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“ Thus we may have knowledge o f the past but 
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RESUMO

Esta tese aborda dois aspectos distintos da Teoria de Codigos: o estudo de 

codigos lineares sobre metricas diferentes da metrica de Hamming e o es

tudo da decodificacao de codigos de Reed-Solomon. Na primeira parte desta 

tese, desenvolve-se a teoria de codigos lineares na metrica de Niederreiter- 

Rosenbloom-Tsfasman (p-metrica); tais codigos sao chamados de codigos NRT. 

Desenvolve-se a teoria de polinomios invariantes com o objetivo de estudar o 

enumerador de shape de codigos NRT auto-duais. Por fim, apresenta-se novas 

construcoes de codigos NRT auto-duais. Em um segundo momento, estuda-se 

a família de codigos Reed-Solomon (RS) e codigos Reed-Solomon intercalados 

(IRS), assim como um metodo para decodificacao colaborativa. Apresenta-se 

o conceito de decodificacao fracionada e seus principais resultados, em espe

cial um limitante superior para o a-raio de decodificacao. Um novo metodo de 

decodificacao fracionada para uma classe de codigos de Reed-Solomon e apre

sentado. Este metodo e capaz de realizar (com alta probabilidade) decodificacao 

fracionada alem do a-raio de decodificacao. Por fim, uma conexao entre 

decodificacao fracionada e codigos na p-metrica e apresentada.

Palavras-chave: Enumerador de shape. Codigos auto-duais. p-metrica.

Codigos de Reed-Solomon. Decodificacao fracionada.



ABSTRACT

This dissertation aims to study two distinct aspects of coding theory: a study 

of linear codes endowed with non-Hamming metrics and a study of decoding 

of Reed-Solomon codes. In the first part, the theory of linear codes in the 

Niederreiter-Rosenbloom-Tsfasman metric (p-metric) is developed. Such codes 

are called the NRT codes. In order to study the shape enumerator of self-dual 

NRT codes, we extended the classic results of invariant theory to the case of the 

NRT metric. Finally, new constructions of self-dual NRT codes are presented. 

In the second part, we study Reed-Solomon (RS) codes and interleaved Reed- 

Solomon (IRS) codes and their collaborative decoding. We present the concept 

of fractional decoding and main results related to it, including an upper bound 

on the a-decoding radius. We present a new method of fractional decoding of 

RS codes. This method can with high probability correct errors beyond the a- 

decoding radius of the codes. Finally, we present a connection between fractional 

decoding and codes endowed with the p-metric.

Keywords: Shape enumerator. Self-dual codes. p-metric. Reed-Solomon codes. 

Fractional decoding.
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12

Introduction

In classical coding theory, an [n, k] linear code C  is a subspace of dimension k of 

the metric space F™, endowed with the metric dH, called Hamming metric, and defined for 

u ,v  E C  as the following dH (u ,v ) := {  E {1, 2 , . . . , n }  : u  = Vi}\. An important concept in 

this setting is the dual code C ± of a linear code C C F^ with respect to usual (Euclidean) inner 

product on F^.

One of the most important theorems in coding theory is the MacWilliams theorem 

(1962), which are known as the “MacWilliams Identities”, which relates the weight enumerator 

of a linear code and its dual code. A remarkable theorem, due to Gleason [23] shows that 

the weight enumerator of a binary doubly-even self-dual code is a polynomial in other two 

polynomials, namely, the weight enumerators of the Hamming code of length 8 and of the Golay 

code of length 24. Sloane et al. presented some generalizations of Gleason’s Theorem to other 

families of codes [39, 68 , 40, 47]. A technique that can be used to derive those generalizations 

is polynomial invariant theory, specifically, the well-known Molien’s series of a finite group of 

matrices [46].

Polynomial invariant theory deals with the question of explicit description of poly

nomial functions that are invariant under the transformations from a given linear group. For 

example, consider the action of the matrix group G = {I,  —I } ^  G L ( 2 , C) on the linear space 

F^ by left multiplication, that is, for v = (x,y)  E F^ and A  E G, the action of A  in F^ is 

given by sending v E F^ to A v T E F^. This action induces naturally an action on Fq [x,y] if 

we consider v = (x,y)  as a ’’vector of variables” and define A  • f  (v) = f  (A vT) for A E G. 

Then clearly the polynomial p(x,  y) = x 2 +  2xy  is an invariant of this action. It is possible to 

show that the set of all the polynomials that are invariant under the action of a group G forms 

a ring that is called the invariant ring of G . In the 19th century it was found that the set of all 

homogeneous invariants under group a G can be described fully by finite set of generators for 

several suggestive special cases of G . We will study the invariant rings of some finite groups
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which come from coding theory.

Coding theory has also been developed with respect to alternative metrics. One of the 

most investigated of those metrics is the NRT metric, which was introduced to study array codes 

that are subspaces of the linear space of all n x  s matrices Mn,s(Fq) with entries from a finite 

field. The NRT metric space was introduced by Rosenbloom and Tsfasman in [75] by consid

ering a generalization of RS codes in the space of all n x  s matrices M n,s(Fq); in this same 

paper the authors pointed out that this metric models transmission over a set of parallel chan

nels subject to fading. Since then several coding-theoretic questions with respect to this metric 

have been investigated, such as the MacWilliams identities [15] and MDS codes [15, 16, 66]. 

Independently, Niederreiter [49] studied a maximization problem in finite vector spaces which 

turned out to be equivalent to coding theory problems in the NRT space, as was shown by 

Brualdi, Graves, and Lawrence [7]. In view of many applications to different branches of com

binatorial mathematics, the NRT metric has gained significance comparable to the Hamming 

metric.

Dougherty and Skriganov showed in [15] that the weight enumerators of mutually NRT 

dual codes generally do not determine each other by any sort of MacWilliams identity, since 

there are examples of nonequivalent codes which have the same weight enumerators but whose 

duals have distinct weight enumerators. However, in the same paper they considered orbits of 

linear groups preserving the NRT weight and showed that the weight enumerator associated 

with such orbits (called the H -enumerator) satisfies a MacWilliams type identity for mutually 

NRT dual codes.

Recently, Barg et al. [52,1 ,2 ,3] introduced the definition of shapes of codewords and a 

shape enumerator for NRT codes. The shape enumerator coincides with the H -enumerator. Park 

and Barg in [2] gave a new proof of the MacWilliams identity of [15] based on the multivariate 

Tutte polynomial of an NRT code that naturally arises by considering shapes of the codewords.

The first part of this dissertation aims to study self-dual codes in the NRT metric. In 

particular, we consider binary self-dual codes in M n,s (F2), and utilize polynomial invariant 

theory and the MacWilliams identity of [15, 2] to describe the shape enumerator of these codes. 

In particular, for binary self-dual NRT codes in M n,2 (F2) we completely describe the ring of 

invariants that contains their shape enumerator; the same is done for binary doubly-even self

dual NRT codes, and for binary doubly-doubly-even self-dual NRT codes in Mn 2 (F2). We find 

the number of invariant polinomials that we must find to describe the shape enumerator of a self
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dual NRT code of M n,2(F2). We define the concept of ordered flip of a matrix A E M k,ns(Fq), 

and present some constructions of self-dual NRT codes in M n,s(Fq) extending previous results 

for Self-dual NRT codes in M 1s(Fq) from [42]. Finally, we present an application of the ordered 

flip to the classification of self-dual NRT codes of dimension two.

Another topic of study in coding theory is the problem of decoding, which is the pro

cess of recover the original transmitted message even when a few symbols of the received 

codeword are in error. There are many common methods of mapping messages to codewords. 

These are often used to recover messages sent over a noisy channel. An important result on 

decoding problem is that any linear code can correct at most t = [df1 ] errors, where d denotes 

the minimum distance of the code. The number t = is called the decoding radius of the 

code. It is well-Known that for any [n, k] linear code C , its decoding radius, t , is upper bounded 

by \n—~ \ , where the equality is true for linear codes whose parameters satisfy d = n — k +  1 . 

Those codes are called Maximum Distance Separable (MDS) codes.

The most famous family of MDS codes is the family of Reed-Solomon codes [57], 

which are applied, for example, in CD-ROMs, wireless communications, space communica

tions, DSL, DVD, and digital TV. Reed-Solomon codes are also known to have some good 

decoding methods [53, 21].

Schmidt et at. [62] used an encoding method known as Interleaved Reed-Solomon 

codes to and a decoding approach called collaborative decoding of Interleaved Reed-Solomon 

codes [60] to perform (with high probability) decoding of Reed-Solomon codes beyond its 

decoding radius.

Lately, error-correcting codes are being studied in the context of Distributed Storage 

Systems [9], [10], and [13] such as those run by Google and Facebook. In a distributed system, 

we usually face a limitation on the disk input/output operations as well as on the amount of 

information transmitted for the purpose of decoding. In this case, we no longer have access to 

all the coordinates of the codewords and vectors in general. Considering the decoding of linear 

and array codes from errors when we are only allowed to download a part of the codeword. 

More specifically, supposing that k data symbols are encoded using an [n, k] code and during 

storage, some of the codeword coordinates might be corrupted by errors. Tamo, Ye, and Barg 

[73] studied the problem of recover the original data by reading the corrupted codeword with a 

limit on the transmitting bandwidth, namely, the decoder can only download an a  proportion of 

the corrupted codeword. This problem is called fractional decoding problem. The main propose
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of [73] is to answering the natural question of how many errors we can guarantee to correct in

this setup. This paper shows that for any k-dimensional code in F™ the number of correctable
n- k a and also presents two families of codeserrors under this constraint is upper bounded by 

which achieve this bound.

The second part of this dissertation aims to study Reed-Solomon codes and Interleaved 

Reed-Solomon codes. In particular, we are interested in the investigation of the collaborative 

decoding approach of Interleaved Reed-Solomon codes [60], which can be used to perform 

decoding of Reed-Solomon codes beyond the decoding radius [77]. We present the definition 

and properties of fractional decoding and a-decoding radius [73] of linear codes and present a 

new probabilistic approach to perform fractional decoding of a class of Reed-Solomon codes 

R S (qs, n , k) beyond the a-decoding radius. We also point out some connections between frac

tional decoding and NRT codes.

Outline of the dissertation

Let us give a more detailed description of the content of this Ph.D dissertation.

In Chapter 1, we review some basic definitions of polynomial invariant theory [46],[45] 

and [69], some useful theorems and propositions about the existence of a polynomial invariant 

basis for finite groups are given and we present the well-known Molien Theorem.

In Chapter 2, we present some of the main definitions and properties of linear codes 

in F™. On the basis of [15], we recall the concept of matrix code and the definition of the 

Niederreiter-Rosenbloom-Tsfasman Metric (NRT metric). Finally, a study of the geometry 

of the NRT metric is performed, and the shape enumerator [52] of NRT codes as well as a 

Macwilliams identity for the shape enumerator is described.

In Chapter 3, using polynomial invariant theory and the MacWilliams identity for the 

shape enumerator, we present new results that characterize the shape enumerator of self-dual 

NRT codes in M n,2(F2). A study on the shape enumerator of self-dual NRT codes in M n,s(F2) 

is also done.

In Chapter 4, we introduce new constructions of self-dual codes in the NRT metric, 

starting with constructions that are derived from codes in the Hamming metric. We define the 

ordered flip of an array. This new concept enable us to present new constructions of self-dual 

codes in the NRT metric. Finally, using the definition of ordered flip and results of Alves [65], 

we provide a classification of self-dual NRT codes of dimension two.

In Chapter 5, the well-known family of Reed-Solomon codes and the syndrome decod-
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ing approach are reviewed. Afterwards the definition of interleaved Reed Solomon codes, and 

a probabilistic collaborative decoding approach given by Schmidt [60] are briefly described.

Finally, in Chapter 6 , we present the definition of fractional decoding and the a- 

decoding radius. We give a new probabilistic fractional decoding approach for a class of Reed 

Solomon codes that can correct errors beyond the a-decoding radius. We propose connections 

between NRT codes and fractional decoding, and give an a -decoding radius for the case of 

linear NRT codes in M l s (Fq).
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Chapter 1 

Elementary Polynomial Invariant Theory

In this chapter, we recall the polynomial invariant theory of finite groups [46, 45, 69, 

72, 29, 56, 12]. The basic goal is to describe all polynomials which are unchanged when we 

change variables according to the action of a given finite group of matrices.

1.1 Basic definitions

In this section, we will give some basic definitions for invariants of finite matrix groups 

and we will compute some examples to illustrate what questions the general theory should 

address.

Definition 1.1. A finite matrix group G o f  Mn n (C) is a subgroup o f the group GL(n,  C) o f 

invertible n x  n matrices with entries in C, i.e., G is a nonempty set o f complex invertible 

matrices with the following properties:

a) I f  A  and B  are in G so is the product A B .

b) The identity matrix In is in G.

c) The inverse matrix A -1  o f a matrix A  in G is also in G.

The number o f elements o f G is called the order o f G and is denoted by |G|.

Given a finite matrix group G < GL(n,  C) and A 1, . . . , A m in G, we say that A 1, . . . , A m 

generate the group G if every matrix A  in G can be written in the form A  = B 1B 2 . . . B t where 

Bi E { A 1, . . . , A m} for every i. In this case, we write G = {A1, . . . , A m) .
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The group GL(n,  C) of invertible n x  n  matrices acts on the ring C [ z i , . . . , z n] by

(n n \
^   ̂a 1 ,j zj 1 . . . , ^~'''J an,j zj I . (1.1)

j=1 j= 1 J

We may describe the action in a more concise manner. Consider the “vector of variables” 

Z  = (z1, . . .  , zn)t . The previous equation may be rewritten as

A  • f  (Z ) = f  ( A Z ).

A remarkable fact is that sometimes this process gives back the same polynomial that 

we started with. For example, if we let f  (z1, z 2) = z \  +  z22 and A  = 

can check that

A  • f  ( z 1 ,z 2) =  f  (z1) z2) .

In this case, we say that f  is invariant under A. Moreover, note that f  (z1, z 2) is invariant under 

every matrix B  e  G = {A). This leads to the following fundamental definition.

Definition 1.2. Let G be a group o f n x  n o f M n,s(C), and f  (z1, . . . ,  zn) e  C [zi, . . . ,  zn]. The 

polynomial f  (z1, . . . ,  zn) is called an invariant o f G (or G-invariant), i f  fo r  all A  e  G

A  • f  ( z 1 , . . . , zn) = f  (z11. . .  zn ).

Clearly if f , g are invariants of G so are f  + g and fg . Then the set of invariants form 

a ring, which is denoted by J ( G) .

Given a polynomial f  e  C[z1, . . . ,  zn] and a finite matrix group G, note that the action 

( 1 .1 ) does not change the degree of f , so any invariant is a sum of homogeneous invariants and 

to characterize the ring J ( G )  it is suffices to characterize the invariants that are homogeneous 

polynomials.

One can check that the action of GL(n,  C) on the ring C[z1, . . . , z ri\  has the following

property.

Lem m a 1.3. Let G be a finite matrix group o f GL(n,  C) and f  e  C[z1, . . . , z n]. For any 

A , B  e  G, we have

(AB)  • f  (z11 . . . , zn) = A  • (B • f  (z11 . . . , zn) ) .

The following lemma is useful in determining whether a given polynomial is invariant 

under a finite matrix group.

1 - 1

1 1
then one
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Lem m a 1.4. Let G be the finite matrix group generated by A 1, . . . , A m, that is, G = {A1, . . . , A m). 

A polynomial f  (z1, . . . , z n) e C[z1, . . . , z n ] is an invariant o f G if  and only if

f  (z1 , . . . , zn) A 1 ' f  (z1 , . . . , zn) . . .  A m ' f  (z1 , . . . , zn) .

Proof. We first show that if f  is invariant under the matrices B 1, . . . , B t , then it is also invariant 

under their product B 1 . . . B t . This is clearly true for t = 1. If we assume it is true for t — 1, 

then

( B 1B 2 . . . B t )  • f  ( x i , . . . , x n )  = Bi  • ( (B2 . . . B t )  • f  ( z i , . . . , z n ) )

= B 1 • f  (z1, . . . , zn)

= f  (z1, . . . , zn) .

Now suppose that f  is invariant under A 1, . . . , A m. Since elements A  E G can be written as 

A  = B 1 . . . B t , where every B i is one of A 1 , . . . , A m, it follows immediately that f  E J ( G ) .  

The converse is trivial and the lemma is proved. □

The example below describes how we can use the previous Lemma.

Example 1.5. Consider the finite Klein four-group o f GL(2,  C).

V4

It is possible to check that the two matrices

i l  o 

o l

— l  o l o
A 1 = , a n d A 2 =

o l o —l

generate V4. Then Lemma 1.4 implies that a polynomial f  (zl , z 2) E C[zl}z2] is V4-invariant if  

and only if

A l f  (zl , z 2) = f  (zl , z 2)

and

A 2-f  (zl , z2) = f  (zl , z 2) ■

Writing f  (zl , z2) = aij z \z J2, we can understand the first o f these conditions as follows:

f  (zl , z 2) = f  ( - z l , z2) J 2 aij Z1 z 2 = J 2  aij ( — Zl)%Zj

J 2 aij z % zj2 = ^ (—l )laij z % zj2
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aij = (—1)i'aij fo r  all i,j 

aij = 0 fo r  i odd.

It follows that only even powers o f z 1 appear in homogeneous components o f f  (x 1 , x 2). Simi

larly, the condition f  (z1, z 2) = f  (z1, —z2) implies that only even powers o f z2 appear in homo

geneous components o f f  (z1, z 2). Thus, we can write

f  (z1, z 2) = g (z1 , z 22)

fo r  an unique polynomial g (z1, z 2) E C[z1 ,z 2 ]. Conversely, every polynomial f  o f this form is 

clearly invariant under V4. This proves that

J  V )  = C[z2,z2].

Hence, every invariant o f V4 can be uniquely written as a polynomial in the two homogeneous 

invariants z ‘2 and z\.

1.2 Existence of a basic set of invariants for finite groups

Given a finite matrix group G of GL(n,  C), a classical question about the invariant 

ring J ( G )  of G that is: can we find finitely many homogeneous invariants f 1, . . . , f m such that 

every invariant is a polynomial in f 1, . . . , f m?

Definition 1.6. Given polynomials f 1 , . . . , f m E C[z1, . . . ,zf i],  we denote by C[f1, . . . , f m] the 

subset o f C[z1, . . . , z n] consisting o f all polynomial expressions in f 1 , . . . , f m with coefficients 

in C.

In words, each element f  in C[f1, . . . , f m] is a polynomial that can be written in the form

f  = h ( f 1, . . . , f m)

where h  is a polynomial in m variables with coefficients in C .

It is possible to check that C[f1, . . . , f m] is closed under multiplication and addi

tion. Moreover, C[f1, . . . , f m] is a subring of C[z1, . . . , z n] which contains C. We say that 

C[f 1, . . . , f m ]  is generated by f  , . . . , f m  over C.

Definition 1.7. The polynomials f 1, . . . , f m in C[z1, ...,z,fi] are algebraically dependent i f  there 

is a nonzero polynomial P  (z1, z 2 , . . . , z m) in C[z1, . . . , z m\ such that P  ( f 1, . . . , f m) is identi

cally zero. Otherwise, the polynomials f 1, . . . , f m are said to be algebraically independent.
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Theorem 1.8. ([30].) Any n + 1  polynomials in n variables are algebraically dependent.

Given polynomials f 1,. . . , f m in C[z1 , . . . , z n], we would like to know whether they 

are algebraically dependent or independent. The Jacobian criterion, discussed next gives a 

useful tool to text algebraic independence.

Definition 1.9. Given polynomials f l , . . . , f m E C[zl . 

as

J  ( f l , . . . , f m) :

, zn] their Jacobian matrix is defined

f l f l f lÕZI dZ2 . ' ' dZn
df2 df2 df2
ÕZ1 dZ2 . ■ ' dZn

dfm dfm dfm
&Z\ ÕZ2 . ' . dZn

Theorem 1.10. (Jacobian criterion [35, 18]). The polynomials f 1, . . . i f m in C [z1i . . . , z n] are 

algebraically independent if  and only i f  the Jacobian matrix has fu ll rank over the rational field 

C (z1i . . . , z n). In particular, in the case m  = n, the polynomials f 1, . . . i f m are algebraically 

independent i f  only i f  de t (J  ( f 1, . . . , f m)) = 0.

Thus, given a finite matrix group G < GL(n,  C), the most convenient description 

(at this moment) of J ( G )  is a set of homogeneous G-invariants { f 1, . . . i f m} which are alge

braically independent and are such that every polynomial in J ( G )  is a polynomial in f 1, . . . i f m. 

In this case, { f 1, . . . i f m} is said to be a polynomial basis (or a integrity basis) for the invariants 

of G. If m  > n  there are polynomial equations, which are called syzygies, relating f 1, . . . i f m.

The following theorem, whose proof will be omitted but can be found in [55], states 

that a polynomial basis for the ring of invariants of a finite matrix group always exists.

Theorem 1.11. (E. Noether’s Theorem [51],[76]). Let G o f GL(n,  C) be a finite matrix group 

o f order g. The invariant ring J ( G )  o f G, has a polynomial basis consisting o f not more than 

9+n invariant polynomials, where each polynomial has degree not exceeding g.

Theorem 1.11 says that a polynomial basis for J ( G )  can always be found. Finding 

invariant polynomials is fairly easy using the following operator that is introduced during the 

proof of Theorem 1.11.

Definition 1.12. Given a finite matrix group G o f GL(n,  C), the Reynolds operator of  G is the 

map r G : C[z1i . . . , z n} — > C [z1i . . . , z n] defined by the formula

1
r G( f  ) (zl , . . . , zn ) = y G jX ! A  ' f  (zl , zn)

Aeo
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fo r  each f  (z1, . . . , z . n) E C[z1, . . . , z f .

Proposition 1.13. Let r G be the Reynolds operator o f the finite matrix group G < GL(n,  C).

i) r G : C[z1, . . . , z , f]  -E C[z1, . . . , z n] is C-linear.

ii) I f  f  E C[z1, . . . , zn] ,  then r G( f ) E J (G) .

iii) I f  f  E J (G ) ,  then r G ( f ) = f .

Proof. We will only prove the second item. For any A 1 in G,

A  • r G( f  ) (z1, . . . , zn) = G  ^  A  ' (A ' f  ( z 1 , . . . , zn))
1 1 AeG

= G  ^  (A'A) ' f  (z1, . . . , zn)\ 1 AeG

= B  ' f  (z1, . . . , zn)
1 1 BeG

= r G( f  ) (z1, . . . , zn) .

□

Corollary 1.14. Let G be a finite matrix group o f GL(n,  C) and r G the Reynolds operator o f 

G. The invariant ring o f G is given by

J  (G) = rG(C[z1, . . . , zn]) .

Proof. It follows directly from Items ii) and iii) of the previous proposition. □

Definition 1.15. Let G < GL(n,  C) be a finite matrix group. A good polynomial basis fo r  the 

invariant ring J  (G) consists o f homogeneous invariants f 1, . . . , f m (m > n), where f 1, . . . f n 

are algebraically independent, and

J  (G) = C [f1, . . . , f n] i f  m  = n  (1.2)

or, i f  m  > n,

J  (G) = C[ f 1, . . . , f n ]  © fn+1C[f1, . . . , f n ]  0  . . .  0  f m C [ h , . . . , f n ] .  (1.3)

Roughly speaking, J ( G )  has a good polynomial basis then any invariant of G can be written 

as a polynomial in f 1, . . . , f n (if m  = n), or as such a polynomial plus f n+1 times another such
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polynomial plus f n+2 times another such polynomial and so on (if m  > n). The polynomials 

f 1, . . . , f n are called primary invariants and f n+1 , . . . , f m are secondary invariants.

A good polynomial basis can always be found, according to the following theorem 

given by Hochster and Eagon whose proof can be found in [29], [69] or [8].

Theorem 1.16. (Hochster and Eagon [29].) A good polynomials basis fo r  the invariant ring 

J  (G) o f any finite matrix group G < GL(n,  C) always exists.

1.3 The Molien’s theorem

Given a finite matrix group G of GL(n,  C), a fundamental problem is to know, or at 

least to estimate, how many algebraically independent invariants are required to form a polyno

mial basis of J ( G ) .  Fortunately, there are some efficient methods for finding a generating set 

of invariants. The main tool is the Molien theorem, which enables one to predict in advance the 

number of linearly independent homogeneous invariants of a given degree.

The following theorem is a weak version of the Molien theorem and its proof can be 

found in [55, 59].

Theorem 1.17. (Molien [59]). Given a finite matrix group G o f GL(n,  C), the number o f 

linearly independent invariants o f G o f the first degree is

The next theorem is the beautiful and well-known theorem of T. Molien [46], published 

in 1897. The proof can be found in [46, 45, 69, 72].

Theorem 1.18. (Molien [46].) Given a finite matrix group G o f GL(n,  C), the number o f 

linearly independent invariants o f G o f degree t is the coefficient o f X* in the expansion o f

$g(A) is called the Molien series o f G.

Lem m a 1.19. The Molien series o f any finite matrix group G < GL(n,  C) can be written as
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Proof. By definition the Molien series of G, is given by

l
$o(A) IGI

Aeo

E
Aeo

E
Aeo

E
Aeo

E
Aeo

d e t(I — AA)

det(AA- 1) 
det( A A -1  — AA)

det(A )det(A - 1 ) 
det(A )det(A - 1 — AI )

det(A - 1 )
det(A - 1 — AI )

det(A)
det(A — AI )

□
A good polynomial basis and Molien series of the invariant ring of a finite matrix group 

G match in the following sense: given a good polynomial basis { f 1, . . . , f m} of J (G) such that

di =  deg f i , . . . , d m =  deg f m, we have that

1
$ g (A) = if m  =  n, (1.4)

i=1

or

l +  E  A"
$ o  (A)

j=n+1

I (l — A"- )

if m  > n. (1.5)

i=1

In the next example we show how the Molien series and polynomial basis are related to each 

other.

Example 1.20. Let G be the finite matrix group o f GL(2,  C) defined by

G =

Writing f  (z1, z 2) =  aijz iz 2, the condition

l 0

1

1—
1 o

1

0 l

1 o 1—
1

1

- 1  0 

0 - 1

can be understood as

f  (z1 ,z 2) =  f  ( - z 1, - z 2) <

f  (z 1 ,z 2) =  f  (z 1 ,z 2)

J 2 aij z 1 z 2 = Y ^  aij ( —z 1)i( —z 2 )j
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E i jaij z-L zJ2 (—l))i+3 aij z% z 2

aij = (—1)i+jaij fo r  all i j  

aij = 0 fo r  i+j odd.

I f  aij = 0, then i and j  are both even or odd. Writing i = 2qi + ri and j  = 2qj + rj we have 

that the terms where aij is nonzero can be written as aij z \ z 32 = aij (z^)qi (z2)qj z r1iz r2 and as i 

and j  have the same parity, aij z \ z 32 = aij ( z 2)qi (z2)qj or aij z \ z 32 = aij ( z 2)qi (z2)qjz 1 z2, so any 

invariant polynomial f  E J ( G )  is such that f  E C[z2,z2] © z 1z2C[z2,z2] that is J ( G )  is a 

subset o f C[z^2,z2̂ ] © z 1z2C[z2 ,z%]. On other hand, the polynomials f 1(z1, z 2) = z f , f 2(z1}z2) = 

z2 are algebraically independent since de t (J  ( f 1, f 2)) = 4z1z 2 and we can apply Theorem 1.10. 

The polynomial f 3(z1,z 2) = z 1z 2 is a secondary invariant o f G. So { f 1 , f 2 , f 3} is a good 

polynomial basis with deg f 1 = deg f 2 = deg f 3 = 2. Moreover, f2  E C[z2,z2]. Finally, the 

invariant ring o f G is

J ( G )  = C[z1,z2] © z1z2C[z1 ,z%].

In other words, I f  f  (z1,z 2) E J ( G) ,  then

f  (z1, z )  = h ( z 2 ,z 2) + z 1z2h2(z2 , z 2).

The Molien series o f G is

1 +  A2
^ g (A) = 1

l
+

l
2 \ ( 1  + A)2 ' (1 — A)2J  (1 — A2)2'

When we have a good polynomial basis for the invariant ring J ( G )  of a finite matrix 

group G, the Molien series of G can be put into the standard form of (1.4), (1.5) (with denomi

nator consisting of a product of m  factors (1 — Adi) and numerator consisting of a sum of powers 

of A with positive coefficientes) whose degrees of the polynomials of the basis match with the 

powers of A occurring in the standard form of the Molien series.

On the other hand, the converse is not true. It is not always true that when the Molien 

series has been put into the form (1.4), (1.5), then a good polynomial basis for J(G)  whose 

degrees match the powers of A in &(A) can be found. This was shown by the following example 

due to Stanley [71, Ex 3.8].

Example 1.21. Let G < GL(3,  C) be the finite matrix group o f order 8 defined by

G

—l o o l o o

o —l o o l o

o o —l o o i



The Molien series o f G can be written as

&o(A)
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(1 -  A2)3 (1 -  A2)2(l -  A4)'

A good polynomial basis exists corresponding to &g (A) = (1_ A2+2-(1_ A4). Namely,

J(G) = C[x2 i y2, z 4:] © xyC[x2 , y 2, z 4].

On the other hand, there is no good polynomial basis corresponding to &g (A) = ^ _ a2 )3.



27

Chapter 2 

Linear Codes and The 

Niederreiter-Rosenbloom-Tsfasman 

Metric

In this chapter, we review some of the basic definitions on code theory [28]. We 

also introduce some definitions and results on linear codes endowed with the Niederreiter- 

Rosenbloom-Tsfasman metric. Those definitions and results can be found in [7], [14], [75], 

and [66]. In special, we focus on the shape enumerator of a linear code endowed with the 

Niederreiter-Rosenbloom-Tsfasman metric, and in a MacWilliams type identity for the shape 

enumerator which was proved by Barg, and Park [2].

2.1 Linear codes in Fj

Definition 2.1. Let F^ denote the vector space o f all n-tuples over the finite field  Fg. A [n, k] 

linear code C  o f length n and dimension k is a linear subspace o f  F^ o f dimension k .

In the case where q =  2 we say that a subspace C  of ¥% of dimension k is an [n, k] binary linear 

code. A vector v E C  is called a codeword of C . An [n, k] linear code C  can be defined by its 

generator matrix using a basis of the k-dimensional subspace C .

Definition 2.2. Let C  be an [n, k] linear code over Fg. A generator matrix G o f C  is a k x  n 

matrix whose rows are a basis o f C  over Fg.

Notice that there is more than one generator matrix for a given [n, k] linear code C , since we
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can choose any basis of the fc-dimensional subspace C  over Fq in an arbitrary order.

An important invariant of a code is the minimum distance between its codewords. The 

Hamming weight u H (v) of a vector v in F™ is the number of nonzero coordinates in v.The 

Hamming distance dH(v,u)  between two vectors v , u  e  F^ is defined to be the number of 

coordinates in which v and u differ, that is, (v — u).

The minimum distance of a linear code C  is the smallest distance between two distinct 

codewords. It is well known that the minimum distance of a linear code C  in F^ is the minimum 

weight of the nonzero codewords of C . Thus a result of this fact the minimum distance is also 

called the minimum weight of the code. If the minimum weight d of an [n, k] code is known, 

then we refer to the code as an [n,k, d] linear code.

Let wr , also denoted wr (C), be the number of codewords of weight r in C . The list

wr for 0 ^  r ^  n  is called the weight distribution or weight spectrum of C .

2.1.1 Dual codes

Recall that the standard inner product of vectors v = (v0 , . . . , v n - i ) ,u  = (u0 , . . . , u n - i )
n—1

in Fn is defined by (v, u )E =  ^  viui.
i=0

Definition 2.3. Euclidean dual code o f an [n, k] linear code C  in Fn is defined to be the [n, k±] 

linear code C ± in Fn given by

C ± := {u e  Fn : (v, u)e  =  0 V v e  C }.

A code C  in Fn is self-orthogonal provided C Ç C ±, and self-dual provided C = C x .

The length n  of a self-dual code is even and the dimension k is n .

The dual code of an [n, k] linear code over Fq has dimension k± = n — k and length n. 

Therefore, the dual code C ± is an [n, n — k] linear code, i.e., an (n — k )-dimensional subspace 

of Fn, which can be used to define the parity-check matrix of C .

Definition 2.4. (parity-check matrix). An (n — k) x n matrix H  over Fq is called a parity-check 

matrix o f an [n, k] linear code C  over Fq i f  and only if it is a generator matrix o f the [n, n — k] 

dual code C ± over Fq.

Note that for any c e  C , the multiplication with the parity-check matrix gives cH T = 0 

and G H t  = 0. A parity-check matrix is therefore a matrix whose right kernel is the code C .
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Definition 2.5. For a vector v in F£ and a parity-check matrix H  o f an [n, k] linear code C, the 

vector s = v H T G is called the syndrome o f v.

By definition, given a vector v in F^, note that the syndrome s of v is such that s =  0 

if and only if v G C .

2.1.2 Weight enumerator

Let C  be an [n,k,d] linear code in F£ with weight distribution wr for 0 ^  r ^  n, then 

the weight enumerator of C  is defined to be

where z0 and z\ are indeterminates. The polynomial W C(z0 , z \ ) in (2 .1 ) can also be written as

Example 2.6. We will compute the weight enumerator o f some linear codes.

(a) Let C\ = {(0,0), (1,1)} in F\, then the weight enumerator o f C\ is W Cl (z0 , z 1) = z$+zf .

(b) More generally, let C2 = {(0 , 0 , . . . ,  0), ( 1 , 1 , . . . ,  1 )} be the [n, 1] repetition code in ¥£, 

then W c2(zo,zi) = z£ +  z£.

(c) The [7,4] Hamming code in F)) is given by

n
(2 . 1 )

(2 .2 )

and W c3(zo,zi) = z0 + 7z^zl + 7z0zf + z\.

Example 2.7. Let H  Ç F | be the [8, 4] linear code obtained from by adding at the end o f 

each codeword a new digit that checks the parity o f the codeword. The code H  is called the 

[8, 4] extended Hamming code, and its codewords are

.
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It is possible to check that is self-dual code and its weight enumerator is given by

W h 3 (zo,z i ) =  zo +  14zozi +  zi.

One of the most important theorems in coding theory is a theorem due to MacWilliams 

(1962), which is known as “the MacWilliams identity” and states that the weight enumerator of 

the dual code C x is uniquely determined by the weight enumerator of C .

Theorem 2.8. (MacWilliams [38]). I f  C  is an [n, k, d] linear code over Fq with dual code C ±, 

then

W C± (z0 ,z 1 ) =  - k W c  (z0 +  (q — 1)z1 ,z 0 — z 1) . (2.3)qk

In the binary case (when q =  2), Theorem 2.8 can be write as

W C± (z0,z 1 ) =  2k W C (z0 +  z1 ,z 0 — z 1^  (2.4)

or, equivalently,

£  z'0- “«<v)< ” ^  £ ( * >  +  z1)"- ™ <v)(zo -  * ) " " <v). (2.5)
vec± vec

2.2 Linear codes in Mn yS(Fq)

Definition 2.9. Let M n,s(Fq) be the linear space o f all matrices with n rows and s columns 

with entries in a finite field  Fq o f q elementsA [ns, k] linear code C  is a linear subspace C  o f 

dimension k o f M n s (Fq).

Similarly to the case of codes in F ^  we can define an Hamming weight on M n,s(Fq), 

denoted by , as the number of non-zero entries of v, where v  e  M n s (Fq). In this case the 

Hamming distance between v  and u with v, u e  Mn s(Fq) is given by u H (v — u).

Codes in Mn s(Fq) are also studied in some other nonHamming metrics, for example,

the Rank metric, which was introduced by Loo-Keng Hua [37], and Ernst M. Gabidulin [22]. 

In this work, we will study another nonHamming metric that was introduced by Rosenbloom 

and Tsfasman [75], which is described more precisely in the next sections.
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2.3 Codes and Niederreiter-Rosenbloom-Tsfasman metric

Let M n,s (Fq) be the Fq-vector space of n x  s matrices with entries in Fq. Given an

n  x s matrix v,

v

Vl1 V12 ■■■ Vis

V21 v 22 ' v2s

vn1 vn2 ' ' ' vns

its i-th row will be denoted by Vi, and we will write v  =  [v^ v2; ••• ; vn]. According to this 

notation, the Niederreiter-Rosenbloom-Tsfasman weight or, for short, the NRT weigth of v  is 

defined by the following formula:

p (v) := Y 1  p (vi)
i=1

where p(vi) := max {0 <  j  < s ; vij = 0}.

The canonical metric, dp(u, v) =  p(u — v), associated to the NRT weight is called the 

NRT metric. The space (Mn,s(Fq),p) is called NRT space.

The Hamming metric, and the Niederreiter-Rosenbloom-Tsfasman metric on Mn, s(Fq) 

are related by the following inequalities

u r (v) ^  p(v) ^  s u n (v).

This metric space was introduced with an information-theoretic motivation, and since 

then several coding-theoretic questions with respect to this metric have been investigated, such 

as MDS codes [15, 16, 66] and MacWilliams Duality [15]. Independently, Niederreiter worked 

with a maximization problem in finite vector spaces which turned out to be equivalent to classi

cal coding theory problems in NRT spaces [50, 49] and by this reason we call the p-metric the 

Niederreiter-Rosenbloom-Tsfasman Metric. It is worth noting that in the context of the theory 

of uniform distributions, the metric p was also introduced in papers [41] by Martin and Stinson 

and [66 , ?] by Skriganov.

Definition 2.10. An [ns,k] linear NRT code C  is a linear subspace C  o f dimension k o f

(Mn,s(Fq ),p).

For a given NRT linear code C  in Mn,s(Fq), the following set of non-negative integers

Ur (C) := |{v G C : p(v) = r}\.
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0 ^  r ^  ns is called the NRT weight spectrum of the NRT code C. Define the p-weight 

enumerator, or the NRT weight of a linear code C  in M n,s(Fq) by

ns
W c (Z) = Y ,  Wr (C)zr = Y ,  ZP(V).

r=0 v£C

Now let v  =  [v \ ; v2; ••• ; vn] and u =  [ui; u2; ••• ; un] be two elements of M n,S(Fq). 

We define the inner product (, }N on the space M n,S(Fq) endowed with the NRT metric by

n
{v, u}n =  (u, v }N : = ^ 2 (Vi,Ui}N

i=l

with

S
(vi , u i}N (ui , v i}N : vilu is + Vi2Ui(s-l) + . .. + vi(s-l)u i2 + visuil ̂   ̂vijui(s-j+l).

j=l

This inner product is a non-degenerate bi-linear map on M n,s(Fq) x M n,s(Fq).

Definition 2.11. The dual code o f an k-dimensional linear NRT code C  in M n,s(Fq) is defined 

to be the k±-dimensional linear NRT code C ± in M n,s(Fq) given by

C ± := {u e  Mn,s(Fq) : (u, v }n  = 0 V v  e  C }.

A NRT code C  is said to be a self-orthogonal NRT code if C C C ± and self-dual NRT code 

if C = C x . Moreover, the dimensions of the codes C  and C L are related by the following 

equation: if k = dim(C) and k± = dim (Cx ) then

k + k± = ns. (2 .6)

MacWilliams-type theorems for the p-weight enumerators of mutually dual codes can 

be found in two cases. In the case of s = 1 and arbitrary n, the p-weight enumerator satisfies 

the following classical MacWilliams theorem for Hamming weight enumerators [15].

W-  (z) =  C (1 + (q -  1)z)nWc {  T T — v z z ) -

In the case of n = 1 and arbitrary s, we have the following identity [67].

(qz -  1)Wc± (z) +  1 -  z =  \C± \zs+^ q (1 -  z)W c  ( +  qz -  ^  .

It is easy to see that direct extensions does not exist for the p-weight enumerator in the 

case n  and s arbitrary as we can see in the following example due to [15].
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Example 2.12. Consider two linear NRT codes C i and C2 in M 2 ,2 (F2), 

Ci =
0 0 1 0 1  1 0 0 0 0

J > ,C 2 =  ]
0 0 1 0

1 I 0 0 0 1

both have p-weight enumerator

W d  (z) =  W c2 (z ) =  1 +  z2- 

The dual codes C r  and C^r in M 2, 2 (F2) are described below

and

The p-weight enumerator fo r  C r  and C^r turns out to be different:

W c± (z ) =  1 +  4z4 +  2z +  z2 

W c± (z) =  1 +  2z4 +  z3 +  3z2 +  z.

0 0 0 1 1 1 1 1
\

0 0 0 1 1 1 0 1

C ir = >

0 1 1 0 0 0 1 0

1 1 0 0 1 0 1 0

0 0 1 0 0 1 0 0
\

0 0 0 0 0 0 0 1

C2r =

1 1 1 0 0 1 1 1

0 0 0 1 0 1 0 1

(2.7)

(2 .8)

Therefore, the p-weight enumerators (2.7) and (2.8) cannot be related by a MacWilliams type 

relation.

2.4 The NRT metric geometry

Two linear NRT codes C  and C' in M n,s (Fg) are equivalent if there is a linear isometry 

f  of Mnss(Fg) such that f ( C ) =  C '. The group GL (M n,s(Fg)) of linear isometries of an NRT 

space M n,s(Fg) was described in [34] (also independently in [15]) and it is isomorphic to the 

semidirect product of (Ts)n and Sn, where:
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i) Ts is the group of all upper triangular matrices of M s,s(Fq) with non-zero diagonal ele

ments;

ii) (Ts)n denotes the direct product of n  copies of Ts;

iii) Sn is the symmetric group of order n.

An element of Sn acts on v  =  [v\, v2; ■ ■ ■ ; vn] by permuting rows, and an element 

(M 1,M 2 , . . . , M n ) of T'n sends v  =  [v^ v2^  ■ ■ ; vn] to [v1 M f ; v2M f ; ■ ■ ■ ; vnMf ].

It is clear that if v  =  [v1; v2;■ ■ ■ ; vn] and u =  [up; u2;■ ■ ■ ; un] are two elements of 

M n,s(Fq) that lie in the same GL (Mn,s(Fq))-orbit then u and v  have the same NRT weight. 

The converse will not hold in general, since GL( Mn,s(Fq)) is not transitive on spheres. In 

order to parametrize the GL( Mn,s(Fq))-orbits, which were already studied in [15], Barg and 

Purkayastha [3] define a new parameter of a matrix v  =  [vp; v2;■ ■ ■ ; vn] E M n,s(Fq) which is 

called the shape of v.

Definition 2.13. Let v  e  M n,s(Fq) be a matrix written as v  =  [v̂ ; v2; ■ ■ ■ ; vn], where vi = 

(vi1, . . . , v is) for  i = l , . . . , n .  The shape o f  v  with respect to the NRT weight is the s-vector 

e = (e1, . . . , e s), where

ej = \{i such that l  ^  i ^  n and p(vi) = j }|.

Also define e0 := n — \e\, where \e\ := J2Sj =1 ej .

Since the action of GL ( Mn,s(Fq)) on matrices of a fixed shape is transitive, then the 

shape is an invariant for this action. The NRT weight can be also defined in terms of shapes: if 

e = (e1, . . . , e s) is the shape of the matrix v  =  [ve  v2 ;■ ■ ■ ; vn] in M n s (Fq), then

s

p (v) := J 2  j ej .
j =1

2.5 The shape enumerator and a MacWilliams identity

The NRT weight is a special case of poset weight, as introduced by Brualdi, Graves, 

and Lawrence in [7]. There is a notion of dual code for every poset code but only in rare 

cases does the weight enumerator of the code determine the enumerator of its dual; precisely, 

this is the case if and only if the poset is hierarchical [31], and an NRT weight is associated
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to a hierarchical poset only when n = 1 (whcih corresponds to a chain) or s = 1 (which 

corresponds to the Hamming weight). Nevertheless, analogues of those identities do hold when 

one considers other kinds of enumerator polynomials. Dougherty and Skriganov [15], defined 

a generalized weight enumerator for a linear NRT code, the H -enumerator, which counts the 

number of codewords in each GL ( Mn,s(Fq))-orbit. In the same paper it was shown that the H - 

enumerator of mutually dual codes satisfies a MacWilliams-type identity, which we will state 

next according to the version presented in [2 ], using the concept of shape vector.

A shape vector e induces a partition of n  into a sum of s + 1 parts. We will denote by 

A s ,n := {e e  Ns : e0 + el + e2 + . . .  + es = n} such partition (recall that e0 = n -  \e\). In the 

language of shapes, the description of GL ( Mn,s(Fq))-orbits is as follows

Proposition 2.14. ([15], Proposition 2.2 (ii)) Let u e  M n s (Fq) be a nonzero matrix. The 

G L(M n,s (Fq))-orbits o f  u is the set o f all matrices v  e  M n,s (Fq) which have the same shape o f 

u .

Definition 2.15. Let C  be a linear NRT code in M n s (Fq). The shape enumerator o f C  is the 

polynomial o f C[z0 , z l , . . . , z s] defined by

H e ( z o , z i , . . . , z s  ) =  Y  A z °  z t 1 . . . z f s, (2.9)
e£As,n

where A e = \{v e  C  : shape(v) =  e}\.

The shape enumerator of a NRT code C  is a homogeneous polynomial H e ( Z ) with 

s +1  variables, which coincides with the H -enumerator introduced in [15]. In order to state the 

MacWilliams identity shown in [15]. We need to remember the action (1.1) of GL(s  + 1, C) on

C[zo,z i , . . . , zs] ,  given by

A  • f  (z0 , z l , . . . , z s) = f  I Y  a0,j zj ̂ . ^
j=0

This action can be describe in a more concise manner. Considering the “vector of variables” 

Z  = (z0 , z l , . . . , z s)t and rewritten the previous equation as

A  • f  ( Z ) = f  ( A Z ).

£ ■
j=0

(2 . 10 )

Using this notation, the next result presents the MacWilliams identity for the shape enumerator.
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Theorem 2.16. [2] The shape enumerator o f mutually dual linear NRT codes C  and C L in 

M n,s(Fq) are closely related by

H c± (Z  ) =  C  H e ( 0 . Z ), 

where 0 s =  (9ik) E Ms+1>s+1 (Fq) ,  0 ^  l , k  ^  s, has the following entries

i f  k =  0

'lk
ql 1(q — 1 ) i f  0 < k  ^  s — l

l 1 i f  l +  k =  s +  1

) i f  l +  k > s +  1

For example, we have for s =  1,2 and 3.

0 i
I  q — 1

I I

03
1 q — 1 

1 —1

In [15] it is shown that 0 s satisfies the equality

1 q — 1 q(q — 1)

, 0 2  = 1 q — 1 —q

1 —1 0

q(q — 1) q2(q — 1)

q(q — 1) 1 to

—q 0

0 0

{0s}2 =  qsIs+i. (2 . 1 1 )

Note that 0 s is a sub-matrix of 0 s+1, explicitly, if we denote 0 s+1 =  (^s+1 )l k and 0 s =  (9s)l k, 

so (0s+1 )l k =  (0s) ^  1 k for l > 0 and s +  1 > k. Note also that the first and second rows of 0 s 

differ only by their last element.

Example 2.17. Let C 1 be the NRT code in M 2, 2 (F2) given by

Ci :=
0 0 1 0

0 0 1 0

The NRT dual code C^ in M 2,2(F2) is easily calculated:

1
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C-

✓

O O O 1 1 1 1 1
\

O O O 1 1 1 O 1

O 1 l O O O l O

1 1 O O l O l O

The p-weight enumerators o f the codes C1 and Cf  are given respectively by W Cl (z ) =  l + z 2 

and W C± (z) = l + 2z + z 2 +  4z4. Let us calculate the shape enumerator o f C1 and Cf . First 

o f all, note that

A 2,2 = {e E N2 : e1 +  e2 ^  2}

= { (0 , 0), (0 , l), (l, 0), ( l, l) , ( 2 , 0), (0 , 2 )},

and the shape vectors o f the elements o f C1 and Cf  are given, respectively, by

(0,0), (2, 0)

and

(0, 0), (0, 2), (0, 2), (0, 2), (0, 2), (l,  0), (l,  0), (2, 0).

Hence, by definition,
e22Hci (zo , z 1, z 2) = ^ 2  AezO z e  z 2 

e£A2,2
with A 2 = \{v e  C 1 : shape(v) =  e}\. In our case, A (0,0) =  A (2}0) = l and A 2 = 0 fo r  

e E {(0,0), (2 ,0)}. Moreover, considering the shape vector (0,0), we have e0 = 2, and fo r  the 

shape vector (2 ,0) we have e0 = 0. So the shape enumerator de C1 is

Hci (zo,z1, z 2) = z0 + z 1.

Analogously, the shape enumerator H C± o f C f  is given by

H Ct (z0 , z 1, z 2) = z 0 +  z 1 +  4z 2 +  2z0z 1

= ^(2zo + 2z'2 +  8z2 +  4zoz1)

H Ci (®2(z0, z 1, z 2)) ;

where

e 2=

d

l l 2

l l - 2

l - l  O



Chapter 3 

Polynomial Invariant Theory and Shape 

Enumerator

In this chapter, using the MacWilliams Theorem 2.16 and polynomial invariant the

ory, we investigate the shape enumerator (H -enumerator) of a binary self-dual NRT codes in 

M n,s(F2). We will follow the steps of Sloane’s work on self-dual codes and invariant theory 

[68 , 40], which will be described in the first section of this chapter.

3.1 Codes and polynomial invariant theory

To compute the weight enumerator of a code with wide parameters can be a compli

cated task. Thus, a topic of investigation in coding theory is to describe the weight enumerator 

of some code families. In 1970, Gleason [23] showed an interesting result on the weight enu

merator of self-dual codes in Fn, more precisely:

Theorem 3.1. (Gleason [23]) Let C  be a binary self-dual code in Fn and W e e  C[z0 ,z\] be its 

weight enumerator. Then W e e  C[zl + z 2x, z 8 + 14z^z\ + z f ].

Roughly speaking, Gleason showed that the weight enumerator of any binary self-dual code is a 

polynomial in the weight enumerators of the repetition code C l = {(0, 0), (1,1)} and the [8, 4] 

extended Hamming code of Example 2.7.

Gleason also proved similar theorems for binary codes with weights divisible by 4 and for self

dual codes of Fn.

Theorem 3.2. (Gleason [23]) The weight enumerator o f a self-dual code C  in Fn with weight

38
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divisible by 4, is a polynomial in W h 3 and W C4, where

W H3 (z0 , z 1) =  z0 +  14 zOzl +  z 1

is the weight enumerator o f the [8 ,4] extended Hamming code o f Example 2.7, and 

W e4 (zo,Z1) =  z024 +  759z016zf +  2576z012z i2 +  759zfz:l16 +  z24 

is the weight enumerator o f the [24,12] extendend Golay code [28, 11].

MacWilliams et al. [68 , 40] showed that the classical polynomial invariant theory 

allows Gleason’s theorem and generalizations, as for example the following theorem.

Theorem 3.3. (Sloane [39, 40]) The weight enumerator o f any [n, k] self-dual code C  in Fn is 

a polynomial in g ,h  E C[z0,z 1 ], where g(z0 , z 1) =  z^ +  (q — 1)z2 and h(z0 , z 1) =  z 1 (z0 — z1).

Next, we give an application to show how powerful those theorems are.

Application: 3.4. There exist an [32,16,10] self-dual code C in F22?

Suppose there is a [32,16,10] self-dual code in Fn, say C. On one hand, its weight enumerator 

is

W e  (z0,z 1) =  z02 +  0z01z1 +  0z0°z2 +  . . .  +  A10z02zJ0 +  . . .  (3.1)

since the minimum weight o f C  is 10. On the other hand, Gleason’s Theorem 3.1 states that

W C (z0,z 1) is a polynomial in W Cl (z0,z 1) =  z2 +  z2 and W h 3 (z0 ,z 1) =  z f  +  14z4z4 +  zf, that 

is,

We (zc,z1) =  « 1WC6 +  a2WC6 W lli +  aaWC1 W ^ 3 +  a i W ^  W ^  +  ^5W,^3. (3.2)

Comparing equations (3.4) and (3.1),

W e  (z0,z 1 ) =  z032 +  4960z022z10 — 3437z020z }2 +  . . .

contradicting the definition o f weight enumerator. So, there is no such code.

In the next sections we will use invariant theory to study the shape enumerator of self

dual codes with respect to the Niederreiter-Rosenbloom-Tsfasman metric.
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3.2 Invariant ring for self-dual NRT codes in Mn ,2 (F2 )

Let C  be an [ns, k] binary NRT code in Mn 2 (F2). Theorem 2.16 can be written as

Theorem 3.5. The shape enumerator o f mutually dual NRT linear codes C  and C ± in M n>2 (F2) 

are related by
1

(Z ) = 7kH c (0 2Z ),

where 0 2

1 1 2

1 1 - 2

1 - 1  0

If we assume that C  is a linear self-dual NRT code of dimension k, that is, C  =  C ± 

(consequently k =  kx ), then we conclude that k =  n, and Theorem 3.5 means that H e ( Z ), the 

shape enumerator of C  is such that H e ( Z ) =  H e ( 0 2Z ). Since, by definition, H e ( Z ) is a 

homogeneous polynomial of degree n, the last expression for H e ( Z ) may be rewritten as

H e (Z) =  H a ( 0 z )  ,

which means that the polynomial H e  is invariant by T  =  02r. Moreover, as T 2 =  ( ^ r ) 2 =  I 3, 

the shape enumerator H e  is an element of J (Gi), where G i is the finite group of order 2 

generated by T , G i =  {T} =  { I , T } .  We will try construct a good polynomial basis for J (Gi ).

From Molien’s Theorem 1.18, the number of linearly independent invariants of degree 

t over the group G i is equal to the coefficient of in

1 det(A)

$G‘ (A) 2  R  de t(A -  W

Let’s calculate (A). First note that

2 1 

2 - 1  

2 0

(3.3)

It is easy to check that de t(T ) =  —1, det(T  — A/3) =  (A — 1)(1 — A2) and therefore

(A) E det(A)

2 ÉG!  det(A -  A/s)

+
2 V(1 -  A) 3 (1 -  A)(1 -  A2)

1

1 1 1
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1 ( 1  -  A2 +  (1  -  A)2 

2 V (1 -  A)3(1 -  A2)
1 V1 -  A2 +  1 -  2A +  A2

2 V (1 -  A)3(1 -  A2)
1 2 2A
2 V(1 -  A)3(1 -  A2) 

1

(1 -  A)2(1 -  A2)'

So in order to find a good polynomial basis for G1 , we should looking for one invariant of 

degree two and two invariants of degree one.

Since the shape enumerator of a NRT code C  in M n,2(F2) has degree n, we start 

looking for shape enumerators of linear self-dual NRT codes in M 1}2(F2). There exist just five 

linear codes in M 1>2(F2), namely: The trivial codes C0 := {(0, 0)}, C4 := M 1t2(F2) and the

non-trivial codes:

C 1;1 := {(0, 0), (0,1)};

C\,2 := {( 0, 0), (1, 0)};

Ci,3 := {( 0, 0), (1 ,1 )}.

It is clear that all except the trivial codes are self-dual codes, and their shape enumerators are

H Ci,i (z0, z 1, z2) = z0 + z2i

H Ci,2 (z0, z 1, z2) = z0 + z li

H Ci,3 (z0, z 1, z2) = z0 + z2.

Note that H Cl 2 (z0, z 1, z 2) = H C l3 (z0, z 1, z2) and this was already expected, since there exists a

linear isometry between C1}2 and C1}3. We choose 0 1(z0, z 1, z 2) = z0 + z2 and fi2(z0, z 1, z 2) = 

z0 + z1 ; it is obvious that 0 1,0 2 are algebraically independent and invariant under G 1 .

Now to find an invariant polynomial of degree two, we will consider a linear self-dual 

NRT code in M 2}2(F2) and compute its shape enumerator. Let

C01 :=

The code C2}1 is a self-dual NRT code and H C21 (z0, z 1, z 2) = z$ + z2 + 2zf. Define

0 3(zo, z 1, z 2) = zO2 + z 2 + 2z |, so 0 3(zo, z 1, z 2) is invariant under G 1 . We claim that the set

0 0 1 0 0 1 1 1

0 0 1 0 0 1 1 1
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{ 0 1, 0 2, 0 3} is algebraically independent. In fact, the set { 0 ^ 0 2} is algebraically independent, 

so we need just prove that 0 3 is algebraically independent of 0 1 and 0 2. We can check that

V 0 1 (z0,z 1 ,z 2) =  (1 , 0 , 1 );

V 0 2 (z0,z 1 ,z 2) =  (1 , 1 , 0);

V 0 3 (z0,z 1 ,z 2) =  (2 z0, 2z 1 , 4z2).

Therefore,

d e t(J  (0 1 , 0 2 , 0 3 )) =  det

1 0 1

1 1 0

2z0 2z 1 4z2 
=  4z1 +  4z2 — 2z0

=  °;

proving that {0 1 ,0 2 ,0 3} is algebraically independent by Theorem 1.10. In short, we just proved 

the following theorem.

Theorem 3.6. Let C  be a self-dual NRT code in Mn 2(F2). Then, the shape enumerator o f C  

is an invariant polynomial under the action o f G 1 =  {T), where T  is the matrix given in (3.3). 

Moreover, the invariant ring o f the group G 1 is C [0 1 ,0 2 ,0 3], where

0 1 (z0,z 1 ,z 2) =  z0 +  z2;

0 2 (z0,z 1 ,z 2) =  z0 +  z 1 ;

0 3(z0,z 1,z 2) =  z 0 +  z2 +  2z2 .

In words, Theorem 3.6 means that the shape enumerator of any binary linear self-dual NRT

code C  in Mn,2 (F2) is a polynomial in 0 1 ,0 2, and 0 3.

3.2.1 Invariant ring for Doubly-even self-dual NRT codes in Mn,2(F2)

Let us now consider that C  is a doubly-even linear self-dual NRT code in Mn,2 (F2), 

i.e., a self-dual NRT code C  whose every codeword of C  has even weight. From the definition 

of shape enumerator of C , it follows that HC(z0,z 1 ,z 2) e  C[z0,z 1 ,z 2] is such that z 1 always 

has even degree. So in this case

H e  (z0,z 1 ,z 2) =  H e  (z0, —z 1 ,z 2).
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Thats is, H C is invariant by

1 0 0

A  := 0 -  1 0

0 0 1

Since C  is a self-dual NRT code, we already known that H C is also invariant by the action of 

the matrix T  given in (3.3). Finally, the shape enumerator H C of C  is invariant by the group 

G2 =  {T, A ) . It is easy to check that

G2 =  {I, A, T , AT, T A , T A T }, (3.4)

where

A

1 0 0 1
2

1
2 1 1

2
1
2 1

0 1 0 , T  = 1
2

1
2 1 , A T  = 1

2
1
2 1

0 0 1 1
_ 2

1
2 0 1

_ 2
1
2 0

1
2

1
2 1 1

2
1
2 1 1 0 0

1
2

1
2 1 ,T A T  = 1

2
1
2 1 , I  = 0 1 0

1
_ 2

1
2 0 1

_ 2
1
2 0 0 0 1

iii) de t(T ) =  — 1

iv) det( A T ) =  1

T A

Simple computations show that:

i) d e t( I ) =  1

ii) det(A) =  — 1 

and

i) d e t(I  — AIs) =  (1 — A)3

ii) det(A — AIs) =  (1 — A2)(A — 1 )

iii) det(T  — AIs) =  (A — 1)(1 — A2) 

Hence the Molien’s series of G 2 is given by

$ G (A) =  - Y  det(A)
02 ( ' 6 A k  « ( . 4 —« » )

v) det(TA) =  1

vi) det(TA T) =  — 1.

iv) det(A T  — AIs) =  (1 — A3)

v) det(TA  — AIs) =  (1 — A3)

vi) det(TA T — AIs) =  (1 — A2)(A — 1).

1 3
6 V1 — As (1 — A)s (1 — A2)(1 — A)
1 V 2 ( 1  — A)s(1 — A2) +  (1 — As)(1 — A2) +  3(1 — A)2 (1 — As) 

(1 — As)(1 — A)s(1 — A2)



Polynomial invariant theory and the shape enumerator o f  self-dual N R T codes 44

1 / ( 1  -  A ) ( - A 4 -  A3 + A +  1) +  3(1 -  A)2(1 -  A3) +  2 ( 1  -  A)3(1 -  A2)
6 V (1 -  A3)(1 -  A)3(1 -  A2)
1 / - A4 -  A3 +  A+) +  3(1 -  A)2(1 -  A3) +  2 ( 1  -  A)3(1 -  A2)
6 V (T— ^ 3) ( T — X)2(T — ^2)
1 V -A 4 -  A3 +  A +  1 +  A4 +  A3 -  7A +  5 
6

1
(1 -  A)2(1 -  A2)(1 -  A3) 

6 - 6 A
6 V(1 -  A)2(1 -  A2)(1 -  A3) 

1
(1 -  A)(1 -  A2)(1 -  A3)'

It suggests that we should search for one invariant of degree one, one invariant of de

gree two and one invariant of degree three in order to determine a polynomial basis of invariants. 

The code C 1}1 = {(0,0), (0,1)} is such that C 1}1 is a self-dual NRT code and all its codewords 

has even weight. Moreover, H Cl1 (z0 , z 1, z 2) = z0 + z2 is a G2-invariant. Now consider C2}1 in 

M 2,2(F2) given by

C2,1
0 0 1 0 0 1 1 1

0 0 1 0 0 1 1 1

The code C2>1 is a self-dual NRT code and all its codewords have even weight. Furthermore, 

the shape enumerator of C2>1 is the polynomial H C21 (z0, z 1, z 2) = z f  + z2 + 2z|, which is of 

course, an invariant polynomial of the group G2. Putting p 1 and p2 as p 1(z0, z 1, z 2) = z0 + z2 

and p 2(z0, z 1, z 2) = zfi + z f  + 2 z |, we have an algebraically independent set {p1,p2}. So, we 

just need do find another polynomial p 3(z0, z 1, z2) such that p3 is algebraically independent of 

p 1 and p 2.

Define C3,3 in M 3,2(F2) by

C3,3

0 0 

0 0 

0 0

1 1 

0 1 

1 1

0 0 1 1

1 0 , 1 1

1 0 0 1

0 1 1 0

1 1 , 1 0

1 1 0 0

1 0 

0 0 

1 0

0 1 

0 1 

0 1

The code C3,3 is a self-dual NRT code, and all its codewords have even weight. Moreover, the 

shape enumerator H C3 3 (z0 , z 1, z 2) = z3 + 4z{3 + 3zfz0 of C3}3 is invariant under G2. Defining
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p 3(z0,z 1 ,z 2) =  H C3 3(z0,z 1 ,z 2), we claim that the set {p1,p2,p3} is algebraically independent. 

Since

V P 1 (z0,z 1 ,z 2)

VP2(z0,z 1 ,z 2)

VP3(z0,z1,z2)

( 1 , 0 , 1 )

(2z0, 2 z b 4z2)

(3z0 +  3z2, 6z 1z0, 1 2 z^).

We obtain

det( J  (P1 ,P2 ,P3)) =  det

1

2z0 

2 2

0

2z 1 4z 2

3z0 +  3z2 6z0z 1 1 2 z2

— 24z2 z1 +  6z0z 1 — 6z1 — 24z0z 1z2 =  0.

By Jacobian criteria. Summing up, we have just proved the following:

Theorem 3.7. Let C  be a self-dual NRT code in Mn,2(F2) such that all its codewords has even 

weight. Then, the shape enumerator o f C  is an invariant polynomial fo r  the group G2 given in 

(3.4). Moreover, the invariant ring o f G2 is C[p1 ,p 2 ,p 3], where the polynomials P1,P2, and p3 

are given by

P 1 (z0,z 1 ,z 2) =  z0 +  z2;

P2 (z0,z 1 ,z 2) =  z0 +  z2 +  2z2 ;

P3(z0,z1,z2) =  z0 +  4z3 +  3z2z0.

In other words, if C  is a self-dual NRT code in Mn 2(F2) whose codewords have even weight 

then its shape enumerator is a polynomial in p 1 ,p2 and p 3.

3.2.2 Invariant ring for Doubly-doubly-even self-dual NRT codes in Mn,2(F2)

Let C  be a self-dual NRT code in Mn,2(F2) whose every codeword has an even num

ber of rows with weight one and an even number of rows with weight two. In this case, by 

definition of shape enumerator, H C(z0,z 1 ,z 2) is such that z 1 and z2 are always of degree even, 

therefore, H C(z0,z 1 ,z 2) =  HC(z0, —z1 , —z2) holds. This implies that H C(z0,z 1 ,z 2), the shape 

enumerator of C , is invariant under the action of the matrix

1 0 0

0 —1 0 

0 0 - 1
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Since C  is a self-dual NRT code it also follows that H C is invariant by the matrix T  defined in 

(3.3), and therefore the polynomial H C is invariant under the action of the group

G3 := (T,B) .

We can check that |G3 | =  12. More precisely, G3 is the following group:

(3.5)

1 0 0 1 0 0 1
2

1
2 1 1

2
1
2 1

0 1 0 0 1 0 ?
1
2

1
2 1 1

2
1
2 1

0 0 1 0 0 1 1
_ 2

1
2 0 1

_ 2
1
2 0

Note that
1

| g 3|

1
2

1
2 1

Ĥ|<N

1

1
2 1 1

2
1
2 1-1

1 1

1
2 1

1
2

1
2 1 1

2
1
2 1 1

2
1
2 1 1

2
1
2 — 1

1

1
2 0 1

_ 2
1
2 0 1

_ 2
1
2 0 1

_ 2
1
2 0

Ĥ|<N

1

1
2 1-1

1 1

1
2 1-1

1

1 0 0 1 0 0

1
2

1
2 1 1

2
1
2 1 ’ 0 1 0 ’ 0 1 0

1
_ 2

1
2 0 1

1

1
2 0 0 0 1 0 0 1

trace(Aj) =  0 .
Ai^Gs

Therefore, there is no invariant of degree one. Let’s calculate the Molien’s series of G3. Initially, 

note that

i) d e t( /) =  1

ii) det(A) =  — 1

iii) de t(T ) =  — 1

iv) det(A 3) =  — 1 

And is also easy to check that

i) d e t(I  — A I) =  (1 — A)3

ii) det(A — AI ) =  (1 — A)(1 — A)2

v) det(A4) =  — 1

vi) det(A 5) =  1

vii) det(A 6) =  — 1

viii) det(A 7) =  1

ix) det(Ag) =  1

x) det(Ag) =  — 1

xi) det(A 10) =  1

xii) det(A 11) =  — 1 .

iii) det(T  — XI ) =  (1 — A2)

iv) det(A 3 — XI ) =  (1 +  A3)
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v) det(A 4 — XI ) =  1 +  A3 ix) det(A g — AI ) =  1 — A3

vi) det(A 5 — AI ) =  (1 — A)(1 +  A)2

vii) det(A 6 — AI ) =  (1 — A)(1 — A2)

x) det(A g — AI ) =  (1 — A)(1 — A2)

xi) det(A 1o — AI ) =  (1 — A)(1 +  A)2

viii) det(A 7 — AI ) =  1 — A3 xii) det(A 11 — AI ) =  (1 +  A)3.

The Molien’s series of G3 becomes

(A) =  77;
1 1

+  ^  rrrr + +
12 V(1 — A)3 (1 +  A)3 (1 — A)(1 +  A)2 (1 — A)(1 — A2) 1 +  A3 1 — A3

1 12 +  12A4

1 ^ ( 1  — A2)2(1 — A6)
1 +  A4

(1 — A2)2(1 — A6)
1

+
A4

(1 — A2)2(1 — A6) (1 — A2)2 (1 — A6) :

which suggests that in order to obtain a good polynomial basis for J  (G3) we should search 

for three primary invariants 0 1, 0 2, and 0 3 of degree 2, 2, 6 respectively, and one secondary 

invariant 04 of degree 4.

Unfortunately, there exists only one linear code C  in M 2 2 (F2) such that the required 

properties are satisfied, namely C2,2 of the previous section, so we can choose the polynomial 0 1 

as fa(zo,Z1,Z2) =  Hc 2,2 (zo,Z1,Z2) =  z0 +  z2 +  2 z |. By averaging under the group G 3, using 

the Reynolds operator, we obtain the invariant 0 2(zo, z 1, z 2) =  5z^ — 2z0z1 +  z f  +  8z | +  8z2z 1 .

Now we will work to find an invariant of degree six. Averaging z1z2 over the group

G3, using again the Reynolds operator, we obtain a homogeneous invariant 03 of degree two, 

namely 0%(zo, z 1, z 2) =  2z0 — 2z2 +  8z1z2. The set { 0 1, 0 2,0%} is algebraically independent. 

Indeed, we need to show that the Jacobian matrix of 0 1,0 2,03 has determinant nonzero. It is 

easy to check that

V 0 1 (zo,z1 ,z 2) =  (2zo, 2z 1 , 4z2)

V 0 2 (zo,z1 ,z 2) =  (1 0zo — 2 z1 , 2z 1 — 2 zo +  8z2 , 1 6z2 +  8z 1 )

V 0 3 (zo,z1 ,z 2) =  (4zo, —4z1 +  8z2 , 8z 1 ).

3 3

Therefore,
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d e t(J  (01,02,03)) =  det

2 z0 2z 1 4z2

1 0z0 — 2 z1 2 z1 — 2z0 +  8z2 18z2 +  8z1 

4z0 — 4z1 +  8z2 8z 1

=  16(—2z0z  +  2z0z2 +  4 z 0 z z  — 4z0z^ +  2z3 +  2z 1 z2 — 4z1z2)

=  0

proving that {0 1,0 2,0*i } is algebraically independent. Let 0 3 e  C[z0,z 1 ,z 2] be the polynomial 

given by 0 3 =  (03)3, so deg 0 3 =  6 and {01 ,0 2 ,0 3} is algebraically independent. Of course, if 

this set is algebraically dependent then there exists constants not all null, such that

0 1 0 20 k =  0 .
i,j,k

In this way there are constants not all zero ci,j,k such that

J 2 Ci j  , k 0 i 0 2(0 3)3fc = 0 .
i,j,k

That is impossible once that {0 1,0 2,0*i} is an algebraically independent set.

The polynomial 0 4 can be obtained through some algorithms found in the literature 

[12, 24, 74, 25]. This process will be omitted because needs more theory about invariant 

polynomials. We use Magma Computer Algebra program [6] to find the secondary invariant

04(z0,z1,z2) =  z4 +  6z^ z1z2 — z4 +  2z3z2 +  8z1z31.

Theorem 3.8. Let C  be a self-dual NRT code in Mn,2 (F2) such that all its codewords has an 

even number o f rows with weight one, and an even number o f rows with weight two. Then, the 

shape enumerator o f C  is an invariant polynomial fo r  the group G3 given in (3.5). Moreover, 

the invariant ring o f G3 is C[01 ,0 2 ,0 3] © 04C[01 ,0 2 ,0 3], where the polynomials 0 1,0 2 and 03 

are:

0 1 (z0,z 1 ,z 2) =  z0 +  z2 +  2 z2 ;

0 2(z0,z1,z2) =  5z0 — 2 z0 z1 +  z2 +  8z^ +  8z2z 1 ;

0 3(z0,z 1,z 2) =  (2z0 — 2z2 +  8z1z^  ;

and

04(z0,z1,z2) =  z0J +  6z^ z1z2 — z4 +  2z3z2 +  8z 1z3 .

In other words, if C  is a self-dual NRT code in Mn 2 (F2) whose every codeword has an even 

number of rows with weight one and an even number of rows with weight two its shape enu

merator is a polynomial in 0 1 , 0 2 and 0 3 plus 0 4 times another such polynomial.
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3.3 The general case for self-dual NRT codes in Mn s  (F2)

For the purpose of studying the shape enumerator of a self dual NRT code C  in 

M n,s(F2), we will first look closely at the matrix 0 s. We know that 0 s E M s+ 1>s+1 (F2), where 

0 s =  (Oi,k)t,k=0,-,s is given by the following rules

1 if k =  0

2 l-_1 if 0 < k ^  s -  l
hi,k :=  < ,

- 2 l-_1 if l +  k =  s +  1

0 if l +  k > s +  1

that is,
1 1 2 4 •• 2s-4  2 s- 3  2s'- 2 2s- 1

1 1 2 4 •• 2s-4  2 s- 3  2s'- 2 - 2 s- 1

1 1 2 4 •• 2s-4  2 s- 3  - 2 s'- 2 0

1 1 2 4 •• 2s-4  - 2 s-3 0 0

0 s := 1 1 2 4 •• • - 2 s-4  0 0 0

1 1 2 - 4  •• 0 0 0 0

1 1 - 2 0 •• 0 0 0 0

1 - 1  0 0 •• 0 0 0 0

We will show that 0 s have the following properties:

Theorem 3.9. The matrix 0 s given by 0 s = (hi,k)i,k=o,... , s where
✓

1 i f  k =  0 ,
2 k - 1  i f  0 < k ^  s -  l,

hi,k :=  <
- 2k - 1  i f  l +  k =  s +  1 ,

0 i f  l +  k > s +  1 .

satisfies the following properties:

a) 0 2  =  2 sIs+i

b) trace(0 s) =

c) d e t(0 s) :=

2 2 if  s is even 

0 if  s is odd

( - 1 ) S2X2 ( + ) i f  s is odd

( - 1 ) 2 2 i f  s is even



Proof. Item a) is immediate and also is also observed in [15]. So we will prove items b) and c).
S

b) By definition of 0 s, we have that tra c e (0 s) =  ^  6ii, where
i=o

1 if i =  0

2 i - 1  if 0 < i 0  s — i

—2i-1  if 2 i =  s +  1

0 if 2 i>  s +  1

If s is even then the trace of 0 s becomes
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6ii •— *

trace(0 s) =  6i
i=o

=  1 +  6ii
i=1

=  1 +  y  ] 6 a +  y  ] 6 n
i=1 i= f+1
s

=  1 +  ^  2 i - 1  +  ^  0

i = 1 i= f+i
=  1 +  2 f — 1

s
=  2 f .

On the other hand, if s is odd the trace of 0 s will be
s

trace ( 0 s) =  6 îi
i=o

s — 1 
2

— 1 +  ^  ] 6ii +  6 s—i , s—i +  ] 6ii
i = 1 i= 0 0 + 1
s — 1

=  1 +  ^  2i - 1 +  (—2  ̂  — 1 ) +  ^  0

i = 1 i= s+2l  + 1
/ s—1 s—1 

=  1 +  (2 ^  — 1 ) — 2 ^  + 0

=  0 .

And we have just proved that

. 2  — if s is even,
trace(0 s) =

0 if s is odd.



c) Setting 0 o =  1 and applying Laplace expansion along the last column of 0 s, we find for 

every s >  1 .

det(0s) =  2s - 1 (—1 )s d e t( 0 s - 1 ) — 2s - 1 (—1 )s+ 1 d e t(0 s- 0  =  2s(—1 )s d e t( 0 s- 1). (3.6)

If s 0  2 is even, we will show that by induction on s

det(0s) =  (—1)f 2 ̂ . (3.7)

Indeed,
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d e t( 0 2) =  2 2 (—1 )2 d e t( 0 1 )

=  4 d e t(0 1)

=  —8

, „ f 2C2 + 1)
=  (—1 ) f 2 f .

proving the result for s =  2. Suppose that the result is true for s =  2t, that is,

ft 2£C2£ + 1)
d e t( 0 2 t) =  (—1 ) ̂  2 ^ ^ .

We will prove that the same is true for s =  2t +  2. More precisely,

, . , ft+f ift+fHft+3)
det(0 2t+2) =  (—1) f 2 f .

Indeed,

d e t ( 0 2t+ 2 ) =  22t+ 2 ( —1)2t+ 2 d e t ( 0 2t+ 1 )

=  2 2t+ 2 d e t(0 2 t+ 1 ), (*)

and

d e t ( 0 2t+ 1 ) =  22t+ 1 (— 1)2t+ 1 d e t ( 0 2i )

=  — 22t+1 d e t(0 2 t), (**)

Replacing (**) in (*),

d e t ( 0 2t+ 2 ) =  ( —22t+ 1 d e t ( 0 2t ))

=  2 2t+ 2 (—2 )2t+ 1 (— 1 ) it 2 f^
, , ft+f „4 , o ft^t+a
(—1 ) —  2 + 32 — f—
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. 2t+2 4t2 + 10t+6
=  (—1 ) —  2  2----

. . 2t+2 (2t+2)(2t+3)
=  (—1 ) 2 2 2 .

This concludes the proof for s even.

Suppose that s ^  1 is odd. We will show by induction on s that

de t( 0 s) =  (—1 ) ̂ 2

For s = 1  the result is clearly true. Let us assume that the result is true for s =  2t +  1, 

that is,
J 4^  N ( 1 s 2+2 r, (2t+1)(2k+2)d e t(0 2 *+i) =  (—1 ) 2 2 2 .

We will show that for s =  2t +  3

, . , 2t+4 (2t + 3)(2t+4)
d e t(0 2t+3) =  ( — 1) 2 2 2 •

Indeed, Again by Laplace’s Theorem,

d e t(0 2i+3) =  22i+3( — 1)2 i+ 3 d e t(0 2*+2)

=  — 22i+ 3 d e t ( 0 2*+2) (A ) .

since 2t +  2 is even we can use Equation (3.7),

d e t( 0 2 t+2) =  (—1) ̂  2 (2t+2)2(2t+3) (A)

replacing (A) in (A)

d e t ( 0 2i+3) =  — 22fc+ 3 d e t ( 0 2i+2)
n2t+3t 1 \ 2t+ ^  (2t+2)(2t+3) =  — 2 2t+ 3( —1 ) 2 2 2

, , 2t+4 2(2t+3) + (2t+2)(2t+3)
=  (—1 ) 2 2 2

. , , 2t+̂  (2t+3)(2t+4)
=  ( — 1 ) 2 2 2 .

for any odd number s, concluding the proof of c).

□

Theorem 3.10. Let m@s and P@s be the minimal and the characteristic polynomials respectively 

o f the matrix 0 s in Theorem 3.9. Then,

m &s (A) =  (A — 2 2 )(A +  2 2) ;
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and
\  (A -  2 2 ) ̂ ( A  +  2 2 ) 2 i f  s is even

P©2 (A) =  < .
(A -  2 2 ) s+1 (A +  2 2 ) 2+  if  s is odd

Proof. Item a) of Theorem 3.9 states that

0 =  0 2  -  T I s +1 =  ( 0 s -  2 2 is+ 1 ) ( 0 s +  2 2 I s+ 1 )

and it follows that m ©2 (A) =  (A -  2 2 )(A +  2 2) is the minimal polynomial of 0 s, since m ©2

is a monic polynomial of degree two such that m©s ( 0 s) =  0 and obviously no polynomial of

degree one vanishes on 0 s. Therefore, the characteristic polynomial of 0 s decomposes as a 

product

p©s (A) =  (A -  2 f )ri (A +  2 2 )r2 , (3.8)

where r 1 and r2 are the multiplicities of the eigenvalues [31 =  22 and f32 =  -2 2 . In particular,

r 1 +  r 2 =  s +  1. From (3.8) it follows that

trace (0 s) =  r 1 (2f ) +  r 2 ( - 2f ), (3.9)

and therefore for every s >  1 we have the system of equations

r 1 +  r 2 =  s +  1

trace ( 0 s) .
r 1 — r 2 =  ------ 2-----

1 2 2 2

If s is an odd number, then tra c e (0 s) =  0 by Item b) of Theorem 3.9. In this case,

the above system has r 1 =  r 2 =  ^+1 as unique solution. Therefore, in the case of an odd s, the

characteristic polynomial of 0 s is

/ . s / . s , s + 1 , , s . s + 1
P©s (A) =  (A -  2 2 ) 2 (A +  2 2 ) 2 •

If s is even, then tra c e (0 s) =  22, and the corresponding system of equations has

solution r 1 =  , r 2 =  | . In this case the characteristic polynomial of 0 s is

p©s(A) =  (A -  2 f ) f+2 (A +  2 2 )2 .

(A -  2 2) f++2 (A +  2 2)f if s is even
W ehavejustprovedthat P©s (A) = {  s s + 1 s s+ 1 □

(A -  2 2 ) 2 (A +  2 2 ) 2 if s is odd
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3.3.1 Shape enumerator for self-dual NRT codes in Mns (F2) with odd s

The main purpose of this subsection is to utilize the properties of the shape enumerator 

of a self-dual NRT code in Mn,s (F2) and the properties of the matrix 0 s to obtain information 

about an invariant ring that contains the shape enumerators of self-dual NRT codes.

Recall that Theorem 2.16 states that the shape enumerator H C of a self-dual NRT code 

C  in M n,s (F2), satisfies the equation

h c (zo;

which can be rewriten as

h c (zo;

, zs) =  C  H C (0 s(zO, . . . ,Zs)),

zs) =  - i s  H c (0s (zo , . . . ,Zs ) )
2 f

0

(3.10)

H ^  2 !  (zo, . . . ,z s ^ ) .

In polynomial invariant theory language, this is equivalent to saying that H C is invariant by

(3.11)

So H C will be invariant under the cyclic group G generated by T . Note also that from Item a) 

of Theorem 3.9
T  2 =  , - e . y  = 6 2  =

2 i )  2 s s+1 ;

and the group G is given by G =  {T} =  {Is+1,T}. Since G is finite, it is well-known that

J (G) has a good polynomial basis of invariants [29].

Let us calculate the Molien’s series of G which tells us what kind of invariants we

should looking for. Since s is odd

i) trace(T ) =  0 ;

ii) de t(T ) =  (—1 )^ ;

iii) pT (A) =  (—1) s+1 (1 — A) s++1 (1 +  A) s+1 .

Thus,

$(A) E det(A)

2 Aeo det(^  — AIs+1)

(—1 ) ̂ +
(—1) Sf (1  — A) Sf (1  +  A) Sf (1  — A)s+1

1

1
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1 ( 1 -  A) ̂  +  (1 +  A) ̂  

2 (1 +  A ) ^  ( 1 -  A) 8+1
s + l s + l

k

2 ( 1 -  A) ̂  ( 1 -  A2) ̂

Consider the subcase of even, that is, =  2t for some t > 0. The Molien’s series of G 

can be rewritten as

Note that the term (1 -  A)2t in the denominator indicates that to form a good basis we should 

looking for invariants of degree one, but by Theorem 1.17, and Item b) of Theorem 3.9 there 

are no invariant polynomials under G of degree one. So we are not using all the information 

about the shape enumerator of C .

Since the dimension of C  is k =  ns and s is an odd number we must have n  even, 

which implies that H C will be invariant by - I , so HC is invariant under the action of the group

T(A)
2 (1 -  A)2t(1 -  A2)2t

Hence, in this case

$(A) (1 -  A)2t(1 -  A2)2t
(3.12)

Gi :=  { - I ,  I , - T ,T } .

It is easy to see that the Molien’s series of G 1 can be written as

$Gi (A) =  ^  (M A) +  $ g (- a)) ,

and so

2 (1 -  A)2t(1 +  A)2t(1 -  A2)2t



Polynomial invariant theory and the shape enumerator o f  self-dual N R T codes 56

'=0 2 l ^ { 2 tA x 21
1=0 2 l

E
.1=0

(1 -  A2)4i 
2

A21

(1 -  A2)4i '

Now, if we consider the sub-case where is odd, =  2t +  1, for some t > 0, then 

proceeding in the same way as in the even case one obtains the following expression for the 

Molien’s series:

$Gi (A)

£ ( 2t + 1 'A 2'
'=0 2l

(1 -  A2)4t+2

In short, we have proved the following result:

Theorem 3.11. Let C  be a self-dual NRT code in M n,s(F2), and suppose that s is an odd 

number. The shape enumerator H C o f C  is invariant under the group G 1 := {I, - I ,  T , - T }, 

where T  is given by (3.11), and the M olien’s series o f G 1 is

22tl A2'
'=0 i f  m  = 2 t , t  =  0,1,

$Gi (A) =  < (1—A2)4t

£ ( 2t +  1 |A 2'
'=0 2l

(1—a2)«+2 i f  ^  =  2t +  1 ,t =  0,1,

Thus, Theorem 3.11 gives us an expectation of how many algebraically independent invariants 

we must find to form a base of invariants for J (G1).

Note that in the case s =  1 we have ^+1 =  1 =  2(0) +  1 and so the Molien’s series of 

G 1 is given by

$Gi (A)
E
'=0

A2'
1

(1 -  A2)2 (1 -  A2)2

which agrees with Theorem 3.3, This fact was expected since the Hamming metric coincides 

with the NRT-metric in the case where s =  1 and the shape enumerator is the Hamming weight 

enumerator.

1

2

2

2
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3.3.2 Shape enumerator for self-dual NRT codes in Mns (F2) with even s

Following the same steps as in the previous subsection we can prove an analogous 

result for the case of even s.

Theorem 3.12. Let C  be a self-dual NRT code in M n,s (F2) such that s is an even number. The 

shape enumerator H C o f C  is invariant under the group G :=  { I , T }, where T  is given by 

(3.11), and the M olien’s series o f G 1 is

$ g (A)

5 ]  Ft i  A2
1=0 2 l

(1-A2)2t(1-A)2t+1

r  ( 2t +  ^ i  A2i

i f  § = 2t , t  = 1 , . . .

1=0 2 l
(1_^2 )2t+1(i_ )̂2t+2 i f  2 =  2t +  1 , t  =  0, 1 , ---

Theorem 3.12 gives us an expectation of how many algebraically independent invariants we 

must find to form a base of invariants for J (G).

Note that for s =  2 we have |  =  1 =  2(0) +  1, and so the Molien’s series of G is given

by

$ g (A)
E
l=0

A 21

1
(1 -  A2)(1 -  A)2 (1 -  A2)(1 -  A)2

Which matches with Theorem 3.6 of section 3.2.

Example 3.13. For s =  4, we have |  =  2 =  2(1) and by Theorem 3.12 the M olien’s series o f 

the invariant ring o f G is

T g (A) =
1 +  A2

(1 -  A)3(1 -  A2)2

Using Magma Computer Algebra program [6 ], we find the following basis:

Primary invariants o f degree one:

01(zO, z1, z2, z3,z4) =  5z0 +  Z1 +  2z2 +  4z3 +  8z4;

02(zO,z 1,z 2,z 3,z4) =  3z1 +  z2 +  2z3 -  6z4; 

fo(Zo,Zi,Z2,Z3 ,Z4) =  Z2 -  Z3.

Primary invariants o f degree two:

04(zO,z 1,z 2,z 3,z4) =  z0(z1 +  2z2 +  4z3 -  9z4) +  z1(2z2 +  4z3 -  9z4) +  z2(8z3 -  18z4) -

36z3z4 +  2z2 +  9z2 +  8zf +  32z|;

0 5 (Zo,Z1 ,Z2 ,Z3 ,Z4) =  Zo(2Z1 +  4Z2 +  8Z3 +  16 Z4) +  Z1(4z2 +  8Z3 +  16 Z4) +  Z2(16Z3 +  34z4) +  

64z3z4 +  17z0 +  4z | +  z2 +  16zf +  64z|.
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Secondary invariants o f degree two:

& (zo ,z i,Z 2, z 3 ,Z4)  =  -  2zozi +  z f  +  16z|.

So the shape enumerator H C o f any self-dual NRT code C  in M n .4(F2) is such that

H C G C [0 i,02 , 03, 04, 05] © 06C [01, 02, 03, 04, 05]-

Example 3.14. For s = 6, we have f  =  3 =  2(1) +  1 and by Theorem 3.12 the M olien’s series 

o f the invariant ring o f G is
T ( W   1 +  3^ 2

g(A) =  (1 -  A)4(1 -  A2)3 

Using Magma Computer Algebra program [6 ], we find the following basis:

Primary invariants o f degree one:

0 i (zo,z i ,z 2,z 3,z4,z 5,z 6) =  9 z 0 +  zl +  2z2 +  4z3 +  8z4 +  16z5 +  36z6;

02(zo,zi,z2,z3,z4,z5,z6) =  5zi +  z2 +  2z3 +  4z4 +  8z5 -  20z6,‘

03(zo,zi,z2,z3,z4,z5,z6) =  3z2 +  z3 +  2z4 -  6z5,‘

04(zo,zi,z2,z3,z4,z5,z6) =  z3 -  z4.

Primary invariants o f degree two:

05(zo,zi,z2,z3,z4,z5,z6) =  2l0z5z6 +  65z2 +  z i  +  4zf, +  16z2 +  64z4 +  256z2 +  1024z2 +  
6 6 6 6 6

'y j 2*zozi \ y  2 zizi I ^  2i+i z2zi +  y  '  2i+i z3 z* +  y  '  2i+3z4zi;
i=i i=2 i=3 i=4 i=5
06(zo,zi,z2,z3,z4,z5,z6) =  - 33zoz6 -  33ziz6 +  33z2 +  2z2 -  66z2z6 +  8z2 -  132z3z6 +  32z2 +

5 5 5 5
128z4z5 264z4z6+z2- 528z5z6+512z2^ ^ ^  2i lzozi I ^   ̂2i l z iz i+ ^   ̂2iz 2z i+ y  j 2i+iz3zi;

i=1 i=2 i=3 i=4
07(zo,zi,z2,z3,z4,z5,z6) =  (z5 -  z6)(zo +  zi +  2z2 +  4z3 +  8z4 -  16z6) +  z2 -  z |.

Secondary invariants o f degree two:

0s(zo,zi,z2,z3,z4,z5,z6) =  zo +  z^ +  4z | +  64z| +  zo(2zi -  4z2) -  4ziz2;

09(zo,z i ,z 2,z 3,z4,z 5,z 6) =  zo +  z2 -  2z2(zo +  zi );

0io(zo,zi,z2,z3,z4,z5,z6) =  zo +  z2 +  z | -  2zoz2.

So the shape enumerator H C o f any self-dual code C  in Mn,6(F2) is such that

H C G C[0 i,02 ,03 ,04 ,05 ,06 ,07] © 0SC[0i,02,03,04,05,06,07]

®0gC[0 i,0 2 , 03, 04, 05, 06, 07] © $io<C[$l,$2,$3,$4,$5,$6,$7]-



3.4 Open problems

a) In [39], using the results for Hamming codes, Sloane derived new bounds for the mini

mum distance of self-dual codes in the Hamming metric. Can we do the same for self-dual 

NRT codes?

b) Can we find a polynomial basis that matches the Molien’s series for any s?

c) Using the results obtained can we answer questions about the existence of self-dual NRT 

codes with certain given parameters?
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Chapter 4 

Constructions of Self-Dual Codes in the 

NRT Metric

In this chapter, we define the concept of ordered flip of a matrix A  in M k,ns(Fq ) 

and present some constructions of self-dual codes in Mn,s(Fq), extending previous results for 

M i, s(Fq) in [42]. Finally, we present an application of the ordered flip to the classification of 

self-dual NRT codes of dimension two.

4.1 Self-dual codes in NRT spaces from self-dual codes in 

Hamming spaces

Definition 4.1. Given a vector v = (v1, . . . , v s-1,v s)  in F^ the flip o f v, denoted by flip(v), is 

the vector flip(v) =  (vs,vs-1, . . . , v 1) G F^

Rem arks 4.2. Let flip : F;̂  — y F;̂  be the function taking v G F;̂  to its flip. The following 

properties hold:

a) For any s G N, flip : F;̂  — y F;̂  is a linear operator;

b) I f  s =  1, then flip =  I, where I  denotes the identity operator.

c) Let )e be the Euclidean inner product on Fq. For any u ,v  G Fq, (flip(u), flip(v))E =

{u , v)e .

In next theorem, we present a construction of a self-orthogonal NRT code in M 1 , 2s(Fq) 

derived from a code C  in the Hamming space Fq with the standard inner product (, )e .
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Theorem 4.3. Let C  be an [s, k] linear code in the Hamming space F^ and let C L be its dual 

code with respect to the standard inner product. The code Co in M 1;2s(Fq) given by

Co := {(v, flip(u)) : v E C, and u E C1± }

is an [2s, k +  k±] self-orthogonal NRT code with k± =  dim (Cx ).

Proof. Indeed, let (v1,flip(u1) ) , (v2,flip(u2)) G Co where v1,v2 e  C  and u 1 ,u 2 E C ± . Then 

((vi,flip(u 1 ) ) , (v2 ,flip(u2)))w =  (v1,u 2)e  +  (flip(u1) , flip(v2))e

=  (v1, u 2)E +  (u1, v 2)E

=  0,

which means that Co Ç (Co)± . It is easy to check that dim Co =  k +  k± .

Example 4.4. Choose the [2,1] linear code C  := {(0,0), (1,0)} in the Hamming space F2. Its 

dual code is given by C ± =  {(0,0), (0,1)}. The NRT code Co in M 1)4(F2) o f Theorem 4.3 is 

the following [4, 2] self-orthogonal NRT code

Co := {(0, 0, 0,0), (0, 0,1, 0), (1, 0, 0, 0), (1 ,0 ,1 , 0)}.

It is worth to mentioning that i f  we consider Co as an [4, 2] linear code over the Hamming space,

F^ Co is not a self-orthogonal code since (1 ,0 ,0 ,0 ) e  Co but (1 ,0 ,0 ,0 ) E Co. Note also that 

Co is not a self-dual NRT code since (0 ,1 ,0 ,1 ) E Co but (0 ,1 ,0 ,1 ) e C„ .

Theorem 4.5. Let C  be an [s, k] self-orthogonal code in the Hamming space F^. The code

Cort :=  {(v, flip(v)) E M 1,2s(Fq) : v E C }

is an [2s, k] self-orthogonal NRT code.

Proof. Let v  =  (v, flip(v)), u =  (u, flip(u)) E Cort with v ,u  E C . Then

(v, u )N =  ((v, flip(v)), (u, flip(u)))N =  2 (v ,u )h  =  0

since v ,u  E C , and C  is a self-orthogonal code over the Hamming space. Clearly, dim Cort =  k, 

so Cort is an [2s, k] self-orthogonal NRT code. □

Example 4.6. Let C  =  {(0,0,0), (1,1,0)} be the [3,1] self-orthogonal code given by in the 

Hamming space F3j. The code Cort o f Theorem 4.5 is the following [6,1] self-orthogonal NRT  

code in M 1;6(F2)

Cort =  {(0,0, 0, 0, 0, 0), (1,1, 0, 0,1,1)}.
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Theorem 4.7. Let C  be an [s, k] self-dual code in the Hamming space F;̂ . The code

Cn  := {(v,flip(v')) : v ,v ' G C } 

is an [2s, 2k] self-dual NRT code in M 1,2s(Fq).

Proof. Let v  =  (v1, flip(v/)), u =  (u1, flip(u1)) G CN with v1,v /1 ,u 1,u /1 G C . Then,

(v, u )n  =  ((v1 ,flip(v1 )), (u 1 ,flip(u 1 )))N =  (v1, u ) e  +  (v1 ,u ! )e  =  0,

since C  is a self-dual code in the Hamming space F; .̂ So CN is a self-orthogonal NRT code. 

Note that CN will be a self-dual NRT code if dim(CN ) =  2k. Choose a basis f3 := {v1, . . . v k} 

of C . Since flip : F;] — > F;̂  is a linear isomorphism, the set fl ip (P ) :=  {flip(v1 ) , . . . ,  flip(vk)} 

is a basis of f l ip (C ). Define

Pn  :=  {(v1 , 0 ) , . . . ,  (vfc, 0), (0, flip(v1 ) ) , . . . ,  (0, flip(vfc))}

where 0 denotes the vector ( 0 , . . . ,  0) G F; .̂ The set j3N is a basis for CN which has 2k elements, 

and it follows that CN is an [2s, 2k] self-dual NRT code. □

Example 4.8. Let C  :=  {(0,0), (1,1)} be the [2,1] self-dual code in the Hamming space F2. 

The code CN given by Theorem 4.7 is the following [4, 2] self-dual NRT code in M 1,4(F2)

CN =  {(0,0, 0, 0), (0, 0 ,1 ,1 ), (1,1, 0,0), (1 ,1 ,1 ,1)}.

Example 4.9. Consider the [8,4] Extended Hamming code H 3. It is well known that 'H3 is a 

self-dual code in the Hamming space F | , and thus the construction o f Theorem 4.7 applied to 

H 3 gives us an code CN, which is an [16,8] self-dual NRT code in M 1 ,16(F2).

4.2 Constructions of self-dual NRT codes via generator ma

trices

In this section, we will present some constructions of self-dual NRT codes starting 

from other self-dual NRT codes. These constructions are inspired by the those introduced by 

Marka et al. in [42], where some constructions of self-dual NRT codes for n  =  1 are given. In 

order to describe NRT codes by generator matrices, we will order lexicographically the entries 

of an element v  G M nss(Fq), identifying the matrix v  =  [v1; v2; ••• ; vn] G M nss(Fq) with a row 

vector (v1 | v2 | . . .  | vn ) G M 1 ,ns(Fq ).
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Definition 4.10. A generator matrix fo r  an [ns, k] linear code C  in the N R T  space M n,s(Fq) 

is a matrix G e  M k ,ns(Fq) whose rows form a basis o f C. A generator matrix G e  M k ,ns(Fq) 

o f an [ns, k] linear NRT code C  in M n,s (Fq) can be written as

G Gi Go Gn- 1 Gn

where each Gi is an k x  s matrix fo r  i =  1 , . . . , n .

The main point in the constructions given in [42] is the definition of a flip of a matrix 

A e Mn s(Fq), which is described below.

Definition 4.11. Let A  =  (aitj ) e M n s (Fq). Then, the flip o f A, denoted by Flip(A), is defined 

by

Flip(A) =  (aiU),

where u =  s — j  +  1 fo r  1 ^  i ^  n and 1 ^  j  ^  s. We denote the transpose o f  Flip(A) as A o. 

Example 4.12. Let A  e M n,s(Fq) given by

A

a1,1 a1,2

a2,1 a2,2

an—1,1 an—1,2

an,1 an,2

Then, Flip(A) and A o are given respectively by

a1,s—1 a1,s

a2,s—1 a2,s

an— 1,s— 1 an—1,;

an,s— 1 an,s

Flip(A)

A0

a1,s a1,s—1

a2,s a2,s— 1

an—1,s an—1,s—1

an,s an,s—1

a 1,s a2,s ■ ■

a 1,s—1 a2,s— 1 ■ '

a 1, 2 a2,2 ■ '

a 1, 1 a2,1 ■ '

a 1, 2 a 1, 1

a2,2 a2,1

an—1,2 an—1,1

an,2 an,1

an—1,s an,s

an—1,s—1 an,s—1

an—1,2 an,2

an—1,1 an,1
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Note that by the definition of the NRT metric, in the case n  =  1, a code C  in M 1s(Fq) 

is an [s, k] self-orthogonal NRT code if and only if GGo =  0, where G is a generator matrix of 

the code C .

In order to define self-dual NRT codes by generator matrices, we introduce a new 

concept; the ordered flip of a matrix A  e  M k,ns(Fq).

Definition 4.13. Let A Ai Ao A n— 1 An be an k x ns matrix. The ordered

flip o f A  is the matrix OFlip(A) := Flip(Ai) Flip(Ao) Flip(Ara_i) Flip(An) . We

denote the transpose o f  OFlip(A) by A od. Note that

A od =  [OFlip(A)] T

A 1

A o

A o A n_ 1
AoAn

given by

G Gi Go

Then

OFlip(G)

and

Gc

NRT code in M 2,4 (F2)> wht

0 1 0 0 0 0 0 1

0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 1 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0

0 1 0 0

1 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0
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1

5
1 0 G (1)Gn 0

0 g 12) 0 1

The definition of ordered flip and NRT metric implies the following remark.

R em ark 4.15. Let C  be an [ns, k] linear NRT code in M n, s(Fq ), and let G is a generator matrix

o f C. The equivalence hold: C  is a self orthogonal NRT code i f  and only i f  GGod =  0.

Theorem 4.16. Let Ci be an [ns, ki] self-orthogonal NRT code in M n,s(Fq), i =  1, 2. Let also 

G (i) =  [G ^ | . . .  |G «] be a generator matrix o f Ci. The matrix G G M kl+k2, 2ns(Fq) defined by

G

is a generator matrix o f an [2ns, k 1 +  k2] self-orthogonal NRT code C N.

Proof. We need to prove that GGod =  0. Indeed, by definition of ordered flip we have

OFlip(G)

and _
(G((1) )o 0

0 (g S2))c

(g 21) )o 0

(Gni} )o 0

0 (Gn2))

F lip (G ^ ) 0 F lip (G in )) 0

0 F /ip (G ((2)) 0 F lip (G in ))

God

therefore,

GGod G ii)(G ii)r + . . . + Gni)(Gni> ) ° + [g i2)(g i2))° + . . . + g ^ g ;? )0]

Gr'tod I /"t r'tod _ nlG i +  G2G2 — 0,od

since C1 and C2 are self-dual NRT codes. It follows from Remark 4.15 that C N is a self- 

orthogonal NRT code. It is easy to see that the rows of G form a basis of C N , so we concluded 

that dim C N =  k1 +  k2, and C N is an [2ns, k1 +  k2] self-orthogonal NRT code. □

Corollary 4.17. Let Ci bean [ns, self-dual NRT code, i = 1 ,  2. Let also G(i) =  [Gl | . . .  \Gh]

be a generator matrix o f Ci. The matrix G G Mns,2ns(Fg) defined by

G

1

5
1 0 G (1)Gn 0

0 g 12) 0 1

is a generator matrix o f an [2ns, ns] self-dual NRT code C N.
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G (1)

Example 4.18. In Example 4.8, given the self-dual code C  =  {(0,0), (1,1)} in the Hamming 

space F2, we obtain the self-dual NRT code CN in M i)4(F2) which a generator matrix given by

1 1 0  0 

0 0 1 1

Applying the construction o f Theorem 4.16, we obtain the [8,4] self-dual NRT code C Nl in 

M2j4(F2) defined by the generator matrix

G

Example 4.19. Applying the construction to the [8,4] self-dual NRT code C Nl in M2j4(F2) o f 

Example 4.18, we obtain the [16,8] self-dual NRT code C N2 given by the generator matrix

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

G :=

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Theorem 4.20. Let Ci be an [nisi ,k i] self-orthogonal NRT code in M niSi(Fg), 1 ^  i ^  t, 

such that k =  k1 +  . . .  +  kt ^  ns, where n  := m ax{ni} and S :=  m ax{si}. Let also 

G (i) =  [G ^ | . . .  \G%] be a generator matrix o f Ci. The matrix G G M k,s(ni+...+nt) (Fg) defined 

by

G ^

0

g 21]

0

G (1)Gn1

0

0

G12)

0

G(2)G2

o 
Ss 

.

0

0

0

0

0

0

0 0 0 0 0 0 G f G2t) G(t)Gnt

G

is a generator matrix o f an [s(n1 + . . . + nt),k] self-orthogonal NRT code C±, where the matrices

G j) G M kis(Fq), 1 ^  i ^  t and 1 ^  j i ^  Ui are given by G j  =  [G j;] i f  Si =  s or 

Gj} =  [G ^ | 0] i f  si < s, where 0 g M ki—Si (Fq) is the null matrix.

(i)
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Corollary 4.21. Let Ci be an [ns, hi] self-orthogonal NRT code fo r  1 ^  i ^  t such that k =  

hi +  . . .  +  kt ^  ns and G (i) =  [ G ^ l . . .  |G ^] be a generator matrix o f Ci. Then the matrix

G G M k,tns(Fq) defined by

G

G il)

0

g 21)

0

G (l)Gn

0

0

G ((2)

0

g 22)

0

g (2)Gn

0

0

0

0

0

0

0 0 0 0 0 0 G ((t) G2t) G(t)Gn

is a generator matrix o f a [tns, h] self-orthogonal NRT code C*.

In particular, we can apply the preceding corollary to construct a self-dual NRT code 

C  equivalent to the code C N from the construction in Theorem 4.16, more precisely

Corollary 4.22. Let Ci and C2 be two [ns, self-dual NRT codes in M n,s(Fq). Let also

G (1) =  [G1 \ . . . \ G n ]  be a generator matrix o f C\, and G(2) =  [G1 \ . . . \ G n ] be a generator 

matrix o f C2. The matrix G G Mns>2ns(Fq) defined by

i
5

1 G (l)Gn 0 0

0 0 Gl2) 1

G =

is a generator matrix fo r  an [2ns, ns] self-dual NRT code C+.

Example 4.23. Let C Nl be the [8,4] Self-dual NRT code o f Example 4.18. Then, by the con

struction o f Theorem 4.22, the following matrix

G

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

is a generator matrix fo r  an [16,8] self-dual NRT code C+, which is, equivalent to the code C N2 

o f Example 4.19.
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4.3 An application of the ordered flip concept

In [65], Alves gave an analogue for NRT codes of the well-known standard form of 

generator matrices for codes in Hamming space. In this section, we remember this analogue 

generator matrix, and we will use this to classify self- dual NRT codes dimension two.

Definition 4.24. A matrix A  e  M n,k( F ) is said Ts(Fg)-reduced if, modulo permutations o f 

rows,

A ci C2

where each column Cj is either the zero vector or a vector o f the form

cj (c(i,j), . . . , CGj-i,j), 1, 0, . . . , 0) ,

with Uj < Uj> whenever j  < j 1, and Cj and Cj/ are nonzero.

Example 4.25. The following matrix is T6(F2)-reduced.

1 1 0  1 0  1 

0 0 0 1 0 0

0 1 0 0 0 1

0 0 0 0 0 1

In fact, permuting the second and the third rows we get the matrix

1 1 0  1 0  1 

0 1 0 0 0 1

0 0 0 1 0 0

0 0 0 0 0 1

whose columns satisfy the definition o f  T6 (F2)-reduced.

Definition 4.26. Let C  be an [ns, k] NRT code in M n,s(Fq). A generator matrix G fo r  C  is said 

to be in the NRT-triangular form if

G

where each Gi is a k x  s matrix, and:

G i G2 Gn

1. G is in block echelon form, i.e., i f  the last t rows o f Gi are zero, then the last t rows o f 

G i , . . . G i_i are also zero;

cs
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2. The rows no zeros o f G 1 are distinct canonical vectors, arranged in order o f increasing 

NRT weight;

3. For each i =  2, , n, the following proprieties hold:

(i) Gi is TS(Fq)-reduced or,

A i B i .
(ii) Gi = , where A % and B % are Tm(Fq)-reduced, J % is a matrix whose

J i 0 J
non-zero rows are distinct canonical vectors (also arranged in order o f increasing 

NRT weight) and whose the last column is nonzero, and all entries o f A i above each 

nonzero entry o f J i are zero.

Theorem 4.27. ([65].) Let C  be an [ns, k] linear NRT code in M n,s(Fq). Then C  is equivalent 

to another linear NRT code C  in M n.s(Fq), which has a generator matrix

G = Gi Go Gn

in the NRT-triangular form.

Theorem 4.27 gives us a simple NRT-triangular form for NRT codes of dimension two.

Corollary 4.28. ([65].) Let C  be an [ns, 2] linear NRT code in M n,s(Fq). Then, C  has a 

generator matrix o f the form

G = [G11G2 I . . .  \Gn] ,

i

0

0 li

where each Gi is an 2 x s matrix o f one o f the following types: Null matrix,

, where ei E FS denotes the i-th canonical vector, 1 ^  i ^  j , and A =  0.
ei ei +  Xej

. e  - ej

Proof. See [65]. □

Theorem 4.29. Let C  be an [ns,k] self-dual NRT code o f dimension two. Then one o f the 

followings holds.

i) I f  n = 1, s =  4, any [4, 2] self-dual NRT code C  in M i)4(Fq) has as a generator matrix 

one o f the matrices

1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0

0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1
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1 0 A 0 1 A 0 0 0 1 0

I

0 0 1
1

0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1

ii) I f  n  =  2, s =  2, any [4,2] self-dual NRT code C  in M2,2(Fq) has as a generator matrix 

one o f the matrices

1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1

0 1 1 0 0 1 0 1 1 0 1 0 1 0 0 1

0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1

1 +  A 0 0 1 0 1 +  A 1 0 1 +  A 0 1 0 0

1 0 0 0 0 1 5 0 0 1 0 0 0 0

iii) I f  n  =  4, s =  1, in this case the NRT metric space and the Hamming metric are equivalent. 

The classification o f self-dual codes in this case is given by Pless in [54].

Proof. The definition of ordered flip and Corollary 4.28 can be used to find all possible genera

tor matrices of a self-dual NRT code of dimension two. In fact, if C  is an [ns, k] self-dual NRT 

code in M n,s(¥q) of dimension two, then 2 =  d im (C ) =  n  and so ns =  4, which implies that 

one of the following cases holds.

i) n  = 1  and s =  4;

ii) n  =  2 and s =  2;

iii) n  =  4 and s =  1.

The result follows by the definition of ordered flip of a matrix and Remark 4.15. □



4.4 Open problems

a) Can we get new constructs of self-dual NRT codes from the definition of ordered flip of 

a matrix?

b) What happens if we apply the constructs already obtained to good codes in the Hamming 

metric? (Will we obtain good NRT codes?)

c) Using the same strategy of the previous section can we classify self-dual NRT codes with 

dimension greater than two?
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Chapter 5 

Reed-Solomon Codes and Interleaved 

Reed-Solomon Codes

In this chapter, we will discuss some of the properties of an well-known family of 

codes, the Reed-Solomon codes [57]. We also review the concept of Interleaved Reed-Solomon 

codes and a collaborative decoder of interleaved Reed-Solomon codes [60]. The main objective 

of this chapter is to point out that will be used to perform fractional decoding beyond the a- 

decoding radius [73].

5.1 Reed-Solomon codes

In 1960, Irving S. Reed and Gustave Solomon published the remarkable paper Polyno

mial Codes over Certain Finite Fields [57]. In this paper, they introduced a new error-correcting 

code based on sampling points on a polynomial, as described in the following:

Definition 5.1. Let L  =  {Y]_,. . . ,Yn} be a set o f distinct nonzero elements o f a finite field  Fq, 

and let Fq [x]k denotes the set o f all univariate polynomials o f degree less than k. For a given 

polynomial f  (x) G Fq [x]k, we write

f  (L) =  ( f  (Y1) , . . . , f ( Yn)) .

Let n < q, a Reed-Solomon code RS(q,  n, k) over afield  Fq is given by

RS(q ,n ,  k) =  {c =  f  (L) : f  (x) G Fq [x]fc}. (5.1)

The set L  is called the evaluation set o f RS(q,  n, k).

72
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Reed-Solomon codes are known to be maximum-distance separable (MDS), i.e., their 

minimum Hamming distance is d =  n — k +  1. For fixed n, and L  =  {y 1, . . . , y n}, the various 

RS(q,  n) codes enjoy the nice embedding property RS(q,  n , k  — 1) Ç RS(q,  n, k).

Let us recall a natural interpretation of the RS(q,  n, k) code can be made by means of 

its encoding map. To encode a message m  =  (m0 , . . . , m k - 1) G F£, we interpret the message 

as the polynomial

and then the evaluation of the polynomial p  at the points y 1, y2, . . . , y n generates the codeword 

(p(Yi ) , p ( l 2) , - - - , p( ln) )  corresponding to m.

Let C  =  RS(q,  n, k) be a Reed-Solomon code, and c G C  with c =  f  (L) for some 

f  G Fq[x]k. Assume that c was transmitted over a noisy channel, and that y =  c +  e was the 

received word with error e =  (e1, . . . , e n).

To locate the erroneous positions in y , we can use a technique introduced by Peterson

[53] and define a polynomial, called error-locator-polynomial by

where J  =  {i : ei =  0} with \J \  =  t, the set of error locations of y.

Let r(x) G Fq [x] be the unique interpolation polynomial of degree deg r(x) <  n  such 

that r(%) =  yi for all i =  1 , . . . , n .  The polynomial r(x) can be calculated by using the 

Lagrange interpolation formula

p(x)  =  m 0 +  m 1x  +  . . .  +  m k - 1x k 1 G F ^x],

A ( x ) = n ( x —Y^), (5.2)

n

n- k
Let S (x) be the corresponding syndrome polynomial S (x) =  ^  Six i 1. By definition we have

i=1
that S (x) =  r(x) — f  (x), and

(5.3)

(5.4)
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Thus, (x — Yj) |A (x)S (X ) and so G(x)  =  ]^[(x — Yj) divides A (x)S ( X ). We can write the
j=i

following Key-Equation

A(x)S(x) =  0 mod G(x), (5.5)

which give us a polynomial relation between the error-locator-polynomial and the syndrome 

polynomial. Note that A(x) is not known at the receiver, but r(x)  and G(x) are.

Equation (5.5) gives rise to a linear system of n  equations. From these equations, 

n — k — t equations depends only on the n — k coefficients from S (x), which are the syndromes 

S 1, S 2, . . . , S n-k , and the unknown coefficients of the error-locator polynomial A(x). Hence, 

we extract a linear system of n — k — t equations and t  unknown variables X1,X2, . . . , X t. This 

system of equations can be represented by the matrix equation

(5.6)

If (5.6) has a unique solution, it can be used to calculate the coefficients of a unique error locator 

polynomial A(x), and hence the erroneous positions of y are known, the most difficult part of 

decoding is accomplished. If the error locations are known, the error values can be uniquely 

determined. Error evaluation can be performed using standard techniques like Recursive Exten

sion [4] or the Forney algarithm [21].

A unique solution of (5.6) can only exist if the number of unknowns is not larger than 

the number of equations, i.e., as long as t ^  n — k — t and we are never able to correct more 

than errors, that is,

CoCoCo

1 1

>
1

— St+1

S2 S3 . . .  St+1 At-1 = — St+2

Sn -k-t Sn -k -t+1 ' ' ' Sn -k - 1 1 > 
■

1 Sn-k

n k

The number t  is called the maximum correcting radius of the RS(q,  n, k) code.

5.2 Interleaved Reed-Solomon codes

Interleaved codes are not a family of codes, but rather an encoding mode.

Definition 5.2. Let C0 , . . . , C n -1  code in Fn an interleaved code o f order m  induced by 

C0 , . . . , C m -1  is the following matrix form.
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IC

s
c0,1 c0,2 c0,n-1 c0,n

c =
C1,1 C1,2 c1,n-1 c1,n

: (ci,1,. . ,c i,n) G Ci) 1 ^   ̂ ^  n  1 ^

cm -1, 1 cm -1,2 cm -1,n—1 cm -1,n
(5.7)

Sometimes we write the codewords c of an interleaved code IC  as

c(o) 

c(i)

c(m-1)

where c(i) G Ci. In special, when the underlying codes are Reed-Solomon codes, which are 

arranged in a matrix form, the resulting interleaved code is said to be an Interleaved Reed- 

Solomon code. Formally,

Definition 5.3. Let k0 , k 1, . . . , k m -1  be positive integers, where kj < n fo r  any 1 ^  j  ^  n — 1. 

An interleaved RS code IRS(q ,  n, K , m )  o f order m  is given by

f
f0(L)

\

IRS(q ,  n, K , m )  =  < c =
f1(L)

: f j (x) G Fç [x]kj

_ f m - 1 (L) _

(5.8)

The codewords f j  (L) G R S  (q, n, kf) are called elementary codewords o f the IRS(q ,  n, K , m) -  

code.

If the dimensions kj in Definition 5.3 are equal for all j  =  0 , . . . , m  — 1, the I R S  code is 

called Homogeneous interleaved RS Code. Otherwise, the I R S  code is called Heterogeneous 

interleaved RS Code.

The common way to decode an interleaved code is to decode each of the row code

words (ci,i, . . . ,Oi,n) G Ci separately. Using this decoding process, the maximum error correct-

ing radius of the IRS(q ,  n, K , m )  code is n-k where k =  m ax{k0 , k 1, . . . , k m-1}.
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5.2.1 Collaborative decoding of interleaved Reed-Solomon codes

Schmidt et al. [60], introduced the concept of collaborative decoding for interleaved 

RS codes. This decoder is based on the fact that the errors occur in the same positions of each 

elementary codeword of the interleaved RS code. In the following we present the main idea and 

results from [60].

Let c e  IRS(q ,  n, K , m )  and its received word y  =  c +  e, where e =  ( e i , . . . , e n) 

denotes the error vector with t erroneous columns, that is, w(e)  := {  : ei =  0}| =  t. 

The m  elementary codewords of an I R S  code are affected by m  elementary error words 

e(0) , e (1) , . . . , e (m-1) of weight wH(e(j)) =  tj ^  t. Let E(j) denote the set of error positions 

for the j -th elementary received word. Since we are considering column errors, the union of the 

m  sets of error positions E =  E(0) U E(1) U . . .  U E(m-1) is a subset of { 1 , . . . , n } with cardinality

EI =  t.

Assume that the codewords of an I R S  code are transmitted over a qm-ary chan

nel. The first step of collaborative decoding is to calculate the m  syndrome polynomials 

S (0)( x ) , . . . , S (m-1) (x) of degree smaller than n — kj and obtain the Key-Equations

A (x)S(j) =  0 mod G(x),  j  =  0 , . . . , m  — 1 .

Shift-Register Synthesis Algorithm 4 of [61] applied to the syndromes S (0), . . . , S (m-1) 

yields a polynomial A(x) and a shift register length t.

So, as in the classical case, these syndromes are used to form a linear system of equa

tions S  A =  V ,
S(o) Ai V (0)

S (1) A2 =
V (1)

S  (m-1)
_ A* _

V (m-1)

where each sub-matrix S (j) is a (n — kj — t) x  t matrix and each V (j) is a column vector of 

length n — kj — t:

<N

i

• S j
S (j)
St+1

S (j) =
Q(j) Q(j)S2 S3 '

S (j)
St+1 , V (j ) =

S (j)
St+2

S (j) S (j)
Sn-kj —t Sn-kj—1+1

S (j)
Sn—kj — 1

S (j)
Sn—kj
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m— 1
The system of equations (5.9) has ^  (n — kj — t) equations and t  unknowns. In order

j=0
to guarantee unambiguous decoding, the number of linearly independent equations has to be

greater than or equal to the number of unknowns. Under the assumption that all equations in

(5.9) are linearly independent, we obtain the following restriction on t:

m— 1
y ^ ( n  — kj — t) ^  t (5.11)
j=0

which can be rewritten as

t ^  —m— ( n — 1  V  k j )  . (5.12)
m  +  1 \ m  ^  j Ii=0

The number m—1

n  V  kjm 'i=0

is called the burst-error-correcting capability of the interleaved RS code.

Note that for m  =  1, that is, considering just one Reed-Solomon code RS(q,  n, k0), 

tir s  is reduced to

tir s  =  2 (n — ko) =  t .

By the definition of the error locator polynomial, A(x) is only a valid error locator 

polynomial if it has exactly t distinct roots. Hence, a A-polynomial obtained from [61] is 

accepted only if it conforms to be the following definition

Definition 5.4. A polynomial A(x) over Fg is called t-valid if it is polynomial o f degree t and 

possesses exactly t distinct roots in Fg.



The collaborative decoding algorithm given by Schmidt et al. in [60] is the following
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Algorithm 1: Collaborative IRS Decoder

Input: Received word y  =

ip 
in'

1

Calculate syndromes £ (0) . , S (m-1).

y (m 1)

Compute t  and A(x) by Algorithm 4 in [61].

if  t < t i r s  and A(x) is t-valid then 
for each j  from 0 to m  — 1 do

evaluate errors, and calculate e(j)

calculate c(j) =  +  e(j)

else
|_ decoding failure 

output: c e  IRS(q ,  n, K , m )  or decoding failure
Collaborative decoding of I R S  codes provides a method of decoding errors beyond 

half the minimum distance. However, there is a certain probability that some of the equations

(5.9) are linearly dependent. In this case, there is no unique solution of the system of equations 

and we declare a decoding failure.

In order to analyze the probability Pf (t) for the decoding failure, we assume that for 

each column of the interleaved RS code, each error pattern occurs equiprobable. More precisely, 

we assume that the burst errors
4°)

(m-1)

are random vectors, uniformly distributed over F™ \  {0}.

To obtain an upper bound on the failure probability of Algorithm 1, we have first to 

show that whenever Algorithm 1 yields a decoding failure, then there exist multiple solutions 

for (5.9).

Lemma 5.5. [60] Consider a codeword c in an I R S ( q , n ,  K,m) .  Assume that this word is 

corrupted by an error matrix e with t nonzero columns, and that Algorithm 1 yields a decoding 

failure. The linear system o f equations (5.9) with t unknowns has multiple solutions.

Lemma 5.6. [60] Let C0 , . . . , C m - i be m  q-ary linear codes o f length n', and let the dimension

e
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o f the code Cj be n' — s (j\  Further, let

w

c(0)

c(m-1)

be a m  x  n' matrix such that Cj =  0 fo r  all j  = l , . . . , n ' ,  i.e., that w  does not have an all-zero 

column. Furthermore, assume that all columns o f w  are uniformly distributed over all non-zero 

vectors o f length m. Let Pn  be the probability that

c( j  E C j, Vj = 0 , . . . , m  — 1. (5.13)

Thus Pn  is overbounded by

Pn  < q- E ^  ^ . (5.14)

Proof. Let A  be the set of all m  x n' matrices whose rows fulfill (5.13). Futher, let Bn  be the 

set of all m  x n' matrices with elements from Fq, and let the subset B an, C Bn  be formed by all 

matrices without any-nonzero column. Then, the probability Pn  that the matrix w  without any 

all-zero column fulfills (5.13) can be calculated by

=  \A r> sn , \ <  JA L 

\B"n \ "  \Bn \.

The cardinality |A| is obtained by

m— 1
mn'-yyrrA s/_ y-m- l2= j=o s

\a \ = n  \c  (j) \ = ^ j=°
j=0

and the cardinality \Bvni \ is calculated by

\Bn \ = -qm — i f .

Consequently, Pn' is overbounded by

nmn' 1 / n
p , <  q_____ q-  et—  (̂j)

n < -qm — i)n' q

□

Definition 5.7. An independent random vector o f  ̂  is a random vector v =  ( v i , . . . , v n) E Fn 

where the value o f each coordinate Vi does not depend on the other coordinates Vj o f v.
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Theorem 5.8. (Failure Probability)[60] Consider an interleaved RS code, which is decoded 

by Algorithm 1. Furthermore assume that y  is corrupted by t column errors, where each col

umn vector is an independent random vector uniformly distributed over F^- \  {0}. Then, the 

probability fo r  a decoding failure is overbounded by
t

0 _
qm — 1 / q — 1

_ . qm — 1 V  q—(m+1)(TiRs—t)
P l (t) <  P i t  =  ^  i-------• (5.15)

where t IRs  =  m+1 u —m( m—1

n — k

m
j=0Proof. According to Lemma 5.5, the failure probability of Algorithm 1 can be overbounded 

by considering the cases in which the system of equation (5.9) with t unknowns has multiple 

solutions. We have such a case whenever rank(S ) <  t, i.e., whenever there exists a column 

vector u =  0, such that Su  =  0. Equivalently, we can say that (5.9) cannot have a unique 

solution if

3u =  0 such that S (j')u =  0 for all j  =  0 , . . . , m  — 1. (5.16)

Since the syndrome matrices S ^ , . . . , S (m- 1̂  depends on the error matrix e, we are able to

express the failure probabilityPf  (t) in a general way by

( ) number of matrices et satisfying (5.16) 
f  total number of matrices et ,

where e t denotes an error matrix with exactly t non-zero columns. Now, we consider matrices

with non-zero columns at fixed indices j 1 , . . . , j t . More precisely, for a fixed set { j 1, . . . , j t }

of t indices, we consider the ensemble M t(j1, . . . , j t) of matrices, in which every column with

index j  e  { j 1, . . . , j t} is an independent random vector uniformly distributed over F^- \  {0},

and all other column are zero vectors. Then, the probability that (5.16) is satisfied for matrices

et from the ensemble M t (j1, . . . , j t ) is calculed by

|e E M t ( j 1, . . . , j t )  such that e satisfies (5.16)|
Pf (j1' - ' jt)  = -------------------- \ M t( j , . . , j , ) \ ---------------------•

We will now derive an upper bound on Pf ( j1, . . . , j t), which does not depend on the indices 

j 1, . . . , j t , but only on the number of erroneous columns t. Hence, this bound will directly 

provide us with the upper bound on Pf  (t), in which we are actually interested in.

For calculating Pt( j1, . . . , j t), let the number of rows in S ( j  be denoted by s (j\  i.e., 

s =  n — kj — t. It is known (cf. e.g. [4]) that a syndrome matrix S can be decomposed into

S j  =  H  (j)F  (j)D v.
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where V  is a t x  t  Vandermonde matrix, D  and F (j) are t x  t  diagonal matrices, and the matrix 

H (j) is a s (j) x t  matrix consisting of s (j) rows of a transposed Vandermonde matrix. Hence, H (j) 

represents a parity-check matrix of a (shortened) Reed-Solomon code of length t  and dimension 

t — s (j), which we denote by K (j). The product v =  D V u  defines a one-to-one mapping u m  v. 

Consequently, the statement

3v =  0 such that H (j)F (j)v =  0 for all j  =  0 , . . . , m  — 1 (5.17)

is equivalent to (5.16). With w(j) =  (F  (j)v)T, and the fact that H (j) is a parity-check matrix of 

the code K (j), we can state another equivalent condition for a decoding failure:

3v =  0 such that w(j) e K (j) for all j  =  0 , . . . , m  — 1.

Assume that we have a vector v with Hamming weight u H(v) =  n' . Then, the vector w(j) have 

at most n' non-zero components, for each j  =  0 , . . . , m  — 1. Now consider the matrix

w (0)

w

( m-  1)w

Since we know that all the vectors eji =  (ej0) , . . . , e (yjjm- l 1)T , i =  1 , . . . , t ,  are non-zero, and that 

all non-zero patterns are distributed uniformly, we also know that w  contains exactly n' non

zero columns uniformly distributed over all non-zero vectors in F™. Assume that the non-zero 

columns in w  are located at the indices i i , i 2, . . . , i n , let w n  be a m  x n' matrix consisting 

of the non-zero columns of w, and let H^,^ be obtained from H (j) by removing all columns 

whose indices are not in the set { i1 , i 2 , . . . , i n,}. Furthermore, denote by the code defined

by the n' x  s ( j  parity-check matrix H ^ \  Thus, the statements H (j) W T =  0 and H (j) W T =  0
(j)are equivalent. Consequently, we can apply Lemma 5.6 on , and Wn, to overbound the 

probability Pn, that a fixed vector v of weight n ' satisfies

H (j) f  (j)v =  0 for all j  = 0 , . . . , m  — 1. (5.18)

We observe that the probability P (v) for a vector v to fulfill (5.18) is independent of the posi

tions of the non-zero symbols in v, but only depends on the weight u H(v) =  n ', i.e.,

P(v  such that u H (v) =  n') =  Pn, .
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Hence, the probability Pf ( j t h a t  (5.16) or equivalently (5.17) is satisfied can be over

bounded using a union bounding technique, by summing up over all non-zero vectors v:

Since the right side of (5.19) is independent of the indices j i , . . . , j t but only depends on t, we 

see that (5.19) is also an upper bound on the failure probability Pf  (t).

To improve (5.19), we should take care about the following fact: if a vector v fulfills

(5.18), a vector V  =  av  also fulfills (5.18) for all a E Fq \  {0}. Therefore, we call v and av  

equivalent vectors. Since there are q — 1 different non-zero elements in Fq, there exists q — 1 

equivalent vectors for each non-zero vector over Fq. Thus, the number N n  of non-equivalent 

vectors of lenght t with a certain weight n1 is calculated by

Hence, to obtain a better upper bound on Pf (t), we can multiply the probabilities Pn  

bounded by (5.14) by the number of non-equivalent words of weight n1 calculated by (5.20), 

and sum up over all weight 1 ^  n1 ^  t. In this way we obtain

(5.19)
êF™\{0} n'=1 {v.UH (v)=n'}

Pf (t) Pn' Nn>
n
7 7 = 0 s _--

□
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Chapter 6 

Fractional Decoding and Collaborative 

Decoding

In a distributed system, we usually face a limitation on the disk input/output operations 

as well as on the amount of information transmitted for the purpose of decoding (decoding 

bandwidth). We known that under no limitations on the decoding bandwidth, given a linear 

code C  it is possible to recover the information from any { Y l  errors, where d denotes the 

minimum distance of the code.

Efficient recovery of data from a part of the codeword has been studied recently in 

the context of applications to distributed storage. One special case of this problem is erasure 

correction by array codes and in particular by MDS array codes. The most well-studied case 

of the erasure correction problem is recovery of one erasure from part of the codeword. This 

problem was introduced by Dimakis et al. [13].

Assuming that the system permits the decoder to utilize only an a  ^  1 proportion of 

the whole codeword, Tamo et al. [73] extended the problem of erasure correction from partial 

information to the problem of error correction.

Clearly we should take a  > n because the codewords encodes k data symbols, and 

even without errors to recover the data the decoder needs at least as many input symbols. If 

a  =  1, we return to the standard decoding problem.

The problem of study error correction for a  in the range n ^  a < 1 is called fractional 

decoding problem [73].
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6.1 Fractional decoding

An [sn, k] array code C  is formed by a subset of s x n  matrices c =  (c1, . . . , c n) in 

(Fq)n, where Fq is a finite field. Each column ci of the matrix is a codeword coordinate, and the 

parameter s that determines the dimension of the column vector ci is called sub-packetization. 

We may also consider C  as a code over the alphabet Fq, and then one error amounts to an 

incorrect column q.

Correcting up to t errors means correcting any combination of errors e =  (e1, . . . , e n) 

in (Fq)n of Hamming weight u(e)  :=  |{i : ei =  0}| ^  t, where the received codeword is the 

matrix y  =  c +  e. Note that the Hamming weight of a matrix counts the number of nonzero 

columns, not the number of nonzero entries.

Definition 6.1. (Fractional decoding and a-decoding radius). Consider an [sn, k] array code 

C  =  {c =  (c1, . . . , c n)} over the field  Fq, where ci e  Fq is a column vector fo r  i =  1 , . . . , n .

i) We say that C can correct up to t errors by downloading an a-proportion o f the codeword 

i f  there exist n  +  1 functions

fi  : Fq —m  FaqiS,i  =  1 , . . . , n  and g : F q ^ “i)s —m  F ^  (6.1)

n
such th a t^  a i ^  na  and fo r  any codeword (c1, . . . , c n) e  C  and any error vector

i=1
e =  (e1, . . . , e n) o f Hamming weight u(e)  ^  t, we have

g(A(c 1 +  e 1 ) , f 2(c2 +  e2) , . . . , f n ( c n  +  en)) =  (c1 ,c2 , . . . , cn ) .  (6.2)

ii) For a  ^  n, define the a-decoding radius ra(C ) =  Ta as the maximum number o f t errors 

that the code C  can correct by downloading an a-proportion o f the codeword.

iii) For a  ^  n, we define the a-decoding radius o f [sn, k] codes as

ra (sn, k) =  max ra(C ) (6.3)
C^Csn,k

where Csn,k is the set o f all [sn, k] codes.

It is well known that for any code C  we have r 1(C ) =  t  ^  Yn-^ \ , and the equality 

holds for MDS codes, since in the case a  = 1  we are deal with the standard decoding problem. 

So, in this case r 1(sn, k) =  \ n-~ \ .
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Using the fact that given an MDS code C  if we pick a n  coordinates to form a punctured 

code C, then this punctured code is an MDS code of length a n  and dimension k , Tamo et al.

[73] obtain the following lower bound on ra (sn, k).

Lem m a 6.2. [73] For any k ^  n and n ^  a  ^  1,

a n  — k 
ra(sn,k)  ^  ^—

The main result of [73] is the following upper bound on ra (C) .

Theorem 6.3. [73] Let C  be an [sn, k] array code over afield  Fg and -  ^  a  ^  1. Then

ra (C ) ^
n -  -a (6.4)

An [sn, k ] array code C  with ra (C ) 

optimal a-decoding radius.

n - k  a for a  such that -  ^  a < 1 is said to have the

Lemma 6.2 and Theorem 6.3 give us the following inequalities.

a n  k n -  -a (6.5)^  r - (sn, k ) ^

More precisely, it was also shown in [73] that R S (qs,n,  k ) codes with evaluation set L Ç F9 

attain the optimal a -decoding radius.

Theorem 6.4. [73] Given k ^ n and -  ^  a  ^ 1. Then

r-(sn,  k)
n -  -a (6.6)

Note that to link the RS( qs,n,  k) code with the Definition 6.1, each codeword coor

dinate is viewed as a vector of dimension s over Fq. Thus R S( qs,n,  k) can be viewed as an 

[sn, k] array code over the base field Fq.

Another family of codes which also have optimal a -decoding radius among all the 

codes of same length and dimension are the Folded Reed-Solomon (FRS) codes introduced by 

Guraswami and Rutra [26].

Definition 6.5. (Folded Reed-Solomon code). Let Fq be a finite field o f cardinality q > sn. Let 

Y be a primitive element o f  Fq. An FRS code F R S( s n ,  k) is an MDS array code with codewords 

in F jn given by

{c =  (c i . . . . . c „ )  : Ci =  (h(Y (i-1)s) . h ( j  (‘- 1)s+1) . . . . . h .(7 (-1)s+s-1)) e  FJ } , 

where h e  Fq [x], with deg h ^  ks — 1 and k < n.
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Example 6.6. Let Fg be a finite field with q > 16 and y  be a primitive element o f Fg. The 

F R S( s n ,  k) C Fqn with s =  n  =  4 and k =  2 is the FRS(4.4,  2) C F ^4 MDS array code 

given by

{c =  (C1,...,C4) : Ci =  (h(Y4{i-1)) ,h(Y4{i-1)+1) ,h(Y4{i-1)+2) ,h(Y4{i-1)+3)) E F4} ,

where h E Fg[x] with deg h(x) ^  7. Each codeword c E FRS(4.4,  2) can be written as

h(Y°) h(Y4) h(Y8) h(Y12)

h(Y1) h(Y5) h(Y9) h(Y13)

h(Y2) h(Y6) h(Y10) h(Y14)

h(Y3) h(Y7) h(Y11) h(Y15)

where deg h(x) ^  7.

Theorem 6.7. [73] We have

ra(FRS(sn ,  k)) =

Proof. We need to define n + 1  functions / i, i =  1 ,2 , . . . , n  and g that satisfy (6.2). Choose

f  : Fq — > Fas as follows: For any (d1, . . . , d s) E F;

f  (d1, . . . , ds) (d1, d 2 , . . . ,das) ■ (6.7)

Let fi  =  f  for 1 S  i S  n. Define a new code

C a =  {c = ( c a , . . . , c a )  = ( f  (C1) , . . . , f ( c n ) )  : ( c 1, . . . , cn )  E F R S (s n ,  k)} (6.8)

It is easy to see that Ca defined above has the following equivalent description:

C 0 { ( c a , . . . , C )  : cC0 =  (h(Y (i—1)s) , . . . , h E i—1M as—1)) E FS, 1 S i s  n, } (6.9)

where h E Fg [x], with deg h ^  ks — 1.

Since any k  coordinates of C a contain ( ! )  (sa) evaluations of the encoding polyno 

mial h of degree less than sk, we can recover h and thus the whole codeword from any k of Ca 

We thus conclude that Ca is an [asn, k] MDS array code, and so it can correct up to 

errors.

If ei is the error in the it-h coordinate of the codeword, we can write /  (c i +ei) =  /  (ci) +  

/  (ei) for i =  1, 2 , . . . , n .  Suppose that (c1, . . . , c n) E F R S (s n ,  k) and |{i : ei =  0}| ^
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then ( f  (c1) , . . . , f  (cn)) E Ca and |{i : f  (ei) =  0}| S  n—a  . As a result, we can recover the 

codeword ( f  (c1 ) , . . . , f ( c n)) E Ca and thus recover the encoding polynomial h and finally the 

codeword (c1, . . . , c n) E F R S (s n ,  k) from ( f  (c1 +  e1) , . . . , f ( c n +  en)). This shows that

ra (FRS(sn ,  k)) ^

and proof is concluded. □

Example 6.8. Let Fq be a finite field with q > 24, y  be a primitive element o f  Fq, and C  be the 

FR S(4.6, 2)-code given by

C  =  {c =  (c1 , . . . , c 6) : ci =  (h(7 4(i- 1)) ,h (7 4(i- 1)+1) ,h ( 7 4(i- 1)+2) ,h ( 7 4(i- 1)+3)) E F j}  ,

where h E Fq [x] with deg h(x)  S  7. Each codeword c e C  can be written as

h(Y0) h(Y4) h(Y8) h(Y12) h(Y16) h(Y20)

h(Y1) h(Y5) h(Y9) h(Y13) h(Y17) h(Y21)

h(Y2) h(Y6) h(Y10) h(Y14) h(Y18) h(Y22)

h(Y3) h(Y7) h(Y11) h(Y15) h(Y19) h(Y23)

Considering a  =  1 the code Ca o f Theorem 6.7 is given by

C a {ca =  (<*, . . . ,<*) : ca =  (h(Y4<i-1') , . . . ,h ( Y 4(i-1)+3)) E F 4 ,1 S i i  6}

and each codeword ca can be written as

h(Y0) h(Y4) h(Y8) h(Y12) h(Y16) h(Y20)

h(Y1) h(Y5) h(Y9) h(Y13) h(Y17) h(Y21)

Downloading those symbols o f the codeword c, we can correct at most
6- 1/2 1 error

ac

2
2

6.2 Fractional decoding and collaborative decoding

In this section we propose a new probabilistic decoding method that can perform frac

tional decoding beyond the a-decoding radius.
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6.2.1 Using collaborative decoding to increase the decoding radius

Schmidt et al. [62, 63] suggested to extend a low-rate RS(n ,  k) code to an I R S  code 

to perform syndrome decoding of the RS(n ,  k) code beyond half the minimum distance, of 

course, with some failure probability. The scheme by Schmidt extends a usual low-rate RS 

code to an IRS code. This IRS code is denoted by VI RS ( q ,  n, k, m), where n  and k are the 

original parameters of the R S( q , n , k )  code. The parameter m  denotes the order of virtual 

interleaving. The Virtual IRS code can be defined as follows

Definition 6.9. Let R S( q , n , k )  be an Reed-Solomon code. The virtually extended IRS code 

V I R S ( n ,  k, m)  o f extension order m  is given by

V I R S ( n ,  k, m)  =  c

✓

c(0) f  0(L)
\

< c  = =

c(m-1) _ f m -1(L) _

(6.10)

where f (x) =  ( f  (x))i+1 e  Fq[x] and deg f z(x) < (i +  l ) (k — 1) +  1. Clearly, the parameter 

m  must satisfy m (k  — 1) +  1 ^  n.

Note that the evaluation of ( f  (x))i+1 corresponds to taking the i +  1-th power of each 

element of the codeword c =  (c1, . . . , c n) e  R S  (q, n, k), i. e., (cj+1, . . . ,c n +1).

Using the approach of Algorithm 1, it is possible to correct t < tVir s  errors, where

m
tv , rs  =  m r r  l n — I  m ^ (k — 1) +  V )  ■ (6.U)

Note that this approach is also probabilistic and even though we consider y  =  c + e  as a received 

word of a heterogeneous IRS code, we cannot apply the upper bound on the failure probability 

(5.15). The reason for this is the fact that in (5.15) it was assumed that the erroneous columns 

in the received matrices are distributed uniformly over all non-zero vectors. This is not true for 

the virtual extended code, since all symbols in a erroneous column j  are just powers of the error 

symbols ej . However, a bound on the failure probability Pf  y i RS (t) for m  =  2 is given in [62].

qP .f,VIRS (t) ^
1 \ 1 q-3(TviRs-t)

q — 1 q )  q — 1 '

Another approach used to increase the decoding radius of Reed-Solomon codes is 

found in [77], where Zeh et al., defined the mixed virtual extension of a homogeneous in

terleaved RS code to an heterogeneous interleaved RS code with objective of perform decoding 

beyond its joined error-correcting capability [5].
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6.2.2 Virtual projection of a Reed-Solomon code

In this subsection, we introduce the concept of virtual projection of a Reed-Solomon 

code RS( qs,n,  k) in F ^  with evaluation set L  =  {y 1, . . . , Y u }  in Fq to a heterogeneous RS code 

IRS(q ,  n, K , m) .  Our purpose is to use the virtual projection to perform fractional decoding 

beyond the a -decoding radius.

Definition 6.10. Let A 0 , A 1, . . . , A m -1  be m  pairwise disjoint sets o f the field  Fq. For each 

j  =  0 , 1 , . . . , m  — 1, define the annihilator polynomials o f the set A j to be

Pj (x) =  J !  (x — u ) E Fq [x]. (6.12)

Note that, degpj (x) =  A j  | fo r  j  = 0 , . . . , m  — 1.

Definition 6.11. Let B  =  Fq, and let F  =  FqS be a finite field extension o f B  o f degree s. The 

field trace is defined as follows: fo r  any [  E F ,

2 s — 1
t rm {[) = [  +  [ q +  [ q +  . . .  +  [ q .

Lem m a 6.12. Given an finite extension F s o f  Fq, the field trace is Fq-linear.

Theorem 6.13. [4] Let {(0, ( 1, . . . , ( s-1} be a basis o f F  over B, and let {v0 ,v 1, . . . , v s-1} be 

the dual basis (i.e., t rF/B((iVj) =  5i,j fo r  all i , j ). Then

s-1

[  =  trF/B((ifi)vi.
i=0

In other words, any element [  in F  can be calculated from its s projections { t rF/ B((i[ )} 

on B.

We remark that given a basis {Z0, ( 1, . . . , ( s-1} of F  over B, its trace dual basis always 

exists [4].

Let L  C Fq, in [73] to show that an RS( qs,n , k )  with evaluation points in L  has 

the optimal a -decoding radius, Tamo defined a decoding scheme based on downloading an 

amount of symbols of each codeword coordinates. The next definition is a modification of the 

downloading symbols in [73].

Definition 6.14. Given a polynomial h(x)  =  ak - 1 x k-1  +  ak -2 x k -2  +  . . .  +  a0 E Fqs [x] and m  

pairwise disjoint subsets A 0 , . . . , A m -1  o f  Fq, define hi (x) E Fq[x] by

hi (x) =  tr((iak- 1 ) x k-1  +  tr((iak- 2 ) x k -2  +  . . .  +  tr(Qa0). (6.13)
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For each j  = 0 , . . . , m  — 1 consider the polynomial

Tj(h)(x)  =  hs-m+j(x)(pj(x))(s-m)(j+1) +  ^  hu(x)(pj(x))u(j+1) (6.14)
s-m- 1

u=0

Lem m a 6.15. Let C  =  RS( qs,n,  k) be a Reed-Solomon code with evaluation set L  in Fq, and 

let h(L) E C  be a codeword o f C. Then, each Tj (h)(L) is a codeword o f the RS code

Cj =  R S  (q, n ,k  +  IA j|(s — m)( j  +  1)). (6.15)

Proof. First note that

degTj(h)(x)  S  max jdeg hs-m+j(x)(pj(x))(s-m)(j+l), deg hu(x)(pj(x))“(j+1)

and we can check that

u=0

deg hs-m+j(x)(pj(x))(s m)(j+1) =  deg hs-m+j(x) +  A j |(s — m)( j  +  1)

<  k +  A j  |(s — m )(j  +  1),

and
s m 1

deg ^ 2  hu(x)(pj (x))u(j+1) < k +  A j |(s — m)( j  +  1).
u=0

So, deg Tj (h)(x) < k +  A j  |(s — m)( j  +  1) for all j  =  0 , 1 , . . . m  — 1. Now we must check 

that Tj(h)(L) E F̂ .̂ By definition, Tj(h)(L)  =  (Tj(h)(Y1) , . . . , T j ( h ) ( Y n)), so we just need to 

prove that Tj (h)(Yi) E Fq for all i =  1 , . . . , n .  For all j  = 0 , . . . , m  — 1, we have

s m 1
Tj (h)(Yi) =  hs-m+j(Yi)(p j (Yi))(s m)(j+1) +  hu(Yi)(p j (Yi))u(j+1)

u=0

as hu(x) ,p j (x) E Fq[x] and y% E Fq, it is clear that T j (h)(Yi) E Fq for all i =  1 , . . . , n  and j  =  

0 , . . . , m — 1. □

Definition 6.16. Let C  =  RS( qs,n,  k) be a Reed-Solomon code with evaluation set L  in Fq 

given by L  =  {y 1, . . . , yA  and let A0, . . . , A m-1 any pairwise disjoint subsets o f  Fq such that 

Y j - o  A j  | ^  k. The Virtual Projection CPm/s (q, n, K) is given by

Cp / =1 m/s

✓
c(0) T0 (h)(L)

\

c(1)
= T1(h)(L)

c(m-1) _ Tm-1(h)(L) _

(6.16)
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where Tj(h)(x) is defined in (1.8), K  =  {k0 , . . . , k m - i } and the dimensions kj are given by 

kj =  k +  \A j |(s — m)( j  +  1) fo r  all j  = 0 , . . . , m  — 1.

Assume that a codeword c(L) =  (c(Yl ) , . . . , c ( Y n)) S R S  (qs,n,  k) is transmitted over 

a noisy channel, which adds t  errors in such a way that the word y(L) =  c(L) +  e(L) where 

y(x) ,e(x)  S Fqs[x]n is observed at the channel output. Using the observed word y(L), we 

calculate the m  polynomials Tj (y)(x), j  =  0 , . . . , m  — 1, and create the matrix

y

To(y ) (i i )

T i (y ) (i i )

Tm- i (y ) (Yi)

To(y ) (ln)

T i (y ) (ln)

Tm -i (y)(Tra)

(6.17)

Theorem 6.17. Let c(L) be a codeword o f a Reed-Solomon code C  =  R S  (qs,n,  k) with eval

uation set L  in Fq. Assume that c(L) was transmitted over a noisy channel and that the word 

y(L)  =  c(L) +  e(L) is received. I f  e =  (ei , . . . , e n) has t nonzero coefficients eil •> • • •

then the matrix y  is a corrupted codeword o f the CPm/s (q, n, K) code with at most t erroneous 

columns at the positions i i , . . . , i t.

Proof. If e =  0, then y  =  c S RS ( qs,n,  k), and Lemma 6.15 states that y  is a codeword of the 

virtual projection CPm/s (q, n, K). Note that

Tj (y )(Yi) =  Tj (c +  e)(Yi) =  Tj (c)(Yi) +  Tj (e)(Yi) .

It follows by the fact that the trace field trFqS /Fq is Fq-linear and % s L C  Fq that if eH =  0, that 

is, if i /  { i i , . . . , i t} ,  then Tj (e)(^i) =  0 for all j  =  0 , . . . , m — 1. Otherwise if i s { i i , . . . , i t }, 

then Tj (e)(yi) must be non-zero, so y  has at most t erroneous columns. □

Unlike the virtual extension to an I R S  code [63], where it is possible to ensure that 

given a word y =  c +  e the virtual extension of y is a word with exactly t  erroneous columns, 

in the virtual projection we can not assure it.

Given a codeword c S RS(q,  n, k) and its virtual extension c s  V I R S . In addition, 

in the virtual extension approach, when we recover the word c s  V I R S , we immediately 

recover the codeword c s  RS(q,  n, k) (the first row of the codeword C). Given a codeword 

c S R S ( qs,n,  k) and its virtual projection c s  CPm/3. In virtual projection, it is not so immediate 

that we can recover the codeword c S RS( qs,n,  k) just by recovering the codeword c S CPm/s, 

but the following ensures it.
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Lem m a 6.18. Let {T j (h)(x)}™=01 be polynomials as in (6.14). Suppose that A 0 , . . . , A m—1
m—1

subsets o f  Fq are such t h a t ^ ' j \ A j \ ^  deg h(x), then we can recover the polynomials {hj (x)}
j=0

and consequently, we can recover h(x).

Proof. Tj(h)(u)  =  h0(u) for all u  e  A j ; of course, we can rewrite (6.14) as 

Tj  (h)(x) =  h ,—m+j (X)(pj (x))<-—m j 1 >
s—m—l

+  hu(x)(p j (x))u{3+1)
u=0

=  hs—m+j (x)(Pj (x))(s—mKj+1)
s—m—l

+ho(x)(pj(x))0(j+1) +  2̂ hu(x)(pj(x))u(j+1).
u=1

So, Tj(h)(u)  =  h0(u) for all u  E A j . Then, we know the evaluations of h0(u) at all the points 

Um=oAj and by assumption, Y j - o  A j | ^  deg h(x) ^  degh0(x), so we can recover h0(x). 

Now from h0 (x) and {T j(h)(x)}™-)1, we can calculate the polynomials

d1 ) / M/ ^  _  Tj (h)(x) -  h0 (x)T j ( h ) ( x )  =
Pj (x )j+1 

=  hs—m+j (x)(Pj (x))(s-m-1)(j+1)j
s—m—l

'u—1+ h 1( x ) +  ^ 2  hu(x)(pj(x))(u 1)(j+1).
u=2

So, Tj:l\h ) ( u )  =  h 1(u) for all u  E A j , and again, we know the evaluation of h 1(x) in 

um=oAj. So, we can recover h 1(x). From h0(x ) ,h 1(x) and {T j(h)(x)}™=-01 we can calculate 

the polynomials
(2) =  Tj 1)(h)(x) — h 1(x)
j =  Pj ( x ) ^ 1 .

(2)Since T{ ; (h)(u) =  h2(u) for all u  E A j , by the previous argument we can recover h2(x). 

Generally, the polynomials {h—m+j(x)}™—1 can be recovered from

h ( ) =  Tj (h)(x) — ^ l A P - 1 hu(x)(Pj (x ))u(j+1) 
hs-m+ (x) (pj (x))(s-m)(J+1) .

□
Given an RS( qs,n,  k)-code with evaluation set L  in Fq and its virtual projection CPm/s 

by Lemma 6.18, we conclude that it is possible to recover a codeword c E RS ( qs,n,  k) using 

the code CP , whenever the received word y  =  c +  e has no more than t errors with t < tp . ,1 m/s  ̂ ■‘■m/s
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where TPmja denotes the decoding radius of Cpm/s. Hence, we have the following algorithm.

Algorithm 2: Virtual Projection IRS Decoder
Input: Received word y(L)  =  c(L)  +  e(L), a  =  m / s

For: j  =  0 to m  — 1 do

Create the matrix y  from Tj(y)(L)  and calculate the syndromes S (0),. . , S (m-1).

Compute t and A(x) by Algorithm 1 in [60] .

if t < TPa and A(x) is t-valid then
for each j  from 0 to m  — 1 do

evaluate errors, and calculate Tj (e)(L)

calculate Tj (c)(L) =  Tj (y )(L) — T j (e)(L)

Use Lemma 6.18 to compute c(L)

else
|_ decoding failure

output: c(L) G RS( qs,n,  k) or decoding failure

Theorem 6.19. Let C  =  RS( qs,n,  k) be a Reed-Solomon code then its virtual projection code 

CPm/s (q, n, K) given by Definition 6.16. The maximum decoding radius Tpm/s is

Proof. The decoding radius of the code CPm/s (q,n, K)  is the error-correcting radius of the 

heterogeneous IRS(q ,  n, K , m )  code with K  =  { k o , . . . , k m - i} and dimensions kj given by 

kj =  k +  \ Aj  \ (s — m) ( j  +  1) for all j  =  0 , . . . , m  — 1. The correcting radius is given by (5.12)

□

Corollary 6.20. Let C  =  R S( qs,n,  k) be a Reed-Solomon code and CPm/s (q, n, K) its virtual 

projection as in (6.16), then the following parameters hold:

i) I f  m  =  s, then Tpm/s =  ^  (n -  k);

ii) I f  m  =  s =  1 ,then TP>m/a =  =  t ;

(6.18)



Fractional decoding and Collaborative decoding 94

iii) I f  \Aj \ =  b fo r  all j  = 0 , . . . , m  — 1, then

m  (  (s — m) f  m  + 1
tp , = --------  n — k — b----------
Pm/s m  +  1 V m  V 2

Proof. Straight forward calculation from (6.18). □

It is worth to mentioning a few special cases: if m  =  s, then TPm/s is the decoding 

radius of a homogeneous interleaved RS code [60, 63]. For m  =  s = 1  the result TPm/s is the 

decoding radius of the RS(q,  n, k) Reed-Solomon code over Fq.

6.2.3 Fractional decoding beyond the «-decoding radius

Let C  =  RS( qs,n,  k) be a Reed-Solomon code with evaluation set L  =  {y \ , . . . , Y u} 

in Fq. Let a  =  m / s ,  where m  and s are positive integers and K  is a multiple of m. We will 

show that it is possible to perform fractional decoding beyond the a-decoding radius.

Let c =  ( c i , . . . , cn)  =  (h(Yi) , . . . , h (Yn) )  e  R S ( qs,n,  k), where h(x) e  Fqs [x]k. Let

also A 0 , . . . , A m_ 1 be m  pairwise disjoint subsets of Fq, each of size k /m .  The m  symbols we

download from the i-th coordinate are
s_m_1

dj =  trFqS /F q ((s_m+j Ci)(Pj (7i))(s_m)(j + l) +  trFqS /F q ((uCi)(Rj (Y i ^  ̂  . (6.19)
u=0

Substituting ci by h(^i) for all i =  1, . . . , n  we see that (dji , . . . , djn) =  (Tj (h)(Yi ) , . . . , Tj (h)(Yn)) 

is the j-th  row of the virtual projection code CPa of C . Now by the fact that \Aj \ =  k / m  for all 

j , Corollary 6.20 yields

tp. = m + r  ( ™ + k ( m )  - 1 ( ” + ' ) )  «■■")

As Yj= o \Aj\ =  k, Algorithm 1 is able to recover the codeword c in RS( qs,n,  k) with failure

probability given by Theorem 6.22 if c has no more than t ^  TPa errors.

Note that if m  = 1  ,then a  =  1 /s and

Tpa =  2 ( n +  k ( 2 )  — s k (2

=  1 ( n — « )  = T-  

For m  ^  2, we would like to improve the fractional decoding radius of RS( qs,n,  k), 

it means that we are interested in the case TPa ^  Ta , that is,

1 m  k m  + 1  n k / a
Tpa =  m + 1  + KJ— -  2 >  - —T -  (621)
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and it is possible to check that (6.21) is true if and only if

n  ^  m(1 — a ) +  1 m (s — m) +  s
a m

(6.22)

This can be summarized in the following theorem.

Theorem 6.21. Let RS ( qs,n,  k) be aReed-Solomon Code with evaluation set L  =  { y i , . . . , y n} 

in Fg and a  =  m/s .  I f  m  ^  2 and the rate o f C  is restricted as in (6.22), then the maximum 

a-decoding radius o f C  using Algorithm 1 is

Moreover, in this case, TPa ^  Ta.

6.2.4 Failure probability of the virtual projection IRS decoder algorithm

The failure probability can be calculated in the same way as done in [60] and [77]. 

We observe that the values of Tj1 (e)(yi) and Tj2 (e)(ji) do not depend of each other for all 

j i  , j 2 E { 0 , . . . , m  — 1}, and then we can assume that if y  in (6.17) is corrupted by t  errors, that 

is, y  =  c +  e where e has t  non-zero columns, then each non-zero column is an independent 

random vector uniformly distributed over F™ \  {0}. Hence, we can apply Lemma 5.6 and 

Theorem 5.8 to upper bound the failure probability of Algorithm 2.

Theorem 6.22. Let C  =  R S( qs,n , k )  be a Reed-Solomon Code with evaluation set L  =  

{y i , . . . , y n} in Fg, and a  =  m/s .  I f  m  ^  2 and the rate o f C  is restricted as in (6.22). 

The probability fo r  a decoding failure using the Algorithm 2 is upper bounded by

Example 6.23. Let C =  RS(315, 31,4) be a Reed-Solomon code with evaluation set L  C F 3i 

in this case the decoding radius o f C  is t  =  13 and R  ~  0.1290. By definition, a  =  ^  and 

3l ^  mm < 1, thus m  E {1, 2, 3,4}. Let ai =  55 fo r  i =  2, 3,4. For each ai we have

(6.23)

a) Tai =  Tpai =  5.

b) Ta2 =  10 <  12 =  Tpa2.

c) Ta3 =  12 <  16 =  TPa3.



d) Ta4 =  13 <  19 =  Tpai.

The failure probability o f c) is given in Table I.

Table 6.1: FAILURE PROBABILITY Pfas (t) FOR THE REED-SOLOMON CODE

R S (315, 31,4).___________________________________________________________
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t 12 13 14 15

Pfa:i (t) 4.58 x 10-26 4.23 x 10-20 3.91 x 10-14 3.61 x 10-8

Example 6.24. Let C =  R S((25)5, 31,6) be a Reed-Solomon code with evaluation set £ C F 2s 

in this case the decoding radius o f C is t =  | _ \ =  12 and R  =  n — 0.1935. By definition

a  =  5  and 31 ^  5  < 1, thus m  E {1, 2, 3,4}. I f  we denoted a i =  55 fo r  i =  2,3,4 then for

each ai we have

a) Ta2 =  8 >  Tpa2 =  7.

This is due to the fact that R  — 0.1935 and 2(i—a2)+i — 0.1818 that is (6.22) is not true 

in this case.

b) Tas =  10 <  12 =  Tpas.

c) Tai =  11 <  16 =  Tpa4.

Note that TPa4 is even greater than the decoding radius o f C. So, without accessing the 

entire codeword it is possible to recover more than errors with failure probability

given in the Table II.

Table 6.2: FAILURE PROBABILITY Pfai (t) FOR THE REED-SOLOMON CODE

R S ((25)5, 31, 6).________________________________________________________________

t 11 12 13 14 15

Pfai (t) 7.58 x 10-40 2.54 x 10-32 8.53 x 10-25 2.86 x 10-17 9.61 x 10-10

6.3 Fractional decoding and NRT metric codes

As mentioned in Chapter 2, the NRT metric is a special case of the poset metrics. In 

addition, we have observed that many concepts related to the codes provided with the Hamming
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metric can be extended and studied for codes equipped with the NRT metric, and poset metrics 

in general.

In this section, we will describle the problem of fractional decoding of linear codes 

provided with the Niederreiter-Rosenbloom-Tsfasman metric. We start introducing the basic 

concepts about poset codes [19].

6.3.1 Poset codes

A partial order relation over a set X  is a binary relation S  satisfying the following 

conditions:

1. (Reflexivity) i S  i for all i e  X ;

2. (Anti-symmetry) Given i , j  e  X , if i S  j  and j  S  i, then i =  j ;

3. (Transitivity) i S  j  and j  S  k, then i S  k.

The pair P  =  (X, S ), consisting of a non-empty set Xand a partial order S  over X , is 

called a partially ordered set, or, for short, a poset. We say that i , j  e  X  are comparable in P  if 

either i S  j  or j  S  i otherwise i and j  are said to be incomparable in P .

Given a poset P  =  (X, S) and a subset Y  C X , the restriction of S  to Y  is called 

the restricted order. To emphasize this inclusion relation we may write PX =  (X, S ) and 

PY = (Y, S ). In this situation we say that Y  is a subposet of X .

Definition 6.25. A subposet I  o f X  is called an ideal o f P  i f  it satisfies the closeness property: 

I f  i e  I  and j  S  i, then j  e  I.

Let P  =  (X, S ) be a poset and A  a subset of X , the smallest ideal containing A  is 

called the ideal generated by A  and denoted by (A) P.

In this section we are concerned with finite posets, that is, poset over finite sets. It 

follows that, up to isomorphism, we assume that X  =  [n] =  { 1 , . . . , n }  for some positive 

integer n .

Example 6.26. An anti-chain is a poset PA =  ([n], S a ) where any two distinct elements o f  [n] 

are incomparable, that is,

Pa =  ([n], {1 S a  1,2 S a  2 , . . . , n  S a  n})



Fractional decoding and Collaborative decoding 98

Example 6.27. A chain is a poset Pc  =  ([n], P c ) given by

Pc =  ([n] , {1 P c  2 P c  3 P c  . . .  A c  n } ) .

Example 6.28. Consider a partition

[n] =  U Hi ,
i=i,...,l

with hi =  {Hf.  Define H  =  (H i , . . . , H l) and h =  (hi , . . . , h l) to be hierarchy spectrum and 

hierarchy array, respectively. We remark that n  =  h i +  h2 + . . .  +  hl .A  hierarchical poset (also 

known as weak order) with hierarchy spectrum H  is the poset PH =  ([n], P H), where

a P H b iff a E Hi ,b E Hj and i < j.

I f  we consider a natural labelling o f the poset, we must have H i =  {1, 2 , . . . , h i } and

Hj =  {(hi +  . . .  +  hj - i )  +  1, (hi +  • •• +  hj - i )  +  2 , . . . ,  (hi +  • •• +  hj - i )  +  h j }

fo r  every 1 < j  < l.

We remark that, in case l =  1, we have only one level and the poset is an anti-chain. 

On the other hand, in case l =  n, we have that each hi =  1 and so, we have a hierarchical 

poset with hierarchy array h =  (1 ,1 , . . . , 1 ) ,  that is, a total order.

Example 6.29. Consider a partition

[n] =  U  R i
i=i,...,l

and define si =  {Rf > 0. We call R  =  ( R i , . . . , R l) and S  =  (si , . . . , s l) the chain spectrum 

and chain array, respectively. We remark that n  =  s i +  s2 +  . . .  +  sl. We write

R i {^i , i , ^ i ,2, . . . , ^ i , s i  } , . . . , R l { x l,i , x l, 2, . . . , x l,si }

and define the poset PR =  ([n], P R) with relation P R given by

P ,j P r  Xi ' j  iff i =  i  and j  < j '.

We remark that, in case l =  1 we have only one chain, so a multi-chain poset with chain array 

S  =  (n) is a chain. On the other hand, in case l =  n, we have that each si =  1 and so, a multi 

chain poset with chain array S  =  (1 ,1 , . . . , 1 ) ,  that is, an anti-chain.



Example 6.30. In Example 6.29, consider a partition

[m] =  y  Ri,
i=1,...,n

where s =  si =  \Ri \, R  =  (R 1, . . . , R n) and S  =  (s, . . . , s ) ,  so in this case m  =  ns. We say 

that PNr t  is a Niederreiter-Rosenbloom-Tsafsman poset, orNRTposet. In this case, we denote

it by Pn r t (n, s) =  ([ns] , X n r t ).

Given a finite poset P  =  ([n], X) and a finite field Fq, the set [n] and the coordinates 

of any x  E Fn are related by the function f  : [n] ^  Fn given by f  (i) =  x i. So, it is possible to 

define a P -weight on F ^

Definition 6.31. Given a finite poset P  =  ([n], X) and x  E F™ the P-weight o f x  is given by

up  (x) =  \(supp(x))p \

where supp(x)  := {i : x i =  0}.

Example 6.32. Let x  =  (1,0,1,0)  e  F2, and the posets

Pa =  ([4], Xa) =  ([4], {1 X a 1, 2 Xa 2, 3 ^  3, 4 X a 4})

Pn  =  ([4], X n ) =  ([4], {1 X n  1, 2 X n  2 , 3 XN 3, 4 XN 4 ,1 XN 3, 2 XN 3, 2 XN 4}). 

Then u H(1,0,1,0) =  \(1, 3)H\ =  \{1, 3}\ =  2 a n d u H(1,0,1,0) =  \(1,3)N\ =  \{1, 2, 3}\ =  3.

Example 6.33. Consider the anti-chain poset PA =  ([n], XA) o f Example 6.26 and x  E Fn 

then

Upa (x) =  \(supp(x))A\

=  \{i : x i = 0}\ ,

which coincides with the Hamming weight o f x.

Example 6.34. LetPC =  ([n], X C) be the chain poset o f Example 6.27 and x  E F ^  then

upC (x) =  \ (supp(x))c \

=  m ax{j : xj  =  0}
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Example 6.35. Let us consider the NRT poset consisting o f n disjoint chains, each having 

length equal to s, as in Example 6.30. We write m  =  ns and express

X (x1,1 , ■■■, x 1,sj x2,1, ■ ■■, x 2,sj ■ ■■ j xn,1, ■ ■ ■ , x n,s) G F (6.24)

where x iy1,. . . , x iys are the coordinates corresponding to the i-th chain. We just recall that 

x itj S n r t  x i/tj/ i f  and only i f  i =  i  and j  ^  j '. We define p(xiyj ) :=  m ax{j : x iyj =  0},
n

and uPnrt (x) =  ^  p(xi ,j). In other words, the PNRT weight equivalent to the NRT weight o f
i=1

Chapter 2. To be more precise with the language o f Chapter 2, we use the well-known fact that 

Fns =  Mn,s (Fq), and then a vector x  in Fm can be write as

x i ,i x i , 2 • • • x 1, s 

x2 ,1 x2 , 2 • • • x2 , s
X

Xn,1 Xn,2 Xn

Definition 6.36. Let P  =  ([n], S) be a poset and x ,y  e  F ^  The P-distance between x  and y 

is given by dp(x, y) =  u P(x — y).

Indeed, the P -distance is a metric on F ^  which is called P -metric.

Definition 6.37. Let P  =  ([n], S)  be a poset and dP the related P-metric. A poset code is a 

linear subspace C  o f the metric space (F ^ d p ).

6.3.2 Packing radius of NRT codes

It is well-known that if C  is a [n, k] linear code and d is the minimum Hamming 

distance of C , then the packing radius of C  is

_̂ J  ■ (6.25)

When considering the family of poset metrics, Eq. (6.25) does not hold always, but we 

have the following inequality.

dp — 1
^  Tdp ^  dp -  1, (6.26)

where dP denotes the minimum P -distance of C .

It is known [20] that the upper bound is attained when the poset is a n -chain, while 

the lower bound holds for the Hamming metric. In the general case, the packing radius is not a
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function of the minimum distance and finding the packing radius of a poset code is (in general) 

a NP-hard problem [17].

Let us consider a code C  in (Fq)n as a n-chain poset code, that is, C  is a subspace of 

the metric space (Fq,dPc ), where PC is the poset of Example 6.27. In this case each codeword

c1,1 c1,2 ' ' ' c1,n

c2,1 c2,2 ' ' ' c2,n

cs,1 cs,2 ' ' ' cs,n

C

can be see as a vector c =  (c1, . . . , c n) E (F^ )n and

u Pc (c) =  u Pc (c) =  max{* : Ci =  0}.

In particular, one error amounts to an incorrect collumn ci =  (ci i , . . . , c is). Accordingly to 

correcting up to t errors means correcting any combination of errors e =  (ei , . . . , e n) E (F^)n 

of Pc -weight, u Pc (e) =  max{i : ei =  0} p  t, where the received word is y =  c +  e =

(ci +  ei , . . . ,cn +  en) E (Fs)n.

It is known [20] that in this specific case the upper bound in (6.26) is attained and then 

we know the packing radius of C  in this case, named

TdpC =  dPc — 1 (6.27)

We can apply Singleton bound, dPc p  n — k +  1, on the minimum distance dPc of C  to obtain

the following inequality

T1 (C) =  Tdpc =  dpc -  1 ^  n -  k.

So, by definition we also obtain that

t 1 (C ) =  n — k

with equality if C  is an MDS code. Finally,

T1(sn, k) =  n — k.

c

We would like to obtain an upper bound on the a -decoding radius of an [sn, k ] linear 

code endowed with the dPc metric. Firstly, let us remember the definition of the projection of

an [sn, k] NRT code C E (Fs)n onto (Fs')n' .
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Definition 6.38. Let C  be an [sn, k] NRT code in (F*)n. The projection n o f C  on (F*7)n' with 

s' ^  s and n' ^  n is given by

n

/ Cl,1 Cl,2 • c 1,n \ c 1,n-n/+1 c 1,n-n/+2 c 1,n

C2,1 c2,2 • c2,n = c2,n-n/+1 c2,n-n/+2 c2,n

V Cs,1 cs,2 ' cs,n / cs/ ,n-n/ + 1 cs/ ,n-n/ +2 1
e*05<0

The projection of C  onto (F* )n is [s 'n ', k'] NRT code, which is called profection code 

of C  and is denoteded by n (C ). The projection code has following propriety.

Lem m a 6.39. ([6 6 ]) Let C  be an MDS code in (F1 )n with qk elements. Suppose that s' ^  s, 

n' ^  n, and s'n' ^  k. Then the projection o f C  onto (Fs/ )n/ is an MDS code.

As we are considering codes endowed with the dPc metric, we consider the projection

code n(C ) of C  on (F^)ra . We have the following lower bound on ra (sn, k). 

Lem m a 6.40. For any k ^  n and k / n  ^  a  ^  1.

ra (sn, k) ^  a n  — k (6.28)

Proof. To see this, let C  be an maximum distance separable [sn, k] NRT code in (Fsq)n and 

C  =  n (C ) its projection onto ( F ^ ”-. By assumption, a n  ^  k and C  is an MDS code then, 

Lemma 6.39 implies that C  is an [asn, k] MDS-code. So (6.28) follows by definition. □ 

Let us prove the following upper bound on ra (sn, k).

Theorem 6.41.
k

ra (sn, k) ^  n  .
a

Proof. By definition, we need to show that if an [sn, k] NRT code C  in (F[[)n can correct up to 

t  errors by downloading a sn  symbols of Fq, then t  ^  n — k / a .  By assumption for any error 

vector e =  ( e i , . . . , e n) in (Fs)n of weight u Pc (e) =  m ax jj : ei =  0} ^  t, there exist n  +  1 

functions f i : F'sq — > F ^ ,  i = 1 , . . . , n  and g : Fq^ i=1 ai)s — > (F[[)n that satisfy Definition 

6.1.

We claim that ^  ieI a i ^  k for any set I  C { 1 , . . . , n }  with cardinality \T\ =  n — t. 

Assume toward a contradiction that there exists a s e th  C { 1 , . . . , n } ,  \I0 \ =  n — t such that 

J2i^ i0 a i < k. Let us assume that I 0 =  { i1, . . . , in^- t } and let J  =  { 1 , . . . , n }  \ I 0. Since 

the dimension of C  is k, there are a total of \Fq\sk codewords. At the same time, the vector
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( f ir(cir) , r  =  1 , . . . , n  — t) takes at most Y[ireIo |Fq\airs =  |Fq\(^JireIoair)s different values, so 

there exist two distinct codewords c and c for which these vectors coincide:

(f ix (cT1) , . . . , f in-t (cn -t)) =  (f ix (ci1 ) , . . . J i n - t  (cC i )) (6.29)

Define the error vectors e and e by setting

e =  (cil , . . . , c H, 0 , . . . , 0 )  and e =  (cil , . . . , c i t , 0 , . . . ,  0), where ir e J  , r  = 1 , . . . , t .  (6.30)

Clearly, the weight of both e and e is at most t. By Definition 6.1, we have

g (f 1 (c1 +  e )  , . . . , f n ( c n  +  en)) =  ( c l , . . . , cn)  and g ( f 1(c1 +  61) , . . . , f n ( c n  +  eCn)) =  (c~1, . . . , cn)

(6.31)

According to (6.29) and (6.30), f i r (cir) =  f i r (cC) if ir e  lo , so f i r, cir and d  are such that

fir (cir +  eir) =  fir (cir +  cir) =  fir (cir +  eir). As a result, c =  c, in contradiction to our

assumption. We conclude that ieX a i ^  k for any set I  C { 1 , . . . , n }  of size \I\ =  n — t.

Let I  be an (n — t)-subset of { 1 , . . . , n }  such that the quantity d  a  is the smallest 

among all (n — t)-subsets. By the above argument the averange proportion of information 

transmitted from a coordinate in the set I  is at least k / ( n  — t). On the other hand, by definition, 

the averange proportion transmitted from all the coordinates is at most a,  which is at least 

k / ( n  — t) because of the property the set I  satisfies. Hence we get k / ( n  — t) ^  a , and this 

concludes the proof. □



6.4 Open problems

a) Can we perform fractional decoding beyond the a  decoding radius to other kinds of codes, 

e.g. interleaved Goppa codes, Reed-Muller codes, etc. ?

b) Can we find a family of NRT codes C  in M 1n(Fq) whose a-decoding radius is n — n ?

c) What can we say on the fractional decoding of poset codes in general?
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