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RESUMO

Estratégias recentes para planejamento e gestão de recursos h́ıdricos estabelecem que os

conceitos de risco e entradas variáveis devem ser avaliados, a fim de atender a múltiplas

condições. Isso fica evidente principalmente em um ambiente com mudanças climáticas

e usos diversos da água e uso do solo. Nesse contexto, modelagem de vazões e con-

centrações em rios são estratégias válidas para prever diferentes cenários. Esta pesquisa

propõe uma análise integrada para modelagem do fluxo e transporte de contaminantes em

rios, baseada em simulações hidrodinâmica, de séries temporais e de qualidade da água. O

primeiro módulo estima o volume e a velocidade da água, que têm impacto direto no trans-

porte de poluentes. Séries temporais de concentrações são geradas como polutogramas

sintéticos, usando técnicas baseadas em condições de fluxo, tempo e fatores estat́ısticos

de um conjunto histórico de dados de monitoramento; o objetivo é combinar as escalas

temporais das condições de contorno, uma vez que dados de qualidade da água geral-

mente estão dispońıveis como amostras irregulares; o terceiro módulo resolve a equação

de advecção-dispersão-reação, explorando as diferentes séries sintéticas como condição de

contorno de montante, com um processo de calibração baseado na variação temporal dos

coeficientes de transformação. Devido ao componente estocástico, um conjunto de mil

concentrações diárias são geradas como séries sintéticas, e diferentes critérios são aplica-

dos para selecionar cenários próximos aos dados observados; experimentos para converter

conjuntos de dados de monitoramento de amostras discretas em séries cont́ınuas mostram

que a preservação de métricas estat́ısticas de dados históricos, vinculadas a análises de

múltiplos cenários e representação de persistência natural, são critérios razoáveis para

estimar séries temporais cont́ınuas. Os resultados obtidos ainda evidenciam que o poluto-

grama de entrada, usualmente não explorado em estudos semelhantes, pode ter um papel

significativo em modelos de transporte de substâncias em rios em estado transiente, espe-

cialmente para predição de métricas de interesse em gestão de recursos h́ıdricos – quartis e

concentrações de 10 e 90% de ocorrência. Ao mesmo tempo, as análises conduzidas explo-

ram um procedimento de calibração considerando o aspecto temporal; resultados indicam

que essa nova perspectiva melhora simulações para transporte de diferentes parâmetros

indicativos de qualidade de água. As contribuições fornecem base para posterior avaliação

de sistemas fluviais ligados à dinâmica das bacias hidrográficas, com múltiplos cenários

de disponibilidade de dados e condições de entrada.

Palavras-chave: Modelagem hidrodinâmica e de qualidade de água. Condições de con-

torno. Gerenciamento de recursos h́ıdricos.



ABSTRACT

Recent water resources planning and management strategies state that the concepts of

risk and variable inputs should be appraised in order to comply with multiple conditions.

This becomes evident especially in an environment with climate change and diverse uses

of water and land use. In such a context, modeling of discharges and concentrations in

rivers are valuable strategies to predict different scenarios. This research proposes an

integrated analysis for modeling of flow and contaminant transport in rivers, based on

hydrodynamics, time series, and water quality simulations. The first module estimates

water volume and velocity, that have direct impact in pollutants transport. Time series of

concentrations are generated as synthetic pollutographs, using techniques based on flow

conditions, time and statistical factors of a historical monitoring dataset; the objective

is to match temporal scales of boundary conditions, since water quality data is usually

available as irregular samples; the third module solves the advection-dispersion-reaction

equation, exploring the different synthetic series as upstream boundary condition, and a

calibration process based on temporal variation of transformation coefficients. Because of

a stochastic component, thousand sets of daily concentrations are generated as synthetic

series, and different criterion are applied to select scenarios close to observed data; exper-

iments to convert monitoring datasets from discrete samples into continuous series show

that preservation of statistical metrics from historical data, linked to multiple scenarios

analysis and representation of natural persistence, are reasonable criterion to estimate

continuous time series. The results obtained also evidence that the input pollutograph,

usually not explored in similar studies, may have a significant role in models for transport

of substance in rivers under unsteady state, specially for prediction of measures of interest

in water resources management – quartiles and concentrations of 10 and 90% occurrence.

At the same time, the conducted analysis introduces a calibration procedure considering

a temporal aspect; results indicate that this new perspective may improve simulations for

transport of different parameters indicative of water quality. The contributions lay basis

for further assessment of riverine systems linked to watershed dynamics, with multiple

scenarios of data availability and input conditions.

Key-words: Hydrodynamic and water quality modeling. Boundary conditions. Water

resources management.
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1 Introduction

text

Research is formalized curiosity. It is poking and prying with a purpose.

– Zora Neale Hurston

Efforts to understand and predict water quality dynamics have increased over the

years. Events such as floods and droughts, contamination of drinking water and stricter

laws have intensified public awareness for proper management of this resource (Chigor et

al., 2012; Ascott et al., 2016).

Rivers are the main destination of wastewater from different activities, and integrate

important processes that affect environmental degradation in a watershed: atmospheric

transport and deposition, surface flow, loads generations and movement, and subsurface

flow in groundwater zones (Novotny, 2002). Therefore, these systems reflect the overall

conditions of its surrounding environment.

Hydrodynamic simulations linked to water quality give a complete description of

transport dynamics in channels, and have been recognized as an important tool in water

resources management (Melching et al., 2003; Wang et al. 2013). Despite the fact that

numerous models are available today, with reliable numerical solutions, several important

questions remain challenging, such as sampling frequency requirements (which affects

the quality of modeling results), flow representation (crude estimations might lead to

misleading interpretations), and calibration strategies (responsible for uncertainties in

results).

Modeling based on mechanistic and deterministic principles (which refers to simu-

lation based on conservation laws) under unsteady state provides a means to connect a

wide range of quantitative (flow) and qualitative (concentrations) water aspects. Even

though sophisticated techniques are available for time series forecasting, such as artifi-

cial intelligence, estimations based on conservation laws offer robustness and easiness to

implement different system conditions (Campozano et al., 2014).

The governing expressions (mass and momentum conservation) are solved using

numerical approximations, which usually require small time steps, in the order of seconds

or minutes. However, contrary to hydrological data, that are often available in the form

of continuous daily records, water quality data usually are limited or scarce (Fonseca et

al., 2014; Creaco et al. 2016).

In this context, synthetic data become a recurrent strategy in modeling studies.

Traditionally applied in hydrological sciences, such as streamflow and rainfall forecasts

(Efstratiadis et al., 2014; Pereira and Souza, 2014; Lamontagne et al., 2018), this artifice

provides controlled experiments that elucidate the significance of possible scenarios.

In water quality modeling, synthetic data was used by McIntyre (2004), who ex-

plored this strategy to perform a sensitivity analysis of parameters in the Streeter-Phelps
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model, while Jia et al. (2018) applied high frequency synthetic data to study the sensi-

bility of decay rates. Both studies generated synthetic data through the models, applying

controlled parameters.

This thesis proposes to use this concept to define boundary conditions for unsteady

deterministic simulations. Boundary conditions are key factors in modeling studies, since

they can be one of the main sources of errors and uncertainty (Rode and Wriedt, 2006;

Ji 2008; Wang et al., 2013).

The major contribution is to provide a comprehensive set of evidence to encour-

age the integration between deterministic and statistical/empirical approaches for time

series prediction, not explored in similar studies of contaminant transport in rivers. This

approach becomes an auxiliary strategy in modeling environmental time series in high

temporal resolution. At the same time, this research provides new insights about cali-

bration and the significance of boundary conditions in simulations of water quality under

unsteady state in urban rivers.

Usual calibration parameters are kinetic coefficients (that represent physical-chemical-

biological transformations that substances go through in contact with water). Often

unknown and with an important role in mass balances calculation, these processes rep-

resentation may be responsible for errors or mismatch of reality. This research presents

methods to take into account temporal variations of these processes, providing a parsimo-

nious and fast calibration, as an alternative to the often time consuming and uncertain

trial and error approach.

The experimental plan consists in evaluating different approaches to define a syn-

thetic pollutograph for the upstream section using a historical dataset based on quarterly

monitoring samples in the Iguaçu river, Paraná state. The tests are based on interpola-

tions, Fourier series and first order autoregressive models. Following this step, the series

is propagated using the SIHQUAL model (Simulação Hidrodinâmica e de Qualidade de

Água3), that solves Saint-Venant and advection-dispersion-reaction equations. To cali-

brate the simulations, a set of kinetic rates is defined accordantly to the variation in the

boundary condition.

1.1 Thesis Motivation

Sampling frequency and model requirements

Predictions of water quality over time are often performed with monthly data (e.

g. Fonseca et al.; 2014; Kanda et al., 2015) and quarterly campaigns (e. g. Larentis et

al.; Chang et al., 2015). Data sampled at high frequency, on the other hand, is usually

available for brief periods, which may limit the simulations also to short time prediction

3Hydrodynamic and Water Quality Simulation
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(e.g. Mannina and Viviani et al., 2010; Zuo et al., 2015).

Traditional monitoring plans are based on discrete samples, analyzed periodically at

particular locations; this information represents snapshots at variable instants, describing

specific water quality conditions. If these snapshots are not available sequentially over a

longer period of time, the data may fail to capture effects of processes and parameters

controlling release, fate, and transport of pollutants that are only identifiable at larger

temporal scales, such as seasonal and hydrological variability.

Additionally, monitoring programs have limitations (uncertainties related to sample

collection, integrity and laboratory analysis, besides high costs associated with equipment

and qualified people), which highlight the need for techniques to interpolate and extrap-

olate the data necessary to match model requirements. In transient modeling, time series

are essential as inputs and for model calibration.

Calibration

To Benedini and Tsakiris (2013), a recurrent difficulty in modeling studies lies in the

identification of appropriate reaction coefficients, specific for each pollutant and able to

interpret its behavior. A given set of reaction coefficients may overlap the actual effects of

transport on the distribution of pollutants in the channel. Additionally, different criteria

may produce significantly distinct results, which interfere in the decision making process.

The most common method used for calibration of flow and water quality models

is the trial and error iterative process (e.g. Fonseca et al., 2014, Salla et al., 2014, Noh

et al., 2015, Kanda et al., 2015, Adams et al., 2016). However, this technique is often

time consuming and subjective. When a model has a high number of parameters to

be calibrated, it becomes difficult to alter them and still maintain control of the model

response (Chau, 2006).

In this case, computational optimization routines are suggested, such as genetic

algorithm (Ng and Perera, 2003; Kondageski and Fernandes, 2009) and the Particle Swarm

Optimization tool (Wang et al., 2008; Knapik et al., 2016). Nonetheless, these studies

consider only a steady analysis of kinetic processes.

The calibration proposed in this research takes into account the temporal variation

of kinetic processes using a simplified approach, based on attributes of the case study,

characteristic values of the literature, and random fluctuation.

Boundary Conditions

In the problem of pollutant routing, a limited length of interest in the river is selected

as control volume; therefore, boundary conditions are the driving forces that cause flow

and water quality changes within the domain.
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Theoretically, boundary conditions should be placed where its effects are not signif-

icant. However, identify such region is not trivial. In addition, it could extend the control

volume needed for simulation, requiring further data and computational efforts.

Linden et al. (2015) state that, although sensitivity analysis of parameters in model

outputs has been described in the literature, less often the influence of boundary condi-

tions or input data is evaluated. These aspects are usually explored in systems affected

by coastal waters (e.g. Fan et al., 2012, Alarcon, 2014). The sensitivity of input condition

usually evaluated are those related to meteorological conditions and inflow and outflow

volumes into reservoir (Linden et al., 2015), compartment exchanges within the basin

(such as export coefficients), loading inputs, and transformation rates (e. g. Zhang et al.,

2015; Hankin et al., 2016; Reder et al., 2017; Jia et al. 2018).

Water resources management

To Loucks and Beek (2017), urban and agricultural development, deforestation,

climatic variability, and modifications in regional management can alter the distribution

of rainfall, stream flow and pollution level over time; combined with challenges faced by

mostly developing countries (such as irregular occupation of floodplains and water supply

areas, insufficient collection and treatment of wastes etc), these questions usually require

an unsteady assessment.

This thesis provides background to evaluate the risk of disagreement with quality

standards based on duration curves, complementing the information granted by monitor-

ing programs and steady assessment. The proposed analysis allows to guarantee flexibility

for framework classifications, verify the frequency of transgressions, or to estimate critical

periods and locations, defining adequate planning for water withdrawals, effluent releases

and water use charges throughout the year.

1.2 Hypothesis and objectives

The hypothesis tested in this thesis is that the integration between synthetic pol-

lutographs generation and traditional deterministic modeling under unsteady state is

reliable to be used in water resources management, offering superior representativeness

than traditional analysis, such as discrete monitoring and evaluations based on steady

conditions.

The thesis main goal is to provide a integrated tool for water quality assessment

over time and space in rivers, compatible with multiple scenarios of flow, input conditions

and data availability. Specific objectives are:

• Generate synthetic pollutographs to convert a historical dataset (monitoring as

snapshots during twelve years) into continuous information for a specific period;
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• Evaluate if the concept of synthetic pollutographs is suitable as boundary conditions

for deterministic modeling;

• Establish simulations under unsteady state for water quality indicators of organic

matter and nutrient pollution;

• Assess the behavior of a time series generated through statistical/empirical ap-

proaches when propagated in time and space with a model based on conservation

laws;

• Assess if upstream boundary condition have a significant role in contaminant trans-

port simulation under unsteady state in rivers;

• Establish calibration based on unsteady behavior.
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2 Conceptual aspects of river water modeling

text

Modelling is a process or procedure intended to focus and force clearer thinking and to pro-

mote more informed decision-making. The approach involves problem recognition, system

definition and bounding, identification of various goals or objectives, identification and eval-

uation of various alternatives, and very importantly, effective communication of this infor-

mation to those who need to know.

– Loucks and Beek

This section presents the main characteristics of water quantity coupled with quality

modeling in streams. Water quantity is linked to discharges and the way water flow varies

temporal and spatially, while water quality incorporates the mass distribution (concen-

tration) of different constituents in aquatic systems.

Water quality mathematical models have been used since 1925, when Streeter and

Phelps first developed a mass balance expression to reproduce the assessment of dissolved

oxygen in the Ohio River (Streeter and Phelps, 1925). This model incorporates two

primary mechanisms governing the fate of oxygen in rivers that receive sewage: decom-

position of organic matter and atmospheric aeration.

Since this pioneering study, several environmental agencies and educational insti-

tutions have developed modeling strategies to represent water quantity and quality in

natural systems. The differences are mainly due to flow representation and complex-

ity level of interaction between physical, chemical and biological processes affecting the

distribution of pollutants.

Even though every modeling evaluation has its own characteristics, they all are

configured by three main modules, as presented in figure 1: (I ) Water quantity, (II )

Water quality and (III ) Water resources management.

The first module provides the velocity field and hydraulic features of the channel,

which are used to solve the water quality module, along with external loadings, dispersion

and kinetic coefficients. The results are concentrations of a substance over space and

time, used for water resources planning or management purposes, in the third module.

Monitoring plans have an important role in this context, in order to define parameters,

boundary and initial conditions, and posterior calibration and verification.
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Scenarios
Duration curves

Maximum load 
Maps of risk

Advection-Dispersion-Reaction 
Analytical solutions 

Hydrologic model
Hydrodynamic model
Empirical equations 

I. WATER QUANTITY II. WATER QUALITY III. WATER RESOURCES MANAGEMENT

Boundary and
initial conditions Calibration + verification

Spatial representation: 
1, 2 or 3D

discharges
water levels
rating curves
concentrations 

Tracer experiments
Empirical equations
Literature review
Regression analysis 
Water temperature
Physical + biological + chemical processes

Far and near field
Recirculation zones
Floodplains

Dispersion coefficient
Kinetic reactions

Continuous monitoring

Rainfall-runoff processes (water balance) + sediment 
transport + channel routing (Saint -Venant simplified 

or continuity equation) + mix in lakes/reservoirs

Population growth, wastewater data 
Hydrologic models → meteorological data 
+ digital elevation map + geographical 
information systems + land use and 
occupation

Channel morphology:
cross sections 
roughness coefficient
bed slope

Uncertainties:
Calibration
Measurements
Model assumptions

Point + diffuse loadings

Figure 1: Main components involved in flow and water quality modeling

2.1 Transport of substances

Once a pollutant reach a watercourse, its transport along space and time is result

of several processes, as represented in figure 2. Mass transport is a result of advection,

diffusion and dispersion processes. The first phenomenon is responsible for the transport

of particulate and dissolved material through the fluid movement itself.

Diffusion is the process in which the mass is propagated due to the particles random

movement, and may classified as molecular or turbulent. According to Nogueira (1991),

molecular diffusion is a fluid property, and occurs due to the errant molecular move-

ment. Turbulent diffusion, on the other hand, is controlled by flow conditions; it is result

of random movement of small eddies, and is significantly more relevant than molecular

diffusion.

Dispersion represents a process in which the pollutant is mixed in water by the

interaction between turbulent diffusion and velocity gradients. In open channels, where

there is turbulence due to velocity variability, cross sections geometry and roughness

changes, dispersion prevails over diffusion (Chapra, 1997).
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Volatilization

Diluition
Dispersion
Photolysis
Hydrolosys

Biodegradation
Transformation

Figure 2: Fate of contaminants in rivers. Source: adapted from Barber et al. (1995)

In water quality studies, neglecting diffusion or dispersion can lead to inaccurate

results. The authors Martin and McCutcheon (1999) state that disregarding these mixing

effects causes overestimation of peak concentrations, and underestimation of arrival time

and period of release effects.

A thorough review of the impact of dispersion coefficients can be found in Abderrez-

zak et al. (2015), who investigate the extent to which existing empirical formulations of

longitudinal dispersion coefficient can be used in one-dimensional (1D) numerical model-

ing of solute transport. The authors affirmed that a proper longitudinal dispersion formula

is able to deal with non-uniformities of channel geometry and highly variable flow and

solute discharges, that may violate locally the main assumptions of the 1D shallow water

equations (e.g. presence of secondary currents, turbulence) and the advection–dispersion

equation (e.g. transverse dispersion not negligible, well mixing of the solute over the

cross-section not attained).

Besides advection, diffusion and dispersion, other physical (particulate settling, for

example), biological (such as algae growth and death) and chemical (chemical reactions

in general) activities result in transformations, and affect the transfer of matter through

contours of the control volume.

The distribution of a species in the water body is also affected by point and non-

point contributions, such as domestic and industrial wastes, tributaries and runoff in the

watershed. Point sources are originated from a single waste load location, and nonpoint

sources include diffuse pollution loads. While the first can be easily identified, nonpoint

loadings are often difficult to attribute to a particular location, and have been recognized

as a major threat to water resources throughout the world (Lee et al., 2010; Wang et al.,

2012).



27

2.2 Boundary conditions

Modeling based on deterministic principles (which refers to simulation based on

conservation laws) leads to solving differential equations, that mathematically describe

natural systems. In order to simulate the mass balance of a control volume, the contours

(representing the influence of outside of the domain) must be specified. Figure 3 shows a

scheme in which the domain of interest is represented in time and space.

Initial conditions 

Boundary conditions 

 Internal points 

Ti
m

e 

Space 

Control volume 

Figure 3: Domain of interest in the solution of partial differential equations

Initial conditions correspond to values at the simulation beginning (t = 0 ), while

boundary conditions correspond to values of the unknowns variables in the contours of

spatial domain. A few examples illustrate how critical are the establishment of reliable

boundary conditions in modeling contaminant’s transport in different systems: In a es-

tuary, Alarcon (2014) showed that nitrate is the constituent most affected by boundary

conditions among the parameters studied. Fan et al. (2012) reported a sensitivity analy-

sis regarding boundary conditions for biochemical oxygen demand and dissolved oxygen,

although under steady state. They applied a combination between HEC-RAS and a mod-

ified Streeter–Phelps model to simulate water quality of a tidal river, showing that the

organic matter is significantly affected by pushed-back sea water.

In rivers, Sincock et al., (2003) have shown that boundary conditions can also affect

model calibration. The authors identified incorrect rate coefficients when calibrating a

water quality model, proposing that the reason behind it is result of very low ammo-

nium concentrations at the model boundaries, reaffirming the role of this aspect in the

simulation.

In the same context, Quiel et al. (2011) linked the importance of upstream boundary

condition to assessment of a planning scenario in an european river. They showed that

even a drastic reduction of phosphorus inputs from anthropogenic sources would not be

significant to influence algal biomass, due to the ability of algal cells to store phosphorus.

On the other hand, a reduction of phosphorus inputs in the headwaters could compensate

possible effects on algal biomass due to climate changes.
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2.3 Spatial variation

Flow in natural systems have three-dimensional (3D) characteristics, as consequence

of cross sections variations and irregularities, presence of curves, meanders and several

others barriers. The expression for mass conservation combined with the Navier-Stokes

equations provide a complete description of the velocity field in these cases. This approach

is the closest representation to reality, but it requires several data, usually not available.

Three-dimensional models have been commonly applied to branched network of rivers or

small stretches (e. g. Sinha et al., 2013; Sokolova et al., 2015).

In streams, the longitudinal scale is significantly larger than vertical and transversal

scales. Therefore, the flow can be modeled through one-dimensional equations. This

approach assumes that longitudinal concentration gradients prevail and there is instant

mixture in vertical and transverse directions.

Benedini and Tsakiris (2013) state that the assumptions made for 1D analysis are

not valid particularly in large rivers, in which an injected pollutant requires some time

before reaching an acceptable uniform distribution in the cross section. Moreover, large

rivers may have zones of slow stream, stagnant water or floodplains, in which the substance

transport occurs in a different way from that in the main stream. Key components of the

flow field, such as flow separations and recirculation zones, should also be reproduced by

two-dimensional (2D) models (USACE, 1993; Olsen, 2007).

Nevertheless, Benjankar et al. (2015) call attention to the fact that despite their

inability to resolve flow details, 1D models are very useful as they are computationally

efficient and allow simulations over much larger stream domains and longer periods than

2D models.

The 1D approach is fundamental when studying analytical solutions, which are

considered the most reliable way for solving the fundamental differential equation in

simple geometrical configurations, such as channels with uniform flow or prismatic cross

sections. Indeed, a common practice is to use this analysis to verify numerical solutions

(e. g. Juxiang, et al., 2011; Estabragh et al., 2012), although it can be applied to

predict the impact of contaminants in water bodies (e. g. Fan et al., 2013). In spite of

the simplifications involved, analytical solutions yield straight and fast results, which is

important in cases of accidental spills, for example.

2.4 Flow representation

Flow conditions have a fundamental role in water quality assessment. Water path-

way, volume and velocity directly controls the transport of dissolved and particulate

substances in water bodies. In addition, advection and morphological characteristics can

affect kinetic processes, such as reaeration, volatilization, and photolysis (Ambrose et al.,

1988). Flow conditions also may cause ressuspention of sedimented material, that might
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promote the release of contaminants (Zuo et al., 2015).

In the transient approach, estimations of advection and cross-sectional areas are

closer to reality, since it considers the principles for mass and momentum conservation

in space and time. Crude estimations for hydraulic transport, such as using discharge

coefficients or the Manning equation (commonly applied in simulation under steady state),

may allow kinetics processes to outweigh the effects of advection (during the calibration

phase), which can introduce errors in the analysis.

The important link between these aspects is illustrated with the discussion presented

by Chapra (1997). Figure 4 shows a sinusoidal flow and the concentration of a pollutant

in a channel. Although the curves have a similar shape, the concentration wave moves

at about 60% of the flow wave, due to differences in the celerity of each one. Decisions

in water resources management might be affect because of the lags; a water user might

begin withdraws after the passage of the water wave crest, and consequently collect the

critical pollution level, occurring some time latter.
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Figure 4: Simulation of (a) a hydrograph and (b) a dilution wave moving through a channel.
Source: Chapra (1997)

In steady approaches the flow is estimated using discharge coefficients or the Man-

ning equation (e. g. Parmar and Keshari, 2012; Babbar, 2014). The disadvantage is

fewer scenarios possibilities, although it requires less data and is easier for computational

implementation. Considering low flow occurrences, this representation have been consid-

ered adequate when the cause of degradation is a steady point source (Novotny, 2002),

or if the studied reach receive less pollution loads (Ferreira et al., 2016). An alternative

strategy is to consider unsteady analysis through a sequence of steady-state simulations,
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though this method may lead to a challenging calibration, in order to keep calculations

closer to reality (e. g. Noh et al., 2015; Salla et al., 2014).

Considering problems for which the water conditions change rapidly (during a storm

event, for example), a transient analysis is required. To represent in time and space a

wave characteristic, usually hydrological or hydrodynamical models are applied. The first

simulate precipitation-runoff processes, and usually are associated with flow routing meth-

ods, that includes the unsteady continuity equation and part of the momentum equation.

According to Saleh et al. (2013), this approach is preferable for flow routing at regional

scale. These models use simplified techniques, generally based on linear/non-linear reser-

voirs, that include the Muskingum routing method, the cascade of linear reservoirs, and

the Muskingum-Cunge approach, among others.

However, Rode et al. (2010) claim that critical problems arise when modeling

catchment-scale water quality. Frequently the basin has a substantial spatial variability

(often difficult to represent); in addition, descriptions of mass fluxes and transforma-

tion processes in different compartments are required (soil, surface water transportation,

stream-aquifer interactions etc).

On the other hand, hydrodynamic models, that include the full one-dimensional

unsteady continuity and momentum equations, have the capability to accurately simulate

a wide spectrum of waterway characteristics. The continuity equation describes the bal-

ance between input, storage and output in a section of river, and the momentum equation

relates the change in momentum to the applied forces (Liggett, 1975).

These equations are fit to simulate the downstream propagation of kinematic and

diffusive waves, and remain valid when downstream backwater effects or significant trib-

utary inflows are present, or when upstream propagation of a wave can occur, such as

from large tides and storm surges (Saleh et al., 2013). In order to gain satisfactory results

in hydrodynamic modeling, it is critical a correct description of bed channel (roughness

and slope), and reliable rating curves (Saleh et al., 2013; Benjankar et al., 2015). The

uncertainties in these later can induce unrealistic estimates for the roughness coefficient

(Domeneghetti et al., 2012).

2.5 Calibration

Parameter’s values are often unknown, because of spatial and temporal variability,

measurement challenges, simplification in model descriptions, or commonly lack of data.

Therefore, model calibration is required. Usual parameters calibrated in water quality

models are kinetic rates, that describe conversion processes and are often unknown (e. g.

Mannina and Viviani, 2010; Tang et al., 2016).

These rates can also be obtained through analytical tests, statistical, conceptual and

empirical analysis; common equations relate them to channel hydraulics, such as velocity,

water level, slope or discharges (Brown and Barnwell, 1987). These latter differ mainly by
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the range of suggested applications, and calculations can be significantly divergent with

each one (Ávila, 2014). Fluctuation of coefficients intervals reported in the literature can

also be wide, and these are usually estimated through analytical tests for specific areas; a

common example is the reaeration rate, that varies from 0 to 100 d−1, according to Brown

and Barnwell (1987).

The main strategies for model calibration are trial and error and automatic tech-

niques. The first one is usually subjective and time consuming, while the second often

assume criterion of optimization that solves the mathematical issue, but that can generate

values without physical meaning (Kondagesk and Fernandes, 2009); furthermore, often a

technique identifies multiple datasets that satisfy the optimization problem. Depending

on a given combination, these parameters may superimpose transport effects, and there-

fore generate wrong interpretations (Dortch and Johnson, 1992). Computation time also

is increased, due to optimization operations (Razavi et al., 2010).

Automatic routines are commonly applied in hydrological studies, in which many

parameters related to watershed scale are involved (e. g. Rode et al., 2007; Preis and

Ostfeld 2008). Calibration of river flow modeling under unsteady state also has been

broadly investigated through optimization techniques (e. g. Siqueira et al., 2016; Lin

2017); for water quality, model calibration is commonly conducted for steady state analysis

(e. g. Ng and Perera, 2003; Wang 2008; Kondagesk and Fernandes, 2009; Knapik et al.

2016).

For transport of pollutants in rivers through a transient analysis, Sincock et al.

(2003) and Mannina and Viviani (2010) have applied a Monte Carlo procedure to generate

multiple sets of decay rates; the strategy is based on investigation of various runs of the

model with different randomly chosen parameter values. In this procedure, usually an

objective function is used to discard unrealistic values.

2.6 Sampling frequency

Although sampling frequency is a common concern in researches regarding water

quality modeling (e. g. Zhou et al., 2011; Sorribas et al., 2012; Langeveld et al., 2013),

there is a lack of attention to a careful assessment of modeling requirements prior to field

studies. According to Martin and McCutcheon (1999), the absence of information can

result in sampling efforts with missing critical data, loss of important gradients, or failure

to close flow and mass balances.

As stated by Meals et al. (2013), 80 to 90% of annual load may be delivered in

10 to 20% of time, indicating that choosing when to sample can be as important as how

often to sample.

In this context, Richards (1998), for example, showed in his study that monthly

series gave only a very crude representation of the daily load flux, but it was better than

expected just because it included the peaks of two of the four major storms of the year;
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a monthly series based on dates about 10 days later than these would have included

practically no storm observations, and would have underestimated the suspended solids

load; quarterly samples resulted in a poor fit on the actual daily flux pattern in this study

– however, it was considered only one year of samples, as verified in figure 5.

Richards (1998) also illustrates that different scenarios of suspended solids load

emerge from different sampling frequencies: decreasing time resolution tend to miss short-

term (but important) events with high flow or high concentrations (figure 5).

 

Figure 5: Time series of suspended solids loads for the Grand River from March 1, 1976 to
February 28, 1977. Top: daily samples; middle: weekly samples; bottom: monthly
samples; weekly and monthly sample values were drawn from actual daily sample data
series. Source: Richards (1998)

Table 1 compares several studies of water quality modeling, showing the parameters

more often simulated, and data available. This summary shows the potential usability of

modeling based on traditional deterministic principles, since they represent watersheds of

different characteristics, with multiple input conditions.

Most studies based on high frequency data are also limited to shorter periods of

analysis (e. g. Sincock et al., 2003; Langeveld et al., 2013), usually due to financial and

logistics challenges. Data as irregular samples, on the other hand, are commonly avail-

able for longer periods, which may be an advantage when studying a system’s historical

behavior (e. g. Larentis et al., 2008; Inthasaro and Wu, 2012).



33

Table 1: Common parameters simulated in rivers and monitoring data used in water quality
modeling under unsteady conditions

Reference Basin
River
length
(km)(1)

Data availability
Simulation
period

Adams et al.
(2016)

125 km2: 90%
grassland

(2) Phosphorus at each 30 min and
suspended solids at 15 min

1 year (hourly
time step)

Fonseca et al.
(2014)

176 km2: livestock,
piggeries and
domestic wastewater

(2)

3 water quality stations;
monthly data for temperature,
fecal coliforms, DO, BOD, total
suspended solids, nitrates,
orthophosphates and pH

1 year for
calibration
and another
for validation
(daily time
step)

Hwang et al.
(2014)

(3) 18.5

Two days at intervals of 30 min:
nitrogen and phosphorous
compounds, suspended solids,
chemical oxygen demand, BOD
and chlorophyll-a

1 day
calibration
and 1 day
validation

Inthasaro and
Wu (2012)

(3) 21

≈8 to 80 measured values:
ammonia, nitrate,
polychlorinated biphenyls,
phosphate and biomass

10 years

Kanda et al.
(2015)

(3) 55
5 sampling points; monthly
water quality data: BOD and
DO

1 year for
calibration
and 1 month
for validation

Langeveld et
al. (2013)

(3) 146 1-2 min ammonium and DO 1 month

Larentis et al.
(2008)

26000 km2: low
population density,
livestock, agriculture
and industrial
activities

550

6 monitoring points; quarterly
data for total phosphorus,
dissolved oxygen and fecal
coliforms

9 years

Launay et al.
(2019)

95590 km2 810 Suspended particulate matter(4)
17 days (flood
event)

Mannina and
Viviani (2010)

160 km2: rural
ephemeral river

6
BOD and DO at approximately
each 10 min

≈8 hours

Nguyen et al.
(2018)

25 km2 11.5
Monthly BOD, DO,
temperature and nitrogen
compounds

1 year

Quiel et al.,
(2011)

148268 km2: 61% of
land use is
agricultural

700
Biweekly to monthly intervals:
phytoplankton and nutrients

8 years

Sincock et al.
(2003)

2464 km2 30
Daily data for BOD, nitrate,
DO and temperature

4 months

Zhou et al.
(2011)

9750 km2: high
population and
economic density

1600
4 values for chemical oxygen
demand

30 h

Zuo et al.
(2015)

28150 km2: high
population density

≈2.5
Experimental values:
permanganate index and
ammonia

3 days

(1) Not necessarily the simulated length, since most studies are not specific (2) Model for watershed scale (3) Not
available (4) Data frequency is not specified, although authors claim use of high temporal resolution

measurements
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2.7 Water quality time series

Water quality time series have inherent characteristics, such as nonlinear trends,

missing data, outliers, irregular measurement patterns, seasonal behavior, serial corre-

lation, annual and diurnal cycles. In addition, these series are affected by intermittent

events such as rain storms (Abaurrea et al., 2011; Milne et al., 2009).

Time series from natural systems usually exhibit autocorrelation, a property de-

scribed by specific functions. In water quality, autocorrelation often is modeled with

classical techniques such as autoregressive, autoregressive moving average or autoregres-

sive integrated moving average models (e. g. Abaurrea et al., 2011; Arya and Zhang,

2015; Chen and Boccelli, 2018).

In the process of infilling missing data, these issues should be addressed. A common

strategy is based on linear interpolation using the observed data (e. g. Adams et al., 2016),

although this method may not reflect nonlinear trends. In general, trend is modeled

using a deterministic function, usually polynomial, power or logarithmic (e. g. Costa and

Monteiro, 2015). Another frequent approach to deal with missing data is to use data from

near stations (e.g. Quiel et al 2011; Launay et al., 2019).

Hirsh et al. (2010) and Chanat et al. (2016) applied a model in which concentration

is a log-linear function of discharge, season, and time. To the authors, this procedure

allows flexibility in representations of the long-term trend, seasonal aspects, and discharge-

related components.

Additional examples of techniques for water quality time series modeling are: lin-

ear regression (Adams et al., 2016), smoothing spline interpolations (Feng et al., 2015),

Fourier series (Rodŕıguez et al., 2013), wavelet analysis (Dokmen and Aslan, 2013; Barze-

gar et al., 2015), among several others.

A few methods and applications for modeling of concentrations time series are pre-

sented in table 2. This review focus on empirical/statistical techniques, that depend

mostly on observed inputs and outputs to estimate parameters; these approaches also

lack an explicit description of cause and effect relationships, with a minimum of under-

standing of how the system works.

The review on table 2 highlights that most studies focus on reproduce data with

frequencies at least monthly. One of the challenges in this research lies in represent time

series at higher frequency than the actual available data, i. e., combine processes of

different temporal scales.
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Table 2: Comparison of studies for water quality time series modeling through statisti-
cal/empirical approaches

Reference Methods Parameters and recorded data

Abaurrea et al.
(2011)

Regression model with a Gaussian
autoregressive moving average error,
using concentration, temperature
and discharge

Conductivity: four monthly series

Adams et al.
(2016)

Linear regression between
phosphorus and turbidity to specify
suspended sediment

Turbidity: 15-min intervals;
phosphorus: 30-min

Hirsch (2010)
Weighted regressions of
concentrations on time, discharge,
and season

Total phosphorus: data from 1978 to
early 2009 (773 measurements,
variable sampling frequency)

Feng et al. (2015)
Smooting (cubic B-splines as basis
functions) and interpolation (natural
spline interpolation)

Dissolved oxygen, permanganate
index and ammonia nitrogen:
monthly data

Dökmen and Aslan
(2013)

Wavelet
Chlorine, nitrate and pH: monthly
data between December 1999 and
2000

Amornsamankul et
al. (2012)

Factor analysis, correlation analysis
and Fourier series

Dissolved oxygen, biochemical
oxygen demand, total phosphorus
and suspended solids: monthly data
2002-2007

Barzegar et al.
(2017)

Extreme learning machine and
wavelet-extreme learning machine
hybrid models

Electrical conductivity - monthly
data (total of 315 monthly datasets
(1984–2011)

Arya and Zhang
(2015)

Auto Regressive Integrated Moving
Average

Dissolved oxygen and temperature:
monthly data 1995-2012

Parmar and
Bhardwaj (2014)

Auto Regressive Integrated Moving
Average

Monthly average of 10 years: pH,
chemical oxygen demand, free
ammonia, total Kjeldahl nitrogen,
water temperature, BOD and DO

Shao et al. (2018)
Back propagation neural network,
optimized by the Cuckoo Search
algorithm

188 data for each parameter in 94
days: conductivity, chlorophyll
content, dissolved oxygen, dissolved
organic matter, pH, permanganate
index, turbidity, total nitrogen

2.8 Water resources planning and management

Identification and representation of physical, chemical and biological dynamics gives

the decision makers and water managers an opportunity to design and to manage appro-

priate water policies for different uses. Modeling is an important tool in this context:

besides providing a full description of quality conditions, mathematical simulations give

an efficient way to predict the response of a water body to interventions and management

actions before its implementation. Therefore, it is possible to establish requirements to
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attain standards and to identify knowledge gaps, allowing background to conduct future

monitoring and research efforts.

For the definition of framework, that is the basis for other water resources man-

agement instruments (defined by Law 9433/97 - Brasil, 1997), classification is performed

according to concentrations of parameters associated with reference discharges, as defined

in CONAMA Resolution n◦ 357, dated March 17, 2005 (CONAMA, 2005). In this case,

mostly the effects of point sources are represented, in which the highest concentration

occurs during periods of drought. Critical conditions generated by diffuse sources, how-

ever, occur with the beginning of rain, when the surface flow promotes the contribution

of a large load of pollutants. Therefore, a more recent approach emphasizes the need to

consider hydrological regimes that meet human and ecosystem needs, rather than setting

constant reference discharges (Souza et al., 2008).

A wide number of substances are expected to be found in superficial waters, origi-

nating from urban and industrial wastewater or natural contact of water with soil and sed-

iment: calcium, magnesium, nitrates, chlorides, carbonates, sulphur, chromium, arsenic,

cadmium, nickel and organic compounds. These latter come from the decomposition of

organic matter of plants and animals, and include residues from agricultural areas and

wastes of domestic and industrial sources (Porto et al, 1991).

Recent studies have recommended the identification of emerging substances – hor-

mones, pharmaceutical, caffeine etc – as indicatives of anthropogenic pollution, as a com-

plement to organic matter (Ide et al., 2013; Santos et al., 2016).

Many of these substances are nonconservative and undergo changes in contact with

water. The most frequent pollutants simulated are compounds of oxygen, nitrogen and

phosphorus, whose transformations can be described by means of specific biochemical

processes (Sincock et al., 2003; Mannina and Viviani, 2010; Salla et al., 2014).

In the aquatic environment, the organic matter plays an important role in produc-

tion and consumption cycles. This material is composed by protein compounds, carbo-

hydrates, fats, oils, urea, surfactants, phenols, pesticides and other components in lesser

amounts. However, in studies of water quality usually only carbonaceous matter is an-

alyzed, since this is the portion that consumes oxygen. Organic matter is traditionally

represented by biochemical and chemical demand of oxygen in modeling studies (Zhou et

al., 2011; Salla et al., 2014).

Although these parameters are recommended to evaluate pollution by the regula-

tion CONAMA n◦ 357 (CONAMA, 2005), some analytical limitations may compromise

the interpretation of results. The biochemical demand of oxygen test identify only the

biodegradable fraction of organic compounds, while the chemical demand of oxygen do

not allow to differentiate the sample portion that may be oxidized biologically. In addi-

tion, BOD quantifies only the fraction of oxygen consumed by microorganisms adapted;

consequently, the presence of heavy metals or other toxic substance may restrict their
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action. To overcome such limitations, the organic carbon has been proposed as parameter

for the overall determination of organic pollution in water and wastewater (Thomas and

Theraulaz, 2007).

In the future it is expected to aggravate the problem of detecting and controlling

new pollutants in superficial waters, stressing the role of mathematical models for water

quality assessment.

2.9 Overview of previous studies

This section presents an overview of a few researches related to the study of water

flow and quality simulations in the last years, as presented in table 3. This compilation

summarizes several topics covered in this research, and highlights current gaps in previous

studies.

The Quantity module column determines the method applied to obtain discharges,

whereas Water quality module discuss how the concentrations were calculated and if the

study presents boundary conditions assessment; Numerical scheme indicates if the rep-

resentations are implicit or explicit; Calibration shows the procedures applied to match

modeling results and parameters; andWater Resources Management considers if the study

presented supports water resources management.

Hydrological simulation is a common strategy to obtain flow information and to

represent diffuse loads in the watershed scale; results are hydrographs and pollutographs

in a specific location of the basin. However, this approach involves a high number of

parameters, usually not available, that may compromise model calibration. Moreover,

the results often are applied only to a basin portion, because the flow routing phase

is neglected or very simplified. This approach has been used to develop water quality

indexes (Torres-Bejarano et al., 2011), to analyze the impacts of discharged sewage on

downstream water quality (Sokolova et al., 2015), to study scenarios (population growth

and industrial sector, installations of hydro-electric power stations) (Larentis et al., 2008),

and to develop risk maps (Zhou et al., 2011).

Hydrodynamic modeling, on the other hand, provides flow representation closer

to reality, and it is appropriate to simulate changes, such as alterations in water qual-

ity through hydraulic modifications in the channel: gate operations (Feng et al., 2012;

Hwang et al., 2014), sluice regulation (Zuo et al., 2015) and distinct morphological con-

ditions (Wagenschein and Rode, 2008). This approach, linked to water quality, also have

been applied to recommend mechanisms to maintain maximum allowable limit for pol-

lutants, mainly through improvement of treatment efficiencies in wastewater plants and

enforcement of effluent standards (Kanda et al., 2015).

Numerical methods are a fundamental aspect of modeling flow and water quality

based on conservation laws. Finite difference methods, explicit or implicit, are the most

common procedures for one-dimensional problems. These schemes are based on the prin-
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ciple of differential equations into algebraic expressions, in which derivatives are converted

into finite differences (Chaudhry, 1979). In general, they have first or second order of ac-

curacy, are simple for computational implementation and generate results quickly (Li and

Jackson, 2007).

Usual explicit schemes are: FTCS (Foward Time-Centered Space), MacCormack,

Quadratic Upstream Interpolation for Convective Kinematics, Leap-Frog and Lax. Simi-

larly, common implicit representations are Backward Time-Centered Space, Crank-Nicolson

and Preissman. The explicit method is less complex for implementation, but its solution

stability is conditioned to the simulation time interval. To Paiva et al. (2011), hydrody-

namic modeling through these schemes have become interesting because of the easiness

of programming parallelization. In addition, the algorithm’s practicality is an advantage

when considering nonlinear problems and simulation of modifications in complex systems,

such as urban streams.

In the implicit procedure, the definition of temporal discretization is less restrictive

than that of the explicit one, although some studies indicate loss of results quality when

increasing the Courant number (e. g. Gajdos and Mandelkern, 1998; Hashemi et al.,

2007). In this type of method, the solution involves the resolution of a system of equations,

which sometimes causes an increase in the total simulation time due to the size of the

matrices (Kalita and Sarma, 2012).
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2.10 Summary and thesis contribution

Several questions arise in the representation of flow and contaminant transport

in rivers, as summarized in figure 6. The scheme also presents how these aspects are

considered in this thesis, and what are the main contributions.

Numerical solutions are associated with numerical diffusion, stability, consistency

and convergence limitations. In the hydrodynamic module, channel hydraulic aspects

(cross sections, rating curves and spatial representation, for example) and lateral contri-

butions evaluation (tributaries and contributions by hydrological processes) are essential.

Water quality, in its turn, depends on external inputs (linked to complex watershed pro-

cesses and its interaction), advection and dispersion, besides transformation processes

(physical, chemical and biological) and other interactions, such as water-sediment and

water-atmosphere. In addition, calibration and proper tools for results interpretation are

key aspects.

The main contributions of this thesis are related to the subjects: uncertainty due

to input data, model requirements versus sampling frequency, and calibration challenges,

using an unique integrated analysis for simulations of water quality in rivers. As presented

in table 3, although efforts have been made in calibrating models that consider variation

over time, there is a lack of reliable and efficient procedures to understand the temporal

variation of processes that calibration incorporates. In addition, although boundary con-

ditions has been indicated as an important aspect, its role and forms of description has

not been well explored in the proposed context.

This research also draws attention to the need of an analysis regarding risk in water

management, using the concept of duration curves. This tool combines the characteris-

tics of a stream throughout the range of variability, without regarding the sequence of

occurrence; it may be applied to guarantee flexibility to framework classifications, verify

the frequency of transgressions, or to estimate critical periods and locations, defining ad-

equate planning for water withdrawals and effluent releases throughout the year; in the

same way, in occasions of high demand, it is possible to regulate fees for water use.

Derived from the hydrological field, this concept has been in general use since 1915

(Searcy, 1959). In water quality, it have generally been performed through simulations

under steady state (Brites, 2010; Calmon et al., 2016) and hydrological modeling (Park

and Roesner, 2012; Cho and Lee, 2015), monitoring data from rivers (Oliveira et al.,

2011; Cunha et al., 2012) and reservoirs (Cunha et al., 2011). Although this product

can be generated using these diverse tools, this research provides an unique analysis that

complements the information given by duration curves: water quality modeling along time

and space in rivers allow to identify and predict, for example, where and when critical

events occur.
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Figure 6: Scheme of development of the thesis and the main aspects involved
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3 Integrated modeling

text

I didn’t want to just know names of things. I remember really wanting to know how it all

worked.

– Elizabeth Blackburn

The methods applied in this research are based on mathematical and numerical

modeling, using the Iguaçu river as case study. The first step is to estimate velocity

and cross sections areas. For the water quality modeling, the challenge is to properly

represent mass balance for the simulated parameters under unsteady regime, conciliating

a calibration procedure and proper representation of boundary conditions.

The main demand in order evaluate this later aspect lies in converting the historical

monitoring dataset into the required time series for numerical solution, while accounting

for conditions that are continuously changing over time. The problem is schematic in

figure 7.
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Figure 7: Scheme of the problem in convert discrete sampling data into continuous information;
point: observed data (snapshots), continuous line: continuous information

In general, modeling studies aim to interpolate and extrapolate available informa-

tion, in order to understand or to identify what is not known about a system, and to

prepare for future scenarios. In such a context, this thesis proposes a integration between

deterministic modeling and synthetic series generation. While the second allows to over-

come data limitation, combining uncertainty factors and requiring minimal knowledge

about the system (the historical data set provides the necessary information), determin-

istic modeling accounts for the transfer of matter through contours of a control volume;
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several aspects are integrated, such as channel hydraulics, dispersion, transformations pro-

cesses (due to chemical, biological and physical interactions), point and diffuse pollution

dynamics.

Figure 8 represents a scheme of the integrated analysis proposed in this research for

the hydrodynamic, time series and water quality modules. The SIHQUAL model is a tool

to propagate discharges and concentrations in streams in the longitudinal direction. De-

veloped using Matlab R©, the model has a module to solve the Saint-Venant equations, that

generates water velocity and cross sections areas to be used in the advection-dispersion-

reaction module. The solution in two phases is possible because it is assumed that the

studied substance does not affect the river flow or fluid properties.
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Figure 8: SIHQUAL modules

The numerical schemes used are finite difference, with explicit representation: Lax

diffusive scheme for the hydrodynamic module, and FTCS to solve the water quality

module. Appendix A.1 presents the numerical representations and stability criterion.
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These numerical techniques have generated stable results, confirming that the as-

sociation of explicit methods, although not common in similar studies, is feasible and

efficient. This solution, despite more sensible to simulation time steps, has the advantage

of simple implementation, which may be beneficial when studying complex systems, such

as urban watersheds.

3.1 Hydrodynamic module

The Saint-Venant equations are the one-dimensional expressions for mass and mo-

mentum conservation. Presented in 1871, by Adhémar Barré de Saint-Venant, the equa-

tions are widely applied to represent flow routing (Hwang et al., 2014; Serrano, 2016),

flood prediction (Alekseevskii et al., 2014), dam ruptures effects (Peng, 2012), and surface

and subsurface runoff (Hughes et al., 2015).

Considering the wide number of variables that characterize flow in rivers, and the

complex channel geometry, some assumptions are made in order to apply the conservation

principles represented by Saint-Venant (Liggett, 1975):

• uniform velocity in each cross section, varying over the longitudinal direction;

• vertical accelerations not considered; hydrostatic pressure distribution;

• average slope of the channel bottom is sufficiently small to approximate the sine by

the tangent of the inclination angle;

• friction losses are not significantly different from those in the steady flow; therefore,

the Manning equation or similar can be used;

• invariable bed channel (erosion or sediment depositions neglected);

• longitudinal channel axis represented by a rectilinear reach with low bed slope;

• incompressible flow.

Through these simplification, the Saint-Venant equations may be written as (Liggett,

1975):

B
∂y

∂t
+ UB

∂y

∂x
+ A

∂U

∂x
+ U

∂A

∂x
= q (3.1)

∂U

∂t
+ U

∂U

∂x
+ g

∂y

∂x
=

q (vL − U)

A
+ g (S0 − Sf ) (3.2)

where B represents the cross section top width (m) – which varies with flow depth y (m)

-, U is the longitudinal velocity of the flow (m/s), A is the cross section area (m2), q is the

lateral contribution per unit of channel length (m3/sm), g is the acceleration of gravity

(m/s2), vL is the input velocity of the lateral contribution in the longitudinal direction
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(m/s), S0 is the bottom slope of the channel (m/m) and Sf refers to the friction slope

(m/m). The terms of equation (3.2) represent, respectively: (i) local acceleration; (ii)

convective acceleration; (iii) pressure force; (iv) momentum flux of the lateral contribution;

(v) gravity and friction force.

Equations (3.1) and (3.2) describe the transient flow, gradually varied, in a channel

with irregular cross sections and lateral contribution. The mass conservation equation

represents the hydrographs damping effects, that occur due to variation of the storage

capacity. The expression for momentum conservation, in its turn, considers the balance of

forces acting on the mass of water, which includes gravity, friction, pressure and inertia of

the flow. In the latter are expressed the translation effects. The use of the hydrodynamic

model allows to represent downstream effects, such as backwater and tides.

The lateral contribution q represents the inputs and outputs of flow. Point contribu-

tions include releases (domestic and industrial wastewater or tributaries) and withdraws.

Examples of diffuse sources are precipitation and evaporation at surface water, infiltration

into the soil and runoff.

Although Manning and Chézy’s equations were developed for uniform and steady

flow, it is accepted that they are well suited for the calculation of resistance in open

channels with unsteady regime (Chow, 1959; Liggett, 1975). Therefore, the Manning

equation can be used to estimate the friction slope in m/m (Stepien, 1984):

Sf =

(
nU

Rh
2/3

)2

(3.3)

where n represents the Manning roughness coefficient and Rh the hydraulic radius (m).

According to USACE (1993), other equations can be used to evaluate the term Sf ,

such as Einstein (1950), Simons and Sentürk (1976), and ASCE (1975). However, they

are avoided due to the presence of sediment-related parameters, and the need for iterative

solutions.

The Manning roughness coefficient represents the resistance due to friction in the

channel, and several factors interfere in its determination, such as: flow event (drought

or flood), presence of vegetation and obstructions (bridges and gates, for example), bed

material, irregularity of the cross sections, and river alignment (presence of meanders or

rectified stretches) (Chow, 1959; Arcement and Schneider, 1984). Given such uncertain-

ties, this coefficient becomes a calibration parameter.

Given this background, in order to solve the hydrodynamic model, the following

information is required: geometry of cross sections and distance between them, lateral

contributions, Manning roughness coefficient, and initial and boundary conditions. The

solution steps are summarized in figure 9.

The cross sections of the monitoring points are represented by a trapezoidal shape,
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assuming to be symmetric. Therefore, the information required are bottom width and side

slope. It is also considered that these values do not vary over the time interval analyzed.

Discharges
Water levels
Cross sections
Rating curves 
Boundary and initial conditions

Start

Water levels
Areas
Velocity
Widths

Temporal and spatial 
discretization

End

Lateral contribution 
calculation

Lax diffusive scheme

Discharges

Rating curve 
equation

CalibrationEns

Roughness coefficients
Bed slope

NO

YES

Ens = Nash-Sutcliffe coefficient
Cr = Courant coefficient 

Cr < 1

Figure 9: Scheme of the hydrodynamic module

The lateral contribution is estimated by the difference between the hydrographs

observed at the known points, divided by the distance between them. In consequence,

the total balance between water outlets and inlets in the main channel is evaluated.

It is considered that the lateral contribution is evenly distributed along the length of

each reach. Because of the lack of information, it is also admitted that the lateral flow
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entering or leaving occurs in the same main river velocity, a hypothesis also assumed by

Steinstrasser (2005) in a similar study.

Because of numerical stability, the criterion of Courant coefficient (Cr, defined in

appendix A.1) defines the required time step. Results are compared as discharges and

levels in the monitoring stations, using as measure the Nash-Sutcliffe coefficient (Ens):

Ens =
1−∑N

t≡1 [Qobs(t)−Qsim(t)]
2∑N

t=1 [Qobs(t)−Qmed]
2

(3.4)

where Qobs is the observed discharge, Qsim represents the discharge simulated with the

model and Qmed is the average of the flows observed in the period t = 1,2,...T (T is the

total number of data); Ens oscillates from −∞ to 1, with an optimum value of 1.

3.2 Synthetic series module

To convert the available data into continuous information, the techniques applied

are PCHIP (Piecewise Cubic Hermite Interpolating Polynomial) and smoothing spline

interpolation functions, Fourier series, first order autoregressive model and random log-

normal series. The first ones explore different techniques to link concentrations to flow

conditions and time. The autoregressive model, on the hand, considers statistical indi-

cators of the historical monitoring dataset – mean, standard deviation, quartiles, and

concentration with 10 and 90% of occurrence –, dependency on past concentrations, and

a random variability (this last part allows to evaluate multiple scenarios). The model of

first order is applied because it is a fast and parsimonious method to investigate multiple

scenarios; considering the limited dataset available, models of higher orders could lead to

more uncertainty, since additional parameters would have to be calibrated.

The Fourier series has the form (MathWorks, 2017a):

f (x) = a0 +
N∑
i=1

a1 cos (ixw) + b1 sin (ixw) (3.5)

where w is the fundamental frequency of the signal, N is the number of terms (harmonics)

in the series.

The smoothing spline s is constructed for the specified smoothing parameter p and

the specified weights wi. This procedure minimizes the function (MathWorks, 2017b):

p
∑
i

wi(yi − s (xi))
2 + (1− p)

∫ (
d2s

dx2

)2

dx (3.6)

If the weights are not specified, they are assumed to be 1 for all data points. The

parameter p is defined between 0 and 1, automatically set in Matlab.
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Figure 10 shows an example of data infilling, using functions for data fitting in

Matlab (smoothing spline curve and Fourier series) and the BOD available series.

02/07/07 01/01/10 02/07/12 01/01/15 02/07/17
 

-20

0

20

40

60

80

C
B

O
D

 (m
gO

2/L
)

IG2

 

Figure 10: Test for infilling BOD data

The autoregressive process of first order – AR(1) – is represented by a recursive

equation determined by random variables, which can be written as (Loucks and Beek,

2017):

Cj+1 = μ+ ρ (Cj − μ) + zjσ
√
1− ρ2 (3.7)

where C is the concentration at the interval j, ρ is the sample correlation coefficient,

which indicates the dependency between time intervals (deterministic component); μ is

the mean of C, σ represents the standard deviation of C ; z j is the portion responsible for

the random variability in the time series. The distribution of random variables is a key

component in this model.

Figure 11 describes the procedure used to estimate the different configurations of

AR(1) modeling. This process assumes that the dataset has normal distribution, so, in

order to verify this condition, quantile-quantile plots are evaluated (presented in Appendix

A.2); they compare quantiles of the sample data with the theoretical values from a normal

distribution. The dataset indicate a violation of the normality assumption (qqplots are

non-linear); on the other hand, natural logarithms of the dataset are suitable for modeling.

Nonetheless, several non-Gaussian first order linear autoregressive models are available

in the literature, as reviews by Grunwald et al. (1996). In another step, a value is

attributed to the parameter ρ, since the irregular time series does not allow to define

sample correlation.

Because AR(1) procedures have a stochastic component (represented by the random

distribution with zero mean and unit variance), a thousand different sets of concentra-

tions are generated (except test T10, that generates data at each 50 s; due to processing

limitations, only twenty options are evaluated in this test, instead of thousand). In or-
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der to eliminate the influence of initial values, the series is generated with extra twenty

values, and the first ones are ignored. Because multiple scenarios are generated, different

criterion are used to select a series (as presented in figure 11). At last, all time series

generated via AR(1) are considered as daily samples.

The fitted models are validated through residual analysis: independence (Portman-

teau test), homoscedasticity (Levene test) and normality (Kolmogorov-Smirnov test). The

results of each test are presented in appendix A.2.
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Figure 11: Scheme of time series generation and selection using the AR(1) model

Table 5 summarizes the different configurations for the AR(1) modeling explored

in this research, besides tests with random log-normal series and interpolation functions

(PCHIP, Fourier series and smoothing spline). The tests presented in this section are

applied for BOD in section IG2 (boundary condition).

Test T1 and T2 have the objective to identify the influence of seasonal variation

(in south hemisphere) for AR(1) series generation. Tests T3, T8, T9 and T10 explore
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effects of temporal interval generation, while T4 explores sampling frequency versus time

series prediction with AR(1). T5 shows if in fact the AR(1) is representing the range of

observed concentrations. Experiment T6 tests the model ability in simulate the entire

period of available data, using the same procedure applied in test T1; besides option a

and b for series selection among the thousand series (as presented in figure 11), this test

also compares: c. series closer to the data measured in 2013-2015, d. euclidean distance

between the monitored series and simulated, and e. dynamic time warping (an algorithm

to compare time series; Mathworks, 2018).

A few indexes are used as reference to compare the fitted series, as presented in

table 4; they are calculated considering only the available measured data in the period

of simulation and the corresponding simulated data. The exception is test T6: option c

compares the data measured in the period 03/18/2013 to 03/18/15, d and e compare all

available data.

The coefficient R reflects the linear relationship between the datasets, while the

RMSE computes differences between simulated and observed values. The Percent bias

(PBIAS ) demonstrates the average tendency of the simulated data to be larger or smaller

than observed values; low-magnitude PBIAS indicate accurate model results, with an

optimal value of zero; positive values indicate model underestimation bias, and negative

values indicate model overestimation bias (Gupta et al., 1999). MAPE is the average

of absolute percentage errors, with optimal value of zero; upper level has no restriction

(Parmar and Bhardwaj, 2014).

Table 4: Measures for goodness of fit for the generated time series

Statistic

Pearson correlation coefficient (R) R = 1/(N − 1)
N∑
i=1

(
Mi − μM

/
σM

)
(Si − μS/σS)

Root Mean Square (RMSE) RMSE =

√
N∑
i=1

(Mi − Si)
2

/
N

Mean Absolute Percentage Error (MAPE) MAPE =
N∑
i=1

∣∣∣Mi−Si

Mi

∣∣∣/N

Percent bias (PBIAS) PBIAS =
N∑
i=1

(Mi − Si) 100

/
N∑
i=1

Mi

where N = number of data, S = simulated concentration and M = observed concentration; μM and σM

= are the mean and standard deviation of M, respectively, and μS and σS = are the mean and standard
deviation of S.
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Table 5: Summary of the tests performed to estimate synthetic pollutographs

Test Description Objective

T1 Seasonal μ and σ, ρ = 0.5, generating daily data Check if seasonal parameters generate
a closer series to data than using
values of the entire datasetT2 μ and σ of entire dataset, ρ = 0.5, generating daily

data

T3 μ and σ of entire dataset, ρ = 0.5, generating weekly
data; daily data is generated using linear interpola-
tion

Explore effects of temporal interval gen-
eration

T4 μ and σ of dataset for 2010, ρ = 0.5, generating daily
data

Estimate daily concentration if the
monitoring data is available only for the
simulated year

T5 Seasonal μ and σ, ρ = 0.5, generating daily data
(same conditions as T1); the comparisons consider
all data as if were measured in 2010

Check if the model fitted in T1 repre-
sents the range of observed concentra-
tions

T6 Seasonal μ and σ, ρ = 0.5 (same conditions as T1);
generating daily data for the entire period

Verify the capacity of the model ad-
justed in test T1 to represent the entire
period of monitoring

T7 μ and σ of entire dataset, ρ = 0.8, generating daily
data

Explore other persistence scenarios

T8 Seasonal μ and σ, ρ = 0.5, generating hourly data
(daily concentrations are means)

Explore effects of temporal interval gen-
eration

T9 Seasonal μ and σ, ρ = 0.9, hourly data; daily data is
mean

Explore other persistence of hourly se-
ries generation

T10 μ and σ of entire dataset, ρ = 0.99, generating data
at each 50 s; 20 options

Explore effects of temporal interval gen-
eration

T11 Random series as a two - parameters log-normal dis-
tribution with same seasonal μ and σ of the observed
dataset; generating daily data; no extra data gener-
ated

Explore other series distribution

T12 Hydrib AR(1) model with μ = 0, σ = 1; random
component is a two- parameters log-normal distri-
bution with same seasonal μ and σ of the observed
dataset; ρ = 0.5; no extra data generated

Explore other random component in
the AR(1) model

I1 PCHIP (Piecewise Cubic Hermite Interpolating
Polynomial); daily data

Explore the relationship discharge and
concentration, using PCHIP interpola-
tion

I2 Fitting with a Fourier series truncated in the fifth-
term, using as parameters daily discharge and the
monitored concentration; daily data

Explore the relationship between dis-
charge and concentration, using a
Fourier series

I3 Fitting with a smoothing spline, in which the pa-
rameters are date and observed concentrations; daily
data

Explore interpolation using dates
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3.3 Water quality module

The distribution of a constituent in water is represented by the physical greatness

concentration. Considering the processes of advection, dispersion, reaction linked to the

principles of mass conservation, concentration of a given substance in a system with

predominant flow in the longitudinal direction may be expressed mathematically by:

∂C

∂t
+ U

∂C

∂x
− D

A

∂A

∂x

∂C

∂x
−D

∂2C

∂x2
± F = 0 (3.8)

where C is the mean cross-sectional concentration of a given constituent (kg/m3), D

represents the longitudinal dispersion coefficient (m2/s), and F is the term for mass

transformations and external loads (kg/m3s).

The term of transformations in equation (3.8) includes variations that occur inde-

pendently of the transport process. It represents losses or gains of mass due to chemical

processes (chemical reactions in general), physical (decantation of particulates, for exam-

ple) or biological processes (such as growth and death of algae) within the system. In

general, such processes are described by first order kinetic reactions and values based on

the literature (Chapra, 1997).

Using the explicit method FTCS for numerical solution, the algorithm to solve the

water quality module follows the process summarized in figure 12. The numerical solution

for the water quality module has been validated comparing a few simplified cases with

analytical solutions (Ferreira, 2015).
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Figure 12: Scheme of the water quality module
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The parameters simulated in this research are biochemical oxygen demand (BOD),

dissolved oxygen (DO), organic nitrogen (N-org), dissolved organic carbon (DOC), labile

and refractory dissolved organic carbon (LDOC and RDOC, respectively), particulate or-

ganic carbon (POC), labile and refractory particulate organic carbon (LPOC and RPOC,

respectively). The term F for each of these constituents can be expressed by:

(a) BOD (Brown and Barnwell, 1987):

FBOD = −(Kd +Ks)CBOD +WBOD/V (3.9)

where CBOO is the BOD concentration (mg-O2/L), Kd represents the deoxygenation rate

(d–1) and Ks is a coefficient for BOD removal by sedimentation (d–1); WBOD is the BOD

load entering the system (kg/d), and V is the volume (m3).

(b) N-org (Chapra, 1997):

FNorg = −KoaCNorg −KsoCNorg +WNorg

/
V (3.10)

where CNorg is the organic nitrogen concentration (mg/L), Kso is the sedimentation coef-

ficient of organic nitrogen (d–1), and Koa is a coefficient for conversion of organic nitrogen

to ammonia (d–1); WNorg is the N-org load entering the system (kg/d).

(c) DO (Brown and Barnwell, 1987):

FDO = Ka (Os − CDO)−KdCBOD −K4/H − α5β1Na − α6β2Nb (3.11)

where Ka is the reaeration coefficient (d–1), Os represents the dissolved oxygen saturation

concentration (mg-O2/L), CDO is the DO concentration (mg-O2/L),K4 is a rate for oxygen

demand by the sediment (gO2/m
2d), H defines the water mean depth in the channel (m),

α5 represents an oxygen rate consumed by each unit of oxidized ammonia (mg-O2/mg-

N2), α6 is a rate of oxygen consumed by each unit of oxidized nitrite (mg-O2/mg-N),

β1 is ammonia oxidation rate (d–1), β2 is a nitrite oxidation rate (d–1), Na is ammonia

concentration (mg-N2/L) and Nb defines a concentration of nitrite (mg-N2/L); Na and Nb

are considered as the monitored dataset average in each section.

The equations to represent DOC and POC internal processes are based on an

adapted model suggested by Chapra (1997). Originally, these expressions were proposed

to represent nutrient/food-chain interactions in a stratified lake. In a second strategy

to represent organic carbon in rivers, segmentation of labile and refractory fractions are

estimated through expressions proposed by Knapik et al. (2016). This study presented a
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model under steady state to represent this four components in the Iguaçu river, including

settling and resuspension of particulate fractions, mineralization to inorganic forms (am-

monia, phosphate, inorganic carbon), dissolution from particulate do dissolved fractions,

and decay between labile and refractory organic carbon (figure 13).
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Figure 13: Conceptual segmentation for modeling organic carbon fractions with strategies (1)
and (2). Source: Chapra (1997) and Knapik et al. (2016)

(d) DOC (Chapra, 1997):

FDOC = KpCPOC −KhCDOC +WDOC/V (3.12)

where CDOC is the DOC concentration (mg-C/L), CPOC is particulate organic carbon

(mg-C/L); Kp is the particulate organic carbon dissolution rate (d−1) and Kh represents

the dissolved organic carbon hydrolysis (mineralization) rate (d−1); WDOC is the DOC

load entering the system (kg/d); CPOC is considered as the monitored dataset average in

each section.

(e) POC (Chapra, 1997):

FPOC = −KpCPOC −KsCPOC +WPOC/V (3.13)

where Ks is particulate organic carbon sedimentation rate (d−1); WPOC represents POC

load entering the system (kg/d).

(f) LDOC:

FLDOC = KL5CLPOC −KL7CLDOC −KL8CLDOC +
WLDOC

V
(3.14)
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(g) RDOC:

FRDOC = KL6CLPOC −KL7CLDOC +KR4CRPOC −KR5CRDOC +
WRDOC

V
(3.15)

(h) LPOC:

FLDOC = −KL1CLPOC −KL3CLPOC −KL4CLPOC −KL6CLPOC +
KL2

H
+

WLDOC

V
(3.16)

(i) RPOC:

FRPOC = KL4CLPOC −KR1CRPOC −KR3CRPOC −KR4CRPOC +
KR2

H
+

WRPOC

V
(3.17)

where CLDOC , CRDOC , CLPOC , CRPOC are LDOC, RDOC, LPOC and RPOC concen-

trations (mg-C/L), respectively; H is depth (m), KL1 is settling of LPOC (d−1), KL2

represents resuspension of LPOC (gm−2d−1), KL3 is mineralization of LPOC (d−1), KL4

is decay of LPOC to RPOC (d−1), KL5 is decay of LPOC to LDOC (d−1), KL6 is decay

of LPOC to RDOC (d−1), KL7 is decay of LDOC to RDOC (d−1), KL8 is mineralization

of LDOC (d−1); KR1 is settling of RPOC (d−1), KR3 is mineralization of RPOC (d−1),

KR4 is decay of RPOC to RDOC (d−1), KR2 is resuspension of RPOC (gm−2d−1), KR5

is mineralization for RDOC (d−1); WLDOC , WRDOC , WLPOC , WRPOC are LDOC, RDOC,

LPOC and RPOC loads entering the system (kg/d), respectively.
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4 Study case: Iguaçu river

text

Data are just summaries of thousands of stories.

– Dan Heath

The Upper Iguaçu watershed is located in the metropolitan area of Curitiba, capital

of Paraná (Brazil), and has approximately 2 million inhabitants. It covers 3000 km2,

where 30% of the state population is concentrated. The control volume in this research is

90 km in length, draining regions with different land use: urban occupation, temporary

agriculture, meadows and other vegetation categories.

The dataset selected is from 2005 to 2016, with approximately four annual cam-

paigns. The sections of interest (IG2 – upstream, IG3, IG4, IG5 and IG6 – downstream),

shown in figure 14, are located along the main channel, separated by distances between

18 and 24 kilometers. The points IG2, IG3, IG4, IG5 and IG6 are located at the stations:

Bridge BR-277 (65009000), Umbarazinho bridge (65017006), Wastewater Treatment Plant

Cachoeira (65019980), Guajuvira bridge (65025000) and Balsa Nova (65028000).

 

PARANÁ

BRAZIL

Figure 14: Upper Iguaçu watershed and monitoring points

Sections IG2, IG3 and IG4, inserted in the urban area, receive significant contribu-

tions of domestic and industrial wastes, and inputs from surface runoff; points IG5 and

IG6, on the other hand, drain an agricultural region, receiving loads from tributaries less

impacted than the upstream reach (table 6).
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Table 6: Percentage of land occupation by each of the main land classes in the Upper Iguaçu
watershed

Urban Agricultural Forest

IG2 57.2 42.8 0

IG3 28.6 63.4 8

IG4 30.7 63.1 6.2

IG5 19.6 68 12.4

IG6 9.7 72.5 17.8

Source: Porto et al. (2007)

4.1 Input data

The dataset for water quality parameters in the period of 2005 to 2017 (concen-

tration and respective discharge), collected at approximately quarterly campaigns, are

presented in Figure 15. The number of pairs oscillate between 36 and 55 for each section

of interest (details in table 7). Further information about the data (methods used for

sample collection, processing, and analysis) are described in Knapik (2014).

Figure 16 presents the BOD dataset as seasonal measures (mean, standard devia-

tion and medians); this parameter is the main study case to investigate synthetic series

generation in this research.

The underlying hypothesis assumed for the tests is that the twelve years of moni-

toring data in the Iguaçu river adequately represent the variability of concentrations. Ap-

pendix A.3 shows an analysis exploring this assumption. In a similar analysis, Williams

et al. (2014) presumed that a set of five years sufficiently described sample median and

log-normal standard deviation of annual concentrations; the number of samples available

per year ranged between one and eight in their study.

Flow data is available as daily records, as shown in figure 17 for the periods

01/01/2010 to 12/01/2010, 01/01/2011 to 12/01/2011 and 03/18/2013 to 03/18/2015

(for this latter data for IG3 and IG4 are not available). These periods represent hydro-

logically contrasting conditions, which is important to test the model ability in reproduce

different scenarios.
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Figure 15: Monitoring data for BOD, N-org, DOC and DO concentrations (circle, first column)
and respective estimated discharge (plus sign, second column) in the Iguaçu river

Table 7: Number of samples

BOD DOC N-org DO

IG2 55 52 50 48

IG3 54 51 46 42

IG4 53 45 47 41

IG5 54 51 47 41

IG6 50 47 43 36

IG2 IG3 IG4 IG5 IG6
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Figure 16: Seasonal monitoring data: means, standard deviation and medians
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Figure 17: Daily flow data in the Iguaçu river for the years 2010, 2011 and 2013-2015

The observations of level and flow measurements were conducted during the period

presented in table 8, although it does cover the amplitude of maximum flows. The rating

curve extrapolation is performed through the logarithmic method, which is based on

equations of uniform flow, assuming a regular cross section (figure 18).

Table 8: Period of observation level - discharge
Section Period Number of observations

IG2 13/12/1973 to 11/12/2013 213

IG3 13/12/1973 to 01/06/2016 134

IG4 16/09/1999 to 12/12/2012 48

IG5 17/08/1973 to 30/03/2016 143

IG6 17/08/1973 to 24/03/2016 120

Source: Adapted from Instituto das Águas do Paraná (2017)
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Figure 18: Rating curves for the monitoring sections; fitted equations have the form Q = a(y −
y0)

r, where y is elevation corresponding to discharge Q, y0 represents the elevation
for a null flow, a and r are constants determined using the method of least squares.

Pollutant loads released in the main channel are estimated based on population data

and land use of each tributary’s sub-basin. Population is divided into inhabitants with

i. sewage collection and treatment, ii. sewage collection and no treatment, and iii. no

sewage collection (data estimated by Porto et al., 2007 in the Upper Iguaçu watershed);

the loads not collected are considered as diffuse pollution. Three land use categories are

used: urban, agriculture and forest (table 6). Export rates associated with each land use

are adopted from literature (table 9). As a way of considering the decay of the pollutants

load along the watershed, coefficients of attenuation as a function of distance are applied

(Munafo et al., 2005; Cecci et al., 2007) – parameter DIi in table 10.

A schematic diagram with the main input’s location is reproduced in figure 19),
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while table 10 presents the equations used to estimate their contributions. The total load

in each reach (IG2-IG3, IG3-IG4, IG4-IG5 and IG5-IG6) is considered as constant inputs

linearly distributed; its variation over time for unsteady simulations are due to dilution

fluctuations, provided by the hydrodynamic module.

Table 9: Export coefficients used in the simulations

Parameter
Assumed values(1)

Urban Agricultural Forest

DBO 100 100 150

N-org (2) 146 146 110

DOC 500 1000 1000

POC 500 1000 1000

(1) based on literature range suggested by Von sperling (2007), Chapra (1997) and Mattsson et al.
(2009); (2) export coefficient estimated from total nitrogen values
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Figure 19: Topological diagram of the Upper Iguaçu Basin, with main tributaries and monitoring
sections. Source: adapted from Porto et al. (2007)

Table 10: Equations used to estimate lateral sources

Description Equation

Domestic wastewater flow (BOD and N-org) QD = popreach ×QPC ×R/86400

Domestic wastewater load (BOD and N-org) WD = QD × Ccapita

Domestic wastewater load (DOC) WD = QD ×Wcapita

Diffuse pollution attenuation DIi = e−Di×k

where QD is the domestic effluent flow (L/s); popreach is the population from each reach (inhab); QPC
is per capita flow (L/inhab.d); Rs is the coefficient of sewage return; WD is the load from non-treated
effluent (mg/s); C capita is the per capita concentration (mg/L); Wcapita is the per capita load
(g/inhab.d); DIi ia a normalized distance between a cell in the watershed and the river network, Di is
the distance between the cell and the river network, and k is a constant value set at 0.090533; sources:
Cecci et al. (2007) and Von sperling (2007)
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The values adopted for each parameters are: QPC = 150 L/inhab.d, Rs = 0.7,

treatment removal efficiency: 80% for BOD and 30% for N-org; C capita for BOD = 280

mg-O2/L and N-org = 15 mg-N/L; for DOC and POC estimation, Wcapita considered is 3.5

g-C/inhab.d (DOC) and 2 g-C/inhab.d (POC) for treated wastewater and 7 g-C/inhab.d

(DOC) and 20 g-C/inhab.d (POC) raw wastewater.

To estimate loads for labile and refractory fraction, it is adopted the same hypothesis

by Knapik et al. (2016) – who simulated these parameters under steady state in the Iguaçu

river: (i) labile fractions refer to raw effluent and the fraction collected but not treated;

(ii) refractory fractions refer to the treated wastewater; (iii) diffuse sources contribute

only with refractory fractions into the river. The values adopted for Wcapita are: LDOC

= 5 g-C/inhab.d and LPOC = 4 g-C/inhab.d (raw wastewater), RDOC = 8 g-C/inhab.d

and RPOC = 20 g-C/inhab.d (treated wastewater). All values assumed are based on the

suggested range by: Von sperling (2007), Chapra (1997) ans Servais et al. (1999).

Final results are exhibited in figure 20 for the studied periods, confirming that

reaches IG2 to IG4 receive larger amounts of mass flux, where anthropic activity is more

intense.
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4.2 Challenges of modeling the Iguaçu river at Curitiba’s
metropolitan region

The Upper Iguaçu basin drains an urban area of Curitiba and metropolitan region,

daily receiving high polluting loads. This watershed represents a typical case among

several cities, where irregular occupation of floodplains and water supply areas, as well as

an insufficient collection and treatment of wastes, compromise water quality and generate

problems for water supply systems, wastewater treatment and urban drainage (Fernandes,

2013).

This system remains subject of several studies (e. g. Knapik et al., 2016; Coelho

et al., 2017; Mizukawa et al., 2017), mostly based upon steady state analysis. Despite

the advances in understanding this particular environment, these researches emphasize

the need of integrating quali-quantitative aspects in critical basins, in order to generate

information to assist models calibration, monitoring strategies and data evaluation for

sustainable and adaptable management.

The selected parameters to characterize water quality in this system are traditional

indicators of organic matter (BOD), nutrient (N-org) and oxygen distribution (DO). In

addition, organic carbon modeling is investigated. Organic carbon is an important aspect

in water quality modeling, since its decomposition can significantly affect the oxygen

concentration in the environment. Furthermore, because many toxic components associate

with organic matter, its dynamics in a system is directly linked to generation, transport

and fate of organic carbon (Chapra, 1997).

Although not currently considered in the Brazilian legislation, Knapik et al. (2016)

argues that fractions of organic carbon (particulate and dissolved) are less subjective and

more reliable than traditional water quality parameters (such as biochemical or chemical

oxygen demand). In addition, the study of labile and refractory parts allows to identify

areas or periods vulnerable to water quality impairment: labile organic carbon is expected

to be found in areas with anthropic interference, while refractory are identified mainly in

regions where self-purification is active.
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5 Results and discussion

text

The median isn’t the message.

– Stephen Jay Gould

The algorithms are employed using the Matlab software, conducting primary simu-

lations for one year – 2010 (hydrodynamic, synthetic and water quality modules for BOD,

DO, N-org and DOC). To validate the definition of boundary condition and the calibration

procedure, simulations for a two year period are also presented – 2013 to 2015 (hydrody-

namic, synthetic and water quality modules for BOD, DOC, POC, LDOC, RDOC, LPOC

and RPOC). These periods are selected due to data availability and to maintain feasible

analysis, since larger intervals require extend computational time for processing.

In order to address the objectives and guarantee an answer to the hypothesis, this

section is organized in three main modules, as summarized in table 5. Section 5.1 presents

hydrodynamic simulations, while item 5.2 compiles results of synthetic series generation.

The following item, section 5.3, presents simulated concentrations through deterministic

modeling under steady and unsteady state – the latter approach uses a new calibration

strategy (discussed in item 5.3.1). At last, sections 5.4 and 5.5 reinforce the role of

boundary conditions and calibration challenges in modeling transport of substances in

rivers.

Extra tests conducted during the research are presented in the appendix: caffeine

modeling, based on steady behavior and first order decay (item A.4); solution of Saint-

Venant and advection-dispersion-reaction equations using Fortran language – in order to

improve efficiency and allow future extended simulations (item A.5); magnitude of the

equations terms (item A.6).
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Table 11: Summary of experiments in this thesis

Module Objective
Thesis
item

Hydrodynamic
Define input data (velocity and cross section
areas) for the WQ1 model

Flow routing simulations, comparing
water levels and discharges

Explore the effects on water depth and
discharge simulations with different boundary
conditions

5.1

Sensibility analysis for the Manning
roughness coefficient

Study the effects of different calibration sets A.10

Discharge simulation with the
HEC-RAS software

Verify the explicit numerical solution used in
SIHQUAL, and validate the channel geometry
hypothesis2

A.7

Synthetic series
Define input data (upstream boundary
condition) for the WQ model

Data fitting through PCHIP, Fourier
series and smoothing spline functions

Assess concentration based on flow conditions
and time

5.2
Synthetic series generation using
multiple configurations based on the
first order autoregressive process

Verify if a statistical approach is able to
describe concentration time series of river
sections

Calculations of different indexes Compare the generated time series

Pre and post synthetic series analysis
Verify the input data normality and check
residuals of fitted models

A.2

Application of the AR(1) model in
other case studies

Validate the method to estimate synthetic
series, using other regions and different data
availability

A.8

Monitoring boxplots versus data
quantity

Evaluate the input data representativeness
assumption

A.3

Water quality module Simulate concentrations over time and space

Estimation of lateral inputs Define input data 4.1

Steady state water quality modeling Comparison with transient results 5.3.2

Development of a procedure to define
temporal variation of kinetic rates

Propose a calibration procedure for unsteady
modeling

5.3.1

Modeling water quality parameters
under unsteady state

Validate the proposed integrated modeling
approach, applied to several WQ parameters 5.3.3/5.3.3.6

Comparison of unsteady state water
quality modeling using different
boundary conditions

Evaluate the effects of deterministic modeling
with different synthetic series as input; verify
the role of upstream boundary conditions in
transport of pollutants

5.3.3/5.4

Unsteady simulation with different
scenarios of temporal variability for
kinetic processes and lateral loads

Assess time variation of theses aspects and its
effect on transport of pollutants

5.5

Sensibility analysis
Quantify the role of kinetic processes, lateral
loads, and upstream boundary conditions

A.10

1 Water Quality 2 HEC-RAS uses an implicit solution – comparison with SIHQUAL shows results very

similar, under the same simulation conditions
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5.1 Hydrodynamic simulations

Figures 21 to 26 indicate the results for three periods: 01/01/2010 to 12/01/2010,

01/01/2011 to 12/01/2011 and 03/18/2013 to 03/18/2015 (for this latter data for IG3

and IG4 are not available). Through the procedure of trial and error, calibration was

performed using the Manning roughness coefficient for the period of 2010 (Ferreira et al.

2016). Results show that the model follow fluctuations over time and space, and that

calibration is adequate for other periods (2011 and 2013-2015).

To define upstream boundary condition, two approaches are tested in this research:

time series of levels and rating curves. The first procedure is generally better: considering

discharge comparisons, for 2010 in IG5, for example, Ens is 0.74 using the first boundary

condition, and 0.39 with rating curves (figures 21 (e) and 22 (e), respectively).

Hydraulics modifications occur at upstream from IG5, where the channel have me-

anders. Because the model propagates information from IG2 to downstream, such mod-

ifications may be not properly represented. The bed slope variation or the rating curve,

for example, may contribute for the overestimation of some peaks, as observed mainly

in section IG5. This is reflected in the comparisons of discharges for IG5, for which was

calculated a Ens of 0.39. However, the Nash-Sutcliffe coefficient is sensible to maximum

values, that the rating curve seems to not represent adequately. Oliveira et al. (2016)

showed that there is a limitation when using the concept of rating curves in transient

simulations, finding discharge differences for the same level of 150% in their study.

Additionally, the results for section IG3 show that the level is overestimated by the

model, although the discharge simulation is adequate. Despite a test performed with the

HEC-RAS model has demonstrated that the hypothesis of symmetric cross sections with

trapezoidal shape is coherent (appendix A.7), this result indicates that possibly there is

a limitation in the cross section definition (such as bottom width data).
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Figure 21: Observed and simulated discharges and levels for 2010; BC: levels time series
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Figure 22: Observed and simulated discharges and levels for 2010; BC: rating curve
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Figure 23: Observed and simulated discharges and levels for 2011; BC: levels time series
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Figure 24: Observed and simulated discharges and levels for 2011; BC: rating curve
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Figure 25: Observed and simulated discharges and levels for 03/18/2013 to 03/18/2015; BC:
levels time series
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Figure 26: Observed and simulated discharges and levels for 03/18/2013 to 03/18/2015; BC:
rating curve

5.2 Synthetic pollutographs

Figure 27 presents the results of daily for BOD concentrations in section IG2 esti-

mated through tests T1 to T12 described in table 5. The procedure is also applied to other

study cases in appendix A.8. The thousand series generated are presented as fancharts –

a plot of time-varying distribution percentiles (P10, P20, P30, P40, P50, P60, P70, P80,

P90) – shown as shaded bands around the median (Deoras, 2016).

Table 12 shows measures used as reference to compare the tests. Besides indexes

introduced in table 4, quartiles (Q1, Q2, and Q3) and concentration of 10 (C10) and 90%

(C90) of occurrence are compared; highlighted cells correspond to optimal results.

Overall, it is observed that, for the tests using seasonal parameters (T1, T5, T7,

T11 and T12), the set of thousand series have a similar behavior to seasonal mean and

standard deviations (exhibited in figure 16) of monitoring data applied for the tests in

this study. Therefore, a closer representation to the real time series pattern is expected.

To predict extreme events, T6c shows better performance (difference of observed
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and simulated 0.12 mg-O2/L – row 13 in table 12). To predict C90%, most tests generated

reasonable results, with the smallest differences between monitored and simulated in test

T1b (0.02 mg-O2/L).
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Figure 27: Synthetic series of BOD daily concentrations
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Figure 27: Synthetic series of BOD daily concentrations (continued)
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Figure 27: Synthetic series of BOD daily concentrations (continued)

The comparison in figure 27 for T1 and T2 shows that seasonal data generated

results closer to the measured data (row 2 of table 12): T1 produced smaller RMSE (0.38

mg/L) and larger R (0.91). Although T1b is closer to the data (smaller error measures),

it has higher peaks than T1a, that deviate from the series, as detected in figure 27 (T1)

during February and December.

In test T3, after generating weekly data for 2010, daily concentrations are estimated

using linear interpolation, which explains the smoother variation over time observed in

figure 27 (T3).

Experiment T4 uses only the data available in 2010 – μ = 12.39 mg/L and σ = 6.18

mg/L (entire dataset has μ = 18.57 mg/L and σ = 12.87 mg/L). In this test, measured

concentrations of 10% and 90% of occurrence are not calculated, since the monitoring

data is limited to seven values. Therefore, the comparison required to select a series in

the option a is done considering C10% and C90% of entire monitored dataset. The series

generated in this test do not significantly differ from other experiments, although a smaller

variability can be observed in figure 27 (T4).
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Experiment T5 shows that the simulated data is inside the range of observed data,

while T6 explores the simulation of the entire period of monitoring data – twelve years.

Overall, results indicate that quantiles are well estimated.

Test T7 is T1 with higher persistence (ρ = 0.8); minor differences are observed in

simulated quartiles. Test T8 and T9 explore hourly data generation: series T8 has a

smaller persistence (ρ = 0.5), so variation from one instant to another is more abrupt

than T9 (ρ = 0.9). This aspect explains the low fluctuation of daily mean concentrations

observed in T8.

Table 12: Goodness of fit between synthetic series and BOD measured concentration in section
IG2

* Test Series 
Measured - Simulated (mg/L) Error Measures 

C10% C90% Q1 Q2 Q3 σ μ RMSE R MAPE (%) PBIAS (%) 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28   
29   
30   

∗used for reference in the text

Test T10 is similar to T8, but the data is generated every 50 s – time step for

numerical solution in the deterministic model. Because of extended computational time

for processing required in this test, only twenty options are generated. Although these

tests consider a high persistence (ρ = 0.99), as expected in a series with a small time step,

some variations are still abrupt from one time step to the next (figure 28). Therefore, the
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daily means of series a and b have small variation, detected in figure 27 (T10).
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Figure 28: First 100 values of the 20 series options generated in test T10

Tests T11 and T12 differs from the previous tests; the first one is a random and

independent series, generated with a two parameters log-normal distribution (with sea-

sonal mean and standard deviation of the observed dataset); it shows higher variability

than test T12, a hybrid model with smoother variation over time. Appendix A.9 presents

water quality simulations with these tests as boundary condition, showing that simulated

concentrations follow the expected behavior.

5.3 Water quality simulations

This section presents the tests in which concentrations of water quality parame-

ters are simulated through the deterministic model, using different series as boundary

condition, and a calibration strategy based on the unsteady behavior. Additionally, the

methods for synthetic series are applied for the following stations IG3 to IG6, in order

to compare the series with those generated by the deterministic approach. Steady state

results are compared as duration curves.

Lateral pollution entering the main river is estimated through the procedure de-

scribed in section 4.1. Tests to verify input load temporal variation and sensibility are

discussed in section 5.5 and appendix A.10, respectively.

Another required input, the dispersion coefficient is considered as a constant value

during the simulations (20 m2/s), since it affects numerical solution stability, as verified

in Appendix A.1. Advection and cross sections areas are estimated through the hydrody-

namic module, assuming levels time series as upstream boundary condition.

5.3.1 Calibration strategy

Table 13 presents the ranges suggested in the literature, and the values defined

in this research for all transformation rates involved in BOD, N-org, DOC and POC

balances. Variations due to temperature are not considered, as well as the effect of

sediment resuspension.
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Table 13: List of transformation rates for simulations of BOD, N-org, DOC, POC and DO in
SIHQUAL

Parameter Literature range Assumed range

Kd (d–1) 0.02 – 3.4(1) 0.2 - 1.5

Ks (d–1) 0.05 – 0.35(2) 0.2 -0.4

Kso (d–1) 0.001 – 0.10(2) 0.01 - 0.1

Koa (d–1) 0.20 – 0.25(2) 0.18 - 0.25

Kh (d–1) – 0.05 - 0.2(4)

Kp (d–1) – 0.05 - 0.15(4)

α5 (d–1) 3.0 – 4.0(1) 3.5

α6 (d–1) 1.0 – 1.14(1) 1.14

β1 (d–1) 0.10 – 1.0(1) 0.12

β2 (d–1) 0.20 – 2.0(1) 1.0

Ka (d–1) 0.00 – 100.0(1) 0.35 - 0.6

K4 (gO2/m
2d) 0.05 – 10.0(3) 1.0 - 1.5

(1)Brown and Barnwell (1987) (2)Von Sperling (2007) (3)Thomann and Mueller (1987) (4) Based on
values calibrated by Knapik et al. (2016)

The transformation rates for each water quality constituent are calibration parame-

ters. Attempts to evaluate temporal variation of these kinetic process are conducted using

BOD simulations, with series T1a as upstream boundary condition. The basic procedure

follows five steps – figure 29: (i) based on traditional values defined by the state-of-art

literature, three intervals of variation are defined for each transformation rate; (ii) mul-

tiple time series of rates are generated as random series with uniform distribution and

variation inside each of the three intervals; (iii) one series in then selected for each control

point; (iv) interpolations are applied to define time series rates at the required time step;

(v) at last, sets of kinetic rates varying over time are calculated for each interval between

the control points, as averages of the selected series.

[P1 P2]
[P3 P4]
[P5 P6]

Three
intervals from

literature
P1 ≥ P2 ≥ P3 ≥ 
P4 ≥ P5 ≥ P6

Three Sets of multiple
time series of kinetic
rates, with amplitude 
variation inside each
of the three intervals
Y – random uniform

series

r1 = (P1 – P2) Y + P2
r2 = (P3 – P4) Y + P4
r3 = (P5 – P6) Y + P6

KIG2→ r1 (:, o)
KIG3→ r1 (:, o)
KIG4→ r2 (:, o)
KIG5→ r3 (:, o)
KIG6→ r3 (:, o)

One option (o) is
selected for each
monitoring point 

PCHIP 
interpolations

Transform data 
from monthtly
to 50s interval

KIG2-IG3= (KIG2 + KIG3)/2
KIG3-IG4= (KIG3 + KIG4)/2
KIG4-IG5= (KIG4 + KIG5)/2
KIG5-IG6= (KIG5 + KIG6)/2

Rates along time for 
each spatial interval
between monitoring

station

iii
iii iv

v

Figure 29: Scheme of the algorithm developed to generate time series of transformation rates

Experiments v1 to v9 considered different criterion mainly on steps (ii) and (iii),
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that explore how the random series are generated and how one of them is selected:

• v1: a hundred monthly time series are generated – the option selection among

them is arbitrary; transformation rates in IG2 and IG3 are inside of the interval

with higher values (r1), because this sections receive larger pollution loads; IG4 has

values in the second interval (r2), while IG5 and IG6 consider the third set (with

lower values; r3);

• v2: same conditions as v1, but with larger interval ranges;

• v3: same conditions as v1, but, in step (v), the time series are converted into means

along time;

• v4: same conditions as v1, but the series are weekly instead of monthly;

• v5: same conditions as v1, but the series are daily instead of monthly;

• v6: same conditions as v1, but different series option (also arbitrary);

• v7: same interval range as v1 in step (i); for step (ii): quartiles (Q1, Q2 and Q3)

of the monitored dataset are used to classify the daily pollutograph in IG2 (T1a

synthetic series) in four intervals (CIG2
4 � Q1, Q1 < CIG2 � Q2, Q2 < CIG2 � Q3,

CIG2 � Q3); to the days when concentration is higher (Q2 < CIG2 � Q3 and CIG2

� Q3), the time series for kinetic rates is one of the options of r1 (arbitrary among

thousand datasets); for intermediary concentrations (Q1 < CIG2 � Q2), r2; and for

smaller concentrations (CIG2 � Q1), r3 – with this procedure, also represented in

figure 30, a daily time series for rates is generated for section IG2; the rates for the

upstream sections are defined as parcels of IG2 – KIG3 is 90%, KIG4 60%, KIG5 50%

and KIG6 30% of KIG2;

r3 r2 r1 r1

Q3Q1 Q2

Figure 30: Representation of intervals used in procedure v7; r1, r2 and r3 are time series of
transformation rates attributed to each concentration interval

• v8: same conditions as v7, but the synthetic series is T9a instead of T1a;

• v9: similar conditions to v7, but the time series of IG3 to IG6 are defined similarly

to IG2, using the synthetic series instead of being a parcel of IG2.

The simulated BOD series with each calibration strategy are summarized in figures

31 and 32, comparing characteristic measures (C10, C90, Q1, Q2 and Q3 monitored ×
simulated) and coefficients of variation (CV) – to evaluate the overall variability produced

by each calibration scenario. The tests are also supported by the resultant pollutographs,

presented in figure A.20.

4Concentration in IG2
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Figure 32: Coefficients of variation (%) for time series simulated with each calibration strategy

Comparison between tests v1 and v2 shows that, although there is an increase

in overall temporal variability in IG4 to IG6 (figure 32), the pollutographs suffer more

attenuation with v2 (this aspect can be verified in figure A.20 in appendix A.11); in

addition, although higher transformation rates resulted in pollutographs more close to

the actual data – especially in IG3, the estimation of C10, Q2 and C90 (except for IG3)

is more distinct than the previous approach, v1 (verified in figure 31). Therefore, in this

research the range of variation for Kd and Ks is based on the values defined in table 13.

Part of the tests do not differ significantly in comparison with v1, such as v3 (con-

stant rates over time – the most common approach in modeling studies), v4 (weekly rates),

v5 (daily rates) and v6 (other series from the hundred options).

Procedure v7, on the other hand, generated results with higher temporal variability

(figure A.20, v7). Following this test, v8 and v9 investigate the effect of using the synthetic

series to calibrate the water quality model. Since T9a is a hourly time series, with

higher temporal variability (as previously shown in figure 27 T9), it generates rates with

corresponding oscillation over time; consequently, this calibration test produce higher

concentration peaks, in comparison with all previous experiments (figure A.20 v8).

Test v9 uses the estimated synthetic series in all sections; results show overestimated

BOD distributions, with poor estimates for C90 and quantiles; simulated C10 , on the
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other hand, is closer to C10 of the monitored dataset (figure 31). Overall, most strategies

overestimated C90 and underestimated C10.

Considering all tests, v8 is the selected approach to define calibration for the un-

steady water quality model. This test produced reasonable estimates for concentrations

quartiles in the studied period (figure 31), and temporal variability produced coefficient

of variation closer to the monitored dataset (figure 32). Final results for kinetic rates in

this research have a similar shape as Kd, showed as example in figure 33.

It should be stated that the selected approach presumes that less impacted reaches

have smaller transformation activities (minor rates to downstream of the Iguaçu river),

so concentrations and rate’s values are directly proportional.
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Figure 33: Time series of deoxygenation rates (Kd) in 2010, set as input for BOD simulations
under unsteady state

In comparison with test v3, in which the temporal variation is disregard, this

methodology adds ten seconds to water quality simulations, although this interval in-

creases with quantity of kinetic rates. Further discussions about temporal variation rele-

vance of transformation rates are presented in section 5.5, while sensibility to results are

explored in appendix A.10.

5.3.2 Steady state

The steady water quality model is originated by canceling the term ∂C/∂t in equa-

tion 3.8. The governing equation is solved using centered finite differences, with Δx = 25

m (Ferreira, 2015).

Averages over time of flow velocity and cross section area are calculated from the

hydrodynamic module results, to be used as inputs in the steady module. The hypothesis

is that this strategy does not generate results significantly different from usual methods,

such flow analysis through Manning’s equation. Since these parameters are available every

500 m, linear interpolations are performed to comply with numerical requirements.

Downstream boundary condition is the observed dataset median in the last section of

the control volume. As upstream boundary condition, a null concentration flux is adopted
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(dC/dx= 0). The transformation rates used are presented in table 14 – calibrated though

trial and error, while other required conditions are the same as those applied for the

unsteady model.

Table 14: Kinetic rates calibrated for the steady state module

Rate IG2 IG3 IG4 IG5 IG6

Kd (d–1) 1.30 0.80 0.20 0.20 0.20

Ks (d–1) 0.25 0.20 0.20 0.15 0.15

Kh (d–1) 2.50 2.00 1.00 0.50 0.10

Kp (d–1) 2.50 2.00 0.20 0.10 0.05

Ks (d–1) 3.00 2.00 0.20 0.10 0.05

Ka (d–1) 4.32 1.66 1.23 0.64 0.84

K4 (gO2/m
2d) 0.80 0.80 1.00 0.70 0.70

other rates constant over space: α5 = 3.50, α6 = 1.00, β1 = 0.12 d–1, β2 = 1.00 d–1; Kso = 0.10 (d–1),

Koa = 0.40 (d–1)

Steady state simulations in the Iguaçu river are presented in figure 34, besides

boxplots of the data collected between 2005 and 2017. Results indicate that the model

follows concentration variation over the main channel, with values close the median of

observed data – used as calibration reference. Oscillations along the river, however, are

not well represented, since the model considers external inputs as loads diffusely and

evenly distributed, and advection effects are invariable in time.

Simulations with data flow from 03/18/2013 to 03/18/2015 are also presented for

BOD and DOC (calibration parameters are the same as those calibrated for 2010, and

input load are those presented in item 5.3 using data population of 2015). Because POC

data is available only from 2012 to 2014, this parameter is simulated only for the period

03/18/2013 to 03/18/2015. Monitored concentration of TOC are also limited to this

interval; in figure 34 (h), TOC along space is generated as the sum of POC and DOC

simulations (figures 34 (f) and (g), respectively).

The dataset generated for 2013-2015 suggests that locations of point sources need to

be better adjusted, or that lateral loads are indeed overestimated for the reach IG2-IG3.

Nevertheless, results follow the expected behavior, since concentrations decrease in less

impacted regions (BOD, N-org and DOC). For DO, minimum levels occur between IG3

and IG4, due to the presence of organic matter; to downstream of this reach, reaeration

increases DO concentrations.

Figure 34 (h) allows to compare the fractions particulate and dissolved in TOC.

According to Leenheer and Croué (2003), POC usually is a minor fraction (below 10%)

of TOC, proportion that increases with river’s size and flow rate; this is verified in the
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steady simulation – absolute difference between DOC and POC decreases at points where

discharge increases.
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Figure 34: Steady simulations and boxplots of monitoring data

Higher TOC concentrations are reproduced in the areas with larger anthropic in-

fluence (IG2 to IG3). The indirectly proportional behavior of DOC/POC in the reach

IG3-IG4 exemplifies the importance of knowing the dynamic of kinetic process – since the

calibrated Kp in this reach substantially decreases (2.0 to 0.2 d−1), which means that the

dissolution process is inhibited, probably POC is accumulating (as dissolution decreases,

so it does DOC concentration); at the same time, the sedimentation might be underes-

timated, considering that in the model it does not change from one section to another

(calibrated Ks in IG3 and IG4 = 0.2 d−1).
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However, it should be considered that such interpretation is based on a limited

dataset, and that the dynamic of total organic carbon and its fractions is not entirely

known in riverine environments, so other process might be missing. Literature has shown

that the occurrence of particulate and dissolved organic carbon may be significantly vari-

able and depend on system characteristics (e. g. Metcalf and Eddy, 1991; Islam et al.,

2019).

5.3.3 Unsteady state

The series selected among the autoregressive tests to be used as upstream boundary

condition are T1a, T4b and T9b. The first represents daily concentrations based on

seasonal variations; the second is a critical scenario for modeling studies, with a limited

set of available data as input; the last series, on the other hand, illustrate a case with

high frequency data (hourly time series). In addition, series estimated through PCHIP

interpolation, Fourier series and fitting with smoothing spline (tests I1, I2 and I3) are

investigated.

The series used as boundary condition are generated as daily samples; therefore,

PCHIP interpolations in time are applied, in order to comply with the required time step

(50 s). Simulations with direct sub-daily data as input (series T10a and T9b) are also

explored (appendix A.12).

Since data is usually sampled at infrequently intervals, and during limited events,

it is not expected that models simulate daily averages equal to observed values on par-

ticular moments of the day, as mentioned by Kim et al. (2007). Therefore, following

a comparison of daily simulated concentrations, boxplots, water quality duration curves

and loads estimations assess the predictive performance of the different approaches used

in this study. Focus is on the usability of synthetic pollutographs as boundary condi-

tions for the water quality model under unsteady state, and the effects when choosing

different approaches for water resources planning and management purposes. The main

analysis are based on BOD simulations; other water quality parameters give support to

the proposed methodology and reinforce the discussions.

5.3.3.1 Biochemical Oxygen Demand (BOD) text

Synthetic series for IG2 originated with I1 and I2, presented in figures 35 and 36,

illustrate the definition of concentrations based on discharges. As verified in figure 17, that

shows hydrographs in the interval of interest, september and october are periods of low

flow; since I1 directly relates flow to concentration, in this period the model predicted high

peaks of mass distribution. Test I2, on the other hand, tends to smooth concentration

fluctuations in low flow periods. These behaviors are reproduced by the deterministic

model in downstream sections.
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Figure 35: Daily BOD simulated concentrations and monitoring data for the year 2010; BC
generated with PCHIP interpolations (test I1)

For IG3 to IG6, synthetic series with I1 and I2 generated unreasonable daily mean

concentrations; boxplots, however, illustrated in figure 38, show interquartile values sim-

ilar to the dataset (outliers are not presented).

This indicates that predictions through PCHIP interpolation and Fourier series are

not able to represent extreme values in this case, and extrapolation is poor. Such

behavior is fair, since it is well established that the dynamic between discharges and

concentrations of pollutants in a stream can be highly variable (Zhou et al., 2011; Ramos

et al., 2015).
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Test I3 is based on spline interpolations using time, showing a smooth and low

variation, with similar boxplots of data generated with synthetic series and deterministic

modeling (figure 38); the oscillations in daily data observed in figure 37 are due to lateral

contributions and calibration parameters, that introduce a certain oscillation along the

year (theses effects are further verified in section 5.5). This gradual variation over time

is unlikely able to represent the unsteady behavior.
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Figure 36: Daily BOD simulated concentrations and monitoring data for the year 2010; BC
generated with Fourier series (test I2)
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Figure 37: Daily BOD simulated concentrations and monitoring data for the year 2010; BC
generated with Spline interpolations (test I3)
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Figure 38: Boxplot of measured (M) and simulated BOD concentrations for 2010 with SIHQUAL
(S) and synthetic series (S’); I1, I2, I3, respectively in each row

Figures 39 to 42 present the simulations with T1a, T4b and T9b as input condition.

Test T1a generated larger concentration peaks during winter, because this period has

the highest means and standard deviations of the monitored dataset – supported by the

data presented in figure 16; concentrations modeled with SIHQUAL follows this expected

seasonal fluctuation (figure 39). Appendix A.13 presents the same simulation conditions

also for the period 2013-2015.

Test T4 shows that, even with a small input dataset available, the unsteady model

is able to reproduce overall system variability, since boxplots S and M are similar (figure

42 T4b); this is possible due to representation of variability in lateral inputs and kinetic
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rates (this statement is also supported by the tests in section 5.5).

Test T9b do not differ significantly from T1a in terms of overall variability, since

both time series are generated from seasonal metrics; pollutographs result of T9b show

a consistent behavior over time (figure 41), without large peaks as those generated with

T1a – this possibly occurs because persistence over time is better represented by hourly

data.
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Figure 39: Daily BOD simulated concentrations and monitoring data for the year 2010; BC
generated with series T1a
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Figure 40: Daily BOD simulated concentrations and monitoring data for the year 2010; BC
generated with series T4b
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Figure 41: Daily BOD simulated concentrations and monitoring data for the year 2010; BC
generated with series T9b

Besides test I1, tests T1b and T9b generated synthetic series with interquartile and

median similar to the dataset in IG3 to IG6, as verified in figure 42 (although it should be

stated that the series were chosen out of thousand options, and other simulations might

suggest different conclusions).
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Figure 42: Boxplot of measured (M) and simulated BOD concentrations for 2010 with SIHQUAL
(S) and synthetic series (S’); T1a, T4b, T9b, respectively in each row

The synthetic series generated for IG3 to IG6 have higher variability over time

than the series generated by the deterministic model, specially for tests I1, I2, T1a and

T9b. This is verified in figures 35, 36, 41 and 39. Such patter suggest that the synthetic

series might be representing potential conditions not predicted by the approach based on

conservation laws; in this case, the conditions are extreme events (high concentrations).

In a similar analysis, Siqueira et al. (2016) applied a deterministic hydrological model

and an ensemble approach for flood forecasting. The latter technique provides a set of

different scenarios for predicted discharges. The authors identified that, in comparison

with the first forecast method, the ensemble ones showed higher accuracy and probability
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of detection for reference thresholds. Therefore, it is suggested that peaks may be better

identified and predicted when different possible solutions are evaluated.

The boxplots for IG2 (figures 38 and 42) show that median concentrations and

interquartile interval are more similar to the measured dataset for tests I1, T1b and T9b,

which implies that these tests may be reliable as boundary conditions. This is also verified

in the duration curves built with data from each test, shown in figure 43.

The duration curves for each test are compared with the monitoring dataset from

2005 to 2017 and with curves of modeling outputs under steady state (figure 43). The

latter information is generated using multiple runs of steady solutions, with discharges of

different frequencies.
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Figure 43: Duration curves of historical monitoring dataset 2005-2017 (M) and simulations for
2010 with synthetic series (S’) and SIHQUAL results under unsteady (S) and steady
(ST) state: T1a, T4b, T9b, I1, I2, I3 presented respectively in each row
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In general, the results show an agreement between methods for concentrations of

high frequency occurrence. Representation of critical events, on the other hand, are

divergent. The most accurate tests for synthetic pollutographs at IG2 are T1a, T9b and

I1, as also suggested in the analysis of boxplots.

Figure 44 compares in detail concentrations with 10% (C10%) and 90% (C90%) of

occurrence, besides quartiles of SIHQUAL outputs with each boundary condition (Q1,

Q2 and Q3); table 15 complements it, presenting the difference in mg-O2/L between con-

centrations simulated with each test and monitored data in terms of C10%, C90%, Q1, Q2

and Q3. Larger differences are observed for section where temporal variability is higher

– mainly IG3 and IG4, that also receive larger amounts of pollution. Concentrations of

monitoring data and steady modeling are also presented for reference; steady C10% con-

centration is not shown because the numerical solution is unstable with the corresponding

discharge of 10% of occurrence.
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Figure 44: Measures C10%, C90%, Q1, Q2 and Q3 of each simulated and monitored concentra-
tions BOD dataset; M - monitoring dataset; ST - steady simulations

Results reveal the overall effects when choosing different upstream boundary condi-

tions for the unsteady approach, in comparison with the historical dataset; for all sections

most tests overestimated C90% and underestimate C10%. Table 15 shows that the absolute

differences for C90% simulated with SIHQUAL under unsteady state ranges between 1.16

mg-O2/L (IG6, I3) and 8.25 mg-O2/L (IG3, T9b).

For predicted C10%, absolute differences are between 0.67 (IG6, I1) and 31.49 mg-

O2/L (IG4, T4b). Reproduction of extreme events in this case are more sensible. Differ-

ences of simulated medians (Q2), on the other hand, ranged from 0.34 (IG3, I3) to 4.20
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mg-O2/L (IG3, I2). Often used as reference for calibration (e. g. Alaghmand et al., 2011;

Wöhling et al., 2013), median outputs may also depend on the boundary conditions.

Table 15 also allows a conceptual comparison between the three AR(1) configura-

tions (different scenarios of sampling frequency), showing that: i) the scenario with only

quarterly data in the year (T4b) produces fair C90% estimates in comparison with other

tests, but poorest estimation of events with higher concentration (C10%); ii) more fre-

quent data (T9b) did not necessarily improved results in terms of C10, Q1,Q2, Q3 or C90

estimates.

Table 15: Difference of C10%, C90%, Q1, Q2 and Q3 between monitored data and simulation
results for each test (Csimulated – Cmonitored; mg-O2/L)

Section Metric T1a T4b T9b I1 I2 I3 ST 

IG2 

C10 -0.46 -14.30 -6.58 -1.63 -10.92 -17.76 - 
Q1 0.37 -1.90 2.77 3.65 8.19 1.78 8.53 
Q2 0.58 -5.25 0.69 2.74 5.18 -2.41 2.97 
Q3 -1.12 -9.04 -2.10 1.92 -0.13 -9.03 -4.09 
C90 0.43 0.35 4.34 3.96 5.52 -1.11 12.46 

IG3 

C10 -19.53 -27.26 -22.34 -16.85 -20.64 -26.55 - 
Q1 6.41 4.47 8.20 6.90 8.55 4.66 -0.50 
Q2 2.20 -0.65 2.77 3.14 4.20 -0.34 0.06 
Q3 -1.52 -6.48 -2.94 0.97 -0.87 -5.61 -8.40 
C90 5.67 5.01 8.25 6.60 7.17 4.16 1.42 

IG4 

C10 -25.90 -31.49 -28.24 -23.43 -26.14 -30.55 - 
Q1 3.88 2.67 5.16 4.27 4.93 2.49 -0.44 
Q2 0.75 -1.29 1.14 1.28 1.93 -1.03 -1.10 
Q3 -4.70 -7.74 -5.22 -3.14 -4.11 -7.89 -8.55 
C90 2.62 1.90 4.07 2.98 3.78 1.54 -0.24 

IG5 

C10 -21.76 -26.59 -23.65 -19.67 -21.83 -25.50 - 
Q1 2.67 1.70 3.59 3.01 3.36 1.38 -0.89 
Q2 2.81 1.26 3.21 3.30 3.66 1.35 2.72 
Q3 -0.58 -3.05 -0.80 0.42 -0.05 -3.25 -1.77 
C90 3.00 2.46 4.02 3.29 3.87 2.23 -0.51 

IG6 

C10 -0.68 -4.57 -2.22 0.67 -0.87 -3.75 - 
Q1 1.55 0.79 2.15 1.78 2.00 0.45 1.82 
Q2 2.15 1.02 2.35 2.62 2.78 1.12 -0.13 
Q3 2.04 0.09 2.07 2.86 2.49 -0.11 -4.18 
C90 1.61 1.18 2.32 1.86 2.27 1.16 3.82 

 

5.3.3.2 Organic nitrogen (N-org) text

Simulations for N-org with upstream boundary condition based on interpolation

functions – I1, I2 and I3 – have similar behavior to BOD (figures 45 to 47); however, I1

and I2 generated concentrations with larger interquartile interval than expected in IG2

(as verified in boxplot of figure 48). Applied to downstream sections, the interpolation
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function I2 also produced unreasonable concentrations (specially in IG4), being more sen-

sible to flow conditions than BOD.

text text

0

10

20

30

N
o

r
g
 (

m
g
-N

2
/L

)

IG2

0

10

20

30

N
o

r
g
 (

m
g
-N

2
/L

)

IG3

0

10

20

30

N
o

r
g
 (

m
g
-N

2
/L

)

IG4

0

10

20

30

N
o

r
g
 (

m
g
-N

2
/L

)

IG5

J F M A M J J A S O N D J
Month

0

10

20

30

N
o

r
g
 (

m
g
-N

2
/L

)

IG6

Figure 45: Daily N-org simulated concentrations and monitoring data for the year 2010; BC
generated with test I1
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Figure 46: Daily N-org simulated concentrations and monitoring data for the year 2010; BC
generated with test I2
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Figure 47: Daily N-org simulated concentrations and monitoring data for the year 2010; BC
generated with test I3
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Figure 48: Boxplot of measured (M) and simulated N-org concentrations for 2010 with SI-
HQUAL (S) and synthetic series (S’); I1, I2, I3, respectively in each row

Results obtained with T1a, T4b and T9b as boundary conditions show that simu-

lated concentrations are close to overall variability of measured data (boxplots in figure

52). Large concentration peaks are generated in the daily pollutographs with test T1a

and T4b (figures 49 and 50, respectively); series T9b, on the other hand, originate daily

N-org concentration with a consistent variation, following the same pattern identified in
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BOD modeling. A similar composition of duration curves is also verified (figure 53): as

BOD, simulations for N-org differs mainly for estimation of critical events.
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Figure 49: Daily N-org simulated concentrations and monitoring data for the year 2010; BC
generated with test T1a
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Figure 50: Daily N-org simulated concentrations and monitoring data for the year 2010; BC
generated with test T4b
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Figure 51: Daily N-org simulated concentrations and monitoring data for the year 2010; BC
generated with test T9b
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Figure 52: Boxplot of measured (M) and simulated (S) BOD concentrations for 2010; T1a, T4b,
T9b, respectively in each row
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Figure 53: Duration curves of historical monitoring dataset 2005-2017 (M) and simulations for
2010 with synthetic series (S’) and SIHQUAL results under unsteady (S) and steady
(ST) state: T1a, T4b, T9b, I1, I2, I3 presented respectively in each row

5.3.3.3 Dissolved Organic Carbon (DOC) text

Following the patter of other presented parameters, tests I1 and I2 generated un-

reasonable daily mean DOC concentrations (figures 54 and 55), although interquartile

variation is reasonably similar to data (figure 57).

For BOD and N-org, even though test I3 produced smooth variations over time, a

certain oscillation is present in pollutographs, due to lateral contributions and calibration

strategy. For DOC, however, this fluctuation is imperceptible (figure 56). The same

behavior is observed from results with T4b as boundary condition: the small variability

over time in IG2 is reproduced in IG3 to IG6 (figure 59), with boxplots characterized by
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smaller interquartile range than expected (figure 61) and duration curves with a shape

nearly constant (figure 62). These results suggest that the parameter DOC travels at

almost the same speed as water, and lateral inputs and transformation effects cause

minimum changes in concentration.

Tests T1a introduced seasonal variation (figure 58), generating duration curves very

similar to the dataset (figure 62). Series T9b also produces fair results (figure 60 and 62),

although there is some overestimation, verified mainly in the boxplots of IG5 and IG6

(figure 57).

0

10

20

30

40

C
D

O
C

 (
m

g
-C

/L
)

IG2

0

10

20

30

40

C
D

O
C

 (
m

g
-C

/L
)

IG3

0

10

20

30

40

C
D

O
C

 (
m

g
-C

/L
)

IG4

0

10

20

30

40

C
D

O
C

 (
m

g
-C

/L
)

IG5

J F M A M J J A S O N D J
Month

0

10

20

30

40

C
D

O
C

 (
m

g
-C

/L
)

IG6

Figure 54: Daily DOC simulated concentrations and monitoring data for the year 2010; BC
generated with PCHIP interpolations (test I1)
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Figure 55: Daily DOC simulated concentrations and monitoring data for the year 2010; BC
generated with Fourier series (test I2)
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Figure 56: Daily DOC simulated concentrations and monitoring data for the year 2010; BC
generated with Spline interpolations (test I3)
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Figure 57: Boxplot of measured (M) and simulated DOC concentrations for 2010 with SIHQUAL
(S) and synthetic series (S’); I1, I2, I3, respectively in each row
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Figure 58: Daily DOC simulated concentrations and monitoring data for the year 2010; BC
generated with series T1a
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Figure 59: Daily DOC simulated concentrations and monitoring data for the year 2010; BC
generated with series T4b
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Figure 60: Daily DOC simulated concentrations and monitoring data for the year 2010; BC
generated with series T9b



109

text

M S'
0

5

10

15

20

C
D

O
C

 (
m

g
-C

/L
)

IG2

M S S'

IG3

M S S'

IG4

M S S'

IG5

M S S'

IG6

M S'
0

5

10

15

20

C
D

O
C

 (
m

g
-C

/L
)

IG2

M S S'

IG3

M S S'

IG4

M S S'

IG5

M S S'

IG6

M S'
0

5

10

15

20

C
D

O
C

 (
m

g
-C

/L
)

IG2

M S S'

IG3

M S S'

IG4

M S S'

IG5

M S S'

IG6

Figure 61: Boxplot of measured (M) and simulated DOC concentrations for 2010 with SIHQUAL
(S) and synthetic series (S’); T1a, T4b, T9b, respectively in each row
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Figure 62: Duration curves of historical monitoring dataset 2005-2017 (M) and simulations for
2010 with synthetic series (S’) and SIHQUAL results under unsteady (S) and steady
(ST) state: T1a, T4b, T9b, I1, I2, I3 presented respectively in each row

5.3.3.4 Dissolved Oxygen (DO) text

Similarly to DOC, synthetic series with I1 and I2 generated unreasonable data for

DO concentration in IG2, and are not evaluated as boundary conditions for simulation.

Synthetic series in IG2 that generated high concentrations are set to a maximum of 8.5

mg-O2/L (arbitrated saturation limit), although this value can change due to temperature,

salinity and pressure conditions (Chapra, 1997).

The experiments show that series I3 generated results closer to data than the deter-

ministic approach (figures 63 and 67). Synthetic DO concentrations with T1a and T9b

generated higher variability than expected in IG3 to IG6 (boxplot in figure 67); simu-
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lation based on these tests as boundary conditions show fair estimation (figures 64 and

66), considering that this parameter is affected by multiple processes in the system, such

as nitrification, reaeration and water velocity, for example. Upstream boundary condi-

tion defined with T4b also resulted in reasonable concentrations with SIHQUAL (boxplot

in figure 67); analysis of boxplots, however, indicates that the AR(1) model with mean

and standard deviation of the simulation period predicts overall variability close to the

monitored dataset in most sections.
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Figure 63: Daily DO simulated concentrations and monitoring data for the year 2010; BC gen-
erated with Spline interpolation (test I3)
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Figure 64: Daily DO simulated concentrations and monitoring data for the year 2010; BC gen-
erated with series test T1a
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Figure 65: Daily DO simulated concentrations and monitoring data for the year 2010; BC gen-
erated with series T4b
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Figure 66: Daily DO simulated concentrations and monitoring data for the year 2010; BC gen-
erated with series T9b
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Figure 67: Boxplot of measured (M) and simulated DO concentrations for 2010 with SIHQUAL
(S) and synthetic series (S’); I3, T1a, T4b, T9b, respectively in each row
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Figure 68: Duration curves of historical monitoring dataset 2005-2017 (M) and simulations for
2010 with synthetic series (S’) and SIHQUAL results under unsteady (S) and steady
(ST) state: T1a, T4b, T9b, I3 presented respectively in each row

5.3.3.5 Annual loads text

Figure 69 presents simulated daily accumulated loads in each section of the Iguaçu

river using different boundary conditions, in tons per day, as heatmaps (representation

of data as a color-encoded matrix). This analysis shows where, when and for how long

critical events occur.

Most of the tests indicate that higher loads pass trough the sections IG4 and IG5,

or IG5 and IG6 – maximum values corresponding to the heatmaps are presented in table

16. Although downstream of the Iguaçu river has lower pollutants concentration, larger

discharges culminate in higher loads, which explains this behavior.

Estimations with T9b as boundary conditions is the test indicating more events

of higher accumulated load (except for N-org, since this test is the one with smaller

concentration peaks – figure 51). Series with T4b as input, as expected, underestimate

accumulated daily loads.
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Figure 69: Heatmaps of accumulated daily loads; i: test T1a, ii: test T4b, iii: test T9b; M’:
mean of IG2 to IG6
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Figure 69: Heatmaps of accumulated daily loads; i: test T1a, ii: test T4b, iii: test T9b; M’:
mean of IG2 to IG6 (continued)

Maximum values corresponding to the heatmaps, indicated in table 16, confirm

that predictions of magnitude and timing for extreme values varies with the boundary

condition, although there is agreement to the location of these scenarios (expect T4b

for N-org, that indicates maximum in section IG4 instead of IG5). Even though these

extreme events are quickly consumed (they last two or three days for the study case), they

might cause critical conditions, such as contamination of drinking water, eutrophication

and fauna death.

Table 16: Maximum accumulated daily loads estimated in 2010

Test T1a T4b T9b T1a T4b T9b T1a T4b T9b

Parameter(1) BOD DOC N-org

Maximum(2) 1482.50 903.37 1614.50 1541.10 972.57 1430.30 1650.60 1007.30 728.60

Day 119 352 116 118 117 117 116 196 350

Section IG5 IG5 IG5 IG5 IG5 IG5 IG5 IG4 IG5

(1)Extreme conditions for DO correspond to minimum values; because negative concentrations are generated

during the deterministic simulations, due to misleading mass balance estimation, this parameter is not

considered in this analysis of critical event
(2)in megatons (Mt)

A common measure for comparison in modeling studies is annual load estimation;

for tests T1a, T4b and T9b, that can be interpreted as different sampling frequencies,

annual loads are compared in figure 70 and table 17 – it is observed agreement between

the approaches regarding location of higher/lower loads, as stated with the analysis of

heatmaps.

Table 17 explores the percentage difference between annual loads estimated through
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each series – T1a and T9b generated annual loads very similar, suggesting that higher

sampling frequency (hourly) do not necessarily improves annual load estimation – the

same conclusion was verified by Park and Engel (2014) when calculating pollutant load

through regression model; the differences are higher regarding the series modeled with T4b

as input – lesser data, on the other hand, change annual load estimation, as expected.
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Figure 70: Annual mean loads estimated with simulations using as input series T1a, T4b and
T9b; error bars indicate 95% confidence intervals (IC), IC = μW + 1.96×σW /

√
N

– μW is mean of daily load, σW is standard deviation of daily load, and N is the
sample size
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Table 17: Percentage difference (%) of annual load estimation with simulations using as input
series T1a, T4b and T9b

T1a/T9b T4b/T9b T1a/T4b T1a/T9b T4b/T9b T1a/T4b

BOD DO

IG2 15 40 30 -3 21 23

IG3 5 23 19 0 20 20

IG4 3 19 17 1 21 20

IG5 4 20 17 1 24 23

IG6 4 20 17 2 34 33

N-org DOC

IG2 2 16 14 7 35 30

IG3 -2 12 14 4 36 33

IG4 0 11 11 3 36 34

IG5 -1 14 14 4 36 33

IG6 -3 13 16 4 36 33

5.3.3.6 Organic Carbon (OC) text

Simulations under unsteady state for organic carbon are presented for the period

03/18/2013 to 03/18/2015. Total organic carbon is represented as (i) sum of POC and

DOC (figure 71), and (ii) sum of LDOC, RDOC, LPOC and RPOC (figure 72).

The calibration strategy follows the same procedure applied for other parameters;

however, for labile and refractory fractions, transformation rates variation over time is

neglected, due to processing time limitations – after generating the rates time series,

means over time are used for calculation. Boundary conditions are set as series T2a –

because POC data is available from 2012 to 2014 (ten values total), seasonal metrics are

unreliable.

Results show that, despite the uncertainty in kinetic process dynamics, the model

is able to predict reasonable estimations of organic carbon concentrations distributions

along space and time. The propensity of the ratio POC/DOC in TOC to increase under

higher flow is represented in both strategies.

For the labile and refractory fractions, there is loss of temporal variability mainly

in IG4, IG5 and IG6 (figure 72). While qualitative identification of labile and refractory

organic carbon can be achieved through uv-vis techniques, studies to quantify these frac-

tions are still incipient. Therefore, the attempt to simulate one-dimensional transport

of labile and refractory organic carbon considers arbitrary percentages: labile DOC and

POC part is defined as 70% (IG2 to IG4) and 60% (IG5 and IG6) of total DOC and

POC, while the remaining is set as refractory; although overestimated organic concen-
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trations are obtained, the expected behavior from input hypothesis is reproduced by the

deterministic model.
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Figure 71: Simulated daily TOC concentrations (POC + DOC) and monitoring data for the
years 2013-2015
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Figure 72: Simulated daily TOC concentrations (LPOC + RPOC + LDOC + RDOC) and
monitoring data for the years 2013-2015

Simulation of POC and DOC time series are presented in detail in figures 73 to

76, while appendix A.14 shows LDOC, RDOC, LPOC and RPOC, besides the adjusted

corresponding kinetic rates.

Overall, variability of DOC concentrations is well represented, although some over-

estimation is observed in sections IG5 and IG6; POC simulations, on the other hand,

generated overestimated data in IG3, and underestimate downstream concentrations (IG5

and IG6) – as verified in figures 75 and 76.
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Figure 73: Daily DOC simulated concentrations and monitoring data for the years 2013-2015;
BC generated with test T2a
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Figure 74: Daily POC simulated concentrations and monitoring data for the years 2013-2015;
BC generated with test T2a
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Figure 75: Boxplot of measured (M) and simulated DOC and POC concentrations for years
2013-2015 with SIHQUAL (S) and synthetic series (S’); BC as series T2a
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Figure 76: Duration curves of historical monitoring dataset 2005-2017 (M) and simulations for
2013-2015 with synthetic series (S’) and SIHQUAL results under unsteady (S) and
steady (ST) state; BC as series T2a

5.4 Boundary condition and transport of substances

Without lateral inputs, downstream concentrations are result of pollution trans-

ported from upstream through physical processes and kinetic transformations. The fol-

lowing test represents the propagation of a constant concentration, in order to verify how
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much of it is in fact transported to downstream (table 18). Tests are conducted for the

parameters BOD, N-org and DOC; concentrations in IG2 are 10 mg/L for BOD, 4mg/L

N-org and 8 mg/L of DOC.

The organic matter indicated by BOD is consumed almost entirely in the 85 km

reach, while organic nitrogen remains for a longer extension. Dissolved organic carbon is

expected to be transported almost entirely. Figure 77 shows the spatial distribution of

BOD and N-org concentrations with these simulation conditions (the values are averages

over time). An additional simplified test of sensibility is presented in section A.10.

Table 18: Percentage of the transported concentration in each section

BOD DOC N-org
IG2 100 100 100
IG3 61 100 87
IG4 43 100 78
IG5 35 100 73
IG6 27 100 67
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Figure 77: Spatial distribution of BOD and N-org concentrations (average over time) simulated
with a constant upstream boundary condition and null lateral input; circle’s size is
scaled accordantly to simulated cross section top width
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Even with an increase of pollution from lateral contribution, the upstream boundary

condition still affects results, as verified in figure 78, especially in the identification of

critical events along the year. The heatmaps compare simulation with different boundary

conditions and the double of the original lateral input estimated along the Iguaçu river.

BOD.i

’
BOD.ii

’
DOC.i

’
DOC.ii

’
N-org.i

’
N-org.ii

’

Time (d)

Figure 78: Heatmaps of accumulated daily concentration for BOD, DOC and N-org; boundary
condition i: T1a, ii: T4b; M’: mean of IG2 to IG6

5.5 Temporal variability of lateral loads and kinetic rates

This section explores the role of temporal variability in lateral inputs and kinetic

processes. Experiment A: considering the case with daily concentrations as hourly samples

(test T9b) being released at IG2, test (i) compares the original results (presented in section

5.3.3), (ii) represents simulation with kinetic coefficients constant in time, and (iii) is a

simulation scenario with both transformation rates and lateral inputs not varying over

time. Figures 79, 80, 81 and 82 show the results in terms of boxplots and annual loads

estimations (respective pollutographs also support the discussion, and are presented in

appendix A.15).
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Figure 79: BOD simulations with T9b as boundary condition (S) and monitoring data (M) -
boxplots
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Figure 80: N-org simulations with T9b as boundary condition (S) and monitoring data (M) -
boxplots
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Figure 81: DOC simulations with T9b as boundary condition (S) and monitoring data (M) -
boxplots

The comparison of these tests shows that temporal variation of kinetic rates and

lateral contribution has an important role in the overall variability of BOD concentrations

– N-org also has some variation, but DOC does not show significantly sensitiveness. Dis-

regarding the temporal variability of calibration parameters lead to higher attenuation of

pollutant’s distribution over time, so boxplots have smaller interquartile intervals (79 ii);

test (iii) shows that this behavior is highlighted if dilution effects on lateral inputs are

simplified (79 iii), and more likely generate overestimated concentrations.

The same behavior is verified for annual mean loads estimation (figure 82). Results

suggest that loss of temporal variability in transformation rates generates smaller annual

loads; on the other hand, when lateral input is constant over time, overestimated values

are calculated by the model.
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Figure 82: Annual mean loads estimated with simulations exploring temporal variability of lat-
eral loads and kinetic rates

The experiment B is conducted only for BOD – same conditions as the previous

ones, but with boundary condition as series T10a; the objective is to show that, even

with a misleading upstream boundary condition, results are improved when the unsteady

behavior is represented in the calibration phase and in the dilution effects of input lateral

loads; when this aspects are neglected, the model is able to reproduce only median values,

since natural persistence over time is not being respected.



131

M S' M S M S M S M S
0

20

40

60

80

C
B

O
D

 (
m

g
-O

2
/L

)

i.) IG2 IG3 IG4 IG5 IG6

..
..
..
..
..
..

..
..
..
..
..
..

..
..
..
..
..
..

..
..
..
..
..
..

M S' M S M S M S M S
0

20

40

60

80

C
B

O
D

 (
m

g
-O

2
/L

)

ii.) IG2 IG3 IG4 IG5 IG6

..
..
..
..
..
..

..
..
..
..
..
..

..
..
..
..
..
..

..
..
..
..
..
..

M S' M S M S M S M S
0

20

40

60

80

C
B

O
D

 (
m

g
-O

2
/L

)

iii.) IG2 IG3 IG4 IG5 IG6

..
..
..
..
..
..

..
..
..
..
..
..

..
..
..
..
..
..

..
..
..
..
..
..

Figure 83: BOD simulations with T10a as boundary condition (S) and monitoring data (M) -
boxplots

The importance of temporal variability in kinetic rates and lateral contributions –

observed mostly for BOD – can be summarized by the following statements:

1) comparison of tests i, ii and iii: boundary condition with higher daily variability

(series T9b with input as daily data from hourly samples); variability of boundary con-

dition is not enough to guarantee variation in downstream sections without variability in

kinetic rates and lateral inputs.

2) test iv: boundary condition with small daily variability (series T10a, data every

50s), produces reasonable results due to the developed calibration procedure and due to

lateral inputs temporal variation; without these aspects, overall variability is not well

represented – this means that, if boundary condition does not respect persistence over

time, calibration with temporal variation is even more important.

5.6 Summary

This thesis proposes a complementary tool for river transport analysis, that inte-

grates deterministic and statistical/empirical simulations. The first one refers to the tra-

ditional solution of the Saint-Venant equations and advection-dispersion-reaction, while

the second approach explores simplified methods of synthetic series generation – this mod-

ule aims to meet the temporal scales of boundary conditions, since data of water quality

are generally not obtained as regular samples. This tool offers steady and unsteady state
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simulations for the parameters biochemical demand for oxygen, dissolved oxygen and

organic nitrogen, besides conceptual formulations for non-traditional constituents (dis-

solved, particulate, refractory and labile organic carbon). In addition, the calibration

method presents an alternative to the traditional procedures of trial and error and opti-

mization techniques, highlighting the transient approach in the determination of kinetic

parameters.

Figure 84 presents a summary of this development: i) hydrodynamic simulations

offer flow conditions analysis, while ii) convert discrete (”snapshots”) into continuous

information as water quality input; the latter is also basis for the iii) calibration procedure,

which provides transformation rates for the iv) water quality module. Final results are

discharges and concentration over time and space in rivers, granting additional information

to those generated by conventional analysis (monitoring and steady state evaluations).

In the interest of water resources planning and management, this tool also provides a

risk analysis (duration curves), that incorporates system responses to multiple conditions

(flow, dynamics of lateral inputs and transformation rates etc).

WATER
QUALITY

RISK
ANALYSIS

Concentration and load over space and time

Concentration at
required time step

Advection
Cross section areas

Duration curvesTransformation 
rates

HYDRODYNAMICSYNTHETIC
SERIES

CALIBRATION

Figure 84: Modules and their link in the SIHQUAL model
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6 Conclusions

text

The goal is to turn data into information, and information into insight.

– Carly Fiorina

For water resources planning and management strategies, the concept of mathemat-

ical modeling allows integration of quantity (flow) and quality (concentrations). Input

data, however, is a fundamental aspect to interpret results in this type of study. This

research provides new contributions aiming to decrease the risk of inadequate decisions

in water resources planning and management based on numerical simulations, integrating

synthetic pollutographs and deterministic modeling. The proposed methodology aims to

support more reliable analysis with available resources, considering that gather appropri-

ate information at minimum cost remains a challenge (Hankin et al., 2016).

Empirical techniques are useful because they combine the many factors responsible

for uncertainty in time series (missing data, non-linearity, seasonal and cyclical patterns

etc), and demand a minimum description of cause and effect; the historical monitoring

dataset provides the required knowledge about the system. The posterior phase, that

propagates the information through deterministic equations, incorporates the different

processes controlling release, transport and fate of pollutants in rivers. Consequently,

strategies for water resources planning and management can be evaluated.

A few techniques to predict time series of concentrations at regular time steps for

a continuous period are evaluated, exploring: influence of seasonal variation, effects of

temporal interval generation, persistence scenarios, sampling frequency versus time series

prediction, association of water quality with flow conditions and time.

Results suggest several important messages. Interpolation with PCHIP function and

Fourier series, although accounting for flow conditions, are sensitive to extreme values and

did not describe all parameters tested; the function smoothing spline, due to the limited

data, generate gradual variation over time, not being able to represent the unsteady

behavior. The experiments based on autoregressive principles showed that preservation

of statistical metrics from historical information, linked to multiple scenarios analysis and

representation of natural persistence, are reasonable criterion to estimate water quality

time series; the methodology showed to be effective for all water quality parameters

investigated, besides other study cases.

Overall, the experiments with synthetic series demonstrated consistent reproduction

of water quality variability or characteristic measures, such as dataset quantiles; when

integrated with the deterministic model, as long as the structure of natural persistence

over time is consistent, their propagation generate reasonable concentrations over time

and space.

The synthetic series also provide plausible different scenarios, allowing a conceptual
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analysis of input conditions in deterministic modeling. Although not usually explored in

studies of water quality under unsteady state, upstream boundary condition may have

an important role in model outputs, and therefore impact decisions in water resources

management and planning; this question was addressed by drawing attention to the dif-

ferences in duration curves and load estimates resulting from multiple input conditions.

The analysis suggest that the upstream boundary condition may be responsible for mis-

leading identification mainly of critical events magnitude and estimates of when the same

occur. Responses to different inputs were stronger in sections that receive larger amounts

of lateral loads, and therefore where water quality have higher temporal variability.

Among the studied water quality parameters, BOD showed to be the constituent

most affected by upstream boundary conditions, while organic nitrogen and dissolved

oxygen had less impact (since these latter have less overall variability). Dissolved organic

carbon also showed to be largely affected by upstream boundary conditions; because of

its particular behavior (attenuation over space is very low, and almost all particles from

upstream reach downstream), variability in input condition controls nearly all distribution

in subsequent sections; this is also supported by the test of section 5.5, since this parameter

showed to be almost insensitive to temporal variation of lateral inputs and kinetic rates.

However, further analysis are suggested, since the parametrization used in this research

was based on a simplified model of kinetic processes.

In this context and to reinforce the model ability in predict different water quality

constituents, simulations for non-traditional parameters are investigated (organic carbon

fractions dissolved and particulate, labile and refractory). Results highlight that represen-

tation of internal processes and interaction between components remain one of the main

challenges in transport modeling of non-conservative substances.

In the same context, the proposed method for integrated modeling suggests that

temporal variation of kinetic processes may play an import role in transport and fate of

pollutants in terms of overall variability and attenuation over time/space, and this aspect

can be included in the calibration phase with the proposed method.

The current development of technologies in industry and agriculture, as well as the

dynamic in land use and occupation, affect directly the list of pollutants that can reach

watercourses. Therefore, the number of parameters indicating water quality is still open,

depending on the discovery of new compounds and improvement of analytical methods.

The integrated analysis in SIHQUAL shows a systematic and consistent behavior in

comparison with a natural system, being able to integrate and represent multiple scenarios

of flow, input conditions and data availability. In such a context, this research provides

background to evaluate the risk of disagreement with quality standards, complementing

the information granted by monitoring programs and steady assessment.
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6.1 Contributions

The contribution of this research is a new approach to evaluate the variation of

discharges and concentrations in rivers through one-dimensional modeling. This strategy

combine statistical approaches to traditional deterministic analysis, and it can be used

as tool for orientation of stakeholders and water resources committees, as complement to

traditional mechanisms, such as monitoring and analysis in steady state.

Specific additional original contributions of the research are:

• Fast and parsimonious strategy to generate environmental time series in high tempo-

ral resolution: autoregressive model and multiple scenarios analysis/selection allow

to: i. overcome lack of data, ii. combine the factors responsible for uncertainty

in time series, iii. demand a minimum description of cause and effect – historical

monitoring dataset provides the required knowledge about the system, iv. useful to

predict results with different input conditions.

• Unique calibration method for modeling water quality under unsteady state, based

on system characteristics (that allow to overcome a common issue in calibration

– virtual values that solve the mathematical problem, but without physical mean-

ing), random variation (that incorporate the inherent uncertainty), and temporal

variation (through a link that relates transformation rates to intervals of concentra-

tion); this is different from the traditional association of kinetic rates to empirical

equations and other conditions (hydraulic characteristics or composition of wastew-

ater, for example); the procedure also overcome the usual large processing time

required in automatic techniques, and it less subjective than traditional trial and

error analysis.

• First attempt to simulate non-traditional water quality parameters (organic carbon

and its fractions) in rivers under unsteady state.

text

6.2 Future perspectives

The integrated modeling is robust to predict discharges and overall variability of

water quality, which is sufficient for exploratory and planning purposes; however, for

regulatory and legal objectives, such as analysis of levels transgression over time, some

further improvements might be required.

Better predictions of critical events and actually temporal variation of water qual-

ity will be possible with more information, such as lateral input dynamics (schedule of

wastewater releases and representation of diffuse pollution linked to hydrological process)

and knowledge about kinetic processes (that also depend on water-sediment and water-

atmosphere interactions).
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Further recommendations for future efforts are discussed in the following items:

i Lateral load inputs: sensibility and temporal variability tests confirmed that lat-

eral contribution is an important aspect in modeling river contaminant transport.

Diffuse sources were represented by a simplified procedure, disregarding temporal

variability; because this input is directly related to meteorological conditions – that

can rapidly change in tropical regions, hydrological models could be associated. For

point sources representation, including the location of wastewater treatment plants

and tributaries might improve simulated results, especially the estimation of critical

events: domestic and industrial waste are usually released during defined periods of

the day; therefore, these inputs are characterized by a curve with high peak that de-

creases until a steady behavior; since the model is not representing this fluctuation,

overall results underestimated critical concentrations. Additional characterization

of sources can also serve to improve simulations in assisting the identification of

proper interactions that should be represented; some industrial waste components,

for example, are more susceptible to volatilization or to interact with sediment,

which makes critical the representation of such aspects.

ii Calibration: the proposed strategy to estimate temporal variation of kinetic rates

presumes two main aspects: 1. daily transformation rates have a uniform distribu-

tion; 2. less impacted reaches have smaller activity for sink/sources analysis (minor

rates to downstream) – this means that concentrations and rate’s values are directly

proportional. However, such hypothesis might not be valid for all parameters; sim-

ulations of organic carbon, for example – for which transformation processes are

not entirely known in riverine systems – might be overestimated because of these

assumptions in the calibration phase. In the same context, BOD simulations showed

to be more affected by the strategy in defining time series of transformation rates

than other water quality parameters; this does not necessarily indicates that tem-

poral variation of kinetic processes are not relevant for the other components, but

that further investigations towards other distributions, different processes (such as

interaction sediment-water) and analysis to understand temporal scales should be

conducted – such sediment resuspension, effects of temperature etc. Additionally,

none specific quantitative parameter of calibration fit was assessed (such as differ-

ence between measured data and model output), which should be included in future

efforts. At last, the calibration procedure also inserts uncertainty in model results,

that could be further assessed to increase reliability.

iii Dispersion coefficient: because of numerical solution stability, this parameter was

considered as a constant during the simulations; supplementary assessment of this

process can generate superior estimations of pollutants transport, especially if con-

taminant’s arrival is the goal.
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iv Synthetic series: this is an useful artifice to study multiple possible scenarios, al-

though it might generate values without physical meaning; preservation of statistical

moments (mean and standard deviation) might not necessarily be the only criterion

to provide reasonable estimates of water quality, especially when time evolution is

the main objective – in this case, persistence over time should be represented. To

increase the reliability, characteristics of these generated temporal series should be

better understand (e. g., autocorrelation, trends, cycles and seasonality), which is

possible only with longer term analysis and comparison with data at higher fre-

quency sampling (Coelho et al. 2019). Other methods to generate synthetic data

are encouraged; development of techniques for data analysis have been increasing

over the years in multiple areas; more sophisticated forecasting methods, such as

those based on artificial intelligence, have received more attention in water quality

studies (Sengorur et al., 2015; Keshtegar and Heddam, 2017). Furthermore, other

traditional approaches, such as regression analysis, remain subject of several stud-

ies; these latter have the advantage of empirically relate different conditions, such as

land use and loading entering a system, and could be incorporated in the SIHQUAL

model.

v Spatial representation: the one-dimensional configuration assumes instant mixing in

lateral and vertical dimensions; after mass releases, in reality, uniform distribution in

the cross section is achieved some time latter; mainly for compound cross sections,

where recirculation or stagnation zones are common, simulation in two or three

dimensions might be required.

vi Simulation period/scale: Substances react or interact with other components (with

sediment, for example, that can be considered as sink of toxic contaminants); in

case of persistent substances, transfer of pollutant to other levels may occur due

to bioaccumulation, or they can reach remote regions. In analysis at longer spa-

tial/temporal scales, it is also possible to track patterns in water pollution due to

land use modifications, for example. These analysis depend on longer datasets, be-

sides improvement in numerical solution and algorithm aspects, since computational

processing time increases significantly for larger scales.

vii Numerical representation: in the same direction, instigations of other numerical

strategies are encouraged; advances in computational fluid dynamics have investi-

gated effects on simulations due to numerical diffusion and discretization techniques.

that also have impact on model outputs.

viii Sampling frequency and model requirements: this research examined only one sam-

pling strategy that represents common monitoring practice; strategies with different

sampling frequencies (e.g., weekly or monthly) and record lengths (e.g., 10 years)

should be investigated. Results suggested that more data does not necessarily gen-
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erate better estimations of annual loads, which is compatible with other studies. An

effective criterion reported to improve simulation results is input data based on flow

regime or storm observations (e. g. Park and Engel, 2014; Zhang and Ball, 2017).

This aspect also leads to understand the relevance of time intervals required, which

is not a trivial aspect and also might lead to numerical instabilities. According to

Palmer (2001) and Costa and Monteiro (2015), daily time steps are adequate to

represent effects of photosynthesis and respiration, while seasonal predictions may

be required for dissolved oxygen or nutrients analysis. To Moeller et al. (1979),

comparisons of annual or seasonal dissolved and particulate carbon are indicative

of relative amounts of organic loading, and weekly or daily concentrations would be

preferable. In the same way, Magness and Raffensperger (2003) state that it is con-

ceptually possible a watershed model to accurately predict annual flow or load, yet

incorrectly capture the dynamics of the processes responsible; therefore, the author

suggests hourly analysis to predict loading and natural process dynamics. While

this research focused on daily averages, Baffaut et al. (2015) argues that some pro-

cesses happens at a scale of seconds (adsorption/desorption, for example), minutes

(such as nitrification and denitrification) and hours (algae growth/eutrophicationfor

example). Overall, this definition depends of system conditions, processes and pa-

rameters being evaluated, besides model objectives.

ix Monitoring efforts: Experiments with synthetic series show that historical moni-

toring datasets are undoubtedly valuable, and the relationship between statistical

measures should be considered when designing sampling strategies. In fact, expres-

sions to estimate the number of samples required often use as reference medians

and standard deviations (e. g. Williams et al., 2014). Technology for data ac-

quirement has been broadly developed, with equipments that collect large amounts

of information. Other promising alternative for data acquirement is multi-spectral

satellite-based remote sensing; it has been applied to derive information about soil,

vegetation, and climate as input data for environmental modeling (e. g. Chang and

Imen, 2015; Launay et al. 2019). Despite that, monitoring efforts depend on study

objectives. Model calibration could be improved with higher frequency data along

the river – specially near the contours of the interval being simulated; to Baffaut

et al. (2015), models should be calibrated at the scale at which the results will be

analyzed and interpreted.

x Input data uncertainty: In the modeling field, scientists and users usually assume

measurement data as the ”truth”; however, uncertainty in monitoring data is inher-

ent, since they are susceptible to analytical assumptions and errors due to instru-

ments and operation. In this sense, it is important to take these uncertainties into

consideration and communicate them appropriately.
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xi River characteristics: system’s hydraulic conditions often can be related to changes

in water quality, so investigation of hydraulic structures – such as bridges, con-

tractions, expansions and dams – could provide insides about aspects that alter

water quality conditions; in this sense, presence of dams have been recognized as

traps for some pollutants, such as metals, polychlorinated biphenyls, atrazine and

bisphenol A (Watkins et al 2019; Xu et al 2017), which suggests that the dynamic

river-reservoir is important in mass balances.

xii Hydrodynamic modeling: the simplifications involved to solve the hydrodynamic

module should be further investigated: lateral contribution has been calculated

with the same dataset used in calibration – therefore, results might be biased; for

future prediction scenarios, lateral contribution can be estimated using hydrological

models, for instance (e. g. Paiva, 2009). Results also suggest that uncertainty in

other input data, such as rating curves representation and bathymetry information,

may be responsible for discrepancies in simulations of water level and discharges

– in this sense, further investigations should be towards decreasing uncertainty in

data used as input and calibration, especially if the objective is to predict critical

events (maximum discharges and water level); in the same direction, results to

predict inundations could be improved with 2D or 3D representations, especially in

floodplain regions.
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pacto para os instrumentos de gestão de recursos h́ıdricos. Dissertação (Mestrado

em Engenharia de Recursos Hı́dricos e Ambiental) - Universidade Federal do Paraná, 2015.
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dynamics during storm events in the Enxoé temporary river, southern Portugal. Catena,

v. 127, p. 177-190, 2015.

RAZAVI, S.; TOLSON, B. A.; MATOTT, L. S.; THOMSON, N. R.; MacLEAN, A.;

SEGLENIEKS, F. R. Reducing the computational cost of automatic calibration through

model preemption, Water Resources Research, v. 46, 2010.
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A Appendix

A.1 Numerical solutions

Hydrodynamic model

Applying the Lax diffusive method to the expression for continuity, represented by

equation (3.1), we have an explicit equation for calculating the channel depth:

yk+1
i = αyki + (1− α) y∗ − U∗Δt

2Δx

(
yki+1 − yki−1

)− U∗Δt

B∗2Δx

(
Ak

i+1 − Ak
i−1

)−
A∗Δt

B∗2Δx

(
Uk
i+1 − Uk

i−1

)
+

qki Δt

B∗

(A.1)

where:

B∗ = (Bk
i−1+Bk

i+1)/2, y
∗ = (yki−1+yki+1)/2, U

∗ = (Uk
i−1+Uk

i+1)/2 and A∗ = (Ak
i−1+Ak

i+1)/2.

espaço

Applying the same scheme to equation (3.2), for momentum conservation, and re-

arranging the terms, an expression is obtained for the calculation of the velocity at the

instant tk+1 based on values from the time tk:

Uk+1
i = αUk

i + (1− α)U∗ − U∗Δt

2Δx

(
Uk
i+1 − Uk

i−1

)− gΔt

2Δx

(
yki+1 − yki−1

)
+

qki (vL − U∗)
A∗ Δt+ gΔt

(
S0 − S∗

f

) (A.2)

where S∗
f = (Sk

fi−1+Sk
fi+1)/2, e S0 varies along space.

The stability of the method depends on Courant’s condition, given by (Liggett and

Cunge, 1975):

Δt

Δx
≤ 1

|U + c| (A.3)

The variable c in equation (A.3) represents the celerity (m/s).

Water quality model

The solution of the unsteady water quality model is based on the application of the

FTCS method to equation (3.4):
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Ck+1
i = Ck

i − Uk
i Δt

2Δx

(
Ck

i+1 − Ck
i−1

)
+

DΔt

Ak
i

Ak
i+1 − Ak

i−1

2Δx

Ck
i+1 − Ck

i−1

2Δx
+ (A.4)

DΔt

(Δx)2
(
Ck

i+1 − 2Ck
i + Ck

i−1

)± FΔt (A.5)

The requirements for stability of the solution for the advection-dispersion equation

are given by (Chapra, 1997):

λ =
DΔt

(Δx)2
<

1

2
(A.6)

γ =
UΔt

Δx
< 1 (A.7)

where λ is the diffusion number e γ is the Courant number.
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A.2 Synthetic series: data verification and residual check
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Figure A.1: Quantile-quantile plots for the concentration sample in each section (a), and corre-
sponding natural logarithm (b)
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Figure A.1: Quantile-quantile plots for the concentration sample in each section (a), and corre-
sponding natural logarithm (b) (continued)
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Table A.1 shows the results for residuals check of the fitted AR(1) models. Further

detail about this theory is presented in Box et al. (2008)5. Since the p-values are larger

than 0.05, the hypothesis of independence, homoscedasticity and normality are accepted.

Table A.1: AR(1) validation tests

Test
Portmanteau Levene Kolmogorov-Smirnov

p-values

T1 0.254 0.162 0.948

T2 0.254 0.162 0.948

T3 0.254 0.162 0.948

T4∗ 0.043 – 0.876

T5 0.254 0.162 0.948

T6 0.066 0.06 0.316

T7 0.066 0.06 0.316

T8 0.254 0.162 0.948

T9 0.059 0.08 0.712

T10 0.058 0.115 0.511
∗the unsatisfactory results for this test might be caused by lack of data, since only seven values are

considered in this computation; further investigations are recommended

5BOX, G. E. P.; JENKINS, G. M.; REINSEL, G. C. Time Series Analysis: Forecasting and
Control. Wiley, 4 ed., 2008.
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A.3 Representativeness of monitoring data

Figure A.2 shows boxplots formed with different monitoring campaigns added, fol-

lowing the concept presented by Coelho et al. (2019). The first one represents only the

first five data available, and the subsequent boxplots are built adding values. Results cor-

roborate the assumption that the historical monitoring dataset is representing the natural

range of concentrations in the system, since boxplots, mean and standard deviations have

not been significantly altered in the last campaigns.
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section IG2
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A.4 Caffeine model

Caffeine is recognized as one of the pharmacologically active chemical substances of

higher consumption worldwide (100-200 mg/person), and may be found in the composition

of food, medicines, flavorings, among others. This substance is indicative of potential

pollution of water bodies in areas of intense urbanization, since anthropogenic sources are

the main responsible for the presence of this compound in aquatic systems (Seiler et al.,

1999).

Dombroski et al. (2013) call attention to the fact that few studies have been dedi-

cated to analyze the impact that the presence of this compound may have on the aquatic

ecosystem and in its transport and decomposition processes. Many of the researches

involving modeling of this parameter have a strong investigative character of decay pro-

cesses, adsorption and transformation in the water column of aquatic systems, since the

mechanisms are not completely known.

According to Canela et al. (2014), in continental surface waters, caffeine levels fol-

low aspects such as seasonality, proximity of sources, hydrological conditions and pattern

of consumption. Therefore, it may be an adequate indicator of the organic pollution com-

ing from domestic wastewater to be used in unsteady simulations. Temporal variations

of caffeine concentrations have been identified by Buerge et al., (2006) in Switzerland,

while Busse and Nagoda (2015) detected this substance during wet and dry seasons in

the San Diego Region. According to these authors, caffeine may undergo sorption, chem-

ical transformations, phototransformations, and biotransformations under aerobic and

anaerobic environments.

The half-life of this substance in surface waters has been reported to range from 5.3

to 24 hours (Bradley et al., 2007). However, Thomas and Foster (2005) argued that even

a quickly degradable drug can act as a persistent chemical. Moore et al. (2008) state

that if caffeine is profusely discharged from anthropogenic sources into an environment,

it could constantly replenish levels regardless the amount degraded, creating a dynamic

equilibrium.

Assuming that caffeine is consumed according to a first order reaction (C =

C0e
−kx/U), figure A.3 presents an estimation of caffeine levels along the Iguaçu river.

Discharge at the different reaches is estimated through the Manning equation; Inputs due

to domestic waste are calculated using the population data, considering a per capita con-

tribution of 16 mg/person.day, and efficiency removal in the wastewater treatment plant

of 90%; three values of half-life (t50) are arbitrated (i) 5h, (ii) 7h and (iii) 12h, and decay

rate (k) is estimated through the equation k = 0.693/t50 (Chapra, 1997).
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Figure A.3: Caffeine levels along the Iguaçu river (i) k = 3.33 d−1, (ii) 2.38 d−1, (iii) 1.40 d−1;
data is from monitoring campaign in 06/06/2016 (black dots)

References: BRADLEY, P. M.; BARBER, L. B.; KOLPIN, D. W.; MCMAHON, P. B.; CHAPELLE,

F. H. Biotransformation of caffeine , cotinine , and nicotine in stream sediments: implications for use as

wastewater indicators. Environmental Toxicology and Chemistry, v. 26, n. 6, p. 1116–1121, 2007.

BUERGE, I. J.; POIGER, T.; MU, M. D.; BUSER, H. Combined Sewer Overflows to Surface Waters

Detected by the Anthropogenic Marker Caffeine. Environmental Science and Technology, v. 40, n.

13, p. 4096–4102, 2006.

BUSSE, L.; NAGODA, C. Detection of Caffeine in the Streams and Rivers within the San

Diego Region - Pilot Study. California Regional Water Quality Control Board San Diego Region.

San Diego, 2015.
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Oficial Portuguesa, v. 1. p. 1–12, 2013.

MOORE, M. T.; GREENWAY, S. L.; FARRIS, J. L.; GUERRA, B. Assessing Caffeine as an Emerging

Environmental Concern Using Conventional Approaches. Archives of Environmental Contamina-

tion and Toxicology, p. 31–35, 2008.

SEILER, R. L.; ZAUGG, S. D.; THOMAS, J. M.; HOWCROFT, D. L. Caffeine and pharmaceuticals as

indicators of wastewater contamination in wells. Groundwater, v. 37, n. 3, p. 405-410, 1999.

THOMAS, P. M.; FOSTER, G. D. Tracking acidic pharmaceuticals, caffeine , and triclosan through the

wastewater treatment process. Environmental Toxicology and Chemistry, v. 24, n. 1, p. 25–30,

2005.



165

A.5 Fortran code tests

In figures A.4 and A.5 are presented some preliminary results. It can be observed

that are a few differences, that may arise from precision aspects. Mean absolute difference

for discharges between Fortran and Matlab range from 0.53 m3/s (IG6) to 2.83 m3/s (IG5).

For BOD concentrations, the mean absolute difference ranges from 0.05 mg/L in IG2 to

0.61 mg/L in IG4.

For the simulation of one year (2010), Matlab solves the equations in approximately

2 min, while Fortran uses 45s, using the same equations construction.

J F M A M J J A S O N D
Month

0

100

200

300

Q
 (m

3 /s
)

IG3

J F M A M J J A S O N D
Month

0

100

200

300

Q
 (m

3 /s
)

IG4

J F M A M J J A S O N D
Month

0

200

400

Q
 (m

3 /s
)

IG5

J F M A M J J A S O N D
Month

0

200

400

Q
 (m

3 /s
)

IG6
Observed
Matlab
Fortran

Figure A.4: Comparison of observed discharges and simulated with Fontran and Matlab
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A.6 Terms magnitude of the governing equations

This section presents means values over space of each term in the Momentum Con-

servation and Advection-Dispersion-Reaction equations, solved for the year 2010, inves-

tigating the role of the different components in overall results (figures A.6 and A.7).

Simulations consider the BOD parameter, with the proposed calibration strategy (kinetic

rate varies with time and space).

Table A.2: Terms of Saint-Venant and Advection-Dispersion-Reaction
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Figure A.6: Magnitude of terms in momentum conservation – simulation 2010
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A.7 Verification of Saint-Venant equations solution

Figure A.8 shows modeling results using the HEC-RAS software, using the same

configurations that SIHQUAL (as presented in sections 3.1 and 5.1). Table A.3 compares

other simulation conditions. More details in Ferreira et al. (2017)6.

 
(a) Measured and simulated discharges for 2010 (calibration) - HEC-RAS solution 

 

 
(b) Measured and simulated discharges for 2011 (verification) - HEC-RAS solution 

 

Figure A.8: Simulated discharges with HEC-RAS

6FERREIRA, D. M.; FERNANDES, C. V. S.; GOMES, J. Verification of Saint-Venant equations
solution based on the lax diffusive method for flow routing in natural channels. Brazilian Journal of
Water Resources, v. 22, 2017
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Table A.3: Nash-Sutcliffe (Ens) coefficients for different tests

 

Tests 
Lax 

solution 
HEC-RAS solution (Ens) 

IG3 IG4 IG5 IG6 
Natural 
section – 0.997 0.959 0.957 0.939 

Δt = 30 min Unstable 0.999 0.976 0.971 0.955 
Δt = 10 min Unstable 0.999 0.976 0.971 0.955 
Δt = 5 min Unstable 0.999 0.977 0.971 0.955 
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A.8 Synthetic series: validation

In order to validate the methodology of AR(1) modeling and the multiple solution

analysis, other study cases are investigated (i. and ii.). Results indicate that the strategy

is robust and can be applied for different systems, parameters and data availability.

(i.) Series of dissolved oxygen in Wyoming, United States: station USGS 09258980

Muddy Creek. The simulations are performed based on daily monitoring data, from

09/16/2011 to 11/14/2011. Conditions for the test are: mean and standard deviation of

entire dataset, ρ = 0.98 (correlation of the series). Results are presented in table A.4 and

figure A.9, with options b and d generating best fit.

(ii.) Series of total nitrogen (Ntot) in Colorado, United States: station USGS

06714000 South Platte river. The simulations are performed based on infrequent mon-

itoring data, from 01/01/2005 to 12/31/2007. Conditions for the test are: mean and

standard deviation of entire dataset, ρ = 0.8 (arbitrated). Results are presented in table

A.4 and figure A.9, with option b as best fit.

Table A.4: Differences between synthetic series and monitoring data in USA

Case study Series(1) RMSE (mg-O2/L) R MAPE (%) PBIAS (%)

i.

a 0.40 0.90 11.05 14.37

b 0.53 0.95 3.82 -2.35

d 0.53 0.95 3.82 -2.35

e 0.56 0.94 3.93 -1.13

ii.

a 0.33 -0.03 22.61 11.41

b 1.07 0.82 11.03 2.70

d 1.43 0.68 12.12 1.37

e 2.68 -0.20 24.19 4.40
(1) criterion a to d to select the series are those presented in section 3.2
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Figure A.9: Daily synthetic series (line) and monitored data (circles) in USA; series a, b, c and
d, respectively; shaded area in a indicates the thousand options
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Figure A.9: Daily synthetic series (line) and monitored data (circles) in USA; series a, b, c and
d, respectively (continued)
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A.9 Water quality simulations with alternative boundary con-
dition

Simulations with series T11b and T12b as boundary conditions are presented, since

these tests consider other distribution in the autoregressive equation – two parameter

log-normal (figure A.10).
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Figure A.10: BOD simulations with hydrid AR(1) as BC – T11b
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Figure A.10: BOD simulations with hydrid AR(1) as BC – T12b (continued)
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A.10 Sensibility analysis

In the hydrodynamic module, the parameter assessed is the Manning coefficient.

For the water quality module, simulations with different kinetic parameters and external

loads are performed; the results are compared using a sensibility coefficient proposed by

Lenhart et al. (2002) and a normalized analysis.

The dependence of a variable y of a parameter x can be expressed mathematically

by the partial derivative ∂y/∂x, approximated by a finite difference scheme. The result

provides a coefficient of sensitivity I of y to x, which in its normalized form is presented

as:

I =
(y2 − y1)/y0
2Δx/x0

(A.8)

where y0 represents the model output (simulated concentrations), result of the initial

parameter x 0 (original kinetic rates); the initial parameter is varied by Δx, yielding x 1 =

x 0 – Δx and x 2 = x 0 + Δx.

Table A.5 describes the sensibility classes suggested by Lenhart et al. (2002), ac-

cording to absolute values of I.

Table A.5: Sensibility classes

Class Index Sensibility

I 0.00 ≤ | I | < 0.05 Small to negligible

II 0.05 ≤ | I | < 0.20 Medium

III 0.20 ≤ | I | < 1.00 High

IV | I | ≥ 1.00 Very high

Source: Lenhart et al. (2002)

Hydrodynamic module

Table A.6 and figure A.11 presents the values of Ens when varying the Manning

coefficient, considering the difference between simulated and observed discharges. The

simulations are performed for 2010, with level series as boundary condition (results pre-

sented in figure 21). Results show that the discharges in station IG5 is the most sensitive

one, probably due to the equation that represents the rating curve, as discussed in section

5.1.
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Table A.6: Sensibility tests for hydrodynamic simulations

IG3 IG4 IG5 IG6

n Ens n Ens n Ens n Ens

0.040 0.919 0.045 0.786 0.050 -0.084 0.055 0.978

0.030 0.940 0.035 0.974 0.040 0.738 0.045 0.935

0.020 0.790 0.025 0.798 0.030 0.707 0.035 0.837
(∗)The second line corresponds to calibrated values
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Figure A.11: Sensibility of hydrodynamic simulations to the Manning coefficient

Water quality module

For BOD simulation, different deoxygenation rates are initially tested, since this

variable is usually more sensible for calibration (Kondageski and Fernandes, 2009). For

N-org, the Kso rate is varied, since its range is wide – 0.001 to 0.10 d−1, according to Von

Sperling (2007). The analysis are based on simulations of the year 2010.

The results for computational experiments are presented in figure A.12 for BOD

and figure A.13 for N-org. These simulation are produced with series T1a as boundary

condition; the parameter of interest is the median of the time series produced (presented

in section 5.3.1). The same calibration presented in section 5.3.1 are applied, though the

kinetic rates are taken as means along the time (since constant values in time are required

to calculate the I index). The boundary conditions are not affected by the variation of

reaction coefficients, which explains the convergence in IG2 for the transient simulation.

The parameter K d’ is 50% larger and K d” is 50% smaller than the original value in

each section (K d). The analysis for N-org has the same configurations.

According to the classification by Lenhart et al. (2002), BOD simulations are highly

affected by the K d coefficient (figure A.12). The simulations of organic nitrogen, on the

other hand, show a medium sensibility to K so (figure A.13).
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Figure A.12: Sensibility to K d – BOD simulation 2010. Boxplots: set of monitored data, lines:
median of simulated concentrations
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Figure A.13: Sensibility to K so – N-org simulation 2010. Boxplots: set of monitored data, lines:
median of simulated concentrations

The loads of each reach are set as: IG2-IG3 = 5000000 kg/d, IG3-IG4 = 250000

kg/d, IG4-IG5 = 85000 kg/d, IG5-IG6 = 60000 kg/d. These values are variated by 50 %,

using the simulations in 2010. Figure A.14 shows the medians simulated compared with

the boxplots of observed data, and coefficient I calculated. Considering the classification

proposed by Lenhart et al. (2002), BOD simulations are highly sensible to external inputs,

with a maximum coefficient I of 0.6.
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Figure A.14: Sensibility for loadings (BOD simulation – 2010); Boxplots: set of monitored data,
lines: median of simulated concentrations

The same simulation conditions of section 5.4 are used to evaluate the sensibility

of boundary conditions, comparing median concentrations. Results are presented in ap-

pendix A.10, giving support to confirm the role of this aspect in water quality modeling

under unsteady state.
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Figure A.15: Sensibility for BC (BOD simulation – 2010); Boxplots: set of monitored data, lines:
median of simulated concentrations
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Figure A.16: Sensibility for BC (N-org simulation – 2010); Boxplots: set of monitored data,
lines: median of simulated concentrations
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Figure A.17: Sensibility for BC (DOC simulation – 2010); Boxplots: set of monitored data,
lines: median of simulated concentrations

Normalized analysis

In the normalized analysis, the increments for K d and Kso values range from -0.2

to +0.6 (figures A.18 and A.19). The coefficient RN is defined by the ratio between

simulated concentration with the varied rate and the value obtained with the original

reaction coefficient.
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Figure A.18: Sensibility to K d – BOD simulation 2010
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Figure A.19: Sensibility to K so – N-org simulation 2010

Further investigations are suggested, since these analysis are only rough estimations

– the tests consider traditional calibration strategy (constant rates), and are evaluated

comparing only median simulation results.
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A.11 Pollutographs resulting from calibration strategies

0

50

100

C
B

O
D

 (
m

g
-O

2
/L

)

IG2

0

50

100

C
B

O
D

 (
m

g
-O

2
/L

)

IG2

0

20

40

60

C
B

O
D

 (
m

g
-O

2
/L

)

IG3

0

20

40

60

C
B

O
D

 (
m

g
-O

2
/L

)

IG3

0

20

40

60

C
B

O
D

 (
m

g
-O

2
/L

)

IG4

0

20

40

60

C
B

O
D

 (
m

g
-O

2
/L

)

IG4

0

10

20

30

40

C
B

O
D

 (
m

g
-O

2
/L

)

IG5

0

10

20

30

40

C
B

O
D

 (
m

g
-O

2
/L

)

IG5

J F M A M J J A S O N D J

Month

0

10

20

30

40

C
B

O
D

 (
m

g
-O

2
/L

)

IG6

J F M A M J J A S O N D J

Month

0

10

20

30

40

C
B

O
D

 (
m

g
-O

2
/L

)
IG6

Figure A.20: (a) Daily BOD simulated concentrations and monitoring data for the year 2010
with T1a as BC and different calibration strategies – v1 (left) and v2 (right)
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Figure A.20: (a) Daily BOD simulated concentrations and monitoring data for the year 2010
with T1a as BC and different calibration strategies – v3 (left) and v4 (right)
(continued)
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Figure A.20: (a) Daily BOD simulated concentrations and monitoring data for the year 2010
with T1a as BC and different calibration strategies – v5 (left) and v6 (right)
(continued)
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Figure A.20: (a) Daily BOD simulated concentrations and monitoring data for the year 2010
with T1a as BC and different calibration strategies – v7 (left) and v8 (right)
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Figure A.20: (a) Daily BOD simulated concentrations and monitoring data for the year 2010
with T1a as BC and different calibration strategies – v9 (continued)
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A.12 Sub-daily water quality boundary condition

This item shows simulations with sub-daily boundary conditions: T10a as concen-

tration at each 50 s and series T9b as hourly data (figure A.21).
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Figure A.21: Daily concentrations generated with different BC as sub-daily data – T10a
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Figure A.21: Daily concentrations generated with different BC as sub-daily data – T9b hourly
data (continued)
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A.13 Validation of BOD modeling

The dataset for comparison in boxplots (figure A.23) and duration curves (figure

A.24) is the same used in the simulations for 2010; pollutographs, however, are compared

with monitored data in 2013-2015 (figure A.22). Lateral loads between IG2 and IG3 are

overestimated, as identified in the steady simulation; therefore, the duration curve for

steady state is built with data from 2010 simulation; flow simulations are those presented

in section 5.1 for the period 2013-2015.

0

50

100

C
B

O
D

 (
m

g
-O

2
/L

)

IG2

0

50

100

C
B

O
D

 (
m

g
-O

2
/L

)

IG3

0

50

100

C
B

O
D

 (
m

g
-O

2
/L

)

IG4

0

20

40

60

C
B

O
D

 (
m

g
-O

2
/L

)

IG5

0

20

40

60

C
B

O
D

 (
m

g
-O

2
/L

)

IG6

A M J J A S O N D J F M A M J J A S O N D J F M
Month

Figure A.22: Daily BOD simulated concentrations and monitoring data for the years 2013-2015;
BC generated with test T1a
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Figure A.23: Boxplot of measured (M) and simulated BOD concentrations for years 2013-2015
with SIHQUAL (S) and synthetic series (S’); T1a as BC
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Figure A.24: Duration curves of historical monitoring dataset 2005-2017 (M) and simulations
for 2013-2015 with synthetic series (S’) and SIHQUAL results under unsteady (S)
and steady (ST) state: T1a as BC
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A.14 Labile and refractory carbon

Estimations of boundary condition and monitoring data to simulate labile and

refractory carbon are the assumed fractions of the information available for POC and

DOC. Monitoring data in pollutographs are POC/DOC values, and the error bars

represent the attributed fraction of labile/refractory for each constituent; the monitoring

data in boxplots and duration curves are only the attributed fraction.

Table A.7: Kinetic rates estimated in simulation for labile and refractory organic carbon

Interval of variarion  RPOC LPOC RDOC LDOC 
  KL4 (d-1) KL1 (d-1) KL6 (d-1) KL5 (d-1) 

int1 1.00 0.50 1.00 0.50 0.50 0.35 0.50 0.35 
int2 0.50 0.10 0.50 0.10 0.35 0.10 0.35 0.10 
int3 0.10 0.01 0.10 0.01 0.08 0.01 0.08 0.01 

  KR1 (d-1) KL2 (g/m2.d) KL7 (d-1) KL7 (d-1) 
int1 1.00 0.50 0.10 0.06 0.50 0.35 0.50 0.35 
int2 0.50 0.10 0.06 0.04 0.35 0.10 0.35 0.10 
int3 0.10 0.01 0.04 0.01 0.08 0.01 0.08 0.01 

  KR2 (g/m2.d) KL3 (d-1) KR4 (d-1) KL8 (d-1) 
int1 0.10 0.06 1.00 0.50 1.00 0.50 1.00 0.50 
int2 0.06 0.04 0.50 0.10 0.50 0.10 0.50 0.10 
int3 0.04 0.01 0.10 0.01 0.10 0.01 0.10 0.01 

  KR3 (d-1) KL4 (d-1) KR5 (d-1)       
int1 1.00 0.50 1.00 0.50 1.00 0.50       
int2 0.50 0.10 0.50 0.10 0.50 0.10       
int3 0.10 0.01 0.10 0.01 0.10 0.01       

  KR4 (d-1) KL5 (d-1)             
int1 1.00 0.50 0.50 0.35             
int2 0.50 0.10 0.35 0.10             
int3 0.10 0.01 0.08 0.01             

        KL6 (d-1)             
int1       0.50 0.35             
int2       0.35 0.10             
int3       0.08 0.01             
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Figure A.25: Daily organic carbon fraction simulated for the years 2013-2015 – BC generated
with test T2a: LDOC
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Figure A.25: Daily organic carbon fraction simulated for the years 2013-2015 – BC generated
with test T2a: RDOC (continued)
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Figure A.25: Daily organic carbon fraction simulated for the years 2013-2015 – BC generated
with test T2a: LPOC (continued)
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Figure A.25: Daily organic carbon fraction simulated for the years 2013-2015 – BC generated
with test T2a: RPOC (continued)
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Figure A.26: Boxplot of measured (M) and simulated RPOC concentrations for years 2013-2015
with SIHQUAL (S) and synthetic series (S’); T2a as BC; LDOC, RDOC, LPOC
and RPOC, respectively in each line
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Figure A.27: Duration curves of historical monitoring dataset 2005-2017 (M) and simulations
for 2013-2015 with synthetic series (S’) and SIHQUAL results under unsteady (S)
and steady (ST) state: BC as T2a; LDOC, RDOC, LPOC and RPOC, respectively
in each row
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A.15 Pollutographs of temporal variability tests
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Figure A.28: Daily concentrations generated with different input temporal variability: Experi-
ment A: BOD i)

0

50

100

C
B

O
D

 (
m

g
-O

2
/L

)

IG2

0

20

40

60

C
B

O
D

 (
m

g
-O

2
/L

)

IG3

0

20

40

60

C
B

O
D

 (
m

g
-O

2
/L

)

IG4

J F M A M J J A S O N D J
Month

0

10

20

30

40

C
B

O
D

 (
m

g
-O

2
/L

)

IG5

J F M A M J J A S O N D J
Month

0

10

20

30

40

C
B

O
D

 (
m

g
-O

2
/L

)

IG6

Figure A.28: Daily concentrations generated with different input temporal variability: Experi-
ment A: BOD ii) (continued)
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Figure A.28: Daily concentrations generated with different input temporal variability: Experi-
ment A: BOD iii) (continued)
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Figure A.28: Daily concentrations generated with different input temporal variability: Experi-
ment A: N-org i) (continued)
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Figure A.28: Daily concentrations generated with different input temporal variability: Experi-
ment A: N-org ii) (continued)
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Figure A.28: Daily concentrations generated with different input temporal variability: Experi-
ment A: N-org iii) (continued)
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Figure A.28: Daily concentrations generated with different input temporal variability: Experi-
ment A: DOC i) (continued)
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Figure A.28: Daily concentrations generated with different input temporal variability: Experi-
ment A: DOC ii) (continued)
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Figure A.28: Daily concentrations generated with different input temporal variability: Experi-
ment A: DOC iii) (continued)
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Figure A.28: Daily concentrations generated with different input temporal variability: Experi-
ment B : BOD i) (continued)
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Figure A.28: Daily concentrations generated with different input temporal variability: Experi-
ment B : BOD ii) (continued)
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Figure A.28: Daily concentrations generated with different input temporal variability: Experi-
ment B : BOD iii) (continued)


