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R E S U M O

Este trabalho investiga problemas de controle ótimo em tempo contínuo. 
Em horizonte de tempo finito, apresentamos um a nova abordagem ao 
analisar problemas com objetivos de diferentes naturezas, que precisam 
ser minimizados simultaneamente. Um objetivo esta na forma clássica de 
Bolza e o outro e definido como um a funcão de maximo. Baseados na 
teoria de Hamilton-Jacobi-Bellman caracterizamos a fronteira de Pareto 
fraca e a fronteira de Pareto para tais problemas. Primeiramente, defin­
imos um problema de controle átimo auxiliar sem restricoes de estado e 
mostramos que a fronteira de Pareto fraca íe um subconjunto do conjunto 
de nível zero da funcao valor correspondente. Em seguida, com um a abor­
dagem geometrica estabelecemos a caracterizaçao da fronteira de Pareto. 
Alguns resultados numericos sao considerados para m ostrar a relevancia 
do nosso metodo. Os bons resultados obtidos para horizonte de tempo 
finito nos motivaram a investigar problemas de controle íotimo multiob- 
jetivo com horizonte de tempo infinito. Com um a abordagem similar, 
caracterizamos a fronteira de Pareto para essa classe de problemas. In­
troduzimos um metodo, baseado no princípio da programacão dinamica, 
para reconstrucão de trajetorias de problemas de controle otimo com 
restricçoães de estado e horizonte de tempo infinito. A teoria íe aplicada 
em sistemas de gestãao de energia. Para problemas de energia simples, mas 
ainda representativos, que minimizam custo de geracao e emissão de CO2, 
comparamos a habilidade de diferentes baterias como substituto para o 
mecanismo de deslocamento de demanda de ponta (load shaving). Com a 
resoluçcãao do problema multiobjetivo íe possível obter um a relaçcaão entre a 
minimizacao dos custos de geraçao de energia e de emissao de gás carbônico 
das usinas termoeletricas consideradas no modelo.

P a lav ra s-ch av e : Controle otimo multi-objetivo; caracterizaçao da fron­
teira de Pareto; abordagem de Hamilton-Jacobi-Bellman; baterias para ar­
mazenamento de energia; resposta a demanda.



A B S T R A C T

In this work we investigate optimal control problems in continuous time. A 
novel theory is developed for finite horizon problems with two objectives of 
different nature th a t need to be minimized simultaneously. One objective 
is in the classical Bolza form and the other one is defined as a maximum 
function. Based on the Hamilton-Jacobi-Bellman framework we character­
ize the weak Pareto front and the Pareto front for such problems. First 
we define an auxiliary optimal control problem w ithout state constraints 
and show th a t the weak Pareto front is a subset of the zero level set of 
the corresponding value function. Then with a geometrical approach we 
establish a characterization of the Pareto front. Some numerical examples 
are considered to show the interest of our proposal. The encouraging re­
sults obtained with the finite horizon m otivated us to investigate infinite 
horizon multi-objective optimal control problems and characterize the cor­
responding Pareto front. Additionally, we introduce a method, based on 
the dynamical programming principle, to reconstruct optimal trajectories 
for infinite horizon control problems with state constraints. The theory is 
applied to energy management systems. We compare the ability of different 
batteries as a substitute of the load shaving mechanism in smoothing the 
load peaks, for simple, yet representative, power mix systems with two dif­
ferent objectives. The multi-objective approach makes it possible to obtain 
a compromise between the minimization of generation costs and the carbon 
emissions of the therm al power plants in the mix.

K ey w o rd s: M ulti-Objective optimal control problems; Pareto front char­
acterization; Hamilton-Jacobi-Bellman approach; energy management sys­
tems; battery  energy storage systems; demand response.
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Chapter 1 

Introduction

1.1 G eneral settin g
Optimization is a very im portant field in M athematics th a t studies problems with 

the goal of maximizing or minimizing some function, subject to constraints on the decision 
variables. An im portant branch in this area is the optimal control theory.

Optimal control considers systems evolving in time th a t are susceptible to change 
through external actions. For a system with such features, the aim is to control its evo­
lution along a certain period of time in a m anner th a t the pair of control-and-state is 
optimal with respect to some criterion, given in the objective function. The system dy­
namics can be formulated in discrete [Iso17, Ten01] or continuous time [BCD97, CHL91]. 
The decision variables are of two distinctive types:

• state variables, describing the evolution of the dynamical system under considera­
tion by means of difference equations in discrete time or by means of a differential 
equation in continuous time;

• control variables, or external decisions, allowing for example to m aintain the trajec­
tories of the state variables within given bounds.

This work focuses on optimal control problems in continuous time. In this case, the 
objective function is defined in a functional space. As for the optimization horizon it can 
be finite or infinite. An example of finite horizon problem, presented in [ABZ13], considers 
a boat th a t navigates in a river from an initial position x. The goal is to reach an island 
with minimal fuel consumption at time T . The state variables are the coordinates of the 
boat while the control variables are the impulse of the motor and the wheel angle tha t 
changes the boat direction. The dynamics defines the speed of the boat as a function of 
the current drift and the control variables. Figure 1.1 illustrates the example including 
obstacles th a t the boat needs to avoid to a tta in  the island; the river shores are natural 
bounds for the trajectory of the boat.

Infinite time horizon problems arise in Economy and Biology when imposing a final 
horizon is artificial. For instance, the pest control problem in [CHL91] studies the joint 
evolution of two species: a nuisance for humans and its predator. The population of these 
species are the state variables. The growth of both populations represents the dynamics 
th a t is intertwined forever, without any final time ending the relationship. The control 
variable is the rate at which a chemical is sprayed to poison the pest (which also kills 
the predator). To control the expansion of the nuisance, the work [CHL91] considers an 
objective function tha t adds the cost of spraying to the size of the nuisance population.

11
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Photo Credits: M auricio Kuchla  

Figure 1.1: Illustration of the boat example.

These are two objectives of different nature th a t could be better treated  with the multi­
objective approach studied in this dissertation.

Since optimal control problems are stated in functional spaces, their numerical trea t­
ment requires some form of discretization. There are two well-known approaches in the 
literature: “discretize-and-optimize” or “optimize-and-discretize” . This work falls into 
the second category, specifically, the so-called Hamilton-Jacobi-Bellman (HJB) frame­
work [BCD97]. The idea is to consider the value function defined by the optimal value of 
the control problem, when seen as a function of the initial state and time of the dynami­
cal system (in the boat example, the starting position of the boat, x). Under reasonable 
assumptions, the dynamical programming principle [Bel57] is satisfied and the value func­
tion can be characterized as the unique solution of a partial differential equation, called 
Hamilton-Jacobi-Bellman (HJB) equation [BCD97, ABIL13]. After solving this equation 
using a discretization method, an approximation of the value function is obtained for 
any initial state x. This feature is in sheer contrast with the discretize-and-optimize ap­
proach, th a t provides the optimal value for only one initial state. For the boat example, 
the HJB technique yields the minimal fuel consumption to reach the island from any 
starting position of the boat. Another remarkable by-product is the possibility of recon­
structing optimal trajectories, see [ABDZ18, RV91] for finite and [BCD97] for infinite 
horizon problems. Reconstructing an optimal trajectory for the pest example can give an 
indication if the species will be extinct in the long term.

In general, when the set of trajectories is not closed, it is not possible to guarantee 
the existence of a minimizer for the optimal control problem. A well-known approach to 
deal with this issue is to consider a relaxed optimal control problem over a compactified 
set of trajectories; see for instance [AC84, FR99]. Under suitable assumptions, the value 
function of the original problem coincides with the value function of the relaxed problem, 
[BCD97, FR99].

Because of the non-linearity of the HJB equations, defining a solution in the classical 
sense is not possible when the value function is not sufficiently smooth. The concept of 
viscosity solution, based on sub and super-differentials and introduced by Crandall and 
Lions in [CL83], can be employed. If the problem includes state constraints, the value 
function not only lacks smoothness but can also be discontinuous. For the boat example, 
state constraints appear when modeling the obstacles in the river. The HJB characteri­
zation can still be derived in this setting, as long as certain controllability assumptions 
are satisfied. The most well-known are the inward and outward pointing conditions.
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The former, introduced in [Son8 6 ], requires th a t each trajectory initiated on the 
boundary can be approximated by a sequence of trajectories lying in the interior of the 
set of state constraints. This strong assumption ensures Lipschitz continuity of the value 
function, th a t can then be characterized as the unique viscosity solution of an HJB equa­
tion.

The outward pointing condition, introduced in [FP00, FV00], ensures th a t the value 
function is the unique lower semi-continuous solution to an HJB equation. The condi­
tion states th a t each point in the boundary of the feasible set can be hit by an interior 
trajectory.

In general, showing satisfaction of such controllability conditions is not straightfor­
ward. In order to overcome this drawback, other characterizations of the value function 
can be derived as in [HWZ17, HZ15] th a t assume th a t the set of constraints is endowed 
with a stratified structure. See also [BFZ11].

In this work we focus on an alternative approach introduced in [ABZ13]. The 
technique describes the epigraph of a state constrained value function by means of an 
auxiliary control problem th a t has no state constraints. The corresponding value function 
is Lipschitz continuous and its level sets provide a mechanism to recover the original value 
function. Thanks to this ingenuous idea, a characterization via a unique viscosity solution 
of an HJB equation can be derived, w ithout any controllability assumption.

As suggested by the pest example, multi-objective dynamical optimization is an 
area of great interest in applications. In this context, generally, it is not possible to 
minimize all the criteria simultaneously. For this reason, several solution concepts have 
been proposed in the literature. In the classical work “Cours d ’Economie Politique” 
[Par96], the pioneering economist V. Pareto introduced the notion of efficient or Pareto 
solution. At a Pareto solution it is not possible to improve one criterion without worsening 
at least one of the other ones. The image of the set of all Pareto solutions by the objective 
function is called Pareto front. A larger set is given by weak Pareto solutions, at which 
it is not possible to improve all the objective functions simultaneously. The Pareto front 
is useful for practitioners for finding a trade-off between conflicting criteria.

Figure 1.2 shows the (weak) Pareto optimal set of the problem of minimizing xi and 
x 2 in the feasible set represented by the hexagon. Note th a t the weak Pareto optimal set 
contains the Pareto optimal set. In this case, the (weak) Pareto front coincides with the 
(weak) Pareto optimal set.

Figure 1.2: Pareto optimal set in black and weak Pareto optimal set in black and red
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One of the most common approaches for solving multi-objective optimization prob­
lem is to relate it with a family of mono-objective optimization problems, in such a way 
th a t the solutions of the multi-objective problem can be obtained by solving a sequence 
of classical nonlinear programming problems. The most popular scalarization techniques 
are the weighted sum m ethod and the weighted Chebyshev m ethod [Jah11, Mie99]. For 
multi-objective optimal control problems several numerical algorithms based on scalar- 
ization techniques have been developed (see for instance [BK10, KM14, LHDv10] and the 
references therein).

Multi-objective optimal control problems have also been investigated within the HJB 
framework. A m ethod th a t combines the HJB approach and the weighted sum m ethod to 
find some points of the Pareto front was introduced in [MS03]. In [KV10], an approach 
based on HJB theory is investigated in the context of exit time problems. In th a t paper, 
the Pareto front is characterized by using the value function associated to an auxiliary 
control problem where one of the cost objectives is chosen as prim ary cost and the other 
objectives are transformed into auxiliary variables subject to state constraints. This idea 
was extended to a class of hybrid control problems, see [TCKV15]. In [Gui13] the set­
valued function is characterized as a unique generalized solution of an HJB equation. In 
[DZ18], the idea of introducing an auxiliary problem to deal with mono-objective optimal 
control problems with state constraints [ABZ13], is extended to work with finite horizon 
multi-objective optimal control problems.

In practice, for some problems, it is difficult to calculate the sets of (weak) Pareto 
solutions and what it can be obtained is just an approximate set of solutions. The notion 
of approximate optimal solutions for multi-objective problems was introduced by [Lor84]. 
Several notions of e-Pareto solutions can be considered, see [Whi8 6 ]. We discuss in this 
dissertation three of these concepts, one of them  corresponds to the concept introduced 
in [Lor84] and the other ones have been considered in [EW07a, EW 07b, GM04].

W hen developing the theory for multiobjective optimal control problems, the type of 
each criterion is of great importance. Chapter 3 in this dissertation presents a novel theory 
for finite horizon optimal control problems with objectives of different nature th a t need 
to be minimized simultaneously. Namely, in the vector objective function, one component 
can be an integral cost, called of Bolza cost in the literature, and another one a maximum 
running cost. Considering mixed objectives is im portant in applications. For the boat 
example the integral criterion is suitable for the fuel consumption. A second objective 
could be to m aintain the boat near to one river shore, which is naturally defined as a max­
type criterion. In the considered problem it is not possible to guarantee th a t the set of 
trajectories is closed, so we introduce a convexified (relaxed) problem where it is possible 
to guarantee th a t the set of trajectories is compact. This convexified set of trajectories 
is the closure of the set of trajectories of the original problem. Moreover we prove tha t 
if a feasible pair state-and-control (y, u) is a Pareto optimal solution for the convexified 
problem, then there exists an e-Pareto optimal solution of the original problem th a t is 
in the neighborhood of (y, u). Following some ideas developped in [DZ18], we define an 
adequate auxiliary control problem and show th a t the Pareto front of the convexified 
problem is a subset of the zero level set of the corresponding value function. Moreover, 
with a geometrical approach we establish a characterization of the Pareto front.

In addition to the contributions in Chapter 3, this work contains new material 
regarding the topics below:

• the characterization of the (weak) Pareto front for infinite horizon problems with 
state constraints and objective functions of integral type. As shown in Chapter 4, 
extending the finite horizon results from [DZ18] is not straightforward;
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• in Chapter 4, a m ethod to reconstruct optimal trajectories for infinite horizon opti­
mal control problems with state constraints is introduced;

• a study of energy management systems with two objectives, is given in Chapter 5, 
and briefly described below.

1.2 Energy m anagem ent system s
The electrical grid must have the generation capacity to satisfy the demand of con­

sumers at every time. However, the use of the energy varies daily and seasonally, and gen­
erating sufficient power at peak times, w ithout any waste, is a challenging issue [LSN+14]. 
The increasing penetration of photovoltaic and wind power, which have an interm ittent 
or uncertain nature, adds another layer of complexity to the problem. Demand-side m an­
agement tools, more precisely load shaving, can be used to m itigate abrupt changes in 
the generation. Another tool to control the negative impact of the new technologies is to 
rely on a virtual entity representing a group of small generators coupled with a battery 
energy storage system (BESS).

W ithout storage devices, energy must be generated and consumed immediately. In 
these circumstances, to ensure th a t enough electricity is provided, generators must over 
produce. The BESS is a good alternative in this sense, because it has the capacity to store 
energy surplus when generation is larger than demand and supplies energy to the system 
when it lacks power. The BESS then functions as a “reservoir” th a t can be depleted 
when most needed. This storage is not free as some energy is lost when charging and 
discharging the battery.

The works [BBL+13, HMS+17] formulate the functioning of a BESS as a determinis­
tic optimal control problem model with the objective of minimizing the energy production 
cost.

The Brazilian electricity generation m atrix is “clean” . However, in recent years, the 
number of therm al power plants has grown. Due to the difficulty in building large hy­
droelectric power plants, it is necessary to study the environmental im pact caused by the 
energy generation of therm al plants. We consider a model similar to [HMS+17], with the 
im portant difference th a t we extend the approach to the multi-objective case, [CKAN13]. 
Namely, in addition to the usual cost-minimization we incorporate an environmental con­
cern, referred to minimizing fuel emissions.

We also compare the usage of different batteries instead of load shaving. For a 
simple, yet representative, power mix, coupled with batteries of different capacities and 
output, we investigate their ability in smoothing the load peaks, when compared with 
the load shaving mechanism. The multi-objective approach makes it possible to obtain a 
compromise between the minimization of generation costs and the carbon emissions of the 
therm al power plants in the mix. Moreover, the sensitivity analysis developed in Chapter
5.4.1 gives a systematic approach to quantify the impact of both conflicting objectives.

1.3 O bjectives
The main objectives of this work are described below.

• To investigate multi-objective optimal control problems with and without state con­
straints. This includes infinite horizon control problems and also cost functions in 
different forms (Bolza and maximum running cost).
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• To develop theoretical and numerical tools for optimal trajectories reconstruction 
of infinite horizon optimal control problems with state constraints.

• To study the Pareto front for the energy problem with load shaving or different 
batteries. The considered objectives are the simultaneous minimization of genera­
tion costs and fuel emissions. To determine to which extent a BESS can be used to 
smooth the peaks of demand in the energy problem.

1.4 C ontributions
The main contributions of this dissertation are:

• to tackle, for the first time, a finite horizon bi-objective optimal control problem 
with objectives of different nature. By mean of the HJB approach it was possible 
to obtain (weak) e-Pareto optimal solutions for this kind of problems when there 
is no guarantee of existence of (weak) Pareto optimal solutions. This part of the 
work constitutes the manuscript [CZ18], subm itted to the Journal of Optimization 
Theory and Applications.

• To characterize the (weak) Pareto front for infinite horizon problems with state 
constraints and with all objective functions of integral type. Moreover to present 
a m ethod based on the dynamical programming principle to reconstruct optimal 
trajectories for infinite horizon optimal control problems with state constraints. 
This part of the work constitutes a manuscript close to completion.

• To compare the ability of different batteries as a substitute of the load shaving 
mechanism in smoothing the load peaks, for simple, yet representative, power mix 
systems. The multi-objective approach makes it possible to obtain a compromise 
between the minimization of generation costs and the fuel emission of the thermal 
power plants in the mix. This part of the work constitutes a manuscript to be 
subm itted to International Journal of Electrical Power and Energy Systems.

1.5 O rganization
This work is organized as follows. Chapter 2 recalls background material on the HJB 

approach for optimal control problems. Some definitions and results in multi-objective 
optimization are also presented. Chapter 3 studies finite horizon optimal control prob­
lems with two costs of different nature, namely of integral and max-type. In Chapter 
4 we characterize the (weak) Pareto front for infinite horizon optimal control problems 
with state constraints and introduce a m ethod of reconstruction of trajectories using the 
dynamical programming principle. In Chapter 5 we analyze an energy management prob­
lem in multi-objective setting and compare the ability of different batteries as a substitute 
of the load shaving mechanism in smoothing the load peaks. Chapter 6  concludes the 
manuscript with final remarks and comments on future steps.



Chapter 2

Background for HJB approach and 
m ulti-objective optim ization

Optimal control problems for ordinary differential equations consist of controlling 
the evolution of dynamical systems, along a certain period of time, in a m anner tha t 
the pair of control-and-state is optimal with respect to some objective function. The 
form of this objective function is of great importance when developing the theory. It can 
be defined, for example, in a Bolza form [ABZ13, HZ15, CDL90, CDI84, Vin00] or in a 
max-type [ABDZ18, BI89].

Continuous optimal control problems have been studied extensively in the literature. 
Different approaches have been developed to characterize and compute the optimal solu­
tions. In particular, the approach based on the Dynamic Programming principle consists 
on the analyses of the value function th a t associates, to every initial data, the optimal 
value of the control problem, see [BCD97] and the references therein. Under suitable con­
ditions, such value function satisfies a dynamic programming principle and if the value 
function is differentiable, it was proved th a t it is a classical solution of a partial differential 
equation, called Hamilton-Jacobi-Bellman (HJB) equation [BCD97, ABIL13]. However, 
usually it is just possible to guarantee th a t the value function is continuous and, conse­
quently, solutions to the HJB equations need to be understood in a weak sense. The most 
suitable framework to deal with these equations is the viscosity solution theory, based 
on sub and super-differentials, introduced by Crandall and Lions in [CL83]. This theory 
provides existence and uniqueness of viscosity solutions for a large class of nonlinear par­
tial differential equations, including those th a t arise from optimal control problems. The 
value function can be characterized as the unique viscosity solution of an HJB equation 
[ABIL13] and contains all necessary information to reconstruct the optimal trajectories 
and control strategies [ABDZ18, BCD97, Ber89, RV91].

On the other hand, we are faced with problems th a t have more than  one goal set 
by the decision maker in several areas, such as engineering, economics, administration, 
among others. It motivates the study of optimization problems with several goals and 
a great number of works are developed in this area [Cen77, CH83, Cho15, DZ18, Jah11, 
KM14, Mie99, San04].

Generally, it is not possible to minimize simultaneously all the objectives subject 
to some constraints, which leads to several concepts of optimal solution. The most well- 
known are the weak Pareto solution and the Pareto solution [Par96].

In this chapter we present some necessary definitions and results to the development 
of the work. First, we present the optimal control problem in finite and infinite horizon. 
We also introduce the concept of viscosity solution, necessary to characterize the value

17
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function of the optimal control problem as a unique viscosity solution of an HJB equa­
tion. An algorithm to obtain the optimal trajectory is presented. Finally we recall some 
concepts of solution and methods to solve multi-objective problems.

2.1 U nconstrained  optim al control problem s
Following [BCD97], for a given nonempty compact subset U of Rm (m >  1) consider 

the set of admissible controls defined by:

U =  {u : [0, ro[M- Rm measurable u(s) G U a.e}.

Consider the controlled system:

y(s) =  / (y ( s )  u(s)) a .e s >  °  (21)
y (o) =  x , ( . )

where u G U , and /  : Rn x U Rn is continuous and is assumed to satisfy the following
hypothesis:

(i) /  is continuous on Rn x U.
(ii) There exists L f  >  0, such tha t, for any x, y G Rn and for all u G U : (2.2)

| f  (x ,u) -  / (y ,u )| <  L f |x -  y 1.
where | ■ | is a norm on Rn. By a solution to (2.1) we mean an absolutely continuous 
function y(-) th a t satisfies

y(s) =  x +  i  / (y ( r ), u ( t) )d r , for all s >  0. (2.3)
J 0

Under assumption (2.2), for any u G U there exists an unique absolutely continu­
ous trajectory satisfying (2.1), denoted by yU, see for instance [BCD97, Thm. 3.5.5] or
[CLSW98, Thm. 4.1.1].

Note th a t (2.2) implies th a t there exits Cf >  0 such th a t for all x G Rn

m a x { |/(x ,u ) | : u G U} <  Cf(1 +  |x|). (2.4)

L em m a  2.1 [BCD97, Lem. 3.5.1](Gronwall Inequality) I f  v G L 1([t0 ,ti]) and h G
L ^ ([t0 ,ti]) satisfy, for some L >  0,

v(t) <  h(t) +  L / v(s)ds, for a.e. t G [t0 , t 1],
Jto

then

v(t) <  h(t) +  LeLW  h(s)e-Lsds, for a.e. t G [t0 , t 1].
Jt0

If, in addition, h is non decreasing, then

v(t) <  h(t)eL(i-io), for a.e. t G [t0 , t 1].

By Gronwall’s Lemma 2.1 and hypothesis (2.2) each solution of (2.1) satisfies the
estimates presented in following proposition. (See [BCD97, Chapter III]).

P ro p o s it io n  2.2 Assume that (2.2) holds. Then for all x, x' G Rn , s >  0 and u G U

(a) |yU(s) — x| <  Cf(1  +  |x |)s Vs >  0 ;
(b) |^u(s)| <  Cf(1  +  |x |)ecfs for a.e s >  0 ;
(c) |yU(s) — Y u (s)| ^  eLfs |x — x )  Vs >  0, Vx,x' G Rn
(d) 1 -f |yU(s)| <  (1 +  |x |)ecfs Vs >  0.
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2.1 .1  F in ite  tim e horizon

Let T  >  0 be a fixed final time. For t e  [0, T ] consider the following cost functional:

ft
J ( t , x u )  = /  £(y u (s )  u (s))ds +  ^ ( y ^ i) ) ,  (2 .5)

10

where the distributed cost £ : Rn x U M R satisfies:

(i) £ is continuous on Rn x U
(ii) There exists Lg >  0, such tha t, for any x, y E Rn and for all u E U : (2.6) 

|£(x,u) -  £(y,u)| <  Lg|x -  y|,

and the final cost function satisfying:

<p : Rn M R is Lipschitz continuous. (2.7)

Note th a t (2.6) implies th a t there exits cg >  0 such th a t for all x E Rn and u E U

|£(x,u)| <  cg(1  +  |x|). (2 .8 )

This functional cost is said to be in the Bolza form. If the distributed cost function 
is null, the optimal control problem is said to be in the Mayer form, and if the final 
cost function is null, the problem is said to be in the Lagrange form. However, we can 
formulate each one of the problems in each of the other forms, as presented in [Cho15]
and [Ten01]. Another im portant form is when the objective function is in a max-type,
th a t is,

max ^(yU(^)),
ee[o,T]

where ^  : R n M R is a Lipschitz continuous function. This kind of format was studied in 
[BI89] and in [ABDZ18] for unconstrained and state-constrained problems, respectively.

The optimal control problem consists in finding an admissible control u E U that 
minimizes the functional J . The value function for the finite horizon optimal control 
problem is

A(t,x) =  inf J ( t ,x ,  u), (2.9)u EU
We consider here a whole family of optimal control problems, all with the same 

dynamics (2.1) and cost functional (2.5). We are interested in how the minimum cost 
varies, depending on the initial position x. In the following theorem we present some 
known results from the literature of value functions.

P ro p o s it io n  2.3 Assume that (2 .2 ) , (2.6) and (2.7) hold.

a) [BCD97, Prop. 3.3.1] Then the value function A is Lipschitz continuous that is, 
3 Lg) >  0 such that for all t < s < T  and x, y E Rn , the following holds:

|A(t,x) -  A (s,y)| <  Lg (|x -  y | +  |t -  s | ) .

b) [BCD97, Prop. 3.3.2] (Dynamic Programming Principle) Let t E [0,T] and x E Rn 
be given. Then, for all x E Rn and s E [0,t], we have:

A (t,x) =  inf (  [  £(y u(r ^  u (r ))dr  +  A(t -  ^ y u(s))uGU ^j o
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The Dynamic Programming Principle (DPP) allows to determine the value function 
at the point (t, x) by splitting the trajectories at time t — s and starting with the position 
of the trajectory yU at time s

If the value function d is differentiable, the D PP principle allow us to show th a t d 
is a classical solution of the following HJB equation

<9td (t,x )  +  H (x, V xd(t,x )) =  0 in [0,T] x Rn , (2  1 0 )
d (0 ,x ) =  <^(x) in Rn , ( . )

where dtd(t, x) denotes the partial derivative with respect to t, V xd (t,x ) the gradient at 
point x and

H (x ,p ) =  sup{ — f  (x ,u) ■ p — £(x,u)}. (2 .1 1 )
ueu

By classical solution of (2.10) we mean: a function d is said to be a classical solution 
of (2 .1 0 ) over a domain if d is differentiable over the entire domain and satisfies the above 
equation at every point. In general, the value function d is only Lipschitz continuous, 
which means th a t d cannot be a classical solution for (2.10). To deal with the value 
function lack of smoothness, the notion of viscosity solution, introduced in [CL83], and 
presented in next section, can be employed.

2.1 .2  V isco sity  so lu tion

The theory of viscosity solutions introduced by Crandall and Lions in [CL83] allows 
continuous functions to be solution of a large class of partial differential equations of 
Hamilton-Jacobi (HJ) type, including the HJB equations th a t arise in optimal control. 
The theory provides results of existence and uniqueness of solution.

Consider the HJ equation

F (x ,v (x ),D v(x)) =  0 x G Q, (2.12)

where Q is an open set of Rd and the Hamiltonian F  =  F (x ,r ,p )  is a continuous real 
valued function on Q x R x Rd.

In what follows we denote by:

• C (Q): the space of continuous functions v : Q ^  R.

• C*(Q): the subspace of C(Q) of functions with continuous partial derivatives in Q.

D efin itio n  2.4 [BCD97, Def. 2.1.1] A function  v G C(Q) is a v i s c o s i ty  s u b -so lu t io n
of (2.12) if, for any v G C*(Q),

F (x 0, v(x0), D v(x0)) <  0

at any local maximum point x0 G Q of v — v. Similarly, v G C (Q) is a v i s c o s i ty  s u p e r ­
s o lu t io n  of (2.12) if, for any v G C  1(Q),

F (x1 , v (x 1), D v(x 1)) >  0

at any local minimum point x 1 G Q of v — v. Finally v is a v i s c o s i ty  s o lu t io n  of (2.12) 
i f  it is simultaneously a viscosity sub and super-solution.
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There are some equivalent definitions using super and sub-differentials. One example 
presented in [BCD97] associates to a function v G C (0) and x G 0  the sets

D+v(x) := ( p  G R" : lim sup v(y) — v(,x) — p ' (y — x) <  0 I
[ y^x,y€Q |x y| J

/ n f ^ "  , v(y) — v(x) — p- (y — x) ]
D  v(x) :=  < p G R : lim inf ------------ .--------.-------------  >  0 >

[ y^x,yen |x — y| J
These sets are called, respectively, the super- and the sub-differential of v at x. In 

other words a vector p G Rn is in the super-differential if and only if the hyperplane 
y M v(x) +  p ■ (y — x) is tangent from above to the graph of v at the point x. Similarly a 
vector p G R" is in the sub-differential if and only if the hyperplane y M v(x) +  p ■ (y — x) 
is tangent from below to the graph of v a t point x.

Some properties of the sub- and super-differential are collected in next lemma.

L em m a  2.5 [BCD97, Lem. 2.1.8] Let v G C (0) and x G 0 . Then,

a) i f  v is differentiable at x, then {Dv(x)} =  D+v(x) =  D - v(x);

b) i f  for some x both D+v(x) and D - v(x) are nonempty, then

D+v(x) =  D - v(x) =  {Dv(x)};

c) the sets A+ =  {x G 0  : D+v(x) =  0}, A -  =  {x G 0  : D - v(x) =  0} are dense in 0 .

The next lemma provides a description of D+v(x), D - v(x) in terms of test functions.

L em m a  2.6 [BCD97, Lem. 2.1.7] Let v G C (0 ). Then,

a) p G D+v(x) i f  and only i f  there exists v G C  1(0) such that Dv(x) =  p and v — v has 
a local maximum at x;

b) p G D - v(x) i f  and only i f  there exists v G C  1(0) such that Dv(x) =  p and v — v has 
a local minimum at x .

As a direct consequence of Lemma 2.6 the following new definition of viscosity 
solution turns out to be equivalent to the initial one.

D e fin itio n  2.7 A function  v G C (0) is a viscosity subsolution of (2.12) in 0  if

F (x ,v (x),p ) <  0 V x G 0 , V p G D+v(x); (2.13)

a viscosity supersolution of (2 .1 2 ) in 0  if

F (x ,v (x ),p ) >  0 V x G 0 , V p G D - v(x). (2.14)

As before, v will be called a viscosity solution of (2 .1 2 ) in 0  i f  (2.13) and (2.14) hold 
simultaneously.

R e m a rk  1 Note that a function  v is a classical solution of (2.12) i f  the following impli­
cation holds true:

p =  Dv(x) = ^  F  (x, v(x),p) =  0.

This can be written in an equivalent way as:

p G D+v(x) and p G D - v(x) = ^  F (x ,v (x ),p ) <  0 and F (x ,v (x ),p ) >  0, (2.15)

which implies, by Definition 2.7, that v is a viscosity solution of (2.12).

W ith this new notion of solution and under assumptions (2.2), (2.6), (2.7), we obtain 
th a t the value function $  is the unique viscosity solution of equation (2 .1 0 ) , see for example 
[BCD97, Thm. 3.3.7].
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2 .1 .3  In fin ite  tim e  horizon

Consider the cost functional J  associated with the trajectories of the system (2.1) 
in the infinite horizon time:

r
J(x , u) =  / e-Asi(yU(s), u (s))ds, (2.16)

0

where A > 0 is a discount factor and the distributed cost i  : Rn x U ^  R satisfies (2.6). 
The value function for infinite horizon optimal control problems is

d(x) =  inf J(x , u).uEU

Note th a t in this case the value function d depends only on the initial position x, 
not on time.

The next result states tha t the value function d is Holder continuous and satis­
fies a functional equation, called the Dynamic Programming Principle. Afterwards, we 
characterize the value function d, as the unique viscosity solution of a partial differential 
equation.

P ro p o s it io n  2.8

a) [BCD97, Prop. 3.2.1] Assume that (2 .2 ) and (2.6) hold. The value function  d is 
Holder continuous, that is, there exists L$ >  0 depending on L f  and L£ such that, 
for all x, y G Rn ,

|d(x) — d(y)| <  Ltf|x — y |Y, 

where the exponent y satisfies

( 1 i f  A >  L f ,
Y =  < any y <  1 i f  A =  L f ,

1 A /Lf i f  A <  Lf .

b) [BCD97, Prop. 3.2.5](Dynamic Programming Principle) Assume that (2.2) and 
(2.6) hold. Then, for all x G Rn and t >  0,

d(x) =  Û {I ^ ^ y^^ u(s))ds + e-Atd(y u (t) )j .

Assuming th a t (2 .2 ) and (2 .6 ) hold and, moreover, th a t the cost functional i  and the 
dynamics f  are bounded, in [BCD97] it is shown th a t the value function d is the unique 
viscosity solution in the space of bounded uniformly continuous functions of the following 
HJB equation:

Ad +  H (x, V d(x)) =  0 in Rn, (2.17)

where the Hamiltonian H  is defined in (2.11) and V d(x) denotes the gradient of d at 
the point x. The result was extended for unbounded uniformly continuous functions in 
[Ish84].
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2.2 S tate  constrained optim al control problem s
In many applications the state trajectory is constrained, for example by some bound. 

In this section we present some results about state-constrained optimal control problems.
For K C Rn nonempty and closed, consider the value function for the optimal control 

problem with T  >  0

d (T ,x ) =  r n i n j ^  u (s))ds 1 y " (0 ) <G K , V 9 G (° ,T ) J  , (2.18)

where y" denotes the absolutely continuous solution of (2.1). For the infinite horizon, it 
means when T  =  + ro , consider A >  0. For the finite horizon problem, when T  <  + ro , 
consider A =  0. For notational simplicity, the finite horizon problem is in Lagrange form, 
th a t is p  =  0 .

Note tha t, if K =  Rn we have an unconstrained control problem, as presented in 
Sections 2.1.1 and 2.1.3 for finite and infinite horizon, respectively. In this section we 
consider K C K n.

As presented in [HZ15], to show the existence of a minimizer u e  U , when deal­
ing with a distributed cost in a state-constrained problem, it is usual to introduce an 
augmented dynamic. To this end, we define

J(x ,u ) =  q (1  +  |x|) — £(x,u), V(x,u) e  Rn x U

Then, we consider the augmented dynamics G : R x Rn m  Rn x R defined by

G <t. x) =  { (  e-AT$ £  U) +  r) ) |  0  <  U |  Ux , u) } • V<T- G R X R n.

Moreover, throughout this section, we will also assume that

G(-) has convex images on a neighborhood of [0 ,T ) x K. (2.19)

W ith this assumption the existence of a minimizer for the state-constrained optimal 
control problem (2.18), th a t is, when t =  + ro , can be shown.

P ro p o s it io n  2.9 [HZ15, Prop. 3.2] Suppose that (2.2), (2.6) and (2.19) hold. I f  $(x) e  
R for some x  e  K,

a)  T  <  + w  and A =  0 then there exists a minimizer u e  U of the finite horizon 
optimal control problem (2.18).

b) T  =  + w  and A >  Cf then there exists a minimizer u e  U of the infinite horizon 
optimal control problem (2.18).

W hen the control problem is in presence of state constraints, Soner [Son8 6 ] associ­
ated a state-constrained HJB equation to the value function d  tha t, when T  <  + ro , is 
given by

dt +  H (x, V*d) =  0  Vx e  K, (2 .2 0 )
d (0 ,x) =  p(x) Vx e  K,

and, when T  =  + ro , is
Ad +  H (x, V*d) =  0 Vx e  K, (2 .2 1 )
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where H  is defined by (2.11). In Soner’s formulation the value function satisfies (2.20) 
or (2 .2 1 ) in the state-constrained viscosity sense, th a t means th a t $ is a sub-solution on
O
K and a super-solution on K. The uniqueness of solution is more complicated to show. 
Indeed in absence of any controllability assumption on the behavior of the solution on 
the boundary, the state-constrained HJB equation (2.20) or (2.21), derived in finite and 
infinite horizon, respectively, can assume several solutions, in the constrained viscosity 
sense, see for example the discussion on [BFZ11, IK96].

One way to guarantee the uniqueness of solution is to require th a t the dynamics sat­
isfy a special controllability assumption on the boundary of the set of state constraints. 
The most known are the “inward pointing condition” and the “outward pointing con­
dition” . The former, introduced in [Son8 6 ], requires th a t each trajectory initiated on 
the boundary can be approximated by a sequence of trajectories lying in the interior of 
the set of state constraints. This strong assumption ensures Lipschitz continuity of the 
value function, th a t can then be characterized as the unique viscosity solution of an HJB 
equation.

The outward pointing condition, introduced in [FP00, FV00], ensures th a t the value 
function is the unique lower semi-continuous solution to an HJB equation. The condition 
states th a t each point in the boundary of the feasible set can be reached by an interior 
trajectory.

Unfortunately, in many control problems, those controllability assumptions can not 
be satisfied. Some results in optimal control problems w ithout state constraints can be 
seen, for instance in [BFZ11, HZ15, HWZ17]. An alternative way for dealing with the 
constrained case is introduced in [ABZ13], where the authors relate the epigraph of the 
value function $ with an auxiliary control problem without state constraints w:

w (T ,x , z ) =  m m f  i u (s ))ds — z) y sup (e^Vy^ ))). (2.22)
uew VJo )  0e(o,T]

where a V b =  max(a, b), A =  0 when T  <  + ro , A >  0 when T  =  and g is a Lipschitz 
continuous function satisfying

g(x) <  0 x G K.

In this new problem there are no state constraints and the value function w can be 
characterized as a Lipschitz continuous viscosity solution of an HJB equation, without 
any controllability assumption. Moreover, under reasonable assumptions the epigraph of 
$ satisfies

Epi($(-)) =  {(x, z) G R" x R, w(T, x, z) <  0} .

and we have
$(T, x) =  min {z G R, w(T, x, z) <  0} .

In this work, based on [ABZ13, DZ18], we present in Chapter 4 a m ethod to charac­
terize the weak Pareto front and the Pareto front for the infinite horizon multi-objective 
optimal control problem with state constraints.

2.3 Synthesis o f trajectory  reconstruction
In this section we focus our attention on one im portant problem for applications: the 

reconstruction of an approximate optimal feedback control and the associated trajectory.
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We present here the algorithm proposed in [RV91] for unconstrained finite horizon optimal 
control problems. This procedure applies the Dynamical Programming Principle to the 
function d, and uses a piecewise constant control to obtain an optimal trajectory.

A lgorithm  2.10

Let (to =  0 ,t i , . . .  , tN- i ,  tN =  T } be a uniform partition of [0, T]. Let hN =  T/N . A process 
(y N(■), u N(■)} is defined recursively on the intervals (t0 , t 1], (t1, t2] , . . . ,  (tN-1 , tN] as follows. 
Set y N (t0) =  x.

S tep  1 Select an optimal control value uN G U at time t^f such that

uN G argminMeu $ (tk, y N(tk) +  h-N f  (tk, y N(tk), u)) +  hnl(tk , y N(tk),u)

Step  2 Define u N(t) =  u^f a.e t G (tk, tk+1], and a new position y N(t) on (tk, tk+1] as 
solution to

y(t) =  f(t, y(t), u N(t)) a.e t G (tk,tk+1], 

with initial condition y N(tk).

The following theorem shows the convergence of the Algorithm 2.10.

T h e o re m  2.11 [RV91, Thm. 3.2] Suppose (2.2), (2.6), (2.19) and (2.7) hold. Let 
( y n(-), un(-)} be a sequence generated by Algorithm 2.10 for n  >  1. Then (y n(-)} has 
cluster points with respect to the topology of uniform convergence, and corresponding to 
any cluster point y(-), there exists a control u(-) such that (y(-), u(-)) is an optimal pro­
cess.

A similar scheme was developed for finite horizon problems with one objective and 
with state constraints by [ABDZ18]. A result for infinite horizon without state constraints 
can be found in [BCD97]. Our interest is in the situation of infinite horizon with one 
objective and with state constraints. Moreover the results th a t we developed hold true 
also in case of multi-objective infinite horizon optimal control problems, as presented in 
Chapter 4.

2.4 M u lti-ob jective  optim ization
In this section we are going to consider the following multi-objective optimization 

problem in a general context:

f  Minimize f  (x) =  ( f 1(x), .. . , f r (x)) ( 2 2 o)
\  subject to x G Q ( . )

where we have r  >  2 objective functions f  : X  ^  R, a feasible nonempty set Q C X  and 
X  is a Banach space.

In problem (2.23), the aim is to minimize all components of the objective function
f  at the same time. If there exists no conflict between the cost functions fj, i =  1 , . . . ,  r,
then a solution x* G Q may exist such that:

fi(x*) =  m in{fj(x), x G Q}, i =  1 , . . . , r .
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In this work, we assume tha t there is no single solution th a t minimizes all the 
objective functions simultaneously. This means th a t the objective functions are at least 
partly conflicting and several solution concepts may be associated with the problem (2.23). 
A predominant optimality notion for problem (2.23) is the one of Pareto optimality.

D e fin itio n  2 . 1 2  A vector x* e  Q is a w eak  P a r e to  s o lu t io n  (or weak efficient solu­
tion) of (2.23) i f  there exist no x e  Q, x =  x* such that /  (x) <  /j(x*) for all i =  1 , . . . ,  r.
Denote by P w the set of all weak Pareto solutions of (2.23).

D e fin itio n  2.13 A vector x* e  Q is a P a r e to  s o lu t io n  (or efficient solution) of (2.23) 
i f  there exist no x e  Q such that / (x) =  / (x*) and /j(x ) <  /j(x*) for all i =  1 , . . . ,  r.
Denote by P  the set of all Pareto solutions of (2.23).

The set of all vectors of objective values at the Pareto (resp. weak Pareto) minima
is said to be the Pareto front (resp. weak Pareto front). More precisely, we have the
following definition.

D e fin itio n  2.14 We will call P a r e to  f r o n t  F  (respectively w eak  P a r e to  f r o n t  F w) the
image of the Pareto optimal solution set P  (respectively of P w) by the objective application 
/ :

F  =  { /(x ) =  ( / i (x )  . . . , / r (x ) )  x e  p }

F w =  { /(x ) =  ( / 1 (x )  . . . , / r (x ) )  x e  P w}

Besides, it is known [Lin76] th a t the (weak) Pareto front is contained in the boundary 
of the attainable set Z , th a t is defined as:

Z  :=  { / (x), x e  Q} C Rr .

It is immediate from the definitions th a t P  C P w. The reciprocal is false, as shown 
by Example 2.15.

E x a m p le  2.15 Consider the problem from Moulin and Soulie [MS79]:

( Minimize / (x )  =  ( / l (x )  / 2 (x)) ( 2  24)
[ subject to: x e  Q ( . )

where /  : R 2 m  R 2 with / 1(x) =  —x 1 e / 2 (x) =  —x 2 , and Q =  {x e  R 2 : x 2 +  x 2 <  1} U 
[—1, 0] x [0,1] C R 2 (see Figure 2.1).

• The point a 1 =  (-j=, ^ ) cannot decrease strictly / 1, without increasing strictly / 2 . 
The point is a Pareto solution belonging to set P , where P  is the arc between
(1,0) and (0,1) on the picture of the left. Respectively, the image of the point 
belong to the Pareto Front F , where F  is the arc between (—1, 0) and (0, —1) on the 
picture of the right, of Figure 2.1.

• The point a 2 =  (Ft , 1) can decrease /  without increasing strictly / 2 , (consider for  
example, the point (0,1)), but cannot improve both criteria simultaneously. The 
point a2 e  P w however a2 cannot belong to P , with:

Pw =  P U  {(A, 1 ) : —1 <  A <  0 } .

Respectively, the image of the point a2 belongs to the weak Pareto front F w, however 
cannot belong to F , with

Fw =  F U { ( y , —1) :0  <  y <  1}.
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Feasible set Q
(w e a k } P a re to  fro n t

- 1

/(«■ 2)
0.5

/l

Figure 2.1: feasible set Q and (weak) Pareto front, respectively

2.4 .1  Scalarization  tech n iq u es

The term  scalarization presents for a multi-objective problem a family of mono­
objective optimization problems, in such a way th a t the solutions of the multi-objective 
problem can be obtained by solving a sequence of classical nonlinear programming prob­
lems. There is a large variety of methods for scalarizing a multi-objective optimization 
problem. There are some methods th a t generate just one Pareto optimal solution and 
others th a t try  to generate all the set of (weak) Pareto optimal solutions. Our focus is 
on the second kind of methods, because it is im portant to represent all the (weak) Pareto 
front to show to the decision maker, who can select the desired compromise.

We will see two different scalarization methods: the weighted sum m ethod and the 
weighted Chebyshev method. More details about those methods can be seen for instance 
in [Iso13, Jah11, Mie99].

W e ig h ted  su m  m e th o d

then x* is a weak Pareto optimal solution of (2.23).

b) [Mie99, Thm. 3.1.2] I f  there exists u  € 0  with u i > 0 for i =  1 , . . .  , r  such that 
x* € Q is a solution of (2.25), then x* is a Pareto optimal solution of (2.23).

r
Let 0  =  {u € Rr : u i >  0, 1 <  i <  r  and ^  u i = 1}. For each u  € 0 , consider the

r
Minimize u if i (x)

(2.25)i=l
suject to: x € Q.

Some theoretical results about the weighted sum m ethod are presented in the fol­
lowing theorem.

T h e o re m  2.16

a) [Mie99, Thm. 3.1.1] I f  there exists u  € 0  such that x* € Q is a solution of (2.25),

c) [Mie99, Thm. 3.1.3] I f  there exists u  € 0  such that the problem (2.25) has a unique 
solution x* € Q, then x* is a Pareto optimal solution of (2.23).
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d) [Mie99, Thm. 3.1.4] Let the multi-objective problem be convex. I f  x* G Q is a Pareto 
optimal solution of (2.23), then there exists a weighting vector u  G Q such that x* 
is a solution of (2.25).

The weighted sum m ethod is a simple way to generate different Pareto optimal 
solutions and the Pareto optimality is guaranteed if the weighting coefficients are positive 
or the solution is unique. The weakness of the weighting m ethod is th a t all the Pareto 
optimal points cannot be found if the problem is non-convex [KM14].

W e ig h ted  C h eb y sh e v  m e th o d

Before presenting the m ethod we need the following definitions.

D e fin itio n  2.17 The components f* of the ideal objective vector f * G Rr are obtained 
by minimizing each of the objective functions individually subject to the constraints, that 
is, by solving f

„* f Minimize f ( x )  ( 2 )
fi \  suject to: x G Q ( . )

for  i =  1 , . . . ,  r.

It is obvious th a t if the same x * is the optimal solution for all the single objective 
problems it would be the solution of the multi-objective problem (2.23) and the Pareto 
optimal set would be reduced to it. This is not possible in general since there is some 
conflict among the objectives. But the ideal objective vector can be used as a lower bound 
of the Pareto optimal set for each objective function.

D e fin itio n  2.18 An utopian objective vector ft * G Rr is a vector which components are
formed by ft* =  f* — ^  for all i =  1 , . . . ,  r , where f* is a component of the ideal objective
vector and ^  >  0 .

Consider Q as in the weighted sum method. The weighted Chebyshev problem, for 
u  G Q, is of the form

Minimize max u  | f  (x) — ft*|,
i=1,...,r (2.27)

suject to: x G Q.

Problem (2.27) is non-differentiable, but it can be solved in a differentiable form as 
long as the objective functions are differentiable and ft* is known globally. In this case, 
instead of problem (2.27), the problem

Minimize a
suject to: x G Q, (2.28)

U (fi(x ) — ft*) <  a , i =  1 , . . . ,  r.

is solved, where both x G Q and a  G R, are variables.
In the following theorem we present some relations between the solutions of the 

multi-objective problem (2.23) and the solution of the scalar problem (2.27).

T h e o re m  2.19

a) [Mie99, Thm. 3.4.2] The solution x* of the weighted Chebyshev problem (2.27) is 
weak Pareto optimal i f  all weighting coefficients are positive.
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b) [Mie99, Thm. 3.4.3] Weighted Chebyshev problem (2.27) has at least one Pareto 
optimal solution.

c) [Mie99, Cor. 3.4.4] I f  weighted Chebyshev problem (2.27) has a unique solution it 
is Pareto optimal.

Convexity of the multi-objective optimization problem is needed in order to guar­
antee th a t every Pareto optimal solution can be found by the weighted sum method. On 
the other hand, the following theorem shows th a t every Pareto optimal solution can be 
found by the weighted Chebyshev method.

T h e o re m  2.20 [Mie99, Thm. 3.4.5] Let x* e  Q be Pareto optimal. Then there exists 
a weighting vector 0 <  u  e  0 , such that x* is a solution of weighted Chebyshev problem 
(2.27).

The m ethod of weighted Chebyshev metric works for convex as well as non-convex 
problems, unlike the weighted sum method.

2.4 .2  A lgorith m s to  gen erate  th e  P a reto  front

Many methods have been developed for the numerical solution of multi-objective 
optimization problems. Many of these methods are only applicable to special problem 
classes. Some of them  calculate just one Pareto solution or a part of the Pareto front. But 
in some applications it is im portant to find all the Pareto front, to observe all the possible 
solutions and after analyze what is the best one. Some algorithms to solve multi-objective 
problems are presented, for instance in [Arb97, DK11, Jah11, MKW 16, Mie99, RW92].

For multi-objective optimal control problems several numerical algorithms based on 
scalarization techniques have been developed (see for instance [BK10, KM14, LHDv10] 
and the references therein). We present here the m ethod presented in [KM14] tha t is 
based on the Chebyshev scalarization technique. The authors proposed the following al­
gorithm th a t performs well on the numerical examples, but the im portant issue of showing 
convergence is not addressed in the paper. Although the Algorithm 2 .2 1  is described for 
the bi-objective case it can be generalized to problems with more than  two objectives.

A lg o r ith m  2.21

S tep  0.0: (Initialization) Choose the utopia parameters, £ i, £2 >  0.
Set the number o f discrete (approximating) points, (N  + 1 ) ,  in  the Pareto front. Set k  =  1. 

S tep  0.1: (Boundary of the front)
(a) F ind x i that solves Problem  (2.26) with i =  1. N ote that f )  =  f i ( x i ) and  f  =  f 2 (x i ). 

M ark a boundary po in t in  the Pareto front: f N =  ( f ) ,  f2),
(b) F ind x 2 that solves Problem  (2.26) with i =  2. N ote that f )  =  / 2 (x2) and f i  =  f i ( x 2). 

M ark a boundary po in t in  the Pareto front: f 0 =  ( f i ,  f ) ),
S tep  0.2: (Utopia point) Set ft* =  (ft), ft)) with ft* =  f )  — £ ,  i =  1, 2.

S tep  0.3: (Range of weights) Set a 0 =  —=---- ( f *---- ft^ -------- - and tat =   --------- (f-2— ft**)---------.P ( g  g ) 0 ( f i  — ft*) +  ( f )  — ft)) f  (f*  — ft*) +  (f2 — ft*2)
Set the increm ent Aw =  (a f  — ao)/N .

S tep  k.1: (Current weights) Set a  =  w0 +  kAw. Set a i =  w and w2 =  1 — a .
S tep  k.2: (A Pareto Minimun) F ind x ) that solves Problem  (2.28).

Assign a point in  the Pareto front: f k =  ( f  (x) ), f 2 (x ) ).
S tep  k.3: (Stopping Criterion) I f  k  =  N  then STO P . Otherwise, set k=k+1, and go to step k.1.
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Multi-objective optimal control problems have also been investigated within the 
HJB framework. A m ethod th a t combines the HJB approach and the weighted sum 
m ethod to find some points of the Pareto front was introduced in [MS03]. In [KV10], 
an approach based on HJB theory is investigated in the context of exit time problems. 
In th a t paper, the Pareto front is characterized by using the value function associated 
to an auxiliary control problem where one of the cost objectives is chosen as primary 
cost and the other objectives are transformed into auxiliary variables subject to state 
constraints. This idea was extended to a class of hybrid control problems, see [TCKV15]. 
In [Gui13] the set-valued function is characterized as a unique generalized solution of an 
HJB equation. In [DZ18], the idea of introducing an auxiliary problem to deal with mono­
objective optimal control problems [ABZ13], is extended to work with multi-objective 
optimal control problems. Like in [KM14], the two criteria considered in [DZ18] must 
have the same nature, both of integral type.

Usually, the multi-objective control problems are investigated in the case when the 
cost functions are of the same nature (Bolza with free or fixed final time horizon). Our 
interest is to characterize the (weak) Pareto front for some kinds of multi-objective optimal 
control problems. Based on [DZ18], in Chapter 3 we present for the first time theory 
for tackling finite horizon optimal control problems with objectives of different nature. 
Namely, in the vector objective function, one component can be with a Bolza cost and 
another one as a maximum running cost. Moreover, the characterization of the (weak) 
Pareto front for a multi-objective infinite horizon optimal control problem with state 
constraints is presented in Chapter 4. Algorithm 2 .2 1  is used at the test of the energy 
problem.

2.5 C oncluding rem arks
In this chapter we presented some im portant results about the HJB approach to solve 

optimal control problems with one objective and multi-objective theory for optimization 
problems in a general context. Those results are necessary for a better understanding 
of this thesis. In the following chapters we work with multi-objective control problems 
extending the HJB approach for this kind of problems.



Chapter 3

Contributions in finite horizon 
problems w ith different objectives

In this chapter, we consider finite horizon optimal control problems with two ob­
jective functions, of different nature, th a t need to be minimized simultaneously. Namely, 
in the vector objective function, one component is a Bolza cost and another one is a 
maximum running cost. So the considered bi-objective optimal control problem has the 
following form:

T

t
for a given final cost ^  : Rn ^  R, a running cost £ : Rn x Rm ^  R, and a given function 
^  : Rn —  ̂R, and where X is the feasible set, T  is the final time horizon, u : [0,T] ^  Rm 
is the control variable and y  : [0,T] ^  Rn is the state variable, solution of a differential 
system.

Several numerical algorithms based on scalarization techniques have been developed 
for multi-objective optimal control problems (see for instance [BK10, KM14, LHDv10] 
and the references therein). These problems have also been investigated within the HJB 
framework. A m ethod th a t combines the HJB approach and the weighted sum m ethod to 
find some points of the Pareto front was introduced in [MS03]. In [KV10], an approach 
based on HJB theory is investigated in the context of exit time problems. In th a t chapter, 
the Pareto front is characterized by using the value function associated to an auxiliary 
control problem where one of the cost objectives is chosen as primary cost and the other 
objectives are transformed into auxiliary variables subject to state constraints. This idea 
was extended to a class of hybrid control problems, see [TCKV15]. In [Gui13] the set­
valued function is characterized as a unique generalized solution of an HJB equation. In 
[DZ18], the idea of introducing an auxiliary problem to deal with mono-objective opti­
mal control problems [ABZ13], is extended to work with multi-objective optimal control 
problems.

In practice, for some problems, it is difficult to calculate the sets of (weak) Pareto 
solutions and what it could be obtained is just an approximate set of solutions. The 
notion of approximate optimal solutions for multi-objective problems was introduced by 
[Lor84]. Several notions of e-Pareto solutions can be considered, see [Whi8 6 ]. We discuss 
in this chapter three of these concepts, one of them  corresponds to the concept introduced 
in [Lor84] and the other ones have been considered in [EW07a, EW 07b, GM04].

Usually, the multi-objective control problems are investigated in the case when the 
cost functions are of the same nature (Bolza with free or fixed final time horizon). In

31
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this work, we use a HJB approach to characterize the Pareto front for a finite horizon 
bi-objective optimal control problem with objectives of different nature. In the considered 
problem it is not possible to guarantee th a t the set of trajectories is closed, so we introduce 
a convexified (relaxed) problem where is possible to guarantee th a t the set of trajectories 
is compact. Moreover this convexified set of trajectories is the closure of the set of 
trajectories of the original problem. Moreover we prove th a t if a feasible pair (y, u) 
is a Pareto optimal solution for the convexified problem, then there exists an e-Pareto 
optimal solution of the original problem th a t is in the neighborhood of (y, u). Following 
some ideas developed in [DZ18], we define an adequate auxiliary control problem and 
show th a t the Pareto front of the convexified problem is a subset of the zero level set of 
the corresponding value function. Moreover, with a geometrical approach we establish a 
characterization of the Pareto front.

W ith this idea it is also possible to characterize the (weak) Pareto front for bi­
objective optimal control problem with objectives of different nature and with state con­
straints without any controllability assumption. Moreover, considering mixed objectives 
is im portant in applications and this is illustrated with some examples, where the method 
proposed in this chapter is applied to obtain the Pareto front.

3.1 P areto  optim ality  - G eneral results
Consider the following bi-objective optimization problem:

J  Minimize c(x) =  (c i(x ),c2 (x)) , ,
( subject to x G X, ( . )

where Y is a Banach space, c  : Y  ^  R are continuous functions and X  C Y  a feasible 
nonempty set.

In this chapter, we assume tha t there is no single solution th a t minimizes all the 
objective functions simultaneously. This means th a t the cost functions are at least partly 
conflicting and several solution concepts may be associated with the problem (3.1). The 
optimality notion for problem (3.1) is the one of Pareto optimality presented in Section 
2.4.

Computing the Pareto fronts and the set of Pareto solutions is a challenging problem. 
In some cases, these sets may be empty, this is the case, for instance, when the feasible
set is not closed. In such a context, it is natural to consider a set of approximate Pareto
solutions. Different definitions for e-solutions have been investigated in the literature, see 
[Lor84, W hi8 6 ]. In what follows, we will consider three of these concepts, where | ■ | is the 
maximum norm. Moreover we remember tha t P  denotes the set of all Pareto solutions of
(3.1).

D e fin itio n  3.1 (e -P a re to  so lu tio n s) Let e >  0, denote by e1 the vector in R 2 such that 
all entries are equal e. We define the following sets of e-Pareto solutions:

(i) P 1,£ =  {x G X  : there is no y G X  such that

c(y) <  c(x) — e 1 and c(y) =  c(x) — e 1 }.

(ii) P 2,6 =  {x G X  : there exists y G P  such that |c(x) — c(y)| <  e}.

(iii) P 3,6 =  {x G X  : for any y G X, i f  c(y) =  c(x) and c(y) <  c(x) then

c(y) >  c(x) — e 1 } .
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An e-Pareto solution x* E P i,£, i =  1, 2, 3, produces an e-Pareto outcome c(x*) and the 
set of all e-Pareto outcomes are denoted by F i,£, i =  1, 2, 3. Note also tha t, if e 1 <  e2 

then F i,£1 C F i,£2, for i =  1, 2, 3. Moreover, if the feasible set X  is a compact set, then 
the following relation between the e-Pareto sets is established by [Whi8 6 ]:

F  C F 3,£ C F 2>£ C F 1,£. (3.2)

R e m a rk  3.2 The reverse inclusions in (3.2) are not true. Consider the following bi­
objective optimization problem:

Minimize c(x) =  (x ^ x 2 )
subject to: x  E X  =  [ - 1 ,1]2 \  {x G [-1 , 0]2 : x 1 +  x 2 <  — 1}. (3.3)

The compact feasible set X  is represented in Figure 3.1. Note that for all e > 0 the point

Figure 3.1: Feasible set X

a 1 E P 1,£. Indeed, c2 (ai) — e =  —1 — e, so there is no x  E X  such that c(x) =  c(ai) — e 
and c(x) <  c(a1) — e, therefore a 1 E P 1,£. On the other hand, i f  0 <  e <  1 then c1 E P 3,£ 
because c(b) =  c(a1), c(b) <  c(a1) and c1(b) =  0  <  1 — e =  c1 (a1) — e.

Now, consider e =  0.1. As the point e is a Pareto optimal solution, we obtain that 
a 2 E P 2,£, but a2 E P 3,£. In fact c(d) =  c(a2), c(d) <  c(a2) and c1 (d) =  —1 <  —0.9 =  
c1(a2) — e, therefore a 2 E P 3,£.

Actually, in this simple example, the three concepts of e-Pareto fronts give three 
different sets. These sets are represented in red in Figure 3.2, for  e =  0.1. In Figure 3.2a 
the black dashed line represents a segment that is not included in F 1,£.

(a) F 1,£ (b) F 2,£ (c) F 3>£

Figure 3.2: e-Pareto fronts for Problem (3.3), e =  0.1



Contributions in ûnite horizon problems 34

R e m a rk  3.3 We stress on that the inclusions in (3.2) are true only when the feasible 
set X  is a compact set. However if the feasible set is not closed, there is no guarantee 
of existence of (weak) Pareto solutions. Actually, the weak Pareto set can be empty. 
Consider, for example, the following problem:

Minimize  c(x) =  (x ^ x 2)
subject to: x  G X  =] — 1 ,1[2\{ x  G ( -1 ,  0) 2 : x 1 +  x 2 <  — 1}

(3.4)

In this case the feasible set is open, see Figure 3.3a, where the black dashed lines represents 
the boundary of X  (this boundary is not included in X ). For this example, the (weak) 
Pareto set and the the set P 2,w are empty. However the sets P 1,£ and P 3,£ are not empty 
and can be seen in red in Figures 3.3b and 3.3c, respectively.

(a) Open feasible set (b) F 1,£ (c) F 3,£

Figure 3.3: Feasible set and e-Pareto fronts for Problem (3.4), e =  0.1

P art of the concepts of approximate solutions, as defined in 3.1 can be also extended 
to the notion of weak e-Pareto solutions (see in [Lor84]).

D e fin itio n  3.4 [weak e-Pareto solution] Let e >  0. We define the following sets of weak 
e-Pareto solutions:

(i) =  {x G X  : there is no y  G X  such that c(y) <  c(x) — e1}.

(ii) =  {x G X  : there exists y G P w such that |c(x) — c(y)| <  e}.

Motivated by the observations made on the example of Remark 3.3, we consider the 
problem of minimizing the objective functions over the closure of the feasible set X :

( Minimize c(x) =  (c1 (x ),c2 (x))
1 subject to  x G X  (3  5)

We denote by P # (resp. P # )  the set of Pareto (resp. weak Pareto) solutions of problem 
(3.5). We are interested in the link between the set P # (resp. P # ) and the sets of e-Pareto 
(resp. weak e-Pareto) solutions of the original problem (3.1).

T h e o re m  3.5 Assume that the functions c  are Lipschitz continuous, with Lipschitz 
constant p ,  i =  1 , 2 .

(i) For any x* G P # and for any e >  0, there exists x£ G P 1,£ such that

|x* — x£| <  m m ( e /p ) and |c(x*) — c(x£)| <  e.
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(ii) For any x* G P #  and for any e >  0, there exists x 6 G P^/6 such that

|x* — x 6 1 <  m in(e/L i) and |c(x*) — c(x6)| <  e.i

(iii) Given e >  0, for any x* G P 3,6 there exists x 6 G P # such that |c(x6) — c(x*)| <  2e.

PROOF. (i) Let x* G P # and e >  0. As x* G X , there exists a sequence {xn} C X  such 
th a t limn^ ^  xn =  x*. Given e >  0, define 5 =  mini (e /L i). So there exists xN such tha t 
|x* — x N| <  5. By the Lipschitz continuity of functions ci , i = 1 ,  2 we obtain tha t

|ci(x*) — ci(xw)| <  Li|x* — x n | <  Li5 <  e,

which means th a t |c(x*) — c(xN)| <  ei . It remains to prove tha t xN G P ^ 6 . Note tha t, by 
definition of x* there is no x G X  such th a t ci (x) <  ci (x*), for i =  1, 2. This implies tha t 
for any x G X , we have:

c1(x) >  c1(x*) >  c1(xN) — e or c2 (x) >  c2 (x*) >  c2 (xN) — e.

Therefore, there is no x G X  such th a t ci (x) <  ci (xN) — e for i =  1, 2, which means tha t 
x N G P 1,6 and the assertion is now proved with x6 =  x N.

(ii) The proof is similar to (i).
(iii) Let x* G P 3F  Assume tha t there is no x G P # such th a t |c(x) — c(x*)| <  2e. 

Then x* G P #, so there exists y G P # such th a t c(y) =  c(x*) and c(y) <  c(x*). As 
y G X , there exists a sequence {yn} C X  such th a t limn^ ^  yn =  y. Choose yN such tha t 
c(yN) <  c(x*) and |c(y) — c(yN)| <  e. As x* G P 3,6, we must have c(yN) >  c(x*) — e1. 
Hence c(x*) — e1 <  c(yN) <  c(x*), which means th a t |c(yN) — c(x*)| <  e. Then

|c(y) — c(x*)| <  |c(y ) — c(yw)| +  |c(yw) — c(x*)| <  2e,

what is a contradiction. □

R e m a rk  3.6 Assertion (i) of Theorem 3.5 amounts saying also that for any Pareto value 
z* G F #  and its corresponding Pareto solution x*, there exists an e-Pareto solution x6 G 
P 1,6 with corresponding value z6 =  c(x6) G F 1,6 such that |z* — z6 | <  e and |x* — x6 | < 
mini (e/Li).

3.2 P roblem  S tatem ent
Let U be a given non-empty compact subset of Rm (for m  >  1). A measurable 

function u : [0, + < ^ [^  Rm is said admissible if it satisfies u(s) G U for almost every 
s >  0. The set of all admissible controls will be denoted by U :

U =  | u  : [0, + < ^ [^  Rm measurable, u(s) G U a . e ^ .

Let T  >  0 be a fixed finite horizon, and consider the dynamical system:

f y(s) =  / (y (s), u(s)) s >  0 ,
1  y (t) =  x.

(3.6)
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The dynamics f  satisfies the following hypothesis:

(i) the function f  is continuous
(ii) for any R >  0, 3L /(R ) >  0 such that. for every u G U :

|f ( x ,u ) — f ( y , u )| <  L / (R )(|x — y ^  Vx, y G Rn with |x | <  R, |y | <  R (3.7)
(iii) 3 c/ >  0, such th a t for any x G Rn we have : 

m ax{ |f (x ,u )| : u G U} <  c / (1 +  |x|).

By assumption (3.7), for any control input u G U , the system (3.6) admits a unique
absolutely continuous solution yUx in W 1,1([t, T ]; Rn). For every x G Rn and 0 <  t <  T ,
we define the set, Xt,x C W 1,:1([t,T ]; Rn) x U as:

Xt,x =  {(y, u) : y(s) =  f(y (s ) , u(s)), for a.e. s G [t,T]; y(t) =  x and u g U}.

Let us introduce the running cost t  : Rn x U — R satisfying

(i) the function t  is continuous
(ii) for any R >  0, 3L^(R) >  0 such th a t for every u G U :

|t(x ,u ) — t(y ,u ) | <  Lg(R)(|x — y|), Vx,y G Rn with |x| <  R, |y| <  R (3.8)
(iii) 3 q  >  0 such th a t for any x G Rn we have : 

m ax { |t(x ,u ) |,u  G U } <  q (1 +  |x |A£),

and the final cost function ^  : Rn — R satisfying

(i) For any R >  0, 3L^(R) >  0 such th a t :
|<^(x) — <^(y)| <  L ^(R )|x  — y| Vx,y G Rn with |x| <  R, |y| <  R

(ii) 3 c^ >  0 such th a t for any x G Rn we have :
<^(x) <  c^(x)(1 +  |x |Â ) for every x G Rn.

(3.9)

For x G Rn and 0 <  t <  T , the objective function in Bolza form $ (t,x ; •, •) : 
W 1,1([t, T ]; Rn) x U i—— R is defined as

T

$ (t, x; •, •) : W  1,1 ([t, T ]; Rn) x U — — R, $ (t, x; y, u) =  <p(y(T)) + J  t(y (s) , u(s))ds.
t

We are also interested by a second cost function th a t is measured all along the 
trajectory by:

^ ( t ,  x; •) : W  1,1 ([t, T ]; Rn) — — R, ^ ( t ,  x; y) =  max ^ (y (s)) ,

where the function ^  satisfies:

^  : Rn — — R is locally Lipschitz continuous. (3.10)

The bi-objective optimal control problem th a t will be investigated in this chapter is 
the following:

in f($ (t, x; y, u), ^ ( t ,  x; y))
(MOP)

s.t (y, u) G Xt,x.

The results presented in this chapter can be extended to the multi-objective case. 
As we work with objective functions of different nature we consider a bi-objective problem
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to simplify the notation. The characterization of the (weak) Pareto front for the m ulti­
objective case will be similar with the characterization for the multi-objective infinite 
horizon optimal control problem considered in Chapter 4.

In what follows we will first consider a reformulation of the problem, and then 
introduce a scalarized control problem suitable for characterizing the e-Pareto solutions 
of (M O P).

Define the set-valued function

G(x) =  { ( —ife U ) ')— a )  ' 0  <  a  <  A (x -“ >' “  E U

where A (x ,u ) =  q (1 +  |x |A£) — £(x,u). Under assumptions (3.7) and (3.8) the function 
G is locally Lipschitz continuous in the sense tha t, for any R >  0, there exists LG(R) >  0 
such that:

G(x') C G(x) +  |x — y|B(0, L R) Vx, x' E Rn with |x| <  R, |x/1 <  R.

We also define the following set of trajectories:

S [t,T](x  0) =  {(y , z) : (y ( s )  z (s))T E G(y (s ) )  for a .e. s E [t,T ]; (y ( t )  z (t)) =  (x  0)},

and the bi-objective optimal control problem:

inf ( c (y (T)) — z(T ), m axse[t,T ] ^ ( y (s)))  (3 1 1 )

s.t (y, z) E S[t,T](x, 0).

The introduction of the dynamics G is a classical tool tha t is usually introduced to 
recast a cost in Bolza form into a cost in Mayer form. In this reformulation, the vector 
of state variables is increased by one more component.

R e m a rk  3.7 Let us stress on that the problem (3.11) is equivalent to problem (MOP) in 
the sense that every (weak) Pareto value of (MOP) (if it exists) corresponds to a (weak) 
Pareto value of (3.11), and the reverse is true: every (weak) Pareto value of (3.11) 
corresponds to a (weak) Pareto solution of (M O P).

In fact, from the definition of the set of trajectories S[t,T](x, 0), every trajectory 
(y , z) E S [t, T](x, 0) is associated to a control function u E U and 7  E r (y (s ) , u(s)), where

r (x ,u )  =  {y : [0, + < ^ [^  R measurable, 7 (s) E [0, A (x,u)] for a.e. s}.

Let (y*, z*) a Pareto optimal solution of (3.11) and u*, 7 * the respective controls. 
Then there exist no (y, z) E S[t,T](x, 0) such that

and

p(y(T)) -  z(T), max U(y(s))J < (<p(y*(T)) -  z*(T), max U(y*(s))J, 

^(y(T)) -  z(T) <^(y*(T )) -  z*(T) or max ^(y(s)) < max U(y*(s)) (3.12)

Note that

c (y (T )) -  z (T ) =  c (y (T ) ) + /  u(s))ds + /  Y(s )d s
t t
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As  0  <  y (s) <  A (y(s), u(s)), for a.e. s >  0 , and the second objective function of (3.11) 
does not depend on control y we obtain that for all (y*, z*) that is a Pareto optimal solution 
of (3.11) the control function  y * =  0. Then by (3.12), we obtain that (y*, u* ) is a Pareto 
optimal solution for problem (M O P).With similar arguments it is possible to prove that 
i f  (y*, z*) is a weak Pareto optimal solution of (3.11) with respective controls u*, and y* 
then (y*, u*) is a weak Pareto optimal solution for problem (M O P).

Now consider (y*, u*) a Pareto optimal solution of (M O P). Then there exist no 
(y , z) G S [t, T](x, 0 ) such that

($ ( t ,x; y , u )  ^ ( t ,x; y )) <  ($ ( t ,x; y*, u *), ^ ( t ,x; y*)) 
and [$ (t,x ; y, u) <  $ ( t,x ; y*, u*) or ^ ( t ,x ;  y) <  ^ ( t ,x ;  y* )].

Define y * =  0, then by definition of function $  we obtain that there exist no (y, z) G 
S[t,T](x, 0 ) such that

T

$ ( t x ;y , u) <  $ ( t , x ; y*, u *) =  ^ ( y (T)) + f  ^(y (s^  u(s)) +  y *(s)ds =  ^ (y*(T)) — z*(T ).
t

Therefore (y*, z*) is a Pareto solution of (3.11), with associated controls u* and y *. With 
similar arguments it is possible to prove that i f  (y*, u*) is a weak Pareto optimal solution of 
(MOP) then (y*, z*) is a weak Pareto optimal solution for problem (3.11) with respective 
controls u*, and y * =  0 .

Moreover as y* =  0 the (weak) Pareto front for problems (MOP) and (3.11) co­
incides. Besides, for every e >  0, problems (MOP) and (3.11) have the same (weak) 
e-Pareto fronts.

W ithout any additional assumption, the set of trajectories S[t,T](x, 0) is not neces­
sarily closed, and the problem (3.11) might not have a solution. In this case, the (weak) 
Pareto fronts might be empty sets. One approach to obtain the closure of the set of trajec­
tories S[t;T](x ,z ), is to introduce a convexified (relaxed) dynamical system [AC84, FR99], 
whose set of solutions is given by:

S #T](x ,z) =  {Cy z) : (y ( s )  z (s))T e  co (G (y (s)))  , for a .a  s e  [t,T ]; (y ^ ) , z (t)) =  (x  z )}

where for every subset S  C Rn , co(S) denotes the closed convex hull of S , th a t is the 
minimal convex set th a t contains S .

Under assumptions (3.7) and (3.8), following the same arguments of the proof of 
Filippov-Wazewski Theorem (see for instance [AC84], Theorem 10.4.3), the closure of 
S[t,T](x, z ) in the space of continuous functions C (t, T ) is compact and equal to the set of 
solutions S # T](x,z). So we introduce the following relaxed bi-objective optimal control 
problem

min w (y(T)) — z(T ), max U(y(s)) ,
V se[t,T] y (MORP)

s.t Cu z) e  S [#T] (x, 0).

For a fixed (t,x ) e  [0,T] x Rn, we consider P i,£(t,x ) and P ^ £(t,x ), i =  1, 2, 3, the 
sets of (weak) Pareto e-solutions of problem (3.11) (according to the definitions 3.1 and
3.4). Besides, we denote by P # ( t ,x )  and P # ( t ,x )  the Pareto and the weak Pareto sets
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of problem (M O RP), respectively. Moreover the Pareto front and the weak Pareto front 
of (MORP) by F # ( t ,x )  and F # ( t ,x ) ,  respectively. The next proposition states the link 
between the optimal Pareto solution of the relaxed control problem (MORP) and the 
e-Pareto solutions of the original problem (3.11).

T h e o re m  3.8 Assume that (3.7), (3.8), (3.9) and (3.10) hold and let (t,x ) G [0,T] x Rn .

(i) For any (y*, z*) G P # ( t ,x )  and for any e >  0, define R  =  ||(y*, z*)|l^([o,t]} +  e. 
Then for 5 =  min (e /(h^ (R ) +  1), e /(L ^(R ) +  1)) there exists (y, z) G P  1,£(t,x ) 
such that |(y*, z*) — (y, z)| <  5 and

^(y* (T)) — z*( T ) ^ (y*(s)) ) — M y (T)) — z (T )  m a x ^ (y (s)) e.

(ii) For any (y*, z*) G P # ( t ,x )  and for any e >  0 define R =  ||(y *, z*) | L~([0,T|) +  P  then 
for  5 =  min (e/(L ^(R ) +  1 ),e /(L ^(R ) +  1)) there exists (y, z) G P ^ ,6(t,x ) such that 
|(y*,z*) — (y ,z ) | <  5 and

^(y* (T)) — z*( T ) ^ (y*(s)) ) — M y (T)) — z (T )  m a x ^ (y (s)) e.

(iii) Given e >  0, i f  (y*, z*) G P 3,e(t,x ), then there exists (y, z) G P # ( t ,x )  such that

^ (y*(T)) — z*( T m a x  ^ (y*(s)) — <̂ (y (T)) — z(T ), max ^ (y (s))se[t,T ] /  V se[t,T
< 2 e.

PROOF. (i) Let (y*, z*) G P # (t,x ) and e >  0. As (y*, z*) is in the closure of S[t,T](x, 0), 
there exists a sequence {(yn , zn)} C S[t,T](x,z) such th a t

lim (y„, z„) =  (y*, z*).

Then, given e >  0, for R =  || (y*, z*) ||L^ ([0,T]) +  e define 5 =  min (e/(L ^(R ) +  1), e /L ^(R )), 
so there exists (yN, zN) such th a t |(y*, z*) — (yN, zN)| <  5. Moreover, we have tha t 
|(y*, z*)| <  R and |(yN, zN)| <  R. By the locally Lipschitz continuity of function ^  and 
^ , we obtain tha t

|p (y*(T )) — z*(T) — ^ (y w(T )) +  zw(T)| <  (L^(R) +  1)5 <  e,

max P(y*(s)) — max P (y N(s)) 
se[t,T] v "  se[i ,Tpv "

which means th a t

<  max |^ (y*(s)) — ^ (y v (s))| <  ( r ) 5  <  e,s£[t,T ]

^ (y*(T)) — z*(T ), max ^ (y*(s)) — ^ (y v (T)) — zn (t ), max ^ (y w(s))se[t,T /  V se[*,T]
e.

It remains to prove th a t (yN, zN) G P  1,6(t, x). Note tha t, by definition of (y*, z*) there is 
no (y, z) G S[t,T](x, 0) C S # T](x, 0) such th a t

and

^ ( y (T)) — z ( T ) ,m a x ^ (y (s))J  <  ( ^ (y*(T)) — z*( T ) ,m a x ^ (y*(s)) 

^ (y (T)) — z(T) <  ^ (y*(T)) — z*(T) or max ^ (y (s)) <  sm[iax]^ (y*(s))
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This means th a t for any (y, z) e  S[t,T](x, 0) at least for one of the following assertion 
holds:

^ ( y (T)) — z(T) >  ^ (y*(T)) — z*(T) >  ^ (y w (T)) — zw(t ) — e, or

max ^ (y (s))  >  max ^(y*(s)) >  max ^ ( y w(s)) — e. 
se[t,T] se[t,T] se[t,T]

Therefore, there is no (y, z) e  S[t,T](x, 0) such th a t

^ (y (T)) — z (T ), max ^ (y (s)) <  ^ (yw (T)) — zn (t ), max ^ (y w(s)) — (e,e),se[t,T] )  \  se[t,T]

and <^(y(T)) — z(T ) <  ^ (y w(T )) — zw(T) — e or max ^ (y (s))  <  max ^ ( y w(s)) — e
L se[t,T ] se[t,T ]

which means th a t (yN, zN) G P  1,£(t,x ) and the assertion is now proved for (y, z) =  
(yw, zw).

(ii) Let (y*, z*) G P # ( t , x) and e >  0. Given e >  0, for R  =  ||(y*, z* )||ltc([0 ,T]} +  e 
define 8  =  max (e/(L ^(R ) +  1), e / (L^(R) +  1)). W ith similar arguments as in item (i) we
obtain (yN, zN) G S[t,T](x, 0) such th a t |(y*, z*) — (yN, zN)| <  8  and

< e.^ (y* (T)) — z*(T )> max ^ (y*(s)) — ^ (yw (T)) — zw(T), max ^ (y w(s))se[t,T] )  \  se[t,T]

It remains to prove th a t (yw, zw) e  P-i,e(t, x). Note tha t, by definition of (y*, z*) there is 
no (y, z) e  S[t,T](x, 0) C S # T](x, 0) such th a t

^ ( y (T)) — z(T )> max ^ (y (s)))  <  (V (y*(T)) — z*(T ), max ^ (y * (s)))  .se[i,T] )  \  se[t,T ] )

This implies th a t for any (y, z) e  S[t,T](x, 0) at least for one of the following assertion
holds:

^ ( y (T)) — z(T) >  ^ (y*(T)) — z*(T) >  ^ (yw (T)) — zw(T) — e, or

max ^ (y (s))  >  max ^(y*(s)) >  max ^ ( y w(s)) — e. 
se[t,T] se[t,T] se[t,T]

Therefore, there is no (y, z) e  S[t,T](x, 0) such th a t

^ ( y (T)) — z(T ) , sm a x ^ (y (s))J  <  (^ (y w (T)) — zw(T ) , max ^ (yw (s))J  — (e,e),

which means th a t (yw, zw) e  Pw,£(t,x ) and the assertion is now proved for (y, z) =
(yw, zw).

(iii) Let (y*, z*) e  P 3,£(t,x ). Assume th a t there is no (y, z) e  P # ( t ,x )  such tha t

<  2 e.^ (y*(T)) — z*(T), max ^ (y*(s)) — ^ (y (T)) — z(T ), max ^ ( y (s))se[t,T ] j  \  se[t,T]

Then (y*, z*) G P # ( t ,x ) ,  so there exists (y, z) G P # (t, x) such tha t

^ (y (T )) — z(T  ), sm ax ^ (y (s))l  =  (V (y*(T )) — z*(T )> s g a ^ y * ^ ^

and ( ^ (y (T)) — z(T ) , sm a x ^ ( y (s)) ) <  M y * (T)) — z*(T) , sm a x ^ (y*(s))
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As (y, z) is in the closure of S[t,T](x, 0), there exists a sequence {(yn , zn)} C S[t,T](x, 0) 
such th a t lim (yn , zn) =  (y, z). Choose (yN, zN) such tha t

^ (y w (T)) — zw(T), max ^ (y w(s )M <  M y * (T)) — z*(T ), max ^ (y*(s)) ) ,

and ^ (y (T)) — z(T ), max ^ (y (s )H — M y w (T)) — zw(T), max ^ (y w(s)) <  e.

As (y*, z*) E P 3,£(t,x ), we must have

se[t,T ]^ (yw (T)) — zw(T), max ^ (yw (s)) >  ^ (y * (T)) — z*(T), max ^ (y * (s)) — (e,e)se[t,T ]

Hence

^(y* (T)) — z*(T) , m a * ^ (y*(s)n  — (e,e) <  M y w (T)) — zw(T ) , max ^ ( y w(s))

<  ( ^ (y*(T)) — z*(T), max ^ (y * (s))s€[t,i ]

which means th a t

^ (y*(T)) — z*(T ), max ^ (y * (s)) — ^ (yw (T)) — zw(T), max ^ (y w (s)) se[t,T] /  V se[t,T]
<  e.

Then

^ (y*(T)) — z*(T )  s ^ ^ y * ^ ^  ) — M y (T)) — z (T )  ^ (y (s))

< ^ (y*(T )) — z*(T ), s ^ ^ y * ^ ^  ) — ( ^ (yw (T )) — zw(T ), ^ f ^ y w (s))

^ (yw (T)) — zw(T) , m a x ^ (yw (s)) 1 — M y (T)) — z(T ) , m a x ^ (y (s))

< 2 e.

what is a contradiction. □

3.3 A uxiliary control problem
In this section we would like to characterize the (weak) Pareto fronts of the relaxed 

control problem (M ORP). These fronts allow also to obtain the (weak) e-Pareto fronts of 
the original problem (3.11) (see Theorem 3.8).

To characterize a Pareto front, the general idea consists of considering a family of 
scalarized optimal control problems whose optimal values correspond to Pareto values 
of the bi-objective problem. A predominant m ethod for scalarization is based on the 
weighted sum problem where the cost function would take the following form: for a  E [0,1] 
solve the control problem:

m in j a ( ^ ( y (T)) — z(T)) +  (1  — a) m a x ^ (y (s)) 1 ^  z) E S # T](x , 0 ) |
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As mentioned earlier, it is known tha t this weighted sum scalarization can characterize 
only a part of the Parto front and not the entire front. Another idea would be to consider 
a control problem where one of the cost functions is chosen as primary cost and the other 
one is transformed into an auxiliary variable subject to a state constraint:

min i ^ (y (s)) 1 (y ’z) G S [^T](x > °) and ^ (y (T )) -  z (T )) <  zi f , (3-13)
or

min <p(y(T)) -  z (T )) | (y, z) e  SrfT](x, 0) and max ^ (y (s))  <  z A  .(3.14)
f [i>T ] J

Following the same ideas as in [KV10], one can show th a t all the Pareto values correspond 
to the optimal values of problem (3.13), when zi runs through R. The same characteriza­
tion holds if we use (3.14) and let z2 runs through R. However, it should be noticed tha t 
problems (3.13) and (3.14) are in presence of state constraints which make these problems 
difficult to analyse and to solve, see [Son8 6 , HZ15] and the references therein.

In this section, we will follow some ideas introduced in [DZ18], and consider an 
auxiliary control problem and its value function w  : [0,T] x Rn x R 2 ^  R defined as:

w(t, x, z1, z2) =  min
(y,z)eS#T ](x,o) ^ ( y (T )) -  z(T  ) -  zi ) V  m ax (^ (y (s)) -  z2)/ ’ [t,J ]

(3.15)

where the notation a V b stands for max(a, b). Let us point out th a t the additional state 
components are very im portant to get a Dynamic Programming Principle for the value 
function w. Moreover, we note th a t under assumptions (3.7),(3.8),(3.9) and (3.10), there 
exists an admissible pair (y, z) e  S # T] (x, 0 ) th a t minimizes the auxiliary control problem 
(3.15). ’

Let us remark tha t from the definition of S # T](x, z) and from the definition of w, it 
follows that:

w(t, x, z1, z2) =  min
5#
5 [t,T ](y,z)eS #T ](x,zi)

^ (y (T)) -  z (T m V  maxM y (s)) -  z2)/ ’ [t,i ]
(3.16)

The auxiliary control problem (3.15) satisfies the following Dynamic Programming 
Principle.

P ro p o s it io n  3.9 (D y n am ic  P ro g ra m m in g  P r in c ip le )  Assume that (3.7), (3.8), (3.9) 
and (3.1°) hold. Then for all h >  0, such that t  +  h <  T  and (x ,z) G Rn x R 2 , we have

w( t , x , z i , z2) =  min \ w  (t +  h, y(t +  h), z(t +  h),Z2)W  max (0 (y(s)) -  Z2) > .
(y,z)eS#,t+h](x,zi) I [i,i+h] )

PROOF. For any measurable control u G U , we shall denote u 1 the restriction of u on
[t, t +  h] and u 2 the restriction of u on [t +  h, T ]. Note tha t, for t +  h <  s <  T  we have
y Ux (s) =  y fC  , , (s) and denote y u k (s) =  y f f  u^ , , , (s). So we obtain on the first

J  t + h , y É, X ( t + h ) w  y t ,XW  t + h , y t , X ( t + h y  '

hand:
fT

A(yt,x(T)) -  zUzi(T) =  ^ (yUx(T)) + ^ y U * ^ u (s ) )d s -  zi
/* T /* t+h

= ^ (y"x(T ))W  ^ y U * ^ u (s))ds +  / ^ y U * ^ u (s))ds -  zi
Jt+h Jt

= ^ (yUUi(T ))+  /  ^(yU^i(s )  u 2(s))ds -  zM i(t +  h), (3-17)yt,x Jt+h yt,x
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and on the other hand

max (yi*x(s)) — *2) =  max (yJ*X(s)) — *2) V  ( W y ^ i (s))  — ^  • (3'18)se[t,T] se[t,i+h] v se[i+h,T] \  \  yt,x /  /

Combining (3.17) and (3.18), taking measurable controls u 1 : [t,t +  h] — U and u 2 : 
[t +  h, T ] — U we obtain

w(i,x,Z1 ,Z2) =  min min ^^(y"Ui (T)) +  f  t(y"Si (s), U2(s))ds — z ^  (t +  h)^
U1 U2 V yt>x 7i+h yt,x , 1 )

V  .e"?hxTi ( *  f e (s)) —z2) V  « m a ^  ^ ( y S ( s ) ) —z2 )

=  nuin w ( t  +  pyU 22! (t +  h ) ( t  +  h),z^  V sema+h] (^ (y*UX(s)) — z2)

f t  +  h, y(t +  h), z(t +  h), Z2) V  max (^(y(s)) — Z2) 1,
v se[t,i+h] J

minc#[M + h]((y,z)eS##_, + ,](x,zi)

which is the desired result. □

Following [DZ18], the value function w satisfies the following property.

P ro p o s it io n  3.10 Assume that (3.7), (3.8), (3.9) and (3.10) hold. The value function  
w is locally Lipschitz continuous on [0,T] x Rn x R 2.

PROOF. Consider R >  0, t G [0,T] and (x ,z ), (x ',z ;) G Rn x R 2 such tha t

|y*l!x(s)| <  R  |y*l!x(s)| <  R, for s G [t,T ].

By using the definition of w and the simple inequalities:

min(A) — m in(B) <  max(A — B ) and m ax(A ,B ) — max(C, D) <  max(A — C, B  — D),

we get

|w(t, X, Zl, Z2 ) — w(t, x ;, z j , z2 )| = min
u eu

— mm
u eu

G(y il,æ(T )) — z M i(TP V max (b(yUx(s)) — z2)/ w sG [t,l J

G(yl,x'(T)) — z Uz1 (T))  V  m a x ( ^ (y"x'(s)) — z2)

< max
u eu

s£[t,T ]

^(y"x(T ) ) -  z Uzi(T^  V  max W y “*( s ) ) -  z2)’ 1 > v s£[t,T]

— ( G(yl,x'(T)) — z î z; (T))  V  m a x ( ^ (y"x'(s)) — z2)\ ’ 1 ' v se[t,TJ

< max
u eu ( W iy T )) — zUUzi (T ) — ¥>(y tv  (T )) — z^  (T ))

V sm^ (^ (y t"x(s)) — b (y"æ' (s)) — z2 +  z2)

-  mJw ( /  u(s)) — ( s )  u(s)) I ds +  |zi — z i |

|G(yl,æ(T)) — G(yl,x' (T)) V  maT  1 (b (y"x(s)) — b (y"æ' (s)) — z2 +  z2) |sG [t,l J

<  max ^L^(R ) J t |y M (s) — y"x' (s)|ds +  M R ) lyiux(T) — y  "x (T)| +  |zi — z i 1 

V (R) max |y iuæ(s) — y “æ/ (s)| +  |z 2 — z2 \)  , (3.19)sG[t,TJ J
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where L^(R), L^(R), L^(R) are the locally Lipschitz constant for £, p, ^ , respectively. 
By Proposition 2.2(c) for s e  [t,T ],

I y*ux(s) — y*ux/(s) I <  eL/(R)(s-t)|x — x'| <  eL/(R)T|x — x'|, 

where Lf (R) is the locally Lipschitz constant of f . Then we conclude that:

|w(t, x, z) — w(t, x ;, z ;)|

<  max ^(LRR)T +  Lv (R))eL/(R)T|x — x'| +  |zi — z j |, L^(R)eLf (R)T|x — x'| +  |z2 — z2 |j

<  C  ( |x — x ;| +  |zi — z [ | +  |z2 — z21), (3.20)

where C  =  max ((L^(R)T +  L^(R )eLf(R)T, L^(R )eLf(R)T, 1). On the other hand, for 
h >  0  such th a t t +  h <  T , using tha t w (t +  h ,x ,z T,z 2) >  ^ (y ( t  +  h)) — z2, we deduce 
from Proposition 3.9 tha t

|w(t, x, zi, z2 ) — w(t +  h, x, z i .z 2 ) |

min max ( w(t +  h, y (t  +  h), z(t +  h ) ,z2), max (^(y(s))  — z2)
(y,z)eS#,t+h](x,zi) V s£[i,i+h]

— max(w(t +  h, x, zi, z2), ^ (y (t  +  h)) — z2)

<  max max C (|y (t + h) — x | + |z(t + h) — z1|) , L^(R) max | y (s) — y (t + h)|
(y,z)eS#fT](x,zi) \  s£[i,i+h]

where we have used (3.20). Now using Proposition 2.2 (a) we obtain tha t

|w(t, x, zi , z2 ) — w(t + h, x, zi , z2 )| < max (C (cf (1 + |x|) + q(1 + |zi |)) h, L^(R)cf (1 + |x|)h)
= max (C (cf (1 + |x |) + q(1 + |zi | )) , L^(R)cf (1 + |x |)) h. (3.21)

Combining the inequalities (3.20) and (3.21), we get th a t exist some constant C  >  0  such 
tha t, for t, t  e  [0 ,T ] and (x, z), (x/,z /) e  Rn + 2  such th a t |yux(s ) | <  R,
|yUx(s)| <  R, for s e  [t,T ],

|w(t, x, z) — w ( t , x /, z/)| <  C  (|t — t / | +  |x — x/| +  |z — z/|) , 

th a t means th a t the value function w is locally Lipschitz continuous. □

Now we are going to characterize the value function w by a HJB equation. To 
prove the uniqueness of solution of the HJB equation, a comparison principle is necessary. 
Consider the H J  equation in presence of the obstacle term:

mi n( — +  H (x, D v),v  — g(x)) =  0 on [0, T ] x Rd,

v(T ,x) =  v0 (x), x e  Rd, (3.22)

where T  >  0, g : Rd ^  R and H  : x R d x Rd ^  R are continuous and assume th a t H 
satisfies:

• there exists c >  0 such tha t, for all x, p, q in Rd,

|H (x ,p ) — H (x ,q)| <  C (|x | +  1)|p — q|; (3.23)

• for any R >  0, there exists a function : [0, < ^ [^  [0, ro[, limrî 0+ wR(r) =  0 and

|H (x ,p ) — H (y ,p )| <  ^R ( ( 1  +  |p |) |x — y |) (3.24)
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for every p e  Rd, x, y e  B (0, R), where B (0, R) denotes the open ball centered at 0 and 
of radius R.

T h e o re m  3.11 [ABZ13, Theorem A.1.] Assume that (3.23) and (3.24) are satisfied. Let 
v, v be two continuous functions on [0,T] x R d, and let g, h be continuous on [0,T] x R d.
We assume that v (resp. v )  is a sub-solution (resp. super-solution) of (3.22) in [0,T] x R d:

m in(—dtv +  H (x, D v ), v — g) <  0 in [0, T ] x Rd

mi n( — +  H (x, D v),v  — h) >  0 in [0, T ] x Rd

We denote vT(x) :=  v(T, x) and vT(x) :=  v(T, x). Then for all t e  [0,T],

max(v(v(t, ■) — v(t, ■)) <  max max(vT — vT ), max (g — h) I .
\  Rd (t,T)Rd /

Using Theorem 3.11, we can characterize the value function of the auxiliary control 
problem (3.15) as a unique solution of HJB equation below.

T h e o re m  3.12 Assume that (3.7), (3.8), (3.9) and (3.10) hold. The function w is the 
unique viscosity solution of the following HJB equation:

min ^dtw(t, x, z) +  H # (x ,  z, D xw, D zw), w(t, x, z) — (^(x) — z2) j  = 0  for  t e  [0, T ), x e  Rn, z e  R 2 

w(T, x, z) =  ^y(x) — zi ) V (  p(x) — z2j  for x e  Rn, z e  R 2, (3.25)

where the function  H #  is defined by:

H # (x ,z ,p ,q )  =  max ( — vx ■ p — vZl ■ q1 ) , Vp e  R w, Vq = ( q i ,q 2) e  R 2 .
(vx,vz1 )eco(G(x)) \ /

PROOF. We first show th a t w is a solution of (3.25). The fact th a t w satisfies the final 
condition comes directly from the definition of w. Let us check the super-solution property 
of w. From the Proposition 3.9, we get tha t for any 0 <  t  <  T

w ( t ,x ,z i ,z 2) >  min w (t +  t ,  y (t +  t ), z(t +  t ) , z 2) . (3.26)
9# ([t,t +  h]((y,z)eSrf,t+hi(x,zi)

Now for a function x e  C  1 ([0,T] x Rn+2) assume th a t ( t ,x ,z 1 ,z 2) is a local minimum 
point of w — x, th a t is, for some r  >  0

w(t, x, z1, z2) — w(s, x /, z / , z2) <  x (t, x, z1, z2) — x(s, x /, z i , z2) (3.27)

if |(x ,z 1 ,z 2) — (x/,z / , z2)| <  r, |t — s| <  r. For e >  0 and 0 <  h <  T , by the equation 
(3.26), there exits (y, z) e  S[t,i+h] (depending on e) such th a t

w(t, x, z1, z2) >  w (t +  h, y ( t +  h), z(t +  h), z2) — he. (3.28)

Then

î+h d_  _  r l+n d _  _
x ( i ,x , z i ,Z 2 ) — x  (t +  h, y ( t  +  h), z(t +  h ) ,z2) =  — — x  (s, y (s) ,  z ( s ) ,z 2) ds

J t dS
(' t+h

=  — [dtx (s, y (s) ,  z(s)) +  DxX (s, y (s) ,  z(s),Z 2 ) væ(s) +  D Zlx  (s, y(s),  z(s),Z 2 ) vZl (s)] ds

(' t+h
=  — y  [dtx(t, x, z i,Z 2 ) +  Dxx(t, x, zi, Z2 )væ +  D zix(t,  x, zi, ^ 2 )0^1 ] ds +  o(h), (3.29)



Contributions in ûnite horizon problems 46

where (vx(s),v*i(s)) G co(G(yx(s)) and (vx,Vzi) G co(G(x)).
Then (3.27) with (s, x;, z1, z2) =  (t +  h, y (t +  h), z(t +  h), z2) and (3.29) give

/*t+h
— J  [dtx(t,x,Z1,Z2) +  DxX(t, X,Z1 ,Z2) Vx +  Dzix(t,x,Z 1,Z2)vzi]ds +  o(h)

> w(t, x, Z1, Z2) — w(t +  h ,y (t +  h),z(t +  h), 22), 

and using (3.28) we obtain

r t+h
J  {—dtx(t, x, Z1, Z2) — Dx x(t,x ,Z 1,Z2)vx +  Dzi x(t, x, 2 1 ,2 2 ) ^ 1 }ds +  o(h)

> w(t +  h ,y (t +  h),z(t +  h), z2) — w(t +  h ,y (t +  h),z(t +  h), z2) — he =  —he.
(3.30)

The term  in brackets in the integral is estim ated from above by

—d tx ( t ,x ,z ) +  max {—D x x (t,x ,z 1 ,z 2 )vx +  Dzi x ( t ,x ,z 1 ,z 2)vzi}
(vx ,vzi )€co(G(x))

so we can divide (3.30) by h >  0 and pass to the limit to get

—d tx ( t ,x ,z 1 ,z 2) +  max {—D xx(t,x , zb z2)vx +  D zix (t,x , z1, z2)vzi} >  — e(vx,vzi )€co(G(x))

Since e is arbitrary, we obtain th a t

— dtx (t, x, z) +  H #(x , z, D xv, D zv) >  0 (3.31)

Moreover, by the definition of w, for every ( t ,x ,z 1 ,z 2) G [0,T] x Rn x R 2, we have

w ( t,x ,z 1,z 2) >  min max (^ (y (s)) — z2) >  ^ (x ) — z2. (3.32)
(y,z)eS##,T](x,zi) s^[t,T]

Combining (3.31) and (3.32), we get

min (5tw ( t ,x ,z ) +  H #(x , z, D xw, D zw ),w (t,x ,z )  — (^(x) — z2)) >  0, (3.33)

for all t G [0,T], x G Rn, and z G R 2, in the viscosity sense, th a t is, w is a super-solution 
of (3.25).

Now we will prove th a t w is a sub-solution. Let ( t ,x ,z 1 ,z 2) G [0,T] x Rn x R 2. If 
w(t, x, z1, z2) <  ^ (x ) — z2 then it is clear th a t w satisfies

min (5tw(t, x, z) +  H # (x, z, D xw, D zw), w(t, x, z) — (^(x) — z2)) <  0.

Now assume tha t w ( t,x ,z 1 ,z 2) >  ^ (x ) — z2. By continuity of f  and w and assumptions
(3.7) and (3.8), there exits some h >  0 such th a t for every (y, z) G S # T](x, z1), we have 
|(y, z) — (x, z1)| <  h and w($, y($), z(d), z2) >  f  (y(d)) — z2 for all 9 G [t, t +  h]. Hence, 
by using Proposition 3.9, we get th a t

w(t, x, z1, z2) =  min w (t +  h, y ( t +  h), z(t +  h ) ,z 2) (3.34)
(y,z)ee #f,t+h](x,zi)

for h small enough. Now let x G C  1([0,T] x Rn+2) and ( t ,x ,z 1 ,z 2) be a local maximum 
point of w — x, th a t is, for some r  >  0 ,

w(t, x, z1, z2) — w(s, x ;, z^, z2 ) >  x (t, x, z1, z2) — x(s, x ;, z1 , z2)



if |(x ,z 1,z 2 ) — (x/,z /1, z2)| <  r, |t — s| <  r. Fix an arbitrary (y, z) e  S # i+h](x ,z1) For h 
small enough (y(t +  h), z(t +  h)) e  B ((x ,z 1) ,r )  (by Proposition 2.2) and then

X(t,x, zi, Z2) — x (t +  h, y (t +  h), z(t +  h), Z2) <  w (t,x , zi, Z2 ) — w (t +  h, y ( t +  h), z(t +  h), Z2)

for all 0 <  h <  ho. By using the equation (3.34) we get

X (t,x ,z i,z 2) — x (t +  h, y ( t +  h), z(t +  h ) ,z 2 )
<  w (t+ , y (t +  h), z(t +  h), z2 ) — w(t +  h, y (t +  h), z (t +  h), z2) =  0

therefore, dividing by h >  0  and letting h M 0 , we obtain, by differentiability of x, and 
the continuity of y, z, f , and €

—<9tx ( i ,x ,z i ,z 2) — D x x ( t ,x ,z i ,z 2 )^ (0 ) — D z!x(t, x, zi, z2)z(0 ) <  0 ,

Since (y, z) e  S # t+h](x, z i ) is arbitrary we have

—dtx ( i ,x ,z i ,z 2) +  max (—D xx (t,x , zi, z2)vx +  D Z1 x ( t ,x , zi, z2)vzi) <  0 ,
(vx,vzi )£co(G(x))

an therefore we have proved th a t w is a viscosity sub-solution of (3.25).
To prove the uniqueness note tha t, for every (x, z ) e  Rn+ 2 , (p, q), (p/, q/) e  Rn+ 2
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|H # ( x ,  z,p, q) — H # (x ,  z,p', q') | <   • ip'(vx ,»Z1 )£co(G(x))max (vx • (p — p) +  Vzi • (qi — qx))X

< , m ^ ^  N ̂ X  ̂ (P — P')(Vx ,Vz1 )£co(G(x))
+ , m ^ ^  n0 *1 (qi — q')(Vx ,Vz1 )£co(G(x))

<  Cf(1 +  |x|)|p — p'| +  Q (1 +  |x| £)|qi — q'| <  Ci(|p — p'| +  |qi — q'|),

for some constant C i >  0 and . Furthermore for every (x ,z), (x/,z /) e  B (0 ,R ), R  >  0, 
(p, q) e  Rn+ 2

|H #(x,z,p ,q) — H #(x/,z /,p,q)| < C2 (|p| +  |qi| +  1)(|x — x/| +  |zi — zi|),

for some constant C2 >  0. Then we are in the hypothesis of Theorem 3.11, so for any 
sub-solution x of the HJB equation (3.25) we have tha t

sup(x(t, •) — w(t, •)) <  max sup(x(T , •) — w(T, •), sup (0  — '0 ) 1 = 0 .
Rn+2 yRn+2 [t,T ]xRn+2 J

Hence x(t, •) <  w(t, •) in [t,T ] x Rn+ 2 . On the other hand

sup (w(t, •) — w2 (t, •)) <  0 ,
Rn+2

for every super-solution w2 of (3.25). Therefore w is the unique solution of the HJB 
equation (3.25). □

Another interesting property is th a t w is monotone decreasing with respect to the 
th ird  argument as proved in the following proposition.

P ro p o s it io n  3.13 Assume that (3.7), (3.8), (3.9) and (3.10) hold and let (t,x ) e  [0 ,T ] x 
Rn . Then

Vz, z/ e  R 2 , ^z <  z/ ^  w(t, x, z) >  w(t, x, zO ).
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PROOF. Let z, z/ e  R 2 such tha t z <  z/ and one admissible trajectory (y, z) e  S # T](x, 0). 
Then

^ (y (T)) — z(T) — zi <  ^ (y (T)) — z(T) — z1 and max ^ (y (s)) — z2 <  max ̂ (y (s)) — z2 ,

and then

(^ (y (T)) — z(T) — z i ) V  ( m a x  ^ (y (s)) — z2 )  <  (^ (y (T)) — z(T) — z i ) V  ( m a x  ^ (y (s)) — z0 .\^sE[t,l ] J \^sE[t,l ] J

Taking the minimum over all (y, z) e  S # T](x, 0) it follows from the last inequality tha t

w(t, x, z/) <  w(t, x, z ).

□

Notice tha t from the definition of the Hamiltonian H.#, we have:

H # (x ,z ,p , q) =  sup ( — ■ p — vzi ■ q1 J , Vp G R N, Vq =  (q^q 2) G R
(vx ,vz1 )eG (ip  4

=  sup (—f  (x ,u) ■ p +  £(x, u) ■ q1 +  a ■ q1) .
uE U, aE [0,A(x,u)]

If q1 <  0, then we have:

H #  (x ,z ,p , q) =  sup (—f  (x ,u) ■ p +  £(x,u) ■ q1) .

Since the value function w is decreasing with respect to the variable z, by using the D PP 
and using the classical viscosity arguments as in proof of Theorem 3.12, one can prove 
the following:

T h e o re m  3.14 Assume that (3.7), (3.8), (3.9) and (3.10) hold. The value function  w is 
the unique viscosity solution to the following HJB equation:

w, D zw), w(min ^dtw(t, x, z) +  H(x, z, D xw, D zw), w(t, x, z) — (^(x) — z2) j  = 0  for  t G [0, T ), x G Rn, z G 

w(T, x, z) =  ^p(x) — zi ) V (  p(x) — z2j  for x G Rn, z  G R 2, (3.35)

where the function  H  is defined by:

H (x, z ,p , q) =  sup (—f  (x, u) ■ p +  £(x, u) ■ q1)

R e m a rk  3.15 I f  we consider the problem

w(t, x, z1, z2) =  min
(y>z)eS[t,T ](x,0) ^ (y (T )) — z(T  ) — d )  V  m ax (^ (y (s)) — z2)/ ’ sG[M ]

(3.36)

With similar arguments as in in proof of Theorem 3.12, we can prove that the function  
w can be also characterized as the unique viscosity solution of the HJB equation (3.35) 
By uniqueness of the solution for  (3.35), we conclude that the two function  w and w are 
the same: w =  w. This result is not surprising as we know that the set S # T] (x, 0) is the 
closure of S[t,T](x, 0 ).

2
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3.4 C haracterization  o f th e  P areto  fronts o f th e  con- 
vexified b i-ob jective optim al control problem

In what follows we consider the single objective optimal control problems and the 
associated value functions:

^ 1( t ,x ) =  min ^ (y (T )) — z (T ), $ 2 ( t ,x ) =  min max f (y (s ) ) .  (3.37)
(y,z)esj#,T](x,0) (y,z)es#T](x,0) «e[t,T]

For every t G [0, T ], x G Rn and i = 1 ,  2, we introduce the value:

z*(t,x) =  inf |Z  G R 3z G R 2 w ith z* =  Z, w (t,x ,z )  <  0 j . (3.38)

P ro p o s it io n  3.16 Assume that (3.7), (3.8), (3.9) and (3.10) hold and let (t,x ) G [0,T] x 
R n  .

(i) For every z G R 2 , we have that w (t,x ,z )  <  0 i f  and only i f  there exists (y, z) G
S # T](x, 0 ) such that:

<Wy(T)) — z (T ) <  z1, and max f  (y(s)) <  z2. (3.39)
se[t,T ]

(ii) Moreover, for  i = 1 ,  2 and every (t, x) G [0, T ] x Rn, we have z*(t, x) =  $j(t, x). 

PROOF. Assertion (i) follows directly from (3.15): Let z G R 2, then

w (t,x ,z )  <  0 ^  3(y, z) G S # T](x, 0) s.t. <^(y(T)) — z(T ) <  z1 and max f (y (s ) )  <  z2.
[ , ] s€[t,T]

(ii) Let show th a t ^ ( t ,x )  <  z*(t,x). By item (i) we have th a t for all z G R 2 such 
th a t w(t, x, z) <  0

3(y, z) G S # T](x, 0) s.t. <^(y(T)) — z (T ) <  z1 and max f  (y(s)) <  z2 .
1 ’ J s€[t,T]

Therefore ^ ( t ,x )  <  z* for all z G R 2 such th a t w (t,x ,z )  <  0 and then

tf*(t,x) <  inf{ 7  g R | z G R 2 ,w (t,x ,z )  <  0 with z* =  y } =  z*(t,x).

Let show now th a t $ j(t,x ) >  z*(t,x). W ithout loss of generality, we assume here tha t 
i =  1. The proof will be the same for i =  2. Assume th a t ^ 1(t,x ) <  z j( t,x ) . Then there 
exists 5 G R such th a t ^ 1 (t,x ) <  5 <  z j( t,x ) . The inequality ^ 1(t,x ) <  5 implies tha t 
there exists (y, z) G S # T](x, 0) such tha t <^(y(T)) — z (T ) <  5. Then for z2 =  max f  (y(s))

[ , ] s€[t,T]y, z) c S #

we have tha t

w(t, x, 5, z2) <  (^ ( y (T)) — z(T) — 5 ) V  f  maA f  (y (s)) — z^  =  0 ,v \se[t,T] y

which implies tha t 5 G {y G R | 3z G R 2 with z1 =  y, w (t,x ,z )  <  0}. But, we have
chosen 5 such th a t 5 <  z j( t,x )  which is impossible. □

Let us also denote

y*(t,x) =  (z j( t ,x ) ,z j( t ,x ) )  G R 2 . (3.40)
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It follows from the proposition 3.16 th a t ,b* is the utopian point associated with the bi­
objective control problem for a given (t,x ) G [0,T] x Rn. If this point is feasible (i.e., 
there is an admissible pair (yx, z0) th a t realizes the minimum of both cost functions 
<Fyx(T)) — z0 (T ) and max ^ (y x(s)), then the Pareto front is reduced to this point. In

se[t,T ]
what follows it is assumed th a t the utopian point is not feasible. In this case, we have:

w(t, x, fj*(t, x)) >  0 . (3.41)

In the following theorem, we give the first link between the solutions of the bi­
objective problem (MORP) and the function w.

T h e o re m  3.17 Assume that (3.7), (3.8), (3.9) and (3.10) hold and let (t, x) be in [0, T ] x 
Rn . Then the weak Pareto front F # ( t ,x )  for the bi-objective optimal control problem 
(MORP) with the initial condition (t,x ) is a subset of the zero level set of the value 
function  w(t, x, •, •):

F # ( t ,  x) C F # ( t ,  x) C | z  e  R 2 w(t, x, z ) =  0 j .

PROOF. Let z e  F # ( t ,  x). Then there exists an admissible pair (y, z) e  S # T] (x, 0) such 
th a t

p (y (T )) — z(T ) =  zi, max 0 (y(s)) =  z2
se[t,T ]

and there is no other admissible pair th a t dominates (y, z). This means th a t for any 
^  z) e  T](x, 0 ), one of the following assertions holds:

(i) z i <  ^ (y (T)) — z (T ),

(ii) or z2 <  max 0 (y(s)).
se[t,T ]

We can easily check th a t in the two above cases, we have

Therefore,

(^ ( y (T)) — z(T) — zi ^ ( max ^ ( y (s)) — z2) >  0.

w(t, x, z) min
c#

[t,T ]((y,z)eS #T ](x,0)
(^ (y (T)) — z(T) — zi ^ ( max ^ (y (s)) — z2 )v se[t,T]

(^ (y (T )) — z(T  ) — zi ) ^ (y (s)) — z 2)

□

Let x G Rn and t >  0. We define:

0

z1(t, x) =  inf j  Z G R w(t, x, Z, z*(t, x)) =  0 j , 

z2(t, x) =  inf j  Z G R w(t, x, z*(t, x), Z ) =  0 j . (3.42)

Denote by S 1 and S2 the set of admissible pairs in S # T](x, 0) th a t realize, respec 
tively, the minimum of <^(y(T)) — z(T ) and max ^ (y (s)) .
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Then, the values z*(t,x) can be interpreted as:

z 1(t,x ) =  min p (y (T )) — z(T ), z2 (t,x ) =  min max ^ (y (s)) .
(y,z)eS2 (y,z)eSi se[i,T]

The minimum is achieved, since the sets S 1 and S2 are still compact.
Let us denote

D =  [z1* (t,x ),z i(t,x )] x [z2(t,x),z2 (t,x)]. (3.43)

T h e o re m  3.18 Assume that (3.7), (3.8), (3.9) and (3.10) hold and let (t, x) be in [0, T ] x 
Rn . The following assertions hold:

(i) F # ( t ,x )  c  F # ( t ,x )  n  D c  {z e  D | w (t,x , z ) =  0}.

(ii) Let z e  D such that w (t,x ,z )  =  0. I f  there exists an admissible pair (y, z) e

PROOF. (i) By Theorem 3.17 we obtain immediately th a t

F # ( t ,  x) n  D c  {z e  D | w(t, x, z) =  0}.

Moreover F # ( t ,x )  c  F # ( t ,x ) .  It remains to prove th a t F # ( t ,x )  c  D.
Let z =  (z1 ,z 2) e  F # ( t ,x ) .  By Proposition 3.16, z*(t,x) =  F ( t ,x ) ,  for i =  1, 2.

Then for every (y, z) e  S # T](x, 0) we have

zi*(t,x ) <  ^ (y 1(T)) — z 1 (T ), z2(t,x ) <  max ^ (y (s)).se[t,T ]

Therefore, z1 >  z2(t,x) and z2 >  z2(t, x).
Now, assume th a t z1 >  z 1 (t,x ). In this case, by definition of z 1(t,x ), it would exists 

(X z) e  T](x, 0 ) such th a t

^ (y 1 (T )) — z 1 (T ) <  M (t,x ) <  z1 and max ^ (y (s))  <  z j( t,x )  <  zj,
se[t,T ]

which contradicts the fact th a t z e  F # ( t ,x ) .  We conclude th a t z1 <  z 1(t,x ). The same 
argument shows also th a t z2 <  z2 (t,x ), and then z belongs to D.

(ii) Let z e  D such th a t w (t,x ,z )  =  0 and there exists an admissible pair (y, z) e
SjfT](x, 0 ) such th a t

^ (y (T )) — z(T ) =  z1 and max ^ (y (s))  =  zj.
se[t,T ]

By definition of w

m#n (^ (y (T)) — z(T) — z1) V  (  m,ax  ^ (y (s)) — = 0.(y,z)es#,T ] (x,0) \ se[i,T] )

That means, there exists no admissible par (y, z) such tha t

<p(y(T)) — z(T ) <  p (y (T )) — z(T ) =  z1 and m ^x ^ (y (s))  <  m ^ ]  ^C^Cs)) =  z2 .

Therefore, by definition of the weak Pareto optimal solution z e  F # ( t ,x ) .  □
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R e m a rk  3.19 As proved in [DZ18], outside of the set Q, only some trivial parts of the 
weak Pareto front might exists, that is

z e  F # ( t ,x )  n  QC ^  zi =  z^(t,x) and z2 > z 2 (t,x ), or z2 =  z^(t,x) and z i > z i (t,x ).

Now we are going to give a characterization of the Pareto optimal front of bi­
objective optimal control problem (MORP) using the value function w. Assume that 
the hypothesis (3.7),(3.8),(3.9) and (3.10) hold and let (t,x ) be in [0,T] x Rn. Let us 
introduce the operators on R 2 defined by:

n i(z) =  zi, ff2 (z) =  z2 . (3.44)

Let denote
Qi =  [zi,zl[; Q2 =  [z2 ,z 2 [

and introduce the following extended functions

ni : [zi,zl] M [za,z2], n i(Z i)= in f{ y  | w (t,x ,Z i,Y ) <  0 }, (3 .4 5 a)
n2 : [z2,z2] M [zi,zT], n2 (Z2) = in f { y  | w (t,x ,Y ,Z 2 ) <  0}. (3.45b)

P ro p o s it io n  3.20 Assume that (3.7), (3.8), (3.9) and (3.10) hold and let (t,x ) be in 
[0,T] x Rn . Then for j  =  1, 2 the functions n j(•) are decreasing:

VC,C/ e  (c  <  C/ ^  n (C) >  n (CO).

PROOF. Let assume th a t there exists £ <  Z such th a t

n i(£) <  n i(C) .

It follows from definition (3.45) th a t w (t,x ,Z ,a )  >  0, for all a  <  ni (Z).
Let us take a  =  n i (£) and consider the point z =  (Z,n i (£)). It is clear tha t

w(t, x, z) >  0. On the other hand, by Proposition 3.13 we obtain tha t

w(t, x, z) =  w(t, ^  Z, n i (£)) <  w(b x, ^ , n i (£)) <  0

because £ <  Z. This is in contradiction with the fact th a t w (t,x ,z )  >  0 as established 
before. □

The following theorem gives a characterization of the Pareto front.

T h e o re m  3.21 Assume that (3.7), (3.8), (3.9) and (3.10) hold and let (t, x) be in [0, T ] x 
Rn .

(i) F # (t,x ) =  { (Z,n i(Z)), Z e  dom(n i ^  0  { (n2 (Z),Z), Z e  dom(n2^ .

(ii) For any z e  F # ( t ,x )  let a trajectory (y, z) e  S # T](x, 0) be optimal for the auxiliary 
problem (3.15). Then (y, z) is a Pareto optimal solution of (M O RP).
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PROOF.
(i) We split the proof in two steps.
S te p  1. Let us show that

{ (z ,n i(C)), C G d°m (ni) } n { M C ),C), C G dom(n2^  c  F # ( t ,x ) .

Let z g | ( z ,n i(C)), C G ^ i  and n i(C) <  + ^ }  0  { (n2 (C),C), C G ^  and ^2 (C) <  + ^ } .
First, we have to show th a t such a point is feasible, th a t is, there exists an admissible

pair (y, z) G S # T](x, 0) such th a t ( <^(y(T)) — z(T ), max ^ (y ( s )H  =  z. By definition 
1 ’ ] V se[i,T] )

of the functions n*, i =  1, 2, we have th a t w(t, x ,z ) =  0. Then there exists at least one 
admissible pair (y, z) G S # T](x, 0) such tha t

f ( ^ ( y ( T )) — z (T )) Y (  max ^ (y(s ))  — Z2 ) )  <  0 ^  y ( y ( T )) — z (T ) <  zi and max ^ (y(s ))  <  Z2
\  v se [t,T] )  se [t,T]

(3.46)

Assume th a t z is not feasible. Then for any admissible pair (y, z) G S  # T](x, 0) satisfying
(3.46), we have tha t

<P(y(T)) — z (T ) <  zi or max ^ (ÿ (s))  <  Z2 .se [t,T ]

Let us recall th a t by choice of z we have th a t z* =  ni (ni (z)). Then, without loss of 
generality, take

C =  c (y (T)) — z (T ), so w ( t ,x ,C,z 2) <  0

with Z <  ni (ni (z)) which is in contradiction with the definition of ni (ni (z)) (see (3.45)).
Now, let us show tha t z =  (zi ,z 2) is Pareto optimal. Assume th a t there exists 

(X z) G S [# T](x, 0 ) such th a t

c (y (T)) — z(T) =  Ci <  z i and mrax, ^ (y (s)) =  Z2 <  z2 ,se[t,T ]

with (Ci ,C2) =  C =  z. Consider, w ithout loss of generality, th a t Zi <  z i , then 
w (t,x ,C i ,z 2) <  0. As Ci <  z i , by Proposition 3.13 we have tha t

w(t, x, Ci , z2) >  w(t, x, z i , z2) =  0 .

So we conclude th a t w (t,x ,C i ,z 2) =  0, with Ci <  z i =  ni (ni (z)) which is a contradiction.
(i) S te p  2. Let us show that

F # ( t ,x )  c  { (Z,n i(Z)), C G dom(n i) n  (n2 (C),C), C G dom(n2^ .

Assume th a t z G F # ( t ,  x) and let (y, z) G S # T](x, 0) be an admissible pair such tha t 

zi =  <p(y(T)) — z (T ) and z2 =  max ^ (y (s)).
se[t,T ]

It follows from Theorem 3.17 th a t w(t, x, z) =  0. Then it is obvious th a t ni (ni (z)) <  +œ> 
and n2 (n2 (z)) <  + œ . If

z G { (C,n i(C)), C G dom(n i) } n { (n2 (C),C), C G dom M }
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then 3 j such th a t zj =  n j(n j(z )). Consider, without loss of generality, th a t zi =  ni (ni (z)). 
As w (t,x ,z )  =  0, we obtain th a t z i >  ni (n i (z)). Consider

£ =  (n i(ni (z )),z 2) .

By the definition of the function ni we have th a t w (t,x ,£ ) =  0 and then there exists an 
admissible pair (y, z) e  S # T](x, 0 ) such tha t

c ( y (T)) — z(T) <  £i <  z i and mra x 0 (y (s ) )  <  £ 2 =  z2 ,se[t,T ]

what is in contradiction with the assumption th a t z is Pareto optimal.
(ii). Let z e  F # ( t ,x ) .  Then w (t,x ,z )  =  0 and z is feasible. Take a trajectory 

(y, z) e  S # T](x, 0) th a t is optimal for the auxiliary control problem (3.15). Then, as it 
was be shown (see Proposition 3.16),

(^(y(T))—z(T) zi W max ^ (y (s))—Z2) =  0 ^  (^(y(T))—z(T) < zi, and max y (y(s)) < Z2 . 
v se[i,T] se[t,T]

If <^(y(T)) — z(T ) <  zi then £ =  (<^(y(T)) — z (T ),z 2) is a feasible vector th a t dom­
inates z which is impossible. In the same manner, if maxs€[t T] 0 (y (s))  <  z2 then 
£/ =  (zi , maxs€[t T] 0 (y(s))) is a feasible vector th a t dominates z which is impossible. 
So, for any trajectory (y, z) th a t is optimal for (3.15) we have th a t

( W (T)) — z(T ), ^ a x  y (y (s)^  =  z

th a t means th a t the pair (y ,z ) is Pareto optimal for (M O RP).
□

3.5 c-Pareto so lutions o f th e  original b i-ob jective op­
tim al control problem

In this section we return  to the original problem presented in this chapter. We 
prove th a t using the auxiliary value function w it is possible to obtain a region where 
(weak) e-Pareto fronts are contained. Moreover (weak) e-Pareto optimal solutions for 
problem MOP can be obtained by applying an algorithm of trajectory reconstruction to 
the auxiliary control problem (3.15).

T h e o re m  3.22 Assume that (3.7), (3.8), (3.9) and (3.10) hold. Let (t,x ) be in [0 ,T ]xR n 
and e >  0 .

(i) F i,£(t, x) C FW’£(t, x) C | z  e  R 2 — e <  w(t, x, z) <  0 j .

(ii) Let z£ e  | z  e  R 2 — e <  w (t,x ,z )  <  0 | . I f  there exists (y£, z£) e  S[t,T](x, 0) that
is optimal for the auxiliary control problem (3.15). Then (y£, z£) e  P ^ ,£(t,x ) of
problem (3.11).

(iii) Let z£ e  | z  e  R 2 — e <  w ( t ,x ,z ) <  0 | . I f  there exists (y£, z£) e  S[t,T](x, 0) that

is optimal for the auxiliary control problem (3.15). Then (y£, z£) e  P i,£(t,x ) of
problem (3.11).
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PROOF. (i) Let z G F ^ ^ x ) .  Then there exists an admissible pair (y, z) G S[t)T](x, 0)
such th a t

^ (y (T )) -  z (T ) =  zi, max ^ (y (s))  =  z2,se[t,T ]

then

(y,z)eS #T ](x,o)
w ( t ,x ,z ) =  mm (^ (y (T)) -  z(T) -  z i ^ (m ax ^ (y (s)) -  z2 )^ V s€[i,T]

< (̂ (y (T )) -  z (T ) -  z i^ (max ^ (y (s)) -  z 2) ’ s€[M ]
0 .

Moreover as z e  F ^ ’£(t,x ), then for any (y, z) e  S[t,T](x, 0), one of the following 
assertions holds:

(a) z1 — e <  ^ (y (T)) — z(T ),

(b) or z2 — e <  max ^ (y (s)).
se[t,T ]

It is possible to check tha t in the two above cases, we have

(^ ( y (T)) — z(T) — z1) V (m ax  ^ (y (s)) — z2 ) >  —e .’ s€[M ]

As the S # T](x, 0 ) is the closure of the S[t,T](x, 0 ), we can conclude th a t one of assertions 

above holds for any (y, z) e  SjfTj (x, 0). Therefore,

w ( t ,x ,z ) =  m| n (^ (y (T)) -  z(T) -  ^ X A m a x  ^ ( y (s)) -  z2)i -\r \ c . W [t,T ](y,z)eS #fT ](x,0)
>  —e.

(ii) Let z£ G | z  G R 2 — e <  w (t,x ,z )  <  o j  and (y£, z£) G S[t,T](x, 0) tha t is 
optimal for the auxiliary problem w(t, x ,z £). Then,

—e <  (p (y £(T)) — z£(T ) — zi,£ W  max ^ ( y £(s)) — Z2,£.
v se[t,T]

Assume th a t there exists (y, z) G S[t,T](x, 0) such tha t

^ (y (T)) — z(T ), max ^ ( y (s)) <  (z1,s — z ,z 2,£ — z).se[i,T] y

Therefore,

( p (y (T)) — z(T) — z i,e V  m&A  ^ (y (s)) — z2,^ <  ( g (y£(t ) )  — ze(T) — z i,e V  m&T  ^ (y^(s)) — z2,e)V sE[i,i J / V sE[i,i J /

which is impossible. So, for any trajectory (y£, z£) tha t is optimal for the auxiliary control 
problem w (t,x , z£) we have th a t the pair (y£, z£) G P ^’£(i,x ) of problem (3.11).

(iii) The proof can be obtained with similar arguments of (ii). □
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3.6 S tate  constrained optim al control problem
In many applications the optimal control problem is subject to state constraints, 

one example is the boat problem considered in section 3.8.3. In this section we study 
finite horizon optimal control problems with two different objective functions and with 
constraints on the state variables.

Let K 1 C Rn nonempty and closed set of constraints and K2 C Rn a non empty 
closed target set. Consider the following bi-objective optimal control problem

' inf ($ ( t,x ; y, u), tf( t,x ; y))

subject to y(s) =  f  (y(s), u(s)), a.e. s G [0, ro[,
y (t) =  x, (3.47)
y(s) G K 1 Vs G [t,T ], 
y (T ) G K2 , 
u .

Let g1 : Rn ^  R a Lipschitz function such th a t

g1(x) <  0 ^  x G K 1. (3.48)

Since K 1 is closed, such a function g1 exists. Indeed, denote by dKl the signed distance 
to K 1 , where

, , , f d (x ,d K 1) if x G Kf
W  =  (  _ d (x ,KK 1) if x g K i .

The function g1 =  dKl(•) is Lipschitz continuous and satisfies the statem ent (3.48). 
Consider also g2 : Rn ^  R a Lipschitz function such th a t

g2 (x) <  0 ^  x G K2 . (3.49)

In this section we are going to assume that:

For every x G Rn, j  ̂  fX ^u U  a )  ’ ^ G U 0 < a < A(x, U) j  , is a convex subset of Rn x R.

(3.50)
W ith this assumption and (3.7) and (3.8) the set of trajectories S[t,T](x ,z1) is a compact 

set in the space of continuous functions C ( t ,T ).
We associate with the optimal control problem (3.47) the following auxiliary control 

problem and its value function w:

w(t,x , z ) =  min
(y,z)e5[t,T ](x,z 1 )

(3.51)
The value function of the auxiliary control problem (3.51) is locally Lipschitz continu­

ous, satisfies the Dynamic Programming Principle given in the next theorem and can be 
characterize as a unique viscosity solution of a HJB equation. As the proof is similar to 
the proof presented for the unconstrained case, we are not going to rewrite it here.

T h e o re m  3.23 Assume that (3.7), (3.8), (3.9), (3.10) and (3.50) hold.

(i) The value function w is locally Lipschitz continuous on [0,T] x Rn x R 2 .

^ ( y (T)) — z (T d V  m a x ( V(y (s)) — z V V  m ax, £ i (y ( s ) ) V # 2 (y (T))/ sG[t,i ] s£[t,i ]
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(ii) For all h >  0 such that t +  h <  T  and (x, z) e  Rn x R 2 , we have

w(t,x , z) =  min <w (t +  h, y(t  +  h), z(t +  h ) ,z 2 ) V  max (^(y(s)) — Z2 ^W max gi(y(s))  >
(y,z)eS[tjt+fc](x,zi^ v s£[t,t+h] v s£[t,t+h] J

(iii) The function w is the unique viscosity solution of the following HJB equation:

min ^dtw(t, x, z) +  H(x, z, D xw, w), w(t, x, z) — (^(x) — Z2 ) V  g i ( x ^  = 0 ,  Vt e  [0, T ), (x, z) e  Rn+2 

w(T, x, z) =  (y>(x) — zi) V ( ^ (x )  — z2 ) V  g i(x) V  g2 (x), V (x, z) e  Rn+2. (3.52)

where H  is given by

H (x, z ,p , q) =  sup (—f  (x, u) ■ p  +  £(x, u) ■ qi ) .
«eu

The characterization of the weak Pareto front and the Pareto front for the bi­
objective optimal control problem (3.47) can be obtained considering the function w 
in Theorems 3.18 and 3.21, respectively.

3.7 R econstruction  o f th e  P areto  optim al trajectories

Theorems 3.18 and 3.21 provide the characterization of the weak Pareto front and 
the Pareto front, respectively, of the convexified problem (MORP) in the case without 
state constraints and of the problem (3.47) with state constraints. Another im portant 
concern is to reconstruct an optimal trajectory corresponding to a given Pareto optimal 
solution.

Once the auxiliary value function w is known by Theorem 3.21 we have a charac­
terization of the Pareto front F # ( t ,x ) .  Now, let z be an optimal Pareto solution. Then a 
corresponding Pareto trajectory can be obtained by using the value function w. Indeed, 
by applying an algorithm of trajectory reconstruction to the function w on [t, T] with the 
initial conditions (x, z) as the algorithm presented in [ABDZ18], we get an approximation 
of the optimal trajectory for w (t,x ,z ). Now, by Theorem 3.21, item  (ii), if the trajec­
tory is optimal for the auxiliary problem (3.15), then it is a Pareto optimal trajectory of 
(M O RP).

In the case of weak Pareto solutions, by Theorem 3.18

F # ( t ,  x) n  Q C {z e  Q | w(t, x, z) =  0}.

And if there exists an admissible pair (y, z) e  S # T] (x, 0 ) such th a t <^(y(T)) — z(T ) =  zi 
and max ^ (y (s))  =  z2 , then z e  F # ( t ,  x). So we can take z e  Q such th a t w(t, x, z ) =  0 ,

apply an algorithm of trajectory reconstruction to the function w on [t, T] with the initial 
(x, z) as in [ABDZ18], and see if such a trajectory exists. If there is a trajectory in such 
conditions this is an approximation of a weak Pareto trajectory of (M O RP).

Now consider e >  0 and let z£ e  R 2 , such th a t —e <  w (t,x ,z £) <  0. By applying 
an algorithm of trajectory reconstruction to the function w on [t, T] with the initial 
conditions (x, z£) we get an approximation of the optimal trajectory for w(t, x, z£). Now by 
Theorem 3.22, if there exists (y£, z£) e  S[t,T](x, 0) th a t is optimal for the auxiliary control 
problem (3.15). Then (y£, z£) e  P ^ ,£(t,x ) of problem (3.11). Moreover if we consider tha t 
—e <  w (t,x ,z £) <  0  and it is possible to obtain (y£, z£) e  S[t,T](x, 0 ) th a t is optimal for 
the auxiliary control problem (3.15). Then (y£, z£) e  P i,£(t,x ) of problem (3.11).
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3.8 N um erical exam ples
In this section we present some examples where the m ethod proposed in this chapter 

was applied to construct the weak Pareto front and the Pareto front. In all examples the 
HJB equation was solved by a finite difference m ethod implement at C + +  HJB-solver 
“ROC-HJ” [ROC].

3 .8 .1  A  p rob lem  o f b u sin ess stra teg y

Denote by y(s) the quantity of steel produced by an industry, at time s. At every 
moment, such production can either be reinvested to expand the productive capacity or 
sold. The initial productive capacity is x >  0; such capacity grows as the reinvestment 
rate. Let the function u : [0,T] ^  [0,1], where u(s) is the fraction of the output at time 
s th a t should be reinvested. The objective is to maximize the to tal sales. As u(s) is 
the fraction of the output y(s) th a t we reinvest, then (1  — u (s))y (s) is the part of y(s)
th a t we sell by a a price P  at time s, th a t is constant over the time horizon. So the first
objective is

r  rmax / P (1  — u(s))y (s)ds =  min / P (u (s) — 1 )y(s)ds.
Jo J  0

However, consider th a t the owner also wants the production to be around a quantity c, 
so the second objective can be modeled as

min max y(s) c .
se[o,T] 1

Hence the bi-objective problem is

minimize P (u (s) — 1 )y(s)ds, max |y(s) — c|

 ̂ subject to y (s) =  y (s)u (s) (3.53)
y(t) =  xo 
0  <  u(s) <  1 .

For numerical simulation we considered P  =  0.5, c =  0.5 and T  =  2. Note th a t the image 
set of the augmented dynamics is convex. So, by Remark 3.15 the auxiliary value function 
w  is the unique viscosity solution to the following HJB equation:

min ^+w(t, x, z) +  H(x, D xw, D zw), w(t, x, z) — (|x — c| — z2) j  =  0, for t G [0, T ), x G R, z G R2 

w(T, x, z) =  —zi ^ ( |x — c| — z2) for x G R, z G R2. 

where the Hamiltonian is given by

H (x ,p , q) =  m ax(—xp +  Pxqi, 0) — Pxqi, Vx,p G R, q G R 2.

The HJB equation is solved on a x-grid of 3003 nodes on the domain [0,e2] x [—e2, 0] x 
[0, 7]. For this simple example, we use an explicit Euler scheme in time and Lax-Friedrich 
discretization in space (we refer to [ABDZ18, OS91, BFZ10] for more details). This 
discretization is known to be stable and convergent under an adequate interplay between 
the mesh size of the x-grid and the time step.
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(a) Approximation of the 0-level set on 
different grids.

(b) Zoom on F (0 ,x 0). Computation on a 
grid of 3003 nodes.

Figure 3.4: Business strategy problem: analysis of the 0-level set of w(0, x0, ■) for x0 =  0.4

Z z

Now, we fix the initial conditions as follows: x0 =  0.4 and t =  0. Figure 3.4a 
presents the 0 -set-level of the value function w(0 ,x 0, ■) computed on three different x- 
grids (with respectively 753, 1503 and 3003 grid points). This test confirms the (already 
known) stability of the numerical scheme.

On another hand, formula (3.38) allows to give an approximation of the utopian 
point associated with the bi-objective control problem:

z2(t, x0) =  inf |Z 1 e  R 3z2 e  R s.t. w(t, x 0 ,Z1 ,z 2) <  0 |  =  —0.539,

z2(t,x0) =  inf jZ 2 e  R 3z1 e  R s.t. w(t, x0, z1, (2) <  0 j  — 0.0985.

Following (3.42), we get also an approximation of the upper bounds of D:

z!(t, x0) =  inf jZ  e  R w(t, x0, Z, z2(t, x0)) =  0 } =  —0.4359, 

zj(t, x0) =  inf jZ  e  R w(t, x0, z2(t, x), Z) =  0 j  — 0.5711.

These values lead to an approximation of the set

D := [z2 ( t ,x 0 ),zT (t,x 0 )] x [z ^ t,x 0 ) ,z j ( t ,x 0 )].

Figure 3.4b shows the intersection of 0-level set of w (0 ,x0, ■) with the set D. In our case 
this intersection is equal to the Pareto front. The possible points in the weak Pareto front 
are just trivial points and are outside the set D.

The value function w is also useful to reconstruct Pareto optimal trajectories. We 
chose four point z*, i =  1, 2, 3, 4 at the Pareto front, th a t are represented by points with 
different colors in Figure 3.5a. We compute the optimal trajectories for w (t,x 0 ,z^),i =  
1, 2, 3, 4, using the reconstruction algorithm from [ABDZ18]. Figure 3.5b shows these 
optimal trajectories for the initial states (x0 ,z^) (in figure 3.5b, the color used for each 
trajectory refers to the corresponding Pareto value z* in figure 3.5a). Let us point out 
th a t these trajectories are Pareto optimal for the optimal control problem (3.53).

3 .8 .2  P est con tro l prob lem

Consider a Lotka-Volterra model describing the interaction between two species 
(predator-prey model): a prey, th a t is a nuisance for humans, and a predator. Both
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(a) Points Zi for initial condition of com­
puted trajectories

(b) Optimal trajectories for the initial
states (x, Zj)

Figure 3.5: Business strategy: optimal trajectories as Pareto optimal solutions

species grow according to the following system

y i( s ) =  y i ( s ) -  y i ( s )y 2 (s) 
y 2 (s) =  - y 2 (s) +  y i (s)y 2 (s)

where y 1 represents the pest population, y 2 the predator. We can act on this model 
by spraying a chemical to poison the pest (the poison may also kill a part of predator 
population). The dynamical system becomes

y i (s) =  y i (s) -  y i (s)y 2 (s) -  y i (s)Cyxu(s) 
y 2 (s) =  - y 2 (s) +  y i (s)y 2 (s) -  y 2 (s)cy2u(s)

where the constants cy i, cy2 represent the rate of each population th a t will be killed by 
the poison. As in [SBD+06], the value of the constants cy i, cy2 are set to 0.4 and 0 . 2  

respectively. The control function u(s) is restricted to take values of either 0 or 1. The 
goal is to keep nuisance expansion under control by minimizing the maximum difference 
of certain proportion of both species along the time horizon T  -  t:

max 0.25(yi(s) -  K y 2 (s ) ) 2
se[t,T ]

and also minimize the cost of spraying the chemical:

fT
P  u(s)ds,

where K  =  0.7, P  =  0.3 and T  =  10. So, the optimal control problem has two different 
objective functions. Since the control is allowed to take only the values 0 and 1, the set 
of trajectories is not compact. In the relaxed control problem, the control input may 
take values in the interval [0 , 1]. As described in the previous sections, we introduce an 
auxiliary control problem whose value function w  is solution of the following HJB equation 
on [0, T ] x R 4 :

min ^dtw(t, x, z) +  H(x, D zw), w(t, x, z) -  (0.25(xi -  K x 2)2 -  z2) j  =  0, for t  G [0, T ), x, z G R 2

2̂j(T,  x, z) =  —zi V ( o  .25(x1 — K x 2)2 — z2) for x G R 2, z G R 2.

where the Hamiltonian is given by

H(x,p, q) =  - (xi -  x ix 2)pi +  (x2 -  xiX2)p2 +  max(cy1 xipi +  Cy2X2P2 +  Pqi, 0), Vx,p, q G R2 .

t
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The HJB equation is solved on a x-grid of 754 nodes on the domain [0, 3.5] x [0, 3.5] x 
[0, 3] x [0, 3]. As in the previous example, we use an explicit Euler scheme in time and 
Lax-Friedrich discretization in space.

First, we fix the initial conditions as follows: x 0 =  (0.7,0.2) and t =  0. Figure 3.6a 
presents the 0 -set-level of the value function w(0 , x0, ■) computed on five different x-grids. 
This numerical test confirms the (already known) stability of the numerical scheme. One 
im portant feature of the HJB approach to solve bi-objective optimal control problems is 
the possibility of obtain the Pareto front for different initial states with the same auxiliary 
value function w. Figure 3.6b shows the Pareto front for different initial states x0.

(a) 0 -level set of w(0 ,x0, ■) computed on 
different grids

(b) Pareto front for different initial
states x0

z z

Figure 3.6: Pest control problem: 0-level sets for different initial states and on different 
computational grids

From now on, we fix t =  0 and x0 =  (0.7, 0.2) and we consider the approximation of 
the value function w obtained on x-grid of on a x-grid of 754 nodes. From formula (3.38), 
we get an approximation of the utopian point associated with the bi-objective control 
problem:

4 (0 , xo) 

4 (0, xo)

inf

inf

3z2 G R s.t. w(0, x0, Zi, z2) <  0 j  =  0,

3zi G R s.t. w (0 ,x 0 ,z i ,Z2) <  0 j  =  0.3245.

Following (3.42), we get also an approximation of the upper bounds of Q:

Zi(0, x0) =  inf jZ  G R w(0, x0, Z, 4 (0 , x0)) =  0 j  =  0.9560,

z2(0, x0) =  inf jZ  G R w(0, x0, 4 (0 , x0), Z) =  0 j  =  2.5427.

These values lead to an approximation of the set

Q := [4(0,x0),zT(0,x0)] x [4(0,x0),zi2(0,x0)].

Figure 3.7a shows the 0-level set of the value function w (0 ,x0, ■) in red th a t contains the 
(weak) Pareto front F # ( 0 ,x 0) C F # ( 0 ,x 0). Moreover, the black region in figure 3.7a 
represents a region where it is possible to obtain points in F Te(0 , x0), for e =  0.05. In this 
figure the set Q is represented by a box delimited by black dashed lines. Figure 3.7b shows 
the intersection of 0-level set of w (0 ,x0, ■) with the set Q. In our case this intersection is
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(a) The 0-level set of w(0,x0 , ■) (in 
red). The set {z | w(0,x0 ,z) < —e} 
for e =  0.05 (in black)

(b) zoom on F#(0, x0)

Figure 3.7: Pest control problem: analysis of the negative level set of w (0 ,x0, ■), for 
xq =  (0.7,0.2)

equal to the Pareto front F #  (0, x0). The possible points in the weak Pareto front are just 
trivial points and are outside the set 0 .

The value function w is also useful to reconstruct Pareto optimal trajectories. W ith 
the algorithm of trajectory reconstruction from [ABDZ18] we reconstruct an optimal 
trajectory for w(0 ,x 0, z^(0 , x 0), 2 2 (0 , x 0)) (resp. w(0 ,x 0 ,z 1 (0 ,x 0),z)j(0 ,x 0))) th a t is also 
optimal trajectory of the scalar problems F ( 0 ,x 0) =  zjf(0 ,x 0) (resp. F 2 (0 ,x 0) =  z  ̂(0 ,x 0)). 
This trajectory and the associated optimal control is represented in green (resp. in blue) 
in Figure 3.8.

0.8  ■
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0.6

2  0.5  ■

0.4 

0.3 

0.2

0.1  ■ ■

0 L J  . In- - - - - - - .-- - - - - .- - - - - - - -
0 2 4  6 8 10

t

Figure 3.8: Pest control problem: optimal trajectories, and corresponding opti­
mal control laws, associated to the Pareto values (z |(0 ,x 0) ,z 2 (0 ,x0)) (in green) and 
(z1(0 , x 0)), z£(0 , x0)) (in blue)

As can be seen in figure 3.8 the optimal control law for F (0 ,  x 0) is identically 0  (i.e., 
u  =  0), which means th a t not only the point (zjf(0,x0),z2(0 ,x0)) belongs to the Pareto 
front of the relaxed problem F # ( 0 ,x 0), but it is also optimal Pareto for the original 
(non-relaxed) control problem (zjf(0 ,x 0) ,z 2 (0 ,x 0)) G F (0 ,x 0).

The case of the Pareto value (z!(0 ,x 0),z^ (0 ,x 0)) G F # ( 0 ,x 0) is different, because 
the optimal control law seems to  take other values than  just 0 and 1. So, we cannot 
guarantee th a t (z!(0 ,x 0),z)j(0 ,x0)) belongs to F (0 ,x0). However, by theorem 3.8, there 
exists a e-Pareto solution in a neighborhood of (z!(0 ,x 0),z2 (0 ,x0)), where the control 
takes values in the set {0 , 1 }.

We choose e =  0.01 and consider the point (z!(0 ,x0) +  e ,z2 (0 ,x0) +  e) th a t is 
in the black region of Figure 3.7a. In figure 3.9, we display in blue the relaxed optimal



Contributions in finite horizon problems 63

Pareto trajectory-control corresponding to (zi(0, x0), z |(0 , x0)) G F # (0, x0) and in red the 
optimal trajectory-control corresponding to the e-Pareto value (Zi(0, x0) +  e, z | (0, x0) +  e). 
As can be seen in this example, the two trajectories are very close to each other, while 
the structure of the controls laws are different.

Figure 3.9: Pest control problem: in blue: relaxed optimal solution corresponding to 
the relaxed Pareto value (z l(0 ,x 0 ) ,z |(0 ,x 0 )). In red: e-solution to the original problem 
corresponding to the e-Pareto value (z1 (0, x 0 ) +  e, z | (0, x0 ) +  e) with e =  0.01

To analyze more examples of optimal Pareto trajectories, we choose four Pareto 
values z*, i =  1, 2 ,3 ,4 , th a t are represented by points with diffrent colors in figure 3.10a. 
We compute the optimal trajectories for w(0, x0 , z*), i =  1, 2, 3, 4. Figure 3.10 shows these 
optimal trajectories for the initial states (x0 , z*), the color used for each trajectory refers 
to the corresponding Pareto value z* in figure 3.10.

t t t

(a) Points z* for ini­
tial conditions of com- (b) Pareto optimal trajectories and controls
puted trajectories

Figure 3.10: Pest control problem: optimal Pareto solutions in P # (0 ,x0)

We observe th a t the optimal pairs represented in Figure 3.10 are in P # ( 0 , x0) but 
are not in P ( 0 ,x 0), because the respective control functions take values different from 0 

and 1. So here again, e-Pareto values can be taken in the neighborhood of F # ( 0 ,x 0).

3.8 .3  B o a t exam p le

Based on [ABZ13] consider the classical Zermelo type problem. A boat with coor­
dinates y(s) =  (y i (s), y 2 (s)) navigates in a canal R x [-2.5, 2.5], starting from y(0) =  
(xi ,x 2), and wants to reach an island, with minimal fuel consumption. The dynamics is 
given by

y i (s) =  u 2 (s)cos (u i (s)) +  £ -  Y y |(s) 
y  2 (s) =  u 2 (s)s in (u i(s)),
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where u T G [0, 2n] is the first control (angle), u 2 G [0,1] is a second control (the speed of 
the boat), and — Yy2 (s) is the current drift (along the y T-axis). We shall choose the 
param eters =  0.25, y =  0.04, so in this case the current drift is in the same direction 
th a t the boat navigates and is zero near to the shores and increases when is approximating 
of the middle of the river. The fuel consumption is proportional to

f  T/ 0.5u2 (s)ds.
0

A second objective is to m aintain the boat near to one shore

max (0 — y 2 (s)). (3.54)
0<s<T

where we considered 0 =  2.5. Consider the set of constraints given by

K t =  {x G R 2, gT(x) <  0},

where

gi(x) =  max | r a — m ax(|xi — a i|, 2 |x2 — a2 |), r 6 — m ax(|xi — b i | , 1  |x2 — 6 2 1)

and where r a =  0.5, a =  (—3.5,1) and r b =  0.25, b =  (—1.5, 0.25).
The target K2 =  B(c, r0) with r 0 =  0.5 and c =  (0,0.2) is represented by a function 

g2 defined by
g2 (x) =  ||x  — c|| — r 0 .

The optimal control problem is

inf I / 0.5u2 (s)ds, max 0 — y 2 (s)
\J0  0<s<T

y i (s) =  u 2 (s)cos(ui (s)) +  ^  — Y yi( s )
< y  2 (s) =  U2 (s )s in (u i(s)) , (3.55)

y (0 ) =  (xi ,x 2), 
y(s) G K t , Vs G [0,T], 
y (T ) g K 2 , 
u =  (ui, U2) G U ,

where U is the set of measurable controls u =  (u t, u 2) : [0,T] ^  [0, 2n] x [0,1].
Therefore it is a bi-objective problem with different cost functions and with state 

constraints. So we are in the situation of the Section 3.6, and we introduce an auxiliary 
control problem whose value function w is solution of the following HJB equation on 
[0, T ] x R4:

min ^dtw(t, x, z) +  H(x, D xw, D zw), w(t, x, z) — max ^0 — x 2 — z2, g i ( x ) ^  =  0, for t G [0, T ), x, z G R2 

w(T, x, zi, z2 ) =  —z i \J  0 — x 2 — z2 \J  g i ( x ) \ /  g2 (x), x G R2, z G R2. 

where the Hamiltonian is given by

H(x,p, q) =  max(0, +  4  +  0.5qi ) — — yx2)p T, Vx,p, q G R2.
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The HJB equation is solved on a x-grid of 702 x 502 nodes on the domain 
[ - 6 , 1] x [-2 .5 , 2.5] x [0 , 3] x [0 ,5]. As in the previous examples, we use an explicit 
Euler scheme in time and Lax-Friedrich discretization in space.

We fixed the initial position of the boat equal £0 =  (-5 .5 ,1 ). From formula (3.38), 
we get an approximation of the utopian point associated with the bi-objective control 
problem:

z i(0 ,x 0) =  inf |Z i G R 3z2 G R s.t. w(0, x 0 , Zb z2) <  0 j  =  2.071, 

z2(0,x0) =  inf |Z 2 G R 3zi G R s.t. w (0 ,x 0 ,z i ,Z2) <  0 j  =  1.786.

Following (3.42), we get also an approximation of the upper bounds of Q:

zi(0, x0) =  inf |Z  G R w(0, x 0 , Z, z2(0, x0)) =  0 j  =  2.88, 

z2(0,x0) =  inf jZ  G R w(0, x 0 , z i (0, x0), Z) =  0 j  =  3.1.

These values lead to an approximation of the set

Q := [zi( 0 ,X0 ) ,z i ( 0 ,X0 )] x [z£ ( 0 ,X0 ) ,z 2 ( 0 ,X0 )].

Figure 3.11a shows the 0-level set of the value function w(0, x0 , ■) in red th a t contains the 
(weak) Pareto front F (0 ,x 0) C F x(0 ,x0). In this figure the set Q is represented by a box 
delimited by black dashed lines. In this example the intersection of the zero level set of 
the value function w(0, xo, ■) it is not equal to the Pareto front of the bi-objective problem 
(3.55). The Pareto front can be obtained by using Theorem (3.21). First the functions 
ni and n2 can be derived by using (3.45):

n i : [zi ,z i] ^  [z2 , z2], n i(Zi ) = inf{7  1 w (t,x ,Z i , Y) <  0},

n2 : [z2 ,z 2] ^  [zi ,Z1], n2 (Z2) = inf {Y 1 w ( t ,x ,Y,Z2) <  0}.

The graphs of these functions are shown on Figures (3.11b) (blue line) and (3.11c) (green 
line), respectively. By theorem (3.21), the Pareto front for the initial condition x0 is 
obtained as intersection of two graphs. The resulted front is shown on Figure (3.11d). In 
this example, the Pareto front is non convex and discontinuous.

The value function w is also useful to reconstruct Pareto optimal trajectories. We 
chose three points z*, i =  1, 2, 3 at the Pareto front, tha t are represented by points with 
different colors in Figure 3.12a. We compute the optimal trajectories for w(t, x 0 , z^ , i =  
1, 2, 3, using the reconstruction algorithm from [ABDZ18]. Figure 3.12b shows these 
optimal trajectories for the initial states (x0 ,z*) (in figure 3.12b, the color used for 
each trajectory refers to the corresponding Pareto value z* in figure 3.12a). Further­
more the obstacles in the river, th a t is the state constraints are represented in red, 
and the island, th a t is the target set is represented in yellow. Let us point out tha t 
these trajectories are Pareto optimal for the optimal control problem (3.55). The tra ­
jectory in green is optimal for w ( 0 ,x 0 , z i ( 0 ,x 0),z 2 ( 0 ,x 0)) th a t is also optimal trajectory 
of the scalar problems ^ i (0 ,x0) =  z i(0 ,x 0). Moreover the trajectory in blue is opti­
mal for w ( 0 , x 0 , z i ( 0 , x0), z^ ( 0 , x0))) th a t is also optimal trajectory of the scalar problems
# 2 ( 0 , £ 0) =  z | ( 0 ,X0)).
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(a) 0 -level set of w(0 ,x o, ■)

(c) Graph of function n2 (z2)

2.4 2.6
zt

(b) Graph of function n1(z1)

2.4 2.6

Z

(d) Pareto front F (0, x0) equal the intersec­
tion of graphs of ni (zi ) and n2(z2)

Figure 3.11: Boat example: Analysis of the 0-level set of the value function w at t =  0 
and x 0 =  (—5.5, 1).
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(a) Points zi for initial condition of com- (b) Optimal trajectories for the initial
puted trajectories states (x, zj)

Figure 3.12: Boat example: optimal trajectories as Pareto optimal solutions
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3.9 C oncluding rem arks
In this chapter we have investigated a bi-objective optimal control problem with cost 

functions of different nature. We considered the situation where the set of trajectories is 
not compact and the set of Pareto solutions may be empty. We have studied the relation 
of the Pareto front corresponding to the relaxed (convexified) bi-objective problem with 
the original one. More precisely, we proved tha t for any x* is a (weak) Pareto optimal 
solution of the relaxed problem and for any e >  0 there exist a (weak) e-Pareto solution 
for the original problem th a t is in a neighborhood of x *. Moreover, the distance between 
the Pareto optimal value achieved by x * and the optimal value achieved by x is small and
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is of order e.
We gave a characterization of the Pareto front of the relaxed bi-objective problem 

and we show th a t it is contained in a 0 -level set of the value function w associated to an 
adequate auxiliary control problem. We gave also a characterization of the e-Pareto front 
of the original problem by using the same value function w.

We have tested the relevance of our approach on some bi-objective optimal con­
trol problems. The numerical simulations confirm all the theoretical results. However, 
it should be noticed tha t for a control problem with two state variables and two cost 
functions, the m ethod requires to solve a HJB equation in dimension 4. To get an ap­
proximation of the Pareto front in a reasonable time, the dimension of state should remain 
less than  4 or 5. We stress on th a t this thesis addresses mainly some theoretical questions, 
the numerical aspects should be investigated further.

The interesting results obtained in this chapter motivated us to investigate the infi­
nite horizon multi-objective optimal control problems. The study of this kind of problems 
is done in the next chapter.



Chapter 4

Contributions in m ulti-objective  
infinite horizon problems

In this chapter we study multi-objective infinite horizon optimal control problems 
with state constraints and with all objective functions of integral type. Infinite horizon 
problems are im portant in applications when imposing a final time is artificial, for instance 
in some problems tha t arise in economics and biology. Infinite horizon control problems 
have been extensively studied in the literature. An overview on optimality conditions 
of infinite optimal control problems in the form of Pontryagin principles can be found 
in [CHL91, Hal79]. Such control problems have also been investigated within the HJB 
approach, see for instance [BCD97, IK96].

Numerical methods to calculate the value function of optimal control problems have 
also been investigated. The central idea of the numerical methods is the discretization of 
the continuum th a t makes the problem finite, and therefore, enables its solution through 
computers. A well-known technique is the Semi-Lagrangian m ethod [FF14, FG99]. This 
scheme is obtained in two steps. First, by discretizing in time the dynamic programming 
principle, which provides an interesting interpretation of the approximations in terms of 
a discrete representation formula for the value function. The second step consists on a 
space discretization and it results in a finite dimensional problem th a t can be solved.

We investigated multi-objective infinite horizon control problems based on the idea 
proposed in [DZ18] and in Chapter 3 of this thesis, both in finite horizon case. First we 
introduced an auxiliary optimal control problem, free of state constraints. To compute 
numerically the value function of such problem we introduced a semi-Lagrangian scheme. 
Afterwards, with similar arguments as in the finite horizon case we show th a t the weak 
Pareto front is contained in the zero level set of the value function of this auxiliary control 
problem. Moreover, a more detailed characterization of the Pareto front for the m ulti­
objective infinite horizon control problem was presented.

However, after obtaining the (weak) Pareto front for the multi-objective control 
problem
another question tha t arises is: can we obtain the (weak) Pareto optimal trajectories? 
Reconstruction algorithms for finite horizon control problems were proposed for instance 
in [ABDZ18] and [RV91]. Some results can be found in [BCD97, Appendix A], for infinite 
horizon control problems without state constraints and with state constraints using some 
controllability assumption on the set of state constraints. However, there are no results 
in the literature for infinite horizon optimal control problems with state constraints and 
without assuming any controllability assumption on the set of constraints.

So another purpose of this chapter is the reconstruction of optimal trajectories for

68
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infinite horizon optimal control problems with state constraints. The m ethod proposed 
in this chapter consider the dynamic programming principle for the value function of this 
auxiliary problem to generate (weak) Pareto optimal trajectories for the multi-objective 
control problem without any controllability assumption. This procedure is also a new 
result to generate optimal trajectories for infinite horizon optimal control problems with 
one objective where we can apply the m ethod to the auxiliary control problem (2 .2 2 ) 
introduced in [ABZ13].

4.1 P roblem  form ulation
For a given nonempty compact subset U of Rm (m >  1) consider the set of admissible 

controls defined by:

U =  {u : [0, œ [M  Rm measurable, u(t) G U a.e}.

Consider the controlled system:

f y(s) =  / (y ( s )u ( s ) )  a .e s G [0, ^  ( 4  1)
I  y (o) =  x , ( . )

where u G U , and /  : Rn x U M Rn satisfies:

J  (i) 3 Lf >  0, such th a t for any x, y G Rn and for all u G U : , ,
I  | f  (x ,u) — f  (y , u ) | <  Lf |x — y 1, ( . )

Note th a t (4.2) implies th a t there exits c/ >  0 such th a t for all x G Rn

m a x { |/(x ,u ) | : u G U} <  c / (1 +  |x|). (4.3)

It is known th a t under assumption (4.2), for any u G U there exists a unique abso­
lutely continuous trajectory y  =  yU satisfying (4.1). The set of all absolutely continuous
solution of (4.1) on [0, œ [, starting from the position x will be denoted as:

Xx =  {(yU, u) : yU satisfies (4.1) for u G U}.

Let K C Rn be a nonempty closed set of constraints. The set of all admissible 
trajectories starting from the position x will be denoted by

XK =  {(yu, u) G Xx : yU(s) G K, V s G [0, <»[}.

Clearly, in view of (4.2), the set Xx is nonempty, while the set X r̂ may be empty if 
there is no admissible control input th a t keeps the trajectory in the set K.

Now consider the r-dimensional running cost £ : Rn x U M Rr , satisfying

(i) 3 Lj >  0 , i =  1 , . . .  , r  such tha t, for any x, y e  Rn and u e  U :
|C (x,u) — €i(y, u) | <  Li|x — y| V x ,y  e  Rn , i =  1 , . . . , r .  (4 4 )

(ii) 3 M* > 0 , i =  1 , . . .  , r  such tha t, for any x e  Rn and u e  U : (
|£i(x,u)| <  Mi, i =  1 , . . . ,  r.

For x e  Rn , the objective functions Jj(x; ■, ■) : W 1,1 [0, ^ [x W  ^  R are defined, for 
1 , . . . ,  r, as:

Ji(x; y, u) = I e-As£j(y(s), u(s))ds. (4.5)
0
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Note here th a t we are considering th a t the discount factor eAt is the same for both 
objectives, this fact is im portant to be able to obtain a Dynamic Programming Principle 
for the considered optimal control problem. Moreover, in order to prove some results we 
are going to need the following hypothesis on the discount factor A

A >  L /  +  Cf (4.6)

We introduce also the Rr valued objective application J(x ; ■, ■) : W 1,1 [0, to [x U  ^  
Rr , defined by:

J  (x; y, u) =  (Ji(x ; y, u ) , . . . ,  J r (x; y, u)).

Now, consider the multi-objective optimal control problem:

(inf J ( x ; y ^  u)
(4.7)

s.h (y £ , u) e  x ^ .

If there exists a control u e  U at which all objectives a tta in  its optimum, no special 
methods are needed. To avoid such trivial cases we assume th a t there does not exist a 
single control th a t minimizes all objective functions.

4 . 2  A u x i l i a r y  c o n t r o l  p r o b l e m

In what follows we also consider the single objective optimal control problems and 
the associated value functions:

dj(x) =  inf Ji(x; yU, u), i = l , . . . , r .  (4.8)
(yU v)exK

In this section, we introduce a scalar control problem whose value function will 
provide a characterization of the (weak) Pareto front and will also provide all the single 
value functions d^(x), for i =  l , . . . ,  r. For this, define an augmented state vector (x, z) e  
Rn x R r and the following augmented dynamical system for s >  0

f y(s) =  ' (y ( s )  u(s))
! z (s) =  Az(s) -  6 (y ( s )  u(s)) (4.9)
I y (0) =  x, z(0) =  z

By assumptions (4.2) and (4.4) for every u e  U there exists a unique absolutely 
continuous trajectory (yU, zU) satisfying (4.9). Moreover, note tha t

zU.(s) =  eAsZj — f  eA(s-r)€i (yU(r), u ( t) )d r , for i =  l , . . . ,  r
1 Jo

In what follows we are going to assume that:

V t e  R, x e  R", { (  ^ a / ^  U) +  n )  • “  e  U, 0 < , ,  <  M, — <(x, u) 1 ,  (4.10)

is a convex subset of Rn x R r , where M, is the vector formed by the bounds Mj of the 
functions according to assumption (4.4).

W ith the purpose of characterizing the weak Pareto front and the Pareto front for 
the infinite horizon multi-objective optimal control problem (4.7), consider g : Rn ^  R a 
Lipschitz and bounded function such tha tg(x) <  0  ^  x g K . (4.11)
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R e m a rk  4.1 Since K is closed, such a function  g exists. Indeed, let n i,^ 2 >  0 and denote 
by dK the signed distance to K, where

dx(x)
d(x, dK) i f  x  G K C

K(x)  ̂ —d(x,dK ) if x g K.

The function  g(x) =  min (max (—n1 , dK(x ) ) , n2) satisfies the statement (4.11), is Lipschitz 
continuous and |g(x)| <  max{n1 ,n 2}, for all x G Rn .

In the sequel we denote by the Lipschitz constant of g and by Mg the positive
constant such th a t |g(x)| <  Mg, for all x G Rn.

We associate with the multi-objective optimal control problem (4.7) the following
augmented control problem and its value function w:

w(x, z ) =  inf uew i=1
V  /  e Aŝ ( y u (s), u (s))ds -  Zi V sup e - A"g (y U (# )p  . (4.12)

0G[O,̂ [

Under assumptions (4.2), (4.4) and (4.10), the value function w (x,z) has a minimizer 
u G U . Following [DZ18] the value function w satisfies the following property.

P ro p o s it io n  4 .2  Assume that (4.2), (4.4) and (4.6) hold, then the value function  w is 
Lipschitz continuous.

PROOF. Consider (x, z ), (x;, z;) G x . By using the definition of w and the simple 
inequalities:

inf (A) — inf(B) <  sup(A — B) and max(A, B ) — max(C, D) <  max(A — C, B  — D),

we get

|w (x ,z) — w(x',z) |  =  inf i  y ( i  e -Ast i (y u(s), u(s))ds — /  sup e-xe  g (y u(0)) 1
ueU U = A " '0 ' *e[0,°°[ J

— in;f {  V  (  f  e -Ast i (y u, (sh u(s))ds — zA  /  sup e- A e ( 0))
ueU U=W"'0 /  ee[0,oo[

( V  ( i  e-Ast*(y u ( s )  u (s))ds — z^  V  sup e-Aeg (y u ( 0 ) ) )Vi=i b A  /  ee[0,oo [ J

— ( V  ( /  e - As£i(y u' ( s ) u ( s ) ) d s  — zi)  / j^ p  [e - Aeg (y u(d))j  |  

i r /■ 00
< sup < \ /  / e -As [ti(y u(sh u(s)) — ^ y ^ (sh u(s))] ds +  zj — z, 

uew U

/  sup e-Ae |g (y u(d)) — g (y u, (d) )U  .
0C[0,OO [ J

sup
uGU

(4.13)

For T  >  0, define

pT
Ai e As |U(yU(s), u(s)) -  U(yU (s), u (s))| ds, for i = 1 , . . . , r ,

zAi = J  e As |Ui (yu (s ), u(s)) -  ^ (y "  (s), u (s))| ds, for i = 1 , . . . , r .

oo

O
oo
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From (4.4) and Proposition(2.2) (c) we get, for i =  1 , . . . ,  r,

i-T f  T (Lf—A)T   i
Aj <  Li f e-Xs |yU(s) -  yU(s)| ds <  Li / |x -  x '|e (Lf-A)s =  Li —  ------  —  |x -  x '|,

J 0 J 0 L f  -  A

and
A i <  2 Mi f  e-Asds =  e-AT.

J t  a

1

Now choose T  such th a t e-T  <  |x — x'| A and using the fact th a t A >  L f  (assumption 
(4.6)), we get

T —L f j  L i
Ai < - — l—  |x — x '|( |x  — x'| A + — 1 ) =  y— i p|x — x'| A +  - — |x — x' |

L f  — A L f  — A A — L f

< - — |x — x;|, i =  1 , . . . , r ,
A — Lf

and
2M i

A i <  —— |x — x |, i =  1 , . . . , r.
A

Therefore from (4.13)

|w(x, z) — w(x;, z;)|

< su^ V  f . LiL |x — x/| +  |zi — zi | V  sup e-AdLg |yU(0) — y
ueu [ i=^  VA — L f A /  J de[o,<x>[

< m a ^ j  V  Ci (|x — x/| +  |z/ — z|), Lg |x — x/1 1 <  K (|x  — x/ | +  |z — z/|),

for some K  >  0. □

The Dynamic Programming Principle for the multi-objective infinite horizon optimal 
control problem with state constraints is proved in the following theorem.

P ro p o s it io n  4 .3  (D y n am ic  P ro g ra m m in g  P r in c ip le )  Assume that (4.2) and (4.4)
hold. Then, for all h >  0 and (x, z) G R n x Rr , we have

w (x ,z  ) =  i f e  Ahw(y u (h )  zU (h))V flm ax e Ad g (y U(0)U . (4 14)u e ^  v ee[o,h] J

PROOF. For any measurable control u G U , we shall denote u  the restriction of u on 
[0, h] and u 2 the measurable control of U such th a t u 2 (t) =  u (t +  h) a.e. t  >  0. Using 
yU(s +  h) =  y ^ ( h)(s) we obtain on the first hand, for i =  1 , . . . ,  r,:

rœ r œ rh
— As/i „ I „ — Asa I I „ — Asa ( „u

rœ rœ rh
/ e-Asti(yU(s), u (s))ds -  Zi =  / e-AsU(yU(s), u (s))ds +  / e-AsU(yU(s), u (s))ds -  z

J O Jh Jo

= e~Ah e-As£i(yf(s  +  h), u(s +  h))ds -  zU1 (h)^j

"-A h { .L "  e-As^i(yU! i (h)(s), u 2 (s))ds -  zU1 (h)) (4.15)
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and on the other hand

sup e Ajg (y u(d) ) =  sup e A(j+h)g (y ^ (d)^  max e Ajg f r " 1(d)) 
<?e[o,̂ [ 0e[o,ro[ ee[o,h]

e Ah sup e Aé>g ( y ^ , , , ,
ee[o,^[ y V ^* 1 (h) (0 )) ) V  e A0g (y ui (0 ) ) . (4 16)

Combining (4.15) and (4.16), taking measurable controls u 1 : [0, h] ^  U and u 2 e  U we 
obtain

w(x, z ) =  inf inf 
"1 "2 V

.i=1

I e - A>i,(y;'^i (h,(s), u 2 (s))<fe -  z"/ (h)

V
— Â  ̂ / ,rU2— Ahe sup e '“g ( y

^€[o,œ[ yU1 (h)'w )  ) V  „‘îioX]e—A" g (yU1 (e))

inf (e Ahw (y u1 (h )  z" 1 ̂ V m a x  e Ajg (y u1 (d)) 
U1 v ee[o,h]

which is the desired result. □

Another interesting property is th a t w is monotone with respect to the third argu­
ment as proved in the following proposition.

P ro p o s it io n  4 .4  Assume that (4.2), (4.4) hold and let x G Rn. Then

Vz, z' G Rr , ^z <  z' ^  w(x, z) >  w(x, z') j .

PROOF. Let z ,z ' G Rr such th a t z <  z' and one admissible control u G U . Then for all 
i =  1 , . . . ,  r  we have th a t

J i (x ; y", u) -  zi <  J i (x; y "  u) -  z

and then

V  (J i (x ; y "  u) -  zi)
,i=1

< V  (J i (x ; y " , u) -  zi)
i=i

Taking the minimum over all u e  U it follows from the last inequality th a t

w(x, z') <  w(x, z).

□

R e m a rk  4.5 It is possible to prove that the value function w satisfies the following HJB  
equation

m in (A w (x ,z)+  H (x, z, D xw, w), w (x ,z ) — g(x)) =  0  for  x e  Rn , z e  Rr (4.17)

where the Hamiltonian H  is defined by:

H (x ,z ,p , q) =  sup ( - f  (x ,u)p  -  (Azi -  h (x ,u ))q i
«en V ^

CO
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However, the value function  w is not the unique solution of (4.17). Usually numer­
ical approximations are analyzed (convergence and error estimate) under the assumption 
that a comparison principle holds. In the following section we propose a numerical scheme 
for solving (4.12) and we prove the convergence results by using only the Dynamic Pro­
gramming Principle (4.14).

4.2 .1  Sem i-L agrangian  schem e for th e  au xiliary  op tim al control 
prob lem

Based on [FF14], in order to obtain a Semi-Lagrangian scheme for the auxiliary 
optimal control problem (4.12) we first consider a time discretization. For this, we fix a 
time step h =  A t and set tj =  j h  (j G N). The simplest way to discretize (4.1) is by using 
the explicit Euler scheme, which corresponds to the following discrete dynamical system:

yj+i =  y- +  h f  (y- ,u j j  G N
yo =  x

(4.18)

Here, the sequence of vectors Uj G U has the role of a discrete control. We denote by 
un =  {u j} the sequence as a whole, and by Un the set of all sequences {u j} C U. Moreover 
we associate this sequence with the continuous piecewise constant control defined by

W {u G U : u(s) =  Uj, s G [tj,tj+1), j  G N}.

Moreover we are going to denote by yn =  {y“} the sequence given by (4.18).

R e m a rk  4 .6  It is also possible to consider higher-order time discretization by using, 
for example, Runge-Kutta type scheme in (4.18). Some references in this subject are 
[Cun00, FF94].

Given the time discretization (4.18) for the controlled system, the corresponding 
discrete version of the cost function J i , i =  1 , . . . ,  r, (4.5) may be obtained by a rectangle 
quadrature

J “(x; y“ ,u ” ) =  f t . y e -A‘> <i(ÿ“ , Uj ).
j=O

(4.19)

W ith the discrete dynamics and cost functional, (4.18) and (4.19), respectively, we 
can define the discrete value function

wh(x, z ) =  inf «neu n V  h E e Atj£i (yU,u j ) - z
i=1 j=O

V sup e
0<j<œ

-At
'g(yU) (4.20)

Adapting the arguments of the continuous case, it is possible to prove a discrete 
Dynamic Programming Principle for the optimal control problem (4.20).

P ro p o s it io n  4 .7  [Discrete Dynamic Programming Principle (DDPP)] Assume that (4.2), 
(4.4) and (4.6) hold. Then wh is Lipschitz continuous. Furthermore for  h >  0, (x, z) G 
Rn x Rr and for any integer k,

wh(x, z) inf
uneu n e Atkwh(yk,2 t ) \ J o n i|22_ i e Atjg (y -U  , (4.21)

where zik =  eAtk I zi — h e Atj€i (yj-, u- M for  i =  1 , . . . ,  r.
j=o
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PROOF. Consider (x ,z), (x ',z ') G x . By similar arguments as in the proof of 
Proposition 4.2 we obtain tha t

|wh(x,z) -  wh( x ',z ) |<  sup < \ J
«nenn - . -, 1 2=1

h e—Atj
j=o

— At,’

4  (yjX ,u j ) -  4 (yL  ,u j ) +  zi _  zi

V  sup e Atj |g (yjx) — g (yj*,)
0<j<^

For i =  1 , . . . ,  r, we have th a t

A, =  h £  e -Aj O y “ , «.j) — Cj(y“ , , « )
j =0

< Lih ^  ] e j 1 yjx — yjx, 1
j =0

< L ,h |x  — x'| ^  e(Lf- A)tj,
j=o

as by assumption (4.6) A >  L / then ^ ° = 0 e(Lf- A)tj is convergent. Moreover

sup e -Atj 1 g (yjx) — g j ) 1 <  Lg|x — x 1
0<j<^

Therefore there exist K  >  0 such tha t

|wh(x, z) — wh(x', z ')| <  K (|x  — x'| +  |z — z'|), 

th a t means th a t the function wh is Lipschitz continuous.

( fc-i
z, — h ^ e -Aij£j(yj ,« j ) , then for 

j=o
i =  1 , . . . ,  r, we get

œ œ k—1

h ^  e—AtjC(y“ , Uj) -  zi =  h ^  e—AtjC (y « , Uj) +  h ^  e—AtjC(y“ , U ) -  zi
j=o j=fc j=o

œ
h ^ e —A(tj +tfc)̂ i (yj“ fc, U ) -  e—Atkz) e zik

j=o

=  eAtk h 5 ]  e AtjC j  , Uj) -  zifc J  (4.22)

and on the other hand

sup e—Atjg (yjx) =  sup e—A(tj+ifc)g (y « ) V  oj ax 1 e—Atjg (yjX)o<j<œ o<j<œ o<j<k— 1

=  e—Atk sup e—Atjg(y« ) V  max e—Atjg (y « ). (4.23)
o<j<œ o<j <k—1
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Combining (4.22) and (4.23) we obtain 

w(x, z) =  inf
œ

\ / e AiM  h ^  e -AtjC j  ,U ) -  z^
,i=1 V j =0

\ /  e -Atk sup e -Atjg(y“ ) \ /  max e -Atjg(y“ )
V o<j<œ 7% V o<j<fc-i

inf <e Atk wh(yk , zk) \ /  max e Atj  o(y7 ) 
"eu H  V o<7<k-1 yvy 7x7u

which is the desired result. □

The following result gives us a convergence rate concerning the time discretization.

T h e o re m  4.8  Assume that (4.2), (4.4) and (4.10) hold and let wh be defined as in (4.20) 
and w be the value function defined in (4.12). Then

||w — wh||^  <  Ch, for some constant C  >  0 and h g]0, 1[.

PROOF. S te p  1. Let (x ,z) G R x Rr , h g]0, 1[. By the assumptions there exist u* =  
{u*} G and a associate discrete trajectory {y*} th a t are optimal for the discrete 
optimal control problem wh(x ,z). Consider a control uh(s) G Uh such th a t uh(s) =  u* 
for s G [tj,tj+ i[, j  G N. Then by definition of w, (4.12), and wh, (4.20), we obtain tha t

w(x, z) -  wh(x, z) <
.i=1
V ( /  e Aŝ i(y Uh(s) u h(s))ds -  z Y  sup e Aeg (y Uh (0 )) 

0e[o,œ[ v '

V  h E e Atj^i(y ] ,u i ) - z i
Li=1 V j=o

\ j  sup e Atjg(y*).
o<j<œ

< V  ( li e Aŝ i(y Uh(s) u h(s))ds -  h £ e Atĵ (y*,u J*)
i=1

v sup e g (y xh (0 M -  sup e jg (y*)
0e[o,œ[ '  '  o<7<œ

(4.24)

S te p  1 .a Based on [BCD97], we claim tha t, for i =  1 , . . . ,  r  exist K i >  0 such tha t

e AsC (yUh(s), uh(s))ds -  h j ^ e  Atj£i(y*,w*)
7=o

< Kih. (4.25)

In the following [s /h j denotes the largest integer which is less than  or equal to s /h . Define 
y Uh (s) =  y*, for s G [t — j , t j+ 1[ and observe th a t y^^ can be expressed as

* r Ls/hJh *
yUh(s) =  x + /  f  (yUh(T), u h(T))dT s >  0.

o

Then

|yUh(s) -  yUh(s)| <
« [s/h] h

| f ( y C C ) , u h(T)) -  f ( y C ( t)  uh(T) ) |dT +  / | f ( y C ( t ) u h(T) ) |dT.7 [s/hjh

oo

DO

o

s

0
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By the Lipschitz continuity of f

|yUh(s) -  y Uh(s)| <  l J  |yUh( t ) -  y Uh( t ) |d r  +  / Cf(1  +  |x |)ecfTd r
J 0 J [s/hjh

/* Ls/hjh * *
<  i J  |yUh( r ) -  y Uh(r ) |d r  +  Cf(1  +  |x |)ecfsh.

0

Hence, by Gronwall’s Lemma (Lemma 2 .1 )

|y f (s) -  yUh(s)| <  cf (1  +  |x |)ec/sheLfs. (4.2 6)

Now, for i =  1 , . . . ,  r  we have th a t

e AsG(yUh(s), < ( s ) )d s  -  d j ^ e  AtjG(g*,u*)
j =0

AX* +  y ,

with

X  =  I e 
0
r*00

—As X y Uh(s) u h(s)) -  G (yU h(s)uh(s)) ds

Y e AsG (yU h(s)uh(s))ds -  d J X  Atj A (y j ,u *)
j =0

co

0

oo

0

for i =  1 , . . . ,  r. Let us estimate the X*s and Y/s, (i =  1 , . . . ,  r). From (4.4) and 
(4.26), we obtain, for i =  1 , . . . ,  r

—AsXi <  Li 1 e 
0

y U*(s) -  y Uh(s) ds <  LiCf (1  +  |x |)d  /  e(cf+Lf A)sds

^ i c / ( 1 +  |x|) ,
<  (A -  c/ -  Lf ) ,

where we used the assumption th a t A >  c/ +  L / . From definition of y xh and uh and (4.4) 
we have tha t

O O

0

Y  < |G(yXh(s), < ( s ) ) |e -As — e-ALs/hJhds <  m J  e-As — e-ALs/hJhds,
do do

for i =  1 , . . . ,  r. Now , for h <  1 we have th a t s — 1 < s  — h <  |_s/h_|h <  s, then from the 
mean value theorem we obtain tha t

p<X>
Y  < M G  e-A(s-1)(A(s — Ls/hjh))ds <  M*eAh.

Therefore (4.25) is proved with K* = 

S te p  1.b Now, we claim th a t

x|)
(A -  c/  -  L/ )

+  MieA.

„ - A0 ,sup e g ( y æ h
$€[0,œ[

sup e Atj g (y*)
0<j<œ

< K d . (4.27)

O O oo

0

u
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In fact, by (4.26), we obtain

sup e Aeg (y  uh(0)) -  sup e A jg j

<

0<j<œ0E[0,œ[

sup max e g y æh (0) -  sup e j g y æ h (tj)
0<j<œ $^[tj , j  + i ]  ̂  ̂ 0<j<œ y

sup max e Aeg ( y Uh(0)) -  sup e Atjg(y))
0<j<TO $E[tj ,tj + i] '

+

0<j<œ

sup e j g y æ h (tj ) -  sup e j g(y))
0<j<œ 0<j<œ

< sup
0<j<œ

< sup
0<j<œ

max e wg yUh (0) -  e-Atj g (yUh (tj)
$^[tj ,̂ j + 1]

+  sup e
0 < j <œ

- At j
g ( y Uh (tjO  -  g (y,*)

max
$^[tj ,tj + i ]

e-A(e-ij }g yUh (0) +  e -Atj g yUh (0) -  g yUh (tj) +  sup Lg e
0<j<œ

— At j
y  uh (tj ) -  y,*

<Mgh +  Lg sup max e j |yæh (0) -  y æ h (tj)| +  sup Lge j y æh (tj) -  y)
0<j<œ #£[tj,tj + i] 0<j<œ

< M gh +  Lgc f (1 +  |x|)ecfh sup e(cf-A)tj +  Lgc f (1 +  |x|)h sup e(cf +L/-A)tj|.
0<j<œ 0<j<œ

Then, by the assumption th a t A >  c/ +  L /

sup e Ajg (y " h (0 ^  -  sup e Atjg j  
e[o œ[ V /  o<j<œJe[o,œ[

<  (Mg +  LgC/(1  +  |x|)eCf +  LgCf(1  +  |x |))k

(4.28)
so (4.27) is proved with K 0 =  Mg +  Lgc / (1 +  |x |)ecf +  Lgc / (1 +  |x|).

Substituting the previous estimates (4.25) and (4.27) in (4.24) we obtain th a t

w (x, z) -  wh(x, z) <  \ J  K 2h. (4.29)
i=o

S te p  2. To perform the reverse estimate, Let (x, z) e  R x Rr , h e]0,1[ and consider 
u* e  U th a t is a minimizer for w(x, z ). Then

w
i=1

( x ,z ) = V  / e Ash (y"*( s ) u *( s ) ) d s - z i V  sup e Ajg ( y f (^))
' 0e[o,œ[

>
i=1
V  /  e As£i (y"*( s )  u *(s))ds -  zi V  sup e Atjg (y"*(tj ^  (4.30)o<j<œ

Moreover, by Hypothesis (4.10), according with [AC84, Thm. 0.5.3], for j  e  N, 
there exists u E U such tha t

' ,+ 1
f  (y .. u *(s))ds =  h f  (y, , m,  ) (4.31)

where yg is given by (4.18) with the controls « .  Define y x(s) =  yg, for s e  [ tj ,tj+1[. 
Observe th a t by (4.31), y x can be expressed as

Ls/hJ
yx(s) =  x +  h Y ^  f  (yj ,u j )

j=o
i>(|_s/hJ+1)h

=  x +
o

f  (y j , u *(t ))dT

r (Ls/hJ+1)h
x +  /  f  (yx(T), u *(T))dT s >  0 .

o

C O

C O

t
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r(|_s/hj+1)h
Then, by Lipschitz continuity of f

f s f (
|yu (s) -  y*(s)| < /  | / ( y£ ( t )  u *(T) ) -  A y * ^  u *(T))ldT + /  1/ (y*( t ) u *(T))ldTJO Js

< L/  f  |yu *(t) -  (t)|dT +  c/  ( 1 +  |x|)ecf(s+1)h.
O

Hence, by Gronwall’s Lemma (Lemma 2 .1 )

y  *(s) -  Yx(s)| <  c / (1  +  |x |)ec/(s+1)heLfs. (4.32)

Now from definition of wh and (4.30) we obtain th a t
r /  œ

wh(x,z) -  w (x ,z) <  V  ( h ^  e-Atj€i(ÿ7 ,Uj) -  zi
_i=1 V 7=o

W  sup e Atj g (y7 )
0<j<o

e Aŝ i(yu * (s), u*(s))ds -  Zi
i=1

sup e Atj g (y^1 * (tj
0<j<o

r*00

< V ( h ^ e Atj£i(y j ,u j ) -  /  e As£i (y u ( s ) u *(s))ds
i=1 V j =0

At,’

(4.33)

Y  suP e Atj (g(y7) -  g (yj1 * (tj )))
0< j < o

S te p  2 .a  For 1 =  . . . ,  r  we have tha t
0  p OO

h ^ e - Atĵ (ÿ j ,u j ) -  /  e - Aŝ (y u ( s )  u * (s))ds
j =0

< K ih, (4.34)

for K i positive constants for i =  1 , . . . ,  r. The proof follows with similar arguments as in 
Step 1.a, so for i =  1 , . . . ,  r

h ^  e Atj€i(gj,U j) -  e As6 j(yU *(s), u*(s))ds
j =0

< X  i +  Y i

with

X i =  /  e AsK (y f (s ) ,u *(s)) -  ^ y ^ ^ u *(s )) | ds

e Aŝ i(yæ(s), u*(s))ds -  h j ^ e  Atĵ (g j,w 7 )
j =0

CO

O

So Y  <  MieAh. and assuming th a t A >  Cf +  Lf we obtain X i <

therefore (4.34) is proved with K i =  LiCf6— (1  +  |x|) +  MieA.
(A — Cf — Lf)

S te p  2 .b  By (4.32), we have tha t

LiCf ecf (1  +  |x|) 
(A -  c/ -  L / )

h,

suP e Atj (g(y7) -  g (y£* (tj ))) 
0<j<o

< sup e Atj Lg |y7 -  y j1 * (tj )|
0<j<o

=  sup e -  AtjLg|yx(tj ) -  y u *(tj )| 
0<j<o

< Lgc / (1 +  |x |)ecf h sup e(cf+Lf- A)tj.
0<j<o
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As A > c /  +  Lf we obtain tha t

sup e Atj (g(yj ) -  g ( y f  (tj
0<j<œ

< LgCf (1 +  |x |)ecf h =  K 0 h, (4.35)

where K 0 =  Lgc/ (1  +  |x |)ecf.
Substituting the previous estimates (4.34) and (4.35) in (4.33) we obtain th a t

wh(x, z ) — w(x, z) <  \ /  K jh. (4.36)
i=0

Therefore, as (x, z) G x Rr are arbitrary, from (4.29) and (4.36) we obtain tha t

||w — wh||^  <  Ch, for h g]0, 1[, 

where C  =  m ax {\/r= 0 K»h, VI= 0 K»hj. □

R e m a rk  4 .9  The result of Theorem 4.8 can also be obtained by assuming that the func­
tion f  is bounded and A >  L / instead of A >  L / +  c / . In this case the estimate

| y f  (s) — yUh( s ) |<  M /heLfs,

holds true instead of (4.26) and (4.32). Following the same steps of the prove of Theorem 
4.8 and considering the fact that A >  L / , Hypothesis (4.6), it is possible to obtain C  >  0 
such that

||w — wh||^  <  Ch, for  h g]0, 1[.

The full discretization (time and space) for (4.20) is performed in a standard way 
by considering, for A =  (h, Ax, Az), a regular grid

G =  {(xk, z») | x k =  (fciA xi,. . . ,  knA xn) and z» =  ( i iA z i , . . . ,  ir Azr ), (k, i) G Zn x Z r j.

So the fully discrete scheme is the following

=  min { e-Ah[wA] (xfc +  h f  (xfc,u ) ,e Ah (z» — hk(xfc,u))) ^ # (x fc )} , (4.37)

where [wA] is an interpolation function of wAj, k G Z, i G Z.
We observe th a t starting from a node (xk, z») from the grid G, the point of the 

approximate trajectory x k +  h f  (xk, u) and eAh(zj — hk(xk, u) may not be a point of G. It 
is for this reason th a t we calculate

[wA] (xfc +  h f  (xfc, u), eAh (z» — hk(xfc,u ))) 

by a bilinear interpolation. For this consider the barycentric coefficients pjp^u) such that:

0  <  hk’' (u) <  1, ^  ^ k’*(u) =  1,
j

^ ^ ^ ’» (u^- =  x k +  h f  (xk, u) and (u)zj =  eAh (z» — hk(xk, u ) ) .
j j

So one possible interpolation for [wA] (xk +  h f  (xk, u ) ,e Ah (z» — hk(xk,u ))) is given

by ( )
[wA] (xfc +  h f  (xfc, u), eAh (z» — hk(xfc,u ))) =  ^  ^ ’» ( u ) ^ .

j
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T h e o re m  4.10 Assume that (H i), (H 2 ) and (H 4 ) hold and let wA defined as in (4.37) 
and w the value function defined in (4.12). Then there exist C1, C2 >  0 such th a t

||w — wA|U  < C1 h +  C2 l(Ax; A z )l, for h e ]0 , 1 [.
h

PROOF. In order to estimate the space discretization error for the fully discrete scheme 
(4.37), consider a control u* tha t is optimal for wh and denoting =  x k +  h f  (xk,«*) 
and z  =  eAh (z, — h£(xk,«)) we obtain, by the discrete Dynamic Programming Principle, 
Proposition (4.7), the one-side estimate

w£i -  wh(xfc,zi) <  e Ah[wA](xfc, * ) \ /  g(xfc) -  e Ahwh(xfc, zi) \ /  g(xfc)

e Ah [wA](xfc,zi) -  [wh](xfc,zi) +  e Ah [wh](xfc,zi) -  wh(xfc,zi)

<  e -Ah||wA — wh|U  +  O (|(A x, A z)|),

where [wh] is an interpolation function of wh, and by Lipschitz continuity of wh, we have 
bounded its interpolation error with O (—x, A z). W ith similar arguments it is possible to 
obtain the opposite bound and passing to the w -norm , we obtain

||wA — wh||TO <  C2 ——x — — , for some C2 >  0. (4.38)
h

Combining time and discretization error estimates (Theorem 4.8 and equation (4.38)), we 
have the complete estimate:

l(—r  —z)l
||w — wA|U  <  C 1h +  C2 ----- ,-------- , for h e ] 0 , 1 [ and C 1, C2 >  0 .

h
□

4.3 C haracterization  o f th e  P areto  fronts
In order to characterize the weak Pareto front for the multi-objective optimal control 

problem (4.7), for x e  Rn , consider the negative level set of w(x, ■) :

Z (x) =  {z e  Rr | w(x, z) <  0} .

By Proposition 4.2, the set Z(x) is a closed set of Rr . However, one can notice tha t 
this set may be empty whenever X r̂ =  0 , th a t is, when there is no admissible trajectory 
th a t remains in the set K. In this case the weak Pareto front is also empty. In particular, 
for x e  Kc, Z(x) =  0 .

For every x e  Rn and i =  1 , . . . ,  r, we introduce also the value:

z*(x) :=  inf jZ  e  R 3z e  Rr with z, =  Z, w (x ,z) <  0 j . (4.39)

W ith this notation, z* =  if Z(x) =  0. Moreover, if Z(x) =  0 we can remark tha t
r

z  (x) c  ^ [zj<(x),+ w [ . (4.40)
i=1

The following proposition establishes a link between the negative level set of w, Z (x) 
and the optimal control problems defined in (4.8).
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P ro p o s it io n  4.11 Assume that (4.2), (4.4), (4.6) and (4.10) hold. Let x G K such that

Let show now tha t Vj(x) >  z*(x). W ithout loss of generality, we assume here tha t 
i =  1. The proof will be the same for i =  2 , . . . ,  r. Assume th a t ^ 1(x) <  z1 (x). Then 
there exists 8  G R such th a t ^ 1(x) <  8 <  zj(x). The inequality ^ 1(x) <  8 implies tha t 
3  (y ^  u) G X r̂ such th a t J 1 (x; yU, u) <  8 . Then for any z» >  J»(x; yU, u), i =  1 , . . . ,  r  we 
have that,

But, we have chosen 8  such th a t 8  <  z1 (x) which is impossible. □

We can show th a t the weak Pareto front of the problem (4.7) is a subset of the zero 
level set of the value function w.

T h e o re m  4.12 Assume that (4.2), (4.4), (4.6), (4.10) hold. Let x such that Z(x) =  0. 
Then the weak Pareto front (x) for the multi-objective optimal control problem (4.7) 
with the initial condition x is a subset of the zero level set of the value function  w(x, ■):

Z (x) =  0. Then ^ ( x )  <  + œ , for  i =  1 , . . . ,  r  and the following relations hold:

(i) For every z G Rr , we have that z G Z(x) i f  and only i f  there exists u G U such that: 

y f(s )  G K Vs G [0, œ [ and Jj(x; y f , u) <  z^ for  i =  1 , . . . ,  r. (4.41)

(4.42)

z G Z(x) ^  3 u G U , s.t. V s G [0, œ [, y f(s )  G K,

(ii) Let i G {1 , . . . ,  r  j. It is clear from the characterization of the set Z(x) th a t if 
Z(x) =  0 then X r̂ =  0 and so V»(x) <  + ro .

Let show tha t $j(x) <  z*(x). By item (i) we have th a t for all z G Z(x)

3 (y f, u) G s.t. Jj(x; y f , u) <  zj for i =  1 , . . . ,  r.

Therefore Vj (x) <  zj for all z G Z(x) and then

Vj(x) <  inf {Z G R | z G Z  (x) with zj =  Z} =  z*(x).

r
w(x,^,Z2 , . . . , z r ) =  (Ji(x; y f , u) — £) V  \Z  (Jj(x; yf , u) — Zj) \ J  sup e A0g(yf (0)) < 0.

i=2  0e[o,œ[

And then w(x, 8 , z2, . . . ,  zr ) <  0  which implies th a t

8 G {y G R | 3z G Rr with z1 =  7 , w(t, x, z ) <  0}.

F  (x) C F w (x) C {z G Rr | w (x,z) =  0}.
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PROOF. Let z G F w(x). Therefore there exist an admissible pair (yU, u) G X r̂ such tha t 
J(x ; yU, u) =  z and (yU, u) is a weak Pareto solution of (4.7). By definition of w, we 
get th a t w( x , z ) <  0. Assume th a t w(x,z)  <  0. Then by Proposition 4.11 there exist 
(yU u) G X r̂ such tha t

J i (x; yU, u) <  zi =  J i (x; yU, u), for all i =  1 , . . . , r ,

which is in contradiction with the weak optimality of (yU, u). We conclude tha t

w(x, z) =  0 .

□

Let x g K such th a t Z  (x) =  0. For i =  1 , . . . ,  r  define

z i (x) = inf{C G R| ( (z1 (x ) , . . . , z *-i(x) ,C,z*+ 1 ( x ) , . . . , z*(x)) G Z (x )} .

By definition, z*(x) <  zi (x) <  + ro , for all i =  1 , . . . ,  r. We consider the closed set
of Rr

r

g = n [z*(x) ,zi (x)]. (4.43)
i=1

T h e o re m  4.13 Assume that (4.2), (4.4), (4.6) and (4.10) hold and let x G K be such 
that Z(x) =  0. The following assertions hold:

(i) F (x ) C F w(x) fi G C {z G G | w(x, z ) =  0}.

(ii) Let z G G such that w(x, z) =  0. I f  there exists a admissible pair (yU, u) G X r̂ such
that J i (x; yU, u) =  zi , for  i =  1 , . . . ,  r  then z G F w(x).

PROOF. (i) By Theorem 4.12 we obtain immediately th a t

F w(x) f  G C {z G G | w(x, z) =  0}.

Moreover F (x ) C F w(x). It remains to prove th a t F (x ) C G.
Let z G F (x ). By (4.40) we obtain tha t zi >  z*(x) for i =  1 , . . . ,  r. To prove tha t 

z <  z(x), assume th a t there exist j  G { 1 , . . . ,  r} such th a t z7 >  z7 (x) and consider

z  =  (z1 (x) , . . . , z*-i (x) , (x), z*+i (x) , . . . , z*(x)).

By definition of z*(x), z(x) and w, it comes th a t w(x, z) =  0 and there exist (yU, u) G X r̂ 
such tha t J(x ; yU, u) <  z <  z with Zj <  z7 , which is impossible because z G F (x ). 
Henceforth z <  z(x).

(ii) Let z G G such th a t w(x, z ) =  0 and there exists an admissible pair (yU, u) G X r̂ 
such th a t

Ji(x; yU, u) =  zi for i = 1 , . . . , r .

By definition of w

inf V  (J i (x ; y u, u) -  zi)
i=1

V  sup e-Aeg (yU(d)) =  0 .
#e[o,œ[



T hat means, there exists no admissible par (yU, u) G X r̂ such th a t

Jj(x; yU, u) <  Jj(x; yU, u) =  zj for all i = 1 , . . . , r .

Therefore, by definition of the weak Pareto optimal solution z G F w(x). □

In order to obtain a more precise characterization of the Pareto front we introduce 
the operators n k, for k =  1 , . . .  , r  :

n  : Rr M Rr - i , n fc : z M n fc(z) =  (zi , . . .  , zfc_i, zfc+ i , . . .  , zr ). (4.44)

Let x g K be such th a t Z  (x) =  0. For k =  1 , . . . ,  r  denote by Qk the subset of Rr - i  given 
by

r
Qfc =  n fc(Q) =  ^  [z* (x ), zj(x)[,

j=i, j=k

and introduce the extended functions F  : Qj M [z*(x), zi (x )[U {+ ^}  defined by

F (x )  =  inf{7  | w ( x , z i , . . . ,  z j-i, 7 , zi+i , . . . ,  zr ) <  0}, (4.45)

with z =  (zi , . . . ,  zj - i , zj+i , . . . ,  zr ) G Qj.

P ro p o s it io n  4 .14  Assume that (4.2), (4.4), (4.6) and (4.10) hold and let x G K be such 
that Z(x) =  0. Then, for all i =  1 , . . . ,  r, the functions r j (-) are decreasing:

VZ,Z' G Qj, (< <  Z ' ^  r j ( z ) >  r j( z '}).

PROOF. Let i G {1 , . . . ,  r} and assume th a t there exists £ <  Z such tha t

W  < r j ( z ).

It follows from definition (4.45) th a t w(x, Zi , . . . ,  Zi - i , a , Z m , . . . ,  Zr ) >  0, for all a  <  r j (Z).
Let us take a  =  F ( £ ) and consider the point z =  (Zi , . . . ,  Zi - i , r j (Z),Zj+i , . . .  ,Zr ). It 

is clear th a t w(x, z) >  0. On the other hand, by Proposition 4.4 we obtain tha t

w(x,z)  =  w(x,Zl , . . . ,Zj - l , r j (Z),Zj+i , . . . ,Zr ) <  w(x , Zl, . . . , Zj-1 , r i (£ ) , Zj+i, . . . ,£r ) <  0

because £ <  Z. This is in contradiction with the fact th a t w( t ,x , z )  >  0 as established 
before. □

Now, for i =  1 , . . . ,  r  we use the notation Gr r j for the set 

Gr r j  =  { (z i, . . . , z j - i ,  r j ( z ) , z j+ i , . . . , z r ) | z =  ( z i , . . . ,  z j-i, z j+i , . . .  , zr ) G Qj}. (4.46) 

The next theorem gives a characterization of the Pareto front.

T h e o re m  4.15 Assume that (4.2), (4.4), (4.6), (4.10) hold and let x be such that Z(x) =  0. 
Then r

F (x ) =  p |  GrTj.
j=i
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PROOF. We split the proof on two steps.
S te p  1 Let us show th a t P|[=1 G r F  C F (x ). Let z G P|[=1 G rW  First, we have to 

show th a t such a point is feasible, th a t is, there exists an admissible pair (y£, u) G 
such th a t J(x ; yU, u) =  z. By definition of the functions F ,  i =  1 , . . . ,  r, we have tha t 
w(x, z) =  0. Then there exists at least one admissible pair (yU, u) G X^ such tha t

r
V  (Ji(x; y^, u) -  Zi) <  0  ^  Ji(x; y£, u) <  zi, i =  1 , . . . , r .  (4.47)
i=i

Assume th a t z is not feasible. Then for any admissible pair (yU, u) G X^ satisfying
(4.47), there exist j  G { 1 , . . . , r }  such th a t Jj (x; yU, u) <  z j. Let us recall th a t by 
choice of z we have th a t zi =  r i (n i (z)). Then by taken Z =  Jj (x; yU, u) we obtain 
th a t w(x, z1 , . . .  , zj - 1 , Z, z j , . . . ,  zr ) <  0  with Z <  T?(n^(z)) which is in contradiction with 
the definition of r - n j ( z ) )  (see (4.45)).

Now, let us show th a t z is Pareto optimal for problem (4.7). Assume tha t there 
exists (yU, u) G X^ such th a t

J ( x ; y ^  u) =  ^

with Z <  z and Z =  z. Then w(x,Z) <  0. As Z <  z and w(x, ■) is decreasing (Proposition 
4.4) we have th a t w(x, Z) >  w(x, z) =  0. So we can conclude th a t w(x, Z) =  0. Now recall 
th a t

Z <  z and Z =  z ^  Zi <  zi , Vi =  1 , . . . ,  r  and 3 j  G {1 , . . . ,  r} s.t. Zj <  z j.

Then 0 =  w(x, z) >  w(x, z1 , . . . ,  zj _ 1 , Zj, zj + 1 , . . . ,  zr ) with Zj <  z1 =  r j  (n j (z)) which is a 
contradiction with the definition of r j .

S te p  2 Let us show that
r

F (x ) C p |  G rW
i=1

Assume th a t z G F (x ) and let (yU, u) G X^ be an admissible pair such th a t

J ( x ; y ^  u) =  z .

It follows from Theorem 4.12 th a t w( x , z ) =  0. Then it is obvious th a t r i (n i (z)) <  + ro , 
for i =  1 , . . . , r .  If z G Pi r= 1 G r r i then 3 j G { 1 , . . . , r }  such th a t zj =  r j  (n j (z)). As 
w(x, z) =  0, we obtain th a t z >  r j  (n j (z)). Consider

Z =  (z1 , . . .  , zj-_ 1 , r j (n j (z)),z j+n . . . , zr ) .

By definition of the function r j  we have th a t w(x,Z) =  0  and then there exists an 
admissible pair (yU, u) G X^ such th a t

J ( x ; y U u )  <  Z <  z =  J ( x ; y ^  u) =  z .

As Z =  z it is in contradiction with the assumption th a t z is Pareto optimal value of (4.7). 
□

It is possible to obtain an equivalent characterization of the Pareto front th a t needs 
only one of the functions r i . This result is presented in the following Theorem.
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T h e o re m  4.16 Assume that (4.2), (4.4), (4.6), (4.10) hold and let x be such that Z(x) =  0. 
Then for any i =  1 , . . . ,  r, the Pareto front can be characterized by the following: z G F (x ) 
i f  and only if

z» =  r i (n i (z)) and V Z G Q», (Z <  n»(z) and z =  n»(z)) ^  r»(Z) >  r i (n i (z)).
(4.48)

PROOF. Consider z G Rr satisfying (4.48). It follows from theorem 4.15 th a t z G F (x ) 
if and only if z» =  r ^ n ( z ) ) ,  for all i =  1 , . . . , r .  Assume th a t zj =  (n^(z)) for 
some j  G { 1 ,.. .  , r j .  For i =  j , as z» =  r ^ n ^ z ) )  we have th a t w (x ,z) =  0 and then
r  (n j (z)) <  and zj >  (n^ (z)). Consider

C (z1, . . . , zj — 1, r j (n j (z)) , zj+1, . . . , zr ) G Q.

By definition of r j (■), w(x,C) =  0. By construction n»(C) <  n»(z) and n»(C) =  n»(z). 
Then under assumption (4.48) r ^ n ^ C )) >  r ^ n ^ z ) )  =  z» =  C . So we have th a t C» < 
rj(n j(C )) then w(x,C) >  0, which is a contradiction.

Now assume th a t z G F (x ) and let (yU, u) G X r̂ be an admissible pair such tha t 
J  (x; yU, u) =  z. Fix j  G { 1 , . . . ,  r j .  It follows from Theorem 4.15 th a t zj =  r j  (n j (z)). 
Let us show th a t the second part of (4.48) holds. assume tha t rhere exist ZQj such tha t
Z <  n j  (z), Z =  n j  (z) and F  (Z) <  r» (n»(z)) =  z j. Consider

C =  (Z 1 ,...,Z j—1, r j  (Z), Zj+1, . . . ,  Zr).

It is clear th a t C <  z, C =  z and w(x,C) =  0. Then there exist an admissible pair 
(y ^  u) G X r̂ such th a t J(x ; yU, u) <  C <  z =  J ( x ; y u, u), which is in contradiction with 
the fact th a t z is a Pareto optimal value of (4.7). □

4.4 R econstru ction  o f optim al trajectories
The purpose of this section is the reconstruction of optimal trajectories for infinite 

horizon optimal control problems with state constraints. It is im portant to recall here 
th a t in previous sections we characterized the weak Pareto front and the Pareto front 
for multi-objective infinite horizon control problems using an auxiliary optimal control 
problem. In this section we will use the dynamical programming principle for the value 
function of this auxiliary problem to generate optimal trajectories. This procedure is 
also a new result to generate optimal trajectories for the infinite horizon optimal control 
problems with one objective and with state constraints.

The following algorithm is a procedure for calculating a trajectory with a piecewise 
constant control function for the multi-objective infinite horizon optimal control. The 
main idea of this approach is using the Dynamical Programing Principal for the auxiliary 
control problem w  defined in (4.12).

A lgorithm  4.17

Fix (x, z) G Rn x Rr . For h > 0, consider for k =  0 ,1 ,...  a partition sk = kh of [0, rc>[. 
Set =  x, =  z. For k =  0 ,1 ,...,
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Step  1 Compute an optimal control value Uh G U such that

G argmin | e -Ahw +  h f  ̂  ^  e-Afchg(yh) |  ,

where zh(u) =  eAh[zk — hi(yh,u)].

S tep  2 Compute a new state position (yh+1,zh+1)

yh+i =  +  h f  (yh,uh)
zh+i =  eAh[zh — M y h,uh)].

Associate to this sequence of controls, a piecewise constant control uh(s) =  «h on 
s G [kh, (k +  1)h), and an approximate trajectory y h such that

y h(s) =  f  (yh,u h) a.e s G [kh, (k +  1)h)
y h(kh) =  y£.

Note th a t in step 1 the value of can also be defined as a minimizer of

G argm in w +  h / (yh ,u ),zh (u ))

since this will imply in tu rn  to be a minimizer of

uh G argmin | e -Ahw (y^ +  h / ( yh ,u ),zh (u )) V e-Afchg (yh))  .

The next theorem ensures the convergence of the sequence (yh)h>0 to an optimal 
trajectory for the function w. The precise statem ent is given in the next theorem and the 
proof is based on some arguments used in [ABDZ18] and [RV91].

T h e o re m  4.18 Assume that (4.2), (4.4), (4.6), (4.10) hold. Let (x, z) G Rn x Rr , {y^}, 
{z£} be the sequences generated by Algorithm 4.17.

(i) The approximate trajectories {y^} are minimizing sequences in the following sense:

r /  ^  \  /  ^  \

w (x ,z) =  J50 V  ( h S  e-Afch£j (yh,uh) -  zj ) V  ( V  e-Akhg (yh ) ) .
^  j=i V fc=0 J  \fc=0 J

(ii) Moreover, the family (yh)h>0 admits cluster points, fo r the L 1 ([0, +ro[; e-Aidt) norm, 
when h M 0. For any cluster point y, we have y  G X x and that y  is an optimal 
trajectory for  w (x ,z).

PROOF. (i) The proof will be divided in several steps. Let (x, z ) G Rn x Rr and consider, 
for every h >  0 the discrete trajectory yh =  (y^, yj1, . . . ) ,  zh =  (z^, z^ , . . . )  and the discrete 
control uh =  ( u ^ u ^ . . .)  given by Algorithm 4.17. In the sequel of the proof, and for 
simplicity of notation, we shall denote yk (respectively zk, u k) instead of y \  (respectively
zh, uh).
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S te p  1. Let us first establish th a t there exist K o, K  >  0 such tha t 

w(yo,zo) >  e_Ahw(y1 ,z 1) V  g(yo) -  (e_AhKo +  K )h 2.

From the Dynamical Programing Principle for w (recall th a t yo =  x and z0 =  z):

w(yo, zo) =  inf | e _ Ahw (yUo(h )  zU (h)) V  e_A0g (yUo(0))

>  Uô Ù { 6 (h )  Z" (h)) V • (449)

Consider uQ g U  a minimizer of the term  (4.49). By using the convexity of the set 
G (0,yo) (Assumption (4.10)), according with [AC84, Thm. 0.5.3], there exists «o G U 
such th a t

I  / (yo,uQ(s))ds =  (yo,uQ) (4.50)

f  G (yo , u o (s))ds =  h€i (yo ,« o), for i =  1, 2. (4.51)
o

Now consider the trajectory y^0 solution of (4.1) corresponding to the control uQ 
and starting from yo . From (4.50) and Proposition 2.2(a) we obtain tha t

i ph pH
|yUo° ( h ) -  yo -  h /  (yo ,«]])1 yo +  / / ( yU0( s ) u o(s))ds -  y o -  / (yo, u o(s))ds

o o

<  /  | f ( y U ( s )  u o ( s ) )  -  f  (y o , u ° ( s ) ) |d s
o
rh

<  /  L /  |yUo0 (s )  -  y o 1 <  L / c /  (1 + |x |)h 2  =  K o ^
o

where K o =  L /c / (1 +  |x|). And by the definition of

f  h
zU (h) =  eAhzi -  J  e ^ ^ y ^ s ^  u (s ))ds  

for i =  1 , . . . ,  r  and (4.51), we have tha t

< (h) -  eAh[zio -  h^i(yo, «o)] l0 eAh
h h

I u0(s ))ds -  e-As€i(yUo0(s^  u o(s ))ds
o o

[■ h
Ah< eAh /  Ci (|yo -  yUo0(s)| +  s)

o
<  eAhCi (c /(1 +  |x|) +  1/2) h2 =  eAhK ih

where K i =  Ci (c /(1 +  |x |) +  1/2) and Ci is the Lipschitz constant of function e_AsG(x, u). 
Those estimates along with (4.49), and by using the Lipschitz continuity of w, yields

to

w (x,z) >  e Ahw(yUo0 (h), zUi (h ) )V  g (yo)

> [e Ahw (yo +  h / ( yo ,u o) ,e Ah[zo -  h% o ,u °)]) -  (e AhK o +  K )h 2] V y (yo),

o



where K  =  E r= 1 K . Now notice th a t for c >  0

(a — c) V b >  a V b — c. (4.52)

Then by the definition of the minimizer u0 on Algorithm 4.17 we finally obtain 

w (x,z) > e -Ahw (y0 +  h f  (y0 ,« 0 ) ,e Ah[z0 — h % 0 ,« 0 )]) Y #(^0 ) — (e-AhK 0 +  K )h 2.
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Knowing th a t y1 =  yo +  h f  (yo,u o) and z1 =  eAh[zo — hF(yo, uo)] we finally get the desired 
result:

w(yo, zo,) >  e—Ahw(y1, z1) Y  g(yo) — (e—AhKo +  K )h 2.

W ith exactly the same arguments, for al k =  0 ,1 , . . . ,  we obtain

w(yfc, zfc) >  e—Ahw(yfc+1, zfc+ 0  Y  g(yfc) — (e—AhKo +  K )h 2. (4.53)

S te p  2. From (4.53) we get

w(yo, zo) >  e-Ahw(yi, zi) Y  g(yo) — (e-AhKo +  K )h 2

=  e-Ah ( e -Ahw(y2 , z 2 ) Y f f ( y i ) — (e-AhKo +  K )h 2)  Y g (y o )  — (e-AhKo +  K )h 2.

Now using (4.52), we obtain tha t

w(x, z1, z2) >  (e—A2h)w(y2 , z2) Y  e—Ahg(y1) Y  g^o) — 2(e—AhKo +  K )h 2

=  e—A2hw(y2 ,z 2) Y  f  Y  e—Akhg(yk)1 — ^  (e—A*Ko +  e—A(»—1)hK ) h2.
Vfc=0 /  i=1

By induction we finally get th a t for all n  G N

(n—1 \  n

Y  e—Afchg(yfc) — ^  (e—A»hK o +  e—A(»—1)hK ) h2

k=o /  » = 1

Consider u* G U  a minimizer w(yn , zn ) and using the definition of w, we get tha t

w(x, z) > e — Anh

= 1 
n̂ — 1

Y  f  /  e As^i(yUl( s ) u *(s ))ds — O  Y  sup e Aeg (y “I (0))
v/ q /  ee[0,œ[

Y  Y  e-Afchg(yfcH — E  ( e ~ AihKo +  e-A(i-1)hK )  h2-
vfc=Q

Now using the definition of zjn, for i =  1 , . . . ,  r  we obtain

w(x, z) >e — Anh
r /  n-1 N

V  ( y o e -As^i(yUl (s), u*(s))ds — eAnh[zi — e-Ahkb ( y fc, ufc)]

Y  sup e -A*y(yu: (0))
0E[Q,œ[

n -  1
e -Aihj

vfc=Q /  i=1
Y  Y  e-Akhg(yfc ) ) — E  ( e -AihKo +  e-A(i-1)hK  h2

r /  pœ  n-1 \
Y  e-Anh / e-As4 ( y £  (s), u*(s))ds — *  +  h V e -Afch£;(yfc, ufc) 
i=1 V 70 k=Q /i =

(n - 1
Y  e-Afchg(yfc) ) — E  ( e -AihKo +  e-A(i-1)h K  h2 
k=Q '
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For all N  G R, consider n  =  |_N/h2J the largest integer which is less than  or equal 
to N /k 2. So when h M 0, nh M ro  and n M ro. Therefore by passing the limit when 
h 0 it follows that:

/  œ
w (x,z) >  lim sup Y  j h Y  e AfchA(yfc,u fc) — z* J V  ( V  e Akhg(yfc) ) •

\fc=Q
(4.54)

i=1 \  fc=Q

S te p  3. On the other hand, define Uh the subset of U consisting of all controls 
which take constant values on each interval [kh, (k +  1)h), k =  0 ,1 , . . . .  T hat is

Uh =  {u G U : u(s) =  u(kh), s G [kh, (k +  1)h), k G N}.

Then by the definition of w

w(x, z) =  min uew

< min
uGUh

V  /  e Aŝ (y u (s^ u(s))ds — zi
i= ^ d Q

r / /» œ
V  /  e - ^ y ^ ^  u(s))ds — z

i=1

i=1
POO

Q

-As/

Y  sup e Aög (y u(y))
0G[Q,œ[

V  sup e -Aög (y u(^))
0€[Q,œ[

< V (  I  e As£i (y u h ( s )u ' (s))ds — z0 V  sup e Aög ( y i (0 )) (4.55)
v ' tfe[Q,œ[

where u h is the control generated by Algorithm 4.17.
W ith similar arguments as in the proof of step 1.a of Theorem 4.8, we can prove 

th a t for i =  1 , . . .  ,r ,  there exist K  > 0 such th a t Based on [BCD97], we claim tha t, for 
i =  1, 2

e -  As^(yUh (s), u h (s))ds — h J ] e  -  Afch0 (y fc ,u fc )
fc=Q

< K i h. (4.56)

Moreover with similar arguments as in step 1.b of the proof of Theorem 4.8, there 
exist K 0 >  0 such th a t

sup e Aög (y u (^)) — V e Afchg (yfc)
0€(Q,œ) k=Q

< K Qh. (4.57)

The estimates (4.56) and (4.57) along with (4.55) yield to:

/  œ

w(x z) <  V  ( h S e Afcĥ (F , u ) — zm  V  ( V e Afchg (yfc ) ) +  S  K ih
i=1 \  fc=Q 

r
\fc=Q i=Q

/  œ
< hm m f V  ( h ^  e Akĥ i(yfc, a fc) — zi ) V  ( V  e Akhg (yk) ) •

\ fc=Q
(4.58)

i=1 \  fc=Q

Hence, from (4.54) and (4.58), the right-hand side term  has a limit and

œ

(x,z) =  Ji_m  V  ( h S e Afch£i (yfc ,Ufc ) — z0  V  ( V e Akhg (yk)
'^ \fc=Qi=1 \  fc=Q

This concludes the desired result of item  (i).

DC

DC

0
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(ii) For all h >  0 and k =  0 ,1 , . . . ,  the function y h(-) satisfies 

y h(s) =  / (yh(s), u h(s)), a.e s G [0, ro[.

Define the measure d^ =  e_Atdt and let L 1 =  L 1([0, +ro[; d^) be the Banach space 
of (the class of equivalence of) integrable real-valued functions on [0, + ro [ for the measure 
d^. Consequently, we denote by W 1,1 the Sobolev space functions y  : [0, + < ^ [^  Rn for 
which |y| G L 1 and whose weak derivative y  also verifies |y | G L 1.

Let u  : [0, + ro ) ^  R be given by u (t) :=  c / (1 +  |x |)ecf 1 for any t >  0. As A > c / , 
Proposition 2.2(b) implies th a t u(-) is a positive function in L 1 which dominates |yh |. 
Moreover by Proposition 2.2(d) the sequence {yh(s)} is relatively compact for any s >  0, 
hence the hypothesis of theorem [[AC84],Theorem 0.3.4] are satisfied and so, there exist 
a function y  G W 1,1 and a sub-sequence, still denoted by {yh}, such tha t

y h converges uniformly to y  on compact subsets of [0, + ro ),

y h converges weakly to y  in L 1 ([0, + ro ), Rn , d^).

In addition by (4.2), /  is Lipschitz continuous with closed images and by (4.10) 
it has convex images. So the Convergence Theorem [AC84, Thm. 1.4.1] implies tha t 
(yh(s)) G / (yh(s), u h(s)) for almost every s >  0.

The optimality of y  follows from item (i). □

A similar algorithm has been introduced in [RV91] for the case of finite horizon 
optimal control problems without state constraints. The result was extended for the case 
with state constraints in [ABDZ18]. In both cases the convergence result has been proved. 
We extended the result for the optimal control problems in infinite horizon and with state 
constraints.

4 .4 .1  R eco n stru ctio n  u sin g  an ap proxim ate value fu n ction

Sometimes the exact value function of the control problem is not available. We 
just have an approximation of the function. In this section we prove a result th a t is 
an extension of the convergence of trajectories for piecewise constant control with the 
algorithm 4.17 using the approximation of the value function.

Consider for each h >  0, a function wh being an approximation of the value function 
w, such tha t, for every R  >  0 we have:

|wh(x,z) — w (x ,z)| <  E Rh, for |x| <  R, |z| <  R, (4.59)

The function wh could be a numerical approximation obtained by the Semi-Lagrangian 
scheme proposed in Section 4.2.1.

A lgorithm  4.19

Fix (x, z) G Rn x Rr . For h > 0, consider for k =  0 ,1 ,...  a partition sk =  kh of [0, rc>[. 
Set yh =  x, Zh =  z. For k =  0 ,1 , . . .,

Step  1 Compute an optimal control value Uf G U such that
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uh G a rg m i^  e AhWh (yh +  h f  (yh, ^  z£ (u)) V  e Afch£(yh)} ,

where zjh(-u) =  eAh[zk — hi(yh,u)j.

S tep  2 Compute a new state position (yh+ 1,zjh+1)

yh+ 1  = yh +  h f  (yh,uh) 
zh+1 = eAh[zk — h^(yh,uh)].

Associate to this sequence of controls, a piecewise constant control uh(s) =  ^h on 
s G [kh, (k +  1)h), and an approximate trajectory y h such that

y h(s) =  f  (yfc,wh) a.e s G [kh, (k +  1)h)
y h(kh) =  yhk. k

The following result is an extension of the convergence Theorem 4.18, using an 
approximation for the value function w.

T h e o re m  4.20 Assume that (4.2), (4.4), (4.6), (4.10) hold. Let (x, z) G Rn x Rr , {yh}, 
{z^} be the sequences generated by Algorithm 4.17.

(i) The approximate trajectories {yj^} are minimizing sequences in the following sense:

r /  ^  \  /  ^  \

w (x,z) =  hi50 V  ( h ^ e_Afcĥ i(yfc,uh) — zA  V  ( V  e_Akhg (yh ) ) .
^  j=1 \  k=0 /  \fc=0 /

(ii) Moreover, the family  (yh)h>0 admits cluster points, fo r the L 1 ([0, +ro[; e_Atdt) norm, 
when h ^  0. For any such cluster point y , we have y  G Xx and that y  is an optimal 
trajectory for  w (x ,z).

PROOF. The proof of this theorem is similar with the proof of Theorem 4.18. So we are 
going to present just the different parts.

W ith same arguments used at the proof of Step 1 of Theorem 4.18, we obtain th a t

w(x, z) > e_Ahw (yo +  h /(y o ,« 0 ) 'eAh[zo — h£(yo,u0)])

V  g(yo) — (e_AhKo +  K  )h2,

where K  =  5 ^ =  K . Now using the fact tha t ||w — wh|| <  E Rh, we get

wh(x, z ) >w (x, z) — E Rh

> e_ Ahw (yo +  h/(yo, wq), eAh[zo — h£(yo, wq)])

V  g(yo) — (e_Ah Ko +  K  )h2 — E r h

> e_ Ah (wh (yo +  h/(yo,uQ ),eAh[zo — h% o,«o)]) — E rh)

V  g(yo) — (e_Ah Ko +  K  )h2 — E r h 

> e_ Ahwh (yo +  h/(yo, mq), eAh[zo — h€(yo,uQ)])

V  g(yo) — (e_Ah Ko +  K  )h2 — (1 +  e_Ah)ERh.
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Then by the definition of the minimizer u0 on Algorithm 4.19 we finally obtain

wh (y0) zo) >  e Xhwh(yi , Zi ) Y  g(yo) — (e Ah^ o +  K )h2 — (1 +  e Ah)ER h . (4.60)

W ith exactly the same arguments as in Step 2 of the proof of Theorem 4.18 and using 
the fact th a t ||w — wh || <  E Rh, we get

(n—l \  n

Y  e—Afchg(yfc) J — ^  (el h2 +  ^ E f lh) ,

k=0 /  i= i
n— i n

> e —Anhw(yn , Zn ) Y  Y  e- Akhg(yk) — E  (e1h2 +  4 E r h) — e—AnhE f îh,\fc=0 /  »=1

l0 a  e ' ' K  and 4where 4  =  e-A»hK 0 A e-A(»-1)hK  and 4  =  e-A(»-1)h(1 A e-Ah).
Consider u* G U a minimizer w(yn , zn) and using the definition of w, we get tha t

w h(x, z) > e -Anh

/  n— 1
Y  Y  e—Akhg(yk) ) -  E  (£ lh 2 +  £2 E fih) -  e—AnhERh.

Y  f  /  e As î(y “I ( s ) u *(s))ds -  zin)  Y  sup e Aeg (y “I (Ö))/  0g [q,t o [

\k=0 /  i=l

Now using the definition of z»n , for i =  1 , . . . ,  r  we obtain

r /  to  n—1 \
(x, z) Í e—Anh y  e—Astj(yU‘i[ (s), u*(s))ds -  z. +  ^ e —'Akhb(yk , «k) j

i^l \  k=0 /
/n — 1 \  n

Y  e—Anh sup e—A6g ( y £  (Ö)) Y  Y  e—Ak4 (y k )  -  E ^  +  ^ h )  -  e—AnhE fih.

For all N  G R, consider n =  |_N/h2J the largest integer which is less than  or equal
to N /h 2. So when h ^  0, nh ^  ro  and n ^  ro. Therefore by passing the limit when
h ^  0 it follows that:

r /  ^  \  /  ^  \
w(x, z) >  lim sup Y  ( h ^  e—Afchkj(yfc, u fc) — z» j Y  i Y  e—Akhg(yfc) ) . (4.61)

»=1 V k=o J  Vfc=o /

The other side is similar with Step 3 of proof of Theorem 4.18. □

We point out th a t the advantage of the Algorithm 4.19 is th a t the exact value 
function is not necessary. The reconstruction of the trajectory can be computed when an 
approximation of the value function is available, th a t is the case when the value function 
is obtained by numerical approximation, for example by the Semi-Lagrangian scheme 
proposed in Section 4.2.1. Similar result was introduced for finite horizon optimal control 
problem in [ABDZ18].

4 .4 .2  R eco n stru ctio n  w ith  a p en a liza tio n  o f con tro l variation

In the algorithm of this section we consider a trajectory procedure with a pertu r­
bation term  in the definition of the optimal control value. This perturbation takes the 
form of a penalization term  on the variation of the control with respect to the previously 
computed control values.
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As suggested in [ABDZ18] for the reconstruction of trajectories for finite horizon 
optimal control problem with a maximum running cost, the penalization by control vari­
ation aims to prove an improvement on the performance of the algorithms 4.17 and 4.19. 
This m ethod allows to select the control for which the value is close to the last value of 
the control.

For this end, for every k >  1, we introduce a function : R x R k M R+ th a t rep­
resents a penalization term  for the control value. For instance, if Uk =  (u0,u 1, . . .  , u k-1) 
is a vector in R k, we can choose

1 p
(u, Ufc) =  ||u  -  u fc- i | | ,  or qfc(u, Ufc) =  | | u ------- Y  u fc- j || for some p  >  1. (4.62)

p 1=1

A lgorithm  4.21

Let (Ah)h>0 be a family of positive constants. Fix (x, z) G Rn x Rr . For h > 0, consider for 
k =  0 ,1 ,... a partition sk =  kh of [0, ro).

h z0Set y ' =  x, z '  =  z. For k =  0 ,1 ,...,

S tep  1 Compute an optimal control value uh G U such that

uh G argmin {e-AhWh (yh +  h f  (yh, u), z£(u)) Y  e-Akg(yh) +  Ahqfc(u, Ufc)J

where zh(u) =  eAh[zk — hi(yh,u)j.

S tep  2 Compute a new state position (yh+1,zh+1)

yh+i =  yh +  h f  (yh,uh) 
zh+i =  eAh[z* — M y h ,uh)].

Associate to this sequence of controls, a piecewise constant control uh(s) =  uh on 
s G [kh, (k +  1)h), and an approximate trajectory y h such that

y h(s) =  f  (yh,u h) a.e s G [kh, (k +  1)h)
y h(kh) =  y^

T h e o re m  4.22 Assume that (4.2),(4.4), (4.6), (4.10) hold. Assume also that the penal­
ization term is bounded: there exists Mq >  0 such that |qk(u, U)| <  Mq fo r every u G U, 
every U G Uk, and

M 0 as h M 0.h2

Let (x ,z) G Rn x Rr , {yh}, {zh} be the sequences generated by Algorithm 4.17.

(i) The approximate trajectories {yh-} are minimizing sequences in the following sense:

w (œ
V  e- “ V yi ) •

k=Q
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(ii) Moreover, the family  {yh}h>o admits cluster points, fo r the L 1([0, + ro ); e_Atdt) 
norm, when h ^  0. For any such cluster point y , we have y  G Xx and that y 
is an optimal trajectory for  w (x ,z ).

PROOF. The arguments of the proof are similar to the ones used in the proof of Theorems 
4.18 and 4.20. The only change is th a t instead of the estim ate (4.60), we get now:

Wh(yn, z„) > e_AhWh(yn+ 1 , zn+ 1 ) V  S ^ o) — (e_AhKo + K )h2 — (1 +  e_Ah)EBh — MqAh. (4.63) 

The rest of the proof remains unchanged. □

4.5 C oncluding rem arks
We have investigated multi-objective optimal control problems in infinite horizon 

and with state constraints. First we defined an auxiliary optimal control problem without 
state constraints and propose a semi-Lagrangian scheme to compute the value function of 
this auxiliary problem. Then we show tha t the weak Pareto front is a subset of the zero 
level set of the corresponding value function. Moreover, we established a more detailed 
characterization of the Pareto front for the multi-objective infinite horizon optimal control 
problem.

After obtaining the (weak) Pareto front, another im portant question is the recon­
struction of (weak) Pareto optimal trajectories. In finite horizon, there are some algo­
rithm s of trajectory reconstruction th a t can be employed, but in infinite horizon, without 
assuming any controllability assumption, there are no results in the literature. So we 
introduced a method, based on the dynamical programming principle, to reconstruct op­
tim al trajectories for infinite horizon control problems with state constraints and with 
no controllability assumption on the set of constraints. The convergence of the method 
when the exact value function is not available, th a t means, when the value function is ob­
tained by some numerical approximation method, was also proved. Our m ethod extends 
for infinite horizon optimal control problems with state constraints the results for finite 
horizon problems without and with state constraints introduced in [RV91] and [ABDZ18], 
respectively.



Chapter 5 

Application to energy managem ent 
system s

Interm ittent sources of energy represent a challenge for electrical networks, particu­
larly regarding demand satisfaction at peak times. Demand-side management tools, such 
as load shaving, can be used to mitigate abrupt changes in the generation. Another tool 
to control the negative impact of the new technologies is to rely on the so-called Energy 
Management Systems (EMS). Typically, this virtual entity represents a group of small 
generators, for example a photo-voltaic power plant, a wind turbine, a diesel generator, 
etc; coupled with a battery  energy storage system (BESS).

The model, developed in collaboration with W im van Ackooij from EDF, France 
is similar to [HMS+17]; see also [BBL+13] with the im portant difference th a t we extend 
the approach to the multi-objective case. Namely, in addition to the usual generation 
cost minimization we incorporate an environmental concern, referred to minimizing fuel 
emissions.

The question th a t arises is: to which extent can a BESS be used as a replacement 
for load shaving? For three instances representing typical configurations in Brazil, France 
and Germany, we analyze if appending batteries smooths peaks in demand, similarly to 
the load shaving mechanism.

5.1 A n overview  o f battery  energy storage system s
Energy problems deal with finding minimum cost production schedules th a t meet 

the customer load and satisfy all the operational and technological rules of the considered 
assets th a t can be used to generate electricity. But another im portant concern is the 
environmental impact. How much fuel is burnt as a result of the therm al generation? So 
based on [CKAN13], we incorporate in the model a second objective of minimizing the 
carbon emission of the therm al units.

Solar and wind generation are interm ittent sources of energy. W ithout storage 
devices, energy must be generated and consumed immediately. The BESS is a good 
alternative in this sense, because it has the capacity to store energy surpluses when 
generation is larger than  demand and supplies energy to the system when it lacks power 
and can have a wide range of system sizes and layouts to accommodate the requirements 
specific to each energy storage project [Ltd17]. This storage is not free as some energy is 
lost when charging and discharging the battery.

Nowadays batteries are employed as storage devices all over the world, see for ex­
ample [Cic17]. In [RZVV13] the authors discuss the use of the battery  to eliminate the

96
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peaks and valleys in the load profile and conclude tha t the m ethod can effectively reduce 
the losses and demand of the system, moreover the batteries improve the voltage profile 
at peak hours. A multi-objective study is done is [XS12], where the objectives considered 
are the reliability and economy by choosing optimal energy storage param eters subject to 
the constraints for a specific distribution system. The use of the battery  from the point of 
the view of the customer is presented in [TD16], considering tha t the price to buy energy 
in off-peak hours is less than  the price in on-peak hours.

We are interested in comparing the ability of different batteries as a substitute of 
the load shaving mechanism in smoothing the load peaks. The multi-objective approach 
makes it possible to obtain a compromise between the minimization of generation costs 
and the fuel emission of the therm al power plants in the mix.

5.2 D escrip tion  o f th e  set o f assets
In this section we describe the set of thermal, hydro, solar and wind plants used to 

generate electricity. We also present the load shaving mechanism and the BESS models 
as well as both objectives of the bi-objective energy management problem. The models 
for therm al units will be those of economic dispatch (for a complete account of trends 
in unit-commitment we refer to [TvFL15, vDF+18]). The models for therm al units are 
simplified, i.e., those of economic dispatch, since our interest is in computing exactly 
the efficient frontier of the bi-objective problem. The used algorithm requires solving 
iteratively many sub-problems, which would be (excessively) time consuming if they were 
mixed integer linear, non-convex, or large scale optimization problems. Nonetheless, the 
framework is in principle compatible. Let us also refer to [Td17] for a deep discussion on 
cascaded reservoir management.

W ithin our model, the time horizon is assumed to consist of T  homogenously spaced 
time steps of h hours each. The (customers’) dem and/load at time step t  will be denoted 
by L*. The energy balance equation will ensure tha t load is met by generation of the set 
of available assets. Since the la tter sets change, so does this balance equation.

5.2 .1  T h erm al u n its

A therm al unit j  can be used to produce electricity, which involves the choice of 
an output level pj in megawatts (MW) at a given proportional cost Cj in e.g., € /  MWh. 
Although we will not explicitly consider this, convex quadratic costs could also be im­
mediately incorporated in the model. Altogether, when considering N  therm al units, the 
to tal cost of generation is:

T N

Y Y  cj pj h .
*=1 j=1

Based on [CKAN13], we also consider the carbon emissions of therm al unit j ,  de­
noted by / j , th a t results when generating power from therm al units. The objective is 
to minimize the worst case CO2 emissions (tonnes/M W h), over time. Therefore, this 
objective function is:

f £ f= i  / j p j;max — ———
t=1,...,T \ L*

The model of this second objective as a maximum allows to have a better control oft he 
fuel emission during the time horizon, while still allowing for a certain amount of CO2
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emission over the planning period.
Thermal units have some technological constraints, the output level pj needs to be 

less or equal than  some bound pmax, th a t represents the maximum power capacity of 
generation of therm al unit j :

0 <  pj <  pmax, t =  1, . . .  , T.

Furthermore, therm al units are subject to ramping constraints, limiting the variation
of power between two consecutive time steps. This ramping rate for j  =  1 , . . . ,  N, is 
considered constant and links adjacent moments in time. W ith an initial power level po, 
for j  =  1, . . .  , N, assumed to be given, this yields the following constraints:

— h <  pj — pj_1 <  h, t =  1 , . . . ,  T.

5.2 .2  H ydropow er p lants w ith  cascaded  reservoirs

The considered hydro power plants are distributed along a hydro valley. This is a 
set K  of reservoirs connected through turbines th a t can be used to generate electricity. 
We assume th a t each reservoir k, disposes of a set of uphill reservoirs A(k) and a set of 
downhill reservoirs B(k). Associated with each connection between reservoirs m  and k is 
an uphill and downhill flow delay D ^f k , D as well as a turbining station. Moreover each 
reservoir disposes of natural inflows I k (m3/h ) as well as two volumetric bounds Vkmm, 
Vkm°x . For reservoirs m, k we associate with the arc (m, k) the set of turbines T (m , k). 
W ith each turbine i G UT(m, k) we associate a flow rate q* (m3/h ) and turbining efficiency 
pj (M W h /m 3).

Since water is naturally free, and not attributing  it a value would lead to prem ature 
depletion of this resource, we attribu te  it a value cwk in (€ /m 3), for the water of each 
reservoir k. We refer to [vHMZ14] for an extensive discussion on how this value of water 
can be computed. Denote by V* the water level of each reservoir at time t. The initial 
volume Vk° is known in advance, so we define z° =  Vko — indicating the amount
of water available for generating power at the initial time. We also introduce variables 
zT =  V T —Vmm indicating for each reservoir k the amount of water available for generating 
power at the final time. Then, the value of the final water level to be minimized in the 
cascaded reservoir system is equal to:

K K

cwfc Cwfc ( G;0 -  v fcT )
fc=i fc=i

The valuation induced by ^ K=1 Wkzo is in fact a constant and can be omitted. 
The water balance equation and further constraints are:

V* =  I f 1 +  U h +  £  £  q‘- Ddn* h — £  £  P " " ” h,
m€A(fc) i€T(m,k) m€B(fc) i€T(k,m)

for t =  1 , . . . , T, k =  1 , . . . , K

< V* <  Vkmax t =  1 , . . . ,  T, k =  1 , . . . ,  K

zT =  V* — Vko k =  1 , . . . ,  K

0 <  zT <  Vkmax — k =  1 , . . . ,  K

qmin <  q* <  Vi g U ^  T (m , k), t =  1 , . . . , t .
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The amount of generated power at time t is

£  £
(m,k) »GT(m,k)

5 .2 .3  Solar, w ind  and ru n -of-the-river p lants

The solar panel, wind turbine and the run-of-the-river hydro plants produce electric­
ity without any additional cost, but the generation pattern  cannot be controlled. In this, 
simplified, model, we consider the data to be deterministic. Hence, U* in MW at time t 
is the sum of solar, wind and run-of-the-river plants. As this generation is deterministic 
the value U* is removed from the demand.

5 .2 .4  F irst dem and  m an agem en t tool: load  sh avin g

Load shaving, or more generally demand side management, is related to some in­
centive to displace a portion of the electrical consumption from one moment in time to 
another. The electrical uses could for instance be: charging an electrical vehicle, or using 
a dish-washer. The idea is to program a shift in time of such an electrical use, under some 
constraints. The advantage of disposing of such a tool stems from the idea of shifting 
electrical use away from peaking hours where it is produced with highly costly means 
to off-peak hours where the same energy can be produced using cheaper technologies. 
Although the literature discusses, seemingly, different forms of such mechanisms which 
go by names such as: peak shaving, valley filling, load shifting etc..., they are essentially 
and m athematically the same mechanism resulting from moving load, potentially beyond 
the borders of the model. Still one could argue th a t some of these shifts are not of zero 
sum as total energy consumption is considered. Indeed one can think of rebound effects 
(requiring additional energy to heat a room when tem perature has fallen too much). Typ­
ically incorporating such features requires the use of binary variables. Again for reasons 
outlined above, we consider a simpler model which has energy neutral shift:

—Y A A v* <  y , t =  1 , . . . ,  T,
v* >  0 t =  1 , . . . ,  T,
T T

£  £*h =  0, £  v*h <  y , 
o o

where is the displaced energy at time step t, v* is the maximum power tha t can be 
displaced at each period and y is a bound for the power, in megawatts, th a t can be shifted 
along the planning horizon.

5.2 .5  Second  dem and  m anagem ent tool: b a ttery  en ergy  storage  
sy stem

The BESS was modeled based in [CKAN13, HMS+17]. The aim is to analyze the 
impact of the BESS in the reduction of the cost and the CO2 emission. The BESS can 
store energy for later use, but has limited capacity and power. Moreover the storage is 
not free as some energy is lost when charging and discharging the battery.

Given a initial state yo, the state of the charge y of the BESS evolves according to 
the discrete dynamics

h b*
y*+1 =  y*7 ^ (& 1P1 — — ), for all t =  1 , . . . ,  T, (5.1)

Q b Po
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where is the maximum capacity of the BESS, b /, bO >  0 are the input and output 
power of the BESS, and p / , pO G [0,1] are the efficiency ratios for the charge and discharge 
processes, assumed constant.

For physical reasons, the system is subject to the following constraints at every time 
step t =  1 , . . . ,  T

G [cmm cm“x], b/ G [0 ,& rx] and bO G [0,&m“x].

Since batteries typically have a short storage cycle and a cost of operation is not 
necessarily a ttributed  to it, one has to think of how to handle day to day operation. 
A possibly rather natural constraint is to assume th a t the cycle balances off over the 
considered time frame. This is translated into the constraint th a t the final storage level 
should be at least as favourable as the initial one:

yT >  y0 .

5.3 M athem atica l form ulation

5.3 .1  C ase 1: E nergy p rob lem  w ith o u t m anagem ent sy stem

In the base case of the generation energy problem, there is no energy management 
system. Hence the generation of therm al, hydro power and solar plants need to satisfy 
the demand, i.e., the last constraint of problem (5.2). In this problem the first objective 
concerns the minimization of the cost generation of therm al units and the “cost” of the 
water. The second objective is to minimize the maximum carbon emissions of therm al 
units during the time horizon. The resulting problem is as follows:

min
N T K

T J
j = 1  t=1 k=1

s. t. pj G P j , j  =  1 , . . . ,  N,  t  =  1 , . . . ,  T

j=1 (m,k) i€T(m,k)

T=i fJpJ '

t=1,...,^  L*

.3* G i G U(m.k) T  (m >k )- t = 1. - - - . T
(5.2)

where Pj is the set of technological constraints of the therm al units, described in section 
5.2.1 and H  is the set of Hydropower technological constraints described in section 5.2.2.

5.3 .2  C ase 2: E nergy p rob lem  w ith  load shaving

W hen we consider the energy problem with load shaving, the amount of energy 
displaced at each time must be added to the power balance equation. Moreover we add 
to this problem the constraints of the load-shaving model presented in section 5.2.4.



Application to energy management systems 101

N T  K / sp N f t
£  £  cjP jh +  £  cwfc (z0 -  zT) w m aX  j=1 j jmin | > > CjP̂

vj=i t=i fc=i t=1,...,T L t

s. t. pj G P j , j  =  1 , . . . ,  N,  t =  1 , . . . ,  T

zT , qt G H  t G U (m,fc) T i  =  1, . . . , T

—Y A ^  A v <  y, t =  1 , . . . ,  T, 

vt >  0 t =  1 , . . . ,  T,

E  ^ = 0 , £  vt <  y,
t=i
N

t=1

£ p j + £  £  p î«-‘ + ^  =  l ‘ — u ‘. t =  1,p
j=1 (m,fc) t€T(m,fc)

. , T

(5.3)

5 .3 .3  C ase 3: E nergy  p rob lem  w ith  b a ttery  en ergy  storage sy s­
tem

The inclusion of a BESS within the energy problem requires to add the amount 
of energy input or output of the battery  at each time in the power balance equation. 
Moreover, in th a t case, taking into account the demand and the power generation devices, 
we obtain th a t 60 and 6/ can be w ritten as nonlinear functions, meaning th a t if the 
generation is bigger than  the demand the energy will be included in the battery and if 
the generation is less than  the demand the energy of the battery will be used to satisfy 
the demand. So for t =  1 , . . . ,  T , we have th a t

N

60  =  — m i n ( o , y Pj +  y  y  ptq  — l  +  u ‘ ,
j=1

N

pt ̂  7"t i T it

(m,k) iGT"(m,k)

t t t t6/  =  max £  £ p j  +  £  £  ptqt — L  +  U
j=1 (m,fc) t€T(m,fc)

Those constraints can be w ritten as, for t =  1 , . . . ,  T ,

N
6/ >  0 and 6/ >  £ pj +  £  £  ptqt — Lt +  Ut ,

j=1 (m,fc) t€T(m,fc)
N

60 > 0 and — 60 <  £  pj +  £  £  ptqt — Lt +  u T .
j=1 (m,fc) t€T(m,fc)

In this configuration it is necessary to add the constraints of the BESS as described
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in section 2.2.5. So we obtain the following multi-objective energy problem:

min
N T K

cjp jh +  cw (z0 -  zT). t maxT
j=1 t=1 k=1 .....

e N=1 /  pj
L*

s. t. pj G P j , j  =  1, . . .  , N,  t =  1

vT „t

Tj G " t

zT .3* G i G U(m.k) T  (m ,k ) . t =  1, . . . , T

yt+1 =  y* +  fb lp j -  —  ) , t =  0 , 1 , . . .  , T  -  1 
Q s  V P o /

yT > yU y m m  < yt < yWttX t = 1  T

0 <  bO <  &m“x. 0 <  bl <  &m“x, t =  1 , . . . .  T
N

bO =  - b O < E  pj +  E  E  ptqt -  L* +  U*. t =  1. . . . . T
j=1 (m.k) i€T(m.k)

N

b * > E p j  +  E  E  ptq*- l  +  u ‘, t =  1, . . . , t
j=1 (m.k) i€T(m.k)

N

E pj +  E  E  ptqt +  bO -  bi  =  L* -  U* . t = 1. . . . . T
j=1 (m.k) i€T(m.k)

(5.4)

5.4 C hebyshev scalarization m ethod
A known approach for solving multi-objective problems is the scalarization techique. 

The term  “scalarization” refers to techniques defining a family of mono-objective opti­
mization problems, in such a way th a t the solutions of the multi-objective problem can be 
obtained by solving classic nonlinear programming problems. There is a large variety of 
methods for scalarizing a multi-objective optimization problem, some of them  presented 
in Section 2.4.1.

In this work we use the Chebyshev approach to obtain the Pareto front, see Section
2.4.1. There are also methods th a t compute just one (weak) Pareto optimal solutions, but 
in this work we look for methods to compute the entire Pareto front. Indeed if we could 
content ourselves with computing a single (weak) Pareto solution, then implicitly we are 
capable of finding a desirable trade-off between both. Then in essence the problem is a 
regular mono-objective optimization problem. It is our assumption th a t this is usually 
not the case. Hence, it is im portant th a t all possible solutions are shown to the decision 
maker, who can select the desired compromise.

Let us first briefly provide an abstract form for these problems. To this end, denote 
by x the vector of variables and by X  the feasible set for problems (5.2), (5.3) and 
(5.4). For example, in (5.2) the decision variable is x =  (p j, q j,zT), for t =  1 , . . . , T , 
j  =  1 , . . . ,  N , k =  1 , . . . ,  K  and i G 1 J T ( m ,  k). Moreover denote the first objective 
function by J i(x ) and the second objective function by J 2(x) =  :maxT J ( x ) .  Then the

problems (5.2), (5.3) and (5.4) can be rewritten, in abstract form, as:

Minimize J(x ) := (J 1(x), J 2(x)) 
subject to x G X. (5.5)
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We note here th a t for the results presented in this section J  and J 2 can be arbitrary. 
The Chebyshev scalarization m ethod applied to (5.5) can be w ritten as follows.

min max |w (J i(x )  — di) ,  (1 — u ) ( J 2(x) — d 2 ) |
(5.6)

s.t. x G X

where zomega G [0,1] is a weight and d*, i =  1, 2, are the respective utopian objective 
values, defined shortly hereafter. A utopian objective vector d * associated with a bi­
objective problem consists of components d* =  z* — z*, where z* >  0 for i =  1, 2 and z* is 
the optimal value obtained by minimizing the objective function Jj, i =  1, 2 individually 
subject to the constraints.

For u  G [0,1], problem (5.6) can be w ritten as

min a

subject to x G X  and 
u  ( J 1(x) — d î) <  a ,
(1 — u) (J2(x) — &*) <  a ,

or equivalently

mm a

subject to x  G X  and 
w ( J (x )  — di) < a,
(1 — w) (J2(x) — d2) < a, t =  1,.. . , T

(5.7)

The scalarized problem (5.7) is a linear optimization problem and can be solved by m eth­
ods developed for linear optimization. To generate the Pareto front for problems (5.2), 
(5.3), (5.4) we considered the Algorithm proposed in [DK11] and presented in Section 
2.4.2, in which the scalarized problem (5.7) is solved for a large number of param eters u. 
This algorithm guides the user through appropriate choices for u.

In Section 5.5 we compare some results of those three different approaches of the 
energy problem considering data  th a t represent the French, Brazilian and German sys­
tems. As the scalarized problem (5.7) is linear, in the different approaches of the energy 
problem, we solved the mono-objective problems using the solver linprog of matlab.

5.4 .1  S en sitiv ity  analysis

In this section we study the variation of one objective function when we change 
the other. This sensitivity analysis is an additional information th a t can be provided to 
the decision maker as useful side information. We show moreover th a t by solving (5.7) 
it can be immediately constructed from the available information. In particular, when 
given a single element of the Pareto front, this sensitivity information can be used to 
locally approximate the set of Pareto optimal solutions. For the purpose of analysis, let 
us introduce the perturbation function v : R ^  R defined as:

v(r) =  min {J 2(x) | J ( x )  =  r} . (5.8)

Moreover, let (x*) denote the normal cone (of convex analysis) to the set X  at the 
point x*, th a t is

Nx(x*) =  {g G Rn | gT(y — x*) <  0, y G X }.
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Since J 1 is affine and is polyhedral, the optimality conditions for (5.8) ensure there 
exist a multiplier n r G R and a normal element v G (x*) such th a t

0 G d J 2(x*) +  n rV J 1(x*) +  v. (5.9)

It is known tha t —nr G dv(r), [HUL93, Chapter VII, Thm  3.3.2]. So the multiplier in 
problem (5.8) gives the rate of change of the optimal value J 2 with respect to variations 
in the right hand side r, which corresponds to values of J 1.

Of course it is less interesting to have to solve another optimization problem (5.8)
to find n r . We will show below th a t this is not necessary and n r can be immediately
retrieved from data available as a result of solving the Chebyshev scalarization. We recall 
th a t the la tte r problem is:

min a

< subject to x G X  (5.10)
x (J 1(x) — f t )  < a,
(1 — x) (ft(x) — f t )  < a, t =  1, . . . ,  T.

T h e o re m  5.1 For x  G (0,1) let (x* , a * ), v G NX (x* ) be an optimal solution of problem
(5.10) with Lagrange multiplier u1 G {0,1} associated with the constraint

ta * u * (x
x  ( J 1(x) — f t )  <  a . Then x* satisfies (5.9) with r  =  f t  +----- * ,nr =  --------- ^ --------r

x  (1 — u1)(1 — x)
and v .

PROOF. For x  G (0,1), let (x*,a*) be a optimal solution of problem (5.10). Then there 
exist f t ,  f t t > 0, t =  1 , . . . ,  T  and v G NX (x*), such tha t

1 — f t  — £  T=1 ft2
x ^ 1 VJ 1 (x*) +  (1 — x ) £  (= 1  ft2,tVf t (x*) +  vT V7 Tt(„*\ ! I = 0, (5-11)

f t (x (J 1 (x*) — f t )  — a*) = 0 , (5.12)

f t , t ((1 — x) (ft(x*) — f t ) — a*) = 0 , for t= 1 ,... ,T (5.13)

By equation (5.12) we obtain th a t u 1 =  0 or x  ( J 1(x*) — f t )  — a* =  0. Assuming
a*

th a t f t  =  0, then J 1(x*) =  f t  .
X

Now note tha t

d J 2(x*) =  conv{Vft(x*) | t = 1 ,  ...,T  s.t. ft(x*) =  J 2(x*)}.

a*
By (5.13) we obtain th a t ft(x*) =  f t  —  ------  if and only if f t*  =  0. By (5.11), we have

1 — x  ’
1 — f t  =  ft)i=1 ft* *. This together with the assumption th a t 1 — ft1 =  0, implies th a t there
must exist some t G {1 , . . . ,  T } with ft2 * =  0 (and actually is equivalent with it). We may

T f t*  'thus conclude th a t — t-2̂ —  =  1 and consequently:
*=1 S  i=1 ft2,*

£  X  , V J | (x-) G d J 2 (x’).
»=1 X  *=1 ft 2 ,*
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Altogether we have thus shown th a t

£  w f W  V J 2 (x*) +  (1 ‘1(1  . V J i (x*) +  V =
7=1 E i= i (* ,t (1 -  (  i )(1 -  ‘

which means th a t x* satisfies (5.9) with the indicated identification of parameters. □

5.5 N um erical results
In this section we compare the results when considering the various energy prob­

lems: (5.2)- (5.4) on a set of three stylized systems representing the French, German and 
Brazilian cases respectively. The German system is therm al dominated, the Brazilian is 
hydro dominated and French system has a hydro therm al mix.

As the scalarized problem (5.7) is linear, in the different approaches of the energy 
problem, we solved the mono-objective problems using the solver linprog of MaTLaB.

The carbon emission rate f  in kilogram per megawatt-hour (Kg/M W h) is considered 
constant over time. The considered values relate to each type of technology and are given 
in Table 5.1. We have used the same values for all test cases.

T h e rm a l u n its CO2 emission (Kg/M W h)
Nuclear 0
Lignite 1140

Coal 940
Gas 570

Mineral oil 770
Biomass 770

Combustion turbine 1200

Table 5.1: Carbon emission by type of therm al unit

5.5 .1  H ydro - T h erm al sy stem  : French case

In this problem we consider the time horizon T  to span 48 hours with time step size 
h of 2 hours. The demand and solar generation for the whole period can be seen in Figure
5.1.

Figure 5.1: Demand and solar generation of a cold sunny winter day, respectively, for the 
French system.
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In this system we have 9 therm al units of 4 different types: 3 nuclear (T i -T 3), 2 coal 
(T4-T 5), 3 gas (T6-T8) and 1 combustion turbine (Tg). The data used for each unit is 
given in Table 5.2 below. The cost Cj, in euro per megawatt-hour (€ /M W h) is constant.

T h e rm a l u n its p 0 pmaxp e cj
Ti 750 900 1 0 0 30
T 2 750 900 1 0 0 35
T 3 750 900 1 0 0 37
T 4 75 300 30 45
T 5 75 300 30 55
To 0 2 0 0 2 0 60
T 7 0 200 20 100
Ts 0 200 20 110
T 9 0 150 10 150

Table 5.2: Thermal unit data

We also consider two typical hydro valleys called Ain and Isere whose hydraulic 
configuration is given in Figure 5.2. The data  related to the hydro plants of Ain and Isere 
valleys are shown in Tables 5.3 and 5.4, respectively. All turbines of each power plant are 
considered identical, but each plant has a varying number of turbines. The volumes are 
given in hm 3, the maximum flow rate of each turbine in m 3/s  and the cost of the 
water cw in euros.

(a) Ain valley (b) Isere valley

Figure 5.2: French hydro valleys.

The maximum power th a t we can displace with load shaving is considered equal 
to 100 MW. Regarding the battery, we consider three different batteries which differ in 
the maximum capacity of the battery  and the maximum input and output power, 

and respectively. The data is provided in Table 5.5. In the table, battery
3 corresponds to the largest battery  in the market [Ric18]. Table 5.6 reports common 
further data  for all three batteries.
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P la n t Turbines V mm V max V 0 qmax cw
H 1 4 150 417.80 277.50 72.5 40
H 2 2 0.96 1.5 1.011 100 35
Ha 2 33.27 35.12 34.38 120 30
H 4 2 0.88 4.38 1.84 15 33
H 5 3 10.81 13.59 12.9 60 28
He 3 17.6 18.2 18.1 90 25

Table 5.3: Hydro plants da ta  of Ain valley

P la n t Turbines V mm V max V0 qmax cw
H 1 3 4 9.78 5 11 35
H 2 3 3 223.83 133.43 16 40
Ha 4 0 0.1 0.05 10 30
H4 2 0 0.1 0.05 12 33
H 5 3 0.1 0.6 0.3 3.3 28
He 4 0.1 1.32 0.5 47.7 35
h 7 4 0.09 0.3 0.1 25 25

Table 5.4: Hydro plants data  of Isere valley

6max imax
6o

B attery 1 117 MWh 13.2 MW 40 MW
B attery 2 234 MWh 26.4 MW 80 MW
B attery 3 400 MWh 100 MW 100 MW

Table 5.5: Battery data for French system

0.1
.̂max 1
P/ 0.95
Po 0.95
y0 0.5

Table 5.6: Battery data equal for all models

Figure 5.3 shows the Pareto front for the French bi-objective energy problem. The 
number of points at the discretization is equal 100. By examining the Pareto front, the 
option th a t reduces the most both  the cost and the carbon emission is battery  3, tha t 
is the largest battery. Load shaving is an efficient mechanism, comparable to battery  1. 
The black dots in Figure 5.3 show the optimal value of each multi-objective problem for 
x  =  0.5, th a t is, when both objectives have the same weight in the scalarization.

Table 5.7, shows the final value of the two objectives when x  equal 1, 0, and 0.5, 
respectively. Recall from equation (5.7) th a t the param eter x  defines the scalarization; 
specifically, when x  = 1  (respectively x =  0) only the generation cost (respectively the 
maximum CO2 emission) is considered, while x  =  0.5 assigns the same weight for both 
objectives. For each value of x , a first row reports the generation cost and the maximum 
CO2 emission for a problem without EMS, case 1. The gains in both objectives, absolute 
and percentage magnitudes, are displayed subsequently, for the model (5.3) with load 
shaving, and for the model (5.4), using the 3 battery  configurations of Table 5.5.
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Figure 5.3: Pareto front for French system

Cost (euro) % difference CO2 (Kg/M W h) % difference
W ithout EMS 3.690.352,00 - 90,41 -

1— 1 Load shaving -3.100,00 -0.08 % -6.82 -7.55 %
II Battery 1 -4.581,00 - 0.12 % -7.14 -7.89 %
3 Battery 2 -8.720,00 -0.24 % -17.23 -19.05 %

Battery 3 -15.320,00 -0.41 % -22.16 -24.51 %
W ithout EMS 3.770.995,00 - 50.38 -

o Load shaving -15.632,00 -0.41% -4.06 -8.07 %
II Battery 1 -20.363,00 -0.54 % -6.54 -12.97%
3 Battery 2 -26.335,00 -0.70% -13.15 -26.10 %

Battery 3 -45.581,00 -1.21 % -16.49 -32.74 %
W ithout EMS 3.716.891,00 - 64.05 -

iq Load shaving -6.684,00 -0.18% -4.22 -6.59 %
Battery 1 -10.828,00 -0.29 % -6.64 -10.37%

3 Battery 2 -20.841,00 -0.56% -12.01 -18.76 %
Battery 3 -30.140,00 -0.81% -15.19 -23.72 %

Table 5.7: Generation cost and CO2 emission French system

On Table 5.7, results with u  =  1 and u  =  0 correspond, respectively, to a “purely 
operational” and a “fully green” decision maker. In particular, considering only the 
minimization of emissions, Table 5.7 shows th a t the generation cost when considering 
an EMS also reduces the cost with respect to the base configuration (without EMS). 
As expected, in this case the CO2 emissions decrease with the use of some resource of 
energy management system. Notably, in the opposite situation reported for u  = 1  (CO2 
emission is not taken into account in the objective), using an EMS contributes to reducing 
the fuel emissions. W hen the same weight is assigned to both objectives, i.e., u  =  0.5, we 
also obtain a decrease in both the generation cost and the maximum CO2 emission with 
respect to the base configuration. However, when compared to the results for u  =  1, we 
notice a better control over the to tal emissions.

On Figure 5.4 the batteries’ power profiles and load shavings are shown for different 
values of the param eter u. Positive values of the battery  power profile mean energy 
discharged, the output, and negative values energy stored, input. We can see th a t the 
battery  is used at peak times and the same happens with the load shaving. So we can 
conclude tha t both mechanism have similar behaviors and are good for smoothing the load 
peaks, consequently contributing to reduce the generation cost and the CO2 emission.

The sensitivity of the second objective with respect to the the generation cost,
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(a) w =  1 (b) w =  0

(c) w =  0.5

Figure 5.4: B attery profile and load shaving for different values of u  (French system)

given by Theorem 5.1, is presented in Figure 5.5. This sensitivity is negative, as the 
CO2 decreases when the generation cost increases, and has a similar behavior for all 
configurations of the problem. Moreover, it is possible to see th a t the rate of change 
decreases when the generation cost gets closer to the value obtained when minimizing 
just the second objective function.

W

-12
3.6

-  Battery 1
-  Battery 2
-  Battery 3 
- Load-shaving

Whitout EMS

G en era tio n  cost (euros)
3.76

x10

Figure 5.5: Sensitivity of the CO2 emission with respect to the generation cost for the 
French system

5.5 .2  T h erm al d om in ated  sy stem  : G erm an case

In this model we consider six therm al units, a run-of-the-river hydro power plant, 
a solar and a wind plant th a t are described below. The time horizon and time step are 
picked identical to those for the French case.

The data used for each therm al unit is given in Table 5.8 below. The cost Cj in euro 
per megawatt-hour (€ /M W h) is considered constant over time. Each of therm al unit is



of a different type: nuclear, brown coal (lignite), hard coal, gas, mineral oil and biomass.
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T h e rm a l u n its pmax e cj
1 9516 1057 35
2 19989.3 1999 45
3 22699.6 2270 55
4 24434.7 2443 90
5 2614.7 175 150
6 7320.1 732 40

Table 5.8: Germ an’s therm al unit data

The maximum power th a t we can displace with load shaving is equal to 2000 MW, 
the base data of the batteries is as shown in Table 5.6 with maximum capacity, output 
and input power as in Table 5.9. We note th a t the data  for the load shaving and for the 
capacity, output and input of the battery  are 20 times larger than  in the French system, 
but the demand here is also around 20 times larger than  in the French system.Moreover, 
we run the model for two different days, a winter and a spring days. The demand, initial 
power of therm al units (p0), run-of-the-river, solar and wind plants of those days will be 
presented in next sections.

(Q b  ) (bi ) (bo  )
B attery 1 2340 MWh 264 MW 800 MW
B attery 2 4680 MWh 328 MW 1600 MW
B attery 3 8000 MWh 2000 MW 2000 MW

Table 5.9: B attery data for German system

D a ta  a n d  re su lts  o f a  w in te r  day

The initial power of this day can be seen in Table 5.10. Moreover, the demand and 
wind and run-of-the-river generation for the whole period can be seen in Figure 5.6.

T h e rm a l u n its 1 2 3 4 5 6
p0 9329 14551 1946 1626 191 4489

Table 5.10: Initial power therm al units for a winter German day

Time (hours) Time (hours)

4x 10

Figure 5.6: Demand and solar, wind and run-of-the-river generation, respectively for a 
winter German day.
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Figure 5.7 shows the Pareto front for the German bi-objective energy problem for a 
winter day. The number of points at the discretization is considered equal 200. As in the 
French case, the option th a t reduces the most both the cost and the carbon emission is 
battery  3, th a t is the largest battery. Load shaving is an efficient mechanism, comparable 
to the smallest storage battery  1.

Figure 5.7: Pareto front for a winter German day

Table 5.11 show the final value of the two objectives when the param eter u  is equal 
1,0,  and 0.1, respectively. Recall from equation (5.7) th a t the param eter u  defines the 
scalarization; specifically, when u  = 1  (respectively u  =  0) only the generation cost 
(respectively the maximum CO2 emission) is considered. For each value of u , a first 
row reports the generation cost and the maximum CO2 emission beyond the target for a 
problem without EMS. The gains in both objectives, absolute and percentage magnitudes, 
are displayed subsequently, for the model (5.3) with load shaving, and for the model (5.4), 
using the three battery  configurations in Table 5.9.

Cost (euro) % difference CO2 (Kg/M W h) % difference
W ithout EMS 73.360.494,00 - 524.44 -

r-H Load shaving -19.310,00 -0.26 % -0.0 -0.0 %
II B attery 1 -153.543,00 - 0.21 % +3.45 +0.666 %
3 B attery 2 -306.995,00 -0.42 % +7.0 +  1.3328 %

B attery 3 -589.802,00 -0.80 % -0.0 -0.0 %
W ithout EMS 96.209.093,00 - 354.39 -

o Load shaving +2.770.810,00 +2.88% -18.42 -5.20 %
II B attery 1 +4.819.470,00 +5.00 % -17.33 -4.89%
3 B attery 2 +3.786.984,00 +3.94% -27.72 -7.82 %

B attery 3 +  1.927.188,00 +2.00 % -35.49 -10.0 %
W ithout EMS 76.720.938,00 - 454.90 -

r-H Load shaving -203.992,00 -0.26% -73.80 -16.22 %
B attery 1 -188.498,00 -0.24 % -77.36 -17.00%

3 B attery 2 -358.562,00 -0.47% -81.20 -17.85 %
B attery 3 -657.167,00 -0.86% -85.68 -18.83 %

Table 5.11: Generation cost and CO2 emission for a winter German day

On Figure 5.8 the batteries power profile and load shaving are shown for different 
values of the param eter u. Positive values of the battery  power profile mean energy 
discharged, the output, and negative values energy stored, input. In this case we see tha t
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Figure 5.8: B attery profile and load shaving for different values of u  (winter German day)

the battery  is not used just at peak times as the load-shaving, but several times during 
the day.

The sensitivity of the second objective with respect to the generation cost, Figure 
5.9, as in the French system, has a similar behavior for all configurations of the problem 
and the rate of change decreases when the generation cost gets closer to the value obtained 
when minimizing just the second objective function. Note th a t the sensitivity is smaller 
than  in the French case, this probably happens because the variation on the generation 
cost is larger than  in the French case. So in the German case it is necessary to increase 
more the generation cost than  in the French case to have reductions in the CO2 emission.

0 

-0.1 

-0.2 

-0.3 

-0.4 

-0.5 

-0.6
7 7.5 8 8.5 9 9.5 10 10.5

G enera tion  cost (euros) x  1 0 7

Figure 5.9: Sensitivity of the CO2 emission with respect to the generation cost for a winter 
German day

D a ta  a n d  re su lts  o f a  sp r in g  day

The initial power of this day can be seen in Table 5.12. Moreover, the demand and 
wind and run-of-the-river generation for the whole period can be seen in Figure 5.10.

-  Battery 1
-  Battery 2
-  Battery 3
-  Load-shaving 

Whitout EMS

(c) w =  0.1

Time (hours) Time (hours)

(a) w =  1 (b) w =  0
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T h e rm a l u n its 1 2 a 4 5 6
p0 7762 15946 14681 1497 64 a9a9

Table 5.12: Initial power therm al units of a spring German day

Time (hours)

Figure 5.10: Demand and solar, wind and run-of-the-river generation, respectively of a 
spring German day

Figure 5.11 shows the Pareto front for the German bi-objective energy problem with 
data  for a spring. The number of points at the discretization is also considered equal 200. 
As in the french problem, the option th a t reduces the most both the cost and the carbon 
emission is battery  3, th a t is the largest battery. Moreover the load shaving is an efficient 
mechanism, comparable to battery  1.

4x 10

Figure 5.11: Pareto front for a spring German day

Table 5.13 show the final value of the two objectives when the param eter u  is equal 
1, 0 and 0.2, respectively. The Pareto front for the different configurations of the energy 
problem are more spaced in spring day, Figure (5.11), than  in the winter day (5.7). It 
happens because the difference between the lower and upper values for the objectives 
is smaller in the spring day. However comparing Tables 5.13 and 5.11, for u  =  1, it is 
possible to see th a t the percentage of reduction in the cost generation is larger in the 
winter day than  in the spring day. The same happens when comparing the percentage of 
the CO2 emission on Tables 5.13 and 5.11, for u  =  0.

On Figure 5.12 the batteries power profile and load shaving are shown for different 
values of the param eter u. As in the winter day of the German system the batteries are 
used several times during the day, not just at peak times as the load-shaving.

The sensitivity of the second objective with respect to the generation cost, Figure 
5.13, as in the previous cases, has a similar behavior for all configurations of the problem 
and the rate of change decreases when the generation cost gets closer to the value obtained



Application to energy management systems 114

Cost % CO2 %
W ithout EMS 53.640.087,00 - 492.94 -
Load shaving -58.865,00 -0.11 % -18.60 -3.77 %

Battery 1 -98.132,00 - 0.18 % -15.32 -3.11 %
Battery 2 -176.792,00 -0.33 % -10.18 -2.06 %
Battery 3 -348.998,00 -0.65 % -15.69 -3.18 %

W ithout EMS 57.903.467,00 - 372.77 -
Load shaving +975.380,00 +  1.68% -11.88 -3.17 %

Battery 1 -264.926,00 -0.46 % -5.25 -1.41%
Battery 2 -504.849,00 -0.87% -10.50 -2.81 %
Battery 3 -789.857,00 -1.36 % -17.94 -4.81 %

W ithout EMS 54.798.647,00 - 425.42 -
Load shaving -89.702,00 -0.16% -6.82 -1.68 %

Battery 1 -130.522,00 -0.24 % -7.76 -1.82%
Battery 2 -237.123,00 -0.43% -14.69 -3.45 %
Battery 3 -441.068,00 -0.80% -24.10 -5.67 %

Table 5.13: Generation cost and CO2 emission for a spring German day

(a) w =  1 (b) w =  0

(c) w =  0.2

Figure 5.12: B attery profile and load shaving for different values of u  (spring German 
day)

when minimizing just the second objective function. Note th a t the sensitivity is smaller 
than  in the French case, this probably happens because the variation on the generation 
cost is larger than  in the French case. So in the German case it is necessary to increase 
more the generation cost than  in the French case to have reductions in the CO2 emission.
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Figure 5.13: Sensitivity of the CO2 emission with respect to the generation cost for a 
spring German day

5 .5 .3  H ydro d om in ated  sy stem  : B razilian  case

The Brazilian system represents schematically the main subsystems in the country, 
each one synthesized in a bus. Each bus has its own demand to meet, but it is intercon­
nected with some other buses and can exchange energy with them. The representation of
the transmission system is an im portant modeling issue since the capacity of transmission
lines may change the energy generation. Based on [Scu16], in this work a classical DC 
(direct current) model is employed, which considers the following premises:

• all bus voltages are considered fixed and equal to 1 p.u.;

• line resistences are negligible compared to line reactances;

• angle (0) differences between buses are small, so tha t sin(0) «  0 in radians.

W ith these assumptions, the power flow in each transmission line can be modelled by 
linear constraints [TOC+ 99]. The limits of the transmission lines and the power balance 
equation, thus become:

B

-  f l ,™“  < y  w  ( y  P‘ +  y  p‘, ‘ +  w  -  l )  < F i r 1
b=i jeTb ieHb

B B

y  ( y  +  y  p t t  +  W ' )  =  y  L i
b=1 jeTb ieHb b=1

for t  =  1 , . . . ,  T , where B  is the number of buses, T  is the set of therm al units connected 
to bus b, is the set of hydro plants connected to bus b, p q̂  is the output power of 
hydro plant i, W  represents the wind energy generated by bus b at time step t, Lb is 
the load demand of bus b at time step t, F L ™“x is the maximum power flow capacity of 
the transmission line l (MW) and r 1b is the power transfer distribution factor (PTDF) 
of transmission line l due to the injection of active power at bus b. Moreover, r 1b is 
a param eter th a t depends on the reactance of the transmission lines and represents the 
sensitivity of each power injection at bus b over line l. This param eter is obtained through 
manipulations on equations of power flow, power balance on buses and the incidence 
m atrix as described in [VDBDD14].

The power system considered in this section is represented in Figure 5.14. The 
transmission system has 5 buses and 6 lines, whose transmission capacity is 1.000 MW
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and reactance 0, 0249 pu, with the exception of line 2 — 5, which has a capacity of 2.000 
MW and reactance 0, 0124 pu. The demand to be met is located in four load centers 
(L 1 — L4). Bus 5 is considered to be the slack bus, i.e., it does not have a demand to 
meet. Moreover the system is composed of seven therm al units (T1 — T7), three hydro 
plants (H 1 — H 3) and two wind units (W 1 — W2). We consider the time horizon T  to span 
24 hours and with time step size h equal to 1 hour.

Figure 5.14: Diagrammatic representation of the Brazilian system

The demand for each bus and the wind generation of units W1 and W2 are given in 
Figure 5.15.

Time (hours)

Figure 5.15: Demand and wind generation, respectively for the Brazilian system

The therm al unit data  is given in Table 5.14 below of three different types: 2 gas 
(T1 — T2), 3 mineral oil (T3 — T5), 1 coal (T6) and 1 biomass (T7).

T h e rm a l u n its Bus p0 pmaxp e cj
T 1 1 0 455 75 15
t 2 2 0 160 70 20
t 3 2 0 80 30 50
T4 2 0 55 15 60
T5 2 0 55 15 80
To 3 200 455 100 35
t 7 4 0 130 40 25

Table 5.14: Thermal unit da ta  for the Brazilian system

The data  related to the hydro plants are shown in Table 5.15. The first power plant, 
H 1, consists of three, while H 2 and H 3 consist of five and four identical units, respectively. 
The volumes are given in hm 3, the maximum flow rate of each turbine in h3/s  and the 
cost of the water cw in Brazilian Real (R$). Reservoir H 3 is downstream with respect to
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H 2 with travel time equal to one hour. Reservoir H  is uphill with respect to H 2 and 
there is no water delay between both reservoirs.

H y d ro  p la n t Bus V mm V max V 0 qmax cw
2 1974 5776 2000 401 50

h 2 4 2283 3340 2500 312 50
H 3 4 4300 5100 4500 393 50

Table 5.15: Hydro plants data  Brazilian system

Figure 5.16: Brazilian hydraulic configuration

The load shaving and the battery  energy storage system where connected to bus 4, 
th a t is the bus with the biggest capacity of power generation. Moreover the data  of those 
mechanism where considered as in Frech system (Tables (5.6) and (5.5)).

R e su lts

Figure 5.17 shows the Pareto front for the bi-objective energy problem considering 
the number of points at the discretization equal 100. The black dots in Figure 5.17 show 
the optimal value of each multi-objective problem for w  =  0.9.

Figure 5.17: Pareto front for the Brazilian system

By examining the Pareto front, the option th a t reduces the most both  the cost and 
the carbon emission is battery  3, th a t is the largest battery. Load shaving is a mechanism 
better than  batteries 1 and 2 in this configuration, while in the previous configurations it 
was comparable with battery  1. Since in this case, we consider the transmission system 
th a t includes more constraints to the problem. The energy th a t can be transferred between 
the buses, needs to satisfy the limits of the lines. Hence, it is necessary to dispose of a
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larger battery  to obtain better results than  the load-shaving (which by nature can be 
diffuse).

Table 5.16 shows the final value of the two objectives when u  equal 1, 0, and
0.9, respectively. The gains in both objectives, absolute and percentage magnitudes, are 
displayed subsequently, for the model (5.3) with load shaving, and for the model (5.4), 
using the 3 battery  configurations in Table 5.5.

Cost % CO2 %
W ithout EMS 641.083,00 - 80.10 -
Load shaving -682,00 -0.11 % -0.08 -0.1 %

B attery 1 -187,00 - 0.03 % -0.25 -0.31 %
B attery 2 -374,00 -0.06 % -0.27 -0.34 %
B attery 3 -1.241,00 -0.19 % +3.23 +4.03 %

W ithout EMS 643.795,00 - 68.85 -
Load shaving -960,00 -0.15% -0.70 -1.03 %

B attery 1 -571,00 -0.09 % -0.30 -0.44%
B attery 2 -575,00 -0.09% -0.70 -1.03 %
B attery 3 -840,00 -0.13 % -2.21 -3.21 %

W ithout EMS 642.389,00 - 69.75 -
Load shaving -729,00 -0.11% -0.41 -0.59 %

B attery 1 -209,00 -0.03 % -0.20 -0.34%
B attery 2 -411,00 -0.06% -0.48 -0.68 %
B attery 3 -1.255,00 -0.19% -0.06 -0.08 %

Table 5.16: Generation cost and CO2 emission for Brazilian system

The sensitivity of the second objective with respect to the generation cost, given by 
Theorem 5.1 is presented in Figure 5.18. The rate of change decreases when the generation 
cost gets closer to the value obtained when minimizing just the second objective function, 
as obtained for French and German systems. Moreover, in this case, the sensitivity is 
larger than  in the previous cases, meaning th a t it is possible to reduce the CO2 emission 
with a smaller cost.

Figure 5.18: Sensitivity of the CO2 emission with respect to the generation cost for the 
Brazilian system
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5.6 C oncluding rem arks
In this work we studied the effect of different batteries, and a load shaving mechanism 

on bi-objective energy management problems. The first objective consists in controlling 
cost, whereas the second consists of controlling carbon emissions. The study was carried 
out on simple, yet representative, mixes for power systems: therm al dominated, hydro 
dominated, hydro-thermal system. Both mechanisms, load shaving and battery  provide a 
reduction in generation cost and carbon emissions. Moreover, if the battery  is sufficiently 
large, the results are better than  with load shaving. The size of the required battery  was 
shown to depend on modelling transmission system constraints. In our study demand side 
management was shown to provide good results comparable to the case with a battery. 
W hen recalling the fact th a t the former, does not, in principle, require the installation of 
physical material, demand side management may proof quite valuable.

The provided multi-objective approach can be extended to consider larger and more 
realistic models. We have also given a sensitivity analysis which provides useful informa­
tion to the decision maker as to the compromise between conflicting objectives.

This preliminary study shows the interest of the approach. We plan to study exten­
sions to a stochastic setting, and a continuous time model tha t can be investigated with 
the m ethod presented in Chapter 3.



Chapter 6 

Conclusions and future work

In this work we studied the multi-objective optimal control problems in finite and 
infinite horizon. More precisely, in Chapter 3 we investigated for the first time bi-objective 
optimal control problems with cost functions of different nature. We considered the 
situation where the set of trajectories is not compact and the set of Pareto solutions may 
be empty. We have studied the relation of the Pareto front corresponding to the relaxed 
(convexified) bi-objective problem with the original one. W ith the HJB approach to an 
adequate auxiliary control problem we gave a characterization of the Pareto front of the 
relaxed bi-objective problem. Moreover, we gave also a characterization of the e-Pareto 
front of the original problem by using the same auxiliary value function. The presented 
numerical examples confirm th a t the m ethod is good, especially considering th a t after 
solving the derived HJB equation, we can easily obtain the Pareto fronts for different 
initial states.

However, it should be noticed th a t for a control problem with two state variables and 
two cost functions, the m ethod requires to solve a HJB equation in dimension 4. To get 
an approximation of the Pareto front in a reasonable time, the dimension of state should 
remain less than  4 or 5. We stress on th a t this thesis addresses mainly some theoretical 
questions, the numerical aspects should be investigated further.

The interesting results obtained for finite horizon motivated us to investigate in­
finite horizon multi-objective optimal control problems. We note th a t the extension of 
this results to the infinite horizon case was not trivial. Considering an adequate auxiliary 
control problem, in Chapter 4, we could characterize the Pareto fronts for this kind of 
problem. The issue here was tha t the value function of the auxiliary optimal control 
problem could be characterized as a solution of an HJB equation. However, the value 
function is not the unique solution of the HJB equation. Usually, numerical approx­
imations are analyzed (convergence and error estimates) under the assumption th a t a 
comparison principle holds. In this work we proposed a numerical scheme to obtain the 
value of the auxiliary control problem and we proved the convergence results by using 
only the Dynamical Programming Principle.

Furthermore, in Section 4.4, we introduced a m ethod for reconstruction of trajec­
tories for infinite horizon optimal control problems with state constraints, based on the 
dynamical programming principle. The m ethod can also be employed if the exact value 
function is not available, th a t means, when the value function is obtained by some numer­
ical approximation method, as the Semi-Lagrangian m ethod proposed in Section 4.2.1. 
Our m ethod extends to infinite horizon optimal control problems with state constraints 
the results for finite horizon problems without and with state constraints introduced in 
[RV91] and [ABDZ18], respectively. A future step in this subject is solving numerical
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examples with the Semi-Lagrangian scheme proposed in this thesis and to reconstruct 
optimal trajectories.

Chapter 5 was devoted to the investigation of energy management systems with 
two objectives. We compared the ability of different batteries as a substitute of the 
load shaving mechanism in smoothing the load peaks, for a simple, yet representative, 
power mix systems representing typical configurations in Brazil, France and Germany. 
In addition to the usual generation cost minimization we incorporated an environmental 
concern, referred to minimizing fuel emissions. We concluded th a t both mechanisms, 
load shaving and a battery, have a positive effect on demand response. We observed a 
reduction in generation cost and carbon emission. Moreover, if the battery  is sufficiently 
large, the results were better than  load shaving.

The energy management systems can also be modeled in a continuous time. In an 
ongoing work we are considering the HJB approach proposed to solve finite multi-objective 
problems in Chapter 3 to solve the model. W hen solving the discrete energy problems 
(5.2), (5.3) and (5.4), we could conclude th a t both mechanisms, load shaving and the 
use of an battery, have a positive effect on demand response. This feature is promising 
regarding the optimal control problem, where it would be desirable to eliminate load 
shaving (state) variables. In view of the presented results, we expect th a t an optimal 
control model dealing only with a battery  would induce a demand response mechanism 
similar to load shaving, provided the considered batteries are sufficiently large. We are 
interested also in analyzing the use of the batteries for primary frequency response (PFR). 
The dynamics of the system frequency can be governed by the first-order swing equation 
[TTS16, WLHL16]:

2H +  D f  (i) =  £  4 Pi (i) +  4 6 , (i) -  4 p ,( i ) ,  (6.1)
j = l

where (i) is the frequency deviation, H  [MWs/Hz] is the system inertia after genera­
tion loss which refers to the ability of the system to resist a frequency change following a 
contingency,D [1/Hz] represents the load-damping rate, 4 p j and 4 6 , denotes respectively 
the increased power outputs from the therm al units and battery  storage unit following 
the generation loss 4 p L [MW].

The problem of generating energy such th a t demand is satisfied at minimum oper­
ating cost over a daily or weekly time horizon usually can be divided in discrete periods 
of one hour and the PF R  is necessary during the first few seconds following a severe dis­
turbance such as the sudden loss of a generator or a massive increase in the load, when 
there is no more sun, for example. To include th a t constraint in the problem, a finer 
discretization needs to be done locally, at critical times. We are currently developing a 
model in continuous time th a t we plan to solve with the HJB approach.
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