UNIVERSIDADE FEDERAL DO PARANA

OTTO JULIO AHLERT PINNO DA SILVA

CONTROLCHAIN: BLOCKCHAIN AS A CENTRAL ENABLER FOR ACCESS CONTROL
AUTHORIZATIONS IN THE 10T

CURITIBA PR
2020

OTTO JULIO AHLERT PINNO DA SILVA

CONTROLCHAIN: BLOCKCHAIN AS A CENTRAL ENABLER FOR ACCESS CONTROL
AUTHORIZATIONS IN THE 10T

Tese apresentada como requisito parcial a obtengdo do grau
de Doutor em Ciéncia da Computagdo no Programa de
Pos-Graduagdo em Informdtica, Setor de Ciéncias Exatas,
da Universidade Federal do Parand.

Area de concentragio: Ciéncia da Computacdo.

Orientador: Luis Carlos Erpen De Bona.

Coorientador: André Ricardo Abed Grégio.

CURITIBA PR
2020

Catalogacio na Fonte: Sistema de Bibliotecas, UFPR
Biblioteca de Ciéncia e Tecnologia

P656¢

Pinno, Otto Julio Ahlert

Controlchain: Blockchain as a central enabler for access control
authorizations in the |OT [recurso eletronico] /Otto Julio Ahlert Pinno. — Curitiba,
2020.

Tese - Universidade Federal do Parand, Setor de Ciéncias Exatas,
Programa de Pés - Graduagéo em Informatica, 2020.

Orientador: Luis Carlos Erpen De Bona. Coorientador: André Ricardo Abed
Grégio.

1. Internet das coisas. 2. Internet - Controle de acesso. 3. Redes locais de
computadores. 4. Blockchains (Base de dados). |. Universidade Federal do
Parana. Il. De Bona, Luis Carlos Erpen. lll. Grégio, André Ricardo Abed. VI.
Titulo.

CDD: 004.678

Bibliotecaria: Vanusa Maciel CRB- 9/1928

MINISTERIO DA EDUCAGAO

H— SETOR DE CIENCIAS EXATAS
S : UNIVERSIDADE FEDERAL DO PARANA
l ' F P R PRO-REITORIA DE PESQUISA E POS-GRADUACAO
T T T et e PROGRAMA DE POS-GRADUAGAO INFORMATICA -
40001016034P5

TERMO DE APROVACAO

Os membros da Banca Examinadora designada pelo Colegiado do Programa de Pés-Graduagdo em INFORMATICA da
Universidade Federal do Paranéa foram convocados para realizar a arguicéo da tese de Doutorado de OTTO JULIO AHLERT
PINNO DA SILVA intitulada: CONTROLCHAIN: BLOCKCHAIN AS A CENTRAL ENABLER FOR ACCESS CONTROL
AUTHORIZATIONS IN THE IOT, sob orientagdo do Prof. Dr. LUIS CARLQS ERPEN DE BONA, que apds terem inquirido o aluno e
realizada a avaliagéo do trabalho, séo de parecer pela sua M@Wﬁw no rito de defesa.

A outorga do titulo de doutor esta sujeita & homologacgéo pelo colegiado, ao atendimento de todas as indicagdes e correges

solicitadas pela banca e ao pleno atendimento das demandas regimentais do Programa de Pds-Graduagao.

CURITIBA, 07 de Janeiro de 2020.

A

s \L—————'

LUIS CARLOS ERPEN DE BONA
Presidente da Banca Examinadora

(4
I\ Qd e —
ADRIANO CANSIAN 5 |
Avaliador Externo (UNIVERSIDADE ESTADUAL PAULISTA) /Aa%iador Externo (PONTIFI'CIA‘UNIVERS'DADE CATOLICA DO

PARANA)

7
AN [SO~/ </
LYz /CARLOS PESSOA ALBINI ANDRE RICARDO ABED GREGIO
Avaliador Interno (UNIVERSIDADE FEDERAL DO PARANA) Coorientador (UNIVERSIDADE FEDERAL DO PARANA)

CEP 81531-980 - Tel: (41) 3361-3101 - E-mail: ppginf@inf.ufpr.br

mailto:ppginf@inf.ufpr.br

RESUMO

A 10T estd alterando a forma como interagimos com o mundo. Logo, quase todas as
nossas tarefas didrias serdo realizadas através sistemas inteligentes embarcados em dispositivos
espalhados por toda parte. A missdo deles ¢ tornar nossas cidades, sistemas de transporte,
construcdes, residéncias e corpos em ambientes inteligentes. Estes ambientes trardo mais conforto,
melhorardo nossos desempenhos, aumentardo nossos lucros e removerao tarefas consumidoras
de tempo. No entanto, junto com esses 6timos beneficios, a o' também ¢ uma grande fonte
de preocupagdes, principalmente porque uma boa parte dos seus dispositivos manusearao
informagdes privadas e confidenciais. Casos recentes de invasdes de IoT bem sucedidos (com
possibilidade de comprometimento de privacidade e confidencialidade) somente pioram este
cendrio € mostram a nds que os sistemas de controle de acesso adotados atualmente precisam ser
substituidos por sistemas mais eficientes e seguros. Essas falhas de controle de acesso dificultam
a ado¢do ampla da IoT, principalmente em ambientes que lidam com informacdes pessoais
ou outras informacdes confidenciais. Infelizmente, caracteristicas da IoT, como diversidade
de dispositivos, quantidade e dispersao geografica, inserem um alto grau de complexidade em
projetos de controle de acesso. Apesar dos diversos estudos cientificos na drea, existem lacunas
que precisam ser preenchidas. Alguns trabalhos usam solugdes centralizadas que prejudicam a
escalabilidade e a disponibilidade da IoT. Outros trabalhos proveem arquiteturas decentralizadas,
no entanto, suas solu¢des nao permitem a [oT atingir seu potencial total. Para sobrepor essas e
outras barreiras, neste trabalho, nés fizemos um levantamento de requisitos para o controle de
acesso na IoT e, entdo, projetamos o ControlChain, uma arquitetura de autorizagdo de controle de
acesso que ¢ fortemente baseada na tecnologia Blockchain. Ela agrupa todos os requerimentos
de tendencia fundamentais levantados em uma solu¢do. N6s demonstramos a viabilidade do
ControlChain através do E-ControlChain, uma prova de conceito desenvolvida para executar
sobre a rede Ethereum. NGs também demonstramos a sua viabilidade através de uma andlise de
custo e de desempenho utilizando um Raspberry Pi como um dispositivo IoT. Finalmente, nds
avaliamos E-ControlChain sob uma ampla variedade de ataques e discutimos como eles podem
ameacar ele e como mitigé-los.

Palavras-chave: Internet das coisas, Controle de Acesso, Autorizagdo, Blockchain

ABSTRACT

The 10T is changing the way we interact with the world. Very soon, almost all of our
daily tasks will be made through self intelligent systems embedded in devices scattered all
around us. Their mission is to turn our cities, transportation systems, buildings, homes and
bodies in smart environments. These environments will bring us more comfort, improve our
performance, increase our profits, and take away time-consuming tasks. However, besides its
great benefits, the 10T is also a big source of concerns, mainly because a good part of its devices
will handle private and confidential information. Recently cases of successful IoT invasions (with
possible privacy and confidentiality compromising) only worse this scenario and show us that
the today’s adopted access control systems need to be replaced by more efficiently and secure
ones. These access control faults hinders the broadly adoption of the I6T, mostly in environments
that deal with personal or other confidential information. Unfortunately, Features of the IoT
such as device diversity, quantity and geographic dispersion place high degree of complexity
in access control projects. Despite the many scientific studies in the area, there are gaps that
need to be filled. Some of the works use centralized solutions that harm the scalability and
availability of the IoT. Other works provide decentralized architectures, however their solution
does not allow the IoT to achieve all of its potential. To overcome these and other barriers, in
this work, we made an requirement gathering for the access control in the IoT and, then, we
designed the ControlChain, an access control authorization architecture that is heavily based on
the Blockchain technology. It groups all the main fundamental tendency requirements gathered
in one solution. We demonstrate the viability of the ControlChain through the E-ControlChain, a
proof-of-concept developed to run over the Ethereum network. We also demonstrated its viability
through a cost and a performance analysis of E-ControlChain using a Raspberry Pi as an [oT
device. Finally, we evaluate E-ControlChain under a wide variety of attacks and discuss how
they can threat it and how to mitigate them.

Keywords: Internet of Things, Access Control, Authorization, Blockchain

2.1
2.2
2.3
24
2o
2.6
2.7
2,8
2.9

3.1
3.2
33
34

4.1
4.2
4.3
4.4
4.5

5.1
L

5.3
54
5.5
5.8
5.7
5.8
59
5.10
5.11
5.12
5.13

LIST OF FIGURES

Access control overview L. L L e e 15
Ouaddali’'s referenoe Medels : » o 5 o 5 5 s 5 2 5 8 5 5 8 8 8 8 5 6 5 7 § 5 8 & 5 16
XACML architecture e 19
OAuth architecture 20
UMA arehifleelurs: - s : o 5 ¢ 2 2 1 0 5 ¢ 2 58 0 52 3868818858 ¢s8B2 28 21
RBACmodel e 23
OrBACmodel. e 23
ABACmodel e 23
UCONmodel e e e 24
Blockchain main structure 27
Siotature ProcesS oW &« & s v o 5 5 o 5 5 & 5 5 5 5 5 % B 5 4 8 5 4 B & ¥ F o5 %3 29
Blockchain main structure with branches. 31
FairAccess overview e 33
ContralChain guldelifes . o« 5 » 5 5 o 5 5 5 5 5 & 5 5 4 5 5 5 55 # 55 s 55 & % 3 43
ControlChain entities interactions 45
ControlChainreference 46
Relationship overview. 46
Transformation of access control models to the mechanisms. 43
E-ControlChain interactions 54

E-ControlChain Authorization Approaches: (1) direct access; (II) support device

access; (III) gateway acCcess. v v v v v v i e e e 56
Experintentalifon nvirOnment - = : « s ¢ & 25 & 5 5 & 5 5 5 55 4 55 5 %5 5 w3 61
CPUImMpact o e e 70
Memory impact e 71
Disk read impact 71
Disk write impact 72
Disk uSageImpast: « o s o o 5 6 % 5 6 5 5 & 5 5 € 8 5 & & 8 & 8 F & 8 F &8 3 4 B3 T2
Network receiptimpact 73
Network transmission impact. 73
Number of authorizations perseeond. « « » o s « 5 5 5 55 o 55 4 55 s 55 ¢ 3 74
Eclipse attack scenario 78

E-ControlChain analysis by AnChain.AL. 89

5.14

Threat model

2.1
2.2
2.3

4.1
4.2
4.3

5.1
5.2
93
54
5.5
5.6
5.7

LIST OF TABLES

Adopted nomenclature L
IoT requirements achieved by traditional architectures.

Advantages of centralized and decentralized accesscontrol

Most indicated reference type based on the requirements of the use case.
Mapping of the models to the suggested rule blocks..

Architectures comparison.

Current E-ControlChain development status..
Tracking of assets” ownership - correspondence between entities and addresses. .
Guests in a smart home - mapping between entities, real and fictitious addresses.
Cost of executing the functions with a gas priceof 20 gwei..
Summarized security analyze of the E-ControlChain components.
Summarized security analysis of the E-ControlChain components.

Summarized possible vulnerabilities and warning reported by the auditing tools. .

50

76
Q2
92

LIST OF ACRONYMS

ABAC Attribute-Based Access Control

ACL Access Control List

E-ControlChain Ethereum-based ControlChain

CapBAC Capability-Based Access Control

DAC Discretionary Access Control

DHT Distributed Hash Table

DSS Digital Signature Standard

IoT Internet of Things

MAC Mandatory Access Control

OAuth Open Authorization

OM-AM Objective, Model, Architecture, Mechanism
OrBAC Organization-Based Access Control

RBAC Role-Based Access Control

RSA Ron Rivest, Adi Shamir, and Leonard Adleman
SWoT Social Web of Things

UCON Usage CONItrol

UMA User Managed Access

XACML eXtensible Access Control Markup Language

1.1
1.2

2.1
2.2
2.2.1
0
223
224
2.3
24

3.1
3.2
3:2.1
322
3:2.3
324
3.25
33
34
3.5
3.5.1
3.5.2
3B
354
3.55
3.5.6
3.6

4.1
4.2
4.3

SUMMARY

INTRODUCTION: « ¢ 5 6 s 2 5 s % % s % 85 2 % 8 % % 5 8 %6 % 63 5 %6 4 85 11
CONTRIBUTTIONS & 5 s o % 5 5 5 5 & 5 5 % % 6 & % 6 4 % 6§ # %5 2 55 6 55 ¢ % & 13
ORGANIZATION e e e e e 14
ACCESSCONTROL : « 5 : v v« s ¢ s s 5 s 5 ¢ 5 w6 % 565 9595 9 15
IOT ACCESS CONTROL REQUIREMENTS. 16
TRADITIONAL ARCHITECTURES 18
XACML. . . . 18
OAuth 19
UMA 20
Traditional architectureS aWs - 5 & o o 5 5 5 5 o 5 5 4 5 5 o 5 5 % 55 s 55 & % 3 21
ACCESS CONTROL MODELS o .. 21
CONCLUSION e s e 24
BLOCKCHAIN e e e e e ettt e et ann 25
APPLICATION AREAS e 25
BLOCKCHAIN’S MODE OF OPERATION 27
Datacreation e 28
Blocks construction and appending. oL 28
Block GpREndifE : + o s 6 5 5 & % 5 ¢ 5 5 & 5 5 € 8 5 4 A § & BG4 B F &R 4 B3 30
Consensus establishment 31
Walletconcept 31
BTHERBUDML . 5 ¢ v 5 5 o % 5 5 5 5 & % 6 % % 6§ & % 6§ & © 6§ & %5 2 5§ 6 55 § % § 32
BLOCKCHAIN-BASED ACCESSCONTROL 32
BLOCKCHAIN-BASED ACCESS CONTROL ISSUES AND CHALLENGES . 37
Branches in Blockchain. 37
Attacks e 38
Bloekcham fOrKINg . « s » 5 # % 5 5 85 5 5 5 5 & 5 5 6 55 5 5§ # 55 6 55 & % 3 39
Resource consumption 39
Privacy 40
The Blockchain as a bottleneck or as abig void space 40
CONCLUSION o e s e 41
PROPOSED DESIGN AND ARCHITECTURE 43
CONTEXT AND ACCOUNTABILITY BLOCKCHAINS 45
RELATIONSHIPS BLOCKCHAIN 45
RULES BLOCKCHAIN & 5 5 6 5 5 w 5 5 6 % 5 6 5 5 4 8 5 & % 56 53 6 & 5 & 5 3 47

4.4
4.5
45.1
45.2
4.6

5.1
5.1.1
5.1.2
5.2
5.2.1
522
523
524
5.3
54
54.1
542
5.8

C.1
C2
C3
C4
C3
C.6
C.7
C.38
C9
C.10

DECODER: A COMPATIBILITY TOOL SCHEME 47
THEORETICAL ANALYSIS. 50
ArChiteehUreS BOTIPAEISON., & 5 » % 5 o 5 5 5 5 5 & % 5 & 5 5 & 5 § # 5 5 & % 5§ & % § 50
Viability with limited resources devices 52
CONCLUSION e s e 52
ARCHITECTURE IMPLEMENTATION, TESTS AND RESULTS 53
MATHEMATICAL MODELING 57
Updating the data : « » s 6 5 5 5 2 5 6 8 5 & 5 5 € 8 5 @ & 8 & 8 5 & 8 5 & 8 5 & 5 3 58
Authorizationcheck. L 59
EXPERIMENTAL EVALUATION. 61
Experintentalifon envirOnment - = : « s s o 25 & 5 5 & 55 5 55 455 5 %5 5 w3 61
Usecasetests o o o 62
Usage cost. o o o e e 69
Burden on constrained devices Lo 69
LIMITATIONS e e e 73
SECLIRITY ANAIYSIS & & ¢ s 5 5 6 % 5 6 5 5 & 8 8 & 8 5 & 80 8 & 8 5 & 8 5 & & 3 75
Application vulnerabilities 83
OVerview o 90
CONCLUSION & ¢ v 5 5 o % 5 5 5 5 & % 5 % % 8 & % 6§ & % 6§ # %5 2 55§ 6 55 & % § 21
CONCLUSION . . . e e e e et e s e ettt i e e ann 93
REFERENCES . s 2555 9:vnsn9snwsumenmsnnenwsans 94
APPENDIX A - E-CONTROLCHAIN ATTRIBUTE-BASED ACCESS

CONTROLPSEUDOCODE 108
APPENDIX B - E-CONTROLCHAINCODE 112
APPENDIX C - AUDITING TOOLSREPORTS. 119
ANCHAIN.AL 119
BECLIRIEY i & s 5 & 505 & 5 5 & 5 5 & 5 5 6 5 5 & & 8 & 8 5 & 5 5 & 8 5 § 5 5 & & 3 120
CONTRACTGUARD. e e e e 120
SMARTCHECK 121
SLITHER x ¢ # % s o % 5 & 5 5 @ % 5 6 % § & % 6 & % 6§ & $ 5 & 5§ & 55 £ %5 ¢ % § 123
OYENTE e 124
MANTICORE. 125
CONTRACTFUZZER e e e 128
MYTHRIL 126

OCTOPLLS ¢ & & ¢ 6 5 5 & 5 5 @ & 5 & 8 5 & 8 5 & & 5 & 8 5 & 5 5 € 8 8 8 83 @ & 3 126

11

1 INTRODUCTION

The Internet of Things (IoT) is a network of physical devices with embedded technology
to sense and interact with their internal state or the external environment [1]. These devices
are capable of collect, exchange, process and store data. Although a lot is discussed about
the correctness of the predicted numbers of IoT devices for the next years [2], even the most
conservative forecasts are predicting tens of billions of IoT devices and its produced data will
have a potential economic value of USD 11 trillion [3].

The IoT emerged with the objective of providing new “transparent” intelligent services
and commodities to facilitate our daily tasks. Its devices are pervading our cities, public buildings,
roads, airways, factories, retail stores, offices, hospitals, homes and bodies [4]. Furthermore, with
their sensors, communication and information processing capabilities, they affect our interactions
on all applications domains: personal, home, government, utilities, enterprise and industry [5],
and create the so known smart-everything, like smart homes, smart grids, smart cities, and so on.

One example of the possible intelligent services would be a wardrobe that could suggest
combinations of clothes taking into consideration, between other things, the available clothes,
user’s preferences and scheduled activities, weather forecast for the time out, and past feedback
received from sensors and user in similar days. However, note that to provide this service, the
wardrobe requires personal and private information like user’s preferences, agenda, location and
corporal behavior in each activity. Not everyone is willing to grant access to this information if it
can easily fall into the hands of unauthorized people or devices. Therefore, together with the
great features that arise with 10T integrated systems, there are many security and operational
concerns that hinders its broadly adoption by users, governments and industries.

The main IoT adoption concerns are about privacy, technological constraints, social and
economical aspects, confidentiality and integrity, reliability and availability, and usability [5].
All of them have different level of importance depending of the application domain, for example,
an industry could be more concerned about reliability and availability than a mayor of a smart
city. However, although it does not receive all the attention that it deserves [6], the privacy and
confidentiality concerns have a big role in the prevention of 10T broadly adoption.

The access control is one of the most important tools to prevent unauthorized access,
privacy invasion and confidentiality breaching. Therefore, it is directly or indirectly related
to a wide range of the concerns turning around the IoT adoption. In order to grant privacy
and confidentiality in IoT, the access control needs to be capable of defining who, when and
how someone is authorized to use or access a device or its information. As stated before, to
provide automatic services in many environments, the I6T needs to collect, process, generate
and consume sensitive, personal and confidential information. Thus, an improper or fault access
control system could cause a big privacy and economical harm to individuals, governments and
enterprises depending on it.

The IoT concerns are further increased by recently security breaches on IoT devices.
Back in 2014, researches were capable of hacking and disabling a car transmission and breaks [7].
This is one example of the vast collection of improper accesses exposed in [8]. In 2016, security
breaches on access control systems lead to more than 150,000 world wide IoT devices being
compromised and used on Internet attacks [9]. More recently, the VPNFilter malware [10]
infected over 500.000 routers around the world by exploiting known access control vulnerabilities
of these devices. All these successful attacks keeps remembering us how the currently adopted
access control systems are ineftfective. It also proves that, although the access control is an old

12

discussion, it still requires a lot of attention, specially now, that we are entering in the IoT era,
where all the things are planned to be connected and, in some way or another, exposed to the
world.

A complete access control solution involves three components [11]: authentication,
authorization and auditing. The authentication identifies the correctly identity of the requester.
The authorization (also simply known by “access control”) verifies if the requester has the rights
to do some operation on the resource. Finally, the auditing (or accountability) allows the posterior
analysis of the realized activities in the system. All these components have important roles in
securing the system, however, the authorization requires special attention because it is responsible
for enforcing the access rules.

Design a suitable authorization mechanism that is capable of dealing with all the complex
characteristics of the IoT is a challenge task. Some of these characteristics, like the access control
in big networks [12], were already studied in other environments that held them separately.
However, they were never studied all together before the advent of the IoT [5]. Common examples
of such characteristics are the network size, network connections dynamism, heterogeneity of
devices and the data sensitivity.

Most of the researches in the IoT access authorization field employ three traditional and
well known architectures: XACML, OAuth and UMA. However, all these three architectures are
centralized by design and, therefore, fail to provide essential IoT access control requirements, like
scalability, transparency and resilience for the authorization process. Changes in its design are
required to turn them into a suitable solutions for IoT. One of these works [13] tried to reduced
the gap between these architectures, specifically the XACML, and the IoT environment. They
externalized the Policy Decision Point (PDP) to a virtually unlimited resource server. However,
it still does not provide transparency and resilience, that we believe to be essential for the broadly
adoption of the IoT. Therefore, even with a lot of effort to bring a suitable access control to the
IoT [5], there are design barriers in the traditional architectures that prevent them to achieve a
complete success [14].

In an attempt to overcome limitations of traditional access controls, turning their
authorization process in a more decentralized, user-driven and transparent, some works [15, 16,
17,18, 4, 19, 14, 20] employed a disruptive technology in the access control, the Blockchain [21].
It is composed by a set of mechanisms that allows it to work as a decentralized data ledger where,
eventually, all the networks participants end up agreeing on the same records.

In a more specific definition, the Blockchain is a public, decentralized and Byzantine
fault-tolerant ledger, where registers are appended in a chronological order and become more
immutable each time a new register is appended to it [22]. All the Blockchain participants are
free to verify the legitimacy of all published (appended) data, have a copy of the entire database
and publish its own data that, of course, will also be verified by the other participants [23]. Every
participant, or a good part of them, has a copy of the Blockchain, for ensuring no downtime.
Network participants being capable of verifying if the published content is valid through the
agreement and ignoring the not valid content provides no fraud. And each participant being
capable of publishing its own data grants no censorship and no third-party interference. Actually,
these problems could happen, however, there are pretty good incentives that keep all the network
participants honest and, with the majority of them behaving in a honest way, it is extremely
improbable that a small group of them can launch a successful attack.

Seeing all this potential, South Korea is investing more than USD 200 million in the
development of Blockchain-based projects [24]. The supported projects focus on electronic
document distribution, marine logistics, easy real estate, online voting, personal customs
clearance and management of livestock records. Besides these, there are plannings to support

13

also Blockchain as a Service (BaaS) solutions. This effort is to bring more legislative clarity and
transparency.

FairAccess [4, 18] is one example of proposal that applies Blockchain to the access
control. In their work, the Blockchain is used to publish smart contracts that provide valid
access tokens (secrets that grant access to a resource). However, as will be discussed later, their
proposal also have big issues like the support to token-based authorizations only (does not being
compatible with a lot of already adopted IoT access control models), necessity of contact with
the owner of the resource for each new access or renew of expired token, the highly time cost
involved in getting an access permission, or renewing one, and the lack of integration of the
access control with a proper relationship network that has a big importance in a collaborative
and integrated IoT. Our proposal promises to tackle these issues and bring improvements to the
authorization process.

Although the benefits of using the Blockchain are more easily visible, there are also a
few drawbacks. We consider as the worse of them the following problems: information recently
appended can be more easily modified or deleted from Blockchain when compared with the
more old ones; normally, the process of appending an information to the Blockchain requires the
generation of a proof-of-work, which consumes a lot of computing power; furthermore, all the
participants are invited to verify all the published information before trust in it. These last two
items can be a problem if using low processing power hardware or energy supply, however, as we
will see, our solution also brings directions to minimize these effects. Finally, even with these
disadvantages, we believe that the benefits of the Blockchain are bigger than its ill effects for a
wide range of applications and environments.

In this work, we present the ControlChain [19, 14], an authorization architecture that
is heavily based on the Blockchain technology. It uses the Blockchain as a main platform for
storing and synchronizing all the data essential for authorization decision-making and, since its
second version [14], an off-Blockchain side channel to propagate time-sensitive data. Besides
this, it also brings legacy compatibility with a wide variety of access control models already
employed on the IoT and also declare and incorporate relationships in the authorization process.
Finally, we design, implemented, test and analyze a ControlChain architecture implementation,
namely E-ControlChain, that runs over a Blockchain-based network, namely Ethereum.

E-ControlChain was implemented in according to ControlChain specification and
currently has access control mechanisms based on attribute, capabilities and ACL. They were
chosen because, with minor additions, they bring compatibility with a large variety of access
control models and mechanisms already used in the IoT [14], like RBAC [25, 26, 27, 28],
ABAC [29], UCON [30], CapBAC [31, 32, 33, 34], ACL [15, 16, 20] and others [35, 36, 37]. It
can also be extended to support token-based access, working in a similar way to FairAccess [38],
however this feature is not implemented yet. Finally, we expose the theoretical analysis of
ControlChain, a result of tests running E-ControlChain in IoT devices and its security analysis.

1.1 CONTRIBUTIONS

The contributions of this paper is the explanation, discussion and presentation, in a
comprehensive way, of the following topics:

* The ControlChain, an authorization architecture that emerged from IoT access control
requirements.

* The E-ControlChain, a ControlChain implementation model that was design to work
over the Ethereum network.

14

* A performance analysis of the Ethereum and E-ControlChain running on an IoT device.

* A security analysis of the E-ControlChain.

1.2 ORGANIZATION

The remaining of this work is divided as follows:

» Chapter 2 and 3 present the background and related work. In Chapter 2, we show explain
the pillars of the access control, define the adopted nomenclature and discuss about
the IoT access control authorization requirements. besides this, we show the related
works that are based in the traditional architectures XACML, OAuth and UMA. Finally,
we also describe the characteristics and specifications of mainly access control models
that were already in used in IoT. In Chapter 3, we present the Blockchain and its main
characteristics, structures and behaviors. Besides this, we discuss about its application
areas, which also contains the access control. Finally we discuss about the Blockchain
issues and challenges that could affect the access control.

» Chapter 4 describe the ControlChain, an Blockchain-based architecture to provide
a secure and reliable access control authorization in IoT. This chapter describe the
entities, relationships and interaction between them, makes a comparison between it
and other architectures of the literature, discuss some of the concerns about the viability
of Blockchain use in limited resource devices environments. Finally, we also show how
access control models already adopted in IoT could be easily adapted to the ControlChain
architecture, allowing full compatibility with almost all of them;

* Chapter 5 presents the E-ControlChain, a ControlChain implementation. We expose
its main interface and how it can be used to make the access control over the IoT. This
chapter also demonstrate how to use it in different scenarios and the burden caused
through an IoT scenario, represented by a Raspberry Pi device. Finally, we expose the
open challenges and issues of our implemented architecture;

« finally, Chapter 6 presents the final considerations about this work.

15

2 ACCESS CONTROL

One of the basic protections to bring privacy and confidentiality to a system or data is to
control all the access to it, i.e. block all the undesired access attempts. It is even more necessary
in the 10T era, when all we know is expected to be connected to the internet and handling users
private and confidential information. These control systems are required to have mechanisms to
define who, when and how systems and data can be accessed.

Privacy and confidentiality are both focused in protecting the information, however they
have slight different meanings. While ensuring privacy means that the information will not be
shared with anyone else, ensuring confidentiality means that the information will not be disclosed
to unauthorized entities by anyone with access to it. There are discussions about if the access
control in the IoT can grant, besides confidentiality, privacy. If we consider IoT devices as a
network element independent from their owners, the access control only provides confidentiality.
However, if we consider IoT devices as an integral part of their owners, i.e. an extension of
them, the access control to them can provide not only confidentiality but also privacy. From now
on, we consider the last and, thus, an access control can provide privacy and/or confidentiality.
Furthermore, we use the term “privacy” to represent both of them.

A complete solution for securing the access to a system is comprised of three compo-
nents [11]: authentication, authorization and auditing. The authentication identify the
correct identity of the requester. For example, one user could prove his identity signing a random
message with his private key. The authorization verify if the requester has the rights to
perform the required actions on the resource. For example, check if a user has the rights to read
the measurements of a sensor. Finally, the audit ing (also known as accountability) allows
posterior reviews of the performed activities in the system. All these components and their
common positioning in a system are represented in the Figure 2.1. In this work, we sometimes
present directions on how to make authentication and auditing, but our mainly investigation is
about the authorization process. Also, in order to facilitate the understanding of the leading
discussions, we show the adopted nomenclature for the access control in Table 2.1.

Figure 2.1: Access control overview

Control Mechanism

20—~

Requester

+—»| Resource

s c
S 5
e I
=] N
c _
5 o)
o b
S
= =]
5
2 <

‘ Auditing ‘

Source: adapted from [11]

The literature presents a wide range of approaches to allow the authorization process and,
very often, complementary authorization approaches are mistakenly treated as rival approaches [5].
Trying to reduce these comparisons between complementary solutions, Ouaddah et al.[5] created
an OM-AM-based reference model that try to divide the authorization approaches in independent

16

Table 2.1: Adopted nomenclature

Nomenclature Meaning

Requester/Subject Entity trying to access a resource

Action Activity performed by a requester on a resource
Resource/Object Generic device, data or service that can be accessed
Entity Requester, resource or a set of them

Identity Value that uniquely identifies an entity

Context Set of unambiguous attribute-value pair

Context identifier Ordered pair (entity, variable)

Miner/Validator/Sealer Who append blocks to the Blockchain

and interoperable layers (Figure 2.2). Although this division is not always straightforward, they
try to classify the state-of-the-art in four layers, namely Objective, Model, Architecture and
Mechanisms. The objective layer concentrates the investigation of the access control
policy, i.e., the definition of the high level rules. The Model layer defines unambiguous
means for apply the access control policy to a system. The Architecture layer describes
the entities involved in the authorization process, their workflow and interactions to attend models
requirements. The mechanism layer determine the software and hardware used in the
access control policy enforcement. Using this reference model, our mainly related work is on the
architecture layer. However, we also make a gathering of models used in the IoT to find out what
is the components and characteristics that an architecture has to have to be compatible with them.

Figure 2.2: Ouaddah’s reference model

What Objective |—» Access control policies

Model —» Unambiguous representations

Architecture |—» Components and interations

How Mechanism |—» Software and hardware

Source: adapted from [5]

Commonly, the first steps in a unknown environment are almost fully based on knowledge
acquired from past experiences and already known environments. In the IoT access control field,
this was not different. The majority of the architectures employed in the IoT access control until
now are based on architectures that was widely used in other computing scenarios, most of them
centralized ones. We call them the traditional architectures. In this chapter, we
discuss works based only on such architectures. In Chapter 3, we will present approaches based
on Blockchain.

In this chapter, we first discuss about the IoT access control requirements (Section 2.1),
then we present the traditional architectures and the works that apply them in the IoT (Section 2.2).
Finally, in order to be able to design an access control framework that is compatible, by design,
with the maximum number of IoT access control models (see the OM-AM-based reference above),
we also review some of the main access control models employed in the IoT and the works that
makes use of them (Section 2.3).

2.1 10T ACCESS CONTROL REQUIREMENTS

A secure IoT-suitable access control system for IoI’ must be capable of (1) precisely
identify the entities with robust anti-fraud mechanisms in order to prevent non-authorized

17

malicious devices or users of accessing resources, (2) enforce the access policies defined by
resource owners and would be (3) gainful if it attends all the following characteristics [39, 5, 18,
14, 13]: scalability, lightweight, transparency, user-friendly, fault-tolerance, privacy-friendly,
delegation-capability, context-aware, fine-grained, relationships-aware and legacy-compatibility.
Therefore, developing an access control for the IoT is a challenge task mainly because it commonly
has to deal with these characteristics. We will use them to compare the architecture from state of
the art with ours in Chapter 4. Next, we describe why they are important to the IoT.

Scalability. Even the most conservative forecasts are predicting the existence of tens
of billions of 10T devices for the next years [2]. A centralized access control architecture will
easily become a bottleneck and give limits to this fast growing. In this type of scenario the most
recommended is the adoption of decentralized or distributed architectures.

Lightweight. The IoT is known to be composed by a huge diversity of devices, ranging
from powerful processing ones, like smartphones, to powerless ones, like RFID sensors. All these
devices will be protecting some resources and, therefore, checking the existence of authorization
for each access attempting. Therefore, it is important that the architecture provide low cost
operations, mainly, for checking authorization as it will be accomplished by IoT devices in most
of the cases.

Transparency. A considerable part of [oT will be composed of personal and intimate
devices. They will collect and manage user’s private information. The more intimate is the
information, more concerned the owners are about who, when and how the information are being
handled. The authorization process is required to be transparent in order to win the trust of users.

User-friendly. Even in the IoT era, there are still users with almost no knowledge in
computer mechanisms and systems. This means that a confused or complicated authorization
system has a good chance to keep away a lot of potential IoT users or turn them into victims
of unauthorized accesses. So, the access control has to be user-friendly and has to have a low
learning curve for new users.

Fault tolerance. The IoT will be surrounded by unreliable devices and network
connections. Some examples of these instabilities are: 10T devices could run out of power
supply, wireless channels could suffer from interference, and mobile devices can move away
from each other and loose connections. Thus, these and other instabilities generated by the IoT
characteristics should not affect authorization mechanism.

Privacy-friendly. If not all, at least the personal and intimate information has to be
strong protected. So, an access control has to be based on reliable and robust mechanisms, like
cryptography, that enforces access policies and hide the information from undesired accesses.
This is also an important requirement to win the trust of users.

Delegation-capability. Delegation is the forwarding of a given permission from one
entity to another. However, while providing it brings a new set of functionalities, it also could be
dangerous since one single entity with the permission could forward it to any number of entities.
Therefore, we argue that the owner has to be capable of controlling the delegation involving its
resource.

Context-aware. In the IoT, all things are meant to be interconnected and to exchange
information. The exchanged information can help the IoT to make better decisions. For example,
if there is an emergency, security devices could unlock all doors and let anyone to enter the site.
Therefore, it is desirable that the access control can deal with context-aware access rules.

Fine-grained. A lot of works already saw the potential of having an access control
with fine-grained control [40, 13, 41, 42]. As the IoT has a wide variety of information, the fine
adjustments in the access control is very welcome in complex environments that requires it.

18

Relationship-aware. Collaborative, integrated and interconnected system that takes in
consideration relationships are becoming more and more popular. An example of this popularity
is the recently wave of games in the social networks that allows user friends to interact with
it in its game play [43]. Probably a lot of these games would not have such acceptance if its
interaction was only with completely strangers. Therefore, in a similar manner, we also see
a great potential in exploring relationships in the IoT access control. A study [44] with 245
persons revealed a major impact of relationships and context on access control, corroborating
with our understanding. They also showed the consequence of false-positive and false-negative
in authorizations.

Legacy-compatibility. As we will see, there is a wide range of access control models
been proposed and used in the 10T. Each one has its peculiarities and we don’t believe that one
single model is capable of completely satisfying all the different scenarios and environments
requirements. Furthermore, in order to does not require the disable of all the old models, it is
desirable that a new architecture be legacy-compatible and, also, support as many models as
possible.

2.2 TRADITIONAL ARCHITECTURES

The access control architectures compose the second layer (bottom-up orientation) of
the reference model defined by Ouaddah et al. [5]. They describe the entities involved in the
authorization process, their workflow and interactions. We named as “traditional architectures”
all the access control architectures that were created before the 10T era and were employed or
adapted for use in the IoT. There are three main traditional architectures employed in the IoT
access control: XACML [45, 46], OAuth [47] and UMA [48]. Next, we describe the original
architecture and discuss some works that employ or adapted them for the IoT.

2.2.1 XACML

The eXtensible Access Control Markup Language (XACML) is a standard that includes
a declarative fine-grained and attribute-based access control policy language, an architecture
and a processing model to evaluate requests. We present the XACML components and its data
flows in the Figure 2.3. As can be seen, the XACML has many components, however, the Police
Enforcement Point (PEP) and Police Decision Point (PDP) can be considered the main ones. The
PEP is responsible for enforcing the application of the policies. To do so, it intercepts the access
request and consults the PDP about the existence of authorization for the request. The PDP can
base its decision on the policies (provided by the PAP - Police Administration Point) and on
subjects, objects and environment attributes (handled by the context handler). Upon the receipt
of the PDP evaluation result, PEP make the access decision and executes the obligations defined
by the PDP.

Both, [49] and [13], propose to use the XACML in the IoT access control. [49] built an
architecture on top of the java-based OSGi framework. Among other tasks, the OSGi modules
are responsible for the management of the discovered devices and for the access control. For
the access control they adopted a hybrid approach of OSGi User Admin service and XACML.
The OSGi User Admin service manage subject roles and the XACML specify the policies and
enforce them. [13] presents a brief list of authorization framework requirements. In order to
fulfill two of these requirements, specifically the fine-grained and low overhead on the object,
they choose to use the XACML architecture with the PDP externalized to a virtually limitless
back end. In order to a subject get access in their proposal, a subject needs to: (1) get device’s

19

Figure 2.3: XACML architecture

2.Access o e
Access Request PEP 13.0bligations Obligations
> —_—> h
Requester Service
A
(]
gl |2
(] o
2 |8
4.Request o &’_
Notification 49 o
5.Attributes y 9.Resource
Query Context Content
PDP > Resource
__10.Attributes Handler
A ~ A
11.Response o o
Context 52> |5
29 2
[(¢] [se]
Y 7c.Resource
L_>; P Attributes
S PIP -
= 7b.Environment
A Attributes
ow
o
52
s
S<
PAP Subjects Environment

Source: adapted from [46]

meta-data, like object’s trusted authorization server and URI, in a resource discovery: (2) get
an authorization assertion from the object’s trusted authorization server; (3) use the authorized
assertion to access the object. Finally, they also discuss about lightweight protocols that could be
used in their proposal.

2.2.2 OAuth

The Open Authorization (OAuth) is a token-based authorization protocol, commonly
used for admission control. There are two special pieces of information in this protocol: the
authorization grant and the access token. The authorization grant is a credential representing
the owner authorization to access the object and it is used to obtain the access token. An access
token is a credential that can prove the expedition of the authorization to the client. It could be,
for example, an apparently random string that the object being accessed can somehow check its
validity. The Figure 2.4 shows an overview of the architecture and the protocol flow. Initially,
the subject request, to the owner, the authorization grant to access a protected object (1). After
the authorization grant is issued by the owner (2), the subject exchanges it for an access token
through the authorization server (3-4). Finally, the subject access the protected object using the
access token (5-6).

There are four authorization grant types: authorization code, implicit, resource owner
password credentials, and client credentials. In the authorization code type, the client directs the
owner to an authorization server. After the owner authenticates and give the access permission,
it redirects the owner back to the client together with the authorization code, which can be
exchanged by an access token through the authorization server. In the implicit type, the owner

20

Figure 2.4: OAuth architecture

1.Authorization Request _

o = Object

o 2.Authorization Grant Owner

3.Authorization Grant
; | Authorization

Subject i 4.Access Token Server
5.Access Token |

< 6.Protected Object (S):g\?;t—

Source: adapted from [47]

issues the access token directly, i.e., there is no authorization code. In the resource owner
password credentials type, the credentials (for example, user and password) of the owner are used
by the client to obtain an access token. In the client credentials, the credentials of the client are
used for the authorization. This last case occurs when the client is acting in its own behalf, i.e., it
is also the owner, or when it is requesting access to protected objects based on authorizations
previously arranged with the authorization server. The benefits and security risks of each one is
described in [47].

Cirani et al.|50, 51], Varadharajan et al.[6] and Selander et al.[52] are example of works
based on OAuth. Cirani et al. introduces an OAuth-Based architecture namely [6T-OAS[50].
It implements all the back-end OAuth logic and is backward compatible with standard OAuth
clients. They also complement the IoT-OAS with a set of messages to manage ownership and
shared access to objects, allowing even a proactive access authorization[51], i.e. authorizing the
access before the request of authorization. Varadharajan er al. discuss about the IoT security
risks and challenges, and data security requirements and recommendations[6]. In order to avoid
security problems, the authors suggest the usage of selective masking of the data, the adoption of
contextual information and OAuth in the access authorization. Finally, Selander et al. uses CoAP
together with OAuth to build a framework for authentication and authorization in constrained
environments|[52].

223 UMA

The User Managed Access (UMA) is an OAuth-based protocol that unifies, in the
perspective of the object owner, the control point of object access authorizations. As shown
in Figure 2.5, the UMA architecture is composed by five entities: Object Owner (OO), Object
Server (OS), Authentication Server (AS), Client and Requesting Party (RP). The OO provides the
object in the OS, delegates the object protection to authorization server and control the access to
it trough the AS. The RP negotiate with the AS to get access to the object and manage the client
that wants to access the object. The AS protects the object, negotiate access with the requesting
party and authorize clients to have access to the object. All the tasks executed by the AS needs
the consent from the OO. Finally, the Client requests access tokens to AS and uses it to access
the object in the OS.

Cabarkapa[53], Rivera et al.[54] and Tschofenig et al.[55] proposed the use of UMA in
the IoT. Cabarkapa proposes to use an UMA-based architecture for controlling authorizations on
a Social Web of Things (SWoT)[53]. In its work they present the characteristics and structures of

21

Figure 2.5: UMA architecture

2 Object
N\a(‘a Owner
= 3
o
c)
5 X
o
Object Protect [Authorization | Negdotiate MRequesting
Server Server Party
g
5 T
= 3
£ I
e
Ce
85
Client

Source: adapted from [48]

a SWoT, a study of the security protocols and architectures, like XACML, OAuth and UMA in
order to identify the more suitable solution for it. After choosing UMA for their architecture, they
provide a detailed description about all the phases involved in the architecture system interactions.
Rivera et al. applies UMA to provide a unified access control in a heterogeneous Iol environment
composed by IoT low processing power devices (dummy devices) and intelligent agents (powerful
devices)[54]. Finally, Tschofenig et al. shows how OAuth can be integrated in the UMA and also
presents a mapping of their architecture for several use cases[55].

2.2.4 Traditional architectures flaws

The traditional architectures have been employed in a lot of works. However, all of
them have big flaws when taking into consideration the IoT access control requirements. For
example, all of them depend on centralized architecture components. This dependency makes the
traditional architectures-based proposals susceptible to a wide range of limitations, like having
the single point of failure problem, applying limits the growth of the IoT, requiring third-party
trust, does not giving support to off-line mode, generally involving less privacy and others.
This limitations goes against a lot of IoT systems requirements, like availability, scalability,
transparency and so on. Finally, Table 2.2 shows the IoT requirements achieved by each one
of the traditional architectures (more details in Section 4.5.1). Furthermore, in Table 2.3, we
compare the possible positive aspects of both approaches, centralized and decentralized.

Although the architectures show how the components will interact to enforce the policies,
it says practically nothing about how the access policies rules are structured. The definition of
this structure is role of the access control models (See Figure 2.2). However, architecture has to
give support to them in order to be compatible with them. Thus, we made a gathering of the
main access control models employed in the [oT. We present them in Section 2.3.

2.3 ACCESS CONTROL MODELS

The access control models compose the third layer (bottom-up orientation) of the
reference model defined by Ouaddah et al. [5] summarized in Figure 2.2. They define unambiguous

22

Table 2.2: 10T requirements achieved by traditional architectures

Requirement XACML OAUTH UMA
Scalability no no no
Lightweight yes* yes yes
Transparency no no no
User-friendly no no no
Fault tolerance no no no
Privacy-friendly yes yes yes
Delegation capability yes yes** yes
Context-aware yes no no
Fine grained yes no no
Relationship-aware yesHHE no no
Legacy-compatibility yes no no

* IF only the PEP is on the object server
** It allows applications to execute actions in behalf of the user
*#% Through the Policy Information Point (PIP) and context

Table 2.3: Advantages of centralized and decentralized access control

Centralized Decentralized
Easy maintaining and managing No existence of single point of failure
Less time to discover and fix bugs Bugs rarely affects all devices
Less fragmentation of devices and systems Allows off-line mode
Easier reuse of traditional mechanisms Possibility of overcoming centralized limitations
Less complex mechanisms No need of dedicated authorization servers and controllers

means for apply the access control policy to a system and are implanted over architectures. This
section reviews some of the most common access control models used in the [oT and works that
apply them in the IoT.

RBAC. The Role-Based Access Control (RBAC) [56] is a model composed by subjects,
roles and objects. The subjects become members of groups, namely roles, and the roles receive
authorizations to perform actions over the objects. Therefore, the only way to a subject access an
object is if it is member of a role that has the proper authorization. Another feature of the RBAC
is the multi-role relationship. It allows a role to become member of others roles and, therefore,
inherit all the authorization from those roles.

Figure 2.6 shows an example of the RBAC structure. In this example, “Subject 17 is a
member of “Role 17 and, therefore, it can perform “action_a” over “Object 17 and “action_b”
over “Object 27, “User 27 and “User 3” are member of “Role 2 and, therefore, they can perform
“action_c” over “Object 3”. Furthermore, as the “Role 2" is also a member of the “Role 17, all the
allowed actions for members of the “Role 17 are also allowed for the members of the “Role 27,

OrBAC. The Organization-Based Access Control (OrBAC) [57] is very similar to the
RBAC, i.e., roles are used to group subjects with the same authorizations. However, as shown in
Figure 2.7, there are three main difterences: (1) OrBAC not only abstracts the subjects using
roles, but also makes abstraction of actions and objects, namely, activity and view, respectively;
(2) all these abstractions are organizations dependent, i.e., each organization define its own vision
of the world through roles, activities and views; Finally, (3) OrBAC also use the context for the
authorization process.

ABAC. The Attribute-Based Access Control (ABAC) [59] relies upon policies evaluation
of subject and object attributes, and also has support to evaluate environment conditions (context).
The policies and attributes are define by an authority and can be used to enforce both Discretionary
Access Control (DAC) and Mandatory Access Control (MAC). While DAC controls the access

23

Figure 2.6: RBAC model

Subject 1 member_of= action_a » Object 1

sclg/.on

Role 1

Object 2

member of

Subjeth%*
ti
oot Role N e
e
SubJect3

Source: adapted from [56]

Figure 2.7: OrBAC model

Authorlzatlon

Activity

Organization

Subject Action Object

Role

Source: adapted from [58]

based on the subject identity or groups that it participates identities, the MAC test the attributes
of both, subject and object, against the rules to decide if the access can be granted. Figure 2.8
shows an example of ABAC structure.

Figure 2.8: ABAC model

Authority
v ¥ Y
. N
. Subject Object
Policies } [Attributes [Attributes

/
A

UCON. The Usage CONtrol (UCON) [60] model is composed by subjects, objects,
subjects and objects attributes, actions (namely rights), rules (namely authorizations) contexts
(namely conditions) and obligations. As can be seen in Figure 2.9, it is very similar to the ABAC.
The only exception is the obligations. The obligations are predicates that verifies mandatory
requirements that have to be performed by the subject before and during the access. Also, by
design, the UCON requires the immediately interruption of an access if the authorizations,
obligations and conditions are not satisfied at any time. So, devices need to keep monitoring and
validating the access for each change made in rights, authorizations, obligations and conditions.

CapBAC. The Capability-Based Access Control (CapBAC) [61] is based on the ordered
pair (0,a), where o is the identification of an object and a is the actions that the subject in

24

Figure 2.9: UCON model

Subject Object

Attributes Usage
Decision

Obligations

possession of the capability have over the object. Originally, anyone that posses this pair can
perform the described actions and, therefore, it is completely transferable. As we will discuss in
Chapter 3, newer CapBAC commonly append the subject identity to the pair in order to avoid
unwanted access authorization delegation.

Attributes

2.4 CONCLUSION

In this chapter, we presented the fundamentals of an access control, showing the
components, its functions and the how they complement it other. After, we highlighted the
requirements of an [oT access control, trying to identify the main desired characteristics for an
actual access control system. Then, we discussed the traditional access control architectures
and, finally, the most common IoT access control models in order to help with future decisions,
specially, in the compatibility of our proposition as we will show in the Chapter 4.

During the requirements gathering, we miss two requirements when searching the
literature: relationship-aware and legacy-compatible. In our opinion, they are important
requirements that worth to be present in IoT solutions. The first one, relationship-aware, allows
still more fine-grained and contextual information to be used in the authorization rules. The
second one, legacy-compatible, gives the architecture more support for the already existent access
control models, expanding the actuation area and easing its adoption.

Traditional access control architectures proved to have a great value in the access control.
However, in our analysis, none of them provide a suitable access control for the identified
requirements of the IoT. They fail to provide scalability, require third-party trust, does not give
support to off-line working mode and, depending on how it is structured and implemented, little
or no transparency. Therefore, it is evident that reformulated architectures are necessary. In
Chapter 3, we will discuss about a revolutionary and emerging technology that have been used
to build many interesting solutions for many areas. besides this, we also believe that it can key
to revolutionize access control solutions and will be part of the wave in the replacement of the
traditional ones.

25

3 BLOCKCHAIN

Until recently, almost all financial transactions were intermediated and centralized by
third party organizations. As discussed in Chapter 2, this dependency brings several drawbacks,
like the requirement of trust in the central entity and the lack of transparency in the operations. In
a pursue for a secure and decentralized transaction environment, the Bitcoin cryptocurrency [21]
was created. Roughly, the Bitcoin is composed by two things: (1) the application protocol and
the (2) Blockchain. The application protocol defines the transaction rules (what information are
required and when a transaction can be made) and the Blockchain is a multi-field construction
composed by a wide variety of technologies, like cryptography, mathematics, economic model,
peer-to-peer networks and algorithms [62] that grants security to transactions.

Since its creation, the Blockchain popularity has been getting more and more to
unthinkable levels. Although a good part of this popularity is because of its successful adoption
in the cryptocurrencies, it also has proved its capability to revolutionize many other areas like
access control, IoT, smart contracts, smart property, digital content distribution, botnet, P2P
broadcast protocols and so on [4, 63]. The next sections present its application in some of these
areas.

This chapter is divided as follows. Section 3.1 discuss some of the areas where the
Blockchain was successfully employed. Section 3.2 presents the main structures and tools
existent inside the Blockchain. Section 3.4 discuss the application of the Blockchain in the access
control. Finally, Section 3.5 reveals the issues and challenges of Blockchain-based access control
approaches.

3.1 APPLICATION AREAS

With its origin in the cryptocurrencies, more specifically in the Bitcoin, the Blockchain
is the main enabler technology of several of them [23, 64, 65, 66, 67]. besides the already
cited researches, there are a plenty of other areas [68] where the Blockchain is being successful
employed, like cryptocurrencies [21], transportation systems [69], management of medical
records [15], decentralization of the Web [70], predictions [71], applications platform [23],
configuration [72], communication [73], collaborative resource usage [74] and information
sharing [75]. Some of this works are presented in this section and others are presented in
Section 3.4.

The authors of [69] argument that without the proper security and trust in transportation
systems, the high-level intelligence of it would be fake and fragile. In order to bring these
characteristics and also decentralization to theses systems, they explore the Blockchain concept,
creating the Blockchain-Based Intelligent Transportation System (B2ITS). The BZITS follows a
model of seven layers, ranging from physical layer (devices) until the application layer (potential
use cases scenarios). The intermediate layers are the data, network, consensus, incentive and
contract layer: the data layer defines the blocks; the network layer brings the propagation methods
of the data; the consensus layer holds the algorithms used to achieve consensus in a decentralized
system; the incentive layer defines the economical rewards for the network collaborators behave
honestly; and, finally, the contract layer packages many scripts, algorithms and smart contracts,
i.e., elements that can respond automatically to stimulus (new data entries) in the network. They
also give a brief description of how the B2ITS can be a first step to a Parallel transportation

26

Management Systems (PtMS), a system that allows the interaction of the real-world with its
corresponding artificial or virtual counterparts.

Ethereum [23] is a Blockchain-based application platform for distributed computation.
It has support to smart contracts and provides a decentralized turing-complete virtual machine,
namely Ethereum Virtual Machine (EVM). The use of smart contracts is indicated for scenarios
like market trades, register of debts or promises and similar cases. It allows developers to construct
and run decentralized applications over worldwide spread nodes. It has also a cryptocurrency,
namely Ether, that can be used to pay the collaborators for their processing resources. Currently,
the Ethereum serves as a foundation to countless applications. Section 3.3 shows more detail
about it.

The Golem project [70] aims to decentralize the Web and computing, creating a
worldwide supercomputer. This supercomputer is composed by users computers connected to the
public network and that accepted to share their computational power. The reward method uses
the Ethereum Platform and has an interesting and dangerous payment system. Instead of given a
small amount of payment for each user that would disappear in the fees charged by the mining
nodes (see Section 3.2.2), a lottery scheme is placed to choose one of the collaborators to receive
all the payment. This could be seen as unfair, however everyone will get payed eventually. It is
worth noting that, while it is possible to gain with reduced fees for mining and therefore reduce
the overall computation cost, it is also a dangerous approach because the entire system could
fail if someone find a way to cheat the lottery. Furthermore, Golem also offers a peer-to-peer
network, a reputation system, trading systems, and task computation.

As alot of systems, a centralized prediction market can also easily suffer from mistakes
and manipulations. So, the Augur project [71] was created as a decentralized prediction market
platform based on Ethereum that reward users for correctly predicting future events. Participants
of this platforms can buy and sell shares about an event. The prices of this shares are based on the
probability of that event occurs. Everyone holding a share that correct predicted events, receives
a rewarding. Its forecast tool is based on the principle of the wisdom of the crowd, which states
that the opinion of large groups of peoples is usually more accurate than the one from a single
expert.

Hubh er al. uses smart contracts in the Ethereum platform to manage and configure IoT
devices[72]. To demonstrate their solution, they constructed a test environment composed by a
smartphone and three Raspberry Pi devices. The smart phone is responsible for the configuration
of energy save mode policies through the contract. besides this, one Raspberry Pi device behaves
like a power meter and is responsible to publish, through the contract, the amount of consumed
energy. The other two Raspberry Pi represent home devices (an air conditioner and a light bulb)
and continue monitoring the contract for policy changes or power meter updates. When the
consumption of energy extrapolates the value defined in the policies, they enter in a save mode
energy.

Biswas et al. proposes a security frameworks that allow entities from a smart city to
communicate without compromising the privacy and security[73]. Its framework is divided in
four layers. In the first layer (physical layer) are the sensors and actuators. The second layer
(communication layer) includes different network link layer protocols and mechanisms to secure
the transmitted data, like cryptographic algorithms. The third layer (database Layer) holds the
distributed ledgers, public or private. Finally, the applications are in the last layer (interface
layer).

Kianmajd er al. applies the Blockchain in a collaborative resource usage system. For his
use case it used a virtual smart electric micro-grid[74]. It is composed of four phases: bidding,

27

allocation, recording and verification. Unfortunately, this work has so many gaps that it turns out
impossible to us give more details about it.

Finally, the list of application domains that can benefit from Blockchain seems to be
infinity, and it covers many other difterent areas like [oT, smart contracts, smart property, digital
content distribution, botnet and P2P broadcast protocols [63]. Furthermore, even banks are
starting to use it for information sharing [75].

As we saw in this section, although the Blockchain was created for use with crypto-
currency, its characteristics turned out to be useful in a wide range of areas. In the Section 3.4
we discuss one of this areas that we did not deeply discussed yet, the Blockchain-based access
control. However, before discussing it, we explain the main mechanisms and assumption of the
Blockchain’s mode of operation in Section 3.2.

3.2 BLOCKCHAIN’S MODE OF OPERATION

The technologies employed in the Blockchain are arranged in a such way that they
create a public, decentralized, Byzantine fault-tolerant, immutable, chronological-order registers
database that stores all the transactions ever made in the platform. The public characteristic
guarantees that everyone participating in the Blockchain has access to the ledger and can verify
its correctness. The decentralized and byzantine fault-tolerant statement guarantees that the
system keeps running correctly even under a failure or malicious behavior of a considerable part
of the network. The immutable characteristics guarantees that once a register is included in the
ledger it cannot be changed or removed in a normal network behavior (Section 3.5.1 discuss
about some special cases in which changes or removals can occur). The chronological-order
means that all registers have a fixed sequence (not necessarily the same of its generation).

In a more technical view, the Blockchain is an ordered sequence of blocks. These
blocks are composed by a predefined amount of information and by a fundamental field that
holds a link to the immediately prior block in the sequence, thus, creating a chain of blocks (see
Figure 3.1). The information contained in these blocks is flexible and only depends on the system
requirements where the Blockchain is being used. Furthermore, the ordered list of data records
obtained from the sequence of blocks is commonly called ledger [63].

Figure 3.1: Blockchain main structure

GBelne?(is PrBeIVioléJs PrBeIVioléJs PrBeIVioléJs
oc oc oc oc
Genesis f Hash _f Hash f Hash f Hash
Block
Data Data Data Data

In order to grant the security of the applications running over the Blockchain, some
systematic safety instructions have to be followed by all participants in the network. If one of
them choose not to follow these instructions, it will only be ignored by the rest of the network,
harming only the participant that chose not to follow. Therefore all participants have the incentive
to continuously follow the safety instructions and collaborate with the network.

We can divide the Blockchain usage in four phases: data creation, block construction,
block appending and consensus reach. These phases are discussed, respectively, in Sections
3.2.1,3.2.2,3.2.3 and 3.2.4. After, we discuss the concept of wallets in Section 3.2.5.

28

3.2.1 Data creation

The data creation phase is the process of creating a message for publication in the
Blockchain. It needs to be built according to the application protocol in order to be accepted by
the network. Therefore, the rules for its creation are exclusively made by agreements between the
participants of the application running over the Blockchain network. Normally, it is required
signatures and data that could be validated.

In Bitcoin, every created message needs to be a transaction. It is composed of an input
and an output. The inputs of a transaction are Unspent Transaction Output (UTXO), i.e. outputs
from prior blocks that weren’t used yet. The outputs of a transaction are composed by the favored
identifications, i.e. the identifications of who will receive the payment, and the amount that each
favored will receive. As soon as these transactions become part of the Ledger, the favored ones
can use they as inputs for their own transactions. besides the Bitcoin particularities, many of its
safety instructions are very common in many other Blockchain-based application. Examples are
the use of hashes and signatures [21, 23, 4, 14].

Signatures are used to avoid repudiations. In normal situations, it is unfeasible for an
entity to sign a message as another one. To sign messages, an entity needs to generate a pair
of cryptographic keys (sk,vk) using cryptographic schemes, like the RSA [76] or the Digital
Signature Standard (DSS) [77]. sk and vk keys are known as signing key (or private key) and
verification key (or public key), respectively.

The algorithm to generate a signature M;, for the message M., requires sk and M as
input. In the other hand, the algorithm to validate a signature requires vk, M and M;, as input.
Therefore, while the holder needs to keep sk in secret, the vk can be public to anyone. One
important still holding premise of public key schemes is the impossibility to infer the sk having
access only to vk. However, because of their mathematical relationship, it is possible to verify
if a signature of a message was generated a signing key using only the verification key, the
message and the signature. Furthermore, a signature produced by sk over the messages M and
M, will be equal if and only if M == M,. Note also that, although the vk can be thought as
an identity, it does not necessarily need to be bound to a real identity and, in this case, provide
pseudo-anonymity.

One problem with the public key signature algorithms, like the ones adopted in RSA
and DSS, is their intense resource usage to sign large messages. Therefore, cryptographic hash
functions [78], known also only by hash functions, are usually adopted to compress the message
before signing. They are a one way function that receives a message of any length as input and
always condenses it into an output, known as digest, of an arbitrary length. The digest length is
dependent of the used algorithm. Of course, collisions, i.e. equal outputs for different inputs, can
occur because it converts any message into a fixed-length digest reducing the representation space.
Two important characteristics of hash functions to ensure its security even with the reduced
representation space are presented in Section 3.2.2. The signing message and its validation
process is summarized in the Figure 3.2.

Therefore, the complete creation data process commonly involves the generation of the
message, the extraction of the digest and the signing of it. After all these steps the message
has to be broadcasted to the network and reach the higher number of participants as possible.
Section 3.2.2 presents what happens when it is received by other participants.

3.2.2 Blocks construction and appending

The ledger data is organized in blocks and these blocks are ordered in the Blockchain.
The ordering is achieved by always creating new blocks with a reference to its predecessor block

Figure 3.2: Signature process flow

Signature Generation

Message

Cryptographic
Hash
Function

Message Digest

Signature

Verification

Message

Cryptographic
Hash
Function

Message Digest

29

. Signature | Public Key—»| Signature Valid or
Private Key—»| Generation , . Verification > Invalid
Function [—>ignature— > Functions

Source: adapted from [77]

in the Blockchain, thus, making a chain of blocks. Each block contain part of the valid messages
received from the data creation phase. The creation process of new blocks, known as mining,
is made by special workers, namely miners or, depending on the type of “mining”, validators
or sealers. Although any participant of the network can be a miner/validators/sealers, there are
Blockchain network that has fixed ones (working through trust more than computing power).
The first and most common mining type is the proof-of-work. Its process consists of finding a
nonce (a number) that causes the hash of a block to be below a predefined value. When someone
achieves this, the block can be considered mined. After its mining, each network participant
receives a copy of it from other peers, verify its data and, if it is correct, append it to their local
Blockchain.

As stated before, the data produced in the message construction phase is broadcasted
to all network participants. Thus, eventually, all miners will have access to it. Each one has
to verify the correctness of the data and its structure, and if the messages is in according to
with the application protocol, for example, checking if the user has enough balance to do a
transaction. These steps are required to protect the sanity of the Blockchain information and
avoid waste processing and time with invalid data. A mined block will be ignored by the network
if it contains invalid information. Therefore, there are pretty incentive to everyone check the
produced information.

In Bitcoin, checking the transactions can be divided in three main steps. First, make
sure that the inputs are UTXO (unspent outputs) and that its amount is not less than the output
amount. Second, verify if the identity trying to make the transactions are the really owner of
the inputs checking signature challenges. Finally, check the integrity and authenticity of the
transactions also using cryptographic signature checking techniques. Note that these steps aren’t
required to be executed in the presented order.

Blocks ready to be mined are composed by valid messages and a reference to its
predecessor (last known mined block). This reference is, commonly a hash of the predecessor
block. In this stage, the Bitcoin miners starts the mining process, i.e. pursue a nonce that creates a
valid proof-of-work. This process is a way to establish an agreement of the order of the messages
(or transaction, in the Bitcoin network) in the ledger. As this nonce is hard to find, this process
reduces disputes [79], however, they still occur (see Section 3.2.4). One problem with this mining
methodology is its serious computation processing spending to accomplish the complex puzzle
solving.

30

Because of proof-of-work complexity, a wide variety of other block ordering agreement
methodologies were proposed after the arising of Bitcoin. These methodologies range from simple
voting process to more complex tasks like proof-of-stake, proof-of-authority, proof-of-activity
and proof-of-publication [80]. Some of them, like proof-of-stake and the proof-of-authority, are
quite popular. In this methodologies, the “miners”, known as validators or sealers (respectively),
are selected by the network, reducing drastically the competition, if not ending with it. This
makes the mining process much more cheap, however, commonly, requires trust in some of the
participants.

When the proof-of-work is chosen as the mechanism for a Blockchain, three principles
are fundamental for the used hash function: uniformity, avalanche effect and no result insight. The
uniformity determines that every output are evenly possible for a random input. The avalanche
effect ensures that a minimal change in the input causes the output to be completely different.
The no result result insight determines that should be no clues of the hash output before its
computation finishes. These principles hinders hinder and frustrate all the guesses on how the
hash will behave based on the input. For example, the SHA-256 hash of “foobar” is
c3ab8f£f13720e8ad9047dd39466b3c8974e592¢c2£a383d4a3960714caef0c4f2
and the SHA-256 hash of “fooba.” is
e3104c068edfbfco020db9891e74278989f46fa85a31211e£f6441262c£7019f6.
Although the difference between the input strings is the substitution of a “r” for a “.”, their
resulting hashes are very different.

Because a lot of processing power is spent in the process, proof-of-work miners need to
be rewarded to continue the process of mining. The reward is dependent of the application. For
example, in Bitcoin, it is acquired from two sources. The first source is from each mined block.
The miner responsible for a mined block can have, in the block, a special transaction that grants
it a predefined amount of Bitcoins. The second source is payments from users. They originate
from tips, i.e. extra payments, for mining the transaction and are calculated by subtracting the
transactions outputs amount from its inputs ones. Therefore, transactions with a higher tip has
also a higher chance to be mined in short time period.

After a block is mined, this block is broadcasted to the network participants and the
Block appending phase described in Section 3.2.3 starts.

3.2.3 Block appending

When a new mined block is received, the participant has to verify if all the messages in
the block are in according to the application protocol. besides this, it also has to check if the
block follow the rules defined by the Blockchain network. For example, in the proof of work, it
need to check if the proof defined in the block is valid and if the last mined block is correctly
referenced. If the block does not pass on any of these validations, the participants reject the
block. Otherwise, they append it to their local Blockchain.

If the participant is a miner, it has to adjust some aspects of its current mining block. It
needs to update the reference of the last mined block and, eventually, remove or replace mined
messages. Then, the mining process has to start over.

Eventually, the Blockchain also can fork and give origin to two or more branches,
forming a tree-like structure instead of being linear. It occurs when two or more miners solve the
puzzles independently of each other and broadcast their findings to the network. This scenario is
discussed in the Section 3.2.4.

31

3.2.4 Consensus establishment

If the new received mined block, instead of pointing to the last known block, points to a
prior block, a new branch arose (see Figure 3.3). This can happen by uncountable reasons, like
delay of propagation, bipartition of the network because of link problems or malicious participants,
or even the mining at same time. If the Blockchain application does not support branches it
also is required to implement deterministic consensus algorithms to deal with synchronization
problems and resolve disputes.

Some platform does not support multiple branches because it would be complex to
control the branches or it could bring inconsistencies to the stored data. For example, in Bitcoin,
the formation of a second branch can lead to double spending, i.e. a same UTXO could be
used more than once as input to transactions. Bitcoin uses a simple and interesting consensus
algorithm to resolve these disputes. The branch with the highest amount of effort spent in it is
chosen as the master one, i.e. the correctly branch. The amount of effort is measured by the
quantity of mined blocks that it possesses. So, the more processing power employed in the branch
construction, the more likely it will be the main branch. If the participants remain honest, the
odds of having two branches growing equally indefinitely reduces at each new level achieved.
Thus, in some point, it will reach a consensus. From this perspective, no one has incentives to
mine blocks to smaller branches because they are more likely to be ignored in the future.

Figure 3.3: Blockchain main structure with branches

Genesis Previous Previous Previous
Genesis / ﬁgscr'\(f ﬁgscr'\(ﬁgscr'\(f ﬁgscr'\(
Block Data Data Data Data
Ploae” Ploae” PEock”
Hash f Hash / Hash
Data Data Data

As can be noted, the main security foundation of this type of consensus establishment
is the processing power. Therefore, it requires that more than 50% of all network processing
power behaves in a honest way. Otherwise, the network could become unreliable, may remove
past transactions by increasing a smaller branch further than the main one or choosing what
transactions will be published. Finally, in the consensus establishment, deterministic mechanisms
are used to resolve any dispute like bifurcation of the Blockchain.

3.2.5 Wallet concept

All the Blockchain assets has to be registered in its ledger, i.e. are in the knowledge
of the network. Public keys are used to manage them, for example, to transfer values from one
account to another. The wallet concept is an abstraction used to represent all the objects that are
manageable by someone’s public keys and, more than that, the wallet is a software or hardware
that keeps track of all possession from a user and helps it manage it. A complete guide of wallets
on Ethereum (see Section 3.3) is presented in [81].

In this section, we explored some of the main details of the Blockchain structure,
protocols and mechanisms. Next, in Section 3.3, we present the Ethereum, a successtul
Blockchain-based platform.

32

3.3 ETHEREUM

The Ethereum [82] is an open-source and public Blockchain network that provides
Turing complete distributed computing through smart contracts. Therefore, Ethereum smart
contracts supports branching and looping statements, and also state variables. Thus, they can be
used to solve any problem that can be solved by computers.

Interactions in the Ethereum network are done using identifiers called addresses. Each
user and contract has its own address. User addresses are derived from their public key. Contract
addresses are computed using its creator address and a nonce, specifically, the transactions
number of its creator. Both cases uses, as addresses, the last 20B of the result of the keccak-256
(SHA3-256) over the public key (for users addresses) or the creator address and the nonce (for
contracts). Although address collision is possible, it is extremely improbable as there are 2!
different possibilities of addresses that can be generated with this methodology. Nowadays, there
are already more than 40 million distinct addresses on the network and this number is trending
up [33].

Compiled and published contracts are called “Decentralized Applications” (or DApps).
Contract publications or interactions are charged in a unit called Gas. This unit is a measurement
of the effort of doing the user request action. Each low-level operation has its own fixed Gas cost
and the amount used in an action is the sum of the expended gas in each operation. The price of
Gas (called GasPrice) fluctuates over time and is given in Ethers (the Ethereum cryptocurrency).
There are already more than 1000 DApps launched since 2017 and some of these contract have
more than 1000 daily active users [84], i.e. users that interact with them daily.

3.4 BLOCKCHAIN-BASED ACCESS CONTROL

The work done in [85] mentions the benefits that could be achieved in IoT with the
use of Blockchain through use cases examples. The presented use cases was the upgrading of
firmware, creation of marketplace of services and energy, sharing of resources and services and
supply chain. Although it does not mention the access control, there are other works, like [5],
[18] and [4], that already saw its potential in this area too.

Although the division of access control approaches in different layers is not always
straightforward, there were already efforts trying to standardize this classification based on the
OM-AM reference model [5] (See Chapter 2). Next, we choose to present only works that are
somehow related to the architecture layer because our work is more related to this layer.

Maybe, the most similar work to our proposal is the FairAccess [18, 4, 38]. It is defined
as an IoT access control framework based on smart contracts, Blockchain and token-based access.
The Blockchain is used as a database-like mechanism to store all the authorization transactions
and smart contracts are used to trade fulfillment of access control policies for access tokens using
the Blockchain. The framework specifies two types of authorization transactions: GrantAccess
and GetAccess.

The resource owner grants the requester permission to access their devices through
the GrantAcess transaction. This transaction has an access token and a locking script (a smart
contract). The access token is delivered to the requester only after it is capable of proof the
fulfillment of all access policy conditions, specified in the locking script. So, the mainly
components of a GrantAccess transactions are the addresses of the resource and the requester,
the locking script, and the token (encrypted with the public key of the requester). The requester
proofs the fulfillment of the locking script requirements using the GetAccess transaction. This
transaction enables the delivery of the token to the requester. Instead of generating an GetAccess

33

transaction, a requester can delegate the access to another requester through a GrantAccess
transaction. This delegation transaction contains the original GrantAccess, its unlocking script,
the new locking script and the new requester. Furthermore, resource owners and requesters have
a wallet that helps them in the authorization process and also allows the managing of devices.
The Figure 3.4 shows the main interactions between the components of their framework.

Figure 3.4: FairAccess overview

(2a) Access Request

| |
(3) GrantAccess . E==) (4) GetAccess :
----- ——>(Blockchain |- i
v -
{1) Manage ' (2b) monitoringll—IEJI :
|
|

Req.

(5) Access

Source: adapted from [4]

Except for the access grant request (step 2a) and the proper resource access (step 5),
all the interactions are intermediated by wallets. Through its wallet, the owner can register and
manages its owned devices (step 1), and generate GrantAccess transactions (step 3). In the mean
time, the requester can use the help of its wallet to keep monitoring the Blockchain in order to
find new GrantAccess that it is interested to (step 2b). Upon the receiving of an GrantAccess, the
requester generates the unlocking script, a proof-of-fulfillment of all requirements established in
GrantAcess, and use it in one of the two possible actions: the generation of a new GrantAccess
where it delegates the authorization to another requester (not represented in Figure 3.4), or
generates a GetAccess transaction (4) in order to receive the access token that allows it to use the
resource.

Although, both, [18] and [4], are presenting the same framework, there are small
differences on these works. For example, the grant access revoking/updating process occurs with
a new grant access in [18], while [4] only mention revocation and through a token expiration
time. Therefore, the first uses the Blockchain to revoke and update the authorization policies and
the second uses a predefined expiration time inserted in the token. Furthermore, [4] also does not
mention how a delegation of an access token can be revoked.

Perhaps, the biggest flaw of the FairAccess is imagining that the access token will be
kept away from requester until it proves that it has fulfilled all the access conditions. As the token
is encrypted with the public key of the requester, the only requirement to decrypt it is the private
key of the requester. Therefore, this system requires full confidence in the requester as it can
behave in a dishonest way and could reveal the token before fulfilling the access conditions. In
our opinion, this could be worse than the centralization trust problem, since it requires trusting
on several devices, systems and users. A possible simple solution to this problem is using a
mechanism that makes the token valid only when the policies were fulfilled.

The advantages of our solution (presented in Chapter 4) over theirs are fivefold. First,
although [4] mentions that its framework supports any access control model, they did give

34

almost none or no directions on how to integrate other IoT models in their framework, except for
token-based access. Second, using the token-based access, the subject needs to contact the owner
asking him to create a new locking script and token each time the token expires for each device
and requester. Third, it requires at least two blocks to be mined to the Blockchain for a new token
be usable. This means that the solution is costly and could take a lot of time to grant the access.
Fourth, their framework does not specify the usage of relationships information in the process of
granting access to a subject. The only relationship information that could be inferred is: given
two identities (public keys) it is possible to know if one is the parent of the other in the tree of
generated keys. Our proposal specify an scheme that allow each identity to be linked with any
other identity or groups of identities, allowing even the provision of attributes and characteristics
to this links. Fifth, each single entity is independent and don’t need to trust anyone other in our
framework. Furthermore, nothing prevent smart contracts and their token-based approach to be
also used within ours proposal, as specified by them.

Similar to FairAccess, the IoT'Chain [86] also uses a solution based on tokens, however,
instead of using the token gathered from the Blockchain to access the resource information, it
uses it to get decryption keys from key servers. In its turn, they can be used in the decryption
of downloaded data from proxy server or resources servers. Also, each owner publish a smart
contract that will be used for the control of his or her devices. Our proposal only requires a single
contract that will be used by all owners, users and devices. Finally, its access control is very
coarse grained as they do not take any contexts into consideration in authorization decisions and
only accepts one token by client address.

Another framework for IoT access control using Blockchain is presented in [87]. It is
composed of three main contracts types: Register Contract (RC), Access Control Contract (ACC)
and Judge Contract (JC). The RC mantain a lookup table used to identify the correctly ACC
based on the subject and object. The ACC define the access policies through a table policy that
keeps the columns “resource”, “action”, “permission” and “ToLLR” (Time of the Last Request).
Under an authorization validation, it also query the JC to verify subect’s past misbehaviors and/or
penalty decisions. The JC implements a misbehavior-judging method and determines a penalty
for the requester when a misbehavior report is received from the ACC. Each ACC has a table
policy with the fields “resource”, “action”, “permission” and “ToLR” (Time of the Last Request)
and only support a single tuple (subject, object). Being so, a new ACC has to be created for
each new par. Therefore, depending on the use case and the network, this design choice can be
laborious and costly to maintain than a pure ACL or capability approach. On the contrary, we
propose that all users use a single contract and dynamically define access rules through it.

The architecture, i.e. the components and its interactions, presented in [88] is similar to
E-ControlChain when operating in gateway mode (see Chapter 5). However, although it is not
clear, their smart contract seems to only allow the registering of rules similar to those in [87],
i.e. alimited ACL-like rules. Furthermore, their access control does not take into consideration
contexts. Therefore, in our opinion, this choice reduces the usability of it and harms the user
experience.

The authors of [89] proposes a ledger-based privacy-aware access control system. They
use the IOTA [90] that in its turn use Tangle, a Directed Acyclic Graph (DAG) [91]-based
distributed ledger. To achieve a privacy environment, all the rules are encrypted and only the
resource owner (who created the rule) and its chosen policy decision point (PDP) knows the key.
However, with this choice the PDP could became a single point of failure. Furthermore, this may
lead to the possibility of repudiation, because the key needs to be disclosed to prove the contrary
and not everyone will be willing. So, they trade resilience and transparency for privacy.

35

A capability-based access control developed for Hyperledger Sawtooth [92], a modular
platform for distributed ledger, is presented in [93]. Their solution comprise the issuance,
revocation, delegation and use of tokens. Furthermore, they used docker and made their code
public through GitHub [94].

The authors of [95], [96] and [97] highlight the benefits of joining Blockchain and IoT.
In addition, [95] and [97] discuss the challenges of [oT networks and its integration with the
Blockchain. [97] also constructed a systematic survey, where they categorized a wide range of
works in application domains, usage domains and development level. [96] discuss the benefits
of Blockchain adoption in an Identity and Access Management (IAM) in an enterprise context.
It also proposes an architecture similar to ours previous work [19]. However, there are also
some differences. First, they only bring support to attribute-based access control (ABAC) model.
Second, they do not provide alternative solutions to applications that require exchange of real-time
information, requiring all the data to be mined by the Blockchain in order to be available in new
decisions. Finally, they did not evaluated their architecture on a real IoT device.

MedRec [15], Bright [16] and [20] also employ Blockchain in the access control.
MedRec controls the access permissions to medical record data of patients. It employs smart
contract between patients, providers and third parties to grant permissions of access. Bright
controls the actions performed in a video rights management system. [20] uses the Blockchain as
a mechanism of data sharing. The data is stored in a off-Blockchain DHT network and only the
pointer to this data is stored in the Blockchain. Differently from our architecture, these works
only allow creation of ACL-like rules and don’t support other information in the authorization
process, like the environment context.

IBM Watson IoT [17] is a platform that, between a wide range of services, manages
and controls the access to IoT devices. It also allows device data to get published into a private
Blockchain in order to reduce the dependence of a central management entity in the data access.
However, all the configuration of the access control is centralized.

The solution proposed in [98] uses the Blockchain to store, among other things, pairs of
resource identification and URL links. The links are addresses of access policies stored on the
proper resource device. An smart contract is used to retrieve the policy and check if the user has
permission to access the resource. It has the advantage of updating the access policies locally, i.e.
does not require the mining of each update. However, as the policies are stored off-Blockchain,
they are susceptible to modification. This could lead to security problems.

The authors of [99] use the Blockchain together with an ABAC model. However, in the
workflow of its platform, they describe the use of the Blockchain as a simple log database for all
actions executed by their ABAC modules. Also, no evaluation in the IoT environment was made.

FedCAC [100] proposes a hierarchical architecture for access control. It is based on
two main control entities types, the Policy Decision making Center (PDC) and the Coordinator.
The PDC is located in the Cloud and the Coordinator is located near of resources. The PDC is a
common point in the exchange of messages between Coordinators, turning it into a single point
of failure. In [101], they resolve the centralization problem with a Blockchain-based architecture
called BlendCAC, however, in both works, they only support capability authorization using
tokens.

The authors of [102] discuss how some of the IoT challenges could be minimized with
the use of Blockchain and, also, define a Blockchain-based IoT architecture divided in three
layers: infrastructure, control and application. The infrastructure layer consist of networking
technologies and elements, and a local Blockchain with resource constrained devices. The control
layer is composed by a global Blockchain that have more powerful devices as miners. Finally, the
services and user applications reside in the application layer.

36

In [103], the authors propose an 10T authorization architecture over the Hyperledger
Fabric [104], an Blockchain implementation held by the Linux Foundation. The main contribution
of their work is the enhancement of the consensus component with a genetic algorithm-based
solution, called GA Kafka. With this improvement, they achieve a better transaction transfer
success rate.

Although [105] solution is more about providing authentication instead of authorization,
they provide a scheme that stores relationships between requester and sensors. When a requester
tries to access a data from a server, it gets a challenge as a response, that needs to be accomplished
in order to authenticate and receive the requested data. Each challenge defines a sequence of
actions for the requester. Sensors near the client, namely Related Devices (RD), have to detect
and publish the client performed actions in the Blockchain. However, their solution have a big
flaw: the server select the challenge RDs using the requester’s published near RDs. This could
lead to the selection of fake or malicious RDs. A simple solution would be letting the source of
the data define the RDs or the choosing criteria for the RDs used in the authentication to access
its data.

Bubbles of Trust [106] is another solution for authentication in IoT using the Blockchain.
The main idea behind Bubbles of Trust is the creation of 10T devices groups where devices only
trust in devices that participate in the same groups. This groups are created by a master device
that distribute tickets for other nodes, called followers, join the group. The group creation and
devices joining is registered in the Blockchain.

BSeln [107] allows requester to make request to IoT industrial devices without revealing
its identity. In order to do that, they make use of a one-time key generation schema and
Blockchain. In their approach all requests need to go through the permissioned Blockchain. This
design decision limits the number of requirements to IoT devices to the maximum number of
requirements the Blockchain miners, validators or sealers can handle.

In [108], the authors enumerate some of the challenges that can be present in proposals
that adopt Blockchain as part of their solutions. In a special way, they discuss about the high
cost of having all the operations performed over the Blockchain, turning them impractical.
Also, they propose approaches to minimize this cost, like outsource non-essential operations
of the Blockchain. One of these approaches is called as “hybrid implementation™. It separates
contractual operations into d-op (decentralized operations for Blockchain interactions) and c-op
(centralized operations for Trusted third party - TTP - interactions). As expected, they defend
that all the operations that aren’t crucial to be in the Blockchain should be moved away from
it and directed to the TTP. In their example, the TTP is a gateway assistant that gives insights
about allowing or denying attempts of data access. In our prototype, any Ethereum node can be
a “TTP” and, for example, verify the access permissions executing the smart contract locally
(without any extra cost and with a similar delay of consulting a lightweight database). Of course,
one should be very cautious when relying on TTPs. Furthermore, our architecture also can be
classified as a “hybrid implementation” solution as it also has an off-Blockchain side channel to
exchange, for example, real-time messages.

The data exchanged over a side channel can be considered more volatile than the
published on Blockchains, however, some scenarios require this feature. For example, to avoid
the possibility of multiple spending of an onetime voucher that can be caused by the delay of
Blockchain on registering its usage. The usage of a side channel also corroborate with the
so-called “Layer 2" era of the Blockchain [109]. In this era, the computation is moved oft-chain
in order to enable privacy, reduce costs or save computing resources.

A delegation of rights over the Blockchain is presented in [110]. A delegation can
contain conditions that needs to hold in order to be valid. A right can be delegated multiple

37

times, each time with its own conditions. When using the rights the resource verifies the events
generated by the delegation and allow if the requester can prove his identity and satisfies the
conditions.

A survey of Blockchain-based access control is presented [111]. They classified the
works based on privacy context, application domain, access control method and Blockchain
platform. They also make a brief discussion about the challenges faced by Blockchain platforms,
its use and access control methods.

The authors of [112] and [113] studied security aspects of the Blockchain. [112]
gathered vulnerabilities and attacks on Blockchains. [113] make a survey of Blockchain-based
security aspects on IoT. They identified the main organizational formats of IoT architectures
when SDN, Blockchain and Fog are employed in the IoT. besides this, they also identified many
Blockchain platforms used in the IoT and made a comparison between them based on their
main characteristics and particularities. Finally, they made a gathering of the literature using
Blockchain to solve problems in the IoT.

Also in the security area, however focusing more in attacks over smart contracts,
SmartScopy [114] is a system to identify vulnerabilities in smart contracts. In their work they
make a problem formulation, gathering many known vulnerabilities and create an implementation
capable of identifying many of them. Unfortunately, although we tested our smart contract with
many other tools, we did not find the SmartScopy implementation to test with it too.

In use cases studies, [115] proposes the use of Blockchain and smart contracts to allow
or deny the access to public infrastructure. To grant the privacy of the user, instead of the user
interact direct with the access object it would interact with a smart contract in the Blockchain
and it in behalf of the user would trigger the liberation of the access with anonymity, i.e. without
informing the user who requested access. However, at least for the Ethereum, a smart contract
only generates events or triggers an action in the network it has to receive a transaction. Being so,
an attacker can easily see which address requested the access and link the address to the person
entering the location. Thus, unless associated with something different from the presented, their
solution does not deliver what it promises.

3.5 BLOCKCHAIN-BASED ACCESS CONTROL ISSUES AND CHALLENGES

A plenty of works have studying the Blockchain limitations. Some of them focus on
specific platforms, like the bitcoin [116]. Others are more specific yet and focus on details of
these platforms, like the pseudo anonymity in the Bitcoin [117] and attacks on Ethereum smart
contracts [118]. However, there are also works that are not tied to a specific platform [119, 22].
In this section, we discuss only those more likely to affect Blockchain-based access controls.

3.5.1 Branches in Blockchain

Bifurcation (branches) on the chain of blocks can also occur in the Blockchain (Figure 3.3).
This can happen by uncountable reasons, like delay of propagation, bipartition of the network
because of link problems or malicious participants, or even blocks being mined at the same time.
Note that in all cases, it includes a mining nodes synchronization problem.

Many Blockchain applications cannot deal with branches as they could insert many
inconsistencies in its data. Furthermore, attackers can also use branches to dishonestly get
improper advantages, as we will see in Section 3.5.2. Thus, normally, there are also a consensus
mechanism to decide which branch has to be adopted as the “correct” one.

In traditional proof-of-work Blockchain implementation, it is common to choose the
longest branch as it required more computational effort to be built. All the other branches are

38

discarded and their data are erased from Blockchain. However, fortunately, if more than 50%
of the network processing power remain honest, it is extremely improbable that attackers can
control for much time the appending of blocks in the network. Also, it is risk for a miner to keep
mined blocks hidden as all the miner’s earnings obtained with them can be lost if the network
branches grow faster than the hidden branch. Thus, miners seems to have no real advantage over
hiding mined blocks or mining for an “incorrect” branch, unless its processing power is bigger
than the 50% of the network.

3.5.2 Attacks

Many vulnerabilities were identified by [63]. Most of them are power-based attacks,
such as the 51% attack, selfish mine attack, transaction data malleability problems. Although
several solutions to address these issues have been presented, many of them are just brief idea
suggestions, lacking of concrete evaluation of their effectiveness.

The double-spending problem [120, 121, 122] arises when one perform two or more
exclusive transactions on the Blockchain. This problem is normally linked to the appearance
of branches on the Blockchain, where these exclusive transactions are performed in different
branches. Although they are valid transactions in their own branch, both are concurrent and
not valid in the whole Blockchain perspective view. For example, in Bitcoin it occurs when the
intersection of two or more transactions inputs is not void, i.e., someone is spending the same
Bitcoin in two or more transactions. In the access control, it could occur if a subject finds a
way to allow and deny at the same time an action on an object or to cheat the system in order to
get extra accesses. This situation also can lead to inconsistencies in the auditing data. Some
circumstances when the double-spending problem occur are the delays on propagation (race,
finney and vector76 attack) and by domination of the network processing power (brute force and
>50% attack, also known as 51% attack) [122].

Fortunately, provided that at least 50% of the network is honest, there are some security
mechanisms that, virtually, prevents the double spending problem and some other attacks from
being a really threat for real world applications. For example, the Bitcoin network only consider
a new block as valid if it has only valid transactions, references the latest mined block, and has
the proof-of-work. Besides this, the Bitcoin also employ a consensus mechanisms, choosing
the longest chain, to decide between eventual branches that emerge on the Blockchain. This
mechanisms difficult a successful double-spending attack because someone that is making the
attack, normally, does not has enough processing power in order to compete with the rest of the
network. Furthermore, they also grant that the older is a register in the Blockchain, the more
secure it is from attacks.

However, many systems based on Blockchain requires a generous processing time to be
spent until transactions are safely confirmed. This intensive resource consumption incentives the
users to pool their computing power in centralized processes. This can give the control over the
network to only a few, or even single, entities as occurred years ago [123]. Until today, most of
the blocks are mined by only a few mining pools.

Although the proof-of-work is one of the most known methodologies, there are others
proofs that could be adopted to avoid problems like the mentioned ones. For example, [80]
presents four different methodologies: reaching a consensus, proof-of-stake, proof-of-activity
and proof-of-publication. Each one with specific characteristics and designed for different
environments, however, compared with the proof-of-work, they can be considered premature and
are being adopted with great caution [124, 125, 126].

Another groups of attacks are the selfish nodes that does not collaborate with the
network [127, 128]. They can be classified in two groups. In the first group are the ones that

39

does not relay information to avoid spending processing and network resources. The other group
is composed by participants that does not relay or insert substantial delay in the transmission of
information that brings advantage for him. In Bitcoin, for example, a node could choose to relay
only transaction with little fees and keep to itself the transactions that are more “generous” and
pays more fees for the miner. Another example is the insertion of delay in the transmission of
mined blocks in order to keep the adversaries participants always at least one block behind of the
longest known chain, or to cause the N-confirmation double spending for example.

There is also a class of attacks that are focused on smart contracts [118, 129, 130].
They take advantages of transactions that can be replayed. Another approach is to find flaws in
contracts that allows them to execute undesired actions. The majority of these problems were
already in updated Blockchain platforms, but once in a while a new attack methodology gets
discovered [129].

Finally, privacy violation and miners starvation attacks and problems are discussed
in Sections 3.5.5 and 3.5.6, respectively. In Section 3.5.3, we discuss the problems caused by
Blockchain forking. This occur when changes in the Blockchain code are accepted by only a
part of the network participants, causing a segregation of them in the new and old versions and,
consequently, increasing the success rate of some attacks.

3.5.3 Blockchain forking

Changes in a Blockchain-based application protocols could become quite complex since
it, normally, requires all participants to agree with the proposed updates. When a change is
proposed, it can result in three possibilities: (1) all participants agree and update their system; (2)
all participants reject and maintain the current version of the system; (3) part of the participants
agree and update and the other part does not. The worst of them is the last since it means that the
community maintaining the Blockchain was divided and, therefore, this weakens the network and
leaves it more susceptible to vulnerabilities like the ones discussed in Sections 3.5.2 and 3.5.6.

When participants don’t reach a consensus about a change, two types of Blockchain
forking can take place: hard and soft forks [119]. A soft fork is an update that brings compatibility
with the older version, i.e. blocks mined by the updated node can be recognized by those that was
not updated. This type of update ensures the consensus between all nodes. However, there could
be also the hard forks. This fork type does not provide backward compatibility. So, for a node be
capable of recognizing a block mined by updated nodes, it necessarily needs to be updated too.
Therefore, hard forks are the most complicated because they can divide completely a network.

Recently, changes were proposed to the Bitcoin [131], namely SegWit2x. Between
others changes, it was proposing larger blocks (with 2MB against the supported 1MB), increasing
the volume of transactions that fit into each block with structural changes and removing transaction
malleability [132]. Although, in mid 2017 about 90% of the hash power supported the changes,
it had have problems in its adoption by the network. There were many people contrary to the
changes and others even considered it as a 51% attack [133]. It was a real and very complicated
example of a Blockchain fork.

3.5.4 Resource consumption

The traditional block mining approach proof-of-work works through the discovery of a
nonce that causes the hash of the block be below a predefined value. This, normally, involves
the waste of a huge processing power [22] and, consequently, energy power. However, this is an
indispensable process to grant the security of the network.

40

To avoid proof-of-work original waste, new approaches are emerging. Some of them
are Algorand [134], DAG-based ones [135, 90] and the Ethereum 2.0 [126]. They exchange the
proof-of-work by, in short, consensus, voting and election approaches. Although they are still in
a preliminary versions, they are also promising approaches.

3.5.5 Privacy

Providing privacy is a big challenge in Blockchain as everyone participating in it can
see all the transactions ever made in the network. Most of the very popular Blockchain-based
platforms uses a string derived from users public key as its identifier. However, although this
scheme has the intention to hide the real user behind the public key, all the transactions are
associated with its public keys. Therefore, only a pseudo anonymity is achieved instead of a
completely one.

Meiklejohn ef al. made a characterization of the payments in Bitcoin and successfully
identified types of part of users behind the keys using transaction linking[136]. Also, although it
is a complex and hard task, the users deanonymization could be possible employing profiling
tools over the transaction network. Solutions that provide end-to-end communication and storage
encryption are required to deal with this problem [116].

Fearing their identification, many users adopt the public key one-time usage policy.
If they have to make a single operation in one of their accounts, all the funds behind it are
transferred to one or multiple accounts in a single transfer operation. After it is confirmed, the
public key of the transferring account is destroyed.

Although, it was not its objective, the lightning network [137] is a start for more privacy.
It allows that an uncountable number of transactions between two trustless public keys be safely
grouped in one single transaction. This reduces the information granularity available in the
Blockchain network and, thus, increases the privacy level.

If by one side the anonymization can be seen as a good feature, by another it can
complicate the confidence in transactions. Normally, there is no key authority in Blockchain-
based systems [116] as it would break down the pseudo anonymity. Therefore, no one has
absolute knowledge about the used keys.

3.5.6 The Blockchain as a bottleneck or as a big void space

Many Blockchain implementations requires a generous time to mine and safely confirm
transactions. This prevents real time transactions and also brings questionings about the real
Blockchain scalability [138] with respect to the number of transactions. In fact, if the number of
transactions increase sufficiently, two things could happen: (1) only a part of the information
produced is mined to the Blockchain and the other part is lost or (2) all the information is mined
and the common nodes cannot deal with it or verify it. So, the Blockchain became a bottleneck
in the transactions mining or creates a bottleneck in common devices that also need to analyze
the information.

Trying to minimize this resource usage, the lightning network [137] specifies a hashed
time-locked contract to allow any amount of payments to be executed off Blockchain and employ
mechanisms that allow them to be validated in the Blockchain as one single result transaction and,
therefore, reducing the number of transactions. It is specially valuable for micro payments in order
to avoid fees that would represent a significant part of the payment itself. Further investigations
could also bring similar solutions to reduce the amount of authorizations in Blockchain-based
access controls without spoil the access, the auditing data and the context information.

41

Sidechains [139] are another proposal that could be used. Its is used to transfer values
from one Blockchain to another. In practical terms it blocks the values in the origin Blockchain
and creates this values in the destination Blockchain. However, as shown in [140], this could
worse the problem because, instead of one single transaction, a transaction could require at least
two transactions (one in the origin Blockchain and one in the destination Blockchain).

In fact, the amount of information produced and requested to be mined in the Blockchain
is a double-edged knife. On the one hand, if it is produced to much information, the Blockchain
miners or the other participants could not be capable of handling all the produced data. On
the other hand, if only a small quantity is produced, it could turn in to what we call “mining
starvation”. The mining starvation occurs when the miners have no information to mine. This
situation reduces the incoming of miners and, consequently, can make them give up mining.
This also brings security problems, like the double spending (see Section 3.5.2), as dishonest
miners can prefer to create fake blocks to overlapping the real ones when it is convenient for
them. Therefore, methodologies and mechanisms to prevent both cases, i.e. the excess and lack
of mining information, are also very important.

3.6 CONCLUSION

A lot of attention has been given to Blockchain because of its characteristics. The
Blockchain is a set of tools, protocols and mechanisms that turn it into a public, decentralized,
Byzantine fault-tolerant, immutable database that stores the data records in a chronological order.
It was created as a database to store transactions made in cryptocurrencies avoiding centralizing
entities. However, it turns out as a mechanisms with utility in a wide range of scenarios.

The Blockchain tools set range from simple, but interesting, consensus algorithms to the
application of complex hash and signatures schemes. All applied to grant security and robustness
even in hostile environments. Because of its characteristics it has been envisioned to become
part of a lot of applications and services domains. Between the unthinkable number of them, that
it was already employed, is the access control domain.

In the access control domain, the Blockchain was used in very different environments.
There was solutions for protecting medical recording data and files rights management, and also
as a source of distribution of IoT content and IoT access control. The IoT access control is a
special environment because it encompasses a considerable quantity of challenges hardly found
all together in other environments. However, only the FairAccess framework was built over this
environment and in our opinion it did not explored all the potential of the Blockchain and also
fail to provide aspects that we judge to be indispensable to today’s IoT, like compatibility with
the majority of the already adopted and used IoT access control models.

Particularly, for the access authorization process, we consider the time for a new
information be part of the Blockchain as its main drawback. Of course, this is mainly dependent
on the type of proof, its level of difficult, the complexity of the adopted consensus establishment
approach, and the amount of produced and mined information per unit of time. However,
even so, we still consider it as a mechanisms that brings more benefits than drawbacks to the
IoT authorization process, specially when new Blockchain-like mechanisms are emerging, for
example, Algorand [134], DAG-based ones [135, 90] and Ethereum 2.0 [126]. These mechanisms
can drastically reduce costs and mining time.

The advantages of our solution (presented in Chapter 4) over theirs are fivefold. First,
although [4] mentions that its framework supports any access control model, they did give
almost none or no directions on how to integrate other IoT models in their framework, except for
token-based access. Second, using the token-based access, the subject needs to contact the owner

42

asking him to create a new locking script and token each time the token expires for each device
and requester. Third, it requires at least two blocks to be mined to the Blockchain for a new token
be usable. This means that the solution is costly and could take a lot of time to grant the access.
Fourth, their framework does not specify the usage of relationships information in the process of
granting access to a subject. The only relationship information that could be inferred is: given
two identities (public keys), it is possible to know if one is the parent of the other in the tree of
generated keys. Our proposal specify an scheme that allow each identity to be linked with any
other identity or groups of identities, allowing even the provision of attributes and characteristics
to this links. Fifth, each single entity is independent and don’t need to trust anyone other in our
framework. Furthermore, nothing prevent smart contracts and their token-based approach to be
also used within ours proposal, as specified by them.

However, besides all the benefits that can be extracted from the application of Blockchain
in the IoT access control, it also remains with open issues and challenges that also need to be
investigated more deeply. besides this, new proposals to overcome this difficulties have to be
discussed. In Chapter 4 we present our framework and an architecture derived from it. We
believe that it is an step in the direction of resolution of these issues and challenges.

43

4 PROPOSED DESIGN AND ARCHITECTURE

As we saw in Chapters 2 and 3, the previous approaches are only able to cover a little
part of the requirements that we identified in the Section 2.1. Some of them don’t scale in
many vectors, others don’t take context information into consideration, don’t have support to
relationships or ignore the already used IoT access control models. Thus, we start to design a
guidance for the 10T access control environment.

The purpose of design a guideline is to put all the IoT access control requirements
together and smooth the construction of access control architectures aligned with the desired
characteristics of the IoT access control approaches: decentralization, resilience, off-line working,
low processor usage for authorizations, transparency, privacy, contextness and relationshipness,
and compatibility with legacy models.

The Figure 4.1 summarizes the main aspects identified for a suitable access control
approach. It shows the main interactions between the entities commonly involved in access
control environments. We divided the scenario in three groups: “Owners and Users”, “IoT
Access Control Data” and “IoT Environments”. The owners and users are the managers and
clients of the IoT services, respectively. The users have to negotiate with owners to receive an
access permission. The access authorization needs to be performed inside the IoT environments,
preferably by the device being accessed, in order to avoid service interruption, for example,
caused by network links disruptions.

Figure 4.1: ControlChain guidelines

Owners and loT Environments
Users

Access

\

* Authorization !

Negotiate

Negotiate
Access
Authorization

Populate with
[Relationships:--->[Rules |«.
Query -_.A_._. (T G s T |
''''''''' i '-~1_Accountab|||t|esi

!_—Contexts} -----

loT Access Control Data

Data Fo%

If the device is not capable of executing authorization process, it needs to negotiate the
delegation of this task to another nearby device it trusts. The access authorization is based on
policies (called, now on, rules), defined by the owners, and other data pointed by these rules.
This other data could be proofs of relationships and environment contexts (that can also include
accountability information). In order to avoid access problems, the data that is important to
authorization process has to be preferable held by the 10T devices themselves. So, the direction
tendency of the data flow will always be toward the IoT devices. Finally, owners, users, and [oT
devices are the generators of all access control data and also can query, at least, the information
related to them.

44

The decision of including relationships and contexts in the rules was based on the
flexibility and the powerful features that it brings to the authorization. With it, authorizations
can change based on environment events without owners direct interference. Also, it brings
flexibility to the rules, allowing, for example, the definition of a user’s authorization level based
on its relationships. It is also important to note that, in order to meet the decentralization
requirement, the IoT Access Control Data propagation has to be based on mechanisms that allow
its decentralization.

Analyzing the guidelines, it is possible to note that the Blockchain (see Chapter 3) has
mechanisms that are capable of providing a good part of the IoT requirements (see Sections 2.1).
For example, it is a decentralized database that eliminates the necessity of a third party control
and there are sub-mechanisms that can be employed to provide resilience to data corruption or
attacks trying to remove or replace a published data. However, it is important to highlight that,
with the appropriate management of the published data, it is possible to “update” the Blockchain
data via the publication of new registers that takes priority over old ones and turn them in
historical data only, i.e., with an instruction that mark the old data as canceled and creates a new
valid one. Furthermore, the way that its decentralized database works also offer the possibility of
off-line authorization.

As mentioned before, another important requirement is the compatibility with the largest
number of models, specially the ones adopted for the IoT. This is also possible to be achieved
with the Blockchain as it does not require a strict data information or structure. In fact, it is totally
flexible and can store any type of information. Therefore, virtually, any type of authorization
instruction can be stored in it.

From the guidelines, i.e. based on main access control architectures and IoT requirements,
ControlChain [19, 14] made its way to our world. The Figure 4.2 presents an overview of the
ControlChain. It is a heavily Blockchain-based IoT access control architecture that, however, also
count with an oftf-Blockchain side channel to communicate real-time information. Furthermore,
it was designed with the following principles in mind:

* Decentralization. The expected growth of the IoT unfeasible the centralized solutions
and the decentralization helps to bring scalability;

* Resilience. This means the necessity of avoid an architecture with single points of
failure and use mechanisms that provide resilience to data corruption;

» Off-line working. The dominant I6T communication media type, i.e. wireless, is known
to be instable and could lead to intermittent connections, so the continuous operation in
a disconnected environment is a very important feature;

* Low processor usage for authorizations. In the IoT, some devices will be restricted in
the processing power capacity and this requires a lightweight processing for the devices;

 Trust. The IoT will collect, generate, use and provide personal and sensitive informations
about users and operations in general. The manipulation of these informations requires
the trust of its users. A way to acquire this trust is providing an user-friendly environment
with transparency, privacy;

» Context and Relationship. Allowing the use of context and relationships bring flexibility
and allows better fine-grained control;

45

» Compatibility. There is no unique model that can achieve the requirements of all IoT
environments and, thus, an architecture needs to provide mechanisms that allow the
compatibility with the today’s main IoT authorization models (see Section 2.3).

Figure 4.2: ControlChain entities interactions

Off-Blockchain
side channel

Access Control

1

i Service

IoT device

Although nothing prevents all the information to be in one single Blockchain, for
organization and to facilitate the explanation, we divided the required data of the ControlChain in
four different Blockchains: Context Blockchain, Relationships Blockchain, Rules Blockchain and
Accountability Blockchain. The next sections bring more information about each one of them.

4.1 CONTEXT AND ACCOUNTABILITY BLOCKCHAINS

The Context Blockchain stores contextual information obtained from sensors,
processed data and manual inputs. This information can be used in the authorization decision.
For example, suppose there is an access rule with the following statement: “8k resolution videos
can only be accessed when the router reports that the network traffic is low”. In this situation, the
access control will find the report of the router in the Context Blockchain and check its state
before allowing the access. In order to allow its reference from a rule, each context information
need to be identifiable by an unique identifier, namely context identifier (it could be, for example,
an ordered pair “(entity, variable name)”). Also, each time a context needs to be updated, the
same context identifier has to be used to ensure that previous defined rules can find the new
context value.

Accountability information can also be considered as context, however, in our spe-
cification, it has a more specific information than that registered in the Context Blockchain.
The Accountability Blockchain registers information about permissions or denies of
access to object. The information required to be registered is described in the Rules Blockchain
(see section 4.3). These information could be used for accountability and auditing of accesses,
and for checking the sanity of the system. Furthermore, the information stored in this Blockchain
could also be used like the contextual ones.

4.2 RELATIONSHIPS BLOCKCHAIN

The Relationships Blockchain stores the public credentials and relationships
in a directional graph-similar manner, where the nodes represents the credentials and the edges

46

represents the relationships. An entity can be a user, a device or a group of them. Each entity has a
defined owner that has complete control over it. It is important to highlight that the ControlChain
does not make any differentiation between the entities. A relationship is an unilateral reference
to another entity with an optional set of attributes to it. For example, in the Figure 4.3, the entity
1 gives the attribute of “Friend” to the entity 2. As we will see later, the relationships and their
attributes could become part of the authorization decisions.

Figure 4.3: ControlChain reference
Entity 1 /» Entity 2
Friend: *Entity 2-

There are two possible types of relationship references: Blockchain-dependent and
external. The Blockchain-dependent reference is a link created with identifications tied to the
Blockchain registers (for example, a pair composed by the block’s and the register’s order number
inside the block). The external reference is a link to off-Blockchain identification (for example, a
public key). The last is a dynamic reference that always is interpreted as a pointer to the most
recent update of an entity in the Blockchain, if it exists there. Note that the external reference
also allows referencing Blockchain outsider entities. The choice of best type of reference is use
case dependent. In Table 4.1 we give some directions to the best choice based on the use case
requirements. The “+” signal shows the most indicated type for the requirement.

Table 4.1: Most indicated reference type based on the requirements of the use case.

Requirement Identifications Types
Blockchain-dependent External

If the most recently information inside a referenced entity +

need to be evaluated

If the information inside a referenced entity need to be evalua- +

ted as it was in the time of the authorization

If references to entities outside the Blockchain are allowed +

If it is only allowed references to entities defined on the +

Blockchain

The Figure 4.4 shows an example of Relationships Blockchain. In this figure, each
square is a block, the leftmost square is the genesis block, contiguous line arrows are the default
links between the blocks, dashed line arrows are relationships and the hatch represents the block
owner. It’s important to remember that one block could have more than one entity and not
necessarily the blocks are labeled with their type or function inside the use case, like the users,
devices and groups in the figure. We choose this methodology only to simplify the explanation.

Figure 4.4: Relationship overview

O YN
.

7/ 0wner 1 U User Block — Blockchain link
R Owner 2 Group Block ---»Relationship
Nowner3 [DDevice Block

47

In the example, the left part shows the relationship between an user, a group and a device
(all owned by the Owner 1): the user references the group and the group references the device.
In the middle of the example, there is an Owner 2 user with a group (for example, with the
attribute “friends”) that links to the Owner 1 user. Finally, could exist entities without references
or been referenced like the last entity of the Blockchain. Furthermore, if the entities identities
does not depend on the Blockchain network (i.e. they are external identifications), there could be
references to oft-Blockchain entities, like the Owner 2 user who is referencing a device that does
not belong to the Blockchain yet.

4.3 RULES BLOCKCHAIN

The Rules Blockchain keeps the authorization rules defined by owners to their
objects or by objects to themselves. Although specifying how policy rules will be structured is a
task of access control models and not of architectures, it has to give support to them, providing
ways to store and retrieve all the models’ required data. We used the previous models information
gathering, from section 2.3, to extract the characteristics and specificity of each one and build
our architecture compatible with the largest possible set of models. The big challenge faced
by this Blockchain is making it generic enough to be compatible with the big variety of access
control models and mechanisms used in the IoT: RBAC [25, 26, 27, 28], ABAC [29], UCON [30],
CapBAC [31, 32, 33, 34], ACL [15, 16, 20] and others [35, 36, 37]. Each one capable of fulfill
different IoT scenarios requirements.

Without loss of generalization, currently, it supports three types of access control
mechanisms (based on ACL, Capability and Attribute) that with some minor additions could
lead to the compatibility with a lot of models. These minor additions are addition of context
conditions, obligations (from UCON) and accountability information (including obligations
from XACML). The context conditions are Boolean expressions that are build using context
identifiers of the Context Blockchain. The obligations determine routines (for example, accept
an agreement) that the subject must accomplish to get the access authorization. Finally, the
third addition describe the access information that should be recorded on the Accountability
Blockchain by the access control and/or PEP obligations before or after allowing or denying
an access. We call these mechanisms as ACL-based rules (allows a list of subjects for each
object), capability-based rules (allows a list of objects for each subject) and attribute-based rules
(allow a list of subjects’ and objects’ attributes). Each rule needs to be uniquely identified (by
an identifier or a set of them) in order to allow their updating or revoking using Blockchain
techniques (as smart contracts). The process to transform access control models to these three
generic mechanisms is done through the decoder, a mapping process capable of translating them.
Section 4.4 gives more detail on how these types of rules can be used to bring compatibility to a
large variety of models.

4.4 DECODER: A COMPATIBILITY TOOL SCHEME

The transformation of access control models to more generic mechanisms is illustrated
in Figure 4.5. We propose the utilization of a decoder. This decoder receives the access control
model and its rules and translate them to mechanisms supported in our architecture, i.e. the three
suggested mechanisms-based blocks rules: ACL, Capability and Attribute. In some cases, the
IoT owners are required to provide additional information. For example, suppose a rule says
that only a requester with the role “manager” can have access to the management system. This

48

Table 4.2: Mapping of the models to the suggested rule blocks.

ControlChain RBAC OrBAC ABAC UCON CapBAC ACL

Entity Req. Req. Req. Req. Req. Req.
Entity att. Role Role Req. att. Req. att. - -
Entity Res. Res. Res. Res. Res. Res.
Att. Rule * Rule Rule Rule Auth. - -
- kk 5 Activity - 2 5 -
Entity att. - View Res. att. Res. att. - -
Entity - Org. - - - -
Cont. identifiers - Cont. Cont. Cont. - -
Cap. Rule - - - - Rule -
ACL Rule - - - - - Rule

Abbreviations: activity (activ.); attribute (att.); authorization (auth.); capability (cap.); context
(cont.); organization (org.); requester (req.); resource (res.).

- The model/architecture does not directly support this element.

* When applicable, it requires the attribute authority, subject and object attribute names and
expected values, allowed actions, objects with the allowed actions, contexts and obligations.

** The interpretation of activities needs to be carried by the requester and resource.

role can be seen as an attribute of the requester and, at least, one entity should be pointed as the
official attribute authority for it.

Figure 4.5: Transformation of access control models to the mechanisms

U RBA(1 ACL ‘

: g,%?&cc ; Capabilities

‘ - Attributes :
. Others

+Context

. +Obligat. :
| +Account. | Rules

‘ > Blockchain

Relationships
Blockchain

Context
Blockchain

The decoder can automate the adaptation of IoT authorization models using a mapping
table that converts each element of the RBAC [56], OrBAC [57]. ABAC [59], UCON [60] and
CapBAC [61] models to those in the ControlChain. Table 4.2 summarizes all the mapping process
between models and ControlChain suggested blocks. After, we discuss each model mapping.

RBAC. The adaptation of the RBAC model uses rules in the format of attribute rule
block. The required steps for the adaptation are: (1) each RBAC subject and object need to
be translated to entities; (2) an entity is required to be the official attribute provider for the
created rules; (3) this entity has to refer all the RBAC subjects or groups of them and give an
attribute compose by the pair (key,value), where the key could be, for example, “role” and the
value is the names of the roles the RBAC entity participate; (4) the attribute-based rule have
to contain the official attribute provider, the role attribute name and expected value, and the
resource together with the allowed actions for it. Note that, in ControlChain specification, the
multi-role relationship [56] needs to be carried by the requester and resource themselves.

49

OrBAC. The adaptation of OrBAC model also uses the attribute rule block. All the
RBAC’s three first steps are the same for OrBAC. The third step needs also be executed for the
OrBAC objects, changing attribute from “role” to “view”. Besides this, the OrBAC organization
could be translated as the official attribute provider entity. At this point, all the OrBAC subject
and object entities are referenced by the official attribute provider with the role and view attributes,
respectively. Unfortunately, we have found no suitable conversion of the activities to actions
in our suggested blocks, however, note that the actions in ControlChain can be anything and,
thus, the verification if an action belongs to an activity can be carried by the subject and objects
themselves. Finally, the OrBAC context should be mapped to context identifiers (see Section 4.1).
Thus, the attribute rule block have to contain the official attribute provider, the role and view
attribute name and the expected values, and each object has to be together with the allowed
actions for it.

ABAC. Like the OrBAC, the adaptation of the ABAC model also uses the attribute
rule block and uses the first three steps of the RBAC to translate the entities and establish the
relationships for both, ABAC’s subjects and objects. The attribute rule block should contain the
requester and resource attributes, their respective attribute provider authority, the allowed actions
and the context that needs to be true in order to the access be authorized.

UCON. The adaptation of the UCON model is very similar to the ABAC and all the
steps required to adapt ABAC are required to the adaptation of UCON. The only exception is the
obligations that does not exists in ABAC. As discussed in section 4.3, all the rule blocks have a
special field for the obligations. Thus, the UCON obligations can be placed in this obligations
field. Furthermore, as the UCON requires the immediately interruption of an access if the
authorizations, obligations and conditions are not satisfied at any time, devices need to keep
monitoring the Blockchains, searching for changes in the parameters and validating the access
for each change.

Finally, note the presented models till here require that entities establish relationships
on the Relationships Blockchain. This is required because all these mappings use attributes and,
in ControlChain, attributes only can be given by established relationships. The CapBAC and
ACL mappings don’t need attributes, so it is not required that the entities involved in their rules
be in the Relationships Blockchain.

CapBAC. Originally, the capabilities of the CapBAC model is completely transferable.
However, we are proposing to use a public Blockchain and the storage of completely transferable
capabilities in it could become a security problem. To solve this problem, we add the subject s to
the capability pair, turning the tuple (0,a) in to the triple (s,0,a). Therefore, with this rule, only
the subject s can access objects o to execute the guaranteed respective actions a on them. Finally,
this triple can be adapted to our architecture by: converting s and o to entities and defining a in
the capability rule block for each object that s can access. The result is a rule that contains the
subject and a list of objects with the respective allowed actions.

ACL. Although ACL is considered as a mechanism [5], we discuss the mapping of the
ACL because it can be used as a mechanisms to a wide variety of models. So, all the models
that can be mapped to ACL mechanism also can be mapped to the ControlChain rule blocks,
increasing the compatibility. The mapping of ACL is similar to CapBAC: ACL subjects and
object are converted to entities, and defining, in the ACL rule block, all resources, with their
respective requester’s allowed actions. The result is a rule that contains the object and a list of
subject with the respective allowed actions.

50

4.5 THEORETICAL ANALYSIS

The theoretical analysis of ControlChain is divided in two parts. First, we compare
ControlChain with other architectures and, then, we discuss the ControlChain’s usage viability in
scenarios with limited resource devices.

4.5.1 Architectures comparison

Table 4.3 shows the comparison of ControlChain with other architectures, specifically
XACML, OAuth, UMA and FairAccess based on IoT requirements, dependence of third parties,
time and effort to generate new authorization or update the already existent ones and to be
authorized. This architectures were chosen based on two reasons: the first three are commonly
used in [oT access control proposals; and the last has gained prominence between researches of
the area. A “+7 sign means a good evaluation, a “-” sign means a bad evaluation and “+-" sign
means an average evaluation. Next, we explain the features and evaluations.

Table 4.3: Architectures comparison.

Feature Architecure XACML OAuth UMA FairAccess ControlChain
Scalability - - - +- +-
Low object overload + + + + +
Transparency - - = +- £
Fault tolerant - - - +- +
Privacy-friendly + + + +- +-
Delegation capability + - - + +
Context-aware + - - . +
Fine grained + - - =t +
Integrated relationship - - - - +
Compatibility + - - - +
No third-parties - - - + +
New/Update authorization + + + 2 ok ok
Get authorization + + + ok +

* Dependent of the type of proof and dissemination speed of blocks.
** If using the side channel for publication of rules, it would be a plus sign.

Scalability. FairAccess and ControlChain use Blockchain as its underline technology.
Although it grants scalability in the number of nodes participating in the network, it does not scale
in the same manner with the number of published data. Therefore, FairAccess and ControlChain
received an average evaluation, while the centralized architectures (XACML, OAUTH and UMA)
receives negative evaluation.

Low object overload. This criterion evaluates how much the resource is overloaded
by the authorization process. In the centralized architectures, all the authorization process is
externalized to a powerful entity by design. However, nothing prevents the FairAccess and
the ControlChain to externalize their authorization process too. In fact, the ControlChain can
facilitate the automation of this process when it is necessary. A device could search, in the
Relationships Blockchain, for other confident devices, for example from same owner, and ask their
support in the authorization process. Therefore, all the architectures were positively evaluated.

Transparency. The transparency evaluation tries to identify the level of transparency
in the acceptance and denial of access. In centralized architectures, the central server defines to
grant or deny access using information in its possession. Therefore, all centralized architectures
receive a negative evaluation. FairAccess define a contract that has to be fulfilled before the

51

access is authorized, however, its says nothing about who will grant the proof of fulfillment of
the contract. Thus, we give an average evaluation as it could require a third party in the process.
In the ControlChain, all the processing is done in the Blockchain and anyone can verify the
algorithms and data used in the access granting.

Fault tolerant. This criterion evaluates the impact caused by failures on devices or
communication links. Naturally, the decentralized ones are more fault tolerant than the centralized
ones. However, the FairAccess requires that the resource owner publishes a token every time an
access is requested or need to be renewed. If the owner is not available to provide it, the access
cannot be established. This gives ControlChain a slight better evaluation.

Privacy-friendly. Although all access control provide privacy to the data and services
held, centralized architectures can keep rules and information, used in the access attempt
evaluation, like rules and context, hidden from outside viewers. Therefore they are more
privacy-friendly than the Blockchain approaches that keep this information public.

Delegation capability. XACML, FairAccess and ControlChain has at least one level
of delegation, thus they received a positive evaluation. OAuth and UMA, although are used to
authorized application to execute action in behalf of the user (working as an admission control),
do not have a delegation functionality by default.

Context-aware. As only XACML and ControlChain define policies capable of dealing
with context, only them receive a positive evaluation.

Fine-grained. The fine-grained evaluation tries to measure how flexible the access
control architecture is. The OAuth and UMA are almost statically, thus they receive a negative
evaluation. In FairAccess the owner can specify a contract that has to be fulfilled by the requester
in order to receive the access authorization. However, they do not present the structure of the
contract, making it hard to analyze its flexible, so we gave it a neutral evaluation. On the other
hand, XACML and ControlChain handle attributes and context, and thus they receive a positive
evaluation.

Integrated relationship. The ControlChain is the only architecture designed to directly
allow relationships on rules. Therefore, it was the only one positively evaluated.

Compatibility. This criterion evaluates the compatibility of the architectures with the
plenty of models currently employed in the IoT. XACML and ControlChain are compatible with
a considerable quantity of models and then they received a positive evaluation. Indirectly, OAuth,
UMA and FairAccess can operate with almost any model, however, directly, they only operate
with access tokens and, thus, they were negatively evaluated.

No third parties. The dependence on third parties could prevent the detection of
censorship, frauds and interference. All the centralized architectures depend on third parties and,
thus, only FairAccess and ControlChain receives positive evaluations.

New/Update Authorization. This criterion evaluates the latency to make or change
an authorization. The centralized architectures XACML, OAuth and UMA have low latency in
these activities because the update of their database is straightforward. Thus, they received a
positive evaluation. For FairAccess and ControlChain, the complete analysis of this criterion is
dependent of the blocks dissemination speed and, mainly, the type of proof used in the blocks
mining. As the most common and known type is the proof-of-work and this type of proof imposes
a considerable latency, we give a negative evaluation. It is important to note that, the FairAccess
does not specify a way to modify a contract already published on the Blockchain. ControlChain
specification defines a way to update the information (see Sections 4.2, 4.1 and 4.3). Also, if
the ControlChain side channel is used to publish rules at the same time it goes to be published
on Blockchain, the time for share a rule or information could be very similar to the centralized
approaches, and thus it would receive a positive evaluation.

52

Get authorization. This criterion evaluates the latency to get an authorization. XACML,
OAuth, UMA and ControlChain have almost real-time authorizations. The FairAccess has a
bigger latency because it requires that the requester publish a fulfillment proof of the contract
requirements. This requires, at least, one additional block to be mined in order to the access be
granted. Thus, it is the only one that receives negative evaluation.

User-friendly. We chose not evaluate this criterion as we do not have a survey with
real users.

4.5.2 Viability with limited resources devices

One important factor about an access control approach for the 10T is its viability in
scenarios with limited resource devices. In this section, we discuss how the main technology
used by ControlChain, the Blockchain, and the evaluation of rules can be compatible with IoT
requirements.

Growing of the Blockchain. One of the main concerns when talking about the
Blockchain is its growth. The size of an entire Blockchain could be a problem to devices with
low storage space. However, devices with very limited resource does not need to store the full
Blockchain. For example, the storage could be performed with some replication factor [141].
Besides this, they could also filter all the non-important information and store only the ones
it judges to be important. For example, a device could store only rules related to it and both,
contexts and relationships that are related to these stored rules.

Speed of new registers. With the arise of many new registers in a short period of
time, devices with less resources could not be capable of keep up with the updates. However,
the number of registers in a block can be limited and the speed of new blocks can be adjusted
by, for example, changing the difficult of the proof-of-work imposed to miners. Besides this,
Blockchains and Sidechains could be used for depending on the requirements of the system,
avoiding partially the burden caused on the Blockchain.

Finally, as mentioned in Section 4.5.1, restricted devices could also find support in other
devices, for example, the ones with the same owner in the Relationships Blockchain.

4.6 CONCLUSION

This chapter presented the ControlChain, an architecture for access control in the IoT.
The ControlChain is based on Blockchain and provides protection ways against improper accesses
of resources in a decentralized fashion. It also supports the establishment of relationships, context,
obligations and accountability in order to bring more flexibility, to allow more powerful controls
over the access and to make possible verifying important information about the access control. It
is heavily based on Blockchain technology, however it also has an off-Blockchain channel that is
used to communicate real-time data. We also presented the Decoder, a mechanism that specifies a
way to turn the ControlChain compatible with a wide range of already adopted IoT access control
models. Finally, we constructed a comparison between other architectures and our proposal. It
showed the benefits of ControlChain over the others in aspects like transparency, fault tolerance,
delegation capability, context-awareness, compatibility and others. However, unfortunately, in
two aspects it has competitors that have advantage over it, specifically, privacy-friendly and
the time to generate new or update authorizations. Finally, we also briefly discussed about
some two of the main concerns surrounding Blockchain-based systems in environments with
resource-restricted devices.

53

5 ARCHITECTURE IMPLEMENTATION, TESTS AND RESULTS

The E-ControlChain [14] is a ControlChain’s [19] proof-of-concept architecture im-
plementation. It was implemented with the objective of checking ControlChain’s viability for
usage in the IoT. The E-ControlChain is a smart contract designed to run over the Ethereum
platform and developed using the Solidity [142], a widely known and used smart contract
language for the Ethereum Blockchain network. In order to make ControlChain compatible
with it, we had to deal with Ethereum particularities, for example, all the E-ControlChain
interactions are through function calls. Also, as it was implemented as a proof-of-concept, not
every aspect and detail of the ControlChain was implemented (more details in Section 5.3).
Table 5.1 shows the ControlChain properties present in the current version of E-ControlChain.
Some of the not-implemented properties depend on external interactions or dynamic actions,
like “obligations”, and requires more investigation on how to integrate the solutions to Ethereum
contracts. Others are apparently impracticable to implement over the Ethereum contracts because
of its purposeful design limitations, like the strict limited number of variables in each function.

Table 5.1: Current E-ControlChain development status.

ControlChain properties Present in E-ControlChain

Context Yes

Relationship Yes, through attributes and/or context

Accountability Yes, through context publishing

Obligations Yes, through context information

Side channel No, but it can be accomplished using XMPP or MQTT
Capability-based rule Yes

ACL-based rule Yes

Attribute-based rule Yes

Multi-attribute-based rule No, at most one per entity

Delegation Yes

Rules w/ contexts Yes, but only allows the use of "and"for multiple contexts
Rules w/ relationships Yes, through attributes and/or context

Possibility of using a gateway Yes

Inits core, the E-ControlChain is composed by four smart contracts. The first one, called
BasicAndCommonControl, defines variables and functions common to all other contracts.
The other three are specialized in each type of authorization mechanism that are defined by
the ControlChain architecture, i.e., authorization based on attributes (AttributeControl),
capabilities (CapabilityControl) and ACL (AclControl). For brevity and as it is the
most complex of them, we will focus only the essential contract parts for the attribute-based
authorization, i.e. both BasicAndCommonControl and AttributeControl contracts.
However, the full code is available on Appendix B.

Figure 5.1 presents the main interactions of the attribute authorization type (red and
green arrows), together with the contract deployment (blue arrow) and the expected off-line and
direct interactions (black arrows). In the figure, each interaction has a number, however, except
by the prerequisites (defined in the box brackets), there are no strictly execution order. Thus, one
can invoke (7) setContext before it invokes (6) newContextRule because they are independent
functions. However it is impossible to invoke (4) setRulesAuthority before (3) approveOwnership
because the former depends on the posterior.

Before being used, E-ControlChain needs to be deployed. The deployment is made
sending its compiled code to the Ethereum, i.e.,by (1) deploy contract. The deployment

54

Figure 5.1: E-ControlChain interactions

&9&:&9&:

Contract Owners
Owners

(2) setOwner [1]
(3) approveOwnership [2]
(4) setRulesAuthority [3]

ﬁ; """ - (11) authorizedByAttributeRules [1] % @

(1) deploy contract

Ethereum network

Resources
(6) newContextRule [1]
(7) setContext [1]
(10) Access
(8) createAttributeRule [1,6]
(9)

9) setAttribute [11]

(12) Acceptance or denial

% (5) off-line authorization request %
H i i i

Authorities Users

has to be done only one time and any other E-ControlChain function call from any user can be
directed to the same deployed contract. There are eight fundamental function calls to provide
the ControlChain attribute-based access control: (2) setOwner, (3) approveOwnership, (4)
setRulesAuthority, (6) newContextRule, (7) setContext, (8) createAttributeRule, (9) setAttribute
and (11) authorizedByAttributeRules. Keep in mind that, some functions dedicated to “update”
or “remove” published contents were hidden to simplify the explanation, for example, a function
called “deleteAttributeRule” that is used to invalidate an access rule. Furthermore, some of the
presented functions, like (7) setContext if using a previous used context identifier, can be used to
update the context values. Thus, the update of some information does not require a separated
function.

The (2) setOwner and (3) approveOwnership functions define an entity
ownership and approve it. If it already has an owner, only the defined owner can define a new one.
However, if there is not a defined owner, anyone can became the owner of the address. Letting
the call permission of the function “setOwner” be more flexible could ease the recovery of a
device if the owner lost his or her keys, however, in the other hand, the effectiveness of thefts can
increase. Also, in order to avoid malicious entities from pretending to belong to an entity they do
not belong to, only the defined new owner can approve his ownership. After the ownership is
approved, the owner can delegate the access control over the resource to another entity (called
rules authority) using (4) setRulesAuthority.

The rules authority is responsible for creating the access control rules for its delegated
resources. It creates the attribute-based rules using the (8) createAttributeRule
function. Each rule defines the required attributes for the resource and requester, and its respective
attribute authorities, i.e. the entity that has to provide the attribute. besides this, it also defines

55

the allowed actions and a list of already created context rules that have to hold in order to the
access be granted. Thus, before creating it all the used context rules has to be already created.

A new context rule can be created with the (6) newContextRule function. Each
context rule is an ordered quadruple (source, identifier, comparator, value) .
It defines that the source is the provider of the context identified by identifier and that, in
order to allow access, the comparison, using the comparator, of the current context value with
the value has to be true. Currently, the comparator can be any common relational operator:
<, <=, ==, | =, >= or >, represented by integers ranging from O to 5, respectively. Note that
atuple (source, identifier) is acontextidentifier. The context rule always uses the
more recently published context and only the source itself can publish/update its contexts. A
context is published with the (7) setContext function and requires the context identifier
and a value for it.

Any entity can give attributes to any other entity using the (9) setAttribute
function. The given attributes are isolated by authority, i.e. the ones given by one authority
does not get mixed out with the attributes given by another authority. Note that all the rules that
uses information from authorities have to provide the identity of the authority from which the
information will be pulled out.

At any time, a resource can verify if a requester can have access to its resource. It
can check this information with (11) authorizedByAttributeRules function. It only
needs to provide the requester and the resource identifiers. As this function does not change the
state of the contract it can be executed locally on the Ethereum node, generating no extra cost
because its call does not get mined. In addition, as it is intended to be a local query, it also has a
similar response time as a common lightweight database query.

In order to avoid centralization, the E-ControlChain advocates the direct (10) access
to the devices holding the resources whenever it is possible. However, (11) can be called not only
by the resource device itself, but also by a gateway or any other device. So, a resource device
can choose one or more devices from its confidence circle and ask for their support. Figure 5.2
shows three different approaches of authorization checking. Up receiving an access request,
the device can: (a) check the authorization itself; (b) ask for trusted device’s help: (c) use a
gateway or router that filters all unauthorized access attempts. After the checking, it replies with
an (12) Acceptance or denial,i.e. the data/service or an unauthorized message. It
is important to highlight that the exactly way all the off-line requests, like (5) Off-line
authorization request, (10) and (11), occurs are out of scope for the E-ControlChain
and has to be defined by a protocol defined between the Owners, Users and IoT devices.

Assumptions Our assumptions are: (1) For each resource that requires a different access
control policy, there is a different Ethereum network address and, therefore, a public and private
key; (2) Only the resource device know the private keys for its resources; (3) If the resource
device does not have the minimum power to run a Ethereum client, it has a trusted third party
node who can run the client for it; (4) The Ethereum client can synchronize correctly with the
network, i.e. it is connected to at least one honest participant that is not suffering from attacks;
(5) A resource device can verify and extract the address of a requester or has a trusted third party
that can do it; (6) A requester know or has a way to obtain the address of a device. As can be
seen, all the assumptions are reasonable taking into account the Blockchain mode of operation,
its security mechanisms, Ethereum characteristics, and today’s existing technology.

56

Figure 5.2: E-ControlChain Authorization Approaches: (I) direct access; (IT) support device access; (II1) gateway

access
®)

(@)
(11) authorition checking

$ -l

ﬁ Ethereum network

_________ (10.1) Request

(11) authorition checking

Q E_C_99_CE§

Ethereum network

support

Resources

Resources

(10) Access | (10) Access
' (12) Acceptance or denial

(12) Acceptance or denial

©

Resources

(11.1) Request data or

service provisioning

()

Gateway

(11) authorition checking

Q E_C_q_cti

Ethereum network

(10) Access
(12) Acceptance or denial

57

5.1 MATHEMATICAL MODELING

In this section we construct the mathematical modeling of E-ControlChain. We start
from the basic structures and go up until reaching the authorities, resources and context. After,
we show how this data is updated and how the authorization is verified through it.

Let:

Z be the set of integers;

7 be the set of UTF-8 strings;

2 be the set of boolean values, i.e. “true” and “false”;

& be the set of Ethereum addresses:

ACT be the set of actions, e.g. read, write and execute;

and COM P be the set of comparators, e.g. >, = and !=.

Then, a context rule is composed by an address a € . that will be the source responsible for
updating the context, a string s € . that uniquely identifies it in the source scope, a comparator
comp € COM P that will be used to evaluate the context and an integer that serve as parameter
in the comparison. Thus, we define CR, the set of all possible context rules, as the Cartesian
product of the set of .7, ./, COM P and 7Z as shown in (I):

CR=9 X XCOMP XZ (@)

With CR defined, we can define the rules sets, but first we define the capability and ACL
set lists. Both are composed by an address a; € <7, a subset of context rules CR" € H(CR)
and a subset of actions ACT’ € Z(ACT). The difference is that the addresses in capabilities
correspond to resources, while in ACL to users. Thus, we define CAP and ACL, the sets of all
possible capabilities and ACL lists, as an equal Cartesian product of <7, Z?(CR) and Z(ACT)
as shown in (II) and (IV), respectively. Also, to identify to whom they belong to, we need
one more address ay € .o/ that correspond to the user in capabilities (defining to which user
the capability belongs) and to resources in ACL (defining to which resource the ACL belongs)
address when turning them into rules. This requirement results in a Cartesian product of the .o/
with CAP, and ./ with ACL, originating CAPRULES (Ill) and ACLRULES (V), respectively.
Finally, the attribute-based rules have seven variables. The second and fourth, 51,52 € .7, are the
attributes required for the resource and user, respectively. The first and third, a;,a; € <7, are the
addresses of who needs to provide the attributes to the resource and requester, respectively. The
fifth parameter, b € % is a Boolean that define if addresses should inherit the attributes of their
own owners. The sixth parameter, CR’ € Z?(CR), is a subset of CR set. The seventh parameter,
ACT' € P(ACT), is a subset of ACT set. Thus, we define ATTRRULES, the set of all possible
attribute rules, as the Cartesian product of the set of <7, ., &7, ./, %, Z(CR) and Z(ACT) as

shown in (VI).
CAP = o7 X P(CR) X H#(ACT) (II)
CAPRULES = o XX CAP (TIT)
ACL = o7 X Z(CR) X H#(ACT) (Iv)
ACLRULES = o)X ACL (V)
ATTRULES = & X ./ X o/ XS X B X PCR) X P(ACT) (VD)

To define authorities, we have to define the rules and attributes that it holds. Each
rules authority can choose between what rules defined above they will make its subordinate
devices obey. Thus, the rules used by an authority AUTHRULES are a triple composed by

58

CAPRULES € Z(CAPRULES), ACLRULES € P(ACLRULES) and ATTRULES' €
P(ATTRULES) as shown in (VII). Attributes are strings that are associated to addresses. They
are used to grant accesses in attribute-based rules. A set of all attributes, ATTRS, is composed
by the Cartesian product of all addresses a € .7 with all strings s € .% as shown in (VIII). Each
attribute authority can choose, between all attributes, which ones they will declare. Thus, each
authority chooses a subgroup ATTRS’ € P (ATTRS) to be its attributes, AUTHATTRS, as
shown in (IX). Finally, the set AUTH § holds all the information from authorities, i.e. rules and
attributes. This information is indexed by the address of the authority. Thus, we define the set of
all authorities, AUTH S, as the union of the triples composed by the authority address a € <7,
the attributes and rules chosen, AUTHATTRS and AUTHRULES, respectively. Note that all
addresses are authorities but they can choose not to create rules or give attributes.

AUTHRULES = (CAPRULES ,ACLRULES’,ATTRULES’) | (VID)

CAPRULES € Z(CAPRULES), ACLRULES' €

P(ACLRULES), ATTRULES' € Z(ATTRULES)

ATTRS = o X . (VIID)
AUTHATTRS = ATTRS' | ATTRS’ € P(ATTRS) (IX)
AUTHS =\J(Va € o/(a, AUTHATTRS,, AUTHRULES,)) X)

A resource is represented by its address, the address of its owner, a flag of approved
ownership and an address of the authority. Thus, we define the set of all resources, RES, as
the union of the quadruples composed by the resource address aj, the address of its owner
ar € 7, a flag of ownership approving b € % and an address of the authority a3 € 7 for each
a; € & as showed in (XI). Note that all addresses are resources but its owner can choose not to
define authorities for it. Furthermore, the definition of an owner for an address is not mandatory,
although it is the first recommended action when a new address is created (see Section 5.4.1).
Note also that an address can be the owner of itself.

RES = U(‘v’a1 € M(al,az, b, Cl3) | ar,as € éZf,b € @) (XI)

A context creates a representation of the current environment. To have a meaning it is
always bounded to an address. They are used inside authorization rules. We define the set of all
possible contexts, CONTEXTS, as a the union of the triples composed by an address a, a string
s and a value v € Z for each a € 7 and sin.7.

CONTEXTS = J(Va € &/,VYs € .S (a,s,v) | v € Z) (XII)

5.1.1 Updating the data

To avoid contradiction in the information held by the mathematical model, operations of
updating information are composed by an intersection that removes the old information and a
union that adds the new one. Furthermore, in order to avoid undesired updates, all of them are
restricted by who can perform it. For example, authorities can freely update its given attributes
and its rules, but cannot change the ones from others as shown in (XIII).

AUTHS = AUTHS (N (a, AUTHATTRS 14, AUTHRULES,4) | (XTIT)
(a, AUTHATTRSyen, AUTHRU LES,,,,) IFF the entity updating the data is a,
otherwise AUTHS = AUTHS

On the other hand, resources cannot freely change its information. Only owners can
execute the operation. Also, the model also impose some restrictions to avoid undesirable
behaviors. For example, if the owner is changing the ownership of one of its resources, the flag
of approved ownership has to be false and the authority rule be undefined as shown in (XIV).
besides this, only the current owner can change the flag of approved ownership to true or define a
new rule authority for the resource (after approving the ownership) as shown in (XV) and (XVI),
respectively.

59

RES = RES (N (a1, 02014, b, a3014) U (a1, @opews false,0x0...0) (XIV)

| (a1, @201, b, a3010) € RES, aonew € <7 1FF the entity updating the data is a4

or azpi4 1S 0x0...0, otherwise RES = RES

RES = RES () (ai,az,b,a3) U (a1, az,true,a3) | (a1,a2,b,a3) € RES IFF the (XV)

entity updating the data is ay, otherwise RES = RES

RES = RES (N (a1,a2,b,a3014) U (a1,a2,b,030) | (a1,02,b,a3014) € (XVD

RES, b = true, asp.,, € </ IFF the entity updating the data is a;, otherwise

RES = RES

As in rules and attributes update, only the context provider itself that can update the

values of a context held by it as shown in (XVII).

CONTS = CONTS (N (a,s,vo1a) U (a,8,Vpew) | (@,5,v014) € CONTS, e € (XVII)

Z IFF the entity updating the data is a, otherwise CONTS = CONTS

5.1.2 Authorization check
Let:

* areq be the address of the requester:;
* Q,0s be the address if the resource;

* actreq be the action the requester is trying to perform on the resource.

So, from (XI), (XIV) and (XV1), there is a rules authority a, that manages the access to
the resource on behalf of the owner:
A a, | (@res-ar.b,a,) € RES (XVII)
From (VII) and (X), there are three sets of rules, each set for one of the types of rules,
i.e. capability (CAPRULES,), ACL (ACLRULES,) and attribute (ATTRULES,):
3 (a,, AUTHATTRS,,AUTHRULES,) € AUTHS (XIX)
AUTHRULES, = (CAPRULES,, ACLRULES,, ATTRULES,) (XX)
Each of this sets need to be evaluated before denying an access. If anyone of them has a valid
rule, them the return is true. So,
true, if 3 caprule; € CAPRULES, | caprule; is valid or

i Jaclrule; € ACLRULES, | aclrule; is valid or
authorized =)] (XXI)
Jartrule; € ATTRULES, | attrule; is valid,

false, otherwise
Next we show how each one of the three types are evaluated.
CAPRULES. From (III), each caprule; € CAPRULES, is a tuple (a;, CAP;) and
I (areq, CAPreg) € CAPRULES | CAP;req has all the capability-based (XXII)
authorizations granted to req by the rules authority of resource res
From (II), each cap; € CAP;., is a triple (a;, crj, act;) and
3 (aress CRres, ACT,o5) € caprey (XXIII)
Therefore, for CAPRULES,

true, if act,qy € ACT,¢s and Vcr; € CR,o4(cr; is valid)

authorized = (XXIV)

false, otherwise
At the end of the session we show how to evaluate a context rule cr;.
ACLRULES. The evaluation of ACLRULES are very similar to those in CAPRULES,
except that the addresses of the requester and resource are used in an exchanged order. From (V),
each aclrule; € ACLRULES, is a tuple (a;,ACL;) and

60

3 (ayes, ACLyos) € ACLRULES | ACL,., has all the ACL-based authorizations (XXV)
that grant access to res, according to the rules authority of resource res
From (IV), each acl; € ACL,.; is a triple (aj, crj,act;) and
A (Gregs CRreq, ACT,04) € AClyes (XXVI)
Therefore, for ACLRULES,

true, if actreq € ACTreq and Ver; € CRyeq(cr; is valid)

authorized = (XXVID)

false, otherwise
At the end of the session we show how to evaluate a context rule cr;.

ATTRULES. From (VI), each attrules € ATTRULES, is a 7-tuple
(QresasSres» Areqas Sreq-inheritreg, CRostrutes ACT41ri1e) and has to pass through the process
of validation until one grants the access or all the rules from the authority rules were verified.
Ignoring, for now, the inherit,., (explained later), there are four things to validate on an attrule;:
if actreq € ACTyrute. if the context rules CRgyrure hold (explained later) and if the $yes and sye4
are attributes given to res and req by a,¢5q and a;0q4q. respectively.

The attributes validation uses the definitions (VIII), (IX) and (X). From (X),

A (@resa, AUTHATTRS, 50, AUTHRULES, .s,) € AUTHS (XXVIII)

3 (areqa, AUTHATT RS, ega, AUTHRULE S;04q) € AUTHS (XXIX)
and, from (VIII) and (IX),

true, if s,. € AUTHATTRS, s, and
valid_attributes = Sreq € AUTHATTRS; 44 (XXX)

false, otherwise
If the inherit,.4 is true and the ownership of the requester’s address is approved, then
the rule also has to be tested against the address of the requester’s owner. FROM (XIII), (XIV),
(XV):

3 (areq, owneryeg, approvedyey, authority,eq) € RES (XXXTI)
The owner of req is owneryeq. Thus, checking the approved,., will lead to if the ownership of
the requester has been approved. Thus, if both, inherit,.q and approved,.q, are true then the
rule has to evaluated with owner, ., as the requester.

Therefore, for ATTRULES,

true, if req’s and res’ attributes are valid,
actreq € ACT, o4 and Ver; € CRysre(cr; is valid) or
if inherit,.q and approved,., are true,
authorized = OWReryeq as the requester makes (XXXII)
req’ and res’ attributes valid,
actreq € ACT, oy and Ver; € CRysipue(cri is valid)

false, otherwise
At the end of the session we show how to evaluate a context rule cr;.

CR.

From (I), the context cr € CR is a 4-tuple, (a, s, comp, v), composed by the address a of
the context’s source, a string s that identifies the context in source’s scope, a comparator comp to
evaluate the context and an integer v that serves as parameter to the comparison.

To verify if the cr holds, the current value of the context is required. From (XII),

A(a,s,veurrens) € CONTEXTS (XXXIIT)
where Veurren: has the newer value for context (a,s). Thus,

true, if .comp. v is true
cr_holds = {0 1 Veurrens -COMP- v (XXXIV)

false, otherwise

61

5.2 EXPERIMENTAL EVALUATION

We divided the experimental evaluation section in three parts. Firstly, we present our
experimental environment (Section 5.2.1). Secondly, we expose the E-ControlChain usage
cost (Section 5.2.3). Finally, we show the burden it causes on constrained resource devices
(Section 5.2.4).

5.2.1 Experimentation environment

For these evaluations, we used the environment depicted in the Figure 5.3. We have
a Raspberry Pi 3 B+ that has some simulated sensors and actuators plugged to it. It also runs
an Ethereum client and uses a Decentralized Application (DApp) interface, implemented in
JavaScript, to interact with E-ControlChain contract published on Ethereum. This Ethereum

client does not mine, it only synchronizes with the Ethereum network (for more details see
Section 3.2).

al)
QTcOct M

Ethereum network

e &QQ: &939:
i H i

Requesters Owners and
authorities

Figure 5.3: Experimentation environment

The resource owners, authorities and requesters also interacts with the E-ControlChain
contract on Ethereum network trough a DApp interface. Like the resource devices, with
this interface, they can call functions of E-ControlChain in order to publish access rules,
attributes, context information and so on. The attempt of access resources can be done using [oT
communication protocols, like MQTT or CoAP. Note that, for MQTT, a broker is required to
intermediate the communication between requesters and resource devices. Therefore, the DApp
interface and the Ethereum node client is required to be on the broker too. In our experimentation,
we used the direct access.

The E-ControlChain contract for all experiments, unless otherwise specified, were
implemented in Solidity version 0.4.23 and the version of running Ethereum clients and miners
was 1.8.17. The E-ControlChain pseudocode is available in the Appendix A and the full code in
the Appendix B. The Raspberry Pi was running Raspbian released on 2018-06-27 with kernel
version 4.14. Furthermore, to emulate the Ethereum network, we used an Ubuntu 18.04 with
kernel 4.15 over a MacBook Pro with core i7, 16GB of RAM and SSD storage. Finally, we also
developed a framework to easy and automate the configuration, initialization, deployment and
starting of the network on multiple hosts and/or multiple Ethereum clients in a same host. Thus,
the nodes in the network were all created through this framework.

62

5.2.2 Use case tests

This section shows some use cases and how they can take advantage of the E-
ControlChain. In particular, we based our use cases in the main steps in device’s life-cycle [143]:
(1) distribution after its fabrication (Section 5.2.2.1) and the use of devices by the final user
(Section 5.2.2.2). The first use case shows the transferring of the control over a device. The
second use case show how the controlling of a device. However we also present its usage in other
scenarios like public vehicles tenancy and the protection of generic resources outside the IoT. All
the tests on this section were generated using the Ethereum Go version 1.9.5 and Solidity 0.5.11.

5.2.2.1 Tracking of assets’ ownership

During tests, we noted that the E-ControlChain can also deal with other important topic
in the IoT’s study area, the tracking of assets [144, 145]. It can be done through the transfer of
control over objects. It provides easily verification of ownership and origin of an asset using
ownership history. Besides this, who detains the ownership over an object also detains the control
over it and can create access policies. As an extra feature, it can be used to identify and avoid
stolen assets and unofficial products offered as official ones.

Some of the tracking scenarios requires complex systems, like the tracking of which raw
materials were used to fabricate a specific product, i.e., with composition functions. In this case,
a complex chaining of materials and products are required and E-ControlChain does not comply
with it. However, without this composition, it can provide the tracking of the assets’ ownership.

The ownership tracking can be made using the contract “BasicAndCommonControl™
from E-ControlChain, specifically, using the functions “setOwner” and “approveOwnership”.
The very first owner has the capability of defining him or herself as the owner of the asset. After
he or she can create a transfer transaction indicating the new owner and so on. It is important to
remind that, after each ownership transfer, the new owner has to accept the ownership. As the
new ownership information does not erase the old one and only turn it into historic information,
the history of owners can be obtained and verified.

Next, we present one example of how this functionality can be used. Suppose a fabric
that assemblies a device and delivers it to customers, through distributors and retail stores. In
this example, the fabric will ship the device to a distributor. Then it will ship to a retail store,
where customers buy the smartphone.

For the following function calls and results, we will use the correspondence between
entities and addresses showed in Table 5.2.

Table 5.2: Tracking of assets’ ownership - correspondence between entities and addresses.

Entity Address
Device 0x3779a449784Dd73379£88888079564529F5Re752
Owner 1 (Fabric) 0x1156976F5EL86chbB225240BC1R1470FBEOaclBC

Owner 2 (Distributor) 0x4259F68a405¢c008591E1816Ad4Da789E2E3791aB
Owner 3 (Retail store) 0x200DD168e935¢cadlf7df7886d3Dd727F42F8a318
Retail store 2 0x7fb7b2342C£25779e2905279BCO0F8ad0870C98E

The process starts with the fabric generating an address for the next device, through the
generation of a new Ethereum public key. The fabric generate it in its own servers. After its
generation, the fabric own the address calling the function

1 setOwner (0x3779%9a449784Dd73379£88888079564529F5Re752, 0
— x1156976F5Eb86cbB225240BC1B1470FBEOaclBC7)

63

and embed the keys and the address of the E-ControlChain in the device, protecting the private
key from external access and all of them from modification.
The call to the function “setOwner” generates a transaction hash (tx hash), like

1 b’ "B\x1lv#\x91\xfb9f&T\x01\xae\xeb\xcbFN\x030\xed<un\xae\xab\xl1aRQ\x96\
— x15\xda\xdb’

After the transaction gets mined the tx hash can exchanged by a receipt, like

1 (AttributeDict ({’args’: AttributeDict ({’addr’: "0
x3779a449784Dd73379£88888079564529F5Ae7527, 'new_owner’: 0
x1156976F5Eb86cbB225240BC1R1470FBEOQac1BC7"}), 'event’: '
setOwnerEvent’, ’logIndex’: 0, "transactionIndex’: 0, '
transactionHash’: HexBytes (’0
x224211762391fb3966265401aecet6cbd64e0351led3c756eacablab2519615dadb’
Yy, "address’: "0x9F94f29EF95E45ec07621d8a755A8055691bcl4c’, '
blockHash’ : HexBytes('0
x88ee91e851b418£2e94b8a986e9f£f555a1693b%ae28a%4eeb5e2dc9c88d8739%ca’
Y, "blockNumber’: 14171}),)

1 P N o

The receipt contain information about the function execution, like parameters, the success of its
execution and events that were triggered. In this case, the event triggered was “setOwnerEvent”.
Extracting the information from the event, we have

1 AttributeDict ({’addr’: '0x3779a449784Dd73379£88888079564529F5Re7527,
<= new_owner’: '0x1156976F5Eb86cbB225240BC1B1470FBEOaclBC7’ })

Although, to manipulate the access control of the device, the fabric is required to approve
the ownership using the function “approveOnwerhip”, this is not necessary for transfer it to the
next owner, in this case, the distributor. Thus, right after the last ownership was mined (for more
information, see Section 3.2), the fabric can transfer the ownership of the device to the distributor
calling the function

1 setOwner (0x3779%9a449784Dd73379£88888079564529F5Re752, 0
< x4259F68a405c008591E1816Ad4Da789E2E3791aB)

After this function call is mined the distributor can transfer the device to a new onwer,
in this case, the retail store using the function call

1 setOwner (0x3779%9a449784Dd73379£88888079564529F5Re752, 0
<= x200DD168e935¢cadlf7df7886d3Dd727F42F8a318)

Anyone can see the triggered events and filter then based on their contract and name.
Therefore, after the execution of this functions, the history of the event “setOnwerEvent” show us
three changes of owners for the devices” address, where the last one is the current owner:

1 AttributeDict ({"addr’: "0x3779a449784Dd73379f88888079564529F5Ae752",
— owner’: "0x1156976F5Eb86cbBR225240BC1B1470FBEOaclBC7 })

2 AttributeDict ({’addr’: 7"0x3779a449784Dd73379f88888079564529F5Ae7527, '
< owner’: "0x4259F68a405¢008591E1816Ad4Da789E2E3791aB’ })

3 AttributeDict ({’addr’: '0x3779a449784Dd73379f88888079564529F5Ae752",
— owner’: "0x200DD168e935cadlf7df7886d3Dd727F42F8a318" })

Note that, although it is not necessary the approve of the ownership to transfer a device,
it is useless, i.e. it cannot be used, without the ownership be approved . This occurs because no
rule can be added to the device, as no rule authority can be set to it and the device cannot access
another device with its address unless the resources rules define it explicitly.

64

Also, lets say the distributor (owner 2) wants to fool two different retail stores, sending
them the same device on E-ControlChain. In order to do this it has to generate a second transaction
calling the function “setOwner” similar to the one that it made to the retail store (owner 3), but
with a different address as new owner:

1 setOwner (0x3779%9a449784Dd73379£88888079564529F5Re752, 0
— x7fb7b2342C£25779%9e29p5279BCY90F8ad0870C98E)

The receipt of this call returns an empty tuple:

10O

This means that the execution failed and no changes to the data was made. The reason behind its
failure is that the malicious distributor cannot forge the signature of the current owner (the retail
store in the first transaction). This can be proved listing all events triggered when a new owner is
defined and seem that it remains the same as before:

1 AttributeDict ({"addr’: "0x3779a449784Dd73379f88888079564529F5Ae752",
— owner’: "0x1156976F5Eb86cbB225240BC1B1470FBEOaclBC7 })

2 AttributeDict ({’addr’: 70x3779a449784Dd73379£88888079564529F5Ae7527, '
< owner’: "0x4259F68a405¢c008591E1816Ad4Da789E2E379%1aB’ })

3 AttributeDict ({’addr’: '0x3779a449784Dd73379f88888079564529F5Ae752",
 owner’: "0x200DD168e935cadlf7df7886d3Dd727F42F8a318" })

It occurs because the function “setOwner’ has a require statement that authorizes the change only
if the current calling user is the current owner or there is no owner for the address. Of course, if
the two transactions are created at the same time and the second one gets mined before, the result
would be reversed.

In a similar way, if someone decides to stole a truck full of devices, the product will
have no or little value as the thief cannot transfer their ownership. This could be different if
the thief also acquires the current owner’s private key. Therefore, it has to be kept in a secure
environment.

5.2.2.2 Guests in a smart home

Smart homes are complex environments because its diversity of devices. While some of
them are more processing powerful, like televisions and computers, others are more limited, like
smart locks and temperature sensors. However, in the good side, as it is a structured environment,
energy is easily provided to all devices. Thus, there is no limitation on the usage of the devices’
communication equipment (commonly, a radio).

In most cases, the operator, i.e. who needs to configure the devices of a smart home,
will be the owner of the objects in the house and will have only basic knowledge in computation.
Thus, keep in mind that many of the steps described below can be automatized or have a pretty
and simple interface with the user.

All the following function calls were executed with the real address, however, to simplify
the explanation we substitute them by fictitious and smaller ones as shown in table 5.3.

Let’s say that Alice (address 0x2), bought many cool smart devices for her house,
between them a special one (address Ox1). As Alice is a concerned person, she verified that (1) the
device is original, verifying if the first owner address is equal to the address of the official fabric;
(2) if the device is new through verifying if no one created access policies for the device; and (3)
if it was not stolen, automatically done as only the current owner can transfer the ownership of a
device (using the premise that the current owner’s key weren’t stolen). This is possible using the
techniques shown in Section 5.2.2.1.

65

Table 5.3: Guests in a smart home - mapping between entities, real and fictitious addresses.

Entity Fictitious address Real address

Device Ox1 0x3779%9a449784Dd73379f
88888079564529F5Ae752

Alice (Host/Owner) 0x2 0x1156976F5EL86cbB225
240BC1B1470FBEQaclBC7

Alice’s friend (Housemate) 0x3 0x4259F68a405c008591E
1816Ad4Da789E2E3791aB

Bob (Guest) Ox4 0x200DD168e935cadlf7d
£7886d3Dd727F42F8a318

Some other guy/girl (guest) 0x5 0x309D72826Be336db6c4

5eel763f1F7B999c2CAf2

To use the device, Alice has to follow two steps: (1) approve her ownership through the
function “approveOwnership™; and (2) create access policies granting permissions for her. For
the second step, she could use either access methods of the E-ControlChain: ACL, capability or
ABAC. In this example, she chose to use ABAC as it fits better in her future necessities. The first
step can be done calling:

1 approveOwnership("0x1"); // only the current owner of 0Oxl is authorized
&3 o 6411 1t

The second step requires at least four function calls:

1 setRulesAuthority ("0Ox1", "0x2"); // define who will define access
~ policies to the device

2 createAttributeRule ("0x2", "home_device", "0x2", "resident", true, [1,
= [0,1,2]);

3 setAttribute("0x1", "home_device", true);

4 setAttribute ("0x2", "resident", true);

In line 1, Alice defined herself as the rules authority, i.e. who can define the access policies for
the device. The line 2 creates a attribute-based rule. This rule defines that any address that have
the attribute “resident” (4th parameter), defined by 0x2 (3rd parameter), can access any address
that has the attribute “home_device” (2nd parameter), also defined by 0x2 (1st parameter), to
read, write and execute (7th parameter, respectively 0, 1, 2) independently of the context (6th
parameter). Also, as the flag “inherit_owner_attributes™ (5th parameter) is true, any address
owned by an authorized address will also has access to the home devices. Finally, in lines 3-4,
she gives the attributes “home_device” to the device and “resident” to herself. Of course, this
permission only are valid for those devices that are using Alice’s address as a rule authority.

Note that both functions “setRulesAuthority” and “createAttributeRule” allows the
delegation of the access control. The first (setRulesAuthority) can be used to delegate full control
over the device (except the ownership). The second (createAttributeRule) allows a second level
of delegation where any entity can be defined as an attribute authority, i.e. the entity who choose
others to receive attributes that grants the access.

For now on, she can access the device. Any other entity that she did not grant the
attribute “resident” cannot. This can be confirmed by the response of the function calls:

1 authorizedByAttributeRules ("0x1", "0x2", 0);
2 <True>

3 authorizedByAttributeRules ("0x1", "0x3", 0);
4 <False>

66

The function “authorizedByAttributeRules” receives three parameters, the first is the address of
the resource, the second is the address of the requester, and the third is the action that the requester
is trying to execute on the resource. Also, this function can be executed by any participant and,
thus, a gateway device can help devices in this task.

If she wants to grant the same access privileges to let’s say, a housemate (0x03), she has
only to call:

1 setAttribute ("0x3", "resident", true);
2 authorizedByAttributeRules ("0x1", "0x3", 0);
3 <True>

If the Alice’s housemate moves out of their house, Alice can remove her permissions removing
the attribute “resident” of the housemate through calling:

1 setAttribute ("0x3", "resident", false);
2 authorizedByAttributeRules ("0x1", "0x3", 0);
3 <False>

Alice also is a party girl and frequently invite her colleges for parties on her home. As a
good party host, she always wants to make her guests comfortable and feel like they were in their
home, so she wants to provide them with access to devices she bought. However, as parties in
her home are very frequently, she does not want to keep giving and revoking access permissions
in every party to every guest, as this would be laborious. So she prefer to maintain the access
permission. The only problem is that between the guests is Bob (address 0x4). She knows that he
is not a reliable person and that sooner or later other unreliable persons will become her guests
too. Thus, she wants to provide the authorization access only while the party is going on.

To achieve her goals, she needs to create a rule that authorize guest under the described
circumstances. This rule requires a context rule capable of defining when there is a party going
on. To create this context rule, she can call the function:

1 newContextRule ("0x2", "giving_a_party", 2, 1);

The created context rule states that, in order to it be considered a valid context rule, the value
obtained from context “giving_a_party” (2nd parameter) provided by the Alice’s address (1st
parameter) has to be equal (3rd parameter, the number 2 represents “=") to the value presented in
the 4th parameter.

Each created context rule has an unique identifier in the E-ControlChain that is its
index in the array of contexts. Alice can obtain her context rule index monitoring the event
“newContextRuleEvent” triggered when the newly created context rule gets mined. In her case,

the index is O as revealed by the field “id” in the event:

1 AttributeDict ({’source’: '0x1156976F5Eb86cbR225240BC1IB1470FBEOaclBC7’,
~ id’: 0, "identifier’: ’'giving_a_party’, ’'comparator’: 2, ’'value’:
— 11})

After discovering the new context identification, she can create a rule using it as follows:

1 createAttributeRule ("0x2", "home_device", "0x2", "guest", true, [0], [0,
= 11},

This new rule authorizes any address that received from Alice’s address (3rd parameter) the
attribute “guest” (4th parameter) has the permission to read and write (7th parameter) content for
any address that also received from Alice’s address (1st parameter) the attribute “home_device”
if the context of index 0 hold (6th parameter). As the 5th parameter is true, any guest’s owned

67

device also have his or her permission. Again, this permission only are valid for those devices
that uses Alice’s address as a rule authority.

As Alice already defined an attribute “home_device” for her device previously, she only
has to define who are the guests of her party and, in this case, is Bob:

1 setAttribute ("0x4", "guest", true);

As can be seen in the access attempt, Bob still cannot access the device:

1 authorizedByAttributeRules ("0x1", "0x4", 0);
2 <False>
3 authorizedByAttributeRules ("0x1", "0x4", 1);
4 <False>

This occurs because Alice has not yet set the context “giving_a_party” to 1.
When Alice’s party is ready to begin, she sets the context and Bob receives the permission
to read and write but not to execute (as defined in the attribute rule):

1 setContext ("0x2", "giving_a_party", 1)

2 authorizedByAttributeRules ("0x1", "0x4", 0);
3 <True>

4 authorizedByAttributeRules("0x1", "0x4", 1);
5 <True>

6 authorizedByAttributeRules ("0x1", "0x4", 2);
7 <False>

Also, to grant the same permission to any other guest, for now on, she only has to give him or her
the attribute “guest™:

1 authorizedByAttributeRules ("0x1", "0x5", 0);
) <False>

3 setAttribute ("0x5", "guest", true);

4 authorizedByAttributeRules ("0x1", "0x5", 0);
5 <True>

To revoke a guest’s permission, Alice’s just need to remove the attribute “guest” from
entity:

1 setAttribute ("0x4", "guest", false);
2 authorizedByAttributeRules ("0x1", "0x4", 0);
3 <False>

And, for revoking all guest’s accesses, she only need to set the context “giving_a_party” to O as
this causes the context rule to not hold and, therefore, the attribute rule deny the access attempt:

1 setContext ("0x2", "giving_a_party", 0);
2 authorizedByAttributeRules ("0x1", "0x5", 0);
3 <False>

As explained in the Section 5.2.2.1, Bob will fail if he tries to steal device’s ownership
or Alice’s device itself as it cannot forge the Alice’s signature. However, Bob can try to gain
unauthorized access in many different ways, like: (1) trying to approve the ownership of an entity
pretending to be as Alice; (2) setting a new rule for Alice’s device; (3) giving himself an attribute
that could grant access to a device; and (4) changing a value from a context.

The same protection that keeps Bob away from stealing the ownership of Alice’s devices
is used here. The ownership approval can only be invoked by the current defined owner. To verify
it, the given public key is validated against the transaction signature and the address of the sender
is extracted from this public key. Therefore, the (1) will fail by the same reason the stealing of an

68

ownership does not work. In a similar way, only the device itself can change the value from its
created context. Therefore, only if Bob find a way to forge the signature, (4) will fail.

Each created rule is coupled with the entity who made the transaction. Also, before a
device be accessible, its owner has to define a rules authority. Devices only obey to rules created
by its defined authority. Therefore, any other entity creating rules does not interfere with Alice’s
devices. So, attempt (2) will fail. Also, Bob cannot create a rule pretending to be a specific rules
authority because he cannot forge the signature. In a similar way, attributes also does not have
the value if not received from the attribute authority defined in the rule and (3) will also fail.

Finally, if Alice wants to sell or give one of her devices to another person, she invokes
the function “setOwner” as discussed in Section 5.2.2.1. Calling this function clears the rules
authority from the device’s address. Therefore, it will be available only when the new owner
approve his or her ownership and define a new rules authority for it.

5.2.2.3 Public vehicles tenancy

Public vehicles, like bicycles and scooters, also are becoming very popular in many
cities. They remain locked until authorized users unlock them, normally, through smartphone
applications. In these systems, there are different user profiles, some of them are constant users,
like people that lives in the city and makes daily use of them, and other user profiles are only
casual, like tourists.

Constant users could prefer to join a subscription plan while the casual ones could prefer
to pay per use or day use. In such scenario, the company behind the vehicles could maintain
rules for the different profiles and give attributes for each user according to its subscription plan.
besides this, context could be used, for example, to limiting the user usage or define the vehicles
that are currently unavailable for maintenance.

We will not show the full list of commands required for this use case as it is similar to
those presented before.

5.2.2.4 Protection of resources outside the ioT

In systems with continuous usage, it is very common the usage of roles, like in Google
Team Drive from G Suite [146] or Open Journal Systems (OJS) [147]. Although they have
completely different purposes, in short, both of them deals with the protection of files, and
control the access to them. Note that the files can be seen as equivalent to sensors reads and
actuators from the IoT. Furthermore, the roles can be translated to E-ControlChain as explained
in Section 4.4.

In order to make the access control role-based access control compatible with E-
ControlChain, it needs to be converted to attributes-based mechanism: the users that needs
access to files are the requesters, i.e. entities; the service provider can be the owner and attribute
authority; roles are attributes given by the attribute authority. Thus, using the example of the
Google Team Drive. The Google would be the owner of the files (in access control scope) and
the attribute authority. besides this, each user receives one or more roles (through attributes)
from it. Note that, for example, Google could allow users, with the attribute “administrator” for
the drive, to change or include new users as this operations also can be seen as a resource and
can exists a rule that authorizes administrators to do it.

Therefore, E-ControlChain can also be applied to similar environments that resides
outside the IoT. Basically, a good part of the use cases that uses ACL, Capability, role, attribute
and UCON-based access control systems can also benefit from E-ControlChain.

69

5.2.3 Usage cost

The approximated cost of executing each E-ControlChain function, using geth version
1.9.5 and solidity 0.5.11, is presented on the table 5.4. Note that this cost can be drastically
reduced adopting other mechanisms of “mining” (see Section 3.2.2) instead the proof-of-work.
For example, it could be used the proof-of-authority, or approaches based on Directed Acyclic
Graph (DAG) (like IoT Chain and IOTA [135, 90]) or based on Byzantium algorithms (like the
Algorand [134]).

Table 5.4: Cost of executing the functions with a gas price of 20 gwei.

Function Cost in Ether Cost in USD**
E-Controlchain contract deployment 0.09024 18.048
setOwner 0.00113 0.226
approveOwnership 0.00088 0.176
setRulesAuthority 0.00092 0.184
newContextRule 0.00228 0.456
createAttributeRule 0.00751 1.350
setAttribute 0.00092 0.184
setContext 0.00093 0.186
authorizedByAttributeRules* 0.00000 0.000

* Although it is executed over the contract, it is executed locally on the
Ethereum client and does not generate extra cost. Only functions that change
the state of the network are charged by the extra cost.

Based on the price of Ether on 29 Oct. 2018 (around USD 200.00 for 1
ether).

5.2.4 Burden on constrained devices

One important factor about an access control architecture for the IoT is its viability in
scenarios with constrained resource devices. In this section, we analyze the consumption of CPU,
disk, network and others when running the E-ControlChain over the Raspberry Pi and discuss
how ControlChain can be compatible with even more constrained devices.

In order to measure the impact of E-ControlChain over the Raspberry Pi, we collected
its resource usage in three different scenarios. In the first, “stand by”, it was in a resting state, i.e.,
only with its fundamental activities running (basic operational system tasks). In the second one,
“geth”, a Ethereum client (geth) was running and synchronizing with a private Ethereum network,
however with no contract interaction. In the third one, “geth + CD + CI”, a Ethereum client was
running with contract interactions, in a way that it saturate the capacity of the Ethereum mining
process (see Section 3.2). In order to do this, we generated 1000 transactions and, as soon as all
of them was mined, we generated another 1000 transactions and so on. Using this methodology,
we achieve an average of 28 mined transactions per second. It is important to highlight that the
mining methodology adopted was the Proof-of-Work with an average block production interval
of 10 seconds and that the mining process was taken only by the computer (see Section 5.2.1), i.e.
the Raspberry Pi only synchronizes with it.

The generated transactions wasamix of setRulesAuthority,newContextRule,
createAttributeRule, setAttribute, setContext functions. The setOwner,
approveOwnership and authorizedByAttributeRules functions weren't used
because the first two are security dependencies for the setRulesAuthority and the last is
executed locally in the geth node and, consequently, are not mined into the Blockchain. The

70

second and third scenario was used to reveal how much of the burden caused by E-ControlChain
is actually caused by the Ethereum fundamental activities. Finally, the measurements were
obtained using the collectd v5.7.1 tool with the collection interval set to five seconds and all
measurement graphs are an average of 10 repetitions.

The “geth” and “geth + CD + CI” scenarios can be divided in periods. The “geth” can
be divided in two periods: before geth complete initialization (BG) and after geth complete
initialization (AG). The “geth + CD + CI” can be divided in three periods: BG, contract
deployment (CD) and contract interactions (CI). The approximated time in which the division
between them occur is represented in the result graphs as two vertical dashed lines. The first one
divides the BG from AG and BG from CD. The second one divides the CD from CI.

Figures 5.4 and 5.5 presents the Raspberry Pi CPU and memory usage, respectively, for
the three scenarios. The CPU results shows that the E-ControlChain causes a CPU consumption
peak of 35% in the BG and CI period. The result also show that the Ethereum client is only
responsible for 2% of the CPU usage after geth initialization and synchronization and that the
operational system CPU usage in stand by is around 0.1%. On the other hand, the memory usage
results shows the same order of magnitude on geth scenarios (350MB versus SOOMB in the CI
period). Their memory usage drop around the 485 seconds could be the release of memory used
to store unused geth code or information that after a while in inactivity gets freed, however, a
more deep investigation is necessary to reveal the real reasons behind it. In the stand by scenario,
the memory usage was around 20MB.

Figure 5.4: CPU impact

100 f 1 T]

CPU usage (%)

T
ol : ' el o8 ¥
¥ 1 IR S Mﬁ- +*-h_|"| +II *I
01 & + 'f‘f‘ i ;,_1.-;'- IL’H 4 ‘;.: * ‘+' *V" 'j-\-"‘ -I;g
[—vw— geth + CD + Cl
: | ---4--- geth
| i --+-- stand by
001 L L | | I I
0 100 200 300 400 500
Time (s)

The measurements obtained from disk reading, writing and total usage is presented in
Figures 5.6, 5.7 and 5.8, respectively. The disk read measurements shows very few readings in
the AG, CD and CI periods with the more overloading activity being the reading of 10KB in an
interval of five seconds. In the BG period, there was peaks of 200KB. In counterpart, the write
measurements shows a slight increase in “geth” scenario when compared to “stand by” one. The
“geth + CD + CI” scenario shows peaks 10x higher than the “geth scenario”, however this peaks
are about 100KB. In the BG period there are write peaks of 2MB. The stored information on disk
shows an increase of 30MB in the BG period and a linear use of the storage space in CI period.
In almost 500 seconds of contract interactions in the CI period, it used approximately 16MB.
This measure up to 2.7GB of storage requirement per day. If a real E-ControlChain was heavily

71

Figure 5.5: Memory impact

of 1 ~—~v geth+CD+Cl ||
1x10 — e Bgth
A | --+-- stand by
W
2
>
=
(]
[o>]
3]
g 1x108
pany
@]
£
D
=
1)(107 1 Il 1 I Il L L
0 100 200 300 400 500
Time (s)
Figure 5.6: Disk read impact
6
1x10 P —~ geth+CDs+Cl
' | --4--- geth
--+-- stand by
100000 : §
[%) E
o)
3} i
8 ;
T 10000]
o
&
v
) b
1000 I 4
! ii + :
100 : ﬁ-‘ : e N J

200 300 400 500
Time (s)

used as in this experimentation, perhaps this could be the main problem of using it over the IoT
network. Fortunately, as discussed after, there are some ways to reduce or avoid this problems.
Figures 5.9 and 5.10 presents the quantity of received and transmitted octets, respectively,
of the network interface. Asexpected, there was an increase in the network traffic, that is necessary
to keep the network synchronized. The “geth” scenario received and transmitted, in average, KB
and 750B, respectively, for each interval of five seconds. The “geth + CD + CI” scenario received
and transmitted a bigger quantity of information in the CI period (received 30KB and transmitted
10 KB of information approximately for each interval of five seconds). The “stand by” scenario
keep the information transmission and receipt lower than 20B for each interval of five seconds.
The results obtained in these experiments shows the viability of running E-ControlChain
in even more resource constrained devices than the used one. However, even so, for devices with
a severe storage restriction, it can be applied a replication factor to the stored data, i.e. each
devices keeps a part of the data with a probability of x%, instead of it in totality. It is possible
to apply selectively information storage also, making them keep only information related to
themselves and, of course, the ones necessary to keep updating with the E-ControlChain (like

72

Figure 5.7: Disk write impact

7
110 P —v— geth + CD + Cl
| ! ---A--- geth
; ! --+-- stand by
1x10° |
(2] |
@ :
o |
o I
£ 100000 ;
z s
< i
v .
[m] Y Y 1
10000 {*
1000
Figure 5.8: Disk usage impact
o 1 ~—v geth+CD+Cl|]
1.55x10 oo A geth
 54x10? : : --+-- stand by
. X [1 1
> 153x10° [
[%;] 1 1
= PRI EAASaRANOMARMI AL A OAASARAAERAMRMAIAMIANISASASIIAMM MR s
] 1.52x10° i S
2 Ny
3 o b
~ 1.51x10 s !]
) i |
15x10° ool .
1.49x10° yomr ! .
gD | ‘ | |

0 100 200 300 400 500
Time (s)

some of the most recent mined blocks). Finally, supporting devices (see Section 5.2) can be
used for helping those even more constrained devices (that cannot handle CPU, memory, storage
or network overload imposed by E-ControlChain). So, when they receive an access request,
they forward it to a supporting device that will check the authorization for them. Of course, the
process of selecting these supporting devices requires caution, otherwise malicious ones can end
up being selected, compromising the device depending on it. We suggest that, when possible, the
constrained device always select devices owned by its own owner or from its confidence circle.
To demonstrate the potential of a single Raspberry Pi as a supporting device, we made
a stress authorization test over three scenarios (Figure 5.11). In the first, Without CI, the
E-ControlChain was deployed but there were no transactions towards it. In the second, During
CI, the Raspberry Pi was under the scenario described for CI period, where the Ethereum
network was saturated with transactions towards the contract. In the third, After 600s of
CI, there were no contract transactions, however, it occurred after 600s of CI period. The results
shows that the number of transactions made to the contract has no or little influence over the
number of authorizations the Raspberry can check. Both, “Without CI"” and “After 600s of CI”

73

Figure 5.9: Network receipt impact

—~v geth+CD+C
---A--- geth
100000 ¢ --+-- stand by g

10000 f

1000

Interface received octets

100

10 & ‘ !
0 100 200 300 400 500

Time (s)

Figure 5.10: Network transmission impact

100000 ~v geth+CD=+Cl
---4--- geth
--+-- stand by
10000

1000

100

Interface transmitted octets

10

t -

”n n

-‘I- [T +4
1

scenarios presented a similar result of approximately 30 authorization per second. However, in
“During CI” scenario, the average of authorizations dropped to approximately 27, showing a
reduction of about 10% with the intense transaction mining. This reduction is, probably, caused
by mechanisms that deal with the concurrency of reading from and writing to the contract at
the same time. Furthermore, for big networks, multiple Raspberry Pi devices can be used, and
is expected that the number of authorizations per second will increase arithmetically with the
number of devices.

5.3 LIMITATIONS

The limitations of E-ControlChain can be divided in three main decision axes: design,
base components and algorithm. The design axis is limitations that involve the basic concepts
behind E-ControlChain. The base components axis is limitations imposed by the adopted
platforms, libraries or other software components used in the development. Finally, the algorithm
axis is limitations taken in the development stage in favor of other benefits.

74

Figure 5.11: Number of authorizations per second

Authorizations / second

Without ClI During ClI After 600s of Cl

A design decision limitation is the adoption of a public Blockchain and the implementa-
tion of all algorithm decisions in the contract. The drawback of this approach is that it lacks of
a strong privacy protection. Although, all the devices and users are behind addresses, that are
known to provide a certain level of anonymity, profiling tools can be applied and, in some cases,
could end up revealing the real identity behind them [148]. As we chose to implement all the
algorithm decisions in the contract, most of the stored information cannot be really encrypted.
However, some data can be replaced by another one using a bijective function and, therefore,
difficult the deduction of what the data represent and what are the real value behind the masked
data. Furthermore, in future works we are planning to create a version of E-ControlChain over
private Blockchains or other more privacy-friendly Blockchain solutions. Another possible future
work is the application of cryptography to hide the information published on Blockchain (maybe
using shared keys cryptography algorithms). However, this solution also leads to the problem of
how to share efficiently these shared keys.

We chose Ethereum as a platform and Solidity as a programming language for developing
E-ControlChain. Naturally, each platform and language has its own limitations (whether
intentional or not) that are forwarded to solutions that adopt them. In this sense, the E-
ControlChain also inherited all the base components limitations from them. Probably, the
most explicit of them is the requirement of an Ethereum client on the device itself or on its
selected supporting device. Currently, there are compiled version of geth (one of the official
implementations of the Ethereum clients) for Android, iOS, macOS, Windows and for Linux
using the architectures 32-bit, 64-bit, ARM64, ARMv35, ARMv6, ARMv7, MIPS32 and MIPS64.
Thus, out-of-the-box, a wide range of devices are supported. The geth source code is also
available and can facilitate its provision for those that aren’t supported yet. However, there are
also others limitations that we discuss next.

One base component limitation is the choosing of a proof-of-work-based Blockchain as
a central tool for E-ControlChain. These Blockchains uses network processing power to stays safe
and avoid attacks or collusion. The lower the processing power the easier is to deploy successful
attacks through, for example, miners collusion or overcoming of the network processing power.
Although these attacks alone does not give new unauthorized access to devices, it can prevent
changes in authorizations or management of devices, for example, preventing a context change
registration. As much as it is a possible scenario, at least two things hardens its occurrence.

75

First, it would require more than 50% of the mining processing power to be in the control of the
colluding miners or attackers. Second, if it happens the network will loss reputation and people
will start to abandon it, making the miners loose their incoming source. Therefore, there are
incentives to miners keep honest and protect themselves from these attacks.

Another problem with choosing the proof-of-work is the time required time to allow
a new information to be part of the Blockchain. Of course, this is mainly dependent of the
type of proof, its level of difficult, the quantity of information that could be mined in one block,
the complexity of consensus establishment and the established reward fee. However, it is very
common to take some time between a few seconds and minutes.

The dependency on public key pairs can also be considered as a base component
limitation. The loss of a key requires the generation of a new one and the reconfiguration of
all parameters (define the new devices owner, attributes, access rules, and so on). Also, if an
attacker have access to the private key, it can hijack, control and create fake messages of a device
behind the address (if there is one) and address’s owned devices.

The base component and development language, Solidity, also brought some limitations
to E-ControlChain. With the objective of keeping the contracts clean and avoid code bugs,
solidity defines a limit to the number of variables defined in each function. Also, the only way
to pass/return objects to/from functions in the used version of the Solidity compiler is using
the ABIEncoderV2, however when we were making the tests, it was a little unstable and we
decided not to use it. So, the lack of a suitable solution to work with objects in the experimenting
time worsened the limitation imposed to the number of variables in a function. Therefore,
implementing more complex and complete access control became a hard task. Because of this, as
exposed earlier in Table 5.1, the current E-ControlChain’s version does not implement obligations
and accountability instructions. Furthermore, the owner can define only one context set for each
rule and cannot create more complex allowed contexts, for example, using logical operators.
Also, the unique way to edit an authorization is through is removal and addition. Although there
is no big mystery in the implementation of these functions, it became a future work that could
come true with a stable ABIEncoderV2.

Finally but not least there are also algorithm limitations, i.e. the ones imposed by
implementation decisions. Two of them are: (1) only one rule for each pair resource-requester in
the capability and ACL access control can be defined; (2) in order to remove an attribute-based
rule, the context indexes and the allowed actions have to be passed in the same order they were
passed in the rule creation. All this limitations could be avoided with more code instructions,
however this would turn the code more complex, difficult to inspect and would increase its
deployment and execution cost. Therefore, we choose to keep this limitations in the current
version of E-ControlChain.

Another algorithm limitation is generating by choosing between letting a device define
its own owner and allow stolen devices to be used again or loose the device if the owner loose its
key. Although, we implemented the first solution, making the physical access prevails over any
other control, it is required the change of only a single line of code to modify this behavior to the
later option.

5.4 SECURITY ANALYSIS

To analyze the E-ControlChain in a security perspective, we divided this section in two
parts. First, we use the framework STRIDE to analyze many different threat levels, ranging from
physical and social attacks to network ones. Then we give an special attention to smart contract
vulnerabilities.

76

We start our security analysis using the STRIDE framework [149]. It helps in building
threat models and, in our opinion, are one of the best frameworks to analyze our architecture. It
explores threats involving Spoofing, Tampering, Repudiation, Information disclosure, Denial of
service and Elevation of privilege. Table 5.5 shows what could be affected by them.

Table 5.5: Summarized security analyze of the E-ControlChain components.

Threat What could be affected

Spoofing Entities, network patticipants and miners
Tampering Devices, Blockchain information
Repudiation Entities

Information disclosure Entities

Denial of service Entities, network participants and miners
Elevation of privilege Contracts

Spoofing. Spoofing attacks have the objective of impersonate someone else identity. If
successfully launched, the attacker can execute unauthorized actions in behalf of the impersonated
identity. Some of the attacks that can have spoofing characteristics are Sybil, Man In The Middle
(MITM) and replay.

In Sybil attacks, the malicious entity forge multiple identities. It is specially effective
against unprotected voting systems where it can generate an infinite number of new identities
to manipulate the results. In E-ControlChain, a Sybil attacker can try to forge fake identities
that could affect different layers, like Ethereum peers [150] and E-ControlChain entities (owners,
resources and requesters). Ethereum peers communicate using Peer-to-Peer protocols, a successful
Sybil attack can make an Ethereum peer connect only to forged peers, thinking that it is connecting
to honest peers. Then, it can execute an eclipse network attack [150] over the peer. In this case,
the Ethereum peer, instead of receiving the real Ethereum data, receives only the data generated
by the attacker. Fortunately, if not combined with other attacks, the data generated by the attacker
in an eclipse attack is, at most, garbage. In the other hand, if the attacker forges an identity of an
E-ControlChain owner, resource or requester he or she can control the access policies, generate
fake context information and make unauthorized access, respectively. besides this, it can also
stole all the funds from accounts behind the entities. Ethereum protects itself from this attacks
using public keys. In the Ethereum P2P network, the nodes are identified using the enode, public
key in hexadecimal format. In the platform, including in the E-ControlChain, the entities are
identified using the address, the first 160 bits extracted from hash KECCAK-256 of the public
key.

A Sybil attacker could also try to overpass the Ethereum’s mechanism of transaction
ordering by forging multiple identities. As the identity occurs in an off-line mode, the attacker
achieves this with ease. However, the currently used method for mining process is the Proof-of-
Work (PoW), i.e. it depends only of the computing power. Thus, from the Ethereum’s transaction
ordering perspective, creating multiple addresses (derived from public keys) and dividing the
processing power between them brings no advantage to the attacker.

The MITM attacks intercept the connection between two hosts and, being capable of
changing the content of the messages, pretend to be the other to each one of them. It is effective
against systems that fails to check the message signature or to validate the public key. As the
Sybil attack, it can also be launched against many different layers, like the Ethereum network,
E-ControlChain transactions and requests for devices. All messages exchanged by the Ethereum
nodes or E-ControlChain transactions have to be signed with the private key of the requester in
order to be a valid message or transaction. Thus, a MITM attacker cannot modify the message or
transaction content without invalidating the signature and cannot produce a new valid signature

77

unless the original sender’s private key was compromised. The last case, MITM in requests for
devices are out of E-ControlChain’s scope, however it can be solved by the device taking four
security steps when receiving a request. First, check if the request is correctly signed by the
pointed public key. Second, extract the address from public key. Third, check the permissions in
E-ControlChain using this address. Also, when using a support device, verify if the response
from it is signed and check the validity of this keys against some service of validation, for
example, an certification authority.

It is important to highlight that, although there is no spoofing in nodes and entities
in normal conditions, many E-ControlChain transactions use addresses in policies definitions.
Thus, if the attacker finds a way to swap an address by its own (for example), it can obtain
improper advantages. The process of acquiring and informing addresses is also outside of the
E-ControlChain scope, however, a good start could be establishing reliable communication links.

Replay attacks consists of recording exchanged messages and replaying them when
convenient for the attacker, i.e. re-sending them in the communication channel to cause abnormal
behaviors. The Replay attack achieves success when re-sending a copy of the recorded message
triggers an operation that was not supposed to occur. Thus, it is specially effective against systems
that does not employ the one-time message policy. Fortunately, Ethereum transactions [151] use
nonce in transactions and each transaction generated by a specific address has to employ a unique
nonce. Being so, if an address generate more than one transaction with a single nonce, when
one of them appear in the Blockchain, the others are automatically invalidated. Also, Ethereum
developers already fortified the protection against replay attacks between parallel chains with
the EIP 155 [130]. However, it seems that replay attacks can still occur in specific scenarios as
demonstrated in [129], where messages directed to one contract can be replayed in another one.

In short, to avoid spoofing attacks, the E-ControlChain makes use of Ethereum public
keys, fingerprints and nonce. Each E-ControlChain’s entity has a public key and all transactions
interacting with it have to be signed using it and have a one-time nonce. Furthermore, all
E-ControlChain functions verifies the requester identity and uses it to avoid unauthorized policies
modifications before making these changes. besides this, all network participants, including
miners, have a fingerprint known as “enode” that is the hexadecimal format of its public key.
These enode identities can compose a list of static and trusted nodes [152]. Static nodes are
the ones to always maintain a connection. Trusted nodes are the ones that connections can be
established at any time even if above the peer limit (maximum quantity of connected peers in
a given moment). Furthermore, all communication packages between peers are signed using
its keys using the RLPx encryption [153]. Therefore, there are two scenarios where an spoof
of identify could occur. The first is if the entity’s private key gets disclosed (E-ControlChain
assumes that it is kept safe). The second is breaking the Ethereum’s cryptography algorithms
and fabricate a private key that makes a pair with the target public key. This is an extremely
improbable achievement for the current technology and, to the best of our knowledge, never
happened for the adopted cryptography algorithms. Also, if that happen, the majority, if not all,
of cryptography-dependent systems are condemned.

Tampering. Taking E-ControlChain context, the tampering can be the creation, change
or removal of policies, its information or, even, devices. As the E-ControlChain runs over the
Ethereum, all information is stored in its Blockchain and also inherits all its limitations.

A general Blockchain flaw is its Internet dependency. This turns it vulnerable to eclipse
attacks [150] and Border Gateway Protocol (BGP) hijackings. Theses attacks can isolate one
or more participants from the rest of the network and make the communication between the
isolated part and the rest of the network vulnerable, by controlling which messages can be sent to
and received from the connected portion. It gives the attacker the power to trick the attacked

78

participants, for example, it can keep them only with outdated data. besides this, if new data gets
published on the isolated portion, it will probably be erased as soon as the Internet connection is
reestablished as the connected portion commonly spent more computing power in its branch than
the isolated one. Also, this is one of the conditions where double spending problems could arise.
The use of redundant Internet links can reduce the probability of this attacks occurring. The
potential of this attack can be extended if running it together with the next attack.

The Blockchain is known to keep immutable data. However, under certain circumstances,
like under 51% attack, its data become vulnerable. This attack consists of controlling more than
50% of the network hash power to define what new transactions will be part of the Blockchain or
to replace past “immutable” blocks with chosen transactions. This can be used to, for example,
remove data authorizing or denying access to entities. It is important to highlight that this does
not mean that the attacker can forge transactions, it only has the power to select the ones that will
be stored in the Blockchain. This attack can be very hard to achieve, specially when trying to
replace blocks. According to the Blockchain nature, to replace a Block, the attacker needs to
mine all the Blocks after it sequentially and make his or her branch have more computing power
employed than the original one. Keep in mind that, in this meantime, the honest network miners
keep working and growing its official branch. This makes this attack very expensive, specially
for wide used network [154], like Bitcoin and Ethereum, however it is still possible [155].

Other type of tampering involves physical attacks. It occurs when someone physically
interferes with device operation, either through vandalism, thievery, inserting/removing compo-
nents, or extracting/forging information from/to it. Increasing the surveillance or the protection
of devices can reduce the chance of its occurrence.

Figure 5.12: Eclipse attack scenario

(a) Attacker acquires control over the link and establishes

’ ; . (b) Under attack
one connection with the victim
Other Ethereum Victim ! Other Ethereum - Victim .
nodes (Alice) J nodes - (Alice) -

Attacker .

Attacker *. (Bob) -

(Bob)

To exemplify a tampering in the Ethereum, and consequently on E-ControlChain data,

we created the scenario depicted in Figure 5.12. There are three entities: the attacker (Bob), the
victim (Alice) and a the rest of the Ethereum network. In this scenario, Bob has the capability
of disrupting the communication channel between Alice and all the other Ethereum through an
Eclipse attack. As previously explained, triggering this attack, Bob can make Alice loose her
connectivity with any other external nodes immediately. Although, through this attack, Bob
cannot create fictitious message on behalf of others as he cannot forge the required signature,
Bob can control any message from the network to Alice and vice versa. This is enough to make a
lot of mess in Alice’s life. First, preventing Alice from receiving updates from the Ethereum
network. Second, preventing the Alice’s updates from reaching the Ethereum network. Third,
launch a miner in the isolated network to make Alice believe that “It’s all god, man”. Note that,
while the first two only causes connectivity problems between the two isolated network, the last

79

causes synchronization problems and tries to trick the victim. Next, we show the connectivity
and synchronization problems occurring.

To simplify the demonstration of the problems, we added a global integer variable and

two functions (a getter and a setter) to our contract that can be called by anyone:

1
2

4
5
6

8
9
10
11

int public important_value;

function setValue (int value) public {
important_value = value;

}

function getValue() public view returns(int) {
return important_value;
}

After setting a value for the variable and waiting for the resulting transaction to be mined we can
verify that the synchronization occurs as expected:

N R WD =

// A generic node of the network executes
setValue (20) ;
// Waiting until the transaction gets mined
// Any node, including Alice, executes
getValue () ;

<20>

When Bob starts the eclipse attack, the communication between Alice and other

Ethereum nodes are lost. Being so, Alice will fail if she try to change any information from the

contract:
1 // Bob starts the eclipse attack
2 // Alice executes
3 setvalue (3);
4 // Waiting a long time expecting to get the transaction mined
5 // Any node, including Alice, executes
6 getvValue () ;
7 <20>

When Alice tries to set a new value, she creates a transaction, however, as she is under Bob’s
eclipse attack, her transactions does not reach any miner. They get trapped in her Ethereum client
waiting for the reestablishment of the connection. The transaction is received by miners as soon
as Bob ceases the attack:

[O S

// Bob ceases the eclipse attack
// Waiting until the transaction gets mined
// Any node, including Alice, executes
getValue () ;

<3>

Note that if any other node changed the value trough the presented function while Alice was
under attack, the Alice’s values will replace it after Bob ceases the attack.

If Bob starts the eclipse attack again, Alice will return to the isolated condition. At this

time, lets show what happens if a generic node in the set “other Ethereum nodes”, tries to change
the value under the attack situation:

1
2

// Any node, including Alice, executes
getValue () ;

80

LR
// Bob starts the eclipse attack
// Any node, but Alice, executes
setValue (89);
// Waiting until the transaction gets mined
// Any node, but Alice, executes
9 getvalue () ;
10 <89>
11 // Alice executes
12 getvalue () ;
13 <3>

R~ N n bW

As can be seen, in the same way the network does not see Alice’s operations, Alice also does not
see the network ones, unless Bob let they. Furthermore, Bob can also choose what operations
each one will see. However, it is important to note that, if Bob wants Alice to take notice of an
Ethereum network’s operation, he will need let she synchronizes her Blockchain, at least, until
the block where the operation was mined. besides this, as each account has a strictly incremental
nonce that increases one by one and that has to be present in the transaction to make it valid,
in order to Bob let a transaction from Alice gets mined, he has to let all the transactions with a
smaller nonce also reach network’s miners.

The last problem we will discuss is if Bob creates a private miner, starts the eclipse
attack, establish the connection with Alice and then tricks her to think all her transactions are
being mined by the Ethereum network. The demonstration of what happens in this case is
exposed in the following listing:

1 // Any node, including Alice, executes

2 getvalue () ;

3 <89>

4 // Bob starts the eclipse attack, creates the private miner and

— establish an connection with Alice
// Alice executes
setValue (30);
// Waiting until the transaction gets mined (by the private miner)
// Alice executes
9 getvalue();
10 <30>
11 // Any node, but Alice, executes
12 getvalue () ;
13 <89>
14 // Bob ceases the attack
15 // Any node, including Alice, executes
16 getvalue () ;
17 <89>

R 1 N

Note that, in this case, all transactions mined by the private miner will, normally, be replaced by
the network blocks and, by default, will be lost. This occurs because the blocks of the network
would have more effort employed in its construction. Thus, all honest nodes will choose it. We
believe that this is worse than the synchronization problem as it can trick Alice to think that
all its transactions are being executed when it is not. This could lead to security issues and
vulnerabilities and can make the attack harder to detect. In the majority of cases, the monitoring
of changes in hash difficult can help detect it as the attacker, normally, will not have an equal
quantity of hash power as the network available for tricking the victim for long periods of time.

Repudiation. The repudiation is when someone can claim that he or she did not
performed an action although the system he or she as its author. A system with such flaw is a
non-reliable source of information and is doomed to loose all its credibility.

81

One of the most efficient way to avoid and fight against this type of flaw is using public
key signature algorithms. It involves three phases: (1) initialization of keys; (2) signing of
messages; (3) checking of signatures. In the first phase, a secret key (SK) and a public key (PK)
are generated. Commonly, the PK is create from the SK. The PK has to be public while the
SK has to be kept safe. The second phase occurs after the message (transaction, in our case) is
generated. Using the SK and a criptographic algorithm, a signature is created and attached to the
message. The third phase occurs when a signed message is received by an interested party (IP).
The IP can use the criptographic algorithm and the PK to check if the message was officially
created by its sender. By the principles of public signatures, only who has the SK can create a
signature that can be proved using the corresponding PK.

The Ethereum network protects itself from repudiation requiring each transaction to be
signed using Elliptic Curve Digital Signature Algorithm (ECDSA) [156]. As all interactions
with E-ControlChain are via Ethereum transactions, it is also protected by the same security
mechanism. Thus, if the secret key is safe, no one is capable of signing a message as another
participant or forge a signature or, at least, no security issue with the signature mechanism were
made public. Furthermore, many E-ControlChain functions depend on the sender’s address.
It is computed only after the signature is verified. Thus, according to the principle of public
signatures, we can trust the computed address is in fact the transaction sender’s one. Finally, it is
extremely improbable (although possible as the address is a hash), that any other PK generates an
equal address.

Information disclosure. In Ethereum, the addresses provide only a pseudo anonymity
and all transactions are public, i.e. readable by anyone. Thus, any participant can follow all the
actions taken by an address in the network, like called functions and its parameters, although
there are exceptions like queries and the execution of local functions (as checking for access
authorizations). Bijective functions can be applied to values stored in contracts, like the context
values in E-ControlChain, to make the deduction by third-party more difficult. However, in this
case, the bijective functions have to be also mirrored into access policies.

Although no one knows for sure who or which device is behind an address in the
Ethereum, transactions involving this addresses are traceable and profiling tools could be used
to try to identify them [157]. One approach is the Dusting attack [158]. It consists of sending
a small quantity of coins to a big quantity of addresses. Then, wait for their moving, to try
to group them by their wallets and identify the users or companies behind these wallets and,
then, executing for example directed phishing attacks against the identified target. To reduce the
potential of the profiling tools, two common techniques are changing the own address every time
a payment transaction is executed and use chaff coins (called mixins) in transactions. Because
of the specificity of E-ControlChain, the use of different addresses for each operation is near
impracticable as it, normally, would require many function calls to configure the new address and
this action also would be easily identified by profiling tools. However, mixins-similar strategies
are possible and could be easily employed to confuse profiling tools. This can done by creating
fake entities, interacting with them as if they were real and making them generate realistic
transactions.

Finally but not least, users are always susceptible to phishing and social engineering.
They can be executed through e-mail, calls, text messages or in person. Although can be difficult
to identify who is behind an account, other attacks like the Dusting Attack [158] can help to
reduce the possibilities. To avoid them, specialized tools and training can be applied to identify
and block it. Also, the training of users could help to identify and ignore these attacks.

Denial of service (DoS). The objective of DoS attacks is to deny or to degrade service
provision to legitimate users, spoiling the system availability. It does that by exhausting all

82

the resources available and, consequently, let the legitimate requests starving. However, as
the Ethereum is a decentralized platform, conventional DoS attacks to completely disrupt the
network would require the stop of Internet with unthinkable levels of traffic generation or serious
flaws in the Internet’s core equipment. Of course, small groups of users or devices are still
vulnerable. Thus, for E-ControlChain, there are two perspectives of DoS attacks we think is
worth mentioning: the network’s and the contracts’.

From the perspective of the network, the E-ControlChain runs over the
Ethereum and, therefore, it inherits all limitations from lower layers and middlewares. In this
analysis, we explore internet dependency, outperforming of hash power and storage requirement.

A fundamental aspect of conventional Blockchains is the necessity of Internet connec-
tivity to synchronize the data and keep all participants with an equal snapshot. If it is faulty
for some reason like eclipse attacks [150] or Border Gateway Protocol (BGP) hijackings, the
data holded by the isolated portion of the internet will become obsolete because changes in the
connected part will not be reflected in the isolated part. Also, similar to what happens on 51%
attack, if new data gets published on the isolated portion, it is probable that it will be erased as
soon as the connection between the to parts is reestablished. This occurs because the Ethereum
does not support Blockchain branches and will choose the one with more effort employed in its
construction as the official one. Normally, this represent the constructed in the Internet portion
because it has a bigger power processing capability. Also, this is one of the conditions where
double spending problems could arise. Therefore, for critical services, we recommended the use
of redundant Internet links.

Although Ethereum is trying to move from proof-of-work to proof-of-stake [124, 159],
it is, until the current time, based on proof-of-work. The main weakness known in proof-of-work
protection is the 51% attack. It defines that if an attacker succeed to control over 50% of the
network hash power it can undo transactions constructing an alternative branch that has more
processing employed in it than the original. A successful attack of this type against the Ethereum
was launched on beginning of the year 2019 [155], allowing the so called double-spend problem.
However, it is a very cost attack, for example, one hour of 51% attack against Ethereum cost
approximately USD 98,572 [160].

The adoption of private or permissioned Blockchains could, in one hand, minimize
the attack surface, however these networks have less processing power or are managed by only
a few participants. Therefore, it is much more easy for an attacker to take control over the
network. In the official Ethereum, the attacker has to overcome the all miners processing power
or create a collusion between them. However, miners has the incentive to avoid collusion between
themselves as it could drop the Ethereum cryptocurrency value and, consequently, their incoming.

Devices that directly use the E-ControlChain also have to deal with the increasing
Ethereum’s storage demand. [14] achieved a maximum increase of 2.7GB per day in its
experiment while the current (oct. 28, 2019) increase of the Ethereum is around 0.5GB per
day [161]. Although there are synchronizations less space-hungry, some constrained devices will
end up depending on storage strategies (like distributed storage) or supporting devices. In its
experiment, [14] also showed that a Raspberry Pi 3 B+ working as a supporting device is capable
of serving around 30 authorizations consults per second using a query software implemented in
JavaScript. Thus, for demanding scenarios, more powerful machines serving as authorization
support are required. Finally, to reduce DoS attacks attempt over the storage, the Ethereum
network sets a hard blocks size and a variable minimum hash difficult for each Block. These
settings limit the data rate production to a constant (in average) velocity.

From the perspective of contracts, they are vulnerable to at least two types
of Denial of Service [162]: “DoS with (Unexpected) Throw™ and “DoS with Block Gas Limit”.

83

The first occurs when the continuity of the contract requires the execution of an instruction that
always causes a throw and, thus, never gets executed. The second occurs when the processing of
an call requires more gas than can be provided for it. These types of DoS are caused by flaws in
the code of the contracts and not always are triggered by attackers.

Elevation of privilege. The elevation of privilege occurs when someone manage to
achieve authorization beyond those initially granted [163]. This attack can occur, for example,
in contracts vulnerable to re-entrancy attack. The re-entrancy attack uses external contracts to
trick the original ones to re-execute parts of the code they weren’t supposed to, at least, not in the
order that they are executed. In another words, this occurs when the called contract makes a call
to an external one and it manages to take over the control flow [164].

5.4.1 Application vulnerabilities

Blockchain applications (called smart contracts) are stored in a similar way as the
transactions and being so there is not an easy way to update them [155]. Therefore, it is
recommended that it passes a carefully security analysis. For access control smart contracts,
algorithmic vulnerabilities exploitation can lead to the insertion of unauthorized data into the
authorization system, making it take wrong decisions in the authorization process. This section,
at the same time, analyzes the E-ControlChain and presents some directions on how to avoid
vulnerabilities in smart contracts.

First, all entry points of interaction has to be protected by clear permission limits. In
Ethereum, all interactions are done through function calls. Thus, each function, mainly the public
ones (that can be called from outside of the contract), have to define who can call them according
to its parameters. The most common way of function call protection is through the function
“require”. It can verify inputs and test them against any Boolean validation. Furthermore, a
function can be protected through modifiers that define commonly used require statements, i.e.
when the same protection has to be applied to many functions.

E-ControlChain protects each one of its public functions that can be used to modify
information policy that does not belong to the caller. The function caller is identified through the
address extracted from the public key used in the message signature. This address is, then, used
in the verification of the function call permission. For example, in the current version (as showed
in line 12 of the algorithm on Listing 5.1), when the entity e; tries to change the entity e>’s
owner, E-ControlChain only accept the request if e is the current owner of e, or if e signed the
message and e; don’t have an owner yet.

Another example of function call permission verification occurs when the entity tries
to set an context. E-ControlChain setContext function has a modifier (line 18) called
isTheAddreessOrItsOwner. This modifier verifies if the function caller entity is the
context source itself or its owner (line 7). This avoids the forgery of contexts by malicious
devices. As the setOwner and setContext functions, all the other E-ControlChain’s ones
have a clear limitation of who can execute it.

Improper function calls can also interfere with the system normal operation. In this
aspect, the E-ControlChain set Owners function has what can be considered a flaw. It allows
anyone to generate numerous addresses and take control of them, becoming the owner of them.
However, it requires one call per address and transactions has a cost. As there are 299 available
addresses, the cost for someone become owner of a significant quantity of addresses is prohibitive.

There are also many other vulnerabilities that are generated by mistakes in the develop-
ment. Some of them are: (1) integer underflow, (2) integer overflow, (3) parity multisig bug,
(4) call stack depth attack, (5) transaction ordering dependency, (6) timestamp dependency, (7)
re-entracy. Some of them can appear using simple features like arithmetic operations, like (1)

84

Listing 5.1: E-ControlChain - setOwner function

1 Contract BasicAndCommonControl {

2 mapping(address => address) public owners;

3 mapping(address =>bool) public approved_ownerships;

4 mapping(address => mapping (string => int)) context;

5

6 modifier isTheAddressOrltsOwner(address addr) {

7 require(msg.sender == addr || msg.sender == owners[addr]);
8 i

9}

10

11 function setOwner(address addr, address new_owner) public {
12 require ((owners[addr] == address(0) && msg.sender == addr) || (owners[addr] != address(0)
— && msg.sender == owners[addr]));

13 approved_ownerships[addr] = false ;
14 rules_authorities [addr] = address (0);
15 owners[addr] = new_owner;

16 }

17

18 function setContext(address source, string identifier , int value) public
— isSTheAddressOrltsOwner(source) {

19 context [source || identifier | = value;

20}

21 }

and (2), while others require more complex features, for example, nesting of contracts or function
recursion, like (3), (4) and (7).

Integer underflowand integer overflow occurs when an arithmetic ope-
ration tries to create a number outside of the representation range of the variable [165]. For
example, the uint8, in solidity, can represent a number ranging from zero to 255. So, if a variable
x of the type uint8 receives a value of 255 and, after, we add one to it, instead of containing
a value of 256 as expected, it will contain a value of zero. This problem is called integer
overflow. The integer underflow occurs in a similar way, if you have the same variable containing
the value zero and tries to subtract one from it, it will contain 255. This vulnerability can be
avoided by verifying if the result is inside the variable representation range before executing the
operation. An example of insecure and secure algorithm against these vulnerabilities is presented
in Listing 5.2.

The parity multisig bugcanoccur when a contract uses another one as a library
and has a fall back function that redirects any unknown call to it. Depending on the functions
available in the library contract and how they affect the main one, the fall back function can be
used to execute unauthorized actions or take control over the main contract if they (main and
library contracts) aren’t protected. [167] demonstrated how a contract can be affected by this
vulnerability. Suppose the contract “Library” (Listing 5.3) is used as a library in contract “Main’
(Listing 5.4). If someone call the function “initLibrary” on contract “Main” it will end up in the
fall back function that, in turn, will call the “initLibrary” from the contract “Library”, changing
the owner of the contract “Main”. Therefore, exploiting the parity multisig bug present in this
example, anyone can change the owner of the contract and, then, execute any other function that
is only available for the owner.

There are many ways to avoid the parity multisig bug attack in the example. First, the
function “initLibrary” could be marked as internal, i.e. it would only be called by the code running

?

Listing 5.2: Example of insecure and secure algorithm against integer overflow (adapted from [166])

85

1 mapping (address => uint256) public balanceOf;
3 // INSECURE
4 function transfer (address _to, uint256 _value) {
5 / Checks for underflow only
6 require (balanceOf[msg.sender] >= _value);
7 // Add and subtract new balances
8 balanceOf[msg.sender] —= _value;
9 balanceOf[_to] += _value;
10 }
12/ SECURE
13 function transfer (address _to, uint256 _value) {
14/ Checks for underflow and for overflows
15 require (balanceOf[msg.sender] >= _value && balanceOf[_to] + _value >=balanceOf[_to]);
16 // Add and subtract new balances
17 balanceOf[msg.sender] —= _value;
18 balanceOf[_to] += _value;
19 }
Listing 5.3: Example of library that allows the parity multisig bug (adapted from [167])

1 Contract Library {
) address owner;
4 // called by the constructor
5 function initLibrary (address _owner) {
6 owner = _owner
7}
8
9 }

Listing 5.4: Example of contract that can suffer from the parity multisig bug (adapted from [167])
1 Contract Main {
2 address owner;
3 address _library ;
5 // called by the constructor
6 function Main(address _owner) {
7 _library = <address of contract Library>;
8 _library . delegatecall (bytes4 (sha3("initLibrary(address) ™)), _owner);
9 }
10 // that does not contain a function called initLibrary
11 function () payable {
12 _library . delegatecall (msg.data);
13 }
14 }

86

Listing 5.5: Example of call stack depth attack (example taken from [170])

1 function CallstackExploit (int counter) {

2 if (counter < 1023) {

3 if (counter > 0) {

4 self . CallstackExploit . gas(msg.gas—2000)(counter+1);

5 } else {

6 self . CallstackExploit (counter+1);

7 1

8)} else {

9 /- finally call a function in another contract after calling self. CallstackExploit 1023
— fimes

at the current address (contract) or contracts derived from it. Second, the function “initLibrary”
could have a checking for double initialization, i.e. verify if the owner weren’t defined yet before
defining it. Furthermore, as the E-ControlChain is formed solely by a derivation of contracts and
all interactions are to be made directly to the composing contracts, this vulnerability does not
affect it.

The call stack depth attack exploited the big limit of the call stack. Its hard
limit is 1024 and this means that could exist up until 1023 nested function at any algorithm
execution point. Taking advantage of that and using computationally difficult and inexpensive
operations, attackers achieved to create DDoS-like attacks [168]. This type of attack filled the
network with pending transactions which caused users delays in processing their transactions.

An example of how it worked is presented in Listing 5.5. Fortunately, this vulnerability
already was solved at the Ethereum Improvement Proposal (EIP) 150 [169]. This EIP increased
the cost for some operations and limited the maximum allowed amount of gas for a child call to
63/64 of the parent.

The transaction ordering dependency can cause a racing condition at-
tack [171]. It occurs when someone can take advantage based on the order that the transactions
are mined. For example, suppose the contract presented in the Listing 5.6, suppose that a
buyer can the function “buy”” when the price is at 100. If the contract owner manage to mine a
transaction calling the function “setPrice” with a higher price before the buyer’s transaction, the
buyer will pay a higher price than the one at the transaction generation.

A solution for this example could be setting a versioning for the price. Each time the
owner changes de price the a counter (version number) increase. When a buyer buy the asset it
determines the current price version. The purchase only gets performed if the version determined
by the buyer is the current version. Otherwise, it will not be performed. Finally, we did not find
any way to perform this attack in E-ControlChain.

The timestamp dependency attack is similar to the transaction ordering depen-
dency attack, however, instead of using the order to affect the result, it uses the block timestamp.
Although a new block must have a bigger timestamp than the last mined block and blocks
with a timestamp more than 15 seconds in the future are not accepted, the miners has some
manipulation malleability over it [172]. Therefore, any contract that uses the timestamp in critical
functionalities, like using it as seed for a lottery, can be affected by this attack as the miner can
manipulate it to favor its earnings. E-ControlChain does not use timestamp in any of its functions.

The re—entrancy attack uses external contracts to trick smart contracts to re-execute
parts of the code that weren’t supposed to execute, at least, not in the order that they are executed.

&7

Listing 5.6: Example of transaction ordering dependency attack (example taken from [171])

1 contract TransactionOrdering {

2 uint256 price;

3 address owner;

4 event Purchase(address _buyer, uint256 _price);

5 event PriceChange(address _owner, uint256 _price);
6 modifier ownerOnly() {
7 require (msg.sender == owner);
8 .

—s

9 }

10 function TransactionOrdering () {
11 owner = msg.sender;

12 price = 100;

13 }

14 function buy() returns (uint256) {
15 Purchase(msg.sender, price);

16 return price;

17 }

18 function setPrice (uint256 _price) ownerOnly() {
19 price = _price;

20 PriceChange(owner, price);

21 }

22 }

This occurs when an external contract take over the control flow [164]. Take as example the
contract “HoneyPot” (HP) presented in Listing 5.7. It exposes two main functions, one to store a
value in an account (“put”) and other to withdraw this value (“get™). However, the function to
withdraw this value has a vulnerability. It first sends the amount to the external account and only
after it, removes the balance for the account. This vulnerability can be exploited by the contract
“HoneyPotCollect” (HPC) presented in the Listing 5.8, as it can iterate through this function
without letting it update the balance.

The HPC has two main functions, one to trigger the attack, “collect()”, and the other to
maintain the attack, the fallback function. The function “collect” starts putting some value in
the HP where the credited account is the calling one, i.e. the HPC address. Its value defines
the amount that will be withdrawed in each iteration of the attack. After this, it triggers the
attack calling the function “get” of the HP. Note that, again, the caller address is the HPC’s. Up
receiving the call the HP sends the amount to the HPC. However, before letting HP updates the
balance, this triggers the fallback function of the HPC. Note that at this moment the external
contract, i.e. HPC, takes the control of the execution flow. The fallback function call again the
function “get” of the HP, that sends the HPC’s account balance to it, triggering again the fallback
function. In this example, this only ends when the the HP total balance is less than the value
withdrawed in it attack’s iteration.

As the E-ControlChain does not have any function that can trigger functions from other
contracts, it is not affected by this type of attack. Here, we discussed some of the most DApps
famous attacks. [118, 166] presents many others. Furthermore, many other Blockchain generic
threats are discussed in [23, 155, 173, 174] and there also a classification of weaknesses that
could exist in smart contracts [175].

88

Listing 5.7: Example of contract with the re-entrancy vulnerability (adapted from [164])

1 contract HoneyPot {

2 mapping (address => uint) public balances;

3

4 function put() payable {

5 balances [msg.sender] = msg.value;

6 }

7 function get() {

8 if (!msg.sender. call . value(balances [msg.sender]) () { #/ At this point, the caller can call
— get() function again

9 throw;

10 }

11 balances [msg.sender] = 0; # In the example re—entrancy attack, it will be executed only
— when all the funds were moved from the current contract

12}

13

14 }

Listing 5.8: Example of contract that exploit the re-entrancy vulnerability (adapted from [164])

1 contract HoneyPotCollect {

2

3 function collect () payable {

4 honeypot.put. value(msg.value) () ; /~/ Define the amount that will be withdrawed in each
— executed loop

5 honeypot.get(); # Trigers the withdraw loop

6 |}

7 function () payable {

8 if (honeypot.balance >=msg.value) {

9 honeypot.get () ; #/ When receives a payment and the target contract has balance, re—

— executes get() function

10 }

11 }

12}

89

5.4.1.1 Auditing tools

Contract vulnerabilities are not always straight forward to detect. Thus, many new
companies and startups are getting their space in the market as smart contract analyzers and
advisers. They mainly use artificial intelligence (Al) in the process as it makes the analyzes more
cheaper and faster. However, as some times the Al cannot achieve the same level of precision
from a specialist, many of these companies also offer the option of hiring specialists in smart
contracts to analyze them, like AnChain.Al [176] and ChainSecurity [177].

We tried to analyzed the E-ControlChain with the tools AnChain.Al [176], Secu-
rify [178], ContractGuard [179], Smartcheck [180], Slither [181], Oyente [182], Manticore [183],
ContractFuzzer [184], Mythril [185] and Octopus [186]. Next, we discuss the faced problems
and the reports. We also present the full report on Appendix C.

AnChain.Al The AnChain.Al identified two flaws! as shown by Figure 5.13: integer
underflow and integer overflow. After a manual analysis, we found that it exists, however, it only
affects the user who passed the wrong value to the function as the information from it is linked to
user’s address. The only real problem we identified is if someone wants to work with context
values outside the range of the integer representation, i.e. outside the range [-231,231 — 1].

As users can insert information into the arrays, another theoretical problem is the
possibility of growing them bigger than 22°° elements. However, this is almost impossible to
occur as it would lead to two bigger problems first: the higher cost involved in the process and
the required storage capacity (note that if each element is 1B size, it would be necessary around
10°3 yottabytes to store all elements).

Figure 5.13: E-ControlChain analysis by AnChain. Al

ControlChain

Securify. Securify pointed out two types of issues: “unrestricted write to storage” and
“Locked Ether”. The first seems to be only false-positives as one part of the pointed functions use
modifiers or statements “require” to protect its execution and the other part use mappings that
are initially mapped to “msg.sender”, and therefore, affecting only the user itself. The second
pointed vulnerability, Locked Ether, means that once E-ControlChain receive Ethers transferred
by the network, it does not has a function to withdraw this Ethers, thus they will be locked on the
contract address. As there is not payable methods in E-ControlChain, it only receive Ethers in

!'Unfortunately, AnChain.Al is not working anymore to test E-ControlChain. After we tested it, we updated the it
to Solidity v0.5. So we believe that perhaps AnChain.Al cannot deal correctly with the new version although it is
listed as compatible. We verified and executed all the items from the troubleshooting list message, but contacting
the helpdesk (as it is a paid feature), however none of it makes it work. Being so, we don’t have the full report,
however we present the results we still have from when we tested the E-ControlChain with Solidity v0.4.23.

90

very rare and special conditions. Furthermore, working with Ethers is not one of its function,
thus, in the worst scenario, it would only lock Ethers sent by the network.

ContractGuard. The current version of ContractGuard only supports Solidity v0.5.10
and, therefore, is unable to handle v0.5.11. So, we modified E-ControlChain code to use Solidity
v0.5.10. After it, the ContractGuard was capable of making its analyzes. The result was that it
found no errors in E-ControlChain.

Smartcheck. The Smartcheck issued the following warnings: “Costly loop™ and “Prefer
external to public visibility”. The first is caused by the iteration loops inside some functions,
mainly to work with the rules and its contexts. This flaw can lead to a problem in some functions,
for example if an address register a big quantity of rules or a big quantity of context or actions
inside a rule. However, as this data is separated by entity’s addresses, in the worst scenario,
only the entity who did it will be affected by the problem. The second, prefer external to public
visibility, warning suggest the use of external visibility whenever it is possible. We did not used
it in one function where it, in theory, was possible, the “deleteAttributeRule”. The reason is
that the visibility external requires the method’s parameter be located in “calldata”, however
this makes it use more stack variables and this overflow the maximum variables allowed for a
function in Ethereum. Furthermore, in the worst scenario, it only causes a little increase in the
cost of the function execution as instead of pulling the data from the calldata, it starts copying it
into the memory.

Slither. The current version of Slither only supports Solidity v0.5.9 and, therefore, is
unable to handle v0.5.11. So, we modified E-ControlChain code to use Solidity v0.5.9. After
it, the Slither was capable of making its analyzes. The result was three warning types: unused
return values, too recent pragma version, and public function that could be declared as external.
The first was triggered by a function pop called to remove an item from the array. This item is
useless after its removal, so this warning can be seem as a false-positive. The second warn type,
too recent pragma version, suggest the use of a prior and possibly more trusty version of Solidity,
the v0.5.3. The third warn type, declare as external, is caused by the reason explained for the
Smarcheck’s warn “Prefer external to public visibility”.

Unfortunately, the tools Oyente, Manticore, ContractFuzzer, Mythril and Octopus did
not run successfully. Oyente and Manticore was not compatible with Solidity v0.5. Oyente, for
example, is compatible only with v0.4.19, while manticore seems to be compatible only with
v0.4.23. We could not achieve the docker image from ContractFuzzer. Mythril exceed the 6GB
of RAM we have in our disposal and<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>