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Chaos happens and makes things go wrong. 

Science happens and makes chaos go wrong. 

Things happen and make science go wrong.

Make things right, never give up from science, 

Because today is not just consequence 

from yesterday’s decisions, 

but from tomorrow’s plannings.

For my grandfather, Sebastião Saltarello. 
(in memoriam)
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RESUMO

Este trabalho propõe um framework multinível chamado Treasure Hunt, que é capaz de 
distribuir algoritmos de busca independentes para um grande número de nós de processamento. 
Com o objetivo de obter uma convergência conjunta entre os nós, este framework propõe um 
mecanismo de direcionamento que controla suavemente a cooperação entre múltiplas instâncias 
independentes do Treasure Hunt. A topologia em árvore proposta pelo Treasure Hunt garante a 
rápida propagação da informação pelos nós, ao mesmo tempo em que provê simutaneamente 
explorações (pelos nós-pai) e intensificações (pelos nós-filho), em vários níveis de granularidade, 
independentemente do número de nós na árvore. O Treasure Hunt tem boa tolerância à falhas 
e está parcialmente preparado para uma total tolerância à falhas. Como parte dos métodos 
desenvolvidos durante este trabalho, um método automatizado de Particionamento Iterativo 
foi proposto para controlar o balanceamento entre explorações e intensificações ao longo da 
busca. Uma Modelagem de Estabilização de Convergência para operar em modo Online também 
foi proposto, com o objetivo de encontrar pontos de parada com bom custo/benefício para os 
algoritmos de otimização que executam dentro das instâncias do Treasure Hunt. Experimentos 
em benchmarks clássicos, aleatórios e de competição, de vários tamanhos e complexidades, 
usando os algoritmos de busca PSO, DE e CCPSO2, mostram que o Treasure Hunt melhora as 
características inerentes destes algoritmos de busca. O Treasure Hunt faz com que os algoritmos 
de baixa performance se tornem comparáveis aos de boa performance, e os algoritmos de boa 
performance possam estender seus limites até problemas maiores. Experimentos distribuindo 
instâncias do Treasure Hunt, em uma rede cooperativa de até 160 processos, demonstram a 
escalabilidade robusta do framework, apresentando melhoras nos resultados mesmo quando o 
tempo de processamento é fixado (wall-clock) para todas as instâncias distribuídas do Treasure 
Hunt. Resultados demonstram que o mecanismo de amostragem fornecido pelo Treasure Hunt, 
aliado à maior cooperação entre as múltiplas populações em evolução, reduzem a necessidade de 
grandes populações e de algoritmos de busca complexos. Isto é especialmente importante em 
problemas de mundo real que possuem funções de fitness muito custosas.

Palavras-chave: Inteligência artificial. Métodos de otimização. Algoritmos distribuídos. 
Modelagem de convergência. Alta dimensionalidade.



ABSTRACT

This work proposes a multilevel framework called Treasure Hunt, which is capable of 
distributing independent search algorithms to a large number of processing nodes. Aiming to 
obtain joint convergences between working nodes, Treasure Hunt proposes a driving mechanism 
that smoothly controls the cooperation between the multiple independent Treasure Hunt instances. 
The tree topology proposed by Treasure Hunt ensures quick propagation of information, while 
providing simultaneous explorations (by parents) and exploitations (by children), on several levels 
of granularity, regardless the number of nodes in the tree. Treasure Hunt has good fault tolerance 
and is partially prepared to full fault tolerance. As part of the methods developed during this 
work, an automated Iterative Partitioning method is proposed to control the balance between 
exploration and exploitation as the search progress. A Convergence Stabilization Modeling 
to operate in Online mode is also proposed, aiming to find good cost/benefit stopping points 
for the optimization algorithms running within the Treasure Hunt instances. Experiments on 
classic, random and competition benchmarks of various sizes and complexities, using the search 
algorithms PSO, DE and CCPSO2, show that Treasure Hunt boosts the inherent characteristics 
of these search algorithms. Treasure Hunt makes algorithms with poor performances to become 
comparable to good ones, and algorithms with good performances to be capable of extending 
their limits to larger problems. Experiments distributing Treasure Hunt instances in a cooperative 
network up to 160 processes show the robust scaling of the framework, presenting improved 
results even when fixing a wall-clock time for the instances. Results show that the sampling 
mechanism provided by Treasure Hunt, allied to the increased cooperation between multiple 
evolving populations, reduce the need for large population sizes and complex search algorithms. 
This is specially important on real-world problems with time-consuming fitness functions.

Keywords: Artificial intelligence. Optimization methods. Distributed algorithms. Convergence 
modeling. High dimensionality.
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1 INTRODUCTION

For decades, computer science has used mathematical approaches to develop effective 
computational techniques, increasing responsiveness when solving complex real-world problems. 
Despite the fact that these techniques range from optimal specialized algorithms to distributed 
solutions to execute on high performance computing environments, they are still limited to the 
mathematical methods used to obtain the solutions.

As the most prominent computer science area that competes (or even overcomes in some 
cases) the results obtained by mathematical approaches, Artificial Inteligence (AI) encompasses 
many sub-areas of research. Each of them has its own interpretations and distinct approaches 
when solving (real world and benchmark) problems, showing different advantages and limitations. 
As a frequent A l’s top performer when optimizing Non-Polinomial hard (NP-hard) problems, 
Metaheuristic is a relatively new sub-area of AI that does not focus on solving a specific problem, 
but rather on a broader category of problems.

Continuous functions of high complexity / dimensionality are of special interest for 
metaheuristics when creating methods to optimize real world problems, whose actual landscape 
is usually unknown. Search algorithms designed to deal with these functions typically focus on 
quickly finding strong local minima, instead of focusing on avoiding the stagnation caused by 
such minima, what consequently reduces the probability of obtaining long term convergences. 
Although this approach has proven to work efficiently for a large variety of problems, it might 
affect the capacity of the algorithm to reach a nearly global optimum.

To obtain continued convergences for longer periods after the first stagnation occurs, 
metaheuristics could combine different solutions, like those using the classic multi-start method. 
However, the rework is inherently present in these methods since the candidate solutions are 
usually generated through all the search space, what could potentially make the search algorithm 
to reach the same local minimum several times (Tu e Mayne (2002)). Besides, no automated 
method is usually employed by these algorithms to determine the best moment to make each 
restart, hence wasting processing resources.

Given that more than one good minimum can be present in the addressed problem, 
algorithms prepared for multimodal functions (like multi-population methods) provide an effective 
way to obtain multiple good solutions. Nonetheless, multi-population methods are only as 
efficient as the topology used to coordinate their work, because there are severe restrictions on the 
number of populations that can be supported by every topology. Despite the fact that this problem 
can be mitigated by increasing the population sizes, in practice, it is empirically known that there 
is a limit in the maximum number of individuals that can be used to improve the performance of 
a given search method, what consequently restricts the scalability of multi-population topologies.

The efficacy of suitable search algorithms for a given problem is not expected to be 
robust when increasing problem’s complexity (eg. larger dimensionality), because a minimally 
reliable overview of the search space landscape could not be guaranteed at viable time (Crainic 
e Toulouse (2010)), particularly when the fitness function evaluation is time-consuming (eg. 
computing intensive equations and high number of decision variables). Although distributed 
search algorithms provide a good way of increasing search space’s coverage, their performance 
are limited by the communication topology, given that the topology outlines the synchronization 
problems, the bottlenecks, the number of processing nodes and ultimately, the portion of the 
search space that can be visited.



In an attempt to provide a flexible and generic method with the capacity of dealing 
with high dimensional, complex, single-objective, continuous optimization problems, this thesis 
proposes a multi-level framework called Treasure Hunt (TH), which uses search methods 
as black boxes, and is capable of (i) distributing the search to a high number of processing 
nodes in a clustered computing environment and (ii) sustaining good long-term convergences, 
showing minimum communication penalties, high self-organization and self-adaptation (Dreo 
e Siarry (2007)), good scalability, inherent capacity of dealing with multimodal problems and 
time-consuming fitness functions.

This chapter summarizes the work proposed by this thesis. Section 1.1 describes the 
problem that this work proposes to tackle. Section 1.2 presents the motivations for developing 
TH framework. Finally, the Sections 1.3,1.4, 1.5 and 1.6 describe the main objectives, challenges 
to be overcome, hypothesis and contributions of this thesis.

This project was partially supported by the R&D project PD-6491-0307/2013, proposed 
by Copel Geração e Transmissão S.A., under the auspices of the R&D Programme of Agência 
Nacional de Energia Elétrica (ANEEL).

1.1 PROBLEM DEFINITION

Real-world optimization problems, that in the past had to be over simplified so that 
they could be solved by mathematical methods on computers available at the time, nowadays 
rely on much more computing power and more effective numerical methods to solve them. This 
increased the processing speed and quality of results, making the numerical methods the main 
tool to solve these categories of problems. Given currently available methods and hardware 
capabilities, however, the complex category of such real-world problems are still too hard for 
direct numeric approaches, requiring further mathematical simplifications. As consequence of 
these “relaxations”, the confidence on results is diminished.

Metaheuristics are AI-based iterative methods that organize and apply heuristics over 
candidate solutions (Nesmachnow (2014)), which are initially specified either by previous 
knowledge on the problem at hand, or by applying some random process to generate initial 
solutions. Metaheuristics’ internal mechanics could be seen as “walks through neighborhoods” 
(Alba et al. (2013)), in the sense that given an initial solution, random modifications are made 
to the solution so it can move to good locations nearby (close to the candidate’s position or 
to a group of candidates, in an Cartesian sense), thus obtaining a stochastic sampling of the 
objective function (Dreo e Siarry (2007)) and, over time, a minimally reliable global search 
behavior. Therefore, randomness is crucial to metaheuristics because it increases the exploratory 
effectiveness of the search process (Jr et al. (2015)), making individuals that start from different 
positions potentially explore distinct regions of the search space (Crainic e Toulouse (2010)). For 
that reason, metaheuristics cannot generally guarantee that an optimal solution will be found or 
that a comprehensive analysis of the search space will occur (Crainic e Toulouse (2010)), what 
makes it so hard proving the closeness to the problem’s optimal solution.

Obtaining a good sampling of the search space is not an easy task, especially when the 
problem has a large number of variables or a complex landscape. To mitigate this problem, for 
example, collaborative methods have been created to improve “sample quality” (i.e., to obtain 
high quality candidate solutions) during optimization. To deal with the search stagnation, on the 
other hand, a well known technique is to balance between exploration (analysis of larger areas) 
and exploitation (intensification / local search). While many of these methods are recognized for 
obtaining local minima of good quality, they are not originally meant for escaping from these 
same minima.



The class of problems tackled by Treasure Hunt framework work can be summarized as
having:

• High Dimensionality: the number of dimensions can easily raise to tens of thousands.

• High Complexity: typically requiring solutions for:

-  Multimodality: with an unknown number of optimal solutions.

-  Large Search Spaces: not much information is available to further reduce the 
problem’s search space area.

-  D istributed methods: since shared memory parallel hardware are unable to solve 
the larger problems at viable time.

1.2 MOTIVATION

Metaheuristics have been used as robust methods that do not require in-depth knowledge 
about the problem being optimized. Nonetheless, for the classes of problems addressed in this 
thesis, better sampling of the search space and more effective ways of escaping from good local 
minima are still required for metaheuristics, so that good long term convergences can be obtained 
by the search methods. Given that real world problems tend to become more complex and 
parallel hardwares tend to be more affordable, any long term solution for improving the search 
space sampling would have to include parallel or distributed algorithms, to take advantage of 
simultaneous cooperations.

The cooperation between multiple parallel populations is a typical approach to improve 
convergence, because the larger coverage of the search space obtained by these populations (when 
compared to a single population) increases the diversity of candidate solutions, and very likely 
their quality. However, according to Crainic e Toulouse (2010), the evolution of cooperative 
parallel searches is much more controlled by the cooperation schema (i.e., the topology) than by 
the optimization logic itself. Topologies create cooperative environments on which potentially 
good information can flow more easily. According to Dreo e Siarry (2007), such collaborative 
environment entails two important characteristics: 1) self-organization, which occurs when the 
various levels of interactions between low-level components (that do not hold direct relation with 
global top-level components) cause a cascading effect over global components, thus producing 
a global pattern; 2) self-adaptation, which is the process of adapting automatically to new 
conditions during execution time, like for example balancing between the exploration and the 
exploitation as the search progress. Together, these two characteristics can highly influence not 
only the convergence speed but also the capacity of avoiding local minima traps.

As alternatives to obtain a good sampling of the search space landscape, a class of methods 
called Model-Based Optimization (MBO) uses surrogates or distribution-based algorithms to 
improve convergence. Surrogates are cheaper substitute functions that approximate the original 
function, while distribution-based algorithms use sequences of probability distributions to generate 
new candidate solutions. However, Bartz-Beielstein e Zaefferer (2017) strongly recommend 
using surrogates only when the classic optimization techniques (and their hybrids) fail to solve the 
problem at hand. Moreover, distribution-based algorithms are highly sensitive to the probabilistic 
models used, demanding correct feature selection and efficient methods for learning and sampling 
these models (Hauschild e Pelikan (2011)).

Regardless of the success obtained when sampling the landscape, most solutions fail on 
high dimensionality due to the curse o f dimensionality 1. Considering that the perception of what

1The performance deteriorates as the dimensionality of the search space increases.



is a large number of dimensions is relative for every search algorithm, decomposition frameworks 
like Cooperative Coevolution (CC) (Potter e De Jong (1994)) were created, in an attempt to 
overcome such algorithm-specific limitations, by evolving sub-sets of the dimensions separately. 
However, divide-and-conquer2 methods like CC require efficient decomposition strategies and a 
considerably high communication frequency between the decomposed components (Mahdavi 
et al. (2015); Vu et al. (2011)), reducing their effectiveness in a distributed environment.

The methods that explore multi-processed hardware usually involve classic algorithms 
with profound changes in their original logic, so that the methods can run in parallel or distributed 
environments. This is usually accomplished by either spreading the problem’s dimensions (more 
usual on parallel / shared memory systems) or the population (commonly used on distributed 
systems) into multiple processing units. Some of these methods increase their efficiency by 
exploring the communication topology between search algorithm’s sub-populations, fine tuning 
the searches according to their location at the network (Sefrioui e Périaux (2000); Herrera e 
Lozano (2000)) (e.g. controlling the exploitation-versus-exploration behavior). There are a few 
exceptions that do not require expressive changes to the search logic, like for example the pool 
based algorithms. However, pool-based solutions have a clear limitation when expanding to a 
high number of processing nodes, due to problems like network delays and the limited capacity 
of the pool in dealing with too many distributed agents.

There is, therefore, a demand for new parallel, highly distributed and scalable methods, 
with efficient mechanisms to distribute optimization algorithms to processing nodes, without 
requiring deep changes in their logic. Moreover, the following characteristics are also expected: 
large sampling of the search space, efficient joint optimization between processing nodes in a 
controlled pace, high self-organization and self-adaptation, and reduced communication and 
propagation time.

1.3 OBJECTIVES

The objective of this thesis is to present a multilevel, distributed parallel framework 
called Treasure Hunt, which is capable of exploring a large portion of the search space by 
distributing independent search algorithms to a high number of processing nodes, providing a 
topology that allows quick propagation of good information and a decentralized joint optimization 
between the nodes.

1.4 CHALLENGES

For decades, mathematical methods have been extensively studied and applied to 
the class of problems addressed in this thesis. Despite improvements and good results, the 
quality of the optimization is still affected due to simplifications and adjusts required over 
original modeling. Although metaheuristics have been successfully applied to tackle this 
problem, whenever the number of decision variables (dimensions) is much larger than standard 
straightforward metaheuristics can efficiently handle, the need for good optimization algorithms, 
specialized on high dimensionality, becomes evident. Nevertheless, such algorithms usually 
have slower convergence and demand more processing power, hence requiring new methods to 
estimate good commitments between optimization improvements and processing times (a budget 
management problem). Considering the unpredictable nature of stochastic search algorithms and

2Large or complex problems are optimized by solving the smaller or simpler sub-problems that composes the 
original problem.



their convergence while optimizing solutions, limiting their processing resources is a challenge 
that needs to be addressed.

Recently, parallel variants of state-of-the-art metaheuristics have successfully reduced 
the overall processing time when compared with the respective serial versions. This is usually 
accomplished by dividing the original problem in sub-problems, either partitioning the variables 
or the search space domain. The division of the search space domain is not usually employed due 
to the complexity of providing an efficient division rule and maintaining good convergence while 
keeping the communication low. On the other hand, classic techniques are frequently employed 
to split the problem’s decision variables into several sub-problems, each sub-problem containing 
a subset of the original dimensions (eg. Van den Bergh e Engelbrecht (2004); Li e Yao (2009)). 
Nonetheless, the partitioning of the dimensions into sub-problems potentially reduces the search 
space coverage, since the optimization outcomes are the combination of multiple sub-space 
optimizations, instead of the joint optimization of the decision variables’ domains. Besides, this 
method adds data dependency, because the solutions mostly cannot be fully evaluated with only 
partial information.

When optimizing larger and more complex problems, more robust processing systems 
(e.g. distributed systems like High Performance Computing (HPC) environments) are required to 
obtain reasonable results in feasible time. However, scaling problems occur due to communication 
overhead, synchronization problems and (particularly for metaheuristic algorithms) due to 
inherent characteristics of candidate solution’s evolution throughout iterations. Considering that 
metaheuristics which focus on exploring large distributed hardwares are not commonly found in 
the literature, there is a demand for effective scalable algorithms that distribute the work effort to 
a large number of processing nodes.

Considering the No Free Lunch (NFL) theoremi, which states that there is no one 
model that works best for every problem, building a single solution or framework that covers all 
previously mentioned problems with a minimum acceptable quality is a complex challenge.

1.5 HYPOTHESIS

Given a complex / high dimensional problem and a search algorithm with known 
limitations for such problem, the first hypothesis is that the convergence can be maintained for 
longer periods when multistarting the search at stagnation points, and moving the population 
gradually toward a good region of the search space at every restart.

Extending this idea to multiprocessed environments, the second hypothesis is that a 
distributed joint convergence can be achieved between the processing nodes, in less wall-clock 
time and with better final results than the serial version of the search algorithm. To test this 
hypothesis, the collaborative optimization effort can be organized with a hierarchical distributed 
tree-topology, where every tree node contains a population initialized in (but not restricted 
to) a sub-area within the search space, and 1) no overlap occurs between the siblings’ areas, 
2) the children’s areas are always restricted within parent’s bounds, and 3) a budget restricted 
search algorithm is used at the nodes to increase cooperation and avoid processing waste. In 
this multiprocessed version, instead of multistarting toward its own good regions, every child 
population uses parent’s good results as bias to influence its restarts, whilst the parents use 
children’s good results as starting points for the search. The resulting effect is a smooth and 
continuous joint convergence obtained by simultaneous explorations (by parents) and exploitations

iIn search and optimization research area (WOLPERT e MACREADY (2005)), NFL can be interpreted as “any 
two algorithms are equivalent when their performance is averaged across all possible problems”.



(by children), on several levels of granularity, what greatly improves the optimization power of 
simple search algorithms.

1.6 CONTRIBUTIONS

This thesis proposes a multi-level, distributed framework called Treasure Hunt (TH - 
see Appendix A), which provides a flexible and generic method with the capacity of dealing with 
complex and high dimensional continuous optimization problems, presenting the following main 
contributions:

1. Search space organization: a hierarchical method to position populations throughout 
the search space, such that controlled overlap occurs between siblings, and a good 
commitment between exploration and exploitation occurs as consequence of parent / 
children organization.

2. Topology: a decentralized and asynchronous mechanism to communicate multiple 
independent search algorithms in a multilevel, hierarchical tree topology, providing 
fast propagation of information between any algorithm in the tree, allowing a massive 
number of optimization processes to be distributed in a high performance cluster.

3. Convergence: a controlled multi-start mechanism that reduces the waste of fitness 
function evaluation, allowing longer term convergence.

In support of the work developed in this thesis, an Iterative Partitioning method 
(CCPSO2-IP (Perroni et al. (2015)), Section 4.6) was developed to improve the performance on 
non-separable problems for the search algorithm specialized in high dimensionality CCPSO2 (Li 
e Yao (2012)). To reduce the waste of processing resources, an automated method to control 
the budget allocation was also developed, providing a quick estimation of the search stagnation 
during an optimization run (CSMOn (Perroni et al. (2017)), Section 4.7).

1.7 DOCUMENT STRUCTURE

This work is organized in 8 chapters (including this Introduction). Chapter 2 describes 
the most important methods used as base for the development of the framework proposed in 
this thesis. Chapter 3 presents the more relevant works found in literature regarding the main 
objectives of this thesis. The Treasure Hunt framework is described in Chapter 4, which also 
includes technical details and discussions. Chapter 5 illustrates the working principles of Treasure 
Hunt framework. Chapter 6 presents and discusses the experimental results for several different 
benchmarks, and Chapter 7 concludes this thesis. An Appendix is provided, presenting the 
metaphor that inspired the Treasure Hunt framework, and two articles published as outcomes of 
this thesis.



2 THEORETICAL FOUNDATION

The relevant theory required to understand the Treasure Hunt framework is discussed 
in this chapter. Next section presents a summary of Metaheuristics (2.1), which includes a 
set of approaches ranging from from simple search algorithms to large scale optimization 
algorithms. Section 2.2 describes A-Teams, a pool-based framework for cooperation between 
search algorithms. Section 2.3 presents brief overview of Hyperheuristics and its characteristics. 
Different distributed environments are presented in Section 2.4, and Section 2.5 describes the 
mathematical basis used by TH framework.

2.1 METAHEURISTICS

One basic mathematical optimization method is the Gradient Ascent/Descent, which 
takes the first derivative f '(x ) (the slope) of an evaluation function f  (x) and an arbitrary initial 
point x . At every iteration, a small displacement is made on the x  position by adding a percentage 
a  of the slope to the previous solution xold, i.e., xnew = xold + a f ' ( x old), until the point where 
the slope is evaluated as zero. At that point, the optimization has found a peak (an upper curve 
in a maximization problem or a lower curve in a minimization problem) and the process is 
complete. In the n-dimensional version of this method (7x = [x1, • • • xn]), the gradient v  f  '(7x) is 
used instead, i.e., xnew = xold + a  v  f  '(7x old).

When the gradient of the function is too complex to be calculated or even the exact 
mathematical formulation is unknown, a robust sub-field in artificial intelligence called Metaheu­
ristic can be employed. Metaheuristic is a research area that studies algorithms for optimization 
problems, generally by using a stochastic approach (Luke (2015)) and without in-depth knowledge 
on the problem at hand. It has been successfully used to optimize complex classes of problems, 
whose heuristic information is scarce or nonexistent, specially where more than one optimal 
solution is possible (multimodal problems).

Next sections give a quick overview of the most relevant metaheuristics used as base to 
build the framework proposed by this thesis.

2.1.1 A Brief Overview of Metaheuristics

Similar to the gradient ascent/descent displacement method, the metaheuristic algorithm 
Hill Climbing takes one initial possible candidate solution — (hereafter denoted simply as x), 
makes a small random modification on it (instead of using the gradient) and checks if the new 
solution (xnew) is better than the previous one (xold). If the solution has improved, the new one is 
maintained (x = xnew), otherwise it keeps the previous solution (x = xold). This process repeats 
until the local best solution is found or the time allocated for the optimization is exceeded. This 
algorithm is classified as a Local Search algorithm in the sense that it makes intensive analysis 
(i.e., exploitation) on the area nearby the starting point. Another important algorithm is the Tabu 
Search, that is similar to Hill Climbing with the addition of a tabu list, which is an attempt of 
preventing solutions similar to the already visited ones, by maintaining a list of temporarily 
forbidden solutions.

The detailed regional analysis made by local search algorithms result in a large gap 
in the search process, since most of the search space is not actually explored. To fill this gap, 
Global Optimization algorithms like Random Search (RS) rely on the nature of the stochasticity



to evaluate large portions of the search space (i.e., exploration). Given enough time and 
appropriate randomness, these algorithms gradually improve the chance, as the search progresses, 
of generating superior and more diverse solutions. The Random search algorithm creates and 
evaluates, at every iteration, a random candidate solution x, saving x if it is better than the best 
solution found up to that point (xbest = x). Due to the unpredictable nature of randomness, this 
category of algorithms is sensitive to the number of evaluations. Besides, these algorithms 
lack satisfactory stopping criteria (Solis e Wets (1981)) (a budget management problem). To 
mitigate this scenario, a modified Controlled Random Search variant (CRS4) (Ali e Storey 
(1994)) uses a beta distribution to guide the generation of new solutions, according to the mean 
and standard deviation from previous best solutions. CRS4 stops the search when the fitness 
difference between the best (xbest) and the worst (xworst) solutions are within a specified limit e
(| f  (xb est) f  (xworst)| < e).

A more elaborated algorithm that combines both exploration (global optimization) at 
initial stages of the search and exploitation (local search) at latter stage is the Simulated Annealing 
(Cerny (1984)), which simulates a metal cooling process (an annealing process). Starting from 
an initial solution x , at every iteration this algorithm creates a slightly modified solution xnew and 
accepts it in case it is better than previous solution (x = xnew). Otherwise, the acceptance of a

f  (xnew)—f  (x)_________________________ __
worse solution depends on an exponential probability e t (where t is the temperature). The 
temperature is gradually reduced, following a cooling schedule that must be adjusted manually 
for each optimization problem (an empirical and time consuming job). This algorithm was an 
important breakthrough in the optimization research field due to its good capacity of escaping 
from local minima (i.e., branching1 (Rattadilok et al. (2004))), besides automatically adjusting 
between exploration and exploitation.

The diversity provided by previous methods, however, is limited by the fact that only 
one solution is evaluated at every iteration. Populational methods were created to improve the 
results obtained throughout iterations, given that instead of evaluating one single solution, the 
algorithms evaluate an entire sample of the search space. Populational methods vary in many 
ways, for example: the population size, how each individual interacts with each other, how the 
solution kept by every population member is modified at every iteration, and if a community 
manager will be acting on behalf of the collective health. Evolutionary Computation (EC) is a 
subset of these algorithms that embraces two important groups of algorithms:

• Evolutionary Algorithm (EA): mostly composed of generational algorithms, where 
the next generation is re-sampled (re-created), based on results of previous (parent) 
generation, and using many biology-inspired techniques, like for example mutation, 
crossover and natural selection. Classic methods are Genetic Algorithm (GA), Evolution 
Strategies (ES) and Differential Evolution (DE).

• Swarm Intelligence (SI): each individual in the population evolves based both on social 
(population) and cognitive (individual) knowledge, and for that reason, no breeding 
occurs. Examples of SI methods are Ant Colony Optimization (ACO), Particle Swarm 
Optimization (PSO) and Cooperative Coevolution (CC) algorithms.

Genetic Algorithm is a generational algorithm, with moderate global search characteris­
tics (Rudolph (1994)), that follows a sequential three-steps iterative process to obtain increasingly 
better adapted offspring: 1) selection of the best fit individuals to form a new population; 2) 
crossover (regional search), sharing pieces of information between individuals to generate slightly

branching is a small variation from a candidate solution, that helps escaping from strong local minima without 
losing much information from original solution.



different (and hopefully better) solutions; and 3) mutation (moderate global search), escaping 
from local minima by assigning random values to random dimensions from the solution vector.

Evolution Strategies (ES) are a category of algorithms similar to Genetic Algorithm that 
uses only mutation and truncation selection (i.e., it keeps only the best individuals) to generate 
new populations. Its strategies are composed of one selection operation (either full replace “,” or 
join “+”) and a combination of two numbers, one for the parents (u) and other for the offspring 
(A). For example, (u,A)-ES represents a strategy where u  parents are used to generate A children 
(where A is a multiple of u), each parent creating A/u children through a simple mutation, and 
the selection occurring by dropping the parents and keeping only the offspring (full replace 
operation) (Weise (2009)). On the other hand, (u  + A)-ES strategy joins u  parents with their A 
children and selects only the u  best individuals to become the next generation.

Differential Evolution (DE) method takes solutions already in place into the population 
and use them to create new solutions through a recombination operator (Weise (2009)). The 
recombination operator is responsible for the evolution of the population, computing the difference 
between any two solutions xi and x2, applying a weight w over this difference and adding it to a 
third solution x3, thus generating a new solution xnew = x3 + w(x1 — x2). Each population member 
generates a single child and the selection keeps the best fit solutions between both parents and 
offspring. The variants of DE are classified as DE/x/y/z, where x specifies the solution to be 
mutated (best, rand, etc), y is the number of different solutions used for recombination (1, 2, etc) 
and z denotes the crossover scheme (bin, *, etc) (Storn e Price (1997)).

Ant Colony Optimization (ACO) (Dorigo et al. (1996)) uses swarms ecosystem concepts 
to drive the evolution of the population. Instead of evolving through competition (as in EA 
methods), community members work cooperatively toward a common goal. In ACO, individuals 
act like ants looking for food, leaving trails of pheromone wherever they go. The more the ants 
walk through a specific path, the more pheromone will be enforced and more likely other ants 
will use the same route. Hence, ACO is more suitable for graph-like problems, where the idea of 
“path” can be applied. Although this is not a robust method for large dimensionality numerical 
optimization problems, this is a classic swarm algorithm that worths mention due to its concepts 
of evolving community (opposed to the generational population used by EAs).

Particle Swarm Optimization (PSO) (Eberhart et al. (1995)), in turn, is a milestone 
in continuous numerical global optimization, in the sense that its design presents an efficient 
way of quickly converging to local minima of good quality, besides allowing parallelization in 
most multiprocessed hardware. Its algorithm follows the concept of birds flock, where each bird 
(particle or individual) has its own current position (x , the solution) and velocity (v), flying 
toward both its known best personal direction (pbest) and swarm’s global best direction (gbest). 
A weight is assigned for each direction (c1 for personal direction and c2 for global direction) 
and for the velocity (w). To reduce the risk of getting trapped on local minima, random factors 
computed at every iteration are added to the flight, one for personal direction (r1) and one for 
global direction (r2 ). Thus, the velocity update is calculated by preserving a portion of previous 
velocity, and adding a portion of the directions toward its personal best and the global best 
positions (2.1). Then, the new position is calculated as (2.2):

vnew = w vold + c1r1(pbest — x) + c2r2(gbest — x) (2.1)

x + vnew (2.2)x

The parameters c1, c2, and w allow the control of the swarm “on the fly”, so that fine-tuned 
adjusts can be applied to the algorithm, to give it autonomy to decide (on-demand) for the best



balance between exploration and exploitation as the search progresses. Due to its simplicity and 
high efficiency, PSO has been subject of extensive studies in academic community, and many 
highly competitive variants have been developed to compete with complex algorithms for large 
dimensionality problems. For search spaces with large dimensionality, a multi-swarm version 
of PSO called Cooperative Particle Swarm Optimization (CPSO (Van den Bergh e Engelbrecht
(2004))) was created, where the dimensions are divided into subsets and each subset is given to a 
swarm. Then, the swarms execute (likely in parallel) with the same configuration, cooperating 
each other with their own best solutions. The final output of CPSO is the union of swarms’ global 
best solutions, resulting in one single solution containing all original dimensions.

Inspired by the results obtained by PSO, many other nature-inspired swarm-based 
cooperative algorithms have been proposed. Grey Wolf optimization (Mirjalili et al. (2014)), 
for example, is an algorithm that mimics the movements of a worf pack chasing a prey, where 
the three higher hierarchy leaders (a, S  and 5, representing the three best results) guide the 
whole pack during the hunt, using the search-than-attack wolves behavior to perform the 
exploration-than-exploitation automatically.

Artificial Bee Colony (ABC) algorithm (Karaboga (2005)) assigns random positions 
(candidate solutions) to a swarm of bees (individuals), looking for potentially good food sources 
(exploration), assigning more bees for investigation of the best regions (exploitation), and using 
scout bees (a multi-start mechanism) to investigate new locations when no better food source is 
found (i.e., when the search stagnates).

An SI algorithm that focuses on multimodal problems, namely Glow-worm Swarm 
Optimization (Krishnanand e Ghose (2005)), uses only the solution of the brightest neighbors to 
guide the search, thus reducing the chance of getting trapped on local minima.

There is actually an extensive list of bio-inspired swarm-based algorithms proposed 
(besides the small subset of SI algorithms previously mentioned), each of which presenting 
different mechanisms and inspired by different animals or insects (cockroaches, amoebas, 
mosquitoes, bats, bacteria, etc). A different approach, however, has been presented by Cooperative 
Coevolution (CC) algorithms. CC is a category of SI algorithms with context-sensitive fitness, 
which depends on the solutions presented by the available individuals. Two main groups of 
coevolution algorithms are used, one for competitive populations and other for cooperative 
populations. When one single population is used, for example, an individual solution is compared 
with some other random solution in the population to assign it a contextual fitness (winner 
solution has better fitness) (Luke (2013)). When two populations are used, the second population 
can be used to measure how good the solutions are on first population. When using multiple 
populations, a CC algorithm can split the problem into smaller subproblems (eg. assigning a 
subset of dimensions for each population) so that the populations have to work together to form a 
complete candidate solution for evaluation.

Physics-based algorithms bring physics concepts and adapt them into optimization 
algorithms, in an attempt to investigate the search space in ways that have not been tried before. 
A simple yet powerful physics-based optimization algorithm, Big Bang-Big Crunch (BB-BC) 
is a memoryless method that uses randomness to guide the search. Developed by Erol e Eksin 
(2006), BB-BC follows a two step procedure that iteratively calculates the center of mass of the 
population, then creates a new population around this center, repeating the process until some 
stopping criteria is met. This search algorithm ensures convergence by simply controlling the 
radius around the center of mass. Its overall steps are described below:

1. Create an initial random population of p  individuals and evaluate their fitness.



2. Calculate the center of mass using Equation (2.3), where xi is the n-dimensional 
solution of the individual i, f  is the respective fitness value, and xc is the population’s 
n-dimensional center of mass.

3. Create a new population around the center of mass xc, following a normal distribution 
with a decreasing standard deviation as the number of iterations increases.

4. Return to Step 2 if stopping criteria has not been met.

xi
xc

i = 1

i = 1

(2.3)

2.1.2 Metaheuristics for Large Scale Global Optimization

Complex problems of large dimensionality have been addressed by optimization 
algorithms in many different ways. However, the meaning of what is a large number of 
dimensions varies depending on the considered method, and on the class of problems the 
algorithm was conceived for.

Math intensification algorithms, like the ones based on covariant matrix, are among 
the robust methods that most suffer with the curse o f dimensionality 2. One example is the 
state-of-the-art algorithm Covariance Matrix Adaptation Evolution Strategy (CMA-ES), that 
uses the covariant matrix to maximize genetic variations during mutation (Hansen e Ostermeier 
(1996)). Despite its high competence in finding good solutions even on global optimization 
problems, its inherent complexity makes it too slow when the number of dimensions is above 
100 (Omidvar e Li (2010)). One of its versions adapted to deal with multimodal functions, 
IPOP-CMA-ES, has even shorter limit (50 dimensions). The algorithm sep-CMA-SE is a 
version specially created to reduce CMA’s complexity that, in spite of outperforming CMA-ES 
when optimizing problem sizes above 100 dimensions, does not scale for problems above 500 
dimensions.

PSO, on the other hand, has high convergence rate and natural ability to deal with 
multimodal separable and non-separable global optimization problems. However, it can handle 
efficiently complex problems above 500 dimensions only when adding specific mechanisms to 
deal with high dimensionality. In an attempt to overcome the difficulties imposed by the high 
number of dimensions, frameworks like Cooperative Coevolution (CC) have been created.

A competitive decomposition method (Mahdavi et al. (2015)) for large dimensionality 
(Caraffini et al. (2013a,b)), CCPSO2 (Cooperatively Coevolving Particle Swarm (Li e Yao (2012))) 
is a recent state-of-the-art algorithm based on the well known PSO metaheuristic (Eberhart 
et al. (1995)). It is a variant of a previous version called CCPSO (Li e Yao (2009); Goh et al. 
(2010)), and is recognized by its good capacity of dealing with multimodal complex functions 
and separable problems (Poikolainen et al. (2013); Poorjandaghi e Afshar (2014)). Similar to 
CPSO (Van den Bergh e Engelbrecht (2004)), CCPSO2 works by partitioning the dimensions 
into multiple swarms, each swarm evolving a population of candidate solution separately from 
the remaining swarms. At every iteration, the cooperative coevolution occurs by combining

2The performance deteriorates as the dimensionality of the search space increases because (Mahdavi et al. 
(2015)): 1) the search space exponentially increases with the problem size; 2) increasing the problem size also 
increases its landscape complexity.



the partial candidate solution of a particle with the best solutions from others swarms, at the 
moment of the fitness evaluation. However, differently from CPSO, the particle’s positions are 
updated using a local best ring topology (i.e. particle’s local best neighbors) and two different 
numeric distributions, Cauchy and Gaussian. Aiming to improve results when the problem has 
non-separable variables, the dimensions are randomly permuted at every iteration and, when no 
improvement occurs, CCPSO2 recreates all swarms selecting swarms size randomly from the 
parameters.

2.2 A-TEAM

Introduced in 1991 by de Souza e Talukdar (1993), Asynchronous Team (A-Team) is 
an architecture that describes a cyclic network of agents, their memories and how they share 
information. An agent is basically composed of two components: 1) an optimization algorithm; 
and 2) its asynchronous communication protocol, which specifies the inter-agent information 
flow.

The idea behind A-Team is to combine different algorithms, allowing them to benefit 
from each other’s best characteristics. The agents on A-Team work independently from each other, 
therefore allowing them not only to run in parallel but also in distributed environments. Every 
agent has its own memory space (the pool) where it stores good results in, based on some insert / 
removal policy. To allow an effective asynchronous communication without affecting agents’ 
algorithms, every agent reads an input solution from other agent’s memory space, therefore 
creating a cyclic network of heterogeneous agents. Once the solution is read from the memory 
space, it is immediately removed from the pool of solutions. For that reason, a semaphore has to 
be implemented on the pool, avoiding simultaneous read and write over the same data block.

Before reading a solution, the agent has to follow some strategy to select the proper 
memory block (Rodrigues (1996)). If the agent always chooses the best solution, it will tend 
to converge too quickly and intensify the search around the good regions of the search space. 
If the agent always chooses the worst solution, the usually unexplored areas around the poor 
solutions will be exploited more carefully. The agent can also use an increasing linear probability, 
either from best to worst (worst having higher probability) or from worst to best. Using higher 
probability in the central area of the list of solutions (triangular distribution) would prioritize the 
intermediate solutions, what might intensify the search on regions not too distant from the best 
solution (because after a certain number of iterations, most of the solutions tend to approach 
the best solution). A dynamic selection strategy could combine previous strategies according to 
some specific need.

Considering that the memory space is limited and a large number of good solutions can 
be created quickly, there are destruction agents that follow predefined policies, deciding if a new 
solution can be inserted and, in a positive case, remove the old unused solutions according to 
some strategy. Strategies to remove old solutions are mostly probabilistic and include the removal 
of the worst solution, the removal of any solution in the memory with a uniform probability 
distribution, the removal of any solution (except the best result) with increasing linear probability 
(worst has higher chance of removal), and the removal of any except the best and the worst 
solutions using triangular distribution (higher probability on central area, thus holding both best 
solutions, for increasing convergence, and worst solutions, for increasing diversity).



2.3 HYPERHEURISTICS

Hyperheuristic can be defined as an optimization mechanism that operates on the 
(smaller) search space of heuristics rather than on the (much larger) solution space, having 
heuristics selected or generated according to the search progress.

When the hyperheuristic uses feedback information from the search process to chooses 
a heuristic, it is considered a learning algorithm. This learning can be online (when the learn 
occurs throughout the search) and offline (a training set is used to extract knowledge in the form 
of rules or programs).

Resembling the categorization of heuristic methods, the hyperheuristic metodologies 
used to select or generate the heuristics can be (Burke et al. (2013)):

• Constructive: the chosen heuristics iteratively extend partial solutions until complete 
solutions are obtained. The sequence of heuristics applied to the partial solutions are 
typically represented by chromosomes with variable sequence of characters, where each 
character represents a heuristic.

• Perturbative: the chosen heuristics modify complete candidate solutions. This methodo­
logy is composed of two stages:

-  Heuristic Selection: the heuristic is selected from a set of perturbative heuristics 
and then applied over a candidate solution (single-point search) or a population 
(multi-point search). The heuristic selection can be uninformed (through random or 
exhaustive process) or use some learning mechanism. An example of uninformed 
selection is the Simple Random, which selects randomly a heuristic at each step. The 
learning mechanism usually selects heuristic based on scores that are refined during 
execution. To assign these scores, methods like the Reinforcement Learning(RL) 
can be used. Given a state (candidate solution), RL takes an action (perturbation) 
based on a policy (heuristic), and then rewards (giving a positive score) or punishes 
(giving a negative score) the heuristic based on the results.

-  Move Acceptance: examples of acceptance criteria are All Moves (accepting all 
generated perturbations) and Only Improvements (accepting only the perturbations 
that generated improved solutions). Examples of methods that apply some accep­
tance criteria are the Random Descent (which applies the selected heuristic until no 
further improvement is obtained), Random Permutation (which creates a random 
cyclic list of heuristics and apply one at each step), Random Permutation Descent 
(same as random permutation, but only applies next heuristic when no improvements 
are obtained by the current one) and Greedy (applies separately all heuristics and 
chooses the best one) (Ozcan et al. (2010)). A more complete acceptance criterion is 
the Choice Function, which ranks the heuristic based on two intensification criteria 
(its individual overall performance and the instant/current performance compared 
to the previously called heuristic) and an exploratory criterion (the elapsed time 
since last call), then accepts the move based on the combined scores.

2.4 DISTRIBUTED ENVIRONMENT

Good distributed search algorithms should aim particularly on (Gong et al. (2015)):



• Scalability: which comprises size scalabilility, meaning how performance increases as 
processors are added, and task scalability, referring to whether the algorithm provides 
tools to maintain efficiency on distributed environments when increasing problem size.

• Speedup: the ratio between sequential processing time and parallel processing time.

• Communication: the impact that checkpoints or information sharing cause on the overall 
processing time. The amount of data exchanged should be small enough to be efficiently 
handled even by low-speed network connections, and latencies should be hidden by 
sequential computation (Crainic e Toulouse (2010)).

• Fault-tolerance: refer to how robust is the algorithm to events of component failures, 
like for example network delays or node crashes.

Usual topologies applied to distributed metaheuristics include (Alba et al. (2013); Gong 
et al. (2015)):

• Master-slave: one master population delegates tasks to the slaves (Dubreuil et al. (2006)) 
(e.g., fitness evaluations).

• Island: also called coarse-grained model, composed of a global population distributed 
to multiple “islands” (populations), in which a serial search algorithm is performed, 
with communication occurring between islands according to some migration policy. 
Such policy comprises (Alba et al. (2013); Du et al. (2008)): topology (logical 
connection between islands), migration rate (number of solutions exchanged at every 
communication), migration period (time between communications) and selection of 
solutions (rules to select the solutions that will be exchanged).

• Cellular: usually one population member per cell in a grid of distributed nodes, with 
communication occurring only between neighbors, so that information can propagate to 
the entire population more slowly to avoid premature convergence (Alba e Dorronsoro
(2005)).

• Hierarchical: also called hybrid model, this topology combines two or more models in a 
way that advantages can be combined to mitigate disadvantages. Hybrids include: Island 
- master-slave (with multiple interacting masters), Island - cellular (cellular formation 
inside every island) and Island - island (island formation inside island nodes) (Herrera 
etal. (1999); Vu et al. (2011)).

• Pool: uses a global shared resource pool to exchange information between autonomous 
processors (de Souza e Talukdar (1993)).

• Coevolution: divides the dimensions (instead of populations) into multiple simpler 
problems, requiring specialized fitness functions to aggregate and evaluate the solutions 
(Subbu e Sanderson (2004)).

• Multi-agent: based on the game theory, only individualized local goals are considered 
and a coordination process is used to manage these local goals (Bouvry et al. (2000)).

2.5 MATHEMATICAL BASIS

Next section describes the Beta numerical distribution, and Section 2.5.2 details the 
characteristics of a perfect k -ary tree.



2.5.1 Beta Probability Distribution

Probability distribution is an important statistical tool, used in many fields of science, 
that describes the dispersion of the values of a random variable. Probabilities for continuous 
distributions are measured over ranges of values rather than single points. A probability indicates 
the likelihood that a value will fall within an interval. For a single continuous random variable, 
the distribution is called Probability density function (PDF), whose curve shape varies according 
to its probability distribution. The total area under the curve is equals to 1 and the probability of 
the value of a random variable to fall inside a specific range is equals to the area under that curve, 
and limited by the lower and upper boundaries of such range.

The Beta distribution has been successfully used (eg. Ali e Storey (1994)) to proba­
bilistically approximate individuals (gradually) to the best result found so far. It is a special 
type of probability distribution used to describe probability of probabilities, i.e., to model the 
behavior of random variables. Based on some knowledge about the problem (like initial success / 
failure probabilities), Beta PDF gives us the probability of such knowledge to remain unchanged. 
Equation (2.4) gives the Beta PDF, where x is the referred knowledge, ap is the weight of the 
likelihood of a probability to hold true and Pp is the weight of the probability to hold false.

Bpdf (x; ap,j3p) = x ap-1(1 -  x )Sp-1 (2.4)

ap = fimax Pp, Pp ^ [0 fimax] (2.5)

For the complementary probability presented on (2.5), the parameter p max controls 
the shape of the beta distribution (Figura 2.1). A more controlled behavior can be seen with 
Pmax = 100, whereas p max = 1 yields a behavior that promotes more sparse distribution, favoring 
the boundaries.

2.5.2 Perfect k-ary Tree

Let L  be the level (height) of a node in a tree, Lroot be the height of a perfect k-ary tree 
and also its root level, nChildren > 0 the number of children that every node contains (except 
the leaves, where L = 1 and nChildren = 0), and nNodes the total number of nodes in the tree. 
It can be said that each level L adds nChildrenLroot-L nodes in the tree, with the entire tree 
having nNodes (2.6) nodes at total.

nChildrenLroot -  1
nNodes = —  -------- —  (2.6)

nChildren  -  1
Figura 2.2 shows a perfect k-ary tree, where all nodes (except the leaves) have exactly 

k children and the tree has the diameter of 2(Lroot -  1). It becomes evident, therefore, the 
relationship between the exponential growth on the number of nodes nNodes, and the linear 
growth on the diameter of the tree (the maximum shortest path between two nodes Crainic e 
Toulouse (2010)), as the number of levels L  increases.
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3 BIBLIOGRAPHIC REVIEW

This chapter describes the most relevant works found in the literature regarding parallel, 
distributed methods for optimization (Section 3.2), pool-based algorithms (Section 3.3) and 
hyperheuristics (Section 3.4). An exploratory research was conducted, aiming to find the robust 
methods available in literature for distributed optimization, and the existent gaps.

Comparing the work proposed in this thesis with the state of the art for distributed 
optimization (summarized in Table 3.1), Treasure Hunt (TH) can be classified as a Framework 
to distribute optimization methods, presenting the following characteristics which mostly 
differentiates from the existent methods, aiming to fill their gaps:

• Topology: Hierarchical Tree.

• Agents: Independent TH instances.

• Exploration / Exploitation: simultaneous explorations (by parents) and exploitations (by 
children), on several levels of granularity.

• Learning: best-list, a mechanism to control diversity while reinforcing the best sub­
regions.

• Propagation Mechanism / Speed: Parent <— ► Children / Fast.

• Communication / Overhead: Asynchronous / Low.

• Joint Strategy: Guided Relocation.

• Memory / Tested Processes / Limited by: Distributed and Shared /160  / Hardware.

• Fault Tolerance: High.

On next section, the state of the art for convergence modeling is discussed, whose main 
goal is to make predictions on the convergence behavior presented by the considered search 
algorithms.
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3.1 CONVERGENCE ANALYSIS AND MODELING

Within the field of study called Theory of Randomized Search Heuristics (Yang (2011)), 
which tries to understand stochastic search algorithms (like EA and SI algorithms), Convergence 
Analysis is a sub-field that focuses on mathematical properties of the search methods in an 
attempt to prove convergence. Considering that such mathematical analysis is often difficult 
or even impossible in some cases, only a very few search algorithms have been actually 
studied mathematically, and most of these studies use simplified approaches and asymptotic 
approximations (Calafiore e Dabbene (2006)) for restricted classes of problems (Gutjahr (2009)). 
Since every randomized search method must have its own convergence analysis, there is no 
general purpose mathematical framework to provide insights into the search convergence.

The work developed by Pichitlamken e Nelson (2003) proposes a method for discrete 
optimization-via-simulation problems (i.e., stochastic systems represented by a computer simula­
tion model). The method uses the classic explore-than-exploit approach, and incorporates the 
Nested Partition (NP) method (Shi e Olafsson (2000)) as an attempt to guarantee the convergence. 
NP iteratively divides the search space into good sub-regions, intensifying the search only in the 
most promising partitions, and backtracking to re-explore its super-region when better solutions 
are found outside the current partition, thus escaping automatically from local traps. Although 
Shi e Olafsson (2000) provides an extensive mathematical analysis, showing the high likelihood 
of the NP method to converge to a global optimum under certain conditions, they make no 
mention of the processing time required to find such result.

PSO convergence is tackled by Van Den Bergh e Engelbrecht (2006) through the analysis 
of the particles trajectories, according to the parameter settings. A formal analysis is provided 
to prove the particles convergence to a stable point of equilibrium, taking the inertial term (the 
particle’s velocity) into consideration. The stable point is shown to be a weighted average of the 
personal best and global best positions, in which the weights are determined by the values of 
the acceleration coefficients. Although it is not a proof of convergence to a minimum, it states 
that the swarm will reach a point of equilibrium, under certain conditions. Trelea (2003) uses 
the dynamic system theory for a theoretical analysis of PSO, providing graphical guidelines for 
parameter selections that lead to good convergence behaviors.

As stated by Olafsson (2006), despite the fact that it is important to make statements 
about algorithms convergence under traditional asymptotic analysis for infinite time behavior, 
methods that target on short term solutions have much more practical usage. In that sense, Model 
Convergence is an approach that focuses on solutions instead of asymptotic analysis. Differently 
from the traditional focus on the improvement of an elite list of solutions, model convergence 
of population-based algorithms is obtained by promoting gradual improvements on the overall 
population. The work developed by Gutjahr (2009) presents a generic metaheuristic algorithm 
that encompasses good part of the currently existent metaheuristics as special cases, and then 
tries to apply model convergence to the generic algorithm.

A more efficient technique for solving expensive and time-demanding complex optimi­
zation problems, Model-based optimization (MBO) evaluates cheaper surrogate models instead 
of expensive objective functions, what could be used as a smoothing of the original function 
(Bartz-Beielstein e Zaefferer (2017)). MBOs generate the population by exploiting a model, 
which can be either a surrogate or a distribution. Surrogate models imitates the real function 
as much and as simple as possible, and is used when the computation of the original function 
is very expensive or time consuming. However, considering that they demand training for the 
accuracy and efficiency of results, quickly suffering from loss of performance as dimensions 
increase, Bartz-Beielstein e Zaefferer (2017) strongly recommend using MBOs only when the



classic optimization techniques fail to solve the problem at hand. On the other hand, instead of 
propagating good candidate solutions to the next iterations, distribution-based models propagate 
the probability distribution induced or estimated from promising solutions in the population, 
hopefully assigning most of its probability mass to the set of optimal solutions. In that sense, 
distribution-based models are model convergence algorithms, given their focus on gradually 
improving the overall population instead of an elite list of solutions. According to Bartz-Beielstein 
e Zaefferer (2017), all distribution-based algorithms (like Estimation of Distribution Algorithm 
(EDA)) can also be classified as MBOs since the sequence of probability distributions generates 
approximations that describe the objective function.

A more computing intensive technique is the Optimal Computing Budget Allocation 
(OCBA), whose focus is on maximizing the usage of a limited computing budget. This method 
works by resampling candidate solutions in order to determine the best budget allocation for the 
iteration. It assigns the evaluations to the most promising solutions, instead of equally allocating 
the evaluations between search individuals. Zhang et al. (2016) present a PSO_OCBA allocation 
rule aiming to maximize PSO convergence rate, with samples allocated incrementally at each 
stage of PSO until the computing budget is exhausted. Despite the good results obtained, an 
extensive mathematical analysis is required in order to maintain its efficiency. Souravlias e 
Parsopoulos (2016) propose a method that allocates the budget to particles according to their 
neighborhood, using a rank-based criterion to assess the quality of the neighbors. Rada-Vilela 
et al. (2013), however, demonstrate how inefficient OCBA is from the search algorithm point 
of view, since a very high number of function evaluations is used for resampling (above 90%), 
while only a small portion is used for the optimization.

3.2 PARALLEL METAHEURISTIC ALGORITHMS

Proposed by Vu et al. (2011), a master-slave algorithm combining Cooperative Coevo­
lution (CC) and Differential Evolution (DE) strategies uses the slave agents to evolve disjoint 
subsets of the problem dimensions. Exploration and exploitation occur as consequence of the 
parallel evolution of each subset of dimensions. The master is responsible for updating the best 
solution and for the termination criteria, with the communication occurring synchronously and 
only between the master and the slaves. For that reason, the information is propagated quickly, 
causing a high communication overhead. This is not a fault tolerant algorithm (since all slaves are 
required to evolve the entire solution) neither a scalable system (because the number of processes 
is limited by the number of dimensions). The method uses distributed memory and the authors 
tested it with up to 6 processes.

A cellular topology GA (cGA) presented by Alba e Dorronsoro (2005) uses the ratio 
between the radius of the cell neighborhood and the radius of the population, to control 
diversification (by reducing the ratio) and intensification (by increasing the ratio). This algorithm 
has a weak scalability, since the propagation occurs synchronously and only between neighbors, 
what reduces its propagation speed and increases its communication overhead. No mechanism to 
reduce failures is presented. Although the authors tested it with up to 400 processes in distributed 
memory, its topology is not as versatile as the topologies used by the other methods analyzed.

Herrera et al. (1999) propose a multi-level metaheuristic in a hybrid island-island 
topology, where every island is a Distributed GA (DGA), composed of multiple GAs running 
in parallel. All islands are weakly connected with neighbor islands through a direct GA-GA 
connection, forming a Hierarchical DGA system (HDGA). The expansion of the system to a 
multi-level HDGA is suggested (but not implemented or algorithmically described) by turning 
a DGA into a HDGA. Exploration and exploitation occur respectively through asynchronous



global (inter-DGA) and local (intra-DGA) propagation. It has a high fault tolerance, since DGA’s 
are independent, and medium to high scalability, due to sparsely connected topology.

3.3 COOPERATIVE POOL-BASED ALGORITHMS

A-Team (previously described in Section 2.2) is a scalable, fault-tolerant, cyclic 
architecture that shares solutions across independent optimization algorithms (Talukdar et al. 
(1998)), using pool of solutions for the explorations and Local Search (LS) for the intensification, 
with communication occurring asynchronously between agents. This method presents slow 
propagation of information and low communication overhead.

Talukdar e Ramesh propose an agent (Voyager) for A-Team systems that generates 
good starting solutions (Probes). A multi-objective variant of A-Team is proposed by Rodrigues 
(1996), presenting a learning mechanism that uses the non-dominated criterion to sort the pool 
of solutions.

Proposed by Le Bouthillier e Crainic (2005), Solution Warehouse is a client-server 
approach similar to A-Team that allows multiple metaheuristics to collaborate to improve results. 
The communication, however, is not required to be cyclic, and the solutions received are stored 
into an in-training population in the server, and then, a post-optimization process is applied to 
obtain local improvements. The improved solutions are then stored into the adult population,
i.e. a pool which becomes available to be used by all metaheuristics. This increases the 
communication overhead for the server, and considering there is no mechanism to guarantee the 
complete propagation of information between the agents, the propagation occurs slowly. As long 
as the warehouse does not fail, this is a fault tolerant system. Considering the server can be 
implemented in many robust ways (like database systems), this algorithm is scalable.

3.4 PARALLEL HYPERHEURISTIC ALGORITHMS

Meignan et al. (2010) present a coalition-based hyper-heuristic composed by agents, 
which are independent algorithms that cooperate asynchronously through broadcast to improve 
the best coalition solution. Every agent uses Reinforcement Learning to select its search operators, 
which are divided in intensification and exploration ones. This is a fault-tolerant mechanism, 
since agents can be added or removed without perturbing the global functioning of the system, 
but broadcast communication reduces scalability.

Ouelhadj e Petrovic (2008) propose a Hyper-Heuristic Agent (HHA) that selects, based 
on greedy and tabu learning mechanism, the low level heuristic (LLH) to be applied at every 
iteration. The HHA broadcasts a starting solution and low level heuristics to all Low Level 
Heuristic Agents (LLHA), which will use the heuristics to improve the starting solution in parallel. 
The solutions are then sent back to HHA, which in turn stores synchronously the best result 
in a pool of best solutions. No decomposition is performed, and the exploration / exploitation 
mechanism is based on the acceptance criterion for the low level heuristic and for the best 
solutions. It is a fault tolerant algorithm, since HHA does not require all LLHA to be active to 
keep working, but it has weak scalability, given it is a master-slave topology.

As continuation of a previous work developed by Ouelhadj e Petrovic (2008), Ouelhadj 
et al. (2009) propose a controller that manages a set of different hyper-heuristics, which in turn 
uses a set of LLH to generate solutions. A pool of best solutions are maintained by the controller, 
which is used for asynchronous cooperation between HHAs. No refinement of the solutions or 
decomposition of the dimensions is performed, and no learning mechanism is employed by the



controller. It is a fault-tolerant algorithm as long as the controller is active, but its scalability is 
limited since the controller cannot deal with too many agents.

Rattadilok et al. (2004) propose a distributed “Choice Function” (i.e., a Reinforcement 
Learning process) for parallel hyper-heuristic. A parallel hyper-heuristic multi-controller is also 
proposed, with every controller managing a set of tasks. Each task applies a selected LLH 
over the selected solution, until a termination criterion is met. Besides starting the tasks, the 
controller also selects the solution, chooses the LLH through the choice function and sends 
both to the tasks. The communication between the controller and the tasks is asynchronous 
in a master-slave topology, but when expanding the system to a multi-controller environment, 
the communication inter-controller occurs at fixed intervals. The exploration is implemented 
through LLH acceptance criteria, and the intensification occurs through branching (in this case, 
different strategies starting from the same solution to obtain different results). This algorithm 
has high falt tolerance, since at failure events of either a controller or a task, other tasks and 
controllers will keep their work going. It has good scalability, but limited to the quality of the 
information exchanged between controllers, since no decomposition mechanism is employed. 
Authors concluded that this kind of solution is sensitive to the interval of communication between 
controllers.

Henry Obit (2010) presents a multi-agent system called Asynchronous Cooperative 
Multi-Hyper-Heuristic (ACMHH), whose agents are independent hyper-heuristics that maintain 
their own solutions without interference. The agents are fully connected in an island topology, 
with communication occurring asynchronously. No decomposition or learning mechanism is 
employed, and exploration / exploitation is controlled through LLH acceptance criteria. Although 
this system has a high fault tolerance, the quality of results is dependent of frequent information 
exchange through broadcast, which affects its scalability.

A different approach is presented by Lozano et al. (2016), with a hyper-heuristic 
developed for parameter tunning of metaheuristics, running on a multi-core system. The proposed 
algorithm has low fault tolerance, since the system is built to optimize specific metaheuristic 
algorithms, which cannot fail (unless if multiple instances of same metaheuristic are kept running). 
For the same reason, it has low scalability. The authors tested this method with up to 250 
processes using shared memory.

A distributed hyper-heuristic using a dynamic probability distribution for the learning 
was presented by Biazzini et al. (2009), whose distribution is updated by using agent’s overall 
performances obtained after every agent execution. No decomposition or exploration / exploitation 
mechanism is used. Agents are metaheuristics connected in island topology, with asynchronous 
communication occurring at every fitness evaluation with a random peer, causing a high 
communication overhead. This is a fault tolerant algorithm, with medium to high scalability 
since the communication has small impact on the agents processing. Although experiments were 
conducted with up to 213 processes, the time required for the information to propagate to all peers 
is an issue in this method (O(log(n))).



4 THE TREASURE HUNT FRAM EW ORK

This chapter describes all details of the Treasure Hunt (TH) framework. Next section 
gives an overview of TH and all terms necessary to understand the framework. Section 4.2 details 
the proposed search space organization method. Section 4.3 illustrates the basic steps performed 
by TH during a joint optimization in a distributed environment. Section 4.4 describes the TH 
algorithm, whereas Section 4.5 describes the relocation strategy proposed for TH framework. 
Sections 4.6 and 4.7 present the methods created in this thesis in support of TH. Finally, Section
4.8 discusses several topics related to TH, including a sub-region selection mechanism that uses 
grouping dimensions as criterion.

4.1 TREASURE HUNT OVERVIEW

Treasure Hunt (TH) is a distributed framework for distributed framework for complex 
and high dimensional continuous optimization, comprised of independent TH instances with 
internal functions established as follows:

1. H ierarchical organization (Section 4.2): the root TH is assigned to the full search 
space, defined as a hyper-rectangular area H 0 c  Rn, that can be hierarchically divided 
for the initialization of the child TH instances (see Figura 4.1):

• TH is an independent instance of the TH framework.

• H  is the search space region associated with a TH instance, from TH’s own 
perspective, regardless H ’s hierarchical location.

• S (4.1) is a set which organizes the segments obtained by dividing each problem’s 
dimension j  e {1,••• ,n} into Kj non-overlapping segments, forming n n=1 Kj 
non-overlapping hyper-rectangular sub-regions Hh (4.3).

• C is a selection mechanism which chooses from S a set HjC of child sub-regions 
(Figura 4.1a), forming a tree1 (Figura 4.1b).

• Every chosen sub-region H j is associated with a distinct child TH instance.

• Every TH instance has its own population, thus the Root TH’s population is initialized 
inside H 0, whereas every child TH’s population is initialized within its chosen 
sub-region Hh.

• Finer granularity can be achieved in this hierarchical structure by applying this 
process recursively to any selected sub-region.

2. D istributed optimization (Section 4.3): Multiple independent populations are hierar­
chically coordinated (Figura 4.1b), such that an asynchronous joint convergence between 
all independent populations is obtained as if they were a single distributed population:

• Every TH instance (parent or children THs) contains its own search group G, that 
encompasses both the population and the search method.

iThe terms node and sub-region hereafter will be used interchangeably, given direct correlation between these 
terms for TH framework.



-  G’s search method is regarded as a black box, that performs full search over 
the entire search space H 0.

-  Children’s populations, however, are initialized within non-overlapping THs’ 
sub-region j .  This increases the chance of finding a local optimum nearby j ,  
besides reducing the chance of work overlap between the search groups.

• A multi-start process is performed by each TH instance at every TH iteration:

-  G collects the fitness improvements obtained at every search method’s iteration, 
and uses them to detect the convergence stagnation. Once stagnated, the search 
is interrupted.

-  Each TH instance collects G’s best candidate solution. Then, TH controls the 
local propagation of the information about promising regions by asynchronously 
sending / receiving information to / from its parent and children.

-  Every TH instance repositions G’s population to positions reported by children, 
and also biased toward information received from the parent (or toward its own 
best, in case it is the root TH).

-  G re-initiates the search.

Notice that if H 0  is not hierarchically divided, there will be only one TH instance in the search, 
and therefore, no local propagation of information will occur. In such case, the multi-start method 
will always occur toward TH instance’s own best solution. Also, the term “solution” used here 
denotes the underlying search space position and any related information (e.g. configurations 
and statistics).

4.2 HIERARCHICAL ORGANIZATION

Let D = {dj | j  = 1, • • • , n} be the set of n dimensions of a hyper-rectangular continuous 
search space H 0 c  Rn, where dj is associated with the j -th decision variable of an optimization
problem. Every dimension dj can be divided into non-overlapping segments Sj,kj, such that the
set of all segments for all dimensions is given by S:

n Kj

S = U U  ■ j j  c  [ j  j  (4.1)
j=1 kj=1

where Sj,kj denotes the segment kj of dimension d j, Sj and S? are the lower and upper boundaries 
of d j , and Kj is the number of segments the dimension dj is partitioned into.

Considering segments of equal size (Aj) for dimension d j , Sj,kjis given by (4.2).

Si.k, = [S' + (kj -  1)Aj , Sj + kj Aj ] (4.2)

Aj  = (S? -  Sj)/Kj

A specific sub-region H k1,...,kn is defined by the Cartesian product of one segment from 
every dimension dj :

Hk1,...,kn = SU1 x • • • x Sn,kn , Hk1,...,kn c  H 0  (4.3)

such that the union of all possible non-overlapping sub-regions comprises the entire search space 
H 0. Thus, H 0 can be divided into 12*= Kj disjoint sub-regions delimited by S.
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(a) Sub-regions chosen at diagonal by criterion (4.4).

L = 1

H h = 0

L ro o t =21H = H o  |
iE- H 2,2,2, H 3,3,3}

=  Ho H h =  Ho H H =  Ho

| H  =  % 1 , 1 , i |  =  H  2 ,2 ,2) =  % 3 ,3 ,3 |

H  =  0  H  =  0  H  =  0 

(b) Hierarchical tree topology obtained by C(S).

Figura 4.1: Cartesian division of the search space H0. An example with n = 3 (D = {d1, d2, d3}) is partitioned in 
(K1 = K2 = K3 = 3) contiguous intervals of equal sizes (Aj).

Given that the total number of sub-regions (or nodes) can be intractable, and aiming to 
associate a sub-region H  to every TH instance, a selection criterion C(S) must choose a subset 

= { H I H  c  H 0, VHi,}. For better coverage of the search space, the partitioning procedure 
(presented in a simplified form in Figura 4.1) can be recursively applied to create a hierarchical 
subdivision of the problem, forming a tree topology of height Lroot in which the root node H 0 
contains the whole search space, each parent node H H contains its own set of H  C chosen child 
nodes, and each node H  knows its parent, its children and its level L in the tree.

4.2.1 A simple 3-D example

Consider a three-dimensional problem (D = {d1, d2, d3}, n = 3) where the variables’ 
domains are segmented in contiguous intervals of equal sizes Aj and cardinalities K1 = K2 = 
K3 = 3. The Cartesian product of such intervals produces 27 three-dimensional sub-regions H , 
and the union of all sub-regions composes the entire search space H 0 . Figura 4.1a shows three 
sub-regions of H  chosen at diagonal by selection criterion:

3
C(S) = U  S1,k X %  X S3,k (4.4)

k=1

forming a tree topology (Figura 4.1b) of height Lroot = 2 (i.e., levels L = 2 for root node and 
L = 1 for leaf nodes), with one parent region H 0 and three chosen sub-regions {H 1,1,1, H 2,2,2, 
H3,3,3 } = H C .

4.3 DISTRIBUTED OPTIMIZATION

The hierarchical organization described in the previous section enables a distributed 
optimization, which can be summarized in six main steps (described here with Lroot = 2, for 
simplicity aspects):



1. The full search space Ho assigned to the root TH instance is subdivided, and nChildren  
child sub-regions (H ^ ) are chosen according to a selection criterion C(S) (Figura 4.2 
Step 1). Each child sub-region is then associated with a subordinate child TH instance.

2. At first iteration (t = 1), all p  individuals from each search group G (including the root 
TH) are randomly positioned into TH’s designated sub-region (for clarity purpose, root 
TH’s population is hidden from Figura 4.2 Step 2).

3. Despite the restricted initialization, the search group G of every TH performs an 
independent full search (ignoring the boundaries of its associated search space) and 
obtains one local minimum from its own perspective (Figura 4.2 Step 3).

4. The search group of the root TH performs its own full search, starting from the following 
locations: (i) the children’s best solutions; (ii) the best solution of the iteration (gbt) 
found by its personal search group; (iii) locations generated using the yS-relocation 
strategy (described on Section 4.5), pointing to its own general best solution g b (Figura
4.2 Step 4).

5. The root TH’s best solution (Figura 4.2 Step 5) is a result from an exploration based 
on the collaborative search performed. It is added to the root TH’s best-list, and then a 
random solution is selected from this list and sent back to the children, to influence their 
movement.

6. Each child TH instance uses the solution received from the root TH as bias to reposition 
its individuals (except gbt), using the yS-relocation strategy pointing to the received 
solution (Figura 4.2 Step 6).

7. All TH instances re-initiate their search (step 3).

Given TH’s distributed and asynchronous characteristics, all TH instances execute steps 2 to 
6 in parallel with each other. It is important to emphasize that these steps imply two types of 
iterations occurring during a TH optimization: 1) the search algorithm’s iterations, which are 
managed by the search group G until the search algorithm’s completion; 2) the TH’s iteration, 
which is comprised of G’s final result, a communication process with parent and children, and a 
population repositioning process.

A sa requirement for the optimization to occur jointly between all TH instances, there must 
be cooperation between search groups to allow the propagation of potentially good information 
through all the nodes in the tree. However, some groups might take much longer than others to 
converge, due to difficulties the search method may face when optimizing particularly harder 
sub-regions. Considering the asynchronous cooperation between TH instances only occurs after 
each search groups execution has completed, slow convergences might reduce the cooperation 
between search groups and, consequently, affect the joint optimization. To mitigate this problem, 
the communication frequency could be improved by using CSMOn (described on Section 4.7), 
which detects the convergence stagnation and stops the search after a nearly optimal number 
of fitness evaluations is performed. Hence, the cooperation, which is of high importance in a 
parallel environment, yields high-quality low-cost results on TH.

4.4 TH ALGORITHM

Treasure Hunt framework works through the execution of distributed TH instances, which 
are initialized in disjoint sub-regions selected by criterion C(S). TH framework is comprised of 
three phases (Algorithm 1):



Step 4 Step 5 Step 6

Figura 4.2: Simplified iteration of TH’s joint optimization mechanism. Configuration = [D : {d1, d2, d3 }, n : 3, 
K : 3, p : 8]. “X” is the global optimum. Step 1: H0 (the external cube) is subdivided in nChildren = 27 
sub-regions and HjC (the red cubes) are chosen by selection criterion (4.4). Step 2: Search groups’ individuals 
are initialized into respective constrained sub-regions (showing only children search groups, for clarity). Step 3: 
Unconstrained full searches find a best solution for each search group. Step 4: Root TH’s search group starts from 
its group’s and children’s best results, and from locations generated using the yfi-relocation strategy. Step 5: Best 
solution found by root TH is sent back to children. Step 6: Children search groups reposition individuals biased 
toward root TH’s best and start a new iteration (i.e., restart the search, returning to Step 3).



• Initialization: the p  individuals of G’s population are uniformly initialized at the 
assigned region H  (Algorithm 1, line 2).

• Full search: a method to control the joint convergence between the TH instances 
runs the search group iteratively, controls the propagation of the information between 
parent and children, and manages the repositioning of population’s individuals between 
iterations (Algorithm 1, lines 4 to 21).

• Residual Communication: if a TH instance has finished but its children (H th ) have 
not, it continues propagating children’s information to its parent (H TH) and active 
children, until all its children are inactive (Algorithm 1, lines 22 to 28).

The following additional representation is used:

• t is the number of the current TH iteration and T  is the maximum number of iterations.

• gbt is the best candidate of current TH iteration t .

• gb is a copy of TH’s overall best candidate solution (gb < g bt in a minimization 
problem). Due to self-organization, g b is also the best solution for the current TH’s 
subtree.

• H TH is the parent TH instance, and H THb is a copy of a random result from parent’s 
best-list (or a copy of TH’s gb, in case it is the first iteration or the root instance).

• H th are children TH instances and H THb is a list with a copy of children’s best solutions.

• LS  is a local search function that receives a list of candidate solutions and optimizes 
them individually.

The Full Search phase performs the actual optimization:

1. G’s full search (Algorithm 1, line 5):

• G executes the search algorithm over its population, then updates TH’s g b and 
best-list.

• Despite being initialized inside H , the search group moves are constrained to H 0.

• G controls the running time of the search algorithm through CSMOn method 
(Section 4.7).

• g bt is always kept for the next iteration. As long as the search algorithm returns 
its best individual g bt , there is no restriction on the algorithm used by G (e.g. 
population-based metaheuristic, hyperheuristic algorithm and mathematical method 
- see Section 2 for a comprehensive list).

2. A local cooperation is performed between current TH instance, its parent and children, 
so that (given enough budget) a joint convergence is obtained with reduced cooperative 
effort. If current TH instance has no new information to be reported, its parent and 
children use their last known information, so that the search can continue without delay. 
All communications occur asynchronously to allow independence between TH instances. 
In order to communicate with:

• Parent (Algorithm 1, line 8), the TH instance:



1: Input: [Ho, H , H T H , H th , p, T ]
2: Initialize G with p  and H  >Firstphase: Initialization 
3: t ^  1
4: do >Secondphase: Full Search 
5: G performs a complete search over H 0
6: if t = 1 then >Initialize H THb

7: H THb ^  gb
8: if TH has parent then >H th ^  0
9: Asynchronous: sends [gb, Active] to H TH

10: Asynchronous: receives H THb

11: else >The root level
12: H THb ^  gb
13: if TH has child then >H th ^  0
14: Asynchronous: receives H T H b and status

from active children
15: H T H b ^  LS(H T Hb)
16: Move nChildren  individuals in G

to H th ; (except g bt)
17: Update best-list and gb with H th^
18: Asynchronous: sends 1 random solution

from best-list to all active H th 
19: Perform the yS-relocation strategy

on (p -  nChildren  -  1) individuals 
20: t ^  t + 1
21: while (t < T )
22: while has active children do >Thirdphase: Residual Communication 
23: Asynchronous: receives H THb and status

from active children 
24: if H T H b is better than gb then
25: Update gb withH T H b
26: Asynchronous: sends gb to H TH (if H TH ^  0)

and to active H th 
27: if TH has parent then >H TH ^  0
28: Asynchronous: sends [gb , Inactive] to H TH

29: re tu rn  [gb, best-list]

-  Sends g b and the status active to the parent.
-  Receives H THb from the parent.

• Children (Algorithm 1, line 13), the TH instance:

-  Receives the best candidate solution and the status from every active children, 
updating the lists H THb and status, respectively. A local optimization of 
children’s results LS(H THb) yields H th  ̂ (Algorithm 1, line 15). Then, both g b 
and best-list are updated with H th^, and nChildren  individuals on G (except 
gbt) are relocated to H th  ̂.



-  Selects a single random solution from current best-list and sends to all children 
(H th).

3. Remaining individuals in G are repositioned biased toward H T H b , using yS-relocation 
strategy (Section 4.5) to guide the joint convergence (Algorithm 1, line 19). Since at 
least one individual in G must be repositioned through yS-relocation strategy, if H th ^  0, 
p  > nChildren + 2 (i.e., at least 1 for yS-relocation, 1 for g bt and nChildren  for H th^).

The best-list is a pool (memory) mechanism that stores solutions from multiple 
perspectives, playing a special role in the control of the convergence stability (Rudolph (1994)). 
It is updated at every TH iteration with its own group’s and children’s best results (Algorithm 
1, lines 5 and 17), keeping the candidate solutions that either: (i) maximize the diversity (e.g. 
replacing solutions with worse fitness and smallest Cartesian distances from the new candidate 
solutions), what is specially important on multimodal fitness functions; (ii) minimize the diversity 
(e.g. replacing the largest distance instead), what can be used to accelerate the convergence; or 
(iii) combine both (i) and (ii), to control the exploration/exploitation behavior. Considering this 
thesis focuses more on convergence behavior, the second method is used for the experiments.

As stated previously on Section 2.3, branching helps escaping from strong local minima 
without losing important information (e.g. Simulated Annealing (Kirkpatrick et al. (1983)). 
Therefore, to reduce the chance of the parent to be stagnated in the same trap as the child in 
its last iteration, before adding child’s candidate solution to the best-list, the solution is locally 
optimized with an LS  function.

Once the TH instance has completed its optimization, the residual communication is 
propagated to its parent until all its children are inactive (Algorithm 1, line 22):

1. Results from parent are ignored, forcing children into exploitation.

2. Results from active children and respective statuses are read, and g b is updated if 
necessary (no LS  is performed neither the best-list is updated or replicated, allowing a 
smooth convergence stabilization).

3. If g b is updated, it is sent to parent and active children.

Once all children are inactive (and consequently, the subtree at current hierarchical level), 
TH informs its parent that local cooperation has completed (Algorithm 1, line 28), returning a list 
of variate good results (Alba et al. (2013)) containing both gb and best-list.

4.5 yS-RELOCATION STRATEGY

A dynamic beta distribution is used to ensure weakly but increasingly overlapping 
starting positions for the search groups’ populations, such that areas between these populations 
could also be evaluated. It also controls the probability of proximity to the best position, ensuring 
joint convergence to a global point of equilibrium for all search groups (notice that the largest the 
distance between the solutions inside the best-list, the smallest the chance of reaching such point 
of equilibrium).

After relocating individuals to children’s best positions (in case it is a parent), the 
remaining individuals in the population (except g bt) are repositioned by following these two 
steps:

a) Individuals are uniformly distributed (ri,j) within H .



b) These random initial positions ri,j are then repositioned (xi,j) closer to the parent’s best 
position H TH b (or to its own best position, in case it is the root TH), with probability of 
no repositioning fip.

Xij(t) = rij -B [r i,j - H THb’j ]

i = 1, ••• , P j  = 1, ••• , n
rij = U (s(H , j )) (45)

B = B(fimax -  fip, fip)

fip = p s x fimax x p Spw

ps = 1 -  t /T  (4.6)

where xi,j is the new position for dimension dj of the individual i, r^j is a random position 
generated in the interval s(H , j ), s is the function that extracts H ’s boundaries on its dimension 
d j, U  is a random number generator for uniform distribution within the specified interval, H THfc j ' 
is the dimension dj of the best solution sent by the parent (or from itself, in case it is the root 
TH), B is a random number generator for the Beta distribution with complementary probability 
fip, and fimax controls the dispersion of the beta distribution (i.e., its shape). Examples of fi 
shapes are centric (fimax = 100) and sparse (fimax = 1). The parameters p s (ps ^  0.99) and p w 
(pw > 0) relate to how fast the child TH’s convergence needs to go toward the best results sent 
by the respective parent. Considering the distance between an individual’s random position r^- 
and its parent’s best H THfc j ', the starting percentage p s specifies how far the relocated position 
xij is expected to be from parent’s best at first TH iterations (i.e. a large p s would force a more 
detailed evaluation on assigned region H ). The acceleration coefficient p w, in turn, configures 
an exponential probability (the weight) of the individuals to be closer to parent’s best as p s 
decreases, gradually enforcing a joint convergence to a common region of the search space. In a 
general case, p s e [0.9,0.99] and p w e [1,2], however, when information flow between nodes in 
the tree topology is required to occur more aggressively (due to multiple reasons like network 
problems, large processing times and large number of tree levels), these two parameters can be 
adjusted (by reducing p s and increasing p w) to achieve the desired convergence speed.

Equation (4.6) presents a linear strategy to fine tune the beta movement strategy. The 
displacement rate p s is a time-dependent parameter, based on TH’s current iteration t and the 
maximum number of iterations T , that controls the percentage of ps that should remain over time 
as the search progresses, i.e., it dynamically controls throughout iterations the proximity of the 
individual to the parent’s best H T H b , hence forcing all child THs to converge to a common area 
of the search space.

4.6 ITERATIVE PARTITIONING METHOD

PSO algorithm is well known for its good convergence capability, balanced with its ability 
of exploring large portions of the search space. However its performance usually deteriorates as 
the number of dimensions increases. The multi-swarm PSO variant helps to mitigate this problem 
by splitting dimensions into several collaborative swarms, each swarm exploring its own piece 
of the search space, and all swarms working together to improve the results. Nevertheless, the 
cooperative version may also get trapped into poor local minima when the number of dimensions 
is too high. CCPSO2 is an algorithm that tries to mitigate this problem by both permutating the 
dimensions and dynamically changing the number of swarms.



As a state-of-the-art algorithm, CCPSO2 is used as a Cooperative Coevolution represen­
tative for the experiments in this thesis. However, as discussed in Poorjandaghi e Afshar (2014), 
CCPSO2 does not perform on non-separable problems as good as it performs on separable 
ones. On Omidvar et al. (2014) a Differential Grouping was proposed to find interdependencies 
among variables, with good improvements for large scale problems. As recommended in Li 
e Yao (2012), a good choice for the swarm sizes would have a significant impact on CCPSO2 
performance. Hence, a mechanism to dynamically control dimensions and swarms creation 
might consider more potential variable interactions (Yang et al. (2008)), therefore increasing the 
chance of obtaining better performances on non-separable problems.

For this reason, the Iterative Partitioning Method for CCPSO2 (CCPSO2-IP (Perroni 
et al. (2015))) has been proposed in this thesis to improve CCPSO2 performance, by using 
combinations of number of swarms that promote diversity at the beginning of the search, and 
intensification at later stages. Three boost functions are proposed to control the method behavior: 
BoostL (Linear), BoostE (Exponential) and Boosts (Sigmoid). For fine tuning, it also provides a 
boost rate (Br ) and the number of tries before boosting (maxTries).

Considering the IP (Iterative Partitioning) method provides an automated balancing 
mechanism between exploration and exploitation, other search algorithms besides CCPSO2 could 
also benefit from such feature during an optimization run. For this reason, most experiments 
presented in this thesis use the IP method as a dynamic weight function to fine tune the 
convergence, instead of using the linear equation (4.6).

The article presented in Appendix A.3 details the IP method, which was was proposed 
during the research activities of this thesis, and published in the Brazilian Conference on 
Intelligent Systems - BRACIS 2015 (Perroni et al. (2015)).

4.7 CONVERGENCE STABILIZATION MODELING IN ONLINE MODE (CSMON)

Current methods that try to model the convergence behavior, like MBOs and OCBAs, 
focus on improving the global convergence, requiring extensive changes to the original me­
taheuristic, what makes them specific for every search algorithm. Aiming on local convergence 
analysis instead of global one, the algorithm-generic method called Convergence Stabilization 
Modeling operating in Online mode (CSMOn) is proposed by this thesis.

CSMOn proposes an automatic algorithm-independent approach for the budget allocation 
problem, focusing on the economy of the budget instead of maximizing its usage. It uses the 
standard behavior presented by general memory-based metaheuristics (like swarm algorithms) to 
provide an on-line estimation of a good cost/benefit stopping point for every optimization run, so 
that the waste on the function evaluations is minimum.

Part of the good results obtained by the swarm algorithms are due to the social knowledge 
obtained by interacting individuals within swarm. This knowledge, however, acts like a constraint 
over individuals movements, gradually restricting their positioning on the search space (assuming 
that the convergence stable point is possible (Van Den Bergh e Engelbrecht (2006))). Considering 
that at least one local minimum is reachable by the individuals, the quick displacement toward the 
minimum causes an increase in the convergence rate that matches the behavior of an exponential 
curve, whereas a log-like convergence behavior can bee seen when reaching the stable point in 
the local minimum (Figura 4.3).

Such convergence behavior when moving through a local minimum can be used to 
model, in online mode, a plateau curve that describes the current convergence. Linear regression 
methods can therefore be used to determine, for every run, the moment when the modeled curve 
reaches a smooth decrease in its values.



Figura 4.3: CSMOn method 
Transition points for fast, intermediate and slow convergence.

Different from existent methods, CSMOn treats the search algorithm as a black-box, 
without requiring any modification to its original behavior. For that reason, CSMOn has been 
used by TH’s search group (G) to control the number of evaluations (the budget) for all search 
algorithms used by TH framework.

Although TH can use other methods to detect the convergence stagnation, the high 
efficiency of CSMOn is a critical factor that makes it very important for TH’s good long term 
convergence. The article presented in Appendix A.4 details the method CSMOn, which was 
was proposed during the research activities of this thesis, and published in The Genetic and 
Evolutionary Computation Conference - GECCO 2017 (Perroni et al. (2017)).

4.8 DISCUSSIONS

The following sections discuss relevant topics about Treasure Hunt framework’s archi­
tectural design, distributed communication, convergence behavior and configuration.

4.8.1 Hierarchical Topology

The fact that TH search groups can execute independently from each other provides a 
seamless mechanism to integrate optimization processes into large HPC environments, allowing 
the utilization of the full potential of a cluster by simply running one search group per processor. 
In order to match the cluster structure, both the hierarchical partitioning of the search space and 
the selection criterion must take into consideration physical characteristics of the hardware and 
known properties (if any) of the search space (Figura 4.4a).

Visualizing TH’s hierarchical structure as a graph modeling, a tree topology is uncovered 
(Figura 4.4b), forming a system where any communication between different subtrees requires 
intermediate coordination from a common higher level node. This mechanism allows only a select 
group of information to flow between subtrees, filtering bad candidate solutions and obtaining a 
smooth joint convergence between TH instances. The time required for the complete propagation 
of the good information is very small, 2 X (Lroot -  1) TH iterations (i.e., the diameter of the 
tree (Crainic e Toulouse (2010), depending on the best-list size and on the yS-relocation strategy 
configured), meaning that for every new level added to the tree height, only 2 TH iterations are 
added to the propagation time. Besides, in this tree topology the number of sub-regions grows 
exponentially, whereas the number of levels increases linearly (except in the linear topology). 
Considering that the only information required to flow between the nodes is the best solution 
from each node and its status, high scaling can be achieved by TH framework.



(a) A 3 variables problem (n = 3). (b) Respective tree topology.

Figura 4.4: TH hierarchical search space partitioning. Hardware characteristics, like nodes intercommunications 
with various response times, can be considered when partitioning the search space and selecting sub-regions. Notice 
the partitioning presented on figures is merely for demonstration purpose and do not reflect any specific hardware or 
selection criterion.

The linear topology is obtained when every parent has only one child, and all nodes have 
H  = H 0 (with any value of Lroot). As result, no segmentation is performed and no restriction is 
imposed over the initial positions generated for the individuals. In this topology, the complete 
propagation of the good information can occur in Lroot -  1 TH iterations, and every search group 
provides a refinement over the results obtained by its parent or child, hence acting as a filtering 
sequence.

Although the diameter of the tree can be very small when compared with the total 
number of nodes, premature convergence (as mentioned by Crainic e Toulouse) can be mitigated 
by TH framework since the data flows only after the search algorithm has finished its optimization, 
meaning that only the final result of each optimization is exchanged between TH instances.

This hierarchical topology, when used with the gradual repositioning method (detailed in 
Section 4.3), ensures a global cooperative and iterative optimization, performing simultaneously 
explorations by parents and exploitations by children (on several levels of granularity), making 
TH capable of quickly visiting a large number of promising regions of the search space (i.e., a 
comprehensive landscape sampling), and dealing with multimodal problems through the usage 
of the best-list mechanism.

TH framework can be regarded as a hierarchical island-island topology (Alba et al. 
(2013)), in the sense that there is a “virtual global population” spread into multiple instances 
of a serial search algorithm for isolated optimization, with low communication rate between 
sub-populations, following a specific migration policy to add some diversity. However, there 
is no global population in TH framework, since each TH instance generates a new population 
at every TH iteration, and its search group G, responsible for managing the multi-start over the 
search algorithms, imposes almost no restriction on which search algorithm to use. Typical island 
topologies, in turn, are mostly classic search algorithms modified for parallel environments.

Despite its advantages, the hierarchical partitioning of the search space domain still 
does not reduce the complexity of evaluating costly fitness functions (eg. time-consuming / 
processor intensive equations or problems with very large numbers of dimensions). However, 
since the search algorithm is independent from TH framework, it can use its own techniques to
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reduce the processing time, e.g., by using trivial parallelism on multiple processors, cooperative 
coevolutionary methods on multiple processors, or graphical processing unit (GPU) cards.

4.8.2 Selection Criterion by Grouping Dimensions

A straightforward criterion to select sub-regions uses dimension grouping when seg­
menting the search space (Figura 4.5). Let D = {Dl, l = 1 , . . . , N }, where Dl is a disjoint subset 
(a group) of the n dimensions and N  < n is the number of groups. Extending the idea presented 
in Figura 4.1a, the selection criterion (4.7) ensures that all dimensions within group Dl use the 
same number of segments Kl (Figura 4.5c) but only interact at the segments number kl (Figura 
4.5d). As result, this selection criterion chooses only the sub-regions located at the diagonal of
the grouped dimensions (Figuras 4.5e and 4.6a), and all sub-regions of groups with one single
dimension (Figura 4.6b).

K1 Kn N

c ( s ) = u . . .  u  n  n  Si*< (4-7)
k1 = 1 kN = 1 I=1 j  | dj eDi

In order to keep a good tree balancing when subdividing the sub-regions, all parents 
must maintain the same number of child nodes in all tree levels, such that the resulting hierarchy
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(a) N = 1, K1 = 3.
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(b) N = 2, K1 = 3, K2 = 1.

Figura 4.6: Selection Criterion by Grouping n = 3 Dimensions. Both selections generate the same tree as in Figura 
4.1b. (a) A single group (N = 1) selects sub-regions at diagonal of H0. (b) d1 and d2 are on same group, thus only 
their diagonal is combined with d3. Larger coverage (but less detailed sampling) is obtained when initializing TH 
instances with (b) than with (a).

presents characteristics of a perfect k -ary tree of height Lroot (Section 2.5.2). Each node has its 
own depth level L : leaves have L = 1 (sub-regions without children), non-leaves have L  > 2 
(parent regions) and L = Lroot indicates the root node H 0. Notice that the grouping of dimensions 
into Dl is problem dependent, hence every node can have its own grouping set D as long as N  is 
kept the same.

Ideally, an optimal dimension grouping for any given problem is N  = n with a large 
number of partitions K l . However, considering the unfeasibility of such aggregation for most 
problems (given the high number of sub-regions generated), N  «  n and its value should consider 
the computing budget (the maximum number of function evaluations) and the available processing 
power (number of processors, time limit, etc).

Nevertheless, the reduction in the number of chosen sub-regions necessarily means 
that some combinations of domain intervals are not covered by non-root instances during the 
initialization of the first TH iterations (e.g. Figura 4.1a has 27 sub-regions but only 3 are chosen). 
When subdividing the search space recursively (considering segments of equal sizes), the children 
of each region are covering a rate of n l= 1 Kl/ ( n j= 1 KSlze(Dl)) of parent’s search area (e.g., Figura 
4.6a covers 3/ 27, whereas Figura 4.6b covers 1/ 3 of the search space). On the other hand, 
considering that every parent region covers a larger portion of the search space than its children, 
and H 0 covers the entire search space, the yS-relocation strategy allows children’s populations to 
“escape” from the area nearby the designated sub-region, causing a smooth long term convergence 
toward parent’s best results and, consequently, a larger sampling of the search space.

It is well known that search methods that aggregate dimensions as a technique for 
improving results have better chance of success when interacting variables are grouped into 
the same aggregating component (Yang et al. (2008); Omidvar et al. (2014); Li e Yao (2012); 
Omidvar e Li (2010)). However, as TH framework does not follow strict divide-and-conquer 
rules, there is not an actual separation of variables on this selection criterion, given that all 
dimensions are always available for the TH instance to evolve. Nonetheless, the evolution could 
benefit from this selection criterion by separating interacting variables into different groups (since



a segment of a group interacts with all segments of other groups) and grouping variables of 
similar expected range of values (since variables on the same group interacts on their diagonal).

TH framework does not dictate how each dimension should be segmented, therefore, 
variables of different domains can be aggregated under the same group Dl either by: (i) segmenting 
group’s domains through proportional segment sizes, instead of using absolute sizes; or ignoring 
proportions by (ii) using the same number of segments but different segments sizes (narrower 
segments will benefit from more detailed searches).

This selection criterion obtains the linear topology by using N  = 1 and K = 1 (with 
any value of Lroot). For larger configurations, this criterion allows an exponential growth on the 
search space sampling whilst keeping a linear increase in the communication time. For example, 
by grouping the n dimensions into N  = 5 groups and dividing the search space domain in K = 3 
segments, for one level of parallelism (Lroot = 2) there will be 243 selected sub-regions at the leaf 
level (L = 1) plus the full search space at the root level (L = Lroot). By assigning 1 TH instance 
per region, there will be a total of 244 THs with maximum communication time of 2 TH iterations. 
Raising the depth of parallelism by 1 level (Lroot = 3), the number of TH instances increases to 
(L = 1 ^  59,049 THs) + (L = 2 ^  243 THs) + (L = 3 ^  1 TH) = 59.293 TH instances with 
maximum communication time of 4 TH iterations. For Lroot = 4, there will be 14,408,200 TH 
instances created at the tree, with maximum communication time of 6 TH iterations, and so on.

4.8.3 Fault Tolerance

Considering that the only critical values for any TH instance are its best-list and gb , 
to improve fault tolerance on TH framework without affecting the overall communication 
performance, the parent instances could perform periodic synchronizations with backup nodes.

However, it has to be considered that every parent TH instance contains the best results 
from its children. Therefore, even in the event of a node failure (hence losing the communication 
with its entire subtree), the TH instance in the parent node would still contain its subtree’s 
known best results. Besides, temporary communication failures (like communication delays) 
can be quickly recovered by TH, since the cooperation is immediately recovered as soon as the 
communication is restored. Regarding the search algorithm’s evolution that is lost on faulty nodes, 
it is not a problem on TH since at every TH iteration, the search algorithm’s evolution is entirely 
reset. For this reason, TH framework can be classified as partially tolerant to communication 
failures and, except for the root node, no node is crucial for the successful completion of the 
optimization.

4.8.4 Scalability

Since all communication is asynchronous and all TH instances are independent from 
each other (fully occupying the processors), TH framework is size scalable and (except when 
the parents have a large number of children or the search groups converge too quickly) speedup 
should be close to maximum. Task scalability is achieved as long as the hierarchical search space 
division makes sense from the problem perspective (i.e. the chosen configuration for TH tree 
topology and the dimensions partitioning matches the problem requirements).

Despite the fact that TH’s tree-topology presents scaling after increasing the problem 
size (either by adding more dimensions or increasing the search space size), there is a commitment 
between the problem size and TH’s sub-region granularity that must be considered. This is 
because too fine-grained sub-regions tend to make the search groups in the leaf nodes to converge 
too quickly. Although the communication mechanism on TH framework can partially mitigate



this problem, poor samplings obtained at locations nearby TH’s sub-regions would slow down 
the joint convergence between TH instances.

4.8.5 Guidelines for TH Configuration

Population Size: Populational optimization methods generally use the social interactions 
between individuals to cooperate or compete in the pursuit of improved results. For that reason, 
the reduction of the population size can affect such internal interactions of the search algorithm. 
One way of reducing this strong dependency on the population size is to balance between the 
reduction in the number of individuals and the increase in the number of TH instances, given that 
the distributed joint convergence provided by TH allows the multiple independent populations to 
interact like a “virtual” distributed population. However, ultimately the minimum number of 
individuals in the leaf nodes should be dictated by the search algorithm used in every TH instance. 
For example, DE/best/1/bin has a minimum limit of 6 individuals imposed by the algorithm, 
whereas local search algorithms usually can use as few as 1 individual. On parent nodes, the po­
pulation size is constrained to a minimum of nChildren+2  individuals (see Section 4.4 for details).

Variable Correlation: Considering that TH does not decompose the dimensions, there is not a 
direct advantage in segmenting the search space based on variables dependencies. Instead, the 
variables should be segmented based on range of values, allowing more exploration on larger 
segments and more detailed analysis on narrower segments. For example, given that the selection 
criterion that groups dimensions (Section 4.8.2) only chooses the hyper-diagonal of each group 
for Cartesian product while generating the sub-regions, variables with similar expected range of 
values could be grouped into the same group.

Convergence Stagnation: The method proposed to detect the convergence stagnation in this 
work is CSMOn. Adjusting CSMOn parameters is more related to the processing budget available 
than to the distributed joint convergence or the optimization problem itself. Although small 
relaxations is usually the preferred configuration, it might not comply with the requirements of 
response time. For that reason, it is recommended the use of a dynamic relaxation on CSMOn, 
allowing quick improvements (i.e. large relaxations) in the initial stages of the search and long 
term convergences (small relaxations) on the final stages.

Termination criteria: Usual termination criteria are number of evaluations and wall-clock time. 
Considering that one of the main focus of TH is to keep a continuous convergence throughout the 
entire optimization, there is no direct recommendation for the termination criteria. However, 
there is a direct relation between the continuous long-term convergence and the number of TH 
instances, given that additional instances usually means more diversity of results. Such diversity, 
in turn, might produce longer but less aggressive convergence. Therefore, if the number of 
TH instances is increased but the processing budget is not, it is recommended to set up more 
aggressive y8-relocation parameter values (see Section 4.5) to balance between diversity and 
convergence speed.

Hierarchical Tree: While the selection of additional sub-regions (in the same tree level) 
increases the diversity of results, the sub-division of selected sub-regions (adding a new tree 
level) intensifies the analysis in those regions. There is no direct recommendation for the number 
of selected sub-regions neither for the levels of intensification in a hierarchical tree (its height). 
However, when adding nodes (and consequently, TH instances) to the tree, it has to be considered 
that the selection of a new sub-region also requires (a slight) additional work for the respective



parent TH instance to propagate the information. Furthermore, the addition of a new tree level 
also requires (slightly) more time for the information to propagate to the entire tree. This time 
can be increased when using larger best-list sizes. Therefore, when distributing additional 
TH instances, it has to be considered a balance between the joint convergence speed obtained 
by adjusting the S-relocation parameter values (eg. adjusting the convergence aggressiveness 
according to the node height), and the number of child TH instances per node (eg. adding child 
nodes when optimizing computing intensive problems, and adding tree levels in the opposite case).

Multi-Objective Problems: Despite the fact that TH framework is not meant for multi-objective 
optimization, multi-objective problems can be adapted for TH by combining the multiple 
objectives into a single-objective function. Considering TH’s dynamic internal mechanics, the 
recommended way to combine the objectives is by assigning dynamic weights to each objective, 
which should be adjusted automatically as the search progresses.



5 AN EXAM PLE OF TH W ORKING PRINCIPLES

Two distinct testing sets are used aiming to illustrate TH’s controlled multi-start for 1 
single TH instance (Section 5.1) and the joint convergence for the tree-topology (Section 5.2). 
All tests are performed using the selection criterion by grouping dimensions (4.7) as the selection 
mechanism.

Given that the experiments are conducted over minimization benchmarks and no 
parameter tuning is performed for every problem, all tests in this work use the same number of 
partitions (K ) for the N  groups, with equal partition sizes. Although the search may benefit from 
group formations by taking advantage of interacting variables (as previously explained in Section 
4.8.2), no specific aggregation rule was used to assign the n dimensions to N  groups, and the 
assignments just followed the sequential order (i.e., D 1 = {d1, . . .  }, • • • , DN = { . . . ,  dn}).

A comprehensive analysis of the parameters is out of the scope of this work. Considering 
that each test set may be expressively different from each other, some parameters (described in 
every experiment) are empirically adjusted solely to suit TH behaviour to the characteristics of 
every benchmark.

The following general configuration is used (for notation simplicity, Lroot is henceforth 
denoted as L ):

• TH: best-list size = max(L, nChildren), CSMOn= [relaxation R : 0.8 and maximum 
number of fitness function evaluations per TH iteration M  : p  x 50], p§ using linear 
equation and p§ using IP=[BoostL, Br : 1, m axTries : 5].

• Search Algorithms: DE/best/1/bin = [F : 0.05, CR : 0.01], PSO = [w : 0.8, c1 : 0.2, 
c2 : 0.2] and Random Search (RS).

Remaining parameters are specified in each experiment. Since DE algorithm is known for its 
good convergence behavior for a large variety of problems, it was chosen to illustrate most of 
experiment of this section.

5.1 CONTROLLED MULTI-START

This experiment is a two-dimensional example that demonstrates how TH repositions 
population’s individuals at every multi-start. The configuration used is:

• Benchmark: Rastrigin.

• Search Algorithm: DE/best/1/bin.

• TH Topology: N  = 1, K  = 1, L = 1 (1 TH instance).

• TH: n = 2, p = 36, p s = 0.7, JSmax = 100, p§ using linear equation, p w = 7, no LS.

In an ideal case, p w is set to a small value and ps is set to a high value, such that information can 
flow smoothly between populations. However, in this test p w is set to a high value and p s to a 
small value to force more aggressive transitions between iterations, so that the full convergence 
can occur in only 6 TH iterations for demonstration purposes. At every TH instance’s multi-start, 
a snapshot of the population is taken before starting the next full search phase. Although the
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Figura 5.1: Snapshots of the relocation strategy at every TH iteration for 1 TH instance.
Configuration = [n : 2, N : 1, K : 1, L : 1, p : 36], ps using linear equation. Population individuals are the circles 
and problem’s global optimum is the “X”.

global optimum is found at the first few iterations, TH is kept running solely to demonstrate how 
the yS-strategy consistently moves the population toward promising regions.

The resulting effect of using two different distribution shapes (as illustrated in Figura 
2.1) is compared in Figura 5.1. Iteration 1 is the random uniform initialization, whereas iterations 
2 to 6 show the population moving gradually toward the global optimum, following a centric 
shape when J3max = 100, and a more sparse distribution when J3max = 1.

5.2 TREE-TOPOLOGY

This testing set illustrates how TH improves simple serial search algorithms by distribu­
ting and organizing the optimization effort in a hierarchical tree-topology.

5.2.1 Distributed optimization

This is a 2D example, aiming at demonstrating how TH ’s tree topology ensures that 
multiple parallel populations, with asynchronous communication, converge gradually at global 
level toward the known global best. The configuration used is:

• Benchmark: Rastrigin.

• Search Algorithm: DE/best/1/bin.

TH Topology: N  = 2, K = 3, L = 2 (10 TH instances).
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Figura 5.2: Snapshots of the relocation strategy at every TH iteration for 10 TH instances.
Configuration = [n : 2, N : 2, K : 3, L : 2, p : 12], ps using linear equation. All sub-regions are selected for 
demonstration purposes. The population of each of the 9 children is represented by a different symbol, the parent’s 
population is the larger circles and the problem’s global optimum is the “X”.

• TH: n = 2, p  = 12, p s = 0.7, fimax = 100, p s using linear equation, p w = 7, no LS.

As seen in Figura 5.2, the configuration with fimax = 100 enables more detailed 
intensification in multiple different locations, whereas fimax = 1 provides a larger coverage of the 
search space. In both cases, all populations converge jointly to the same region of the search 
space, where the global optimum is located at. A random uniform initialization is performed at 
the first iteration. Iteration 2 shows one effect of the communication delay between parent and 
children TH instances, which causes the children to reposition their populations toward their own 
best, until they receive an input from the parent. Iteration 3 illustrates the effect of exchanging 
good information between parent and children, with children moving toward parent’s best and 
parent initializing individuals at children’s best positions. The resulting effect is a smooth 
migration of the individuals’ positions, from a full search space coverage to an increasingly 
dimensionwise-restricted search area, following a beta-like repositioning toward the current 
global best result.

The beta distribution with sparse shape (fimax = 1) is used in conjunction with the IP 
method to improve p s, and results are presented in Figura 5.3. Snapshots are taken at every 5 TH 
iterations, and no different symbol is used for every population to illustrate the actual search space 
coverage. We can see that all 9 populations provide a throughout coverage, even after several TH 
iterations. Nonetheless, despite apparent chaotic repositioning, all TH instances jointly converge 
to the same region of the search space in a steady pace.
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5.2.2 Information flow between nodes

This example uses a more complex function with n = 1000 dimensions (from the 
competition benchmark CEC13 Li et al. (2013)) to demonstrate how TH topology affects the 
transfer of good information between the nodes. The following configuration is used to compare 
the convergence of DE with and without TH:

• Benchmark: F12 (overlapping multimodal function).

• Search Algorithm: DE/best/1/bin and Random Search (RS).

• TH Topologies: [N = 1, K  = 1, L = 1] (1 TH instance), [N = 1, K  = 2, L = 2] (3 TH 
instances), [N = 1, K  = 2, L = 3] (7 TH instances).

• TH: p s = 0.99, JSmax = 1, p§ using linear equation and IP, p w = 1, shared budget 
of M total = 5 x 105 evaluations, LS = [Hill Climbing controlled by CSMOn, with 
R : 0.01 and M  : n], p  = 30 for DE (standalone), and p  = 6  for RS with TH and DE 
with TH (both parallel).

Figura 5.4 shows a quick convergence of standalone DE at the very beginning of the 
search, followed by a sudden stagnation, whereas DE with TH presents a smooth and continuous 
convergence throughout the search.



Figura 5.4a compares the results of TH using a pure Random Search (RS) algorithm 
(RS using normal distribution) and the classic DE algorithm. It is normally expected that a DE 
algorithm behaves better than a pure random search on a complex problem, however, the resulting 
relocation mechanism of RS with TH allows the simple randomness of a uniform distribution 
to perform better than the much more elaborated DE. Besides, it can be seen that RS with TH 
even follows closely the DE with TH up to half of the optimization, stagnating after that point. 
Notice that the relocation mechanism provided by RS with TH resembles the CRS4 algorithm 
(described previously in 2.3), although much more elaborated than CRS4.

Figura 5.4b shows the joint convergence and the information flow between tree nodes, 
where the TH Root instance always possesses the best information, and its children (Child 1 and 
Child 2) follow its convergence throughout the search (although at certain distance).

Despite the fact that the final result of TH in Figura 5.4c is only slightly better than 
DE without TH, it must be considered that the limited budget (M Total) of 5 X 105 evaluations 
is shared between all 7 TH instances, shortening the evolution of their populations to 1/7th of 
the standalone DE. It means that every TH instance is allowed to evolve solely 7 X 104  fitness 
evaluations, nearly the same amount of evaluations that DE standalone required to stagnate. Just 
like seen in Figura 5.4b, the Root has the best information, and Child 1 and Child 2 follow its 
convergence. The leaf instances (Child 11, Child 12, Child 21 and Child 22) also follow the 
convergence, but at a proportionally larger distance, which is the expected behavior of TH ’s 
topology because child instances perform the sampling of the search space and report to parents, 
which in turn refine these samples and send them back to children as a bias to guide their search. 
This mechanism ensures that parent’s good results gradually flow to children, allowing them to 
escape from their own local optima.

In order to accelerate information flow in a limited budget scenario, the search space 
sampling can be dynamically maximized by optimizing p s with the IP method (Perroni et al. 
(2015)) (described in Section 4.6), instead of using the linear strategy given by (4.6). IP provides 
multiple different distances from the known global best (as illustrated in Figura 5.3), resulting in 
a more stable convergence (as seen in Figura 5.4d, with children following Root instance more 
quickly), and for that reason, it is used in the next experiments.

5.2.3 Improving simple serial search algorithm

To demonstrate that TH can improve search algorithms not prepared for the problem at 
hand, the standard PSO (known to execute poorly on high dimensionality) is used to perform a 
more detailed test over CEC13 1000-dimension functions. The following configuration is used:

• CEC13 Benchmark (cec (2017)): a competition benchmark for Large Scale Global 
Optimization (LSGO) prepared for IEEE Congress on Evolutionary Computation 
2013/2015, comprised of 15 complex functions of 1000-dimension:

-  Fully-separable Functions: F1, F2, F3.

-  Partially Additively Separable Functions: F4, F5, F6 , F7, F 8 , F9, F10, F11.
-  Overlapping Functions: F12, F13, F14.

-  Non-separable Function: F15.

• Search Algorithm: standard PSO.

• TH Topologies: 1 Single TH instance (N = 1, K  = 1, L = 1), linear topology with 2 
THs (N = 1, K  = 1, L = 2) and 3 THs (N = 1, K  = 1, L = 3), and pyramidal topology 
with 3 THs (N = 1, K  = 2, L = 2).
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Figura 5.4: Convergence behavior of TH instances, compared with standalone DE.
(a) DE with TH compared with RS with TH (1 TH), with pA using linear repositioning. (b) DE with TH (3 TH), with 
pA using linear repositioning. (c) DE with TH (7 TH), with pA using linear repositioning. (d) DE with TH (3 TH), 
with pA using IP. Root is the TH instance at tree’s root node, {Child 1, Child 2} are Root’s children, {Child 11, Child 
12} are Child 1’s children and {Child 21, Child 22} are Child 2’s children. Search algorithms: DE/best/1/bin and 
RS. Function: F12 (CEC13). p = 30 for standalone DE, and p = 6  for DE with TH and RS with TH.

• TH: p s = 0.99, fimax = 1, p§ using IP, p w = 1, LS = [Hill Climbing controlled
by CSMOn, with M  : n, R : 0.01], 30 independent executions, shared budget of 
M total = 5 X 1 0 5  evaluations, p  = 30 for standalone PSO and p = 6  for PSO with TH.

Figura 5.5 shows that TH improves PSO’s results in all cases, increasing its stability 
(lower standard deviation) for most functions. Comparing with Figura 5.6, it can be seen that 
PSO with TH obtains large improvements in 10 from 15 functions, reducing the fitness above 15 
orders of magnitude in F 1 1  and F13. When comparing the number of nodes in the tree, we can 
conclude that additional nodes tend to reduce TH’s performance (although slightly), because the 
overall budget of 5 X 105 evaluations is shared between all TH instances. The budget available 
for every TH instance, per configuration, is 5 X 105 for PSO and 1SP, 2.5 X 105 for 2LP, and 
1.66 X 105 for 3LP. The function F15, however, presents better results for pyramidal configuration, 
although it uses the same number of THs as the linear configuration 3LP, suggesting that different 
problems might benefit from different topologies.

One of the reasons for PSO with TH demand only p = 6  individuals to obtain much 
better results, in same overall computing budget than PSO (which uses p = 30), is that smaller 
populations tend to stagnate more quickly, forcing a larger number of restarts and, consequently, 
raising collaboration.

Considering that CEC13 functions are complex high dimensional problems and the 
standard PSO is a known weak algorithm for such category of problems, we can conclude that 
TH is capable of improving the optimization power of simple search algorithms on the studied 
benchmarks.
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6  EM PIRICAL STUDIES

Aiming to prove the effectiveness of Treasure Hunt framework when optimizing various 
problem sizes with distinct characteristics, two testing sets are considered, one to evidence 
the long term convergence obtained by TH ’s controlled multi-start capabilities, and one to 
demonstrate the power of TH’s distributed optimization in an HPC environment:

• Controlled Multi-start: TH instance provides long term convergence through a controlled 
multi-start process that minimizes the waste of evaluations in poor regions, relocating 
individuals gradually toward promising regions.

• Distributed Optimization: Treasure Hunt is designed to allow distribution of a large 
number of parallel TH instances, such that a large sampling of the search space is 
obtained, with better results than the standalone TH and in shorter wall clock time.

The configuration below is used for both testing sets:

• Search Algorithms: CCPSO2 with IP = [Br : 0.05, m axTries : 3], standard PSO= [w :
0.7, c 1 : 0.2, c2 : 0.2], DE/best/1/bin = [F : 0.05 and CR : 0.01].

• TH: best-list size = m ax(L,nChildren), p s using IP=[BoostL, Br : 1, m axTries : 5], 
LS = [Hill Climbing controlled by CSMOn, with R : 0.01].

Similarly to Section 5, parameters are empirically adjusted (and presented in each 
experiment) only to match benchmark’s characteristics, since test sets differences are relevant. 
PSO, DE and CCPSO2 are used because they are good representatives for swarm, evolutionary 
and CC search algorithms, respectively. Except for the benchmark COCO (described in next 
section), all results are obtained based on statistics collected from 3 0  independent executions of 
every configuration. CCPSO2 uses the IP method in all experiments to control the number of 
swarms in each search group. All tests are performed over minimization benchmarks.

6.1 CONTROLLED MULTI-START

To validate the proposed multi-start method under different scenarios, three benchmarks 
of increasing dimensionality (with medium and high complexities) are used to test the search 
algorithms with and without a single-instance TH, then results are compared to show the influence 
of TH’s multi-start on search algorithms’ behavior:

1. COCO: Comparing Continuous Optimizer (Hansen et al. (2016)), an automated fra­
mework with 24 low dimensionality functions of high complexity.

2 . MSG Generator: an automated and parameterized test-problem (landscape) generator 
called Max-Set of Gaussians (MSG) (Gallagher e Yuan (2006); Bartz-Beielstein 
(2 0 1 5 )), generating nonlinear, nonseparable random test functions of low and medium 
dimensionality for minimization, based on the sum of Gaussians.

3. Classic benchmark: 2 multimodal and separable (Ackleys and Rastrigin) and 1 unimodal, 
non-convex and non-separable (Rosenbrock) high-dimensional functions.

Ackleys: f(x) = - 2 0 .exp(-0 .2 ^ n  zn=1 x,2) -  exp(n 2n=1 cos(2 nxi)) + 2 0  + exp(1 )



• Rosenbrock: f  (x) = £ n=1[1 0 0 (xi+i -  x2 ) 2 + (1 -  x,-)2]

• Rastrigin: f(x) = 10n + 2n=1(x,2 -  1 0 cos(2 nx,))

The following configuration is used for the three benchmarks (nE  vals is the number of evaluations 
already performed during the optimization):

• TH Topology: N  = 1, K  = 1, L = 1 (1 TH).

• TH: pmax = 100, p = 30, CSMOn = [M : 105 , R : 1 -  nE va ls/M T ota l], LS
= [M : 10 x n].

• CCPSO2 with IP: Boosts .

and results are presented for each benchmark.

6.1.1 COCO

The specific configuration for this benchmark is: n = {2, 3, 5, 10, 20, 40}, M Total = 
50000 x n, p w = 2, with statistics and number of executions statically enforced by COCO 
framework. Figura 6.1, created by COCO framework, shows the summarized results of 24 
hard benchmark functions with 51 targets, with curves representing the combined proportion of 
functions and targets solved by the optimization runs (i.e., larger area under the curve is better).

Despite the fact that DE algorithm obtains the fourth position on larger dimensionalities 
(in a rank of 6  algorithms, i.e., DE, PSO and CCPSO2, with and without TH), and the worst 
position in the lower dimensionalities (2D and 3D), Figura 6.1 shows that DE with TH clearly 
reaches superior performances in all cases (2D to 40D). PSO obtained poor results in all 6  

dimensionalities, and similarly to DE algorithm, the performance raises in all cases when PSO is 
used with TH.

However, the algorithm CCPSO2 does not benefit from TH in any case. The reason is 
that CCPSO2’s internal mechanisms already provide good performance, obtaining the second 
best results on smaller dimensionalities and the third best results on 20D and 40D. Therefore, 
TH’s population reposition mechanisms delay CCPSO2’s convergence speed during most of the 
search, consequently affecting CCPSO2’s final result.

Results without TH shown in Figura 6.1 are used as baselines to generate Figura 6.2, 
and the improvements obtained with TH are plotted as curves. TH ’s long term convergence 
can be seen for PSO (Figura 6.2a) and DE (Figura 6.2b), especially on larger dimensionalities, 
where the gains with TH reached 40% for PSO and 50% for DE. Although TH suffers from a 
performance decay around half of the search, it quickly recovers, converging to much better 
results. This is due to TH’s mechanisms to assist the search method, that could cause the slow 
down of the convergence for a short period, while looking for promising regions to reposition the 
population. A second decay on PSO with TH and DE with TH occurs at the end of the search on 
problems with n = {2 ,3,5}, caused by improvements obtained by the standalone versions (the 
baseline) on smaller dimensionalities.

While PSO and DE obtain increasing improvement rates with TH, CCPSO2’s results 
deteriorate when using TH (up to -37%  - Figura 6.2c), most likely because the CCPSO2’s 
sophisticated algorithm, developed to deal with complex search regions, does not benefit from 
TH’s assistance on low dimensionality.

Considering the different improvement rates obtained by TH on each search algorithm, 
we can conclude that, for low dimensionality, TH gains are directly related to the optimization 
algorithm used. Except for CCPSO2, this test demonstrates that the long term convergence



logio(evaluations / n)

Figura 6.1: COCO’s Empirical Cumulative Distribution Function (ECDF) per Dimension.
Results summarized for 24 noiseless functions, for DE, PSO and CCPSO2 with and without TH, using 51 relative 
targets uniformly distributed in a log scale between 102 and 10-8. Number of evaluations is given in 10x X n. The 
small dots represent the overall fraction of all successfully solved functions-target pairs. The curves represent the 
combined proportion of functions and targets solved by the optimization runs (larger AUC is better).

provided by TH achieves much superior results than the standalone search algorithm, and better 
improvements occur for problems with higher dimensionalities.

6.1.2 MSG Generator

Two complexity levels are configured:

• Medium difficulty: n = 50, M Total = 5000 X n, S = [-5 ,5], random local minima at 
fitness = 5 0 .

• High difficulty: n = 100, M Total = 40000 X n, S = [-10,10], random local minima at 
fitness = 9 0 .

• For both difficulty levels: p w = 1, U (n, 2n) gaussians for every random problem, worst 
fitness=1 0 0 .

Figura 6.3 summarizes the results with a mixed model based on confidence intervals 
(Chiarandini e Goegebeur (2010)), creating a simple pairwise comparison plot between versions 
with and without single-instance TH, showing how significant is the difference between results.

According to random problems’ results in Figura 6.3a (medium difficulty) and Figura 
6.3b (high difficulty), results are significantly better when using TH (except for TH with DE on 
medium difficulty). This good performance obtained by standalone DE on medium difficulty 
random problems, however, does not persist when increasing difficulty and dimensionality. On 
high difficulty configurations, all tests with TH escape from the stagnation caused by the random
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Figura 6.2: Differences between search algorithms with and without TH on complex, low dimensionality COCO 
problems.
(a) PSO (b) DE/best/1/bin (c) CCPSO2. Results without TH are the baselines and the improvements obtained with 
TH are the plotted curves. Actual number of evaluations is given by 10x x n. Statistics and number of executions 
are enforced by COCO. Configuration: [1 TH instance, n = {2, 3, 5, 10, 20, 40}, MTotal = 50,000 x n, pw = 2, 
fimax = 100 (centric shape), p = 30].
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Figura 6.3: Paired comparison of search algorithms with and without TH.
(a) Random test (MSG) with medium difficulty (n = 50), local minima at fitness=50, MTotal = 5, 000 x n and 
search space boundaries S = [-5,5]. (b) Random test (MSG) with high difficulty (n = 100), local minima at 
fitness=90, MTotal = 40,000 x n and S = [-10,10]. (c) Rosenbrock. (d) Rastrigin. (e) Ackleys. Average and 
standard deviation for 30 runs. Crossed bars between algorithms means the results are not significantly different. 
Every result in (c), (d) and (e) are obtained by optimizing the respective functions with n = 2000 and n = 10000 
dimensions, then normalizing the results with equation 1 + log( 1  + fit/n), such that results close to 1 are also close 
to the global optimum. Configuration for (a) and (b): [pw = 1, U(n, 2n) gaussians for every random problem, worst 
fitness set as 100]. Configuration for (c), (d) and (e): [pw = 2, MTotal = 5,000 x n]. General configuration: [1 TH 
instance, fimax = 100 (centric shape), p = 30].



local minima (set to fitness = 9 0 ), whereas the standalone search methods stagnate quickly at the 
very beginning of the search.

Comparing solely TH approaches, their performances in both Figura 6.3a and Figura 
6.3b are not significantly different between search algorithms, and for that reason, we can conclude 
that TH also reduces the importance of using specific search methods for each MSG problem at 
hand.

6.1.3 Classic functions

The specific configuration is: n = {2000, 10000}, M Total = 5000 x n and p w = 2.
In this benchmark, the algorithm that most benefits from TH is CCPSO2, with best 

results on multimodal Rastrigin (Figura 6.3d) and multimodal Ackleys functions (Figura 6.3e, 
approaching the global optimum in all executions). On Ackleys function, although TH only 
slightly improves PSO’s results, PSO becomes comparable to DE. For DE algorithm, TH is 
effective on Rosenbrock unimodal function (Figura 6.3c) and it does not significantly affect 
results for the other functions, very likely because only one TH instance (hence 1 population) is 
used, what reduces the effectiveness of TH on multimodal problems.

In general, TH improves results on these high dimensionality functions. On non-convex 
Rosenbrock function, the very similar performance obtained by all search algorithms means that 
TH can reduce the importance of using specific search algorithms also on high dimensionality 
classic problems.

6.2 DISTRIBUTED OPTIMIZATION

Based on the empirical validation of the proposed multi-start method (presented in the 
previous section), two testing sets are performed to validate TH ’s capability of maintaining a 
convergence on a parallel distributed HPC environment, as the number of TH instances increases:

1. Convergence behavior on scaling: compares the effect of an increasing number of TH 
instances over the quality of the convergence, to demonstrate its capability of benefiting 
from a highly distributed environment.

2. Scaling with fixed wall clock time: given a limited time in an HPC environment, this 
test compares the improvements as the number of TH instances is increased.

The following configuration is used in each TH instance:

• Benchmark: Ackleys, Rastrigin, Rosenbrock.

• TH: J3max = 1,p w = 2Lroot-L, M Total = 5000xn, CSMOn = [M : 103 x (L root- L + 1)2, 
R : 1 -  nE va ls/M T o ta l], LS = [M : p].

• CCPSO2 with IP: BoostE.

All tests are performed over minimization problems, using the selection criterion by group (4.7), 
the same number of segments (K) for all groups and equal segment sizes.

The budget M Total is not shared between TH instances, therefore, every instance 
performs M Total function evaluations. Empirical tests have demonstrated that the fraction of 
the budget provided by CSMOn to the search algorithms (M ) can be small on TH, because main 
improvements occur mostly at first stages of the search. Hence, for the root TH, M  = 1 x 103  to 
increase the number of relocations.

The experimental results are described in next sections.



6.2.1 Convergence on scaling

To obtain similar convergence behavior as previous section, population size is set to 
p = 30. Problem size is set to n = 2000. TH topologies used are: [N = 1, K  = 1, L = 1] (1 TH 
instance), [N = 2, K = 2, L = 2] (5 THs), [N = 2, K = 2, L = 3] (21 THs), [N = 1 and K  = 63, 
L = 2] (64 THs).

Most of configurations in Figura 6.4 show increasing improvements with 5 and 21 THs, 
demonstrating that good results can be further improved (especially at the beginning of the 
optimization) by using an increasing number of TH instances. When using 64 THs, expressive 
improvements are obtained along all the optimization processes.

Although a single-instance TH does not significantly improve DE on Rastrigin (Figura 
6.3d) and Ackleys functions (Figura 6.3e), when adding more TH instances (Figura 6.4e and 
Figura 6.4f) the performance is improved. On Rosenbrock function, the single-instance TH 
performs better than raising to 5 and 21 TH instances on DE (Figura 6.4d), and obtains similar 
final result on PSO (Figura 6.4a) and CCPSO2 (Figura 6.4g). The reason is related to the fact that 
the results presented in Section 6.1.3 show large improvements for all three search algorithms 
with 1 single TH instance on Rosenbrock function (Figura 6.3c). Therefore, much more detailed 
sampling of the search space would be required to obtain significant additional improvements, 
and consequently, a larger number of TH instances is required (as seen with 64 TH instances in 
Figura 6.4).

Internally, CCPSO2 consumes all M  evaluations provided by CSMOn at every TH 
iteration, reducing the number of restarts and communications performed. As a consequence, 
CCPSO2 stagnates quickly when compared with PSO and DE. However, given that each restart 
consumes processing resources due to relocation strategy, processing times for PSO and DE 
are larger than for CCPSO2. Nevertheless, CCPSO2 with 1 TH reaches good results much 
more quickly than the other algorithms, showing that the number of restarts required for each 
search algorithm might be different. Although not desirable, CCPSO2’s quick stagnation can be 
mitigated by adjusting M  according to the optimization problem.

Considering that the only difference between configurations is the number of THs, we 
can conclude that the superior results obtained, when increasing the number of TH instances, are 
due to the larger sampling of the search space, which is provided by TH’s multilevel topology.

6.2.2 Scaling with Increased Problem Size

To investigate TH’s capability of scaling with larger problem sizes, the search algorithms 
PSO, DE and CCPSO2  are used to optimize the functions Rosenbrock, Rastrigin and Ackleys 
with the dimensionality increased to n = 10000. Instead of demonstrating the usual convergence 
behavior of the algorithms, this experiment shows the average number of fitness function 
evaluations required to obtain a significant improvement in the solution (reductions of at least 
one order of magnitude in the fitness).

TH topologies used are: [N = 1, K  = 1, L = 1] (1 TH instance), [N = 1, K = 2, L = 2] 
(3 THs), [N = 1, K = 2, L = 3] (7 THs), [N = 2, K  = 4, L = 2] (17 THs), [N = 2, K  = 2, L = 3] 
(21 THs) and [N = 3, K  = 3, L = 2] (28 THs). Population size is set to p = 30

In general, Figura 6.5 shows that most of the multi-instance configurations overcome the 
standalone configuration (with 1 TH instance), either by finding better solutions or by obtaining 
similar solutions more quickly (except in Figura 6.5c, where PSO with 1 TH instance obtains an 
unexpected superior performance). The configuration that obtained the best overall performance 
is with 21 THs (instead of the larger configuration, with 28 THs), what can be explained by their 
topologies and the respective information flow (the configuration with 21 THs uses 4 children per
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parent and 2 parent levels, whereas the configuration with 28 THs uses 27 children per parent and 
only 1 parent level).

Despite the fact that the configuration with 17 THs uses only two groups (N = 2), its 
performance follows the larger configuration with 28 THs (with N  = 3 groups), probably due to 
the reduced number of children to communicate with the Root TH.

The quick stagnation of CCPSO2 seen in Figura 6.4 is not seen in Figura 6.5, very 
likely due to the much increased difficulty of the functions, and the CCPSO2’s good capability 
of dealing with complex functions. The only case that stagnates in all configurations is PSO 
on Rosenbrock function (Figura 6.5a), obtaining the worst result for Rosenbrock between all 
search algorithms. Nonetheless, PSO’s configuration with 21 THs reaches the stable location 
more quickly than the other configurations.

6.2.3 Scaling with fixed wall clock time

It is well known that a larger sampling of the search space increases the chance of 
finding good regions (Dreo e Siarry (2007)), and final results are closely related to the initial 
sampling (Alba et al. (2013); Jr et al. (2015); Crainic e Toulouse (2010)). For this reason, instead 
of optimizing the functions for long periods, this experiment optimizes the functions Rosenbrock, 
Rastrigin and Ackleys for 100 seconds only (Alba et al. (2013)). This is an attempt to evidence



the commitment between the number of TH instances and the resulting initial sampling, showing 
this way the potential for future long term optimizations.

TH topologies used: [N = 1, K  = 1, L = 1] (1 TH instance), [N = 1, K  = 31, L = 2] 
(32 THs), [N = 1, K  = 63, L = 2] (64 THs) and [N = 1, K  = 95, L = 2] (96 THs). To verify 
the importance of large population sizes when increasing the number of TH instances, p = 30 
is compared with p  = 6  (the minimum allowed by D E’s requirements). Problem size is set to 
n = 2 0 0 0 .

Figura 6 . 6  shows that the influence of the number of individuals (in each search group) 
on results is progressively reduced as the number of TH instances increases, due to the larger 
coverage provided when distributing populations throughout the search space. Considering 
that smaller populations tend to stagnate more quickly and synchronize more often than larger 
populations, they also perform less fitness function evaluations per time frame. Given that results 
for both population sizes are similar, it can be said that part of these evaluations can be replaced 
by more frequent cooperation between TH instances, favouring problems with time-consuming 
fitness functions.

Figura 6 . 6  also shows that the difference between search algorithms’ results are not 
significantly relevant as the number of TH instances increases (although CCPSO2 presents a 
slight advantage with 96 TH instances), demonstrating that TH’s guided sampling of the search 
space can be more beneficial than focusing on using complex search algorithms. The only 
configuration that does not hold such characteristics is CCPSO2 with 32 TH instances, given that 
an unexpected outperformance (yet unstable) is obtained.

Configurations

Figura 6 .6 : TH Scaling on HPC environment.
Average and standard deviation for 30 runs, processing during 100 seconds and up to 96 THs. Configuration: 
[n = 2000, p = 6  (dashed lines) and p = 30 (solid lines), j3max = 1 (sparse shape), pw = 2Lroot-L, p = 30, 
MTotal = 5000 x n].

To investigate TH’s capability of continuous convergence with a reduced population size 
(p = 6 ), the experiment presented in Figura 6 . 6  was expanded up to 160 TH instances: [N = 1, 
K  = 127, L = 2] (128 THs), [N = 1 and K  = 159, L = 2] (160 THs).

Figura 6.7 shows that, besides consistently improving the optimization, the additional 
TH instances also reduce the importance of using complex metaheuristics, since the differences 
between the search algorithms’ results are negligible when using 64 TH instances or more 
(although CCPSO2 still presents a slight advantage).

A key conclusion that can be drawn from Figuras 6 . 6  and 6.7 is that TH framework is 
scalable, allowing the distribution of serial search algorithms to a high number of processing 
nodes to optimize separable, non-separable, unimodal and multimodal high dimensionality 
problems, obtaining superior results in same wall clock time than the standalone versions of the 
search algorithms.
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Figura 6.7: TH Scaling on HPC environment.
Average and standard deviation for 30 runs, processing during 100 seconds and up to 160 THs. Configuration: 
[n = 2000, p = 6 , fimax = 1 (sparse shape), pw = 2Lroot-L, p = 30, MTotal = 5000 x n].



7 CONCLUSIONS AND FUTURE WORK

7.1 CONCLUSIONS

This thesis proposed a distributed framework called Treasure Hunt (TH), aiming to 
optimize high dimensional, complex, single-objective, continuous numerical functions. TH is 
capable of distributing independent serial optimization algorithms to a high number of processing 
nodes, imposing low communication penalties, using a tree topology, a search space organization 
method and a driving mechanism, in such a way that a large sampling of the search space is 
obtained.

TH’s local asynchronous communication schema is capable of providing quick propaga­
tion of good information to all processing nodes, even when using clusters with millions of nodes, 
ensuring simultaneous explorations (by parents) and exploitations (by children), on several levels 
of granularity, with only small overhead to the nodes in the tree. Given a suitable computational 
budget, TH ensures a joint convergence, at global level, between all distributed populations.

Considering that only the root node is crucial for the successful completion of the 
optimization, and all parents replicate the best solutions from their children, TH has a good fault 
tolerance. However, full fault tolerance is possible on TH by backing up small data structures 
between nodes, like for example the pool of best solutions.

A selection criterion by group has been proposed to chose sub-regions of the search 
space located at the diagonal of the grouped dimensions, such that virtual “hyper-diagonals” are 
chosen automatically for Cartesian products, thus forming distributed topologies with a k -ary 
tree shape.

An Iterative Partitioning (IP) method has been proposed to partition arbitrary intervals 
iteratively, producing an “elastic” effect on the partitions obtained. IP has been used on TH 
to control the displacement rate, promoting diversity on the initial stages of the search and 
intensification on the later stages. It was used also to improve CCPSO2’s performance (CCPSO2- 
IP) on non-separable problems, and its results were published on BRACIS 2015 (Perroni et al. 
(2015)).

A Convergence Stabilization Modeling to operate in Online mode has also been proposed 
to control TH’s multi-start mechanism, aiming to detect the convergence stagnation and to stop 
the search, hence avoiding waste of processing budget. A relaxation mechanism to adjust CSMOn 
behavior provides controlled compliance with stagnation points, allowing fine tuned results 
from quick major improvements to long term continuous convergences. CSMOn method was 
published on GECCO 2017 (Perroni et al. (2017)).

Simple experiments have been presented to demonstrate TH’s internal mechanisms. 
To show TH’s capability of dealing with unimodal and multimodal landscapes that present 
non-separable, partially separable, fully separable and non-convex characteristics, several testing 
sets have been conducted with PSO, DE and CCPSO2 search algorithms. These sets include 
small, medium and large complexities and dimensionalities on classic, random and competition 
benchmarks

Results show that TH framework consistently boosts search algorithm’s results, making 
poor performer algorithms to become comparable to good ones. Good performer algorithms, in 
turn, can benefit from TH when the search space is increased up to a size that is too large for the 
algorithm.



As experimentally demonstrated, TH’s characteristics can be leveraged by distributing 
the search to cooperative TH instances, with test results presenting stable, long term convergences. 
Experiments with increasing numbers of TH instances present a robust scaling, showing that the 
proposed search space organization method is capable of obtaining a good sampling of the search 
space, dealing efficiently with large dimensionality and small population sizes. A robust scaling 
is also verified when fixing the same wall clock time for all tested search algorithms (tested up to 
160 TH instances), with negligible differences between poor and good performers after 64 THs.

As a final conclusion, it can be said that the large sampling and the cooperation 
mechanism between multiple evolving populations reduce the importance of large population 
sizes and complex search algorithms, which are critical concerns on real-world problems with 
time-consuming fitness functions.

7.2 FUTURE WORK

This work is a proof of concept to introduce the TH framework, and as such, we 
consider that TH’s capabilities were only partially explored and many open questions still remain. 
Future works include, for example, hyperheuristic algorithms for the search group, sub-region’s 
selection criteria that consider hardware environment’s and problem’s characteristics, relocation 
strategies using different distributions, different methods to set the displacement rate, aggregate 
functions to combine multiple objectives into a single-objective function, methods to create new 
knowledge from the information exchanged, robust fault tolerance mechanisms and experiments 
on real-world complex high dimensional problems, like for example the configuration of deep 
neural networks.

7.2.1 Displacement Rate

The gradual repositioning method employed by TH behaves in a way that resembles 
the Nested Partition method, since the automatic repositioning of group’s individuals settles the 
populations only at the most prominent locations within not too sparse regions of the search 
space. However, if a better location is found elsewhere, instead of doing a backtracking (like 
Nested Partition), TH uses the beta distribution to smoothly displace the entire population toward 
the promising location, favoring the region in between.

Considering that the beta distribution influences the search algorithms used by the search 
group G, the displacement rate p§ is subject to refinements through any convenient technique, 
to adjust its convergence behavior as required. For example, instead of setting p§ with (4.6), it 
could be optimized by search algorithms like Hill Climbing or Simulated Annealing. It is worth 
to mention that once this fine tuning is focused on finding the best distance from parent’s best 
result, given that such best position is not static over TH iterations, finding a good value for p s 
can be regarded as a uni-dimensional dynamic optimization problem.

7.2.2 Hyperheuristics

TH instances are independent from each other, and the search groups impose almost 
no restriction on the search algorithms to be used. The reason why the search group G have no 
thorough definition on TH framework is to allow its implementation by any convenient method, 
like for example by using a hyperheuristic algorithm. When using such hyperheuristic component 
in more than one TH instance, the resulting framework could be classified as a distribution of 
hyperheuristics. Notice that to obtain a distributed hyperheuristic instead, the solutions exchanged 
between TH instances must include hyperheuristic-specific information, like for example the



operators (or search methods) used and the scoring process for the algorithm selection. However, 
regardless what hyperheuristic component type is implemented, it has to be considered that any 
implementation-specific detail of G must be hindered from the TH instance.
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APÊNDICE A -  THE M ETAPHOR

The framework presented in this thesis is based on a previous simplified version of this 
proposal (with one level of parallelism and a bi-dimensional virtual search space, detailed on 
next section) that used the classical “Treasure Hunt” story as metaphor. Hence, for historical 
reasons, the expanded framework proposed in this thesis kept its original name.

A.1 CHASING THE TREASURE

Looking for an important hidden treasure, a pirate fleet, managed by its Admiral pirate 
(Figura A.1, step 1), berths in a large unknown island which is suspected to have a complex 
landscape with dangerous regions. In an attempt to combine efforts and speed up the search for 
the treasure, the admiral assigns each Captain pirate (and respective crew members / pirates) to 
an exclusive portion of the island, which must be scanned as detailed as possible using all means 
that each captain has on hands.

Figura A.1: Sketch of the Treasure Hunt story.
(1) Admiral’s ship and his Pirate fleet. (2) Captains’ crews are assigned to delimited areas in the island. (3) Each 
crew scans its region and obtains a best location. (4) Admiral’s crew scans the entire island based on Captains crews’ 
results.

Since initially the captains have no knowledge about their assigned search regions, they 
define arbitrary positions within their areas from where every pirate in their group will begin the 
search (Figura A.1, step 2). Every captain has the freedom to decide how his search group will



move in the island, including entering inside neighbour regions. When his pirates “agree” with a 
common location as a good candidate for the place where the treasure might be hidden (Figura 
A.1, step 3), the position is then reported back to the captain. It is important to mention that 
pirates can always move through dangerous locations, but the treasure is never hidden there since 
these locations are unfeasible for the treasure.

The captains report their best found locations to the admiral, which will compare them 
with his personal best-list and make necessary replacements in the list. The admiral maintains a 
short list of the most probable sites where the treasure might be hidden in the island (the best-list), 
trying to keep a high diversity of positions in his list to cover as much of the territory as possible.

The positions reported by the captains are then assigned by the admiral to each pirate of 
his personal crew, which in turn will make a new independent search themselves (Figura A.1, 
step 4). After admiral’s search group has completed the search, the resulting location will replace 
one position from admiral’s best-list (if necessary). Then, one random location from the best-list 
is sent back to all captains, which in turn will use it as reference to start over the search in random 
positions in their sub-regions, but this time biased toward admiral’s recommendation.

A.2 EXPANDING TO AN N-DIMENSIONAL ISLAND

By correlating the metaphor presented on previous section with an optimization scenario, 
the island can be thought of as the full search space, the crews as the search algorithms, the 
pirates as the individuals of populations, every captain as an independent Treasure Hunt instance 
(responsible for each individual hunt), and the admiral as the root Treasure Hunt instance.
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Abstract

Particle Swarm Optimization (PSO) is a relatively recent meta-heuristic inspired by the swarming or collabo­
rative behaviour of biological populations. It is known by its capacity of obtaining important fitness improvements 
on a short period of time. A cooperative version named CPSO has been used to deal with high dimensional 
search spaces and CCPSO2 is one of its variants that has achieved high performances in large scale optimization 
problems (above 500 dimensions). This paper proposes an Iterative Partitioning (IP) method for CCPSO2 that 
takes advantage of the CCPSO2 characteristics. The resulting approach, named CCPSO2-IP, also joins some 
well known good practices into one single algorithm. Boost functions are included to fine tune the search steps.
The competition benchmark CEC13 for large scale global optimization (LSGO) is used to validate the proposed 
method. Results show that the IP-based method outperforms the standard CCPSO2 and the single swarm PSO, 
where the exponential boost function presents the highest performance.

I. INTRODUCTION
Metaheuristics are important tools when dealing with difficult optimization problems. However, in many 

cases, as more complex real-world issues are addressed more dimensions have to be considered, what in turn 
reduces the optimization effectiveness obtained by classical metaheuristic tools.

Particle Swarm Optimization (PSO), introduced in 1995 by Kennedy and Eberhart, brought a new perspective 
for the search algorithms and allowed complex problems to be solved more quickly. Nevertheless, as the number 
of dimensions increases, PSO also suffers from the Curse of Dimensionality1. Cooperative Particle Swarm 
Optimization (CPSO) was created to mitigate this problem. It divides the search space into multiple swarms, 
allowing for a more exploratory search and reducing the probability of bad local minima.

However, even CPSO may not be robust enough to tackle highly complex real-world problems, with hundreds 
or thousands of dimensions. For this reason, a Cooperatively Coevolving (CC) PSO version (CCPSO2) has 
been developed in an attempt to gather automatically promising groups of dimensions into swarms so that better 
resulting fitness can be attained. Good results were obtained in [1], where it showed competitive performance 
when compared with state-of-the-art algorithms for high dimensional space, like sep-CMA-ES [2] and CC 
Differential Evolution (CC DE) [3].

This work proposes an automatic Iterative Partitioning (IP) for CCPSO2, which relies on the optimization 
behaviour itself and on a boost function that dictates the balance between exploratory and intensification phases. 
In CCPSO2-IP, exploration and intensification are performed iteratively throughout the entire search, so that 
the probability of being trapped in a poor local minimum is reduced.

The rest of this paper is organized as follows. Section II gives an overview of the original PSO version as 
well as some recent variations developed for large scale optimization problems. Section III details the proposed 
approach. Experiments and results are discussed in Section IV, while Section V concludes the paper.

II. Particle Swarm Optimization Methods

This section describes PSO-based algorithms, specially those suitable for large scale optimization problems. 
Thus, in addition to the original version, two recent cooperative versions are detailed: Cooperative Particle 
Swarm Optimization (CPSO) and Cooperatively Coevolving PSO (CCPSO2).

1 The performance deteriorates as the dimensionality of the search space increases.
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Particle Swarm Optimization (PSO) is a population based algorithm, inspired by the dynamic of a bird 
flock, which has the characteristic of quickly converging to a local minimum [4]. It consists of one global 
best position y (gbest) and a population P of p particles, where every particle has n dimensions and each 
dimension is composed of the attributes: the current position in the search space xitj (i = l..p, j  = l..n), the 
current velocity vitj and the personal best position achieved so far in the search space yitj (pbesti,j) [5].

vi,j(t + 1) wvi,j (t) + cir i,i(t)[yi,j (t) xi,j(t)] (1)
+ c2r2,i(i)[yj (t) -  x ij (t)] ( )

xi,j (t + 1 ) = x ij  (t) + vij (t + 1 ) (2 )

The parameters c1 and c2 are the acceleration coefficients that control the particle direction, the parameter w 
is the amount of inertia preserved from the previous iteration, and r1 and r2 are elements from two uniform 
random sequences in the interval [0..1]. At every iteration t, all dimensions j  of the particles must be updated 
by (1) and (2). Equations (3) and (4) show the pbest (yi) and gbest (y) calculations (respectively) for a 
minimization function f  .

(t + 1) = J y i(t) if f  (xi(t + 1)) - f  (yi(t)) (3)
i \x i( t  + 1 ), if f  (xi(t + 1 )) < f  (yi(t)).

y(t + 1 ) = arg min f  (yi(t + 1 )), 1 < i < p (4)
y i

To limit particles movement and avoid their escape from the search space, the velocity limit [—vmax, vmax] 
and the search area limit [xmin,xmax] are defined.

Linear Decreasing Weight (LDW) is the strategy used to control particles inertia [6 ] (5), where Tmax is the
maximum number of iterations, wini is the initial inertia weight and wend is the final inertia weight (i.e., when
Tmax is achieved).

w = (wini -  wend) ( ‘ ‘ft 1 \  + werid (5)
\  -‘-max J

For problems with high dimensional search space, the Cooperative version of PSO (CPSO) can be used [5], 
where the dimensions are divided into subsets and each subset is given to a swarm. Then, the swarms execute 
in parallel with the same configuration, cooperating each other with their own best solutions. The final output 
of CPSO is the union of swarms’ global best positions, resulting in one single solution containing all original 
dimensions.

B. CCPSO2
CCPSO2 [1] (Cooperatively Coevolving Particle Swarm) is a recent state-of-the-art CPSO variant that has 

been successfully used to solve complex optimization problems and can be considered as a reference for 
newly developed algorithms for high scale problems [7] [8 ]. It is based on a previous version called CCPSO
[9] [10]. CCPSO2 was developed as an attempt to tackle issues encountered during optimization processes 
where the number of dimensions is much higher than the ones found in trivial problems. It presents good 
performance despite its low computational cost when compared to some other optimization techniques for 
large scale problems [1 1 ].

Algorithm 1 describes the CCPSO2 framework. It uses the same idea of the b function (line 1) existent 
in CPSO. Pk y represents the gbest for each swarm k, K  is the current total number of swarms and z 
represents the vector x for the current particle i within the swarm k under evaluation. The function b joins 
n /K  dimensions managed by the swarms, forming a complete candidate solution for evaluation by the fitness 
function f. Therefore, b is used to aggregate solutions generated by each particle from each swarm. CCPSO2 
has two fundamental differences from CPSO, one in the particle’s position calculations and other in the swarms 
management.

Instead of using the global best to update the particle’s positions, CCPSO2 uses a West ring topology to 
obtain the particle’s local best neighbour (function localBest, line 18 in Algorithm 1), which is stored in 
Pk yi (k € [1..K], i e [1..p]) and is used to calculate the particles’ next position (6 ). Equation (6 ) uses random 
numbers from Cauchy (C) and Gaussian (N) distributions, besides a random number rand uniformly generated 
from [0,1]. The ring topology is an attempt to reduce the convergence speed of the optimization, that is a major 
issue for PSO when dealing with high dimensional search spaces. The r value is a parameter usually set to



0.5. (
x . . + 1) = J y^i(t) + C(1)|yi.j( t ) - y i,j(t)|> if  r and^ r (6)

* j  \ yi ,j(t) + N ( 0 ,1)|yi ,i(t) -  yi ,i(t)| otherwise.
CCPSO2 dynamically changes the number of swarms K  and permutates the dimensions to improve their 

grouping. The dimensions are evenly divided between the swarms so that each swarm contains s dimensions
(s G S).

Algorithm 1 Pseudocode of CCPSO2 [1]
1 : b(k, z) = (Pl.y, • • • ,Pfc-i.y, z,Pfc+i.y, • • • PK.y)
2 : Create and initialize K swarms with s dimensions (where s is randomly chosen from a set S, and n = K x s 

always being true); the kth swarm is denoted as Pk, k G [1 • • • K]
3
4
5
6

7
8 

9
10

11

12

13
14
15
16
17
18
19
2 0  

21 

2 2

23
24
25
26
27
28

repeat
if f  (y) has not improved then randomly choose s from S and let K = n/s 
end if
Randomly permutate all n dimension indices 
Construct K swarms, each with s dimensions 
for each swarm k G [1 • • • K] do 

for each particle i G [1 • • • p] do
if f  (b(k,Pfc.x*)) < f  (b(k, Pfc.y*)) then 

Pk .y* ^  Pk .x* 
end if
if f  (b(k,Pk.y*)) < f  (b(k,Pk.y)) then 

Pk .y ^  Pk .y* 
end if 

end for
for each particle i G [1 • • • p] do

Pk.y) ^  localBest(Pk.y*-i,Pk.y*,Pk.y*+i) 
end for
if f  (b(k, Pk.y)) < f  (y) then the kth part of y is replaced by Pk.y 
end if 

end for
for each swarm k G [1 • • • K] do 

for each particle i G [1 • • • p] do 
Update Pk .x* using (6 ) 

end for 
end for

until termination criterion is met

Initially, the algorithm randomly chooses from S the number of dimensions s of the swarms and then creates 
K swarms (restricted to n = K x s). Then, it permutates the particle’s dimensions and executes one iteration. 
Every iteration is composed of one typical CPSO particle best update procedure, followed by the verification 
of the local best particle (ring topology). The kth swarm’s best is also updated if necessary. Once the best 
particles for all swarms have been updated, all particle’s positions are updated through (6 ). If no improvement 
is obtained at the end of the iteration, the algorithm makes a new random selection from S for a new s value 
and then repeats the previous steps. The process is repeated until the termination criterion is met.

The PSO algorithm is well known for its convergence capability balanced with its ability to explore the search 
space. However its performance usually deteriorates as the number of dimensions increases. The Cooperative 
PSO variant helps to relieve this problem by splitting dimensions into several collaborative swarms, each one 
exploring its own piece of the search space, all swarms working together to improve the results. Nevertheless, 
the cooperative version may also get trapped into poor local minima when the number of dimensions is too 
high. CCPSO2 tries to mitigate this problem by both permutating the dimensions and dynamically changing 
the number of swarms. However, as discussed in [12], CCPSO2 does not perform on non-separable problems 
as good as on separable problems. On [13] a Differential Grouping was proposed to find interdependencies 
among variables, with good improvements for large scale problems. As recommended in [1], a good choice 
for the swarm sizes in S would have a significant impact on CCPSO2 performance. Hence, a mechanism to



dynamically control dimensions and swarms creation might consider more potential variable interactions [3], 
therefore increasing the chance of obtaining higher performances.

III. CCPSO2-IP: THE PROPOSED APPROACH
Aiming to improve the CCPSO2 performance, this work proposes a method which iteratively splits the 

dimensions of the problem into constantly reduced number of swarms (thus, constantly increasing swarm sizes). 
The reduction process named Iterative Partitioning (IP) is based on parameters that define (i) the number of 
reasonable tries for a unsuccessful configuration, (ii) the minimum acceptable improvement rate to be obtained 
at every iteration, and (iii) a boost function.

Algorithm 2 describes the CCPSO2-IP method, which is basically Algorithm 1 with lines 2 to 7 replaced by 
the iterative procedure. The parameter minlmprovement defines the minimum improvement obtained at every 
iteration that is still advantageous for the search keep using the same swarm configuration (usually between 0 % 
to 5%). If the improvement is lower than this value, it is considered as no improvement (for higher tolerance, 
set it towards zero). Algorithm 2 executes the CCPSO2 search on line 32.

Initially, the maximum number of swarms maxK (0) is calculated by a boost function (line 2), which is 
used to set the current number of swarms K . The parameter maxTries defines the number of iterations to 
be tried under no acceptable improvement. Hence, if no acceptable improvement is obtained after maxTries 
iterations, the number of swarms K is reduced by a fixed rate Kr (11). If the search continues but no acceptable 
improvement is obtained after additional maxTries tries, K is reduced once more (and so on) until its minimum 
possible value is reached. At this point, the number of swarms K increases to a new starting point maxK(t) 
(line 13).

Iterative Partitioning is based on the idea of boost functions, where the optimization step size can be indirectly 
controlled by a function and a speed-up value (Fig.1). We propose the boost functions Linear (8 ), Sigmoid
(9) and Exponential (10), however additional functions can be used to address specific types of optimization 
problems. Equation (7) is used to calculate maxK and makes reference (through Boost(t)) to the boost 
functions (8 ), (9) or (10).

maxK (t) = M IN (MAX (n * Boost(t), 1), n) (7)

Boosts (t) = — B- * ( —---- ) + B- (8 )
. — ma

Boosts (t) = ------------------------  r------------  (9)
1.0 + exp(12 * Br * I p —j — 6  * Br )

BrBoostE (t) = --------------—j----- r  (10)
exp(12 * Br * ( p — j

K = M IN (MAX (K — MAX (maxK * Kr , 1), 1), maxK) (11)

K
n = ^ 2  sk (1 2 )

k = 1

The parameter Br is a boost rate value from [0,1], where 0 means no boost and 1 means maximum boost. 
Notice that the higher the boost rate, the larger will be maxK (0) and more aggressive will be the iterative 
reduction in the number of swarms. This happens because K is reduced based on Kr (11), which is dependent 
on maxTries, that is fixed at the beginning of the algorithm. Therefore, a high boost rate will begin the 
search with a high number of swarms (K), then when the reduction happens on K (line 17), it will be a large 
decrease on the number of swarms. However, if a small boost rate is specified, a small number of swarms 
will be created at beginning and only small decreases will occur. Together with the auto decrease of maxK
(7), which is controlled by a boost function that dictates its reduction, CCPSO2-IP method ensures a dynamic



Fig. 1: Iterative Partitioning Method.
For Exponential boost function with maxTries = 3. The parameter maxK(t) will determine the initial value for K at every round.

iterative partitioning that will try several different combinations of variables, thus increasing the probability of 
obtaining better results.

For complex optimization problems, CCPSO2-IP mechanism is not always enough to reduce the chance of 
the search to be trapped in local minima. For this reason, Algorithm 2 also has a fail-safe mechanism that tries 
to force the exploration of other regions, setting maxK = maxK(0) (line 11) if after maxTries reductions 
on maxK no improvement can be obtained. This might force a new exploratory search during one round in 
an attempt to increase the chance of escaping from a local minimum. Two permutation points, one fixed (line 
2 2 ) and other probabilistic (line 26) are also added to ensure the known benefits of the permutations [1] will 
be maintained.

CCPSO2-IP joins the advantages of using dynamically changing swarm sizes, permutations and the well 
known benefit of exploring the search space at initial stages (through the use of more partitions) and intensifying 
the search at later stages (through reduced number of partitions, what is ensured by the boost functions and 
their parameterized boost rates). For the proposed boost function, the Exponential focuses on the exploration 
only at very early stages, while the Sigmoid makes exploration at the first half of the search and then focus 
on the intensification at the other half, and the Linear constantly decreases the iterative partitioning throughout 
the search.

Notice the swarms can be resized to uneven number of dimensions (lines 22 and 27), i.e., randomly chosen 
based on restriction (1 2 ) (where sk is the number of dimensions for swarm k), allowing for a better fitting of 
the swarms for problem specific dependencies. Also, every time the swarms are created (line 4) or recreated 
(line 2 0 ), their dimensions are not permutated (permutations only occur on lines 2 2  and 26), so that the original 
sequence of dimensions is tried at least once. To reduce the overhead caused by permutations, one additional 
mapping can be employed between the aggregation function b and the actual particle’s positions, so that the 
change on the number of swarms, the swarms sizes and the dimension’s grouping can be done with only minor 
performance impact.

IV. Experimental Results

In order to compare the proposed CCPSO2-IP method with the previously discussed particle swarm opti­
mization algorithms, the same experiments were conducted for all algorithms (PSO, CCPSO2, CCPSO2-IP 
L, CCPSO2-IP S and CCPSO2-IP E, the last three algorithms represent the different boost functions being 
considered) then their results were compared.

A. Configurations
The objective of this paper is to compare PSO, CCPSO2 and the three proposed boost functions. The 

competition benchmark CEC13 (Congress on Evolutionary Computation 2013, also used by CEC15) for Large 
Scale Global Optimization (LSGO) [14] was adopted to measure the optimization power of the algorithms.



Algorithm 2 CCPSO2-IP
l Kr = l /maxTries
2 Calculate maxK(G) with (T)
B K  = maxK
4 Create K  swarms
S fitlmprovement = 1 > bypass first iteration
ó for t in [1 • •• Tmax] do
T if fitlmprovement < minlmprovement then
S if maxTries iterations without improvement then
9 if K  < M AX (maxK * Kr, 1)) then

10 if maxTries updates on maxK without improvement then > force exploration
11 maxK = maxK(0)
12 else > Iteratively reduce maxK
D Calculate maxK(t) with (7)
14 end if
1S K  = maxK
1ó else > Iteratively reduce K
D Calculate K  reduction with (11)
1S end if
19 if new K  is different from previous K  then
2 0 Recreate swarms with new K
21 else
2 2 Permutate dimensions and resize swarms
2B end if
24 Recalculate PBest’s and KBest’s fitness values
2S else > give it a S0% chance of permutation
2ó if rand < 0.5 then
2T Permutate dimension and resize swarms
2S Recalculate PBest’s and KBest’s fitness
29 end if
B0 end if
B1 end if
B2 Execute CCPSO2 (Algorithm 1), lines 8  to 27
BB Calculate fitImprovement
B4 end for

In the future we intend to compare CCPSO2-IP with CEC13/CEC15 LSGO winners, although this demands 
specific tuning for each problem, whilst we are now interested on a more generic solution. CEC13 benchmark 
is composed of 15 specially difficult functions of 1000 dimensions that represent different real world large-scale 
optimization problems. It provides convenience and flexibility for comparing various evolutionary algorithms 
specifically designed for large-scale global optimization. CEC13 benchmark functions and their respective 
bounds comprise:

• Fully-separable Functions: F1 (Shifted Elliptic Function [-100,100]), F2 (Shifted Rastrigin’s Function
[-5,5]), F3 (Shifted Ackley’s Function [-32,32]).

• Partially Additively Separable Functions:
-  Functions with a separable subcomponent: F4 (7-nonseparable, 1-separable Shifted and Rotated Ellip­

tic Function [-100,100]), F5 (7-nonseparable, 1-separable Shifted and Rotated Rastrigin’s Function 
[-5,5]), F6  (7-nonseparable, 1-separable Shifted and Rotated Ackley’s Function [-32, 32]), F7 (7- 
nonseparable, 1-separable Shifted Schwefel’s Function [-100,100]).

-  Functions with no separable subcomponents: F8  (20-nonseparable Shifted and Rotated Elliptic Func­
tion [-100,100]), F9 (20-nonseparable Shifted and Rotated Rastrigin’s Function [-5, 5]), F10 (20- 
nonseparable Shifted and Rotated Ackley’s Function [-32, 32]), F11 (20-nonseparable Shifted Schwe­
fel’s Function [-100,100]).

• Overlapping Functions: F12 (Shifted Rosenbrock’s Function [-100,100]), F13 (Shifted Schwefel’s Func­



tion with Conforming Overlapping Subcomponents [—100, 100]), F14 (Shifted Schwefel’s Function with 
Conflicting Overlapping Subcomponents [—100,100]).

• Non-separable Function: F15 (Shifted Schwefel’s Function 1.2 [—100,100]).
Initially, 10 independent runs were executed for every algorithm, which processed each of the benchmark 

functions up to 500K fitness evaluations, using 15 particles, then their averages were collected. The parameters 
were empirically set for all algorithms, based on previous experiments. For PSO, the following parameter values 
were used: w=0.7, c1=0.8, c2=1.1. The parameters for all four CCPSO2 algorithms were set to allow up to 
500 swarms. For CCPSO2, the S set was configured as {2,5,10,50,100,250}. For CCPSO2-IP, the number of 
dimensions for each swarm was chosen randomly, the boost parameters were set as E[Br =0.5, maxTries = 2] 
(for Exponential), S[Br = 0.521, maxTries = 3] (for Sigmoid) and L[Br = 0.5, maxTries = 5] (for Linear), 
and minImprovement was set to 0.05. For all CCPSO2 algorithms, the value of r was set to 0.5.

A Mann-Whitney test [15] was executed in a second experiment with the null hypothesis assuming no 
difference between the original CCPSO2 and the best performer boost function for CCPSO2-IP, having a 
significance level of 5%.

Considering that CCPSO2 performs better on separable functions, one separable benchmark function (F2 
[Shifted Rastrigin’s Function]) was selected to run the algorithms up to 1 million fitness evaluations with 30 
particles and 25 independent runs to investigate the convergence behaviour.

B. Results and Analysis
Table I shows the averaged results (cost of solutions) for PSO, CCPSO2 and CCPSO2-IP algorithms for 

500K fitness evaluations in all benchmark functions. From the 15 addressed functions, the Exponential boost 
function obtained the best results in 9 cases and similar results in others 6  when compared with the best 
algorithm, while the Sigmoid obtained the best results in 2 benchmarks, the Linear was best in 1 and PSO was 
best in 3 benchmarks. All algorithms obtained comparable results in F3, F6  and F10, with small performance 
difference on F8  and F9. For simple comparison with real competition algorithms, the algorithm VMO DE 
was included from CEC13/15 published results [16] for guidance only, altough CCPSO2 is not intended for 
competitions.

TABLE I: Averaged Results for PSO, CCPSO2 and CCPSO2-IP.
Average and Standard Deviation (Cost of solutions). Best results in bold. Configuration used for PSO, CCPSO2, CCPSO2-IP S/E/L: [15 
benchmark functions, 500K fitness eval., 15 particles, 10 independent runs]. VMO DE results for 600K fitness evaluations (available on 
CEC15 website [16]).

F1 F2 F3 F4 F5
PSO

CCPSO2
6.73E+010 (1.17E+010) 
1.42E+010 (1.02E+010)

5.55E+004 (2.99E+003) 
1.09E+004 (6.26E+003)

2.12E+001 (5.85E-002) 
2.03E+001 (6.97E-002)

6.85E+011 (2.71E+011) 
2.41E+012 (1.11E+012)

2.79E+007 (3.60E+006) 
1.83E+007 (1.58E+006)

CCPSO2-IP S 
CCPSO2-IP L

3.07E+008 (3.14E+008) 
3.34E+008 (4.44E+008)

1.85E+003 (3.43E+002) 
1.76E+003 (2.91E+002)

2.02E+001 (3.59E-002) 
2.03E+001 (3.61E-002)

8.34E+011 (5.01E+011) 
1.17E+012 (1.21E+012)

1.54E+007 (3.35E+006) 
1.51E+007 (2.77E+006)

CCPSO2-IP E 8.55E+007 (6.35E+007) 1.44E+003 (2.59E+002) 2.01E+001 (4.42E-002) 6.08E+011 (3.62E+011) 1.56E+007 (1.62E+006)
V M O D E 2.26E+04 (3.55E+03) 2.36E+04 (8.26E+02) 2.47E+01 (9.59E-01) 1.15E+10 (1.49E+09) 7.28E+14 (0.00E+00)

F6 F7 F8 F9 F10
PSO 1.05E+006 (5.05E+003) 1.31E+010 (6.73E+009) 1.10E+016 (1.19E+016) 1.97E+009 (2.96E+008) 9.31E+007 (3.99E+005)

CCPSO2 1.07E+006 (2.92E+003) 2.40E+010 (8.79E+009) 2.97E+016 (2.05E+016) 1.52E+009 (1.55E+008) 9.49E+007 (8.70E+005)
CCPSO2-IP S 1.07E+006 (2.82E+003) 5.90E+009 (4.28E+009) 3.05E+016 (3.90E+016) 1.05E+009 (1.24E+008) 9.53E+007 (8.36E+005)
CCPSO2-IP L 1.07E+006 (2.56E+003) 6.27E+009 (2.35E+009) 1.53E+016 (8.89E+015) 1.06E+009 (1.77E+008) 9.45E+007 (8.92E+005)
CCPSO2-IP E 1.06E+006 (4.14E+003) 2.13E+009 (6.82E+008) 1.52E+016 (8.43E+015) 1.36E+009 (3.01E+008) 9.44E+007 (1.00E+006)

V M O D E 7.75E+05 (1.91E+05) 2.38E+07 (8.25E+06) 1.21E+14 (4.55E+13) 1.60E+09 (3.34E+08) 2.08E+07 (3.13E+06)
F11 F12 F13 F14 F15

PSO
CCPSO2

3.02E+012 (1.46E+012) 
5.66E+012 (4.78E+012)

1.16E+012 (8.60E+010) 
2.20E+011 (2.01E+011)

1.07E+012 (7.91E+011) 
2.84E+012 (5.63E+012)

6.29E+012 (3.83E+012) 
8.14E+012 (7.60E+012)

7.30E+009 (5.49E+009) 
3.34E+012 (7.27E+012)

CCPSO2-IP S 1.07E+012 (6.66E+011) 3.38E+007 (1.91E+007) 8.17E+010 (2.35E+010) 1.75E+012 (6.16E+011) 3.02E+008 (3.13E+008)
CCPSO2-IP L 9.85E+011 (3.85E+011) 6.74E+007 (6.39E+007) 8.73E+010 (1.82E+010) 1.66E+012 (4.57E+011) 5.09E+008 (3.18E+008)
CCPSO2-IP E 5.42E+011 (2.56E+011) 4.54E+007 (3.58E+007) 2.51E+010 (1.22E+010) 7.09E+011 (2.28E+011) 1.48E+008 (3.70E+007)

V M O D E 9.87E+08 (1.90E+08) 7.73E+03 (5.18E+03) 8.36E+08 (2.64E+08) 3.39E+08 (5.51E+07) 8.43E+06 (6.82E+05)
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Results for PSO, CCPSO2 and CCPSO2-IP
A verag ed  D iffe re nce  w h en  co m p are d  w ith  CCPSO2-IP E

I I

Benchmark Functions 
Dimensions=1000, Particles=15, Evaluations=500K, Independent runs=10

PSO A v erag e  CCPSO2 A v erag e  CCPSO2-IP S A verage  ■  CCPSO2-IP L A verage
Y=0 is CCPSO-IP E result, Y>0 is higher fitness (worse), Y<0 is lower fitness (better)

F1 F2 F3

Fig. 2: Averages and Std.Dev. on logarithmic scale compared to CCPSO2-IP E.
Configuration: 15 benchmark functions, 500K fitness eval., 15 particles, 10 independent runs.
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Fig. 3: Comparison between methods for F2 benchmark function.
General Configuration: [1M fitness evaluations, 30 particles, 25 independent runs]. PSO: [w=0.7; c1=0.8; c2=1.1]. CCPSO2: 
S={2,5,10,50,100,250}. CCPSO2-IP: E[Br=0.5, maxTries=2]; S[Br=0.521, maxTries=3]; L[Br=0.5, maxTries=5].
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Fig. 4: Last 200K fitness evaluations for CCPSO2-IP methods on F2.
General Configuration: [1M fitness eval., 30 particles, 25 independent runs]. CCPSO2-IP: E[Br=0.5, maxTries=2]; S[Br=0.521, max- 
Tries=3]; L[Br=0.5, maxTries=5].

In general (Fig.2), CCPSO2-IP was significantly better in 8  of the benchmarks and was similar to other 
algorithms in all other functions (only Sigmoid boost function obtained averaged worst result on F8 , what 
would indicate some specific adjustment for it would be required for this benchmark function).

Table II shows the Mann-Whitney test results for 10 independent runs (up to 500K fitness evaluations) of 
CCPSO2 and the best performer CCPSO2-IP (Exponential). With exception of function F10, the null hypothesis 
was rejected in all cases, showing a significant difference between algorithms while optimizing these benchmark 
functions.



TABLE II: Mann-Whitney Test for CCPSO2 and CCPSO2-IP E on All Benchmark Functions
P-values for Mann-Whitney. Configuration used: [15 benchmark functions, 500K fitness eval., 15 particles, 10 independent runs].

F1 F2 F3 F4 F5
0.0007253 7.578e-05 1.083e-05 7.578e-05 0.0003248

F6 F7 F8 F9 F10
0.002089 1.083e-05 0.001505 0.0002057 0.2176

F11 F12 F13 F14 F15
7.578e-05 0.002089 1.083e-05 1.083e-05 1.083e-05

Fig.3 shows the averaged convergence behaviour for 25 independent runs on F2 benchmark function for all 
algorithms running up to 1M fitness evaluations. We can see a clear distinctions between PSO and CCPSO2 
algorithms. PSO gets trapped right at the beginning of the search. CCPSO2 algorithms not only show the best 
performance but also provide continuous convergence.

Fig.4 shows the ability of IP-based algorithms to escape from good local minima even at the end of the 
evolutionary process.

V. Conclusion

Considering the advances obtained by multi-swarm optimization methods on complex high scale problems, 
and taking advantage of the good performance obtained by CCPSO2 method on high dimensional functions, an 
Iterative Partitioning method was developed to join some well known good practices into one single algorithm.

Results show a superior performance of the IP-based method on almost all benchmark functions, specially 
on the most difficult ones. It showed a good capacity of escaping from local minima even after long stagnation 
periods. More detailed studies are required to investigate the behaviour of each boost function on specific 
optimization problems and to create best practices to regulate the boost parameter.
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A.4 CSMON: ESTIMATING STOP CONDITIONS OF STOCHASTIC METAHEURISTICS



When dealing with metaheuristics, one important question is how 
many evaluations are worth spending in the search for better results.
This work proposes a method to estimate the best moment to stop 
swarm iterations based on the analysis of the convergence behavior 
presented during optimization, aiming to provide an effective balance 
between saving fitness evaluations and keeping the optimization qual­
ity. An automated Convergence Stabilization Modeling operating in 
Online mode (CSMOn) is proposed based on a sequence of linear re­
gressions using exponential and log-like curves. The method was tested 
on the CEC13 benchmark with CCPSO2-IP E algorithm and on 30 
random Max-Set functions with the swarm algorithms PSO, ABC and 
CCPSO2-IP E. CEC13 results show that up to 90% less fitness evalu­
ations are performed for functions where CCPSO2-IP E has a steady 
convergence, and up to 49% for functions where convergence is erratic, 
while penalties for fitness are kept small. Max-Set results demon­
strates the robustness of CSMOn for the search algorithms tested. We 
conclude that CSMOn is capable of adapting to an optimization in 
progress, producing a good trade-off between result quality and evalu­
ation savings.

In d ex  te rm s— Convergence stabilization modeling, parameter tuning, 
curve fitting, online algorithms, swarm intelligence.
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1 In trod u ction

The increasing complexity of real world optimization problems requires pow­
erful tools with robust configuration sets. Among these tools, stochastic 
metaheuristics play a special role, and there is a wide variety of literature 
concerning configuration methods and usage. However, despite their impor­
tance, not much effort has been done toward algorithm-independent proce­
dures to determine a good cost/benefit number of fitness function evalua­
tions, specially for continuous problems. Apart from being quite contextual 
(the solution relies on the strengths and weaknesses of the optimization al­
gorithms and the problem being optimized), their behavior also obeys the 
unpredictable random numbers logic.

Traditionally, convergence modeling is directed toward asymptotic analy­
sis, severely restricted to algorithm properties [1 ] where rigorous assumptions 
must be made, and mostly looking for global best solution under a theoreti­
cal infinite number of evaluations [2]. This has a limited practical value since 
real world complex optimizations normally expect high quality solutions (lo­
cal instead of global ones) with minimal number of evaluations (instead of 
accepting large processing times). Some works like [3] ally asymptotic anal­
ysis with practical usage, but still under hard restrictions and assumptions 
and mostly for discrete problems with no large search spaces. In [4], a general 
framework using model convergence is proposed for discrete problems, which 
instead of using the best solutions only for overall convergence analysis, it 
uses the population history to interfere in new generations for better quality
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of solutions. In [5], a deep analysis is made of which conditions and param­
eters selection guarantee local convergence for Particle Swarm Optimization 
(PSO), but no novel process is provided for convergence modeling. Model- 
based optimization (MBO) methods [6 ] use either distribution-based models 
or surrogate models to improve convergence. The former includes the well- 
known Estimation of Distribution Algorithms (EDAs), which generate new 
candidate solutions according to the probability distribution estimated from 
the promising candidate solutions of the current population. In the latter, 
generally used when the evaluation of the cost function is very expensive or 
time consuming, the original function is replaced by a cheaper coarse-grained 
function that simplifies the search space, however its performance on high 
dimensionality problems and the selection of the correct surrogate model are 
still open research questions to be addressed. A more elaborated approach 
that also requires specific mathematical formulation for every search algo­
rithm for a good performance is the Optimal Computing Budget Allocation 
(OCBA) [7], which operates by iteratively allocating function evaluations to 
individuals (until the total budget is exhausted) based on an allocation rule 
that identifies the most promising solutions, so that noisy/costly solutions 
are discarded and accuracy is improved, thus maximizing the convergence 
rate [8 ] by estimating the fitness.

This work proposes a different approach for local convergence analysis 
that is not dependent on a particular algorithm but on the standard behavior 
presented by general memory-based metaheuristics (like swarm algorithms). 
It treats the optimization algorithm as a black-box, thus exploring several 
aspects present in the search algorithm instead of requiring core changes to 
it. The main goal is to provide an on-line estimation of a good cost/benefit 
stopping point for every optimization run of a swarm based search algorithm, 
aiming to save function evaluations.

The hypothesis is that the inherent convergence behavior presented by 
these search algorithms when entering a local minimum can be modeled by 
a sequence of auto-adapted exponential and log-like curves.

The reason behind this hypothesis is that the social knowledge provided 
by the swarms gradually restrict the movement of each individual within 
a portion of the search area (given that the algorithm guarantees that in­
dividuals will reach a stable point [5]). Such movement toward the stable 
point (and potentially toward a local minimum) yields reasonable exponen­
tial convergence rates (when major improvements occur) followed by log-like 
convergence rates (when improvements slow down), providing run time data 
to model the convergence speed through linear regression.

When approaching a local minimum, due to the typical large sequence of 
small improvements in this region of the search space, the curve calculated 
through linear regression will be biased toward recent data points and away 
from initial (fast convergence) points, indicating the beginning of the con­
vergence slow down. When the slow down happens during an exponential



convergence, the majority of the improvements already occurred and next 
improvements tend to be modest. When the slow down happens during 
a log-like convergence, only minor incremental improvements are expected 
on subsequent evaluations, meaning that the convergence is stabilizing and 
further search might not be advantageous.

Considering this hypothesis, and given a restricted computational bud­
get (limited swarm iterations, fitness evaluation or run time) on a multiple 
run scenario, CSMOn can automatically determine a good moment to stop 
evolving a population of solutions on a particular run and start searching on 
the next run. In this case, we consider that more important than the budget 
allocated to the fitness calculation of a specific particle, the challenge here is 
associated with the analysis of the convergence of the best fitness achieved 
by the swarm. This way, a good commitment could be found between the 
drawback (performance loss) of not having optimized until the end of the 
budget allocated for each independent run, and the advantages of saving 
computational budget (notice that using the saved effort on subsequent op­
timization runs is out of the scope of this work).

Therefore, the proposed method Convergence Stabilization Modeling in 
Online mode (CSMOn) consists in detecting local minimum traps of evo­
lution by collecting convergence data (points comprising best fitness values 
and their respective number of evaluations) during the optimization run (on­
line). A sequence of 2D exponential and log-like curves is adjusted over this 
data through linear regression, and a good cost/benefit stopping point is 
estimated by finding out the moment when the log-like curve takes distance 
from the initial convergence improvements. The source code of the CSMOn 
implementation is available online at [9].

2 M ath em atica l B asis

Taking the convergence data as a list I  =  {(xj, yj)}, Vj € {1, ■ ■ ■ , s} of size 
s of strictly monotonically decreasing 2D coordinate points, yj as the jth 
fitness value obtained at fitness evaluation x j , p 1 as an initial position in this 
list, p2 as a final position and pc as a position close to p2 ( 1  < p i < pc ~  p2  < 
s), one way of defining a convergence stabilization is observing the relative 
differences of the convergence improvements. When the difference [yPc , yp2] 
is very small compared to the difference for the whole interval [yp1, yp2], we 
can observe a convergence stabilization. In such definition, the stabilization 
is contextual and depends on how many convergence improvements have 
been obtained and the relationship between them. Hence, the greater the 
number of improvements at beginning of the sequence and the difference 
between them, more improvements with small differences will be required 
to state that a convergence is reaching a stabilization point at a later stage.

This section describes the curves, the linear regression method and the



2.1 C u rv es

Two curve functions are used to model the general convergence stabilization 
behavior of a swarm based stochastic metaheuristic: the Exponential and 
the Power functions. Large improvements typically seen at the initial of the 
search or when escaping from local minimum traps are better modeled by 
exponential curves, whereas log-like curves are well suited for moderate and 
small improvements seen on the remaining of the search.

The natural Exponential Function Exp  is defined as:

Exp(x) =  ae-3x (1)

where a  is the Intersect point with Y  axis (a =  Exp(0)) and fi is the relative 
growth speed of the function.

The deterioration of an exponential convergence can be detected by dis­
covering the point when the sublinear convergence begins. The list t  is said 
to converge sublinearly when:

lim © m L  ^  1 (2 )
s^ ~  \ys-i -  L\

where L denotes the last possible y value of the sequence. Assuming the last 
possible value as L m  for a maximum number of M  evaluations, this criteria 
can be re-written for a minimization problem by an approximation as the 
decay equation (3):

De(t) = 1 -  -  LM (3)
ys-i — l m

indicating how much the current value ys differs from the previous value 
ys-1 concerning the estimation of the limit achieved due to computational 
limitation.

The log-like Power Function Pow can be defined as

Pow(x) =  a x -13 (4)

where a  is the Scaling factor (a  =  Pow(1)) and fi is the growth speed of 
the function.

A logarithmic convergence commences only after the deterioration of the 
exponential convergence. Thus, once the criteria (2) is satisfied, the list t  is 
said to converge logarithmically when:

lim \ys — ys-1 \ ^  1 (5)
s^TO \ys-i — ys-2 \

As in (3), this limit can be simplified by decay equation (6 ):

Dl(t) =  1 — ys — ys-i (6 )
ys-i — ys- 2



2.2 L in ea r R eg ress io n

Least Square (LS) is a linear regression method used to find the best-fitting 
curve that adjusts to a data set I  of points (x,y).

Due to the rigid shape of the exponential curve, the precision of the curve 
calculated through LS is increased if the data set is translated to bring the 
convergence values y closer to the X  axis. Let Yj =  yj -  m in(y) +  1, 

C [Pi ••• P2 ] be the new translated value, then equations (7a) and (7b) 
can be used to estimate the parameters ft and a  of the exponential curve
[1 0 ] between [p1 ,p 2 ]:

P2 ___
E  (xj — x)(ln(Yj) — ln(Y)) 

fte(i,Pi,P2) =  — ------ p2----------------------  (7a)
E  (xj — x)2

j=pl

P2 P2
ae(I,Pi,P2) =  I ln (Yj) — fte 5 3  Xj I /  (P2 — Pi +  1) (7b)e

\J=Pl 3=Pi

where X is the average of Xj and ln(Y) is the average of ln(Yj).
The exponential curve calculated through LS tends to adjust better to 

the regions where the majority of points are located, quickly moving away 
from the other points. Considering that in a typical convergence there are 
more moderate and small improvements than initial major improvements, 
there are fewer data points available to represent the beginning of the expo­
nential decay than the remaining of the convergence. Therefore, considering 
that the exponential curve (1 ) decreases at a rate proportional to its current 
value, it can be said that the beginning of the convergence slow down occurs 
when the parameter ae (intersection with Y  axis) has its value reduced, 
when compared to the previous regression, after adding one more point to 
the sequence.

The second part of the convergence stabilization modeling uses a power 
curve whose parameters ft and a  can be estimated as follows:

P2

aP

E  (l°g(xj ) — log(x))(log(y j ) -  log(y )) 
ftpP,P i,P 2 ) =  j = P 1------- p̂ -------------- ^ -------------  (8 a)

E  (log(xj ) -  log(x))2
j=Pi

P2 P2

P,Pi,P2) =  | 5 3  log(yj) -  ftp 5 3  log(xj) ) /  (P2 -  Pi +  1) (8 b)
\j=pi j=pi

where log(x) and log(y) are the average of log(xj) and log(yj).



Because the growth speed f p is constant along X  axis, the power curve 
has a behavior similar to the exponential curve on the intersect (parameter 
ap) when distantiating from initial data points (since the majority of the 
points are moderate and small improvements), but occurring more slowly 
than for the exponential curve (given the growth speed is constant here).

3 C SM O n: C onvergence S tab iliza tion  M od elin g
O p eratin g  in O nline M ode

The proposed method (CSMOn) controls the execution of the optimiza­
tion algorithm by continuously requesting the metaheuristic to process un­
til the next best result is found. Every new best fitness value (fit) and 
its associated number of evaluations (ne) are appended to a list of points 
gb =  {(nej, f i t j )}, Vj € {1, ••• ,s}, replacing £ as the convergence list for 
the LS (section 2.2). The process is divided in three main phases (Figure 
1 ):

i Initial/Major Improvements: Determine through criteria (2) and (5) 
the moment when major improvements cease, ensuring the search will 
stop only after first improvements have occurred. Positions 1 and 
pb identify this phase (red area in Figure 1) where no regression is 
performed.

ii Intermediate Improvements: After phase i, the regression process is 
started and finds the point where the exponential curve (blue) takes 
distance from initial convergence data (first red circle). Positions pb 
and pT identify this phase (orange area), with position pT defining the 
transition from exponential to logarithmic decay.

iii Final/Convergent Improvements: Once phase ii finishes, a log-like 
curve (green curve) is adjusted to the remaining improvements un­
til the curve departs from initial points (second red circle). Positions 
pT and pS identify this phase (yellow area), with pS defining the point 
where the logarithmic sequence stabilizes (third red circle), saving un­
necessary fitness evaluations (grayed area).

Considering the search algorithm can escape from a particular stagnation 
point, phases i, ii and iii can repeat along evolution.

Metaheuristics like PSO typically show the greatest improvements at the 
very beginning of the search, and initial fitness values can be quite distant 
from the general fitness found on the remaining of the search. In such cases, 
the initial points (two points would suffice) may be considered outliers and 
are not included in gb.

The following plateau-curve is proposed to model the general conver­
gence stabilization behavior of swarm based optimization algorithms (with



Figure 1: CSMOn Method defining transition points for fast, intermediate 
and slow convergence
log-like curve represented by the power curve):

f  Exp(nej) (1) if j  < pt ( 9

Fapp(nej) =  < \ -f • \I Pow(nej) (4) it j  > pT

where Fapp is the function that approximates the real fitness f i t j  at nej 
evaluations.

A lgorithm  1 CSMOn Algorithm 
1 : Input: {M, R}
2 : pt <----- 1,ps <---- 1

3: r ^  0.99 [> Set r ^  R  for a fixed relaxation
4: append(gb,GetBest(1, M ))
5: rep ea t
6 : r ̂  m ax(r2, R) > Remove this line for a fixed relaxation
7: if ps =  —1 th en  > Look for Exponential convergence
8 : pT ^  AdjustExp(gb, M, r)
9: if pt > 0 th en  > Log-like convergence started

1 0 : ps ^  AdjustLog(gb, M, r,pT) > At this point,
either finishes for a given r (ps > 0 ) or a new exponential convergence 
is detected (ps  =  —1) and returns to line 5 

1 1 : un til neps >= M  or (r =  R  and ps > 0)

These are the basic CSMOn steps (Algorithm 1):

• Two problem-dependent input parameters are required: the maximum 
number of fitness function evaluations for every run M  (i.e. the portion 
of the total budget for this run) and the relaxation parameter R  e]0,1[. 
The relaxation controls the limit sensibility, specifying how close the 
equations (3) and (6 ) should be from satisfying the respective criteria
(2) and (5).



• Function GetBest(nBest, M ) returns from the search algorithm a list 
{(ne1 , / i i 1), ••• (nenBest, f i tnBest)}. To deal with search algorithms 
that do not show a minimum initial convergence, if gb is empty, the 
function will start to add elements to the list only after De(gb) > 
.0001 (0.01% improvement). If the maximum number of evaluations 
M is reached before filling the list, the search algorithm stops and the 
function appends to the list a dummy entry containing the last best 
fitness (M, f i t M).

• Initially one best value is obtained from the search algorithm and the 
initial value for the relaxation is defined: r € [R, Rs], with R  > 0 and 
Rs < 1. If a fixed relaxation should be used, then r =  R, otherwise 
it will decrease in a quadratic way from the superior to the inferior 
limit. A decreasing relaxation accepts an initially less compliant expo­
nential and an increasingly more suitable log-like convergence, while 
fixed relaxation uses the same compliance level throughout the search.

• Function AdjustExp(gb, M, r) requests new elements for gb to detect 
the end of the major improvements (pb) and the transition point pt 
between an exponential and a log-like convergence.

• Function AdjustLog(gb, M, r,pT) requests new elements until the log­
like convergence stabilizes at point pS , indicating a possible end of the 
search. However, if a new exponential convergence occurs, control is 
returned to AdjustExp (line 8  in Algorithm 2 ) and pb and pT are reset.

• If a fixed relaxation is used, the method finishes at the first pS found. 
If a quadratic decreasing relaxation is used, pS is reset, r  has its value 
reduced for the calculation of a new pS and the method finishes when 
the relaxation reaches R. In any case, the method stops when the 
maximum number of evaluations M is reached.
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9
1 0

1 1

1 2

13
14
15
16
17
18

Input: {gb,M, r}
s.prev —
aPPend(gb, GetBest(2, M )) > Request next 2 bests results
if s -  sprev < 2  th en  r e t u r n  - 1

Pb —-----1
while nes < M  do

if De(gb) < r and Di(gb) < r th en
if Pb =  -1  th en  > Initialize the regression process

Pb — s -  2
a 2 — ae(gb,Pb,s) (7b) 

else > Check the incremental difference on regression
a i —— a 2

a 2 — ae(gb,Pb,s) 
if a 2 < a i th en

re tu rn  s > Transition to log-like curve
else > Stop the regression

Pb — -1
aPPend(gb,GetBest(1, M )) > Request next best result

r e t u r n  1

The adjustment of the exponential curve (Algorithm 2) has the following 
steps:

1 . A sequence of best values is requested and appended to gb as long 
as the fitness improvements are substantial (i.e. until criteria (2 ) and
(5) are satisfied) (line 7). Then, the start of the weak part of the 
exponential decay is set Pb =  s -  2 (line 9), marking the beginning of 
the regression calculation (7b) (line 10).

2. For every next best value (line 18), a new regression is calculated in 
the interval [Pb, s] (line 13) and the incremental difference to previous 
regression is compared to detect if the curve is biased toward recent 
best values, representing a slow down on the exponential convergence 
(line 14).

3. When the bias is detected, the end of the exponential curve is set 
Pt  =  s (returns the control to line 8  in Algorithm 1).

4. However, if the convergence speed increases above the defined relax­
ation r, the regression stops (line 17) and the process proceeds re­
questing the sequence of best values.



1 Input: {gb , M, r, pT}
2 sprev — s
3 append(gb, GetBest(3, M ))
4 if s — sprev < 3 th en  r e t u r n  — 1
5 a 1 — ap(gb,pT, s — 1 ) (8 b)
6 a  — ap(gb, p t ,s)
7 while a 2 > a 1 and nes < M do [> Check incremental difference
8 if De (gb) > r or Dy(gb) > r th en
9 re t u rn  — 1 > Exponential convergence detected

1 0 append(gb, GetBest(1 , M ))
1 1 « 1  i— « 2

1 2 a  — ap(gb,pT ,s) 
r e t u r n  s

Finnally, log-like curves are adjusted (Algorithm 3):

1 . A sequence of best values is requested and the respective incremental 
regressions (8 b) are calculated for the interval [pT, s] (lines 5, 6  and 
1 2 ) and then compared to detect if the curve is biased toward recent 
best values, representing a logarithmic stabilization (line 7).

2. When the bias is detected, the respective position pS =  s is returned, 
marking the end of the relevant logarithmic decay (line 10 in Algorithm 
1 ).

3. However, if the search algorithm escapes logarithmic convergence mov­
ing towards an exponential convergence (line 8 ), then the whole pro­
cess starts over from current position s, ignoring previous convergence 
points.

In a multiple run scenario, the total budget has to be partitioned in 
a way that every independent run has its own portion of the evaluations. 
A simplistic schema to use CSMOn under this scenario would set M to 
the number of evaluations assigned to every run, and the saved evaluations 
be used on upcoming runs by creating a different update mechanism for 
relaxation r that takes the overall remaining budget into consideration.

4 E xp erim en ta l R esu lts

Two test sets are used to experiment with CSMOn: one fixed and one ran­
domly generated. The fixed test set comprises specially difficult competition 
benchmark functions for optimization called CEC13 [11] and is composed of 
15 minimization functions of 1000 dimensions with global best at L m  =  0:



• Fully-separable Functions: F1, F2, F3.

• Partially Additively Separable Functions: F4, F5, F 6 , F7, F 8 , F9, F10, 
F11.

• Overlapping Functions: F12, F13, F14.

• Non-separable Function: F15.

The randomized test set uses an automated and parameterized test-problem 
(landscape) generator called Max-Set of Gaussians (MSG) [1 2 , 13], which 
generates nonlinear, nonseparable random test functions based on the sum 
of Gaussians.

A competitive decomposition method [14] for high dimensional problems 
[15, 16], CCPSO2 [17] (Cooperatively Coevolving Particle Swarm) is a recent 
state-of-the-art algorithm based on the well known PSO [18] metaheuristic. 
It is a variant of a previous version called CCPSO [19, 20], being recognized 
by its computational simplicity and good capacity of dealing with multi­
modal complex functions and separable problems [21] [22]. CCPSO2-IP [23] 
is an Iterative Partitioning method for CCPSO2 that improves its capacity 
of dealing with non-separable problems by automating the task of find­
ing combination of dependent dimensions, so that CCPSO2-IP can escape 
more easily from local minima traps caused by poor variable interaction. 
For a comprehensive test of CSMOn under complex optimization scenarios, 
CCPSO2-IP with exponential boost function (CCPSO2-IP E) has been used 
to optimize CEC13 functions due to its strong capacity of escaping from lo­
cal minima and keep converging after long periods of stagnation on high 
dimensional problems, producing convergence behaviors of hard prediction. 
For the random MSG functions, the swarm algorithms CCPSO2-IP E, PSO
[24] and ABC [25] (Artificial Bee Colony) have been tested.

The results are then summarized with the mixed model based on confi­
dence intervals proposed by [26][26], which creates a simple pairwise com­
parison plot (between versions with and without CSMOn) that shows how 
significant is the difference between results.

4.1 C o n fig u ra tio n s

Considering that the CSMOn stop condition does not entirely depend on 
the number of evaluations M  (i.e. it mainly depends on the convergence 
behavior and the relaxation parameter), the search algorithms are processed 
in two phases to compare the fitness obtained with and without the use of 
CSMOn:

1. under the control of CSMOn method (i.e., until the last convergence 
stabilization ps is found).



2. it continues the optimization on the same run until M fitness evalua­
tions are performed (i.e., processing additional M — pS fitness evalua­
tions).

For the CEC13 test set, CCPSO2-IP E configuration is set as: p =  30, 
Br =  0.5, maxTries =  2. The following values are used for M : M 1 =  1e6, 
M 2 =  3e6, M 3 =  6 e6  and M 4 = 1e7. For each M , the following values 
are used for R (both for fixed and quadratic decreasing relaxations): {0.01, 
0.02, ..., 0.09, 0.1, 0.2,..., 0.9}. Every benchmark function F is processed 30 
times for each combination of M x R and an analysis has been conducted 
aiming to evaluate:

1. The effect of the relaxation parameter: For every function F and each 
combination of M x R, both the economy on the number of fitness 
evaluations ((M — neps)/M ) and the complement of the relative ap­
proximation error of the fitness ( 1  — | ( / i tM — f i tps ) / / i t M |) are mul­
tiplied to obtain the trade-off matrix. Matrices for all 15 functions 
F are averaged to illustrate the effect of the relaxation parameter as 
the maximum number of evaluations increases, where higher values 
mean better commitment between the fitness approximation and the 
economy on function evaluations.

2. Overall advantages/drawbacks for best relaxations: From the previous 
experiment, two relaxation parameters are chosen (R1ow, Rhigh). For 
each function F, the best from these two parameters is used to com­
pare the best fitness obtained in every execution (for both M and pS 
evaluations) and the averaged evaluation savings for each pS.

3. Detailed advantages/drawbacks for best functions: This experiment 
aims to visualize how far the stabilization points (pS) found by CSMOn 
are from the best possible values (restricted to M ). For the best per­
formed functions F, the percentage of reduction on fitness approxima­
tion quality is compared with the percentages of economy on function 
evaluations obtained by CSMOn, using as configurations all values of 
M and the two previously selected relaxations.

For the second test set, the MSG landscape generator is used to create 
test classes of 50 dimensions (varying the number of Gaussians randomly 
in the interval [50,100]). Configurations are empirically set to CCPSO2-IP 
E: {p =  30, Br =  0.6, maxTries =  3}, PSO: {p =  30, c1 =  0.4, c2 =  1.4, 
w =  0.9}[27] and ABC: {/oodSource =  30, trials =  1e3}:

(4) Every search algorithm is executed 30 times and, for each execution, a 
new test class is created from which a random test function is instan­
tiated and optimized 30 times independently, with M = 5e4. At the 
end, 900 executions were be performed for each search algorithm.



(a) Fixed relaxation (b) Quadratic relaxation

Figure 2: Averaged Cost/Benefit of CSMOn for CEC13 Functions. (M1 =
1e6, M2 = 3e6, M3 = 6 e6 , M4 = 1e7)
4.2 R e su lts  a n d  A n a ly sis

Experiments described in section 4.1 are discussed below. For the CEC13 
functions:

E xperim ent 1: Figure 2(a) shows the results for fixed relaxation and 
Figure 2(b) for quadratic decreasing relaxation. Although they look simi­
lar, fixed relaxation presents a smoother trade-off matrix (soft transitions 
between configurations), with better results for small M  and high R. How­
ever, quadratic decreasing relaxation obtains overall better results for both 
high M  and low R .

E xperim ent 2: From the previous experiment, Rlow =  0.08 and Rhigh = 
0.7 are chosen. Figure 3 presents the best possible results (in blue) and 
CSMOn’s results (in red). Confirming the good convergence of CCPSO2-IP 
E for functions F3, F5, F 6 , F9 and F10 [23], best results are obtained on 
F5 and F9, with high relaxation R  =  0.7, exceeding 90% economy (the red 
values on X  axis), showing that for problems where the search algorithm 
is well suited, large relaxations should suffice (although some medians seem 
differ, their relative differences are very small).

Function F2 processed almost up to M evaluations, meaning that CCPSO2- 
IP E keeps converging throughout the search. For the other 9 functions 
(comprising 36 combinations of F x M ), 28 combinations have their medi­
ans and 15 have their quartiles similar to the best possible results, with 
up to 49% economy on latter 15 combinations. Fully separable F1 and F2 
are special cases since for those functions CCPSO2-IP E presents an erratic 
convergence with frequent transitions between poor logarithmic and mod­
erate exponential decays, meaning that the method would process up to M  
evaluations if smaller relaxations were used.

E xperim ent 3: Figure 4 shows the percentages of advantage and draw­
back for functions F3, F5, F 6 , F9 and F10 with quadratic decreasing re­
laxations Rlow =  0.08 and Rhigh =  0.7. Results clearly show the advan-
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Figure 3: Comparison Between CSMOn stopping point and Processing until 
M  evaluations.
Quadratic decreasing R = {0.08, 0.7} (indicated below bottom axis). Red box is CSMOn 
method and blue box is limited by M . Vertical axis is the fitness value. Actual number 
of CSMOn’s function evaluations is given by M configuration (top axis) minus respective 
percentage of economy (bottom axis).



tages overcoming the drawbacks in all 40 combinations of F x M x R, with 
Rhigh presenting the highest economy, reaching above 80% difference be­
tween drawback and advantage on function F10.

F9
R0.08, M l —  N.Evals 

4<*-..... Fitness
R0.7, R0.7, M4
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R0.7, M2 ^  R0.7, M3 R0.7, M^ ^ J ^ ^ Rb.7. M3

R0.08, M3 R0.08, M3

Figure 4: Percentage of Economy on Fitness Evaluations x Reduction on 
Fitness due to Quadratic Decreasing Relaxations (R = {0.08,0.7}). Best config­
urations are Fitness on borders and N.Evals on center.

08. M4

For the MSG functions:
E xperim ent 4: In the paired comparison plot (Figure 5), overlapping 

intervals show that the means are not significantly different, leading to the 
conclusion that there is no significant difference between results with and 
without CSMOn for CCPSO2-IP E. Despite the fact that the figure shows 
that PSO with and without CSMOn are not similar, the normalized fitness 
difference is within a small percentage (3%), with minor importance when 
compared to the economy of 27% on fitness evaluations. The small economy 
obtained by CCPSO2-IP E (6 %) and ABC (6.7%) occurred because these 
algorithms were still converging for most of the runs, reaching M evaluations. 
The 4% significance difference for ABC is due to the ”scout bees“ phase, 
that reset the position from current to a different local minimum, suggesting 
that CSMOn could be used to detect upfront a better moment for the scout 
phase to occur.

Although not included here, additional tests with fixed relaxations have 
shown that they are more conservative on convergence stabilization analy­
sis than decreasing relaxation, tending to produce smaller drawbacks with 
moderate savings on erratic optimization.
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Figure 5: Paired comparison of CCPSO2-IP E, PSO and ABC search algo­
rithms, with and without CSMOn.
MSG landscape generator used to create 30 test classes per algorithm, one test function 
instantiated per class and 30 executions per function using M = 5e4. Overall fitness 
evaluations economy: CCPSO2-IP E=6 %, PSO=27%, ABC=6.7%. Decreasing relaxation 
values (R) shown on labels.

5 C onclusion

Tracking convergence trends for stochastic algorithms is not a trivial task, 
however if successfully done could benefit the overall optimization by con­
trolling drawbacks resulting from fitness approximation due to evaluation 
savings. This work has presented a method to track this trend for swarm 
based stochastic metaheuristic.

The proposed approach (CSMOn) has been tested with CCPSO2-IP E 
search algorithm on all 15 CEC13 benchmark functions. Results show that 
the process presented to model the convergence stabilization behavior is 
able to effectively adapt to each optimization in progress (online), obtaining 
a good trade-off between the drawback resulting from the fitness approxi­
mation and the advantage of saving fitness function evaluations. The best 
results are obtained with functions where CCPSO2-IP E has a stable con­
vergence behavior, presenting a great economy with the fitness consistently 
approaching the best possible values (i.e. values achieved considering the 
restriction of maximum number of evaluations M ). At some cases, CSMOn 
obtains above 90% economy with moderate drawbacks on the fitness esti­
mation, and in other cases it obtains above 70% positive difference between 
advantages and drawbacks. Tests with Max-Set random functions show that 
CSMOn is able to detect, for metaheuristics CCPSO2-IP E, PSO and ABC, 
when the search is no longer converging, suggesting that it should be either 
stopped or some additional action should be taken by the search algorithm 
to reactivate the convergence.

Future work would include: the test to take into consideration long stag­
nation periods of the search algorithm; different update mechanisms for the 
relaxation parameter aiming to react based on the distance to the maxi­
mum number of evaluations; a relaxation update mechanism to consider the 
remaining budget in a multiple run scenario; and the test of the CSMOn
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