
UNIVERSIDADE FEDERAL DO PARANÁ

THIAGO DO NASCIMENTO FERREIRA

A PREFERENCE-BASED APPROACH FOR REDUCING THE NUMBER OF OBJECTIVES

APPLIED TO THE VARIABILITY TESTING OF SOFTWARE PRODUCT LINE

CURITIBA PR

2019

THIAGO DO NASCIMENTO FERREIRA

A PREFERENCE-BASED APPROACH FOR REDUCING THE NUMBER OF OBJECTIVES

APPLIED TO THE VARIABILITY TESTING OF SOFTWARE PRODUCT LINE

Tese apresentada como requisito parcial à obtenção do grau

de Doutor em Ciência da Computação no Programa de

Pós-Graduação em Informática, Setor de Ciências Exatas,

da Universidade Federal do Paraná.

Área de concentração: Ciência da Computação.

Orientador: Silvia Regina Vergilio.

Coorientador: Marouane Kessentini.

CURITIBA PR

2019

To my wife Rebeca and my parents

ACKNOWLEDGEMENTS

I would like to sincerely express my gratitude:

• To my beloved wife, Rebeca, for standing by my side along the journey, and for all her

sacrifice, patience, understanding, and love. Thanks for supporting me through the most

challenging times;

• To my family, specially my parents, Bernardino e Cleide, and my sister, Thais, for all

the support provided. Thank you for always believing in me and for always being by my

side. Simply, thank you for existing;

• To my advisor, Dr. Silvia R. Vergilio for her excellent guidance, patience, advice,

dedication, and availability. Thanks for the relevant comments, and corrections that led

to the success of this work, and, mainly, for contributing to my research career;

• To my co-advisor, Dr. Marouane Kessentini, for agreeing to supervise me during my

studies in Dearborn, USA, as a visiting student. You brought valuable contributions to

my research;

• To all the committee members, Dr. Jerffeson T. de Souza, Dr. Maria Claudia F. P. Emer,

Dr. Márcio de O. Barros, and Dr. Aurora T. R. Pozo, for the careful reading and the

valuable suggestions;

• To the colleagues of Bio-inspired Computation Group (C-Bio) and Research Group on

Software Engineering (GrES) for the rich exchange of ideas, friendship, stimulating

discussions, and the great time we had together;

• To my friends, Micael and Kwanna, for great affection, friendship, provided support,

and travels, and Thainá, for the enthusiasm, conversations, constant motivation, and the

support during my sandwich PhD in the USA;

• To my Michigan friends, Wang, Hussein, Soumaya, and Terry for the valuable friendship.

Specially, Lynn who hosted me in her house in Dearborn, and made me feel at home;

• To all staff of Federal University of Paraná (UFPR), specially its Graduate Programme

in Informatics, for the acceptance of my PhD proposal, and provided courses;

• To Federal University of Technology - Paraná (UTFPR), Campus Curitiba, for the

opportunity to be a substitute professor, and all my students who taught me more than I

could ever teach them. Special thanks for Professor Rita, for the daily coffee that often

led me to think of several relevant topics about the academic life;

• To the Brazilian Coordination for the Improvement of Higher Education (CAPES) for

the scholarship and financial support;

• To all those people who, in one way or another, contributed to the completion of this

dissertation. I extend to all my grateful thanks.

RESUMO

Algoritmos evolutivos para múltiplos e muitos objetivos têm sido aplicados para selecionar

produtos para o teste de variabilidade de Linhas de Produtos de Software (LPS). Esse problema

refere-se à seleção de um conjunto adequado de produtos para testar uma LPS, pois testar todos

os existentes é inviável. O problema é impactado por muitos fatores, como número de produtos a

serem testados, critérios de cobertura a serem satisfeitos e eficácia em revelar defeitos. É possível

notar que muitas funções objetivo conflitantes precisam ser otimizadas ao mesmo tempo. No

entanto, alguns problemas surgem quando o número de objetivos a serem otimizados aumenta, por

exemplo, as soluções geradas pelos algoritmos de otimização se tornam incomparáveis, projetar

uma frente de Pareto requer um grande número de soluções e a visualização de tais soluções

exige técnicas especiais. Várias técnicas são propostas na literatura para resolver esse problema,

como técnicas de decomposição e algoritmos baseados em indicadores. Entre eles, os algoritmos

baseados na redução de dimensionalidade e algoritmos baseados nas preferências do usuário são

amplamente utilizados. Embora utilizados em diferentes abordagens de maneira separada, não há

estudos na literatura que abordam o uso de redução de dimensionalidade e algoritmos baseados

em preferências de forma combinada. Diante disso, este trabalho propõe uma abordagem

chamada MaDRUP, Otimização de Muitos Objetivos com Redução de Dimensionalidade baseada

em Preferências dos Usuários. Esta abordagem visa a reduzir o número de objetivos a serem

otimizados com base nas preferências declaradas durante o processo de geração da solução, e tem

como objetivo principal a geração de um conjunto reduzido de soluções que leva menos tempo de

execução, mas mantém competitivamente os atributos de qualidade em comparação com outros

algoritmos. Para avaliar a aplicabilidade da abordagem proposta, MaDRUP foi instanciada com

o algoritmo NSGA-II. Essa instanciação é chamada COR-NSGA-II (NSGA-II com Redução de

Objetivos baseada em Confiança). O COR-NSGA-II define para cada função objetivo um nível

de confiança calculado pelas preferências do usuário fornecidas interativamente. Os objetivos

com valores mais altos de confiança são removidos da próxima execução do algoritmo. Para

avaliar a viabilidade do COR-NSGA-II, também foi implementada uma ferramenta chamada

Nautilus, e foram realizados experimentos usando seis LPSs diferentes, dois tipos de pontos

de referência representando as preferências do usuário, cinco algoritmos e dois cenários para

simular diferentes perfis de usuário. Os resultados mostram que o COR-NSGA-II supera os

algoritmos avaliados na maioria dos casos, gerando um número menor de soluções, com um

menor tempo de execução. Uma análise qualitativa também foi realizada com um conjunto de 12

usuários que, respondendo a um questionário, indicaram ser mais fácil escolher uma solução

gerada pelo COR-NSGA-II do que escolher uma solução gerada pelos outros algoritmos.

Palavras-chave: linha de produto de software. engenharia de software baseada em busca.

algoritmos baseados em preferências. redução da dimensionalidade.

ABSTRACT

Multi- and Many-Evolutionary Algorithms have been applied to derive products for the variability

testing of Software Product Lines (SPLs). This problem refers to the selection of an adequate

set of products to test a SPL, since to test all the existing products is infeasible. The problem

is impacted by many factors, such as the number of products to be tested, testing criteria to be

satisfied, and efficacy to reveal faults. We can see that many conflicting objective functions

need to be optimized at the same time. However, some problems emerge when the number of

objectives to be optimized increases, for example, the solutions generated by the optimization

algorithms become incomparable, designing a Pareto-front in this context requires a large

number of solutions, and the visualization of such solutions requires special techniques. Several

techniques are proposed in the literature to tackle this problem, such as decomposition and

algorithms based on indicators. Among them, the algorithms based on dimensionality reduction

and algorithms based on the user preferences are widely used. Even though used in different

approaches in a separated way, there are no studies in the literature that investigate the usage

of dimensionality reduction and preference-based algorithms in a combined way. In light of

this, this work proposes an approach called MaDRUP, a Many-objective Optimization with

Dimensionality Reduction based on User Preferences for reducing the number of objectives to be

optimized based on preferences stated during the solution generation process. This approach

has as main goal the generation of a reduced set of solutions taking less execution time but

competitively maintaining the quality attributes in comparison with other algorithms. To evaluate

the applicability of the proposed approach, we instantiated MaDRUP with the NSGA-II algorithm.

Such instantiation is called COR-NSGA-II (Confidence-based Objective Reduction NSGA-II).

COR-NSGA-II defines for each objective function a confidence-level calculated with the user

preferences provided interactively. The objectives with higher values of confidence are removed

from the next algorithm execution. For assessing the feasibility of COR-NSGA-II, a tool called

Nautilus was also implemented, and experiments were conducted by using six different SPLs, two

types of reference points representing the user preferences, five algorithms, and two scenarios

to simulate different user profiles. The results show COR-NSGA-II outperforms most of the

evaluated algorithms generating a lower number of solutions with a lower execution time. A

qualitative analysis was also performed with a set of 12 potential users. The results show that for

such users, the task of selecting a solution generated by COR-NSGA-II is easier than to select a

solution generated by other algorithms.

Keywords: software product Line testing. search-based software engineering. preference-based

algorithms. dimensionality reduction.

LIST OF FIGURES

2.1 Example of a MOP with two objectives to be optimized. 22

2.2 Classification of Many-objective Evolutionary Algorithms. Adapted from [51]. . 25

2.3 Preference-based algorithm framework [27]. 27

2.4 ROI’s Representation. Adapted from [52]). 28

2.5 Non-dominated sorting process for NSGA-II. Adapted from [20]. 29

2.6 Example of a normalized reference plane for a three-objective problem. Adapted

from [47]. 30

2.7 The effect of ε and its impact in the Pareto-front [22]. 32

2.8 R-Metric Steps (Adapted from [52]). 34

2.9 R-Metric example. 35

2.10 Steps of the study selection process. 36

3.1 PSBSE framework [31].. 41

3.2 Feature diagram of Mobile Phone. Adapted from [29]. 42

3.3 Example of products generated from the FM in Figure 3.2. 42

3.4 Example of a mutant generated for FM in Figure 3.2. 44

3.5 Individual representation [33]. 45

4.1 MaDRUP Overview. 50

4.2 Example of numbered objective values. 53

4.3 COR-NSGA-II Overview. 53

4.4 Example of application of the confidence level. 57

5.1 Nautilus Architecture. 61

5.2 Nautilus Core’s packages. 61

5.3 Nautilus Plugin’s packages. 62

5.4 Nautilus Web’s packages. 63

5.5 Nautilus’s screenshot from home page . 64

5.6 Nautilus’s screenshot from problem page. 65

5.7 Nautilus’s screenshot from problem instance page.. 66

5.8 Nautilus’s screenshot from optimize page. 66

5.9 Nautilus’s screenshot from execution page.. 67

5.10 Nautilus’s screenshot from solution page. 68

5.11 Nautilus’s screenshot from compare page. 69

5.12 Nautilus’s screenshot from customization page. 69

6.1 Simulated user representation. 73

6.2 Example for user simulator evaluation. 74

6.3 Results from the Participant Questionnaire. 75

6.4 Preferred Objectives from the user’s point of view.. 86

6.5 Easiest algorithms from the user’s point of view. 87

6.6 Best algorithms from the user’s point of view. 88

6.7 How much time? answers from questionnaire. 89

6.8 How difficult time? answers from questionnaire. 89

6.9 Agree or not? answers from questionnaire. 90

6.10 Clear or not? answers from questionnaire. 90

6.11 Nautilus’ best features. 91

C.1 Feature Model for James (Adapted from [6]). 113

C.2 Feature Model for CAS (Adapted from [84]). 114

C.3 Feature Model for WS (Adapted from [7]). 115

C.4 Feature Model for E-Shop (Adapted from [71]). 116

C.5 Feature Model for Drupal (Adapted from [62]). 117

C.6 Feature Model for Smarthome (Adapted from [43]). 118

LIST OF TABLES

2.1 Search Terms. 36

2.2 Number of found studies in each electronic database. 37

2.3 Inclusion and exclusion criteria applied to the studies. 37

3.1 Objective Functions used in this work. 48

3.2 Features from the instance example. 48

3.3 Products from the instance example. 48

4.1 Ordinal Scale for the Required Information. 54

4.2 Confidence Level for removing an objective. 56

4.3 Confidence Level Example. 57

6.1 Characteristics of the FMs used in the experiments. 72

6.2 Groups Organization. 76

6.3 Reference Points. 78

6.4 Parameter Settings. 79

6.5 COR-NSGA-II versus Random Algorithm in Scenario 2D. 80

6.6 COR-NSGA-II versus Random Algorithm in Scenario 3D. 81

6.7 COR-NSGA-II Versus NSGA-II and NSGA-III in both scenarios.. 83

6.8 COR-NSGA-II Versus R-NSGA-II in both scenarios. 84

6.9 COR-NSGA-II Versus COR-NSGA-II in both scenarios. 85

6.10 COR-NSGA-II’s results for each participant. 87

6.11 Best algorithm by group. 88

G.1 COR-NSGA-II Versus NSGA-II and NSGA-III in Scenario 2D. 123

G.2 COR-NSGA-II Versus NSGA-II and NSGA-III in Scenario 3D. 124

G.3 COR-NSGA-II Versus R-NSGA-II in Scenario 2D. 125

G.4 COR-NSGA-II Versus R-NSGA-II in Scenario 3D. 126

G.5 COR-NSGA-II Versus PCA-NSGA-II in Scenario 2D.. 127

G.6 COR-NSGA-II Versus PCA-NSGA-II in Scenario 3D.. 128

H.1 Preferred and final subset of objectives for each participant. 129

LIST OF ACRONYMS

ACO Ant Colony Optimization

AETG Automatic Efficient Test Generator

AGM Arcade Game Maker

AHP Analytic Hierarchy Process

AOS Adaptive Operator Selection

CAS Car Audio System

COR-NSGA-II Confidence-based Objective Reduction NSGA-II

DM Decision Maker

DR Dominance Resistance

EA Evolutionary Algorithm

EC Evolutionary Computation

FaMa Feature Model Analyser

FM Feature Model

FMTS Feature Mutation-based Test Suite

FRRMAB Fitness Rate based Multi-Armed Bandit

FODA Feature-oriented Domain Analysis

GA Genetic Algorithm

HH Hyper-heuristic

HV Hypervolume

IBEA Indicator-Based Evolutionary Algorithm

IGD Inverted Generational Distance

JSON JavaScript Object Notation format

WS Weather Station

ROI Region of Interest

RP Reference Point

MaOP Many-objective Problems

MaOEA Many-objective Evolutionary Algorithm

MaDRUP Many-objective Optimization With Dimensionality Reduction based

on User Preferences

MCDM Multi-criteria Decision Making

MOEA Multi-objective Evolutionary Algorithm

MOEA/D Multi-objective Evolutionary Algorithm Based on Decomposition

MOEA/D-DRA MOEA/D with Dynamical Resource Allocation

MOP Multi-objective Optimization Problem

MVU Maximum Variance Unfolding (MVU)

NSGA-II Non-dominated Sorting Genetic Algorithm II

NSGA-III Non-dominated Sorting Genetic Algorithm III

PC Principal Component

PCA Principal Component Analysis

PCA-NSGA-II Non-dominated Sorting Genetic Algorithm with Principal Compo-

nent Analysis

PSBSE Preference and Search-based Software Engineering

R-HV Hypervolume indicator with R-Metric

R-IGD IGD indicator with R-Metric

R-NSGA-II Reference Point-based NSGA-II

r-NSGA-II Reference Solution-based NSGA-II

RQ Research Question

SBSE Search-based Software Engineering

SPL Software Product Line

SOP Scalar objective Optimization Problems

TC Threshold Cut

XML eXtensible Markup Language

LIST OF PUBLISHED WORK

The following works were published in the past 4 years within the subject of search-based

software engineering, software testing, software product lines, and preference-based algorithms:

JOURNAL PAPERS

1. Helson Jakubovski-Filho, Thiago Nascimento Ferreira, Silvia Regina Vergilio (2019).

Preference Based Multi-Objective Algorithms Applied to the Variability Testing
of Software Product Lines. Journal of Systems and Software, 1515, pp. 194-209 .

2. Thiago Nascimento Ferreira, Jackson A. Prado Lima, Andrei Strickler, Josiel N. Kuk,

Silvia Regina Vergilio, Aurora Pozo (2017). Hyper-heuristic Based Product Selection
for Software Product Line Testing. IEEE Computational Intelligence Magazine, 12(2),

pp. 34-45.

3. Thiago Nascimento Ferreira, Silvia Regina Vergilio, Jerffeson Teixeira de Souza

(2017). Incorporating User Preferences in Search Based Software Engineering: A
Systematic Mapping Study. Information and Software Technology, 90, pp. 55-69.

CONFERENCE PAPERS

1. Helson Jakubovski-Filho, Thiago Nascimento Ferreira, Silvia Regina Vergilio (2018). In-
corporating User Preferences in a Software Product Line Testing Hyper-Heuristic
Approach. In Proceedings of the 20th IEEE Congress on Evolutionary Computation

(CEC ’18), pp. 2283-2290., Rio de Janeiro, Brazil.

2. Helson Jakubovski-Filho, Thiago Nascimento Ferreira, Silvia Regina Vergilio (2018).

Multiple Objective Test Set Selection for Software Product Line Testing: Evaluat-
ing Different Preference-based Algorithms. In Proceedings of the XXXII Brazilian

Symposium on Software Engineering (SBES ’18), pp. 162-171, São Carlos, Brazil.

3. Thiago Nascimento Ferreira, Josiel Neumann Kuk, Aurora Pozo, Silvia Regina Vergilio

(2016). Product Selection Based on Upper Confidence Bound MOEA/D-DRA for
Testing Software Product Lines. In Proceedings of the 18th IEEE Congress on

Evolutionary Computation (CEC ’16), pp. 4135-4142, Vancouver, Canada.

4. Édipo Luis Féderle, Thiago Nascimento Ferreira, Thelma Elita Colanzi, Silvia Regina

Vergilio (2015). Optimizing Software Product Line Architectures with OPLA-
Tool. In Proceedings of the 7th International Symposium on Search Based Software

Engineering (SSBSE ’15), pp. 325-331, Bergamo, Lombardy, Italy.

5. Édipo Luis Féderle, Thiago Nascimento Ferreira, Thelma Elita Colanzi, Silvia Regina

Vergilio (2015). OPLA-Tool: A Support Tool for Search-Based Product Line
Architecture Design. In Proceedings of the 19th International Software Product Line

Conference (SPLC ’15), pp. 370-373, Nashville, Tennessee, USA.

WORKSHOP PAPERS

1. Thiago Nascimento Ferreira, Silvia Regina Vergilio, Jerffeson Teixeira de Souza (2016).

Engenharia de Software Baseada em Busca e em Preferência: Uma Visão Geral.
In Proceedings of the 7th Brazilian Workshop on Search-Based Software Engineering

(WESB ’16), pp. 1-10, Maringá, PR, Brazil. [In Portuguese]

2. Thiago Nascimento Ferreira, Thainá Mariani, Silvia Regina Vergilio (2016). Reviewing
Six Years of Brazilian Workshop on Search-Based Software Engineering. In

Proceedings of the 7th Brazilian Workshop on Search-Based Software Engineering

(WESB ’16), pp. 11-20, Maringá, PR, Brazil.

3. Thiago Nascimento Ferreira, Silvia Regina Vergilio (2015). Utilizando Otimização
por Colônia de Formigas na Seleção de Produtos para o Teste de Mutação do
Diagrama de Características. In Proceedings of the 6th Brazilian Workshop on

Search-Based Software Engineering (WESB ’15), pp. 61-70, Belo Horizonte, MG,

Brazil. [In Portuguese]

CONTENTS

1 INTRODUCTION . 17
1.1 MOTIVATION . 18

1.2 OBJECTIVES. 19

1.3 TEXT ORGANIZATION . 20

2 OPTIMIZATION ALGORITHMS. 21
2.1 OPTIMIZATION PROBLEMS. 21

2.2 EVOLUTIONARY ALGORITHMS . 22

2.2.1 Multi-objective Evolutionary Algorithms . 23

2.2.2 Many-objective Evolutionary Algorithms . 24

2.3 NSGA-II. 27

2.4 NSGA-III . 29

2.5 R-NSGA-II . 30

2.6 PCA-NSGA-II. 31

2.7 QUALITY INDICATORS . 33

2.7.1 Hypervolume with R-Metric (R-HV) . 34

2.7.2 Inverted Generational Distance with R-Metric (R-IGD) 35

2.8 WORK ON DIMENSIONALITY REDUCTION BASED USER PREFERENCES 35

2.8.1 Dimensionality Reduction and User Preferences 37

2.8.2 Dimensionality Reduction in Software Engineering Problems 38

2.9 FINAL REMARKS . 38

3 VARIABILITY TESTING OF SOFTWARE PRODUCT LINE 40
3.1 PREFERENCE AND SEARCH BASED SOFTWARE ENGINEERING 40

3.2 SOFTWARE PRODUCT LINE TESTING. 41

3.2.1 Pairwise Testing in the FM Context. 43

3.2.2 Mutation Testing in the FM Context . 43

3.3 WORK ON SEARCH-BASED VARIABILITY TESTING OF SPL. 44

3.4 SELECTING PRODUCTS WITH A SEARCH-BASED APPROACH 45

3.4.1 Solution Representation. 45

3.4.2 Objective Functions . 46

3.5 FINAL REMARKS . 49

4 PROPOSED APPROACH. 50
4.1 MANY-OBJECTIVE OPTIMIZATION WITH DIMENSIONALITY REDUC-

TION BASED ON USER PREFERENCES . 50

4.2 CONFIDENCE-BASED OBJECTIVE REDUCTION NSGA-II. 52

4.2.1 Confidence-based Selection Method . 54

4.3 FINAL REMARKS . 58

5 NAUTILUS . 59
5.1 MOTIVATION . 59

5.2 DESIGN GOALS . 60

5.3 ARCHITECTURE AND IMPLEMENTATION 60

5.3.1 Nautilus Core . 60

5.3.2 Nautilus Plugin . 62

5.3.3 Nautilus Web . 63

5.4 USING NAUTILUS. 64

5.5 AVAILABLE FEATURES . 68

5.6 FINAL REMARKS . 70

6 EMPIRICAL STUDY . 71
6.1 RESEARCH QUESTIONS . 71

6.2 TARGET FEATURE MODELS . 72

6.3 USERS . 73

6.3.1 Simulated Users . 73

6.3.2 Real Users . 75

6.4 QUALITY INDICATORS . 76

6.4.1 Average Number of Solutions in the ROI . 77

6.4.2 # of Targets in the Last Subset . 77

6.4.3 Reduction Capacity . 77

6.4.4 Reduction Efficiency . 77

6.4.5 Execution Time . 77

6.5 DEFINITION OF THE REFERENCE POINTS (RP) 77

6.6 PARAMETER SETTINGS . 78

6.7 RESULTS . 79

6.7.1 RQ1 - Sanity Check . 80

6.7.2 RQ2 - Comparing COR-NSGA-II to Multi- and Many-objective Evolutionary

Algorithms . 82

6.7.3 RQ3 - Evaluating the Solutions . 85

6.7.4 RQ4 - Evaluating Nautilus . 88

6.8 DISCUSSION. 91

6.9 THREATS TO VALIDITY . 92

6.9.1 Internal Validity . 93

6.9.2 Construct Validity . 93

6.9.3 External Validity . 94

6.9.4 Conclusion Validity . 94

6.10 FINAL REMARKS . 94

7 CONCLUSION . 96
7.1 LIMITATIONS AND FUTURE WORK . 97

REFERENCES . 100
APPENDIX A – ALGORITHMS QUESTIONNAIRE 107
APPENDIX B – NAUTILUS QUESTIONNAIRE. 110
APPENDIX C – FEATURE MODELS. 113
APPENDIX D – PARTICIPANT QUESTIONNAIRE 119
APPENDIX E – PRE-STUDY QUESTIONNAIRE 120
APPENDIX F – CONSENT TERM . 122
APPENDIX G – RQ2 DETAILED RESULTS. 123
APPENDIX H – RQ3 DETAILED RESULTS. 129

17

1 INTRODUCTION

The field known as Search-Based Software Engineering (SBSE) [38] is devoted to the application

of search-based techniques to solve different optimization problems from the Software Engineering

(SE) area. Search-based techniques include algorithms from the optimization field, such as

Genetic Algorithms (GAs), and other evolutionary and bio-inspired ones. Such algorithms search,

in a huge potential space, the best solution (or solutions) to solve a problem according to some

criteria, generally represented by a fitness function (or objective function) that determines the

solution quality.

The SE problems focused by SBSE are hard problems for which, in general, a simple and

exact solution does not exist. For example, to find the best refactoring sequence for a program,

to allocate the task resources in a best way, to structure the architecture of a system satisfying

factors such as cohesion and coupling, and so on.

These problems have some characteristics that make them suitable to be solved by

search-based techniques [38]: they are complex; they have a large solution space and the optimal

solutions are unknown; to obtain the solutions is very hard and a labor-intensive task for the

software engineer; and existence of acceptable metrics to be used in the fitness functions.

Search-based techniques are widely applied to solve SE problems such as software

testing, software modularization, software refactoring, software planning [37, 39]. Harman [39]

states that some pieces of work address SE problems from a single-objective point of view, in

which the main goal is to maximize or minimize one objective function, for example, correctness,

quality, etc. However, as pointed out in [59], most SE problems are naturally complex in which

many conflicting objective functions need to be optimized at the same time.

One example of such a problem addressed in this work is the variability testing of

Software Product Line (SPL). A SPL can be defined as a set of common products from a particular

market segment or domain [78]. In this context, the Feature Model (FM) diagram is used for

easing feature management in most SPL methodologies. The growing adoption of SPLs in

industry demands specific testing techniques, which should guarantee that the products can be

derived from the FM match their requirements. Ideally, to ensure this, all products should be

tested [74].

The increasing size and complexity of applications can make testing all products almost

impossible in practice in terms of resources and execution time [13]. Hence, it makes necessary

to select the most representative set of products from FM. However, many factors can impact this

selection such as number of products, coverage of testing criteria such as mutation testing and

pairwise, dissimilarity of products, importance or cost of the implemented features, and so on.

The number of objective functions to be considered for our problem and most of SE

problems is, in general, high (more than three objectives). Such problems are called many-

objective ones. However, a survey about this topic [70] reports that 50% of the proposed

algorithms address SE problems from only a bi-objective perspective, 30% consider three

objectives, and 20% of the existing studies address more than four objectives. As claimed by

Mkaouer et al. [59], one reason for SE problems have not been formulated as many-objective

ones is due to the challenges in constructing a many-objective solution, since the use of traditional

multi-objective techniques is, clearly not sufficient.

There is a growing demand for scalable SBSE approaches that address SE problems in

which a large number of objectives are considered. In this perspective, improving the scalability

of SBSE approaches will increase their applicability in industry and real-world settings [59].

18

However, some problems arise when the number of objectives increases. Deb and

Jain [19] state that selecting a solution turns into harder because most of the solutions become

incomparable, generating a Pareto-front requires a large number of solutions, and visualizing the

found solutions needs special techniques.

Several techniques are proposed in the literature [51] for addressing a large number of

objectives to be optimized, such as new preference ordering relations, decomposition, and so on.

Among them, one of the most-used techniques is dimensionality reduction, widely used in the

optimization field, as described in [51].

In the context of dimensionality reduction, many-objective evolutionary algorithms

(MaOEAs) are executed seeking to reduce the number of objectives, by removing the redundant

ones, that is, objectives where there may not exist any conflict among them. It is possible to cite

as an example of MaOEAs, PCA-NSGA-II, an optimization algorithm that uses the concept of

Principal Analysis Component jointly with the NSGA-II algorithm for reducing the number of

objectives.

Li et al. [51] point out that dimensionality reduction approaches have three main

advantages. Firstly, they can reduce the computational load of a MaOEAs. Secondly, they

can help decision makers to better understand the many-objective problem by pointing out the

non-conflicting objectives, and as third advantage, they are easy to be combined with other

approaches. However, the authors also state that if the addressed problem has just conflicting

objectives, this one may limit the application of the approach once these algorithms may fail in

reducing the number of objectives to be optimized or return a solution set that does not cover

the complete Pareto-front. In this perspective, the combination of two or more approaches for

tackling many-objective problems would be very interesting [51], as, for example, to take into

account the user preferences, since the human knowledge and judgment can be used to guide the

search to reach the best solutions.

Regarding the dimensionality reduction and user preferences, there are no studies in

the literature that address both topics in an interactive way (or in-the-loop). In addition to this,

several works in the literature [28–30, 40, 43, 74, 82] address the variability testing of SPL by

using SBSE techniques in which the problem is encoded as an optimization one, and search-based

algorithms are applied. Nevertheless, the proposed approaches use a maximum of four objectives

to be optimized. In the literature, there are several approaches by addressing several objectives.

In this work, we merge all of them in an optimization problem with seven ones.

1.1 MOTIVATION

Regarding the above-mentioned context, we have the following motivations to our work:

1. To take into account the user preferences to solve SE problems may generate solutions

more reliable and useful in practice according to the user’s point of view;

2. To derive products for the variability testing of SPL is a many-objective problem and

many-objective approaches can be used for tackling the natural complexity of this one.

However, we did not find work in the literature that considers more than four objectives;

3. Recent studies by using algorithms based on dimensionality reduction have presented

good results in the optimization field. However, there are no applications of such

techniques in SPL testing;

19

4. The Pareto-front generated to many-objective problems are composed of a large number

of solutions. This makes difficult for the user the task of visualizing and choosing a

solution;

5. Dimensionality reduction approaches are widely used in the literature to solve many-

objective problems. However, it fails if all objectives are conflicting ones;

6. There are no studies in the literature merging dimensionality reduction, and the user

preferences provided interactively. The use of this combination may reduce the set of

solutions generated by the algorithms, and, at the same time, may reduce the effort

in the task of selecting a solution. As a consequence, the use of user preferences in

combination with dimensionality reduction is a subject still not explored in SBSE;

7. Some studies point out as future work the integration between dimensionality reduction

and user preferences provided by the users, either to select which one to eliminate or to

revise the fitness function formulation (for example, aggregating some objectives).

1.2 OBJECTIVES

This work intends to explore possible advantages of incorporating the user preferences provided

interactively during the search for the reduction of objectives in many-objective optimization.

Thus, the hypothesis of this work is that a preference-based dimensionality reduction approach is

capable of taking less execution time and generating a reduced set of solutions that takes into

account the user preferences. In addition to this, the solutions are as good as those ones generated

by multi- and many-objective algorithms with respect to quality indicators from the literature.

We expect that an approach such as this may be capable of reducing the set of solutions generated,

and with this improve the scalability of SBSE approaches aiming to increase their applicability

in industry and real-world scenarios.

Based on that, the specific goals of this work are:

• To provide an approach for guiding the generation of preference-based dimensionality

reduction algorithms;

• To provide an algorithm that captures the user preferences interactively and reduces the

problem dimensionality;

• To provide a tool that supports the proposed approach as well as distinct optimization

algorithms applied to different optimization problems;

• To apply the proposed algorithm for the variability testing of SPL and evaluate the

obtained results in comparison with those ones found by multi- and many-evolutionary

algorithms.

To achieve the above-mentioned goals, this study introduces an approach called MaDRUP

(Many-objective Optimization with Dimensionality Reduction based on User Preferences) that

can be instantiated to derive preference-based dimensionality reduction algorithms by providing

the concepts, activities, and elements they should implement.

Seeking to evaluate MaDRUP, we derived COR-NSGA-II (Confidence-based Objective

Reduction NSGA-II), an algorithm that reduces the problem dimensionality guided by the user

preferences. This one has main characteristics capturing the user preferences interactively (or

in-the-loop) and performing an online dimensionality reduction. The user can express his/her

20

preferences about the solutions by using an ordinal scale composed of items Non-preferred, No
Opinion, and Preferred. Besides, the algorithm is categorized in the Stay Out class, that is,

it considers which objectives should be removed from the next execution. To reach this, the

algorithm uses the concept of a confidence level for each objective.

Also, aiming to provide a new tool for incorporating several optimization problems and

optimization algorithms, this study introduces Nautilus, a cloud-computing web-platform tool.

To evaluate COR-NSGA-II, we designed a set of experiments on six FMs widely used

in the literature. Besides, the obtained results are compared to those ones found by multi-

and many-objective evolutionary algorithms such as R-NSGA-II, NSGA-II, NSGA-III, and

PCA-NSGA-II. Furthermore, the provided tool and the solutions generated by COR-NSGA-II

were evaluated in order to measure their usefulness in the user’s point of view.

1.3 TEXT ORGANIZATION

This work is organized into chapters. In this chapter, the context, motivations, and objectives of

this study were addressed. Chapter 2 presents the basic concepts for the understanding of this work,

such as the main concepts about optimization problems, dimensionality reduction approaches,

multi- and many-objective algorithms, and related work on this subject. Chapter 3 reviews the

variability testing of SPL (the optimization problem addressed in this dissertation), along with the

related work on this topic. Chapter 4 introduces the approach proposed in this work, MaDRUP,

with its activities and elements, and COR-NSGA-II, the algorithm derived by instantiating

MaDRUP and used in the experiments. Chapter 5 describes Nautilus, the tool developed and

its main modules, and a use example. Chapter 6 shows the experimental evaluation conducted

to assess the feasibility of COR-NSGA-II. In this chapter, we describe the experimental setup,

report the obtained results, and discuss these ones aiming to answer some research questions

proposed. Finally, Chapter 7 concludes this work by showing the limitations and future work.

The dissertation also has seven appendices. Appendixes A and B show the questionnaire

used for evaluating qualitatively the approach proposed in this work. Appendix C contains

the FMs used in our experiment. Appendixes D, E, and F present the questionnaires used for

collecting the participant profile and consent term used in the experimental study. Appendixes G

and H show detailed results for the empirical study.

21

2 OPTIMIZATION ALGORITHMS

This chapter introduces some fundamental concepts for understanding the problem and algorithms

used in this work. Optimization problems are described in Section 2.1. Section 2.2 presents

the multi- and many-objective evolutionary algorithms, as well as the preference-based and

dimensionality reduction mechanisms. The next sections describe the algorithms used in

this dissertation: NSGA-II (Section 2.3), NSGA-III (Section 2.4), R-NSGA-II (Section 2.5),

and PCA-NSGA-II (Section 2.6). The quality indicators used in this work are described

in Section 2.7. Section 2.8 describes related work on algorithms for reduction of dimensionality,

and, finally, Section 2.9 highlights some final remarks of this chapter.

2.1 OPTIMIZATION PROBLEMS

An optimization problem aims to find one or more feasible solutions which correspond to extreme

values of one or more objectives (or objective functions) regarding the problem constraints [18].

These problems are very common, and the people face with them when, for example, they try to

design a solution with the minimum possible cost of fabrication, or either finding the best route

(the cheaper, shorter, or faster one) for delivering products in a city.

The number of objective functions to be optimized defines which category the optimiza-

tion problem belongs to. For example, when an optimization problem involves a single-objective

function, it is called Mono-objective Optimization Problem. On the contrary, when the number

of objectives to be optimized holds more than one objective function, the problem is called as

Multi-objective Optimization Problem (MOP).

A Mono-objective optimization problem can be modeled as follows:

minimize
x

f (x)

subject to gi(x) ≤ 0, for i = {1,2,3, . . . ,m}

hj(x) = 0, for j = {1,2,3, . . . , p}
x ∈ Ω

(2.1)

where f (x) is the objective function to be optimized, g(x) and h(x) are functions meaning the

problem constrains and Ω the set of all possible solutions for the addressed problem. In this

model, x means a solution from Ω and this one should be valid, i.e., it is required to be satisfied

by the problem constraints.

Regarding to MOP, Zhang et al. [88] describe that these ones can be formulated as:

minimize
x

f1(x), f2(x), f3(x), . . . , fn(x)

subject to gi(x) ≤ 0, for i = {1,2,3, . . . ,m}

hj(x) = 0, for j = {1,2,3, . . . , p}

(2.2)

where x is a solution or a vector of decision variable, fi(x) is the i-th objective function to be

optimized, and g(x) and h(x) are the problem constraints.

In this category, we wish to find the best solution that optimizes the set of objective

functions addressed. However, in general, there is no single solution that satisfies all of them.

This happens because some objectives are conflicting, that is, a given solution is extreme or the

best one with respect to one objective, but it is not for the other ones. The solutions are in such a

22

way that the values of each objective cannot be improved without sacrificing the values of the

other objective functions [1].

This behavior is a kind of alternate trade-off and it generates a set of conflicting solutions

called Pareto-front or Pareto optimal set. The solutions in this set are called non-dominated

solutions and these ones follow the Pareto-dominance concept. To explain the latter consider the

following example: supposing that all objective functions to be optimized (f ∈ F) in a given

optimization problem are minimization ones, a solution x is said to dominate a solution y (x ≺ y)

if:

∀ f ∈ F : f (x) ≤ f (y)
∃ f ∈ F : f (x) < f (y)

(2.3)

As a consequence, if a solution x is better or equal to a solution y in all objectives and

better in at least one objective, then x dominates y. On the contrary, if a solution x does not

dominate y and vice versa, these solutions are said to be non-dominated and both are part of the

Pareto-front. Hence, x and y can be chosen as equally acceptable solutions for the addressed

optimization problem.

To illustrate this concept, Figure 2.1 shows two objective functions f1 and f2 in which

the goal is to minimize both of them. In this figure, the solutions a, b, c, d, and e are considered

non-dominated ones (i.e. it is not possible to conclude what is the best solution) and the solutions

f and g are dominated by the other ones and, therefore, they should be discarded.

Figure 2.1: Example of a MOP with two objectives to be optimized.

Finding the true Pareto-front (or Pareto optimal set) is a difficult task (or even impossible)

due to a large number of sub-optimal Pareto-fronts, the existing problem constraints, and the

computational complexity [1]. Depending on the problem instance, there may be too many

solutions to evaluate in a feasible time, or even infinite solutions.

Different types of algorithms to solve MOPs have been proposed in the literature [10].

Among them, it is possible to mention the Evolutionary Algorithms (EAs) [89]. These algorithms

can find reasonably good approximations of the true Pareto-front in a reasonable time (as known

as PFknown fronts). These ones are described in the next section.

2.2 EVOLUTIONARY ALGORITHMS

Evolutionary algorithm (EA) is a subclass of Evolutionary Computation (EC) and belongs to

a set of general stochastic search algorithm [79]. These algorithms suggest to tackle complex

23

problems by using techniques inspired by Darwinian natural evolution, that is, mechanisms

inspired by biological evolution, such as reproduction, mutation, recombination, and selection.

Among the existing EAs, it is possible to cite the Multi- and Many-objective EAs. All of them

are described in the next subsections.

2.2.1 Multi-objective Evolutionary Algorithms

Multi-objective Evolutionary Algorithms (MOEAs) [89] are those ones based on Genetic

Algorithm (GA) [45] in which, by performing a stochastic optimization method, simulate the

natural evolution process aiming to find solutions for MOP. Once they are stochastic [36], the

randomness is present, that is, different from exact algorithms (in which every execution returns

the same result), these ones can return different results for distinct executions.

MOEAs have as most prominent characteristics the population search strategy and the

information exchange between the individuals. So, by using the natural evolution mechanisms,

these algorithms can solve traditional problems very quickly [87].

These algorithms use the concept of a population composed of individuals in which each

one means a candidate solution. The number of individuals inside a population is a user-specified

parameter and its value can impact the scalability and performance of these algorithms. So,

once the addressed problem and the solution are encoded (to be used by the algorithms) and the

objective functions are defined, the basic procedure used by MOEAs for designing solutions is

basically described using the following steps [10]:

1. Initialization: An initial population is created with candidate solutions defined, in

general, by using some random selection process. However, in this process it is also

possible to incorporate some specific information from the domain (or addressed

problem);

2. Evaluation: After the initialization, the initial population or an offspring one is then

evaluated by the objective functions (all solutions inside them are evaluated);

3. Selection: In this step, the best solutions are preferred and selected. The idea of this

procedure is to designate more copies to a solution with better objective values and, thus,

imposes the survival-of-the-fittest mechanism on the solutions. It is possible to find

many selection procedures (or selection operators) in the literature [10] that incorporate

this idea such as roulette-wheel selection, tournament selection and so on;

4. Recombination: The recombination is executed by combining pieces of two or more

solutions selected in the previous step (possibly the best ones) aiming to generate a new

solution probably, with better objective values. Again, there are several recombination

procedures (or crossover operators), and some of them depend on the problem or solution

encoding;

5. Mutation: The recombination process described in the previous step operates over two

or more solutions. However, in the mutation procedure, this operation is performed

locally in a single solution. As with recombination, it is possible to find in the literature

some examples of mutation procedures (or mutation operators) that involve one or more

changes in a solution. As also stated in [10], the mutation performs a random walking

surrounding each candidate solution;

6. Replacement: After the application of selection, recombination and mutation pro-

cedures, an offspring population is created by replacing the initial population (or

24

the previous one). Many replacement techniques such as elitism, and steady-state

replacement methods are used in MOEAs;

7. Repeat the steps 2-6 until reaching the stopping criteria.

It is possible to find several MOEAs in the literature that apply the above steps in their

conception. A classification for such algorithms is shown in Figure 2.2.

2.2.2 Many-objective Evolutionary Algorithms

Currently, many MOPs are successfully solved by using MOEAs with two or three objective

functions. However, their performance tend to decrease when the number of objectives to

be optimized increases. Thus, the optimization algorithms have to deal with the following

issues [19]:

• The Dominance resistance (DR) phenomenon, that is, the process of selecting a

solution from the population becomes basically random once most of them are almost

incomparable. Besides, most of the generated solutions are non-dominated ones

becoming harder for selecting those ones for keeping in the population;

• Limited solution set size: as described by Deb et al. [19], under non-degenerated

scenarios, the Pareto-front of a m-objective problem is a (m − 1)-dimensional manifold.

In order to design such front, it is necessary to increase the number of solutions

exponentially;

• Finally, the visualization of found solutions needs special techniques, such as projection

to a lower dimension space, parallel coordinates and so on [80].

For solving these many-objective problems (MaOPs) with more than three objectives to

be optimized, several Many-objective Evolutionary Algorithms (MaOEAs) are proposed in the

literature. The classification of these algorithms can be seen in Figure 2.2.

Basically, they are separated in some categories based on their strategies and some of

them are described as follows:

• Pareto-dominance: the algorithms in this category use the concept of Pareto-dominance

for comparing the solutions. However, the results reported in the literature, although

good ones for some specific problems [46], in general, face the worst results comparing

to other strategies;

• Indicator-based: such as IBEA [51], such algorithms do not use the Pareto-dominance

concept. On the contrary, they try to maximize a given indicator, but they can deal with

increasing computation cost if the indicator used is very slow to calculate;

• Preference-based: in this category, the user preferences are taken into account during

the search process and then by reducing the problem complexity;

• Dimensionality Reduction: the algorithms in this category try to reduce the number of

objectives to be optimized. However, these algorithms are limited to the problems in

which have the possibility to reduce the number of objectives, that is, problems with

non-conflicting objectives;

25

Figure 2.2: Classification of Many-objective Evolutionary Algorithms. Adapted from [51].

• Relaxed dominance-based: the algorithms in this category use a different Pareto-front

concept aiming to increase the selection. As difficult it is possible to mention the

parameter settings that control the relaxation;

• Hybrid-strategies: the algorithms described in this category are able to implement two

or more the aforementioned techniques to solve the MaOPs.

Next, we describe the categories of algorithms for dimensionality reduction, and

preference-based algorithms, which are the focus of our work.

2.2.2.1 Dimensionality Reduction

MOP involves multiple conflicting objectives, and, because of this, it ideally demands search a

multi-dimensional Pareto-optimal front. To find the latter, some MOEAs have been used as a

method to find the best representative set of solutions.

Although several papers report good results when MOEAs are applied to problems with

two or three objectives, the use of these algorithms raises some discussions about their found

results for solving problems with a large number of conflicting objectives, for example, more

than ten objectives to be optimized [21].

Such discussions gain credence for various practical reasons, as described as follows.

The visualization of a large-dimensional Pareto-front is very difficult, and an exponential large

number of solutions would be necessary to represent this large Pareto-front. Besides, it is very

26

tedious and requires a very burden for the decision makers to analyze this large number of

solutions to, at the final, pick a solution up based on his/her preferences for the problem [21].

Most optimization problems involve a large number of objective functions. However, in

some problems, even though apparently there exists a conflicting scenario among the objective

functions, it is possible to find that, for some ones, there may not exist any conflict (also known

as redundant objective functions). As stated by Deb and Saxena [21], in such a case, the optimal

Pareto-front will be of a dimension lower than the number of objectives.

Hence, the situation makes necessary the application of techniques responsible for

reducing the number of objectives to be optimized by removing the redundant ones. The

algorithms that apply these techniques are known as dimensionality reduction algorithms (or

objective reduction).

Li et al. [51] categorize the techniques in this subject according to the time for

incorporating the dimensionality reduction into MaOEAs into two classes: offline and online

methods.

For offline methods, the dimensionality reduction process is carried out after obtaining a

set of Pareto optimal solutions. For instance, in this class Sinha et al. [73] propose NL-MVU-PCA

based on Maximum Variance Unfolding.

For online methods, the number of objectives can be reduced gradually during the search

process by iteratively obtaining solution sets and invoking the dimensionality reduction techniques.

In the literature, it is possible to find algorithms in this class such as MVU-PCA-NSGA-II,

C-PCA-NSGA-II [69], and PCA-NSGA-II [21].

2.2.2.2 Preference-based Algorithms

In the literature, approaches based on optimization algorithms have been proposed for solving

optimization problems, as described in Section 2.1. The studies have their relevance and show

encouraging results. However, the efficacy of these approaches may be questioned once they

do not take into account the user participation, that is, these approaches do not consider some

subjective aspects of the problem due to the difficulty of incorporating or mathematically model

the user preferences. So, to reach better results regarding the reliability, it is important to deal

with this issue.

Based on that, the use of preference-based algorithms emerged, allowing the incorpora-

tion of human preferences, intuition, emotion or psychological in the optimization process [75].

The user preferences are provided by a Decision Maker (DM) who plays an important role. The

DM can be a person or (a group of persons), and it is supposed that s(he) has better insights

for the problem. Besides, it is supposed that the user is able to express the preference relations

among several solutions [9]. Figure 2.3 presents a basic framework of algorithms that consider

the user preferences during the search process.

We can usually define preference-based algorithms in two cycles of executions: an inner

and outer cycle. The inner cycle is responsible for generating candidate solutions that posteriorly

will be evaluated by an intermediate fitness function. The outer cycle is responsible for selecting

some items for the user evaluation through an interaction handler. The user visualizes these items

and provides his/her preferences about them. After the user preferences are sent to the algorithm,

it incorporates this information in some way into the search process, and the search continues.

According to Miettinen [57], these algorithms can be classified in many ways according

to different criteria. However, the classification commonly used defines that the DM can express

or provide his/her preferences before (a priori), during (interactively or interactive), or after (a
posteriori) the algorithm run. They are not exclusive and can be combined.

27

Figure 2.3: Preference-based algorithm framework [27].

One of the most crucial problems in this research area is human fatigue. The latter is a

direct consequence of the excessive request for user evaluations. This causes a physiological

state of reduction related to physical or mental performance capability. As a consequence, the

quality of the evaluations is affected [75].

Based on that, many studies are conducted attempting to mitigate the human fatigue.

It is possible to cite as an example speeding up the convergence of the algorithm with a small

population and a few number of generations [11]. Nevertheless, it is possible to discrete

continuous fitness values into five or seven levels to facilitate the decision making, without

compromising the convergence [60]. Finally, Miller [58] discusses in his work the limit on the

human capacity for processing information. So, the author also suggests it is possible to extend

the fatigue limit organizing the information into “slices” sequence.

Thus, it is very important to define how the user preferences will be provided and which

moment they will be incorporated during the search process. As described by Jakubovski Filho et

al. [33], the best way to incorporate depends on several conditions, such as the user’s personality,

the context, the characteristics of the addressed problem, and so on.

In the literature, it is possible to find some papers that incorporate such user preferences

by using the concept of Reference Point (RP), or as known as aspiration level vectors. The RP

means to points in the search space in which the user would like the objectives to be concentrated.

So, it is possible to assume this one is a natural way to express user preferences [33].

The use of the RP can guide the search toward a Region of Interest (ROI) without

demanding effort from the user, even if the number of objectives increases. Figure 2.4 shows an

example of the ROI’s representation.

In this figure, the big dotted circle (red) means the ROI generated by the RP represented

by a diamond (green). The filled circles (blue) mean the solutions inside the ROI, that is, solutions

that are good from the user’s point of view.

In the next sections, we describe all algorithms used in this work. They were selected

because these algorithms are widely used in the literature, as well as some of them have never

been used in the variability testing of SPL.

2.3 NSGA-II

Non-dominated Sorting Genetic Algorithm II (NSGA-II) proposed by Deb et al. [20] is a strong

elitist algorithm based on GA, following the concept of elitism, and crowding distance during

28

Solutions

Min. f1

M
in

. f
2

Region of
Interest (ROI)

Reference
Point (RP)

Pareto-front

Figure 2.4: ROI’s Representation. Adapted from [52]).

the search process. The algorithm is shown in Algorithm 1 and this one requires as input the

population size N′, the number of generations g, and the objective functions to be optimized

fk(X).

Algorithm 1 NSGA-II Algorithm. Adapted from [21]

Input: N′, g, fk(X)

1: Initialize Population P′

2: Generate a random population - size N′

3: Evaluate Objective Values

4: Assign Rank (level) Based on Pareto-dominance - sort
5: Generate Child Population with Binary Tournament Selection, and Recombination and

Mutation

6: for i = 1 to g do
7: for each Parent and Child in Population do
8: Assign Rank (level) based on Pareto - sort
9: Generate sets of non-dominated vectors along PFknown

10: Loop (inside) by adding solutions to next generation starting from the first front until

N′ individuals found determine crowding distance between points on each front

11: end for
12: Select points (elitist) on the lower front (with lower rank) and are outside a crowding

distance

13: Create next generation with Binary Tournament Selection, and Recombination and

Mutation

14: end for

An initial population is generated and, by using binary tournament selection, and

crossover and mutation operators, an offspring population is created. With these two populations,

basically, the NSGA-II algorithm sorts the population in several non-dominated fronts, according

to the non-dominated level. The algorithm combines the parents and offspring before splitting the

combined pool into fronts. Then, NSGA-II conducts the niching process by adding a crowding

distance to each member.

29

The crowding distance is a metric used for calculating how far a solution is from the

other ones on the same front. This metric is used by NSGA-II in its selection operator, trying to

keep a diverse front by making sure each member stays a crowding distance far. At the same

time, this procedure keeps the diversity of the population, and it helps the algorithm to explore

the fitness landscape [20]. Figure 2.5 shows this procedure.

Figure 2.5: Non-dominated sorting process for NSGA-II. Adapted from [20].

In this figure, Pt is the parent population and Qt is the offspring one at the generation

t. So F1, F2, and F3 are fronts already sorted by the union of Pt and Qt in which F1 are the

best solutions from this combination (parent and offspring), F2 are the second best ones and so

on. However, it is not possible to include the whole F3 inside Pt+1. So, the crowding distance

is used and the best ones (far solutions) are selected from F3 and added in Pt+1. The process

remains running until the number of generation is reached. After that, the best non-dominated

front is returned

NSGA-II is one of the most traditional MOEAs and is widely used in the optimization

field [87, 90].

2.4 NSGA-III

Non-dominated Sorting Genetic Algorithm III (NSGA-III) is a more recent MOEA proposed

by Deb et al. [19, 47], similar to NSGA-II described in the previous subsection but, with

significant changes in its selection mechanism. Also, this algorithm is focused on MaOPs, i.e.,

multi-objective ones but with a high number of objectives M to be optimized (M > 3).

NSGA-III basically replaces the crowding distance used by NSGA-II to a different one

focused on a set of reference points Zr (see Figure 2.6). This mechanism helps to maintain the

diversity among the solutions.

The algorithm is shown in Algorithm 2, meaning a generation t of NSGA-III.

After the recombination, mutation and, non-dominated sorting, all acceptable fronts

and the last front Fl that could not be completely included in Pt+1 are included in a set St . After

that, the objective values and reference points are first normalized to be an identical range.

An orthogonal distance is computed between a member in St and each of the reference

lines (joining the ideal point and a reference point). After that, the solution is then associated

with the reference point having the smallest orthogonal distance.

The niche count ρ (defined as the number of solutions in St/Fl that are associated with

the reference point) is computed for each reference point. Then, the reference point having the

30

Figure 2.6: Example of a normalized reference plane for a three-objective problem. Adapted from [47].

Algorithm 2 NSGA-III Algorithm [47]

Input: H structured reference points Zs or supplied aspiration points Za

A parent population Pt
Output: Pt+1

1: St = ∅, i = 1

2: Qt = Recombination+Mutation(Pt)

3: Rt = Pt
⋃

Qt
4: (F1, F2, . . .) = Non-dominated-sort(Rt)

5: repeat
6: St = St

⋃
Fi and i = i + 1

7: until |St | ≥ N
8: Last front to be included: Fl = Fi
9: if |St | = N then

10: Pt+1 = St , break

11: else
12: Pt+1 =

⋃l−1
j=1 Fj

13: Points to be chosen from Fl : K = N − |Pt+1 |

14: Normalize objectives and create reference set Zr : Normalize(f n, St , Zr , Zs, Za)

15: Associate each member s of St with a reference point: [π(s), d(s)] = Associate(St, Zr) |

π(s) : closest reference points, d : distance between s and π(s)
16: Compute niche count of reference point j ∈ Zr : ρ j =

∑
s∈St/Fl

((π(s) = j?1 : 0))

17: Choose K members one at a time from Fl to construct Pt+1 : Niching(K , ρ j , π, d, Zr , Fl ,

Pt+1)

18: end if

minimum niche count is identified, and the solutions from the last front Fl that is associated with

it, are included in the next population. At the final, the niche count of the identified reference

point is increased by one and the procedure is repeated to fill up population Pt+1.

2.5 R-NSGA-II

The Reference Point-based NSGA-II (R-NSGA-II) algorithm, proposed by Deb et al. [22] has as

goal guiding the search process according to DM preferences provided by a RP. R-NSGA-II has

a similar behavior when compared to NSGA-II (described in Section 2.3), but it differs in some

31

points explained as the following. Firstly, R-NSGA-II requires from DM one or more RPs, and

secondly, the crowding distance metric (used in NSGA-II for sorting a front) is modified. In this

algorithm, this new crowding distance is called “preferred distance” because it represents how

closer the solutions are to the RPs. Thus, the use of this new distance implies in giving a greater

emphasis to the solutions that are closer to the RP provided by the user.

Besides, the algorithm has a mechanism to maintain the diversity of selected solutions

close to the RPs. This one is a selection strategy called ε-clearing in which, by using a parameter

named ε , gives special importance to the closest solutions to the RP.

Thus, based on the aforementioned concepts, the niching strategy of NSGA-II is then

updated to incorporate the idea in which the solutions closer to the RP should to be more

emphasized, and the solutions within a ε-neighborhood to a near RP should de-emphasized in

order to keep a diverse set of solutions near each RP [22]. So, the updated steps are described as

follows:

Step 1: For each solution of the front, the normalized Euclidean distance is calculated for each

RP. The solutions are ranked in ascending order of distance, in which the solution that

has the smallest distance from RP is in the top of the rank;

Step 2: After the previous step, there will exist different rankings, one for each RP. The preferred

distance of a given solution will be the minimum one assigned to it, considering all the

rankings. Thus, the solutions with the smallest preferred distance values are preferred

in the tournament selection and in the composition of the new population (from the

combined parent and offspring population);

Step 3: Aiming to control the extent of selected solutions, the ε-clearing procedure is executed

in this step. To perform it, a random solution is selected from each group. Thus, all

solutions that have a sum of normalized difference in objective values of ε or less are

discouraged by assigning an artificial large preference distance (aiming to remove them

from the search process). So, only one solution within ε-neighborhood is emphasized.

Next, another solution is chosen from the set of non-dominated solutions (excluding the

one previously chosen), and the procedure is performed again.

The value of ε is chosen according to the application and it consists of a user-defined

parameter [22]. Figure 2.7 shows the effect of ε when this one has its value increased. It is

possible to notice that the greater the values, the greater is the number of selected solutions in the

Pareto-front.

2.6 PCA-NSGA-II

In this context of dimensionality reduction, Deb and Saxena [21] proposed PCA-NSGA-II, an

elitist non-dominated sorting genetic algorithm with principal component analysis coupled. The

idea of this algorithm is to identify redundant objective functions from the solutions found by

NSGA-II (described in Section 2.3).

The authors describe the use of the Principal Component Analysis (PCA) method in the

context of MOEAs as follows. Supposing we have M-objective functions to be optimized and N
population members, the initial data matrix X will be of size M xN . So, the procedure converts

this matrix into the standardized form, and the correlation matrix (R) is calculated as follows:

Ri j =
Vi j

√
Vii ∗ Vj j

(2.4)

32

Figure 2.7: The effect of ε and its impact in the Pareto-front [22].

where V is the covariance matrix described as:

Vi j =
Xi XT

j

M − 1
(2.5)

where Xi is the i-th row of X . This covariance matrix contains values between -1 and 1 in which

negative numbers mean the objectives are negatively correlated (there is a conflict among them)

and the positive ones mean that the objective are positively correlated (redundant ones).

Given three objectives A, B, and C as example, consider that A and C, and A and B
are negatively correlated. Thus, for this example, the objective functions A or B are redundant

ones. In this example, it is easier to identify the redundant objectives because we have just three

ones. However, this task becomes harder if the number of objectives increases. So, the authors of

PCA-NSGA-II propose a procedure to reduce this burden. This procedure is described in three

steps:

1. Eigenvalue Analysis for Dimensionality Reduction: The eigenvalues of the correla-

tion matrix R are calculated and shown ranked in the decreasing order of their magnitudes.

The first principal component (PC), corresponding to the largest eigenvalue is designed

as PCA1. So the first component of this vector stands for the contribution of the first

objective function towards this vector, the second for the second objective, and so on. A

positive value means an increase in the objective value moving along this PC, and a

negative denotes a decrease. Thus, by picking the most-negative and the most positive

elements from a PC, we can get the two most import conflicting objectives;

2. Effect of Multiple Principal Components: In the second step, each PC is analyzed for

the two main objectives that are causing a conflict and the information about the other

conflicting objectives are collected. However, the authors suggest a procedure in which

an analysis is performed from the first PC, the second one, and so on until the significant

components are considered. This procedure consists of defining a threshold cut (TC),

and when the contribution of all previously PC exceeds this threshold, the analysis is

ended. If the TC is too high, many redundant objectives may be chosen. However, if

too small, important objectives may be ignored causing an error in the whole study. So,

33

the authors suggest to use a value of 95% for TC may be better. More details can be

found in [21];

3. Final Reduction Using the Correlation Matrix: If the previous steps run successfully,

the most redundant objectives will be identified. However, if it is possible to perform

more reductions, this step is applied. A reduced correlation matrix (only columns

and rows corresponding to non-redundant objectives or conflicting ones) is used for

identifying if there still exist redundant objectives to be removed. The idea of this step

is to establish that any objective is enough to define the conflicting relationship with the

remaining objectives. So, this step retains the one which was chosen the earliest by the

PCA analysis, but if the objectives come from the same PCA, then the one that has the

most significant contribution along next PCA is picked up.

The authors also claim that once PCA-NSGA-II is run for sufficiently large number

of generations, the correlation matrix gets stabilized and correlation patterns turn invariant

over the number of generations. So, based on the steps previously described, we can state the

PCA-NSGA-II algorithm is described in Algorithm 3.

Algorithm 3 PCA-NSGA-II Algorithm [21]

Step 1: Set an iteration counter t = 0 and initial set of objectives I0 = {1,2, . . . ,M};

Step 2: Initialize a random population for all objectives in the set It , run an MOEA, and obtain

a population Pt ;

Step 3: Perform a PCA analysis on Pt using It to choose a reduced set of objectives It+1 using

the predefined TC. Steps of the PCA analysis are as follows:

1) Compute the correlation matrix using Equation 2.4;

2) Compute eigenvalues and eigenvectors and choose non-redundant objectives

using the Procedures 1 and 2 previously described;

3) Reduce the number of objectives further, if possible, by using the correlation

coefficients of the non-redundant objectives found in item 2 above, using the

procedure 3 previously discussed.

Step 4: :If It+1 = It , stop and declare the obtained front. Else set t = t + 1 and go to Step 2.

2.7 QUALITY INDICATORS

There are some quality indicators that are used in the literature for evaluating the performance

of MOEAs and MaOEAs [52, 90]. They allow comparing the results obtained by different

algorithms. These indicators are usually based on the non-dominated solutions set generated by

the algorithms. Three sets are usually used:

• PFapprox: set of non-dominated solutions obtained by one algorithm execution;

• PFknown: set of non-dominated solutions of an algorithm obtained by the union of all the

PFapprox from all the executions, removing the non-dominated and repeated solutions;

34

• PFtrue: represents the Optimal Pareto-front to the problem. In our case this set is

unknown. Due to this, and following the literature [28, 33, 74, 91], this set was formed

by all sets PFknown obtained from different algorithms by removing dominated solutions

and repeated ones. The set PFtrue is, in fact, an approximation to the real front.

The quality indicators that are relevant to the scope of this work and used for answering

the research questions are described in the next sub-sections.

2.7.1 Hypervolume with R-Metric (R-HV)

Traditional performance evaluation metrics do not take into account the RP informed by the

DM during the evaluation process. Considering the great importance of this information when

applying a preference-based algorithm, we decided to use the Hypervolume indicator with

R-Metric (R-HV) proposed by Li et al. [51]. It provides a way to adapt quality indicators, such as

the hypervolume (HV), to quantitatively evaluate the performance of preference-based algorithms

by using RP.

The general idea of R-metric is to pre-process the preferred solutions according to a multi-

criterion decision-making approach before using a regular metric to evaluate the performance

of the obtained solutions. Figure 2.8 presents an illustration of the steps applied by R-Metric

calculation principle.

Figure 2.8: R-Metric Steps (Adapted from [52]).

The first step is to filter the solutions by keeping only the non-dominated and no-repeated

ones (Prescreening). In the second step (Pivot Point Identification), a representative point is

identified, which reflects the general satisfaction of the solutions with respect to the RP. In the

third step (Trimming), only solutions located in the ROI are of interest to the user. The R-Metric

defines the ROI as a set of solutions that is centered at the pivot point and with length δ. Only

solutions located in this approximated ROI are valid for performance assessment. After this, in

the fourth step (Solution Transfer), the trimmed points are transferred to a virtual position to be

evaluated its proximity to the RP. Finally, the last step (R-Metric Calculation) applies the quality

indicator in the solutions processed by R-Metric. In our case, the Hypervolume (HV) quality

indicator [90].

Figure 2.9 shows an example of the application of the R-Metric for five Pareto-fronts,

in which Figure 2.9 (a) shows the original Pareto-fronts and Figure 2.9 (b) the virtual ones after

the application of the R-Metric. It is possible to see that, for example, for the Pareto-front S3, the

solutions in this one are closest to the RP, then the solutions remain almost in the same position

in the search space. However, for Pareto-front S5, its virtual position is more distant from RP

provided by the user. This will impact the quality attributes for this Pareto-front once the values

will be calculated taking into consideration the virtual position.

The objective of R-Metric is to evaluate the dissemination of solutions in the ROI and,

at the same time, the proximity of these solutions to the RP. In this work, R-HV was calculated

considering the sets PFapprox generated by all algorithms. At the end, the average of the results

obtained by calculating the R-HV in each set is returned. For this, the objectives values are

normalized between [0.0; 1.01]. Thus, higher values of R-HV present the best results, that is,

35

(a) Original Pareto-fronts (b) Virtual Pareto-fronts

Figure 2.9: R-Metric example.

results that contain a set of solutions that are closer to the RP and also contain a greater number

of solutions with good diversity within the ROI.

2.7.2 Inverted Generational Distance with R-Metric (R-IGD)

Inverted Generational Distance (IGD) is a convergence measure that corresponds to the average

Euclidean distance between the Pareto-front approximation provided by an algorithm and a

reference Pareto-front [51]. Again, this indicator does not take into consideration the user

preferences. Thus, the Inverted Generational Distance with R-Metric (R-IGD) [51] follows the

general way defined in the previous sub-section and it is also proposed in [52]. However, the

main difference is that to calculate this quality indicator, IGD is used instead of HV.

IGD needs an approximated (or real) Pareto-front to be calculated. Thus, some steps of

R-Metric are performed on PFapprox such as the steps pivot identification and trimming procedure.

The remaining solutions are considered as trimmed PFapprox and they are used to calculate the

R-IGD quality attribute. So, the lower R-IGD, the better the results, that is, results that contain a

set of solutions that are closer to the trimmed PFapprox .

2.8 WORK ON DIMENSIONALITY REDUCTION BASED USER PREFERENCES

In this section, we aim to describe the related work on Dimensionality Reduction Based on

User Preferences. In order to find these works, we conducted a search and screening of papers

following some steps from the mapping process proposed by Petersen et al. [65].

Based on the goal of this work and the addressed subjects, a set of keywords was defined

to form the search terms. They were categorized into three groups, as presented in Table 2.1.

The first group is regarding the dimensionality reduction techniques. In this group, the keywords

were based on the terms used in related surveys of literature. The second one is regarding the

preference-based techniques. The latter were extracted from surveys [5, 31], which contain a

classification list for preference-based multi-objective optimization algorithms.

All groups were combined by using the boolean operator “AND”. So the search string is

formed by “Dimensionality Reduction” group AND “Preference-based Techniques” group AND

“Search Techniques” group.

36

Table 2.1: Search Terms.

Group Keywords Ref.
Dimensionality

Reduction

dimensionality reduction OR dimension reduction OR objective

reduction
[34, 51]

Preference-

based

Techniques

Interactive OR preference OR decision-maker OR user-specified

OR region of interest OR in-the-loop OR decision support OR

human-evaluated OR decision-making

[5, 31]

Search

Techniques

search based OR search-based OR MOEA OR MOA OR multi-

objective optimization OR multiobjective optimization OR multiob-

jective algorithm OR multi-objective algorithm OR metaheuristic

OR meta-heuristic OR search algorithm OR genetic algorithm

OR genetic programming OR GP OR evolutionary algorithm OR

evolutionary computation OR evolutionary optimization OR ant

colony optimization OR ACO OR particle swarm optimization

OR PSO OR integer programming OR exact optimization OR

branch-and-bound OR hill climbing OR simulated annealing OR

local search OR IGA OR R-NSGA-II OR PBEA

[31]

The search and the selection of the relevant studies were conducted in four steps as

described in Figure 2.10.

Figure 2.10: Steps of the study selection process.

In Step 1, a query was generated by search string and it was executed in the most relevant

electronic databases by considering the title, abstract and keywords. The search finished at

October 10th, 2019. The used databases were IEEE Xplore Digital Library, ACM Digital Library,

Scopus, Springer, and Science Direct. These databases were chosen due to their importance in

Computer Science and SBSE. Thus, the number of found studies in each database is described

in Table 2.2.

In some cases, the query was implemented using a specific strategy for each database as,

for instance, to split the search string into small pieces. It was due to the different features of the

search engines. At the end of this step, a set of 343 papers was obtained.

In Step 2, 46 repeated papers were discarded, remaining 297. Thus, in Step 3, the

inclusion/exclusion criteria presented in Table 2.3 were applied in the remaining papers. In

this step, a paper was included or excluded by reading it in the following order: title, abstract,

introduction, conclusion and the entire paper if necessary. This procedure was applied until no

doubts were left about its selection. At the end of this, just one paper was obtained.

37

Table 2.2: Number of found studies in each electronic database.

Database Website #
Scopus http://www.scopus.com 107

Science direct http://www.sciencedirect.com 142

IEEE Xplore Digital Library http://ieeexplore.ieee.org 26

ACM Digital Library http://dl.acm.org 49

Springer http://www.springerlink.com 19

Total 343

Table 2.3: Inclusion and exclusion criteria applied to the studies.

Inclusion

criteria

• English papers;

• Publications in journals, conferences and workshops; tutorials, short

papers, tool demonstration, entire thesis, book chapter, technical

reports;

• Available in an electronic format: HTML, etc;

• Mapping studies, surveys, state-of-art and literature review;

• With focus on dimensionality reduction and user preferences.

Exclusion

criteria

• Position papers and doctoral symposium;

• Abstracts;

• Papers not available online;

• Without focus on dimensionality reduction and user preferences.

In the last step (Step 4), a snowball sampling was performed following the instructions

in [85] by considering both forward and backward snowballing procedures. Then, citations

and the reference list of found publications were used to identify other relevant studies and we

identified 3 additional papers. Hence, the final set was composed of 4 studies. The found ones

are described in the next.

2.8.1 Dimensionality Reduction and User Preferences

Sinha et al. [73] propose a framework composed of an algorithm and a procedure executed

sequentially. The first algorithm is called NL-MVU-PCA and it is responsible for simplifying the

number of objectives by using a machine learning based objective reduction algorithm. It uses

the Maximum Variance Unfolding (MVU) and Principal Component Analysis (PCA) nonlinear

objective reduction algorithm. As output, this generates a Pareto-front with a reduced and

38

non-redundant set of objectives. The second one, called PI-EMO-VF, is a procedure responsible

for providing to the user the solutions found by NL-MVU-PCA and, by capturing the user

preferences a posteriori, constructing an implicit value function for, consequently, making

decisions. In the experiments, the authors observed that the approach reduced the cognitive load

in the task of selecting a solution based on the user preferences.

2.8.2 Dimensionality Reduction in Software Engineering Problems

Dea [16] presents a new software refactoring approach by using PCA-NSGA-II aiming to reduce

the set of objectives that represents the quality metrics of interest to the domain expert. The

published work has been in a formulating stage and has not been evaluated.

In their work, Dea [17] applied the same algorithm from the previous study in Software

Refactoring problem. The author conducted a human study on a set of software developers who

evaluated the approach and compared it with the state-of-the-art refactoring techniques. The

results presented that the proposed approach outperformed several of existing multi-objective

refactoring techniques in some metrics such as execution time, and number of fixed anti-patterns.

Wang and Kessentini [81] introduce a dimensionality reduction approach based on

PCA-NSGA-II to address the Web services modularization problem. In this work, the algorithm

starts with a large number of Web service quality metrics as objectives that are reduced based

on the correlation among them. The authors evaluated their approach in a set of 22 real-world

web services and the results show that the algorithm performed significantly better than the

state-of-the-art modularization techniques.

2.9 FINAL REMARKS

This chapter presented the topics related to this work including the main concepts on Optimization

Problems and the characteristics of MOEAs. We described the algorithms NSGA-II and NSGA-

III, the Preference-based algorithm R-NSGA-II, and the Dimensionality Reduction algorithm

PCA-NSGA-II, as well as the quality indicators used for evaluating them.

As seen in this chapter, MOEAs are useful optimization algorithms when the addressed

problems have at most three objectives to be optimized. When the number of objectives increases,

the results found by such algorithms tend to deteriorate, once it is hard to differentiate and select

the solutions.

In the user’s point of view, this generates another problem, that is, the user have to

visualize a lot of solutions and the process of picking a solution up becomes burden and, at the

same time, the user can reject this task (because it is harder to select a solution) or can reject the

solutions generated once the algorithms do not take into account his/her preferences.

With that in mind, in the context where all objectives should be optimized but some

of them are preferred, this work has as goal the investigation of a dimensionality reduction

approach based on the user preferences for solving MaOPs. For this end, the proposed approach

in this work merges the concept of objective reduction and user feedback provided interactively

(in-the-loop) during the search, trying to remove unimportant objective functions from the user’s

point of view aiming to reduce the number of solutions s(he) will visualize.

As far as we know, there not exist an approach or algorithm that incorporates both

manners at the same time to find the best solutions in MaOPs. The only study most related to

this work proposes to use dimensionality reduction and user preferences in a separated way, not

combined, as well as the preferences are not provided in-the-loop.

Besides, dimensionality reduction applied in SE problems does not cover the addressed

problem in this work, even the use of the user preferences during the reduction of the number

39

of objectives. However, Dea [17] suggests as future work researches on direction to integrate

the users in-the-loop when reducing the number of objectives to either select which objective to

eliminate or to revise the fitness function formulation (for example, aggregating some objectives).

Hence, as far as we are aware, the approach proposed in this work is the first effort on

performing the dimensionality reduction based on the user preferences expressed during the

search process.

The proposed approach is applied to select the products for the variability testing of

SPL, a problem in the SBSE field that is addressed in the next chapter.

40

3 VARIABILITY TESTING OF SOFTWARE PRODUCT LINE

This chapter describes the problem addressed in this dissertation, the variability testing of

Software Product Line (SPL). Such a problem belongs to the area of Search-based Software

Engineering (SBSE), addressed in Section 3.1. The SPL testing is described in Section 3.2,

followed by related work to this topic presented in Section 3.3. Section 3.4 shows the search-based

approach for the variability testing of SPL with the proposed objective functions and solution

representation, and, finally, Section 3.5 highlights some final remarks.

3.1 PREFERENCE AND SEARCH BASED SOFTWARE ENGINEERING

The field known as Search-based Software Engineering (SBSE) [38] is devoted to the application

of optimization algorithms for solving different optimization problems from the Software

Engineering (SE) area. In this context, we introduced a sub-research field of SBSE called

Preference and Search based Software Engineering (PSBSE) devoted to the application of

preference and search-based algorithms to solve SE problems [31].

We defined that to apply PSBSE, it is necessary to define four ingredients (the first three

are defined by Harman and Jones [38]):

1. a representation to the problem, to allow its manipulation by the search-algorithm;

2. a set of manipulation operators;

3. a fitness function to evaluate the quality of the solutions, which generally rely on software

metrics;

4. a way to incorporate the user preferences.

These ones are required by the process that generates one or more solutions to the user.

In our work, we distinguished two kinds of process generally involved in such area: a) the process

that generates solutions to the problem, and b) the decision-making process. Based on that, our

focus is on the solution generation process. In addition to this, we divided this process into three

main phases:

1. Pre-processing – related to the operations that are executed before the search begins,

such as the population initialization;

2. Intermediate Solutions Generation – related to the generation of the solution through a

search-based process;

3. Post-processing – related to the operations that are executed after the search ends such

as ranking the solutions or defining a region of interest based on the user preference.

Based on that, the works were classified regarding the phases in three categories: before

(a priori), during (interactively) or after (a posteriori). They are not exclusive and can be

combined. In an a priori moment, the user preferences are provided in a pre-processing phase

such as weights for the objective function. In an interactive moment, the preferences are provided

during the solutions generation after repeated (and finite) interactions. Finally, in an a posteriori

41

Figure 3.1: PSBSE framework [31].

moment, the preferences are provided after the intermediate solution generation phase, usually

used in the multi-objective context aiming to reduce the number of solutions generated by the

algorithm. A PSBSE framework is illustrated in Figure 3.1.

The approach proposed in this work is included in the PSBSE research field as an

interactive (in-the-loop) approach once the user preferences are provided during the intermediate

solutions generation.

Several SBSE problems can be addressed by using user preferences, such as to find the

best refactoring sequence for a program, to allocate the task resources in a best way, to structure

the architecture of a system satisfying factors such as cohesion and coupling, and so on. One of

these problems is the Variability Testing of Software Product Line (SPL), the problem addressed

in this work, described in the sequence.

3.2 SOFTWARE PRODUCT LINE TESTING

A Software Product Line (SPL) can be defined as a set of common products from a particular market

segment or domain [78]. Such products share some features, which represent a functionality, or a

system capability that is relevant and visible to the end user [74].

42

The features can be common to all products derived from the SPL, but they can also

be variable being found in only some of them. Thus, the Feature Model (FM) diagram is used

for easing feature management in most SPL methodologies. This diagram is represented as a

hierarchical arrangement through a tree, and it is used for representing all the SPL commonalities

and variabilities, as shown in Figure 3.2, that contains the SPL for the domain of Mobile Phone.

Figure 3.2: Feature diagram of Mobile Phone. Adapted from [29].

In this figure, the features Screen and Calls in the sub-tree below the feature Mobile

Phone are mandatory ones, that is, all products derivated from this FM should implement these

ones. On the contrary, the optional features are represented by an empty circle and may not be

present in a product, such as the feature GPS and Media. The group of alternative features is

represented by interconnected edges. From this group, only a subset of features can be selected

to compose a product. For instance, only one feature must be selected among Basic, Color, and

High Resolution below the feature Screen. A requires relation exists between Camera and

High Resolution features. It implies that if a feature A is present in a product p, then a feature

B should also be present. The excludes relation implies that both features cannot be present in

the same product, such as GPS and Basic.

A product is given by a combination of features. Figure 3.3 (a) shows an example of a

valid product that can be derived from the FM of Figure 3.2, and Figure 3.3 (b) an invalid one.

(a) Valid Product (b) Invalid Product

Figure 3.3: Example of products generated from the FM in Figure 3.2.

The valid product satisfies all the constraints established in the FM. On the contrary, the

product in Figure 3.3 (b) is invalid because it does not include the mandatory features such as

Calls.

The growing adoption of SPLs in the industry demanding specific testing techniques. In

this context, the variability testing of SPL arises as one important activity. This one tests if the

43

products that can be derived from an FM match their requirements. To ensure this, all products

should be tested [74].

However, the increasing size and complexity of applications can make testing of all

products almost impossible in practice in term of resources and execution time [13]. Hence, it

makes necessary the application of a technique in order to select the most representative set of

products from an FM. In other words, testing criteria should be used. The most popular ones

used in the FM-based testing are described in the sequence.

3.2.1 Pairwise Testing in the FM Context

In order to derive a set of products for the variability testing of SPLs, some studies in the literature

are based on combinatorial testing [41, 61, 64, 77]. Pairwise testing is one of the most popular

kind of combinatorial testing, therefore, it is also applied in our work.

The goal of this testing criterion is to generate a set of products that include all the valid

pairs of features from the FM. Thus, the number of covered pairs can also be used for evaluating

a set of products that were generated.

For instance, consider again the FM shown in Figure 3.2. The pair (GPS, Basic) is

invalid, and should not be required. Considering only the variabilities, we see that the product in

Figure 3.3 (a) includes the pair (High Resolution, Camera) and does not include the pair (GPS,

MP3). Thus, to derive the pairs, we use the Combinatorial tool1 that implements the Automatic

Efficient Test Generator (AETG) algorithm, introduced by Cohen et al. [12].

3.2.2 Mutation Testing in the FM Context

Another testing criterion that has been recently explored in the FM context [3, 25, 42, 66] is

mutation testing, a fault-based testing criterion. In the FM context, mutant FMs are generated

with operators that described possible faults that can be present in an FM. Hence, the goal of this

testing criterion is to generate a product that is capable of distinguishing the behavior of the FM

being testing from its mutant version.

Essentially, the product p is checked by using an FM analyzer. The mutant is considered

dead in two situations: i) if p is valid according to the original FM and invalid fo the mutant; and

ii) p is invalid for the original FM and valid for the mutant. When both FMs, original and mutant

ones, validate the same set of products, they are considered as equivalent.
At the end of this process, a mutation score is calculated, given by the number of dead

mutants over the total of non-equivalent generated mutants. Similarly to the pairwise coverage

described in the previous section, the score can be used for evaluating the adequacy of a set of

products, or it can be used to improve an existing one.

To illustrate this testing criterion, consider Figure 3.4.

The figure shows that the operator changes a requires relation to an excludes one, such

as the one between High Resolution and Camera. In this sense, the product in Figure 3.3 (a)

kills the mutant, since it is valid for the original FM and it is invalid for the mutant.

In our work, we use the set of mutation operators and the FMTS (Feature Mutation-based

Test Suite) tool proposed by Ferreira et al. [25, 26], which considers FM extensions [15] using

UML-like multiplicities. FMTS works with the framework Feature Model Analyser (FaMa) [76],

which is responsible for validating the FM being tested and its mutants. Finally, it supports the

FODA notation [49], and only valid mutants (which are validated by FaMa), are generated by

FMTS.

1http://161.67.140.42/CombTestWeb

44

Figure 3.4: Example of a mutant generated for FM in Figure 3.2.

3.3 WORK ON SEARCH-BASED VARIABILITY TESTING OF SPL

We performed in 2017 [31] a systematic mapping aiming to find works that take into account the

user preferences in SBSE context. The search string used in this study was again executed in

order to see whether other researchers published works in this subject since then. As a result

of this search, there were not found studies that use dimensionality reduction based on user

preferences in SBSE. Thus, in this section, we present works that use optimization algorithms

and some of them based on user preferences for the variability testing of SPL.

Wang et al. [82] propose an approach for minimization of test case sets. The authors

use a GA and an aggregation function of the following factors: the number of test cases, pairwise

coverage, and capability to reveal faults. Besides, other authors [83] also address prioritization

of test cases, by using another aggregation function including cost measures, and comparing

GA with (1+1) EA and random search. In this study, other factors, such as execution cost and

resources, are also considered. In addition to this, Ensan et al. [24] also use a simple GA with an

aggregation function comprised of cost and error rate factors.

The work of Henard et al. [43] also uses a GA with an aggregation function to handle

the costs, pairwise coverage, and the number of products, all of them conflicting objectives in the

selection of test products. Regarding a multi-objective and Pareto approach, Lopez-Herrejon et

al. [53] propose a study considering pairwise coverage and the size of the test suites.

Mutation testing has been addressed for test data generation in the works of Henard et

al. [40] and Matnei Filho and Vergilio [54]. The former considers mutation operators defined to

generate dissimilar products, that is, products that include different features. The latter proposes

a multi-objective approach by using two objectives related to the number of dead mutants and

products. The authors performed experiments using NSGA-II, SPEA2, and IBEA algorithms.

More recently, Ferreira et al. [30] proposes an approach based on Ant Colony Op-

timization (ACO) for a single-objective formulation of this problem, besides a mathematical

formulation considering the mutation score and the dissimilarity among products. In addition to

this, in the context of Hyper-heuristic, several studies propose the use of a Adaptive Operator

Selection (AOS) for tackling this problem [28, 29, 74]. For instance, Ferreira et al. [29] introduce

a comparative study among four MOEAs based on hyper-heuristics: HH-NSGA-II, HH-SPEA2,

HH-IBEA, and HH-MOEA/D-DRA. These algorithms were evaluated in this subject with three-

and four-objective formulations, as well as presenting a new objective function regarding to the

number of similar products.

Focusing in the application of preference-based algorithms, Jakubovski Filho et al. [48]

propose the use of r-NSGA-II (Reference Solution-based NSGA-II). Besides, a hyper-heuristic

45

version (called r-NSGA-II-HH) is also introduced for this one in which the algorithm works with

a random and FRRMAB selection methods. As quality attribute, the work uses R-Hypervolume,

a Hypervolume with R-metric [52] in which its value is calculated based on a RP provided by the

user.

Still in the same context, Jakubovski Filho et al.[32] propose the use of R-NSGA-II

(described in Section 2.5) and a hyper-heuristic version of it (called R-NSGA-II-HH) to solve

the same problem. Also, in this work a four-objective formulation is used and the results are

compared to traditional algorithms (such as NSGA-II and r-NSGA-II) by showing that, in some

metrics, the found results are equivalent.

Finally, Jakubovski Filho et al. [33] perform a deeper evaluation in the same problem but

now by using large instances with more than 11k products to be selected. In this study, NSGA-II, a

random algorithm, r-NSGA-II and R-NSGA-II are compared by using R-HV, Euclidean Distance

and execution time. Three- and four-objective formulations are used and the results show that the

r-NSGA-II and R-NSGA-II algorithms outperformed NSGA-II by considering R-HV.

3.4 SELECTING PRODUCTS WITH A SEARCH-BASED APPROACH

We can observe that deriving a set of products for the variability test of FMs (the most

representative one) is an optimization problem, impacted by many factors such as number of

products, coverage of testing criteria such as mutation testing and pairwise, dissimilarity of

products, importance or cost of the implemented features, and so on.

As mentioned in the previous section, there are distinct formulations to the problem, as

well as many objective functions considering those factors. To validate our approach, we use the

formulation proposed in [33], and the set of objective functions are derived considering different

approaches [28, 30, 32, 44, 55, 74]. Both, the solution representation and the objective functions

are described as follows.

3.4.1 Solution Representation

An individual (or possible solution) in the population is based on a binary encoding, where each

gene represents a product derived for a given FM under test. When the i-th bit is equal to 1 the

product pi belongs to the solution. Otherwise, the i-th bit is equal to 0.

We are using the same convention to represent the features in a product, that is, 1

means the corresponding feature is selected for the product, otherwise, 0 the feature is not

selected. Figure 3.5 shows an example of an individual for the FM of Figure 3.

Figure 3.5: Individual representation [33].

46

In the example, the addressed FM has four valid products being considered. The

individual S, represented in the figure, includes the products p2 and p3, that is, S = {p2, p3}.

Then, the number of selected products of S, or |S |, is 2. The product p2 in the right side of the

figure is represented in terms of its variabilities, and contains the features High Resolution and

Camera.

3.4.2 Objective Functions

Let P = {p1, p2, p3, . . . , pn} be a set of valid products being considered for the addressed FM,

and S ⊆ P be an individual generated by an algorithm with |S | selected products.

The first objective (Equation 3.1) corresponds to the total number of products in S. This

number is expressed as the ratio of the number of selected products and the number of valid

products being considered for the FM. It is computed as follows:

N(S) =
|S |
|P |

(3.1)

In our work, the products pn are given by FaMa. However, for huge FMs, the tester can

provide a desired value for n. In the empirical study, we observed that for small instances, around

3% of the generated mutants are equivalent. This percentage was used to set the value of n for the

larger FMs. The number of products n was chosen ensuring a mutation score around 97%. In this

way, the mutants that could not be killed by any one of the generated products were discarded.

The second objective (Equation 3.2) is related to the capacity of the product set to reveal

faults (or efficacy). In our case, is given by the mutation score with respect to a set of mutation

operators that represent possible faults that can be present in an FM. The objective is defined as:

M(S) = 1.0 −
K M
AM

(3.2)

where K M is the number of killed mutants by the products in S, and AM is the total number of

active mutants. Basically, this function returns the percentage of alive mutants. Besides, we use

the set of mutation operators and the FMTS, and the AM set of active mutants is composed of

only valid and non-equivalent mutants.

The third objective (Equation 3.3) corresponds to the pairwise coverage defined as

follows:

P(S) = 1.0 −
CP
VP

(3.3)

where CP represents the number of pairs covered by S and VP means the total number of valid

pairs. Basically, this function returns the number of uncovered pair. In this work, we use the

above-mentioned Combinatorial tool to derive the pairs.

The fourth objective (Equation 3.4) corresponds to the variability (products similarity).

This function takes into account the similarity between the products regarding the features they

have. It is computed in the next:

V(S) =
RF
OF

(3.4)

where RF means the number of features that appears more than once in S and OF is the number

of non-mandatory (optional) features in the instance.

The fifth objective (Equation 3.5) takes into account the cost of the selected products,

e.g., implementation time of the products or cost of setting up correct resources for developing a

47

specific product. The cost of a given product is calculated based on the included features. In this

work, the cost of leaf and non-leaf features are considered, that is, we assume that the leaf and

non-leaf features in a given FM can have concrete implementations, which was already addressed

by Pereira et al. [63].

So, this objective is a ratio of the cost of the selected products by the cost of all valid

products being considered for the FM. This objective function is calculated as follows:

C(S) =

∑
pi∈S cost(pi)

∑
pj∈P cost(pj)

(3.5)

where cost(pi) returns the cost of a product pi, estimated by summing of the cost of the features

included in pi. In this study, the cost assigned for each feature was randomly defined before the

search process, once this information is not available in the addressed instances.

The sixth objective (Equation 3.6) considers the richness of features, that is, how many

features were included in S. It is calculated as follows:

F(S) = 1.0 −
NF
TF

(3.6)

where NF means the number of features included in S and TF represents the number of features

being considered for the FM. Basically, this function returns a percentage of unselected features.

Finally, the seventh objective (Equation 3.7) takes into consideration the feature

importance for the stakeholders. As described in the fifth objective, the leaf and non-leaf features

in an FM can have concrete implementations. Consequently, in our proposal, the stakeholders are

able to express their degree of preference for any feature in the FM. If there are more than one of

them or criteria involved, the Analytic Hierarchy Process (AHP) [67] or another Multi-Criteria

Decision Making (MCDM) technique could be considered. So, it is calculated as follows:

I(S) = 1.0 −

∑
pi∈S importance(pi)

∑
pj∈P importance(pj)

(3.7)

where importance(pi) returns the importance of the product pi calculated based on the sum of

the importance of the features included in pi. Basically, this function returns the percentage of

irrelevant features from the user’s point of view. Again, in this study, the importance defined for

each feature was randomly set before the search process, once this information is not available in

the addressed instances.

In this work, all objectives functions are normalized in the range [0,1] where 0 is the

best value and 1 the worst one, that is, all of them should be minimized. To sum up, Table 3.1

shows a summary of all objective functions used in this work by showing the function, the goal, a

short description and the references.

To clarify how the objective functions are computed, we consider an instance example

with illustrative values for three features (F1, F2, and F3), in which all of them are non-mandatory

ones, their cost and importance are described in Table 3.2, and a set of five possible products that

should be selected, shown in Table 3.3.

Now, consider that a solution S = {p3, p4} was selected to be evaluated in which

Products #3 and #4 were selected, the objective functions are calculated as follows:

48

Table 3.1: Objective Functions used in this work.

Function Goal Short Description References
1 N(S) Minimize Number of Products

[28, 55, 74]2 M(S) Minimize Alive Mutants

3 P(S) Minimize Uncovered Pairs

4 V(S) Minimize Similarity [30, 32]

5 C(S) Minimize Cost [83]

6 F(S) Minimize Unselected Features [44]

7 I(S) Minimize Unimportant Features [4]

Table 3.2: Features from the instance example.

Features Cost Importance
F1 2 1

F2 4 2

F3 6 3

Table 3.3: Products from the instance example.

Features Killed Mutants Covered Pairs Cost Importance
p1 [F1] [M1] [P2, P3] 2 1

p2 [F1, F3] [M1, M5] [P2] 8 4

p3 [F1, F2, F3] [M3] [P1, P2, P3] 12 6

p4 [F2, F3] [M1, M2, M4] [P3] 10 5

p5 [F2] [M1, M3] [P1] 4 2

Sum 36 18

N(S) =
2

5
= 0.4

M(S) = 1.0 −
4

5
= 1.0 − 0.8 = 0.2

P(S) = 1.0 −
3

3
= 1.0 − 1.0 = 0.0

V(S) =
2

3
= 0.6

C(S) =
22

36
= 0.6

F(S) = 1.0 −
3

3
= 1.0 − 1.0 = 0.0

I(S) = 1.0 −
11

18
= 1.0 − 0.6 = 0.4

49

Therefore, in this instance example, the objective values for the solution S = {p3, p4} is

(0.4, 0.2, 0.0, 0.6, 0.6, 0.0, 0.4).

3.5 FINAL REMARKS

This chapter introduced the PSBSE research field, as well as the variability testing of SPL. In

addition to this, this chapter described the most related studies to this topic addressing the use

of MOEAs and preference-based optimization algorithms for SPL testing. Based on that, we

introduced a search-based approach including the solution representation and objective functions

for tackling this problem. Such an approach is the same one used in [33], and the objective

functions were derived considering the objectives which are most commonly used in the literature.

On the one hand, the use of preference-based algorithms in variability testing of SPL

reaches good results by using R-NSGA-II, for example. On the other hand, there are no studies

that use dimensionality reduction mechanisms for addressing the same problem, even by using

both techniques.

Although the use of a preference-based algorithm can reduce the number of solutions to

be selected, in some specific problems this reduction can not be successfully reached. So it is

necessary to find a way to reduce the number of solutions by guiding the search towards the user

preferences. By using dimensionality reduction based on the user preferences expressed during

the search process can support this task.

In conclusion, the problem stated in this chapter was used for evaluating the approach

proposed in the next chapter.

50

4 PROPOSED APPROACH

This chapter presents MaDRUP (Many-objective Optimization with Dimensionality Reduction

based on User Preferences), the approach proposed in this work. Thus, Section 4.1 presents

the overview of MaDRUP. Section 4.2 introduces COR-NSGA-II, the algorithm derived by the

approach proposed with NSGA-II. Section 4.3 concludes this chapter.

4.1 MANY-OBJECTIVE OPTIMIZATION WITH DIMENSIONALITY REDUCTION BASED

ON USER PREFERENCES

MaDRUP is an approach that generates solutions for many optimization problems by reducing

the number of objectives to be optimized based on the user preferences stated during the solution

generation process, that is, in-the-loop.

MaDRUP encompasses three main activities: problem encoding, optimization, and

interaction. Figure 4.1 shows the organization of the activities, sub-activities, elements, and

identifies briefly the flow of the dimensionality reduction process.

Figure 4.1: MaDRUP Overview.

The Problem Encoding activity is responsible for the definition of three basic elements:

a set of objectives to be optimized, an optimization algorithm (used in the search process), and a

problem instance. A problem instance contains information about the solution representation,

and required information for calculating the fitness functions used by the optimization algorithms.

Regarding the Optimization activity, this is responsible for searching the non-dominated

solutions. To reach this, the Search Process sub-activity is responsible for executing the

optimization algorithms (such as NSGA-II, SPEA2, and so on) aiming to find solutions for the

addressed problem.

The Search Process sub-activity requires an initial population (a set of non-dominated

solutions). If the initial population is not provided, a random population is generated by the

51

optimization algorithm. Once Search Process ends, the dominated and repeated solutions are

removed. Then, the stopping criterion is tested.

If the criterion is satisfied, the last found non-dominated solutions are returned as the

best ones for the addressed problem. Otherwise, the search process continues but with a new

subset of objectives to be optimized. For example, in some approaches such as PCA-NSGA-II,

the stopping criterion is defined based on the non-conflicting objectives set found. If the set

contains the same objectives to be optimized of the last algorithm execution, the search process

ends, and the non-dominated solutions are returned.

In this work, the stopping criterion is defined based on the user preferences. That is,

if the found non-dominated solutions are good from the user’s point of view, the search ends.

Otherwise, the Interaction activity is launched, aiming to define the next subset of objectives.

Regarding the Interaction activity, it aims to provide an interactive way in which the

user can provide his/her preferences about the generated solutions. In this activity, a subset or all

non-dominated and non-repeated solutions are shown to the user and s(he) is invited to provide

his/her preferences. This activity has a sub-activity called Objective Reduction based on three

elements. They are:

• Items: These ones are elements (usually displayed to the user) in which the user is

required to provide his/her preferences. As examples of these items it is possible to cite

solutions, variables, objectives, and so on;

• Required Information: It is the information (or preference) the user needs to provide

about the Items. For example, a ranking of solutions or objectives, or a number meaning

his/her preferences about the visualized items and so on. More examples can be found

in the work of Ferreira et al. [31];

• Selection Method: The main component of this sub-activity, this one is the algorithm

used for selecting or choosing the next subset of objectives to be optimized. This one

takes into account the Items and the Required Information provided by the user.

Specifically for the Selection Methods, it is possible to categorize the proposed ones

into three classes based on the concept used for defining the next set of objectives to be optimized.

The classes are described below:

• Stay In: In this class, the chosen methods aim to define which objectives should stay in

the next subset of objectives based on the user feedback;

• Stay Out: In an opposite way, in this class, the goal is to define which objectives should

stay out of the next subset of objectives;

• Composition: Different from the above ways, in this approach, the goal is to merge

some objectives and generate new ones to be optimized in the next algorithm execution.

Thus, once the next subset of objectives is selected in this activity, the search process

starts again, but now taking into consideration the new subset of objectives and the non-dominated

solutions from the last algorithm execution as initial population. The process keeps running until

the last found non-dominated solutions are acceptable from the user’s point of view (stopping

criteria).

So, it is possible to summarize MaDRUP in some generic steps shown in Algorithm 4.

MaDRUP can be instantiated with several preference-based objective reduction algorithms taking

52

Algorithm 4 MaDRUP Algorithm

Input: A problem instance

A set of objectives to be optimized,

An optimization algorithm and its parameter settings
Output: A set of non-dominated solutions

1: Execute the search process;

2: Remove the dominated and repeated solutions from population;

3: Show to the user the found solutions;

4: while the user does not accept the found solutions do
5: User provides his/her feedback for a set of Items;

6: The selection method is performed taking into account the user feedback and a new subset

of objective is defined;

7: Execute the search process again but now with the new subset of objectives and the

non-dominated solutions as initial population;

8: Remove the dominated and repeated solutions from population;

9: Show to the user the found solutions;

10: end while
11: return the last found non-dominated solutions;

into account the previously described activities. To this end, it is necessary to define the problem

instance, the optimization algorithm, and the elements of the Objective Reduction activity.

Then, to investigate the applicability of MaDRUP, we instantiate the proposed approach

with NSGA-II. As a result, we derived a new algorithm described in the next section.

4.2 CONFIDENCE-BASED OBJECTIVE REDUCTION NSGA-II

Confidence-based Objective Reduction NSGA-II (or simply COR-NSGA-II) is an instantiation

of MaDRUP described in the previous section and it uses the concept of a confidence level for

removing an objective from the next algorithm execution. Basically, a confidence level is defined

based on the user preferences for each objective to be optimized. These preferences are provided

for values closest to the lowest and the highest values for each objective.

To illustrate this, consider that the user is visualizing the non-dominated solutions shown

in Figure 4.2

In this figure, considering 0.0 as the best value and 1.0 the worst one, Solution #4 has

the best value for Objective 1, Solution #5 has the best value for Objective 2, and Solution #3

the best value for Objective 3. On the contrary, Solution #5 has the worst value for Objective 1,

Solution #3 has the worst one for Objective 2, and Solution #1 has the worst value for Objective 3.

COR-NSGA-II needs the user feedback about the objective values found by the search

process (circles numbered from 1 to 15). However, the user does not need to provide all of them

but just those most important ones from his/her point of view. For instance, the user can provide

his/her preferences just for the circles 4, 5, 11, and 12, or, the user can provide his/her feedback

just for the extreme values (objectives values equals to 0.0 or 1.0) such as the circles 1, 2, 3, 13,

14, and 15. This is a user decision.

Firstly, COR-NSGA-II requires all non-dominated and non-repeated solutions must be

normalized in [0:1] before showing them to the user, and it assumes, initially, all objectives

should be selected for the next search process, but some of them should be removed (or not

included). This initial assumption is important because if no user preferences are provided, the

same objectives should be selected for the next search process and no one should be removed.

53

Figure 4.2: Example of numbered objective values.

Thus, once the user feedback is provided, COR-NSGA-II selects those ones closest to

the lowest and highest values for each objective and defines a confidence level for removing the

objective from the next subset. An overview of the algorithm is shown in Figure 4.3.

Figure 4.3: COR-NSGA-II Overview.

The figure shows that the algorithm considers NSGA-II as an optimization algorithm,

and concerning to the Objective Reduction activity, the elements used are:

• Items: Objective Values;

54

• Required Information: Non-preferred, No Opinion, Preferred;

• Selection Method: Confidence-based Selection.

Regarding Items, the user is required to provide his/her preferences about the objective

values in the population. As aforementioned, the user does not need to provide his/her preferences

for all of them. The preferences in the Required Information component that the user must

provide are, in a high-level, as Non-preferred, No Opinion, Preferred. If no preferences are

provided, the default preference is No Opinion.

Thus, the user feedback required by COR-NSGA-II must be composed of:

User Feedback = [solution index | objective index | objective value | required information]

For instance, the user feedback [#1, #2, 0.0, Preferred] provided by the user means

the user provided for Objective #2 with 0.0 from Solution #2 as Preferred, while [#2, #2, 0.7,

Non-preferred] means the user provided for Objective #1 with 0.7 from Solution #2 a preference

as Non-preferred.

Concluding, for the Selection Method component, this algorithm uses the Confidence-

based Selection. This one is described in more details in the next subsection.

4.2.1 Confidence-based Selection Method

This selection method is based on Stay Out category as described in Section 4.1. Basically, this

one calculates a confidence level for all objectives based on the user feedback. Hence, based on a

minimum confidence level (a number provided by the user in [0:100] corresponding a percentage

of confidence), the objectives with confidence levels greater or equals to the minimum confidence

level are removed from the next algorithm execution.

In this method, the Required Information is translated to an ordinal scale described

in Table 4.1.

Table 4.1: Ordinal Scale for the Required Information.

Required Information Value

Non-preferred -1

No Opinion 0

Preferred 1

The correlation between the Required Information and a number is important once we

have to define a priority among them. So, in the case of more than one preference provided for

the same Item, we can choose that one with the lowest priority. Thus, the algorithm for selecting

the next objectives is described in Algorithm 5.

According to the algorithm, it requires as input a minimum confidence level minCon f
provided by the user, the current population P, a set of optimized objectives, O, and a set of user

feedback F.

In the first step (Lines 6-34), the algorithm goes through all user feedback trying to

select the minimum and maximum feedback for each objective. Whether two feedback values

55

Algorithm 5 Confidence-based Selection Method Algorithm

Input: A minimum confidence level (minCon f) value desired to remove an objective

The current population P
A set of optimized objectives O = (o1,o2, . . . ,om)
A set of user feedback F = (f1, f2, . . . , fi)

Output: A subset N of objectives to be optimized

1: Let N ⊂ O be the next subset of objectives to be optimized for N = ∅

2: Let MaxF = (maxF1,maxF2, . . . ,maxFm) be the maximum feedback found by the algorithm for the

optimized objectives, in which ∀maxFi ∈ MaxF,maxFi ← NIL
3: Let MinF = (minF1,minF2, . . . ,minFm) be the minimum feedback found by the algorithm for the

optimized objectives, in which ∀minFi ∈ MinF,minFi ← NIL
4: Let MinV = (minV1,minV2, . . . ,minVm) be the minimum values for the population P.

5: Let MaxV = (maxV1,maxV2, . . . ,maxVm) be the maximum values for the population P.

6: for all f in F do
7: i ← objective_index(f)
8: distToMaxValue ← |maxVi − objective_value(f)|
9: distToMinValue ← |minVi − objective_value(f)|

10: if distToMaxValue < distToMinValue then
11: if maxFi is NIL or objective_value(f) > objective_value(maxFi) then
12: maxFi = f
13: else if objective_value(f) = objective_value(maxFi) then
14: if objective_ f eedback(f) < objective_ f eedback(maxFi) then
15: maxFi = f
16: end if
17: end if
18: else if distToMinValue < distToMaxValue then
19: if minFi is NIL or objective_value(f) < objective_value(minFi) then
20: minFi = f
21: else if objective_value(f) = objective_value(minFi) then
22: if objective_ f eedback(f) < objective_ f eedback(minFi) then
23: minFi = f
24: end if
25: end if
26: else if distToMinValue = distToMaxValue then
27: if minFi is NIL or objective_ f eedback(f) < objective_ f eedback(minFi) then
28: MinFi = f
29: end if
30: if maxFi is NIL or objective_ f eedback(f) < objective_ f eedback(maxFi) then
31: maxFi = f
32: end if
33: end if
34: end for
35: return the objectives selected by Algorithm 6, given minCon f , O, MaxF, MinF

were provided for the same objective, the algorithm selects that one with a lower value. As soon

as the maximum and minimum are selected, the algorithm calls Algorithm 6.

In this algorithm, for each objective, the preferences provided by the minimum and

maximum feedback are defined to the lowest value (best) and the highest one (worst), respectively

(Lines 4-9). After this step, the confidence level for removing this objective is calculated in Line

10 based on the information described in Table 4.2.

56

Algorithm 6 Objective Selection Algorithm

Input: A minimum confidence level (minCon f) value desired to remove an objective

A set of optimized objectives O = (o1,o2, . . . ,om)

A maximum feedback MaxF = (maxF1,maxF2, . . . ,maxFm) for all objectives

A minimum feedback MinF = (minF1,minF2, . . . ,minFm) for all objectives
Output: A subset N of objectives to be optimized

1: Let Best = (best1, best2, . . . , bestm) be the confidence level for the solutions in the best

objective values in which ∀besti ∈ Best, besti ← 0

2: Let Worst = (worst1,worst2, . . . ,worstm) be the confidence level for the solutions in the

worst objective values in which ∀worsti ∈ Worst,worsti ← 0

3: for oi to O do
4: if maxFi is not NIL then
5: worsti ← objective_ f eedback(maxFi)

6: else
7: worsti ← 0

8: end if
9: if minFi is not NIL then

10: besti ← objective_ f eedback(minFi)

11: else
12: besti ← 0

13: end if
14: if confidence(besti, worsti) < minCon f then
15: N = N ∪ oi
16: end if
17: end for
18: if N is ∅ then
19: return a random objective from O
20: end if
21: return N

Table 4.2: Confidence Level for removing an objective.

Highest Value

Feedback Preferred No Opinion Non-preferred

L
o
w

es
t
V

al
u
e Preferred 0% 20% 0%

No Opinion 80% 50% 20%

Non-preferred 100% 80% 100%

The values in this table are proposed in this work and they were generated based on the

highest confidence level to the lowest one. For example, as the optimization algorithms tend to

optimize towards the lowest values (usually best ones for minimization problems), consider that

the user provided Non-preferred for both lowest and highest values for a given objective. So,

we assume with 100% of confidence level this objective must be removed because the solutions

generated with this objective tends not to be good. In the contrary, if both extreme values are

57

Preferred, we have to keep the objectives once the algorithm with them may generate new good

solutions. In another example, if the lowest value is Non-preferred and the highest is Preferred,

we assume the algorithm tend to keep generating non-preferred solutions so we have to remove

the corresponding objective with 100% of confidence level.

Finally, we have to remove just the objectives in which the confidence level is greater

than or equal to the minimum confidence level that was previously defined by the user. However,

if this method is carried out and all objectives should be removed (for example, when the user

defines that the minimum confidence level is 0%), a random objective must be picked up for the

next algorithm execution.

To illustrate the method described in this section, let consider the example shown

in Figure 4.4 where the addressed problem has three objectives to be optimized and the

non-repeated and non-dominated solutions are composed of five solutions.

Figure 4.4: Example of application of the confidence level.

In this example, the user provided three feedback. The first feedback was Preferred for

Solution #5 in Objective 2. The second feedback was Non-preferred for Solution #3 in Objective

3. The last feedback was Non-preferred for Solution #3 in Objective 3. The selection method

aforementioned is performed aiming to find the maximum feedback provided by each objective.

In this example, there is no more than one feedback for the lowest and highest objective values.

Then, the Best and Worst sets, and the confidence level (defined by the values in Table 4.2) are

show in Table 4.3.

Table 4.3: Confidence Level Example.

Objectives Objective 1 Objective 2 Objective 3

Worst Value No Opinion Non-preferred No Opinion

Best Value No Opinion Preferred Non-preferred

Confidence Level 50% 0% 80%

58

Supposing that the minimum confidence level defined by the user for removing an

objective for the next execution is, at least, 80%, Objective 3 must be removed once it is associated

with a confidence level of 80%. However, if the minimum confidence level is defined as 50%,

Objectives 1 and 3 must be removed from the next execution.

This example shows another important property about this selection method. If the

minimum confidence level is 100%, the user is required to provide that a given objective has

to be Non-preferred and Preferred, or Non-preferred for both to be removed. In an opposite

way, if the minimum confidence level is 50% or less, if no user preferences are provided, the

selection method considers that this objective is not good (once the user does not express his/her

preferences about it), and it must be removed.

4.3 FINAL REMARKS

In this chapter we introduced MaDRUP, an approach centered on preference-based dimensionality

reduction.

MaDRUP presents some activities and elements to be instantiated to derive algorithms

for dimensionality reduction based on user preferences to reduce the number of objectives to be

optimized in the next algorithm execution. As an advantage, MaDRUP can use any optimization

algorithm in Optimization activity, and it can be applied to any optimization problem once it is

not domain-dependent.

By instantiating MaDRUP we derived the algorithm COR-NSGA-II. The main advantage

of COR-NSGA-II is that the users do not need to visualize the whole Pareto-front to take a good

solution for his/her problem. The user only needs to visualize some solutions and provide his/her

feedback for them. After that, the algorithm reduces the number of objectives to be optimized.

MaDRUP and COR-NSGA-II are original since, as far as we are aware, there are no

other works or algorithm in the literature that reduce the problem dimensionality based on the

user preferences. Besides, to the best of our knowledge, this is the first work actually reducing

the number of objectives based on the confidence level defined by the user feedback.

The next chapter introduces Nautilus, a web-based tool developed to evaluate MaDRUP

and COR-NSGA-II. Besides, this tool also implements traditional mono-, multi-, and many-

optimization algorithms and the preference-based ones.

59

5 NAUTILUS

Nautilus is a free, extendable, and open source Java web platform tool for user feedback capturing,

developing and experimenting with several mono-, multi-, and many-objective evolutionary

algorithms, optimization algorithms based on reference points, including COR-NSGA-II and

other ones with dimensionality reduction based on the user preferences, that can be derived

by instantiating MaDRUP (described in the previous chapter). To reach this, Nautilus works

with jMetal framework [23] (that is, it is possible to use the algorithms developed by jMetal in

Nautilus).

So, this chapter is organized as follows. Section 5.1 presents the motivation about

development of Nautilus. Section 5.2 introduces the design goals which guided the implementation

of the tool. Section 5.3 presents how Nautilus was built, describing information about its

architecture and implementation aspects. Section 5.4 shows how to use Nautilus and some

aspects of its user interface. Section 5.5 presents a summary of the Nautilus’s key features.

Finally, Section 5.6 concludes this chapter.

5.1 MOTIVATION

In the literature, we can find some software systems responsible for generating solutions for a

given optimization problem. Among them, we can cite the most famous and used, such as PISA

framework [8], jMetal [23], and MOEA Framework [35], the last one is also based on jMetal.

Concerning PISA, this software system is a text-based interface and is mainly known by

offering some “official” support to some optimization algorithms such as SPEA2, but it is not

restricted to that by offering other optimization algorithms. In the same line of thought, jMetal

is a Java framework in which several optimization algorithms can also be implemented and

adapted for the given optimization problem, widely used in the literature. Additionally, MOEA

Framework is a tool based on jMetal in which this one provides the tools necessary to rapidly

design, develop, execute and statistically test optimization algorithms.

In the context of this work, the dimensionality reduction based on the user preferences

demands a user-friendly interface in which the user can explore the whole Pareto-front (by

visualizing the solutions and their variables, and objective values in an uncomplicated manner)

and, at the same time, can express his/her preferences about the solutions found by the algorithms.

However, no tools previously described contain these demands. Some of them do not

have even an official user interface in which the user can interact. Another important fact is that,

although the tools found in the literature are platform-independent ones, no tool is integrated

with cloud computing (which could allow scalability) or even available online as web application

(supporting reports, user customization of some interface aspects, and so on).

With these considerations in mind, Nautilus was developed aiming to be a tool in which

the users can easily implement their optimization algorithms and problems (in an easier way

by just importing a plugin to the tool), and visualize the solutions generated by the algorithms

with a user-friendly interface. Also, by using Java as programming language and some web

technologies, we assume that the tool is portable, it is, the object-oriented features of Java will

allow the user to facilitate the code-reuse in the algorithms and problems or extends new ones,

and it will also allow scalability once the tool can run in the cloud computing by supporting huge

optimization problems, or huge number of objectives, problem instances and so on.

60

5.2 DESIGN GOALS

The purpose of Nautilus is to be a tool that can be used by many researchers to develop their own

optimization algorithms with or without objective reduction based on user preferences, and to

adapt it to solve his/her optimization problems. Based on that, the main design goals driving

Nautilus are described as follows:

• Simplicity and easy-to-use:. This goal means the user should be able of just selecting

the problem and run it with his/her own problem instances. As Nautilus is based on

jMetal, some optimization algorithms are already available for the user. Also, this one

includes some pre-defined optimization problems and problem instances to be used by

the user in which, by using a user-friendly interface and just a few steps, the users are

able to just select a optimization problem, open a problem instance and optimize it;

• Customizability: This goal aims to provide the ability of some parts of the tool to be

customized to suit a particular need from a user. In this context, Nautilus provides a

multi-user system in which each one can customize some information and upload to the

tool his/her own problem instances to be optimized. Also, the users are able to change

some information they visualize about the non-dominated solutions;

• Portability. The tool should be executed in machines with different architectures and/or

running in a distinct operating system. Nautilus is developed in Java, so it allows to

reach this goal;

• Extensibility: New optimization algorithms, search operators, and problems should

be easily added to the tool. To reach this goal, Nautilus supports plugins in which

the users can adapt their needs or context to the tool. Also, the plugin can be written

out-of-the-box by just importing some libraries specifically designed to this task;

• Performance: Supporting huge problem instances is required to the developed system.

Knowing that, Nautilus is a web platform application that allows running it in cloud

computing. As advantages, the latter allows automatic software updates, mobility,

performance, and so on.

5.3 ARCHITECTURE AND IMPLEMENTATION

Figure 5.1 shows all modules and external tools involved in Nautilus. The figure is a simplified

version in order to make it understandable.

The figure shows that Nautilus uses three main third-party libraries such as the jMetal

framework (previously described) for the optimization algorithms, MongoDB (a general purpose

and document-based database) for database, and Spring Boot (application framework and

inversion of control container for the Java platform) as web application framework. Regarding

to the main modules, Nautilus has basically three ones: nautilus-core, nautilus-plugin, and

nautilus-web. Specifically, the nautilus-plugin-spl module is the implementation of the problem

addressed in this work and it uses nautilus-plugin to support it. Thus, the main modules are

described in the next sub-sections.

5.3.1 Nautilus Core

This is one of the most important modules from Nautilus because it contains the base classes in

which the other modules require to work. Figure 5.2 shows the packages inside this module.

61

Figure 5.1: Nautilus Architecture.

Figure 5.2: Nautilus Core’s packages.

The figure shows that this module contains 14 packages. Inside of them, there are some

classes that extend other ones from jMetal, mainly to support MaDRUP. For example, in the

org.nautilus.core.encoding package it is possible to find classes that extend jMetal’s classes and

add support to dynamic number of objectives (currently, jMetal does not support it).

Moreover, this module provides the classes responsible for defining the encoding type

of the problems supported. Currently, Nautilus supports Integer, Double and Binary encoding

problems. At the following are described some examples of classes found in this module and a

short description about them.

• AbstractObjective: Provides the methods in which the objective to be optimized must

extend to be used by Nautilus;

• SolutionListUtils: An utility class with several methods to manipulate a list of solutions;

62

• AbstractReduction: Provides the methods in which the new objective reduction method

must extend.

5.3.2 Nautilus Plugin

This module is responsible for providing extensible classes in which the user can create his/her own

plugin for Nautilus and adapt his/her needs to the tool. This one uses the classes from nautilus-core
and Figure 5.3 shows the packages inside this module.

Figure 5.3: Nautilus Plugin’s packages.

This module has 9 packages and their names represent basically the piece of Nautilus

the user can extend and create his/her plugins. Next, it is shown the most important extensible

classes that can be used to extend the tool and incorporate new features, and a short description

about them.

• AbstractAlgorithmExtension: Provides the methods in which a new optimization

algorithm must extend;

• AbstractCorrelationExtension: Provides the methods in which a new correlation

method must extend. ;

• AbstractCrossoverExtension: Provides the methods in which crossover operators

must extend;

• AbstractMutationExtension: Provides the methods in which mutation operators must

extend;

• AbstractNormalizerExtension: Provides the methods in which normalization method

must extend;

• AbstractProblemExtension: Provides the methods in which optimization problem

must extend to be addressed in Nautilus;

• AbstractRemoverExtension: Provides the methods in which a class responsible for

removing the duplicated solutions must extend;

• AbstractSelectionExtension: Provides the methods in which selection operators must

extend.

63

For example, the user can extend the AbstractAlgorithmExtension class and create

his/her own optimization algorithm or even extend the AbstractProblemExtension class and

create a new optimization problem. Algorithm 7 shows an example of how to extend and create a

new algorithm to be used in Nautilus.

Algorithm 7 Example of an algorithm extension

1 @Extension
2 public class NSGAIIAlgorithmExtension extends AbstractAlgorithmExtension {
3

4 @Override
5 public Algorithm<? extends Solution<?>> getAlgorithm(Builder builder) {
6 return new NSGAII(builder);
7 }
8

9 @Override
10 public String getName() {
11 return "NSGA-II";
12 }
13 }

5.3.3 Nautilus Web

This module provides a user interface based on a web platform to ease the use of the algorithms,

visualize the found solutions, and interact with the tool. This module uses nautilus-core and

nautilus-plugin and is developed in Spring Boot by using MongoDB for saving in a database all

generated solutions. Figure 5.4 shows the packages inside this module.

Figure 5.4: Nautilus Web’s packages.

The figure shows that this module has 13 packages and most of them extend classes from

Spring Boot, such as those ones inside of org.nautilus.web.repository, org.nautilus.web.controller,
and org.nautilus.web.service packages.

64

5.4 USING NAUTILUS

In this section, we introduce Nautilus for the variability testing of SPL, the problem addressed in

this work and described in Chapter 3.

First of all, Nautilus is a multi-user tool, that is, the users can sign up and create his/her

own executions by using the available optimization problems and problem instances. However,

Nautilus has, as default, an admin user for uploading new plugins and, with this, to support other

optimization problems, such as Software Refactoring, Next Release Problem, and so on. In this

section, we simulate a default user (non-admin one) that uses the tool.

Figure 5.5 shows the Nautilus’ home page. This one is available when the user signs up

and successfully logs in the system. This interface contains information about all executions

the user has already performed. In Nautilus, an execution is composed of a Pareto-front with

non-dominated solutions and the parameters used to find them such as algorithm used, number

of evaluations, crossover operators and so on.

Figure 5.5: Nautilus’s screenshot from home page

Besides, this page contains information about all running executions the user launched.

Thus, the user can launch several executions at the same time and monitor all of them in this

page while they are running. When the execution is done, it appears in the table and the user can

open and visualize it.

Nautilus still allows the user to import and export a given execution in some pre-defined

file formats such as JSON (a simple data structures and objects in JavaScript Object Notation

format [14]), FUN (a file with only the objective values), and VAR (a file with only variables).

Once the user is ready to start a new execution, s(he) can just click on the button “New Execution”

to select the problem instance to be optimized.

Figure 5.6 shows the page in which all problem instances the user can select are

displayed. In this page, all problem instances are grouped by the problem and it is shown

information about the problem instance size and the last modified date. If the user is interested in

65

the optimization of a new problem instance, s(he) can just click on “Upload Instance” button and

send it to Nautilus.

Figure 5.6: Nautilus’s screenshot from problem page.

In addition, in this page the user can click on the problem instance name for visualizing

the specific information about the problem instance or just skip it and go to the optimization page

by clicking on the “Optimize” button.

Next, the interface shows the problem instance page with information about the problem

instance to be optimized (Figure 5.7) . This one can be customized for each problem by the

Nautilus Plugin (see Subsection 5.3.2). In this figure, James was selected and information

about the features, products, pairwise and mutation coverage are shown. After visualizing the

information, the user can click on "Optimize" button to go to the “optimize” page to set the

parameter settings.

Figure 5.8 shows the optimize page. In this page the user is able to select the parameter

settings used for optimizing the problem instance. Besides, other information can be set, such as

the mating operators, number of evaluations, the population size, the objectives to be optimized

and so on. It is important to notice that the parameter settings are different according to the

chosen optimization algorithm.

The current version of Nautilus implements the following optimization algorithms and

mating operators:

• Optimization algorithms: NSGA-II, NSGA-III, GA, R-NSGA-II, COR-NSGA-II,

SPEA2 and Random Search as optimization algorithms. There is a Greedy Algorithm

but it is limited for some problems and a very small problem instance size;

• Selection operator: Binary Tournament with Ranking and Crowding Distance selection;

• Crossover operator: Single Point, SBX and Integer SBX crossovers;

66

Figure 5.7: Nautilus’s screenshot from problem instance page.

Figure 5.8: Nautilus’s screenshot from optimize page.

• Mutation operator: Bit Flip, Integer Polynomial and Polynomial mutations.

Nautilus still supports R-NSGA-II and, in this page, it is also possible to add the reference

points used by the algorithm. Once the parameter settings are set, the optimization starts and the

67

page redirects to the home page (see Figure 5.5) where the user can monitor the progress of this

execution.

In the next step, Figure 5.9 the non-dominated solutions are presented. In this page the

user can visualize the solutions either by using a chart or a table with the solutions and their

objective values.

(a) Line chart representation

(b) Table representation

Figure 5.9: Nautilus’s screenshot from execution page.

68

Furthermore, Nautilus is able to perform the correlation among the objectives. Currently,

the tool supports Kendall, Pearson and Spearman correlations [86]. Another important feature in

this page is the ability to change some displayed information such as chart’s color, remove the

duplicated solutions from Pareto-front before show it, normalize the objective values and change

de correlation type. So, to open the solution and visualize it, it is necessary just to click in the

circle on the chart.

As a result, the tool presents information about the selected solution as illustrated

in Figure 5.10. The figure shows the variables from the selected solution and its objective values

(raw and normalized ones). Also, the user can provide his/her preferences about that by just

sliding left or right the component below the objective values.

Figure 5.10: Nautilus’s screenshot from solution page.

After the process of optimizing and picking a solution up as the best one, the user can

compare all of the selected solutions in a single chart. The page is available in Figure 5.11 and,

in this example, it is shown four solutions selected by the user as the best ones for NSGA-II,

COR-NSGA-II, Manual selection and R-NSGA-II. Besides, in this screen it is possible to visualize

some information about the quality attributes for the selected solutions such as R-Hypervolume,

R-IGD and so on.

Finally, Figure 5.12 shows the customization page. In this one the user is able to change

information about the decimal places, decimal separator, the language used by the tool and the

time zone.

5.5 AVAILABLE FEATURES

In this section, we describe a summary of the most important features previously described and

other minor ones that Nautilus implements.

1. A web application platform;

69

Figure 5.11: Nautilus’s screenshot from compare page.

Figure 5.12: Nautilus’s screenshot from customization page.

2. Extensible through plugins;

3. Several optimization algorithms and mating operators are available;

70

4. Support to multi-users with roles and permissions for each one;

5. Gallery support to share the execution with other users;

6. Multi-language support (currently Portuguese and English ones);

7. Customization (for example decimal separator and places);

8. Support to Integer, Double and Binary encoding types;

9. Mobility to see the executions from anywhere;

10. Calculate some quality indicators such as R-HV and R-IGD;

11. Support both MaDRUP and COR-NSGA-II proposed in this work.

5.6 FINAL REMARKS

This chapter presented Nautilus and its main implementation aspects and features, such as its

modules and pages.

Firstly, the motivation for the Nautilus development was presented by showing that the

found tools in the literature do not provide the features required by this work. So, based on that,

some design goals were described in which all development was guided by them.

Next, the main modules of Nautilus were detailed and the responsibility of each one and

how they are integrated were presented. The packages inside of them were also displayed and the

main classes were shown and briefly described.

Last but not least, the user interface was presented, explaining how the user can interact

by setting the parameters, visualizing the solutions and providing his/her preferences. Details

about each one was provided and the key features were described.

Nautilus was developed aiming to support MaDRUP and the COR-NSGA-II algorithm

described in the previous chapter and to offer a user-friendly interface in which, by using a few

steps, the users are able to select solutions very quickly which meet their expectations.

Besides, the tool and COR-NSGA-II are publicly available and its source code can be

found at https://github.com/thiagodnf/nautilus.

Based on that, Nautilus was used for evaluating MaDRUP and COR-NSGA-II with real

users in an empirical study on the problem of selecting products for SPL testing introduced

in Chapter 3. The experiment and results are described in the next chapter.

71

6 EMPIRICAL STUDY

The hypothesis of this work is “a preference-based dimensionality reduction approach is capable
of taking less execution time and generating a reduced set of solutions that takes into account
the user preferences. In addition to this, the solutions are as good as those ones generated by
multi- and many-objective algorithms with respect to quality indicators from the literature.”.

To investigate this hypothesis, we conducted an evaluation by using six real-world FMs and

compared the results found by COR-NSGA-II to those ones obtained by using four multi- and

many-objective evolutionary algorithms found in the literature.

This chapter describes the evaluation conducted and is organized as follows. Section 6.1

presents the Research Questions (RQs) derived and how we designed the experiments to answer

them. Section 6.2 presents the target FMs and their characteristics. Section 6.3 describes the

kind of users considered to determine the preferences used for answering the RQs. Section 6.4

introduces the quality indicators used for evaluating the RQs. Section 6.5 describes how the

reference points used in R-Metric and R-NSGA-II algorithm were chosen. Section 6.6 shows

the parameters used by all algorithms. The results and discussion are presented in Section 6.7

and Section 6.8, respectively. The threats to the validity of the obtained results are shown

in Section 6.9. Finally, 6.10 concludes this chapter.

6.1 RESEARCH QUESTIONS

Considering the goal of this work, the empirical study was guided by the following research

questions:

RQ 1: Is COR-NSGA-II capable of reducing the problem dimensionality towards the user
preferences? The goal of this RQ is to evaluate if the Confidence-based selection method

of COR-NSGA-II is better than a random selection method (sanity check). To support

this analysis, the algorithm was executed asking the preferences to a simulated user

(explained in more details in Section 6.3) and the results were compared concerning

to Reduction Efficiency, the Number of Preferred Objectives in the Last Subset, and

Reduction Capacity (see Section 6.4).

RQ 2: How are the results of COR-NSGA-II compared to those ones obtained by multi- and many-
objective evolutionary algorithms? This RQ aims to compare the proposed algorithm to

those ones that use reference-set based, preference-based, or, dimensionality reduction

approaches for solving many-objective problems. To reach this, the algorithm was

executed by using preferences provided by a simulated user, and a quantitative analysis

was performed by using R-HV, R-IGD, # of solutions generated (and the number of them

in the ROI), and the execution time. So, to answer this RQ the following sub-questions

were considered:

RQ 2.1: How are the results of COR-NSGA-II compared to NSGA-II and NSGA-III, a
traditional and reference-set based algorithms, respectively?

RQ 2.2: How are the results of COR-NSGA-II compared to R-NSGA-II, a preference-
based algorithm?

RQ 2.3: How are the results of COR-NSGA-II compared to PCA-NSGA-II, a dimension-
ality reduction based algorithm?

72

RQ 3: Can COR-NSGA-II help users to find useful solutions? The goal of this research question

is to evaluate if the solutions generated by COR-NSGA-II are more preferred than those

ones generated by the other multi- and many-objective evolutionary algorithms. To

achieve this goal, a set of potential users were invited and asked to select a good solution

in their point of view. The analysis conducted is based on a qualitative questionnaire

available in Appendix A.

RQ 4: Can Nautilus be useful for the users in the task of selecting a good solution? In this

research question, the goal is to evaluate the proposed tool regarding its applicability as a

tool to support the decision-making process. To reach this, the same set of users that

participated responding the questionnaire of RQ3 also responded another questionnaire

to evaluate Nautilus. Such a questionnaire is in Appendix B.

6.2 TARGET FEATURE MODELS

This work uses six FMs already used in related work [25, 28, 43, 62, 74], in which five of them

were extracted from the SPLOT repository [56]. Details about them can be found in Appendix C.

These FMs are:

a) James: SPL for collaborative web systems [6];

b) CAS (Car Audio System): a SPL to manage automotive sound systems [84];

c) WS (Weather Station): SPL for weather forecast systems [7];

d) E-Shop: an E-commerce SPL [71];

e) Drupal: a modular open source web content management framework [62];

f) Smarthome v2.2: SPL for a smart residential solution [43].

Table 6.1 shows information about each FM, such as number of products (nt), number

of used products n, alive mutants (AM), valid pairs (VP), and number of features (# of Features).

We can observe that the last two FMs contain a larger number of features and products. Due to

this, it is impractical to use all the products in the population representation. For both FMs n
products were randomly selected from the total number of products nt that can be derived.

Table 6.1: Characteristics of the FMs used in the experiments.

FM ntntnt nnn AMAMAM VPVPVP # of Features
James 68 68 106 75 14

CAS 450 450 227 183 21

WS 504 504 357 195 22

E-Shop 1152 1152 94 202 22

Drupal ≈2.09E9 11k 2194 1081 48

Smarthome ≈3.87E9 11k 2948 1710 60

In this work, James, CAS, WS, and E-Shop are considered small instances, while Drupal

and Smarthome are the larger ones.

73

All FMs were used for evaluating RQ1 and RQ2. However, as the users were required

to express their preferences, E-Shop was chosen for answering RQ3 and RQ4, because it is

widely used in the literature [28, 30, 32, 33], it is composed of a reasonable number of products

to be selected, and it has a suitable execution time for experiments with users.

6.3 USERS

To evaluate the aforementioned RQs, we used real users and simulated ones. Both of them are

described in the following sub-sections.

6.3.1 Simulated Users

The simulated user is a user simulator developed for answering RQ1 and RQ2, aiming to

represent a possible evaluation profile, as explored in other work of the literature [2, 27, 72]. In

this method, when a user preference is required for a given solution, COR-NSGA-II asks it for

the user simulator.

It is important to notice that the main objective of this simulator is not a faithful

representation of a human being, but it demonstrates the influence of a certain evaluation profile

in the search process. This simulator is summarized in Figure 6.1.

Figure 6.1: Simulated user representation.

The user simulator requires a set of preferred objectives (a subset of those ones to be

optimized) and it supposes that the population is normalized in [0:1] in which 0.0 means the best

value and 1.0 the worst one for every objective. So, this one is grouped in three main components:

selection, evaluation, and stopping criteria briefly described below.

The first module is responsible for selecting the items for evaluation required by COR-

NSGA-II and described in Section 4.2. When this one is performed, for each objective, all

solutions from the non-dominated population that have the best and the worst values are selected.

After that, a set of random solutions from this group (in this context, called items for evaluation)

is picked up to be evaluated after by the user simulator.

In the second component, these items are evaluated. This one is responsible for

evaluating the items proposed according to the preferred objectives previously defined for the

user simulator. Algorithm 8 shows the algorithm used for evaluating the items.

The algorithm first verifies if the objective index of the item for evaluation is part of the

preferred objectives. If it is not, this item is marked as Non-preferred. Otherwise, it is marked

as Preferred if the objective value is 0.0 or the maximum and minimum objective values are

the same, and as Non-Preferred if the objective value is 1.0. In the last case, if no previous

conditions were reached, it is marked as No Opinion.

74

Algorithm 8 Preferred Objectives Algorithm

Input: A set of preferred objectives

Items proposed for evaluation

Output: The user feedback

1: for all item in items of evaluation do
2: if the preferred objectives contain the objective index then
3: if the minimum and maximum values for this objective are the same then
4: save the feedback as Preferred
5: else
6: if the objective value = 0.0 then
7: save the feedback as Preferred
8: else if the objective value = 1.0 then
9: save the feedback as Non-preferred

10: else
11: save the feedback as No Opinion
12: end if
13: end if
14: else
15: save the feedback as No-preferred
16: end if
17: end for

Finally, the third module is responsible for defining the stopping criteria considered

by the simulator. In this one, the used criteria are the maximum number of interactions or the

maximum number of objectives is reached.

To illustrate the user simulator, consider the non-dominated population shown in Fig-

ure 6.2.

Figure 6.2: Example for user simulator evaluation.

In this example, the indexes of the preferred objectives are #1 and #2. So the items for

evaluation are these ones:

75

Item1 = [solution: #3 | objective index: #2 | 1.0]

Item2 = [solution: #1 | objective index: #3 | 1.0]

Item3 = [solution: #5 | objective index: #2 | 0.0]

Performing the evaluation component in this example, the user preferences provided by

the user simulator for Item1, Item2, and Item3 are respectively, Non-preferred, Non-preferred,

and Preferred.

The user simulator requires a set of preferred objectives. Based on this, two scenarios

were designed and evaluated in RQ1 and RQ2. The first scenario (called Scenario 2D) is

responsible for simulating a user who prefers two objectives, and the second one (called

Scenario 3D) simulates a user who prefers three objectives. For Scenario 2D, Number of Products
and Alive Mutants objectives are randomly defined as preferred ones. Regarding Scenario 3D,

Alive Mutants, Similarity, and Cost objectives are selected as preferred ones.

The choice of these scenarios and the objectives selected for them was based on the

correlation among the objectives, seeking to simulate a possible preferred set of objectives. For

example, in Scenario 2D, all objectives are conflicting ones. Concerning to Scenario 3D, two of

the selected objectives are redundant ones: Similarity, and Cost.

6.3.2 Real Users

For answering RQ3 and RQ4, we asked to a group of potential users of Nautilus to run and

evaluate the solutions generated by COR-NSGA-II and the other multi- and many-objective

evolutionary algorithms. To reach this, Nautilus was used in all experiments involving the users

and they were invited to assist the solution generation process by using the tool. So, they could

state their preferences about the found solutions.

Our study involved 12 participants from the Federal University of Paraná (UFPR) and

Federal University of Technology - Paraná (UTFPR) to use and evaluate our tool. Participants

include 3 Master students and 7 Ph.D. students in Software Engineering and Optimization

Algorithms, and 2 professors. All the participants are volunteers and familiar with the subject

of this work. The experience in years of these participants on programming ranged, in general,

from 2 to 10 years.

The participants were first asked to fill out a Participant questionnaire (available

in Appendix D). This questionnaire helped to collect background information such as their role

within the company, their programming experience, their familiarity with software testing and so

on. Figure 6.3 shows some specific information about the participants.

(a) Gender (b) Experience

Figure 6.3: Results from the Participant Questionnaire.

76

As we can see in the figure, the experiment involved 7 male and 5 female participants, and

around 50% of the participants have high experience in software development and optimization

algorithms.

In addition, all the participants attended one lecture about the variability testing of SPL

and optimization algorithms, and, at the end, a test with five questions (a pre-study questionnaire

available in Appendix E) was filled out aiming to evaluate their performance and understanding

of the subject for suggesting good solutions for an example of problem instance.

For RQ4, every participant was invited to interact with Nautilus to become familiar

with it. The idea of this scenario is to perform an evaluation about the tool developed and, at the

same time, to avoid that the lack of knowledge about the tool influences his/her decision about

the generated solutions. In this scenario, a toy problem was used and the user was invited to fill

out a questionnaire (available in Appendix B) about his/her impressions by using the tool.

For RQ3, we formed 4 groups in which each one is composed of 3 participants. These

groups were formed based on the pre-study questionnaire and the test results to make sure that all

the groups have almost the same average skills. For the test results, every question is weighted

and we tried to form the group in which all users have a similar average. As a result of this

pre-study, all participants reached a good performance by selecting the correct answer in almost

all questions. Because of this, the participants were assigned randomly in each group, since all

of them were at the same level.

We asked every participant to define based on his/her preferences a set of preferred

objectives and, following the sequence described in each group, the algorithms were executed.

For each algorithm, the user was required to select/provide a good solution based on his/her

preferences previously defined. In this scenario, a questionnaire (available in Appendix A) was

provided and the participants were asked to justify their evaluation about his/her decisions and

these justifications are reviewed by the organizers of the study. Table 6.2 summarizes the groups

organization including the list of algorithms evaluated by each one.

Table 6.2: Groups Organization.

Group 1 Group 2 Group 3 Group 4
Manual Selection NSGA-II R-NSGA-II COR-NSGA-II

NSGA-II R-NSGA-II COR-NSGA-II Manual Selection

R-NSGA-II COR-NSGA-II Manual Selection NSGA-II

COR-NSGA-II Manual Selection NSGA-II R-NSGA-II

The table shows the sequence for execution of the algorithms used by the participants

in each group. For example, the participants of Group 2 are invited to execute the NSGA-II,

R-NSGA-II and COR-NSGA-II algorithms and, at the end, to generate a solution for the problem

instance by using manual selection.

Furthermore, the quality indicators used in this work to answer the research questions

are described in the next sub-sections.

6.4 QUALITY INDICATORS

The analysis of RQ1 and RQ2 was conducted by using the quality indicators described

in Section 2.7 along with the execution time. However, COR-NSGA-II generates a non-dominated

population with the same number of objectives used in the last reduction. So, it makes necessary

77

to evaluate again PFtrue with the same objectives used at the beginning of the execution. To

cope with this, when COR-NSGA-II stops the reduction process, all solutions in PFtrue are

re-evaluated with the same objectives described in Subsection 3.4.2 and, so, it is possible to

compare all algorithms once all of them have solutions with the same set of objectives.

In addition to this, the quality attributes described in the next subsections were also used

for evaluating RQ1 and RQ2. Some of them are introduced in this work.

6.4.1 Average Number of Solutions in the ROI

This quality attribute calculates how well an algorithm can generate solutions in the ROI, that is,

the main idea of this quality attribute is to evaluate the algorithm ability to obtain concentrated

solutions that satisfy the user preferences.

Again, in order to perform the calculation of this metric, the average was calculated

considering the sets PFapprox formed by each algorithm and, for the determination of the ROI,

we made use of R-Metric previously described. Thus, in the context of this work, lower values of

this quality indicator represent the best results, once we want to reduce the number of generated

solutions in the ROI.

6.4.2 # of Targets in the Last Subset

This quality indicator counts the number of preferred objectives in the last reduction. Ideally, this

metric should return the same number of preferred objectives defined by the user to make sure

the dimensionality reduction is moving towards the user preferences.

6.4.3 Reduction Capacity

This quality indicator calculates the percentage in which the reduction mechanism reached the

preferred objectives. For instance, if this metric indicates that it has 100%, it means, in all

executions, the algorithm reaches the preferred objectives defined by the user. Otherwise, this

metric scores 0%. So, the greatest value is better.

6.4.4 Reduction Efficiency

This quality indicator returns the number of reductions performed until the final set of objectives

includes just the preferred ones. A less number is better, since this means the algorithm has a

faster convergence, but 0 means the algorithm never reached the preferred objectives.

6.4.5 Execution Time

The execution time is also used for assessing the algorithms. In this indicator, the time spent

on generating the final Pareto-front set is calculated. However, for preference-based algorithms

such as COR-NSGA-II, the time spent on providing the user preferences is also taken into

consideration. Thus, a less number is better.

6.5 DEFINITION OF THE REFERENCE POINTS (RP)

The R-metric process described in Subsection 2.7.1 and the R-NSGA-II algorithm require a

reference point (RP) used for calculating the ROI and finding solutions close to the RP respectively.

In this case, the RP also means a preference for the objectives.

78

A RP is defined as a tuple RP = (N, M, P, V, C, F, I) where the sequence of elements

represents either a value (or a point) in the objective space in which the ROI should be generated

or a point in which the algorithm should concentrate its search mechanism. So, in this tuple,

N is the value for the objective Number of Products, M is the value for Alive Mutants, P is the

value for Uncovered Pairs, V is the value for Similarity, C is the value for Cost, F is the value for

Unselected Features, and I is the value for Unimportant Features.
Knowing this, two kinds of RPs were defined to be used by R-metric and R-NSGA-II

algorithm in RQ2: i) restricted, and ii) compromised. The former is responsible for representing

a preference restricted to a specific set of preferred objectives, and the other objectives (non-

preferred one), are assigned “no preferences”. The latter is responsible for also representing

a preference for a specific set of preferred objectives, but intermediate values for the other

objectives are also defined.

Thus, two RPs were defined for each scenario described in Subsection 6.3.1 taking into

consideration the preferred objectives of them. Then, the RPs used to calculate the R-metric and

to run the R-NSGA-II algorithm are show in Table 6.3.

Table 6.3: Reference Points.

Scenario Type Reference Point

Scenario 2D
Restricted (0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0)

Compromised (0.0, 0.0, 0.5, 0.5, 0.5, 0.5, 0.5)

Scenario 3D
Restricted (1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0)

Compromised (0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5)

The table shows that, for Scenario 2D, the restricted RP aims to express preferences for

Number of Products and Alive Mutants with 0.0 value, and no preferences (a value of 1.0) for the

other objectives, while in the compromised RP, a 0.5 value is defined for the other non-preferred

objectives. Concerning Scenario 3D, the RP aims to express the preference for Alive Mutants,
Similarity, and Cost objectives with 0.0 value for the restricted RP and 1.0 for the non-preferred

ones, while in the compromised RP, 0.5 is defined for the non-preferred objectives.

6.6 PARAMETER SETTINGS

The type and values for crossover and mutation probabilities already defined in related work for

the same problem and FMs [28, 33, 54, 74]. Then, we adopt the same probability rates for all

algorithms being 90% for crossover probability and 0.5% for mutation one.

Regarding the population size and the maximum number of evaluations (considered as

a stopping criterion), a tuning phase was performed and we tested two settings for these values:

112 and 238 for population size and 134,400 (or each solution is going to be evaluated 1200

times) and 238k (or each solution is going to be evaluated 1000 times) for maximum number of

evaluations.

The population size was defined based on the mechanism used by NSGA-III. The latter

uses a set of reference points on a hyper-plan where, by using p divisions along each objective, the

number of reference points (and consequently the population size) is calculated by H =
(M+p−1

p

)
,

where M is the number of objectives [19].

Other specific parameters were also tuned. For example, ε for R-NSGA-II, was evaluated

with 0.0001 and 0.001 (the same in [33]) where this one controls the number of solutions inside

79

the ROI. Concerning COR-NSGA-II, the minimum confidence level (80% and 100%), the number

of items for evaluation (5 and 10 items) and the number of reductions (5 and 10 ones) were also

evaluated. In addition to this, R-Metric requires a δ, a parameter that specifies the ROI’s size.

For this work, the value of 0.3 was used. This value is the same used in the previous work for the

addressed problem [32, 33].

It is also important to notice that for RQ1 and RQ2, COR-NSGA-II divides the maximum

number of evaluations by the number of reductions. It means COR-NSGA-II is going to perform

the same number of evaluations of other algorithms no matter the number of reductions. For

example, suppose we have 900 as a maximum number of evaluations and COR-NSGA-II performs

3 reductions, each one runs the optimization algorithm for 300 evaluations.

Thus, 30 independent runs were performed using the combination of the parameters.

After tuning, the best parameter settings were selected based on the best average values of R-HV

and R-IGD. At the end, the values chosen are displayed in Table 6.4.

Table 6.4: Parameter Settings.

Parameter Algorithm Value
Population Size All 112

Max Evaluations All 134,400

Crossover Operator All Single Point Crossover

Crossover Probability All 0.9

Mutation Operator All Bit Flip Crossover

Mutation Probability All 0.005

ε R-NSGA-II 0.001

of Items for evaluation COR-NSGA-II 5

of Reductions COR-NSGA-II 10

With the best configuration of parameters chosen, 30 independent runs of each algorithm

were performed for answering RQ1 and RQ2. At the end, the set of non-repeated and non-

dominated solutions was obtained.

As a statistical test, Kruskal-Wallis [50] with 95% significance level was considered

where the bold values in the tables represent the best ones, and light gray cells represent values

that are statistically equivalent.

Finally, the algorithms were executed in a machine with an Intel(R) Core(TM) i7-5930K

CPU 3.50GHz with 40Gb RAM.

6.7 RESULTS

This section summarizes and discusses the results obtained in the experimentation. Subsection 6.7.1

presents results regarding RQ1, where COR-NSGA-II is compared to an algorithm with a

random objective reduction method. Subsection 6.7.2 presents the results regarding RQ2, where

the solutions found by COR-NSGA-II were compared to those ones found by MOEAs and

MaOEAs. Subsection 6.7.3 shows the results for answering RQ3 about the selected solutions by

the potential users, and finally, Subsection 6.7.4 introduces an evaluation about Nautilus, the tool

used during the experiments (RQ4).

80

6.7.1 RQ1 - Sanity Check

This RQ seeks to compare the results found by COR-NSGA-II to those ones found by a random

dimensionality reduction algorithm (or simply, random algorithm). The results found by COR-

NSGA-II with 80% and 100% of minimum confidence level are presented, and concerning the

random algorithm, the results are shown with 5 and 10 reductions. To ease understanding, we

present the results of both experiments (Scenarios 2D e 3D) in separated sections.

6.7.1.1 Scenario 2D

Table 6.5 shows the mean values and standard deviations for Reduction Efficiency, Size of the

Last Subset, # of Targets in the Last Subset, and the Reduction Capacity for COR-NSGA-II and

random algorithm for Scenario 2D (Number of Product and Alive Mutants objectives as preferred

ones).

Table 6.5: COR-NSGA-II versus Random Algorithm in Scenario 2D.

Algorithm Reduction
Efficiency

Size of the
Last Subset

of Targets in
the Last Subset

Reduction
Capacity

Ja
m

es

random-10 0.00 ± 0.00 1.00 ± 0.00 0.27 ± 0.45 0.00% ± 0.00

random-5 0.00 ± 0.00 1.03 ± 0.18 0.40 ± 0.50 0.00% ± 0.00

cor-nsga-ii-0.8 1.70 ± 0.47 2.00 ± 0.00 2.00 ± 0.00 100.00% ± 0.00
cor-nsga-ii-1.0 2.03 ± 0.32 2.00 ± 0.00 2.00 ± 0.00 100.00% ± 0.00

C
A

S

random-10 0.00 ± 0.00 1.00 ± 0.00 0.27 ± 0.45 0.00% ± 0.00

random-5 0.00 ± 0.00 1.00 ± 0.00 0.33 ± 0.48 0.00% ± 0.00

cor-nsga-ii-0.8 1.53 ± 0.51 2.00 ± 0.00 2.00 ± 0.00 100.00% ± 0.00
cor-nsga-ii-1.0 1.63 ± 0.49 2.00 ± 0.00 2.00 ± 0.00 100.00% ± 0.00

W
S

random-10 0.00 ± 0.0 1.00 ± 0.00 0.27 ± 0.45 0.00% ± 0.00

random-5 0.00 ± 0.00 1.07 ± 0.25 0.27 ± 0.45 0.00% ± 0.00

cor-nsga-ii-0.8 1.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 100.00% ± 0.00
cor-nsga-ii-1.0 1.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 100.00% ± 0.00

E
-S

h
o
p

random-10 0.00 ± 0.00 1.00 ± 0.00 0.13 ± 0.35 0.00% ± 0.00

random-5 0.00 ± 0.00 1.03 ± 0.18 0.40 ± 0.50 0.00% ± 0.00

cor-nsga-ii-0.8 1.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 100.00% ± 0.00
cor-nsga-ii-1.0 1.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 100.00% ± 0.00

D
ru

p
al

random-10 0.00 ± 0.00 1.00 ± 0.00 0.40 ± 0.50 0.00% ± 0.00

random-5 0.00 ± 0.00 1.00 ± 0.00 0.20 ± 0.41 0.00% ± 0.00

cor-nsga-ii-0.8 1.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 100.00% ± 0.00
cor-nsga-ii-1.0 1.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 100.00% ± 0.00

S
m

ar
th

o
m

e random-10 0.00 ± 0.00 1.00 ± 0.00 0.27 ± 0.45 0.00% ± 0.00

random-5 0.00 ± 0.00 1.00 ± 0.00 0.47 ± 0.51 0.00% ± 0.00

cor-nsga-ii-0.8 1.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 100.00% ± 0.00
cor-nsga-ii-1.0 1.00 ± 0.00 2.00 ± 0.00 2.00 ± 0.00 100.00% ± 0.00

The table shows COR-NSGA-II reaches the best performance in all instances in which it

can converge to the target objectives in 100% of the executions. On the contrary, the random

algorithm always reaches just one objective in the last execution and, in almost cases, this one is

81

not a preferred objective. So, we can conclude that the random algorithm was the worst for this

scenario.

Regarding the minimum confidence level used by COR-NSGA-II, the performance was

similar (statistically equivalent) for most instances, except for James and CAS. In these ones,

the COR-NSGA-II algorithm with 80% of minimum confidence level reached the best results,

converging to the preferred objective in less reductions.

Summarizing the results, we can observe that the sanity check has passed (i.e., COR-

NSGA-II outperforms the random algorithm by a large degree). Besides, we can assume that the

confidence level of 80% is better for this scenario once it slightly scores a better performance

compared to 100%, by converging towards the preferred objectives quickly.

6.7.1.2 Scenario 3D

Table 6.6 shows the mean values and standard deviations for Reduction Efficiency, Size of the

Last Subset, # of Targets in the Last Subset, and the Reduction Capacity for COR-NSGA-II and

random algorithm for Scenario 3D (Alive Mutants, Similarity, and Cost objectives as preferred

ones).

Table 6.6: COR-NSGA-II versus Random Algorithm in Scenario 3D.

Algorithm Reduction
Efficiency

Size of the
Last Subset

of Targets in
the Last Subset

Reduction
Capacity

Ja
m

es

random-10 0.00 ± 0.00 1.00 ± 0.00 0.53 ± 0.51 0.00% ± 0.00

random-5 0.00 ± 0.00 1.00 ± 0.00 0.40 ± 0.50 0.00% ± 0.00

cor-nsga-ii-0.8 1.83 ± 0.53 3.00 ± 0.00 3.00 ± 0.00 100.00% ± 0.00
cor-nsga-ii-1.0 2.07 ± 0.25 3.00 ± 0.00 3.00 ± 0.00 100.00% ± 0.00

C
A

S

random-10 0.00 ± 0.00 1.00 ± 0.00 0.43 ± 0.50 0.00% ± 0.00

random-5 0.00 ± 0.00 1.00 ± 0.00 0.47 ± 0.51 0.00% ± 0.00

cor-nsga-ii-0.8 1.20 ± 0.41 3.00 ± 0.00 3.00 ± 0.00 100.00% ± 0.00
cor-nsga-ii-1.0 1.33 ± 0.48 3.00 ± 0.00 3.00 ± 0.00 100.00% ± 0.00

W
S

random-10 0.00 ± 0.00 1.00 ± 0.00 0.43 ± 0.50 0.00% ± 0.00

random-5 0.00 ± 0.00 1.00 ± 0.00 0.40 ± 0.50 0.00% ± 0.00

cor-nsga-ii-0.8 1.00 ± 0.00 3.00 ± 0.00 3.00 ± 0.00 100.00% ± 0.00
cor-nsga-ii-1.0 1.00 ± 0.00 3.00 ± 0.00 3.00 ± 0.00 100.00%± 0.00

E
-S

h
o
p

random-10 0.00 ± 0.00 1.00 ± 0.00 0.37 ± 0.49 0.00% ± 0.00

random-5 0.00 ± 0.00 1.00 ± 0.00 0.43 ± 0.50 0.00% ± 0.00

cor-nsga-ii-0.8 1.00 ± 0.00 3.00 ± 0.00 3.00 ± 0.00 100.00%± 0.00
cor-nsga-ii-1.0 1.00 ± 0.00 3.00 ± 0.00 3.00 ± 0.00 100.00%± 0.00

D
ru

p
al

random-10 0.00 ± 0.00 1.00 ± 0.00 0.37 ± 0.49 0.00% ± 0.00

random-5 0.00 ± 0.00 1.00 ± 0.00 0.57 ± 0.50 0.00% ± 0.00

cor-nsga-ii-0.8 1.00 ± 0.00 3.00 ± 0.00 3.00 ± 0.00 100.00% ± 0.00
cor-nsga-ii-1.0 1.00 ± 0.00 3.00 ± 0.00 3.00 ± 0.00 100.00% ± 0.00

S
m

ar
th

o
m

e random-10 0.00 ± 0.00 1.00 ± 0.00 0.33 ± 0.48 0.00% ± 0.00

random-5 0.00 ± 0.00 1.07 ± 0.25 0.50 ± 0.57 0.00% ± 0.00

cor-nsga-ii-0.8 1.00 ± 0.00 3.00 ± 0.00 3.00 ± 0.00 100.00%± 0.00
cor-nsga-ii-1.0 1.00 ± 0.00 3.00 ± 0.00 3.00 ± 0.00 100.00%± 0.00

82

The table shows COR-NSGA-II also reaches the best performance in all instances in

which it can converge to the preferred objectives in 100% of the executions. Regarding to the

random algorithm, a similar performance found in Scenario 2D was also found in this scenario.

In this one, the random algorithm presented the worst performance, by reducing the set to just

one objective and this, in most cases, was not the preferred objective.

Concerning the minimum confidence level used by COR-NSGA-II in this scenario, the

performance was also similar (statistically equivalent) for most instances, except again for James

and CAS. In these instances, COR-NSGA-II with 80% of confidence level converged to the

preferred objective in less reductions.

Summarizing the results found in this scenario, we can observe that the sanity check

has also passed. Besides, we can also assume (such Scenario 2D) that the minimum confidence

level of 80% is better for the addressed problem once it slightly scores a better performance

compared to 100% (by converging to preferred objectives quickly, in general when compared to

the other). So, answering RQ1, we observed that the COR-NSGA-II algorithm is capable of

reducing the problem dimensionality towards the user preferences by generating in the last subset

of objectives, those user-preferred ones in all evaluated scenarios.

6.7.2 RQ2 - Comparing COR-NSGA-II to Multi- and Many-objective Evolutionary Algorithms

To answer this RQ the results found by COR-NSGA-II in both scenarios are compared to those

ones found by MOEAs and MaOEAs. As described in Section 6.5, two types of RPs (Restricted

and Compromised ones) were used for each scenario for calculating the R-Metrics (R-HV and

R-IGD), and running R-NSGA-II. All results can be found in Appendix G.

6.7.2.1 COR-NSGA-II Versus NSGA-II and NSGA-III

In this subsection, the results found by COR-NSGA-II are compared to NSGA-II and NSGA-III.

Aiming to facilitate a better understanding of the results, we present these ones of both experiments

(Scenarios 2D e 3D) in separated sub-sections.

6.7.2.2 Scenario 2D

Table G.1 shows the mean values and standard deviations for R-HV, R-IGD, # of solutions, #

of Solutions in the ROI and Execution Time for Scenario 2D. The table shows that, regarding

Restrict RP, COR-NSGA-II reaches the best R-HV and R-IGD values for all instances with

a statistical difference to the other algorithms. The same performance can be found for # of

Solutions, # of solutions in the ROI and Execution Time.

On the one hand, when the Compromised RP is considered, COR-NSGA-II outperforms

them just for the WS instance concerning to R-HV. For R-IGD values, this one reaches statistical

equivalence for Smarthome and Drupal, the largest instances. On the other hand, COR-NSGA-II

can also reach the best values concerning # of Solutions, # of solutions in the ROI and Execution

Time for all instances. For the other quality attributes, it is possible to notice that NSGA-II

reached the best performance.

To sum up, considering all RPs and instances, for R-HV and R-IGD, the COR-NSGA-II

algorithm is the best in 7 (out of 12) instances, NSGA-II in 4 and NSGA-II in one single instance.

Considering other quality attributes, COR-NSGA-II outperformed the other algorithms in all

instances.

83

6.7.2.3 Scenario 3D

Regarding Scenario 3D, Table G.2 shows the mean values and standard deviations for R-HV,

R-IGD, # of solutions, # of Solutions in the ROI and Execution Time for COR-NSGA-II, NSGA-II

and NSGA-III.

For R-HV and R-IGD, the table shows that COR-NSGA-II can reach the best values

for James, CAS, WS and E-Shop instances considering Restricted and Compromised RPs.

Concerning # of Solution and # of solutions in the ROI, COR-NSGA-II performs better for the

largest instances (such as E-Shop, Drupal and Smarthome) by generating less solutions inside the

ROI. Besides, the results for the Execution Time show again the COR-NSGA-II algorithm can

reach the lowest time for all instances and RPs.

To sum up, the results found in this RQ, considering again all RPs and instances, for

R-HV and R-IGD, the COR-NSGA-II algorithm is the best in 8 (out of 12) instances, NSGA-II in

4 instances.

Summarizing the results and taking into account all instances, Table 6.7 shows the

number of times that the algorithms generated the best results for each quality indicator.

Table 6.7: COR-NSGA-II Versus NSGA-II and NSGA-III in both scenarios.

Scenario Algorithm R-HV R-IGD # of Solutions # of Solutions
in the ROI

Execution
Time

2D

COR-NSGA-II 7 9 12 12 12

NSGA-II 4 3 0 0 0

NSGA-III 1 4 0 0 0

3D

COR-NSGA-II 8 7 6 10 12

NSGA-II 4 5 0 2 0

NSGA-III 0 0 6 0 0

It is possible to notice that COR-NSGA-II can generate the best results for all scenarios

and most quality indicators compared to the NSGA-II and NSGA-III algorithms. Just for Scenario

3D and the largest instances, the performance of COR-NSGA-II is slightly worst, but it takes a

reduced time to execute and generates a lower number of solutions in the ROI.

6.7.2.4 COR-NSGA-II Versus R-NSGA-II

In this subsection, the results found by COR-NSGA-II are compared to R-NSGA-II, a preference-

based algorithm. Aiming to facilitate a better understanding of the results, we present these ones

of both experiments (Scenarios 2D e 3D) in separated sub-sections.

6.7.2.5 Scenario 2D

Table G.3 shows the mean values and standard deviations for R-HV, R-IGD, # of solutions, # of

Solutions in the ROI and Execution Time for Scenario 2D.

The table shows that, regarding Restrict RP, COR-NSGA-II reaches the best R-HV

and R-IGD values for all instances with a statistical difference to the other algorithms, and

considering Compromised RP, the best ones for the CAS, WS, Drupal instances. In addition to

this, COR-NSGA-II outperforms R-NSGA-II for # of Solutions, # of Solution in the ROI and

Execution Time. Focusing in R-NSGA-II, it can reach the best values for James, E-Shop, and

Smarthome instances when the Compromised RP is taken into account.

84

So, to sum up, considering all RPs and instances, for R-HV and R-IGD, the COR-NSGA-

II algorithm is the best in 8 (out of 12) instances, R-NSGA-II in 4. For the other quality attributes,

COR-NSGA-II reached the best results.

6.7.2.6 Scenario 3D

Regarding Scenario 3D, Table G.4 shows the mean values and standard deviations for R-HV,

R-IGD, # of solutions, # of Solutions in the ROI and Execution Time for COR-NSGA-II and

R-NSGA-II.

In this scenario, COR-NSGA-II generates the best results for James, CAS, WS, and

E-Shop instances for all RPs and quality attributes. Considering Drupal and Smarthome,

R-NSGA-II outperforms the COR-NSGA-II algorithm regarding R-HV and R-IGD. However,

when the # of solutions, # of solutions in the ROI and Execution Time are taken into account,

COR-NSGA-II maintains generating the best values.

To sum up these results, the performance was similar to that one found in Scenario 2D

where COR-NSGA-II is the best in 8 instances (out of 12) and R-NSGA-II in 4 instances.

Again, Table 6.8 shows the number of times that the algorithms generated the best

results for each quality indicator, considering all RPs.

Table 6.8: COR-NSGA-II Versus R-NSGA-II in both scenarios.

Scenario Algorithm R-HV R-IGD # of Solutions # of Solutions
in the ROI

Execution
Time

2D
COR-NSGA-II 8 10 12 12 12

R-NSGA-II 4 4 0 0 0

3D
COR-NSGA-II 8 8 12 12 12

R-NSGA-II 4 4 0 0 0

The table presents that COR-NSGA-II can outperform the R-NSGA-II algorithm in

all scenarios. Specifically for Scenario 3D and the largest instances, the results found by

COR-NSGA-II is slightly worst (similar to those ones found when it compared to NSGA-II and

NSGA-III), but it maintains a less Execution Time, and generates a lower number of solutions in

the ROI.

6.7.2.7 COR-NSGA-II Versus PCA-NSGA-II

In this subsection, the results found by COR-NSGA-II are compared to PCA-NSGA-II, a

dimensionality reduction algorithm. Scenario 2D and 3D are addressed in separated sub-sections

aiming to facilitate a better understanding of the results.

6.7.2.8 Scenario 2D

Table G.5 shows the mean values and standard deviations for R-HV, R-IGD, # of solutions, # of

Solutions in the ROI and Execution Time for Scenario 2D.

Regarding Restrict RP, the table shows that COR-NSGA-II is the best concerning

R-HV and R-IGD values for all instances with statistical difference to PCA-NSGA-II. The same

performance can be found for # of Solutions, # of solutions in the ROI and Execution Time for

almost instances and RP. Just for James, PCA-NSGA-II generates the best # of Solution in the

ROI.

85

For this Scenario, PCA-NSGA-II just generates the best results for E-Shop, Drupal and

Smarthome when the Compromised RP is taken into account. When R-IGD is considered, the

performance of the last ones are statistically equivalent to COR-NSGA-II.

To sum up the found results in this scenario, considering all RPs and instances, for R-HV

and R-IGD, the COR-NSGA-II algorithm is the best in 9 (out of 12) instances, PCA-NSGA-II

in 3 instances. In all instances, in general, COR-NSGA-II generates less solutions in a lower

Execution Time.

6.7.2.9 Scenario 3D

Regarding Scenario 3D, Table G.6 shows the mean values and standard deviations for R-HV,

R-IGD, # of solutions, # of Solutions in the ROI and Execution Time for COR-NSGA-II and

PCA-NSGA-II.

Analyzing this scenario, COR-NSGA-II generates the best value for R-HV and R-IGD for

James, CAS, WS, and E-Shop instances considering all RPs. For # of Solutions and # of Solutions

in the ROI, and Execution time, the proposed algorithm outperforms the PCA-NSGA-II algorithm

for CAS, WS, E-Shop, Drupal and Smarthome instances. However, for James, PCA-NSGA-II

generates better values for # of Solutions and # of Solution in the ROI.

To sum up these results, again, the performance was similar to that one found in Scenario

2D where COR-NSGA-II is the best in 8 instances (out of 12) and PCA-NSGA-II in 4.

Summarizing the found results, Table 6.9 the number of times that the algorithms

generated the best results for each quality indicator, considering all RPs.

Table 6.9: COR-NSGA-II Versus COR-NSGA-II in both scenarios.

Scenario Algorithm R-HV R-IGD # of Solutions # of Solutions
in the ROI

Execution
Time

2D
COR-NSGA-II 9 11 12 11 12

PCA-NSGA-II 3 3 0 1 0

3D
COR-NSGA-II 8 8 10 10 12

PCA-NSGA-II 4 4 2 2 0

COR-NSGA-II reaches the best values for all scenarios when compared to PCA-NSGA-II.

Considering the Execution Time, it is important to notice that the proposed algorithm reaches the

lowest execution time, where in some cases, this one can be less than half of the time spent by

other algorithms.

Answering RQ2, if we consider other quality attributes such as the # of solutions, COR-

NSGA-II reaches, in general, less solutions in the ROI and these ones have a good performance

(taking into account the R-HV and R-IGD) when compared to those ones found by the other

algorithms. On the one hand, COR-NSGA-II outperforms the other algorithms in most instances.

On the other hand, its performance is slightly decreased when the Compromised RP and 3D

Scenario (not necessarily together) are considered. This is a subject discussed in Section 6.8.

6.7.3 RQ3 - Evaluating the Solutions

In this RQ, the goal is to evaluate the usefulness of the solutions according to the user preferences

found by COR-NSGA-II compared to those ones found by multi- and many-objective evolutionary

algorithms. So, for answering this RQ, the users were required to run Nautilus and picked a

86

solution up from the population generated by COR-NSGA-II, R-NSGA-II, and NSGA-II, the best

algorithms found in RQ2. Also, they were required to, manually, provide a solution (Nautilus

also supports this process).

As explained in Subsection 6.3.2, before performing the experiment, the users were

required to select at most 4 objectives (from 7 available to be optimized) as preferred ones. This

was required seeking to guarantee COR-NSGA-II will perform some reduction. Details about the

set of preferred objectives selected by the participants and the final set of objectives generated by

COR-NSGA-II are shown in Appendix H. Thus, Figure 6.4 shows the number of participants by

objectives.

Figure 6.4: Preferred Objectives from the user’s point of view.

The figure shows that, on the one hand, 11 users (91% of the them) selected Cost as the

preferred objective, followed by Number of Products selected by 10 users (or 83.3%). On the

other hand, Unselected Features and Uncovered Pairs were less preferred by the users.

Table 6.10 presents detailed information for each participant about the # of Preferred

Objecives, # of Reductions performed by COR-NSGA-II, Size and # of Targets in the Last Subset

of objectives.

Table 6.10 shows that 3 users selected 2 objectives, 1 user selected 3 objective as

preferred, and 8 ones selected 4 objectives. The participants #2, #3, #4, #5, and #12 selected a

solution when in the last execution, the set of objectives optimized contained just the preferred

ones (Size and # of Targets in the Last Subset are the same). However, the participants #1, #8, #9,

#10, and #11 were able to pick a solution up before COR-NSGA-II reaches this convergence.

After interacting with Nautilus and selecting a good solution for each algorithm, we

asked the users to describe how difficult was the selection of this solution. Figure 6.5 shows the

feedback captured from the questionnaire.

This figure describes that 8 users chosen the option “Easy” and “Very Easy” for

COR-NSGA-II, 4 for the NSGA-II and R-NSGA-II algorithms. In the last position, the manual

selection appears as the most difficult (8 users). Analyzing the motivation, some participants

claimed COR-NSGA-II generated less solutions and other ones claimed COR-NSGA-II took

less execution time compared to the other algorithms. With this, we asked the users to rank the

algorithm based on his/her preferences where 1 means the best one and so on. The information

are displayed in Figure 6.6.

87

Table 6.10: COR-NSGA-II’s results for each participant.

Participant # of Preferred
Objectives

of
Reductions

Size of the
Last Subset

of Targets in
the Last Subset

#1 2 3 3 2

#2 2 2 2 2

#3 3 2 3 3

#4 2 4 2 2

#5 4 1 4 4

#6 4 1 3 3

#7 4 1 3 3

#8 4 1 5 4

#9 4 1 5 4

#10 4 1 6 4

#11 4 2 5 4

#12 4 2 4 4

Figure 6.5: Easiest algorithms from the user’s point of view.

The figure shows that COR-NSGA-II was ranked as the best algorithm by 10 users

(or around 83%). NSGA-II was ranked as the best 2 times. As expected, the manual selection

received the lowest score in this experiment, being ranked in the last position by 9 users (around

80%). However, aiming to verify the dependence on the execution order, Table 6.11 shows the

best algorithm by group.

The users belong to Group 4 selected the NSGA-II algorithm as the best one. In such a

group, COR-NSGA-II was the first algorithm evaluated. We suppose that the results found by

COR-NSGA-II influenced the user decision about the solutions generated by the other algorithms,

that is, they used the solution selected by applying COR-NSGA-II to guide his/her preferences in

88

Figure 6.6: Best algorithms from the user’s point of view.

Table 6.11: Best algorithm by group.

Group 1 Group 2 Group 3 Group 4

COR-NSGA-II COR-NSGA-II COR-NSGA-II COR-NSGA-II

NSGA-II

the following algorithms and this can be a motivation for the other algorithms appear as good as

COR-NSGA-II. However, more experiments must be performed to validate our hypothesis.

A fact that corroborates this hypothesis is that we asked the users if the order of the

execution in each group (described in Table 6.2) impacted their responses. Around 58.3%

answered positively.

Summarizing the results and answering RQ3, 10 out of 12 users defined that the

solutions found by COR-NSGA-II were the best ones compared to other algorithms and it was

also easy to select them. So, and concluding the research questions, COR-NSGA-II can help the

user to find useful solutions for the addressed problem.

6.7.4 RQ4 - Evaluating Nautilus

Nautilus tool was evaluated and the answers provided by the users are shown in the following.

The answers from the questionnaire were grouped seeking to facilitate the understanding of them.

Figure 6.7 shows how much time the users spent to get familiar and explore the Pareto-

front. Regarding the time spent to get familiar, 8 participants took less than 10 minutes in which,

5 of them spent less than 5 minutes. Besides, all users claimed to spend less than 10 minutes to

explore the Pareto-front by using the visualization support.

We also asked to the users how difficult was to use Nautilus. The answers about these

questions are shown in Figure 6.8.

The figure presents that 58.3% of the users said it was easy to learn to operate the

tool and just one claimed difficulty. Besides, around 75% of the users stated that it is easy to

understand the task they were asked to do.

89

Figure 6.7: How much time? answers from questionnaire.

Figure 6.8: How difficult time? answers from questionnaire.

Still in this context, 83.3% of the asked users asserted that is was easy to locate and

identify relevant solutions. Besides, 50% of the users stated it is easy to use the visualization

support for the Pareto-front. Other 50% claimed it was neutral.

During the user interaction with Nautilus, we asked the users to provide a feedback if

s(he) agree with the statements in Figure 6.9.

The figure presents that most users (more than 60% of them) asserted that the tool has a

user-friendly interface, it is very easy to navigate and the error messages are helpful. We also

asked to the users their opinions about the organization of the information in the screen. The

90

Figure 6.9: Agree or not? answers from questionnaire.

result is show in Figure 6.10. In this case, more than 70% of them stated that the information in

the screen are very clear and just 25% said to be neutral.

Figure 6.10: Clear or not? answers from questionnaire.

Finally, we required to the user to provide in their opinion the best features provided

by Nautilus. The user could state 1 for the best feature, 2 for the second best feature and so

one. Figure 6.11 shows the answer for this question.

The figure shows that for most users, the best feature Nautilus provides is the Pareto-front

visualization followed by the interface. In third place, we have the cloud-computing support as

91

Figure 6.11: Nautilus’ best features.

the best feature and ease of use in the next feature. As the last best feature, we have the algorithms

provided.

So, to summarizing the answers provided by the users and answering RQ4, we can

suppose based on the feedback collected by the questionnaire, that Nautilus is useful for the task

of selecting a good solution since, for the majority of the users, it is easy to learning, to navigate,

and locate relevant solutions. It has a user-friendly interface with well-organized information on

the screen, and as the best feature, the users stated the Pareto-front visualization support.

6.8 DISCUSSION

As presented in the previous section, COR-NSGA-II can generate less solutions, taking less

execution time for searching them, but maintaining the quality attributes in a competitive way.

However, in this section, we discuss some important findings of the results of our experimental

study.

As expected in RQ1, the random dimensionality reduction algorithm was the worst one

for the addressed problem once it does not take into account the user preferences. In all cases,

this one ends the search process simply because this reached the minimum number of objectives

(in case, a single one). On the contrary, COR-NSGA-II reached the preferred objectives, on

average, in the second reduction. As in this experiment a user simulator was used and this one is

responsible for selecting randomly solutions in the Pareto-front, the number of reduction could

be less if a kind of smart mechanism was used in this task.

In RQ2, in most cases COR-NSGA-II found better results for the addressed problems.

However, it is possible to notice a slightly decreasing of the values regarding R-HV and R-IGD

when the number of preferred objectives increases. We suppose that the presence of redundant

objectives in this set can affect the algorithm performance. In addition to this, we also suppose

that if the set of preferred objectives has almost the same size as the original set of objectives, the

performance must not be competitive since COR-NSGA-II may not perform multiple reductions.

92

New experiments should be performed in the future to verify this assumption with different

scenarios.

Although this can happen, the difference between COR-NSGA-II and the other algorithms

remains small and it is a good trade-off. For example, considering R-NSGA-II in Scenario 3D,

the performance of COR-NSGA-II was around 3% worse than the former for the Smarthome

instance (the largest one). However, for the same context, R-NSGA-II took 8 hours on average

for finding a solution, while COR-NSGA-II with its dimensionality reduction mechanism took

3.2 hours on average, that this, a reduction in the execution time more than 50%.

This is another important finding in the experiment performed in this work. COR-

NSGA-II took less time in all instances and compared with algorithms, and the difference among

the algorithms increases when the instance size increases as well. This becomes COR-NSGA-II

an important algorithm in the context of where the number of products to be selected is huge.

Still in this research question, the performance of COR-NSGA-II remains good when

the Compromised RP is considered. Different from Restricted RP, the former considers 0.5 in

the RP for the non-preferred objectives (that is, although a small value, it still is a user preference

for this objective). However, COR-NSGA-II does not take into account this concept, that is,

for the algorithm, if an objective to be optimized is not preferred, it is simply discarded. So,

more researches in the future should evaluate the performance of the proposed algorithm in the

context where there are some small preferences for non-preferred objectives. Moreover, the

use of COR-NSGA-II is recommended in the context where all objectives should be optimized

but some of them are preferred. If, in the user’s point of view, all objectives have the same

preferences, traditional MOEAs and MaOEAs should be applied.

Concerning to RQ3, two unexpected situations were identified during the performance

of the experiments. The first one is the fact that a user selected as preferred objectives two

ones that are redundant. Because of this, the manual mechanism for selecting a solution was

considered by this user better than the optimization algorithms used in this experiment (although

the user took more than 20 minutes to pick a solution up in using the manual mechanism).

Another finding was that some users took more than 10 minutes exploring the Pareto-

front, providing his/her preferences. Since the experiment did not set a limit to the users express

his/her preferences in COR-NSGA-II, some users spent time providing his/her preferences as

much as possible. Thus, seeking to improve this process, it is necessary in a future work, to study

a kind of limit for the number of provided user preferences and, also, to propose a way to deal

with redundant objectives in the set of preferred ones.

Finally, regarding RQ4 where Nautilus was evaluated by the user, several further

comments were collected. For example, some for them suggest that, although the tool provides

a good Pareto-front visualization for the population, an automatic mechanism for suggesting

solutions to be evaluated to the users should be implemented. Still in this context, some users

suggested for the future version of the tool, the use of mechanisms for quickly identifying

solutions that already have some preferences provided by them, such as, use different colors in

the Pareto-front visualization.

6.9 THREATS TO VALIDITY

The threats to validity are divided into four categories according to the framework proposed by

Wohlin et al. [86].

93

6.9.1 Internal Validity

With regard to the internal validity, we use the tool FMTS to calculate the objective values of our

problem. FMTS makes use of the FaMa framework to deal with resource model constraints and

derive products. However, FaMa has some limitations to work with large FMs such as Drupal

and Smarthome. To mitigate this threat, the user can set a number n of products to be used

for selection. Other representations for the problem can be used in the future, as well as other

analyzers, such as SAT solver.

Regarding reference points used in RQ2, the results are dependent on the reference

points used. These ones were selected considering our previous knowledge about the Pareto-front

and the set of preferred objectives. So, aiming to mitigate this threat, two kinds of RPs were

considered in which the non-preferred objectives in the first RP do not have any preferences, while

for the second one compromised values (0.5 to be exact) are provided to non-preferred objectives.

To better evaluate the impact of the provided RPs, we need to conduct future experiments.

The different scenarios used can also be considered a threat. In order to mitigate this

threat, two scenarios were considered trying to represent a real scenario, in which the first

scenario has just conflicting objectives, and the second one includes redundant objectives.

Furthermore, the experiments with users showed that the algorithm is highly dependent

on the context in which it is applied and the set of preferred objectives defined by the user,

especially because the participants do not work in the system on which the FMs were based.

Hence, all users received the same information and, before performing the tests, all of them took

part in a preliminary test to learn how to use the tool, and prevent any effects of ignorance on

their usage.

Another threat to the internal validity can be verified: the Hawthorne effect [68]. This

effect defines that the user’s behavior can change according to specific situations or a special

treatment. Thus, the users can change their behavior and performance knowing that they are

participating in an experiment.

Finally, seeking to mitigate these problems, the experiment was conducted as consistently

as possible. We attempted not to conduct the experiment with all of the participants at the same

time and gave each one the option of choosing the best time to participate. Besides, the users

were separated in four groups in which each one has a different sequence of execution. In this

manner, we mitigate the fact of solutions found by the last executed algorithm influence his/her

opinion about the new found solutions.

6.9.2 Construct Validity

The users were involved only in this study, which did not generate a difference between the

interaction treatments. Besides, an explanation were given at the beginning of the experiments in

which they were not informed about what exactly would be investigated, so the participants could

not imagine that their personalities were involved in the study. Hence, this approach helped to

prevent the participants from guessing the hypothesis.

Besides, we used questionnaires to assess the comprehension of the solution selection

process and the participants’ answers to these questionnaires were evaluated comparing the

answers with the quality metrics for them. This design choice avoided as much as possible any

subjective evaluation. Thus, the questionnaires were defined to be complex enough without being

too obvious.

94

6.9.3 External Validity

We tested COR-NSGA-II and Nautilus in six different instances of SPL Testing. Even though

these instances are evaluated in other studies of the literature, we cannot state that this is enough

to generalize the results. Besides, the cost and importance (both of them were randomly defined),

and the size of the instances may not reflect real-world FMs. To minimize this threat, we tried

to evaluate FMs of several sizes (including two with more the 11k products to be selected) and

domains.

Regarding the larger instances, we consider that 11k of products to be selected were

adequate proportionally to the mutation score (around 97%) chosen for the experiments performed

in this work. However, a greater number for large SPLs should be evaluated in a future experiment.

It is expected similar performance, and good results with acceptable time.

Moreover, the results of the experiments performed to answer RQ3 and RQ4 depend on

the experience of each participant, especially for the optimization algorithm. A larger number of

participants would proportionate more strength to the work, but the total years of experience of the

participants in this field (29 years) suggest a certain level of credibility to their participation. Also,

the experiment performed with some students can be considered a threat in this study. However,

the tasks considered in our experiments do not require a high level of industrial experience, but

some replications of these experiments with professionals are needed in the future to confirm and

contradict the achieved results.

6.9.4 Conclusion Validity

Regarding conclusion validity, it is not possible to compare the results with similar approaches

given that there is an absence of similar studies using preference-based dimensionality reduction

in the literature.

The parameter settings used by the algorithms can be a threat to the experiments. The

number of evaluations is the same for every one, even COR-NSGA-II that applies dimensionality

reduction. Different values, especially in the larger instances, could result in different, perhaps

better, capacity of reducing towards the user preferences.

To address the stochastic nature of the evolutionary algorithms, all the algorithm were

performed 30 times for each instance and reference points to answer RQ1 and RQ2, while

capturing the arithmetic mean and standard deviation of the metrics.

The parameter settings, RPs, δ value used in R-Metric, and quality indicators can also

be stated as a threat once different indicators could derive a divergent conclusion. So, to mitigate

this, the algorithms were tuned with different parameters aiming to select the best ones, and the

quality indicators used are widely used in the literature. Also, Kruskal-Wallis test with 95%

significance level was used to compare the results found by the algorithms. This test is quite

robust and it has been extensively used in the past to conduct analyses similar to ours.

6.10 FINAL REMARKS

In this chapter, we presented the experiments conducted to evaluate COR-NSGA-II and Nautilus.

Four RQs were formulated and the experiments encompassed six FMs from different domains,

two types of reference points, and we used four quality indicators for asserting RQ1 and five ones

for evaluating RQ2. The solutions generated by COR-NSGA-II were compared to four multi-

and many-objectives evolutionary algorithms from literature.

After analyzing the data, we were able to positively answer all research questions

proposed in this empirical study. If all objectives in a given optimization problem should be

95

optimized but some of them are preferred, COR-NSGA-II is the best choice for this context

once the algorithm can generate less solutions taking less execution time comparing to the other

ones. In most instances, COR-NSGA-II outperforms the other algorithms regarding the quality

attributes analyzed.

The main observed advantage of COR-NSGA-II is that it filters the solutions generated

taking into consideration the user preferences. Letting COR-NSGA-II generate the solutions, the

burden of selecting a solution from the population may be reduced once less (and good) solutions

were generated.

In this sense, we can accept the main hypothesis presented in the introduction of this

work: “a preference-based dimensionality reduction approach is capable of taking less execution

time and generating a reduced set of solutions that takes into account the user preferences. In

addition to this, the solutions are as good as those ones generated by multi- and many-objective

algorithms with respect to quality indicators from the literature.”.

96

7 CONCLUSION

This work presented MaDRUP, an approach for dimensionality reduction guided by the user

preferences provided in an interactive way, that can be instantiated with different algorithms

and different kinds of elements such as items to be visualized or information required from the

user. The main motivation for proposing and implementing these ones is to reduce the number of

generated solutions in many-objective problems, since such a number increases exponentially

with the number of objectives, and the use of dimensionality reduction and user preferences can

mitigate this problem.

Also, this work also introduces Nautilus, a clouding-computing and Java web-based

tool for mono-, multi- and many-objective evolutionary algorithms. The motivation of this tool is

to support MaDRUP approach and other MOEAs and MaOEAs found in the literature.

We also introduce an instantiation of MaDRUP with NSGA-II that uses a confidence-

level, called COR-NSGA-II. The algorithm reduces the number of objectives to be optimized

towards the user needs based on a confidence level for each objective optimized. Based on that,

this algorithm is categorized in Stay Out class, that is, this one defines which objective should be

removed from the next execution.

As main characteristics, COR-NSGA-II is an algorithm that requires the user preferences

interactively (or in-the-loop) and reduces the number of objectives in an online approach, that

is, during the solution generation process. The algorithm shows to the user the current set of

non-dominated solutions and, in this point, the user can express his/her preferences about them,

by using an ordinal scale composed of three options: Non-preferred, No Opinion, and Preferred.

For assessing the feasibility of COR-NSGA-II, multiple experiments were performed.

The experiments were conducted using six different FMs, two types of reference points, five

algorithms, and two scenarios to answer four research questions.

The first research question evaluates the efficacy of COR-NSGA-II regarding the

reduction of the problem dimensionality towards the user preferences. For that purpose, we

compared COR-NSGA-II to a random dimensionality objective algorithm and concluded that the

proposed algorithm is, in fact, capable of guiding the search process to the objectives preferred

by the users.

In the second research question, the results found by COR-NSGA-II were compared

to those ones found by MOEAs and MaOEAs, specially algorithms based on reference-set,

preferences and dimensionality reduction. By using R-HD, R-IGD, # of Solutions, # of Solution

in he ROI, and Execution Time, we observed that COR-NSGA-II, in most instances and scenarios,

obtained the best results or results statistically equivalent to the algorithms evaluated, even when

the Compromised RP is considered. In this sense, we can conclude that COR-NSGA-II indeed

generates a small set of good solutions taking less time to execute and, mainly, incorporating the

user preferences.

The third research question addresses the quality of the solutions generated by COR-

NSGA-II in the user’s point of view. By using Nautilus, a group of users was invited to optimize

a problem instance by using four search algorithms (NSGA-II,COR-NSGA-II, R-NSGA-II) and a

manual approach and, at the end, to select a solution for each algorithm. The great majority of

the users answered that it is easier to pick a solution up generated by COR-NSGA-II, and chose

this algorithm as the best comparing with the other ones.

Finally, concerning the fourth research question, the same group of users evaluated the

Nautilus tool. A questionnaire was applied seeking to collect qualitative feedback about the tool

97

and the results show that Nautilus is useful in the task of selecting a good solution, since it is

easy to learn how to use it. The tool provides an interface where it is easy to navigate and locate

relevant solutions. As the best features, the users stated that Pareto-front visualization and its

interface are the best ones.

The main advantage of COR-NSGA-II is that it can generate a small set of solutions

to be selected at the final, in less time when the number of objectives increases and, with this,

it may reduce the intensive task of selecting a good solution. In this way, the user can focus

their expertise on a small set of relevant solutions and not on the optimization in general. Also,

even when all objectives to be optimized are conflicting and traditional dimensionality reduction

approaches do not perform well, COR-NSGA-II can generate a reduction based on the user

preferences to deal with this situation.

Hence, considering the evaluation done in this work and the answers found for the

research questions, we can accept the main hypothesis of this work presented in the introduction.

COR-NSGA-II is capable of generating a small set of solutions quickly and still keeping the

solutions as good as those ones conventionally used in MOEAs and MaOEAs commonly used in

the literature.

Finally, the main contributions of this work can be summarized as follows:

1. Generation of an algorithm that can minimize the execution time and the number of

solutions for many-objective problems;

2. An approach for dimensionality reduction based on the user feedback provided during

the search (or in-the-loop), with information about activities and elements that can be

instantiated to derive new algorithms;

3. Development of COR-NSGA-II, a preference-based dimensionality reduction algorithm,

that takes into consideration the confidence level to remove an objective from the search

process;

4. A set of preference-based quality metrics used for evaluating preference-based dimen-

sionality reduction algorithms;

5. Application of COR-NSGA-II in the task of selecting a solution for the variability testing

in SPL, obtaining a reduced set of solutions with less execution time and computation

effort;

6. Introduction of Nautilus, a tool used for solving many-objective problems with support

to Pareto-front visualization, multiple optimization algorithms and addressed problems;

7. Implementation and availability of COR-NSGA-II and Nautilus as an open-source

software;

8. Experimental evaluation and comparison of COR-NSGA-II with multi- and many-

objective evolutionary algorithms of the literature.

7.1 LIMITATIONS AND FUTURE WORK

This section presents the limitations of the proposed approach. These limitations will be addressed

in future work.

The first observed limitation is related to the values of confidence level shown in Sub-

section 4.2.1 used by COR-NSGA-II for making the decision about which objectives should be

98

removed in this next execution. The table currently supports three levels of preferences such as

Non-preferred, No Opinion, and Preferred. However, in some context, addressed problems or

types of users, these levels can not be enough for expressing the user preferences.

Still in this context, the minimum confidence level defined by the user can be a limitation

for the approach. If it is used a lower value for this one, the user is required to express his/her

preferences for each objective in the set of available objectives. On the contrary, if it is used a

greater value, it limits the preferences for the users.

Besides, COR-NSGA-II does not consider the existence of a set of preferred objectives

defined by the user composed of just redundant objectives. Such a mechanism to deal with this is

also required.

The small set of generated solutions can be used for reducing the burden in the task of

selecting a good solution for the problem. However, it was not performed an evaluation comparing

the results found by COR-NSGA-II and other interactive approaches (without dimensionality

reduction).

Besides, we did not find other approaches or algorithms that use dimensionality reduction

based on the user preferences. So there is a limitation, because our approach was not compared

with other ones in the same category.

As future work, we intend to address the following subjects.

1. Perform more empirical study to evaluate the scalability of COR-NSGA-II in other FMs

used in the industry;

2. Evaluate COR-NSGA-II in an environment in which the number of reductions is limited;

3. Develop new dimensionality reduction algorithms based on the user preferences for

removing the non-preferred ones;

4. Study new values for confidence level and increase the feedback options used by

COR-NSGA-II;

5. Perform an empirical to evaluate if COR-NSGA-II reduces the burden of selecting a

solution with an interactive optimization algorithm. To this end, a solution that uses

an interactive algorithm and preference-based ones for the same problem should be

proposed and implemented;

6. Evolve Nautilus by supporting techniques for improvement of Pareto-front visualization

with colors and more charts;

7. Consider the application of the proposed algorithm in other problems of SBSE research

field such as Software Refactoring, Software Requirements and so one;

8. Consider the use of problems with more objectives to be optimized, addressing problems

with and without redundant objectives;

9. Perform an empirical study analyzing different scenarios and subsets of preferred

objectives;

10. Develop a mechanism to avoid an excessive number of user interactions, by providing

relevant solutions as a suggestion to be used by the users;

11. Improve the user simulator by incorporating machine learning mechanism aiming to

represent real users and their preferences;

99

12. Perform a comparative study with several values of δ, aiming to verify the effect of the

dimensionality reduction when the ROI size increases or decreases;

13. Capture more user preferences, taking into account the explicit and non-explicit ones.

The explicit preferences are those ones in which the user, in fact, provides them. In the

opposite way, the non-explicit ones are preferences captured during the user interaction

but that were not directly provided by the user. For instance, to capture and use the

number of times a user visualized a solution even without providing an explicit feedback;

14. Adapt COR-NSGA-II for supporting preferences provided by multiple users.

100

REFERENCES

[1] R. Akbari, R. Hedayatzadeh, K. Ziarati, and B. Hassanizadeh. A multi-objective artificial

bee colony algorithm. Swarm and Evolutionary Computation, 2:39–52, February 2012.

[2] A. A. Araújo and M Paixão. Machine learning for user modeling in an interactive genetic

algorithm for the next release problem. In Proceedings of the 6th International Symposium
on Search Based Software Engineering (SSBSE ’14), pages 228–233, Fortaleza, Brazil,

2014. Springer.

[3] P. Arcaini, A. Gargantini, and P. Vavassori. Generating tests for detecting faults in feature

models. In Proceedings of the 8th IEEE International Conference on Software Testing,
Verification and Validation (ICST ’15), pages 1–10, Graz, Austria, 2015. IEEE.

[4] M. Asadi, S. Soltani, D. Gasevic, M. Hatala, and E. Bagheri. Toward automated feature

model configuration with optimizing non-functional requirements. Information and Software
Technology, 56(9):1144 – 1165, September 2014.

[5] S. Bechikh, M. Kessentini, L. B. Said, and K. Ghédira. Preference incorporation in

evolutionary multiobjective optimization: A survey of the state-of-the-art. In Advances in
Computers, volume 98, pages 141–207. Elsevier, 2015.

[6] D. Benavides, S. Trujillo, and P. Trinidad. On the modularization of feature models. In

Proceedings of the 1st European Workshop on Model Transformation (CMT ’06), page 134,

Bilbao, Spain, 2005.

[7] D. Beuche and M. Dalgarno. Software product line engineering with feature models.

Overload Journal, 78:5–8, 2007.

[8] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler. PISA - a platform and programming

language independent interface for search algorithms. In Proceedings of the 2nd International
Conference on Evolutionary Multi-Criterion Optimization (EMO ’03), pages 494–508, Faro,

Portugal, 2003. Springer.

[9] J. Branke, K. Deb, K. Miettinen, and R. Słowinski. Multiobjective Optimization - Interactive
and Evolutionary Approaches, volume 5252. Springer-Verlag Berlin, Heidelberg, 2008.

[10] E. K. Burke and G. Kendall. Search methodologies: Introductory Tutorials in Optimization
and Decision Support Techniques. Springer, 2005.

[11] P. Caleb-Solly and J. Smith. Adaptive surface inspection via interactive evolution. Image
and Vision Computing, 25(7):1058 – 1072, July 2007.

[12] D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton. The combinatorial design approach

to automatic test generation. IEEE Software, 13(5):83–88, September 1996.

[13] M. B. Cohen, M. B. Dwyer, and J. Shi. Coverage and adequacy in software product line

testing. In Proceedings of the 2006 International Symposium on Software Testing and
Analysis (ISSTA’ 06), pages 53–63, Portland, USA, 2006. ACM.

101

[14] D. Crockford. Json’s web site. https://www.json.org. Accessed in 20th August

2019.

[15] K. Czarnecki, S. Helsen, and U. Eisenecker. Formalizing cardinality-based feature models

and their specialization. Software process: Improvement and practice, 10(1):7–29, March

2005.

[16] T. J. Dea. Improving the performance of many-objective software refactoring technique

using dimensionality reduction. In Proceedings of the 8th International Symposium on
Search Based Software Engineering (SSBSE ’16), pages 298–303, Raleigh, USA, 2016.

Springer.

[17] T. J. Dea. Mining, Understanding and Integrating User Preferences in Software Refactoring
Using Computational Search, Machine Learning, and Dimensionality Reduction. PhD

thesis, University of Michigan, EUA, 2017.

[18] K. Deb. Multi-objective optimization using evolutionary algorithms, volume 16. John

Wiley & Sons, 2001.

[19] K. Deb and H. Jain. An evolutionary many-objective optimization algorithm using reference-

point-based nondominated sorting approach, part i: Solving problems with box constraints.

IEEE Transactions on Evolutionary Computation, 18(4):577–601, Aug 2014.

[20] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic

algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197,

August 2002.

[21] K. Deb and D. Saxena. Searching for Pareto-optimal solutions through dimensionality

reduction for certain large-dimensional multi-objective optimization problems. In Proceed-
ings of the IEEE Congress on Evolutionary Computation (CEC ’06), pages 3352–3360,

Vancouver, Canada, 2006.

[22] K. Deb, J. Sundar, U. Bhaskara, and S. Chaudhuri. Reference point based multi-objective

optimization using evolutionary algorithms. International Journal of Computational
Intelligence Research, 2(3):27–286, July 2006.

[23] J. J. Durillo and A. J. Nebro. jMetal: A Java framework for multi-objective optimization.

Advances in Engineering Software, 42(10):760–771, October 2011.

[24] F. Ensan, E. Bagheri, and D. Gašević. Evolutionary search-based test generation for

software product line feature models. In Proceedings of the 25th International Conference
on Advanced Information Systems Engineering (CAiSE ’13), pages 613–628, Valencia,

Spain, 2012. Springer.

[25] J. M. Ferreira, S. R. Vergilio, and M. A. Quináia. A mutation approach to feature testing of

software product lines. In Proceedings of the 25th International Conference on Software
Engineering and Knowledge Engineering (SEKE’13), pages 232–237, Boston, USA, June

2013. Knowledge Systems Institute Graduate School.

[26] J. M. Ferreira, S. R. Vergilio, and M. A. Quináia. Software product line testing based on

feature model mutation. International Journal of Software Engineering and Knowledge
Engineering (IJSEKE), 27(5):817–839, 2017.

102

[27] T. N. Ferreira, A. A. Araújo, A. D. Basílio-Neto, and J. T. de Souza. Incorporating user

preferences in ant colony optimization for the next release problem. Applied Soft Computing,

49:1283–1296, December 2016.

[28] T. N. Ferreira, J. N. Kuk, A. Pozo, and S. R. Vergilio. Product selection based on upper

confidence bound MOEA/D-DRA for testing software product lines. In Proceedings of the
IEEE Congress on Evolutionary Computation (CEC ’16), pages 4135–4142, Vancouver,

Canada, July 2016. IEEE.

[29] T. N. Ferreira, J. A. Prado Lima, A. Strickler, J. N. Kuk, S. R. Vergilio, and A. Pozo. Hyper-

heuristic based product selection for software product line testing. IEEE Computational
Intelligence Magazine, 12(2):34–45, May 2017.

[30] T. N. Ferreira and S. R. Vergilio. Utilizando otimização por colônia de formigas na seleção

de produtos para o teste de mutação do diagrama de características. In Proceedings of the
6th Brazilian Workshop on Search-Based Software Engineering (WESB ’15), volume 1,

pages 61–70, Belo Horizonte, Brazil, 2015. In Portuguese.

[31] T. N. Ferreira, S. R. Vergilio, and J. T. de Souza. Incorporating user preferences in search

based software engineering: A systematic mapping study. Information and Software
Technology, pages 55–69, October 2017.

[32] H. L. Jakubovski Filho, T. N. Ferreira, and S. R. Vergilio. Multiple objective test set

selection for software product line testing: Evaluating different preference-based algorithms.

In Proceedings of the XXXII Brazilian Symposium on Software Engineering (SBES ’18),
pages 162–171, Sao Carlos, Brazil, 2018. ACM.

[33] H. L. Jakubovski Filho, T. N. Ferreira, and S. R. Vergilio. Preference based multi-objective

algorithms applied to the variability testing of software product lines. Journal of Systems
and Software, 151:194–209, May 2018.

[34] I. K. Fodor. A survey of dimension reduction techniques. Technical report, Lawrence

Livermore National Lab., CA (US), 2002.

[35] D. Hadka. MOEA Framework: A free and open source Java framework for multiobjective

optimization. user manual. http://www.moeaframework.org/, 2016.

[36] L. A. Hannah. Stochastic optimization. International Encyclopedia of the Social &
Behavioral Sciences, 2:473–481, April 2015.

[37] M. Harman. Software engineering: An ideal set of challenges for evolutionary computation.

In Proceedings of the 15th Annual Conference Companion on Genetic and Evolutionary
Computation (GECCO ’13), pages 1759–1760, Amsterdam, The Netherlands, 2013. ACM.

[38] M. Harman and B. F. Jones. Search-based software engineering. Information and Software
Technology, 43:833–839, December 2001.

[39] M. Harman, S. A. Mansouri, and Y. Zhang. Search-based software engineering: Trends,

techniques and applications. ACM Computing Surveys, 45(1):11, November 2012.

[40] C. Henard, M. Papadakis, and Y. Le Traon. Mutation-based generation of software product

line test configurations. In Proceedings of the 6th International Symposium on Search
Based Software Engineering (SSBSE ’14), pages 92–106, Fortaleza, Brazil, 2014. Springer.

103

[41] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and Y. Le Traon. Bypassing the

combinatorial explosion: Using similarity to generate and prioritize t-wise test configurations

for software product lines. IEEE Transactions on Software Engineering, 40(7):650–670,

May 2014.

[42] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. Le Traon. Assessing software

product line testing via model-based mutation: An application to similarity testing. In

Proceedings of the 6th IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW ’13), pages 188–197, Luxembourg, 2013. IEEE.

[43] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. Le Traon. Multi-objective test

generation for software product lines. In Proceedings of the 17th International Software
Product Line Conference (SPLC ’13), pages 62–71, Tokyo, Japan, 2013. ACM.

[44] R. M. Hierons, M. Li, X. Liu, S. Segura, and W. Zheng. SIP: Optimal product selection

from feature models using many-objective evolutionary optimization. ACM Transactions
on Software Engineering and Methodology, 25(2):17:1–17:39, April 2016.

[45] J. H. Holland. Adaptation in natural and artificial systems: An introductory analysis with
applications to biology, control, and artificial intelligence. MIT press, 1992.

[46] H. Ishibuchi, Y. Setoguchi, H. Masuda, and Y. Nojima. Performance of decomposition-based

many-objective algorithms strongly depends on Pareto front shapes. IEEE Transactions on
Evolutionary Computation, 21(2):169–190, July 2016.

[47] H. Jain and K. Deb. An evolutionary many-objective optimization algorithm using reference-

point based nondominated sorting approach, part ii: Handling constraints and extending to

an adaptive approach. IEEE Transactions on Evolutionary Computation, 18(4):602–622,

Aug 2014.

[48] H. L. Jakubovski Filho, T. N. Ferreira, and S. R. Vergilio. Incorporating user preferences

in a software product line testing hyper-heuristic approach. In Proceedings of the IEEE
Congress on Evolutionary Computation (CEC ’18), pages 1–8, Rio de Janeiro, Brazil, July

2018. IEEE.

[49] K. C. Kang, J. Lee, and P. Donohoe. Feature-oriented project line engineering. IEEE
Software, 19(4):58–65, July 2002.

[50] R. Kuhn, R. Kacker, Y. Lei, and J. Hunter. Combinatorial software testing. Computer,
42(8):94–96, August 2009.

[51] B. Li, J. Li, K. Tang, and X. Yao. Many-objective evolutionary algorithms: A survey. ACM
Computing Surveys, 48(1):13, September 2015.

[52] K. Li, K. Deb, and X. Yao. R-metric: Evaluating the performance of preference-based

evolutionary multiobjective optimization using reference points. IEEE Transactions on
Evolutionary Computation, 22(6):821–835, September 2017.

[53] R. E Lopez-Herrejon, F. Chicano, J. Ferrer, A. Egyed, and E. Alba. Multi-objective optimal

test suite computation for software product line pairwise testing. In Proceedings of the
2013 IEEE International Conference on Software Maintenance (ICSM ’13), pages 404–407,

Eindhoven, The Netherlands, 2013. IEEE.

104

[54] R. A. Matnei Filho and S. R. Vergilio. A mutation and multi-objective test data generation

approach for feature testing of software product lines. In Proceedings of the 29th Brazilian
Symposium on Software Engineering (SBES’15), pages 21–30, Belo Horizonte, Brazil,

September 2015. IEEE Computer Society.

[55] R. A. Matnei Filho and S. R. Vergilio. A multi-objective test data generation approach

for mutation testing of feature models. Journal of Software Engineering Research and
Development, 4(1):1–29, July 2016.

[56] M. Mendonça, M. Branco, and D. Cowan. SPLOT: software product lines online tools. In

Proceedings of the 24th ACM Conference Companion on Object Oriented Programming
Systems Languages and Applications (OOPSLA ’09), pages 761–762, Orlando, USA, 2009.

[57] K. Miettinen. Nonlinear Multiobjective Optimization, volume 12. Springer Science &

Business Media, 2012.

[58] G. A. Miller. The magical number seven, plus or minus two: Some limits on our capacity

for processing information. The Psychological Review, 63:81–97, March 1956.

[59] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and M. Ó Cinnéide. High dimensional

search-based software engineering: Finding tradeoffs among 15 objectives for automating

software refactoring using NSGA-III. In Proceedings of the 16th Annual Conference
Companion on Genetic and Evolutionary Computation (GECCO ’14), pages 1263–1270,

Vancouver, Canada, 2014. ACM.

[60] M. Ohsaki, H. Takagi, and K. Ohya. An input method using discrete fitness values for

interactive GA. Journal of Intelligent & Fuzzy Systems: Applications in Engineering and
Technology, 6(1):131–145, January 1998.

[61] S. Oster, M. Zink, M. Lochau, and M. Grechanik. Pairwise feature-interaction testing for

spls: Potentials and limitations. In Proceedings of the 15th International Software Product
Line Conference (SPLC ’11), page 6, Munich, Germany, 2011. ACM.

[62] J.A. Parejo, A.B. Sánchez, S. Segura, A. Ruiz-Cortés, R. Lopez-Herrejon, and A. Egyed.

Multi-objective test case prioritization in highly configurable systems: A case study. Journal
of Systems and Software, 122:287–310, September 2016.

[63] J. A. Pereira, L. Maciel, T. F. Noronha, and E. Figueiredo. Heuristic and exact algorithms for

product configuration in software product lines. International Transactions in Operational
Research, 24(6):1285–1306, May 2017.

[64] G. Perrouin, S. Sen, J. Klein, B. Baudry, and Y. Le Traon. Automated and scalable t-wise

test case generation strategies for software product lines. In Proceedings of the 3rd IEEE
International Conference on Software Testing, Verification and Validation (ICST ’10), pages

459–468, Paris, France, 2010. IEEE.

[65] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson. Systematic mapping studies in software

engineering. In Proceedings of the 12th International Conference on Evaluation and
Assessment in Software Engineering (EASE ’08), volume 8, pages 68–77, University of

Bari, Italy, 2008.

105

[66] D. Reuling, J. Bürdek, S. Rotärmel, M. Lochau, and U. Kelter. Fault-based product-line

testing: Effective sample generation based on feature-diagram mutation. In Proceedings
of the 19th International Software Product Line Conference (SPLC ’15), pages 131–140,

Nashville, Tennessee, 2015. ACM.

[67] T. L. Saaty. How to make a decision: The analytic hierarchy process. European Journal of
Operational Research, 48(1):9–26, September 1990.

[68] N. Salkind. Encyclopaedia of research design, vol. 1. SAGE, 2010.

[69] D. K. Saxena and K. Deb. Non-linear dimensionality reduction procedures for certain

large-dimensional multi-objective optimization problems: Employing correntropy and a

novel maximum variance unfolding. In Proceedings of the 4th International Conference on
Evolutionary Multi-Criterion Optimization (EMO ’07), pages 772–787, Matsushima, Japan,

2007. Springer.

[70] A. S. Sayyad and H. Ammar. Pareto-optimal search-based software engineering (POSBSE):

A literature survey. In Proceedings of the 2nd International Workshop on Realizing Artificial
Intelligence Synergies in Software Engineering (RAISE’ 03), pages 21–27, San Francisco,

USA, 2013. IEEE.

[71] S. Segura, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés. Automated test data generation

on the analyses of feature models: A metamorphic testing approach. In Proceedings of the
3nd International Conference on Software Testing, Verification and Validation (ICST ’10),
pages 35–44, Paris, France, 2010. IEEE.

[72] M. Shackelford and D. W. Corne. A technique for evaluation of interactive evolutionary
systems. Springer, 2004.

[73] A. Sinha, D. K. Saxena, K. Deb, and A. Tiwari. Using objective reduction and interactive

procedure to handle many-objective optimization problems. Applied Soft Computing,

13(1):415–427, January 2013.

[74] A. Strickler, J. A Prado Lima, S. R. Vergilio, and A. Pozo. Deriving products for

variability test of feature models with a hyper-heuristic approach. Applied Soft Computing,

49:1232–1242, December 2016.

[75] H. Takagi. Interactive evolutionary computation: Fusion of the capabilities of EC opti-

mization and human evaluation. Proceedings of the IEEE, 89(9):1275–1296, September

2001.

[76] P. Trinidad, D. Benavides, A. Ruiz-Cortés, S. Segura, and A. Jimenez. FaMa framework.

In Proceedings of the 12th International Software Product Line Conference (SPLC ’08),
pages 359–359, Limerick, Ireland, 2008. IEEE.

[77] E. Uzuncaova, S. Khurshid, and D. Batory. Incremental test generation for software product

lines. IEEE Transactions on Software Engineering, 36(3):309–322, April 2010.

[78] F. J. Van der Linden, K. Schmid, and E. Rommes. Software product lines in action: The
best industrial practice in product line engineering. Springer Science & Business Media,

2007.

106

[79] P. A. Vikhar. Evolutionary algorithms: A critical review and its future prospects. In

Proceedings of the International Conference on Global Trends in Signal Processing,
Information Computing and Communication (ICGTSPICC ’16), pages 261–265, Jalgaon,

India, 2016. IEEE.

[80] D. J. Walker, R. Everson, and J. E. Fieldsend. Visualizing mutually nondominating solution

sets in many-objective optimization. IEEE Transactions on Evolutionary Computation,

17(2):165–184, November 2012.

[81] H. Wang and M. Kessentini. Improving web services design quality using dimensionality

reduction techniques. In Proceedings of the 15th International Conference on Service-
Oriented Computing (ICSOC ’17), pages 499–507, Malaga, Spain, 2017. Springer.

[82] S. Wang, S. Ali, and A. Gotlieb. Minimizing test suites in software product lines using

weight-based genetic algorithms. In Proceedings of the 15th Annual Conference Companion
on Genetic and Evolutionary Computation (GECCO ’13), pages 1493–1500, Amsterdam,

The Netherlands, 2013. ACM.

[83] S. Wang, D. Buchmann, S. Ali, A. Gotlieb, D. Pradhan, and M. Liaaen. Multi-objective

test prioritization in software product line testing: An industrial case study. In Proceedings
of the 18th International Software Product Line Conference (SPLC ’14), pages 32–41,

Florence, Italy, 2014. ACM.

[84] S. Weißleder, D. Sokenou, and B. Schlingloff. Reusing state machines for automatic test

generation in product lines. In Proceedings of the 1st Workshop on Model-based Testing in
Practice (MoTiP ’08), pages 19 – 28, Berlin, Germany, 2008.

[85] C. Wohlin. Guidelines for snowballing in systematic literature studies and a replication in

software engineering. In Proceedings of the 18th International Conference on Evaluation
and Assessment in Software Engineering (EASE ’14), page 38, London, United Kingdom,

2014. Citeseer.

[86] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén. Experimenta-
tion in software engineering. Springer Science & Business Media, 2012.

[87] J. Zhang and L. Xing. A survey of multiobjective evolutionary algorithms. In Proceedings
of the 2017 IEEE International Conference on Computational Science and Engineering
(CSE’ 17), volume 1, pages 93–100, Guangzhou, China, July 2017.

[88] Y. Zhang, M. Harman, and S. A. Mansouri. The multi-objective next release problem.

In Proceedings of the 9th Annual Conference Companion on Genetic and Evolutionary
Computation (GECCO ’07), pages 1129–1137, London, United Kingdom, 2007. ACM.

[89] A. Zhou, B. Qu, H. Li, S. Zhao, P. N. Suganthan, and Q. Zhang. Multiobjective evolutionary

algorithms: A survey of the state of the art. Swarm and Evolutionary Computation,

1(1):32–49, March 2011.

[90] E. Zitzler. Evolutionary Algorithms for Multiobjective Optimization: Methods and Applica-
tions. PhD thesis, ETH Zurich, Switzerland, 1999.

[91] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da Fonseca. Performance

assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on
Evolutionary Computation, 7(2):117–132, May 2003.

107

APPENDIX A – ALGORITHMS QUESTIONNAIRE

A.1 PREFERRED OBJECTIVES

Number of

Products

Alive

Mutants

Uncovered

Pairs
Similarity Cost

Unselected

Features

Unimportant

Features

� � � � � � �

A.2 MANUALLY

Question 1: Solution:

Question 2: Motivation:

Question 3: Time:

Question 4: How difficult was it to select this solution?

very difficult difficult neutral easy very easy

� � � � �

A.3 NSGA-II

Question 1: Solution:

Question 2: Motivation:

Question 3: Time:

Question 4: How difficult was it to select this solution?

very difficult difficult neutral easy very easy

� � � � �

108

A.4 R-NSGA-II

Question 1: Solution:

Question 2: Motivation:

Question 3: Time:

Question 4: How difficult was it to select this solution?

very difficult difficult neutral easy very easy

� � � � �

A.5 COR-NSGA-II

Question 1: Solution:

Question 2: Motivation:

Question 3: Time:

Question 4: How difficult was it to select this solution?

very difficult difficult neutral easy very easy

� � � � �

109

A.6 GENERAL QUESTIONS

Question 1: What is the best algorithm regarding to the total execution time? Enumerate your

preferences where 1 means the best algorithm and so on.

() COR-NSGA-II

() R-NSGA-II

() NSGA-III

() Manually

Question 2: Do you think the order of the algorithm execution impacts in your responses?

Please comment.

Question 3: Further Comments.
Suggestions to improve the tool? Were the questions easy to understand? Did you have enough time to finish the
activity? What were the most difficult or easiest tasks in the activities? etc.

110

APPENDIX B – NAUTILUS QUESTIONNAIRE

Warning a

• Please decide spontaneously. Don’t think too long about your decision to make sure that

you convey your original impression.

• Sometimes you may not be completely sure about your agreement with a particular

question or you may find that the question does not apply completely to the tool.

Nevertheless, please tick a square in every question.

• It is your personal opinion that counts. Please remember: there is no wrong or right

answer!

ahttps://www.ueq-online.org

Question 1: How much time did you spend to get familiar with the tool?

< 5 mim 6 min - 10
min

11 min - 20
min

20 min - 30
min > 31 min

� � � � �

Question 2: How difficult was it to learning to operate the tool?

very difficult difficult neutral easy very easy

� � � � �

Question 3: The tool has a user friendly interface

strongly
agree agree neutral disagree strongly

disagree
� � � � �

Question 4: The tool is easy to navigate

strongly
agree agree neutral disagree strongly

disagree
� � � � �

111

Question 5: Error messages are helpful

strongly
agree agree neutral disagree strongly

disagree
� � � � �

Question 6: What is your opinion about organization of information on the screen?

very clear clear neutral confusing very
confusing

� � � � �

Question 7: How difficult was it to understand the task you were asked to do?

very difficult difficult neutral easy very easy

� � � � �

Question 8: How difficult was it to locate and identify relevant solutions?

very difficult difficult neutral easy very easy

� � � � �

Question 9: How difficult was it to use the visualization support for the Pareto-front?

very difficult difficult neutral easy very easy

� � � � �

Question 10: How much time did you spend to explore the Pareto-front using the visualization

support?

< 5 mim 6 min - 10
min

11 min - 20
min

20 min - 30
min > 31 min

� � � � �

112

Question 11: What do you find best about the tool? Enumerate your preferences where 1 means

the best feature and so on.

() Ease of use

() Interface

() Cloud computing-based

() Pareto-front visualization

() Algorithms provided

() Other. What?

Question 12: Further Comments.
Suggestions to improve the tool? Were the questions easy to understand? Did you have enough time to finish the
activity? What were the most difficult or easiest tasks in the activities? etc.

113

APPENDIX C – FEATURE MODELS

In the next, we present feature models of the SPLs used in our experiments.

Figure C.1: Feature Model for James (Adapted from [6]).

114

Figure C.2: Feature Model for CAS (Adapted from [84]).

115

Figure C.3: Feature Model for WS (Adapted from [7]).

116

Figure C.4: Feature Model for E-Shop (Adapted from [71]).

117

Figure C.5: Feature Model for Drupal (Adapted from [62])

118

Figure C.6: Feature Model for Smarthome (Adapted from [43]).

119

APPENDIX D – PARTICIPANT QUESTIONNAIRE

First Name:

Last Name:

E-mail:

Age:

Gender: � Female � Male � Prefer not to say � Other

Education:
What is the highest degree or level of school you have completed? If currently enrolled, highest degree received

� High school graduate

� Associate degree

� Professional degree

� Bachelor’s degree

� Master’s degree

� Doctorate degree

Academic Major:

Current Position:

Years in Current Position:

Level of Expertise:

Very Low Low Normal High Very High None Years

Software Development � � � � � �

Software Product Line � � � � � �

Software Testing � � � � � �

Java � � � � � �

Optimization Algorithms � � � � � �

120

APPENDIX E – PRE-STUDY QUESTIONNAIRE

E.1 FEATURE MODEL

E.2 GENERAL INFORMATION

Feature Cost Import.
Example 3 0

Control 4 2

DB 2 3

Module 3 0

Calendar 2 4

Forum 1 3

of mutants: 10

of pairs: 10

Mutants: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Alive Mutants: {3, 4, 5, 8, 9, 10}

Equivalent Mutants: {1, 2, 6, 7}

Pairs: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

E.3 PRODUCTS

Features Killed
Mutants

Covered
Pairs Cost Import.

1
Example, Control, Module, Calendar,

Forum, DB
9

1, 2, 3, 4, 5,

6, 7, 8, 9, 10
15 12

2
Example, Control, Module, Calendar,

Forum
3, 9 2, 3, 4, 8, 9, 10 13 9

3
Example, Control, Module, Calendar,

DB
4, 8 1, 2, 3, 5, 6, 8 14 9

4 Example, Control, Module, Calendar 3, 4, 8 2, 3, 8 12 6

5 Example, Control, Module, Forum, DB 5, 8, 10 1, 2, 4, 5, 7, 9 13 8

6 Example, Control, Module, Forum 3, 5, 8 2, 4, 9 11 5

Sum 78 49

Possible Solutions: {1, 2}, {3, 4, 5}, {1}, {2, 4, 5, 6}, etc.

121

E.4 QUESTIONS

Question 1: (2 Points) How many optional features does the feature model have? Choose

correct option.

(a) 6

(b) 1

(c) 3

(d) 2

Question 2: (2 Points) What does a mutant feature model mean? Choose correct option.

(a) A modified version of the original diagram aiming to describe a fault

(b) A diagram used to represent commonalities and variabilities, and also to derive products

for testing

(c) A prominent or distinctive user-visible aspect, quality, or characteristic of a software

system or system

(d) None of the above

Question 3: (2 Points) Please indicate how much you agree or disagree with the following

sentence "It is possible to generate multiple solutions from this feature model"

strongly
agree agree neutral disagree strongly

disagree
� � � � �

Question 4: (2 Points) Provide a solution in which 100% of the killed mutants are covered.

What is the cost value of this solution?

Product #1 Product #2 Product #3 Product #4 Product #5 Product #6
� � � � � �

Cost:

Question 5: (2 Points) Provide a solution in which 100% of the features are covered. What is

the importance value of this solution?

Product #1 Product #2 Product #3 Product #4 Product #5 Product #6
� � � � � �

Importance:

122

APPENDIX F – CONSENT TERM

You are being invited to participate in a research study. This one is being done by Thiago do

Nascimento Ferreira from the Federal University of Parana and supervised by Prof. Silvia Regina

Vergilio from the same university.

The purpose of this research is to evaluate Nautilus, a Java web platform tool, and the impact of

the human preferences during the optimization process by reducing the dimensionality of the

problem. If you agree to the term and participate in the study you will be asked to complete some

online surveys/questionnaires.

The participants are assured that they will receive answers to any questions and clarify any

questions regarding research-related subjects. The aforementioned researchers also undertake to

provide up-to-date information obtained during the study.

The participants are also free to withdraw their consent at any time and to stop participating in

the study, causing no burden or harm.

Responses will be completely anonymous and your name will not appear anywhere on the

research’ results. However, this consent form indicates that the results can be presented at

scientific events or publications.

By checking “I agree” below you are indicating that you are at least 18 years old, have read and

understood this consent form and agree to participate in this research study.

� I agree to the terms and conditions

� I disagree

123

APPENDIX G – RQ2 DETAILED RESULTS

Table G.1: COR-NSGA-II Versus NSGA-II and NSGA-III in Scenario 2D.

RPAlgorithm R-HV R-IGD # of Solutions # of Solutions
in the ROI

Execution
Time

Ja
m

es R
es

tr
ic

. nsga-ii 156E-3±5.4E-3 39.8E-3±410E-6 106E0±1.66E0 5.87E0±2.45E0 11.7E3±829E0

nsga-iii 137E-3±15.2E-3 41.8E-3±1.84E-3 55.7E0±11.4E0 29.6E0±20.1E0 19.4E3±1.57E3

cor-nsga-ii 157E-3±310E-6 38.5E-3±40E-6 7.53E0±1.07E0 3.47E0±629E-3 3.55E3±670E0

C
o
m

p
. nsga-ii 308E-3±9.01E-3 14.4E-3±670E-6 106E0±1.66E0 12.9E0±2.69E0 11.7E3±829E0

nsga-iii 226E-3±31.4E-3 18.2E-3±1.51E-3 55.7E0±11.4E0 30.4E0±18.8E0 19.4E3±1.57E3

cor-nsga-ii 156E-3±2.91E-3 22.1E-3±70E-6 7.53E0±1.07E0 1.17E0±379E-3 3.55E3±670E0

C
A

S R
es

tr
ic

. nsga-ii 70.4E-3±3.5E-3 55.5E-3±860E-6 109E0±1.69E0 90.8E0±12.2E0 116E3±8.54E3

nsga-iii 86.1E-3±6E-3 51.9E-3±1.18E-3 72E0±4.03E0 72E0±4.03E0 99.6E3±6.99E3

cor-nsga-ii 185E-3±490E-6 39.1E-3±50E-6 20.4E0±5.47E0 13.6E0±4.19E0 9.77E3±2.44E3

C
o
m

p
. nsga-ii 149E-3±2.69E-3 10.3E-3±20E-6 109E0±1.69E0 103E0±8.76E0 116E3±8.54E3

nsga-iii 181E-3±5.72E-3 9.1E-3±240E-6 72E0±4.03E0 72E0±4.03E0 99.6E3±6.99E3

cor-nsga-ii 151E-3±1.38E-3 10E-3±40E-6 20.4E0±5.47E0 14.7E0±4.1E0 9.77E3±2.44E3

W
S R

es
tr

ic
. nsga-ii 64.9E-3±3.7E-3 65E-3±1.11E-3 110E0±1.25E0 97E0±10.3E0 133E3±7.82E3

nsga-iii 102E-3±4.89E-3 55.6E-3±930E-6 74E0±3.8E0 74E0±3.8E0 96.7E3±5.9E3

cor-nsga-ii 189E-3±700E-6 44.5E-3±80E-6 20.5E0±3.74E0 12.5E0±2.34E0 12.4E3±501E0

C
o
m

p
. nsga-ii 148E-3±2.17E-3 46.1E-3±610E-6 110E0±1.25E0 106E0±8.97E0 133E3±7.82E3

nsga-iii 142E-3±1.36E-3 46.5E-3±330E-6 74E0±3.8E0 74E0±3.8E0 96.7E3±5.9E3

cor-nsga-ii 154E-3±600E-6 45.1E-3±120E-6 20.5E0±3.74E0 12.5E0±2.34E0 12.4E3±501E0

E
-S

h
o
p

R
es

tr
ic

. nsga-ii 63E-3±2.64E-3 92.3E-3±1.08E-3 112E0±0E0 111E0±2.05E0 399E3±23.8E3

nsga-iii 80E-3±3.52E-3 84.8E-3±1.21E-3 71.1E0±4.63E0 71.1E0±4.63E0 319E3±16.5E3

cor-nsga-ii 180E-3±1.09E-3 62.8E-3±150E-6 5.93E0±4.76E0 4.37E0±2.67E0 43.4E3±1.82E3

C
o
m

p
. nsga-ii 145E-3±1.72E-3 14.5E-3±40E-6 112E0±0E0 112E0±1.83E0 399E3±23.8E3

nsga-iii 141E-3±4.6E-3 14.4E-3±210E-6 71.1E0±4.63E0 71.1E0±4.63E0 319E3±16.5E3

cor-nsga-ii 137E-3±840E-6 14.5E-3±60E-6 5.93E0±4.76E0 4.37E0±2.67E0 43.4E3±1.82E3

D
ru

p
al R
es

tr
ic

. nsga-ii 49.1E-3±500E-6 80.6E-3±210E-6 112E0±0E0 112E0±0E0 21E6±1.11E6

nsga-iii 54.6E-3±850E-6 77.9E-3±360E-6 72E0±4.98E0 72E0±4.98E0 19.1E6±1.41E6

cor-nsga-ii 83.7E-3±410E-6 68E-3±110E-6 1.1E0±305E-3 1.1E0±305E-3 7.94E6±296E3

C
o
m

p
. nsga-ii 139E-3±350E-6 12.3E-3±0E0 112E0±0E0 112E0±0E0 21E6±1.11E6

nsga-iii 138E-3±260E-6 12.3E-3±0E0 72E0±4.98E0 72E0±4.98E0 19.1E6±1.41E6

cor-nsga-ii 137E-3±10E-6 12.3E-3±0E0 1.1E0±305E-3 1.1E0±305E-3 7.94E6±296E3

S
m

ar
th

o
m

e

R
es

tr
ic

. nsga-ii 49E-3±620E-6 61.9E-3±200E-6 112E0±0E0 112E0±0E0 30.5E6±1.65E6

nsga-iii 54.7E-3±1.05E-3 59.8E-3±340E-6 73.5E0±5.61E0 73.5E0±5.61E0 27.5E6±1.03E6

cor-nsga-ii 83.6E-3±420E-6 52.3E-3±90E-6 1.2E0±407E-3 1.17E0±379E-3 10.9E6±559E3

C
o
m

p
. nsga-ii 139E-3±470E-6 9.69E-3±0E0 112E0±0E0 112E0±0E0 30.5E6±1.65E6

nsga-iii 138E-3±230E-6 9.69E-3±0E0 73.5E0±5.61E0 73.5E0±5.61E0 27.5E6±1.03E6

cor-nsga-ii 137E-3±10E-6 9.69E-3±0E0 1.2E0±407E-3 1.17E0±379E-3 10.9E6±559E3

124

Table G.2: COR-NSGA-II Versus NSGA-II and NSGA-III in Scenario 3D.

RPAlgorithm R-HV R-IGD # of Solutions # of Solutions
in the ROI

Execution
Time

Ja
m

es R
es

tr
ic

. nsga-ii 94.6E-3±3.75E-3 62.3E-3±810E-6 106E0±1.77E0 3.63E0±718E-3 11.8E3±879E0

nsga-iii 69.9E-3±39.4E-3 71.8E-3±12.6E-3 55.3E0±10.2E0 20.3E0±16.2E0 19.2E3±1.66E3

cor-nsga-ii 120E-3±1.09E-3 57.7E-3±280E-6 67.2E0±2E0 11.1E0±1.66E0 4.45E3±511E0

C
o
m

p
. nsga-ii 205E-3±13.7E-3 39.3E-3±1.76E-3 106E0±1.77E0 4.77E0±1.57E0 11.8E3±879E0

nsga-iii 149E-3±61.4E-3 49.1E-3±10.9E-3 55.3E0±10.2E0 20.8E0±15.8E0 19.2E3±1.66E3

cor-nsga-ii 207E-3±4.85E-3 39.4E-3±690E-6 67.2E0±2E0 13.2E0±1.88E0 4.45E3±511E0

C
A

S R
es

tr
ic

. nsga-ii 14.2E-3±330E-6 91.8E-3±580E-6 110E0±1.87E0 96.8E0±15.4E0 116E3±5.41E3

nsga-iii 18.5E-3±740E-6 87.5E-3±790E-6 70.9E0±4.14E0 70.9E0±4.14E0 100E3±5.15E3

cor-nsga-ii 126E-3±2.22E-3 53E-3±400E-6 96.4E0±2.98E0 12.4E0±1.45E0 9.39E3±2.16E3

C
o
m

p
. nsga-ii 43.9E-3±950E-6 57.1E-3±610E-6 110E0±1.87E0 96.8E0±15.4E0 116E3±5.41E3

nsga-iii 54.5E-3±1.82E-3 53.8E-3±720E-6 70.9E0±4.14E0 70.9E0±4.14E0 100E3±5.15E3

cor-nsga-ii 182E-3±1.98E-3 33.8E-3±240E-6 96.4E0±2.98E0 12.5E0±1.66E0 9.39E3±2.16E3

W
S R

es
tr

ic
. nsga-ii 14.1E-3±270E-6 81.2E-3±450E-6 110E0±1.53E0 106E0±6.6E0 135E3±7.4E3

nsga-iii 13.1E-3±180E-6 81.8E-3±230E-6 73.5E0±3.96E0 73.5E0±3.96E0 96.1E3±6.14E3

cor-nsga-ii 123E-3±990E-6 47.1E-3±200E-6 100E0±2.84E0 15.6E0±1.61E0 12.5E3±327E0

C
o
m

p
. nsga-ii 43.6E-3±780E-6 58.5E-3±560E-6 110E0±1.53E0 106E0±6.6E0 135E3±7.4E3

nsga-iii 40.8E-3±500E-6 59.3E-3±290E-6 73.5E0±3.96E0 73.5E0±3.96E0 96.1E3±6.14E3

cor-nsga-ii 182E-3±1.99E-3 34.2E-3±180E-6 100E0±2.84E0 17.5E0±1.81E0 12.5E3±327E0

E
-S

h
o
p

R
es

tr
ic

. nsga-ii 13.6E-3±270E-6 79.4E-3±440E-6 112E0±379E-3 112E0±802E-3 399E3±28.2E3

nsga-iii 12.8E-3±110E-6 79.8E-3±130E-6 71E0±6.64E0 71E0±6.64E0 323E3±12.5E3

cor-nsga-ii 23.4E-3±4.46E-3 71.6E-3±2.75E-3 29.6E0±11.6E0 21.8E0±6.42E0 44.9E3±2.18E3

C
o
m

p
. nsga-ii 42.3E-3±820E-6 60.6E-3±590E-6 112E0±379E-3 112E0±802E-3 399E3±28.2E3

nsga-iii 40.1E-3±300E-6 61.1E-3±170E-6 71E0±6.64E0 71E0±6.64E0 323E3±12.5E3

cor-nsga-ii 66.5E-3±10.8E-3 53E-3±2.78E-3 29.6E0±11.6E0 21.8E0±6.42E0 44.9E3±2.18E3

D
ru

p
al R
es

tr
ic

. nsga-ii 12.7E-3±80E-6 114E-3±80E-6 112E0±0E0 112E0±0E0 21.1E6±1.64E6

nsga-iii 12.4E-3±30E-6 114E-3±20E-6 72.7E0±3.74E0 72.7E0±3.74E0 19.1E6±1.43E6

cor-nsga-ii 12.3E-3±0E0 114E-3±0E0 1E0±0E0 1E0±0E0 8.24E6±319E3

C
o
m

p
. nsga-ii 39.9E-3±230E-6 22.5E-3±20E-6 112E0±0E0 112E0±0E0 21.1E6±1.64E6

nsga-iii 39.2E-3±100E-6 22.5E-3±10E-6 72.7E0±3.74E0 72.7E0±3.74E0 19.1E6±1.43E6

cor-nsga-ii 38.9E-3±0E0 22.5E-3±0E0 1E0±0E0 1E0±0E0 8.24E6±319E3

S
m

ar
th

o
m

e

R
es

tr
ic

. nsga-ii 12.7E-3±90E-6 135E-3±110E-6 112E0±0E0 112E0±0E0 30.4E6±1.16E6

nsga-iii 12.4E-3±30E-6 135E-3±30E-6 73.8E0±5.96E0 73.8E0±5.96E0 27.3E6±1.16E6

cor-nsga-ii 12.3E-3±0E0 135E-3±0E0 1E0±0E0 1E0±0E0 11.5E6±911E3

C
o
m

p
. nsga-ii 39.9E-3±270E-6 17.3E-3±20E-6 112E0±0E0 112E0±0E0 30.4E6±1.16E6

nsga-iii 39.2E-3±80E-6 17.3E-3±0E0 73.8E0±5.96E0 73.8E0±5.96E0 27.3E6±1.16E6

cor-nsga-ii 38.9E-3±0E0 17.3E-3±0E0 1E0±0E0 1E0±0E0 11.5E6±911E3

125

Table G.3: COR-NSGA-II Versus R-NSGA-II in Scenario 2D.

RPAlgorithm R-HV R-IGD # of Solutions # of Solutions
in the ROI

Execution
Time

Ja
m

es

R
es

tr
ic

.

r-nsga-ii 96.8E-3±9.27E-3 46.5E-3±1.66E-3 110E0±2.46E0 110E0±2.46E0 16.7E3±903E0

cor-nsga-ii 157E-3±310E-6 38.5E-3±40E-6 7.53E0±1.07E0 3.47E0±629E-3 3.55E3±670E0

C
o
m

p
.

r-nsga-ii 196E-3±18E-3 19.3E-3±900E-6 111E0±2.01E0 111E0±2.15E0 17.5E3±1.5E3

cor-nsga-ii 156E-3±2.91E-3 22.1E-3±70E-6 7.53E0±1.07E0 1.17E0±379E-3 3.55E3±670E0

C
A

S

R
es

tr
ic

.

r-nsga-ii 70.7E-3±4.13E-3 55.4E-3±980E-6 109E0±1.4E0 88.8E0±13.7E0 121E3±8.07E3

cor-nsga-ii 185E-3±490E-6 39.1E-3±50E-6 20.4E0±5.47E0 13.6E0±4.19E0 9.77E3±2.44E3

C
o
m

p
.

r-nsga-ii 148E-3±2.82E-3 10.4E-3±20E-6 109E0±1.42E0 100E0±12.4E0 122E3±6.56E3

cor-nsga-ii 151E-3±1.38E-3 10E-3±40E-6 20.4E0±5.47E0 14.7E0±4.1E0 9.77E3±2.44E3

W
S R
es

tr
ic

.

r-nsga-ii 65.9E-3±3.39E-3 64.7E-3±990E-6 110E0±1.17E0 96.1E0±11.4E0 138E3±5.91E3

cor-nsga-ii 189E-3±700E-6 44.5E-3±80E-6 20.5E0±3.74E0 12.5E0±2.34E0 12.4E3±501E0

C
o
m

p
.

r-nsga-ii 148E-3±2.33E-3 46.1E-3±600E-6 110E0±1.42E0 108E0±5.74E0 139E3±6.01E3

cor-nsga-ii 154E-3±600E-6 45.1E-3±120E-6 20.5E0±3.74E0 12.5E0±2.34E0 12.4E3±501E0

E
-S

h
o
p

R
es

tr
ic

.

r-nsga-ii 63.3E-3±2.07E-3 92.2E-3±800E-6 112E0±254E-3 110E0±3.07E0 409E3±18.9E3

cor-nsga-ii 180E-3±1.09E-3 62.8E-3±150E-6 5.93E0±4.76E0 4.37E0±2.67E0 43.4E3±1.82E3

C
o
m

p
.

r-nsga-ii 146E-3±1.83E-3 14.5E-3±40E-6 112E0±183E-3 112E0±254E-3 408E3±15E3

cor-nsga-ii 137E-3±840E-6 14.5E-3±60E-6 5.93E0±4.76E0 4.37E0±2.67E0 43.4E3±1.82E3

D
ru

p
al

R
es

tr
ic

.

r-nsga-ii 49.2E-3±600E-6 80.6E-3±250E-6 112E0±0E0 112E0±0E0 20.9E6±1.33E6

cor-nsga-ii 83.7E-3±410E-6 68E-3±110E-6 1.1E0±305E-3 1.1E0±305E-3 7.94E6±296E3

C
o
m

p
.

r-nsga-ii 139E-3±480E-6 12.3E-3±0E0 112E0±0E0 112E0±0E0 20.7E6±1.7E6

cor-nsga-ii 137E-3±10E-6 12.3E-3±0E0 1.1E0±305E-3 1.1E0±305E-3 7.94E6±296E3

S
m

ar
th

o
m

e

R
es

tr
ic

.

r-nsga-ii 49E-3±650E-6 61.9E-3±200E-6 112E0±0E0 112E0±0E0 30.4E6±1.5E6

cor-nsga-ii 83.6E-3±420E-6 52.3E-3±90E-6 1.2E0±407E-3 1.17E0±379E-3 10.9E6±559E3

C
o
m

p
.

r-nsga-ii 139E-3±340E-6 9.69E-3±0E0 112E0±0E0 112E0±0E0 30.4E6±1.34E6

cor-nsga-ii 137E-3±10E-6 9.69E-3±0E0 1.2E0±407E-3 1.17E0±379E-3 10.9E6±559E3

126

Table G.4: COR-NSGA-II Versus R-NSGA-II in Scenario 3D

RPAlgorithm R-HV R-IGD # of Solutions # of Solutions
in the ROI

Execution
Time

Ja
m

es

R
es

tr
ic

.

r-nsga-ii 46.4E-3±21.8E-3 78.3E-3±8.06E-3 110E0±8.78E0 88.4E0±33.5E0 15.6E3±1.27E3

cor-nsga-ii 120E-3±1.09E-3 57.7E-3±280E-6 67.2E0±2E0 11.1E0±1.66E0 4.45E3±511E0

C
o
m

p
.

r-nsga-ii 65.3E-3±21.1E-3 65.6E-3±5.37E-3 112E0±740E-3 111E0±1.93E0 16.7E3±1.59E3

cor-nsga-ii 207E-3±4.85E-3 39.4E-3±690E-6 67.2E0±2E0 13.2E0±1.88E0 4.45E3±511E0

C
A

S

R
es

tr
ic

.

r-nsga-ii 14.1E-3±410E-6 92E-3±730E-6 109E0±1.27E0 95E0±14.9E0 120E3±5.38E3

cor-nsga-ii 126E-3±2.22E-3 53E-3±400E-6 96.4E0±2.98E0 12.4E0±1.45E0 9.39E3±2.16E3

C
o
m

p
.

r-nsga-ii 43.5E-3±980E-6 57.3E-3±670E-6 109E0±1.67E0 98E0±14.6E0 121E3±6.95E3

cor-nsga-ii 182E-3±1.98E-3 33.8E-3±240E-6 96.4E0±2.98E0 12.5E0±1.66E0 9.39E3±2.16E3

W
S R
es

tr
ic

.

r-nsga-ii 14.1E-3±330E-6 81.1E-3±570E-6 110E0±999E-3 106E0±6.27E0 139E3±7.23E3

cor-nsga-ii 123E-3±990E-6 47.1E-3±200E-6 100E0±2.84E0 15.6E0±1.61E0 12.5E3±327E0

C
o
m

p
.

r-nsga-ii 43.5E-3±1.05E-3 58.6E-3±710E-6 110E0±1.1E0 107E0±6.75E0 138E3±7.05E3

cor-nsga-ii 182E-3±1.99E-3 34.2E-3±180E-6 100E0±2.84E0 17.5E0±1.81E0 12.5E3±327E0

E
-S

h
o
p

R
es

tr
ic

.

r-nsga-ii 13.7E-3±290E-6 79.4E-3±450E-6 112E0±183E-3 111E0±2.8E0 403E3±20E3

cor-nsga-ii 23.4E-3±4.46E-3 71.6E-3±2.75E-3 29.6E0±11.6E0 21.8E0±6.42E0 44.9E3±2.18E3

C
o
m

p
.

r-nsga-ii 42.3E-3±820E-6 60.6E-3±610E-6 112E0±379E-3 112E0±379E-3 404E3±19.6E3

cor-nsga-ii 66.5E-3±10.8E-3 53E-3±2.78E-3 29.6E0±11.6E0 21.8E0±6.42E0 44.9E3±2.18E3

D
ru

p
al

R
es

tr
ic

.

r-nsga-ii 12.7E-3±90E-6 114E-3±90E-6 112E0±0E0 112E0±0E0 21E6±1.19E6

cor-nsga-ii 12.3E-3±0E0 114E-3±0E0 1E0±0E0 1E0±0E0 8.24E6±319E3

C
o
m

p
.

r-nsga-ii 39.8E-3±250E-6 22.5E-3±20E-6 112E0±0E0 112E0±0E0 20.9E6±1.23E6

cor-nsga-ii 38.9E-3±0E0 22.5E-3±0E0 1E0±0E0 1E0±0E0 8.24E6±319E3

S
m

ar
th

o
m

e

R
es

tr
ic

.

r-nsga-ii 12.7E-3±70E-6 135E-3±100E-6 112E0±0E0 112E0±0E0 30.4E6±1.33E6

cor-nsga-ii 12.3E-3±0E0 135E-3±0E0 1E0±0E0 1E0±0E0 11.5E6±911E3

C
o
m

p
.

r-nsga-ii 40E-3±290E-6 17.3E-3±10E-6 112E0±0E0 112E0±0E0 30.4E6±1.29E6

cor-nsga-ii 38.9E-3±0E0 17.3E-3±0E0 1E0±0E0 1E0±0E0 11.5E6±911E3

127

Table G.5: COR-NSGA-II Versus PCA-NSGA-II in Scenario 2D.

RPAlgorithm R-HV R-IGD # of Solutions # of Solutions
in the ROI

Execution
Time

Ja
m

es

R
es

tr
ic

.

pca-nsga-ii 13.3E-3±20.1E-3 81.3E-3±9.31E-3 7.8E0±25.7E0 2.87E0±8.53E0 22.9E3±685E0

cor-nsga-ii 157E-3±310E-6 38.5E-3±40E-6 7.53E0±1.07E0 3.47E0±629E-3 3.55E3±670E0

C
o
m

p
.

pca-nsga-ii 42.9E-3±37.7E-3 41.3E-3±5.87E-3 7.8E0±25.7E0 3.87E0±10.9E0 22.9E3±685E0

cor-nsga-ii 156E-3±2.91E-3 22.1E-3±70E-6 7.53E0±1.07E0 1.17E0±379E-3 3.55E3±670E0

C
A

S

R
es

tr
ic

.

pca-nsga-ii 56.7E-3±1.95E-3 58.9E-3±510E-6 112E0±434E-3 63.8E0±6.48E0 163E3±12.2E3

cor-nsga-ii 185E-3±490E-6 39.1E-3±50E-6 20.4E0±5.47E0 13.6E0±4.19E0 9.77E3±2.44E3

C
o
m

p
.

pca-nsga-ii 145E-3±1.29E-3 10.3E-3±10E-6 112E0±434E-3 63.8E0±6.48E0 163E3±12.2E3

cor-nsga-ii 151E-3±1.38E-3 10E-3±40E-6 20.4E0±5.47E0 14.7E0±4.1E0 9.77E3±2.44E3

W
S R
es

tr
ic

.

pca-nsga-ii 56.2E-3±1.96E-3 67.5E-3±590E-6 112E0±0E0 69E0±5.75E0 191E3±23.5E3

cor-nsga-ii 189E-3±700E-6 44.5E-3±80E-6 20.5E0±3.74E0 12.5E0±2.34E0 12.4E3±501E0

C
o
m

p
.

pca-nsga-ii 144E-3±1.12E-3 46.4E-3±350E-6 112E0±0E0 69E0±5.77E0 191E3±23.5E3

cor-nsga-ii 154E-3±600E-6 45.1E-3±120E-6 20.5E0±3.74E0 12.5E0±2.34E0 12.4E3±501E0

E
-S

h
o
p

R
es

tr
ic

.

pca-nsga-ii 51.9E-3±840E-6 96.8E-3±370E-6 112E0±0E0 53.7E0±5.11E0 533E3±90E3

cor-nsga-ii 180E-3±1.09E-3 62.8E-3±150E-6 5.93E0±4.76E0 4.37E0±2.67E0 43.4E3±1.82E3

C
o
m

p
.

pca-nsga-ii 142E-3±670E-6 14.5E-3±20E-6 112E0±0E0 53.7E0±5.11E0 533E3±90E3

cor-nsga-ii 137E-3±840E-6 14.5E-3±60E-6 5.93E0±4.76E0 4.37E0±2.67E0 43.4E3±1.82E3

D
ru

p
al

R
es

tr
ic

.

pca-nsga-ii 47.1E-3±300E-6 81.4E-3±130E-6 112E0±0E0 69.7E0±5.21E0 27.1E6±5.16E6

cor-nsga-ii 83.7E-3±410E-6 68E-3±110E-6 1.1E0±305E-3 1.1E0±305E-3 7.94E6±296E3

C
o
m

p
.

pca-nsga-ii 138E-3±190E-6 12.3E-3±0E0 112E0±0E0 69.7E0±5.21E0 27.1E6±5.16E6

cor-nsga-ii 137E-3±10E-6 12.3E-3±0E0 1.1E0±305E-3 1.1E0±305E-3 7.94E6±296E3

S
m

ar
th

o
m

e

R
es

tr
ic

.

pca-nsga-ii 47E-3±300E-6 62.5E-3±100E-6 112E0±0E0 79.2E0±4.98E0 41.8E6±6.81E6

cor-nsga-ii 83.6E-3±420E-6 52.3E-3±90E-6 1.2E0±407E-3 1.17E0±379E-3 10.9E6±559E3

C
o
m

p
.

pca-nsga-ii 138E-3±270E-6 9.69E-3±0E0 112E0±0E0 79.2E0±4.98E0 41.8E6±6.81E6

cor-nsga-ii 137E-3±10E-6 9.69E-3±0E0 1.2E0±407E-3 1.17E0±379E-3 10.9E6±559E3

128

Table G.6: COR-NSGA-II Versus PCA-NSGA-II in Scenario 3D.

RPAlgorithm R-HV R-IGD # of Solutions # of Solutions
in the ROI

Execution
Time

Ja
m

es

R
es

tr
ic

.

pca-nsga-ii 13.1E-3±2.61E-3 98.5E-3±2.09E-3 11.3E0±31.5E0 6.1E0±15.9E0 22.2E3±1.99E3

cor-nsga-ii 120E-3±1.09E-3 57.7E-3±280E-6 67.2E0±2E0 11.1E0±1.66E0 4.45E3±511E0

C
o
m

p
.

pca-nsga-ii 40.8E-3±6.51E-3 74.9E-3±2.3E-3 11.3E0±31.5E0 6.1E0±15.9E0 22.2E3±1.99E3

cor-nsga-ii 207E-3±4.85E-3 39.4E-3±690E-6 67.2E0±2E0 13.2E0±1.88E0 4.45E3±511E0

C
A

S

R
es

tr
ic

.

pca-nsga-ii 13.5E-3±220E-6 92.4E-3±390E-6 112E0±346E-3 65.5E0±4.78E0 165E3±12.3E3

cor-nsga-ii 126E-3±2.22E-3 53E-3±400E-6 96.4E0±2.98E0 12.4E0±1.45E0 9.39E3±2.16E3

C
o
m

p
.

pca-nsga-ii 42E-3±640E-6 57.7E-3±410E-6 112E0±346E-3 65.5E0±4.78E0 165E3±12.3E3

cor-nsga-ii 182E-3±1.98E-3 33.8E-3±240E-6 96.4E0±2.98E0 12.5E0±1.66E0 9.39E3±2.16E3

W
S R
es

tr
ic

.

pca-nsga-ii 13.5E-3±180E-6 81.5E-3±260E-6 112E0±0E0 68.5E0±5.02E0 189E3±21.5E3

cor-nsga-ii 123E-3±990E-6 47.1E-3±200E-6 100E0±2.84E0 15.6E0±1.61E0 12.5E3±327E0

C
o
m

p
.

pca-nsga-ii 41.9E-3±510E-6 59E-3±320E-6 112E0±0E0 68.5E0±5.02E0 189E3±21.5E3

cor-nsga-ii 182E-3±1.99E-3 34.2E-3±180E-6 100E0±2.84E0 17.5E0±1.81E0 12.5E3±327E0

E
-S

h
o
p

R
es

tr
ic

.

pca-nsga-ii 13E-3±130E-6 79.7E-3±180E-6 112E0±0E0 56E0±5.95E0 540E3±92.4E3

cor-nsga-ii 23.4E-3±4.46E-3 71.6E-3±2.75E-3 29.6E0±11.6E0 21.8E0±6.42E0 44.9E3±2.18E3

C
o
m

p
.

pca-nsga-ii 40.8E-3±370E-6 61E-3±240E-6 112E0±0E0 56E0±5.95E0 540E3±92.4E3

cor-nsga-ii 66.5E-3±10.8E-3 53E-3±2.78E-3 29.6E0±11.6E0 21.8E0±6.42E0 44.9E3±2.18E3

D
ru

p
al

R
es

tr
ic

.

pca-nsga-ii 12.5E-3±40E-6 114E-3±40E-6 112E0±0E0 70.3E0±6.07E0 28.4E6±4.99E6

cor-nsga-ii 12.3E-3±0E0 114E-3±0E0 1E0±0E0 1E0±0E0 8.24E6±319E3

C
o
m

p
.

pca-nsga-ii 39.5E-3±120E-6 22.5E-3±10E-6 112E0±0E0 70.3E0±6.07E0 28.4E6±4.99E6

cor-nsga-ii 38.9E-3±0E0 22.5E-3±0E0 1E0±0E0 1E0±0E0 8.24E6±319E3

S
m

ar
th

o
m

e

R
es

tr
ic

.

pca-nsga-ii 12.6E-3±50E-6 135E-3±50E-6 112E0±0E0 79.3E0±5.11E0 41.5E6±6.22E6

cor-nsga-ii 12.3E-3±0E0 135E-3±0E0 1E0±0E0 1E0±0E0 11.5E6±911E3

C
o
m

p
.

pca-nsga-ii 39.5E-3±130E-6 17.3E-3±10E-6 112E0±0E0 79.3E0±5.11E0 41.5E6±6.22E6

cor-nsga-ii 38.9E-3±0E0 17.3E-3±0E0 1E0±0E0 1E0±0E0 11.5E6±911E3

129

APPENDIX H – RQ3 DETAILED RESULTS

Table H.1: Preferred and final subset of objectives for each participant.

Participant Preferred Objectives Final Subset of Objectives

#1 Number of Products, Cost Number of Products, Similarity, Cost

#2 Number of Products, Cost Number of Products, Cost

#3 Number of Products, Similarity, Cost Number of Products, Similarity, Cost

#4 Cost, Unimportant Features Cost, Unimportant Features

#5 Number of Products, Similarity, Cost, Unse-

lected Features

Number of Products, Similarity, Cost, Unse-

lected Features

#6 Number of Products, Similarity, Cost, Unse-

lected Features

Number of Products, Cost, Unselected Features

#7 Number of Products, Similarity, Cost, Unim-

portant Features

Number of Products, Cost, Unimportant Fea-

tures

#8 Alive Mutants, Similarity, Cost, Unselected

Features

Alive Mutants, Uncovered Pairs, Similarity,

Cost, Unselected Features

#9 Number of Products, Alive Mutants, Cost,

Unimportant Features

Number of Products, Alive Mutants, Similarity,

Cost, Unimportant Features

#10 Number of Products, Alive Mutants, Similarity,

Cost

Number of Products, Alive Mutants, Uncovered

Pairs, Similarity, Cost, Unimportant Features

#11 Number of Products, Alive Mutants, Uncovered

Pairs, Unimportant Features

Number of Products, Alive Mutants, Uncovered

Pairs, Similarity, Unimportant Features

#12 Number of Products, Alive Mutants, Uncovered

Pairs, Cost

Number of Products, Alive Mutants, Uncovered

Pairs, Cost

