
universidade federal do paraná

marcelo coelho

uncertainty analysis in the statistical and stochastic
context of water quality time series

curitiba
2019



marcelo coelho

uncertainty analysis in the statistical and stochastic
context of water quality time series

Tese apresentada ao Programa de Pós-
Graduação em Engenharia de Recursos Hí-
dricos e Ambiental, Setor de Tecnologia da 
Universidade Federal do Paraná, como um 
requisito par-cial para a obtenção do título 
de Doutor em Engenharia de Recursos 
Hídricos e Ambien-tal.

Orientador: Prof. PhD Cristovão Vicente
Scapulatempo Fernandes
Co-orientador: Prof. D.Eng. Daniel Henrique
Marco Detzel

curitiba
2019



Catalogação na Fonte: Sistema de Bibliotecas, UFPR
Biblioteca de Ciência e Tecnologia

C672u Coelho, Marcelo
     Uncertainty analysis in the statistical and stochastic context of water 
quality time series   [recurso eletrônico] / Marcelo Coelho. –  Curitiba, 2019.
           

      Tese - Universidade Federal do Paraná, Setor de Tecnologia, Programa 
de Pós-Graduação em Engenharia de Recursos Hídricos e Ambiental, 2019.

      Orientador: Cristovão Vicente Scapulatempo Fernandes – Coorientador:  
Daniel Henrique Marco Detzel.
    
     
     1. Água – Qualidade. 2. Análise de séries temporais. 3. Desenvolvimento 
de recursos hídricos. I. Universidade Federal do Paraná. II. Fernandes,
Cristovão Vicente Scapulatempo. III. Detzel, Daniel Henrique Marco. IV. 
Título.

CDD: 628.1

Bibliotecário: Elias Barbosa da Silva CRB-9/1894







Dedicated to the water and all the living communities



Acknowledgements

Thanks God for my life, and strength to overcome all the challenges.
Thanks for my parents Ivilasio Coelho Filho and Maria Lúcia Melo Coelho, and sister
Thais Coelho for giving me the emotional and financial support to keep doing these
research.
Special thanks to my advisor Professor Cristovão V. S. Fernandes and co-advisor Daniel
H. M. Detzel for the brainstorms, revisions of manuscripts and thesis, and most of all, the
friendship.
Thanks to all the students and professors that helped me along the way and became
my friends. Special thanks to Michael Mannich, Julio Werner, Artur Braga, Ana Paula
Muhlenhoff, Luciane Prado, Carol Kozak, Bruna Poli, Danieli Ferreira, Ellen Baettker,
Victória Monteiro.
Thanks to Luís Carlos Barbosa for the partnership, friendship, emotional support, and
the endless talks in the Volkswagen kombi.
Thanks to professors Miriam Rita Moro Mine, Eloy Kaviski, Julio Cesar Azevedo and
Michael Mannich for the comments and suggestions that also enriched this research in
the first years.
Thanks to professors Eloy Kaviski, Julio Cesar Azevedo, Adilson Pinheiro, and Water
Collischonn for accepting the invitation to evaluate these final version of the research.
Thanks for my sons Abel and Raul Semicek Coelho for being very special kids which give
me only satisfaction, happiness, and love.
Thanks for Tatiana Kaestner who was very important giving me advices, emotional and
financial support.
Thanks for The Federal University of Paraná, CAPES and CNPq for the funding.



“Free fall flow river flow, on and on it goes. Breath under water ’till the end. Yes, the
river knows.

Jim Morrison”



RESUMO

A análise de incertezas é um tópico de pesquisa desafiador em gestão de
recursos hídricos. A aplicação de métodos estatísticos para as pesquisas em recur-
sos hídricos requer que as séries temporais estejam de acordo com as hipóteses
de aleatoriedade, homogeneidade, independência e estacionariedade (RHIS). O não
atendimento a estes pré-requisitos pode ocorrer quando tendências, ciclos e/ou des-
locamentos estão presentes. No entanto, as incertezas e a subjetividade associada à
sua avaliação e a expressão podem dificultar a detecção desses padrões de variabili-
dade. Uma abordagem tradicional para lidar com incertezas em estudos hidrológicos
é a aplicação de modelos autoregressivos (ARIMA). No entanto, sua aplicação em
estudos de qualidade da água é dificultada devido às características de séries tempo-
rais típicas, como frequência curta e frequência irregular. Uma maneira de superar
esses problemas é o uso de técnicas de regressão entre vazões e concentrações. No
entanto, a variabilidade das concentrações não depende apenas da variabilidade de
vazões, especialmente em bacias hidrográficas urbanas. Uma análise de incerteza
integrada, envolvendo incertezas de medição, métodos e de representatividade faz-
se necessária para validar a aplicação de abordagens estocásticas em estudos de
qualidade da água. Nesta pesquisa, uma avaliação das incertezas relacionadas à
identificação e avaliação padrões de variabilidade em dados de frequência irregular
foi realizada através da geração de séries temporais sintéticas (STS) a partir das
incertezas de medição das vazões e da qualidade da água. Três cenários de incerteza
foram definidos, nível baixo (LL: 10–30%), nível médio (ML: 30–50%) e nível alto
(LH: 50–70%). O método de Monte Carlo (MCM) foi aplicado com as distribuições
de probabilidade uniforme, normal e lognormal. Em cada cenário, as médias e os
desvios padrão (std) foram calculados como uma medida da incerteza dos p-valores.
A significância das tendências, ciclos e/ou deslocamentos foi avaliada testando-se as
hipóteses de RHIS com os testes Single-Sample runs, de Mann-Whitney, de Wald
e Wolfowitz e de Mann-Kendall, respectivamente. Os testes foram aplicados com
um número crescente de elementos (N). As incertezas relacionadas ao uso de mo-
delos auto-regressivos para séries temporais de qualidade de água foram avaliadas
pela aplicação de um modelo auto-regressivo (modelo de Markov) para as vazões,
concepção de um modelo de regressão entre vazões e concentrações, e estimativa de
concentrações e cargas diárias a partir das vazões diárias. Os resultados indicam que
no atual contexto de incertezas na gestão dos recursos hídricos, a representatividade
desempenha o papel mais importante. O problema da representatividade não está
no passado, mas no futuro, pois, apesar das dificuldades na detecção de tendências,
ciclos e/ou deslocamentos, esses padrões podem levar vários anos para causar mu-
danças significativas nas estatísticas. A modelagem estocástica da qualidade da água
a partir de vazões diárias e séries temporais de frequência irregular parece ser uma
opção razoável pois, os principais obstáculos causados por frequências irregulares e
períodos curtos, podem ser superados através de técnicas de regressão sem compro-
metimento das características estatísticas. As séries temporais de qualidade da água
de estratégias tradicionais de monitoramento podem ser utilizadas para o planeja-
mento sem grandes incertezas relacionadas a padrões e medições de variabilidade.
No entanto, a estatística descritiva terá incertezas relacionadas à representatividade
temporal.

Palavras-chave: Incertezas. Séries históricas de qualidade da água. Gestão de re-
cursos hídricos.



ABSTRACT

Uncertainty analysis is a recent research topic in water resources manage-
ment. The application of statistical methods for water resources research requires
time series to be compliant with the hypotheses of randomness, homogeneity, inde-
pendence, and stationarity (RHIS). Noncompliance may occur when trends, cycles,
and/or shifts are present. However, the uncertainties and associated subjectivity in
assessment and expression may make it difficult to detect these patterns of variabil-
ity. A traditional approach for dealing with uncertainties in hydrological studies is
the application autoregressive models (ARIMA). However, its application in water
quality studies is hampered by short and irregular-frequency time series. One way
to overcome these problems is the use of regression techniques between flows and
concentrations. However, the concentrations variability is not only dependent on the
flows variability, especially in urban watershed. An integrated uncertainty analysis,
involving measurement, methods, and representativeness uncertainties is needed to
validate the application of stochastic approaches in water quality studies. In this
research, an assessment of the uncertainties related to identification and evalua-
tion of variability patterns in irregular-frequency data was performed through the
generation of synthetic time series (STS) from the uncertainties of flows and wa-
ter quality measurements. Three uncertainty scenarios were defined, the low level
(LL: 10–30%), mid level (ML: 30–50%) and high level (HL: 50–70%). The Monte
Carlo Method (MCM) was applied with uniform, normal and lognormal probability
distributions. In each scenario, averages and standard deviations (std) were calcu-
lated as a measure of the p-values uncertainty. The significance of trends, cycles
and/or shifts was evaluated by testing the RHIS hypotheses with the Single-Sample
Runs, Mann-Whitney, Wald and Wolfowitz, and Mann-Kendall tests, respectively.
The tests were applied with an increasing number of elements (N). The uncertainty
related to the use of autoregressive models for typical water quality time series was
assessed by application of an autoregressive model (Markov model) for the flows,
conception of a regression model between flows and concentration, and estimation
of daily concentrations and loads from daily flows. The results indicate that in the
current context of uncertainty concerns in water resources management, the repre-
sentativeness plays the most important role. The problem of representativeness is
not in the past, but in the future, since despite the difficulties in detection of trends,
cycles and/or shifts in typical water quality time series, these patterns may prob-
ably take a several years to cause significant changes in statistics. The stochastic
water quality modeling from daily flows and irregular-frequency times series seems
to be a reasonable option since the main obstacles, caused by irregular frequency
and short periods, can be overcome by using regression techniques without com-
promising statistical characteristics. The water quality time series from traditional
monitoring strategies can be used for the planning without high uncertainties re-
lated to variability patterns and measurements. However, the descriptive statistics
will have uncertainties related to temporal representativeness.

Key-words: Uncertainties. Water Resources Management. Time Series. Statistical
Analysis.
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1 Introduction

“Reject any final form that can not express the internal reality”
Bruce Lee

The growing concern about uncertainties in water resources management is not
only a scientific issue (POLASKY et al., 2011; WALKER; HAASNOOT; KWAKKEL,
2013; BEVEN, 2016; MCMILLAN et al., 2017; PREIN; GOBIET, 2017; TENG et al.,
2017; JUNG; NIEMANN; GREIMANN, 2018; TIAN et al., 2018), but also a worldwide
concern regarding the water resources availability. It requires strategical policies towards
sustainable decisions (ASCOUGH et al., 2008; BRADY et al., 2015; UNESCO, 2015).
The Global Risks 2015 report from the World Economic Forum (BRADY et al., 2015)
highlights inter-state conflicts with regional consequences as the main overall risk, mainly
due to water supply crises, with high impacts by 2025. Between 2000 and 2050, it is
expected an increase of 400% in global water demand by the manufacturing industry,
affecting all other sectors, with most of this increase occurring in emerging economies and
developing countries (UNESCO, 2015). In addition, uncertainties about climate change
have increased the need to better understand uncertainties, specially those related to the
representativeness of current time series (MILLY et al., 2008; MONTANARI; KOUT-
SOYIANNIS, 2014).

This concern became evident in the European Union (EU) policy basis for water re-
sources management, the Water Framework Directive 2000/60/EC (EC, 2000). The more
specific guidance documents (e.g., Wateco (2003) and Proclan (2003)) emphasize that
uncertainty analysis should be performed for appropriate and consistent water resources
planning and management. However, there is no recommendation of the best approach
to be applied (REFSGAARD et al., 2005; SIGEL; KLAUER; PAHL-WOSTL, 2010). It
may require actions that extend from improvements of data to reframing of problems and
solutions, or changing the structural governance context (BEVEN, 2016; WARMINK et
al., 2017). Additionally, most of the important strategic planning problems are charac-
terized by uncertainties about the future that are not statistical in nature (WALKER;
HAASNOOT; KWAKKEL, 2013). According to Ben-Haim e Demertzis (2015), a dis-
tinction between risk and uncertainty was proposed by Frank Knight, that defined the
uncertainties that can be handled with probabilities as “risk”, and the ones that cannot
by uncertainty or Knightian uncertainty.

Uncertainty assessment, expression and propagation should follow the interna-
tional Guide to the Expression of Uncertainty in Measurements, known as GUM 2008
(JCGM/WG1, 2008a). Based on probability theory, it defines uncertainty in measure-
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ment as a non-negative parameter, associated with the result of a measurement, that
characterizes the dispersion of values that could reasonably be attributed to the mea-
surand. When possible, uncertainty should be expressed as a probability density function
(pdf) (BICH; COX; HARRIS, 2006; BICH et al., 2012; JCGM/WG1, 2008a; JCGM/WG1,
2009). Uncertainty can be assessed from repeated measurements or other non-statistical
methods, e.g., expert judgment. Propagation can be performed by analytical methods or
Monte Carlo Method (MCM), but also by a simplified scheme, i.e. the GUM uncertainty
framework, which might not be satisfactory when: (i) distributions for the input and out-
put quantities are asymmetric, or not a Gaussian or t-distribution; (ii) the measurement
function is non-linear; (iii) uncertainty contributions are not of approximately the same
magnitude (JCGM/WG1, 2009).

However, the application of probability theory in water resources management is
not trivial, since water quality and hydrological data have been typically reported without
uncertainty information and the complexity of water resources monitoring imposes con-
siderable difficulties to repetition of measurements or measurement steps in the same flow,
weather and quality conditions (GROVES, 2006; ASCOUGH et al., 2008; POLASKY et
al., 2011; MCMILLAN et al., 2017; TIAN et al., 2018). Although recent efforts have been
directed towards identification and quantification of the main sources of uncertainties and
impacts on water resources management, there are a number of challenges for the success-
ful application of uncertainty analysis (REFSGAARD et al., 2005; HARMEL et al., 2006;
GROVES, 2006; BROWN; HEUVELINK, 2007; RODE; SUHR, 2007; HARMEL et al.,
2009; SIGEL; KLAUER; PAHL-WOSTL, 2010; COZ, 2012; BEVEN, 2016; WARMINK
et al., 2017; COELHO et al., 2017; MCMILLAN et al., 2017). For example, the uncer-
tainty assessment in time series data, would involve high level of subjectivity with respect
to past environmental and measurement conditions.

Harmel et al. (2006) estimated the cumulative uncertainty of discharges, water
quality constituents and storm loads in typical monitoring conditions, which includes dis-
charge measurement by stage-discharge method, moderate errors associated with single-
grab flow or time-interval sampling, refrigerated sample storage for 54 h prior to analysis
and moderate errors for low constituent concentrations. The authors found that uncer-
tainty can range from 6% to 19% in discharge measurement, from 4% to 48% in sample
collection, from 2% to 16% in sample preservation/storage, and from 5% to 21% in labora-
tory analysis. Uncertainty in storm loads ranged from 8% to 104% for dissolved nutrients,
from 8% to 110% for total phosphorous and nitrogen, and from 7% to 53% for total
suspended solids. McMillan, Krueger e Freer (2012) provide an overview of uncertainty
sources and their typical magnitudes in flow data. Typical confidence bounds for flow
uncertainties when using the rating curve method were found to be ±50–100% for low
flows, ±10–20% for medium or high (in-bank) flows, and ±40% for out of bank flows.
Although these estimates can give insight about the magnitude of uncertainties, the use
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of this information on time series data would be subjective and uncertain, due to the lack
of knowledge about the conditions in which each measurement was performed.

Furthermore, the difficulties of uncertainty analysis in environmental data should
be investigated in the statistical/stochastic and modeling context, in which information
is generated. It involves uncertainties beyond the measurements, e.g. those related to
spatial and temporal representativeness and choice of appropriate methods and models.
Representativeness of water quality and hydrological time series is achieved by monitor-
ing strategies with sampling frequencies, locations, techniques and methods adjusted to
capture the influence of diverse sources of variability and to meet the objectives of the
program, including the needs of statistical methods (RODE; SUHR, 2007; ANTTILA et
al., 2012; COELHO et al., 2017; NDIONE; SAMBOU; KANE, 2017).

Although the time series can be considered representative due to well-developed
monitoring strategies, it may not be to application of statistical methods. Fundamentally,
prior to statistical analysis, compliance with basic assumptions of randomness, homo-
geneity, independence and stationarity (RHIS) should be verified to confirm that the data
stem from an unique random population (DURRANS; TOMIC, 1996; MERZ; THIEKEN,
2005; HULLEY; CLARK; WATT, 2015; COELHO et al., 2017; NDIONE; SAMBOU;
KANE, 2017). Time series may not be compliant when trends, cycles and/or shifts are
present. The high dynamic variety of land and water uses, specially in urban watersheds,
associated with complex dynamics of environmental variability, i.e. daily variations, sea-
sonality, atypical phenomena and long-term changes, gives rise to these patterns and
variability structures in data (HULLEY; CLARK; WATT, 2015; COELHO et al., 2017;
NDIONE; SAMBOU; KANE, 2017). Additionally, these long-term structures of variability
can appear due to measurement errors and changes in techniques and methods (WAHLIN;
GRIMVALL, 2008; HULLEY; CLARK; WATT, 2015). Under these conditions, the sta-
tistical results may lose meaning (GILBERT, 1987; MCBRIDE, 2005). These statistical
properties of the time series are conditioning for the application of stochastic approaches
which are important tools for dealing with ontological uncertainties, i.e. those associated
with the inherent variability of the system. Although widely known in hydrological studies,
stochastic approaches are rarely applied for water quality management purposes due the
typical low and irregular frequency data, that challenges a reliable identification of trends,
cycles and/or shifts and autocorrelations (KURUNç; YüREKLI; ÇEVIK, 2005; KOUT-
SOYIANNIS, 2006; YAN; ZOU, 2013; HIRSCH; ARCHFIELD; CICCO, 2015; BEVEN,
2016; NDIONE; SAMBOU; KANE, 2017).

In this context, Anttila et al. (2012) assessed these characteristics using high fre-
quency data in a temperate, meso-eutrophic lake and Ndione, Sambou e Kane (2017) in
rainfall time series from 6 monitoring stations in Senegal. High errors in seasonal statistics
(±10% (mean), ±23% (std)) and low probability (12.8%) of observing concentrations in
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the upper 75th percentile were found from monthly sampling. Ndione, Sambou e Kane
(2017), additionally applied different statistical tests for the same purpose in two different
periods (1960-2010 and 1970-2010), i.e. the Kendall and Spearman’s rank correlation tests
for independence (autocorrelation), Hubert and Lee-Heghinian procedures, Pettitt test,
Buishand’s U Statistic and Bois’s Ellipse for homogeneity and Mann-Kendall (M-K) and
Seasonal M-K (seasonal and monthly scales) tests for trend assessment. Different results
were found depending on station, statistical tests, period of analysis and scales involved.
These results highlight the importance of uncertainties related to representativeness and
choice of methods to the final information for water resources management.

Recent researchers have focused in identifying, understanding, typifying (ontolog-
ical, epistemic, ambiguity, etc.) and quantifying sources of uncertainty in water resources
management. Difficulties with probability theory and intrinsic subjectivity of uncertainty
analysis have been often mentioned (PAPPENBERGER; BEVEN, 2006; GROVES, 2006;
SIGEL; KLAUER; PAHL-WOSTL, 2010; BEVEN; BINLEY, 2014; WARMINK et al.,
2017). However, the knowledge about the implications of these characteristics to uncer-
tainty analysis and information for water resources management is still incipient. In order
to contribute for a better understanding of these relations, the present research investi-
gates the effects of different types of uncertainties and intrinsic subjectivity in the sta-
tistical/stochastic context of water resources management. The identification of trends,
cycles and/shifts was performed on uncertain hydrological and water quality/quantity
data. The significance of the variability patterns was assessed by testing the hypothesis
of randomness, homogeneity, independence ans stationarity (RHIS). An algorithm was
developed to generate synthetic time series (STS) from uncertainty intervals with Monte
Carlo Method (MCM) and apply the statistical tests. The subjectivity of uncertainty as-
sessment, propagation and expression was also investigated by performing the analysis in
different uncertainty scenarios and with different probability density functions (pdf’s). An
autoregressive model was used to generate synthetic daily flows, and a regression model
was used to estimate daily concentration from daily flows. The irregular-frequency and
daily time series were tested for RHIS and the results compared.
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1.1 Hypothesis and Objectives
The hypothesis is that the stochastic approach for water quality assessment can

provide more consistent and reliable information for the planning than the deterministic
approach, once the latter is subjected to uncertainties from input data (epistemic and
ontological) and errors from simplified representations of the biological, physical, and
chemical system, and the former, only from the input data (epistemic and ontological). In
other words, the hypothesis is that stochastic approaches can be a reliable tool for dealing
with uncertainties in water quality management.

The objective of the present research is to evaluate the limitations and possi-
ble benefits from stochastic approaches in water quality analysis in a context of diverse
sources/types of uncertainties, e.g., knightian, spatial/temporal representativeness, mea-
surements, techniques and methods uncertainties. In a broader sense, it is the investiga-
tion of an alternative method for the deterministic approaches commonly used for water
quality assessment. The specific goals are:

(i) Definition of uncertainty scenarios;

(ii) Understanding of the impact of uncertainties in the statistical context of water
resources analysis through the verification of compliance with the basic assumptions
(RHIS) for application of statistical methods;

(iii) Stochastic modeling of flows;

(iv) Application of a regression model for estimation of concentrations from flows;

(v) Stochastic modeling of water quality from synthetic flows.

1.2 Motivation
This research is motivated by the current growing concern about uncertainties, ex-

pressed in diverse references around the world. Most of the recent researches are focused
in measurement uncertainties and their impact on modeling results. Until the publication
of the present research, no researches about the combined impact of the different sources
of uncertainties on information were found. For example, Coelho et al. (2017), called at-
tention for the uncertainties related to non-compliance with the basic assumptions for the
application of statistical methods (RHIS). The tests were applied in time series of con-
centration, loads and other units of 34 water quality variables from 12 monitoring sites in
a predominantly urban watershed in south Brazil, the Upper Iguassu Watershed. There
were rejection in 15%, 26%, 51% and 31% of the time series for randomness, homogeneity,
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independence and stationarity, respectively. The research reveled that, although this veri-
fication is rarely performed, there is evidence that statistical results of water quality time
series can be subject to an uncertainty due to non-compliance with basic assumptions.

A second reason was the advances in regression techniques for estimation of con-
centrations from flows. Hirsch, Moyer e Archfield (2010) presented a regression model that
takes into account other factors beyond discharge to estimate a missing concentration in
a chronological sequence. It considers the seasonal and time effect on the structure of
data, making the estimates much more realistic. This type of tools can make the use of
stochastic water quality modeling more feasible and reliable.

A third reason is the perception of the existent interrelation amongst the current
need for better understanding of uncertainties, the challenges for uncertainty assessment in
hydrological and water quality/quantity data, e.g subjectivity, the impact of uncertainties
in identification of major variabilities (trends, cycles and shifts), and the increased power
of regression models. All these issues are put together in the stochastic process, which
is in essence a WRM tool to deal with ontological uncertainties, but is typically applied
only in hydrological studies.

1.3 Guidance for the reader
In the next chapters the theoretical background, methods, study area, results and

conclusions are presented. In chapter 2, the sections 2.1, 2.2, 2.3, 2.4, 2.5, and 2.6 present
discussions about: (i) uncertainties in the water resources management; (ii) current basis
for measurement assessment and expression; (iii) sources of uncertainty in hydrological
measurements; (iv) advances in water quality assessment and expression; (v) uncertainties
related to time series analysis, and finally; (vi) a synthesis of the chapter, respectively. In
chapter 3, the section 3.1 present an overview and the philosophical/scientific background
of the method. Sections 3.2 and 3.3 present the Upper Iguassu Watershed and monitor-
ing sites of this research, and a description of the monitoring practices and time series,
respectively. Sections 3.4, 3.5, 3.6, 3.7, 3.8 present the methods for: (i) for definition of
uncertainty scenarios; (ii) generation of synthetic time series; (iii) significance assessment
of variability patterns; (iv) regression among flows, and among flows and concentrations;
(v) stochastic flow and water quality/quantity modeling, respectively. In chapter 4, the
sections 4.1, 4.2 present the results from irregular-frequency time series; and from the
joint analysis of irregular-frequency and continuous time series, respectively. Finally, the
conclusions are presented in chapter 5.



33

2 Theoretical Background

“Stone river
Water ain’t runnin’ no more

What used to be a stream
Is now just a dream”

JJ Cale

2.1 Uncertainties in water resources management
The main uncertainty in water resources management is associated to the future

availability of water for the many different water uses in a watershed. Diverse types of
information are required to guide the decision-making processes to the consistent identifi-
cation of pressures and solutions to meet future goals of quantity and quality. The planning
of water resources is typically performed in the scale of decades being large enough to
include significant changes in the environment, economy, water uses and needs or even
war and peace. Consequently, the actual statistics are subject to significant changes in
the planning period, being expected to be at least non-stationary, specially in the actual
context of high uncertainties about climate change and sustainable development. The
success depends on the ideas about what to expect in relation to these issues and to
how water resources will respond to a given set of management actions and policies. A
large part of these information is provided by statistical analysis of monitoring data and
mathematical/statistical models.

The decision-making processes typically occur in a context of deep uncertainties,
i.e., unknown uncertainties, not described by probabilities (SIGEL; KLAUER; PAHL-
WOSTL, 2008). Climate change today is the most discussed source of uncertainty. Re-
cently, this topic has received increasing attention. Particularly, it appears in the last
version of the EU Water Framework Directive (WFD) (COMMISSION, 2000) as one of
the “Key issues” that remain to be explored. According to the document, the pressing
methodological questions are: “How to deal with uncertainty: which approaches can be
proposed to water managers for integrating uncertainty into decision-making and for de-
veloping adequate communication on uncertainty towards the public and stakeholders?”.
According to Refsgaard et al. (2005), Sigel, Klauer e Pahl-Wostl (2008), the guidance doc-
uments of the WFD, as the Wateco (WATECO, 2003) and Proclan (PROCLAN, 2003)
mention uncertainty several times and emphasize that uncertainty analysis should be per-
formed. However, in spite of strong recommendations, these guidance documents do not
include recommendations on how to do so. The water scarcity that could affect some re-
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gions would probably impact others through migratory movements and increasing water
conflicts.

These challenges are giving rise to the development of methods and practices as
the robust decision-making (RDM) (GROVES, 2006) and adaptive management (BRUG-
NACH et al., 2008; WARMINK et al., 2017). Briefly, RDM is a technique that prioritize
the solutions that will work well in most of the scenarios considered for future condi-
tions, and the adaptive management prioritize flexible solutions that are able to adapt to
changing conditions and unexpected developments (GROVES, 2006; BRUGNACH et al.,
2008; WARMINK et al., 2017). Even though these methods can lead to more consistent
decisions, the scenarios are still generated from data and models, thus being subject to
uncertainties about representativeness, measurements and parameters/structure of the
models. Nowadays, these uncertainties are typically not taken into account, especially in
water quality studies, for diverse reasons (HARMEL et al., 2006; REFSGAARD et al.,
2006; LINDENSCHMIDT; FLEISCHBEIN, 2007). In hydrological and hydraulic model-
ing, uncertainties are typically not considered due to seven reasons: (i) uncertainty analysis
is not necessary given physically realistic models; (ii) uncertainty analysis is not useful
in understanding hydrological and hydraulic processes; (iii) uncertainty distributions can
not be understood by policy makers and the public; (iv) uncertainty analysis can not be
incorporated into the decision making process; (v) uncertainty analysis is too subjective;
(vi) uncertainty analysis is too difficult to perform; and (vii) uncertainty does not really
matter in making the final decision. Pappenberger e Beven (2006) provides a detailed
discussion on each topic and argue that these reasons do not apply, and instead of not
considering uncertainties, there is a need for the development of a code of practice that
makes uncertainty an integral part of the modeling process.

Probabilities are the standard scientific approach to deal with uncertainties. How-
ever, there are considerable difficulties for application in environmental studies, once the
events can not be repeated. As an example, the uncertainty of a water quality mea-
surement, which involves sampling, sample storage and preservation, laboratory analysis,
preparing of a team and transporting through long distances, would be a laborious and
costly task. The most relevant and recent advances were presented by Refsgaard et al.
(2005), Harmel et al. (2006), Brown e Heuvelink (2007), Harmel et al. (2009). The re-
searches are evolving towards the development of softwares for measurement uncertainty
assessment in water quality and hydrological data. The approach for building the soft-
ware consists in a database with uncertainty information on water resources measurements
(e.g., Harmel et al. (2006)), calculation of a combined uncertainty and expression of un-
certainty by pdf’s. However, the available uncertainty information on water quality and
hydrological data is rarely sufficient for the calculation of empirical probabilities and fit-
ting of pdf’s, leaving a large part for subjectivity and professional judgment. Furthermore,
common approaches for uncertainty analysis, as Monte Carlo Method, rely on confidence
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intervals and empirical probability distributions, and thus, fail when uncertainties can not
be captured in terms of probabilities (GROVES, 2006; BRUGNACH et al., 2008; SIGEL;
KLAUER; PAHL-WOSTL, 2008).

Uncertainties, in a general way, can be understood as lack of confidence, which is
mainly caused by lack of information (epistemic uncertainty), inherent random variation
of the systems (ontological uncertainty), and a recently identified source of uncertainty
in the social context of the water resources management, when the stakeholders must
come to consensus which is called ambiguity. There are often many valid ways of fram-
ing a problem, which may result in ambiguities and conflicts about the problem domain
and its solution. Any attempt to deal with uncertainty in natural resources management
should also include the plurality of perspectives with respect to issue at hand. For ex-
ample, a situation of water shortage can be framed as a problem of “insufficient water
supply” by one actor and of “excessive water consumption” by another. In each frame
for the same problem there will be different considerations about which uncertainties are
more relevant. When a problem is framed as insufficient water supply, the most relevant
uncertainties will be those associated with the amount of water available, and technical
solutions that help avoiding water shortage can be favored (e.g., adopt a more efficient
irrigation technology). On the other hand, when the problem is framed as an excessive
water consumption issue, other solutions can be considered, such as changing the way in
which water is used and consumed (e.g., diversification of crops). In this case, uncertainties
associated with how society will react to a change in land use, or policies that stimulate
the change (e.g., Common Agricultural Policy) will be the most important (BRUGNACH
et al., 2008; WARMINK et al., 2017). Epistemic uncertainty can be reduced by gather-
ing more information about the system, through investments in research and monitoring
strategy for example. Ontological uncertainty can not be reduced, generally it can only
be elucidated by statistical analysis. It should be noticed that being confident or not is
a subjective perception. Hence, there will always be a subjective part of the uncertainty.
This implies that an adequate assessment of uncertainty always requires an attitude of
openness and a person’s ability to assess the reliability of their knowledge (BROWN,
2004; SIGEL; KLAUER; PAHL-WOSTL, 2008; WARMINK et al., 2017).

Currently there is no established method or guidance document on how to per-
form the integrated uncertainty analysis, i.e., integrating uncertainties in measurements,
statistics, modeling and social context of water resources management, and the knowl-
edge related to these individual components of integrated uncertainty analysis is incipient
(REFSGAARD et al., 2005; BROWN; HEUVELINK, 2007; SIGEL; KLAUER; PAHL-
WOSTL, 2008; COZ, 2012; WARMINK et al., 2017; COELHO et al., 2017).
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2.2 Measurement uncertainty
According to JCGM/WG1 (2008b), a guidance document (GUM 2008) provid-

ing rules on the expression of measurement uncertainty for use within standardization,
calibration, laboratory accreditation, and metrology services was developed to attend
the recommendation of the Bureau International des Poids et Mesures (BIPM) Working
Group on the Statement of Uncertainties. The objectives were to promote full information
on how uncertainty statements are arrived at, and to provide a basis for the international
comparison of measurement results.

The document was developed in order to attend the following recommendations
in the document Recommendation INC-1 (1980) - Expression of experimental uncer-
tainties:

1. “The uncertainty in the result of a measurement generally consists of sev-
eral components which may be grouped into two categories according to the
way in which their numerical value is estimated:

A. those which are evaluated by statistical methods,
B. those which are evaluated by other means.

There is not always a simple correspondence between the classification into
categories A or B and the previously used classification into “random” and
“systematic” uncertainties. The term “systematic uncertainty” can be mis-
leading and should be avoided. Any detailed report of the uncertainty should
consist of a complete list of the components, specifying for each the method
used to obtain its numerical value.

2. The components in category A are characterized by the estimated variances
𝑠2

𝑖 , (or the estimated “standard deviations” 𝑠𝑖) and the number of degrees of
freedom 𝑣𝑖. Where appropriate, the covariances should be given.

3. The components in category B should be characterized by quantities 𝑢2
𝑗 ,

which may be considered as approximations to the corresponding variances,
the existence of which is assumed. The quantities 𝑢2

𝑗 may be treated like vari-
ances and the quantities 𝑢𝑗 like standard deviations. Where appropriate, the
covariances should be treated in a similar way.

4. The combined uncertainty should be characterized by the numerical value
obtained by applying the usual method for the combination of variances. The
combined uncertainty and its components should be expressed in the form of
“standard deviations”.
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5. If, for particular applications, it is necessary to multiply the combined un-
certainty by a factor to obtain an overall uncertainty, the multiplying factor
used must always be stated.”

Additionally, the Recommendation 1 (CI-1986) requests that the paragraph 4 of
Recommendation INC-1 (1980) should be applied by all participants in giving the results
of all international comparisons or other work done under the auspices of the CIPM
and the Comités Consultatifs and that the combined uncertainty of type A and type B
uncertainties in terms of one standard deviation should be given.

Uncertainty, error, random error and other related terms have received different
interpretations throughout different areas of knowledge, being sometimes difficult to have
a common understanding about what is really meant to be expressed. This was considered
an obstacle to the general development of science and technologies by most of the insti-
tutes involved with metrology, and as a consequence, in 2008, the Joint Committee for
Guides in Metrology (JCGM) published the JCGM 100:2008: Evaluation of measure-
ment data - Guide to the expression of uncertainty in measurement (GUM 2008). This
document establishes the definition and concept of uncertainty and provides a general
method to estimate and express the uncertainty of a measured quantity.

According to JCGM/WG1 (2008b), the formal definition of the term “uncertainty
of measurement” and some related terms used in the guide is as follows:

“uncertainty of measurement
parameter, associated with the result of a measurement, that characterizes the
dispersion of the values that could reasonably be attributed to the measurand,
considering that:

(i) the parameter may be, for example, a standard deviation (or a given
multiple of it), or the half-width of an interval having a stated level of
confidence;

(ii) uncertainty of measurement comprises, in general, many components.
Some of these components may be evaluated from the statistical distri-
bution of the results of series of measurements and can be characterized
by experimental standard deviations. The other components, which also
can be characterized by standard deviations, are evaluated from assumed
probability distributions based on experience or other information;

(iii) it is understood that the result of the measurement is the best estimate
of the value of the measurand, and that all components of uncertainty,
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including those arising from systematic effects, such as components as-
sociated with corrections and reference standards, contribute to the dis-
persion;

standard uncertainty
uncertainty of the result of a measurement expressed as a standard deviation

type A evaluation (of uncertainty)
method of evaluation of uncertainty by the statistical analysis of series of ob-
servations

type B evaluation (of uncertainty)
method of evaluation of uncertainty by means other than the statistical analy-
sis of series of observations

combined standard uncertainty
standard uncertainty of the result of a measurement when that result is ob-
tained from the values of a number of other quantities, equal to the positive
square root of a sum of terms, the terms being the variances or covariances of
these other quantities weighted according to how the measurement result varies
with changes in these quantities

expanded uncertainty
quantity defining an interval about the result of a measurement that may be
expected to encompass a large fraction of the distribution of values that could
reasonably be attributed to the measurand, considering that:

(i) the fraction may be viewed as the coverage probability or level of confi-
dence of the interval;

(ii) to associate a specific level of confidence with the interval defined by the
expanded uncertainty requires explicit or implicit assumptions regarding
the probability distribution characterized by the measurement result and
its combined standard uncertainty. The level of confidence that may be
attributed to this interval can be known only to the extent to which such
assumptions may be justified;

coverage factor
numerical factor used as a multiplier of the combined standard uncertainty in
order to obtain an expanded uncertainty. A coverage factor, k, is typically in
the range 2 to 3.

An important discussion in GUM 2008 is about the concept of “true” value of
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measurand. According to JCGM/WG1 (2008b), the “true” value is an idealized concept,
as it depends on the definition of the measurand. This definition can be more or less
specified, e.g., “the biochemical oxygen demand in temperature 20○𝐶, after 5 days‘” or
“the biochemical oxygen demand in temperature 20○𝐶, after 5 days and pressure 100
hPa”. Even with very complete specifications of the measurand, there will be always a
factor not accounted for, that will impose an uncertainty to the “true” value, or some
specifications that can not be met exactly. This refers to the minimum uncertainty of a
measurand. The more or less specified definition of the measurand gives place to many
“true” values and, hence, an uncertain “true” value. Although the final result is sometimes
viewed as the best estimate of the “true” value of the measurand, in reality the result is
simply the best estimate of the value of the quantity intended to be measured.

The uncertainty of a measurement, as defined in GUM 2008, is a range of values
that encompasses all possibilities of error in relation to the best value that is consistent
with the available knowledge, not the value of the measurand, sometimes called the “true”
value (impossible to be known exactly) . As it is unknown, the exact value of the error is
also unknown, but the uncertainties associated with random and systematic effects that
gives rise to the error can be evaluated, and so on, the uncertainty of a measurement. Its
is important to notice that there is no guarantee that this range represents an indication
of the likelihood that a result of a measurement is near the value of the measurand. It
is just an indication of the likelihood of the nearness to the best value that is consistent
with the available knowledge.

A corrected measurement result is not the value of the measurand — that is, it is
in error — because of imperfect measurement of the realized quantity due to random vari-
ations of the observations (random effects), inadequate determination of the corrections
for systematic effects, and incomplete knowledge of certain physical phenomena (also sys-
tematic effects). Neither the value of the realized quantity nor the value of the measurand
can ever be known exactly; all that can be known is their estimated values (JCGM/WG1,
2008b).

The uncertainties evaluated from repeated measurements (Type A) or methods
other than statistics, e.g., scientific judgment (Type B) must be propagated by analytical
methods or Monte Carlo Method (MCM), but they can also be propagated by a simpli-
fied scheme, the GUM uncertainty framework, which might not be satisfactory when: (i)
distributions for the input and output quantities are asymmetric, or not a Gaussian or
t-distribution; (ii) the measurement function is non-linear; (iii) uncertainty contributions
are not of approximately the same magnitude (JCGM/WG1, 2009).
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2.3 Hydrological uncertainty
Water availability in watersheds is subjected to uncertainties related to climate

change, water use and needs and effectiveness of management actions. The planning of
water resources management is highly dependent on measurements of the flows. There
are many different demands for open channel flow information within the broad context
of water management, as water supply, pollution control, irrigation, flood control, energy
generation and industrial use. None of these needs can be met without reliable open
channel flow information. Although flows can be measured and a historical sequence
formed, the exact flow conditions under which the discharge occurred may never happen
again. The probability that the historical sequence of flow history at a given site will occur
again is remote. Given the uniqueness of a historical sequence, efforts should be directed
to improve the quality of the measurements and reduce uncertainties (HERSCHY, 2002).

The reliability of the information depends essentially on the quality of the mon-
itoring program, including appropriate methods and its correct application, continuous
maintenance of equipments and appropriate measurement frequencies. According to Her-
schy (2002), in agreement with GUM 2008, states that the result of a measurement is
only an estimate of the true value of the measurement and is therefore only complete
when accompanied by a statement of its uncertainty. The discrepancy between the true
and measured values is the measurement error. The measurement error, which cannot be
known, causes an uncertainty about the correctness of the measurement result. The mea-
surement error is a combination of component errors that arise during the performance
of various elementary operation during the measurement process. For measurements of
composite quantities, that depend on several component quantities, the total error of the
measurement is a combination of the errors in all component quantities. Determination of
measurement uncertainty involves identification and characterization of all components
of error and the quantification and combination of the corresponding uncertainties.

The flow measurement can be performed by diverse methods. The stage-discharge,
the acoustic doppler current profiler (ADCP) and the velocity-area are the most applied
(COZ, 2012). Literature presents many estimates of the uncertainties related to the steps
of the flow measurements (DICKINSON, 1967; PELLETIER, 1988; SAUER; MEYER,
1992; SCHIMDT, 2002). However, this individual uncertainties are rarely used to esti-
mate the cumulative uncertainty (HARMEL et al., 2006; HARMEL et al., 2009). Publi-
cations as “Call for Collaboration in World Meteorological Organization (WMO) Project
for the Assesment of the Performance of Flow Measurement Instruments and Techniques”
(FULFORD et al., 2007) and “A literature review of methods for estimating the uncer-
tainty associated with stage-discharge relations” (COZ, 2012) reflect the current concern
with the uncertainties in flow measurements. Coz (2012) states that the expression of
the uncertainty associated to stream flow measurements or estimates is of paramount
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importance in issues related to water resources, flood frequency analysis, flood control,
flood and drought forecast, compensation discharges and water use conflicts. According to
Goodwin (2005) it is important to study these uncertainties because they often underpin
many hydrological studies at many different spatial and temporal scales, and users may
include climate impact modellers, hydrologic modellers as well as national and regional
analysts/planners.

The stage-discharge method is the most applied method for river flow measurement
(COZ, 2012; GOODWIN, 2005). The sources of uncertainty are the cross-section hydraulic
characteristics, flow regime, stage measurement, stage-discharge relation and human im-
perfection. According to Coz (2012), all the sources of uncertainty of this method seem to
have been investigated, however future researches for development of a simple, practical,
versatile and widely recognized method for a global understanding of uncertainties are
needed. According to Coz (2012), some important requirements of an ideal method for
the expression of uncertainty associated with discharge estimates from stage-discharge
relations are:

• Expression of uncertainty should be compliant with the ISO GUM or any other
standard methodology for uncertainty analysis. If possible, the best practice is to
express uncertainty in the form of a probability density function.

• Hydraulic analysis of the physical stage-discharge relation at a site must be quan-
tified, even roughly, and taken into account in the rating curve analysis. This is
particularly important for low-flow and high-flow ranges where the stage-discharge
relation has to be extended outside of the more intensively rated region of the rating
curve.

• Uncertainty analysis of individual ratings should be performed in a rigorous and
individual way, including the deviation from the reference hydraulic regime. In the
rating curve analysis, the uncertainty of each individual rating should be taken into
account. Thus, data uncertainty sensu Schimdt (2002) should be clearly separated
from the uncertainty in the stage-discharge relation itself (knowledge uncertainty
sensu Schimdt (2002)).

• Uncertainty analysis of stage-discharge relation in the reference hydraulic regime
should be conducted using a sounded mathematical approach. To separate knowl-
edge uncertainty from natural uncertainty sensu Schimdt (2002), the reference hy-
draulic regime must be elicited. Possible heteroscedasticity of the reference stage-
discharge relation should be accounted for.

• Non-stationarity of stage-discharge relation due to temporary/permanent changes
of the reference hydraulic regime should be quantified in the uncertainty analy-



Chapter 2. Theoretical Background 42

sis, either continuously or periodically, according to the physical cause of the non-
stationarity. Weighted fuzzy regression, variographic as well as Bayesian inference
techniques are promising tools to assess non-stationarity of stage-discharge relations.

• Uncertainty in the instantaneous discharge 𝑄𝑡 derived from the rating curve should
be computed taking into account the uncertainty in the water level record and the
potential deviation from the reference regime at time t, due to transient flow effects
or backwater effects for instance.

Most of the researches about uncertainties in flow measurements and estimates present
a unique value for a given condition of measurement or estimate method. However, in
many real cases the uncertainty can not be the same for all estimated flows from a given
rating curve, instead, it must be greater for low and high flows since there are few data on
these ranges and the rating curve must be extended. According to Goodwin (2005), the
uncertainty will increase at the extremes of the stage/discharge curve where the flow esti-
mates are outside the range for which the stage-discharge curve was established. Harmel
et al. (2006) presents uncertainty estimates for each step of the storm load determina-
tion process, i.e., stream flow measurement, sample collection, storage/preservation and
laboratory analysis, and also for the combined (or cumulative) uncertainty on the final
results. The author presents uncertainty estimates for discharge measurements and esti-
mates for best, typical and worst case scenarios, as shown in Table 1. A unique value was
presented, without differentiation according to the region of the stage-discharge relation.
The typical and best case scenarios estimates are consistent with the acceptable uncer-
tainty of ±15% to ±20% recommended by the WMO when sources of uncertainty cannot
be reduced (GOODWIN, 2005).

Table 1 – Uncertainty estimates for stream flow by Harmel et al. (2006)

Scenarios Description Uncertainty

Worst case
stream flow estimation with manning’s equation with a

stage-discharge relationship for an unstable, mobile bed and
shifting channel

±42%

Typical A range of individual stream flow measurement techniques,
channel types, and channel conditions ±6% to ±19%

Best case
flow measurement under ideal hydrologic conditions, specifically
a pre-calibrated flow control structure (stable bed and channel)

and a stilling well for stage measurement
±3%
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Stage-Discharge Method

The method consists in building a fluviometric station at an appropriate cross-
section of a river and establishing a relation between water level and flow direct measure-
ments, that provides estimates of discharges from stage records. The direct measurements
of flow are usually performed by velocity-area method. The relation is obtained by setting
the discharge measurements at the abscissa and stage at the ordinates and applying the
minimum squares or finite differences methods. The obtained relation can vary in time
depending on the hydraulic conditions of the cross-section. The higher the number of
measurements in different flow conditions, the better the quality of the relation. Typi-
cally, there are measurements in all but high flow conditions, and thus the relation for
this condition is extrapolated by different techniques (PINTO et al., 1976; SANTOS et
al., 2001). The uncertainties can be related to a number of factors (GOODWIN, 2005):

• Uncertainty in stage measurements;

• Uncertainty due to the stage-discharge relationship no longer being valid;

• Uncertainty due to the method used to derive the stage-discharge relationship, and
the range of flows for which it is valid.

The method also imposes a problem of representativeness, since the two stage
records of each day, typically at 7:00 h and 17:00 h, may not be representative of the
average daily situation. This problem is important in rivers with operating hydro power
plants, small watersheds and urban watersheds, where fast water level variations can be
observed in a day. In addition, not always the stage discharge relation is unequivocal. In
some cases, the presence of a flood wave (transient regime) or water retention downstream
can cause significantly different discharges with the same water level. Theoretically, very
few rivers satisfy the conditions for an unequivocal relation. However, in many cases, the
error associated with incorrect use of unequivocal relation is negligible compared to the
imprecision of measurements, being acceptable its use (PINTO et al., 1976; SANTOS et
al., 2001).

According to Goodwin (2005), within most hydrological models where flow mea-
surements are required, average daily flows are used, and for the purpose of most studies
daily values are sufficient. Holmes, Round e Young (2000) apud Goodwin (2005) inves-
tigated the uncertainty associated with assuming that a flow value taken at any point
within a day will reflect the daily average. The study indicated that, within the UK, the
within day variability is controlled by the permeability and size of the catchment. Whilst
the variability of flows within a permeable catchment is generally the same for high and
low flows, for an impermeable catchment the within variability of flows is far greater for
higher flows than low flows. The uncertainty with estimating high flow events using low
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resolution data will therefore be greater within impermeable catchments hence, the time
support will be of most important when extreme values are being assessed. The effect will
be further emphasized within urban catchments which have artificial drainage networks
which will tend to result in the response of the catchment being accelerated, indicated by
a steeper rising limb, with the time to peak reduced.

According to Goodwin (2005), the WMO recommends that for detailed experi-
mental catchments (in which process based models will be set up) 15 minute or hourly
data is required. For small pristine catchments up to 1000 km2, hourly to mean daily data
is necessary, and for national and regional runoff studies mean daily to monthly data is
necessary.

Cross-Section

The characteristics of the cross-section as river bed nature, existence of dams up
and/or downstream, vegetation of river bank and water level variation, have fundamental
importance on the constancy of the stage-discharge relation and precision of the estimated
flows. Stations can be more or less sensitive in relation to water level variations depend-
ing on the types of controls at the cross-section. The controls are a combination of the
physical characteristics of the river at a given cross-section, especially at the downstream
reach, as nature, configuration and plant recovery at river banks and meadows. If there
are high flow variations associated with small stage variations, the estimates will be more
uncertain and vice-versa (PINTO et al., 1976; SANTOS et al., 2001).

Stage Measurement

The stage measurement is performed, most usually, by reading the water level on
a ruler placed on the river bank. The main advantages of the method are its low cost and
simplicity. The main disadvantage is the ease with which the reader can make mistakes.
Typically, a person that lives close to the location, without any knowledge about hydrom-
etry and water resources management, is paid to read and record the water level twice a
day. Many materials and forms of writing the scale on the ruler has been applied to avoid
misunderstandings by the reader. The chance of error occurrence is higher during floods
and when the water level fluctuates too much. Among the most common errors are the
error of entire meters, pure invention and wrong readings made at long distances from
the ruler. Other type of error, not focused on the reader, are the systematic errors, which
are differences between the real water level and the water level read on the ruler. The
most frequent cause is a displacement of the zero of the ruler, i.e. a vertical displacement
changing the original level of its origin. In addition, it is common for things brought by
the water flow to crash against the ruler, sometimes accumulating on it and/or causing
damage to it (PINTO et al., 1976; SANTOS et al., 2001).
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Stage-Discharge Relationship

Often the method which is used to derive the rating curve is the non-linear least
squares method (NLS). This assumes that each measurement has equal weighting in
the rating curve estimation. However, this will not happen if there is heteroscedacity.
This occurs when the distribution of the residual is dependent on the indicator variable.
This can be detected by plotting the residuals from the estimation procedure. If there
is greater variability of the residuals for large or small variables then heteroscedacity
is present. Petersen-Overleir (2004) apud Goodwin (2005) found that out of 20 gauges
within Norway for which NLS curves were used, half were found to have some indication
of heteroscedacity. The impact of heteroscedacity on flow estimates is of most importance
when extrapolation and extreme value analysis is used. Other methods of determining
rating curves, for example, using Generalized Least Squares, or maximum likelihood tend
to provide estimates for the rating curve which minimize the impact of the heteroscedacity
(PETERSEN-OVERLEIR, 2004; GOODWIN, 2005).

International Standards

The uncertainty management and control can be improved mainly by carefully
applying techniques and methods available on international standards. Thomas (2002)
compiled the main standards related to open channel flow measurement as follows:

• ISO 748 Velocity-area methods;

• ISO 1070 Slope-area method;

• ISO 1088 Velocity-area methods: Collection and processing of data for determination
of errors in measurement;

• ISO 1100-1 Establishment and operation of a gauging station;

• ISO 1100-2 Determination of the stage-discharge relation;

• ISO 4373 Water-level measuring devices;

• ISO 4375 Cableway system for stream gauging;

• ISO 6416 Measurement of discharge by the ultrasonic (acoustic) method;

• ISO 8368 Guidelines for selection of structure;

• ISO 9123 Stage-fall-discharge relationships;

• ISO 9825 Field measurement of discharge in large rivers and floods;
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• ISO 14139 Compound gauging structures;

• ISO/TS 15769 Guidelines for the application of Doppler-based flow measurements;

• ISO/TR 7178 Investigation of total error;

• ISO/TR 9823 Velocity-area method using a restricted number of verticals.

2.4 Water quality uncertainty
The first source of uncertainty is related to the representativeness provided by

the monitoring strategy, i.e., the choice of sites, sampling frequency, variables and tech-
niques/methods of measurement. This is the most important step for reliable results as it
is related to the accuracy of the measurement. The next steps are related to the precision
of techniques, sensors and methods in field measurements and laboratory analysis, and
correct execution of data management, transfer and record. These uncertainties combine
themselves on the final results of monitoring programs, however being rarely estimated
and reported with the final results (REFSGAARD et al., 2005; HARMEL et al., 2006;
HARMEL et al., 2009).

Combined Uncertainty

Estimates of combined uncertainty of water quality data can be found in Harmel
et al. (2006). The author estimated the combined (or cumulative) uncertainty of some
water quality parameters and stream flow by propagating the individual uncertainties of
each step of the measurement process. The individual uncertainties (Table 2) were pro-
vided by literature review and reported as standard percentages (±%) and the combined
uncertainty (Table 3) calculated by the root mean square error method. The sources
of uncertainty were the stream flow measurements, sampling, storage/preservation and
laboratory analysis. The most relevant sources of uncertainty were the sample collection
and laboratory analyses, which ranged from 1%–109% and 1%–400%, respectively. The
combined uncertainty for loads reached values » 100% in the worst case scenario espe-
cially for nitrate and dissolved phosphorous. In a context of inexistent information on
uncertainty, which is the current scenario, these estimates can be of great importance
for the inclusion of uncertainty analysis in the planning of water resources. One should
be careful with uncertainty estimates higher than 100% since it yields negative values of
flows, concentration and loads. Furthermore, the uncertainty assessment of environmen-
tal measurements is a non-trivial task. Refsgaard et al. (2005), (HARMEL et al., 2006),
(BROWN; HEUVELINK, 2007) and (HARMEL et al., 2009) seem to be the first and still
rare published research focused on the assessment of combined uncertainty of hydrological
and water quality variables.
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Table 2 – Uncertainty results for individual steps of storm load measurements by Harmel et al. (2006)

Worst case Typical case Best case
Step Description ±% Description ±% Description ±%

Stream flow
measurement

Manning’s equation
with a stage-discharge

relationship for an
unstable, mobile bed

and a shifting channel

42%

A range of individual
stream flow

measurement
techniques, channel
types, and channel

conditions

6% to 19%

flow measurement
under ideal
hydrological

conditions, specifically
a pre-calibrated flow

control structure
(stable bed and

channel) and a stilling
well for stage
measurement

3%

Sample collection

Liberal estimates of
error associated with
sample collection at a

single point,
infrequent

time-interval sampling
at a high minimum
flow threshold, and

disregard of conditions
outside the sampling

period

104% for
dissolved

constituents
and 109% for
TSS and total

N and P

Moderate errors
associated with
frequent flow- or

time-interval sample
collection at a single
point and estimation

of conditions outside a
high flow threshold

4% to 47% for
dissolved

constituents
and from 4% to

50% for TSS
and total N and

P

Conservative error
estimates associated
with frequent flow or
time-interval sample
collection at a single
point and estimation

of conditions outside a
low flow threshold

1% for dissolved
and sediment-

associated
constituents

Sample
preserv./storage

Unpreserved,
unrefrigerated sample
storage for 144 h and

then refrigerated
storage for 48 h prior

to analysis

20% to 90% for
dissolved

constituents
and from 9% to
84% for total

nutrients

Refrigerated sample
storage for 54 h prior

to analysis

2% to 16% for
dissolved

nutrients and
from 7% to 9%

for total
nutrients

Iced sample storage
for 6 h prior to

analysis

0% to 2% and
from 1% to 3%

for dissolved
and total
nutrients,

respectively

Laboratory analysis

Liberal estimates of
error for constituents
present in very low

concentrations

200% to 400%
for dissolved
constituents,
88% to 211%

for total
nutrients, and
10% for TSS

Moderate error
estimates for low

constituent
concentrations

4% to 26% for
dissolved

nutrients, from
3% to 32% for
total nutrients,
and from 1% to

5% for TSS

Conservative error
estimates for

constituents present in
moderate

concentrations

Less than 2%,
4%, 1%,

respectively, for
dissolved

nutrients, total
nutrients, and

TSS
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Table 3 – Cumulative uncertainty estimates for storm loads by Harmel et al. (2006)

Scenarios Streamflow NO−3-N NH4-N Total N Diss. P Total P TSS

Worst case 42% 421% 246% 168% 417% 249% 117%

Typical
maximum 19% 69% 100% 70% 104% 110% 53%

Typical
average 10% 17% 31% 29% 23% 30% 18%

Typical
minimum 6% 8% 11% 11% 11% 8% 7%

Best case 3% 4% 3% 6% 4% 3% 3%

Software Tools

Harmel et al. (2009) presented an application of a software tool for estimating
the combined uncertainty of water quality data, called Data Uncertainty Estimation Tool
for Hydrology and Water Quality (DUET-H/WQ). DUET-H/WQ was developed from
an existing uncertainty estimation framework for small watershed flow, sediment, and
N and P data. The root mean square error propagation methodology (RMSE) is used
to provide uncertainty estimates, instead of more rigorous approaches requiring detailed
statistical information, rarely available (HARMEL et al., 2009). The RMSE method es-
timates the most probable value of the cumulative or combined error by propagating the
error from each procedure (TOPPING, 1972). Whereas errors were assumed to represent
the 0.68 significance level (1 standard deviation for the normal distribution) by Sauer e
Meyer (1992), the 0.9999 significance level (3.9 standard deviations) was assumed based
on Harmel e Smith (2007) and (HARMEL et al., 2009).

DUET-H/WQ lists published uncertainty information for data collection proce-
dures to assist the user in assigning appropriate data-specific uncertainty estimates and
then calculates the combined uncertainty for individual discharge, concentration, and load
values. Results of DUET-H/WQ application in several studies indicated that substantial
uncertainty can be contributed by each procedural category (discharge measurement, sam-
ple collection, sample preservation/storage, laboratory analysis, and data processing and
management). Both DUET-H/WQ and its framework-basis focus on measured discharge,
sediment, and N and P (dissolved and particulate) data collected at the small watershed
scale (HARMEL et al., 2009).

The framework-basis presented in Harmel et al. (2006) did not accounted for errors
due to malfunction of equipments or personnel mistakes, which were included in DUET-
H/WQ. This allowed quantitative estimates for uncertainty contributed by missing and/or
incorrect data to be included in combined uncertainty estimates. The probable error are
calculated by Equation 2.1, where EP is the cumulative probable error or uncertainty for
individual measured values (±%), 𝐸𝑄 = uncertainty in discharge measurement (±%), 𝐸𝐶 =
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uncertainty in sample collection (±%), 𝐸𝑃 𝑆 = uncertainty in sample preservation/storage
(±%), 𝐸𝐴 = uncertainty in laboratory analysis (±%), and 𝐸𝐷𝑃 𝑀 = uncertainty in data
processing and management (±%). The author also presents an equation (Equation 2.2)
for propagation of uncertainty of aggregated data (e.g., weekly, monthly, annual or study
period), also valid for determination of uncertainty in an average, where 𝐸𝑃𝑡𝑜𝑡𝑎𝑙 = cumu-
lative probable error (±%) for the aggregated (sum or average) of 𝑛 measured values, 𝑛 =
number of measured values with corresponding uncertainty estimates, 𝑥𝑖 = 𝑖𝑡ℎ measured
value, and 𝐸𝑃𝑖 = cumulative probable error (±%) for 𝑖𝑡ℎ measured value (HARMEL et
al., 2009).

𝐸𝑃 =
⌉︂

𝐸2
𝑄 +𝐸2

𝐶 +𝐸2
𝑃 𝑆 +𝐸2

𝐷𝑃 𝑀 (2.1)

𝐸𝑃 = 100
∑𝑛

𝑖=1 𝑥𝑖

⟨
⧸︂⧸︂⟩

𝑛

∑
𝑖=1
(𝑥𝑖 ×

𝐸𝑃𝑖

100 )
2 (2.2)

DUET-H/WQ has the following limitations:

• Assumption of bi-directional uncertainties;

• Information for small watersheds only;

• The process by which users determine a reasonable uncertainty estimate for each
procedure is quite subjective because of the considerable variability of published
uncertainty information as affected by study design, collection methods, and moni-
toring conditions;

• Does not include all sources of uncertainty (e.g., uncertainty contributed by spatial
and temporal variability). Such uncertainty sources were excluded to maintain a
focus on uncertainty estimation for individual measured values;

• It’s focused in storm load estimates in agricultural watersheds.

The DUET-H/WQ was applied to estimate the combined uncertainty in data from
three small watersheds in Texas (Riesel, Hamilton and Austin), Indiana (Waterloo) and
Ohio (Centerburg). The drainage areas ranged from 8.4 to 5, 506 ha, most with agricul-
tural land uses. Data from 8 monitoring sites were analyzed. The results and discussion
were divided in a comparison of procedural categories and a comparison of constituent
type. In the comparison of procedural categories the results were grouped across all sites
and by constituent type with dissolved N and P and total N and P further grouped,
since little difference occurred between dissolved 𝑁𝑂3-N and 𝑃𝑂4-P or between total N
and P. The uncertainties in flow measurements for storm events ranged from 7 to 27%
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with a median of 14%. Although uncertainty in sample collection is often ignored, it can
be the dominant source in environmental investigations (RAMSEY, 1998), as it was the
case for sediment and total N and P sample collection in the this study. Unlike for the
dissolved constituents, the cross-sectional and vertical gradients in particulate-associated
concentrations make the collection of representative sediment and total N and P samples
quite difficult. The dissolved constituents are typically uniformly distributed within the
channel (MARTIN; SMOOT; WHITE, 1992; GING, 1999; RODE; SUHR, 2007). This
difference was exemplified by the greater sample collection uncertainties for sediment and
total N and P concentrations, which ranged from 12 to 26%, than for dissolved 𝑁𝑂3-N and
𝑃𝑂4-P concentrations, which ranged from 6 to 17%. Uncertainties contributed by sample
preservation/storage ranged from 6 to 22% for dissolved 𝑁𝑂3-N and 𝑃𝑂4-P concentra-
tions and from 6 to 27% for total N and P concentrations. For storm events, laboratory
analysis introduced little uncertainty (< 8%) in sediment concentrations due to relatively
simple analytical procedures but often introduced considerable uncertainty in N and P
concentrations. Whereas little difference occurred between the uncertainty contributed by
sample collection and sample preservation/storage in dissolved and total N and P concen-
trations, an important difference occurred for laboratory analysis. Although laboratory
analysis uncertainty was typically similar for dissolved 𝑁𝑂3-N and 𝑃𝑂4-P concentrations
(range = 6 - 21%) and for total N and P (range = 6 - 15%), uncertainty increased to 23% for
one event with very low total P concentrations (< 0.05 mg/l). Kotlash e Chessman (1998)
noted this influence on reference stream data with very low nutrient concentrations, which
are sensitive to small absolute errors and result in high relative errors. Data processing
and management typically introduced < 5% uncertainty, but missing and incorrect data
did introduce 10–100% uncertainty in several cases.

In the comparison of constituent types the cumulative uncertainties in concentra-
tions and loads were determined for individual storms. These results were grouped across
all sites. For individual TSS values, the uncertainties in measured storm concentrations
ranged from 12 to 26% with a median of 18%. Sediment load uncertainties ranged from
15 to 35% with a median of 20%. The uncertainties in 𝑁𝑂3-N concentrations ranged from
13 to 102% (median = 17%) and in 𝑃𝑂4-P concentrations ranged from 13 to 103% (me-
dian = 19%). Load uncertainties ranged from 14 to 103% (median = 22%) for 𝑁𝑂3-N and
from 14 to 104% (median = 23%) for 𝑃𝑂4-P. The occasional high uncertainty estimates
( 100%) in the study resulted from extreme high flows and/or missing samples. Concen-
tration uncertainties ranged from 14 to 104% (median = 23%) for total N and from 16 to
104% (median = 24%) for total P. Load uncertainties ranged from 15 to 105% (median
= 25%) for total N and from 17 to 105% (median = 27%) for total P. The occasional high
uncertainties again resulted from extreme high flows and/or missing samples.

Across all watersheds, the 10𝑡ℎ and 90𝑡ℎ percentiles for uncertainty in measured
storm flows were 7–23%; in concentrations were 12–22% for TSS, 13–24% for dissolved
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N and P, and 16–28% for total N and P; and in loads were 16–27% for TSS, 14–31% for
dissolved N and P, and 18–36% for total N and P. Since no complete error propagation
results have been previously published for real-world data, these results provide initial
uncertainty estimates for field staff, modelers, stakeholders, and regulators to use in data
analysis and decision-making. Results showed that even data collected with concerted
quality assurance can have appreciable uncertainty, and also that uncertainty is related
to constituent type (Q < TSS < dissolved N and P < total N and P). Although the
RMSE method does not provide the most rigorous uncertainty estimates, it is a widely
accepted and should encourage broader practical application than statistical alternatives
with unsubstantiated assumptions (HARMEL et al., 2009).

Brown e Heuvelink (2007) presented a software tool for assessing uncertainties in
environmental data and generating realizations of uncertain data for use in uncertainty
propagation analyses: the Data Uncertainty Engine (DUE). The software is more complex
than the software presented by Harmel et al. (2009) by the following main reasons: (i) it
was designed for environmental data; (ii) generates an uncertainty model (UM) (pdf) for
environmental data; (iii) analyzes the uncertainty of a dataset, instead of just individual
values; (iv) accounts for positional uncertainty and (v) applies Monte Carlo Simulations
(MCS) to generate realizations of uncertain data. The combined uncertainties are esti-
mated by consulting in a library with uncertainty informations (as in DUET-H/WQ) and
by expert judgment. A “Sources dialog” is used to identify the main sources of uncertainty
in a dataset, including those that cannot be modeled reliably, and to estimate the ranked
importance or percentage contribution of each source of uncertainty to the overall uncer-
tainty about the data. It also includes a skeleton library of uncertainty sources (in XML
format), which can be expanded and edited by the user. Once the combined uncertainty
is defined, an uncertainty model must be defined. Currently, the available uncertainty
model is a pdf.

The software treat things as objects with attributes, for example, a river object
may have length and volume as constant attributes, together with nutrient concentrations,
navigation pressures and fish stocks as variable attributes. The UM can be a marginal
pdf or a joint pdf which accounts for correlations in space and time. Currently, a UM
can be constructed from either expert judgment or sample data. In terms of the latter,
a geostatistical model is used to parameterise a joint pdf for all sampled attributes and
locations. Here, samples are used, first, to estimate the joint pdf, and, secondly, to improve
the accuracy of the simulated output by reproducing the samples at nearby locations.
Using expert judgment, a parametric distribution can be assigned by selecting individual
locations, either manually or with logical operators on the attribute values (<, >, etc.),
and by then entering the parameter values. Alternatively, a parameter can be assigned
via a functional relationship with one or more attributes at all locations. For example,
the standard deviation or “spread” of the normal distribution may be assigned to 10% of
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the attribute value at each location.

In applying a geostatistical model, the underlying process, or its uncertainty, is
assumed joint-normally distributed and second-order stationary, for which the mean may
be known (simple Kriging) or unknown (ordinary Kriging). In this framework, the corre-
lations or covariances between pairs of locations depend only on their separation distance
in space or time. Given these assumptions, the observations may be transformed to a nor-
mal distribution in DUE and back-transformed to their original distributions after MCS.
The software procedural structure can be resumed by following five stages:

1. Importing (and saving) data as objects with attributes;

2. Describing the sources of uncertainty;

3. Defining an uncertainty model, aided by the description of sources;

4. Evaluating the quality or “goodness” of the uncertainty model; and

5. Generating realisations of uncertain data for use in MCS with models.

According to Brown e Heuvelink (2007), an ongoing challenge is to balance statisti-
cal realism with practicality in applying pdfs to environmental data. DUE was developed,
and is currently being used, in the project “Harmonised Techniques and Representative
River Basin Data for Assessment and Use of Uncertainty Information in Integrated Water
Management (HarmoniRiB)” (REFSGAARD et al., 2005). This project includes the es-
tablishment of representative river basins for generation of uncertainty information, which
is currently missing in literature.

2.5 Time series analysis
When the water quality is analyzed in the perspective of time and space there

are many characteristics of variability that must be taken into account in the statis-
tical and modeling context of water resources management (GILBERT, 1987; HELSEL;
HIRSCH, 2002; NAGHETTINI; PINTO, 2007; MILLY et al., 2008; DETZEL, 2015; HUL-
LEY; CLARK; WATT, 2015; NDIONE; SAMBOU; KANE, 2017; COELHO et al., 2017).
The presence of non-randomness, non-homogeneities, dependence and non-stationarities
can make the statistical and modeling results little representative of the real water qual-
ity and quantity conditions (COELHO et al., 2017). The uncertainties related to climate
change increases the chance of actual hydrological and water quality time series to be non-
representative by influencing seasonality, trends and shifts. Hence, the information from
statistical analysis of data and modeling exercises should be carefully analyzed through
this new perspective of uncertainties. The typical deterministic or stochastic modeling
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approaches may not provide reliable answers if the actual statistics are not representative
and/or are expected to change over the planning period (HULLEY; CLARK; WATT,
2015; BEVEN, 2016; COELHO et al., 2017). The criteria for being statistically represen-
tativeness is that the time series must be compliant with the properties of randomness,
homogeneity, independence and stationarity. It is met when significant shifts, trends, sea-
sonality and autocorrelation are not present (HULLEY; CLARK; WATT, 2015; BEVEN,
2016; COELHO et al., 2017). However, the natural environment and especially urban wa-
tersheds are subjected to climate changes, seasonality, atypical meteorological phenomena
and management actions, which make the quantity and quality conditions highly variable
and having patterns as these ones discussed above.

The measurement uncertainties are also expected to change over space and time.
For example, a ruler for stage measurement of a river may be in good reading conditions
one day, but in poor conditions on the next days due to damages caused by a flood. The
conditions for measurement also change from site to site, for example the distance to
read the stage or the cross-section width. Thus, the uncertainty analysis in the context
of time series should also consider time and space influences on variability. In this sense,
uncertainty may be understood as a random variable which may be autocorrelated in
space and time and subject to diverse types time and space related variabilities (BROWN;
HEUVELINK, 2007; GOODWIN, 2005).

The identification of these phenomena in time series is a complex task. The vari-
ability of the flows generally introduces considerable “noise” in the variability of concen-
trations making it difficult to assess the presence of patterns (HIRSCH; MOYER; ARCH-
FIELD, 2010). Hydrological data often have higher and regular monitoring frequencies
in comparison to water quality data. Although it facilitates the identification and man-
agement of variability patterns, previously to statistical analysis and modeling, any time
series is just part of the whole history that will be used for the planning of another part
(KOUTSOYIANNIS, 2006; BEVEN, 2016). This means that a time series may cause a
distorted or incomplete impression about its variability. Typical water quality time series
have few data, large intervals and irregular frequency, imposing considerable difficulties
and high uncertainties to identification and management of these properties, and hence,
to statistical inference and modeling (HAGGARD et al., 2003; COELHO et al., 2017).
Rode e Suhr (2007) stated that the most important factors of river water quality data
are sampling and measurement or analytical uncertainties, and that sampling uncertain-
ties can be categorized between uncertainties related to the selection of a representative
sampling location, representative samples at a given river cross section and the choice of
an appropriate sample frequency.

Besides the limitations and uncertainties imposed by low and irregular sampling
frequency, flow and water quality data reflects not only natural variability but also those
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caused by malfunction of measurement equipments, changes in methods, laboratories and
other sampling practices, and intrinsic uncertainty of measurements. Wahlin e Grimvall
(2008) investigated the presence of trends in phosphorous and nitrogen time series from
34 rivers in Sweden and concluded that there was strong evidence that the observed
long-term trends were more extensively influenced by changes in sampling practices and
measurement errors than by actual changes in the state of the environment. It was recom-
mended that the measured concentrations should be properly visualized before they were
entered into a database, and that a retrospective analysis should be performed involving
meteorological/hydrological adjustment of measured concentrations and joint analysis of
several time series of data.

2.5.1 Regression

Regression analysis, also known as Ordinary Least Squares (OLS) has been used in
water resources management to describe in some sense the behavior of a random variable
of interest, called the dependent or response variable. The dependent variable changes
according to changes in one or more conditions in a process, which are called independent
or explanatory variables. In a regression model the dependent variable is typically rep-
resented by the letter 𝑦 and the independent variables, assumed to be known constants,
by the letter 𝑥 with subscripts as needed to denote different independent variables (in
the case of multiple regression). The model also involves constant parameters represented
by Greek letters which are estimated from the data. These parameters control the model
behavior. Regression models can be divided in two major groups, i.e. linear and nonlinear
in the parameters. The nonlinear models can also be divided in two categories, the in-
trinsically linear models and those that can not be linearized (RAWLINGS; PENTULA;
DICKEY, 1998; HELSEL; HIRSCH, 2002).

The simplest form of a regression model is represented in eq. 2.3. It states that the
true mean (ℰ(𝑌𝑖)) of the dependent variable changes at a constant rate as the independent
increases or decreases. The problem consists in finding the parameters that minimize
∑𝑛

𝑖=1(𝑌𝑖−𝑦𝑖)2, where 𝑌𝑖 is the estimate of observed 𝑦𝑖, given by eq. 2.4. It can be solved by
the set of equations in Table 4, also known as normal equations. The observations 𝑦 and
the errors 𝜖𝑖 are assumed to be random, normally and independently distributed (NID)
observations from populations of random variables with mean ℰ(𝑌𝑖). The random error
assumptions can be formally represented by eq. 2.5.

𝑌𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜖𝑖 (2.3)

𝑌𝑖 is the 𝑖th dependent variable.

𝛽0 is the intercept.
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Table 4 – Equations for OLS method

Equation Name

𝑥̄ = ∑
𝑛
𝑖=1

𝑥𝑖

𝑛 mean 𝑥

𝑦 = ∑
𝑛
𝑖=1

𝑦𝑖

𝑛 mean 𝑦

𝑆𝑆𝑦 = ∑
𝑛
𝑖=1(𝑦𝑖 − 𝑦)2 sum of squares 𝑦

𝑆𝑆𝑥 = ∑
𝑛
𝑖=1(𝑥𝑖 − 𝑥̄)2 sum of squares 𝑥

𝑆𝑆𝑥𝑦 = ∑
𝑛
𝑖=1(𝑥𝑖 − 𝑥̄)(𝑦𝑖 − 𝑦) sum of 𝑥𝑦 cross products

𝛽1 =
𝑆𝑆𝑥𝑦

𝑆𝑆𝑥
the estimate of 𝛽1 (slope)

𝛽0 = 𝑦 − 𝛽1𝑥̄ the estimate of 𝛽0 (intercept)

𝑌𝑖 = 𝛽0 + 𝛽1𝑥𝑖 the estimate of 𝑦 given 𝑥𝑖

𝑒𝑖 = 𝑦𝑖 − 𝑦𝑖 the estimated residual for observation 𝑖

𝑆𝑆𝐸 = ∑
𝑛
𝑖=1 𝑒2

𝑖 error sum of squares

𝑠2 = ∑
𝑛
𝑖=1 𝑒2

𝑖 ⇑(𝑛 − 2) the estimate of 𝜎2, also called the mean square error (MSE)

𝑆𝐸(𝛽1) = 𝑠⇑
⌋︂

𝑆𝑆𝑥 standard error of 𝛽1

𝑆𝐸(𝛽0) = 𝑠
⌉︂

1
𝑛
+ 𝑥̄2

𝑆𝑆𝑥
standard error of 𝛽0

𝑟 = 𝛽1
⌈︂

𝑆𝑆𝑥⇑𝑆𝑆𝑦 the correlation coefficient

𝑅2 = 𝑟2 coefficient of determination

Adapted from Helsel e Hirsch (2002)

𝛽1 is the slope of the line.

𝑥𝑖 is the 𝑖th independent variable.

𝜖𝑖 is the deviation of 𝑦𝑖 from the true mean ℰ(𝑌𝑖).

𝑌𝑖 = 𝛽0 + 𝛽1𝑥𝑖 (2.4)

𝑌𝑖 is the 𝑖th estimated dependent variable.

𝛽0 is the estimated intercept.

𝛽1 is the estimated slope of the line.

𝑥𝑖 is the 𝑖th independent variable.

𝜖𝑖 ∼ 𝑁𝐼𝐷(0, 𝜎2) (2.5)
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Different applications of the OLS must be compliant to a set of assumptions as
shown in Table 5. For all applications it is assumed that 𝑦 is linearly related to 𝑥 and
that the data used to fit the model is representative of the data of interest. These are the
only assumptions if the model is used only to predict 𝑦 given 𝑥. The quality of fit can be
evaluated by the correlation coefficient 𝑟 and by the determination coefficient 𝑅2, which,
in the case of just one independent variable, is simply the square of 𝑟 (see Table 4). The
regression line, as a conditional mean, is sensitive to the presence of outliers in much the
same way as a sample mean is sensitive to outliers (RAWLINGS; PENTULA; DICKEY,
1998; HELSEL; HIRSCH, 2002).

For data with many outliers, alternative methods as the Kendall-Theil Robust
Line (KTRL) can be applied. These methods avoid the inflation of the standard error
of the estimates. The main difference from OLS regression, is that the calculation of the
KTRL intercept and slope is not based on the mean of response and explanatory variables,
instead, it is based on the median of 𝑥 and 𝑦 and of the slopes that can be calculated
among all 𝑥, 𝑦 pairs of data. The KTRL is defined as eq. 2.6, and the intercept and slope
of the KTRL can be calculated by Eqs. 2.7 and 2.8, respectively. This method is efficient
in the presence of outliers and non-normal residuals (HELSEL; HIRSCH, 2002).

𝑌 = 𝑏0 + 𝑏1𝑥 (2.6)

𝑏0 = 𝑦𝑚𝑒𝑑 − 𝑏1𝑥𝑚𝑒𝑑 (2.7)

𝑦𝑚𝑒𝑑 = the median of 𝑦

𝑚𝑚𝑒𝑑 = the median of 𝑥

𝑏1 = 𝑚𝑒𝑑𝑖𝑎𝑛
𝑦𝑗 − 𝑦𝑖

𝑥𝑗 − 𝑥𝑖

(2.8)

For all 𝑖 < 𝑗 and 𝑖 = 1, 2, . . . , (𝑛 − 1) 𝑗 = 2, 3, . . . , 𝑛.

When the relation between response and explanatory variable does not change at
a constant rate, other types of model should be investigated. An option is the polynomial
model (Eq. 2.9), which is an extension of the straight-line model. The simplest extension of
the straight-line model involving one independent variable is the second-order polynomial
(quadratic) model (Eq. 2.10). It should be noted that the polynomial model is a special
case of the multiple regression model where 𝑥1 = 𝑥 and 𝑥2 = 𝑥2, hence the estimation
method for multiple regression (OLS) is valid. The normal equations can be solved from
writing them in matrix notation.

In the context of environmental sciences this technique had to evolve for taking
into account characteristics as seasonality, trends, non-normality of the residuals among
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Table 5 – Assumptions necessary for the purposes to which OLS is put.

Assumptions Predict 𝑦 given
𝑥

Predict 𝑦 and a
variance for the

prediction

Obtain best
linear unbiased
estimator for 𝑦

Test hypothesis,
estimate

confidence or
prediction
intervals

(1) Model form is cor-
rect: 𝑦 is linearly related
to 𝑥

X X X X

(2) Data used to fit the
model are representative
of the data of interest

X X X X

(3) Variance of the
residuals is constant
(is homoscedastic). It
does not depend on x
or on anything else (e.g.
time).

X X X

(4) The residuals are in-
dependent X X

(5) The residuals are
normally distributed X

Adapted from Helsel e Hirsch (2002)

others. Helsel e Hirsch (2002) present diverse alternative regression methods for situations
where the assumptions of constant variance and normality of residuals required by OLS
regression are not satisfied, and transformations to remedy this are either not possible, or
not desirable. Some examples are the Line of Organic Correlation, Least Normal Squares,
Weighted Least Squares, Iteratively Weighted Least Squares and Locally Weighted Scat-
terplot Smoothing (LOWESS).

Haggard et al. (2003) applied simple regression to estimate the annual loads of
total phosphorous (TP) at the Illinois river in the U.S. A comparison between the simple
linear regression and a seasonal approach was performed and among diverse subsets of
a TP dataset. The results from the seasonal model and subsets were compared to the
results from the complete dataset where the annual loads were calculated directly. It was
concluded that the errors were greater for the seasonal model if the frequencies intervals
were greater than semi-monthly (15 days), and that for a 19-months monitoring period,
28 water quality samples is the minimum number needed to adequately predict annual
TP loads using regression models. Hirsch, Moyer e Archfield (2010) presented a new
approach called Weighted Regression on Time, Discharge, and Season (WRTDS). The
approach is formulated to allow for maximum flexibility in representations of the long-
term trend, seasonal components, and discharge-related components of the behavior of
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the water quality variable of interest. It is suitable when: (1) the number of observations
is in excess of 200; (2) the period of sample collection is at least 20 years; (3) there
exists a complete record of daily discharge values for the site over the entire period being
analyzed; (4) all sample analyses are above the laboratory limit of detection (no “less
than values”); (5) the sample is representative of the entire cross-section of the river,
such that multiplying the measured concentration times discharge results in an unbiased
estimate of flux; and (6) the river at the sampling point is not so “flashy” so that the daily
discharge can be considerably different from the daily average. The traditional regression
methods assume that: (1) the flow vs. concentration relation remains constant in time;
(2) seasonal patterns repeat year after year, and the magnitude and timing of peaks and
valleys remains constant and; (3) the trends are assumed to follow a specific functional
form such as linear or quadratic.

ℰ(𝑌𝑖) = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥
2
𝑖 + 𝛽3𝑥

3
𝑖 + ⋅ ⋅ ⋅ + 𝛽𝑝𝑥𝑝

𝑖 (2.9)

ℰ(𝑌𝑖) = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥
2
𝑖 (2.10)

2.5.2 Stochastic processes

Stochastic modeling is an alternative to overcome some of the limitations arising
from traditional deterministic approaches. A deterministic model can be defined as the one
in which an input gives a unique output. The outputs of a deterministic model are subject
to the assumptions for applying the model (e.g., boundary conditions, representation of
physical, chemical and biological process, and representativeness of the inputs). Each
assumption is a source of uncertainty for the outputs. In environmental sciences, the
deterministic approaches may easily lead to wrong conclusions since most of the natural
phenomena are influenced by many factors that are not taken into account in the models.
The lack of knowledge and resulting uncertainties often limit the use of deterministic
approaches (ROSSI et al., 2005). The stochastic approaches come from the consideration
that the variables, parameters, structure and outputs (or at least one these items) of
the models should be expressed in terms of probabilities. Some of these methods are
based only on the characteristics of the data avoiding the uncertainty from mathematical
representation of the physical, chemical and biological processes (MORETTIN; TOLOI,
2006; YAN; ZOU, 2013; DETZEL, 2015).

The traditional stochastic theory for time series was popularized by Box, Jenkins
e Reinsel (2008). The definition of a stochastic process is as follows. Let 𝑇 be an arbitrary
set. A stochastic process is a family 𝑍 = 𝑍(𝑡), 𝑡 ∈ 𝑇 supposedly defined in the same space
of probabilities (Ω) such that for each 𝑡 ∈ 𝑇 , 𝑍(𝑡) is a random variable. Since for 𝑡 ∈ 𝑇 ,
𝑍(𝑡) is a random variable defined on Ω, in fact, 𝑍(𝑡) is a two-argument function, 𝑍(𝑡, 𝜔),
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𝑡 ∈ 𝑇 , 𝜔 ∈ Ω (MORETTIN; TOLOI, 2006). The stochastic process can be divided in
classes:

(a) stationary or non-stationary processes, according to the independence (or not) with
respect to the origin of the times;

(b) normal (Gaussian) or non-normal processes, according the pdf’s that characterizes
the processes;

(c) Markovian or non-Markovian processes, according to the independence of the values
of the process, at a instant of time, in relation to the values at previous times.

According to Morettin e Toloi (2006) the process is stationary if the properties of
𝑍(𝑡) are equal to the ones for 𝑍(𝑡+ 𝜏). It can be considered strictly or weakly stationary.
The first occurs when all the finite-dimensional distributions remain the same under
translations of time (Eq. 2.11). Hence, the mean and variance are constants for every
𝑡 ∈ 𝑇 .

𝐹 (𝑧1, . . . , 𝑧𝑛; 𝑡1 + 𝜏, . . . , 𝑡𝑛 + 𝜏) = 𝐹 (𝑧1, . . . , 𝑧𝑛; 𝑡1, . . . , 𝑡𝑛) (2.11)

For any 𝑡1, . . . , 𝑡𝑛, 𝜏 ∈ 𝑇 .

The process is weakly stationary when:

(1) 𝐸{𝑍(𝑡)} = 𝜇(𝑡) = 𝜇;

(2) 𝐸{𝑍2(𝑡)} < ∞ for all 𝑡 ∈ 𝑇 ;

(3) 𝐶𝑜𝑣{𝑍(𝑡1), 𝑍(𝑡2)} is a function of ⋃︀𝑡1 − 𝑡2⋃︀.

There are diverse types of stationarity, but the models for time series analysis
presented by Box, Jenkins e Reinsel (2008) and Morettin e Toloi (2006) are designed for
homogeneous non-stationary process, i.e., processes in which the stage or slope change
over time. Such processes can become stationary by successive differences (MORETTIN;
TOLOI, 2006). According to Koutsoyiannis (2006), it is typically performed by the non-
stationary approach, which considers the hydrological processes as being composed of
three parts:

1. A deterministic part which is periodic and results from natural physical periodicities
(e.g., seasonality).

2. A deterministic part which is aperiodic. This is commonly called ‘trend’ and may
be considered to be due to a gradual temporal change in the physical parameters of
the processes controlling weather.

3. A stationary random part.
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The modeling approach followed in hydrological practices often includes the “de-
seasonalization” and “detrending” of the time series prior to modeling, i.e., the removing
of seasonality and trends (deterministic components of variability). After the removing,
the model parameters are determined from the remaining random part (KOUTSOYIAN-
NIS, 2006). The time series of flows can be understood as one of the possible realization
(i.e., a sample) of a stochastic process. Traditionally, the variability patterns identified
in the sample are assumed to be in the population and then are removed or considered
previously to the stochastic modeling. However, there are many controversies regarding
this approach, since the patterns are identified in a deterministic framework and assigned
to a stochastic process (YUE; PILON, 2003; BEVEN; BINLEY, 2014; DETZEL, 2015).
In other words, if a 10-years flow time series shows an downward trend, it does not nec-
essarily mean that it will continue in the next decades because maybe it is just an effect
of the sample and not a real trend in the stochastic process. It also must observed that
there is a physical limit to upward and downward trends in flows and concentrations.
Furthermore, the interaction between deterministic trends and autoregressive models was
investigated by Yue e Pilon (2003) and it was concluded that the differencing proposed
in literature can remove the trend from the time series but it can also seriously damages
the existing true stochastic process. In contrast to differencing, detrending (directly re-
move the deterministic trend) can eliminate a deterministic trend without distorting the
existing stochastic process.

The models are classified in two categories:

• parametric models, for which the number of parameters is finite, and the analysis
is performed in the domain of time;

• non-parametric models, for which the number of parameters is infinite, and the
analysis is performed in the domain of frequencies.

Some parametric models are the error models (regression models), the auto-regressive
and moving average models (ARMA), the integrated and moving average auto-regressive
models (ARIMA) , the long memory models (ARFIMA), structural and non-linear mod-
els. The most used non-parametric model is the autocovariance function and its Fourier
transform. Of particular interest are the ARIMA models (FARUK, 2010; YAN; ZOU,
2013; DETZEL, 2015; LOUCKS; BEEK, 2017). The ARIMA(p, d, q) are composed by
three parts: the auto-regressive component AR(p) of order p, the integration factor I(d)
with differentiation degree d, and moving average component MA(q) of order q. These
models has been applied in many hydrological studies since the correlation structure of
hydrological time series can be reproduced (DETZEL, 2015).

The ARIMA model can be represented as Eq. 2.12, where: 𝑡𝑦 and 𝑒𝑡 are the actual
value and random error at time period 𝑡; 𝜑(𝐵) = 1 − 𝜑1𝐵 − 𝜑2𝐵2 − ⋅ ⋅ ⋅ − 𝜑𝑝𝐵𝑝 and 𝜃(𝐵) =
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1−𝜃1𝐵−𝜃2𝐵2−⋅ ⋅ ⋅−𝜃𝑝𝐵𝑝 are autoregressive operator of order 𝑝 and moving average operator
of order q, respectively; 𝜑1, 𝜑2, . . . , 𝜑𝑝 and 𝜃1, 𝜃2, . . . , 𝜃𝑝 are unknown coefficients estimated
from sample data; 𝐵 and ∇ = 1−𝐵 are backward shift operators; 𝑒𝑡 is the noise component
of the stochastic model and assumed to be identically distributed with a mean of zero
and a constant variance. The ARIMA modeling includes model identification, parameter
estimation and goodness-of-fit. The Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC) are used to select the best model. The smaller the AIC and
BIC, the better the model. The final selected model can then be used for prediction
purposes (MORETTIN; TOLOI, 2006; BOX; JENKINS; REINSEL, 2008; YAN; ZOU,
2013; DETZEL, 2015). According to Yan e Zou (2013), the most important disadvantage
for the ARIMA modeling approach is that the time series under study are generated from
linear process and therefore, no nonlinear patterns can be captured by the ARIMA model.
They may be inappropriate if the underlying mechanism is nonlinear. In fact, real world
systems are often nonlinear.

𝜑(𝐵)∇𝑑𝑦𝑡 = 𝜃(𝐵)𝑒𝑡 (2.12)

In stochastic water resources models it is often assumed that a stochastic process
𝑋(𝑡), where 𝑡 is time, is a Markov process. A first-order Markov process has the property
that the dependence of future values of the process on past values depends only on the
current value. These is called the state of the process. A special kind of Markov process
is called a Markov chain, in which the state 𝑋(𝑡) can take on only discrete values, e.g.,
the daily, monthly or annual streamflows (LOUCKS; BEEK, 2017). According to Loucks
e Beek (2017), a common and reasonable assumption is that the annual flows are the
result of a first-order Markov process. The Markov model for annual flows is a simple
autoregressive model represented by Eq. 2.13, where 𝑄𝑦+1 is the next year flow, 𝜇 is the
mean annual flow, 𝜌 is the first order correlation coefficient, 𝑄𝑦 is the current annual flow,
and 𝑉𝑦 is the standard normal random error with mean = 0 and variance = 1. It is also
assumed that the annual flows are normally distributed. Streamflows will rarely follows a
normal distribution since flows are zero-bounded. For these cases transformations of the
original variable 𝑄𝑦 can be applied. Common choices for the distribution of streamflows are
the two-parameter and three-parameter lognormal distributions or a gamma distribution.
If 𝑄𝑦 is a lognormally distributed random variable, then it can be expressed as Eq. 2.14,
𝑋𝑦 is the normally distributed random variable, and 𝜏 is the shift parameter, which is 0
for the two-parameter lognormal.

𝑄𝑦+1 = 𝜇 + 𝜌(𝑄𝑦 − 𝜇) + 𝑉𝑦𝜎
⌈︂

1 − 𝜌2 (2.13)

𝑄𝑦 = 𝜏 + exp(𝑋𝑦) (2.14)

The equation for the transformed variable is represented by Eq. 2.15, where 𝑋𝑦+1

is the Ln(𝑄𝑦+1 − 𝜏), 𝜇 is the mean of 𝑋𝑦 = Ln(𝑄𝑦 − 𝜏), 𝜌𝑥 is the first order correlation
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coefficient of the log-transformed time series, and 𝜎𝑥 is the standard deviation of the
log-transformed time series.

𝑋𝑦+1 = 𝜇𝑥 + 𝜌𝑥(𝑋𝑦 − 𝜇𝑥) + 𝑉𝑦𝜎𝑥

⌈︂
1 − 𝜌2

𝑥 (2.15)

There are many different stochastic approaches that have been used over the last
30 years, mostly in hydrological studies, e.g., studying operation of reservoirs, drought
management, alternative input into water quality studies, or design of new hydraulic
structures . The main goal is to provide input data variations that are statistically likely
to occur, and also more challenging to manage than the original record terms of either
the magnitude of individual events or their duration. After almost 50 years of research
in this field, a stochastic model that is easy to understand, use, and is widely accepted,
does not exist (ILICH, 2014). Two major groups can be identified: (i) one based on the
expression of model parameters and structure as random variables, and; (ii) other based
on the variability characteristics of the data, known as “time series analysis‘”.

Some examples of group (i) are Beven e Binley (1992), Han, Kim e Bae (2001) and
Rossi et al. (2005). In 1992, Beven e Binley (1992) described the Generalized Likelihood
Uncertainty Estimation (GLUE) procedure, which is a method for calibration and uncer-
tainty estimation of distributed models. The procedure is based on the premise that there
are many different models and sets of model parameters and structures equally likely to
be simulators of the system. Initially, ranges and a probability density function for the
parameters variation, and a set of appropriate models and model structures are defined.
Each model is run many times with different parameters values, randomly chosen from the
specified ranges, and a likelihood is assigned to the model depending on the quality of the
performance. Han, Kim e Bae (2001) used First-Order Second-Moment and Mean-Value
First-Order Second-Moment to perform stochastic water quality modeling with QUAL2E
model, and compare the results with the traditional approach with Monte Carlo simula-
tions in the parameters of the model. Rossi et al. (2005) proposed a stochastic approach
to simulate the amount of discharged total suspended solids (TSS) in rivers by combined
sewer overflows and storm discharges. The idea was to estimate concentrations and loads
of TSS by using statistical information derived from measured data (flow rates and total
volumes for a given rain event, and total mass of TSS that will be mobilized during the
event). The uncertainties of the model variables were taken into account by expressing
them as pdf’s and performing Monte Carlo Simulations.

The time series analysis are typically performed for prediction purposes and/or
generation of synthetic time series. It has been applied since more than 50 years for
hydrological studies (ILICH, 2014), and more recently for water quality data. In 1968,
Boughton e McKerchar (1968) applied the Thomas-Fiering model for the generation of
synthetic streamflow records in some New Zealand catchments and presented a discussion
on the possible errors that can occur when short time series are used to estimate monthly
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means, serial correlation and other statistics. Rodriguez-Iturbe, Dawdy e Garcia (1971)
studied the adequacy of Markovian models with cyclic components for stochastic stream-
flow simulation, and the results showed that seasonal components should always be consid-
ered and care should should be taken when using logarithmic transformations. Valipour,
Banihabib e Behbahani (2012) used monthly discharges from 1960 to 2007 to forecast the
inflow of Dez dam reservoir by using Auto Regressive Moving Average (ARMA) and Auto
Regressive Integrated Moving Average (ARIMA) models while increasing the number of
parameters in order to increase the forecast accuracy to four parameters and comparing
them with the static and dynamic artificial neural networks. Pender e Patidar (2015), in
order to avoid uncertainties from calibration, and deficiencies in model capability to cap-
ture extreme flow events in simulated time series, proposed a direct method for estimating
daily flows as an alternative to the traditional indirect approach of stochastically model
the daily rainfall and the use as inputs in rainfall runoff models (ALODAH; SEIDOU,
2018). The method involves combinations of a hidden Markov model with the generalized
extreme value and generalized Pareto distributions. It was concluded that the method
appropriately captures extreme events and is generically applicable across a range of hy-
drological regimes.

The atypical and recent research on stochastic water quality modeling has been
performed by hydrid models combining an ARIMA with artificial neural networks (ANN’s).
This practice was adopted to overcome the problem of non-linearities of environmental
time series. Kurunç, Yürekli e Çevik (2005) used a 13-year (1984–1996) monthly time se-
ries records to evaluate the forecasting performance of two modeling approaches, ARIMA
and Thomas–Fiering, for selected water quality constituents and streamflow. The results
indicated that the Thomas-Fiering model was better for that case study. Faruk (2010)
applied a hybrid approach, which was a seasonal ARIMA model combined with a neural
network model for time series prediction using 108-month observations of water qual-
ity data, including water temperature, boron and dissolved oxygen, during 1996–2004 at
Büyük Menderes river, Turkey. The results showed that the hybrid approach was robust,
since it was capable of capturing the nonlinear nature of the time series. Yan e Zou (2013)
developed a hybrid model (ARIMA–ANN’s) to predict water quality time series data
and assess its performance relative to ARIMA and ANNs models. All the studies were
performed with regular-frequency water quality data.
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2.6 Synthesis
The knowledge about uncertainties in water quantity and quality is still incipient.

In recent research, an effort towards the definition and understanding of the concept and
types of uncertainty can be observed. There are few studies in which the uncertainties
in analysis of water resources data and management are addressed in a integrated way,
combining and quantifying/qualifying the diverse types. In general, the assessment of in-
dividual components is observed, and the uncertainty is usually expressed as percentages
instead of by pdf’s. It is common sense (GUM 2008 (JCGM/WG1, 2008a)) that uncer-
tainty is a random variable correlated in space and time which, when possible, should be
expressed as pdf’s. The main classes of uncertainty are epistemic, deriving from lack of
knowledge, ontological, from natural variability of the systems, and ambiguity, from the
different ways of framing the problems in the social context of decision-making processes.
Many of these uncertainties cannot be quantified or handled with statistical approach, e.g.,
those related to representativeness. Traditionally, the water quality monitoring practices
are performed with low frequencies at few sites that should represent the non-monitored
periods and locations. Since there is no data to show which is the true state and variabil-
ity characteristics of the water resources, the uncertainties related to representativeness
are unknown and can be called Knightian uncertainties. Furthermore, the current context
of climate change increases the representativeness-related uncertainties, the longer the
planning period.

The confidence in the ultimate information to the WRM starts with representative
measurements, which can be partially achieved by well-developed monitoring strategies.
However, the evaluation of representativeness will always be highly subjective and based
on expert judgment. Representativeness can also be decreased by imprecision of sensors,
techniques, methods and technologies used for measuring. The literature available esti-
mates of measurement uncertainties may reach 100%, or even higher magnitudes. The
complexity of the water quality measurement process (i.e, streamflow measurement, sam-
pling, storage/preservation, laboratory analysis, large areas, many sites and times, etc.)
imposes considerable difficulties to estimation and expression of uncertainty as pdf’s,
or even in percentages. The typical approach in nowadays-research is the use of litera-
ture estimates. This practice is challenging in the context of time series since it involves
assumptions about time and space autocorrelation and other variability characteristics,
which is not available in literature.

The results from time series analysis will also have influence from the methods and
variability patterns in data, giving rise to more uncertainties in the final information for
the planning. In order to avoid high levels of this type of uncertainty, the compliance with
the basic assumptions (RHIS) for application of statistical methods should be verified.
The basic assumptions will not be met when trends, cycles, shifts or many outliers are



Chapter 2. Theoretical Background 65

present in the time series. Unlike hydrological studies, it is rarely verified in water quality
times series. It seems to be an important issue for the WRM since the time series and their
statistical properties are the inputs for water quality and hydrological models. However,
the water quality statistical analysis and modeling are traditionally made by deterministic
approaches, without considerations about the presence of trends, cycles, and/or shifts. In
hydrological studies, stochastic approaches are usually applied. The presence of trends,
cycles and shifts are identified and some treatment or removing technique is used.

Stochastic approaches are chosen in order to deal with ontological uncertainties.
Many or maybe all natural processes have stochastic nature. The accumulated rainfall
in a year is not the same every year, the annual BOD loads vary from year to year, the
inflows in water reservoirs will also be different from year to year, as many other processes
derived from natural phenomena. However, the application of stochastic approaches re-
quires statistical information and assumptions about the time series, e.g., mean, variance,
covariances, correlation coefficients and RHIS. These information are hardly available
for water quality time series, due to short periods, irregular frequencies with large gaps,
and presence of many outliers. The few stochastic water quality modeling studies were
performed with regular data. Hybrid models combining ARIMA and ANN’S have been
used, since water quality time series usually present non-linear variability patterns, which
cannot be dealt solely by ARIMA or ANN’s models.

Currently, there seems to have no available research on integrated uncertainty
analysis in water quality and hydrological literature. Most of the researches are focused
on identifying, typifying and quantifying the diverse individual types of uncertainties. The
questions that arise are: how these uncertainties should be expressed in the final informa-
tion for WRM, given that part of the uncertainty is subjective and cannot be quantified?,
and which uncertainties are more critical, i.e., strategy, measurement, statistical analy-
sis, or modeling uncertainties? Table 6 shows some of the main advances in the current
context of uncertainty concerns.

Table 6 – Advances in uncertainty analysis of water resources time series

Author Description Contribution

Beven e Binley
(1992)

The GLUE procedure. A method-
ology for calibration and uncer-
tainty estimation of distributed
models based on generalized like-
lihood measures.

Uncertain hydrological infor-
mation with uncertainties of
measurements and models
structures taken into account
by likelihood weights assigned
to a given model structure/set
of parameters on the basis of
evidence.
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Table 6 – continued

Author Description Contribution

Han, Kim e Bae
(2001)

Development of a QUAL2E-
Reliability Analysis model
(QUAL2E-RA). The uncertain-
ties of this deterministic model
were estimated by sensitivity
analysis, first-order error analysis
and Monte Carlo Simulations.
The three approaches were based
on the statistics of input data. No
trends, cycles and measurement
uncertainties were considered.

QUAL2E-RA - A method for
stochastic analysis of water
quality data with less compu-
tational effort than determinis-
tic modeling with Monte Carlo
Simulations.

Kurunç, Yürekli
e Çevik (2005)

Comparison of two stochastic ap-
proaches, ARIMA and Thomas
Fiering (T-F) models. 13-year pe-
riod of monthly data was used.

T-F model slightly better.

Harmel et al.
(2006)

Estimation of combined uncer-
tainty for discharges, concentra-
tions and loads of nutrients and
suspended solids, according sce-
narios of quality in monitoring
practices.

Application of GUM uncer-
tainty framework to com-
bine uncertainties of stream-
flow measurement, sampling,
storage/preservation and lab-
oratory analysis. Percentage
symmetric estimates of uncer-
tainties, not assigned to prob-
ability distributions, based in
literature review.

Refsgaard et al.
(2005), Brown
e Heuvelink
(2007)

Researches in representative river
basins for designing, building and
populating a database containing
data and associated uncertainties,
and development of a software
tool (DUE) to use the database
to perform uncertainty analysis of
data from other basins.

Data Uncertainty Engine
(DUE) - Expression and prop-
agation of uncertainties with
probability distributions, con-
sidering spatial and temporal
correlations, and generation
of synthetic time series from
uncertainty intervals of the
measurements.
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Table 6 – continued

Author Description Contribution

Harmel et al.
(2009)

Development of a software tool
for estimation of uncertainty
in individual measurements. It
combines the uncertainties in
streamflow measurement, sam-
pling, storage/preservation, lab-
oratory analysis and data man-
agement and processing, by ap-
plication of the GUM uncertainty
framework. The individual un-
certainty estimates are based in
Harmel et al. (2006).

Data Uncertainty Estimation
Tool for Hydrology and Wa-
ter Quality (DUET-H/WQ).
It yields percentage symmetric
estimates of uncertainties, not
assigned to probability distri-
bution.

Hirsch, Moyer e
Archfield (2010)

A new approach to increase the
amount of information that can
be extracted from typical wa-
ter quality datasets, and provide
consistent estimates of the ac-
tual history of concentrations and
fluxes. It consists of a weighted
regression between discharge and
concentrations, formulated to al-
low for maximum flexibility in
representations of trends, sea-
sonal components and discharge-
related components. The method
does not provide estimates of the
uncertainty related to the proce-
dure.

Weighted Regression on
Time, Discharge and Season
(WRTDS) - An approach to
reduce the variance in the
dataset, thus improving the
power of hypothesis tests, the
accuracy of estimated trend
slopes, and the accuracy of
flux estimates.

Yan e Zou
(2013)

Evaluation of the performance of
a hybrid ARIMA and Artificial
Neural Network model (ARIMA-
ANNs). The ANNs model were
applied in the residuals of the
ARIMA model to deal with the
nonlinear patterns and reduce po-
tential errors

The hybrid model has greater
accuracy than ARIMA and
ANNs individually applied.
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Table 6 – continued

Author Description Contribution

McMillan et al.
(2017)

Discuss the need for practical un-
certainty assessment tools that
generate multiple flow series real-
izations rather than simple error
bounds

Quantifications of economic
losses in diverse sectors due to
uncertainty in flow measure-
ments

Teng et al.
(2017)

A review of methods, recent ad-
vances and uncertainty analysis
in flood inundation modeling

Identification of the current
challenges, e.g., quantification
of measurement uncertainties,
increasing the use of stochastic
approaches, ease the constraint
of computational demand

Warmink et al.
(2017)

Investigation of the diverse type
of uncertainty in the water re-
sources management

identification of three chal-
lenges in current river man-
agement: balancing social and
technical uncertainties, being
conservative and avoiding to
end up a lock-in situation.
A step-wise strategy and con-
crete actions for policymakers

Alodah e Seidou
(2018)

Evaluates the usefulness of
weather generators/stochastic
models by assessing how the
statistical properties of simulated
precipitation, temperatures, and
streamflow deviate from those of
observations

the choice of a particular
weather generator/stochastic
model for water resources as-
sessment can have an impact
on key statistics of the sim-
ulated time series, hence on
the estimated level of risk and
the selection of management
strategies

Jung, Niemann
e Greimann
(2018)

Model input errors represented by
Gaussian distributions, with the
means and standard deviations
as uncertain parameters that are
estimated within the Bayesian
framework

prediction ranges are substan-
tially affected by input errors.
Uncertainty is better repre-
sented when input errors are
considered

It can be observed from the most recent researches in Table 6 that technical uncer-
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tainties seem to have considerable impacts in terms of costs for the WRM, since it affects
the statistical characteristics from time series used in the planning of water resources. Fur-
thermore, these uncertainties should be analyzed in the social context of the WRM where
other types of uncertainties arise. Currently, there is no established management strategy
to deal with these uncertainties (individually or jointly). However, balancing social and
technical uncertainties, being conservative and avoiding to end up a lock-in situation has
been recommended.
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3 Methods

“The most effective way of living is like a warrior. A warrior may worry and
think before making a decision, but once he has taken it, he goes on his way,

free of worries or thoughts; there will be a thousand other decisions still
waiting for you.”

Don Juan (Carlos Castaneda)

3.1 Overview
The method follows four steps shown in Fig. 1: (i) uncertainty assessment and

generation of synthetic time series (STS) from the uncertainty intervals; (ii) statistical
analysis; (iii) regression analysis between flows and concentrations; (iv) stochastic water
quality modeling from daily flows. It was applied in time series of flows (Q), concentrations
(C) and loads (W) from monitoring stations in the Upper Iguassu Watershed in southern
Brazil.

The step (i) (section 3.4) relates to the definition of uncertainty scenarios based on
the uncertainties estimated by Harmel et al. (2006). The uncertainty of each value was used
to generate STS (section 3.5) of Q, C and W by the Monte Carlo Method (MCM). Step (ii)
(section 3.6) relates to the significance assessment of major fluctuations (e.g., trends, cycles
and shifts) by the application of randomness, homogeneity, independence and stationarity
(RHIS) hypothesis tests, analysis of the descriptive statistics and comparison between the
photos (irregular frequency data) and movies (regular-frequency data). The step (ii) were
firstly applied on a typical water quality dataset, i.e., irregular frequency data (photos),
short period with few observations and outliers presence, and then on the movies generated
in the stochastic water quality modeling. This first part of the method (steps (i) and (ii)
on the photos) was designed to provide information on how uncertain a statistical result
may be due to measurement uncertainties and non-compliance with the basic assumptions
for application of statistical methods (RHIS).

The second part starts with step (iii) (section 3.7), which relates to the concep-
tion of a regression model (RM) between flows and concentrations. The simple linear
regression (SLR) method was used to estimate the parameters of the model. A proba-
bility density function (pdf) was fitted to the errors and used to the expression of the
RM uncertainty (“e” in the illustrative RM in Fig. 1). Regression analysis is a traditional
technique for estimation of missing data. There are many methods for data analysis that
require regular frequency data, e.g., the autoregressive ARIMA models presented by Box,
Jenkins e Reinsel (2008) which are extensively used for hydrological modeling. Many
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statistical analyses are performed in annual basis but typically, the annual statistic is
estimated from few irregularly distributed data along the years including months without
any measurement. Complex and more powerful techniques than the simple linear regres-
sion are available in literature, e.g., the Cascade Correlation Artificial Neural Networks
(DIAMANTOPOULOU; ANTONOPOULOS; PAPAMICHAIL, 2007) and the Weighted
Regression on Time, Discharge and Season (HIRSCH; MOYER; ARCHFIELD, 2010).

In this procedure the uncertainty of the estimated concentration is partially ex-
pressed by the error of the RM. The total uncertainty cannot be represented only by
the error of the model, since there are other sources of uncertainty that arises from the
assumptions of the method. The SLR assumes that: (a) the relation is constant in time;
(b) no significant autocorrelation, trends, cycles and/or shifts are present and; (c) the
distribution of the errors is constant in time and along the measurement scales of the
flows and concentrations. Hence, the concentrations estimated from the flows should be
random or not, depending on the variability patterns of the flows. For example, consider-
ing a case in which there are a large period with flow rates and just a few concentrations,
just enough to establish a relation by regression, if there is an upward trend in the flows,
it is likely to be present in the estimated concentrations. However, it may not appear
in concentrations due to the randomness introduced by the error term of the RM. The
use of a water quality time series generated in this way would be highly uncertain if
the real water quality was significantly influenced by management actions, seasonality,
persistence, atypical phenomena (e.g., El Niño), climate and land use change, and by
the flows. The more intense these external influences, the more uncertain the statistics
from these time series. This uncertainty cannot be quantified, only qualified, because the
truth is unknown. If the external influences are low, it is possible that there is a gain in
representativeness, since the flows carry information about the concentrations.

The step (iv) (section 3.8) relates to the stochastic modeling of concentrations from
the stochastic modeling of the flows by applying the regression model on the synthetic
flows. An autoregressive model, Markovian model MAR(1), was used for the generation of
synthetic flows. This model is often applied in hydrological studies after the removing of
trends and seasoanlity. In this study, the variability patterns were not removed or treated
prior to the modeling.

Disregard for non-stationarity, non-homogeneity and non-randomness of the orig-
inal flows is equivalent to considering the variability random, except for daily autocor-
relation. In the context of STS, the practical consequence is a wider standard deviation
than if for example seasonality or trends were removed, and a displaced mean. The first
part of the method ((i) and (ii)) is intended to provide the basis for the discussion of this
type of uncertainty, which relates to the detection of trends, cycles and/or shifts from
uncertain measurements prior to the application of statistical methods. Given all the un-
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certainties involved in water quality and flow measurements, and in the identification of
variability patterns, the main question is: what can increase the risk for the planning of
water resources more, to consider or to not consider these variability patterns previously
to statistical analysis?

The stochastic modeling of water quality data is much more challenging than for
hydrological data due to the typical irregular and short time series. The use of ARIMA
models for example, requires at least regular frequency data to calculate the correlations
in each lag. If irregular data is used, the correlations lose physical meaning. For example,
the first lag correlation would be just the correlation of one observation to the next, but
the time between them would not be constant. When this correlation coefficient is used in
the ARIMA model, the time runs with regular frequency, thus making it non-sense or at
least highly uncertain. The regular time series generated by the RM on the original daily
flows can be used to calculate the correlations and fit the ARIMA model. However, in the
proposed method the ARIMA model was fitted to the original flows, since the correlations
are real values. Synthetic flow time series were generated and for each one the RM model
was applied to generate synthetic water quality time series and by multiplication of flows
and concentrations, the load time series. This is an alternative approach for the stochastic
water quality modeling which inserts different types of uncertainty (measurement, RM,
disregard for RHIS and ARIMA model uncertainties).

Finally, step (ii) was applied on the synthetic Q, C and W and the results from
the photos and movies compared. It is expected that the results provide the arguments to
answer some of the questions related to uncertainties in the statistical/stochastic context
of water resources time series. How uncertain the statistic results from stochastic water
quality modeling with typical water quality data would be? Is it worst for the concen-
trations or for the loads? Can it provide consistent information for the planning of water
resources? Is there a need for high frequency monitoring?

The proposed method is equivalent to a worst case scenario, since the regression
technique and ARIMA model used are the simplest available versions for these objectives.
The development of a computational program was required for all the steps since it is
a innovative approach and no software is available for this type of analysis. The python
programming language was used. The program was entitled TSGENUIN-WQ/H which
means Time Series Generation Under Uncertainty Intervals - for Water quality/Hydro-
logical data.

3.2 Upper Iguassu watershed
The research was performed on Upper Iguassu Watershed (Fig. 2) in southern

Brazil, state of Parana. The watershed is located between latitudes −25.23 and −25.83, and
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Figure 1 – Scheme of the method

longitudes −49.69 and −49.96. The total area is approximately 3, 000 𝑘𝑚2 with diverse land
and water uses, including intensive agricultural activities (47% of the total area), many
industries (about 9000 industries) and six water supply reservoirs (one under construction)
(PORRAS et al., 2016). The capital of Paraná state, Curitiba city, is totally inside the
watershed area and represents the major urban spot on the map. About 3 million people
live in the watershed, and from these, about 2 million are concentrated in Curitiba city.
The metropolitan region has low coverage of sewage collection system due to (not only)
a disordered, irregular and continuous urban sprawl over many areas around Curitiba,
specially over flood plains (KNAPIK; FERNANDES; BASSANESI, 2011; FROEHNER et
al., 2011; COELHO et al., 2017). The Iguassu river is highly impacted with pollution from
domestic and industrial sewage, not only from waste water treatment plants, but also from
the drainage system that reaches the river and tributaries at many points. Pesticides and
nutrients are largely used in Brazil agricultural practices making these areas important
sources of these elements to the water bodies. Curitiba and its metropolitan region have
temperate climate, four well defined seasons, mean temperature of about 14○𝐶 on winter
and 22○𝐶 on summer, with high variability within a day and along the year. Annual
mean precipitation is around 1500 𝑚𝑚 well distributed over the year, with more frequent
events and slightly higher total precipitation on summer. Two of the hottest summers
were registered in 2006 and 2014, with days with maximum temperature of 35○𝐶. June
of 2016 had the lowest mean temperature (11.9○𝐶) for this month since 1990. Snow may



Chapter 3. Methods 74

Figure 2 – Monitoring sites in the Upper Iguaçu Watershed

Table 7 – Description of monitoring stations

Station Code Latitude Longitude Area (km2)
IG3 65017006 -25.5989 -49.2608 1,283.7
IG4 65019980 -25.6003 -49.3978 2,122.2
IG5 65025000 -25.6003 -49.5133 2,577.8
IG6 65028000 -25.5872 -49.6317 3,048.7
IG7 65035000 -25.5481 -49.8894 3,662.0
IG8 65060000 -25.8758 -50.3897 6,050.0

occur at about each 10 years, with decades without any occurrence. The last event was
on July, 2013. The highest monthly accumulated precipitation volume was in January of
1995, of 473.8 mm.

3.3 Monitoring and time series
The Upper Iguassu Watershed has several official monitoring stations responsible

for feeding the national system for information on water resources (HIDROWEB) with
hydrological and water quality data. Fig. 2 shows the stations IG3–IG8, which has been
also monitored by researchers from the Federal University of Paraná (UFPR) since 2005.
In HIDROWEB, these stations are identified by codes as presented in Table 7. Both
datasets were used. The UFPR dataset has irregular frequency data of water quality and
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Table 8 – Water quality variables used in each dataset

Variables Symbols UFPR dataset HIDROWEB
dataset

Biochemical Oxygen Demand BOD X X
Dissolved Oxygen DO X X
Dissolved Organic Carbon DOC X
Chemical Oxygen Demand COD X
Ammoniacal Nitrogen NH4 X X
Total Phosphorous TP X X
Volatile Dissolved Solids VDS X
Conductivity COND X

flows from 2005 to 2018. The HIDROWEB dataset has daily flows in diverse periods from
1930 to 2018 and irregular water quality data in the period 1981–2018. The UFPR dataset
is part of the HIDROWEB dataset.

Monitoring campaigns are typically performed in business days and hours, i.e,
Monday to Friday between 8 am and 6 pm. Sampling has irregular frequency, from bi-
weekly to quarterly with large gaps. Water is sampled in the middle of the river cross
section from a bridge at most of the stations, preserved in thermal boxes and analyzed
within 24–48 hours for most water quality variables. The flows are estimated by rating
curves.

The research was performed with a set of water quality variables and flows as shown
in Table 8. The selected variables are related to organic matter pollution. Although the
research was performed with a set of monitoring sites and water quality variables, the
flow and BOD time series from station IG5 were taken as the main case.

UFPR dataset

Fig. 3 presents the flows (Q) concentrations (C), and loads (W) of BOD from
station IG5. Fig. 3 shows the higher variability of the Q (m3/s) compared to C (mg/L)
and W (ton/d). Although a seasonal pattern can not be identified, major fluctuations
can be observed from 2005 to 2017. The significance of a longer cyclic fluctuation and
of a downward trend should be tested. The high variability of discharges and the major
fluctuations can be better perceived in the evolution of time series boxplot. It shows large
fluctuations of the median, and data from 10 to 170 m3/s are not considered as outlier
most of the time. The few outliers present are not far out from the maximum non-outlier
values.

Concentration time series has lower variability than Q. Major fluctuations can also
be observed, with lower concentrations in periods of higher flows (e.g., 2008-2012), with
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exception of data prior to 2007. It is an indication that, in this site, the variability of C
is, in part, controlled by Q. The major fluctuations do not affect the median, which is
stable since the time series had 15 data (prior to 2007). There are 9 outliers (> 30 mg/L),
which represent almost 20% of the data, and 4 values > 60 mg/L.

Load time series has lower variability than Q and C. Unless for the higher values,
prior to 2007, which are consequence of high values of Q and C, major fluctuations and
trends are not evident. As data quantity increases, higher values, prior to 2007, become
outliers, and the range of the more typical variations (25th–75th percentile), gets smaller.
The time series and boxplot evolution from stations IG3–IG7 can be found in the ap-
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Figure 3 – Time series and boxplot evolution. Q, BOD concentrations and loads, station
IG5. Updated at each data, starting with 10 elements and ending with all data. The boxes
show the 25th, 50th and 75th percentiles, the whiskers are the minimum and maximum
non-outlier values and the crosses are the outlier values

pendix A section A.1. From IG3 to IG7, Table 9 shows that from visual analysis there
are downward trends in Q and DOC, and upward trends in BOD and TP. The up and



Chapter 3. Methods 77

downward trends are also observed in terms of loads, which indicates that upward trends
in concentrations are not only an effect of lower Q, instead, it is the combined effect of
lower Q higher mass inputs along the river. The increase in TP indicates an increase in the
supply of domestic and/or industrial sewage. The DOC should also be increasing, unless
the BOD and TP increase is related to the suspended fraction in these river reaches. One
should be aware that this dataset is intended to represent the period 2005–2018 with only
59 observations from irregular sampling frequency.

HIDROWEB dataset

Table 9 – Observed variability patterns in UFPR dataset

Station Q BOD DO DOC NH4 TP VDS

IG3
c ↓ ** ↑ * — * ↓ * ∼ * ↑ * ↓ *
w ↑ * ∼ * ↓ ** ↑ * ↑ * ↓ *

IG4
c ↓ * ↑ * — ** ↓ * ∼ * ↑ * — *
w ↑ ** ∼ ** ↓ * ∼ * — * — *

IG5
c ↓ ∼ * ∼ ** — * ↓ * ∼ * ↑ * — *
w ∼ ** ∼ ** ↓ * ∼ ** ↑ * — *

IG6
c ↓ ∼ ∼ * — * ↓ * — * ↑ * — *
w ∼ * — ** ↓ * — * ↑ * — *

IG7
c — — * ↑ — — * — * —
w — * — — — * — — *

— no pattern, ∼ cycle, ↑ upward trend, ↓ downward trend, * less than 5 outliers,
** between 5 and 10 outliers. The 1st and 2nd lines of each row are for concentration and loads,
respectively

This dataset in maintained by the states and federal government. The daily flows
time series presented in Fig.4 have different sizes and missing data in different dates from
1931 to 2018. The large number of data makes it difficult to visualize variability patterns.
However, it can be observed through the flows and evolution of the boxplot percentiles, an
increase of the high flows, especially in the more upstream stations. It has been already
noticed and discussed, e.g., in (DETZEL, 2015). The author observed that the flows in
the Upper Iguassu watershed started to increase more intensely in the year of 1970 due
to urban expansion and consequent waterproofing of the soil.

Some of the daily flows (movies) are associated with water quality data. Fig. 5
shows the BOD concentrations with the associated Q and W at station IG5. As the UFPR
dataset, this one has irregular frequency water quality data (photos), with large gaps and
shorter period than the daily flows. The Q, C and W photos are apparently increasing
with time and have some major fluctuations which may be real cycles, random variability
or an effect of the irregular frequency. Unlike the downstream stations, the upstream
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Figure 4 – Time series of daily Q for stations IG3–IG8, and evolution of the interquartile
range (25th–75th percentiles), median, minimum and maximum non-outlier thresholds of
the time series boxplot

photos (see appendix B section B.1) do not present the same increase as IG5. However,
the number of elements in the time series and sampling frequencies are different. This
difference draws attention to the influence of the window of time and sampling frequency
being observed. For example, the downward trend observed in Q in the UFPR dataset is
indeed an effect of the slice of time. That dataset can be observed in this one by looking
to the data from 2005 to the end of 2017 in Fig. 5. The false downward trend is in fact
part of major fluctuation.

3.4 Uncertainty scenarios
Considering time series of Q, C and W with 𝑁 elements 𝑞𝑖, 𝑐𝑖 and 𝑤𝑖, respectively,

for 𝑖 = 1, 2, . . . , 𝑁 , the first step, illustrated by (1) and (2) in Fig. 6, relates to the definition
of 3 uncertainty scenarios for Q and C. Scenarios are ranges (a–b) defined by a minimum
and maximum uncertainty that can be assigned to a measurement in the time series. Low
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Figure 5 – Time series and boxplot evolution of Q, C and W of BOD from station IG5.
Updated boxplots at each data, starting with 10 elements and ending with complete time
series. The outlier values are represented by black crosses.

Table 10 – Observed variability patterns in HIDROWEB dataset, irregular frequency Q
and water quality data

Station Q BOD NH4 COD TP DO COND

IG3
c ∼ *** — *** ↑ * — ** ↑ ↑ * ∼ *
w — *** ↑ ** — ** ↑ * ∼ **

IG4
c ∼ * ∼ * ↑ * ∼ * ↑ * — * ↑ *
w ∼ ** ∼ * ∼ ↑ * — **

IG5
c ↑ ∼ *** ↑ ∼ *** ↑ ** ↑ ∼ ** ↑ * — ** ↑ *
w ↑ ∼ *** ↑ ** ↑ ** ↑ * — **

IG6
c ↑ * ↑ ∼ ** ↑ * ∼ ** ↑ * — * ↑ *
w ↑ ∼ ** ↑ ** ↑ ∼ ** ↑ * — *

IG7
c ↑ ↑ ** ↑ ** ↑ ** ↑ * — ** ↑ *
w ↑ ** ↑ ∼ ** ↑ ** ↑ * — **

IG8
c ↑ * ↑ ** n < 20 ↑ ∼ * ↑ * — * ↑ *
w ↑ ** n < 20 ↑ ** ↑ * —*

— no pattern, ∼ cycle, ↑ upward trend, ↓ downward trend, * less than 5 outliers,
** between 5 and 10 outliers. The 1st and 2nd lines of each row are for concentration and loads,
respectively
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level (LL: 10–30%), mid level (ML: 30–50%) and high level (HL: 50–70%) scenarios were
defined.

𝑢(𝑤𝑖) =
⌈︂

𝑢2(𝑞𝑖) + 𝑢2(𝑐𝑖) (3.1)

An uniform pdf was assigned to each scenario and used for the generation of dis-
charge and concentration uncertainties, 𝑢(𝑞𝑖) and 𝑢(𝑐𝑖), respectively. It was performed
with the function random.uniform(a, b) from Python’s Numpy library. The uncertainties
for W, 𝑢(𝑤𝑖), were calculated by Eq. 3.1, which is a traditional method for propagation
of variances and part of the GUM uncertainty framework (JCGM/WG1, 2008a). Eq. 3.1
with the minimum and maximum uncertainties from Q and C uncertainty scenarios, de-
fines the uncertainty scenarios for W (LL: 14–42%, ML: 42–71%, HL: 71–99%).

pdf's assigned to each
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Figure 6 – Proposed method. (1) Definition of uncertainty scenarios represented by uni-
form probability distribution. (2) Generation of the uncertainty for each value from uncer-
tainty scenarios. (3) Normal (i), lognormal (ii) and uniform (iii) pdf’s used to uncertainty
expression of each value. (4) Generation of synthetic time series from normal (i), lognormal
(ii) and uniform (iii) uncertainties.

3.5 Synthetic time series (STS)
The second step, represented by (3) and (4) in Fig. 6, relates to the definition of

pdf’s for uncertainty expression, followed by the generation of STS using MCM. For a
time series 𝑋 with 𝑁 elements 𝑥𝑖, the uncertainties 𝑢(𝑥𝑖), in percentage, were converted
to measurement units by Eqs. 3.2. It is represented by the uncertainty bars in (2) and the
a’–b’ range in (3), in Fig. 6.

𝑎′ = 𝑥𝑖(1 − 𝑢(𝑥𝑖))⇑100

𝑏′ = 𝑥𝑖(1 + 𝑢(𝑥𝑖))⇑100 (3.2)

𝜎2 = (𝑏′ − 𝑎′)2

12 (3.3)
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𝜇 = 𝑥𝑖

𝜎 = 𝑢(𝑥𝑖)⇑(3 ∗ 100) (3.4)

In events (i), (ii) and (iii), the normal pdf with parameters 𝜇𝑥 and 𝜎𝑥 given by Eqs. 3.4,
lognormal pdf with parameters 𝜇𝑙𝑛(𝑥) and 𝜎𝑙𝑛(𝑥) given by Eqs. 3.5 and uniform pdf with
parameters 𝜇 = 𝑥𝑖 and 𝜎2 given by Eq. 3.3 were, respectively, assigned to all measurements.
In normal and lognormal cases the uncertainties were considered as 3 standard deviations
(3𝜎), i.e. 99.7% of the synthetic values is inside the uncertainty range (same approach of
Harmel et al. (2006), Harmel et al. (2009)). Since that the uniform and normal pdf’s allow
negative values, these distributions were truncated at zero, i.e. negatives were rejected
and the procedure repeated until a positive value was generated. A similar procedure
can be found in (TIAN et al., 2018). A thousand new values were generated from each
measurement uncertainty, in LL, ML and HL scenarios, thus, generating 1000 STS.

𝜇𝑥 = 𝑒𝑥𝑝(︀𝜇𝑙𝑛(𝑥) +
𝜎2

𝑙𝑛(𝑥)
2 ⌋︀

𝜎𝑥 = 𝜇2
𝑥(︀𝑒𝑥𝑝(𝜎2

𝑙𝑛(𝑥)) − 1⌋︀ (3.5)

3.6 Statistical tests
The tests for RHIS were performed in OTS and STS of discharges (m3/s), BOD

concentrations (mg/L) and loads (ton/d) with increasing number of elements, starting
with 10 and ending with the complete time series. The tests were bilateral and, for a 5%
significance level (𝛼), H0 was rejected when p-value < 0.05. The large sample approxima-
tion was used for all tests.

Randomness

Randomness was tested by the Single-Sample Runs Test (SIEGEL; JR., 1988;
SHESKIN, 2004) with null hypothesis (H0) that the series is random against alternative
hypothesis (H1) that it is not, due to the presence of trends, cycles and/or shifts. Let
𝑚 be the number of elements of a type and 𝑛 the number of elements of another type
in a sequence of 𝑁 = 𝑚 + 𝑛 binary events. The test consists of counting the number of
groups of equal elements in a sequence, i.e. the number of runs (𝑟), e.g. + + − − −, where
𝑟 = 2, 𝑚 = 2, 𝑛 = 3, and comparison with expected values. H0 can be rejected due to few
or too many runs.

The numerical time series 𝑋 were converted to a binary event by taking the median
as a comparison parameter. An element 𝑥𝑖 was considered as +1 if 𝑥𝑖 > median, and as
−1 if 𝑥𝑖 < median. In this method, trends cycles and/or shifts can cause rejection of
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randomness due to few runs, once major fluctuations will produce the runs instead of the
random variability of data.

If both 𝑚 and 𝑛 are ≤ 20, a specific table should be used, with the expected min-
imum and maximum values of 𝑟 as a function of 𝑚 and 𝑛. If 𝑚 or 𝑛 is > 20, the normal
distribution is used as an approximation of the distribution of 𝑟 by Eqs. 3.7.

𝜇𝑟 =
2𝑚𝑛

𝑁
+ 1

𝜎𝑟 =

⟨
⧸︂⧸︂⟩2𝑚𝑛(2𝑚𝑛 −𝑁)

𝑁2(𝑁 − 1) (3.6)

𝑧𝑟 =
𝑟 − 𝜇𝑟

𝜎𝑟

(3.7)

Homogeneity

The null hypothesis of homogeneity was tested by the Mann-Whitney Test, avail-
able in Sheskin (2004). It is a nonparametric test employed on rank-order data for two
independent samples with medians supposedly from the same population. It has the fol-
lowing assumptions:

1. each sample has been randomly selected from the population it represents;

2. the two samples are independent of one another;

3. the original variable, which is subsequently ranked, is continuous;

4. homogeneity of variance.

Although outliers can dramatically influence variability, and cause significant het-
erogeneity in variances and violation of assumption 4, the rank transformation of original
data can eliminate or reduce this impact (SHESKIN, 2004).

Let 𝑛1 be the number of cases in the sample of the group 𝑋1 and 𝑛2 the number of
cases in the sample of the group 𝑋2. In the context of this research, the groups 𝑋1 and 𝑋2

are, respectively, the first and second half of a time series with 𝑁 elements. Observations
were sorted and assigned to a rank, then back transformed to the original time series
order, together with the ranks. The rank-order data was divided in halves, i.e. the groups
𝑋1 and 𝑋2, which were tested for homogeneity (SHESKIN, 2004).

The value of the test statistic 𝑈 is the lower between 𝑈1 and 𝑈2 (Eqs. 3.8), which
are, functions of the number of elements 𝑛1 and 𝑛2, and the sum of the ranks in each
group, ∑𝑅1 and ∑𝑅2. Although sources do not agree on the value of the sample size
which justifies the normal approximation, it is generally applied for sample sizes larger
than 20. The normal approximation of 𝑈 was applied by Eq. 3.9 (SHESKIN, 2004).
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𝑈1 = 𝑛1𝑛2 +
𝑛1(𝑛1 + 1)

2 −∑𝑅1

𝑈2 = 𝑛1𝑛2 +
𝑛2(𝑛2 + 1)

2 −∑𝑅2 (3.8)

𝑧 =
𝑈 − 𝑛1𝑛2

2⌉︂
𝑛1𝑛2(𝑛1+𝑛2+1)

12

(3.9)

It can be noted that as the test compares the halves of a time series by comparing
the sum of ranks of each half (Eqs. 3.8), the shifts, major fluctuations and outliers can
significantly increase/decrease the ranks of their half and cause rejection of homogeneity.
Furthermore, as the time series gets longer, representing several years, the differences be-
tween groups can be related to up or downward trends and shifts.

Independence

Independence was tested using the Wald and Wolfowitz Test (WALD; WOL-
FOWITZ, 1943), which is, indeed, a test for randomness based on serial correlation
(dependence). The test is suitable when the alternative hypothesis is the presence of
an up or downward trend or a regular cyclic movement (WALD; WOLFOWITZ, 1943;
NOETHER, 1950). Thus, rejection of independence, a priori, indicates the presence of a
trend or regular cyclic fluctuation in data.

For a non-parametric test, observations must be sorted and assigned to a rank,
then back transformed to the original time series order, together with the ranks. Con-
sidering the series of ranks 𝑋1, 𝑋2, 𝑋3, . . . , 𝑋𝑁 and the differences 𝑋 ′

1, 𝑋
′
2, 𝑋

′
3, . . . , 𝑋

′
𝑁 ,

determined between 𝑋𝑖 and its average 𝑋̄, Eq. 3.10 was calculated. Under an indepen-
dence null hypothesis, 𝑅 follows a normal distribution with mean and variance given by
Eqs. 3.11. The test statistic is then determined by Eq. 3.12 (WALD; WOLFOWITZ, 1943).

𝑅 = 𝑋1𝑋𝑁 +
𝑛−1
∑
𝑖=1

𝑋 ′
𝑖𝑋

′
𝑖+1 (3.10)

𝐸(︀𝑅⌋︀ = − 𝑠2

𝑁 − 1

𝑉 𝐴𝑅(︀𝑅⌋︀ = 𝑠2
2 − 𝑠4

𝑁 − 1 + 𝑠2
2 − 2𝑠4

(𝑁 − 1)(𝑁 − 2) −
𝑠2

2
(𝑁 − 1)2

𝑠 = 𝑁𝑚′
𝑟

𝑚′
𝑟 =
∑𝑛−1

𝑖=1 (𝑋 ′
𝑖)𝑟

𝑁
(3.11)
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𝑇 = 𝑅 −𝐸(︀𝑅⌋︀⌈︂
𝑉 𝐴𝑅(︀𝑅⌋︀

(3.12)

Stationarity

Stationarity was tested by using the non-parametric Mann-Kendall Test, available
in (HELSEL; HIRSCH, 2002). It is a test for linear or nonlinear monotonic trend detection.
The test statistic 𝑆 measures the monotonic dependence of 𝑦 on 𝑥. The null hypothesis
of stationarity was tested against the alternative hypothesis of an up or downward shift
of data in relation with time. H0 can be stated as Prob1(𝑦𝑖 < 𝑦𝑗 for 𝑖 < 𝑗) = 1⇑2, and H1,
for a two-sided test, as Prob(𝑦𝑖 < 𝑦𝑗 for 𝑖 < 𝑗) ≠ 1⇑2.

Kendall’s 𝑆 is calculated by subtracting the number of “discordant pairs” 𝑀 ,
i.e. the number of (𝑥, 𝑦) pairs where 𝑦 decreases as 𝑥 increases, from the number of
“concordant pairs” 𝑃 , i.e. the number of (𝑥, 𝑦) pairs where 𝑦 increases with increasing 𝑥,
as Eq. 3.13. There are 𝑛(𝑛−1)⇑2 possible comparisons to be made among the 𝑛 data pairs.
If all 𝑦 values increase along with the 𝑥 values, 𝑆 = 𝑛(𝑛 − 1)⇑2. If all 𝑦 values decrease,
𝑆 = −𝑛(𝑛 − 1)⇑2.

The Kendall’s correlation coefficient (𝜏), which varies between −1 and +1, is then
calculated by Eq. 3.14. To test for significance of 𝜏 , 𝑆 is compared to what would be
expected when H0 is true. If it is further from 0 than expected, H0 is rejected. For 𝑛 ≤ 10 an
exact test should be computed. However, the large sample approximation yields p-values
very close to the exact values, even for small sample sizes. The large sample approximation
was applied by Eqs. 3.15. The test is bilateral and for a 5% significance level H0 is rejected
when p-value < 0.05 (HELSEL; HIRSCH, 2002).

As this test is applied in a different transformation of data, i.e. pluses and minuses
instead of ranks, the impact of outliers is even more reduced, since they will always have
magnitude +1 or −1, as all other values.

𝑆 = 𝑃 −𝑀 (3.13)

𝑃 = “number of pluses”, the number of times the 𝑦′𝑠 increase as the 𝑥′𝑠 increases.
𝑀 = “number of minuses”, the number of times the 𝑦′𝑠 decrease as the 𝑥′𝑠 increases.

𝜏 = 𝑆

𝑛(𝑛 − 1)⇑2 (3.14)

1 Probability
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𝜇𝑆 = 0

𝜎𝑆 =
⌈︂
(𝑛⇑18)(𝑛 − 1)(2𝑛 + 5)

𝑍𝑠 =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

𝑆−1
𝜎𝑆

𝑆 < 0
0 𝑆 = 0
𝑆+1
𝜎𝑆

𝑆 > 0
(3.15)

3.7 Regression model
Regression analysis was performed: (1) to estimate concentrations from flows and;

(2) to estimate missing data in the daily flow time series from flows at neighboring stations.

Quadratic polynomial regression model (QLR) (Eq. 3.16) was used in (1), with
parameters estimated from water quality and flow photos from the HIDROWEB dataset.
The parameters 𝛽0, 𝛽1 and 𝛽2 of the model were estimated by the OLS method (see Table
4). A 3-parameters lognormal pdf (LN3) was fitted to the errors of the model.

A simple linear parametric regression model (Eq. 3.17) (SLR) was used in (2). A
list of priority stations was created for each station. When there was missing observations
at one station, the algorithm searched for the observation on the same date at other station
according to the priority list. The first and last station of the list are the one with the best
and the worst relation (linear regression) with the one with missing data, respectively.
The parameters 𝛽0 and 𝛽1 of these models were estimated by the OLS method and a LN3
was fitted to the errors.

The choice of a LN3 distribution derives from a preliminary investigation of the
errors distribution. This procedure is allowed since if the use is the prediction of y given
x, the only requirements are: (a) the model form is correct and; (b) the data used to fit
the model are representative of the data of interest (see Table 5 in section 2.5.1)

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥
2 + 𝑒 (3.16)

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝑒 (3.17)

3.8 Stochastic approach
A first order autoregressive model (AR(1)) presented by Eq. 3.18, also known as

Markov model (MAR(1)) (DETZEL, 2015; LOUCKS; BEEK, 2017), was fitted to the
daily flows (HIDROWEB dataset) with the purpose of generating synthetic daily flows.
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The logarithmic transformation in base 𝑒 was applied to the time series prior to the fitting
of the model and the synthetic daily flows were back transformed to the original form.

𝑞𝑡 = 𝑢𝑞 + 𝜌1(𝑞𝑡−1 − 𝑢𝑞) + 𝜎𝑞

⌈︂
1 − 𝜌2

1𝑎𝑡′ (3.18)

Where,
𝑎𝑡′ ∼ 𝑁(0, 1)

𝑞𝑡 = daily flow at time 𝑡;
𝑢𝑞 = mean the daily flows;
𝜌1 = correlation coefficient of lag 1;
𝑞𝑡−1 = daily flow at 𝑡 − 1;
𝜎𝑞 = standard deviation of the daily flows;
𝑎𝑡′ = error of the model.
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4 Results

“If you can’t explain it simply, you don’t understand it well enough”
Albert Einstein

4.1 Irregular-frequency time series (photos)

4.1.1 Uncertainty drawing

Figs. 7, 8 and 9 show the measurement uncertainties drawn in LL, ML and HL
scenario for flows, BOD concentrations and loads, respectively. The graphics also present
the median, the 25𝑡ℎ and 75𝑡ℎ percentile of the OTS. In general, it can be observed that
outliers and other high values were assigned to uncertainty ranges considerably larger
than other values, as a consequence of the conversion of uncertainties in percentage into
parameter units. It means that this approach for uncertainty assessment gives more im-
portance for higher values, in terms of changes in variability. Descriptive statistics, as the
mean and standard deviation, may have considerable changes due to uncertainty of these
values.

The high variability of the flows gives rise to the presence of many large uncertainty
ranges, thus allowing considerable changes in variability. In the HL scenario, these large
ranges allow the appearance of variability structures without the cyclic pattern observed
in the OTS (Fig. 3). The high values of concentration and load are mostly a few outliers.
It means that in this case study, loads are more affected by uncertainties in the flows than
in concentrations. Furthermore, as part of the variability of concentration is controlled
by variability of the flows, these results highlight the importance of of the flows to the
uncertainty analysis. The same considerations are valid for the other variables and stations
(see appendix A sections A.2, A.3 and A.4 for Q, C and W, respectively)

4.1.2 Synthetic time series

As a check procedure Figs. 10, 11 and 12 present the histogram of the synthetic
values associated to one original measurement randomly chosen from the time series of
Q, C and W, respectively. The histograms show that the uniform, normal and lognormal
drawings were correctly performed in LL, ML and HL uncertainty scenarios, since the
synthetic values followed the expected probability distributions. Appendix A sections
A.5, A.6 and A.7 shows the Q, C and W histograms, respectively, for stations IG3–IG7.
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Figure 7 – LL, ML and HL uncertainty scenarios for Q time series, station IG5

4.1.3 Statistical tests

The results are presented in Figs. 13, 14 and 15, for time series of Q, C and W,
respectively. A discussion is presented for each time series and a general discussion is
presented at the end of the section. The results from stations IG3–IG7 can be found in
appendix A sections A.8, A.9 and A.10 for Q, C and W, respectively.

Flows

The evolution of p-values in Fig. 13 shows that the decisions about RHIS may
vary over time. For example, following the red lines, homogeneity and stationarity were
rejected at N= 20 (p-value ≈ 0.00) but were far from rejection at N= 35 (p-value close to
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Figure 8 – LL, ML and HL uncertainty scenarios for BOD concentration time series,
station IG5

1.0), and the independence p-value changed from 0.05 at N= 20 to ≈ 0.7 at N= 23, showing
that the tests can be highly sensitive to small changes in N. It is true for the stations
IG3–IG7.

The STS p-values from LL, ML and HL scenarios varied similarly to the OTS p-
values in stations IG3–IG7. However, with differences due to measurement uncertainties.
The std range (i.e., the p-value uncertainty) at each N were mostly ≪ 1.0, while the
total variability ranged from 0.0 to 1.0. It means that even with uncertainties, the same
variability patterns as those from the OTS can be detected with more/less intensity (i.e.,
magnitude of the p-value ).

At first, the observed cyclic fluctuation and downward trend in the flows from IG5
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Figure 9 – LL, ML and HL uncertainty scenarios for BOD load time series, station IG5

(Fig. 3) are not significant for the complete time series, since RHIS were not rejected at
N= 59. Although the randomness p-value is 0.04 for the OTS, the STS p-values are ≈
0.05 ± 0.04 in LL, 0.09 ± 0.10 in ML and 0.18 ± 0.20 in HL scenario from uniform case.
It shows that the p-value is more likely to increase in the presence of uncertainties and
cause the hypothesis not to be rejected. It is also true for the normal and lognormal cases
but with smaller spreads and differences from the original p-value.

Despite the non-rejection of the hypotheses at N= 59, randomness and indepen-
dence p-values are in downward trends. Thus, if cycles and/or trends are present, there
is a high chance that the hypotheses will be rejected later when new elements are in-
cluded. Hence, the consideration or not of these patterns of variability prior to statistical
analysis will depend on expert judgment about their existence and continuity. The cyclic
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Figure 10 – Histograms of synthetic Q from one original measurement randomly chosen,
station IG5
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Figure 11 – Histograms of synthetic BOD concentrations from one original measurement
randomly chosen, station IG5
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Figure 12 – Histograms of synthetic BOD loads from one original measurement randomly
chosen, station IG5

fluctuation and downward trend of flows are also observed at the other stations (appendix
A section A.1) and RHIS hypotheses were also not rejected for the complete time series
(A section A.8), with the exception of independence. It reinforces the confidence in the
presence of a significant cyclic fluctuation in the flows.

Concentrations
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Figure 13 – Evolution of RHIS p-values from Q time series, station IG5. Red line = p-
value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and HL
scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL, ML and
HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if p-value
< 0.05

Fig. 14 shows that the high concentrations in the beginning of the BOD time
series (mg/L) (4 outliers > 35 mg/L) caused rejection of homogeneity (p-value ≈ 0.00) and
stationarity (p-value ≈ 0.00) until approximately N = 40. The convergence of the results
from OTS and STS to the same p-values indicates a “strong” trend, i.e., a trend that is
significant even in STS from HL uncertainties (50–70%).

The OTS p-values for stationarity and homogeneity increased from N= 40 varying
between 0.2–1.0 and 0.0–0.1, respectively. Stationarity was no longer rejected from this
point. Homogeneity is also far from rejection if uncertainties are considered, since the
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p-values from LL, ML and HL scenarios varied between 0.2–1.0. The separation between
OTS and STS p-values of homogeneity shows the weakening of the “trend” (false trend),
which became susceptible to changes due to LL, ML and HL uncertainties. It can also
be observed for BOD from IG3 to IG6 and in independence results at IG6 (appendix A
section A.9). Independence was not reject at N = 43 with p-value = 1.0, but if any level
of uncertainty is considered the p-value moves to the other extreme (≈ 0.0).

Although it can be concluded that there was no trend at N= 40, the decreasing
variability of randomness and independence p-values, moving towards 0.00, indicates the
presence of a cycle. Despite the large proportion of STS p-values of randomness > 0.05 at
N = 59 (≈ 0.04± 0.11 and 0.14± 0.18 in ML and HL scenarios, respectively, in the uniform
case), the decreasing variability moving towards 0.00 indicates a probable rejection in the
near future. Therefore, these results indicate the presence of a significant cycle, even for
HL uncertainties. However, the analysis of irregular time series with large missing data
gaps, few data and outliers presence leaves a high level of uncertainty about the true
existence and continuity of a cycle. All the stations, except IG7 because it has only 14
observations, present the same variability patterns with similar evolution of the p-values.
It does not increase the confidence in the presence of a significant cyclic fluctuation, be-
cause in this dataset all the stations are monitored in the same dates, hence, they have
water quality photos of the same days at different points of the same river. It is possible
that totally different results would be found if the sites had data with even 1 day-lag.
It would indicate that there was no pattern related to time. The following parameters
present higher similarities from IG3 to IG6: BOD (cycle), DOC (cycle and downward
trend) and TP (cycle and upward trend) (appendix A section A.9). The evolution of the
p-values of these water quality parameters is similar along the river reach. It indicates
that the water quality condition is connected along this river reach but does not increase
the confidence in the presence of variability patterns because the sites have data on the
same days, with a few minutes or hours of difference. The upward trend of TP (opposite
to Q) indicates that although the concentrations may be partially controlled by the flows,
there are other factors that significantly influence the concentrations.

Loads

Similarly to Q and C, the p-values of BOD loads varied with N (Fig. 15). The
rejection of RHIS in the OTS at approximately N= 20 indicates the presence of a significant
downward trend in the period 2005–2009. Besides that, the convergence of OTS and STS
p-values to 0.00 in homogeneity and stationarity tests reveals a “strong” trend, i.e., not
affected by the uncertainties assumed. These rejections were caused by the initial outliers
in the OTS (see Fig. 3). However, the min–max range (i.e., the minimum and maximum
p-values observed in the std ranges) of homogeneity and stationarity p-values at N= 45
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Figure 14 – Evolution of RHIS p-values from BOD concentration time series from IG5.
Red line = p-value from OTS. Blue, green, gray lines = average p-value from STS in LL,
ML and HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in
LL, ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject
H0 if p-value < 0.05

increased to ≈ 0.3–1.0 and 0.0–0.3, respectively, making the trend unlikely. The same is
observed from IG3 to IG6 (appendix A section A.10).

The OTS p-values of randomness and independence showed increasing variability
(between 0.0–0.2) until N= 54, changing the decision about a significant cycle many times.
For the STS, the average p-values increased from 0.0 to 0.4, 0.01 to 0.4 and 0.1 to 0.4
in LL, ML and HL scenarios of randomness in uniform case. Therefore, it is more likely
that the cycle is not significant if some uncertainty level is assumed. The min–max ranges
of RHIS at N= 54 (0.1–0.7, 0.2–0.7, 0.0–0.5, and 0.1–0.6, respectively) indicate that the



Chapter 4. Results 95

major fluctuations are more likely to be random variability. It highlights the influence of
Q in C. The product of higher Q for lower C, and vice-versa, makes the major fluctu-
ations smoother. This effect can be better observed for TP. RHIS were rejected for TP
concentrations indicating the presence of a significant cycle and upward trend. For the
TP loads, randomness and independence were no longer rejected in most of the stations,
indicating the smoothing of the cyclic fluctuation.
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Figure 15 – Evolution of RHIS p-values from BOD load time series from IG5. Red line
= p-value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and
HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL,
ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if
p-value < 0.05
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4.1.4 Synthesis

The high variability of the p-values along the monitoring period was highlighted
by applying the tests with an increasing number of elements. It reflects the uncertainty
related to the representativeness of the time series, which will be greater the shorter the
monitoring period. Outliers and incomplete cycles can be mistakenly understood as trends
or shifts (see rejection of homogeneity and stationarity in Figs. 14 and 15). Irregular and
low-frequency data, e.g., 59 measurements (59 days) in 13 years (≈ 4, 745 days), can take
a long time to provide a high level of confidence in the existence and continuity of the
variability patterns. This uncertainty will become even greater with the increase in outliers
quantity and magnitude.

Although trends and shifts can be detected mainly by the homogeneity and/or
stationarity tests, and cycles by the randomness and/or independence tests, the results
may differ between methods. For example, in Fig. 15 between N= 30 and N= 40, the OTS
p-values increased from ≈ 0.0 to 0.2 for homogeneity, and varied below 0.05 for stationarity.
These divergences exemplify the uncertainty related to the choice of appropriate methods.
Although some tests may be more sensitive to a certain type of variability pattern, e.g.,
the Mann-Kendall test for trends, they may also be affected by the other types (WALD;
WOLFOWITZ, 1943; DURRANS; TOMIC, 1996). This uncertainty may be reduced by
the joint application of different methods for the same purpose and by understanding
how the outliers can affect the results. The impact of outliers on statistical results can be
eliminated or reduced by applying non-parametric tests. However, these values can still
cause significant heterogeneity in variances (HELSEL; HIRSCH, 2002; SHESKIN, 2004).

Another type of uncertainty was introduced by the use of uncertain data. When the
variability pattern is “weak”, e.g., a smooth cyclic fluctuation, the p-value will fluctuate
near the rejection limit and the decision can be changed due to uncertainties. It can be
observed in Fig. 15. While the OTS p-values of independence varied between 0.0–0.05,
rejecting H0, those from STS in HL scenario (71–99%) reached more than 0.3 in the
uniform case and ≈ 0.1 in the normal and lognormal cases (not rejecting H0). Otherwise,
when there is only random variability or a well-defined pattern, the p-value will be far from
the rejection limit (close to 1.0 or 0.0) making measurement uncertainties and associated
subjectivity irrelevant to the decision. This becomes clear in the results of homogeneity
in Fig. 15. From N= 15 to N= 20, the OTS and STS p-values converged to 0.0 (“strong”
trend) and at N= 45 the OTS was ≈ 0.9 and STS ranged between 0.3 and 1.0 (random
variability). The uncertainty bands are irrelevant in these cases since they cannot change
the decision, especially in the lognormal cases.

The differences between the normal and lognormal cases are imperceptible but can
be expressive between these and the uniform case. For example, in the stationarity test
for loads (Fig. 15) the min–max ranges of the p-values at N= 54 were ≈ 0.08–0.6, 0.2–0.57
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and 0.22–0.55 for the uniform, normal and lognormal cases, respectively.

The consideration of diverse variables from diverse locations along the same river
reach can increase the confidence in existence and continuity of the observed patterns.
However, patterns can be an effect of irregular sampling frequencies. In this case study
the different sites were monitored in the same dates, with a few minutes or hours from
one to another. Hence, the similarities in their patterns may be coming from the similar
irregular sampling frequencies instead of real variability patterns in time.

4.2 Irregular and regular-frequency time series (photos and movies)

4.2.1 Regressions

In this analysis of photos and movies, daily concentrations were generated from
daily flows. First, synthetic daily flows time series were generated from an autoregressive
Markov model and then, the regression model (RM) was applied on the synthetic daily
flows to generate the concentrations. However, the original daily flows time series had
missing data that were estimated also from a RM.

RM for the missing Q

Fig. 16 shows the results of the regressions among the flows from stations IG3–IG8. Each
column present the results for one station as the response variable (vertical axis) and
the others as explanatory (horizontal axis). The longer the distance between the stations
in the river, the higher the standard error (stderr) of the regression and the lower the
R2. The stderr ranged from 8.22–83.32 m3/s. The higher stderr’s are related to the use
of upstream stations to estimate Q at IG8, where there are much higher flows. Most of
the stderr’s are between 10–30 m3/s (about 10–20% of the maximum flows). It must be
observed that the spread of the points around the curve is not homogeneous. Although
the stderr is a single value, in practice it can be observed that the error is higher for
higher flows. The estimated flows from the year 1931 to 2018 can be observed in Fig. 17.
Although the stderr’s (right vertical axis) are relatively high compared to the flows at each
station (left vertical axis), the estimated flows show an acceptable variability, since the
peaks and valleys are synchronized among stations and the magnitudes of estimated and
original flows are similar. Between 2005–2018 (period of the stochastic approach with the
autoregressive model), there are few estimated flows at IG5, IG6, IG7, and IG8, and about
half of the data at IG3 and IG4. The ranges of estimated flow and the stderr’s between
2005–2018 are respectively 0–200 m3/s and 15 m3/s at IG3, 0-300 m3/s and 8 m3/s at IG4,
100–150 m3/s and 12 m3/s at IG6, 0–300 m3/s and 18 m3/s at IG7, and 0–400 m3/s and 65
m3/s at IG8. The station IG5 does not have estimated flows from regression in this period.
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Figure 16 – Results from simple linear regression of each station to the others

RM for the concentrations

The polynomial RM for BOD concentrations is shown in Fig. 18. In all the stations
there are much more observations related to low flow conditions. Furthermore, the few
high flows with concentration data are not the highest flows of the daily time series of
flows. They are just the highest flow in which water was sampled for water quality analy-
sis. Hence, there will be higher uncertainty for the concentrations in the higher flows. Fig.
19 shows that the LN3 distribution is appropriate to represent the error of the RM. As a
check procedure the RM was used to estimate the original photos used in the regression.
Fig. 20 shows the original and estimated concentration photos. The spread of the results
is similar but high errors, as at station IG5 before 1989, can occur. The regression for
DO, NH4, and TP can be found in appendix B section B.2.

4.2.2 RHIS

The time series of Q, C, and W, the results for RHIS, and the percentile evolution
of photos and movies are shown in Fig. 21 for BOD at station IG5, and in appendix
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Figure 17 – Complete time series with estimated flows for stations IG3–IG8

B section B.3 for other variables and stations. The graphics in the 1st row show the
time series, in the rows 2–5 are the evolution of RHIS tests, and in the 6th row are the
percentile evolutions. No variability patterns can be visually identified in the photos and
movies (original and synthetic) of Q, C, and W. In part, because of the small figure size
for the daily time series (≈ 14 years × 365 days of data). Variability patterns are not
expected to be present in the synthetic movies, except the 1st order/lag autocorrelation,
since no consideration was made in the autoregressive modeling process, e.g., regarding
seasonality and/or trends. It is also valid for C and W since these synthetic movies were
generated by combination of a Markov model (Mar(1)) for Q, and a linear RM to estimate
C from Q. Stationarity and homogeneity are basic assumptions of these models.

Despite some fluctuations, the autocorrelation is indeed significant for most of the
complete time series of photos and movies of Q, C, and W from IG3 to IG8, as indicated
by the many null randomness, and especially independence p-values over the monitoring
periods. Exceptions can be observed, for example, in Figs. 257, 258, and 260 in appendix
B, section B.3. Randomness and/or independence were not rejected most of the times
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Figure 18 – Estimated flows and standard errors of regression models for stations IG3–IG8

for Q, C , and W, possibly due to fewer observations and larger gaps than in other time
series, or also due to a real more random nature of the variables TP and DO at stations
IG7 and IG8. The increase of randomness at more downstream stations can be justified
by the increase of the watershed area and the quantity and diversity of processes that
influence water quality. Indeed, it can be observed that there is higher randomness and
independence p-values at more downstream stations as IG7 and IG8, not only for TP or
DO, but also for BOD and NH4. At IG5, the randomness p-values are equal to 0.00 in
almost the entire period, except before 2006 and between 2011–2014 for the photos (p-
values ranging between 0.05–0.25). The greater randomness of the photos is expected due
to the larger gaps of time between measurements. Regarding autocorrelation, the photos
and movies of Q had similar behaviors, and this is also valid for stations IG3–IG8. The
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Figure 19 – Fitting of a 3 parameter-lognormal distribution to the errors of the regression
models for BOD at stations IG3–IG8

p-values of original and synthetic movies were 0.00 in all the times as a result of the daily
time scale and high 1st lag correlation coefficient of the Mar(1) model. The rejections in
the Q photos indicate that the flows from IG3 to IG8 have seasonal behavior or other
cyclic fluctuations with period higher than a day. However, the p-values from Q photos
are higher than for the Q movies (> 0.05 many times), showing that these higher-period
cyclic fluctuations are smoother than in the daily scale.

The results from the Q photos and movies regarding homogeneity and stationarity
varied differently over time. The photos are expected to behave similarly to the original
daily flows since they came from the movie. However, the results were different most of
time. For example, the homogeneity and stationarity p-values of Q original movie were
0.00 from 2010 to 2017 while for the photos varied between 0.00–1.0 and 0.2–1.0 for
homogeneity and stationarity respectively. It highlights the sensibility of these statistical
tests to the number of observations and the lack of representativity in the irregular-
frequency data regarding time series properties (RHIS). The original Q movie and the
photos (1st row/column in Fig.21) varied similarly over time, but many peaks are missing
in the photos. Clearly, there is considerable loss of information in the irregular-frequency
data, leading to false conclusions about the presence of trends and/or shifts. The Q photos
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Figure 20 – Original and estimated concentrations from the regression model for BOD at
stations IG3–IG8

associated to the other variables (NH4, TP, and DO) reinforce this findings working as
different samples from the same daily flows, since not all variables were monitored on
the same dates. In the appendix B section B.3, it can be observed, for example, in the
randomness test results in Figs. 249 and 255. Randomness started to be rejected around
2011 for the NH4-associated Q photos, and in 2009 for the TP-associated Q photos.

The results from the complete time series of BOD, NH4, TP, and DO-associated
Q photos at IG5 indicate that cyclic fluctuations are present (p-value ≈ 0.00 in random-
ness and independence tests), but not trends or shifts (p-value = 0.75 in homogeneity
and stationarity tests for BOD-associated Q and different values for the NH4, TP, and
DO-associated Q photos). From the complete original and synthetic Q movies, cyclic fluc-
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tuations (p-value = 0.00 in randomness and independence) were detected. In relation to
the synthetic Q movies is important to remember that a different synthetic Q movie was
generated for each variable. For example, there is a different Q movie in each one of the
Figs. 243, 249, 255, and 261. Hence, while the results from homogeneity and stationarity
tests in the original Q movies is unique (the same in the 4 figures from each station), each
station is related to 4 different synthetic Q movies. Interestingly, trends were detected
many times over the monitoring period in the synthetic Q movies of stations IG3–IG8.
The synthetic movies are expected to be stationary and homogeneous due to the first-
order Markov model assumptions. This realizations of the stochastic process represented
by the Markov model show that stationary/homogeneous time series that can take a long
time until reach a constant stationarity/homogeneous status. For the complete time se-
ries, trends and/or shifts were detected only in the original Q movie (p-value = 0.00 in
stationarity), also in the other stations.

The behavior of the RHIS tests from C and W is similar to the one from Q,
i.e., rejection of randomness and independence, and high variability of homogeneity and
stationarity. At station IG5 for BOD, the main difference is that the rejections started
later, especially for C (2014). On the photos, it reflects the more random nature of C
since each point is a direct measurement of the water quality. On the original C movie, it
reflects the autocorrelation of the original daily flows (inputs of the regression) and the
randomness introduced by the error of the regression model (RM). The autocorrelations of
the original flows were transfered to the original daily concentrations through the Mar(1)
model, but with less intensity due to the randomness introduced by the RM. This lagged
rejection of randomness and independence for C can be observed for all other stations
and variables. Regarding homogeneity and stationarity on C, it must be noticed that
rejections occurred many times for the synthetic movie, as for the flows, showing that
an even more random process, jointly represented by a first-order autoregressive model
and a RM, can be considered non-homogeneous and/or non-stationary. This is the case,
for example between 2009–2011 when the synthetic movie p-values of homogeneity and
stationarity were 0.00, indicating the presence of a trend and/or shift. The multiplication
of the synthetic Q movie by the synthetic C movie to produce the synthetic W movie
gave rise to a highly non-random, non-homogeneous, dependent, and non-stationary time
series in the case of BOD at IG5. The W synthetic movie p-values converged to 0.00 for
RHIS since 2006, with an exception for homogeneity between 2012–2014. This constant
convergence to 0.00 indicate “strong” variability patterns, according to the results of
previous analyses on water quality photos, in section 4.1. However, it seems more like
an exception than a rule since it cannot be observed at other stations and variables. It
indicates that this multiplication process of a synthetic Q movie by a synthetic C movie
may give rise to synthetic W movies with “strong” variability patterns. The original W
movie reflects the variability patterns of the original Q movie (cyclic fluctuations, trend
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and/or shifts), i.e., few p-value peaks (= 1.00) in the beginning and between 2008–2010,
and with p-values constantly equal to 0.00 since 2010 indicating a “strong” trend.

The next step in this discussion is about the divergences among photos and movies
in relation to the presence of different variability patterns, and how it justifies or not the
use of autoregressive and regression models to generate regular-frequency time series of
C and W. Can non-stationary and/or non-homogeneous time series be represented by
stationary/homogeneous stochastic processes, as the first-order Markov model or another
autoregressive model AR(p)? Or can the uncertainties and difficulties related to identifica-
tion and quantification of variability patterns, and “poor” Q x C RM make the generation
of continuous C and W time series unfeasible?

Despite the differences related to RHIS, the percentile evolution of the photos,
original, and synthetic movies of Q, C, and W remained the same, except for the 95th
percentile. For Q, the 5th percentile converged on ≈ 20 m3/s, the 50th on ≈ 50 m3/s,
and the 95th on ≈ 160 m3/s. However, the synthetic 95th percentile had influence of the
synthetic outliers generated by the Mar(1) model in the beginning of the period (see 1st
row/column in Fig. 21), and took the entire period (≈ 14 years) to converge to ≈ 160
m3/s. For C, the 5th, 50th, and 95th percentiles converged on ≈ 2, ≈ 10, and ≈ 30 mg/L,
respectively. Although, the 95th percentile of the photos of C is higher than the synthetic
95th percentile, the decreasing pattern indicates that it will also converge to ≈ 30. It
shows there may be a gain in terms of statistics through the use of regression techniques.
Possibly, the information about C in the RM, which is dependent on Q, reaches the “true”
95th percentile before the photos due to the much higher number of elements in the daily
scale (≈ 14×365). For W, the 5th, 50th, and 95th percentiles converged on ≈ 20, ≈ 30, and
≈ 200 ton/d, respectively.

The convergence of the percentiles can be observed for all stations and variables
including even the 95th percentile. An exception can be observed in Fig. 251 in appendix
B, section B.3. The 95th percentile of the original and synthetic W movies of NH4 con-
verged to 60 ton/d while the one from the photos to 20 ton/d. Some characteristics that
contributed to this divergence are fewer observations than other time series, only one NH4
W photo in the region of higher loads (> 100 ton/d). In general, it can be observed that
the 1st-order Markov model can generate time series with much higher flows than the
ones in the photos or original movie, which will combine with high concentrations gen-
erated by the RM yielding much higher loads than those from the W photos. The most
important information is that, even with considerable differences related the presence of
trends, cycles, and/or shifts, the photos and movies have the same descriptive statistics,
e.g., boxplots, mean, median, duration curves, with higher uncertainty for the higher
flows, concentration, and especially loads. One way to avoid the higher uncertainty in the
higher loads may be the conception of RM’s directly between Q and W. These synthetic
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time series should not be used for statistical inference purposes, e.g., trend analysis, since
their real variability properties (RHIS) are unknown.

4.2.3 Synthesis

An autoregressive model was used to generate synthetic daily flows from the orig-
inal time series of daily flows. A regression model (RM) was designed from photos of
Q and C to estimate daily C from original and synthetic daily Q, generating original
and synthetic daily C. Although not expected on the synthetic movies due to stationari-
ty/homogeneity assumptions of the stochastic processes (Markov and simple linear RM’s),
“strong” trends, cycles, and/or shifts were detected on these time series. The presence of
these patterns indicates that even stationary/homogeneous models can generate time se-
ries temporarily non-compliant with RHIS. It is clear that compliance/non-compliance
with RHIS is a temporary status.

Despite the differences among photos, in terms of variability properties, original
and synthetic movies of Q, C, and W, the results showed that, in a 13-year period, for
diverse stations and water quality variables, patterns were not sufficient to produce signif-
icant changes in terms of statistical results. The percentiles converged even in the presence
of “strong” trends and/or shifts, autocorrelation, and cyclic fluctuations, especially for Q
and W. However, these synthetic time series could not be used for statistical inferences
as trend analysis because their RHIS status does not represent the reality.

Possibly, if more sophisticated autoregressive and regression models were used,
the variability patterns of flows and concentrations could be better represented in the
synthetic time series. It could allow the use of statistical inferences. However, it was
shown that it would not influence the descriptive statistics observed in the photos.
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Figure 21 – Evolution of the RHIS p-values and percentiles of Q, C and W, BOD station IG5, photos and daily movies
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5 Conclusions

“Don’t make a plan of fighting. That’s a very good way to loose your teeth. If
you try to remember you will lose! Empty your mind. Be formless, shapeless,

like water. Put water into a cup, it becomes the cup. Put the water into a
teacup, it becomes the teacup. Water can flow or creep or drip or crash. Be

water, my friend.”
Bruce Lee

The uncertainty related to the representativeness of water resources time series is
the most important for the detection of patterns of variability. Confidence in the existence
and continuity of the observed (or not observed) patterns is affected by this type of
uncertainty. Its reduction can be achieved not only by the increase in sampling frequencies,
which would be costly but also by the analysis of external evidence, e.g., longer and/or
higher frequency time series in the watershed. The joint analysis of Q, C, and W can
improve the analysis of the variabilities since much of the variability of C may be controlled
by Q. Adequate interpretation of data variability and statistical results is essential to avoid
wrong decisions, based only on p-values. As an example, the rejection of RHIS in favor of
a “strong” trend (OTS and STS p-values = 0.0) in the homogeneity and stationarity tests
for W (Fig. 15) was caused by the presence of outliers (see Fig. 3).

The use of GUM uncertainty framework (JCGM/WG1, 2008a) and estimates of
uncertainties described in the literature (e.g., Harmel et al. (2006) and McMillan, Krueger
e Freer (2012)) seems to be reasonable in this context. The subjectivity associated to
uncertainty assessment, expression and propagation has little influence on decisions. The
different levels of measurement uncertainty (≈ 10–100%) and different pdf’s (uniform,
normal and lognormal) did not change the decisions about significance of trends, cycles
and/or shifts. The efforts to reduce uncertainties in the detection of variability patterns
should be directed towards the development of robust monitoring strategies and adequate
analysis/interpretation of data, instead of more precise measurements.

Fig. 22 summarizes these conclusions. Prior to significance tests, one should ques-
tion the confidence in the existence and continuity of the observed patterns of variability.
If it is low, the reasons and possible actions should be investigated. If it is high, appro-
priate methods should be applied to test for significance. If confidence in methods is low,
one should investigate the existence or need for development of more appropriate ones.
If it is high, the tests should be applied observing the temporal evolution of the results,
as they may also exhibit variability patterns. The closer to 0.0 or 1.0, the less important
are the measurement uncertainties and subjectivity. If the p-values are varying close to
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Figure 22 – Summary of conclusions

the rejection limit, the measurement uncertainties may be relevant to the decision. The
probabilities of rejecting or not the hypotheses can be evaluated by application of MCM.

In the light of the hypothesis formulated, the stochastic water quality/quantity
modeling from daily flows and irregular-frequency times series seems to be a reasonable
and reliable option since the main obstacles, caused by irregular frequency and short pe-
riods, can be overcome by using regression techniques without compromising statistical
characteristics. The stochastic approach used in this research for water quality/quantity
analysis, i.e., (1) use of a 1st order autoregressive model (Markov) for the generation
of synthetic daily flows; (2) estimation of daily concentrations with a regression model
(simple linear polynomial regression) established from irregular flows and concentrations
(≈ 200 observation in 13 years) and; (3) multiplication of the synthetic flows and concen-
trations to determination of daily loads, is the simplest of many possible ways to perform.
This approach is expected to introduce the highest errors to the generated daily time
series. More appropriate autoregressive and regression models are available in literature.
These errors, which are comparable to measurement uncertainties, had no impact on the
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BOD, NH4, TP, and DO statistics of stations IG3–IG8, except for the 95th percentiles,
and when there was a much smaller period available in the data. The use of more appro-
priate models would probably reduce this uncertainty in the higher values. It was also
demonstrated that the variability patterns of the daily flows will be transferred to the esti-
mated daily concentrations and loads since they can hardly be overcome by measurement
and/or regression model uncertainties.

The main reasons for concluding that stochastic water quality/quantity modeling
is a more reliable option than deterministic approaches for the planning of water resources
are:

• The precipitation, flows, and water quality conditions depend on many diverse fac-
tors that cannot be exactly predicted. Thus, it is a stochastic problem;

• Despite the typical poor relation between flows and concentrations (since concen-
trations depends on many factors beyond the flows), the large number of estimated
concentrations, due to the longer periods of the daily flows, makes the concentration
and load percentiles to converge to the “true values” (i.e., those from the original
photos);

• The identification/qualification/quantification of variability patterns (trends, cycles,
and/or shifts) from irregular-frequency and/or short period time series is a highly
uncertain task, with high risk of leading to errors. Thus, in these conditions the
consideration in both deterministic and stochastic modeling is not recommended;

• If variability patterns are present in the flows and are considered in the stochastic
modeling of the flows, they will reflect in the synthetic concentrations (as it should
be) despite the error introduced by the regression model;

• The deterministic modeling approaches although highly uncertain due to simplified
representations of physical, chemical, and biological systems, usually do not have an
established procedure for expressing these uncertainties. However, it could be done
in water quality studies through the use of synthetic time series.

5.1 Final reflections
It was demonstrated that the identification, qualification, and quantification of

variability patterns in typical water quality time series is a complex task. The short pe-
riods, irregular frequency, high variability, and outliers make it highly uncertain. The
traditional significance tests are sensitive to small changes in data variability. In Fig.
21, high fluctuations of the p-values, changing from 0.0 to 1.0 with the increase of few
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observations, could be observed. The consideration of trends, cycles and/or shifts in sta-
tistical/stochastic modeling practices for the planning of water resources requires careful
analysis of the time series in the watershed. The decision about significance should be
based on diverse factors beyond the p-value of a statistical test, e.g., visual impressions of
variability patterns, the presence in other time series in the watershed, expert judgment.
Water quality conditions cannot be evaluated by one parameter, but by a set of param-
eters typically included in water quality indexes. The parameters that represent organic
matter inputs, e.g., BOD, NH4, DOC, DO, TP and VDS are expected to present simi-
lar temporal and spatial variabilities since they are generally affect by the same factors.
The joint analysis of sets of water quality parameters can provide more reliable results
regarding the presence of variability patterns in the time series.

Assuming that the existence/presence of variability patterns can be diagnosed
with high confidence in the available time series, a high level of subjectivity/expert judg-
ment would still be needed due to representativeness issues. The actual context of climate
change and the uncertainty related to the use of present time series for the future has
been extensively discussed in literature (KOUTSOYIANNIS, 2006; MILLY et al., 2008;
MONTANARI; KOUTSOYIANNIS, 2014; BEVEN, 2016). The longer the planning pe-
riod, the less representative the time series may be. Depending on the level of confidence
in existence and continuity, ignoring patterns and working with the “raw” variability may
be the best practice.

The traditional methods for non-randomness (Runs test), non-homogeneities (Mann-
Whitney), non-independence (Wald & Wolfowitz), and non-stationarity (Mann-Kendall)
evaluation seem to be highly sensitive to patterns that in fact do not produce significant
changes in the statistics, and thus could be ignored. Despite the “strong” variability pat-
terns that were detected in continuous time series but not in the irregular, and vice-versa,
the percentiles of both time series converged to the same values. For example, in Fig. 21,
the stationarity p-value of the daily loads is constantly 0.00 from 2010 to 2018, while the
one from the irregular time series varied between 0.05–1.0 most of the time. Even with
considerable differences in variability, the 5th, 50th, and 90th percentiles converged to the
same values since around 2006, 2008, and 2010 respectively. It can also be observed in the
randomness and homogeneity results. Hence, it can be concluded that the application of
traditional tests for RHIS is not sufficient to decide when a variability pattern should be
considered in statistical/stochastic analysis. Although patterns may be “strong”, it may
take several years to make changes in statistical results.

The results from the present research demonstrated that a 13-years period is still
short, especially for the percentiles below the 95th which had greater convergence. It
means that for water resources planning periods shorter than around 20 years, the disre-
gard for variability patterns leads to small differences in statistical terms. This statements
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could fail due to a limitation of the assessment made exclusively by the p-values. The p-
value can only classify a pattern as statistically significant, but the intensity evaluation
is limited by the scale range (0.0–1.0), i.e., a high slope trend and a higher slope trend
may yield the same 0.0 p-values. However, the higher slope of a trend, sooner it will cause
significant changes in statistics.

The time series of this research represent the influence of typical processes of urban
areas in water quality. Possibly, higher seasonality and trends may be found in other
regions of the world, e.g., in developed countries where there is a higher financial support
for the implementation of water resources management actions and significant statistical
changes could occur in shorter periods. In the other hand, in typical urban watershed
from developing countries the changes are expected to occur in a slower time step, similar
to the Upper Iguassu Watershed. The Upper Iguassu Watershed is located in latitudes of
well marked seasonality. Therefore, these are the regions where statistical results should
be more influenced by seasonality. However, it could be observed, for example in Figs.
247, 245, that the randomness and independence results for the loads are different among
irregular and daily time series. The p-values are 0.00 for the daily BOD time series and
varied between 0.05–1.0 for the irregular BOD in almost the entire period, but small
differences can be observed in the percentiles.

The results indicate that in the current context of uncertainty concerns in water
resources management, the representativeness plays the most important role. The problem
of representativeness is not in the past, but in the future, since despite the difficulties in
detection of trends, cycles and/or shifts in typical water quality time series, these patterns
may probably take a very long time to cause significant changes in statistics. Although
it provides more confidence for the use of past-present statistics in the planning of wa-
ter resources, the current climate change context introduces unknown uncertainties that
demand adaptive management actions, as discussed by Groves (2006) and Warmink et
al. (2017). The measurement uncertainties associated to the traditional monitoring prac-
tices have little importance in the statistical context since they can introduce less impact
than trends, shifts, and/or cycles in the variability of time series. Much of the impact
will be “dissolved” with the increase of the number of measurements. The water quality
time series from traditional monitoring strategies with irregular data usually from sunny
working days/hours (8am–6pm), with no data from night time, stormy days, weekends,
holidays, and holiday seasons can be used for the planning without high uncertainties
related to variability patterns and measurements. However, the descriptive statistics will
have uncertainties related to temporal representativeness.

The impact of this research on recent and current studies related to uncertain-
ties, e.g., the DUE (REFSGAARD et al., 2005; BROWN; HEUVELINK, 2007) and the
DUET-H/WQ (HARMEL et al., 2006; HARMEL et al., 2009) software tool for mea-
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surement uncertainties estimation, is that the subjectivity of uncertainty assessment and
expression does not seem to cause significant impacts in the variability of water resources
time series. These studies represent a joint effort from the European nations to meet the
uncertainty-related requirements in the last version of Water Framework Directive. The
present findings allows that literature estimates can be used and expressed by probability
density functions defined by expert judgment. The fact is that when these measurement
uncertainties are put into a statistical context, they are rapidly merged with the time series
variability. In order to develop a code of practice for uncertainty analysis in datasets and
modeling outputs, as discussed in (REFSGAARD et al., 2005) and (PAPPENBERGER;
BEVEN, 2006), the results indicate that it should start by a qualitative uncertainty as-
sessment of the monitoring strategies and spacial/temporal representativeness of the time
series, followed by a quali-quantitative uncertainty assessment of the methods and models,
and finally, by the quali-quantitative measurement uncertainty assessment.

The conclusions and final reflections are limited by the assumptions of the pro-
posed method, which are: (i) uncorrelated uncertainties in space and time; (ii) symmetric
uncertainties; (iii) no differences related to the uncertainty in different regions of the mea-
surement scales; (iv) 2nd-order polynomial regression between flows and concentrations;
(v) representation of daily flows by 1st-order autoregressive Markov model and; (vi) disre-
gard for spacial correlations among flows, concentration and loads. As an example, more
realistic approaches could assign higher uncertainties to the extreme regions of the rating
curves, since the estimates of flows are more susceptible to errors, as discussed by Coz
(2012) and McMillan, Krueger e Freer (2012). An important limitation that may arise
when the stochastic approaches are used is the computational power. In these research
the water quali-quantitative stochastic analysis with daily times series was performed
through the generation of one synthetic time series for each water quality variable, at
each station. It was done due to the long time required for the application of RHIS tests
with increasing number of observations in the time series.

Future research is needed on spatial and temporal correlations, asymmetric uncer-
tainties, more appropriate autoregressive and regression models to reduce the uncertainty
of the higher percentiles, and more appropriate statistical tests (e.g., non-linear trend
detection). Also, on means of qualifying variability patterns additionally to the p-value-
based decisions since null-p-value patterns can take several years, possibly more than the
planning period, to produce significant changes in statistics.
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APPENDIX A – Data and results from pho-
tos

A.1 Time series and boxplots
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Figure 23 – Time series and boxplot evolution. Q, BOD concentrations and loads, station
IG3. Updated boxplots at each data, starting with 10 elements and ending with all data.
The boxes show the 25th, 50th and 75th percentiles, the whiskers are the minimum and
maximum non-outlier values and the crosses are the outlier values
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Figure 24 – Time series and boxplot evolution. Q, BOD concentrations and loads, station
IG4. Updated boxplots at each data, starting with 10 elements and ending with all data.
The boxes show the 25th, 50th and 75th percentiles, the whiskers are the minimum and
maximum non-outlier values and the crosses are the outlier values
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Figure 25 – Time series and boxplot evolution. Q, BOD concentrations and loads, station
IG5. Updated boxplots at each data, starting with 10 elements and ending with all data.
The boxes show the 25th, 50th and 75th percentiles, the whiskers are the minimum and
maximum non-outlier values and the crosses are the outlier values
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Figure 26 – Time series and boxplot evolution. Q, BOD concentrations and loads, station
IG6. Updated boxplots at each data, starting with 10 elements and ending with all data.
The boxes show the 25th, 50th and 75th percentiles, the whiskers are the minimum and
maximum non-outlier values and the crosses are the outlier values
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Figure 27 – Time series and boxplot evolution. Q, BOD concentrations and loads, station
IG7. Updated boxplots at each data, starting with 10 elements and ending with all data.
The boxes show the 25th, 50th and 75th percentiles, the whiskers are the minimum and
maximum non-outlier values and the crosses are the outlier values



APPENDIX A. Data and results from photos 127

DO - IG3

2007 2009 2011 2013 2015 2017
0

20

40

60

80

100

Q
 (m

³/s
)

10 15 20 25 30 35 40 45 50 55

2007 2009 2011 2013 2015 2017
0
1
2
3
4
5
6
7
8
9

D
O

 (m
g/

L)

10 15 20 25 30 35 40 45 50

2007 2009 2011 2013 2015 2017
year

0

10

20

30

40

50

60

D
O

 (t
on

/d
)

10 15 20 25 30 35 40 45 50
data quantity

Figure 28 – Time series and boxplot evolution. Q, DO concentrations and loads, station
IG3. Updated boxplots at each data, starting with 10 elements and ending with all data.
The boxes show the 25th, 50th and 75th percentiles, the whiskers are the minimum and
maximum non-outlier values and the crosses are the outlier values
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Figure 29 – Time series and boxplot evolution. Q, DO concentrations and loads, station
IG4. Updated boxplots at each data, starting with 10 elements and ending with all data.
The boxes show the 25th, 50th and 75th percentiles, the whiskers are the minimum and
maximum non-outlier values and the crosses are the outlier values
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Figure 30 – Time series and boxplot evolution. Q, DO concentrations and loads, station
IG5. Updated boxplots at each data, starting with 10 elements and ending with all data.
The boxes show the 25th, 50th and 75th percentiles, the whiskers are the minimum and
maximum non-outlier values and the crosses are the outlier values
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Figure 31 – Time series and boxplot evolution. Q, DO concentrations and loads, station
IG6. Updated boxplots at each data, starting with 10 elements and ending with all data.
The boxes show the 25th, 50th and 75th percentiles, the whiskers are the minimum and
maximum non-outlier values and the crosses are the outlier values
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Figure 32 – Time series and boxplot evolution. Q, DO concentrations and loads, station
IG7. Updated boxplots at each data, starting with 10 elements and ending with all data.
The boxes show the 25th, 50th and 75th percentiles, the whiskers are the minimum and
maximum non-outlier values and the crosses are the outlier values
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Figure 33 – Time series and boxplot evolution. Q, DOC concentrations and loads, station
IG3. Updated boxplots at each data, starting with 10 elements and ending with all data.
The boxes show the 25th, 50th and 75th percentiles, the whiskers are the minimum and
maximum non-outlier values and the crosses are the outlier values
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Figure 34 – Time series and boxplot evolution. Q, DOC concentrations and loads, station
IG4. Updated boxplots at each data, starting with 10 elements and ending with all data.
The boxes show the 25th, 50th and 75th percentiles, the whiskers are the minimum and
maximum non-outlier values and the crosses are the outlier values
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Figure 35 – Time series and boxplot evolution. Q, DOC concentrations and loads, station
IG5. Updated boxplots at each data, starting with 10 elements and ending with all data.
The boxes show the 25th, 50th and 75th percentiles, the whiskers are the minimum and
maximum non-outlier values and the crosses are the outlier values
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Figure 36 – Time series and boxplot evolution. Q, DOC concentrations and loads, station
IG6. Updated boxplots at each data, starting with 10 elements and ending with all data.
The boxes show the 25th, 50th and 75th percentiles, the whiskers are the minimum and
maximum non-outlier values and the crosses are the outlier values
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Figure 37 – Time series and boxplot evolution. Q, DOC concentrations and loads, station
IG7. Updated boxplots at each data, starting with 10 elements and ending with all data.
The boxes show the 25th, 50th and 75th percentiles, the whiskers are the minimum and
maximum non-outlier values and the crosses are the outlier values
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Figure 38 – Time series and boxplot evolution. Q, NH4 concentrations and loads, station
IG3. Updated boxplots at each data, starting with 10 elements and ending with all data.
The boxes show the 25th, 50th and 75th percentiles, the whiskers are the minimum and
maximum non-outlier values and the crosses are the outlier values
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Figure 39 – Time series and boxplot evolution. Q, NH4 concentrations and loads, station
IG4. Updated boxplots at each data, starting with 10 elements and ending with all data.
The boxes show the 25th, 50th and 75th percentiles, the whiskers are the minimum and
maximum non-outlier values and the crosses are the outlier values
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Figure 40 – Time series and boxplot evolution. Q, NH4 concentrations and loads, station
IG5. Updated boxplots at each data, starting with 10 elements and ending with all data.
The boxes show the 25th, 50th and 75th percentiles, the whiskers are the minimum and
maximum non-outlier values and the crosses are the outlier values
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Figure 41 – Time series and boxplot evolution. Q, NH4 concentrations and loads, station
IG6. Updated boxplots at each data, starting with 10 elements and ending with all data.
The boxes show the 25th, 50th and 75th percentiles, the whiskers are the minimum and
maximum non-outlier values and the crosses are the outlier values
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Figure 42 – Time series and boxplot evolution. Q, NH4 concentrations and loads, station
IG7. Updated boxplots at each data, starting with 10 elements and ending with all data.
The boxes show the 25th, 50th and 75th percentiles, the whiskers are the minimum and
maximum non-outlier values and the crosses are the outlier values
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Figure 43 – Time series and boxplot evolution. Q, TP concentrations and loads, station
IG3. Updated boxplots at each data, starting with 10 elements and ending with all data.
The boxes show the 25th, 50th and 75th percentiles, the whiskers are the minimum and
maximum non-outlier values and the crosses are the outlier values
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Figure 44 – Time series and boxplot evolution. Q, TP concentrations and loads, station
IG4. Updated boxplots at each data, starting with 10 elements and ending with all data.
The boxes show the 25th, 50th and 75th percentiles, the whiskers are the minimum and
maximum non-outlier values and the crosses are the outlier values
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Figure 45 – Time series and boxplot evolution. Q, TP concentrations and loads, station
IG5. Updated boxplots at each data, starting with 10 elements and ending with all data.
The boxes show the 25th, 50th and 75th percentiles, the whiskers are the minimum and
maximum non-outlier values and the crosses are the outlier values
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Figure 46 – Time series and boxplot evolution. Q, TP concentrations and loads, station
IG6. Updated boxplots at each data, starting with 10 elements and ending with all data.
The boxes show the 25th, 50th and 75th percentiles, the whiskers are the minimum and
maximum non-outlier values and the crosses are the outlier values
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Figure 47 – Time series and boxplot evolution. Q, TP concentrations and loads, station
IG7. Updated boxplots at each data, starting with 10 elements and ending with all data.
The boxes show the 25th, 50th and 75th percentiles, the whiskers are the minimum and
maximum non-outlier values and the crosses are the outlier values
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Figure 48 – Time series and boxplot evolution. Q, VDS concentrations and loads, station
IG3. Updated boxplots at each data, starting with 10 elements and ending with all data.
The boxes show the 25th, 50th and 75th percentiles, the whiskers are the minimum and
maximum non-outlier values and the crosses are the outlier values
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Figure 49 – Time series and boxplot evolution. Q, VDS concentrations and loads, station
IG4. Updated boxplots at each data, starting with 10 elements and ending with all data.
The boxes show the 25th, 50th and 75th percentiles, the whiskers are the minimum and
maximum non-outlier values and the crosses are the outlier values
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Figure 50 – Time series and boxplot evolution. Q, VDS concentrations and loads, station
IG5. Updated boxplots at each data, starting with 10 elements and ending with all data.
The boxes show the 25th, 50th and 75th percentiles, the whiskers are the minimum and
maximum non-outlier values and the crosses are the outlier values
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Figure 51 – Time series and boxplot evolution. Q, VDS concentrations and loads, station
IG6. Updated boxplots at each data, starting with 10 elements and ending with all data.
The boxes show the 25th, 50th and 75th percentiles, the whiskers are the minimum and
maximum non-outlier values and the crosses are the outlier values
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Figure 52 – Time series and boxplot evolution. Q, VDS concentrations and loads, station
IG7. Updated boxplots at each data, starting with 10 elements and ending with all data.
The boxes show the 25th, 50th and 75th percentiles, the whiskers are the minimum and
maximum non-outlier values and the crosses are the outlier values
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Figure 53 – LL, ML and HL uncertainty scenarios for Q time series, station IG3
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Figure 54 – LL, ML and HL uncertainty scenarios for Q time series, station IG4



APPENDIX A. Data and results from photos 154

Q - IG5

0

50

100

150

200

250

m
³/

s

LL scenario (10-30%)

median

25th and 75th percentile

0

50

100

150

200

250

300

m
³/

s

ML scenario (30-50%)

2007 2009 2011 2013 2015 2017

year

0

50

100

150

200

250

300

m
³/

s

HL scenario (50-70%)

Figure 55 – LL, ML and HL uncertainty scenarios for Q time series, station IG5
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Figure 56 – LL, ML and HL uncertainty scenarios for Q time series, station IG6
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Figure 57 – LL, ML and HL uncertainty scenarios for Q time series, station IG7
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Figure 58 – LL, ML and HL uncertainty scenarios for BOD concentration time series,
station IG3
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Figure 59 – LL, ML and HL uncertainty scenarios for BOD concentration time series from
IG4
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Figure 60 – LL, ML and HL uncertainty scenarios for BOD concentration time series,
station IG5
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Figure 61 – LL, ML and HL uncertainty scenarios for BOD concentration time series,
station IG6
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Figure 62 – LL, ML and HL uncertainty scenarios for BOD concentration time series,
station IG7
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Figure 63 – LL, ML and HL uncertainty scenarios for DO concentration time series,
station IG3
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Figure 64 – LL, ML and HL uncertainty scenarios for DO concentration time series from
IG4
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Figure 65 – LL, ML and HL uncertainty scenarios for DO concentration time series,
station IG5
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Figure 66 – LL, ML and HL uncertainty scenarios for DO concentration time series,
station IG6
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Figure 67 – LL, ML and HL uncertainty scenarios for DO concentration time series,
station IG7
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Figure 68 – LL, ML and HL uncertainty scenarios for DOC concentration time series,
station IG3
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Figure 69 – LL, ML and HL uncertainty scenarios for DOC concentration time series from
IG4
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Figure 70 – LL, ML and HL uncertainty scenarios for DOC concentration time series,
station IG5
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Figure 71 – LL, ML and HL uncertainty scenarios for DOC concentration time series,
station IG6
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Figure 72 – LL, ML and HL uncertainty scenarios for DOC concentration time series,
station IG7
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Figure 73 – LL, ML and HL uncertainty scenarios for NH4 concentration time series,
station IG3
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Figure 74 – LL, ML and HL uncertainty scenarios for NH4 concentration time series from
IG4
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Figure 75 – LL, ML and HL uncertainty scenarios for NH4 concentration time series,
station IG5
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Figure 76 – LL, ML and HL uncertainty scenarios for NH4 concentration time series,
station IG6
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Figure 77 – LL, ML and HL uncertainty scenarios for NH4 concentration time series,
station IG7
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Figure 78 – LL, ML and HL uncertainty scenarios for TP concentration time series, station
IG3
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Figure 79 – LL, ML and HL uncertainty scenarios for TP concentration time series from
IG4
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Figure 80 – LL, ML and HL uncertainty scenarios for TP concentration time series, station
IG5
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Figure 81 – LL, ML and HL uncertainty scenarios for TP concentration time series, station
IG6
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Figure 82 – LL, ML and HL uncertainty scenarios for TP concentration time series, station
IG7
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Figure 83 – LL, ML and HL uncertainty scenarios for VDS concentration time series,
station IG3
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Figure 84 – LL, ML and HL uncertainty scenarios for VDS concentration time series from
IG4
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Figure 85 – LL, ML and HL uncertainty scenarios for VDS concentration time series,
station IG5
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Figure 86 – LL, ML and HL uncertainty scenarios for VDS concentration time series,
station IG6
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Figure 87 – LL, ML and HL uncertainty scenarios for VDS concentration time series,
station IG7
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Figure 88 – LL, ML and HL uncertainty scenarios for BOD load time series, station IG3
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Figure 89 – LL, ML and HL uncertainty scenarios for BOD load time series from IG4
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Figure 90 – LL, ML and HL uncertainty scenarios for BOD load time series, station IG5
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Figure 91 – LL, ML and HL uncertainty scenarios for BOD load time series, station IG6
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Figure 92 – LL, ML and HL uncertainty scenarios for BOD load time series, station IG7
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Figure 93 – LL, ML and HL uncertainty scenarios for DO load time series, station IG3
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Figure 94 – LL, ML and HL uncertainty scenarios for DO load time series from IG4



APPENDIX A. Data and results from photos 194

DO - IG5

0

20

40

60

80

100

120

140

160

to
n
/d

LL scenario (14 - 42%)

median

25th and 75th percentile

0

20

40

60

80

100

120

140

160

180

to
n
/d

ML scenario (42 - 70%)

2007 2009 2011 2013 2015 2017

year

0

50

100

150

200

250

to
n
/d

HL scenario (70 - 98%)

Figure 95 – LL, ML and HL uncertainty scenarios for DO load time series, station IG5
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Figure 96 – LL, ML and HL uncertainty scenarios for DO load time series, station IG6
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Figure 97 – LL, ML and HL uncertainty scenarios for DO load time series, station IG7
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Figure 98 – LL, ML and HL uncertainty scenarios for DOC load time series, station IG3
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Figure 99 – LL, ML and HL uncertainty scenarios for DOC load time series from IG4
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Figure 100 – LL, ML and HL uncertainty scenarios for DOC load time series, station IG5
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Figure 101 – LL, ML and HL uncertainty scenarios for DOC load time series, station IG6
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Figure 102 – LL, ML and HL uncertainty scenarios for DOC load time series, station IG7
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Figure 103 – LL, ML and HL uncertainty scenarios for NH4 load time series, station IG3
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Figure 104 – LL, ML and HL uncertainty scenarios for NH4 load time series from IG4



APPENDIX A. Data and results from photos 204

NH4 - IG5

0

50

100

150

200

250

300

350

400

to
n
/d

LL scenario (14 - 42%)

median

25th and 75th percentile

0

50

100

150

200

250

300

350

400

450

to
n
/d

ML scenario (42 - 70%)

2007 2009 2011 2013 2015 2017

year

0

100

200

300

400

500

600

to
n
/d

HL scenario (70 - 98%)

Figure 105 – LL, ML and HL uncertainty scenarios for NH4 load time series, station IG5
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Figure 106 – LL, ML and HL uncertainty scenarios for NH4 load time series, station IG6
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Figure 107 – LL, ML and HL uncertainty scenarios for NH4 load time series, station IG7
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Figure 108 – LL, ML and HL uncertainty scenarios for TP load time series, station IG3
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Figure 109 – LL, ML and HL uncertainty scenarios for TP load time series from IG4
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Figure 110 – LL, ML and HL uncertainty scenarios for TP load time series, station IG5
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Figure 111 – LL, ML and HL uncertainty scenarios for TP load time series, station IG6
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Figure 112 – LL, ML and HL uncertainty scenarios for TP load time series, station IG7
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Figure 113 – LL, ML and HL uncertainty scenarios for VDS load time series, station IG3
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Figure 114 – LL, ML and HL uncertainty scenarios for VDS load time series from IG4
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Figure 115 – LL, ML and HL uncertainty scenarios for VDS load time series, station IG5
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Figure 116 – LL, ML and HL uncertainty scenarios for VDS load time series, station IG6
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Figure 117 – LL, ML and HL uncertainty scenarios for VDS load time series, station IG7
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A.5 Histograms of synthetic values (m3/s)
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station IG3–IG7



APPENDIX A. Data and results from photos 218

A.6 Histograms of synthetic values (mg/L)
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Figure 119 – Histograms of synthetic BOD concentrations from one original measurement
randomly chosen, station IG3–IG7
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A.7 Histograms of synthetic values (ton/d)

BOD

0 50 100 150 200 250 300
0

50

100

150

200

250

300

fr
e
q
u
e
n
cy

 (
IG

3
 -

 B
O

D
)

IG3IG3IG3

uniform

u(x) = 12%
u(x) = 44%
u(x) = 62%

0 50 100 150 200 250 300

BOD
normal

0 50 100 150 200 250 300 350

lognormal

0 50 100 150 200 250 300 350 400 450
0

50

100

150

200

250

300

fr
e
q
u
e
n
cy

 (
IG

4
 -

 B
O

D
)

IG4IG4IG4

uniform

u(x) = 27%
u(x) = 31%
u(x) = 56%

0 100 200 300 400 500

normal

0 100 200 300 400 500 600

lognormal

100 200 300 400 500 600 700 800 900
0

50

100

150

200

250

300

fr
e
q
u
e
n
cy

 (
IG

5
 -

 B
O

D
)

IG5IG5IG5

uniform

u(x) = 21%
u(x) = 42%
u(x) = 56%

0 100 200 300 400 500 600 700 800 900

normal

100 200 300 400 500 600 700 800 9001000

lognormal

0 200 400 600 800 1000 1200 1400
0

50

100

150

200

250

300

350

fr
e
q
u
e
n
cy

 (
IG

6
 -

 B
O

D
)

IG6IG6IG6

uniform

u(x) = 19%
u(x) = 48%
u(x) = 69%

0 200 400 600 800 1000 1200 1400

normal

200 400 600 800 1000 1200 1400 1600

lognormal

0 200 400 600 80010001200140016001800

ton/d

0

50

100

150

200

250

300

fr
e
q
u
e
n
cy

 (
IG

7
 -

 B
O

D
)

IG7IG7IG7

uniform

u(x) = 20%
u(x) = 30%
u(x) = 68%

0 200 400 600 80010001200140016001800

ton/d

normal

200 400 600 800100012001400160018002000

ton/d

lognormal

Figure 125 – Histograms of synthetic BOD loads from one original measurement randomly
chosen, station IG3–IG7
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Figure 126 – Histograms of synthetic DO loads from one original measurement randomly
chosen, station IG3–IG7
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Figure 127 – Histograms of synthetic DOC loads from one original measurement randomly
chosen, station IG3–IG7
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Figure 128 – Histograms of synthetic NH4 loads from one original measurement randomly
chosen, station IG3–IG7
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Figure 129 – Histograms of synthetic TP loads from one original measurement randomly
chosen, station IG3–IG7
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Figure 130 – Histograms of synthetic VDS loads from one original measurement randomly
chosen, station IG3–IG7
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Figure 131 – Evolution of RHIS p-values from Q time series from IG3. Red line = p-
value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and HL
scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL, ML and
HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if p-value
< 0.05
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Figure 132 – Evolution of RHIS p-values fromQ time series from IG4. Red line = p-
value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and HL
scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL, ML and
HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if p-value
< 0.05
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Figure 133 – Evolution of RHIS p-values from Q time series from IG5. Red line = p-
value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and HL
scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL, ML and
HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if p-value
< 0.05
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Figure 134 – Evolution of RHIS p-values from Q time series from IG6. Red line = p-
value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and HL
scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL, ML and
HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if p-value
< 0.05
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Figure 135 – Evolution of RHIS p-values from Q time series from IG7. Red line = p-
value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and HL
scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL, ML and
HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if p-value
< 0.05
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Figure 136 – Evolution of RHIS p-values from BOD concentration time series from IG3.
Red line = p-value from OTS. Blue, green, gray lines = average p-value from STS in LL,
ML and HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in
LL, ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject
H0 if p-value < 0.05
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Figure 137 – Evolution of RHIS p-values from BOD concentration time series from IG4.
Red line = p-value from OTS. Blue, green, gray lines = average p-value from STS in LL,
ML and HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in
LL, ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject
H0 if p-value < 0.05
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Figure 138 – Evolution of RHIS p-values from BOD concentration time series from IG5.
Red line = p-value from OTS. Blue, green, gray lines = average p-value from STS in LL,
ML and HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in
LL, ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject
H0 if p-value < 0.05
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Figure 139 – Evolution of RHIS p-values from BOD concentration time series from IG6.
Red line = p-value from OTS. Blue, green, gray lines = average p-value from STS in LL,
ML and HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in
LL, ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject
H0 if p-value < 0.05
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Figure 140 – Evolution of RHIS p-values from BOD concentration time series from IG7.
Red line = p-value from OTS. Blue, green, gray lines = average p-value from STS in LL,
ML and HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in
LL, ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject
H0 if p-value < 0.05
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Figure 141 – Evolution of RHIS p-values from DO concentration time series from IG3.
Red line = p-value from OTS. Blue, green, gray lines = average p-value from STS in LL,
ML and HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in
LL, ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject
H0 if p-value < 0.05
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Figure 142 – Evolution of RHIS p-values from DO concentration time series from IG4.
Red line = p-value from OTS. Blue, green, gray lines = average p-value from STS in LL,
ML and HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in
LL, ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject
H0 if p-value < 0.05



APPENDIX A. Data and results from photos 242

DO - IG5

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

p
-v

a
lu

e
 r

a
n
d
o
m

n
e
ss

Uniform Normal Lognormal

0.0

0.2

0.4

0.6

0.8

1.0

1.2

p
-v

a
lu

e
 h

o
m

o
g
e
n
e
it

y LL µ
ML µ
HL µ
original
LL σ
ML σ
HL σ

0.2

0.0

0.2

0.4

0.6

0.8

1.0

p
-v

a
lu

e
 i
n
d
e
p
e
n
d
e
n
ce

10 15 20 25 30 35 40 45 50

data quantity

0.0

0.2

0.4

0.6

0.8

1.0

p
-v

a
lu

e
 s

ta
ti

o
n
a
ri

ty

10 15 20 25 30 35 40 45 50

data quantity
10 15 20 25 30 35 40 45 50

data quantity

Figure 143 – Evolution of RHIS p-values from DO concentration time series from IG5.
Red line = p-value from OTS. Blue, green, gray lines = average p-value from STS in LL,
ML and HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in
LL, ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject
H0 if p-value < 0.05
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Figure 144 – Evolution of RHIS p-values from DO concentration time series from IG6.
Red line = p-value from OTS. Blue, green, gray lines = average p-value from STS in LL,
ML and HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in
LL, ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject
H0 if p-value < 0.05
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Figure 145 – Evolution of RHIS p-values from DO concentration time series from IG7.
Red line = p-value from OTS. Blue, green, gray lines = average p-value from STS in LL,
ML and HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in
LL, ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject
H0 if p-value < 0.05
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Figure 146 – Evolution of RHIS p-values from DOC concentration time series from IG3.
Red line = p-value from OTS. Blue, green, gray lines = average p-value from STS in LL,
ML and HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in
LL, ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject
H0 if p-value < 0.05
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Figure 147 – Evolution of RHIS p-values from DOC concentration time series from IG4.
Red line = p-value from OTS. Blue, green, gray lines = average p-value from STS in LL,
ML and HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in
LL, ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject
H0 if p-value < 0.05
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Figure 148 – Evolution of RHIS p-values from DOC concentration time series from IG5.
Red line = p-value from OTS. Blue, green, gray lines = average p-value from STS in LL,
ML and HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in
LL, ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject
H0 if p-value < 0.05
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Figure 149 – Evolution of RHIS p-values from DOC concentration time series from IG6.
Red line = p-value from OTS. Blue, green, gray lines = average p-value from STS in LL,
ML and HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in
LL, ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject
H0 if p-value < 0.05
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Figure 150 – Evolution of RHIS p-values from DOC concentration time series from IG7.
Red line = p-value from OTS. Blue, green, gray lines = average p-value from STS in LL,
ML and HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in
LL, ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject
H0 if p-value < 0.05
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Figure 151 – Evolution of RHIS p-values from NH4 concentration time series from IG3.
Red line = p-value from OTS. Blue, green, gray lines = average p-value from STS in LL,
ML and HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in
LL, ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject
H0 if p-value < 0.05
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Figure 152 – Evolution of RHIS p-values from NH4 concentration time series from IG4.
Red line = p-value from OTS. Blue, green, gray lines = average p-value from STS in LL,
ML and HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in
LL, ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject
H0 if p-value < 0.05
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Figure 153 – Evolution of RHIS p-values from NH4 concentration time series from IG5.
Red line = p-value from OTS. Blue, green, gray lines = average p-value from STS in LL,
ML and HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in
LL, ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject
H0 if p-value < 0.05
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Figure 154 – Evolution of RHIS p-values from NH4 concentration time series from IG6.
Red line = p-value from OTS. Blue, green, gray lines = average p-value from STS in LL,
ML and HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in
LL, ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject
H0 if p-value < 0.05
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Figure 155 – Evolution of RHIS p-values from NH4 concentration time series from IG7.
Red line = p-value from OTS. Blue, green, gray lines = average p-value from STS in LL,
ML and HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in
LL, ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject
H0 if p-value < 0.05
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Figure 156 – Evolution of RHIS p-values from TP concentration time series from IG3.
Red line = p-value from OTS. Blue, green, gray lines = average p-value from STS in LL,
ML and HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in
LL, ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject
H0 if p-value < 0.05
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Figure 157 – Evolution of RHIS p-values from TP concentration time series from IG4.
Red line = p-value from OTS. Blue, green, gray lines = average p-value from STS in LL,
ML and HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in
LL, ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject
H0 if p-value < 0.05
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Figure 158 – Evolution of RHIS p-values from TP concentration time series from IG5.
Red line = p-value from OTS. Blue, green, gray lines = average p-value from STS in LL,
ML and HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in
LL, ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject
H0 if p-value < 0.05
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Figure 159 – Evolution of RHIS p-values from TP concentration time series from IG6.
Red line = p-value from OTS. Blue, green, gray lines = average p-value from STS in LL,
ML and HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in
LL, ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject
H0 if p-value < 0.05
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Figure 160 – Evolution of RHIS p-values from TP concentration time series from IG7.
Red line = p-value from OTS. Blue, green, gray lines = average p-value from STS in LL,
ML and HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in
LL, ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject
H0 if p-value < 0.05
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Figure 161 – Evolution of RHIS p-values from VDS concentration time series from IG3.
Red line = p-value from OTS. Blue, green, gray lines = average p-value from STS in LL,
ML and HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in
LL, ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject
H0 if p-value < 0.05
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Figure 162 – Evolution of RHIS p-values from VDS concentration time series from IG4.
Red line = p-value from OTS. Blue, green, gray lines = average p-value from STS in LL,
ML and HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in
LL, ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject
H0 if p-value < 0.05
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Figure 163 – Evolution of RHIS p-values from VDS concentration time series from IG5.
Red line = p-value from OTS. Blue, green, gray lines = average p-value from STS in LL,
ML and HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in
LL, ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject
H0 if p-value < 0.05
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Figure 164 – Evolution of RHIS p-values from VDS concentration time series from IG6.
Red line = p-value from OTS. Blue, green, gray lines = average p-value from STS in LL,
ML and HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in
LL, ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject
H0 if p-value < 0.05
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Figure 165 – Evolution of RHIS p-values from VDS concentration time series from IG7.
Red line = p-value from OTS. Blue, green, gray lines = average p-value from STS in LL,
ML and HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in
LL, ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject
H0 if p-value < 0.05
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Figure 166 – Evolution of RHIS p-values from BOD loads time series from IG3. Red line
= p-value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and
HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL,
ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if
p-value < 0.05
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Figure 167 – Evolution of RHIS p-values from BOD loads time series from IG4. Red line
= p-value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and
HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL,
ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if
p-value < 0.05
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Figure 168 – Evolution of RHIS p-values from BOD loads time series from IG5. Red line
= p-value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and
HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL,
ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if
p-value < 0.05
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Figure 169 – Evolution of RHIS p-values from BOD loads time series from IG6. Red line
= p-value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and
HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL,
ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if
p-value < 0.05
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Figure 170 – Evolution of RHIS p-values from BOD loads time series from IG7. Red line
= p-value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and
HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL,
ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if
p-value < 0.05
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Figure 171 – Evolution of RHIS p-values from DO loads time series from IG3. Red line
= p-value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and
HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL,
ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if
p-value < 0.05
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Figure 172 – Evolution of RHIS p-values from DO loads time series from IG4. Red line
= p-value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and
HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL,
ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if
p-value < 0.05
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Figure 173 – Evolution of RHIS p-values from DO loads time series from IG5. Red line
= p-value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and
HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL,
ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if
p-value < 0.05
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Figure 174 – Evolution of RHIS p-values from DO loads time series from IG6. Red line
= p-value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and
HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL,
ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if
p-value < 0.05
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Figure 175 – Evolution of RHIS p-values from DO loads time series from IG7. Red line
= p-value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and
HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL,
ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if
p-value < 0.05
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Figure 176 – Evolution of RHIS p-values from DOC loads time series from IG3. Red line
= p-value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and
HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL,
ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if
p-value < 0.05
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Figure 177 – Evolution of RHIS p-values from DOC loads time series from IG4. Red line
= p-value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and
HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL,
ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if
p-value < 0.05
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Figure 178 – Evolution of RHIS p-values from DOC loads time series from IG5. Red line
= p-value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and
HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL,
ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if
p-value < 0.05
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Figure 179 – Evolution of RHIS p-values from DOC loads time series from IG6. Red line
= p-value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and
HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL,
ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if
p-value < 0.05
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Figure 180 – Evolution of RHIS p-values from DOC loads time series from IG7. Red line
= p-value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and
HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL,
ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if
p-value < 0.05
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Figure 181 – Evolution of RHIS p-values from NH4 loads time series from IG3. Red line
= p-value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and
HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL,
ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if
p-value < 0.05
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Figure 182 – Evolution of RHIS p-values from NH4 loads time series from IG4. Red line
= p-value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and
HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL,
ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if
p-value < 0.05
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Figure 183 – Evolution of RHIS p-values from NH4 loads time series from IG5. Red line
= p-value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and
HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL,
ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if
p-value < 0.05
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Figure 184 – Evolution of RHIS p-values from NH4 loads time series from IG6. Red line
= p-value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and
HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL,
ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if
p-value < 0.05
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Figure 185 – Evolution of RHIS p-values from NH4 loads time series from IG7. Red line
= p-value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and
HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL,
ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if
p-value < 0.05
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Figure 186 – Evolution of RHIS p-values from TP loads time series from IG3. Red line
= p-value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and
HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL,
ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if
p-value < 0.05
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Figure 187 – Evolution of RHIS p-values from TP loads time series from IG4. Red line
= p-value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and
HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL,
ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if
p-value < 0.05
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Figure 188 – Evolution of RHIS p-values from TP loads time series from IG5. Red line
= p-value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and
HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL,
ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if
p-value < 0.05
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Figure 189 – Evolution of RHIS p-values from TP loads time series from IG6. Red line
= p-value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and
HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL,
ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if
p-value < 0.05
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Figure 190 – Evolution of RHIS p-values from TP loads time series from IG7. Red line
= p-value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and
HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL,
ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if
p-value < 0.05
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Figure 191 – Evolution of RHIS p-values from VDS loads time series from IG3. Red line
= p-value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and
HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL,
ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if
p-value < 0.05
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Figure 192 – Evolution of RHIS p-values from VDS loads time series from IG4. Red line
= p-value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and
HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL,
ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if
p-value < 0.05
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Figure 193 – Evolution of RHIS p-values from VDS loads time series from IG5. Red line
= p-value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and
HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL,
ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if
p-value < 0.05
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Figure 194 – Evolution of RHIS p-values from VDS loads time series from IG6. Red line
= p-value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and
HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL,
ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if
p-value < 0.05
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Figure 195 – Evolution of RHIS p-values from VDS loads time series from IG7. Red line
= p-value from OTS. Blue, green, gray lines = average p-value from STS in LL, ML and
HL scenarios, respectively. Blue, green, gray bands = std of p-values from STS in LL,
ML and HL scenarios, respectively. Black line = significance level (𝛼 = 0.05). Reject H0 if
p-value < 0.05
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Figure 196 – Time series and boxplot evolution. Q, BOD concentrations and loads, station
IG3. Updated boxplots at each data, starting with 10 elements and ending with all data.
The min. max. non-outlier range is the range defined by the minimum and maximum
non-outlier values. The outlier values are represented by black crosses.



APPENDIX B. Data and results from photos and movies 296

BOD - IG4

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
0

20

40

60

80

100

120

140

160

Q
 (m

³/s
)

10 30 50

median

min. max. non-outlier range

interquartile range

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
0

10

20

30

40

50

60

70

BO
D

 (m
g/

L)

10 30 50

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
year

0

100

200

300

400

500

600

BO
D

 (t
on

/d
)

10 30 50
data quantity

Figure 197 – Time series and boxplot evolution. Q, BOD concentrations and loads, station
IG4. Updated boxplots at each data, starting with 10 elements and ending with all data.
The min. max. non-outlier range is the range defined by the minimum and maximum
non-outlier values. The outlier values are represented by black crosses.
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Figure 198 – Time series and boxplot evolution. Q, BOD concentrations and loads, station
IG5. Updated boxplots at each data, starting with 10 elements and ending with all data.
The min. max. non-outlier range is the range defined by the minimum and maximum
non-outlier values. The outlier values are represented by black crosses.
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Figure 199 – Time series and boxplot evolution. Q, BOD concentrations and loads, station
IG6. Updated boxplots at each data, starting with 10 elements and ending with all data.
The min. max. non-outlier range is the range defined by the minimum and maximum
non-outlier values. The outlier values are represented by black crosses.
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Figure 200 – Time series and boxplot evolution. Q, BOD concentrations and loads, station
IG7. Updated boxplots at each data, starting with 10 elements and ending with all data.
The min. max. non-outlier range is the range defined by the minimum and maximum
non-outlier values. The outlier values are represented by black crosses.
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Figure 201 – Time series and boxplot evolution. Q, BOD concentrations and loads, station
IG8. Updated boxplots at each data, starting with 10 elements and ending with all data.
The min. max. non-outlier range is the range defined by the minimum and maximum
non-outlier values. The outlier values are represented by black crosses.
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Figure 202 – Time series and boxplot evolution. Q, NH4 concentrations and loads, station
IG3. Updated boxplots at each data, starting with 10 elements and ending with all data.
The min. max. non-outlier range is the range defined by the minimum and maximum
non-outlier values. The outlier values are represented by black crosses.
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Figure 203 – Time series and boxplot evolution. Q, NH4 concentrations and loads, station
IG4. Updated boxplots at each data, starting with 10 elements and ending with all data.
The min. max. non-outlier range is the range defined by the minimum and maximum
non-outlier values. The outlier values are represented by black crosses.
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Figure 204 – Time series and boxplot evolution. Q, NH4 concentrations and loads, station
IG5. Updated boxplots at each data, starting with 10 elements and ending with all data.
The min. max. non-outlier range is the range defined by the minimum and maximum
non-outlier values. The outlier values are represented by black crosses.
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Figure 205 – Time series and boxplot evolution. Q, NH4 concentrations and loads, station
IG6. Updated boxplots at each data, starting with 10 elements and ending with all data.
The min. max. non-outlier range is the range defined by the minimum and maximum
non-outlier values. The outlier values are represented by black crosses.
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Figure 206 – Time series and boxplot evolution. Q, NH4 concentrations and loads, station
IG7. Updated boxplots at each data, starting with 10 elements and ending with all data.
The min. max. non-outlier range is the range defined by the minimum and maximum
non-outlier values. The outlier values are represented by black crosses.
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Figure 207 – Time series and boxplot evolution. Q, NH4 concentrations and loads, station
IG8. Updated boxplots at each data, starting with 10 elements and ending with all data.
The min. max. non-outlier range is the range defined by the minimum and maximum
non-outlier values. The outlier values are represented by black crosses.
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Figure 208 – Time series and boxplot evolution. Q, COD concentrations and loads, station
IG3. Updated boxplots at each data, starting with 10 elements and ending with all data.
The min. max. non-outlier range is the range defined by the minimum and maximum
non-outlier values. The outlier values are represented by black crosses.
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Figure 209 – Time series and boxplot evolution. Q, COD concentrations and loads, station
IG4. Updated boxplots at each data, starting with 10 elements and ending with all data.
The min. max. non-outlier range is the range defined by the minimum and maximum
non-outlier values. The outlier values are represented by black crosses.
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Figure 210 – Time series and boxplot evolution. Q, COD concentrations and loads, station
IG5. Updated boxplots at each data, starting with 10 elements and ending with all data.
The min. max. non-outlier range is the range defined by the minimum and maximum
non-outlier values. The outlier values are represented by black crosses.
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Figure 211 – Time series and boxplot evolution. Q, COD concentrations and loads, station
IG6. Updated boxplots at each data, starting with 10 elements and ending with all data.
The min. max. non-outlier range is the range defined by the minimum and maximum
non-outlier values. The outlier values are represented by black crosses.
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Figure 212 – Time series and boxplot evolution. Q, COD concentrations and loads, station
IG7. Updated boxplots at each data, starting with 10 elements and ending with all data.
The min. max. non-outlier range is the range defined by the minimum and maximum
non-outlier values. The outlier values are represented by black crosses.
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Figure 213 – Time series and boxplot evolution. Q, COD concentrations and loads, station
IG8. Updated boxplots at each data, starting with 10 elements and ending with all data.
The min. max. non-outlier range is the range defined by the minimum and maximum
non-outlier values. The outlier values are represented by black crosses.
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Figure 214 – Time series and boxplot evolution. Q, TP concentrations and loads, station
IG3. Updated boxplots at each data, starting with 10 elements and ending with all data.
The min. max. non-outlier range is the range defined by the minimum and maximum
non-outlier values. The outlier values are represented by black crosses.
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Figure 215 – Time series and boxplot evolution. Q, TP concentrations and loads, station
IG4. Updated boxplots at each data, starting with 10 elements and ending with all data.
The min. max. non-outlier range is the range defined by the minimum and maximum
non-outlier values. The outlier values are represented by black crosses.
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Figure 216 – Time series and boxplot evolution. Q, TP concentrations and loads, station
IG5. Updated boxplots at each data, starting with 10 elements and ending with all data.
The min. max. non-outlier range is the range defined by the minimum and maximum
non-outlier values. The outlier values are represented by black crosses.
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Figure 217 – Time series and boxplot evolution. Q, TP concentrations and loads, station
IG6. Updated boxplots at each data, starting with 10 elements and ending with all data.
The min. max. non-outlier range is the range defined by the minimum and maximum
non-outlier values. The outlier values are represented by black crosses.
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Figure 218 – Time series and boxplot evolution. Q, TP concentrations and loads, station
IG7. Updated boxplots at each data, starting with 10 elements and ending with all data.
The min. max. non-outlier range is the range defined by the minimum and maximum
non-outlier values. The outlier values are represented by black crosses.
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Figure 219 – Time series and boxplot evolution. Q, TP concentrations and loads, station
IG8. Updated boxplots at each data, starting with 10 elements and ending with all data.
The min. max. non-outlier range is the range defined by the minimum and maximum
non-outlier values. The outlier values are represented by black crosses.
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Figure 220 – Time series and boxplot evolution. Q, DO concentrations and loads, station
IG3. Updated boxplots at each data, starting with 10 elements and ending with all data.
The min. max. non-outlier range is the range defined by the minimum and maximum
non-outlier values. The outlier values are represented by black crosses.



APPENDIX B. Data and results from photos and movies 320

DO - IG4

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
0

20

40

60

80

100

120

140

160

Q
 (m

³/s
)

10 30 50

median

min. max. non-outlier range

interquartile range

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
0
1
2
3
4
5
6
7
8
9

D
O

 (m
g/

L)

10 30 50

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
year

0

10

20

30

40

50

60

70

80

D
O

 (t
on

/d
)

10 30 50
data quantity

Figure 221 – Time series and boxplot evolution. Q, DO concentrations and loads, station
IG4. Updated boxplots at each data, starting with 10 elements and ending with all data.
The min. max. non-outlier range is the range defined by the minimum and maximum
non-outlier values. The outlier values are represented by black crosses.
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Figure 222 – Time series and boxplot evolution. Q, DO concentrations and loads, station
IG5. Updated boxplots at each data, starting with 10 elements and ending with all data.
The min. max. non-outlier range is the range defined by the minimum and maximum
non-outlier values. The outlier values are represented by black crosses.
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Figure 223 – Time series and boxplot evolution. Q, DO concentrations and loads, station
IG6. Updated boxplots at each data, starting with 10 elements and ending with all data.
The min. max. non-outlier range is the range defined by the minimum and maximum
non-outlier values. The outlier values are represented by black crosses.
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Figure 224 – Time series and boxplot evolution. Q, DO concentrations and loads, station
IG7. Updated boxplots at each data, starting with 10 elements and ending with all data.
The min. max. non-outlier range is the range defined by the minimum and maximum
non-outlier values. The outlier values are represented by black crosses.
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Figure 225 – Time series and boxplot evolution. Q, DO concentrations and loads, station
IG8. Updated boxplots at each data, starting with 10 elements and ending with all data.
The min. max. non-outlier range is the range defined by the minimum and maximum
non-outlier values. The outlier values are represented by black crosses.
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Figure 226 – Time series and boxplot evolution. Q and COND, station IG3. Updated
boxplots at each data, starting with 10 elements and ending with all data. The min. max.
non-outlier range is the range defined by the minimum and maximum non-outlier values.
The outlier values are represented by black crosses.
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Figure 227 – Time series and boxplot evolution. Q and COND, station IG4. Updated
boxplots at each data, starting with 10 elements and ending with all data. The min. max.
non-outlier range is the range defined by the minimum and maximum non-outlier values.
The outlier values are represented by black crosses.
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Figure 228 – Time series and boxplot evolution. Q and COND, station IG5. Updated
boxplots at each data, starting with 10 elements and ending with all data. The min. max.
non-outlier range is the range defined by the minimum and maximum non-outlier values.
The outlier values are represented by black crosses.
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Figure 229 – Time series and boxplot evolution. Q and COND, station IG6. Updated
boxplots at each data, starting with 10 elements and ending with all data. The min. max.
non-outlier range is the range defined by the minimum and maximum non-outlier values.
The outlier values are represented by black crosses.
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Figure 230 – Time series and boxplot evolution. Q and COND, station IG7. Updated
boxplots at each data, starting with 10 elements and ending with all data. The min. max.
non-outlier range is the range defined by the minimum and maximum non-outlier values.
The outlier values are represented by black crosses.
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Figure 231 – Time series and boxplot evolution. Q and COND, station IG8. Updated
boxplots at each data, starting with 10 elements and ending with all data. The min. max.
non-outlier range is the range defined by the minimum and maximum non-outlier values.
The outlier values are represented by black crosses.
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B.2 Regression results
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Figure 232 – Results from simple linear regression of each station to the others
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B.2.2 Concentrations

Regression model - BOD
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Figure 233 – Results from polynomial regression on flows and concentration photos for
BOD
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Regression model - DO
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Figure 234 – Results from polynomial regression on flows and concentration photos for
DO
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Regression model - NH4
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Figure 235 – Results from polynomial regression on flows and concentration photos for
NH4
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Regression model - TP
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Figure 236 – Results from polynomial regression on flows and concentration photos for
TP
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Model error - BOD

20 0 20 40 60 80 100 120
0.00

0.01

0.02

0.03

0.04

0.05

d
e
n
si

ty

mean = 2.628930
std = 0.683568
shift = -17.396000

IG3

polynomial error

LN fitting

30 20 10 0 10 20 30 40 50 60
0.00

0.01

0.02

0.03

0.04

0.05

0.06

mean = 2.824667
std = 0.660285
shift = -20.630707

IG4

20 0 20 40 60 80 100
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

d
e
n
si

ty mean = 2.282722
std = 0.642802
shift = -12.325406

IG5

10 0 10 20 30 40 50
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

mean = 1.829362
std = 0.646544
shift = -7.809246

IG6

10 5 0 5 10 15 20 25 30

BOD (mg/L)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

d
e
n
si

ty

mean = 1.595260
std = 0.768149
shift = -6.298207

IG7

5 0 5 10 15 20 25 30 35 40

BOD (mg/L)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

mean = 0.423171
std = 1.377025
shift = -3.082882

IG8

Figure 237 – Fitting of the 3 parameters-lognormal distribution to the errors of the poly-
nomial regression model for BOD
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Figure 238 – Fitting of the 3 parameters-lognormal distribution to the errors of the poly-
nomial regression model for DO
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Figure 239 – Fitting of the 3 parameters-lognormal distribution to the errors of the poly-
nomial regression model for NH4
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Figure 240 – Fitting of the 3 parameters-lognormal distribution to the errors of the poly-
nomial regression model for TP
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Figure 241 – Evolution of the RHIS p-values and percentiles of Q, C and W, BOD station IG3, photos and daily movies
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Figure 242 – Evolution of the RHIS p-values and percentiles of Q, C and W, BOD station IG4, photos and daily movies
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Figure 243 – Evolution of the RHIS p-values and percentiles of Q, C and W, BOD station IG5, photos and daily movies
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Figure 244 – Evolution of the RHIS p-values and percentiles of Q, C and W, BOD station IG6, photos and daily movies
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Figure 245 – Evolution of the RHIS p-values and percentiles of Q, C and W, BOD station IG7, photos and daily movies
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Figure 246 – Evolution of the RHIS p-values and percentiles of Q, C and W, BOD station IG8, photos and daily movies
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Figure 247 – Evolution of the RHIS p-values and percentiles of Q, C and W, NH4 station IG3, photos and daily movies
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Figure 248 – Evolution of the RHIS p-values and percentiles of Q, C and W, NH4 station IG4, photos and daily movies
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Figure 249 – Evolution of the RHIS p-values and percentiles of Q, C and W, NH4 station IG5, photos and daily movies
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Figure 250 – Evolution of the RHIS p-values and percentiles of Q, C and W, NH4 station IG6, photos and daily movies
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Figure 251 – Evolution of the RHIS p-values and percentiles of Q, C and W, NH4 station IG7, photos and daily movies
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Figure 252 – Evolution of the RHIS p-values and percentiles of Q, C and W, NH4 station IG8, photos and daily movies
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Figure 253 – Evolution of the RHIS p-values and percentiles of Q, C and W, TP station IG3, photos and daily movies
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Figure 254 – Evolution of the RHIS p-values and percentiles of Q, C and W, TP station IG4, photos and daily movies



A
PPEN

D
IX

B
.

D
ata

and
results

from
photos

and
m

ovies
356

0
50

100
150
200
250
300
350
400
450

m
³/

s

daily Q IG5  17/6/2005 - 31/7/2018

synthetic movies

original movies

photos

0

2

4

6

8

10

12

m
g
/L

daily TP IG5  17/6/2005 - 31/7/2018

0

20

40

60

80

100

120

to
n
/d

daily TP IG5  17/6/2005 - 31/7/2018

0.0

0.2

0.4

0.6

0.8

1.0

ra
n
d
o
m

n
e
ss

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

h
o
m

o
g
e
n
e
it

y

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

in
d
e
p
e
n
d
e
n
ce

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

st
a
ti

o
n
a
ri

ty

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

2006 2008 2010 2012 2014 2016 2018

year

0

50

100

150

200

m
³/

s

5th 50th 95th

2006 2008 2010 2012 2014 2016 2018

year

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m
g
/L

2006 2008 2010 2012 2014 2016 2018

year

0
2
4
6
8

10
12
14
16

to
n
/d

Figure 255 – Evolution of the RHIS p-values and percentiles of Q, C and W, TP station IG5, photos and daily movies
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Figure 256 – Evolution of the RHIS p-values and percentiles of Q, C and W, TP station IG6, photos and daily movies
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Figure 257 – Evolution of the RHIS p-values and percentiles of Q, C and W, TP station IG7, photos and daily movies
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Figure 258 – Evolution of the RHIS p-values and percentiles of Q, C and W, TP station IG8, photos and daily movies
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Figure 259 – Evolution of the RHIS p-values and percentiles of Q, C and W, DO station IG3, photos and daily movies
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Figure 260 – Evolution of the RHIS p-values and percentiles of Q, C and W, DO station IG4, photos and daily movies
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Figure 261 – Evolution of the RHIS p-values and percentiles of Q, C and W, DO station IG5, photos and daily movies
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Figure 262 – Evolution of the RHIS p-values and percentiles of Q, C and W, DO station IG6, photos and daily movies
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Figure 263 – Evolution of the RHIS p-values and percentiles of Q, C and W, DO station IG7, photos and daily movies
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Figure 264 – Evolution of the RHIS p-values and percentiles of Q, C and W, DO station IG8, photos and daily movies
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