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RESUMO 

Estudos das características das séries de vazão são de grande 
importância no campo da hidrologia, representando uma ferramenta útil para a 
previsão de cheias, mitigação de danos em catástrofes, projeto e operação de 
reservatórios, geração hidroelétrica, projetos de barragens e vertedouros, dentre 
outros. Os dados históricos nem sempre estão completos ou corretos e isso tem 
efeito direto na confiabilidade dos resultados. Séries sintéticas são consideradas 
um excelente dispositivo de extrapolação para a solução de problemas 
complexos. Nesse sentido, o grupo de modelos Box & Jenkins (i.e., ARIMA) vem 
sendo usado com esse propósito por décadas, destacando-se por sua 
capacidade de calcular e replicar a estrutura de persistência da série histórica. 
Contudo, esses modelos são lineares, ao passo que o comportamento dos 
corpos hídricos é não-linear. As redes neurais artificiais (i.e., ANN) vêm como 
alternativas não-lineares a este grupo de modelos lineares clássicos. Esta 
dissertação propõe o acoplamento entre os modelos ANN e ARIMA para a 
geração de séries sintéticas de vazão. O objetivo do acoplamento é melhor 
computar a as estruturas de persistência e não-linearidade juntando um modelo 
estocástico linear com um modelo não-linear do tipo “black-box”. O modelo foi 
testado para seis estações fluviométricas do rio Iguaçu, na região sul do Brasil. 
Em seguida, estatísticas de longo e curto termo foram usadas para verificar a 
adequação do modelo para a geração de séries sintéticas de vazão. Uma análise 
comparativa foi feita considerando um modelo ARIMA tradicional ajustado às 
mesmas estações. Por fim, os dois modelos reproduziram com sucesso as 
estatísticas históricas, contudo, o modelo híbrido foi superior na preservação do 
coeficiente de assimetria e das vazões mínimas. 
 

Palavras-chave: Hidrologia Estocástica. Séries Sintéticas de Vazão. ARIMA. 
Redes Perceptron Multicamadas. Modelo Híbrido. 

 

  



 
 

 

ABSTRACT 

Streamflow characteristics studies are of great importance in the 
hydrology field, representing a resourceful tool in procedures such as flood 
forecasting, damages mitigation in catastrophes, reservoir design and operation, 
hydroelectricity generation, dam and spillway design, among others. The 
recorded data are not usually complete or corrected; it can damage the study 
reliability. The synthetic series generation is suggested as a resourceful 
extrapolation device for the solution of complex problems. Thus, the Box & 
Jenkins (i.e. ARIMA) models are being used on this purpose for decades and are 
especially good in computing and replicating the persistence structure of the 
historical. However, these models are linear, whereas catchments behaviors are 
non-linear. The artificial neural network (ANN) models come as non-linear 
alternatives to the classic linear ensemble of models. This master thesis 
proposed a coupling between an ANN and an ARIMA model for synthetic 
streamflow series generation. The purpose is to better address both persistence 
and non-linear patterns by joining a stochastic linear and a black-box non-linear 
models. The model was performed for six gauging stations within the Iguaçu river, 
on the South region of Brazil. Furthermore, long- and short-term statistics are 
used to verify the adequacy of the model for synthetic streamflow generation. A 
comparative analysis considering a single ARIMA model at the same condition. 
Finally, both models successfully reproduced the historical statistics, the hybrid 
model, however, better preserved the skewness and streamflow minimum 
values. 
 

Key-words: Stochastic Hydrology. Synthetic Streamflow Series. ARIMA. 
Multilayer Perceptron. Hybrid Model. 
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INTRODUCTION 

Ever since the dawn of civilization, mankind has been dependent on 

water, and as the humanity evolved, the technologies regarding the water 

resources evolved along with it. From ancient human tribes, that would settle near 

water streams mainly to facilitate access to drinking water and fishing, until the 

modern society that rely on water for so many purposes besides drinking and 

fishing, such as irrigation, transportation, hydroelectricity, recreation, among 

others. 

With an increase in water usage, the need for a better understanding of 

river regimes behavior has emerged. The complexity regarding the hydrological 

phenomena led to the development of mathematical tools for hydrological 

modeling, turning hydrology into a more feasible science. At the beginning of the 

last century, synthetic hydrology took place and brought a new set of models, 

largely being used in water resources related studies until nowadays. 

Among the many models for synthetic streamflow generation, a group of 

models that stands out is the Box & Jenkins set of models, also known as 

autoregressive integrated moving average (ARIMA) models. These models have 

been used in the past few decades, and their success is mainly due to their 

capability of addressing the persistence of a time series. Nevertheless, this 

established ensemble of models have a linear formulation, whilst hydrological 

events mostly present non-linear behavior. Alternatively, the non-linear artificial 

neural network based models, also called ANN models, are capable to compute 

those non-linear patterns and demonstrate a good performance, notwithstanding 

the inability to evaluate the persistence. In fact, both ARIMA and ANN models 

had shown good results over the years and are vastly used in water resources 

modeling nowadays. However, none of them has a comprehensive approach 

regarding persistence and non-linearity issues simultaneously. Thus, a hybrid 

model may successfully address both issues and perform better than a single 

ARIMA model. 

This research project aims to verify the adequacy of a hybrid model 

between ARIMA and ANN for synthetic streamflow generation in comparison with 

the classic ARIMA modelling. For the comparison, a study case at the Iguaçu 

basin for six catchments at the six hydroelectric plants within the Iguaçu River is 
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performed by the two models with further comparison of the results. Hence, the 

general objective of this dissertation is to verify whether the hybridization of an 

ARIMA model with an ANN based model for synthetic streamflow generation 

improves the results in relation to the synthetic series generated by a single 

ARIMA model. The Box & Jenkins models are especially efficient in computing 

the persistence of a series. However, its linear equation cannot address the non-

linearity of a time series. Moreover, to avoid numerical issues regarding the 

synthetic series generation, the integration portion of the model must be 

suppressed, providing a stationary model (SALAS et. al., 1980). 

Aiming to fulfill these gaps, while maintaining the serial correlation 

approach given by the ARIMA formulation, the proposal is to couple this 

consolidated model with an ANN based model. In order to achieve that, the 

following specific objectives must be met: 

(i) Address the non-linearity and non-stationarity issues concerning the 

ARIMA model; 

(ii) Implement and train an ANN model capable of generating synthetic 

series; 

(iii) Couple the ANN to the ARIMA model; 

(iv) Generate synthetic series using a single ARIMA model, for 

comparison with the hybrid model. 

In the following section a theoretical background regarding hydrologic 

modelling, synthetic hydrology and the considered models is given. The section 

starts with a differentiation between deterministic and stochastic approaches, as 

well as a short definition of empirical models, followed by detailing synthetic 

hydrology and ending with the theories behind ARIMA and ANN models. The 

second section addresses hybrid models and follows to present the hybrid model 

proposal for this research, detailing the model coupling and working. The third 

section details the study area, followed by a forth section presenting and 

discussing the results, starting with the preliminary results regarding the non-

stationarity issue, followed by the single and hybrid model specific results and 

ending with a comparative analysis between them. Section five presents the 

conclusions for this study and recommendations for future research. The 
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Appendix section presents a comprehensive list of graphs with the results for all 

the six gauging stations. 
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1 THEORETICAL BACKGROUND 

For water resources planning and management, streamflow modeling 

and forecasting play an important role both for short- and long-term temporal 

scales. The former is needed for flood analysis and hazard mitigation systems, 

while the latter is essential in operation and planning of reservoirs, hydropower 

generation, among others (YASEEN et al., 2015). 

1.1 HYDROLOGIC MODELLING 

Streamflow data are the main objects of study in the water resources 

management. Studies on flood forecasting, city planning, operation of reservoirs, 

water distribution, water quality, among others depend directly on the river 

discharges. The uncertainty regarding hydrological processes explains the use 

of statistical and stochastic principles in hydrological modelling. Statistical 

analyses are taken using historical data, which may be short in length, incomplete 

or incorrect, weakening the significance of results. In addition to that, Matalas 

(1967) and Jackson (1975) affirm that the occurrence of the same historical series 

in the future is improbable and the worst recorded flood in a catchment is unlikely 

to be the worst possible flood for that basin. In response to these, many 

hydrologists use synthetic streamflow generation in order to increase robustness 

of data. 

The need for reliable information lead to the usage of several 

mathematical models in order to better understand and describe the hydrological 

phenomena, accordingly these models can be classified as deterministic or 

stochastic models (HIPEL and McLEOD, 1994). In essence, those models that 

consider the probability of occurrence of an event are classified as stochastic, 

whilst models not considering it are deterministic. 

For deterministic models, the randomness of the variables is not taken 

into account and the process relies on laws other than the statistical. Thus, a 

deterministic model always produces the same output for a given input under the 

same initial conditions. Additionally, deterministic models are mainly physically-

based, meaning that those models rely on geometrical characteristics and 

physical phenomena inherent to the process and are ruled by the laws of physics 

(CHOW, 1964; DOOGE, 1973). 
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The implementation of such models often involves a large number of 

variables, hence incurring in some challenging issues regarding computational-

cost, field measurements, and the determination of the relevant physical 

parameters (SALAS et al., 1980; HIPEL, K. W.and McLEOD, 1994 ; 

KASIVISWANATHAN et al., 2016; MARTINI FILHO et al., 2017). 

Alternatively, data-driven models which rely on historical observations 

and are able to describe structures evolving over time through a probabilistic 

approach are considered stochastic. The probability structure regarding the 

evolution of a process over time characterizes a stochastic process, meaning that 

streamflow series are, by definition, stochastic phenomena. Those processes can 

be linear or non-linear, moreover, when related to hydrology, they frequently 

present both linear and nonlinear portions. 

The stochastic hydrology considers that there is an infinite number of 

possible realizations within the same stochastic process and understands that, 

among them, the historical series is the sample that was registered (Figure 1). 

On the other hand, synthetic series are artificially generated series, representing 

alternative scenarios to the registered series. 

 
Figure 1. Differentiation between a stochastic process realization and the historical series 

Herein, clarify the difference between synthetic generation and series 

forecasting is crucial. The former refers to the generation of several scenarios 

equally probable to the original. These scenarios lack temporal reference, being 

impossible to specify the day and year a series starts. On the other hand, 
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temporal reference must be considered when aiming to forecast a series, since 

the concern is the future evolution of a previously known event. Figure 2 

illustrates that distinction for a variable . Therefore, it is relevant to hydrological 

studies to complement the historical data with synthetic streamflow in order to 

better represent the stochastic process for planning, design and operation of 

various water resources systems. Additionally, stochastic hydrology has the 

advantage of generating synthetic streamflow sequences which are statistically 

related to the registered series. That, based on the premise that the catchments 

future behavior will be similar to the one registered, makes it possible to produce 

many feasible scenarios for the catchment. (SALAS et al., 1980; AHMED and 

SARMA, 2007; HIPEL, K. W.and McLEOD, 1994;TAGHI SATTARI et al., 2012). 

  
Figure 2. Synthetic series generation (left) and series forecasting (right) 

Mainly, stochastic models, similarly to stochastic processes, are 

classified as: (i) Linear (i.e. ARIMA models; disaggregation models); (ii) Non-

linear (i.e. fractional Gaussian noise models; neural network-based models). The 

former and the latter demonstrate good performances in hydrological studies, 

despite the fact that the natural processes usually present both linear and non-

linear portions and these models can address one pattern only (MARTINI FILHO 

et al., 2017; OCHOA-RIVERA, 2008). Moreover, a same class of stochastic 

models can be used both for synthetic generation and series forecasting, the 

predicted series, however, not being considered synthetic series. 

In addition to deterministic and stochastic models, there is a class of 

models that adjust the results to the observed data by means of mathematical 

formulations not related to any physical processes. Those models are classified 

as empirical models, also called “black-box” models as the relations between 

input and output are not understood but by mathematical means. 

1 15 29 43 57 71 85
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Time
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0 20 40 60 80 100
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1.2 SYNTHETIC HYDROLOGY 

Good quality streamflow time series are of paramount importance for 

successfully fitting a hydrological model. However, the representativeness of 

such datasets may be a relevant issue to be considered(TAGHI SATTARI et al., 

2012). 

Time series modelling consists in identifying and reproducing the 

characteristics of a known series. Moreover, a  years long synthetic series must 

keep the statistical parameters of the original regardless of the period of study 

(RAUDKIVI, 1979). Thus, the first stochastic model for synthetic streamflow 

generation was proposed by Sudler (1927), in which the streamflow series is 

understood as a deck of cards and each value corresponds to one card. Synthetic 

series are then generated by shuffling and randomly reorganizing the cards, 

assuring the maintenance of the statistical parameters. By contrast, this model 

ignores the persistence of the series, which is considered to be essential in water 

resources modelling (DETZEL et al., 2014; DETZEL and MINE, 2016). 

Among the many parameters which characterize streamflow series, the 

most important is the persistence structure, also referred as serial correlation 

(KELMAN, 1987). High dependence structures are commonly reported for many 

time series, especially for those related to natural phenomena such as 

precipitation, wind speed and streamflow. Therefore, the model proposed by 

Sudler (1927) would no longer be suitable for water resources time series 

modelling. The persistence of a series is addressed through the autocorrelation 

function and a strong persistence is mostly inherent to water resources time 

series. An exception was reported by Guimarães and Santos (2011) at Paiva 

River, Portugal, that does not present statistically significant temporal 

dependence at annual scale. 

Physically, the persistence characteristic refers to the temporal 

dependence between the elements of the series, meaning that mainly the flow at 

the time interval  is dependent on the flow at the interval . Therefore, for a 

series presenting a high autocorrelation, if in a year  the mean streamflow was 

above the average, the same behavior is expected in the year . The 

persistence intensity between the element of a series is inversely proportional to 

the considered temporal scale; thus, the daily streamflow series usually tends to 



8 
 

 

be more persistent than the monthly as what happens today is more dependent 

on what happened yesterday than what happened this month is on what 

happened last month. 

Furthermore, the relevance of the persistence for the modelling lead to a 

wide variety of models that are capable of computing and replicating that 

structure. Thus, Autoregressive Integrated Moving Average (ARIMA) type 

models, also known as Box & Jenkins models, were consolidate by Box  

(2008) and are still largely used on this purpose by many hydrologists worldwide, 

presenting a fair representation of the river regime (VALIPOUR et. al., 2013; 

NEIRA, 2005; PÉRICO, 2014). For monthly time series, where seasons must be 

considered, there are some ARIMA variations, like PARMA and SARIMA, for 

which some of the parameters represent seasonality (BAYER et. al., 2012; SHAO 

et. al., 2009; HALTINER & SALAS, 1988). 

The serial correlation inherent to hydrologic temporal series lead the 

models for synthetic streamflow generation to address the proper representation 

of such characteristics. Based on that premise, Thomas and Fiering (1962) 

proposed the known first-order univariate Markov chain – AR(1), expanded by 

Matalas (1967) to the multivariate case. The AR(1) model is defined by the 

equation (1): 

 (1) 

In which  is an array of  streamflow series, each 

corresponding to a locality  and  is an array 

of  residuals, also corresponding to the localities ;  is the 

temporal index;  and  are  parameter matrices. 

On the AR(1) model, the matrix  is responsible for the modelling of the 

temporal dependence between the streamflow values, and its estimation is 

evaluated based on the autocorrelation coefficient of the historical series. 

Whereas the matrix  is responsible for the spatial dependency between the 

localities, as in order to maintain the coherence of the hydrologic regime of a 

catchment, the computation of the cross-correlation between streamflows of 

various locations is, for the multivariate case, of paramount importance. 
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The AR(1) process for synthetic streamflow generation can be described 

by three steps: (i) estimate the parameter-matrices  and  from the historical 

series; (ii) reverse the equation (1) in order to obtain the residual series  and 

apply the theoretical validation of the model over this series; (iii) generate 

pseudorandom numbers to generate synthetic series  by using the equation (1). 

Herein it is important to understand that the aforementioned validation is for the 

estimated model. It is only after the step (iii) that the validation of the synthetic 

series is performed through comparison between the descriptive statistics of the 

historical series and synthetic series. For the AR(1) model, the series must 

maintain the first and second order statistical moments (mean and variance), the 

first order serial correlation and the zero-order spatial correlation. 

Some aspects regarding the synthetic series generation are of such 

importance that require a more detailed description. The first feature refers to the 

pseudorandom numbers, considered responsible for generating the various 

scenarios. In essence, the algorithms that generate these numbers start from an 

initial value named seed. Each routine, while using the same seed, will always 

produce the same sequence of pseudorandom numbers regardless of how many 

times one runs it. However, diverse sequences are necessary, since the main 

purpose of synthetic series is to acknowledge the uncertainty (e.g. variability) 

regarding the historical series. Aiming to address that issue dynamic techniques 

use a different seed for each synthetic series generation. Computational 

softwares such as MATLAB have built-in pseudorandom generation functions 

with the option for also randomizing the seed for a variety of probability 

distributions. Various methods for the generation of pseudorandom numbers are 

detailed by Kaviski (2006, appendix A and B). 

The second aspect is about the quantity of generated synthetic series, as 

there is no definitive method to establish the appropriate number. Kelman (1987) 

state that the quantity must be such that allow the empirical distribution of the 

synthetic series to be approximately equal to the theoretical distribution of the 

historical series. The verification, however, is only possible by probabilistic means 

as the theoretical distribution is unknown. Alternatively, Guimarães and Santos 

(2011) present a specific analysis on that matter. Their approach regards the 

synthetic generation of multiple ensembles of streamflow downstream from a 

reservoir with different quantities of scenarios each. By evaluating the standard 
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deviation of the storage of the reservoir the authors conclude that that variable is 

well represented by 1200 synthetic series. Thereafter, Detzel et. al. (2016) 

conducted a similar research for some hydro plants of the Brazilian National 

Interconnected System (SIN) considering the maximal accumulated streamflow 

deficit downstream from the reservoirs. The results suggest diverse quantities 

depending on the series. The Foz do Areia plant, in Paraná state, required 2000 

synthetic series, whereas some required as much as 6000 series. 

Finally, the third aspect regards the non-stationarity inherent to 

hydrological series. The stationary behavior is associated to the statistical 

independence of these series in relation to time. In short, the mean, variance and 

autocorrelations do not change over the time in such series. However, there are 

registers of alterations in those statistics in several hydrological time series. In 

Brazil, the non-stationarity is mainly present at the South region and at the 

southern portions of the Southeast and Midwest regions of the country (DETZEL 

et. al., 2011), characterized from the 1970’s decade on. Moreover, a great 

number of stochastic linear models, including the AR(1), are stationary and thus 

require the series to present this same behavior. The issue is addressed by the 

following steps: (i) Evaluate if either a series is stationary or non-stationary; (ii) If 

non-stationary the trend must be removed. At step (i) hypothesis-testing for 

stationarity are performed (e.g. linear regression (BORMANN et. al., 2011), t-

Student (FILL, 2011), Wilcoxon (THOMAS, 2007), Pettitt (ROUGÉ et. al., 2013), 

Spearman (FLEMING and WEBER, 2012) and Mann-Kendall (LIANG et. al., 

2011)). At step (ii) some classic methods are the graphical method (BATISTA et. 

al., 2009) and the differentiation of the series (BOX et. al., 2008). 

1.3 CONSIDERED MODELS 

ARIMA type models are parametric as they estimate parameters by 

statistical analysis (RAUDKIVI, 1979) and those models are particularly good for 

discharge modelling as they properly reproduce the time dependency intrinsic to 

streamflow series (DETZEL, 2015). However, a problem regarding ARIMA 

modelling is that those classic models are linear and fail to represent the non-

linearity of streamflow and, thus, might not give the best result. An alternative 

approach, possible to improve the quality of results and adequate to deal with 

non-linear patterns is the artificial neural network (ANN) (AHMED AND SARMA, 
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2007). ANN models are trained to represent the processes and relationships 

characteristic of each data set, computing information similarly to the biological 

nervous system with a high number of “neurons” working in parallel. Many studies 

are been taken with ANN hybrid models in order to better compute both linear 

and nonlinear trends (FARUK, 2010; CARNEIRO & FARIAS, 2013; ABRAHART 

& SEE, 2000). 

1.3.1 Box & Jenkins Models 

The term Box & Jenkins Models refers to ARIMA models consolidated by 

Box et.al. (2008). This group of models is obtained from a linear combination of 

an autoregressive portion (AR), an integration factor (I) and a moving average 

portion (MA). Therefore, it is possible to model a series by using any combination 

of these three elements. The non-seasonal model is denoted as ARIMA ( , , ), 

where , ,  are non-negative integers representing respectively the orders of 

autoregressive, integration and moving average portions. 

The formulation of this ensemble of models allow them to properly 

compute and replicate the persistence of a series, that being the main reason 

why they are still largely used on this purpose by many hydrologists worldwide 

(VALIPOUR et. al., 2013; NEIRA, 2005; PÉRICO, 2014). When formulating an 

ARIMA ( ) model, a very useful notational device is the backward shift 

operator , defined by the equation (2). 

 (2) 

The ARIMA models, defined by the equation (3), have shown to 

accordingly approach the serial correlation and efficiently address the descriptive 

statistics of the historical series, therefore presenting a fair representation of the 

river regime. However, in order to correctly use this group of models it is crucial 

to take into account the differences between modelling series with stationary and 

non-stationary behaviors. The stationary models suppress the integration factor, 

being a combination of AR and MA portions, whilst the integration factor enables 

the model to deal with the non-stationarity. 

 (3) 
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in which  is the backshift operator,  and  are the  order parameters of 

respectively the autoregressive and the moving average models, and . 

The observed series may be submitted to logarithmic or other numerical 

transformation in order to comply with the normality requirement. Such condition 

is a premise of the ARIMA model. 

1.3.1.1 Autoregressive Models (AR) 

The autoregressive model (AR( )) is the ARIMA model with the 

Integration and Moving Average portions of order zero. Hence, it can also be 

denoted as ARIMA( ). Hydrologists have been using this type of model since 

the 1960’s, (e.g. Matalas, 1967) as it fairly represents events at annual and 

smaller scales, nevertheless the modelling process is more complex for small 

scales as seasonality must be considered (SALAS et. al., 1980). With  and  

equal to  the equation (3) is rewritten as equation (4): 

 (4) 

Autoregressive models are still widely used for annual streamflow 

generation, as in the study of Neira (2005) where the synthetic series were used 

for risk reduction in reservoir operation. Périco (2014) studies the influence of 

reservoirs in hydroelectric power generation using synthetic series generated by 

AR models. 

1.3.1.2 Autoregressive Moving Average models (ARMA) 

In this formulation, a Moving Average portion is added to the AR, in a 

model called ARMA ( ), corresponding to an ARIMA ( ). The Moving 

Average portion (MA ) describes the relation between the model residuals, as 

shown in the equation (5). 

 (5) 
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The combination of the equations (4) and (5) is defined by the equation 

(6) and characterizes an ARMA  model. 

 (6) 

These stationary models have several significant theoretical properties 

regarding the variance and the autocorrelation. Two among these, namely the 

stationarity and invertibility of the model, are detailed herein for they are essential 

for configuring the ARMA model. Furthermore, the chapter 3 of Box et. Al. (2008) 

addresses those properties. 

Considering an AR  model, for the stationarity condition to be 

established, the roots of the characteristic polynomial 

 must lie inside of the unit circle. For the AR(1) model, the polynomial 

results in , therefore, for the root to lie inside of unit circle . This 

verification for the stationarity condition is unnecessary for MA  models. 

The invertibility of a model refers to the capability of rewriting a MA 

process in order to obtain a pure AR process as illustrated hereon by using a first 

order moving average model (BOX et. Al., 2008, p. 52): 

 (7) 

Expressing  in terms of present and past , the equation (7) becomes 

, therefore: 

 

 
(8) 

On letting  one obtain: 

 (9) 

For equation (9) to converge, ; in that case the process is 

considered to be invertible. Thus, analogously to the stationarity, for a MA model 

to be invertible the roots of the characteristic polynomial  must lie inside 

of the unit circle and this verification for the invertibility condition is unnecessary 

for AR  models. 
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In conclusion, when considering an ARMA model, the restrictions for 

conditions of both stationarity and invertibility must be fulfilled. Consequently, the 

roots of both  and  must lie inside of the unit circle. 

1.3.1.3 Autoregressive Integrated Moving Average models (ARIMA) 

ARIMA ( ) models are the general form of ARMA ( ). Those 

models allow the computing of homogeneous non-stationary series by adding an 

integration factor (I) to the formulation (Hipel e McLeod, 1994, p. 76). The model 

is defined by the equation (10): 

 (10) 

in which . The operator  can be expressed in terms of the backshift 

operator  by considering . Thus, the equation (10) is rewritten in 

terms of  as the equation (11) and presents the general formulation of the 

ARIMA model: 

 (11) 

The conditions for stationarity and invertibility for the ARIMA model are 

the same as those for the ARMA model but for a slight change for the stationarity. 

For non-stationary homogenous series, for an ARIMA ,  roots of the 

characteristic polynomial  must lie on the unit circle, whilst  roots lie 

inside of it. 

1.3.1.4 The iterative approach to model building of Box & Jenkins 

The procedure to correct building the ARIMA models to a hydrologic 

series passes through three stages, namely: (i) Identification; (ii) Estimation; (iii) 

Validation (BOX et. Al., 2008). The iterative approach to model building for 

forecasting and control proposed by these authors is illustrated by Figure 3. This 

same approach may also be adopted for synthetic series generation. 

 

 

Figure 3. Stages in the iterative approach to model building. (Font: Box et. Al., 2008) 
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Primarily, the most common metric for the identification of the ARIMA 

model to be used is built on the graphic comparison between the Autocorrelation 

Function (ACF) and the Partial Autocorrelation Function (PACF) plots. A  

autocorrelation is given by the ratio of covariance ( ) to sample variance ( ), as 

given by the equation (12). The chart of the coefficient  versus the  is 

known as the ACF and illustrates the relation between the elements of a series. 

 (12) 

The PACF, noted as , is a complementary function for the 

understanding of the dependence between the series elements and is given by 

the equation (13). The calculation is recursive and the set of parameters 

( , , , ) characterizes the partial autocorrelations. 

 (13) 

The ACF and PACF are evaluated and plotted and their charts are 

compared with the theoretical expected behaviors for AR , MA  and 

ARMA  models (HIPEL and MCLEOD, 1994; BOX et. Al., 2008). Those 

expected behaviors where plotted by Souza and Camargo (2004) and are 

illustrated at Table 1. One may notice that for the AR portion the ACF behavior 

specifies whether this parcel is relevant to the model, whereas the PACF 

designates the order of this portion. For the MA the opposite is true, with the 

PACF behavior related to the applicability of the parcel, whilst the ACF indicates 

the order. In essence, in cases when autoregressive patterns are pertinent for the 

modelling, the ACF presents characteristics close to an exponential decay. By 

contrast, the same behavior observed in the PACF denotes a meaningful moving 

average process in the series. The graphical analysis method specifies that the 

order of each model (AR and MA) is determined by the number of lags of 

significant autocorrelation in the PACF for the prior and the ACF for the later. 
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Table 1. ACF and PACF theoretical behavior 

 
Font: Adapted from Souza and Camargo (2004) 

When trying to identify the model to be entertained, the graphic methods 

present a quick analysis but, although they present decent results, these methods 

are subjective and should be complementary only. Therefore, a mathematical 

procedure is required for a computer to be capable of precisely identify a proper 

model. One feasible metric for model identification is the Bayesian Information 

Criterion (BIC) (SCHWARTZ, 1978), given by the equation (14): 

 (14) 

where  is the log-likelihood function (to be presented further in this 

work),  is the length of the time series  and  and  are respectively the 

autoregressive and moving average orders for the model. The method consists 

of evaluating equation (14) for all the postulated models and select the one 

resulting the lowest BIC. For more details on the BIC procedure, one may refer 

to Schwartz (1978). 

Once the model to be used is chosen, one must estimate the parameters 

 ( ) and  (j ) respecting the invertibility and stationarity 

conditions (Box et. al., 2008). Thus, all the roots of the polynomials presented in 

equations (15) and (16) shall remain inside the unit circle in order to uphold the 

invertibility and stationarity. 

Type of 
Model AR ( p ) MA ( q ) ARMA ( p,q )

Typical 
Pattern 
of ACF

Decays exponentially or with 
damped sine wave pattern or both

Cut-of after lag q                   
(e.g. q = 1)

Decays exponentially or with 
damped sine wave pattern or both

Typical 
Pattern 
of PACF

Cut-of after lag p                   
(e.g. p = 1)

Decays exponentially or with 
damped sine wave pattern or both

Decays exponentially or with 
damped sine wave pattern or both
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 (15) 

 (16) 

There are many methods to estimate the parameters, being the solution 

of Yule-Walker equations (i.e., equation (17)) for  considered efficient for 

AR ( ) models. 

 (17) 

For ARIMA  models, Box et. al. (2008) suggest the use of the 

maximum likelihood estimates as an efficient method. This method targets the 

optimal set of parameters to associate the model results with the observed 

values. Assuming the hypothesis of normally distributed data, the likelihood 

function for a time series  and parameters  and  would be: 

 (18) 

where  is the residual series with a sample standard deviation . As a matter 

of simplification on the mathematical process the log-likelihood equation 

associated with the equation (18) is given by: 

 (19) 

where  is the sum of square function for the residuals. Thus, 

a set of parameters to maximize equation (19) or minimize the  gives 

the maximum likelihood for the model. The solution involves an iterative process 

and must respect the models stationarity and invertibility conditions. 

The model validation checks the residuals for temporal independence, 

homoscedasticity and normality. For the temporal independence the 

Portmanteau type test (LI and MCLEOD, 1981) is a suitable option. The statistics 
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of the test is defined by equation (20) and the null hypothesis is rejected if 

 for a significance of . 

 (20) 

in which  is the ACF of the series residuals,  is the maximum lag for the ACF 

evaluation, between 15 and 25 and not exceeding . The homoscedasticity can 

be tested through the Levene test (BROWN and FORSYTHE, 1974) performed 

on multiple samples (  samples). The null hypothesis is  and 

the statistics of the test is defined by equation (21) rejecting the null hypothesis 

for . 

 (21) 

Lastly, the residual series  must be normally distributed and several 

tests (e.g., Chi-Squared; Kolmogorov-Smirnov; Shapiro-Wilk; Jarque-Bera) are 

suitable for this verification. If any of the premises is not satisfied, one may select 

a new model and proceed with the iteration process from the beginning. 

1.3.2 Artificial Neural Network Models 

Neural networks are a branch of artificial intelligence (AI) that similarly to 

the human brain process information through non-linear parallel synapses, which, 

in essence, consists of subdividing a complex problem into a group of relatively 

simpler tasks. Some highlights of ANN are the nonlinearity, the self-learning 

capability, the adaptability and the response to evidences (HAYKIN, 1999). 

The AI has a wide range of applications in engineering problem solving, 

and has increased since the 1980s (PRADA-SARMIENTO & OBREGÓN-NEIRA, 

2009). Thus, ANNs has been used for more than 20 years in water resources 

related fields, becoming a deep-rooted research area and showing a substantial 

progress in the last two decades in forecasting and modelling non-linear 

parameters with a fair representation of the noise complexity (MAIER et al., 2010; 

ZHANG et al. 2018; YASEEN et al., 2015). ANNs tend to be particularly useful 
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when applied to complex processes, where the details of which are not well 

understood (SCHMID et al., 2006). 

The ANN mechanism relies upon a set of processing units called neurons 

disposed in arrays called layers and interconnected by synapses. The synapses 

are links of variable weights between neurons of different layers. The feed-

forward architecture is the most common among Neural Network (NN) based 

models (AHMED and SARMA, 2007). On those architectures the synapses occur 

in one direction on a layer-by-layer basis. Moreover, feed forward networks have 

one input layer which receive the data, also called the stimulus of a NN, one or 

more hidden layers where the data are processed and one output layer, 

responsible for the response of the NN. This architecture scheme is illustrated in 

Figure 4 for a two hidden layer structure. 

 
Figure 4. General architecture of a two hidden layers ANN 

A right architecture is crucial for obtaining a satisfactory ANN based 

model. The choice of relevant parameters for input and the right number of 

neurons in each layer are of paramount importance and can be determined by a 

trial-and-error process or by using optimization algorithms (AKSOY and 

DAHAMSHEH, 2018; GALVÃO et. al., 1999; HAYKIN, 1999). According to Maier 

et al. (2010) Multilayer Perceptrons (MLPs) are the most common form of feed-

forward model architecture, whereas the back propagation is the most commonly 

used supervised training algorithm in multilayer feed forward networks(ZHANG 

et al., 2018; ZADEH et al. 2010). Other feed-forward network architectures in use 

include Generalized Regression Neural Networks (GRNNs), Radial Basis 
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Function (RBF) networks, Neuro-fuzzy networks and Support Vector Machines 

(SVMs). This dissertation addresses the MLPs only. 

The process of training a NN aims to calibrate the network based on the 

given data. Fundamentally, the Neural Network processes the data through 

synaptic weights and biases. By working with inputs paired with expected outputs, 

the calibration consists in estimating such weight values capable to simulate 

outputs statistically similar to the expected. Specific algorithms named back-

propagation algorithms optimize the set of weights and biases reducing the 

deviation between expected and simulated outputs. Additionally, some pre-

determined factors directly affect the quality of the training. The ANN architecture, 

the activation function, the number of iterations for the training algorithm to be 

performed, the portion of the original series used for training and the initialization 

weights have a strong influence on the results, its choice, however, consists in a 

challenging task. Herein, care should be taken during the training in order to 

ensure its adequacy while avoiding over complexity (ADELOYE, 2009; 

FERREIRA et al., 2011; HAGHIABI, 2017; MACHADO et al., 2011; PRADA-

SARMIENTO and OBREGÓN-NEIRA, 2009). 

The architecture of a Multiplayer Perceptron Neural Network (MLP) is 

characterized by one input layer, one or more hidden layers and one output layer. 

Each layer is composed of one or more neurons and the neurons are connected 

to the following layer trough weighted synapses, with the propagation of the input 

vector occurring on a layer-by-layer basis in a forward direction. In essence, a 

three layer (i.e. input, output and one hidden layer) architecture is suitable for any 

non-linear function (GALVÃO et al., 1999). 

According to Haykin (1999), there are three characteristics of MLP that 

are evident in a network, namely:  

(i) Each neuron of each layer has a nonlinear activation function, being 

the sigmoidal nonlinearity presented on equation (22) a commonly 

used one: 

 (22) 
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in which  is the induced local field (i.e. the weighted sum of all 

synaptic inputs plus the bias) of the neuron , and  is the output of 

the neuron . 

(ii)  There are one or more layers other than the input and the output 

layers. Those neurons are responsible for learning from the input and 

progressively improving results through the training. 

(iii) The synapses of the network exhibit elevated degree of connection 

between the neurons, which means that even small changes in the 

architecture of the network might require a change in the synaptic 

weights. 

An example of a Multilayer Perceptron with a one hidden layer 

architecture is given in Figure 5.  

 
Figure 5. Architecture of a Multilayer Perceptron with one hidden layer 

Neurons from subsequent layers are fully connected and the signal flows 

are unidirectional, progressing on a layer-by-layer basis. Thus, there are two 

types of signals that propagate through an MLP, the function signals and the error 

signals. Function signals, also referred as Input Signals, are originated at the 

input layer and spread forward through the layers of the network, resulting in an 

output signal at the end of the network. Conversely, error signals propagate 

backwards through the network, originating at the output layer and involving error-

dependent functions for its computation by each neuron. 

The architecture of a MLP characterizes a nonlinear model which can suit 

for modelling nonlinear variables such as the hydrological variables, some 
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authors also highlight the MLP as a traditional, commonly used and one of the 

most popular neural networks among hydrologists (COULIBALY et al., 2001; 

SHOAIB et al., 2016; ZHANG et al., 2018). Therefore, several water resources 

related studies where taken using those neural networks in order to evaluate a 

wide range of hydrological variables in a variety of approaches. Furthermore, this 

architecture, although largely used on hydrology, frequently presents sub-optimal 

results (COULIBALY et al., 2001). 

Some authors use MLP models for the rainfall-runoff transformation. 

Machado et al. (2011) model and compare an ANN-based empirical rainfall-runoff 

model with a deterministic model. The modelling regards the Jangada River basin 

in the state of Paraná, Brazil. The processes involved in the transformation of 

rainfall in runoff make it of high complexity, however the neural networks showed 

to be efficient in detecting those patterns and performed better than the 

conceptual model. The authors conclude that the length of the data series is 

directly proportional to the number of inputs, even though they acknowledge that 

this should be further investigated. 

Zadeh et al. (2010) model a Multilayer Perceptron Neural Network which 

has Rainfall and Runoff data as inputs in order to forecast daily flows in a humid 

tropical river basin with a strong seasonal rainfall pattern, as they affirm that the 

relationship between those two variables is essential on flood prediction. 

Moreover, the applicability of two sigmoid activation functions is compared and 

they infer that, for the study area, the tangent sigmoid activation function 

(Equation (22)) performs better than the logistic sigmoid activation function 

(Equation (23)). In conclusion, as the choice of the input vector directly impacts 

the quality of the result their study suggest that the correlation analysis is 

sufficient to determine the best fitting input vector to the MLP. 

 (23) 

The study of Ochoa-Rivera (2008) improved the ANN model with an 

stochastic approach, in the sense that the author proposes a non-linear 

multivariate MLP based model with a normally distributed random factor in order 

to obtain synthetic annual drought scenarios. The method consists of a three-

layer network that uses the monthly runoff data from multiple catchments of the 
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same basin as input and generates monthly streamflow as outputs, used then to 

obtain synthetic annual droughts. Furthermore, the model is applied in a basin 

located in central Spain, using data of seven streamflow stations, thereafter the 

results where compared with those obtained by a second order autoregressive 

model – AR(2). The results show that the performance of the non-linear model is 

significantly better than the linear approach, which the author attributes to the 

non-linearity of the first. 

Schmid et al. (2006) lead a study on dissolved oxygen on free water 

surface ponds using an MLP based model applied to a wetland pond in southern 

Finland. The study investigates the performance and advantages of using ANNs 

on modelling a process which the author specifically describes as a complex 

function of several hydrological, hydrodynamic and ecological variables. For the 

study, hourly data of the water temperature vertical profiles, turbidity and oxygen 

saturation, inflow and outflow rates, as well as wind speed and direction were 

collected. The study showed the wind effect to be negligible for this study, thus, 

the remaining parameters, in addition to the hour of the day, were used as inputs 

of a three-layer network, with the 4-hour forecast of oxygen saturation being the 

only output of the model. Similarly, a study about the longitudinal dispersion 

coefficient prediction in natural streams was made by Haghiabi (2017) using MLP 

in the water quality field. The study compares a multivariate adaptive regression 

splines (MARS) method with an MLP. 

Sudheer (2005) states that important information on the physical 

processes characteristic of a data set are rooted inside black-box models, on top 

of that, Prada-Sarmiento and Obregón-Neira (2009) study the mathematical 

relationship between the synaptic weights of an MLP and some 

geomorphological features of watersheds applied to the central region of 

Colombia. The author trained the model for some different catchments, obtaining 

their respective weights. Afterwards, the author uses some statistical inference 

techniques to relate each matrix of weights to characteristics such as area, slope 

and length of the main river of the respective basin. 
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2 HYBRID MODELS AND PROPOSED SCHEME 

When searching for Artificial Neural Network on the hydrology top ranked 

scientific periodic, one can notice that a high frequency of Hybrid models 

combining ANN with some conventional statistical method for a wide range of 

purposes on the Hydrology field. It is usual to deal with time series containing 

both linear and nonlinear patterns. Therefore, it is expected that neither a linear 

model nor a nonlinear neural network alone can optimally compute both patterns. 

Recent studies have shown that the accuracy of hybrid linear-nonlinear models 

results is improved in comparison with those obtained by single models (ÖMER 

FARUK, 2010; YASEEN et al., 2015). 

Nguyen-ky et al. (2017) associate an ANN with a Bayesian approach 

aiming the water market pricing in Australia’s Murry Irrigation Area. The hybrid 

model has shown to be capable of computing complex non-linear processes and 

this model has performed better than the single ANN model. Alternatively, Ömer 

Faruk (2010) obtained significantly better results for a hybrid ARIMA-ANN model 

over single ARIMA and single ANN models for water quality predictions at Büyük 

Menderes River. 

Khashei and Bijari (2010) construct a hybrid ARIMA-ANN model aiming 

to improve the forecasting for nonlinear series, which understands each value as 

a nonlinear function of past events. Therefore, the model primarily uses an 

ARIMA model in order to generate synthetic data, which will subsequently be 

used by a neural network to predict future values of time data. According to the 

authors, coupling divergent models in a hybrid model may reduce the model error 

and uncertainty as well as improve its performance. This statement corroborates 

with the results in which the proposed ARIMA-ANN model overcomes the non-

hybrid models. 

The methods diverge from one author to another, but all of them convey 

the idea that hybrid models can perform better than single models due to 

presenting a more comprehensive approach. This indicates that hybrid models 

might be a good choice for modelling the complexity of hydrological time series. 

Thus, this research proposes coupling the well-established ARIMA model with an 

ANN based model for synthetic streamflow generation. The choice for the ARIMA 

model mainly relays on its capability of addressing the persistence of a series. 
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Moreover, besides its linear formulation, the Box and Jenkins set of models has 

shown a good performance in water resources modelling over the past decades. 

Due to numerical issues regarding the integration factor of the model for synthetic 

generation, the focuses of the ARIMA portion of the hybrid model will be the AR 

and ARMA models. For the ANN portion, a MLP is chosen and is intent to be 

trained in such way that fairly compute the non-linearity and the trend of the 

historical series. 

There are many studies that use hybrid ARIMA and ANN models. 

However, there is no consensus on how to couple the models and each study 

hybridizes both models by its own methods. That being said, a new method of 

coupling was thought specifically for this research, as follows: Under the 

hypothesis that passing a non-stationary series through the linear formulation of 

an ARMA filter not only the non-linearity but also the non-stationarity of the series 

will be kept within the residual series.  

Preserving the non-linearity and the non-stationarity for the residual 

series and using the residual series as an input of the ANN, the network should 

be able to detect both non-linear and trend patterns of the series. Aiming at that, 

a preliminary analysis was made and is detailed at the chapter 4.1, in which the 

non-stationarity was confirmed to be preserved for the residuals. Thus, the 

developed scheme for coupling the ANN to the ARMA model for a series  can 

be simplified by three steps: (i) The ARMA model receives the historical series  

in order to estimate the parameters of the model and produce the residual series 

; (ii) The residuals are used as input for the implementation and training of the 

ANN, which thereafter should be capable of generating a group of synthetic 

residual series ; (iii) The set of synthetic residual series return to the ARMA 

model to generate synthetic streamflow series ;. A simplification to this scheme 

is presented by Figure 6 and the process is thereafter described in detail. 
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Figure 6. ARMA-ANN coupling scheme 

Considering the monthly scale, the hydrological time series  must be 

deseasonalized, for the ARMA formulation assumes as a non-seasonal model. 

Subsequently, the iterative approach to model building of Box & Jenkins, as 

described in the chapter 1.3.1.4, is performed in order to identify, estimate the 

parameters of and validate the model. The study was taken for six stations and 

the identification was made by means of the BIC, in order to reduce the 

subjectivity and automatize the results. Herein, it is important to estipulate 

maximum orders for AR and MA portions of the model. Therefore, the postulated 

models should have orders for the AR and MA parts ranging from zero to 2, for 

keeping it parsimonious and the integration portion would be suppressed as it is 

suitable for forecasting rather than synthetic generation. 

Having identified the most suitable among the postulated models, the 

following step estimates the parameters by means of the maximum likelihood 

estimates method. It was chosen because of its comprehensive approach and 

considerable efficient results. Subsequently, considering the orders ,  

and , the equation (11) is rewritten as equation (24), in order to obtain the 

residual series. Before using the residual for implementing the neural network, 

the independence, homoscedasticity and normal distribution should be checked 

and the Portmanteau, Levene and Jarque-Bera tests were performed. 

 (24) 

Afterwards, the residual series is used for the training and validation of 

the Neural Network. The considered type of architecture is a one hidden layer 

MLP, with a one neuron output layer  representing the residual for the month 
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. For the input, the network considers the array of residuals for the previous 

 months ( ) for obtaining the next month “residual”. The 

most suitable architecture is obtained by a trial and error method, with the  inputs 

varying from  to  months and the neurons  on the hidden layer ranging from 

 to , as shown in Figure 7. A portion of 70% of the data is used for the 

training, while the remainder 30% is considered for the validation. The 

performance is evaluated by the root mean square error (RMSE) and 

determination coefficient (R²) metrics. Moreover, the Levenberg-Marquardt 

algorithm (MORÉ, 1978) is used for the training. Finally, the analysis for the 

RMSE indicates the architecture to be used in order to generate the synthetic 

series. 

 

Figure 7. MLP tested architectures 

From the most suitable architecture among those tested, a recursive 

method is used to produce synthetic values. In essence, the last  values of 

residuals are used to generate the following residual ( . At each iteration  

, and the last calculated output becomes one input for the following 

synthetic residual. The process continues for as long as the synthetic series size 

( ) times the number of series to be generated ( ), producing one continuous 

series that returns to the ARMA equation producing a long sequence of synthetic 

streamflow series. This sequence is thereafter divided in  synthetic series, those 

of which are tested and compared with the historical and single ARMA synthetic 

series by both short- and long-term statistics (DETZEL et al., 2014) means. 
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Furthermore, the statistical tests of Mann-Kendal (LIANG et. al., 2011) and Pettitt 

(ROUGÉ et. al., 2013) for stationarity are performed in order to verify the 

capability of the Neural Network in computing and replicating the trend of the 

series. 
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3 STUDY AREA 

The Iguaçu River basin is located within the Brazilian states of Paraná 

and Santa Catarina and the Argentine province of Misiones. It is one of the sub-

basins of the Paraná River system together with the basins of Paranapanema, 

Tietê, Grande and Paranaíba as shown in Figure 8. 

 
Figure 8. Map of the Parana River basin 

This basin is relevant for the Brazilian hydropower exploitation, and thus 

for this study there were selected six gauging stations located downstream six 

hydroelectric plants within the Iguaçu river basin. The series are all naturalized, 

continuous and of 85 years in length. 

This chapter addresses the physical characteristics and the climate at the 

Iguaçu River basin. Additionally, some relevant information about the selected 

gauging stations are detailed. 
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3.1 CHARACTERISTICS 

The Iguaçu river basin is situated between the coordinates 25°05’S and 

26°45’S of latitude and the degrees 48°57’W and 54°50’W of latitude, covering 

about 70.800 km² within the Brazilian states of Paraná and Santa Catarina, as 

showed in Figure 10, and the Argentine province of Misiones. Moreover, the basin 

is designated by the National Water Agency of Brazil (Agência Nacional de 

Águas, ANA) by the number 65. Iguaçu River starts on the encounter of Iraí and 

Atuba rivers, between the municipalities of Curitiba and Pinhais, at an elevation 

of around 1200 m. It stretches across the state of Paraná, draining to the Paraná 

River 910 km downstream on the border between the Brazilian city of Foz do 

Iguaçu and the Argentine city of Puerto Iguazú, at an elevation of around 300 m. 

This considerable difference between the river head and its falls combined with 

the area of the basin, enabled the construction of six big hydroelectric power 

plants within the Iguaçu cascade and many smaller plants in its tributaries. 

The Brazilian state of Paraná comprehends 80,4% of the Iguaçu Basin, 

which represents about 57.000 km². The iguaçu River crosses the state from east 

to west and its basin is commonly divided in three sub-basins, namely Upper, 

Intermediate and Lower Iguaçu (Figure 9). The most important tributaries are 

Negro, Potinga, da Areia, Iratim, Jordão, Cavernoso, Chopim, Guarani, São 

Salvador and Capanema. 

Figure 9. Map of the Iguaçu River basin, divided in Upper, Intermediate and Lower Iguaçu 
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The Upper Iguaçu, where the Curitiba Metropolitan Area is located, is 

characterized by intense industrial and commercial activity and elevated 

population density. Alternatively, the Intermediate and Lower Iguaçu present 

extensive agricultural activity and are relevant for their hydroelectric potential. 

3.2 CLIMATE 

The Iguaçu basin is inserted in a moist subtropical mid-latitude climate 

region, with mild to cold winters and warm to hot summers. According to the 

Köppen-Geiger criteria, the basin is almost entirely classified under the Cfa 

climate type, but for a small portion at the Upper Iguaçu Basin classified as Cfb, 

meaning that the basin is in a temperate region, without dry season, with hot 

summer for Cfa and warm summer for Cfb (PEEL et. al., 2007). 

The region weather is influenced by a maritime polar (mP) air mass, a 

maritime tropical (mT) air mass and a continental tropical (cT) air mass. The 

maritime air masses are responsible for the moisture transport during the winter 

season, differing the South region of Brazil, with moister winters from the South 

East region that usually have a dry season during the winter. The precipitation 

indexes at the basin are steady over the year with total annual precipitations 

usually standing between 1200 mm and 2000 mm. The region climate is 

extremely influenced by the El Niño Southern Oscillation (ENSO). The warm 

phase of ENSO increases the Pacific Ocean water temperature in areas close to 

the Pacific coast of South America. This phenomenon may drastically increase 

the temperature and precipitation volume at the southern region of Brazil. 

3.3 SELECTED STATIONS 

The Brazilian Operator of the National Electricity System (Operador 

Nacional do Sistema Elétrico, ONS) currently provides series at the daily, monthly 

and annual scales for gauging stations at 153 hydroelectric power plants. The 

operation of plants and reservoirs cause significant changes for the river regimes. 

Thus, specific techniques, may be used in order to evaluate the natural flow of 

the river. By means of those techniques, the ONS obtains the naturalized 

streamflow series for all the aforementioned stations. The series are updated at 

the end of every year, by adding the naturalized streamflow values for the year 
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before. The considered time series for this study were all provided by the ONS at 

the monthly scale. By the time this research was taken, the provided monthly 

series were 87 years in length (1044 months), starting at January/1931 and 

ending by December/2017. 

The selected gauging stations are six in number, downstream the six 

hydroelectric plants within the Iguaçu River, namely Foz do Areia, Segredo, Salto 

Santiago, Salto Osório, Salto Caxias and Baixo Iguaçu, adding up to a total of 

 of installed power and located in the Iguaçu River, as shown in Figure 

10. The plants together compound about 7% of the Brazilian hydroelectric 

installed power. 

 
Figure 10. Map of the Iguaçu Basin 

The Governador Bento Munhoz Rocha Neto power plant (i.e. Foz do 

Areia) started its operation in 1980 and has an installed power of . The 

plant is located in the Iguaçu River,  downstream the Areia River falls, at the 

municipality of Pinhão, Paraná. The delimitated catchment has an average long-

term flow of about . 

The Governador Ney Aminthas de Barros Braga power plant (i.e. 

Segredo) has  of installed power and operates since 1992. It is located 

at the municipality of Mangueirinha, Paraná, in the Iguaçu River,  upstream 

the Jordão River falls. The average long-term flow at the hydro plant is about 

. 

The following plant downstream Segredo in the Iguaçu River is the Salto 

Santiago power plant, which delimitates a sub-basin with an average long-term 
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flow of about . The power plant is located in the municipality of 

Saudade do Iguaçu, Parana, and has an installed capacity of . 

Salto Osório is a hydroelectric plant within the Iguaçu River located in the 

municipality of Quedas do Iguaçu, Parana. The plant has  of installed 

power and the catchment it delimitates has an average long-term flow of about 

. 

Downstream Salto Osório and with  of installed power is located 

the Governador José Richa power plant (i.e. Salto Caxias). The hydroelectric 

plant is located in the municipality of Capitão Leônidas Marques, Paraná and has 

an average long-term flow of about . 

Finally, with a foreseen installed power of  the Baixo Iguaçu 

power plant is currently under construction in the Iguaçu River at the municipality 

of Capitão Leônidas Marques, Paraná and at the plant the watercourse has an 

average long-term flow of about . Supplementary details about the 

power plants used in this study are summarized in Table 2. 

Table 2. Hydroelectric plants data 

 
* Estimated data considering the same Specific flow rate from the previous gauging station. 

The main data were obtained from the files available at the ONS website. 

The Average flow refers to the average long-term flow at the monthly scale, the 

Specific flow rate is obtained by dividing the average flow by the drainage area 

and the CV is the mean of the coefficients of variation of the historical series for 

each month obtained by dividing the standard deviation of the month by its 

average flow. The mean CV analysis presents all above 70%. The series present 

similar behavior, July is the month that presents the highest CVs for all of them, 

from 91.16% at Gov. José Richa to 94.51% at Foz do Areia and March presents 

Municipality Latitude Longitude
Drainage 

Area (km²)
Average 

flow (m³/s)
Specific flow rate 

(m³/s/km²)
CV (%)

Pinhão, PR 26°00'34" S 51°40'00" W 30 127  665 0.0221 71.15%

Mangueirinha, PR 25°47'35" S 52°06'47" W 34 346  771 0.0224 70.49%
Saudade do Iguaçu, 
PR

25°37'04" S 52°36'48" W 43 852 1 023 0.0233 71.42%
Quedas do Iguaçu, 
PR

25°32'06" S 53°00'33" W 45 769 1 071 0.0234 71.40%
Capitão Leônidas 
Marques, PR

25°32'36" S 53°29'48" W 56 977 1 375 0.0241 71.16%
Capitão Leônidas 
Marques, PR

25°30'00" S 53°40'00" W 61 577* 1 486 0.0241* 71.17%
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the lowest CVs, from 52.16% at Foz do Areia to 55.43% at Baixo Iguaçu. These 

elevated values indicate a relatively sparse hydrologic regime. 

Furthermore, the descriptive statistics of standard deviation ( ), 

skewness ( ), minimum, maximum and lag one correlation ( ) for all the series 

are listed at Table 3. The elevated skewness suggests that a numerical 

transformation may be necessary for the series to tend to a normal behavior. 

Table 3. Descriptive statistics 

 

Series

Foz do Areia 497 2.25 80 5150 0.492
Segredo 571 2.21 94 5893 0.497
Salto Santiago 772 2.36 116 8252 0.495
Salto Osório 808 2.33 119 8473 0.495
Gov. José Richa 1038 2.31 148 10798 0.488
Baixo Iguaçú 1122 2.31 160 11670 0.488

MAX
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4 RESULTS AND DISCUSSION 

4.1 PRELIMINARY ANALYSIS: STATIONARITY COMPARISON 

As said earlier, the ARIMA model is not capable of dealing with trends in 

the series. Aiming to verify this hypothesis, the residuals of an ARMA model were 

submitted to the Mann-Kendal and Pettitt hypothesis-tests for stationarity, 

together with Sen slope estimation (KAHYA and KALAYCI, 2004). These 

analyses were performed for the six historical series at the yearly scale and their 

respective AR(1) residual series. As shown in Detzel (2015), the AR(1) model is 

adequate to model the Iguaçu river streamflow at the annual time scale.  

The results of the trend tests are shown in Table 4, in which year_PT and 

p-value_PT refer respectively to the year of the break and p-value obtained by 

the Pettitt test, whereas MK and p-value_MK correspond to the statistics and p-

value of the Mann-Kendall test and the last column denotes the Sen Slope 

coefficient. 

Table 4. Results of the trend tests 

 

The results acknowledge relevant trend and break for all historical series 

at a significance of 5%. Considering the results of the Man-Kendall test this is 

noticed at a significance of 1%. Moreover, the non-stationarity is also registered 

in the residuals, corroborating the hypothesis. Finally, for all tested series the year 

of the break obtained by the Pettitt test was maintained the same for both the 

historical and residual series, whereas the remaining parameters presented slight 

changes. The power plants are in the same cascade and are disposed on the 

year_PT p-value_PT MK p-value_MK Sen slope
History 1968 0,022 2,630 0,009 2,753
Residual 1968 0,015 2,686 0,007 2,649
History 1968 0,011 2,870 0,004 3,680
Residual 1968 0,007 2,919 0,004 3,684
History 1968 0,019 2,801 0,005 4,833
Residual 1968 0,012 2,896 0,004 4,888
History 1968 0,017 2,824 0,005 5,050
Residual 1968 0,011 2,949 0,003 5,147
History 1968 0,014 2,855 0,004 6,787
Residual 1968 0,007 3,055 0,002 6,928
History 1968 0,014 2,955 0,003 7,604
Residual 1968 0,009 3,064 0,002 7,812

Baixo Iguaçú

Gov. José Richa

Series

Foz do Areia

Segredo

Salto Santiago

Salto Osório
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table in the same order they are in the watercourse, therefore, the flow gradually 

increases from one plant to the following. 

At the Foz do Areia power plant the Pettitt test resulted in a p-value of 

2.2% for the historical and 1.5% for the residual, indicating an increase in the 

significance of the non-stationarity. The same is registered for the Mann-Kendal 

test, in which the p-value decreases from 0.9% to 0.7%. The positive statistics of 

the Man-Kendal test indicates that both historical and residual series at Foz do 

Areia have increasing linear trends and the comparison between the Sen Slope 

coefficients indicates nearly the same linear trend. For illustration Figure 11 

presents the two series and their respective linear trend. 

 
Figure 11. Historical and AR(1) residual series at Foz do Areia 

Similar results were observed for the remaining series, as the behavior 

of the residuals in relation to the historical was equivalent to that observed at Foz 

do Areia. Additionally, they presented a slight and gradual increase in the Sen 

Slope coefficient while the Mann-Kendal and Pettitt p-values decreased in 

relation to Foz do Areia, meaning that the increasing trend is less intense and 

slightly less significant at Foz do Areia. In conclusion, the ARMA model is 

admittedly incapable of computing the trend of a series and the results reinforce 

that by demonstrating how this characteristic is kept by the residual series. 

4.2 ARIMA MODEL 

The preliminary analysis for the ARIMA model regards the iterative 

approach to model building of Box & Jenkins presented in Figure 3 (Page 14). 

The method suggests for the identification both graphic and theoretical 

approaches. Thus, for the graphic method the ACF and PACF analyzes are 
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required and for the theoretical identification the BIC was utilized. The ACF and 

PACF for the Foz do Areia series is presented in Figure 12. 

 
Figure 12. ACF and PACF at Foz do Areia 

The graphics in Figure 12 show blue lines representing the significance 

limits, values placed in between those lines are considered statistically null. The 

exponential behavior presented by the ACF in addition to the sudden decay in 

the PACF right after the first lag suggest a pure autoregressive model of order 

one (ARIMA(1,0,0)). The same behavior is observed for the other five stations 

and the ACF and PACF plots for them are presented in Appendix A.1. 

Table 5 presents the evaluated BIC values for the five ARIMA models 

considered in this research. 

Table 5. BIC results for the ARIMA models tested 

 
The BIC results identifiy the ARIMA (1,0,0) as the proper model for all the 

six stations, corroborating with the conclusions for the ACF and PACF analysis. 

The following steps for the model building are the estimation of the parameters 

and the theoretical validation of the model. For the estimation, the maximum 

likelihood estimates method was used; finally for the validation the independence, 

homoscedasticity and normality the Portmanteau (LI and MCLEOD, 1981), 

Levene (BROWN and FORSYTHE, 1974) and Jarque-Bera (Ferreira, 2008) tests 

(1,0,0) (2,0,0) (1,0,1) (2,0,1) (2,0,2)
Foz do Areia 2533.30 2538.14 2539.51 2542.96 2550.89
Segredo 2510.98 2515.85 2517.35 2520.28 2527.90
Salto Santiago 2489.24 2493.55 2495.12 2498.68 2506.08
Salto Osório 2489.65 2493.83 2495.39 2499.13 2506.43
Gov. José Richa 2492.07 2496.26 2497.83 2502.28 2509.17
Baixo Iguaçú 2492.08 2496.27 2497.84 2502.29 2509.18

Order of ARIMA ( p,d,q ) model
Series
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were performed. The results for the estimation and validation for all the stations 

are listed in Table 6. 

Table 6. ARIMA (1,0,0) parameters and theoretical validation p-values 

 
For a significance of 5%, the Portmanteau and Levene tests fail to reject 

the null hypothesis for all stations, meaning that in any case the residuals for an 

ARIMA (1,0,0) are considered to be independent and homoscedastic. The 

Jarque-Bera test, on the other hand, rejected the null hypothesis in all cases, 

meaning the residual series are not normally distributed. Further investigations 

on this matter were performed, by means of histogram plots (APPENDIX A.2). 

Results indicated that the histograms shapes closely resembled the typical bell-

shaped normal curve. Hence, the option was to keep the ARIMA (1,0,0) model 

for the selected series.  

In conclusion, the different series presented noticeably close results for 

the ARIMA model, a coherent behavior considering the stations are within the 

same river. 

4.3 ARIMA-ANN MODEL 

The ANN was firstly trained for several different architectures for each 

station in order to determine the optimal among those tested. For the training, the 

residual series given by the selected AR(1) models were used, with 70% of the 

series being used for the estimation and 30% for the validation. Each combination 

between 1 to 18 neurons in the input layer and 1 to 36 neurons in the hidden layer 

were trained, resulting in 648 possible architectures per station. Afterwards, their 

respective RMSE were tested for both estimation and validation. Among these 

possibilities, the one that presented the smallest RMSE value for the validation 

was selected. Table 7 presents the optimal architectures to be used at each 

station and their respective RMSEs for estimation and validation. 

Portmanteau Levene Jarque-Bera
Foz do Areia 0.5843 0.302 0.867 0.004
Segredo 0.5961 0.131 0.978 0.003
Salto Santiago 0.6072 0.245 0.978 0.001
Salto Osório 0.6069 0.242 0.979 0.001
Gov. José Richa 0.6057 0.281 0.980 0.001
Baixo Iguaçú 0.6057 0.280 0.980 0.001

Series
p-values

Parameter φ₁
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Table 7. Optimal architectures and RMSE 

 
The optimal architectures were the same for four of the six stations, with 

eighteen neurons in the input layer and thirty-six neurons in the hidden layer. 

Similar architectures were present for the other two stations, differing by one in 

the number of neurons in the hidden layer at Salto Santiago and in the input Layer 

at Salto Osório. The selected architectures were mainly those with the largest 

number of neurons, indicating that larger architectures would produce better 

results. The training, however, already present a good fit at these limits, as 

illustrated in Figure 13, in which the expected and the estimated outputs at Foz 

do Areia are plotted and the goodness of fit for the training is noticeable. 

 
Figure 13. Expected and estimated outputs at Foz do Areia 

The regression for the training also showed good results, with R² values 

fluctuating around  at all of the stations. Figure 14 presents the plots for the 

regressions. 

Regression
Input Hidden Layer Estimation Validation R²

Foz do Areia 18 32 0.0190 0.0170 0.9832
Segredo 18 32 0.0181 0.0231 0.9776
Salto Santiago 18 31 0.0165 0.0184 0.9762
Salto Osório 17 32 0.0222 0.0196 0.9794
Gov. José Richa 18 32 0.0233 0.0169 0.9867
Baixo Iguaçú 18 32 0.0173 0.0134 0.9839

Architecture RMSE
Series
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Figure 14. Training Regression 

When using the trained networks for the synthetic generation, the first 

observed issue was regarding the processing time. Essentially, larger 

architectures lead the process to take longer to be processed, especially in 

comparison with the ARIMA model, the reasons however were not addressed by 

this study. For 1044 months (87 years) long series, the computer was spending 

approximately 25 seconds per generated series. Considering a total of 1000 

synthetic series for each of the 6 stations to be generated, the processing time 

would total almost 42 hours for producing the 6000 series. Before running the 

computer for that long, only 10 synthetic series for each station were generated 

in order to verify the behavior of the synthetic series. Figure 15 presents the 

residual series from the ARIMA model  and the synthetic series of residuals  

produced by a MLP with 18 neurons in the input layer and 32 neurons on the 

hidden layer. The figure shows the results for Foz do Areia, nevertheless, the 

behavior was similar in all the stations. 

Foz do Areia Segredo Salto Santiago

Salto Osório Gov. José Richa Baixo Iguaçu
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Figure 15. Synthetic series of residuals – Foz do Areia 

In a quick graphic analysis, it is noticeable that the synthetic series of 

residuals present a similar behavior to the one observed in the original series, 

with mean values fluctuating around the zero. The synthetic series, however, 

present much lower minimum values and higher maximum values, incurring in a 

higher standard deviation. When returning the series to the ARIMA formulation 

the synthetic streamflow series are obtained, the plots of the historical series  

and the synthetic series  at Foz do Areia are shown in Figure 16. The other 

stations have produced similar results. 

 
Figure 16. Synthetic streamflow series – Foz do Areia 1 

The graphic shows far higher maximum values for the synthetic 

streamflow than those registered. In fact, the maximum synthetic values register 

an average of more than 100 times bigger than the maximum registered. 

Moreover, the maximum single value produced was almost 500 times bigger than 

the maximum registered. Therefore, no theoretical test was needed to conclude 

the model results were not good. In spite of those unlikely values, the behavior 

similarities observed in the Figure 15 graphical analysis, lead to the assumption 
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that it was a matter of calibration. Thus, a trial and error analysis was performed 

in search for the most suitable architecture. Since it was impracticable to produce 

6000 series with each architecture, for each check would take almost two days, 

the tests were made by generating 10 series for each architecture for each 

station. 

Some initial trials revealed that more complex networks, with more 

neurons and far better fit would produce worse results and even bigger maximum 

values. Too simple a network, on the other hand, would lack meaningful 

information and be incapable of properly reproduce the series behavior. The 

process was repeated for all the six stations and some fine tuning led to suitable 

architectures for synthetic streamflow generation at these stations. The weights 

were different for each station, but the main structure was the same and the all 

six series were modeled by a 12 neuron input layer 18 neuron hidden layer MLP. 

The result for the 10 synthetic series generation at Foz do Areia is presented in 

Figure 17. 

 
Figure 17. Synthetic streamflow series – Foz do Areia 2 

The 12-18-1 architecture is further used to generate 1000 series to be 

compared with the single ARIMA model. 

4.4 COMPARATIVE ANALYSIS 

Hybrid and single models were used to generate 1000 streamflow series 

with 1044 elements each, at the monthly scale. This section presents a 

comparison between the synthetic series generated by single ARIMA and 

ARIMA-ANN models. The short-term statistics and their uncertainties are 

presented in Table 8, noting that the results for the synthetic series refer to the 
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mean of the statistics for all the generated scenarios and the values between 

parentheses correspond to the uncertainties. Results for the synthetic series 

statistics, when compared with those from the historical series present a fair 

adherence for both models. 

The single ARIMA model performed better in terms of mean ( ), standard 

deviation ( ) and maximum values, whilst the hybrid model better represented 

the skewness ( ) and the minimum values. Specifically for the skewness ( ), the 

ARIMA-ANN model presented a considerably better performance over the single 

ARIMA. Moreover, one may notice that for statistics in which the single ARIMA 

model performs better, the hybrid model presents a lower uncertainty and where 

the ARIMA-ANN model overcomes, it presents a higher uncertainty. 

Table 8. Short-term statistics and uncertainty 

 
 mean;  standard deviation;  skewness. 

The statistics of monthly average and standard deviation at Foz do Areia 

are presented in Figure 18, the other series displayed similar behavior and 

therefore are presented in APPENDIX A.3. The ARIMA-ANN model noticeably 

underestimates the standard deviations, whereas the single ARIMA behaves 

rather similar to that from the historical series. The monthly average does not 

present much of a difference, the hybrid model performed a little better for June, 

August and September, although the ARIMA model better preserved the statistics 

overall. 

Series Method

Foz do Areia Historical
ARIMA 668 (29.4) 529 (55.0) 3.07 (1.2) 50 (14.1) 5645 (1880)
ARIMA-ANN 674 (20.3) 352 (43.7) 2.33 (1.5) 84 (25.0) 3754 (1592)

Segredo Historical
ARIMA 773 (33.1) 609 (64.6) 3.03 (1.3) 60 (16.7) 6432 (2350)
ARIMA-ANN 786 (24.3) 411 (51.1) 2.33 (1.5) 98 (29.4) 4379 (1847)

Salto Santiago Historical
ARIMA 1029 (46.8) 826 (85.2) 3.16 (1.0) 81 (21.8) 8883 (2749)
ARIMA-ANN 1049 (33.7) 561 (70.9) 2.40 (1.5) 129 (39.0) 6011 (2538)

Salto Osório Historical
ARIMA 1076 (50.3) 861 (94.0) 3.06 (1.1) 83 (23.6) 9062 (3006)
ARIMA-ANN 1098 (35.2) 588 (74.1) 2.40 (1.5) 135 (40.8) 6296 (2652)

Gov. José Richa Historical
ARIMA 1383 (63.3) 1114 (114.0) 3.08 (1.2) 112 (31.3) 11766 (3930)
ARIMA-ANN 1409 (45.1) 761 (94.2) 2.42 (1.5) 178 (52.6) 8136 (3376)

Baixo Iguaçú Historical
ARIMA 1491 (66.8) 1202 (123.7) 3.12 (1.0) 121 (31.2) 12723 (3900)
ARIMA-ANN 1523 (48.8) 823 (101.8) 2.42 (1.5) 193 (56.8) 8793 (3648)

116701602.3111221486

84731192.338081071

107981482.3110381375

2.21571771

82521162.367721023

5150802.25497665

589394

MAX
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Figure 18. Monthly statistics – Foz do Areia. Bars indicate means, and lines indicate standard deviations. 

The comparison between the autocorrelation functions at Foz do Areia 

(Figure 19) indicate a faster decay for the ARIMA-ANN model, while the historical 

series presents statistical null correlations from lag 6 on, the ARIMA-ANN 

reaches the limit at lag 3 and the single ARIMA at lag 5. At further lags the hybrid 

better approaches the historical, especially at lags 11 and 12, in which the 

correlations become significant again and the hybrid coincides with historical. 

Moreover, the proposed model presents positive autocorrelation at lags 24, 36, 

48, and 60, and negative at lags 6, 18, 30, 42, and 54, demonstrating some sort 

of seasonality that not represents the historical series. The ACF at the other 

stations present similar behavior and are shown in APPENDIX A.4. 

 
Figure 19. Autocorrelation Functions – Foz do Areia 

The long-term statistics are presented in Table 9, with the uncertainties 

regarding these statistics shown between parentheses. The results indicate that 

the single ARIMA mainly prevails over the ARIMA-ANN regarding the long-term 

statistics, with the exception for the average run period, in which the proposed 
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model presents better results. The uncertainty however, was lower for the hybrid 

model in comparison to the classic for the vast majority of long-term statistics, 

with the number of runs at Segredo as the only exception. 

Table 9. Long-term statistics and uncertainty 

 
 number of runs;  average run period;  maximum run period;  average deficit;  

maximal accumulated deficit. 

Generally, the proposed model reduces the uncertainty and shows a 

significant improvement in terms of skewness. On the other hand, it 

underestimates the standard deviation and the maximums. The lower values for 

standard deviation, in addition to the seasonal pattern observed in the ACF 

indicate that the neural network detects a well-established seasonality that does 

not reflect the Iguaçu River regime. Considering the long-term statistics, the 

model is fair on average, but underestimates the maximal values. 

Series Method

Foz do Areia Historical
ARIMA 110 (6.5) 6 (0.39) 24 (5.4) 2176 (185) 8589 (1954) 1395 (426) 7775 (2388)
ARIMA-ANN 122 (6.2) 5 (0.25) 18 (4.4) 2044 (119) 7375 (1617) 506 (152) 4413 (1547)

Segredo Historical
ARIMA 109 (6.1) 6 (0.37) 25 (5.3) 2572 (203) 10136 (2171) 1654 (439) 9138 (2668)
ARIMA-ANN 121 (6.2) 5 (0.26) 19 (4.5) 2421 (144) 8800 (1966) 618 (188) 5330 (1868)

Salto Santiago Historical
ARIMA 107 (6.2) 6 (0.40) 25 (5.3) 3475 (291) 13646 (2861) 2302 (670) 12536 (3853)
ARIMA-ANN 120 (6.0) 5 (0.26) 19 (4.6) 3282 (201) 12013 (2703) 900 (276) 7557 (2636)

Salto Osório Historical
ARIMA 107 (6.1) 6 (0.38) 26 (5.8) 3636 (292) 14293 (3315) 2440 (749) 13286 (4110)
ARIMA-ANN 120 (6.0) 5 (0.26) 19 (4.5) 3439 (210) 12543 (2756) 942 (289) 7911 (2758)

Gov. José Richa Historical
ARIMA 107 (6.2) 6 (0.40) 26 (5.7) 4678 (385) 18367 (4178) 3181 (869) 17395 (4912)
ARIMA-ANN 121 (5.9) 5 (0.26) 19 (4.5) 4439 (278) 16158 (3546) 1213 (370) 10161 (3534)

Baixo Iguaçú Historical
ARIMA 107 (6.3) 6 (0.39) 26 (6.3) 5037 (409) 19847 (4714) 3350 (949) 18459 (5507)
ARIMA-ANN 121 (5.9) 5 (0.26) 19 (4.5) 4799 (301) 17467 (3838) 1311 (400) 10981 (3820)

21071

116 5 33 4669 22022 4264 22765

116 5 33 4320 20374 3946

14581

111 6 31 3374 13817 3046 15521

110 6 31 3242 13238 2899

7224

111 6 31 2441 10193 1965 9731

113 5 31 2033 9202 1378
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5 CONCLUSION 

An alternative approach on the use of Neural Networks in hydrology was 

considered in this research. The purpose of this work was to verify and evaluate 

the efficiency improvement for a hybrid ARIMA-ANN in comparison with an 

ARIMA model for synthetic streamflow generation, relying on the premise that the 

neural network would address the non-linear portion of the river regime, whilst 

the ARIMA part would compute the persistence of the series. 

The model building incurred in some challenging tasks. Firstly, regarding 

the coupling scheme, since there are many researches with hybrid models similar 

to this but no consensus on how to join the two models in one. The ANN should 

filter what the ARIMA model was not able to, thus the option for modelling the 

ARIMA residual with the ANN, for the residual contains all the information not 

computed by the ARIMA. In the sequence it was noticed that optimizing the 

architecture by means of the RMSE and the coefficient of determination ( ) 

wouldn’t improve the results for the synthetic streamflow generation. Therefore, 

followed an extensive search for the most suitable architecture. One should 

attempt to the fact that this search must be repeated for each station. 

The main problem with the model was the processing time. One synthetic 

series alone consumes a few seconds to be generated. Taking into account the 

number of synthetic series to be generated and the number of different stations, 

the model would take a considerable amount of time to be processed, making the 

model impracticable for most operational studies. A possible reason to that might 

be the usage of the Matlab neural network toolbox, although the computational 

cost was not considered in this research and this issue could be further 

addressed. 

The proposed model was especially good in accessing the minimal 

streamflow values, despite underestimating the maximums. Thus, it could be 

suitable for studies of drought events, in which the lower values prevail over the 

higher. Moreover, there was some improvement in reducing the uncertainty, 

which can be due to considering the non-linearity inherent to the series. 

The objectives proposed in the introduction of this research were met and 

the model is appropriate for the synthetic streamflow generation within the Iguaçu 
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Basin, although the implementation and processing times should be previously 

considered. That said, future research can derive from this: 

 The underestimation of the standard deviation is possibly due to the 

underestimation of the maximums. This problem however, can be a 

matter of calibration and should be further investigated and improved. 

 The synthetic series generation demands an elevated quantity of 

series to be generated. Therefore, a process that takes a few 

seconds can take several hours to be completed when repeated 

many times. The forecasting however, require only one short series, 

time dependent on the historical series, meaning that the processing 

time would not be as much of a problem. 

 The issue regarding the elevated implementation and processing 

time could be solved by optimization techniques. 

 One way to extend the model to the multivariate analysis is by using 

data from more stations as inputs and by producing more outputs. 

This should directly reflect in the computational cost but could be 

further investigated. 

In conclusion, this study can further be extended and improved in diverse 

ways, bringing new possibilities of studies and expanding the knowledge in 

synthetic hydrology. 
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APPENDIX 

A.1 AUTOCORRELATION AND PARTIAL AUTOCORRELATION FUNCTIONS 

From Figure 20 to Figure 25 the autocorrelation and partial 

autocorrelation functions for all the series are presented. The blue lines represent 

the significance limit. 

 
Figure 20. ACF and PACF at Foz do Areia 

 
Figure 21. ACF and PACF at Segredo 

 
Figure 22. ACF and PACF at Salto Santiago 
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Figure 23. ACF and PACF at Salto Osório 

 
Figure 24. ACF and PACF at Gov. José Richa 

 
Figure 25. ACF and PACF at Baixo Iguaçu 
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A.2 HISTOGRAM PLOTS - RESIDUALS 

Figure 26 presents the histogram plots for the ARIMA (1,0,0) residuals at 

the six stations. 

 

 

 
Figure 26. Residual series histograms 
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A.3 MONTHLY AVERAGE AND STANDARD DEVIATION 

From Figure 27 to Figure 32 the monthly average and standard deviation 

are presented. Bars indicate means, and lines indicate standard deviations. 

 
Figure 27. Monthly statistics – Foz do Areia. 

 
Figure 28. Monthly statistics – Segredo. 

 
Figure 29. Monthly statistics – Salto Santiago. 
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Figure 30. Monthly statistics – Salto Osório. 

 
Figure 31. Monthly statistics – Gov. José Richa. 

 
Figure 32. Monthly statistics – Baixo Iguaçu. 
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A.4 AUTOCORRELATION FUNCTION COMPARISON 

Figure 33 shows the autocorrelation functions (ACF) for the Historical 

series at all stations, in contrast with the average ACFs for ARIMA-ANN and 

single ARIMA synthetic series. 

 

 

 
Figure 33. Autocorrelation Functions – Foz do Areia 

 


