%
152065_5	82.718,16	292,10	0,01%
152065_6	82.514,92	71,97	0,00%
152065_7	83.660,01	1.993,72	0,01%
152065_8	82.828,31	890,32	0,01%
152065_9	79.075,93	198,97	0,00%
153055_0	82.371,96	185,50	0,00%
153055_1	87.627,45	189,86	0,00%
153055_2	82.949,69	501,73	0,01%
153055_3	81.834,00	165,46	0,00%

INSTÂNCIA	FUNÇÃO OBJETIVO	TEMPO (s)	<i>GAP</i> (%)
153055_4	80.278,31	986,70	0,01%
153055_5	80.278,31	1.009,94	0,01%
153055_6	84.719,40	207,52	0,00%
153055_7	81.587,36	3.600,45	0,07%
153055_8	81.712,47	3.600,51	0,02%
153055_9	81.712,47	3.600,41	0,02%
154045_0	82.187,07	178,61	0,00%
154045_1	82.423,56	70,62	0,01%
154045_2	83.980,94	281,13	0,00%
154045_3	81.793,74	810,03	0,00%
154045_4	81.793,74	813,45	0,00%
154045_5	82.765,75	265,40	0,01%
154045 <u>6</u>	82.103,00	81,89	0,00%
154045_7	82.556,66	107,88	0,00%
154045_8	83.660,61	210,31	0,00%
154045_9	82.979,90	127,10	0,00%
155035_0	82.577,00	309,08	0,00%
155035_1	84.410,11	95,10	0,01%
155035_2	82.503,91	239,74	0,01%
155035_3	83.123,92	202,74	0,00%
155035_4	85.424,81	150,24	0,00%
155035_5	80.759,21	172,13	0,00%
155035_6	81.350,61	329,34	0,00%
155035_7	84.007,96	103,61	0,01%
155035_8	82.337,86	233,77	0,00%
155035_9	86.118,36	260,29	0,00%
156025_0	86.205,28	48,71	0,00%
156025_1	82.875,69	77,32	0,00%
156025_2	83.108,34	111,27	0,00%
156025_3	85.868,51	120,76	0,01%
156025_4	85.868,51	123,76	0,01%
156025_5	81.836,04	50,24	0,01%
156025_6 156025_7	82.956,23 84.005,77	130,92	0,00%
156025_7 156025_8	81.321,65	236,56 233,94	0,00%
156025_8	84.920,01	208,89	0,00%
157015 0	86.001,22	133,58	0,00%
157015_0	86.500,88	813,25	0,00%
157015_1	85.361,01	98,30	0,00%
157015_2	81.592,14	243,86	0,00%
157015_3	84.189,36	140,56	0,00%
157015_4	85.652,65	197,62	0,00%
157015_5 157015_6	83.828,93	65,84	0,00%
157015_0	83.735,96	45,53	0,00%
157015_8	83.735,96	45,79	0,01%
157015_9	83.886,73	201,00	0,00%
	22.333,73		2,3070

INSTÂNCIA	FUNÇÃO OBJETIVO	TEMPO (s)	<i>GAP</i> (%)	1
158005_0	80.723,54	333,58	0,01%	
158005_1	83.119,31	130,06	0,01%	
158005_2	83.119,31	128,65	0,01%	
158005_3	83.655,11	195,97	0,00%	
158005_4	80.975,92	334,68	0,00%	
158005_5	83.152,81	220,12	0,00%	
158005_6	85.053,68	156,11	0,00%	
158005_7	84.485,49	64,92	0,00%	
158005_8	84.831,66	129,86	0,00%	
158005_9	84.665,11	30,33	0,01%	
200080_0	85.730,69	278,13	0,01%	
200080_1	89.570,47	212,84	0,00%	
200080_2	91.471,64	44,12	0,01%	
200080_3	97.224,21	91,82	0,00%	
200080_4	90.502,62	40,42	0,00%	
200080_5	84.991,06	142,65	0,00%	
200080_6	88.647,00	152,79	0,00%	
200080 7	84.792,57	57,65	0,00%	
200080_8	89.651,43	549,98	0,01%	
200080_9	93.245,98	124,10	0,01%	
201070_0	98.077,94	2.670,64	0,01%	
201070_1	103.000,69	326,72	0,01%	
201070_2	101.750,33	505,73	0,00%	
201070_3	100.647,69	188,11	0,01%	
201070_4	101.326,13	264,19	0,00%	
201070_5	98.065,26	540,57	0,01%	
201070_6	99.389,08	717,25	0,00%	
201070_7	100.346,46	973,12	0,00%	
201070_8	100.229,65	1.570,87	0,01%	
201070_9	98.023,45	836,32	0,01%	
202060_0	104.727,47	155,17	0,00%	
202060_1	102.103,40	260,74	0,00%	
202060_2	104.219,07	94,67	0,00%	
202060_3	103.627,47	180,05	0,00%	
202060_4	103.442,43	1.953,25	0,01%	
202060_5	102.670,65	220,63	0,00%	
202060_6	102.538,26	251,74	0,01%	
202060_7	106.225,03	131,01	0,01%	
202060_8	104.175,81	158,23	0,01%	_
202060_9	104.240,80	363,27	0,01%	
203050_0	105.475,73	105,22	0,00%	_
203050_1	104.857,21	584,26	0,01%	
203050_2	102.584,93	410,95	0,00%	_
203050_3	103.415,01	130,53	0,00%	
203050_4	104.899,38	651,94	0,01%	_
203050_5	100.751,27	193,44	0,01%	

INSTÂNCIA	FUNÇÃO OBJETIVO	TEMPO (s)	<i>GAP</i> (%)
203050 6	101.353,72	115,10	0,00%
203050 7	102.766,49	198,77	0,01%
203050_8	102.083,07	359,80	0,00%
203050_9	103.314,85	293,80	0,00%
204040_0	100.092,49	195,15	0,00%
204040_1	104.302,69	249,95	0,00%
204040_2	102.649,21	187,53	0,00%
204040_3	101.964,79	297,89	0,00%
204040_4	99.680,51	567,68	0,01%
204040_5	102.439,62	41,41	0,00%
204040_6	102.496,01	66,62	0,00%
204040_7	100.700,07	129,56	0,01%
204040_8	104.154,18	131,10	0,01%
204040_9	102.164,05	52,96	0,00%
205030_0	102.218,87	107,29	0,00%
205030_1	104.935,71	412,54	0,01%
205030_2	103.436,12	130,83	0,00%
205030_3	102.414,28	213,80	0,01%
205030_4	103.293,68	228,40	0,01%
205030_5	100.334,33	314,49	0,00%
205030_6	101.999,57	124,74	0,00%
205030_7	104.913,48	31,17	0,00%
205030_8	103.462,95	123,35	0,00%
205030_9	103.784,52	115,13	0,01%
206020_0	100.035,48	164,45	0,00%
206020_1	102.117,38	150,85	0,01%
206020_2	102.271,88	700,95	0,01%
206020_3	104.945,78	150,86	0,01%
206020_4	103.320,97	101,58	0,00%
206020_5	98.137,14	485,42	0,00%
206020_6	104.824,18	197,34	0,00%
206020_7	102.702,88	701,56	0,01%
206020_8	103.735,95	139,42	0,00%
206020_9	101.774,66	207,38	0,00%
207010_0	101.832,81	499,98	0,01%
207010_1	102.529,61	270,67	0,00%
207010_2	103.966,89	139,63	0,01%
207010_3	103.467,98	290,76	0,00%
207010_4	104.053,86	77,90	0,00%
207010_5	102.395,88	118,08	0,00%
207010_6	101.935,56	118,80	0,01%
207010_7	99.104,65	1.230,46	0,01%
207010_8	102.151,68	472,33	0,00%
207010_9	104.033,12	113,65	0,01%
250075_0	108.609,57	546,82	0,00%
250075_1	108.609,57	594,37	0,00%

INSTÂNCIA	FUNÇÃO	TEMPO	GAP
050075 0	OBJETIVO	(s)	(%)
250075_2	111.222,91	868,41	0,01%
250075_3	109.006,29	671,00	0,00%
250075_4	107.720,18	2.806,97	0,01%
250075_5	110.777,82	279,91	0,00%
250075_6 250075_7	113.710,00	3.600,16	0,05%
250075_7 250075_8	107.854,80	390,91 2.223,44	0,00%
250075_0	110.330,37	300,09	0,00%
251065 0	114.877,30	3.600,03	0,04%
251065_0	116.366,55	3.600,17	0,04%
251065 2	112.590,34	2.693,94	0,01%
251065_2	112.210,86	1.104,37	0,01%
251065 4	115.597,02	1.182,89	0,01%
251065 5	113.687,61	329,03	0,01%
251065 6	115.818,79	2.766,89	0,01%
251065 7	116.203,14	2.772,68	0,01%
251065 8	115.469,38	2.336,64	0,01%
251065 9	112.997,78	1.147,87	0,01%
252055 0	114.360,72	1.535,14	0,01%
252055 1	113.812,97	3.600,47	0,01%
252055 2	115.464,36	3.600,15	0,03%
252055_3	113.938,95	3.131,64	0,00%
252055_4	110.083,66	3.600,17	0,04%
252055_5	115.899,34	1.203,85	0,01%
252055_6	115.649,64	3.600,20	0,17%
252055_7	116.947,94	3.600,22	0,11%
252055_8	117.175,92	3.600,23	0,02%
252055_9	115.458,07	3.600,20	0,02%
253045_0	114.542,06	3.600,40	0,02%
253045_1	113.044,00	3.600,28	0,02%
253045_2	116.740,75	2.782,80	0,01%
253045_3	114.615,46	1.207,58	0,00%
253045_4	115.801,55	3.600,40	0,02%
253045_5	116.564,60	1.647,32	0,01%
<u>253045_6</u>	112.197,36	682,34	0,01%
253045_7	117.138,49	3.600,15	0,01%
253045_8	117.004,24	1.844,30	0,01%
253045_9	116.793,22	3.600,25	0,06%
254035_0	114.998,51	2.410,58	0,01%
254035_1	114.152,25	1.280,72	0,01%
254035_2	112.609,59	607,52	0,01%
254035_3	117.757,42	3.600,16	0,02%
254035_4	115.115,13	3.600,37	0,02%
254035_5 254035_6	115.227,07	944,22	0,01%
254035_6	117.698,32	2.443,70	0,01%
254035_7	116.782,16	3.600,44	0,03%

INSTÂNC	CIA	FUNÇÃO OBJETIVO	TEMPO (s)	<i>GAP</i> (%)
254035_	8	111.494,09	998,55	0,00%
254035_	9	113.255,17	3.600,45	0,03%
255025_	0	116.026,67	2.935,04	0,01%
255025_	1	114.694,47	3.600,49	0,03%
255025_	2	114.973,07	1.884,31	0,01%
255025_	3	117.281,14	945,79	0,01%
255025_	4	113.232,83	3.600,48	0,03%
255025_	5	116.180,94	3.600,54	0,01%
255025_	6	115.339,20	771,05	0,00%
255025_	7	115.339,20	776,08	0,00%
255025_	8	112.520,51	1.265,04	0,01%
255025_	9	116.075,76	3.600,37	0,01%
256015_	0	118.415,97	3.600,22	0,02%
256015_	1_	113.397,93	3.600,16	0,02%
256015_	2	113.726,76	1.169,41	0,01%
256015_	3	116.930,91	652,29	0,01%
256015_	4	114.925,78	414,02	0,01%
256015_	5	115.197,06	1.003,99	0,00%
256015_	6	116.094,33	3.600,16	0,07%
256015_	7	115.835,21	770,47	0,01%
256015_	8	112.215,95	363,18	0,01%
256015_	9	115.190,93	450,39	0,01%
257005_	0	114.215,57	189,29	0,01%
257005_	1_	115.384,77	269,37	0,01%
257005_	2	115.743,03	2.009,92	0,01%
257005_	3	117.722,56	3.600,19	0,06%
257005_	4	116.754,21	3.600,50	0,02%
257005_	5	117.018,39	628,92	0,01%
257005_	6	113.511,58	316,58	0,01%
257005_	7	113.450,36	3.600,38	0,03%
257005_	8	115.501,64	401,56	0,01%
257005_	9	114.712,97	3.600,47	0,02%
260074_	0	110.450,54	514,05	0,01%
260074_	1_	114.144,60	3.600,23	0,02%
260074_	2	114.141,83	656,52	0,00%
260074_	3	115.873,49	320,95	0,00%
260074_	4	112.942,67	3.600,23	0,19%
260074_	5	112.805,16	552,48	0,01%
260074_	6	109.442,57	1.129,30	0,01%
260074_	7	106.487,51	906,07	0,00%
260074_	8	109.399,62	1.415,53	0,00%
260074_	9	111.654,24	3.600,24	0,02%
261064_	0	118.318,63	3.600,15	0,26%
261064_	1_	114.620,72	3.600,17	0,15%
261064_	2	116.192,96	3.600,15	0,06%
261064_	3	115.073,77	3.600,23	0,11%

	~~~~			
INSTÂNCIA	FUNÇÃO OBJETIVO	TEMPO (s)	<i>GAP</i> (%)	INSTÂNCIA
261064_4	119.811,81	3.600,29	0,20%	266014_0
261064_5	115.509,78	1.772,58	0,01%	266014_1
261064_6	116.716,71	3.600,51	0,03%	266014_2
261064_7	114.845,88	2.271,75	0,01%	266014_3
261064_8	117.892,42	2.976,88	0,01%	266014_4
261064_9	114.261,11	3.471,58	0,01%	266014_5
262054_0	116.842,28	3.600,46	0,04%	266014_6
262054_1	117.355,60	3.600,18	0,03%	266014_7
262054_2	116.236,42	3.600,14	0,47%	266014_8
262054_3	113.710,99	3.600,16	0,14%	266014_9
262054_4	116.841,67	834,70	0,01%	267004_0
262054_5	118.000,90	2.213,38	0,01%	267004_1
262054_6	115.086,73	1.246,81	0,01%	267004_2
262054_7	117.441,42	2.451,54	0,01%	267004_3
262054_8	117.730,05	3.600,23	0,01%	267004_4
262054_9	113.674,97	3.600,14	0,29%	267004_5
263044_0	115.619,42	3.600,15	0,06%	267004_6
263044_1	119.486,64	1.170,39	0,00%	267004_7
263044_2	115.205,34	945,60	0,01%	267004_8
263044_3	120.564,74	756,63	0,01%	267004_9
263044_4	114.730,62	3.600,23	0,02%	270073_0
263044_5	114.765,35	3.600,56	0,02%	270073_1
263044_6	116.503,90	3.600,28	0,04%	270073_2
263044_7	117.500,32	3.600,14	0,04%	270073_3
263044_8	119.016,32	3.600,21	0,04%	270073_4
263044_9	117.013,15	3.600,24	0,02%	270073_5
264034_0	117.514,63	642,22	0,00%	270073_6
264034_1	115.641,43	3.600,14	0,06%	270073_7
264034_2	118.451,81	3.600,17	0,09%	270073_8
264034_3	113.537,44	3.600,42	0,05%	270073_9
264034_4	114.738,04	3.600,08	0,08%	271063_0
264034_5	118.584,50	3.600,22	0,04%	271063_1
264034_6	114.209,79	3.600,15	0,09%	271063_2
264034_7	116.800,04	2.755,05	0,01%	271063_3
264034_8	118.976,72	3.600,27	0,03%	271063_4
264034_9	120.304,60	3.600,27	0,02%	271063_5
265024_0	116.373,19	3.600,45	0,02%	271063_6
265024_1	116.854,45	3.600,15	0,28%	271063_7
265024_2	116.851,08	2.595,72	0,00%	271063_8
265024_3	115.114,36	1.517,93	0,01%	271063_9
265024_4	117.053,36	3.600,24	0,04%	272053_0
265024_5	115.570,29	989,40	0,01%	272053_1
265024_6	112.564,34	3.600,53	0,07%	272053_2
265024_7	114.788,70	3.600,14	0,05%	272053_3
265024_8	118.253,74	3.600,18	0,12%	272053_4
265024_9	117.816,10	665,46	0,01%	272053_5

INSTÂNCIA	FUNÇÃO OBJETIVO	TEMPO (s)	<i>GAP</i> (%)
266014_0	116.373,90	3.600,44	0,03%
266014_1	117.167,27	354,53	0,01%
266014_2	115.702,70	1.505,71	0,01%
266014_3	116.557,23	978,34	0,00%
266014_4	116.011,45	3.600,31	0,05%
266014_5	118.167,76	3.600,43	0,03%
266014_6	116.092,74	3.600,20	0,05%
266014_7	120.124,51	3.600,43	0,03%
266014_8	114.537,93	2.653,61	0,01%
266014_9	117.420,54	555,74	0,01%
267004_0	117.971,87	821,17	0,01%
267004_1	115.503,25	1.696,11	0,01%
267004_2	116.597,07	1.010,91	0,01%
267004_3	116.597,07	1.021,47	0,01%
267004_4	116.843,77	2.367,81	0,01%
267004_5	116.349,91	3.600,16	0,06%
267004_6	119.255,88	3.600,17	0,02%
267004_7	119.394,39	3.600,15	0,13%
267004_8	117.766,15	3.082,15	0,00%
267004_9	116.112,53	1.254,08	0,01%
270073_0	112.366,62	3.600,18	0,01%
270073_1	110.084,36	966,98	0,00%
270073_2	114.379,13	3.600,19	0,02%
270073_3	116.358,00	3.600,22	0,06%
270073_4	110.319,10	3.600,13	0,01%
270073_5	115.676,02	3.600,15	0,09%
270073_6	107.923,98	3.601,39	0,10%
270073_7	113.133,23	3.601,89	0,09%
270073_8	115.919,69	3.188,57	0,01%
270073_9	114.880,12	3.600,22	0,03%
271063_0	116.432,18	3.600,44	0,01%
271063_1	115.137,58	3.061,27	0,01%
271063_2	118.739,02	3.600,17	0,09%
271063_3	118.642,61	3.600,16	0,29%
271063_4	117.083,73	3.600,16	0,11%
271063_5	118.389,09	3.600,15	0,31%
271063_6	116.123,79	2.080,90	0,01%
271063_7	118.667,62	3.600,06	0,22%
271063_8	116.936,73	663,81	0,01%
271063_9	118.811,35	3.600,15	0,12%
272053_0	119.733,40	3.600,18	0,15%
272053_1	118.512,70	3.600,24	0,12%
272053_2	116.473,72	1.175,16	0,01%
272053_3	118.171,03	1.091,93	0,01%
272053_4	117.172,45	3.600,15	0,24%
272053_5	116.276,37	1.722,44	0,01%

INSTÂNCIA	FUNÇÃO OBJETIVO	TEMPO (s)	<i>GAP</i> (%)	INS
272053 6	117.765,08	3.600,13	0,04%	27
272053_7	117.170,77	3.600,19	0,31%	27
272053_8	119.864,23	3.601,43	0,12%	27
272053_9	118.328,97	1.781,17	0,00%	27
273043_0	118.718,03	3.600,50	0,02%	27
273043_1	118.521,03	3.600,20	0,04%	27
273043_2	118.866,64	3.600,13	0,12%	27
273043_3	118.442,08	3.600,15	0,04%	27
273043_4	115.795,24	3.600,27	0,05%	28
273043_5	116.083,40	3.600,18	0,08%	28
273043_6	120.775,58	3.600,28	0,03%	28
273043_7	116.862,17	3.600,17	0,01%	28
273043_8	119.123,18	3.600,49	0,01%	28
273043_9	121.643,72	3.600,18	0,02%	28
274033_0	120.812,59	3.600,16	0,40%	28
274033_1	118.029,12	3.194,54	0,01%	28
274033_2	121.628,02	3.600,43	0,03%	28
274033_3	117.727,27	1.994,45	0,01%	28
274033_4	113.998,71	3.600,15	0,02%	28
274033_5	118.076,59	3.600,17	0,05%	28
274033_6	119.386,73	3.600,17	0,06%	28
274033_7	119.010,62	3.600,42	0,03%	28
274033_8	116.466,61	3.600,19	0,04%	_ 28
274033_9	118.207,64	1.028,17	0,01%	28
275023_0	117.165,45	3.600,40	0,02%	_ 28
275023_1	118.863,19	2.467,35	0,00%	28
275023_2	119.095,18	3.600,13	0,24%	28
275023_3	114.907,62	3.600,18	0,04%	28
275023_4	115.697,66	3.600,18	0,02%	28
275023_5	119.234,33	3.600,17	0,02%	28
275023_6	118.582,89	2.887,24	0,00%	28
275023_7	118.635,82	3.394,16	0,01%	28
275023_8	118.364,47	3.600,11	0,15%	28
275023_9	119.402,65	539,35	0,01%	28
276013_0	121.157,25	3.600,19	0,02%	28
276013_1	119.608,17	3.600,17	0,04%	28
276013_2	117.204,55	3.600,20	0,04%	28
276013_3	118.651,45	2.327,68	0,01%	28
276013_4	117.669,20	3.600,20	0,04%	28
276013_5	114.669,45	3.600,35	0,01%	28
276013_6	118.125,11	3.600,19	0,02%	28
276013_7	116.692,71	3.600,42	0,02%	28
276013_8	118.988,69	3.600,24	0,02%	28
276013_9	120.685,05	3.600,24	0,11%	28
277003_0	117.156,32	1.928,19	0,01%	28
<u>277003_1</u>	116.136,83	808,19	0,01%	28

INSTÂNCIA	FUNÇÃO OBJETIVO	TEMPO (s)	GAP (%)
277003_2	119.554,58	3.600,24	0,03%
277003_3	114.559,48	3.600,40	0,02%
277003_4	120.267,74	3.600,31	0,01%
277003_5	120.326,53	3.600,19	0,04%
277003_6	121.018,42	3.600,18	0,02%
277003_7	120.397,97	2.013,33	0,00%
277003_8	118.909,12	3.600,21	0,02%
277003_9	117.783,09	1.178,63	0,01%
280072_0	117.274,04	1.634,41	0,01%
280072_1	113.464,40	1.547,09	0,01%
280072_2	117.051,95	3.600,18	0,04%
280072_3	111.330,74	3.600,16	0,09%
280072_4	115.164,90	3.600,28	0,06%
280072_5	115.448,99	3.600,17	0,05%
280072_6	115.772,85	3.600,17	0,04%
280072_7	110.856,08	3.600,28	0,11%
280072_8	116.483,23	3.600,13	0,08%
280072_9	118.357,66	3.600,21	0,30%
281062 <u>0</u>	118.444,19	3.600,17	0,39%
281062_1	119.903,33	3.600,15	0,35%
281062_2	119.057,51	3.600,17	0,06%
281062_3	118.927,09	3.600,17	0,09%
<u> 281062_4</u>	120.155,20	3.600,18	0,04%
281062_5	119.093,45	3.600,18	0,11%
281062_6	120.585,57	3.600,15	0,02%
281062_7	119.171,96	3.600,17	0,31%
281062_8	118.431,81	3.600,13	0,17%
281062_9	120.784,31	1.782,84	0,01%
282052_0	119.670,22	2.091,22	0,01%
282052_1	122.374,94	3.600,16	0,08%
282052_2	120.587,02	3.573,60	0,00%
282052_3	119.928,78	3.600,15	0,02%
282052_4	120.305,38	3.600,15	0,07%
282052_5	119.500,23	1.955,86	0,01%
282052_6	118.616,60	2.517,02	0,00%
282052_7	119.655,34	3.600,30	0,10%
282052_8	117.802,26	1.676,52	0,01%
282052_9	121.243,83	3.600,17	0,06%
283042_0	118.685,94	3.600,19	0,04%
283042_1	120.600,67	2.628,77	0,00%
283042_2	122.367,22	3.600,17	0,14%
283042_3	118.617,96	3.601,22	0,01%
283042_4	120.675,97	3.600,13	0,02%
283042_5	116.147,68	3.600,19	0,02%
283042_6	117.307,40	3.600,15	0,08%
283042_7	119.083,70	3.600,16	0,04%

INSTÂNCIA	FUNÇÃO OBJETIVO	TEMPO (s)	<i>GAP</i> (%)	INSTÂNCIA	FUNÇÃO OBJETIVO	TEMPO (s)	<i>GAP</i> (%)
283042 8	1	1.304,92	0,00%	290071 4	115.982,73	3.600,25	0,23%
283042 9	119.673,24	·	0,07%	290071 5	118.324,65	514,82	0,00%
284032 0	121.873,46	3.600,18	0,04%	290071 6	110.556,05	3.600,13	0,08%
284032 1	121.145,66	3.600,50	0,03%	290071 7	115.765,74	3.601,61	0,09%
284032 2	122.137,04		0,01%	290071 8	118.924,66	3.600,15	0,33%
284032 3	118.604,74		0,46%	290071 9	119.618,47	3.600,43	
284032_4	120.721,05	3.454,57	0,01%	291061_0	122.771,31	3.600,15	0,01%
284032_5	119.916,59	3.600,16	0,07%	291061_1	121.090,25	3.600,21	0,01%
284032_6	121.182,21	1.547,80	0,01%	291061_2	121.542,53	3.600,15	0,01%
284032_7	119.102,34	3.600,24	0,04%	291061_3	120.994,82	3.600,16	0,18%
284032_8	120.119,49	3.600,12	0,03%	291061_4	121.234,33	3.600,18	0,02%
284032_9	120.730,00	3.600,28	0,03%	291061_5	123.161,53	3.600,25	0,01%
285022_0	122.682,16	3.600,17	0,06%	291061_6	121.020,25	2.011,30	0,01%
285022_1	121.044,83	3.600,15	0,07%	291061_7	121.936,08	1.892,52	0,00%
285022_2	120.910,13	3.600,17	0,03%	291061_8	119.519,76	3.600,12	0,14%
285022_3	117.878,20	3.445,45	0,00%	291061_9	122.708,75	2.176,12	0,01%
285022_4	118.125,77	3.600,25	0,03%	292051_0	122.393,93	3.031,09	0,00%
285022_5	120.922,74	3.600,14	0,04%	292051_1	120.958,37	3.600,15	0,10%
285022_6	122.330,79	3.600,10	0,05%	292051_2	121.109,11	3.600,17	0,06%
285022_7	118.618,09	3.600,18	0,03%	292051_3	119.327,10	3.600,15	0,06%
285022_8	122.546,45	3.600,19	0,01%	292051_4	119.483,43	3.600,41	0,03%
285022_9	117.625,72	3.600,35	0,01%	292051_5	120.218,99	3.600,21	0,01%
286012_0	121.004,11	3.600,15	0,18%	292051_6	122.392,93	3.600,14	0,09%
286012_1	123.618,30	3.600,40	0,09%	292051_7	120.629,13	3.600,17	0,08%
286012_2	121.044,74	1.036,57	0,01%	292051_8	119.605,09	3.600,11	0,66%
286012_3	120.881,23	3.600,47	0,01%	292051_9	120.218,49	2.055,17	0,01%
286012_4	119.013,50	3.600,21	0,04%	293041_0	121.080,70	1.830,52	0,00%
286012_5	117.681,65	3.600,16	0,03%	293041_1	120.502,19	3.600,20	0,15%
286012_6	119.950,23	3.600,22	0,03%	293041_2	124.242,69	2.423,30	0,01%
286012_7	119.295,89	1.448,24	0,00%	293041_3	119.505,61	3.600,14	0,07%
286012_8	121.687,19	3.600,10	0,10%	293041_4	124.133,61	1.913,52	0,01%
286012_9	119.990,22	3.323,46	0,01%	293041_5	124.070,78	3.600,45	0,02%
287002_0	122.031,81	3.600,18	0,05%	293041_6	121.650,04	1.171,58	0,01%
287002_1	122.162,24	3.600,19	0,05%	293041_7	120.691,68	3.601,03	0,07%
287002_2	122.374,60	3.600,25	0,02%	293041_8	120.165,06	2.533,84	0,00%
287002_3	119.330,00	3.600,17	0,20%	293041_9	120.718,72		0,02%
287002_4	121.633,11	3.600,16	0,24%	294031_0	121.772,94	3.600,20	0,21%
287002_5	121.394,09	3.600,45	0,05%	294031_1	124.337,82	3.600,17	0,05%
287002_6	118.966,83	3.600,14	0,01%	294031_2	123.519,65	1.084,61	0,00%
287002_7	121.251,36		0,01%	294031_3	120.055,81		0,00%
287002_8	118.036,30		0,03%	294031_4	120.442,33		
287002_9	119.298,72		0,04%	294031_5	122.890,36		
290071_0	117.974,77		0,08%	2940316	121.811,14		
290071_1	121.454,73			294031_7	121.211,88		
290071_2	117.631,35		0,02%	294031_8	122.624,23	-	
290071_3	115.553,50	3.600,13	0,01%	294031_9	122.477,93	3.600,14	0,05%

INSTÂNCIA	FUNÇÃO OBJETIVO	TEMPO (s)	<i>GAP</i> (%)
295021 0	122.385,14	3.600,39	0,03%
295021 1	122.370,64	3.600,47	0,04%
295021 2	119.727,20	3.600,13	0,16%
295021 3	120.428,91	3.600,50	0,09%
295021_4	121.181,98	580,70	0,00%
295021_5	119.605,93	3.600,14	0,05%
295021_6	119.485,09	3.600,16	0,03%
295021_7	122.437,99	3.600,53	0,02%
295021_8	120.844,85	3.600,25	0,02%
295021_9	119.238,09	3.600,26	0,09%
296011_0	121.101,77	3.600,18	0,03%
296011_1	121.969,08	3.600,31	0,04%
296011_2	123.376,83	3.600,15	0,03%
296011_3	123.001,47	3.600,18	0,02%
296011_4	122.888,79	923,11	0,01%
<u>296011_5</u>	123.351,36	3.600,17	0,07%
296011_6	119.647,24	3.600,14	0,02%
296011_7	121.224,92	3.600,17	0,05%
296011_8	121.076,63	3.600,46	0,04%
<u>296011_9</u>	122.525,13	1.456,88	0,00%
297001_0	120.523,77	3.600,14	0,14%
297001_1	122.622,49	2.406,47	0,00%
297001_2	123.984,17	3.600,19	0,05%
297001_3	122.690,61	3.600,44	0,02%
297001_4	122.690,61	3.600,45	0,02%
297001_5	123.211,45	3.600,30	0,01%
297001_6	123.211,45	3.600,31	0,01%
297001_7	122.394,00	3.600,17	0,03%
297001_8	122.394,00	3.600,17	0,03%
297001_9	123.557,63	3.600,16	0,02%
300070_0	118.188,84	3.600,43	0,04%
300070_1	120.027,32	3.600,17	0,10%
300070_2	116.411,77	3.199,06	0,00%
300070_3	123.741,10	3.600,56	0,02%
300070_4	122.823,94	3.600,34	0,10%
300070_5	121.279,54	3.600,40	0,05%
300070_6	122.015,76	3.600,48	0,02%
300070_7	119.839,06	3.600,17	0,03%
300070_8	121.671,86	1.315,04	0,01%
300070_9	120.565,84	3.600,13	0,16%
301060_0	122.019,46	3.600,47	0,02%
301060_1	123.651,97	1.348,14	0,00%
301060_2	121.499,23	3.299,23	0,01%
301060_3	122.647,22	3.600,16	0,03%
301060_4	123.862,52	3.600,42	0,02%
301060_5	121.690,68	3.600,14	0,35%

INSTÂNCIA	FUNÇÃO OBJETIVO	TEMPO (s)	<i>GAP</i> (%)
301060_6	121.990,32	3.600,44	0,04%
301060_7	122.171,43	925,70	0,01%
301060_8	124.728,53	1.278,82	0,01%
301060_9	122.518,91	3.234,55	0,00%
302050_0	121.477,60	3.600,15	0,02%
302050_1	126.610,53	268,49	0,00%
302050_2	123.828,28	1.717,87	0,01%
302050_3	125.276,98	2.849,74	0,01%
302050_4	122.609,59	1.771,49	0,00%
302050_5	123.102,94	3.600,46	0,05%
302050_6	122.810,18	3.600,14	0,09%
302050_7	122.655,15	3.600,48	0,02%
302050_8	119.945,21	3.600,13	0,08%
302050_9	124.293,81	3.600,19	0,06%
303040_0	124.820,65	3.600,20	0,05%
303040_1	125.669,67	294,88	0,01%
303040_2	124.211,54	3.600,51	0,07%
303040_3	125.562,32	3.600,17	0,10%
303040_4	123.290,45	3.600,33	0,03%
303040_5	125.211,67	3.600,16	0,08%
303040_6	123.027,60	3.600,31	0,03%
303040_7	125.109,10	2.182,70	0,00%
303040_8	122.415,54	3.600,21	0,03%
303040_9	120.332,07	3.600,17	0,02%
304030_0	121.173,10	3.600,23	0,06%
304030_1	123.165,66	2.576,92	0,01%
304030_2	123.111,19	3.600,52	0,05%
304030_3	122.738,34	3.600,13	0,21%
304030_4	123.105,79	3.600,13	0,04%
304030_5	123.297,13	3.600,17	0,11%
304030_6	122.183,98	1.274,01	0,01%
304030_7	124.681,39	720,76	0,00%
304030_8	123.573,26	3.600,49	0,02%
304030_9	123.955,16	3.600,18	0,05%
305020_0	122.618,86	1.325,14	0,01%
305020_1	125.032,80	3.600,22	0,02%
305020_2	124.321,57	3.600,38	0,04%
305020_3	123.863,50	3.600,22	0,06%
305020_4	124.013,43	3.600,45	0,03%
305020_5	121.689,68	3.600,29	0,04%
305020_6	123.526,75	2.069,85	0,00%
305020_7	123.877,58	466,43	0,00%
305020_8	123.611,27	627,02	0,00%
305020_9	123.283,09	3.600,18	0,06%
306010_0	120.254,41	3.600,17	0,55%
306010_1	124.303,92	3.600,17	0,04%

INSTÂNCIA	FUNÇÃO OBJETIVO	TEMPO (s)	<i>GAP</i> (%)	INSTÂNCIA	FUNÇÃO OBJETIVO	TEMPO (s)	<i>GAP</i> (%)
306010_2	122.671,64	3.600,41	0,02%	313039_8	121.708,09	3.600,18	0,04%
306010_3	121.603,65	3.600,20	0,03%	313039_9	125.990,54	452,26	0,00%
306010_4	123.462,85	3.600,44	0,02%	314029_0	124.942,08	3.600,47	0,04%
306010_5	122.219,58	860,09	0,00%	314029_1	124.217,06	3.600,18	0,03%
306010_6	121.784,79	3.600,22	0,05%	314029_2	125.377,10	3.600,46	0,04%
306010_7	123.379,31	3.600,19	0,05%	314029_3	123.555,09	3.600,47	0,02%
306010_8	123.744,15	3.600,25	0,02%	314029_4	125.376,32	460,64	0,00%
306010_9	126.430,91	3.600,44	0,03%	314029_5	123.619,04	3.600,27	0,14%
310069_0	121.492,80	3.600,26	0,13%	314029_6	125.237,97	681,09	0,01%
310069_1	123.292,14	2.917,41	0,00%	314029_7	123.992,56	854,12	0,00%
310069_2	119.216,76	3.600,55	0,02%	314029_8	124.464,93	3.600,38	0,04%
310069_3	123.172,65	3.600,40	0,04%	314029_9	123.940,00	3.600,17	0,02%
310069_4	118.230,73	3.600,15	0,04%	315019_0	127.575,93	270,88	0,01%
310069_5	126.235,93	233,08	0,00%	315019_1	121.635,78	3.600,44	0,04%
<u>310069_6</u>	124.406,87	3.600,19	0,03%	315019_2	122.798,07	3.600,14	0,04%
310069_7	124.281,37	325,03	0,00%	315019_3	126.030,68	3.600,43	0,03%
<u>310069_8</u>	125.141,66	3.600,16	0,07%	<u>315019_4</u>	126.376,98	3.600,13	0,02%
310069_9	124.141,52	281,17	0,00%	315019_5	120.966,08	3.600,31	0,04%
<u>311059_0</u>	123.893,66	3.600,17	0,04%	<u>315019_6</u>	125.153,70	3.600,19	0,03%
311059_1	125.447,51	731,28	0,01%	315019_7	123.406,34	3.600,44	0,03%
311059_2	125.094,71	774,93	0,00%	<u>315019_8</u>	125.407,84	401,02	0,00%
311059_3	124.271,19	434,62	0,00%	315019_9	125.276,99	3.600,34	0,03%
311059_4	124.382,94	370,18	0,01%	316009_0	123.494,06	816,11	0,00%
311059_5	122.705,61	499,28	0,00%	316009_1	124.885,47	3.600,44	0,03%
311059_6	124.985,91	421,04	0,01%	316009_2	124.330,83	1.619,68	0,00%
311059_7	123.785,21	1.591,25	0,00%	316009_3	124.330,83	1.620,62	0,00%
311059_8	124.197,40	3.600,15	0,01%	316009_4	124.631,37	3.600,43	0,03%
311059_9	121.045,30	3.600,45	0,09%	316009_5	124.647,49	1.288,85	0,00%
312049_0	126.505,68	3.600,42	0,02%	316009_6	123.818,90	3.600,13	0,24%
312049_1	123.581,05		0,00%	316009_7	125.089,10		
312049_2	125.942,45		0,00%	316009_8	123.269,46	828,80	0,01%
312049_3	124.633,69	•	0,02%	316009_9	125.580,45	271,30	0,00%
312049_4	123.371,76		0,02%	320068_0	123.452,30	1.221,21	0,00%
312049_5	125.400,24			320068_1	123.000,86	3.600,27	
312049_6	123.878,65			320068_2	124.684,75	805,35	0,01%
312049_7	121.451,65			320068_3	124.635,23		
312049_8	125.531,24		0,03%	320068_4	122.482,70	3.600,46	
312049_9	124.556,31	-	0,10%	320068_5	121.394,39	3.600,11	0,10%
313039_0	123.810,48		0,01%	320068_6	121.958,30	3.600,46	0,15%
313039_1	124.467,30			320068_7	122.886,35		
313039_2	124.497,07		0,07%	320068_8	121.868,21	3.600,18	0,16%
313039_3	122.515,42		0,01%	320068_9	123.087,70	1.536,72	
313039_4	123.880,09		0,00%	321058_0	125.183,06	2.406,98	0,01%
313039_5	123.100,62		0,01%	321058_1	125.232,14		0,00%
313039_6	122.113,95			321058_2	123.274,24		-
313039_7	122.212,43	3.600,24	0,02%	321058_3	125.503,46	316,77	0,00%

INSTÂNCIA	FUNÇÃO OBJETIVO	TEMPO (s)	<i>GAP</i> (%)
321058_4	125.782,30	225,82	0,01%
321058_5	122.811,69	3.600,21	0,02%
321058_6	122.770,90	1.446,07	0,01%
321058_7	126.311,38	1.738,72	0,01%
321058_8	124.338,97	1.302,75	0,00%
321058_9	124.946,95	3.600,55	0,05%
322048_0	126.508,36	1.010,75	0,00%
322048_1	126.363,20	1.027,45	0,01%
322048_2	126.357,01	578,18	0,00%
322048_3	122.182,00	3.600,14	0,16%
322048_4	123.771,95	3.600,38	0,03%
322048_5	126.014,79	3.600,38	0,03%
322048_6	123.692,51	3.600,40	0,02%
322048_7	124.282,98	436,75	0,00%
322048_8	126.036,52	3.600,45	0,01%
322048_9	126.458,63	238,96	0,00%
323038_0	125.513,26	2.029,19	0,00%
323038_1	125.117,90	3.600,51	0,02%
323038_2	124.056,27	482,85	0,00%
323038_3	125.700,07	260,81	0,00%
323038_4	125.343,09	524,82	0,00%
323038_5	124.448,96	3.600,25	0,01%
323038_6	124.460,74	3.600,40	0,01%
323038_7	126.273,00	352,71	0,01%
323038_8	124.752,04	287,31	0,00%
323038_9	123.793,09	3.600,48	0,03%
324028_0	124.644,08	1.560,34	0,01%
324028_1	125.935,20	325,78	0,00%
324028_2	125.808,00	3.600,43	0,04%
324028_3	126.347,71	3.600,27	0,04%
324028_4	124.268,15	767,92	0,01%
324028_5	126.188,08	3.600,40	0,02%
324028_6	124.950,18	3.600,36	0,01%
324028_7	126.173,54	3.600,35	0,15%
324028_8	126.332,17	3.600,46	0,01%
324028_9	127.302,29	3.600,22	0,02%
325018_0	125.017,37	590,39	0,00%
325018_1	125.802,77	345,75	0,00%
325018_2	125.282,90	3.600,45	0,02%
325018_3	123.922,16	3.600,44	0,02%
325018_4	125.044,74	416,16	0,00%
325018_5	126.530,78	3.600,43	0,06%
325018_6	126.296,98	379,80	0,00%
325018_7	126.393,25	3.600,14	0,03%
325018_8	125.746,70	3.600,37	0,02%
325018_9	125.295,70	3.600,43	0,02%

INSTÂNCIA	FUNÇÃO OBJETIVO	TEMPO (s)	<i>GAP</i> (%)
326008 0	126.957,75	1.009,85	0,01%
326008_1	125.502,60	3.600,21	0,05%
326008_2	126.271,21	239,80	0,00%
326008_3	126.757,39	3.600,45	0,02%
326008_4	124.669,50	2.138,80	0,01%
326008_5	125.163,99	3.600,32	0,04%
326008_6	125.420,91	3.600,38	0,07%
326008_7	125.073,68	3.600,41	0,04%
326008_8	126.718,67	3.600,44	0,02%
326008_9	123.547,18	3.600,43	0,02%
330067_0	125.891,53	3.600,18	0,06%
330067_1	124.220,29	661,09	0,00%
330067_2	124.912,48	3.600,33	0,07%
330067_3	126.576,99	3.600,37	0,04%
330067_4	124.368,94	3.600,40	0,05%
330067_5	125.583,55	468,65	0,00%
330067_6	120.187,14	3.600,33	0,02%
330067_7	125.829,18	3.600,50	0,11%
330067_8	125.787,79	3.600,35	0,10%
330067_9	126.243,74	3.600,36	0,07%
331057_0	124.930,00	492,87	0,00%
331057_1	126.772,06	3.600,46	0,03%
331057_2	126.080,11	3.600,57	0,02%
331057_3	126.235,25	379,56	0,00%
331057_4	125.270,18	565,78	0,00%
331057_5	125.193,48	3.600,42	0,01%
331057_6	125.738,96	1.175,12	0,01%
331057_7	125.578,57	286,65	0,00%
331057_8	128.647,48	116,46	0,01%
331057_9	126.360,96	3.600,40	0,05%
332047_0	126.713,36	3.600,46	0,01%
332047_1	125.761,38	3.600,18	0,03%
332047_2	126.010,11	2.169,89	0,00%
332047_3	125.743,49	933,43	0,01%
332047_4 332047_5	125.729,51	405,04	0,00%
	126.933,77	845,24	0,01%
332047_6 332047_7	126.468,72 125.723,26	405,27 3.600,36	0,01%
332047_7		270,08	0,00%
332047_6	124.803,50 126.013,01	298,71	0,00%
333037 0	125.370,96	3.600,49	0,00%
333037_0	125.570,90	341,80	0,02 %
333037_1	124.146,56	3.601,02	0,04%
333037_2	126.461,84	225,09	0,00%
333037_4	123.955,26	3.600,17	0,06%
333037_5	125.752,65	3.600,19	0,04%
		2.200,10	-,/0

INSTÂNCIA	FUNÇÃO OBJETIVO	TEMPO (s)	<i>GAP</i> (%)	INSTÂN
333037 6	127.253,53	3.600,38	0,02%	341056
333037 7	126.314,84	3.600,47	0,07%	341056
333037 8	126.461,14	430,81	0,00%	341056
333037 9	126.264,40	1.339,60	0,00%	341056
334027 0	125.031,44	3.600,45	0,06%	341056
334027_1	126.770,17	204,81	0,00%	341056
334027_2	125.386,55	3.600,18	0,05%	341056
334027_3	125.306,23	267,98	0,00%	341056
334027_4	125.229,69	3.600,43	0,01%	342046
334027_5	125.131,10	3.600,41	0,04%	342046
334027_6	125.260,88	3.600,42	0,01%	342046
334027_7	123.883,03	3.600,35	0,05%	342046
334027_8	126.879,37	1.015,05	0,01%	342046
334027_9	125.442,11	2.140,72	0,01%	342046
335017_0	125.015,20	3.600,47	0,07%	342046
335017_1	125.471,88	939,67	0,01%	342046
335017_2	124.023,76	3.600,24	0,10%	342046
335017_3	125.305,75	3.600,17	0,05%	342046
335017_4	124.371,29	712,78	0,00%	343036
335017_5	126.757,69	259,67	0,00%	343036
335017_6	127.494,13	1.175,48	0,01%	343036
335017_7	127.010,82	3.600,36	0,04%	343036
335017_8	126.081,75	1.038,95	0,01%	343036
335017_9	127.128,91	466,66	0,00%	343036
336007_0	125.063,73	350,86	0,00%	343036
336007_1	127.039,95	492,21	0,00%	343036
336007_2	125.871,48	3.600,18	0,08%	343036
336007_3	124.859,89	277,61	0,00%	343036
336007_4	125.458,78	3.600,47	0,03%	344026
336007_5	124.763,48	245,63	0,00%	344026
336007_6	126.426,65	1.181,12	0,00%	344026
336007_7	126.870,31	841,31	0,01%	344026
336007_8	124.262,58	3.600,36	0,06%	344026
336007_9	125.221,46	726,53	0,00%	344026
340066_0	126.540,97	3.600,50	0,06%	344026
340066_1	126.001,67	774,98	0,00%	344026
340066_2	123.263,42	3.600,19	0,04%	344026
340066_3	127.589,39	154,43	0,01%	344026
340066_4	122.649,16	3.600,42	0,07%	345016
340066_5	124.269,84	1.548,72	0,00%	345016
340066_6	124.302,25	385,10	0,00%	345016
340066_7	124.225,66	1.228,33	0,00%	345016
340066_8	124.703,50	295,89	0,00%	345016
340066_9	124.604,39	2.709,86	0,01%	345016
341056_0	126.694,69	793,08	0,00%	345016
341056_1	126.671,56	1.470,36	0,01%	345016

INSTÂNCIA	FUNÇÃO OBJETIVO	TEMPO (s)	<i>GAP</i> (%)
341056_2	127.648,18	668,27	0,01%
341056_3	125.998,70	492,59	0,00%
341056_4	125.738,74	301,72	0,00%
341056_5	125.090,19	585,83	0,00%
341056_6	126.100,76	555,24	0,00%
341056_7	124.273,18	761,20	0,00%
341056_8	124.474,54	2.726,31	0,01%
341056_9	127.397,14	223,71	0,00%
342046_0	126.985,93	613,05	0,00%
342046_1	125.093,27	3.600,44	0,02%
342046 2	126.136,94	3.600,51	0,02%
342046 3	124.878,89	1.284,00	0,01%
342046 4	126.424,88	205,01	0,01%
342046 5	125.375,22	3.600,34	0,03%
342046 6	125.928,20	2.157,87	0,01%
342046 7	126.442,86	3.600,47	0,01%
342046 8	126.992,50	251,14	0,01%
342046 9	126.891,37	3.600,45	0,03%
343036 0	124.543,48	2.790,40	0,00%
343036 1	127.413,91	482,65	0,01%
343036 2	124.197,96	3.600,46	0,04%
343036 3	125.203,78	3.600,40	0,02%
343036 4	127.347,20	3.600,48	0,06%
343036 5	126.040,33	495,43	0,00%
343036 6	127.138,91	280,33	0,00%
343036_7	127.150,91	48,21	0,00%
343036 8	126.535,19	2.017,60	0,00%
343036_9	124.605,20	3.600,39	/
344026 0		284,44	0,03%
344026_1	126.748,65	3.600,59	0,00%
344026_2 344026_3	125.512,54	400,97	0,00%
	126.840,36	189,91	0,00%
344026_4	127.264,84	3.600,39	0,02%
344026_5	125.245,88	3.600,45	0,03%
344026_6	126.011,07	382,11	0,00%
344026_7	127.734,63	3.600,43	0,03%
344026_8	125.381,31	341,61	0,00%
344026_9	126.308,60	3.600,37	0,08%
345016_0	125.125,65	3.600,50	0,05%
345016_1	124.152,60	3.600,13	0,16%
345016_2	126.728,97	3.600,44	0,03%
345016_3	126.249,77	282,44	0,01%
345016_4	122.669,96	3.600,45	0,03%
345016_5	125.160,24	3.600,53	0,02%
345016_6	125.967,90	252,86	0,01%
345016_7	125.460,13	3.600,41	0,03%

INSTÂNCIA	FUNÇÃO	TEMPO	GAP
	OBJETIVO	(s)	(%)
345016_8	125.118,63	3.600,45	0,04%
345016_9	127.209,14	238,41	0,01%
346006_0	126.275,05	503,72	0,00%
346006_1	126.275,05	472,66	0,00%
346006_2	126.608,14	554,99	0,00%
346006_3	127.370,05	3.600,37	0,01%
346006_4	127.427,87	211,47	0,01%
346006_5	126.112,05	231,66	0,00%
346006_6	127.676,26	422,42	0,00%
346006_7	125.774,78	355,66	0,00%
346006_8	127.762,24	644,02	0,00%
346006_9	126.161,80	3.600,38	0,03%
350065_0	126.751,52	3.600,39	0,11%
350065_1	123.803,69	3.233,42	0,00%
350065_2	126.605,56	474,96	0,00%
350065_3	125.548,47	3.600,48	0,06%
350065_4	125.926,55	3.600,35	0,16%
350065_5	124.988,74	222,03	0,00%
350065 <u>6</u> 350065 7	125.068,49	3.600,37 480,30	0,07%
	127.303,73		0,01%
0.0000	127.094,94	208,68	0,00%
350065 <u>9</u> 351055 0	127.458,81	3.600,44	0,04%
	127.191,03	3.600,47	0,01%
351055 <u>1</u> 351055 2	127.035,82	197,22 82,15	0,01%
351055_2			/
351055_5	127.254,87	298,01 323,11	0,00%
351055_4	126.647,13 126.490,55	230,81	0,00%
351055 <u>6</u>	125.738,83	929,49	0,01%
351055_0	127.333,37	270,82	0,00%
351055_7 351055_8	127.125,80	3.600,34	0,05%
351055 9	125.731,84	241,34	0,00%
352045 0	126.581,23	3.600,52	0,05%
352045_1	126.666,72	3.600,45	0,06%
352045 2	127.259,12	387,03	0,00%
352045 3	126.461,14	3.600,41	0,03%
352045_4	127.956,25	201,61	0,01%
352045_5	125.773,44	183,68	0,01%
352045_6	126.693,64	379,32	0,00%
352045 7	125.966,02	3.600,34	0,06%
352045 8	126.728,65	248,28	0,00%
352045 9	126.670,60	531,04	0,00%
353035 0	127.148,36	42,37	0,00%
353035 1	127.453,44	395,15	0,00%
353035_2	125.965,05	390,05	0,00%
353035_3	127.527,46	3.600,46	0,03%
333033_3	121.021,40	5.000,40	0,00/0

INSTÂNCIA	FUNÇÃO OBJETIVO	TEMPO (s)	<i>GAP</i> (%)
353035_4	127.518,45	873,03	0,01%
353035_5	125.891,96	171,60	0,00%
353035_6	126.958,56	364,10	0,00%
353035_7	127.008,96	206,63	0,00%
353035_8	126.592,12	3.600,39	0,03%
353035_9	126.592,12	3.600,49	0,03%
354025_0	126.573,46	3.600,39	0,02%
354025_1	127.157,50	109,80	0,00%
354025_2	126.868,95	110,28	0,00%
354025_3	127.115,07	283,17	0,00%
354025_4	126.691,74	214,45	0,01%
354025_5	127.690,00	158,93	0,00%
354025_6	125.715,84	3.600,49	0,02%
354025_7	127.183,81	325,69	0,00%
354025_8	126.408,77	226,47	0,00%
354025_9	128.045,70	237,28	0,01%
<u>355015_0</u>	126.570,61	220,60	0,00%
355015_1	125.366,20	3.600,57	0,01%
355015_2	127.089,84	3.600,41	0,04%
<u>355015_3</u>	125.760,00	700,29	0,00%
<u>355015_4</u>	126.163,43	292,15	0,00%
<u>355015_5</u>	126.888,64	712,29	0,00%
<u>355015_6</u>	125.456,56	3.600,40	0,02%
355015_7	126.959,85	358,53	0,01%
355015_8	126.557,91	3.274,73	0,00%
355015_9	126.816,44	448,84	0,01%
356005_0	126.950,97	327,33	0,00%
356005_1	127.845,10	2.318,42	0,01%
356005_2	125.727,70	724,40	0,00%
356005_3	127.303,00	3.600,48	0,03%
356005_4	127.168,02	156,74	0,00%
356005_5	127.168,02	154,34	0,00%
356005_6	127.252,45	289,37	0,00%
356005_7	126.845,54	397,79	0,00%
356005_8	127.176,67	204,57	0,01%
356005_9	126.725,75	189,26	0,00%
400060_0	126.807,99	132,35	0,00%
400060_1	126.895,37	111,22	0,00%
400060_2	127.435,51	53,06	0,00%
400060_3	127.932,34	129,88	0,00%
400060_4	127.681,46	223,85	0,01%
400060_5	126.561,72	169,56	0,00%
400060_6	127.057,16	84,61	0,00%
400060_7	128.725,57	372,34	0,01%
400060_8	126.958,33	203,83	0,00%
400060_9	127.431,81	124,64	0,00%

INSTÂNCIA	FUNÇÃO OBJETIVO	TEMPO	GAP
401050 0	1	(S)	(%)
401050_0	127.102,99	158,57	0,00%
401050_1	128.479,71	152,25	0,00%
401050_2 401050_3	126.310,53	180,86	0,00%
401050_3	127.308,30	168,65	0,00%
401050_4	127.477,73	84,88 120.00	0,01%
401050_5	128.224,48	129,90 206,45	0,00%
401050_7	128.220,33	82,47	0,00%
401050_7	128.238,88	125,75	0,00%
401050_0	127.370,58	174,42	0,00%
402040 0	127.692,55	73,23	0,00%
402040_0	126.799,72	173,40	0,00%
402040_1	127.440,50	113,26	0,00%
402040_2	128.333,01	97,36	0,00%
402040_6	126.949,65	154,12	0,00%
402040_5	127.217,85	100,89	0,00%
402040 6	127.136,12	251,58	0,00%
402040 7	128.509,10	648,88	0,00%
402040_7	127.387,24	168,96	0,00%
402040 9	128.496,84	123,75	0,01%
403030 0	128.598,59	3.600,45	0,01%
403030 1	128.494,61	214,39	0,00%
403030 2	127.737,40	211,24	0,01%
403030 3	127.454,21	140,08	0,00%
403030 4	126.328,73	156,89	0,00%
403030 5	127.201,34	60,95	0,00%
403030 6	126.509,86	153,10	0,00%
403030 7	127.512,81	147,78	0,01%
403030 8	127.584,53	152,24	0,00%
403030 9	127.871,61	275,42	0,00%
404020 0	128.418,23	109,06	0,00%
404020 1	127.483,17	149,24	0,00%
404020 2	127.224,15	231,66	0,00%
404020 3	128.963,77	123,58	0,00%
404020 4	127.142,64	190,74	0,00%
404020 5	127.362,73	3.600,39	0,02%
404020 6	126.387,43	3.600,49	0,04%
404020 7	127.116,94	214,68	0,00%
404020 8	125.854,72	212,05	0,00%
404020 9	128.489,60	3.600,39	0,02%
405010 0	127.433,30	69,12	0,00%
405010 1	126.955,75	143,13	0,00%
405010 2	127.651,88	349,71	0,00%
405010 3	128.109,79	75,48	0,00%
405010 4	127.077,85	97,73	0,00%
	128.712,66	41,21	0,00%

INSTÂNC	CIA	FUNÇÃO OBJETIVO	TEMPO (s)	<i>GAP</i> (%)
405010_	6	128.000,25	86,22	0,00%
405010_	7	128.952,47	91,07	0,00%
405010_	_8	128.253,75	70,17	0,00%
405010	9	129.087,86	103,86	0,01%
450055_	0	127.551,28	111,97	0,00%
450055_	1	127.525,95	100,55	0,00%
450055_	2	128.471,70	118,32	0,00%
450055_	_3	127.661,99	89,54	0,00%
450055_	4	127.625,19	92,28	0,00%
450055_	5	128.765,45	51,37	0,00%
450055_	6	126.613,19	206,64	0,00%
450055_	7	128.799,72	124,76	0,00%
450055_	8	128.781,06	132,49	0,00%
450055_	9	128.450,11	99,64	0,00%
451045_	0	127.360,82	57,32	0,00%
451045_	_1	126.697,88	159,03	0,00%
451045 <u></u>	2	127.497,07	79,92	0,00%
451045_	3	127.796,69	68,46	0,00%
451045_	4	129.378,77	76,88	0,00%
451045_	5	128.338,39	152,54	0,00%
451045_	6	129.419,47	36,93	0,00%
451045_	7	128.441,58	60,84	0,00%
451045 <u></u>	8	128.047,54	81,16	0,01%
451045_	9	128.374,09	72,80	0,00%
452035_	0	127.992,05	79,91	0,00%
452035	_1_	128.842,98	125,05	0,00%
452035_	2	127.815,95	160,35	0,00%
452035_	_3	127.075,86	138,66	0,00%
452035_	4	127.359,33	266,87	0,00%
452035_	_5	128.442,44	117,76	0,00%
452035_	6	127.751,32	139,52	0,00%
452035	7	126.793,14	228,98	0,00%
452035_	88	127.364,76	150,86	0,00%
452035_	9	127.465,97	99,57	0,00%
453025_	0	127.176,52	76,18	0,00%
453025_	_1_	129.379,64	122,07	0,00%
453025_	2	129.086,38	134,42	0,00%
453025_	_3	127.759,93	94,82	0,00%
453025_	4	127.547,86	31,77	0,00%
453025_	_5	128.454,15	78,61	0,00%
453025_	6	129.433,89	48,17	0,00%
453025_	7	128.001,79	164,07	0,00%
453025_	8	127.671,93	91,73	0,00%
453025_	9	128.676,75	87,39	0,00%
454015_	0	126.908,45	364,23	0,00%
454015_	_1	126.843,25	91,01	0,00%

INSTÂNCIA	FUNÇÃO	TEMPO	GAP
454015 Q	OBJETIVO	(S)	(%)
454015_2 454015_3	127.065,61	102,61	0,00%
454015_5	127.193,65	145,55 40,31	0,00%
454015_5	126.685,11	99,17	0,00%
454015_5 454015_6	127.273,46	85,52	0,00%
454015 7	127.368,81	143,50	0,01%
454015 8	127.753,99	116,89	0,00%
454015 9	128.682,29	188,49	0,00%
455005 0	128.372,29	82,17	0,00%
455005 1	126.746,54	90,14	0,00%
455005 2	128.219,68	36,19	0,00%
455005 3	128.495,66	87,80	0,00%
455005 4	126.998,67	75,01	0,00%
455005 5	127.989,07	41,96	0,00%
455005_6	128.371,78	79,64	0,00%
455005_7	127.317,08	99,02	0,00%
455005_8	127.482,50	90,34	0,00%
455005_9	127.553,22	76,25	0,00%
500050_0	126.910,15	198,95	0,00%
500050_1	126.368,53	84,59	0,00%
500050_2	126.905,18	141,68	0,00%
500050_3	127.838,65	89,68	0,00%
500050_4	127.779,64	113,63	0,00%
500050_5	126.755,96	85,06	0,00%
500050_6	128.332,85	194,08	0,00%
500050_7	127.662,28	60,23	0,01%
500050_8	127.572,91	99,75	0,00%
500050_9	127.733,81	72,10	0,00%
501040_0	127.078,03	96,94	0,00%
501040_1	127.788,60	117,97	0,00%
501040_2	127.087,03	170,03	0,01%
501040_3	127.803,28	80,43	0,00%
501040_4	128.293,77	120,98	0,00%
501040_5	128.222,24	72,32	0,00%
501040_6	126.877,33	105,09	0,00%
501040_7	126.872,49	137,15	0,01%
501040_8	128.585,97	234,77	0,00%
501040_9	129.464,60	124,21	0,00%
502030_0	128.053,89	40,42	0,00%
502030_1	126.665,15	77,39	0,00%
502030_2 502030_3	126.918,19 127.673,16	108,16	0,00%
502030_3 502030_4	127.073,16	86,99 83,66	0,00%
502030_4	128.638,87	66,79	0,00%
502030_6	127.349,19	171,93	0,00%
502030_0	129.344,28	47,37	0,00%
002000_1	120.077,20	71,01	0,0070

INSTÂNCIA	FUNÇÃO OBJETIVO	TEMPO (s)	<i>GAP</i> (%)
502030_8	129.237,46	67,87	0,00%
502030_9	127.188,50	146,83	0,00%
503020_0	127.897,81	133,83	0,00%
503020_1	127.535,28	76,30	0,00%
503020_2	128.420,47	142,25	0,00%
503020_3	128.142,69	75,48	0,00%
503020_4	127.294,58	81,50	0,00%
503020_5	127.305,01	157,43	0,00%
503020_6	128.324,07	115,32	0,00%
503020_7	128.539,54	85,96	0,00%
503020_8	127.572,01	87,65	0,00%
503020_9	126.737,66	98,42	0,00%
504010_0	127.959,34	93,46	0,00%
<u>504010_1</u>	127.648,18	80,90	0,00%
504010_2	128.585,59	92,48	0,00%
504010_3	127.742,68	83,45	0,00%
504010 <u>4</u>	128.137,37	82,82	0,00%
<u>504010_5</u>	126.795,98	94,38	0,00%
504010 <u>6</u>	126.672,82	99,59	0,00%
<u>504010_7</u>	129.431,35	48,89	0,00%
504010 <u>8</u>	128.956,06	78,75	0,00%
504010_9	127.946,21	110,77	0,01%
<u>550045_0</u>	128.344,74	115,74	0,01%
550045_1	127.382,21	247,26	0,00%
550045_2	128.288,63	100,37	0,01%
550045_3	128.150,56	138,59	0,00%
550045_4	128.338,77	51,02	0,00%
550045_5	127.816,14	60,65	0,00%
550045_6	126.744,96	528,04	0,01%
550045_7	128.030,67	100,42	0,00%
550045_8	128.193,54	205,58	0,00%
550045_9	129.055,22	152,49	0,00%
551035_0	127.644,87	45,81	0,00%
551035_1	126.709,37	76,53	0,00%
551035_2	128.419,22	170,67	0,00%
551035_3	128.308,19	101,40	0,01%
551035_4	126.723,69	322,53	0,00%
551035_5	128.138,43	82,47	0,00%
551035_6	127.147,37	132,96	0,00%
551035_7	128.143,61	132,58	0,00%
551035_8	128.231,91	206,89	0,00%
551035_9	128.011,13	45,88	0,00%
552025_0	127.996,42	61,18	0,00%
552025_1	127.899,80	76,49	0,00%
552025_2	127.176,15	140,44	0,00%
552025_3	129.422,64	159,44	0,00%

INSTÂNCIA	FUNÇÃO OBJETIVO	TEMPO (s)	<i>GAP</i> (%)
552025_4	125.589,31	123,83	0,01%
552025_5	125.843,41	117,85	0,00%
552025_6	128.281,07	113,16	0,00%
552025_7	128.454,37	69,92	0,00%
552025_8	127.167,74	195,04	0,00%
552025_9	128.460,26	130,34	0,00%
553015_0	127.164,83	101,30	0,00%
553015_1	128.002,63	111,31	0,00%
553015_2	127.727,38	102,46	0,00%
553015_3	127.621,61	338,04	0,00%
553015_4	127.707,47	96,64	0,00%
553015_5	127.974,18	109,70	0,00%
553015_6	128.087,80	88,27	0,00%
553015_7	127.339,54	89,20	0,00%
553015_8	127.537,28	86,79	0,00%
553015_9	128.192,57	43,65	0,00%
554005_0	127.869,41	86,14	0,00%
554005_1	127.950,88	97,22	0,01%
554005_2	128.099,36	95,13	0,01%
554005_3	127.165,16	100,89	0,00%
554005_4	128.960,48	72,89	0,00%
554005_5	127.485,49	81,45	0,00%
554005_6	128.002,44	84,87	0,00%
554005_7	127.685,62	93,35	0,00%
554005_8	126.928,63	101,41	0,00%
554005_9	127.391,66	106,07	0,00%
600040_0	127.899,65	92,70	0,00%
600040_1	127.970,68	92,02	0,00%
600040_2	127.907,98	154,61	0,00%
600040_3	126.716,55	124,90	0,00%
600040_4	129.328,52	156,89	0,00%
600040_5	128.178,67	100,32	0,00%
600040_6	126.947,93	146,78	0,00%
600040_7	128.787,00	119,40	0,00%
600040_8	128.459,35	97,79	0,00%
600040_9	127.914,58	112,86	0,00%
601030_0	128.368,02	60,67	0,00%
601030_1	127.634,33	126,67	0,01%
601030_2	129.133,82	132,68	0,00%
601030_3	128.053,12	83,82	0,00%
601030_4	127.144,65	176,83	0,00%
601030_5	128.702,51	68,85	0,00%
601030_6	128.186,89	101,59	0,00%
601030_7	127.487,52	120,47	0,00%
601030_8	127.650,23	130,55	0,00%
601030_9	128.384,10	189,39	0,01%

INSTÂNC	CIA	FUNÇÃO OBJETIVO	TEMPO (s)	<i>GAP</i> (%)
602020_	0	128.090,52	65,51	0,00%
602020	1	128.299,16	129,58	0,00%
602020_	2	128.492,81	247,28	0,00%
602020_	3	128.483,52	106,09	0,00%
602020_	4	127.738,49	98,15	0,00%
602020_	5	127.943,25	88,15	0,00%
602020_	6	127.609,71	70,41	0,00%
602020_	7	128.678,08	84,49	0,00%
602020_	8	127.881,35	114,77	0,00%
602020_	9	126.837,09	122,18	0,00%
603010_	0	127.252,62	69,45	0,00%
603010_	1	127.485,20	189,86	0,00%
603010	2	127.114,46	96,66	0,00%
603010_	3	128.132,25	140,91	0,00%
603010_	4	128.637,10	82,77	0,01%
603010_	_5	127.990,79	40,96	0,00%
603010	6	128.061,05	67,68	0,00%
603010_	7	127.793,51	119,09	0,00%
603010_	8	128.167,72	86,42	0,00%
603010_	9	127.393,42	48,68	0,00%
650035_	0	127.366,43	338,13	0,00%
650035_	1	128.325,17	180,42	0,00%
650035_	2	127.266,80	389,28	0,00%
650035_	3	127.651,59	95,09	0,00%
650035_	4	127.687,21	440,76	0,00%
650035_	5	127.272,95	332,26	0,00%
650035_	6	128.110,51	103,40	0,00%
650035_	7	128.066,43	140,42	0,00%
650035_	8	128.340,00	113,54	0,00%
650035_	9	127.060,20	196,84	0,01%
651025_	0	127.389,07	602,78	0,01%
651025_	1_	127.107,41	189,76	0,01%
651025_	2	127.213,91	128,16	0,00%
651025_	3	127.684,55	558,45	0,00%
651025_	4	128.629,31	105,25	0,00%
651025_	_5	125.885,03	106,00	0,00%
651025_	6	129.784,73	83,80	0,00%
651025_	7	129.039,47	49,78	0,00%
651025_	8	127.247,96	329,00	0,01%
651025_	9	128.161,96	144,39	0,00%
652015_	0	128.190,64	75,23	0,00%
652015_	1_	127.783,36	479,51	0,00%
652015_	2	128.506,16	108,23	0,00%
652015_	_3	127.757,44	69,47	0,00%
652015_	4	127.335,05	305,91	0,00%
652015_	_5	127.148,10	136,74	0,00%

INSTÂNCIA	FUNÇÃO OBJETIVO	TEMPO (s)	<i>GAP</i> (%)
652015 6	127.726,04	399,88	0,00%
652015 7	128.564,90	89,78	0,00%
652015 8	128.223,29	173,88	0,00%
652015_9	129.637,62	296,51	0,00%
653005_0	127.167,33	93,05	0,00%
653005_1	126.110,20	153,56	0,00%
653005_2	127.703,53	117,07	0,00%
653005_3	128.054,12	84,83	0,01%
653005_4	127.821,36	404,20	0,01%
653005_5	128.696,62	171,17	0,00%
653005_6	127.374,74	109,84	0,00%
653005_7	128.399,52	335,57	0,00%
653005_8	129.836,54	51,16	0,00%
653005_9	127.170,28	56,07	0,01%
700030_0	126.557,46	288,52	0,00%
700030_1	128.995,78	379,38	0,00%
700030_2	127.643,15	108,89	0,01%
700030_3	127.829,70	120,30	0,00%
700030_4	128.056,51	454,54	0,00%
700030_5	127.444,80	146,73	0,00%
700030_6	128.144,41	210,74	0,00%
700030_7	127.069,80	119,55	0,00%
700030_8	127.593,67	546,12	0,01%
700030_9	129.164,73	95,91	0,00%
701020_0	128.658,71	54,40	0,00%
701020_1	127.894,29	132,77	0,00%
701020_2	127.894,86	70,49	0,01%
701020_3	127.503,36	153,80	0,00%
701020_4	127.633,57	115,13	0,01%
701020_5	127.802,42	66,32	0,00%
701020_6	128.388,99	89,30	0,00%
701020_7	128.000,24	124,87	0,00%
701020_8	127.232,28	65,16	0,00%
701020_9	127.547,54	93,16	0,00%
702010_0	127.429,66	331,73	0,01%
702010_1	127.964,45	142,55	0,00%
702010_2	128.063,85	108,69	0,00%
702010_3	128.058,98	83,71	0,01%
702010_4	126.565,23	109,94	0,00%
702010_5 702010_6	128.114,85	92,58	0,00%
702010_6	128.332,56	126,38 94,05	0,01%
702010_7	127.832,74		
702010_8		317,76 114.67	0,00%
750025 0	127.444,85	114,67 148,69	0,00%
750025 <u>0</u> 750025 <u>1</u>	128.082,48	110,55	0,00%
100020_1	120.002,40	110,55	0,00 /0

INSTÂNCIA	FUNÇÃO OBJETIVO	TEMPO (s)	GAP (%)
750025_2	129.445,42	53,89	0,00%
750025_3	126.778,63	115,25	0,00%
750025_4	129.382,71	70,43	0,00%
750025_5	128.255,02	49,73	0,01%
750025_6	127.134,81	171,34	0,00%
750025_7	127.842,07	93,87	0,00%
750025_8	129.263,80	485,06	0,00%
750025_9	126.828,32	333,79	0,00%
751015_0	127.374,60	149,16	0,00%
751015 <u>1</u>	128.549,17	68,04	0,00%
751015_2	128.699,25	156,34	0,00%
751015 <u>3</u>	127.135,63	372,05	0,00%
751015_4	128.962,46	87,97	0,00%
751015 <u>5</u>	127.465,78	344,04	0,01%
751015 <u>6</u>	126.853,63	170,01	0,00%
751015 <u>7</u>	127.529,81	104,95	0,00%
751015 <u>8</u>	127.014,22	103,37	0,01%
751015 <u>9</u>	127.610,10	124,96	0,00%
752005_0	128.207,64	131,26	0,01%
752005_1	127.245,12	540,86	0,00%
752005_2	128.381,55	110,30	0,00%
752005_3	129.242,09	232,90	0,01%
752005_4	127.790,92	164,24	0,00%
752005_5	128.184,23	92,66	0,00%
752005_6	128.100,78	120,38	0,00%
752005_7	128.115,69	111,78	0,00%
752005_8	127.346,90	159,02	0,00%
752005_9	128.143,45	81,12	0,01%
800020_0	126.649,15	102,33	0,01%
800020_1	129.097,33	142,59	0,00%
800020_2	127.721,70	76,86	0,01%
800020_3	129.936,44	451,13	0,00%
800020_4	127.763,29	398,88	0,00%
800020_5	127.576,76	107,90	0,01%
800020_6	126.685,53	109,09	0,01%
800020_7	127.144,31	374,72	0,00%
800020_8	127.659,65	342,83	0,00%
800020_9	128.623,13	91,10	0,00%
801010_0	128.707,57	56,64	0,00%
801010_1	127.430,18	429,53	0,00%
801010_2	128.346,63	102,38	0,00%
801010_3	127.314,66	528,95	0,00%
801010_4	126.768,03	89,39	0,01%
801010_5	127.992,25	179,49	0,00%
801010_6	127.167,90	95,53	0,01%
801010 <u>7</u>	127.534,93	64,05	0,01%

INSTÂNCIA	FUNÇÃO OBJETIVO	TEMPO (s)	<i>GAP</i> (%)
801010_8	127.560,84	342,04	0,00%
801010_9	129.190,75	92,00	0,00%
850015_0	126.830,60	88,59	0,00%
850015_1	129.357,90	86,48	0,00%
850015_2	127.319,21	117,20	0,01%
850015_3	127.615,20	116,43	0,00%
<u>850015_4</u>	127.876,07	87,00	0,00%
850015_5	127.445,31	88,64	0,00%
850015_6	127.787,28	73,07	0,00%
850015_7	127.865,27	97,29	0,00%
850015_8	129.070,35	77,26	0,00%
850015_9	126.977,79	66,92	0,00%
851005_0	128.295,60	107,37	0,00%
851005_1	128.374,85	330,33	0,00%
851005_2	127.815,77	489,74	0,00%
851005_3	127.262,03	108,16	0,00%
851005_4	129.129,86	59,49	0,00%
851005_5	129.310,47	118,71	0,00%
851005_6	127.513,77	389,01	0,00%
851005_7	126.777,47	131,02	0,01%
851005_8	128.937,84	104,81	0,00%

INSTÂNCIA	FUNÇÃO OBJETIVO	TEMPO (s)	<i>GAP</i> (%)
851005_9	127.648,68	110,22	0,00%
900010_0	128.167,81	53,90	0,00%
900010_1	126.519,88	119,41	0,00%
900010_2	128.382,99	424,52	0,00%
900010_3	127.895,96	320,04	0,00%
900010_4	127.999,58	93,46	0,00%
900010_5	127.659,33	362,47	0,00%
900010_6	128.094,24	87,41	0,00%
900010_7	127.091,46	106,70	0,00%
900010_8	128.050,39	119,39	0,00%
900010_9	128.770,12	562,16	0,00%
950005_0	127.475,84	90,27	0,00%
950005_1	128.255,98	81,04	0,00%
950005_2	129.023,77	117,60	0,00%
950005_3	127.829,41	114,96	0,00%
950005_4	128.071,68	112,89	0,00%
950005_5	128.013,46	317,46	0,00%
950005_6	127.501,76	381,80	0,00%
950005_7	127.872,96	103,19	0,00%
950005_8	127.067,32	501,38	0,00%
950005_9	128.893,43	64,99	0,01%