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RESUMO 

 

Objetivo: Os efeitos de uma dieta rica em carboidratos refinados (dieta HC), assim 

como a suplementação de whey protein isolado em uma dieta rica em carboidratos 

refinados (dieta HCW) e de uma dieta basal normocalórica e normoglicídica (dieta 

BD), na expressão de Chrebpα e Chrebpβ no tecido adiposo e fígado são pouco 

entendidos. O objetivo deste estudo foi avaliar se uma dieta rica em açúcar refinado 

com ou sem a adição de whey protein isolado, ou uma dieta basal são capazes de 

influenciar a saciedade, induzir mudanças na expressão de Chrebp, alterar a 

infiltração de células imunes no tecido adiposo e modular o desenvolvimento de 

esteatose hepática em camundongos. 

Desenho e métodos: Camundongos machos de linhagem suíça (Mus musculus) 

foram divididos em três grupos com 10 animais em cada, e foram alimentados com 

três tipos diferentes de dietas: 1) dieta HC (grupo HC), 2) dieta HC mais whey 

protein isolado (grupo HCW) e 3) dieta basal (grupo BD), em um total de 12 

semanas de experimento. Ao fim das 12 semanas, foram mensurados o consumo 

alimentar e de energia, a expressão de Chrebpα e Chrebpβ no fígado e no tecido 

adiposo, a atividade enzimática da mieloperoxidase (MPO) no tecido adiposo, e 

também a análise histológica do fígado. 

Resultados: Observou-se que as dietas podem influenciar significativamente a 

expressão gênica em ambos os tecidos, e que, diferente do grupo HC, o grupo HCW 

foi protegido da esteatose hepática. Chrebpβ no fígado teve sua expressão 

influenciada pela atividade da MPO, provavelmente devido a mecanismos de 

inflamação sistêmica de baixo grau, gerados pelo aumento da adiposidade visceral. 

A expressão de Chrebpβ mostrou-se muito alta em relação a Chrebpα no fígado do 

grupo HC, um padrão que ocorre apenas em um ambiente rico em glicose, 

sinalizando uma potencial resistência à insulina nos tecidos periféricos. 

Conclusões: As dietas foram capazes de influenciar a expressão de Chrebp α e β, 

tanto no tecido adiposo quanto no fígado. A dieta HC parece induzir um aumento na 

infiltração de células imunes no tecido adiposo, e o grupo de HCW foi protegido da 

esteatose hepática. 

 

Palavras-chave: Fator de transcrição. Lipogênese de novo. Whey protein isolado. 
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ABSTRACT 
 

Objective: The effects of a high refined carbohydrate-containing diet (HC diet), as 

well as the supplementation of whey protein isolate in a high refined carbohydrate-

containing diet (HCW diet) and a basal normocaloric and normoglicid diet (BD diet), 

in the expression of Chrebpα and Chrebpβ in adipose tissue and liver are poorly 

understood. The objective of this study was to evaluate whether a high refined 

carbohydrate-containing diet with or without whey protein isolate supplementation, or 

a basal diet are able to influence satiety, induce changes in Chrebp expression, alter 

the infiltration of immune cells in adipose tissue and modulate the development of 

hepatic steatosis in mice. 

Design and methods: Male Mus musculus Swiss lineage mice were divided into 

three groups with 10 animals each, and fed three different types of diets: 1) HC diet 

(HC group), 2) HC diet plus whey protein isolated (HCW group) and 3) basal diet (BD 

group), in a total of 12 weeks of experiment. At the end of the experiment, food and 

energy consumption, Chrebpα and Chrebpβ expression in liver and adipose tissue, 

myeloperoxidase enzymatic activity (MPO) in adipose tissue, as well as liver 

histological analysis were measured. 

Results: It was observed that diets can strongly influence the gene expression in 

both tissues, and that the HCW group was protected from hepatic steatosis, but not 

HC group. Chrebpβ in the liver had its expression influenced by MPO activity, 

probably due to mechanisms of low-grade systemic inflammation generated by 

increased visceral adiposity. Chrebpβ expression was very high in relation to 

Chrebpα in the liver of the HC group, a pattern that occurs only in a glucose-rich 

environment, signaling a potential insulin resistance in the peripheral tissues. 

Conclusions: Diets were able to influence the expression of Chrebp α and β, both in 

adipose tissue and in the liver. The HC diet appears to induce an increase in the 

infiltration of immune cells into adipose tissue, and the HCW group was protected 

from hepatic steatosis. 

 

Key-words: Transcription factor. De novo lipogenesis. Whey protein isolate.  
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1 INTRODUCTION 
 

Obesity is a central risk factor for the development of various metabolic 

disorders, and may lead to comorbidities such as insulin resistance, systemic arterial 

hypertension (SAH) and dyslipidemias, a group of symptoms characteristic of the 

metabolic syndrome (MS) (MONDA et al., 2017). 

It is known that many of the pathological characteristics of an individual are 

influenced by their genetic makeup, which can result in metabolic changes and 

generate differentiated nutritional requirements. To aid in this complex problem, 

several methods of molecular analysis have emerged to elucidate the interactions 

between genes and nutrients, how nutrition influences the regulation of metabolic 

pathways, and how this regulation affects the development of diseases (TUCKER et 

al., 2015).  

One of the energy metabolism pathways is de novo lipogenesis (DNL), which 

generates lipids primarily from glucose. In obese individuals, DNL is deficient in white 

adipose tissue (WAT) because adipocytes are resistant to glucose uptake, mainly 

due to reduced glucose transporter 4 (Glut4) translocation from the cytoplasm to the 

cell membrane (TANG et al., 2016). In addition, liver DNL is increased in obese 

individuals, potentially generating fat accumulation and lipotoxicity. Interestingly, 

according to Cao et al. (2008), an increase in WAT DNL is capable of suppressing 

hepatic DNL. 

DNL is mainly coordinated by the transcription factor ChREBP (carbohydrate 

responsive element binding protein), which binds in its DNA response element and 

activates the expression of genes that favor lipogenesis (NELSON et al., 2014). 

The goal of this work was to investigate the modulation of Chrebp α and β 

expression in liver and adipose tissue, aiming to shed light upon a possible 

alternative pathway that leads to the increase of WAT DNL and insulin resistance in 

mice treated with high-refined carbohydrate-containing diet (HC), through the 

modulation of Chrebp expression, influenced by whey protein isolate (WPI) 

supplementation. 
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2 LITERATURE REVIEW 

2.1 OBESITY AND ASSOCIATED COMORBITIES 

The World Health Organization defines overweight and obesity as abnormal or 

excessive accumulation of fat that can harm health. The most commonly used 

measure for obesity, is the body mass index (BMI), which is defined as the weight in 

kilograms divided by the square of the person's height in meters (kg/m2) (WHO, 

2016). Although BMI is a benchmark and does not provide a direct measure of body 

fat content, many studies have shown that it correlates well with fat content in the 

vast majority of people. Adults with BMI between 25 and 30 are considered 

overweight, and those with BMI greater than or equal to 30 are considered obese 

(XIA e GRANT, 2013).  

The world prevalence of obesity is high, with 39% of adults over 18 years 

considered overweight and 13% considered clinically obese (WHO, 2016). This is a 

major problem that affects both developed and developing countries. 

In the Brazilian population, the weighted prevalence of abdominal obesity is 

39.9%, and it reaches the highest percentage (72.6%) in the urban population of the 

state of São Paulo (VIGIDAL et al, 2013). According to a survey released by the 

Ministry of Health in April 2017, one in five people in Brazil is overweight and the 

prevalence of obesity increased from 11.8% in 2006 to 18.9% in 2016 (MINISTÉRIO 

DA SAÚDE, 2017).  

According to Nelson et al. (2014) in the US population, 30% of adults are 

obese, and another 35% are overweight, according to the Body Mass Index (BMI). 

As reported by the Centers for Disease Control and Prevention (CDC), there has 

been a steady increase in adult obesity rates in the United States over the past two 

decades, from 19.4% in 1997 to 24.5% in 2004, 26,6% in 2007, 33.8% in 2008 and 

35.7% in 2010 and child obesity exceeds 17% in the United States (XIA e GRANT, 

2013). 

Obesity can lead to a significant increase in the chance of developing 

comorbidities such as type 2 diabetes mellitus, cerebrovascular accident, heart 

attack, and some types of cancer (NELSON et al., 2014). In addition, weight gain and 

body fat accumulation, characteristic of obesity, coupled with individual predisposition 

to visceral fat (ectopic fat in the liver, pancreas and heart) accumulation may lead to 
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the development of metabolic syndrome (HAN e LEAN, 2016). The metabolic 

syndrome is characterized by a group of interrelated cardiovascular disease and 

diabetes risk factors, such as hyperglycemia (insulin resistance), systemic arterial 

hypertension, high levels of serum triacylglycerols, reduction in levels of HDL-

cholesterol, and visceral obesity. Among these, hyperglycemia and visceral obesity 

are considered as key components for the development of the metabolic syndrome 

(VIDIGAL et al., 2013). 

2.2 NUTRIGENOMICS 

In view of metabolic changes, such as hyperglycemia (insulin resistance), 

systemic arterial hypertension, high levels of serum triacylglycerols, reduction in 

levels of HDL-cholesterol, and visceral obesity, some branches of science are 

concerned with developing efficient ways to avoid and/or reverse this situation, 

formulating strategies that lead, for example, to the improvement of tissue sensitivity 

to insulin, to the reestablishment of the normolipemic pattern (increase of HDL-c and 

reduction of triacylglycerols), and reduction of visceral obesity. 

Among these branches is nutrigenomics, which is characterized by 

investigating an area of nutrition using molecular tools to understand the responses 

to certain diets or nutrients (PAVLIDIS et al., 2015). Nutrigenomics evaluates the 

impact of dietary components on the genome, epigenome, transcriptome, proteome, 

and metabolome (MEAD, 2007). It is an emerging field that attempts to understand 

the role of nutrition in gene expression, bringing together the science of 

bioinformatics, nutrition, molecular biology, genomics, epidemiology and molecular 

medicine (NEEHA e KINTH, 2013).  

Nutrigenomics seeks to engender a molecular understanding of how nutrients 

(chemical molecules) affect health by altering gene expression. The fundamental 

concepts in this field of study are that the progression from a healthy to a chronic 

disease phenotype must occur through changes in gene expression, or through 

differences in protein and enzyme activities, and that nutrients directly or indirectly 

regulate these modifications. At the cellular level, nutrients may act as ligands for 

transcription factors, be metabolized and alter the concentrations of substrates 

and/or intermediates, and positively or negatively affect signaling pathways (FIGURE 

01) (KAPUT and RODRIGUEZ, 2004). 
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Figure 1 - Schematic representation of the fate and activities of nutrients in the cell. Nutrients 
can act directly as ligands for transcription factors; can be metabolized by primary or secondary 
metabolic pathways, thus altering the concentrations of substrates or intermediates can be involved in 
gene regulation or signaling; or change the signal transduction and signaling pathways. 

 

 
Source: adapted from Kaput and Rodriguez (2004). 
 

2.3 DE NOVO LIPOGENESIS IN METABOLIC BALANCE 

It has been demonstrated by Farese et al. (2012); Rosen and Spiegelman 

(2006); Virtue and Vidal-Puig (2010) that lipid metabolism in white adipose tissue 

(WAT) and liver contributes to metabolic homeostasis. One of the forms of regulation 

performed by these tissues is called de novo lipogenesis (DNL), which is 

characterized by the synthesis of fatty acids from non-lipid molecules. The WAT DNL 

includes uptake of glucose from the bloodstream and conversion of citrate (glucose 

derivative) into acetyl-CoA (by ATP-citrate lyase (ACL)), which is subsequently 

converted to malonyl-CoA (by acetyl-CoA carboxylase (ACC)), which in turn can be 
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converted to palmitate (by fatty acid synthase (FASN)), which may be modified by 

elongases and desaturases to produce other lipids (FIGURE 2) (TANG et al., 2016). 
 

Figure 2. Schematic representation of white adipose tissue DNL and palmitoleic acid 
biosynthesis.  Glucose-6-P, glucose-6-phosphate; TCA Cycle, tricarboxylic acid cycle; ACC, citrate 
lyase; FAS, fatty acid synthase, NADPH, nicotinamide adenine dinucleotide phosphate in reduced 
form; SCD-1, stearoyl-CoA desaturase. 

 

 
Source: Adapted from De Souza et al. (2018) 
 

In rodent studies it was observed that in obese animals there was a reduction 

in WAT DNL and when DNL was restored in this tissue, there was a reversion in 

obesity induced insulin resistance (CAO et al., 2008 e HUO et al., 2012). In contrast, 

in obese rats and humans, DNL is increased in the liver, where it can cause 

lipotoxicity, insulin resistance, non-alcoholic fatty liver disease (NAFLD), and 

atherogenic dyslipidemia (POSTIC e GIRARD, 2008). Interestingly, there is evidence 

that increased WAT DNL can suppress hepatic DNL and, as a consequence, reduce 

liver fat accumulation (CAO et al., 2008).  

Increased WAT DNL is associated with increased PPARγ (Peroxisome 

Proliferator Activated Receptor γ) activity, probably due to the formation of binding 

lipids, and is associated with improved insulin sensitivity and thermogenesis (WITTE 
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et al., 2015). Moreover, according to Souza et al. (2017), in mice fed with a high-fat 

diet, palmitoleic acid supplementation (a lipocin produced from WAT DNL) stimulated 

the uptake of glucose in liver through activation of AMPK (AMP-activated protein 

kinase) and FGF-21 (Fibroblast growth factor 21), dependent on PPARα 

(Peroxisome Proliferator Activated Receptor α), which are important molecules in the 

regulation of insulin sensitivity and energy metabolism. In contrast, the reduction of 

DNL in WAT impairs the synthesis of lipids, such as palmitoleic acid, which generate 

beneficial metabolic effects such as anti-inflammatory and improved insulin and 

glucose sensitivity (DE SOUZA et al, 2018) (FIGURE 3). In addition, when the 

obesity-induced condition of insulin resistance is established, WAT secretes 

molecules that antagonize the effects of insulin, such as retinol-4 binding protein 

(RBP4), tumor necrosis factor α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-

1β), which promote systemic inflammation. Moreover, it reduces the secretion of 

molecules related to the improvement of insulin sensitivity, such as adiponectin 

(SMITH e KAHN, 2016). 
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Figure 3 - Schematic representation of Immune and metabolic effects of palmitoleic acid in 
different tissues. GLUT, glucose transporter; HIF, hypoxia inducible factor; IL, interleukin; LDL, low 
density lipoprotein; MCP, monocyte chemoattractant protein; NAFLD, nonalcoholic fatty liver disease; 
NFκB, nuclear factor kappa b; TLR, toll-like receptor; TNF, tumor necrosis factor. 

 

 
Source: De Souza et al. (2018) 

2.4 DE NOVO LIPOGENESIS REGULATION 

An important transcription factor that regulates DNL and carbohydrate 

metabolism, expressed primarily in the liver, adipose tissue and kidneys, is ChREBP 

(Carbohydrate Responsive Element Binding Protein) (NELSON et al., 2014). This 

transcription factor has leucine zipper and basic helix-loop-helix binding motifs. The 

proposed mechanism of functioning consists of its dephosphorylation in the cytosol, 

causing its entry into the nucleus, where it is dephosphorylated again (both reactions 

catalyzed by phosphoprotein-phosphatase 2A (PP2A)), to form heterodimers with the 
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protein MLX (Max-like protein X), and then bind to the carbohydrate response 

element (ChoRE), which is composed of two E-boxes separated by five base pairs. 

The ChREBP/MLX heterodimer controls lipid and carbohydrate metabolism by 

regulating the expression of genes responsible for the coding of glycolytic, 

gluconeogenic and lipogenic enzymes, such as pyruvate kinase, the catalytic subunit 

of glucose-6-phosphatase, fatty acid synthase and acetyl-CoA carboxylase, and also 

by the translocation of glucose transporters 2 and 4 (Glut2 and Glut4) (IIZUKA, 

2013). 

The gene encoding the ChREBP transcription factor was first described by 

Meng et al. (1998) and was best defined by De Luis et al. (2000), while investigating 

a chromosomal deletion characteristic of the Willians-Beuren syndrome, describing a 

gene located in the 7q11.23 region, designated by the authors of WBSCR14 

(Willians-Beuren Syndrome Chromosome Region 14), with 33 kb, 17 exons and 

homology with a region of mice chromosome 5 (85% similarity with humans), with 

higher equivalences in the amino and carboxy terminal regions, where the main 

functional domains are located. Currently, the correct gene name is MLXIPL (MLX-

Interaciting Protein-Like), due to the dependence of ChREBP on dimerizing with the 

MLX (Max-Like Factor X) protein in the cell nucleus to connect to ChoRE 

(FILHOULAUD et al., 2013). But, in the literature, it is most commonly named 

ChREBP. 

There are two isoforms of ChREBP, which are called ChREBPα (found in the 

nucleus and in the cytosol) and ChREBPβ (found only in the nucleus) (IIZUKA, 

2013). The ChREBPβ isoform was discovered by Herman et al. (2012) while 

investigating the mechanism by which the transcription factor modulates its own 

transcription. The authors found a ChoRE sequence at 17 kb upstream of the only 

known transcription start site of Chrebp (exon 1a) in mice (defined by two E-boxes 

(CACGTG) separated by five nucleotides), and an E-box of 255 base pairs upstream 

of this newly discovered ChoRE, suggesting an alternative promoter region and first 

exon (exon 1b) (FIGURE 3). The existence of mRNA's transcribed from this new 

promoter revealed the existence of a more compact isoform generated by alternative 

splicing (exon 1b to exon 2), removing exon 1a but including all the other 15 exons. 

However, the translational initiation site (ATG) of the alternative isoform is located in 

exon 4 (instead of the exon 1a removed in the splicing process), generating a 
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polypeptide of 687 amino acids (ChREBPβ), instead of 854 amino acids (ChREBPα ) 

(FIGURE 4). 
Figure 4 - E-box and ChoRE conserved in the MLXIPL gene.  

 
Source: Herman, Mark A. et al. (2012). 

 

FIGURE 5 - ChREBPα and ChREBPβ genes structure model with indication of splice sites 
and translation start sites (ATG).  

 

Source: Herman, Mark A. et al. (2012). 
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ChREBPα has a glucose detection module (GSM), which contains a low 

glucose inhibitory domain (LID) and a conserved glucose response element 

(GRACE). GSM has a conserved Mondo region (MCR), which is composed of five 

distinct subdomains, MCR I to V, among which MCR I to IV correspond to the LID 

region. ChREBPα also contains a nuclear localization signal (NLS) in MCR IV, and 

two nuclear export signals (NES1 and NES2) connected by the nuclear export factor 

(Crm1). MCR III is constitutively bound to a 14-3-3 protein, which is required for 

glucose response, and also contributes to the cytoplasmic localization of the 

transcription factor. ChREBP-β, on the other hand, has only the GRACE region 

(FIGURE 5). Therefore, the two isoforms perceive glucose concentrations through 

distinct mechanisms. ChREBPα isoform is regulated by insulin, hepatic X receptor 

and thyroid hormones (not by glucose), whereas ChREBPβ isoform is regulated 

directly by glucose concentration, and the two isoforms are regulated by different 

promoters (IIZUKA (2013). In addition, the expression of Chrebpβ requires the 

transactivation of Chrebpα, however, ChREBPβ isoform predominantly responds to 

changes in glucose flux mediated by Glut-4, and in adipose tissue is the most potent 

isoform in the stimulation of DNL. As a consequence, ChREBPβ is a potential target 

for the treatment and prevention of insulin resistance and obesity-associated 

comorbidities (HERMAN et al., 2012). ChREBP protein structure and regulation upon 

nutritional and hormonal signals is shown in figure 7. 
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Figure 6 - Schematic representation of the ChREBPα protein. Serines 196 and 626 and threonine 

666 are phosphorylation sites for the cAMP-dependent protein kinase (PKA), which inhibits the activity 

of ChREBPα. The same amino acids are dephosphorylation sites for the protein phosphatase 2A 

(PP2A), induced by xylulose-5-phosphate (intermediate molecule of the pentoses phosphate cycle), 

which allows the entry of the protein into the nucleus and binding to the response element a 

carbohydrates (chore). Lysine 672 is an acetylation site for the p300 coactivating histone 

acetyltransferase, which promotes the binding of ChREBPα to DNA. Acetylation by p300 is down 

regulated by salt-inducible kinase 2 (SIK2), which is activated under malnutrition conditions. SIK2 is 

inhibited by a lipid-rich diet. NES: nuclear export signal; NLS: nuclear localization signal; bHLHZ: 

leucine zipper and basic helix-loop-helix type binding motif. The ChREBPβ protein has only the 

GRACE region of the glucose detection module (GSM).  

 

 
Source: Iizuka (2013). 
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Figure 7 - Schematic representation of ChREBP protein structure and its regulation upon 
nutritional and hormonal signals. Lys, lysine; Ser, serine; PKA, protein kinase A, AMPK, AMP 

dependent kinase; PUFAs, polyunsaturated fatty acids; Ac, acetylation; P, phosphorylation. 

 

 
Source: Abdul-Wahed et al. (2017). 

 

Classical insulin signaling for Glut-4 translocation into the adipocyte is initiated 

by phosphorylation of a tyrosine on the insulin receptor substrate (IRS-1), which 

activates a cascade of phosphorylation reactions beginning with the activation of 

phosphoinositide-3-kinase (PI3K) to convert phosphatidylinositol-4,5-bisphosphate 

(PIP2) to phosphatidylinositol-3,4,5-triphosphate (PIP3) on the membrane. When 

bound to PIP3, protein kinase B (PKB, also called Akt, in this case the Akt2 isoform) 

is phosphorylated and activated by other protein kinases: mTORC2 and PDK1 

(mTORC2 phosphorylates Akt at the hydrophobic sites (S473 in Akt1 and S474 in 

Akt2) while PDK1 phosphorylates akt in the kinase domains (T308 in Akt1 and T309 

in Akt2). Akt2, in turn, phosphorylates its 160 kDa substrate (AS160) and by inhibiting 

it facilitates the movement of Glut4 from internal vesicles to the plasma membrane, 
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increasing the uptake of glucose by the cell (KLIP et al., 2014; NELSON et al., 2014 

e TANG et al., 2016).  

Mammalian Target of Rapamycin (mTOR) is a protein kinase with important 

intracellular signaling functions both in health and disease processes. mTOR is a 

large multi-domain protein and can bind to several proteins to form two distinct 

complexes called mTOR complexes 1 and 2 (mTORC1/2), which differ in protein 

components, substrate specificity, and regulation (WANG e PROUD, 2015). Both 

isoforms are stimulated by amino acids, hormones and growth factors (TATO et al., 

2011). mTORC1 contains a protein called Raptor, which allows it to phosphorylate 

substrates such as the ribosomal proteins S6 kinases (S6Ks), and have its effect 

blocked by rapamycin. mTORC2 contains Rictor instead of Raptor, and 

phosphorylates a distinct set of substrates. This includes regulatory sites for a family 

of protein kinases such as Akt (FIGURE 6). Rapamycin does not directly inhibit 

mTORC2 function, but may impair it in long-term treatments (WANG e PROUD, 

2015). 
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Figure 8 - Schematic representation of mTOR complexes 1 and 2. IRS 1/2, insulin receptor 
substrate 1/2; PRAS40, proline-rich Akt substrate of 40 kDa; mLST8, Target of rapamycin complex 
subunit LST8; S6K, Ribosomal protein S6 kinase; 4E-BP1, eukaryotic translation initiation factor 4E-
binding protein 1; TSC 1/2, tuberous sclerosis complex 1/2; DEPTOR, DEP domain-containing mTOR-
interacting protein; Raptor, regulatory-associated protein of mTOR; AKT, protein kinase B; Protor, 
rictor-binding component of mTOR complex-2; mSin1, mammalian SAPK interacting protein 1; FoxO, 
Forkhead box O; SGK, serine/threonine-protein kinase SGK; PKC-α, protein kinase c alpha; RICTOR, 
rapamycin-insensitive companion of mammalian target of rapamycin. 
 

 
Source: Adapted from Lamming et al. (2012) 

 

To better understanding mTORC2 role in DNL, Tang et al. (2016) generated 

Rictor protein absent white preadipocytes to analyze the acute consequences of 

mTORC2 inactivity on cell differentiation and function. Although they differentiated 

normally, when in a glucose-rich culture condition, Rictor-deficient cells (Rictor-iKO) 

failed to increase the expression of Chrebpβ, and also to increase the expression of 

lipogenic enzymes mRNA's (ACLY, ACC and FASN), in congruence with the 

reduction of DNL. In addition, Rictor-iKO cells showed higher insulin resistance, and 

lower ability to convert glucose to free fatty acids (FFA) and triacylglycerols (TAG). 

One of the proposed mechanisms is that, at least in part, mTORC2 promotes the 

expression of Chrebpβ and DNL by controlling the entry of glucose into the cell. 

Interestingly, phosphorylation of AS160 is normal in the Rictor-iKO adipocytes, 

apparently not interfering with the classical mechanism of translocation of Glut-4 to 

the cell membrane, suggesting there must be other mechanisms by which mTORC2 
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regulates DNL. Despite uncertainty about regulatory mechanisms, it is possible to 

infer that mTORC2 in the WAT, acts as an extrahepatic nutrient sensor that relays 

nutritional body status to the liver to control insulin sensitivity and glucose 

homeostasis, possibly through signaling performed by bioactive lipids resulting from 

DNL. Interestingly, it has been demonstrated by Tato et al. (2011) that in vitro cell 

stimulation with a mixture of essential amino acids, non-essential amino acids and L-

glutamine, triggers the phosphorylation of Akt serine 473 via mTORC2/PI3K class I, 

revealing for the first time the stimulation of mTORC2 by amino acids. This result is in 

accordance with the experiment of Morato, Priscila e Neder et al. (2013), in which the 

consumption of whey protein hydrolysate (WPH) for 9 days in rats resulted in a 

greater translocation of Glut-4 to the cell membrane of muscle cells concomitantly 

with the significant increase in the phosphorylation of the Akt serine 473, with no 

change in serum concentration of insulin. In addition, the authors found insulin 

independent Glut-4 translocation, in agreement with Tang et al. (2016). The results 

also coincide with the findings of Morato et al. (2013), in which the dipeptide L-leucyl-

isoleucine (apparently the most insulinogenic fraction of WPH) increased the 

phosphorylation of the Akt 473 serine, and L-isoleucine increased Glut-4 

translocation to the rat sarcoplasmic membrane in an insulin-independent manner , 

reducing serum glucose. 

Considering these literature findings, we infer that the use of whey protein can 

modulate the activity of mTORC2, which controls the expression of Chrebpβ in the 

WAT, partly via regulation of Glut-4, increasing glucose uptake and positively 

modulating DNL in this tissue, thereby reducing glycemic levels and hepatic 

overload. This hypothesis is in agreement with Hamad et al. (2011), who observed 

oral administration of WPH, WPI and some peptides from whey protein resulted in 

reduced production of triglycerides in the liver and improved glycemia in rats with 

fatty liver disease induced by a high carbohydrate diet. Therefore, oral administration 

of WPI may help in the treatment of metabolic syndrome (FIGURE 7 and FIGURE 8). 
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Figure 9 - Schematic representation of the possible mechanism of regulation of de novo 
lipogenesis via WPI/mTORC2/ChREBPβ and its consequent metabolic effects. AS160, AKT 
subunit of 160 kDa; IR, insulin receptor; PDK1, phosphoinositide-dependent kinase 1; TCA cycle, 
tricarboxylic acid cycle; ACLY, ATP Citrate Lyase; ACC, acetyl-CoA carboxylase; FASN, fatty acid 
synthase; Elovl6, elongation of very long chain fatty acids protein 6; T308/9, threonine 
308/9; S473/4, serine 473/4; P, phosphorilation. 
 

 
Source: Adapted from Tang et al (2016). 
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Figure 10 - Simplified schematic representation of the possible mechanism of regulation of de 
novo lipogenesis via WPI/mTORC2/ChREBPβ and its metabolic effects. WPI, whey protein 
isolate; DNL, de novo lipogenesis. 

 
Source: Present study. 
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3 JUSTIFICATION 
 

Due to global increase in obesity and metabolic syndrome prevalence, 

research is needed to assist in the development of effective treatments that help 

reestablish homeostasis in affected individuals, in order to protect them from the 

deleterious metabolic effects generated by these pathologies. Nutrigenomics is a 

fundamental tool for this process, since it seeks to understand the molecular basis of 

nutrients and their genetic and epigenetic targets interactions and their role in 

biological processes modulation, aiming to generate efficient treatment and also the 

maintenance of health status. Based on the literature, it was possible to infer that oral 

intake of whey protein could regulate Chrebpβ expression in the WAT of insulin 

resistant animals, through the activation of mTORC2 (target of mammalian rapacin 

complex 2), thus increasing the use of glucose by adipocytes, culminating in the 

reduction of glycemia and hepatic de novo lipogenesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



29 
 

 

4 OBJECTIVES 

4.1 GENERAL OBJECTIVE 

To investigate the effect of oral whey protein isolate intake on the modulation 

of Chrebp expression in WAT and liver tissues and if the supplementation modulates 

satiety, infiltration of immune cells into adipose tissue and generate protection 

against hepatic steatosis in mice submitted to a high refined carbohydrate-containing 

diet capable of inducing increased visceral adiposity, inflammation, insulin resistance 

and hypertriglyceridemia. 
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5 MATERIALS AND METHODS 

5.1 ANIMALS AND DIETS 

The experiment was approved by the Ethics Committee on the Use of 

Animals, Biological Sciences Sector, Universidade Federal do Paraná (no. 

23075.006828/2018-31). Male Mus musculus Swiss lineage mice, 3–4 weeks old, 

were maintained at 23⁰C, with a 12 h light–12 h dark cycle (06.00–18.00 hours). The 

animals had ad libitum access to food and water throughout the trial (MCALLAN et 

al., 2013). The high refined carbohydrate-containing diet was prepared daily in the 

pharmacology laboratory, department of pharmacology, Universidade Federal do 

Paraná, and the basal diet was purchased from the vivarium of Universidade Federal 

do Paraná. The experimental diets consisted in a basal diet, a high refined 

carbohydrate-containing diet and a high refined carbohydrate-containing diet with 

whey protein isolate (FIGURE 11). The basal diet (BD; normocaloric and 

normoglycidic) (Presence® InVivo) totalized (for 100g) 314 kcal, of which 46.5g of 

carbohydrates, 23g of proteins, 4g of fats and 5g of dietary fiber. The high refined 

carbohydrate-containing diet (OLIVEIRA; MENEZES-GARCIA et al., 2013) (HC: 45% 

energy as condensed milk (Nestle®) consisted of 10% energy as sugar 

(Caravelas®); 45% energy as basal diet (Presence®), totaling (for 100g) 325.3 kcal, 

of which 55.68g of carbohydrates, 13.5g of proteins, 5.4g of fats and 2.25g of dietary 

fiber). The high refined carbohydrate-containing diet with whey protein isolate (HCW; 

45% energy as condensed milk; 10% energy as sugar; 45% energy as basal diet + 

15.74g of WPI (BlackSkull) totalized (for 100g) 337.17 kcal, of which 48.99g of 

carbohydrates, 23.49g of proteins, 5.25g of fats and 1.94g of dietary fiber). The diets 

HC, HCW and BD were given to groups of animals named HC, HCW and BD (10 

animals per cage), respectively, during the 12 weeks of study. 

 



31 
 

 

Figure 11 - Nutritional table of the diets containing the amounts of energy, carbohydrates, 
proteins, fats and fibers. (A), basal diet; (B), high refined carbohydrate-containing diet; (C), high 
refined carbohydrate-containing diet with whey protein isolate. 

 

 
Source: Present study. 

5.1.1  EXPERIMENTAL PROTOCOL 

The application of diets was performed on group-housed mice (ten per home 

cage) following a 1-week acclimatization period, during which the animals were fed a 

basal diet. 

For 12 weeks, three groups of mice were fed the HC, the HCW or the BD diet 

(n = 10). Body weights were measured weekly. The mean energy intake was 

calculated based on the amount of food consumed by each group daily during the 

study period. At week 12, blood was collected through the tail vein to measure the 

glycemia of the animals using the Accu Chek Performa Kit (Roche®).  

After blood collection, the animals were euthanized by cervical dislocation 

without the use of anesthesia to avoid the influence of the drugs over gene 

expression (AL-MOUSAWI et al., 2010). Samples of the perigonadal adipose tissue 

(WAT) and liver were collected and fixed in paraffin to make histological slides, and 
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parts of both organs were stored in RNAlater (Thermo Fisher Scientific®) at -80 ⁰C 

according to the manufacturer instructions, for further extraction of mRNA's and 

retrotranscription. 

5.1.2  HISTOLOGICAL EVALUATION 

Collected liver and adipose tissue samples were fixed in ALFAC solution (80% 

ethanol, 40% formalin and glacial acetic acid). The tissues were then dehydrated, 

embedded in paraffin, and sectioned into 5 μm slices. Slices were hydrated in xylene 

and a descending sequence of ethanol, then stained with hematoxylin and eosin. Fat 

accumulation in liver sections was observed according to Brunt et al. (1999). To 

evaluate hepatic steatosis, slices were photographed at a magnification of 40× with 

an Olympus microscope DX51 endowed with an Olympus DP72 camera.  

5.1.3  MYELOPEROXIDASE ENZYMATIC ACTIVITY ASSAY 

The biopsies of adipose tissue with an average weight of 40 milligrams were 

added in 0.75 ml of 80 mM PBS pH 5.4 containing 0.5% of HTBA and homogenized 

(45 s at 0 °C) in a motor-driven homogenizer. The homogenate was decanted into 

microtubes and added to 0.75 ml of buffer previously described. The samples (1.5 

ml) were placed in microfuge tubes and centrifuged at 11.200 ×g at 4 °C for 20 min. 

Triplicates of 30 μl of the supernatant were placed on a 96-well plate, to which 200 μl 

of a mixture containing 100 μl of 80 mM PBS pH 5.4, 85 μl of 0.22 M PBS pH 5.4 and 

15 μl of 0.017% hydrogen peroxide into each well was subsequently added. The 

addition of 20 μl of 18.4 mM TMB in dimethylformamide promoted reaction 

initialization. The plate was then incubated at 37 °C for 3 min and the reaction 

stopped by addition of 30 μl of 1.46 M sodium acetate, pH 3.0, as described by  

Mendes et al. (2012). The enzymatic activity was determined colorimetrically using a 

plate reader (EL808; BioTech Instruments, INC) set to measure absorbance at 630 

nm and expressed as OD/Biopsy. 

5.1.4  RNA EXTRACTION AND COMPLEMENTARY DNA SYNTHESIS 

Total RNA was isolated from hepatic and perigonadal adipose tissues with 

mirVana™ PARIS™ Kit, according to the manufacturer instructions. To remove any 
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potential genomic DNA contamination, a DNase treatment (DNase I, RNase-free, 
Thermo Scientific™) was performed after RNA isolation. Complementary DNA was 

synthesized from 1μg of total RNA (diluted in a solution of 10μL of DNase I, RNase-

free, Thermo Scientific™) using the High Capacity cDNA Reverse Transcription Kit 

(20 μL reaction) (Applied Biosystems™), according to the manufacturer instructions. 

A parallel reaction without the inclusion of the MultiScribe™ Reverse Transcriptase 

enzyme was also performed as a negative control. 

5.1.5  REAL-TIME PCR 

The amplification of complementary DNA was performed in ViiA 7 Real-Time 

PCR System (Applied Biosystems™) using 0.6 μL (10 μM) forward and reverse 

primers (Eurofins Genomics™), 4.4 μL complementary DNA, 5.0 μL EvaGreen® 

qPCR System ROX Free Master kit (Biotium™), and 0.2 μL of ROX reference dye 

(Thermo Scientific™), according to the manufacturer instructions. Real-time PCR 

conditions were as follows: hold stage (50oC for 2 min, followed by 95oC for 10 min) 

followed by forty cycles (PCR stage) at 95oC for 15 s; 60oC for 60 s. The primer 

sequences are given in Table 1. Data obtained as Ct values were normalized to the 

expression of GAPDH according to ΔΔCt = ΔCt target gene - ΔCt housekeeping 

gene. For both the adipose tissue and the Liver, GAPDH have been shown to be the 

appropriate housekeeping gene. The relative gene expression was calculated using 

2- ΔΔCt , and it is shown in comparison with the control group and between treated 

groups. 
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Table 1. Sequences of primers used for real-time PCR. GAPDH, glyceraldehyde-3-phosphate 

dehydrogenase; ChREBPα, carbohydrate responsive element-binding protein alfa; ChREBPβ, 

carbohydrate responsive element-binding protein beta. 

Genes Forward primer (5`—3`) Reverse primer (5`—3`) 
 
GAPDH 5`-tgtgtccgtcgtggatctga-3` 5`-cctgcttcaccaccttcttga-3` 
ChREBPα 5`-cgacactcacccacctcttc-3` 5`-ttgttcagccggatcttgtc-3` 
ChREBPβ 5`-tctgcagatcgcgtggag-3` 5`-cttgtcccggcatagcaac-3` 
Source: Present study. 
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6 STATISTICAL ANALYSIS  

Data are shown as means and standard deviation (SD). Statistical analysis 

was performed by two-tailed, unpaired, Student’s t-test for the variables with normal 

distribution and Mann-Whitney U test for non-parametric variables. Multiple 

regression analysis was used to find independent variables exerting influence over 

gene expression. The normality of the variables was examined by the Kolmogorov-

Smirnov test with Lilliefors correction. Statistical significance adopted was 0.05 (5%).  
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7 RESULTS AND DISCUSSION 

7.1 GENE EXPRESSION, HISTOLOGICAL ANALYSIS AND MYELOPEROXIDASE 
ENZYMATIC ACTIVITY IN ADIPOSE AND LIVER TISSUES 

As expected, the dietary pattern of each group was able to significantly 

influence gene expression in both tissues: adipose Chrebpα (p = 0.0066; intercept, p 

= 0.0034)  Chrebpβ (p = 0.0017; intercept, p = 0.026) and liver Chrebpα (p = 0.023; 

intercept, p = 0.012), which occurred independently of body weight or of MPO 

enzymatic activity, with the exception of Chrebpβ expression in the liver, which had 

its expression influenced by MPO activity  (p = 0.037; intercept, p = 0.0074), 

In adipose tissue, gene expression of both isoforms was significantly higher in 

the control group compared to the two treated groups (Table 4). This shows that a 

diet low in refined sugar actually favors DNL in this tissue, according to our initial 

hypothesis. However, we found no significant differences in gene expression 

between the treated groups (HC and HCW), and therefore we can state that whey 

protein isolate supplementation does not appear to significantly alter the expression 

of these genes in adipose tissue in relation to HC group, which had the same diet 

rich in refined sugar, but without the addition of WPI. Although there was no 

statistical difference, there was a greater expression of Chrebpα and Chrebpβ in the 

adipose tissue of the HC group compared to the HCW group, a finding that 

corresponds to the inverse of our initial hypothesis. Thus, we confirm that both diets 

are able to directly influence gene expression, but the mechanisms by which this 

expression has been altered remain an enigma.  

A limiting factor of our work was that the lineage of mice used was 

heterogenetic, which may have generated a different responsiveness among 

individuals due to variations in their genotypic constellation. In addition, we can infer 

that molecular signaling of excess sugar, which probably generated some degree of 

insulin resistance (HENRIQUES et al, 2013), was apparently "stronger" than the 

signaling of amino acids in the activation of mTORC2 and the consequent increase in 

the alternative glucose uptake pathway in adipocytes, which would lead to an 

increased gene expression, and consequently increased DNL. 
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Table 2. Mean gene expression in adipose and liver tissues in each group.  

Group Gene name Tissue 
Mean  gene 
expression (SD) 

Ratio (α:β) -
Liver 

Ratio (α:β) - 
Adipose tissue 

BD ChREBPα Liver 1.8770 ** 1.9517 1.8770:1.6860 
Adipose 0.8453 ** 0.5510 0.8453:1.3874 

ChREBPβ Liver 1.6860 2.0427 
Adipose 1.3874 ** 0.9586 

HC ChREBPα Liver 0.2313 0.3670 0.2313:1.3501 
Adipose 0.1816 0.3948 0.1816:0.0338 

ChREBPβ Liver 1.3501 1.0086 
Adipose 0.0338 0.0486 

HCW ChREBPα Liver 0.6751 0.2770 0,6751:0.5718 
Adipose 0.0265 0.0282 0.0265:0.0076 

ChREBPβ Liver 0.5718 0.2767 
    Adipose 0.0076 0.0071     

Table 4: Mean comparisons were made considering the same genes in each tissue between different 
groups. SD = Standard Deviation. 
Mean values with ** were significantly different (P<0.05). 
Source: Present study. 
 

An interesting finding was that at first, whey protein supplementation in the 

HCW group had a protective effect against hepatic steatosis, corroborating our initial 

hypothesis. It can be seen in figure 9 that the HCW group did not develop hepatic 

steatosis, while the HC group developed it. From this, we could hypothesize that 

supplementation had a protective effect, however, it is difficult to determine whether 

supplementation was determinant in this process, whether it was the caloric 

restriction (almost 2000 Kcal) in relation to the HC group, or (and more likely) 

whether supplementation plus caloric restriction generated overlapping effects on 

liver protection. It is known that caloric restriction is able to protect obese mice from 

hepatic steatosis (KIM et al. 2016). Therefore, we can state that caloric restriction 

plus WPI supplementation can protect the liver of mice from hepatic steatosis while 

consuming a diet rich in refined sugar. 
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Figure 12.  Liver histological slides taken from the BD (A), HC (B) and HCW  (C) groups. Hepatic 
steatosis can be noticed by the white spaces in the B image, which represent fat accumulation. 
 

 
Source: Present study. 

 

Gene expression in the liver had very interesting results. First, we found a 

significant difference in Chrebpα gene expression between BD and HC groups, in 

which the mean expression in the HC group was lower, which initially seemed 

confusing. As observed in figure 9, we found the presence of hepatic steatosis in the 

animals of the HC group, but not in the BD group. Thus, in the first view they appear 

contradictory results, because we expected a higher expression of Chrebpα in the 

livers of the HC group that would culminate in increased DNL, which would result in 

hepatic steatosis.  

However, gene expression of Chrebpβ has been shown to be very high in 

relation to Chrebpα in the livers of HC group (1.3501:0.2313 ratio) (Table 4). It is 

important to note that this pattern occurs exclusively in the HC group, a fact that 

according to Zhang et al. (2015) occurs only in a glucose-rich environment where 
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there is a rapid increase in Chrebpβ gene expression and only a small change in 

gene expression of Chrebpα, at least in rodent models. For instance, in INS-1–

derived 832/13 cells, the ChREBPβ-to-ChREBPα ratio was 1:8 in low glucose and 

rapidly increased to 1:0,2 after 18 h in a high glucose environment (15 to 20 mmol/L). 

Therefore, we believe that in the HC group there was a greater abundance of 

glucose in the liver, in part due to the reduced glucose uptake in the adipose tissue of 

the animals (inferred by the low gene expression of the Chrebpβ in adipose tissue, 

which is directly influenced by the concentration of glucose). Interestingly, there was 

no significant difference in the mean serum glucose from the groups at the end of the 

experiment (data not shown), but most likely there were insulin variations 

(unmeasured data), corroborating the findings of Oliveira et al. (2013). 

We also noticed that in the HC group there is a greater discrepancy between 

the mean values of the gene expression of the isoforms α and β in the liver, which 

can be justified by the fact that Chrebpβ, initially induced through Chrebpα, can in 

turn inhibit Chrebpα  expression through a negative feedback loop (ABDUL-WAHED 

et al, 2017), and as there was an overexpression of Chrebpβ in the HC group it was 

expected to find greater inhibition of Chrebpα  Interestingly, although the HCW group 

also consumed a diet rich in refined sugar, there was no such disproportion in gene 

expression. At least two possibilities may be considered to explain this positive 

modulation (lower hepatic DNL) in the HCW group. The first is that WPI 

supplementation led to a better utilization of glucose in the cytoplasm of hepatocytes, 

through anti-inflammatory mechanisms and improvement of insulin sensitivity (GO et 

al. (2018) and McAllan et al. (2013)). The second is that the caloric restriction per se 

generated a reduction in glucose uptake in hepatocytes due to the lower availability 

by the food consumption itself, generating a less lipogenic environment. However, it 

is most likely that these two conditions worked together for the modulation of gene 

expression. Despite the interesting findings, there are some complications, such as 

the fact that the regulation of Chrebpβ does not only depend on the α isoform, but 

also on other factors. For example, the expression of the β isoform demonstrates a 

clear circadian rhythm, unlike the α isoform (MONTAGNER et al. 2016). 

Another factor that attracted attention was an apparent influence of MPO 

activity on adipose tissue on Chrebβ expression in the liver (p = 0.037; intercept, p = 

0.0074). We know that as adipose tissue increases in size, there is a chronic and 

systemic increase of low-grade inflammation in these individuals, due to increased 
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infiltration of immune cells in this tissue and increased production of pro-inflammatory 

cytokines. This chronic inflammation seems to play a fundamental role in 

comorbidities associated with obesity, such as insulin resistance (DAM et al, 2016). 

Like Oliveira et al. (2013), we observed in the HC group an increased visceral 

adiposity, which occurred independently of weight gain (data not shown). It is known 

that the MPO enzyme is produced by neutrophils, and is a marker of the infiltration of 

these cells into adipose tissue. Zhang et al. (2014) found that mice that consumed a 

hyperlipidic diet had a greater infiltration of neutrophils in the perigonous adipose 

tissue, a fact marked by an increase in the enzymatic activity of MPO. In addition, 

body weight gain and defects in insulin signaling were observed.  

As we can see in figure 10, there was no significant difference between the 

enzymatic activity of MPO between the groups, despite a trend of higher enzymatic 

activity in the HC group. However, this variable influenced the gene expression in 

adipose tissue only in the HC group, and we believe that the possible higher low-

grade inflammation generated in these individuals may have influenced insulin 

sensitivity, contributing to the unusual pattern of Chrebβ expression in the liver of 

these animals. 

 
Figure 13. Myeloperoxidase enzymatic activity (MPO) in adipose tissue. 

 
Mean values with ** were significantly different (P<0.05). 
Souce: present study. 



41 
 

 

 

7.2 ENERGY INTAKE AND BODY WEIGHT 

The food intake in grams and Kcal was measured to evaluate if any of the 

diets would have power to generate greater satiety (Table 2). According to 

Westerterp-Plantenga et al. (2012), a high-protein diet can increase satiety. 

Moreover, according to Zapata et al. (2018), a diet rich in whey protein and its 

fractions is able to increase the satiety of obese rats in part by enhancing the 

expression of the mRNAs of peptide YY (PYY) in the colon and plasma of the 

animals, generating an anorectic effect. Interestingly, although the diets of the BD 

and HCW groups had practically the same amount of protein per serving, in the first 

six weeks of the experiment the HCW group consumed on average 205 Kcal less 

than the BD group and averaged 807 Kcal less at the end of the experiment. 

Therefore, it is believed that even though the HCW diet was more palatable, the 

anorectic influence of whey protein generated a lower energy consumption in this 

group. This effect can be confirmed by the fact that the lack of whey protein in the HC 

group generated an average increase in consumption of 1652 Kcal in the first six 

weeks and 1550 Kcal at the end of the study, in relation to BD and HCW groups. 

However, it is important to note that this diet had a smaller dose of protein per 

serving than that of the BD and HCW groups. 

As shown in table 02, the food and energy consumption during the study 

period had interesting fluctuations. The consumption of food and energy was higher 

in the HC group during the first 4 weeks of study, probably due to the high palatability 

of the diet in relation to the others (DENIS et al, 2015), but this difference was 

ablated in the subsequent weeks of the study, probably due to the phenomenon of 

sensory specific satiety (SSS), which describes the decline in pleasantness 

associated with a food as it is eaten relative to a food that has not been eaten before 

(WILKINSON and BRUNSTROM, 2016). In other words, they probably "got sick" of 

the diet.  

In the 4th to 8th week, the BD group had the greatest food consumption, at 

least significantly higher than the HCW group. In the last four weeks, the BD group 

had the highest food intake and energy consumption. Interestingly, in the first 6 

weeks, the HC group consumed a total of 1550 Kcal more than the BD group and 
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1755,5 Kcal more than the HCW group. This difference in energy consumption, 

which can be seen in the graph of figure 14, was enough to generate a statistical 

difference in the weight of the animals in that period (Table 03). This fact is important 

to reinforce that the determinant factor for body weight gain is the excessive energy 

consumption, not the type of diet practiced. 

 
Table 3. Average daily food intake (in grams and calories) every four weeks. BD, basal diet; HC, 

high refined carbohydrate-containing diet; HCW, high refined carbohydrate-containing diet with WPI. 

The BD, HC and HCW groups are being compared to each other in the three periods.  

  Week 1 - 4 Week 4 - 8 Week 8 - 12 
Groups Mean                   (SD) Mean                   (SD) Mean                    (SD) 
BD 61.71 (g)             11.92 73.24 (g)*           12.83 70.56 (g)**           10.33 

193.78 (Kcal)      37.43 229.97 (Kcal)      40.28 221.56 (Kcal)**    32.42 
HC 73.57 (g)**           9.5 71.34 (g)             13.58 58.82 (g)               8.62 

239.33 (Kcal)**   30.9 232.07 (Kcal)      43.43 191.35 (Kcal)        28.05 
HCW 56.55 (g)              7.94 63.84 (g)             15.4 54.95 (g)              10.44 
  190.68 (kcal)       26.76 215.25 (Kcal)       51.93 185.26 (Kcal)        35.2 

Mean values with ** were significantly different (P<0.05). The mean values with * were significantly 
different (P<0.05) only in relation to the HCW group.  
Source: Present study. 

 
Figure 14. Graphical representation of the average weekly energy consumption of the BD, HC 
and HCW groups. 

 
Source: Present study. 
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In the total of 12 weeks, the HC group consumed 17,860.59 Kcal, the BD 

group consumed 16,714.22 Kcal and the HCW group consumed 15,907.68 Kcal. 

Thus, the HC group consumed a total of 1147.4 Kcal more than the BD group and 

1952.9 Kcal more than the HCW group. Despite this difference, there was no 

statistical difference between the mean weight of the groups at the end of the 

experiment. 

Table 3 shows the evolution of the weight of the animals during the study 

period represented by weeks 1, 6 and 12. As expected, the higher energy 

consumption of the HC group, at least during weeks 4 to 8, generated a significant 

weight gain in this group during this period.  

 
Table 4.  Mean weight of mice (in grams) in the first week, sixth week and twelfth week. 

Comparisons were made between groups in the same time period. 

  Week 01 Week 06 Week 12 
Groups Mean                (SD) Mean                 (SD) Mean                  (SD) 
BD 28                     2.95 34                      3.39 40                       4.49 
HC 28.35                1.56 37.55 **             3.11 41.56                  5.34 
HCW 27.45                2.96 34.65                 2.76 38.78                  3.59 

Mean values with ** were significantly different (P<0.05). 
Source: Present study. 
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8 CONCLUSIONS 

Gene expression was significantly modulated by diet in adipose tissue and 

liver. In addition, the WPI intake was able to modulate the satiety of the animals, and 

potentiate the effects of high-protein diet, probably due to the regulation of the 

centers of hunger and satiety via peptide YY modulation. 

The high refined carbohydrate-containing diet with WPI (HCW group) was able 

to protect the livers against hepatic steatosis, probably due to the overlap of the WPI 

supplementation plus the caloric restriction performed by this group in relation to the 

HC group, which in turn developed hepatic steatosis.  

There was a probable greater infiltration of immunological cells into the 

adipose tissue of the HC group, and although the difference in means was not 

statistically significant, the increased MPO enzymatic activity in that group influenced 

Chrebβ hepatic expression, probably due to low-grade inflammation generated in 

these individuals.  
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