#### ANA LUIZA MATTANA

EFEITO DO ALIMENTO NO CICLO DE VIDA E NA NUTRIÇÃO E EXIGÊNCIAS TÉRMICAS DE **Spodoptera** eridania (Cramer, 1782) (LEPIDOPTERA: NOCTUIDAE).

Tese apresentada à Coordenação do Curso de Pós-Graduação em Ciências Biológicas, Área de Concentração em Entomologia, da Universidade Federal do Paraná, para obtenção do título de Mestre em Ciências Biológicas.

CURITIBA DEZEMBRO, 1986

A Meus Pais NATAL JOÃO e EUNICE DEDICO

### **AGRADECIMENTOS**

Ao Professor Doutor Luís Amilton Foerster, do Departamento de Zoologia da Universidade Federal do Paraná (UFPR), pela orientação e revisão dos originais, e pela paciência e amizade recebidas durante a realização deste trabalho.

Ao Professor Doutor Albino Morimassa Sakakibara, Coordenador do Curso de Pós-Graduação em Entomologia do Departamento de Zoologia da UFPR, pela oportunidade de frequentar o curso.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pela concessão da bolsa de estudos no decorrer do curso e pelo auxílio financeiro para a compra das câma ras incubadoras utilizadas nos experimentos.

Ao Doutor Victor Becker, pesquisador do Centro Nacio - nal de Pesquisas dos Cerrados, da Empresa Brasileira de Pesquisas Agropecuária (EMBRAPA), pela identificação da espécie Spo - doptera eridania.

Ao Instituto Agronômico de Campinas (IAC) pelo fornecimento das mudas da variedade de batata doce utilizada nos experimentos.

Ao pesquisador Edson Tadeu Iede, do Centro Nacional de Pesquisas de Florestas (EMBRAPA), pelas sugestões na elaboração do projeto de tese.

Ao Professor Walmir Esper, do Departamento de Zoologia da UFPR, pelo empréstimo da balança e da estufa utilizadas nos estudos de nutrição.

Ao Conselho Estadual de Ciência e Tecnologia (CONCITEC) pelo auxílio financeiro para a aquisição de uma calculadora HP - 41CV, utilizada nas análises estatísticas.

Aos meus pais Natal João e Eunice, minhas irmãs Vanize e Maria Cristina e meu cunhado Itané, pelo apoio e ajuda pres - tados durante o curso.

Aos colegas do Curso de Pós-Graduação em Entomologia, por este período de convivência e aos professores, pelos conhecimentos transmitidos.

Às demais pessoas que de alguma forma contribuiram para a realização deste trabalho.

# SUMÁRIO

|        | LISTA DE TABELAS                         | vii |
|--------|------------------------------------------|-----|
|        | LISTA DE FIGURAS                         | хi  |
|        | RESUMO                                   | xii |
|        | SUMMARY                                  | xvi |
| 1      | INTRODUÇÃO                               | 1   |
| 2      | REVISÃO BIBLIOGRÁFICA                    | 3   |
| 2.1    | CICLO DE VIDA                            | 3   |
| 2.2    | NUTRIÇÃO                                 | 3   |
| 2.3    | NUTRIÇÃO de Spodoptera sp                | 5   |
| 2.4    | EFEITO DA TEMPERATURA NO DESENVOLVIMENTO | 7   |
| 3      | MATERIAL E MÉTODOS                       | 10  |
| 3.1    | CICLO DE VIDA                            | 10  |
| 3.1.1  | CRIAÇÃO DE MANUTENÇÃO                    | 10  |
| 3.1.2  | CICLO DE VIDA                            | 11  |
| 3.1.3  | ANÁLISE ESTATÍSTICA                      | 12  |
| 3.2    | NUTRIÇÃO QUANTITATIVA                    | 12  |
| 3.2.1  | ÍNDICES E PARÂMETROS AVALIADOS           | 12  |
| 3.2.2  | ANÁLISE ESTATÍSTICA                      | 16  |
| 3.3    | EFEITO DA TEMPERATURA NO CICLO EVOLUTIVO | 17  |
| 3.3.1  | LIMIAR DE TEMPERATURA INFERIOR           | 17  |
| 3.3.2  | CONSTANTE TÉRMICA                        | 18  |
| 3.3.3  | NÚMERO DE GERAÇÕES ANUAIS                | 19  |
| 3.3.4. | MAPEAMENTO                               | 19  |
| 3.3.5. | ANÁLISE ESTATÍSTICA                      | 20  |
| 4      | RESULTADOS E DISCUSSÃO                   | 21  |
| 4.1    | CICLO DE VIDA                            | 22  |
| 4.1.1  | ovo                                      | 22  |
| 4.1.2  | LARVA                                    | 23  |

| 4.1.3    | PUPA                                         | 25   |
|----------|----------------------------------------------|------|
| 4.1.4    | CICLO EVOLUTIVO                              | 28   |
| 4.1.5    | ADULTO                                       | 29   |
| 4.2      | NUTRIÇÃO QUANTITATIVA                        | 32   |
| 4.2.1    | PARÂMETROS AVALIADOS                         | 32   |
| 4.2.2    | ÍNDICES AVALIADOS                            | 42   |
| 4.2.2.1  | TAXA DE CONSUMO RELATIVO                     | 42   |
| 4.2.2.2  | TAXA DE CRESCIMENTO RELATIVO                 | 45   |
| 4.2.2.3  | TAXA METABÓLICA RELATIVA                     | 47   |
| 4.2.2.4  | EFICIÊNCIA DE CONVERSÃO DO ALIMENTO INGERIDO | 49   |
| 4.2.2.5  | DIGESTIBILIDADE APROXIMADA                   | 51   |
| 4.2.2.6. | EFICIÊNCIA DE CONVERSÃO DO ALIMENTO DIGERIDO | . 53 |
| 4.3      | EFEITO DA TEMPERATURA NO CICLO EVOLUTIVO     | 56   |
| 4.3.1    | DURAÇÃO DAS DIFERENTES FASES                 | 56   |
| 4.3.2    | LIMIAR DE TEMPERATURA INFERIOR               | 65   |
| 4.3.3    | CONSTANTE TÉRMICA                            | 65   |
| 4.3.4    | NÚMERO DE GERAÇÕES ANUAIS E MAPEAMENTO       | 67   |
| 4.4      | CONSIDERAÇÕES GERAIS                         | 70   |
| 5        | CONCLUSÕES                                   | 73   |
|          | REFERÊNCIAS BIBLIOGRÁFICAS                   | 75   |
|          | APÊNDICES                                    | 81   |

# LISTA DE TABELAS

| 1. | Duração dos instares, largura de cápsulas cefálicas e ra - zão de crescimento de <i>Spodoptera eridania</i> em batata doce e bracatinga. Temperatura $25 \stackrel{+}{=} 2$ °C, UR de $70 \stackrel{+}{=} 10\%$ e fotofase de 14 horas |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | Duração e viabilidade da fase larval de <i>Spodoptera erida</i> - $nia$ em batata doce e bracatinga. Temperatura de 25 $\stackrel{+}{-}$ 2 $^{\circ}$ C UR de 70 $\stackrel{+}{-}$ 10% e fotofase de 14 horas 24                       |
| 3. | Duração, viabilidade e peso de pupas de <i>Spodoptera erida</i> - $nia$ em batata doce e bracatinga. Temperatura de 25 $\frac{+}{2}$ 2 °C, UR de 70 $\frac{+}{2}$ 10% e fotofase de 14 horas                                           |
| 4. | Duração das fases do ciclo evolutivo de <i>Spodoptera erida</i> - $nia$ (dias), em batata doce e bracatinga. Temperatura de $25 \stackrel{+}{=} 2^{\circ}$ C, UR de $70 \stackrel{+}{=} 10\%$ e fotofase de $14$ horas 28              |
| 5. | Períodos de pré-oviposição, oviposição e pós oviposição e longevidade (dias) de <i>Spodoptera eridania</i> (O e O) alimentados com solução de mel a 10%. Temperatura 25 ± 2 °C,UR de 70 ± 10% e foto fase de 14 horas                  |
| 6. | Número de ovos por postura, total de ovos depositados,total de ovos viáveis e viabilidade (%) de <i>Spodoptera eri - dania</i> . Temperatura de 25 <sup>±</sup> 2 °C,UR de 70 <sup>±</sup> 10% e foto - fase de 14 horas               |
| 7. | Consumo médio (I) de folhas de batata doce e bracatinga, em mg de matéria seca por instar, por larvas de $Spodop$ - $tera$ eridanía. Temperatura de $25 \pm 0.5^{\circ}$ C, UR de $70 \pm 10\%$ e foto fase de $14$ horas              |

| 0.  | tar, por larvas de <i>Spodoptera eridania</i> alimentadas com folhas de batata doce e bracatinga. Temperatura de 25 <sup>+</sup> 0,50 UR de 70 <sup>+</sup> 10% e fotofase de 14 horas                                                                             |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9.  | Ganho médio de peso (B), em mg de matéria seca por instar, por larvas de <i>Spodoptera eridania</i> alimentadas com folhas de batata doce e bracatinga. Temperatura de 25 <sup>±</sup> 0,5 °C, UR de 70 <sup>±</sup> 10% e fotofase de 14 horas                    |
| 10. | Alimento assimilado (I-F) (valores médios) em mg de matéria seca por instar, por larvas de <i>Spodoptera eridania</i> , alimentadas com folhas de batata doce e bracatinga. Temperatura de 25 <sup>+</sup> 0,5°C, UR de 70 <sup>+</sup> 10% e fotofase de 14 horas |
| 11. | Alimento metabolizado (M) (valores médios), em mg de matéria seca por instar, por larvas de <i>Spodoptera eridania</i> alimentadas com folhas de batata doce e bracatinga. Temperatura de 25 <sup>±</sup> 0,5°C, UR de 70 <sup>±</sup> 10% e fotofase de 14 horas  |
| 12. | Peso médio $(\bar{B})$ , em mg de matéria seca por instar, de larvas de <i>Spodoptera eridania</i> alimentadas com folhas de batata doce e bracatinga. Temperatura de $25 \pm 0.5^{\circ}$ C, UR de $70 \pm 10\%$ e fotofase de 14 horas                           |
| 13. | Taxa de Consumo Relativo (RCR), em mg de matéria seca por instar, de larvas de <i>Spodoptera eridania</i> alimentadas com folhas de batata doce e bracatinga. Temperatura de $25 \pm 0.5^{\circ}$ C, UR de $70 \pm 10\%$ e fotofase de $14$ horas                  |
| 14. | Taxa de Crescimento Relativo (RGR), em mg de matéria seca por instar, de larvas de <i>Spodoptera eridania</i> , alimentadas com folhas de batata doce e bracatinga. Temperatura $25^{+}$ $0.5^{\circ}$ C, UR de $70^{+}$ 10% e fotofase de 14 horas 46             |
|     |                                                                                                                                                                                                                                                                    |

| 13. | instar, de larvas de <i>Spodoptera eridania</i> alimentadas com folhas de batata doce e bracatinga. Temperatura de 25 ± 0,5°C, UR de 70 ± 10% e fotofase de 14 horas 48                                                                                                                 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16. | Eficiência de Conversão do Alimento Ingerido (ECI), em per-<br>centagem por instar, por larvas de <i>Spodoptera eridania</i> ali-<br>mentadas com folhas de batata doce e bracatinga. Tempera -<br>tura de 25 <sup>±</sup> 0,5°C, UR de 70 <sup>±</sup> 10% e fotofase de 14 ho-<br>ras |
| 17. | Digestibilidade Aproximada (AD) em percentagem por instar, de larvas de <i>Spodoptera eridania</i> alimentadas com folhas de batata doce e bracatinga. Temperatura de $25 \pm 0.5^{\circ}$ C, UR de $70 \pm 10\%$ e fotofase de $14$ horas                                              |
| 18. | Eficiência de Conversão do Alimento Ingerido (ECI) em percentagem por instar, de larvas de <i>Spodoptera eridania</i> alimentadas com folhas de batata doce e bracatinga. Tempera tura de 25 <sup>+</sup> 0,5°C, UR de 70 <sup>+</sup> 10% e fotofase de 14 horas                       |
| 19. | Duração média (dias) das fases de ovo, larva, pupa e do ciclo evolutivo de <i>Spodoptera eridania</i> , em bracatinga, às temperaturas de 17,20,25 e 30 <sup>±</sup> 0,5°C, UR de 70 <sup>±</sup> 10% e fotofase de 14 horas                                                            |
| 20. | Viabilidade larval e pupal (%) de <i>Spodoptera eridania</i> mantida com folhas de bracatinga. Temperatura de 17,20,25 e $30 \pm 0.5^{\circ}$ C, UR de $70 \pm 10\%$ e fotofase de 14 horas 61                                                                                          |
| 21. | Peso médio (mg) de pupas de <i>Spodoptera eridania</i> , em bra - catinga, às temperaturas de 17,20,25 e 30 $\pm$ 0,5 $^{\circ}$ C, UR de 70 $\pm$ 10% e fotofase de 14 horas                                                                                                           |

| 22. | Percentagem de desenvolvimento diário para as fases de                | ovo, |
|-----|-----------------------------------------------------------------------|------|
|     | larva, pupa e ciclo evolutivo de Spodoptera eridania em               | bra- |
|     | catinga, às temperaturas de 17,20,25 e 30 $^{+}$ 0,5 $^{\circ}$ C, UR |      |
|     | 70 - 10% e fotofase de 14 horas                                       | 6.4  |

23. Número de gerações anuais de *Spodoptera eridania*, com base em suas exigências térmicas, para regiões com as mesmas temperaturas médias anuais no Estado do Paraná...... 68

# LISTA DE FIGURAS

| 1. | Duração das fases do ciclo evolutivo de $Spodoptera$ eridania (dias), em batata doce e bracatinga. Temperatura de $25 \pm 2$ °C, UR de $70 \pm 10\%$ e fotofase de $14$ horas27                                                                                    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | Consumo médio (I) de folhas de batata doce e bracatinga, em mg de matéria seca por instar, por larvas de <i>Spodoptera</i> eridania. Temperatura de 25 <sup>+</sup> 0,5°C, UR de 70 <sup>+</sup> 10% e fotofase de 14 horas                                        |
| 3. | Produção média de fezes (F), em mg de matéria seca por instar, por larvas de <i>Spodoptera eridania</i> alimentadas com folhas de batata doce e bracatinga. Temperatura de $25 \pm 0.5^{\circ}$ C UR de $70 \pm 10$ % e fotofase de 14 horas                       |
| 4. | Ganho médio de peso (B), em mg de matéria seca por instar, por larvas de <i>Spodoptera eridania</i> alientadas com folhas de batata doce e bracatinga. Temperatura de $25 \pm 0.5^{\circ}$ C, UR de $70 \pm 10\%$ e fotofase de 14 horas                           |
| 5. | Alimento assimilado (I-F) (valores médios), em mg de matéria seca por instar, por larvas de <i>Spodoptera eridania</i> alimentadas com folhas de batata doce e bracatinga. Tempera tura de $25 \pm 0.5^{\circ}$ C, UR de $70 \pm 10\%$ e fotofase de 14 horas      |
| 6. | Alimento metabolizado (M) (valores médios), em mg de matéria seca por instar, por larvas de <i>Spodoptera eridania</i> alimentadas com folhas de batata doce e bracatinga. Tem peratura de 25 <sup>±</sup> 0,5°C, UR de 70 <sup>±</sup> 10% e fotofase de 14 horas |
| 7. | Peso médio (B), em mg de matéria seca por instar, de larvas de <i>Spodoptera eridania</i> alimentadas com folhas de batata doce e bracatinga. Temperatura de 25 <sup>±</sup> 0,5 °C,UR de 70 <sup>±</sup> 10% e fotofase de 14 horas                               |

| 8.  | Indices nutricionais de Spodoptera eridanía em batata doce e bracatinga. Temperatura de $25 \pm 0.5^{\circ}$ C, UR de $70 \pm 10\%$ e fotofase de 14 horas                       |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9.  | Duração (dias) da fase de ovo de <i>Spodoptera eridania</i> , às temperaturas de 17,20,25 e 30 <sup>+</sup> 0,5 <sup>o</sup> C, UR de 70 <sup>+</sup> 10% e fotofase de 14 horas |
| 10. | Duração (dias) da fase de larva de <i>Spodoptera eridania</i> , às temperaturas de 17,20,25 e 30 <sup>±</sup> 0,5 °C,UR de 70 <sup>±</sup> 10% e fotofase de 14 horas            |
| 11. | Duração (dias) da fase de pupa de <i>Spodoptera eridania</i> , às temperaturas de 17,20,25 e 30 <sup>+</sup> 0,5 °C,UR de 70 <sup>+</sup> 10% e fotofase de 14 horas             |
| 12. | Duração (dias) do ciclo evolutivo de <i>Spodoptera eridania</i> , às temperaturas de 17,20,25 e 30 <sup>±</sup> 0,5°C, UR de 70 <sup>±</sup> 10% e fotofase de 14 horas          |
| 13. | Peso pupal (mg) de <i>Spodoptera eridania</i> , às temperaturas de 17,20,25 e 30 $^{+}$ 0,5 $^{\circ}$ C,UR de 70 $^{+}$ 10% e fotofase de 14 horas                              |
| 14. | Relação entre as temperaturas com o tempo (————————————————————————————————————                                                                                                  |
| 15. | Número de gerações anuais de <i>Spodoptera eridania</i> , em bracatinga, para regiões do Estado do Paraná com as mesmas temperaturas médias anuais                               |

#### RESUMO

Este trabalho teve por objetivo avaliar e comparar a capacidade de desenvolvimento e reprodução de Spodoptera eridania (Cramer,1782 )(Lepidoptera : Noctuidae) em três hospedeiros.

Para tanto foram desenvolvidos experimentos de laboratório comparando-se o ciclo evolutivo, a sobrevivência e a reprodução sobre folhas de bracatinga (Mimosa scabrella) (Leguminosae) e eucalipto (Eucalyptus viminalis)(Myrtaceae), em relação a folhas de batata doce (Ipomoea batatas) (Convolvulaceae), hospedeiro preferencial de S. eridania. Realizou-se ainda um estudo de nutrição quantitativa com bracatinga e batata doce e avaliou-se a influência da temperatura no ciclo evolutivo em bracatinga, procedendo-se ao mapeamento da espécie e do número de gerações anuais em diferentes regiões do Estado do Paraná, em função das temperaturas nase e constantes térmicas, calculadas a partir 'dos dados de laboratório.

Não foi obtida sobrevivência larval além do terceiro instar em eucalipto.

Larvas alimentadas com batata doce apresentaram seis instares e um periodo larval médio de 18,13 dias enquanto que as 'alimentadas com bracatinga apresentaram sete instares e um periodo larval médio de 32,04 dias. A razão de crescimento foi de 1,6 para batata doce e 1,4 para bracatinga.

- O peso pupal foi significativamente superior em batata 'doce.
  - O período de oviposição foi de 11,27 dias em bracatinga

e 8,36 dias em batata doce.

A fecundidade e a viabilidade dos ovos não diferiu significativamente, demonstrando haver uma capacidade reprodutiva semelhante de S. eridania nas duas dietas.

Os parâmetros nutricionais avaliados apresentaram ten - dência crescente ao longo dos instares, em ambas as dietas. O consumo de alimento e a produção de fezes foram superiores em 'bracatinga. O ganho de peso, o peso médio e alimento metaboliza do foram superiores em batata doce.

O sétimo instar em bracatinga foi necessário para recuperar o baixo consumo de alimento e o pequeno crescimento no inicio da fase larval.

O maior peso corpóreo alcançado em batata doce, em me - nor período de alimentação que em bracatinga comprovou a mai- or adaptação da espécie âquela dieta.

Considerando-se o período larval, a RCR não diferiu significativamente entre as dietas, enquanto que RGR, RMR, ECI,AD e ECD foram significativamente maiores em batata doce, resultados estes obtidos principalmente devido à pouca adaptação de S. eridania à bracatinga nos primeiros ínstares.

Para batata doce obteve-se uma RMR para o período lar - val, superior a bracatinga, visto a maior velocidade de cres - cimento nesta dieta, o que resultou em maior dispêndio de energia.

Os estudos com temperatura demonstraram haver diferença significativa na duração de todas as fases do ciclo evolutivo para as temperaturas de 17,20,25 e 30°C.

O peso pupal variou de 190, 22 mg (30 $^{\circ}$ C) a 282,73 mg (17 $^{\circ}$ C).

A relação entre a temperatura e o tempo requerido para o desenvolvimento se ajustou a uma hipérbole em todas as fases do ciclo evolutivo, com as seguintes equações:  $y = 3275,22. x^{-207}$  (ovo);  $y = 15752,24. x^{-1,95}$  (larva);  $y = 33069. x^{-2,48}$  (pupa);  $y = 39524,96. x^{-2,11}$  (ciclo evolutivo).

A relação entre a percentagem de desenvolvimento diário e a temperatura se ajustou a uma reta para todas as fases do ciclo evolutivo, com as seguintes equações: y = -19,42 + 1,77x (ovo);  $y = -2,27 + 0,23 \times (larva)$ ;  $y = -9,03 + 0,73 \times (pupa)$ ;  $y = -1,72 + 0,16 \times (ciclo evolutivo)$ .

O limiar de temperatura inferior foi de  $10,97^{\circ}$ C para a fase de ovo,  $9,87^{\circ}$ C para larva,  $12,37^{\circ}$ C para pupa e  $10,75^{\circ}$ C para ciclo evolutivo.

As constantes térmicas foram de 56,92GD para a fase de ovo, 444,30GD para larva,139,28 GD para pupa e 639,99GD para o ciclo evolutivo.

Podem ocorrer de 1,36 a 2,99 gerações anuais de S.eridania nas Regiões do Estado do Paraná onde a bracatinga é plantada e explorada com maior intensidade. Como nestas regiões a
temperatura média anual é muito baixa (15 a 19°C) a probabilidade de S. eridania vir a se fixar como praga da bracatinga é
pequena, porém as possibilidades de ocorrerem surtos nas épo cas mais quentes do ano não ficam afastadas.

#### SUMMARY

Laboratory experiments were conducted to evaluate growth, reproduction, nutritional and thermal requirements of Spodopte-ra eridania (Cramer, 1782)(Lepidoptera: Noctuidae).

Life history was studied on leaves of two new host plants, "bracatinga" (Mimosa scabrella, Leguminosae) and eucalyptus (Eucalyptus viminalis, Myrtaceae) using sweet potato (Ipomoea batatas, Convolvulaceae) cv 98-1 as a atandard food for comparisons. The experiments were carried out at  $25^{\frac{1}{2}}$   $2^{\circ}$ C, relative humidity of  $70^{\frac{1}{2}}$  10% and a fotoperiod of 14 hours.

No development ocurried beyond third instar on eucalyptus while growth and reproduction were obtained on "bracatinga"leaves but only when the larvag were kept grouped until the end of the instar. Newly ecloded larvae reared individually died before completing the first moult. Larval development was 76,7% longer on "bracatinga" leaves (32,04  $\pm$  0,50 days) compared to sweet potato (18,13  $\pm$  0,16 days). Growth ratios, measured through the width of the head capsules were 1,6 for larvae fed on sweet potato and 1,4 for those reared on "bracatinga". An additional seventh instar was registered for all "bracatinga" reared specimens. Larval survival was 100% on sweet potato and 83,3% on "bracatinga".

The pupal stage was significantly longer on "bracatinga" (11,92  $\pm$  0,17 days) than on sweet potato (9,47  $\pm$  0,09 days) Pupal weight was statistically higher on sweet potato (278,70

 $\pm$  8,18 mg) in relation to "bracatinga" (225,10  $\pm$  4,08 mg). No mortality occurred during the pupal stage on either diet.

Adult longevity was  $19,27 \stackrel{+}{=} 1,53$  days for males and  $12,00 \stackrel{+}{=} 0,80$  for females on sweet potato and  $21,55 \stackrel{+}{=} 1,42$  days for males and  $15,82 \stackrel{+}{=} 1,28$  for females on "bracatinga". The oviposition period was longer on "bracatinga" ( $11,27 \stackrel{+}{=} 0,61$  days) than on sweet potato ( $8,36 \stackrel{+}{=} 0,43$  days); however fecundity and egg viability were not statistically different between the two diets.

The nutritional studies on larvae were conducted in similar conditions as for the life cycle evaluations. The gravimetric method was used to obtain the daily dry weight of larvae, food consumed and faeces, using sweet potato and "bracatinga" leaves as food.

The results obtained explained the need for an extra instar on "bracatinga". Food consumption and growth were comparatively low in this diet until the third instar; after this period of adaptation, both diets showed to be suitable for sustaining larval growth, which on "bracatinga" required a further instar to compensate for the slow initial performance. Considering the whole larval stage, consumption, growth and metabolism were higher on sweet potato; however after the third instar, "bracatinga" was efficiently converted into biomass, with similar levels of utilization and digestibility, compared to sweet potato.

Temperature studies of the evolutive cycle of S. eridania using "bracatinga" as larvae food were carried out at 17, 20, 25 and 30  $^+$  0,5 $^{\circ}$ C. Relative humidity within the rearing flasks was kept near saturation in all treatments by addition

of water to the filter paper lining the botton of the vials.

Thereshold temperatures and thermal constants were de - termined for both the immature stages and the evolutive cycle of S. eridania.

The relationships between the temperature and time required for development were expressed by the following power regression equations:

Y = 3275,22 . 
$$x^{-207}$$
 (egg stage) ( $r^2$  = 0,98)  
Y = 15752,24 .  $x^{-195}$  (larval stage) ( $r^2$  = 0,95)  
Y = 33069.  $x^{-2,48}$  (pupal stage) ( $r^2$  = 0,91)  
Y = 39524,96 .  $x^{-2,11}$  (evolutive cycle) ( $r^2$  = 0,94)

The relationships between the temperature and daily rate of development (%) were expressed by the following linear regression equations:

$$Y = -19,42 + 1,77 \text{ x(egg stage)} (r^2 = 1,00)$$
  
 $Y = -2,27 + 0,23 \text{ x(larval stage)} (r^2 = 0,98)$   
 $Y = -9,03 + 0,73 \text{ x(pupal stage)} (r^2 = 0,97)$   
 $Y = -1,72 + 0,16 \text{ x(evolutive cycle)} (r^2 = 0,98)$ 

Threshold temperatures were 10,97°C for egg, 9,87°C for larval, 12,37°C for pupal development and 10,75°C for the evo-lutive cycle.

The thermal constants, expressed in day-degrees were  $56,92^{\circ}D$  for the egg stage,  $444,30^{\circ}D$  for the larval stage,  $139,28^{\circ}D$  for pupal and  $639,99^{\circ}D$  for the evolutive cycle.

The results showed that from 1,36 to 4,37 generations of S. eridania per year can occur in Parana State, based on the isothermal map of the State. However, considering that "braca tinga" development is favoured by low average annual temperatu-

res, less than three generations of *S. eridania* are expected each year in the areas of the State where "bracatinga" is growth.

# 1 INTRODUÇÃO

A capacidade de sobrevivência, reprodução e adaptação de insetos fitófagos a novas plantas hospedeiras é um processo que desperta interesse nas áreas de ecologia, nutrição, e em especial na entomologia agrícola e florestal, quando plantas cultivadas se tornam alvo de novas espécies de insetos.

Estão envolvidas nestes processos mudanças no comportamento e nos hábitos alimentares. Estas por sua vez podem es tar ligadas a modificações sofridas pelo ecossistema, tais como eliminação de vegetação natural e implantação de monoculturas. Estas práticas oferecem condições favoráveis ao aumen to populacional tanto pela maior abundância de um determinado tipo de alimento, quanto pela menor incidência de inimigos naturais em função do ambiente bem menos diversificado.

Em abril de 1983 foi detectado um intenso ataque de Spodoptera eridania (Cramer,1782) (Lepidoptera: Noctuidae) em um
reflorestamento com 20 hectares de bracatinga (Mimosa scabrella Bentham) de três meses de idade, e 91 hectares de eucalipto, sendo um hectare de Eucaliptus grandis W. Hill ex Maidem e
90 hectares de Eucalyptus viminalis Labill, ambos com um ano
e sete meses de idade, no município de Irani-SC. Este ataque
provavelmente tenha ocorrido devido ao fato de que para a implantação deste reflorestamento foi eliminada a vegetação nati
va, que possivelmente abrigava esta espécie de Lepidoptera.

S. eridania é uma espécie polífaga, porém bracatinga, que pertence à família Leguminosae, não era incluída até então em

sua lista de hospedeiros e com referência a eucalipto somente uma referência foi citada. Por se alimentar das folhas, em bracatinga e eucalipto seus danos são indiretos pois destas espécies florestais o principal produto é a madeira. No entanto é comprovado que a redução da área fotossintética pelo consumo das folhas reduz o crescimento das plantas e a produção é afetada a longo prazo.

Tendo em vista os danos causados e a importância destas espécies florestais como fonte energética alternativa para o Brasil, foi proposto o presente trabalho, com o objetivo de avaliar a capacidade de desenvolvimento e reprodução de S. eridania nestes hospedeiros.

Foram desenvolvidos experimentos de laboratório compa - rando-se ciclo evolutivo, sobrevivência e reprodução sobre folhas de bracatinga e eucalipto em relação a folhas de batata doce, (Ipomoea batatas Poir), hospedeiro tradicional de S.eridania. Realizou-se ainda um estudo de nutrição quantitativa com bracatinga e batata doce e avaliou-se a influência da tem peratura no ciclo evolutivo, em bracatinga, procedendo-se ao 'mapeamento da espécie no Estado do Paraná, em função de suas 'exigências térmicas.

A presente pesquisa faz parte do projeto "Identificação, levantamento de danos e controle de pragas de essências flo - restais" integrante do Programa Nacional de Pesquisa Flores - tal, convênio Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA)/Instituto Brasileiro de Desenvolvimento Florestal (IBDF).

## 2 REVISÃO BIBLIOGRÁFICA

# 2.1. CICLO DE VIDA

Embora Spodoptera eridania apresente uma distribuição geográfica e uma lista de hospedeiros relativamente ampla, tanto no Brasil (SILVA et al.,1968) como no exterior (SOO HOO & FRAENKEL, 1966; SCRIBER & FEENY, 1979) pouco se conhece a respeito de seu ciclo de vida.

A maioria dos trabalhos relacionados ao assunto foram feitos no exterior, e no Brasil apenas MARQUES (1932), PARRA et al. (1977) e CRUZ & FOERSTER (1986) realizaram estudos sobre os diferentes parâmetros de crescimento, reprodução e longevidade de S. eridania, utilizando como substrato alimentar folhas de batata doce, soja e algodoeiro, e soja, respectivamente.

Nos Estados Unidos MAYER & BABERS (1944) estudaram o ciclo evolutivo e a razão de crescimento desta espécie, alimentada com folhas de nabo e couve. SOO HOO & FRAENKEL (1964), REDFERN (1967,a) e REDFERN & RAULSTON(1970) utilizaram S. eridania para investigar técnicas de criação em dietas naturais e artificiais para o emprego de larvas em experimentos com inseticidas, obtendo desta forma dados sobre o ciclo de vida da espécie. REDFERN (1967,b) determinou o número de instares larvais e a razão de crescimento de S. eridania em dieta artificial.

## 2.2. NUTRIÇÃO

Apesar do significativo número de pesquisas sobre nutri-

ção em diversas espécies de insetos, foi somente a partir do trabalho de WALDBAUER (1968) que tornaram-se possíveis compa-rações entre o desempenho alimentar de insetos, através da padronização dos índices nutricionais, estabelecida por este autor.

SCRIBER & SLANSKY JR. (1981) efetuaram uma revisão do assunto, enfatizando os aspectos ecológicos da nutrição propondo pequenas modificações na terminologia dos índices de WALDBAUER (1968).

Posteriormente SLANSKY JR. & SCRIBER (1982) apresentaram uma lista de trabalhos sobre nutrição de artrópodos, princi - palmente insetos, sumarizando os dados obtidos para os principais indices nutricionais das várias espécies de diferentes ordens.

Como resultado dos avanços neste campo, estudos nutricionais têm levado em consideração diferentes fatores, tanto bióticos como abióticos cujo objetivo é contribuir para a elucidação das complexas relações entre insetos e suas plantas hospedeiras. Assim SCRIBER & FEENY (1979) compararam as taxas de crescimento de diversos lepidópteros em relação ao tipo de vegetação consumida, herbáceas, arbustiva ou arbórea, relacionando o desempenho dos insetos com os teores de água e nitrogênio contidos em várias espécies de plantas destas categorias de vegetais. SCRIBER & SLANSKY JR. (1981) discutiram fatores pertinentes ao inseto e suas implicações na nutrição, desta cando a importância do instar estudado e a duração do período de alimentação nas avaliações dos índices nutricionais.

Experimentos sobre nutrição de insetos tem contribuído nos campos da biologia (CROCOMO & PARRA, 1979), ecologia (MU -

KERJI & GUPPY, 1970; AL-ZUBAIDI & CAPINERA, 1984; LINCOLN et al., 1984), fisiologia (REYNOLDS & NOTTINGHAM, 1985), resistência de plantas a insetos (SCRIBER, 1979; MANUWOTO & SCRIBER, 1982; VENDRAMIM et al., 1983), preferência alimentar (BAILEY, 1976; GUPTA & MALEYVAR, 1981; SCRIBER, 1981; CROCOMO & PARRA, 1985) e adaptação a novas plantas hospedeiras (KOGAN & COPE, 1974; KHALSA et al., 1979; DUODU & BINEY, 1981; GRABSTEIN & SCRIBER, 1982).

Uma revisão aprofundada dos vários enfoques das relações entre insetos e plantas hospedeiras foge ao escopo deste trabalho. Os vários enfoques destas relações são abordadas detalha damente em DETHIER (1954), JERMY (1976) e EDWARDS & WRATTEN (1981).

Em vista da amplitude do assunto SCRIBER & SLANSKY JR. (1981) propuseram um campo de estudo específico dentro da nu - trição ao qual denominaram Ecologia Nutricional.

slansky jr (1982) enfatizou a importância deste campo de estudo como um modo de estruturar e sintetizar a pesquisa, nos seus aspectos básicos e aplicados do comportamento de insetos, permitindo uma melhor compreensão da evolução de diferentes estilos de vida.

No Brasil PANIZZI (1986) desenvolveu pesquisas de ecologia nutricional para estudos da alimentação dos percevejos sugadores da soja.

# 2.3. NUTRIÇÃO DE Spodoptera spp.

S. eridania é uma das espécies de Lepidoptera mais estudadas sob o ponto de vista nutricional, sobretudo por ser polífaga e incluir em sua lista de hospedeiros, várias plantas de interesse econômico.

CROWELL (1941) estudou a utilização de substâncias nitrogenadas e carboidratos de folhas de feijão por larvas de quinto e sexto instar de S. eridania, analisando a quantidade destas substâncias contidas no alimento e nas fezes produzidas. Comparou a eficiência de utilização do alimento para conversão em biomassa com os dados obtidos em outras pesquisas com diferen tes espécies de insetos.

SOO HOO & FRAENKEL (1966) estudaram os índices nutricionais para o quinto ínstar de S. eridania, em 18 plantas de 13 diferentes famílias.

SCRIBER (1978) avaliou o consumo, a eficiência de con - versão do alimento assimilado em biomassa e o gasto metabóli- co por larvas de S. eridania alimentadas com dois genótipos de trevo, rico em cianogênio e outro sem cianogênio, de duas idades diferentes (quatro e vinte semanas), comparando os resultados entre os tratamentos.

SCRIBER (1979) determinou alguns parâmetros nutricionais de S. eridania alimentada com folhas de dez variedades de al fafa e quatro espécies de trevo, e comparou-os com os resultados obtidos para outras espécies de Lepidoptera alimentadas com diferentes plantas.

SCRIBER & FEENY (1979) estudaram aspectos da nutrição de Lepidoptera em relação à forma de crescimento das plantas hospedeiras e à especialização alimentar, utilizando S. eri - dania como um representante das espécies polífagas. Discutem a influência dos teores de água e nitrogênio em plantas herbá - ceas, arbustivas e arbóreas, nas taxas de crescimento das larvas. Analisam ainda sua capacidade de adaptação em relação a seus hábitos alimentares, comparando indivíduos especialistas

.e generalistas.

SCRIBER(1981) avaliou o crescimento e o gasto metabólico por larvas de quinto e sexto instar de *S.eridania* alimentadas dentro deste período com três diferentes plantas, alternedamente a cada 24 horas.

MANUWOTO & SCRIBER (1982) mediram o consumo e a utilização de três genótipos de milho com diferentes mecanismos de re
sistência a Ostrinia nubilalis, por larvas de penúltimo ínstar de S. eridania.

SCRIBER(1982) estudou o efeito do alimento fornecido nos primeiros instares sobre o consumo e utilização de alimento de larvas de *S.eridania* nos instares subsequentes.

PARRA & CARVALHO (1984) estudaram a biologia e a nutrição quantitativa de S. frugiperda em meios artificiais compos tos de diferentes variedades de feijão, como fonte protéica.

Outras espécies de *Spodoptera* tem sido utilizadas em 'pesquisas de nutrição, como *S. littoralis* (SOLIMAN *et al.*,1974; DUODU & BINEY, 1981), *S. litura* (BHAT & BHATTACHARYA, 1978), *S. exigua* (AL-ZUBAIDI & CAPINERA, 1984) e *S. frugiperda* (CROCOMO & PARRA, 1985).

#### 2.4. EFEITO DA TEMPERATURA NO DESENVOLVIMENTO

A temperatura desempenha um papel fundamental sobre o desenvolvimento e a sobrevivência dos insetos, afetando seu comportamento e dispersão, bem como vários processos de seu ciclo de vida, tais como, crescimento, reprodução, alimentação e metabolismo (ANDREWARTHA & BIRCH, 1970; WIGGLESWORTH, 1972; MAY, 1979, CHAPMAM, 1982; GORDON, 1984).

situa-se uma faixa de temperatura mais estreita, denominada temperatura ótima, na qual o desenvolvimento é mais rápido, e onde se obtém um maior número de sobreviventes (SILVEIRA NETO et al., 1976; CHAPMAN, 1982).

Segundo MESSENGER (1959) muitos estudos bioclimáticos com insetos têm sido baseados nos limiares de temperatura, cons - tantes térmicas, condições térmicas ótimas, níveis letais de fatores climáticos, entre outros. O mesmo autor enfatiza ainda que o limiar de desenvolvimento e a constante térmica podem ser proveitosos indicadores da distribuição potencial e da abundância de insetos.

Segundo HADDAD & PARRA (1984) o limiar térmico de desenvolvimento, ou temperatura base pode ser determinado por três métodos: o primeiro baseia-se na equação da hipérbole e sua reciproca e alguns dos autores que o utilizaram foram BEAN (1961), MORRIS & FULTON (1970), VANKIRK & ALINIAZEE (1981), FERRAZ (1982) e COSTA (1985); o segundo é o método do coeficiente de variação proposto por ARNOLD (1959), e foi utilizado por SANDERS (1975) e PARRA (1985); o terceiro é o método gráfico, utilizado por THOMAS (1976) para os dados de SANDERS (1975).Os dois primeiros métodos são os mais utilizados e, para um mínimo de quatro temperaturas são considerados equivalentes.

O conceito de constante térmica foi desenvolvido por Simpson (1903) citado por SILVEIRA NETO et al. (1986), partindo da equação da hipérbole retangular de Reaumur (1735) e diz que o produto do tempo de duração de uma fase do desenvolvimento pela temperatura efetiva é uma constante.

Segundo ARNOLD (1959) temperatura efetiva é a diferença entre a temperatura na qual se deu o desenvolvimento e a Segundo ARNOLD (1959) temperatura efetiva é a diferença entre a temperatura na qual se deu o desenvolvimento e a temperatura base, obtida experimentalmente.

Para SILVEIRA NETO et~al. (1976) a unidade graus dia representa o somatório de temperaturas favoráveis aos desenvolvimento 'do inseto durante este período, ou seja, as temperaturas que estiverem acima da temperatura do limiar de desenvolvimento.

As constantes térmicas expressas em graus dia, tamto obtidas através de experimentos de laboratório como a partir de dados de campo vêm sendo utilizadas para prever a época de aparecimento de espécies no campo, como constatado nos trabalhos de ECKENRODE & CHAPMAN 91972), CAMPBEL et al. (1974), SANDERS (1975), ALINIAZEE (1976), FOSTER & TAYLOR (1976), SEVACHERIAN et al. (1977), CHMIEL & WILSON (1979), REISSIG et al. (1979), REGNIERE et al. (1981), VAN KIRK & ALINIAZEE (1981), FERRAZ (1982), MORSE et al. (1984), DRUMOND et al. (1985), GANGAVALLI & ALINIAZEE (1985).

Os cálculos de temperatura base e constantes térmicas são utilizados também para estimar o número de gerações de diferentes espécies em períodos de tempo específicos (MILANEZ et al. 1983; COSTA, 1985; PARRA, 1985) e com estas efetuar mapeamentos da distribuição das espécies em diferentes regiões (COSTA, 1985; PARRA, 1985; SILVEIRA NETO et al., 1986).

## 3 MATERIAL E MÉTODOS

### 3.1. CICLO DE VIDA

Os experimentos foram desenvolvidos no Departamento de Zoologia da Universidade Federal do Paranã, em sala climatizada, regulada em  $25^{\pm}2^{\circ}$ C, UR de  $70^{\pm}10\%$  e fotofase de 14 horas.

# 3.1.1. Criação de Manutenção

A criação de manutenção teve início com adultos de Spodoptera eridania coletados em uma plantação de soja, no municipio da Lapa-PR, e mantidos em frascos de acasalamento, vidro, com 20 cm de altura por 15 cm de diâmetro, revestidos com papel sulfite, que serviu como superfície para oviposição. A alimentação consistiu de solução de mel diluido em 10%, fornecida em pedaços de algodão, colocados sobre tampas plásticas de 2,7 cm de diâmetro por 0,6 cm de altura, no fundo dos frascos. O alimento era renovado diariamente, ocasião em que também eram coletados os ovos. Estes eram depositados em grupos, e as posturas eram recortadas e colocadas em pla cas de Petri de 9,0 cm de diâmetro por 1,5 cm de altura, re vestidas com papel filtro umedecido, onde permaneciam até a eclosão das larvas. A partir destas, iniciou-se o estudo do ciclo de vida de S. eridania, em três dietas.

### 3.1.2. Ciclo de vida

Utilizou-se como dieta larval, folhas de batata doce(Ipo-moea batata») da variedade 98-1, bracatinga (Mimosa scabrella) e eucalipto (Eucalyptus viminalis).

Para a determinação do número e duração dos instares, foram individualizadas 30 larvas neonatas por tratamento, em frascos de criação, de 4,0 cm de diâmetro, por 7,5 cm de altura, revestidos com papel absorvente. Diariamente, durante toda a fase larval, eram fornecidos pedaços de folhas das respecti vas dietas cujas sobras eram retiradas no dia seguinte, jun tamente com as fezes, ocasião em que também verificava-se a presença ou não de exuvias e efetuava-se a coleta das cápsu las cefálicas. Estas foram separadas e medidas em sua maior largura.

Em todos os experimentos a duração da fase de pré-pupa foi incluida na duração do último instar larval.

Em bracatinga e eucalipto larvas criadas individualmente apresentavam altas taxas de mortalidade. Por este motivo, larvas neonatas foram mantidas, em cada dieta, agrupadas até o penúltimo dia do primeiro ínstar, cuja duração já era conhecida de observações preliminares. A partir de então foram isoladas, e criadas como anteriormente citado.

Após a determinação dos sexos, as pupas obtidas perma - neceram nos mesmos frascos de criação, revestidos com papel absorvente umedecido, no interior do qual foi introduzido um pedaço de isopor de 0,5 cm de largura por 5,0 cm de compri - mento, que serviu de suporte para os adultos distenderem as asas por ocasião da emergência.

Para os estudos de fecundidade, viabilidade e longevidade foram formados ll casais para cada dieta, com no máximo um
dia de diferença entre as datas de emergência do macho e da
fêmea. Estes foram mantidos em frascos de acasalamento, como
descrito anteriormente.

Registrou-se para cada casal os períodos de pré-oviposição, oviposição e pós-oviposição, número total de posturas, número de ovos por postura, número de ovos viáveis por postura e a data da morte.

## 3.1.3. Análise Estatística

Os dados obtidos foram submetidos a análise estatística pelo teste t, ao nível de 1% de probabilidade.

# 3.2. NUTRIÇÃO QUANTITATIVA

Os experimentos foram conduzidos em uma câmara incuba - dora "Fanem", modelo 347-G, à temperatura de  $25 \pm 0.5^{\circ}$ C,UR de  $70 \pm 10\%$  e 14 horas de fotoperíodo.

Utilizou-se o método gravimétrico, sendo as pesagens realizadas em uma balança "Sartorius", modelo 2462, com legibilidade de 0,1 mg.

## 3.2.1. Índices e Parâmetros Avaliados

Foram avaliados os seguintes índices e parâmetros nu - tricionais, conforme proposto por WALDBAUER (1968), com as modificações feitas por SCRIBER e SLANSKY JR. (1981):

- Taxa de consumo relativo (RCR)

$$RCR = \frac{I}{\overline{B} \times T}$$

Representa a quantidade de alimento ingerido por miligrama de peso corpóreo do inseto por unidade de tempo, e foi ex pressa em mg/mg/instar.

- Taxa de crescimento relativo (RGR)

$$RGR = \frac{B}{\overline{B} \times T}$$

Representa a relação existente entre o ganho de peso pelo inseto e o seu peso, por unidade de tempo, e foi expressa em mg/mg/instar.

- Taxa metabólica relativa (RMR)

$$RMR = \frac{M}{\overline{B} - T}$$

Representa a quantidade de alimento gasto em metabolismo, por miligrama de peso corpóreo do inseto por unidade de tempo, e foi expressa em mg/mg/instar.

- Digestibilidade aproximada (AD)

$$AD = \frac{I - F}{T} \times 100$$

Representa a quantidade de alimento ingerido, assimilado pelo inseto, e foi expressa em percentagem.

- Eficiência de conversão do alimento ingerido (ECI)

$$ECI = \frac{B}{I - F} \times 100$$

Representa a quantidade do alimento ingerido pelo inseto que é transformado em biomassa, e foi expressa em percentagem.

- Eficiência de conversão do alimento digerido (ECD)

$$ECD = \frac{B}{T} \times 100$$

Representa a quantidade de alimento digerido pelo inseto que é convertida em biomassa, e foi expressa em percentagem.

T = duração do período (dias)

I = peso seco do alimento ingerido durante T

F = peso seco das fezes produzidas durante T

B = ganho de peso seco pelas larvas durante T

B = peso seco médio das larvas durante T

I-F = alimento assimilado

Representa a parcela de I que foi utilizada pelo inseto para conversão em biomassa e para o metabolismo.

M = alimento metabolizado

Representa a parte do alimento assimilado que foi uti - lizado na forma de energia para o metabolismo.

Avaliou-se o consumo e a utilização de folhas de batata doce, variedade 98-1 e de bracatinga, sendo individualizadas 25 e 29 larvas respectivamente, em frascos de criação como os utilizados nos estudos do ciclo de vida.

As folhas de batata doce foram fornecidas na forma de círculos de 2,54 cm<sup>2</sup> de área, cortados com um vasador metálico. A bracatinga foi fornecida na forma de folíolos inteiros.

Diariamente foi renovado o alimento e computado o peso fresco das fezes produzidas, das sobras de alimento e das larvas, a partir do primeiro dia do segundo instar até o último dia da fase larval. Estes mesmos itens foram obtidos em peso seco, sendo que as fezes e as sobras de alimento, após terem sido coletadas, separadamente e pesadas (peso fresco), foram colocadas em frascos de criação, e levadas a estufa, a 75°C por 24 horas. Após este período, os frascos eram levados a um dessecador, para esfriarem por uma hora, e em seguida os pesos eram avaliados.

O peso seco do alimento fornecido, para batata doce, foi estimado pela multiplicação do número de círculos oferecidos a cada larva pelo peso seco médio de um círculo de folha, obtido através da média do peso seco de 20 círculos.

Por tratar-se a bracatinga de uma planta com folhas compostas, o peso seco do alimento fornecido foi determinado da seguinte forma: os folíolos que as compõem foram retirados aos pares, sendo que um deles era pesado para se conhecer o peso fresco, e oferecido à larva, e o outro era também pesado e levado à estufa para secar, da mesma forma como as fezes e as sobras de alimento, constituindo portanto uma alíquota. Desta forma obtinha-se o peso seco do alimento fornecido pela se guinte formula (CROCOMO & PARRA, 1985):

$$PSF = \frac{PFF \times PSA}{PFA}$$

onde:

PSF = peso seco do alimento fornecido

PFF = peso fresco do alimento fornecido

PSA = peso seco da alíquota

PFA = peso fresco da alíquota

Obteve-se o peso seco do alimento ingerido pela diferença entre o peso seco do alimento fornecido e o peso seco da sobra de alimento.

A quantidade de alimento fornecido a cada larva, diariamente, foi determinada em função do tamanho das mesmas, de modo que sempre houvesse sobra.

Para maior precisão, variações no peso seco das larvas foram determinadas em cada instar, 24 horas após constatadas as mudas. Para cada instar, foram separadas 10 larvas, pesa - das, mortas por congelamento e levadas a estufa, por 24 horas, a 75°C. Em seguida foram levadas a um dessecador onde permaneceram por uma hora para esfriarem e após os pesos foram ava - liados. O peso seco das larvas, em cada instar foi repre - sentado pela média do peso seco das dez larvas.

Os registros diários de consumo de alimento (I), produ - ção de fezes (F), ganho de peso (B), alimento metabolizado (M), alimento assimilado (I-F) e peso médio  $(\overline{B})$ , em miligramas de matéria seca, foram agrupados por instar, bem como para o periodo larval. Os valores médios de alimento ingerido foram transformados em percentagem, em função do total dos instares.

Os índices nutricionais relativos a cada ínstar foram calculados com base nos valores dos parâmetros anteriormente citados, para cada larva, individualmente.

# 3.2.2. Análise Estatística

Comparações estatísticas entre as dietas foram feitas pelo teste t ao nível de 1% de probabilidade.

# 3.3. EFEITO DA TEMPERATURA NO CICLO EVOLUTIVO

Estudou-se o efeito de quatro temperaturas na duração de cada fase do ciclo evolutivo de *S. enidania* em folhas de bra - catinga, sendo os experimentos conduzidos em câmaras incubadoras "Fanem", Modelo 347-G, a 17,20,25 e 30 ± 0,5°C. A umidade relativa foi variável no interior de cada câmara e para se obter uma constância entre os tratamentos manteve-se a umidade relativa dentro dos frascos de todos os tratamentos próxima à saturação. O fotoperíodo foi de 14 horas.

Posturas obtidas em temperatura ambiente de 23 <sup>±</sup> 2°C foram transferidos na manhã seguinte à oviposição para as diferentes temperaturas e acompanhadas como descrito no ítem 3.1.2

Determinou-se a duração dos períodos de incubação, lar - val e pupal e do ciclo evolutivo, e o peso pupal em cada tem - peratura.

# 3.3.1. Limiar de Temperatura Inferior

Estimou-se o limiar de temperatura inferior para cada fase do ciclo evolutivo de *S. eridania* através do modelo de regressão linear.

As curvas de desenvolvimento de cada fase, nas quatro temperaturas foram linearizadas plotando-se em um gráfico a percentagem de desenvolvimento diário contra as temperaturas. A percentagem de desenvolvimento diário, ou velocidade de de senvolvimento, foi obtida multiplicando-se a recíproca do de senvolvimento (1/D) por 100. As retas obtidas foram prolonga das até a abscissa e o ponto onde esta foi interceptada indi cou o limiar de desenvolvimento, ou temperatura base. Este va-

lor também pode ser calculado com base nos valores de a (coeficiente linear) e b (coeficiente angular) da equação de regres - são linear (y = a + bx) sendo a temperatura base, segundo HAD - DAD & PARRA (1984): Tb =  $-\frac{a}{b}$  OC

Para verificar a consistência dos dados aplicou-se o teste  ${\tt X}^2$  entre os valores observados e os estimados pela equação de regressão linear.

#### 3.3.2. Constante Térmica

Com base no limiar de temperatura inferior calculou- se a constante térmica, para cada fase do ciclo evolutivo, usan- do a equação de Reaumur (1735) citada por SILVEIRA NETO et  $a\ell$ . (1976) que é a seguinte:

$$K = y(t - a)$$

onde:

K = constante térmica (expressa em graus dia, OD)

Y = tempo requerido para completar o desenvolvimento(dias)

t = temperatura ambiente, ou de incubação (OC)

a = temperatura do limiar de desenvolvimento (<sup>O</sup>C)

(t-a) = temperatura efetiva

A constante térmica para cada fase do desenvolvimento foi representada pela média das constantes térmicas das quatro temperaturas estudadas.

# 3.3.3. Número de Gerações Anuais

O número de gerações anuais foi estimado com base no número de dias necessários para completar cada fase de desenvolvimento, utilizando a seguinte fórmula, modificada da equação citada por ANDREWARTHA & BIRCH (1970):

$$yi = \frac{Ki}{xi-ai}$$

onde:

yi = número de dias necessários para completar cada fase de desenvolvimento

Ki = constante térmica relativa a cada fase (OC)

xi = temperatura média anual

ai = limiar de temperatura inferior relativo a cada es tágio (OC)

Determinou-se o número de gerações anuais de S. erida - nia relativo a cada temperatura média anual dividindo-se 365 pela somatória dos dias necessários para o desenvolvimento dos diferentes estágios.

#### 3.3.4. Mapeamento

O mapeamento foi feito com base em um mapa de regiões bioclimáticas do Estado do Paraná (EMBRAPA-CNPF,1985) onde foram delimitadas as áreas potenciais de desenvolvimento de S. eridania, segundo as temperaturas médias anuais.

Os dados referentes ao número de gerações anuais foram transferidos para o mapa, e localizados os principais municípios onde a bracatinga é explorada economicamente no Estado do Paraná.

# 3.3.5. Análise Estatística

Os dados referentes à duração média das diferentes fases do ciclo evolutivo e o peso das pupas, nas quatro temperaturas foram submetidas a análise de variância, por comparação múltipla entre pares de médias de amostras com tamanhos diferentes pelo teste GT-2 (SOKAL & ROHLF, 1981).

## 4 RESULTADOS E DISCUSSÃO

Larvas que foram mantidas em folhas de batata doceiniciaram o processo de alimentação logo após a individualização nos frascos, enquanto que as larvas que seguiram o mesmo procedimento em folhas de bracatinga se locomoviam incessantemente sobre o alimento e as paredes do frasco, morrendo sem
se alimentar. No entanto, quando todas as larvas da postura
foram mantidas em um mesmo recipiente, com bracatinga, a mor talidade foi menor, permitindo a individualização das larvas
com sucesso, ainda antes de completarem o primeiro instar. Iwao
(1962) citado por ToJO et al. (1985) constatou o mesmo fenômeno com larvas de Leucania separata e Spodoptera litura, ob tendo sobrevivência apenas quando as larvas eram mantidas
agrupadas.

Em eucalipto foram feitas inúmeras tentativas para a obtenção de um número satisfatório de larvas para o estudo. Das várias tentativas realizadas nenhuma permitiu a sobrevi - vência além de um pequeno número de larvas até o terceiro instar. Nesta dieta os exemplares foram mantidos agregados, isolados, com folhas isoladas ou aderidas aos ramos, inteiras ou em pedaços. As larvas foram ainda criadas passando por um, dois ou três instares em batata doce ou bracatinga e posteriormente transferidas para eucalipto sem que se conseguisse a sobrevivência dos exemplares. É possível que a nível de campo tenha ocorrido a seleção de uma raça fisiológica de S. enidania já adaptada a este alimento, como postulado por DETHIER

(1954) através do estabelecimento de novos hábitos alimentares pela introdução de um fator seletivo, enquanto que os exemplares utilizados nesta pesquisa, provenientes de um local e ecossistema diferente, provavelmente não tenham adquirido tal capacidade. Alternativamente caso a ocorrência desta espécie em eucalipto seja um processo esporádico sem um maior aprofunda mento na relação com o novo hospedeiro, os resultados demons traram que S. eridania possui maior capacidade de adaptação a bracatinga em relação a eucalipto.

As observações contrastantes entre a constatação do ataque no campo e o insucesso no crescimento e reprodução em eu calipto em condições de laboratório, impedem considerações a respeito da influência de aleloquímicos na aceitação ou rejeição de eucalipto por S. exidania.

#### 4.1. CICLO DE VIDA

### 4.1.1. Ovo

Spodoptera eridania realiza as posturas em grupos, raramente formando mais de uma massa por data de postura, ou mais de uma camada de ovos, de coloração verde clara, que permane - cem aderidas à superfície de oviposição, cobertos por uma ca - mada de espessura variável de escamas do corpo da fêmea. A co - loração dos ovos vai mudando, tornando-se inicialmente cinza e passando a preto com a aproximação da data de eclosão.

A 25°C e 14 horas e fotoperíodo, o período de incubação foi de quatro dias, tanto para ovos provenientes de insetos

criados em bracatinga como em batata doce.PARRA et al. (1977) observaram diferenças no período de incubação, comparando também duas dietas, sendo ambas inferiores às obtidas neste trabalho, fato este explicado pela maior temperatura empregada naquele estudo. REDFERN (1967,a) também constatou menor duração para este período, embora sem citar as condições em que foram rea - lizados os experimentos, o mesmo ocorrendo com MARQUES (1932) que obteve um período de incubação correspondente a 12 dias.

#### 4.1.2. Larva

Larvas alimentadas com folhas de batata doce passaram por seis instares enquanto que as alimentadas com folhas de bracatinga apresentaram sete instares em 100% dos exemplares (Tabela 1).

TABELA 1. DURAÇÃO DOS ÍNSTARES, LARGURA DE CÁPSULAS CEFÁLICAS E RAZÃO DE CRESCIMENTO DE Spodoptera eridania EM BATATA DOCE E BRACATINGA Temperatura 25  $^{\pm}$  2°C, UR de 70  $^{\pm}$  10% E FOTOFASE DE 14 HORAS.

| ВАТА                              | TA DOCE                              |                         | BRACATINGA                                             |                                    |
|-----------------------------------|--------------------------------------|-------------------------|--------------------------------------------------------|------------------------------------|
| Duração<br>(dias)                 | Largura das<br>cápsulas<br>cefálicas | Razão de<br>Crescimento | Duração Largura da<br>(dias) Cápsulas<br>Cefálicas     | s Razão<br>de<br>Cres -<br>cimento |
| $(\bar{X}^{\pm} E.P.)$            | (mm)                                 |                         | (X ± E.P.) (mm)                                        | CIMETICO                           |
| I 3,10 <sup>+</sup> 0,06a         | 0,32a                                | 1 <b>,</b> 56           | 6,41 <sup>±</sup> 0,25b 0,32a                          | 1,28                               |
| II $2,00^{+}0,00a$                | 0 <b>,</b> 50a                       | 1,66                    | 2,96 <sup>+</sup> 0,06b 0,41b                          | 1,44                               |
| III 2,03 <sup>+</sup> 0,08a       | 0,83a                                | 1,65                    | 2,59 <sup>+</sup> 0,11b 0,59b                          | 1,54                               |
| IV $2,60^{+}0,10a$                | 1,37a                                | 1,34                    | 3,44 <sup>+</sup> 0,10b 0,91b                          | 1,43                               |
| V 2,50 <sup>±</sup> 0,09a         | 1,84a                                | 1,0.                    | $4,44^{+}_{-0},13b$ 1,30b                              | 1,47                               |
| VI 5,90 <sup>±</sup> 0,16a<br>VII |                                      |                         | 4,24 <sup>±</sup> 0,13b 1,91<br>8,28 <sup>±</sup> 0,17 |                                    |

<sup>\*</sup>Médias seguidas de diferentes letras no sentido horizontal (para colunas equivalentes) diferem estatísticamente pelo teste t a nivel de 1% de probabilidade.

 $<sup>(\</sup>bar{X} \stackrel{\pm}{-} E.P.) = M\acute{e}dia mais ou menos Erro Padrão da Média.$ 

A duração dos instares mostrou diferença significativa entre as dietas para todos os instares (1º instar t55 = 52,63; 2º instar t55 = 15,59; 3º instar t55 = 4,26; 4º instar t55 = 5,90; 5º instar t55 = 12,08; 6º instar t55 = 7,51).

A largura das cápsulas cefálicas foi significativamente maior para batata doce em todos os instares, exceto o primeiro (Tabela 1).

A média da razão de crescimento foi de 1,6 para batata doce e 1,4 para bracatinga, estando estes valores dentro dos limites estabelecidos por DYAR(1890). Razão de crescimento idêntica à obtida com batata doce foi observada por MAYER & BABERS (1944) com folhas de nabo e REDFERN (1967,b) com dieta artificial.

Pela tabela 2 observa-se que houve um alongamento de cerca de 76,72% da fase larval em bracatinga, em relação a batata doce, havendo diferença significativa entre elas (t53 = 11,13).

TABELA 2. DURAÇÃO E VIABILIDADE DA FASE LARVAL DE Spodoptera eridania EM BATATA DOCE E BRACATINGA. TEMPE RATURA DE  $25^{+}$   $2^{\circ}$ C UR de  $70^{+}$  10% E FOTOFASE DE 14 HORAS.

|             | Duração                  | Variação | Viabilidade |
|-------------|--------------------------|----------|-------------|
|             | (dias)                   | (dias)   | (%)         |
| Batata doce | 18,13 <sup>±</sup> 0,16a | 17-20    | 100         |
| Bracatinga  | $32,04 \pm 0,50b$        | 26-37    | 83,3        |

<sup>\*</sup>Médias seguidas de diferentes letras, no sentido vertical, diferem estatisticamente pelo teste t a nível de 1% de probabilidade.

PARRA et al.(1977) também verificaram a ocorrência de um instar adicional, mas somente em 20% dos exemplares, e um alongamento na duração da fase larval de S. eridania em soja, em relação a algodoeiro, cujo valor (16,58 dias) se aproxima do obtido neste trabalho, com batata doce (18,13 dias). Esta diferença pode ser explicada pela maior temperatura utilizada por PARRA et al.(1977). Outros autores apresentam durações de fase larval de S. eridania variando entre 16 e 28 dias (MAR QUES, 1932; SOO HOO & FRAENKEL, 1964), resultantes do uso de dietas ou de condições ambientais diferentes.

### 4.1.3. Pupa

Os dados referentes à duração do período pupal, viabilidade e peso das pupas se encontram na Tabela 3.

Considerando-se machos e fêmeas em conjunto, constatou-se pequena diferença porém significativa (t53 = 13,09) na du -ração do período pupal dos exemplares criados nas duas dietas, sendo maior para bracatinga. Diferença estatística foi obser -vada também quando considerados os sexos separadamente entre dietas (t25 = 7,75 para machos e t26 = 12,96 para fêmeas), com valores significativamente maiores para bracatinga, em ambos os casos. Comparando-se os sexos para uma mesma dieta, foi observada diferença significativa em batata doce (t28 = 13,92) mas não em bracatinga (t23 = 0,40) (Tabela 3).

TABELA 3. DURAÇÃO, VIABILIDADE E PESO DE PUPAS DE Spodoptera eridania EM BATATA DOCE E BRACATINGA. TEMPERATURA DE  $25 \pm 2^{\circ}$ C, UR DE  $70 \pm 10\%$  E FOTOPERÍODO DE 14 HORAS.

|                |            | BATATA DOCE                   | BRACATINGA                    |
|----------------|------------|-------------------------------|-------------------------------|
| Duração (dias) | ) <b>ರ</b> | $10,00 \pm 0,00$ aA           | 11,86 <sup>+</sup> 0,23 bA    |
|                | Q          | $9,06 \pm 0,06 \text{ aB}$    | $12,00 \pm 0,27 \text{ bA}$   |
| x              | (đ e Q )   | 9,47 <sup>±</sup> 0,09 a      | $11,92 \pm 0,17 b$            |
| Viabilidade %  |            | 100                           | 100                           |
| Peso (mg)      | ď          | 237,88 <sup>+</sup> 7,19 a A  | 215,66 <sup>+</sup> 4,82 b A  |
|                | Q          | $309,91 \pm 6,81 \text{ a B}$ | $237,13 \pm 5,27 \text{ b B}$ |
| <u>x</u>       | (đe Q)     | 278,70 <sup>+</sup> 8,18 a    | 225,10 <sup>+</sup> 4,08 b    |

<sup>\*</sup> Médias seguidas de diferentes letras diferem estatisticamente pelo teste t a nível de 1% de probabilidade. (Letras mi núsculas, sentido horizontal e letras maiúsculas, sentido vertical).

A viabilidade pupal foi igual a 100% nas duas dietas. PARRA et  $a\ell$ . (1977) observaram uma viabilidade pupal superior quando as lagartas foram criadas em folhas de algodoeiro.

O peso médio das pupas foi sempre significativamente superior em batata doce, tanto para os sexos computados juntos (t53 = 197,92) como separados (t25 = 5,01 para machos e t26 = 7,71 para fêmeas). As fêmeas apresentaram peso significativamente maior nas duas dietas (t28 = 7,48 para batata doce e t23 = 3,02 para bracatinga) (Tabela 3). PARRA et al. (1977) obtiveram resultados semelhantes, para os sexos, e pesos maio res em algodoeiro do que em soja.

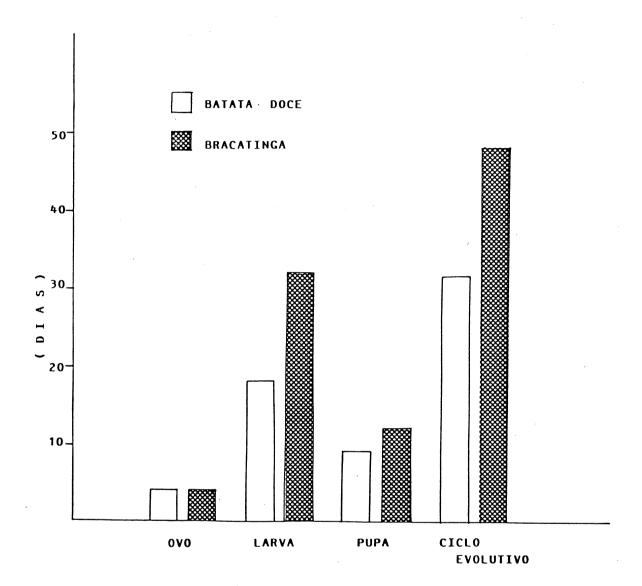



FIGURA 1. DURAÇÃO DAS FASES DO CICLO EVOLUTIVO DE Spodoptera eridania (DIAS), EM BATATA DOCE E BRACATINGA. TEMPERATURA 25  $^{\pm}$  2°C, UR DE 70  $^{\pm}$  10% E FOTOFASE DE 14 HORAS.

## 4.1.4. Ciclo Evolutivo

A duração do ciclo evolutivo, compreendido entre a postura e a emergência dos adultos foi significativamente maior em bracatinga (t53 = 37,12) resultando numa duração cerca de 52,91% mais longa que em batata doce (Tabela 4, Fig.1).

TABELA 4. DURAÇÃO DAS FASES DO CICLO EVOLUTIVO DE Spodoptera eridania (DIAS), EM BATATA DOCE E BRACATINGA. TEMPERATURA  $25^{+}$   $2^{\circ}$ C, UR DE  $70^{-}$  10% E FOTOFASE DE 14 HORAS.

|                 | BATATA DOCE                     | BRACATINGA                |
|-----------------|---------------------------------|---------------------------|
| Ovo             | 4,00 <sup>+</sup> 0,000 a       | 4,00 <sup>±</sup> 0,000 a |
| Larva           | 18,13 <sup>+</sup> 0,164 a      | $32,40 \pm 0,503 b$       |
| Pupa            | 9,47 <sup>±</sup> 0,092 a       | $11,92 \pm 0,172 b$       |
| Ciclo Evolutivo | $31,60 \stackrel{+}{=} 0,176 a$ | $48,32 \pm 0,446 b$       |

<sup>\*</sup> Médias seguidas de diferentes letras, no sentido horizontal diferem estatísticamente pelo teste t a nível de 1% de probabilidade.

Esta diferença se deve em maior parte à duração mais longa da fase larval em bracatinga, tendo em vista a presença de um instar adicional, nesta dieta.

#### 4.1.5. Adulto

Não houve diferença significativa entre os períodos de pré e pos-oviposição de fêmeas provenientes de larvas criadas nas duas dietas, porém o período de oviposição foi significativamente superior em bracatinga (t20 = 3,92) (Tabela 5).

Em ambas as dietas os machos tiveram uma longevidade significativamente maior do que a das fêmeas (t20 = 4,24 em batata doce e t20 = 3,01 em bracatinga). Não houve diferença significativa para a longevidade de adultos, tanto considerados juntos (t42 = 1,89) como separados (t20 = 1,09 para machos e t20 = 2,54 para fêmeas) entre as dietas (Tabela 5).

A capacidade média de postura para fêmeas provenientes de criação com batata doce foi cerca de seis vezes superior ao observado por MARQUES (1932) neste mesmo substrato alimentar, sem contudo diferir significativamente do obtido para braca tinga (t20 = 0,50) (Tabela 6). PARRA et al.(1977) observaram uma capacidade de postura consideravelmente maior em algodoeiro do que em soja, e superior também ao obtido neste trabalho, com batata doce e bracatinga.

A média de ovos por postura foi superior para batata doce, porém não verificou-se diferença significativa em relação a bracatinga (t20 = 1,94) (Tabela 6).

A viabilidade média dos ovos tendeu a ser superior em bra catinga mas não significativamente diferente de batata doce (t20 = 0,20) (Tabela 6), PARRA (1977) obtiveram viabilidade consideravelmente mais baixa em soja e algodoeiro, mas as diferenças se devem provavelmente à maior manipulação dos ovos que

TABELA 5. PERÍODOS DE PRÉ-OVIPOSIÇÃO, OVIPOSIÇÃO E PÓS-OVIPOSIÇÃO E LONGEVIDADE (DIAS) DE Spodoptera eridania (O e Q) ALIMENTADOS COM SOLUÇÃO DE MEL A 10%. TEMPERATURA 25 ± 2°C, UR DE 70 ± 10% E FOTOFASE DE 14 HORAS.

|             | Período de<br>Pré-Oviposição | Periodo de Ovi-<br>posição e Varia- | Período de Po<br>Oviposição |                           | gevidade<br>lias)         |
|-------------|------------------------------|-------------------------------------|-----------------------------|---------------------------|---------------------------|
|             | (dias)                       | ção(dias)                           | (dias)                      | ď                         | Q                         |
| Batata Doce | 1,91 <sup>±</sup> 0,25a      | 8,36 <sup>±</sup> 0,43a<br>6-11     | 2,64 <sup>+</sup> 0,39a     | 19,27 <sup>±</sup> 1,53aA | 12,00 <sup>±</sup> 0,80aB |
| Bracatinga  | 1,18 <sup>+</sup> 0,12a      | 11,27 <sup>+</sup> 0,61b<br>7-14    | 3,36 <sup>+</sup> 1,09a     | 21,55 <sup>+</sup> 1,42aA | 15,82 <sup>+</sup> 1,28aB |

<sup>\*</sup> Médias seguidas de diferentes letras diferem estatisticamente pelo teste t a nível de 1% de probabilidade. (Letras minúsculas, sentido vertical e letras maiúsculas, sentido ho - rizontal).

TABELA 6. NÚMERO DE OVOS POR POSTURA, TOTAL DE OVOS DEPOSITADOS, TOTAL DE OVOS VIÁVEIS E VIA-BILIDADE (%) DE Spodoptera eridania. TEMPERATURA 25 ± 2°C, UR DE 70 ± 10% E FOTO - FASE DE 14 HORAS.

|             | Número de Ovos<br>Postura  | Total de Ovos<br>Depositados | Total de Ovos<br>Viáveis    | Viabilidade<br>(%)       |
|-------------|----------------------------|------------------------------|-----------------------------|--------------------------|
| Batata Doce | 228,04 <sup>+</sup> 18,31a | 2508,39 <sup>+</sup> 18,31a  | 2289,09 <sup>±</sup> 19,16a | 82,75 <sup>+</sup> 3,90a |
| Bracatinga  | 185,94 <sup>+</sup> 11,88a | 2059,02 <sup>+</sup> 11,80a  | 1940,17 <sup>+</sup> 11,39a | 89,83 <sup>+</sup> 2,71a |

<sup>\*</sup> Médias seguidas de letras iguais não diferem estatisticamente pelo teste t a nível de 1% de probabilidade.

eram obrigados a efetuar.

# 4.2. NUTRIÇÃO QUANTITATIVA

# 4.2.1. Parâmetros Avaliados

Todos os parâmetros avaliados apresentaram tendência crescente, ou seja, aumentaram com a idade das larvas, nas duas dietas (Tabelas 7 a 12 e Figuras 2 a 7).

Considerando-se todo o período larval verifica-se que as larvas alimentadas com folhas de bracatinga apresentaram consumo de alimento (I) e produção de fezes (F) significati - vamente maiores, em comparação às alimentadas com batata doce (t52 = 4,53 para I e t52 = 10,49 para F) (Tabelas 7 e 8). Larvas alimentadas com batata doce apresentaram-se significati - vamente superiores quamto ao ganho de peso (B) (t52 = 4,10), alimento metabolizado (M) (t52 = 3,07) e peso médio ( $\overline{B}$ ) (t52 = 6,00) (Tabelas 9,11e 12). Não foi verificada diferença significativa entre dietas para o alimento assimilado (I-F) (t52 = 2,68) embora o valor numérico tenha sido maior em batata doce (Ta - bela 10).

Em ambas as dietas, mais de 90% do alimento consumido refere-se aos dois últimos instares (Tabela 7), o que foi constatado também em trabalhos semelhantes, com outras espécies de lepidópteros (BAYLEY, 1976; BHAT & BHATTACHARYA, 1978; GUPTA & MALEYVAR, 1981; VENDRAMIM et al., 1983).

Quando os instares são comparados individualmente, observa-se superioridade nos valores obtidos para batata doce, em relação a bracatinga, em todos os parâmetros (Tabelas 7 a

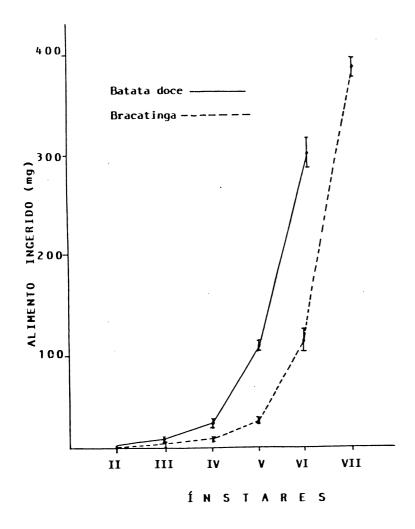



FIGURA 2. CONSUMO MÉDIO (I) DE FOLHAS DE BATATA DOCE E BRACATINGA, EM mg DE MATÉRIA SECA POR ÍNSTAR, POR LARVAS DE Spodoptera eridania TEMPERATURA 25<sup>+</sup>0,5°C, UR DE 70<sup>+</sup>10% E FOTOFASE DE 14 HORAS.

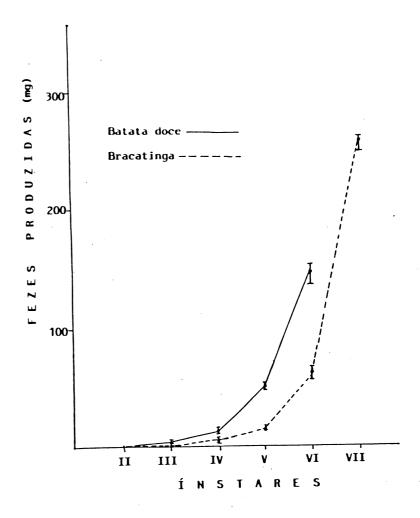



FIGURA 3. PRODUÇÃO MÉDIA DE FEZES (F), EM mg

DE MATÉRIA SECA POR ÍNSTAR, POR

LARVAS DE Spodoptera eridania ALIMENTADAS COM

FOLHAS DE BATATA DOCE E BRACATINGA. TEMPERA
TURA 25<sup>±</sup>0,5° C, UR 70<sup>±</sup>10% E FOTOFASE DE

14 HORAS.

TABELA 7. CONSUMO MÉDIO(I) DE FOLHAS DE BATATA DOCE E BRACATINGA, EM mg DE MATÉRIA SECA POR ÍNSTAR POR LARVAS
DE Spodoptera eridania. TEMPERATURA DE  $25 \pm 0.5^{\circ}$ C;
UR DE  $70 \pm 10\%$  E FOTOFASE DE 14 HORAS.\*

|                | BATATA DOCE                   |                | BRAC                        | CATINGA  |
|----------------|-------------------------------|----------------|-----------------------------|----------|
| Ínstar         | mg*                           | o <sub>o</sub> | *<br>mg                     | %        |
| II             | 2,424 <sup>+</sup> 0,170 a    | a 0,55         | 1,117 <sup>±</sup> 0,057    | b 0,21   |
| III            | $8,412 \pm 0,559$ a           | a 1,92         | 4,631 + 0,224               | b 0,87   |
| IV             | 26,356 <sup>+</sup> 3,698 a   | a 6,01         | 10,152 + 0,692              | 2 b 1,90 |
| V              | 104,768 <sup>+</sup> 4,756 a  | 23,86          | 27,745 <sup>+</sup> 1,670   | b 5,19   |
| VI             | 297,044 <sup>+</sup> 14,830 a | 67,66          | 109,155 + 9,754             | b 20,42  |
| VII            | -                             | -              | 381,610 <sup>±</sup> 10,537 | 71,41    |
| P.**<br>Larval | 439,082 <sup>+</sup> 13,388 a | ı –            | 534,42 <sup>±</sup> 15,75   | 7b -     |

<sup>\*</sup> Médias seguidas de letras diferentes, no sentido horizontal diferem estatisticamente pelo teste "t" ao nível de 1% de probabilidade.

<sup>\*\*</sup> Os valores não correspondem necessariamente à somatória das médias de I de todos os instares.

P.Larval = Periodo Larval.

TABELA 8. PRODUÇÃO MÉDIA DE FEZES (F), EM mg DE MATÉRIA SECA, POR ÍNSTAR, POR LARVAS DE Spodoptera eridania ali – MENTADAS COM FOLHAS DE BATATA DOCE E BRACATINGA. TEMPERATURA DE  $25 \pm 0.5^{\circ}$ C, UR DE  $70 \pm 10\%$  E FOTOFASE DE 14 HORAS.\*

| ÍNSTAR | ВАТ                  | ATA DOC | E | BRACATINGA                      |
|--------|----------------------|---------|---|---------------------------------|
| II     | 0,940 ±              | 0,000   | a | 0,401 <sup>+</sup> 0,036 b      |
| III    | 4,372 ±              | 0,332   | a | $1,716 \pm 0,129 b$             |
| IV     | 13,610 ±             | 2,284   | a | $6,272 \stackrel{+}{-} 0,485 b$ |
| V      | 49,472 <sup>±</sup>  | 2,826   | a | 15,614 <sup>+</sup> 1,104 b     |
| VI     | 146,576 <del>+</del> | 9,269   | a | 60,511 $\frac{+}{2}$ 2,240 b    |
| VII    | -                    |         |   | 255,952 <sup>±</sup> 7,624      |
| P.**   | 213,718 ±            | 7,939   | a | $340,465 \pm 8,880 b$           |
| Larval |                      |         |   |                                 |

<sup>\*</sup> Médias seguidas de diferentes letras no sentido horizontal diferem estatisticamente, pelo teste "t", ao nível de 1% de probabilidade.

<sup>\*\*</sup> Os valores não correspondem necessariamente à somatória das médias de F de todos os instares.

P.Larval = Periodo Larval.

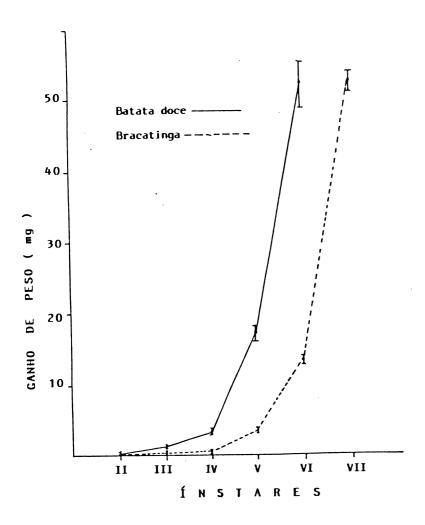



FIGURA 4. GANHO MÉDIO DE PESO, EM mg DE MATÉRIA SECA POR ÍNSTAR, POR LARVAS DE Spodoptera eridania ALIMENTADAS COM FOLHAS DE BATATA DOCE E BRACATINGA. TEMP.  $25^{\pm}0.5^{\circ}$ C, UR DE  $70^{\pm}10\%$  E FOTOFASE DE 14 HORAS.

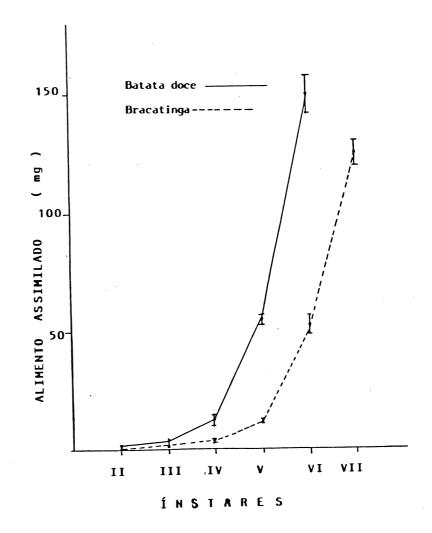



FIGURA 5. ALIMENTO ASSIMILADO (I-F) (VALORES MÉDIOS), EM mg DE MATÈRIA SECA POR ÍNSTAR, POR LARVAS DE Spodoptera eridania alimentadas com folhas de Batata doce E BRACATINGA. TEMP. 25<sup>+</sup>0,5 °C, UR DE 70<sup>+</sup>10% E FOTOFASE DE 14 HORAS.

TABELA 9. GANHO MÉDIO DE PESO (B), EM mg DE MATÉRIA SECA POR ÍNSTAR, POR LARVAS DE Spodoptera eridania ALIMEN-TADAS COM FOLHAS DE BATATA DOCE E BRACATINGA.TEM - PERATURA DE 25 <sup>±</sup> 0,5°C;UR DE 70 <sup>±</sup> 10% E FOTOFASE DE 14 HORAS.\*

| ÍNSTAR | BATATA DOCE                            | BRACATINGA                      |
|--------|----------------------------------------|---------------------------------|
| II     | 0,221 <sup>+</sup> 0,009 a             | 0,088 <sup>±</sup> 0,006 b      |
| III    | $1,156 \stackrel{+}{-} 0,078 a$        | $0,259 \pm 0,025 b$             |
| IV     | 3,316 <sup>+</sup> 0,427 a             | $0,577 \stackrel{+}{-} 0,063 b$ |
| V      | 17,159 <sup>+</sup> 1,048 a            | $3,371 \stackrel{+}{-} 0,228 b$ |
| VI     | 51,855 <sup>+</sup> 3,504 a            | 13,269 <sup>±</sup> 0,617 b     |
| VII    | -                                      | 52,257 <sup>±</sup> 1,375       |
| P.**   | 87,796 <sup>+</sup> 2,743 a            | 73,471 <sup>±</sup> 1,687 b     |
| Larval | 5,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | /3,4/1 - 1,68/ D                |

<sup>\*</sup> Médias seguidas de diferentes letras, no sentido horizontal diferem estatisticamente pelo teste "t" ao nível de 1% de probabilidade.

<sup>\*\*</sup> Os valores não correspondem necessariamente à somatória dos valores de B de todos os instares.

P. Larval = Periodo Larval.

TABELA 10. ALIMENTO ASSIMILADO (I-F) (VALORES MÉDIOS), EM mg

DE MATÉRIA SECA, POR ÍNSTAR, POR LARVAS DE Spo 
doptera eridania, ALIMENTADAS COM FOLHAS DE BA 
TATA DOCE E BRACATINGA. TEMPERATURA DE 25 <sup>+</sup> 0,5°C;

UR DE 70 <sup>+</sup> 10% E FOTOFASE DE 14 HORAS.\*

| ÍNSTAR | BATATA DOCE                  | BRACATINGA                      |
|--------|------------------------------|---------------------------------|
| II     | 1,484 <sup>±</sup> 0,170 a   | 0,716 <sup>±</sup> 0,031 b      |
| III    | $4,040 \pm 0,359 a$          | $2,950 \stackrel{+}{-} 0,113 b$ |
| IV     | 12,824 <sup>+</sup> 2,147 a  | $3,879 \pm 0,322 b$             |
| V      | 53,296 <sup>±</sup> 2,513 a  | 12,131 <sup>±</sup> 0,682 b     |
| VI     | 150,468 <sup>+</sup> 7,835 a | 48,645 <sup>+</sup> 8,963 b     |
| VII    | -                            | 125,662 <sup>+</sup> 5,848      |
| P. **  | 225,364 <sup>+</sup> 8,031 a | 194,289 <sup>+</sup> 10,249 a   |
| Larval | 223,304 - 0,031 a            | 194,209 - 10,249 a              |

<sup>\*</sup> Médias seguidas de letras diferentes, no sentido horizontal, diferem estatisticamente pelo teste "t" ao nível de 1% de probabilidade.

<sup>\*\*</sup> Os valores não correspondem necessariamente à somatória dos valores de I-F de todos os instares.

P.Larval = Período Larval.

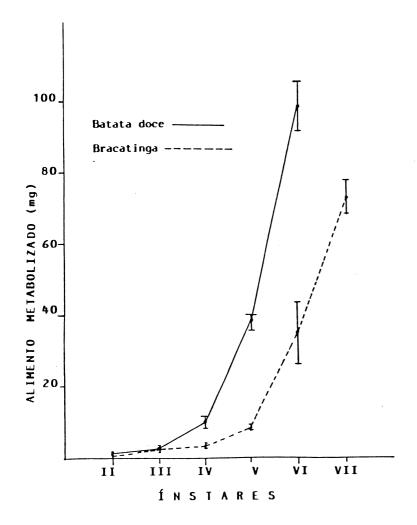



FIGURA 6. ALIMENTO METABOLIZADO (M) (VA-LORES MÉDIOS), EM mg DE MATÉ-RIA SECA POR ÍNSTAR, POR LARVAS DE Spodoptera eridania ALIMENTADAS COM FOLHAS DE BATATA DOCE E BRACATINGA. TEMPERATURA 25<sup>+</sup>0,5°C, UR 70<sup>+</sup>10% E FOTOFASE DE 14 HORAS.

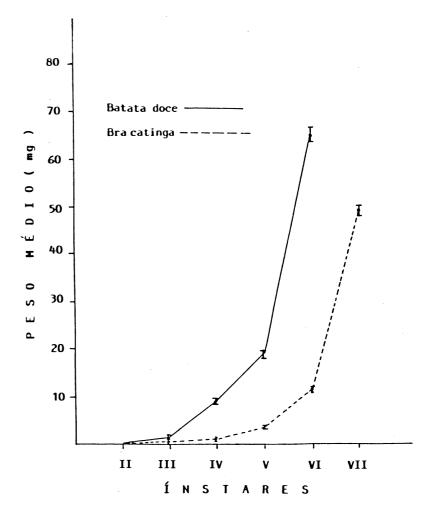



FIGURA 7. PESO MÉDIO  $(\overline{B})$ , EM mg DE MATÉRIA SECA POR ÍNSTAR, DE LARVAS DE Spodoptera eridania ALIMENTADAS COM FOLHAS DE BATATA DOCE E BRACATINGA. TEMP.25 $^+$ 0,5 $^{\circ}$ C, UR 70 $^+$ 10% E FOTOFASE DE 14 HORAS.

TABELA 11. ALIMENTO METABOLIZADO (M) (VALORES MÉDIOS), EM mg DE MATÉRIA SECA POR ÍNSTAR, POR LARVAS DE Spodoptera exidania ALIMENTADOS COM FOLHAS DE BATATA
DOCE E BRACATINGA. TEMPERATURA DE  $25 \stackrel{+}{=} 0,5^{\circ}C$ ; UR
DE  $70 \stackrel{+}{=} 10\%$  E FOTOFASE DE 14 HORAS.\*

|        | BATATA DOCE                      | BRACATINGA                        |
|--------|----------------------------------|-----------------------------------|
| II     | 1,263 <sup>±</sup> 0,170 a       | 0,628 <sup>+</sup> 0,028 b        |
| III    | $2,835 \stackrel{+}{-} 0,329 a$  | $2,690 \pm 0,099 b$               |
| IV     | $9,940 \stackrel{+}{=} 1,909 a$  | $3,303 \pm 0,306 b$               |
| V      | 38,137 $\stackrel{+}{-}$ 2,170 a | $8,760 \stackrel{+}{=} 0,567 b$   |
| VI     | 150,468 <sup>±</sup> 7,835 a     | $35,376 \pm 8,831 b$              |
| VII    | -                                | 73,405 ± 5,258                    |
| P. **  | 137,568 <sup>±</sup> 7,157 a     | $120,819 \stackrel{+}{-} 9,451 b$ |
| Larval | 13/,300 - /,13/ a                | 120,019 - 9,431 D                 |

<sup>\*</sup> Médias seguidas de letras diferentes, no sentido horizontal diferem estatisticamente pelo teste "t" ao nível de 1% de probabilidade.

<sup>\*\*</sup> Os valores não correspondem necessariamente à somatória das médias de M de todos os instares.

P.Larval = Periodo Larval.

TABELA 12. PESO MÉDIO  $(\overline{B})$ , EM mg DE MATÉRIA SECA POR ÍNSTAR, DE LARVAS DE Spodoptera eridania ALIMENTADAS COM FOLHAS DE BATATA DOCE E BRACATINGA. TEMPERATURA DE 25  $\stackrel{+}{=}$  0,5 $^{\circ}$ C,UR DE 70  $\stackrel{+}{=}$  10% E FOTOFASE DE 14 HORAS.

| ÍNSTAR       | BATATA DOCE                      | BRACATINGA                  |
|--------------|----------------------------------|-----------------------------|
| II           | 0,258 <sup>+</sup> 0,005 a       | 0,140 <sup>±</sup> 0,003 b  |
| III          | $1,288 \pm 0,041 a$              | $0,294 \pm 0,017 b$         |
| IV           | 4,154 <sup>±</sup> 0,260 a       | $0,746 \pm 0,039 b$         |
| V            | $18,900 \stackrel{+}{-} 0,741 a$ | $3,647 \pm 0,149 b$         |
| VI           | 65,120 <sup>+</sup> 1,596 a      | $11,257 \pm 0,436 b$        |
| VII          | -                                | 48,950 <sup>+</sup> 1,291   |
| P.<br>Larval | 23,340 $\stackrel{+}{=}$ 0,821 a | 17,595 <sup>+</sup> 0,538 b |

<sup>\*</sup> Médias seguidas de letras diferentes, no sentido horizontal, diferem estatisticamente pelo teste "t" ao nível de 1% de probabilidade.

P. Larval = Periodo Larval.

12 e Figuras 2 a 7). Somente considerando-se o crescimento no sétimo instar, o desempenho relativo ao período larval em bracatinga se aproximou ou ultrapassou o obtido para batata doce.

Os resultados demonstram, que sob o ponto de vista nu - tricional há a necessidade de um instar adicional em bracatinga, para compensar o menor desenvolvimento nos demais instares, em relação a batata doce.

O maior peso corpóreo alcançado em batata doce (Tabela 12), em menor período de alimentação que em bracatinga, com - prova a maior adaptação de S. eridania a esta dieta.

#### 4.2.2. Indices Avaliados

### 4.2.2.1. Taxa de Consumo Relativo (RCR)

De um modo geral, a RCR diminuiu com o desenvolvimento (Tabela 13 e Figura 8a). Em bracatinga, verifica-se que nos três primeiros instares a tendência foi crescente, diminuindo somente a partir deste ponto. O fato de não ser a bracatinga uma dieta preferencial fez com que a quantidade de alimento consumido no segundo instar fosse baixa em relação ao seu peso, demonstrando que a dieta não era bem aceita. O aumento da RCR no terceiro e no quarto instar indica uma melhor adaptação ao alimento, seguindo-se uma gradativa diminuição dos valores a partir de então, a exemplo do observado para batata doce.

A análise estatística demonstrou haver diferença sig nificativa entre dietas, em todos os instares separadamente,
com valores maiores ora para bracatinga, ora para batata

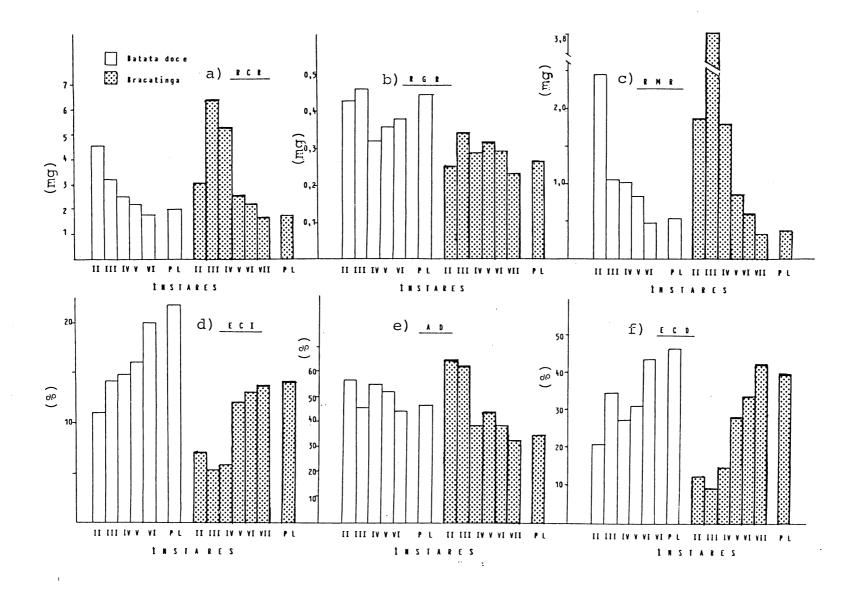



FIGURA 8. ÍNDICES NUTRICIONAIS DE Spodoptera eridania EM BATATA DOCE E BRACATINGA. TEMPERATURA  $25 \pm 0.5^{\circ}$ C, UR DE  $70 \pm 10\%$  E FOTOPERÍODO DE 14 HORAS.

PL = Período larval.

TABELA 13. TAXA DE CONSUMO RELATIVO (RCR), EM mg DE MATÉRIA SECA POR ÍNSTAR, DE LARVAS DE Spodoptera eridania, ALIMENTADAS COM FOLHAS DE BATATA DOCE E BRACATIN-GA. TEMPERATURA DE 25 ± 0,5°C,UR DE 70 ± 10% E FOTOFASE DE 14 HORAS.\*

| BATATA DOCE                | BRACATINGA                                                                                                                                                      |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $4,602 \pm 0,373 a$        | 3,119 <sup>+</sup> 0,112 b                                                                                                                                      |
| 3,166 <sup>+</sup> 0,122 a | $6,396 \pm 0,303 b$                                                                                                                                             |
| $2,528 \pm 0,187 a$        | $5,309 \pm 0,261 b$                                                                                                                                             |
| 2,218 <sup>±</sup> 0,120 a | $2,618 \pm 0,083 b$                                                                                                                                             |
| $1,881 \pm 0,042 a$        | $2,213 \pm 0,043 b$                                                                                                                                             |
| -                          | 1,684 + 0,051                                                                                                                                                   |
| 2 027 + 0 060 2            | 1,836 <sup>±</sup> 0,047 a                                                                                                                                      |
| 2,027 - 0,000 a            | 1,030 - 0,047 a                                                                                                                                                 |
|                            | $4,602 \stackrel{+}{=} 0,373 \text{ a}$ $3,166 \stackrel{+}{=} 0,122 \text{ a}$ $2,528 \stackrel{+}{=} 0,187 \text{ a}$ $2,218 \stackrel{+}{=} 0,120 \text{ a}$ |

<sup>\*</sup> Médias seguidas de diferentes letras, no sentido horizon - tal, diferem estatisticamente, pelo teste "t" ao nível de l% de probabilidade.

P. Larval = Periodo larval.

doce, porém a diferença não foi observada quando considerado todo o período larval (t51 = 2,54) (Tabela 13). Isto indica que o
instar adicional apresentado em bracatinga compensou a baixaRCR
inicial em relação a batata doce, contribuindo para que as diferenças observadas nos instares separadamente fossem anuladas
quando numa visão global.

Segundo BHAT & BHATTACHARYA (1978), o Índice de Consumo, ou Taxa de Consumo Relativo, é governado pela rigidez e con teúdo de água da planta utilizada, e para WALDBAUER (1968) e SCRIBER (1979) o desempenho larval, que inclui a Taxa de Consumo, é proporcional à percentagem de matéria seca do alimento, sendo tanto maior quanto o foi o conteúdo de fibras. Assim sendo, a maior Taxa de Consumo, relativa ao período larval obser vada para bracatinga é justificada, pois esta contém uma per centagem de matéria seca de 34,8% em comparação a 12,41% para batata doce.

# 4.2.2.2. Taxa de Crescimento Relativo (RGR)

S. eridania apresentou uma RGR mais ou menos uniforme durante toda a fase larval, com pequenas variações entre os instares, para uma mesma dieta (Tabela 14 e Figura 8b). Fato semelhante foi observado nos trabalhos de BHAT & BHATTACHARYA (1978), CROCOMO & PARRA (1985) e VENDRAMIM et al. (1983).

A RGR para o período larval foi significativamente maior em batata doce (t51= 10,46) indicando que esta dieta propor - cionou um melhor crescimento do que bracatinga.

O crescimento larval mais lento em bracatinga (período larval mais longo) em parte é explicado pelo fato de ser a bra-

TABELA 14. TAXA DE CRESCIMENTO RELATIVO (RGR) EM mg DE MATÉRIA SECA POR ÍNSTAR, DE LARVAS DE Spodoptera eridania, Alimentadas com folhas de Batata doce e Bracatinga. Temperatura de 25 <sup>±</sup> 0,5°C; ur de 70 <sup>±</sup> 10% e fotofase de 14 horas.\*

|        | BATATA DOCE                     | BRACATINGA                 |
|--------|---------------------------------|----------------------------|
| II     | 0,419 <sup>+</sup> 0,010 a      | $0,250 \pm 0,015 b$        |
| III    | $0,451 \stackrel{+}{-} 0,012 a$ | $0,336 \pm 0,011 b$        |
| IV     | $0,323 \pm 0,019 a$             | 0,286 <sup>+</sup> 0,021 a |
| V      | $0,346 \stackrel{+}{-} 0,019 a$ | $0,318 \pm 0,013 a$        |
| VI     | $0,368 \stackrel{+}{=} 0,014 a$ | $0,288 \pm 0,008 b$        |
| VII    | · _                             | $0,234 \pm 0,011$          |
| Р.     | 0,444 <sup>+</sup> 0,016 a      | $0.258 \pm 0.888 b$        |
| Larval | 0,444 - 0,010 a                 | 0,230 - 0,000 D            |

<sup>\*</sup> Médias seguidas de diferentes letras, no sentido horizontal diferem estatisticamente, pelo teste "t" ao nível de 1% de probabilidade.

P. Larval = Periodo larval.

catinga uma planta arbórea com percentagem de matéria seca foliar superior a batata doce, concordando com FRAENKEL (1953), SOO HOO & FRAENKEL (1965) e SCRIBER & FEENY (1979).

### 4.2.2.3. Taxa Metabólica Relativa (RMR)

A Tabela 15 e a Figura 8c mostram que a tendência da RMR foi decrescente para as duas dietas, ou seja, as larvas gas - taram mais alimento para metabolismo no início da fase larval e menos à medida que se desenvolveram, sendo a mesma tendência observada por CROCOMO & PARRA (1985) em experimento com Spo - doptera frugiperda, alimentando-se de três diferentes gramí - neas.

A comparação dos três primeiros instares, entre dietas, revelou diferenças consideravelmente grandes, porém se comparados os três últimos, as diferenças são bem menores. Isto vem reforçar o fato de que até o quarto instar as larvas não estavam bem adaptadas à bracatinga, sendo a maior parte do alimento ingerido usada para a manutenção da vida.

À alta RMR observada no terceiro instar de bracatinga correspondem baixos valores de ECI e ECD (Tabelas 16 e 18),indicando que neste instar a maior percentagem de bracatinga ingerida pelas larvas, em relação a seu peso, foi gasta em metabolismo e não para conversão em biomassa, compensando desta forma seu baixo desempenho (principalmente baixa RCR) no instar anterior.

Os valores de RMR para o período larval (Tabela 15) foram significativamente maiores para batata doce (t51 = 4,02), embora para cada instar tenham sido maiores em bracatinga. Isto ocorreu porque foi registrada uma baixa RMR em bracatinga

TABELA 15. TAXA METABÓLICA RELATIVA (RMR), EM mg DE MATÉRIA SECA POR ÍNSTAR, DE LARVAS DE Spodoptera erida - nia Alimentadas com folhas de Batata doce e Bra-Catinga. Temperatura de 25 <sup>±</sup> 0,5°C, ur de 70 <sup>±</sup> 10% e fotofase de 14 horas. \*.

|              | BATATA DOCE                     | BRACATINGA                              |
|--------------|---------------------------------|-----------------------------------------|
| II           | 2,459 <sup>+</sup> 0,341 a      | 1,850 <sup>+</sup> 0,126 a              |
| III          | $1,078 \stackrel{+}{-} 0,122 a$ | $3,846 \stackrel{+}{-} 0,190 b$         |
| IV           | $1,033 \pm 0,121 a$             | $1,817 \stackrel{+}{=} 0,167 \text{ b}$ |
| V            | 0,803 <sup>+</sup> 0,055 a      | $0,838 \pm 0,052 a$                     |
| VI           | $0,470 \stackrel{+}{-} 0,023 a$ | $0,577 \pm 0,025 b$                     |
| VII          | -                               | $0,331 \pm 0,022$                       |
| P.<br>Larval | 0,518 <sup>+</sup> 0,024 a      | 0,398 <sup>+</sup> 0,019 b              |

<sup>\*</sup> Médias seguidas de diferentes letras, no sentido horizontal diferem estatisticamente, pelo teste "t" ao nível de 1% de probabilidade.

P. Larval = Periodo Larval.

no instar adicional (Tabela 15), que computado com os demais instares contribuiu para reduzir a RMR do período larval. Além disto, os gastos metabólicos em batata doce devem ser propor - cionalmente maiores, tendo em vista que os indivíduos neste alimento completam o período larval em tempo significativamente menor.

# 4.2.2.4. Eficiência de Conversão do Alimento Ingerido (ECI)

Observa-se para este índice uma tendência crescente nos dois tratamentos (Tabela 16 e Figura 8d), ou seja, de uma ma-neira geral as larvas convertem mais eficientemente o alimento ingerido em matéria do corpo à medida que se desenvolvem. As variações ao longo do período se devem a oscilações de RMR para instares correspondentes, tendo em vista que estes índices são inversamente proporcionais.

Pela análise estatística constatou-se que os valores de ECI para batata doce, foram significativamente superiores aos de bracatinga, tanto para os instares separadamente como para o período larval, o que demonstra que S. enidania tem maior facilidade em converter em biomassa folhas de batata doce do que de bracatinga. Este fato está relacionado ao seu menor conteúdo de matéria seca em relação a bracatinga, característica esta que segundo SCRIBER & FEENY (1979) proporciona maiores indices de ECI e ECD. Resultados semelhantes foram obtidos por WALDBAUER (1964) onde a maior percentagem de matéria seca de Anctium (planta arbórea) em relação a folhas de tomateiro, resultou em valores mais baixos de ECI e ECD, em estudo com Protopance sexta.

TABELA 16. EFICIÊNCIA DE CONVERSÃO DO ALIMENTO INGERIDO (ECI)

EM PERCENTAGEM POR ÍNSTAR, POR LARVAS DE Spodoptera eridania, ALIMENTADAS COM FOLHAS DE BATATA DOCE
E BRACATINGA. TEMPERATURA 25 ± 0,5°C,UR DE 70 ± 10%
E FOTOFASÉ DE 14 HORAS.\*

|        | BATATA DOCE                      | BRACATINGA                  |
|--------|----------------------------------|-----------------------------|
| II     | 10,070 <sup>+</sup> 0,684 a      | $7,773 \pm 0,309 b$         |
| III    | $14,143 \stackrel{+}{-} 0,830 a$ | $5,431 \pm 0,370 b$         |
| IV     | 14,664 <sup>+</sup> 1,375 a      | $5,608 \pm 0,430 b$         |
| V      | 16,643 <sup>+</sup> 1,109 a      | $12,286 \pm 0,452 b$        |
| VI     | $19,669 \pm 0,752 a$             | $13,075 \pm 0,329 b$        |
| VII    | . <del>-</del>                   | 13,793 <sup>±</sup> 0,274   |
| P.     | 21,964 <sup>+</sup> 0,607 a      | 13,986 <sup>±</sup> 0,181 b |
| Larval |                                  |                             |
|        |                                  |                             |

<sup>\*</sup> Médias seguidas de diferentes letras, no sentido horizontal diferem estatisticamente pelo teste "t", ao nível de 1% de probabilidade.

P. Larval = Periodo Larval.

SOO HOO & FRAENKEL (1966) estudaram este indice nutricional, entre outros, para o quinto instar de S. eridania sobre folhas de batata doce e observaram um valor pouco menor ao obtido para este instar no presente trabalho, apesar de naquele estudo a quantidade de alimento ingerido e o ganho de peso terem sido menores, e a percentagem de matéria seca foliar, maior.

# 4.2.2.5. Digestibilidade Aproximada (AD)

A AD apresentou tendência decrescente para ambas as dietas, ao longo do período larval (Tabela 17 e Figura 8e). Se gundo MUKERJI & GUPPY (1970) e KOGAN & COPE (1974), a tendên cia decrescente da AD se deve ao fato das larvas selecionarem nos primeiros instares, os tecidos parenquimatosos, de fácil digestão, e ingerirem de maneira indiscriminada, nos últimos instares as folhas como um todo, incluindo as nervuras e fibras de difícil digestão. Tal comportamento foi também apre sentado por S. eridania neste experimento.

Foi constatada diferença estatística entre dietas, a partir do terceiro instar, sendo a AD relativa ao período larval, significativamente maior para batata doce (t51 = 12,31)(Tabela 17). Os resultados obtidos corroboram as afirmações de WALDBAUER (1964), SOO HOO & FRAENKEL (1966) e SCRIBER & FEENY (1979) de que plantas com menor conteúdo de fibras, como é o caso da batata doce em relação a bracatinga, proporcionam maiores indices de digestibilidade.

Em seu estudo com o quinto instar de S. eridania, SOO HOO & FRAENKEL (1966) obtiveram um valor para AD sensivelmente inferior ao obtido neste trabalho, também utilizando folhas

TABELA 17. DIGESTIBILIDADE APROXIMADA (AD) EM PERCENTAGEM POR ÍNSTAR, DE LARVAS DE Spodoptera eridania ALIMENTA-DAS COM FOLHAS DE BATATA DOCE E BRACATINGA. TEMPE-RATURA 25  $\frac{1}{2}$  0,5°C;UR DE 70  $\frac{1}{2}$  10% E FOTOFASE DE 14 HORAS.\*

|              | BATATA DOCE                      | BRACATINGA                       |
|--------------|----------------------------------|----------------------------------|
| II           | 56,961 <sup>+</sup> 2,916 a      | 65,471 <sup>+</sup> 2,095 a      |
| III          | 46,555 <sup>+</sup> 2,263 a      | $63,270 \stackrel{+}{-} 0,947 b$ |
| IV           | 55,368 <sup>±</sup> 2,699 a      | $38,685 \stackrel{+}{-} 1,768 b$ |
| V            | 52,941 <sup>+</sup> 1,246 a      | $44,147 \stackrel{+}{-} 1,368 b$ |
| VI           | $44,502 \stackrel{+}{-} 0,652 a$ | $38,948 \pm 0,663 b$             |
| VII          | -                                | 33,236 <sup>+</sup> 0,940        |
| P.<br>Larval | 47,606 <sup>+</sup> 0,706 a      | 35,538 <sup>+</sup> 0,678 b      |

<sup>\*</sup> Médias seguidas de diferentes letras, no sentido horizon - tal, diferem estatisticamente pelo teste "t" ao nível de l% de probabilidade.

P.Larval = Periodo Larval.

de batata doce, fato que pode ser explicado visto maior percentagem de matéria seca das folhas utilizadas naquele estudo(16,62%) em relação a este (12,41%). Estas observações vem a confirmar o discutido neste mesmo ítem anteriormente.

### 4.2.2.6. Eficiência de Conversão do Alimento Digerido (ECD)

O alimento digerido foi mais eficientemente convertido em biomassa à medida que se processou o desenvolvimento, em ambas as dietas (Tabela 18 e Figura 8f), sendo a tendência crescente mais nítida em bracatinga.

A análise estatística demonstrou haver diferença significativa entre dietas para todos os instares avaliados (exceto o quinto), bem como para o período larval (t51 = 3,74), sendo os valores sempre maiores para batata doce (Tabela 18).

SOO HOO & FRAENKEL (1966) estudaram a ECD para o 5º instar de S. eridania em batata doce e observaram um valor sensivelmente maior ao obtido nesta pesquisa, embora a percentagem de matéria seca das folhas utilizadas naquele estudo tenham sido maiores do que as deste, o que, segundo SCRIBER & FEENY (1979) provocaria resultados inversos.

À tal superioridade no valor encontrado pode ser atribuído um provável menor gasto metabólico, em relação ao en contrado no presente estudo, porém não referenciado por aqueles autores.

TABELA 18. EFICIÊNCIA DE CONVERSÃO DO ALIMENTO DIGERIDO (ECD)

EM PERCENTAGEM POR ÎNSTAR, POR LARVAS DE Spodoptera eridania ALIMENTADAS COM FOLHAS DE BATATA DOCE
E BRACATINGA. TEMPERATURA DE 25 ±0,5°C;UR DE 70 ±

10% E FOTOFASE DE 14 HORAS. \*

|        | BATATA DOCE                      | BRACATINGA                       |
|--------|----------------------------------|----------------------------------|
| II     | $20,703 \pm 2,590 a$             | $12,377 \stackrel{+}{-} 0,699 b$ |
| III    | $34,688 \pm 3,092 a$             | $8,745 \stackrel{+}{=} 0,655 b$  |
| IV     | 27,726 <sup>+</sup> 2,609 a      | $14,855 \stackrel{+}{-} 1,487 b$ |
| V.     | $31,789 \pm 2,193 a$             | $28,730 \stackrel{+}{-} 1,436 a$ |
| VI     | $44,306 \stackrel{+}{-} 1,702 a$ | 33,875 $\frac{+}{2}$ 1,091 b     |
| VII    | -                                | 42,505 <sup>+</sup> 1,498        |
| P.     | 46,479 <sup>±</sup> 1,596 a      | 39,753 <sup>±</sup> 0,930 b      |
| Iarval | 40,4/9 - 1,390 a                 | 39,733 - 0,930 p                 |
|        |                                  |                                  |

<sup>\*</sup>Médias seguidas de diferentes letras, no sentido horizontal, diferem estatisticamente pelo teste "t" ao nível de 1% de probabilidade.

P. larval = Periodo larval.

Pela análise do conjunto dos resultados pode-se dizer que S. eridania seguiu, nos dois tratamentos, a tendência de desenvolvimento apresentada por outras espécies de lepidopteros, principalmente da família Noctuidae (MUKERJI & GUPPY, 1970; KOGAN & COPE, 1974; BAILEY, 1976; BHAT & BHATTACHARYA, 1978; VENDRAMIM et al., 1983; CROCOMO & PARRA, 1985).

Todos os índices calculados, para ambas as dietas, estão dentro dos limites apurados por SLANSKY JR & SCRIBER tre vários estudos realizados com Lepidoptera. Observando-se os resultados relativos a estes indices nutricionais (Tabelas 13 a 18 e Figura 8) verifica-se a dificuldade inicial de S. eri dania em se adaptar a bracatinga. A partir do quarto apresentou comportamento semelhante ao hospedeiro preferencial, evidenciando que após um período de adaptação, neste caso três instares, S. eridania apresenta uma capacidade de cresci mento e sobrevivência próximos ao observado para batata doce. Tal adaptação no entanto somente é conseguida às custas de instar adicional, o qual compensa de forma satisfatória o baixo desempenho nos primeiros instares. Este fato é comprovado se as comparações entre dietas forem feitas a partir do último instar em cada dieta (6º de batata doce e 7º de bracatinga)onde as diferenças não deixam de existir, mas em termos quanti tativos são bem menores.

# 4.3. EFEITO DA TEMPERATURA NO CICLO EVOLUTIVO

# 4.3.1. Duração das Diferentes Fases

A duração das fases de ovo, larva e pupa e do ciclo evo - lutivo diminuiram com o aumento da temperatura, não se verifi - cando variação no período de incubação entre posturas, dentro de cada temperatura (Tabela 19 e Figuras 9 a 12).

A análise estatística demonstrou haver diferença significativa, ao nível de 1% de probabilidade pelo teste GT-2 na duração de todas as fases do ciclo evolutivo, entre temperaturas (Tabela 19).

A viabilidade larval diminuiu com o aumento da temperatura na faixa de 17 a  $30^{\circ}$  C (Tabela 20).

Mortalidade pupal só foi observada na temperatura de  $30^{\circ}$ C, na ordem de 4,8% (Tabela 20).

O peso pupal foi inversamente proporcional à temperatura, ou seja, à medida que a temperatura aumentou o peso pupal diminuiu, na faixa de 20 e 30°C (Tabela 21 e Figura 13). Não foi verificada diferença significativa para os pesos pupais entre as temperaturas de 17 e 20°C pelo teste GT-2, ao nível de 1% de probabilidade (Tabela 21).

O maior peso pupal atingido nas temperaturas de 17 e 20°C está relacionado à duração da fase larval. Como nestas temperaturas a fase larval foi maior (Tabela 19), as larvas se alimentaram por um período mais longo e portanto atingiram um maior peso.

TABELA 19. DURAÇÃO MÉDIA (DIAS) DAS FASES DE OVO, LARVA, PUPA E DO CICLO EVOLUTIVO DE Spodoptera eridania, EM BRA-CATINGA ÀS TEMPERATURAS DE 17,20,25 e 30  $^{+}$  0,5 $^{\circ}$ C, UR DE 70  $^{+}$  10% E FOTOFASE DE 14 HORAS.\*

| TEMPERA- | ovo                   | OVO LARVA                 |                           | CICLO<br>EVOLUTIVO        |
|----------|-----------------------|---------------------------|---------------------------|---------------------------|
| 17       | 10,00 <u>+</u> 0,00 a | 70,08 <sup>±</sup> 0,52 a | 35,38 <sup>±</sup> 0,36 a | 115,46 <sup>±</sup> 0,60a |
| 20       | 6,00 <u>+</u> 0,00 a  | $40,12 \pm 0,46 b$        | 14,92 <sup>+</sup> 0,26 b | 60,84 <sup>+</sup> 0,46b  |
| 25       | 4,00 <u>+</u> 0,00 a  | 27,80 <sup>+</sup> 0,31 c | 11,45 <sup>+</sup> 0,15 c | 43,25 <sup>±</sup> 0,36c  |
| 30       | 3,00 <u>+</u> 0,00 a  | 23,38 <sup>+</sup> 0,37 d | $7,65 \pm 0,11 d$         | $33,00 \pm 0,37d$         |
|          |                       |                           |                           |                           |

<sup>\*</sup>Médias seguidas de diferentes letras, no sentido vertical,diferem estatisticamente pelo teste GT-2 o nível de 1% de probabilidade.

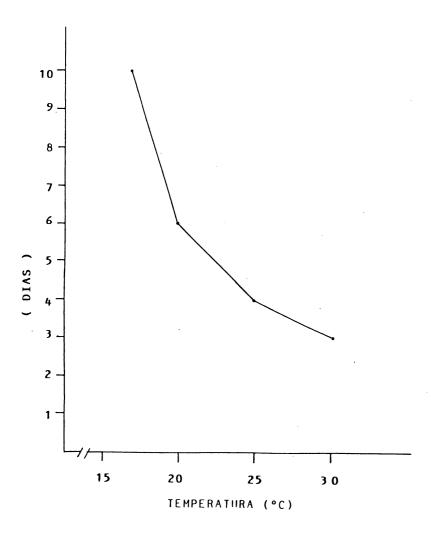



FIGURA 9. DURAÇÃO (DIAS) DA FASE DE OVO DE Spodoptera eridania ,  $\tilde{A}S$  TEMPERATURAS DE 17, 20, 25 e 30 $^{+}$ 0,5 $^{\circ}$ C, UR DE 70 $^{+}$ 10% E FOTOFASE DE 14 HORAS.

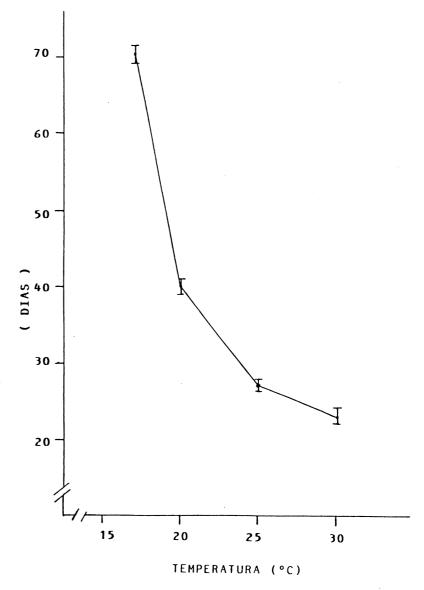



FIGURA 10. DURAÇÃO (DIAS) DA FASE DE LARVA DE Spodoptera eridania,  $\tilde{A}S$  TEMPERATURAS DE 17, 20, 25 e 30  $^{+}$  0,5  $^{\circ}$ C, UR DE 70  $^{+}$  10% E FOTOFASE DE 14 HORAS.

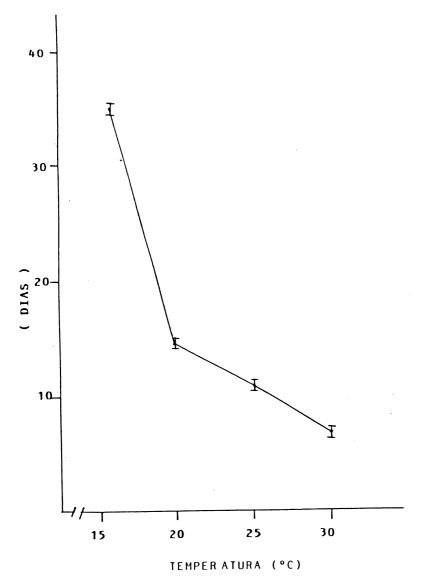



FIGURA 11. DURAÇÃO (DIAS) DA FASE DE PU-PA DE Spodoptera eridania,  $\tilde{A}S$ TEMPERATURAS DE 17, 20, 25 e 30  $^+$  0,5  $^{\rm O}C$ , UR DE 70  $^+$  10% E FOTOFASE DE 14 HORAS.

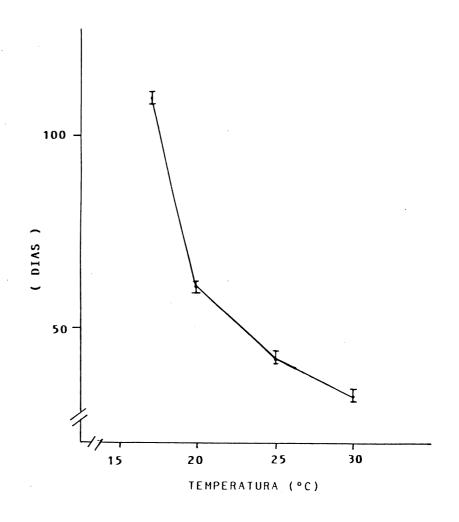



FIGURA 12. DURAÇÃO (DIAS) DO CICLO EVOLUTIVO DE Spodoptera eridania,  $\tilde{A}S$  TEMPERATURAS DE 17, 20, 25 e 30  $^{\pm}$  0,5  $^{\circ}$ C, UR DE 70  $^{\pm}$  10% E FOTOFASE DE 14 HORAS.

A diferença de três graus entre as temperaturas de 17 e  $20^{\circ}$ C exerceu grande influência na duração das fases de ovo, larva e pupa (Tabela 19) porém não foi suficiente para que houvesse diferença na viabilidade larval e pupal e no peso pupal (Tabelas 20 e 21). Provavelmente o peso pupal obtido nes tas temperaturas seja o limite superior para S. exidanía quando criada sobre folhas de bracatinga.

A relação entre a temperatura e o tempo requerido para o desenvolvimento se ajusta a uma hipérbole, em todas as fases do ciclo evolutivo (Figura 14) sendo representada pelas se guintes equações:

Ovo y =  $3275,22 ext{ . } x^{-207}$ Larva y =  $15752,24 ext{ . } x^{-195}$ Pupa y =  $33069 ext{ . } x^{-2,48}$ Ciclo Evolutivo y =  $39524,96 ext{ . } x^{-2,11}$ 

Pela Tabela 22 observa-se que a percentagem de desen - volvimento diário, ou velocidade de desenvolvimento foi diretamente proporcional à temperatura, ou seja, aumentou com a mesma. Na Figura 14 esta relação é representada pelas retas, com as seguintes equações de regressão:

Ovo  $y = -19,42 + 1,77 \times 10^{-10}$ Larva  $y = -2,27 + 0,23 \times 10^{-10}$ Pupa  $y = -9,03 + 0,73 \times 10^{-10}$ Ciclo Evolutivo  $y = -1,72 + 0,16 \times 10^{-10}$ 

Os valores da velocidade de desenvolvimento obtidos experimentalmente foram comparados com os teoricamente espera dos pela equação de regressão linear, resultando em diferença

TABELA 20. VIABILIDADE LARVAL E PUPAL (%) DE Spodoptera eri - dania MANTIDA COM FOLHAS DE BRACATINGA. TEMPERATURA DE 17,20,25 E 30  $^+$  0,5 $^{\circ}$ C, UR DE 70  $^+$  10% E FOTOFA SE DE 14 HORAS.

| TEMPERATURA | VIABILIDADE<br>LARVAL | VIABILIDADE |
|-------------|-----------------------|-------------|
| 17          | 87                    | 100         |
| 20          | 83                    | 100         |
| 25          | 71                    | 100         |
| 30          | 70                    | 95,2        |
|             |                       |             |

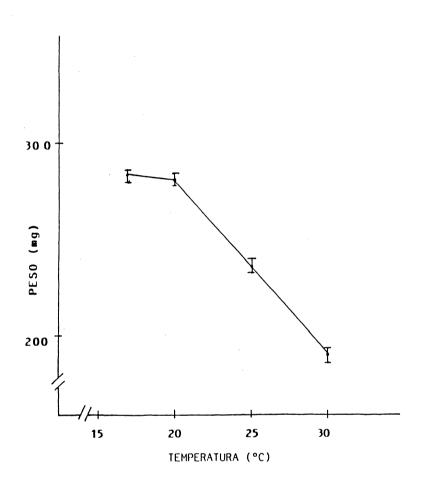



FIGURA 13. PESO PUPAL (mg) DE Spodoptera eridania  $\tilde{A}S$  TEMPERATURAS DE 17, 20, 25 e 30  $\stackrel{+}{-}$  0,5  $^{\circ}C$ , UR DE 70  $\stackrel{+}{-}$  10 % E FOTOFASE DE 14 HORAS.

TABELA 21. PESO MÉDIO (mg) DE PUPAS DE Spodoptera eridania, EM BRACATINGA, ÀS TEMPERATURAS DE 17,20,25 e 30  $^+$ 0,5 $^{\circ}$ C UR DE 70  $^+$  10% E FOTOFASE DE 14 HORAS.\*

| TEMPERATURA | PESO (mg)                               |
|-------------|-----------------------------------------|
| 17          | 282,73 <sup>+</sup> 5,594 a             |
| 20          | 282,34 <sup>+</sup> 5,623 a             |
| 25          | 237,73 <sup>+</sup> 6,204 b             |
| 30          | 190,22 $\frac{+}{}$ 6,259 c $^{\prime}$ |
|             | ·                                       |

<sup>\*</sup> Médias seguidas de diferentes letras diferem estatisticamente pelo teste GT-2 ao nível de 1% de probabilidade.

TABELA 22. PERCENTAGEM DE DESENVOLVIMENTO DIÁRIO PARA AS FA – SES DE OVO, LARVA, PUPA E DO CICLO EVOLUTIVO DE Spodoptera eridania, EM BRACATINGA ÀS TEMPERATURAS DE 17, 20, 25 E 30  $\pm$  0,5 $^{\circ}$ C, UR DE 70  $\pm$  10% E FOTOFASE DE 14 HORAS.

| TEMPERA- |       | DESENVOLVI | MENTO DIÁRIO | (%)                |
|----------|-------|------------|--------------|--------------------|
| TURA     | ovo   | LARVA      | PUPA         | CICLO<br>EVOLUTIVO |
| 17       | 10,00 | 1,43       | 2,83         | 0,87               |
| 20       | 16,00 | 2,49       | 6,70         | 1,64               |
| 25       | 25,00 | 3,60       | 8,73         | 2,31               |
| 30       | 33,00 | 4,47       | 13,07        | 3,03               |
|          |       |            |              |                    |

não significativa pelo teste Qui-quadrado ( $x^2$ ) ao nível de 1% de probabilidade, sendo  $x^2$  = 0,0764 para ovo,  $x^2$  = 0,0457 para larva,  $x^2$  = 0,3443 para pupa e  $x^2$  = 0,0354 para o ciclo evolutivo.

# 4.3.2. Limiar de Temperatura Inferior

As retas que relacionam a velocidade de desenvolvimento com as temperaturas foram prolongadas até o eixo das abcissas, indicando o limiar de temperatura inferior, ou temperatura base, para cada fase, sendo de 10,97°C para ovo, 9,87°C para larva, 12,37°C para pupa e 10,75°C para o ciclo evolutivo(Fi - gura 14). Estes valores foram confirmados tomando-se como base os valores de a e b das equações de regressão linear para cada fase. FERRAZ (1982) obteve para S. frugíperda valores de tem - peratura base para os estágios de ovo, larva e pupa, próximos dos obtidos nesta pesquisa utilizando condições de temperatu - ra um pouco diferentes.

#### 4.3.3. Constante Térmica

A partir do limiar de temperatura inferior para cada estágio do ciclo evolutivo, calcularam-se as constantes térmi cas, expressas em graus dia(OD), que são:

 $K \text{ ovo} = 56.92^{\circ} D$ 

 $K larva = 444,30^{O}D$ 

K pupa =  $139.28^{\circ}$  D

K ciclo evolutivo = 639,99°D

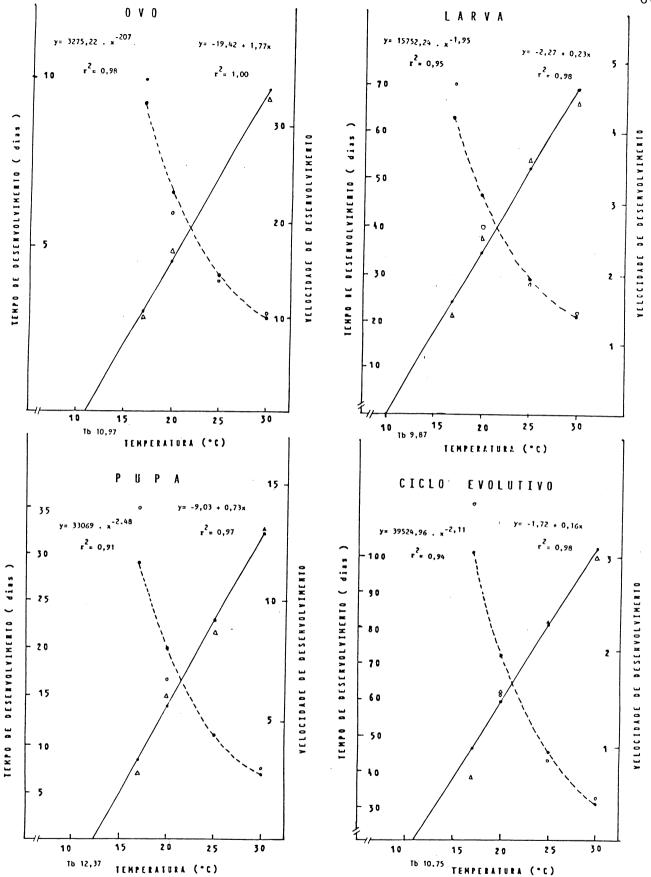



FIGURA 14. RELAÇÃO ENTRE AS TEMPERATURAS COM O TEMPO (---)

E COM A VELOCIDADE DE DESENVOLVIMENTO (----) DE

CADA FASE DO CICLO EVOLUTIVO DE Spodoptera eridania

EM BRACATINGA.

representando a média das constantes térmicas das quatro temperaturas estudadas.

Apesar de ter obtido valores de temperatura base para S. ¿rugiperda próximos aos obtidos nesta pesquisa, FERRAZ (1982) encontrou constantes térmicas consideravelmente inferiores, tendo em vista as diferenças na duração, em dias, do período de desenvolvimento larval das duas espécies.

### 4.3.4. Número de Gerações Anuais e Mapeamento

Através da Tabela 23 verifica-se que podem ocorrer de 1,36 a 4,37 gerações anuais de S. eridania no Estado do Paraná, tendo como base suas exigências térmicas, em regiões com as mesmas temperaturas médias anuais.

A região 1 (Figura 15) é a mais recomendada para o plantio de bracatinga (EMBRAPA-CNPF, 1986). Algumas característi cas desta região são: localização no centro-sul do Paraná, altitude de 650 a 1.100 m, clima sub-montano (tipo temperado quente) úmido, temperatura média anual de 15 a 19°C e precipitação pluviométrica anual de 1250 a 2500 mm.

Nesta área concentram-se vários municípios da região metropolitana de Curitiba onde atualmente a bracatinga é reflorestada e explorada com maior intensidade (L.R. GRAÇA, 1986, Comunicação pessoal)\* Estes municípios são Agudos do Sul, Almirante Tamandaré, Araucária, Balsa Nova, Bocaiúva do Sul, Campina Grande do Sul, Campo do Tenente, Campo Largo, Colombo, Contenda, Lapa, Mandirituba, Pien, Piraquara, Quatro Barras, Quitandinha, Rio Branco do Sul e Tijucas do Sul (Figura 15).

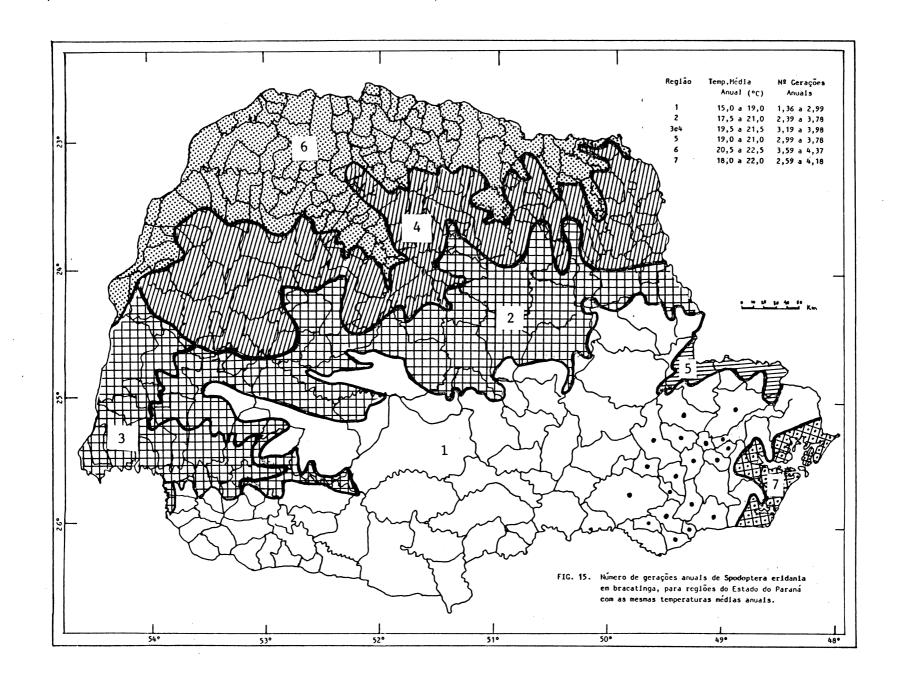

EMBRAPA-CNPF, Curitiba-PR.

TABELA 23. NÚMERO DE GERAÇÕES ANUAIS DE Spodoptera eridania,

COM BASE EM SUAS EXIGÊNCIAS TÉRMICAS, PARA REGIÕES

COM AS MESMAS TEMPERATURAS MÉDIAS ANUAIS NO ESTA
DO DO PARANÁ.

|                         | NÚMERO DE       |
|-------------------------|-----------------|
| ANUAL ( <sup>O</sup> C) | GERAÇÕES ANUAIS |
| 15,0 a 19,0             | 1,36 a 2,99     |
| 17,5 a 21,0             | 2,39 a 3,78     |
| 19,5 a 21,5             | 3,19 a 3,98     |
| 19,0 a 21,0             | 2,99 a 3,78     |
| 20,5 a 22,5             | 3,59 a 4,37     |
| 18,0 a 22,0             | 2,59 a 4,18     |
| •                       | •               |



Na Região 1 podem ocorrer de 1,36 a 2,99 gerações anuais de S. eridania. Visto que nesta região a temperatura média anual não chega a 20°C a possibilidade de S. eridania vir a se fixar nela como praga é pequena. Nas condições climáticas desta região seu ciclo evolutivo seria muito longo e resultaria num número pequeno de gerações anuais, porém a possibilidade de ocorrerem surtos nas épocas mais quentes do ano não ficam afastadas.

# 4.4. Considerações Gerais

Os resultados da presente pesquisa demonstram que S.enidania é capaz de se desenvolver e reproduzir em folhas de bra catinga, embora com menor rapidez em comparação à dieta de fo lhas de batata doce, seu alimento preferencial. As maiores di ficuldades de adaptação à bracatinga se verificaram na fase larval, em especial nos três primeiros instares, sendo necessário
um instar adicional, para recuperar o baixo desempenho inicial.
Não houve diferença significativa na viabilidade pupal. Apesar
das pupas provenientes de criação com batata doce terem sido
significativamente mais pesadas não foi observada diferença significativa na fecundidade e viabilidade dos ovos entre as die tas, evidenciando que o potencial reprodutivo de S. enidania em
bracatinga é semelhante ao de batata doce.

Em condições de campo a maior duração da fase larval em bracatinga significaria um maior período de exposição a parasitóides e predadores. A continuação dos estudos neste sentido permitirá verificar as relações entre S. eridania e seus inimigos naturais.

Os indices nutricionais comprovaram que um melhor de sempenho de S. eridanía em bracatinga inicia-se no 4º instar,a
partir de quando os valores se comparam aos de batata doce,
embora não em termos quantitativos. Através da avaliação destes indices comprovou-se a necessidade do instar adicional, no
qual o aproveitamento do alimento para crescimento foi grande
e o dispêndio de energia baixo.

Estudos com a criação de S. eridania sobre bracatinga por várias gerações serão importantes para esclarecer a existência ou não de uma maior capacidade de adaptação a esta planta ao longo do tempo, que por ser perene é uma fonte contínua de alimento, em comparação a culturas anuais.

Pelas avaliações do efeito da temperatura no crescimento e sobrevivência, verificou-se que *S. eridania* apresentou um melhor desempenho a 25°C. Em temperaturas menores o ciclo evolutivo tornou-se significativamente mais longo e a 30°C a mortalidade aumentou.

Relacionando-se exigências térmicas de *S. enidania* com os dados climáticos das principais áreas com reflorestamentos de bracatinga no Estado do Paraná verificou-se que a probabi - lidade de fixação de *S. enidania* como praga nesta planta é pequena pois as temperaturas médias anuais nestas áreas não chegam a atingir 20°C. Nestas condições o ciclo evolutivo de *S. enidania* seria sensivelmente alongado, resultando em um baixo número de gerações anuais e além disto, as larvas estariam expostas por mais tempo a inimigos naturais, como mencionado anteriormente. Assim possibilidades de ataques severos ficam res-

tritos às épocas mais quentes do ano.

A manutenção da vegetação nativa no sub-bosque é uma medida que certamente diminuirá o risco de ataques intensos à bracatinga, pois os dados obtidos, com o apoio da literatura sobre o assunto demonstram que S. exidania prefere como hospedeiros plantas herbáceas, que tem um maior teor de água nas folhas.

O fato de S. eridania ter sido constatada alimentando-se de eucalipto em condições de campo e não ter sobrevivido neste alimento em laboratório permanece como uma incógnita. Talvez os insetos observados no campo tenham sofrido uma pré-adaptação a este alimento nas gerações anteriores, enquanto que para os experimentos de laboratório utilizou-se larvas cuja geração anterior, primeira em laboratório, foi mantida com folhas de batata doce. Além disto outros fatores podem ter interferido para a não aceitação de eucalipto por S. eridania em condições de la boratório, como por exemplo, uma possível mudança nos constituintes das folhas, após terem sido retiradas das árvores, para serem empregadas como alimento, e a própria manutenção das larvas em recipientes fechados, o que não repete as condições de campo.

Estes fatos sugerem que mais pesquisas sejam desenvolvidas, tanto a nível de laboratório, com modificações nas condições experimentais, como a nível de campo, com a utilização de mudas inteiras de eucalipto, mantidas sob casas de vegetação, no sentido de tentar explicar que outros fatores possam ter interferido na aceitação de eucalipto por S. enidania.

# 5 CONCLUSÕES

Com base nos resultados obtidos e nas condições experimentais estabelecidas conclui-se que:

- . Larvas mantidas em folhas de eucalipto quer individualiza das ou agrupadas não sobrevivem além do terceiro instar, em condições de laboratório.
- . Não houve influência do alimento no período de incubação.
- . O alimento exerceu influência sobre o número e a duração dos instares, sobre a razão de crescimento e sobre o peso e a duração da fase pupal.
- . As maiores diferenças entre as dietas foram observadas na fase larval. No estágio adulto não se verificaram diferenças na longevidade, fecundidade e viabilidade dos ovos entre as duas dietas.
- . Bracatinga, foi o alimento mais consumido, no entanto ba tata doce proporcionou um maior ganho de peso.
- . A necessidade do sétimo instar em larvas criadas em bracatinga, se deu em função da lenta adaptação nos instares iniciais, como verificado através dos indices nutricionais.
- . A duração das diferentes fases do ciclo evolutivo e o peso pupal foram inversamente proporcionais à temperatura, en quanto que a percentagem de desenvolvimento diário foi diretamente proporcional.

- . A relação entre o tempo de desenvolvimento e a temperatura se ajusta a uma hipérbole e a relação entre a percentagem de desenvolvimento diário e a temperatura, a uma reta.
- . A temperatura de 25°C foi a mais favorável ao desenvolvimento de S. eridania tomando como base o tempo de duração e as viabilidades larval e pupal nesta temperatura.
- . Com base nos limiares de temperatura e as constantes térmicas podem ocorrer de 1,36 a 4,37 gerações anuais de *S. eridania* no Estado do Paraná.
- . Podem ocorrer e 1,36 a 2,99 gerações anuais de S. eridania na região do Estado do Paraná onde a bracatinga é plantada e explorada com maior intensidade.
- . Visto a baixa temperatura média anual das regiões aptas ao plantio da bracatinga, a probabilidade de S. eridania vir a se fixar como praga de bracatinga é pequena, porém as possibilidades de ocorrerem surtos nas épocas mais quentes do ano não ficam afastadas.
- . Bracatinga demonstrou ser um hospedeiro potencial de S. eridania, que na ausência de hospedeiros preferenciais e em condições ambientais favoráveis pode causar sérios danos a esta
  cultura.

### REFERÊNCIAS BIBLIOGRÁFICAS

- ALINIAZEE, M.T. Thermal unit requirements for determining adult emergence of the western cherry fruit fly (Diptera: Tephritidae) in the Willamette Valley of Oregon. <a href="Environ.Ent.,5:397-402">Environ.Ent.,5:397-402</a>, 1976.
- AL-ZUBAIDI, F.S. & CAPINERA, J.L. Utilization of food and nitrogen by the beet armyworm, <u>Spodoptera exigua</u> (Hübner) (Lepidoptera:Noctuidae) in relation of food type and dietary nitrogen levels. Environ. Ent., 13:1604-1608, 1984.
- ANDREWARTHA, H.G. & BIRCH, L.C. Weather: Temperature. In:

  The distribution and abundance of animals. 5 ed. Chicago,
  University of Chicago Press, 1970. p. 129-205.
- ARNOLD, C.Y. The determination and significance of the base temperature in a linear heat unit system. Proc.Am.Soc.hort. Sci., 76:682-692, 1959.
- BAILEY, C.G. A quantitative study of consumption and utilization of various diets in the bertha armyworm, Mamestra configurata (Lepidoptera. Noctuidae). Can Ent., 108:1319-1326, 1976.
- BEAN, J.L. Predicting emergence of second-instar spruce budworm larvae from hibernation under field conditions in Minnesota.

  <u>Ann.Ent.Soc.Am.</u>, <u>54</u>: 175-177, 1961.
- BHAT, N.S. & BHATTACHARYA, A.K. Consumption and utilization of soybean by Spodoptera litura (Fabricius) at different temperatures. <u>Indian J. Ent</u>, <u>40</u>(1):16-25, 1978.
- CAMPBELL, A.; FRAZER, B.D.; GILBERT, N.; GUTIERREZ, A.P. & MACK-AUER, M. Temperature requirements of some aphids and their parasites. J. Appl. Ecol., 11:419-423, 1974.
- CHAPMAN, R.F. Temperature and humidity. In:

  structure and function. 3 ed. Massachusetts, Harvard University Press, 1982. p. 756-778.
- CHMIEL,S.M. & WILSON,M.C. Estimating threshold temperature and heat unit accumulation required for meadow spittlebug egg hatch. <u>Environ.Ent</u>, <u>8</u>:612-614, 1979.
- COSTA,T.C.S. Modelo fenológico do Hypothenemus hampei (Ferrari, 1867) (Coleoptera:Scolytidae) com base em suas exigências térmicas, visando determinar o número de gerações anuais, em zonas cafeeiras do Estado do Parana. UFPR, Curitiba, 1985,83p. (Tese de Mestrado).
- CROCOMO, W.B. & PARRA, J.R.P. Biologia e utrição de <u>Eacles</u> imperialis magnifica Walker, 1856 (Lepidoptera, Attacidae) em cafeeiro Revta. Bras. Ent., 23(2):51-76, 1979.

- CROCOMO, W.B. & PARRA, J.R.P. Consumo e utilização de milho, trigo e sorgo por Spodoptera frugiperda (J.E. Smith, 1797) (Lepidoptera, Noctuidae). Revta Bras. Ent., 29(2):225-260, 1985.
- CROWEL, H.H. The utilization of certain nitrogenous and carbohydrate substances by the southern armyworm, <a href="Prodenia eridania">Prodenia eridania</a>. <a href="Ann.Ent.Soc.Am.">Ann.Ent.Soc.Am.</a>, 34:503-512, 1941.
- CRUZ, M.S. & FOERSTER, L.A. Biologia comparada de <u>Spodoptera eridania</u> (Cramer, 1782) e <u>Spodoptera latifascia Walker, 1856 (Le-pidoptera: Noctuidae) em soja. In: CONGRESSO BRASILEIRO DE ENTOMOLOGIA, X. Resumos...Rio de Janeiro-RJ. Sociedade Entomo-lógica do Brasil, 1986. p. 37.</u>
- DETHIER, V.G. Evolution of feeding preferences in phytophagous insects. Evolution, 8:33-54, 1954.
- DRUMOND, F.A.; VAN DRIESCHE, R.G. & LOGAN, P.A. Model for the temperature dependent emergence of overwintering Phyllonorycter crataegella (Clemens) (Lepidoptera: Gracillariidae) and its parasitoid, Sympiensis marylandensis Girault (Hymenoptera: Eulophidae). Environ.Ent., 14:305-311, 1985.
- DUODU,Y.A. & BINEY,F.F. Growth, food consumption and food utilization of <u>Spodoptera littoralis</u> (Boisduval) (Lepidoptera: Noctuidae) on four food-plants. <u>Bull.Ent.Res.</u>, 71: 655-662, 1981.
- DYAR, H.G. The number of molts of lepidopterous larvae. Psyche, 5:420-422, 1890.
- ECKENRODE, C.J. & CHAPMAN, R.K. Seasonal adult cabbage maggot populations in the field in relation to thermal unit accumulation. Ann. Ent. Soc. Am., 64:151-156, 1972.
- EDWARDS, P.J. & WRATTEN, S.D. Ecologia das interações entre insetos e plantas. São Paulo, E.P.U., 1981. v. 27, 71 p.
- EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA CENTRO NACIONAL DE PESQUISA DE FLORESTAS (EMBRAPA-CNPF). Zoneamento ecológico para plantios florestais no Estado do Paraná. Curitiba, 1986. 89 p.
- FERRAZ, M.C.V.D. <u>Determinação das exigências térmicas de Spodoptera frugiperda (J.E. Smith, 1797) (Lepidoptera, Noctuidae) em cultura de milho</u>. Piracicaba, ESALQ, 1982. 81 p. (Tese de Mestrado).
- FOSTER, J.E. & TAYLOR, P.L. Thermal unit requeriments for development of the hessian fly under controlled environments. Environ. Ent., 4:195-202, 1976.
- GANGAVALLI, R.R. & ALINIAZEE, M.T. Temperature requirements for development of the obliquebanded leafroller, Chroristoneura rosaceana (Lepidoptera: Tortricidae). Environ. Ent., 14: 17-19, 1985.

- GORDON, H.T. Growth and development of insects. In: HUFFAKER, C. B. & RABB, R.L. Ecological Entomology. New York, John Willey & Sons, 1984. p. 54-77.
- GRABSTEIN, E.M. & SCRIBER, J.M. Host-plant utilization by <u>Hyalo-phora cecropia</u> as affected by prior feeding experience. <u>Ent. exp.appl., 32:262-268, 1982.</u>
- GUPTA,S.C. & MALEYVAR,R.P. Consumption, digestion and utili zation of the leaves of <u>Raphanus sativus</u> and <u>Brassica rapa</u> by larvae of <u>Pieris brassicae</u> (Lepidoptera, Pieridae). <u>Acta Ent. Bohemoslov.</u>, 78(5):290-302, 1981.
- HADDAD, M.L. & PARRA, J.R.P. Métodos para estimar os limites térmicos e a faixa ótima de desenvolvimento das diferentes fases do ciclo evolutivo dos insetos. São Paulo, Ed. FEALQ, 12 p., 1984.
- JERMY, T. The host-plant in relation to insect behaviour and reproduction. New York, Plenum Press, 1976. 322 p.
- KHALSA, M.S.; KOGAN, M. & LUCKMANN, W.H. <u>Autographa precationis</u> in relation to soyben: life history and food intake and utili zation under controlled conditions. <u>Environ</u>. Ent., 8:117-122, 1979.
- KOGAN,M. & COPE,D. Feeding and nutrition of insects associated with soybeans. 3. Food intake, utilization and growth in the soybean looper, Pseudoplusia includens. Ann.Ent.Soc.Am., 67(1): 66-72, 1974.
- LINCOLN,D.E.; SIONIT,N, & STRAIN,B.R. Growth and feeding response of Pseudoplusia includens (Lepidoptera: Noctuidae) to host plants grown in controlled carbon dioxide atmospheres. Environ.Ent.,13:1527-1530, 1984.
- MANUWOTO, S. & SCRIBER, J.M. Consumption and utilization of three maize genotypes by the southern armyworm. <u>J.Econ.Ent.</u>, <u>75</u>:163-167, 1982.
- MARQUES, L.A.A. Lagartas nocivas à batata doce e os meios de combate-las (Nota prévia sobre a biologia de três espécies de lepidopteros). Chacaras Quint., 46(1):100-102, 1932.
- MAY, M. Insect thermoregulation. An. Rev. Ent., 24:313-349, 1979.
- MAYER, E.L. & BABERS, F.H. Head-capsule measurements of southern armyworm larvae (Prodenia eridania) (Cramer). Ann. Entomol. Soc. Am. 37: 214-220, 1944.
- MILANEZ,J.M.; MILDE L.C.E. & PARRA,J.R.P. Estimativa da constante térmica das cigarrinhas das pastagens. Zulia (Notozulia) entreriana (Berg., 1879) e Deois (Acanthodeois) flavopicta (Stal, 1854) (Homoptera: Cercopidae) em condições de campo.An. Soc. entomol. Brasil, 12(2):151-163, 1983.

- MORRIS, R.F. & FULTON, W.C. Models for the development and survival of <u>Hyphantria cunea</u> in relation to temperature and humidity. Mem.Ent.Soc.Can., 70:1-60, 1970.
- MORSE, B.W.; ELLER, F.J. & KULMAN, H.M. Forecasting emergence of adult yellowheaded spruce sawflies (Hymenoptera: Tenthredinidae). Environ. Ent., 13:895-897, 1984.
- MUKERJI, M.K. & GUPPY, J.C. A quantitative study of food consumption and growth in <u>Pseudaletia unipuncta</u> (Lepidoptera: Noctuidae). <u>Can.Ent.</u>, 102:1179-1188, 1970.
- PANIZZI, A.R. Percevejos sugadores de sementes. Ciência Hoje, 5 (26):66-71, 1986.
- PARRA, J.R.P.; PRECETTI, A.A.C.M. & KASTEN JR., P. Aspectos biológicos de Spodoptera eridania (Cramer, 1782) (Lepidoptera: Noctuidae) em soja e algodoeiro. An.Soc.entomol. Brasil, 6(2): 147-155, 1977.
- PARRA, J.R.P. Biologia comparada de <u>Perileucoptera coffeella</u> (Guérin-Mène ville, 1842) (Lepidoptera, Lyonetiidae) visando ao seu zonemento ecologico no Estado de São Paulo. <u>Revta. Bras. Ent.</u>, <u>29</u>(1):45-76, 1985.
- REDFERN ,R.E. Laboratory techniques for rearing the southern armyworm. J.Econ.Ent., 60(1):308, 1967a.
- . Instars of southern armyworm determined by measurement of head capsule. J.econ.Ent.,60(2):614-615, 1967b.
- \_\_\_\_. & RAULSTON, J.R. Improved rearing techniques for the southern armyworm. J. Econ. Ent., 63:296-297, 1970.
- REGNIERE, J.; RABB, R. & STINNER, R.E. <u>Poppilla japonica</u>: simulation of temperature-dependent development of the immature, and prediction of adult emergence. Environ. Ent., 10:290-296, 1981
- REISSIG, W.H.; BARNARD, J.; WEIRES, R.W.; GLASS, E.H. & DEAN, R.W. Prediction of apple maggot fly emergence from thermal unit accumulation. Environ. Ent., 8:51-54, 1979.
- REYNOLDS, S.E. & NOTTINGHAM, S.F. Effects of temperature on growth and efficiency of food utilization in fifth instar caterpillars of the tobacco hornworm, Manduca sexta. J.Insect Physiol., 31(2):129-134, 1985.
- SANDERS, C.J. Factors affecting adult emergence and mating behavior of the eastern spruce budworm, Choristoneura fumiferana (Lepidoptera:Tortricidae). Can.Ent., 107:967-977, 1975.
- SCRIBER, J.M. Cyanogenic glycosides in Lotus corniculatus: their effect upon growth, energy budger, and nitrogen utilization of the southern armyworm Spodoptera eridania. Oecologia, 34: 143-155, 1978.

- SCRIBER, J.M. Pos ingestive utilization of plant biomass and nitrogen by Lepidoptera: legume feeding by the southern armyworm. J.N.Y. ent.Soc., 87(2):141-153, 1979.
- Sequential diets, metabolic costs and growth of Spodoptera eridania (Lepidoptera:Noctuidae) feeding upon dill, lima bean and cabbage. Oecologia, 51:175-180, 1981
- \_\_\_\_. The behaviour and nutritional physiology of southern armyworm larvae as a function of plants species consumed in carlier instars. Ent.exp. appl., 31:359-369, 1982.
- . & SLANSKY JR, F. The nutritional ecology of immature insects Ann.Rev.Ent., 26:183-211, 1981
- \_\_\_\_. & FEENY,P. Growth of herbivorous caterpillars in relation to feeding specialization and to the growth from of their food plants. <a href="Ecology">Ecology</a>, <a href="60">60</a>(4):829-850</a>, <a href="1979">1979</a>.
- SEVACHERIAN, V.; TOSCANO, N.C.; VAN STEENWYK, R.A.; SHARMA, R.K. & SANDERS, R.R. Forecasting ping bollworm emregence by thermal summation. Environ. Ent., 6:545-546, 1977.
- SILVA, A.G.A.; GONÇALVES, C.R.; GALVÃO, D.M.; GONÇALVES, A.J.L.; GOMES, J.; SILVA, M.N. & SIMONI, L. Quarto catálogo dos insetos que vivem nas plantas do Brasil, seus parasitas e predadores. Rio de Janeiro, Ministério da Agricultura, 1976. pte. 2, t, l.
- SILVEIRA NETO,S.; NAKANO,O.; BARVIN,D. & VILLA NOVA,N.A. Ma nual de ecologia dos insetos. 15 ed. São Paulo, Ceres, 1976. 419 p.
- SILVEIRA NETO,S.; PARRA,J.R.P.; ZUCCHI,R.A. & ALVES,S.B. Zo neamento ecológico para as cigarrinhas de pastagens (Homoptera: Cercopidae) no Brasil. An.Soc.entomol. Brasil. (No prelo).
- SLANSKY JR.F. Insect nutrition: an adaptationist perspective. Fla.Ent. 65(1):45-71, 1982.
- \_\_\_\_. & SCRIBER, J.M. Selected bibliography and summary of quantitative food utilization by immature insects. Bull ent. Soc. Am., 28(1):43-55, 1982.
- SOKAL,R.R. & ROHLF,F.J. Single classification analysis of variance. In: . Biometry. 2 ed. San Francisco, W.H. Freeman, 1981 p. 208-270.
- SOLIMAN, A.A.; ROSTOM, A.M.F. & GAD, A.M.M. Effect of different temperatures on consumption, digestion and utilization of food by the fifth instar larva of the cotton leafworn, Spodoptera littoralis (Boisd.) Bull.Soc.ent.Egypte, 58:179-183, 1974
- SOO HOO, C.F. & FRAENKEL, G. A simplified laboratory method for rearing the southern armuworm. <u>Prodenia eridania</u>, for feeding experiments. <u>Ann.ent.Soc.Am.</u>, 57:798-799, 1964.

- SOO HOO, C.F. & FRAENKEL, G. The consumption, digestion and utilization of food plants by a polyphagous insect, <u>Prodenia eridania</u> (Cramer). J.Insect Physiol., 12:711-730, 1966.
- THOMAS; A.W. Threshold temperature for spruce budworm pupal development (Lepidoptera:Tortricidae). Can.Ent., 108:1223-1224, 1976.
- TOJO,S.; MORITA,M. & HIRUMA,K. Effects of Juvenile hormone on some phase characteristics in the common cutworm, Spodoptera litura. J. Insect Physiol, 31(3):243-249, 1985.
- VAN KIRK, J.R. & ALINEAZEE, M.T. Determining low-temperature threshold for pupal development of the western cherry fruit fly for use in phenology models. <a href="mailto:environ.ent">Environ.Ent</a>., <a href="mailto:10:968-971">10:968-971</a>, <a href="mailto:1981">1981</a>.
- VENDRAMIM, J.D.; LARA, F.M. & PARRA, J.R.P. Consumo e utilização de folhas de cultivares de couve (<u>Brassica oleracea</u> L. var. <u>acephala</u>) por <u>Agrotis subterranea</u> (<u>Fabricius</u>, 1794) (Lepidoptera: Noctuidae). An.Soc.entomol.Brasil, 12(2):129-144, 1983.
- WALDBAUER, G.P. The consumption, digestion and utilization of solanaceous and non-solanaceous plants by larvae of the tobacco hornworm, Protoparce sexta (Johan) (Lepidoptera: Sphingidae). Ent.exp.appl., 7:253-269, 1964.
- \_\_\_\_. The consumption and utilization of food by insects. Adv. Insect Physiol., 5:229-288, 1968.
- WIGGLESWORTH, V.B. Water and temperature. In: . The principles of insect physiology. 7 ed. London, Chapman and Hall, 1972. p. 663-699.

Y b E N D I C E S

APÊNDICE 1. DURAÇÃO DOS ÍNSTARES, PERÍODO LARVAL, PERÍODO PUPAL E CICLO EVOLUTIVO (DIAS) E PESO PUPAL (mg) DE Spodoptera eridania, EM BATATA DOCE. TEMPERATURA  $25 \stackrel{+}{=} 2^{\circ}$ C, UR DE  $70 \stackrel{+}{=} 10\%$  E FOTOFASE DE 14 HORAS.

| Иò        |              | ÍN | STARI        | ES           |              |              | PERÍODO | SEXO       | PESO           | PERÍODO      | CICLO          |
|-----------|--------------|----|--------------|--------------|--------------|--------------|---------|------------|----------------|--------------|----------------|
|           | 10           | 20 | 3•           | 40           | 5♀           | 6♀           | LARVAL  |            | PUPAL(mg)      | PUPAL        | EVO -          |
|           |              |    |              |              |              |              |         |            |                |              | LUTIVO         |
| 01        | 3            | 2  | 2            | 2            | 2            | 6            | 17      | Q          | 263,1          | 9            | 30             |
| 02        | 3            | 2  | 2            | 2            | 3            | 6            | 18      | Q          | 312,1          | 9            | 31             |
| 03        | 3            | 2  | 1            | 2            | 3            | 6            | 17      | Q          | 307,3          | 9            | 30             |
| 04        | 3            | 2  | 2            | 2            | 2            | 6            | 17      | Q          | 284,4          | 9            | 30             |
| 05        | 3            | 2  | 2            | 3            | 2            | 7            | 19      | Q          | 329,0          | 9            | 32             |
| 06        | 3            | 2  | 2            | 2            | 3            | 6            | 18      | Q          | 255,9          | 9            | 31             |
| 07        | 3            | 2  | 2            | 2            | 2            | 6            | 17      | ď          | 227,8          | 10           | 31             |
| 08        | 3            | 2  | 2            | 3            | 2            | 6            | 18      | ď          | 260,7          | 10           | 32             |
| 09        | 3            | 2  | 2            | 3            | 3            | 7            | 20      | Q,         | 222,4          | 10           | 34             |
| 10        | 3            | 2  | 3            | 3            | 2            | 4            | 17      | ď          | 191,2          | 10           | 31             |
| 11        | 3            | 2  | 2            | 2            | 3            | 5            | 17      | Q          | 305,9          | 9            | 30             |
| 12        | 3            | 2  | 2            | 3            | 2            | 7            | 19      | Q          | 323,4          | 9            | 32             |
| 13        | 3            | 2  | 2            | 2            | 3            | 7.           | 19      | Q          | 333,2          | 9            | 32             |
| 14        | 3            | 2  | 2            | 2            | 3            | 7            | 19      | Q          | 335,2          | 9            | 32             |
| 15        | 3            | 2  | 2            | 2            | 3            | 6            | 18      | Q          | 282,1          | 9            | 31             |
| 16        | 3            | 2  | 2            | 3            | 2            | 7            | 19      | Q          | 336,5          | 9            | 32             |
| 17        | 3            | 2  | 2            | 3            | 2            | 6            | 18      | Q          | 333,7          | 9            | 31             |
| 18        | 3            | 2  | 2            | 3            | 3            | 6            | 19      | Q          | 353,4          | 9            | 32             |
| 19        | 3            | 2  | 2            | 2            | 3            | 6            | 18      | ď          | 253,7          | 10           | 32             |
| 20        | 3            | 2  | 2            | 2            | 3            | 6            | 18      | ď          | 249,0          | 10           | 32             |
| 21        | 3            | 2  | 2            | 3            | 3            | 6            | 19      | Q          | 325,0          | 10           | 33             |
| 22        | 3            | 2  | 2            | 3            | 3            | 6            | 19      | Q          | 306,2          | 9            | 32             |
| 23        | 3            | 2  | 3            | 2            | 3            | 6            | 19      | o <b>t</b> | 288,6          | 10           | 33             |
| 24        | 4            | 2  | 1            | 3            | 2            | 7            | 19      | ď          | 262,7          | 10           | 33             |
| 25        | 3            | 2  | 2            | 3            | 2            | 6            | 18      | ď          | 244,6          | 10           | 32             |
| 26        | 3            | 2  | 3            | 3            | 2            | 6            | 19      | Q          | 281,9          | 9            | 32             |
| 27        | 4            | 2  | 2            | 3            | 2            | 4            | 17      | Q,         | 225,5          | 10           | 31             |
| 28        | 3            | 2  | 2            | 4            | 2            | 4            | 17      | ď          | 228,2          | 10           | 31             |
| 29        | 4            | 2  | 2            | 3            | 2            | 4            | 17      | ď          | 204,3          | 10           | 31             |
| 30        | 3_           | 2  | 2            | 3            | 3            | 5            | 18      | <u>o</u>   | 233,8          | 10           | 32             |
| x<br>E.P. | 3,10<br>0,06 |    | 2,03<br>0,08 | 2,60<br>0,10 | 2,50<br>0,09 | 5,90<br>0,16 |         |            | 278,70<br>8,18 | 9,47<br>0,09 | 31,60<br>0,176 |

APÊNDICE 2. DURAÇÃO DOS ÎNSTARES, PERÍODO LARVAL, PERÎODO PUPAL E CICLO EVOLUTIVO (DIAS) E PESO PUPAL (mg), E Spodoptera eridania EM BRACATINGA. TEMPERATURA 25  $\stackrel{+}{-}$  2°C, UR DE 70  $\stackrel{+}{-}$  10% E FOTOFA-SE DE 14 HORAS.

| Иô                      |      | ÍN   | STAR | ES   |     |     |     | PERÍODO   | SEXO           | PESO       | PERÍODO | CICLO     |
|-------------------------|------|------|------|------|-----|-----|-----|-----------|----------------|------------|---------|-----------|
|                         | 10   | 20   | 3≎   | 40   | 50  | 69  | 70  | LARVAL    |                | PUPAL (mg) | PUPAL   | EVOLUTIVO |
| 01                      | 9    | 3    | 3    | 4    | 3   | 4   | 7   | 33        | Ç              | 239,2      | 13      | 50        |
| 02                      | 5    | 3    | 2    | 3    | 5   | 3   | 7   | 28        | Q              | 242,2      | 13      | 45        |
| 03                      | 6    | 3    | 3    | 3    | 4   | 4   | 7   | 30        | ď              | 234,2      | 13      | 47        |
| 04                      | 6    | 3    | 3    | 3    | 5   | -   | _   | _         | _              | _          | _       | _         |
| 05                      | 7    | 3    | 2    | 3    | 5   | 3   | 9   | 32        | Q              | 256,0      | 12      | 48        |
| 06                      | 6    | 3    | 2    | 3    | 4   | 3   | 8   | 29        | ď              | 227,5      | 13      | 46        |
| 07                      | _    | -    | -    | -    | -   | _   | _   | -         | _              | -          | _       | -         |
| 80                      | _    | -    | -    | -    | -   | _   | _   | _         | -              | -          | _       | -         |
| 09                      | 6    | 3    | 2    | 4    | 5   | 4   | 9   | 33        | o'             | 200,6      | 12      | 49        |
| 10                      | -    | -    | -    | -    | -   | -   | _   | _         | -              | -          | -       | _         |
| 11                      | 5    | 2    | 2    | 3    | 3   | 4   | 7   | 26        | φ              | 238,8      | 13      | 43        |
| 12                      | 9    | 3    | 3    | 4    | 4   | 4   | 10  | 37        | O'             | 174,9      | 12      | 53        |
| 13                      | 6    | 3    | 2    | 4    | 5   | 4   | 9   | 33        | Q,             | 218,6      | 12      | 49        |
| 14                      | 5    | 3    | 3    | 3    | 4   | 4   | 8   | 30        | ď              | 230,0      | 12      | 46        |
| 15                      | 10   | 3    | 4    | 3    | 4   | 5   | 9   | 38        | Q              | 220,8      | 12      | 54        |
| 16                      | 7    | 3    | 2    | 3    | 5   | 4   | 9   | 33        | Q              | 215,4      | 12      | 49        |
| 17                      | 8    | 3    | 3    | 3    | 4   | 4   | 8   | 33        | Q,             | 222,0      | 12      | 49        |
| 18                      | 6    | 2    | 3    | 3    | 5   | 4   | 9   | 33        | O <sup>*</sup> | 197,8      | 11      | 48        |
| 19                      | 6    | 3    | 3    | 4    | 4   | -   | -   | -         | -              | -          | _       | -         |
| 20                      | 6    | 4    | 2    | 3    | 4   | 5   | 9   | 33        | Q              | 256,9      | 12      | 49        |
| 21                      | 6    | 3    | 2    | 3    | 4   | 5   | 8   | 31        | Q              | 260,9      | 12      | 47        |
| 22                      | 6    | 3    | 2    | 3    | 4   | 5   | 8   | 31        | ď              | 238,8      | 13      | 48        |
| 23                      | 6    | 3    | 2    | 4    | 4   | 5   | 9   | 33        | O <sup>*</sup> | 234,5      | 11      | 48        |
| 24                      | 5    | 3    | 3    | 4    | 5   | 5   | 8   | 34        | Q              | 208,5      | 12      | 49        |
| 25                      | 6    | 3    | 3    | 4    | 6   | 4   | 8   | 33        | O'             | 202,5      | 12      | 50        |
| 26                      | 6    | 3    | 3    | 3    | 4   | 5   | 9   | 33        | Q              | 242,2      | 10      | 47        |
| 27                      | 7    | 3    | 3    | 4    | 5   | 4   | 8   | 34        | $\sigma$       | 212,9      | 11      | 49        |
| 28                      | 7    | 3    | 3    | 4    | 5   | 5   | 7   | 34        | ď              | 205,3      | 10      | 48        |
| 29                      | 5    | 3    | 3    | 4    | 5   | 5   | 8   | 33        | ď              | 219,6      | 12      | 49        |
| 30                      | 6    | 3    | 2    | 4    | 5   | 4   | 9   | 33        | Q              | 227,5      | 11      | 48        |
| $\overline{\mathbf{X}}$ | 6,41 | 2,96 | .2,5 | 3,4  | 44, | 444 | ,24 | 8,28 32,0 | 4              | 225,10     | 11,92   | 48,32     |
| E.P.                    | 0,25 | 0,06 | 0,1  | 10,1 | 00, | 130 | ,13 | 0,17 0,50 | 0              | 4,08       | 0,17    | 0,446     |

APÊNDICE 3. LARGURA DE CÂPSULAS CEFÂLICAS (mm) DE LARVAS DE Spodoptera eridania ALIMENTADAS COM FOLHAS DE BATATA DOCE. TEMPERATURA  $25 \pm 2^{\circ}$ C, UR DE  $70 \pm 10\%$  E FOTOFASE DE 14 HORAS.

| Nº DE                     |      | ÍNSTARES |       |       |       |  |  |  |  |
|---------------------------|------|----------|-------|-------|-------|--|--|--|--|
| ORDEM                     | 10   | 20       | 3♀    | 40    | 50    |  |  |  |  |
| 01                        | 0,32 | 0,50     | 0,83  | 1,33  | 1,83  |  |  |  |  |
| 02                        | 0,32 | 0,50     | 0,67  | 1,17  | 1,83  |  |  |  |  |
| 03                        | 0,32 | 0,54     | 0,83  | 1,50  | 1,83  |  |  |  |  |
| 04                        | 0,32 | 0,50     | 0,83  | 1,50  | 1,83  |  |  |  |  |
| 05                        | 0,32 | 0,50     | 0,83  | 1,33  | 1,83  |  |  |  |  |
| 06                        | 0,32 | 0,50     | 0,83  | 1,33  | 1,83  |  |  |  |  |
| 07                        | 0,32 | 0,50     | 0,83  | 1,33  | 1,83  |  |  |  |  |
| 08                        | 0,32 | 0,50     | 0,83  | 1,33  | 1,83  |  |  |  |  |
| 09                        | 0,32 | 0,50     | 0,86  | 1,50  | 1,83  |  |  |  |  |
| 10                        | 0,32 | 0,50     | 0,83  | 1,33  | 1,83  |  |  |  |  |
| 11                        | 0,32 | 0,50     | 0,83  | 1,50  | 1,83  |  |  |  |  |
| 12                        | 0,32 | 0,50     | 0,83  | 1,50  | 1,83  |  |  |  |  |
| 13                        | 0,32 | 0,50     | 0,83  | 1,33  | 2,00  |  |  |  |  |
| 14                        | 0,32 | 0,50     | 0,83  | 1,33  | 1,83  |  |  |  |  |
| 15                        | 0,32 | 0,50     | 0,83  | 1,33  | 1,83  |  |  |  |  |
| 16                        | 0,32 | 0,50     | 0,83  | 1,33  | 1,83  |  |  |  |  |
| 17                        | 0,32 | 0,50     | 0,83  | 1,50  | 1,83  |  |  |  |  |
| 18                        | 0,32 | 0,50     | 0,83  | 1,33  | 1,83  |  |  |  |  |
| 19                        | 0,32 | 0,54     | 0,83  | 1,50  | 1,83  |  |  |  |  |
| 20                        | 0,32 | 0,50     | 0,83  | 1,17  | 1,83  |  |  |  |  |
| 21                        | 0,32 | 0,50     | 0,83  | 1,17  | 1,83  |  |  |  |  |
| 22                        | 0,32 | 0,50     | 0,83  | 1,33  | 1,83  |  |  |  |  |
| 23                        | 0,32 | 0,50     | 0,83  | 1,50  | 1,83  |  |  |  |  |
| 24                        | 0,32 | 0,50     | 0,83  | 1,50  | 1,83  |  |  |  |  |
| 25                        | 0,32 | 0,50     | 0,83  | 1,50  | 1,83  |  |  |  |  |
| 26                        | 0,32 | 0,50     | 0,83  | 1,17  | 1,83  |  |  |  |  |
| 27                        | 0,32 |          |       | 1,50  |       |  |  |  |  |
| 28                        | 0,32 |          |       | 1,17  |       |  |  |  |  |
| 29                        | 0,32 |          |       |       |       |  |  |  |  |
| 30                        | 0,32 |          |       |       |       |  |  |  |  |
| $\overline{\overline{X}}$ | 0,32 | 0,50     | 0,83  | 1,37  | 1,84  |  |  |  |  |
| E.P.                      | 0    | 0,002    | 0,006 | 0,023 | 0,007 |  |  |  |  |

APÉNDICE 4. LARGURA DE CÁPSULAS CEFÁLICAS (mm) DE LARVAS DE Spodoptera eridania ALIMENTADAS COM FOLHAS DE BRACATINGA. TEMPERATURA 25  $\pm$  2°C, UR DE 70  $\pm$  10% E FOTOFASE DE 14 HORAS.

| Nº DE                     |      | Í N S T A R E S |       |       |       |       |  |  |  |  |  |
|---------------------------|------|-----------------|-------|-------|-------|-------|--|--|--|--|--|
| ORDEM                     | 10   | 20              | 3∘    | 40    | 5♀    | 60    |  |  |  |  |  |
| 01                        | 0,32 | 0,40            | 0,58  | 0,83  | 1,17  | 2,00  |  |  |  |  |  |
| 02                        | 0,32 | 0,44            | 0,58  | 0,83  | 1,17  | 1,83  |  |  |  |  |  |
| 03                        | 0,32 | 0,44            | 0,58  | 0,83  | 1,50  | 2,00  |  |  |  |  |  |
| 04                        | 0,32 | 0,40            | 0,58  | 0,83  | 1,17  | 1,83  |  |  |  |  |  |
| 05                        | 0,32 | 0,40            | 0,58  | 0,67  | 1,33  | 1,83  |  |  |  |  |  |
| 06                        | 0,32 | 0,40            | 0,58  | 1,00  | 1,33  | 1,83  |  |  |  |  |  |
| 07                        | 0,32 | 0,44            | 0,58  | 0,83  | 1,33  | 2,00  |  |  |  |  |  |
| 08                        | 0,32 | 0,40            | 0,58  | 1,17  | 1,33  | 2,00  |  |  |  |  |  |
| 09                        | 0,32 | 0,40            | 0,58  | 0,83  | 1,17  | 2,00  |  |  |  |  |  |
| 10                        | 0,32 | 0,44            | 0,58  | 0,83  | 1,17  | 1,83  |  |  |  |  |  |
| 11                        | 0,32 | 0,44            | 0,58  | 0,83  | 1,50  | 1,83  |  |  |  |  |  |
| 12                        | 0,32 | 0,40            | 0,58  | 0,83  | 1,33  | 1,83  |  |  |  |  |  |
| 13                        | 0,32 | 0,40            | 0,67  | 1,00  | 1,50  | 2,00  |  |  |  |  |  |
| 14                        | 0,32 | 0,40            | 0,58  | 0,83  | 1,17  | 2,00  |  |  |  |  |  |
| 15                        | 0,32 | 0,40            | 0,58  | 1,00  | 1,33  | q,00  |  |  |  |  |  |
| 16                        | 0,32 | 0,40            | 0,58  | 0,83  | 1,50  | 2,00  |  |  |  |  |  |
| 17                        | 0,32 | 0,40            | 0,58  | 0,83  | 1,17  | 1,83  |  |  |  |  |  |
| 18                        | 0,32 | 0,40            | 0,67  | 0,83  | 1,17  | 1,83  |  |  |  |  |  |
| 19                        | 0,32 | 0,44            | 0,58  | 0,83  | 1,17  | 1,67  |  |  |  |  |  |
| 20                        | 0,32 | 0,40            | 0,67  | 1,17  | 1,50  | 2,00  |  |  |  |  |  |
| 21                        | 0,32 | 0,44            | 0,58  | 1,00  | 1,33  | 1,83  |  |  |  |  |  |
| 22                        | 0,32 | 0,44            | 0,58  | 0,83  | 1,33  | 2,00  |  |  |  |  |  |
| 23                        | 0,32 | 0,40            | 0,58  | 0,83  | 1,33  | 2,00  |  |  |  |  |  |
| 24                        | 0,32 | 0,44            | 0,67  | 1,00  | 1,33  | 2,00  |  |  |  |  |  |
| 25                        | 0,32 | 0,40            | 0,58  | 1,00  | 1,17  | 1,83  |  |  |  |  |  |
| 26                        | 0,32 | 0,40            | 0,58  | 1,17  | 1,33  |       |  |  |  |  |  |
| 27                        | 0,32 | 0,40            | 0,58  | 1,00  | 1,33  |       |  |  |  |  |  |
| 28                        |      |                 |       |       |       |       |  |  |  |  |  |
| 29                        |      |                 |       |       |       |       |  |  |  |  |  |
| 30                        |      |                 |       |       |       |       |  |  |  |  |  |
| $\overline{\overline{X}}$ | 0,32 | 0,41            | 0,59  | 0,91  | 1,30  | 1,91  |  |  |  |  |  |
| E.P.                      | 0    | 0,004           | 1,006 | 1,024 | 0,023 | 0,020 |  |  |  |  |  |

APÊNDICE 5. LONGEVIDADE E PERÍODOS DE PRÉ-OVIPOSIÇÃO, OVIPOSIÇÃO E PÓS-OVIPOSIÇÃO (DIAS) DE Spodoptera eridania EM BATATA DOCE. TEMPERATURA 25 ± 2°C, UR DE 70 ± 10% E FOTOFASE DE 14 HORAS.

| N₀ DO                     | SEXO           | LONGEVIDADE |            | PERÍODO DE | PER. PÓS     |
|---------------------------|----------------|-------------|------------|------------|--------------|
| CASAL                     |                | <del></del> | OVIPOSIÇÃO | OVIPOSIÇÃO | OVIPOSIÇÃO   |
| 1                         | ď              | 17          | -          | -          | -            |
|                           | Q              | 9           | 1          | 7          | 2            |
| 2                         | ď              | 17          | -          | -          | -            |
|                           | Q              | 11          | 2          | 8          | 2            |
| 3                         | O'             | 14          | -          | -          | -            |
|                           | Q              | 14          | 11         | 10         | 4            |
| 4                         | O <sup>*</sup> | 20          | -          | -          | -            |
|                           | Q              | 18          | 2          | 11         | 5            |
| 5                         | ď              | 13          | _          | _          | _            |
|                           | Q              | 10          | 2          | 8          | 1            |
| 6                         | O'             | 17          | <b>-</b> , | -          | _            |
|                           | Q              | 13          | 2          | 7          | 4            |
| 7                         | ď              | 21          | -          | _          | <del>-</del> |
|                           | Q.             | 10          | 2          | 8          | 1            |
| 8                         | <b>o</b>       | 22          | -          | _          | -            |
|                           | Q              | 13          | 2          | 9          | 3            |
| 9                         | ď              | 19          | _          | _          | -            |
|                           | Q              | 9           | 2          | 6          | 2            |
| 10                        | O''            | 32          | _          | _          | _            |
|                           | Q              | 13          | 4          | 8          | 2            |
| 11                        | O <sup>†</sup> | 20          | -          | _          | _            |
| T.T.                      | Q              | 12          | 1          | 9          | 3            |
| $\overline{\overline{X}}$ | ď.             | 19,27       | -          | -          |              |
|                           | Q              | 12,00       | 1,91       | 8,36       | 2,64         |

APÊNDICE 6. LONGEVIDADE E PERÍODOS DE PRÉ-OVIPOSIÇÃO, OVIPOSIÇÃO E PÓS OVIPOSIÇÃO (DIAS) DE Spodoptera eridania EM BRACATINGA. TEMPERATURA 25  $\stackrel{+}{=}$  2°C, UR DE 70  $\stackrel{+}{=}$  10% E FOTOFASE DE 14 HORAS. .

| √0 DO  | SEXO           | LONGEVIDADE | nen nné-     | DEDÍODO DE | PER. PÓS-  |
|--------|----------------|-------------|--------------|------------|------------|
| CASAL  | SEAU           | TONGEATDADE |              | OVIPOSIÇÃO |            |
| ASAL   | o^`            | 13          | OVIPOSIÇÃO   | OVIPOSIÇÃO | OVIPOSIÇÃO |
| 1      |                |             | -            | _          | _          |
|        | Q              | 16          | 1            | 11         | 4          |
| 2      | o <sup>*</sup> | 15<br>      | _            | -          | _          |
|        | Q              | 15          | 11           | 13         | 1          |
| 3      | O,             | 27          | -            | -          | -          |
|        | Q              | 22          | 2            | 10         | 10         |
| 4      | O,             | 21          | -            | -          | -          |
|        | Q              | 13          | 1            | 11         | 1          |
| 5      | ď              | 22          | -            | -          | -          |
| J      | Q              | 14          | 1            | 12         | 1          |
| 6      | o''            | 25          | -            | _          | _          |
| Ü      | Q              | 24          | 1            | 13         | 10         |
| 7      | o''            | 22          | _            | _          |            |
| •      | Q              | 11          | 11           | 9          | 11         |
| 8      | ぴ              | 17          | <del>-</del> | -          | -          |
| O      | Q              | 15          | 1            | 12         | 2          |
| 9      | O,             | 26          | _            | _          | -          |
| )      | Q              | 14          | 1            | 12         | 1          |
| <br>L0 | ď              | 23          | _            | -          | -          |
|        | Q              | 11          | 1            | 7          | 3          |
| L1     | ď              | 26          | -            | -          | -          |
| TT     | Q              | 19          | 2            | 14         | 3          |
| ζ      | ď              | 21,55       | -            | -          | _          |
|        | Q              | 15,82       | 1,18         | 11,27      | 3,36       |

APÊNDICE 7. FECUNDIDADE E VIABILIDADE (%) DE Spodoptera eridania EM BATATA DOCE. TEMPERATURA 25  $\pm$  2 $^{\circ}$ C, UR DE 70  $\pm$  10% E FOTOPERÍODO DE 14 HORAS.

| Ио | DA                   |            |            |            |            | P O S     | TURA      | S                 |           |           |          |        |    | TOTAL | VIABILI- |
|----|----------------------|------------|------------|------------|------------|-----------|-----------|-------------------|-----------|-----------|----------|--------|----|-------|----------|
| Q  | •                    | 1          | 2          | 3          | 4          | 5         | 6         | 7                 | 8         | 9         | 10       | 11     | 12 |       | DADE (%) |
|    | Nº Ovos              | 471        | 303        | 115        | 277        | 254       | 180       | 164               |           |           |          |        |    | 1764  |          |
| 1  | NºLarvas             | 459        | 298        | 115        | 263        | 254       | 150       | 164               | _         | _         | _        | -      | _  | 1703  | 96,14    |
|    | Viabil.              | 97         | 98         | 100        | 95         | 100       | 83        | 100               |           |           |          |        |    | -     |          |
|    | Nº Ovos              | 86         | 182        | 385        | 191        | 138       | 96        | 69                | 56        |           |          |        |    | 1203  |          |
| 2  | Nº Larvas            | 86         | 176        | 385        | 172        | 130       | 91        | 0                 | 0         | -         | -        | -      | _  | 1040  | 72,0     |
|    | Viabil.              | 100        | 97         | 100        | 90         | 94        | 95        | 0                 | 0         |           |          |        |    |       |          |
| _  | Nº Ovos              | 678        | 397        | 436        | 201        | 24        | 460       | 167               | 117       | 106       | 41       |        |    | 2627  |          |
| 3  | Nº Larvas<br>Viabil. | 99         | 390<br>98  | 436<br>100 | 168<br>84  | 0<br>0    | 390<br>85 | 167<br>100        | 109<br>93 | 106       | 28<br>68 |        |    | 2464  | 82,7     |
|    | Nº Ovos              | 238        | 391        | 324        | 230        | 134       | 171       | $\frac{100}{104}$ | <u> </u>  | 100<br>45 | 26       |        |    |       |          |
| 4  | Nº Larvas            | 238        | 391        | 324        | 175        | 134       | 123       | 92                | 0         | 0         | 0        | 4<br>0 |    | 1477  | 57,82    |
| 7  | Viabil.              | 100        | 100        | 100        | 76         | 100       | 72        | 88                | 0         | 0         | 0        | 0      |    | 14//  | 57,02    |
|    | Nº Ovos              | 419        | 132        | 462        | 403        | 380       | 255       | 170               | 103       |           | <u> </u> |        |    | 2324  |          |
| 5  | Nº Larvas            | 408        | 130        | 315        | 385        | 374       | 245       | 170               | 97        | _         | _        | _      |    | 2124  | 93,38    |
| -  | Viabil.              | 97         | 98         | 68         | 96         | 98        | 96        | 100               | 94        |           |          |        |    | _     | 33,30    |
|    | Nº Ovos              | 396        | 392        | 395        | 111        | 200       | 117       | 79                |           |           |          |        |    | 1690  |          |
| 6  | NºLarvas             | 396        | 387        | 372        | 103        | 197       | 95        | 76                | -         | -         | _        | _      | _  | 1626  | 94,57    |
|    | Viabil.              | 100        | 99         | 94         | 93         | 99        | 81        | 96                |           |           |          |        |    | -     | ·        |
|    | Nº Ovos              | 227        | 161        | 303        | 102        | 225       | 144       | 64                | 264       | 46        |          |        |    | 1536  |          |
| 7  | NºLarvas             | 227        | 142        | 298        | 102        | 194       | 102       | 5                 | 225       | 0         | _        | -      | -  | 1295  | 70,67    |
|    | Viabil.              | 100        | 88         | 98         | 100        | 86        | 71        | 8                 | 85        | 00        |          |        |    |       |          |
| _  | Nº Ovos              | 343        | 250        | 332        | 295        | 133       | 174       | 89                | 65        | 17        |          |        |    | 1698  |          |
| 8  | Nº Larvas            | 343        | 243        | 321        | 289        | 133       | 136       | 85                | 63        | 0         | -        | -      | -  | 1613  | 84,78    |
|    | Viabil.              | 100        | 97         | 97         | 98         | 100       | 78        | 96                | 97        | 0         |          |        |    | _     |          |
| _  | Nº Ovos              | 512        | 313        | 431        | 430        | 238       | 169       |                   |           |           |          |        |    | 2093  |          |
| 9  | Nº Larvas            | 512        | 297        | 431        | 420        | 234       | 93        | -                 | -         | -         | -        | -      | -  | 1987  | 91,0     |
|    | Viabil.              | 100        | 95         | 100        | 98         | 98        | 55        | <del></del>       |           |           |          |        |    | -     |          |
| 0  | Nº Ovos              | 557<br>452 | 343<br>343 | 296<br>53  | 241<br>234 | 139       | 79<br>71  | 74<br>59          | 35<br>9   |           |          |        |    | 1764  | 72.0     |
| 0  | NºLarvas             | 452<br>81  | 100        | 18         | 234<br>97  | 117<br>84 | 71<br>90  | 59<br>80          | 26        | _         | -        | -      | -  | 1338  | 72,0     |
|    | Viabil. Nº Ovos      | 228        | 314        | 481        | 430        | 274       | 119       | 106               | 58        | 28        |          |        |    | 2038  |          |
| 1  | Nº UVOS<br>Nº Larvas |            | 298        | 481        | 430        | 208       | 112       | 101               | 56        | 28        | _        | _      | _  |       | 95,22    |
| _  | Viabil.              | 100        | 95         | 100        | 100        | 76        | 94        | 95                | 97        | 100       | _        | _      | _  | 1942  | 95,22    |

APÈNDICE 8. FECUNDIDADE E VIABILIDADE (%) DE Spodoptera eridania EM BRACATINGA. TEMPERATURA 25  $^+$  2°C, UR DE 70  $^+$  10% E FOTOPERÍODO DE 14 HORAS.

| Иô       | i i      |     |     |      |     | P          | O S | T U R | A S |     |     |     |     |     |    |       | VIABILI-       |
|----------|----------|-----|-----|------|-----|------------|-----|-------|-----|-----|-----|-----|-----|-----|----|-------|----------------|
| DA       |          | 1   | 2   | 3    | 4   | 5          | 6   | 7     | 8   | 9   | 10  | 11  | 12  | 13  | 14 | TOTAL | DADE (%)       |
| <u>Q</u> |          |     |     |      |     |            |     |       |     |     |     |     |     |     |    | ····  |                |
|          | Nº Ovos  | 613 | 478 | 244  | 202 | 161        | 145 | 84    | 69  | 19  | 22  | 05  |     |     |    | 2042  |                |
| 1        | NºLarvas | 613 | 442 | 223  | 202 | 161        | 143 | 81    | 64  | 16  | 20  | 0   |     | -   |    | 1965  | 86,00          |
|          | Viabil.  | 100 | 92  | 91   | 100 | 100        | 99  | 96    | 93  | 84  | 91  | 0   |     |     |    | _     |                |
|          | Nº Ovos  | 305 | 570 | 264  | 200 | 271        | 103 | 48    | 85  | 65  | 48  | 33  | 15  | 14  |    | 2021  | 05 05          |
| 2        | NºLarvas | 295 | 570 | 264  | 193 | 271        | 100 | 48    | 85  | 64  | 48  | 33  | 15  | 0.8 |    | 1994  | 95 <b>,</b> 85 |
|          | Viabil.  | 97  | 100 | 100  | 97  | 100        | 97  | 100   | 100 | 98  | 100 | 100 | 100 | 57  |    | _     |                |
|          | Nº Ovos  | 304 | 377 | 329  | 280 | 375        | 220 | 123   | 143 | 100 | 69  |     |     |     |    | 2320  |                |
| 3        | NºLarvas | 304 | 377 | 322  | 280 | 359        | 220 | 105   | 143 | 100 | 67  | -   | -   | -   | -  | 2270  | 97 <b>,</b> 60 |
|          | Viabil.  | 100 | 100 | . 98 | 100 | 96         | 100 | 85    | 100 | 100 | 97  |     |     |     |    | -     |                |
|          | Nº Ovos  | 344 | 443 | 392  | 283 | 228        | 145 | 73    | 117 | 52  | 28  | 33  |     |     |    | 2138  | 05 73          |
| 4        | NºLarvas | 344 | 437 | 392  | 279 | 228        | 145 | 67    | 106 | 45  | 28  | 28  | -   | -   | -  | 2099  | 95 <b>,</b> 73 |
|          | Viabil.  | 100 | 99  | 100  | 99  | 100        | 100 | 92    | 91  | 87  | 100 | 85  |     |     |    |       |                |
|          | Nº Ovos  | 311 | 320 | 309  | 219 | 156        | 92  | 64    | 60  | 49  | 40  | 27  | 20  |     |    | 1667  |                |
| 5        | NºLarvas | 294 | 230 | 306  | 217 | 156        | 89  | 56    | 45  | 49  | 40  | 21  | 18  | -   | -  | 1521  | 91,08          |
|          | Viabil.  | 95  | 72  | 99   | 100 | 97         | 88  | 75    | 100 | 100 | 78  | 90  |     |     |    | _     |                |
|          | Nº Ovos  | 420 | 337 | 106  | 115 | 221        | 119 | 120   | 111 | 66  | 37  | 31  | 43  | 20  |    | 1746  | 04 54:         |
| 6        | NºLarvas | 404 | 313 | 94   | 95  | 204        | 102 | 102   | 106 | 55  | 30  | 29  | 29  | 11  |    | 1574  | 84,54          |
|          | Viabil.  | 96  | 93  | 89   | 83  | 92         | 86  | 85    | 95  | 83  | 81  | 94  | 67  | 55  |    |       |                |
|          | Nº Ovos  | 229 | 207 | 482  | 296 | 210        | 162 | 112   | 33  | 24  |     |     |     |     |    | 1755  |                |
| 7        | NºLarvas | 222 | 185 | 387  | 296 | 206        | 162 | 104   | 23  | 24  | -   | -   | -   | -   | -  | 1609  | 91,89          |
|          | Viabil.  | 97  | 89  | 80   | 100 | 98         | 100 | 93    | 70  | 100 |     |     |     |     |    | _     |                |
|          | Nº Ovos  | 204 | 466 | 292  | 224 | 213        | 160 | 120   | 59  | 21  | 55  | 09  | 28  |     |    | 1851  |                |
| 8        | NºLarvas | 201 | 457 | 292  | 224 | 213        | 154 | 120   | 55  | 06  | 0   | 0   | 0   | _   | -  | 1722  | 67 <b>,</b> 92 |
|          | Viabil.  | 99  | 98  | 100  | 100 | 100        | 96  | 100   | 93  | 29  | 0   | 0   | 0   |     |    | _     |                |
|          | Nº Ovos  | 735 | 387 | 390  | 473 | 232        | 229 | 207   | 133 | 86  | 27  | 88  | 116 |     |    | 3103  |                |
| 9        | NºLarvas | 493 | 387 | 308  | 473 | 232        | 229 | 205   | 133 | 83  | 27  | 88  | 116 | -   | _  | 2774  | 95,17          |
|          | Viabil.  | 67  | 100 | 79   | 100 | 100        | 100 | 99    | 100 | 97  | 100 | 100 | 100 |     |    |       |                |
|          | Nº Ovos  | 438 | 351 | 281  | 175 | 79         | 105 | 51    |     |     |     |     |     |     |    | 1480  |                |
| 10       | NºLarvas | 438 | 351 | 281  | 175 | 71         | 104 | 51    | -   | -   | -   | -   |     | -   | -  | 1471  | 98,43          |
|          | Viabil.  | 100 | 100 | 100  | 100 | 90         | 99  | 100   |     |     |     |     |     |     |    |       |                |
|          | Nº Ovos  | 522 | 337 | 386  | 460 | 110        | 309 | 189   | 123 | 133 | 66  | 52  | 27  | 43  | 30 | 2787  |                |
| 11       | NºLarvas | 505 | 306 | 317  | 410 | 60         | 304 | 189   | 117 | 120 | 51  | 40  | 15  | 35  | 26 | 2495  | 83,93          |
|          | Viabil.  | 97  | 91  | 82   | 89  | 5 <b>5</b> | 98  | 100   | 95  | 90  | 77  | 77  | 56  | 81  | 87 | -     |                |

APÊNDICE 9. PESO DE LARVAS (MG DE MATÉRIA SECA POR DIA) DE Spodoptera eridania ALIMENTADAS COM FOLHAS DE BATATA DOCE. TEMPERATURA  $25 \pm 0.5^{\circ}$ C, UR DE  $70 \pm 10\%$  E FOTOPERÍODO DE 14 HORAS.\*

| D: | ia l      | 2      | 3       | 4      | 5       | 6       | 7       | 8         | 9      | 10               | 11     | 12              | 13      |  |
|----|-----------|--------|---------|--------|---------|---------|---------|-----------|--------|------------------|--------|-----------------|---------|--|
| 1  | • 0 ,1368 | 0,4138 | .0,7710 | 1,9971 | ·2,5168 | 5,1304  | •7,686  | 21,051    | 28,800 | •33,841          | 66,151 | 86,533          | 98,246  |  |
| 2  | .0,1368   | 0,3762 | .0,7963 | 2,1488 | .2,4346 | 4,8048  | •9,450  | 21,330    | 33,120 | ·38,098          | 57,465 | 97,309          | 103,088 |  |
| 3  | .0,1630   | 0,3887 | .0,7963 | 2,1488 | .2,640  | 4,620   | •9,288  | 19,449    | 27,900 | .36,894          | 65,850 | 83,807          | 92,785  |  |
| 4  | .0,1630   | 0,4012 | .0,7204 | 1,9592 | .2,640  | 5,0512  | 9,680   | ·11,799   | 30,897 | •48,573          | 70,761 |                 | -       |  |
| 5  | .0,1630   | 0,4514 | ·0,8089 | 1,8075 | .2,8952 | 5,0512  | 7,884   | •20,700   | 37,485 | •42,630          | 72,549 | 96 <b>,</b> 775 | 102,469 |  |
| 6  | .0,1630   | 0,3636 | .0,6446 | 1,9212 | .2,0944 | 3,6256  | •5,418  | 14,163    | 28,125 | .29,042          | 60,613 | 78,432          | 82,499  |  |
| 7  | .0,1368   | 0,4012 | .0,5940 | 2,0856 | .3,0624 | 5,2272  | ·8,973  | 20,934    | 32,148 | .37,840          | 71,655 | 92,622          | 100,069 |  |
| 8  | ·0,1368   | 0,3260 | .0,6952 | 1,7316 | .2,640  | 4,0392  | 7,198   | .17,100   | 33,453 | •35,243          | 58,118 | 83,359          | 89,663  |  |
| 9  | .0,1368   | 0,3511 | .0,7204 | 1,7316 | •2,3672 | 4,4792  | •6,300  | 17,154    | 23,616 | .32,817          | 68,447 | 80,376          | -       |  |
| 10 | .0,1368   | 0,3009 | .0,5940 | 1,2640 | .2,5608 | 3,0880  | •4,671  | 12,933    | 22,734 | •23,220          | 50,224 | 71,973          | 89,078  |  |
| 11 | .0,1368   | 1,3135 | .0,7204 | 1,4030 | .2,7456 | 4,2504  | •5,958  | 14,400    | 24,435 | •28,862          | 49,304 | 72,506          | 88,202  |  |
| 12 | .0,1504   | 0,3135 | .0,7710 | 1,8960 | .2,7808 | 4,400   | 10,815  | ·12,537   | 30,519 | ·38,502          | 55,848 | -               | -       |  |
| 13 | .0,1504   | 0,3385 | .0,4929 | 1,6432 | ·2,7896 | 3,8544  | 5,614   | ·16,578   | 29,232 | .31,028          | 56,975 | 80,100          | 103,759 |  |
| 14 | .0,1504   | 0,4138 | ·0,6067 | 1,7569 | .2,4640 | 4,1184  | •6,759  | 14,931    | 24,984 | .28,156          | 62,427 | 75,043          | 90,094  |  |
| 15 | .0,1504   | 0,4514 | .0,5940 | 1,7948 | ·1,9888 | 4,1536  | ·6,381  | 16,335    | 25,659 | ·28,345          | 59,581 | 79,782          | 90,214  |  |
| 16 | .0,1504   | 0,4389 | .0,6446 | 1,4788 | .2,8864 | 4,1888  | •6,543  | 17,235    | 28,854 | •31,751          | 59,598 | 85,948          | 99,554  |  |
| 17 | .0,1630   | 0,4389 | .0,7710 | 1,8075 | 3,5644  | •4,7872 | 12,557  | •12,753   | 28,953 | •46,199          | 70,726 | 72,721          | -       |  |
| 18 | .0,1630   | 0,3385 | .0,6446 | 1,8707 | .2,6400 | 4,7080  | •7,650  | 21,348    | 23,283 | •47,334          | 67,321 | 87,574          | -       |  |
| 19 | .0,1630   | 0,4138 | .0,6825 | 1,8960 | .1,9272 | 5,0160  | .8,888  | 18,684    | 28,431 | •35,613          | 71,982 | 101,205         | 113,520 |  |
| 20 | •0,1630   | 0,3636 | .0,7331 | 1,6179 | .2,8160 | 4,7784  | 8,536   | ·18,288   | 20,880 | •39,095          | 60,733 | 79,111          | -       |  |
| 21 | .0,1504   | 0,3260 | .0,6572 | 1,9718 | .2,2176 | 4,1624  | 8,7648  | 8 •12,924 | 27,279 | •46,199          | 59,271 | -               | -       |  |
| 22 | .0,1504   | 0,3636 | .0,6952 | 2,0350 | .2,4640 | 4,6728  | •7,7400 | 0 17,892  | 29,124 | .31,459          | 55,831 | 76,574          | 88,777  |  |
| 23 |           |        | .0,6320 | 1,9465 | .1,4784 | 4,1448  | •5,6880 | 16,236    | 26,991 | ·27 <b>,</b> 769 | 51,961 | 77,262          | 95,881  |  |
| 24 | •         |        | .0,7584 |        | .2,6488 |         |         | 0 13,464  |        |                  | 76,411 | _               | -       |  |
| 25 | •         | •      | ·0,7078 | •      | .2,3496 |         | •9,207  | 0 23,535  | 26,397 | .48,753          | 83,583 | 88,649          | -       |  |

<sup>\*</sup> A partir do primeiro dia do segundo instar

<sup>.</sup> ECDISE

APENDICE 10 PESO DAS FEZES PRODUZIDAS (F) (MG DE MATÉRIA SECA POR DIA) POR LARVAS DE Spodoptera eridania ALIMENTADAS COM FOLHAS DE BATATA DOCE. TEMPERATURA 25 <sup>±</sup> 0,5°C, UR DE 70 <sup>±</sup> 10% E FOTOPERÍODO DE 14 HORAS.

| Dia      |              |            |            |            |            |             |             |              |              |               |               | 7.0           |
|----------|--------------|------------|------------|------------|------------|-------------|-------------|--------------|--------------|---------------|---------------|---------------|
| ΝĢ       | 1            | 2          | 3          | 4          | 5          | 6           | 7           | 8            | 9            | 10            | 11            | 12            |
| 1        | 0,5          | 0,4        | 2,4        | 2,3        | 8,3        | 3,0         | 20,0        | 30,6         | 3,4          | 38,5          | 64,1          | 79,8          |
| 2        | 0,5          | 0,4        | 2,4        | 1,6        | 3,6        | 3,8         | 17,5        | 29,8         | 2,8          | 45,2          | 73,0          | 91,9          |
| - 3      | 0,5          | 0,4        | 2,4        | 2,0        | 2,3        | 1,1         | 14,9        | 27,7         | 5,5          | 34,1          | 60,0          | 75,3          |
| 4        | 0,5          | 0,4        | 2,4        | 1,1        | 1,8        | 24,7        | 5,9         | 19,6         | 44,6         | 53,5          | -             | -             |
| 5        | 0,5          | 0,4        | 2,4        | 1,4        | 1,2        | 5,0         | 16,6        | 37,1         | 5,9          | 46,0          | 86,2          | 81.,3         |
| 6        | 0,5          | 0,4        | 2,4        | 2,4        | 5,4        | 1,2         | 9,8         | 23,1         | 5,3          | 29,1          | 66,1          | 74,6          |
| 7        | 0,5          | 0,4        | 2,4        | 1,8        | 2,8        | 2,1         | 26,1        | 39,9         | 1,5          | 50 <b>,7</b>  | 74,3          | 77,6          |
| 8        | 0,5          | 0,4        | 2,4        | 1,4        | 1,0        | 5,3         | 11,7        | 26,4         | 5,4          | 31,3          | 58,9          | 70,6          |
| 9        | 0,5          | 0,4        | 2,4        | 1,8        | 1,1        | 1,8         | 14,4        | 20,0         | 3,6          | 29,2          | 64,9          |               |
| 10       | 0,5          | 0,4        | 2,4        | 1,5        | 6,5        | 1,9         | 13,5        | 27,2         | 5,2          | 31,2          | 60,4          | 73,8          |
| 11       | 0,5          | 0,4        | 2,4        | 1,6        | 1,6        | 6,0         | 17,4        | 31,2         | 3,5          | 38,1          | 60,6          | 47,4          |
| 12       | 0,5          | 0,4        | 2,4        | 1,9        | 3,3        | 21,0        | 8,4         | 20,9         | 52,9         | 54,5          | -             | _             |
| 13       | 0,5          | 0,4        | 2,4        | 1,6        | 3,5        | 4,6         | 10,0        | 25,6         | 5,1          | 29,4          | 57 <b>,</b> 8 | 79,2          |
| 14       | 0,5          | 0,4        | 2,4        | 1,2        | 1,0        | 3,2         | 15,4        | 24,9         | 2,2          | 33,0          | 56,6          | 65,2          |
| 15       | 0,5          | 0,4        | 2,4        | 2,1        | 5,5        | 3,0         | 17,2        | 36,2         | 4,1          | 37,0          | 53,4          | 65,4          |
| 16       | 0,5          | 0,4        | 2,4        | 1,1        | 3,5        | 1,8         | 5,5         | 27,6         | 5,2          | 32,4          | 72,3          | 75 <b>,</b> 7 |
| 17       | 0,5          | 0,4        | 2,4        | 2,0        | 7,8        | 2,7         | 10,8        | 18,0         | 49,1         | 55 <b>,</b> 9 | 63,1          | -             |
| 18       | 0,5          | 0,4        | 2,4        | 1,8        | 1,5        | 2,2         | 20,6        | 12,4         | 29,7         | 66,4          | 75,6          | -             |
| 19       | 0,5          | 0,4        | 2,4        | 1,5        | 0,5        | 2,6         | 17,4        | 25,7         | 0,7          | 40,9          | 70,0          | 90,8          |
| 20       | 0,5          | 0,4        | 2,4        | 1,6        | 2,5        | 4,5         | 13,9        | 13,9         | 22,2         | 55,5          | 60,2          | -             |
| 21       | 0 <b>,</b> 5 | 0,4        | 2,4        | 1,4        | 1,1        | 27,8        | 11,4        | 13,0         | 44,3         | 59,3          | -             | _             |
| 22       | 0,5          | 0,4        | 2,4        | 1,9        | 0,8        | 2,9         | 7,2         | 26,6         | 4,5          | 30,9          | 55,2          | 66,9          |
| 23       | 0,5          | 0,4        | 2,4        | 1,5        | 1,2        | 4,0         | 15,0        | 30,8         | 3,2          | 33,2          | 53,3          | 64,4          |
| 24<br>25 | 0,5<br>0,5   | 0,4<br>0,4 | 2,4<br>2,4 | 1,5<br>2,0 | 1,3<br>1,7 | 21,2<br>4,1 | 7,6<br>21,6 | 18,2<br>18,0 | 42,1<br>41,1 | 51,2<br>68,6  | 80,0          |               |

A partir do primeiro dia do segundo instar

APÊNDICE 11. PESO DO ALIMENTO INGERIDO (I) (MG DE MATÉRIA SECA POR DIA) POR LARVAS DE Spodoptera eridania ALIMENTADAS COM FOLHAS DE BATATA DOCE. TEMPERATURA 25 ± 0,5°C UR DE 70 ± 10% E FOTOPERÍODO DE 14 HORAS \*

|     |     | E 14 HOR   |              |            |      |              |      |      |      |               |       |          |
|-----|-----|------------|--------------|------------|------|--------------|------|------|------|---------------|-------|----------|
| Dia | 1   | 2          | 3            | 4          | 5    | 6            | 7    | 8    | 9    | 10            | 11    | 12       |
| //o |     |            |              | 5,8        | 10,4 | 7,7          | 52,4 | 47,3 | 22,4 | 72,4          | 120,2 | 135,7    |
| 1 . | 0,4 | 1,6        | 3,8          | 3,8<br>3,7 | 4,6  | 12,8         | 46,3 | 49,5 | 20,1 | 78,3          | 160,7 | 134,9    |
| 2   | 0,8 | 1,0        | 6,8          | 5,6        | 3,5  | 9,9          | 48,4 | 43,7 | 22,5 | 78,3          | 119,2 | 129,4    |
| 3   | 2,6 | 1,1        | 6,5          | 3,8        | 2,6  | 27,5         | 25,7 | 41,4 | 83,9 | 94,2          | -     | _        |
| 4   | 1,2 | 0,8        | 5,1          | 3,6        | 5,1  | 11,0         | 29,0 | 56,7 | 23,0 | 73,4          | 153,6 | 146,2    |
| 5   | 1,7 | 0,7        | 3,3          | 4,0        | 10,3 | 8,2          | 37,4 | 40,2 | 17,5 | 67 <b>,</b> 5 | 136,3 | 125,7    |
| 6   | 0,3 | 1,0        | 3,3          | 4,4        | 4,3  | 8 <b>,</b> 7 | 57,3 | 63,6 | 15,6 | 93,5          | 138,3 | 130,3    |
| 7   | 1,6 | 0,8        | 5,5          | 3,4        | 3,3  | 11,5         | 36,8 | 55,0 | 13,3 | 58,6          | 122,3 | 115,0    |
| 8   | 0,7 | 1,0        | 3,2          | 3,5        | 1,6  | 6,3          | 47,9 | 29,7 | 21,9 | 78,2          | 100,5 | <b>-</b> |
| 9   | 0,6 | 2,0        | 3 <b>,</b> 6 | 2,3        | 11,0 | 6,1          | 37,0 | 50,7 | 10,1 | 58,0          | 108,8 | 133,     |
| 10  | 0,4 | 2,3        | 3,2<br>2,7   | 3,6        | 5,4  | 9,2          | 39,2 | 48,0 | 19,1 | 52,6          | 118,0 | 94,      |
| 11  | 0,1 | 3,9        |              | 3,6        | 4,9  | 28,7         | 15,8 | 43,6 | 89,1 | 98,8          | -     | -        |
| 12  | 1,4 | 1,4        | 5,1<br>5,0   | 4,4        | 6,7  | 8,6          | 36,8 | 41,0 | 11,6 | 58,4          | 117,1 | 138,     |
| 13  | 1,6 | 1,2        | 3,5          | 3,5        | 2,2  | 8,8          | 39,3 | 43,4 | 15,4 | 68,1          | 103,8 | 122,     |
| 14  | 0,3 | 2,4        |              | 3,5        | 11,2 | 7,4          | 42,7 | 56,7 | 12,5 | 60,1          | 102,5 | 127,     |
| 15  | 1,3 | 1,2        | 4,2<br>3,0   | 1,8        | 6,6  | 8 <b>,</b> 7 | 39,2 | 47,4 | 13,0 | 66,1          | 129,9 | 188,     |
| 16  | 0,8 | 1,5        | 3,8          | 3,5        | 11,2 | 31,4         | 3,8  | 38,1 | 81,1 | 98,1          | 108,1 | -        |
| 17  | 1,1 | 2,1        |              | 4,4        | 2,7  | 7 <b>,</b> 9 | 54,2 | 13,9 | 67,6 | 105,7         | 143,5 | -        |
| 18  | 0,8 | 2,0        | 6,4<br>5,5   | 3,4        | 0,8  | 10,9         | 45,7 | 40,1 | 22,0 | 78,4          | 129,2 | 142,     |
| 19  | 0,9 | 0,7        | 3,4          | 5,4        | 4,3  | 11,9         | 49,6 | 21,2 | 50,1 | 85,6          | 118,3 | -        |
| 20  | 1,8 | 2,9        |              | 1,4        | 2,1  | 28,5         | 24,5 | 35,4 | 72,4 | 97,3          | -     | -        |
| 21  | 0,1 | 1,3        | 5,0          | 3,2        | 0,9  | 8,5          | 40,9 | 45,8 | 10,8 | 52,7          | 107,5 | 105,     |
| 22  | 0,3 | 1,4        | 2,9<br>4,1   | 1,8        | 2,7  | 7,4          | 43,3 | 51,5 | 6,8  | 50,3          | 109,1 | 116,     |
| 23  | 0,1 | 1,6        | 3,5          | 3,4        | 0,5  | 30,1         | 25,1 | 44,7 | 78,3 | 82,6          | -     | -        |
| 24  | 0,1 | 1,4<br>2,3 | 3,5<br>4,1   | 5,6        | 2,2  | 11,7         | 60,6 | 17,7 | 74,2 | 97,1          | 136,9 | -        |
| 25  | 0,3 | 2,5        | -,-          | •          |      |              |      |      |      |               |       |          |

<sup>\*</sup> A partir do primeiro dia do segundo instar.

APÊNDICE 12 PESO DE LARVAS (MG DE MATÉRIA SECA POR DIA) DE Spodoptera eridania ALIMENTADAS COM FOLHAS DE BRACATINGA. TEMPERATURA 25  $^{\pm}$  0,5 $^{\circ}$ C, UR DE 70  $^{\pm}$  10% E FOTOPERÍODO DE 14 HORAS.\*

| Dia | 1      | 2    | 3     | 4      | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13     | 14     | 15     | 16     | 17    | 18    | 19    | 20    | 21       | 22        | 23         | 24       |
|-----|--------|------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|-------|-------|-------|-------|----------|-----------|------------|----------|
| NO  |        |      |       |        |       |       |       |       |       |       |       |       |        |        |        |        |       |       |       |       |          |           |            |          |
| 1   | •0,08  | 0,17 | 0,24  | •0,26  | 0,51  | 0,84  | •1,10 | 0,74  |       | •3,08 | 3,41  | 5,13  | 8,17   | •8,05  | 17,01  |        |       | 36,92 |       |       |          |           | -          | -        |
| 2   | .0,08  | 0,17 | 0,24  | .0,26  | 0,51  | •0,55 | 1,10  | 1,63  | •3,19 | 5,20  | •5,18 | 7,23  | *      | 15,48  | 22,25  |        |       |       |       |       |          |           | -          | -        |
| 3   | .0,08  | 0,17 | .0,14 | 0,26   | 0,51  | •0,55 | 1,10  | .1,90 | 3,08  | 3,93  | •4,50 | 6,01  | 8,84   | 13,56  | 19,36  | •21,37 | 28,87 | 38,65 | 48,82 | 58,59 | 69,13    | 66,05     | 5 <b>-</b> | -        |
| 4   | .0,08  | 0,17 | .0,14 | 0,26   | •0,33 | 0,55  | •1,40 | 2,77  | 5,74  | •5,59 | 9,90  | 13,23 | 16,19  | •18,43 | 25,82  | 37,70  | 50,81 | 63,81 | 66,38 | -     | -        | -         | -          | -        |
| 5   | .0,08  | 0,15 | 0,21  | .0,21  | 0,41  | •0,36 | 0,83  | 0,94  | •2,72 | 4,66  | •5,23 | 10,06 | 12,43  | 13,80  | •14,18 | 27,55  | 41,90 | 56,20 | 68,02 | 76,87 | -        | -         | -          | -        |
| 6   | .0,08  | 0,16 | .0,13 | 0,21   | 0,41  | •0,36 | 0,83  | 0,99  | •2,22 | 3,23  | 4,89  | •5,53 | 7,78   | 19,24  | 19,68  | •23,38 | 34,84 | 49,30 | 62,43 | 67,54 | 67,82    | -         | -          | -        |
| 7   | .0,08  | 0,16 | .0,13 | 0,21   | 0,41  | •0,36 | 0,83  | •1,76 | 3,36  | 5,24  | •5,15 | 6,81  | 12,09  | 14,83  | •22,99 | 24,11  | 36,94 | 48,52 | 59,71 | 65,81 | 64,39    | _         | -          | _        |
| 8   | •0,08  | 0,16 | .0,13 | 0,21   | 0,41  | •0,36 | 0,83  | 0,75  | •2,15 | 4,26  | •4,11 | 6,71  | 9,79   | 12,84  | •13,44 | 21,21  | 30,36 | 42,24 | 53,52 | 65,89 | 63,71    | -         | -          | _        |
| 9   | .0,08  | 0,16 | .0,13 | 0,21   | .0,27 | 0,36  | .1,10 | 3,13  | •3,67 | 5,86  | 8,88  | 11,69 | •13,60 | 20,97  | 32,95  | 48,04  | 65,89 | 65,09 | -     | -     | _        | -         | -          | _        |
| 10  | •0,11  | 0,17 | 0,21  | .0,24  | 0,79  | .0,49 | 0,95  | 1,67  | •2,52 | 3,96  | 7,31  | •7,10 | 11,89  | 19,24  | •21,91 | 30,46  | 41,59 | 55,84 | 66,99 | 74,74 | _        | _         | -          |          |
| 11  | .0,11  | 0,17 | 0,21  | .0,24  | 0,47  | 0,75  | •0,95 | 1,08  | •2,60 | 5,04  | •5,26 | 8,24  | 13,70  | 21,51  | •22,99 | 28,46  | 38,90 | 47,70 | 58,75 | 68,01 | 64,45    | -         | _          | _        |
| 12  | .0,11  | 0,17 | .0,13 | 0,24   | 0,47  | .0,49 | 0,95  | •1,90 | 3,38  | 5,47  | •5,59 | 8,13  | 14,23  | 21,45  | .24,21 | 31,47  | 41,62 | 51,06 | 69,48 | 77,28 | 78,84    | _         | -          | _        |
| 13  | •0,11  | 0,17 | .0,13 | 0,24   | 0,47  | .0,49 | 0,95  | 1,10  | •3,06 | 4,95  | •5,06 | 7,05  | 11,88  | 17,70  | •19,91 |        |       | 62,09 |       |       |          | -         | -          | _        |
| 14  | .0,11  | 0,17 | 0,21  | .0,24  | 0,47  | .0,49 | 0,95  | •1,90 | 3,84  | 6,19  | •6,09 | 9,65  | 14,74  | 21,23  | •22,93 |        |       | 61,80 |       |       |          | -         | _          | _        |
| 15  | .0,10  | 0,13 | 0,22  | .0,21  | 0,37  | .0,43 | 0,82  | 1,13  | •2,16 | 4,05  | 5,85  | 6,25  | 9,61   | 13,69  | 21,54  | •24,72 |       |       |       |       |          | _         | -          | _        |
| 16  | .0,10  | 0,13 | .0,13 | 0,21   | 0,37  | .0,43 | 0,82  | 1,58  | .2,64 | 5,54  | 8,47  | •8,38 | 13,64  | 18,88  | 27,75  | •31,96 |       |       |       |       |          | 91,01     | _          | _        |
| 17  | .0,10  | 0,13 | 0,22  | .0,21  | 0,37  | •0,43 | 0,82  | •1,32 | 3,66  | 4,78  | •4,79 | 6,79  | 12,01  | 14,51  | ·16,87 |        |       | 49,00 |       |       | _        | <u>-</u>  | _          | _        |
| 18  | .0,10  | 0,13 | .0,13 | 0,21   | .0,24 | 0,43  | 0,82  | •1,58 | 4,03  | 5,81  | •5,85 | 7,10  | 10,20  | 13,26  | 19,60  | •22,25 |       |       |       |       | 67.85    | _         | _          | _        |
| 19  | .0,10  | 0,13 | 0,22  | .0,21  | 0,37  | .0,43 | 0,82  | 1,46  | •2,19 | 3,87  | 6,28  | 6,09  | 8,83   | 12,53  | 20,16  |        |       |       |       |       | <i>.</i> | _         | _          | _        |
| 20  | .0,11  | 0,15 | 0,19  | .0,18  | 0,35  | .0,37 | 0,68  | •1,52 | 2,90  | 6,19  | .5,81 | 8,83  | 12,26  | 17,05  | •18,90 |        |       | 53,46 |       |       | _        | _         | _          | _        |
| 21  | .0,11  | 0,15 | 0,19  | .0,18  | 0,35  | •0,37 | 0,68  | 0,91  | .1,80 | 3,00  | 3,96  | •3,63 | 6,20   | 9,61   | 17,23  | .18,26 |       |       |       |       |          | 63.34     | _          | _        |
| 22  | .0,11  | 0,15 | .0,12 | 0,18   | 0,35  | 0,57  | .0,68 | 0,82  | -1,89 | 3,21  | •3,09 | 4,50  | 7,95   | 11,74  | •12,72 | 21,36  |       |       |       |       |          | -         | _          | _        |
| 23  | .0,11  | 0,15 | 0,19  | .0,18  | 0,35  | •0,37 | 0,68  | 0,96  | .1,87 | 3,26  | 5,68  | •5,41 | 8,70   | 12,58  | 20,10  |        |       |       |       |       |          | 86.58     | -          | _        |
| 24  | .0.11  | 0,15 | .0,12 | 0,18   | 0,35  | •0,37 | 0,68  | 1,43  | .2,07 | 4,20  | 5,99  | •6,25 | 9,16   | 12,88  | •14,18 |        |       | 48,33 |       |       | _        | -         | _          | _        |
| 25  | .0,09  | 0.14 | 0.18  | .0,17  | 0,31  | .0,34 | 0,64  | 1,62  | .2,42 | 4,21  | 8,22  | •7,80 | 10,57  | 14,95  | 23,16  |        |       |       |       |       | 82.91    | _         | _          | _        |
| 26  | .0,09  | 0.14 | 0,18  | .0,17  | 0.31  | 0,52  | •0,64 | 1,35  | .2,19 | 4,26  | •     | •5,79 |        | ="     | 18,55  |        |       | 39,28 |       |       |          | 79 56     | _          | _        |
| 27  | • 0.09 | 0.14 | 0.18  | .0,17  | 0.31  | •0,34 | 0.64  | .1.32 | 2,76  | 3,96  |       | 5,59  |        | 10,70  | 16,59  | •17,48 |       |       |       |       |          |           |            | _        |
| 28  | .0.09  | 0,14 | 0,18  | .0,17  | 0.31  | •     | 0,64  | .1,16 | 2,27  | -     | •3,35 | 4,75  | •      | 12,05  | •      | .22,76 |       |       |       |       |          | , , , , , |            |          |
| 29  | .0.09  | 0,14 | 0.18  | •      | 0,31  | 0.52  | .0.64 | · ·   | ·10,6 |       |       |       | •      | •      | 11,63  |        |       |       |       |       |          | 72 36     | 92 7       | 1576 111 |
|     | 0,03   | 0,1. | 0,20  | •, = . | -,    | -,    | -,    | -,    | ,-    | _,    | -,    | -,    | .,     | 3,33   | 11,00  | 23,43  | 20,00 | 27,03 | 30,29 | 43,23 | 01,37    | 12,30     | 03,7       | 3 /0,4-  |

<sup>\*</sup> A partir do primeiro dia do segundo instar

<sup>.</sup> ECDISE

APÉNDICE 13 PESO DAS FEZES PRODUZIDAS (F) (MG DA MATÉRIA SECA POR DIA) POR LARVAS DE Spodoptera eridania ALIMENTADAS COM FOLHAS DE BRACATINGA. TEMPERATURA 25  $\pm$  0,5 $^{\circ}$ C, UR DE 70  $\pm$  10% E FOTOPERÍODO DE 14 HORAS.\*

| Dia<br>NO | 1 .  | 2    | 3    | 4    | 5    | 6    | 7   | 8    | 9    | 10   | 11   | 12   | 13   | 14   | 15   | 16   | 17   | 18   | 19   | 20    | 21   | 22   | 23         |  |
|-----------|------|------|------|------|------|------|-----|------|------|------|------|------|------|------|------|------|------|------|------|-------|------|------|------------|--|
| 1         | 0,14 | 0,10 | 0,46 | 0,78 | 1,12 | 2,20 | 1,1 | 3,7  | 3,9  | 2,2  | 8,8  | 16,8 | 4,3  | 23,3 | 37,3 | 6,8  | 32,2 | 68,5 | 63,8 | 67,6  | _    | _    | _          |  |
| 2         |      |      | -    |      |      |      |     |      |      |      |      |      |      |      |      |      |      |      | 56,1 | 58,0  | -    | _    | _          |  |
| 3         | 0.14 | 0,10 | 0,46 | 0.78 | 1,12 | 2,20 | 1,4 | 8,6  | 4,4  | 1,8  | 10,0 | 16,0 | 17,5 | 23,4 | 2,2  | 31,9 | 33,4 | 42,9 | 51,5 | 52,3  | 38,1 | _    | -          |  |
| 4         | 0,14 | 0,10 | 0,46 | 0,78 | 0,12 | 2,20 | 5,6 | 13,9 | 1,4  | 15,4 | 20,3 | 23,2 | 1,5  | 24,7 | 40,8 | 53,3 | 95,5 | 59,1 | _    | _     | _    | -    | _          |  |
| 5         |      |      |      |      |      |      |     |      |      |      |      |      |      |      |      |      |      | 59,4 | 57,9 | -     | -    | _    | _          |  |
| 6         | 0,10 | 0,08 | 0,38 | 0,78 | 1,58 | 2,06 | 2,1 | 3,1  | 4,5  | 8,7  | 1,7  | 13,5 | 18,3 | 23,8 | 2,8  | 37,6 | 52,0 | 63,6 | 48,2 | 48,5  | -    | -    | -          |  |
| 7         | 0,10 | 0,08 | 0,38 | 0,78 | 0,58 | 2,06 | 1,4 | 10,9 | 7,2  | 1,6  | 7,8  | 17,9 | 19,1 | 2,5  | 23,9 | 45,8 | 49,5 | 48,8 | 48,9 | 34,9  | _    | -    | -          |  |
| 8         | 0,10 | 0,08 | 0,38 | 0,78 | 0,58 | 2,06 | 1,1 | 5,1  | 4,1  | 1,6  | 15,3 | 18,0 | 17,3 | 2,2  | 19,7 | 42,0 | 41,0 | 54,8 | 53,7 | 45,8  | -    | _    | _          |  |
| 9         | 0,10 | 0,08 | 0,38 | 0,78 | 0,58 | 2,06 | 5,2 | 3,9  | 10,0 | 13,0 | 16,9 | 2,0  | 26,3 | 37,5 | 48,6 | 63,3 | 66,4 | _    | _    | _     | _    | -    | -          |  |
| 10        | 0,10 | 0,08 | 0,48 | 0,98 | 0,52 | 1,74 | 4,2 | 3,0  | 63,3 | 14.1 | 2,3  | 20,9 | 25,3 | 5,6  | 26,3 | 42,1 | 63,8 | 61,6 | 48,5 | -     | _    | _    | -          |  |
| 11        | 0,10 | 0,08 | 0,48 | 0,98 | 0,52 | 1,74 | 2,1 | 6,3  | 8,1  | 3,0  | 12,2 | 24,0 | 23,8 | 2,7  | 20,8 | 53,6 | 41,5 | 44,7 | 52,8 | 48,6  | _    | -    | -          |  |
| 12        | 0,10 | 0,08 | 0,48 | 0,98 | 0,52 | 1,74 | 2,8 | 9,8  | 6,9  | 4,2  | 9,2  | 25,5 | 30,2 | 5,8  | 24,3 | 47,8 | 40,3 | 69,2 | 66,5 | 71,4  | _    | -    | · _        |  |
| 13        | 0,10 | 0,08 | 0,48 | 0,98 | 0,52 | 1,74 | 2,3 | 6,0  | 6,2  | 1,9  | 10,0 | 20,7 | 25,1 | 4,5  | 31,7 | 55,9 | 54,8 | 59,6 | 54,5 | 51,9  | _    | -    | -          |  |
| 14        | 0,10 | 0,08 | 0,48 | 0,98 | 0,52 | 1,74 | 2,6 | 7,7  | 8,1  | 3,2  | 15,6 | 21,7 | 23,2 | 6,1  | 27,8 | 35,1 | 62,0 | 62,1 | 69,1 | _     | -    | -    | _          |  |
| 15        | 0,08 | 0,10 | 0,40 | 0,78 | 0,60 | 1,66 | 3,9 | 2,8  | 5,7  | 9,6  | 2,6  | 17,0 | 21,9 | 25,3 | 3,2  | 42,0 | 57,3 | 70,9 | 56,5 | _     | -    | -    | -          |  |
| 16        | 0,08 | 0,10 | 0,40 | 0,78 | 0,60 | 1,66 | 5,3 | 3,2  | 5,4  | 16,2 | 2,7  | 23,2 | 24,2 | 35,9 | 4,9  | 43,0 | 47,8 | 63,9 | 68,7 | 56,2  | 51,3 | -    | -          |  |
| 17        | 0,08 | 0,10 | 0,40 | 0,78 | 0,60 | 1,66 | 2,2 | 6,4  | 5,7  | 2,1  | 13,6 | 28,8 | 17,4 | 1,6  | 28,1 | 37,7 | 45,9 | 60,7 | -    | -     | -    | -    | -          |  |
| 18        | 0,08 | 0,10 | 0,40 | 0,78 | 0,60 | 1,66 | 2,0 | 8,2  | 7,2  | 2,2  | 10,0 | 11,8 | 13,6 | 21,3 | 3,0  | 36,4 | 48,4 | 64,5 | 59,6 | 63,5  | · _  | -    | -          |  |
| 19        | 0,08 | 0,10 | 0,40 | 0,78 | 0,60 | 1,66 | 5,1 | 2,3  | 5,3  | 10,2 | 1,4  | 14,4 | 21,1 | 25,0 | 3,9  | 40,6 | 42,9 | 60,3 | 62,1 | -     | -    | _    | -          |  |
| 20        | 0,10 | 0,08 | 0,28 | 0,60 | 0,56 | 1,28 | 2,3 | 5,8  | 7,7  | 2,3  | 15,7 | 18,4 | 25,5 | 3,6  | 25,4 | 46,2 | 47,5 | 54,9 | 61,7 | -     | _    | _    | -          |  |
| 21        | 0,10 | 0,08 | 0,28 | 0,60 | 0,56 | 1,28 | 2,7 | 1,7  | 5,3  | 7,4  | 0,5  | 11,9 | 16,4 | 30,0 | 4,4  | 31,5 | 35,0 | 46,4 | 52,9 | 44,9  | 39,5 | -    | _          |  |
| 22        |      |      |      |      |      |      |     |      |      |      |      |      |      |      |      |      |      |      | 46,7 | 43,4  | -    | -    | -          |  |
| 23        | 0,10 | 0,08 | 0,28 | 0,60 | 0,56 | 1,28 | 2,0 | 3,2  | 4,6  | 7,1  | 0,5  | 16,2 | 17,4 | 28,5 | 4,4  | 41,0 | 41,7 | 61,7 | 71,7 | 70,0  | 57,1 | -    | -          |  |
| 24        | 0,10 | 0,08 | 0,28 | 0,60 | 0,56 | 1,28 | 4,5 | 2,3  | 5,8  | 9,5  | 1,2  | 13,2 | 20,9 | 3,8  | 23,4 | 43,1 | 49,7 | 65,6 | -    | -     | -    | -    | -          |  |
| 25        | 0,08 | 0,14 | 0,24 | 0,54 | 0,54 | 1,04 | 5,7 | 2,8  | 7,6  | 14,4 | 1,7  | 16,2 | 18,1 | 30,9 | 4,4  | 39,7 | 50,7 | 64,3 | 62,8 | -63,6 | _    | -    | · <u>-</u> |  |
| 26        | 0,08 | 0,14 | 0,24 | 0,54 | 0,54 | 1,04 | 3,3 | 1,9  | 5,2  | 9,4  | 1,0  | 14,1 | 17,8 | 25,3 | 27,6 | 3,4  | 35,6 | 51,3 | 61,5 | 53,1  | 51,5 | -    | -          |  |
| 27        |      |      |      |      |      |      |     |      |      |      |      |      |      |      |      |      |      | 43,9 |      | 45,6  | 47,4 | _    | -          |  |
| 28        |      |      |      |      |      |      |     |      |      |      |      |      |      |      |      |      |      | 51,2 |      | _     | -    | -    | -          |  |
| 29        | 0,08 | 0,14 | 0,24 | 0,54 | 0,54 | 1,04 | 2,5 | 1,4  | 2,1  | 5,5  | 4,8  | 2,3  | 10,4 | 17,6 | 27,7 | 3,3  | 30,2 | 36,3 | 46,0 | 49,5  | 42,5 | 72,6 | 43,9       |  |
|           |      |      |      |      |      |      |     |      |      |      |      |      |      |      |      |      |      |      |      |       |      |      |            |  |

<sup>\*</sup> A partir do primeiro dia do segundo instar.

NDICE 14. PESO DO ALIMENTO INGERIDO (I) (MG DE MATÉRIA SECA POR DIA) POR LARVAS DE Spodoptera eridania ALIMENTADAS POR FOLHAS DE BRACATINGA. TEMPERATURA 25 <sup>±</sup> 0,5<sup>o</sup>C, UR DE 70 <sup>±</sup> 10% E FOTOPERÍODO DE 14 HORAS.\*

| —<br>а | 1    | 2   | 3   | 4   | 5   | 6   | 7   | 8    | 9    | 10   | 11   | 12   | 13   | 14    | 15   | 16    | 17    | 18    | 19    | 20             | 21   | 22   | 23   |   |
|--------|------|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|-------|------|-------|-------|-------|-------|----------------|------|------|------|---|
|        | 0,7  | 0,1 | 0,8 | 2,4 | 2,6 | 3,4 | 2,6 | 4,7  | 7,6  | 4,2  | 11,4 | 25,6 | 14,7 | 38,0  | 56,9 | 13,1  | 51,3  | 109,6 | 84,0  | 74,1           | -    | -    | -    |   |
|        | 0,7  | 0,1 | 0,8 | 2,4 | 2,6 | 3,4 | 5,4 | 3,7  | 15,8 | 4,6  | 15,5 | 23,7 | 31,7 | 38,2  | 8,5  | 61,8  | 80,3  | 78,4  | 95,3  | 56,1           | -    | -    | -    |   |
|        | 0,7  | 0,1 | 0,8 | 2,4 | 2,6 | 3,4 | 3,4 | 10,6 | 10,9 | 6,4  | 15,4 | 25,4 | 26,6 | 35,2  | 8,5  | 58,7  | 6G,8  | 72,6  | 77,0  | 76,6           | 34,2 | 2 -  | -    | ٠ |
|        | 0,7  | 0,1 | 0,8 | 2,4 | 2,6 | 3,4 | 8,7 | 19,4 | 5,9  | 21,3 | 32,5 | 30,9 | 7,5  | 41,1  | 63,3 | 92,0  | 95,7  | 60,7  | _     | _              | -    | -    | -    |   |
|        | 0,9  | 0,1 | 0,6 | 2,7 | 1,7 | 3,4 | 3,6 | 8,7  | 12,0 | 7,2  | 27,1 | 32,1 | 18,0 | 6,4   | 47,7 | 92,4  | 85,3  | 90,6  | 80,7  | -              | -    | -    | _    |   |
|        | 0,9  | 0,1 | 0,6 | 2,7 | 1,7 | 3,4 | 3,5 | 6,2  | 8,8  | 15,7 | 4,8  | 20,0 | 30,1 | 39,5  | 9,7  | 66,7  | 88,2  | 102,0 | 66,1  | 44,5           | -    | -    | -    |   |
|        | 0,9  | 0,1 | 0,6 | 2,7 | 1,7 | 3,4 | 4,4 | 13,6 | 12,6 | 3,5  | 12,3 | 28,3 | 29,1 | 8,3   | 39,1 | 85,2  | 87,6  | 84,9  | 68,7  | 28,5           | _    | _    | -    |   |
|        | 0,9  | 0,1 | 0,6 | 2,7 | 1,7 | 3,4 | 2,9 | 6,1  | 8,4  | 4,1  | 19,1 | 29,9 | 28,0 | 7,5   | 34,2 | 67,0  | 75,0  | 90,8  | 80,6  | 40,5           | -    | -    | _    |   |
|        | 0,9  | 0,1 | 0,6 | 2,7 | 1,7 | 3,4 | 9,0 | 4,4  | 18,0 | 18,5 | 25,3 | 5,6  | 40,9 | 58,2  | 81,2 | 116,6 | 71,7  | _     | -     | -              | _    |      | _    |   |
|        | 0,8  | 0,1 | 0,6 | 2,4 | 1,8 | 2,8 | 5,3 | 6,0  | 11,8 | 20,9 | 3,9  | 33,9 | 41,5 | 10,9  | 44,7 | 70,0  | 104,7 | 87,9  | 67,3  | -              | _    | -    | -    |   |
|        | 0,8  | 0,1 | 0,6 | 2,4 | 1,8 | 2,8 | 3,3 | 9,9  | 14,6 | 6,3  | 18,9 | 37,8 | 36,9 | 6,7   | 35,3 | 63,0  | 67,7  | 72,2  | 80,3  | 40,5           | -    | -    | -    |   |
|        | 0,8  | 0,1 | 0,6 | 2,4 | 1,8 | 2,8 | 6,0 | 13,2 | 12,4 | 7,3  | 13,7 | 39,2 | 45,9 | 7,3   | 42,5 | 76,4  | 65,3  | 108,0 | 102,4 | 72,7           | -    | _    | -    |   |
|        | 0,8  | 0,1 | 0,6 | 2,4 | 1,8 | 2,8 | 2,0 | 7,9  | 11,8 | 4,7  | 14,9 | 31,8 | 40,8 | 4,9   | 52,9 | 90,3  | 92,2  | 89,0  | 78,4  | 41,7           | -    | -    | -    |   |
|        | 0,8  | 0,1 | 0,6 | 2,4 | 1,8 | 2,8 | 5,9 | 10,3 | 15,8 | 8,0  | 21,2 | 32,3 | 39,0 | 7,2   | 47,6 | 92,2  | 110,3 | 123,0 | 108,7 | -              | -    | -    | -    |   |
|        | ē,0  | 0,2 | 0,7 | 2,3 | 1,4 | 2,9 | 6,1 | 3,9  | 11,9 | 15,3 | 6,5  | 25,6 | 36,5 | 39,3  | 6,4  | 71,5  | 93,5  | 103,5 | 57,5  | -              | _    | -    | _    |   |
|        | 0,6  | 0,2 | 0,7 | 2,3 | 1,4 | 2,9 | 7,7 | 3,9  | 12,3 | 22,9 | 4,0  | 34,9 | 40,3 | 54,0  | 7,9  | 75,á  | 83,9  | 92,0  | 89,6  | 87,0           | 37,3 | -    | _    |   |
|        | 0,6  | 0,2 | 0,7 | 2,3 | 1,4 | 2,9 | 3,0 | 9,7  | 10,7 | 3,7  | 21,2 | 34,3 | 25,7 | 10,0  | 39,5 | 68,0  | 86,3  | 83,1  | -     | -              | -    | - ,  | _    |   |
|        | 0,6  | 0,2 | 0,7 | 2,3 | 1,4 | 2,9 | 4,2 | 11,6 | 14,6 | 4,1  | 14,9 | 20,6 | 22,5 | 38,0  | 10,6 | 57,7  | 85.3  | 92,8  | 71,4  | 56,6           | _    | -    | -    |   |
|        | 0,6  | 0,2 | 0,7 | 2,3 | 1,4 | 2,9 | 7,8 | 2,8  | 10,8 | 15,6 | 3,4  | 21,7 | 33,1 | 39,4  | 12,3 | 67,4  | 76,7  | 88,5  | 87,5  | -              | _    | -    | _    |   |
|        | 0,6  | 0,1 | 0,2 | 2,2 | 1,7 | 2,1 | 4,3 | 7,5  | 16,2 | 6,3  | 24,0 | 27,4 | 40,5 | 9,0   | 42,7 | 74,5  | 83,5  | 80,2  | 118,8 | -              | -    | -    | _    |   |
|        | 0,6  | 0,1 | 0,2 | 2,2 | 1,7 | 2,1 | 3,8 | 2,1  | 10,9 | 10,7 | 1,1  | 19,1 | 27,0 | 47,8  | 4,9  | 58,3  | 64,6  | 76,5  | 63,7  | 72,1           | 31,9 | -    | -    |   |
|        | 0,6  | 0,1 | 0,2 | 2,2 | 1,7 | 2,1 | 3,1 | 3,7  | 10,0 | 5,6  | 10,3 | 23,3 | 27,2 | 14,5  | 36,8 | 60,5  | 78,5  | 81,0  | 53,7  | 44,2           | _    | -    | _    |   |
|        | 0,6  | 0,1 | 0,2 | 2,2 | 1,7 | 2,1 | 3,0 | 4,5  | 8,5  | 13,9 | 2,4  | 26,8 | 27,5 | 50,1  | 9,1  | 65,8  | 75,3  | 98,5  | 78,2  | 101,2          | 45,2 | -    | -    |   |
|        | 0,6  | 0,1 | 0,2 | 2,2 | 1,7 | 2,1 | 7,2 | 2,3  | 11,4 | 13,9 | 4,0  | 21,3 | 32,8 | 7,8   | 3,9  | 71,1  | 83,9  | 28,9  | _     | · <del>-</del> | -    | -    | -    |   |
|        | 0,6  | 0,2 | 0,3 | 2,3 | 1,4 | 1,7 | 9,7 | 2,9  | 14,1 | 20,6 | 3,5  | 24,2 | 28,6 | 307,2 | 4,1  | 67,1  | 35,1  | 102,1 | 50,5  | 73,0           | -    | -    | -    |   |
|        | 0,6  | 0,2 | 0,3 | 2,3 | 1,4 | 1,7 | 5,7 | 2,0  | 11,3 | 14,8 | 1,2  | 22,9 | 32,1 | 43,8  | 37,0 | 18,9  | 65,2  | 78,0  | 154,7 | 88,0           | 45,2 | -    | _    |   |
|        | 0,6  | 0,2 | 0,3 | 2,3 | 1,4 | 1,7 | 4,3 | 10,1 | 10,7 | 3,1  | 11,9 | 25,4 | 19,3 | 42,6  | 6,5  | 53,6  | 73,2  | 67,2  | 81,2  | 63,3           | 72,1 | _    | _    |   |
|        | 0.,6 | 0,2 | 0,3 | 2,3 | 1,4 | 1,7 | 4,1 | 7,8  | 9,5  | 4,1  | 11,3 | 24,8 | 23,8 | 36,6  | 6,7  | 64,5  | 71,7  | 80,4  | 97,1  | _              | _    | _    | _    |   |
|        |      |     |     |     |     |     |     |      |      |      |      |      |      |       |      |       |       | 56,3  |       | 77,4           | 74,5 | 97,5 | 32,0 |   |
|        |      |     |     |     |     |     |     |      |      |      |      |      |      |       |      |       |       | -     | •     | •              |      | •    |      |   |

A pargir do primeiro dia do segundo instar.

APÊNDICE 15. DURAÇÃO DAS FASES DE OVO, LARVA, PUPA E DO CICLO EVOLUTIVO (DIAS) E PESO PUPAL (mg) DE Spodoptera eridania EM BRACATINGA. TEMPERATURA  $17 \pm 0.5^{\circ}$ C, UR DE  $70 \pm 10\%$  E FOTOFASE DE 14 HORAS.

| Nô             | OVO | LARVA | PESO PUPAL     | SEXO | PUPA  | CICLO EVOLUTIVO |
|----------------|-----|-------|----------------|------|-------|-----------------|
|                |     |       | (mg)           |      |       |                 |
| 1              | 10  | 68    | 280,0          | Q    | 35    | 113             |
| 2              | 10  | 69    | 272,6          | ď    | 35    | 114             |
| 3              | 10  | 69    | 267,1          | đ    | 36    | 115             |
| 4              | 10  | 77    | 320,3          | ď    | 37    | 124             |
| 5              | 10  | -     | _              | _    | _     | _               |
| 6              | 10  | 66    | 277,6          | Q    | 34    | 110             |
| 7              | 10  | 69    | 272,8          | ď    | 35    | 114             |
| 8              | 10  | -     | _              | _    | -     | _               |
| 9              | 10  | 70    | 260,5          | Q    | 32    | 112             |
| 10             | 10  | 72    | 277,4          | Q    | 35    | 117             |
| 11             | 10  | -     | _              | -    | _     | -               |
| 12             | 10  | 66    | 290,5          | ď    | 39    | 115             |
| 13             | 10  | 71    | 323,5          | Q    | 33    | 114             |
| 14             | 10  | 73    | 256,7          | ď    | 37    | 120             |
| 15             | 10  | 70    | 275,8          | ď    | 37    | 117             |
| 16             | 10  | 72    | 319,1          | Q    | 33    | 115             |
| 17             | 10  | 74    | 249,8          | Q    | 33    | 117             |
| 18             | 10  | 71    | 310,5          | Q    | 33    | 114             |
| 19             | 10  | 73    | 230,0          | ď    | 36    | 119             |
| 20             | 10  | 72    | 273,8          | ď    | 37    | 119             |
| 21             | 10  | -     | _              | _    | -     | _               |
| 22             | 10  | 68    | 242,3          | ď    | 37    | 115             |
| 23             | 10  | 70    | 251,8          | ď    | 35    | 115             |
| 24             | 10  | 67    | 288,8          | ď.   | 36    | 113             |
| 25             | 10  | 71    | 255,3          | đ    | 37    | 118             |
| 26             | 10  | 71    | 314,6          | Q    | 33    | 114             |
| 27             | 10  | 67    | 276,2          | ď    | 37    | 114             |
| 28             | 10  | 69    | 339,9          | Q    | 34    | 113             |
| 29             | 10  | 66    | 309,0          | Q    | 36    | 112             |
| 30             | 10  | 71    | 315,1          | Q    | 38    | 119             |
| $\overline{X}$ | 10  | 70,08 | 282,73         |      | 35,38 | 115,46          |
| E.P.           | 0   | 0,52  | 5 <b>,</b> 594 |      | 0,36  | 0,60            |

APÊNDICE 16. DURAÇÃO DAS FASES DE OVO, LARVA, PUPA E DO CICLO EVOLUTIVO (DIAS) E PESO PUPAL (mg) DE Spodoptera eridania EM BRACATINGA. TEMPERATURA 20  $^{\pm}$  0,5 $^{\circ}$ C, UR DE 70  $^{\pm}$  10% E FOTOFASE DE 14 HORAS.

|                  |     |       | DE 70 10% E |           | . דד עם עניי |                 |
|------------------|-----|-------|-------------|-----------|--------------|-----------------|
| ΝÇ               | ovo | LARVA | PESO PUPAL  | SEXO      | PUPA         | CICLO EVOLUTIVO |
|                  |     |       | (mg)        |           |              |                 |
| 1                | 6   | 40    | 253,4       | O'        | 13           | 59              |
| 2                | 6   | 37    | 281,3       | O,        | 15           | 58              |
| 3                | 6   | 40    | 282,3       | ď         | 15           | 61              |
| 4                | 6   | 41    | 277,1       | O'        | 14           | 61              |
| 5                | 6   | 42    | 271,5       | O'        | 13           | 61              |
| 6                | 6   | 40    | 283,7       | Q         | 14           | 60              |
| 7                | 6   | 42    | 248,9       | ď         | 13           | 61              |
| 8                | 6   | 42    | 300,3       | Q         | 16           | 64              |
| 9                | 6   | 39    | 308,7       | Q         | 16           | 61              |
| 10               | 6   | 39    | 291,5       | ď         | 14           | 59              |
| 11               | 6   | 39    | 307,3       | $Q_{\mu}$ | 15           | 60              |
| 12               | 6   | 40    | 297,2       | ď         | 13           | 59              |
| 13               | 6   | -     | _           | -         | -            | -               |
| 14               | 6   | 40    | 321,8       | Q         | 16           | 62              |
| 15               | _   | -     | -           | -         | _            | _               |
| 16               | 6   | 39    | 259,8       | Q,        | 14           | 59              |
| 17               | 6   | 38    | 252,1       | Q,        | 14           | 58              |
| 18               | 6   | 40    | 333,6       | Q         | 16           | 62              |
| 19               | 6   | 40    | 311,7       | Q         | 16           | 62              |
| 20               | 6   | _     | -           | <u>-</u>  | -            | -               |
| 21               | 6   | 43    | 266,4       | Q         | 16           | 65              |
| 22               | 6   | _     | <b>.</b>    | _         | -            | · -             |
| 23               | 6   | 38    | 301,7       | Q         | 17           | 61              |
| 24               | 6   | 40    | 253,9       | ď         | 15           | 61              |
| 25               | 6   | 40    | 261,6       | Q         | 16           | 62              |
| 26               | 6   | 43    | 323,9       | Q         | 17           | 66              |
| 27               | 6   | 39    | 296,5       | Q         | 17           | 62              |
| 28               | 6   | 35    | 222,3       | ď         | 14           | 62              |
| 29               | 6   | 47    | 249,9       | Q,        | 14           | 55              |
| 30               | 6   | _     | <b>-</b>    | _         | _            | _               |
| ${\overline{X}}$ | 6   | 40,12 | 282,34      |           | 14,92        | 60,84           |
| E.P.             | 0   | 0,46  | 5,623       |           | 0,26         | 0,46            |

APÊNDICE 17. DURAÇÃO DAS FASES DE OVO, LARVA, PUPA E DO CICLO EVOLUTIVO (DIAS) E PESO PUPAL (mg) DE Spodoptera eridania EM BRACATINGA. TEMPERATURA 25  $^{+}$  0,5 $^{\circ}$ C,UR DE 70  $^{+}$  10% E FOTOFASE DE 14 HORAS.

| No                                      | OVO | LARVA | PESO PUPAL   | SEXO           | PUPA     | CICLO EVOLUTIVO |
|-----------------------------------------|-----|-------|--------------|----------------|----------|-----------------|
| *************************************** |     |       | (mg)         |                |          |                 |
| 1                                       | 4   | _     | -            |                | _        | _               |
| 2                                       | 4   | 30    | 240,6        | Q              | 12       | 46              |
| 3                                       | 4   | 29    | 204,0        | Q              | 11       | 44              |
| 4                                       | -   | _     | -            | <u>-</u>       | <u>-</u> | _               |
| 5                                       | 4   | 28    | 230,3        | ď              | 12       | 44              |
| 6                                       | 4   | _     | <del>-</del> | _              | _        | _               |
| 7                                       | 4   | -     | -            | _              | -        | -               |
| 8                                       | 4   | 27    | 310,0        | Q              | 10       | 41              |
| 9                                       | 4   | -     | -            | _              | _        | <b>-</b>        |
| 10                                      | 4   | 26    | 237,2        | ď              | 11       | 41              |
| 11                                      | 4   | 27    | 240,0        | O <sup>*</sup> | 12       | 43              |
| 12                                      | 4   | _     | <del>-</del> | -              | _        | -               |
| 13                                      | 4   | 29    | 212,2        | ď              | 11       | 44              |
| 14                                      | -   | -     | _            | _              | _        | -               |
| 15                                      | 4   | 30    | 239,2        | ď              | 12       | 46              |
| 16                                      | 4   | 29    | 286,6        | Q              | 11       | 44              |
| 17                                      | 4   | -     | -            | -              | _        | -               |
| 18                                      | 4   | 29    | 243,0        | Q              | 11       | 44              |
| 19                                      | 4   | 29    | 221,8        | đ              | 11       | 44              |
| 20                                      | 4   | 27    | 252,6        | ď              | 12       | 43              |
| 21                                      | 4   | 25    | 221,0        | Q              | 10       | 39              |
| 22                                      | 4   | 29    | 270,6        | Q              | 11       | 44              |
| 23                                      | 4   | -     | _            | _              | _        | -               |
| 24                                      | 4   | 26    | 218,6        | O,             | 12       | 42              |
| 25                                      | 4   | 27    | 230,0        | ď              | 12       | 43              |
| 26                                      | 4   | 28    | 229,0        | ď              | 12       | 44              |
| 27                                      | 4   | 27    | 226,3        | ď              | 12       | 43              |
| 28                                      | 4   | 27    | 188,6        | $Q_{l}$        | 12       | 43              |
| 29                                      | 4   | -     | _            | -              | _        | -               |
| 30                                      | 4   | 27    | 252,9        | Q              | 12       | 43              |
| $\overline{X}$                          | 4   | 27,80 | 237,73       |                | 11,45    | 43,25           |
| E.P.                                    | 0   | 0,31  | 6,204        |                | 0,15     | 0,36            |

APÊNDICE 18. DURAÇÃO DAS FASES DE OVO, LARVA, PUPA E DO CICLO EVOLUTIVO (DIAS) E PESO PUPAL (mg) DE Spodoptera eridania EM BRACATINGA. TEMPERATURA 30  $\frac{+}{2}$  0,5°C,UR DE 70  $\frac{+}{2}$  10% E FOTOFASE DE 14 HORAS.

|                |     | DL 70 | 100 1 10101    | MOLI DE | TA HOTAY |                 |
|----------------|-----|-------|----------------|---------|----------|-----------------|
| Иô             | OVO | LARVA | PESO PUPAL     | SEXO    | PUPA     | CICLO EVOLUTIVO |
|                |     |       | (mg)           |         |          |                 |
| 1              | 3   | -     | _              | -       | -        | -               |
| 2              | 3   | _     | -              | -       | _        | -               |
| 3              | 3   | 25    | 211,3          | Q       | 7        | 35              |
| 4              | 3   | 22    | 203,1          | Q       | 7        | 32              |
| 5              | 3   | 23    | 160,9          | -       | -        | -               |
| 6              | 3   | 21    | 163,0          | $Q_{J}$ | 8        | 32              |
| 7              | 3   | -     | -              | -       | -        | -               |
| 8              | 3   | 24    | 165,2          | Q,      | 8        | 35              |
| 9              | 3   | _     | _              | _       | _        | -               |
| 10             | 3   | 25    | 163,8          | Q       | 8        | 36              |
| 11             | 3   | 23    | 163,0          | ď       | 8        | 34              |
| 12             | 3   | _     | _              | _       | _        | -               |
| 13             | 3   | 22    | 178,7          | ď       | 8        | 33              |
| 14             | 3   | 23    | 196,6          | Q       | 7        | 33              |
| 15             | 3   | 20    | 184,4          | Q       | 8        | 31              |
| 16             | 3   | 21    | 177,1          | ď       | 8        | 32              |
| 17             | 3   | 22    | 173,8          | ď       | 8        | 33              |
| 18             | 3   | 24    | 202,3          | Q       | 7        | 34              |
| 19             | 3   | -     | _              | -       | _        | -               |
| 20             | 3   | 20    | 157 <b>,</b> 9 | Q,      | 8        | 31              |
| 21             | 3   | 20    | 208,0          | O'      | 8        | 31              |
| 22             | 3   | 21    | 215,1          | Q       | 7        | 31              |
| 23             | 3   | 21    | 279,6          | Q       | 7        | 31              |
| 24             | 3   | 22    | 200,4          | ď       | 8        | 31              |
| 25             | 3   | 23    | 195,8          | ď       | 8        | 34              |
| 26             | 3   | -     | _              | -       | -        | _               |
| 27             | 3   | _     |                | _       | -        | _               |
| 28             | 3   | -     | _              | -       | -        | -               |
| 29             | 3   | 26    | 221,4          | Ф       | 7        | 36              |
| 30             | 3   | 22    | 173,2          | ď       | 8        | 33              |
| $\overline{X}$ | 3   | 22,38 | 190,22         |         | 7,65     | 33,00           |
| Ε.Ρ.           | 0   | 0,37  | 6,259          |         | 0,11     | 0,37            |