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R E SU M O

Nessa tese apresentamos comparações e avaliações dos recentes desenvolvimentos nos 

métodos de Simulated-Tempering (ST) com simulaçoes de Monte Carlo, implemen­

tando três modelos de rede: Blume-Emery-Griffiths (BEG), Bell-Lavis (BL) e Potts. 

O metodo de ST tem  atraído muitos pesquisadores há varios anos, devido a sua ca­

pacidade de lidar com sistemas cujo espaco de fase e difícil de am ostrar ergodicamente. 

Implicitamente, existem alguns fatores que otimizam o algoritmo ST, como os pesos 

probabillsticos gr =  g(Tr ) e um conjunto de R replicas YR =  (T i,T 2, ■ ■ ■ ,T R}. Para 

analisar esses fatores, na primeira parte, fazemos uma revisaõo dos elementos envolvidos 

durante a coexisrência de fase e transicoes de fase. Tambem nesta parte, nos intro­

duzimos alguns aspectos sobre o metodo de Monte Carlo para simular transicões de 

fase de primeira ordem. Dois novos metodos sao apresentados e implementados para 

otimizar as simulaçoes ST: (1) Um esquema para calcular os fatores de peso por meio 

da integracao termodinâmica direta da energia interna, e (2) um novo metodo para 

determinar o conjunto de tem peraturas YR, com base nas probabilidades de transiçõo 

do esquema de ST. Posteriormente, apresentamos os modelos de rede BEG, BL e Potts. 

Finalmente, mostramos alguns resultados com metodos de ST na coexistència de fase e 

transicões de fase de primeira ordem para avaliar a eficiencia de cada modelo e metodo.

Key-words: Metodos de Monte Carlo, algoritmo Simulated-Tempering, transicões de 

fase de primeira ordem, integraçcõao numíerica para a energia livre, ríeplicas proba- 

bilísticas de tem peratura.



A B S T R A C T

This thesis compares and evaluates recent developments in tempering approaches for 

Monte Carlo simulations, by implementing three lattice models: Blume-Emery-Griffiths 

(BEG), Bell-Lavis (BL) and Potts. Simulated Tempering (ST) m ethod has been a t­

tracting many researchers for several years, due to its capability to deal with systems 

whose phase space are difficult to sample ergodically. Implicitly, there are some factors 

th a t optimizes the ST-algorithm such as probabilistic weights gr =  g(Tr ) and a set 

of R  replicas YR =  (T i,T 2, ■ ■ ■, TR}. In order to analyze these factors, in the first 

part, we make a review of the elements involved during phase coexistence and phase 

transitions. We introduce some aspects about the Monte Carlo m ethod to simulate 

first-order phase transitions in this part also. Two new methods are presented and 

implemented to optimize ST simulations: (1) a scheme to calculate the weight factors 

by means of the direct thermodynamic integration of the internal energy, and (2) a new 

m ethod to determine the set of tem peratures YR, based on the transition probabilities 

of the ST scheme. Later, we present the lattice models BEG, BL and Potts. Finally, 

we show some results with simulated tempering methods in the phase coexistence and 

first-order phase transitions to evaluate efficiency for each model and method.

Key-words: Monte Carlo methods, simulated tempering algorithm, first-order phase 

transitions, numerical integration to obtain the free energy, tem perature probabilistic 

replicas.
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Chapter 1 

Introduction

Advances towards a general understanding and universal analytical characterization 

of disordered systems and of systems with many degrees of freedom has been limited. 

The relatively few exact solutions and the restrictions of mean-field approaches1 call 

for development of powerful numerical methods to simulate large systems. One spe­

cial technique comprises computer simulations based on statistical sampling, such as 

Monte Carlo Methods (M C M s). The essential ideas behind MCM were developed by 

Nicholas Metropolis and coworkers at Los Alamos National Laboratory in the USA 

during the World War II (for the M anhattan Project) as part of solution to a problem 

in statistical physics [3]. The mentioned work involved the simulation of probabilistic 

problems of hydrodynamics concerning the diffusion of neutrons in fission material. 

In parallel, John von Neumann and Stanislaw Ulam refined the generation of pseudo­

random numbers (P R N ) and methods of task division. Later, in 1948 Enrico Fermi, 

Metropolis himself and Ulam obtained estimators for the characteristic values of the 

Schrodinger equation for nuclear neutron capture.

To solve the involving problem of neutrons transport in a complex medium is a 

clear example of the indispensable necessity of employing stochastic process simulations 

by means of MCMs, such as the Metropolis Algorithm (M A ). Before each Monte 

Carlo sampling with the MA, one particle is chosen randomly and it can change its 

state through probabilistic rules. From such simulation scheme, the infinite possible

1In the mean-field theory, each particle is assumed to interact with the mean of all particles. This 
means that such an approximation can only be valid when fluctuations are unimportant, or when the 
Hamiltonian includes long-range forces, or when the interacting elements are not punctual (extended 
particles) (more details in [1]§4.5 [2] §6.5).
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positions of each neutron are statistically modeled by a large finite set of PRN with 

density probabilities for capture and scattering states (two simple Markov chains2). 

Considering appropriate averages, the Los Alamos group was able to determinate the 

system mean energy, and so, a macroscopic equation of state. It would be almost 

impossible to obtain a microscopic analytical theory to describe the states for each 

neutron.

Certainly, MCMs should be implemented mostly when neither analytic nor de­

terministic methods are workable or efficient. Generally a statistical treatm ent applied 

to a system made of N  components (e.g., moles, molecules, spins, sites, etc.) leads to 

quantities whose statistical fluctuations go with I/V num ber of elements. Therefore, 

one general domain of application of MCMs is to systems with many degrees of free­

dom and far from strong perturbative regimes. However, such systems are precisely the 

ones of interest in quantum  field theory and statistical mechanics (the la tter subject 

being the focus of our work). In fact, currently the MCM is used to solve problems 

in several fields such as statistical physics [5-7], quantum  many-body physics [8-10], 

medical physics [11-13], X-ray imaging [14,15], chemistry [16,17], agriculture [18,19], 

finance [20], weather prediction [21,22], solid state physics [23] and other areas (see, 

for example, [24,25]).

MCMs are classified —from a classical point of view— as static or dynamic and 

their applicability depends on the specific problem being analyzed. In static methods, a 

sequence of statistically independent samples are generated with a desired probability 

distribution p. The static protocols are extensively used in Monte Carlo numerical 

integration in spaces of not-too-high dimension [26] §5. But they are inapplicable for 

most situations in quantum  field theory and statistical physics, where p is a constant 

probability3 specified by the system complicated evolution (for example, determined 

by high interfacial energies).

In the dynamic MCMs, one can consider for the problem a Markov chain with 

the state space S having p as its unique equilibrium distribution. So, simulations for

2In a Markov process, the probability distribution of future states depends only upon the present 
state, namely P  (<7t |<rt_i, at_2, . . . ,a 0) = P  (ai |ai-1), where at is the configuration of the system at 
time t. A Markov chain is a class of Markov process with discrete state space (more details in [4]§2).

3Usually, p is the Gibbs measure which is a generalization of the canonical ensemble to infinite 
systems, namely, p is equal to equation 1.1 where p is a PRN (more details in [27]).
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this stochastic process can be implemented (on computer) in principle starting from 

arbitrary initial configurations. Once the system has reached equilibrium, one can per­

form time averages, which converge to p-averages. Therefore, with such a numerical 

protocol we are “creating” an effective stochastic time evolution which somehow em­

ulates the real system. The hope is the at the end we obtain macroscopic quantities 

correctly describing the properties of the original problem.

One of the most common usage for dynamic MCM is to study the therm o­

dynamics of statistical models defined on a “lattice” , usually obeying an excluded 

volume constraint [28]. Thus, the simulated particles occupy only the positions of 

lattice nodes. The classical or quantum  states of each particle (occupational, orien­

tational, multiple spin-values or more complex states) are modeled through different 

variables contained in a Hamiltonian. From these classes of problems, it is possible 

to model anti/ferrom agnetic systems (Ising model [29] [5]§2.1), spin glass (a particular 

case with the Blume-Emery-Griffiths model is studied in Refs. [30,31], but the gen­

eral propierties are described by means of the XY model [32]), fluid phase of water 

(Bell-Lavis model [33,34]), crystalline solids [35], lattice polymers [36], molecular self­

assemblies [37], soluble systems [38], dissemination of culture [39], charge transport [23], 

and others.

Most simulation studies considering MCMs (for example MA) and molecular dy­

namics work with the canonical ensemble, assuming microscopic states | ^ 1, ^ 2, . . . j  =  

■p distributed according to the Boltzmann distribution

where Z  is the canonical partition function, p is probability to each distinct microstate, 

H  is the Hamiltonian of the system, kB is the Boltzmann constant and T  is the absolute

physical concepts, many applications aimed at a reliable computation of free energies 

end up resulting in poor estimates [40]§3.2.1. Also, problems with quasi-ergodicity are 

observed for canonical Boltzmann sampling (see, for example, [41] and [40]§8). Even 

worse, high correlation time can lead to a relative slow evolution (spinodal decom­

position, for example) when canonical methods are considered (a simple instance is

(1.1)

tem perature. Although this choice (equation 1.1) relies on strong and well grounded
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illustrated in [42]).

Given this scenario, a variety of numerical methods have been proposed to 

overcome these drawbacks, such as Cluster Monte Carlo Algorithms [43] [44]§2 and 

multicanonical simulations [45-47]. In the first case, the configurations of particles 

in the lattice are implemented through non-local samplings by means of cluster algo­

rithms, hence differing from the MA. Nonetheless, the growth of the cluster size has 

a specific algorithm for each application with a particular phase space, thus being far 

from an universal approach.

For systems with high free energy barriers, the multicanonical approach can be 

used. The multicanonical m ethod uses a different choice for the probabilities, namely,

(1.2)

which thus depend on the density of states function D. In fact, the Wang and Landau 

algorithm [48] is normally used to obtain the density of states D (H ) during the sim­

ulation. So, the generated states are equally distributed on the phase space and the 

simulation cannot see any “rough energy landscape” , because every energy is treated 

equally. Subsequently, the original canonical distribution is reobtained after a re­

weighting process. The drawback is th a t this last step often involves certain difficulties 

in the case of large systems.

Recently, more straightforward stochastic methods, such as Parallel Tempering 

[49] and Simulated Tempering (S T ) [50], have been employed for systems with rough 

energy landscapes. Actually, in order to generate ergodic paths at low temperatures, 

both tempering protocols use relevant information at higher tem peratures. The main 

idea of these approaches is based on the fact th a t it is easier to visit distinct regions 

of the phase space when the tem perature is increased. In this way, a back and forth 

increment of the tem perature along a run avoids the simulation to remain in local 

minima (or temporally homogeneous Markov process [4]§2). In the Parallel Tempering 

algorithm, the configurations of N  parallel systems are exchanged between two or 

more different tem peratures, whereas the tem perature becomes a dynamic param eter 

discreetly changing for each iteration in the ST-algorithm.

In ST implementations, the probability of tem perature change V r^r< depends

1
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on thermodynamic weights gr/ — gr =  g(Tr/) — g(Tr) (with r, r ' =  1, 2, ••• ,R ) and on 

a finite set of pre-fixed tem perature (replicas) YR =  {T1,T2, ■ ■-,T R}. Usually, the 

numerical convergence of the order param eter W  strongly depends on the exact Y R 

and the number of iterations. Presently, there are some procedures proposed in the 

literature to calculate the main ingredients, namely, the gr ’s, the number of replicas R, 

and the tem perature values Tr . In each m ethod to establish Y R is defined and used a 

control param eter £, whereby the Tr ’s are determined (it is explained in detail in section 

4.2). The linear searching of the £-value with which one gets the best tunneling, say 

£*, should be performed by means of N  ST-simulation series (for £ ranging from £  

to £ f), which might involve high computational effort if the mentioned ingredients are 

not fine tuned.

A frequency-based protocol to obtain the replica values Tr was recently pub­

lished by Valentim [51,52]. In the procedure indicated therein, the number of replicas 

R and the Tr ’s were determined by the direct sighting of a fixed exchange frequency 

£ ^  vr>r/ between two tem perature values Tr and Tr . Nevertheless, the m ethod implies 

th a t a previous ST-simulation series must be run before to perform the search for the 

optimal value vry  =  v*. In other schemes, such as the constant entropy method, the 

procedures to compute Y R are implemented without previous simulations. However, 

these approaches are less efficient than  Valentim’s protocol.

In the constant entropy method, the control param eter is an entropy interval £ =  

As, and the Tr ’s are computed by using the entropy as a function of the tem perature 

s(T ). On the other hand, as it is common in generalized-ensemble simulations, the 

weights gr are not a-priori known and their estim ator has to be calculated. One way to 

do so is through the transfer m atrix method, and only when gr and the internal energy 

are obtained, then the entropy can be inferred from thermodynamic relationships.

From the above, it becomes clear the following. First, (i) the ST is an im portant 

m ethod to address different systems having more complicated phase space landscapes 

(in special to study aspects related to phase transitions). Second, (ii) there are different 

technical issues involved in the ST general approach (e.g., number of replicas, how to 

calculate the thermodynamical weights, the correct setting of the tem peratures) which 

once proper established, in principle can lead to higher computational performance. 

And third, (iii) for the protocol implementation itself (i.e., the principles used to set
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the tem peratures Tr and to promote the jumps between them) there are mainly two 

different ways to go. One based on physical principles (P P ) (for instance, to choose 

the Tr ’s considering thermodynamical quantities like entropy). The other based just on 

algorithm conditions (A C ), say, defining the Tr ’s simply from procedural considerations 

(like to fix a certain frequency of changes between the replicas).

An extremely pertinent question is then to identify how from (i)-(iii) one can im­

prove the ST m ethod efficiency, getting better numerical results with less computational 

effort. In particular, the point (iii) relates to  a fundamental question in computational 

physics, namely, which type of rules in a given simulational m ethod could yield superior 

outcomes, those from PP  or from AC? As we have mentioned, on one hand the PP 

protocols try  to mimic actual physical processes (for instance, choosing the tem pera­

tures for the ST replicas so to correspond to effective increases of the system entropy). 

On the other hand, the AC protocols rely on pure probabilistic rates of configurations 

shifts. It might seem th a t PP  would be better since the simulation code is somehow 

closer to the real dynamics of the system [53-55]. Nevertheless, “generic” algorithms 

(i.e., logic- and probabilistic-based ones) can present a greater performance in solving 

certain statistical physics problems [56-58] as well as some problems with a collective 

behavior similar to natural processes, but in fact outside the physics realm [59-61].

Therefore, our general goal in the present work is to investigate the points (i)- 

(iii) above, looking for more appropriate implementations of the ST method. More 

concretely, since P r^ r' strongly depends on gr , here an exact thermodynamic-based 

approach to compute gr/ — gr is introduced and implemented, in such a way th a t the 

TMM no longer is required. Also, we present a novel m ethod to calculate YR. It 

is based on exchange probabilities which are directly derived from endowing optimal 

values for P r^ r/P r ^ r . Further, we consider the issues related to (iii) and compare the 

efficiency of the ST m ethod implemented through the PP  and AC guidelines. At least 

for the models studied in this contribution, we find th a t the AC protocol tends to give 

better results.

To these purposes, this Doctoral Thesis is organized as the following. Chapter 2 

gives a background on the study of phase transitions and applications in ferromagnetic 

systems. In Chapter 3 we describe the standard Monte Carlo m ethod and some of its 

variations to simulate first order phase transitions. In Chapter 4 is presented the two
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main contributions of this work: the calculations of g r — gr with a thermodynamic 

approach, and the novel m ethod to compute YR by a probabilistic scheme. In Chapter 

5 a review is made on three models to be implemented in MCMs with ST-algorithm: 

Blume-Emery-Griffiths, Bell-Lavis and Potts. The Chapter 6 presents the results and 

discussions about Ising-model, Blume-Emery-Griffiths, Bell-Lavis and Potts. Finally, 

in Chapter 7, we drawn the conclusions of this thesis highlighting our most im portant 

findings and briefly mentioning perspectives for future developments.
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Chapter 2 

Phase transitions: Basic concepts

Phase transition is a change in a structural feature of a physical system (for instance, 

readjustm ent of the spatial organization of the system constituents), commonly involv­

ing the emission or absorption of energy and resulting in a transform ation to another 

“state” . Transitions between states of m atter (eutectic, eutectoid and peritectic trans­

formations) are present in thermodynamic systems, where the density of mass is a 

transition param eter th a t change with tem perature, pressure, and /or others macros­

copic variables. In other systems such as semiconductor alloys, magnetic materials, 

complex fluids, granular m atter, etc, the transition can be described via order param e­

ters (from the Landau Theory) characterizing the local order in the system. Depending 

on the physical system, the order parameters can statistically indicate the existence 

of one or more phases when some thermodynamic param eters are fixed. In this case, 

the phase coexistence occurs at the same time, and its is separated by a boundary 

surface called interface. In complex fluids like emulsions, foams, aerosols and parti­

cle dispersions, the interfacial energy is several orders of magnitude higher than  the 

bulk energy [62]§11. So, the study of coexistence of phases is very im portant to un­

derstand natural and industrial processes, given th a t these phenomena are ubiquitous 

in nature and involved in innumerous industrial transformations production processes 

(food, metallurgy, drugs, etc).

One of the most im portant applications of MCMs in condensed m atter physics is 

the study of phase transitions (see for example [5]§2.1.2, [40]§7.3 and [63]): one wishes to 

estimate for which param eter values a phase transition occurs; one wishes to distinguish
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whether a transition is of first order or of second order; and one wishes to characterize 

precisely the properties of a transition. For a second order transition, this means the 

estimation of the critical exponents and critical amplitudes [5]§2.1.2.3 [64]; for a first 

order transition, this means the estimations of the magnitudes of jum p of various first 

derivatives of the free energy at the transition [5]§2.1.2.3 [1]§2.5, such as order param eter 

or energy (latent heat), for instance.

This chapter describes the main features of phase transitions from the mean- 

field-theory (M F T ) point of view. As an illustration, we will consider phase transitions 

in the Ising model, one of the simplest, yet not trivial [65], system in theoretical 

statistics physics (see Figure 2.3). Exact solutions for the Ising model will be a reference 

to test the accuracy of the results obtained in this thesis.

2.1 P h a se s , b o u n d a r ie s  a n d  tra n s it io n s

Generally the system of interest is specified as some spatial region Q[<̂ ] (with volume 

VQ and surface Sq ), for ^  the set of all microstates. It is reasonable to consider that 

VQ a  Ld and Sq a  Ld-1, where L is some characteristic linear size and d is the 

dimensionality of the system. From a statistical mechanics point of view, in the region 

Q the classical Hamiltonian can be defined as

PH q =  — ^  A„0 „, where P -1  =  T, (2 .1)
n

~  1.38 x 10- 23J / K  is the Boltzmann constant, T  is the tem perature (in Kelvin 

scale, K ), An are the coupling constants and the 0 n are the energies corresponding 

to a particular process in the system (usually given as combinations of the dynamical 

degrees of freedom which are summed over in the partition function). The An con­

stants are the external parameters, such as fields, exchange interaction parameters, 

tem perature, etc. In finite systems with strong potential energies, the Hamiltonian 

H q can be computed as a sum of N / contributions where each one involves a type of 

interaction. As an example, in the Ising model we have ^ H ,  N/ =  2, 0 1 =  i Ui, 

0 2 = Yh(i,j) uiUj, A1 =  H , and A2 =  J , where H  is a external magnetic field and J  is 

the energy interaction between spins (see figure 2.3).
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In lattice models with NQ particles, the degrees of freedom are the spins ui on 

the lattice sites i, where 1 <  i <  NQ =  VQ. Thus the 0 n are built out of combinations 

of the ui . In this context, the partition function for a canonical ensemble itself is given 

by

Zn (A!, A2, . . . )  =  ZQ[A] =  E  £ £  ■ ■ ■ E  e-8Hn■ (2 .2)
01 2̂ 03 JNq

Each sum is over all states of each particle, so th a t ZQ contains a sum over all com­

binations of states of the system. Also, in the canonical ensemble, the free energy is 

defined by

Fq[A] =  — P -1 ln Zq [A]. (2.3)

Information on the thermodynamic properties of the system Q is contained in the 

derivatives dFQ/dA n , d2FQ/dA ndAm, etc, which include bulk effects (in the uniform 

m atter), surface effects (in the heterogeneous m atter), and finite-size effects (see for 

example reference [66]). However, if Q is finite, there is no information about phase 

transitions or phases.

On the other hand, it is expected th a t the free energy will be extensive for large 

systems, namely

F q -  VQf +  Sqf  +  O(Ld-2), (2.4)

where f  is the bulk free energy per unit volume or bulk free energy density and f  is the 

surface free energy per unit area. We can give a precise definition of these im portant 

quantities as follows

/[A] =  lim O F  /[A] =  lim J O W E M )  (2.5)
Vq Sn SQ J

when the limits exist and are independent of Q. For a system defined on a lattice, with 

Nq lattice sites, the bulk free energy per site are the same but with VQ =  NQ. The 

limits in the above equation are known as the thermodynamic limit, and it means a 

consideration of the asymptotic statistical properties of a model system in which the 

linear dimensions are allowed to become infinite. Sometimes, an auxiliary constraint is 

imposed simultaneously to this limit. For example, in fluid systems, taking the limit 

VQ —y to  is senseless unless one simultaneously takes the limit th a t the number of
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particles Nq in the fluid also tends to infinity, in such a way th a t the density Nq/Vq 

stays constant.

Let us suppose th a t there are D coupling constants. The axes of the phase dia­

gram are A i, A2, . . . ,  A D, and hence the dimension of the phase diagram is D. Regions 

of analyticity of f  [A] are called p h ases . The possible non-analyticities of f  [A] are 

Singular Segments in the Phase Diagram (S S P D ) (points, lines, planes, hyperplanes, 

etc) which have a dimensionality associated with them  (Ds =  0,1, 2 , . . . , D  -  1 respec­

tively). An im portant invariant for each type of SSPD is the codimension C = D — D s. 

SSPD of codimension C  = 1  (i.e. SSPD which separate phases) are called phase  

bou ndaries .

Since f  is everywhere continuous with respect to An (a thermodynamic proof 

is presented in [62]§6.1), transitions across the phase boundaries (varying An) can be 

classified as

1. First-order phase tran sition  (F O P T ): One or more d f /d A n are discontinuous 

across a phase boundary.

2. C ontinuous phase tra n sitio n : The only other remaining possibility for non- 

analytic behavior is th a t all d f /d A n are continuous across a diffuse phase bound­

ary. This transition type is always defined with a thermodynamic critical point1,2. 

If, in addition to tha t, one or more d2f /d A n  are discontinuous, then this event is 

named as a second-order phase tran sition  (following the so called Ehrenfest 

classification).

The definitions of phase transitions given above are ambiguous, because there may 

exist a path  along which f  [A] is analytic going from one side of a phase boundary 

to the other. An example is the liquid-gas-solid phase diagram, shown in figure 2.1. 

Although it is not possible to pass from fluid to solid without encountering a phase

1For example, a critical point is a point at the end of a biphasic curve. The most classical example 
is the liquid-vapor critical point. The end point of the pressure-temperature curve designates the final 
condition under which a liquid and its vapor can coexist.

2 For example, one of the interesting phenomena occurring in a continuous phase transition is 
critical opalescence. At the critical point the compressibility kt = (T  =temperature,
V =volume, P  =pressure) is infinite and close to the critical point it is very large. So that, small 
fluctuations in the pressure P  will cause large fluctuations in p, inducing tiny droplet formation that 
scatter light.
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Figure 2.1: Phase diagram (pressure P  vs temperature T ) of a typical substance. For this 
case, both in the triple point and in the critical point, the codimension is C =  2. The solid­
liquid phase boundary (C =  1) extends to arbitrarily high pressure, whilst the gas-liquid 
phase boundary ends at the critical point. The dashed curve represents a trajectory in the 
phase diagram along which no phase transition is encountered, even though a change of phase 
has apparently taken place.

transition, it is possible to choose a path  in p - T  space which goes from liquid to gas 

without encountering any singular behavior of the thermodynamic quantities.

The phase boundaries are commonly called coexistence curves in therm ody­

namics of fluids, because two phases can coexist in equilibrium when pairs of conjugate 

variables such as pressure and volume or chemical potential and number of particles 

are fixed. In a continuous medium, the phase coexistence as function of the position r 

is usually described by means of a free energy functional as3 [68]§e.i,§6.2 [69,70] [71]§2.3.1

-r ( 0 = / { / ( r t  +  | V p | 2}<ir- (2.6)

Here, p is the density of particles, f  (p) is the bulk free energy density and k is the 

influence param eter which measures the effect of density gradients on the free energy 

of inhomogeneous systems [62]§11.1.4. By minimizing equation 2.6, the resulting p(r) 

should describe the density profile in the region comprising the interfacial energy.

3When the spatial density variations are not too strong, densthe scattering fority differences in the 
free energy functionals can be expanded in a Taylor’s series and truncated after a few terms. The 
result is that the distribution equation becomes a nonlinear differential equation instead of a nonlinear 
integral equation. This methodology is known as density gradient theory, and equation 2.6 is a result 
of the expansion. In order to obtain appropriate values of k, experimental procedures measuring 
interfacial tension and wetting can be performed (see for example [62] § 13.5 [67]).
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For biphasic fluids (for example, van der Waals model) the coexistence phase1- 

phase2 (for example, liquid-gas) presents spatial interfaces th a t separate clusters be­

tween phases with a free interfacial energy f  (see equation 2.4) and characterized by 

the interfacial tension ys a  k [62]§s.4 [72,73]. W hen the tem perature T  is constant, 

theoretical values for the density of the bulk phases p1 and p2 can be computed by the 

conditions of thermodynamic equilibrium [62] §61 [2]§5 2

P  (P1,T) =  P  (p2,T), 

P  (p  T) =  —f  +  p p

MP1,T ) =  M p 2, t ^

( rr \  d f  
l '(P .T ) = g - p

(2.7)

(2.8)
T

where P  and p are the pressure and chemical potential at the bulk phases. As a 

consequence of equations 2.7 and 2.8, the Maxwell Construction Method is obtained 

(see Figure 2.2). So, a complete equilibrium thermodynamic description can be ob-

Figure 2.2: Qualitative pressure P  versus molar volume V/N isotherms (constant T ) pre­
dicted by cubic equation of state in V/N. N  is the number of particles and its density is 
equal to p =  N /V . The P -V  states between A' and B ' on the T  < Tc isotherm (solid line) 
are thermodynamically unstable. For T =  Tc (critical isotherm shown in dot-dashed line) 
and T  > Tc only a state can be found when P  and V/N are fixed. There are also Maxwell 
construction for the binodal (dashed line) as well as spinodal (dotted line). The Maxwell 
construction method is based on the Gibbs-Duhem equation SdT  — VdP +  Ndp =  0 in ther­
modynamic equilibrium (dT =  0). Namely, one obtains pA — pB =  j f  (V/N)dP  =  0, where 
equation 2.7 has been used. This integral implies a simple geometric construction (the area 
designated as [AA'Q] has to be equal to [QB'B]) for finding two-phase equilibrium states.
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tained once the bulk free energy f  (p, T ) is known or determined. If each microscopic 

interaction between particles (given by a Hamiltonian H  like equation 2.1) is known, 

a classical statistical mechanics treatm ent to determine the partition function Z  and, 

later, the relationship between f , p and T , can be developed.

Insomuch as the to tal number of configurations or combinations of microstates 

which assemble a m acrostate, is n sNn (where n s is the number of possible microstate 

of a particle), Z  turns out very difficult or even impossible to determine if n s or Nq 

is a relatively large number. In this case, an alternative approach to calculate Z , once 

H  is known, is by means of numerical methods and using reasonable approximations. 

That is, if one can homogeneously discretize time and space such th a t a finite number 

of particles occupy a finite volume and microstate transitions take place during a rea­

sonable time interval, then a simplified to tal internal energy U =  (H) can be computed 

as function of p and T . The relation f  (U) is described in section 4.1.

In this sense, the transform ation of the free energy from a continuous system to 

a mean-field-theory approach results from [74]§6.5

J  f  (P)dr ^  ^  f  (Pi) and J \Vp\2dr ^  ^ (pi — pj)2. (2.9)
i <i,j>

2.2 F e rro m a g n e tic  T ra n s itio n s

A ferromagnetic material without external magnetic field H  is characterized by pre­

senting a spontaneous m agn etiza tion  at tem peratures below a certain critical tem ­

perature Tc. W hen H  =  0, the magnetization (M ) versus magnetic field curve shows 

hysteresis, i.e. the ability to store information of which direction a sufficiently strong 

external magnetic field last pointed before dropping to zero field. T hat is why ferro- 

magnets are widely used in computer memories, among other applications.

Toward the end of the 19th century the ferromagnetic transition was investigated 

quantitatively as a function of tem perature by P. Curie at the University of Paris. He 

found experimentally th a t the susceptibility y =  of a ferromagnet depends on the 

tem perature according to the simple law ;y(T) =  jSp~ wliere C  is a constant (the Curie 

constant), and Tc is a critical tem perature below which spontaneous magnetization 

shows up (Curie tem perature). Physically, below Tc, the spontaneous symmetry begins
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to break and magnetic moments become aligned with their neighbors. So, the Curie 

tem perature is the tem perature at the critical point in a second-order phase transition. 

The magnetic susceptibility is (theoretically) infinite and domain-like spin correlations 

fluctuate at all length scales.

Simulations of ferromagnetic phase transitions, especially via the Ising model 

(Figure 2.3), had a significant impact on the development of statistical physics. The 

two-dimensional Ising model [29] [5] §2.1 exhibits cooperative phenomena and has the 

attractive feature th a t it can be solved exactly. It has a direct bearing on order-disorder 

transitions occurring in alloys and ferromagnetic materials. It is composed of a square 

lattice whose sites can be occupied by magnetic spins th a t can be oriented up (t) 

or down (^). In the classical MA, the interactions between spins are calculated only 

including the nearest neighbors (four neighbors in a square lattice). In more complex

2 - D  Ising  M od el

T  =  Tc/2  T  =  Tc T  = 2Tc

Images obtained from http://physics.weber.edu/schroeder/software/demos/IsingModel.html (H = 0)

Figure 2.3: Schematic representation (upper figure) and some qualitative results 
of the Ising model (inferior panels) in a square lattice. As in the figure, the orien­
tation of the spins (represented by arrows) are disordered (T > Tc), and therefore, 
the system is in a paramagnetic state. If spins are aligned in a regular pattern 
with neighboring spins pointing in opposite directions, the state is called anti­
ferromagnetic. For exmaple, in a one-dimensional lattice the antiferromagnetic 
state is ••• ***. The inferior panels show qualitatively the steady state
of simulations with the Metropolis algorithm for three temperatures. The system 
is ordered as the temperature increases (from left to right).

http://physics.weber.edu/schroeder/software/demos/IsingModel.html
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lattices the phase transitions can be distorted, where the critical exponents seem to 

vary with the disorder strength [75]. The to tal energy can take values according to the 

Hamiltonian H  =  — JJ2(i,j) — HJ2i , where J  is the interaction energy, H  is a

external magnetic field, (i, j ) are pairs of nearest neighbor and ai is the value of spin 

±1. The probability p =  exp(— H) (where 1/fi =  kBT ) is used in MA for a single 

flip spin. Macroscopic observables are computed once the equilibrium state is reached, 

such as internal energy u =  {PL) and the lattice m agnetization (M) =  A Yh=\ &i- It is 

obtained (M) =  0 for (3J < (3CJ  =  [ln(l +  v/2)]/2 (critical tem perature), and (M) «  ±1 

for T  « 0 ,  when H  =  0. O ther quantities of interest such as the heat capacity C  =  

or the magnetic susceptibility y =  can be computed indirectly. Even though PL 

is very simple for this ferromagnetic model, calculations of (M ) at T  «  Tc can be 

relatively imprecise, such as shown in recent studies [76].

It was first clearly shown th a t mean field theory approaches failed to predict 

the correct behavior at Tc. In the phase diagram of the Ising model there are five 

distinguishable regions:

• , at T  <  Tc and H  <  0: ferromagnetic phase with (M ) <  0,

• 0= , at T  <  Tc and H  =  0: phase boundary of (M ),

• , at T  <  Tc and H  >  0: ferromagnetic phase with (M ) >  0,

• 0= , at T  =  Tc: ferrom agnetic-paramagnetic critical point,

• 0 > , at T  >  Tc: paramagnetic phase (disorder),

If the value of applied magnetic field is gradually changed from H  to — H  at T  <  Tc 

(Figure 2.4.A), a first order phase transition takes place where the phase boundary is 

0=. In this case, the magnetization change abruptly (M ) ^  — (M ), the free energy 

remains constant f  ^  f , and the coexistence of domains (of t  and ^) are present in 0=. 

If T  is gradually changed from T  < Tc to T  >  Tc (or otherwise), a continuous phase 

transition takes place. In this other case, the transition between the ferromagnetic 

(order) and paramagnetic (disorder) phases is diffuse at the phase boundary 0=. The 

magnetization (M) is zero above the transition and is non-zero below the transition 

tem perature. A quantity which varies in this way is referred to as an order param eter 

(see Figure 2.4.B).
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(A ) (B )

Figure 2.4: Phase diagrams for the Ising model for (A) applied magnetic field H  vs tem­
perature T , and (B) lattice magnetization (M } vs T with H  =  0. The phase coexistence 
curve (at H  =  0 and T < Tc) is shown in (A) as the line on the T-axis from T =  0 to 
T =  Tc, which equilibrium values of (M } are shown in (B). For H  =  0 and T < Tc, the 
system exhibits ferromagnetic behaviors (ordered phase); while a paramagnetic behavior is 
observed for T > Tc (disordered phase). For H  = 0, spontaneous magnetization behavior as 
a function of T is present in the system of spins. The symmetry behavior of M (image (B) 
for T < Tc) is a consequence of the no-preference of microstates in the absence of any 
external magnetic field.

2.3 O rd e r  p a ra m e te rs  a n d  c r itic a l e x p o n e n ts

Mean-field theory (M F T ) can give the so-called classical values for the critical expo­

nents if one expands the equation of state near the critical point [1]§4. The expansion 

param eter is the spontaneous magnetization in the case of a ferromagnetic system and 

the half-width of the coexistence curve in the case of a fluid system (see for exam­

ple [62]§4.4). Both quantities exhibit the same tem perature dependence, and are good 

examples for the concept of an order parameter.

The order param eter for a given system is not unique. Any thermodynamic 

variable tha t is zero in the disordered phase and non-zero in an adjacent phase (on 

the phase diagram), is a possible choice for an order param eter (such adjacent phase is 

usually called the ordered phase). In a first-order phase transition, the order param eter 

W  changes abruptly in a specific range of some intensive param eter (example: H  in 

the Ising model or p  in fluids). Whereas th a t in a continuous phase transition, the 

behavior of W (T ) is smooth from T  =  0 to T  =  Tc. For biphasic fluids (for example, 

van der Waals model) an appropriate order param eter considered in the Landau theory 

is Ap k |p — pc| where p is the volumetric mass density of the fluid, 2pc = pi +  pg, and
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pi and pg are the mass densities of the liquid and gas at the coexistence, respectively. 

In this case p is non-zero in the disordered phase (T >  Tc), but Ap =  0 because 

p =  pi =  pg •

The behavior of the order param eter, as well as of other thermodynamic quan­

tities, has an universal character in the vicinity of the critical point. From Onsager’s 

solution [77] (exact solution for the Ising model to an infinite square lattice), we know 

the power rules obeyed by several thermodynamic variables close to Tc (Table 2.1). 

Since for the correlation length we have h ~  \e\-v with v = 1  (where e =  1 — T /T c), 

then obviously h diverges near Tc in the thermodynamic limit. However, it is reason­

able to assume th a t the correlation length has the same order of magnitude of finite 

lattices. Often, h is a measure of the cluster sizes when the system reaches equilibrium 

(for the Ising model, see images in Figure 2.3). From such analysis, it can be considered

Table 2.1: Critical exponents for the Ising model (v, a , ft, 7 , 5 and n). Here (M ) 
is the magnetization, H  is an applied magnetic field and e =  (T — Tc)/T c. The cor­
relation length h establishes a measure of some degree of interaction or “how far the 
interactions reach” . If one flips a single spin from say ft to ft, h describes how far away 
will th a t flip affect the probabilities for finding other spins ft or ft. As a consequence, 
the correlation length diverges at the critical points (h ^  with T  ^  Tc), because 
the spins are strongly correlated when the phases are coexisting. On other hand, the 
correlation function G (r) is a measure of the order in a system, which describe how 
microscopic variables at different positions are related. Even in the disordered phase, 
particles at different positions are correlated. Namely, if r  < <  A (r =  distance between 
particles/spins, A =  length scale), the interaction will yield some correlation between 
particles. At relatively high tem peratures asymptotic and exponentially-decaying cor­
relations are observed with increasing distance G (r) ~  exp(—r /A ) /rd-2+n.

Value of the exponents

Q uantity B ehavior d = 2 [65]§7.12 d = 3 [78] MFT [2] §6.3

Correlation length h ~  \e\~v 1 0.629 1/2
Specific heat Cv  ~  |r| a logarithmic 0.113 jump
Order param eter (M) ~  |e|/3 1 /8 0.324 1 /2
Susceptibility x  ~  H “7 7/4 1.238 1
Equation of state (M)  ~  H l/& 15 4.82 3
Correlation function G(r) ~  i / rd~2+v 1/4 0.031 0
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th a t h ~  L in finite systems when T  «  Tc. As a consequence, one obtains

|e| — L -1/v

du
d r CV — L a/I3

(M } -  L -ii/v (2.10)
d(M )
9H V =  X Ly/ v

The numbers a , ft and y are known as critical exponents of the system [79,80], and as 

an example, Table 2.1 gives the critical exponents for the Ising model.

According to modern statistical mechanics theory, quantities such as 7 s, and

Ap approach zero through universal scaling laws

Ys |u |z , kt  — M" Ap — |u |n, u £* — e (2.11)

where £ =  An is a thermodynamic field variable (T for example), £ * is the value of £ at 

its critical point (Tc for example), ys is the interfacial tension, is the compressibility 

and the constants £, v  and n are the critical exponents characterizing the fluid system.

2.4 T ra n s itio n s  close to  th e  co ex is ten ce

As explained above, both  the correlation length h and ^  (W  is the order param eter 

and £ =  An is an external param eter) diverge to infinity in very large (or infinite) 

systems during a FO PT (see also [80]). In the previous cases, we had W  =  (M } for 

the Ising model and W  =  Ap for a biphasic fluid. In other words, when the value of 

a thermodynamic field variable £ is such tha t leads to a divergence, then we have a 

critical point at £ =  £*. Nevertheless, in finite systems this condition is not met, and 

a different strategy is needed to find £*.

The approach we present below was explained and applied by Fiore and da- 

Luz [81,82] to find the SSPD at £ ~  £ * in finite systems. However, the m ethod is 

equally useful in the thermodynamic limit V  ^ t o .

At low tem peratures, the partition function can be expressed as [83,84]

N
Z  = 5 3  an ex p (—ftV fn) +  Zu. (2 .12)

n=1
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Zu is associated to unstable phases (exponentially negligible), N  is the number of

phases, f n =  f n(£) is the bulk free energy density of the n th  phase, a n are the degen­

eracy parameters from possible spatial symmetries and V is the volume.

On the other hand, it is noted tha t usually the starting point to calculate distinct 

order param eter is4

=  ( 213 )
P Vd£ E ;=1  an exp(—fiV fn)

where

9., =  r | ( h ) .  (2.14)

Now, suppose th a t other intensive parameters are kept fixed with proper values 

at the phase coexistence, such th a t the bulk free energies are single functions of £. 

Consequently, a first order series expansion around y  =  £ — £* ~  0 for each f n is

9fn\

?=P
fn «  f * +  f* y , f * =  fn (£*), f

d£

Thus, substituting equation 2.15 into equations 2.14 and 2.13 yields (Tc =  T *)

(2.15)

W  (£)

f * ST

K - k m  (2 ' 16)
T,n= 1 a n9n exp( - f3V  f'n*y) exp(+/3Vf[*y)/ai  

J2n=i a n exp{ -p V f !* y )  exp(+[3V f[*y)/a^  ’
bi +  E n=2 bn exp{ - a ny)

W (£) «  ^  ' "E E 2 n (2.17)
1 +  E n=2 cn exp (—an y )

an = (fn -  /l*)E/3, Cn = ~ , bn = Cn g n .a1

The coefficients an , bn and cn are independent of £, but depend on £*, fn*, T  and other 

system parameters. Note th a t only the an ’s are functions of V (linearly). So, during 

the phase coexistence (y =  0) all the curves W (£ =  V ) should cross at £ =  £*, which

4Typically relevant thermodynamic quantities have that form. For example: if £ = p, the density 
follows directly from p = —W, if £ = S, the energy per volume is u = SW, and if £ = V then the 
pressure is P  = —W/V.

n
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regarding the values of W * , correspond to

W * =  W (£*)
y-N b^ n =  1 bn
Y *  rZ^n=1 Cn n=1

N f * dT
f*  -  — —/  , LnJn rp nc iTc d£ y-N c^n=1 cn

(2.18)

In a symmetric two-phase system (N  =  2 and a 1 =  a 2), we have

*
2Ue ?=? ?=e

/* <9T 
7£5£-

(2.19)

From equation 2.19, the lattice magnetization for the Ising model can be calculated 

with £ =  H  and W  =  (M }, namely

(M}* 1 d ( f -  +  f+ )
2 dH

(2.20)
H=H*

where f±  are the free energy densities when all spin are t  or ^. The values of f± are 

determined at T  =  0 as5

f/±  y
U± — T S±

T=0 V T=0
(2.21)

F± are the volumetric free energies, U± are the internal energies, S± =  0 are the 

entropies and z is the number of nearest neighbors for each node or th e  coord ination  

num ber6. Finally, we obtain f ± / S H  =  ^ 1  th a t implies (M }* =  0.

Obviously, there are other methods to characterize phase transitions of lattice 

models (see for example [85]). But the approach here discussed is very appropriate for 

the purposes of the present work.

n
n

5 Here, we have assumed stable phases and we have used

H = — J  <7i<7j — H J
<iJ) i

with
§ 2  (Ji Oj} = z/2, § 2  °i) = ± i.

6The coordination number of a central particle is the number bonded to it. The usual value of 
the coordination number for a given structure refers to a particle in the interior of a lattice with z 
neighbors in all directions. For example, in 2D lattices, z = 4 for a rectangular and z = 6 for a 
triangular.
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Chapter 3 

M onte Carlo m ethods

Monte Carlo methods (M C M s) are a broad class of computational approaches based 

on stochastic procedures to solve distinct problems. The m ethod is mainly used in 

mathem atical and /or physical problems th a t might be deterministic in principle. It 

finds many usages involving optimization, numerical integration, and generating draws 

from distinct probability distributions. MCMs are particularly useful in lattice models 

to simulate specific physical systems (characterized by Hamiltonians).

Computational algorithms with very simple structures are implemented in all 

MCMs. The first step in any Monte Carlo algorithm is to generate a set of N  re­

alizations rf tt) , r 2(t), ■ ■ •, r N(t) of the Markov process 0 (t) . For a given value of t, 

these realizations are just sample values of the random variable 0 (t) . Since the prob­

ability density function P (r , t \ r0, t0) of 0 ( t)  is usually not known, we cannot expect 

to generate these sample values by subjecting P (r , t \ r0, t 0) to any of the conventional 

random number generating methods. Practical Monte Carlo simulation schemes pro­

duce sample values of 0 ( t)  by more complex procedures, tha t essentially emulate the 

actual time evolution of the process. That is, the i-th  realization of the process 0 (t)  

generally consists of a set of sample values rf tt0), rf ttft, r f tt2), ••• of the process at 

successive instants t0, p ,  t 2, ■ ■ ■. Once a set of realizations {ri(t)} has been generated, 

then virtually any dynamical quantity can be numerically estim ated (by using time 

averages for example).
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3.1 E rg o d ic ity  a n d  d e ta ile d  b a lan ce

The MCM is a m ethod using probability arguments and PRNs to perform calculations. 

In treating physical systems, it provides estimates of observables, such as the internal 

energy and magnetization. In the canonical ensemble, the therm al average is expressed 

as

(Q) =  Z -1 £  Qn e-l3En, Z  =  £  e-l3En, (3.1)
(pi,(f2,--- 1̂,̂ 2,---

where { ^ 1, ^ 2, . . . ,  } is a set of all configurations of the system, E n =  E (<̂ n) is the en­

ergy of the system in n-state, Qn =  Q (^n) is the value of the corresponding observable, 

e- ^En is the Boltzmann weight and Z  is the partition function. The state space might 

be huge in the thermodynamic limit because there are infinite states. But, if we were 

to choose states from the phase space according to some probability pn =  p(ipn) (with 

En =  E (ipn) and p n =  <£>n [<̂n]), we would get

V - - Q e dEn /p
IQ) =  ^ I . y 2 , - V " e  _ IJPn

~ e /3En /p V 'ZsLpi ,<E2,--- I I n

and for pn a  e-,3En (im portance sam pling ) we obtain

1 M
IQ) -*■ (Q) = x f  £  Qm, (3.3)

M M m=1

where M  is the number of configurations with probability pm. Here, the gain is that

the estimate of (Q) does not include states contributing little to the average, since

there are rarely picked by pm.

In order to construct a Markov process with the tran sition  probabilities  

P m^ m/ (from m-microstate to m '-microstate) according to pm, we need two conditions 

to be fulfilled: ergodicity and detailed balance. The ergodicity condition1 (or property) 

is satisfied only if

Pm^m' >  0, and P m > 0, m  =  m ' =  1 , . . . , M ,  (3.4)

1An ergodic dynamical system is one that has the same behavior averaged over time and space of 
all the states in the phase space. In other words, a random process is ergodic if the time average is the 
same as the average over the probability space, known as the ensemble average. As a consequence, 
the final state of an ergodic process is independent of its initial state.
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This means th a t it is possible for the system to reach any microstate from any other 

microstate. An ergodic process is necessary to ensure th a t the algorithm can pass 

through all states if one runs long enough simulations, such th a t (Q) includes every 

states with pm probability.

The detailed balance ensures th a t the Markov process reaches the equilibrium 

distribution. At first glance, one may think tha t the equilibrium state is already 

achieved if the to tal probability balance holds true, namely,

53  Pm P m^m! 53  Pm' P m'^m-
m m'

Unfortunately, this condition can also lead to non-equilibrium limit cycles or dynamic 

equilibriums. These possibilities are running out when for each term  pair of microstates 

m  and m! we have [26] §9 .3

pmP m^m' Pm'P m'^mj m  =  m  1 > •••> • ( 5 5)

Equation 3.5 is called deta iled  balance 2 The ratio of the transition probabilities reads

=  PUP_ =  -P{Em,-Em) (3  g\
V  , ft ’ ’' m ̂ m  Fm

Since MC iterations involve two stages to change the microstate of a particle, 

the to tal probability should contain two contributions. A general expression for P m^ m' , 

which contains both selection and acceptance/rejection processes, is

P m^m' S m^m' A m^m' • (3.7)

The selection probability S m^ m' is used to choose a new possible microstate and the 

acceptance probability A m^ m' is implemented to accept or reject the microstate. If the 

possible combinations of the selection probability have reversal symmetries Sm^ m' =

2 A rigorous deduction is in [4]^.4.a- In summary, equation 3.5 is obtained by minimizing ■§jVm^m' ■,
where Vm^ m> = n=-i3 Pm^nPn^m' is the C h a p m a n -K o lm o g o ro v  e q u a tio n  and m = m(t) is
the numbered configuration at time t.
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Sm/^ m, equation 3.6 is simplified as

Am-^m' =  c-/3(Ern/-Em)_
Am'^m

Also, the values of Sm^ m/ should be normalized, namely

M
]T  Sm^m' =  1- (3.9)

m'=m=1

Equation 3.9 warrants th a t the system try  to visit all the possible combinations of 

microstates. However, the change of internal energy of the system is performed with a 

probability given by the equation 3.8.

3.2 M A  a n d  s im u la te d  an n ea lin g

One of the most widely used and simplest MCMs is the Metropolis Algorithm (M A ). 

This section presents the “plain” MA in the case of a single spin update, i.e. only one 

spin can be flipped at each attem pt. It is im portant to mention th a t the MA is not 

restricted to this type of dynamics, because it can handle multiple updates. But in the 

context of single updates, the MA establishes a direct way to choose P m^ m/. Generating 

new configurations by single spin updates create successive samplings th a t are strongly 

correlated; however, it is necessary to perform many iterations for a significant evolution 

of the system.

Let’s suppose th a t each spin (not necessarily on a lattice) can take the discrete

values3

Ui =  tf(v), i =  1 , . . . , N ,  v =  1 , . . . , q .  (3.10)

N  is the number of particles and q is the number of possible values. Since just one spin

is flipped, the energy difference E m' — E m =  H(v') — H(v) depends only on the possible

spin state change. Note th a t the values of the symmetric selection probabilities are

given by S(v)^(V) =  S(V)^(v) =  1/(q — 1). So, the transition probability between two

3For the Ising model q = 2 and a v̂) = 2v — 3, for BEG q = 3 and a v̂) = v — 2, for Potts a v̂) = v — 1, 
and for BL q = 3 and (ar)(v) = v — 2.
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states of a chosen spin is

P ( v ) - K v ' )  =  m i n { l ,  (3.11)

where H(v) is the Hamiltonian of the original configuration The equation 3.11 satisfies 

the detailed balance, since

= g1̂ 111111! 1,6 M {v) (o1} =  e- m ^ ) - H iv)] 19n
7 V k („) ^-j- m in{l, 1 j

for any case of H(v) and H(v' ). Also, note th a t the ergodicity condition (equation 3.4) is 

satisfied. Therefore, one Monte Carlo step for the MA can be implemented as follows:

1. Randomly choose a spin with value oi =  O(v) (in a lattice, one needs choose a 

node).

2. If q > 2, randomly choose a possible new state V  =  v with selection probability
i

q- 1 '

3. Calculate the energy difference A H  =  H(v') — H(v), where H(v') is calculated 

supposing th a t the chosen spin has changed its state to O(v).

4. If A H  < 0, then oi changes from O(v) to O(v'). Otherwise, a normalized PRD 

is generated, and if <  e- ^AH, then oi changes from O(v) to O(v' ).

For one Monte Carlo iteration, one step (Monte Carlo step) should be executed 

N  times in order to obtain an average evolution of the system (N  is the number 

of particles or nodes in a lattice). It is expected th a t after “many” iterations, the 

system will reach a reasonable equilibrium condition or a steady state, which can be 

quantified by means of the discrete-time autocorrelation function4 [52] §3.2. If we shall

4When a simulation is run from t = 0 to t = NMc iterations (MC steps), the discrete-time
autocorrelation function Ct for the t MC steps is given by [87]

1 Nmc- t
° t =  (N MC - t ) ( m  -  (Q )i) £  ( Q k - { Q ) ) ( Q k +t - { Q ) ) ,

where t < NMC, (Q2) — (Q)2 is the variance and (Q) is the average of the observable Q. This estimator 
Ct is a measurement of how strongly Q is correlated in the time (iteration), or it is an indicator about 
how Qk+t depends on Qk. If Qk «  (Q) for several values of k, the autocorrelation is drastically
decreased. So, the condition Ct ^  0 is good indicator of the steady state.
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obtain the curve (Q)ç =  W ( f ), it will be necessary to perform several simulations 

varying f  =  to get W  =  W i,

In this sense, we can take advantage of the fact th a t the configuration of equilib­

rium pi(t  ^  œ ) of the simulation-/ with a fixed value f  =  f l can be introduced as a in- 

tial configuration of the system Cv (t =  0) into another simulation-/' with f  =  f l/ , where t 

is the current Monte Carlo step. Namely, if f 1 <  f 2 <  . . .  <  f N? or f 1 >  f 2 >  . . .  >  f N?, 

then ^ l+1(t =  0) =  ^ l(t ^  œ ) from / =  0 to / =  N  — 1, where c 0(t =  0) is the 

unique start configuration and N  is a number of intervals of f. This procedure is 

commonly known as sim ulated  annealing (S A ) [44]§ 10. For example, if f  =  T  and 

N t  =  TjVTAT°+11 wliere TN t , T0 and A T  are pre-fixed values of tem peratures, then

Co =  C[Tnt ],

T1 =  C[Tnt- i]>

Cl C[TNt - i ],

CNt =  C[To] .

Later, we would start the simulations with a random configuration for c 0 (disordered 

system). Whereas th a t the remaining simulations should be initialized as c l(t =  0) =  

C[TntM (t ^  œ ) where CPNt- l](t ^  œ ) is the configuration obtained from a simulation 

with “many” iterations.

3.3 S im u la ted  T em p erin g

The SA-algorithm is used as a statistical predictor for only one global minimum of H,

i.e. we can compare the values of the energy after many SA runs and if the probability 

of ending at the global minimum is not too small is a given instance, the SA may 

be considered a rather efficient algorithm for th a t instance. However, if the absolute 

minimum has a small basin of attraction and is separated from the large local minima 

by very high barriers, the SA may not be a good choice of some simulation protocol.
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As an illustration, in the Ising model we can observe th a t there are two values 

of the lattice m agnetization (see Figure 2.4.B) at the phase coexistence (region ). 

Therefore, by using only one SA simulation it is almost impossible to obtain the two 

phases at low values of T  because the barrier to change from (M ) =  f±  to f T is very 

high (see equation 2.21). Even though the MA is ergodic, the algorithm would remain 

fixed in just one global minimum ( ( M) =  /+  or (M ) =  f - ). Only when a sufficiently 

large set of SA simulation are performed, we would observe (M ) =  f±  with the same 

statistics.

The m ethod we explain in this section is meant to overcome these difficulties. 

Also constituting in a distinct scheme to the minimize free energy. The main idea of 

the Simulated Tempering (S T ) m ethod [50] consists of changing the tem perature while 

remaining at equilibrium: This contrasts with the SA method, where every change of 

the tem perature drives the system out of equilibrium.

First of all, in this scheme the space of configurations is enlarged by assuming 

the tem perature T  as a dynamic variable of the system. It can range through a set 

of ordered values Y R =  {T1,T 2, • • • , TR} where Tn <  Tn+1 and R is the number of 

rep licas . For some replica r  (at ftr =  1 /kBTr ), the physical system is described by the 

dimensionless Hamiltonian

HHr [a] =  ftr H[a] — gr , (3.13)

where a  =  {a1 , a 2, . . . , a N} is the configuration of the system and gr are weights related 

to free energy (see section 3.4), which must be calculated or a-priori assigned.

The exact form of equation 3.13 follows from supposing the probability distri­

bution P r [a] to be proportional to exp(—HHr [a]). Therefore, the probability of having 

a given value of r  goes with

P r a  Zregr =  exp(—ftr f r +  gr), (3.14)

where the Zr are the partition functions at given ftr , and the f r are the corresponding 

free energies [62]§2-5. Notice th a t if gr =  ftr f r all replicas have the same probability.

Along the simulations the tem perature changes (from r  to r ' ) can take place con­

sidering a transition probability given by the equations 3.6, 3.14 and H[a] =  Tr S [a] +  f r ,
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or

P r^ r' =  Sr^ r' m in{1,e (̂ r - ^r'WM+V'-gr}, (3.15)

where the selection probability Sr^ r' values depend on the number of replicas during 

one transition (see below). So, a complete ST algorithm is generally implemented as 

three steps procedure, repeated a given number of times:

1. At a tem perature Tr the MA is used to promote the transition of the configuration 

a  =  {a1,a 2 , . . . , a N} ^  {a'  , a2, . . . , a N } =  a ' . After N* iterations performed, the 

system is expected to reach a state close to the steady one.

2. Randomly, it is chosen the next possible replica. For example, r ' ^  r  +  1 or 

r ' ^  r  — 1 with the same probability and so Sr^ r' =  0.5 (note th a t transitions to 

tem peratures lower than  T1 and greater than  TR are automatically rejected since 

Tr and T1 are the maximum and minimum tem peratures in YR).

3. An attem pt to change the replica tem perature (from Tr to Tr' ) is made according 

to the acceptance probability. For so

(a) We need to calculate —A H  =  (^r — f3r')H[a] +  gr' — gr .

(b) If A H  <  0, then the tem perature changes from Tr to Tr' . Otherwise, a 

normalized PRD ^ 2 is generated. If ^ 2 <  e-AH, the tem perature changes 

from Tr to Tr' .

The goal of this algorithm is to get out from a local minimum of energy to land into 

another too many times, in such a way as to avoid crossing directly a FO PT (see Figure 

3.1). Whenever the simulation jumps to a local minimum, the algorithm will be able 

to measure order parameters. The complete algorithm (joing MA and the ST method) 

is shown in the flowchart in figure 3.2.

3.4 T ran sfe r M a tr ix  M e th o d

In this thesis, one of our goals is to compare ST implementations using either the trans­

fer m atrix m ethod or direct calculations of the statistical weights for the probabilities.



43

Figure 3.1: Left: Illustration of a path (dashed line) in the phase diagram W 
(order parameter) versus £ (phase transition control parameter) to avoid crossing 
a FOPT. The solid line represents the coexistence curve, where a FOPT takes 
place. Right: Example of the temperature exchange mechanism used in the ST 
algorithm for the Ising model (taken from the reference [52]), where f r is the free 
energy and (M ) is the magnetization.

Figure 3.2: Flowchart of the complete algorithm with the simulated tempering 
method and Metropolis algorithm (MA). There are three PRN, which are gen­
erated in order to try to change the spin microstate (X), calculte the selection 
probabiliy (Y) and try to change the temperature (Z ).

Thus, in this section it is worth to present an overview of the transfer m atrix m ethod 

(T M M ) [88] and how this m ethod is used to computed Z  in lattice models.

A general Hamiltonian of a regular lattice, with spins distributed as uij , can be
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w ritten as
K

H M  =  E  H [L fc, L fc+i], (3.16)
fc=i

L fc =  { ^ l . f c , ^ 2 , f c }, =  {LU L 2, . . . ,  L K},

where L k is the state configuration of the kth layer, K  is number of layers in the lattice, 

L is the number of nodes in each layer and L K+1 =  L 1 (periodic boundary condition). 

Generally, as “layers” we mean parallel hyperplanes composed by all the sites along 

th a t spatial region of the lattice. The K  layers hence comprise the entire collection of 

the system sites.

In the canonical ensemble, the probability P  [<̂] =  P  [L1, L 2, . . . , L K ] for the 

layer 1 to have the configuration L 1, for the layer 2 to L 2, and so on, is given by 

P M  =  Z -1e- ^HE  or

K
Z P [L 1, L 2, . . . ,  L k ] =  I I  e-mLfc’Lfc+l1 (3.17)

fc=1

Now, we can define the transfer m atrix T  such th a t its elements

K
T  [Lfc, Lk ] =  %,« =  e- ^H[Lk ,Lk], ^  Z P  [Li, L 2, . . . ,  L f  ] =  n 7k,k+i. (3.18)

k=i

Since

K
E E ' " E P  [Li. L2, . . . , L k ] = 1 ,  ^  Z  =  E E  II 7k,k+i. (3.19)
Li £2 Lk Li L2 Lk k=1

E  7kn,k 7k,k-" ^ T n t ,  ^  Z  =  E  T f  = T r ( T K). (3.20)
Lk Li

So, we can introduce an orthonormal basis of the eigenvectors for T K, {|At )}, to get

Z  =  T r(T K) =  E (A t |T K |At) =  E  A f. (3.21)
t t

For the limit K  (thermodynamic limit), equation 3.21 gives

KZ  =  AK, (3.22)

where A0 is the largest eigenvalue of T.
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The marginal probabilities for the layer 1 to have the configuration L i and for 

layers 1 of 2 to have configurations L i of L 2 are

Z P  [Li] =  Z  £ • • • £  P  [Li, L 2, •••,  L f  =  T f  (3.23)
L2 LK

Z P  [Li, L 2] =  Z  £  • • • £  P  [Li, L 2, •••,  L f  =  711272^-1 . (3.24)
L3 Lk

For |£) being the eigenvector associated to the eigenvalue Ae of T , one has th a t the 

usual spectral expansion of an operator, T  =  E e Ai |6)(t'|, yields

Tk,k' =  (Ak |T |Afc') =  £  Ae(Ak |^)(^ |Afc/) =  £  Ae0e[Lfc]0 r [Lfc'], (3.25)
e e

where 0e[Lk] =  (Ak |£) is an element of |£) in the representation of the layer configuration 

L k. In consequence, equations 3.23 and 3.24 for arbitrary layers (L i ^  L k and L 2 ^  

L k  ) become

n r„ ! E r Af> r[A # r1 A .]
F \-L k\ -  -------- ----------------Ae Ae

-I- 'sW A0/ 3̂ 26^

D lr ,  . _  ChWACu ]
r[Lk,L.k'\ — --------

Ee Af
d /h d  +  T  ^ ^ é A C M *  C,P)

(3.27)
1 +  W « ( i T

Taking the limit K  ^ to, equations 3.26 and 3.27 can be approximated by

P  [Lk] =  0O[Lfc ]0O[Lfc]) P  [Lk) L k ] =  V T £  0o[7fc ]0o[7fc'], (3.28)

and therefore

, _  'Tk.kI ’ £/. _  E /:fc '7/,./,I ’ Ci, _  (Tk,k) /9
0 ^  P[Ck, Ck] E £fc(E £fc/ Ack,cy P[Ck, Cv ]) (6£kXk/) 1 -  >

This expression enables one to calculate the largest eigenvalue A0 of T  in terms of the
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averages (7k,k) and (4ck,ck, ), with 4L k =  1 or 0 if the layers L k and are equal 

or different, respectively. Finally, the computed values of A0 will be used to determine 

the thermodynamic weights gr by the equation [88,89]

gr

^ r =

V =

where is the free energy density, ur is the internal energy density, sr is the entropy

density, V is the volume or number of nodes in the lattice and A0 is given by the

equation 3.29. Consequently, the surface pressure pr becomes [34,90]

p(Tr) =  pr =  —il’r =  ~pr-  (3.33)
Pr

In order to build a suitable ST algorithm, r-values of gr =  g(Tr) should be 

computed previously using equation (3.30). For example, simulated annealing methods 

can be implemented to obtain an average for each value of gr and the internal energy

U (Tr) =  Ur =  (H(Tr)). (3.34)

We observe th a t equations 3.30-3.34 are going to be used for different lattice models 

in chapter 5.

On the other hand, the correlation length h (see section 2.3) can be calculated 

as 1 /h  =  ln(Ai/A0) [65,91], where Ai is the second largest eigenvalue of the transfer 

matrix. This expresion gives h correctly for relatively large systems in a disordered

phase, and diverges oc y /V  at a second order phase transition, in accord with scaling

theory (more details in [92]§7.6).

^  =  =  (3-30)

ur — Tr sr , (3.31)

LK, (3.32)
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Chapter 4 

N ew  perspectives on ST m ethod

We have realized th a t the correct implementation of the tem perature transitions in the 

ST m ethod (equation 3.15) could depend on two factors

1. The accuracy of the weight values, namely gr =  g(Tr ), by means of which the 

equation A  — SV/A =  0 is satisfied (where A  is the grand potential free en­

ergy density), and by means of which the exchange probability P r^ r/(gr , g ) is 

computed correctly, and

2. The appropriate choice of the set of tem peratures YR such tha t (a) allows to 

arrive at disordered states enough times (high tem peratures) to obtain all phases 

at low tem peratures, and (b) the system keeps the tem perature T1 enough so 

tha t the steady-state is reached.

W ith respect to the first factor, the TMM [51,87], internal energies at the steady 

state [93,94] and transmission matrices of Markov chains [95], were used to compute 

the weight difference grt — gr . In each implementation mentioned above, different types 

of accuracy were found. Concerning the second factor, there are some methodologies 

to determine YR [52]. One of those methodologies is the exchange frequency protocol, 

which is the most efficient method. However, this m ethod requires additional compu­

tational effort, because the exchange frequencies are previously calculated.

Taking into account these two factors, we decided to develop and implement new 

methodologies in order to get another point of view, which could help to understand 

the influence of weights and replicas in the ST method.
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4.1 E x p e c te d  values o f  th e  w eigh ts

The TMM provide a useful framework to compute gr while simulations are running. 

However, it is necessary to clarify th a t equations 3.22 and 3.28 are not-so-good compu­

tationally approximations, because the thermodynamic limit is far from being fulfilled. 

Usually, periodic boundary conditions in lattices can greatly simulate the therm ody­

namic limit, but tha t is not always true. Some ground states can require certain period­

icity to reach thermodynamic stability, such as crystals [96] or molecular self-assembly 

systems [97]. Even more, when the physical model contains a considerable number of 

indistinguishable micro-states, the probability to find two identical consecutive layers 

is drastically reduced from relatively not-low tem peratures, namely (5 ck,Cy) ^  0 (see 

equation 3.29). In such case, values of gr and p could be inaccurate and inappropriate 

to be implemented in tempering methods.

For this reason we will perform simulations using two types of methods to 

calculate gr' — gr (see equation 3.15). As the first one, we will use the TMM by 

applying equations 3.30 and 3.29; and as second method, we will calculate the weights 

by direct thermodynamic integration (D T I ) of the ensemble average for the energy 

U (T), which is assumed to be known. T hat is, the definitions of free energy F  and U 

are

where p  is the free energy, uo =  p o =  —po is a reference energy such th a t Z  ~  constant 

(for example uo =  u(T  =  0)). The direct integration of equation 4.2 results

The equation 4.4 represents the expected thermodynamic values of the weights. The

— tfo =  (P — Po)V =  —P -1 ln Z, (4.1)

(4.2)
d ln Z

U — U0 = (u — u0)V  =

Pr' (Pr' — Po) +  Pr (Pr — Po) =  -g r ' +  g r, (4.3)

or equivalently

(4.4)
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weight differences g r — gr (r, r 1 =  1, 2, ••• ,R ) depends only on u(T)-curve from Tr

to Tr  and the fundamental state uo. It is not possible to compute only gr-value

without knowing another values. However, in simulated tempering implementations, 

the knowledge of gri — gr is enough.

On the other hand, using the integration by parts in equation 4.4 one obtains

Mr' — Uo Ur — U0 f  ur '—Uo d(u — U0)
M d r ' ~  9r) = ------------- ™ ™ ----- • (4.5)T r' T r  ̂Ur—Uo T

or
rur '—uo du .

V  — sr = — — , (4.6)
JUr — Uo T

where

s(Tr ) =  sr =  ^  (4.7)
T r

is the entropy per volume. Since it is always satisfied S (T  =  0) =  0, then (from 

equation 4.6)

rur'—Uo du rU—Uo du oN
Sr' = - J Q Y '  OT ^ =  _ i)  ~ f '   ̂ ^

In this same sense, when Tr =  To and Tr  =  T , the surface pressure p (T ) can be 

calculated from equation 4.3 to take the form

/T M — u
, - f r - t r -  (4-9)

The value of uo needed to calculate the weights gr' — gr and the entropy sr can 

be determined analytically by means of the TMM. Here, there is no problem about 

finding two identical consecutive layers, because

(5ck,cy >o =  1, and (Tfc)fc>0 =  e—'3LUo, (4.10)

at the steady-state. So, uo depends on the average of the transverse elements of the 

decomposed Hamiltonian H [Lk, ], namely (7fc)k> =  exp(—̂ H [L k, ]). In the next

chapter, we will determine the values of uo for three lattice models.
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4.2 C ho o sin g  rep licas

In this section we shortly describe three methods to determine the set of tem peratures

T r  =  {Ti ,T 2, ••• ,T r} , where Ti <  T2 <  ••• <  T r, (4.11)

where R is the number of replicas. In all methods, the first tem perature value of the 

set T r (namely T1) should be established. In the ST method, this value represents the 

tem perature from which the steady-state is reached. Therefore, the value of T1 should 

be sufficiently low.

In this thesis, the last m ethod presented in this section (subsection 4.2.3) is an 

original contribution to the ST method. The goal here is to have a comparative idea of 

different approaches followed to determine YR tha t could produce different efficiencies 

in ST simulations.

4 .2 .1  C on stan t in terval o f  en tropy

The more thermodynamic-oriented scheme to determine YR is the constant entropy 

(C E ) method, proposed in Refs. [98,99] and implemented to some lattice models in 

Ref. [89]. It consists of choosing intermediate Tr values so as to lead to a same fixed 

difference of entropy A s between successive tem peratures. In order to do this, the 

s(T)-curve should be known or computed by equation 4.7 or 4.6. For example, by 

performing SA simulations one can obtain the U (T) and g (T ) curves, and so on, s (T ) 

consequently.

Once known s (T ), the reciprocal function T[s] can be build, in such a way the 

Tr values take the form

Tr =  T[s(Ti) +  (r — 1)As], r  =  2, 3, ••• ,R . (4.12)

Since thermodynamically T dS  =  CdT (where S  is the entropy and C  is the heat 

capacity), this choice of tem peratures (equation 4.12) implies

r Tr+1 C
—clT = A s ,  (a constant volume). (4-13)

J Tr T
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Thus, equation 4.13 furnishes a means for generating a specific tempering ensemble. In 

other words, one first integrates some model of C (T ) from T  =  T1 to T  =  TR to obtain 

the to tal entropy change (R  — 1)As and then solves for the successive tem peratures 

T2,T 3, ■ ■ ■ ,T R-1 th a t satisfy equation 4.13. This approach can be used either as an 

iterative procedure where successive estimates of C(T) are used to refine the quality 

of the ensemble selection.

4.2 .2  F ixed  E xchange Frequency

This m ethod is mini-scheme of simulation, because YR is obtained through previous 

simulations with relatively low computational effort [51,52]. Here, the replicas are 

determined by means of a fixed exchange frequency (F E F ) prescription. Given R, it 

consists in determining the Tr ’s such th a t the exchange frequency between any pair 

of adjacent tem peratures is f . The protocol is as follows: Once fixing T1, it is chosen 

T1 <  T2 <  T3 <  ••• < Tr  in such a way tha t resulting exchange frequencies f r+1>r 

between any two successive tem peratures Tr and Tr+1 are all equal to some value f . 

Then, it is defined f r+1>r =  Nr+1r / N MC, with N MC the number of time steps in a Monte 

Carlo run and Nr+1>r as the number of times th a t the tem perature change happened.

The methodology applied in this thesis to use the exchange frequencies was 

to build a 2D-map where the horizontal axis represents a tem perature Ti and the 

vertical axis represents another tem perature T j . The values contained in the map 

(with resolution n O x n O) would be the frequencies for each pair (T i,T j), namely f ij . 

Thus, by using a linear interpolation in the map, contours with f r>r+1 =  f  can be 

obtained to determine T2,T3, ■■■ ,T R (see figure 4.1). In order to not lose precision 

through the linear interpolation, the resolution or number of discrete tem peratures for 

Ti and Tj (namely nO) must be relatively large.

Also, it is im portant to mention th a t some numerical work is necessary to de­

termine f ij , but such a process demands relatively short simulations (e.g. it is not 

necessary to evolve the system until full convergence). But evidently, the computing 

of n O x n O values contained in the frequency map implies a high computational effort.
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Figure 4.1: Exemplification of a contour with a fixed exchange frequency f  (dashed line) 
in the Ti-Tj map. The value of temperature Tr+1 =  Tj is determined by the intersection 
between a vertical line at Ti =  Tr with the contour. This procedure was a methodology 
implemented in this work to determine T r . However, in other works [52,94] the replicas are 
computed without the use of maps. That is, the Tr-values are calculated through an iterative 
search process [51] §2.3.

4 .2 .3  F ixed  exchan ge probability

Similarly to CE and FEF, the main idea of this new m ethod is to keep constant some 

variable by means of which T r can be determined. In the CE, the difference of entropy 

As =  sr — sr-1 (where sr =  —gr +  ^ rur) is kept constant when Tr is computed, 

whereas the exchange frequency / r takes this role in the FEF. In the last one, short 

ST simulations with Monte Carlo steps (MCSs) between Tr and Tr+1 should

be performed to compute the number of times of tem perature changes (Nr ) given by 

the probability P r^ r+1, and thus determine / r+1>r =  Nr+1r/N MC. By contrast with 

FEF and CE, in this work we have to consider a fixed exchange probability (F E P ) to 

compute Yr  , as described following.

In Monte Carlo simulations, the goal of ST algorithms is to exhibit all sta­

tionary phases through discrete tem perature changes Tr/ ^  Tr» with an associate 

probability P r/^ r//. This m ethod allows the jum p between energy trappings and guar­

antee uniform visits of the phase space. T hat advantages would be impossible by using 

standard simulation models, namely computational methods th a t do not implement 

tem perature-dependent transitions.
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In each MCS the P r'_ r»-values are computed as follows (see section 3.3)

ln P r'_ r" =  min(0,wr'_ r" ) (4.14)

wr'_ r" (H) =  (Pr' — Pr" )H  +  (gr'' — gr' )V, (4.15)

where H  =  H[a] =  H CT1 ,CT2,...,CTV is the volumetric energy as function of the set of

micro-states [a], V is the discrete volume of the lattice and gr =  g(Tr ) are pre-fixed

weights. W hen gr =  Prp r , being p r the free energy of the system at tem perature Tr , the 

evolution of the system should uniformly visit all replicas. Due to wr'r» is dependent on 

gr" — gr' , it is strictly necessary to diversify strategies to obtain consistent and efficient 

values of P r'_ r», two of which are presented below.

By using equations (4.14) and (4.15), we have defined the exchange probability 

between two replicas (forward and reverse) as

r' ——r'' r'' ——r' =  exp(M r'r" ), (4.16)

where (see equations 4.14 and 4.15)

Mr'r" =  min(0,wr'_ r») +  min(0,wr' '_ r' )

Wr' —r'' ( Ur') \ Wy'' —r' ( Û r'')

=  (Pr' — Pr'' )(Ur' — Ur''), (4.17)

and it was assumed th a t the final tunneling states are such tha t the internal energy 

takes values according to steady state for each replica. Note tha t exp(M r'r») is similar 

to the probability P r'^ r" used to establish the tem perature switching in the parallel 

tempering m ethod (PTM) [82,87] and it is not depending on weights. This fact implies 

th a t only knowing U (T) will be enough to determine YR.

A 2D-map of exchange probabilities can be built in the same way as figure 4.1, 

but by substituting f  ^  — Mr'r». However, there is a remarkable difference between the 

FEF and FEP maps: The values of exchange frequencies f r'>r" should be determined 

by means of short ST simulations between two tem peratures Tr' and Tr», whereas tha t 

the values of probabilities exp(M r' r' ' ) are calculated only by the equation 4.17.
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Chapter 5 

Some lattice models

explain a few 

diametrically

opposing guidelines about the way models are applied. From a traditional viewpoint, 

one constructs a faithful representation of the system, including as many fine details as 

possible. W hen theory is unable to explain the results of an experiment, the response 

is to fine-tune or to add new parameters if necessary.

On the other hand, such fine detail may not be needed or relevant to describe 

a particular phenomenon of interest. Usually, the directly measurable quantities form 

dimensionless numbers, or even universal functions, which (in a good approximation) 

do not depend on microscopic details. In these cases, it is only im portant to start with 

the correct minimal model and all of the microscopic physics is subsumed into as few 

phenomenological parameters as possible.

In this order of ideas, this chapter presents three lattice models th a t contain the 

minimum elements to reproduce FOPTs. These models will be applied to reproduce 

all the results of this thesis. In the lattice models presented here, we have defined the 

average over the N  equilibrium phases of the order param eter W ss in the ground state 

(T «  0) (and when the simulations reaches the steady state, W S R S S ) as

1 N
w -  = T r ^ . w “' i5' 1)N  n=1

where W n is the order param eter of the n-phase in the ground state (or in the lowest 

tem perature).

Before we proceed to describe some lattice models, it is appropriate to 

remarks about the role of models in statistical physics. There are two
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5.1 B lu m e —E m e ry —G riffiths  m o d e l

Researches of multi-component Bose-Fermi/Fermi-Fermi mixtures are an active area of 

studies in the field of ultracold atoms (see for example [100]), and a simple lattice model 

th a t reproduces a similar phase diagram of such mixtures is the Blume-Emery-Griffiths 

(BEG) model. The BEG model is one of the simplest models known to exhibit both a 

continuous phase transition and a FO PT. Because of this feature, the model has been 

studied extensively as a scheme of many diverse systems, including states of 3He-4He 

mixtures (the original system for which Blume, Emery and Griffiths first devised their 

model [101]) as well as solid-liquid-gas fluids [102], antiferromagnetic systems [103], 

microemulsions [104], e tc1.

The BEG model is a generalization of the Ising model, where the spin can take 

three values a  =  0, ±1. The Hamiltonian presents four term s2

H  =  — E  ( J a ia j +  K a 2a2) — E (H a i — D ° f ) (5.2)
(ij) *

where J  and K  are interactions energies, p =  — D is the chemical potential and H  is 

an external field. For low tem peratures and K / J  «  3.3 [88], a FO PT separates liquid 

(p ^  1) and gas (p < <  1) phase for high and low p, respectively (see for example [107]). 

The order param eter is the particle density

1 N
p =  lot) =  M £  <4 (5-3)

n=1

At the ground state (T «  0) the system presents two liquid phases p1>2 ~  1 coexisting

with one gas phase pg ~  0. WSRSS, they have equal statistical weights, and therefore,

1The XY model or plane-rotator model is a better model to simulate helium fluids [32,105]. Here, 
the micro-states of each particle on the lattice can take continuous values 0i which are related with 
the polar angle of the spin in the lattice plane. The Hamiltonian is given by

H = —J E  cos (G — 0j ) — H ^  * cos 0i.
<i,j> i

This scheme is particularly important in 2D, where it shows a peculiar phase transition through the 
votex formations (so called Kosterlitz Thouless transition). This kind of transition is experimentally 
observed in liquid crystals, thin films of liquid helium, layered high temperature superconductors, etc. 

2The Blume-Capel model [106] is a special case of the BEG for K  = 0.
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equation 5.1 with W  =  p results

( - 1 ) 2 +  02 +  12 2
Pss = ---------- -̂---------- =  TP when T  «  0. (5.4)

Furthermore, the lattice magnetization can be measured by

N
TO =  (cq) =  — J 2  <Tn, => m 88 = 0, (5.5)

N  n=1

which can be tested to observe continuous phase transitions [108].

From equation 5.2, the bilayer Hamiltonian for a square lattice results

H [Lfc, L fc+1] =  X ] j - J 05,fc(^i+i,fc+^i,fc+i) - K î(fc(^i+i,fc+^i]fc+i) - H ^i,fc+D °f,fcj, (5.6) 

and setting L k+1 =  , the diagonal elements of T  become

7k,fc =  exp | ^  X i{ (H  +  J °l+i,fcVi,fc +  [J — D +  K(1 +  °f+i,fc)]°f,fcj^ • (5.7)

Insomuch as all particles have the same spin-value ao at the ground state, the average 

of equation 5.7 becomes (see equation 4.10)

(7fc,k)o =  e^Lo° [h +(2J-d+2KK ]. (5 .8)

Thus, the internal energy at the steady-state is (for ao =  0, ±1)

uo(^o) =  — oo [H +  (2 J — D +  2K )ao], (5.9)

or uo(0) =  0 and uo(±1) =  ^ H  — 2 J  +  D — 2K . These are the three values of internal 

energy in the ground state (T =  0) for the BEG model. The coexistence condition can 

be obtained when uo(0) =  uo(+1) =  uo(—1), because each energy correspond to each 

order param eter value in the ground state. So, the coexistence occurs when

H  =  0 and D /2  =  J  +  K. (5.10)
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5.2 B ell—Lavis m od e l

The Bell-Lavis (B L ) model [109] was proposed in 1970 to consider a two-dimensional 

bonded fluid, emphasizing the orientational property of the hydrogen bond on trian­

gular lattices (see figure 5.1). Particles are represented by occupational variables with 

ai =  0,1, for empty or occupied sites, respectively. Orientation may be described in 

terms of bonding and nonbonding “arms” , which are represented by variables t  =  ±1 

(figures 5.1.a and 5.1.b) for the arm  of particle i th a t points to particle j  (nonbonding 

T%i j  =  0, or bonding rlj r j i =  1). Thus, two next neighbor molecules are considered

Figure 5.1: Schematic representation of the BL model with some water molecules in the 
triangular lattice (taken from the reference [110]). (a) A portion of the lattice illustrating 
how the particles can assembly in the gas-phase (one of the ordered phases). (b) Two close 
coupled molecules with van der Waals and hydrogen bond interaction (—evdw — ehb). (c) Two 
molecules that only have van der Waals interaction.

Figure 5.2: (a) and (b) denote the two possible orientations of the molecule on a triangular 
lattice in the BL model. They are designed as states t  =  +1 and t  =  —1 of a spin-one 
model. (c) The convention adopted for labelling the three sublattices 1, 2 and 3.
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to interact via van der Waals forces and hydrogen bonds through the Hamiltonian

H  =  — 53  (7i(7j(ehbTij T j +  evdw) — ^ J 2 ai (5.11)r-ij T ji ' j
(i,j)

where ehb is the hydrogen bond energy, evdw is the van der Waals interaction energy and 

p is the chemical potential.

In order to get statistical values according to the system symmetries, the ob­

servables should be measured in three periodic sublattice [34,110] (see figure 5.2.c), 

since high order structures can form in the lattice. This observables are the particle 

density and the orientation, defined respectively as

3 N/3 3 N/3
Ps = A7 Y ,  ah , rris = —  53  Th ah , s = 1, 2, 3, (5.12)

N ls = 1 N ls = 1

where ls is over each node of the s-sublattice, in such a way th a t 3p =  p1 +  p2 +  p3 

and 3m =  m 1 +  m 2 +  m 3. At zero tem perature, the model presents two dense phases, 

which depend on the relation Z =  evdw/e hb. One of them  is obtained with Z <  1/3 

(figure 5.1.a), where p1 =  p2 =  1, m 1 =  —m 2 =  ±1 and p3 =  m 3 =  0; while the other 

phase (the same but with a particle in the center of each hexagon) is achieved with 

Z >  1/3, where p1 =  p2 =  p3 =  1, m 1 =  —m 2 =  ±1 and m 3 =  0.

The diagonal elements of the transfer m atrix are calculated as

H [Lk, L k+3] =̂ 7i,k (7i,k+ 7 i+1,k+7 i+1,fc+3)[^vdw+^hbTi,k(Ti,k+ Ti+1,k + Ti+1,k+3)] ^ 7 i,fcj>

Tk ,k =  exp ^5 7 i,k[(7 i,k +  27i+1,k)(evdw +  n ^ n ^ ^ )  +  p ] j , (5.13)

where Tk,k was obtained by H [Lk, L k+3 =  L k] (see equation 3.19).

The homogeneous state at the ground state is assumed through two possible 

configurations: (1) an empty lattice 7 i =  0, and (2) hexagonal structures with pe­

riodicity in three sublattices. In other words, in the ground state the molecules can 

organize themselves in hexagonal and periodical structures, which to tal energy bond­

ing is maximum. In this state, two-thirds of the sites in the lattices are occupied with 

molecules which all arms are bonded with neighboring molecules. Thus, uo can take
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two possible values, uo(ai =  0) =  0 and (from equation 5.11)

2
Wo(l) — —-  x

1
— X 3 X (( h i, I ( r/h r) I 11 (5.14)

Then, the coexistence condition is determined as (uo(0) =  uo(1))

3
=  — “  (Oife +  tvdw) • (5.15)

In the same sense, the averages over for this model are (WSRSS)

0 +  3 x |  1 0 +  3 x 0
=  I T T  =  2' =  T T F  =  °- (5-16)

5.3 P o t t s  m o d el

Widely studied in statistical mechanics, both numerically and analytically, the Potts

[111] [65]§12 is a simple spin lattice model for which the variable a  (i = 1 ,  ••• ,N ) takes 

the integer values 0,1, ■ ,q — 1. Adjacent sites i and j  have a non-null interaction 

energy of — J  whenever a  =  a j . The full Hamiltonian of the problem reads

H  =  — J  ^  — A ^  , (5.17)
(i,j) *

where A  is an external field and its the direction is specified by the spin variable a*.

For low tem peratures the system is ordered and becomes disordered as T  in­

creases. The transition point is exactly given by

ln (l +  y/q), with A  = 0. (5.18)
kB Tc

In 2D, for q <  4 the phase transition is second-order and discontinuous if q > 5. A 

proper order param eter is
<f)=q(Vmax/ V ) - l ^

q — 1

where Vmax is the volume occupied by the spins of the state s of largest population and 

V =  N  is the number of nodes in the lattice.

For the Potts model in a square lattice, the layered elements of the Hamiltonian
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result
L

H [£fc, £ fc+i] =  — J  8 ^ ai+hk +  ^ CTi,fc+i +  A^ i ,fcCT*) • (5.20)
i=i

Therefore, the diagonal elements of the transfer m atrix yield

(5.21)7fc,fc exP { J  1 +  ĈTi+x,k̂ i,k +  A ^ v i , k •

Finally, when a i;k =  a i;k+1 =  a*, the ground states becomes

uo =  —(2J +  A). (5.22)

Also, we have defined the magnetization for this lattice model as3

1 N
in  =  — an. (5.23)

n=1

At the ground state with A =  0, the system can reach q homogeneous phases with the 

same probability. So, the average of equation 5.23 over all of phase at the ground state 

is (WSRSS and A =  0)

=  O +  l +  2 +  . . .  +  f a - l )  =  0 +  f a — ! ) ( , -  l +  l) /2  =  g - l  
q q 2

It is necessary to clarify tha t, for this lattice model, this quantity is achieved only when 

the MA is used. Other algorithms, such as the Wolff algorithm [43]§4 [82]§//.B, change 

the cluster-spin value with a probability equal to 1, for this lattice model. In this way, 

the equilibrium of the (a) is never reached and is not valid.

3This estimator is very simple and useful to ascertain the phase coexistence (A = 0). However, 
if the number of microstates q is relatively high (q > 5) then, the magnetization will be not a good 
predictor, because some combinations different to <r„ = 0,1, • • • ,q — 1 can yield the same average.
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Chapter 6 

R esults and Discussions

This chapter presents the results of the numerical simulations obtained for the four 

lattice models discussed in the previous chapters (Ising, BEG, BL and Potts). In this 

sense, we need to clarify some details regarding the results.

1. Some results contain simulated annealing (S A ) simulations to thermodynamically 

valid o r/and  to determine the accuracy of simulation methods involved in the 

weights calculation: transfer m atrix m ethod (TMM) and direct thermodynamic 

integration (DTI).

2. The to tal of ST simulations to evaluate the combination of methods by calculation 

of the weights gr  — gr (TMM and DTI), by determining the replicas YR (CE, FEF 

and FEP) and by implementing the three lattice models (BEG, BL and Potts), 

is not complete. The idea here is to show some cases where a combination of 

methods can be implemented to obtaining some tunneling efficiency of the order 

param eter W . Namely, we are interested in knowing what methods should be 

used for identifying phase coexistence and FOPTs when the evolution of (W ), in 

ST simulations, converges to an expected value.

3. The selected pseudorandom number generator to compute all probabilities (in the 

Metropolis Algorithm and the Simulated Tempering method) was the Mersenne 

Twister code (64-bits) with an internal alteration to optimize the performance. 

In order to be clearer, the operations to mixture the old vector of numbers were 

replaced with pointers. Benchmarks generating 109 pseudorandom numbers with
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Intel processors threw more than  15 percent of time profit.

4. All algorithms presented in this work were programmed in C Language and they 

were run in nodes of the server h o g g a r . f i s ic a .u f p r .b r .

6.1 Is ing  m o d el

Note th a t from equation 5.2 one can obtain the Hamiltonian for the Ising model. 

Namely, setting K  =  D =  0 and a 2fc =  1 in equation 5.7, it follows tha t

% exp ^  J (1 +  a i)fca i+1)fc) +  H a j;fc} j  . (6.1)

So, by taking the average for this equation, the internal energy at ground state results1 

uo± =  ^ H  — 2 J  and the coexistence condition H  =  0, as shown in figure 2.4.A.

The results presented in the following subsections correspond to SA simulations 

(without performing ST runs) in order to evaluate the TMM accuracy when it is 

implemented in the most simple lattice model, such as the Ising model.

6.1 .1  P a rtitio n  fun ction

In order to verify equation 6.1 computationally, numerical calculations have been per­

formed for H  =  0, as shown in figure 6.1. By implementing equations 3.22, 3.29 and

6.1 into SA simulations, the partition function Z  was numerically computed for each 

fixed value of T  (in units of J ). The exact solution of Z  for 2D Ising model (with 

volume equal to L x K ) is presented in reference [112], and it is shown in figure 6.1 

with points. The equations used for this case were

1 LK/2 4 K 1 J
Z(T) =  rA2 Sinh2/3) '  £  I I  2K *r0 )- 6  -  T r ’ (6'2)

2 r=1 fc=0 kBT
?  -  ( i m ju + i  ■ ! m ju + i  ! m j u  ■ 1 m j u ) fr=  < cosh----------- , s in h ----------- , cosh------- , sm h------- ? , (6.3)

k I 2 2 2 2 J

Y0 =  2/3 +  ln tan h  /5, (6.4)

cosh =  ^cosh2/ij ^coth2/ij — co s(ln /K ) , l =  0 (6.5)

1This result is the same one used in section 2.4 (see equation 2.21) for z = 4 (the coordination 
number for a 2D rectangular lattice).
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Figure 6.1: Logarithm of the partition function Z or weights (see equation 3.30) versus 
temperature T (in J  units) for the Ising model with H  =  0. The simulations (solid line 
containing 81 points) were performed in a square lattice of N  =  16 x 16 sites or nodes with 
periodic border conditions. Each numerical value of Z(T) was computed in steady state (105 
Monte Carlo iterations) and averaged over 104 configurations. The theoretical values shown 
in points were calculated using the reference [112] (see also reference [65] §7.12).

The agreement is remarkable, indicating th a t even for relatively small systems 

(V = 1 6  x 16), Z  and therefore f  are relatively close to their values at the therm ody­

namic limit. Since ( iLfc)Lfc/) is increasingly inaccurate with T , a small numerical noise 

for relatively high tem peratures (T >  7) is observed.

6.1 .2  T h erm od yn am ic w eights

In order to have a clear estimation of the difference grt — gr computed by the TMM and 

by the thermodynamic approach developed in section 4.1 (DTI), we have to calculate 

such quantity in two ways (see figure 6.2). First, we start by taking values of Zr =  Z(Tr ) 

and Zp =  Z(Tp ) and then we compute gr and gr/ by means of equation 3.30. Second, 

we numerically integrate equation 4.4 with the help of the U(T)-curve obtained from 

SA simulations, where the internal energy per volume is given by U =  (H )N . A relative 

disagreement is observed at Tr <  4 and Tp «  Tr : The values obtained by TMM and 

by DTI are always the same except in a small tem perature region, where their values 

disagree by around 6%; to be more precise the TMM gives lower values than  the one
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Figure 6.2: Contours of the weight difference gr — gr/ values for the Ising model with H  =  0 
and N  =  16 x 16. Results in lines are the exact values given by equation 4.4, whilst in circles 
we show the difference calculated by means of the TMM.

obtained from the exact approach (DTI). The reason why this happens is the same 

one mentioned in the previous subsection: the term  (5ck,Cy) is inaccurate for relatively 

high tem peratures. Taking into account this small discrepancy between both schemes, 

we are expecting to perform several ST simulations as a useful way to contrast the 

relation gr — gr/ with both methods in the near future.

6.2 E n tro p y  for th e  B E G  m odel

Here we present the entropy values as tem perature function calculated from two equa­

tions, as shown in the right graph of figure 6.3. The values of the constants used in the 

simulations are the same as those used in the references [51,82,88]. A good agreement 

between both  ways confirms the validity of the TMM in calculating entropies.
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Figure 6.3: Results obtained for the BEG model by using SA simulations and the TMM, 
with K  =  3, J  =  1, H  =  0, p =  —8 and N  =  18 x 18. Note that the chosen values for the 
coupling constants satisfied the equation —p/2 =  J  +  K , thus, the phases should coexist in 
the system at the steady state. The weights g =  — ln(A0)/L  were calculate by the averages of 
diagonal elements of T  and the coincidences between two subsequent layers (equation 3.29). 
The derivative of g was computed as dTg «  (gr+1 — gr)/(Tr+1 — Tr ) for r =  1 ,...,3 0 . In each 
r-point the steady state was reached with 106 MC steps. The value of A0 was obtained by 
the averages in 104 different configurations of the lattice.

Mild effects due to the discretization of the entropy S  = — 9^ ' 1 ~  — g — 

are observed around T  =  2.2. The change of entropy A g|T~2.2, in this case, is more 

pronounced than  in other cases. Note th a t for this lattice model, there is a strong 

concordance between — 9^ ' 1 and — g +  u / T  at high tem peratures. Also, as we can see 

for T  >  2, the weights g decrease linearly with T , or equivalently — f  a  T 2 (typical 

behavior of 3He-4He mixtures at the disorder phase [113]).

An im portant point here is th a t equation S  = does not depend on

the internal energy U. Consequently, in order to determine YR by means of the CE 

method, the knowledge of g(T)-curve is enough to compute each Tr-value, if the TMM 

is implemented.
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6.3 G ib b s—D u h e m  in te g ra t io n  for th e  B L m odel

Similarly than  the BEG model, we compute the internal energy u (T ) and weights g (T ) 

for the BL model using the TMM in SA simulations, which are presented in the left 

graph of figure 6.4.

SA simulations varying the chemical potential were performed to verify the 

Gibbs-Duhem relation. In the right graph of figure 6.4, we compare some values of 

the pressure p =  —̂  (where ^  =  g /5  is the free energy) calculated from the transfer 

m atrix approach with those obtained from numerical integration of the Gibbs-Duhem 

equation

SdT — Vdp +  N dp =  0, (6.6)

T  h

Figure 6.4: Results obtained for the BL model by using SA simulations (108 MC steps in 
each point) and the TMM, with ehb =  1, evdw =  0.1 and N  = 18 x 18. The left graphs were 
obtained at p =  —1.65, which is a value close to the phase coexistence (p* =  —1.6528 [89]). 
In order to compare our results with the Gibbs-Duhem relation, we have plotted the particle 
density p versus the chemical potential p (the inside graph) to computed the cumulative 
integral of this curve, such as is shown in the right graphs. The solid lines are the results 
of the numerical integration in equation 6.7 from p =  —2.0 (where p «  0) to p ’s that they 
correspond to p-p  graph.
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at fixed tem peratures. Thus,

p(p) =  p(po) +  / pdp, (6.7)
J

where the density is computed as p(p) =  p1 +  p2 +  p3 (see section 5.2) and p (po) is a 

known value of pressure at p =  p o. As it can be seen, even for a small size of of the 

lattice V =  N  and low tem peratures, the agreement is relatively good.

6.4 P re s s u re  for th e  B E G , BL a n d  P o t t s  m odel

In figure 6.5 we present a comparison of the pressure computed by means of the transfer 

m atrix m ethod (TMM, equation 3.33, in points) and by direct thermodynamic integra­

tion (DTI, equation 4.9, in solid line) for the BEG, BL and Potts models. Once known 

the internal energy u (T ) and uo, the DTI is a standard m ethod to determine ther­

modynamics properties such as the pressure. Thus, numerical measurements obtained 

through the DTI are good reference points to comparing values obtained by means of 

other methods. In this sense, there is a good agreement for BEG model, meaning th a t 

the TMM is a reasonably good approach to compute the free energy.

0.1 0.2 0.3 _  0.4 0.5 0.6 0.85 0.90 0.95 1.00 1.05 1.10
T/T

Figure 6.5: Pressure computed by two ways for the three lattice models with volume equal 
to N  =  18 x 18. The values of g, in points (•), were calculated by means of the TMM, which 
was averaged 300 times over 104 configurations. The solid lines were built by using direct 
thermodynamic integration (equation (4.9)).
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For the BL model, we can observe a slight discrepancy around T  «  0.36. This 

happens because it can appear spontaneously particles without being linked to the 

network in the formation of hexagonal structures like as figure 5.2. This phenomenon 

can be interpreted as a m etastable phase formation, and it is also observed in references 

[34,110]. This m etastable phase is a consequence of the BL model, due to there is not 

repulsion between the “arms” (t*7 rj* >  0). Namely, the molecules with t*7rj* =  0 

generate instability in the hexagonal structure from T  >  0.36, where the bonding 

energy is relatively low. The average (dLfc)Lfc/) (see equation 3.29) is reduced as a 

consequence of the instability, and thus, the calculation of the pressure by means of 

TMM is slightly increased.

The results for the Potts shows a wide difference for T  >  Tc. Even more, when 

the number of microstates q is equal to 20, the pressure has negative values. In this 

case the TMM fails to predict the right free energy values, as it was explained in section

4.1 and commented in Ref. [88]§//.

6.5 E x ch an g e  frequenc ies  a n d  p ro b a b ili t ie s

Once the weights gr — grt were obtained (by means of the TMM or the DTI), the 

simulated tempering simulations can be performed. The weights th a t have been im­

plemented in the following simulations belong to figure 6.5 (computed by TMM and 

DTI). The figure 6.6 shows some contours of a map of the exchange frequencies f r^ r , 

which was built as follows: (1) setting only two values of tem perature Tr and Tr/ , (2) 

executing NST times the ST algorithm described in section 3.3 with Y2 =  {Tr ,Tr/}, (3) 

accounting the Nr^ r/ times when tem perature changes occurs (Tr ^  Tr/) in the step 

2, and (4) computing the exchange frequency as [51,52]

/ „ -  =  (6.8) 
Nst

The differences between the exchange frequencies obtained using the TMM and 

DTI methods (figure 6.6) are in accordance with the variations found in the previous 

section. On the other hand, domains where f r^ r/ ~  0 were found in the maps. This 

implies th a t certain microstates can be accessed only from a limited set of states.



69

Tr Tr Tr

Figure 6.6: Contours map for different exchange frequencies f r^ r  (between two replicas 
Tr and Tr/) for the BEG, BL and Potts models with volume N  = 18 x 18. In top graphs, 
the transfer matrix method was used to calculate the weights gr — g r , whereas that the 
direct thermodynamic integration was implemented in below graphs. In each model, we 
have computed n* x n* =  200 x 200 frequencies and their values were put in a map, which 
were interpolated to build all the contours. From each frequency contour the set YR = 
(T i,T2, ■ ■ ■ , Tr } can be determined (see figure 4.1).

Namely, it is almost impossible to access a state with tem perature Tr to a state with 

tem perature Tr/ , where the difference ATr>r/ =  |Tr — Tr/1 is relatively large. We can 

identify an area in each map with a bottleneck shape at T  «  Tb (BEG: 2.1, BL: 0.42, 

Pottsq=2o: 0.59), which can be interpreted as a second order phase transition, because 

in this area ATr>r/ is minimum for any frequency (approximately).

Also, maps with exchange probabilities can be built too. In figure 6.7 we present 

those maps where an area with the bottleneck shape can also be observed. The contours 

here were determined by fixing the exchange probability exp(M r;r/) where the values 

of Mr r / are shown in the graphs for each contour. It is im portant to note th a t the 

tem peratures Tb (where ATr>r/ is minimum) obtained in these graphs match with the 

values found in the exchange frequencies maps (figure 6.6). Thus, we can ensure that 

the exchange frequency / r^ r  should be strongly related with the exchange probability

transfer 
m
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Figure 6.7: The plots show the contours map of logarithm of the exchange probability 
exp(Mr>r/) between two replicas Tr and Tr , for the BEG, BL and Potts models with volume 
N  = 18 x 18. The values of Mry  were calculated by using equation 4.17. The Hamiltonian 
parameters used here correspond to figure 6.5 (for the Potts model we have used q =  20). 
Since the discontinuous line is to Mry  =  0 or ATry  =  |Tr — Tr/1 =  0 (similar to figure 
6.6), there is a point in each contour with ATry  minimum. The contours move away to 
discontinuous line as exp(Mr>r/) decreases, in the same way that f r^ y  decreases.

exp(M r,r/ ).

The values of tem perature Tr or Trt , whereby A T ry  is minimum in each contour 

(located over the bottleneck), yield a maximum value of the heat capacity

dU
° V dT

A U
A T r r!

(6.9)

This fact is a condition of a continuous phase transition th a t it occurs across the 

tem peratures Tr and Tr  [114].

6.6 R ep licas

As mentioned above, it is only by means of the maps of exchange frequencies or ex­

change probabilities th a t the set of replicas Y R =  {T1,T2, ■ ■ ■ ,T R} can be calculated 

(see Figure 4.1). In order to have a comparative point of view, we have computed and 

plotted the replicas Tr by means of figures 6.6 (FEF method) and 6.7 (FEP method). 

The results for the combinations B E G x(C E ,FE F)x(TM M ,D T I) are shown in figure

6.8, B Lx(C E ,FEF)x(T M M ,D TI) in figure 6.9, and (B EG ,B L)xFEP in figure 6.10.

As one can see, there are many similarities between the results obtained with 

FEF and FEP, especially when f  ^  1+ and M ry  ^  0- . On the other hand, the range
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Figure 6.8: Replicas for the BEG model (N =  18 x 18) with two methods: constant entropy 
(CE, graphics on the left) and fixed exchange frequency (FEF, graphics on the right). The 
weights were calculated by using the transfer matrix method (TMM, upper graphics) and 
direct thermodynamic integration (DTI, down graphics).

Figure 6.9: The same as in Fig.6.8, but for the BL model.
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-M

Figure 6.10: Values of the replicas Tr computed by means of fixed exchange probability 
method (FEP) with N  =  18 x 18. This method, and thus Tr , does not depend on the 
thermodynamics weights gr . While on the contrary, the CE and FEF methods depend on 
the accuracy of gr , which are computed by using other methods (TMM or DTI).

of the difference ATr+1>r =  lTr+1 — Tr | obtained by means of CE m ethod (especially 

with r  =  2, 3) are very different with the other two methods (for the BEG and BL 

models). Namely, the differences AT3 2 and AT4 3 are approximately constant with As 

varying, whereas ATr+1>r increase as f  or exp(M r;r/) decreases.

Values of Tr for the Potts model were computed also, as shown in figure 6.11. 

Here, the replicas was computed with DTI only, because the thermodynamic weights 

calculated by means of the TMM proved to be inaccurate in this work (see figures 6.5 

and 6.6). For the Potts model, the differences AT3,2 and AT4,3 are observed approxi­

mately constant with f  or Mr r/ varying, contrary to the BEG and BL models.

As f -M

Figure 6.11: For the Potts model with q =  16, replicas Tr calculated with the DTI method 
and the three schemes to compute YR (CE, FEF, FEP).
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6.7 ST  s im u la tio n s  for th e  B E G  a n d  B L m odels

The next step is to perform ST simulation with already known YR. To determine 

which set Yr is the best one, in figure 6.12 is presented the results obtained for the 

BEG model with Ti =  0.5, R =  3 and three values of As, f  and . The figure 6.12 

shows the density and magnetization evolutions (p and m) towards the steady value 

pss =  2/3. For this model, we start from a typical initial configuration, a lattice totally 

filled of particles ct* =  +1 (this is a ordered phase at steady state).

There is no convergence when the CE m ethod is implemented to calculate YR. 

Also, for relatively larger f ’s (>  0.01) or smaller —Mr r / ’s (<  0.1), despite more fre­

quent tem perature exchanges, the system gets trapped in the initial configuration as 

a consequence of a too low T3. On the other hand, for much lower f ’s (<  0.0001) or 

larger —Mrr / ’s (>  0.18), the resulting T3’s become high enough to cross the entropy

101 102 103 104 105 101 102 103 104 105 101 102 103 104 105
t (100 MC steps)

Figure 6.12: For the BEG model (N =  18 x 18) at the phase coexistence (see figure 6.3), 
p and m simulated with the ST algorithm for YR=3 (T  =  0.5) obtained from three distinct 
values of As, f  and Mr,r/. The best convergence towards the steady value pss =  2/3 (see 
equation 5.4) and mss =  0 is obtained for f  =  0.0048 or Mr,r/ =  0.133. The thermodynamics 
weights gr used here were calculated by using the transfer matrix method in the first instance, 
as in references [51,87].
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barrier, but then exchanges hardly take place. As a consequence, there is an optimal 

intermediate value of f , yielding the best convergence to the correct pss.

Since the convergence is limited by the technique to compute YR and a control 

param eter, a conclusion in advance is the fact th a t the MA is not the best algorithm 

to include in ST methods. A simple Monte Carlo step with the MA is not enough to 

guarantee a partial convergence, which is necessary to change the tem perature with 

probability P r^ r/ (see equation 3.15).

Simulations with other initial configurations were performed too. For this case, 

we start from a empty lattice for the BEG and BL models. The evolution of p and 

m  by means of ST (R =  3, 4, 5) are shown in figures 6.13 (BEG) and 6.14 (BL). The 

simulations presented in figures 6.13 and 6.14 were performed by implementing the 

calculation of gr/ — gr with DTI method, and computing the averages as (cumulative 

time averages)

( 'f)l =  E ' f , =  ( l - ] ) ( ' f ) H - p  (6.10)

where t is the Monte Carlo step (iteration) and T  =  p, m. Two im portant aspects can

hi1 a t a t  in1 a t a t  a t at at
t ( 104 M C steps)

Figure 6.13: Evolutions of p and |m| in ST simulations for the BEG model (N =  18 x 18) 
and distinct values of R  and with the optimal values of As, f  and —Mry .
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t (10 MC steps)

Figure 6.14: The same as in Fig.6.13, but for the BL model with T  =  0.1.

be observed in figures 6.13-6.14: (1) The convergences of p and m  are faster as R is 

greater [95,115]. (2) The FEF and FEP methods reproduce significantly equal results.

In order to determine the effects of the TMM and DTI implementations in the 

simulated tempering algorithm, we have performed simulations for large number of 

iterations (Monte Carlo steps). They are shown in figures 6.15 (for BEG with the 

TMM), 6.16 (for BEG with the DTI) 6.17 (for BL with the TMM) and 6.18 (for BL 

with the DTI). For the four cases (BEG,BL)x(TM M ,DTI), the values of the density 

p and the average particle orientation m  were computed by means of typical averages 

between intervals £t, th a t is, (T )t =  Xa+f T i , where =  107 and T =  p ,m . Also, for 

these cases the initial configuration was a lattice with random values of the microstate

Oi =  0, ±1.

When comparing figures 6.17 (BL with TMM) and 6.18 (BL with DTI), one 

can see a significant difference, namely, p is more stable (best tunneling) when DTI is 

used. The values of gr' — gr computed by DTI are more close to f3ri — ftr^ r (where 

^ r is the “correct” free energy), in such a way th a t the transition occurs with more 

intensity than  with TMM at the steady state.
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Figure 6.15: Long evolutions of p and m in the ST simulations with T1 =  0.5, R =  3,4, 5 for 
the BEG model (N =  18 x 18) with TMM and for the three methods to determine YR (CE, 
FEF and FEP). The graphs only show the ST simulations with the optimal parameter.
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Figure 6.16: The same as in figure 6.15, but for the BEG model with DTI. It can not see a 
significant difference with respect to the TMM.
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Figure 6.17: The same as in figure 6.15, but for the BL model with TMM, T  =  0.1 and 
R =  5,6, 7. The values obtained for the magnetization m turned out to be very small ( 10-7 ), 
and for this reason, we have rescaled these values in the graphs.

AS fH | I | I | I | ' I ' | ' | ' | ' | r-
v~v— A/>wvvvAv,rAvsr^v^''v^ '^ v 'V 'v'vvv/— —vyvA'V'vw

0.100 0.0524 0.0282

0.068 0.0976 0.0165

0.068 0.1330 0.0144

20 40 60 80 20 40 60 80
7

t (1 0 7 MC steps)

20 40 60 80

Figure 6.18: The same as in figure 6.17, but for the BL model with DTI.



6.8 P ro b a b i l i ty  d is t r ib u t io n s

For the simulations presented in figures 6.16 and 6.18 (namely, thermodynamic weights 

calculated with DTI), we have computed averages over the probability distributions 

for the CE, FEF and FE P methods. The results are displayed in figure 6.19 for BEG 

(R =  3) and figure 6.20 for BL (R =  5).

The tunneling is observed through the peaks in the probability curves which 

point out the equilibrium phases. From this analysis, in the three cases (CE, FEF and 

FEP) the best tunneling is observed when the replicas YR are determined using the 

FEP method. This fact is evidenced in the P2-values, which are more pronounced, first 

by FEP, second by FEF, and th ird  by CE.

Also, it is im portant to note th a t for the BL model the distributions PR (R =  5) 

are significantly different between the CE, FEF and FEP methods. In particular, the 

FEP m ethod yield the distribution P5 with more dispersion than  with CE or FEF. 

This means th a t more configurations can be obtained in the firts replica when YR is 

computed through the FEP scheme.
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Figure 6.19: For the BEG model (N =  18 x 18) and R =  3, the probability distribution 
histogram of the order parameters p and m in each replica at the coexistence for the CE, 
FEF and FEP methods. The distribution for the replica Tr are indicated as Pr . Maximum 
values reveal the phase coexistence in each replica given by pss.
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P P P

Figure 6.20: The same as in figure 6.19, but for the BL model with R =  5.

6.9 F O P T  for th e  B E G  a n d  B L  m odels

As such is presented in section 2.4, the order param eter close to the coexistence is not 

depend on V . From the theory developed by Fiore and da-Luz [81,82], the partition 

function can be decomposed as a sum of exponential functions where one can derive 

an analytical expression of the order param eter, which depends on few coefficient. The 

volume V =  N  is one of the param eter th a t disappears in the derivation.

Then, by using the FEF protocol with R =  3 and the optimal values of f  present 

in figures 6.15 and 6.17 (transfer m atrix m ethod), we have run ST simulations with 

different chemical potentials p (for BEG and BL), H  (for BEG) with fixed values of 

volumes V . In figure 6.21 are shown these results with three differents values of V . The 

behavior of the particle density p and the internal energy u close to the coexistence 

(equation 5.10 for BEG and equation 5.15 for BL), presents an intersection for the 

three values of V, revealing a FO PT and corroborating the formulation made by Fiore 

and da-Luz. Also, we can observe tha t, in the range p +  8 >  0 for BEG and p +  1.65 >  0 

for BL, u decreases linearly.
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(4 +8) x  1000 H x  1000 (14+1.65) x  1000

Figure 6.21: Recognition of a first order phase transition through the intersection of p or u 
versus p (BEG and BL) and H  (BEG) for three different values of volume V = N .

6.10 ST  s im u la tio n s  for th e  P o t t s  m odel

Finally, in this section we present results for the Potts model with q =  5 (Tc «  0.85). 

In order to determine (see equation 5.19), a recursive algorithm th a t visit succes­

sive neighbors has been developed. First th a t all, a SA simulation was performed to 

determine u(T)-curve (see figure 6.22). Later, by means of the DTI and FEP schemes, 

we run some ST simulations varying the control param eter — Mr>r/, as shown in fig­

ure 6.23. In this figure we present the evolutions of the pseudo-magnetization m, the 

order param eter 0 and the internal energy u, with R = 3 .  The results shown that 

for —Mr r/ =  0.0347 the evolution of m  present the best tunneling towards the steady 

value m ss =  2 (see equation 5.24).

The scattering of m-values in figure 6.23 is in agreement with th a t observed 

for the BEG an BL order parameters. It can be obtained an optimal value of — Mr r/ 

allowing substantially more frequent tunneling between phases, and thus, much better 

statistics to calculate relevant thermodynamic quantities. However, values of 0 and 

—Mr>r/ show the same scattering for the three values of — Mr>r/ . This fact point out 

th a t the pseudo-magnetization is more effective to percieve a FOPT.
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Figure 6.22: For the Potts model (N =  18 x 18), internal energy u versus temperature T . 
This curve was obtained by through a SA simulation with 200 points of temperature.

- M r ,r =0.0119 [0 .7756 , 0 .8303] ^  - M r r =0.0347 [0 .8152 , 0 .8691] _ _  - M r r =0.2415 [0 .8929 , 1.6300]

7
t (10 MC steps)

Figure 6.23: For the Potts model, m, 0 and u evolutions (as function of ST iterations, t) 
with R =  3, T1 =  0.7 and three values of —Mry . The averages of each estimator for each 
value of t were calculated by means of equation 6.10 (cumulative time averages). The T2 and 
T3 replicas are pointed out in the brackets as [T2 , T3]. For the temperature T =  T1, the 
critical values 0* «  0.97891 and u* «  —1.9253 have been obtained from the same simulations.
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Chapter 7 

Conclusions

The innovative idea in simulated tempering (S T ) is to treat the tem perature T  as 

an additional dynamic parameter. As a consequence, the system is defined on an 

augmented space x where is the original phase space and denotes the 

one-dimensional tem perature space. Through , namely, by varying the tem perature 

ladder Tr (r =  1, 2, ■ ■ ■ , R), more places of can be visited, allowing to detect phase 

coexistence and phase transitions. In our simulations we have been able to verify 

the phase coexistences through the numeric calculation of averages over N  phases: 

pss =  2/3 (BEG), pss =  1/2 (BL) and =  2 (Potts).

The efficiency of ST schemes strongly depend on (1) the number of replicas R,

(2) the accuracy of weight factors g r — gr and the set YR =  (T 1,T2, . . .  ,T R}. In this 

sense, two contributions were developed and implemented in this work,

1. The values of the thermodynamic weights (gr/ — gr ) computed directly from the 

internal energy (DTI) were analyzed and compared with values obtained from 

the transfer m atrix m ethod for the Ising, BEG, BL and Potts models. The 

theory described in section 4.1 includes internal energy of the ground state uo, 

which is non zero forthe Ising and Potts models (the same scheme with uo =  0 is 

described in reference [43]). These weights were implemented in ST simulation 

for BEG, BL and Potts models. For the BEG model, there is no distinction in the 

tunneling between TMM and DTI. However, for the BL model, better tunnelings 

were found regardless of the technique to determine YR. It was impossible to 

implement the TMM for the Potts model, since there is a strong phase transiton
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for q >  4 [111,116], and thus (£Lfc)Lfc/) ^  0 (see equation 3.29).

2. A new m ethod to determine the set YR =  (T 1,T2,- ■ ■ ,Tr } has been formu­

lated and partially tested. For a given number of replicas R, adjacent Tr ’s are 

choosen in such a way th a t the changes of tem perature (from Tr to Tr+1, for any 

r  = 1 ,  2, ■ ■ ■ ,R  — 1) occur with a fixed probability exp(M r; r/) =  P r^ r/P r'^ r (see 

equation 4.17). Note th a t this probability does not depend on gr or previous 

simulations, while FEF does depend on it [51]. However, in most of the results 

with FEF and FEP the tunneling was almost the same (in few ST simulations the 

FEP is slightly better). The main advantage here was the simple implementation 

of gr/ — gr (once known u (T )).

On the other hand, the search for the optimal values of X  [where X  is equal 

to As (CE), /  (FEF) or — Mr>r/ (FEP)], demands preliminary numerics. Namely, we 

needed to perform some simulations (say N ) fixing the param eter X  from X 1 to X 2. 

Later, it was necessary define a magnitude A W  th a t would establish the difference 

between the simulated order param eter and the theoretical value at the steady state 

(pss or m ss). Then, the optimal simulation (with X  =  X ^ )  was the one with A W  

minimum. For this reason, we suggest to research new analytically methods to know 

the optimal value of X . We are convinced tha t the tem perature where the continuous 

phase occurs Tb should be the minimum value of TR, because to TR <  Tb the simulations 

would not change the state.

We have evaluate the ST m ethod with new ingredients and we could detected 

the phase coexistence when observing the tunneling of the order param eter towards pss 

or m ss. The first-order phase transition (F O P T ) was simulated for the BEG and BL 

models. However, the FO PT for the Potts model is a pending work. Such as in section

6.9, in references [51,81,82,94] the FO PT is evidenced by varying some Hamiltonian 

param eter, such as p, H , and others (say ^ ). Then, by performing simulation with 

differents V (volume), and plotting the order param eter versus ^ , the point where all 

curves cross is a FO PT. Therefore, in a near future, it will be necessary to perform 

more simulations for the Potts model.

Finally, we recommend to perform ST by means of an adaptative algorithm 

to determine the weights gr — g r . As we explained before the ST algorithm requires
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these values to be executed. The methodology implemented in this work (and previous 

works [51,52,81,87-89]) was to determine the weights by means of previous simulations, 

namely by performing simulated annealing (S A ) simulations. In these SA simulations 

were obtained the internal energy u (T ) and g (T ) (by using the transfer m atrix method). 

In this sense, we consider possible to design and implement an ST algorithm where 

u (T ), and la tter g (T ), would be computed in each Monte Carlo step, before the attem pt 

to change the tem perature. The weights required to change the tem perature should 

be update in each Monte Carlo step, and initial values of gr — gr/ will be necessary 

for each replica. Obviously, the first attem pts of tem perature will be “loose” because 

the initial values of gr — gr/ are unknown (or incorrectly initialized). However, in the 

evolution of these values, the correct free energy should be obtained.
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